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A transient model for one-dimensional charge transport in an open quantum system
is proposed. In the semiclassical limit, it reduces to the inflow boundary value
problem for the classical transport equation. On this basis, the coupling of classical
and quantum transport models through an interface is investigated. Suitable inter-
face conditions are derived through asymptotic formulas involving the quantum
reflection–transmission coefficients and time delays. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1421635#

I. INTRODUCTION

In this work, we propose and analyze a method for coupling classical and quantum tra
models in a one-dimensional time-dependent setting. This paper is the followup of a pre
work of one of the authors,1 where the one-dimensional stationary case was investigated. We
see that the account of the time dependence increases the complexity of the coupling metho
to a large extent.

The problem can be formulated as follows. We consider a particle system~such as certain
semiconductor devices, e.g., Resonant Tunnelling Diodes!, which consists of a small localize
portion ~denoted byQ!, where the dynamics of the particles is quantum and a large area~denoted
by C!, where the behavior of the particles can be well approximated by classical mechanic
computational efficiency, it is desirable to use a classical mechanics model for the particles a
as they are in regionC and to shift to a quantum model only when they cross the border betw
the C andQ regions. Similarly, when a particle leaves theQ region, one should be able to shi
back to a classical model.

The problems posed by this procedure are twofold. First, independently of the conside
of the classical region, the quantum region is an open quantum system, which may gain
particles. Boundary conditions for open quantum systems are not easily derived. Such bo
conditions were proposed and analyzed in Refs. 2, 3 in the one-dimensional stationary case
Refs. 4, 5 for the multidimensional stationary case~numerical studies of such boundary conditio
can be found in Refs. 6–9, . . . !. Approximate boundary conditions for the time-dependent c
can be found in Refs. 10–12. In the present paper, we shall present an alternative approac
search for boundary conditions: thea priori construction of density matrices that are exact so
tions of the quantum von-Neumann equation, and that are consistent with the statistics
particles coming into the quantum region.

However, there is not a unique such construction. This is due to the necessary ‘‘deloc
tion’’ of the classical particles when they enter the quantum region. Indeed, the qua
mechanical picture of a particle is a wave packet. If there is only one classical limit of a g
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quantum wave packet, the reciprocal is obviously untrue. A given classical particle may b
classical limit of many different wave packets. Therefore, when a classical particle cross
border of the quantum region, one has to choose into which wave packet it will be transfo
Consequently, the construction depends on this arbitrarily chosen wave packet.

In this work, the construction is restricted to the case of a time-independent potential. T
because it makes a large use of the scattering states of the quantum structure, which a
defined only for time-independent potentials. This restriction will be waived in future work.

So far, we have discussed the problem of finding the correct solution of the quantum
Neumann equation, given the statistics of the incoming particles. Now, we have to exami
reverse question, i.e., how the quantum behavior of the particles in theQ region affects the
dynamics in theC region.

For that purpose, we consider the Wigner transform of the density matrix in theQ region and
perform a semiclassical limit\→0. We show that the formal limit of the Wigner distributio
function satisfies the usual boundary value problem for the classical transport equation inQ with
prescribed incoming data. Furthermore, the outgoing Wigner distribution function at theQ region
boundary can be expressed in terms of the incoming data by means of quantum refle
transmission probabilities and time delays. Since the incoming distribution in theQ region is the
outgoing one of theC region andvice versa, we can assign similar reflection–transmission co
ditions to the classical distribution function at theC2Q interface. These conditions only depen
on the scattering probabilities and time delays of the quantum structure, but not on the exp
of the density matrix in theQ region. Therefore, they lead to a self-contained problem for
classical distribution function, decoupled from that of the quantum region.

In this paper, we first give a general presentation and justification of the above des
procedure. Then, we concentrate on the quantum regionQ and perform the semiclassical analys
of the Wigner distribution function. Finally, we shall discuss questions regarding current con
ity through the interface. We shall only develop formal arguments, and will defer rigorous p
to a forthcoming paper.13 A summary of the present approach can be found in Ref. 14.

II. THE COUPLING METHODOLOGY: FORMAL APPROACH

A. Setting of the problem

We consider a one-dimensional system consisting of a large number of independent pa
moving along the whole real line. In the sequel, we shall consider electrons, since one
potential application of the present work is to quantum semiconductor devices. Howeve
procedure would apply equally well to any other kind of particles. The electrons are subjec
given time-independent potentialV(x). We suppose that the gradients of the potential are sm
apart in a tiny localized region contained in the interval@a, b#, where they are large. Therefore, w
can consider that the dynamics is classical in the regionC5R\@a,b# and quantum in the region
Q5@a,b#. What is the precise meaning of small and large in terms of dimensionless param
and an asymptotic analysis will be the subject of future work. In the present one, we shall tak
for granted. Our aim is to find a procedure that couples a classical kinetic description o
particle system in theC region to a quantum statistical model in theQ region.

In C5R\@a,b#, the system is described by the classical particle distribution func
f (x,p,t), which is a function of positionxPR, momentumpPR, and timet.0. It is a solution
of the one-dimensional collisionless transport~or Vlasov! equation:

] t f 1v ]xf 1e
]V

]x
]pf 50, xPR\@a,b#, v5

p

m
, ~1!

wherem and e are, respectively, the mass and charge, andv, the velocity. At the boundary]C
5$a,b%, inflow boundary conditions must be prescribed. Atx5a ~resp.,x5b!, an inflow velocity
for C is such thatv,0 ~resp.,v.0!. We therefore prescribe the boundary conditions

f ~a,p,t !5 f a~p,t !,p,0; f ~b,p,t !5 f b~p,t !, p.0, ~2!
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where f a and f b obviously depend on the dynamics of theQ region.
In Q5@a,b#, the system is modeled by the density matrixr(x,x8,t), which is a solution of

the von Neumann equation. However, instead of prescribing boundary conditions for th
Neumann equation at the boundary of the quantum regionQ, we take another route. We choose
solve the von Neumann equation on the whole real line, but with a modified potentialṼ that
coincides withV in Q and that is constant inC:

Ṽ~x!5H VaªV~a!, x<a,

V~x!, a<x<b,

VbªV~b!, x>b.

~3!

Therefore, the von Neumaann equation forr reads as

i\r t5~H̃x2H̃x8!r, ~x,x8,t !PR33R33R, ~4!

where

H̃52
\2

2m

]2

]x22eṼ~x!

is the modified particle Hamiltonian in the potentialṼ andH̃x , H̃x8 are, respectively, the action
of H̃ on the x and x8 variables. Now, which solution of the von Neumann equation we m
consider, of course, depends of the distribution function in theC region. Therefore, the coupling
problem can be summarized as follows: howf a and f b are linked withr and reciprocally howr
is linked with f?

We first note that we are not going to consider initial value problems for Eqs.~1! and~4!, but
solutions for all timestPR ~so-called eternal solutions!. The reason is the following. Whe
entering theQ region, a classical particle must be delocalized into a wave packet. Howev
wave packet has a finite extension in space and is in fact very unlikely to be compactly supp
In other words, even very far from theQ region, a classical particle interacts with it because of
tiny but nonzero tail of its wave packet representation. Therefore, the interaction of a cla
particle with theQ region is nonlocal in time and actually extends infinitely in the past and in
future.

Now, to understand our coupling methodology, it is illuminating to first consider a clas
dynamics in theQ region and derive a classical–classical coupling methodology. Of course
strange question~why not just use the same classical model everywhere! is investigated just for a
clearer exposition of the true classical–quantum coupling.

B. Classical–classical coupling

In this section, we suppose that, in theQ region, the system is described by a classi
distribution functiong, solution of the Vlasov equation,

] tg1v ]xg1e
]V

]x
]pg50, xP@a,b#, v5

p

m
. ~5!

Of course, the boundary]Q of Q is ]Q5]C5$a,b%. However, the incoming velocities for th
domainQ at a ~resp.,b! are now such thatv.0 ~resp.,v,0!. Obviously, the boundary condition
for g at a andb must be

g~a,p,t !5ga~p,t !ª f ~a,p,t !, p.0; g~b,p,t !5gb~p,t !ª f ~b,p,t !, p,0, ~6!
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where f (a,p,t) ~for p.0! and f (b,p,t) ~for p,0! are supposedly known from the resolution
f in theC region. Reciprocally, the boundary conditions~2! for f must obviously be completed b
the condition that

f a~p,t !ªg~a,p,t !, p,0; f b~p,t !ªg~b,p,t !, p.0. ~7!

Now, we introduce the characteristic equations of~5!:

dX

dt
5

P~ t !

m
;

dP

dt
5e

dV

dx
„X~ t !…,

which are supposed to be uniquely solvable for a given set of initial conditions. This is cer
true, provided that the potential is smooth, which we shall assume from now on. We co
maximal solutions, which exist until the positionX reaches one of the boundariesa or b of the
domain. We denote by (X,P)(t;x,p) ; the solution at timet such that (X,P)(0)5(x,p). Now, it is
readily seen that

f~a,p0 ,t0!~x,p,t !5d„~x,p!2~X,P!~ t2t0 ;a,p0!…,

is the unique measure solution of~5! that satisfies the boundary condition

vf~a,p0 ,t0!~a,p,t !5d~p2p0!d~ t2t0!.

Here and in the remainder of the paper,d denotes the Dirac delta measure. Writingga as a
superposition of such elementary distributions:

ga~p,t !5E
t0PR

E
p0PR1

ga~p0 ,t0!d~p2p0!d~ t2t0!dt0 dp0

5E
t0PR

E
p0PR1

„v0ga~p0 ,t0!…„v0
21d~p2p0!d~ t2t0!…dt0 dp0

~with v05p0 /m!, and similarly forgb :

gb~p,t !5E
t0PR

E
p0PR2

„uv0ugb~p0 ,t0!…„uv0u21d~p2p0!d~ t2t0!…dt0 dp0 ,

we can exactly representg by the integral formula

g~x,p,t !5E
t0PR

E
p0PR1

„v0ga~p0 ,t0!…f~a,p0 ,t0!~x,p,t !dt0 dp0

1E
t0PR

E
p0PR2

„uv0ugb~p0 ,t0!…f~b,p0 ,t0!~x,p,t !dt0 dp0 . ~8!

The measuresf (a,p0 ,t0) ~resp.,f (b,p0 ,t0)! are elementary distributions that describe particles
tering theQ region at timet0 through pointa with momentump0.0 ~resp., through pointb and
momentump0,0!.

Now, ~8! can be used to compute the outgoing traces ofg on ]Q as functions of its incoming
tracesga andgb , i.e., @by ~6!#, of the outgoing traces off ~with respect toC!. On the other hand
outgoing traces ofg on ]Q are also incoming traces off on ]C by virtue of ~7!. Therefore, this
operation will ultimately give us an expression of the incoming traces off as functions of its
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outgoing traces, which will lead to a self-contained problem forf. Then, knowingf and, in
particular, its outgoing traces by the resolution of this problem, we will findg by means of formula
~8!. We are now going to detail this program.

We start with the computation of the outgoing traces off (a,p0 ,t0) andf (b,p0 ,t0) . Again, using
the smoothness of the potential that rules out any pathology of the trajectories, the charac
(X,P)(t;a,p0) with p0.0 exits the domainQ after a certain timet(p0) either by pointa with
momentum2p0 ~in which case, we say that the particle is reflected! or by pointb with momen-
tum,

pb~p0!5sgn~p0!Ap0
212me~Vb2Va! ~9!

~then, the particle is transmitted!. The expression~9! obviously follows from the energy conse
vation, itself a consequence of the time independence of the potential. If the expression ins
square root definingpb(p0) is negative, then reflection occurs certainly and the quantitypb(p0)
needs not be defined. We define reflection and transmission coefficientsR(p0),T(p0) in such a
way that

R~p0!512T~p0!5H 1, in the case of a reflection

0, in the case of a transmission.

Then we can write

vf~a,p0 ,t0!~a,p,t !5R~p0!d~p1p0!d„~ t2t0!2t~p0!…, p,0, ~10!

vf~a,p0 ,t0!~b,p,t !5T~p0!d„p2pb~p0!…d„~ t2t0!2t~p0!…, p.0. ~11!

Similar definitions can, of course, be given for characteristics starting fromb with momentum
p0,0. In particular, we define

pa~p0!5sgn~p0!Ap0
222me~Vb2Va!.

This leads to the following expressions:

vf~b,p0 ,t0!~b,p,t !5R~p0!d~p1p0!d„~ t2t0!2t~p0!…, p.0, ~12!

vf~b,p0 ,t0!~a,p,t !5T~p0!d„p2pa~p0!…d„~ t2t0!2t~p0!…, p,0. ~13!

Now, from ~10!–~13!, we deduce, forp,0,

g~a,p,t !5E
t0PR

E
p0PR1

ga~p0 ,t0!R~p0!d~p1p0!d„~ t2t0!2t~p0!…dt0 dp0

1E
t0PR

E
p0PR2

up0u
upa~p0!u

gb~p0 ,t0!T~p0!d„p2pa~p0!…d„~ t2t0!2t~p0!…dt0 dp0 ,

or, after performing the integrations and noting thatp085pa(p0)⇔p05pb(p08),

g~a,p,t !5R~2p!ga„2p,t2t~2p!…1T„pb~p!…gb~pb~p!,t2t„pb~p!…!.

Similarly, for p.0, we have
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g~b,p,t !5E
t0PR

E
p0PR2

gb~p0 ,t0!R~p0!d~p1p0!d„~ t2t0!2t~p0!…dt0 dp0

1E
t0PR

E
p0PR1

p0

pb~p0!
ga~p0 ,t0!T~p0!d„p2pb~p0!…d„~ t2t0!2t~p0!…dt0 dp0 ,

or

g~b,p,t !5R~2p!gb„2p,t2t~2p!…1T„pa~p!…ga~pa~p!,t2t„pa~p!…!.

We note that, by time reversibility,T„pa(p)…5T(2p) andt„pa(p)…5t(2p) @for p.0 and when
pa(p) is defined#. Similarly, T„pb(p)…5T(2p) andt„pb(p)…5t(2p) @for p,0 and whenpb(p)
is defined#. This finally leads to

g~a,p,t !5R~2p!ga„2p,t2t~2p!…1T~2p!gb„pb~p!,t2t~2p!…, p,0, ~14!

g~b,p,t !5R~2p!gb„2p,t2t~2p!…1T~2p!ga„pa~p!,t2t~2p!…, p.0. ~15!

Now, eliminatingg by ~6! and~7!, we use~14! and~15! to set up a self-contained reflection
transmission problem forf:

f ~a,p,t !5R~2p! f „a,2p,t2t~2p!…1T~2p! f ~b,pb~p!,t2t~2p!…, p,0, ~16!

f ~b,p,t !5R~2p! f „b,2p,t2t~2p!…1T~2p! f „a,pa~p!,t2t~2p!…, p.0. ~17!

These boundary conditions express the incoming traces off as functions of its outgoing traces
They are very likely to lead to a well-posed problem forf in C ~the existence of solutions fo
similar kinds of boundary conditions can be found in Refs. 15,16!. With these boundary condi
tions, the Vlasov equation~1! can be solved inC without any reference to the distribution functio
in Q. Of course, via the reflection–transmission coefficientsR, Tand time delayst, f depends on
the potential inQ. Then, oncef is found inC, formula~8! allows us to represent the solution inQ
as an integral involving the boundary values off at a andb.

We are going to duplicate the same methodology for the classical–quantum coupling
next section.

C. Classical–quantum coupling

The first and nonobvious point is to define the analogs of the elementary distribu
f (a,p0 ,t0) andf (b,p0 ,t0) that characterize particles entering theQ region at timet0 and pointa with
momentump0.0 ~resp., at pointb and momentump0,0!. We start by recalling the definition o
the scattering states of the potentialṼ. These are solutionsc of the stationary Schro¨dinger equa-
tion:

H̃c5Ec ~18!

~whereE is the energy! that are bounded on the real line but not square integrable. Eleme
analysis17 shows that for a given energyE, the space of such solutions is of dimension zero, o
or two according to the relative position ofE with respect toVa andVb . A convenient basis of the
solution space is provided by wave functions describing the diffusion of a plane wave co
from infinity by the potential inhomogeneity. These are given by the solutions of the follow
boundary value problem in the interval@a,b#:2
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2
\2

2m
cp92eVcp5S p2

2m
2eVaDcp ,

for p.0, \cp8~a!1 ipcp~a!52ip,

\cp8~b!5 ipb~p!cp~b!;

~19!

2
\2

2m
cp92eVcp5S p2

2m
2eVbDcp ,

for p,0, \cp8~a!52 ipa~p!cp~a!,

\cp8~b!1 ipcp~b!52ip.

~20!

Let us suppose, to fix the ideas, thatVb.Va . Thenpb(p) is always well defined. On the othe
hand,pa(p) is well defined only ifupu>A2em(Vb2Va). For p.0, the two solutionscp and
c2pb(p) form a basis of the solution space of~18! associated with the energyE5p2/2m2eVa

5pb(p)2/2m2eVb , which is therefore of dimension 2.cp describes the scattering of a plan
wave coming from2` by the potential inhomogeneity, whilec2pb(p) describes the scattering o

a plane wave coming from1`. For p,0 andupu<A2em(Vb2Va), thenpa(p) in formula ~20!
has to be defined as a complex square root:pa(p)56 iA2me(Vb2Va)2p2. Which sign must be
chosen in this definition is unimportant because the solution space is of dimension 1 and t
solutions are then proportional. In this case, the solution~20! represents the pure quantum refle
tion of a plane wave by a potential barrier.

The boundary conditions appearing in~19!,~20! are consequences of the following explic
formula for cp outside@a,b# ~this is because the potentialṼ is assumed constant inR\@a,b#!:

for p.0,
cp~x!5eip@~x2a!/\#1A~p!e2 ip@~x2a!/\#, x,a,

cp~x!5B~p!eipb~p!@~x2b!/\#, x.b;
~21!

where

A~p!5cp~a!21: B~p!5cp~b!, p.0; ~22!

and

for p,0,
cp~x!5B~p!ei @~x2a!/\#pa~p!, x,a,

cp~x!5ei @~x2b!/\#p1A~p!e2 ip@~x2b!/\#, x.b;
~23!

where

A~p!5cp~b!21; B~p!5cp~a!, p,0. ~24!

In the above formulas,A(p) is the coefficient of the reflected wave~reflection amplitude! whereas
B(p) is that of the transmitted wave~transmission amplitude! and the factor in front of the
incoming wave ensures that it has amplitude 1. Ifp,0 andupu<A2em(Vb2Va) ~again assuming
that Vb.Va to fix the idea!, it must be noted thatpa(p) in formula ~23! is purely imaginary, so
that the wave is evanescent in the regionx,a.

We recall that the corresponding reflection and transmission coefficients,

R~p!5uA~p!u2, T~p!5
R„pa,b~p!…

p
uB~p!u2, ~25!
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@where pa,b(p) stands forpa ~resp.,pb! when p,0 ~resp.,p.0! and R, T for the real and
imaginary parts# satisfy

R~p!1T~p!51, ~26!

and the reciprocity identity

T~p!5T„2pa,b~p!…, for all pPR such that pa,b~p!PR. ~27!

To any scattering statecp(x) corresponds a time-dependent wave function,

Cp~x,t !5cp~x!e2 i @E~p!t/\#,

where we denote byE(p) the energy associated withcp :

E~p!5
p2

2m
2eVa , for p.0 and E~p!5

p2

2m
2eVb , for p,0.

However, the probability densityuCpu2 associated withCp is time independent~which is the
definition of a stationary solution of the Schro¨dinger equation!. Therefore, such a wave function
unable to represent a dynamical process such as the motion of an isolated particle.

To do so, one has to call for the concept of a wave packet. LetF\(p0 ,p1) be a ‘‘localizing
function’’ that can be viewed as the typical shape of the wave packet. This function is arb
provided it satisfies a certain number of constraints that will be listed below. Let us think ofF\ as
a non-negative real-valued function, which ‘‘gets peaked’’ aboutp05p1 as \ tends to zero. We
shall make this definition more precise later on. We represent an electron coming into the d
Q at time t0 with momentump0 by the following wave packet:

Cp0 ,t0
~x,t !5E

R
F\~p0 ,p1!cp1

~x!expS 2
i ~ t2t0!E~p1!

\ Ddp1 . ~28!

An important example of the wave packet profile is the Gaussian wave packet,

F\~p0 ,p1!5AC\ expS 2
~p02p1!2

4s\
D , ~29!

where C\ is a normalization constant about which we shall come back below ands\ is the
momentum variance of the wave packet. Throughout the paper,F\ will be assumed real-valued

Although the above formula mixes states corresponding to incoming plane waves from
the left (p1.0) or the right (p1,0), a semiclassical analysis shows thatCp0 ,t0

corresponds to a
particle enteringQ at time t0 througha and moving to the right ifp0.0 and enteringQ through
b and moving to the left ifp0,0. More specifically, applying the stationary phase theorem
formal analysis17 yields, for p0.0,

Cp0 ,t0
;H Cp0 ,t0

I 1Cp0 ,t0
R , x,a,

Cp0 ,t0
T , x.b,

where the incidentCp0 ,t0
I , reflectedCp0 ,t0

R and transmittedCp0 ,t0
T wave packets, respectively

represent classical particles moving according to the equations

xl~ t !5a1v0~ t2t0!, x,a ~ incident wave!,

xR~ t !5a2v0„~ t2t0!2tR~p0!…, x,a ~reflected wave!,
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xT~ t !5a1v0„~ t2t0!2tT~p0!…, x.b ~ trasmitted wave!.

Therefore, up to a limit\→0, the incident wave packet hits the boundarya at timet0 coming from
the left with momentump0 . It gives rise to a reflected wave packet that departs froma at time
t01tR(p0) wheretR(p0) is a quantum reflection time delay, and to a transmitted wave packe
departs fromb at time t01tT(p0) with tT(p0) is the transmission time delay. These delays
given by the following formula~see also Ref. 17!:

tR~p!5
1

v
dSR~p!

dp
, tT~p!5

1

v
dST~p!

dp
, ~30!

whereSR(p) and ST(p) are smooth realizations of the complex phases of the scattering a
tudes:

A~p!5AR~p!ei @SR~p!/\#, B~p!5A p

R„pa,b~p!…
T~p! ei @ST~p!/\#.

In this paper, we shall give a more rigorous meaning to these statements.
The wave packetCp0 ,t0

is obviously a solution of the time-dependent Schro¨dinger equation,

i\
]C

]t
5H̃C. ~31!

From these wave packets, we construct a density matrix that is the quantum analog
elementary distributionsf (a,p0 ,t0) or f (b,p0 ,t0) . It is defined by

rq0 ,t0
~x,x8,t !5Cq0 ,t0

~x,t !Cq0 ,t0
~x8,t !

5E
R2

F\~q0 ,p1!F\~q0 ,q2!cp1
~x!cp2

~x8!

3expS 2
i

\
~ t2t0!„E~p1!2E~p2!…Ddp1 dp2 , ~32!

and represents a particle enteringQ at time t0 through pointa if q0.0 ~resp., through pointb if
q0,0!. rq0 ,t0

is a truly time-dependent solution of the von Neumann equation~4!.
Of course, forrq0 ,t0

to represent a physically admissible density matrix, it has to be of t
unity. We recall that the trace of a density matrixr(x,x8) is given by

Tr r5E
R
r~x,x!dx,

while r(x,x)dx represents the probability density associated withr. In order to compute the trac
of ~32!, it is convenient to highlight its relation with the scattering transform.

First, we recall that the definition of the Fourier transform of a functiong(p) is defined by

Fg~h!5
1

2p E eihpg~p!dp, ~33!

while the inverse Fourier transform of a functionG(x) is given by

F21G~p!5E e2 ihpG~h!dh. ~34!
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The Plancherel identity states that

E Fg~h!Ff ~h!dh5
1

2p E ḡ f dp. ~35!

The scattering transform can be viewed as a Fourier transform in which the scattering
cp(x) are used instead of the exponentialseipx. In particular, it reduces to the Fourier transfor
~up to a change of variables! in the case of a constant potential. More precisely, we define
scattering transformG(g) according to

Gg~x!5
1

2p\ E
R

g~p!cp~x!dp,

and the inverse scattering transform:

G21G~p!5E
R

G~x!cp~x!dx.

It is immediately seen that, in the case of a constant potential, the scattering and Fourier
forms are related by

Gg~x!5
1

\
FgS x

\ D5F@g~\• !#~x!,

G21G~p!5F21GS p

\ D5\F21@G~\• !#~p!.

In the general case,G21 is an isomorphism of Hilbert spaces betweenLac
2 ontoL2(R), andG is the

inverse isomorphism, whereLac
2 denotes the absolutely continuous subspace ofL2(R) associated

with the operatorH̃. Therefore, we have the analog of Plancherel’s formula:

E Gg~x!Gf ~x!dx5
1

2p\ E ḡ f dp. ~36!

The definition and properties of the scattering transform can be found in Ref. 18.
Now, in view of the scattering transform,Cp0 ,t0

can be written as

Cp0 ,t0
~x,t !52p\Gp1FF\~p0 ,p1!expS 2

i ~ t2t0!E~p1!

\ D G~x!, ~37!

whereGp1
indicates that we take the scattering transform with respect top1 . Then, using~36!, we

compute

Tr rq0 ,t0
~ t !5E

R
uCq0 ,t0

~x,t !u2 dx

5~2p\!2E
R
UGp1FF\~p0 ,p1!expS 2

i ~ t2t0!E~p1!

\ D G~x!U2

dx

52p\E
R
UF\~q0 ,p1!expS 2

i ~ t2t0!E~p1!

\ D U2

dp152p\E
R

uF\~q0 ,p1!u2 dp1 .
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Therefore, the density matrixrq0 ,t0
(•,•,t) is of trace unity if and only if the wave packet functio

F\ satisfies the normalization condition

2p\E
R
uF\~p,q!u2 dq51, ~38!

which we shall assume satisfied from now on. We note that this normalization condition allo
to define the probability densityP\(p,q)dq according to

P\~p,q!dq52p\uF\~p,q!u2 dq. ~39!

We also complete the definition of the Gaussian wave packet~29! by giving the expression of the
normalizing constant, which, according to~38!, must be equal toC\5„(2p)3/2\As\…

21.
Now, we recall thatQ is an open quantum system where the statistics of incoming particl

described by two distribution functionsga(p,t)(p.0) and gb(p,t)(p,0). For simplicity, we
define the boundary datag according to

g~p,t !5ga~p,t ! for p.0 and g~p,t !5gb~p,t ! for p,0. ~40!

We postulate that the state of the quantum regionQ is formed by the superposition of the eleme
tary density matricesrq0 ,t0

, weighted by the statistics of incoming particlesg(q0 ,t0). We there-
fore reproduce formula~8! and define the density matrix inQ by the formula

r~x,x8,t !5E
R2

uq0u
m

g~q0 ,t0!rq0 ,t0
~x,x8,t !dt0 dq0

5E uq0u
m

g~q0 ,t0!F\~q0 ,q1!F\~q0 ,q2!cq1
~x!cq2

~x8!

3expS 2
i

\
~ t2t0!„E~q1!2E~q2!…Ddt0 dq0 dq1 dq2 . ~41!

This defines how the state of the quantum regionQ is computed as a function of the inflow
statisticsga and gb . Now, we turn to the classical distribution functionf in the regionC. Of
course, it is understood that the inflow statistics for the quantum regionQ coincides with the
outgoing trace off, i.e., relation~6! is still valid:

ga~p,t !5 f ~a,p,t !, p.0; gb~p,t !5 f ~b,p,t !, p,0. ~42!

The problem is now to find the analog of relation~7!. Again, we take our inspiration from th
classical case and, more precisely, from the reflection–transmission boundary condition fof, as
given by~16! and~17!. To use this relation in the quantum–classical coupling case, it is temp
to just replace the classical reflection–transmission coefficients and time delays by the qu
ones. However, this procedure is not current-conservative~see Sec. V!. Furthermore, it does no
take into account the fact that the quantum delocalization of a particle into a wave packet
states of different momenta~or different energies!.

In the remainder of this section, we make the following simplifying hypothesis:

F\~p,q!50, if p and q have opposite signs. ~43!

Under this hypothesis, we specify the following reflection–transmission condition forf at the
interface betweenC andQ:
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upu f ~a,p,t !5E
q.0

P\~q,2p!R\~2p! f „a,q,t2tR
\~2p!…uqudq

1E
q,0

P\„q,pb~p!…T\„pb~p!…
p

pb~p!
f ~b,q,t2tT

\
„pb~p!…!uqudq, p,0,

~44!

upu f ~b,p,t !5E
q,0

P\~q,2p!R\~2p! f „b,q,t2tR
\~2p!…uqudq

1E
q.0

P\„q,pa~p!…T\„pa~p!…
p

pa~p!
f ~a,q,t2tT

\
„pa~p!…!uqudq, p.0.

~45!

In these formulas,P\(q,p) is the probability density defined by~39! and (R\ ,T\), (tR
\ ,tT

\)
are the quantum reflection–transmission coefficients and time delays. Note that hypothes~43!
implies thatP\(q,p)50 if p andq have opposite signs. We also remark that the quantum t
delays for reflection and transmission are not equal. In the classical formulas~16! and ~17!, only
one of these times is relevant since, for a given value ofp, reflection and transmission never occ
simultaneously. The probabilistic nature of quantum mechanics, however, makes reflectio
transmission occur simultaneously and the associated time delays are different.

We now explain the physics behind these conditions. For instance, let us examine~44!, the
discussion being obviously identical for~45!. It expresses that the particles going out of t
quantum zoneQ througha ~i.e., with momentump,0! originate from particles having enteredQ
at an earlier time, either througha ~i.e., with momentum2p.0! or throughb @i.e., with momen-
tum pb(p),0#. However, the entering particles are transformed into wave packets as they
the border of theQ region, by means ofF\ . Each entering particle through saya with momentum
q.0 ‘‘excites’’ a quantum wave of momentum2p.0 according to the probability densit
P\(q,2p). Therefore the intensity of the wave entering at timet with momentum2p.0 per unit
time is proportional to

E
q.0

P\~q,2p! f ~a,q,t !uqudq.

Only the fractionR(2p) will be reflected back toa, the remaining part will be transmitted tob.
Furthermore, for the wave to ‘‘arrive’’ ata at time t, it needs to have enteredQ at time t2tR

\

(2p). Collecting all these remarks leads to the flux of particles exitingQ througha at time t,
originating from particles having enteredQ through the same point; hence the first integral. T
same analysis is valid for the second integral considering waves entering intoQ throughb and
transmitted toa. Simply, the change ofp to pb(p) ~if VaÞVb! has to be taken into account. Th
ratio p/pb(p) takes into account the change of volume in momentum space in the mp
→pb(p).

Conditions~44!, ~45! maintain the positivity~i.e., if the outgoing distribution is positive, th
incoming one is also positive!. Note, however, that the Gaussian wave packet~29! does not satisfy
hypothesis~43!. It is worth mentioning that quantum time delays may be non positive. Analy
computations for specially unsmooth potentials like delta potentials indicate that time delay
become negative.19 Nevertheless, for smooth enough potentials, we shall assume that time d
are positive; otherwise the well-posedness of the kinetic problem inC would not be guaranteed

To summarize our coupling methodology, we first solve the self-contained problem~1! with
the reflection–transmission boundary conditions~44! and ~45! for f in the classical regionC
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~provided that the quantum time delays are positive!. Then, oncef and its boundary values
f (a,p,t) ~for p.0!, f (b,p,t) ~for p,0! are known, we construct the density matrix in th
quantum regionQ according to~41!, whereg is given by~40! and ~42!.

D. Classical–quantum coupling: Summary of results

We now outline how we can give a rigorous foundation to the above described cou
methodology. The main tool we will use is the Wigner transform.20 The Wigner transform of the
density matrix~41! is defined according to

W\~x,p,t !5
1

2p E
R

eihprS x2
\

2
h,x1

\

2
h,t Ddh.

Since the wave packetsCq0 ,t0
are solutions of the Schro¨dinger equation~31!, W\ is a solution of

the Wigner equation:

] tW
\1

p

m
]xW

\1u\@Ṽ#•W\50,

where the pseudodifferential operatoru\ is given by

u\@Ṽ#W\~x,p!52
ie

2p E
R

eihpd\@Ṽ#~x,h!Fp
21W\~x,h!dh,

with

d\@Ṽ#~x,h!5

ṼS x1
\

2
h D2ṼS x2

\

2
h D

\
,

andFp
21 denotes the inverse Fourier transform~34!.

In the remainder of the paper, our goal is to prove that, in the semiclassical limit\→0, W\

converges to a solutiong5g(x,p,t) of the Vlasov equation~5! in Q with the inflow boundary
conditions~6! at a andb, namely,

g~a,p,t !5ga~p,t !, p.0; g~b,p,t !5gb~p,t !, p,0. ~46!

More precisely, we shall prove the following.
Main Result: Assuming thatF\ is real, we introduceL\ , according to:

L\~p,q,q8!52p\F\S p,q1
\

2
q8DF\S p,q2

\

2
q8D . ~47!

We note that

L\~p,q,0!52p\uF\~p,q!u25P\~p,q!, E
R

L\~p,q,0!dq51. ~48!

We assume additionally thatL\ satisfies

lim
\→0

L\~p,q,q8!5d~p2q!. ~49!

Then W\ formally converges as\→0 toward g, the solution of
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] tg1
p

m
]xg1e

dV

dx
]pg50,

g~a,p,t !5ga~p,t !, p.0,

g~b,p,t !5gb~p,t !, p,0.

Moreover, we have asymptotically,

W\~a,2p,t !5R\~p!W\
„a,p,t2tR

\~p!…1T\~p!W\
„b,pb~p!,t2tT

\~p!…, p.0, ~50!

W\~b,2p,t !5R\~p!W\
„b,p,t2tR

\~p!…1T\~p!W\
„a,pa~p!,t2tT

\~p!…, p,0, ~51!

where R\(p), T\(p) are the reflection–transmission coefficients (25) andtR
\(p), tT

\(p) are the
time delays (30).

Condition~49! guarantees that, in the semiclassical limit, the wave packet gets more and
localized in both position and momentum. For instance, in the case of the Gaussian wave
~29!, we have

L\~p,q,q8!5
1

2ps\
exp2

~p2q!2

2s\
exp2

\2q82

8s\
.

Therefore, condition~49! is fulfilled as soon as we simultaneously have

s\→0 and
\2

s\
→0, as \→0.

For instance,sh5O(\) as\→0 is convenient.
This ‘‘formal’’ theorem justifies our methodology in that the Wigner transformed den

matrix ~41! converges in the semiclassical limit toward the solution of the inflow boundary v
problem for the Vlasov equation in the regionQ. In particular, as\→0, the trace of the Wigner
function at the boundary]Q satisfies the dual reflection–transmission problem to that impose
the classical distribution functionf. Indeed, substitutingf (a,p,t) to W\(a,2p,t) and similarly at
point b transforms~50!, ~51! into ~16!, ~17!. Therefore, our definition of the density matrix seem
established on a solid basis, in spite of the arbitrariness of the wave packet functionF\ .

The remainder of the paper is organized as follows. In Sec. III we develop the pro
Theorem 2.4 in the caseVa5Vb . Then, in Sec. IV, the extension of the result to the caseVa

ÞVb will be outlined. In Sec. V, we prove that the reflection–transmission conditions~44!, ~45!
satisfy the time-integrated current conservation principle. Finally, in Sec. VI, we specialize
stationary state in order to bridge the gap with earlier work of one of the authors.1

III. PROOF OF THE MAIN RESULT IN THE CASE VaÄVb

A. Preliminaries

First, we introduce some notations. We shall need to distinguish between the density m
r (a) andr (b) of electrons injected at the boundariesa andb, respectively:

r~a!~x,x8,t !5E
R1

dq0E
R
dt0

uq0u
m

ga~q0 ,t0!Cq0 ,t0
~x,t !Cq0 ,t0

~x8,t !, ~52!

r~b!~x,x8,t !5E
R2

dq0E
R
dt0

uq0u
m

gb~q0 ,t0!Cq0 ,t0
~x,t !Cq0 ,t0

~x8,t !, ~53!

so thatr5r (a)1r (b). We also decomposeW\5Wa
\1Wb

\ with
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Wa,b
\ ~x,p,t !5

1

2p E
R
eihpr~a,b!S x2

\

2
h,x1

\

2
h,t Ddh. ~54!

The major part of the computation concerns boundary conditions. Indeed, letu(x,p,t) be a
test function inD(Rx3Rp3Rt). We have the following identity obtained by a simple integrati
by parts:

E
~x,p,t !P@a,b#3R2

uF] tW
\1

p

m
]xW

\1e
dV

dx
]pW\Gdx dp dt5I b

\2I a
\2I ab

\ ,

where

I ab
\ 5E

~x,p,t !P@a,b#3R2
W\F] tu1

p

m
]xu1e

dV

dx
]puGdx dp dt,

I b
\5E

R2

p

m
u~b,p,t !W\~b,p,t !dp dt,

I a
\5E

R2

p

m
u~a,p,t !W\~a,p,t !dp dt.

Standard results on semiclassical limits~see, e.g., Refs. 21, 22, 23, 24, 25, etc.! allow us to
perform the\→0 limit in the interior of the interval@a,b#, so that

lim
\→0

2I ab
\ 1I b

\2I a
\50. ~55!

In particular, we have the following.
Lemma 3.1:

lim
\→0

I ab
\ 5E

~x,p,t !P@a,b#3R2
gF] tu1

p

m
]xu1e

dV

dx
]puGdx dp dt. ~56!

Next, we need to calculate the\→0 limit of the left boundary termI a
\ . The right boundary

term I b
\ can be treated analogously. To this aim, we introduce

U~p,t !5
p

m
u~a,p,t !, ~57!

and we remark thatU(0,t)50 for all tPR. We compute

I a
\5E

R2
U~p,t !W\~a,p,t !dp dt5E

R2
U~p,t !Wa

\~a,p,t !dp dt1E
R2

U~p,t !Wb
\~a,p,t !dp dt,

whereWa
\ andWb

\ are defined at~54!. Let us denote byJa
h the first integral andKa

h the second one
We have
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Ja
\5E U~p,t !Wa

\~a,p,t !dp dt

5
1

2p E
R4

dp dh dt0 dtE
R1

dq0 eihpU~p,t !
uq0u
m

ga~q0 ,t0!Cq0 ,t0S a1
\

2
h,t D

3Cq0 ,t0S a2
\

2
h,t D . ~58!

On the other hand, we have

Cq0 ,t0S a1
\

2
h,t DCq0 ,t0S a2

\

2
h,t D5E

R2
F\~q0 ,q1!F\~q0 ,q2!cq1S a1

\

2
h Dcq2S a2

\

2
h D

3expF i
q1

22q2
2

2m\
~ t2t0!Gdq1 dq2 . ~59!

Before analyzing~58!, we claim that the behavior of the right-hand side of~59! as\ tends to
zero is left unchanged if we replace the integration set byR1

2 :

Cq0 ,t0S a1
\

2
h,t DCq0 ,t0S a2

\

2
h,t D.E

R1
2

F\~q0 ,q1!F\~q0 ,q2!cq1S a1
\

2
h Dcq2S a2

\

2
h D

3expF i
q1

22q2
2

2m\
~ t2t0!Gdq1 dq2 . ~60!

This is a consequence of the fact that the wave packet ‘‘is peaked’’ aroundq0 andq0 is positive.
This claim can be rigorously proven by applying the dominated convergence theorem and w
developed in Ref. 13.

B. First approximation: using the asymptotics of cq in the neighborhood of the
boundary

A simple rescaling of the Schro¨dinger equation~19! leads to

lim
\→0

cq
\S a1

\

2
h D2ei ~q/2!h2A~q!e2 i ~q/2!h50, for q.0, ~61!

uniformly with respect tohP] 2`,M ]( ;M.0). In what follows, we shall forget the subscrip
\ in the reflection–transmission coefficients and time delays for clarity. Replacingcq@a
1(\/2)h# by ei (q/2)h1A(q)e2 iqh in ~59! leads to the following approximate formula:

Cq0 ,t0S a1
\

2
h,t DCq0 ,t0S a2

\

2
h,t D'I\1II\1III \1IV\ , ~62!

where

I\5E
R2

F\~q0 ,q1!F\~q0 ,q2!e2 i ~@q11q2#/2!hei @~q1
2
2q2

2
!/2m\#~ t2t0!dq1 dq2 , ~63!

II\5E
R2

F\~q0 ,q1!F\~q0 ,q2!A~q1!A~q2!ei @~q11q2!/2#hei @~q1
2
2q2

2
!/2m\#~ t2t0!dq1 dq2 , ~64!
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III \5E
R2

F\~q0 ,q1!F\~q0 ,q2!Ā~q1!ei @~q12q2!/2#hei @~q1
2
2q2

2
!/2m\#~ t2t0!dq1 dq2 , ~65!

IV\5E
R2

F\~q0 ,q1!F\~q0 ,q2!A~q2!ei @~q22q1!/2#hei @~q1
2
2q2

2
!/2m\#~ t2t0!dq1 dq2 . ~66!

The first two terms correspond to the contributions of the two plane waves~corresponding to
q1 andq2! traveling in the same direction, while the last two ones correspond to contributio
opposite traveling waves. We shall see later on that, because of the assumption~49! on the wave
packet functionF\ , the last two integrals have vanishing\→0 limits.

In order to compute these limits, we perform the change of variables,

~z,y!5S q11q2

2
,
q12q2

\ D , ~q1 ,q2!5S z1
\

2
y,z2

\

2
yD ,

q1
22q2

2

2m\
5

yz

m
, ~67!

in ~63!–~66!. IntroducingL\ according to~47!, this leads to

I\5
1

2p E L\~q0 ,z,y!e2 izhei ~yz/m!~ t2t0! dz dy, ~68!

II\5
1

2p E L\~q0 ,z,y!ĀS z1
\

2
yDAS z2

\

2
yDeizhei ~yz/m!~ t2t0! dz dy, ~69!

III \5
1

2p E L\~q0 ,z,y!ĀS z1
\

2
yDeiy\hei ~yz/m!~ t2t0! dz dy, ~70!

IV\5
1

2p E L\~q0 ,z,y!AS z2
\

2
yDe2 iy\hei ~yz/m!~ t2t0! dz dy. ~71!

We deduce from~58! that

Ja
\.

1

2p E eihpU~p,t !
q0

m
ga~q0 ,t0!@~ I\1II\1III \1IV\!~q0 ,t0 ,h,t !#dp dh dt0 dt dq0 .

We first integrate with respect top. This gives

Ja
\5E FpU~h,t !

q0

m
ga~q0 ,t0!@~ I\1II\1II\1IV\!~q0 ,t0 ,h,t !#dq0 dt0 dh dt. ~72!

C. Second approximation: Using the asymptotics of the reflection amplitude

Let us now work on II\ . We first recall that the reflection coefficientR and the phaseSR of the
reflection amplitude are given by

A~z!5AR~z!ei @sR~z!/\#.

We suppose thatS is a smooth~at least differentiable! determination of the phase and that
converges smoothly when\→0. We then have

ĀS z1
\

2
yDAS z2

\

2
yD5R~z!e2 iSR8 ~z!y1O~\!,

where
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SR8 ~z!5
d

dz
SR~z!.

This finally leads to

II\.
1

2p E L\~q0 ,z,y!R~z!eihze2 iSR8 ~z!yei ~yz/m!~ t2t0! dy dz.

Now, going back to~72!, we notice thatt appears in I\ , II\ , III \ , IV\ only through complex
exponentials. Therefore, by integrating first with respect tot, we obtain Fourier transforms ofU
with respect to the time variable. We finally end up with the following formulas:

Ja
\5I\81II\81III \81IV\8 ,

where

I\85E Fp,tUS h,
yz

m D q0

m
ga~q0 ,t0!L\~q0 ,z,y!e2 ihze2 i ~yz/m!t0 dy dz dt0 dq0 dh,

II\85E Fp,tUS h,
yz

m D q0

m
ga~q0 ,t0!L\~q0 ,z,y!R~z!eihze2 iSR8 ~z!ye2 i ~yz/m!t0 dy dz dt0 dq0 dh,

III \85E Fp,tUS h,
yz

m D q0

m
ga~q0 ,t0!L\~q0 ,z,y!ĀS z1

\

2
h Deiy\he2 i ~yz/m!t0 dy dz dt0 dq0 dh,

IV\85E Fp,tUS h,
yz

m D q0

m
ga~q0 ,t0!L\~q0 ,z,y!AS z2

\

2
h De2 iy\he2 i ~yz/m!t0 dy dz dt0 dq0 dh,

where the integration domain isR except for the variableq0 , where it isR1 .

D. Third approximation: Using the assumption „49… on the wave packets

Formally, using~49!, I\8 converges in the sense of measures to

I\85
2p

m E Fp,tUS h,
yz

m D zFtgaS z,
yz

m De2 ihz1z.0 dy dz dh,

and the other terms are approximated by

II\8.
2p

m E Fp,tUS h,
yz

m D zFtgaS z,
yz

m DeihzR~z!e2 iSR8 ~z!y1z.0 dy dz dh,

III \8.
2p

m E Fp,tUS h,
yz

m D zFtgaS z,
yz

m D ĀS z1
\

2
yDeiy\h1z.0 dy dz dh,

where1z.0 denotes the characteristic function of the set$z.0%. The estimate for IV\8 is similar as
for III \8 .

Next, lettingz fixed and integrating with respect toy leads, in view of the Parseval identity, t

I\85E
~z,h,t !PR13R2

FpU~h,t !ga~z,t !e2 ihz dz dh dt5E
~z,t !PR13R

U~z,t !ga~z,t !dt dz.

For II\8 , using the same computations, we get
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II\8.E
~z,t !PR13R

U~2z,t !ga„z,t2tR~z!…R~z!dt dz,

where the reflection time delaytR(z) is given by~30!.
Next, we claim that III\8 tends to zero when\→0. Indeed, integrating first with respect toh

in the formula for III\8 ; gives

III \85
2p

m E
~z,y!PR13R

FtUS 2\y,
yz

m D zFtgaS z,
yz

m DAS z1
\

2
yDdy dz.

We just notice now thatuĀu<1, and that

FtUS 2\y,
yz

m D →
h→0

FtUS 0,
yz

m D50,

since U(0,t)50. SinceFtU, Ftga are smooth and sufficiently decaying at`, the dominated
convergence theorem implies lim\→0 III \850. Therefore it follows that

Ja
\5E

R2
U~p,t !Wa

\~a,p,t !dp dt.E
~p,t !PR13R

U~p,t !ga~p,t !dp dt

1E
~p,t !PR13R

U~2p,t !ga„p,t2tR~p!…R~p!dp dt.

Proceeding analogously forKa
h , we find

Ka
H5E

R2
U~p,t !Wb

\~a,p,t !dp dt.E
~p,t !PR23R

T~p!U~p,t !gb„p,t2tT~p!…dp dt,

where the transmission time delaytT(z) is given by~30!. This leads to the following asymptoti
formulas, restoring the dependence with respect to\:

Wa
\~a,p,t !5ga~p,t !: Wa

\~a,2p,t !5R\~p!ga„p,t2tR
\~p!…,

Wb
\~a,p,t !50: Wb

\~a,2p,t !5T\~2p!ga„2p,t2tT
\~2p!…, for p.0. ~73!

Analogously, we have the following asymptotic formulas:

Wb
h~b,p,t !5gb~p,t !; Wb

\~b,2p,t !5R\~p!gb„p,t2tR
\~p!…,

Wa
\~b,p,t !50; Wa

\~b,2p,t !5T\~2p!ga„2p,t2tT
\~2p!…, for p,0.

Summing the asymptotic formulas forWa
h and Wb

\ , we obtain relations~50! and ~51!, which
concludes the proof of Theorem 2.4 in the caseVa5Vb .

IV. THE CASE VaÅVb

In this section, we briefly describe how the proof should be adapted to the caseVaÞVb . The
asymptotic analysis ofJa

\ is unchanged while that ofKa
\ needs to be adapted. We recall that

Ka
h5E

R2
U~p,t !Wb

\~a,p,t !dp dt,

and is given by~58!, in which ga is replaced bygb and the integration domain of the variableq0

is R2 . Besides, we can use~60! in which the integration domain isR2
2 for exactly the same
                                                                                                                



3

nd the

lt

20 J. Math. Phys., Vol. 43, No. 1, January 2002 Ben Abdallah, Degond, and Gamba

                    
reasons as those developed in the caseVa5Vb . Note that the phase factor@ i (q1
22q2

2)/2m\#(t
2t0) is left unchanged since the energyE(q1) andE(q2) are shifted by the same amount,q1 and
q2 having the same sign.

Next, we claim that the contribution of terms for whichpa(q1) @or pa(q2)# are imaginary is
exponentially small as stated in Lemma B.3 of Ref. 1~again a rigorous proof developed in Ref. 1
relies on the dominated convergence theorem!. Now, using the asymptotic expansion

cqS a1
\

2
h D5B~q!e1 i @pa~q!/2#h1O~\!,

leads to the asymptotic approximation@an analog of~72!#:

Ka
\.E FpU~h, f !

uq0u
m

gb~q0 ,t0!I\~q0 ,t0 ,h,t !dq0 dt0 dh dt,

where the integration domain isR for all variables except forq0 , where it isR2 . The term I\ is
given by

I\5
1

2p E
R\

2
L\~q0 ,z,y!B̄S z1

\

2
yDBS z2

\

2
yDe2 i pa~z1\/2y!1pa~z2\/2y!/2hei ~yz/m!~ t2t0! dz dy,

where

R\
25H ~z,y!PR2, s.t.S z6

\

2
yD,0, paS z6

\

2
yDPRJ

Using the asymptotics of the transmission amplitude in the same way as in Sec. III C, we fi
asymptotic expression for I\ ,

I\.E
yPR

E
z,0,s.t.pa~z!PR

L\~q0 ,z,y!T~z!
z

pa~z!
e2 ipa~z!he2 i ~z/m!tT~z!yei ~yz/m!~ t2t0! dz dy.

This leads to

K\
a.E

z,0,s.t.pa~z!PR
E

~ t,h!PR2
FpU~h,t !gb„z,t2tT~z!…T~z!

z

pa~z!
e2 ihpa~z! dz dh dt.

Letting z85pa(z), which yieldsz5pb(z8) andz dz5z8 dz8, we obtain

K\
a.E

~z8,t,h!PR23R2
FpU~h,t !gb~pb~z8!,t2tT„pb~z8!…!T„pb~z8!…e2 ihz8 dz8 dh dt.

The integration domain inz8 is R2 because of the following:

~i! if Va<Vb , the set$z,0,pa(z)PR% is nothing but„2`,2A2me(Vb2Va)…, which leads
to R2 after the change of variablez85pb(z);

~ii ! if Va>Vb , then $z,0, pa(z)PR%5R2 , and the integration interval inz8 should be
„2`,2A2me(Va2Vb)…. Integrating on the whole half-lineR2 does not change the resu
sinceT„pb(z8)…50 wheneverz8P„2A2me(Va2Vb),0….

Finally, making use of the reciprocity identities

T„pp~p!…5T~2p!, tT„pb~p!…5tT~2p!,

as well as the Parseval identity, we obtain
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K\
a.E

~p,t !PR13R
U~2p,t !T„2pb~p!…gb~2pb~p!,t2tT„2pb~p!…!dp dt,

which is the desired asymptotic result.

V. TIME-INTEGRATED CURRENT CONSERVATION

In this section, we go back to the coupling methodology defined by Eqs.~41!–~45!. An
important criterion for the validity of the coupling methodology is that it is current conserva
i.e., that there is no net creation or destruction of particles. Here, we show that our co
approach is current conservative, in a time-integrated form. Instantaneous current conse
cannot be obtained because it would violate the time-energy uncertainty principle. Indee
quantum wave packet description of a particle implies a certain time delocalization~which is at
least equal to\ over the energy delocalization!. Therefore, it is not possible toa priori know how
much of a given wave packet has crossed the border between theC andQ region~or vice versa!
at a given time. However, we must be certain that, once an infinite time has elapsed, the
wave packet has crossed the border; hence a current conservation in time-integrated form

Let us denote byJC(a,t) and JQ(a,t) the classical and quantum currents flowing throu
point a at time t. They are, respectively, defined by

JQ~a,t !5
\

m
T S ]r

]x
~a,a,t ! D5

\

m E
R2

uq0u
m

g~q0 ,t0!T @Cq0 ,t0
~a,t !Cq0 ,t0

8 ~a,t !#dq0 dt0 , ~74!

JC~a,t !5E
R

p

m
f ~a,p,t !dp, ~75!

with g defined by~40! and ~42!. Then we have the following.
Lemma 5.1: Under hypothesis (43), we have

E
R
JQ~a,t !dt5E

R
JC~a,t !dt, E

R
JQ~b,t !dt5E

R
JC~b,t !dt. ~76!

Proof: We prove the first relation~76!. The proof of the second one obviously follows th
same method. We start with the computation ofJQ(a,t). Inserting formula~28! in ~74! and
performing the change of variablesq15z1(\/2)y, q25z2(\/2)y, we get

E
R
JQ~a,t !dt

5T H \

m2 E uq0uFtgS q0 ,
yz

m DL\~q0 ,z,y!cz1~\/2!y~a!cz2~\/2!y8 ~a!ei ~yz/m!t dt dz dy dq0J
5T H 2p\

m E uq0u
uzu

Ftg~q0,0!L\~q0 ,z,0!cz~a!cz8~a!dq0 dzJ .

Since

T „cz~a!cz8~a!…5
z

\
„12R~z!…5

z

\
T~z! ~z.0!; T „cz~a!cz8~a!…5

z

\
T~z! ~z,0!,

we deduce, with~48!,

E
R
JQ~a,t !dt5E

R

q0

m
T̃\~q0!Ftg~q0,0!dq05E

R2

p

m
T̃\~p!g~p,t !dp dt,
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where

T̃\~p!5E P\~p,z!T\~z!dz, R̃\~p!5E P\~p,z!R\~z!dz. ~77!

Now, we turn to the computation ofJC(a,t). Introducing

F~x,p!5E
R

f ~x,p,t !dt, ~78!

we have, with~44!, ~45!, and dropping the indices\ for simplicity,

E
R
JC~a,t !dt5E

p.0
p@F~a,p!2F~a,2p!#dp

5E
p.0

pF~a,p!dp2H E
p.0

E
q.0

P~q,p!R~p!F~a,q!uqudq dp

1E
p.0

E
q,0

P„q,2pb~p!…T„2pb~p!…
p

pb~p!
F~b,q!uqudq dpJ . ~79!

By exchanging thep andq variables in the integrals inside the curly brackets, we are led to

E
R

JC~a,t !dt5E
p.0

upuF~a,p!dp2E
p.0

F~a,p!upuS E
q.0

P~p,q!R~q!dqD dp

2E
p,0

F~b,p!upuS E
q.0

P„p,2pb~q!…T„2pb~q!…
q

pb~q!
dqD dp. ~80!

Now, we have, using the normalization condition~38! together with relation~26!,

12E
q.0

P~p,q!R~q!dq5E
q.0

P~p,q!T~q!dq5T̃~p!, p.0,

E
q.0

P„p,2pb~q!…T„2pb~q!…
q

pb~q!
dq5E

q.0
P~p,2q!T~2q!dq5T̃~p!, p,0,

and therefore,~80! leads to

E
R

JC~a,t !dt5E
p.0

upuT̃~p!F~a,p!dp2E
p,0

upuT̃~p!F~b,p!dp.

But, with ~78! and the fact that the outgoing trace off coincides with the incoming trace ofg @see
Eq. ~42!#, we deduce that

E
R

JC~a,t !dt5E
R2

T̃~p!g~p,t !p dp5E
R

JQ~a,t !dt,

which completes the proof.
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VI. CLASSICAL–QUANTUM COUPLING IN THE STATIONARY CASE

In the present section, we specialize our method for the stationary case in order to brid
gap with previous work.1 We first state the following lemma.

Lemma 6.1: Assume that the functiong does not depend on time and that hypothesis~43!
holds true. Then the density matrixr defined by~41! does not depend on time and is given by

r~x,x8!5E g̃~q!cq~x!cq~x8!dq, ~81!

with

g̃~p!52p\E
R

uqu
upu

uF\~q,p!u2g~q!dq5E
R

P~q,p!
uqu
upu

g~q!dq. ~82!

In a previous work, one of the authors1 proposed a method for the stationary case based
~81! with g instead ofg̃. We have seen that, given the conditions~49! on F\(q,p), g̃ is close to
g in the limit \→0. Therefore, these two constructions are consistent.

Proof: Performing the changes of variablest15t02t and (q1 ,q2)→(z,y) @defined by~67!# in
the expression~41! ~in which g is now independent oft!, we obtain

r~x,x8,t !5
1

2p E uq0u
m

g~q0!L\~q0 ,z,y!cz1~\/2!y~x!cz2~\/2!y~x8!expS i t 1

yz

m Ddt1 dq0 dy dz,

which ensures thatr does not depend on time. The integrations with respect tot1 and y are,
respectively, performed and lead to

r~x,x8!5E uq0u
uzu

g~q0!P~q0 ,z!cz~x!cz~x8!dq0 dz5E g̃~z!cz~x!cz~x8!dz,

which leads to the result.
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Geometric amplitude, adiabatic invariants, quantization,
and strong stability of Hamiltonian systems

K. Yu. Bliokha)

Institute of Radio Astronomy, 4, Krasnoznamyonnaya st., 61002, Kharkov, Ukraine

~Received 20 May 2001; accepted for publication 27 September 2001!

Considered is a linear set of ordinary differential equations with a matrix depending
on a set of adiabatically varying parameters. Asymptotic solutions have been con-
structed. As has been shown, an important characteristic determining the qualitative
portrait of the system is the real part of Berry’s complex geometric phase, which we
call the geometric amplitude. For systems with purely imaginary eigenvalues the
equivalence has been proven in the adiabatic approximation of system sets without
geometric amplitude, Hamiltonian systems, quantizable systems, and strongly
stable systems. Classification of the systems without geometric amplitude is given
with respect to the kind of matrix of the initial system. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1418718#

I. INTRODUCTION

The interest toward the problem of adiabatic evolution of the dynamic system that seem
have been solved long ago has increased sharply after the papers by Berry and Hannay.1–3 They
noticed certain unusual properties of some terms in the phase of the well-known adiabatic
tions. These terms can be represented as contour integrals of the nonpotential field in the
parameter space. As a result, they do not depend explicitly on the parameter time depende
depend only on the geometry of the contour that the representative point moves along throu
parameter space. For this reason, the part of the phase described by these terms has bee
geometric. Soon thereafter the geometric phases were measured experimentally and found
ous applications, as an intrinsic part of the adiabatic theory, in diverse areas of modern ph4

In view of the general complex representation of adiabatic solutions to linear systems
slowly varying parameters, it is natural to assume that the geometric phase can be com
well, i.e., it can change the amplitude of solutions in addition to changing the phase.5,6 The real
part of Berry’s complex phase, which is responsible for amplitude variations, will be calle
geometric amplitude. The complex Berry phases were first considered in Ref. 5. Yet, in that p
as well as in, for instance, Ref. 6, the geometric amplitude appeared in a system character
a nonzero real part of its eigenvalues, i.e., against the background of a far greater real com
of the conventional dynamic phase, and hence could not affect the qualitative behavior
solution. As was shown later, the geometric amplitude can appear in oscillatory systems~i.e., in
such systems that have purely imaginary eigenvalues! as well where the real part of the dynam
phase is zero.7 The example below illustrates the significance of the geometric amplitude in
case. Let the system parameters vary in such a way that the system’s representative poin
along a closed contour in the parameter space. In the case of a conventional oscillator the
tude of the adiabatic solution returns to its initial value together with the parameter values.
a geometric amplitude is present in the oscillatory system, then the corresponding integr
nonpotential field along the closed contour in the parameter space assumes a nonzero va
the system does not return to its initial state. Moreover, if the system’s representative
performs a continuous motion along a bounded closed contour~i.e., the variation of the system
parameters is finite!, then the system might deviate infinitely far from its initial state.

a!Electronic mail: kostya@bliokh.kharkiv.com
250022-2488/2002/43(1)/25/18/$19.00 © 2002 American Institute of Physics
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Thus, the presence of a geometric amplitude implies instability of the oscillator system
kind of instability was treated with the use the WKB formalism for such dynamic systems tha
described by ordinary differential equations of ordern.7 The unusual properties of geometr
instability make it essentially different from the known parametric resonances. First, the geo
instability is independent of the relationship between the phases of parameter variation and
of the solution. Second, the geometric instability is present with an arbitrary temporal depen
of the system parameters~not necessarily periodic, however, if periodic, then of an arbitrary sm
frequency! for any nondegenerate contour described by the system in the parameter space.
the geometric instability is physically reversible, in the sense that it would be sufficient to var
parameters in such a way as to have the representative point move along the same contou
opposite direction, for the instability to be replaced by damping.

These properties suggest that the geometric amplitude can play an important role in dy
systems. Meanwhile, in Ref. 7 the author put forward a hypothesis of the absence of geo
amplitude in Hamiltonian and other systems possessing a certain symmetry, and formula
problem of identifying classes of systems with the geometric amplitude. The same paper ind
the direct connection between the geometric amplitude and the possibility of constructing
batic invariants, namely that adiabatic invariants can only be constructed if the geometric
tude is absent.

In this paper the author has discovered and investigated the close connection relati
geometric amplitude to adiabatic invariants, Hamiltonian formalism, the quantization pro
and strong stability of the system. We create a classification of the systems without geo
amplitudes, in which the central role belongs to Hamiltonian systems. Considered are the dy
systems with adiabatically varying parameters, that are described by nondegenerate sets
nary linear differential equations with different eigenvalues. Instead of the cumbersome
formalism for thenth-order equations, we offer a more convenient and natural formalism o
first-order vector equation. While in the conventional Hamiltonian theory a complex structu
introduced as an auxiliary one after the quadratic Hamiltonian has been brought to the n
form, we assume a complex structure to be specified in the initial equation. After that, the pr
of determining whether the system is Hamiltonian is formulated. As a result, the general form
of the problem is simplified.

II. GENERAL FORMALISM

Let us consider the linear system described by ann-dimensional vector equation inCn:

x85A~m̄ !x, ~1!

wherex5(x1 ,...,xn) is the vector function to be found~its components will be called coordi
nates!; the prime stands for differentiation with respect to the independent variablet ~known
further as time!; A(m̄) is the linear operator specified by a square nondegenerate matrix tha
smooth function without singularities of the set ofs adiabatically varying parametersm̄
5(m1 ,...,ms), i.e., of the vector inRs. ~Let us note that all the main results of this paper a
nearly identically obtainable for the initial system inR2n as well.! The system parameters a
subject to an arbitrary~though nonresonance! adiabatic variation with time:

m̄5m̄~«t !, «!1. ~2!

Here,« is the adiabaticity parameter. The matrixA(m̄) is assumed to be nondegenerate with all
values of the parameters, and all of its eigenvalues are separated sufficiently far for permitti
of the independent adiabatic solutions of~1!.

The adiabatic solutions of the system~1! are obtainable through the standard asympto
techniques,8 however we are going to use the following idea~it was proposed by Neistadt and
mentioned in Ref. 9!.
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Let us bring the matrixA(m̄) to a diagonal form by applying a parameter-dependent lin
substitution of coordinates. In terms of the new coordinates, the matrix of the transformed s
will be only slightly nondiagonal, with the off-diagonal terms being proportional to the first-o
time derivatives and having the order of«. Let us further diagonalize the matrix obtained to fir
order in « via another linear substitution of coordinates. In these coordinates the off-dia
matrix elements will be second order«2 values, being proportional to the second-order ti
derivatives. This procedure can be similarly reiterated. This way, the initial equation ca
brought for any finite order of« approximation to a diagonal form, for which exact solutions c
be easily written. In this paper we are interested only in the first approximation diagonaliz
which corresponds to either the adiabatic approximation or the averaging method~the applicability
of adiabatic solutions is discussed in Appendix A!.

Let D(m̄) be the transition matrix toward the new coordinatesy whereA(m̄) is diagonal.
Then,

x5D~m̄ !y, D21~m̄ !A~m̄ !D~m̄ !5L~m̄ ![diag~l l ,...,ln!, ~3!

wherel j5l j (m̄) are current eigenvalues of the matrixA(m̄). Using the substitution~3!, Eq. ~1!
is reduced to the form

y85~L2D21D8!y. ~4!

From here on, wherever it is unambiguous, the functional arguments are omitted for brevit
matrix of Eq.~4! consists of two components, namely the diagonal matrixL of order«0, and the
nondiagonal matrixD21D8, whose order is«1, as its elements are proportional to the tim
derivatives of the parameters, viz.,D85(dD/dm̄)m̄8. In the meantime, the diagonal terms of th
matrix D21D8 make a linear contribution in« to the magnitudes of eigenvalues of the matrix
~4!. At the same time, the contribution of the off-diagonal elements ofD21D8 to the eigenvalues
is of higher orders, and in the linear approximation they can always be reduced to zero via a
basis correction, i.e., substitution:

y5~ I1D!ỹ;

Di j 5
~D21D8! i j

l j2l i
, iÞ j ; Di i 50, ~5!

whereI is the unit matrix,uDu;«. As a result of the substitution~5!, we obtain, instead of Eq.~4!:

ỹ85@L2dg~D21D8!1O~«2!# ỹ. ~6!

Here and further on, the operator dg denotes making the off-diagonal components of the
vanish. The sought-for approximate solutions of Eq.~6! will be as follows:

ỹ~ t !' ỹ~0!expH E
0

tFL„m̄~«t!…2dgS D21
„m̄~«t!…

d

dt
D„m̄~«t!…D GdtJ , ~7!

where the symbol' stands for asymptotic equivalence at«→0 @in our case, to an accuracy up t
O(«2)#. Using the substitution (d/dt)D„m̄(«t)…dt5(d/dm̄)D(m̄)dm̄, the second term in~7! can
be transformed into a contour integral in the space of parameters, with the solutions being

ỹ~ t !' ỹ~0!expH E
0

t

L„m̄~«t!…dt1E
l
V̄~m̄ !dm̄J , ~8!

where
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V̄~m̄ !52dgS D21~m̄ !
dD~m̄ !

dm̄ D ~9!

is thes-dimensional field of the diagonal matrices over them̄ space;l is the contour in which the
representative point moves. From here on, the integration contour is assumed to lie in a
finite, simply connected region ofRs, being sufficiently far removed from the singularities of fie
~9! ~turning points! that are known to correspond to the eigenvalues merger pointsl j ;10 in our
case those are (s21)-dimensional hypersurfaces.

We have reduced the initial set~1! to a nearly diagonal form, and in the adiabatic appro
mation Eq. ~6! and its solutions~8! break down inton independent components~degrees of
freedom! over each dimensionyj . To make things simpler, all further derivations will be made
the j th component, the extension to the entire system being trivial. Equation~6! and its solutions
~8! take the form

ỹ j85~l j2v̄ j m̄8!ỹ j1O~«2!, ~10!

ỹ j~ t !' ỹ j~0!expH E
0

t

l j„m̄~«t!…dt1E
l
v̄ j~m̄ j !dm̄J , ~11!

where

v̄ j~m̄ !5V̄j j ~m̄ !52S D21~m̄ !
dD~m̄ !

dm̄ D
j j

~12!

is the j th element of the diagonal field matrix~9!, and O(«2) contains terms proportional to

different yk . We have taken into account that2dg(D21D8)5V̄m̄8 in ~6!.
The first term in the exponent~11! is the standard ‘‘fast,’’ or dynamic, phase that depen

explicitly on time, following the evolution of the initial matrix eigenvalues. The second ‘‘slo
term is of order«, as compared to the first one. It does not depend explicitly on time, b
dependent only on the representative point trajectory in the space of parameters.

Let us extract the potential component of the fieldv̄ j (m̄):

v̄ j~m̄ !5grad„w j~m̄ !…1v̄ j
~c!~ m̄ !, ~13!

wherew j (m̄) is a scalar function, whilev̄ j
(c)(m̄) is the nonpotential component ofv̄ j (m̄). By

substituting~13! in ~11!, we obtain

ỹ j~ t !' ỹ j~0!expH E
0

t

l j„m̄~«t!…dt1w j„m̄~ t !…2w j„m̄~0!…1E
l
v̄ j

~c!~ m̄ !dm̄J . ~14!

The contribution of the potential field componentv̄ j (m̄) to the solutions~14! is determined only
by the boundary parametric values, being independent, as it is, of the integration contour inm̄
space. Therefore, it is the component that determines the connection of the slow solution
tude tocurrent parameter values, and is responsible for the construction of adiabatic invaria

The contribution of the nonpotential component,v̄ j
(c)(m̄), quite to the contrary, depend

considerably on the contour geometryl ~i.e., on allprior values of the parameters!, being nonzero
even at cyclic parametric variations that correspond to closed contours in them̄ space. The last
term in the exponent~14! is Berry’s complex geometric phase.

For the convenience of our further argumentation we will separate the real and imag
parts of Berry’s complex phase. Its imaginary part will be called the geometric phase prop

c j~ l !5ImE
l
v̄ j

~c!~ m̄ !dm̄, ~15!
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while its real part will become the geometric amplitude:

g j~ l !5ReE
l
v̄ j

~c!~ m̄ !dm̄, ~16!

since it is exactly its increment that entails the solution amplitude variations.
Proposition: The geometric terms, along with the current eigenvaluesl j determine the quali-

tative portrait of a linear adiabatic system.
Really, the behavior of the linear system~1! is determined, at constant parameters, by

eigenvalue setl j . Those eigenvalues can also be used to describe the system~1! with parameters
that vary adiabatically over small timest!«21 ~the valuesl j change little over this time!. To
describe the adiabatic behavior of the system~1! over large timest@«21, let us determine the
effective eigenvalues that correspond to the solutions~14! over a given time:

l j
eff~ t !5

ln ỹ j~ t !2 ln ỹ j~0!

t
. ~17!

By substituting the solutions~14! into ~17!, we shall obtain

l j
eff5^l j& t1

g j1 ic j

t
1O~ t21!, ~18!

where^l j& t[(1/t)*0
t l j„m̄(«t)…dt are average values of the current eigenvalues. The second

in ~18! has the order« and, generally speaking, does not tend to zero together witht21, since
during continuous circulation of the representative point in them̄ space the geometric terms gro
without bound. If there is a boundl̃ j

eff5limt→` l j
eff(t), then the solution behavior over large time

@strictly speaking, over times so large that the value ofl j
eff(t) does not leave the small vicinity o

its limit# can be ‘‘roughly’’ ~i.e., neglecting the local deviations! described by the formulaỹ j (t)
' ỹ j (0)exp(l̃j

efft). For example, at periodic parametric variations with the periodT;«21, the
valuel j

eff(t) tends asymptotically to the limitl̃ j
eff5^lj&T1@gj(lT)1icj(lT)#/T, wherel T is the closed

contour corresponding to one period. The role of the effective eigenvalues can be illustrated
geometric instability.7 That paper considered systems with purely imaginary current eigenva
Relj50 ~in the sequel, such systems will be calledoscillatory!. There the solutions demonstrate
an exponential growth at the effective rate Rel̃j

eff5gj(lT)/T.
Thus, to qualitatively describe the behavior of a system with adiabatically varying param

one has to know the effective eigenvalues that are determined by the local eigenvaluesl j (m̄) and
geometric terms@fields v̄ j

(c)(m̄)#. It is natural that the geometric terms and local eigenvalues
invariant with respect to local coordinate substitutions that depend on the current values
parameters and their derivatives and can only change the potentialsw j (m̄) ~see Appendix B!. All
of the above argumentation provide grounds for listing the geometric phases and amp
together with such ‘‘basic’’ characteristics of a system as eigenvaluesl j .

III. ADIABATIC INVARIANT CONSTRUCTION, POINCARÉ ’S INTEGRAL INVARIANTS,
AND THE LIOUVILLE THEOREM

As noted above, the potentialsw j (m̄) in the solutions~14! depend on the choice of a coord
nate system. In particular, we can always transit to such coordinates in which the potentialsw j (m̄)
vanish. Transition to these coordinates in the case of the Hamiltonian systems correspond
transition to the canonical action variables. Let us make the substitution

zj5 ỹ j exp„2w j~m̄ !….

Then, the equations~10! and their solutions~14!, considering~13!, ~15!, and~16!, will take on the
following form:
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zj85~l j1v̄ j
~c!m̄8!zj1O~«2!; ~19!

zj~ t !'zj~0!expH E
0

t

l j„m̄~«t!…dt1g j~ l !1 ic j~ l !J . ~20!

If in the z space the solution absolute values should be approximately constant:

I j~ t ![uzj~ t !u2'const, ~21!

then they are known as adiabatic invariants of actionI j . In the initial coordinates, they determine
under given initial conditions, the unambiguous connection between the approximate so
amplitude and current parametric values. The following is obvious.

Statement I: A given degree of freedom possesses an adiabatic invariant of action if and
if

Rel j50,
~22!

g j50.

Note that the conditions~22! are equivalent to the requirement that the real part of the effec
eigenvaluel j

eff , introduced in the preceding section, be equal to zero. In other words, it shou
equivalent to the requirement of conservation of the oscillatory nature of the motion over
times and under adiabatically varying parameters.

The expressions~21! and the conditions~22! correspond to the conservation of the phase fl
of the j th degree of freedom in thez space.@Since we consider the general case for a comp
equation inCn, each degree of freedom corresponds to one dimensionzj , with the phase flux of
one degree of freedom corresponding to the phase flux of the complex planezj . It is rather easy
to extend all the results given here to the case of real initial system~1! in R2n, where, after
diagonalization of the equations, each degree of freedom corresponds to two complex con
equations.# Indeed, from~20! and ~21! it is easy to see that the time dependence of the area
zj -plane element:

Sj~ t ![E dzj∧dzj* 'Sj~0!expH 2E
0

t

Rel j dt12g j J ,

coincides with the valuesI j (t) to insignificant factors~the asterisk stands for complex conjug
tion, while integration of the 2-form is done over the selected area element of the phasezj plane
at a fixed time!. When the geometric amplitudeg jÞ0 is present in the oscillatory system the pha
flux is not conserved and gets changed by a factor of exp(2gj).

We will define Poincare´’s kth (k<n) integral invariant through the statement as follows: T
area of an arbitraryk-dimensional hypersurface of the kind

S~k!~ t !5E (
a1,...,ak

dza1
∧dza1

* ∧¯∧dzak
∧dzak

* ,

is conserved in the course of time evolution:S(k)(t)5const.~Here, one has to make an importa
remark. The Poincare’s integral invariants are an attribute of Hamiltonian systems. With t
mind, the considered complex invariant structure can be introduced only for the Hamilt
systems with purely imaginary current eigenvalues. However, Hamiltonian systems may p
eigenvalues of two other kinds as well, namely pairs of opposite real numbers and quadruple
opposite real and imaginary parts.16 Those two cases of eigenvalue pairs and quadruples are
considered here. Formally speaking, we can leave them out by requiring that the imaginar
of eigenvaluesl j be different.! Poincare´’s first integral invariant represents a sum of projecti
areas on the planezj :
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S~1!5E (
j 51

n

dzj∧dzj* 5E (
j 51

n

dSj5const.

Statement II: In the considered adiabatic approximation (when the degrees of freedom zj are
assumed independent) the existence of Poincare´’s first integral invariant is equivalent to the
presence of n adiabatic invariants Sj'const, i.e., for its existence it is necessary and sufficie
that the conditions (22) hold for all degrees of freedom.

Let us consider also changes in then-dimensional phase volume of the system:

S~n![V~ t ![E dz1∧dz1* ∧¯∧dzn∧dzn* 'V~0!expH 2(
j 51

n S E
0

t

Rel j dt1g j D J .

Statement III: The necessary and sufficient conditions for the phase volume of a system
conserved, V(t)'const(Poincaré’s nth integral invariant, or Liouville’s theorem) are

(
j 51

n

Rel j50,

~23!

(
j 51

n

g j50.

Thus, Liouville’s theorem of conservation of the phase volume of a system imposes re
tions on the geometric amplitudes without forbidding their existence. Should one require c
vation of the phase areas for each degree of freedom~adiabatic invariants! or conservation of the
phase volume for manifolds of dimension less thann ~Poincare´’s integral invariants!, that would
only be possible if all geometric amplitudes were identical zeros.

IV. HAMILTONIAN FORMALISM

It is known that a system has Poincare´’s first integral invariant only when the system
Hamiltonian.11,12 In this way, it follows from the results of the preceding section@condition~22!#
that the absence of geometric amplitudes is necessary and sufficient for an oscillatory syste
Hamiltonian in the approximation considered. We will produce direct proof for this assertio

In an oscillatory system without geometric amplitudes, the Hamiltonian formalism is natu
introduced when the diagonalized equations are realificated. Indeed, carrying out the realifi
of ~19! and introducing the variables

pj5Rezj , qj5Im zj ,

we obtain

pj85Re~l j1v̄ j
~c!m̄8!pj2Im~l j1v̄ j

~c!m̄8!qj1O~«2!

qj85Im~l j1v̄ j
~c!m̄8!pj1Re~l j1v̄ j

~c!m̄8!qj1O~«2!. ~24!

Taking into account the conditions~22! and neglecting«-quadratic components, we find that 2n
real equations~24! correspond to the canonical equations with a Hamiltonian:

H~p,q!5
1

2 (
j 51

n

Im~l j1v̄ j
~c!m̄8!~pj

21qj
2!, ~25!

wherep[(p1 ,...,pn); q[(q1 ,...,qn).
                                                                                                                



amil-
s no

. As the
meters

e
nt of a
,
depend

ized by
g the
tic

e
ically

long
n
itrary

onian

ry
educed

f

32 J. Math. Phys., Vol. 43, No. 1, January 2002 K. Yu. Bliokh

                    
Thus, an oscillatory system without geometric amplitudes is a canonical one with a H
tonian ~25!. Let us now prove the opposite: an arbitrary oscillatory Hamiltonian system ha
geometric amplitudes.

Let us consider a Hamiltonian system with different imaginary eigenvalues, Relj50. We will
call arealizationof a system the system with a certain given time dependencem̄(«t). As the initial
realization we will take the one with arbitrary constant values of the parametersm̄5m̄ (I ). It is
obvious that the geometric phases and amplitudes of this realization of the system are zero
perturbed realization we will consider the realization of the same system where the para
change in such a way that the representative point is moving along a small closed contourl (I ) in
the vicinity of the pointm̄ (I ) in the parameter space~Fig. 1!. The perturbed realization of th
system will now possess certain nonzero geometric terms. Their values are independe
specific parameter-on-time dependence and depend only on the contourl (I ) shape. For this reason
without loss of generality, we can assume that in the perturbed realization the parameters
on time periodically with an arbitrary nonresonance periodT;«21.

Recall that the systems where parameters depend on time periodically are character
multiplicators, namely the coefficients of eigensolution transformation over one period. Usin
explicit form of the solutions~20!, we obtain that the system multiplicators in the adiaba
approximation are as follows:

r j~ l !5expH E
0

T

l j dt1g j~ l !1 ic j~ l !J . ~26!

In the initial realizationur j (0)u51, i.e., its multiplicators lie on a unit circle. According to th
theorem on the strong stability of Hamiltonian systems whose Hamiltonian depends period
on time,13 if the perturbation is small enough~i.e., the contourl (I ) lies in a sufficiently small
vicinity of the pointm̄ (I )!; then the multiplicators of the perturbed system realization also be
to the unit circle: ur j ( l

(I ))u51. Hence, using~26! for the perturbed realization, we obtai
g j ( l

(I ))50. This proves that the system’s geometric amplitudes are equal to zero for an arb
small contour in the vicinity of an arbitrary point in the considered region ofm̄ space. Therefore
the geometric amplitudes in a Hamiltonian system with Relj50 are identical zeros.

This result can be interpreted as the conservation of the oscillatory nature of a Hamilt
system motion under adiabatic parametric variations. Hence, in particular, it follows@compare
~19!, ~24!, ~25!, taking into account~22!# that a Hamiltonian system with different imagina
eigenvalues and slow varying parameters, similar to a system with constant parameters, is r
in the adiabatic approximation to the normal form14 with a Hamiltonian:

FIG. 1. To the proof of Theorem I. The nonperturbed system realization corresponds to the zero contour at pointm̄ (I ), the
perturbed one corresponds to the closed contourl (I ) around m̄ (I ). Here and in the following figures, for the sake o
clearness, we present the case of two-dimensional parameter space:m̄5(m1 ,m2).
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H~p,q!5(
j 51

n

H j~pj ,qj !5
1

2 (
j 51

n

wj~pj
21qj

2!, ~27!

whereiw j5l j1v̄ j
(c)m̄8.

So, we demonstrate that the oscillatory systems have no geometric amplitudes if and
the system is Hamiltonian. In other words, the following theorem is true.

Theorem I: Among the system (1) with different imaginary current eigenvalues the se
Hamiltonian systems and those without geometric amplitudes are, within the adiabatic ap
mation, coincident. The Hamiltonians of these systems can be reduced to the normal form
namely to that of a sum of independent oscillators.

It should be emphasized that it is exactly in the oscillatory Hamiltonian systems that ge
ric amplitudes are absent, although they may be present in Hamiltonian systems with a n
real part of the current eigenvalues.5,6 Indeed, the simplest example of such a system may wel
the generalized Hannay oscillator3 with the following Hamiltonian: H5 1

2(m1p212m2pq
1m3q2). If one considers the Hannay oscillator in the parametric regionm1m32m2

2,0 ~corre-
sponding to its eigenvalues being real and its phase portrait being hyperbolic!, then the known
geometric phase in this system becomes its geometric amplitude. It should be noted that the
growth rates associated with the geometric amplitude will at all times be much smaller tha
typical real part of the system eigenvalues.7

V. SYSTEM QUANTIZATION

In this section, we will try to answer the question whether the system~1! can be quantized and
what conditions are required for that. As in the preceding section, we will deal with oscilla
systems. We call the spectrum of thej th degree of freedoms j the range ofuzj u2 for fixed values
of the parameters:

s j~m̄ !5$uzj u2%um̄5const.

The system quantization will be understood as follows. Let the system~1! with purely imaginary
eigenvalues correspond to a certain classical system. It is quite obvious that its spectra a
tinuous:s j5@0,1`). During quantization we correspond this system to the quantum one so
its dynamic variableszj satisfy the same differential equations~19!, but spectras j (m̄) are discrete
and unambiguously determined by the fixed parametric valuesm̄.

It is quite clear that the known quantization rules for oscillatory Hamiltonian systems sa
our requirements~see, for instance, the oscillator quantization in Ref. 15!. Indeed, for a Hamil-
tonian oscillatory system under constant values of parameterss j ’s are, to constant multipliers
spectra of Hamiltonians~27! H j of independent linear oscillators. We are going to prove that
non-Hamiltonian oscillatory system is unquantizable in principle, and the reason for that c
attributed to the presence of geometric amplitudes.

Consider a realization of a non-Hamiltonian oscillatory system, in which the time depend
of parameters is like shown in Fig. 2. Up to a certain moment of time the parameters pre
certain constant values:m̄5m̄ (II ) at tP(2`,t1#; afterward in the finite segmenttP@ t1 ,t2# the
parameters undergo a single cyclic change, corresponding to the closed contourl (II ) with its
beginning and end being in the pointm̄ (II ); after that the parameter values are equal to the in
ones and remain constant in the sequel:m̄5m̄ (II ) at tP@ t2 ,1`). Let us consider the spectr
transformation of this realization in the rangetP@ t1 ,t2#.

On one hand, in the rangestP(2`,t1# and tP@ t2 ,1`) the considered realization is de
scribed by the same differential equations with the same constant parameter valuesm̄ (II ). That is
why its phase portraits in these ranges must coincide:

s j u t.t2
5s j u t,t1

5s j~m̄~ II !!.
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On the other hand, due to the non-Hamiltonian nature of the system, in the rangetP@ t1 ,t2#
the solution gains geometric amplitudesg j

(II )5g j ( l
(II )), and, as was shown in Sec. III, the valu

of uzj u2 ~which are proportional to the phase fluxes of different degrees of freedom! get changed by
the factor of exp(2gj

(II )). This means that the spectra of a given system realization underg
same kind of extension:

s j u t.t2
5exp~2g j

~ II !!s j u t,t1
.

Comparing the above assertions, we can avoid a contradiction only if the phase portrait
system with the constant parameters and its spectra are self-similar with the coefficients expgj

(II ))
in each dimension:

s j~m̄~ II !!5exp~2g j
~ II !!s j~m̄~ II !!.

Hence an oscillatory system with a nonzero geometric amplitude is unquantizable. Inde
choosing different contoursl (II ) in the considered simply connected region of them̄ space, we will
obtain that the possible valuesg j

(II )5g j ( l
(II )) continuously fill up a certain segment of the re

axis. The values of similarity coefficients exp(2gj
(II )) will also continuously fill up the appropriate

segment. In particular, by constricting the contourl (II ) to the point m̄ (II ) we can makeg j
(II )

arbitrarily small, with the similarity coefficients being arbitrarily close to one. The classical
tinuous spectrums j5@0,1`) is always self-similar with any coefficient. Assume that the qu
tum discrete spectrum can be self-similar. But in this case the similarity coefficients’ value
represent the discrete set, being determined by the interlevel distances. In particular, the q
spectrum similarity coefficient cannot be made arbitrarily close to one, as this fact would
that the interlevel distance is arbitrarily small, i.e., the spectrum is continuous. This proves
non-Hamiltonian system cannot possess a discrete spectrum.

In the Hamiltonian system the phase space is not extended overtP@ t1 ,t2#, hence we do not
need to require that the spectrum is self-similar. For this reason, the Hamiltonian system sp
may be discrete.

Thus, the following theorem is true.
Theorem II: Among the system (1) with different imaginary current eigenvalues the s

quantizable systems coincides, within the adiabatic approximation, with the set of systems w
geometric amplitudes (or, according to Theorem I, with the set of Hamiltonian systems).

The result obtained can be interpreted as yet another confirmation of the so-called Eh
hypothesis.16,12According to this hypothesis, during the classical system quantization the qua
numbers correspond to adiabatic invariants. When geometric amplitudes are present, there
adiabatic invariants in the system, and we cannot correspond a set of certain fixed numbers
its solution. @Yet, this result does not mean that the system~1! with the geometric amplitudes

FIG. 2. To the proof of Theorem II. Them̄(t) dependence and its projection on them̄ space: closed contourl (II ) with its
beginning and end at pointm̄ (II ).
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cannot describe a quantum system. Equation~1! can, for example, correspond to the Schro¨dinger
equation of a certain system. We only mean that if the system~1! is classical, then its dependen
variables cannot be quantized in the non-Hamiltonian case.#

VI. SYSTEM STRONG STABILITY

In the preceding two sections we established that for oscillatory systems the classes of s
without geometric amplitude, Hamiltonian systems, and quantizable ones are equivalent.
section, we are going to demonstrate that this class of systems can be regarded as a
oscillatory systems possessing the property of strong stability.

Let’s define the strong stability in the following way.
Definition: Let a realization of the system (1) with the matrixA5A0(m̄) from a certain class

and the dependencem̄5m̄0(«t) be stable, i.e., all of its solutions bounded. If there exists ad
.0, such that any perturbed realization of the system (1) with the matrixA5A1(m̄) from the same
class and the dependencem̄5m̄1(«t), satisfying the inequality

iA1„m̄1~«t !…2A0„m̄0~«t !…i,d, ;t, ~28!

is also stable, then the initial realization of the system is called strongly stable.
The system is strongly stable if all of its realizations are strongly stable.
Let us demonstrate first that a strongly stable oscillatory system does not have geo

amplitudes, i.e., it is Hamiltonian in the approximation considered. Indeed, let a certain reali
of an oscillatory system with nonzero geometric amplitudes be stable. Then, we will selec
perturbed realization, the realization of the same system, in which the representative point
circulate in a certain direction in them̄ space around the trajectory of the initial realization~Fig. 3!.
The trajectories of the representative points for the initial and the perturbed realizations c
done arbitrarily close to each other, such that the condition~28! can be satisfied for arbitrarily
smalld. By properly selecting the circulation direction and shape it is always possible to mak
geometric amplitude~together with the solution amplitude! grow infinitely, and thus perturbed
relization becomes unstable~see the Introduction, Sec. II, Ref. 7!. Consequently, a strongly stab
oscillatory system must not have geometric amplitude, and it is Hamiltonian in the approxim
under consideration.

Now, let us prove the opposite: An oscillatory system of the Hamiltonian class is stro
stable in the approximation considered. This follows directly from the explicit form of the in
pendent solutions~20!. Indeed, the oscillatory system eigenvalues are purely imaginary, with
geometric amplitudes in the Hamiltonian systems being identically zero. In this way, the exp
in ~20! is purely imaginary for any realization of a Hamiltonian system, and its solutions

FIG. 3. To the proof of Theorem III. Contourl (III ) of the nonperturbed system realization and its corresponding con

l̃ (III ) of the perturbed system realization in the space of parameters.
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bounded. Since the perturbed system must belong to the same class, in accordance with th
definition, i.e., it must be Hamiltonian, solutions of any of its realization will also be boun
This concludes the proof of the strong stability of Hamiltonian systems.

The above assertions demonstrate that an oscillatory system with different eigenva
strongly stable if and only if the system is Hamiltonian. In other words, the following theore
true.

Theorem III: Among the systems (1) with different imaginary eigenvalues, the set of sy
with the property of strong stability, in the sense of the above definition, coincides in the adia
approximation with the set of Hamiltonian systems (or, in accordance with Theorem I, with th
of systems without geometric amplitudes, or, in accordance with Theorem II, with the s
quantizable systems).

VII. SYSTEM CLASSIFICATION

As was shown in Sec. II, solutions of a system~1! in the general form possess geomet
amplitudes. For this reason, it is natural to perform a classification of such systems that h
geometric amplitudes. This classification will be performed from the standpoint of the matrix
of the initial problem~1!. Some of the results to be obtained in this section are well known,
they are given here for the sake of completeness and coherence. Here belong the results c
ing the matrix of a Hamiltonian system in the canonical coordinates and in the coordi
connected to the canonical ones via time-independent substitutions.12,13

A. Oscillatory systems

In Sec. IV we describe a complete class of oscillatory systems without geometric ampli
that turned out to be the set of Hamiltonian systems with different imaginary eigenvalues.
employed complex canonicalz coordinates the Hamiltonian system has the following form@see
~19!, taking into account~22!#:

z85 i L̃~m̄,m̄8!z1O~«2!, ~29!

where L̃(m̄,m̄8)5diag(l11v̄1
(c)m̄8,...,ln1v̄n

(c)m̄8)[L(m̄)1V̄(c)(m̄)m̄8 is a diagonal real matrix.
The initial system~1! is specified, generally speaking, in arbitraryx coordinates. Let thex andz
coordinates be connected through a certain transition matrixD̃(m̄,m̄8) @the dependence onm̄8 is
contained in the substitution~5!#:

x5D̃~m̄,m̄8!z. ~30!

Then the matrixA of the initial system~1! will be

A5 i D̃L̃D̃212D̃D̃2181O~«2!. ~31!

Thus,a setK of oscillatory systems (1) without geometric amplitudes is a set of system

with the matrixA(m̄), representable as (31), whereD̃5D̃(m̄,m̄8) is an arbitrary complex nonde

generate matrix, whileL̃5L̃(m̄,m̄8) is an arbitrary real diagonal matrix.
Let us isolate in this set the subsets that may be of special interest. To that end, let us w

system~29! as

z85JH~m̄,m̄8!z1O~«2!, ~32!

whereJ5 i I ~I is a unit matrix of ordern!, while H(m̄,m̄8)5L̃(m̄,m̄8) is a Hermitian diagonal
matrix. Under realification the matrixJ turns into a unit antisymmetrical matrix of the order 2n,
which defines the symplectic structure, while the matrixH(m̄,m̄8) turns into a real symmetrica
matrix Hamiltonian.12–14
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As is known, canonical substitutions are those that preserve the form of a symplectic str
~while, generally speaking, changing the Hamiltonian! in the new coordinates. In our case, th
fact means that the matrixJ turns into itself during canonical substitution of the variables, wh
Eq. ~32! preserves its form with some other Hermitian matrixH̃(m̄,m̄8) instead ofH(m̄,m̄8). It is
easy to demonstrate that in the formalism under consideration the set of linear canonical
tutions is represented by the substitutions~30! with the unitary matrixD̃* (m̄,m̄8)5D̃21(m̄,m̄8)
~compare the correspondence of unitary transformations in the quantum mechanics to ca
ones in the classical mechanics!.15,17After the unitary substitution~30! Eq. ~32! turns into

x85JH̃~m̄,m̄8!x1O~«2!,

where

H̃5D̃L̃D̃211 i D̃D̃218.

One can easily see that due to the matrixD̃ being unitary the matrixH̃ is Hermitian.
The subsetK1,K of all oscillatory Hamiltonian systems (1), written in the canonical va

ables, represents the set of systems (1) with the matrixA(m̄)5JH̃(m̄), whereJ5 i I , while H̃(m̄)
is an arbitrary nondegenerate complex Hermitian matrix with different real eigenvalues.12,13

Let us also consider the subset of all systems, associated with the system~32! via substitution
of the kind~30!, where the matrix is constantD̃(m̄,m̄8)5D̃5const. In this case Eq.~32! turns into
the equation

x85GHM ~m̄,m̄8!x1O~«2!,

whereG5 i D̃D̃* is a constant anti-Hermitian matrix, which under the realification defines a
form of the symplectic structure.HM (m̄,m̄8)5D̃* 21L̃(m̄,m̄8)D̃21 is the Hermitian matrix specify-
ing the matrix Hamiltonian under the realification.

The subsetK2,K of oscillatory Hamiltonian systems (1), represented in arbitrary coordina
and connected with the canonical ones via a constant substitution, is a set of systems (1) w

matrix A(m̄)5GHM (m̄). Here, G is an arbitrary constant nondegenerate complex anti-Hermit

matrix, whileHM (m̄) is an arbitrary nondegenerate complex Hermitian matrix, with their prod
having different purely imaginary eigenvalues.12,13

Evidently, K1,K2.

B. General case

Consider now the general case for nonoscillatory systems when ReLÞ0. Let us make a
substitution:

z̃5zexpS 2E
0

t

ReL„m̄~«t!…dt D , ~33!

which evidently does not affect the geometric terms in the solutions~20! ~see Appendix B!. Let us
assume, as we did before, that the initialx and z coordinates are connected through a cert
nondegenerate substitution~30!. The substitution~33! is equivalent to the transitionL→ i Im L.
Therefore, upon the inverse substitution to~30!, bringing the equations back to the originalx space
we obtain@compare to~1!, ~3!#:

x̃85Ãx̃, Ã5 iD Im LD21. ~34!
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This equation has purely imaginary current eigenvaluesl̃ j5 i Im lj and the same geometric term
in the solutions as the initial equation~1!. Thereby the problem has been reduced to the prece
one, and the system has no geometric amplitudes if and only if the system~34! belongs to the
above set K of oscillatory Hamiltonian systems. Using~3! and ~34!, we can write

A5Ã1D ReLD21. ~35!

Thus,in the general case the complete setM.K of the systems (1) without geometric amp

tudes is the set of systems (1) with a matrix representable as (35), whereÃ5Ã(m̄) is an arbitrary
matrix fromK; ReL~m̄! an arbitrary real diagonal matrix andD5D~m̄! is the transition matrix

bringing Ã(m̄) to a diagonal form.
We will also describe the subsets that may be of special interest.
Lemma: If the matrix A(m̄) of the system (1) can be brought to a diagonal form with

unitary matrixD* (m̄)5D21(m̄), then the system has no geometric amplitudes.
Proof: The geometric terms in the solutions of the system~1! arise from nonpotential com

ponents of the matrix field~9! V̄(m̄). The condition for the existence of geometric terms is
nonpotentiality of that field:

~rotV̄!ab[
]Va

]ub
2

]Vb

]ma
Þ0. ~36!

Here, the Greek indices relate to them̄ space. By substituting~9! into ~36!, we obtain

~rotV̄!ab5dgS ]D21

]mb

]D

]ma
2

]D21

]ma

]D

]mb
DÞ0.

~We recall that the operator dg eliminates off-diagonal matrix components.! SinceD is unitary, it
is easy to obtain

~rotV̄!ab5diagS ]D*

]mb

]D

]ma
2

]D*

]ma

]D

]mb
D52i ImS diagS ]D*

]mb

]D

]ma
D DÞ0.

Thus, the nonpotential component of the field~9! can only be imaginary, which infers that th
solutions can possess a geometric phase, but never an amplitude.

The lemma has been proven.
The set of systems (1) with the matrixA5DLD21, whereD5D~m̄! is an arbitrary complex

unitary matrix, whileL5L~m̄! is an arbitrary complex diagonal matrix, forms the subsetM1,M.
The subset M1 contains, in particular, the subsets of systems~1! with Hermitian, anti-

Hermitian, and unitary matricesA~m̄!. The subset of systems with anti-Hermitian matrices app
ently is the subset K1 described above of oscillatory Hamiltonian systems in the canonical v
ables.

VIII. CONCLUSIONS

In the paper we considered a linear dynamic system of the general kind, which is describ
the complex vector equation with a nondegenerate matrix possessing different eigenvalue
system matrix is assumed to depend on a set of parameters varying adiabatically. The p
results reported in this paper are as follows.

~1! Adiabatic solutions~8!, ~11!, ~14!, ~20! have been constructed that demonstrate the p
ence, in the general case of geometric phases and amplitudes.

~2! The geometric terms have been shown to be as important system characteristics
eigenvalues. Together they determine the qualitative portrait of the system~effective eigenvalues!,
being invariant with respect to the local coordinate substitutions.
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~3! The necessary and sufficient conditions~22! for construction of an adiabatic invariant fo
one degree of freedom have been formulated. They are the absence of a geometric amplit
a zero value for the real part of the current eigenvalue of the given degree of freedom.

~4! We analyzed the condition for the existence Poincare´’s integral invariants in the system
and fulfilment of the Liouville theorem. The Poincare´’s first integral invariant is shown to be
equivalent, in the adiabatic approximation, to the complete set ofn adiabatic invariants. In othe
words, the conditions for its existence are an oscillatory nature of the system and zero valu
all geometric amplitudes. At the same time, the conditions of the Liouville theorem~23!, generally
speaking, permit the presence of geometric amplitudes in the system~an example of the physica
system satisfying the Liouville theorem and containing geometric amplitudes may be the ‘‘b
plasma system.’’7

~5! The main results of this paper can be viewed as the following equivalence relation
For oscillatory systems in the adiabatic approximation, the equivalence has been shown of
of systems without geometric amplitudes, Hamiltonian systems, quantizable systems, and s
stable systems~Theorems I–III!:

S systems without
geometric amplitudesD'S Hamiltonian

systems D'S quantizable
systems D'S strongly stable

systems D .

It might be interesting to compare the equivalence of Hamiltonian and strongly stable sy
with the known theorems on strong stability of oscillatory Hamiltonian systems with a t
independent Hamiltonian and with the periodically dependent Hamiltonian.13,14 The nonlinear
counterparts of these theorems are the simplest consequences of the KAM~Kolmogorov–Arnold–
Moser! theorem.12,14 First, the theorems proved in this paper somewhat broaden~in the adiabatic
approximation! the class of strongly stable systems to include oscillatory Hamiltonian sys
with an arbitrary time dependence of parameters. Second, the Hamiltonian nature of syste
not only a sufficient, but alsonecessarycondition for the system strong stability in the theorem
proved.

~6! Finally, based on the results obtained in this paper, a rather complete classificatio
been made of the systems without geometric amplitudes from the standpoint of the form of
of the initial system. We give a description of the set of all systems without a geometric ampl
and indicate several subsets that are easily described and may represent special interest.

We have been able to obtain the above results of sufficient generality due to the use
simplifying assumptions~equation linearity and adiabaticity!, as well as to the following importan
circumstance. Note that the problem of whether a system is Hamiltonian and possesses
stability was studied many times in thetemporalstatement:

x85A~ t !x,

where the system matrix is an explicit function of time. One can apply to such a problem stat
the Birkhoff’s remark that in the vicinity of a nonsingular point there should always be coord
substitution leading the equation up to the trivial Hamiltonian system.18 We, however, considered
the problem of evolution of a nonautonomous system in thefunctionalstatement: the matrix of the
system~1! is time dependent via arbitrary parameter functionsA5A„m̄(t)….19 Note that in the
physical problems this statement is more natural. For the system matrix, the difference be
the temporal and functional problem statement is not important, since it is simply a com
function of time. However, this circumstance plays an important role when we deal with co
nate substitutions. In the temporal statement all substitutions are simply functions of time, an
they belong to the same class. Yet, in the functional problem statement the coordinate subst
are functional of parametersm̄, which allows us to distinguish between local~the functional is a
function of the current value ofm̄! and integral substitutions~the substitution is an integra
functional ofm̄ containing the system’s prior history! ~Appendix B!. It is only the local substitu-
tions that leave the eigenvalues and geometric terms invariant. Consequently, if we inte
transform the system without distorting its global qualitative portrait, we must restrict ourselv
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the local variable substitutions. In such a functional problem statement the Birkhoff result do
hold: His proposed substitution may be nonlocal. Therefore the problem of determinati
whether a system is Hamiltonian in the vicinity of a nonsingular point becomes nontrivial.

We defined a set of the Hamiltonian systems in the considered approximation, making
tial use of the functionality of the problem statement in the proofs of all the theorems.

Our objective in this work is to describe adequately the linear adiabatic systems mainly
the standpoint of mathematical physics. At the same time, we would rather have our att
focused as well on the geometric amplitude in oscillatory systems as a possible physical ph
enon. The linear oscillatory physical systems may be described by equations of a non-Hami
kind and contain geometric amplitudes that promote the development of a geometric instab
the system.7 In case this phenomenon is discovered in real systems, the geometric amplitud
play an important role due to its unusual properties, which makes it natural to continue the s
in this area. It is hoped that this paper will facilitate the search for systems with geom
amplitude, and if they are discovered, it will help to describe their behavior.
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APPENDIX A: LIMITS OF VALIDITY FOR ADIABATIC SOLUTIONS

By employing the technique of consecutive Neistadt diagonalization, as proposed in S
we obtain the solutions of Eq.~1! after kth diagonalization in the form of

x~ t !5S (
j 51

k

D~ i !~ t !1O1~«k!D expH E
0

tS (
j 51

k

L~ j !~t !1O2~«k!D dtJ y~k!~0!, ~A1!

where y(k)(0) is the initial conditions vector in thekth basis, the matricesD( j ), and diagonal
matricesL( j ) are proportional to« j 21, while the correction termsO(«k) are written in a form that
provide for inductive transitionk→k11. Here consecutive approximations of the factor before
exponent in~37! correspond to the basis corrections as the solution eigenvectors rotate
diagonal matricesL( j ) in the exponent approximate the effective eigenvalues of the solution.
properties of the asymptotic solution~A1!, strict conditions of the series convergence and esti
tion of their residual terms can be found in the standard courses on asymptotic methods,8 while
here we will do simple qualitative estimations.

Comparing the formula~A1! with the substitutions~3!, ~5! and solutions~8!, it is easy to see
the correspondence:

y~1![y, y~2![ ỹ, D~1![D, D~2![D, L~1![L, L~2![V̄m̄8,

and write the adiabatic solutions used in the article as

x~ t !5S (
j 51

2

D~ j !~ t !1O1~«2!D expH E
0

tS (
j 51

2

L~ j !~t !1O2~«2!D dtJ y~2!~0!. ~A2!

At the same time, the transition from theỹ coordinates toz coordinates in Sec. III is associate
with ambiguity of the diagonalization matrix choiceD(1)[D. It is simply a choice of the certain
most convenient matrixD(1).

Due to the termsO2(«2) in the time integral, the solutions~A2! are applicable in the time
intervalst!tmax5«22. At that, the considered in this paper small valuesL(2) are integrated over
time and can largely determine the valuex(t) only in the ranget>tmin5«21.
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Let us now derive the conditions, under which one can neglect the termsO1(«2). We will
consider first the most important for the geometric amplitude effect case of an oscillatory sy
i.e., ReL(1)50.

In the absence of the geometric amplitude the solutions~A2! are bounded~their Lyapunov
indices being zero in the adiabatic approximation! and small corrections to the rotation of solutio
eigenvectors are insignificant, i.e., the contribution of the valuesO1(«2) and evenD(2) to the
solutions is small at all timest!tmax. When the geometric amplitude is present, various soluti
~A2! may grow exponentially with time at various growth rates on the order«. The system is said
to have an exponential solution splitting.20 In this case, even a small error in the projections
solution eigenvectors may result in a large error in the solution. In this case, the condition,
which one can neglect the termsO1(«2), will be t!tmax 15«21 ln «21. Note that tmin !tmax 1

!tmax .
If the system has the exponential splitting even in the zero approximation: ReL(1)Þ0, then,

similarly, the small corrections defining projections of eigenvectors will be essential. The c
tion, under which one can neglect the termsO1(«2) is t!tmax 25ln «21. Here tmax 2!tmin , i.e.,
within these limits of validity the eigenvalue correctionsL(2) always provide a small contribution
to the solutions. In order to derive the solutions applicable in the time ranget;tmin and usable for
the geometric amplitude research, one has to take into account the eigenvector rotationsD(k) up to
k.«21/ln «21. Yet, if one assumes thatỹ[y(k) in Eq. ~6! and below, then all conclusions of th
paper remain true, because the values of the geometric terms in thekth basis are still determined
only by the matrixD(1).

APPENDIX B: NOTE ON THE COORDINATE SUBSTITUTIONS CONSIDERED

Throughout this paper@except for the substitution~33!# we considerlocal linear coordinate
substitutions, whose transition matrix depends only on thecurrent parameter values and the
derivatives. The point is that the set of systems associated with such substitutions can be
ered to be qualitatively equivalent.

Contrary to local substitutions, let us considerintegral ones, which contain information abou
prior parameter values and their derivatives. Substitutions of the kind

ỹ j→ ỹ j expS E
0

t

f j~m̄~«t!!dt D , ~B1!

are equivalent to a change of the current eigenvalues of the system:l j→l j2 f j . While substitu-
tions of the kind

ỹ j→ ỹ j expS E
l
ḡ j~m̄ !dm̄ D , ~B2!

where ḡ j (m̄) is the nonpotential field, are equivalent to a change of the geometric terms:v̄ j
(c)

→v̄ j
(c)2ḡ j @see solutions~14!#. As shown in Sec. II, with the current eigenvalues and geome

terms determine the qualitative portrait of the system. In particular, using the integral substit
~B1! and~B2! with f j5l j , ḡ j5v̄ j

(c) , we can always reduce the system, in the adiabatic appr
mation, to its trivial form:ỹ j850.

Note that local variable substitutions correspond to correction of the current basis, an
obvious that they cannot change the eigenvalues and geometric phases and amplitudes.
reason, we can say that the systems connected by local substitutions are equivalent quali
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Planar Dirac electron in Coulomb and magnetic fields:
A Bethe ansatz approach

Chun-Ming Chiang
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and Kuang Wu Institute of Technology, Peitou, Taipei 112, Taiwan

Choon-Lin Ho
Department of Physics, Tamkang University, Tamsui 25137, Taiwan

~Received 31 July 2001; accepted for publication 26 September 2001!

The Dirac equation for an electron in two spatial dimensions in the Coulomb and
homogeneous magnetic fields is an example of the so-called quasi-exactly solvable
models. The solvable parts of its spectrum were previously solved from the recur-
sion relations. In this work we present a purely algebraic solution based on the
Bethe ansatz equations. It is realized that, unlike the corresponding problems in the
Schrödinger and the Klein–Gordon cases, here the unknown parameters to be
solved for in the Bethe ansatz equations include not only the roots of the wave
function assumed, but also a parameter from the relevant operator. We also show
that the quasi-exactly solvable differential equation does not belong to the classes
based on the algebrasl2 . © 2002 American Institute of Physics.
@DOI: 10.1063/1.1418426#

I. INTRODUCTION

Recently a new type of spectral problem, the so-called quasi-exactly solvable model~QESM!,
was discovered by physicists and mathematicians.1–8 This is a special class of quantum
mechanical problems for which analytical solutions are possible only for parts of the e
spectra and for particular values of the fundamental parameters. The reason for such quasi
solvability is usually the existence of a hidden Lie-algebraic structure.2–6 More precisely, a quasi-
exactly solvable~QES! Hamiltonian can be reduced to a quadratic combination of the gener
of a Lie group with finite-dimensional representations.

The first physical example of QESM in atomic physics is the system of two electrons mo
in an external oscillator potential discussed in Refs. 9 and 10. The authors of these works
ently were unaware of the mathematical development in QESM. Later, several physical Q
were discovered, which include the two-dimensional Schro¨dinger,11 the Klein–Gordon,12 and the
Dirac equations13 of an electron moving in an attractive/repulsive Coulomb field and a hom
neous magnetic field. The essential features shared by all these above examples are as follo
differential equations are solved according to the standard procedure. After separating o
asymptotic behaviors of the system, one obtains an equation for the part which can be ex
as a power series of the basic variable. But instead of the two-step recursion relations
coefficients of power series so often encountered in exactly solvable problems, one gets thr
recursion relations. The complexity of the recursion relations does not allow one to determi
energy spectrum exactly from the normalizability of the eigenfunctions. However, one can im
a sufficient condition for normalizability by terminating the series at a certain order of pow
the variable; i.e., by choosing a polynomial. By doing so one could obtain exact solutions
original problem, but only for certain energies and for specific values of the parameters
problem. These parameters, namely, are the frequency of the oscillator potential and the e
magnetic fields.

In Ref. 14 a systematic and unified algebraic treatment was given to the above-men
systems, with the exception of the Dirac case. This was made possible by realizing tha
430022-2488/2002/43(1)/43/9/$19.00 © 2002 American Institute of Physics

                                                                                                                



olvable
rst

llowed

n of
uations
ere the
ctions
e Bethe
Finally,

n

ec-

ic field
ge

lar

44 J. Math. Phys., Vol. 43, No. 1, January 2002 C.-M. Chiang and C.-L. Ho

                    
systems are governed essentially by the same basic equation, which is quasi-exactly s
owing to the existence of a hiddensl2 algebraic structure. This algebraic structure was fi
realized by Turbiner for the case of two electrons in an oscillator potential.15 In this algebraic
approach, analytic expressions of the solvable parts of the energy spectrum and the a
parameters were expressible in terms of the roots of a set of Bethe ansatz equations.

In this article we would like to extend the method of Ref. 14 to the planar Dirac equatio
an electron in the Coulomb and magnetic fields. It turns out that a set of Bethe ansatz eq
can also be set up in this case. However, unlike the systems considered in Ref. 14, h
unknown variables in the Bethe ansatz equations involved not only the roots of the wave fun
assumed, but also a parameter from the relevant operator. We also demonstrate that th
ansatz approach yields the same spectrum as that obtained by solving recursion relations.
we show that the quasi-exactly solvability of this system is not related to thesl2 algebra.

II. THE DIRAC EQUATION

In 211 dimensions the Dirac algebra

$gm,gn%52gmn, gmn5diag~1,21,21! ~1!

may be represented in terms of the Pauli matrices asg05s3 , gk5 isk or, equivalently, the
matrices (a1 ,a2)5g0(g1,g2)5(2s2 ,s1) andb5g0. Then the Dirac equation for an electro
minimally coupled to an external electromagnetic field has the form~we setc5\51!

~ i ] t2HD!C~ t,r !50, ~2!

where

HD5aP1bm2eA0[s1P22s2P11s3m2eA0 ~3!

is the Dirac Hamiltonian,Pk52 i ]k1eAk is the operator of generalized momentum of the el
tron, Am is the vector potential of the external electromagnetic field,m is the rest mass of the
electron, and2e (e.0) is its electric charge. The Dirac wave functionC(t,r ) is a two-
component function. In an external Coulomb field and a constant homogeneous magnet
B.0 along thez direction, the potentialAm assumes the following forms in the symmetric gau

A0~r !5Ze/r ~e.0!, Ax52By/2, Ay5Bx/2. ~4!

We assume the wave functions to have the form

C~ t,x!5
1

Ar
exp~2 iEt !c l~r ,w!, ~5!

whereE is the energy of the electron, and

c l~r ,w!5S F~r !eil w

G~r !ei ( l 11)w D ~6!

with integral numberl . The functionc l(r ,w) is an eigenfunction of the conserved total angu
momentumJz5Lz1Sz52 i ]/]w1s3/2 with eigenvaluej 5 l 1 1

2. It should be reminded thatl is
not a good quantum number. Only the eigenvaluesj of the conserved total angular momentumJz

are physically meaningful.
By putting Eqs.~5! and ~6! into ~2!, and taking into account the equations

Px6 iPy52 ie6 iwS ]

]r
6S i

r

]

]w
2

eBr

2 D D , ~7!
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we obtain

dF

dr
2S l 1

1

2

r
1

eBr

2
D F1S E1m1

Za

r DG50, ~8!

dG

dr
1S l 1

1

2

r
1

eBr

2
D G2S E2m1

Za

r DF50, ~9!

wherea[e25 1
137 is the fine structure constant. In a strong magnetic field the asymptotic solu

of F(r ) andG(r ) have the forms exp(2eBr2/4) at larger , andr g with g5A( l 11/2)22(Za)2 for
small r . One must haveZa, 1

2, otherwise the wave function will oscillate asr→0 whenl 50 and
l 521.

Let us assume

F~r !5r g exp~2eBr2/4!Q~r !, G~r !5r g exp~2eBr2/4!P~r !. ~10!

In Ref. 13 we showed that parts of the spectrum could be analytically solved for by imposin
sufficient condition thatQ(r ) andP(r ) be polynomials, thus showing that the system belong
the QESM. The spectrum was solved in Ref. 13 from the recursion relations for the coefficie
the series expansion inQ andP. In this article, we will show that the same spectrum can also
obtained in a purely algebraic way. This is achieved by the method of factorization which lea
a set of Bethe ansatz equations.13,14

Substituting Eq.~10! into Eqs.~8! and~9! and eliminatingP(r ) from the coupled equations
we have

H d2

dr2 1F2g

r
2eBr1

Za/r 2

E1m1Za/r G d

dr
1E22m21

2EZa

r
1

l 1 1
2

r 2 2
g

r 2 2eB~G11!

1
Za/r 2

E1m1Za/r
Fg

r
2eBr2

l 1 1
2

r
G J Q~r !50, ~11!

whereG5 l 1 1
21g. OnceQ(r ) is solved, the form ofP(r ) is obtainable from Eqs.~8! and ~10!.

If we let x5r / l B , l B51/AeB, Eq. ~11! becomes

H d2

dx2 1F2g

x
2x1

Za

x~~E1m!l Bx1Za!G d

dx
1~E22m2!l B

21
2EZlBa

x
1

~ l 1 1
22g!

x2 2~G11!

2
Za~ l 1 1

22g!

x2@~E1m!l Bx1Za#
2

Za

~E1m!l Bx1Za
J Q~x!50. ~12!

Equation~12! can be rewritten as

H d2

dx2 1F2b

x
2x2

1

x1x0
G d

dx
1e1

b

x
2

c

x1x0
J Q~x!50. ~13!

Here b5g1 1
2, x05Za/@(E1m) l B#, e5(E22m2) l B

22(G11), b5b01L/x0 , b052EZa l B , L
5( l 1 1

22g), andc5x01L/x0 . On expressingl B in the expression ofe in terms ofx0 , we get

e5
E2m

E1m S Za

x0
D 2

2~G11!. ~14!
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It is obvious that the energyE is determined once we know the values ofe andx0 . The corre-
sponding value of the magnetic fieldB is then obtainable from the expressionl B5Za/@(E
1m)x0#. Solution ofx0 is achieved below by means of the Bethe ansatz equations.

III. THE BETHE ANSATZ EQUATIONS FOR Q„x …

We observe that the problem of finding the spectrum for Eq.~13! is equivalent to determining
the eigenvalues of the operator

D52
d2

dx2 2S 2b

x
2x2

1

x1x0
D d

dx
2

b

x
1

c

x1x0
. ~15!

We want to factorize the operator~15! in the form

D5a1a1e. ~16!

The eigenfunctions of the operatorD at e50 must satisfy the equation

aQ~x!50. ~17!

Suppose polynomial solutions exist for Eq.~13!, say Q equals a nonvanishing constant, orQ
5Pk51

n (x2xk), wherexk are the zeros ofQ, andn is the degree ofQ. In the case whereQ is a
constant~which may be viewed as corresponding ton50!, the operatorsa anda1 have the form

a5
d

dx
, a152

d

dx
2S 2b

x
2x2

1

x1x0
D . ~18!

If Q5Pk51
n (x2xk), a anda1 will assume the form

a5
d

dx
2 (

k51

n
1

x2xk
~19!

and

a152
d

dx
2S 2b

x
2x2

1

x1x0
D2 (

k51

n
1

x2xk
. ~20!

We now substitute the forms ofa anda1 into Eq. ~16! and compare the result with Eq.~15!.
This leads to conditions that must be satisfied by the various parameters and the rootsxk’ s. For
constantQ (n50), one has

e5b5c50. ~21!

The fact thatc50 implies

x0
252L. ~22!

For n>1, one gets

b01
L

x0
52b(

k51

n
1

xk
, e5n, ~23!

x01
L

x0
5 (

k51

n
1

xk1x0
, ~24!
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2b

xk
2xk2

1

xk1x0
22(

j Þk

n
1

xj2xk
50, k51, . . . ,n. ~25!

Equations~22!, ~24!, and ~25! constitute the set ofn11 Bethe ansatz equations relevant to th
Dirac system, which involven11 unknown parameters$x0 ,x1 ,...,xn%. It is worthwhile to note
that, unlike the corresponding equations in the Schro¨dinger and the Klein–Gordon cases discuss
in Ref. 14, this set of Bethe ansatz equations involved not only the rootsxk , but also a paramete
x0 from D. Summing Eq.~25! over k leads to the expressionb05x01(k51

n xk , i.e., b0 is simply
the sum of all the roots of the Bethe ansatz equations. From the second equation in Eq.~23! we get

E22m25
1

l B
2 ~G1n11!. ~26!

Since2 1
2<G<0 for Za, 1

2,
13 we see from Eq.~26! that the solvable parts of the spectrum mu

satisfy uEu>m.
So we see that the solution of the solvable parts of the spectrumE boils down to solving the

Bethe ansatz equations forx0 in the differential operator, and the rootsxk(k51,...,n) of Q(x).
Once the value ofx0 for each ordern5e is known, the energyE is given by Eq.~14!. The
corresponding magnetic fieldB is then determined from the definition ofb0 , or from Eq.~26!. The
Bethe ansatz equations thus provide a systematic solutions of the QES spectrum. Of course
order of the degree ofQ increases, analytical solutions of the Bethe ansatz equations bec
difficult, and one must resort to numerical methods.

IV. SOLUTIONS FOR nÄ0,1, and 2

In what follows we shall show the consistency of the solutions by the Bethe ansatz app
and that by the recursion relations presented in Ref. 13 for the first three lowest orden
50,1,2) inQ. Instead of solving forx0 , our strategy is to eliminate it in Eq.~14! by means of
Eqs.~22!–~25! so as to obtain an equation obeyed byE for each order ofQ. This equation is then
compared with the corresponding equation obtained from the recursion relations as prese
Ref. 13.

From Eqs.~21! and ~22! we havex0
252L ande50 whenQ is a constant. Substitute thes

values ofx0 ande into Eq.~14!, and using the fact thatGL5(Za)2, we obtain the correspondin
value ofE as

E52
m

2~ l 1g11!
. ~27!

This is the result presented in Ref. 13. The corresponding allowed value of the magnetic fieB is
then obtained from Eqs.~26! and~27!. The fact thatx0 is real leads toL,0, which in turn implies
that the energy levels given by Eq.~27! are only possible forl ,0. This is consistent with the
conclusion obtained by the method of recursion relations.13

For n51, we find from Eqs.~14!, ~23!, ~24!, and~25! that

G125
E2m

E1m

~Za!2

x0
2 , ~28!

b01
L

x0
5

2b

x1
, ~29!

1

x11x0
5x01

L

x0
, ~30!
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2b

x1
2x12

1

x11x0
50. ~31!

Equations~29!–~31! imply x15b02x0 . Substitutingx1 into Eq. ~30!, we obtain

x0
25LF E1m

2E~Za!2 21G21

. ~32!

Then from Eqs.~32! and ~28!, we get

F4~G11!2
G

Z2a2GE214Em1
G

~Za!2 m250. ~33!

The energyE can be solved from Eq.~33! by the standard formula, after which the magnetic fie
is determined from Eq.~26!. Equation~33! does not resemble the one obtained from the recurs
relation in Ref. 13. However, on multiplying Eq.~33! by G11 and making use of the fact tha
(Za)25G(G22g), we can show, after some algebra, that Eq.~33! is equivalent to the corre
sponding equation given in Ref. 13.

Finally we consider the case forn52. We have Eq.~14! with e52, together with Eqs.
~23!–~25! in the forms

G135
E2m

E1m

~Za!2

x0
2 , ~34!

b01
L

x0
5

2b

x1
1

2b

x2
, ~35!

1

x11x0
1

1

x21x0
5x01

L

x0
, ~36!

2b

x1
2x12

1

x11x0
2

2

x22x1
50, ~37!

2b

x2
2x22

1

x21x0
2

2

x12x2
50. ~38!

From these equations we findx11x25b02x0 andx1x252bx0(b02x0)/(b0x01L). Putting these
expressions into Eq.~36! and using the fact thatG52b1L21, we arrive at

~b0
222b!x0

21b0Gx01@b0
2~L21!2L~2b11!#1

b0GL

x0
50. ~39!

Now multiplying Eq.~39! by G, usingGL5(Za)2, and expressingb0 , l B , and 1/x0
2 in terms ofE,

we get finally
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H 4~2G13!2
1

~Za!2 F6G12~g11!1
~2g11!G

G13 G J E3

1H 122
1

~Za!2 F2~g11!2
~2g11!G

G13 G J E2m

1
1

~Za!2 F6G12~g11!1
~2g11!G

G13 GEm21
1

~Za!2 F2~g11!2
~2g11!G

G13 Gm350.

~40!

Again, this equation does not look the same as that obtained from the recursion relations.
can show they are in fact equivalent as they differ only by a multiplicative factor (G11)(G
12).

V. THE BETHE ANSATZ EQUATIONS FOR P„x …

One may as well solve the QES energy spectrum of the problem from the differential equ
of P(x) instead ofQ(x). The analysis proceeds in exactly the same way as we did forQ(x). We
shall only give the outline below in order to show the similarity and differences between the
sets of Bethe ansatz equations.

The equation forP(x) can be cast into the following form:

H d2

dx2 1F2b

x
2x2

1

x1x08
G d

dx
1e81

b8

x
2

c8

x1x08
J P~x!50. ~41!

Herex085Za/@(E2m) l B#, e85(E22m2) l B
22G, b85b01c8, andc852G/x08 . Other parameters

are as defined previously. Instead of Eq.~14! we now have

e85
E1m

E2m S Za

x08
D 2

2G. ~42!

We note here the sign difference before the mass terms in Eqs.~14! and~42!. It is obvious that Eq.
~41! is in the same form as Eq.~13!, and hence is also quasi-exactly solvable. SupposeP(x) has

the factorized formP(x)5Pk51
n8 (x2xk8). Then the set of Bethe ansatz equations for the par

eters$x08 ,x18 ,...,xn8
8 % is given by

2
G

x08
5 (

k51

n8 1

xk81x08
, ~43!

2b

xk8
2xk82

1

xk81x08
22(

j Þk

n8 1

xj82xk8
50, k51, . . . ,n8. ~44!

In place of Eq.~23! we have

b02
G

x08
52b(

k51

n8 1

xk8
,

e85n8, n851,2.... ~45!
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Summing Eq.~44! overk givesb05(k51
n8 xk8 . For any given integral value ofe85n8 the QES part

of the energyE is determined from Eq.~42! once the values ofx08 are obtained from the Beth
ansatz equations. The corresponding value of the magnetic fieldB is then obtainable from the
expressionl B5Za/@(E2m)x08#.

We note here that since the two sets of Bethe ansatz Eqs.~22!, ~24! and~25!, and~43! and~44!
give the same spectrum of the QES energyE and the correspondingB, we have, from the values
of e, e8 andb0 , the following necessary conditions:

n85n11, ~46!

b05x01 (
k51

n

xk5 (
k51

n11

xk8 . ~47!

Conversely, one can easily show that Eqs.~46! and ~47! are also the sufficient conditions for th
two sets of Bethe ansatz equations to give the same QES energy spectrum and magnetic fi
condition~46! implies that the degree of the polynomialP(x) is of one order higher than that o
Q(x), which is in complete agreement with the result obtained in Ref. 13.

VI. NON-sl 2-BASED QUASI-EXACTLY SOLVABILITY

We now demonstrate that the QES Eqs.~13! and ~41! cannot be represented as a biline
combination of the generators of thesl2 algebra. The question of whether there exists n
sl2-based one-dimensional QESM was first posed in Ref. 2 in which allsl2-based QESM are
classified. The first example of such a kind was given in Ref. 16, which presents a potential a
in the context of the stability analysis around the kink solution forf4-type field theory in 111
dimensions.

We shall show that Eq.~13! is not generated by thesl2 algebra. The same conclusion appli
immediately to Eq.~41!, since both equations have the same form. Let us rewrite Eq.~13! as

H 2~x21x0x!
d2

dx2 1@x31x0x21~122b!x22bx0#
d

dx
2ex21~c2b2ex0!x2bx0J Q~x!50.

~48!

Turbiner2 has shown that allsl2-based second order QES differential equations can be cast int
form

2P4~x!
d2Q

dx2 1P3~x!
dQ

dx
1~P2~x!2l!Q50, ~49!

where

P4~x!5a11x41a10x31~a121a00!x
21a02x1a22 ,

P3~x!52~2 j 21!a11x31@~3 j 21!a101b1#x21@2 j ~a121a00!1a001b0#x1 ja021b2 ,
~50!

P2~x!52 j ~2 j 21!a11x212 j ~ ja101b1!x1a0 0 j 21b0j.

Hereakl’s andbk’s (k,l 51,0,2) are constants, andj is a non-negative integer or half-intege
Equation~49! corresponds to the eigenvalue problem

HQ5lQ, H52 (
k,l 51,0,2

k> l

aklJ
kJl1 (

k51,0,2
bkJ

k, ~51!
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which has a polynomial solution of power 2j in x. HereJk’s are the generators ofsl2 :

J15x2
d

dx
22 jx, J05x

d

dx
2 j , J25

d

dx
. ~52!

Comparing Eqs.~48! and~49! we find that the two equations are inconsistent with each other.
instance, the coefficient ofx4 in P4 requiresa1150, whereas the coefficient ofx3 in P3 implies
2(2j 21)a1151, which gives a nonvanishinga11 for positive integral and half-integral value
of j . This shows that Eq.~13! is not sl2-based.

VII. CONCLUSIONS

In conclusion, we have given an algebraic solution to the planar Dirac equation of an ele
in the Coulomb and magnetic fields. The relevant Bethe ansatz equations are presented. Un
corresponding equations in the Schro¨dinger and the Klein-Gordon case discussed in Ref. 14,
unknown variables in this set of Bethe ansatz equations include not only the roots of the p
mial assumed, but also a parameter from the QES differential operator. Equivalence betwe
approach and that by the recursion relations is demonstrated. Finally, we show that the
equation for this problem does not belong to any of the classes based on thesl2 algebra.
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Noncommuting limits in homogenization theory
of electromagnetic crystals

D. Felbacq
LASMEA UMR-CNRS 6602, Complexe des Ce´zeaux, 63177 Aubie`re Cedex, France
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We study the homogeneous properties of metallic 2D photonic crystals. We give a
rigorous proof that the limits when the ratio period over wavelength tends to zero
and the conductivity tends to infinity do not commute. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1418013#

I. INTRODUCTION

This article concerns the homogenization of 2D dielectric photonic crystals and the fac
the limits k→0 ~k is the Bloch vector! and«→1` do not commute forp-polarized waves~it is
not the case fors-polarized waves, which is a straightforward case!. This result has been claime
by Nicorovici et al. in a series of papers1–3 and it has been claimed to be false by Krokhinet al.
in a comment.4 The point of this article is to make the situation clear once and for all, that is
give a mathematically clean derivation of the result by Nicorovici and to prove that it is rig

II. HOMOGENIZATION RESULT

Rather than letting the Bloch vector tend to zero, we use the following homogeniz
scheme: We deal with a finite-size photonic crystal, contained in a bounded domainV, with period
h ~the period is a contracted cellhY, whereY5@0,1@2 andu is the filling ratio inY, see Fig. 1 for
notations! and a fixed wavenumberk0 in which case for an incident fieldui the total fielduh

satisfies inp-polarization: div(«h
21¹uh)1k0

2uh50 anduh2ui satisfies a radiation condition. Func
tion «h is defined by

«h5H «S x

h D in V,

1 in R2\V,

whereyPY→«(y) represents the relative permittivity inside the basic cell. It is extended toR2 by
periodization. The relative permittivity of one rod is equal to«s and the rest of the cell has relativ
permittivity «V . We study the limit ofuh whenh→0.

It is known that by standard homogenization theory5,6 uh tends, inL loc
2 (R2), to u0 satisfying

div(«hom
21 ¹u0)1k0

2u050 where

«hom
21 5S ~12u!«V

211u«s
211f11

«s f12
«1

f21
«s ~12u!«V

211u«s
211f22

«sD
in V and («hom)2151 in R2\V. The matrix (f i j

«s) is defined in Ref. 5. If we let«s formally tend
to infinity we get

«hom
21 →S ~12u!«V

211f11
` f12

`

f21
` ~12u!«V

211f22
` D , ~1!
520022-2488/2002/43(1)/52/4/$19.00 © 2002 American Institute of Physics
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wheref i j
`5^]wj /]yi &Y , wj being the uniqueY-periodic solution, with null mean, of the follow

ing problem

Dwj50 in Y\P,
~2!]wj

]n
52n.ej on ]P,

and ^.&Y denotes averaging overY. For convenience,wj is extended by 0 onP.
Now let us deal directly with the infinitely conducting crystal; the set of rods is denotedTh .

At steph, the field satisfies div(«h
21¹uh)1k0

2uh50 in the complementary of the rods with

«h5H «V in V\Th ,

1 in R2\V,

and]uh /]n 50 on ]Th . Our result is the following.
Theorem: When h tends to 0, uh tends in Lloc

2 to u0 satisfying div(«`
21¹u0)1k0

2u0

50 in V\]V where

«`
21

5
1

12u S ~12u!«V
211f11

` f12
`

f21
` ~12u!«V

211f22
` D in V

51 outside V,

and the following transmission conditions hold on the boundary of]V:

u0
25~12u!u0

1 ,

~«`
21¹u0

2!.n5¹u0
1 .n.

A simple comparison with~1! leads to the following evident conclusion.
Corollary: The limitsh→0 and «s→1` do not commute.

FIG. 1. Sketch of the homogenization problem.
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Proof: Step 1:We assume that (uh) is bounded inL2(V).
The fielduh is null inside the rods but we can define a functionũh such thatuh5ũh outside

Th and ũh belongs to the Sobolev spaceH loc
1 (R2) ~see Ref. 6 for a proof!, so that (121Th

)ũh

5uh and (ũh) is bounded inH1~V!. Using now a test functionf in the Schwartz spaceD(V),
we find

2E
V

1Vh
¹ũh¹f d2x1k0

2«V E
V

~121Th
!ũhf d2x50.

By Rellich–Kondratov theorem, we deduce that up to the extraction of a subsequence we h
following points:

~1! ũh→ũ0 strongly inL2(V),
~2! u05(121Vu)ũ0 ,
~3! xh51Vh

¹ũh⇀x0 weakly in L2(V),

so that

2E
V

x0¹fd2x1k0
2 E

V
u0f d2x50

or equivalently div(x0)1k0
2u050. We then have to find an expression forx0 . We setwi5wh

1xi , wherewh5hw(x/h) @note thatwi⇀L2

xi strongly inL2(V)]. We have

05E
V

@2 1Vh
¹ũh¹~fwi !1k0

2uhfwi #d
2x

52E
V

xh¹fwid
2x1E

V
¹f¹wiũhd2x1k0

2E
V

uhfwid
2x.

Then lettingh tend to 0 in the last expression, we obtain

E
V

@2x0xi1^¹wi&Y .ei ũ0#¹fd2x1k0
2E

V
u0fxid

2x50.

This shows thatx0 .ei5(^¹w&Y1(12u)ei).¹ũ0 from which we get the following equation, vali
in R2,

div~«`
21¹ũ0!1k0

2u050.

It implies that the following transmission conditions hold on the boundary ofV:

~1! u0
25(12u)u0

1 .
~2! («hom

21 ¹u0
2).n5¹u0

1 .n.

Step 2:Assuming that the hypothesis of step 1 is false, there is a subsequence, still de
(un), such thatiuniV diverges to infinity. Let us then deal with the same scattering problem,
with incident fieldui /iuniV . We can apply the above result to the rescaled fieldun /iuniV . The
uniqueness of the limit problem implies that limh→0un /iuniV 50 and a contradiction. The theo
rem and corollary follow.

A numerical discussion of the theorem and of the unusual transmission conditions is gi
Ref. 7.

As a conclusion, we might suggest that a clear mathematical approach should make it p
to avoid any polemical discussion over these issues.
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Covariant geometric quantization of nonrelativistic
time-dependent mechanics

G. Giachettaa) and L. Mangiarottib)

Department of Mathematics and Physics, University of Camerino,
62032 Camerino (MC), Italy

G. Sardanashvilyc)

Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia

~Received 28 June 2001; accepted for publication 30 August 2001!

We provide geometric quantization of the vertical cotangent bundleV* Q→Q
→R, equipped with the canonical Poisson structure and treated as a momentum
phase space of nonrelativistic time-dependent mechanics. We show that this quan-
tization is equivalent to fiberwise quantization of symplectic fibers ofV* Q→R and
that the quantum algebra of time-dependent mechanics is an instantwise algebra.
Quantization of the classical evolution equation defines a connection on this in-
stantwise algebra and describes quantum evolution in time-dependent mechanics as
a parallel transport. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1412597#

I. INTRODUCTION

We study the covariant~frame-independent! geometric quantization of nonrelativistic mecha
ics, subject to time-dependent transformations. Its configuration space is a fiber bundleQ→R
equipped with bundle coordinates (t,qk), k51,...,m, wheret is a fixed Cartesian coordinate o
the time axisR. The corresponding momentum phase space is the vertical cotangent bundleV* Q
of Q→R.1,2 It is endowed with holonomic bundle coordinates (t,qk,pk), subject to time-
dependent transition functions

q8k5q8k~ t,qi !, pk85
]qj~ t,q8 i !

]q8k pj . ~1!

Of course, all fiber bundles overR are trivial, but different trivializations,

Q>R3M , V* Q>R3T* M , ~2!

correspond to different nonrelativistic reference frames. Given such a trivialization, the asso
bundle coordinates onV* Q have time-independent transition functions.

In contrast with the existent quantizations of nonrelativistic mechanics,3,4 we do not fix a
trivialization ~2!. The key point is that, in this case, the evolution equation is not reduced to
Poisson bracket onV* Q, but can be expressed into the Poisson bracket on the cotangent b
T* Q of Q.5 Therefore, covariant geometric quantization of time-dependent mechanics on a
figuration bundleQ→R requires compatible geometric quantization both of the cotangent bu
T* Q and the vertical cotangent bundleV* Q of Q.

a!Electronic mail: giachetta@campus.unicam.it
b!Electronic mail: mangiaro@camserv.unicam.it
c!Electronic mail: sard@grav.phys.msu.su
560022-2488/2002/43(1)/56/13/$19.00 © 2002 American Institute of Physics
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The cotangent bundleT* Q plays the role of the homogeneous momentum phase spac
time-dependent mechanics. It is provided with holonomic coordinates (q05t,qk,p05p,pk),
where the fiber coordinatep has the affine transformation law

p85p1
]qk~ t,q8 i !

]t
pk . ~3!

The cotangent bundleT* Q is equipped with the canonical Liouville formJ5pldql, the canoni-
cal symplectic formV5dJ, and the corresponding Poisson bracket

$ f , f 8%T5]l f ]l f 82]l f ]l f 8, f , f 8PC`~T* Q!.

There is the canonical one-dimensional affine fiber bundle

z:T* Q→V* Q, ~4!

whose kernel is the annihilator of the vertical tangent bundleVQ,TQ. The fibration~4! provides
the vertical cotangent bundleV* Q with the canonical Poisson structure$,%V such that

z* $ f , f 8%V5$z* f ,z* f 8%T , ~5!

$ f , f 8%V5]kf ]kf 82]kf ]kf 8, ~6!

for all f , f 8PC`(V* Q).1,6 The corresponding symplectic foliation coincides with the fibrat
V* Q→R.

The relation~5! defines the monomorphism of Poisson algebras

z* :~C`~V* Q!,$,%V!→~C`~T* Q!,$,%T!. ~7!

Therefore, a compatibility of geometric quantizations ofT* Q andV* Q implies that this mono-
morphism is prolonged to a monomorphism of quantum algebras ofV* Q andT* Q.

Of course, it seems natural to quantizeC`(V* Q) as a subalgebra~7! of the Poisson algebra
C`(T* Q). However, geometric quantization of the Poisson algebra (C`(T* Q),$,%T) need not
imply that of its Poisson subalgebraz* C`(V* Q).

Recall that geometric quantization of a symplectic manifold (Z,V,$,%) provides a represen
tation

p: f→ i f̂ , @ f̂ , f̂ 8#52 i $ f , f 8̂%, ~8!

of a certain subalgebraA of the Poisson algebraC`(Z) by Hermitian operatorsf̂ in a Hilbert
space. The geometric quantization procedure falls into three steps: prequantization, polar
and metaplectic correction.3,4,7 The first one associates to each elementf of the Poisson algebra
C`(Z) a first order differential operatorf̂ on sections of a complex line bundleC→Z such that the
Dirac condition~8! holds. Polarization of a symplectic manifold (Z,V) is defined as a maxima
~regular! involutive distributionT,TZ on Z such that

V~u,y!50, ;u,yPTz , zPZ. ~9!

Given the Lie algebraT(Z) of T-subordinate vector fields onZ, let A,C`(Z) be the subalgebra
of functions f whose Hamiltonian vector fieldsuf fulfill the condition

@uf ,T~Z!#,T~Z!.
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Only elements of this algebra are quantized. After metaplectic correction, the quantum algeA
is represented by operators in a certain subspace of sections of the tensor productC^ D1/2 of the
prequantization line bundleC→Z and the fiber bundleD1/2→Z of complex half-forms onZ. We
will also appeal to geometric quantization of Poisson manifolds.6,8

We show that the standard prequantization of the cotangent bundleT* Q yields the compatible
prequantization of the Poisson manifoldV* Q such that the monomorphismz* ~7! is prolonged to
a monomorphism of prequantum algebras. However, polarization ofT* Q need not induce any
polarization ofV* Q, unless it contains the vertical cotangent bundleVzT* Q of the fiber bundlez
~4! spanned by vectors]0 ~see Sec. III!. A unique canonical real polarization ofT* Q, satisfying
the above condition

VzT* Q,T, ~10!

is the vertical tangent bundleVT* Q of T* Q→Q. The associated quantum algebraAT consists of
functions onT* Q which are affine in momentapl . We show that this vertical polarization o
T* Q yields the polarization of the Poisson manifoldV* Q such that the corresponding quantu
algebraAV consists of functions onV* Q which are affine in momentapk . It follows thatAV is
a subalgebra ofAT under the monomorphism~7!. After metaplectic correction, the compatib
Schrödinger representations ofAT andAV by operators on complex half-forms onQ are obtained.

The physical relevance of the Schro¨dinger quantization ofT* Q, however, is open to question
The scalar product of half-forms onQ implies integration over time, though the time plays the ro
of a classical evolution parameter in quantum mechanics, based on Schro¨dinger and Heisenberg
equations. At the same time, the Schro¨dinger quantization ofV* Q provides instantwise quantiza
tion of nonrelativistic mechanics. Indeed, a glance at the Poisson bracket~6! shows that the
Poisson algebraC`(V* Q) is a Lie algebra over the ringC`(R) of functions of time alone, where
algebraic operations, in fact, are instantwise operations depending on time as a parame
show that the Schro¨dinger quantization of the Poisson manifoldV* Q induces geometric quanti
zation of its symplectic fibersVt* Q, tPR, such that the quantum algebraAt of Vt* Q consists of
elementsf PAV restricted toVt* Q. This agrees with the instantwise quantization of symple
fibers$t%3T* M of the direct product~2! in Ref. 3. Moreover, the induced geometric quantizati
of fibers Vt* Q, by construction, is determined by their injection toV* Q, but not projection of
V* Q. Therefore, it is independent of a trivialization~2!, and defines frame-independent insta
wise quantization of nonrelativistic mechanics.

Turn now to quantization of the evolution equation in time-dependent mechanics. The
lem is that the Poisson structure~6! fails to provide any dynamic equation on the momentum ph
spaceV* Q because all Hamiltonian vector fields

uf5]kf ]k2]kf ]k, uf cd f85$ f , f 8%V , ; f 8PC`~V* Q!,

for functions f on V* Q are vertical. Hamiltonian dynamics of time-dependent mechanic
described in a different way as a particular Hamiltonian dynamics on fiber bundles.9,10

A Hamiltonian on the momentum phase spaceV* Q→R of time-dependent mechanics
defined as a global section

h:V* Q→T* Q, p+h52H~ t,qj ,pj !, ~11!

of the affine bundlez ~4!.1,2 Of course, it is not an element of the Poisson algebraC`(V* Q).
Every Hamiltonianh ~11! yields the pull-back Hamiltonian form

H5h* J5pkdqk2Hdt ~12!

on V* Q. Given a trivialization~2!, the formH is the well-known integral invariant of Poincare´–
Cartan, whereH is a familiar~frame-dependent! Hamiltonian. For any Hamiltonian formH ~12!,
there exists a unique vector fieldgH on V* Q such thatgHcdt51 and
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gHcdH50. ~13!

This vector field defines the Hamilton equations onV* Q.
Let us consider the Lie derivative

LgH
f 5gHcd f ~14!

of a functionf PC`(V* Q) alonggH . It is the evolution equation in time-dependent Hamiltoni
mechanics. IfLgH

f 50, a functionf is constant on a solution of the Hamilton equations. Give
trivialization ~2!, the evolution equation~14! can be written as

LgH
f 5] t f 1$H, f %V .

However, taken separately, the terms on its right-hand side are ill-behaved under time-dep
transformations. In order to express the evolution equation into a Poisson bracket, let us co
the pull-backz* H of the Hamiltonian formH5h* J onto the cotangent bundleT* Q. It is readily
observed that the differenceJ2z* h* J is a horizontal one-form onT* Q→R and that

H* 5] tc~J2z* h* J!5p1H ~15!

is a function onT* Q which we agree to call a covariant~frame-independent! Hamiltonian. Then
the evolution equation~14! is brought into the form

z* ~LgH
f !5$H* ,z* f %T , ~16!

adapted for quantization.
The problem is that the covariant HamiltonianH* ~15! does not belong to the algebraAT ,

unless it is affine in momenta. Let us assume thatH* is a polynomial of momenta. This is the cas
of all physical models. Then one can show~see Sec. V! thatH* can be represented by a finite su
of products of elements ofAT , though this representation by no means is unique. Thereby, it
be quantized as an element of the enveloping algebraĀT of the Lie algebraAT .

Remark 1:An ambiguity of the operator representation of a classical Hamiltonian is a w
known technical problem of Schro¨dinger quantization as well as any geometric quantizat
scheme, where a Hamiltonian does not preserve a polarization~see Ref. 3 for a general, but rath
sophisticated, analysis of such Hamiltonians!. One can include the covariant HamiltonianH* ~15!
in a quantum algebra by choosing polarization ofT* Q which contains the Hamiltonian vecto
field of H* . This polarization always exists, but does not satisfy the condition~10! and, therefore,
does not define any polarization of the Poisson manifoldV* Q ~see Sec. VI!. Note that, given a
trivialization ~2!, symplectic fibersVt* Q, tPR, of the Poisson bundleV* Q→R can be provided
with the instantwise polarization spanned by vectors

~]1H]12]1H]1 ,...,]mH]m2]mH]m!.

However, this polarization need not be regular and, by construction, is frame-dependent.
standard polarization in conservative Hamiltonian mechanics of one-dimensional systems
requires an exclusive analysis of each physical model.

Given a covariant HamiltonianH* ~15! and its representativeH̄* in ĀT , the map

¹: f→$H̄* , f %T

is a derivation of the enveloping algebraĀV,ĀT of the Lie algebraAV . Moreover, this derivation
obeys the Leibniz rule

¹~r f !5] tr f 1r¹ f , ;r PC`~R!,
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and, consequently, is a connection on the instantwise algebraĀV .11 This property is preserved
under quantization. Therefore, the quantized evolution equation describes quantum evolu
nonrelativistic mechanics as a parallel transport along time. The corresponding evolution op
is constructed. It is different for different reference frames.

II. PREQUANTIZATION

We start from the standard prequantization of the cotangent bundleT* Q.3,4,7 Since the sym-
plectic form V on T* Q is exact and, consequently, belongs to the zero de Rham cohomo
class, a prequantization bundle is the trivial complex line bundle

C5T* Q3C→T* Q ~17!

of zero Chern class. Coordinated by (ql,pl ,c), this bundle is provided with the admissible line
connection

A5dpl ^ ]l1dql
^ ~]l1 iplc]c! ~18!

whose strength form equalsiV. The A-invariant Hermitian fiber metric onC→Q is g(c,c)
5cc̄. The covariant derivative of sectionss of the prequantization bundleC ~17! relative to the
connectionA ~18! along the vector fieldu on T* Q reads

¹us5ul~]l2 ipl!s1ul]ls. ~19!

Given a functionf PC`(T* Q) and its Hamiltonian vector field

uf5]l f ]l2]l f ]l, uf cV52d f ,

the covariant derivative~19! alonguf is

¹uf
s5]l f ~]l2 ipl!s2]l f ]ls.

Then, in order to satisfy the Dirac condition~8!, one assigns to each functionf PC`(T* Q) the
first order differential operator

f̂ ~s!52 i ~¹uf
1 i f !s5@2 i ~]l f ]l2]l f ]l!1~ f 2pl]l f !#s ~20!

on sectionss of the prequantization bundleC ~17!. The prequantum operators~20! for elementsf
of the Poisson subalgebraz* C`(V* Q),C`(T* Q) read

f̂ ~s!5@2 i ~]kf ]k2]l f ]l!1~ f 2pk]
kf !#s. ~21!

Turn now to prequantization of the Poisson manifold (V* Q,$,%V). The Poisson bivectorw of the
Poisson structure~6! on V* Q is

w5]k∧]k52@w,q#SN, ~22!

where@ ,#SN is the Schouten–Nijenhuis bracket andq5pk]
k is the Liouville vector field on the

vertical cotangent bundleV* Q→Q. The relation~22! shows that the Poisson bivectorw is exact
and, consequently, has the zero Lichnerowicz–Poisson cohomology class.1,6 Therefore, let us
consider the trivial complex line bundle

CV5V* Q3C→V* Q ~23!

of zero Chern class. Since the line bundlesC ~17! andCV ~23! are trivial, C can be seen as th
pull-back z* CV of CV , while CV is isomorphic to the pull-backh* C of C with respect to a
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sectionh ~11! of the affine bundle~4!. SinceCV5h* C and since the covariant derivative of th
connectionA ~18! along the fibers ofz ~4! is trivial, let us consider the pull-back

h* A5dpk^ ]k1dqk
^ ~]k1 ipkc]c!1dt^ ~] t2 iHc]c! ~24!

of the connectionA ~18! onto CV→V* Q.11 This connection defines the contravariant derivati

¹fsV5¹w]fsV ~25!

of sectionssV of CV→V* Q along one-formsf on V* Q. This contravariant derivative corre
sponds to a contravariant connectionAV on the line bundleCV→V* Q.6 Since the vector fields
w]f5fk]k2fk]

k are vertical onV* Q→R, this contravariant connection does not depend on
choice of a sectionh. By virtue of the relation~25!, the curvature bivector ofAV is equal toiw,12

i.e., AV is an admissible connection for the Poisson structure onV* Q. Then the Kostant-Souriau
formula

f̂ ~sV!5~2 i¹uf
1 f !sV5@2 i ~]kf ]k2]kf ]k!1~ f 2pk]

kf !#sV ,

~26!
uf5w]d f5]kf ]k2]kf ]k,

defines prequantization of the Poisson manifoldV* Q. In particular, the prequantum operators
functions r PC`(R) of time alone are reduced to multiplicationr̂ sV5rsV . Consequently, the
prequantum algebra ofV* Q inherits the structure of aC`(R)-algebra.

It is immediately observed that the prequantum operatorf̂ ~26! coincides with the prequantum

operatorz* f̂ ~21! restricted to the pull-back sectionss5z* sV . Thus, the above prequantization
the Poisson algebraC`(V* Q) is equivalent to its prequantization as a subalgebra of the Poi
algebraC`(T* Q).

Note that, since the complex line bundlesC ~17! and CV ~23! are trivial, their sections are
simply smooth complex functions onT* Q andV* Q, respectively. Then the prequantum operat
~20! and ~26! can be written in the form

f̂ 52 iLuf
1~ f 2Lq f !, ~27!

whereq denotes the Liouville vector field onT* Q→Q or V* Q→Q, respectively.

III. QUANTIZATION

Given compatible prequantizations of the cotangent bundleT* Q and the vertical cotangen
bundleV* Q, let us now construct their compatible polarizations and quantizations. We as
that Q is an oriented manifold and that the cohomology groupH2(Q,Z2) is trivial.

Recall that polarization of a Poisson manifold (Z,$,%) is defined as a sheafT* of germs of
complex functions onZ whose stalksTz* , zPZ, are Abelian algebras with respect to the Poiss
bracket$,%.12 Let T* (Z) be the structure algebra of global sections of the sheafT* ; it is also
called a Poisson polarization.6,8 A quantum algebraA associated to the Poisson polarizationT* is
defined as a subalgebra of the Poisson algebraC`(Z) which consists of functionsf such that

$ f ,T* ~Z!%,T* ~Z!.

Polarization of a symplectic manifold yields its Poisson one.
Let T* be a polarization of the Poisson manifold (T* Q,$,%T). Its direct image inV* Q with

respect to the fibrationz ~4! is polarization of the Poisson manifold (V* Q,$,%V) if the germs ofT*
are constant along the fibers ofz,12 i.e., are germs of functions independent of the momen
coordinatep. It follows that the corresponding symplectic polarizationT of T* Q is vertical with
respect to the fibrationT* Q→V* Q.
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The vertical polarizationT5VT* Q of T* Q obeys this condition. The associated quantu
algebraA T,C`(T* Q) consists of functions which are affine in momentapl . The algebraAT

acts by operators~27! on the space of smooth complex functionss on T* Q which fulfill the
relation ¹us50 for any T-valued ~i.e., vertical! vector fieldu5ul]l on the cotangent bundle
T* Q→Q. Clearly, these functions are the pull-back of complex functions onQ with respect to the
fibrationT* Q→Q. Following the general metaplectic technique, we come to complex half-fo
on Q which are sections of the complex line bundleD1/2→Q with the transition functionsc8

5Sc such thatSS̄is the Jacobian of coordinate transition functions onQ. Then the formula~27!,
whereLuf

is the Lie derivative of half-forms, defines the Schro¨dinger representation of the Li
algebraAT by operators

f̂ r5~2 iLal]l
1b!r5S 2 ial]l2

i

2
]lal1bD r, f 5al~qm!pl1b~qm!PAT , ~28!

in the spaceD1/2(Q) of complex half-formsr on Q. From now on, we assume that a coordina
atlas of Q and a bundle atlas ofD1/2→Q are defined on the same covering ofQ, e.g., by
contractible open sets. LetE,D1/2(Q) consist of half-forms of compact support, and letĒ be its
completion with respect to the nondegenerate Hermitian form

^rur8&5S 1

2p D mE
Q

rr̄8. ~29!

The ~unbounded! operators~28! on the domainE in the Hilbert spaceĒ are Hermitian.
The vertical polarization ofT* Q defines the polarizationTV* of the Poisson manifoldV* Q

which contains the germs of functions, constant on the fibers ofV* Q→Q. The associated quan
tum algebraAV consists of functions onV* Q which are affine in momenta. It is aC`(R)-algebra.
This algebra acts by operators~27! on the space of smooth complex functionssV on V* Q which
fulfill the relation¹usV50 for any vertical vector fieldu5uk]

k on V* Q→Q. These functions are
also the pull-back of complex functions onQ with respect to the fibrationV* Q→Q. Similarly to
the case ofAT , we obtain the Schro¨dinger representation of the Lie algebraAV by the operators

f̂ r5~2 iLak]k
1b!r5S 2 iak]k2

i

2
]ka

k1bD r, f 5ak~qm!pk1b~qm!PAV , ~30!

on half-forms onQ and in the above Hilbert spaceĒ. Moreover, a glance at the expressions~28!
and ~30! shows that~30! is the representation ofAV as a subalgebra of the Lie algebraAT .

It should be emphasized that, written in the coordinate form, the operators~28! and ~30! are
defined independently of the choice of a coordinate chart, and their coordinate expression~28!
and ~30! are maintained under coordinate transformations~1! and ~3!.

IV. INSTANTWISE QUANTIZATION

As was mentioned earlier, the physical relevance of the space of half-forms onQ with the
scalar product~29! is open to question. At the same time, the representation~30! preserves the
structure ofAV as aC`(R)-algebra. Therefore, let us show that this representation define
instantwise quantization ofAV .

First, the prequantization~26! of the Poisson manifoldV* Q yields prequantization of its
symplectic leavesVt* Q, tPR, as follows. The symplectic structure onVt* Q is

V t5~h+ i t!* V5dpk`dqk, ~31!
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whereh is an arbitrary section of the fiber bundlez ~4! and i t :Vt* Q→V* Q is the natural imbed-
ding. Sincew]f is a vertical vector field onV* Q→R for any one-formf on V* Q, the contra-
variant derivative~25! defines a connection along each fiberVt* Q, tPR, of the Poisson bundle
V* Q→R. It is the pull-back

At5 i t* h* A5dpk^ ]k1dqk
^ ~]k1 ipkc]c!

of the connectionh* A ~24! onto the trivial pull-back line bundle

i t* CV5Vt* Q3C→Vt* Q.

It is readily observed that this connection is admissible for the symplectic structure~31! on Vt* Q,
and provides prequantization of the symplectic manifold (Vt* Q,V t) by the formula

f̂ t52 iLuf t
1~ f t2Lq t

!52 i ~]kf t]k2]kf t]
k!1~ f t2pk]

kf t!, ~32!

whereuf t
5]kf t]k2]kf t]

k is the Hamiltonian vector field of a functionf t on Vt* Q with respect to

the symplectic formV t ~31!. The operators~32! act on smooth complex functionsst on Vt* Q. In
particular, letf t , st and (f̂ s) t be the restriction toVt* Q of a real functionf and complex functions
s and f̂ (s) on V* Q, respectively. We obtain from the formulas~26! and ~32! that

~ f̂ s! t5 f̂ tst .

This equality shows that the prequantization~26! of the Poisson manifoldV* Q is a leafwise
prequantization.12

Let TV* be the above polarization of the Poisson manifoldV* Q. It yields the pull-back
polarizationTt* 5 i t* TV* of a fiberVt* Q with respect to the Poisson morphismi t :Vt* Q→V* Q. The
corresponding distributionTt coincides with the vertical tangent bundle of the fiber bun
Vt* Q→Qt . The associated quantum algebraAt consists of functions onV* Qt which are affine in
momenta. In particular, the restriction toVt* Q of any element of the quantum algebraAV of V* Q
obeys this condition and, consequently, belongsAt . Conversely, any element ofAt is of this type.
For instance, using a trivialization~2! and the corresponding surjectionp t :V* Q→Vt* Q, one can
define the pull-backp t* f t of a function f tPAt which belongs to the quantum algebraAV and f t

5 i t* (p t* f t). Thus, At5 i * AV and, therefore, the polarizationTV* of the Poisson bundleV* Q
→R is a fiberwise polarization.

To provide metaplectic correction and to complete geometric quantization of symplectic
of the Poisson bundleV* Q→R, one can use the following fact.

Any atlas$(U;t,qk)% of bundle coordinates on the fiber bundleQ→R induces a coordinate
atlas$(QtùU;qk)% of its fiber Qt , tPR. Since

detS 1 ] tq8k

0 ~] iq8k!
D 5det~] iq8k!,

the JacobianJ of the transition function between coordinate charts (U;t,qk) and (U8;t,q8k) on Q
coincides with the JacobianJt of the transition function between coordinate charts (QtùU;qk)
and (QtùU8;q8k) on Qt at points ofQtùUùU8. It follows that, for any fiberQt of Q, the
pull-back i t* D→Qt of the complex line bundleD→Q of complex densities onQ with transition
functionsc85Jc is the complex line bundle of complex densities onQt with transition functions
Jt5JuQt

. Accordingly, any densityL on Q yields the pull-back sectionLt5L+ i t of the line bundle
i * D→Qt , i.e., Lt is a density onQt . The pull-backL→Lt takes the coordinate form

L5L~ t,qk!dmq`dt→Lt5L~ t,qk!dmqu t5const5L~ t,qk!d̄mq,
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where$d̄qk% are holonomic fiber bases forV* Q. It is maintained under transformations of bund
coordinates onQ.

Let now D1/2→Q be a complex line bundle of complex half-forms onQ with transition
functionsS such thatSS̄5J on UùU8. Its pull-backi t* D1/2 is a complex line bundle over a fibe
Qt , tPR, with transition functionsSt5SuQt

. These transition functions obey the relation

StS̄t5JuQt
5Jt ,

i.e., i t* D1/2→Qt is the fiber bundle of half-forms onQt . Then the formula~32! defines the
Schrödinger representation of the quantum algebraAt of the symplectic fiberQt by ~unbounded!
Hermitian operators

f̂ tr t5~2 iLak]k
1b!r t5S 2 iak]k2

i

2
]ka

k1bD r t , f t5ak~qi !pk1b~qi !PAt , ~33!

in the Hilbert spaceĒt which is the completion of the pre-Hilbert spaceEt of half-forms onQt of
compact support with respect to the scalar product

^r tur t8&5S 1

2p D mE
Qt

r tr̄ t8 .

If Qt is compact, the operators~33! in Ēt are self-adjoint. Pre-Hilbert spacesEt constitute a trivial
bundleER over R.

As in the above case of densities, any half-formr on Q yields the sectionr+ i t of the pull-back
bundle i t* D1/2→Qt , i.e., a half-form onQt . Given an elementf PAV and its pull-backf t5 i t* f
PAt , we obtain from the formulas~30! and ~33! that

f̂ r+ i t5 f̂ t~r+ i t!.

This equality shows that the Schro¨dinger quantization of the Poisson manifoldV* Q can be seen
as the instantwise quantization. Following this interpretation, let us choose the represe
spaceER(R) for AV which consists of complex half-formsr on Q such that, for anytPR, the
half-form r+ i t on Qt is of compact support. It is a pre-HilbertC`(R)-module. TheER(R) is also
the carrier space for the Lie algebraAT , but its action onER(R) is not instantwise.

V. THE QUANTUM EVOLUTION EQUATION

Turn now to quantization of the evolution equation~16!. As was mentioned earlier, the prob
lem is that, in the framework of the Schro¨dinger quantization, the covariant HamiltonianH* ~15!
does not belong to the quantum algebraAT , unless it is affine in momenta. Let us restrict o
consideration to the physically relevant case ofH* , polynomial in momenta. We aim to show th
suchH* is decomposed in a finite sum of products of elements of the algebraAT .

Let f be a smooth function onT* Q which is a polynomial of momentapl . A glance at the
transformation laws~1! and ~3! shows that it is a sum of homogeneous polynomials of fix
degree in momenta. Therefore, it suffices to justify a desired decomposition of an arbitra
mogeneous polynomialF of degreek.1 onT* Q. We use the fact that the cotangent bundleT* Q
admits a finite bundle atlas.13 Let $Uj%, j51,...,r , be the corresponding open cover ofQ and$ f j%
a smooth partition of unity subordinate to this cover. Put

l j5 f j~ f 1
k1¯1 f r

k!21/k.

It is readily observed that$ l j
k% is also a partition of unity subordinate to$Ui%. Let us consider the

local polynomials
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Fj5FuUj
5 (

(a1 ...ak)
aj

a1 ...ak~q!pa1
¯pak

, qPUj .

Then we obtain a desired decomposition

F5(
j

l j
kFj5(

j
(

(a1 ...ak)
@ l jaj

a1 ...akpa1
#@ l jpa2

#¯@ l jpak
#, ~34!

where all termsl jaj
a1 ...akpa1

and l jpa are smooth functions onT* Q. Clearly, the decomposition
~34! by no means is unique.

The decomposition~34! shows that one can associate to a polynomial covariant Hamilto
H* an elementH̄* of the enveloping algebraĀT of the Lie algebraAT . Recall thatĀ consists of
finite sums of tensor products of elements ofAT modulo the relations

f ^ f 82 f 8^ f 2$ f , f 8%T50.

To be more precise, a representativeH̄* belongs toAT1ĀV , whereĀV is the enveloping algebra
of the Lie algebraAV,AT @see the decomposition~42!#. The enveloping algebraĀV is provided
with the anti-automorphism

*: f 1^¯^ f k→~21!kf k^¯^ f 1 ,

and one can always make a representativeH̄* Hermitian.
Since the Dirac condition~8! holds, the Schro¨dinger representation of the Lie algebrasAT and

AV is naturally extended to their enveloping algebrasĀT andĀV , and provides the quantizatio
Ĥ* of a covariant HamiltonianH* .

Given an operatorĤ* , the bracket

¹ f̂ 5 i @Ĥ* , f̂ # ~35!

defines a derivation of the quantum algebraĀV . Moreover, sincep̂52 i ] t , the derivation~35!
obeys the Leibniz rule

¹~r f̂ !5] tr f̂ 1r¹ f̂ , r PC`~R!.

Therefore, it is a connection on the instantwise algebraĀV , which enables one to treat quantu
evolution ofĀV as a parallel transport along time.11,14In particular,f̂ is parallel with respect to the
connection~35! if

@Ĥ* , f̂ #50. ~36!

One can think of this equality as being the Heisenberg equation in time-dependent mec
while the quantum constraint

Ĥ* r50, rPER~R!, ~37!

plays a role of the Schro¨dinger equation. It is readily observed that an operatorf̂ is a solution of
the Heisenberg equation~36! iff it preserves the subspaces of solutions of the Schro¨dinger equa-
tion ~37!.

Given a trivialization~2! and the corresponding decomposition of a covariant Hamiltonia

Ĥ* 52 i ] t1Ĥ, ~38!
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one can introduce the evolution operatorU for the connection~35!. It obeys the equation

Ĥ* +U52 iU +] t , ~39!

and can be written as the formal time-ordered exponent

U5T expF2 i E
0

t

Ĥ dt8G . ~40!

In particular, if an elementr0PER(R) obeys the relation] tr050, thenUr0 is a solution of the
Schrödinger equation~37!.

The evolution operatorU can be brought into the frame-covariant form as follows. By d
nition, any connection

G5~dqk2Gkdt! ^ ]k

on the configuration bundleQ→R yields a section

hG :V* Q{s→G cs5pk~dqk2Gkdt!PT* Q, p+hG52HG52pkG
k,

of the affine bundle~4!. Then any Hamiltonian is split as

h5hG2H G
0 , H5HG1H G

0 , ~41!

whereH G
0 is a function onV* Q. The physical meaning of this splitting becomes clear due to

fact that every trivialization~2! of Q→R yields a complete connectionG on Q→R such that
Gk50 relative to the corresponding coordinates, andvice versa. It follows that such a connection
is associated to a nonrelativistic reference frame.1,11

With the splitting~41!, we have the corresponding decomposition of classical and qua
covariant Hamiltonians

H* 5HG* 1H G
0 , Ĥ* 5ĤG* 1ĤG

0 , ~42!

where functionHG* belongs to the algebraAT . In particular, letG be a complete connectio
associated to some trivialization of the configuration bundleQ→R. Under this trivialization, the
decomposition~42! takes the coordinate form~38! whereH5H G

0 . Then the equation~39! for the
evolution operator is easily brought into the frame-covariant form

Ĥ* +UG5UG+ĤG* .

One can think of the operatorUG in this equation as describing quantum evolution with respec
the reference frameG. It can be written as the time-ordered exponent~40! whereH is replaced
with H G

0 .
In particular, let an elementrGPER(R) obey the equation

ĤG* rG50. ~43!

ThenUGrG is a solution of the Schro¨dinger equation~37!. One can think ofrG in the equation
~43! as being a stationary state relative to the reference frameG. Let G8 be another reference
frames. Then the operator

U5T expF2 i E
0

t

~ĤG2ĤG8!dt8G , ĤG* +U5U+ĤG8
* ,
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defines an isomorphism between the spaces of stationary states relative to the reference fG
andG8.

APPENDIX: PRESYMPLECTIC QUANTIZATION

In comparison with the previous geometric quantization of the Poisson manifold (V* Q,$,%V),
its presymplectic quantization that follows enables one to include any covariant HamiltoniaH*
~15! in the quantum algebra.

A glance at the equation~13! shows that one can think of the vector fieldgH as being the
Hamiltonian vector field of a zero Hamiltonian with respect to the presymplectic formdH on
V* Q. Therefore, one can examine geometric quantization of the presymplectic ma
(V* Q,dH). Given a trivialization~2!, this quantization has been studied in Ref. 4.

Geometric quantization is not applied directly to a presymplectic manifold (Z,v), but to its
symplectic realization (Z8,v8) such that the presymplectic formv is a pull-back of a symplectic
form v8. The following two possibilities are usually considered: (i ) (Z8,v8) is a reduction of
(Z,v) along the leaves of the characteristic distribution of the presymplectic formv of constant
rank,15,16 and (i i ) there is a coisotropic imbedding of (Z,v) to (Z8,v8).17,18

In application to (V* Q,dH), the reduction procedure leads to quantization along class
solutions as follows. The kernel ofdH is spanned by the vector fieldgH and, consequently, the
presymplectic formdH is of constant rank. Its characteristic foliation is made up by integ
curves of this vector field, i.e., solutions of Hamilton equations. If the vector fieldgH is complete,
this foliation is simple, i.e., is a fibration ofV* Q over a symplectic manifoldN of initial values.
In this case, we come to the instantwise quantization when functions onV* Q at a given instant
tPR are quantized as functions onN.

The second variant of geometric quantization of the presymplectic manifold (V* Q,dH) is
based on the fact that the imageNh5h(V* Q) of any sectionh ~11! is a one-codimensiona
imbedded submanifold and, consequently, is coisotropic. It is given by the constraint

H* 5p1H~ t,qk,pk!50.

Then the geometric quantization of the presymplectic manifold (V* Q,dH) consists in geometric
quantization of the cotangent bundleT* Q and setting the quantum constraint condition

Ĥ* c50

on physically admissible quantum states. This condition implies thatĤ* belongs to the quantum
algebra ofT* Q. It takes place if one uses polarization ofT* Q which contains the Hamiltonian
vector field

uH* 5] t1]kH]k2]kH]k. ~44!

Such a polarization ofT* Q always exists. Indeed, any sectionh ~11! of the affine bundlez ~4!
defines the splitting

al]l5ak~]k2]kH]0!1~a01ak]
kH!]0

of the vertical tangent bundleVT* Q of T* Q→Q. Then elements (]k2]kH]0) together with the
Hamiltonian vector field~44! obey the polarization condition~9! and generate a polarization o
T* Q. Clearly, this polarization does not satisfy the condition~10!, and does not define an
polarization of the Poisson manifoldV* Q.
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Foundations for relativistic quantum theory. I. Feynman’s
operator calculus and the Dyson conjectures
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In this paper, we provide a representation theory for the Feynman operator calculus.
This allows us to solve the general initial-value problem and construct the Dyson
series. We show that the series is asymptotic, thus proving Dyson’s second conjec-
ture for quantum electrodynamics. In addition, we show that the expansion may be
considered exact to any finite order by producing the remainder term. This implies
that every nonperturbative solution has a perturbative expansion. Using a physical
analysis of information from experiment versus that implied by our models, we
reformulate our theory as a sum over paths. This allows us to relate our theory to
Feynman’s path integral, and to prove Dyson’s first conjecture that the divergences
are in part due to a violation of Heisenberg’s uncertainly relations. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1425080#

I. INTRODUCTION

Following Dirac’s quantization of the electromagnetic field in 1927,1 and his relativistic elec-
tron theory in 1928,2 the equations for quantum electrodynamics~QED! were developed by
Heisenberg and Pauli3,4 in the years 1929–30~see Miller5 and Schweber6!. From the beginning,
when researchers attempted to use the straightforward and physically intuitive time-dep
perturbation expansion to compute physical observerables, a number of divergent expr
appeared. Although it was known that the same problems also existed in classical electrodyn
it was noted by Oppenheimer7 that there was a fundamental difference in the quantum problem
compared to the classical one.~Dirac8 had shown that, in the classical case, one could accoun
the problem of radiation reaction without directly dealing with the self-energy divergence by
both advanced and retarded fields and a particular limiting procedure.!

Early attempts to develop subtraction procedures for the divergent expressions wer
discouraging because they depended on both the gauge and the Lorentz frame, makin
appear ambiguous. Although the equations of QED were both Lorentz and gauge covariant
generally believed that, in a strict sense, they had no solutions expandable in powers of the
The thinking of the times was clearly expressed by Oppenheimer9 in his 1948 report to the Solvay
Conference, ‘‘If one wishes to explore these solutions, bearing in mind that certain infinite
will, in a later theory, no longer be infinite, one needs a covariant way of identifying these te
and for that, not merely the field equations themselves, but the whole method of approxim
and solution must at all stages preserve covariance.’’

The solution to the problem posed by Oppenheimer was made~independently! by
Tomonaga,10 Schwinger,11 and Feynman.12,13 ~These papers may be found in Schwinger.14! To-

a!Electronic mail: tgill@howard.edu
690022-2488/2002/43(1)/69/25/$19.00 © 2002 American Institute of Physics
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monaga introduced what is now known as the interaction representation and showed h
approximation process could be carried out in a covariant manner. Schwinger develop
general theory and applied it to many of the important problems. Feynman took a holistic vi
physical reality in his development. He suggested that we view a physical event as occurrin
film which exposes more and more of the outcome as the film unfolds. His idea was to
directly with the solutions to the equations describing the physical system, rather than the
tions themselves. In addition to solving the problem posed by Oppenheimer, Feynman’s ap
led to a new perturbation series, which provided an easy, intuitive, and computationally s
method to study interacting particles while giving physical meaning to each term in his expa

Since Feynman’s method and approach was so different, it was not clear how it related
of Schwinger and Tomonaga. Dyson,15,16made a major contribution. Dyson realized that Feynm
and Schwinger were both dealing with different versions of Heisenberg’sS-matrix. He then
formally introduced time-ordering and provided a unified approach by demonstrating the eq
lence of the Feynman and Schwinger–Tomonaga theories. This approach also allowed
show how the Schwinger theory could be greatly simplified and extended to all orders o
perturbation expansion. Dyson’s time-ordering idea was actually obtained from discussion
Feynman, who later explored and fully developed it into his time-ordered operator calculus17

A. Background

After the problem proposed by Oppenheimer was resolved, attitudes toward the renorm
tion program and quantum field theory could be classified into three basic groups. The first
consisted of those who were totally dissatisfied with the renormalization program. The s
group considered the renormalization program an interim step and believed that the diver
were an indication of additional physics, which could not be reached by present formulation
first two groups will not be extensively discussed in this paper. However, we can associa
names of Dirac and Landau with the first group, and Sakata and Schwinger with the secon~See
Dirac,18 Sakata,19 Schwinger,20 and also Schweber.6!

The third group was more positive, and directed its attention toward investigating the
ematical foundations of quantum field theory with the hope of providing a more orderly app
to the renormalization program~assuming that the theory proved consistent!. This direction was
clearly justified since part of the problem had been consistently blamed on a mathematica
the perturbation expansion. Indeed, the whole renormalization program critically depended
expansion of theS-matrix in powers of the coupling constant. This concern was further suppo
since attempts to use the expansion when the coupling constant was large led to mean
results. Additional unease could be attributed to the fact that, at that time, not much was a
known about the physically important cases where one was dealing with unbounded op
valued functions~distributions!.

Researchers working on the mathematical foundations of quantum electrodynamics and
tum field theory adopted the name axiomatic field theory starting in the 1950s. These rese
focused on trying to find out what could be learned about the existence of local relati
quantum field theories based on certain natural assumptions which included the postul
quantum mechanics, locality, Poincare´ invariance, and a reasonable spectrum. This approach
initiated by the work of Wightman,21 and Lehmann, Symanzik, and Zimmermann.22,23 Here, the
quantized field is interpreted mathematically as an operator-valued Schwartz distribution. E
use of the theory of distributions was a major step, which helped to partially make the t
~mathematically! sound by smoothing out the fields locally.~The recent paper by Wightman24

provides an inspired introduction to the history of Heisenberg’s early observations on the
concept and its relationship to the divergences.25!

The axiomatic approach proved very fruitful, providing the first rigorous proofs of a num
of important general results, and attracted many able researchers. The favored name t
algebraic quantum field theory. The books by Jost,26 Streater and Wightman,27 and Bogolubov and
Shirkov28 are the classics, while more recent work can be found in Haag.29 ~See also the book by
Bogolubov, Logunov, and Todorov,30 and the recent review paper by Buchholz.31!
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For a number of reasons, most notably a lack of nontrivial examples, the axiomatic app
evolved in a number of directions. One major direction is called ‘‘constructive’’ quantum
theory. Here, one focuses on attempts to directly construct solutions of various model field
ries, which either have exact~nonperturbative! solutions, or have an asymptotic perturbati
expansion which can be summed to the exact solution. In this approach, instead of formulat
theory in Minkowski space–time, one passes to imaginary time and formulates it in Eucl
space ~an idea which first appeared in Dyson15!. This leads to a formulation in terms o
‘‘Schwinger functions,’’ also known as Euclidean Green’s functions. The advantage of thi
proach is that hyperbolic equations are transformed to elliptic ones, and Gaussian kerne
which a very rich set of analytic tools has been developed, replace Feynman kernels. The
of this enterprise is truly impressive. Constructive solutions have been obtained for a num
important models. Furthermore, this approach has given us a clearer picture of the pro
associated with the rigorous construction of a relativistic quantum field theory and provided
mathematical methods. An early summary of this approach may be found in the lecture n32

while more recent progress is contained in the lecture notes,33 both edited by Velo and Wightman
~see also Refs. 34 and 6!. The books by Glimm and Jaffe35 and Simon36 give a different flavor and
point of departure.

Although a great deal of work has been done in constructive field theory over the la
years, many difficult problems still remain. For example, the appearance of difficulties wit
constructive approach to polynomial types of field theories is discussed in the paper by S37

He conjectured that thelw>4
4 theory ~ lw4 in four or more space–time dimensions! is a gener-

alized free field, wherel is the coupling constant. This theory represents a self-interacting b
field. The conjecture was proven by Aizenman and Graham38 and Fröhlich.39 Three years later,
Gawedzki and Kupiainen40 proved that, if we change the sign of the coupling constant,
solution exists~as a tempered distribution! and the perturbation expansion is asymptotic to
solution. This state of affairs led Wightman~Ref. 33, p. 1! to lament that, ‘‘We do not know
whether the lack of an existence theorem for solutions with the ‘right’ sign reflects the
existence of solutions or merely the lack of a technique to construct them.’’ Things are fu
complicated by the fact that thelw4

4 theory has a perturbative solution! This led Gallavotti41 to
suggest that constructive approaches other than the ferromagnetic lattice approximation, u
Aizenman and Graham, and Fro¨hlich, may be required.

The most well-known method for quantum field theory calculations is perturbative reno
ization theory. This approach is discussed in most standard texts on quantum field theory a
an interesting history that is best told by Wightman.42 ~The first book to include Dyson’s refor
mulation of the Feynman–Schwinger–Tomonaga theory is the classic by Jauch and Rohr43!
Early work in the perturbative approach focused on the development of different renormaliz
methods with the hope of identifying those for which rigorous mathematical methods cou
used. The methods generally consisted of two parts. First, the Green’s functions were regu
in a relativistically and gauge invariant manner28,34,42,44to yield well-defined tempered distribu
tions, even on the light cone. Then appropriate counter-terms were introduced so that, in th
when the regularization was removed, the various divergences of theS-matrix were also removed
It was found that all renormalization procedures are equivalent up to a finite renormalizatio~cf.
Refs. 42 and 34!. Today, theories are classified as ‘‘renormalizable’’ or ‘‘unrenormalizable’’
cording to whether the number of renormalizable constants is finite or infinite, respectively

Some model theories in less than four space–time dimensions considered in constructiv
theory belong to a special subclass of renormalizable theories called ‘‘super renormalizabl
which the renormalization process can be carried out without using perturbation theory.32,33,35,36

For these theories, the renormalized perturbation series can be shown to be Borel summab
exact nonperturbative solution. A nice summary of these developments was given by Glim
Jaffe.35 On the other hand, constructive models of the Gross–Neveu type are renormalizab
not super renormalizable~see Ref. 33!.

Feldmanet al.45 have studied the mathematical foundations of quantum electrodynamics
the perturbative point of view~see also Rosen in Ref. 33, p. 201!. Here, a renormalized forma
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power series~renormalized tree expansion! is obtained for a measure on the space of fields wit
the Euclidean formulation of QED.~The tree expansion method is an outgrowth of Wilson’46

renormalization group approach as distilled by Gallavotti41 and co-workers.! It is then shown that
QED in four ~Euclidean! dimensions is locally Borel summable. Their work is truly remarka
and represents the first~formal! proof that~Euclidean! quantum electrodynamics can be renorm
ized using gauge invariant counterterms. However, in general, it is a nontrivial problem to
from the Euclidean regime to Minkowski space. The return trip requires application o
Osterwalder–Schrader reconstruction theorem~see Ref. 32!. This theorem places conditions o
the Euclidean Green’s functions which guarantee analytic continuation back to the rea
vacuum expectation values. When these conditions are fulfilled, the Lehmann, Symanzi
Zimmermann22,23,32 reduction formulas may then be used to obtain theS-matrix. For technical
reasons, they were not able to directly apply the Osterwalder–Schrader theorem. They cou
get back to QED in Minkowski space–time by following the methods of Hepp44 and Lowenstein
and Speer.47 However, nothing could be said about the convergence properties of their seri

B. Purpose

It is clear that Dyson’s use of time ordering was the fundamental conceptual tool w
allowed him to relate the Feynman and Schwinger–Tomonaga theories. This tool has now b
a natural part of almost every branch of physics and is even used in parts of engineeri
importance to the foundations of quantum field theory led Segal48 to suggest that the identificatio
of mathematical meaning for Feynman’s time-ordered operator calculus is one of the major
lems. A number of investigators have attempted to solve this problem. Miranker and W49

showed how the Feynman ordering process could be done formally using the theory of B
algebras. Nelson50 used Banach algebras to developed a theory of ‘‘operants’’ as an alte
~formal! approach. Araki,51 motivated by the work of Fujiwara, used Banach algebras to dev
yet another formal approach.~Fujiwara52 had earlier suggested that the Feynman program coul
implemented if one used a sheet of unit operators at every point except at timet, where the true
operator should be placed.! Maslov53 used the idea of aT-product to formally order operators an
developed an operational theory. Another important approach to this problem via the idea
index may be found in the works of Johnson and Lapidus,54–56 see also Johnson, Lapidus, an
DeFacio.57

This paper is part of a new investigation into the physical and mathematical foundatio
relativistic quantum theory. Our overall goal is to construct a self-consistent relativistic qua
theory of particles and fields. For this paper, we have two specific objectives. Our first~and major!
objective is to construct a physically simple and computationally useful representation theo
the Feynman time-ordered operator calculus.

A correct formulation and representation theory for the Feynman time-ordered operato
culus should at least have the following desirable features:

~1! It should provide a transparent generalization of current analytic methods without sacri
the physically intuitive and computationally useful ideas of Feynman.

~2! It should provide a clear approach to some of the mathematical problems of relati
quantum theory.

~3! It should explain the connection with path integrals.

In the course of his analysis, unification, and simplification of the Feynman–Schwin
Tomonaga theory, Dyson made two important suggestions~conjectures!. The first conjecture con-
cerned the divergences in QED, while the second was concerned with the convergence
renormalized perturbation series. In addressing the problem of divergences, Dyson conje
that they may be due to an idealized conception of measurability resulting from the infin
precise knowledge of the space–time positions of particles~implied by our Hamiltonian formula-
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tion! which leads to a violation of the Heisenberg uncertainty principle. This point of view ca
traced directly to the Bohr–Rosenfeld theory of measurability for field operators and, accord
Schweber,6 is an outgrowth of Dyson’s discussions with Oppenheimer.

In addressing the renormalizedS-matrix,16 Dyson suggested that it might be more reasona
to expect the expansion to be asymptotic rather than convergent and gave physical argum
support his claim. The lack of a clear mathematical framework made it impossible to form
and investigate his suggestions.

Schweber6 notes that Dyson made two other well-known conjectures. The ‘‘overlapping
vergences’’ conjecture was proved by Salam,58 Ward,59 Mills and Yang,60 and Hepp.61 Dyson’s
conjecture that a certain Feynman integral converges, necessary for showing that the ultr
divergences cancel to all orders, was proved by Weinberg.62

Our second objective is to provide proofs of the above two conjectures under general
tions that should apply to any formulation of quantum field theory which does not aba
Hamiltonian generators for unitary solution operators. The proof of the first conjecture is, to
extent expected, and is a partial vindication of our belief in the consistency of quantum el
dynamics in the sense that the ultraviolet problem is caused by an effect that is basically ‘‘sim
Such a result is partly anticipated since the effect can be made to disappear via appropriate
We also identify~special! conditions under which the renormalized perturbation series may a
ally converge. A proof of the above-mentioned conjectures is implicit in, and is one of the m
achievements of, constructive field theory for the models studied. In fact, these theories v
stronger version of the second conjecture since, as noted earlier, the renormalized pertu
series is summable to the true solution.

The work in this paper is both a generalization and simplification of earlier work63–65 that is
easier and requires the weakest known conditions. We construct a new representation
space and von Neumann algebra for the Feynman~time-ordered! operator calculus. In order to
make the theory applicable to other areas, we develop it using semigroups of contractions
Riemann integral. A contraction semigroup on a Hilbert spaceH can always be extended to
unitary group on a larger spaceH8. Thus, for quantum theory we may replace the semigroups
unitary groups and assume that our space isH8 without any loss in understanding.

The Riemann integral can be easily replaced by the operator-valued Riemann-complet
gral of Henstock66 and Kurzweil,67 which generalizes the Bochner and Pettis integrals~see Gill63!.
This integral is easier to understand~and learn! compared to the Lebesgue or Bochner integra
and provides useful variants of the same theorems that have made those integrals so im
Furthermore, it arises from a simple~transparent! generalization of the Riemann integral that w
taught in elementary calculus. Its usefulness in the construction of Feynman path integra
first shown by Henstock,68 and has been further explored in the recent book by Muldowney.69

In Sec. I D we provide a brief review of the necessary operator theory in order to mak
paper self-contained. In Sec. II we construct an infinite tensor product Hilbert space and
what we mean by time ordering. In Sec. III we construct time-ordered integrals and evo
operators and prove that they have the expected properties. In Sec. IV we define what is m
the phase ‘‘asymptotic in the sense of Poincare´’’ for operators, and use it to prove Dyson’s seco
conjecture for contraction semigroups. We then discuss conditions under which the pertur
series may be expected to converge.

In Sec. V we take a photograph of a track left by an elementary particle in a bubble cha
as a prototype to conduct a physical analysis of what is actually known from experiment
approach is used to rederive our time-ordered evolution operator as the limit of a probabilist
over paths. We use it to briefly discuss our theory in relationship to the Feynman path integra
show that it provides a general and natural definition for the path integral that is independ
measure theory and the space of continuous paths.

The results from Sec. V are applied to theS-matrix expansion in Sec. VI to provide
formulation and proof of Dyson’s first conjecture. In particular, we show that, within our for
lation, the assumption of precise time information over a particle’s trajectory introduces an in
amount of energy into the system at each point in time. We use Dyson’s original notation par
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reasons of nostalgia, but also to point out what we are not able to explain within our frame
Also, since all renormalization procedures are equivalent, there is no loss.

C. Operator theory

In this section we establish notation and quote some results from operator theory used
paper. LetH denote a separable Hilbert space overC ~complex numbers!, B(H) the set of
bounded linear operators, andC(H) the set of closed densely defined linear operators onH.

Definition 1.0:A family of bounded linear operators$U(t,0), 0<t,`% defined onH is a
strongly continuous semigroup (or C0-semigroup)if

~1! U(0,0)5I , ~2! U(t1s,0)5U(t,0)U(s,0), and~3! limt→0 U(t,0)w5w,;wPH.

U(t,0) is a contraction semigroup in caseiU(t,0)i<1. If we replace~2! by (28) U(t,t)
5U(t,s)U(s,t), 0<t<s<t,`, then we callU(t,t) a strongly continuous evolution family.

Definition 1.2:A densely defined operatorH is said to bemaximal dissipativeif Re^Hw,w&
<0, ;wPD(H), and Ran (I 2H)5H @range of (I 2H)#.

The following results may be found in Goldstein70 or Pazy.71

Theorem 1.2:Let U(t,0) be a C0-semigroup of contraction operators onH. Then

~1! Hw5 limt→0 (U(t,0)w2w)/t exists forw in a dense set.
~2! R(z,H)5(zI2H)21 exists for z.0 and iR(z, H)i< 1/z.

Theorem 1.3: Suppose H is a maximal dissipative operator. Then H generates a un
C0-semigroup$U(t,0)u0<t,`% of contraction operators onH.

Theorem 1.4: If H is densely defined with both H and H* dissipative, then H is maxima
dissipative.

II. INFINITE TENSOR PRODUCT VON NEUMANN ALGEBRAS

In this section we define time-ordered operators and construct the representation space
will be used in Sec. III to develop our theory of time-ordered integrals and evolution opera
Much of the material in this section was developed by von Neumann72 for other purposes, but is
perfectly suited for our program. In order to see how natural our approach is
H^ 5 ^̂ sH(s)denote the infinite tensor product Hilbert space of von Neumann, whereH(s)5H
for sP@a,b# and ^̂ denotes closure. IfB(H^ ) is the set of bounded operators onH^ , define
B(H(t)),B(H^ ) by

B~H~ t !!5$H~ t !uH~ t !5 ^̂ a>s.tI s^ H~ t ! ^ ~ ^ t.s>2aI s!,;H~ t !PB~H!%, ~2.1a!

whereI s denotes an identity operator, and letB#(H^ ) be the uniform closure of the von Neuman
algebra generated by the family$B(H(t)),utPE%. If the family $H(t)utPE% is in B(H), then the
corresponding operators$H(t)utPE%PB#(H^ )commute when acting at different times:tÞs⇒

H~ t !H~s!5H~s!H~ t !. ~2.1b!

Definition 2.0:The smallest spaceFD^ #H^ which leaves the family$H(t)utPE% invariant
is called a Feynman–Dyson space for the family.~This is the film.!

We need the following results about operators onH^ .
Theorem 2.1: @von Neumann~Ref. 72!# The mappingTu

t : B(H)→B(H(t)) is an isometric
isomorphism of algebras. ~We callTu

t the time-ordering morphism.!
Definition 2.2: The vectorF5 ^ sfs is said to be equivalent toC5 ^ scs and we writeF

'C, if and only if

(
s

u^fs ,cs&s21u,`. ~2.2!
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Here,^•,•&s is the inner product onH(s), and it is understood that the sum is meaningful only
at most a countable number of terms are different from zero.

Let HF5cl$CuC5( i 51
n C i ,C i'F, nPN% ~closure!, FPH^ , and letPF denote the pro-

jection fromH^ ontoHF . The spaceHF is known as theincomplete tensor product generated b
F. The details on incomplete tensor product spaces as well as proofs of the next two theorem
be found in von Neumann.72

Theorem 2.3:The above-defined relation is an equivalence relation onH^ and

~1! if C is not equivalent toF, thenHFùHC5$0% (i.e., HF'HC!;
~2! if csÞfs occurs for at most a finite number of s, thenF5 ^ sfs'C5 ^ scs ;
~3! if TPB#(H^ ), thenPFT5TPF so thatPFTPB#(HF).

The second condition in Theorem 2.3 implies that, for each fixedF5 ^ sfs , there is an
uncountable number ofC5 ^ scs equivalent toF, while the third condition implies that ever
bounded linear operator onH^ restricts to a bounded linear operator onHF for eachF.

We can now construct our filmFD^ . Let $ei u iPN% denote an arbitrary ordered comple
orthonormal basis~c.o.b! for H. For eachtPE,iPN, let et

i5ei , Ei5 ^ tPEet
i , and defineFDi to

be the incomplete tensor product generated by the vectorEi . SettingFD^ 5 % i 51
` FDi , it will be

clear in Sec. III thatFD^ is ~one of an infinite number of! the natural representation space~s! for
Feynman’s time-ordered operator theory. It should be noted thatFD^ is a nonseparable Hilber
~space! bundle over@a,b#. However, it is not hard to see that each fiber is isomorphic toH.

In order to facilitate the proofs in Sec. III, we need an explicit basis for eachFDi . To
construct it, fixi and let f i denote the set of all functions$ j (t)utPE% mappingE→Nø$0% such
that j (t) is zero for all but a finite number oft. Let I ( j )5$ j (t)utPE% denote the functionj and
setEI ( j )

i 5 ^ tPEet, j (t)
i with et,0

i 5ei and j (t)5k⇒et,k
i 5ek.

Theorem 2.4:The set$EI ( j )
i uI ( j )P f i% is a (c.o.b) for eachFDi .

For eachF i ,C iPFi , setaI ( j )
i 5^F i ,EI ( j )

i &, bI ( j )
i 5^C i ,EI ( j )

i &, so that

F i5 (
I ( j )PFi

aI ( j )
i EI ( j )

i ,C i5 (
I ( j )PFi

bI ( j )
i EI ( j )

i and ^F i ,C i&5 (
I ( j )PFi

aI ( j )
i b̄I (k)

i ^EI ( j )
i ,EI (k)

i &.

Now,

^EI ( j )
i ,EI (k)

i &5)
t

^et,I ( j )
i ,et,I (k)

i &50,

unlessj (t)5k(t), ;tPE, so that

^F i ,C i&5 (
I ( j )PFi

aI ( j )
i b̄I ( j )

i .

We need the notion of an exchange operator.~Theorem 2.6 is in Ref. 63.!
Definition 2.5: An exchange operatorE@ t,t8# is a linear map defined for pairs t,t8P@a,b#

such that:

~1! E@ t,t8#:B(H(t))→B(H(t8)) onto,
~2! E@ t,s#E@s,t8#5E@ t,t8#,
~3! E@ t,t8#E@ t8,t#51,
~4! if sÞt,t8, thenE@ t,t8#H(s)5H(s),;H(s)PB(H(s)).

Theorem 2.6:

~1! E@•,•# exists and is a Banach algebra isomorphism onB#(H^ ).
~2! E@s,s8#E@ t,t8#5E@ t,t8#E@s,s8# for distinct pairs (s,s8) and (t,t8) in E.
                                                                                                                



amily

l

and

s
-

on

at

ily

76 J. Math. Phys., Vol. 43, No. 1, January 2002 T. L. Gill and W. W. Zachary

                    
III. TIME-ORDERED INTEGRALS

In this section we construct time-ordered integrals and evolution operators for a fixed f
$H(t)utPE%,C(H) of generators of contraction semigroups onH. We assume that, for eacht,
H(t) and H* (t) are dissipative~so that the family is maximal dissipative for eacht!. In the
following discussion we adopt the notation:~e.o.v.!: ‘‘except for at most ones value;’’ ~e.f.n.v.!
‘‘except for an at most finite number ofs values;’’ and~a.s.c.!: ‘‘almost surely and the exceptiona
set is at most countable.’’
The s value referred to is in our fixed intervalE.

For the given family$H(t)utPE%,C(H), define exp$tH(t)% by

exp$tH~ t !%5 ^̂

sP[b,t)
I s^ ~exp$tH~ t !%! ^ ~ ^

sP(t,a]
I s!, ~3.1!

and setHz(t)5zH(t)R(z,H(t)), z.0, whereR(z,H(t))5(zI^ 2H(t))21 is the resolvent of
H(t). It is known that Hz(t) generates a uniformly bounded contraction semigroup
limz→`Hz(t)f5H(t)f for fPD(H(t)).

Theorem 3.1: Suppose for each t, $H(t)utPE%,C(H) generates a strongly continuou
contraction semigroup onH. ThenH(t)Hz(t)F5Hz(t)H(t)F,FPD,~where D denotes the do
main of the family$H(t)utPE%!, and

~1! The family$Hz(t)utPE% generates a uniformly bounded contraction semigroup onFD^ for
each t andlimz→`Hz(t)F5H(t)F,FPD.

~2! The family$H(t)utPE%,C(H^ ) generates a strongly continuous contraction semigroup
FD^ ~so that$H(t)utPE%,C(FD^ )!.

Proof: The proof of~1! is standard. Note thatHz(t)5z2R(z,H(t))2zI^ and iR(z,H(t))i ^

<1/z, soiexp$sHz(t)%i ^ 5iexp$2sz%exp$sz2R(z,H(t))%i ^<1. Now recall that limz→`

$zR(z,H(t))F%5F,FPFD^ , so that, for FPD, we have that limz→`Hz(t)F
5 limz→`$zH(t)R(z,H(t))F%5 limz→`$zR(z,H(t))%H(t)F5H(t)F.

To prove ~2!, first recall ~Gill 73! that a tensor product norm,i•i ^ , is uniform if, for
^̂ sPETsPB(H^ ),

i ^̂

sPE
Tsi ^< )

sPE
iTsi . ~3.2!

Using the uniform property of the~Hilbert space! tensor product norm, it is easy to see th
exp$tH(t)% is a contraction semigroup.

To prove strong continuity, we need to identify a dense core for the family$H(t)ut
PE%,C(FD^ ). Let D1 denote the ordered tensor product of the domains of the fam
$H(t)utPE%,C(H), ~so thatD1,D!

D15 ^

sPE
D~H~s!!5H (

i 51

n

^

s
ws

i uws
i PD~H~s!!,sPEJ . ~3.3!

It is clear thatD1 is a dense core inH^ , soD05D1ùFD^ is a dense core inFD^ . Using
our standard basis, if

F,CPD0 , F5(
i

(
I ( j )

aI ( j )
i EI ( j )

i , C5(
i

(
I (k)

bI (k)
i EI (k)

i ;

then, since (exp$tH(t)%2I ^ ) is invariant onFDi and I ^ is the identity onFD^ , we have

^~exp$tH~ t !%2I ^ !F,C&5(
i

(
I ( j )

(
I (k)

aI ( j )
i b̄I (k)

i ^~exp$tH~ t !%2I ^ !EI ( j )
i ,EI (k)

i &, ~3.4a!
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and

^~exp$tH~ t !%2I ^ !EI ( j )
i ,EI (k)

i &5)
sÞt

^es, j (s)
i ,es,k(s)

i &^~exp$tH~ t !%2I !et, j (t)
i ,et,k(t)

i &

5^~exp$tH~ t !%2I !et, j (t)
i ,et, j (t)

i &~e.o.v.!

5^~exp$tH~ t !%2I !ei ,ei&~e.f.n.v.!, ~3.4b!

⇒^~exp$tH~ t !%2I ^ !F,C&

5(
i

(
I ( j )

aI ( j )
i b̄I ( j )

i ^~exp$tH~ t !%2I !ei ,ei&~a.s.c.!. ~3.4c!

Since all sums are finite, we have

lim
t→0

^~exp$tH~ t !%2I ^ !F,C&5(
i

(
I ( j )

aI ( j )
i b̄I ( j )

i H lim
t→0

^~exp$tH~ t !%2I !ei ,ei& J 50~a.s.c.!.

~3.4d!

The if and only if part is now clear. Since exp$tH(t)% is bounded onH^ and the above-
mentioned limit exists onD0 ~which is dense inFD^ !, we see that exp$tH(t)% extends to a
contraction semigroup onFD^ . Now use the fact that, if a bounded semigroup converges we
to the identity, it converges strongly~see Pazy,71 p. 44!.

We now assume that the family$H(t)utPE%,C(H) has a weak Riemann integralQ
5*a

bH(t)dtPC(H). It follows that the family$Hz(t)utPE%,B(H) also has a weak Rieman
integral Qz5*a

bHz(t)dtPB(H). Let Pn be a sequence of partitions~of E! so that the mesh
m(Pn)→0 as n→`. Set

Qz,n5(
l 51

n

Hz~ t̄ l !Dt l , Qz,m5 (
q51

m

Hz~ s̄q!Dsq , Qz,n5(
l 51

n

Hz~ t̄ l !Dt l ,

Qz,m5 (
q51

m

Hz~ s̄q!Dsq , and DQz5Qz,n2Qz,m , DQz5Qz,n2Qz,m

Let

F,CPD0 ; F5(
i

J

F i5(
i

J

(
I ( j )

K

aI ( j )
i EI ( j )

i , C5(
i

L

C i5(
i

L

(
I (k)

M

bI (k)
i EI (k)

i .

Then we have:
Theorem 3.2„first fundamental theorem for time-ordered integrals…:

^DQzF,C&5(
i

J

(
I ( j )

K

aI ( j )
i b̄I ( j )

i ^DQze
i ,ei&~a.s.c.!. ~3.5!

Note:The form of~3.5! is quite general sinceDQz can be replaced by other terms which al
give a true relationship. For example, it is easy to show that the family$Hz(t)utPE% is weakly
measurable, weakly continuous, weakly differentiable, etc., if and only if the same is true fo
family $Hz(t)utPE%.

Proof:

^DQzF,C&5(
i

(
I ( j )

(
I (k)

aI ( j )
i b̄I (k)

i ^DQzEI ( j )
i ,EI (k)

i &

~we omit the upper limit!. Now
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^DQzEI ( j )
i ,EI (k)

i &5(
l 51

n

Dt l^Hz~ t̄ l !EI ( j )
i ,EI (k)

i &2 (
q51

m

Dsq^Hz~ s̄q!EI ( j )
i ,EI (k)

i &

5(
l 51

n

Dt l )
tÞ t̄ l

^et, j (t)
i ,et,k(t)

i &^Hz~ t̄ l !et̄ l , j ( t̄ l )
i ,et̄ l ,k( t̄ l )

i
&

2 (
q51

m

Dsq )
tÞ s̄q

^et, j (t)
i ,et,k(t)

i &^Hz~ s̄q!es̄q , j ( s̄q)
i ,es̄q ,k( s̄q)

i &

5(
l 51

n

Dt l^Hz~ t̄ l !et̄ l , j ( t̄ l )
i ,et̄ l , j ( t̄ l )

i
&2 (

q51

m

Dsq^Hz~ s̄q!es̄q , j ( s̄q)
i ,es̄q , j ( s̄q)

i &

5^DQze
i ,ei&~e.f.n.v.!.

This result leads to~3.5!.
Theorem 3.3 „second fundamental theorem for time-ordered integrals…: If the family

$Hz(t)utPE% has a weak Riemann (Riemann-complete) integral, then
~1! the family$Hz(t)utPE%,B#(FD^ ) has a weak Riemann (Riemann-complete) integra.
~2! If, in addition, we assume that for eachF with iFi51,

sup
tPE

U E
a

t

(iHz~s!Fi22u^Hz~s!F,F&u2)dsU,`, ~3.6!

then the family$Hz(t)utPE% has a strong integralQz@ t,a#5*a
t Hz(s)ds which generates a uni

formly continuous contraction semigroup onFD^ .
Notes:

~1! It is sufficient that suptPEu*a
t (iHz(s)Ei i22u^Hz(s)Ei ,Ei&u2)dsu,` for eachi .

~2! Condition ~3.6! is satisfied ifiHz(s)Ei i2 is Lebesgue integrable for eachi . In this case, we
replace the Riemann integral by the Riemann-complete integral.

~3! In general, the family$Hz(t)utPE% need not be a Bochner or Pettis integral, as it is
required thatiHz(t)Fi ,^Hz(t)F,F& be ~square! Lebesgue integrable. It is possible th
*a

biHz(t)Fi2dt5` and*a
bu^Hz(t)F,F&u2dt5`, while ~3.6! is zero.

For example, letf (t) be any nonabsolutely~square! integrable function and setHz(t)
5 f (t)I ^ . Then the above-mentioned possibility holds while*a

t (iHz(s)Fi2

2u^Hz(s)F,F&u2)ds[0 for all t in E.
Proof: The proof of~1! is easy and follows from~3.5!. To see that~3.6! makesQz a strong

limit, let FPD0 . Then

^Qz,nF,Qz,nF&5(
i

J

(
I ( j ),I (h)

K

aI ( j )
i āI (h)

i S (
k,m

n

DtkDtm^Hz~sk!EI ( j )
i ,Hz~sm!EI (h)

i & D
5(

i

J

(
I ( j )

K

uaI ( j )
i u2S (

kÞm

n

DtkDtm^Hz~sk!esk , j (sk)
i ,esk , j (sk)

i &

3^esm , j (sm)
i ,Hz~sm!esm , j (sk)

i & D
1(

i

J

(
I ( j )

K

uaI ( j )
i u2S (

k

n

~Dtk!
2^Hz~sk!esk , j (sk)

i ,Hz~sk!esk , j (sk)
i & D . ~3.7!

This can be rewritten as
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iQz,nFi
^

2 5(
i

J

(
I ( j )

K

uaI ( j )
i u2H u^Qz,nei ,ei&u21(

k

n

~Dtk!
2~ iHz~sk!e

i i22u^Hz~sk!e
i ,ei&u2!J ~a.s.c.!.

~3.8!

The last term can be written as

U(
k,

n

~Dtk!
2~ iHz~sk!e

i i22u^Hz~sk!e
i ,ei&u2!U<mnM sup

tPE
U E

a

t

~ iHz~s!ei i22u^Hz~s!ei ,ei&u2!dsU,
where M is a constant andmn is the mesh ofPn , with mn→0 as n→`. Now note that
iHz(t)E

i i ^ 5iHz(t)e
i i and ^Hz(t)E

i ,Ei&5^Hz(t)e
i ,ei& ~e.o.v! so that

sup
tPE

U E
a

t

~ iHz~s!ei i22u^Hz~s!ei ,ei&u2!dsU
5sup

tPE
U E

a

t

~ iHz~s!Ei i22u^Hz~s!Ei ,Ei&u2!dsU~a.s.c.!.

We can now use~3.6! to get

iQz,nFi
^

2 <(
i

J

(
I ( j )

K

uaI ( j )
i u2H u^Qz,nei ,ei&u21mn Msup

t
U E

a

t

~ iHz~ t !Ei i22u^Hz~ t !Ei ,Ei&u2!dsU.J
~a.s.c.!.

Thus,Qz,nF converges strongly toQzF on D0 and hence has a strong limit onFD^ . To show
that Qz@ t,a# generates a uniformly continuous contraction, it suffices to show thatQz@ t,a# and
Qz* @ t,a# are dissipative. LetF be in D0 , then

^Qz@ t,a#F,F&5(
i

J

(
I ( j )

K

aI ( j )
i b̄I ( j )

i ^Qze
i ,ei&~a.s.c.!

and, sinceQz,n@ t,a# is disspative for eachn, we have

^Qz@ t,a#ei ,ei&5^Qz,n@ t,a#ei ,ei&1^@Qz@ t,a#2Qz,n@ t,a##ei ,ei&<^@Qz@ t,a#2Qz,n@ t,a##ei ,ei&.

Letting n→`, we get^Qz@ t,a#ei ,ei&<0, so that̂ Qz@ t,a#F,F&<0. The same argument applie
to Qz* @ t,a#. Since Qz@ t,a# is dissipative and densely defined, it has a~bounded! dissipative
closure onFD^ .

It should be noted that the theorem is still true if we allow the approximating sums
condition ~3.6! to diverge but at an order less thanmn

211d , 0,d,1, that is,

sup
t
U E

a

t

~ iHz~ t !Ei i22u^Hz~ t !Ei ,Ei&u2!dsU5`,

with

U(
k,

n

~Dtk!
2~ iHz~sk!e

i i22u^Hz~sk!e
i ,ei&u2!U<Mmn

d .

We also note that

iQz@ t,a#Fi
^

2 5(
i

J

(
I ( j )

K

uaI ( j )
i u2u^Qze

i ,ei&u2~a.s.c.! ~3.9!
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in either of the above cases. This representation makes it easy to prove the next theorem
Theorem 3.4:

~1! Qz@ t,s#1Qz@s,a#5Qz@ t,a#(a.s.c.),
~2! s2 limh→0 (Qz@ t1h,a#2Qz@ t,a#)/h5s2 limh→0 (Qz@ t1h,t#)/h5Hz(t)(a.s.c.),
~3! s2 limh→0 Qz@ t1h,t#50 (a.s.c.),
~4! s2 limh→0 exp$tQz@ t1h,t#%5I ^ (a.s.c.),t>0.

Proof: In each case, it suffices to prove the result forFPD0 . To prove~1!, use

i@Qz@ t,s#1Qz@s,a##Fi
^

2 5(
i

J

(
I ( j )

K

uaI ( j )
i u2u^@Qz@ t,s#1Qz@s,a##ei ,ei&u2~a.s.c.!

5(
i

J

(
I ( j )

K

uaI ( j )
i u2u^Qz@ t,a#ei ,ei&u25iQz@ t,a#Fi

^

2 ~a.s.c.!.

To prove~2!, use~1! to getQz@ t1h,a#2Qz@ t,a#5Qz@ t1h,t#(a.s.c.), so that

lim
h→0

IQz@ t1h,t#

h
F I

^

2

5(
i

J

(
I ( j )

K

uaI ( j )
i u2 lim

h→0
U K Qz@ t1h,t#

h
ei ,ei L U2

5iHz~ t !Fi
^

2 ~a.s.c.!.

The proof of~3! follows from ~2!, and the proof of~4! follows from ~3!.
Theorem 3.5:Suppose thatlimz→`^Qz@ t,a#f,c&5^Q@ t,a#f,c& exists forf in a dense set

;cPH (weak convergence). Then:

~1! Q@ t,a# generates a strongly continuous contraction semigroup onH,
~2! limz→` Qz@ t,a#F5Q@ t,a#F for FPD0 andQ@ t,a# is the generator of a strongly continuou

contraction semigroup onFD^ ,
~3! Q@ t,s#1Q@s,a#5Q@ t,a#(a.s.c.),
~4! limh→0 @(Q@ t1h,a#2Q@ t,a#)/h#F5 limh→0 @(Q@ t1h,t#)/h#F5H(t)F (a.s.c.),
~5! limh→0 Q@ t1h,t#F50 (a.s.c.), and
~6! limh→0 exp$tQ@ t1h,t#%F5F(a.s.c.), t>0.

Proof: The proofs are easy. For~1!, first note thatQ@ t,a# is closable and usêQ@ t,a#f,f&
5^Qz@ t,a#f,f&1^@Q@ t,a#2Qz@ t,a##f,f&<^@Q@ t,a#2Qz@ t,a##f,f& and letz→`. Then do
likewise for ^f,Q* @ t,a#f& to get thatQ@ t,a# is maximal dissipative. To prove~2!, use~3.9! in
the form

i@Qz@ t,a#2Qz8@ t,a##Fi
^

2 5(
i

J

(
I ( j ))

K

uaI ( j )
i u2u^@Qz@ t,a#2Qz8@ t,a##ei ,ei&u2 ~a.s.c.!.

This proves thatQz@ t,a#→
s

Q@ t,a#. Since Q@ t,a# is densely defined, it is closable. The sam
method as above shows that it is maximal dissipative. Proofs of the other results follo
methods of the previous theorem.

Since Q@ t,a# and Qz@ t,a# generate contraction semigroups, setU@ t,a#5exp$Q@ t,a#%,
Uz@ t,a#5exp$Qz@ t,a#%, for tPE. They are evolution operators and the following theorem i
slight modification of a result due to Hille and Phillips,74 known as the second exponenti
formula.

Theorem 3.6: If Q8@ t,a#5wQ@ t,a# is the generator of a strongly continuous contractio
semigroup, andUw@ t,a#5exp$wQ@ t,a#%, then, for each n andFPD@(Q@ t,a#)n11#, we have
(where w is a parameter)
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Uw@ t,a#F5H I ^ 1 (
k51

n
~wQ@ t,a# !n

n!
1

1

n! E0

w

~w2j!nQ@ t,a#n11Uj@ t,a#djJ F. ~3.10!

Proof: The proof is easy. Start with@Uz
w@ t,a#F2I ^ #F5*0

wQz@ t,a#Uz
j@ t,a#djF and use

integration by parts to get that

@Uz
w@ t,a#F2I ^ #F5wQz@ t,a#F1E

0

w

~w2j!@Qz@ t,a##2Uz
j@ t,a#djF.

It is clear how to get thenth term. Finally, letz→` to get ~3.10!.
Theorem 3.7.If a,t,b,

~1! limz→`Uz@ t,a#F5U@ t,a#F, FPFD^ ,
~2! ]/]t Uz@ t,a#F5Hz(t)Uz@ t,a#F5Uz@ t,a#Hz(t)F, FPFD^ , and
~3! ]/]t U@ t,a#F5H(t)U@ t,a#F5U@ t,a#H(t)F, FPD(Q@b,a#).D0 .

Proof: To prove~1!, use the fact thatHz(t) andH(t) commute along with

U@ t,a#F2Uz@ t,a#F5E
0

1

~d/ds!~esQ[ t,a]e(12s)Qz[ t,a] !F ds

5E
0

1

s~esQ[ t,a]e(12s)Qz[ t,a] !~Q@ t,a#2Qz@ t,a# !F ds,

so that

iU@ t,a#F2Uz@ t,a#Fi<iQ@ t,a#F2Qz@ t,a#Fi .

To prove~2!, use

Uz@ t1h,a#2Uz@ t,a#5Uz@ t,a#~Uz@ t1h,t#2I !5~Uz@ t1h,t#2I !Uz@ t,a#,

so that,

~Uz@ t1h,a#2Uz@ t,a# !

h
5Uz@ t,a#

~Uz@ t1h,t#2I !

h
.

Now setFz
t 5Uz@ t,a#F and use~3.10! with n51 andw51 to get:

Uz@ t1h,t#Fz
t 5H I ^ 1Qz@ t1h,t#1E

0

1

~12j!Uz
j@ t1h,t#Qz@ t1h,t#2djJ Fz

t ,

so that

~Uz@ t1h,t#2I !

h
Fz

t 2Hz~ t !Fz
t 5

Qz@ t1h,t#

h
Fz

t 2Hz~ t !Fz
t

1E
0

1

~12j!Uz
j@ t1h,t#

Qz@ t1h,t#2

h
Fz

t dj.

It follows that

I ~Uz@ t1h,t#2I !

h
Fz

t 2Hz~ t !Fz
t I

^

< IQz@ t1h,t#

h
Fz

t 2Hz~ t !Fz
t I

^

1
1

2 IQz@ t1h,t#

h
2Fz

t I
^

.
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The result now follows from Theorem~3.4!—~2! and ~3!.
To prove ~3!, note that Hz(t)F5H(t)$zR(z,H(t))%F5$zR(z,H(t))%H(t)F, so that

$zR(z,H(t))% commutes withU@ t,a# andH(t). Now show that

iHz~ t !Uz@ t,a#F2Hz8~ t !Uz8@ t,a#Fi<i@Uz@ t,a#F2Uz8@ t,a##H~ t !Fi1i@zR~z,H~ t !!F

2z8R~z8,H~ t !!#H~ t !Fi→0, z,z8→`,

so that, for

FPD~Q@b,a# !, Hz~ t !Uz@ t,a#F→H~ t !U@ t,a#F5
]

]t
U@ t,a#F.

The previous theorems form the core of our approach to the Feynman operator calculu
theory applies to both hyperbolic and parabolic equations. In the conventional approach, the
cases require different methods~see Pazy71!. It is not hard to show that the requirements impos
in these cases are stronger than~our condition of! weak integral. This will be discussed in a lat
paper devoted to the general problem on Banach spaces.

IV. PERTURBATION THEORY

Definition 4.1:The evolution operatorUw@ t,a#5exp$wQ@ t,a#% is said to beasymptotic in the
sense of Poincare´ if, for eachn and eachFaPD@(Q@ t,a#)n11#, we have

lim
w→0

w2(n11)H Uw@ t,a#2 (
k51

n
~wQ@ t,a# !k

k! J Fa5
Q@ t,a#n11

~n11!!
Fa . ~4.1!

This is the operator version of an asymptotic expansion in the classical sense, but hereQ@ t,a# is
an unbounded operator.

As noted earlier, Dyson16 analyzed the~renormalized! perturbation expansion for quantum
electrodynamics and suggested that it actually diverges. He concluded that we could, at bes
that the series is asymptotic. His arguments were based on~not completely convincing! physical
considerations, but no precise formulation of the problem was possible at that time. Howev
calculations of Hurst,75 Thirring,76 Peterman,77 and Jaffe78 for specific models all support Dyson’
contention that the renormalized perturbation series diverges. In his recent book79 ~pp. 13–16!,
Dyson’s views on the perturbation series and renormalization are reiterated: ‘‘... in spite of a
successes of the new physics, the two questions that defeated me in 1951 remain unsolved
he is referring to the question of mathematical consistency for the whole renormalization pro
and our ability to~reliably! calculate nuclear processes in quantum chromodynamics.~For other
details and references to additional works, see Schweber,6,80 Wightman,81 and Zinn-Justin.82!

The general construction of a physically simple and mathematically satisfactory formu
of quantum electrodynamics is still an open problem. The next theorem establishes D
~second! conjecture under conditions that would apply to any~future! theory that does not requir
a radical departure from the present foundations of quantum theory~unitary solution operators!. It
also applies to the renormalized expansions in some areas of condensed matter physics w
solution operators are contraction semigroups.

Theorem 4.2:Suppose the conditions for Theorem 3.5 are satisfied. Then:
~1! Uw@ t,a#5exp$wQ@ t,a#% is asymptotic in the sense of Poincare´.
~2! For each n and eachFaPD@(Q@ t,a#)n11#, we have
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F~ t !5Fa1 (
k51

n

wkE
a

t

ds1E
a

s1
ds2¯E

a

sk21
dskH~s1!H~s2!¯H~sk!Fa

1E
0

w

~w2j!ndjE
a

t

ds1E
a

s1
ds2¯E

a

sn
dsn11H~s1!H~s2!¯H~sn11!Uj@sn11 ,a#Fa ,

~4.2!

whereF(t)5Uw@ t,a#Fa .
Proof: From ~3.10!, we have

Uw@ t,a#F5H (
k50

n
~wQ@ t,a# !n

n!
1

1

n! E0

w

~w2j!nQ@ t,a#n11Uj@ t,a#djJ F,

so that

w2(n11)H Uw@ t,a#Fa2 (
k50

n
~wQ@ t,a# !k

k!
FaJ

51
~n11!

~n11!!
w2(n11)E

0

w

~w2j!ndj Uj@ t,a#Q@ t,a#n11Fa .

Replace the right-hand side by

I 5
~n11!

~n11!!
w2(n11)E

0

w

~w2j!ndj$Uz
j@ t,a#1@Uj@ t,a#2Uz

j@ t,a##%Q@ t,a#n11Fa .

Now, expand the termUz
j@ t,a# in a two-term Taylor series about zero to get

Uz
j@ t,a#5I ^ 1jQz@ t,a#1Rz

j .

Put the above inI , compute the elementary integrals showing that only theI ^ term gives a
nonzero value~of 1/(n11)! whenw→0. Then letz→` to get

lim
w→0

~n11!w2(n11)E
0

w

dj~w2j!nUj@ t,a#Q@ t,a#n11Fa5Q@ t,a#n11Fa .

This proves thatU@ t,a#5exp$Q@ t,a#% is asymptotic in the sense of Poincare´. To prove~4.2!,
let FaPD@(Q@ t,a#)n11# for eachk<n11, and use the fact that~Dollard and Friedman83!

~Qz@ t,a# !kFa5S E
a

t

Hz~s!dsD k

Fa5~k! !E
a

t

ds1E
a

s1
ds2¯E

a

sk21
dsnHz~s1!Hz~s2!¯Hz~sk!Fa .

~4.3!

Letting z→` gives the result.
Our conditions are very weak. For example, the recent work of Tang and Li84 required that

iH(t)i be Lebesgue integrable.
There are well-known special cases in which the perturbation series may actually conve

the solution. This can happen, for example, if the generator is bounded or if it is analytic in
sector. More generally, when the generator is of the formH(t)5H0(t)1H i(t), whereH0(t) is
analytic andH i(t) is some reasonable perturbation, which need not be bounded, there are
tions that allow the interaction representation to have a convergent Dyson expansion. These
can be formulated and proven in our formalism. However, the proofs are essentially the sa
in the standard case so we will present them in a later paper devoted to the operator calc
Banach spaces. The recent book by Engel and Nagel85 provides some new results in this gene
area.
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There are also cases where the~renormalized! series may diverge, but still respond to som
summability method. This phenomenon is well-known in classical analysis. In field theory, t
can be much more complicated. A good discussion, with references, can be found in the rev
Wightman81 and the book by Glimm and Jaffe.35

V. SUM OVER PATHS

In this section we first review and make a distinction between what is actually known
what we think we know about the foundations for our physical view of the micro-world.
objective is to provide the background for a number of physically motivated postulates that w
used to develop a theory of measurement for the micro-world~sufficient for our purposes!. This
will allow us to relate the theory of Secs. III and IV to Feynman’s sum over paths approac
prove Dyson’s second conjecture. This section differs from the previous ones in that we sh
orientation and perspective from that of mathematical physics to that of theoretical physics

In spite of the enormous successes of the physical sciences in the past century, our infor
and understanding about the micro-world is still rather meager. In the macro-world we are
comfortable with the view that physical systems evolve continuously in time and our results j
this view. Indeed, the success of continuum physics is the basis for a large part of our tec
advances in the twentieth century. On the other hand, the same view is also held at the micr
and, in this case, our position is not very secure. The ability to measure physical events co
ously in time at the micro-level must be considered a belief which, although convenient, h
place in science as ana priori constraint.

In order to establish perspective, let us consider this belief within the context of a satisfa
and well-justified theory, Brownian motion. This theory lies at the interface between the m
and the micro-worlds. Some presentations of this theory~the careful ones! make a distinction
between the mathematical and the physical foundations of Brownian motion and that distinc
important for our discussion.

When Einstein86 began his investigation of the physical issues associated with this phe
enon, he was forced to assume that physical information about the state of a Brownian p
~position, velocity, etc.! can only be known in time intervals that are large compared with the m
time between molecular collisions.~It is known that, under normal physical conditions, a Brow
ian particle receives about 1021 collisions per second.! Wiener took the mathematical step an
assumed that this mean time~between collisions! could be made zero, thus providing a mathema
cal Brownian particle. This corresponds physically to the assumption that the ratio of the m
the particle to the friction of the fluid is zero in the limit~see Wieneret al.87!.

From the physical point of view, use of Wiener’s idealization of the Einstein model was
satisfactory since it led to problems of unbounded path length and nondifferentiability at all p
The first problem is physically impossible while the second is physically unreasonable. Of c
the idealization has turned out to be quite satisfactory in areas where the information require
not be detailed, such as large parts of electrical engineering, chemistry, and the biological sc
Ornstein and Uhlenbeck88 later constructed a model that gives the Einstein view asymptotic
but, in small-time regions, is equivalent to the assumption that the particle travels a linea
between collisions. This model provides finite path length and differentiability.~The theory was
later idealized by Doob.89! What we do know is that the very nature of the liquid state impl
collective behavior among the molecules.This means that we do not know what path the parti
travels in between collisions. However, since the tools and methods of analysis require some
of continuity, some such~in between observation! assumptions must be made. It is clear that
need for these assumptions is imposed by the available mathematical structures within wh
must represent physical reality as a model.

Theoretical science concerns itself with the construction of mathematical representati
certain restricted portions of physical reality. Various trends and philosophies that are preva
the time temper these constructs. A consistent theme has been the quest for simplicit
requirement is born out of the natural need to restrict models to the minimum number of vari
relationships, constraints, etc., which give a satisfactory account of known experimental r
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and possibly allow the prediction of heretofore unknown consequences. One important outc
this approach has been to implicitly eliminate all reference to the background within w
physical systems evolve. In the micro-world, such an action cannot be justified without
investigation. We propose to replace the use of mathematical coordinate systems by ‘‘ph
coordinate systems’’ in order to~partially! remedy this problem.

We denote a physical coordinate system at timet by Rp
3(t). This coordinate system is attache

to an observer~including measuring devices! and is envisioned asR3 plus any background effects
either local or distant, which affect the observer’s ability to obtain precise~ideal! experimental
information about physical reality. This in turn affects our observer’s ability to construct pre
~ideal! representations and make precise predictions about physical reality~in the micro-world!.

More specifically, consider the evolution of some micro-system on the intervalE5@a,b#.
Physically this evolution manifests itself as a curve onX, where

)
tPE

Rp
3~ t !5X.

Thus, true physical events occur onX where actual experimental information is modified
fluctuations inRp

3(t), and by the interaction of the micro-system with the measuring equipm
Based on the success of our models, we know that such small changes are in the noise reg
they have no effect on our predictions for macro-systems. However, there is no~physical! reason
to believe that the effects will be small on micro-systems.

In terms of our theoretical representations, we are forced to model the evolution of ph
systems in terms of wave functions, amplitudes, and/or operator-valued distributions, etc.
are thus two spaces, the physical space of evolution for the micro-system and the observer
of obtainable information concerning this evolution. The lack of distinction between these
spaces seems to be the cause for some of the confusion and lack of physical clarity. For ex
it may be perfectly correct to assume that a particle travels a continuous path onX. However, the
assumption that the observer’s space of obtainable information includes infinitesimal space
knowledge of this path is completely unfounded. This leads to our first postulate:

Postulate 1: Physical reality is a continuous process in time.
We thus take this view, fully recognizing that experiment does not provide continuous i

mation about physical reality, and that there is no reason to believe that our mathematical
sentations contain precise information about the continuous space–time behavior of ph
processes at this level.

Since the advent of the special theory of relativity, there has been much discussion
events, which generally means a point inR4 with the Minkowski metric. In terms of real physics
this is a fiction which is frequently useful for reasons of presentation but so widely used th
avoid confusion, it is appropriate to define what we mean by aphysical event.

Definition 5.1: A physical event is a set of physical changes in a given system that c
verified directly by experiment or indirectly via subsequent changes, where conclusions are
on an a priori agreed-upon model of the physical process.

This definition corresponds more closely to what is meant by physical events. It exp
recognizes the evolution of scientific inference and the need for general agreement about
being observed~based on specific models!.

Before continuing, it will be helpful to have a particular physical picture in mind that ma
the above-presented discussion explicit. For this purpose, we take this picture to be a phot
showing the track left by ap-meson in a bubble chamber~and take seriously the amount o
information available!. In particular, we assume that the following reaction occurs:

p1→m11n.

We further assume that the orientation of our photograph is such that thep-meson enters on
the left at timet50 and the tracks left by them-meson disappear on the right at timet5T, where
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T is of the order of 1023 s, the time exposure for photographic film. Although the neutrino d
not appear in the photograph, we also include a track for it. In Fig. 1 we present a simp
picture of this photograph.

We have drawn the photograph as if we continuously see the particles in the picture. Ho
experiment only provides us individual bubbles, which do not necessarily overlap, from whic
must extract physical information. A more accurate~though still not realistic! depiction is given in
Fig. 2.

Let us assume that we have magnified a portion of our photograph to the extent that w
distinguish the individual bubbles created by thep-meson as it passes through the chamber. In F
3, we present a simplified model of adjacent bubbles.

Postulate 2: We assume that the center of each bubble represents the average knowab
of the particle in a symmetric time interval about the center.

By average knowable effect, we mean the average of the physical observables. In Fig
consider the existence of a bubble at timet j to be caused by the average of the physical obse
ables over the time interval@ t j 21 ,t j #, wheret j 215(1/2)@t j 211t j # andt j5(1/2)@t j1t j 11#. This
postulate requires some justification. In general, the resolution of film and the relaxation tim
distinct bubbles in the chamber vapor are limited. This means that if thep-meson creates two
bubbles that are closely spaced in time, the bubbles may coalesce and appear as one. If t
not occur, it is still possible that the film will record the event as one bubble because of its ina
to resolve events is such small time intervals.

Let us now recognize that we are dealing with one photograph so that, in order to obta
available information, we must analyze a large number of photographs of the same re
obtained under similar conditions~pre-prepared states!. It is clear that the number of bubbles an
the time placement of the bubbles will vary~independently of each other! from photograph to
photograph. Letl21 denote the average time for the appearance of a bubble in the film.

Postulate 3: We assume that the number of bubbles in any film is a random variable.
Postulate 4: We assume that, given that n bubbles have appeared on a film, the time po

of the centers of the bubbles are uniformly distributed.

FIG. 1. Ideal picture of the reactionp1→m11n.

FIG. 2. More accurate picture of the reactionp1→m11n.
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Postulate 5: We assume that N(t), the number of bubbles up to time t in a given film, is
Poisson-distributed random variable with parameterl.

To motivate Postulate 5, recall thatt j is the time center of thej th bubble andl21 is the
average~experimentally determined! time between bubbles. The following results can be found
Ross.90

Theorem 5.1:The random variablesDt j5t j2t j 21(t05 0) are independent identically dis
tributed random variables of exponential type with meanl21, for 1< j <n.

The arrival timest1 ,t2 ,...,tn are not independent, but their density function can be comp
from

Prob@t1 ,t2 ,...,tn#5Prob@t1#Prob@t2ut1#¯Prob@tnut1 ,t2 ,...,tn21#. ~5.1a!

We now use Theorem 5.1 to conclude that, fork>1,

Prob@tkut1 ,t2 ,...,tk21#5Prob@tkutk21#. ~5.1b!

We do not know this conditional probability. However, the natural assumption is that, given tn
bubbles appear, they are equally~uniformly! distributed on the interval. We can now constru
what we call the experimental evolution operator. Assume that the conditions for Theorem 3
satisfied and that the family$t1 ,t2 ,...,tn% represents the time positions of the centers on
bubbles in our film of Fig. 3. Seta50 and defineQE@t1 ,t2 ,...,tn# by

QE@t1 ,t2 ,...,tn#5(
j 51

n E
t j 21

t j
E@t j ,s#H~s!ds. ~5.2a!

Here,t05t050, t j5(1/2)@t j1t j 11# ~for 1< j <n!, andE@t j ,s# is the exchange operator define
in Sec. II. The effect of our exchange operatorE@t j ,s# is to concentrate all information containe
in @ t j 21 ,t j # at t j . This is how we implement our postulate that the known physical event o
bubble at timet j is due to an average of physical effects over@ t j 21 ,t j # with information concen-
trated att j . We can rewriteQE@t1 ,t2 ,...,tn# as

QE@t1 ,t2 ,...,tn#5(
j 51

n

Dt jF 1

Dt j
E

t j 21

t j
E@t j ,s#H~s!dsG . ~5.2b!

Thus, we indeed have an average as required by Postulate 2. The evolution operator is g

U@t1 ,t2 ,...,tn#5expH (
j 51

n

Dt jF 1

Dt j
E

t j 21

t j
E@t j ,s#H~s!dsG J . ~5.3a!

For FPFD^ , we define the functionU@N(t),0#F by

FIG. 3. Highly magnified view showing individual bubbles.
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U@N~ t !,0#F5U@t1 ,t2 ,...,tN(t)#F. ~5.3b!

The functionU@N(t),0#F is anFD^ -valued random variable, which represents the distribution
the number of bubbles that may appear on our film up to timet. In order to relateU@N(t),0#F to
actual experimental results, we must compute its expected value. Using Postulates 3, 4, an
have

Ūl@ t,0#F5E@U@N~ t !,0#F#5 (
n50

`

E$U@N~ t !,0#FuN~ t !5n%Prob@N~ t !5n#, ~5.4a!

E$U@N~ t !,0#FuN~ t !5n%5E
0

t dt1

t E
t1

t dt2

t2t1
¯E

tn21

t dtn

t2tn21
U@tn ,...,t1#F5Ūn@ t,0#F,

~5.5a!

and

Prob@N~ t !5n#5
~lt !n

n!
exp$2lt%. ~5.6!

The integral in~5.4a! acts to distribute uniformly the time positionst j over the successive inter
vals @ t,t j 21#, 1< j <n, given thatt j 21 has been determined. This is a natural result given
lack of knowledge.

The integral~5.4a! is of theoretical value but is not easy to compute. Since we are
interested in what happens whenl→`, and as the mean number of bubbles in the film at timt
is lt, we can taket j5( j t /n), 1< j <n ~Dt j5t/n for eachn!. We can now replaceŪn@ t,0#F by
Un@ t,0#F, and with this understanding, we continue to uset j , so that

Un@ t,0#F5expH (
j 51

n E
t j 21

t j
E@t j ,s#H~s!dsJ F. ~5.5b!

We define our experimental evolution operatorUl@ t,0#F by

Ul@ t,0#F5 (
n50

`
~lt !n

n!
exp$2lt%Un@ t,0#F. ~5.4b!

We now have the following result, which is a consequence of the fact that Borel summabi
regular.

Theorem 5.4:Assume that the conditions for Theorem 3.5 are satisfied. Then

lim
l→`

Ūl@ t,0#F5 lim
l→`

Ul@ t,0#F5U@ t,0#F. ~5.7!

Sincel→`⇒l21→0, this means that the average time between bubbles is zero~in the limit! so
that we get a continuous path. It should be observed that this continuous path arises from
aging the sum over an infinite number of~discrete! paths. The first term in~5.4b! corresponds to
the path of ap-meson that created no bubbles~i.e., the photograph is blank!. This event has
probability exp$2lt% ~which approaches zero asl→`!. Thenth term corresponds to the path o
a p-meson that createdn bubbles,~with probability @(lt)n/n! #exp$2lt%!, etc. Before deriving a
physical relationship, letP@ t;s,l#50 if s<0 and, for 0,s,`, define it as
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P@ t;s,l#5e2lt(
k50

dlse
~lt !k

k!
, ~5.8!

wheren5 dlse is the greatest integer<ls. We can now writeU@ t,0#F as

U@ t,0#F5 lim
l→`

E
0

`

dsP@ t;s,l#Udlse@s,0#F,

~5.9!

Udlse@s,0#F5expH (
j 51

dlse E
t j 21

t j
E@t j ,u#H~u!duJ F.

Equation~5.9! means that we get both a sum over paths and a probability interpretation fo
formalism. This allows us to give a new definition for path integrals.

Suppose the evolution operatorU@ t,0# has a kernel,K @x(t),t;x(0),0#, such that

~1! K @x(t),t;x(s),s#5*R3K @x(t),t;x(s),s#K @x(s),s;x(0),0#dx(s), and
~2! U@ t,0#F5*R3K @x(t),t;x(0),0#dx(0).

Then, from Eq.~5.9!, we have that

U@ t,0#F5 lim
l→`

E
0

`

dsP@ t;s,l#H )
j 51

dlse E
R3

K @x~ t j !,t j ;x~ t j 21!,t j 21# j)
j 51

dlse
dx~ t j 21!F~0!J .

Thus, whenever we can associate a kernel with our evolution operator, the time-ordered v
always provides a well-defined path-integral as a sum over paths. The definition does not~directly!
depend on the space of continuous paths and is independent of a theory of measure on
dimensional spaces. Feynman suggested that the operator calculus was more general, in
with Hibbs91 ~see pp. 355–356!.

VI. THE S-MATRIX

The objective of this section is to provide a formulation of theS-matrix that will allow us to
investigate the sense in which we can believe Dyson’s first conjecture. At the end of his s
paper on the relationship between the Feynman and Schwinger–Tomonaga theories, he e
the difference between the divergent Hamiltonian formalism that one must begin with an
finite S-matrix that results from renormalization. He takes the view that it is a contrast betw
real observer and a fictitious~ideal! observer. The real observer can only determine part
positions with limited accuracy and always gets finite results from his measurements. Dyso
suggests that ‘‘... The ideal observer, however, using non-atomic apparatus whose location i
and time is known with infinite precision, is imagined to be able to disentangle a single field
its interactions with others, and to measure the interaction. In conformity with the Heise
uncertainty principle, it can perhaps be considered a physical consequence of the infinitely
knowledge of~particle! location allowed to the ideal observer, that the value obtained whe
measures~the interaction! is infinite.’’ He goes on to remark that, if his analysis is correct,
problem of divergences is attributable to an idealized concept of measurability.

In order to explore this idea, we work in the interaction representation with obvious nota
Replace the interval@ t,0# by @T,2T#, H(t) by (2 i /\)HI(t), and our experimental evolution
operatorUl@T,2T#F by the experimental scattering operatorSl@T,2T#F, where

Sl@T,2T#F5 (
n50

`
~2lT!n

n!
exp@22lT#Sn@T,2T#F, ~6.1!
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Sn@T,2T#F5expH ~2 i /\!(
j 51

n E
t j 21

t j
E@t j ,s#HI~s!dsJ F, ~6.2!

and HI(t)5*R3HI(x(t),t)dx(t) is the interaction energy. We follow Dyson for consistency~see
also the discussion!, so thatdmc2 is the mass counter-term designed to cancel the self-en
divergence, and

HI~x~ t !,t !52 ieAm~x~ t !,t !c̄~x~ t !,t !gmc~x~ t !,t !2dmc2c̄~x~ t !,t !c~x~ t !,t !. ~6.3!

We now give a physical interpretation of our formalism. Rewrite Eq.~6.1! as

Sl@T,2T#F5 (
n50

`
~2lT!n

n!
expH ~2 i /\!(

j 51

n E
t j 21

t j
@E@t j ,s#HI~s!2 il\I ^ #dsJ F. ~6.4!

In this form, it is clear that the term2 il\I ^ has a physical interpretation as the absorption
photon energy of amountl\ in each subinterval@ t j ,t j 21# ~cf. Mott and Massey92!. When we
compute the limit, we get the standardS-matrix ~on @T,2T# !. It follows that we must add an
infinite amount of photon energy to the mathematical description of the experimental pictu~at
each point in time! in order to obtain the standard scattering operator. This is the ultrav
divergence and shows explicitly that the transition from the experimental to the ideal scat
operator requires that we illuminate the particle throughout its entire path. Thus, it appears t
have, indeed, violated the uncertainty relation. This is further supported if we look at the fo
the standardS-matrix:

S@T,2T#F5expH ~2 i /\!E
2T

T

HI~s!dsJ F, ~6.5!

and note that the differential ds in the exponent implies perfect infinitesimal time knowledge
each point, strongly suggesting that the energy should be totally undetermined. If violation
Heisenberg uncertainty relation is the cause for the ultraviolet divergence then, as it is a va
relation, it will not appear in first order~perturbation! but should show up in all higher-orde
terms. On the other hand, if we eliminate the divergent terms in second order, we would expe
method to prevent them from appearing in any higher order term of the expansion. The fa
this is precisely the case in quantum electrodynamics is a clear verification of Dyson’s conje

If we allow T to become infinite, we once again introduce an infinite amount of energy
the mathematical description of the experimental picture, as this is also equivalent to precis
knowledge~at infinity!. Of course, this is the well-known infrared divergence and can be el
nated by keepingT finite ~see Dahmenet al.93! or introducing a small mass for the photon~see
Feynman,12 p. 769!. If we hold l fixed while lettingT become infinite, the experimentalS-matrix
takes the form:

Sl@`,2`#F5expH ~2 i /\!(
j 51

` E
t j 21

t j
E@t j ,s#HI~s!dsJ F,

~6.6!

ø
j 51

`

@ t j 21 ,t j #5~2`,`!, Dt j5l21.

This form is interesting since it shows how a minimal time eliminates the ultraviolet diverge
Of course, this is not unexpected, and has been known at least since Heisenberg94 introduced his
fundamental length as a way around the divergences. This was a prelude to the various
approximation methods. The review by Lee95 is interesting in this regard.

In closing this section, we record our exact expansion for theS-matrix to any finite order. With
F(2`)PD@(Q@`,2`#)n11#, we have
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S@`,2`#F~2`!5 (
k50

n S 2 i

\ D kE
2`

`

ds1E
2`

s1
ds2¯E

2`

sk21
dskHI~s1!HI~s2!¯HI~sk!F~2`!

1S 2 i

\ D n11E
0

1

~12j!ndjE
2`

`

ds1E
2`

s1
ds2¯E

2`

sn
dsn11HI~s1!

3HI~s2!¯HI~sn11!Sj@sn11 ,2`#F~2`!. ~6.7!

It follows that ~in a theoretical sense! we can consider the standardS-matrix expansion to be
exact, when truncated at any order, by adding the last term of Eq.~6.7! to give the remainder. This
result also means that, whenever we can construct an exact nonperturbative solution, it
implies the existence of a perturbative solution valid to any order. However, in general, on
particular cases can we know if the series at somen ~without the remainder! approximates the
solution.

VII. CONCLUSION

In this paper we have shown how to construct a natural representation Hilbert spa
Feynman’s time-ordered operator calculus. This space allows us to construct the time-o
integral and evolution operator~propagator! under the weakest known conditions. Using t
theory, we have shown that the perturbation expansion relevant to quantum theory is asymp
the sense of Poincare´. This provides a precise formulation and proof of Dyson’s sec
conjecture16 that, in general, we can only expect the expansion to be asymptotic.

Our investigation into the extent that our continuous models for the micro-world faith
represent the amount of information available from experiment has led to a derivation of the
ordered evolution operator in a more physical way. This approach made it possible to prov
the ultraviolet divergence is caused by a violation of the Heisenberg uncertainty relation a
point in time, thus partially confirming Dyson’s first conjecture.

We used Dyson’s original notation so as to explicitly exhibit the counter-term necessa
eliminate the self-energy divergence that occurs in QED. This divergence is not accounted f
is outside the scope of the current investigation. Thus, within our present framework, we c
say that all the divergences arise from our disregard of some simple physics, and are not th
of deeper problems. Thus, Dyson’s concerns about the mathematical consistency of qu
electrodynamics, and quantum field theory in general, is still an open problem.

Although we are not working in the framework of axiomatic field theory, our approach
make some uneasy since Haag’s theorem suggests that the interaction representation does
~see Streater and Wightman,27 p. 161!. ~Haag’s theorem assumes, among other things, that
equal time commutation relations for the canonical variables of a interacting field are equiva
those of a free field.! In trying to explain this unfortunate result, these authors point out that~see
p. 168! ‘‘... What is even more likely in physically interesting quantum field theories is that e
time commutation relations will make no sense at all; the field might not be an operator u
smeared in time as well as space.’’ The work in Secs. V and VI of this paper strongly sugges
there is no physical basis to assume that we know anything about canonical variables at one
in time ~see postulate 2 and the following paragraph!. Thus, our approach actually confirms th
above-mentioned comments of Streater and Wightman.
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A complete variational treatment is provided for a family of spiked-harmonic os-
cillator HamiltoniansH52d2/dx21Bx21l/xa(B.0,l.0), for arbitrarya.0. A
compact topological proof is presented that the setS5$cn% of known exact solu-
tions for a52 constitutes an orthonormal basis of the Hilbert spaceL2(0,̀ ).
Closed-form expressions are derived for the matrix elements ofH with respect toS.
These analytical results, and the inclusion of a further free parameter, facilitate
optimized variational estimation of the eigenvalues ofH to high accuracy. ©2002
American Institute of Physics.@DOI: 10.1063/1.1418247#

I. INTRODUCTION

A family of quantum Hamiltonians known as spiked harmonic oscillators is given by
general Hamiltonian operator

H52
d2

dx2 1x21
l

xa , ~1.1!

acting in the Hilbert spaceL2(0,̀ ). EigenfunctionscPL2(0,̀ ) of H satisfy the Schro¨dinger
equation

2c91H x21
l

xaJ c5Ec with c~0!50. ~1.2!

The functionc is an eigenfunction corresponding to the eigenvalueE and the conditionc(0)
50 is called aDirichlet boundary condition. The name of the operator derives from the graphi
shape of the full potential1 V(x)5x21l/xa, which shows a pronounced peak near the origin
l.0. Further, the Hamiltonian Eq.~1.1! is characterized by means of two parameters,1 namelyl
playing the role of a coupling constant anda>0 determining the degree of the singularity of th
potential at the origin. Therefore, it has been regarded as a two parameter~a, l! problem. Recently
however, the present authors2 have studied a more general family of Hamiltonians, known
generalized spiked harmonic oscillators, determined by

H5H01
l

xa , H052
d2

dx2 1Bx21
A

x2 ~B.0, A>0! ~1.3!

a!Electronic mail: rhall@mathstat.concordia.ca
940022-2488/2002/43(1)/94/19/$19.00 © 2002 American Institute of Physics
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as an operator inL2(0,̀ ). They argued2–5 that the basis, constructed from the exact solutions
the singular Gol’dman and Krivchenkov HamiltonianH0 in Eq. ~1.3!, forms a more effective
starting point for a perturbative variational treatment of the Hamiltonian~1.1! than the basis of the
ordinary harmonic oscillator, as used, for example, in earlier works of Aguilera-Navarroet al.6,7

The objective of the present article is the demonstration of this contention, as well as the
lishment of a single variational method suitable for thecompleteset of eigenvalues of the Schro¨-
dinger equation~1.2!. ‘‘Suitable’’ means that, regardless of the values of the parametersl anda,
the presented variational treatment remains valid for all discrete energy eigenvaluesEn , n
50,1,2,... and further, is also valid in theN-dimensional case with an arbitrary angular-moment
quantum numberl.

The article is essentially self-contained, providing verification of the most relevant re
concerning the generalized spiked harmonic oscillators~1.3!. The proof we here give for the
completeness of the setS5$cn% of eigenfunctions ofH0 is topological in nature and compac
However, the principal advances of the present work over Ref. 2 are twofold. First, we
managed now to derive closed forms for the infinite sums representing the matrix elementH
with respect toS; this, in turn, has allowed us to use these matrices to find accurate energy
bounds quickly. Second, we have included a free parameterA in the perturbation~1.3! and
consequently a final minimization of the matrix eigenvalues overA generates even more accura
eigenvalue approximations, or allows us to determine the eigenvalues to a given accuracy w
use of matrices having smaller dimensionD. In Sec. II, we give a brief history of the spike
harmonic oscillator problem and indicate its relevance. Thereafter we present in Sec.
Gol’dman and Krivchenkov potential2 as an exactly solvable model of singular type, and pro
that the exact solutions of its Schro¨dinger equation form a complete orthonormal basis of
Hilbert spaceL2(0,̀ ). This topological fact is accomplished by means of using abscissas of
convergence, absolute convergence, as well as of holomorphy of the Laplace transform,
abscissas are well discussed in the book of Gustav Doetsch. We further develop in Sec. IV e
expressions for the matrix elements of the Hamiltonian~1.3! for arbitrary values ofa subjected to
the restrictiong.a/2 with special attention given toa52, 4, and 6, for which we have the mo
complete analytic results. Hereing511 1

2A114A arises out of the energy expressions for t
exact solutions of the Gol’dman and Krivchenkov HamiltonianH0 , whereasg.a/2 follows from
the necessity of taking inner products of functions of typef (x)5xg2(a11)/2exp(2bx2/2)P(x)
with one another in the Hilbert spaceL2(0,̀ ), whereP(x) is an arbitrary polynomial. This is
followed by our variational treatment in Sec. V, wherein we compare in detail our method
that of the variational approach of Aguliera-Navarroet al.6,7 An extension to theN-dimensional
case with arbitrary angular momentum numberl 50,1,2,... is provided in Sec. VI. Finally, numer
cal results with detailed comparisons to previous work, accompanied by concluding remark
given in Sec. VII. The difficulty concerning convergence of the eigenvalues approximation
culated from the truncated matrix, in particular the slowness of convergence of the eigenval
looked at in depth for the case ofa54. It is proved that there is a critical valuelc55/4 such that
convergence is slow whenl,lc and rapid whenl.lc .

II. BACKGROUND AND BRIEF HISTORY

There are several reasons for the interest in the spiked harmonic oscillator Hamiltonia1–42

First, it represents the simplest model of certain realistic interaction potentials in atomic, mo
lar, and nuclear physics, and second, its interesting intrinsic properties from the viewpo
mathematical physics. The potentialV(x)5x21l/xa gives rise to a notably long-ago recognize
surprise, i.e., no dominance of either of the two interaction potentialsx2 and l/xa takes place.
Thus, for all values ofl.0, the terml/xa always adds an infinite repulsive barrier near the ori
and on the other hand, one can never neglect thex2 term because its absence demolishes
existence of the ground-state energy.43,44 Consequently,7 the potentialx21l/xa is like a wide
valley extending tò . Further, the study for smalll reveals the presence of two different beha
iors depending on the value ofa. When a,5/2, the ground state energy has a power se
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expansion7 in terms ofl. For a>5/2, the regular perturbation theory fails badly for this kind
~supersingular! potential. Another interesting observation is that after the perturbationlx2a is
shut off (l→0), permanent and irreversible~vestigial! effects of the interaction remain.5 The
latter effect was first noted by Klauder,8–10 who discussed this remarkable phenomenon in c
nection with nonrenormalizable covariant quantum field theories. In particular, potentiaV,
which are sufficiently singular, cannot be smoothly turned off (l→0) in the HamiltonianH
5H01lV to restore the free HamiltonianH0 . This is now know as Klauder’s phenomenon.11–13

Indeed, an obvious approach to obtain information about the spectrum of the Hamiltonian eq
~1.1! is to regard the potentialx2a as a perturbation of the well-known harmonic oscillat
Hamiltonian. By means of the exact solutionsun of the harmonic oscillator, one attempts
investigate the behavior of the spectrum in terms of the unperturbed eigenfunctionsun of H0 .
Detwiler and Klauder14 realized that the normal perturbation theory already fails badly for the
correction of the ground-state energy (n50) for a>3. Examining the asymptotic behavior of th
lowest eigenvalues ofH by means of variational arguments, they were able to predict the kin
dependence the ground state energyE5E(l) has on the couplingl for l sufficiently small.

Due to the failure of the Rayleigh–Schro¨dinger series, a modified perturbation theory w
required, especially to ascertain the higher-order expressions in the energy expansion in te
powers of l. Harrell1 modified the Rayleigh–Schro¨dinger series by utilizing the standar
~Wentzel–Kramers–Brillouin!-approximation technique for the lowest few orders. This proving
be quite successful, he continued to develop a special perturbation theory, now know as s
perturbation theory, and thereby obtained the first few terms of the perturbedl-expansion for
different values ofa. This turned out to be a nonpower series expansion and in fact was of ex
the same order as of Detwiler and Klauder.14 Its drawback is however, that it is valid only fo
sufficiently small value of the couplingl, i.e., for l!1.

Since the early work of Detwiler and Klauder and Harrell, spiked harmonic-oscillator Ha
tonian equations~1.1! have become the subject of intensive study lasting over three decade2–42

Aguilera-Navarroet al.6 managed to obtain a strong coupling perturbative expansion (l@2) for
the ground state energy. Shortly after, Aguilera-Navarro and Guardiola7 attempted to find a path
leading from the weak-coupling regime due to Harrell1 to the strong coupling regime.6 Nonethe-
less, they failed to give a general constructive method to relate the two perturbative regim
arbitrary values of the exponenta. Special attention was given to certain values ofa. Aguilera-
Navarroet al.17 analyzed the Hamiltonian~1.1! for a51 around the three regionsl→2`, l
→0, andl→` via Rayleigh–Ritz large-order perturbative expansions. Aguilera-Navarroet al.18

studied the particular case ofa54 by using a non-orthonormal set satisfying the correct bound
conditions atx→` andx→0. Exact and approximate~variational! solutions of the ground stat
energy of the spiked harmonic oscillator problem have also been reported for particular par
values in the perturbation potential. Aside from these results, special methods have been
oped to compute the eigenvalues numerically with high precision.30–39

Most of these results however, concern themselves with different approximation techn
for the ground-state energy for the problem in one spatial dimension. Recently, theN-dimensional
case has began to attract the attention of many researchers.3–5,41,42 In earlier work2–5 we have
pointed out the advantages of basing our variational analysis on an exactly soluble model,
itself has a singular potential term.2 We examine a family of generalized spiked harmon
oscillator Hamiltonians~1.1! in terms of a one-dimensional space variablex (0<x,`) with
eigenfunctions satisfying Dirichlet boundary condition as stated in Eq.~1.3!, that is to say, with
wave functions vanishing at the boundaries. The singular orthonormal basis, consisting of
of exact solutions ofH0 , serves as a better starting point for the analysis of the Hamilto
equation~1.1!. In this paper we use these exact solutions ofH0 to provide systematic variationa
solutions of the spiked harmonic oscillator Hamiltonians~1.1!. We first discuss the tools we
implement herein, namely the Gol’dman and Krivchenkov orthonormal basis.
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III. ORTHONORMALITY OF CONFLUENT HYPERGEOMETRIC SERIES AND SINGULAR
POTENTIALS

The purpose of the section is to develop the necessary tools for the variational approa
shall present later. Specifically, we derive in this section the orthonormal basis most suitab
dealing with the Hamiltonian equation~1.3!. Although the variational method does notper se
require the use of a complete orthonormal basis, one can employ in some situations an orth
or even a nonorthogonal,18 set of sufficiently smooth functions to attain very effective results
such cases, however, the variational method shall only have meaning for the particular
chosen functions,18 and the slightest modification of the original problem shall immediately
cessitate a new set of functions or at least some modifications. Since we are interested in
basis functions admissible for the entire parameter range ofa andl in Eqs.~1.1! and~1.3! for our
variational method, we develop our solution by using the solution of an exactly solvable sin
potential whose singularity coincides with that of the spiked harmonic oscillator. Therefore
use an exactly solvable singular Hamiltonian known as the Gol’dman and Krivche
Hamiltonian,45,46

2c91V0S a

x
2

x

aD 2

c5Enc, xP@0,̀ ! with c~0!50, ~3.1!

namelyc satisfies the Dirichlet boundary condition. The energy spectrum in terms of the pa
etersV0 anda is given by45

En5
4

a
AV0H n1

1

2
1

1

4
~A114V0a222aAV0!J , ~3.2!

whereas the exact wave functions take the form

cn~x!5Cnxn expS 2
1

2

AV0

a
x2D 1F1S 2n,n1

1

2

AV0

a
x2D ~3.3!

with n5 1
2(11A114V0a2). In terms of the Pochhammer symbols,

~a!051, ~a!k5a~a11!~a12!...~a1k21!5
G~a1k!

G~a!
, k51,2,...,

expressed in terms of the gamma functionG, the previous function1F1 , known as the confluen
hypergeometric function,47 is defined by

1F1~2n;b;z!5 (
k50

n
~2n!kz

k

~b!kk!
. ~3.4!

To simplify the notation, we introduce parametersB5V0a22 andA5V0a2, and thereby obtain an
exact solution to the one-dimensional Schro¨dinger equation with the singular potential

V~x!5Bx21
A

x2 , B.0, A>0, ~3.5!

whose energy spectrum is now given in terms of parametersA andB by

En52b~2n1g!, n50,1,2,..., ~3.6!

whereinb5AB andg511 1
2A114A. The wave functions in this case have the form

cn~x!5Cnxg21/2e2~1/2!bx2

1F1~2n;g;bx2! for n50,1,2,... . ~3.7!
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The constantCn in Eq. ~3.7! is determined from the normalization condition

E
0

`

cn
2~x!dx51. ~3.8!

In order to compute this integral, we need the following lemma, which is a generalizatio
formula f6 in the appendix of the bookQuantum Mechanicsby Landau and Lifshitz.46

Lemma 1:For g.0, andm,n50,1,2,...,

E
0

`

x2g21e2bx2

1F1~2n;g;bx2! 1F1~2m;g;bx2!dx5
1

2

n!G~g!

bg~g!n
dmn , ~3.9!

wheredmn50 for mÞn and 1 form5n.
Proof: We denote the indefinite integral of the left-hand side of Eq.~3.9! by I mn and have by

means of the series representation Eq.~3.4! of the confluent hypergeometric function1F1 that

I mn5 (
k50

m

(
l 50

n
~2m!k~2n! l

~g!k~g! l

bk1 l

k! l ! E0

`

x2g12k12l 21e2bx2
dx.

Further, after resorting to the integral representation of the gamma function

G~x!5E
0

`

e2ttx21 dt, x.0,

and a change of variables, we obtain for 2g12k12l 21.0 that

I mn5
1

2bg (
k50

n

(
l 50

m
~2n!k~2m! l

~g!k~g! l

G~g1k1 l !

k! l !
5

1

2bg (
k50

n F(
l 50

m
~2m! l~g1k! l

~g! l l !
G ~2n!kG~g1k!

~g!kk!
.

The finite sum inside the square brackets is just the series representation of the terminated
geometric function2F1 , and therefore

I mn5
1

2bg (
k50

n

2F1~2m,g1k;g;1!
~2n!kG~g1k!

~g!kk!
.

Applying Chu-Vandermonde’s theorem48 on summing the series2F1 with unit argument, we get

I mn5
G~g!

2bg~g!m
(
k50

n
~2k!m~2n!k

k!
, ~3.10!

wherein we have invoked the identity

~2k!n5H ~21!nk!

~k2n!!
if 0<n<k

0 if n.k.

~3.11!

On account of Eq.~3.11!, the product (2k)m(2n)k in Eq. ~3.10! differs from zero only forn
5k5m, and thus

(
k50

n
~2k!m~2n!k

k!
5n!

if n5m or 0 if nÞm, which terminates the proof of our lemma. j
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The reader should realize at this point the connection between the above-mentioned
and the orthonormality relation of Laguerre polynomials. In fact, because of the relation47

1F1~2n;g11;x!5
n!

~g11!n
Ln

~g!~x!,

Eq. ~3.9! is just another form of the orthonormality condition for Laguerre ploynomials. Thus
normalization constantsCn of Eq. ~3.7! can now be determined via Lemma 1 and the normali
tion condition Eq.~3.8!, and this entails

Cn
225

1

2

n!G~g!

bg~g!n
, ~3.12!

and the normalized wave function equation~3.7! now reads as follows:

cn~x!5~21!nA2bg~g!n

n!G~g!
xg21/2e2~1/2!bx2

1F1~2n;g;bx2!. ~3.13!

The alternating coefficients (21)n were introduced in the definition ofcn(x) to guarantee a
smooth transition by means of the identity

1F1S 2n,
3

2
,x2D5

~21!n

2x

n!

~2n11!!
H2n11~x! ~3.14!

to the odd solutions of the harmonic oscillator problem, namely the caseA50 in Eq. ~3.7!. From
the immediately preceeding we arrive at

Theorem 1: For cn(x) defined by Eq.~3.13!, the following orthonormality relations

E
0

`

cn~x!cm~x!dx5dmn , m,n50,1,2,...

hold in L2(0,̀ ).
It may seem that the HamiltonianH0 is self-adjoint, whence we could assume the comple

ness of the normalized eigenfunctions$cn(x)%n50
` from the general theory of self-adjoint oper

tors. However, we are inhibited from doing this because of the domain of definition ofH0 . The
Hamiltonian operatorH0 in the Hilbert spaceL2(0,̀ ) cannot have all ofL2(0,̀ ) as its domain of
definition on account of the presence of the second derivative inH0 . Consequently, the totality
C0

`(0,̀ ) of infinitely differentiable complex valued functions on~0,̀ ! with compact support is
initially assumed to be the domain of definition ofH0 . C0

`(0,̀ ) lies dense inL2(0,̀ ) andH0 is
formally adjoint to itself, but not necessarily self-adjoint. To makeH0 self-adjoint, we invoke its
Friedrichs extension,49,50which is a self-adjoint and exists in principle. If we considerH0 to stand
for its Friedrichs extension, then we need to know its spectrums(H0)5sd(H0)øse(H0), i.e.,
the disjoint union of its discrete and essential spectrums.L2(0,̀ ) is the direct sum of the eigens
paces ofH0 if and only if the essential spectrum is empty.51,52 We establishse(H0)5B by
demonstrating completeness for the system$cn(x)%n50

` in the Hilbert spaceL2(0,̀ ) of all square
integrable functions over the interval~0,̀ ! for H0 in its Friedrichs extension form, by means
the well-known Hahn–Banach theorem.

Theorem 2: The set ofL2(0,̀ )-functions$cn(x)%n50
` , defined by Eq.~3.13!, is a complete

orthonormal basis for the Hilbert spaceL2(0,̀ ).
Proof: The orthonormality of$cn(x)%n50

` follows from Theorem 1. To prove completenes
we proceed as follows. On account of the definition~3.13! of cn(x) in terms of the hypergeo
metric function
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1F1~2n,g,bx2!5 (
k50

n S n
kD ~2b!n2kG~b!

G~g1n2k!
x2~n2k!

we can express each of the functions1F1(2n,g,bx2)(n>0) uniquely as a finite linear combina
tion of x2n(n>0) as well as conversely. This in terms of the span, which we denote by~L.H.!,
means that (L.H.)(1F1(2n,g,bx2)(n>0))5(L.H.)(x2n(n>0)). Wemultiply each member of
these two sets byxg21/2exp(2bx2/2), and thereby obtain a linear subspace of the Hilbert sp
L2(0,̀ ), whose topological closure satifies

~L.H.!~•g21/2
1F1~2n,g,b•2!exp~2b•2/2!~n>0!!5~L.H.!~•g21/212n exp~2b•2/2!~n>0!!,

and further, orthogonal complementation yields

@~L.H.!~•g21/2
1F1~2n,g,b2!exp~2b•2/2!~n>0!!#'

5@~L.H.!~•g21/212n exp~2b•2/2!~n>0!!#'.

Now we turn to demonstrating that@(L.H.)(•g21/2
1F1(2n,g,b•2)exp(2b•2/2)(n>0))#'50, in

other words$Cn•
g21/2

1F1(2n,g,b•2)exp(2b•2/2)%n50
` constitutes an orthonormal basis of th

Hilbert spaceL2(0,̀ ) with Cn’s given by ~3.12!. Assuming thatFPL2(0,̀ ) with F'(L.H.)
(•g21/2

1F1(2n,g,b•2)exp(2b•2/2)(n>0)) leads directly to

^•g21/212n exp~2b•2/2!uF&5E
0

`

xg21/212n exp~2bx2/2!F~x!dx50 ~n>0!.

We define

f ~s![E
0

`

xg21/2exp~2sx2/2!F~x!dx5E
0

`

e2stF~ t !dt,

whereF(t)[tg/223/4F(At)/2.
Out of the fact thatFPL2(0,̀ ) follows

E
0

`

ue2stF~ t !udt5E
0

`

1/2tg/223/4uF~At !uexp~2~Rs!t !dt

5&E
0

`

tg/221/2exp~2~Rs!t !uF~At !u
1

&
t21/4dt

<&AE
0

`

utg/221/2exp~2~Rs!t !u2 dtAE
0

`

uF~At !u2 dt

5&AE
0

`

exp~22~Rs!t !tg21 dtAE
0

`

uF~x!u2 dx

5&A 1

~2Rs!g E
0

`

e2ttg21 dtiFiL2~0,̀ !

5A2~Rs!2gG~g!iFiL2~0,̀ !

,`.
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Herewith the abscissaã of absolute convergence53 of the Laplace integralf (s)5L$F%, namely
the smallest real numberã, such that*0

`ue2stF(t)udt,` for all Rs.ã, has the property tha
ã<0. In consequence of our substitutionx5At, we have further that

^•g21/212n exp~2b2/2!uF&5~21!nE
0

`

~2t !ne2~b/2!tF~ t !dt5 f ~n!~b/2!50 ~n>0!.

~3.15!

Sincef (s) is definitely holomorphic in the half-planeRs.0, because the abscissa of holomorp
x̃ satisfiesx̃<b̃<ã ~b̃ being the abscissa of ordinary convergence of the Laplace Integ53

L$F%!, f (s) shall clearly have a Taylor series expansion

f ~s!5 (
n50

`

~n! !21f ~n!~b/2!~s2b/2!n50 ~ us2b/2u,b/2! ~3.16!

in terms of Eq.~3.15! about the pointb/2.0. The radius of convergence of this Taylor series is
least a big asb/2, since it may happen that the abscissa of holomorphy53 x̃ of the Laplace integral
f (s)5L$F% is definitely less than the abscissab̃ of ordinary convergence, not to mention that
absolute convergenceã. Thus we have thatf (s)[0 in the open diskus2b/2u,b/2 of the s
complex plane. By means of the identity theorem of holomorphic functions,54 we have that the
Laplace integralf (s)5L$F%[0 in the half-plane of holomorphyRs.x̃; and more so in the
holomorphy domain off, which contains its half-plane of holomorphy. The uniqueness of
Laplace-transform implies thatF(t)[1/2tg/223/4F(At)50 a.e. int on the interval@0,̀ !. Hence,
*0

`uF(At)u2(2At)21dt5*0
`uF(x)u2 dx50, namelyF50 a.e. on~0,̀ !, which is to say that$Cn

•

g21/2
1F1(2n,g;b•2)%n50

` constitutes a complete orthonormal basis of the Hilbert sp
L2(0,̀ ). j

IV. THE MATRIX ELEMENTS FOR SINGULAR POTENTIALS

It is well known that the Schro¨dinger equation, even in the one-dimensional case, ra
possesses an exact~analytic! solution. Consequently, a multitude of arduous numerical techniq
have been implemented to ascertain its energy eigenvalues over several decades; from
these, we mention matrix diagonalization. Our primary aim in this section is to find the m
elements of the Hamiltonian equation~1.3!, whose calculation is achieved by means of

Lemma 2:If 2g2a.0, then for all pairs of non-negative integers andm andn we have that

E
0

`

x2g2a21e2bx2

1F1~2n,g,bx2!1F1~2m,g,bx2!dx

5
ba/22g

2

S a

2 D
n

GS g2
a

2 D
~g!n

3F2S 2m,g2
a

2
,12

a

2
;g,12

a

2
2n;1D . ~4.1!

Proof: Let I mn denote the infinite integral on the left-hand side of Eq.~4.1!. Using the series
representation equation~3.4! of the confluent hypergeometric function1F1 yields

I mn5 (
k50

m

(
l 50

n
~2m!k~2n! l

~g!k~g! l

bk1 l

k! l ! E0

`

x2a12g12k12l 21e2bx2
dx. ~4.2!

By resorting to the integral representation of gamma function, we obtain under the con
2a/21g1k1 l .0 that
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I mn5
1

2 (
k50

m

(
l 50

n
~2m!k~2n! l

~g!k~g! l

ba/22g

k! l !
GS 2

a

2
1g1k2 l D

5
1

2
ba/22g(

k50

m F(
l 50

n ~2n! lGS 2
a

2
1g1k1 l D

~g! l l !
G ~2m!k

~g!k

1

k!
. ~4.3!

This relation we rewrite in terms of the Pochhammer symbols, useG(2a/21g1k1 l )5
(2a/21g1k) lG(2a/21g1k), invoke Chu–Vandermonde’s theorem, and thus write

(
l 50

n ~2n! lGS 2
a

2
1g1k1 l D

~g! l l !
5(

l 50

n ~2n! l S 2
a

2
1g1kD

l

~g! l l !
GS 2

a

2
1g1kD

5GS 2
a

2
1g1kD 2F1S 2n2

a

2
1g1k;g;1D

5GS 2
a

2
1g1kD S a

2
2kD

n

~g!n
~4.4!

for the finite sum inside the square brackets of Eq.~4.3!. Consequently, we arrive at

I mm5
1

2
ba/22g(

k50

m

GS 2
a

2
1g1kD S a

2
2kD

n

~g!n

~2m!k

~g!k

1

k!

5
1

2
ba/22g

G~g!

~g!n
(
k50

m

~21!kS m
k D GS a

2
1n2kDGS 2

a

2
1g1kD

G~g1k!GS a

2
2kD , ~4.5!

wherein we have used the identity (2m)k /k! 5(21)k(k
m). We further simplify expression~4.5! by

taking note of

~a2k!n5
~12a!k~a!n

~12a2n!k

in order to justify the relation

I mn5
1

2
ba/22g

GS g2
a

2 D S a

2 D
n

~g!n
(
k50

m ~2m!kS g2
a

2 D
k
S 12

a

2 D
k

~g!kS 12
a

2
2nD

k

k!

5
1

2
ba/22g

GS g2
a

2 D S a

2 D
n

~g!n
3F2

S 2m,g2
a

2
,12

a

2
;g,12

a

2
2n;1D , ~4.6!

which is valid for all values ofa and g such thatg2a/2.0. This completes the proof of th
lemma. j
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It should be noted that Eq.~4.1! is a generalization of Eq.~3.9!, and under the limit process o
a→01 Eq. ~4.1! reduced to Eq.~3.9!. In order to prove this, we proceed by proving

lim
a→01

S a

2 D
n

3F2S 2m,g2
a

2
,12

a

2
;g,12

a

2
2n;1D5n!dmn . ~4.7!

This can be demonstrated by bringing in the series representation of the terminated hyperg
ric function 3F2 , which leads to

S a

2 D
n

3F2S 2m,g2
a

2
,12

a

2
;g,12

a

2
2n;1D5 (

k50

m ~2m!kS g2
a

2 D
k
S 12

a

2 D
k

~21!nGS 12
a

2 D
k! ~g!kGS 12

a

2
2n1kD

by means of the identities

S 12
a

2
2nD

k

5

GS 12
a

2
2n1kD

S 12
a

2 D
2n

GS 12
a

2 D 5~21!n

S a

2 D
n

GS 12
a

2
2n1kD

GS 12
a

2 D .

Therefore, by taking the limit asa→01, we can easily see that

lim
a→01

S a

2 D
n

3F2S 2m,g2
a

2
,12

a

2
;g,12

a

2
2n;1D5 (

k50

m
~2m!k~21!n

G~12n1k!
5 (

k50

m
~2m!k~2k!n

k!
,

where we have made use of the relation (11k)2n5(21)n/(2k)n . Again, the product
(2m)k(2k)n leads to the fact that the sum

(
k50

m
~2m!k~2k!n

k!

collapses ton!, for the case ofm5k5n, and 0 otherwise.
The matrix elements of the Hamiltonian~1.3! are now given by means of Lemma 3 in term

of the infinite integral

xmn
2a5^cmux2aucn&5CmCnE

0

`

x2g2a21e2bx2

1F1~2n,g,bx2!1F1~2m,g,bx2!dx. ~4.8!

Therefore, as a consequence of Lemma 2 and Eq.~3.12!, the matrix elements now assume th
explicit forms

xmn
2a5~21!n1mba/2

S a

2 D
n

~g!n

GS g2
a

2 D
G~g!

A~g!n~g!m

n!m! 3F2S 2m,g2
a

2
,12

a

2
;g,12n2

a

2
;1D ;

~4.9!

among which the following is of particular interest
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x0n
2a5~21!nba/2

S a

2 D
n

~g!n

GS g2
a

2 D
G~g!

A~g!n

n!
. ~4.10!

In the case ofa being a non-negative even number (a52,4,6,...), the hypergeometric functio

3F2 in Eq. ~4.9! may be looked upon as a terminated polynomial of degree 12a/2 instead of an
m-degree polynomial; thus forn>m anda52,4,6,... we have that

3F2S 2S a

2
21D ,g2

a

2
,2m;g,12n2

a

2
;1D5 (

s50

@a/221# ~2m!sS g2
a

2 D
s
S 12

a

2 D
s

s! ~g!sS 12
a

2
2nD

s

. ~4.11!

As a result hereof, the matrix elements~4.9! further simplify into the closed form expression
immediately appearing. These are most suitable for computational purposes as for the cag
.0 anda50, we indeed shall have

xmn
0 5H 1 if n5m

0 if nÞm
~4.12!

after using Eq.~4.7!; as it should have been expected in this specific case. For the case ofg.1
anda52, we have from Eq.~4.9! that

xmn
2255 ~21!m1nb

G~g21!

G~g!
An! ~g!m

m! ~g!n

if n>m

~21!m1nb
G~g21!

G~g!
Am! ~g!n

n! ~g!m

if m>n.

~4.13!

On the other hand, if the case isg.2 anda54, we then have from Eqs.~4.9! and ~4.11! that

xmn
2455 ~21!m1mb2

G~g22!

G~g11!
An! ~g!m

m! ~g!n
@g~n2m11!12m# if n>m

~21!m1nb2
G~g22!

G~g11!
Am! ~g!n

n! ~g!m
@g~m2n11!12n# if m>n.

~4.14!

As a final case that we illustrate, namelyg.3 anda56, we point to the fact that Eq.~4.9! lets us
deduce

xmn
2655

~21!m1n
b3

2

G~g23!

G~g12!
An! ~g!m

m! ~g!n
@~21n!~11n!g~g11!22m~11n!

3~g23!~g11!2m~12m!~g22!~g23!] if n>m

~21!m1n
b3

2

G~g23!

G~g12!
Am! ~g!n

n! ~g!m
@~21m!~11m!g~g11!22n~11m!

3~g23!~g11!2n~12n!~g22!~g23! if m>n.

~4.15!

Actually, we can derive similar expressions for all even integers beyond 6, i.e.,a58,10,... . We
point to the cases wherem>n, where the derivation is achieved by interchanging the order of
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summation of Eq.~4.2! and applying thereafter Eq.~4.11! in reversed order. The particular case
A50 ~or g5 3

2! andB51, that is, allows us, of course, to recover the result of Aguilera-Nav
et al.6 as a special case.

V. VARIATIONAL APPROACH

In this section we implement the results developed in Sec. IV to calculate the matrix ele
of x2a by means of a complete orthonormal basis. Thereby we shall be able to introd
variational treatment of the spiked harmonic oscillator Hamiltonian given by Eq.~1.1!. The prin-
ciple idea is the representation of the Hamiltonian equation~1.1! as

H52
d2

dx2 1Bx21
l

xa 52
d2

dx2 1Bx21
A

x2 1S l

xa2
A

x2D , ~5.1!

where, at a later point,A(Þ0) plays the role of an extra degree of freedom, which shall
determined through a minimization procedure. Although the idea is not complicated, it has
advantages and we mention just a few. First, the range ofa is no longer restricted and it can b
extended as one pleases, provided the condition 2g.a or more explicitlyA. 1

4(a22)22 1
4 is

satisfied. Second, it substantially reduces the number of basis elements required for the co
tion of the eigenvalues of the Hamiltonian equation~1.1!, even for the intermediate regionl
'1. Third, it be can be adapted effectively and allows easy handling by means of sym
software such as Mathematica. Fourth, the approach of Aguilera-Navarroet al. now becomes a
special case, namely setA50 andB51. Fifth, it can be easily extended to the case ofN dimen-
sions, where the orbital angular momentum numberl is arbitrary, with minor modifications only
as we shall see in Sec. VI.

Let c(x) be a trial function for HamiltonianH given by Eq.~5.1!, and let us suppose tha
c(x) is expandable as finite linear combinations of the basis functionscn(x) as given by Eq.
~3.13!, i.e.,

c~x!5 (
n50

D21

ancn~x!. ~5.2!

The problem now is to minimize the eigenenergies of Eq.~5.2! with respect to the variationa
parametersan , n50,1,...,D21 in the finite dimensional subspaceHD spanned by theD functions
c0 , c1 ,..., cD21 . However, this is equivalent to diagonalizing the Hamiltonian in Eq.~5.2! in the
subspaceHD . By separating the Hamiltonian equation~5.1! into two contributionsH05
2d2/dx21Bx21Ax22 andHI5lx2a2Ax22, we have

Hmn5E
0

`

cm~x!Hcn~x!dx[^cmuH0ucn&1^cmuHI ucn&, m,n50,1,2,...,D21. ~5.3!

Since the matrix representation ofH0 is diagonal in the basis$cn%0
` , the first term on the

right-hand side of Eq.~5.3! yields the exact solution of Gol’dman and Krivchenkov potent
equation~3.6!, i.e.,

^cmuH0ucn&52b~2n1g!dmn ~b5AB,g511 1
2A114A!,

and the second term on the right-hand side of Eq.~5.3! is given by

^cmuHI ucn&5l^cmux2aucn&2A^cmux22ucn&,

where^cmux2aucn& and ^cmux22ucn& are given by Eqs.~4.9! and ~4.13!, respectively.
Two important observations follow from these results. First, the matrix elements of the H

tonian~5.1! in terms of the Gol’dman and Krivchenkov basis equation~3.13! are given explicitly
by (m,n50,1,2,...,D21,n>m)
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Hmn52b~2n1g!dnm1~21!n1mlba/2

S a

2 D
n

~g!n

GS g2
a

2 D
G~g!

A~g!n~g!m

n!m!

3 3F2S 2m,g2
a

2
,12

a

2
;g,12n2

a

2
;1D2~21!m1n

Ab

g21
An! ~g!m

m! ~g!n
~5.4!

taken over theD-dimensional subspace spanned by basis~3.13!. The expressions in Eq.~5.4! are
highly suitable for the systematic computer-aided calculations of the energy eigenvalues
agonalization and subsequent minimization of the matrix

min
A

diagS H00 H10 ¯ H1D21

H10 H11 ¯ H1D21

¯ ¯ ¯ ¯

HD210 HD211 ¯ HD21D21

D . ~5.5!

Second, by increasing the matrix dimensionD, we can always improve these upper ener
bounds. In the variational analysis of the ground state energy of the singular potentialV(x)5x2

1lx2a, Aguilera-Navarroet al.6 utilized an orthonormal basis of harmonic oscillator eigenfu
tions on the interval~0,̀ !, i.e., the set of Hermite functions generated by the nonsing
harmonic-oscillator potentialx2. This is equivalent to our basis functions for the caseB51 and
A50, as mentioned earlier. The shortcomings of their approach, however, are as follows
validity only holds fora,3. Second, a huge set of the basis elements is needed to obtain re
ably accurate eigenvalues, and this even for the intermediate region (l'1).

VI. THE N-DIMENSIONAL CASE

In order to extended the scope of our variational analysis to theN-dimensional spiked har
monic oscillator Hamiltonian equation~1.1!, we first determine the exact solutions of th
N-dimensional Schro¨dinger equation with a Gol’dman and Krivchenkov potential equation~3.5!.
To do this, we notice that theA term of the Gol’dman and Krivchenkov potential has the dime
sions of kinetic energy, such as the term that appears in higher-dimensional systems. We th
may replaceA in Eq. ~3.5! with

A→A1L~L11!, L5 l 1 1
2~N23!, N>2, ~6.1!

and thereby obtain an exact solutions ofN-dimensional radial Schro¨dinger equation

S 2
d2

dx2 1
L~L11!

x2 1Bx21
A

x2Dcnl5Enl
N cnl . ~6.2!

Such exact solutions are generated from the well-known solutions of harmonic oscillator po
by two simple transformations. We first replace the angular momentuml in the harmonic oscillator

energy expressionb(4n12l 13), n50,1,2,... by2 1
21AA1( l 1 1

2)
2, and subsequently replacel

with L. Thus, the exact eigenvalues ofN-dimensional Schro¨dinger equation with a Gol’dman an
Krivchenkov potential are

Enl
N 52b~2n1gN!, n,l50,1,2,..., ~6.3!

whereb5AB andgN511AA1(L1 1
2)

2, while the exact eigenfunctions are given by

cnl~x!5~21!nA2bgN~gN!n

n!G~gN!
xgN21/2e2~1/2!bx2

1F1~2n;gN ;bx2!. ~6.4!
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The matrix elements in this case turn out to be

^cmlux2aucnl&5~21!n1mba/2

S a

2 D
n

~g!n

GS gN2
a

2 D
G~gN!

A~gN!n~gN!m

n!m!

3 3F2S 2m,gN2
a

2
,12

a

2
;gN,12n2

a

2
;1D N>2. ~6.5!

Matrix elements for the special cases ofa52,4,6,... are obtained by substituting in Eqs.~4.13!–

~4.15! for g the expressiongN , wheregN511AA1(L1 1
2)

2. The matrix elements of the Hamil
tonian equation~6.2! now turn out to be very similar to those in Eq.~5.4!, namely

Hmn52b~2n1gN!dmn1l^cmlux2aucnl&2A^cmlux22ucnl&, N>2. ~6.6!

Since the purpose of the present work is to consider the variational analysis of the eigenva
the Hamiltonian equation~1.1! with Dirichlet boundary condition, we restricted ourselves to
case ofN>2 in order to avoid problems stemming from the degeneracy of the spectrum i
case ofN51. The one-dimensional case Eq.~5.4! on L2(0,̀ ) is recovered by settingD53 and
l 50. Further, the recovery of the results of Aguilera-Navarroet al. is achieved by substituting
A50, B51, D53, andl 50 in Eq. ~6.6!.

VII. NUMERICAL RESULTS

Although the variational method has been used earlier in one form or another, the specia
it takes in the present article has a specific purpose. First, the demonstration of the validity
accurate and uniform approximation not only for the ground state energy of Eq.~1.1!, but also for
the entire spectrum in arbitrary dimensions with arbitrary angular-momentum number. And
ond, its applicability to general values of the parameters~a, l! of the potential, subjected to th
restrictiona,2g. The achievement of these purposes is due to the closed forms we have
able to obtain for the matrix-elements Eq.~4.9!. At this point we note that the variational resul
are upper bounds to the energy levels, in accordance with the variational theorem.

For a,2 the variational method gives excellent results for arbitrary value of the couplinl.
The advantage of the minimization process with respect to parameterA is shown in Table I. Herein
we compare the numerical values obtained by diagonalization fora50.5 for different dimensions
of the matrix equation~5.5! with numerical values obtained by the process of diagonalization
minimization with respect toA. There is an interesting observation, which must be noted here
givena,2, the dimension of the matrix required for obtaining results of a given accuracy dep
on the behavior of the couplingl. For the case wherel is small, however, we can get away wit
a matrix equation~5.5! of smaller dimension as compared to the case wherel is large. To further

TABLE I. The rate of convergency for the upper bound of the ground state energyE0 of the Schro¨dinger equation
(2D1x21l/x0.5)c5E0c for l50.1 andl51000.E0

A50 obtained by diagonalization of theD3D matrix elements,E0
A

obtained by diagonalization of theD3D matrix elements then minimizing with respect to the parameterA.

D3D

l50.1 l51000

E0
A50 E0

A E0
A50 E0

A

131 3.102 277 3.102 185 1025.765 672 415.934 312
232 3.102 167 3.102 149 746.081 846 415.932 051
333 3.102 151 3.102 143 642.417 430 145.890 659
535 3.102 143 3.102 141 549.825 333 415.889 798
10310 3.102 140 3.102 139

~Exact!
461.349 666 415.889 785

~Exact!
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illustrate this point, a one-dimension subspace~131 matrix! is adequate for calculating the e
genvalue 3.001 128~exact to the accuracy quoted! for l50.001 whena51; but forl510, on the
other hand, a matrix at least of size 80380 is necessary to obtain the eigenvalue 10.577 48. In
case ofa51, we present in Table II a comparison of our numerical results to some pre
work.17 For a.2, the situation is completely reversed.

For a52, the first variational approximation~subspace of dimension one! to the ground state
eigenvalues of the spiked harmonic oscillator Hamiltonian is

E0~a52!52bg1
lb

g21
2

Ab

g21
, g511

1

2
A114A. ~7.1!

The minimization of this expression with respect to the parameterA can be easily performed an
leads toA5l. On substituting this back into Eq.~7.1! we getE052b(11 1

2A114A), which is
the exact result quoted in Eq.~3.6! for n50.

For arbitrarya, the first variational approximation~subspace of dimension 1! of the ground
state eigenvalues of the Hamiltonian equation~1.1! is

e05min
A

E05min
A

H 2bg1lba/2

GS g2
a

2 D
G~g!

2
Ab

g21
J , g511

1

2
A114A. ~7.2!

WhenD52, i.e., subspace of dimension 2, the diagonalization can also be performed analy
via the secular equation, that is to say by means of the expression

e65min
A

E65min
A

$ 1
2 @~H001H11!6A~H002H11!

21~2H01!
2#%. ~7.3!

where e05e2 and e15e1 . Moreover, one can obtain analytic expressions for upper bo
eigenvalues4 in this case.

Because of the simple formulas for the matrix elements in the cases ofa54 anda56 given
by ~4.14! and~4.15!, respectively, the determination of the energy values to any desired acc
has now been reduced to an easy task. A heuristic scheme for ascertaining the eigenvalue
required number of digits is as follows. The eigenvalues obtained from successive levels, s
(131,232,...), of the truncated matrix~5.5! are compared, and the calculation ceases when
successive eigenvalues agree with each other up to the prescribed decimal place. It is su
therefore, to use theN-dimensional case for the matrix elements equation~6.5! for calculation
purposes. To recover the one-dimensional case, we may setD53 and l 50, and to recover the
results of Aguilera-Navarroet al., we setA50, B51, D53, andl 50. Table III illustrates the use
of this procedure for the case ofa54 andl51000 in the dimensionsN52 – 10.

Another advantage of the variational approach presented herein is the amount of inform
that we get about the spectrum of the Hamiltonian equation~1.1! every time we compute the
eigenvalues via the diagonalization and minimization. Indeed, we obtain for an arbitrary m

TABLE II. A comparison between the resultsERP by means of Ricccati–
Padé~Ref. 17! and ER by means of renomalized series~Ref. 17! and the
result of the present workE ~correct to seven digits shown! for a51 and
various values of the couplingl.

l ERP ER E

0.001 3.001 128 3.001 143 3.001 128
0.01 3.011 276 3.011 417 3.011 276
0.1 3.110 9 3.113 386 3.112 068
1 4.057 906 4.064 649 4.057 888
10 10.577 483 10.577 825 10.577 485
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~5.5! of sizeD a set of upper bounds for the eigenvaluesE0 ,El ,...,ED21 . Each can be improved
by either an increase in the dimension of the matrix, or by extracting the desired level throu
diagonalization and thereafter minimizing with respect to parameterA, which is illustrated in
Table V.

For a.2 and small values ofl, the variational method is still applicable, however t
eigenvalues converge very slowly, and an immense number of matrix elements are needed
to obtain accurate results. In principle, the method is still effective as we see from Table V,
the expense of using a huge number of matrix elements. On the other hand, we obtained a
eigenvalues with the use of a modest number of matrix elements forl varying between 1000 and
0.01, as Table VI indicates. An interesting explanation of this lies in the following comment
us look at the perturbed Hamiltonian

H52
d2

dx2 1x21
A

x2 1eS l

xa2
A

x2D ~7.4!

instead of the one given by Eq.~5.1!, and solve the matrix eigenvalue problem by expanding
determinant in powers ofe up to and includinge2. It is well known6 that we shall end up with the
perturbation-like formula~after settinge51!

E5E01l^c0ux2auc0&2A^c0ux22uc0&2 (
nÞ0

D u^c0ulx2a2Ax22ucn&u2

En2E0
, ~7.5!

where the summation on the right-hand side is finite andD is the number of the basis function
used. By analyzing this sum, we shall come to understand the slow convergence of the eige
calculated by means of the variational approach. For the sake of simplicity, let us restrict our
to the case ofa54. With the aid of Eqs.~4.13! and ~4.14!, the sum in Eq.~7.5! becomes

TABLE III. Upper boundsEU for H52D1x211000/x4 for dimensionN
52 – 10, obtained by diagonalization then minimization of the 30330 ma-
trix elements. The ‘‘exact’’ valuesE were obtained by direct numerical
integration of Schro¨dinger’s equation.

N EU E

2 21.350 246 21.350 246
3 21.369 463 21.369 463
4 21.427 056 21.427 056
5 21.522 859 21.522 859
6 21.656 596 21.656 596
7 21.827 883 21.827 883
8 22.036 232 22.036 232
9 22.281 057 22.281 057
10 22.561 680 22.561 680

TABLE IV. For arbitrary sizeD3D of the matrix ~5.5! for H52D1x211000/x4, a set of upper bounds for the
eigenvaluesE0 ,E1 ,...,ED21 that can improve by increasing the sizeD.

131 232 333 434 535 636 737

21.427 79 21.382 12 21.374 00 21.370 07 21.369 72 21.369 51 21.369 4
26.298 42 26.189 48 26.166 99 26.155 44 26.154 18 26.153 4

31.097 17 30.919 24 30.878 34 30.856 56 30.851 94
35.834 86 35.587 50 35.525 79 35.492 11

40.520 33 40.205 49 40.121 62
45.160 79 44.781 42

49.762 16
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(
nÞ0

D u^c0ulx242Ax22ucn&u2

En2E0
5

1

4

G2~g22!

G2~g! Fl2(
n51

D
~n11!!

~g!n
12l~l2A~g22!! (

n51

D
~n11!!

n~g!n

1~l2A~l22!!2(
n51

D
~n11!!

n2~g!n
G ~7.6!

in this case. ForD→`, the sums on the right-hand side of Eq.~7.6! have closed-form expression
in terms of hypergeometric functions, particularly

(
nÞ0

` u^c0ulx242Ax22ucn&u2

En2E0
5

1

2g

G2~g22!

G2~g!
@l2

2F1~3,1;g11;1!

12l~l2A~g22!! 3F2~3,1,1;2,g11;1!

1~l2A~g22!!2
4F3~3,1,1,1;2,2,g11;1!#. ~7.7!

Herein the conditions of the convergence of hypergeometric functions48 guarantee that the func
tion 2F1 converges forg.3, the function3F2 converges forg.2, and4F3 converges forg.1.
Thus, Eq.~7.7! holds forg.3 or A.3.75 in general, but fora54, the matrixelementsequation
~4.9! holds for g.2 or A.0.75. This demonstrates the difficulties one encounters with
variational method for small value ofl. To understand this further, we note the relation betwe
l and the parameterA. Thus forl that is small,A is small; on the other hand,l large implies that
A is large. This is evident from the first variational approximation, namely Eq.~7.2! yields

TABLE V. Upper boundsEU for H52d2/dx21x21l/xa ~a54 and 6!, for small values ofl, obtained by diagonalization
of the D3D matrix elements then minimizing with repect to the parameterA.

E

l50.0025 l50.005 l50.01

a54 a56 a54 a56 a54 a56

EDKa 3.106 70 3.353 95 3.148 39 3.423 02 3.205 27 3.505 74
EHb 3.037 61 3.068 22 3.053 19 3.081 13 3.075 22 3.096 48
EKc 3.106 81 3.353 92 3.148 35 3.422 88 3.205 07 3.505 45
EPd 3.103 77 3.343 05 3.146 64 3.413 16 3.204 42 3.496 88
ELe 3.106 81 3.353 92 3.148 35 3.422 88 3.205 07 3.505 45
EUf 3.107 95 3.354 095 3.149 00 3.422 95 3.205 48 3.505 49

aFrom Ref. 14.
bFrom Ref. 1.
cFrom Ref. 32. Richardson extrapolation. Correct to the six digits shown.
dFrom Pade´ approximant technique~see Ref. 23!.
eFrom the Lanczos/grid method~see Ref. 23!. Correct to the six digits shown.
fFrom the present work.

TABLE VI. A comparison between the resultsEF of Fernández~Ref. 24!, and the resultsEHS of Hall et al. ~Ref. 29! and
the result of the present workEHSK ~correct to seven digits shown! for a54 anda56 and various values of the couplin
l.

l

a54 a56

E0
F E0

HS E0
HSK E0

F E0
HS E0

HSK

1000 21.384 46 21.370 26 21.369 462 12.737 60 12.725 65 12.718 61
100 11.292 41 11.265 86 11.265 080 8.422 60 8.420 96 8.413 358
10 6.649 78 6.609 66 6.606 622 6.016 40 6.014 94 6.003 209
1 4.548 79 4.504 16 4.494 179 4.676 88 4.684 97 4.659 940

0.1 3.626 44 3.600 44 3.575 557 4.019 15 4.042 84 3.915 665
0.01 3.237 75 3.249 80 3.205 486 3.524 93 3.580 70 3.505 492
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e05min
A

H 2g1
l

~g21!~g22!
2

A

g21J , g511
1

2
A114A. ~7.8!

After differentiating Eq.~7.8! with respect toA, it can be shown that the relation betweenA and
l is implicitly given by

l5
~g22!2~4~g21!221!

4~2g23!
, ~7.9!

from which it is quite easy to see thatl is an increasing function ofg for all g.2. Thus for Eq.
~7.7! to converge, we must haveg.3, i.e., l.1.25. This demonstrates that forl,1.25, the
accuracy of the eigenvalue calculations by means of the variational method necessitates a
of very large order.

VIII. CONCLUSION

In this paper we have carried our study of the spiked harmonic-oscillator problem furth
expressing the HamiltonianH given by Eq.~1.1! as the perturbation of the singular Gol’dman a
Krivchenkov HamiltonianH052d2/dx21Bx21A/x2, where the expressionlx2a2Ax22 is
looked upon as the perturbation term. We have provided a compact proof of the fact th
eigenfunctions of order 0 generated byH0 form a suitable singularity-adapted basis for the a
propriate Hilbert space of the full problem. Our principal results are fourfold:~1! the proof of the
completeness of the orthogonal set of normalized eigenvalues ofH0 by means of the domains o
convergence, absolute convergence, holomorphy of the Laplace transform;~2! the derivation of
the compact closed form~1.3! for the matrix elementsxmn

2a via infinite integrals of products of two
confluent hypergeometric functions;~3! a variational method applied to our perturbation of t
HamiltonianH0 , which proves to be very effective for accurate calculation of the eigenvalue
the spiked harmonic oscillator, as the accompanying numerical calculations verify;~4! we show
that this variational approach is applicable to the entire discrete spectrum for the spiked ha
oscillator inN dimensions.
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The noncommutative harmonic oscillator in more than one
dimension

Agapitos Hatzinikitasa) and Ioannis Smyrnakisb)

University of Crete, Department of Applied Mathematics, L. Knosou-Ambelokipi,
71409 Iraklio Crete, Greece

~Received 22 June 2001; accepted for publication 18 September 2001!

The noncommutative harmonic oscillator, with noncommutativity not only in posi-
tion space but also in phase space, in arbitrary dimension is examined. It is shown
that the!-genvalue problem, which replaces the Schro¨dinger problem in this case,
can be decomposed into separate harmonic oscillator equations for each dimension.
The two-dimensional noncommutative harmonic oscillator~four noncommutative
phase-space dimensions! is investigated in greater detail. The requirement of the
existence of rotationally symmetric solutions leads to a two parameter harmonic
oscillator which is completely solved in this case. The angular momentum operator
is derived and its!-genvalue problem is shown to be equivalent to the usual
eigenvalue problem of the!-genfunction related wave function. The!-genvalues of
the angular momentum are found to depend on the energy difference of the oscil-
lations in the two dimensions. Furthermore two examples of a symmetric noncom-
mutative harmonic oscillators are analyzed. The first is the noncommutative two-
dimensional Landau problem with harmonic oscillator potential, which shows
degeneracy in the energy levels for certain critical values of the noncommutativity
parameters, and the second is the three-dimensional harmonic oscillator with non-
commuting coordinates and momenta. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1416196#

I. INTRODUCTION

Deformation quantization,1 through !-product ~originally discovered by Groenewold!,2 has
recently been receiving increasing attention in field theories onRd, string theories, andM
theory.3–6

Recently, in string theory it was realized7 that the introduction of a constantB field gives rise
to noncommutative open string end points, which in turn generate noncommutativeD-brane con-
figuration spaces.

The appearance of noncommutative spaces helped to revive the deformation quant
technique of Moyal.7 This technique was elucidated further in Refs. 8 and 9. In this setup
ordinary product was replaced by the pivotal associative noncommutative!-product, which is
essentially unique in flat space.10 The one-dimensional Schro¨dinger equation was replaced by th
!-genvalue equation, while the wave functions became Wigner functions. The advantage
approach with respect to the formalism developed in Ref. 11 is that it allows noncommutativ
be introduced in phase space and not just in configuration space.

In the present work we consider the!-genvalue problem for then-dimensional noncommu
tative harmonic oscillator~2n phase-space dimensions! with phase-space noncommutativity~the
commutativen-dimensional harmonic oscillator with a general quadratic Hamiltonian was stu
in Ref. 12!. It is again shown that the!-genvalue problem is equivalent to the Schro¨dinger
problem in a suitable representation of the algebra, stemming from the Heisenberg algebra

a!Electronic mail: ahatzini@tem.uoc.gr
b!Electronic mail: smyrnaki@tem.uoc.gr
1130022-2488/2002/43(1)/113/13/$19.00 © 2002 American Institute of Physics
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sentation of transformed phase-space variables. The energy eigenvalues and eigenfunct
determined as functions of the noncommutativity parameters.

The case of the two-dimensional harmonic oscillator is examined thoroughly. The an
momentum operator is derived in the rotationally symmetric case. It is shown that the!-genvalues
for the function corresponding to this operator contain, apart from the usual angular mom
eigenvalues, a term that depends on the energy difference of the oscillations in the two d
sions.

In the asymmetric two-dimensional case critical values of the noncommutativity param
arise. For these values the energy spectrum becomes infinitely degenerate at every lev
problem can be identified with the noncommutative Landau problem in harmonic oscillato
tential.

The main motivation for studying so extensively the noncommutative harmonic oscilla
its importance in the noncommutative quantization of field theory, as explored in Ref. 13.

The paper is organized as follows.
In Sec. II we summarize known results, namely the definition of the Moyal product of f

tions in phase space through the Weyl ordering prescription and the equivalence of the sta
!-genvalue problem in one-dimension to the corresponding Schro¨dinger problem.

Section III is dedicated to the study of the two-dimensional harmonic oscillator!-genvalue
equation for a simple case of nontrivial commutation relations. The!-genvalues and functions ar
determined for the corresponding Hamiltonian by solving the imaginary and real part equati
the !-genvalue equation.

In Sec. IV the!-genvalue problem for the Hamiltonian and the angular momentum, in
two-dimensional problem of Sec. III, is investigated further. The Hamiltonian!-genvalue problem
is shown to be equivalent to the Schro¨dinger eigenvalue problem for an appropriate action of
position and momentum operators on the space of functions~see Ref. 14!. The!-genvalue prob-
lem for the angular momentum is also shown to be equivalent to the eigenvalue problem
corresponding operator for the above-mentioned action of position and momentum ope
Finally, the !-genvalues of the angular momentum are shown to depend also on the e
difference of the oscillations in the two dimensions.

In Sec. V the existence of rotationally symmetric!-genfunctions imposes constraints on t
possible commutation relations of then-dimensional harmonic oscillator. In two dimensions the
constraints are solved explicitly, leading to commutation relations that depend on two param
and the!-genvalue problem for the corresponding noncommutative Hamiltonian is solved
angular momentum, which is the generator of rotations, is constructed again and its!-genvalues
are computed.

Finally Sec. VI copes with the most general phase-space commutation relations. We sho
it is possible, through orthogonal transformations, to bring the matrix realizing the commu
relations into a standard symplectic form. In this way we can compute the energy le
!-genfunctions and the!-commutation relation of creation and annihilation operator-related fu
tions for then-dimensional harmonic oscillator. As a first application we consider the physic
interesting Landau problem of a charged particle in the noncommutative plane in the prese
a constant magnetic field with a harmonic oscillator potential.15 We find a critical point for the
magnetic field at which the energy levels are infinitely degenerate. As a second applicati
three-dimensional noncommutative harmonic oscillator~in six phase-space dimensions! is consid-
ered.

II. OVERVIEW OF THE WIGNER FUNCTIONS AND THE !-GENVALUE PROBLEM

Let us start with a classical HamiltonianH(q,p)5p2/2m1V(q) in one dimension. Upon
quantization the canonical variablesq,p become operatorsq̂,p̂ satisfying the canonical commuta
tion relations@ q̂,p̂#5 i\. One way to define the!-product is via the Weyl map, which is a linea
map from the classical phase-space functions to quantum operators. Thus we now consid
nomials of the formqmpn with m,npositive integers. To define the corresponding operator pro
it is possible to use the Weyl ordering prescription:16
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Ŵ~qmpn!5
1

2n (
k50

n S n
kD p̂n2kq̂mp̂k ~1!

according to which theŴ(qmpn) operator is symmetrized inq̂ and p̂ by use of Heisenberg’s
commutation relation. This regularization scheme can be extended to act on arbitrary powe
functions f (q,p) through linearity. Thus, Weyl ordering is an invertible map from the space
functions on the phase space to the space of quantum operators. We can now use Weyl ord
define a new product between functions on the phase space:8,16

f ~q,p!!g~q,p!5Ŵ21~Ŵ~ f !Ŵ~g!!

5 f ~q,p!ei ~\/2!~]Qq]W p2]Q p]Wq!g~q,p!

5 f S q1 i
\

2
]W p ,p2 i

\

2
]W qDg~q,p!. ~2!

This is the celebrated!-product which enjoys the properties of noncommutativity, associativ
and uniqueness.

In phase space one can define Wigner quasidistribution functions to calculate matrix ele
of observables. The time-independent Wigner function corresponding to a pair of eigen
ucn&,ucm& of the Schro¨dinger problem,Ĥucn&5Enucn&, is represented in two phase-space dim
sions by7

f mn~q,p!5
1

2p E dy e2 iypK q2
\

2
yUcnL K cmUq1

\

2
yL 5 f nm* ~q,p!, ~3!

where an asterisk stands for complex conjugation. In this case, one can show by employ
Schrödinger equation and the definition of the star product~2! that Wigner functions obey the
!-genvalue equations:9

H~q,p!! f mn~q,p!5Enf mn~q,p!, f mn~q,p!!H~q,p!5Emf mn~q,p!. ~4!

In ~3! for complete setsucn& one can also derive the completeness relation:

(
m,n

f mn~q,p! f mn* ~q8,p8!5
1

2p\
d~q2q8!d~p2p8!, ~5!

which enables the construction of arbitrary phase-space functions in terms off mn(q,p).
For the diagonal case@m5n in ~3!# one can prove that the Wigner functions satisfy t

diagonal!-genvalue equation:

H~q,p!! f n~q,p!5 f n~q,p!!H~q,p!5Enf n~q,p! ~6!

and the orthogonality relation:

f m! f n5
1

2p\
dm,nf m . ~7!

Furthermore, the real solutions of~6! are required to be of the Wigner type for the wave functio
of Ĥucn&5Enucn&.

8 So, instead of solving the one-dimensional Schro¨dinger equation one can tr
to solve the!-genvalue equation to determine directly the diagonal Wigner functions and
corresponding energy spectrum.
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III. A TWO-DIMENSIONAL HARMONIC OSCILLATOR

In this case we have four coordinates (qi ,pj ), with i , j 51,2, in phase space. The classic
Hamiltonian for this model is

H~qi ,pj !5
1

2 (
i 51

2

~qi
21pi

2!, ~8!

where, without loss of generality, parameters have been absorbed in the phase-space v
Quantum mechanically, the position and momentum operators satisfy the Heisenberg comm
relations. Here we will extend this realization to include nontrivial commutation relations forq̂1 ,
q̂2 and p̂1 , p̂2 :

@ q̂i ,p̂ j #5 i\d i j , @ q̂1 ,q̂2#5 iu, @ p̂1 ,p̂2#52 iu, ~9!

whereu is a real constant. The related star product takes the form:

!5expF i

2
~]Qq1

,]Q p1
,]Qq2

,]Q p2
!S 0 \ u 0

2\ 0 0 2u

2u 0 0 \

0 u 2\ 0

D S ]Wq1

]W p1

]Wq2

]W p2

D G . ~10!

The resulting!-genvalue equation is

F S q11
i\

2
]p1

1
iu

2
]q2D 2

1S p12
i\

2
]q1

2
iu

2
]p2D 2

1S q21
i\

2
]p2

2
iu

2
]q1D 2

1S p22
i\

2
]q2

1
iu

2
]p1D 2G f ~q1 ,p1 ,q2 ,p2!52E f~q1 ,p1 ,q2 ,p2!. ~11!

Equation~11! splits into an equation for the imaginary part,

@\~p1]q1
2q1]p1

!1\~p2]q2
2q2]p2

!1u~q2]q1
2q1]q2

!1u~p1]p2
2p2]p1

!# f 50 ~12!

and an equation for the real part:

F ~q1
21p1

21q2
21p2

2!2
~\21u2!

4
~]q1

2 1]p1

2 1]q2

2 1]p2

2 !G f 52E f . ~13!

Equation ~12! admits a solution of the formf (z) with z52(q1
21p1

21q2
21p2

2)54H. The real
part-equation~13! transforms to the ordinary differential equation:

Fz]z
212]z1

1

~\21u2! S E2
z

4D G f ~z!50. ~14!

The problem with this reduction is the inconsistency underlying the number of degrees of
dom. We started with the two-dimensional harmonic oscillator and we ended up with one
lation equation. So we need to search for a set of transformations that will preserve the num
degrees of freedom. An appropriate set of transformations is

q̄15q1 , p̄15
1

A\21u2
~\p1

1uq2
!,
~15!
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q̄25
1

A\21u2
~\q22up1!, p̄25p2 .

The imaginary part equation is then written as

@~ p̄1] q̄1
2q̄1] p̄1

!1~ p̄2] q̄2
2q̄2] p̄2

!# f 50. ~16!

This implies thatf is a function ofz152(q̄1
21 p̄1

2) and z252(q̄2
21 p̄2

2). The real part equation
transforms under the new variables into

Fz1]z1

2 1]z1
1z2]z2

2 1]z2
1

1

~\21u2! S E2
~z11z2!

4 D G f ~z1 ,z2!50. ~17!

The diagonal!-genfunctionsf nm(z1 ,z2) ~not to be confused with the nondiagonal Wign
functions in one dimension! associated with this equation are determined through product
Laguerre polynomials:

f nm~ z̃1 ,z̃2!5e2~1/2!~ z̃11 z̃2!Ln~ z̃1!Lm~ z̃2!, ~18!

where

Lm~ z̃i !5
1

m!
ez̃i

dm

dmz̃i
~e2 z̃i z̃i

m! ~19!

andL0( z̃i)51, L1( z̃i)512 z̃i , L2( z̃i)5122z̃i1 z̃i
2/2,... with z̃i5zi /A\21u2. The energies cor-

responding to these!-genfunctions are

Enm5A\21u2~n1m11!. ~20!

The functions corresponding to the annihilation and creation operators are given in ter
the transformed variables as

ai5
1

&
~ q̄i1 i p̄ i !, ai

†5
1

&
~ q̄i2 i p̄ i !. ~21!

It is possible to express these functions in terms of the original phase-space variables by re
our transformations. They satisfy the following modified commutation relations:

ai!aj
†2aj

†!ai5d i jA\21u2 ~22!

andai! f 00(q̄i ,p̄i)50. They generate the!-Fock space of states as follows:

f nm}a1
†na2

†m! f 00!a2
ma1

n . ~23!

The Hamiltonian takes the following form:

H5(
i 51

2 S ai
†!ai1

A\21u2

2 D . ~24!

This completes the solution of the two-dimensional harmonic oscillator!-genvalue problem for
the commutation relations we started with.
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IV. RELATION TO SCHRÖDINGER EQUATION

In the one-dimensional case the!-genvalue equation is equivalent to the Schro¨dinger equa-
tion, as was shown in Ref. 8. However, in the two-dimensional case one has to search
suitable representation of the commutation relations before writing down a Schro¨dinger equation.
This problem can be overcome for the harmonic oscillator of Sec. III by using the transforma
~15!, to transform the commutation relations to two sets of Heisenberg commutation relation
\ replaced byA\21u2, and using the usual representation of the Heisenberg commutation
tions in the Hamiltonian. The Schro¨dinger equation with respect to the new variables become

1

2 (
i 51

2

~ q̂̄i
21 p̂̄i

2!C~ q̄i !5EC~ q̄i ! ~25!

and its eigenfunctions are given by

Cnm~ q̄i !5Cn~ q̄1!Cm~ q̄2!, ~26!

whereCn are the usual eigenfunctions of the one-dimensional harmonic oscillator. This equ
splits into two one-dimensional harmonic oscillator equations. Making use of the one-dimen
equivalence of the Schro¨dinger problem to the!-genvalue problem we obtain that Eq.~25! ~with
\ replaced byA\21u2! is equivalent to

H~ q̄i ,p̄i !!̄ f̄ ~ q̄i ,p̄i !5 f̄ ~ q̄i ,p̄i !!̄H~ q̄i ,p̄i !5E f̄~ q̄i ,p̄i !, ~27!

where

f̄ ~ q̄i ,p̄ j !5 f̄ ~ q̄1 ,p̄1! f̄ f ~ q̄2 ,p̄2!

5
1

~2p!2 E E dy1 dy2 e2 iy1p̄1e2 iy2p̄2

3)
i 51

2

C i* S q̄i2
1

2
A\21u2yi DC i S q̄i1

1

2
A\21u2yi D

[
1

~2p!2 E E dy1 dy2 e2 iy1p̄1e2 iy2p̄2)
i 51

2

C i* C i . ~28!

The !̄-product, which is the transformed version of the!-product defined in~10!, is

!̄5expF i

2
A\21u2 (

i 51

2

~]Q q̄i
]W p̄i

2]Q m̄ i
]W q̄i

!G . ~29!

So we have shown that the Schro¨dinger problem, in the representation ofq̂i ,p̂ j defined by the
Heisenberg representation ofq̂̄i , p̂̄ j , is equivalent to the!-genvalue problem~11!.

Next let us investigate what happens with the angular momentum. The phase-space fu
corresponding to the operator that commutes with the Hamiltonian and generates rotations
original variables is

L5
\

\21u2 F\~q1p22q2p1!1
u

2
~p1

22q1
21p2

22q2
2!G . ~30!

Transforming this to the new variables~15! gives
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L̄~ q̄i ,p̄ j !5
\

\21u2 F\~ q̄1p̄22q̄2p̄1!1
u

2
~ q̄2

21 p̄2
22q̄1

22 p̄1
2!G . ~31!

The angular momentum!-genvalue equation becomes

L~qi ,pi !! f ~qi ,pi !

5L̄~ q̄i ,p̄i !!̄ f̄ ~ q̄i ,p̄i !

5
1

~2p!2

\

~\21u2! F\F q̄1S p̄22
i

2
A\21u2]W q̄2D2q̄2S p̄12

i

2
A\21u2]W q̄1D G

1
u

2 F q̄2
21S p̄22

i

2
A\21u2]W q̄2D 2

2q̄1
22S p̄12

i

2
A\21u2]W q̄1D 2G G

3E dy1 dy2 expS 2 iy1S p̄11
i

2
A\21u2]Q q̄1D D

3expS 2 iy2S p̄21
i

2
A\21u2]Q q̄2D D)i 51

2

C i* C i

5
1

~2p!2

\

~\21u2!
E E dy1 dy2 e2 iy1p̄1 e2 iy2p̄2

3F\F S q̄11
1

2
A\21u2y1D S 2 i ]y2

2
i

2
A\21u2]W q̄2D

2S q̄21
1

2
A\21u2y2D S 2 i ]y1

2
i

2
A\21u2]W q̄1D G

1
u

2 F S q̄21
1

2
A\21u2y2D 2

1S 2 i ]y2
2

i

2
A\21u2]W q̄2D 2

2S q̄11
1

2
A\21u2y1D 2

2S 2 i ]y1
2

i

2
A\21u2]W q̄1D 2G G)

i 51

2

C i* C i

5
\

~\1u2!
@\A\21u2mz1u~E22E1!# f̄ ~ q̄i ,p̄ j !. ~32!

Here we have usedp̄ie
2 iy i p̄i5 i ]yie

2 iy i p̄i and partial integration has been performed. Note tha

S ]yi
1

1

2
A\21u2]W q̄i DC* S q̄i2

A\21u2

2
yi D 50.

The discrete valuesmz are the eigenvalues of the angular momentum for the commutative
dimensional harmonic oscillator:

L̂C~ q̄i !5~qC 1pC 22qC 2pC 1!C~ q̄i !5A\21u2mzC~ q̄i !. ~33!

What we have essentially proven is that the solution of the!-genvalue problem for the angula
momentum is equivalent to the solution of the eigenvalue problem for the angular mome
operator in the representation we began with. We observe that we pick an extra new ter
depends on the energy difference of the two oscillations and is linear in the noncommut
parameteru.
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V. ROTATIONALLY SYMMETRIC CASE

Up to this point we have considered only the case whereq̂i commute withp̂ j , for iÞ j , and
the q̂i ,p̂ j behave symmetrically, that is@ q̂1 ,q̂2#52@ p̂1 ,p̂2#. Let us consider the more gener
situation where the commutation relations are governed by a general antisymmetric matrixM in
2n phase-space dimensions. In this case the!-product reads:

!5exp
i

2
@]Q I

TMIJ]W J#, ~34!

where] I
T5(]qI

,]pI
), andMIJ52MJI

T are 232 matrix blocks. Here the summation convention
assumed. The imaginary part of the!-genvalue equation, generalizing~12! now becomes

XI
TMIJ]Jf 50, ~35!

where XI
T5(qI ,pI). If f is rotationally symmetric, that isf [ f (XI

TXI), then this equation is
satisfied provided thatM is antisymmetric. Interestingly enough, if one starts with the!-genvalue
problem for thisf, ignoring the commutation relations, Eq.~35! would require that the matrixM be
antisymmetric.

The real part equation becomes

@XI
TXI2

1
4~MIK 1

]K1
!T~MIK 2

]K2
!# f 52E f . ~36!

Again demandingf 5 f (XI
TXI) to be a solution of~36! we are led to

XI
TXI f ~XI

TXI !2 1
2tr~MIK

T MIK ! f 8~XI
TXI !2XK1

T MIK 1

T MIK 2
XK2

f 9~XI
TXI !52E f~XI

TXI !. ~37!

If this equation is to be satisfied we need

MIK 1

T MIK 2
5adK1K2

I ~38!

with I the identity matrix. So~38! is the condition for the problem to admit rotational symmet
solutions.

Condition~38! can be solved explicitly in the case of four phase-space dimensions. The
general matrixM that admits rotationally symmetric!-genfunctions is given by

M1156M225S 0 \

2\ 0D , M1252M215S u f

6f 7u D , ~39!

where the two signs correspond to the two possible solutions that exist. We are going to
closely examine the first case, since the second can be treated on equal footing. In the pres
a transformation that leads to the Heisenberg commutation relations isX̄5RTX, whereR is given
by

R5S A\21f2

A\21u21f2
0 0 2

u

A\21u21f2

2
uf

A\21u21f2A\21f2

\

A\21f2
0 2

f

A\21u21f2

0 0 1 0

\u

A\21u21f2A\21f2

f

A\21f2
0

\

A\21u21f2

D . ~40!
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Certainly this transformation is not unique. It is defined up to symplectic rotations which pre
both the Hamiltonian and the commutation relations in the transformed variables.

The angular momentum, as the generator of rotations, is found to be

L5
\

\21u21f2 F\~q1p22q2p1!1
u

2
~p1

22q1
21p2

22q2
2!2f~p1q11p2q2!G ~41!

and in the transformed variables is reexpressed as

L̄5
\

\21u21f2 FA\21f2~ q̄1p̄22q̄2p̄1!1
u

2
~ q̄1

21 p̄1
22q̄2

22 p̄2
2!G . ~42!

Again the!-genvalue problem for the Hamiltonian is the same as the Schro¨dinger problem
with !-genvaluesEn1,n2

5A\21u21f2(n11n211). The same equivalence is valid for the a
gular momentum!-genvalue problem producing the!-genvalues

\

~\1u21f2!
@A\2f2A\21u21f2mz1u~E12E2!#.

In the limit u,f→0 we can recover from these expressions the usual ones. This solve
general two-dimensional phase-space noncommutative harmonic oscillator that admits rotat
symmetric solutions.

VI. GENERAL CASE

Let us now discard the condition that there exist rotationally symmetric solutions. The m
M used to define the commutation relations is a general antisymmetric matrix. The follo
lemma holds:17

Lemma 1: Let(V,v) be a symplectic vector space and g:V3V→R be an inner product. Then
there exists a basis u1 ,...,un ,v1 ,...,vn of V which is both g-orthogonal andv-standard. More-
over, this basis can be chosen such that g(uj ,uj )5g(v j ,v j ) for all j .

This means that it is possible, by rescaling, to find an orthogonal transformationR so that

RTMR5J~M !, ~43!

where

J~M ! IJ5a I~M !d IJS 0 1

21 0D . ~44!

From ~34! we see that if we make the transformationX̄5RTX, then the matrixM in the
!-product is replaced byJ(M ) and the Hamiltonian remains invariant because the transforma
is orthogonal. So the!-genvalue problem now becomes

H̄!̄ f̄ 5E f̄ , ~45!

where!̄ is

!̄5expF i

2
]̄Q I

TJ~M ! IK ]̄WKG . ~46!

The imaginary part equation~35! becomes

(
i

a i~ q̄i] p̄i
2 p̄i] q̄i

! f̄ ~ q̄i ,p̄i !50, ~47!
                                                                                                                



h

n
n

d
resen-
ones

utation

com-
nve-

e one

sions.

122 J. Math. Phys., Vol. 43, No. 1, January 2002 A. Hatzinikitas and I. Smyrnakis

                    
wherea i5a I(M ). This equation is satisfied byf̄ [ f (zi) wherezi52(q̄i
21 p̄i

2). For this f̄ , the real
part equation takes the form:

(
i

Fzi]zi

2 1]zi
2

1

a i
2 S zi

4
2Ei D G f ~zi !50 ~48!

and the energy isE5S i Ei . This equation can be separated into a set of equations for eaczi .
Solving these equations we get the eigenvaluesEi5a i(ni11/2) and the eigenfunctions:

f ni
~zi !5e2~1/2a i !ziLni

~zi /a i !. ~49!

The overall eigenfunctions are products of thef ni
(zi). The functions corresponding to annihilatio

and creation operators again take the form~21!. They satisfy the following modified commutatio
relations:

a i!aj
†2aj

†!ai5a id i j ~50!

and the Hamiltonian becomes

H5(
i

S ai
†!ai1

a i

2 D . ~51!

Again, the!-genvalue problem is equivalent to the Schro¨dinger problem in the transforme
variables. This means that it is also equivalent in the original variables, if one uses the rep
tation for the original variables that result from the usual representation of the transformed
~the operators corresponding to the transformed variables satisfy the Heisenberg comm
relations!.

As an example that does not admit rotationally symmetric solutions we consider the non
mutative Landau problem in harmonic oscillator potential in two dimensions. Assume for co
nience that\51. Here the commutation relations are

@ q̂i ,p̂ j #5 id i j , @ q̂1 ,q̂2#5 iu, @ p̂1 ,p̂2#5 iB. ~52!

The latter commutation relation results from the presence of magnetic field, while the middl
from the noncommutativity of space. The star product is

!5expF i

2
~]Qq1

,]Q p1
,]Qq2

,]Q p2
!S 0 1 u 0

21 0 0 B

2u 0 0 1

0 2B 21 0

D S ]Wq1

]W p1

]Wq2

]W p2

D G . ~53!

The a I take the form:

a65 1
2~A~u2B!2146~u1B!. ~54!

Thesea6 correspond to the frequencies of the Landau harmonic oscillator in the two dimen
In this case there is no degeneracy in thea6 as opposed to the previous cases.

A transformation matrixR that leads to the Heisenberg commutation relations is
                                                                                                                



R51
2

a2~11Bã2!

A~12Bu!21a2
2 ~11bã2!2

0 2
a1~12Bã1!

A~12Bu!21a1
2 ~12Bã1!2

0

0
1

A11ã2
2

0
1

A11ã1
2

0 2
ã2

A11ã2
2

0
ã1

A11ã1
2 2 , ~55!
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2
12Bu

A~12Bu!21a2
2 ~11Bã2!2

0
12Bu

A~12Bu!21a1
2 ~12Bã1!2

0

where we have assumed thatBu,1 and

ã65 1
2~A~u2B!2146~u2B!!. ~56!

Note that ifBu51 then the fourth row in the transformation matrix becomes zero, so the t
formation becomes degenerate, which is not permitted. So there is a critical value for the ma
field B051/u. At B0 the frequencya250, so there is an infinite degeneracy at the energy lev
corresponding to the excitations of thea2 oscillator. This problem was solved through a series
transformations in Ref. 15, without resorting to the!-genvalue formalism.

As a further example consider the case of the noncommutative Landau problem wi
additional commutation relations@ q̂1 ,p̂2#5 if1 and @ p̂1 ,q̂2#5 if2 . In this case the frequencie
become

a65 1
2~A~B2u!2141~f11f2!26A~B1u!21~f12f2!2! ~57!

and a degeneracy is produced provided that

Bu2f1f251. ~58!

Note that in this case the matrixM in the !-product becomes degenerate again.
As a final example consider the six phase-space dimensional case. The commutation re

we consider are

@ q̂i ,p̂ j #5 id i j , @ q̂1 ,q̂2#5 iu3 , @ q̂1 ,q̂3#52 iu2 , @ q̂2 ,q̂3#5 iu1 . ~59!

All other commutation relations are trivial. Now the frequenciesa i are

a1,25A11u1
21u2

21u3
2, a351. ~60!

There is twofold degeneracy for the first frequency. The transformation matrix in this case
                                                                                                                



R5

¨

2
u1u3

ab

u2

b
0

u1u3

abg
0 2

u1

g

2
u2

ab
0 2

u1u3

bg
2

u2g

ab

u1

g
0

2
u2u3

ab
2

u1

b
0

u2u3

abg
0 2

u2

g

u1

ab
0 2

u2u3

bg

u1g

ab

u2

g
0

b

a
0 0 2

b

ag
0 2

u3

g

©
, ~61!
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0 0
b

g
0

u3

g
0

where

a5A11u1
21u2

21u3
2,

b5Au1
21u2

2,

g5Au1
21u2

21u3
2.

To summarize, we have shown in the present section how to treat in genera
2n-dimensional phase-space noncommutative harmonic oscillator. We have seen that in th
the matrixM is degenerate there is a zero eigenvalue and also an infinite degeneracy in the
levels corresponding to excitations of the zero frequency oscillator.
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The supersymmetric technique for random-matrix
ensembles with zero eigenvalues

D. A. Ivanov
Institut für Theoretische Physik, ETH-Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland
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The supersymmetric technique is applied to computing the average spectral density
near zero energy in the large-N limit of the random-matrix ensembles with zero
eigenvalues:B, DIII-odd, and the chiral ensembles~classesAIII, BDI, andCII).
The supersymmetric calculations reproduce the existing results obtained by other
methods. The effect of zero eigenvalues may be interpreted as reducing the sym-
metry of the zero-energy supersymmetric action by breaking a certain Abelian
symmetry. © 2002 American Institute of Physics.@DOI: 10.1063/1.1423765#

I. INTRODUCTION

There exists a remarkable correspondence between large families of random-matrix ens
and symmetric superspaces. It has been shown by Zirnbauer that in the large-N limit ~N is the
matrix dimension! correlation functions in random-matrix ensembles may be represented as
grals over appropriate Riemannian symmetric superspaces~with dimensions independent ofN!.1

This relation to symmetric superspaces is based on Efetov’s supersymmetric technique intro
auxiliary anticommuting~Grassmann! variables in order to directly average correlation functio
over the statistical ensemble.2

At the same time, the random-matrix ensembles are known to be in one-to-one corre
dence with symmetric spaces~Cartan symmetry classes!.3,4 The classification of Zirnbauer thu
establishes a correspondence between large families of symmetric spaces and Riemanni
metric superspaces.1 The random-matrix ensembles with zero eigenvalues were not included i
original classification, and later it became apparent that the zero eigenvalues in random-
ensembles are related to the reducibility of the corresponding symmetric superspaces.5–7

In this paper, I study this relation by explicitly calculating the average density of states
random-matrix ensembles with zero eigenvalues. There are five such ensembles~Table I!: classB
@so(N) matrices at oddN#, classDIII-odd @so(2N)/u(N) matrices at oddN#, and the three chira
ensembles: unitaryAIII, orthogonal BDI, and symplecticCII. In a physical context, the en
semblesB and DIII-odd appear in vortices in superconductors with odd pairing,5,8 the chiral
classes—in QCD.9,10 The zero levels in these ensembles occur as a consequence of the sym
inverting energy (E→2E) combined with the odd dimension~for classesB and DIII-odd! or
with the dimensional imbalance between the two chiral sectors~for the chiral classes!. Table I also
lists the values of the parametersa andb appearing in the joint probability distribution for energ
levelsv i ,

dP~v1 , . . . ,vn!})
i , j

uv i
22v j

2ub)
i

v i
adv i ~1!

~b determines the strength of repulsion between levels,a—the strength of repulsion from zero!.
Previously, a supersymmetric calculation of the misroscopic spectral density for the

unitary case was done in Ref. 6, and the case of classB was studied in Ref. 5~in the context of
classBD, which is the average of classesB andD). I include these cases for completeness in
corresponding sections.
1260022-2488/2002/43(1)/126/28/$19.00 © 2002 American Institute of Physics
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From the supersymmetric calculations for the five random-matrix ensembles, we find tha
levels in random-matrix ensembles manifest themselves in reducing the symmetry of the
symmetric action at zero energy. In the absence of zero levels, this action~a function of the
supermatrixQ in Efetov’s technique2! is invariant with respect to the full supergroup preservi
the linear constraints onQ ~latter being determined by the symmetries of random matrices!. For
ensembles with zero levels, the zero-energy action is invariant with respect to only a n
subgroup of this supergroup, but breaks the remaining abelian symmetry. In the large-N limit, the
integral overQ is dominated by the saddle-point manifold. This manifold is a Riemannian s
metric superspace,1 and for ensembles admitting zero levels it is not irreducible: it may be s
into orbits of the normal subgroup of the full symmetry~super! group. The quotient by this norma
subgroup is an abelian~conventional, not super! group@Z2 for classesB–D andDIII, and GL(1)
for the chiral classes#. If the random-matrix ensemble contains zero levels, the action is
invariant with respect to this residual abelian group, but transforms according to one of its
dimensional representations.

The paper is organized as follows: In Sec. II, I review the results for the average sp
density in the random-matrix ensembles with zero levels. Next, I describe the details o
supersymmetric calculations for each of the five random-matrix ensembles. The calculation
ensembleB–D is presented in somewhat more detail, and in the subsequent sections the rep
steps of the derivations are described only briefly. In the last section I discuss common feat
these calculations specific for ensembles with zero levels.

II. SPECTRAL DENSITY IN RANDOM-MATRIX ENSEMBLES WITH ZERO LEVELS

In this section I review the results for the average spectral density in the vicinity of the
eigenvalue. All these results are known and were previously derived by other methods. The
may use this section as a quick reference.

In what follows we consider zero-curvature random-matrix ensembles and treat the
quantum-mechanical Hamiltonians. Accordingly we use quantum-mechanical terminology s
‘‘energy levels,’’ ‘‘interlevel spacing,’’ etc.

In an ensemble of random matrices of sizeN, with a fixed dispersion of matrix elements, th
interlevel spacing in the middle of the spectrum scales asN21/2 for largeN. If we measure the
energyE in the units of this interlevel spacingD, the correlation functions in the vicinity of zer
energy~middle of the spectrum! have a finite and universal limit asN→`. In this paper I am
interested in the average density of statesr(x) as a function of dimensionless energyx5E/D.
This function gives the average number of energy levels in any interval@a;b#,

^n& [a;b]5E
a

b

r~x!dx. ~2!

~In the case ofb54 ensemblesDIII and CII, all energy levels are doubly degenerate, and
counting purposes every degenerate pair of states will be counted as a single level.! The function

TABLE I. Random-matrix ensembles with zero eigenvalues.

Cartan
class

Symmetric space
~compact type! b a

Number of zero
eigenvaluesm

B–D SO(N) 2 2m J m50, even N
m51, odd NDIII SO(2N)/U(N) 4 114m

AIII SU(p1q)/S(U(p)3U(q)) 2 112m J m5up2quBDI SO(p1q)/SO(p)3SO(q) 1 m
CII Sp(p1q)/Sp(p)3Sp(q) 4 314m
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r(x) is symmetricr(x)5r(2x) and has the normalization limx→` r(x)51. For an ensemble
with m zero levels,r(x) has ad-functional contribution atx50: r(x)5md(x)1 r̃(x), where
r̃(x) is continuous atx50.

The results for the average density of statesr(x) in the ensembles studied in this paper are
following ~definingy52puxu, m is the number of zero levels in the chiral ensembles!:

ClassD:

11
siny

y
, ~3!

ClassB:

12
siny

y
1d~x!, ~4!

ClassDIII-even:

p

2
y@J18~y!J0~y!1J1

2~y!#1
p

2
J1~y!, ~5!

ClassDIII-odd:

p

2
y@J18~y!J0~y!1J1

2~y!#2
p

2
J1~y!1d~x!, ~6!

ClassAIII ~chiral unitary!:

p

4
yFJm

2 S y

2D2Jm21S y

2D Jm11S y

2D G1md~x!, ~7!

ClassBDI ~chiral orthogonal!:

p

2 S y

2 FJm
2 S y

2D2Jm21S y

2D Jm11S y

2D G1JmS y

2DRmS y

2D D1md~x!, ~8!

ClassCII ~chiral symplectic!:

p

2
~y@J2m

2 ~y!2J2m21~y!J2m11~y!#2J2m~y!R̃2m~y!!1md~x!, ~9!

where the functionsRn and R̃n are defined as

R̃n~z!512Rn~z!5E
0

z

Jn~z8!dz8. ~10!

These results were previously derived by other methods. The results~3! and~4! are presented
in the book of Mehta.11 They are also straightforward to obtain from mapping of level statis
onto free fermions. A supersymmetric approach to classesB andD was developed in Ref. 5. Th
result ~5! was found by Nagao and Slevin12 and by Altland and Zirnbauer13 ~contrary to their
claim, their result is identical to the result of Nagao and Slevin after some algebraic manipul
with Bessel functions!. The result~7! was obtained in the works of Verbaarschot and Zahe14

Nagao and Slevin,15 and Forrester.16 Also, a supersymmetric calculation of~7! at m50 was
reported in Ref. 17, and then at arbitrarym in Ref. 6. To make this paper self-contained, I rep
the derivation of Ref. 6 in the corresponding section. The particular case of formula~8! at m
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51 can be found in Ref. 12. The case of arbitrarym was treated in Refs. 18 and 19. The latt
work also contains the answer for the ensembleCII. The results of Refs. 18 and 19 are presen
in the form of complicated integrals. The simple formulas~8! and~9! were later reported in Refs
20, 21, 22.

The average spectral densities~3!–~9! are plotted in Fig. 1.

III. REMARKS ABOUT NOTATION, SUPERGROUPS, AND SUPERSPACES

In this section I explain some notational conventions used in the subsequent section
calculations involve supermatrices acting in a superspace which has the structureC2

^ C2 or C2

^ C2
^ C2, depending on the symmetry class. One of theC2 factors refers to the Fermi–Bose~FB!

FIG. 1. The average spectral densityr(x) for ensemblesB–D, DIII, AIII, BDI, andCII.
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sectors and defines the supersymmetric grading. The one or two remainingC2 factors are either
produced by additionally doubling the dimension to take into account the symmetries o
random-matrix ensemble~in classesB–D, DIII, and BDI! or are originally present in the matri
structure in the random-matrix ensemble~in classDIII and in the three chiral classes!. TheseC2

will be labeled to as ‘‘particle–hole’’~PH! or ‘‘1–2’’ sectors, without stressing the physica
meaning of this terminology. In supermatrices, the FB sectors will be graphically divided by
lines @see, for example, Eq.~12!#, with the BB sector in the upper left corner, and the FF secto
the lower right corner. When the matrices also act in the PH or 1–2 spaces, in order to
confusion, these spaces will be explicitly mentioned as a subscript, from the outermost divis
the innermost subdivision@see, for example, Eqs.~58!–~60!#. The empty spaces in matrices deno
zeros.

The supergroups GL(num) and OSp(nu2m) appearing in our supersymmetric constructio
are defined as follows. The complex supergroup GL(num) consists of all invertible supermatrice
of dimensionn1m. The complex supergroup OSp(nu2m) is the subgroup of GL(nu2m) obeying
the relation,

g215ggTg21, ~11!

where

~12!

Its support is the direct product of O(n) and Sp(m). More details about these supergroups may
found in Refs. 23, 1. The reader may also refer to Ref. 2 for conventions regarding manipul
with supermatrices. The Lie superalgebras of OSp(nu2m) and GL(num) are denoted as
osp(nu2m) and gl(num).

To distinguish between fermionic and bosonic sectors@which is important when performing
integration, either compact or noncompact, see below#, we shall reserve the notation OSp(nu2m)
for the supergroup with O(n) in the bosonic and Sp(m) in the fermionic sector. The same supe
group with O(n) in the fermionic and Sp(m) in the bosonic sector we denote as SpO(nu2m).
Also, we use the notation SpSO(nu2m) for the connected component of SpO(nu2m) @with the unit
superdeterminant#.

The notation Sp(m) in this paper refers to the symplectic group of 2m32m matrices. This
notation agrees with Refs. 1, 3, 8, but differs from Ref. 23, where the same group is de
Sp(2m).

IV. CLASSES B AND D

In this section we use the supersymmetric technique to compute the density of states
so(N) random matrices~classD for evenN, classB for odd N!. This is the simplest of the five
examples considered in this paper, and we describe it in more detail to demonstrate the tec
of the calculation. The calculation follows the prescription described in detail by Zirnbauer.1

The random-matrix ensemblesB–D is unitary ~with b52!. The supermatrixQ used in the
calculation of the average density of states has dimension 212 ~2 bosonic and 2 fermionic
dimensions!, is parameterized by 414 independent variables and is an element of osp(2u2) Lie
superalgebra. The saddle-point manifold has dimension 212, and thus the density of states in th
large-N limit is computed as an integral over two commuting and two Grassmann variables

The random-matrix ensembleB–D consists of purely imaginary antisymmetric matricesH,
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Hab5Hba* 52Hba , a,b51, . . . ,N. ~13!

The matrix elements have independent Gaussian distributions,

dP~H !} )
a.b

expS 2
uHabu2

2v2 DdHab , ~14!

so that the averages of any number of matrix elements are given by the Wick rule together w
pair average,

^HabHa8b8&5v2~dab8dba82daa8dbb8!. ~15!

From the calculation below we shall see that the energy unit defined as

D5
pv

AN
~16!

plays the role of the average level spacing near zero energy.
The average density of states can be found by differentiating the generating function,

Z~vB ,vF!5E dP~H !
det~H2vFD!

det~H2vBD!
, ~17!

where the integration is performed over the ensemble of random matricesH; vB and vF are
auxiliary variables~complex numbers!. We included the energy scaleD in the definition~17! to
makevB andvF dimensionless.

The ensembles considered in this paper have anE→2E symmetry, which leads to the sym
metry of the generating function,

Z~vB ,vF!5Z~2vB ,2vF!5~21!mZ~2vB ,vF!, ~18!

wherem is the number of zero levels. In the supersymmetric calculation below we neglec
overall sign of Z(vB ,vF), but restore it at the end of the calculation from the condit
Z(v,v)51 and from positiveness of the density of states.

The two determinants in~17! may be written as Gaussian integrals over bosonic and fermi
variables~auxiliary fields!. Introducing the (N1N)-component supervectorca5(cBa ,cFa), a
51, . . . ,N, and performing the integration overdP(H), we arrive at the partition function fo
interacting superfields@the common energy scalev drops out already at this step, thanks to o
including D in ~17!#,

Z~vB ,vF!5E D~c†,c!expS 2
ipvm

AN
cma

† cma2
1

2
@~cma

† cmb!~cnb
† cna!2~cma

† cmb!~cna
† cnb!# D ,

~19!

wherem, n are fermion-boson indices. In the integral, the Grassmann components inc andc† are
treated as independent variables~total 2N Grassmann variables!. The integral over bosonic com
ponents ofc andc† is taken over the 2N-dimensional real submanifold (c†)Ba5(cBa)* .

To decouple the interaction with theQ-matrix, it is necessary to double the dimension
vectorc. Combine the old superfieldscma into the new ones,
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Ca5S cB

cB
†

cF

cF
†
D

a

, C̄a5S cB
†

2cB

cF
†

cF

D
a

T

, ~20!

so that

C̄5~gC!T, ~21!

where

~22!

In terms of the supervectorsC andC̄, the partition function may be rewritten as

Z~vB ,vF!5E DC expS 2
1

2
STrF ip

AN
CaC̄av̂1

1

2
~CaC̄a!2G D , ~23!

where

~24!

@With this definition ofv̂ we in fact change the sign ofvF , which may result in the change of sig
of Z(vB ,vF), according to~18!. We shall not control the overall sign ofZ(vB ,vF), but restore
the correct sign at the end of the calculation.#

The matrix (CaC̄a) has the explicit form,

~25!

This is also the form of the supermatrixQ used to decouple the interaction via Hubbar
Stratonovich transformation,
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Z~vB ,vF!5E DQ E DC expS 2
1

2
STrFN

2
Q21 iANS Q2

p

N
v̂ DCaC̄aG D . ~26!

The integration is performed in the space of matricesQ of the form~25! which is equivalent to the
linear constraint,

gQg2152QT. ~27!

More precisely, the integral is taken along the real subspace in the complex space~27! whereQB

is real,QF is purely imaginary, andX̄5X* ~for convergence of the integral!.
After integrating inC, we arrive at

Z~vB ,vF!5E DQFSDetS Q2
p

N
v̂ D G2N/2

expS 2
N

2
STr

Q2

2 D . ~28!

Since we are interested in small energy scales~of the order of several level spacings fro
zero!, we can expand the action to terms linear inv and obtain

Z~vB ,vF!5E DQ expS 2
N

2
STrFQ2

2
1 ln QG1STr

p

2
v̂Q21D . ~29!

At large N, the integral is determined by the saddle points of the action,

S0~Q!5STrS Q2

2
1 ln QD . ~30!

By varying the action, the equation of the saddle-point manifold is

Q2521. ~31!

By deforming the integration contour onto the saddle-point manifold, the integral reduc

Z~vB ,vF!5E
G
DQ expS 2

N

2
S0~Q!2STr

p

2
v̂QD ~32!

~the transversal directions do not contribute to the integral because of the supersymmetry!.
The contour of integrationG on the saddle-point manifold should be determined from

condition that the original contour of integration can be deformed onto it without making inte
divergent~see also discussion of this procedure in Ref. 1!. For the convergence of the integral~19!
over the bosonic components ofc andc†, the energyvB must have an infinitesimal imaginar
part ImvB,0. Then, for the convergence of the integral~32!, the matrixQ must satisfy ImQB

.0 at infinity on the contourG @QB is the bosonic diagonal element, as shown in~25!#. Besides,
the contourG must be compact in the fermionic and noncompact in the bosonic sector~see, e.g.,
Refs. 1, 2, 24!. It is shown in Ref. 1 thatG is the Riemannian symmetric superspace SpO~2u2!/
GL~1u1! ~classCIuDIII !.

The key observation, important for taking into account the parity ofN, is that the saddle-poin
manifold G consists of two connected components, which are the images of the two compo
of the symmetry group SpO~2u2! acting onG. This symmetry group acts onQ by conjugation:
Q°UQU21. Explicitly, the two connected pieces ofG may be obtained by rotating by th
connected component of the symmetry group SpSO~2u2! the two representative matrices,
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~33!

The action~30! is invariant with respect to SpSO~2u2!, but acquires an additional shift by 2p i
between the two connected components of the saddle-point manifold.

It is this property of the supersymmetric action that allows to distinguish between odd
evenN in the large-N limit: In the even-N case~classD, no zero levels!, the contributions from
the two pieces of the saddle-point manifold come with equal signs, and in the odd-N case~classB,
one zero level!—with opposite signs,

Z~vB ,vF!5Z1~vB ,vF!1~21!NZ2~vB ,vF!. ~34!

The average spectral densityr(v) may be found as

r~v!52
1

p
Im

]Z~vB ,vF!

]vB
U

vB5vF5v2 i0

5
1

p
Im

]Z~vB ,vF!

]vF
U

vB5vF5v2 i0

. ~35!

To take the integral overG, we need to parameterize the integration contour: In this sec
the parameterization involves the two commuting parametersx,f and the two anticommutingj
and j̄ ~we never use complex conjugation of anticommuting variables in this paper, and soj and
j̄ should be treated as independent variables!. The expressions forr(v) in coordinates takes the
form,

r~v!5Im E DQ QF exp@2pv~QB2QF!#, ~36!

whereQB(x,f,j,j̄) andQF(x,f,j,j̄) are diagonal matrix elements ofQ in a particular param-
eterization, and the measure of integrationDQ is

DQ5
1

2p
J~x,f,j,j̄ !dx df dj dj̄. ~37!

The JacobianJ(x,f,j,j̄) may be found from expressing the invariant metric STr(dQ)2 in coor-
dinates,

STr~dQ!25gi j dxidxj ~38!

and taking its superdeterminant

J~$xi%!5~SDetgi j !1/2. ~39!

In parameterizing the saddle-point manifold we use the usual trick of splitting the rotati
the supermatrixQi into the two rotations by even and odd generators of the supergroup.2 Namely,
we parameterize

Q5UjQzUj
21 , ~40!
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whereQz is obtained fromQ1 or Q2 by even rotations parameterized byx and f ~and without
mixing between boson–bosonic and fermion–fermionic blocks!, and

Uj5exp~A!, ~41!

whereA is an odd infinitesimal rotation linear inj and j̄.
Supersymmetric calculations of this sort often lead to singularities in superintegrals w

need to be resolved by properly taking into account boundary terms~see e.g. Refs. 2, 1!. In this
paper I avoid such singularities by an appropriate choice of parameterization of the odd ro
Uj .

We shall also employ the symmetry relating the two components of the saddle-point man
Namely, conjugation by the matrix,

~42!

transformsQ1 into Q2 (Q25T21Q1T) and the two components of the saddle-point manifold i
each other.

Thus we first parameterize the component generated byQ1 , and then the parameterization o
the other component may be obtained by applying the operatorT.

The even rotations ofQ1 may be parameterized as

~43!

~with xP@0;1`), fP@0;2p#).
The symmetry~27! of the matrixQ imposes a similar symmetry constraint on the matrixA in

~41!. The latter constraint admits four independent parameters in the boson-fermion and fe
boson sectors ofA. However, when acting onQz , only two of them are independent. At this sta
we have a freedom of choosing two of the four infinitesimal rotations for our parameteriza
The final result does not depend on our choice@provided the Jacobian~39! is nondegenerate#, but
a good choice of parameterization may considerably simplify the calculation.

We choose
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~44!

which leads to

~45!

The Jacobian calculation may be simplified using the simple algebraic identity,2

ds25 1
2STr~dQ!25 1

2STr~dQz!
21 1

2STr@Qz ,dUj#
21STr~dUj@Qz ,dQz# !, ~46!

wheredUj5Uj
21dUj .

After some calculation, we find for the parameterization chosen

ds25dx21sinh2 x df22@4~coshx11!12sinh2 x j̄j#dj̄ dj12i sinh2 x~ j̄ dj1j dj̄ !df
~47!

and

J~x,f,j,j̄ !5
1

2
tanh

x

2
. ~48!

Also, by a direct calculation,

QB15 i @coshx2~coshx11!j̄j#,
~49!

QF15 i @11~coshx11!j̄j#.

Using the operatorT to relate the two connected components of the saddle-point manifold
find for the second component,

QB25QB1 , QF252QF1 , ~50!

and the Jacobian obviously remains the same~48!.
As a consistency check, one may verify that
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Z6~v,v!5E 1

2p
J~x,f,j,j̄ !dx df dj̄ dj ~exp@2pv~QB12QF1!#6exp@2pv~QB11QF1!# !

51 ~51!

~up to a sign!.
Now the calculation of the integral~36! is easily done,

r1~v!5ReE
0

`

dxE
0

2p

dfE dj̄ dj
1

4p
tanh

x

2
@11~coshx11!j̄j#

3exp~2 ipv@~coshx21!22~coshx11!j̄j#!5 1
2 d~x!11, ~52!

r2~v!5ReE
0

`

dxE
0

2p

dfE dj̄ dj
1

4p
tanh

x

2
@11~coshx11!j̄j#exp~2 ipv@coshx11# !

5
1

2
d~x!2

sin~2pv!

2pv
~53!

~all the calculations are performed up to an overall sign!. Thed-function terms are obtained from
imaginary 1/iv terms by shiftingv to the lower half-planev→v2 i0.

Combining these results with proper signs, we arrive at the final expressions~3! and~4!. The
asymptotic valuer(v→`)51 proves thatD given by ~16! is indeed the average level spacing

Note thatr1(v) appeared in Ref. 5 as the spectral density in classBD ~which is the average
of B andD!.

V. CLASSES DIII-EVEN AND DIII-ODD

For classesDIII-even andDIII-odd, the calculation is similar to that of the previous sectio
The saddle-point manifold again consists of two connected components, and taking their
butions with different signs distinguishes between odd and even matrix dimension.

The ensemblesDIII-even andDIII-odd haveb54. In the calculation of the average spect
density in these ensembles, the matrixQ has dimension 414 and belongs to a
(818)-dimensional linear space. The saddle-point manifold is (414)-dimensional.

The ensemblesDIII are defined as consisting of 2N32N matrices,

H5 i S H1 H2

H2 2H1
D , ~54!

whereH1 andH2 are realN3N antisymmetric matrices (H1
T52H1 , H2

T52H2). Depending on
whetherN is even or odd, this defines the ensembleDIII-even or DIII-odd, respectively. The
matrix elements ofH1 and H2 are assumed to be distributed independently with a Gaus
distribution, and produce the following pair correlation function for the matrix elements ofH:

^Hai,b jHa8 i 8,b8 j 8&5v2~d i i 8d j j 82~21! i 1 j d̄ i i 8d̄ j j 8!~dab8dba82daa8dbb8!, ~55!

where the indicesi , j take values 1 or 2 and distinguish between the twoN-dimensional sectors
in the 2N-dimensional linear space, andd̄5(1 0

0 1) in this ‘‘1–2’’ space.
We express energy in the units

D5
A2pv

AN
~56!
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~as the result of the calculation, this is the average level spacing!.
The space ofC-vectors needs to be doubled. Instead of a single vectorCa we introduce a pair

of vectorsC1a andC2a ~herea takes values 1,. . . ,N),

C1a5S c1B

c2B

c1B
†

c2B
†

c1F

c2F

c1F
†

c2F
†

D
a

, C2a5S c2B

2c1B

c2B
†

2c1B
†

c2F

2c1F

c2F
†

2c1F
†

D
a

, C̄1a5S c1B
†

2c2B
†

2c1B

c2B

c1F
†

2c2F
†

c1F

2c2F

D
a

T

, C̄2a5S c2B
†

c1B
†

2c2B

2c1B

c2F
†

c1F
†

c2F

c1F

D
a

T

. ~57!

The two sets of vectorsC, C̄ are necessary to reproduce the four terms in the interaction ind
by ~55!.

The corresponding supermatrixQ has the form,

~58!

Equivalently,Q may be described as obeying the two linear constraints,

g12Qg12
2152Q, g125S 0 21

1 0 D
12

, ~59!

and
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~60!

where FB and PH indices specifies that the operator acts in the Fermi–Bose and ‘‘particle–
spaces~the doubling of dimension by combiningc and c† in a single vectorC), and ‘‘1–2’’
denotes the space corresponding to the twoN-dimensional sectors in the original Hamiltonia
~54!.

Similarly to the previous section, we find for the generating functionZ(vB ,vF),

Z~vB ,vF!5E DC expS 2
1

4
STrF ip

A2

AN
C iaC̄ iav̂1

1

2
~C iaC̄ ia!2G D

5E DQ E DC expS 2
1

2
STrFN

2
Q21 iAN

2 S Q2
p

N
v̂ DC iaC̄ iaG D

5E DQ FSDetS Q2
p

N
v̂ D G2N/2

expS 2
N

2
STr

Q2

2 D , ~61!

where

v̂5S vB

vF
D ^ S 1 0

0 21D
PH

^ S 1 0

0 21D
12

. ~62!

At small energiesvB , vF this leads to the formulas~29!–~32!, albeit with the new definitions of
Q and v̂.

The saddle-point manifold consists of the two connected pieces represented by

~63!
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Similarly to the procedure described in the previous section, first the supermatricesQ1 , Q2 are
rotated by even symmetry-group generators. These rotations do not mix bosonic and fer
components, i.e., the matrixQz contains only boson–boson and fermion–fermion blocks,

~64!

We shall use the following parameterization of these blocks:

Qz
(BB)

5S i coshuB n1 sinhuB ~n22 in3!sinhuB 0

n1 sinhuB 2 i coshuB 0 2~n22 in3!sinhuB

~n21 in3!sinhuB 0 2 i coshuB n1 sinhuB

0 2~n21 in3!sinhuB n1 sinhuB i coshuB

D
PH,12

,

~65!

where (n1 ,n2 ,n3) is a vector of a real two-dimensional unit sphere (n1
21n2

21n3
251). The boson–

boson block is the same for the two sectors of the saddle-point manifold.
The fermion–fermion blocks for the two components of the saddle-point manifold are

Qz1
(FF)5S 0 0 0 2 ieiuF

0 0 2 ieiuF 0

0 2 ie2 iuF 0 0

2 ie2 iuF 0 0 0

D , ~66!

Qz2
(FF)5S 2 i cosuF 2 i sinuF 0 0

2 i sinuF i cosuF 0 0

0 0 i cosuF 2 i sinuF

0 0 2 i sinuF 2 i cosuF

D . ~66!

The parameter range isuBP@0;1`), uFP@0;2p#, and the vectorn runs over the two-
dimensional unit sphereS2.

Like in the previous section, we first do the calculation in the first component of the sa
point manifold, and then obtain the answers for the second component by using the sym
operatorT mapping one component~generated byQ1) onto the other~generated byQ2). One
possible choice of such a matrixT is
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~67!

Returning to the parameterization for the first component of the saddle-point manifold
matrix A involved in the odd rotation~40!, ~41! is chosen as follows:

~68!

This matrix satisfies theflatnesscondition @A,dA#50, and this leads todUj5Uj
21dUj5dA.

Using the algebraic identity~46!, together with~38!, ~39!, and

DQ5
1

~2p!2 J~uB ,uF ,n,j,j̄,n,n̄ ! duB duF d2n dj dj̄ dn dn̄, ~69!

one finds after some calculation the explicit form for the invariant measure in the coordi
chosen,

DQ5
1

16p2 e22iuF sinh2uB duB duF d2n dj dj̄ dn dn̄ ~70!
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~hered2n is the integration over the solid angle on the unit sphere!.
The explicit expressions for the diagonal entries of theQ-matrix QB andQF are found to be

QB15 i @coshuB1eiuF~ j̄j2 n̄n!#, QF152 ieiuF~ j̄j1 n̄n!. ~71!

Using the operatorT defined in~67!, for the second component of the saddle-point manif
we find

QB25QB1 ,
~72!

QF25 i @cosuF12j̄jn̄neiuF1coshuB~ n̄n2 j̄j !

1 in1 sinhuB~nj̄2 n̄j !2~n21 in3!n̄ j̄ sinhuB1~n22 in3!nj sinhuB#.

After some calculation, one verifies the normalization:

Z1~v,6v!5E dQ exp@22pv~QB17QF1!#50,

~73!

Z2~v,6v!5E dQ exp@22pv~QB27QF2!#51.

The density of states is found in terms of Bessel functions,

r1~v!5ImE dQ QF1exp@22pv~QB12QF1!#5
1

2
d~v!2

p

2
J1~2pv! ~74!

in the first sector, and

r2~v!5ImE dQ QB2exp@22pv~QB22QF2!#5
1

2
d~v!1p2v@J18~2pv!J0~2pv!1J1

2~2pv!#,

~75!

where in~74! and~75! we assumedv.0 and are careless about the overall sign of the answ
Taking these contributions with proper signs, we obtain the answers~5! and~6!. Remarkably,

in ~6!, the contributions ofr1(v) and ofr2(v) cancel each other to the third order at smallv,
producing the correct behavior of the total density of statesr(v)}v5.

VI. CLASS AIII „CHIRAL UNITARY …

The supersymmetric calculations for the three chiral random-matrix ensembles differ
those for classesB–D andDIII in that the broken symmetry of the saddle-point manifold is n
the discrete Z2 , but the continuous GL~1!. The representations of GL~1! are enumerated by th
integer winding number whose absolute value equals the number of zero levels in the ra
matrix ensemble.

The chiral unitary ensemble considered in this section hasb52 ~unitary bulk statistics!. In the
calculation of the average density of states, the supermatrixQ has the block form~in the ‘‘1–2’’
space!

Q5S 0 Q1

Q2 0 D , ~76!
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whereQ1 andQ2 are (111)-dimensional supermatrices without linear constraints. Thus the li
space of matricesQ is 414-dimensional, and the saddle-point manifold has dimension 212.

The ~Gaussian! chiral unitary ensemble~classAIII in Cartan notation! consists of the matrices
of the form,

H5S 0 H̃

H̃† 0
D , ~77!

whereH̃ is a rectangular matrixp3q with complex matrix elements. The matrix elements ofH̃
have independent Gaussian distributions,

dP~H !})
a,b

expS 2
uH̃abu2

v2 D d ReH̃abd Im H̃ab . ~78!

The spectrum of such a matrixH consist ofN5min(p,q) pairs of eigenvalues6Ei and of m
5up2qu zero eigenvalues. In this paper we are interested in the average density of states ne
in the limit of large matricesN→` while keeping the number of zero levelsm fixed. The average
level spacing near zero in the large-N limit is

D5
pv

2AN
. ~79!

Following the standard procedure, we introducep-component superfieldsC1 and C̄1 , and

q-component superfieldsC2 andC̄2 ,

C1a5S c1B

c1F
D

a

, C̄1a5S c1B
†

c1F
† D

a

T

, a51, . . . ,p, ~80!

C2b5S c2B

c2F
D

b

, C̄2b5S c2B
†

c2F
† D

b

T

, b51, . . . ,q. ~81!

The generating function~17! takes the form,

Z~vB ,vF!5E DC expS 2STrF ip

2AN
~C1aC̄1a1C2bC̄2b!v̂1~C1aC̄1a!~C2bC̄2b!G D

5E D~Q1 ,Q2! E DC expS 2STrFNQ1Q21 iANS Q12
p

2N
v̂ DC2bC̄2b

1 iANS Q22
p

2N
v̂ DC1aC̄1aG D

5E D~Q1 ,Q2! FSDetS Q12
p

2N
v̂ D G2qFSDetS Q22

p

2N
v̂ D G2p

3exp~2N STrQ1Q2!, ~82!

where the original integration contour inQ is at Q25Q1
† , and
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~83!

At small energies, expanding the supersymmetric action to terms linear invB,F , we find

Z~vB ,vF!5E DQ @SDetQ1#m expF2NS0~Q1 ,Q2!1
p

2
STrv̂~Q1

211Q2
21!G ~84!

with

S0~Q1 ,Q2!5STr~Q1Q21 ln Q11 ln Q2!. ~85!

If Q1 andQ2 are combined into a single supermatrixQ according to~76!, this action coincides
with the standard form~30!. The saddle-point manifoldG is given by the condition,

Q1Q2521 ~86!

~which is equivalent toQ2521!, and the generating function may be written as the integral o
the saddle-point manifold,

Zm~vB ,vF!5E
G
DQ @SDetQ1#m expF2

p

2
STrv̂~Q11Q2!G . ~87!

A parameterization and the calculation of the integral was previously performed in Ref. 6
I outline their calculation here for completeness. The matricesQ1 andQ2 are parameterized as

~88!

The invariant measure deduced from the metricds25STr(Q1Q2) leads to the trivial JacobianJ
51 and to the integration measure

DQ5
1

2p
dx df dj dj̄. ~89!

From the parameterization~88!, the diagonal elements of the matricesQ1 andQ2 are easily
computed. The generating function~87! involves the average of the diagonal elements ofQ1 and
Q2 ,

QBB5 1
2 @~Q1!BB1~Q2!BB#5 i coshx @12 1

2j̄j#,

~90!
QFF5

1
2 @~Q1!FF1~Q2!FF#5 i cosf @11 1

2j̄j#.

Also, them-dependent prefactor in~87! is a plane wave generated by

SDetQ15ex2 if. ~91!

The normalization can be verified by computing the integral,
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Zm~v,v!5E 1

2p
dx df dj dj̄ em(x2 if) expF2 ipvS coshx F12

1

2
j̄jG1cosf F11

1

2
j̄jG D G

561. ~92!

The average spectral density is calculated from~35! as the integral~again, up to an overall sign!,

rm~v!5ReE 1

2p
dx df dj dj̄ em(x2 if) coshxF12

1

2
j̄jG

3exp@2 ipv~coshx@12 1
2j̄j#1cosf@11 1

2j̄j# !# ~93!

which after some algebra produces the result~7!.

VII. CLASS BDI „CHIRAL ORTHOGONAL …

Similarly to the three Wigner–Dyson random-matrix ensembles, the chiral ensembles for
three classes: unitary, orthogonal, and symplectic, depending on the structure of the matriH̃ in
the block form~77!. In the chiral orthogonal ensemble~classBDI in Cartan notation!, the matrix
H̃ is real. In this ensemble, the bulk repulsion of the levels corresponds to the orthogonal re
b51. The supermatrixQ involved in the calculation of the average spectral density has the b
form ~76!, but now the matricesQ1 and Q2 have dimensions 212 each, with one linear con
straint, so the dimension of the linear space of all the matricesQ is 818. The saddle-point
equation selects the saddle-point manifold of dimension 414.

The entries of the matrixH̃ in ~77! are assumed to be real, with independent Gaus
distributions,

dP~H !})
a,b

expS 2
uH̃abu2

2v2 D dH̃ab . ~94!

As in the chiral unitary ensemble, the spectrum consists ofN pairs of opposite energies, and o
m5up2qu zero-energy levels. The average level spacing is given by the same expressio~79!
@note however a difference between the definitions ofv in ~78! and in~94!, depending on whethe
H̃ab are complex or real#.

To account for the matrix elementsH̃ab being real, we need to double the dimensions of

superfieldsC i andC̄ i . The p-component superfieldsC1 andC̄1 are defined as

C1a5S c1B

c1B
†

c1F

c1F
†
D

a

, C̄1a5S c1B
†

c1B

c1F
†

2c1F

D
a

T

, a51, . . . ,p, ~95!

and similarly, theq-component superfieldsC2 andC̄2 ,

C2b5S c2B

c2B
†

c2F

c2F
†
D

b

, C̄2b5S c2B
†

c2B

c2F
†

2c2F

D
b

T

, b51, . . . ,q. ~96!

Repeating the steps of the derivation~82!, we arrive at the following expression for the generati
function @in place of~84!#:
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Zm~vB ,vF!5E DQ @SDetQ1#m/2 expF2
N

2
S0~Q1 ,Q2!1

p

4
STrv̂~Q1

211Q2
21!G , ~97!

wherev̂ andS0(Q1 ,Q2) are given by the old expressions~83! and ~85!. However, the matrices
Q1 andQ2 are now two times bigger. Each of them has the explicit form,

~98!

Equivalently, this form of the matricesQi may be described by the linear constraints,

gQig
215Qi

T , ~99!

where

~100!

The saddle-point manifoldG is determined by the condition~86!, and the generating function i
expressed as

Zm~vB ,vF!5E
G
DQ @SDetQ1#m/2 expF2

p

4
STrv̂~Q11Q2!G . ~101!

In the present section we choose a slightly different form of parameterization than i
previous one. Namely, parameterize

Q15U1Qz1U2
21 , Q25U2Qz2U1

21 , ~102!

where the matricesQz1 andQz2 contain only boson–boson and fermion–fermion blocks~contain
only even rotations!, and the matricesU1 andU2 contain only odd rotations. The explicit form o
this parameterization is as follows:
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~103!

~104!

~105!

After some calculation, the Jacobian is found to be

J5sinhue2(x2 if), ~106!

and therefore the measure of integration is

DQ5
1

~2p!2 sinhu e2(x2 if) dx dy du df dj̄ dj dl̄ dl. ~107!

Finally, from the explicit calculation of the diagonal elements ofQ1 andQ2 ,

QBB5 1
2 @~Q1!BB1~Q2!BB#5 i @coshx coshu2 1

2 eif~ j̄j2l̄l!#,
~108!

QFF5
1
2 @~Q1!FF1~Q2!FF#5 i @cosf1 1

2 e2x~coshu @j̄j2l̄l#2sinhu @eiyj̄ l̄1e2 iylj#!#.

Now, after verifying the normalization,

Zm~v,6v!5E DQ em(x2 if) exp@2pv~QBB6QFF!#51, ~109!

we compute the average density of states as the following integral:
                                                                                                                



s

-

of

el as a

f the
ctor,

148 J. Math. Phys., Vol. 43, No. 1, January 2002 D. A. Ivanov

                    
rm~v!5ReE DQ em(x2 if) QBB exp@2pv~QBB1QFF!# ~110!

@whereDQ, QBB , andQFF are defined in~107! and~108!#. After some algebra and manipulation
with Bessel functions, this produces the result~8!.

VIII. CLASS CII „CHIRAL SYMPLECTIC …

The last symmetry class considered in this paper isCII in Cartan notation: the chiral sym
plectic one. It consists of the matricesH of the block form~77!, where the matrixH̃ has an
internal 232 structure,

H̃5S a b

2b* a* D , ~111!

wherea andb are rectangularp3q matrices@the matrixH̃ thus has the dimensions 2p32q, and
the Hamiltonian~77! has the dimension 2(p1q)#. The spectrum of such a Hamiltonian consists
the N5min(p,q) pairs of doubly degenerate levels at opposite energies6Ei , and of 2m52up
2qu zero-energy levels. Since each level has degeneracy two~or a multiple of two!, we divide the
density of states by two for the purpose of level counting, and count each degenerate lev
single one.

As in the two previous sections, the supermatrixQ is of the form~76!. Similarly to the chiral
orthogonal case, the matricesQ1 andQ2 in this calculation have dimension 212, with one linear
constraint. The dimension of the linear space of matricesQ is thus 818, and the dimension of the
saddle-point manifold is 414.

The entries of the matrix~111! are assumed to be normalized as

dP~A!})
a,b

expS 2
uaabu2

v2 Dd Reaabd Im aab )
a,b

expS 2
ubabu2

v2 Dd Rebabd Im bab . ~112!

With this normalization, the average level spacing is

D5
pv

A2N
. ~113!

Similarly to theDIII ensemble discussed before, we need to additionally double the set o
superfields to account for the symplectic matrix structure. Namely, in addition to the ‘‘1–2’’ se
distinguishing between the size-p and size-q blocks in ~77!, we introduce the ‘‘particle–hole’’
~PH! sector referring to the two sectors inside the matrixA ~111!. Thus we arrive to the four pairs

of superfieldsCP1 , C̄P1 , CP2 , C̄P2 , CH1 , C̄H1 , CH2 , C̄H2 ,

CP1a5S cP1B
†

cH1B

cP1F
†

cH1F

D
a

, C̄P1a5S cP1B

cH1B
†

2cP1F

cH1F
†

D
a

T

, CH1a5S cH1B
†

2cP1B

cH1F
†

2cP1F

D
a

,

~114!

C̄H1a5S cH1B

2cP1B
†

2cH1F

2cP1F
†
D

a

T

, a51, . . . ,p,

and similarly for the sector-2 fieldsCP2 , C̄P2 , CH2 , C̄H2 .
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This results in the following form of matricesQi :

~115!

which differs from the chiral orthogonal ensemble by interchanging the bosonic and ferm
sectors~this duality was already described in Ref. 1!.

Performing the standard steps of the derivation@similarly to ~82!#, we arrive at the following
answer in the saddle-point approximation:

Zm~vB ,vF!5E
G
DQ @SDetQ1#m expF2

p

2
STrv̂~Q11Q2!G ~116!

@note the differences from the orthogonal result~101!!#.
Finally, the calculation may be performed using the parameterization obtained from that

previous section by interchanging bosonic and fermionic sectors. Note that under this interc
the compact variables become noncompact and vice versa. Explicitly, Eqs.~103!, ~105!–~107! are
replaced by

~117!
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~118!

DQ5
1

~2p!2 sinu e2(x2 if) dx dy du df dj̄ dj dl̄ dl. ~119!

Equation~108! is replaced by

QBB5 1
2 @~Q1!BB1~Q2!BB#5 i @coshx1 1

2 eif~cosu @j̄j1l̄l#1sinu @eiyl̄j1e2 iylj̄#!#,
~120!

QFF5
1
2 @~Q1!FF1~Q2!FF#5 i @cosf cosu2 1

2 e2x~ j̄j1l̄l!#.

Taking the integral

rm~v!5ReE DQ e2m(x2 if) QBB exp@22pv~QBB1QFF!#, ~121!

we obtain the final result~9!. @Note that in~121! we divided the density of states by two to preve
double counting of the doubly degenerate states.#

IX. ZERO LEVELS AND REDUCED SUPERSYMMETRY OF THE ACTION

After presenting the calculations of the average density of states in the five random-m
ensembles with zero levels, in this section we discuss the specifics of the supersymmetric
due to the zero levels. I do not present here a consistent mathematical analysis of this pr
leaving it for future study. Instead I only summarize the common features of the above ca
tions specific for the ensembles with zero levels.

The standard supersymmetric procedure to calculate spectral correlation functions
random-matrix ensemble starts with introducing bosonic and fermionic fieldscB andcF .1,2 Inte-
grating over the Gaussian disorder produces a four-term interaction. This interaction is th
coupled via Hubbard–Stratonovich transformation by a supermatrixQ whose dimension is inde
pendent on the matrix sizeN in the original random-matrix ensemble. Integrating over
superfields (cB ,cF), one arrives at an effective action for the supermatrixQ. The supermatrixQ
obeys certain linear symmetry relations and thus belongs to a linear superspaceL depending on
the symmetries of the original random-matrix ensemble. In the superspaceL, there acts a super
groupG inherited from the supersymmetry mixing the bosonic and fermionic fieldscB andcF .
Namely, an elementgPG is a supermatrix acting onQ by conjugation,

g:Q°gQg21. ~122!

The groupG then depends on the symmetries of the matrixQ and hence on the symmetry of th
random-matrix ensemble.

The effective actionS(Q) may, at small energiesv, be expanded to the linear inv term,

S~Q!5Sv50~Q!1v STrLQ21, ~123!

whereLPL is a particular supermatrix withL251.
                                                                                                                



TABLE II. Supergroups and superspaces involved in the spectral density calculations.

Class L G H G5G/H G0 G/G0

B–D osp~2u2! SpO~2u2! GL~1u1! SpO~2u2!/GL~1u1! SpSO~2u2! Z2

DIII osp(4u4)/osp(2u2)% osp(2u2) SpO(2u2)3SpO(2u2) SpO~2u2!a SpO~2u2! S@SpO(2u2)3SpO(2u2)#b Z2

AIII gl(1u1)% gl(1u1) GL(1u1)3GL(1u1) GL~1u1!a GL~1u1! S@GL(1u1)3GL(1u1)#b GL~1!
BDI @gl(2u2)/osp(2u2)# % @gl(2u2)/osp(2u2)# GL~2u2! OSp~2u2! GL~2u2!/OSp~2u2! SL~2u2!c GL~1!
CII @gl(2u2)/osp(2u2)# % @gl(2u2)/osp(2u2)# GL~2u2! SpO~2u2! GL~2u2!/SpO~2u2! SL2(2u2)c GL~1!

aH is diagonal inG: H5$(g,g)% in classesDIII and AIII.
bS@H3H# denotes here the subgroup$(g1 ,g2)uSDetg15SDetg2%.
cSL(2u2)5$gPGL(2u2)uSDetg51%; SL2(2u2)5$gPGL(2u2)uSDetg561%.
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In ensembles without zero eigenvalues, the zero-energy actionSv50(Q) is invariant with
respect to the supergroupG. The zero-energy actionSv50(N) scales linearly withN, and in the
large-N limit the integral overQ is determined by the saddle points ofSv50(Q). The saddle-point
equation, with the appropriate normalization, reads

Q2521. ~124!

This equation is solved byQ5 iL, as well as by any matrix obtained fromiL by G-rotations
~122!. The matrixL is invariant under a subgroupH,G, and the saddle-point manifoldG is the
quotientG/H.

More precisely,G is a Riemannian~real! supermanifold inG/H, which makes it a Riemannian
symmetric superspace as defined in Ref. 1. This real submanifold should be determined ge
cally from deforming the real integration subspace inL while keeping the integral convergent.
good geometric understanding of this contour deformation still needs to be developed, but t
of thumb for choosing the real integration manifold inG is to take the bosonic sector noncompa
and the fermionic one compact@this choice also provides a metric of a definite sign onG#.

For the random-matrix ensembles with zero eigenvalues, the invariance properties
effective actionSv50(Q) are modified. In this case,Sv50(Q) is invariant with respect not to the
whole supergroupG, but only with respect to its normal subgroupG0 . The subgroupG0 must
containH, and the factor groupG/G0 is an abelian group~an ordinary group, not a supergroup!.
The exponent exp@Sv50(Q)# transforms according to one of its~one-dimensional! representations
The degree of this representation equals the number of zero eigenvalues in the random
ensemble.

In the ensemblesB–D andDIII, the groupG/G0 is discreteZ2 , and the two representation
of Z2 correspond to the ensembles with and without zero eigenvalues~odd N and evenN,
respectively!. Specifically, the actionSv50(Q) has the form,

Sv50~Q!5NS0~Q!, ~125!

whereS0(Q) gets incremented byip under the action of the generator ofG/G05Z2 . Hence,
exp@Sv50(Q)# transforms according to the even/odd representation ofZ2 for even/oddN.

In the chiral random-matrix ensemblesAIII, BDI, andCII, the groupG/G0 is the continuous
GL~1!, with its representations labeled by the integer ‘‘winding number’’m. The absolute value o
m equals the number of zero eigenvalues in the random-matrix ensemble. The actionSv50(Q) in
the chiral ensembles@which includes the logarithm of the pre-exponent in~87!, ~101!, ~116!# is of
the form

Sv50~Q!5NS0~Q!1mS1~Q!, ~126!

whereS0(Q) is invariant underG, andS1(Q) produces phase shifts underG/G05GL(1). The
exponent exp@Sv50(Q)# then transforms as the representation of GL~1! of degreem.

The summary of the ‘‘building blocks’’ of the supersymmetric calculations in this paper~the
calculation of the average spectral density! is presented in Table II. This table is compiled usi
the results of Ref. 1 and the calculations in the previous sections. The definitions of the
groups involved in this table may be found in Sec. III. To keep track of the bosonic~noncompact!
and fermionic~compact! sectors of the supergroups, we use the notation OSp for the ortho
plectic supergroup with the orthogonal part in the bosonic, and the symplectic part in the ferm
sectors. In the opposite case of orthogonal fermionic and symplectic bosonic sector, we den
same supergroup SpO. It is important for reducing the action symmetry in ensemblesB–D and
DIII, that SpO(2nu2n) has two disconnected components with superdeterminants 1 and21 @the
former of them denoted as SpSO(2nu2n)#. Incidentally, in the ensemblesC andCI, dual toB–D
andDIII by interchanging fermionic and bosonic sectors, in the supergroup OSp(2nu2n), with the
non-compact orthogonal sector, the second component~with SDet521) plays no role and should
be disregarded as it always corresponds to a divergent integral. The supergroup GL(nun) is not
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simple either. First, it has a one-dimensional center consisting of scalar matrices. Second,
normal subgroup SL(nun) consisting of matrices with unit superdeterminant. This latter reduc
of the supergroup GL(nun) is crucial for the symmetry classification in the case of the ch
ensembles~the last three lines in Table II!.

Finally, it is worth mentioning that the conclusion about the reduced supersymmetry o
zero-energy effective actionSv50(Q) may be extended to higher-order correlation functions
volving averaging several Green’s functions~the average spectral density requires averaging o
one Green’s function!. In Ref. 1 a general procedure of calculating correlation functions of a
trary order~with the number of zero levelsm50! was described, and the saddle-point manifold~a
Riemannian symmetric superspace! G was found to be always reducible for ensembles admitt
zero levels. Thus the extension of the calculation of the present paper to higher-order corre
is straightforward~however, explicit parameterization and integral evaluation immediately
comes much more complicated!.
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In this article we study the construction of supersymmetric spin networks, which
has a direct interpretation in context of the representation theory of the superalge-
bra. In particular we analyze a special kind of spin network associated with super-
algebra Osp(1u2n). It turns out that the set of corresponding spin network states
forms an orthogonal basis of the Hilbert spaceL2(A/G), and this argument holds
even in the q-deformed case. The Osp(nu2) spin networks are also discussed
briefly. We expect they could provide useful techniques to quantum supergravity
and gauge field theories from the point of nonperturbative view. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1421423#

I. INTRODUCTION

The notion of spin networks originally was advocated by Roger Penrose in the 1970s wh
tried to give a quantum mechanical description of the geometry of space.1 In his opinion, the final
version of quantum geometry should be a combinatorial theory in which we consider the dif
combinations and permutations of objects such that we could derive the discrete spectra
servables in the quantum mechanical level. After that the idea of spin networks was introdu
many areas, including lattice gauge theory2 and topological field theory.3 In the middle of the
1990s, the spin networks were introduced in loop quantum gravity in a quite different way4,5 It
was exploited to construct the Hilbert space of kinematical quantum states and consequen
discrete spectra of the area and volume of the space were obtained.6 Later the dynamics of the spin
networks were also considered and its evolution gives rise to a casual set of spin networks7 or spin
foams.8

It is evident to see the importance of spin networks if we list some basic features they co
First spin networks are a very general notion in quantum field theory in which gauge field
involved. In particular, they are gauge invariant objects, in the sense that the correspondin
network states will be solutions to the Gauss constraint naturally if we take the standard
procedures to quantize the theory. As a result, it would be much easier to find the phys
related subspace in Hilbert space. In path integral formulation, we can consider the func
integration on the modular space since a well-defined measure theory can be established in
of spin networks. In loop quantum gravity, they are background independent and nonpertur
objects as well.

Until now we mainly focus on SU~2! spin networks since it has important application
quantum general relativity.6,8,9 However, in principle we could construct the spin networks as
ciated to other groups or supergroups. More importantly, we have a belief that they cou
applied to quantum supergravity and gauge theories as well. Based on this motivation, the
symmetric spin networks first were introduced in Ref. 10 and then developed in Ref. 11. In
10 by virtue of supersymmetric spin networks, we carry out a nonperturbative quantizati
simple supergravity. In particular, we find the spectrum of area operator taking a discrete f

a!Electronic mail: ling@phys.psu.edu
1540022-2488/2002/43(1)/154/16/$19.00 © 2002 American Institute of Physics
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ÂuGsg,ei ,v j&5(
i

l p
2Aj i S j i1

1

2D uGsg,ei ,v j&, ~1!

wherel p is the Planck length andj i5ei /2.
In this article we develop the construction of supersymmetric spin networks. After givin

overview on some general features of spin networks in Sec. II, we study a special kind of
spin network which has superalgebras Osp(1u2n) in the consequent section, and Osp(Nu2) spin
networks are also discussed briefly in Sec. IV. In Sec. V we discuss some possible applicat
super spin networks.

II. AN OVERVIEW

A spin network is a graph,G(ei ,v j ), embedded in a three dimensional manifoldM . It is
composed of edges~or links! and vertices~either nodes or joints!. To each edge, we assign th
color, ei , which is related to the labels of the irreducible representation of groups, and to
vertex we assign an intertwiner operator,v j , which maps the incoming irreducible representatio
to the outcoming ones at the vertex. We adopt the convention that the vertex is called ak-valent
one if there arek edges meeting at this vertex.

The construction of spin networks has a direct interpretation in representation theo
groups. In spin networks, each edgee labeled by the representation could be understood a
parallel propagator or holonomy of the connectionA, Ue(A), along the edge in connectio
representation. In matrix notation of group theory, it also corresponds to the higher dimen
irreducible representation of the group element. In SU~2! spin networks, we also think of the edg
as the combination of manyropes, each of which corresponds to the fundamental representatio
the group. Therefore, the reason that each edge can be decomposed into many ropes ste
the fact that every higher dimensional irreducible representation of the group can be obtain
employing the symmetrization or antisymmetrization procedures from the fundamental rep
tations. It is this fact that we can decompose the spin network into multi-loop graphs by perm
and connecting all the ropes to form loops, and finally we are able to establish the transform
between spin network states and loop states in the corresponding Hilbert space.

Intertwiner operators associated with every vertex in spin network can be understood
different ways that we could carry out to connect the ropes when edges meet at the same
Correspondingly, in the language of representation theory of groups, it corresponds to the fa
tensor products of several irreducible representations can be completely decomposed i
direct sum of the irreducible representations. Hence, they are invariant tensors in irred
representations of groups and given by standard Clebsch–Gordan~CG! theory. In the case of
SU~2! spin networks, when the vertex is a tri-valent one, the decomposition of the tensor pr
is unique. If the edges are more than three, we then can divide the multi-valent vertex in
tri-valent vertices by making use of the intertwiner operator. At the same time, restricted b
expansion of Clebsch–Gordan series, the colors associated with edges which meet at th
vertex must satisfy some conditions consistent with these CG series. We call them adm
conditions. For instance, consider three valences with colors (a,b,c) meet at the same vertex i
ordinary SU~2! spin networks. Then they have to satisfy the triangle inequality and the su
them has to be even numbers; however, in the case of Osp(1u2), then the sum can be any positiv
integer.

Associated with each spin network, we can obtain one number by taking the trace
corresponding matrix product of the propagators along edges in representation space, w
called the evaluation of spin networks. It has very important applications to quantum grav
particular, when we consider the action of operators such as area and volume observables
spin network states, it provides us a practical way to work out the spectra of these observab
cases of SU~2! and Osp(1u2), the evaluations of spin networks, in particular the theta graphs
discussed respectively in Refs. 12 and 10, where 6j symbols and recoupling theories play impo
tant roles.
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Based on the spin networkG(ei ,v j ), we can define a spin network state,F f G
(A), by means

of the cylindrical function with the form

F f G
~A!ª f G~Ue1

~A!, . . . ,Uen
~A!!, ~2!

where cylindrical functionf G refers to taking the holonomy along each edge and then contra
the holonomy matrix with the intertwiners at each vertex where edges meet. Spin network
have more advantages than loop states since they are linear independent and do form a bas
Hilbert space, rather than loop states the space of which is over completed and contain
identities. To show the spin network states form a basis in the Hilbert space, we need sol
key problems. One is the definition of inner product of the spin network state, consequen
can show any two different spin network states are orthogonal and linear independent; the
one is the completeness of the spin network states, namely any state in Hilbert space
expressed in terms of spin network states. In the case of SU~2!, these two problems are solve
successfully mainly by virtue of the Haar measure and Peter–Weyl theorem in group t
respectively.4–6As a result, SU~2! spin networks play a key role to form a linear independent ba
of the Hilbert space in loop quantum gravity.

When we try to extend the notion of spin networks to the supersymmetric case, we ne
construct the graphs and find the rules which must be completely consistent with the repre
tion theory of superalgebras. Following constructions of SU~2! and Osp(1u2) spin networks,4,10

which has been recalled above, let us list some basic procedures that we have to take into
in this article.

~i! The definition of supersymmetric spin networks. At the first sight, it is simple to define
supersymmetric spin networks. We only need to change the representations assoc
edges to the corresponding representations of the supergroups and label the ve
intertwiner operator appropriately. But after that, to make the spin network well defined
need to consider the following related questions.

~ii ! What are the admissible conditions associated with the tri-valent vertex? Or, equiva
can any tensor product of the irreducible representations be decomposed into the dire
of the irreducible representations? Due to the features of superalgebras on their ow
will face some troubles at once, because, unlike the Lie algebra,the tensor products o
many kinds of superalgebras are not completely reducible into the irreducible ones. We
could see this trouble elsewhere when we construct the Osp(2u2) spin networks.11

~iii ! Could we find a way to evaluate the graphs such that we could consider the action
operators on the corresponding spin network states and then calculate the spectra
operators? More explicitly, can every edge be decomposed into ropes, as we do in th
of SU~2!? Namely, can any irreducible representation of the supergroups be const
from the fundamental representation? We will also see only some special sorts of su
gebras have such features. Furthermore, is it possible to carry out a graphic represe
of computing the enclosure of edges?

~iv! Does the set of the corresponding spin network states form a basis for the Hilbert spa
show this, first we need to show that any different spin network states are orthogon
linear independent, and, second, any states in the space can be decomposed into the
the spin network states.

To answer these questions, in this article we extend the strategy in SU~2! spin networks to a
special kind of supersymmetric spin network which is equipped with superalgebra Osp(1u2n).
The analysis of this special one will lead to some general comments on the construct
supersymmetric spin networks with other superalgbras.

But, before we do that, let us recall some basic facts related to superalgebras in the la
of this section. Superalgebras and supergroups were proposed in physics to construct the
symmetric model in which bosons and fermions are placed in the same supermultiplet an
could change into each other under the supersymmetric transformation. In fact, every super
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or graded algebra contains two kinds of generators. One is even, which is the bosonic part,
other is odd corresponding to the fermionic part. Contrasting to the ordinary algebras, the
generators of the superalgebra are associated with theanticommuting parameters while the od
ones are associated with theanticommuting parameters. A special kind of superalgebra i
classical simple Lie superalgebra, whose odd part is completely reducible into one or two
ducible subspaces. Its classification and representation are given in the fundamental pa
Kac.13 Furthermore, if classical superalgebras admit a nondegenerate metric tensor, they are
basic superalgebras, which is the closest one to simple Lie algebra. All irreducible represen
of basic superalgebras are obtainable from a highest weight and the Schur lemma holds un
usual way. However, unlike the ordinary Lie algebras, normally superalgebras have two kin
representations. One is typical, and the other one is atypical. The typical representatio
irreducible and more like the ordinary representations of the Lie algebra, however the at
ones are in many respects degenerate. In particular, the atypical representations may
completelyreducible, for example, if they occur as the semidirect sums of several irredu
atypical representations.

Many kinds of Lie superalgebras do not have properties similar to those of Lie algebra
example, the complete reducibility is not valid for all the simple Lie superalgebras any more,
for basic ones. Finite reducible but indecomposable representations may appear if we cons
tensor products of irreducible representations. However, the representations of Osp(1u2n) have all
the nice properties of those of semisimple Lie algebras. For example, all its reducible repre
tions are fully reducible and therefore a generalized Wigner–Eckhart theorem holds.

The Lie supergroups are obtained by exponentiating Lie superalgebras. Particularly for
groups SU(NuM ) and Osp(Nu2M ), it is known that all the representations constructable can
obtained from the direct product of fundamental representations.

III. Osp „1z2n … SPIN NETWORKS

A. Definition

First let us concentrate on a special kind of spin network with superalgebra Osp(1u2n)
5B(0,n),14 which is a subset of the orthosympletic Lie superalgebras Osp(M u2n).15 Its even part
is O(1)^ Sp(2n) and the Dynkin diagram is shown in Fig.1.

The finite dimensional irreducible representation is characterized by its highest weigL
5(a1 ,a2 , . . .,an), which takes the form

L5a1v11a2v21¯1anvn , ~3!

where v i( i 51, . . . ,n) is the fundamental weight and the coordinateai( i 51, . . . ,n) has to be
nonnegative integer. The Sp(2n) representation contained in the representation can be read
from the diagram directly by replacing the odd rootan by bn5 1

2 an . Correspondingly, the edge i
Osp(1u2n) spin networks is labeled byei , which is defined as a partition of (a1 , . . . ,an). In the
language of spin networks we also call the weight coordinates colors of the edge. In the si
case ofn51, we see the representation of superalgebra is labeled by only one integere152 j 1 ,
and the corresponding spin networks are discussed in detail in Ref. 10.

B. Elements: Edges and vertices

As we mentioned earlier, in general there are two kinds of representations of the supera
One is typical, and the other one is atypical. However, superalgebra Osp(1u2n) has a remarkable

FIG. 1. Dynkin diagram of Osp(1u2n).
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feature. It has only typical representation. The fundamental representation is labeled by
coordinates (1,0,. . . ,0), and the basis vector of the representation is 2n11 dimensional and
contains one boson and 2n fermions,

ja5S cA

fo
D , ~4!

wherecA is the fermionic part of the representation andA5(1, . . . ,2n) is the spinor index of
Sp(2n), while fo is the bosonic part which is only one dimensional. Then the unit element in
fundamental representation can be illustrated as in Fig. 2, in which we denote the Sp(2n) element
by the thin line and the single bosonic part by the dotted line.

The higher finite dimensional representations of the superalgebra can be obtained by s
trizing and antisymmetrizing the fundamental representations.16 Note that in the simplest case o
n51, we only need to take the symmetrization procedures since the anti-symmetrization o
spinor indices will be identical to the trivial representation. In context of Young tableaus, we
only one row of boxes. However, forn>2, we need to take both symmetrization and antisymm
trization procedures to obtain all the finite dimensional irreducible representations. For ins
we consider the tensor products of two fundamental representations. We can symmetrize tw
vectors, which is defined as17

j (ab)5ja
1jb

21~2 !g(a)•g(b)jb
1ja

2 . ~5!

Also we can antisymmetrize them as

j (ab)5ja
1jb

22~2 !g(a)•g(b)jb
1ja

2 , ~6!

whereg(a) is the grade of the index. For fermionic indices, it is one and for bosonic it is zer
we denote the symmetrization by the square box in the graph, and antisymmetrization by a
labeled by the number of ropes under consideration, then the unit elements of the supe
under these representations are illustrated in Fig. 3.

FIG. 2. Composition of unit element with color~1,0, . . . ,0!.

FIG. 3. Symmetrization and antisymmetrization of fundamental representation.
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Their weight coordinates are~2,0,...,0! and ~0,1,0, . . . ,0!, respectively. We also call the un
element symmetrizer in which ropes are symmetrized and antisymmetrizer in which rope
antisymmetrized. Unlike the symmetrization, we can derive the following properties of the
symmetrization in graphic representations~see Figs. 4–6!.

These properties are easily proved by using the definition of symmetrizers and antisy
trizers shown in~3!. For instance in Fig. 5, when two lines are both symmetrized and antis
metrized at the same time, then obviously they vanish.

Also, when one graph involves both boxes and circles, we find the order is also imp
now. For instance, the graphs shown in Fig. 7 are not equivalent.

Continuously taking the antisymmetrization procedures on fundamental representatio
will find it has to be terminated as far as more than 2n fundamental representations are involve
since with antisymmetrizing the same index vanishes. To simplify the notation, we only show
line but label the number of ropes which are antisymmetrized in the circle. We draw it as in
8.

To construct the graphical representation for any highest weight irreducible representati
need make use of the Young supertableaux. For Osp(1u2n), the construction of Young supertab
leaux is simple since it has the same shape as the usual Young tableaus of Sp(2n) representation
(a1 ,a2 , . . . ,an21 , 1/2an). The Young tableau associated to Sp(2n) representation
(a1 ,a2 , . . . ,an21 ,1/2an) is defined as a graph withl i boxes in thei th row wherel i is related to
the Dynkin labels by

l i5ai1l j 11 , ln5 1
2 an , ~7!

which satisfiesl1>l2>¯>ln>0.
Replacing each box in the Young supertableaux by a vertical straight rope and putting th

parallel from left to right, then we define a decomposition of the edge by symmetrizin
antisymmetrizing them corresponding to their positions in Young supertableaux. As a result
irreducible representation is obtained by taking both symmetrization and antisymmetrizatio

FIG. 4. Property I.

FIG. 5. Property II.
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FIG. 6. Property III.

FIG. 7. Two distinguished graphs with different orders of box and circle.

FIG. 8. All the nonvanishing antisymmetrizers in Osp(1u2n) spin networks.

FIG. 9. The graphic representation of~1,1,0, . . . ,0!.

FIG. 10. The rope components of general edges.
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cedures, we find there are several inequivalent graphic representations. For example, the
sentation~1,1,0,0, . . . ,0! could be realized by graphs illustrated in Fig. 9.

In conclusion, we find the edge in spin networks can be decomposed into some comp
which are the combination of some symmetrized or antisymmetrized ropes. An example
decomposition is shown in Fig. 10.

Next we consider the vertex and intertwiners in spin networks. In the context of represen
theory, it is equivalent to considering the tensor product of irreducible representations. We
that the only Lie superalgebras for which all finite dimensional representations are comp
reducible are the direct products of Osp(1u2n) superalgebras and semi-simple Lie algeb
~Djoković–Hochschild theorem18!. In the context of spin networks, we will have no troub
connecting the edges together at the same vertex. We only need to find out the appr
admissible conditions and label the vertex by the correct intertwiners, which correspon
finding the Clebsch–Gordan series for the tensor products of the irreducible representations
able to do that, the possible way is to decompose the edge into the direct sum of ones in o
Sp(2n) spin networks since the tensor product of two Sp(2n) representations is discussed and t
CG coefficients are computable.19 Next, let us go back to consider the decomposition of su
edges into the ordinary Sp(2n) edges. In the case that only symmetrizations are involved, the
will decomposed into two components, which is illustrated in Fig. 11.

However, if both symmetrization and antisymmetrizations are involved, then we would
the terms will be more than two, and the specific calculation is possible to carry out. Normal
have the following strategy to obtain all the terms in ordinary Sp(2n) spin networks. The first term
in Sp(2n) spin networks has the same shape as the super one. Then we divide the rop
symmetrized groups in which each rope is symmetrized with one another. Then we pickat
mostone rope from each symmetrized group in turn and replace them by the dotted lines su
we will get all the graphs in terms of the ordinary Sp(2n) spin networks. Finally, we still need to
read off any graph which contains at least two dotted butantisymmetrizedlines since it vanishes
Among all the graphs remaining, we also have to identify some equivalent graphs and may
a little complicated work. However, in context of Young supertableaux, the procedure is si
We find the supertableaux of Osp(1u2n) can be decompsed into the direct sum of ordina
tableaux by removing at most one box from each row. So maybe another practical way is to

FIG. 11. The rope components of general edges.

FIG. 12. Decomposition of super spin network into ordinary Sp(2n) ones.
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decomposition in the context of Young tableaux and then transform the Young diagram into
of the spin networks. For example, the super one~1,1,0, . . . ,0! can be decomposed into fou
Sp(2n) terms as shown in Fig. 12.

Then the tensor product of two edges in super spin networks will correspondingly be de
posed to the direct sum of the tensor products of edges in Sp(2n) spin networks.

C. Evaluation

In this article we have not carried out a specific calculation for the evaluation of Osp(1u2n)
spin networks yet. However, based on the following analysis, we would like to claim that
definitely possible to do so due to the features of the Osp(1u2n) superalgebra. Basically we hav
two ways to evaluate such super spin networks. One way is to decompose the super one
ordinary Sp(2n) spin networks, as we argued above; the other way is given as follows. Refe
20 shows that there is a one-to-one correspondence between the graded represent
Osp(1u2n) and the nonspinorial representations of O(2n11). First, if a graded irreducible rep
resentation of Osp(1u2n) and a nonspinorial irreducible representation of O(2n11) have the
same highest weight, one has

dim~rosp(1u2n)~a1 , . . . ,an!!5dim~r8O(2n11)~a1 , . . . ,an!!. ~8!

Moreover, the multiplicity of any weight is the same for both representations. As a direct a
cation of the argument, consider the tensor products of both irreducible representations hav
same highest weights. Then we can see the Clebsch–Gordan~CG! series coincide; in particular
since the tensor products are completely reducible, their CG series can be obtained by coun
multiplicities of their weights.

So far, the one-to-one correspondence also gives us an alternative practical way to e
the Osp(1u2n) spin networks by studying the O(2n11) spin networks, which should be easy
carry out at first.

In the last part of this section, we conjecture some examples that could be worked out
future. One is the closure of any edge, namely, the supertrace of the unit element of supe
Osp(1u2n) in such finite irreducible representation. Note that the supertrace of supergrou
defined as

FIG. 13. Closure of the edges.

FIG. 14. Identity.
                                                                                                                



drawn

super-
adratic

elated

in net-
lized
tates

then

r
er
n
kind
the
well.
nifold;

se of
super

163J. Math. Phys., Vol. 43, No. 1, January 2002 Supersymmetric spin networks

                    
Str~Ub
a!ªTr~A!2Tr~D !, ~9!

where we suppose the matrix representation of the supergroup has a structure

U5S A B

C DD . ~10!

This can be done by calculating the dimensions of the Lie algebra O(2n11) shown in Fig. 13.
We find the closure of the edge is a nonzero number. Thus we could expect the identity

in Fig. 14 to be evident.
They would also be applied to the nonperturbative quantization of eleven dimensional

gravity when we consider the actions of the operators. For instance, we may consider the qu
Casimir operators and their eigenvalues. In loop quantum gravity, this kind of operator is r
to the area observable:

Ck~L!5
1

4n12
~LuL12r!, ~11!

where~u! is defined as the inner product of the weights andr is defined as

r5v11v21¯ 1vn . ~12!

The supertrace not being zero has more important meaning when we define super sp
work states and form the Hilbert space. This good feature will allow us to define genera
‘‘Ashtekar–Lewandowski’’~AL ! measure on the space, moreover, to show the spin network s
form a basis of the space.

D. Hilbert space

In this section we begin with the integration theory on the supergroup manifold, and
apply it to spin network states.

Given a manifoldM , we define a Lie superalgebra Osp(1u2n) valued connection one-formA.
For instance, in eleven dimensional space–time, we can define the Osp(1u32) connection as
follows,

A5..Am~x!dxm5Am
a ~x!Padxm1Am

ab~x!Jabdxm1Am
a1 . . . a5~x!Za1 . . . a5

dxm1Cm
a~x!Qadxm,

~13!

where x5(x0 , . . . ,x10) are local coordinates onM , m is the space–time index anda,b are
internal indices.a is spinor index.Pa ,Jab ,Za1 . . . a5

, andQa are Osp(1u2n) generators whileJab

andZa1 . . . a5
are skew symmetric. In~13! we can think of all the components of connectionA as

the smooth function on the manifoldM . Let us denote the space of smooth connections onM as
A. Then we define the space of continuous functionals onA as Fun(A). Now based on the linea
vector space, we want to define a Hilbert space,L2(A). Namely, we need introduce some inn
product of the quantum states which is the element in Fun(A), and then consider the completio
of Fun(A). In loop quantum gravity, we carry out all the procedures by introducing a special
of function of the connection, which is called a cylindrical function. They are defined as
functions of holonomies of the connection. Therefore they are functions of group manifold as
Then the inner products can be defined by means of taking the integration on the group ma
as we know, a unique, both left- and right-invariant measure can be defined on it.

Now we extend all the construction mentioned earlier to the supersymmetric ca
Osp(1u2n). First, note the super loop variables can be defined by means of the holonomy of
connectionsA. For details we refer to Ref. 21:
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U@A,g#~s!ªP expE
g
dsgmAm~g~s!!. ~14!

Note thatU is an element of supergroup Osp(1u2n). The loop states can be defined as

Cg~A!ªStrU@A,g#, ~15!

whereg is a loop in the space–time manifold withg(0)5g(1). Though the holonomy is no
gauge invariant, their supertrace is gauge invariant indeed.

It is well known that there is a probability measure, the Haar measure, for the compa
groups such that we could define a unique normalized both left- and right-invariant integr
namely,

E
G

dg51, E dg f~g!5E dg f~g0gg1!5E dg f~g21!, ~16!

whereg0 ,g1 are any group elements andf (g) is also an arbitrary function ofg. The generaliza-
tion of the Haar integral for Lie supergroups was discussed in Ref. 22. We refer to that pap
more details on the integration theory on supermanifold. Here we point out that in particula
of Osp(1u2n), we can also define a generalized Haar measure on the space of functions
supergroup which are both left- and right-invariant.23 Therefore it is possible to develop a positiv
integration theory on the space of connection,A. Here we define the generalized Haar measure
supergroup Osp(1u2n) as

E
G

dg51, E
G

gab
(r)dg50, rÞ0. ~17!

Next we consider the definition of inner product of spin network states. Associate to
spin network, we can define a corresponding spin network state in the Hilbert space. To sho
the set of spin network states does form a basis for the state space in the case of Osp(1u2n), we
carry out the following procedures. In spin networks we know a connection is simply to ass
group element,Ue , to each edge of the graphe by taking the holonomy of the connectionA in the
irreducible representationre along the edge. Hence, the space of connections in context of
networks is

A> ^
ei

Gei, ~18!

which is the finite product of groupG and the measure is defined as

DA5 ^
ei

dUei
. ~19!

We call this measure the generalized Ashtekar–Lewandowski measure. Now we could defi
inner product of two spin network states by means of cylindrical functions.

Consider a spin networkG(ei ,v j ). We define the cylindrical functions,F f G
, which only

depend on the holonomies of the connectionA. Using the generalized Haar measure on@G#n, we
then define the scalar product of two cylindrical functions as

^F f G
uFgG

&ªE
Gn

dU1¯dUi f G~U1 , . . . ,Ui !gG~U1 , . . . ,Ui !. ~20!

The Hilbert space on whichr l is defined can be denoted asHr l
. Hence the total Hilbert spac

associated to the spin networks can be defined as the tensor product of these spaces,
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H5 ^
v j

Hv j5 ^
v j

~ ^
ei

Hei
!v j , ~21!

whereei are edges meeting at the same vertexv j . In the case of Osp(1u2n), since any products
of finite dimensional irreducible representations are completely reducible, namely,

r1^ . . . ^ r i5 %
j

v jr j , ~22!

correspondingly we find the tensor products of the Hilbert spaces can be decomposed i
direct sum of Hilbert spaces on which the irreducible representations of Osp(1u2n) are defined,

He1
^ . . . ^ Hei

5 %
r j

K jHr j
. ~23!

Furthermore, we can decompose the Hilbert space as the direct sum of the functions on
irreducible representations and its conjugate:

L2~A/G!5 %
j

Vj ^ Vj* . ~24!

Next, to show that the spin network states are orthogonal and linear independent, we
the generalized Peter–Weyl theorem:

Theorem: Let r be the irreducible representation of Osp(1u2n) with the highest weightsr i ,
and letUab

r , a,b51,2, . . .,di(di5dimr i), be the matrix element ofr i , Then:

Fun~A!5 %
i

%
a,b51

di

Uab
i , ~25!

E Uab
i Ũgs

j ~21!bg1a1b5dagd i j

Usb
i

Sdim~ i !
, ~26!

E Uab
i Ũgs

j ~21!bg5dbsd i j

Uag
i

Sdim~ i !
. ~27!

From the formula above, we note that the nonzero supertrace plays an important role.
ever, for the supergroups whose supertrace vanishes, then we would maybe have some
finding the generalized Peter–Weyl theorem.

Now making use of Eqs.~26! and~27! in the generalized Peter–Weyl theorem, and followi
the procedures in Ref. 4, it is straightforward to show the Osp(1u2n) spin states are orthogona

^G,ei ,v j uG8,ei 8,v j 8&5dGG8d i i 8d j j 8 . ~28!

At the same time, using the equation~25! we can show the set of spin network states is comple
such that any state in the Hilbert space can be expressed as the sum of the Osp(1u2n) spin
network states,

uF&5(
i

Ci uG i&. ~29!

Therefore, the spin network states do form a basis for the Hilbert spaceL2(A/G).
Finally, we point out that in the case of quantum deformed superalgebra, we could

construct theq-deformed spin networks and the corresponding spin network states, which
have important application when we study the casual evolution of the spin networks and
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symmetric spin foams. In theq-deformed case, the ordinary sum of two superspinsJ11J2 cannot
give a third superspin any more whenq is not equal to one. The notion of coproduct has to
introduced. The generalized Peter–Weyl theorem forUq(osp(1u2n)) is given in Ref. 24.

In the class of Osp(1u2n) spin networks, we are particularly interested in the case on
516, namely Osp(1u32), since this superalgebra is related to the eleven dimens
supergravity25–27 and M theory.28 As we know, in eleven dimensional supergravity, the sup
Poincare algebras with two- and five-form central charges are obtained by taking an In
Wigner contraction of Osp(1u32). This superalgebra has many facets in different dimensi
which are studied in Ref. 29. As a result, we expect the Osp(1u32) spin networks will have its own
advantages when we try to carry out a background independent and nonperturbative quan
of the eleven dimensional supergravity and M theory.

IV. Osp „Nz2… SPIN NETWORKS

In previous section we have described Osp(1u2n) spin networks following the proposal w
gave in overview. In this section we will discuss Osp(Nu2) spin networks briefly. We are inter
ested in this kind of spin network because it is related to the chiral supergravities.30 But in this
class the case ofN52 is different from the others since the even part of this superalgeb
SO(2)3Sp(2) such that the first numbera1 of Dynkin labels can be any complex numbe
however, for the others it has to be a non-negative integer. Its construction and applica
supergravity are studies in Refs. 11 and 31. Here we consider the general case whenN is larger
than two.

The basis vectors of the fundamental representation of Osp(Nu2) span aN12 dimensional
vector space. Similar to the case of Osp(1u2n), its higher finite dimensional irreducible represe
tations can be obtained by standard symmetrization and antisymmetrization procedures on
mental representation. Therefore, in the context of spin networks, we can decompose the ed
ropes.

In fact, any representation of basic Lie superalgebra can be decomposed into the direct
irreducible representations of the even subalgebra, which means any edge in super spin n
can be decomposed into the sum of normal edges which are labeled by the irreducible re
tations of the even subalgebra. In the case of Osp(Nu2), we can decompose the Osp(Nu2) spin
networks into the direct sum of the ordinary spin networks with SO(N) ^ Sp(2). Inparticular, if
only the symmetrization procedures are considered, we have simple decompositions. Fig
illustrates the basic one which has the color~2,0, . . . ,0!.

Since the SO(N) indices are antisymmetrized, the decomposition of the graphs termina
the term which containsN dotted lines~see Fig. 16!.

However, unlike the case of Osp(1u2n), some questions arise in the Osp(Nu2) case as we try
to construct the Hilbert space based on spin network states. As we mentioned before, both
and atypical representations are present for other superalgebras except Osp(1u2n). The key dif-
ference of these two types of representations is that all the typical representation is either ir
ible or completely reducible; however, the atypical one maybe is not completely reducible~i.e.,
reducible but not decomposable!. In group theory, there is a simple meaning of complete red

FIG. 15. Symmetrizer with color two.
                                                                                                                



ould be
ms to
, we do
ariant

some
le repre-
eed
, we still
antum
nd
ossible

en the

a

metric
se of
pace
uate
res are
lau-
gies
nclear
ind of
m

very
g the

167J. Math. Phys., Vol. 43, No. 1, January 2002 Supersymmetric spin networks

                    
ibility, namely the representation space should be a Hilbert space and the representation sh
unitary. Correspondingly, in the context of spin networks we will meet some serious proble
show the corresponding spin network states form a basis for the Hilbert space. In this case
not know there exists some kind of generalized Peter–Weyl theorem, though the left-inv
Haar integral for such supergroups is also discussed in Ref. 22. But let us note there are
classes, which are called star representations and graded star representations in irreducib
sentations of the superalgebras.14,32 Inside each class the complete reducibility is reserved ind
and the CG series can be given also. Thus, spanning spin network states in such subspaces
expect they could be well defined to form a basis for such Hilbert spaces. Note that in qu
gravity, only thephysicalHilbert space is what we want finally. So, it is quite interesting to fi
some self-consistent subset of spin networks which are well defined and investigate the p
applications to quantum theory.

In the end of this section, let us make a summation by listing the correspondence betwe
construction of spin networks and the representation theory of the superalgebra.

Spin networks Representation theory of superalgebr
Edges Irreducible representation
Vertex Intertwiner operator
Ropes Fundamental representations
Admissible conditions Clebsch–Gordan series
Closure of edges Supertrace of the unit element
Spin network states Cylindrical functions
Inner product of spin network states Generalized Haar measure
Orthogonality and linear independence of states Generalized Peter–Weyl theorem

V. DISCUSSIONS

In this article we have presented a general introduction to the construction of supersym
spin networks. All the strategy in ordinary SU(2) spin networks can be employed in the ca
Osp(1u2n) spin networks. In particular, the spin network states form a basis for the Hilbert s
L2(A/G). But normally it is becoming more complicated to carry out a practical way to eval
the spin network graphs, as in general both symmetrization and antisymmetrization procedu
involved in higher finite dimensional irreducible representations. However, it is definitely p
sible to give a specific calculation on evaluation of graphs in the future by following strate
given in present article. On the other hand, due to the properties of the superalgebra, it is u
if we could construct spin network states as the basis of Hilbert space based on any k
superalgebra. Here we only discussed the Osp(Nu2) spin networks briefly and found this proble
should be considered seriously.

To apply spin network techniques to quantum supergravities and Yang–Mills theory is
promising and important. At root they are powerful tools to quantize gauge theories alon
nonperturbative and background independent approach.

FIG. 16. Symmetrizer with color (i ,0, . . . ,0).
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First we expect the corresponding spin network states would be applied to constru
Hilbert space of quantum supergravities. In this framework we could find a practical wa
consider the action of the operators, and calculate the spectra of the observables. In Ref.
have made a first step to calculate the spectrum of area operator inN51 Chiral supergravity, and
the extension to the case ofN52 is also done in Ref. 11.

Second, we propose the holographic hypothesis33,34 can be tested in the framework of non
perturbative quantum supergravities. This conjecture has been tested inN51 andN52 super-
gravity, respectively.31,35 It is the supersymmetric spin networks that make it possible to coun
number of degrees of freedom on the boundary such that we find the relations between the
the boundary and the number of the states do satisfy Bekenstein’s conditions.

Until now we only take into account the finite dimensional representation of the superalg
It is worth studying what role the spin networks will play if we consider the infinite dimensio
representation of the superalgebra.
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The mean value of a quantity in an equally weighted wave packet was recently
found in the classical limit to be the Feje´r average of partial sums of Fourier series
expansion of the classical quantity, and the number of stationary states in it is equal
to that of partial sums. The incompleteness of the Feje´r average in representing a
classical quantity enables us to define a classical uncertainty relation which turns
out to be the counterpart of the quantum one. In this paper, two typical quantum
systems, a harmonic oscillator and a particle in an infinite square well, are used to
illustrate the above-mentioned points. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1418245#

I. INTRODUCTION

During the past few years, the dynamics of wave packets has become a very active fi
research—for a review, see Ref. 1. Intensive theoretical and experimental studies show th
the short-term, one or two periods to be precise, behaviors of an initially localized wave p
prove to be similar to those of an appropriate ensemble of classical orbits. Its long-term beh
such as collapse,~super-!revival, etc., are inevitable and of purely quantum mechanical orig1

However, an outstanding problem remains open: In what sense can or cannot the quantu
chanics recover the classical mechanics for a single orbit in the classical limit?

As stated in a standard textbook,2 in order to obtain a definite classical orbit in the classi
limit, we must start from a quasiclassical wave packet of a particular formuc(t)&5(m cmcm ,
where the coefficientscm are noticeably different from zero only in some rangedm of values of
the quantum numbern such that 1!dm!n; the numbersn are supposed large and the superi
posed stationary statescm in the wave packetuc(t)& have nearly the same energyEn .2 As
believed, the mean value of a quantity in such a wave packet must become, in the classica
simply the classical value of the quantity; and the mean value was ‘‘proved’’ to have a Fo
series form.2 In fact, the proof given in Ref. 2 is not rigorous in mathematics, as recently poi
out in Ref. 3.

The wave packet we study takes the following simplest form:

uc~ t !&5
1

A2N11
(

m52N

N

cn1m~x!expS 2 iEn1mt

\ D ~N<n!. ~1!

a!Electronic mail: qhuiliu@cs.hn.cn
1700022-2488/2002/43(1)/170/12/$19.00 © 2002 American Institute of Physics
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It is an equally weighted wave packet~EWWP! which is constructed by superposition of 2N
11 successive stationary states centered at thenth with an equal weight 1/A2N11. Q.H.L. has
recently proven in a Letter3 that in the constraint classical limit;

n→`,\→0,n\5an appropriate classical action, ~2!

the quantum mechanical mean value of a quantity in the EWWP goes over to the cla
quantity, but the form is Feje´r average of partial sums of Fourier series of the classical qua
rather than the Fourier series itself.3 Let the nth partial sum of Fourier series expansion of
classical quantityf be f n ,

f n5 (
k52n

n

ck expS i2kpt

T D . ~3!

The Fejér averageF^ f & of 2N11 partial sums is then

F^ f &5
f 01 f 11 f 21¯ f 2N

2N11
. ~4!

What was proven in Ref. 3 means in the quasiclassical sense that the number 2N11 of the
stationary states in EWWP~1! is nothing but the number of the partial sums in the Feje´r average
F^ f & ~4!, and

f̄ 5^c~ t !u f uc~ t !&'F^ f &. ~5!

We are impressed by the fact that the Feje´r average is initially an intellectual creation in pu
mathematics to study the convergence of Fourier series. Its existence in physics may refl
harmony of mind world of mankind and material structure of nature. Since the Feje´r average is not
familiar to some readers, we give a brief introduction to it in the Appendix.

The Fejér averageF^ f & ~4! of a classical quantity can contain an arbitrary number of par
sums forN, which can be an arbitrary integer ranging from 0 to`. However, from Eq.~1!,
quantum mechanics puts an upper bound toN, N<n. In fact, we haveN!n in the quasiclassica
sense as will be shown shortly. Moreover, the minimum of the uncertainty relationDxDp singles
out a criticalN5Nc , for the uncertainty relation cannot be minimized with the number of
tionary states being more or less than it. The relation betweenNc and n can be reasonably
assumed to be given by an exponent equation,

Nc'nm, m,1, ~6!

wherem is a constant exponent depending on the form of the potential, and can be calle
critical exponent. In this paper, calculations givem52/3 for a harmonic oscillator~HO!, andm
51/2 for an infinite square well~ISW! potential.

There is no uncertainty associated with a classical quantity; but the representation of´r
averageF^ f & ~4! of the classical quantity is not complete unlessN→` ~cf. the Appendix!.
Because of this incompleteness, a classical uncertaintyDcf can be defined by

Dcf 5AF^ f 2&2~F^ f &!2, ~7!

which approaches zero asN→`. It is the counterpart of the quantum uncertaintyD f for the
correspondence relation~5! implies in the semiclassical sense,

Dcf 'D f . ~8!

Note that in each case in this paper, to compare a classical mechanical result with a qu
mechanical one, the classical quantity takes its semiclassical form.
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As a systematic illustration of how the Feje´r average relates to the mean value of a quantity
the EWWP, a single HO and a particle in the ISW are studied in Secs. II and III, respectively.
these two systems are chosen is based on both physical and mathematical considerat
physics, they are two fundamental models in quantum mechanics and insights into the dy
exhibited in them speak immediately to a wide range of physical systems.4 In mathematics, the
classical positionx(t) and momentump(t) for a single HO contain only the fundamental fr
quency terms cos(vt) and sin(vt), respectively; whereas for a particle in the ISW they give
sawtooth and square wave, respectively, which are indispensable in an elementary discus
Fourier analyses relevant to Feje´r average5–8 that offers the base of our exact treatment. A br
conclusion is given in Sec. IV.

II. FEJÉR AVERAGE AND A SINGLE ONE-DIMENSIONAL HO

A single one-dimensional HO is of great importance in quantum mechanics as well
classical physics, since it can be used to approximate a single particle moving in an ar
continuous potential in the vicinity of a stable equilibrium position. Furthermore, it is analytic
calculable throughout. We like to use it to illustrate various aspects of our theory. This se
starts with the calculation of mean values of quantities in the EWWP for the HO, from whic
Fejér average comes out as a natural result. Next with the minimum of the uncertainty re
DxDp, the critical exponentm is obtained. Then the classical uncertainty relation can be defi
and found to be in a semiclassical sense comparable to the quantum one. Section II D pre
brief summary.

A. Mean values of quantities in the EWWP for a single HO

For a single one-dimensional HO with massm and intrinsic frequencyv, the mean values for
the quantitiesH,H2,x,x2,p,p2 in the EWWP~1! are given by

^c~ t !uHuc~ t !&5~n1 1
2!\v, ~9!

^c~ t !uH2uc~ t !&5F S n1
1

2D\vG2

1~n\v!2
N~N11!

3n2 , ~10!

^c~ t !uxuc~ t !&5S 2

2N11
A \

2mv (
m52N11

N

An1mD cosvt5 f ~n,N!S 2N

2N11
A2n\

mv D cosvt,

~11!

^c~ t !ux2uc~ t !&5S n1
1

2D S \

mv D1S \

mv D 1

2N11 (
m52N12

N

A~n1m!~n1m21!cos 2vt

5S n1
1

2D S \

mv D1S n\

mv D 2N21

2N11
g~n,N!cos 2vt, ~12!

^c~ t !upuc~ t !&52S 2

2N11
A\mv

2 (
m52N11

N

An1mD sinvt

52 f ~n,N!S 2N

2N11
A2mn\v D sinvt, ~13!

^c~ t !up2uc~ t !&5S n1
1

2Dm\v2m\v
1

2N11 (
m52N12

N

A~n1m!~n1m21!cos 2vt

5S n1
1

2Dm\v2mn\v
2N21

2N11
g~n,N!cos 2vt, ~14!
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where f (n,N) andg(n,N) are

f ~n,N!5
1

2N (
m52N11

N A11
m

n
, g~n,N!5

1

2N21 (
m52N12

N AS 11
m

n D S 11
m21

n D . ~15!

Since we haveN,n, f (n,N) andg(n,N) satisfy

A11
2N11

n
, f ~n,N!,A11

N

n
, ~16!

AS 11
2N12

n D S 11
2N11

n D,g~n,N!,AS 11
N

n D S 11
N21

n D . ~17!

As a consequence, bothf (n,N) andg(n,N) approach unity in the following limit;

N→`, N/n→0. ~18!

Upon looking more closely, we can find two relations after neglect of terms higher thanO(1/n),

2N

2N11
f ~n,N!512

1

2N
1OS 1

nD'
2N

2N11
, ~19!

and

2N21

2N11
g~n,N!512

1

N
1OS 1

nD'
2N21

2N11
. ~20!

Thus, in the classical limit~2! in conjunction with the limit~18!, after neglect of the terms
higher thanO(1/n), results~9!–~14! become the following quantities, respectively:

^c~ t !uHuc~ t !&'E, ~21!

^c~ t !uH2uc~ t !&'E2, ~22!

^c~ t !uxuc~ t !&'
2N

2N11
A 2E

mv2 cos~vt !, ~23!

^c~ t !upuc~ t !&'2
2N

2N11
A2mE sin~vt !, ~24!

^c~ t !ux2uc~ t !&'
E

mv2 1
2N21

2N11

E

mv2 cos~2vt !'~^c~ t !uxuc~ t !&!2, ~25!

^c~ t !up2uc~ t !&'mE2
2N21

2N11
mE cos~2vt !'~^c~ t !upuc~ t !&!2. ~26!

All results on the right-hand side of Eqs.~21!–~26! are the classical quantities in terms of the Fe´r
average of (2N11) partial sums of Fourier series. In other words, the mean value of a quant
the EWWP converges to the Feje´r average of the classical quantity in the classical limit. In S
II C, the Fejér average of classical quantities will be discussed in more detail.
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B. The relation between N and n determined by minimizing the uncertainty relation

The square of usual uncertainties ofx and p as ^c(t)ux2uc(t)&2(^c(t)uxuc(t)&)2 and
^c(t)up2uc(t)&2(^c(t)upuc(t)&)2 are time dependent. Because the time average of them o
period suffices to characterize the deviation of quantum mechanics from the classical one,
subsection we use the following uncertainties:

Dx5S S n1
1

2D2S 1

2N11 (
m52N11

N

An1mD 2D 1/2S \

mv D 1/2

, ~27!

Dp5S S n1
1

2D2S 1

2N11 (
m52N11

N

An1mD 2D 1/2

~mv\!1/2. ~28!

The minimum of their product DxDp means to minimize the quantity (n11/2)
2((m52N11

N An1m/(2N11))2 at a fixedn. In the quasiclassical case whereN!n is satisfied,
the square root ofAn1m can be expanded up to (m/n)3 as~the numerical work will confirm that
expansion to this order is accurate enough!,

AnS 11
m

2n
2

m2

8n2 1
m3

16n3D . ~29!

Then, the summation(m52N11
N An1m/(2N11) is approximately

1

2N11 (
m52N11

N

An1m'
1

2N11 (
m52N11

N

AnS 11
m

2n
2

m2

8n2 1
m3

16n3D
5

N322N~112N2!n/318Nn2132Nn3

16~112N!n5/2 . ~30!

TreatingN as a continuous variable, the zeros of the equation obtained from the derivative
~30! with respect toN would minimize the uncertainty relationDxDp. The only meaningful root
is

Nc52
1

4
1

3 ~2314 n!

2* 22/3y1/3 1
y1/3

12* 21/3~2314 n!
, ~31!

where

y5254~2314 n!31864n ~2314 n!2 ~21112n148n2!1216A6 An ~23

14 n!2 A21116n232n2164n313072n416144n5. ~32!

Whenn@1, we have approximately, with@x# standing for the integral part of positive numberx,

Nc'@61/3n2/3#. ~33!

A comparison of this relation to the numerically exact one, as shown in Fig. 1, shows tha
relation is unbelievably accurate in whole range ofn>1. Then the uncertainty relationDxDp is,
after simplification,

DxDp'
\

2

32/3

21/3n1/35\2/3S 32

24D 1/3

~n\!1/3. ~34!

In the following, we will give its counterpart in classical mechanics.
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C. Another derivation of the uncertainty relation „34… from the Feje´ r average
approximation of the semiclassical quantities

By definition,3,5–8 the Fejér averages of the first (2N11) partial sums of the Fourier series o
x, x2, p, andp2 are withN.1,

F^x&5
2N

2N11
A 2E

mv2 cos~vt !, ~35!

F^x2&5
E

mv2 1
2N21

2N11

E

mv2 cos~2vt !, ~36!

F^p&52
2N

2N11
A2mE cos~vt !, ~37!

F^p2&5mE2
2N21

2N11
mE cos~2vt !. ~38!

The larger the numberN, the more accurate are the Feje´r average approximations. Analogous
the definition of quantum uncertainties given by Eqs.~27! and~28!, the classical uncertaintiesDcx
andDcp are defined by

Dcx5~F^x2&2~F^x&!2!1/25S E

mv2 S 12S 2N

2N11D 2D D 1/2

, ~39!

Dcp5~F^p2&2~F^p&!2!1/25S mES 12S 2N

2N11D 2D D 1/2

, ~40!

wheref (t) means the time average of the quantityf (t) over a period. The product ofDcx andDcp
is

DcxDcp5
E

v

4N11

~2N11!2 , ~41!

which reduces to, whenN@1,

FIG. 1. Comparison of the numerical result ofNc ~dotted line! and the approximately analytical one~solid line! 61/3n2/3;
both are obtained from minimizing of the uncertaintyDxDp at eachn. These two results coincides with each other
whole rangen>1.
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DcxDcp'
E

Nv
. ~42!

We see that the classical uncertainty vanishes only in the limit ofN approaching infinity. However
using the relationsNc'@61/3n2/3# andE'n\v, the classical uncertainty relation~42! is in semi-
classical form,

DcxDcp'S n\

Nc
D'621/3\2/3~n\!1/3, ~44!

which differs from the purely quantum one~34! only in a numerical factor 3/2. Equation~44! can
be called a semiclassical uncertainty relation.

D. A brief summary of results obtained by EWWP description of a single HO

~1! For a single one-dimensional HO, analytical calculations give the critical exponentm52/3
and a relationNc'@61/3n2/3#.

~2! The classical uncertainty relationDcxDcp is definable, and this uncertainty relation com
from the incompleteness of the Feje´r average representation of a classical quantity. Af
rewriting it into its semiclassical form, we seeDcxDcp'DxDp.

III. FEJÉR AVERAGE AND A SINGLE PARTICLE IN AN ISW

A single particle in an ISW is the simplest quantum system whose energy level is not eq
spaced, and the wave packet dynamics exhibited in it is essentially the same as that in
complicated system.4 Since the long-term behaviors of EWWP such as collapse, revival, etc
not have any analog in classical mechanics, only the first two period behaviors are examined
following. In Sec. III A, the analytical expressions of mean valuesx, x2, p, p2 in the EWWP for
a single particle in an ISW are given. In Sec. III B, the critical exponentm51/2 is numerically
determined. In Sec. III C, we show that the inequality of energy level spacing is responsible f
small difference between̂f & andF^ f & for f 5x andp, respectively. Section IV D presents a bri
summary.

A. Mean values of quantities in the EWWP for a single particle in an ISW

For the quantum motion of a particle of massm in a one-dimensional ISW with widtha, the
normalized stationary state function iscn(x)exp(2iEnt/\)5(2/a)1/2sin(knx)exp(2ipn

2t/(2m\)),
wherekn5np/a, En5pn

2/(2m) is the energy and the momentapn56\kn is equally probable. In
classical mechanics, the particle moves to and fro within the two impenetrable walls. The cla
positionx is

x5H pct/m5avt/p, 0,t,T/2

2a2avt/p T//2,t,T,
~45!

whereT52am/pc is the time of one period,pc is the magnitude of momentum, andv52p/T is
the frequency. The derivative of positionx with respect to timet gives the velocityp/m
56pc /m. Themth partial sum of its Fourier series representingx is given byxm ,

xm5
a

2
2

4a

p2 (
r 50

m
cos@~2r 11!vt#

~2r 11!2 . ~46!

Its Fejér averageF^x& is

F^x&5
a

2
2

8a

p2

1

~2N11! (
l 50

N21

(
r 50

l
cos@~2r 11!vt#

~2r 11!2 . ~47!
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Similarly, we haveF^ f & for f 5x2, p, p2 @cf. Eqs.~54!–~56!#. Note that there is the famous Gibb
phenomenon when using truncated Fourier series to approximate the classical momentump, while
F^p& does not have such a phenomenon.6–8 The calculation of̂ f & in the EWWP forf 5x, x2, p,
p2 is straightforward:

^x&5
a

2
1

4a

p2

1

2N11 (
l 50

N21

(
r 50

l H S 1

~2n12N24l 12r 21!2 2
1

~2r 11!2D
3cosS ~2r 11!S 11

2N24l 12r 21

2n Dvnt D1S 1

~2n12N24l 12r 23!2 2
1

~2r 11!2D
3cosS ~2r 11!S 11

2N24l 12r 23

2n Dvnt D J , ~48!

^x2&5
a2

3
2

1

2N11

a2

2p2 (
m52N

N
1

~n1m!2 1
4a2

p2

1

2N11 (
l 51

2N

(
r 51

l

~21!r

3S 1

r 2 2
1

~2n22N12l 2r !2D cosS r S 12
2N22l 1r

2n Dvnt D , ~49!

^p&5m
d

dt
^x&, ~50!

^p2&5
1

2N11 S p\

a D 2

(
m52N

N

~n1m!25S np\

a D 2S 11
N1N2

3n2 D5pn
2S 11

N1N2

3n2 D , ~51!

wherevn5ppn /(ma)5n\p2/(ma2). The following set of classical limits;

n→`, N→`, N/n→0, n\→pca/p5vm~a/p!2 ~ i.e., upnu→pc , or, vn→v!.
~52!

constitutes the necessary and sufficient condition to ensure the quantum mechanical a
~48!–~51! to be equal to the following Feje´r averages;

^x&'F^x&5
a

2
2

8a

p2

1

2N11 (
l 51

N21

(
r 51

l
cos@~2r 11!vt#

~2r 11!2 , ~53!

^x2&'F^x2&5
a2

3
1

4a2

p2

1

2N11 (
l 51

2N

(
r 51

l

~21!r
cos~rvt !

r 2 , ~54!

^p&'F^p&5m
d

dt
F^x&, ~55!

^p2&'pc
2. ~56!

B. The relation between N and n determined by minimizing the uncertainty relation

The mean valuêp& is a continuous function oft; it is zero when the center of EWWP star
to return from either wall of the well. Since the mean value ofp2 is a constant of time,Dp
5A^p2& when ^p&50. At this instant, minimizingDxDp amounts to minimizingDx. The nu-
merical result as given in Fig. 2 shows thatNc'@An#, e.g.,Nc523 whenn5500. In all numerical
calculations hereafter, the natural units are used in whicha5m5\51.
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C. Šf ‹ and FŠf ‹ when nÄ500

When n5500, Nc523, pn56pc56500p, andT50.001 27,^ f & and F^ f & when f 5x, p
are plotted in Fig. 3. The difference between them is small. Is the inequality of the energy
spacing the principal origin of the small difference? In order to examine this problem, we ma
the difference by introducing the reduced uncertaintyd f and reduced classical uncertaintydcf ,

d f 5A12~^ f &!2/^ f 2&, dcf 5A12~F^ f &!2/F^ f 2&. ~57!

FIG. 2. Corresponding to eachn ranging from 10 to 500, there is a unique value ofNc ~dotted curve! minimizing the
uncertaintyDxDp. The smooth curve isAn. SinceNc5@An#61 with @x# denoting the integral part ofx, Nc'An gives
a nice fit.

FIG. 3. WhenNc523, pn56pc56500p, i.e.,n5500, and taking 500p as the unit of the momentum, the Feje´r averages
F^x& ~solid sawtooth wave!, F^p& ~solid square wave!, and the quantum mechanical averages^x& ~dotted sawtooth curve!,
and ^p& ~dotted square curve! in the EWWP. In the first period,̂x& andF^x& are almost the same, and so are^p& and
F^p&. In some intervals two curves completely coincide, only one curve is possibly visible.
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In Figs. 4 and 5, we compare the behaviors ofd f anddcf for f 5x, p, respectively. We use
solid lines to plot the reduced classical uncertaintiesdcf , and the dotted for either the pur
quantum mechanical quantitiesd f or the semiquantum mechanical ones. By the semiquan
mechanical quantities, we mean those constructed from the pure quantum mechanical
which the quantum mechanical matrix elementsf n1r ,n5*0

acn1r(x) f cn(x)dx are replaced with
the r th Fourier amplitudesf r of the classical quantityf , while the time factors exp$(En1r

2En)t/\% remain unchanged. From Eqs.~48! to ~50!, the pure quantum mechanical quantities a
the semi-ones have little difference whenn is large andt is small, e.g.,n5500, t<0.0025.
Therefore when we speak of one of them, both are practically referred to. It is then clear th
difference between solid and dotted lines comes from the inequality of energy level spacin
longer the time evolves, the more the quantum mechanics deviates from the classical mec

D. A brief summary of results obtained by EWWP description of a single particle in an
ISW

~1! For a single particle in an ISW, numerical calculations give a critical exponentm51/2, and
relationNc'An.

~2! The small difference between the^ f & and F^ f & principally results from the inequality o
energy level spacing.

IV. CONCLUSION

Though it is first an intellectual creation in pure mathematics, the Feje´r average turns out to be
rooted in physics that reflects the objective structure of nature. The quantum mechanical a
of a quantity in the EWWP in the quasiclassical sense goes over to the Feje´r average of partial
sums of Fourier series expansion of the semiclassical quantity, rather than the Fourier serie
as widely accepted.

FIG. 4. The difference between^x& andF^x& viewed from the reduced uncertaintydx ~dotted curve! and the classical one
dcx ~solid curve!. The difference between̂x& andF^x& comes from the inequality of energy level spacing. Both curves
entirely different from the classical resultdx50 (xÞ0).
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Two critical exponentsm51/2, 2/3 are obtained for a single HO and a particle in an IS
respectively. The critical exponent of the Keplerian motion is of interest and will be studied i
near future.

Because of incompleteness of Feje´r average in representing a classical quantity, a class
uncertainty relationDcxDcp is definable, which proves to be comparable to the quantum one.
uncertainty is entirely different from the standard deviation associated with an ensemble o
sical orbits.1 In current statistical interpretation of quantum mechanics, the quantum uncertai
usually interpreted to have a statistical origin.9
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APPENDIX: A BRIEF INTRODUCTION TO THE FEJÉ R AVERAGE

The Fourier series had not come to mathematicians as a reliable and convenient tool u
discovery of the convergence of the Feje´r average of its partial sums in 1900. Feje´r’s theorem is
as follows. The Feje´r average of the partial sums of the Fourier seriesf n

5(k52n
n ck exp(i2kpt/T) as sn5( f 01 f 11 f 21¯ f n21)/n approximates the given functionf (t)

at each point wheref (t10) and f (t20) exist andf (t)5 1
2@ f (t10)1 f (t20)#, and uniformly

converges to the functionf (t) when f (t) is continuous on the circle. Note that the truncat
Fourier seriesf n of f (t) convergesin the meanto the function. As a profound consequence, t
Gibbs phenomenon of Fourier series does not occur with the Feje´r average. On its history, see Re
5. On its fundamentals, see, for example, Ref. 6. On its applications, see Ref. 7. On its m
developments, see a recent review.8

FIG. 5. The difference between̂p& and F^p& viewed from the reduced uncertaintydp ~dotted curve! and the reduced
classical onedcp ~solid curve!. Both are entirely different from classical resultdp50 (pÞ0).
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Discrete Kaluza–Klein from scalar fluctuations
in noncommutative geometry

Pierre Martinettia)
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Institut für Theoretische Physik, Universita¨t Wien,
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We compute the metric associated with noncommutative spaces described by a
tensor product of spectral triples. Well-known results of the two-sheets model~dis-
tance on a sheet, distance between the sheets! are extended to any product of two
spectral triples. The distance between different points on different fibers is investi-
gated. When one of the triples describes a manifold, one finds a Pythagorean
theorem as soon as the direct sum of the internal states~viewed as projections!
commutes with the internal Dirac operator. Scalar fluctuations yield a discrete
Kaluza–Klein model in which the extra component of the metric is given by the
internal part of the geometry. In the standard model, this extra component comes
from the Higgs field. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1418012#

I. INTRODUCTION

In the noncommutative approach to the standard model of elementary particles,1 space–time
appears as the product~in the sense of fiber bundles! of a continuous manifold by a discrete spac
In previous papers, we have studied the metric aspect of several classes of discrete spac2 and
the metric of the continuum has been approached from a Lie-algebraic approach.3 Here, within the
framework of noncommutative geometry, we investigate how the distance in the conti
evolves when the space–time of Euclidean general relativity is tensorized by an internal spa
find that in many cases the relevant picture is the two-sheets model.4,5 Indeed, under precise
conditions, the metric aspect of ‘‘continuum3discrete’’ spaces reduces to the simple picture
two copies of the manifold. It was known6,7 that the distance on each copy is the geodesic dista
while the distance between the copies—the distance on the fiber—is a constant. But this d
give a complete description of the geometry, in particular the distance between different poi
different copies. In this paper we show that this distance coincides with the geodesic di
within a (411)-dimensional manifold whose fifth component comes from the internal part o
geometry. This component is a constant in the simplest cases and becomes a function
manifold when the metric fluctuates. Restricting ourselves to scalar fluctuations of the m
which correspond to the Higgs sector in the standard model, it appears that the Higg
describes the internal part of the metric in terms of a discrete Kaluza–Klein model.

The aim of this paper is to investigate the metric aspect of the standard model geometr
goal is only partially achieved because we focus on scalar fluctuations and we mention onl
briefly mathematical aspects such as the Gromov distance. For a comprehensive approach
questions, the reader is invited to consult Ref. 8. Other works on distance in noncommu
geometry mainly concern lattices9–12 and finite spaces. A larger bibliography can be found in R

a!Also at: Universite´ de Provence; electronic mail: martinet@cpt.univ-mrs.fr
b!Marie-Curie Fellow; electronic mail: raimar@doppler.thp.univie.ac.at
1820022-2488/2002/43(1)/182/23/$19.00 © 2002 American Institute of Physics
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2. Naturally, using a Kaluza–Klein picture in noncommutative geometry is not a new idea an
can refer to Refs. 13 and 14 for instance as well as the textbook.15 In particular, that the distance
between the sheets depends on the manifold has been shown in Refs. 16 and 17. Last but n
for a comprehensive approach to the subject, the most recent and complete reference is R

The paper is written for a four-dimensional manifold but generalization to higher dimen
should be straightforward. Sections II and III introduce classical notions of distance in non
mutative geometry and a simple proof that, on a manifold, this distance coincides with the
desic distance. Section IV extends known results of the two-sheets model—distance on eac
distance between the copies—to the product of any two spaces~not necessarily a manifold3a
discrete space!. In Sec. V we show that, under conditions on the internal part of the Dirac oper
a large number of examples actually reduce to a two points fiber space. In the simplest c
internal space is orthogonal to the continuum in the sense of the Pythagorean theorem~in finite
spaces, the Pythagorean theorem has already been mentioned by Ref. 18!. Section VI studies the
scalar fluctuations~terminology is made precise there! of this metric. Section VII presents ex
amples, among them the standard model, and makes precise the link between the Higgs fi
the metric.

II. THE DISTANCE FORMULA

Let A be a unitalC* -algebra represented over a complex Hilbert spaceH equipped with a
scalar product̂ .,.& defining the normiciH

2 8u^c,c&u for cPH. The C* -norm of A is the
operator norm inH,

iaiA8 sup
cPH

ip~a!~c!iH
iciH

,

where p is the representation. The so-called Dirac operatorD is a self-adjoint operator inH,
possibly unbounded. When the spectral dimension is even,4 the chiralityx is a Hermitean operato
which anticommutes withD and commutes withp(A). The set (A,H,D,p,x) is called a spectra
triple. The terminology is justified becausep is usually infered in the notationH, and once given
(A,H,D), x—if it exists—is uniquely determined by the axioms of noncommutative geome1

Since the algebra appears through its representation, we can, without loss of generality, repA
by A/ker(p) and assume thatp is faithful. To improve the readability we omit the symbolp
unless necessary.

We denote byP(A) the set of pure states ofA. The distanced between two of its element
v1 ,v2 is

d~v1 ,v2!8 sup
aPA

$uv1~a!2v2~a!u/i@D,a#i<1%,

wherei.i is the operator norm inH ~we do not writei@D,a#iA because@D,a# may not be the
representation of an element ofA!. This supremum is reached2 by a positive element such tha
i@D,p(a)#i51:

d~v1 ,v2!5 sup
aPA1

$uv1~a!2v2~a!u/i@D,a#i51%. ~1!

This formula is invariant under several transformations, including unitary transformation
projection. First, a unitary elementu of A defines both an automorphism of the algeb
au(a)8uau* and aunitary equivalenttriple (A,H,uDu* ,p + au). Obviously distances are no
changed under such a transformation becausei@D,a#i5i@uDu* ,au(a)#i . More interesting is the
action of a projectionePA (e25e* 5e) given by

ae~a!8eae,
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which defines therestrictedspectral triple

~Ae8ae~A!, He8eH8rane, De8eDeuHe
, pe8puHe

!

whose corresponding distance is denoted byde . ae being not injective, for a pure statev
PP(A) the linear formv + ae is not necessarily a state ofA ~for instance ife is in the kernel of
v!. However it is a pure state of the subalgebraAe . Conversely, any pure stateve of Ae is made
a pure state ofA by writing ve+ae . In other words,P(Ae)5P(A)+ae,P(A).

Lemma 1: If a projection e is such that@D,e#50, the distance between two pure statesv1 ,v2

of Ae is invariant by projection: de(v1 ,v2)5d(v1+ae ,v2+ae).
Proof: For aePAe , i@De ,pe(ae)#i5i@p(e)Dp(e),p(ae)#i5i@D,p(ae)#i therefore

de~v1 ,v2!5 sup
aePAe

$u~v12v2!~ae!u/i@D,p~ae!#i<1%,

< sup
aPA

$u~v1+ae2v2+ae!~a!u/i@D,p~a!#i<1%

5d~v1+ae ,v2+ae!.

This upper bound is reached byae(a) whereaPA reaches the supremum for the distanced,
namelyi@D,p(a)#i51 andd(v1+ae ,v2+ae)5v1+ae(a)2v2+ae(a). j

III. DISTANCE IN A MANIFOLD

The spectral triple of a Riemannian spin manifoldM of dimension four with a metricg is

A5C`~M!, H5L2~M,S!, D5 igm]m5 i ]” , ~2!

whereL2(M,S) is the set of square integrable spinors onM. The Riemannian gamma matrice
gm5gm* 5ea

mga are obtained via the vierbein fieldea
m from the Euclidean gamma matricesga of

the associated Clifford algebra. Usingdabea
meb

n5gmn and gagb1gbga52dabI one hasgmgn

1gngm52gmnI. The spectral dimension is the dimension of the manifold, so there is a chir
g55g0g1g2g3 made of the Euclideanga’s. The scalar product ofH is ^c,f&8*Mc̄(x)f(x) dx
and an elementf PA is represented overH by the pointwise multiplication,p( f )8 f I, so that

i f iA5 sup
cPH

S *M~ f̄ c̄ !~x!~ f c!~x!dx

*Mc̄~x!c~x!dx
D 1/2

5 sup
xPM

u f ~x!u.

By Gelfand transform,P(A).M. The isomorphismxPM↔vxPP(A) is defined by
vx( f )8 f (x). The noncommutative distance~1!,

d~x,y!5 sup
f PC`(M)

$u f ~x!2 f ~y!u/i@ i ]” , f I#i<1%,

coincides with the geodesic distanceL(x,y) between pointsx,y of M. This is a classical result4

but the proof introduces ideas and notations important for further presentation so that we sha
it in detail ~this version of the proof comes from Ref. 19!.

The supremum is reached onA1 , so f is real. ForcPH, @ i ]” , f Ic5 i (]” f )c, so

i@ i ]” , f I#i25i~ i ]” f !* i ]” f i5igm]m f gn]n f i5igmn]m f ]n f Ii5 sup
qPM

$gmn~q!]m f ~q!]n f ~q!%.

The gradient¹W in the usual sense is the exterior derivative d~not to be confused with the distance!
which maps zero-forms~i.e., smooth functions overM! to one-forms:
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¹W f 8~]m f !dxmPT* M.

By definition20 g defines an inner product~thus, a norm! in each cotangent spaceTq* M in such a
manner that

i¹W f ~q!iT
q* M

2
5gmn~q!]m f ~q!]n f ~q!.

Omitting the indexTq* M, one writes

i@ i ]” , f I#i5 sup
qPM

i¹W f ~q!i .

Now, let c:tP@0,1#→M be the minimal geodesic betweenx andy and let• denote the total
derivative with respect tot. For any f PC`(M),

f ~x!2 f ~y!5E
0

1

ḟ ~c~ t !!dt5E
0

1

]m f ~p!ċm~ t !dt,

wherep8c(t). The metric defines an isomorphismTpM.Tp* M such that

]m f ~p!ċm~ t !5gmn~p!]m f ~p!ċn~ t !5^¹W f ~p!,ċn~ t !dxn&,

thus, by Cauchy–Schwarz,u]m f (p) ċm(t)u<i¹W f (p)ii ċn(t)dxni . Assuming thatf reaches the su
premum, one hasi¹W f i<1, so

d~x,y!5u f ~x!2 f ~y!u<E
0

1
i ċn~ t !dxnidt5L~x,y!.

This upper bound is reached by the function

L:q°L~q,y!. ~3!

Indeed,L(x)2L(y)5L(x,y) and

sup
qPM

i¹W L~q!i<1. ~4!

To prove~4!, takeq,q8PM with coordinatesqm,q8m in a given chart such thatq8 comes fromq
by the infinitesimal transformations~e!, e!1, wheres is the flow generated by the vector fie
gmn(]nL)]m with initial condition s(0)5q. Then, writing dqm8q8m2qm,

qm1dqm5q8m5sm~e!5sm~0!1e
dsm

dt
~0!1O~e2!5qm1e gmn~q!]nL~q!1O~e2!,

which means that

dqm5e gmn~q!]nL~q!1O~e2!. ~5!

As L(q8,y) is the shortest length fromq8 to y, L(q8,y)<L(q8,q)1L(q,y), and one has

L~q1dq!<L~q8,q!1L~q!. ~6!

Using ~5!,

L~q8,q!8Aglr~q!dqldqr5Ae2glr~q!glm~q!]mL~q! grn~q!]nL~q!5eAgmn]mL~q! ]nL~q!.
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Inserting into the right-hand side of~6! whose left-hand side is developed with respect toe yields

L~q!1]mL~q! dqm5L~q!1 e gmn~q!]mL~q!]nL~q!1O~e2!

<eAgmn]mL~q! ]nL~q!1L~q!1O~e2!,

which is true for allq, hence~4! and finally d(x,y)5L(x,y).
Note that L is not smooth aty but only continuous. As smooth functions are dense

continuous functions, one may exhibit a sequence of smooth functions converging toL and
satisfying the commutator norm condition. One may also define the distance as the supremu
the continuous functions of expression~1!, see Ref. 17 for details.

IV. TENSOR PRODUCT OF SPECTRAL TRIPLES

The tensor product of an even spectral tripleTI5(AI ,HI ,DI ,p I) with chirality x I by the
spectral tripleTE5(AE ,HE ,DE ,pE) is the spectral tripleTI ^ TE8(A8,H8,D8) defined by

A88AI ^ AE , H88HI ^ HE , D88DI ^ IE1x I ^ DE ,

where the representation ofA8 is p88p I ^ pE . The notationTI ^ TE is a matter of convention for
spectral triples do not form a vector space. The product of spectral triples is commutative
sense that whenTE is even with chiralityxE , thenTE^ TI8(A,H,D) is well defined by permu-
tation of factors,

A8AE^ AI , H8HE^ HI , D8DE^ II1xE^ DI , ~7!

p5pE^ p I , and is equivalent toTI ^ TE up to the unitary operator

U8S II1x I

2
^ IE1

II2x I

2
^ xED .

For physics it is interesting to take for this tensor product the product of the continuum b
discrete, namely to study the geometry of the four-dimensional space–time of Euclidean g
relativity together with an internal discrete space. In the standard model, the internal spa
scribes the electroweak and strong interactions and is defined by a spectral tripleTI in which the
algebraAI is chosen such that its unitarities are related to the gauge group of interactions whHI

is the space of fermions. BothAI andHI are finite dimensional, soTI is a finite spectral triple21

and TE is the usual spectral triple~2! of a manifold. The spectral dimension of a finite spect
triple is 0 and dim(TE)5dim(M)54: both TE and TI are even therefore bothTE^ TI and TI

^ TE are defined.
In this section, we give general results that do not require eitherTE to be the spectral triple o

a manifold orTI to be finite. To fix notations we simply assume thatTE is even so that we work
with TE^ TI . To study the metric of a noncommutative space, the first goal is to make explic
set of pure states of the associated algebra. ForvE andv I being pure states ofAE andAI , the pair
(vE ,v I) is a state ofA which acts asvE^ v I ~that I maps to 1 is obvious, the positivity can b
seen in Ref. 22 for instance! but this is not necessarily a pure state. Moreover there can be
states ofA that cannot be written as tensor products. However, as soon as one of the alge
Abelian, one obtains23 that P(AE^ AI).P(AE)3P(AI) and any pure statev of A writes v
5vE^ v I .

In the two-sheets modelA5C`(M) ^ C2, therefore any pure state isvx^ v i wherev i , i
51,2, is a pure state ofC2 and labels the sheets. It is known4 that d(vx^ v i , vy^ v i) is the
geodesic distanceL(x,y) while d(vx^ v i , vx^ v j ) is a constant. This extends to any product
spectral triples. Once fixed a pure statevE , d(vE^ v I ,vE^ v I8) depends only on the spectra
triple TI and, similarly,d(vE^ v I ,vE8 ^ v I) depends only onTE . This is true even when none o
the algebra is commutative: the distance is then defined between states that may be not p
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Theorem 2: Let dE , dI , d be the distance in TE , TI , TE^ TI , respectively. ForvE , vE8 in
P(AE) and v I , v I8 in P(AI),

d~vE^ v I ,vE^ v I8!5dI~v I ,v I8!,

d~vE^ v I ,vE8 ^ v I !5dE~vE ,vE8 !.

Proof: Let f j denote the elements ofAE and mi those ofAI . A generic element ofA is a
5 f i

^ mi , where the summation indexi runs over a finite subset ofN. Definition ~7! yields

@D,a#5@DE , f i # ^ mi1 f ixE^ @DI ,mi #.

Multiplying this formula from the left and the right by the unitary operatorxE^ II allows one to
write

i@DE , f i # ^ mi1 f ixE^ @DI ,mi #i5i2@DE , f i # ^ mi1 f ixE^ @DI ,mi #i ,

where we use thatxE5xE* commutes withf i and anticommutes withDE . For u,v in a normed
space, 2iui<iu1vi1iu2vi , thus

i@DE , f i # ^ mi i<i@D,a#i , ~8!

andi f ixE^ @DI ,mi #i<i@D,a#i . One can factorize the left-hand side of Eq.~8! by xE^ II in order
to have

i f i
^ @DI ,mi #i<i@D,a#i . ~9!

For anyvEPP(AE) andaPA1 , let us defineaEPAI by

aE8vE~ f i !mi .

aE is self-adjoint. Indeed, positivity ofa, i.e., a5( f p* ^ mp* )( f q
^ mq)5 1

2( f pq
^ mpq1 f pq*

^ mpq* ) where f pq8 f p* f q andmpq5mp* mq , yields

aE5 1
2 ~vE~ f pq!mpq1vE~ f pq* !mpq* !5aE* .

Thus

i @DI ,aE#5 i ~vE^ II !~ f i
^ @DI ,mI # !

in B(HI) is normal. One knows23 that for any normal elementa of a C* -algebra, iai
5sup

tPSut(a)u, whereS is the set of states. Thus, withSI the set of states ofB(HI),

i@DI ,aE#i5 sup
t IPSI

ut I~@DI ,aE# !u

< sup
(ṽE ,t I )PP(AE)3SI

u~ṽE^ t I !~ f i
^ @DI ,mi # !u

< sup
(tE ,t I )PSE3SI

u~tE^ t I !~ f i
^ @DI ,mi # !u

5i f i
^ @DI ,mi #i ,

where we use thati f i
^ @DI ,mi #PB(H) is also normal. Together with~9!,

i@DI ,aE#i<i@D,a#i .
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Since (vE^ v I)(a)2(vE^ v I8)(a)5v I(aE)2v I8(aE),

d~vE^ v I ,vE^ v I8!<dI~v I ,v I8!.

This upper bound is reached byIE^ aI whereaIPAI reaches the supremum forTI alone, namely
dI(v I ,v I8)8u(v I2v I8)(aI)u and 15i@DI ,p I(aI)#i .

The proof ford(vE^ v I ,vE8 ^ v I) is similar, using~8! instead of~9!. j

V. METRIC IN THE CONTINUUMÃDISCRETE

The key points of Theorem 2 are Eqs.~8! and~9!. The first one allows one to forget about th
internal part of the commutator and makes sense for states ofA defined by different pure states o
AE but the same pure state onAI . WhenTE is the spectral triple of a manifold andTI a finite
spectral triple, the noncommutative space described byTE3TI is a fiber bundle over the manifold
with a discrete fiber. This can also be seen as the union of several copies of the manifold, in
by the element of the fiber. Theorem 2 simply says that each of the copies is endowed w
metric of the base. Note that the discussion about the Gromov distance between manifold
distinct metrics in Ref. 4 may not be transposed here because such manifolds are not desc
a tensor product of spectral triples.

In contrast,~9! does not take into account the external part of the commutator and is suffi
to determine the distance between states defined by the same pure state onAI ~i.e., points on the
same fiber within the picture of a continuum3discrete space!. Of course the mixed cased(vE

^ v I ,vE8^ v I8)—the distance between different points on different copies of the manifo
requires one to take into account both the internal and the external part of the commutato
makes the computation more difficult. However, for continuum3discrete spaces, some of the
distances have a nice interpretation in terms of a discrete Kaluza–Klein model: althoug
internal space is discrete, the distance appears as the geodesic distance in a ‘‘v
(411)-dimensional manifold~‘‘virtual’’ means that the points between the sheets are not par
the geometry, the embedding into a higher dimensional continuum space is a practical inte
ate!.

Let us first give a semigeneral result which does not requireTE to be the spectral triple of a
manifold ~TE is just supposed to be even to fix notations! but which assumes

AI8 %
k

Ak ,

wherek runs over a finite subset ofN and theAk’s are von Neumann algebras onC. Note that a
pure state of a direct sum of algebras is a pure state of one of the algebras, that is

P~AI !5ø
k

P~Ak!.

The reason why we restrict ourselves to von Neumann algebras is that to any normal state24 v of
Ak corresponds a projectionrPAk , the so-called support of the state, such that

ar~a!8rar5v~a!r. ~10!

We letP(Ak)* denote the set of normal pure states ofAk . Strictly speaking, the support is define
for normal states of complex algebras. However in the standard model, we shall explicitly e
such a projection for the real internal algebra so that, in the following, we deal with an alg
overK whereK5C or R. Typically, in physical examples, theAk are matrix algebras for which i
is known that all states are normal;r is nothing but a density matrix. When normal pure states
different componentsAk are involved andDI commutes with the direct sum of their support, o
obtains as an immediate consequence of Lemma 1 thatAI reduces toK2.
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Proposition 3: Let r, r8 be the supports of two distinct normal pure statesvk ,vk8
PP(Ak)* , and let p8r % r8. If @DI ,p#50 then, for anyvE ,vE8PP(AE),

d~vE^ vk , vE8 ^ vk8!5de~vE^ v1 , vE8 ^ v2!,

wherev1 ,v2 are the pure states ofK2 and de is the distance associated with Te8TE^ Tr with

Ar8K2, Hr8pHI , Dr8pDIpuHr
.

Proof: The projectione8IE^ pPA defines the restricted tripleTe8(Ae ,He ,De) in which

Ae8ae~A!5AE^ ap~AI !.

Sincer andr8 correspond to different components ofAI they are orthogonal, therefore

ap~AI !5ar~Ak! % ar8~Ak8!5vk~Ak!r % vk8~Ak8!r8

by ~10!. vk ,vk8 being surjective onK, vk(Ak)r andvk8(Ak8)r8 are isomorphic toK. Hence

Ae5AE^ K2.

The statev iPP(K2) extracts thei th component of a pair of elements ofK. In detail, for aI

PAI ,

ap~aI !5vk~aI !r % vk8~aI !r8, ~11!

so thatv1+ap(aI)5vk(aI). Sincee acts like the identity onAE ,

~vE^ v1!+ae5vE^ ~v1+ap!5vE^ vk ,

and (vE8 ^ v2)+ae5vE8 ^ vk8 . By hypothesis@D,e#5xE^ @DI ,p#50 so Lemma 1 yields

d~vE^ vk , vE8 ^ vk8!5de~vE^ v1 , vE8 ^ v2!.

Hr andDr are given by Lemma 1. j

To explicitly computede , we now focus on the case of a continuum3discrete space and w
take for TE the spectral triple of a manifold~2!. To simplify the notations, the pure statevx

^ vk is denoted byxk . The main result of this section is that the internal space is orthogonal t
manifold, in the sense of the Pythagorean theorem, as soon as the Dirac operator commu
the sum of the density matrices.

Theorem 4: Let vk ,vk8PP(Ak)* ,P(Ak8)* , kÞk8. Let r,r8 be their supports and p8r
% r8. If @DI ,p#50, then for any points x,y in M,

d~xk ,yk8!
25d~xk ,yk!

21d~yk ,yk8!
2.

Proof: The proof consists of three steps. First the problem is reduced to a two-sheets m
Then the distance is shown to be the geodesic distance within a (411)-dimensional Riemannian
manifold which, third, satisfies the Pythagorean theorem.

~1! With notations of Proposition 3,

d~xk ,yk8!5de~x1 ,y2!. ~12!

Let us be more explicit onHr , p r , andDr ,

Hr8pHI5Hk% Hk8 , ~13!
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where Hk8rHI and Hk88r8HI . Following ~11!, one letsar5vk(aI)r % vk8(aI)r8 denote a
generic element ofAr . Clearlyp r(r)5Ik so

p r~ar !5vk~aI !Ik% vk8~aI !Ik8 . ~14!

Dr is the restriction toHr of the projection ofDI on Hr , namely

Dr8S V M

M* WD , ~15!

whereM is a linear map fromHk to Hk8 , andV, W are endomorphisms ofHk , Hk8 , respectively.
M is supposed to be nonzero for the contrary makesDr commuting withp r , that is all states of
A defined byvk are at infinite distance from any states defined byvk8 .

Equations~13!–~15! associated with~11! fully determine the tripleTr , and thusTe . Omitting
r andr8 appearing in~11!, a generic element ofAe writes

a5 f i
^ vk~mi ! % f i

^ vk8~mi !5 f % g,

wheremiPAI and f i , f 8 f ivk(mi),g8 f ivk8(mi)PC`(M). In accordance with~1!, we assume
that f % g is positive, i.e.,f andg are real functions.x1 andy2 act as

x1~a!5 f ~x!, y2~a!5g~y!.

a is represented by

f IE^ Ik % gIE^ Ik8

and the Dirac operatorDe5 i ]” ^ II1g5
^ Dr is such that

@De ,a#5S i ]” f ^ Ik ~g2 f !g5
^ M

~ f 2g!g5
^ M* i ]” ^ Ik8

D . ~16!

~2! Let us show thatde coincides with the geodesic distance on the compact manifold

M88@0,1#3M,

with coordinatesx8a5(t,xm), equipped with the metric

$gab~x8!%8S iM i2 0

0 gmn~x!
D ,

and made a spin manifold by adding to the previousg-matrices

g t5iM ig5.

Thanks to Sec. III, it is enough to show thatde coincides with the distanceL8 of the triple

A85C`~M8!, H85L2~M8,S!, D85 iga]a5 ig t] t1 i ]” .

To proceed, letA9 be the subset ofA18 consisting of all functions

f~ t,x!8~12t !g~x!1t f ~x!,

where f andg are any real functions onM. Then
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i@D8,f#i25iga]afi25 sup
(t,x)PM8

$gab~ t,x! ]af~ t,x! ]bf~ t,x!%

< sup
xPM

$ u~ f 2g!~x!u2iM i21 sup
tP[0,1]

P~ t,x! %,

where

P~ t,x!8t2i¹W ~ f 2g!~x!i212tgmn~x! ]m~ f 2g!~x! ]ng~x!1i¹W g~x!i2

is a parabola int of positive leading coefficient, i.e., which reaches its maximum fort50 or 1.
Note that

P~0,x!5i¹W g~x!i2, P~1,x!5i¹W f ~x!i2

and, thanks to~16!,

I S IE^ Ik 0

0 0D @De ,a#S IE^ Ik 0

0 g5
^ Ik8

D I 2

5 I S i ]” f ^ Ik ~g2 f !IE^ M

0 0 D I 2

5 sup
xPM

$ i¹W f ~x!i21u f ~x!2g~x!u2iM i2 %

<i@De ,a#i2.

Similarly, one has sup
xPM$i¹W g(x)i21u f (x)2g(x)u2iM i2%<i@De ,a#i2, hence

i@D8,f#i<i@De ,a#i .

Consequently, sincex1(a)2y2(a)5f(0,x)2f(1,y),

de~x1 ,y2!< sup
fPA9

$uf~0,x!2f~1,y!u/i@D8,f#<1i%<L8~~0,x!,~1,y!!. ~17!

Proving the converse inequality calls for more precision on the geometry ofM8. Because
$gab(x8)% is block diagonal and does not depend ont, the coefficients of the Levi-Civita connec
tion are

G tm
t 5Gmt

t 5 1
2 gtt]mgtt , G tt

m52 1
2 gmn]ngtt , G tn

m 5Gnt
m 5G tt

t 5Gmn
t 50,

wheregtt5(gtt)215iM i22. The geodesic equations read

d2t

dt2 1gtt~]mgtt!
dt

dt

dxm

dt
50, ~18!

d2xm

dt2 2
1

2
gmn~]ngtt!

dt

dt

dt

dt
1Glr

m dxl

dt

dxr

dt
50, ~19!

and, becausegtt does not depend onxm, reduce to

dt

dt
5constant8gttK, and

d2xm

dt2 1Glr
m dxl

dt

dxr

dt
50 , ~20!
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whereK is a real constant. In other terms, the projection toM of a geodesicG8 of M8 is a
geodesicG of M, and the projection ofG8 to the submanifold@0,1#3G is a straight line~i.e., a
geodesic of the submanifold!. Let $xa(t)% be a geodesic inM8 parametrized by its length elemen
dt. Note that, using~20!,

15
dt2

dt2 5gmn

dxm

dt

dxn

dt
1gttK2. ~21!

Let ds be the line element ofM. Assuming thatgttK2Þ1 ~this will be discussed later!,

dt25
ds2

12gttK2 , dt5
dt

dt
dt5

gttK ds

A12gttK2
. ~22!

For q in M, let Gq8 be the minimum geodesic ofM8 between (0,q) and (1,y), and Gq its
projection onM. Let us define the continuous function overM,

f 0~q!5A12gttK2L~q!5A12gttK2E
Gq

ds,

whereL has been defined in~3!. Takea05( f 0 ,g0), whereg05 f 02K. Then

x1~a0!2y2~a0!5 f 0~x!2g0~y!5 f 0~x!1K. ~23!

But the second equation in~22! gives

15E
Gx8

dt5
gttK

A12gttK2 EGx

ds,

inserted in~23! asK1,

x1~a0!2y2~a0!5A12gttK2E
Gx

ds1
gttK2

A12gttK2 EGx

ds5
1

A12gttK2 EGx

ds.

Using the first equation in~22! one obtains

x1~a0!2y2~a0!5E
Gx8

dt5L8~~0,x!,~1,y!!. ~24!

Moreover,]” f 05]”g0 and]m f 05A12gttK2]mL, so ~16! yields

i@De ,a0#i25 sup
qPM

$gmn~q!]m f 0~q!]n f 0~q!1gttK2%5 sup
qPM

$~12gttK2!i¹W L~q!i21gttK2%.

Recalling~4!, this givesi@De ,a0#i<1 so, with~24! ~and the same remark as the one at the end
Sec. III, concerning the nonsmoothness off 0 at y!,

de~x1 ,y2!>L8~~0,x!,~1,y!!.

Together with~17! and ~12!,

d~xk ,yk8!5L8~~0,x!,~1,y!! . ~25!
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This result holds as long asgttK2Þ1. If this is not true, thenU8 (dxm/dt)]mPTM is zero for
~21! indicates thatg(U,U)50 andM is Riemannian. In other words,xm(t) is a constant. This
cannot be the equation ofGx8 unlessx5y. As a conclusion,~25! holds as soon asxÞy.

Whenx5y, ~12! givesd(yk ,yk8)5de(y1 ,y2). With dr denoting the distance associated w
the triple Tr alone, Proposition~2! yields de(y1 ,y2)5dr(v1 ,v2), which is nothing but the dis-
tance of the simplest two-points space and equals4 1/iM i . Thus

d~yk ,yk8!5
1

iM i . ~26!

The projectionGy of the geodesicGx85Gy8 is, by ~19!, a geodesic betweeny andy, that is to say
a point.Gy8 reduces to a straight line in the hyperplane. Thus dt25gtt dt2 and

L8~~0,y!,~1,y!!5AgttEGy8
dt5Agtt5

1

iM i .

Consequentlyd(yk ,yk8)5L8((0,y),(1,y)) and ~25! holds even ifx5y.
~3! The last step is to show that~25! satisfies the Pythagorean equality.gtt being a constant,

Eq. ~22! indicates that dt and ds are equal up to a constant factor. In this way, one may par
etrize a geodesic ofM8 by ds rather than dt and obtains, thanks to the geodesic equations,

dt5gttK8 ds,

whereK8 is a real constant. Then

dt25gtt dt21ds25ds2~11gttK82!.

Thus

L8~~0,x!,~1,y!!5A11gttK82E
Gx8

ds5A11gttK82L~x,y!5AL~x,y!21gttK82L~x,y!2. ~27!

On one side, Theorem 2 givesL(x,y)5d(xk ,yk). On the other side,

gttK82L~x,y!25gttS EGx8
gttK8 dsD 2

5gttS EGx8
dt D 2

5gtt5
1

iM i2 5d2~yk ,yk8!

by ~26!. Together with~25! and ~27!,

d~xk ,yk8!
25d~xk ,yk!

21d2~yk ,yk8!.
j

VI. FLUCTUATIONS OF THE METRIC

For a complete presentation of the material of this section and a justification of the term
ogy, see Refs. 4 and 1. To a triple (A,H,D), the axiom of reality adds an operatorJ, called the
real structure, such that@JaJ21,b#50 for anya,bPA. This allows one to define a right action o
A overH which makes sense because of the noncommutativity of the algebra. To define a
of unitarily equivalent spectral triples preserving the operatorJ, a unitary elementu of A is
implemented by the operatorU8uJuJ21 rather than the operatoru. Then the action ofu defines
the gauge transformedtriple (A,H,DA) where

DA8UDU* 5D1A1JAJ21 ~28!

with
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A8u@D,u21#.

The self-adjoint operatorA governs the failure of invariance ofD under a gauge transformation4

Under a gauge transformation,A transforms like a usual vector potential. Since in electrodynam
the vector potential is a one-form, one defines the spaceV1 of one-form of the noncommutative
space (A,H,D) as the set of elements

ai@D,bi #,

whereai ,biPA. Note that we use the simplifying notationV1 rather thanVD
1 , more common in

the literature, because we only deal with zero-forms and one-forms~VD
n differs from Vn for n

>2!. Since A is self-adjoint, the set of vector potentials is simply the subset of self-ad
elements ofV1. For any vector potentialA, DA defined by~28! is called the covariant Dirac
operator.

The distance is not invariant under a gauge transformation and the metric is said to flu
To study such fluctuations, one has to replaceD by DA everywhere in the preceding sections.
well-known result makes this replacement less studious than it seems.

Lemma 5:@a,JvJ21#50,;vPV1,aPA.
Proof: @J21aJ,@D,bi ##50 ~first order axiom! and @a,JaiJ21#50 ~axiom of reality! yield

@a,JvJ21#5@a,Jai@D,bi #J
21#

5aJaiJ21J@D,bi #J
212Jai@D,bi #J

21a

5Jai@D,bi #J
21a2Jai@D,bi #J

21a50.
j

As an immediate consequence,

@DA ,a#5@D1A,a#. ~29!

Let us now work out the one-forms of a tensor product tripleTE^ TI . In Refs. 25 and 26 it is
shown that

V15VE
1

^ V I
01xEVE

0
^ V I

1,

whereVE
05AE is the set of zero-forms ofAE , and similar definitions for the other terms. Whe

TE is the spectral triple of a manifold,

VE
1{ f j@ i ]” ,gj IE#5 i f j~gm]mgj !5 igm f m ,

where f j ,gj , f m8 f j]mgjPC`(M). A one-form of the total spectral triple is

V1{ igm f m
i

^ ai1g5hj
^ mj ,

whereaiPAI , hjPC`(M), mjPV I
1 . A vector potential is

A5 igm
^ Am1g5

^ H ~30!

with Am8 f i
mai an AI-valued skew-adjoint vector field~over M! and H8hjmj a V I

1-valued
self-adjoint scalar field. For a matrix algebra~or a direct sum of matrix algebras!, the skew-adjoint
elements form the Lie algebra of the Lie group of unitarities. This Lie group represents the
group of the theory, thusAm is a gauge potential. In Ref. 1 a formula is given for the fluctuation
of the metrics due toAm with a zeroH. This involves the holonomy of the gauge connexion. He
we focus on the fluctuations coming from the scalar fieldH, and for simplicity we assume tha
Am50. Then~29! becomes
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@DA ,a#5@D1g5
^ H,a#. ~31!

From now on, we writeDA8D1g5
^ H. For simplicity,d still denotes the distance associat

with the triple (A,H,DA). Remembering definition~7!, a scalar fluctuation substitutes

DH8DI1H

for DI . The main difference is that the internal Dirac operatorDH now depends onx so that each
point x of the manifold defines an internal triple

TI
x8~AI ,HI ,DH~x!!.

This interpretation of scalar fluctuations perfectly fits to the adaptation of Theorem 2.
Theorem 28: Let L be the geodesic distance inM and dx the distance of the spectral triple

TI
x alone. For x,yPM and vk ,vk8PP(AI)* ,

d~xk ,xk8!5dx~vk ,vk8!,

d~xk ,yk!5L~x,y!.

Proof: The adaptation of the proof of Theorem 2 is straightforward. Notations are sim
except thatvE is now vx so thataE is replaced byax . With H5hjmj ,

@DH~x!,ax#5@DI1vx~hj !mj ,vx~ f i !mi #5vx~ f i !@DI ,mi #1vx~hj !vx~ f i !@mj ,mi #

5~vx^ II !~ f i
^ @DI ,mi #1hj f i

^ @mj ,mi # !

5~vx^ II !~ f i
^ @DH ,mi # !. ~32!

Then, i @DH(x),ax# being normal,

i@DH~x!,ax#i5 sup
t IPSI

ut I~@DH~x!,ax# !u5 sup
t IPSI

u~vx^ t I !~ f i
^ @DH ,mi # !u

< sup
ṽE^ t IPP(AE) ^ SI

u~ṽE^ v I !~ f i
^ @DH ,mi # !u

<i f i
^ @DH ,mi #i .

Equation~9! being replaced byi f i
^ @DH ,mi #i<i@DA ,a#i , one obtains

i@DH~x!,ax#i<i@DA ,a#i .

The rest of the proof is then similar as in Theorem 2. j

Note that in~32! we use thatvx is a character, i.e., thatAE is Abelian.
Applied to the two-sheets model, Theorem 28 simply says that the distance between the she

is encoded by a scalar field, as has already been shown in Ref. 16@see also Ref. 7 for aM2(C)
% C model#. Theorem 4 is modified in a more serious way for the fluctuation introduce
x-dependence for the coefficients of the Kaluza–Klein metric.

Theorem 48: Let vk ,vk8PP(Ak)* ,P(Ak8)* , kÞk8. Let r,r8 be the associated projection
and p8r % r8. If @DH ,p#50 for any points ofM, then for any points x,yPM,

d~xk ,yk8!5L8~~0,x!,~1,y!!,

where L8 is the geodesic distance of the spin manifoldM88@0,1#3M equipped with the metric

S iM ~x!i2 0

0 gmn~x!
D
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in which gmn is the metric ofM and M is the restriction to the representation ofAk8 of the
projection of DH on the representation ofAk .

Proof: Unless otherwise made precise, notations are similar to Theorem 4. The first part
proof is hardly modified. Letc r

^ j rPH. Recalling~31! and the definition~30! of H,

@DA ,a#c r
^ j r5g5c r ^ @DI ,p#j r1g5hjc r ^ @mj ,p#j rPH.

Evaluated atxPM, the above expression yields

@DA ,a#c r~x! ^ j r5g5c r~x! ^ @DI1H~x!,p#j r50

by hypothesis, which means that@DA ,a# is the zero endomorphism ofH so that Lemma 3 applies
and

d~xk ,yk8!5de~x1 ,y2!.

The only difference with Theorem 4 is thatDr now depends onx. For instance whenAI is finite
dimensional thenM is a matrix whose entries are scalar fields onM.

Now gtt(x)8iM (x)i2 depends onx but is still independent with respect tot. The geodesic
equations~18! and ~19! no longer reduce to~20! but

d

dt S gtt

dt

dt D5S d

dt
gttD dt

dt
1gtt

d

dt S dt

dt D
5~]mgtt!

dt

dt

dxm

dt
1gtt

d2t

dt2

5gttS gtt~]mgtt!
dt

dt

dxm

dt
1

d2t

dt2D
50

by ~18!. Thusgtt (dt/dt) 5K is a constant. This is almost the first equation in~20!, except that

dt

dt
5Kgtt~x! ~33!

now depends onx. a05( f 0 ,g0) is defined by

f 0~q!8E
Gq

A12K2gtt ds, g08 f 02K, ~34!

whereGq8 is the minimal geodesics from (0,q) to the fixed point (1,y) andGq its projection toM
~note thatGq is no longer a geodesic ofM!. Assuming that

K2gtt~p!Þ1 ~35!

for any pPGq allows one to write

dt5
ds

A12K2gtt

and then
                                                                                                                



r-

nd on
a metric
s
eld

r

calar
e
the

197J. Math. Phys., Vol. 43, No. 1, January 2002 Discrete Kaluza–Klein from scalar fluctuations

                    
15E
Gq8

dt5E
Gq8

dt

dt
dt5E

Gq

Kgtt

A12K2gtt
ds. ~36!

If ~35! does not hold, we callG the set of pointsp of Gq for which 12K2gtt(p)50. G8 is the
corresponding subset ofGq8 . For anyp8PGq8 , ~33! yields

dt

dt
dt5K21 dt,

and ~36! is replaced by

15E
Gq /G

Kgtt

A12K2gtt
ds1E

G8
K21 dt.

Inserted asK1 in x1(a0)2y2(a0)5 f 0(x)1K, this gives

x1~a0!2y2~a0!5E
Gx

A12K2gtt ds1E
Gx /G

K2gtt

A12K2gtt~x!
ds1E

G8
dt

5E
G
A12K2gtt ds1E

Gx /G

ds

A12K2gtt~x!
1E

G8
dt

5E
Gx8/G8

dt1E
G8

dt

5L8~~0,x!,~1,y!!.

The functionf 0(q) is in the vicinity of q by definition ~34! constant on a codimension 1 hype
surface throughq. Choosing an adapted reference frame with$x1,x2,x3% being the coordinates in
the hypersurface andx0 the normal coordinate, one has ds(q)5Ag00(q)dx0 and ]m f 0(q)
5dm

0 ]0f 0(q), giving

]m f 0~q!5dm
0A12K2gtt~q!Ag00~q!,

gmn~q!]m f 0~q!]n f 0~q!5g00~12gttK2!g00512gttK2 ,

which leads toi@De ,a0#i51. Hence the result. j

A few comments about this theorem. First, since all the coefficients of the metric depe
x, there is no way that the geodesic distance satisfies the Pythagorean theorem. Second,
is nondegenerate by definition, and we implicitly assume thatM (x) never cancels. This wa
assumed in Theorem 4 to make the distance finite. Here the point is more subtle for the fiM
may be zero for some pointsx. Let ker(M ),M be the set of such points. For anyqPker(M ),
d((0,q),(1,q))51` by Proposition 28. Moreover,

d~~0,q!,~1,q!!<d~~0,q!,~0,x!!1d~~0,x!,~1,y!!1d~~1,y!,~1,q!!

<L~p,x!1d~~0,x!,~1,y!!1L~y,q!,

so d((0,x),(1,y))51` for any x,yPM, which contradicts Theorem 48 if x5y¹ker(M ). One
solution is to assume that any point (t,q) with qPker(M ) is at infinite distance from any othe
point, and defineM8 as @0,1#3M/ker(M ). If any path betweenx and y crosses ker(M ), this
operation splitsM8 into disconnected parts. A better solution is to take into account the nons
partAm of the fluctuation.@In physical models,M (x) is the representation of the Higgs field in th
unbroken phase. Then, atM50 the Higgs potential reaches its local maximum. Neglecting
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gauge potentialAm , the Faddeev–Popov determinant of the t’Hooft gauge-fixing condition is
at the maximum of the Higgs potential. This leads to a Gribov problem and questions a qu
treatment ofM (x) without gauge field.~observation by Helmuth Hu¨ffel!# This goes beyond the
aim of this paper and the reader should consult Ref. 1. kerM is the set of points where fermion
have no mass. It could be interesting to link the degeneracy of the metric to singularities
passing from massive to massless fermions.

VII. THE STANDARD MODEL AND OTHER EXAMPLES

We shall investigate the metric of spaces whose internal part is one of those described
2. We also give some indications on the distance in the standard model.

A. Commutative spaces

We call commutative space a spectral triple whose internal algebra isCk, kPN. Any k-tuple
of complex numbersa5(a1, . . . ,ak) is represented by a diagonal matrix. For two pure sta
vu ,vv(u,vP@1,k#), ru% rv is the matrix with null coefficients except 1 on theuth and vth
elements of the diagonal. Within the graphical framework of Ref. 2, one shows that the in
distance only depends on points that are on some path betweenu andv. In other terms

dI~u,v !5d̃I~u,v !,

whered̃I denotes the distance computed with the Dirac operatorD̃I5rDIr in which

r8 %

i PPøQ
r i ,

with P the set of points that are not connected tou or v, andQ the set of points that are connecte
either tou or to v by one and only one path. Note that, for any internal one-form,

rai@DI ,bi #r5ai@D̃,bi #

so that the tilde operation is coherent with the scalar fluctuation. At any pointx of the manifold

dx~vu ,vv!5d̃x~vu ,vv!

therefore, to apply Theorem 2, it is enough to check that@D̃H ,r#50. One verifies that wheneve
a component of the internal Dirac operator is zero, the corresponding component of any in
one-form is also zero, so that@D̃H ,r I #50 as soon as@D̃I ,r I #50.

This means that the only path betweenu andv is the link u–v itself. The simplest case,k
52, endows the two-sheets model with a cylindrical metric. The other examples of commu
spaces given in Ref. 2 do not fit the required condition and our next examples will be non
mutative.

B. Two-points space

Let AI5Mn(C) % C be represented overCn11 by

S m 0

0 cD , ~37!

wheremPMn(C) andcPC. Possible chiralityK and Dirac operatorD are

K5S In 0

0 21D , D5S 0 M

M* 0 D ,
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whereMPCn. But there is no operatorJ to fluctuate the metric. A solution is to make~37! acting
over HI5Mn11(C) and define

Dc8Dc1cD, x Ic8Kc1cK, Jc8c*

for any cPHI . Since JDJ21c5JDc* 5(Dc* )* 5cD, one hasDc5Dc1JDJ21c. More-
over, for anyaPAI , @JDJ21,a#c5acD2acD50, so @DI ,a#5@D,a#. Note that this result
comes directly from Lemma 5 as soon as one knows thatD is a one-form.21 Since the operator
norm overCn is equal to the operator norm overMn(C),

i@D,a#i5i@D,a#i

and the distance is in fact the same as the one computed with the spectral triple (AI ,Cn11,D).
Note that this point is assumed in Ref. 27.

Let r1 be the density matrix associated with a pure statev1 of Mn(C) and r0 the one
corresponding to the pure statev0 of C. Then

r1% r05S r1 0

0 1D
so that@DI ,r1% r0#50 is equivalent tor1M5M . In other terms,M is collinear to the range o
r1 . A happy coincidence makes that this is precisely the condition under which the int
distancedI(v1 ,v0)51/iM i is finite.2 Theorem 4 is true for any Dirac operator—dI(v0 ,v1)
51` makesd(x0 ,y1)51` for any x,y in M—so

d~x0 ,y1!5AL~x,y!21
1

iM i2

whenM is in the range ofr1 , is infinite otherwise.

C. The standard model

The spectral triple of the standard model~see Refs. 4, 1, and 28 and Refs. 29 and 30 fo
physical expectation of the Higgs mass! is the tensor product of the usual spectral triple o
manifold TE by an internal triple in which

AI5H% C% M3~C!

~H is the real algebra of quaternions! is represented over

HI5C905H P
% H A5H L

P
% H R

P
% H L

A
% H R

A .

The basis ofH L
P5C24 consists of the left-handed fermions

S u
dD

L

, S c
sD

L

, S t
bD

L

, S ne

e D
L

, S nm

m D
L

, S mt

t D
L

,

and the basis ofH R
P5C21 is labeled by the right-handed fermionsuR , dr , cR , sR , tR , bR andeR ,

mR , tR ~the model assumes massless neutrinos!. The color index for the quarks has been omitte
H R

A andH L
A correspond to the antiparticles. (aPH, bPC,cPM3(C)) is represented by

p I~a,b,c!8pP~a,b! % pA~b,c!8pL
P~a! % pR

P~b! % pL
A~b,c! % pR

A~b,c!

where, writingB8(0
b

b̄

0
)PH andN53 for the number of fermion generations,
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pL
P~a!8a^ IN^ I3% a^ IN , pR

P~b!8B^ IN^ I3% b̄^ IN ,

pL
A~b,c!8I2^ IN^ c% b̄I2^ IN , pR

A~b,c!8I2^ IN^ c% b̄In .

One defines a real structure

JI5S 0 I15N

I15N 0 D +2,

where2 denotes the complex conjugation, and an internal Dirac operator

DI8S DP 0

0 D̄P
D 5S DP 0

0 0D 1JI S DP 0

0 0D JI
21

whose diagonal blocks are 15N315N matrices

DP8S 0 M

M* 0 D ,

with M an 8N37N matrix

M8S ~e11^ Mu1e22^ Md! ^ I3 0

0 e2^ Me
D . ~38!

Here,$ei j % and$ei% denote the canonical basis ofM2(C) andC2, respectively.Mu , Md , Me are
the mass matrices

Mu5S mu 0 0

0 mc 0

0 0 mt

D , Md5CKMS md 0 0

0 ms 0

0 0 mb

D , Me5S me 0 0

0 mm 0

0 0 mt

D
whose coefficients are the masses of the elementary fermions, pondered by the unitary Ca
Kobayashi–Maskawa matrix. The chirality, last element of the spectral triple, is

x I5~2I8N! % I7N% ~2I8N! % I7N .

The presence of the conjugate representationb̄ in p I requires one to viewC as a real algebra
Therefore, the pure statev0 of C is no longer the identity but anR-linear function with value in
R which maps 1 to 1. In other words,v0 is the real part:v0(b)5Re(b). As a quaternionic algebra
H has a single pure state and this remains true forH seen as a real algebra.

Lemma 6: The single pure statev1 of H is v1(a)5 1
2Tr(IHa).

Proof: The representation ofH over the four-dimensional real vector space with ba
$1,i , j ,k% such thati 25 j 25k2521, i j 52 j i 5k, jk52k j5 i , andki52 ik5 j , is

a5a1b i 1g j 1dk,

wherea,b,g,dPR. Sinceā8a2b i 2g j 2dk, aāPR1 so anyR-linear form is positive. There-
fore a state is anyR-linear form that mapsIH51 to 1. Letv be such a state. By linearity,

v~a!5a1bv~ i !1gv~ j !1dv~k!,

so v is uniquely determined by its values oni , j ,k. Let vv( i ) be the linear form defined by
vv( i )( i )5v( i ), vv( i )(1)5vv( i )( j )5vv( i )(k)50. Define similarlyvv(1) ,vv( j ) ,vv(k) . Then
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v5vv(1)1vv( i )1vv( j )1vv(k)

5l~vv(1)1vkv( i )1vkv( j )1vkv(k)!1~12l!~vv(1)1vk8v( i )1vk8v( j )1vk8v(k)!, ~39!

wherel,kPR/$1% andk88 (12lk)/(12l). Both factors of the right-hand side of~39! map 1
to 1, so they are states andv is not pure unlessv( i )5v( j )5v(k)50. Hence the only pure stat
of H is v18vv(1) .

The quaterniona can also be represented overC2 by (2 r̄
u

ū

r
) where u8a1 ib. Then

Tr(a)82 Re(u)52a52v1(a), that isv1(a)5Tr( 1
2IHa). j

With regard toP(M3(C)), we shall only need the following well-known lemma:
Lemma 7: Letv,v8PP(AI). Thenv5v8 if and only if ker(v)5ker(v8).
Proof: Pure states are linear forms, so if they have the same kernel they are propor

Since they coincide on the identity, they are equal. j

Noncommutative geometry gives an interpretation of the Higgs field as a one-form o
internal space. By scalar fluctuation, one-forms closely interfere with the metric. Thus the
field has an interpretation in terms of an internal metric. The conclusive result of this pape
precision of this link between Higgs and metric when the gauge fieldAm is neglected.

Proposition 8: The finite part of the geometry of the standard model with scalar fluctua
of the metric consists of a two-sheets model labeled by the single states ofC and H. Each of the
sheets is a copy of the Riemannian four-dimensional space–time endowed with its metric. The fift
component of the metric, corresponding to the discrete dimension, is

gtt~x!5~ u11h1~x!u21uh2~x!u2!mt
2

where(h2

h1) is the Higgs doublet and mt the mass of the quark top.

Proof: p I stands forp I(a,b,c) and D8(0
DP

0
0) so that DI5D1JDJ21. Since D is a

one-form,21 Lemma 5 yields@JIDJI
21 ,p I #50, so that we can takeDH5D1H. By explicit

calculation,31

H5S 0 pL
P~h!M 0 0

M* pL
P~h* ! 0 0 0

0 0 0 0

0 0 0 0

D ,

whereh is a quaternion-valued scalar field. Thus

DH5S 0 FM 0 0

M* F* 0 0 0

0 0 0 0

0 0 0 0

D , ~40!

where

F8~h1IH! ^ I4N5S 11h1 h2

2h̄2 11h̄1

D ^ I4N ,

with h1 andh2 being two complex scalar fields.
By ~1!, the metric of the standard model is identical to the metric associated with the

(As , H, D), whereAs5C`(M)s^ AIs is the subalgebra of self-adjoint elements ofA, with

AIs5Cs% Hs% M3~C!s5R% R% M3~C!s .
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The representationps associated with this triple coincides with the restriction ofp to As . Con-
cerning the quaternion,ps substitutes

S u 0

0 u D to S u r̄

2 r̄ ū
D .

In other words, to each representation ofH there corresponds the direct sum of twice the fun
mental representation ofR5Hs . Now v1 seen as a pure state ofHs is nothing but the identity. The
associated projectionr1PHs is nothing but the real number 1 which obviously satisfies~10!. The
same is true forv0 seen as a pure state ofR5Cs . Hence

ps~r0% r1!5S I15N 0

0 S 06N

I2N

06N

IN

D D
commutes withDH defined in~40!. Proposition 48 applies to the distance between pure states
A defined byv0 andv1 . Here

ps~ranr1!5H L
P and ps~ranr0!5H R

P
% H lep

A ,

whereH lep
A 5C3N is the subset ofH A generated by the antileptons. Thus the extra metric com

nent is

gtt~x!5iF~x!M i2.

Note that, as desired,FM is a 2aH3(aC1a C̄) matrix, whereaH54N is the degeneracy of the

representation ofHs in pL
P , andaC53N, a C̄54N are defined as well. Using the explicit form

~38!,

iF~x!M i25max$i~F~x! ^ I3!~e11^ Mu1e22^ Md!i2,i~F~x! ^ I3!~e2^ Me!i2%

5~ u11h1~x!u21uh2~x!u2!max$mt
2 ,mt

2%5~ u11h1~x!u21uh2~x!u2!mt
2 .

The other distances, involving the pure states ofM3(C), are not finite. Indeed,

i@DH ,p I~a,b,c!#i5 I F S 0 FM

M* F* 0 D ,pP~a,b!G I
does not put any constraint onc, thus forv2PP(M3(C)) andvPP(AI),

dI~v2 ,v!> sup
cPM3(C)

uv2~c!2v~c!u.

For v5v0 , c5lI3 with l→` makes the distancedI(v2 ,v0) infinite. Then

dI~v2 ,v0!5d~x2 ,x0!<d~x2 ,y0!1d~y0 ,x0!<d~x2 ,y0!1L~x,y!

by Theorem 48, so thatd(x2 ,y0)51`. The same is true forv5v1 . The same is also true whe
vPP(M3(C)) because, by Lemma 7, there existsc8Pker(v2), c8¹ker(v) which makes
dI(v2 ,v) infinite. j
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VIII. CONCLUSION

Noncommutative geometry intrinsically links the Higgs field with the metric structure
space–time. We have not considered the gauge fieldAm so it is not clear whether or not th
interpretation of the Higgs as an extra metric component has a direct physical meaning
important to study the influence of the gauge fluctuation together with a Higgs field, and se
it probably makes the metric of the strong interaction part finite.

SinceH has only one pure state, the problem of the distance between states defined by
pure states of the same component of the internal algebra is not questioned here. One
tempted to consider statest of H that are not pure. But askingt(q̄)5 t̄(q)—which is part of the
definition of a real state32 and does not come as a consequence like in the complex case—pre
means thatt5v1 . To extend the field of investigation, one can consider states that do
preserve the conjugation—then the supremum is no longer reached by a positive element—
contradicts the spirit of density matrices in quantum mechanics. More interesting is proba
take into account complexified states, that is real linear functions with value inC.

The reduction ofAI to K2 ~Proposition 3! is made possible by the orthogonality of th
projections. When the two internal pure states are no longer orthogonal, there is no reason w
relevant picture should remain the two-sheets model. The same is true for two orthogonal
whose sum of the projections does not commute with the Dirac operator. In this sense, if
cases do not support a simple ‘‘classical’’ picture~such as being the geodesic distance of a disc
Kaluza–Klein manifold!, they reflect a purely noncommutative aspect of space–time.

Note that the result—before fluctuation—concerning states defined by the same pure s
one of the algebras~Theorem 2!, as well as the reduction fromAI to K2, do not assume thatAE

is Abelian. It is only later, to establish the orthogonality between the internal and the ex
spaces, thatTE is taken as the spectral triple of a manifold. It would be interesting to clarify
importance, or the unimportance, of the commutativity regarding the Pythagorean theorem
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Pseudo-Hermiticity versus PT symmetry: The necessary
condition for the reality of the spectrum
of a non-Hermitian Hamiltonian
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We introduce the notion ofpseudo-Hermiticityand show that every Hamiltonian
with a real spectrum is pseudo-Hermitian. We point out that all thePT-symmetric
non-Hermitian Hamiltonians studied in the literature belong to the class of pseudo-
Hermitian Hamiltonians, and argue that the basic structure responsible for the par-
ticular spectral properties of these Hamiltonians is their pseudo-Hermiticity. We
explore the basic properties of general pseudo-Hermitian Hamiltonians, develop
pseudosupersymmetric quantum mechanics, and study some concrete examples,
namely the Hamiltonian of the two-component Wheeler–DeWitt equation for the
FRW-models coupled to a real massive scalar field and a class of pseudo-Hermitian
Hamiltonians with a real spectrum. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1418246#

I. INTRODUCTION

The past three years have witnessed a growing interest in non-Hermitian Hamiltonian
real spectra.1–23 Based on the results of various numerical studies, Bender and collabora1,4

found certain examples of one-dimensional non-Hermitian Hamiltonians that possessed rea
tra. Because these Hamiltonians were invariant underPT transformation, their spectral propertie
were linked with theirPT symmetry. The purpose of this article is to explore the basic struc
responsible for the reality of the spectrum of a non-Hermitian Hamiltonian.

By definition, aPT-symmetric HamiltonianH satisfies

PTH~PT!215PTHPT5H, ~1!

whereP andT are, respectively, the operators of parity and time-reversal transformations. T
are defined according to

P x P52x, P p P5T p T52p, T i1 T52 i1, ~2!

wherex, p, and 1 are, respectively, the position, momentum, and identity operators acting o
Hilbert spaceH5L2(R) and iªA21. Note that Eq.~2! applies only for the systems whos
classical positionx and momentump are real. In this article we shall only be concerned with th
systems.

As we mentioned previously, the only reason for relating the concept ofPT-symmetry and
non-Hermitian Hamiltonians with a real spectrum is that most of the known examples of the
satisfy Eq.~1!. Certainly there are Hermitian Hamiltonians with a real spectrum that are
PT-symmetric and there arePT-symmetric Hamiltonians that do not have a real spectrum. Th
fore, PT-symmetry is neither a necessary nor a sufficient condition for a Hamiltonian to ha
real spectrum. This raises the possibility that thePT-symmetry of a Hamiltonian may hav

a!Electronic mail: amostafazadeh@ku.edu.tr
2050022-2488/2002/43(1)/205/10/$19.00 © 2002 American Institute of Physics
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nothing to do with the reality of its spectrum. The interest inPT-symmetry seems to be mostl
because of the lack of an alternative framework replacing the Hermiticity of the Hamiltonia
ordinary ~unitary! quantum mechanics. Much of the published work on the subject concern
study of various examples and the extension of the concepts developed for Hermitian Ha
nians to the PT-symmetric ones.1–20 Recently, Znojil,21 Japaridze,22 and Kretschmer and
Szymanowski23 have addressed some of the more fundamental issues regarding the mathe
structure and the interpretation of thePT-symmetric quantum mechanics.

Among the common properties of all thePT-symmetric Hamiltonians that have so far be
studied are the following.

~1! Either the spectrum of the Hamiltonian is real~PT-symmetry is exact! or there are
complex-conjugate pairs of complex eigenvalues~PT-symmetry is broken!.1,4,10,12

~2! The indefinite inner-product̂̂u&& defined by

^̂ c1uc2&&ª^c1uPuc2&, ;uc1&,uc2&PH, ~3!

is invariant under the time-translation generated by the Hamiltonian.21,22

The main motivation for the present investigation is the remarkable fact that there is no evi
that PT-symmetry is the basic structure responsible for these properties. For example, in R
the authors construct a class of non-PT-symmetric Hamiltonians with a real spectrum. Anoth
example of a non-Hermitian Hamiltonian with similar properties is the Hamiltonian describin
evolution of the solutions of the two-component Wheeler–DeWitt equation for FRW-mo
coupled with a real massive scalar field.24 This Hamiltonian is explicitly ‘‘time dependent,’
‘‘parity-invariant,’’ and non-Hermitian~with respect to the relevantL2-norm on the space of
two-component wave functions!, but the corresponding invariant indefinite inner-product does
involve P.

The organization of the article is as follows. In Sec. II, we introduce the concept of apseudo-
Hermitian operator and derive the basic spectral properties of pseudo-Hermitian Hamilto
These coincide with Properties 1 and 2~with P replaced with a Hermitian invertible linea
operatorh!. In Sec. III, we consider the class of pseudo-Hermitian Hamiltonians that ha
complete biorthonormal eigenbasis and show that the pseudo-Hermiticity is a necessary co
for having a real spectrum. In Sec. IV, we explore the pseudo-Hermitian Hamiltonian o
two-component Wheeler–DeWitt equation for FRW-models coupled with a real massive
field. In Sec. V, we develop pseudosupersymmetric quantum mechanics. In Sec. VI, w
pseudosupersymmetry to construct a large class of pseudo-Hermitian Hamiltonians with
spectrum. In Sec. VII, we present our concluding remarks.

II. PSEUDO-HERMITIAN HAMILTONIANS

We first give a few definitions. Throughout this paper we will assume that all the inner pro
spaces are complex. The generalization to real inner product spaces is straightforward.

Definition 1: Let V6 be two inner product spaces endowed with Hermitian linear autom
phismsh6 ~invertible operators mappingV6 to itself and satisfying!

;v6 ,w6PV6 , ~v6 ,h6w6!65~h6v6 ,w6!6 ,

where (,)6 stands for the inner product ofV6! and O:V1→V2 be a linear operator. Then th
h6-pseudo-Hermitian adjointO]:V2→V1 of O is defined byO]

ªh1
21O†h2. In particular, for

V65V andh65h, the operatorO is said to beh-pseudo-Hermitian ifO]5O.
Definition 2: Let V be an inner product space. Then a linear operatorO:V→V is said to be

pseudo-Hermitian, if there is a Hermitian linear automorphismh such thatO is h-pseudo-
Hermitian.
                                                                                                                



ndent
-

-
a

s.
or-

c.

tes,

207J. Math. Phys., Vol. 43, No. 1, January 2002 Pseudo-Hermiticity versus PT symmetry

                    
Now, consider a quantum system with a possibly non-Hermitian and time-depe
HamiltonianH5H(t) and a Hilbert spaceH which is endowed with a Hermitian linear auto
morphismh.

Proposition 1:The Hermitian indefinite inner product^̂ u&&h defined byh, i.e.,

^̂ c1uc2&&hª^c1uhuc2&, ;uc1&,uc2&PH, ~4!

is invariant under the time-translation generated by the HamiltonianH if and only if H is
h-pseudo-Hermitian.

Proof: First note that theh-pseudo-Hermiticity ofH is equivalent to the condition

H†5h H h21. ~5!

Now, using the Schro¨dinger equation

i
d

dt
uc~ t !&5Huc~ t !&, ~6!

its adjoint, and Eq.~4!, one has for any two evolving state vectorsuc1(t)& and uc2(t)&:

i
d

dt
^̂ c1~ t !uc2~ t !&&h5^c1~ t !u~hH2H†h!uc2~ t !&.

Therefore,̂ ^c1(t)uc2(t)&&h is a constant if and only if~5! holds. h

Note that choosingh51 reduces Eq.~5! to the condition of the Hermiticity of the Hamil
tonian. Hencepseudo-Hermiticity is a generalization of Hermiticity. Furthermore, observe that
typical PT-symmetric Hamiltonian defined on a real phase space ((x,p)PR2) has the formH
5p2/(2m)1V(x) where the potentialV(x)5V1(x)1 iV2(x) has an even real partV1(x) and an
odd imaginary partV2(x), i.e., V6(6x)56V6(x). It is not difficult to see that such a
PT-symmetric Hamiltonian satisfies

H†5
p2

2m
1V1~x!2 iV2~x!5

p2

2m
1V1~2x!1 iV2~2x!5P H P5P H P21.

Hence it isP-pseudo-Hermitian. In contrast, consider the non-Hermitian Hamiltonians

H1ªp21x2p, H2ªp21 i ~x2p1p x2!.

Clearly, H1 is PT symmetric, but notP-pseudo-Hermitian, whereasH2 is P-pseudo-Hermitian
and notPT symmetric. Therefore,PT symmetry andP-pseudo-Hermiticity are distinct propertie
Note, however, thatH1 may be pseudo-Hermitian with respect to another Hermitian autom
phismh. We shall explore the relationship betweenPT-symmetry and pseudo-Hermiticity in Se
III.

The defining condition~5! may also be expressed as the intertwining relation

h H5H† h. ~7!

Using this equation together with the eigenvalue equation for the Hamiltonian, namelyHuEi&
5Ei uEi&, and its adjoint, we can easily show that any two eigenvectorsuEi& anduEj& of H satisfy

~Ei* 2Ej !^̂ Ei uEj&&h50. ~8!

A direct implication of this equation is the following Proposition.
Proposition 2:An h-pseudo-Hermitian Hamiltonian has the following properties.
~a! The eigenvectors with a nonreal eigenvalue have vanishingh-semi-norm, i.e.,

Ei¹R implies i uEi&ih
2
ª ^̂ Ei uEi&&h50. ~9!

~b! Any two eigenvectors areh-orthogonal unless their eigenvalues are complex conjuga
i.e.,
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EiÞEj* implies ^̂ Ei uEj&&h50. ~10!

In particular, the eigenvectors with distinct real eigenvalues areh-orthogonal.
In the remainder of this section, we list a number of simple but remarkable consequen

pseudo-Hermiticity.
Proposition 3:Let V be an inner product space endowed with a Hermitian linear autom

phismh, 1:V→V denote the identity operator,O1 ,O2 :V→V be linear operators, andz1 ,z2PC.
Then,

~a! 1]51;
~b! (O1

])]5O1 ;
~c! (z1O11z2O2)]5z1* O1

]1z2* O2
] ,

wherezi* stands for the complex conjugate ofzi .
Proof: ~a! and~b! are trivial consequences of the definition of] and the Hermiticity ofh. ~c!

follows from this definition and the linearity ofh andh21:

~z1O11z2O2!]5h21~z1O11z2O2!†h5z1* h21O1
†h1z2* h21O2

†h5z1* O1
]1z2* O2

] .
h

Proposition 4:Let Vl , with l P$1,2,3%, be inner product spaces endowed with Hermiti
linear automorphismsh l and O1 :V1→V2 and O2 :V2→V3 be linear operators. Then (O2O1)]

5O1
]O2

] .
Proof: This relation follows from the following simple calculation:

~O2O1!]5h1
21~O2O1!†h35h1

21O1
†h2h2

21O2
†h35O1

]O2
] .

h

Corollary: Pseudo-Hermitian conjugation (O→O]) is a * -operation.
Proof: According to Propositions 3 and 4,] has all the properties of a* -operation. h

Proposition 5:Let V be an inner product space endowed with a Hermitian linear autom
phismh, U:V→V be a unitary operator, andO:V→V be a linear operator. ThenhUªU†hU is a
Hermitian linear automorphism, andO is h-pseudo-Hermitian if and only ifOUªU†OU is
hU-pseudo-Hermitian. In other words, the notion of pseudo-Hermiticity is unitary-invariant.

Proof: First we recall that becauseU is unitary,hU is both Hermitian and invertible. Further
more, we have

hU
21OU

† hU5U†h21UU†O†UU†hU5U†~h21O†h!U.
h

Proposition 6: Let V be an inner product space,h1 and h2 be Hermitian linear automor
phisms, andO:V→V be a linear operator. Then theh1-pseudo-Hermitian adjoint ofO coincides
with its h2-pseudo-Hermitian adjoint if and only ifh2

21h1 commutes withO.
Proof: This statement holds becauseh1

21O†h15h2
21O†h2 implies O†h1h2

215h1h2
21O†.

Taking the Hermitian adjoint of this relation yields@O,h2
21h1#50. h

Corollary: If the HamiltonianH of a quantum system is pseudo-Hermitian with respect to
different Hermitian linear automorphismsh1 andh2 of the Hilbert space, thenh2

21h1 is a sym-
metry of the system. Conversely, leth be a Hermitian linear automorphism of the Hilbert spa
G be a symmetry group of the system whose elementsg are represented by invertible linea
operators. Thenhg is a Hermitian linear automorphism andH is hg-pseudo-Hermitian provided
that g†hg5h.

Proof: This is a direct implication of Proposition 6 and the definition of the symmetry, nam
@g,H#50 or equivalentlyg21Hg5H.25
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III. PSEUDO-HERMITIAN HAMILTONIANS WITH A COMPLETE BIORTHONORNAL
EIGENBASIS

Let H be an h-pseudo-Hermitian Hamiltonian with a complete biorthonormal eigenb
$ucn ,a&,ufn ,a&% and a discrete spectrum.26 Then, by definition,

Hucn ,a&5Enucn ,a&, H†ufn ,a&5En* ufn ,a&, ~11!

^fm ,bucn ,a&5dmndab , ~12!

(
n

(
a51

dn

ufn ,a&^cn ,au5(
n

(
a51

dn

ucn ,a&^fn ,au51, ~13!

where dn is the multiplicity ~degree of degeneracy! of the eigenvalueEn , and a and b are
degeneracy labels.

Proposition 7: Let H be a pseudo-Hermitian Hamiltonian with these properties. Then
nonreal eigenvalues ofH come in complex conjugate pairs with the same multiplicity.

Proof: According to Eqs.~5! and ~11!,

H~h21ufn ,a&)5h21H†ufn ,a&5En* ~h21ufn ,a&). ~14!

Becauseh21 is invertible,h21ufn ,a&Þ0 is an eigenvector ofH with eigenvalueEn* . More
generally,h21 maps the eigensubspace associated withEn to that associated withEn* . Again,
becauseh21 is invertible,En andEn* have the same multiplicity. h

Next, we use the subscript ‘‘0’’ to denote real eigenvalues and the corresponding basis ei
vectors and the subscript ‘‘6’’ to denote the complex eigenvalues with6 imaginary part and the
corresponding basis eigenvectors. Then in view of Eqs.~11!–~14!, we have

15(
n0

(
a51

dn0

ucn0
,a&^fn0

,au1(
n1

(
a51

dn1

~ ucn1
,a&^fn1

,au1ucn2
,a&^fn2

,au!, ~15!

H5(
n0

(
a51

dn0

En0
ucn0

,a&^fn0
,au1(

n1

(
a51

dn1

~En1
ucn1

,a&^fn1
,au1En1

* ucn2
,a&^fn2

,au!.

~16!

Repeating the calculation leading to Eq.~14!, we find

h21ufn0
,a&5 (

b51

dn0

cba
(n0)ucn0

,b&, cab
(n0)

ª^fn0
,auh21ufn0

,b&, ~17!

h21ufn1
,a&5 (

b51

dn1

cba
(n1)ucn2

,b&, cab
(n1)

ª^fn2
,auh21ufn1

,b&, ~18!

h21ufn2
,a&5 (

b51

dn1

cba
(n2)ucn1

,b&, cab
(n2)

ª^fn1
,auh21ufn2

,b&, ~19!

wherecab
(n0) andcab

(n6) are complex coefficients. The latter may be viewed as entries of com
matricesc(n0) andc(n6), respectively. Becauseh and consequentlyh21 are Hermitian operators
so are the matricesc(n0) and c(n6). In particular, we can make a unitary transformation of t
Hilbert space to map the biorthonormal system of eigenbasis vectors of the Hamiltonian to
system in which these matrices are diagonal. We can further rescale the basis vectors so thc(n0)
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andc(n6) become identity matrices. In the following we shall assume, without loss of gener
that such a transformation has been performed. Then, Eqs.~17!–~19! take the form

ufn0
,a&5hucn0

,a&, ufn6
,a&5hucn7

,a&. ~20!

In particular, combining this result with Eq.~12!, we have the followingh-orthonormalization of
the eigenvectors ofH

^̂ cn0
,aucm0

,b&&h5dn0 ,m0
dab , ^̂ cn6

,aucm7
,b&&h5dn6 ,m7

dab . ~21!

Next, we solve Eq.~20! for ucn0
& anducn6

& and substitute the result in Eq.~15!. This leads to
an explicit expression forh that can be easily inverted to yieldh21. The result is

h5(
n0

(
a51

dn0

ufn0
,a&^fn0

,au1(
n1

(
a51

dn1

~ ufn2
,a&^fn1

,au1ufn1
,a&^fn2

,au!, ~22!

h215(
n0

(
a51

dn0

ucn0
,a&^cn0

,au1(
n1

(
a51

dn1

~ ucn2
,a&^cn1

,au1ucn1
,a&^cn2

,au!. ~23!

One can easily check that the HamiltonianH and the operatorsh andh21 as given by Eqs.~16!,
~22!, and~23! satisfy theh-pseudo-Hermiticity condition~5!.

The above-mentioned analysis provides the following necessary and sufficient conditi
pseudo-Hermiticity.

Theorem: Let H be a non-Hermitian Hamiltonian with a discrete spectrum and a comp
biorthonormal system of eigenbasis vectors$ucn ,a&,ufn ,a&%. ThenH is pseudo-Hermitian if and
only if one of the following conditions hold

~1! The spectrum ofH is real.
~2! The complex eigenvalues come in complex conjugate pairs and the multiplicity of com

conjugate eigenvalues are the same.

Proof: We have already shown in Proposition 7 that pseudo-Hermiticity ofH implies at least
one of these conditions. To prove that these conditions are sufficient for the pseudo-Hermiti
H, we use$ucn ,a&,ufn ,a&% to expressH in the form~16! and constructh according to Eq.~22!.
Then, by construction,H andh satisfy ~5!. h

This theorem reveals the relevance of the concept of pseudo-Hermiticity to the spectra
erties of thePT-symmetric Hamiltonians considered in the literature. To the best of our kn
edge, an analogue of this theorem that would apply to arbitraryPT-symmetric Hamiltonians doe
not exist. A direct implication of this theorem is the following corollary.

Corollary 1: Every non-Hermitian Hamiltonian with a discrete real spectrum and a comp
biorthonormal system of eigenbasis vectors is pseudo-Hermitian.
Note that, in general, a non-Hermitian Hamiltonian may not admit a complete biorthono
system of eigenvectors. The preceding Theorem and Corollary 1 may not apply for these
Hermitian Hamiltonians.

Corollary 2: Every PT-symmetric Hamiltonian with a discrete spectrum and a comp
biorthonormal system of eigenbasis vectors is pseudo-Hermitian.

Proof: This statement follows from the above-presented Theorem and fact that the eigen
of everyPT-symmetric Hamiltonian with a complete biorthonormal system of eigenbasis ve
come in complex conjugate pairs. To see this, letuE& be an eigenvector ofH with eigenvalueE,
i.e., HuE&5EuE&, anduE&8ªPTuE&. Then
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HuE&85H~PT!uE&5~PT!HuE&5~PT!EuE&5E* ~PT!uE&5E* uE&8,

where we have made use of the linearlity ofP and the antilinearlity ofT. h

IV. PSEUDO-HERMITICITY IN MINISUPERSPACE QUANTUM COSMOLOGY

The Wheeler–DeWitt equation~with a particularly simple factor ordering prescription! for a
Freedman–Robertson–Walker~FRW! model coupled to a massive real scalar field has the fo

F2
]2

]a2 1
]2

]f2 1k e4a2m2e6af2Gc~a,f!50, ~24!

wherea5 ln a, a is the scale factor,f is the scalar field,m is the mass off, andk521,0, or 1
depending on whether the universe is open, flat, or closed.27 In the two-component representatio
developed in Ref. 24, this equation takes the form of the Schro¨dinger equation:i Ċ5H(a)C
where a dot stands for a derivative with respect toa and

C5
1

&
S c1 i ċ

c2 i ċ
D , H5

1

2 S 11D 211D
12D 212DD , ~25!

Dª2
]2

]f2 1V~f,a!, V~f,a!ªm2e6af22k e4a. ~26!

As seen from these equationsD/2, up to an unimportant additive scalar, is the Hamiltonian o
‘‘time-dependent’’ simple harmonic oscillator with unit ‘‘mass’’ and ‘‘frequency’’v5m e3a,
wherea andf play the roles of timet and positionx, respectively.

It is not difficult to check that the two-component HamiltonianH is not Hermitian with
respect to theL2-inner product on the space of two-component state vectorsC. However, its
eigenvalue problem can be solved exactly.24 For an open or flat FRW universe (k521,0) the
eigenvalues ofH are real. For a closed FRW model, there is a range of values ofa for which all
the eigenvalues are real. Outside this range they come in complex conjugate imaginary pai
suggests thatH is a pseudo-Hermitian Hamiltonian. In fact, we can easily check thatH is an
h-pseudo Hermitian Hamiltonian for

h5S 1 0

0 21D . ~27!

The indefinite inner product corresponding to~27! is nothing but the Klein–Gordon inner produ
that is invariant under the ‘‘time-translation’’ generated byH.

V. PSEUDOSUPERSYMMETRIC QUANTUM MECHANICS

The application of the ideas of supersymmetric quantum mechanics28 in constructing non-
Hermitian PT-symmetric Hamiltonians has been considered in Refs. 3, 7, 13, 17, and 19
formulation ofPT-symmetric supersymmetry has been outlined in Refs. 14 and 20. In this se
we develop a straightforward generalization of supersymmetric quantum mechanics that a
for pseudo-Hermitian Hamiltonians.

Definition 3:Consider aZ2-graded quantum system29 with the Hilbert spaceH1 % H2 and the
involution or grading operatort satisfying

t5t†5t21 and ;uc6&PH6 , tuc6&56uc6&. ~28!
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Let h be an even Hermitian linear automorphism~i.e., @h,t#50) and suppose that the Hami
tonianH of the system ish-pseudo-Hermitian. ThenH ~alternatively the system! is said to have
a pseudo-supersymmetry generated by an odd linear operatorQ ( i .e.,$Q,t%50) if H and Q
satisfy the pseudosuperalgebra

Q 25Q ]250, $Q,Q ]%52H. ~29!

A simple realization of pseudosupersymmetry is obtained using the two-component rep
tation of the Hilbert space where the state vectorsuc& are identified by the column vector (uc2

uc1&)

of their componentsuc6& belonging toH6 . In this representation, one can satisfy theh-pseudo-
Hermiticity of the HamiltonianH, @i.e., Eq.~5!# and the pseudosuperalgebra~29! by setting

t5S 1 0

0 21D , h5S h1 0

0 h2
D , ~30!

Q5S 0 0

D 0D , H5S H1 0

0 H2
D , ~31!

whereh6 is a Hermitian linear automorphism ofH6 , D:H1→H2 is a linear operator, and

H1ª
1
2 D]D, H2ª

1
2 D D]. ~32!

Note that, by definition,Q ]5h21Q†h,

D]5h1
21D†h2 , ~33!

and thatH6 :H6→H6 are h6-pseudo-Hermitian Hamiltonians satisfying the intertwining re
tions

D H15H2D, D]H25H1D]. ~34!

As a consequence,H1 andH2 are isospectral,D maps the eigenvectors ofH1 to those ofH2 ,
andD] does the converse, except for those eigenvectors that are eliminated by these op
More specifically, suppose thatH6 has a complete biorthonormal eigenbasis$ucn

6 ,a&,ufn
6 ,a&%

satisfying

H6ucn
6 ,a&5En

6ucn
6 ,a&, H6

† ufn
6 ,a&5En

6* ufn
6 ,a&.

Then,Ducn
1 ,a& is either zero in which caseEn

150, or it is an eigenvector ofH2 with eigenvalue
En

1 ; D]ucn
2 ,a& is either zero in which caseEn

250, or it is an eigenvector ofH1 with eigenvalue
En

2 . Similarly D† andD]† relate the eigenvectorsufn
6 ,a& of H6

† .
An interesting situation arises when one of the automorphismsh6 is trivial, e.g.,h151. In

this case,H1 is a Hermitian Hamiltonian with a real spectrum, and pseudosupersymmetry im
that the pseudo-Hermitian HamiltonianH2—which is generally non-Hermitian—must have a re
spectrum as well. This is not the only way to generate non-Hermitian Hamiltonians with a
spectrum. In the next section we shall use pseudo-supersymmetry to construct a class
Hermitian Hamiltonians that have a real spectrum.

VI. A CLASS OF NON-HERMITIAN HAMILTONIANS WITH A REAL SPECTRUM

Consider the class of pseudosupersymmetric systems corresponding to the choices:

H65H5L2~R!, h656P, ~35!

D5p1 f ~x!1 ig~x!, ~36!
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where f andg are real-valued functions. We can express these functions in the form

f ~x!5 f 1~x!1 f 2~x!, g~x!5g2~x!1g1~x!, ~37!

where f 1 and g1 are even functions ofx, and f 2 and g2 are odd functions. In view of Eqs
~35!–~37!, ~33!, and~32!, we have

D]5p2 f 1~x!1 f 2~x!1 i @g1~x!2g2~x!#, ~38!

H65 1
2 ~@p1 f 2~x!#21g28 ~x!6g2

2 2 f 1
2 2 i @2g2~x! f 1~x!6 f 18 ~x!#1K !, ~39!

Kª i $g1~x!,p%1g1~x!@2i f 2~x!2g1~x!#, ~40!

where a prime means a derivative and$,% stands for the anticommutator.
Next, we demand thatH1 is a Hermitian Hamiltonian. The necessary and sufficient condi

for the Hermiticity ofH1 and non-Hermiticity ofH2 is

g1~x!50, g2~x!52
f 18 ~x!

2 f 1~x!
. ~41!

Introducing the even functionj(x)ª lnuf1(x)/lu for somelPR2$0%, and using Eqs.~39!–~41!,
we have

H15 1
2 ~@p1 f 2~x!#21 1

4 j8~x!22 1
2 j9~x!2l2 e2j(x)!, ~42!

H25 1
2 ~@p1 f 2~x!#22 1

4 j8~x!22 1
2 j9~x!2l2 e2j(x)12il ej(x)j8~x!!. ~43!

By construction,H6 are pseudo-Hermitian pseudo-supersymmetric partners. In particular, the
isospectral.H1 happens to be a Hermitian operator. This implies that the eigenvalues of botH1

andH2 are real. Furthermore, forf 2(x)Þ0, H2 is not PT-invariant. This is a concrete examp
of a non-Hermitian Hamiltonian with a real spectrum that fails to bePT-symmetric.

Equation ~43! provides a large class of non-Hermitian Hamiltonians with a real spect
whose members are determined by the choice of functionsf 2 andj. This class includes Hamil-
tonians with a discrete spectrum. For example letj(x)52(x/l )2n, wheren is a positive integer
and l is a positive real parameter with the dimension of length. Then

H65 1
2 @p1 f 2~x!#21V6~x!,

V15 1
2 ~n2l 24nx4n221n~2n21!l 22nx2n222l2e22l 22nx2n

!,

V25 1
2 ~2n2l 24nx4n221n~2n21!l 22nx2n222l2e22l 22nx2n

24ilnl 22nx2n21e2l 22nx2n
!.

It is not difficult to see thatH1 is a Hermitian Hamiltonian with a discrete spectrum. Therefo
H2 has a real discrete spectrum as well.

VII. CONCLUSION

In this article, we have introduced the concept of a pseudo-Hermitian operator and sh
that the desirable spectral properties attributed toPT-symmetry are in fact consequences
pseudo-Hermiticity of the corresponding Hamiltonians. We have derived various propert
pseudo-Hermitian conjugation and pseudo-Hermitian operators. In particular, we showed h
defining automorphismh is linked to the eigenvectors of anh-pseudo Hermitian HamiltonianH
with a complete biorthonormal eigenbasis. As the corresponding eigenbasis is subject to
transformations, the automorphism with respect to whichH is pseudo-Hermitian is not unique
This raises the question of the classification of the equivalence classes of automorphisms th
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to the same notion of pseudo-Hermiticity for a given Hamiltonian. We have given a brief di
sion of this problem and showed its connection with symmetries of the Hamiltonian. We hav
developed a generalization of supersymmetry that would apply for general pseudo-Her
Hamiltonians, and used it to construct a class of pseudo-Hermitian Hamiltonians with a
spectrum.

A particularly interesting result of our investigations is that all thePT-symmetric Hamilto-
nians that admit a complete biorthonormal eigenbasis are pseudo-Hermitian. In this sense, p
Hermiticity is a generalization ofPT-symmetry.

For a PT-symmetric Hamiltonian, the exactness ofPT-symmetry implies the reality of the
spectrum. More specifically, if an eigenvectoruE& is PT-invariant,PTuE&5uE&, then the corre-
sponding eigenvalueE is real. A similar condition for a general pseudo-Hermitian Hamiltonian
not known. Pseudo-Hermiticity is only a necessary condition for the reality of the spectrum,
sufficient condition. In contrast,PT-symmetry is neither necessary nor sufficient. The ex
PT-symmetry is a sufficient condition. But for a givenPT-symmetric Hamiltonian it is not eas
to determine the exactness ofPT-symmetry without actually solving the corresponding eigenva
problem.

We hope that the concepts developed in this article provide the material for a more rig
study of the foundation of pseudounitary quantum mechanics.
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Asymptotics of bound states and bands for laterally
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The asymptotics~in the width of windows! of eigenvalues and bands for two-
dimensional waveguides and three-dimensional layers coupled through small win-
dows is obtained. The technique is matching of asymptotic expansions of the so-
lutions of boundary value problems. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1425081#

I. INTRODUCTION

The recent development of nanoelectronics allows physicists to create different meso
structures. It stimulates remarkable progress in semiconductor physics. At the same tim
progress has brought interesting mathematical problems with direct relevance to physic
description of ballistic electron transport in many mesoscopic quantum systems reduces
description of electron wave propagation in a system of waveguides or layers~see, e.g., Refs
1–5!. The problem of bound states for laterally coupled waveguides recently attracted a new
of interest. This paper deals with different systems of two-dimensional waveguides and
dimensional layers coupled through small apertures. First, we consider a system o
waveguidesV1 ,V2 of widths d1 ,d2 coupled laterally through a small window of width 2a. It
has been proved in Ref. 6 that the Dirichlet Laplacian for this system has an eigenvaluela closed
to the threshold and it can be estimated as

c1a4<
p2

d1
2 2la<c2a4 ~1!

for sufficiently smalla ~the order of this term was found in Ref. 7 on physical level of rigor!. Here
c1 , c2 are some constants,d1.d2 . The authors used variational technique and obtained o
estimates and not asymptotics. Analogous estimates were obtained for the case ofn coupling
windows.8 The asymptotics of the eigenvalue in question was obtained in Refs. 9 and 10.
further results are in Ref. 11~the asymptotics of resonances close to theNth threshold! and Ref.
12 ~the asymptotics of eigenvalues and resonances for curved coupled waveguides!. A method of
matching the asymptotic expansions~in a! for the corresponding solutions was used. The sche
of matching was a modification of that suggested in Refs. 13 and 14. One can see that t
some correlation between the result and known weak-coupling asymptotics for Schro¨dinger
operators.15

In the beginning of the first part of the present paper we describe briefly the procedure a
results of Ref. 10. The result is in good correlation with estimates in Ref. 8. The case of pe
system of coupling openings is considered. In this situation the matching procedure has som
features. The key idea is that it is necessary to consider each fiber~each value of the quasimo
mentum! separately and to seek the asymptotic expansion not for the eigenvalue but for
function of the eigenvalue of the operator for fixed fiber. The choice of this function is relat

a!Electronic mail: popov@mail.ifmo.ru
2150022-2488/2002/43(1)/215/20/$19.00 © 2002 American Institute of Physics
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the behavior of the Green function for spectral parameter tending to the threshold. The asy
ics of edges of the band which tends to the threshold fora→0 is obtained.

Then, we consider a coupled two-dimensional quantum waveguide and resonator in th
ence of a magnetic field. The quantum mechanical Hamiltonian of a free two-dimensional ch
particle in a homogeneous magnetic field that is perpendicular to the plane of confinement
particle is given in Landau’s gauge by the following differential expression:

h52S ]

]x1
1Bx2D 2

2
]2

]x2
2 . ~2!

More precisely, the aforementioned HamiltonianH is a self-adjoint operator inL2(R2) which is
the closure of the symmetric operatorh with domainC0

`(R2).16 In ~2! B is the magnetic induction
the system of units is chosen so that the charge of the particle and the physical constantsc and\
are equal to unity, and the mass of the particle is 1/2. We shall deal with the Hamiltonian
strip and bounded domain with the Dirichlet boundary condition coupled through a small win
The structure of the spectrum of the Schro¨dinger operator with magnetic field in a single strip w
considered in Ref. 17. A shift of the eigenvalue for the resonator caused by coupling is cons

In the second part of the paper we deal with a system of two layersV1 , V2 of widths d1 ,
d2 ,

V65$~x1 ,x2 ,x3!PR2Ã@0,6d6#%,

coupled laterally through small windows. The problem for the case of one coupling apertureva of
the diameter 2a, va5av, was considered in Ref. 8. It has been proved that the Dirichlet Lap
ian for this system has an eigenvaluela close to the threshold and there exist positive consta
c1 , c2 , such that

e2c1a23
<

p2

d1
2 2la<e2c2a23

~3!

for sufficiently smalla, d1.d2 . The authors used a variational technique.
In the present paper we consider the case of finite and infinite~periodic! systems of coupling

windows and obtain the asymptotics of the ground state~for N windows! and the asymptotics o
the band~for periodic system of windows!. Singly periodic and doubly periodic lattices a
considered in the case when there are several window centers in the primitive cell of the
The method of matching of the asymptotic expansions~in a! for the corresponding solutions i
used. The scheme of matching described previously is modified. The key idea of the improv
is that one should seek the asymptotic expansion not for the eigenvalue in question but fo
function of it. The choice of the function is related to the behavior of the Green function~as a
function of spectral parameter! near the threshold. This function changes when we come to
case of periodic system of windows. The case ofd15d2 is considered too. It is interesting that i
this case the asymptotics is not a limit of that ford1→d2 , d1.d2 ~an additional factor ap-
pears!. An analogous situation was in the case of waveguides~see previous text!. The result~for
N51! is compared with estimates in Ref. 8.

II. COUPLED WAVEGUIDES: SINGLE WINDOW AND FINITE NUMBER OF WINDOWS

Let us describe the procedure of the construction of the asymptotic series for the eigenv
the simplest case—two waveguides coupled through a single window. The small parameta is
the halfwidth of the opening. Consider the case whend1.d2 . Let la5ka

2 be the eigenvalue in
question. We shall seek the asymptotic series of the following form:

S p2

d1
2 2ka

2D 1/2

5(
j 52

`

(
i 50

`

kji a
j~ loga! i . ~4!
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For the corresponding eigenfunctionca(x) the asymptotic series is the following:

ca~x!5S p2

d1
2 2ka

2D 1/2

(
j 50

`

aj Pj 11~Dy , loga!G2~x,y,k!uy50 , xPV22Sa1/2, ~5!

ca~x!5(
j 51

`

(
i 50

[( j 21)/2]

v j i ~x/a!aj~ loga! i , xPS2a1/2, ~6!

ca~x!52S p2

d1
2 2ka

2D 1/2

(
j 50

`

aj Pj 11~Dy , loga!G1~x,y,k!uy50 , xPV12Sa1/2, ~7!

whereSt is the sphere of radiust with the center at the center of the opening,

v j i PW2,loc
1 ~V1øV2!, P1~Dy , loga!5a10

(1) ]

]ny
,

Pm(Dy , loga) are some polynomials in normal and tangential derivatives~in respect toy!:

Pm~Dy , loga!5 (
q51

m21

(
i 50

[q/2]21

aqi
(m)~ loga! iDy

m2q11 , m>2. ~8!

G6 are the Green functions for the waveguidesV6. It is known that its derivatives can b
represented in close proximity of the pointp2/d1

2 in the form

Dy
j G1~x,0,k!5

1

d1
sin

px2

d1
Dx

j S sin
px2

d1
D U

x250
S p2

d1
2 2ka

2D 21/2

1F j~x,k!log r 1gj
1~x,k!

1 (
i 50

[ j /2]

(
t50

j 22i 21

bit
( j )~k!r 2 j 12(i 1t) sin~ j 22i !u,

~9!

Dy
j G2~x,0,k!5F j~x,k!log r 1gj

2~x,k!1 (
i 50

[ j /2]

(
t50

j 22i 21

bit
( j )~k!r 2 j 12(i 1t) sin~ j 22i !u,

where (r ,u) are polar coordinates. Termsbit
( j )(k), F j (x,k), gj

2(x,k) are analytic in respect tok in
some neighborhood of the pointp/d1 , F jPC`(R2) and is antisymmetric with respect tox2 ,
gj

6PC`(V6),

b00
( j )5~21! [( j 11)/2]~ j 21!!/p,b10

(3)5k2/~2p!,F1n~0,k!52k2/~2p!. ~10!

Boundary problems for the coefficients of the series~6! are obtained by the following way
One substitutes the series~6! and ~4! @more precisely, not only~4!, but also the correspondin
series forka# into the Helmholtz equation~for k5ka! with the Dirichlet boundary condition. Then
one changes the variables:j5x/a. The coefficients in the terms with identical powers ofa and
loga should be equal. Hence, one obtains the following problems:

Djv j i 52 (
p50

j 23

(
q50

[ p/2]21

Lpqv j 2p22,i 2q , jPR2\G,

~11!
v j i 50, jPG,

where
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G5$j:j250,j1P~2`,21#ø@1,̀ !%,

Lpq are the coefficients of the series

ka
25(

p
(

q
Lpqa

p~ loga!q.

Let ca
6(x,k) be the series~5!, ~7!, Pm

(N)(Dy , loga) the sums of type~8! where the summation
limit m21 is replaced by min(m21,N), Ca,N

6 the seriesca
6(x,k) in which Pj is replaced by

Pj
(N) , ĉa

6(x,k), k̂N(a), v̂N(j,a) the partial sums of the corresponding series. Note thatNth finite
sums of the seriesca

6(x,k) and Ca,N
6 (x,k) coincide because of the definition ofPj

(N) . Let us
define the operatorM pq for the sumsU(x,a) of the type~5!, ~7! ~for k5ka! in the following
manner: decompose the coefficients ofU(x,a) in the asymptotic series forr→0, replace the
variables (j5x/a) and, simultaneously, replace logr by logr1loga, r5uju. Mark asM pq(U) the
sum of all terms of the typeap(loga)qf(j). Let

M p5(
q

M pq . ~12!

Lemma 1:Let ka have asymptotics given by~4!. Define LN(Ca,N
6 (x,ka)) in the following

way:

L1~Ca,1
6 ~x,ka!!5M1~Ca,1

6 ~x,ka!!.

LN~Ca,N
6 ~x,ka!!5LN21~Ca,N21

6 ~x,ka!!1MN~Ca,N
6 ~x,ka!!.

Then forN>1 the following correlations take place:

LN~Ca,N
6 ~x,ka!!5(

j 51

N

(
i 50

[( j 21)/2]

Vji
6~j!aj~ loga! i ,

LN~Ca,N
6 ~x,ka!!2LN~ ĉa,N

6 ~x,k̂N~a!!!5O~ar2N1aN~ loga!Nr21!,

~LN~Ca,N
6 ~x,ka!!2LN~ ĉa,N

6 ~x,k̂N~a!!!!j i
5O~ar2N211aN~ loga!Nr22!,

ĉa,N
6 ~x,k̂N~a!!2LN~ ĉa,N

6 ~x,k̂N~a!!!5O~r N111aN11~ loga!N!,

~ ĉa,N
6 ~x,k̂N~a!!!xi

2~LN~ ĉa,N
6 ~x,k̂N~a!!!!xi

5O~r N1aN11~ loga!N/r !,

for r→`,r→0, respectively. SeriesVji
6(j) does not depend onN, is the asymptotic solution o

~11! for r→`, andvqm5Vqm
6 (j) in the right-hand side of~11! has a structure:

Vji
6~j!5 (

q52p

`

r2qf j iq
6 ~u!1 logr (

q51

p22

rqF jiq
6 ~u!, ~13!

where p5 j 22i , F jiq
6 (u), f j iq

6 (u) are linear combinations of sinmu, and their sumsVji
2(j)

1Vji
1(j) are polynomials ofj 22i order. SeriesVNi

6 (j) has a form

VNi
6 ~j!5V̂Ni

6 ~j!1kN11,ik20
21~V10

6 ~j!6V10
6̃ ~j!!6

k20

p (
i 50

[(N21)/2]

(
j 52

`

aNl
N211p~21! [( j 11)/2]

3~ j 21!!r2 j sin j u,
                                                                                                                



rm

s

g

219J. Math. Phys., Vol. 43, No. 1, January 2002 Coupled waveguides and layers

                    
whereV̂Ni
6 (j) does not depend onkq11,p ,aqp

(m) for q>N,

V10
6̃ ~j!5H 0, j2.0,

j2 , j2,0.

The proof consists of direct calculations using asymptotics~9! and ~10!. Thus, to achieve
matching it is necessary to show that there exist valueskji , polynomialsPj , and functionsv j i

being solutions of~11! such that asymptotics ofv j i ,r→`, j2.0(j2,0), coincides with the
seriesVji

1(j)(Vji
2(j)), correspondingly. We confine our attention in the following to the first te

k20 only.
Using the described procedure, we obtain the following theorem:
Theorem 1: The leading term of the asymptotics of the eigenvaluela which tends to the

lower bound of the continuous spectrum is

la5H p2/d1
2 2S p3

4d1
3 D 2

a41o~a4!, d1.d2,

p2/d22S p3

2d3D 2

a41o~a4!, d15d25d.

~14!

Remark:The case of coupled curved waveguides is considered in Ref. 12.
The procedure is analogous for the case when there aren coupling windows with the center

at the points (xq,0), q51, . . .,n, of widths 2aq52avq , correspondingly. Letd1.d2 . Formulas
~5!–~7! now have the form:

ca~x!5S p2

d1
2 2ka

2D 1/2

(
j 50

`

(
q51

n

aj Pj 11
q ~Dy , loga!G2~x,y,k!uy5(xq,0) , xPV2\øqSa1/2

q ,

~15!

ca~x!5(
j 51

`

(
i 50

[( j 21)/2]

v j i
q ~x/a!aj~ loga! i , xPS2a1/2

q , ~16!

ca~x!52S p2

d1
2 2ka

2D 1/2

(
j 50

`

(
q51

n

aj Pj 11
q ~Dy , loga!G1~x,y,k!uy5(xq,0) , xPV1\øqSa1/2

q ,

~17!

whereSt
q is the corresponding sphere with the center at (xq,0). Let us choose

P1
q~Dy , loga!5aq

d1

p

]

]ny
,

then, we have

a21M1
q~p2/d1

2 2ka
2!1/2(

p51

n

P1
pG1~x,~xp,0!,ka!52aq

d1

p2 k20j2rq
222 (

p51

n

ap

p

d1
2 j2 , ~18!

a21M1
q~p2/d1

2 2ka
2!1/2(

p51

n

P1
pG2~x,~xp,0!,ka!5aq

d1

p2 k20j2rq
22 , ~19!

whererq is the distance from the center of theqth window,M1
q is the expression~12! correspond-

ing to the point (xq,0). To constructv j i
q (x/a) we use a harmonic function having the followin

asymptotics:
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Ŷ1~j!55 (
q51

n

aqj21(
j 51

`

c1 j
q rq

2 j sinj uq , j2.0,

2(
j 51

`

c1 j
q rq

2 j sin j uq , j2,0.

~20!

Here the coefficients

c11
q 5 (

p51

n

apcvq
,

wherecvq
is the harmonic capacity of the corresponding segment inR2. It is known~Ref. 18! that

it is the following:

cvq
5~vq/2!2.

Making matching of terms of orderrq
21 sinuq in neighborhoods of each opening, we obta

the following system for the determination ofaq :

(
q51

n

aqcvqi
5

d1
3

p3 k20a i , i 51,2, . . .,n. ~21!

The condition of nontrivial solvability of~21! is

detS cv1
2b cv1 . . . cv1

cv2
cv2

2b . . . cv2

. . . .

cvn
cvn

. . . cvn
2b

D 50.

Here

b5
d1

3

p3 k20.

Simple calculations lead to the value ofk20:

k205
p3

d1
3 (

i 51

n

cv i
. ~22!

Other n21 roots of the equation give usk2050. It means that the terms of such order in t
asymptotic series do not give us information about other eigenvalues. The obtained value
leading term of the asymptotics ina of the ground state only. It was shown in Ref. 8 that f
sufficiently smalla the discrete spectrum contains only one simple eigenvalue. The case o
identical waveguides can be considered in the analogous way. The result is the following the

Theorem 2: The leading term of the asymptotics of the eigenvaluela which tends to the
lower bound of the continuous spectrum for the case ofn coupling windows is
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la55 p2/d1
2 2S p3

d1
3 (

i 51

n

cv i D 2

a41o~a4!, d1.d2 ,

p2/d22S 2p3

d3 (
i 51

n

cv i D 2

a41o~a4!, d15d25d.

~23!

Remark:Here we deal with the eigenvalue only. That is why we confine our attention to
lower bound of the continuous spectrum only. There are resonances~quasibound states! near other
thresholds~lower bounds of other branches of the continuous spectrum!. To obtain its asymptotics
it is necessary to construct additional terms of the asymptotic expansions. This problem
analyzed in Ref. 11. In the present work we deal with the Dirichlet boundary condition beca
is more natural for quantum waveguide. But the suggested approach can be applied to the
Neumann or Robin boundary conditions too.

III. COUPLED WAVEGUIDES: PERIODIC SYSTEM OF WINDOWS

Consider waveguides coupled through periodic system of windows (xq5qL). In this case
consideration has essentially new features. We shall describe these differences and the resu
we must replace (p2d1

222ka
2)1/2 in ~4!, ~15!, and~17! by another functionf (ka) ~see the follow-

ing!. Expressions~15! and ~17! should be modified in the following way:

ca~x!56 f ~ka! (
q52`

`

aq

]

]ny
G7~x,y,k!uy5(xq,0)1o~a0!, xPV72øqSa1/2

q , ~24!

Periodicity leads to the Bloch condition, i.e.,aq5exp(iuLq)a0, where u is quasimomentum,
2pL21<u<pL21. We shall construct the asymptotics in each fiber, i.e., for fixed value of
quasimomentum~the operator for particular fiber has an eigenvalue!. Then by varyingu, we shall
obtain band parameters. Matching procedure in a neighborhood of each window is analog
that for the previous case. The sum on the right-hand side of~18! for q50 is replaced by the serie

a0 (
q52`

`

exp~ iqLu2gLuuu!5~g~cosh~gL !2cos~uL !!!21 sinh~gL !a0 .

Due to this fact we choose the functionf (ka) in the following form:

f ~ka!5g~cosh~gL !2cos~uL !!~sinh~gL !!21.

The first terms of the asymptotic expansion~in a! of f (ka) is sought in the form@compare
with ~4!#:

f ~ka!5L21~12cos~uL !!1k20a
21o~a2!. ~25!

Note that the asymptotics ofka
2 depends onu, i.e., we seek asymptotics in each fiber separate

Matching of terms of ordera21 is evident, because one has from~24! and ~25! only the
following terms of this order:

6~pL !21~12cos~uL !!a0j2r22, j2.0~j2,0!.

As for terms of ordera, one gets@instead of~18! and ~19!#:

a21M1
0S f ~ka! (

p52`

`

ap

]G1

]ny
~x,~xp,0!,ka!D 52a0

k20

p
j2rq

222a0

p2

d1
3 j2 ,
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a21M1
0S f ~ka! (

p52`

`

ap

]G2

]ny
~x,~xp,0!,ka!D 5a0

k20

p
j2rq

22 .

Hence, to match increasing at infinity terms we choose the functionv10
0 in the form: v10

0

52p2d1
23a0Y1 . Making equal terms of orderj2rq

22 , one getsk205p2d1
23/4. Consequently, the

leading term of the asymptotics of the eigenvalue in a fiber is obtained from

g~cosh~gL !2cos~uL !!~sinh~gL !!215p2d1
23a2/41o~a2!, g5~p2d1

222ka
2!1/2.

To get a band one should vary the quasimomentumu, 2pL21<u<pL21. To estimate the band
edges for smalla one can replace the function cosh(gL) @and sinh(gL)# by the first two terms of
its Taylor’s series. Changes for the case of two identical waveguides are the same as earl
result is the following theorem.

Theorem 3: The asymptotics of the edges of the band which tends to the lower bound o
continuous spectrum for the case of periodic system of coupling windows is as follows:

p2

d1
2 2

3p3

2Ld1
3 a21o~a2!<la<

p2

d1
2 2

p3

2Ld1
3 a21o~a2!, d1.d2 ,

p2

d2 2
3p3

Ld3 a21o~a2!<la<
p2

d2 2
p3

Ld3 a21o~a2!, d15d25d.

Remark:One can see that there is a gap in the spectrum for sufficiently smalla.

IV. RESONATOR COUPLED WITH A WAVEGUIDE IN A MAGNETIC FIELD

Consider a system of resonatorV in coupled through small windowva of width 2a with a
waveguideVex. Let l0

in be an eigenvalue of the Schro¨dinger operator with a magnetic field inV in

~without opening! with the Dirichlet boundary condition andc0 be the corresponding eigenfunc
tion. Let l0

in be less than the threshold forVex. Then, for sufficiently smalla one has a perturbed
eigenvaluela

in for the system of coupled resonator and waveguide. We seek the asymptotic~the
main terms! of ka

in , ka
in5Ala

in in the form:

ka
in5k01k20a

21o~a2!, k05Al0
in. ~26!

The asymptotic expansion for the corresponding eigenfunction is as follows:

ca~x!56~k22k0
2!a

]

]ny
Gin,ex~x,y,k!uy5(0,0)1o~a0!, xPV in,ex\Sa1/2, ~27!

ca~x!5v10~x/a!a1o~a!, xPS2a1/2, ~28!

whereGin,ex are the Green functions forV in,ex.
The procedure is analogous to that for coupled waveguides. The difference is that f

Green function of the resonator one has another asymptotics:20

]Gin

]ny
~x,~0,0!,k!5

c0n~0!c0~x!

k22k0
2 2p21r 21 sinu1F1~x,k!log r 1g1

in~x,k!,

]Gex

]ny
~x,~0,0!,k!52p21r 21 sinu1F1~x,k!log r 1g1

ex~x,k!,

wherec0n is the normal derivative ofc0 .
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Boundary problems for the coefficients of the asymptotic series~28! ~in our case for one term
v10) are obtained in the following way. One substitutes the series~26!–~28! into the following
equation~for k5ka! @see~2!# ~with the Dirichlet boundary condition!:

2Du22iBS x2

]u

]x1
1

]~x2u!

]x2
D1~B2x2

22k2!u50.

Then, one changes the variables:j5x/a, and obtains

2a21Dv10~j!2a2iBj2

]v10~j!

]j1
1~2E0

11a2B2j2
21 ¯ !v10~j!1 ¯ 50.

The coefficients in the terms with identical powers ofa ~and loga for the next terms! should be
equal. Hence, one obtains the following problem forv10 ~terms of ordera21 in the equation!:

Djv1050, jPR2\G, v1050, jPG, ~29!

whereG5$j:j250,j1P(2`,21#ø@1,̀ )%.
Matching of terms of the asymptotic expansions gives one the value ofk20:

k2052
puc0n~0!u2

8k0
.

The result is as follows.
Theorem 4: The leading term of the asymptotics of the perturbed eigenvaluela

in has the
following asymptotics

la
in5l0

in2
puc0n~0!u2

4
a21o~a2!.

Remark:The dependence onB is due to the termc0n .
Example:Consider circular resonatorV in. For this case one can findc0n explicitly. Let us

deal with physical units in the example:m,e are the mass and charge of an electron, respectiv
c is the speed of light,\ is Planck’s constant,p52 i\¹, A5221BÃr . Then the Schro¨dinger
operator with a magnetic field~the Landau operator! is

H5
1

2m S p2
e

c
AD 2

.

Let V in be a diskV in5$(r ,w):r<r 0%. Introduce the following notation:

v5
ueBu
cm

, l5S \c

ueBu D
1/2

, x05
r 0

2l2 .

The spectrum of the operatorH with the Dirichlet boundary conditions consists of the eigenval
Est ,

Est5\v~221~s1usu11!2est!, s50,61,62, . . . , t51,2,. . . ,

est is a root of the equationF(e,usu11,x0)50. HereF(a,c,x)5M (a,c,x) is the Kummer func-
tion. The corresponding eigenfunctionc (st) is
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c (st)~r ,w!5S mv

2p\cst
D 1/2 r usu

~2l2! usu/2expS isw2
r 2

4pl2DFS est ,usu11,
r 2

2l2D ,

wherecst is normalization constant,

cst5E
0

x0
exp~2x!xusu~F~est ,usu11,x!!2 dx.

The Green function has a form

Gin~r ,w,r 8,w8;z!5
mv

2p\
expS 2

r 21r 82

4l2 D (
s52`

`
~rr 8! usu

~2l2! usu expis~w2w8!

3(
t51

` FS est ,usu11,
r 2

2l2DFS est ,usu11,
r 82

2l2D
cst~Est2z!

.

One sum can be calculated. Let

Fs~q,v,z!5H F~z,usu11,q!~C~z,usu11,v !2bF~z,usu11,v !!, q<v

F~z,usu11,v !~C~z,usu11,q!2bF~z,usu11,q!!, v<q.

Here

b5
C~z,usu11,x0!

F~z,usu11,x0!
, zÞest ,

C(a,c,x) is the Trikomi function. Then the Green function takes the form

Gin~r ,w,r 8,w8;z!5
mv

2p\
expS 2

r 21r 82

4l2 D (
s52`

`
~rr 8! usu

~2l2! usu expis~w2w8!

3GS 11s1usu
2

2
z

\v DFsS r 2

2l2 ,
r 82

2l2 ,
11s1usu

2
2

z

\v D .

V. COUPLED LAYERS: FINITE NUMBER OF WINDOWS

It is proved in Ref. 8 that for the case of one coupling window there exists an eigen
which tends to the threshold whena→0. Consider the case when there aren coupling windows
vq

a with centers at the pointsxq,xqP$(x1 ,x2,0),xiPR%, q51, . . .,n, vq
a5avq . We assume tha

the distances between apertures are of orderuvqu1/2, i.e., a0. Let d1.d2 . For n windows there
are, generally speaking,n eigenvalues in question. Let us construct the asymptotic series fo
ground state~minimal eigenvalue!. We shall follow the scheme described previously~for coupled
waveguides!. The difference is that we start from another form of the asymptotic series. Lela

5ka
2 be the eigenvalue in question. As for the asymptotic series, it is more convenient to se

series not forla but for some function of it~the reason will be clear later!:

~ log~p22ka
2d1

2 !1/2!215(
j 53

`

kja
j . ~30!

In the paper we shall deal with the first term of the series only~it is sufficient to describe the
ground state!. For the corresponding eigenfunctionca(x) the asymptotic series is as follows:
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ca~x!56~ log~p22ka
2d1

2 !1/2!21(
j 50

`

(
q51

n

aj~Pj 11
q ~Dy!G6~x,y,ka!!uy5(xq,0,0) ,

xPV6\øqSa1/2
q , ~31!

ca~x!5(
j 51

`

v j
q~x/a!aj , xPS2a1/2

q , ~32!

whereSt
q is the sphere of radiust with the center atxq,

v j
qPW2,loc

1 ~V1øV2!, P1
q~Dy!5aq

]

]ny
,

Pm
q (Dy) is some polynomial in normal and tangential derivatives~in respect toy!:

Pm
q ~Dy!5 (

p51

m21

apq
(m)Dy

m2q11 , m>2. ~33!

G6 are the Green functions for the layersV6. To find the leading term of the asymptotics
the eigenvalue we need the asymptotics of the derivative of the Green function near the po
of the boundary for values of spectral parameter in close proximity of the pointp2/d1

2 :

]

]ny
G1~x,0,k!5

1

d1
2 sin

px3

d1
log~p22ka

2d1
2 !1/22

x3

2pr 3 1g1~x,k!, ~34!

]

]ny
G2~x,0,k!5

x3

2pr 3 1g2~x,k!, r 5uxu. ~35!

Hereg6(x,k) satisfies the Dirichlet boundary condition and is analytic ink in a neighborhood of
p2d1

22 . The first term of~34! is obtained from the well-known series for the Dirichlet Gre
function for the layer

G6~x,y,k!5 (
n51

`
2

d6
2 sin

pnx3

d6
sin

pny3

d6

i

4
H0

(1)~ i ~p2n2d6
222k2!1/2~~x12y1!21~x22y2!2!1/2!.

Coefficientsv j
q of the series~32! satisfy boundary problems which are obtained during

process of matching in a neighborhood of theqth window in the following way. One substitute
the series~32!, ~30! and the corresponding series forka into the Helmholtz equation~for k5ka!
with the Dirichlet boundary condition. Than one changes the variables~in S2a1/2

q !: j5x/a. The
coefficients in the terms with identical powers ofa should be equal. Hence, one obtains t
following problems:

Djv j
q52 (

p50

j 22

Lpv j 2p22
q , jPR3\g,

~36!
v j

q50, jPg,

where

g5$j:j350,~j1 ,j2,0!Pvq%,

Lp are the coefficients of the series
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ka
25(

p
Lpap.

The definition ofM p
q(U) for a neighborhood of the pointxq is analogous to the definition o

M p(U) for the case of waveguides~see previous text!. We needM1
0 because we deal with th

leading terms only.
Thus, to achieve matching it is necessary to show that there exist valueskj , polynomialsPj

q ,
and functionsv j

q being solutions of~36! such that asymptotics ofv j
q , r→`, j2.0(j2,0),

coincides with the corresponding sums obtained fromca
6(x,k). We confine our attention in the

following to the first termk3 only.
Taking into account the asymptotics of the Green function~34! in a neighborhood ofpth

window, one obtains

lim
k→p/d1

~ log~p22k2d1
2 !1/2!21P1

qG1~x,xq,k!5
aq

d1
2 sinpx3 /d1 ,

lim
k→p/d1

~ log~p22k2d1
2 !1/2!21P1

qG2~x,xq,k!50.

Taking into account~30!, one has (M15M1
p):

a21M1S ~ log~p22ka
2d1

2 !1/2!21(
q51

n

P1
qG1~x,xq,ka!D 52

1

2p
apk3j3rp

231 (
q51

n
p

d1
3 aqj3 ,

~37!

a21M1S ~ log~p22ka
2d1

2 !1/2!21(
q51

n

P1
qG2~x,xq,ka!D 5

1

2p
apk3j3rp

23, ~38!

whererp is the distance of a point from the center of thepth window.
Boundary problems forv1

p ,v2
p have homogeneous right-hand sides. To match the increa

term in ~37! it is necessary to choosev1
p as a harmonic function with the corresponding asym

totics. It is known21,22 that there exists a harmonic functionY1
p(j), satisfying the boundary con

dition and having the following asymptotics forrp→`:

Y1
p~j!5H j31 3

2bvp
j3rp

23 , j3.0,

2 3
2bvp

j3rp
23 , j3,0.

~39!

Herebvp
is average virtual mass forvp . We choosev1

p in the form:

v1
p~j!5

p

d1
3 (

q51

n

aqY1
p~j!.

Achieving matching of terms of orderrp
23j3 in neighborhoods of each opening, we obtain t

following system for the determination ofaq :

3p

2d1
3 (

q51

n

aqbvp
52

k3

2p
ap , p51,2, . . .,n. ~40!

The condition of nontrivial solvability of~40! is
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detS bv1
1b bv1 . . . bv1

bv2
bv2

1b . . . bv2

. . . .

bvn
bvn

. . . bvn
1b

D 50. ~41!

Here

b5
d1

3

3p2 k3 .

Summing all the rows, and making simple calculations, we get the value of the determinan~41!:

~2b!n21S (
i 51

n

bv i
1b D .

Hence,

2(
i 51

n

bv i
5

d1
3

3p2 k3 ,

and we get, immediately, the value ofk3 :

k352
3p2

d1
3 (

i 51

n

bv i
. ~42!

Othern21 roots (b50) of Eq. ~42! give usk350. It means that the terms of such order in t
asymptotic series do not give us information about other eigenvalues. The obtained value
leading term of the asymptotics ina of the ground state only. The situation is analogous to that
coupled waveguides.

In the case of two identical layersd15d25d we must make some changes. First, t
asymptotics~35! for G2 is now similar to that ofG1 ~34!. As a result, we obtain

a21M1
pS ~ log~p22ka

2d1
2 !1/2!21(

q51

n

P1
qG6~x,xq,ka!D 57

1

2p
apk3j3rp

236 (
q51

n
p

d1
3 aqj3 ,

~43!

instead of~37! and~38!. Hence, we now need a harmonic functionỸ1
p(j) with another asymptotics

thenY1
p(j) in rp ,rp→`:

Ỹ1
p~j!5H j313bvj3rp

23 , j3.0,

2j323bvj3rp
23 , j3,0.

~44!

Such function exists. One can see that it is related withY1
p in a simple way~in terms of complex

variables!:

Ỹ1
p~z!5Y1

p~z!1Y1
p~2z!.

Making matching as earlier, we obtain

k352
6p2

d3 (
i 51

n

bv i
. ~45!
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Remark:The result is not a formal limit of that for two different layers~as in the case of
waveguides!. From the point of view of physics the effect is related to the fact that for diffe
layers if energy is slightly greater than the threshold there is only one way to go to infinity, an
identical layers there are simultaneously two ways.

Finally, incorporating~41! and ~45!, we obtain the result:
Theorem 5:The leading term of the asymptotics of the minimal eigenvaluela which tends to

the lower bound of the continuous spectrum for the case ofn coupling windows is equal to

la55 p2/d1
2 2

1

d1
2 expS 2

2d1
3

3p2 S (
i 51

n

bv i D 21

a23~11o~1!!D , d1.d2 ,

p2/d22
1

d2 expS 2
d3

3p2 S (
i 51

n

bv i D 21

a23~11o~1!!D , d15d25d.

~46!

For the case of circular windowv of radiusR the value of average virtual mass is known23

bv5
4

9p
R3.

Hence, one obtains the following corollary:
Corollary 1: The leading term of the asymptotics of the minimal eigenvaluela which tends to

the lower bound of the continuous spectrum for the case ofn coupling circular windows is equa
to

la55 p2/d1
2 2

1

d1
2 expS 2

3d1
3

2p2 S (
i 51

n

ai
3D 21

~11o~1!!D , d1.d2 ,

p2/d22
1

d2 expS 2
3d3

4p2 S (
i 51

n

ai
3D 21

~11o~1!!D , d15d25d,

whereai is the radius of the diskv i
a .

Corollary 2: The leading term of the asymptotics of the eigenvaluela which tends to the
lower bound of the continuous spectrum for the case of one coupling window is equal to

la55 p2/d1
2 2

1

d1
2 expS 2

2d1
3

3p2 a23bv
21~11o~1!! D , d1.d2 ,

p2/d22
1

d2 expS 2
d3

3p2 a23bv
21~11o~1!! D , d15d25d.

~47!

Remark:One can compare~47! with estimates in Ref. 8~3!.

VI. LAYERS COUPLED THROUGH PERIODIC SYSTEM OF WINDOWS: SINGLY
PERIODIC SYSTEM OF WINDOWS

Consider a case when windows form a singly periodic system. Namely, letL1 , L15$x,x
5(qL,0,0),qPZ% be the corresponding Bravais lattice, and the primitive cell contains the sZ,
Z5$zj , j 51,2, . . .,n%, Zq5$zj ,q5(z1

j 1qL,z2 ,z3), qPZ, j 51,2, . . .,n%, of the windows (vq,i
a )

centers. The windows arevq,i
a 5avq,i , v0,i5v i . Here we have a band instead of an eigenva

for a single window. Let us construct the asymptotics of its edges.
Due to periodicity the corresponding solutionca satisfies the Bloch condition:

ca~x1L !5eiuLca~x!,
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whereu is a quasimomentum (2pL21<u<pL21). For fixed value of the quasimomentum w
have an eigenvalue of the corresponding operator in this fiber. We shall construct the asym
expansion of the eigenvaluesla

u in each fiber separately, and then by varyingu, we shall get
parameters of the band. Let us seek the asymptotic expansion for the following functionf L1

of

la
u5ka,u

2 :

f L1
~ka,u!5LAp22ka,u

2 d1
2 1u2d1

2 5k3
ua31o~a3!. ~48!

The asymptotic expansion for the corresponding eigenfunction is as follows:

ca~x!56 f L1
~ka,u! (

p50

`

(
q52`

`

(
zj ,qPZq

aj~Pp11
q, j ~Dy!G6~x,y,ka,u!!uy5zj ,q, xPV6\øqSa1/2

q ,

~49!

ca~x!5(
j 51

`

v j
q~x/a!aj , xPS2a1/2

q , ~50!

whereP1
q, j (Dy)5aq

j (]/]ny) ~the Bloch condition leads to the relation:aq
j 5eiuLqa0

j ). Following

the above-mentioned procedure of matching~see Sec. V!, one obtains for the windowv0
j 8 (r

5r0
j 8):

a21M1S f L1
~ka,u! (

q52`

`

(
zj ,qPZq

~P1
q, j~Dy!G2~x,y,ka,u!!U

y5zj ,q
D 5

1

2p
a0

j k3
uj3r23, ~51!

a21M1S f L1
~ka,u! (

q52`

`

(
zj ,qPZq

~P1
q, j~Dy!G1~x,y,ka,u!!U

y5zj ,q
D

52
1

2p
a0

j k3
uj3r231

2p2

d1
3 a21M1S f L1

~ka,u!S 2
1

2p
a0

j 8 logAp2

d1
2 2ka,u

2

1 (
zj ,0PZ0, j Þ j 8

a0
j i

4
H0

(1)S i uzj ,0uAp2

d1
2 2ka,u

2 D
1 (

q51

`

(
zj ,qPZq

a0
j cos~quL !

i

4
H0

(1)S i uzj ,quAp2

d1
2 2ka,u

2 D D x3D . ~52!

Let us take into account the following formula:24

H0
(1)~mR!5J0~mr!H0

(1)~mr!12(
n51

`

Jn~mr!Hn
(1)~mr!cos~nw!, r,r , mPC,

wherew is the angle between the sidesr and r in the triangler,r ,R. We use this relation with
r5uz0u, r 5uqLu, R5uzqu,

m5 iAp2

d1
2 2ka,u

2 .

Then, we use known formula24
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(
n51

`

cos~nb!K0~nz!5
p

2Az21b2
1S C1 log

z

4p D Y 21
p

2 (
n51

` S 1

A~2np2b!21z2
2

1

2np D
1

p

2 (
n51

` S 1

A~2np1b!21z2
2

1

2np D .

One chooses for our case

z5LAp2

d1
2 2ka,u

2 , b5Lu,

and taking into account the correlations

K0~z!5
p i

2
H0

(1)~ iz!,z.0, I 0~z!5J0~ iz!, Ap2

d1
2 2ka,u

2 5 iu1o~a0!,

one transforms~52! to the form:

a21M1S f L1
~ka,u! (

q52`

`

(
zj ,qPZq

~P1
q, j~Dy!G1~x,y,ka,u!!U

y5zj ,q
D

52
1

2p
a0

j 8k3
uj3r231

p2

2d1
2 (

zj ,0PZ0
a0

j I 0~ iuuzj ,0u!j3 . ~53!

To match the increasing terms in~51! and ~53! we choosev1
0(j) in the following form:

v1
0~j!5

p2

2d1
2 (

zj ,0PZ0
a0

j I 0~ iuuzj ,0u!Y1~j!. ~54!

Matching of terms of orderj3r23, one gets the following system fora0
j :

k3
u

2p
a0

j 85
p2

2d1
2 bv j 8 (

zj ,0PZ0
a0

j I 0~ iuuzj ,0u!, j 851, . . . ,n. ~55!

It is analogous to the system~40!. The condition of nontrivial solvability of~55! is

detS b1bv1
1b b1bv1 . . . b1bv1

b1bv2
b1bv2

1b . . . b1bv2

. . . .

b1bvn
b1bvn

. . . b1bvn
1b

D 50. ~56!

Here

b52
d1

2

p3 k3
u , b15 (

zj ,0PZ0
I 0~ iuuzj ,0u!.

Summing all the rows, and making simple calculations, we get the value of the determinan~56!:

~2b!n21S b1(
i 51

n

bv i
1b D .
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Hence,

k3
u5

p3

d1
2 (

zj ,0PZ0
(
i 51

n

I 0~ iuuzj ,0u!bv
0
i .

For the eigenvalue in a fiber we have

la
u5ka,u

2 5
p2

d1
2 1u22

p6

d1
6 L2 S (

zj ,0PZ0
(
i 51

n

I 0~ iuuzj ,0u!bv
0
i D 2

a61o~a6!. ~57!

It is a dispersion relation. To get a band one must varyu from 2p/L to p/L. Due to smallness of
a one comes to the conclusion that there is no gap (bv

2 p4d1
26a6,1). But windows cause a shif

of the lower bound of the continuous spectrum:

lmin,a5
p2

d1
2 2

p6

d1
6 L2 S (

i 51

n

nbv
0
i D 2

a61o~a6!. ~58!

For the case of two identical layers (d25d15d) it is necessary to change the scheme in
same way as for the case ofn coupling windows~see previous text!. Formally, it means that in
~54! Y1 should be replaced byỸ1 and in~57! and~58! bv by 2bv . The following theorem results

Theorem 6: The lower bound of the continuous spectrum of Dirichlet Laplacian for lay
coupled through singly periodic system of windows is as follows:

lmin,a55
p2

d1
2 2

p6n2

d1
6 L2 S (

i 51

n

bv
0
i D 2

a61o~a6!, d1.d2,

p2

d2 2
4p6n2

d6L2 S (
i 51

n

bv
0
i D 2

a61o~a6!, d15d25d.

Corollary 3: The lower bound of the continuous spectrum of the Dirichlet Laplacian for la
coupled through singly periodic system of circular windowsvq,i

a is as follows:

lmin,a55
p2

d1
2 2

16p4n2

81d1
6 L2 S (

i 51

n

Ri
3D 2

a61o~a6!, d1.d2 ,

p2

d2 2
64p4n2

81d6L2 S (
i 51

n

Ri
3D 2

a61o~a6!, d15d25d.

HereRi is the radius of the circlev i .
Note thatRi is dimensionless.

VII. LAYERS COUPLED THROUGH PERIODIC SYSTEM OF WINDOWS: DOUBLY
PERIODIC SYSTEM OF WINDOWS

Consider the case of doubly periodic system of windows. Namely, we assume that cen
windows form a two-dimensional lattice. LetL2 be the corresponding Bravais lattice

L25$n1a11n2a2PR2u~n1 ,n2!PZ2%,

wherea1 ,a2 are linearly independent vectors inR2. The reciprocal latticeG2 , the Wigner–Seitz
cell Ĝ2 , and the Brillouin zoneL̂2 are, correspondingly,

G25$n1b11n2b2PR2u~n1 ,n2!PZ2%, ajbj 852pd j j 8 , j , j 851,2,
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Ĝ25$s1a11s2a2PR2usjP@21/2,1/2!, j 51,2%,

L̂25$s1b11s2b2PR2usjP@21/2,1/2!, j 51,2%.

The scheme of construction of the main term of the asymptotics of the eigenvalue in a
fiber ~for fixed quasimomentum! is the same as for one-dimensional latticeL1 . That is why we
shall not describe here the procedure in detail and shall stress only points that differ from
Sec. VI.

First, we must replace the functionf L1
(ka,u) for which the asymptotic expansion is soug

~48! by another onef L2
(ka,u). Let us describe the choice of this function. The form off L1

(ka,u)
is related to the behavior of the sum on the right-hand side of~52! for the values ofka,u close to
the lower bound of the continuous spectrum of the operator in the fiber (p2/d1

2 1u2). In the case
of L1 it is as follows:

d1

2LAp22ka,u
2 d1

2 1u2d1
2

.

That is why we choosef L1
(ka,u) in the form:

f L1
~ka,!5LAp22ka,`

2 d1
2 1u2d1

2 .

For two-dimensional lattice we have double series overL2 on the right-hand side of~52!, i.e.,
~52!is replaced by

a21M1S f L2
~ka,u! (

lPL2

aj~P1
l~Dy!G1~x,y,ka,u!!U

y5l
D

52
1

2p
a0k3

uj3r231
p2

d1
3 a21M1S f L2

~ka,u!S 2
1

2p
a0

0 logAp2

d1
2 2ka,u

2

1 (
lPL2

(
zj ,qPZq

a0
j i

4
H0

(1)S i uzj ,q1luAp2

d1
2 2ka,u

2 D D exp~ i ~u,l!!x3D . ~59!

Hereu, l are two-dimensional vectors, and (u,l) is scalar product. The sum of such type appe
in the theory of two-dimensional crystals. It can be transformed by Poisson summation form
the form:25

(
gPG2

uL̂2u
4p2~ ug1uu21p2d1

222ka,u
2 ! (

zj ,0PZ0
a0

j I 0SAp2

d1
2 2ka,u

2 uzj ,0u D ,

whereuL̂2u is the square of the Brillouin zoneL̂2 for L2 , uPL̂2 . Hence, we choose the functio
f L2

(ka,u) in the form

f L2
~ka,u!5uL̂2u214p2~ ugu1uu21p2d1

222ka,u
2 !,

~60!
ugu1uu25 min

gPG2

ug1uu2.

Correspondingly, we seek asymptotic expansion off L2
(ka,u),

f L2
~ka,u!5k3,u

L2a31o~a3!. ~61!
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In ~49! f L1
(ka,u) is replaced byf L2

(ka,u). Then, following the same procedure as for sing

periodic lattice~see previous text!, one comes to the following expression fork3,u
L2 :

k3,u
L25

2p3

d1
3 (

zj ,0PZ0
I 0~ iAuL̂2u212pugu1uuuzj ,0u!(

i 51

n

bv
0
i .

Consequently, in accordance with~60! and ~61! one gets

ka,u
2 5ugu1uu21p2d1

222uL̂2u
p3

2d1
3 (

zj ,0PZ0
I 0~ iAuL̂2u212pugu1uuuzj ,0u!(

i 51

n

bv
0
i a31o~a3!.

~62!

Varying the quasimomentumu, uPL̂2 , one gets a band. One can see that due to smallnessa
there is no gap. As a result, we come to the following theorem~the result for two identical layers
is obtained in the same way as earlier!.

Theorem 7:The lower bound of the continuous spectrum of the Dirichlet Laplacian for la
coupled through doubly periodic system of windows is as follows:

lmin,a55
p2

d1
2 2uL̂2u

pn

2d1
3 (

i 51

n

bv
0
i a31o~a3!, d1.d2,

p2

d2 2uL̂2u
pn

d3 (
i 51

n

bv
0
i a31o~a3!, d15d25d.

Corollary 3: The lower bound of the continuous spectrum of the Dirichlet Laplacian for la
coupled through doubly periodic system of circular windowsvq,i

a is as follows:

lmin,a55
p2

d1
2 2uL̂2u

2n

9d1
3 (

i 51

n

Ri
3a31o~a3!, d1.d2,

p2

d2 2uL̂2u
4n

9d3 (
i 51

n

Ri
3a31o~a3!, d15d25d.

HereRi is the radius of the circlev i .
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Remarks on the lattice Green’s function: The Glasser case
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We have investigated the lattice Green’s function for the Glasser cubic lattice.
Expressions for its density of states, phase shift, and scattering cross section in
terms of complete elliptic integrals of the first kind are derived. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1421063#

I. INTRODUCTION

The lattice Green’s function is defined as

G~E!5
V

~2p!d E1BZ

F~KW !

E2E~KW !
dW k, ~1.1!

where E(kW ) represents a dispersion relation,F(kW ) is an appropriate function,V denotes the
volume of the crystal in the real space,d is the dimension, and 1BZ indicates that the integrat
is carried over the first Brillouin zone.

In this paper we report on the lattice Green’s function and the article is organized as fo
Section II is devoted to the general definition of the diagonal lattice Green’s function and its
inside and outside the band, for the cubic lattice in terms of the first kind elliptic integrals.
section also contains the formulas for the density of states, the phase shift, and the cross
for a point defect case. In Sec. III we present the results and discussion. Finally, the details
Green’s function derivation inside the band are given in the Appendix.

II. LATTICE GREEN’S FUNCTION

The Green’s function for the Glasser cubic lattice is defined as1–5

G0~E!5
1

p3 E
0

pE
0

pE
0

p dkx dky dkz

E2E~kx ,ky ,kz!
, ~2.1!

where

E~kx ,ky ,kz!5coskx1cosky1coskz1coskx cosky1coskx coskz

1cosky coskz1coskx cosky coskz .

This case is of practical interest in studying the properties of a Heisenberg ferromagne
axial anisotropy,1,6

a!Author to whom all correspondence should be addressed; electronic mail: jkalifa@sci.ju.edu.jo
2350022-2488/2002/43(1)/235/8/$19.00 © 2002 American Institute of Physics
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G0~E!5
4

p2~E11!
K2~k!, ~2.2!

where

k25
1

2 F12
~E27!1/2

~E11!1/2G , ~2.3!

andK(k) is the complete elliptic integral of the first kind.
The Green’s function inside and outside the band can be written as7 ~some mathematica

manipulations are given in the appendix!

G0~E!55
4

p2~E11!
K2~k!, uEu.7

&

p2AE11
K~k1!K~k2!1 i

1

&p2AE11
@K2~k1!2K2~k2!#, 21,E,7.

~2.4!

Therefore, the density of states is

DOS0~E!5
1

&p3AE11
@K2~k1!2K2~k2!#, ~2.5!

where

k6
2 5 1

2~16~~72E!/8!1/2!. ~2.6!

We consider the case where perfect periodicity is destroyed by modifying just one site~theL
site!. The situation can be thought of physically as arising by substituting the host atom atL
site by a foreign atom,8 i.e., a localized zero-range potential of strength«8 is introduced. In the
tight-binding model,«8 is proportional to the charge difference between the impurity outer e
trons and those of the host atom. Thus our Green’s function for this single impurity is7,9,10

G~L,E!

55
4K2~k!

~E11!p224«8K2~k!
, uEu.7

2&p2~E11!1/2K~k1!K~k2!22«8K2~k1!K2~k2!2«8@~K4~k1!1K4~k2!!#1 ip2~~E11!2!1/2@K2~k1!2K2~k2!#

@&p2~E11!1/222«8K~k1!K~k2!#21«82@~K2~k1!2K2~k2!!#2
, uEu,7

.

~2.7!

The density of states can be written as7,9,10

DOS0~E!5
&p~E11!1/2@K2~k1!2K2~k2!#

@&p2~E11!1/222«8K~k1!K~k2!#21«82@K2~k1!2K2~k2!#2
. ~2.8!

The S-wave phase shift,d0 , is defined as7,9,10

tand05
pDOS0~E!

1

«8
2ReG0~E!

. ~2.9!
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Here, ReG0(E) refers to the real part of Green’s function inside the band. After some mathem
manipulations, we obtain:

tand05
K2~k1!2K2~k2!

&~E11!1/2p2/«822K~k1!K~k2!
. ~2.10!

The cross section,s, is defined as7,9,10

s5
4p

P2

p2@DOS0~E!#2

FReG0~E!2
1

«8G
2

1p2@DOS0~E!#2

. ~2.11!

Here,P refers to the electron momentum.
Therefore, the cross section becomes

s5
4p

P2

~K2~k1!2K2~k2!!2

2p4S&
p2 K~k1!K~k2!2

AE11

«8
D 2

1~K2~k1!2K2~k2!!2

. ~2.12!

III. RESULTS AND DISCUSSION

The results for the Glasser cubic lattice are shown in Figs. 1–8. Figure 1 shows the den
states for the perfect Glasser lattice. It diverges asE goes to minus one and falls off exponential
as expected from Eq.~2.5!. The real and imaginary parts of Green’s function for the perfect lat
are displayed in Fig. 2, they have the same behavior as noted previously. Figure 3 gives the

FIG. 1. The density of states~DOS! for the perfect Glasser lattice.

FIG. 2. Real and imaginary parts of Green’s function for the perfect Glasser lattice.
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of states for the Glasser lattice with a single impurity potential with strength«8 ~20.7, 20.3, 0.0,
0.3, and 0.7!. For «850.0 and 0.3~in arbitrary units!, the density of states diverges asE goes to
minus one~as previously! and falls off exponentially. The peak value varies with the poten
strength and reaches its maximum at«850.7. Figure 4 shows the density of states~DOS! in three
dimensions with one axis representing the potential strength«8 varying between21 and 1~arbi-
trary units! whereas the second axis is the energy scale varying between21 and 7 as indicated in
the formalism.

The phase shift,d0 , is defined as the shift in the phase of the wave function due to
presence of the impurity potential. Figure 5 displaysd0 for the Glasser lattice with single impurit
for different potential strengths«8. If an attractive potential is turned on, then it gives rise to
positive phase shift and vice versa. That is, a point defect just to the left of the host in the pe
table leads to positived0 . The curves are mirror images of each other. The phase shift vanish
the potential is turned off~perfect lattice!; this behavior is clear from the definition ofd0 . In Fig.
6 we have a more general case of the phase shift,d0 , for the Glasser lattice with single impurit
for potential strengths«8 varying between21 and 1~arbitrary units!.

The cross section,s, can be defined as the area an impurity atom presents to the inc
electron. It is related to some physical quantities such as the conductivity in metals. Fig
shows the cross section,s, for the Glasser lattice with single impurity for different potent
strengths«8. The values are all positive sinces can be viewed as a sort of probability. The cro

FIG. 3. The DOS for the Glasser lattice with single impurity for different potential strengths«8 ~20.7,20.3, 0.0, 0.3, and
0.7!.

FIG. 4. Three-dimensional DOS for the Glasser lattice with single impurity for potential strengths«8 varying between21
and 1~arbitrary units!.
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section vanishes for a perfect lattice as expected. Figure 8 displays the cross section,s, in three
dimensions for the Glasser lattice with single impurity for potential strengths«8 varying between
21 and 1~arbitrary units!.

APPENDIX: DERIVATION OF GREEN’S FUNCTION FOR THE GLASSER LATTICE

In this Appendix we derive an expression for Green’s function inside the band in term
complete elliptic integral of the first kind.

Green’s function for the Glasser lattice outside the band is given by3,4,7

G0~E!5
4K2~k!

p2~E11!
, ~A1!

where

k5A1

2
@12A12b21#, b5

E11

8
,1.

The complete elliptic integral of the first kind is expressed as

FIG. 5. The phase shift for the Glasser lattice with single impurity for different potential strengths«8 ~20.7,20.3, 0.0, 0.3,
and 0.7!.

FIG. 6. The phase shift,d0 , for the Glasser lattice with single impurity for potential strengths«8 varying between21 and
1 ~arbitrary units!.
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K~k!5
p

2 2F1S 1

2
,
1

2
;1;k2D , ~A2!

where

2F1( 1
2,

1
2;1;k2) is the Gauss hypergeometric function.

Kummer’s identity is11

2F1~ 1
4,

1
4;1;b21!52F1~ 1

2,
1
2;1; 1

2~12A12b21!!. ~A3!

Substituting~A3! in ~A1! we have

G0~E!5
~2F1~ 1

4,
1
4;1;b21!!2

~E11!
. ~A4!

Using the following transformations:12

FIG. 7. The cross section,s, for the Glasser lattice with single impurity for different potential strengths«8 ~20.7, 20.3,
0.0, 0.3, and 0.7!.

FIG. 8. The cross section,s, in three dimensions for the Glasser lattice with single impurity for potential strength«8
varying between21 and 1~arbitrary units!.
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2F1S 1

4
,
1

4
;1;b21D5b1/4S ~G~ 1

4!!2

2p3/2 2F1S 1

4
,
1

4
;
1

2
;12b D12p1/2

Ab21

~G~ 1
4!!2 2F1S 3

4
,
3

4
;
3

2
;12b D D ,

~A5!

with

~G~ 1
4!!2

p3/2 2F1S 1

4
,
1

4
;
1

2
;12b D52F1S 1

2
,
1

2
;1;

1

2
~11A12b! D12F1S 1

2
,
1

2
;1;

1

2
~12A12b! D ,

~A6!

and

4p1/2A12b

~G~ 1
4!!2 2F1S 3

4
,
3

4
;
3

2
;12b D52F1S 1

2
,
1

2
;1;

1

2
~12A12b! D

22F1S 1

2
,
1

2
;1;

1

2
~11A12b! D , ~A7!

in ~A5! we obtain

2F1S 1

4
,
1

4
;1;b21D5

b1/4

2 S ~11 i !2F1S 1

2
,
1

2
;1;

1

2
~11A12b! D

1~12 i !2F1S 1

2
,
1

2
;1;

1

2
~12A12b! D D , ~A8!

or in terms of complete elliptic integral of the first kind

2F1S 1

4
,
1

4
;1;b21D5

b1/4

p
~~11 i !K~k1!1~12 i !K~k2!!, ~A9!

where

k6
2 5

1

2
~16A12b!.

Substituting~A9!, in ~A4! then we obtain

G0~E!5
b1/2

p2~E11!
~~11 i !K~k1!1~12 i !K~k2!!2, ~A10!

then

G0~E!5
1

&p2AE11
~2K~k1!K~k2!1 i ~K2~k1!2K2~k2!!!. ~A11!

If a single impurity characterized by a localized potential is introduced in the perfect la
then according to Dyson’s equation Green’s function is defined as8

G~L,E!5
G0~E!

12«8G0~E!
. ~A12!

After some mathematical manipulation Eq.~A12! becomes.
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G~L,E!

5
2p2A2~E11!K~k1!K~k2!22«8K2~k1!K2~k2!1 ip2A2~E11!~K2~k1!2K2~k2!!2«8@K4~k1!1K4~k2!#

~p2A2~E11!22«8K~k1!K~k2!!21«82~K2~k1!2K2~k2!!2
.

~A13!

Thus, theS-phase shift and scattering cross section can be evaluated in terms of complete
integrals of the first kind as shown in the text.
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Infinite infrared regularization and a state space
for the Heisenberg algebra

Andreas U. Schmidta)

Fachbereich Mathematik, Johann Wolfgang Goethe-Universita¨t, 60054 Frankfurt am
Main, Germany

~Received 15 June 2001; accepted for publication 17 October 2001!

We present a method for the construction of a Krein space completion for spaces of
test functions, equipped with an indefinite inner product induced by a kernel which
is more singular than a distribution of finite order. This generalizes a regularization
method for infrared singularities in quantum field theory, introduced by Morchio
and Strocchi, to the case of singularities of infinite order. We give conditions for the
possibility of this procedure in terms of local differential operators and the
Gelfand–Shilov test function spaces, as well as an abstract sufficient condition. As
a model case we construct a maximally positive definite state space for the Heisen-
berg algebra in the presence of an infinite infrared singularity. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1425427#

I. INTRODUCTION

A notable case in which some of the abundant singularities of quantum field theory c
treated rigorously is presented by the method of infrared regularization of Morchio and Stroc1,2

There, the first-order singularity of the two-point function of the massless scalar fie
111-dimensional space–time manifests itself in the nonpositivity of the Wightman inner pro
on the one-particle space. In momentum space, this two-point function appears as a s
integral kernel which is regularized in the distributional sense as a Cauchy principal value.
this regularization involves subtraction of values of the test functions atp50, the Wightman inner
product induced by the two-point function is clearly no longer positive definite. It turns out
if the usual positivity axiom of Wightman theory, see Ref. 3, is replaced by a weaker Hilbert s
structure condition, the construction of a suitable physical state space is still possible. Th
particle space becomes a Krein space, the natural analogon of a Hilbert space in the cas
indefinite inner product, and it is maximal in the sense that there is no larger Krein space c
of the test function space~we refer to Appendix B, where some basic notions of, and results
indefinite inner product spaces are gathered!. Thus, no physical information gets lost and one c
identify a positive definite physical Hilbert subspace. In fact, in the case treated in Refs. 1
the rank of negativity is one, and thus the Krein space is actually a Pontryagin space. In Ref
have cast this procedure in abstract form, yielding a method by which every quasipositive
i.e., a space with finite rank of negativity, can be completed to a Pontryagin space. By th
generalized the infrared regularization method to singularities of the type of finite order dis
tions. On the other hand it is by now well known that constructive approaches to intera
quantum fields generically involve much more singular objects, see Refs. 5 and 6, namely
distributions and even Fourier hyperfunctions.7,8 Thus, it is natural to look for a further general
zation of the procedure for finding a maximal Krein space closure starting from a space o
functions with an indefinite inner product induced by a singular kernel, to the case of non
butional infinite order singularities, and therefore to the case of an infinite number of neg
degrees of freedom. This is what we will present in the following.

We illustrate the regularization method by a neat~yet unphysical! model in which infinite

a!Current address: Dipartimento di Fisica E. Fermi, Universita` di Pisa, via Buonarroti 2, Ed. B, 56127 Pisa PI, Ital
electronic mail: aschmidt@math.uni-frankfurt.de
2430022-2488/2002/43(1)/243/17/$19.00 © 2002 American Institute of Physics
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order singularities appear naturally, at least on a heuristic level.~We tend to denote the whol
process of defining an indefinite inner product by a generalized functionand the construction of a
maximal Krein space closure as ‘‘regularization.’’ The first step, which is the traditional reg
ization of a singular integral, means going only half way toward a physically conclusive re!
Namely, we will consider the Schro¨dinger representation of the Heisenberg algebra on a
function space overR in the presence of a singularity concentrated atp50. This model will be
informally described in Sec. II, where also some notions needed subsequently are intro
Further, we will state the main result, which is that the regularization procedure yields a ma
Krein space and in it a largest possible, positive definite, closed subspace, which can sens
considered as the ‘‘physical state space’’ for the Heisenberg algebra of ‘‘observables.’’

Section III contains the regularization procedure proper. It shows in particular that ther
certain balance that has to be kept between the singularity of the inner product, measured i
of infinite order ~local! differential operators, and the choice of test function space, which
express in terms of the Gelfand–Shilov scheme of spaces, see Ref. 9, Chap. IV. The metho
is, however, general enough to be applied to a much wider class of singularities than infrared
and for a lot of other test function spaces.

In Sec. IV, we formulate abstractly a sufficient condition under which the regularizatio
guaranteed to work. The conditions we give are not the most general and abstract ones p
since they reflect the limitations of the procedure of Sec. III. Therefore they present no
criterion to decide whether an indefinite space admits the construction of a maximal ma
topology by our construction of a Hilbert majorant. Nevertheless, they capture the essential
that enable our construction, and therefore are at least useful to explain the mechanism be
Furthermore, our conditions are simple enough to be effective in many concrete cases. We
possible further generalizations at the end of Sec. IV.

Appendix A contains a simple, concrete construction of certain neutral elements, i.e., v
with vanishing inner product, which play an important role in the regularization procedure in
III. Appendix B compiles some basics about indefinite inner product spaces mainly taken
Ref. 10.

II. THE MODEL

Recently, a comprehensive abstract classification of representations of the Heisenberg
on an indefinite inner product space has been worked out by Mnatsakanovaet al. in Ref. 11.
There, it was pointed out that this issue is somewhat more difficult to handle than in the po
definite case, which is covered by the Stone–von Neumann uniqueness theorem, see R
Chap. IV. Especially, domain questions appear and the notion of irreducibility has to be rec
ered. Here, we take a different approach in considering a very concrete example whe
Heisenberg representation is from the beginning assumed to be the quantum mechanica¨-
dinger representation

q̂5
def

x•, p̂5
def

2 i
d

dx
,

on a function space overR.
The following discussion will take place in momentum space, and we will notoriously de

the Fourier transforms of functions withf, g, etc., and the variable byp. Consider the indefinite
inner product

^ f ,g&5
def

~ f ,g!L22 (
k50

`

ck
2 f̄ ~k!~0!g~k!~0!, ~1!
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with real coefficientsck ~this will turn out to pose no essential restriction in our case, see
following!. It can be formally interpreted as being induced by a generalized function~a kernel! on
R2 in the following way:

^ f ,g&5~d~p2p8!2J~]p]p8!d~p!d~p8!, f̄ ~p!g~p8!!. ~2!

Here, the infinite order differential operatorJ is given by its symbol

J~j!5
def

(
k50

`

ck
2jk.

The singularity in^.,.& can be characterized by the following notion, where we have alre
adapted the conventional notation a bit, so as to conform with our application in Sec. III:

Definition and Remark 2.1 (Ref. 9, 159 pp.):An entire functionJ(j) in the complex variable
j is calledinfraexponential of order1/~2d! if it fulfills for every «.0 an estimate

uJ~j!u<C«e«uju1/~2d!

for someC«.0. In this case, the coefficientsck
2 of the Taylor series ofJ satisfy the following

upper bounds: For everyD.0 exists auP(0,1) and aC.0 such that

uck
2u<C

uk

Dke2kdk2kd . ~3!

Now, our first concern is on which test function space the inner product can be defined. T
end, we use the Gelfand–Shilov scheme for the classification of spaces of smooth functio
Ref. 9, Chap. IV. For 0<a, b<` the spaceS a

b(R) consists of smooth functionsf onR satisfying
estimates

upqf ~k!~p!u<CAqBkqqakkb.

We need in fact only consider the regularity of the functions inS a
b(R) at the origin, which is

expressed in the following basic estimate: There exists aB.0 such that for allr.0 and a
constantCf depending onf we have

u f ~k!~0!u<Cf~B1r!kkkb. ~4!

It is apparent from~3! and~4! that the indefinite inner product is well-defined onS a
b by ~1! as the

distribution~2!, wheneverJ is infraexponential of order<1/~2b!. We denoted byV5VJ(a,b;r) a
spaceS a

b equipped with an indefinite inner product~1! defined by an infraexponential symbolJ
of order 1/~2d! for any d<b.

Further constraints on the choice of test function space now come from the intended S¨-
dinger representation of the Heisenberg algebra. As the Heisenberg generators act in mom
space by multiplication withp and differentiationid/dp, it is clear that they will not be symmetric
operators with respect to the indefinite inner product^.,.& on the whole space. A representation
a subspace ofV acts by symmetric operators only if this subspace consists of functionsf such that
all derivatives off vanish atp50. This subspace is at the same time also positive definite. In o
that it is also maximal in the sense that there is no larger positive definite subspace inV, one has
in fact to assume that the coefficientsck

2 in Eq. ~1! are strictly positive, i.e.,ckPR\$0% for all k,
which we do from now on. In turn, this implies thatJ(]p]p8) is a properly infinite differential
operator and thus the singularity in~2! must be stronger than a finite order distribution. Th
excludes as test function space any spaceS a

` which allows only distributions of finite order, an
thus in particular the Schwartz spaceS 5S `

` . On the other hand, the very strong singularity
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an analytic functional is also excluded: Since forb51 the test functions inV are all analytic in a
strip neighborhood of the real axis, the requirementf (k)(0)50 for all k would lead to the trivial
subspace.

After these heuristics, we are ready to state our main result, whose proof will follow in
following section. We will characterize the complete, positive definite representation subspa
the Heisenberg algebra by the Fourier transformation. For that, we need another definition

Definition 2.2:The space of functionsL0
2(R) is defined as

L0
2~R!5

def

$ f PL2~R!umk~ f !50, ;kPN0%,

where thek-th momentmk( f ) of a function f PL2(R) is given by

mk~ f !5
defE

R
xkf ~x!dx,

if it exists for akPN0 .
Theorem 2.3:Let 0<a<`, 1,b,`. Assumed.b, and let J be infraexponential of orde

1/~2d! with strictly positive Taylor coefficients. Then, the spaceV5VJ(a,b;(2d)21) admits a
maximal completion to a Krein spaceK with countably infinite rank of negativity. The maxim
positive definite subspace ofK, invariant under the action of the Heisenberg algebra in t
Schrödinger representation by self-adjoint operators on it, is the Fourier transformFL0

2(R) of
L0

2(R).
The appearance ofd.b results from technicalities of the infrared regularization process

will become clear in the following. This leaves room for improvement. It should be stressed
the diagonal formd(p2p8) of ~2! outisde the singularityp5p850 was chosen to allow for a
symmetric action of the Heisenberg generators. The regularization procedure itself is none
rather independent of the structure of the kernel outside the singular points. On the other ha
discussion at the beginning of this section also points to a principal limitation of the regulariz
method. If the singularity in a certain pointp0 is that of a proper analytic functional, i.e.,d<1, and
the rank of indefiniteness is infinite, regularization is impossible since the positive subspace
be trivial in that case.

The somewhat exotic representation of the Heisenberg algebra mentioned previously d
fit into the classification of Ref. 11, see also Ref. 13. Rather it corresponds to the ‘‘countere
ple’’ in the appendix of Ref. 11. As explained there,L0

2(R) naturally decomposes into two irre
ducible subspaces of ‘‘left-’’ and ‘‘right-movers’’ i.e., states with support, respectively, on
negative, and positive half-axis in momentum space, by closure of the two domainsV65$ f
PV u f (p)50 for p"0% in the Krein topology.

III. INFINITE INFRARED REGULARIZATION

In this section we present the proper method for the construction of a Krein space fromV. The
general strategy is close in spirit to the well-known method for closing a Hilbert space with re
to the action of a given positive bilinear form on it~see Ref. 14, Appendix A.2!. The construction
of a maximal majorant Hilbert topology forV leading to a Krein space closure of it, relies main
on two ingredients: first, the existence of neutral elements withinV which separate the negativ
degrees of freedom from the rest of the space. Second, there is some ‘‘air’’ left between the
of the coefficientsck

2 defining ^.,.& via ~1!, and the growth of the Taylor coefficients of th
functions inV. This is expressed in Eq.~3!, the assumptiond.b of Theorem 2.3, and~4!. To
make use of that margin, we define the ‘‘damping coefficients’’gk by

gk5
def

kkd. ~5!
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The neutral decomposition elements will be constructed in Appendix A to fulfill the follow
demands:

Lemma 3.1: Let0<a<` and 1,b,`. Let there be given a sequence of numbersk

satisfying~3!, and let gk be as in~5!. Then there exists a sequence of functions$xk%kPN0
,S a

b

with the following properties:

~i! ixkiL2
2

5ck
2gk

2,
~ii ! xk

( i )(0)5d ik•gk ,
~iii ! (xk ,x l)L250 for all kÞ l ,
~iv! ^xk ,x l&50 for all k, l.

We denote byN the linear subspace ofS a
b generated by$xk%kPN0

.
The subspaceN is neutral,N,V 0. We also observe thatV is nondegenerate due to th

presence of theL2-part in the indefinite product~1!. This property will prevail in the closure ofV
we construct in the following. Now, everyf PS a

b has, for every finiteN>0, a unique decompo
sition

f 5 f N11(
i 50

N

f ix i with f i5
f ~ i !~0!

g i
, ~6!

and f N1PS a
b is such that* ( i )(0)50 for 0< i<N. Furthermore, the sum in the decomposition

clearly in N.
Proposition 3.2: The seminorm p given by the limit

p~ f !25
def

lim
N→`

F ^ f N1, f N1&1(
i 50

N

$u^ f ,x i&u21u f i u2%G ~7!

exists and defines a majorant topologyt on V.
Proof: Taking Lemma B.3 into account, we have to show that~7!, if it is well defined,

dominates the inner square. Assuming that the limit in question exists, it is easy to sho
p( f )2 majorizes the inner squareu^ f , f &u of f. Namely, using~6! we can expresŝf , f & as

^ f , f &5^ f N1, f N1&1(
i 50

N

$ f i^ f ,x i&1 f i^x i , f &%

using property~iv! of Lemma 3.1, and the fact that^ f N1,x i&5^ f ,x i& which follows from it. Now,
in every term in the sum above we have the elementary estimate for complex numbersu f i^ f ,x i&
1 f i^x i , f &u<u^ f ,x i&u21u f i u2. If the first term^ f N1, f N1& in ~7! has a limit at all, then it tends to
( f 1, f 1)L25i f 1iL2

2 >0 for a certainf 1PL2, showingp( f )2>u^ f , f &u in the limit N→`. It re-
mains to show that all the limits involved in~7! exist. In order to show finiteness of the first ter
it suffices to show that the decomposition~6! of f converges inL2(R) for N→`, since it then
tends toi f 1iL2

2 and is thus necessarily finite as we have just seen. For the sum definin
decomposition, we have by~i! of Lemma 3.1

I (
N50

`

f ix i I
L2

2

< (
N50

`

i f ix i iL2
2

5 (
N50

`

u f ~ i !~0!ci u2,`,

taking ~3! and~4! into account, showing that claim. By definition~1! of the inner product, thei th
term in the sum in~7! becomes
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u^ f ,x i&u21u f i u25U~ f ,x i !L22 (
k50

2

ck
2 f̄ ~k!~0!x i

~k!~0!U2

1u f i u2

<u~ f ,x i !L2u21ci
4g i

2u f ~ i !~0!u21
u f ~ i !~0!u2

g i
2 .

For the first term we find, using the Cauchy–Schwartz estimate, by~3! and~5!, and of course the
assumption of Theorem 2.3:

u~ f ,x i !L2u2<i f iL2
2 uci

2g i
2u<i f iL2

2 Cu i

Die2id .

Further using~4!, the second term is bounded by

ci
4g i

2u f ~ i !~0!u2<
C2Cf

2

i 2i ~d2b! S u~B1r!

e2dD D 2i

.

Finally the third term satisfies

u f ~ i !~0!u2

g i
2 <

Cf
2

i 2i ~d2b! ~B1r!2i .

All three terms decay faster than exponentially ini, making the overall sum in~7! convergent in
the limit N→`. h

Notice that although we chose to see this independently by consideringL2-convergence, the
numerical convergence of the^ f N1, f N1&-part of the decomposition could have been inferred
the same way as the convergence of the other terms in~7!. In fact, one could have inverted th
decomposition~6! to yield f N15 f 2S i 50

N f ix i and then see the convergence of^ f N1, f N1& by
majorizing it with the same convergent terms as in the previous proof.

It is apparent from the proof of Proposition 3.2 that the decomposition~6! of f converges in
the closureV̄t of V with respect tot. In fact, it is easy to see that the incrementsp( f ix i)

2 decay
fast enough to turn the partial sums in the decomposition into a Cauchy sequence. This all
to write for everyf PV,

f 5 f 11(
i 50

`

f ix i with f 1PV̄t. ~8!

We further see, using the joint continuity of^.,.&, see Definition B.2, that the indefinite inne
product^.,.& has a unique extension toV̄t, which we will also denote bŷ.,.&. Thus using~8!, Eq.
~7! extends to a definition of a quadratic normed topology on thet-complete spaceV̄t, i.e., a
Hilbert majorant topology on that space:

Corollary 3.3: On the closureK5
def

V̄t5(S a
b)2t we define the Hilbert scalar product

~ f ,g!5
def

^ f 1,g1&1(
i 50

`

$^ f ,x i&^x i ,g&1 f igi%, ; f ,gPK. ~9!

We denote the Hilbert norm onK by i .i5
def

p(.)5(.,.)1/2. In particular, we have the identity
^ f 1, f 1&5i f 1iL2

2 .
We set
                                                                                                                



he

uct
tionals

249J. Math. Phys., Vol. 43, No. 1, January 2002 Infinite infrared regularization

                    
P5
def

$ f PV u f ~k!~0!50, ;kPN0%.

Obviously, ^.,.& is positive definite onP and equals theL2-scalar product on that subspace. T
decomposition~8! can now be expressed as follows:

Lemma 3.4: Equation~8! defines a mapping

P:V→V̄t, f ° f 1,

with the following properties:

~i! P is continuous in the topologyt.
~ii ! P has a continuous extension toK.
~iii ! P mapsK onto P̄t.
~iv! P is an orthogonal projection ontoP̄t with respect to~.,.!.
~v! The decomposition

K5P̄t
% N̄t

is orthogonal with respect to the scalar product (.,.) (denoted by%).
Proof: To show~i! we estimate

i f 1i25i f 1iL2
2

1(
i 50

`

u^ f 1,x i&u2

5i f 1iL2
2

1(
i 50

`

u~ f 1,x i !L2u2

<i f 1iL2
2 S 11(

i 50

`

ix i iL2
2 D

<i f 1iL2
2 S 11(

i 50

`

ci
2g i

2D<Ci f 1iL2
2 <Ci f i2.

In the last step we used that we havei f i2>^ f 1, f 1&5i f 1iL2
2 by Corollary 3.3. Assertion~ii !

follows from ~i!. By ~i! and~ii ! it suffices to show thatf PV entailsf 1PP̄t to show~iii !. For that,
by the second to last inequality mentioned previously, it suffices to approximatef 1 in theL2-norm
with elements ofP̄t. Such an approximation can be easily constructed, e.g., asf «

15(12r«) f 1 for
«→0, with the cut-off functionsr« of Lemma A.1. ThatP:K→P̄t is surjective is now clear, since
P is the identity onP̄t. For f 1PP andxPN, the scalar product reduces to

~ f 1,x!5(
i 50

`

^ f 1,x i&^x i ,x&50,

since ^x i ,x&50, and becausef 1 and x have decompositions with vanishing (f 1) i and x1,
respectively. Continuity of̂.,.& then implies statement~iv!. Assertion~v! follows from ~iv! and the
fact that the sum in~8! converges to an element ofN̄t. h

To construct the metric operatorJ that connects the indefinite with the Hilbert scalar prod
onK, we have to decompose this space somewhat further. To that end, we consider the func

Fi~ f !5
def

^x i , f i&, f PV
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on V. These functionals are nonzero sinceV is nondegenerate, they vanish onN, and they are
clearly bounded with respect to the normp. In fact, we haveuFi( f )u/p( f )<1 for f PV, by ~7!.
That is, theFi have unique continuations~also denoted byFi! to K by the Hahn–Banach theorem
and by continuity these satisfy the same bound 0,iFi i<1.

Lemma 3.5: The uniquely determined vectorsv iPK which represent Fi via Fi( f )5(v i , f )
for all f PK are actually contained inP̄t.

Proof: That the vectorsv i exist and are unique inK follows from Riesz’ representation
theorem applied to the bounded linear functionalsFi on the Hilbert spaceK. We have to show tha
they are inP̄t. Choose a sequence$v in%nPN in V that approximatesv i , i.e., iv i2v ini→0 for n
→`. Using the decomposition~8! for the v in we calculate~adopting Einstein’s summation con
vention for repeated upper and lower indices!

iv i2v ini25~v i2~v in!12~v in! jx j ,v i2~v in!12~v in!kxk!

5iv i2~v in!1i22~v i2~v in!12~v in! jx j ,~v in!kxk!2~~v in! jx j ,v i2~v in!1!

5iv i2~v in!1i22~v i2v in ,~v in! jx j !2~~v in! jx j ,v i !1~~v in! jx j ,~v in!1!.

The last term on the right-hand side vanishes for alln due to Lemma 3.4~v!. The third term is zero
since (v i ,x j )5Fi(x j )5^x i ,x j&50. We use the Cauchy–Schwartz estimate for the scalar pro
~.,.! and the fact thatix i i5u(x i)

i u5ux i
( i )(0)/g i u51 to estimate the second term as follows:

u~v i2v in ,~v in! jx j !u<iv i2v ini(
j 50

`

u~v in! j u<Civ i2v ini ,

with some constantC.0 independent ofn. In fact, since (v in) j5v in
( j )(0)/g j , and using~4! and

~5! we see that the sum is finite for alln. Since the sequencev in is convergent in the normp and
by definition~7! of this norm, the sum must actually converge and therefore admits a global b
C as above. In conclusion, sincev in is t-convergent tov i , i.e., iv i2v ini→0 for n→`, we must
haveiv i2(v in)1i→0 by necessity, and thus alreadyPv in is t-convergent tov i . This shows the
claim. h

The basic properties of thev i are collected in the next lemma.
Lemma 3.6: The vectorsv i have the following properties:

~i! ^x i ,v i&5(v i ,v i)51,
~ii ! (v i ,v j )5^x i ,v j&50 for iÞ j ,
~iii ! ^v i ,v i&50,
~iv! ^v i , f &5 f i for all f PV.

Proof: Statement~i! is clear from the defining property ofv i , except for the last equality tha
saysiv i i51. This will soon turn out to be true. Let$v in%nPN,P be a sequence converging tov i

in K, which exists by Lemma 3.5. Then with~9!, and since (v in) j50 for all j we have

iv ini2

u^x i ,v in&u
5

^v in ,v in&
u^x i ,v in&u

111
( j Þ i^x j ,v in&

u^x i ,v in&u
.

Now u^x i ,v in&u5u(v i ,v in)u→iv i i2 by ~i!, so that the left-hand side tends to 1 forn→` ~here we
assume that the denominators are nonzero which can be achieved by choosingv in suitably!. Since
the denominators stay bounded, we must necessarily haveu^x j ,v in&u→0 for j Þ i showing~ii !, and
also ^v in ,v in&→0 showing~iii ! sincev in converges tov i with respect toi .i5p(.) and p ma-
jorizes the inner square. Incidentally, this also shows

sup
n

uFi~v in!u
iv ini 5sup

n

u^x i ,v in&u
iv ini 51,
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and this proves the last equality in~i!, since the norm ofv i and that of the linear functionalFi

coincide by Riesz’ theorem. To show~iv!, we consider again the decomposition~8! of a vector
f PV which yields

^v in , f &5^v in , f 1&1 f i^v in ,x i&1(
j Þ i

f j^v in ,x j&.

In this expression we find̂v in , f 1&→0, since by~iii ! v in converges strongly to 0 inP̄t, and due
to Lemma 3.4. By arguments similar to that in the proof of Lemma 3.5, the sum stays bou
independently ofn, and since every single term in it converges to 0 by~ii !, the sum also tends to
0. This leaves us with the second term which converges tof i^v i ,x i&5 f i by ~i!. This shows~iv!.h

The v i could be constructed concretely as limits of functions which vanish strongly in
L2-sense, as in Ref. 1. Lemmas 3.5 and 3.6 allow us to avoid such an explicit constructio
vectorsv i are an orthonormal basis of a closed Hilbert subspace ofK. This space is isomorphic to
the dual space ofN̄t by definition of the functionalsFi and Lemma 3.5, and we mnemonical
denote it by the symbolN̄t^* &.

Lemma 3.7: Denote byH the closureP̄t1 of P with respect to the topologyt1 induced by the

quadratic Hilbert norm p1(.)25
def

^.,.& on P. The spaceK admits the decomposition

K5H% N̄t^* & % N̄t,

orthogonal with respect to~.,.!.
Proof: First, we must show that the decomposition is indeed possible becauseH,V̄t. To this

end, note that the topologyt1 is stronger than the restriction oft to P. In fact, if a sequence inP
converges in the normp1 then it converges in theL2-norm by ~1!, and by the action of the
indefinite product onP it is easy to see that this suffices to ensure convergence in the nop.
Now, taking Lemma 3.4~v! into account, we have to show that the~.,.!-orthogonal decomposition
P̄t5H% N̄t^* & holds. First, observe that the vectorsv i form a t-complete orthonormal system i
N̄t^* &. Now, for f 1,g1PP we have

~ f 1,g1!5^ f 1,g1&1(
i 50

`

~ f 1,v i !~v i ,g1!,

by the definition ofv i and ~9!. This shows that a sequence$ f n
1%nPN in P converges to a limitf

PP̄t if and only if p1( f n
12 f )→0 and independently the~.,.!-orthogonal projection off n

12 f

onto the closed subspaceN̄t^* & of P̄t tends to zero. Denote byN̄t^'& the orthogonal complemen
of N̄t^* & in K with respect to~.,.!. By the above-given argument, the subsetPùN̄t^'& of P̄t is
dense inH with respect to the topologyt1 . This shows that the proposed decomposition is ind
~.,.!-orthogonal. In conclusion, at-Cauchy sequence inP can be identified with a pair (f ,$l i% i PN0

)

with an f PH andl i5(v,v i) for somevPN̄t^* &. This showsP̄t5H% N̄t^* &. h

It should be noted that by Lemma 3.6~iii !, the vectorsv i indeed converge to zero in th
topology t1 of H but are clearly nonzero inP̄t,K. Furthermore,t1 is stronger than the
L2-topology althoughp1( f 1)5i f 1iL2 for f 1PP. We will characterizeH as a function space in
the following. We have compiled all information needed to exhibit the Krein space structureK.

Theorem 3.8:The spaceK is a Krein space with countably infinite rank of indefiniteness.
Hilbert space structure is maximal and given by the metric operator J: K→K, satisfying the
identity ^.,.&5(.,J.). It holds

Jv i5x i , Jx i5v i , and JuH5IH ,

in the decomposition of Lemma 3.7.
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Proof: The strategy of the proof will be as follows: The metric operator exists by Propos
B.5, and we have seen in Lemma 3.7 that we can write down its action in the decomposiK
5H% N̄t^* & % N̄t. We can then explicitly demonstrate that the operatorJ on K acts as stated. This
special form ofJ immediately implies that it is a bounded, completely invertible operator onK.
Thus by Proposition B.7,K is a Krein space and sinceJ215J is also bounded, its Hilbert spac
structure ~K, J! is maximal by Lemma B.8. Now, by definition of thev i we have ^ f ,x i&
5( f ,Jx i)5( f ,v i) for all f PK, showingJx i5v i . On the other hand, by Lemma 3.6~iv! and~9!
we havê f ,v i&5( f ,Jv i)5 f i5( f ,x i), showingJv i5x i . It remains to consider the restriction ofJ

to H. Take f', g'PPùN̄t^'& ~see the proof of Lemma 3.7! and note that (f',g')5^ f',g'& for
those vectors. Since these vectors are dense inH, it follows that the restriction ofJ to H is the
identity. This shows the claim. h

To conclude the proof of Theorem 2.3, it finally remains to show thatH is the Fourier
transform of the spaceL0

2 defined in Definition 2.2. NowF is a topological isomorphism fromS b
a

onto V5S a
b and for f PS b

a we have

i k f̂ ~k!~0!5S i k
dk

djk E
R
e2 ixj f ~x!dxDU

j50

5 i kE
R
~2 ix !kf ~x!dx5mk~ f !.

By that, the image ofP underF21 is the subspace ofS b
a of functionsf with mk( f )50 for all k.

Since S b
a is dense inL2 and the Fourier transformation is anL2-isometry, we can seeH

5FL0
2. Thus Theorem 2.3 is finally proven.

If we test the vectorsv i with states in the ‘‘physical’’ subspaceH, i.e., the representation spac
for the Heisenberg-observables, they appear as completely delocalized states. In fact the a
the momentum operator on them is given by Lemma 3.6~iv!:

^pv i , f &5^v i ,p f&5~p f ! i50 for all f PH, i PN0 ,

where we denoted the unique extension of the multiplication operatorp from V to K also byp.
This is different from the case of one single negative degree of freedom in Ref. 1, where the
vectorv0 turns out to be completely delocalized on the whole Krein state space.

IV. A CONDITION SUFFICIENT FOR REGULARIZATION

In this section, we want to give a set of conditions on a general indefinite inner product
V, that will be sufficient for the regularization procedure to work. We did not put this genera
tion in the beginning, and then deduced the special caseV5S a

b considered previously from it, for
two reasons: First and foremost, we wanted to emphasize the case of indefinite inner pr
generated by singular kernels acting on a test function space, which we think is partic
interesting in view of possible applications in physics. Second, most of the assertions and
in Sec. III are already cast abstract enough to be re-used in the proof of the generalized r
ization Theorem 4.1 without any modification. Thus, we can stress the essential points tha
modification and thereby highlight the principles which put the regularization procedure to w

Two elements are essential: First, the existence of neutral decomposition elementsx i that
enable us to isolate the positive part of the indefinite product. Second, a certain balance b
the growth, respectively, and decay of~a! the inner products of vectors in the space with t
neutral elements, and~b! the coefficients of the linear decomposition of a vector with respec
these. These growth conditions constitute the main difference between the case of finite r
indefiniteness considered in Ref. 4 and the infinite case, where they serve to render the
majorant topology well defined in the first place.

Let us now formulate our set of conditions. We assumeV to be a complex linear space wit
an indefinite inner product̂.,.&, which shall be nondegenerate. Assume the following.

~0! There exists an orthogonal system$x̃ i% i PN0
of mutually linearly independent, neutra

vectors inV.
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~1! For all vPV, the unique decomposition forNPN0 ,

v5 ṽN11(
i 50

N

ṽ i x̃ i , ṽ iPC

becomes asymptotically positive in the sense that

0< lim
N→`

^ṽN1,ṽN1&.

~2! There exists a sequence of complex numbers$g i% i PN0
such that both sequence

$g i^x̃ i ,v&% and$ṽ i /g i% are in l 2(N0).

These conditions enable us to prove an equivalent of Proposition 3.2. In fact, settingx i5
def

g i x̃ i , we
obtain the analog of the finite decomposition~6! for a vectorvPV with coefficientsv i5 ṽ i /g i . We
then have to see that the sum~7! with f replaced byv, defining the majorant normp(v)2,
converges. The convergence of the asymptotically positive part limN→`^vN1,vN1& then follows,
as we have already noted after the proof of Proposition 3.2. Now, thei th summand in the defini-
tion of p(v)2 becomes

u^v,x i&u21uv i u25ug i^v,x̃ i&u21uṽ i /g i u2,

and the sum converges due to condition~2!. Thus, we get a majorant Hilbert topologyt on V. A
close inspection of the proofs of the various lemmata in Sec. III shows that the only other
which has to be reconsidered is the proof of statement~i! of Lemma 3.4, that the mappin

P: v°v1 is t-continuous onK5
def

V̄t. There, we have utilized theL2-norm, but we will see that
this can also be shown independently. In fact, we have

iv1i25S v2(
i 50

`

v ix i ,v2(
j 50

`

v jx j D 5ivi222 Re(
i 50

`

v8~x i ,v !1 (
i , j 50

`

v iv j~x i ,x j !.

We use the two consequences (x i ,x j )5d i j and (x i ,v)5v i of Eq. ~9! in the third and second term
respectively, to obtain

5ivi22(
i 50

`

uv i u2<ivi2

by definition~7! of ivi2. Here again, condition~2! ensures the convergence of the sums appear
From this point, one can proceed word for word as in Sec. III with the definition of the vectov i

and the demonstration of their properties. We finally obtain a generalization of Theorem 3.
Theorem 4.1: Let V satisfy (0)–(2). ThenK is a Krein space with rank of indefinitenes

#$x iÞ0%. Its Hilbert space structure is maximal, and the metric operator J acts as in Theo
3.8.

Note that~0!–~2! and Theorem 4.1 are formulated as to cover the cases of finite as well
infinite rank of indefiniteness. Namely, in case the rank of indefiniteness isN,`, one can find at
mostN neutral, linearly independent vectors, and one has to use them all to obtain a deco
tion that, as demanded by~1!, becomes positive~in this case not asymptotically!. One then
choosesx̃ i50 for i .N21.

We conclude this paper with some comments on the generalized regularization procedu
described. First, the conditions~0!–~2! certainly do not present the utmost general ones poss
In particular, one can perhaps replace the neutral orthogonal system of~0! by a general system o
linear independent vectors which lead to an asymptotically positive decomposition. See
Remark A.13, where we describe how to find a maximal neutral orthogonal system in the c
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finite rank of negativity. Furthermore, whether^v1,v1& is positive or negative definite is irrel
evant, since one can always go over to2^.,.& ~the so calledantispaceof V!. On the other hand, one
cannot easily dispense with either of thel 2-conditions in~2!, since they represent rather sharp
the convergence conditions that enabled us to construct a majorant. Since we made no pr
sitions with respect toV regarding structure and topology, condition~1! is also indispensible.

In our case of main interest in Sec. III, the essence of conditions~0! and ~1! are captured in
Lemma 3.1 which is proven in Appendix A. A similar construction of neutral decompos
elements will also have to be carried out in any other concrete case, and is thus at the very
of the regularization procedure, in putting flesh to the bones of the abstract conditions~0! and~1!.
The construction in Appendix A may serve as a blueprint for that at least in the case o
function spaces overRn and inner products generated by kernels whose singularities are ‘‘lo
ized’’ enough, e.g., concentrated on a compact set. This may justify that we did not delve
further abstraction of conditions~0! and ~1!.

Let us consider an instructive special case. Assume the sequence of coefficients$ṽ i% is
bounded for allvPV. If there holds an estimate

u^x̃ i ,v&u<C~v !i 2~11d!,

with a constant depending onv and for somed.0, we can choose

g i5 i 2~1/21«!

for any 0,«,d. Such polynomial growth and decay conditions are obviously much weaker
the conditions that were present in the caseV5S a

b , see, e.g., our choice ofg’s in ~5!. Thus the
range of cases covered by Theorem 4.1 is considerably widened in comparison to Theorem
Theorem 2.3.

The question arises naturally, whether we can find uniform properties onV, as opposed to the
pointwise ones~1! and ~2!, that enable regularization. In essence one would look for a sim
quantitative measure that tells us when the construction of the majorant is possible. But this
straightforward. To simplify the discussion, consider the case where$ṽ i% is bounded inC for all v
~these sets can of course not be uniformly bounded!. A simple uniform measure that could replac
condition ~2! can be formulated in terms of the quantities

b̄ i5
def

sup
vPV,ṽ i51

u^x̃ i ,v&u.

Notice that at leastx̃ i is in the set over which the supremum is taken, and if this is the o
element we haveb̃ i50 due to neutrality of that vector. One can then replace~2! by the condition
that there shall exist a sequence$g i

21% in l 2(N0) such that also$b̃ ig i% is in l 2(N0). This uniform
growth condition onb̃ i is however by far too restrictive, since it does not even cover the
considered in Theorem 2.3. The basic reason for this is that in most cases the neutral orth
system$x̃ i% does not exhaust the spaceV in the sense that a complete orthogonal system exha
a Hilbert space. The inner products with these vectors do not contain enough information ab
whole space, and especially its positive part, to decide sharply whetherV is regularizable. The
problem of finding a good abstract definition of what we would like to call ‘‘regularizable in
product spaces’’ remains therefore open.
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APPENDIX A: CONSTRUCTION OF NEUTRAL DECOMPOSITION ELEMENTS

In this Appendix, we present a simple construction for the neutral decomposing functio
Lemma 3.1. We point out that different and more refined constructions are surely possible, b
one given in the following suffices for our purpose.

We have to show~i!–~iii ! since~iv! follows from them. We prove Lemma 3.1 forgk51, ;k.
The general case follows by multiplication of the functionsxk constructed in the following with
the given sequencegk . The first thing we need to show is that there are enough function
compact support inS a

b . For that, we have to consider the spacesS a
b,B , which constituteS a

b as
an inductive limit forB→`, see Ref. 9, Chap. IV, Sec. 3 for their definition.

Lemma A.1: Let0<a<` and 1,b,`. For «.0 there exists B«.0 and a functionr«

PS a
b,B« such that

r«~x!5H 1, if uxu,«/2

0, if uxu.3«/2

0<r«~x!, otherwise.

Proof: Under the given conditions, the functionr« can be constructed using the well-know
facts about the Gelfand–Shilov spaces, for which we refer to Ref. 9, Chap. IV. The spacS a

b

contains the spaceS 0
b which consists of functions of compact support and is nontrivial forb

.1. Furthermore, forfPS 0
b we havef2PS 0

b . Thus there exists aB.0 and a nonzero function
f with f(x)>0 in S 0

b,B , such that suppf,@2R,R# for someR.0. Then

f«~x!5
def «

2RifiL1
•f~2Rx/«!

is an element ofS 0
b,B« for B«52RB/«, see Ref. 9, p. 158. It hasL1-norm 1 and support in@2«/2,

«/2#. Since convolution withL1-functions does not change the regularity, the functionf«* x@2«,«#

is an element ofS 0
b,B« and thereforea fortiori of S a

b,B« with all the desired properties. h

We set

kn~x!5
def

r1/3~x2n!/ir1/3iL2 .

Sincekn has support in@n21/2, n11/2#, we have (k i ,k j )50 for all iÞ j . Define a sequence o
positive real numbers by

« i5
def 1

3e )
k50

i

min~1,ck
2!. ~†!

Set

d i5
defxi

i !
r« i

.

Furthermore, foriÞ j define

ki j 5
def

sign~ i 2 j !A~d j ,d i !L2.

We use the following enumeration for the off-diagonal entries of an infinite matrix~rows and
columns counted from 0!:
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N0
2\diag{~ i , j !°n~ i , j !5

defH j ~ j 21!

2
1 i 11 if i , j

n~ j ,i !, otherwise.

We use the functionsd i as building blocks for the desired functions, since they have just the
behavior at 0 to ensure property~ii ! of Lemma 3.1. To correct their nonvanishingL2-overlap with
each other we use the corrective

Ki5
def

(
j Þ i

ki j kn~ i , j ! .

We must show that this is possible, i.e., thatid i1Ki iL2
2 does not exceedci

2, in order to satisfy
~i!. We have

id i1Ki iL2
2

5id i iL2
2

1iKi iL2
2

5(
j 50

`

u~d i ,d j !L2u.

The terms in the sum allow for the basic~yet very coarse! estimate

u~d i ,d j !L2u<
2

i ! j ! S 3

2
min~« i ,« j ! D i 1 j 11

by construction ofd i . Using ~†! we have min(«i ,«j)<(i/3«)min(ci
2,1) and therefore we can est

mate under the additional assumptionci
2<1:

id i1Ki iL2
2 <(

j 50

`
2

i ! j ! S ci
2

2eD
i 1 j 11

<
2

i ! S ci
2

2eD
i 11

(
j 50

` ci
2 j

j !
5

2

i ! S ci
2

2eD
i 11

eci
2
<

ci
2

i ! ~2e! i <ci
2.

Now using the function

n i5Aci
22id i1Ki iL2

2 k2 i

we can set

x i5
def

d i1Ki1n i .

We are done if we show thatx i is well defined as a function inS a
b , i.e., that the sumKi

converges in the topology of the namely space. To that end, we have to show convergence
of the spacesS a,A

b,B which constitute the inductive limitS a
b5 lim

→A,B→`
S a,A

b,B . We show that the

increments in the sumKi , namelyki j kn( i , j ) , decay fast enough inj to turn the sum into a Cauch
sequence in that topology. In the countably normed spaceS a,A

b,B , we therefore have to estimate th
increments due to the terms in the sum definingKi :

iki j kn~ i , j !ir,d5 sup
xzk.q

uxkki j kn~ i , j !u
~A1r!k~B1d!qkkaqqb with r,d.0.

We first argue that this quantity can be estimated independently ofq. In fact, the functions
kn( i , j ) are translates of a fixed function inS a

b,B1/3, and therefore the supremum overq is smaller
than at constant times the supremum overk andx only, if we chooseB5max(B1/3,B« i

):
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iki j kn~ i , j !ir,d<Cksup
x,k

uxkki j kn~ i , j !u
~A1r!kkka .

It suffices to consider this especially forA>1 anda51 in which case we have

<Ck sup
x,k

uxkki j kn~ i , j !u
kk .

For j large enough and by definition ofn( i , j ) we can estimateuxu<2 j 2 on the support ofkn( i , j ) ,
and with some other constantCk8 depending only on the functionkn( i , j ) ,

<Ck8ki j sup
k

S 2 j 2

k D k

.

Continuous maximization ink shows

<Ck8ki j e
c j2.

Now it is clear from their definition thatki j decay faster than an exponential function of any ty
in j and thus the claim follows.

APPENDIX B: BASICS OF INDEFINITE INNER PRODUCT SPACES

In this section we recall some facts about indefinite inner product, Krein and Pontr
spaces needed in the main text. For an extensive discussion of the subject matter we re
reader to~Refs. 10 and 15!. First some notations: LetV be a vector space equipped with a
indefinite inner product̂.,.& ~antilinear in the first, linear in the second argument!. The linear span
of a subsetA of vectors inV is denoted bŷA&. The linear sumof subspacesV1 ,...,Vn of V is
given by ^V1ø¯øVn& and denoted byV11¯1Vn . If the spacesV1 ,...,Vn are linearly inde-
pendent, their linear sum is termeddirect sumand denoted byV11̇¯1̇Vn . Orthogonalitywith
respect tô .,.& is defined, and denoted by the binary relation' as usual~but clearly does not have
the same strong consequences as in definite inner product spaces!. If the V1 ,...,Vn are mutually
orthogonal, theirorthogonal direct sumis denoted byV1(1̇)¯(1̇)Vn , whereas the symbol% is
reserved for orthogonal sums with respect to a positive definite inner product, which we
denote with ~.,.!, following mathematical convention. Bypositive definitewe mean as usua
(x,x)>0, ;xÞ0, and (x,x)50⇒x50. A subspaceA of V is calledpositive, negative, or neutral,
respectively, if one of the possibilitieŝx,x&.0, ^x,x&,0 or ^x,x&50 holds for allxPA, with
xÞ0. One sets

V115
def

$xPV u^x,x&.0 or x50%,

and calls this subset thepositive partof V. ThenegativeandneutralpartsV22 andV 0 are defined
alike. A subspaceA of V is calleddegenerate, if its isotropic partAùA' does not only consist o
the zero vector. In the main text and the following we will deal merely withnondegeneratespaces,
i.e., spaces withV'5$0%. A nondegenerate inner product spaceV is said to bedecomposableif it
admits afundamental decomposition

V5V'~1̇ !V1~1̇ !V2 with V1,V11,V2,V22.

For nondegenerate spaces the isotropic part of the decomposition vanishes. The dimens
maximal negative definite subspaceV2,V22 appearing in a fundamental decomposition of
nondegenerate inner product space is called therank of negativityof V. As proven in Ref. 10,
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Corrollaries II.10.4 and IV.7.4, it is a unique positive cardinal denoted by¸2(V). The rank of
positivity¸1(V) is defined in analogy to that. We set¸[min(̧ 2,¸1) and call this number therank
of indefinitenessof V.

Now some less trivial things about the topology of indefinite inner product spaces: A lo
convex topologyt on V defined by a single seminormp, which is then actually a norm, is calle
normed. If V is t-complete, we say thatt is aBanach topology. If t can be defined by aquadratic
norm p(x)5(x,x)1/2, where ~.,.! is a positive definite inner product onV, then t is called a
quadratic normed topology. Again, if V is t-complete, thent is termedHilbert topology. A normed
topologyt1 is strongerthan anothert2 , written t1>t2 , if and only if everyt2-open set is also a
t1-open set, or equivalently the relationp1(x)>ap2(x) holds for all xPV, with an a.0. Two
norms that define the same topology are calledequivalent. A locally convex topologyt on V is
called apartial majorantof the inner product if̂ .,..& is separatelyt-continuous. Theweak topol-
ogy on V is the topology defined by the family of seminorms

py~x!5
def

u^y,x&u for all xPV.

Lemma B.1 (Ref. 10, Theorem II.2.1): The weak topology is the weakest partial majora
V. If a locally convex topology onV is stronger than the weak topology, then it is a parti
majorant.

We will need a stronger concept of topology:
Definition B.2:A locally convex topologyt on V is calledmajorant topology, if the inner

product^.,..& is jointly t-continuous.
In applications, one can often restrict oneself to majorants defined by a single sem

which majorizes the inner square, as shown by the following result.
Lemma B.3. (Ref. 10, Lemma IV.1.1. and IV.1.2): It holds:
~i! To every majorant there exists a weaker majorant defined by a single seminorm.
~ii ! For a locally convex topology defined by a single seminorm p to be a majorant

sufficient that p dominates the inner square:

u^x,x&u<ap~x!2, a.0, ;xPV.

Majorant topologies, and especially majorant Hilbert topologies, have many advantage
partial majorants. Before we describe them, let us see why one would not like to use the
topology on general indefinite inner product spaces:

Lemma B.4. (Ref. 10, Theorem IV.1.4): The weak topology on the nondegenerate ind
inner product spaceV is a majorant, if and only ifdimV,`.

The indefinite inner product on a space equipped with a majorant Hilbert topology adm
simple description by the so-calledmetric operator.

Proposition B.5. (Ref. 10, Theorem IV.5.2): LetV be an indefinite inner product space with
majorant Hilbert topologyt defined by a normi.i. Then there exists a Hermitean linear operato
called metric (or Gram) operator, J onV such that

^x,y&5~x,Jy!, ;x,yPV,

where~.,.! is the positive inner product onV that definesi.i. Moreover, in this caseV is decom-
posable and the fundamental decomposition can be chosen so that each of the three com
is t-closed.

The spaces we want to construct in the main text should be complete in a certain sense
we will now specify.

Definition B.6:If a nondegenerate indefinite inner product spaceK admits a decomposition

K5K1~1̇ !K2, K1,K11, K2,K22,
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such thatK1,K2 are complete with respect to the restrictions of the weak topology to t
~termedintrinsically complete!, then the spaceK is called aKrein space.

Krein spaces can easily be characterized:
Proposition B.7. (Ref. 10, Theorem V.1.3): An indefinite inner product spaceV is a Krein

space if and only if there exists a majorant Hilbert topologyt on V such that metric operator J is
completely invertible.

A Hilbert-space completionH of an indefinite inner product spaceV, if it exists together with
its metric operatorJ, is called theHilbert space structure(H,J) associated toV. In applications
one would like to find the largest Hilbert space associated to an indefinite inner product spac
that, one considersminimal majorant topologies, i.e., topologiest* such that no majorantt is
weaker thant* . Hilbert space structures given by the completion ofV with respect to a minimal
majorant are correspondingly calledmaximal. We find that the Hilbert space structure is maxim
if it leads actually to a Krein space:

Lemma B.8 (Ref. 2, Appendix A.1): A majorant Hilbert topology leads to a maximal Hi
space structure (K , J), if and only if J has a bounded inverse. Given a Hilbert space structure
can always construct a maximal one.

The last statement means in effect that every space admitting some majorant Hilbert to
can be completed to a Krein space.
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The aim of this article is to study certain Lorentz invariant Lagrangians. The first of
these Lagrangians could be related to a particle of spin1

2 moving in a particular
Yang–Mills gauge field. The second Lagrangian is related to the relativistic
Newton–Coulomb problem. For each of these Lagrangians, we write the corre-
sponding wave equations and determine the negative energy levels. The article
concludes with the construction of a class of Lagrangians associated with pairs of
particles, one of which has zero mass. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1420742#

I. INTRODUCTION

The main problem we study in this article is to quantize certain Lorentz invariant Lagrang
we formally extend the classical two-particle Lagrangians, which have been used in New
gravitation theory and respectively in Pauli’s theory of the hydrogen atom.

In the first section, we construct a Lagrangian for a particle moving in a gauge field defin
a Lorentz invariant connectionC. The connectionC is defined in a principal bundleP5G→S,
whereG is the group of 232-complex matrices with positive determinants andS is the space of
spacelike vectors in Minkowski space. The corresponding Euler–Lagrange equations are sim
Pauli equations, with the differences that they are of order two and refer to a Coulomb fiel

We determine the negative energy levels by using representation theory.
The second section is related to the relativistic Kepler–Newton–Coulomb problem, as

duced by L. P. Horwitz~see Ref. 1!. We determine the corresponding negative energy levels
using both representation theory as well as the classical theory of second order differentia
tions of Laplace type.

Representation theory is used in order to determine the eigenvalues of Casimir ope
these values appear in the corresponding radial equations; some of these eigenvalues can
determined using analysis and imposing specific regularity conditions, as given in Sec. III E

The final results concerning the energy levels are given in a theorem at the end of Sec
We had to use many elementary and classical results, which we have written explici

order to dispose of uniform notations for the reader’s convenience. Giving proper quot
seems to be a hard task.

We constantly compared the energy spectra obtained in this article to the spectrum obta
Schrödinger and which is proportional to the sequenceS5(1/n2)n51,2,3, . . . .

In the two situations we met, certain deviations arose. For instance, in the case of the r
istic Coulomb problem, we obtained a spectrum which is proportional to the sequencS8
54((2n11)22)nPN5((n1 1

2)
22)nPN .

We assume that we gain the whole ofS by introducing the principal series of representatio
of the group SL~2, C!. This can be done by considering some Lorentz invariant Lagrang
associated with two-particle systems, such that one of the two particles lies on the light
These Lagrangians are also linked to two-particle systems, when the particles are separat
vector of zero length. Though this program is not yet acomplished, the formulas we obtained
our assumption plausible.

a!Electronic mail: kostake@math.math.unibuc.ro
2600022-2488/2002/43(1)/260/23/$19.00 © 2002 American Institute of Physics
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II. THE FIRST LAGRANGIAN

A. A principal SU „1, 1…-bundle

We identify each pointx5(x0 ,x1 ,x2 ,x3) in Minkowski spaceM with a Hermitian matrix by
writing

x5S x01x3 x12 ix2

x11 ix2 x02x3
D ,

and denote the spatial inversion by a hat; more generally, whenj5(c
a

d
b) andc are 232-matrices,

we write

ĵ5S d 2b

2c a D , uju252det~j!, ^j,c&52
1

2
Tr~cĵ !.

Let G be the group of complex 232-matrices with real and positive determinant.
The manifold

S5$xPM ; uxu252det~x!.0%

is diffeomorphic toR23S2 and there is a transitive actionA of G on S, which is given by the
formula

A:G3S→S, A~g,x!5gxg* .

Let us consider the Pauli matrixs35(0
1

21
0) and define the map

f 3 :G→S, f 3~g!5gs3g* .

Then

f 3
21~s3!5SU~1,1!, f 3~G!5S,

and the mapf 3 is G-equivariant.
The aim of this section is to study theG-homogeneous and also principal SU~1, 1!-bundle

P5~G, f 3 ,S!.

For a pointx5(x0 ,x1 ,x2 ,x3)PS, we denote

r 5A~x1!21~x2!21~x3!2, z5x11 ix2 ,

R5Ar 22~x0!25A2det~x!.

Each matrixg5(
g21

g11
g22

g12)PG can be written as a product

g5uhv ~1!

with factors

uPSU~2!, vPSU~1,1!, h5diag~h1 ,h2!, h1.0,h2.0. ~2!

Let us introduce the notations

x5gs3g* , k5h2s35diag~k1 ,k2!.

Thenx5uku* and, when we suppose that
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u5S a 2b̄

b ā
D , v5S a b̄

b ā
D ,

uau21ubu251, uau22ubu251,

we get

2x05k11k2 ,

2x35~k12k2!~ uau22ubu2!,

z5x11 ix25~k12k2!āb,

2r 5h1
21h2

2, R5h1h2 ,

k15x01r , k25x02r ,

2uau2511
x3

r
, 2ubu2512

x3

r
, 2āb5

x11 ix2

r
.

These relations lead us to the following conclusions:
~1! When the matrix g is given, the matrices h, k are uniquely determined, while the ma

u, v are determined up to a transformation of the form

u°u diag~eiw,e2 iw!, v°diag~e2 iw,eiw!v, wPR.

~2! The principal SU~1, 1!-bundleP5(G, f 3 ,S) is trivial over each of the sets

S15$xPSux3.2r %, S25$xPSux3,r %,

and we can define the local sectionsf 1 :S1→G, f 2 :S2→G by the formulas

f 1~x!5u1~x!h~x!, f 2~x!5u2~x!h~x!, ~3!

u1~x!5
1

A2r ~r 1x3!
S r 1x3 2 z̄

z r1x3
D ,

~4!

u2~x!5
1

A2r ~r 2x3!
S z̄ 2r 1x3

r 2x3 z D ,

h~x!5S Ar 1x0 0

0 Ar 2x0
D . ~5!

Then these two local sections are related, overS1ùS2 , by the formula

f 1~x!5 f 2~x! diagS z

uzu
,

z̄

uzu D , ~6!

showing that the structural group SU~1, 1! of the principal bundle P is reducible to U~1!.

B. An invariant Yang–Mills connection

Denote byV5(E,p,S) the vector bundle with fiberC2 associated with the principal bundl
P. The points ofE are equivalence classes
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@g,j#5$~gv21,vj!; vPSU~1,1!%, gPG, jPC2. ~7!

The equation~6! shows that the vector bundleV admits an SU~2!-invariant decomposition
into the Whitney sum of two complex line bundles,V5L1% L2 .

By considering the bundle mapf 3 :G→S, we broke the Lorentz symmetry of Minkowsk
space, since implicitly we distinguish the points35(0,0,0,1); but, considering the bundleP, we
gain a richer symmetry, because the groupG acts transitively on itself by left translations and th
action induces a transitive action onS.

The Lie algebra sl~2, C! carries anR-bilinear formv, which is invariant with respect to the
linear adjoint representation of SL~2, C! and which is defined by the equation

v~x,y!5Real part of Tr~ x̂ y!.

Whenv(x,y)50, we say thatx is orthogonal toy.
We can use the formv in order to introduce aG-invariant connectionC on the bundleP: the

C-horizontal tangent vectors onG at a pointgPG will be the pairs (g,gX) such thatXPsl(2,C)
% R•I and such thatX is orthogonal to allyPsu(1,1).

The matricesX which are orthogonal to su~1, 1! have the form

X5S p1 iq l

2l̄ p81 iq D , pPR, p8PR, qPR, lPC. ~8!

The equations of theC-horizontal distribution are obtained by writing that the different
matrix g21dg has the form~8!. When we use the decomposition~1!, the equations of the
C-horizontal distribution take the form

da52 iAa1B̄b, db5Ba1 i Ab, ~9!

where

A52 i ~ āda1b̄db!, B5
x0

R
~bda2adb!. ~10!

The local sectionsf 1 , f 2 defined by formulas~3!–~5! allow us to build the diffeomorphisms

t1 :S13SU~1,1!→~ f 3!21~S1!, t1~x,v !5 f 1~x!v, ~11!

t2 :S23SU~1,1!→~ f 3!21~S2!, t2~x,v !5 f 2~x!v. ~12!

It is convenient to introduce, besides the usual polar coordinatesq, w, a new angle coordinate
c, so that we have

z5r sinq exp~ iw!, x35r cosq, x05r sinc S 2
p

2
, c,

p

2 D . ~13!

Then

tgc5
x0

R
, tgw5

x2

x1
, tgq5

A~x1!21~x2!2

x3
.

The one-forms~10!, computed overS1 andS2 , become
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A15
x1dx22x2dx1

2r ~r 1x3!
5sin2

q

2
dw,

~14!

A252
x1dx22x2dx1

2r ~r 2x3!
52cos2

q

2
dw,

B152
z2x0

2Rr~r 1x3!
dS r 1x3

z D52
1

2
eiwtanc~dq1 i sinqdw!,

~15!

B252
z̄2x0

2Rr~r 2x3!
dS r 2x3

z̄ D52
1

2
e2 iw tanc~dq1 i sinq dw!.

For the reader’s convenience, we write down the following formulas, giving the operato
partial derivatives]a5]/]a :

]05R21]c2tgc ]R ,

]15R21coscS 2
sinw

sinq
]w1cosw cosq ]q2tgc cosw sinq ]cD1

sinq cosw

cosc
]R ,

]25R21coscS cosw

sinq
]w1sinw cosq ]q2tgc sinwsinq ]cD1

sinq sinw

cosc
]R ,

]352R21~cosc sinq ]q1sinc cosq ]c!1
cosq

cosc
]R .

The connectionC of P induces a connection, also denotedC, on the associated vector bund
V. Since the structural group ofV is SU(1,1), V carries an invariant pseudo-Hermitian formH of
signature (1,1) and the connectionC is compatible with this structure.

Using the gauge associated with the local sectionf 1 , we can represent a sectionF of V as a
pair (F1,F2) of complex valued functions. The covariant derivativeD commutes with the action
of the groupG on P and is given by the formula

DF5~DF1,DF2!5~dF11 iAF12B̄F2, dF22BF12 iAF2!.

The groupG acts on sectionss:S→E in the bundleV according to the formula (gs)(x)
5g(s(x8)), wherex85g21x(g* )21 and

g~@g1 ,j#!5@gg1 ,j#.

This action induces an actiona of the Lie algebra ofG. When we represent the class@g,j#PE
through the pair (gs3g* ,gj)PS3C2, a will associate with the matrices

( i /2) s1 ,(i /2) s2 , (i /2) s3 , 1
2s3Psl(2,C), the following differential operators, acting on map

C:S→C2:

dk5
i

2
sk2bks0~k51,2,3!, e35

1

2
s31a3 , ~16!

where

b15sinw ]q1coswcotq ]w , b252cosw ]q1sinw cotq ]w , ~17!

b352]w , a35cosq cosc ]c2sinq sinc ]q . ~18!
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Using the invariant formH of V and the invariant metric of Minkowski space, we get, for a
real numbersE1 ,C, a Lorentz invariant Lagrangian

L~F!5E
S
S uDF1u22uDF2u21S E11

C

RD ~ uF1u22uF2u2! D dx. ~19!

C. The Dirac monopole

The bundleP contains an SU(2)-homogeneous principalS1-subbundleQ5(G8,q,S) with
total space

G85$g85uhuuPSU~2!, h5diag~h1 ,h2!, h1.0,h2.0%,

with base-spaceS, projection mapq5 f 3uG8 ; the groupS1 acts onG8 on the right through
diagonal matrices diag(exp(is),exp(2is)).

The connectionC induces a connectionC8 on this bundle. The horizontal tangent vectors ofG8
are solutions of the equation

ds1 iA50.

We easily recognize that the connectionC8 represents the vector potential of a Dirac magne
monopole of magnetic charge 1.

The strength of this magnetic monopole is

H5dA5 1
2 sinq dq`dw5

1

2r 3 ~x3 dx1`dx21x1 dx2`dx31x2 dx3`dx1!.

As it is well known, reducing the group SL(2,C) to SU(2) is equivalent to fixing thex0-axis
in Minkowski space.

D. The curvature

We now come back to the connectionC and compute the curvatureF of C. We have

F5dL2L`L, L5S 2 iA B̄

B iA
D .

More explicitly,

F5S 2 idA1B`B̄ dB̄12iA`B̄

dB22iA`B idA2B`B̄
D .

Introducing the differential one-forms

f 5
exp~ iw!

cosc
~dq1 isinq dw!, j 5

dc

cosc
,

the matricesL,F take the forms

L15S 2 i sin2
q

2
dw 2

1

2
sinc f̄

2
1

2
sinc f i sin2

q

2
dw
D , F15

1

4 S 2 f ` f̄ 2 f̄ ` j

2 f ` j f ` f̄
D .
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Using the coordinatesR,q,w,c, the metric of Minkowski space, defined asds252det(dx)
and restricted atS, gets the expression

ds25dR21
R2

cos2 c
~dq21sin2 q dw22dc2!. ~20!

It is now not difficult to compute the Dirac dual* F of the curvature formF and to obtain

* F15
i

2

dR

R
`S j 2 f̄

f 2 j
D .

It is also not difficult to compute the covariant derivative

D~* F1!5d~* F1!2@L,* F1#5d~* F1!2L`* F11* F1`L.

One verifies the relations

d f12i sin2
q

2
f `dw1sinc f ` j 50, d j50,

and obtains the following.
Theorem: The connectionC verifies the Yang–Mills condition

D~* F !50.

E. Integrating the Euler–Lagrange equations

In terms of the coordinatesR,q,w,c and denoting partial derivatives by indices, the Lagra
ian ~19! takes the form

L~F!5E
S
S R3 sinq

cos3 c
~ uFR

1 u22uFR
2 u2!2

R sinq

cosc
~ uFc

1 u22uFc
2 u2!1

R sinq

cosc S UFq
1 1

e2 iw

2
tancF2U2

2UFq
2 1

eiw

2
tanc F1U2D1

R

sinq cosc S UFw
11 i sin2

q

2
F12

i

2
e2 iw tanc sinq F2U2D

2
R

sinq cosc S UFw
21

i

2
eiw tanc sinq F12 i sin2

q

2
F2U2D1S E11

C

RD R3 sinq

cos3 c
~ uF1u2

2uF2u2! DdR dq dw dc.

Looking at the expression to be integrated, we see that there are two corresponding
Lagrange equations forF1 andF2, which can be obtained from one another by interchanging
pairs (F1,i ),(F2,2 i ), and there are two other equations, forF̄1,F̄2, which are obtained from the
first ones by complex conjugation.

We can give the Euler–Lagrange equations simple forms by introducing the d’Alember

h5~]0!22 (
i 51,2,3

~] i !
2. ~21!

In terms of the coordinatesR,q,w,c, one gets

h52~]R!22
3

R
]R1

1

R2 K, ~22!
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whereK is the Casimir operator acting on functionsF:S→C and has the expression

K52cos2 cS ~]q!21cotq ]q1
1

sin2 q
~]w!22~]c!22tanc ]cD . ~23!

Note: For the definitions of the Casimir operators used throughout this article, see Sec
and III A.

The Euler–Lagrange equations forF1,F2 are written

R2S h2E12
C

RDF15D 1
1~F1!1D 2

1~F2!, ~24!

R2S h2E12
C

RDF25D 2
2~F1!1D 1

2~F2!, ~25!

where

D 1
«~F!5«

i

2

cos2 c

cos2 ~q/2!
Fw1

1

4 S 22
cosq13

cosq11
cos2 c DF,

D 2
«~F!5e2« iw sinc coscS Fq2

« i

sinq
Fw2

1

2
tg

q

2
F D .

We remark that the two equations~24! and ~25! reduce to just one, when we impose th
constraintF25F̄1.

Suppose we have a particular solution of the form

F15rF1, F25rF2,

wherer is a function ofR alone andF1,F2 are functions ofq,w andc. Then the equations~24!,
and ~25! give

2r21~R2rRR13RrR1E1R2r1CRr!5~F1!21~~2K1D 1
1!~F1!1D 2

1~F2!!

5~F2!21~D 2
2~F1!1~2K1D 1

2!~F2!!.

We infer the existence of a constantK0 such that

rRR1
3

R
rR1S E11

C

R
2

K0

R2D r50, ~26!

~2K1D 1
1!~F1!1D 2

1~F2!52K0F1, ~27!

D 2
2~F1!1~2K1D 1

2!~F2!52K0F2. ~28!

Considering the mapf 1 defined by formula~3!, we perform the gauge transformatio
F°G5 f 1F and ask the new mapG5(G1,G2) to bea vector of highest weight, i.e., we impose
the relations

d3G5 iMG, ~d11 id2!G50, e3G5NG, ~29!

whereM ,N are real numbers andd1 ,d2 ,d3 ,e3 are the differential matrix operators defined b
formulas~16!. The equations~29! imply

]wG15 i ~M2 1
2!G

1, ]wG25 i ~M1 1
2!G

2, ~30!
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G252eiw~]q1 i cotq ]w!G1, ~]q1 i cotq ]w!G250, ~31!

cosq cosc Gc
12sinq sinc Gq

1 5~N2 1
2!G

1, ~32!

cosq cosc Gc
22sinq sinc Gq

2 5~N1 1
2!G

2. ~33!

DenotingM 85M2 1
2 , we findN52 1

2 and get the general solution to these equations in
form

G15C1

eiM 8w~sinq!M8~cosq2sinc!

~cosc!M811
5C1

zM8~x32x0!

RM811
, ~34!

G25C
ei (M811)w~sinq!(M811)

~cosc!M811
5C

zM811

RM811
, ~35!

whereC1 is a constant. A not very long computation gives

KG5K0G, ~36!

whereK is the Casimir operator~44!, defined in the next subsection, and

K05M212M1 1
4 5M 8213M 81 3

2. ~37!

Note thatM 8 must be a positive integer.
Looking at the equations~27!, ~28!, and~36! and having in mind the fact that there exist n

Lorentz invariant, non trivial, linear systems of PDEs of the first order, we infer that the equa
~27! and ~28! transform into the equation~36!, when we perform the gauge transformationG
5 f 1F. The gauge mapf 1 given by formula~3! can be also written as follows:

f 1~x!5R1/2S cos
q

2
2e2 iw sin

q

2

eiw sin
q

2
cos

q

2

D SA11sinc

cosc
0

0 A12sinc

cosc

D . ~38!

Resuming, we can state the following.
Theorem: The equations~34!, ~35!, and~37!, joined toF5( f 1)21G, define the solutions to

the equations~27! and ~28!, which are vectors of highest weight with respect to the action
sl(2,C) on sections in the vector bundleV.

F. Review of classical results

In order to dispose of uniform notations and to be very explicit, we review some cl
results. We begin by considering functions

F:SL~2,C!→C, g°F~g,ḡ!,

and introducing the differential operators

C152~gj
1d2

j 1gj
2d1

j !, C1852~hj
1e2

j 1hj
2e1

j !,

C252 i ~gj
1d2

j 2gj
2d1

j !, C285 i ~hj
1e2

j 2hj
2e1

j !,

C352~gj
1d1

j 2gj
2d2

j !, C3852~hj
1e1

j 2hj
2e2

j !,
                                                                                                                



roup

269J. Math. Phys., Vol. 43, No. 1, January 2002 Lorentz invariant Lagrangians

                    
where summation is understood overj 51,2 and

hj
i 5ḡ j

i , di
j5

]

]gj
i
, ei

j5
]

]ḡ j
i
.

Then the following operators are induced by infinitesimal right translations on the g
SL(2,C) and generate the Lie algebra sl(2,C):

Ak5
1

2
~Ck1Ck8!, Bk5

i

2
~Ck82Ck! ~k51,2,3!.

The Casimir operatorK is defined as follows:

K5
1

2 (
k51

3

~~Ck!
21~Ck8!2!

5 (
k51

3

~~Ak!
22~Bk!

2!

5
1

4
~2gj

i gs
kdk

j di
s2gj

i gs
rdi

jdr
s12hj

i hs
rer

j ei
s2hj

i hs
rei

jer
s!.

Suppose the functionF has the particular form

F~g,ḡ!5w~x!, x5gs3g* .

Then, using the notations

]a5
]

]xa , h5]0
22]1

22]2
22]3

2,

we have

K~F !5S (
k51

3

~Ck!
2D ~F !5S (

k51

3

~Ck8!2D ~F !,

~~d1
1d2

22d2
1d1

2!~F !!~g,ḡ!5det~ ḡ! ~hw!~x!, ~39!

~~e1
1e2

22e2
1e1

2!~F !!~g,ḡ!5det~g!~hw!~x!, ~40!

K~F !5R2hw1 (
a,b50

3

xaxb ]a]bw13 (
a50

3

xa ]aw, ~41!

Ai~F !5ai~w!ª~x0] i1xi]0!~w!, ~42!

Bi~F !5bi~w!ª2~xj]k2xk] j !~w!, ~43!

~ i jk !5~123!,~231!,~312!,

S (
k51

3

AkBkD ~F !5S (
k51

3

BkAkD ~F !50.

The Casimir operator of the group SU(2) has the expression
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Ku52 (
k51

3

~Bk!
252r 2D1 (

i , j 51

3

xixj] i] j12(
j 51

3

xj] j ,

where

D5~]1!21~]2!21~]3!2.

When the Casimir operatorsK,Ku have to act either on mapsC5 f 1F:S→C2 or on sections
of the bundleP5(G, f 3 ,S), their actions are given by the formulas

K5
3

2
1K1 (

k51

3

~ak1 ibk!sk , ~44!

Ku5
3

4
1Ku1 i (

k51

3

bksk . ~45!

III. THE RELATIVISTIC COULOMB PROBLEM

A. The Lie algebra so „2,3…

There is a spinorial representation of the Lie algebra sl(2,C) on End(C2), which is given by
the following endomorphisms:

M0k~g!5
1

2
skgs3 , Mi j ~g!52

i

2
skg,

where (i jk )5(123),(231),(312).
An extension of sl(2,C) is obtained by adding the four endomorphisms:

M04~g!5
1

2
gs1 , Mk4~g!52

i

2
skgs2 .

We let Mab52Mba . Then, omitting to write brackets which vanish, the commutation re
tions of this extended Lie algebra are

@M0i ,M0 j #5Mi j , @Mi4 ,M j 4#5Mi j ,

@Ma i ,Mib#5Mab .

We recognize the structure of the algebra so(2,3). In fact, we produced the fundam
spinorial representation of the algebra so(2,3).

It is not difficult to check that the skew-forms0`s32 is1`s2 is Lorentz-invariant, showing
that so~2,3! is a real form of the simplectic Lie algebra sp~4!.

We introduce the notations

H15M03, H25M12,

F15M041M34, F25M042M34,

G15M141 iM 24, G25M142 iM 24,

E«h5@F« ,Gh#5M011«M311 ih~M022«M23!,

«,hP$1,2%.
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Suppose we have a linear, finite dimensional, irreducible representation

r:so~2,3!→End~V!.

A vector x0PV, x0Þ0, is said to be a vector of highest weight if

F1~x0!5G1~x0!5E12~x0!50. ~46!

SinceE115@F1 ,G1#, these conditions also imply

E11~x0!50, ~M011M31!~x0!50, ~M022M23!~x0!50. ~47!

The Casimir operatorK8 of so(2,3) is defined as

K85K1K1 , ~48!

whereK is the Casimir operator of sl(2,C), i.e.,

K5~M01!
21~M02!

21~M03!
22~M12!

22~M23!
22~M31!

2 ~49!

and where

K15~M14!
21~M24!

21~M34!
22~M04!

2. ~50!

Direct computations give the following six relations:

K85~H1!22~H2!22 1
2 ~F1F21F2F12G1G22G2G1!

2 1
4 ~E11E221E22E111E12E211E21E12!

5~H1!22~H2!22 1
2 ~@F1 ,F2#2@G1 ,G2# !2F2F11G2G1

2 1
4 ~@E11 ,E22#1@E12 ,E21# !2 1

2 ~E22E111E21E12!

5~H1!22~H2!212H11~H12 iH 2!2 1
2 ~E22E111E21E12!2~F2F12G2G1!,

@E11 ,E22#524~H12 iH 2!, @E12 ,E21#524~H11 iH 2!,

@F1 ,F2#522H1 , @G1 ,G2#522iH 2 ,

which enable us to state the following.
Theorem: ~i! Supposex0 is a vector of highest weight and that

H1~x0!5Nx0 , H2~x0!5 iMx0 . ~51!

Then

K8~x0!5~N21M213N1M !x0 . ~52!

~ii ! Due to relations~47!, x0 is a vector of highest weight also with respect to sl(2,C).
~iii ! For vectors of highest weight in irreducible representations of sl(2,C), satisfying the

relations~46!,

K~x0!5~N21M212N!x0 . ~53!

~iv! In tensorial representations of so(2,3) or of sl(2,C), M and N are integers, while in
spinorial representations,M andN are half integers.
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B. The relativistic BLRL vector

We now denote byxa andxa5habxb the coordinates of a pointx in R4, where

2h005h115h225h3351 , hab50 for aÞb.

The following differential operators generate the Lie algebra of the Lorentz group:

Mab5xa]b2xb]a .

Following L. P. Horwitz ~see Refs. 1–3!, we introduce the relativistic BLRL~Bernoulli–
Laplace–Runge–Lenz! vector

D5~D0 ,D1 ,D2 ,D3!

with components

Da52Mla]l13]a12kR21xa52]lMla23]a12kR21xa52xl]l]a22xa]l]l13]a

12kR21xa ,

wherek is a real number and

R25xlxl , ]l5hla]a , hla5hla .

It is not difficult to prove the following.
Proposition: Each component Da is a Hermitian differential operator which commutes wi

the Newton–Coulomb Hamiltonian

H52 1
2 ]l]l2kR21.

Proposition: The following relations hold:

xaDa22kR523xa ]a12K,

Da xa22kR53xa ]a12K112,

$xa,Da%24kR54K112,

where K52(a,bMabMab is the Casimir operator ofsl(2,C).
By direct computations, one derives the relations

@Mab ,Mlr#5hblMar1harMbl2hbrMal2halMbr ,

@Da ,Db#528HMab , @Mab ,Dl#5hblDa2halDb , ~54!

DaDa52~4K19!H14k2.

Let L8 be the Lie algebra generated by the operatorsMab ,Da and let us consider a repre
sentation space of the Lie algebraL8, on whichH has a fixed valueE,0. Then, denotingDa

52A22E Ma4 , we recognize the commutation relations of the Lie algebraL85so(2,3). Taking
h44521 and introducing the Casimir operatorK8 of L8,

K852 (
0<I ,J

4

MIJMIJ5K2
DaDa

8E
,

formula ~54!, with H replaced byE, gives
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E5
22k2

4S K081
9

4D , ~55!

whereK08 are the eigenvalues of the Casimir operatorK8, which are given by formula~52!.
In order to determine irreducible tensorial representations ofL8, we try to detect vectors o

highest weights, using the equations~47! and ~51!. More precisely, we look for differentiable
functions f :S→C that are solutions of the following system of partial differential equatio
characterizing simultaneous (H,M12,M03) eigenvectors of highest weights:

H f 5E f , M12f 5 iM f , M03f 5N f , ~56!

~M011M31! f 50, ~M022M23! f 50, ~57!

~D01D3! f 50, ~D11 iD 2! f 50. ~58!

The solutions of Eqs.~57! are functionsF(w,R) of w5x02x3 and R. The equations~56!
imply M50 and

wFw5NF, 2wFwR1RFRR13FR12~k1ER!F50,

and it follows thatF has the formF(w,R)5wNg(R), where the functiong verifies the differential
equation

Rg9~R!1~2N13!g8~R!12~k1ER!g~R!50.

The equations~58! imply 2FwR13FR12kF50, and we getg9522Eg. The general solu-
tion of the system~56!–~58! will be, up to a constant factor,

f N~x!5expS 22kR

2N13D ~x02x3!N

with

E5
2k2

2S N1
3

2D 2 . ~59!

The relations~52! and ~53!, giving the eigenvalues ofK andK8, joined toM50, imply

K8~ f N!5N~N13! f N , K~ f N!5N~N12! f N .

As it is well known, a vectorf of highest weight inV is a generator of the representatio
spaceV, i.e., V5L8 f .

The functionsf m,N5(D12 iD 2)m( f N) are solutions of the equationM12f 52 im f . To give an
example, we note that

f 1,N5~D12 iD 2!~ f N!52
4nk~x12 ix2!

~2N13!R
f N .

Alternatively, we can treat the eigenvalue problem, in the case of the HamiltoniaH
52 1

2]l]l2kR21, by using the reduced symmetry SO(3). Looking for solutions of the system o
equations

H f 5E f , M12f 5 im f , ~M231 iM 31! f 50,
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we find

f 5~x11 ix2!m r 2(2m11)c~R!,

wherec is a solution of the following equation:

c9~R!2
2m21

R
c8~R!12S E1

k

RDc~R!50.

C. A class of equivalent Lagrangians

The Lagrangian

L15
m1

2
ux8u21

m2

2
uy8u21

C

R
5

A

2
uu8u21

B

2
uw8u21

C

R
~60!

S u5x2y, w5
m1x1m2y

m11m2
D

is associated with a pair of particlesx, y in Minkowski space and is similar to the Lagrangia
associated with a two-particle gravitational interaction in Newtonian mechanics. The ext
trajectories obey Kepler’s laws~see Ref. 3!. The constantsA, B are related to the massesm1 ,m2

of the two particles according to the formulas

B5~m11m2!, AB5m1m2 .

Consequently, we must haveA.0, B.0, B>4A.
Let us consider, more generally, Lagrangians of the form

L25
U

2
~Auu8u21Buw8u2!1V,

whereu5u(s),w5w(s) are trajectories in Minkowski space,U,V are functions ofR5uuu, and
A, B are real nonvanishing numbers.

When we introduce the time parametert, along each trajectory, such thatds/dt5U, the
Euler–Lagrange equations, for a fixed constant levelL222V5E, take the form

A
d2u

dt2 5S d

dR
~EU1UV! D u

R
, ~Uw8!850.

BesidesE5L222V, we get two other constants of motion: the vectorP5BUw8 and the
scalar

Eint5
A

2 Udu

dtU
2

2U~V1E!5U S AU

2
uu8u22V2ED52

uPu2

2B
.

The extremal trajectories ofL2 obey Kepler’s laws, for all energy levelsE, whenU,V have
the form

U5
a1bR

R
, V5

c1dR

a1bR
,

wherea,b,c,d are real numbers anda,bc are not both equal to zero. Under these circumstan
the equations of motion write
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A
d2u

dt2 52
c1aE

R3 u.

The constantEint plays the role of internal energy, whileP5BUw8 is the total momentum
vector andEtr52(2B)21uPu2 plays the role of energy of translation. We obtained the equa
Eint5Etr .

D. Two-particle relativistic wave equations

The wave equation associated with the LagrangianL2 writes

huF23U21
dU

dR

]F

]R
2

2AU~V1E!

k2 1
A

B
hwF50.

In the particular case~60!, we get the following wave equation:

huF2
2A

k2 S E1
C

RDF1
A

B
hwF50.

This equation can be given the form

H~F !5E2F,E25E2
k2

2B
hw , ~61!

whereH is the Hamiltonian of the relative motion:

H5
k2

2A
hu2

C

R
. ~62!

We also introduce the operator of radial derivation

X5ua]a .

Making use of formula~41!, the wave equation~61! becomes

2AR2

k2 S E1
C

R
2

k2

2B
hwDF1X2~F !12X~F !5KF. ~63!

Let us suppose that the wave functionF is a product of three functions:

F~u,w!5 f ~R!G~u!H~w!,

where the functionsG(u),H(w) satisfy the equations

X~G!50, K~G!5K0G, hwH52
m2

k2 H, ~64!

with constant coefficientsK0 ,m. ThenG is homogeneous of degree 0 and

K~ f GH!5 f K~G!H, R2hG5K0G.

From the wave equation~63! we get the following radial equation:

f 9~R!1
3

R
f 8~R!1S p1

q

R
2

K0

R2D f ~R!50, ~65!
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where

p5
2A

k2 S E1
m2

2BD , q5
2AC

k2 . ~66!

We assume thatE is the energy of the system of two particles, while

E25E1
m2

2B

is the energy of the relative motion.

E. The quantization conditions

Using standard methods, we now give some essentially known results concerning the o
differential equations of the form

f 9~x!1
s

x
f 8~x!1S p1

q

x
1

r

x2D f ~x!50, ~67!

wherep,q,r ,s are real numbers.
We shall solve the equation~67! for x.0, under certain regularity conditions and suppos

p,0. ~68!

Problems of this type have been studied since long ago~see Refs. 4 and 5!. The regularity
conditions generally adopted imply the fact that the solutionsf have the form

f ~x!5exp~bx!xa3polynomial of x, b,0,

and belong to some finite dimensional representation vector spaces of a certain symmetry
We shall impose the following regularity conditions:

~i! The functionf must be real analytic for allx.0.
~ii ! f must vanish at infinity.

When we write the solutions of Eq.~67! as follows,

f ~x!5xaebxq~x!, b,0,

we get the equation

x2q9~x!1@2bx21~s12a!x#q8~x!1@~b21p!x2

1~q1bs12ab!x1a~a21!1r 1as]q~x!50.

We defineh,a,b,l ,k such that we have

h25
~s21!2

4
2r , b252p, a5

12s

2
1h, l 52h11, k5

q

b
. ~69!

Then the equation satisfied byq becomes

xq9~x!1~2bx1 l !q8~x!1b~k1 l !q~x!50. ~70!

Since we supposedp,0, we get two real solutions forb; we choose the negative solution
Suppose we have a solutionf with
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f ~x!5xaebxq~x!5xaebx (
i 52`

`

aix
b1 i ,

where 0<b,1. Then we shall have, for all indicesi ,

~b1 i 11!~b1 i 1 l !ai 11522bS b1 i 1
k1 l

2 Dai .

It follows that the power series( i 50
2` aix

i is divergent forx.0, unless there exists an integ
n such thatan2l50 for all l.0. Since we look for nontrivial solutions, we shall suppose t
anÞ0. Then

~n1b!~n1b1 l 21!50.

For i .0, we introduce the coefficients

ci5P j 51
i S 11

b

j D , ai85 i !ci~22b!2 iai ;

sincei !ci,( i 11)!, we have 0,ci, i 11. We also have

f ~x!5ebxxa1bq1~x!, q1~x!5(
i>n

~ci !
21ai8

~22bx! i

i !
,

~b1 i 1 l !ai 118 5S b1 i 1
k1 l

2 Dai8 ,

an8Þ0,

and, as long asb1 i 1 lÞ0,

ai 118 5S 11
k2 l

2~b1 i 1 l ! Dai8 .

For i large, allai have the same sign anduai 118 /ai8u.2/3. Then there exist a positive constantC
and a natural numberN such that, fori .N,

Cuai8u.2i /3i .

Comparing the seriesCxq(x), exp(22bx), we get

Cuai8u~22bx! i.~2 4
3 bx! i for large i and x.0,

exp~bx!ux12bq~x!u.expS 2
bx

3 D for large positivex,

and we infer that the functionf will be bounded at infinity if and only if the number of coefficien
aiÞ0 is finite. Thus there must exist a natural numberm such thatam21Þ0 andai50 for i
.m21. Then we get
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q~x!5xb (
i 5n

m21

aix
i , f ~x!5ebxxaq~x!,

k5222m22b2 l 5122~m1b1h!, ~71!

~b1n!~b1n1 l 21!50.

Note that the number of monomials arising inq(x) equalsm2n, so that we must havem
.n. We also have

p52b252
q2

k2 52
q2

~2b12h12m21!2 . ~72!

Whenq5k50, we get

h5
1

2
2m, r 5

~12s!2

4
2S m2

1

2D 2

.

F. The Spectrum

In the radial equation corresponding to the classical Schro¨dinger equation for the hydroge
atom, one has

s52, r 52 l 8~ l 811!, 2h52~2l 811!, l 8PN, p5
2q2

4~ l 81m!2 ,

where, according to Schro¨dinger’s terminology,l 81m is the principal quantum number,l 811 is
the azimuthal quantum number andm21 is the radial quantum number.

The radial equation~26! of the LagrangianL in formula ~19! has, according to formula~37!,
K05M 8213M 81 3

2, so thath25(M 81 3
2)

21 1
4.

In the case of the equation~65!, which is associated with the Lagrangian~60!, we geth2

5K011, whereK0 is an eigenvalue of the Casimir operatorK.
According to formula~53!, whenF belongs to an irreducible, finite dimensional represen

tion of the group SL(2,C), there exist two positive integers 2M ,2N such thatK0115M21(N
11)2.

For a tensorial representation, one hasM50, N is an integer and we getK0115(N
11)2,h56(N11),l 562(N11)11. The relations~71! and 0<b,1 show thatb50 and
n(n1 l 21)50.

Introducing these values in formulas~66!, we get the following.
Theorem: Under the regularity conditions~i! and ~ii ! of Section III E, the negative energ

levels E1 ,E2 associated with the Lagrangians~19!, respectively with the Hamiltonian~62! with
A.0, are given by the formulas

E15
2C2

~2b162h112m21!2 , E25
2AC2

2k2~m6~N11!21/2!2 , ~73!

whereM 8,m,N are positive integers, (h1)25(M 821 3
2)

21 1
4 andb1 has to be determined by usin

the equations~69! and ~71!.
WhenN is a half integer,E2 will belong to the Schro¨dinger spectrum, but the correspondin

solution f of the equation~67! will be defined up to sign and will belong to an infinite dimension
representation space of SL(2,C).
                                                                                                                



e

efined

f

e

e

279J. Math. Phys., Vol. 43, No. 1, January 2002 Lorentz invariant Lagrangians

                    
Among the unitary, irreducible representations of the group SL(2,C), one distinguishes the
principal series of unitary representations~see Ref. 6, Chap. III!. For a representation of th
principal series,K011 has the form (N22r2)/4, with NPN andrPR. Whenr50, we shall have
h25K0115N2/4 and, formally, we get

E25
2AC2

2k2~m6N/221/2!2 .

This follows:
Proposition: The unitary representations of the principal series withr50 give the discrete

spectrum obtained by Schro¨dinger for the atom of hydrogen.

IV. THE NEW LAGRANGIANS

A. Geometric considerations

The representations of the principal series are realized in spaces formed by functions d
on the tangent space of the complex projective lineP1(C).

The complex projective lineP1(C) can be identified, as SL(2,C)-space, with the spaceP of
straight lines lying on the light-cone

L5$jPM ;uju250%,

by identifying each point@z1 ,z2#PP1(C) with the vector line generated by the vector

j5 1
2 ~ uz1u21uz2u2,z1z̄21 z̄1z2 ,2 i ~z1z̄22 z̄1z2!,uz1u22uz2u2!.

The light-coneL is the boundary ofS.
The spaceP is a coset space ofL05L\$0% and the tangent spaceTP is a coset space o

TL0 . We have

TL05$~j,u!PL3M ;jÞ0,̂ j,u&50%,

TP5$@j,u#;~j,x!PTL0%,

where@j,u#5$(aj,au1bj);aPR,aÞ0,bPR%.
When (j,u)PTL0 and uuu2Þ0, we haveuuu2.0, i.e.,uPS. Denote

T1L05$~j,u!PTL0 ;j0.0,uuu2.0%

and p(j,u)5u,p15puT1 . When (j,u)PT1L0 and u5s35(0,0,0,1), we have j0

5A(j1)21(j2)2,j350. We then have the following.
Proposition: The triple(T1L0 ,p1 ,S) is a principal C* -fiber bundle with structure group

C* 5$zPC;zÞ0%.
Suppose thatgPG,(j,u)5(s11s0 ,s3) and thatgjg* 5j,gug* 5u. Theng has the form

g56s01b(s21 is3),bPR and we can state the following.
Proposition: The space T1L0 is isomorphic toG/L, where L is the group formed by th

matrices g56s01b(s21 is3),bPR.
When (j,u)PT1L0 and j01j3.0, the vectorsj,u can be given, in a unique way, by th

expressions

j5
a

2
~11uzu2,z1 z̄,2 i ~z2 z̄!,12uzu2!, ~74!
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u5
a

2
~zZ̄1 z̄Z,Z1Z̄,2 i ~Z2Z̄!,2~zZ̄1 z̄Z!!1bj, ~75!

where

a5j01j3, z5
j11 i j2

j01j3 , b5
u01u3

j01j3 , Z5
u11 iu22~u01u3!z

j01j3 .

Let T0P1(C) be the subspace of nonvanishing tangent vectors ofP1(C). On T0P1(C) we can
use homogeneous coordinatesz1 , z2 , Z1 , Z2 , as well as local coordinates

z5
z2

z1
, Z5 ż5

z1Z22z2Z1

~z1!2 .

Each homographic transformation ofP1(C) prolongs toT0P1(C),

z°
az1b

cz1d
, Z°

Z

~cz1d!2 , ad2bc51.

The groupC* acts on the fibers ofT0P1(C) by complex multiplication.
Let SN,r be the vector space of smooth functionsF:T0P1(C)→C, which satisfy, for alll

PC,lÞ0, the following equation:

F~z,lZ!5S l

ulu D
N

ulu211 irF~z,Z!,

whereN is an integer andr is a real number. ForF in SN,r one has

F~z,Z!5 f ~z!S Z

uZu D
2N

uZu12 ir,

where

f ~z!5FS 12z2

2
,

11z2

2i
, zD .

EachSN,r is a representation space of the group SL(2,C) and the two-formu f (z)u2dz̀ dz̄ is
an invariant. When we introduce onSN,r the norm

uuFuu5S i

2 EC
u f ~z!u2dz̀ dz̄D 1/2

,

we get by completion the Hilbert space of a unitary representationRN,r of the group SL(2,C).
In Ref. 6 ~pp. 130–144! it is proved that each representationRN,r is irreducible and thatF

PSN,r implies 4K(F)5(N22r224)F.

B. New invariant Lagrangians

The SL(2,C)-spaceT0P1(C) carries the invariant holomorphic one-formZ21dz.
The spaceT1L0 is defined, as a subset ofM3M , by the equations

j05A~j1!21~j2!21~j3!2, y05
j1y11j2y21j3y3

j0 .
                                                                                                                



dent

lar

netic

281J. Math. Phys., Vol. 43, No. 1, January 2002 Lorentz invariant Lagrangians

                    
Using formulas

z5
j11 i j2

j01j3 , Z5
u11 iu22~u01u3!z

j01j3 ,

it is not difficult to prove the following statements:
Proposition: The map J:(j,u)°(z,Z) defines a principal fibration(T1L0 ,J,T0P1(C)) with

structure group

L85$as01b~s12 is2!; aÞ0, bPR%

and the map which sends FPSN,r to FJ5F+J is an equivariant embedding of SN,r into the space
of functionsF:T1L0→C.

The spaceT1L0 is a six-dimensional manifold. It is convenient to select six real, indepen
coordinates onT1L0 , among or contained in the following variables:

R5uuu, v5u01u3, r5
R

u01u3 , W5
u11 iu2

u01u3 ,

Z5
u01u3

j01j3 ~W2z!, s5uZu, H15Z21dz.

Note that the following relations hold:

u05
R

2r
~12uzu21W̄z1Wz̄!, u15

R

2r
~W1W̄!,

u252
iR

2r
~W2W̄!, u35

R

2r
~11uzu22W̄z2Wz̄!,

v5ab, r5uz2Wu, s5br, R5abr,

H15Z21dz, ^dj,dj&5R2uH1u25
R2

s2 udzu2,

^u,dj&5
R2

2
~H11H̄1!5

R2

2rs
@~W̄2 z̄!dz1~W2z!dz̄#,

^du,du&5~dR!21
R2

r2 @ udWu22~dr!2#,

^dj,du&5
R2

2sr F ~~W̄2 z̄!dz1~W2z!dz̄! S ds

s
2

dr

r D1dz dW̄1dW dz̄G .
We get Lorentz-invariant metrics onT1L0 by considering linear combinations of the sca

products

A^dj,dj&1B^du,du&1C^dj,du&, ~76!

with coefficients depending onR.
We look atjPL as representing a generic electro-magnetic field. A specific electro-mag

field would be defined by a vector potentialj5A(u) or, more precisely, by a sections:S
→T1L0 , s(u)5(u,A(u)).

The manifoldT1L0 carries the following invariant six-form,
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du0`du1`du2`du3`
dZ`dz

Z2 5R3dR`dz̀ dz̄̀
dr`ds

2r2s2 `dv.

Proposition: The quadratic, differential forms (76) are all degenerate, due to the presen
^dj,dj&; the tangent vectors((j,u),(j8,u8)), satisfying the equationsj85Cj , u852Bj, are
singular.

The degeneracy of the forms~76! can be removed by introducing a constraint such asj0

51, which reduces the dimension of the configuration space to five. It is plausible to as
regarding the formulas above, that Lagrangians of this type produce the whole Schro˘dinger spec-
trum.

We finally remark that the Lagrangians which can be built using the invariants indic
above, such as~76!, can be linked with two-particle systems (u,u1j), for which the difference
vectorj lies on the light-cone.
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4E. Schrŏdinger, Ann. Phys.~Leipzig! 79, 631 ~1926!.
5V. A. Fock, Fundamentals of Quantum Mechanics~MIR, Moskow, 1978!.
6M. A. Naimark,The Linear Representations of the Lorentz Group~Gos.Izd.Fiz.-Mat.Lit., Moskow, 1958! ~in Russian!.
                                                                                                                



a

of the
the
be
with

mani-
bstruc-
nly on

,

ves.

of
aves of

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 1 JANUARY 2002

                    
Fedosov quantization on symplectic ringed spaces
Izu Vaismana)

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
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We expose the basics of the Fedosov quantization procedure, placed in the general
framework of symplectic ringed spaces. This framework also includes some Pois-
son manifolds with nonregular Poisson structures, presymplectic manifolds, com-
plex analytic symplectic manifolds, etc. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1427411#

I. INTRODUCTION

On a symplectic manifold (M ,v) Fedosov quantizationis an embedding of the algebr
C`(M ,C)@@h## of formal power series inh, with complex valued differentiable functions onM as
coefficients, into the algebra of the cross sections of theWeyl algebras bundle W(TM) by means
of parallel translation with respect to ageneralized Abelian connection. This article is an exposi-
tion of the basics of Fedosov quantization. The difference between our exposition and that
original works ~Refs. 1 and 2! consists in the fact that we place Fedosov’s construction in
general framework ofsymplectic ringed spaces. The generalization is purely formal, and should
seen as folklore, but, it allows for new applications including a class of Poisson manifolds
possibly nonregular Poisson structure, presymplectic manifolds, holomorphic symplectic
folds, etc. On the other hand, it is important to notice that in the general case one has an o
tion to the existence of a connection. Therefore, Fedosov quantization can be used o
symplectic ringed spaces where this obstruction vanishes.

II. SYMPLECTIC RINGED SPACES

A Herz–Reinhart Lie algebra, or HRL-algebra ~or Lie pseudo-algebra3,4!, L over a pair
(K,C), whereK is a commutative ring with unit andC is a commutativeK-algebra with unit, is
a Lie algebra overK which also is aC-module, and is endowed with a mappingi:L→D, the
algebra of derivations ofC overK, that is both aK-Lie algebra and aC-module homomorphism
with the compatibility condition

@X, f Y#5 f @X,Y#1~i~X! f !Y ~ f PC; X,YPL !. ~2.1!

The fundamental example isK5R, C5C`(M ), L5GTM, whereM is an arbitrary differ-
entiable manifold, andG always denotes spaces of cross sections of vector bundles or shea

Now, we define aHerz–Reinhart–Lie (HRL)-ringed space, as a topological spaceM endowed
with a sheafC of commutativeK-algebras with unit and asheafL of HRL-algebrasover (K,C).
This latter notion has the obvious definition, namely, for each open subsetU of M the space of
sectionsGU(L) is a HRL-algebra over (K,GU(C)), and the restrictions are homomorphisms
HRL-algebras. The sheaves of HRL-algebras were studied in Ref. 5 under the name of she
twisted Lie algebras. A HRL-ringed space whose sheafL is a locally freeC-module of rankm will
be called an HRL-ringed space of rank m.

Example 2.1:An m-dimensional differentiable~respectively, complex analytic! manifold M
is a HRL-ringed space of rankm, with K5R ~respectively,K5C!, C5C `(M ) @respectively

a!Electronic mail: vaisman@math.haifa.ac.il
2830022-2488/2002/43(1)/283/16/$19.00 © 2002 American Institute of Physics
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C hol(M )#, the sheaf of germs of differentiable~respectively, holomorphic! functions onM , andL
the sheaf of germs of differentiable~respectively, holomorphic! vector fields onM .

Example 2.2: Let p:A→M be a differentiable vector bundle of rankm which is a Lie
algebroid of anchori:A→TM.4 Then, if we takeK5R, C5C `(M ), L the sheafAI of germs of
differentiable cross sections ofA, andi induced by the anchor, we again get a HRL-ringed sp
of rank m.

Example 2.3:Let M be a differentiable manifold endowed with a foliationF of codimension
m, and letnF be the transversal bundle ofF. TakeK5R, C the sheaf of germs of differentiabl
functions onM which are constant along the leaves ofF ~foliated functions!, L the sheaf of germs
of foliated cross sections ofnF, andi(X) f 5X̄f , wheref PC,XPL, andX̄ is a germ of foliated
vector field onM which projects ontoX. The result is a structure of HRL-ringed space of rankm.
~We refer to Ref. 6 for the theory of foliated manifolds.!

Because the structure of HRL-ringed space is similar to that of Lie algebroid, the
formulas as in the latter case7,4 yield a differential calculus for HRL-ringed spaces.

If we refer to the sheaf

Vk~M !ªAltC~Lk,C! ~2.2!

as the sheaf of germs of differentialk-forms ~ª denotes a definition!, there exists an exterio
differential d:Vk(M )→Vk11(M ) defined forlPVk(M ) by

dl~X0 ,...,Xk!5(
i 50

k

~21! ii~Xi !~l~X0 ,...,X̂i ,...,Xk!!

1 (
i , j 51

k

~21! i 1 jl~@Xi ,Xj #,X0 ,...,X̂i ,...,X̂j ,...,Xk!. ~2.3!

In ~2.3!, and in all the similar formulas of this article, the germs always are at the same po
M . The operatord satisfiesd250, and leads to a usual definition of de Rham cohomology spa
Hk(L). Notice also the existence of thewedge productwhich makes the graded exterior algeb
$Vk(M )%kPN into a differential graded algebra with respect to the exterior differentiald.

Furthermore, if the sheafM over M is a C-module, we define the spaces ofM-valued
differential forms by

Vk~M ,M!ªAltCLk,M), ~2.4!

and aconnectionon M is a K-linear homomorphism

¹:M→V1~M ,M!, ~2.5!

which satisfies the condition

¹~ f j!5 f ¹j1~d f !j ~ f PC, jPM!. ~2.6!

We will also use the notation¹Yjª(¹j)(Y).
Using a connection, and in analogy with formula~2.3!, for all lPVk(M ,M) one defines

¹l~X0 ,...,Xk!5(
i 50

k

~21! i¹Xi
~l~X0 ,...,X̂i ,...,Xk!!

1 (
i , j 51

k

~21! i 1 jl~@Xi ,Xj #,X0 ,...,X̂i ,...,X̂j ,...,Xk!PVk11~M ,M!. ~2.7!
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In particular,~2.7! may be used to define thecurvature of the connection¹,

F5¹2:M→V2~M ,M!, ~2.8!

where

F~j!~Y,Z!5¹Y¹Zj2¹Z¹Yj2¹[Y,Z]j. ~2.9!

It is easy to check thatF is a homomorphism overC, and satisfies theBianchi identity

¹~F~j!!~Y,Z,U !5 (
Cycl(Y,Z,U)

F~¹Yj!~Z,U !. ~2.10!

In ~2.9! and ~2.10! Y,Z,UPL, andjPM.
The operators¹Y can be extended to anytensorial sheafproduced fromM by the usual

formulas of differential geometry. In the whole article, tensor and wedge product sheaves ar
as sheaves ofC-multilinear morphisms~e.g., Ref. 8!. In particular, the curvatureF can also be
seen as atwo-form with values inHomC(M,M), and, then, the Bianchi identity takes the simp
classical form3,8

¹F50. ~2.11!

Our interest will be in connections onL, also calledconnections on the HRL-ringed space M.
In this case another important invariant is thetorsion, defined by

T~X,Y!5¹XY2¹YX2@X,Y# ~X,YPL!. ~2.12!

From ~2.1! and ~2.6!, it follows that TPV2(M ,L), and a simple computation yields thetorsion
Bianchi identity

~¹T!~X,Y,Z!5 (
Cycl(X,Y,Z)

F~X!~Y,Z! ~X,Y,ZPGL!. ~2.13!

The torsion of a connection onL yields the following expression of the exterior differenti
~2.3!:

dl~X0 ,...,Xk!5(
i 50

k

~21! i~¹Xi
l!~X0 ,...,X̂i ,...,Xk!

1 (
i , j 51

k

~21! i 1 jl~T~Xi ,Xj !,X0 ,...,X̂i ,...,X̂j ,...,Xk!. ~2.14!

This formula suggests considering the operator

¹l~X0 ,...,Xk!5(
i 50

k

~21! i~¹Xi
l!~X0 ,...,X̂i ,...,Xk!), ~2.15!

which coincides withdl if the torsion of¹ is zero.
From ~2.6!, we see that the differenceD5¹22¹1 of two connections onM is a global

section of HomC(L,V1(M ,L))5HomC(L3L,L), i.e., atensor field. Using this remark it follows
easily that if¹ is an arbitrary connection, then

¹X
0Yª 1

2 ~¹XY1¹YX1@X,Y# ! ~2.16!

is a torsionless connection.
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If M is a locally freeC-module of finite ranks over a ringed space (M ,C,L) of rank m, we
may use local bases (Xi) i 51

m of L, and local bases (ju)u51
s of M, and get the local equations of th

connection¹,

¹Xi
ju5 (

v51

s

G iu
v jv , ~2.17!

where theconnection coefficientsG iu
v are local sections ofC. The local equations~2.17! may be

used in exactly the same way as in classical differential geometry, e.g., Ref. 8. For instance
take the caseM5L, and look for the local expression of the torsion. For this purpose, we
notice the existence ofstructure equations:

@Xi ,Xj #5 (
k51

m

si j
k Xk ~si j

k 52sji
k PC!.

Then, if we putT(Xi ,Xj )5(k51
m Ti j

k Xk , we get

Ti j
k 5G i j

k 2G j i
k 2si j

k .

Clearly, in the case of a differentiable manifoldM a connection~2.5! onM5L is just a linear
connection onM . In the case of a complex analytic manifold a connection is the same thing
holomorphic connection on the manifold, and it exists iff theAtiyah classof the manifold
vanishes.9 In the case of the transversal bundle of a foliation, a connection~2.5! onL is defined by
a projectable connectionof the foliation, and it exists iff theAtiyah class of the foliationvanishes.6

Therefore, not every ringed space has connections. In the case of a Lie algebroid, a con
~2.5! is a connection of the algebroid, and any Lie algebroid has connections.

As a matter of fact, the Atiyah class method,3,5 yields a general result namely, the followin
theorem.

Theorem 2.1: For each HRL-ringed space of finite rank(M ,K,C,L), there exists a well
defined sheaf-cohomology class a(M )PH1(M ,HomC(L,HomC(L, L))) such that existence of a
connection onL is equivalent with a(M )50.

Proof: For any HRL-ringed space (M ,K,C,L) there exists a sheafJ, which plays the role of
the jet bundleJ1TM of a differentiable manifoldM . Namely, J is the submodule ofL
% HomK(L,L) which consists of the pairs (X,2adX1w), whereXPL,wPHomC(L,L) and adX
ª@X,#. The fact thatJ is a C-module follows from

~ f X,2 f adX1 f w!5~ f X,2adf X1 f w2~d f !X!. ~2.18!

Now, we notice the existence of the following exact sequence ofC-module sheaves

0→FªHomC~L,L!→
e

J→
p

L→0, ~2.19!

wheree(w)5(0,w), andp(X,2adX1w)5X.
Then, there exists a connection¹ on L iff there exists a splitting of~2.19!, i.e., a homomor-

phism c:J→F such thatc +e5 id. Indeed, if c is given, ¹X5c(X,2adX) is a connection.
Conversely, if¹ is a connection,c(X,2adX1w)5¹X1w is the required homomorphism.

Furthermore, ifL is locally free and of finite rank, the sequence~2.19! behaves as a sequenc
of finite dimensional vector spaces, and leads to the exact sequence

0→Hom~L,F!→
p8

Hom~J,F!→
e8

Hom~F,F!→0, ~2.20!

then to the corresponding exact sequence of sheaf-cohomology
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0→H0~M ,A!→
p*

H0~M ,B!→
e*

H0~M ,E!→
d

H1~M ,A!→¯ . ~2.21!

In ~2.20! and~2.21!, the morphismse8, e* , p8, p* are induced bye andp of ~2.19!, A, B, E are
the second, third and fourth sheaf of the sequence~2.20!, respectively, andd is the connecting
morphism.

It follows that the condition for the existence of a connection is that the identity belongs t
image ofe* , and this is equivalent tod( id)50. Hence, if we define theAtiyah classby a(M )
5d( id)PH1(M ,Hom(L,F)), we precisely have the required result. Q.E.D.

Now, again, let~M , C, L! be a HRL-ringed space. A two-formvPV2(M ) will be called
nondegenerateif the sheaf homomorphism[v :L→V1(M ) defined by

[v~X!~Y!5v~X,Y! ~X,YPL!

is an isomorphism. The inverse of this isomorphism will be denoted by #v . A two-form v which
is nondegenerate andclosed, i.e., dv50 is called asymplectic form, and, then, (M ,C,L,v) is
called asymplectic ringed space.

Example 2.4: The differentiable and holomorphic symplectic manifolds obviously are
amples of symplectic ringed spaces.

Example 2.5:Let (M ,v), whereM is a (2n1h)-dimensional differentiable manifold andv
is a closed two-form of rank 2n overM , be apresymplectic manifold. It is well known~e.g., Ref.
10! that kerv is tangent to anh-dimensional foliationS, called thecharacteristic foliation, and
that the formv is projectable with respect to this foliation. By looking at the earlier Example
we see that the sheafL of germs of projectable cross sections of the transversal bundlenS defines
a ringed space structure overM @C5C `(M )#, which is endowed with the symplectic form induce
by v.

Example 2.6: As in Example 2.2, letA→M be a Lie algebroid of rank 2m, with the anchor
mapi:A→TM. Then, any nondegenerate cross sectionvPG`2A* , which is closed with respec
to the exterior differentialdA ~see Refs. 7 and 4!, makes the ringed space (M ,C `(M ),A) into a
symplectic ringed space. It is also convenient to say that (A,v) is a symplectic Lie algebroid.
Following are some concrete examples of symplectic Lie algebroids.

Example 2.7: If PPG`2TM is a regular Poisson structure ofM , and if S is the symplectic
foliation of P ~e.g., Ref. 11!, thenTS with the leafwise two-form provided by the Poisson brack
of P is a symplectic Lie algebroid.

Example 2.8: Let (M ,W) be an arbitrary Poisson manifold. ThenT* M is a Lie algebroid of
anchori5#W . A symplectic structure on this algebroid is a nondegenerate bivector fieldQ on M
which is a cocycle in the Poisson–Lichnerowicz cohomology, i.e.,@W,Q#50 ~e.g., Ref. 11!.

Some of the usual symplectic notions straightforwardly transfer to symplectic ringed sp
For instance, we may definePPAltC(V1(M )3V1(M ),C) by

P~s1 ,s2!5^s1 ,#vs2&, s1 ,s2PV1~M !,

and also define #Pª#v . Furthermore, we may define theHamiltonian gradient Xf of any f PC by
Xf52#Pd f , and thePoisson bracket

$ f ,g%ªv~Xf ,Xg!5i~Xf !g52i~Xg! f 5P~d f ,dg!. ~2.22!

The evaluation
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05dv~Xf ,Xg ,Xh!5 (
Cycl( f ,g,h)

i~Xf !v~Xg ,Xh!2 (
Cycl( f ,g,h)

v~@Xf ,Xg#,Xh!

5 (
Cycl( f ,g,h)

$ f ,$g,h%%2 (
Cycl( f ,g,h)

^dh,@Xf ,Xg#&

5 (
Cycl( f ,g,h)

$ f ,$g,h%%2 (
Cycl( f ,g,h)

~i@Xf ,Xg# !h

5 (
Cycl( f ,g,h)

$ f ,$g,h%%2 (
Cycl( f ,g,h)

~i~Xf !i~Xg!2i~Xg!i~Xf !!h

52 (
Cycl( f ,g,h)

$ f ,$g,h%%

shows that the bracket~2.22! satisfies the Jacobi identity. Since the Leibniz rule also obviou
holds, we have a structure ofPoisson algebra sheaveson C. ~See, for instance, Ref. 11 for th
definition of a Poisson algebra.!

However, not all the classical symplectic properties hold. For instance, the Jacobi ident
the Poisson bracket~2.22! implies

X$ f ,g%2@Xf ,Xg#Pkeri, ~2.23!

hence, the result is zero only at theinjectivity pointsof i. Another negative example is obtained
we consider the operation of aSchouten–Nijenhuis bracketon a HRL-ringed space~e.g., Ref. 7!.
Then, the general algebraic computations of Ref. 12 hold, and we have the formula

@P,P#~d f ,dg,dh!52 (
Cycl( f ,g,h)

$$ f ,g%,h%. ~2.24!

But, since$d f / f PC% may not spanV1(M ), generally, we may have@P,P#Þ0.
Let us come back to the symplectic Lie algebroid (A,v) of Example 2.6. Then, the symplecti

objects[v , P, Xf , etc. have interpretations in terms of vector bundles: an isomorphism[v :A
→A* , a cross sectionPPG`2A, cross sectionsXfPGA, etc. The Poisson bracket~2.22! be-
comes a Poisson algebra structure onC`(M ), and there exists a corresponding Poisson bivec
field PPG`2TM such that

$ f ,g%5P~dAf ,dAg!5P~d f ,dg!, @P,P#50, ~2.25!

where the final bracket is the usual Schouten–Nijenhuis bracket onM .
For a better understanding of the relation betweenP and P, let us consider the transpose

homomorphismi8:T* M→A* of the anchori:A→TM. Then we have

dAf 5i8~d f !, #P52i+#P+i8. ~2.26!

Notice that the injectivity points ofi are the same as the surjectivity points ofi8. Accordingly,
from ~2.23! and ~2.24!, we see that the relations

X$ f ,g%5@Xf ,Xg#, @P,P#A50 ~2.27!

hold at the injectivity points ofi. If the set of injectivity points ofi is dense inM , the equalities
~2.27! hold everywhere onM .

The considerations above suggest the following definition: a Poisson structureP on a differ-
entiable manifoldM will be called aquasi-symplectic Poisson structureif it is induced by a
symplectic Lie algebroid, via formula~2.25!.
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Example 2.7 tells us that every regular Poisson structure is quasi-symplectic. Other
symplectic Poisson structures are provided by Example 2.8. If (M ,W) is a Poisson manifold
which has a nonsingular Poisson two-cocycleQ ~i.e., QPG`2TM, rank Q5dimM , @W,Q#
50!, the corresponding objectP of ~2.25! is a usual two-form onM , and ~2.25! defines a
quasi-symplectic Poisson structure given by

$ f ,g%5P~Xf
W ,Xg

W! @ f ,gPC`~M !#, ~2.28!

where the arguments are theW-Hamiltonian vector fields of the functionsf ,g.
For a more concrete situation of this kind, let (M ,P,f) be asymplectic-Nijenhuis manifold,

with the symplectic formP and the Nijenhuis tensorf ~see, for instance, Ref. 13!. Then,M has
a Poisson structureW defined by #W5f+#Q , whereQ is the bivector field given by #Q5[P

21 . W
is the first structure of the Poisson hierarchy of the symplectic-Nijenhuis manifoldM , and it is
compatible with the Poisson structureQ of M , i.e.,@W,Q#50.13 SinceQ is nondegenerate, we ar
in the situation described by the previous paragraph, and we get a quasi-symplectic P
structure

$ f ,g%5P~#Wd f ,#Wdg!5^[P#Wd f ,#Wdg&

52^#W[P#Wd f ,dg&52^f#Wd f ,dg&52^f2#Qd f ,dg&.

Up to the sign, this is the second structure of the Poisson hierarchy of (M ,P,f).13 Thus, we have
proven the following.

Proposition 2.1: The second Poisson structure of the Poisson hierarchy of a symple
Nijenhuis manifold is a quasi-symplectic Poisson structure.

Of course, the structures of Proposition 2.1 may have singular points.
One of the main ingredients of Fedosov quantization is a symplectic connection. The

known procedure of constructing symplectic connections on symplectic manifolds, as pre
for instance, in Ref. 14, holds without modification on a symplectic ringed space.

Namely, if (M ,C,L) is a ringed space which possesses a nondegenerate two-formv ~almost
symplectic ringed space!, a connection¹ on L ~i.e., onM ! is said topreservev if ¹Xv50, ;X
PL. If there exists a connection¹0 on M , the formula

¹XY5¹X
0Y1Q~X,Y!1A~X,Y!, ~2.29!

where

v~Q~X,Y!,Z!5 1
2 ~¹0v!~Y,Z!, v~A~X,Y!,Z!5B~X,Y,Z!, ~2.30!

;X,Y,ZPL, and ;BPHomC(L3L3L,C) which satisfies the condition B(X,Y,Z)
5B(X,Z,Y), yields all the connections ofM which preservev. Q and A are well defined by
~2.30! becausev is nondegenerate.

Furthermore, formula~2.14! shows that a torsionless,v-preserving connection may exist on
if dv50. Conversely, if we are in this latter case, and if we assume that¹0 has zero torsion@e.g.,
this ¹0 is given by applying~2.16! to the original¹0#, it turns out that¹ of ~2.29!, and with

B~X,Y,Z!5 1
6 @~¹Y

0v!~X,Z!1~¹Z
0v!~X,Y!#, ~2.31!

is anv-preserving, torsionless connection. Indeed, from~2.29!, and sincedv5¹0v @in the sense
of ~2.15!#, we deduce thatv(T¹(X,Y),Z)50 for the chosen value~2.31! of B.

By definition, a connection which preserves the symplectic formv and has zero torsion is
called asymplectic connectionon the symplectic ringed space~M , C, L, v!. Above, we saw that
if M has an arbitrary connection, it also has symplectic connections, and we wrote dow
expression of one symplectic connection¹, defined by means of~2.31!. It follows that all the
symplectic connections are given by
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¹̃XY5¹XY1C~X,Y!,

whereQ(X,Y,Z)ªv(C(X,Y),Z) is symmetric in all its arguments.
In analogy with Riemannian geometry, one defines thecovariant curvature tensorof a sym-

plectic connection, namely,

S~X1 ,X2 ,X3 ,X4!52v~X1 ,F~X2!~X3 ,X4!!, ~2.32!

whereF is given by~2.8!. This tensor has the following symmetry properties:

S~X1 ,X2 ,X3 ,X4!52S~X1 ,X2 ,X4 ,X3!,

S~X1 ,X2 ,X3 ,X4!1S~X1 ,X3 ,X4 ,X2!1S~X1 ,X4 ,X2 ,X3!50, ~2.33!

S~X1 ,X2 ,X3 ,X4!5S~X2 ,X1 ,X3 ,X4!.

The first equality is obvious, the second is theBianchi identity~2.13!, and the third follows by
expressing the derivations via the connection in the identity

~i~X3!i~X4!2i~X4!i~X3!2i~@X3 ,X4# !!~v~X1 ,X2!!50,

whereX1 ,X2 ,X3 ,X4PL.
Concerning examples of symplectic connections in cases other than symplectic manifol

first quote the case of a presymplectic manifold (M ,v). It is easy to see that a symplect
connection onM seen as a symplectic ringed space, as in Example 2.5, may be identified w
connection onM seen as a differentiable manifold, which preservesv, has torsion tangent to th
characteristic foliation ofv, and defines a transversal projectable connection of the same folia
Details on the construction of these connections can be found in Ref. 15.

Another interesting case is that of a symplectic structureQ on the tangent Lie algebroidT* M
of a Poisson manifold (M ,W) ~see Example 2.8!. In this case, it is natural to start with a conne
tion D on the differentiable manifoldM which satisfies the conditionDXQ50 (XPGTM). D
exists since (M ,Q21) is an almost symplectic manifold but, generally,D has a nonzero torsion
TD . The connectionD yields a connection¹ on the Lie algebroidT* M11,16 by putting

¹ab5D#Wab, a,bPGT* M . ~2.34!

A straightforward computation, which uses the Lie bracket ofT* M ,7,11

$a,b%5L#Wab2L#Wba2d~W~a,b!!,

yields the torsionT¹ by the formula

^T¹~a,b!,X&5a~TD~#Wb,X!!2b~TD~#Wa,X!!2~DXW!~a,b!. ~2.35!

Therefore, generally,T¹Þ0, and we must apply the general algorithm to get a torsion
symplectic connection on (T* M ,Q). The passage from¹ of ~2.34! to a torsionless connection i
given by ~2.16!, i.e.,

¹a
0b5 1

2 ~¹ab1¹ba1$a,b%!. ~2.36!

Furthermore, from~2.34!, ~2.36!, anddT* MQ50 we get

~¹a
0Q!~b,g!5 1

2 Q~a,T¹~b,g!!. ~2.37!

Finally, from ~2.30!, ~2.31!, and~2.37!, we deduce the expression of a symplectic connec
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¹̌ab5¹a
0b1E~a,b!, ~2.38!

where

Q~E~a,b!,g!5 1
4 Q~a,T¹~b,g!!1 1

12 @Q~b,T¹~a,g!!1Q~g,T¹~a,b!!#. ~2.39!

III. FEDOSOV QUANTIZATION

In this section, we describe the Fedosov quantization procedure, following the original w
Refs. 1 and 2, with minor modifications, and emphasizing the ringed space setting. Other
sitions of this procedure can be found in Refs. 17–19, etc.

First we recall the construction of theWeyl algebraof a complex symplectic vector spac
(E,vP`2E) of dimension 2m.

We begin with the associative, commutative algebra of formal Laurent series in the p
eterh

W~E!ªH w5 (
k52`

`

(
i 50

`

tkih
k/tkiP( iE* , i 12k>0J , ~3.1!

where( denotes the symmetric tensor product, and it defines the multiplication inW(E).
This algebra will be graded by asking

degtki5 i , degh52, ~3.2!

and we will write the elementwPW(E) which appears in~3.1! as

w5 (
p50

`

ŵp , ŵp5 (
2k1 i 5p

tkih
k. ~3.3!

In terms of vector spaces, this means

W~E!5 )
p50

`

Vp~E!, Vp~E!5 )
k52`

[ p/2]

(p22kE* . ~3.4!

Furthermore, consider thecontraction operators

Cv
p :~( iE* ! ^ ~( jE* !→( i 1 j 22pE* ~3.5!

defined by 0 ifp.min(i,j), and by

Cv
p ~a,b!~e1 ,...,ei 1 j 22p!5 (

sPSi 1 j 22p
(

a1 ,...,ap51

m
1

~ i 1 j 22p!!
•a~ba

1*
,...,ba

p*
,es(1) ,...,es( i 2p)!

3b~ba1
,...,bap

,es( i 2p11) ,...,es( i 1 j 22p)! ~3.6!

if p<min(i,j). In ~3.6!, S is the symmetric group,elPE ( l 51, . . . ,i 1 j 22p), and (ba ,ba* )
(a*ªa1m) is an arbitraryv-symplectic basis ofE.

The contractions extend to series~3.1!, and may be used to define theMoyal product

w+w8ª(
q50

`
1

q! S 2
ih

2 D q

Cv
q ~w,w8! @w,w8PW~E!#, ~3.7!

which makesW(E) into a graded@because of~3.2!#, associative algebra, called theWeyl algebra
of (E,v).
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Computations in the Weyl algebra become easy if we consider an arbitrary basis (ui) i 51
2m of E,

and represent an elementtP(qE* by

t5t i 1 ,...,i q
y j 1

¯yj q5 (
uau5q

ta1¯a2m
~y1!a1

¯~y2m!a2m5 (
uau5q

taya. ~3.8!

In ~3.8!, (yi) are the coordinates of a generic vector ofE with respect to the basis (ui), and for
their indices we use~here and subsequently! the Einstein summation convention. Furthermore,
coefficientst are symmetric, the second equality is obtained by collecting the various factoyi

into a power ofyi , and the third equality is the formal notation of its left hand side, i.e.,

a5~a1 ,...,a2m! ~a i>0!, ya5~y1!a1
¯~y2r !a2m, uau5a11¯1a2m .

With this representation, an elementwPW(E) becomes

w~y,h!5 (
k52`

k5`

(
uau50

`

hktk,aya, uau12k>0, ~3.9!

the usual product of polynomials corresponds to the symmetric tensor product, and the
product is

w+w85 (
q50

`
1

q! S 2
ih

2 D q

v i 1 j 1
¯v i qj q

]qw

]yi 1
¯]yi q

]qw8

]yj 1
¯]yj q

5expS 2
ih

2
v i j

]

]zi

]

]uj D ~w~z,h!w8~s,h!uz5s5y! , ~3.10!

wherev ihvhk5dk
i andvhk are theu-components ofv.

It follows easily that the centerZ(W(E)) is the algebra of formal power seriesC@@h##.1,2

The next step consists ofenlarging the Weyl algebraW(E) to the associative algebra

Ŵ~E!ªW~E! ^ ~ % q50
2m `qE* !. ~3.11!

If ( ui) is the basis used in~3.8!, and if (n i) is its dual cobasis,lPŴ(E) may be seen as

l5 (
k52`

`

(
p50

`

(
q50

2m

hklkpqi1¯ i pj 1¯ j q
yi 1

¯yi pn j 1`¯`n j q, p12k>0, ~3.12!

where the coefficients are symmetric in the indicesi , and skew-symmetric in the indicesj . The
product ofŴ(E) is defined by~3.10! with a wedge product of the partial derivatives which app
in that formula.

In Ŵ(E), thecommutantis defined as the natural extension of

@l,m#5l+m2~21!l̃m̃m+l, ~3.13!

where tilde denotes the degree of the wedge product factor of an element ofŴ(E).
The centerZ(Ŵ(E)) is C@@h## ^ ( % q50

2m `qE* ), and one has thecentral projections1,2 of l of
~3.12!:
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l0ª(
k50

`

(
q50

2m

hklk0q j1¯ j q
n j 1`¯`n j qPZ~Ŵ~E!!, ~3.14!

l00ª(
k50

`

hklk00PZ~W~E!!. ~3.15!

The following basis-independent operators are essential in the subsequent computatio1,2

dlª(
j 51

2m

n j`
]l

]yj , d* l5(
j 51

2m

yj~ i ~uj !l!. ~3.16!

These operators satisfy the properties

d250, d* 250, d~a+b!5~da!+b1~21! ãa+db. ~3.17!

Furthermore,;lPŴ(E), one can check theHodge decompositionformula

l5dd21l1d21dl1l00, ~3.18!

whered21 is defined on the (p,q)-term of ~3.12! by

d21lª
1

p1q
d* l. ~3.19!

We intend to apply the previous algebraic constructions to symplectic ringed spaces.
able to do so, in what follows we assume thatC is a subsheaf of the sheaf of germs of continuo
complex valued functions onM and that (M ,C,L,v) is a symplectic ringed space of finite ran
ThenL must be the sheaf of germs of cross sections of a complex symplectic vector bundl
M .20 This implies that the rank of the space is even, say 2m, and thatL has localsymplectic
bases, i.e., local bases (Xi) i 51

2m such that

v~Xa ,Xb!50, v~Xa ,Xb1m!5dab , v~Xa1m ,Xb1m!50, a,b51,...,r .

Then the previous algebraic constructions may be performed on each stalk ofL, and using
local symplectic bases of germs (Xi). Accordingly, we getsheaves of Weyl algebrasW(L),
Ŵ(L), and the formulas developed earlier in this section hold, with germs instead of alge
tensors overall. In particular, there is acentral sheafZ(W(L))5C@@h##, which consists of germs
of formal power series inh, and acentral sheafZ(Ŵ(L))5C@@h## ^ ( % q50

2m `qL).
In the ringed setting, Fedosov’s quantization will be an embedding ofC@@h## onto theparallel

germsof W(L) with respect to ageneralized symplectic connection. Accordingly, we shall assume
that (M ,C,L,v) has connections@it has a vanishing Atiyah classa(M ), as defined in Sec. II#, and
take a torsionless, symplectic connection¹ on this space. Then,¹ extends to acovariant exterior

differential ¹:Ŵ(L)→Ŵ(L) defined by1,2

¹~ t ^ u!5(
i 51

2m

n i`¹Xi
~ t ^ u! ~ tP(qL* ,uP`sL* !, ~3.20!

where (Xi) is a local basis ofL and (n i) is the dual cobasis. The definition is invariant by a chan
of the local basis, and~3.20! reduces to~2.15! if there is no symmetric factort. Since the
connection has zero torsion, in the case of a differential formu one has¹u5du. Furthermore,
since¹v50, ~3.10! shows that

¹~l+m!5~¹l!+m1~21!l̃l+¹m, l,mPŴ~L!. ~3.21!
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The operator~3.20! is what is actually needed in Fedosov quantization, and, subsequentl
will think of this operator when referring to a connection. Fedosov1,2 writes the operator¹ in a
convenient way as follows. Consider the local equations~2.17! of the connection¹, and assume
that the basis (j i5Xi) used in these equations is symplectic. Then, the symplectic character
connection is equivalent to

G i jk5G j ik ~G i jkªv isG jk
s !. ~3.22!

Accordingly, ;xPM , there exists a germ

Gª 1
2 G i jkyiyjnkP~Ŵ~L!!x , ~3.23!

andFedosov’s formulais

¹l5dl1
i

h
@G,l#, ~3.24!

for l given by ~3.12!, and withd applied as ifh,y would be constants. Formula~3.24! is easily
checked forl5l in

i andl5l i y
i , and it holds in the general case becaused and the commutan

@G, # are derivations ofŴ(L). Notice that the germs~3.23! do not define a global section o
Ŵ(L).

The same method yields the formulas1,2

dl52
i

h
@Ã,l#, Ãªd* v5v i j y

in j , ~3.25!

¹d1d¹50, ~3.26!

¹2l5
i

h
@S,l#, Sª2

1

4
Si jkl y

iy jnk`n l , ~3.27!

Si jkl being the components of the covariant curvature tensor of the symplectic connecti¹,
which is known to be symmetric in the first two arguments and skew symmetric in the las
arguments@see~3.33!#.

Fedosov’s formula~3.24! suggests a definition ofgeneralized symplectic connections1,2 as
operators

¹̂l5¹l1
i

h
@g,l#, ~3.28!

where

g5 (
k52`

`

(
p50

`

hkgki1¯ i pj y
i 1
¯yi pn j ~p12k>0! ~3.29!

are germs which define a global section ofG(W(L) ^ L* ). Then, a straightforward computatio
yields thegeneralized curvatureF defined by means of the formulas

¹̂2l5
i

h
@F,l#, F5S1¹g1

i

h
g2, ~3.30!

and theBianchi identity
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¹̂F5¹F1
i

h
@g,F#50. ~3.31!

By definition, if ¹̂2l50 for all lPŴ(L), ¹̂ is called anAbelian connection.
Now, we come to the result which is at the heart of Fedosov quantization.1,2,17,19

Theorem 3.1: Let (M ,C,L,v) be a symplectic ringed space of finite rank2m, with the sheaf
C being a subsheaf of germs of continuous, complex valued functions, and which has conne

Then, there exist generalized, symplectic, Abelian connections¹̂ on M. Furthermore, for any

Abelian connection¹̂, for any aPC@@h##, there exists a uniquelPW(L) with central projection

l005a, such that¹̂l50.
Proof: Consider a generalized connection~3.28!, whereg5Ã1r for Ã given by~3.25!, and

for an element

r 5 (
p>2

`

r̂ pPW~L! ^ L* , ~3.32!

which satisfies the conditiond21r 50. The last condition implies thatr has the central projection
r 050; therefore, by the Hodge decomposition~3.18! r 5d21dr .

The curvature form of this connection¹̂ is given by ~3.30! and, in view of~3.10!, ~3.13!,
~3.25! and¹v50, it becomes

F5S1¹r 2dr 1
i

h
r 22v. ~3.33!

SincevPZ(Ŵ(L)), the condition

dr 5S1¹r 1
i

h
r 2 ~3.34!

ensures¹̂250.
We show that~3.34! has a unique solutionr with the required properties. Uniqueness w

ensure that the germsr define a global cross section ofW(L) ^ L* . Indeed, by applying to~3.34!
the operatord21, we get

d21dr 5r 5d21S1d21¹r 1
i

h
d21~r 2!, ~3.35!

which is equivalent to the recurrence formula

r̂ p5~d21Ŝ!p1d21¹ r̂ p211
i

h
d21S (

i 52

p23

r̂ i+ r̂ p212 i D . ~3.36!

Equations~3.32! and ~3.36! imply r̂ 250, and, then,

r̂ p5~d21¹!p23d21S1
i

h (
s50

p27 F ~d21¹!sd21S (
j 53

p2s22

r̂ j + r̂ p2s2 j 21D G ~p>3!. ~3.37!

Now, it remains to establish that the obtained germr satisfies Eq.~3.34!. From ~3.35!, using
the Hodge decomposition~3.18! and the Bianchi identity~3.33!, we get

dr 5dd21S1dd21¹r 1
i

h
dd21r 25S1¹r 1

i

h
r 22d21dS ¹r 1

i

h
r 2D . ~3.38!
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Formulas~3.33! and ~3.38! give us the curvature

F5d21dS ¹r 1
i

h
r 2D2v,

and, since

¹̂v 5
~2.28!

¹v1
i

h
@Ã1r ,v#5¹v5dv50,

the Bianchi identity~3.31! yields

¹̂d21dS ¹r 1
i

h
r 2D50. ~3.39!

But, if we look at anyl such thatdl50 andl0050, we havel5dd21l, and we see that

¹̂d21l 5
~2.28!

¹d21l2dd21l1
i

h
@r ,d21l#50

implies

l5¹d21l1
i

h
@r ,d21l#. ~3.40!

This is equivalent to a recurrence relation

l̂p5¹d21l̂p211
i

h
~ terms in l̂ i , i<p24!, ~3.41!

which yieldsl50. Since

l5dS ¹r 1
i

h
r 2D

satisfies the required condition, the last term of~3.38! vanishes, and we are done.
Now, we address the second part of the theorem.
From ~3.25! and ~3.28!, we see that¹̂l50 means

dl5Dl, Dl5¹l1
i

h
@r ,l#. ~3.42!

SincelPW(L), d21l50, and~3.18! and ~3.42! yield

l5l001d21Dl5a1d21Dl, ~3.43!

and, with the decompositionl5(p50
` l̂p , we get the recurrence formula

l̂p5~ â!p1d21¹l̂p211
i

h
d21~@r ,l#p21!, ~3.44!

which uniquely defines all the termsl̂p .
Particularly, if
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a5 (
k50

`

hkf k , ~3.45!

the first eight termslp are given by

l̂p5 (
s50

[ p/2]

hs~d21¹!p22sf s , 0<p<4, ~3.46!

l̂p5 (
s50

[ p/2]

hs~d21¹!p22sf s1
i

h (
s50

p25

~d21¹!sd21 (
j 53

p2s22

@ r̂ j ,l̂p2s2 j 21#, 5<p<8. ~3.47!

The termsl̂p for larger values ofp include commutants with several factorsr . If for any
mPŴ(L) we denote

m̄5(
s50

`

~d21¹!sm, ~3.48!

and reorder the terms ofl, as determined by~3.46!, ~3.47!, etc., we obtain

l5ā1
i

h
d21@r ,ā#1S i

hD 2

d21@r ,d21@r ,ā##1¯ . ~3.49!

Finally, we must check that~3.43! implies ¹̂l50. First, we notice that~3.43! implies

d21¹̂l5d21Dl2d21dl5l2a2d21dl5dd21l50. ~3.50!

This allows us to use the Hodge decomposition~3.18! for ¹̂l, the Abelian character of¹̂, and
~3.43! to get

¹̂l5d21d¹̂l5d21~D¹̂l2¹̂2l!5d21D¹̂l. ~3.51!

Since the operatord21D raises the degree,~3.51! yields a recurrence relation for the hom
geneous terms of¹̂l, in the sense of the decomposition~3.3!, which shows that¹̂l50. Q.E.D.

As a consequence of this main theorem we see that there exists an injection

l :C@@h##→W~L!, ~3.52!

which sends the formal power seriesaPZ(L) to the¹̂-parallel sectionl of W(L) which has the
central projectionl005a.

This injection precisely is Fedosov quantization. The reason to see it as a quantization p
with links to quantum physics is that the mappingl leads to a deformation of the commutativ
product f g into a noncommutative product, also known as astar product,21,22 namely,

f * g5 l 21~ l ~ f !+ l ~g!!, f ,gPC. ~3.53!

The definition is correct since~3.21! and ~3.28! show thatl ( f )+ l (g) belongs to the image ofl .
In various concrete cases such as the ones in Examples~2.5!–~2.9!, the mappingl is defined

by corresponding versions of formulas~3.37!, ~3.46!, ~3.47!, ~3.49!, etc. In particular, since a Lie
algebroid always has connections, our presentation shows that Fedosov quantization works
regular Poisson manifolds and, also, for the quasi-symplectic Poisson manifolds, even if the
are nonregular. In other cases, the vanishing Atiyah class condition is required, and it may b
restrictive. For instance, this happens in the case of holomorphic symplectic manifolds.9
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Note added in proof.In the paper23 Nest and Tsygan give the classifications of general
products on symplectic Lie algebroids and holomorphic symplectic manifolds based on Fe
quantization.
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Planar trajectories in a monopole field
Azizollah Azizia)
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Motion of a Yang–Mills particle in a monopole field is proposed and planar orbits
are observed. The planar orbits are studied further with some numerical analysis of
the equations of motion. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1415088#

I. INTRODUCTION

In the Yang–Mills quantum field theories, such as electroweak and QCD, particles a
signed with some charges like hypercharge and color. In QED~an Abelian gauge theory! the
charge is a conserved quantity that is related to the gauge-invariant property of the Lagrang
expressed by a unique real number. In the non-Abelian theories the charge can no lon
expressed by a unique real number and might be displayed as a vector in the space of th
group ~space of symmetry!.

Wong extracted the classical equations of motion of a particle with a non-Abelian charg
classical Yang–Mills field. The force on a~non-Abelian! particle in a~non-Abelian! field is the
modification of the Lorentz force in the usual electrodynamics. Now the charge is a vector~in the
isospace! and therefore may evolve in time. Wong has given the equation of evolution o
charge isovector, while the length of the charge isovector remains constant.

As an application of the Wong equations of motion we consider the ’t Hooft or BPS m
poles and launch a Yang–Mills test particle in the field of the monopole. The speed and th
angular momentum of the particle and the field are constants of motion. We explain the equ
of motion and enumerate some results. An interesting consequence of this motion is planar
When a test particle is launched in the field of the monopole, while the direction of its ch
isovector is normal to its position and velocity vectors, it will move in the plane normal to
charge isovector forever. We have explained the planar motions and the conditions for bo
orbits and their stability, and performed some numerical analysis of the equations of motio

II. EQUATIONS OF MOTION OF YANG–MILLS PARTICLES IN YANG–MILLS FIELDS

In analogy with an Abelian system~a classical point charged particle interacting with t
electromagnetic field!, one can see a rich range of phenomena that occurs in non-Abelian sys
Wong proposed a system of equations to describe the classical dynamics of such system~con-
sisting of colored particles in non-Abelian fields! by generalizing the Lorentz force and Maxwe
equations of electrodynamics. The non-Abelian particle is characterized by an isovectorIW ~in
analogy with the gauge invariant scalar chargeq of an electrically charged point particle! which
transforms under the adjoint representation of the internal symmetry group of the field—i.e
gauge group. The following equations have been formulated by Wong:1

mẍm5eFmn
a I aẋn, ~2.1!

İ a1eeabcAm
b I cẋm50, ~2.2!

a!Electronic mail: azizi@physics.susc.ac.ir
2990022-2488/2002/43(1)/299/19/$19.00 © 2002 American Institute of Physics
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wherex(t) is the world line of the particle in space–time,t is proper time and ‘‘dot’’ denotes
differentiation with respect to the proper time. The right-hand side of Eq.~2.1! obviously repre-
sents a generalization of the Lorentz force in whichAm

a is a non-Abelian gauge potential andFmn
a

are the gauge field strengths:

Fmn
a 5]mAn

a2]nAm
a 1eeabcAm

b An
c . ~2.3!

In the above equatione is coupling constant. In the limit we are considering a particle is t
described by an internal isovectorIW as well as its space–time coordinates. An immediate co
quence of Eq.~2.2! is

d

dt
I 250, where I 2[I aI a, ~2.4!

which shows the isovectorI a performs a precessional motion in isospace, i.e., the vectorI a sweeps
the surface of a sphere in isospace such that the radius of this sphere could be understood
~absolute value! of charge isovector. Equivalently one can interpret Eq.~2.4! as a conservation law
of scalar charge for a non-Abelian point particle.

III. EQUATIONS OF MOTION OF A YANG–MILLS PARTICLE IN A MONOPOLE FIELD

As an interesting problem, one can consider the interaction between a colored particle
monopole. After discovery of the first monopole in the Yang–Mills–Higgs theories,2,3 Schechter4

and later Fehe´r5 investigated the classical motion of a colored test particle in an external
given by the BPS monopole.

The ansatz of ’t Hooft–Polyakov monopole for a finite-energy nonsingular classic sol
can be of the form2 ~see also Ref. 6!

Aa0~rW !5J~r !
xa

er2 , ~3.1!

Aai~rW !5eai j
xj

er2 @12K~r !#, ~3.2!

Fa~rW !5
xa

er2 H~r !, ~3.3!

whereJ(r ), K(r ), andH(r ) are certain functions of the radiusr . In the last equationFa is the
Higgs field. For the ’t Hooft–Polyakov monopoles, replacing the above ansatz withJ(r )50 in Eq.
~2.3!, a direct calculation shows

F0i
a 50, ~3.4!

Fi j
a 5

1

er2 H 22 eai j~12K !1e i jk
xaxk

r 2 ~12K !21~eaik xjxk1eak j xixk!
1

r 2 ~rK 812~12K !!J ,

~3.5!

where prime indicatesd/dr. Using the identity

e i j l xlxk1e i lk xlxj1e l jk xlxi5r 2 e i jk , ~3.6!

Eq. ~3.5! is simplified to

Fi j
a 5e i jk

1

er2 H xaxk

r 2 ~K22rK 821!1rK 8 dakJ . ~3.7!
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For the BPS monopoleK andH are supposed to be7,8

K5
aer

sinh~aer!
, H5aer coth~aer!21, ~3.8!

wherea is magnitude of Higgs field at vacuum.
At large distances,K andK8 vanish exponentially; the field has the form of a pure magn

monopole. Thus an electrically charged particle coupled to vector potential would move exa
a charged particle in a pure magnetic field.

In a nonrelativistic frame,t5x05t, using Eqs.~3.7!, Eqs.~2.1! and ~2.2! can be written in
vector notation

mvẆ 5
K22rK 821

r 4 ~vW 3rW !~rW• IW !1
K8

r
~vW 3 IW !, ~3.9!

IẆ5
12K

r 2 ~rW3vW !3 IW. ~3.10!

Define at each point along the trajectory of the particle an orthogonal set of vectors,

rW, wW 5rW3vW , zW5rW3wW , where vW 5
drW

dt
. ~3.11!

Then without loss of generality, non-Abelian chargeI a may be written as

IW5a r̂ 1bŵ1g ẑ, ~3.12!

where r̂ , ŵ and ẑ are unit vectors along the three directions. The coefficientsa, b andg satisfy

a21b21g25const, ~3.13!

which is a direct consequence of Eq.~2.4!. Substituting Eq.~3.12! into Eq. ~3.10! gives three
equations fora, b andg:

ȧ52guwW uK/r 2, ~3.14!

ḃ5
rg

uwW u2 vẆ •~rW3vW !, ~3.15!

ġ52
rb

uwW u2 vẆ •~rW3vW !1
auwW uK

r 2 . ~3.16!

Next, using the moving frame~3.11! in Eq. ~3.9! we obtain the ordinary equation of motion:

mvẆ 5
b

r 2 uwW uK8 r̂ 1
b

r 2 ~rW•vW !K8 ẑ2
1

r 3 @auwW u~K221!1gr ~rW•vW !K8#ŵ. ~3.17!

In addition to the length of the charge isovector,u IWu, the kinetic energy~or the magnitude of
velosity uvW u) and the total angular momentum of the particle and the fields,9

JW5m~rW3vW !1KIW1
~12K !~rW• IW !

r 2 rW , ~3.18!

are constants of motion.
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For small distances near the center of the BPS monopole,K5aer/sinh(aer);1 andK8;0. So

from Eqs.~3.9! and ~3.10!, mvẆ 50 andIẆ50, which show a free motion around the center of t
BPS monopole. Schechter has mentioned some properties of motion at large distances in

Considering a general solution for equations of motion~3.9! and ~3.10! is not easy. So, we
explain some specific solutions in some detail.

If the particle is launched in a radial direction, while the charge isovector is also init
radial, the particle will move uniformly in the radial direction. This is the only choice for ra
motion. This can be simply seen from the equations of motion~3.9! and ~3.10!, when rW3vW

vanishes as the condition for radial motion. SomvẆ 5 (K8/r ) (vW 3 IW) andIẆ50. For a radial motion,
the accelerationvẆ must be in the radial direction, while we seevW 3 IW is normal to the radial
direction~as we knowvW is radial!. So the only possible case is a constant charge isovectorIW along
the radial axis, and therefore a uniform radial motion occurs becausemvẆ 50. If the initial velocity
points to the origin, the particle passes through the origin.

If the particle is launched in the field~in any direction! while the charge isovector is norma
to the both initial particle’s radial direction and velocity vector, then the particle will move o
plane normal to the charge isovector and the charge isovector remains constant. Unde
circumstances radial motion is not allowed. We will show bounded orbits are allowed in the p
motion sector, while we have not observed bounded motions in the general three-dimen
theory.

In any case other than the two cases mentioned, the particle will move on a spatial cur
the end of this section a numerical analysis of the general three-dimensional equations
scribed. In the next section we explain the planar motion of a particle in field of the BPS m
pole.

IV. PLANAR ORBITS

A planar motion is identified by a conserved vector normal to the plane of motion.
nonzero values of position and velocity of a nonuniform motion, the plane of motion is norm
rW3vW at each time. Therefore, if in Eq.~3.17! the component of the force in the directionrW3vW
vanishes, a planar motion takes place, provided that the equation of evolution for the c
isovector is valid.

A quick look at Eqs.~3.14!–~3.17! shows if we puta5g50 we get

ȧ50, ~4.1!

ḃ50, ~4.2!

ġ52
rb

uwW u2 vẆ •~rW3vW !, ~4.3!

mvẆ 5
b

r 2 uwW uK8 r̂ 1
b

r 2 ~rW•vW !K8 ẑ, ~4.4!

where in the last equation there is no component alongrW3vW @i.e.,vẆ •(rW3vW )50# on the right-hand
side, and therefore the condition for a planar motion is obtained. Using Eq.~4.4! the third equation
becomes

ġ50. ~4.5!

The equations~4.1! and~4.5! are consistent with the assumptiona5g50, and Eq.~4.2! becomes

b5constÞ0, ~4.6!
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which is required for the nonvanishing charge isovector. So the equations of motion~3.14!–~3.17!
transformed to a new set of consistent equations which has only one equation, Eq.~4.4!, to be
solved. This equation as we said has no component in the direction normal to the positio
velocity vectors, and this was the condition for the planar motion we mentioned at the beg
of this subsection. Soa5g50 implies planar motion. We will show also that the planar moti
condition necessitatesa5g50.

To have no term in the direction normal to the plane of motion~as the condition for plana
motion!, we need to equate the coefficient ofŵ in Eq. ~3.17! to zero. So, Eq.~3.17! breaks into
two separate equations

mvẆ 5
b

r 2 uwW uK8 r̂ 1
b

r 2 ~rW•vW !K8 ẑ, ~4.7!

auwW u~K221!1gr ~rW•vW !K850, ~4.8!

where the first equation is the same as Eq.~4.4!. With this treatment we are imposing an ext
constraint on the original equations of motion, and this is not necessarily consistent with the
equations. To show the consistency, we may solve six equations out of seven~six original equa-
tions of motion plus one constraint because of the planar motion condition!, and examine the
validity of the last one with the resulting solution. From Eq.~4.7!, vẆ has no term in the direction
rW3vW , so from Eq.~3.15!, ḃ50, which givesb5b05const, and equations fora andg become

ȧ52
guwW uK

r 2 , ~4.9!

ġ5
auwW uK

r 2 . ~4.10!

So, with a solution for Eq.~4.7! we have to show the consistency of Eqs.~4.8!–~4.10! all together.
Replacinga from Eq. ~4.8! into Eq. ~4.10! we obtain

ġ5g
KK8

12K2 ṙ , ~4.11!

where we have usedrW•vW 5r ṙ . Equation~4.11! is solvable and the solution is

g5
c1

A12K2
, ~4.12!

wherec1 is a constant. Using Eqs.~4.8! and ~4.12!

a5c1

r 2 K8 ṙ

uwW u~12K2!3/2. ~4.13!

From Eqs.~4.9! and~4.10! @or equivalently from Eq.~3.13! and the fact thatb is a constant# one
may simply find

a21g25c2
2 , ~4.14!

wherec2
25I 22b0

2 is another constant. So, finally we have to show the solutions~4.12! and~4.13!
for g anda satisfy Eq.~4.14!. As we see, a solution forrW andvW ~in fact vW is enough! is needed to
replace for appropriate quantities in~4.13!.
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The equation~4.7! stands alone and may be solved independently from the other equa
Taking the normal direction to the plane of motion as thez-direction in a cylindrical coordinate
one can write down the equations of motion in the polar plane. We can simply replace$ r̂ ,ŵ,ẑ% by

$ r̂ ,k̂,2 û%. In the polar plane

vW 5 ṙ r̂ 1r u̇ û, ~4.15!

vẆ 5~ r̈ 2r u̇2! r̂ 1~2ṙ u̇1r ü ! û, ~4.16!

so Eq.~4.7! in the cylindrical coordinates is

m@~ r̈ 2r u̇2! r̂ 1~2ṙ u̇1r ü ! û #5bu̇K8 r̂ 2b
ṙ

r
K8 û. ~4.17!

A set of two nonlinear differential equations appears,

m~ r̈ 2r u̇2!5bu̇K8,
~4.18!

m~2ṙ u̇1r ü !52b
ṙ

r
K8,

which governs the motion of the particle in the polar plane. From the last equation one fin

mr2u̇1bK[ j 5const. ~4.19!

ObtainingK8 from the former equation of Eq.~4.18! and replacing it in the latter one, we find

ṙ r̈ 1r ṙ u̇21r 2u̇ ü50,

which produces another constant of motion

ṙ 21r 2u̇2[v25const. ~4.20!

Both of the constants are in agreement with the overall discussion we had earlier about co
of motion.

Now we can replaceṙ and uwW u5ur 2u̇u from Eqs.~4.19! and ~4.20!,

uwW u5ur 2u̇u5U j 2bK

m U, ṙ 25v22S j 2bK

mr D 2

, ~4.21!

into Eq. ~4.14!,

c1
2

12K2 H 11
r 4~K8!2@v22~~ j 2bK !/mr!2#

~~ j 2bK !/m!2~12K2!2 J 5c2
2 , ~4.22!

to check validity of this constraint that is imposed from the planar motion condition. In the a
equationK5aer/sinh(aer), and c1 , c2 , m, b, v, j , a and e are constants. This means th
right-hand side of Eq.~4.22! must be a constant. This can not happen in general. At least num
cally, we may show the above function ofr is not a constant for many choices of constants. T
only clear possibility is forr 5const, i.e., for a circular motion. Forr 5const,ṙ 50, so from Eq.
~4.13! a50 and from Eq.~4.14! @or Eq.~4.12!# g5const, where from Eq.~4.9! this constant must
be zero which ceasesc15c250. For the other cases~i.e., not necessarily circular motions!,
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Eq. ~4.22! necessitatesc15c250 and thena5g50. So a planar orbit is possible if and only if th
charge isovector has no component in the plane of motion, which means in the planar mot
charge isovector identifies the plane and remains constant.

V. ANALYTIC DESCRIPTION OF PLANAR ORBITS

A Lagrangian for the two-dimensional motion discussed above is offered as

L5T2U5 1
2 m ~ ṙ 21r 2u̇2!1b u̇ K~r !. ~5.1!

The ‘‘potential’’ U52b u̇ K(r ) shows the force is not central. For a central force, the ang
momentum,l 5mr2u̇, and the total energy of the system,T1U, are constants of motion. But in
our problem the total angular momentum of the particle and the fields, which was expressed
~4.19!, and the kinetic part of energy alone@Eq. ~4.20!# are constants of motion. Using th
Euler–Lagrange equations, the equations of motion~4.18! are simply derived from the Lagrangia
~5.1!.

Replacingu̇ from Eq. ~4.19! into the first equation of Eqs.~4.18!,

mr̈5bS j 2bK

mr2 DK81mrS j 2bK

mr2 D 2

52
m

2ṙ

d

dt S j 2bK

mr D 2

, ~5.2!

gives

mr̈52
dV~r !

dr
, ~5.3!

where

V~r !5
m

2 S j 2bK

mr D 2

. ~5.4!

The equation~5.3! is a one-dimensional equation of motion. The first integration of Eq.~5.3! gives

E5 1
2 mṙ21V~r !, ~5.5!

which is indeed equivalent to Eq.~4.20!, i.e., E5mv2/2 andV(r )5mr2u̇2/2.
The ‘‘effective potential’’V(r ) is a function of distancer , and throughj depends on the initia

conditions of the motion. To see howV(r ) is, we may simply analyze its derivative with respe
to r :

V8~r !5
21

2 m r3 ~ j 2bK !~ j 2bK1brK 8!. ~5.6!

The derivativeV8(r ) vanishes if one of its two factors vanishes, i.e.,K(r )5 j /b or K(r )
2rK 8(r )5 j /b. To find the solutions of these equations we may find the points at which
constant functionj /b coincides with the functionsK(r )5r /sinh(r) (a5e51) or K(r )2rK 8(r )
5r 2 cosh(r)/sinh2(r). Looking at Fig. 1, for 0, j , j c ~say b51! there are two solutions fo
V8(r )50, thereforeV(r ) has two extrema atr 1 and r 2 . The effective potentialV(r ) is a non-
negative function andV(r )→0 asr→`. So the two extrema must be a minimum and a ma
mum, respectively, i.e.,r 1 is the minimum andr 2 is the maximum. For 0, j <1, V(r ) is tangent
to the r -axis at the minimum pointr 1 @becauseV(r ) is also vanishes forj 5bK#, and this is the
only point thatV(r ) touches ther -axis. For 1, j , j c , V(r ) does not coincide with ther -axis. For
j Þ1, V(r )→` as r→0, but for j 51 this limit is finite andV(r )→0 as r→0 ~so r 150!. For
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j 5 j c (r 5r c) there is only a saddle point, and forj <0 and j . j c there is no extremum andV(r )
is monotonically decreasing. Figure 2 shows the possible shapes ofV(r ).

For a givenj we may discuss the orbit of the particle, subject to the initial conditions.
limit value j c may depend on the other constants of theory such asa, e and b. To see howj c

depends ona ande ~instead of settinga5e51 in last steps!, we may considera ande in K as it
came in~3.8!. Therefore, we haveK5aer/sinh(aer) andK2rK 85a2e2r 2 cosh(aer)/sinh2(aer). If
we plot K andK2rK 8 in Fig. 1 versusaer, we seer c is rescaled, butj c remains unaltered~up
to the constant factorb!. It is not difficult to find r c and j c ~with a5e5b51!:

r c51.606, j c51.169. ~5.7!

Let see the situation of a motion whenj andE ~or v! are given. If 0, j , j c but j Þ1, we have
the top-left plot in Fig. 2. The altitude and latitude of the extrema from the horizontal and ve
axes are related to the constantj . Figure 3 shows the different possibilities of motion subject
energyE.

If the particle starts its motion with the energyE4 , it will be scattered to infinity and can neve
come closer to the origin thanr 6 ~see Fig. 7 in the next subsection!. A motion with the energyE2

will move on a circle of radiusr 2 even if it starts its motion from inside or outside of the radi
r 2 . This motion is unstable, i.e., a small perturbation banishes the particle from the radiusr 2 . A
small perturbation to the left may make a bounded orbit if the perturbed energy is less thaE2 ,
while a small perturbation to the right sends the particle to infinity even if the energy is less
E2 ~see Fig. 8 in the next subsection!. A particle with the energyE3 is bounded and move
between two radiir 3 andr 4 if it starts the motion in between the two radii~see Fig. 7 in the next
subsection!, but it will be scattered to infinity if starts the motion fromr>r 5 . A particle with the

FIG. 1. Solutions ofV8(r )50.

FIG. 2. One dimensional effective potentialV(r ) ~vertical axis! versus radiusr ~horizontal axis!. In the top left plot, the
heighth is zero for 1, j , j c .
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energyE1 moves on a circle of radiusr 1 . This is a stable motion~see Fig. 7 in the next subsec
tion!. The situation of a particle with the energyE5 is similar to the particle with the energyE4 .
In Fig. 3 r 1 and r 2 are given byr 1 and r 2 in Fig. 1 whenj is specified.

For 0, j ,1, V(r ) is tangent to ther -axis atr 1 , therefore the case with energyE5 is inap-
propriate andE1 lies on ther -axis ~so E150!. A stationary particle~a particle withE50, i.e.,
ṙ 05 u̇050! settles in this category and remains atr 1 without moving. So a stable circular motio
is possible only for 1, j , j c .

For 0, j , j c , a bounded motion is possible ifE1<E<E2 . Using Fig. 1, j 5K(r 2)
2r 2K8(r 2)5K(r 2)1r 2

2 u̇2
2, which gives u̇252K8(r 2)/r 2 . So E25( ṙ 2

21r 2
2 u̇2

2)/25r 2
2 u̇2

2/2
5(K8(r 2))2/2, where index 2 shows the value of each quantity atr 2 . For the minimum value we
can do the same. For 1< j < j c we have (K8(r 1))2/2<E<(K8(r 2))2/2, and for 0, j <1, 0<E
<(K8(r 2))2/2. For each case radiir 1 andr 2 are determined byj , so with j we can describe the
overall properties of the motion. As a problem we may determine the maximum value thatE can
take for a bounded motion. By equating the derivative of function (K8(r ))2/2 to zero, we findr
51.606 that is equal tor c @see Eq.~5.7!# and so the maximum value of (K8(r ))2/2 is Ec

50.0480. This is not an accident, because in fact the energyE is equal to the potentialV(r ) at the
turning points, so at the turning pointsE5V(r )5( j 2K)2/2r 2. Clearly, the maximum value ofE
for a bounded motion occurs whenj 5 j c ~see Fig. 1!. So if E.Ec we can immediately conclude
that the motion is not bounded.

Another point that is worth mentioning isn the following: If the particle is launched into
field from r .r m , ~for somer m! we remain in the category 0, j ,1 for bounded motions. From
Fig. 1 one can simply see the maximum distance from the origin for a maximum turning poi
the category 1< j < j c occurs in j 51. Thenr m is the nonzero root ofK(r )2rK 8(r )51, which
givesr m52.676. Clearly if a particle is launched in the field fromr .r m it will not be bounded if
j >1. So the only possibility for a bounded orbit for this particle is 0, j ,1 ~not any motion is
necessarily bounded!.

Motions with j Þ1 do not pass the origin at all. For the bounded orbits, a particle moves
path between two circles of radiir 3 and r 4 . In the turning pointsV(r )5E, so ṙ 50. For 0, j
,1, in the radiusr 1 @the point which locates between the turning points and minimizesV(r )#
V(r )50 ~see the top-left plot in Fig. 2 withh50!, so in this radiusu̇50 and the orbit must be
tangent to a radius at this point~see Fig. 4!. In the radiusr 1 ~5OP15OP2 in Fig. 4!, u̇50, but
ṙÞ0 ~becauseEÞ0!, so du/dr50. This means at this point the direction of variations ofr
remains unchanged, while the direction of variations ofu is changed. Therefore, each time that t
particle completes a motion between two radii~for example, starting from the upper turning poi
and returning back to the point after traveling to the lower turning point!, it passes two times from
the desired point (r 1). So the particle makes an internal loop outside the origin~i.e., the loop does
not surround the origin! in each travel. So in a 2p rotation the particle may construct several inn

FIG. 3. Different possibilities of motion for 0, j , j c ( j Þ1).
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loops which are lying on the main orbit around the origin. This case does not happen for, j
,Jc because alwaysV(r ).0.

This is an important result. For 1, j ,Jc the particle rotates around the origin once in eve
2p rotation ~but not necessarily in a closed orbit!. This is similar to the Kepler problem in
gravitation. This motion definitely can happen only inside the regionr<r m as we explained
earlier. But for 0, j ,1 the situation is different. In a 2p rotation, a particle trajectory may form
several loops outside the origin~see Fig. 5!. This case may happen anywhere in the plane sub
to suitable initial values.

For j 51 ~the top-right plot in Fig. 2!, the situation is the same as 0, j ,1, but here the lower
turning point is fixed,r 35r 150 ~in contrast to the case ofj Þ1 where the lower turning poin
depends onE!. In this case, the upper turning point,r 4<r m52.676. So in a bounded motion th
particle passes the origin periodically. In fact, this case is settled between the two parts
previously studied case. For 1, j , j c a bounded orbit turns around the origin once in eachp
period, and the particle’s orbit comes closer to the origin on a point of its trajectory whenj takes
a value closer to one~i.e., perihelion becomes shorter!. In the limit, for j 51 the trajectory crosse
the origin, and in each 2p rotation, the particle passes the origin once. Whenj takes a~positive!
value less than 1, the orbit leaves the origin and makes a loop in the opposite side~see Fig. 5!.

For j 51, r 50 is an extremum point of the potentialV(r ), andV(r ) is tangent to ther -axis
in r 50. So it is important to study any probable ambiguity at the origin. The origin is a tur
point, and also the orbit is tangent to a radius at the origin. So it is a question to know abo
velocity components at the origin. It is not difficult to show neitherṙ nor u̇ vanishes atr 50. One
may show

FIG. 4. Internal loops are possible for 0, j ,1.

FIG. 5. In the left plotj .1, In the middle onej 51 and in the right plotj ,1. In the three cases the particle has star
the motion from (0,1) with the same energy,E50.025. The total angular momentumj are 1.03, 1, and 0.97, respectivel
The starting point and the origin are marked by black dots.
                                                                                                                



e

ut the
otion

or

se to
r,

an

t by
ce

one
erical

tta
are

e of
S

.
of the
rest of
t

309J. Math. Phys., Vol. 43, No. 1, January 2002 Planar trajectories in a monopole field

                    
lim
r→0

u̇5 lim
r→0

H 12K~r !

r 2 J 5
1

6
,

~5.8!

lim
r→0

ṙ 25 lim
r→0

H v22S 12K~r !

r D 2J 5v2.

The above limits may look strange, but stillv25 ṙ 21r 2u̇2 is valid.
For j 5 j c ~bottom-left plot in Fig. 2! a particle with the exact energyEc has a non-stable

circular motion in the saddle point, otherwise the particle is scattered to infinity. Forj <0 and j
. j c the particle is scattered to infinity and there is no chance for bounded orbits.

Finally, if a particle starts its motion from the point (r 0 ,u0) with the velocity (ṙ 0 ,u̇0), we may
calculate the two important constantsj and E ~or equivalentlyv! and very soon recognize th
motion to be bounded or not, and to which of the preceding cases it belongs.

In principle, we have discussed the overall characters and properties of the orbits, b
actual equation of the orbit must be obtained by integrating the differential equations of m
~4.19! and ~4.20!. Replacingu̇ from Eq. ~4.19! in Eq. ~4.20! we get

t56E
r 0

r dr

Av22~~ j 2bK !/mr!2
, ~5.9!

where the motion is supposed to be started from the initial valuer 0 at timet50. As it stands Eq.
~5.9! givest as a function ofr and the constants of integrationE ~or v!, j andr 0 . However, it may
be inverted, at least formally, to giver as a function oft and the constants. Once the solution f
r is found, the solution foru follows immediately from Eq.~4.19!. At large distances from the
center,K andK8 vanish and the particle moves in a straight line. Clearly in the areas too clo
the center of the monopole,K8 vanishes as well~but notK!, and a free motion is valid. Howeve
in the other areasK andK8 are important and cannot be ignored. Again usingu̇ from Eq. ~4.19!
and ṙ from Eq. ~4.20! ~after some replacement ofu̇!, after some rearrangement of variables
integral equation for the orbit of the particle is found as:

u2u056E
r 0

r dr

rA~mvr /~ j 2bK !!221
. ~5.10!

With the presence of the hyperbolic function in the integral, it seems difficult to solve i
changing the variables. Instead of the above integral equation for the orbit, we may repladt
from Eq.~4.19! into Eq.~5.3! and find a second order differential equation for the orbit. But n
of these help us to find analytic solutions for the orbits. So in the next we present some num
solutions of Eqs.~4.18! and observe the results we found in the previous pages.

VI. NUMERICAL OBSERVATIONS

In this subsection we present some numerical solutions for the set of equations~4.18! for
planar motions and Eqs.~3.9! and ~3.10! for nonplanar motions. We have used the Runge–Ku
method~of fourth order! for solving first order differential equations. The required programs
written in the ‘‘MATLAB’’ programming package. In a planar motion let us suppose a particl
unit mass,m51, and unit charge,IW5b k̂, b511, has been launched in the field of a BP
monopole witha5e51, from a point (r 0 ,u0), with an initial velocity (ṙ 0 ,u̇0). The following
results are concluded for the different initial values for which we have tested the equations

The monopole forces the particle to move on a curve in the plane such that if the thumb
right hand stands in the direction of the charge isovector, then the sense of closing the
fingers shows the direction of rotation of particle. In Fig. 6 a particle is launched in four differen
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directions~with the same energy!, and the particle moves counter-clockwise in each case~the
charge isovector is normal to the paper pane and outward!. This observation is greatly differen
from the usual scattering of an electric particle in a Maxwell field. If the behavior of this sy
was like a usual electrodynamics system, the two bottom plots of Fig. 6 would be the m
images with respect to thex-axis, while here we see one motion is bounded while the other on
scattered to the infinity.~Note in the last two plots, in spite of the fact that the energy is the s
in both cases,j is different so they follow the two different models ofj –E graphs we explained
in Sec. V.!

This point can be explained analytically when the condition for the planar motion is us
the original equation~3.9!. In Eq. ~3.9! rW• IW50 ~for the planar motion!, so the equation of motion
in a compact form is

mrẆ5
K8

r
~vW 3 IW !. ~6.1!

The term on the right-hand side of Eq.~6.1! is the force that is exerted from the fields onto t
particle. TheIW5b k̂ is a vector normal to the plane of motion and in the upward direction. So
cross-product ofvW and IW is a vector in the plane of motion and always normal to the velo
vector and in counter-clockwise direction. Therefore, the particle is forced to move cou
clockwise.

Bounded and unbounded orbits are allowed depending on the choice of initial values. C
bounded orbits may exist for each point in the plane, depending on the initial velocity. The
lots of various orbits: circles, Limac¸on-shapes, curves with many loops~loops may surround the
center or not!, the simple scattered curves and many other complicated curves. A varie
possible orbits are shown in Fig. 7. For closed orbits the initial conditions are specified
example, in the two top plots of Fig. 7 the initial position of the particle is known@i.e., (r ,u)
5(1,0)#, the velocities are specified up to some significant digits.

Although the circular motions are closed orbits, in general we can not find a prescriptio
closed orbits. By numerical methods and trial and error we may find some closed orbits
top-left plot in Fig. 7 is an example.

Figure 8 shows an unstable motion around the maximum point for 0, j , j c . In the top-left
plot, the particle is launched from point~1,0! with ( ṙ 0 ,u̇0)5(0.184,0), so it will rotate in a radia
direction atr 253.163. This case is calculated only to be compared with the closed top-left p

FIG. 6. Particle is launched from point~1,0! ~the dark point in thex-axis! with the same speed (0.184) in each case.~The
number of significant digits in the velocity is not crucial; it has been chosen for a better illustration of the plots.!
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Fig. 7. So for any 0, j , j c ~i.e., r 0 and u̇0 are specified!, we can find a valueṙ 0 and send the
particle to rotate on the critical radiusr 2 . For smaller or bigger energies, the motion will b
bounded between two circles, or scattered to infinity, as was explained earlier. The bottom-le
top-right plots show these points. The bottom-right plot is another example of a unstable m
The particle starts the motion from the same point as the other three, butj and energy are different
We can compare this case with the circular motion in Fig. 7.

VII. NUMERICAL OBSERVATIONS FOR NONPLANAR MOTIONS

Now we explain nonplanar motions which indeed follow the general equations of motion~3.9!
and ~3.10!. Suppose the particle is launched in the field from the point~0,0,10! with an initial
velocity (0,0,20.1) while the charge isovector is initially~0,0,1!. As we explained before, the
particle moves in thez-direction and passes through the origin in enough time. Now sup
instead of launching the particle in thez-direction, we launch it from the point~0,1,10!. So the

FIG. 7. For each case motion is started from point~1,0! ~the dark point!, but the initial energy is different for each cas

For the circle, initial velocity is 0.266, and for the Limac¸on-shape, the initial velocity is (ṙ 0 ,u̇0)5(0.184,0).

FIG. 8. For each case motion is started from point~1,0! ~the dark point!. The plots show stability of the orbits aroundr 2 .
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initial conditions are as before unless an impact parameter is taken into consideration. Of
with these initial conditions the particle moves on a curve which is no longer planar. The to
plots in Fig. 9 show the orbits for the above-mentioned two cases.

Instead of considering an impact parameter in the above case, which leads to a non
motion, any small deviation in the initial velocity in the normal direction to the plane or in
charge isovector in the plane causes nonplanar orbits as well. Examples for these two cases
bottom plots in Fig. 9. In the right plot the particle is launched from~0,0,10! with the velocity
(0,0.01,20.1) and charge isovector~0,0,1!, and in the left plot from~0,0,10! with the velocity
(0,0,20.1) and the charge isovector~0,0.1,1!.

By changing the initial values we may collect a wide range of spatial orbits. Organizing
plots to get some useful results is not straightforward, and in addition we need a long time fo
computation. As an example, the following observation may lead us to the idea of sta
one-dimensional potential we explained on the subject of planar motion. In the continuation
top two plots in Fig. 9 we can increase the impact parameter. Note that the particle reflect
in thez-direction, when we put~0,2,10! for the location of the particle and the other initial valu
are unchanged. Now we can decrease the impact parameter and then play with it by add
subtracting the earlier values to find a plot such that the particle stays around thexy-plane~at least
for a while!. We may continue this procedure to get a better and better result. In Fig. 10, th
plot is the three-dimensional orbit and the right one shows the time variation of thez component.
This plot is resulting from the same initial values as the two top plots in Fig. 9, but with im
parameter 1.953@i.e., ~0,1.953,10! for the initial location#. The particle has a small oscillator

FIG. 9. Spatial orbits.

FIG. 10. Nonstable motion.
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motion along thez-axis close to thexy-plane for a while. We may increase duration of the de
around thexy-plane for a longer time by changing the value of the impact parameter to a b
value.

Based on the observation we explained in the last paragraph, one may compare this s
with the unstable extremum points in the one-dimensional potential model we explained f
planar motions~see Fig. 8!, but in a three-dimensional context. So if this is like an unsta
extremum, there might exist a stable analog of the one-dimensional potential in the
dimensional context. If a minimum exists for the general potential model, a stable planar m
would be allowed. This means stability of planar motion might be possible, i.e., if some s
normal perturbations disturb the planar motion, the orbit should stay bounded around the pl
the next topic we analyze this problem in some detail.

It is proper here to say a word about the scattering problem. With the above results fro
numerical works, we see the scattering depending on many parameters is not as simple a
two-dimensional central force problems. We may keep the initial conditions of the problem
changed but alter the impact parameter. As the impact parameter changes, the plane spa
the initial and final velocity vectors changes. So it is needed to introduce three scattering
instead of the one which is used in the usual two-dimensional scattering problems. Ev
two-dimensional planar motions the scattering of the particle is not symmetric with respect
positive and negative values of the impact parameter~see the two bottom plots in Fig. 6!. The
problem of scattering in three-dimensional motions is a separate problem, so we skip it he

VIII. STABILITY OF PLANAR MOTIONS

The conditions for planar motion look too strong and therefore the stability of planar mo
may be very weak. This means, if a little deviation in the quantities perturbs the planar mot
the normal direction to the plane, the particle will leave the plane and be scattered to in
Because the perturbations are generally in three dimensions, we should use the general e
of motion ~3.9! and ~3.10!. So, let us first find the required equations for perturbations in th
dimensions.

Suppose small perturbations inrW and IW are of the form

rW→rW1eW , IW→ IW1dW , ~8.1!

whereeW anddW are small quantities. For the other quantities we will have

vW→vW 1eẆ , vẆ→vẆ 1eẄ , IẆ→ IẆ1dẆ , r→r 1
eW•rW

r
, ~8.2!

where in the last one we have kept only the first order approximation. Replacing the unper
quantities in equations of motion~3.9! and~3.10! with the perturbed quantities from the right-han
side of the above relations, we find

meẄ5
K22rK 821

r 4 $~vW 3eW !~rW• IW !1~eẆ3rW !~rW• IW !1~vW 3rW !~rW•dW !1~vW 3rW !~eW• IW !%

2
4K222rKK 81r 2K923rK 824

r 3 ~eW•rW !~vW 3rW !~rW• IW !1
K8

r
$~vW 3dW !1~eẆ3 IW !%

1
rK 92K8

r 3 ~eW•rW !~vW 3 IW !, ~8.3!

dẆ 5
12K

r 2 $~eW3vW !3 IW1~rW3eẆ !3 IW1~rW3vW !3dW %2
2~12K !1rK 8

r 4 ~eW•rW !@~rW3vW !3 IW #, ~8.4!
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where in derivation we have ignored the second order perturbations and used the unpe
equations~3.9! and ~3.10!.

Now for the planar motion case, where we have suggested to make a small perturbation
space, we have

meẄ5
K22rK 821

r 4 $~vW 3rW !~rW•dW !1~vW 3rW !~eW• IW !%1
K8

r
$~vW 3dW !1~eẆ3 IW !%

1
rK 92K8

r 3 ~vW 3 IW !~eW•rW !, ~8.5!

dẆ 5
12K

r 2 $~rW3vW !3dW 1~ IW•eW ! vW 2~ IW•eẆ ! rW%, ~8.6!

and we have usedrW• IW5vW • IW50. Only the terms in the second row of Eq.~8.5! can be derived from
the planar equation of motion~6.1!, and the remaining terms in both equations have appeare
considering the general three-dimensional equations of motion.

Cylindrical coordinates are suitable to write down the equations for each component
rately. We may write

eW5e r r̂ 1eu û1ez ẑ,
~8.7!

dW 5d r r̂ 1du û1dz ẑ.

So

eẆ5~ ė r2 u̇eu! r̂ 1~ ėu1 u̇e r !û1 ėzk̂,
~8.8!

dẆ 5~ ḋ r2 u̇du! r̂ 1~ ḋu1 u̇d r !û1 ḋzk̂,

and

eẄ5~ ë r2 üeu22u̇ ėu2 u̇2e r ! r̂ 1~ ëu1 üe r12u̇ ė r2 u̇2eu!û1 ëzk̂. ~8.9!

Replacing from Eqs.~8.7!–~8.9! into Eqs.~8.5! and~8.6!, and usingIW5b k̂ (b5const),rW andvW in
the polar plane~plane of motion!, one may find a complete set of six linear differential equatio
for six unknown perturbation components:

meẄ5H b
K8

r
ėu1bK9u̇e r1K8u̇dzJ r̂ 1H 2b

K8

r
ė r2b

rK 92K8

r 2 ṙ e r1b
K8

r
u̇eu2

K8

r
ṙdzJ û

1H 2b
K22rK 821

r 2 u̇ez1
12K2

r
u̇d r1

K8

r
ṙduJ k̂, ~8.10!

dẆ 5H 12K

r 2 ~2br ėz1b ṙ ez2r 2u̇du!J r̂ H 12K

r
~bu̇ez1r u̇d r !J û, ~8.11!

where on the left-hand side we may replaceeẄ anddẆ from Eqs.~8.9! and ~8.8!, and write down
equations of motion for each component. In the first instance we findḋz50, so

dz5const. ~8.12!
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Therefore for small perturbations the total component of the charge isovector in the n
direction to the plane of motion,b1dz , remains constant. For example, if initially the perturb
tion of the charge isovector takes place in the plane of motion, this perturbation remains
plane when the perturbation is small.

Let us choose an auxiliary variablesW [eẆ

sW 5s r r̂ 1suû1szk̂,
~8.13!

sẆ 5~ ṡ r2 u̇su! r̂ 1~ ṡu1 u̇s r !û1ṡzk̂.

Now we can write nine first-order differential equations for the perturbations~let us setm51!:

ė r5 u̇ eu1s r ,

ėu52 u̇ e r1su ,

ėz5sz ,

ṡ r5b
rK 92k8

r
u̇ e r1S b

K8

r
1 u̇ Dsu1K8u̇ dz ,

ṡu52b
rK 92k8

r 2 ṙ e r2S b
K8

r
1 u̇ Ds r1

K8

r
ṙ dz , ~8.14!

ṡz52b
K22rK 821

r 2 u̇ ez1
12K2

r
u̇ d r1

K8

r
ṙ du

ḋ r5b
12K

r 2 ṙ ez2b
12K

r
sz1K u̇ du ,

ḋu5b
12K

r
u̇ ez2K u̇ d r ,

ḋz50.

Equivalently we may write the above set of equations in matrix form

SẆ 5MSW , ~8.15!

where

SW 5@e r eu ez s r su sz d r du dz#
T ~8.16!

~T stands for the transpose! and
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M ~rW,rẆ !

5

l

0 u̇ 0 1 0 0 0 0 0

2 u̇ 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

b~rK 92K8!u̇

r
0 0 0

b K8

r
1 u̇ 0 0 0 K8 u̇

2
b~rK 92K8! ṙ

r 2 0 0 2
b K8

r
2 u̇ 0 0 0 0

K8 ṙ

r

0 0
b~12K21rK 8!u̇

r 2
0 0 0

~12K2!u̇

r

K8 ṙ

r
0

0 0
b ~12K2! ṙ

r 2 0 0 2
b ~12K !

r
0 K u̇ 0

0 0
b ~12K !u̇

r
0 0 0 2K u̇ 0 0

0 0 0 0 0 0 0 0 0

m
.

~8.17!

The matrixM , which is a function of the variablesrW andrẆ, is implicitly a function of timet.
If M was a constant matrix with eigenvaluesl i and eigenvectorsRW i , the solution of the linear
differential equation~8.16! would be ( i 51

9 Ci exp(lit)RW i , whereCi are constants. But now th
solution cannot be as simple as this, because the eigenvalues of the matrixM are functions of
time. The only chance for solving the equations in this way is for circular motions whenr and u̇
are constants andṙ vanishes. For example, for the circular motion of Fig.~7!, r 51, u050, ṙ

50, u̇50.266 andb51, the eigenvalues ofM are

0.442, 20.442, 0.509,20.509, 0.235i , 20.235i , 0, 0, 0.

We have used the ‘‘MAPLE’’ programming package to calculate the above values. Usin
MAPLE package we can find the eigenvectors as well. Now we need initial values of the p
bation quantities to determine the constantsCi . Suppose in the circular motion, instead of starti
the motion att50 exactly from the point (1,0,0) in the plane of motion, start the motion fr
(1,0,0.001) and the other initial values of the circular motion do not alter. So we have set a
perturbation only in the z-direction ~normal to the plane of motion!, i.e., S(t50)
5@0,0,0.001,0,0,0,0,0,0#T. Equating S(t50)5( i 51

9 CiRW i , the constantsCi are found. Let us
study the result for one of the perturbation’s components, e.g.,ez ,

ez50.000 511e0.509t10.000 511e20.509t2 0.000 022 3e0.235i t .

Clearly the first exponential term on the right-hand side of the above equation, in spite of its
coefficient, diverges ast→`. Therefore, we can judge the circular motion under study is
stable.

An analytic solution of the set of equations~8.14! @or equivalently~8.15!# is not available, so
we may examine the equations of perturbation by numerical methods. We can study any s
in the plane, with some small values for perturbation quantities. Suppose a list of data of po
and velocity of a planar motion is available. So we may use the data and the set of equations~8.14!
and a numerical method such as the Runge–Kutta method~or even simpler methods! for comput-
ing the differential equations. It is more convenient to calculate the data of planar motion
procedure and at the same time compute the perturbation quantities for each set of (r ,u, ṙ ,u̇). We
have studied the problem with different choices of the perturbation quantities for different p
solutions, and the results are the same as above. Indeed if the initial perturbation in the
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isovector is in thez-direction, or the initial perturbation inrW andvW is in the plane of motion, the
motion will stay planar. The stable and unstable planar motions~for perturbations in the plane!
were discussed earlier.
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A planar Runge–Lenz vector
S. G. Kamatha)

Department of Mathematics, Indian Institute of Technology, Madras 600 036, India

~Received 16 July 2001; accepted for publication 2 October 2001!

Following Dahl’s method an exact Runge–Lenz vectorM with two components
M1 and M2 is obtained as a constant of motion for a two particle system with
chargese1 and e2 whose electromagnetic interaction is based on Chern–Simons
electrodynamics. The Poisson bracket$M1 ,M2%ÞLz but is modified by the appear-
ance of the producte1e2 as central charges. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1420399#

A characteristic feature of the nonrelativistic Kepler problem is that there exists apart fro
conservation of energy~E! and the angular momentum vector~L ! another conserved quantity
namely the Runge–Lenz vector~A!. A textbook1 derivation of A begins with the equation o
motion of a massm under the central forceF5 f (r )(r /r ), namely, dp/dt5 f (r )(r /r ), leading to

d

dt
~pÃL !52m f~r !r 2

d

dt S r

r D ~1!

as dL /dt50. With r 2f (r )5a constant~say-k!, thereby implying an inverse square law of forc
Eq. ~1! immediately yieldsA5pÃL2mk(r /r ); this is the Runge–Lenz vector. With the definitio
K5(22mE)1/2A, one easily obtains the Poisson bracket relations

$K ,E%50,$L ,E%50,$Li ,L j%5e i jkLk ,$Li ,K j%5e i jkKk ,$Ki ,K j%5e i jkLk . ~2!

Thus there exists an internal symmetry associated with the nonrelativistic Kepler problem w
invariance group being isomorphic to the four-dimensional rotation groupO4 . Until recently, the
presence of this internal symmetry had not been tied to a generally accepted invariance pr
In other words, the phenomenological derivation implied in Eq.~1! begs the question of whethe
the Runge–Lenz vector has a deeper physical origin. Specifically, the question is if ther
space–time transformation, the invariance of the Lagrangian for the Kepler problem under
directly leads to the conservation ofA.

An affirmative answer to this question was recently obtained by Dahl2 by regarding the Kepler
problem as the zero-order description of a relativistic two-body problem; or, as emphasiz
Dahl,2 it is absolutely necessary to investigate the relativistic two-body problem in orde
discover the connection between the dynamical symmetry of the nonrelativistic Kepler pro
and special relativity.

Of special relevance to this paper is the fact3 that for the Kepler problem the angular mome
tum vectorL5rÃp is conserved so thatr "L50. Thusr always lies in a plane4 whose normal is
parallel toL . Since the motion of the particle is planar because of symmetry consideration
appropriate to ask the following: Suppose the motion of the particle was de facto planar a
due to symmetry considerations as in the case of motion under a central force, could on
obtain a Runge–Lenz vector that is conserved in this 211 dimensional case? Happily, we deriv
in this paper, following Dahl’s method,2 a bonafide Runge–Lenz vector@see Eq.~23!# associated
with the relativistic Lagrangian with Chern–Simons interactions5–7 for a two-particle system
consisting of massesm1 andm2 with chargese1 ande2 , respectively, given by

a!Electronic mail: kamath@acer.iitm.ernet.in
3180022-2488/2002/43(1)/318/7/$19.00 © 2002 American Institute of Physics
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L52m1c2S 12
uẋ1

2u
c2 D 1/2

2m2c2S 12
uẋ2

2u
c2 D 1/2

2
e1e2

pc

k"rÃṙ

ur u2
~3!

with r5x12x2 , x1 ~andẋ1! andx2 ~andẋ2! being the position~and velocity! vectors of the masse
m1 andm2 andk a fictitious unit vector orthogonal to the plane ofx1 andx2 .

It is easy to obtain~3! starting with the electromagnetic potentials Am(x,t), m50,1,2, for
Chern–Simons electrodynamics in the radiation gauge with“•A50, namely,

A0~x,t !5
e

2pc

~x2R~ t !!3Ṙ~ t !.k

ux2R~ t !u2
, ~4a!

A~x,t !5
e

2p

~x2R~ t !!3k

ux2R~ t !u2
, ~4b!

the chargee being located atR(t). Needless to say Eqs.~4a! and ~4b! are the 211 dimensional
counterparts of the corresponding 311 dimensionalAm(x,t) given by Eqs.~26.19! and~26.20! in
Fock8 for example.

Under an infinitesimal Lorentz transformation given bydx52nt1(n.x/c2) ẋ, it is simple to
check the change in the LagrangianL, defined by

dL5
]L

]x1
•dx11

]L

]x2
•dx21

]L

]x1
•d ẋ11

]L

]x2
•d ẋ2

5
d

dt S 2m1x1 .ng12m2x2 .ng21
e1e2

pc

k.drÃr

ur u2 D , ~5!

without the use of the equations of motion for the two massesm1 andm2 . Hereg1 andg2 are
given by

S 12
uẋ1u2

c2 D 1/2

and S 12
uẋ2u2

c2 D 1/2

,

respectively. SincedL works out to a total differential in~5! without the use of the equations o
motion, it is clear that the actionS5*dt L is unaffected by the transformation fromx→x1dx,
thus making the Lagrangian~3! Lorentz invariant.

The constant of motion is now obtained by using the equations of motion form1 andm2 to
rewrite the first equality in~5! as

dL5
d

dt S ]L

] ẋ1
•dx11

]L

] ẋ2
•dx2D . ~6!

From the second equality in~5! and ~6! one thus obtains

d

dt S ]L

] ẋ1
•dx11

]L

] ẋ2
•dx21m1x1 .ng11m2x2 .ng22

e1e2

pc

k.drÃr

ur u2 D50. ~7!

With the canonical momenta defined bypi5]L/] ẋi it is easy to obtain from~3! p1

5m1ẋ1g1
211g and p25m2ẋ2g2

212g, where pcur u2g5e1e2(rÃk) and thus rework~7! as
(d/dt)(K.v)50 with the constant of motionK given by

K52tP1m1x1g1
211m2x2g2

21, ~8!

the total momentumP being defined asP5p11p2 . Equation~8! is the counterpart of Eq.~20! in
Ref. 2; also while the latter is derived from the Darwin Lagrangian8 for the electromagnetic
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N-body problem and is correct in the 1/c2 approximation, Eq.~8! is exact. Note thatK depends
explicitly on time except in the center-of-momentum system which is the Lorentz frame w
P50.

For the Lagrangian~3! the HamiltonianH and the angular momentum vectorL are given by

H5m1c2g1
211m2c2g2

21, L5x13p11x2xp2 ~9a!

and in theP50 frame they work out to

H5m1c2f 11m2c2f 2 , L5rÃp5k~r 1p22r 2p1!5kLz ~9b!

with p1 andp2 being thex andy components of the relative momentum vectorp defined by

p5
m2p12m1p2

m11m2
.

In deriving the Hamiltonian in~9b! we go through the following steps.
~i! Sincem1ẋ1g1

215p12g, thereforeg1
22511(1/m1

2c2)up12gu2. One can now expressp1

andp2 in terms ofp andP via the relations

p15
m1

m11m2
P1p, p25

m2

m11m2
P2p ~10!

and find that in the center-of-momentum system withP50,

g1
215S 11

uBu2

m1
2c2D 1/2

~11a!

with B5p2g.
~ii ! The above-given calculation can be repeated withm2ẋ2g2

215p21g to obtain the follow-
ing result in the case whenP50:

g2
215S 11

uBu2

m2
2c2D 1/2

. ~11b!

We shall relabelg1
21 andg2

21 in Eqs.~11a! and~11b! as f 1 and f 2 , respectively, in the following.
Using these definitions one can now reworkK in Eq. ~8! in the center-of-momentum system wit
P50 as

K5~m1f 11m2f 2!R1m~ f 12 f 2!r ~12!

with the reduced massm and the center-of-mass~c.m.! position vectorR defined by

m5
m1m2

m11m2
and R5

m1x11m2x2

m11m2
.

As emphasized by Dahl2 the c.m. vectorR should now be eliminated from Eq.~12! to make
K a proper dynamical function and as in Ref. 2 we shall do this with the help of the equati
motion for R in the P50 limit, namely,

dR

dt
5S ]H

]PD
P50

5S m

m2

]H

]p1
1

m

m1

]H

]p2
D

p15p,p252p

. ~13!

One should now recast the HamiltonianH in ~9a! in terms of the canonical momentap1 andp2

and it is given by
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H5m1c2g11m2c2g2 , g15S 11
uS1u2

m1
2c2D 1/2

, g25S 11
uS2u2

m2
2c2D 1/2

~14!

with S15p12g and S25p21g. On calculating the partial derivatives required in Eq.~13! it is
easy to get

~m11m2!
dR

dt
5~g12g2!B. ~15!

From the Hamiltonian~9b!, the equations of motion are

]H

]p
5TB5 ṙ ~16a!

with T5g1 /m11g2 /m2 , g1 andg2 being defined by Eqs.~11a! and ~11b!. SinceB5p2g it is
clear that

kÃṙ5T~kÃp1hr !, ~16b!

wherepcur u2h52e1e2 . With Eq. ~16b! the other equation of motion, namely,

]H

]r
5ThS kÃp2r S h12

r.kÃp

ur u2 D D52ṗ, ~16c!

yields

ṗ5hS kÃṙ22
r

ur u2
kÃṙ .r D . ~17!

Equation~17! easily leads to

d

dt
~p1hrÃk!5

dB

dt
50. ~18!

ThusB is a constant in time and so aref 1 and f 2 in Eqs.~11a! and ~11b!. Returning to Eq.~15!
we get

d

dt S R1
g22g1

m11m2
BD50 ~19!

on using Eq.~18!. Thus the c.m. position vectorR(t) is given by

~m11m2!R~ t !5B~g12g2!t1R0 , ~20!

whereR0 is a constant. Equation~20! is the counterpart of Eq.~43! in Ref. 2; however we mus
emphasize here that Eq.~20! in this paper is exact in that it has been derived using the equa
of motion given by~16a! and~16c! without recourse to approximation. In contrast, the solution
R(t) given by Eq.~43! in Dahl’s paper2 has been obtained in the 1/c2 approximation to the
equation of motion as given by Eq.~39! therein. On using~20! in ~12! one obtains the exact form
of the vectorK as

K5S m12m21m2f 2g12m1f 1g2

m11m2
D tB1m~ f 12 f 2!r1R0

m1f 11m2f 2

m11m2
. ~21!

With the Hamiltonian H in~9b!, Eq. ~21! can be reworked as
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K5
H

~m11m2!c2 R01
m12m2

m11m2
M ~22!

with

M5QtB1m1m2

f 12 f 2

m12m2
r ~23!

andQ511(m2f 2g12m1f 1g2)/(m12m2). For the Chern–Simons Lagrangian given by Eq.~3!
of this paper Eq.~22! is the counterpart of Eq.~46! in Ref. 2; Eq.~23! therefore defines the
Runge–Lenz vectorM of the Lagrangian~3! in the center-of-momentum system.

It is easy to see that the above-noted derivation in~22! and ~23! needs a second look for th
equal massm15m2 case. Indeed a similar discussion is also in order for the Runge–Lenz v
derived from Eq.~45! in Dahl’s paper;2 note however that the remedy there is quite painle
namely: begin with unequal massesm1Þm2 and subsequently derive the correct Lenz vector
the equal mass case,m15m25m, the result being a simple replacement of the factorm in Eq. ~46!
there bym/2. But a corresponding effort here merits a separate discussion and is therefo
egated to the Appendix.

With M1 denoting thex component of the two-component vectorM it is clear that]M1 /]t
5QB1 ; thus one expects the Poisson bracket$M1 ,H%52QB1 , sinceM is a constant of motion,
with H being given by Eq.~9b!. It is easy to check this using the following:

$r 1 , f 1%5
g1B1

m1
2c2 , $r 1 , f 2%5

g2B1

m2
2c2 , $r i ,pj%5d i j ,$ f 1 , f 2%50,$B, f 1%505$B, f 2%. ~24!

On replacingr 1 by r 2 in the first pair of Poisson brackets in~24! one should also replaceB1 by
B2 .

One can also use Eq.~24! to evaluate the Poisson bracket ofM with Lz , the latter being given
in Eq. ~9b!. Using $Bi ,Lz%52« i j Bj it is easy to verify that

$Mi ,Lz%52« i j M j ~25!

with «1252«2151. We shall now evaluate the$M1 ,M2% Poisson bracket; by virtue of Eq.~24!
and the fact that$B1 ,B2%50 it is easy to obtain the result

$M1 ,M2%52
a2

c2 ~ f 12 f 2!S g1

m1
22

g2

m2
2D S e1e2

pc
1LzD ~26!

with (m12m2)a5m1m2 . While Eq.~25! is expected, on account ofM being a vector,~26! does
not match with that given by Eq.~2! for the Runge–Lenz vectorK and is therefore a novel featur
of this paper. The fact that the calculation made here is exact and quite unlike the appro
calculation to order 1/c2 of the Runge–Lenz vector by Dahl2 reinforces our confidence in thi
assertion.

The extra terme1e2 /pc in Eq. ~26! is reminiscent of the observation by Witten and Olive9,10

long ago that in supersymmetric theories with solitons the usual supersymmetry algebra is
fied to include topological quantum numbers as central charges. Interestingly, the last factor
right-hand side of Eq.~26! can be expressed ase1e2 /pc1Lz5m(rÃl)z , where we definel
5 ẋ1g1

212 ẋ2g2
21 with

g15S 12
uẋ1u2

c2 D 1/2

and
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g25S 12
uẋ2u2

c2 D 1/2

.

Qualitatively, Eqs.~25! and ~26! are important to this paper because we have derived th
besides Eq.~24!, as Poisson brackets here. This is not the case with the Poisson bracket re
given by Eq.~4! in Ref. 2; indeed Dahl2 provides only a qualitative understanding@see Eqs.
~56!–~58! in Ref. 2# of the said Poisson bracket and is unable to derive Eq.~4! in the 1/c2 order
description in his paper. Needless to say, Eq.~26! is the 211 dimensional counterpart of the
11 dimensional Poisson bracket given by Eq.~4! in Ref. 2, namely

$Mi ,M j%52
2

m
H (

k51

3

« i jkLk . ~27!

In conclusion, two distinguishing features characterize the derivation of the Runge–
vector ~23! associated with the Chern–Simons Lagrangian~3! in this paper:~a! the calculation
here is exact and,~b! as an unexpected bonus the Poisson bracket in~26! contains the producte1e2

as a central charge.

I thank Suresh Govindarajan for reminding me of Ref. 9 and G. Date of the Institu
Mathematical Sciences, Chennai and P. K. Panigrahi of the School of Physics, Univers
Hyderabad, for clarifying discussions.

APPENDIX

When the massesm1 and m2 in the Lagrangian~3! are equal the Runge–Lenz vectorM is
worked out initially by assuming thatm1Þm2 ; taking the limit of Eq.~22! whenm2→m1 then
yields the desired form ofM as explained in the following. Let us assume here thatm15m2

1« where«.0. For the second term in Eq.~23! of the text one thus has

lim
«→0

1

«
~ f 12 f 2!5 lim

«→0
H S 11

uBu2

c2~m21«!2D 1/2

2S 11
uBu2

c2m2
2D 1/2J ~A1!

52
uBu2

c2m2
3 g2 ~A2!

by a Maclaurin expansion of the first term to order«. Hereg2 andg1 ~see the following! are given
by Eq. ~11! of the text. A similar effort on the first term in Eq.~23! yields

lim
«→0

S 12
m1f 1g22m2f 2g1

« D52g2

uBu2

m2
2c2 . ~A3!

Thus whenm15m25m, we have instead of Eq.~23! the Runge–Lenz vector

M5
uBu2g

mc2 S 2t

m
B2r D5g~12 f 2!~mr22tB! ~A4!

with fg51 and

g5S 11
uBu2

m2c2D 21/2

.

With the Poisson brackets given by Eq.~24! it is now easy to arrive at the relations$Mi ,Lz%
52e i j M j and
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$M1 ,M2%52
1

c2 g4~ f 421!S e1e2

pc
1LzD . ~A5!

Equation~A5! is the equal mass counterpart of Eq.~26! for unequal masses.
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Iper-ideal kinetic constraints in continuum mechanics
Stefano Vignoloa) and Danilo Brunob)

Dipartimento di Matematica dell’Universita` di Genova,
Via Dodecaneso 35, 16146 Genova, Italy

~Received 5 July 2001; accepted for publication 2 October 2001!

A geometrical approach to Lagrangian formulation of continuum mechanics in the
language of jet-bundles theory is proposed. The resulting environment allows one
to deal with a particular class of kinetic constraints, through a suitable implemen-
tation of Gauss’ principle. A variational formulation of systems subject to such
constraints is also outlined. Two explicit examples are given. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1420397#

I. INTRODUCTION

During the last ten years, nonholonomic constraints have drawn the renewed interest o
authors; as a result, a satisfactory mathematical description of nonholonomic mechanics ha
recently set up using the tools of fiber-bundles and jet-bundles theory.

So far, the main efforts in this field of research have concerned systems with a finite nu
of degrees of freedom, providing a large number of devoted papers~see, e.g., Refs. 1–13!.

Our aim is to extend the analysis to the continuum case, borrowing the ideas from
proposing a modern geometrical approach to classical mechanics of discrete systems.

To this end, we propose a new geometrical framework for continuum mechanics, bas
jet-bundles theory and general enough to suit a description of material continua in Lagra
formulation.

The resulting mathematical environment provides an advance in the geometrical desc
of continuum mechanics and it is successfully used to deal with a particular class of nonholo
systems; despite the fact that the class is presently limited, the opinion of the authors is t
implemented geometrical setup may provide the starting point for a deeper analysis of a
general class of constraints.

The plan of the paper is as follows. Section II starts with a brief review of the basic aspe
mechanics of point particles. Continuous systems are subsequently introduced extending p
ideas along the lines developed by Kijowski.14 In this connection, both kinematics and unco
strained dynamics are examined; in particular one of the main aspects of the construction is
geometrical description of interactions involving a suitable extension of the concept of dyna
flow. Eventually, we introduce the class of nonholonomic constraints which will form the obje
the subsequent developments; as we shall see, such constraints consist in purely kinetic res
imposed separately on each point of the continuum.

In Sec. III we discuss the problem of motion for these constrained systems. In gener
implementation of the equations of motion, in the presence of constraints, requires the assig
of a rule, known asconstitutive characterization, which allows one to determine the constrain
dynamics from the free one. Accordingly, we introduce a constitutive characterization c
iper-ideality, defined through a suitable revisitation of Gauss’ principle of minimal constrain
we shall see, iper-ideality is equivalent to requiring the ideality of the constraints with resp
any infinitesimal part of the continuum. A comparison with d’Alembert principle, completed
the so-called Chetaev conditions, is worked out. Finally the explicit equations of motion
written.

a!Electronic mail: vignolo@dima.unige.it
b!Electronic mail: bruno@dima.unige.it
3250022-2488/2002/43(1)/325/19/$19.00 © 2002 American Institute of Physics
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Section IV is devoted to the deduction of dynamical equations from a variational princ
Once again, the basic idea is borrowed from the discrete case and consists in restricting th
of deformations with respect to which the stationarity condition of the action functional is
posed.

The paper ends with two explicit examples.

II. THE GEOMETRICAL FRAMEWORK

A. Geometric preliminaries

The proposed geometrical formulation of continuum mechanics relies on an extension
ideas involved in the geometrization of the equations of motion of discrete systems in the lan
of jet bundles.

For convenience of the reader, we briefly review the basic topics of the matter focusin
attention on the mechanics of a single point particle. The foundations of the theory and f
details may be found in Refs. 1, 2, and 15.

~1! The evolution of a material pointP is described in a frame-independent scheme, introd
ing the so-calledspace–timeV4 ; in classical mechanics, the latter is a four-dimensional differ
tiable manifold, fibered over the real lineR with projectiont: V4→R given by the absolute time
function; V4 is usually referred to fibered coordinatest,x1,x2,x3, subject to the transformation
laws

t̄ 5t1c, x̄i5 x̄i~ t,x1,x2,x3! i ,51,...,3. ~1!

~2! Every evolution ofP is described by a corresponding sectiong:R→V4 ; this leads to a
natural identification of the velocity space of the material point with the first jet bundlej 1(V4),
associated with the stated fibration;j 1(V4) may be canonically embedded into the tangent bun
T(V4), according to the identification

j 1~V4!.$XPT~V4!u^X,dt&51%; ~2!

every fibered coordinate systemst, xi onV4 may be lifted to a corresponding jet-coordinate syst
t, xi , ẋi on j 1(V4), with transformation laws

t̄ 5t1c, x̄i5 x̄i~ t,x1,x2,x3!, x̄̇i5
] x̄i

]t
1

] x̄i

]xj ẋj . ~3!

In jet-coordinates, the identification~2! is made explicit by the relation

z5S ]

]t
1 ẋi~z!

]

]xi D
p~z!

P j 1~V4!,

p: j 1(V4)→V4 being the natural projection. Moreover, denoting byV(V4) and V( j 1(V4)) the
vertical bundles associated with the fibrationsV4→R and j 1(V4)→V4 , respectively, the affine
character of the fibrationj 1(V4)→V4 provides a canonical isomorphism between the vert
spacesVp(z)(V4) and Vz( j 1(V4)) for eachzP j 1(V4). The latter, known as thevertical lift of
vectors, is expressed in coordinates as

V5Vi S ]

]xi D
p~z!

→V̂5Vi S ]

] ẋi D
z

. ~4!

~3! Similarly, the second jet bundlej 2(V4) may be regarded as the acceleration space oP;
j 2(V4), referred to jet-coordinatest, xi , ẋi , ẍi , is an affine bundle overj 1(V4), modeled on the
vertical bundleV( j 1(V4)). Once again, we have a canonical identification between pointw
P j 2(V4) and vectors onj 1(V4), expressed by
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w5S ]

]t
1 ẋi~w!

]

]xi 1 ẍi~w!
]

] ẋi D
p~w!

P j 2~V4!, ~5!

p now denoting the projectionj 2(V4)→ j 1(V4).
~4! In the geometrical approach to dynamics, a central role is played by the sectioZ:

j 1(V4)→ j 2(V4). Viewing them as vector fields onj 1(V4), they are calleddynamical flows; in
local coordinates every such flow has components

Z5
]

]t
1 ẋi

]

]xi 1Zi~ t,xj ,ẋ j !
]

] ẋi . ~6!

From Eq.~6! it is easily seen that the integral curves of a dynamical flowZ are jet-extensions o
sections ofV4 , and that the difference between two arbitrary dynamical flows is a vertical ve
field on j 1(V4).

Referring to Refs. 1 and 2 for more detailed accounts, we now recall that the assignme
frame of referenceI determines the following.

~a! A representation of the space–time manifoldV4 as a Cartesian productV45R3E3 ; by the
absolute time axiom, each fibert5const represents an Euclidean three-spaceE3 , identified with
the physical space ofI at time t. In the following, x:V4→E3 will indicate the relativization
process associated with a generic frame of referenceI; the restriction of the push-forwardx* to
V(V4) gives rise to an identification of vertical vectors onV4 with vectors onE3 , based on the
relation

VPV~V4!→vªx* ~V!PT~E3!. ~7!

Choosing as spatial coordinatesx1,x2,x3 on V4 a set of Euclidean coordinates onE3 ~henceforth
such a choice will be systematically done!, the correspondence~7! is made explicit by the relation

V5Vi
]

]xi →v5Vie~ i ! ~8a!

with e( i )ªx* (]/]xi), i 51,...,3, forming an orthonormal basis forV3ªT(E3). Using the vertical
lift ~4!, we get a similar identification between vertical vectors onj 1(V4) and vectors inV3 ,
namely

V̂5Vi
]

] ẋi →v5Vie~ i ! . ~8b!

~b! A global sectionZI : j 1(V4)→ j 2(V4), assigning to eachzP j 1(V4) the unique elemen
ZI(z)P j 2(V4) expressing the instantaneous vanishing of the relative acceleration of the
material pointP in the kinetic statez. Given an elementwP j 2(V4), Eqs.~5! and~6! show that the
differencerZI(w)ªw2ZI(p(w))5( ẍi(w)2ZI

i (p(w)))]/] ẋi is a vertical vector field onj 1(V4);
this defines a maprZI: j 2(V4)→V( j 1(V4)) yielding a ~frame-dependent! identification of the
acceleration space ofP with V( j 1(V4)). It is easily seen that, in Cartesian coordinates, the co
ponentsZI

i of ZI are identically zero.
The correspondence between vertical vectors onV4 @respectively, onj 1(V4)# and vectors on

E3 allows one to introduce a fiber metricg on V4 @on j 1(V4)#. For this purpose, lettingĝ denote
the Euclidean metric ofE3 , we define

g~V,W!ªĝ~x* ~V!,x* ~W!! ;V,WPV~V4! @;V̂,ŴPV~ j 1~V4!!# ~9!

whence, in Cartesian coordinates,
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gi jªgS ]

]xi ,
]

]xj D5gS ]

] ẋi ,
]

] ẋ j D5ĝ~e~ i ! ,e~ j !!5d i j . ~10!

Although the scalar product~9! is defined through the relativization process induced byI, it may
be easily verified that it is actually invariant under arbitrary transformations of the fram
reference, thereby representing an intrinsic attribute of the configuration space–time ofP.

By means of the fiber metricg, we can invert the correspondences~8! between vectorsv
5v ie( i ) on V3 and vertical vectorsV5Vi(]/]xi) on V4 @or V̂5Vi(]/] ẋi) on j 1(V4)#, according to
the relation

gi j V
j5gS V,

]

]xi D5gS V̂,
]

] ẋi Dª~v,e~ i !! ~11a!

equivalent, in Cartesian coordinates, to

Vi5v i . ~11b!

Collecting all previous results, the geometrical description of the dynamics of a material poP
may be formulated as follows.

~i! Through Eq.~11!, we first associate with the vectorF on E3 , describing the total force
F5(Fi /m)e( i ) ~evaluated in the frame of referenceI and normalized by the inertial massm of P!,
the vertical vector fieldV on j 1(V4) given by

Vª
Fi

m

]

] ẋi . ~12!

~ii ! Then, the dynamical flow

ZªZI1V ~13!

provides a frame-independent representation of the dynamics ofP, in the sense that the integra
curves ofZ are the~first jet-extension of! the solutions of the motion ofP.

B. Continuous systems: Kinematics

The mathematical description of a continuum is generally based on the introduction o
different spaces: the first one, known asmaterial space, takes the physical properties of th
continuum into account, while the second one is the space–timeV4 , where the evolution of the
system is described.

The material space, indicated byB, is regarded as a differentiable manifold of dimensi
M<3; we shall denote byX1,...,XM a local coordinate system onB, with transformation laws

X̄A5X̄A~X1,...,XM !, A51,...,M . ~14!

The physical properties of the continuum will be taken into account by means of a meas
massm: B(B)→R1 , which assigns to each Borel setUPB(B) the total massm(U) contained in
it.

From now on, the evolution of the continuum will be described using the so-called ‘‘Lagr
ian viewpoint,’’ i.e., considering the congruence of world lines of the points ofB in space–time.
In this way, we shall be able to extend the ideas outlined in Sec. II A to the continuum cas

The following discussion will be made in a purely mechanical scheme, omitting from
analysis every consideration regarding energetic and thermodynamical aspects. The latter
taken into account introducing additional spaces for further dependent variables by Ca
product withV4 , and making use of suitable constitutive relations.
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The configuration of the continuum at any instantt is described by a mapw t :B
→S t,V4 ,S t representing the totality of simultaneous events at timet. Accordingly, the evolution
of the system is a mapw:R3B→V4 , assigning to eachtPR the configuration of the system a
that time.

Therefore, we may take as the basic environment for the description of the continuu
Cartesian productV43B, fibered both onV4 andR3B, and referred to local fibered coordinate
t, xi ,XA, subject to the transformation laws~1! and~14!. In this context, every evolutionw of the
continuum may be thought of as a sectionw:R3B→V43B, namely

w:H t5t
XA5XA

xi5w i~ t,XA!
. ~15!

In other words, the Lagrangian formulation of continuum mechanics may be viewed as the
of the sections of the fibered manifoldV43B→R3B.

Special relevance in the following will be held by some geometrical objects induced b
above-mentioned fibration.

To start with, taking Eqs.~1! and ~14! into account, it is easily seen that the vertical fib
bundleV(V43B,R3B), associated with the fibrationV43B→R3B, is canonically identified
with the fiber bundleV(V4)3B. In fact, denoting bypV4

:V43B→V4 and pB :V43B→B the
natural projections, the mapk:V(V43B,R3B)→V(V4)3B expressed as

k:Vi
]

]xi
uz

PVz~V43B,R3B!→S Vi
]

]xi
upV4

~z!

,pB~z!D PVpV4
~z!~V4!3B, ~16!

;zPV43B, provides the required identification.
Denoting byV( j 1(V4)3B,V43B) the vertical bundle associated with the fibrationj 1(V4)

3B→V43B, the same arguments, together with~an obvious extension of! the vertical lift ~4!,
provide a similar identification betweenV( j 1(V4)3B,V43B) andV( j 1(V4))3B.

Besides,V43B→R3B may be endowed with a fiber metric

GªpV4
* ~x* ~ ĝ!! ~17!

giving rise to the scalar productG(V,W)5ViWjG(]/]xi ,]/]xj )ªGi j V
iWj;V5Vi(]/]xi), W

5Wi(]/]xi)PV(V43B,R3B) @the reader may easily verify that the metric~17! is independent
of the choice of the frame of referenceI, and thus of the induced relativization processx#; once
again, using relation~4! as well as the stated identifications, we may liftG to a fiber metric on
j 1(V4)3B→V43B ~still denoted byG!, based on the scalar productG(V̂,Ŵ)5Gi j V

iWj;V̂

5Vi(]/] ẋi), Ŵ5Wi(]/] ẋi)PV( j 1(V4)3B,V43B).
In addition to this, the restriction of the mapx* 3 idB to V(V4)3B provides the following

correspondence:

x* 3 idB :~V,p!PV~V4!3B→~v,p!PV33B ~18!

with V andv related by Eq.~7!.
Conversely, taking the identification~16! into account and following the same argumen

stated at the end of Sec. II A, the fiber metric~17! allows one to associate with each pairv
5v ie( i ) ,p)PV33B a corresponding elementV5Vi(]/]xi)PVpB

21(p) (V43B,R3B) by means of

the relation

Gi j V
j5GS V,

]

]xi Dªĝ~v,e~ i !!, ~19!
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equivalent, in Cartesian coordinates, to

Vi5v i . ~20!

Lifting G to a fiber metric onj 1(V4)3B→V43B, the previous arguments may be restated tak
V( j 1(V4)) in place ofV(V4) andV( j 1(V4)3B,V43B) in place ofV(V43B,R3B). In particular,
the correspondence between elements ofV33B and ofV( j 1(V4)3B,V43B) is still expressed by
equations of the form~19! and ~20!.

The first jet bundle ofV43B→R3B, henceforth denoted byj 1(V43B,R3B), will be re-
ferred to local jet-coordinatest, XA,xi ,xA

i ,x0
i ~wherexA

i 5]w i /]XA, andx0
i 5]w i /]t), with trans-

formation laws

t̄ 5t1c, x̄i5 x̄i~ t,x1,x2,x3!, X̄A5X̄A~X1,...,XM ! ~21a!

x̄0
i 5

] x̄i

]t
1

] x̄i

]xj
x0

j , x̄A
i 5

] x̄i

]xj

]XB

]X̄A
XB

j . ~21b!

The comparison of Eq.~21b! with Eq. ~3! shows that there exists a natural projecti
t1

1: j 1(V43B,R3B)→ j 1(V4)3B, described in local coordinates as

t1
1:~ t,xi ,XA,x0

i ,xA
i !→~ t,xi ,XA,ẋi5x0

i !.

More generally, thekth jet-extension ofV43B→R3B will be indicated byj k(V43B,R3B) and
referred to local jet-coordinatest, XA,xi ,xa

i ,...,xa1 ,...,ak

i ~from now on, Greek letters run in the se

$0, 1, 2, 3%, with the subindex 0 representing the time derivative!.
As before, it is an easy matter to verify that the mapst r

k : j k(V43B,R3B)→ j r(V4)3B(;r
,k), defined by

t r
k :~ t,XA,xi ,xa

i ,...,xa1 ,...,ak

i !→~ t,xi ,XA,ẋi5x0
i ,ẍi5x00

i ,...!

are well-defined projections.
The previous mathematical environments allow one to geometrize the mechanical qua

involved in the description of the evolution of a continuum systemB.
Every sectionw:R3B→V43B, describing the evolution ofB in Lagrangian terms, may be

lifted to a sectionj 1(w):R3B→ j 1(V43B,R3B), assigning to each point (t,p)PR3B the
values of the section and of its tangent plane at~t,p!. As a result, the composite mapt1

1+ j 1(w) is
a section of the bundlej 1(V4)3B→R3B, representing the velocity distribution of the points
the continuum. The fibrationj 1(V4)3B→R3B will therefore be called thevelocity space of the
continuum.

A similar procedure allows one to lift the sectionw:R3B→V43B to the second jet bundle
j 2(V43B,R3B), thus generating a sectionj 2(w):R3B→ j 2(V43B,R3B), and then project it
into j 2(V4)3B by means oft2

2. The resulting sectiont2
2+ j 2(w):R3B→ j 2(V4)3B represents the

distribution of the accelerations of the points of the continuum. Accordingly, the fibered man
j 2(V4)3B→R3B will be called theacceleration space of the continuum.

More generally, the sectionw:R3B→V43B may be lifted to any jet-extensionj k(V4

3B,R3B), thereby generating a sectionj k(w), which, projected intoj 1(V4)3B ~by means of
t1

k! or into j 2(V4)3B ~by means oft2
k!, gives rise to corresponding sections

ẇªt1
k+ j k~w!5t1

1+ j 1~w!:R3B→ j 1~V4!3B,

ẅªt2
k+ j k~s!5t2

2+ j 2~w!:R3B→ j 2~V4!3B.

The situation is summarized into the commutative diagram
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j 1~V4!3B ←——

t1
k

j k~V43B,R3B!
——→

t2
k

j 2~V4!3B

ẇ↑ j k~w!↑ ẅ↑
R3B v R3B v R3B

. ~22!

C. Continuous systems: Dynamics

In this section, it will be shown how interactions may be embodied in the geometrical sc
developed so far.

As is well known, the forces acting on a physical systemB may be classified into:

~i! external forces, due to the interactions of the system with the external world; the
expressed as functions of the motion of the system and possibly of the time variablet;

~ii ! internal forces, describing the interactions among the different points of the system
generally represented by more complicated expressions.

The external forces will be modeled introducing thespecific density of external force
F: j 1(V4)3B→V3 , in such a way that, given a sectionw:R3B→V43B and a Borel setU
PB(B), the integral

E
U

~F+ẇ !m

represents the resultant of external forces~evaluated in the frameI! acting onU at time t, in the
‘‘kinetic state’’ ẇ(t,•).

Making use of Eqs. ~12! and ~13!, the specific density of external forcesF
5Fi(t,xi ,ẋi ,XA)e( i ) allows one to define a mapZext: j 1(V4)3B→ j 2(V4)3B, fibered onj 1(V4)
3B, as expressed by the commutative diagram

j 1~V4!3B
——→

Zext

j 2~V4!3B

id↓ ↓p

j 1~V4!3B v j 1~V4!3B
, ~23!

p denoting the natural projection. In local~Cartesian! coordinates, taking Eqs.~12! and~13! into
account,Zext is represented as

Zext~z,p!5S ]

]t
1 ẋi~z!

]

]xi 1Fi~z,p!
]

] ẋiU
z

,XA~p! D . ~24!

Equation~24! clearly shows that the mapZext may be thought as a family of dynamical flows, on
for eachpPB.

Composing the map~23! with the projectiont1
k , we may regard external forces as a map~still

denoted by! Zext: j k(V43B,R3B)→ j 2(V4)3B, depending at most on first-order time derivativ
and not on material ones. We remark that this property is invariant under arbitrary fibered
dinate transformations.

Internal forces are quite different in nature. In fact, the internal forces do not only depe
the kinetic state and~possibly! on time, but also on thematerial derivativesand mixedtime-
material derivativesxa1 ,...,as

i for s up to an orderk, determined by the physical properties of th

system; obviously, the time derivative order is limited to the first one, so expressing the con
that forces cannot depend on accelerations. The reader may easily verify that such a cond
actually invariant under arbitrary coordinate transformations inV43B.
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In the present scheme, internal forces may be geometrized introducing thespecific density of
internal forces f: j k(V43B,R3B)→V3 ; given w and U as above, the map f
5 f i(t,XA,xi ,xa

i ,...,xa1 ,...,ak

i )e( i ) is such that the integral

E
U

~ f+ j k~w!!m

yields the resultant of the internal forces acting onU at time t in the configurationw(t,•). In
general,f is deduced as the divergence of a suitable stress tensor associated with the syst

Once again, still taking Eqs.~12! and ~13! into account, we may define a mapZint: j k(V4

3B,R3B)→ j 2(V4))3B, fibered overj 1(V4)3B, according to the commutative diagram

j k~V43B,R3B!
——→

Zint

j 2~V4!3B

t1
k↓ ↓

j 1~V4!3B v j 1~V4!3B
. ~25!

If zP j k(V43B,R3B), the mapZint is expressed locally as

Zint~z!5S ]

]t
1x0

i ~z!
]

]xi 1 f i~z!
]

] ẋiU
t

1
k~z!

,XA~z!D . ~26!

Collecting all previous results, internal and external forces together give rise to a
Z: j k(V43B,R3B)→ j 2(V4)3B, fibered overj 1(V4)3B; as mentioned previously,Z only de-
pends on the variablesxa1 ,...,as

i (s<k) in which the time derivative order is limited to the first on

In local ~Cartesian! coordinates we have the representation

Z~z!5S ]

]t
1x0

i ~z!
]

]xi 1~Fi1 f i !~z!
]

] ẋiU
t

1
~k!~z!

,XA~z!D . ~27!

The map~27! will be called thedynamical map.
In continuum mechanics, Newton’s second law is written for each subsetUPB(B) as follows:

E
U

~w00~ t,XA!2~F1f !~ t,XA,wa
i ,...,wa1 ,...,ak

i !!m50. ~28!

The arbitrariness in the choice ofU,B allows one to regard Eq.~28! as an equation for the
integrand. This is the standard procedure used to convert the integral formulation of the equ
of continuum mechanics into the differential one. It will be systematically adopted in all su
quent developments.

In order to investigate the geometric interpretation of Eq.~28! we start with the following
Proposition II.1: Let Q→M and Q8→M 8 be fibered manifolds; suppose that Q→M is an

affine bundle and denote by V→M the corresponding modeling vector bundle. If f,g:Q8→Q is a
pair of fibered morphisms, then the difference f2g:Q8→V is a bundle morphism, according t
the following commutative diagram:

Q8 ——→
f 2g

V

↓ ↓
M 8 ——→ M

~29!

The proof is totally straightforward and is omitted.
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Applying Proposition II.1 to the mapsZ and t2
k we have that the difference (Z2t2

k) is a
bundle morphism such that diagram

j k~V43B,R3B!
——→

Z2t2
k

V~ j 1~V4!!3B

t1
k↓ ↓

j 1~V4!3B v j 1~V4!3B

~30!

is commutative. In local~Cartesian! coordinates, ifzP j k(V43B,R3B), we have

~F2t2
k!~z!5S ~Fi1 f i2x00

i !~z!
]

] ẋiU
t

1
k~z!

,XA~z!D . ~31!

As a consequence, the geometric counterpart of Eq.~28! is finding the set of all points belongin
to (Z2t2

k)21($0%3B); the latter singles out a submanifold ofj k(V43B,R3B) which, by defi-
nition, may be regarded as the partial differential equation

~Fi1 f i !~ t,XA,wa
i ,...,wa1 ,...ak

i !2w00
i 50 ~32!

of orderk for the unknownw:R3B→V43B.
Finally, Proposition II.1 implies that the differenceZ12Z2 between two different dynamica

maps is a map (Z12Z2): j k(V43B,R3B)→V( j 1(V4))3B, fibered overj 1(V4)3B. This fact
will be important in the description of constraints on the continuum.

D. Purely kinetic constraints

As is well known, the presence of constraints acting on a given systemB is expressed, in
mathematical terms, by corresponding restrictions imposed on the possible evolutions ofB, i.e., on
the set of sectionsw:B3R→V43B.

In the subsequent discussion, we shall concentrate on the study of a particular kind o
straint henceforth referred to aspurely kinetic, expressed as restrictions of the form

gs~ t,xi ,x0
i !50, s51,...,r , r P$1,2,3% ~33!

simultaneously imposed onall particlespPB.
Equation~33! may be viewed alternatively as the Cartesian representation of a submanif

j 1(V43B,R3B), or of a submanifold ofj 1(V4) ~identifying x0
i with ẋi!.

In the latter case, under the regularity assumption ranki]gs/] ẋi i5r , Eq. ~33! defines an
embeddingi :A→ j 1(V4), fibered overV4 , summarized into the commutative diagram

A →
i

j 1 ~V4!

p↓ ↓p ,

V4 v V4

~34!

p denoting the natural projection.
The geometry of theconstraints manifoldA has been thoroughly investigated in the literatu

~see, e.g., Refs. 1 and 2!. For the present purposes, it is sufficient to recall that the push-forw
of the embeddingi is an injection of the vertical bundleV(A), associated with the fibrationA
→V4 , into the vertical bundleV( j 1(V4)). For later use, taking the identification~5! into account,
we also denote byt(A)ªT(A)ù j 2(V4) the intersection between the tangent space onA and the
second-jet space of the fibrationV4→R.
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By means of the submanifoldA we may construct—in an obvious way—a second embedd
i :A3B→ j 1(V4)3B, fibered overV43B. Once again, the situation is summarized into the co
mutative diagram

A3B →
i

j 1~V4!3B

p↓ ↓p

V43B v V43B
. ~35!

Let us denote byV(A3B,V43B) the vertical bundle associated with the fibrationA3B→V4

3B. Then, through~the vertical lift of! Eq. ~16!, we have the natural identificationV(A3B,V4

3B).V(A)3B, systematically used in the following.
Moreover, the push-forward ofi is an injection ofV(A)3B into V( j 1(V4))3B. In view of

this, identifyingV(A)3B with its imagei * (V(A))3B,V( j 1(V4))3B, the bundleV(A)3B is
easily recognized to coincide with the totality of vertical vectorsXi(]/] ẋi) satisfying the condi-
tions

Xi
]gs

] ẋi 50, ;s51,...,r . ~36!

Now, if we identify the submanifoldA3B with its imagei (A)3B, j 1(V4)3B, the results stated
in Sec. II B allow one to regardA3B itself as thespace of admissible velocitiesof B, each point
zPA3B actually representing an admissible kinetic state of a particle of the continuumB.
Accordingly, every sectionw:B3R→V43B consistent with the constraints~33!, i.e., satisfying
the requirement

gs~ t,w~ t,XA!,ẇ~ t,XA!!50, ;~ t,XA!PR3B,;s51,...,r , ~37!

will be calledadmissible. Then, the totality of evolutions ofB allowed by the constraints coincide
with the class of admissible sections ofV43B→R3B. The clear meaning of the requirement~37!
is that the image of the first jet-extension of each admissible section under the projectiont1

k has to
be contained inA3B.

For later use, we notice that, up to the assignment of initial dataw i(0,X), ẇ i(0,X) s.t.
gs(0,w(0,X),ẇ(0,X))50;XPB, Eq. ~37! is mathematically equivalent to the ‘‘tangency’’ re
quirement

]gs

]t
1

]gs

]xi ẇ i1
]gs

] ẋi ẅ i50, ;~ t,XA!PR3B;;s51,...,r . ~38!

III. SOLVING THE DYNAMICS

A. The constitutive characterization of iper-ideality

Within the geometrical framework outlined in Sec. II, the implementation of the equation
motion in the presence of constraints requires the introduction of a rulex assigning to every free
dynamicsẐ a correspondingeffective dynamics Zªx(Ẑ) expressing through Eq.~32! the actual
evolution of the constrained system.

To start with, let us denote byj k
A(V43B,B3R) the submanifold ofj k(V43B,B3R) ~locally!

described by Eq.~33!, or, equivalently, the pull-back ofj k(V43B,B3R) over A3B, expressed
by the commutative diagram
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j k
A~V43B,B3R! →

i
j k~V43B,B3R!

↓ ↓r 1
k

A3B →
i

j 1~V4!3B
. ~39!

From the considerations in Sec. II, taking Eqs.~27!, ~35!, and ~38! explicitly into account, it is
easily seen that the constrained dynamicsZ has to be a differentiable mapZ: j k

A(V43B,B3R)
→t(A)3B. Within this scheme, it is clear that the required rulex has to be considered as th
constitutive characterizationof the constraints. Therefore, such a rulex represents an additiona
piece of information, related to the physical properties of the devices involved in the imple
tation of the constraints, which has to be included among the geometrical attributes of the s
In the subsequent discussion we shall characterize a special kind of purely kinetic cons
defined, as we shall see, by a suitable choice of the rulex.

First of all, we observe that, due to Proposition II.1, the difference

fªx~ Ẑ!2Ẑ ~40!

between the effective dynamics and@the restriction toj k
A(V43B,B3R) of# the unconstrained

dynamics, defines a differentiable mapf: j k
A(V43B,B3R)→VA( j 1(V4))3B, whereVA( j 1(V4))

denotes the restriction toA of the vertical bundleV( j 1(V4)).
In view of the results stated in Sec. II B, the mapf has a natural interpretation in terms

reactive forces: recalling Eq.~20!, the connection between the mapf and the distributionF
5F ie( i ) of specific density of reactive forces is expressed by

f i5F i . ~41!

Now, indicating by pt(A) the projection pt(A) :t(A)3B→A3B, it is easily seen that—
independently of the choice of constitutive characterizationx—the reactive forcef necessarily
satisfies the inequality

uf uzu5ux~ Ẑ! uz2Ẑuzu>min$uY2Ẑuzu, YPpt~A!
21 ~t1

k~z!!% ~42!

for all zP j k
A(V43B,B3R), the normu•u being the one induced by the fiber metricGi j . Indeed,

by construction,x(Ẑ) uz belongs topt(A)
21 (t1

k(z)).
Borrowing from Ref. 1, we may then state the following
Definition III.1: A set of purely kinetic constraints is said to be iper-ideal if and only if

equality sign identically holds in Eq. (42), i.e., if the corresponding constitutive characterizatix
satisfies

ux~ Ẑ! uz2Ẑuzu5min$uY2Ẑuzu, YPpt~A!
21 ~t1

k~z!!% ~43!

for all zP j k
A(V43B,B3R).

We are now going to see that the constitutive characterization of iper-ideality is essen
equivalent to the requirement that the constraints appearidealwith respect to any infinitesimal par
of continuum B, ideality being understood in the sense of Gauss’ principle of mini
constraint.1,2

Indeed, taking the definition of the metricGi j as well as Eq.~41! into account, Eqs.~40! and
~43! mean that the motion of any particle of continuumB is selected among the totality o
kinematically admissible evolutions as the one for which the quantity

ufu25uFu25ua2F2fu2 ~44!
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attains a minimum at any instantt ~a andF1f denote, respectively, the acceleration of the parti
and the specific density of active forces!. As predicted, this is precisely a restatement of Gau
principle for any infinitesimal part ofB, regarded as the search, within the class of admiss
accelerations, for that valuea which minimizes the expression~44! at each instantt.

Once again borrowing from the discrete case1 and extending the arguments to the pres
context, Gauss’ criterion of minimal constraint may be made equivalent to the principle of v
work; as we shall see, this is achieved embodying the so-called Chetaev’ conditions in
definition of the virtual displacements for any particle ofB.

In fact, for eachzP j k
A(V43B,B3R), the image space

rz~ Ẑ!ª$Y2ẐuzuYPpt~A!
21 ~t1

k~z!!%

is an affine subspace of the vertical spaceVt
1
k(z)( j 1(V4)3B,V43B) (.V( j 1(V4))3But

1
k(z)), mod-

eled onVt
1
k(z)(A3B,V43B) (.V(A)3But

1
k(z)). For this reason, there exists an element ofmini-

mal norm in rz(Ẑ), identified with the unique elementNzPrz(Ẑ) orthogonal to Vt
1
k(z)(A

3B,V43B).
Repeating the reasoning for eachzP j k

A(V43B,B3R), we may define a unique ma
P(Ẑ): j k

A(V43B,B3R)→t(A)3B such thatP(Ẑ) uz2Ẑuz5Nz;z. It is clear that the constitutive
characterization~43! is nothing but the ansatzx(Ẑ)ªP(Ẑ).

In terms of reactive forces, this implies that the iper-ideality is mathematically equivale
the orthogonality condition

G~fz ,X!50, ;XPVt
1
k~z!~A3B,V43B!,;zP j k

A~V43B,B3R!. ~45!

Recalling Eqs.~19!, ~36!, and~41!, the scalar product~45! takes the form

F iX
i50, ~46!

F i and Xi denoting, respectively, the~covariant! components of the specific density of reacti
force F and the components of any vertical vectorX satisfying the relationsXi(]gs/] ẋi)50 s
51,...,r .

Then, performing the formal substitutionXi→dw i and defining the virtual displacementdw
ª(dw1,dw2,dw3) for any particle ofB, from Eq.~46! we recover the content of the principle o
virtual work

F•dw50,

for every virtual displacementdw obeying the Chetaev conditions (]gs/] ẋi)dw i50
s51,...,r .1,2,16–18

B. The equations of motion

In this section we shall examine the construction of the equations of motion for a contin
B subject to iper-ideal purely kinetic constraints.

First of all, it is worth observing that the identical vanishing of the scalar productG(f,X)
5Gi j f

iXj5f iX
i50 for all vertical vectorsX5Xi(]/] ẋi)PV(A3B,V43B) implies the relations

f i5ls(]gs/] ẋi) or, equivalently,f i5ls(]gs/] ẋ j )Gi j for some functionslsPF( j k
A(V43B,B

3R)), because of the tangency conditionXi(]gs/] ẋi)50 s51,...,r .
This fact, together with Eq.~40!, allows one to represent the constrained dynamical maZ

ªx(Ẑ) in the form

Z5Ẑ1ls

]gs

] ẋi Gi j
]

] ẋ j . ~47!
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In comparison with Eq.~30!, Eq. ~47! yields the corresponding constrained equations of mo
for B, expressed as

ẅ i5Fi1 f i1ls

]gs

] ẋ j Gi j . ~48!

The final step is the determination of the multipliersls . This is easily achieved imposing th
‘‘tangency’’ condition ~38!, resulting in

]gg

]t
1

]gg

]xi ẇ j1~Fi1 f i !
]gg

] ẋi 1ls

]gs

] ẋ j Gi j
]gg

] ẋi 50, g51,...,r . ~49!

In view of the regularity assumptioni]gs/] ẋi i5r , ensuring the nonsingularity of the matri
Gsg

ª(]gs/] ẋ j )Gi j (]gg/] ẋi), Eq. ~49! may be solved uniquely for thels’s, yielding the explicit
expressions

ls5GsgF2S ]gg

]t
1

]gg

]xi ẇ i D2~Fi1 f i !
]gg

] ẋi G , ~50!

Gsg denoting the inverse of the matrixGsg.
Finally, we get the required equations of motion for the system, simply inserting the r

~50! into Eq. ~48!.

IV. VARIATIONAL FORMULATION

The aim of this section is to derive the constrained equations of motion~48!, ~38! from a
suitable variational problem, basing our discussion on the usual variational formulation for g
field theories. For simplicity, we focus our attention on first-order variational calculus only.
tensions to higher order cases are essentially straightforward and are left to the reader.

First of all, we consider the totality of local sectionsw:R3B→V43B and denote it byG. As
is well known,G may be endowed with a smooth infinite dimensional manifold structure. Giv
section wPG, we shall call deformation of w a differentiable mapc:R3B3(2s,s)→V4

3B(sPR) satisfying the conditions

c~•,0!5w~• !, cj~• !ªc~•,j!PG, ;jP~2s,s!. ~51!

In view of Eq.~51!, a deformation ofw defines a curve inG, passing throughw for j50. Then, the
tangent vector toc at w identifies an elementVPTwG, defined by the relation

V~• !ª
dc

dj
~•,j! uj50 . ~52!

From Eq.~52! it is easily seen thatV has the nature of a vertical vector field along the sectionw,
namely of a mapV:R3B→Vw(R3B)(V43B,R3B) such that the following diagram

R3B →
V

V~V43B,R3B!

↓ id ↓p

R3B →
w V43B

~53!

is commutative,p denoting the canonical projection.
Any mapV as in diagram~53! will be called aninfinitesimal deformationof w.
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Now, let L be a differentiable (M11)-form on j 1(V43B,R3B), semibasic with respect to
the fibration j 1(V43B,R3B)→R3B. In local coordinates, L5L(t,XA,xi ,xa

i !
3dt`dX1`¯`dXM.

For any compact domainD,R3B, let us denote byGD the totality of sectionswPG defined
in some open neighborhoodU,R3B of D. By means ofL, we may then define a real-value
functional I D on GD , according to the relation

I D~w!ªE
D

j 1~w!* ~L!, ;wPGD . ~54!

Given a sectionwPGD and an infinitesimal deformationVPTwG, we shall callfirst variation of
I D at w with respect toV ~Gateaux derivative atw in the directionV! the expression

dI D

dV
~w!ª

d

dj ED
j 1~cj!* ~L! uj50

, ~55!

cj being any deformation ofw ‘‘tangent toV’’ @i.e., satisfying Eq.~52!#.
Following the usual terminology, we shall call thecritical point of I D any sectionwPGD

making the functionalI D stationary, i.e., satisfying the condition

dI D

dV
~w!50

for all infinitesimal deformationsVPTwG.
By definition, the standard variational problem associated with the (M11)-form L—usually

called theLagrangian—consists in the search for sectionswPG which are critical points of all
functionalsI D ~54! for all compact domainsD, with respect to all infinitesimal variations vanish
ing at the boundary ofD, namely such that

dI D

dV
~w!50, ; compact domainD,R3B,;VPTwG s.t. Vu]D50. ~56!

For convenience, we introduce the notationX0
ªt and refer the manifoldsR3B and j 1(V4

3B,R3B) to local coordinatesXa andXa, xi , xa
i , a50,...,M , respectively. We also denote b

dSªdX0`¯`dXM the local volume element inR3B.
Taking the condition at the boundaryVu]D50 explicitly into account, it is a straightforward

matter to get the well-known expression14,19

dI D

dV
~w!5E

D
F ]L

]xi2daS ]L

]xa
i D GVi+ j 2~w!dS , ~57!

where the da’s indicate the formal derivatives da :F( j 1(V43B,R3B))→F( j 2(V43B,R3B))
with respect to anyXa, i.e., da f 5] f /]Xa1(] f /]xi)xa

i 1(] f /]xb
i )xba

i ; f 5 f (Xa,xi ,xa
i ).

Because of the arbitrariness in the choice of the compact domainsD as well as of the
infinitesimal deformationsV, it follows from Eq. ~57! that a sectionw is a solution of the varia-
tional problem~56! if and only if it satisfies the well known Euler–Lagrange equations

F ]L

]xi2daS ]L

]xa
i D G + j 2~w!50, i 51,...,3. ~58!

As mentioned previously, our aim is now to set up a variational formulation for the equatio
motion ~48!, ~38! of a continuum systemB subject to purely kinetic constraints.
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To this end, let us suppose the existence of a LagrangianL which describes the dynamica
behavior of the system in the absence of kinetic constraints, by means of the corresp
Euler–Lagrange equations~58!.

Borrowing from the arguments developed for the discrete case,20,21the idea is not to study the
stationarity of functionals~54! with respect to all infinitesimal deformationsV vanishing at the
boundary, but only with respect to the ones satisfying the Chetaev conditions

]gs

] ẋi Vi50, s51,...,r . ~59!

We shall call the latter aconstrainedvariational problem.
The solutions of~57! and ~59! may be obtained by means of the usual Lagrange multipli

method~see, e.g., Ref. 22!, from which we derive the existence of some functionsls such that a
sectionw is a solution of the constrained variational problem if and only if it satisfies the equa

F ]L

]xi2daS ]L

]xa
i D G + j 2~w!5ls

]gs

] ẋi + j 2~w!, i 51,...,3, ~60!

clearly identical to Eq.~48!. The argument is straightforward. The details are left to the read
In general, Eq.~60! alone is not sufficient to single out any solutionw. In fact, in addition to

~the significant components of! the sectionw, we need to determine the multipliersls , too. To
restore determinacy, some additional conditions are required.

In this specific case, the significant ansatz is to impose that the solutionsw satisfy the ‘‘tan-
gency’’ requirement~38!. As already pointed out, this, together with the assignment of consis
initial data, is mathematically equivalent to requiring consistency with the equations of const
~33!, and it is actually sufficient to determine the unknownsls . We underline that these supple
mentary conditions concern exclusively the solutions, and not their deformations.

We have thus shown that the admissible evolutions of the systemB can be characterized as th
solutionsw:R3B→V43B of a suitable constrained variational problem. An explicit example w
be given in Sec. V.

Remark:We notice that the complementary case, consisting in the study of constrain
pending on material derivatives only, has been considered in Ref. 23. Although the authors
geometrical framework quite similar to the one proposed here, they deduce the equati
motion through a variational principle which, in the case of finite dimensional systems subj
nonholonomic constraints, reduces to vakonomic mechanics and thus yields incorrect equa
motion.

For this reason, the approach proposed in Ref. 23 does not seem appropriate to de
purely kinetic constraints, contrary to the one proposed here based on Gauss’ and D’Alem
principles. Therefore, as mentioned by Marsden and co-workers,23 it appears that a distinction
between time and material partial derivatives is needed.

However, a unified approach would be desirable and, in our opinion, it may be implem
in the framework of infinite-dimensional manifolds. A first step in this direction has been ma
Ref. 24.

V. EXAMPLES

A. Rotating continuum

Let us denote by$kI 1 ,kI 2 ,kI 3% an orthonormal basis in the physical space of a given fram
referenceI. We consider a continuumB subject to a kinetic constraint which keeps it rotati
aroundkI 3 with a constant angular velocityvI 5vkI 3 , so that the tangential velocityvI T(p) of each
point pPB is proportional to the distance from the axis of rotation. The tangential velocit
meant as the component of the velocity of eachp which is tangent to the circle centered onkI 3 ,
lying on the plane orthogonal tokI 3 and passing throughp at each instantt.
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If w:R3B→V4 describes the evolution of the continuum in the frame of referenceI, we
define:
~1! RI 5RI (t,XA) the radius vector, which connects the pointpPB having coordinates$X1,...,XM%
and the axis of rotation, and lies in the plane orthogonal tokI 3 containingp;
~2! R̂5(1/r)RI wherer5Aw1

21w2
2;

~3! l̂ 5kI 3`R̂.
If w5S i 51

3 w ikI i we have

RI 5w1kI 11w2kI 2 , l̂ 5
1

r
~2w2kI 11w1kI 2!.

We can describe the constraint by means of

vuRI u5uẇ• l̂ u. ~61!

This means that, given a circle centered onkI 3 , lying on a plane orthogonal tovI , the tangential
component of the velocity of each of its points is proportional to the product of the radius o
circle by the magnitudev of the angular velocity.

Equation~61! may be rephrased as

v~w1
21w2

2!5uw1ẇ22w2ẇ1u.

We thus define the constraints in implicit form by means of the relation

gªuw1ẇ22w2ẇ1u2v~w1
21w2

2!50. ~62!

Denoting by (F1 ,F2 ,F3) the components of the specific density of internal and exte
forces together and recalling Eqs.~48!–~50! we have

l5
1

r2 @2v~w1ẇ11w2ẇ2!2n~F1w22F2w1!#, ~63!

where

n5
uw1ẇ22w2ẇ1u
w1ẇ22w2ẇ1

.

The sign ofn is uniquely determined by the choice of initial data. The reader may easily v
that the first term on the right-hand side of~63! is the part of reactive force which annihilate
Coriolis force, while the second balances the tangential component of real~internal and external!
physical forces.

From all the above-mentioned considerations, we obtain that the equations of motion f
constrained continuum are

5
ẅ15F12

w2

r2 @2vn~w1ẇ11w2ẇ2!2~F1w22F2w1!#,

ẅ25F21
w1

r2 @2vn~w1ẇ11w2ẇ2!2~F1w22F2w1!#,

ẅ35F3 .

~64!

We finally observe that Eq.~64! represents every continuum subject to the constraint describe
Eq. ~62!; different continua correspond to different choices of the functionsFi .
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B. Vibrating string

In a Cartesian frame of reference, let us consider a homogeneous elastic string with fixe
moving without friction on a horizontal plane. In addition to this, we require that the string m
transversal vibrations only.

Although both restrictions are positional in nature, we shall deal with them as~integrable!
kinetic constraints; actually, the aim is to provide an example in which the iper-ideality cond
turns out to be a common physical requirement. Moreover, we shall discuss the problem us
variational formulation.

To this end, denoting byl 0 the rest length of the string, we identify the material spaceB of
the system with the closed interval@0,l 0#,R and refer it to a coordinatej. Moreover, we denote
by m0 the ~constant! density of the string. Finally we indicate byx1, x2, x3 the Cartesian coor-
dinates in the physical space of the given frame chosen in such a way that the horizonta
coincides withx350 and the ends of the string belong to thex1 axis. Accordingly, the jet-
coordinates will be indicated byt,j,xi ,xt

i ,xj
i ,xtt

i ,xtj
i ,xjj

i ,... .
In this way, the imposed constraints are, respectively, expressed by

g1
ªxt

350, g2
ªxt

150. ~65!

As far as the constraintg150 is concerned, the iper-ideality condition is easily recognized
reproduce the requirement of absence of friction.

The implementation of a variational formulation requires the construction of a suitable
grangian for the systemB. To this purpose, we consider the string as a sequence of material p
all connected to the neighbors by springs; in other words, given any pair of pointsP1 and P2

belonging to the string and having distancedj in the rest configuration, we endow them with
potential energy equal to the one of a spring of rest lengthdj and elastic constantx/dj, namely

dU52
x

2dj
~ds2dj!252

x

2 S ds

dj
21D 2

dj,

whereds is the actual length of the piece of string betweenP1 andP2 . The constantx depends
on the structural properties of the string; in factx5ES, whereE is the Young’s modulus andS is
the~constant! section of the string. Therefore, by an obvious limit processdj→0, the total internal
potential energy of the system is given by the integral

U52
x

2 E
0

l 0S ds

dj
21D 2

dj.

On the other hand, the kinetic energy of the spring is expressed as

T5
1

2 E0

l 0
m0(

i 51

3

~xt
i~ t,j!!2dj.

Collecting all the results and taking the weight potential into account, we may define the Lag
ian

L5S m0

2 (
i 51

3

~xt
i !22

x

2 SA(
i 51

3

~xj
i !221D 2

2m0gx3D dt∧dj ~66!

viewed as a two-form onj 1(V43@0,l 0#,R3@0,l 0#), semibasic with respect to the fibratio
j 1(V43@0,l 0#,R3@0,l 0#)→R3@0,l 0#.

The Euler–Lagrange–Chetaev equations~60! associated with the Lagrangian~66! assume the
form
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m0w tt

1 5
]

]j FxSA(
i 51

3

~wj
i !221D wj

1

A( i 51
3 ~wj

i !2G1l1 ,

m0w tt
2 5

]

]j FxSA(
i 51

3

~w3
i !221D w3

2

A( i 51
3 ~wj

i !2G ,

]
3 w3

~67!
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m0w tt
3 5

]j FxSA(
i 51

~wj
i !221D j

A( i 51
3 ~wj

i !2G2m0g1l2 .

Imposing the tangency conditions~38!, which in the present case are

w tt
1 50, w tt

3 50 ~68!

directly from Eq.~67! we get the following expressions:

5 l152
]

]j FxSA(
i 51

3

~wj
i !221D wj

1

A( i 51
3 ~wj

i !2G ,

l25m0g2
]

]j FxSA(
i 51

3

~wj
i !221D wj

3

A( i 51
3 ~wj

i !2G
for the multipliersl. Recalling Eq.~48!, the latter provide the explicit description of~the density
of! the reactive forces.

Choosing the initial data and the boundary conditions consistent with the constraints, n

w1~0,j!5
l

l 0
j, w2~0,j!5c~j!, w3~0,j!50,

w t
1~0,j!50, w t

2~0,j!5ċ~j!, w t
3~0,j!50,

w1~ t,0!50, w2~ t,0!50, w3~ t,0!50,

w1~ t,l 0!5l , w2~ t,l 0!50, w3~ t,l 0!50,

Eq. ~68! is solved by

w1~ t,j!5
l

l 0
j, w3~ t,j!50. ~69!

If we replace Eq.~69! in the second equation of~67!, we get the partial differential equation

m0w tt
2 5

]

]j F xSAS l

l 0
D 2

1~wj
2!221D wj

2

AS l

l 0
D 2

1~wj
2!2G , ~70!

which rules the evolution ofw2. Under the approximation of small deformations, we may neg
all the quadratic terms inwj

2 in Eq. ~70!, thus obtaining the well-known D’Alembert equations

w tt
2 5

x

m0
S 12

l 0

l
Dwjj

2

for the linear elastic string.
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On a general link between anomalous diffusion
and nonextensivity
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Stochastic processes of systems with composable entropy measures are studied.
The processes are described by Fokker–Planck equations which are nonlinear with
respect to their probability densities and whose diffusion coefficients are derived
from the entropy measures in questions. In nonextensive~extensive! systems
anomalous~normal! diffusion is found. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1421062#

I. INTRODUCTION

Anomalous diffusion is a phenomenon which can be found in various fields of physi1–3

ranging from surface diffusion4 and diffusion through porous media5 to plasma physics.6 Anoma-
lous diffusion can be described by non-Fickian linear diffusion equations,7,8 continuous time
random walks,9–12 fractional Fokker–Planck equations,13–17 and nonlinear diffusion
equations.5,18–24The focus of the present article is on nonlinear diffusion equations which h
recently been discussed in the context of nonextensive thermostatistics. The interest in suc
between anomalous diffusion and nonextensivity25 has been fueled by a work of Plastino an
Plastino.26 They derived a nonlinear Fokker–Planck equation~NLFPE! whose stationary solution
agrees with the equilibrium distribution obtained by maximizing the nonextensive entropy
posed by Tsallis27–32 under the constraints of canonical ensembles. Note that in this article
linear ~or generalized! Fokker–Planck equations are evolution equations for probability dens
which are nonlinear with respect to their probability densities as opposed to conventional Fo
Planck equations which are linear with respect to their probability densities.33–44 The NLFPE
proposed by Plastino and Plastino and modifications of it have been extensively studied
literature.45–59 In particular, for the entropy functional

S@P#ªBF E
2`

`

S̃~P~x!!dxG ~1!

acting on the probability densityP(x) and involving the outer functionB(z)PC`(R) and the
entropy kernelS̃PC`(0,̀ ), the NLFPE

]

]t
P~x,t !52

]

]x FM $P~x,t !%S h~x!P~x,t !2
r@P#

a

]

]x
L̂@S̃$P~x,t !%# D G ~2!

was derived.51 Here,P(x,t) describes the time-dependent process probability density,h(x) is the
drift, M $•% is a function or functional ofP(x,t), the factor 1/a with a.0 corresponds to the
overall fluctuation strength, the functionalr@•# is defined by

r@y#ª
dB~z!

dz U
*

2`
` S̃(y(x))dx

, ~3!

a!Electronic mail: t.frank@fbw.vu.nl
3440022-2488/2002/43(1)/344/7/$19.00 © 2002 American Institute of Physics
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and the differential operatorL̂ is given by

L̂@x~y!#ªx~y!2y
dx~y!

dy
. ~4!

It can be shown that the stationary solution of the NLFPE~2! agrees with the equilibrium distri
bution derived by maximizing the entropy~1! under the constraints of canonical ensembles.51 The
nonlinear diffusion equation corresponding to the NLFPE~2! can be obtained by puttingM[1
andh(x)[0. In this case, we get

]

]t
P~x,t !5

r@P~x,t !#

a

]2

]x2 L̂@S̃$P~x,t !%#. ~5!

Note that in contrast to conventional nonlinear diffusion equations5,18–24 but in line with the
Fokker–Planck equation approach, the density functionP(x,t) is normalized to unity@i.e.,
*P(x,t)dx51]. In the following, we consider continuous solutionsP(x,t) which are infinitely
differentiable on their domains of nonvanishing function values. That is, we assume th~i!
P(x,t)>0, ~ii ! P(x,•)PC0(R), and ~iii ! P(x,•)PC`(supp$P(x,•)%) with supp$P(x,•)%
ª$x:P(x,•).0%. Recently, several special cases of Eq.~5! have been examined and explic
solutions have been derived. For the nonextensive entropy proposed by Tsallis anomalou
sion was found.46,48,49,53,59For the extensive Renyi entropy normal diffusion and for the non
tensive Sharma–Mittal entropy anomalous diffusion was found except for the limiting ca
which the Sharma-Mittal entropy reduces to the Renyi entropy.53 For other generalized entrop
measures,30,51,60–65such a discussion has not been carried out so far. Similarly, until now, a ge
link between nonextensivity~extensivity! of entropy functionals and anomalous~normal! diffusion
which can be applied to all kinds of entropy measures has not been established. In the foll
we will derive such a link for composable entropy functionals~Ref. 32, Sec. II.1!, that is, for
functionals satisfying

S@W#5S@R1#1S@R2#1N~S@R1#,S@R2# !, ~6!

where the probability densitiesR1(x) and R2(x) describe two statistically independent su
systems yielding the joint probability densityW(x,y)ªR1(x)R2(y). Here, N(u,v)PC2(R
3R) denotes an arbitrary function of the entropiesS@R1# andS@R2# of the subsystems. Note tha
the commutativity of the multiplication@i.e., R1(x)R2(y)5R1(y)R2(x)] implies the symmetry
of N @i.e., N(u,v)5N(v,u)]. If N depends onS@P#, we will call the functionalS a nonextensive
functional. More precisely,S is nonextensive if]N/]uuu5S[P(x,t)]Ó0 for P(x,t) given by Eq.~5!.
In contrast, ifN does not depend onS@P#, we will refer to S as an extensive functional. In
particular, forN5const, we can introduced the shifted functionalS85S1N, which satisfies the
well-known relation of extensive entropiesS8@R1R2#5S8@R1#1S8@R2# ~cf., e.g., Refs. 66–68!.

II. NONEXTENSIVITY AND ANOMALOUS DIFFUSION

From Eq.~5! we can derive the evolution equation of the mean^x& ~which is d̂ x&/dt50) and
the second moment^x2& ~which is d̂ x2&/dt52 a21r* L̂ dx). Using Eq.~4!, for the variances2

ª^x2&2^x&2 we then obtain

~7!

Consequently, if the functionalY @P# is constant with respect to time we have normal diffusi
@i.e., s2(t)}t]. Otherwise, we find anomalous diffusion@i.e., s2(t)}” t]. We now deriveY from
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the assumed nonextensivity/extensivity property~6!. To this end, letR1(x) be defined on the rea
line andR2(y) be defined on the interval@0,a# with a.0. Furthermore, letR2(y) denote the
uniform distribution on@0,a#, that is,R2(y)[1/a. Then, from Eqs.~1! and ~6! it follows

BFaE
2`

`

S̃S R1~x!

a D dxG5S@R1#1BFaS̃S 1

aD G1NS S@R1#,BFaS̃S 1

aD G D . ~8!

Next, we differentiate Eq.~8! with respect toa and puta51. Thus, we obtain

Y @R1#5C1
]N~S@R1#,v !

]v U
v5C

~9!

with

CªS S̃~1!2
dS̃~z!

dz
U

z51
D dB~z!

dz U
z5S̃(1)

. ~10!

Consequently, the variances2(t) satisfies the evolution equation

d

dt
s2~ t !5

2C

a
1

2

a

]N~S@P#,v !

]v v5C ~11!

with P(x,t) determined by the diffusion equation~5!. Since C does not depend on the tim
variablet, we deal with normal diffusion if the second term on the right hand side of Eq.~11! does
not depend on time. Otherwise, we find anomalous diffusion. Therefore, at issue is howS@P# and
]N(S@P#,v)/]vuv5C evolve as functions of time. From Eq.~5! it follows that S@P# satisfies the
relation

d

dt
S@P#5

1

a
~r@P# !2E

2`

`

P~x,t !S ]

]x

dS̃~z!

dz
U

z5P(x,t)
D 2

dx>0 ~12!

@see Ref. 52, Eq.~6! for M[1#. We require now that the entropy functionalS is sensitive to
unlikely events. More precisely, we require the existence of an interval (0,l # of finite lengthl ~i.e.,
l .0) such that the derivative dS̃(z)/dz maps all elements of (0,l # to nonvanishing function value
~i.e., ' l :;zP(0,l #:dS̃(z)/dzÞ0). We find that for entropies of this kind the expression

]

]x

dS̃~z!

dz
U

z5P(x,t)

~13!

can have at most a finite number of zeros forxPI k , where the intervalsI k are defined byI k

5@xl
k ,xr

k# with xl
k,xr

k , I k mutually disjoint, and 0,P(z,t)< l for all zPI k . That is,]dS̃/]xdz
Ó0 for z5P(x,t) and xPI k . Since we restrict our considerations to continuous probab
densities which decay to zero in a smooth fashion~cf. Sec. I!, the existence of such intervals
guaranteed. From Eq.~12! we can then read off that

d

dt
S@P#>

1

a
~r@P# !2(

k
E

I k

P~x,t !S ]

]x

dS̃~z!

dz
U

z5P(x,t)
D 2

dx.0. ~14!

In sum, entropies which are sensitive to unlikely events are strictly monotonically incre
functions for the diffusion processes defined by Eq.~5!. We are now in the position to examine th
evolution of]N(S@P#,v)/]vuv5C . Differentiating this expression with respect to the time varia
t yields
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d

dt

]N~S@P#,v !

]v U
v5C

5
]2N~u,v !

]u]v U
v5C,u5S[P]

dS@P#

dt
. ~15!

Using this result and differentiating Eq.~11! with respect tot, we obtain

~16!

Therefore, we have normal diffusion@i.e., d2s2(t)/dt250# if and only if

]2N~u,v !

]u]v U
v5C,u5S[P]

50. ~17!

Since we found in Sec. I that extensivity and nonextensivity, respectively, can be defined by
of the derivative]N(u,v)/]uuu5S[P] , we can now draw our final conclusions~which are only
valid within the NLPFE framework and for composable entropies, of course!.

~i! Nonextensive systems with]N(u,v)/]vuv5C50 and extensive systems show normal d
fusion. Normal diffusion only occurs in nonextensive systems with]N(u,v)/]vuv5C50
and extensive systems.

~ii ! Nonextensive systems with]N(u,v)/]vuv5CÞ0 show anomalous diffusion. Anomalou
diffusion only occurs in nonextensive systems satisfying]N(u,v)/]vuv5CÞ0.

Roughly speaking, nonextensivity implies anomalous diffusion and extensivity implies no
diffusion. But there is an exception to this rule: in nonextensive systems for which the first
partial derivative ofN(u,v) with respect tou vanishes foru5C normal diffusion can also occur

III. CONCLUDING REMARKS

Let us conclude with a few remarks. First, the theory developed here applies to the
entropy,69,70 the Sharma–Mittal entropy,71 and the entropy proposed by Tsallis.27 For the Renyi
entropy we findN[0, which implies that the corresponding nonlinear diffusion equation~5!
describes normal diffusion. The two other entropies are composable and nonextensive and

~18!

whereqÞ1 measures the degree of nonextensivity.27,53 SubstitutingN(u,v)5(12q)uv into Eq.
~16!, we obtain

d2

dt2 s2~ t !5
2~12q!

a

dS@P#

dt
Þ0 for qÞ1, ~19!

which illustrates that for these entropies the nonlinear diffusion equation~5! describes anomalou
diffusion. Consequently, we reobtain the results previously derived in Refs. 46, 48, 49, 53, a
Note that in these studies explicit solutions or scaling arguments have been used, whereas
exploited the very definition of nonextensive entropies.

Second, for semi-nonextensive systems~i.e., systems for which the energy is an extens
variable whereas the entropy is a nonextensive one! Abe derived explicit expressions for th
nonlinearityN @cf. Eq. ~6!# of composable entropies.72 Such systems can exhibit an equilibriu
state only for entropy measures satisfying
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]S@W5R1R2#

]S@R1#
5r@W#g̃~S@R1# !h̃~S@R2# !

⇒ ]S@W5R2R1#

]S@R2#

5r@W#g̃~S@R2# !h̃~S@R1# !

5
]S@W5R1R2#

]S@R2#
, ~20!

wherer@•# is defined by Eq.~3! ~and coincides with the functionk in Ref. 72! andg̃(z) andh̃(z)
denote differentiable functions. It can be shown that in the absence of an outer function@i.e., for
r[1, B(z)5z] this decomposition implies

S@W#5S@R1#1S@R2#1lS@R1#S@R2#, ~21!

wherel is a separation constant.72 Obviously, Eq.~21! is a generalization of Eq.~18! ~which has
been derived for two particular generalized entropies only! and the evolution of the variance ca
be read off from Eq.~19! by replacing 12q with l. Consequently, the nonlinear Fokker–Plan
approach to stochastic processes employed in the present study predicts the occurrence of
lous diffusion in semi-nonextensive systems with composable entropies that can be cast i
form ~1! with B(z)5z. Moreover, Abe suggested to describe the entropy of black holes
composable measure withrÓ1 andN(u,v)52Auv. In this case, Eq.~16! reads

d2

dt2 s2~ t !5
2

aAC

d

dt
AS@P#, ~22!

which describes anomalous diffusion provided thatS is sensitive to unlikely events~i.e., dS.0, cf.
Sec. II!. We can easily verify that a simple example of a composable entropy withN(u,v)
52Auv is given bySª@SBGS#

2, whereSBGS denotes the Boltzmann–Gibbs–Shannon entro
SBGS@P#ª2*P ln Pdx.66–68Then, we obtainB(z)5z2 and~on account of the sensitivity ofSBGS

to unlikely events! dS.0.
In the absence of an outer functionB @i.e., for B(z)[z] we usually findS̃(1)50. The reason

for this is that many entropy functionalsS are derived from entropiesSdª( i 51
M S̃(pi)

5( i 51
M pi s̃(pi) for discrete sets of probabilitiespi . In these cases, by convention, one definess̃(z)

~information of an event with probabilityz) in such a way that it vanishes in the case of the cert
event with probability one, that is,s̃(1)50⇒S̃(1)51s̃(1)50. For B(z)[z and S̃(1)50 the
constantC readsC52dS̃(z)/dzuz51 . In this special case, the evolution equation of the varia
reads

d

dt
s2~ t !52

2

a

dS̃~z!

dz
U

z51

1
2

a

]N~S@P#,v !

]v U
v52dS̃(z)/dzuz51

. ~23!

In particular, for the Boltzmann–Gibbs–Shannon entropyS5SBGS52*P ln Pdx we obtain
dS̃(z)/dz5212 ln z and the well-known relation ds2(t)/dt52a21⇒s2(t)52t/a.

Finally, the derivation presented in the preceding section does not hold for diffusion proc
with infinite variances such as Le´vy distributions, cf., e.g., Refs. 3 and 10. In this context, lim
tations of the approach to anomalous diffusion by means of nonlinear Fokker–Planck equat
combination with the calculation of process variances were illustrated in detail in Refs
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and 55. In order to circumvent such problems, one may follow Tsallis and Bukman who
duced the notion of pseudo anomalous diffusion for Le´vy distributions and examined the evolutio
of normalization constants instead of process variances.59
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Fluctuation operators and spontaneous symmetry
breaking

Manfred Requardta)

Institut für Theoretische Physik, Universita¨t Göttingen,
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We develop an alternative approach to this field, which was to a large extent
developed by Verbeureet al. It is meant to complement their approach, which is
largely based on a noncommutative central limit theorem and coordinate space
estimates. In contrast to that we deal directly with the limits ofl -point truncated
correlation functions and show that they typically vanish forl>3 provided that the
respective scaling exponents of the fluctuation observables are appropriately cho-
sen. This direct approach is greatly simplified by the introduction of a smooth
version of spatial averaging, which has a much nicer scaling behavior and the
systematic development of Fourier space and energy-momentum spectral methods.
We both analyze the regime of normal fluctuations, the various regimes of poor
clustering and the case of spontaneous symmetry breaking or Goldstone phenom-
enon. © 2002 American Institute of Physics.@DOI: 10.1063/1.1424474#

I. INTRODUCTION

In the past decade in a series of papers Verbeure and co-workers developed a beaut
ingeneous framework to study so-called macroscopic fluctuation phenomena in systems an
ous regimes of quantum statistical mechanics~see the cited literature!. The approach is to a larg
extent based on a quantum variant of thecentral limit theoremand is mainly performed in rea
~i.e., configuration! space. Among other things, the general goal is to study the limit behavio
correlation functions of so-calledfluctuation observables, i.e., appropriately renormalized ave
ages of microscopic observables, averaged over volumes,V, which approach the whole space,Rn,
say. Typically, one arrives, depending on the type of clustering of the microscopicl -point func-
tions, at certain simple limit algebras as, e.g.,CCR.

We approach the field from a slightly different angle. In a first step we choose an
averaging procedure, which avoids sharp volume cut-offs and,a fortiori, has a very nice and
transparent scaling behavior. This is then exploited in the following analysis which systema
develops so-called Fourier-space and energy-momentum spectral methods of observab
correlation functions. We consider it to be an advantage that the calculations turn out
relatively transparent and lead in a direct way to the desired results.

We first treat the case ofnormal fluctuationsandL1-clustering. We show that all the truncate
l -point functions vanish forl>3 while they approach a finite, nontrivial limit forl 52. The
analysis is done both for the (k50)-and the (kÞ0)-modes. We emphasize that the calculations
net-momentum different from zero also remain very simple. A variant of the method is
applied to the case ofL2-clustering.

In the second part of the article we embark on the analysis of fluctuations in the prese
spontaneous symmetry breaking (ssb). In a first step we prove some general results in the con
of ssband theGoldstone phenomenon. We then address the problem of macroscopic fluctuati
within this context. Among other things, we give a general and rigorous proof that the
fluctuations are always classical for temperature states~a phenomenon already observed by Ve
beure et al. in various simple models!. The article ends with a treatment of extremely po

a!Electronic mail: requardt@theorie.physik.uni-goettingen.de
3510022-2488/2002/43(1)/351/22/$19.00 © 2002 American Institute of Physics
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clustering, which can be controlled by a new method we develop in the last section. To sum
think that in our view the two different frameworks seem to neatly complement each othe
should lead to further interesting results if combined.

II. THE SCENARIO OF NORMAL FLUCTUATIONS

The following analysis works for statistical equilibrium states and/or for vacuum state
quantum field theory. To avoid constant mentioning of the respective scenario we are a
working in, we usually treat equilibrium~i.e., KMS! states, to fix the framework. Now, letV be
the vacuum or equilibrium state~rather its GNS representation; usually we work within a concr
Hilbert space,H!. As an abstract state we denote it byv. Expectations of observables are writte
as

^A&5v~A!5~V,AV! ~1!

with A taken from thelocal algebra, A0,A, the latter one being thequasi-localnorm closure of
A0 . We assumeV to becyclic with respect toA0 or A. That is, we assume

A0•V5H. ~2!

There are certain differences as to the~assumed! locality properties of the dynamics betwee
~non-!relativistic statistical mechanics and relativistic quantum field theory~RQFT!. Denoting the
time evolution~acting on the algebra of observables! by a t , we are confronted with the following
phenomenon.

Observation 2.1: In RQFT part of the usual framework is the assumption

a t :A0→A0 , ~3!

while in statistical mechanics (due to weaker locality behavior) we have in the generic case

a t :A→A ~4!

with A0 usually not left invariant as the observables will typically develop infinitely extended.
Furthermore, we assume once and for all that our system is in apure, translation invariant

phase, that is,V is extremal translation invariant under the space translations~which can, as in the
case of lattice systems, also be a discrete subgroup!. There can, of course, exist several coexist
pure phases at the same external parameters as in the regime below a phase transition th
These assumptions imply that we can expect certaincluster properties, i.e., decay ofcorrelations
~see e.g., Ref. 1!.

A. Definition of ordinary fluctuation operators

We begin by defining thefluctuation operatorsin the normal situation as it was done in
Ref. 2.

We assume, for the time being,L1-clustering for the two-point-function, that is,

E u^A~x!B&Tudnx,`A,BPA ~5!

with A(x) the translate ofA and

^AB&T5^AB&2^A&•^B&. ~6!

Once and for all we assume, to simplify notation, in our particular context that the occu
observables are normalized to^A&50 unless otherwise stated.

Definition 2.2: We define the normal (finite volume) fluctuation operators as
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AV
F
ª1/V1/2

•E
V
A~x!dnx5:1/V1/2

•AV . ~7!

In a next step one wants to give sense to these objects in the limitV→`. From theL1-condition
we, however, infer

u~AV
FV,BV!u<1/V1/2E

Rn
u~A~x!V,BV!udnx→0. ~8!

Hence,AV
FV→0 on a dense set. Furthermore, we have

~AV
FV,AV

FV!51/VE
V
E

V
~A~x!V,A~y!V!dxdy51/VE

V
dxS E

V2x
^A* A~y2x!&d~y2x! D .

~9!

This is less than or equal to

~1/V!•V•sup
x

S E
V2x

u~ ...!u D<E
Rn

uF~y2x!udn~y2x!,` ~10!

@for convenience we sometimes denote a general two-point function byF(x2y)#. This suffices to
prove weak convergence to zero forAV

FV on the total Hilbert spaceH.
Remark 2.3: We note that this proves also the well-known normal-fluctuation result^AV

•AV&&V in the L1-case. Under certain well-specified conditions the fluctuations can eve
weaker than normal. If, e.g., QV is the local integral over a conserved quantity, we proved
divergence significantly weaker than;V (cf. Ref. 3). But, in general, the local fluctuations w
diverge in the limit V→` in contrast perhaps to ordinary intuition, even if the quantity is globa
conserved due to quantum fluctuations (see also the section about spontaneous symmetr
ing).

A weaker than normal divergence can occur in the following situation. An asymptotic be
ior ;V does only prevail if*VF(u)duÞ0 in the limit V→`. On the other side such correlatio
functions tend to oscillate about zero~for physical reasons; there are, e.g., usually prefer
relative positions in, say, a quantum liquid!. In other words, while

E F~u!du50 ~11!

may seem to be rather ungeneric at first glance, it can nevertheless happen in a specific
The general situation is analyzed in the above reference; certain examples of better than
fluctuations were also found by Verbeureet al. in, e.g., Ref. 4~see also Ref. 5!.

For the fluctuation operators themselves we have, due to locality, forA,BPA0 ,

@AV ,B# independent ofV for V.V0.VB ~12!

for someV0 which contains the localization regionVB for BPA0 . We then have

lim
V

~AV
F
•CV,BV!5 lim

V
~@AV

F ,C#V,BV!1 lim
V

~AV
FV,C* BV!. ~13!

We have already shown that the second term goes to zero. In the first term the comm
becomes

@AV
F ,C#5V21/2

•@AV0
,C#, ~14!
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and hence the first term goes also to zero. In case we assume onlyAPA, a furtherL1-condition
for the three-point function is needed to arrive at the same result. AsA0V is assumed to be dens
in H and iAV

Fi,` uniformly in V, we have the following.
Proposition 2.4: L1-clustering implies that

AV
F→0 weakly on H, iAV

FVi,` uniformly in V, ~15!

but iAV
FVi bounded away from zero in general. That is, AV

F does not converge strongly to ze
and, a fortiori, there is no convergence in norm.

This clearly shows that, in order to have nontrivial limit operators, one has to leave
original Hilbert space of microscopic observables and has to define or construct an entire
representation living on a different state.

B. A smoothed version of fluctuation operators

Since we employ in the following so-calledFourier methodsand related calculational tools,
is advantageous to change to a smoother version of fluctuation operators. As everybody
sharp volume cut-offs are both a little bit artificial and technically nasty, since they may some
lead to nongeneric or spurious effects. In other branches of rigorous statistical mechan
axiomatic quantum field theory volume integrations have therefore frequently been emula
implemented in a slightly different way~see, e.g., Ref. 6!.

Two choices have basically been in use with the second version having much nicer pro
in several respects as we will explain below. Instead of integrating over a sharp volumV,
centered, e.g., around the coordinate origin, one integrates the shifted observable,A(x), over a
smooth test function localized basically inV but having smooth tails.

Remark:As V we choose in the following a ball centered at the origin with radiusR and let
R go to infinity.

Definition 2.5: Two admisssible families of test functions are the following ones: f R(x)>0
smooth with

f R~x!ªH 1 for uxu<R,

0 for uxu>R1h,
~16!

or

f R~x!ª f ~ uxu/R! with f ~s!5H 1 for uxu<1,

0 for uxu>2.
~17!

Note that the latter choice has much nicer behavior under Fourier transform while working
the Fourier transforms of the former version or, e.g., the indicator function of the volumeV is
quite cumbersome!. On the other hand, the latter version has tails which are also scaled.

Lemma 2.6:

f̂ R~k!5const•Rn
• f̂ ~R•k!, ~18!

where here and in the following ‘‘const’’ denotes an~in this context! irrelevant numerical factor
which, a fortiori, may change in the course of a calculation. With the help of this smea
functions we now define the following.

Definition 2.7 (smooth volume integration): We redefine the fluctuation operators in the
lowing way:

AR
F
ªR2n/2

•E A~x!• f R~x!dnx ~19!

with fR , unless otherwise stated, the family given in the second example above (rememb^A&
ª0).
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III. THE LIMITING CASE FOR NORMAL FLUCTUATIONS

In order to arrive at a rigorous definition of fluctuation operators in a certain limit state we
follow a line of arguments which may complement the treatment of Verbeureet al. in several
respects. We will study directly the macroscopic limit of then-point functions with the help of
certainmomentum space methods. As they are perhaps not so common in statistical physics
will give the technical details next.
A. Some generalities

Any n-point ~correlation! function of the kind^A1(x1)¯An(xn)& with the Ai(xi) the trans-
lates of the observablesAi ~which may also contain an implicit time variablet i which is, however,
kept fixed in the following! is written asW(x1 ,...,xn). With the stateV being translation invarian
we have

W~x1 ,...,xn!5W~x12x2 ,...,xn212xn!. ~20!

To express cluster properties in a clear way, we introduce the so-calledtruncated correlation
functionsvia the following recursion relation:

W~x1 ,...,xn!5(
part

)
Pi

WT~xi 1
,...,xi k

!, ~21!

where the sum extends over all partitions of the set$1,...,n% into subsetsPi with the elements in
each subset ordered asi 1, i 2¯, i k . The first elements of the recursion are

W~x!5WT~x!50 in our case, ~22!

WT~x1 ,x2!5W~x1 ,x2!2W~x1!W~x2!. ~23!

Observation 3.1: In the truncated correlation functions the vacuum state, ground sta
equilibrium state,V, has been eliminated in a symmetric way, so that we have, in a sense
specified,

WT~x1 ,...,xn!→0 f or supuxi2xj u→`. ~24!

In this section we assume the followingcluster property:

WT~x1 ,...,xn!PL1 in the variables $x12x2 ,...,xn212xn%. ~25!

From the above we see that the original hierarchy ofn-point functions can be reconstructe
from the new hierarchy of truncatedn-point functions, which have more transparent cluster pr
erties. TheL1-condition allows us to Fourier transform theWT(x1 ,...,xl) and we get from trans-
lation invariance:

const•E W̃T~p1 ,...,pl !•e2 i (pixi) dpi5WT~x1 ,...,xl !

5WT~x12x2 ,...,xl 212xl !

5constE ŴT~p1 ,p11p2 ,...,p11¯1pl 21!

•d~p11¯1pl !e
2 i (pixi) dpi

5constE ŴT~q1 ,...,ql 21!e2 iS i 51
l 21qiyi)

i 51

l 21

dqi

~26!
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with

yiªxi2xi 11 , qi5(
j 51

i

pj , i<~ l 21!. ~27!

The functional determinant det(]q/]p) is one and we can regardŴT either as a function of theqi ’s
or thepi ’s. We hence have the following lemma.

Lemma 3.2: As a Fourier transform of a L1-function, ŴT(p1 ,...,pl 21)5ŴT(q1 ,...,ql 21) is a
continuous and bounded function which decreases at infinity in the q-variables.

B. The „kÄ0…-modes

We now study the limit of truncatedl -point functions with the entries being fluctuatio
operatorsAR

F , more precisely their Fourier transforms, i.e.,

^AR
F~1!¯AR

F~ l !&T5const•Rln/2
•E f̂ ~Rp1!¯ f̂ ~2R@p11¯1pl 21# !•ŴT~p1 ,...,pl 21!) dpi

5const•Rln/2
•R2( l 21)n

•E f̂ ~p18!¯ f̂ ~2@p181¯1pl 218 # !

•ŴT~p18/R,...,pl 218 /R!) dpi8 . ~28!

HereŴ is continuous and bounded and thef̂ ’s are of rapid decrease. Hence we can perform
limit R→` under the integral and get the following theorem.

Theorem 3.3: The expression̂AR
F(1)¯AR

F( l )&T scales as;R(22 l )n/2. This implies that for
l .2 the above limit is zero; for l52 the limit is a finite number bounded away from zero
general. In other words, we have

lim
R→`

^AR
F~1!¯AR

F~ l !&T50 for l .2 ~29!

and

lim
R→`

^AR
F~1!¯AR

F~ l !&5 lim
R→`

(
part

)
$ i j %

^AR
F~ i !AR

F~ j !&. ~30!

The relation between the original microscopic system~A,v! and the coarse-grained system
fluctuation operators is a little bit subtle. Note thatvF , the limit state to be constructed, can n
longer be considered as a state or something like that on the original algebra nor can the fl
tion operators be considered as a representation of, say,A. One aspect of the impending problem
can perhaps best be seen by realizing that, e.g.,

~A•B!V
FÞAV

F
•BV

F , ~31!

which pertains also in the limit. That is, in a sense to be defined, we have

~A•B!FÞAF
•BF, ~32!

the same holding in general for all the higher products. This is one source of nonuniquen
there is no invariant discrimination between an observable regarded as a single object to be
and as a product of other observables, where now each factor has to be scaled separat
appropriate point of view has to be a different one@as has also been emphasized by Verbe
et al., cf. e.g., Ref. 2~b!, p. 540f and private communication#.
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The picture remains relatively clear for the intermediate scales,V,`. We have a start system
~A,v!, labeled by, say,V50. On every scaleV we have a new algebra,A V

F ~actually a subalgebra
of A!, generated by the observablesAV

F , APA @including arbitrary finite products (A1¯An)V
F#. If

we prefer to consider this algebra on scaleV as a new abstract algebra~i.e., forgetting about the
underlying finer algebraA!, we get also a new, coarse-grained state via the identification

vV
F~PAV

F,i !ªv~PAV
F,i !. ~33!

~A related philosophy was expounded by Buchholz and Verch in, e.g., Ref. 7 within the cont
the algebraic analysis of ultra-violet behavior in quantum field theory.!

The map

RV :A→A V
F ~34!

can be viewed as kind of arenormalization map, which however, doesnot preserve the algebrai
structure~i.e., the algebras are in general notisomorphic!. Furthermore, one gets a ‘‘new’’ dynam-
ics on this algebra by defining

a t
V~AV

F!ª~a t~A!!V
F . ~35!

Remark 3.4: In our contexta t is assumed to commute with the space translations or wi
corresponding lattice version, that is, we havea t(AV

F)5(a tA)V
F . (Furthermore, it may turn out to

be reasonable to scale the time variable on the lhs also.)
On the other hand, in order to construct the limit theory itself, one can proceed in a sl

different direction. The above limits ofn-point functions define a consistent hierarchy of ne
n-point functions which then allow us to define anewlimit system via the so-calledreconstruction
theorem~for a pendant in quantum field theory, see, e.g., Ref. 8!. Put differently, we define limit
objects,$Ai

F%, the so-called fluctuation operators, which live in a new Hilbert space built upon
new state,vF , defined by the limits:

vF~A1
F
¯An

F!ª lim
R→`

^A1,R
F

¯An,R
F &5(

part
)
$ i j %

vF~Ai
F
•Aj

F!. ~36!

Note, however, that the so-calledGelfand-ideal, I F , is large, that is, there are many elemen
of A which are mapped to zero by this limit with

I Fª$A;vF~~AF!* •AF!50%. ~37!

This is, of course, typical for such kinds ofmean-values, as, e.g., all space-translates ofA yield the
same limit element. Shifting one of the observables in the abovel -point functions by, say,ai yields
an extra factoreipiai in the Fourier transform which, after the above coordinate tranformation

over intoeipi8/R•ai which goes to one. Summing up, we have the following.
Conclusion 3.5: With the help of Eq. (36) we construct a new limit system, consisting o

algebra of fluctuation operators, AF , and the limit statevF . The well-known GNS constructio
(see e.g., Ref. 9) allows us to construct the corresponding Hilbert-space representation wi

vF~A1
F
¯An

F!5~VF ,A1
F
¯An

FVF! ~38!

(where, by abuse of notation, we do not discriminate between operators and their equiva
classes on the rhs).

As all the n-point functions decay into a product of two-point functions, all the commuta
are c-numbers:

@AF,BF#5vF~@AF,BF# !. ~39!
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The system of fluctuation operators is a quasi-free system (cf. Ref. 10).
Taking now self-adjoint elements one can, as in Ref. 2, represent the new system as a

sentation of theCCR over the real vector space of s.a. operators. Our scalar product, induc
the hierarchy ofn-point functions, can be split in the following way:

~AFVF ,BFVF!5Re~¯ !1 i Im~¯ !5:sF~AF,BF!1~ i /2!sF~AF,BF!, ~40!

vF~@AF,BF# !5sF~AF,BF!, ~41!

where sF defines asymplectic form. The Weyl-operators, eiAF
with AF s.a., fulfill the CCR

relations

vF~eiAF
!5e21/2sF(AF,AF), ~42!

eiAF
•eiBF

5ei (AF1BF)
•e2 i /2sF(AF,BF). ~43!

In our context the first equation can, e.g., be verified as follows: Only the 2n-point functions are
different from zero. On the lhs we hence have

vF~eiAF
!5( ~21!n/~2n!! •vF~@AF#2n!. ~44!

It remains to count the number of partitions of a 2n-set into two-sets. This number is (2n)!/2n

•n!. In ~44! we now get forAF s.a. on the rhs

(
n

1/n! S 2
1

2
•vF~AFAF! D n

5e21/2sF(AFAF). ~45!

h

The above general cluster result of the limitn-point functions makes the study of the lim
time evolution relatively straightforward. In a first step it suffices to study the two-point functi
We define the time evolution in the limit theory by

vF~AF~ t8!•BF~ t !!ª limv~AV
F~ t8!•BV

F~ t !!5 limv~A~ t8!V
F
•B~ t !V

F!. ~46!

On the limiting GNS–Hilbert space constructed above we now get a boundedsesquilinear form
(x,y(t)) which, by standard results, yields a bounded operatorUF(t) implementing the time
evolution. Here we use that the limitn-point functions are products of two-point function
Furthermore, we infer with the help of the above limit process that

~Ut
Fx,Ut

Fy!5vF~¯ !5 limv~¯ !5~x,y!. ~47!

In other words, we arrive at the following conclusion.
Theorem 3.6:The preceding construction yields a strongly continuous unitary time evolu

on the limiting GNS–Hilbert space.
Another point worth mentioning~since it might perhaps be overlooked! is the question of the

nontriviality of the commutators

@AF,BF#5vF~@AF,BF# !. ~48!

In principle it could happen that all the expectation values on the rhs vanish. In that case th
algebra would beAbelianand the fluctuationsclassical. In a more general context~cf., e.g., Ref.
7! this problem is more complicated. In our situation this question can, however, be answe
a rather straightforward way. We have
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lim
V

v~@AV
F ,BV

F# !5 lim
V

v~@AV ,V21
•BV# !. ~49!

For A,BPA0 , i.e., local, the rhs equals

lim
V

v~@AV ,B# !. ~50!

We know candidates which lead to a vanishing of the limit for allBPA0 . For A chosen s.a. thes
are the generators ofconserved symmetries, written

QªE A~x!dnx. ~51!

Usually they are assumed to commute with the time evolution, expressed asQ(t)5Q, hence the
above limit would also be zero on the full quasi-local algebra. This situation, more specifical
case ofspontaneous symmetry breaking (ssb)and Goldstone phenomenon, will be dealt with in
more detail in Sec. V. In any case, as conserved symmetries are usually not so numerous,
presume that, in the generic case, not all of these commutators will be zero.

For A,B not necessarily strictly local our above more general formalism is useful. With

v~A~x!B!5FAB~x!, v~BA~x!!5GAB~x!, ~52!

the vanishing of the commutator would imply

05@AF,BF#5 lim
R

Rn
•E u f̂ ~Rp!u2~ F̂AB~p!2ĜAB~p!!dnp

5 lim
R
E u f̂ ~p!u2~ F̂AB~p/R!2ĜAB~p/R!!dnp

5~ F̂AB~0!2ĜAB~0!!•E u f̂ ~p!u2dnp. ~53!

by the theorem of dominated convergence~note that we are in theL1-situation!. Hence we have
the following result.

Proposition 3.7:

@AF,BF#50⇔F̂AB~0!5ĜAB~0!, ~54!

that is,

E FAB~x!dnx5E GAB~x!dnx ~55!

or

E ~V,@A~x!,B#V!dnx50, ~56!

which is the same result as in the strictly local case.

C. The „kÅ0…-modes

Up to now only the (k50)-modes of fluctuation operators, i.e., limVV2n/2
•*VA(x)dnx, have

been studied. For various reasons it is useful to have corresponding formulas at hand for fl
                                                                                                                



e

and
space

antum
ound is

nalysis

of
2)

der

360 J. Math. Phys., Vol. 43, No. 1, January 2002 Manfred Requardt

                    
tion observables containing a certain net-momentum. This problem was studied by Verbeuret al.
in, e.g., Ref. 11 and the results were applied in, e.g., Ref. 12 in the analysis ofGoldstone modes.
In the original~real-space! approach the necessary calculations turned out to be quite involved
far from being simple. This is another case in point to demonstrate the merits of our Fourier
scaling methods.

Instead of the original scaling operators,AV
F or AR

F , we now study theirkÞ0-variants,AR
F(k).

We begin with a technical lemma.
Lemma 3.8:

Â~k!ª~2p!2n/2E eikxA~x!dnx ~57!

is an operator-valued distribution. [We use the convention fˆ (k)5(2p)2n/2*e2 ikxf (x)dnx.#
Remark:For a systematic use and proofs of such energy-momentum techniques in qu

statistical mechanics we refer to, e.g., Ref. 13, where also some more mathematical backgr
provided.

Integrating now overeiqx
• f R(x), we get theq-mode fluctuation operators:

AR
F~q!ªR2n/2E A~x!eiqxf R~x!dnx

5Rn/2E Â~k1q! f̂ ~Rk!dnk

5Rn/2E Â~k! f̂ ~R~k2q!!dnk. ~58!

We can now proceed in exactly the same way as above in the case of the zero-mode a
and calculate the truncatedl -point functions^AR

F(1,q1)¯AR
F( l ,ql)&

T ~where the indices 1 tol
label different observables!. The only thing that changes are the test functions, i.e.,f R(x)
→eiqkx

• f R(x). We arrive at the conclusion:
Theorem 3.9 „q-mode fluctuation operators…: In the case of L1-clustering all truncated

correlation functions vanish for l>3 and the l-point functions are again sums of products
two-point functions. The concrete form of the limit-two-point functions is given in formula (6.

If we calculate the limit-two-point functions explicitly, we get

^AR
F~q1!•BR

F~q2!&T5RnE ^Â~k11q1!B̂~k21q2!&T
•d~k11q11k21q2!• f̂ ~Rk1! f̂ ~Rk2!dk1dk2

5RnE ^Â~k11q1!B̂~2~k11q1!!&T
• f̂ ~Rk1! f̂ ~2R~k11q11q2!!dk1

5RnE ^Â~k!B̂~2k!&T
• f̂ ~R~k2q1!! f̂ ~2R~k1q2!!dk. ~59!

With k8ªR(k2q1) we arrive at

E ŴT~k8/R1q1!• f̂ ~k8! f̂ ~2k82R~q11q2!!dk8. ~60!

By assumptionŴT is in L1 and f̂ is of rapid decrease, so the limit can again be carried out un
the integral and we have the following observation.

Observation 3.10: For q11q2Þ0 it holds
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lim
R

^AR
F~q1!•BR

F~q2!&T50. ~61!

For q5q152q2 we get on the other side,

lim
R

^AR
F~q!•BR

F~2q!&T5ŴT~q!•E f̂ ~k! f̂ ~2k!dk. ~62!

In other words, the limit tests the spectral momentum of the two-point function.

IV. THE CASE OF L 2-CLUSTERING

Before we embark on an investigation of the situation in the regime where phase trans
vacuum degeneracy and/or spontaneous symmetry breaking~ssb! prevail, we briefly address the
case where the clustering is weaker thanL1 but still L2, say. Our above Fourier space approa
can also easily handle this more singular situation. We hence assume now that the tru
l -point functions cluster only in theL2-sense in the difference variables.

Now we cannot conclude that the Fourier transform is bounded and continuous, but we
it is again anL2-function. We repeat the first steps of the above calculation with, however, an
scaling exponent, a, which we leave open for the moment.

Definition 4.1: In the general case we define fluctuation operators by

AR
F
ªR2a

•E A~x! f R~x!dnx. ~63!

We get

^AR
F~1!¯AR

F~ l !&T5const•Rl (n2a)
•E f̂ ~Rp1!¯ f̂ ~2Rql 21!•ŴT~q1 ,...,ql 21!) dqi , ~64!

where the$pi% are linear functions of the$qi% as described earlier. We now apply the Cauch
Schwartz inequality:

u lhsu<const•Rl (n2a)F E ~ f̂ ~Rp1!¯ f̂ ~2Rql 21!!2) dqi G1/2

•F E ~ŴT~q1 ,...,ql 21!!2) dqi G1/2

. ~65!

In the first integral on the rhs we make again a variable transformation fromqi to qi8ªRqi ,
yielding an overall scaling factor

Rl (n2a)
•R2( l 21)n/2. ~66!

We again want the limits of the two-point functions to be both finite and nontrivial,
different from zero in general.

Proposition 4.2: To make the rhs of (65) finite in the limit for l52 the maximala to choose
is

3n24a50, i .e., a5~ 3
4!n. ~67!

For a general l this leads to the scaling exponent(n2( 1
2) l •n)/2, which is negative for l>3.

Hence, all higher truncated l-point functions vanish in the limit.
However, to guarantee that the result is really nontrivial, we have to analyze the situat

more detail as the above estimate is only an inequality. In the case ofL1-clusteringa5n/2 was

appropriate. The largest value which can occur in theL2-case is the above maximala5( 3
4)n. If

we want to avoid that the two-point functions vanish in the limit we have to choose in theL2-case
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~ 1
2!n,a<~ 3

4!n ~68!

depending on the concrete decay of the two-point functions in configuration space. We se
evidently, the situation is now less canonical as compared to theL1-case.

Remark:A related situation~on a lattice! was analyzed by Verbeureet al. in Ref. 14, where a
clustering weaker thanL1 was considered with, however, the additional input that the local a
bras, sitting at the points of the lattice, form a finite dimensionalLie algebra. In that case, suitable
scaling exponents are chosen to render the autocorrelation functions finite and nonvan
while, on the other side, the finiteness of the limit three-point functions has to be imposed
extra assumption. Under this proviso one gets the existence of a limit Lie algebra, but never
results are only partial while perhaps, on the other side, being also more interesting.

We do not want to dwell too much on this point at the moment, as progress seems to b
certain extent, model dependent. Furthermore, we develop a different approach in the last
which is able to cope with any kind of poor cluster behavior.

If we want to guarantee thea priori existence or vanishing of the truncated three-po
functions with the help of ourL2-estimate~65!, we have to restrict the chosena in the following
way.

Corollary 4.3: If the appropriatea fulfills a.( 2
3)n, we get a negative scaling exponent f

l>3 as

n2~ 1
3!ln<0 for l>3. ~69!

For a5 2
3 the three-point functions are finite.

Remark 4.4: One would get corresponding relations for smallera but higher correlation
functions, beginning from a certain order, l 0(a) say. On the other hand, one cannot guarantee
a priori existence of the l-point functions for2, l , l 0(a) as the general scaling relation reads fo
l> l 0(a)

l ~2a2n!.n and a.~1/2!n, ~70!

a being so chosen that the two-point functions are nontrivial.

V. SPONTANEOUS SYMMETRY BREAKING „SSB… AND THE GOLDSTONE
PHENOMENON

A. General remarks

Before we study fluctuation operators in the regime of vacuum-, ground-, equilibrium-
degeneracy, we want to briefly comment, in order to set the stage, on the~rigorous! implementa-
tion of ssb in the various areas with particular emphasis on~quantum! statistical mechanics, i.e.
condensed matter physics. As this topic has, however, been much discussed in the pa
various points of view, we do not intend to give an exaustive commentary. We only mention
earlier work being of relevance for our argumentation and sketch the general framework.

We assume that our state,v or V, is ~non-!invariant under some automorphism group ofA0

or A. Furthermore, and this is important~while frequently not clearly stated!, we assume the time
evolution,a t , to commute with the automorphism group,ag .

Definition 5.1:ag is called a symmetry group if

ag•a t5a t•ag . ~71!

Definition 5.2: If

~V,ag~A!V!5~V,AV! ~72!
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for all APA, the symmetry is called conserved and can be implemented by a unitary gro
operators in the representation space

ag~A!→U~g!AU~g21!. ~73!

On the other side, if

~V,ag~A!V!Þ~V,AV! ~74!

for some A, A the symmetry-breaking observable,the symmetry is calledspontaneously broken
since it still commutes with the time evolution (i.e., formally: with the Hamiltonian, mod
boundary termsdue tolong-range correlations!.

In most cases the~continuous! symmetry group derives from a clearly identifiablegenerator
~we restrict ourselves, for convenience, to one-parameter groups! which is built from a local
operator density, i.e.,

U~s!5eisQ, Q~ t !5E q~x,t !dnx, Q~ t !5Q~0!ªQ. ~75!

Note that there are many technical subtleties lurking behind these operator identities, all of
we cannot mention in the following.@For more details and references see, e.g., Ref. 15. A
review is Ref. 16, where many of the widely scattered results have been compiled.#

Remark 5.3: In many situations the generator density is the zero-component of a con
current. Formally, the conservation law encodes the time independence of the global charg, Q.
Furthermore, for convenience, we assume the symmetry to commute with the space trans
i.e., U(x)QU(2x)5Q. This is, in fact, frequently the case and simplifies certain calculation.

The most crucial consequence is that in case the symmetry is spontaneously broken, s
the above relations do only hold in a formal or algebraic sense. More specifically, we hav
following theorem.

Theorem 5.4: If ag is spontaneously broken, the global generator Q does only exist
formal sense as a limit

Q5 lim
V

QV , QVªE
V
q~x!dnx. ~76!

We have

ssb⇔ lim
V

~V,@QV ,A#V!Þ0 ~77!

for some APA and Q is in that case only definable as a nasty operator (see below).
In the following we will take~77! as the defining relation ofssb ~the technical details of the

various statements can be found in the literature, mentioned above!.
The notion ofssb is closely connected with another phenomenon, the so-calledGoldstone-

phenomenon. While there exists a clear picture in, say,relativistic quantum field theory, the
corresponding picture is a little bit blurred in the nonrelativistic regime. In the relativistic con
we have sharpzero-mass Goldstone modes, i.e., true particles due to relativistic covariance. On
other hand, in, e.g., condensed matter physics or statistical mechanics, the situation is less
In general we no longer have sharp excitation modes; we have rather to expect excitation
having afinite lifetimefor momentum different from zero but becoming infinitely sharply peak
for momentumk→0. The proper view is to analyze these excitation branches in thefull Fourier
space ofenergy-momentumas has, e.g., been done in Ref. 15~d! and earlier in the author’s doctora
thesis, the principal object being the spectral-resolution of the two-point correlation function@in
a neighborhood of (E,k)5(0,0)#. The ssb or Goldstone phenomenon manifests itself in th
quantity by a singular contribution in the spectral measure. One should mention at this pla
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work of Bros and Buchholz~see, e.g., Ref. 17! about quantum field theory in temperature~i.e.,
KMS-! states. In this particlar context the residual causality and locality properties of the u
lying relativistic theory lead to a, in some respects, more generic behavior as compared
ordinary nonrelativistic condensed matter regime.

In the nonrelativistic regime it turns out that the concrete structure of the Goldstone
depends usually on the details of the microscopic interactions~that means both the so-calle
energy-momentum dispersion law which can be, to give an example, quadratic or lineark
50 in the case of magnons or phonons, say, and thek-dependent width of the branch!. This led to
the desire to characterize the presence of a Goldstone phenomenon by a simple~if qualitative!
property. Sometimes one finds in the literature the saying that the Goldstone phenomenon c
of the vanishing of amass-gapabove the ground state. But this statement is in some s
frequently empty. From Ref. 18 we know, e.g., that ashort-ranged Galilei-covarianttheory, with
a nonvanishing particle density, cannot have a mass-gap due tophonon-excitationswhich signal
the trivial breaking of the Galilei-boosts. Furthermore, in most cases KMS–Hamiltonians ha
spectrum the whole real line.

Remark 5.5: Models like the famous BCS-model (having a gap) are no case in point a
are implicitly breaking Galilei-invariance as do all such mean-field-models. This becomes a
ent when analyzing the interaction part of the corresponding Hamiltonian. The complete fer
or boson-liquid is, on the other side, again Galilei-invariant, hence has no mass-gap, but m
course, still display, e.g., superfluidity.

In the next subsection we will provide a, as we think, more satisfying and completely ge
characterization of the Goldstone phenomenon which is independent of the details of the
under discussion.

B. Some rigorous results for the symmetry generator in the presence of ssb

After the above introductory remarks we want to prove a couple of rigorous results w
characterize to some extent the presence ofssb in the ~non-!relativistic regime. The main obser
vation is that the symmetry generator is no longer defined as a nice operator in the represe
~Hilbert or GNS-! space whenssb is present and that this, at first glance, mathematical re
encodes some interesting physics.

Let us work, for simplicity, in the context oftemperature states. This has the advantage thatV
is separating, i.e.,

AV5BV⇒A5B. ~78!

The first task is to giveQª limV QV a rigorous meaning. The standard procedure~see the above
mentioned literature! is to defineQ via

QAVª lim
V

@QV ,A#V, QVª0, ~79!

for, e.g.,APA0 . For V sufficiently large, the commutator on the rhs becomes independent oV,
hence there is a chance to get a well-definedQ ~at least on a dense set of vectors!, as on the lhs
we have byseparability

AV5BV⇒A5B⇒@QV ,A2B#50. ~80!

For APA one has to employ cluster properties.
Observation 5.6: We have already seen above that, while such a Q may exist, the corre

ing iQVVi will nevertheless diverge for V→Rn! This shows that the connection between
global generator and its local approximations is not that simple. The best one can usually e
even in the case of symmetry conservation, is a weak convergence on a dense set
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~BV,QAV!5 lim
V

~BV,QVV!, ~81!

but, due to the above divergence ofiQVVi , we cannot even have weak convergence on the
Hilbert space. (For more details, see the above cited literature, in particular Ref. 15(c), wher
various possibilities in the respective fields have been compared.)

We see from the above thatQ can be defined as a densely defined operator but usually
want to have more. A conserved continuous symmetry is given by a s.a. generator. Let
under what conditions the aboveQ is at leastsymmetricprovided that theQV are symmetric. We
assume the symmetry to be conserved, i.e.,

lim
V

~V,@QV ,A#V!50 for all APA. ~82!

We then have

~BV,QAV!5 lim
V

~BV,@QV ,A#V!5 lim
V

~~@QV ,B#V,AV!1~QvV,B* AV!2~A* BV,QVV!!.

~83!

Conclusion 5.7: Q is symmetric iflimV(AV,QVV)50 for all APA0 . Under the same pro-
viso it follows

~BV,QAV!5 lim
V

~BV,QVV!. ~84!

What is the situation if the symmetry is spontaneously broken? For convenience we re
again the sharp volume-integration by our smooth one, i.e.,

QV→QRªE q~x! f R~x!dnx. ~85!

We know that there exists a symmetry-breaking observableA s.t.

lim
R

~V,@QR ,A#V!Þ0⇒QAV5 lim
R

@QR ,A#VÞ0. ~86!

Due to the assumed translation invariance, i.e.,

U~a!QU~2a!5Q or, what is the same,U~a!q~x!U~2a!5q~x1a!, ~87!

we have

~V,QAV!5~V,Q•V21AVV! ~88!

and

Q•V21AVV5V21E
V
U~x!dnx•QAV, ~89!

whereU(x) is the unitary representation of the translations.
Remark:As a result of a discussion with Detlev Buchholz, following a seminar talk about

article, we will give a technically more detailed proof of the above statement in the Append
the end of the article. This seems to be advisable since, as we are showing below, the
operator,Q, turns out to be nonclosable, which will make certain limit manipulations m
cumbersome.

Lemma 5.8:
                                                                                                                



ly

d get

w-

not
This
eding
model-

uous

n. Let
pectrum

tion of

366 J. Math. Phys., Vol. 43, No. 1, January 2002 Manfred Requardt

                    
s2 lim
V

V21E
V
U~x!dnx5PV, ~90!

PV the projector on the (in our case) unique vacuum-,ground-, equilibrium-state.
Proof: The result is well-known~see, e.g., Ref. 1!. We give however a very short and slight

different proof using our smooth volume integration. WithVRª* f R(x)dnx, a spectral resolution
yields

VR
21

•E U~x! f R~x!dnx5const•S E f ~x!dnxD 21

•E f̂ ~Rp!dEp . ~91!

Applied to a vectorc we can now employ Lebesgue’s theorem of dominated convergence an

lim
V

V21E U~x!dnx•c5~ f̂ ~0!!21
• f̂ ~0!PVc5PVc. ~92!

h

This yields

0ÞPVQAV5 lim
V

Q•V21AVV. ~93!

On the other hand,

lim
V

iV21AVVi5iPVAVi50 ~94!

by an analogous reasoning@note that we assumed (V,AV)50#.
We have now a sequence of vectors,V21AVV, converging to zero in norm whileQ

•V21AVV converges toPVQAVÞ0. Summing up what we have shown we arrive at the follo
ing conclusion:

Conclusion 5.9 (Goldstone theorem): If we have ssb and a separating vector, V (representing
the ground or temperature state), Q can still be defined as an operator which is, however,
closable, hence, a fortiori, not symmetric (note that symmetric operators are closable).
abstract result has as a practical consequence the physical property exhibited in the prec
formulas. They express the content of the Goldstone phenomenon in the most general and
independent way. We infer that Q induces transitions from a singular part of the contin
spectrum, passing through(E,p)5(0,0), to the extremal invariant stateV. On the other side, a
conserved symmetry implies

QV50, PV@Q,A#V50⇒PVQAV50. ~95!

We show now that the above result really contains the original Goldstone phenomeno
us, e.g., assume that we have the above result and, on the other side, a gap in the energy s
above the stateV. We emphasized above that an important ingredient of the notion ofssb is the
time independence of, say, the above expression. We employ again the spectral resolu
operators with respect to energy-momentum. We hence have

0Þc5PVQE Â~k,E!e2 i tEdkdEV ~96!

with c being independent oft. We choose a real testfunctiong(t) with *g(t)dt51. This yields

0Þc5PVQE A~ t !•g~ t !dtV5PVQE Â~E!ĝ~E!dEV. ~97!
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If there is a gap above zero, we may choose the support ofĝ so that

supp~ ĝ!ùsupp~spec~H !)50. ~98!

Since, by assumption,PV has been extracted in the energy support ofA, we get the resultc
50, that is, no symmetry breaking. But we can infer more about the nature of the en
momentum spectrum near~0,0!. We see thatPVQA(g(t))V depends only on the value ofĝ(E) in
E50, which is one in our case, but not on the shape ofg. Inspecting Eq.~93! we can infer the
following: The Fourier transform of the rhs contracts aroundk50 in the limit V→`. On the other
side we learned that in the limit both sides have their energy support concentrated inE50. The lhs
shows that the limit vector is parallel toV. Whereas we do not want to go into the partly intrica
details of the limiting processes ofnonclosable operators~note that it is, e.g., dangerous to use t
adjoint, Q* , in the reasoning as it is not densely defined!, the latter part of the above theore
should now be obvious.

This sharp excitation around (E,k)5(0,0) extends into the full energy-momentum plane
form of a ~usually! smeared excitation branch~having a finitek-dependent life-time!. For the
regime of temperature states the situation was analyzed in some detail in Ref. 15~d! and already in
the authors doctoral thesis. We see from the above that a similar situation prevails in the
general case of a separableV and, analogously, for ground-state models whereQ can be defined
in the above way. Even if the aboveQ is not definable as a nonclosable limit operator we arr
at a similar result by exploiting the limit-expectation values instead of the strong vecto
operator limits, but we do not want to dwell more into the corresponding details in this a
which deals with a different topic.

VI. THE CANONICAL „GOLDSTONE… PAIR IN THE PRESENCE OF ssb

As far as we can see, the notion of acanonical Goldstone pairwas introduced by Verbeure
et al. in Ref. 12. In the following section we want to prove only a few general~model-
independent! results, whereas much more could be shown by combining the framework, d
oped above, with the techniques mentioned in the preceding section.

We remarked above thatssb is characterized by the nonvanishing~but time-independence! of
the following commutator limit:

0Þc5 lim
V

~V,@QV ,A~ t !#V!. ~99!

To fix the notation: usually a pure phase is characterized by the nonvanishing of a so-calledorder
parameterin the presence ofssb. This is an observable,B say, with

~V,BV!5H cÞ0 in the broken phase,

0 in the conserved phase~above Tc ,say!.
~100!

From ~99! we see that as order parameter we have to choose

Bª lim
V

@QV ,A#, ~101!

while A is the symmetry breaking observable.
Example 6.1: In the Heisenberg ferromagnet with spontaneous magnetization in, sa

z-direction, the order parameter is Sz or ^Sz&. As generator of the broken symmetry one may t
(Sx and as symmetry breaking observable, e.g., Sy .

We have seen that we can write

0Þc5 lim
V

~V,@QV ,A#V!5 lim
V

~V,@QV ,V21AV#V!5 lim
R

~V,@QR ,VR
21AR#V!, ~102!
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where

QRªE q~x! f R~x!dnx, ARªE
SR

A~x!dnx ~103!

with VR the volume of the sphere,SR , with radiusR.
We can now split the scaling exponent among the two observables~the volume of the unit

sphere being absorbed in the constant!:

0Þconst5 lim
R

~V,@R2aQR ,R2(n2a)AR#V!. ~104!

This form of scaling may yield something reasonable if the scaling exponents can be so ad
that also

~V,R2aQRR2aQV! and ~V,R2(n2a)AR2(n2a)AV! ~105!

remain finite in this limit.
In general it does not seem to be easy to get both rigorous and general estimates on the

behavior of these quantities. Fortunately, in the case of temperature~KMS! states, such estimate
are available. In Refs. 19–21 the following special~real-space-! version of theBogoliubov in-
equalityhas been proved and employed for the observablesQR andVR

21AR :

u^@QR ,VR
21AR#&u2<^VR

21ARVR
21AR&•^@QR ,@QR ,H##&. ~106!

The delicate term is the double commutator on the rhs. IfQ is spontaneously broken, bounda
terms will survive in the commutator ofQR and the Hamiltonian,H, when taking the limitR
→`, while in a formal sense they commute. The double commutator saves us two powersR,
so to say. That is we arrive after some cumbersome manipulations at

^@QR ,@QR ,H##&;R(n22) for R→`, ~107!

hence

^VR
21ARVR

21AR&*R(22n) for R→` ~108!

as the limit on the lhs is a constant different from zero in the case ofssb.
Theorem 6.2:For temperature states we have for the symmetry-breaking observable

^ARAR&*R(n12). ~109!

That is, compared with the ordinary, normal scaling behavior(;Rn), the divergence is worse
From this one infers the following decay of the two-point correlation function itself:

u^A~x!A&u*R(n22). ~110!

Putting all the pieces together we now have to make the following identification:

n2a>~n12!/2⇒a<~n22!/2 ~111!

in order that the limit commutator is nontrivial, i.e., nonclassical. On the other hand, the d
gence behavior of̂QRQR& can frequently be inferred either from covariance properties@as in
relativistic quantum field theory; see, e.g., Ref. 6~c!# or from an analysis of the spectral behavi
in concrete~nonrelativistic! models. Summing up we have the following.

Conclusion 6.3 (canonical pair): For a covariant four-current in relativistic quantum fi
theory the two-point function in Fourier space contains a prefactor;p2 which yields (after some
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calculations) ana5 1
2 (for space dimension, n53). On the other side, if we do not have such ni

covariance properties, the divergence of^QRQR& is generically much worse than;R (in three
dimensions). This holds, in particular, for the above temperature states. It follows that for
perature states we cannot find a critical exponenta so that both the autocorrelations remain fini
in the limit and the commutator nontrivial. That is, for temperature states the limit fluctuation
classical (an observation already made by Verbeure et al. for special models, see, e.g., Re.

The situation seems to be less generic for ground state models, i.e., the temperature-ze
For one, we do not automatically have ana priori estimate as in the above conclusion, from whi
we can infer that it is the autocorrelation ofAR which is ill-behaved. For another, in temperatu
states, as was shown in, e.g., Ref. 15~d! by the author, the spectral weight has to become infin
along the Goldstone excitation branch in a specific way~which is governed by the dispersion la
of the Goldstone mode! for energy-momentum approaching zero. This sort of singularity is ma
responsible for the poor decay of the respective autocorrelation function. This phenomeno
be absent in the case of ground states as has also been shown for certain Bose-gas mode
12, where some of these questions have been dealt with in greater detail. Note in particula
variety of aspects may depend on the precise shape of the Goldstone mode near
momentum equal to~0,0! as was shown in the above mentioned paper of the author or in
unpublished doctoral thesis.

On the other side, there has been some interesting work of Pitaevskii and Stringari~see, e.g.,
Ref. 22!, who showed that variants of theuncertainty principlemay lead to nontrivial results in
certain cases for ground state systems if one can exploit and control certain additionalsum rules.

Remark 6.4: Note that the ordinary uncertainty principle (for, e.g., Hermitian operators
ignoring possible domain questions) reads

1
4•u^@A,B#&u2<^AA&•^BB&. ~112!

One sees that instead of the double commutator of the local symmetry generator a
Hamiltonian now a term likêQRQR& occurs. While we have ana priori estimate of the large-R
behavior of the double commutator, the behavior of^QRQR& is probably less generic~in particular
in the ground state situation! and we need some extra information of the kind mentioned abo

VII. THE CASE OF ssb OR VERY POOR DECAY OF CORRELATIONS

In the preceding sections we studied the case ofL1- or L2-clustering. In this last section we
want to briefly show how we can proceed in the case of extremely poor clustering. We
however, for the sake of brevity and in order to better illustrate the method, to concentrate
simpler case of a uniformly poor decay of all the correlation functions we are discussing. T
of course not always the case but the scheme can be easily generalized~we discuss this topic in
more detail in Ref. 23, where we treat this question in the context of the renormalization
analysis!.

We hence assume that the truncatedl -point functions cluster weaker thanL2 or L1, say, in the
difference variables,yiªxi 112xi ~see Sec. III A!. The following reasoning works both in th
case of non-L1 or non-L2 clustering. In the latter case one would again use theCauchy–Schwarz
inequality ~as in Sec. III B!. To illustrate the method we choose the non-L1 procedure.

So let us assume

WT~y1 ,...,yl 21!¹L1. ~113!

For eachl we assume the existence of a weight factor with a suitable exponent,a lPR:

Pl~y!ªS 11( yi
2D a l /2

, ~114!

so that
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F~y!ªPl~y!21
•WT~y!PL1 for a l.a l

inf . ~115!

On the other side, we define the fluctuation operators with the exponentg, which will be adjusted
later:

AR
F
ªR2g

•AR . ~116!

It follows

WT~y!5Pl~y!•F~y! ~117!

with F(y) an ~in general,l -dependent! L1-function.
For the limit correlation functions we then get

^AR
F~1!¯AR

F~ l !&T5Rln
•R2 lg

•E F̂~q!• P̂l~q!@ f̂ ~Rp1!¯ f̂ ~2Rql 21!#) dqi ~118!

~cf. Sec. III A!.
Remark 7.1: We write the Fourier transform of Pl(y) formally as

P̂l~q!5S 11( Dqi

2 D a l /2

~119!

(with Dqi
the partial derivatives). For nonintegera l /2 this is a pseudo-differential operator. At th

moment, for the sake of brevity, we do not want to say more about the corresponding mathem
framework (see Ref. 23 for a complete discussion). What we in fact only need are the s
properties of the expression. If one wants to be careful, one may equally well take the e
expression for the Fourier transform of the above polynomial in the y-coordinates applied t
product of the fR’s and exploit its scaling properties.

In any case, we get~with this proviso! and the usual variable transformationpi8ªRpi :

^AR
F~1!¯AR

F~ l !&T5Rln2 lg2( l 21)n1a l
•E F̂~q8/R!•S R221( Dq

i8
2 D a l /2

3@ f̂ ~p18!¯ f̂ ~2ql 218 !#) dqi8 . ~120!

Again only the explicit scaling prefactor matters in the limitR→`. @Note that for nonminimal
a l we may haveF̂(0)50. Technical intricacies like this one will be discussed at length in R
23.# To get a finite result forall correlation functions we have to adjust the scaling parameteg,
so that the exponents vanish or are negative. We choosea2 for l 52 so that the limit two-point
function is finite and nonvanishing, that is,

n22g1a250→g5~n1a2!/2. ~121!

Inserting thisg in the general expression forl>3, we conclude that the scaling prefactor is fin
in the limit provided that

a l< lg2n5~~ l 21!n1 la2!/2 ~122!

with g fixed by the two-point function. Fora l, lg2n we can even conclude that all~!! higher
limit correlation functions vanish and that the resulting theory is~quasi-!free. The latter would, for
example, be the case if

a l<~ l 21!•a2 ~123!
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holds, since we then have~with a2,n!

a l<~ l 21!•a2,~ l 2 1
2!a25~2l 21!•a2/2,~~ l 21!n1 la2!/2, ~124!

but nothing can be concluded in general for, say,a l5 l •a2 .
We see that it is of tantamount importance to better understand the assymptotic beha

truncatedl -point functions and, in particular, the rate of decay as a function ofl . We address this
topic in more detail in Ref. 23.

APPENDIX: NONCLOSABLE SYMMETRY GENERATORS

The rigorous implementation of the formula

U~a!q~x!U~2a!5q~x1a! ~A1!

is

U~a!QRU~2a!5U~a!E q~x! f R~x!dnxU~2a!

5E q~x1a! f R~x!dnx

5E q~y! f R~y2a!dny5:QR~a!. ~A2!

The first question is: how does the globalQ behave under translations? To answer this question
have to take recourse to the definition of the globalQ as a limit of local operations. We have

U~a!QAV5U~a!lim
R

@QR ,A#V5 lim
R

@QR~a!,A~a!#V ~A3!

since it holds

lim
n

U~a!cn5U~a!lim
n

cn ~A4!

asU(a) is bounded. IfA is local, we have for sufficiently largeR ~and hence, in the limit!

lim
R

@~QR~a!2QR~0!!,A~a!#50. ~A5!

We hence arive at

U~a!QAV5 lim
R

@QR ,A~a!#V5QA~a!V5QU~a!AV. ~A6!

Lemma 7.2: On the dense setA0V, Q commutes with the translations.
In a next step we have to analyze the action ofQ on integrals or averages like*VU(x)AU

(2x)dnxV. More specifically, we want to show thatQ commutes, so to speak, with the operati
of integration. We have

Q•E
V
A~x!dnxVª lim

R
FQR ,E

V
A~x!dnxGV. ~A7!

We approximate the integral by a sum, that is
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E
V
A~x!dnxcª lim

i
(

i
dnxi•A~xi !c, ~A8!

and get~as theQR are assumed to be nice, that is, closed operators!

FQR ,E
V
A~x!dnxGV5 lim

i
FQR ,(

i
dnxi•A~xi !GV5 lim

i
(

i
dnxi•U~xi !@QR~2xi !,A#V.

~A9!

We again chooseR so large that

@QR~2x!,A#5@QR ,A# for all xPV, ~A10!

which leads to

FQR ,E
V
A~x!dnxGV5 lim

i
(

i
dnxi•U~xi !@QR ,A#V5E

V
U~x!dnx•@QR ,A#V. ~A11!

Taking now the limitR→`, we get obtain the following lemma.
Lemma 7.3:

QE
V
A~x!dnxV5E

V
U~x!dnx•QAV. ~A12!

This shows, that our manipulations can be justified.
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After the separation of the center-of-mass motion, a new privileged class of canoni-
cal Darboux bases is proposed for the nonrelativisticN-body problem by exploiting
a geometrical and group theoretical approach to the definition ofbody framefor
deformable bodies. This basis is adapted to the rotation group SO~3!, whose ca-
nonical realization is associated with a symmetry Hamiltonianleft action. The
analysis of the SO~3! coadjoint orbits contained in theN-body phase space implies
the existence of aspin framefor theN-body system. Then, the existence of appro-
priate nonsymmetry Hamiltonianright actions for nonrigid systems leads to the
construction of anN-dependent discrete number ofdynamical body framesfor the
N-body system, hence to the associated notions ofdynamicalandmeasurableori-
entation and shape variables, angular velocity, rotational and vibrational configu-
rations. ForN53 the dynamical body frame turns out to be unique and our ap-
proach reproduces thexxzz gaugeof the gauge theory associated with the
orientation-shapeSO~3! principal bundle approach of Littlejohn and Reinsch. For
N>4 our description is different, since the dynamical body frames turn out to be
momentum dependent. The resulting Darboux bases forN>4 are connected to the
coupling of thespinsof particle clusters rather than the coupling of thecenters of
mass~based on Jacobi relative normal coordinates!. One of the advantages of the
spin coupling is that, unlike the center-of-mass coupling, it admits a relativistic
generalization. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1416889#

I. INTRODUCTION

In this paper we deal with the construction of a specialized system of coordinates fo
nonrelativisticN-body problem which could be instrumental to nuclear, atomic and molec
physics, as well as to celestial mechanics. In particular, we shall exploit the technique
canonical realizations of Lie symmetry groups1–5 within the framework of the nonrelativistic
version of therest-frame Wigner covariant instant formof dynamics6,7 to the effect of obtaining
coordinates adapted~locally in general! to the SO~3! group. In most of the paper we consider on
free particles, since the mutual interactions are irrelevant to the definition of the kinematics

Isolated systems ofN particles possess 3N degrees of freedom in configuration space andN

a!Electronic mail: alba@fi.infn.it
b!Electronic mail: lusanna@fi.infn.it
c!Electronic mail: pauri@pr.infn.it
3730022-2488/2002/43(1)/373/30/$19.00 © 2002 American Institute of Physics
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in phase space. The Abelian nature of the overall translational invariance, with its associate
commuting Noether constants of motion, allows for the decoupling and, therefore, for the
nation of either three configurational variables or three pairs of canonical variables, respe
~separation of the center-of-mass motion!. In this way one is left with either 3N-3 relative coor-
dinatesrW a or 6N-6 relative phase space variablesrW a , pW a , a51,...,N21 and the center-of-mas

angular momentum or spin isSW 5(a51
N21rW a3pW a . In the nonrelativistic theory most of the calcula

tions employ the sets of 3N23 Jacobi normal relative coordinates sW
a which diagonalize the

quadratic form associated with the relative kinetic energy~the spin becomesSW 5(a51
N21sWa3pW sa ,

with pW sa momenta conjugated to thesWa’s!. Each set of relative Jacobi normal coordinatessWa , a
51,...,N21, is associated with adifferent clusteringof the N particles, corresponding to th
centers of mass of the various subclusters. In special relativity Jacobi normal coordinates
exist, as it will be shown in Ref. 8, and a different strategy must be used.

On the other hand, the non-Abelian nature of the overall rotational invariance entai
impossibility of an analogous intrinsic separation ofrotational ~or orientational! configurational
variables from others which could be calledshapeor vibrational. As a matter of fact, this is one
of the main concerns of molecular physics and of advanced mechanics of deformable b
Recently, a new approach inspired by the geometrical techniques of fiber bundles has be
posed in these fields of research: a self-contained and comprehensive exposition of this vie
and a rich bibliography can be found in Ref. 9.

In the theory of deformable bodies one loses any intrinsic notion ofbody frame, which is a
fundamental tool for the description of rigid bodies and their associated Euler equations.A priori,
for a given configuration of a nonrelativistic continuous body, and in particular for anN-body
system, any barycentric orthogonal frame could be namedbody frameof the system with its
associated notion ofvibrations.

This state of affairs suggested9 replacing the kinematically accessible region of the nonsin
lar configurations10 in the (3N-3)-dimensional relative configuration space by a SO~3! principal
fiber bundle over a (3N-6)-dimensional base manifold, calledshapespace. The SO~3! fiber on
each shape configuration carries theorientationalvariables~e.g., the usual Euler angles! referred
to the chosenbody frame. A local cross section of the principal fiber bundle selects just
orientation of a genericN-body configuration in each fiber@SO~3! orbit# and this is equivalent to
a gauge convention, namely to a possible definition of abody frame~reference orientation!, to be
adopted after a preliminary choice of theshapevariables. It turns out that this principal bundle
trivial only for N53, so that in this case global cross sections exist, and in particular the ide
cross section may be identified with thespace frame. Any global cross section is a copy of th
3-body shape space and its coordinatization gives a description of theinternal vibrationalmotions
associated with the chosen gauge convention for the reference orientation. ForN>4, however,
global cross sections do not exist11 and the definition of the reference orientation~body frame! can
be given only locally. This means that the shape space cannot be identified w
(3N-6)-dimensional submanifold of the (3N-3)-dimensional relative configuration space. T
gauge conventionabout the reference orientation and the consequent individuation of the int
vibrational degrees of freedomrequires the choice of a connectionG on the SO~3! principal bundle
~i.e., a concept ofhorizontality! and this leads in turn to the introduction of a SO~3! gauge
potential on the base manifold. In this way a natural gauge invariant concept ofpurely rotational
N-body configurations exists~vertical velocity vector field, i.e., null shape velocities!. Of course a
gauge fixing is needed in order to select a particularG-horizontal cross section and the correlat
gauge potential on the shape space. Obviously, physical quantities like the rotational or vibr
kinetic energies and, in general, any observable feature of the system must be gauge in
Note instead that both the space frame and the body frame components of the angular velo
gauge quantities in theorientation-shape bundleapproach and their definition depends upon
gauge convention. See Ref. 9 for a review of the gauge fixings used in molecular physics lite
and, in particular, for the virtues of a special connectionC corresponding to the shape configur

tions with vanishing center-of-mass angular momentumSW . The C-horizontal cross sections ar
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orthogonal to the fibers with respect to the Riemannian metric dictated by the kinetic ener
This orientation-shapeapproach replaces the usual Euler kinematics of rigid bodies

entails in general a coupling between the internalshapevariables and some of theorientational
degrees of freedom. In Ref. 9 it is interestingly shown that the nontriviality of the SO~3! principal
bundle, when extended to continuous deformable bodies, is at the heart of the explana
problems like thefalling cat and thediver. A characteristic role of SO~3! gauge potentials in this
case is togenerate rotations by changing the shape.

In Ref. 9 the Hamiltonian formulation of this framework is also given, but no explicit pro
dure for the construction of a canonical Darboux basis for the orientational and shape varia
worked out. See Refs. 9, 12 for the existing sets of shape variables forN53,4 and for the
determination of their physical domain.

Independent of this SO~3! principal bundle framework and having in mind the relativis
N-body problem where only Hamiltonian methods are available, we have been induced to
for a constructive procedurefor building canonical Darboux bases in the (6N-6)-dimensional
relative phase space, suited to the non-Abelian canonical reduction of the overall rotationa
metry. Our procedure surfaced from the following independent pieces of information.

~A! In recent years a systematic study of relativistic kinematics of theN-body problem, in the
framework of therest-frame Wigner covariant instant form of dynamicshas been developed i
Ref. 13 and then applied to the isolated system composed byN scalar charged particles plus th
electromagnetic field.14,15

These papers contain the construction of a special class of canonical transformations,
Shanmugadhasan type.16,6 Such transformations are simultaneously adapted to the following~i!
the Dirac first class constraints appearing in the Hamiltonian formulation of relativistic mo
~ii ! the timelike Poincare´ orbits associated with most of their configurations. In the Darboux ba
one of the final canonical variables is the square root of the Poincare´ invariant P2 ~Pm is the
conserved time-like four-momentum of the isolated system!. Subsequently, by using the constru
tive theory of the canonical realizations of Lie groups1–5 a new family of canonical transforma
tions was introduced in Ref. 17. This latter leads to the definition of the so-calledcanonical spin

bases, in which also the Pauli–Lubanski Poincare´ invariant W252P2SW T
2 for time-like Poincare´

orbits18 becomes one of the final canonical variables. The construction of the spin bases e
the clustering of spins rather than the Jacobi clustering of centers of mass.

In spite of its genesis in a relativistic context, the technique used in the determination
spin bases, related to atypical form1 of the canonical realizations of theE(3) group, can be easily

adapted to the nonrelativistic case, whereW2 is replaced by the invariantSW 2 of the extended
Galilei group.

~B! These results provide the starting point for the construction of a canonical Darboux
adapted to the non-Abelian SO~3! symmetry. The three non-Abelian Noether constants of mo

SW are arranged in these canonical Darboux bases as an array containing the canonical pS3,

b5tan21 (S2/S1) and the unpaired variableS5uSW u19 @scheme Aof the canonical realization o
SO~3!2#. The angle canonically conjugated toS, saya, is anorientationalvariable, which, being
coupled to the internalshapedegrees of freedom, cannot be a constant of motion. Being conju
to a constant of the motion, it is anignorablevariable in the Hamiltonian formalism, so that i
equation of motion can be solved by quadratures after the solution of the other equatio
conclusion, in this non-Abelian case one has only two~instead of three as in the Abelian cas!
commuting constants of motion, namelyS andS3 ~like in quantum mechanics!.

This is also the outcome of the momentum map canonical reduction20–22by means of adapted
coordinates. Let us stress thata, S3, b are a local coordinatization of any coadjoint orbit of SO~3!
contained in theN-body phase space. Each coadjoint orbit is a 3-dimensional embedded sub
fold and is endowed with a Poisson structure whose neutral element isa. This latter is also the
essential coordinate for the definition of theflag of spinors~see Refs. 23 and 2, Sec. V!. On the

other hand, the spinor flag is nothing else than a unit vectorR̂ orthogonal toSW ,24 which is going
to be a fundamental tool in what follows.
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By fixing nonzero values of the variablesS3, b5tan21 (S2/S1) through second class con
straints, one can define a (6N-8)-dimensional reduced phase space. However, the canonica
duction cannot be furthered by eliminatingS, sincea is not a constant of motion.

~C! The group-theoretical treatment of rigid bodies21 ~see Chap. IV, Sec. 10 of Ref. 21! is
based on the existence of the realization of the~free and transitive! left and right Hamiltonian
actions of the SO~3! rotation group on either the tangent or cotangent bundle over their con
ration space. Given alaboratory or space frame fˆ

r , the generators of theleft Hamiltonian action25

are the non-Abelian constants of motionS1, S2, S3, @$Sr ,Ss%5e rsuSu#, viz., the spin components
in thespace frame. In the approach of Ref. 9 the SO~3! principal bundle is built starting from the
relative configuration spaceand, upon the choice of a body-frame convention, a gauge-depen
SO~3! right action is introduced.

Correspondingly, taking into account therelative phase spaceof any isolated system, one ma
investigate whether one or more SO~3! right Hamiltonian actions could be implemented besid
the global canonical realization of the SO~3! left Hamiltonian action, which is a symmetry actio
In other words, one may look for solutionsŠr , r 51,2,3 @with ( r(Š

r)25( r(S
r)25S2#, of the

partial differential equations$Sr ,Šs%50, $Šr ,Šs%52e rsuŠu and then build correspondingleft in-
variant Hamiltonian vector fields. Alternatively, one may look for the existence of a pairŠ3, g

5tan21 (Š2/Š1), of canonical variables satisfying$g,Š3%521, $g,Sr%5$Š3,Sr%50 and also

$g,a%5$Š3,a%50. Local theorems given in Refs. 1, 2 guarantee that this is always pos
providedN>3. See Chap. IV of Ref. 21 for what is known in general about the actions of
groups on symplectic manifolds. Clearly, the functionsŠr do not generate symmetry action
because they are not constants of the motion.

The inputs coming from~A!, ~B!, ~C! together with the technique of the spin bases introdu
in Ref. 17 suggest the following strategy for the geometrical and group-theoretical identificat
a privileged class of canonical Darboux bases for theN-body problem.

~1! Every such basis must be ascheme B~i.e., a canonical completion ofscheme A!1,2 for the
canonical realization of the rotation group SO~3!, viz., it must contain its invariantS and the
canonical pairS3, b5tan21 (S2/S1). Therefore, all the remaining variables in the canoni
basis excepta are SO~3! scalars.

~2! As said above, the existence of the anglea satisfying$a,S%51 and$a,S3%5$a,b%50 leads
to the geometrical identification of a unit vectorR̂ orthogonal toSW and, therefore, of a
orthonormal frameŜ, R̂, Ŝ3R̂ ~the notation ˆ means unit vector!, which will be calledspin
frame.

~3! The study of the equationsR̂251 and $SW •R̂,R̂i%50 entails the symplectic result$R̂i ,R̂j%
50. As a byproduct we get a canonical realization of anE(3) group with generatorsSW , R̂

@$R̂i ,R̂j%50, $R̂i ,Sj%5e i jk R̂k# and fixed values of its invariantsR̂251, SW •R̂50 ~nonirreduc-
ible type 3 realization according to Ref. 17!.

~4! In order to implement a SO~3! Hamiltonian right action in analogy with the rigid body
theory,21 we must construct an orthonormal triad orbody frame Nˆ , x̂, N̂3x̂. The decompo-
sition,

SW 5Š1x̂1Š2N̂3x̂1Š3N̂ 5
def

Šr êr , ~1.1!

identifies the SO~3! scalar generatorsŠr of the right action provided they satisfy$Šr ,Šs%
52e rsuŠu. This latter condition together with the obvious requirement thatN̂, x̂, N̂3x̂ be SO~3!

vectors@$N̂r ,Ss%5e rsuN̂u, $x̂ r ,Ss%5e rsux̂u, $N̂3x̂ r ,Ss%5e rsuN̂3x̂u# entails the equations26

$N̂r ,N̂s%5$N̂r ,x̂s%5$x̂ r ,x̂s%50. ~1.2!
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To each solution of these equations is associated a couple of canonical realizations of thE(3)

group ~type 2, nonirreducible!: one with generatorsSW , NW and nonfixed invariantsŠ35SW •N̂ and

uNW u; another with generatorsSW , xW and nonfixed invariantsŠ15SW •x̂ and uxW u. These latter contain

the relevant information for constructing the anglea and the new canonical pairŠ3, g

5tan21 (Š2/Š1) of SO~3! scalars. Since$a,Š3%5$a,g%50 must hold, it follows that the vectorNW

necessarily belongs to theSW –R̂ plane. The three canonical pairsS, a, S3, b, Š3, g will describe

the orientational variables of our Darboux basis, whileuNW u and uxW u will belong to theshape
variables. Alternatively, an anholonomic basis can be constructed by replacing the abo

variables byŠr ~or Sr! and three uniquely determined Euler anglesã, b̃, g̃.
Let us consider the caseN53 as a first example. It turns out that a solution of Eqs.~1.2!

corresponding to abody frame~determined only by the 3-body system configuration, as in

rigid body case! is completely individuated once two orthonormal vectorsNW andxW , functions of

the relative coordinates and independent of the momenta, are found such thatNW lies in the SW

2R̂ plane.27 We do not know whether in the caseN53 other solutions of Eqs.~1.2! exist leading
to momentum-dependent body frames. Anyway, our constructive method necessarily le
momentum-dependent solutions of Eqs.~1.2! for N>4 and therefore to momentum-dependent
dynamical body frames.

We can conclude that in theN-body problem there arehidden structures allowing the identi
fication of special dynamical body frames which, being independent of gauge condition
endowed with a physical meaning.

The following particular results can be proven.

~i! For N52, a singleE(3) group can be defined: it allows the construction of an orthonor

spin frame Sˆ , R̂, R̂3Ŝ in terms of the measurable relative coordinates and momenta o
particles.

~ii ! For N53, SW 5SW 11SW 2 , a pair ofE(3) groups emerge associated withSW 1 andSW 2 , respec-
tively. In this case, besides the orthonormalspin frame, an orthonormaldynamical body

frame N̂, x̂, N̂3x̂ can be defined such thatŠ15SW •x̂, Š25SW •N̂3x̂, Š35SW •N̂ are the

canonical generators of a SO~3! Hamiltonian right action. The nonconservation ofŠr

entails thatthe dynamical body frame evolves in a way dictated by the equations of mo,
just as it happens in the rigid body case.
It can be shown that forN53 this definition of adynamical body framecan be reinter-

preted as a special global cross section~xxzz gauge, wherex stays forx̂ andz for N̂; this

outcome is independent from the particular choice made forNW andxW ! of the trivial SO~3!
principal bundle of Ref. 9, namely a privileged choice of body frame. Actually, the th

canonical pairs of orientational variablesS3, b5tan21 (S2/S1) ; S, a; Š3, g

5tan21 (Š2/Š1), can be replaced by the anholonomic basis of three Euler anglesã, b̃, g̃

and byŠ1, Š2, Š3 as it is done in Ref. 9. In our construction, however, the Euler angleã,

b̃, g̃ are determined as theunique setof dynamical orientation variables. Then, the
remaining canonical pairsqm, pm , m51,2,3, of this spin-adapted Darboux basis descr
the dynamical shapephase space.
While the abovedynamical body framecan be identified with the global cross sectio
corresponding to thexxzz gauge, all other global cross sections cannot be interpreted
dynamical body frames~or dynamical rightactions!, because the SO~3! principal bundle of
Ref. 9 is built starting from the relative configuration space and, therefore, it is astatic,
velocity-independent, construction. As a matter of fact, after the choice of the s
configuration variablesqm and of a space frame in which the relative variables h
componentsra

r , the approach of Ref. 9 begins with the definition of the body-fra
componentsřa

r (qm) of the relative coordinates, in the formra
r 5Rrs(ua) řa

s(qm),28 and

then extends it in avelocity-independentway to the relative velocitiesṙa
r 5

def
Rrs(ua) v̌a

s . In
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our construction we get insteadra
r 5Rrs(ã,b̃,g̃) řa

s(qm) in the xxzz gauge, so that in the

present case (N53) all dynamicalvariables of our construction coincide with thestatic
variables in thexxzz gauge. On the other hand, in the relative phase space, the constru
of the evolving dynamical body frameis based on nonpoint canonical transformations

~iii ! For N54, whereSW 5SW 11SW 21SW 3 , it is possible to constructthreesets ofspin framesand
dynamical body framescorresponding to the hierarchy of clusterings„(ab)c… @i.e., „~12!3…,

„~23!1…, „~31!2…# of the relative spinsSW a .29 The associated three canonical Darboux ba

share the three variablesS3, b, S ~viz., SW !, while both the remaining three orientation
variables and the shape variables depend on the spin clustering. This entails the exist

three different SO~3! right actions with nonconserved canonical generatorsŠ(A)
r , A

51,2,3. Therefore, one can define three anholonomic basesã (A) , b̃ (A) , g̃ (A) , Š(A)
r and

associated shape variablesq(A)
m , p(A)m , m51,...,6, connected by canonical transformatio

leaving Sr fixed. These anholonomic bases and the associatedevolving dynamical body
frames, however, have no relations with theN54 static nontrivial SO~3! principal bundle
of Ref. 9, which admits only local cross sections. As a matter of fact, one getra

r

5Rrs(ã (A) ,b̃ (A) ,g̃ (A)) ř (A)a(q(A)
m ,p(A)m ,Š(A)

r ) instead ofra
r 5Rrs(ã,b̃,g̃) řa

s(qm).

These results imply that, forN54, the 18-dimensional relative phase space admits th
operationally well defineddynamical body frames, and associatedright actions, and its coordinate
are naturally split in three different ways into 6 dynamical rotational variables and 12 gener
dynamical shape variables. As a consequence, we get three possible definitions ofdynamical
vibrations. Each set of 12 generalized dynamical canonical shape variables is obviously d
modulo canonical transformations so that it should even be possible to find local canonica
corresponding to the local cross sections of theN54 static nontrivial SO~3! principal bundle of
Ref. 9.

Our results can be extended to arbitraryN, with SW 5(a51
N21 SW a . There are as many independe

ways~sayK! of spin clustering as in quantum mechanics. For instance forN55, K515: 12 spin
clusterings correspond to the pattern („(ab)c…d) and 3 to the pattern„(ab)(cd)… @a,b,c,d
51,...,4#. For N56, K5105: 60 spin clusterings correspond to the pattern„(„(ab)c…d)e…, 15 to
the pattern„(ab)(cd)e… and 30 to the pattern„((ab)c)(de)… @a,b,c,d,e51,...,5#. Each spin
clustering is associated to~a! a relatedspin frame; ~b! a relateddynamical body frame; ~c! a
related Darboux spin canonical basis with orientational variablesS3, b, S, a (A) , Š(A)

3 , g (A)

5tan21(Š(A)
2 /Š(A)

1 ) , A51,...,K @their anholonomic counterparts areã (A) , b̃ (A) , g̃ (A) , Š(A)
r with

uniquely determined orientation angles# and shape variablesq(A)
m , pm(A) , m51,...,3N26. Further-

more, for N>4 we find the following relation between spin and angular velocity:Šr

5I rs(q(A)
m )v̌ (A)

s 1 f m(q(A)
n )p(A)m .

Let us conclude this Introduction with some remarks.
The SW 50, C-horizontal, cross section of thestatic SO~3! principal bundle corresponds t

N-body configurations that cannot be included in the previous Hamiltonian construction bas
the canonical realizations of SO~3!: these configurations~which include the singular ones! have to
be analyzed independently since they are related to the exceptional orbit of SO~3!, whose little
group is the whole group.

While physical observables have to be obviously independent of the gauge-dependenstatic
body frames, they do depend on thedynamical body frame, whose axes are operationally define
in terms of the relative coordinates and momenta of the particles. In particular, adynamical

definition of vibration, which replaces theSW 50 C-horizontal cross section of thestatic
approach,30 is based on the requirement that the components of theangular velocityvanish.
Actually, the angular velocities with respect to the dynamical body frames become nowmeasur-
able quantities, in agreement with the phenomenology of extended deformable bodies.

In this connection, let us recall that the main efforts done in developing canonical tran
mations for theN-body problem took place in the context of celestial mechanics. As a co
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quence, these transformations are necessarily adapted to the Newtonian gravitational po
This latter, together with the harmonic potential, corresponds to the only interactions having
dynamical symmetries besides the rotational one. The particularity of the final canonical tra
mations which have been worked out in that mechanical context is that of containing the H
tonian as one among the final momenta. This is in particular true for theN52 body problem
~Delauny variables! and for theN53 body problem~Jacobi’s methos ofthe elimination of the
nodes!. On the other hand, it is well-known that, for generic nonintegrable interactions, puttin
Hamiltonian in the canonical bases is quite useless, since it does not bring toisolating integralsof
the motion having the capability of reducing the dimensions of phase space. We stress aga
that our construction rests only on the left and right actions of the SO~3! group and is therefore
completely independent of the interactions~e.g., the treatment of spinning stars in astrophysic!.

It is an open problem whether the use of more general body frames forN53 and N>4
obtained by using the freedom of making arbitrary configurations dependent rotations27 may be
used to simplify the free Hamiltonian and/or some type of interaction.

It is hoped that our results may be instrumental for nuclear, atomic and molecular ph
since a description based on spin clustering rather than on the standard Jacobi center-
clusterings was lacking until now.

Let us observe that the extension of thedynamical body framesto continuous deformable
bodies~see Ref. 31 for an initial study of the relativistic configurations of a Klein–Gordon fi
from this point of view! is a lacking piece of kinematical information and will be studied el
where.

The fact that we use nonpoint canonical transformations will make the quantization
difficult than in the orientation-shape bundle approach, where a separation of rotations
vibrations in the Schro¨dinger equation is reviewed in Ref. 9. The quantizations of the orig
canonical relative variables and of the canonical spin bases will give equivalent quantum th
only if the nonpoint canonical transformations are unitarily implementable. These problem
completely unexplored.

In a future paper8 we shall study the relativisticN-body problem, where the definition an
separation of the center-of-mass motion are known to be a complicated issue. Moreov
schematization with rigid bodies does not exist in special relativity: the only relativistic conce
rigidity are Born’s rigid motions.32 This problem has found a solution within the Wigner-covaria
rest-frame instant form of dynamics.13 It will be shown that concepts like reduced masses, Jac
normal relative coordinates and tensor of inertia do not exist at the relativistic level. Yet, i
framework of the rest-frame instant form, both the orientation-shape SO~3! principal bundle ap-
proach and the canonical spin bases can be defined just as in the nonrelativistic case.

In Sec. II the rest-frame description ofN free particles is introduced.
In Sec. III the canonical spin bases, the spin frameand thedynamical body framesare

introduced and the casesN52, N53 andN>4 are analyzed separately.
In Appendix A detailed calculations are given for the caseN53.
In Appendix B some notions on Euler angles are reviewed.
In Appendix C the construction of thecanonical spin basesis given for theN54 case.
See the preliminary version33 of this paper for a more complete review of the SO~3! principal

bundle approach~see also Refs. 34–37!, many more technical details on the new canoni
transformations and some examples of interaction potentials.

II. THE NONRELATIVISTIC REST-FRAME DESCRIPTION

In this section we give a summary of the description ofN nonrelativistic free particles in the
rest frame.

Given the coordinateshW i(t), i 51,...,N, of N particles of massmi , the standard Lagrangian i
L5( i 51

N (mi /2)hẆ i
2 . By introducing the center-of-mass coordinatesqW nr and a set of relative vari-

ables, the Lagrangian can be rewritten asL5(m/2)qẆ nr1 ~quadratic form in the relative veloci
                                                                                                                



d

e
an

int:

re
e

380 J. Math. Phys., Vol. 43, No. 1, January 2002 Alba, Lusanna, and Pauri

                    
ties!, m5( i 51
N mi . The canonical momenta arepW i5mihẆ i , while the total momentum conjugate

to qW nr is PW 5( i 51
N pW i . The Hamiltonian isH5( i 51

N (pW i
2/2mi)5 PW 2/2m1 ~quadratic form in the

relative momenta!.
The rest-frame description~equivalent to the decoupling of the center of mass! is obtained by

imposing the vanishing of the conserved total momentumPW 5( i 51
N pW i50. It can be obtained as th

nonrelativisticc→` limit of the relativistic rest-frame instant form of Ref. 8. Equivalently we c
start from the Lagrangian

LD~ t !5(
i 51

N
mi

2
@hẆ i~ t !1lW ~ t !#2, SD5E dt LD~ t ! ~2.1!

in which the Lagrange multiplierslW (t) are considered as configurational variables.
The canonical momenta are

kW i~ t !5
]LD~ t !

]hẆ i~ t !

5mi@hẆ i~ t !1lW ~ t !#,

~2.2!

pW l~ t !5
]LD~ t !

]lẆ ~ t !

50.

Therefore,pW l(t)'0 is a primary constraint. The canonical and Dirac Hamiltonians are@the
variablesmW (t) being the Dirac multipliers in front of the primary constraintspW l(t)'0#

Hc5pW l•lẆ 1(
i 51

N

kW i•hẆ i2LD5(
i 51

N kW i
2

2mi
2lW •kW 1 , kW 15(

i 51

N

kW i ,

~2.3!

HD5(
i 51

N kW i
2

2mi
2lW •kW 11mW •pW l .

The time constancy of the primary constraints implies the following secondary constra

pẆ l~ t !5+ $pW l~ t !,HD%5kW 1'0, ~2.4!

which is the nonrelativistic rest-frame condition.
There are two first class constraintspW l'0, kW 1'0: lW (t) and a center-of-mass variable a

gauge variables. The Hamilton and Euler–Lagrange equations are~5+ means evaluated on th
trajectories which minimize the action principle!

hẆ i~ t !5+ $hW i~ t !,HD%5
kW i~ t !

mi
2lW ~ t !, lẆ ~ t !5+ mW ~ t !,

kẆ i~ t !5+ 0, pẆ l~ t !5+ kW 1'0, ~2.5!

mi~hẄ i1lẆ !~ t !5+ 0.
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This is the nonrelativistic limit of the relativistic rest-frame instant form of dynam
Minkowski spacetime is replaced by Galilei spacetime and the Wigner hyperplanes are re
by the inertial observers seeing the isolated system as instantaneously at rest in thet5const
hyperplanes. Defining the nonrelativistic center of mass,

qW nr5(
i 51

N
mi

m
hW i , ~2.6!

with m5( i 51
N mi , the gauge fixingqW nr'0 implieslW (t)'0 and the decoupling of the center o

mass, see Eq.~2.9!.
In analogy with the relativistic case of Ref. 13, let us introduce the following family

nonrelativistic point canonical transformations:

~2.7!

defined by

hW i5qW nr1
1

AN
(
a51

N21

GairW a ,

kW i5
mi

m
kW 11AN (

a51

N21

gaipW a ,

qW nr5(
i 51

N
mi

m
hW i ,

kW 15(
i 51

N

kW i ,

rW a5AN (
i 51

N

gaihW i ,

pW a5
1

AN
(
i 51

N

GaikW i , ~2.8!

SW 5 (
a51

N21

rW a3pW a ,

Gai5gai2 (
k51

N
mk

m
gak , gai5Gai2

1

N (
k51

N

Gak ,

(
i 51

N

gai50, (
i 51

N
mi

m
Gai50,

(
i 51

N

gaigbi5dab , (
i 51

N

gaiGbi5dab ,
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(
a51

N21

gaiga j5d i j 2
1

N
, (

a51

N21

gaiGa j5d i j 2
mi

m
.

Here, thegai’s ~and theGai’s! are numerical parameters depending on1
2 (N21)(N22) free

parameters.13,38

Then, by using the equations of motionm@qẆ nr(t)1lW (t)#5+ 0, we get the LagrangianL rel and
the HamiltonianH rel describing the relative motions after the separation of the center-of-m
motion,

LD~ t !5(
i 51

N
mi

2 FqẆ nr~ t !1lW ~ t !1
1

AN
(
a51

N21

GairẆ a~ t !G 2

5+ L rel~ t !5
1

2 (
a,b

1•N21

kab@mi ,Gai#rẆ a~ t !•rẆ b~ t !,

kab@mi ,Gci#5kba@mi ,Gci#5
1

N (
i 51

N

miGaiGbi ,

kab
21@mi ,Gci#5N(

i 51

N
gaigbi

mi
,

⇓

pW a~ t !5 (
b51

N21

kab@mi ,Gci#rẆ b~ t !,

⇒H rel5
1

2 (
ab

1...N21

kab
21@mi ,Gai#pW a~ t !•pW b~ t !. ~2.9!

The same result can be obtained by adding the gauge fixingsqW nr'0 which implylW (t)50, and by
going to Dirac brackets with respect to the second class constraintskW 1'0, qW nr'0. The
(6N-6)-dimensional reduced phase space is now spanned byrW a , pW a and from Eq.~2.8! we have
SW [(a51

N21rW a3pW a .
At the nonrelativistic level9,39 the next problem for eachN is to diagonalize the matrix

kab@mi ,Gai#. The off-diagonal terms of the matrixkab@mi ,Gai# are calledmass polarization
terms, while its eigenvalues are thereduced masses~see for instance Ref. 40!.

III. CANONICAL SPIN BASES

Following the preliminary work of Ref. 17, we look for a set of nonpoint canonical trans
mations from the relative canonical variablesrW a5AN( i 51

N gaihW i , pW a5(1/AN) ( i 51
N GaikW i of Eq.

~2.8! to a canonical basis adapted to the SO~3! subgroup1,2 of the extended Galilei group an
containing one of its invariants, namely the modulus of the spin. Jacobi coordinates will n
used.

A. 2-body systems

The relative variables arerW 5rW , pW and the Hamiltonian isH rel5pW 2/2m, where m

5 m1m2 /(m11m2) is the reduced mass. The spin isSW 5rW 3pW @S5ASW 2#.
Let us define the following decomposition:
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rW 5rR̂, r5ArW 2, R̂5
rW

r
5 r̂, R̂251,

pW 5p̃R̂2
S

r
R̂3Ŝ5p̃r̂2

S

r
r̂3Ŝ, ~3.1!

p̃5pW •R̂5pW • r̂, Ŝ5
SW

S
, Ŝ•R̂50.

Therefore, besides the standardspace or laboratory framewith unit vectorsf̂ r , we can build
a spin frame, whose basis unit vectorsŜ, R̂, Ŝ3R̂ are identified by the 2-body system itself. Sin

$Si ,Sj%5e i jkSk, $R̂i ,R̂j%50, $R̂i ,Sj%5e i jk R̂k, SW andR̂ are the generators of anE(3) group con-
taining SO~3! as a subgroup. TheE(3) invariants turn out to have the fixed valuesR̂251 and
SW •R̂50.

As shown in Ref. 17, it is instrumental to consider the following nonpoint canonical tran
mation adapted to the SO~3! group valid whenSW Þ0 ~the invariantS5uSW u becomes one of the new
canonical variables!,

, ~3.2!

where

a5tan21
1

SS rW •pW 2
~r!2

r3 p3D ,

b5tan21
S2

S1 , sinb5
S2

A~S!22~S3!2
, cosb5

S1

A~S!22~S3!2
. ~3.3!

The two pairs of canonical variablesa, S, b, S3 form the irreducible kernel of thescheme A

of a ~nonirreducible, type 3; see Ref. 17! canonical realization of the groupE(3) generated bySW ,
R̂, with fixed values of the invariantsR̂251, R̂•SW 50, just as the variablesS3, b andS form the
scheme Aof the SO~3! group with invariantS.

Geometrically we have the following:

~i! The anglea is the angle between the plane determined bySW and f̂ 3 and the plane deter
mined bySW and R̂.

~ii ! The angleb is the angle between the planeSW 2 f̂ 3 and the planef̂ 32 f̂ 1 .

We have

S15A~S!22~S3!2cosb,
~3.4!

S25A~S!22~S3!2sinb,

R̂15 r̂15sinbsina2
S3

S
cosbcosa,

R̂25 r̂252cosbsina2
S3

S
sinbcosa,
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R̂35 r̂35
1

S
A~S!22~S3!2cosa,

~Ŝ3R̂!15Ŝ2R̂32Ŝ3R̂25sinbcosa1
S3

S
cosbsina,

~Ŝ3R̂!25Ŝ3R̂12Ŝ1R̂352cosbcosa1
S3

S
sinbsina,

~Ŝ3R̂!352Ŝ1R̂22Ŝ2R̂15
1

S
A~S!22~S3!2sina,

Ŝ3R̂~a!5
]R̂~a!

]a
5R̂S a1

p

2 D ,

⇒a52tan21
~Ŝ3R̂!3

@Ŝ3~Ŝ3R̂!#3
. ~3.5!

From the last line of this equation we see that the anglea can be expressed in terms ofŜ and
R̂. Given the Hamiltonian description of any isolated system~a deformable body! in its rest frame
with conserved spinSW (q,p) ~q,p denote a canonical basis for the system!, a solutiona(q,p) of
the equations$a(q,p),S(q,p)%51, $a(q,p),b(q,p)%5$a(q,p),S3(q,p)%50, allows us to con-
struct the unit vectorR̂ associated with the isolated system and then to build the spin frame an
E(3) group.

Let us remark thatthe Delaunay Hamilton–Jacobi transformation for the 2-body problem
with the Newton potential, used in celestial mechanics~see for instance Sec. 2.5 of Ref. 41!, is
different from Eq. ~3.2!. In fact, even if it containsS3, b, S, it has~i! an anglea8 differing from
a for the choice of the origin;~ii ! the Hamiltonian and a conjugate variable replacingr, p̃.

The following inverse canonical transformation holds true:

rW 5rR̂~a,b,S,S3!,

pW 5p̃R̂~a,b,S,S3!1
S

r
Ŝ~b,S,S3!3R̂~a,b,S,S3!,

⇒pW 25p̃21
S2

r2 . ~3.6!

In this degenerate case, thedynamicalshape variablesr, p̃ coincide with thestatic ones and
describe the vibration of the dipole.

The rest-frame Hamiltonian for the relative motion becomes~Ǐ is the barycentric tensor o
inertia of the dipole!

H rel5
1

2 F Ǐ 21S21
p̃2

m G , Ǐ 5mr2, m5
m1m2

m11m2
, ~3.7!

while the body frame angular velocity is

v̌5
]H rel

]Š
5

Š

Ǐ
. ~3.8!
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WhenSW Þ0, Eq. ~3.2! explicitly shows that a non-Abelian symmetry group like SO~3! does not
allow a canonical reduction like in the Abelian case of translations. In this latter case w
eliminate the three Abelian constants of motionkW 1'0 and gauge fix the three conjugate variab
qW nr'0. In the non-Abelian case we could surely fixS3, b by imposing second class constrain
S32a'0, b2b'0, and eliminate this pair of canonical variables by going to Dirac brack
However, sincea is not a constant of motion@see later on Eq.~3.7!; we get instead (d/dt) (S

2s)5+ 0#, we can only add by hand the first class constraintS2s'0 (sÞ0). It is only after the
solution of the equations of motion, that we could also complete the reduction by addia
2asolution'0 as a gauge-fixing. Let us remark that, sinceS is a constant of the motion, the ang
a is an ignorablevariable, which does not occur in the Hamiltonian.

In the absence of interactions the solution fora can be easily worked out~in any case it can
be obtained by quadratures after the solution of the other equations of motion!. The Hamilton

equations, equivalent torẄ 5+ 0, are ṙ5+ p̃/m, p8 5+ (S)2/mr3, Ṡ5+ 0, ȧ 5+ S/mr2. The solutionrW

5+ bW t1aW ~aW , bW constant vectors! implies r 5+ ubW t1aW u, R̂ 5+ (bW t1aW )/ubW t1aW u, p̃ 5+ 2mbW •(bW t

1aW )/ubW t1aW u, S5+ m&uaW 3bW u, a 5+ arccos„R̂3S/A(S)22(S3)2
….

In the 2-body case the conditionSW '0, imposed as three first class constraints, is equivalen
rW 2kpW '0 and selects only the solutionrW (t)5+ AW eBt ~k, AW andB are constants!.

B. 3-body systems

In the caseN53 the range of the indices isi 51,2,3,a51,2. The spin isSW 5(a51
2 rW a3pW a

5(a51
2 SW a after the canonical transformation~2.7! and the relative motions are governed by t

Hamiltonian~2.9! for N53.
Again, we shall assumeSW Þ0, because the exceptional SO~3! orbit S50 has to be studied

separately. This is done by addingS'0 as a first class constraint and studying the following t
disjoint strata with a different number of first class constraints separately:~a! SW '0, but SW 1

52SW 2Þ0; ~b! SW a'0, a51,2 ~in this case we haverW a2kapW a'0!.42

For each value ofa51,2, we consider the nonpoint canonical transformation~3.2!,

~3.9!

where

aa5tan21
1

Sa
S rW a•pW a2

~ra!2

ra
3 pa

3D ,

ba5tan21
Sa

2

Sa
1 , sinba5

Sa
2

A~Sa!22~Sa
3!2

, cosba5
Sa

1

A~Sa!22~Sa
3!2

. ~3.10!

rW a5raR̂a , ra5ArW a
2, R̂a5

rW a

ra
5 r̂a , R̂a

251,

~3.11!

pW a5p̃aR̂a1
Sa

ra
Ŝa3R̂a , p̃a5pW a•R̂a .
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rW a5rar̂a~aa ,ba ,Sa ,Sa
3!5raR̂a~aa ,ba ,Sa ,Sa

3!,
~3.12!

pW a5p̃ar̂a~aa ,ba ,Sa ,Sa
3!1

Sa

ra
Ŝa~ba ,Sa ,Sa

3!3 r̂a~aa ,ba ,Sa ,Sa
3!

5p̃aR̂a~aa ,ba ,Sa ,Sa
3!1

Sa

ra
Ŝa~ba ,Sa ,Sa

3!3R̂a~aa ,ba ,Sa ,Sa
3!.

We have nowtwo unit vectorsR̂a and two E(3) realizations generated bySW a , R̂a , respec-
tively, and fixed invariantsR̂a

251, SW a•R̂a50 ~nonirreducible, type 2; see Ref. 17!.
Then, thesimplest choice, within the existing arbitrariness,27 for the orthonormal vectorsNW

andxW functions only of the relative coordinates is~it is the canonical transformation of Ref. 1
with the interchangerW a↔pW a!

NW 5
1

2
~R̂11R̂2!5

1

2
~ r̂11 r̂2!, N̂5

NW

uNW u
, uNW u5A11 r̂1• r̂2

2
,

xW 5
1

2
~R̂12R̂2!5

1

2
~ r̂12 r̂2!, x̂5

xW

uxW u
, uxW u5A12 r̂1• r̂2

2
5A12NW 2,

NW 3xW 52
1

2
r̂13 r̂2 , uNW 3xW u5uNW uuxW u5

1

2
A12~ r̂1• r̂2!2, ~3.13!

NW •xW 50, $Nr ,Ns%5$x r ,xs%5$Nr ,xs%50,

R̂15 r̂15NW 1xW , R̂25 r̂25NW 2xW , R̂1•RW 25 r̂1• r̂25NW 22xW 2.

Likewise, we have for the spins

SW 5SW 11SW 2 ,

WW 5SW 12SW 2 ,
~3.14!

SW 15 1
2~SW 1WW !, SW 25 1

2~SW 2WW !,

$Wr ,Ws%5e rsuSu.

We therefore succeeded in constructing an orthonormal triad~thedynamical body frame! and
two E(3) realizations~nonirreducible, type 3; see Ref. 17!: one with generatorsSW , NW and nonfixed
invariantsuNW u and SW •N̂, the other with generatorsSW and xW and nonfixed invariantsuxW u and SW

•x̂. As said in the Introduction, Eq.~1.1!, this is equivalent to the determination of the nonco
served generatorsŠr of a Hamiltonianright action of SO~3!: Š15SW •x̂5SW •ê1 , Š25SW •N̂3x̂5SW

•ê2 , Š35SW •N̂5SW •ê3 .
The realization of theE(3) group with generatorsSW , NW and nonfixed invariantsNW 2, SW •NW leads

to the final canonical transformation introduced in Ref. 17

~3.15!
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where

uNW u5A11 r̂1• r̂2

2
,

Š35SW •N̂5
1

&
(
a51

2

rW a3pW a•
r̂11 r̂2

A11 r̂1• r̂2

[Scosc,

cosc5Ŝ•N̂5
Š3

S
, sinc5

1

S
A~S!22~Š3!2,

S5Š5U(
a51

2

rW a3pW aU,
S35 (

a51

2

~rW a3pW a!3,

~3.16!

a52tan21
~Ŝ3N̂!3

@Ŝ3~Ŝ3N̂!#3
52tan21

@Ŝ3~ r̂11 r̂2!#3

†Ŝ3~Ŝ3@ r̂11 r̂2# !‡3
,

b5tan21
S2

S1 ,

g5tan21
SW •~N̂3x̂ !

SW •x̂
5tan21

Š2

Š1
,

⇒sing5
Š2

A~Š!22~Š3!2
, cosg5

Š1

A~Š!22~Š3!2
,

j5
WW •~N̂3x̂ !

uxW u
5

WW •~N̂3x̂ !

A12NW 2

5
&(a51

2 ~2 !a11rW a3pW a•~ r̂23 r̂1!

@12 r̂1• r̂2#A11 r̂1• r̂2

.

For N53 thedynamical shape variables, functions of the relative coordinatesrW a only, areuNW u
andra , while the conjugate shape momenta arej, p̃a .

Let us remark thatthis transformation is different from the canonical transformationof Ref.
43 introduced for the method ofelimination of the nodes. SinceS is a constant of motion, the
conjugate variablea is ignorableand does not occur in the Hamiltonian. We recover the result
the effective order of the 3-body equations of motion is 8, before using the conservation
energy.

The final array~3.15! is nothing other than ascheme B1 of a realization of theE(3) group
with generatorsSW , NW ~nonirreducible type 3!. In particular, the two canonical pairsS3, b, S, a,
constitute the irreducible kernel of theE(3) scheme A, whose invariants areŠ3, uNW u; g andj are
the so-calledsupplementary variablesconjugated to the invariants; finally, the two pairsra , p̃a
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are so-calledinessential variables. Let us remark thatS3, b, S, a, g, j, are a local coordinatization
of every E(3) coadjoint orbit withŠ35const, uNW u5const and fixed values of the inessent
variables, present in the 3-body phase space.

We can now reconstructSW and define anew unit vectorR̂ orthogonal toSW by adopting the
prescription of Eq.~3.5!.

The vectorsŜ, R̂, Ŝ3R̂ build up thespin framefor N53. The anglea conjugate toS is
explicitly given by

a52tan21
~Ŝ3N̂!3

@Ŝ3~Ŝ3N̂!#3
52tan21

~Ŝ3R̂!3

@Ŝ3~Ŝ3R̂!#3
. ~3.17!

The two expressions ofa given here are consistent with the fact thatŜ, R̂ andN̂ are coplanar, so
that R̂ and N̂ differ only by a term inŜ.

As a consequence of this definition of Rˆ , we get the following expressions for thedynamical

body frame Nˆ , x̂, N̂3x̂ in terms of the final canonical variables,

N̂5coscŜ1sincR̂5
Š3

S
Ŝ1

1

S
A~S!22~Š3!2R̂5N̂@S,a;S3,b;Š3,g#,

x̂5sinc cosgŜ2cosc cosgR̂1singŜ3R̂5
Š1

S
Ŝ2

Š3

S

Š1 R̂1Š2 Ŝ3R̂

A~S!22~Š3!2
5x̂@S,a;S3,b;Š3,g#,

N̂3x̂5sinc singŜ2cosc singR̂2cosgŜ3R̂

5
Š2

S
Ŝ2

Š3

S

Š1 R̂2Š2 Ŝ3R̂

A~S!22~Š3!2
5~N̂3x̂ !@S,a;S3,b;Š3,g#,

⇓ ~3.18!

Ŝ5sinc cosgx̂1sinc singN̂3x̂1coscN̂5
def1

S
@Š1x̂1Š2N̂3x̂1Š3N̂#,

R̂52cosc cosgx̂2cosc singN̂3x̂1sincN̂,

R̂3Ŝ52singx̂1cosgN̂3x̂.

While c is the angle betweenŜ andN̂, g is the angle between the planeN̂2x̂ and the plane
Ŝ2N̂. As in the caseN52, a is the angle between the planeŜ2 f̂ 3 and the planeŜ2R̂, while b

is the angle between the planeŜ2 f̂ 3 and the planef̂ 32 f̂ 1 . See Fig. 1.
Owing to the results of Appendix A, which allow us to re-expressSa5uSW au, Sa

3 , ba

5tan21 (Sa
2/Sa

1) in terms of the final variables and owing to Eqs.~3.13!, ~3.17! which allow us to
get aa52tan21@(Ŝa3R̂a)

3/„Ŝa3(Ŝa3R̂a)…3#, we can reconstruct the inverse canonical trans
mation.

The existence of thespin frameand of thedynamical body frameallows to define two
decompositions of the relative variables, which make explicit the inverse canonical transf
tion. For the relative coordinates we get from Eqs.~3.13! and ~A3!,
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rW a5raR̂a

5ra@NW 1~2 !a11xW #

5ra@ uNW uN̂1~2 !a11A12NW 2x̂ #

5@rW a•Ŝ#Ŝ1@rW a•R̂#R̂1@rW a•Ŝ3R̂#Ŝ3R̂

5rW a@S,a;S3,b;Š3,g;ra ,uNW u#. ~3.19!

The analogous formulas for the relative momenta are@see Eq.~A3! for the expression of the
body frame components ofpW a#

pW a5p̃aR̂a1
Sa

ra
Ŝa3R̂a

5p̃ar̂a1
Sa

ra
Ŝa3 r̂a

5@pW a•N̂#N̂1@pW a•x̂ #x̂1@pW a•N̂3x̂ #N̂3x̂

5@pW a•Ŝ#Ŝ1@pW a•R̂#R̂1@pW a•Ŝ3R̂#Ŝ3R̂

5pW a@S,a;S3,b;Š3,g;uNW u,j;ra ,p̃a#. ~3.20!

Finally, the results of Appendix B allow us to perform a sequence of a canonical transfo
tion to Euler anglesã, b̃, g̃ with their conjugate momenta, followed by a transition to t
anholonomic basis used in the orientation-shape bundle approach,9

FIG. 1. Spaceframe (f̂ r), spin frame~Ŝ, R̂, Ŝ3R̂! anddynamical bodyframe~N̂, x̂, N̂3x̂! for N>3 particles.c—angle

betweenN̂ and Ŝ; a—angle between the planesŜ– f̂ 3 and Ŝ–R̂; b—angle betweenf̂ 1 and the projection ofŜ onto the

plane f̂ 1– f̂ 2 ; g—angle betweenx̂ and the projection ofŜ onto the planex̂ –N̂3x̂.
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S5Š5A~Š1!21~Š2!21~Š3!2,

S352sinb̃ cosg̃Š11sinb̃ sing̃Š21cosb̃Š3,

a5arctan
pb̃tanb̃

Š2
pãpg̃

Šcosb̃

, ~3.21!

g5
p

2
2g̃2arctan

cotb̃pg̃2
pã

sinb̃

pb̃

,

b5ã1arctan

cotb̃pã2
pg̃

sinb̃

pb̃

2
p

2
.

Herepã , pb̃ , pg̃ are the functions ofã, b̃, g̃, Šr given in Eqs.~B3!. The equations~B3!, ~3.21!,
~3.13! andŠ25SW •N̂3x̂ lead to the determination of thedynamical orientation variablesã, b̃, g̃
in terms ofrW a , pW a . Let us stress that, while in the orientation-shape bundle approach the o
tation variablesua are gauge variables, the Euler anglesã, b̃, g̃ areuniquely determinedin terms
of the original configurations and momenta.

In conclusion, the complete transition to the anholonomic basis used in thestatic theory of the
orientation-shape bundle is~another possible anholonomic basis isã, b̃, g̃, Sr!

~3.22!

In order to further the comparison with the orientation-shape bundle approach, let us no
following relation between the space and body components of the relative coordinates. Eqs.~3.20!,
~3.22!, ~3.18! and ~B2! imply

ra
r 5R r

s~ ã,b̃,g̃ !řa
s~q!,

with

řa
1~q!5~2 !a11raA12NW 2, řa

2~q!50, řa
3~q!5rauNW u,

and

Sr5R r
s~ ã,b̃,g̃ !Šs, ~3.23!

so that the final visualization of our sequence of transformations is

~3.24!
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Note furthermore that we getřa
25rW a•N̂3x̂50 by construction and this entails that using o

dynamical body frameis equivalent to a convention~xxzz gauge! about the body frame of the typ
of xxz and similar gauges quoted in Ref. 9.

Finally, we can give the expression of the Hamiltonian for relative motions in terms o
anholonomic Darboux basis of Eqs.~3.21!. By using Eq.~A3! we get

H rel5
1

2NW 2 F1

2 S k21
11

r1
2 1

k21
22

r2
2 D 1

k21
12

r1r2
G ~Š1!21

1

2
F1

2 S k21
11

r1
2 1

k21
22

r2
2 D 1

k21
12~2NW 221!

r1r2
G ~Š2!2

1
1

2~12NW 2!
F1

2 S k21
11

r1
2 1

k21
22

r2
2 D 2

k21
12

r1r2
G ~Š3!21A12NW 2F j

2 S k21
11

r1
2 2

k21
22

r2
2 D

12k21
12uNW uA12NW 2S p̃1

r2

2
p̃2

r1
D G Š22

1

2uNW uA12NW 2
S k21

11

r1
2 2

k21
22

r2
2 D Š1Š31k21

11

3F p̃1
21

j2~12 NW 2!

4r1
2 G1k21

22F p̃2
21

j2~12 NW 2!

4r2
2 G12k21

12F ~2NW 221!p̃1p̃22uNW u~12NW 2!

3jS p̃1

r2

1
p̃2

r1
D 1

j2~12NW 2!~2NW 221!

4r1r2
G5

def1

2
@Šr~ Ǐ21!rsŠs1g̃mn~pm2SW •AW m!~pn2SW̌ •AW̌ n!#,

~3.25!

whereqm5(r1 ,r2 ,uNW u), pm5(p̃1 ,p̃2 ,j) are the dynamical shape variables. By reason of co
parison, in the last line we have presented the Hamiltonian in the form of the static SO~3! principal
bundle approach. In Appendix E of Ref. 33 there is the determination of the quantitiesǍm

r (q) @the
SO~3! gauge potential#, g̃mn(q) ~the inverse metric!, Ǐ21rs(q) ~the tensor of inertia! appearing in
the xxzz gauge. Recall that the specialxxzz gaugepotentialsǍm

r (q) are measurable quantities i
our approach. The same holds for the angular velocity in the evolving dynamical body fram

By evaluatingpmu q̇50 , we can recover the rotational kinetic energy~the centrifugal potential!

H rel
(rot)5 1

2Š
r(Ǐ21) rsŠs of thexxzz gauge. In our approach the measurablevibrational kinetic energy

H rel
(vib) for SW Þ0 nonsingularN53 configurations can be obtained by restrictingŠr in H rel to the

valueŠr uv̌s50 @see Eq.~3.32! and Appendix E of Ref. 33#, upon the requirement that the dynamic
angular velocity vanishes in thexxzz gauge. Let us remark that we getH relÞH rel

(rot)1H rel
(vib) ,

differently from the static orientation-shape bundle result associated with theC-connection. In
order to get the theory with the Jacobi normal coordinates one has to perform our seque
canonical transformations after having diagonalizedkab .

The Hamiltonian in the basis~3.15! can be obtained with the following replacementsŠ1

5A(S)22(Š3)2cosg and Š25A(S)22(Š3)2sing.

C. N-body systems

Let us now consider the general case withN>4 without introducing Jacobi normal coord
nates. Instead of coupling the centers of mass of particle clusters as it is done with
coordinates~center-of-mass clusters!, the canonical spin baseswill be obtained by coupling the
spins of the 2-body subsystems~relative particles! rW a , pW a , a51,...,N21, defined in Eqs.~2.7!, in
all possible ways~spin clustersfrom the addition of angular momenta!. Let us stress that we ca
build a spin basiswith a pattern ofspin clusterscompletely unrelated to a possible pre-existi
center-of-mass clustering.

Let us consider the caseN54 as a prototype of the general construction. We have now th
relative variablesrW 1 , rW 2 , rW 3 and related momentapW 1 , pW 2 , pW 3 . In the following formulas we use
the convention that the subscriptsa, b, c mean any permutation of 1,2,3.
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By using the explicit construction given in Appendix C, we define the following sequenc
canonical transformations~we assumeSÞ0; SAÞ0, A5a,b,c! corresponding to thespin cluster-
ing pattern abc°(ab)c°„(ab)c… @build first the spin cluster (ab), then the spin cluster
„(ab)c…#:

~3.26!

The first nonpoint canonical transformation is based on the existence of the three unit v
R̂A , A5a,b,c, and of threeE(3) realizations with generatorsSW A , R̂A and fixed values (R̂A

251,
SW A•R̂A50) of the invariants. Use Eqs.~3.10!, ~3.11! and ~3.12!.

In the next canonical transformation the spins of therelative particles aandb are coupled to
form the spin cluster (ab), leaving therelative particle cas a spectator. We use Eq.~3.13! to
define NW (ab)5

1
2 (R̂a1R̂b), xW (ab)5

1
2 (R̂a2R̂b), SW (ab)5SW a1SW b , WW (ab)5SW a2SW b . We get NW (ab)

•xW (ab)50, $N(ab)
r ,N(ab)

s %5$N(ab)
r ,x (ab)

s %5$x (ab)
r ,x (ab)

s %50 and a newE(3) realization generated

by SW (ab) and NW (ab) , with nonfixed invariantsuNW (ab)u, SW (ab)•N̂(ab) 5
def

V (ab) . From Eqs.~3.20! it
follows that

rW a5ra@ uNW (ab)uN̂(ab)1A12NW (ab)
2 x̂ (ab)#,

rW b5rb@ uNW (ab)uN̂(ab)2A12NW (ab)
2 x̂ (ab)#, ~3.27!

rW c5rcR̂c .

Equation~3.16! definesa (ab) and b (ab) , so that Eq.~3.5! defines a unit vectorR̂(ab) with SW (ab)

•R̂(ab)50, $R̂(ab)
r ,R̂(ab)

s %50. This unit vector identifies thespin cluster(ab) in the same way as
the unit vectorsR̂A5rŴ A identify the relative particles A.

The next step is the coupling of thespin cluster(ab) with unit vectorR̂(ab) @described by the
canonical variablesa (ab) , S(ab) , b (ab) S(ab)

3 # with the relative particle cwith unit vectorR̂c and
described byac , Sc , bc , Sc

3 : this builds thespin cluster„(ab)c….
Again, Eq. ~3.13! allows us to defineNW

„(ab)c…5
1
2 (R̂(ab)1R̂c), xW

„(ab)c…5
1
2 (R̂(ab)2R̂c), SW

5SW
„(ab)c…5SW (ab)1SW c , WW

„(ab)c…5SW (ab)2SW c . Since we have NW
„(ab)c…•xW ((ab)c)50 and

$N
„(ab)c…
r ,N

„(ab)c…
s %5$N

„(ab)c…
r ,x

„(ab)c…
s %5$x

„(ab)c…
r ,x ((ab)c)

s %50 due to$R̂(ab)
r ,R̂c

s%50, a newE(3)
realization generated bySW andNW

„(ab)c… with nonfixed invariantsuNW
„(ab)c…u, SW •N̂

„(ab)c…5Š3 emerges.
Equation~3.16! definesa

„(ab)c… and b
„(ab)c… , so that Eq.~3.5! allows us to identify a final unit

vector R̂
„(ab)c… with SW •R̂

„(ab)c…50 and$R̂
„(ab)c…
r ,R̂

„(ab)c…
s %50.

In conclusion, whenSÞ0, we find both aspin frame Sˆ , R̂
„(ab)c… , R̂

„(ab)c…3Ŝ and adynamical

body framex̂
„(ab)c… , N̂

„(ab)c…3x̂
„(ab)c… , N̂

„(ab)c… , like in the 3-body case. There is animportant

difference, however: the orthonormal vectorsNW
„(ab)c… andxW

„(ab)c… depend on the momenta of th
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relative particlesa and b through R̂(ab) , so that our results do not share any relation with
N54 nontrivial SO~3! principal bundle of the orientation-shape bundle approach.

The final 6dynamical shape variablesareqm5$uNW ((ab)c)u,g (ab) ,uNW (ab)u,ra ,rb ,rc%. While the
last four depend only on the original relative coordinatesrW A , A5a,b,c, the first two depend also
on the original momentapW A : therefore they aregeneralized shape variables. By using Appendix
B, we obtain

rA
r 5R rs~ ã,b̃,g̃ !řA

s ~qm,pm ,Šr !, A5a,b,c. ~3.28!

This means that forN54 the dynamical body frame componentsřA
r depend also on the dynamica

shape momenta and on the dynamical body frame components of the spin. It is clear that thi
stands completely outside the orientation-shape bundle approach.

As shown in Appendix F of Ref. 33, starting from the HamiltonianH rel„(ab)c… expressed in the
final variables, we can define a rotational HamiltonianH rel„(ab)c…

(rot) and a vibrational Hamiltonian
H rel„(ab)c…

(vib) ~vanishing of the physical dynamical angular velocityv̌
„(ab)c…
r 50), but H rel„(ab)c… fails

to be the sum of these two Hamiltonians showing once again the nonseparability of rotatio
vibrations. Let us stress that in the rotational Hamiltonian we find aninertia-like tensordepending
only on the dynamical shape variables. A similar result, however, does not hold for the
angular velocity relation.

The price to be paid for the existence of 3 globaldynamical body framesfor N54 is a more
complicated form of the Hamiltonian kinetic energy. On the other hand,dynamical vibrationsand
dynamical angular velocityare measurable quantities in each dynamical body frame.

For N55 we can repeat the previous construction either with the sequence of spin clust
abcd°(ab)cd°„(ab)c)d…°(„(ab)c…d) or with the sequenceabcd°(ab)(cd)°„(ab)
3(cd)… ~a, b, c, d any permutation of 1,2,3,4! as stated in the Introduction. Eachspin cluster

( ¯ ) will be identified by the unit vectorR̂( ¯ ) , the axis of thespin frameof the cluster. All the
final dynamical body framesbuilt with this construction will have their axes depending on both
original configurations and momenta.

This construction is trivially generalized to anyN: we have only to classify all the possibl
spin clustering patterns.

Therefore, forN>4 our sequence of canonical and noncanonical transformations leads
following result, to be compared with Eq.~3.22! of the 3-body case,

~3.29!

This state of affairs suggests that forN>4 and withSÞ0, SAÞ0, A5a,b,c, namely when the
standard (3N-3)-dimensional orientation-shape bundle is not trivial, the origi
(6N-6)-dimensional relative phase space admits the definition of as manydynamical body frames
as spin canonical bases, which are globally defined~apart isolated coordinate singularities! for the
nonsingularN-body configurations withSW Þ0 ~and with nonzero spin for each spin subcluster!.

Thesedynamical body framesdo not correspond to local cross sections of the static nontri
orientation-shape SO~3! principal bundle and the spin canonical bases do not coincide with
canonical bases associated with the static theory.
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APPENDIX A: SOME FORMULAS FOR THE CASE NÄ3

In this appendix we justify Eq.~3.19!. To find the expression ofpW a•N̂, pW a•x̂, pW a•N̂3x̂ let us
consider the following quantities:

SW 15rW 13pW 15r1@NW 3pW 11xW 3pW 1#,

SW 25rW 23pW 25r2@NW 3pW 22xW 3pW 2#,

SW 5SW 11SW 25NW 3@r1pW 11r2pW 2#1xW 3@r1pW 12r2pW 2#,

WW 5SW 12SW 25NW 3@r1pW 12r2pW 2#1xW 3@r1pW 11r2pW 2#,

SW •NW 5uNW uŠ35uNW uuxW u@r1pW 12r2pW 2#•N̂3x̂5uNW uuxW ub3 ,

SW •xW 5uxW uŠ152uNW uuxW u@r1pW 11r2pW 2#•N̂3x̂52uNW uuxW ua3 ,

SW •NW 3xW 5uNW 3xW uŠ25NW 2uxW u@r1pW 11r2pW 2#•x̂2xW 2uNW u@r1pW 12r2pW 2#•N̂5NW 2uxW ua22xW 2uNW ub1 ,
~A1!

WW •NW 52SW •xW ,

WW •xW 52SW •NW ,

WW •NW 3xW 5NW 2uxW u@r1pW 12r2pW 2#•x̂2xW 2uNW u@r1pW 11r2pW 2#•N̂5NW 2uxW ub22xW 2uNW ua1 ,

r1p̃15rW 1•pW 15r1@pW 1•NW 1pW 1•xW #,

r2p̃25rW 2•pW 25r2@pW 2•NW 2pW 2•xW #,

r1p̃11r2p̃25rW 1•pW 11rW 2•pW 25@r1pW 11r2pW 2#•NW 1@r1pW 12r2pW 2#•xW 5uNW ua11uxW ub2 ,

r1p̃12r2p̃25rW 1•pW 12rW 2•pW 25@r1pW 12r2pW 2#•NW 1@r1pW 11r2pW 2#•xW 5uNW ub11uxW ua2 ,

where

a15@r1pW 11r2pW 2#•N̂,

a25@r1pW 11r2pW 2#•x̂,

a35@r1pW 11r2pW 2#•N̂3x̂,
~A2!

b15@r1pW 12r2pW 2#•N̂,

b25@r1pW 12r2pW 2#•x̂,

b35@r1pW 12r2pW 2#•N̂3x̂.

SinceSW •N̂5Š3, SW •x̂5sinc cosg5Š1, SW •N̂3x̂5sinc sing5Š2, WW •N̂3x̂5jA12NW 2, from
Eq. ~A1! we getpW a in terms of the final canonical variables:
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pW 1•N̂5
a11b1

2r1
5p̃1uNW u2

A12 NW
2

2r1
@Š21jA12NW 2#,

pW 2•N̂5
a12b1

2r2
5p̃2uNW u1

A12 NW
2

2r2
@Š22jA12NW 2#,

pW 1•x̂5
a21b2

2r1
5p̃1A12NW 21

uNW u
2r1

@Š21jA12NW 2#,

~A3!

pW 2•x̂5
a22b2

2r2
52p̃2A12NW 21

uNW u
2r2

@Š22jA12NW 2#,

pW 1•N̂3x̂5
a31b3

2r1

5
1

2r1
F2

Š1

uNW u
1

Š3

A12NW

2G ,

pW 2•N̂3x̂5
a32b3

2r2

52
1

2r2
F Š1

uNW u
1

Š3

A12NW 2
G .

With these results we can obtain the expression of the spin quantitiesWW , SW a in terms of the
final variables@see Eq.~C6! of Ref. 33#.

APPENDIX B: EULER ANGLES

Let us denote byã, b̃, g̃ the Euler angles chosen as orientation variablesua.
Let f̂ 15 î , f̂ 25 ĵ , f̂ 35 k̂ be the unit 3-vectors along the axes of the space frame andê15x̂,

ê25N̂3x̂, ê35N̂, the unit 3-vectors along the axes of abody frame. Then we have

SW 5Sr f̂ r5Rrs~ ã,b̃,g̃ !Šsf̂ r5Šsês ,
~B1!

ês5~RT!sr~ ã,b̃,g̃ ! f̂ r5R s
r~ ã,b̃,g̃ ! f̂ r .

There are two main conventions for the definition of the Euler anglesã, b̃, g̃.
~A! The y-convention@see Refs. 44~Appendix B! and 45#:
~i! perform a first rotation of an angleã around f̂ 3 @ f̂ 1°ê185cosã f̂11sinã f̂2, f̂ 2°ê28

52sinã f̂11cosã f̂2, f̂ 3°ê385 f̂ 3#;
~ii ! perform a second rotation of an angleb̃ aroundê28 @ê18°ê195cosb̃ê182sinb̃ê38 , ê28°ê29

5ê28 , ê38°ê395sinb̃ê181cosb̃ê38#;
~iii ! perform a third rotation of an angleg̃ around ê39 @ê19°ê15cosg̃ê191sing̃ê29 , ê29°ê2

52sing̃ê191cosg̃ê29#. In this way we get

S x̂

N̂3x̂

N̂
D [S ê1

ê2

ê3

D 5R~ ã,b̃,g̃ !S f̂ 1

f̂ 2

f̂ 3

D ,
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R r
s~ ã,b̃,g̃ !

5RTrs~ ã,b̃,g̃ !

5S cosg̃ cosb̃ cosã2sing̃ sinã cosg̃cosb̃ sinã1sing̃ cosã 2cosg̃ sinb̃

2~sing̃ cosb̃ cosã1cosg̃ sinã 2sing̃ cosb̃ sinã1cosg̃ cosã sing̃ sinb̃

sinb̃ cosã sinb̃ sinã cosb̃
D ,

with

tanã5
N̂2

N̂1
, cosb̃5N̂3, tang̃52

x̂3

~N̂3x̂ !3
. ~B2!

SinceN̂ and x̂ are functions ofrW a only, see Eq.~3.13!, we get$ã,b̃%5$b̃,g̃%5$g̃,ã%50.
~B! The x-convention~see Refs. 46, 44~in the text! and 2!: the Euler anglesu, w andc are:

~i! u5b̃; ~ii ! cosw52sinã, sinw5cosã; ~iii ! cosc5sing̃, sinc52cosg̃.
We use they-convention. Following Ref. 2, let us introduce the canonical momentapã , pb̃ ,

pg̃ conjugated toã, b̃, g̃: $ã,pã%5$b̃,pb̃%5$g̃,pg̃%51 ~note that this Darboux chart does n
exist globally!. Then, the results of Ref. 2 imply

S152sinãpb̃1
cosã

sinb̃
pg̃2cosãcotb̃pã ,

S25cosãpb̃1
sinã

sinb̃
pg̃2sinãcotb̃pã ,

S35pã ,

Š15sing̃pb̃2
cosg̃

sinb̃
pã1cosg̃ cotb̃pg̃ ,

Š25cosg̃pb̃1
sing̃

sinb̃
pã2sing̃cotb̃pg̃ ,

Š35pg̃ ,
~B3!

⇓

pã5S352sinb̃ cosg̃Š11sinb̃ sing̃Š21cosb̃Š3,

pb̃52sinãS11cosãS25sing̃Š12cosg̃Š2,

pg̃5Š35cosã sinb̃S11sinã sinb̃S21cosb̃S3.

APPENDIX C: 4-BODY CASE

Let us give the main steps of the construction of the spin basis in the caseN54. From Eqs.
~3.27! we have
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rW a5ra@ uNW ~ab!uN̂~ab!1A1-NW ~ab!
2 x̂~ab!#,

rW b5rb@ uNW ~ab!uN̂~ab!2A1-NW ~ab!
2 x̂~ab!#, ~C1!

rW c5rcR̂c .

The definitions given after Eqs.~3.27! and Appendix B imply

NW 5
def

NW
„(ab)c…5

1

2
~R̂(ab)1R̂c!,

xW 5
def

xW
„(ab)c…5

1

2
~R̂(ab)2R̂c!,

NW 3xW 52
1

2
R̂(ab)3R̂c ,

~C2!
⇓

rW c5rc@ uNW uN̂2A12NW 2x̂ #,

⇒rc
r 5R rs~ ã,b̃,g̃ !řc

s~ uNW u,rc!.

Let us remember that the dynamical shape variables of Eq.~3.26! are qm

5$uNW u,g (ab) ,uNW (ab)u, ra , rb , rc%. Then, from Eqs.~3.16! and~3.18!, for the subsystem (ab) we
get

R̂(ab)5NW 1xW , SW ~ab!•R̂~ab!50,

SW (ab)5
def

SW a1SW b5S~ab!~sinc~ab!@cosg~ab! x̂~ab!1sing~ab!N̂~ab!3x̂~ab!#5cosc~ab!N̂~ab!!,

x̂~ab!5
1
2~R̂a2R̂b!5cosg~ab!~sinc~ab!Ŝ~ab!2cosc~ab!R̂~ab!!2sing~ab!R̂~ab!3Ŝ~ab! ,

~C3!
N̂(ab)5cosc~ab!Ŝ~ab!1sinc~ab!R̂~ab! ,

N̂~ab!3x̂~ab!5sing~ab!~sinc~ab!Ŝ~ab!2cosc~ab!R̂~ab!!1cosg~ab!R̂~ab!3Ŝ~ab! ,

cosc~ab!5
V~ab!

S~ab!
, sinc~ab!5A12S V~ab!

S~ab!
D 2

, V (ab)5SW ~ab!•N̂~ab! .

We have, moreover,

SW c5 1
2~SW 2WW

„(ab)c…!,

WW
„(ab)c… •NW 52SW •xW , WW

„(ab)c…•xW 52SW •NW ,

W̌152
uNW uŠ3

A12NW 2
, W̌25jA12NW 2,
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W̌352
A12NW 2

uNW u
cosgA~S!22~Š3!2,

g
„(ab)c…5tan21

SW •~N̂3x̂ !

SW •x̂
5tan21

Š2

Š1
,

j
„(ab)c…5

WW
„~ab!c…•~N̂3x̂ !

A12NW 2
,

SW ~ab!5
1
2~SW 1WW !

„~ab!c…

5Š~ab!
1 x̂1Š~ab!

2 N̂3x̂1Š~ab!
3 N̂

5 1
2~Š11W̌

„~ab!c…
1 !x̂1 1

2~Š21W̌
„~ab!c…
2 !N̂3x̂1 1

2~Š31W̌
„~ab!c…
3 !N̂,

SW 5SW a1SW b1SW c5SW (ab)1SW c5
def

SW
„~ab!c…5Š1x̂1Š3N̂1Š2N̂3x̂,

~C4!

Š~ab!
1 5

1
2 S Š12

uNW u

A12NW 2
Š3D ,

Š~ab!
2 5 1

2~Š21j
„~ab!c…A12NW 2!,

Š~ab!
3 5

1

2
S Š32

A12NW 2

uNW u
Š1D ,

Š15cosg
„(ab)c…A~S!22~Š3!2, Š25sing

„(ab)c…A~S!22~Š3!2,

S(ab)5A~Š(ab)
1 !21~Š(ab)

2 !21~Š(ab)
3 !25

1

2
A~Š21j

„(ab)c…
A12NW 2!21S Š1

uNW u
2

Š3

A12NW 2
D 2

,

Ŝ(ab)5
1

2S(ab)
F ~Š21j

„(ab)c…
A12NW 2!N̂3x̂1S Š12

uNW u

A12NW 2
Š3D x̂1S Š32

A12NW 2

uNW u
Š1D N̂G ,

R̂(ab)5uNW uN̂1A12NW 2x̂,

R̂(ab)3Ŝ(ab)5
1

2S(ab)
F ~Š21j

„(ab)c…
A12NW 2!~A12NW 2N̂2uNW ux̂ !

1S uNW uS Š12
uNW u

A12NW 2
Š3D 2A12NW 2S Š32

A12NW 2

uNW u
Š1D D N̂3x̂G .

The final result is@Š151/SA(S)22(S3)2cosb
„(ab)c… , Š251/SA(S)22(S3)2sinb

„(ab)c…#
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N̂(ab)5cosc (ab)Ŝ(ab)1sinc (ab)R̂(ab)

5
F V (ab)S Š32

A12NW 2

uNW u
Š1D

2~S(ab)!
2

1uNW uA12S V (ab)

S(ab)
D 2G

N̂1
F V (ab)S Š12

uNW u

A12NW 2
Š3D

2~S(ab)!
2

1A12NW 2A12S V (ab)

S(ab)
D 2G

x̂1
V (ab)~Š21j

„~ab!c…
A12NW 2

2~S~ab!!
2

N̂3x̂,

x̂~ab!5cosg~ab!~sinc~ab!Ŝ~ab!2cosc~ab!R̂~ab!!2sing~ab!R̂~ab!3Ŝ~ab!

5
S cosg~ab!

FA12S V~ab!

S~ab!
D 2 S Š32

A12NW 2

uNW u
Š1D

2S~ab!
2uNW u

V~ab!

S~ab!

G
2

A12NW 2sing~ab!

2S~ab!
~Š21j

„~ab!c…A12NW 2!
D N̂

1
S cosg~ab!

FA12S V~ab!

S~ab!
D 2 S Š12

uNW u

A12NW 2
Š3D

2S~ab!
2A12NW 2

V~ab!

S~ab!

G
1

uNW using~ab!

2S~ab!
~Š21j

„~ab!c…A12NW 2!
D

x̂1(cosg~ab!A12S V~ab!

S~ab!
D 2

3S Š21j
„(ab)c…A12 NW

2

2S~ab!

D 2
sing~ab!

2S~ab!
F uNW uS Š12

uNW u

A12NW 2
Š3D

2A12NW 2S Š32
A12NW 2

uNW u
Š1D G N̂3x̂. ~C5!

Then, Eqs.~C1! and ~C2! imply

ra
r 5R rs~ ã,b̃,g̃ !řa

s@ uNW u,g (ab) ,uNW (ab)u,ra ;j,V (ab) ;Šr #,

rb
r 5R rs~ ã,b̃,g̃ !řb

s@ uNW u,g (ab) ,uNW (ab)u,ra ;j,V (ab) ;Šr #, ~C6!

rc
r 5Rrs~ ã,b̃,g̃ !řc

s@ uNW u,rc#.

This means thatřa or b
r depend not only on the dynamical shape variablesqm5$uNW u

5uNW
„(ab)c…u,g (ab) ,uNW (ab)u,ra ,rb ,rc% but also on some of the conjugate shape momentapm

5$j
„(ab…c) ,V (ab)5SW (ab) •N̂(ab),j (ab) ,p̃a ,p̃b ,p̃c% and the dynamical body frame componentsŠr

of the spin.
By using Eq.~A3!, for the canonical momenta we get@ uNW u5uNW

„(ab)c…u, S(ab) given by Eq.
~C4!#
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pW a5F p̃auNW ~ab!u2
A12NW ~ab!

2

2ra

„A~S~ab!!
22~V~ab!!

2 sing~ab!1j~ab!
A12NW ~ab!

2
…G N̂~ab!

1F p̃a
A12NW ~ab!

2 1
uNW ~ab! u

2ra

„A~S~ab!)
22~V~ab!!

2 sing~ab!1j~ab!
A12NW ~ab!

2
…G x̂~ab!

2
1

2ra

~„AS~ab!!
22~V~ab!!

2
…

cosg~ab!

uNW ~ab!u
2

V~ab!

A12NW ~ab!
2

N̂~ab!3x̂~ab! ,

pW b5F p̃buNW ~ab!u1
A12NW ~ab!

2

2rb

„A~S~ab!!
22~V~ab!!

2 sing~ab!2j~ab!
A12NW ~ab!

2
…G N̂~ab!

2F p̃b
A12NW ~ab!

2 2
uNW ~ab! u

2rb

„A~S~ab!!
22~V~ab!!

2 sing~ab!2j~ab!
A12NW ~ab!

2
…G x̂~ab!

2
1

2rb
S A~S~ab!!

22~V~ab!!
2

cosg~ab!

uNW ~ab!u
1

V~ab!

A12NW ~ab!
2 D N̂~ab!3x̂~ab! ,

pW c5F p̃cuNW u1
A12NW 2

2rc

~Š22j
„~ab!c…

A12NW 2!G N̂2F p̃c
A12NW 22

uNW u

2rc

~Š22j
„~ab!c…

A12NW 2!G x̂

2
1

2rc
S Š1

uNW u
1

Š3

A12NW

2D N̂3x̂,

~C7!

pW a
25p̃a

21
1

4ra
2 F j~ab!

2 ~12NW ~ab!
2 !1S sin2 g~ab!1

cos2 g~ab!

NW ~ab!
2 D „~S~ab!!

22~V~ab!!
2
…1

~V~ab!!
2

12NW ~ab!
2

12A~S~ab!!
22~V~ab!!

2S j~ab!
A12NW ~ab!

2 sing~ab!2
V~ab! cosg~ab!

uNW ~ab!uA12NW ~ab!
2 D G ,

pW b
25p̃b

21
1

4rb
2 F j~ab!

2 ~12NW ~ab!
2 !1S sin2 g~ab!1

cos2 g~ab!

NW ~ab!
2 D „~S~ab!!

22~V~ab!!
2
…1

~V~ab!!
2

12NW ~ab!
2

22A~S~ab!!
22~V~ab!!

2S j~ab!
A12NW ~ab!

2 sing~ab!2
V~ab! cosg~ab!

uNW ~ab!uA12NW ~ab!
2 D G ,

pW c
25p̃c

21
1

4rc
2 F j

„~ab!c…
2 ~12NW 2!1~Š2!21

~Š1!2

NW 2
1

~Š3!2

12NW 2

22S j
„~ab!c…

A12NW 2Š22
Š1Š3

uNW uA12NW 2
D G .
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To evaluatepW c one defines an auxiliary variablepW (ab) such thatSW (ab)5R̂(ab)3pW (ab) ~its compo-
nent alongR̂(ab) is arbitrary; remember thatR̂(ab)•SW (ab)50!. Then we use the equationsSW

5SW (ab)1SW c andWW 5SW (ab)2SW c ~with SW c5rW c3pW c! to extract the form ofpW c like in the 3-body case
@Eq. ~A3!#.

The resulting Hamiltonian is not a polynomial of second order in the dynamical body fr
components of the spin, unlike that of the static orientation-shape bundle approach. Ye
rotational part of the Hamiltonian, determined by putting the dynamical shape velocities eq
zero (q̇m50), can be shown to have the standard form of the rigid body case~see Appendix F of
Ref. 33!, with a nonstandarddynamical inertia-like tensordepending only on the shape variable

1M. Pauri and G. M. Prosperi, J. Math. Phys.7, 366 ~1966!.
2M. Pauri and G. M. Prosperi, J. Math. Phys.8, 2256~1967!.
3M. Pauri and G. M. Prosperi, J. Math. Phys.9, 1146~1968!.
4M. Pauri and G. M. Prosperi, J. Math. Phys.16, 1503~1975!.
5M. Pauri and G. M. Prosperi, J. Math. Phys.17, 1468~1976!.
6L. Lusanna, Int. J. Mod. Phys. A12, 645 ~1997!.
7L. Lusanna, ‘‘Towards a unified description of the four interactions in terms of Dirac–Bergmann observables,’’ i
contribution to the bookQuantum Field Theory, a 20th Century Profile, of the Indian National Science Academy for th
International Mathematics Year 2000 AD, edited by A. N. Mitra, foreword by F. J. Dyson~Hindustan Book Agency,
2000!; ‘‘Tetrad gravity and Dirac’s observables,’’ talk given at the ConferenceConstraint Dynamics and Quantum
Gravity 99, Villasimius 1999, edited by V. DeAlfaroet al. Nucl. Phys.~Proc. Suppl.! B 88, 301~2000!; ‘‘The rest-frame
instant form of dynamics and Dirac’s observables,’’ talk given at the International WorkshopPhysical Variables in Gauge
Theories, Dubna, 1999.

8D. Alba, L. Lusanna, and M. Pauri, ‘‘Centers of mass and rotational kinematics for the relativisticN-body problem in the
rest-frame instant form,’’ HEP-TH/0102087.

9R. G. Littlejohn and M. Reinsch, Rev. Mod. Phys.69, 213 ~1997!.
10See Refs. 9, 12 for a discussion of the singular~colinear andN-body collision! configurations. Applying the SO~3!

operations to any given configuration of the 3N-3 relative variables~a point in the relative configuration space! gives rise
to 3 possibilities only:~i! for generic configurationsthe orbit containing all the rotated copies of the configuration i
3-dimensional manifold@diffeomorphic to the group manifold of SO~3!#; ~ii ! for collinear configurationsthe orbit is
diffeomorphic to the 2-sphereS2; ~iii ! for the N-body collision configuration~in which all the particles coincide at a
single point in space! the orbit is a point.

11This is due to the topological complexity of the shape space generated by the singular configurations~Ref. 12!, which are
dispersed among the generic configurations forN>4.

12R. G. Littlejohn and M. Reinsch, Phys. Rev. A52, 2035~1995!.
13L. Lusanna, Int. J. Mod. Phys. A4, 645 ~1997!.
14D. Alba and L. Lusanna, Int. J. Mod. Phys. A13, 2791~1998!.
15H. Crater and L. Lusanna, ‘‘The rest-frame Darwin potential from the Lienard–Wiechert solution in the radiation ga

Firenze University preprint 2000.
16S. Shanmugadhasan, J. Math. Phys.14, 677 ~1973!.
17A. Lucenti, L. Lusanna, and M. Pauri, J. Phys. A31, 1633~1998!.
18For the configurations of the isolated system having a rest-frame Thomas canonical spinSW T different from zero.
19In this context the configurations withSW 50 are singular and have to be treated separately.
20J. E. Marsden and A. Weinstein, Rep. Math. Phys.5, 121 ~1974!; R. Abraham and J. E. Marsden,Foundations of

Mechanics, 2nd ed.~Benjamin/Cummings, Reading, MA, 1978!.
21P. Libermann and C. M. Marle,Symplectic Geometry and Analytical Mechanics~Reidel, Dordrecht, 1987!.
22T. Iwai, Ann. Inst. Henri Poincare47, 199 ~1987!.
23W. T. Payne, Am. J. Phys.20, 253 ~1952!.
24M. Pauri, ‘‘Invariant localization and mass-spin relations in the Hamiltonian formulation of classical relativistic dy

ics,’’ Parma University preprint IFPR-T-019, 1971~unpublished!; talk at the International Colloquium,Group Theoretical
Methods in Physics, Cocoyoc, Mexico, 1980, Lecture Notes in Physics No. 135, edited by K. B. Wolf~Springer-Verlag,
Berlin, 1980!.

25We follow the convention of Ref. 9; note that this action is usually denoted as aright action in mathematical texts. The
Sr ’s are the Hamiltonians, associated with the momentum map from the symplectic manifold toso(3)* @the dual of the
Lie algebraso(3)#, which allow the implementation of the symplectic action through Hamiltonian vector fields.
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i ,ês

j %5e rsuS
kêk
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Structures in BC N Ruijsenaars–Schneider models
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We construct the classicalr -matrix structure for the Lax formulation of BCN
Ruijsenaars–Schneider systems proposed in Commun. Math. Phys.,115, 127
~1988!. The r -matrix structure takes a quadratic form similar to the AN

Ruijsenaars–Schneider Poisson bracket behavior, although the dynamical depen-
dence is more complicated. Commuting Hamiltonians stemming from the BCN

Ruijsenaars–Schneider Lax matrix are shown to be linear combinations of particu-
lar Koornwinder–van Diejen ‘‘external fields’’ Ruijsenaars–Schneider models, for
specific values of the exponential one-body couplings. Uniqueness of such com-
muting Hamiltonians is established once the first of them and the general analytic
structure are given. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1423766#

I. INTRODUCTION

The integrable relativistic extensions of Calogero–MoserN-body integrable systems wer
originally introduced by Ruijsenaars and Schneider1 ~classical case! and Ruijsenaars2 ~quantum
case! for an underlying Lie algebra structure AN . They have been the subject of numero
investigations in these last years. Their exact connection to field-theoretical integrable sy
initially described in Ref. 1, was clarified in Ref. 3; their dynamical classicalr -matrix structure,
first tackled in Refs. 4, 5 was finally established in Ref. 6 and characterized as a qua
structure, a` la Sklyanin,7,8 stemming from the dynamical linearr -matrix structure of Calogero
Moser systems.9 This in turn is connected to the realization of such systems10 as ‘‘Hamiltonian
reduction,’’ in a more general sense, see Ref. 11, of dynamical systems living on a Heise
double,11–13 where the quadraticr -matrix structure is natural.11 More complete descriptions ma
be found in Ref. 14.

Using aZ2-folding of the original A2 N or A2 N11 algebra lead15 to a consistent construction o
classical integrable Hamiltonians and Lax formulation for resp. BCN and CN Ruijsenaars trigono-
metric systems. Classical elliptic-interaction BCN and CN models were subsequently introduced
Ref. 16. More recently the Lax matrices, obtained by the aforementioned folding procedure f
algebra structures BCN , CN , and DN , were explicited in a series of papers.17,18 Their classical
r -matrix structure remained unknown.

Several one-body extensions of the Ruijsenaars–Schneider systems were also con
First of all, quantum integrable trigonometric one-body-potential~or ‘‘external field extensions’’!,
and rational limits thereof, were constructed in Ref. 19. The quantum integrability proof,
construction of the quantum Hamiltonians themselves, rested upon polynomial-algebraic
ments pioneered by Koornwinder20 and interestingly indicating a connection to BCN-type alge-
bras. In this case, both classical Lax formulation and classicalr -matrix construction are lacking
Conjectural quantum elliptic Hamiltonians were introduced in Ref. 16. The BCN and CN elliptic
classical potentials obtained by the folding procedure, were identified with classical limits
specific realization~albeit with a smaller number of free parameters! of this conjecture. Explicit
construction of quantum elliptic van Diejen-type Hamiltonians was then achieved in Ref. 21
4030022-2488/2002/43(1)/403/14/$19.00 © 2002 American Institute of Physics
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corner-transfer-matrix methods. It pointed again to a BCN structure underlying at least som
particular Koornwinder–van Diejen potentials. The corner-transfer-matrix method used in R
however does not relate clearly to the previous procedures, using as it does two types
operators.

This series of results begs several questions and we wish to address here two points
remained unclarified.

First of all we construct the classicalr -matrix for the folded Lax matrices of trigonometri
BCN systems.~We expect that the CN and DN case, and the elliptic potentials, may be treated
similar techniques although the elliptic case may endow more complicated algebraic man
tions.! This problem may seem academic, since in any case commutation of the Hamilto
follows from the construction itself.15 However it actually sheds light on the delicate question
interplay between the folding procedure A2 N→BCN and the initial ‘‘quadratization’’ of Poisson
structure entailed by the change of base symplectic manifold for the ‘‘Hamiltonian’’ reduc
from T* g ~cotangent bundle Lie group! to D gH ~Heisenberg double of Lie group!. Similar
difficulties occur when considering the quantum deformation of BC- or D-type algebras, com
with deformation of AN algebras~this fact was pointed out to us by Arnaudon!. Indeed it will
eventually turn out that the classicalr -matrix for hyperbolic Ruijsenaars–Schneider BCN models
may be recast under a quadratic form, similar to the AN case, but contrary to what occurred in th
Calogero–Moser models22 the structure~after folding! exhibits now a dependence in both sets
conjugated dynamical variables, and the quadraticr -matrix is thus not directly related to the linea
dynamicalr -matrix structure for BCN Calogero–Moser models.

The second problem which we consider here deals with the connection between the
trigonometric classical Koornwinder–van Diejen Hamiltonians and the ‘‘canonical’’ Poisson c
muting Hamiltonians generated by the traces of powers of the Lax matrix for BCN systems. The
previous results hint at some nice dovetailing between the two approaches~folding and algebraic-
polynomial arguments! at least in some particular cases. Indeed the two sets of Hamilton
exhibit a striking similarity of structure. It will be shown that the Koornwinder–van Die
Hamiltonians, with a certain choice of one-body potential are in fact combinations of the
nonical ones.’’ More importantly this property of ‘‘uniqueness up to linear transformations
shown to be true for any set of Poisson-commuting Hamiltonians once the functional structu~to
be explicited hereafter! is given.

II. THE CLASSICAL r -MATRIX STRUCTURE

A. The BC N Ruijsenaars–Schneider models and notations

The canonical variables are a set of rapidities$u i ,i 51,̄ ,N% and conjugate positionsqi such
that $u i ,qj%5d i j . The Hamiltonian reads

H5 (
j 51

«561

N

e2« b u j f j1U, ~1!

where

f j5F f ~qj ! f ~2 qj ! )
k51,

kÞ5 j

N

f ~qj2qk! f ~qj1qk!G 1/2

and U5)
k51

N

f ~qk!.

Function f may take different forms, namely,

f ~q!512
g2

q2 ~rational!,
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f ~q!512
sinh2 g

sinh2
nq

2

~hyperbolic!,

f ~q!512
sin2 g

sin2
nq

2

~ trigonometric!.

The most general elliptic case where

f ~q!5~l1nP~q!!, P5Weierstrass function

will not yet be considered here.
The trigonometric and hyperbolic cases define the same model at least locally up to a

nition of the parameters~the global structure of trigonometric versus hyperbolic models is h
ever quite different, owing to topological properties, as can be seen for instance in Ref. 23!. The
rational case is obtained by an easy limit procedure from one of these models. We shall th
consider in the following only the hyperbolic version.

Let us note that one can also writef (q)5v(q) v(2q), with

v~q!5

sinhS nq

2
1g D

sinh
nq

2

or even as a rational function of an exponential variable,

v~q!5l21/2
z2l

z21
with z5en q and l5e22 g.

This rational formulation will be useful to establish some functional identities a` la Liouville.11

B. The BC N Lax operator

The Lax formulation of BCN Ruijsenaars–Schneider system may be obtained as a foldin
the A2N case.15 The reduction works as follows: labeling the 2N11 rapidities$u i ,i 52N¯N%
and conjugate positions$qi ,i 52N¯N%, one setsu i5« iu u i u andqi5« iqu i u with

« i5H 11 for 1< i<N

0 for i 50

21 for 21> i>2N

•

The Lax matrix for the A2N cases is

L5 (
i , j 52N

N

Li j ei j

Li j ~q1 , . . . ,qN ,q0 ,q21 , . . . ,q2N ,u j !5c~qi2qj ! e2b u j )
k52N,

kÞ j

N

f 1/2~qj2qk!, ~2!

where$ei j % is the standard basis for (2N11)3(2N11) matrices;f was given in the previous
subsection and
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c~q!5
sinhg

sinhS nq

2
1g D 5~12l!

z1/2

z2l
.

The Lax matrix for the BCN Ruijsenaars–Schneider systems then reads17

L5 (
i , j 52N

N

Li j ei j with Li j 5Li j ~q1 , . . . ,qN,0,2q1 , . . . ,2qN ,« j u u j u!. ~3!

It can be rewritten,Li j 5c(qi2qj ) e2b « j u u j u f j , extending the definition off j given in ~1! to j
P$2N¯ N%. Note that with this extension off j one hasf 05U and f j5 f 2 j .

It has been shown that the Lax operator~2! satisfies the quadratic fundamental Poiss
bracket,6

$L ,
^

L%5L^ La12a2L^ L1L2 s1 L12L1 s2 L2 , ~4!

whereL15L^ 1, L251^ L and the quadratic structure coefficients read

a15a1w, s15s2w,

a25a1s2sp2w, s25sp1w.

For any matrixM , the matrixMp is defined by

if M[ (
i jkl 52N

N

Mi jkl ei j ^ ekl , then Mp5 (
i jkl 52N

N

Mi jkl ekl ^ ei j .

Matricesa,s,w take the form,

a5a (
j ,k52N

kÞ j

N

coth
n

2
~qk2qj ! ejk ^ ek j , ~5!

s52a (
j ,k52N

kÞ j

N
1

sinh
n

2
~qk2qj !

ejk ^ ekk ,

w5a (
j ,k52N

kÞ j

N

coth
n

2
~qk2qj ! ekk^ ej j ,

wherea[b (n/2).
It must be recalled here that the most general structure of Poisson bracket for a Lax op

of a Liouville-integrable system is a linear one,24

$L ,
^

L%5@r ,L1#2@r p,L2#. ~6!

The quadratic form~4! corresponds to the case where ther -matrix itself assumes a linear depe
dency inL of type,

r 5b L21L2 c, ~7!

with b andc arbitrary matrices determining the quadratic coefficientsa1 ,a2 ,s1 ,s2 ,
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a15cp2c, a25bp2b, s15c1bp, and s25s1
p .

In the next subsection, we will show that the BCN Ruijsenaars–Schneider Lax operator~3! also
satisfies a quadratic fundamental Poisson bracket~4! albeit with a fundamental difference wit
respect to~5! regarding the dependence on the dynamical variables. We will give explicitly
generalizations of the matricesa1 , a2 , s1 , ands2 , hereafter denoted ‘‘quadraticr -matrices’’ for
obvious semantic reasons.

C. Computation of the classical r -matrix

Let us calculate the Poisson brackets of the Lax matrix~3!,

$Li j ,Lkl%5b Li j LklS « l

] ln Li j

]qu l u
2« j

] ln Lkl

]qu j u
D

and express it in terms of the Lax matrix~2!,

« l

] ln Li j

]qu l u
5S ] ln Li j

]ql
2

] ln Li j

]q2 l
D .

We thus get

$Li j ,Lkl%5$Li j ,Lkl%1b Li j LklS ] ln Lkl

]q2 j
2

] ln Li j

]q2 l
D .

The Poisson bracket of the first term on the right-hand side keeps the same form~4! where one
should fold the dynamical variables~u i5« i u u i u andqi5« i qu i u!. We thus only need to concentra
on the remaining term, introducing the four-index object,

Ui jkl [
2

n S ] ln Lkl

]q2 j
2

] ln Li j

]q2 l
D .

Straightforward calculations yield

Ui jkl 5d j ,2 l uj1~d i ,2 l2d j ,2 l ! t i j 2~d j ,2k2d j ,2 l ! tkl ,

where

t i j 52
2

n
~ ln c!8~qi2qj !5cothS n

2
~qi2qj !1g D5

zi1l zj

zi2l zj
,

uj5
2

n (
k52N,

kÞ j

N

~ ln f !8~qk2qj !

5 (
k52N,

kÞ j

N

2 coth
n

2
~qj2qk!1cothS n

2
~qk2qj !1g D

2cothS n

2
~qj2qk!1g D
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5 (
k52N,

kÞ j

N

2
zj1zk

zj2zk
1

zk1l zj

zk2l zj
2

zj1l zk

zj2l zk

5 (
k52N,

kÞ j

N

2 ajk1tk j2t jk ,

with

ajk5coth
n

2
~qj2qk!5

zj1zk

zj2zk
for j Þk.

Note the following properties of these objects on the folded space:

t2 j 2 i5t i j , a2 j 2 i5ai j , and u2 i52ui .

In the expression ofUi jkl , the terms ind j ,2 l are not on the same footing as the others since t
are separately antisymmetric under the exchange of the two spaces~operationp! whereas the
remaining terms verify this property only altogether.

We thus first take care of thed j ,2 l terms, introducing the matrixr,

r5a (
k,l 52N

N

Lkl S 1

2
ul2tklD e2 l 2 l ^ ekl ,

realizing them as a linearr -matrix form ~6!,

~@r,L1#2@rp,L2# ! i jkl 5a Li j Lkl ~d j ,2 l ~uj2t i j 1tkl!1d i ,2 l ~ 1
2 ul2tkl!2d j ,2k ~ 1

2 uj2t i j !!

5a Li j Lkl ~Ui jkl 2Ũ i jkl !,

with Ũ i jkl 5d i ,2 l ~ t i j 1tkl2
1
2 ul !2d j ,2k ~ t i j 1tkl2

1
2 uj !.

We may furthermore bring it back to our sought general quadratic form by settingr5t L2 @i.e.,
taking b5t andc50 in ~7!#, since the matrixL is invertible,

t5r L2
215a (

i ,k,l 52N

N

Lk2 i L2 i l
21 S 1

2
u2 i2tk2 i D eii ^ ekl . ~8!

One should immediately note, from the explicit form ofL ~3!, that this matrixt actually does not
depend on the rapiditiesu i ’s. We are therefore still in the ‘‘canonical’’ quadratic structure~à la
Suris! of type ~4! with dynamical quadraticr -matrices depending only on one set of canoni
variables~the qi ’s!.

We will now show that there exists a matrixs, such thatsp5s and

a Li j Lkl Ũ i jkl 5@L2 s L12L1 sp L2# i jkl .

This corresponds to settingc5s and b50 in ~7! and thus actually formally completes th
quadraticr -matrix structure~4!.

In order to ensure self-consistency of the dependence in the indices, we assume the fo
tensorial structure:

s5 (
m,n52N

N

smn emn^ e2n2m , satisfying sp5s, i.e., s2n2m5smn ,

yielding
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@L2 s L12L1 sp L2# i jkl 5d i ,2 l (
n52N

N

s in Lk2n Ln j2d j ,2k (
n52N

N

skn Li 2n Lnl .

The set of equations to be solved then reads

d i ,2 l S (
n52N

N

s in

Lk2n Ln j

Li j Lkl
2a S t i j 1tkl2

1

2
ul D D

5d j ,2k S (
n52N

N

skn

Li 2n Lnl

Li j Lkl
2a S t i j 1tkl2

1

2
uj D D ,

or, equivalently,

(
n52N

N

s in

Lk2n Ln j

Li j Lk2 i
2a S t i j 1tk2 i1

1

2
ui D5d j ,2k sik , with sik5ski .

Direct calculations yield

Lk2n Ln j

Li j Lk2 i
5

eb un f n

eb u i f i
S ~12d j ,2k!

tn j2tn2k

t i j 2t i 2k
1d j ,2k

tn j
2 21

t i j
2 21 D ,

and equations become

(
n52N

N

s̃ in ~ tn j2tn2k!5a S t i j
2 2t i 2k

2 1
1

2
ui t i j 2

1

2
ui t i 2kD (

n52N

N

s̃ in

tn j
2 21

t i j
2 21

2a S 2 t i j 1
1

2
ui D

5si 2 j , with s̃ in5
eb un f n

eb u i f i
s in .

Let us recall here that the only additional contraints on matricess̃ ands read

H s̃2 j 2 i5
f i

2

f j
2 s̃ i j

si j 5sji .

~9!

According to the previous equations, the matrixs is determinated given the matrixs̃, and s̃ is
obtained, up to a one-dimensional degree of freedomv i , by

(
n52N

N

s̃ in tn j5a ~ t i j
2 1 1

2 ui t i j 1v i !, ~10!

sincet is invertible.
Remains to verify that one can findv i ’s, such that the compatibility relations~9! be satisfied,

namely,

(
m52N

N

tim f m
2 tm j~ tm j2t im1um!5 (

m52N

N

f m
2 ~v2m tm j2vm tim!, ~11!

~v i11! (
n,m52N

N

~ t2 jm
2 21! ~ t21!mn5~v2 j11! (

n,m52N

N

~ t im
2 21! ~ t21!mn . ~12!
                                                                                                                



und

s

whole

und

410 J. Math. Phys., Vol. 43, No. 1, January 2002 J. Avan and G. Rollet

                    
Equation ~12! directly yields v i5211h (n,m52N
N (t im

2 21) (t21)mn , with h an arbitrary con-
stant.

In order to solve~11! we shall first compute its left-hand side.
We do so by twofold evaluation of the following contour integral in the complex plane aro

infinity,

I i j 5
1

2p i R
C`

dz

z

zi1l z

zi2l z

z1l zj

z2l zj
)

k52N

N
z2l zk

z2zk

zk2l z

l ~zk2z!
.

ContourC` is oriented counterclockwise and loops around infinity. Residue at infinity giveI i j

521.
WhereasI i j also equals the sum of residues at poles of the meromorph integrand in the

complex plane, that is, a single pole atz50 with residue21 and a set of double poles atz
5zm . We thus obtain

(
m52N

N F zi1l z

zi2l z

z1l zj

z2l zj

~z2l zm! ~zm2l z!

2l z )
k52N,

kÞm

N
z2l zk

z2zk

zk2l z

l ~zk2z!G 8
~z5zm!50.

Noticing that

um5
2

n (
k52N,

kÞm

N

~ ln f !8~qk2qm!

52
2

n

]

]qm
ln )

k52N,
kÞm

N

f ~qk2qm!

522 zm

]

]zm
ln )

k52N,
kÞm

N
zm2l zk

zm2zk

zk2l zm

l ~zk2zm!

522 zm F ln )
k52N,

kÞm

N
z2l zk

z2zk

zk2l z

l ~zk2z!G 8
~z5zm!

and also

zm F ln S zi1l z

zi2l z

z1l zj

z2l zj
D G8~z5zm!5

1

2 S ~ t im2tm j!2S 1

t im
2

1

tm j
D D ,

we obtain

(
m52N

N

tim f m
2 tm jF tm j2t im1um1S 1

t im
2

1

tm j
D G50,

or equivalently,

(
m52N

N

tim f m
2 tm j~ tm j2t im1um!5 (

m52N

N

f m
2 ~ t im2tm j!.

This derivation of Liouville-type functional identities stems from similar derivations to be fo
in Ref. 10.

Equation~11! now reads

(
m52N

N

tim f m
2 ~vm11!5 (

m52N

N

~v2m11! f m
2 tm j5 (

m52N

N

t2 jm f m
2 ~vm11!,
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and can be solved straightforwardly,v i5211j (1/f i
2) (m52N

N (t21) im , with j any constant.
We thereby prove the consistency of~9! and~10!, sincev i521 is an obvious solution~with

h5j50!.
In addition, performing calculations of the same type of contour integrals, one gets

(
n,m52N

N

~ t im
2 21! ~ t21!mn52

4 l

~l21!2

1

f i
2 (

m52N

N

~ t21! im}
1

Di
1 ,

with

Di
15 )

k52N,
kÞ i

N
zi2l zk

zi2zk
.

The two forms which thev i ’s should satisfy, are actually identical,v i5211 (z/Di
1) , z

being an arbitrary constant.
We fix this remaining gauge, settingz5 (12l2 N11)/(12l), in order to obtain the simples

form for s̃ from relation~10!,

s̃ i j 5a
D j

1

Di
1 ~d i , j si2~12d i , j ! ai j !, where si5

11l

12l
1 (

m52N

N
1

2
~ tmi1t im!.

We finally give the expression of the matrixs,

s5a (
i , j 52N

N Aj

Ai
~d i , j si2~12d i , j ! ai j ! ei j ^ e2 j 2 i , with Ai5ADi

1

D2 i
1 e2b u i. ~13!

The r -matrix structure is now completely defined by a quadratic Poisson bracket of typ~4!
where the quadraticr -matricesa1 , a2 , s1 , ands2 are changed into

a1→ã15a1 ,

s1→ s̃15s11s1tp,

s2→ s̃25 s̃1
p5s21sp1t5s21s1t,

a2→ã25ã11 s̃12 s̃25a21tp2t, ~14!

and matricess andt are, respectively, defined by Eqs.~13! and ~8!.

D. Comments

One should notice that this quadraticr -matrix structure is now fully dynamical, dependin
both on the positionsqi ’s and rapiditiesu i ’s. Moreover, its conjugating factorAi , which bears
this double dependance, is deeply connected to the structure of the matrixL under folding,

Li j
215

Aj

Ai
L2 i 2 j .

We have here an interesting first example of a ‘‘doubly dynamical’’r -matrix dependence, stem
ming from the interplay between the folding procedure leading from A2N to BCN , and the qua-
dratic structure of Ruijsenaars–Schneider-type models. This seems to open new perspectiv
of all on the classification of such doubly dynamicalr -matrices. The only other example known
us at this time is the classical linearr -matrix structure for the Lax formulation of theAN elliptic
Calogero–Moser model in the absence of the spectral parameter.25 Proof of its double dynamica
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dependence is given in Ref. 26 although the explicit form is yet conjectural.27 Curiously however,
it occurs in relation with anAN model with no folding and may therefore be of a different natu

Interpretation of doubly dynamical objects in the frame of quantum group theory is
lacking. ‘‘Simply’’ dynamical r -matrices are known to be connected to the theory of Drinfe
twisted quantum groups, specifically of the type of Felder’s Dynamical Quantum Groups28 ~see,
for instance, Refs. 29, 30!. Whether doubly dynamical objects have such connections is a
problem and we have no further comments to make on this point. A very recent result31 may
however give indications on how to twist quantum groups by non-Abelian twisted cocycles~here
the twist would occur ‘‘along’’ a Heisenberg algebra!.

III. THE CANONICAL HAMILTONIANS

A. Preliminaries

We first describe the Poisson-commuting Hamiltonians15 generated by traces of powers of th
BCN Lax matrix~3!. Subsequent comparison with Koornwinder–van Diejen Hamiltonians is m
easier by using as an algebraic basis the coefficients of the characteristic polynomial of th
operator. They read for any integerl P$1¯N%,

Hl5 (
J,$2N¯N%

uJ u5 l

mJ ~L !,

with mJ (L) the principal minor ofL with lines and columns indexed byJ.
Taking into account the form ofL and properties of Cauchy matrices,

mJ ~L !5e2buJ)
j PJ
k¹J

f 1/2~qj2qk!, where uJ5 (
j PJ

u j .

Because of the folding, we now rearrange these terms so as to sort them with respect to
independent exponentials of rapidities. We thus decomposeJ5«JøS, separating indices ofJ
such that their opposite does not belong toJ ~set «J5$« j u j u/ j PJ`2 j ¹J % and J5$u j u/ j
P«J%,$1¯N%! and the complementary parts, symmetric under foldingS,

Hl5 (
J,$1¯N%, uJu< l

« j 561, j PJ

U Jc,l 2uJu e2bu«J )
j P«J
k¹«J

f 1/2~qj2qk!, ~15!

with

UK,p5 (
S,AK5Kø2Kø$0%

S52S, uSu5p

)
sPS

kPAK\S

f 1/2~qs2qk!5 (
S,AK

S52S, uSu5p

)
sPS

kPAK\S

v~qs2qk!. ~16!

We now recall the Koornwinder–van Diejen Hamiltonians16 in the classical case,

Hl5 (
J,$1¯N%, uJu< l

« j 561, j PJ

UJc,l 2uJu e2bu«J V«J;Jc
1/2 V2«J;Jc

1/2 , ~17!

where, after some rearrangements,

V«J;K5 )
j P«J

w~qj !

v~2 qj ! v~qj !
)

j P«J
kPAKø2«J

v~qj2qk!

and
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UK,p5~21!p (
«I ,AK
uI u5p

)
i P«I

w~qi !

v~2 qi ! v~qi !
)

i ,i 8P«I
i , i 8

v~2qi2qi 8!

v~qi1qi 8!
)
i P«I

kPAK\«I

v~qi2qk!.

The potentialsw are particular functions and may be interpreted as an interaction with s
external field.

Direct computation yields

V«J;JcV2«J;Jc5 )
j P«J

w~qj !

v~2 qj ! v~qj !

w~2qj !

v~22 qj ! v~2qj !
)

j P«J
k¹«J

f ~qj2qk!.

Settingw(qj )5v(2 qj ) v(qj ), which is an admissible choice according to Ref. 16,Hl ~17! takes
actually the same form asHl ~15!, up to the crucial change ofUK,p into UK,p . UK,p takes a
simpler form, for this choice of one-body potentialw,

UK,p5~21!p (
«I ,AK
uI u5p

)
i ,i 8P«I

i , i 8

v~2qi2qi 8!

v~qi1qi 8!
)
i P«I

kPAK\«I

v~qi2qk!, ~18!

neverthelessit is generally not equal toUK,p ~the notation used in Ref. 17 is in this respe
misleading!.

They are actually only equal forp50, where trivially,UK,0515UK,0 . For instance whenp
51, one gets

UK,152 (
i PAK\$0%

)
kPAK
kÞ i

v~qi2qk! and UK,15 )
kPAK
kÞ0

v~qk!.

We compute a suitable contour integral on the same lines as in the previous section to obt
Liouville-type functional identity,

(
i PAK

)
kPAK
kÞ i

v~qi2qk!5
sinhg~2 uKu11!

sinhg
,

and thus show that

UK,15UK,12
sinhg~2 uKu11!

sinhg
.

It will now be shown that these two relations, forp50 andp51, between theUK,p’s and
UK,1’s are actually sufficient to establish that the two sets of Hamiltonians define the same f
of commuting dynamical flows, namely one set of Hamiltonians is a triangular linear combin
of the other set.

A more general result will in fact be proved in the following subsection.

B. Uniqueness theorem

Theorem 1: Let qi andu i , i PN, be a set of conjugated variables such that$u i ,qj%5d i j . Let
I and K be arbitrary finite sets of indices included inN. Assume the existence of a set of comp
functions uK,p depending upon the set of indices K and a natural integer p, and of another set of
complex functionsv«J,I depending upon the sets of indices J and I(J,I ) and auJu-uple of signs
«5(« j , j PJ), such that:

(a) uK,p and v«J,I be independent of the rapiditiesu is;
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(b) uK,051, vB,I51, and v«$ j %,IÓ0;
(c) SI5$hl

I5( J,I , uJu< l
« j 561, j PJ

uJc,l 2uJu e2bu«J v«J,I , l P$1¯uI u%% be a family of Poisson-commutin

functions(u«J5(
j PJ

« ju j ).

If there exists a second set of complex functions u˜K,p obeying the first two conditions; suc

that S̃I5$h̃l
I5( J,I , uJu< l

« j 561, j PJ
ũJc,l 2uJu e2bu«J v«J,I , l P$1¯uI u%% be a new family of Poisson

commuting functions; and u˜K,15uK,11c1(uKu), then there exist coefficients cr(m), (r ,m)PN2,
independent of all dynamical variables, connecting the two families of Hamiltonians as

h̃l
I5(

s50

l

cl 2s~ uI u2s! hs
I , with ;mPN,c0~m!51.

Proof: The strategy of the proof relies upon a recursive procedure onp, showing that

ũK,p5(
r 50

p

cp2r~ uKu2r ! uK,r , ;K,N finite and such thatuKu>p. ~19!

Let l 0 be a strictly positive integer; the recursion hypothesis hereafter denoted r.h., states th~19!
is valid for anyp< l 0 .

The assumptions in the theorem immediately imply the validity of r.h. forl 051, which can be
directly rewritten as

h̃1
I 5h1

I 1c1~ uI u!. ~20!

Let us assume r.h. up tol 0 and establish it forl 011. We have

h̃l 011
I 5ũI ,l 0111 (

J,I ,1<uJu< l 011
« j 561,j PJ

ũJc,l 0112uJu e2bu«J v«J,I .

Sincel 0112uJu< l 0 in the previous summation, we apply r.h. to get

h̃l 011
I 5ũI ,l 0111 (

s51

l 011

cl 0112s~ uI u2s! (
J,I ,1<uJu<s
« j 561,j PJ

uJc,s2uJu e2bu«J v«J,I

5ũI ,l 0112 (
s51

l 011

cl 0112s~ uI u2s! uI ,s1 (
s51

l 011

cl 0112s~ uI u2s! hs
I . ~21!

We now use the Poisson-commutation property ofS̃I as

$h̃l 011
I ,h̃1

I %50.

Combining~20!, ~21! and the Poisson-commutation property ofSI yields
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05H ũI ,l 0112 (
s51

l 011

cl 0112s~ uI u2s! uI ,s ,h1
I J

5 (
j PI ,«561

b « e2b « u j v«$ j %,I

]

]qj

3S ũI ,l 0112 (
s51

l 011

cl 0112s~ uI u2s! uI ,sD .

By functional independence of(
«561

« e2b « u j v«$ j %,I , it follows that the function obtained a

ũI ,l 0112(s51
l 011cl 0112s(uI u2s) uI ,s does not depend on any dynamical variable. Hence it defines

the coefficientcl 011(uI u), thereby proving the r.h. to orderl 011. Finally, relation~19! immedi-
ately implies the result of the theorem. h

C. Comments

An immediate consequence of this theorem is the existence of linear triangular rel
between the BCN Ruijsenaars–Schneider Hamiltonians and the classical Koornwinder–van D
Hamiltonians whenw(qj )5v(2 qj ) v(qj ). Such relations were indicated in Ref. 32 for the lowe
and highest-order Hamiltonians.

The explicit coefficient have to be computed order by order since at this time no ge
recursion formula is available. As an example we have worked out the first two functions,

UK,15UK,11c1~ uKu! and UK,25UK,21c1~ uKu21! UK,11c2~ uKu!

with

c1~ uKu!52
sinhg~2 uKu11!

sinhg
,

c2~ uKu!5
1

2 S sinhg~2 uKu21!

sinhg

sinhg~2 uKu11!

sinhg
2

sinh 4g uKu
sinh 2g

22D .

No obvious pattern appears yet. As a consequence, an algebraic interpretation
Koornwinder–van Diejen Hamiltonians in connection with the canonical Hamiltonians is
lacking.

More generally, the theorem implies that a hierarchy of Poisson-commuting Hamilto
with the generic form given is uniquely determinated by the giving of the family ofv-functions
and the first Hamiltonian, or equivalently the first ‘‘potential term’’uK,1 . In the Koornwinder–van
Diejen case, this first Hamiltonian is given in Ref. 20.

We wish to end this section with a conjecture on the classical Koornwinder–van D
Hamiltonians with a general one-body potential chosen as in Ref. 19@this time dropping the
restriction tow(qj )5v(2 qj ) v(qj )#. They have not yet been constructed by a Lax formalism.
expect that the suitable Lax matrix for this hierarchy may be obtained by multiplying the BCN Lax
matrix ~3! by a 2N11 diagonal matrix:LW5LDW , with DWii

5W(qi) W(2qi). This one-body
potential functionW has to be determinated by integrability conditions. In addition, we conjec
that, after some canonical transformation on the dynamical variables, the HamiltoniansH W

l gen-
erated by tr(LW

l ) will take the same form as the Koornwinder–van Diejen Hamiltonians~17! up to
the change ofUK,p into someUWK,p

. The theorem will then apply, thereby yielding the fu
connection between BCN-type Ruijsenaars–Schneider potentials and the classical Koornwin
van Diejen Hamiltonians.
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29O. Babelon, D. Bernard, and E. Billey, Phys. Lett. B375, 89 ~1996!.
30K. Hasegawa, Commun. Math. Phys.187, 289 ~1997!; A. Antonov, K. Hasegawa, and A. Zabrodin, Nucl. Phys. B503,

747 ~1997!; B. Y. Hou and W. L. Yang, solv-int/9711008; J. Math. Phys.41, 357 ~2000!.
31Ping Xu, math.QA/0104071, 2001.
32J. F. Van Diejen, J. Math. Phys.36, 1299~1995!.
                                                                                                                



wave
ilton–
e-

jects

lobal
global

neous

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 1 JANUARY 2002

                    
The global finite structure of generic envelope loci
for Hamilton–Jacobi equations
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We discuss in some detail the existence of global generating functions describing
Lagrangian submanifolds connected with evolution problems for Hamilton–Jacobi
~H–J! equations. First, we produce a physical application of a result by Viterbo: for
generic~in a suitable sense! Hamiltonian functions and initial data, the envelopes,
i.e., the wave front sets, related to Hamilton–Jacobi problems are globally finitely
generated. Furthermore, we show how to compute global space–time generating
functions with finite parameters for geometric solutions of a H–J equation of the
evolution kind. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1423400#

I. INTRODUCTION: THE HAMILTON–JACOBI PROBLEM

Dynamical mechanical systems, even infinite-dimensional evolution systems, like the
propagation problems of Continuum Mechanics or Optics, are often governed by a Ham
Jacobi equation, for some Hamiltonian functionH:R3T* Q→R. Here, we take as standard sc
nario T* Q, the symplectic manifold of dynamics, and in what followsQ5Rn is the ‘‘space,’’
while Q5Rn11 is the ‘‘space–time.’’

We are interested in a Cauchy Problem, which, in the so-calledclassicalformulation, reads as

]S

]t
~q,t !1HS t,q,

]S

]q
~q,t ! D50,

~Classical Cauchy Problem!

S~q,t !u t505s~q!.

It is well known that it is not possible to find classicalglobal solutions for the above~CCP!: this
is mainly due to the nonlinearity of the problem. From the physical point of view, the main ob
of interest related to the solutions are often precisely these obstructions, sometimes calledcaustics.

In order to overcome the difficulties connected to the obstructions to existence of g
solutions, we can begin from a simple observation in the classical case, that is when a
classical solution exists. Let

S:Rn3R→R, ~q,t !°S~q,t !,

be a classical solution of the above problem, and, transforming it to the so-called ‘‘homoge
version,’’ set

QªRn3R, xª~q,t !, ~x,j!ª~q,t;p,t!,

H:T* Q→R, H~x,j!ªt1H~ t,q,p!.

a!Electronic mail: cardin@math.unipd.it
4170022-2488/2002/43(1)/417/14/$19.00 © 2002 American Institute of Physics
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Then the differential ofS:Q→R is a 1-formdS:Q→T* Q, and setting

im~dS!ªH ~x,j!:j5
]S

]x
~x!,xPQJ ,T* Q,

the H–J equation reads as

im~dS!,H21~0!.

As is usual, we introduce the Liouville 1-formuQ5j dx on T* Q, so thatduQ is the standard
symplectic 2-form onT* Q.

We note that

~1! dim im~dS!5dimQ,

~2! duQu im~dS!5~dj`dx!u im~dS!5
]2S

]x ]x
dx`dx[0,

It is a well known fact in symplectic geometry—see, e.g., Arnold and Novikov~1990!—that
the two properties~1! and ~2! characterize theLagrangian submanifoldsof T* Q. Furthermore,
L5 im(dS) is transverseto the fibers ofQ ~since it has a graph structure!.

We recognize here a way to overcome the difficulty in finding a global solution: instead
function S(x), we are now searching for aLagrangian submanifoldL ~i.e., such that dimL
5dimQ, andduQuL50! satisfying what can be considered the ‘‘new’’ geometric version of
H–J equation:

L,H21~0!.

A crucial theorem in symplectic geometry, due mainly to Maslov~1965! and Hörmander~1971!,
characterizes the Lagrangian submanifolds locally: letL be a Lagrangian submanifold ofT* Q;
then for each pointlPL there exists a description ofL by means of a localgenerating function,
U(,Q)3Rk{(x,u)°S(x,u)PR, such that~locally!

L5H ~x,y!:j5
]S

]x
~x,u!, 05

]S

]u
~x,u!, for some uPRkJ ,

whereS can be assumed to satisfy the rank condition:

rkS ]2S

]x ]u

]2S

]u ]uD U
]S/]u50

5max5k.

Whenever, locally atl, we can describeL without introducing auxiliary parametersu—in other
words, ifL is the image ofdS, so thatk50—thenl is a point of transverse intersection ofL with
the fiberT* Q→Q. The following questions arise naturally:

~1! How to obtainL satisfying the H-J equationL,H21(0)?
~2! Given a Lagrangian submanifoldL, is it possible to find aglobal generating functionS(x,u)

for it?

The answer to question~1! is formally easy: by a standard procedure of the gluing of charac
istics of the Hamiltonian fieldXH ~which we suppose to be complete! we obtain the geometric
objectL:

L5 ø
tPI ,R

FXH

t
„im~ds!… FXH

t :flow of XH .
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Hence, by Maslov–Ho¨rmander, we can construct the local generating functions; see also Be
and Tulczyjew~1979!.

Question~2! is crucial, especially whenever we want to generatetrue solutions~in the sense
of ‘‘functions,’’ not submanifolds! to H–J equations.

In fact, if we know aglobal generating function of the Lagrangian submanifold solution
some H–J problem, then we have the following.

~a! We can try to generate theviscositysolution ~Crandall–Evans–Lions! by some suitable
inf/sup procedure on the auxiliary parametersu. These techniques were first introduced
Hopf ~1965!; also, an existence and uniqueness theorem exists in this context; see Bar
Capuzzo-Dolcetta~1997! and Cardin~1993!;

~b! sometimes, with due care, we can generate the Chaperon–Sikorav–Viterbo solution
Morse ~Lusternik–Schnirelman! procedure; see, e.g., Dubrovin, Fomenko and Novik
~1990!. Rather surprisingly, this last solution sometimes differs from the viscosity solu
for the same problem; see Viterbo~1990!, Viterbo ~1996!, Capitanio~1999!.

Very important developments on the links between viscosity and geometric solutions
H–J equation, mainly on the classification and stability of the singularities, have been perfo
by Izumiya and Kossioris; among many interesting papers, see, e.g., Izumiya and Ko
~1997!.

Here, one might naturally suspect that global generating functionsS(x,u) of geometric solu-
tions for a H–J equation existonly for Hamiltonian functions that areintegrableon the fiber zero
(H50). This idea arises from the following fact: if there exists acomplete integral, W(xi ,aA),
i 51,...,n11, A51,...,n, then the H–J general problem with initial datas on a submanifoldS of
co-dimension one intoQ,

HS x,
]S

]x
~x! D50, or L,H21~0!;

SuS5s, or S„x̃ i~xA!…5s~xA!,

admits—see Cardin~1989!—the following global generating function describing the Lagrangi
submanifold solutionL:

S~xi ;xA,aB!ªW~xi ,aB!2W„x̃i~xA!,aB
…1w~xA!.

For example, ifH(x,j)5t1H(p), then a complete integral isW(x,a)5W(t,q,a)52tH(a)
1q•a, and the above formula works. It is remarkable that just by means of this formula Bard
Evans~1984! found that the inf-sup procedure generates precisely the viscosity solution. N
theless, in the sequel, we will see that the above belief is false, more precisely, it is too pess

In order to exploit this point, we start from a very remarkable fact, more or less well kno
everyLagrangian submanifoldL,H21(0),T* Q, whereH(x,j)5t1H(q,p,t) ~i.e., of the evo-
lution kind!, admits aformal global generating function. This function is precisely the Acti
Functional of the related Calculus of Variations, and the auxiliary parameters belong to aninfinite-
dimensional space, the space of curves. We remind the reader that, if locally theq-components of
the characteristics related toH do not cross each other, then, locally, a suitable interpretatio
A5* t0

t1L dt gives us Hamilton’s Principal Function, which is a well known local complete integ

As we will soon see, in order to obtain a global generating function from the Action Functiona
will relax the above restriction on the intersection of theq-characteristics.

Some remarks follow.
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• Surely, the first powerful use of this idea was done by Feynman; see, e.g., Feynma
Hibbs ~1965!, where, roughly speaking, he generalized thephase functions—generating
functions with a finite number of auxiliary parameters—of stationary phase theory for
frequency integrals, using the aforementioned Action Functionals.

• It is notable that Berry and Upstill, in a well known survey on global Optics—see p. 26
Berry and Upstill~1980!—gave some pioneering ideas about the possibility of reducing
finite number of auxiliary parameters.

• The search for global generating functions has a long story. A first theorem by Lees~1979!
defined the obstructions in a cohomological andk-theoretical framework, but Giroux~1988!
found a gap in that proof. Besides Giroux, Chaperon~1984!, Laudenbach~1987! and Sikorav
~1987! proved similar theorems, but only forcompactparallelizable manifoldsQ.

• Here, we will consider some ideas of Viterbo~1990!, more precisely we will give the detail
of his reduction procedure in thenoncompactcase:Q5Rn, see also Aebischeret al. ~1994!.
Some of the mathematical techniques were introduced by Amann, Conley, and Zehnd
Amann and Zehnder~1980!, Conley and Zehnder~1984!, in connection with the search fo
periodic solutions of Hamiltonian systems.

First, we recall that aHamiltonian isotopyis a canonical transformation, obtained via the flo
of a Hamiltonian vector fieldXH , generated by a Hamiltonian functionH, possibly depending on
the real evolution parametersP@0,T#.

Theorem 1: Let L,T* Rn be a Lagrangian submanifold connected by a Hamiltonian isoto
generated by H, to the zero-section of T* Rn. If the second derivatives of H are globally uniform
bounded, thenL admits a global generating function with a finite number of auxiliary paramet.

Remark:The generating function coming from Theorem 1 generally does not satisfy the a
rank condition of the Maslov–Ho¨rmander theorem; really, that condition assures that the loc

H ~q,p!:p5
]S

]q
~q,u!, 05

]S

]u
~q,u!J ,

is asmoothLagrangian manifold: we do not impose this fact, since it is a hypothesis of The
1.

A constructive and physically meaningful consequence of Theorem 1 concerning envelo
wave front sets—will be presented in Sec. III. Furthermore, in Sec. IV we built the global sp
time generating functions with finite parameters of the Lagrangian submanifolds solving C
problems for generic H–J equations of the evolution type.

II. A PROOF OF THEOREM 1

Let us consider the set of curves

Gª$g~• !5„q~• !,p~• !…PH1,2~@0,T#,R2n!:p~0!50%.

By the Rellich–Kondrachov theorem~or by the Sobolev imbedding theorem!,

H1,2
„~0,T!,R2n

…�C0~@0,T#,R2n!,

compactly, so in the above definition it is understood that the elements ofG are the natural
continuous extension of the curves ofH1,2

„(0,T),R2n
…: more explicitly the continuous curves i

T* Rn, t°g(t), arriving to the zero-section, such thatġ5dg/dtPL2
ªL2

„(0,T),R2n
…. The fol-

lowing is self-evident.
Lemma 1 (linear structure ofG): The setG has a natural structure of linear space, and th

TgG5G, for all gPG.
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An equivalent way to describe the curves ofG is to assign theq-projection of the end point,
q(T)PRn, and the velocityġ, for eachsP@0,T#, of the curveg by means of a functionf
PL2.

Lemma 2 (the bijection g):For all fPL2 setf5(fq ,fp). The mapg,

g:Rn3L2→G, „q~T!,f…°g„q~T!,f…~s!ªS q~T!2E
s

T

fq~r !dr,E
0

s

fp~r !dr D ,

is a bijection.
Proof: Let g(•)5„q(•),p(•)…PG, since „q̇(s),ṗ(s)…PL2, then g(s)5g(q(T),„q̇(s),

ṗ(s)…). This proves thatg is surjective.
Now, let q(T), q̄(T)PRn f, f̄PL2, such thatg„q(T),f…5g„q̄(T),f̄…; in other words,

S q~T!2E
s

T

fq~r !dr,E
0

s

fp~r !dr D 5S q̄~T!2E
s

T

f̄q~r !dr,E
0

s

f̄p~r !dr D .

Thus, for allsP@0,T# one has

q̄~T!2q~T!2E
s

T

„f̄q~r !2fq~r !…dr50, E
0

s

„f̄p~r !2fp~r !…dr50* ,

hence

q̄~T!5q~T!, f̄q5fq , f̄p5fp .

This shows thatg is injective.
Let $Fs%sP@0,T# be a Hamiltonian isotopy ofT* Rn, whereH5H(s,q,p), sP@0,T#, is the

Hamiltonian generating it:

Fs5FXH

s,0 , FXH

0,05 idR2n.

We remind that the flowFs transforms Lagrangian manifolds into Lagrangian manifolds:Ls

5Fs(L0). Our hypothesis is

L5LT5FT~L0!,

whereL05$(q,p)PT* Rn:qPRn,p50% is thezero-sectionof T* Rn5R2n. Set

E5S O 2I

I O D , g5S p
qD , ġ5S ṗ

q̇D , ¹H5S ]H

]p

]H

]q

D ,

the Hamilton’s equations related toXH5E ¹H,

ṗ52
]H

]q
, q̇5

]H

]q
,

can be written in the formġ2E ¹H50, or, equivalently,

Eġ1¹H50.

The map,
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A:G→R, g°AuguªE
0

T

@p~s!•q̇~s!2H„s,q~s!,p~s!…#ds,

is the Action Functional of the Hamilton–Helmholtz variational principle related to the Ha
tonianH.

Lemma 3 (Hamilton–Helmholtz): A curvegPG solves the Hamilton’s equations if and only

~d:Gâteaux derivative! dA@g#dg50, ;dgPG such thatdq~T!50.

Proof: By a direct computation:;dgPTgG5G,

dAugudg5
dA

dl
~g1ldg!ul50

5
DA

Dg
dg

5E
0

TS dp•q̇1p•dq̇2
]H

]q
•dq2

]H

]p
•dpDds

5E
0

TS q̇2
]H

]p D •dp ds2E
0

T ]H

]q
•dq ds1E

0

T

p•dq̇ ds

5E
0

TS q̇2
]H

]p D •dp ds2E
0

T ]H

]q
•dq ds1p•dqU

0

T

2E
0

T

ṗ•dq ds

5E
0

TS q̇2
]H

]p D •dp ds2E
0

TS ṗ1
]H

]q D •dq ds1p~T!•dq~T!

52E
0

T

~Eġ1¹H !•dg ds1p~T!•dq~T!.

h

Lemma 4 below allows us to regard the Action functionalA as a generating function ofLT with
infinite parameters~in L2!.

Lemma 4 (̀ -parameters generating function):The map,

WªA+g:Rn3L2→R, „q~T!,f…°W„q~T!,f…ªA+g„q~T!,f…5A@g„q~T!,f…#,

generatesLT , that is,

LT5H „q~T!,p~T!…: q~T!PRn, p~T!5
]W

]q~T!
„q~T!,f…,

DW

Df
„q~T!,f…50J .

Proof: Let us write explicitlyW:

W„q~T!,f…5E
0

TFfq~s!E
0

s

fp~r !dr2HS s,q~T!2E
s

T

fq~r !dr,E
0

s

fp~r !dr D Gds;

then, by writingDW/Df the Gateaux derivative on infinite-dimensional spaces,
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DW

Df
df5E

0

TFdfq~s!E
0

s

fp~r !dr1fq~s!E
0

s

dfq~r !dr2
]H

]q S 2E
s

T

dfq~r !dr D
2

]H

]p E
0

s

dfp~r !drGds.

Let us rewrite the first term. Preliminarily, one has

d

ds S E
0

s

fp~r !drE
T

s

dfq~r !dr D 5fp~s!E
T

s

dfq~r !dr1dfq~s!E
0

s

fp~r !dr;

by integrating froms50 to s5T one obtains

05S E
0

s

fp~r !drE
T

s

dfq~r !dr D U
0

T

5E
0

TS dfq~s!E
0

s

fp~r !dr2fp~s!E
s

T

dfq~r !dr D ds,

and hence

E
0

T

dfq~s!E
0

s

fp~r !dr ds5E
0

T

fp~s!E
s

T

dfq~r !dr ds.

Using this result to rewrite the expression ofDW/Df we obtain

DW

Df
df5E

0

TFfp~s!E
s

T

dfq~r !dr1fq~s!E
0

s

dfp~r !dr2
]H

]q S 2E
s

T

dfq~r !dr D
2

]H

]p E
0

s

dfp~r !drGds

5E
0

TF2S fp~s!1
]H

]q D S 2E
s

T

dfq~r !dr D 2S 2fq~s!1
]H

]p D E
0

s

dfp~r !drGds

52E
0

T

~Eġ1“H !dg ds,

wheredg5(2*s
Tdfq(r )dr,*0

sdfp(r )dr)PG. Hence, one obtains that

]W

]q~T!
U

DW/Df50

5E
0

TS 2
]H

]q Dds5E
0

T

ṗ~s!ds5p~T!.

Fourier Expansions and Fixed Point:For everyfPL2 let us consider the Fourier expansio

f~s!5(
kPZ

fke
i ~2pk/T!s.

For each fixedNPN let us consider the projection maps on the basis$ei (2pk/T)s%kPZ of L2,

PNf~s!ª (
uku<N

fke
i ~2pk/T!s, QNf~s!ª (

uku.N
fke

i ~2pk/T!s.

Clearly,

PNL2
% QNL25L2,
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and forfPL2 we will write uªPNf andvªQNf.
Remark:The idea to prove the existence of a generating function with finitely many pa

eters is to show that the ‘‘infinite’’ tailQNġ of ġ, for g a curve inG solving Hamilton’s equations
can be dropped out from the expression of the Action functional; in other words,g is completely
determined by a suitable choice of its ‘‘finite’’ partPNġ, for suitable~large! NPN.

Lemma 5 (Lipschitz):For fixedq(T)PRn anduPPNL2, the map,

QNL2→~G,i•iL2!, v°g„q~T!,u1v…,

is Lipschitz with

Lip~g!<
T

2pN
~11A2N!.

Proof: In some more details, the above map is

v°S q~T!2E
s

T

~uq1vq!~r !dr,E
0

s

~up1vp!~r !dr D .

For eachv1 , v2PQNL2, let us consider the Fourier expansion:

vªv22v15 (
uku.N

vke
i ~2pk/T!s, vk5~qk ,pk!.

We computeg„q(T),u1v2…2g„q(T),u1v1…:

g~v2!2g~v1!5S 2E
s

T

~vq22vq1!~r !dr,E
0

s

~vp22vp1!~r !dr D
5S 2E

s

T

(
uku.N

qke
i ~2pk/T!rdr,E

0

s

(
uku.N

pke
i ~2pk/T!rdr D

5TS (
uku.N

qke
i ~2pk/T!r

i2pk U
T

s

, (
uku.N

pke
~2pk/T!r

i2pk U
0

sD
5TS (

uku.N

~qk ,pk!

i2pk
ei ~2pk/T!s2 (

uku.N

~qk ,qk!

i2pk D
5TS (

uku.N

vk

i2pk
ei ~2pk/T!s2 (

uku.N

vk

i2pkD .

Hence the estimate ofig„q(T),u1v2…2g„q(T),u1v1…iL2 follows:

ig~v2!2g~v1!iL2<TS I (
uku.N

vk

i2pk
ei ~2pk/T!tI

L2

1 I (
uku.N

vk

i2pkI
L2
D

<TS 1

2pN
iviL21i^v,QN iD@0,T#&L2iL2D

<TS 1

2pN
iviL21iviL2iQN id@0,T#iL2D

<TS 1

2pN
iviL21

1

2p
A2

N
iviL2D
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<
T

2pN
~11A2N!iviL2.

Lemma 6 (contraction map):Suppose that

supyPR2nsP@0,T#u¹yy
2 Hu5C,1` „yª~q,p!….

For N large enough: TC/2pN(11A2N),1, for every fixed q(T)PRn and uPPNL2

(@0,Tu;R2n) the map:

QNL2~@0,T#;R2n!→QNL2~@0,T#;R2n!,

v→QNE ¹H~g~q~T!,u1v !!,

is a contraction map.
Proof:

iQNE“H~g„q~T!,u1v2…!2QNE¹H~g„q~T!,u1v1…!iL2

<supyPR2nsP@0,T#u¹yy
2 Huig„q~T!,u1v2…2g„q~T!,u1v1…iL2

<
TC

2pN
~11A2N!iv22v1iL2.

h

By the Banach–Caccioppoli theorem there exists one and only one fixed pointf „q(T),u… for the
above contraction map. By standard arguments one can easily see that this fixed point d
smoothly onq(T) andu. In the formula,f „q(T),u… is such that

f „q~T!,u…5QNE ¹H„g~q~T!,u1 f „q~T!,u…!….

It is crucial to observe that, if we solve thefinite ~say, algebraic! equation foru,

u5PNE ¹H„g~q~T!,u1 f „q~T!,u…!…,

and we sum the last two formulas, then the resulting equation,

ġ5E ¹H~g!,

implies that the curveg5g(q(T),u1 f „q(T),u…) solvesthe Hamilton canonical differential equa
tions, and it is starting from the zero section~so thatgPG!. Furthermore, we point out tha
dim„PNL2(@0,T#;R2n)…52n(2N11)ªk(n,N).

To conclude the proof of Theorem 1 we need to show the following.
Lemma 7 (the finite-parameters generating function):The following function:

S:Rn3Rk~n,N!→R,

„q~T!,u…→S„q~T!,u…ªA+g~q~T!,u1 f „q~T!,u…!5W~q~T!,u1 f „q~T!,u…!,

is a global generating function forL5FT(L0).
Proof: We write

]S

]u
„q~T!,u…5

DW

Df S Df

Du
1

Df

Dv
D f

DuD
~note thatDf/Du andDf/Dv are the projectorsPN andQN , respectively!,
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]S

]u
„q~T!,u…52E

0

T

@PN„Eġ1¹H~g!…#ug5g~q~T!,u1 f „q~T!,u…!ds

2E
0

T

[QN~Eġ1¹H~g!…#ug5g~q~T!,u1 f „q~T!,u…!

D f

Du
ds.

By the very construction off „q(T),u… the second integral vanishes, so

]S

]u
„q~T!,u…52E

0

T

@PN„Eġ1¹H~g!…#ug5g~q~T!,u1 f „q~T!,u…!ds,

so that

]S

]u
„q~T!,u…50 is equivalent to@PN„Eġ1¹H~g!…#ug5g~q~T!,u1 f „q~T!,u…!50.

On the other hand,

]S

]q~T!
5

]W

]q~T!
1

DW

Df

Df

Dv
D f

Dq~T!
,

]S

]q~T!
5

]W

]q~T!
2E

0

T

@QN„Eġ1¹H~g!…#ug5g~q~T!,u1 f „u~T!,u…!

D f

Dq~T!
ds;

hence

]S

]q~T!
„q~T!,u…5

]W

]q~T!
„q~T!,f…uf5u1 f „q~T!,u… .

Now it is easy to conclude that the pair„q(T),f…PRn3L2 satisfies

p~T!5
]W

]q~T!
„q~T!,f…,

05
DW

Df
„q~T!,f…,

if and only if the pair„q(T),u…PRn3Rk(n,N), where

f5u1 f „q~T!,u…, so that u5PNf,

satisfies

p~T!5
]S

]q~T!
„q~T!,u…,

05
]S

]u
„q~T!,u….
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III. THE GLOBAL FINITE ENVELOPE STRUCTURE OF THE PHASE FRONT SETS

Let us recall the general evolution problem,qPRn,

]S

]t
~ t,q!1HS t,q,

]S

]q
~ t,q! D50,

S~ t,q!u t505s~q!,

where, e.g., we may suppose the initial datas(q) to be a suitable regularization of a Heavisid
function defined around a one-co-dimensional surfaceS,Rn ~a smooth Riemann problem!, as
could be a model to propagation phenomena starting from~some neighborhood of! S. The ca-
nonical transformation (q,p)→(q̃,p̃) generated by the function

F~q,q̃!5 p̃•q1s~q!,

is given by

p5
]F

]q
~q,p̃!: p5 p̃1

]s

]q
~q!,

q̃5
]F

] p̃
~q,p̃!: q̃5q.

The transformed Hamiltonian function ofH(q,p,t) is

K~ q̃,p̃,t !5HS q̃,p̃1
]s

]q
~ q̃!,t D ,

so that the characteristics ofXK starting att50 from the zero-section$(q̃,0)% of T* Q correspond
to the characteristics ofXH starting from the initial Lagrangian submanifoldL0

5$„q,]s/]q(q)…%. Let us now consider the Action Functional of the Hamilton–Helmholtz va
tional principle related to the Hamiltonian functionK,

A@g#ªE
0

T

@ p̃~s!• q̇̃~s!2K„q̃~s!,p̃~s!,s…#ds,

defined forgPG5$„q̃(•),p̃(•)…PH1,2(@0,T#,R2n): p̃(0)50%. We have seen above thatA is a
global generating function forL̂T5$„q̃(T),p̃(T)…% with infinite parameters. If the condition

supyPR2n,tP@0,T#u¹yy
2 K~y,t !u,1` „y5~ q̃,p̃!PR2n

…

holds, then Theorem 1 allows us to describe the generalized Envelope at the timet5T, i.e. LT ,
by a global generating functionS̃(q̃,u1 ,...,uN) with finite parametersN,1`. Finally, by turning
from (q̃,p̃) to the original setting (q,p), the Lagrangian submanifold is now generated by~check
the structure of the canonical transformation above!

S~q,u!5s~q!1S̃~q,u!.

Note that the above condition on¹yy
2 K involves bothH ands.

IV. THE GLOBAL GENERATING FUNCTION FOR THE SPACE–TIME SOLUTION

Now we consider the set of curves~as above!,

Gª$g~• !5„q~• !,p~• !…PH1,2~@0,T#,R2n!:p~0!50%,
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the new functional,

Â:@0,T#3G→R, „t,g~• !…°Â@ t,g~• !#ªE
0

t

@p~r !•q̇~r !2H„r ,q~r !,p~r !…#dr,

and thenewbijection:

ĝ:@0,T#3Rn3L2~@0,T#,R2n!→@0,T#3G,

~ t,q,f!°ĝ~ t,q,f!5„t,g~• !…, g~s!5„q~s!,p~s!…ªS q2E
s

t

fq~r !dr,E
0

S

fp~r !dr D .

The second value of the mapĝ(t,q,f) is the curveg(•)5„q(•),p(•)… which is ~i! starting from
p(0)50, such that~ii ! ġ(•)5f(•), and~iii ! q(t)5q.

Consider the infinite-parameters function:

ŴªÂ+ĝ:@0,T#3Rn3L2→R,

~ t,q,f!°Ŵ~ t,q,f!ªÂ+ĝ~ t,q,f!.

We will prove that Ŵ generatesL̂ªø tP@0,T#L t , the Lagrangian submanifold ofT* (@0,T#
3Rn); i.e., that

L̂5H ~ t,q;t,p!:tP@0,T#, qPRn, t5
]Ŵ

]t
~ t,q,f!, p5

]Ŵ

]q
~ t,q,f!,

DŴ

Df
~ t,q,f!50J ,

is the geometric solution of the Hamilton–Jacobi problem,

]S

]t
1HS t,q,

]S

]qD50, S~0,q!50.

In order to prove this, we write explicitlyŴ:

Ŵ~ t,q,f!5E
0

tF E
0

s

fp~r !dr•fq~s!2HS s,q2E
s

t

fq~r !dr,E
0

s

fp~r !dr D Gds;

then, forDŴ/Df50, we compute]Ŵ/]q:

]Ŵ

]q
52E

0

t ]H

]q
ds5E

0

t

ṗ~s!ds5p~ t !.

Finally, we compute,]Ŵ/]t:
                                                                                                                



works
neral

erating

III.

ca-

429J. Math. Phys., Vol. 43, No. 1, January 2002 Global finite structure for H–J equations

                    
]Ŵ

]t
~ t,q,f!5p~ t !•q̇~ t !2HS t,q,

]Ŵ

]q
D 1E

0

t ]H

]q S s,q2E
s

t

fq~r !dr,E
0

s

fp~r !dr Dfq~ t !ds

5p~ t !•q̇~ t !2HS t,q,
]Ŵ

]q
D 1E

0

t ]H

]q
dsq̇~ t !

5
]Ŵ

]q
q̇2H2

]

]q S E
0

t

@p•q̇2H#dt D q̇~ t !

52HS t,q,
]Ŵ

]q
D .

Therefore,Ŵ(t,q,f) is a global generating function, with infinite parametersf, for the geometric
solution L̂ within T* (@0,T#3Rn).

Now, with minor changes, the reduction machinery used in the preceding sections still
for Ŵ, and, by means of the trick of Sec. III, we obtain global generating functions for ge
initial problems~for nontrivial s!. In some more detail, for fixedNPN, (t,q)P@0,T#3Rn, and
u(•)PPNL2(@0,T#;R2n), the map,

QNL2→~G,i•iL2!,

v~• !°ĝ„t,q,u~• !1v~• !…,

is Lipschitz with constant

T

2pN
~11A2N!,

and the theory goes in the same way above, so, lastly, we can determine a global gen
function with finite parametersS(t,q,u) for L̂, which is solving, for all (t,q)P@0,T#3Rn and for
someuPRk,

]S

]t
~ t,q,u!1HS t,q,

]S

]q
~ t,q,u! D50, S~0,q,u!50,

]S

]u
~ t,q,u!50.

Now, for more general initial datasÞ0, we may argue in a strictly similar way as done in Sec.
More precisely, consider coordinatest̂ ,q̂,p̂ and let nowS( t̂ ,q̂,u) be a generatingL̂, geo-

metrical solution of H–J starting, att̂50, from the zero-section (p̂[0) for the Hamiltonian
K( t̂ ,q̂,p̂)ªH„t̂ ,q̂,p̂1(]s/]q)(q̂)… where¹2K are bounded; moreover, let us consider the
nonical transformationC:(t,q;t,p)°( t̂ ,q̂; t̂,p̂) generated by the function

G~ t,q,t̂,p̂!5 t̂t1 p̂•q1s~q!,

t5
]G

]t
: t5 t̂,

p5
]G

]q
: p5 p̂1

]s

]q
~q!,

t̂5
]G

]t̂
: t̂5t,
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q̂5
]G

] p̂
: q̂5q.

If we let Ŝ( t̂ ,q̂,u) be the finite global generating function ofL̂, it is an easy matter to see that th
Lagrangian submanifold,

L5C21~L̂ !,

is the geometrical solution of theH –J equationt1H50, starting, att50, from im(ds), and we
note that a global generating function for it is given by

S~ t,q,u!5Ŝ~ t,q,u!1s~q!.
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Arnol’d, V. I., and Novikov, S. P.,Dynamical Systems IV~Springer-Verlag Berlin Heidelberg, 1990!.
Amann, H., and Zehnder, E., ‘‘Periodic solutions of asymptotically linear hamiltonian systems,’’ Manuscr. Math32,

149–189~1980!.
Bardi, M., and Capuzzo-Dolcetta, I., ‘‘Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equat
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Two Harmonic Oscillators~isotropic and nonisotropic 2:1! are studied on the two-
dimensional sphereS2 and the hyperbolic planeH2. Both systems are integrable
and super-integrable with constants of motion quadratic in the momenta. These
properties are shown to derive from a complex factorization for the constants of
motion, which holds for arbitrary values of the curvaturek, and the dynamics of the
Euclidean harmonic 1:1 and 2:1 oscillators is directly recovered fork50. The
harmonic oscillators on either the standard unit sphere~radiusR51! or the unit
Lobachewski plane~‘‘radius’’ R51! appear as the particular values of the
k-dependent potentials for the valuesk51 andk521. Finally a particular poten-
tial is proposed for representing the general spherical~hyperbolic! n:1 anisotropic
harmonic oscillator on a two-dimensional manifold of constant curvature. ©2002
American Institute of Physics.@DOI: 10.1063/1.1423402#

I. INTRODUCTION

Dynamics on a nonflat configuration spaceQ remains as a very partially studied subject, ev
in the simplest two-dimensional constant curvature cases whereQ is either the sphereS2 or the
hyperbolic~Lobachewski! planeH2 ~see Refs. 1, 2, 3 for the case of spherical central potenti!.
In fact, there exist some noncentral but rather simple problems, e.g., the nonisotropic ha
oscillators, still awaiting to be studied in manifolds of nonzero curvature.

It is well known that integrable systems, in the classical sense of Arnold–Liouville, must
as many independent constants of motion in involution as degrees of freedom. On the othe
a system is called super-integrable if it is integrable and, in addition, possesses more indep
first integrals than degrees of freedom. It is known that these additional first integrals give r
a higher degree of regularity in the phase space~e.g., the existence of periodic orbits! since the
trajectories are restricted to submanifolds with less thann dimensions. In particular, if a system
with n degrees of freedom possesses 2n21 independent first integrals, then it is called maxima
super-integrable. The Kepler problem, the harmonic oscillator and the Calogero–Moser syst
some cases of this very particular class of systems~for other super-integrable systems see Re
4–15 and references therein!.

In a recent paper16 the existence of super-integrable systems on the two-dimensional spheS2

and on the hyperbolic planeH2 was analyzed. The study was focused on the quadratic su
integrability, that is, on the existence of systems that, besides the energy, admit two f
independent constants of motion quadratic in the velocities~quadratic super-integrability is relate
with super-separability in the sense of Ref. 14!. Some of the spherical~hyperbolic! potentials
obtained by this approach were already known, but some others were apparently new. Part

a!Electronic mail: mfran@posta.unizar.es
b!Electronic mail: santander@fta.uva.es
4310022-2488/2002/43(1)/431/21/$19.00 © 2002 American Institute of Physics
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interesting was the existence of a potential that seems to represent the spherical~hyperbolic!
version of the Euclidean nonisotropic 2:1 oscillator 4x21y2 or x214y2 ~for other Euclidean
nonisotropic oscillators the additional constant of motion is not quadratic, but higher ord
momenta!. We recall that the spherical version of the central oscillator was studied by Hig
Ref. 2 and is known as the Higgs oscillator.

The main objective of this article is to develop a deeper analysis of these two sph
~hyperbolic! oscillators: the central Higgs oscillator and noncentral 2:1 oscillator. We will show
a basic point, that these two systems are endowed with the same fundamental properties
standard Euclidean one. This means that those properties to be considered as fundamen~e.g.,
the existence of constants of motion, super-integrability, complex factorization! are preserved
under non-Euclidean deformations. Conversely, the Euclidean Oscillator can be considere
very particular case~the flat limit! of the general ‘‘curved’’ Harmonic Oscillator. We will carry ou
this approach by considering the curvature as a parameter.

The article is organized as follows: In Sec. II we discuss the fundamental properties
Euclidean Harmonic Oscillator related with the existence of super-integrability. We are inter
in obtaining non-Euclidean deformations of these Euclidean properties. Section III is devo
the geometry of the Riemannian two-dimensional~2-D! manifolds of constant curvature. We firs
discuss some properties of the curvilinear systems of coordinates and then we introduce a
ism with the curvaturek as a parameter~this formalism was already used in Ref. 16!. This is made
so that the Euclidean geometry is directly recovered fork50.

In Secs. IV and V we study the integrability and the super-integrability of both oscilla
~isotropic central oscillator and non-isotroipc 2:1 oscillator! in the the sphereS2 and in the
hyperbolic planeH2 with curvaturek ~these two sections have been written in such a way that
be read independently!. First, in Sec. IV, the study is presented in ‘‘geodesic polar’’ coordina
and then, in Sec. V, we will obtain the results by using ‘‘geodesic parallel’’ coordinates.
dynamics in the Euclidean plane~studied in Sec. II! appears as a very particular case. T
harmonic oscillators on either the standard unit sphere~radiusR51! or the unit Lobachewski
plane~‘‘radius’’ R51! correspond to the valuesk51 andk521. Finally, in Sec. VI we provide
a discussion and an outlook to the results obtained.

II. SUPER-INTEGRABILITY OF THE EUCLIDEAN HARMONIC OSCILLATOR

The two-dimensional harmonic oscillator,

LHO5~ 1
2!~vx

21vy
2!2~ 1

2!~v1
2x21v2

2y2!,

is a trivially integrable system, since it is a direct sum of one-degree of freedom system
therefore, it has the two one-degree of freedom energies,I 15Ex and I 25Ey , as involutive inte-
grals. If the oscillator is isotropic then it has the angular momentum as an additional integ
motion. If the oscillator is nonisotroipc then the angular momentum is not preserved but
very particular case in which the quotient of the two frequencies is rational the system has
additional nonlinear integral.

In geometric terms the phase space is foliated by tori and every integral curve is a curv
constant slope on a torus. The slope of the curve is determined by the ratiov2 /v1 . Thus, if this
ratio is irrational the corresponding curve will be dense on the torus.17,18 If this ratio is rational
then the orbit becomes closed and the motion will be periodic.

The super-integrability of the rational case,v15n1v0 , v25n2v0 , with integersn1 ,n2 , can
be approached by using a complex formalism.18,19 The following proposition states the existen
of the additional constant of motion and give a method for obtaining it explicitly.

Proposition 1: Let J1 , J2 , be the following two functions:

J15vx1 i n1v0x, J25vy1 i n2v0y.
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Then the complex function J12 defined as

J125J1
n2 ~J2* !n1

is a constant of motion.
Proof: The time-evolution of the functionsJ1 , J2 , is given by

d

dt
J152 i n1v0 J1

d

dt
J252 i n2v0 J2 .

Hence we have

d

dt
J125n2J1

(n221)
~J2* !n1J̇11n1J1

n2 ~J2* !(n121)J̇2* 5J1
n2 ~J2* !n1~ i v0!~n2n12n1n2!50. ~1!

ThereforeJ12 is a constant of motion. Notice thatJ12, which can be considered as coupling t
two degrees of freedom, depends on the relation betweenv2 andv1 . As stated above,J12 is well
defined as a constant of motion only if the quotientv2 /v1 is rational.

SinceJ12 is a complex function it determines two different real first integrals,

I 35Im~J12!, I 45Re~J12!,

which are polynomials in the velocities~momenta! of degreen11n221 andn11n2 , respectively.
Only one of these two functions must be considered as fundamental, becauseI 1 ,I 2 ,I 3 ,I 4 are
functionally dependent~I 3 is independent ofI 1 andI 2 , but I 4 is a dependent function ofI 1 , I 2 and
I 3!.

Next we give the expressions ofI 3 and I 4 for the first two rational cases.
~i! Isotropic casev15v25v0 :

I 45Re~J12!5vxvy1v0
2xy, I 35Im~J12!5v0~xvy2yvx!; ~2!

Im(J12) is just the angular momentum, and Re(J12) is the nondiagonal component of the Fradk
tensor.20

~ii ! The nonisotroipc case withv152v0 , v25v0 :

I 45Re~J12!5vxvy
21v0

2~4xvy2yvx!y,
~3!

I 35Im~J12!5~xvy2yvx!vy2v0
2xy2.

Summarizing: Proposition 1 states two properties:~i! super-integrability of the rational case
and ~ii ! complex factorization of the additional constant of motion, that can be considered a
two fundamental features characterizing the two-dimensional harmonic oscillator. In fact, the
even be considered as defining properties. That is, any dynamical system defined in
Euclidean space must satisfy the appropriate non-Euclidean versions of points~i! and~ii ! to be in
fact considered as an~non-Euclidean! Harmonic Oscillator.

III. GEOMETRY AND DYNAMICS ON THE SPHERE S2 AND THE HYPERBOLIC
PLANE H2

A two-dimensional manifoldM can be described by using different coordinate systems. If
consider it as an imbedded submanifold ofR3, then the points ofM can be characterized by th
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three external coordinates (x,y,z) plus an additional constraint. Nevertheless, in differential g
metric terms, a more appropriate approach is to develop the study by using two-dimen
systems of coordinates adapted toM .

On any general two-dimensional Riemannian space~not neccesarily of constant curvatur!
there are two distinguished types of local coordinate systems: ‘‘geodesic parallel’’ and ‘‘geo
polar’’ coordinates. They reduce to the familiar Cartesian and polar coordinates on the Euc
plane~see Refs. 16 and 21! and both are based on an origin pointO and an oriented geodesicl 1

throughO ~Fig. 1!.
For any pointP in some suitable neigboorhood ofO, there is a unique geodesicl joining O

and P. The ~geodesic! polar coordinates (r ,f) of P, relative to the originO and the positive
geodesic ray ofl 1 , are the~positive! distancer betweenO andP measured alongl , and the angle
f betweenl and the positive rayl 1 , measured aroundO. These coordinates are defined in
neigborhood ofO not extending beyond the cut locus ofO; polar coordinates are singular atO,
andf is discontinuous on the positive ray ofl 1 .

Now, consider the geodesicl 28 throughP and orthogonal tol 1 and letP1 be the intersection
point of l 28 and l 1 nearest toP. The ~geodesic! parallel coordinates (u,y) of P, relative to the
origin O and base geodesicl 1 , are defined as the distanceu betweenO andP1 , measured along
l 1 , and the distancey, betweenP1 and P, measured alongl 28 . Again these coordinates will be
regular and without singularities in some suitable strip centered inl 1 . If instead ofl 1 another line
is taken as the base, we obtain another system of geodesic parallel coordinates. Figure
display the particular case with basel 2 , orthogonal tol 1 throughO; these second sets of parall
coordinates will be denoted (v,x).

These systems are suitable for most general purposes, because the coordinates (r ,f), (u,y)
and (v,x) have adirect geometric significance, as distances and angles measured in the in
metric of the surface. Closed expressions are usually only possible for spaces ofconstant curva-

FIG. 1. Polar (r ,f) and parallel (u,y) coordinates based on the oriented geodesicl 1 and reference pointO. All these
coordinates are lengths or angles measured in the intrinsic metric of the space of constant curvature. The figure fo
pattern of a stereographic projection of the sphere from the South Pole, withO at the North Pole, but the geometrica
meaning of these coordinates holds for any value of the curvature.

FIG. 2. The three coordinate systems (r ,f), (u,y) and (v,x) of a point P. Relationships among these coordinates a
discussed in the text for any curvature valuek.
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ture. In the constantpositivecurvature case, i.e., the sphere, the geodesics are great circle
relations among distances and angles are the subject of spherical geometry. Polar coordin
the sphere are singular at the origin~pole! O and also at its antipodal point~the cut locus ofO!.
Parallel coordinates are singular in the two poles of the base geodesic. While in the Euc
plane a line orthogonal to bothl 1 and l 2 do not exist~nor does it exist in the hyperbolic plane!,
there is such a linel 3 for the sphere~the polar of the pointO!; so we have here a third set o
parallel coordinates. These three sets are based on three geodesics mutually orthogonal
and the third system with basel 3 is essentially equivalent to the polar coordinates whose cent
the pole ofl 3 .

The notation has been chosen to emphasize the similarities with the Euclidean case
point P, r is the distance measured in eitherS2 or H2 ~with curvaturek! from P to the origin point
O, andf determines the orientation of the lineOP throughO. On the other side,x, y are the
geodesic distances fromP to the two ‘‘coordinate axes’’l 1 ,l 2 ; there are other two quantities,u,
v which are distances, measured alongl 1 ,l 2 , betweenO and the orthogonal projections ofP on
l 1 ,l 2 . In the Euclidean case, we have the identitiesx5u,y5v, but once we deal with nonzer
curvature these equalities are no longer true; recall thaty is the distance fromP to the ‘‘x’’
coordinate axis, butu is notthe distance fromP to the ‘‘y’’ coordinate axis. Both polar (r ,f) and
the two systems of parallel coordinates (u,y) and (v,x) are alwaysorthogonal; however, the
coordinate system (x,y) made up of the distances to the two coordinate axes is orthogonal i
Euclidean plane, butnot in S2 nor in H2.

For a sphere of radiusR the ‘‘geographic’’ coordinates (u,f) ~whereu is the latitude andf
the longitude! are closely related to both polar and parallel type coordinate systems:„R(p/2
2u),f… are polar coordinates with an origin in the North pole, while (Rf,Ru) are parallel
coordinates with the equator as the base line. This equivalence does not exist in the Euclide
hyperbolic case, where polar and parallel coordinates are very different, so there are rea
keep their consideration separate, even for the sphere, in the context in which we are workin
fundamental properties of the harmonic oscillator on manifolds of constant curvature will be
clearly seen this way.

The metric of the sphere of curvaturek51/R2 is given in parallel and polar coordinates b

ds25cos2~y/R!du21dy2, ds25dr21R2 sin2~r /R!df2,

reducing todu21dy2 anddr21r 2 df2 whenR→`. It is possible to write these expressions in
form which holds simultaneously for the sphere, the Euclidean plane and the hyperbolic pla
introducing the following ‘‘tagged’’ trigonometric functions:22

Ck~x!5H cosAk x, if k.0,

1, if k50,

coshA2k x, if k,0,

Sk~x!55
1

Ak
sinAk x, if k.0,

x, if k50,

1

A2k
sinhA2k x, if k,0,

and

Tk~x!5
Sk~x!

Ck~x!
.

When k51 the three ‘‘tagged’’ functions are the ordinary trigonometrical functions, i.e., S1(x)
5sinx, C1(x)5cosx, T1(x)5tanx. For k50 one gets the ‘‘parabolic’’ sine S0(x)5x, cosine
C0(x)51, and tangent T0(x)5x. For k521, these functions are the hyperbolic cosine, sine,
tangent. Therefore, in the flat casek50 all Ck(x) are replaced by 1, while all Sk(x), Tk(x) are
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replaced by its variablex; this suggests that in the curved case, Ck(x) should be looked at as
kind of ‘‘curved’’ deformation of the function 1, while both Sk(x) and Tk(x) are two kinds of
deformations of the linear functionx.

The idea is to obtain relations between the different coordinates (u,y), (v,x), (r ,f), in a way
that holds regardless of the value ofk. In the casesk.0 or k,0 they reduce to formulas o
spherical or hyperbolic trigonometry, while fork50 they are well-known Euclidean relations.

In any rectangular triangle, asP1PO in Fig. 1, the three sidesr ,u,y, and the anglef at O are
related by the following equations:

Sk~y!5Sk~r !sinf, Ck~r !5Ck~u!Ck~y!,

Tk~u!5Tk~r !cosf, Tk~y!5Sk~u!tanf,

and similar equations for the triangleP2PO ~sidesr ,v,x, anglep/22f at O!:

Sk~x!5Sk~r !cosf, Ck~r !5Ck~v !Ck~x!,

Tk~v !5Tk~r !sinf, Tk~x!tanf5Sk~v !.

Starting from these equations we get many relations with a rather symmetrical appearance
pairsx,y andu,v. The change frompolar to parallel coordinates, in any constant curvature plan
can be read from these equations.

The harmonic oscillator potential will be closely related with the particular function Tk
2(r ) that

can be presented, in terms of (y,u) or (x,v), in several alternative ways:

Tk
2~r !5Tk

2~u!1
Tk

2~y!

Ck
2~u!

5
Tk

2~u!

Ck
2~y!

1Tk
2~y!5Tk

2~v !1
Tk

2~x!

Ck
2~v !

5
Tk

2~v !

Ck
2~x!

1Tk
2~x!. ~4!

These expressions can be considered as differentk-deformed versions of the Pythagorean the
rem. In fact for thek50 Euclidean plane we haveu5x, v5y, and they reduce tor 25x21y2.

IV. THE 1:1 AND 2:1 HARMONIC OSCILLATORS ON A 2-D SPACE OF CONSTANT
CURVATURE I: POLAR COORDINATES

In the Euclidean plane, central potentials are better discussed in polar coordinates. This
true forkÞ0. Nevertheless we know that nonisotroipc Euclidean oscillators are better presen
Cartesian coordinates. As we deal with both types when the configuration space is assume
a space of constant curvaturek, our idea is to develop both approaches. In this section the s
is presented in geodesic polar coordinates, and in the next section we will make use of p
coordinates~we begin with polar coordinated because it is the usual way of presenting the H
oscillator!. In any case the properties we are looking for are intrinsic properties of the harm
oscillator considered as a dynamical system, that is, as a vector field defined on the tangent
of a particular manifold~sphereS2 or hyperbolic planeH2!. So all the issues we are interested
such as integrability, super-integrability, or complex factorization, will prove to be reached by
approaches. Nevertheless we will find some differences between both approaches; this
important with a view to facilitate further generalizations to othern:1 oscillators.

The differential element of distance on a manifoldQ of constant curvature~S2 if k.0, the
Euclidean plane ifk50, or H2 if k,0) becomes, when written in ‘‘geodesic polar’’ coordinate

ds25dr21Sk
2~r ! df2.

Thus a general standard Lagrangian has the following form:

L~k!5~ 1
2!„v r

21Sk
2~r !vf

2
…2U~r ,f,k!,
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in such a way that fork50 we recover the standard Euclidean system,

lim
k→0

L~k!5~ 1
2!~v r

21r 2vf
2 !2V~r ,f!, V~r ,f!5U~r ,f,0!.

The systems we are concerned with are systems endowed with quadratic integrals of
depending on the curvaturek as a parameter, but we will first recall, as a previous step,
properties of the linear constants, which arise from exact Noether symmetries. An exact N
symmetry is a complete vector fieldY defined on the configuration spaceQ such that its natura
lift Yt to phase spaceTQ is an exact symmetry of the Lagrangian, that is,Yt(L)50. Then, if we
denote byuL the Cartan one-form,

uL5S ]L

]v r
Ddr1S ]L

]vf
Ddf,

the functionI defined asI 5 i (Yt)uL is a constant of motion. The important point is that ifL is a
natural Lagrangians of mechanical type~Riemannian metric minus a potential! then the constantI
is linear function in the velocities, and the vector fieldY must necessarily be symmetry of th
kinetic term~isometry of the metric! and symmetry of the potential.

In this particular spherical~hyperbolic! case the kinetic term is endowed with the followin
three symmetries:

YP1
~k!5~cosf!

]

]r
2S Ck~r !

Sk~r !
sinf D ]

]f
,

YP2
~k!5~sinf!

]

]r
1S Ck~r !

Sk~r !
cosf D ]

]f
,

YJ~k!5
]

]f
.

These three vector fields generate a Lie algebra,

@YP1
,YP2

#52kYJ , @YP1
,YJ#52YP2

, @YP2
,YJ#5YP1

,

isomorphic to the Lie algebra of isometries of the spherical~Euclidean, hyperbolic! space; only if
k50 ~Euclidean plane! YP1

andYP2
conmute.

Constants of motion linear in the velocities only appear for some specific potentia
particular, we have three cases.

~i! If the potentialU is of the formU5U„z(r ,f)…, z(r ,f)5Sk(r )sinf, then

P1~k!5i„YP1

t ~k!…uL5~cosf!vr2„Ck~r !Sk~r !sinf…vf

is a constant of motion.
~ii ! If the potentialU is of the formU5U„z8(r ,f)…, z8(r ,f)5Sk(r )cosf, then

P2~k!5i„YP2

t ~k!…uL5~sinf!vr1„Ck~r !Sk~r !cosf…vf

is a constant of motion.
~iii ! If the potentialU depends only onr , i.e., U5U(r ); then

J~k!5i„YJ
t ~k!…uL5Sk

2~r !vf

is a constant of motion.
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Notice that, in geometric terms, the two functionsz andz8 are in fact the ‘‘tagged’’ sinesz
5Sk(y) andz85Sk(x). Concerning~iii ! it represents the Kepler area law which in this form ho
for any k.

The most general linear constant of motion turns out to be a linear combination ofP1(k),
P2(k), J(k), with constant coefficients:

I 115a1P1~k!1a2P2~k!1cJ~k!.

Suppose now thatL has a constant of the motionI 5I (r ,f,v r ,vf) which is quadratic in the
velocities

I 5I 221I 20~r ,f,k!, I 225av r
212bv rvf1cvf

2 ,

wherea, b, andc, are functions ofr andf (k-dependent!. Then the three functionsa, b, andc
must take the form

a5a0 cos2f1c0 sin2f1b0 sinfcosf,

b5~ 1
2!Sk~r !Ck~r !@~c02a0!sin 2f1b0 cos 2f#1~ 1

2!Sk
2~r !~2a1 cosf1c1 sinf!,

c5Sk
2~r !Ck

2~r !~a0 sin2 f1c0 cos2 f2b0 sinfcosf!1Sk
3~r !Ck~r !~c1 cosf1a1 sinf!

1a2Sk
4~r ! ,

wherea0 , b0 , c0 ; a1 , c1 ; a2 are real parameters. The most general form forI 22 turns out to be
a linear combination of binary products of linear constants:

I 22~k!5a0P1
2~k!1b0P1~k!P2~k!1c0P2

2~k!1a1P2~k!J~k!1c1P1~k!J~k!1a2J2~k! .

In the flatk50 limit, we have Sk(r )→r and Ck(r )→1, so all these equations coincide with th
ones obtained forQ5E2. In the more generalk-dependent approach, the case where the confi
ration space is Euclidean can be considered, not as a limit case, but simply as the particul
k50. Genericallyr appears through Sk(r ), and there are also some factors which in the curv
case appear through a tagged cosine ofr , Ck(r ), which in the Euclidean case degenerates
C0(r )[1 and which therefore becomes invisible; of course these terms turn visible once w
with the case of nonzero curvaturek. We also notice that the dependence on the curvaturek is
only present in the radial part of the functions. The angular functions~e.g., cosf,sinf) are
k-independent.

A. Isotropic oscillator

Let us consider the following spherical~Euclidean, hyperbolic! Lagrangian with curvaturek,

L5~ 1
2!„v r

21Sk
2~r !vf

2
…2~ 1

2!v0
2 U11~r ,f,k!, U115Tk

2~r !,

so that the standard oscillator potential on the unit sphere~Higgs oscillator!, on the Euclidean
plane, or on the unit Lobachewski plane, arise as the following three particular cases:

U11~1!5tan2r , V115U11~0!5r 2, U11~21!5tanh2r .

The Euclidean oscillatorV11 ~parabolic potential without singularities! appears in this formalism
as making a separation between two different situations~see Fig. 3!. The spherical potential is
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represented by a well with singularities on the border~impenetrable walls at the equatorial circ
r 5p/2Ak if the potential center is at the poles!, and the hyperbolic potential by a well with finit
depth sinceU11→1/uku when r→`.

The dynamics is given by the followingk-dependent vector field:

X115v r

]

]r
1vf

]

]f
1 f r

]

]v r
1 f f

]

]vf
,

f r5„Sk~r !Ck~r !…vf
2 2v0

2S Sk~r !

Ck
3~r ! D ,

f f522S Ck~r !

Sk~r ! D v rvf .

This is an integrable system endowed with two fundamental quadratic integrals of motion:

I 1~k!5P1
2~k!1v0

2
„Tk~r ! cosf…

2, I 2~k!5P2
2~k!1v0

2
„Tk~r ! sinf…

2.

These constants are sum of two squares~as in the Euclidean plane! so they can be interpreted a
the modulus of appropriate complex functions. Notice also that they can be considered
k-deformed versions of the two Euclidean one-degree of freedom energies; neverthelessk
Þ0, the sumI 1(k)1I 2(k) does not represent the total energy.

We begin our analysis by considering the time-derivative of the the twok-dependent functions
P1(k) andP2(k). They are given by

d

dt
P1~k!52v0

2 S Sk~r !

Ck
3~r ! D cosf,

d

dt
P2~k!52v0

2S Sk~r !

Ck
3~r ! D sinf .

In a similar way, the time-derivative of the two velocity-independent functions Tk(r )cosf,
Tk(r )sinf, is given by

d

dt
„Tk~r ! cosf…5

P1~k!

Ck
2~r !

,
d

dt
„Tk~r !sinf…5

P2~k!

Ck
2~r !

.

The following proposition states the super-integrability of the system and proves the existe
a complex factorization.

FIG. 3. Plot ofU11 as a function ofr , for k521 ~lower curve!, k50 ~dashed line! andk51 ~upper curve!.
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Proposition 2: Let K1 , K2 , be the following two functions:

K15P1~k!1 iv0„Tk~r !cosf…, K25P2~k!1 iv0„Tk~r !sinf….

Then (i) The modulus of K1 and K2 are constants of motion and coincide with I1(k),I 2(k):

uK1u25I 1~k!, uK2u25I 2~k!.

(ii) The complex function K12 defined as

K125K1K2*

is also a constant of motion.
Proof: ~i! follows directly from the definition ofK1 andK2 . For proving~ii ! we analyze the

time-evolution ofK1 andK2 . We have

d

dt
K15

d

dt
P1~k!1 i v0

d

dt
„Tk~r ! cosf…52v0

2S Sk~r !

Ck
3~r ! D cosf1 i v0

P1~k!

Ck
2~r !

5S iv0

Ck
2~r ! DK1 ,

and a similar calculus leads to

d

dt
K25S iv0

Ck
2~r ! DK2 .

Thus we obtain

d

dt
~K1K2* !50,

which states the functionK12 as an additional constant of motion. It can be decomposed into
and imaginary parts as follows:

K125I 4~k!1 iI 3~k!,

whereI 4(k), I 3(k) are real constants of motion, respectively, quadratic and linear in the ve
ties, and given by

I 4~k!5P1~k!P2~k!1v0
2
„Tk

2~r !cosf sinf…, I 3~k!5v0J~k!.

These are the generalk-dependent versions of the flat space constants denotedI 4 ,I 3 . A direct
calculation shows that

I 1~k!1I 2~k!1k„J~k!…25~ 1
2!@v r

21Sk
2~r !vf

2 1v0
2U11~r ,f,k!#,

which means that in any space of nonzero constant curvaturek the total energy can be written a
a sum of three summands, one of which carries the spherical~Euclidean, hyperbolic! angular
momentum with the curvaturek as a coefficient and vanishes into the limitk→0.

Summarizing: the isotropic harmonic oscillator is super-integrable for any value of the
vaturek ~positive, zero or negative! and an additional constant of motionK12 can be obtained by
complex factorization. The fundamental integral of motionI 3(k) represents the spherical or hy
perbolic version of the angular momentum~because the potentialU11 is central independently o
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the value of the curvature!. ConcerningI 4(k), it represents thek-dependent spherical or hype
bolic versions of the so–called Fradkin constant.20. Next, we give the expressions of these tw
constants for three particular cases.

~i! Higgs oscillator in the unit sphere~radiusR51). In this case we have
P15~cosf!vr2~cosr sinr sinf! vf ,

P25~sinf!vr1~cosr sinr cosf!vf ,

J5sin2 r vf ,
and thenI 4 , I 3 , are given by

I45P1P21v0
2 ~tan2 r cosf sinf!, I35v0 J.

~ii ! Isotropic oscillator in the unit Lobachewski plane~‘‘radius’’ R51!. In this case we have
P15~cosf!vr2~coshr sinhr sinf!vf ,

P15~sinf!vr1~coshr sinhr cosf!vf ,

J5sinh2 rvf ,
and thenI 4 , I 3 , are given by

I45P1P21v0
2~tanh2 r cosf sinf!, I35v0 J.

~iii ! The expressions fork50 become the usual formulas for the standard isotropic oscilla

B. Nonisotropic 2:1 oscillator

As mentioned in the Introduction, systems on the two-dimensional sphere~Euclidean, hyper-
bolic plane! with the first integrals quadratic in the velocities were studied in Ref. 16. Sev
different potentials were obtained as solutions of a system of two coupled differential equ
depending on the parameterk. One of the potentials obtained in this approach was

U21~r ,f,k!5
1

12k„Sk~r !sinf)2 F4S Tk~r !cosf

12k„Tk~r !cosf)2D 2

1„Sk~r !sinf…

2G ,
which satisfies

lim
k→0

U2154r 2 cos2 f1r 2sin2 f

and was interpreted as representing the potential of the spherical~hyperbolic! version of the 2:1
harmonic oscillator.

So, let us now study the following spherical~hyperbolic! Lagrangian with curvaturek:

L5~ 1
2!„v r

21Sk
2~r !vf

2
…2~ 1

2!v0
2U21~r ,f,k!.

The dynamics is given by the following vector field:

X215v r

]

]r
1vf

]

]f
1 f r

]

]v r
1 f f

]

]vf
,

where thek-dependent forcesf r and f f are given by
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f r5Sk~r !Ck~r !vf
2 2„v0

2Sk~r !Ck~r !…FCk
2~r !~4cos2 f1sin2 f!1kSk~r !~31cos2 f!cos2 f

~Ck
2~r !2kSk

2~r !cos2 f…

3 G ,
f f522S Ck~r !

Sk~r ! D v rvf1~v0
2 sinf cosf!F 3Ck

2~r !1kSk
2~r !cos2 f

~Ck
2~r !2kSk

2~r !cos2 f!3G .

It was proved in Ref. 16 that this system possesses the following two quadratic integr
motion:

I 1~k!5P1
2~k!14v0

2S Tk~r !cosf

12k~Tk~r !cosf!2D 2

,

~5!

I 2~k!5P2
2~k!1kJ2~k!1v0

2@11k„Tk~r !cosf…

2#S Tk~r !sinf

12k~Tk~r !cosf!2D 2

.

For further convenience, it will be useful to write the constantI 2 as

I 2~k!5P2
2~k!1kJ2~k!1v0

2F~r ,f,k!„Tk~r !sinf…

2,

where we have denoted byF(r ,f,k) the following function:

F~r ,f,k!5
11k„Tk~r !cosf…

2

„12kTk
2~r !cos2f…

2 .

Notice that if we denote byI 0(k) the trivial constant of motion~energy!,

I 0~k!5~ 1
2!„v r

21Sk
2~r !vf

2
…1~ 1

2!v0
2U21~r ,f,k!;

then

2I 0~k!5I 1~k!1I 2~k!.

Let us now denote byK1 the following complex function:

K15P1~k!1~2iv0!S Tk~r !cosf

12k„Tk~r !cosf…

2D .

By using

d

dt
P1~k!52S 4v0

2

Ck
2~r !

D F~r ,f,k!F Tk~r !cosf

12k Tk
2~r !sin2 fG ,

d

dt S Tk~r !cosf

12kTk
2~r !sin2 f D 5S 1

Ck
2~r ! D F~r ,f,k! P1~k!,

we get the time-evolution of the functionK1 given by

d

dt
K15S 2iv0

Ck
2~r ! D F~r ,f,k! K1 .

It seems that the following step must be the analysis of the time evolution ofP2(k) ~as we have
done for the case of the central Higgs oscillator!. Nevertheless instead of consideringP2(k) by
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itself, we will consider two other related functions obtained by addition~subtraction! of a new
term related with the spherical~hyperbolic! version of the angular momentum:

d

dt
@P2~k!1Ak J~k!#52S v0

Ck~r ! D
2S 1

11Ak Tk~r !cosf
D 2F Tk~r !sinf

11AkTk~r !cosf
G ,

d

dt
@P2~k!2AkJ~k!#52S v0

Ck~r ! D
2S 1

12AkTk~r !cosf
D 2F Tk~r !sinf

12AkTk~r !cosf
G .

On the other hand, the time-derivative of the two velocity-independent functions,

F Tk~r !sinf

11AkTk~r !cosf
G , F Tk~r !sinf

12AkTk~r !cosf
G ,

is given by

d

dt F Tk~r !sinf

11AkTk~r !cosf
G5S 1

Ck
2~r ! D S 1

11Ak Tk~r ! cosf
D 2

@P2~k!1Ak J~k!#,

d

dt F Tk~r !sinf

12Ak Tk~r !cosf
G5S 1

Ck
2~r ! D S 1

12Ak Tk~r ! cosf
D 2

@P2~k!2Ak J~k!#.

These relations to us suggests to define not one, but two functions, similar toK2 :

K2
15P2~k!1AkJ~k!1 iv0S Tk~r !sinf

11AkTk~r !cosf
D ,

K2
25P2~k!2AkJ~k!1 i v0 S Tk~r !sinf

12AkTk~r !cosf
D ,

whose time derivatives are given by

d

dt
K2

15S iv0

Ck
2~r ! D F 1

~11AkTk~r !cosf!2GK2
1 ,

d

dt
K2

25S iv0

Ck
2~r ! D F 1

~12AkTk~r !cosf!2GK2
2 .

Then we have the following proposition.
Proposition 3: Let the complex functions K1 , K2

1 , K2
2 be defined as above. Then the comp

function K122 defined as

K1225K1 K2
1* K2

2*

is a constant of motion.
Proof: We have already obtained the time derivatives of everyone of the three functionK1 ,

K2
1 , K2

2 . Because of this, the time evolution ofK122 is given by
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d

dt
K1225K̇x K2

1* K2
2* 1K1 K̇y

1* K2
2* 1K1 K2

1* K̇2
2*

5S i v0

Ck
2~r ! D F2F~r ,f,k!2

1

„11Ak Tk~r !cosf…

2
2

1

„12Ak Tk~r !cosf…

2GK122 .

But the functionF is such that the term in square brackets vanishes identically, and we arr

d

dt
K12250.

Thus we have shown that complex functionK1225I 4(k)1 i I 3(k) as well as the two associate
real functions,I 4(k) andI 3(k), are all of them constants of motion. After some computations~we
omit the details! we have obtained

I 4~k!5@P2
2~k!2k J2~k!# P1~k!1v0

2 I 41~k!,

I 3~k!5P2~k! J~k!2v0
2 I 30~k!,

with

I 41~k!5S Tk~r !sinf)

~12k Tk
2~r !cos2 f!2D @ I 41

a ~k!1k I 41
b ~k!#,

I 41
a ~k!54P2~k!Tk~r !cosf2P1~k!Tk~r !sinf,

I 41
b ~k!5~Tk

2~r !cos2f!„4J~k!1P1~k!Tk~r !sinf…,

I 30~k!5
Tk

3~r !cosfsin2f

„12k Tk
2~r !cos2f…

2 .

We close this section observing that, although thesek-dependent polar coordinates (r ,f) prove to
be convenient for the centralU11 case, the results of this noncentral subsection@actually, even the
function U21(r ,f) itself# suggest the convenience of a new study in a new and more approp
system of coordinates.

V. THE 1:1 AND 2:1 HARMONIC OSCILLATORS ON A 2-D SPACE OF CONSTANT
CURVATURE II: PARALLEL COORDINATES

The dynamics of a system defined in a two-dimensional space with constant curvaurek can
also be studied by using the ‘‘geodesic parallel’’ system of coordinates introduced in Sec. II. I
case the differential element of distance is

ds25Ck
2~y!du21dy2,

so a standard Lagrangian~kinetic term minus potential function! has the following form:

L~k!5~ 1
2!„Ck

2~y!vu
21vy

2
…2U~u,y,k!,

in such a way that the Euclidean system is just given by the particular value ofL(k) in k50,

lim
k→0

L~k!5~ 1
2! ~vx

21vy
2!2V~x,y!, V~x,y!5U~x,y,0! .
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The kinetic term remains invariant under the action of the threek-dependent vector fieldsYP1
,

YP2
, YJ(k), whose expressions in parallel coordinates are

YP1
~k!5

]

]u
, YP2

~k!5k Sk~u!Tk~y!
]

]u
1Ck~u!

]

]y
,

YJ~k!5Ck~u!Tk~y!
]

]u
2Sk~u!

]

]y
.

Moreover, the potentialsU1 , U2 , UJ , now characterized by the following dependence:

U15U~y!, U25U„Sk~u!Ck~y!…, and UJ5US Tk
2~u!

Ck
2~y!

1Tk
2~y! D

~remark that these expressions embody the same dependence as derived in the previous!
are endowed withYP1

(k), YP2
(k), YJ(k), as exact Noether symmetries. The associated lin

constants of motion are given by

P1~k!5Ck
2~y! vu , P2~k!5k Sk~u!Ck~y!Sk~y! vu1Ck~u! vy ,

~6!

J~k!5Ck~u!Ck~y!Sk~y! vu2Sk~u! vy ,

and hence the more general form for a linear constant of motionI 11, is as a linear combination o
these three functions,I 115a1P1(k)1a2P2(k)1cJ(k).

The constants of motion which are quadratic in the velocities arise from generalized No
symmetries~hidden symmetries! of L(k), and they have the following expression:

I 5I 221I 20~u,y,k!,

with the termI 22 again given by a linear combination of quadratic pairings,

I 22~k!5a0P1
2~k!1b0P1~k!P2~k!1c0P2

2~k!1a1P2~k!J~k!1c1P1~k!J~k!1a2J2~k!.

In contrast to the formalism in polar coordinates (r ,f), thek-dependence is now present in bo
coordinates,u andy, because both are lengths.

A. Isotropic oscillator

The Lagrangian of isotropic spherical~Euclidean, hyperbolic! oscillator with curvaturek is

L5S 1

2D „Ck
2~y!vu

21vy
2
…2S 1

2D v0
2 U11~u,y,k!, U115

Tk
2~u!

Ck
2~y!

1Tk
2~y!.

This potential is indeed the same discussed with polar coordinates as Tk
2(r ) @see~4!#. In Sec. III

we pointed out that the fuction Tk
2(r ) admits several alternative expressions in terms of

coordinates (u,y) which can be considered as curvature versions of the Pythagorean the
Because of this, the potentialU115U11(u,y,k) can also be written as
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U115Tk
2~u!1

Tk
2~y!

Ck
2~u!

.

The dynamics is given by the followingk-dependent vector field:

X115vu

]

]u
1vy

]

]y
1 f u

]

]vu
1 f y

]

]vy
,

f u52 k Tk~y! vuvy2v0
2 S Sk~u!

Ck
3~u! Ck

4~y! D ,

f y52 k Ck~y! Sk~y! vu
22v0

2 S Sk~y!

Ck
2~u! Ck

3~y! D .

The following twok-dependent functions remain constant along the trajectories ofX11:

I 1~k!5P1
2~k!1v0

2 Tk
2~u!, I 2~k!5P2

2~k!1v0
2 S Tk~y!

Ck~u! D
2

. ~7!

They are integrals of motion quadratic in the velocities~momenta in the Hamiltonian formalism!
which correspond to thek-deformed versions of the two Euclidean one-degree of freedom e
gies.

The following proposition states the super-integrability of the system and proves the exis
of a complex factorization.

Proposition 4: Let K1 , K2 , be the following two functions:

K15P1~k!1 i v0 Tk~u!, K25P2~k!1 i v0 S Tk~y!

Ck~u! D .

Then the complex function K12 defined as

K125K1K2*

is a constant of motion.
Proof: The time-evolution of the functionsK1 , K2 is given by

d

dt
K1[X11~K1!5X11@Ck

2~y! vu#1 i v0 X11@Tk~u!#5S i v0

Ck
2~u!Ck

2~y! D K1 ,

d

dt
K2[X11~K2!5X11@P2~k!#1 i v0 X11F Tk~y!

Ck~u!G5S i v0

Ck
2~u!Ck

2~y! D K2 .

Hence we have

d

dt
K125X11~K1!K2* 1K1 X11~K2* !50,
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which states the functionK12 as an additional constant of motion. The associated real integra
motion I 4 , I 3 are

I 45Re~K1 K2* !5P1~k!P2~k!1v0
2 Tk~u!S Tk~y!

Ck~u! D ,

I 35Im~K1 K2* !5v0 P2~k!Tk~u!2v0 P1~k!S Tk~y!

Ck~u! D5v0 J~k!.

We close with two properties. First, the relation between the modulus of the functionsK1 , K2 ,
and the two fundamental constants of motion is the same that of the Euclidean plane,

u K1 u25I 1~k!, uK2u25I 2~k!.

Second, the three constants of motionI 1(k),I 2(k),I 3(k) are functionally independent, and th
total energy is related to them as

~ 1
2!„Ck

2~y!vu
21vy

2
…1~ 1

2!v0
2 U11~u,y,k!5~ 1

2!„I 1~k!1I 2~k!1k J2~k!…,

because of

P1
2~k!1P2

2~k!1k J2~k!5Ck
2~y!vu

21vy
2 .

B. Nonisotropic 2:1 oscillator

In parallel coordinates the Lagrangian of the spherical~hyperbolic! 2:1 harmonic oscillator
with curvaturek is

L5~ 1
2!„Ck

2~y!vu
21vy

2
…2~ 1

2!v0
2 U21~u,y,k!,

U215
Tk

2~2 u!

Ck
2~y!

1Tk
2~y!5Tk

2~2 u!1
Tk

2~y!

Ck
2~2 u!

.

Therefore, the dynamics is represented by the followingk-dependent vector field:

X215vu

]

]u
1vy

]

]y
1 f u

]

]vu
1 f y

]

]vy
,

f u52 k Tk~y!vuvy22 v0
2 S Sk~2 u!

Ck
3~2 u!Ck

4~y! D ,

f y52k Ck~y!Sk~y! vu
22v0

2 S Sk~y!

Ck
2~2 u!Ck

3~y! D .

This system possesses two integrals of motion quadratic in the velocities:

I 1~k!5P1~k!214 v0
2 S Tk~u!

12k Tk
2~u! D

2

,

I 2~k!5P2
2~k!1k J2~k!1v0

2S Tk~y!

Ck~2 u! D
2

5@vy
21k Ck

2~y!Sk
2~y!vu

2#1v0
2 S Tk~y!

Ck~2 u! D
2

.
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In the two-dimensional sphereS2 ~hyperbolic plane! with curvaturek, the expression for the
tangent of the double-angle is Tk(2 a)52 Tk(a)/„12k Tk

2(a)…; thus the functionI 1(k) can also
be rewritten as follows:

I 1~k!5P1~k!21v0
2 Tk

2~2 u!.

The dynamics isk-dependent and so are the two integrals of motion. Hence the following
equations:

X21„I 1~k!…50, X21„I 2~k!…50,

remain true for any value~positive, negative or null! of the curvaturek. Moreover, if we denote by
I 0(k) the trivial constant of motion:

I 0~k!5~ 1
2!„Ck

2~y!vu
21vy

2
…1~ 1

2!v0
2 U21~u,y,k!,

then we have

2I 0~k!5I 1~k!1I 2~k!.

So the total energyI 0(k) splits as a sum of two terms,I 1(k) and I 2(k), as was the case in th
Euclidean plane. Nevertheless, forkÞ0 the second integral contains an additional term prop
tional to the angular momentum. For the zero curvature limit, this additional term vanishes
we obtain the correct Euclidean expressions,

lim
k→0

I 1~k!5vx
214v0

2 x2, lim
k→0

I 2~k!5vy
21v0

2 y2.

Let us denote byK1 , K2
1 , K2

2 , the following three complex functions:

K15P1~k!1 i v0 Tk~2 u!,

K2
15@P2~k!1Ak J~k!#1 i v0„Ck~u!1Ak Sk~u!…S Tk~y!

Ck~2 u! D ,

K2
25@P2~k!2Ak J~k!#1 i v0„Ck~u!2Ak Sk~u!…S Tk~y!

Ck~2 u! D .

The first function can be considered as a ‘‘curved’’ version of the Euclidean functionJ1 ~see the
notation of Sec. II!, and K2

1 , K2
2 , two different k-dependent deformations of the Euclide

function J2 .
Proposition 5: Let the complex functions K1 , K2

1 , K2
2 , be defined as above. Then

~i! The modulus of K1 is a constant of motion and coincides with I1(k); the sums of the
modulus of K2

1 and K2
2 is a constant of motion and coincides with I2(k).

~ii ! The complex function K122, defined as

K1225K1 K2
1* K2

2* ,

is a constant of motion.
Proof: ~i! The modulus of the first functionK1 is the constant value of the first integral o

motion,
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uK1u25P1
2~k!1v0

2@Tk~2 u!#25I 1~k!,

and the sum of the modulus ofK2
1 andK2

2 coincides with 2I 2(k):

uK2
1u21uK2

2u252S P2
2~k!1k J2~k!1v0

2 F Tk~y!

Ck~2 u!G
2D52 I 2~k!.

~ii ! The time evolution of the first functionK1 is given by

d

dt
K1[X21~K1!5

d

dt
„Ck

2~y!vu…1~ i v0!
d

dt
Tk~2 u!5F 2 i v0

Ck
2~2 u!Ck

2~y!G K1 ,

and a similar calculus leads to

d

dt
K2

1[X21~K2
1!5 i v0FCk~u!1Ak Sk~u!

Ck~2 u!Ck~y!
G2

K2
1 ,

d

dt
K2

2[X21~K2
2!5 i v0 FCk~u!2Ak Sk~u!

Ck~2 u!Ck~y!
G2

K2
2 .

The important point is that we get the following expression for the time evolution of the func
productK225K2

1K2
2 :

d

dt
~K2

1K2
2!5X21~K2

1!K2
21K2

1X21~K2
2!

5F i v0

Ck
2~2 u!Ck

2~y!G @„Ck~u!1Ak Sk~u!…21„Ck~u!2Ak Sk~u!…2#~K2
1K2

2!

5F 2 i v0

Ck
2~2 u!Ck

2~y!G~K2
1K2

2!.

Thus we arrive at the property

d

dt
K1225X21~K1!~K2

1* K2
2* !1K1 X21~K2

1* K2
2* !50

and the functionK122 is an integral of motion. As it is complex, we obtain two realk-dependent
constants,I 3(k) and I 4(k), defined in the usual form

K1225I 4~k!1 iI 3~k!.

After some simplification the expressions for these two constants become

I 3~k!5J~k!P2~k!1v0
2S Sk~u!Ck~u!

Ck
2~2 u! DTk

2~y!,

I 4~k!5@P2
2~k!2k J2~k!#P1~k!1v0

2@2 Tk~2 u! vy2Ck~y!Sk~y! vu#S Tk~y!

Ck~2 u! D .

We close this section with the following observations.

~i! Although K2
1 and K2

2 are two differentk-dependent functions,K2
1ÞK2

2 , they have the
same functionJ2 as the Euclidean limit. We have
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lim
k→0

K15vx1 i v0 ~2x!, lim
k→0

K2
15 lim

k→0
K2

25vy1 i v0 y.

The coefficientn152 in the Euclidean functionJ1 ~see the notation of Sec. II! is now
present, not as a global multiplicative factor on the imaginary part ofK1 , but as a coeffi-
cient inside the argument of the tangent function.

~ii ! The Euclidean functionJ2 is k-deformed in two different ways,K2
1 andK2

2 , in such a way
that the Euclidean square factorJ2

2 becomes the productK2
1K2

2 .
~iii ! The transition ofU11 to U21 is very simple: just the change Tk(u) by Tk(2 u) in the

potential expressed in parallel coordinates.

VI. FINAL COMMENTS AND OUTLOOK

We have started with a discussion of the curvilinear systems of coordinates on 2-D spa
constant curvature and then we have studied the two oscillators with quadratic super-integr
We have proved that they can be considered ask-deformations of the Euclidean oscillator o
alternatively, that the classic and well-known Euclidean oscillator appears just as a very par
case of a much more general ‘‘curved’’ system. Concerning our approach, two important
are, first, that the results have been obtained for a general value of the curvaturek, in such a way
that they cover simultaneously the case of a Euclidean plane (k50), the 2-sphere (k.0) and the
hyperbolic plane (k,0); and, second, that all the computations have been carried out in
‘‘geodesic polar’’ and ‘‘geodesic parallel’’ coordinates. The ‘‘geodesic parallel’’ coordinates
seem rather unusual, but they have proved to be the more appropriate ones for the study
nonisotropic case.

The results obtained in Sec. V suggest that the appropriate potentialUn1(u,y,k) for repre-
senting the general nonisotropicn:1 oscillator, with ann integer, on a 2-D manifold of constan
curvaturek, is given by

Un15
Tk

2~n u!

Ck
2~y!

1Tk
2~y!5Tk

2~n u!1
Tk

2~y!

Ck
2~n u!

.

This potential satisfies the appropriate Euclidean limit,

lim
k→0

Un1~k!5~nx!21y2,

and is integrable for arbitrary values of the integern. The two fundamental integrals of motion a
both quadratic in the velocities

I 1~k!5P1
2~k!1v0

2 @Tk~n u!#2,

I 2~k!5@P2
2~k!1k J2~k!#1v0

2 S Tk~y!

Ck~n u! D
2

,

and can be considered ask-deformations of the two quadratic Euclidean energies:

lim
k→0

I 1~k!5vx
21v0

2 ~nx!2, lim
k→0

I 2~k!5vy
21v0

2 y2.

It seems natural to conjecture thatUn1 ~for any integer value ofn) is super-integrable as well, an
that the corresponding additional~nonquadratic! integral can also be obtained through a comp
constant similar to the one obtained for the 2:1 case in Sec. V. A more difficult problem see
be the obtaining of the spherical~hyperbolic! version of the rationaln1 :n2 oscillator, since a direct
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generalization will lead to problems with the domain and range of the potential~in this general
case, the spherical system looks more complicated than the hyperbolic one!. We think that these
are open questions that must be investigated.
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19C. López, E. Martı´nez, and M. F. Ran˜ada, ‘‘Dynamical symmetries, non-Cartan symmetries, and super-integrabili

the n-dimensional Harmonic Oscillator,’’ J. Phys. A32, 1241–1249~1999!.
20D. M. Fradkin, ‘‘Three-dimensional Isotropic Harmonic Oscillator andSU(3),’’ Am. J. Phys.33, 207–211~1965!.
21W. Klinberger,A Course in Differential Geometry, Graduate Texts in Mathematics~Springer-Verlag, New York, 1978!.
22F. J. Herranz, R. Ortega, and M. Santander, ‘‘Trigonometry of space–times: a new self-dual approach to a cu

signature~in!dependent trigonometry,’’ J. Phys. A33, 4525–4551~2000!.
                                                                                                                



tudied
y appli-
n, ma-
spatial

n the
for the

gly

hysics.
ee
namics

nique-

the
the

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 1 JANUARY 2002

                    
Attractors for second-order lattice dynamical systems with
damping

Zhou Shengfana)

Department of Mathematics, Shanghai University, Shanghai 200436,
People’s Republic of China

~Received 17 May 2000; accepted for publication 27 September 2001!

We consider the existence and the approximation of the global attractor for second-
order damped lattice dynamical systems. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1418719#

I. INTRODUCTION

Recently, various properties of the solutions for lattice dynamical systems have been s
by many authors; see Refs. 1–5 and the references therein. Lattice systems arise in man
cations, for example, in chemical reaction theory, image processing and pattern recognitio
terial science, and biology. They possess their own form, but in some cases they arise as
discretizations of partial differential equations.

In this paper, by introducing a new weight norm that is equivalent to the usual norm i
phase space, we shall consider the existence and approximation of the global attractor
second-order damped lattice dynamical system:

üi2g~ u̇i 2122u̇i1u̇i 11!1h~ u̇i !2~ui 2122ui1ui 11!1lui1 f ~ui !5gi , i PZ, ~1!

where g>0 and l.0 are constants,gi is given, andf, hPC1(R,R) satisfy some monotonic
conditions. Equation~1! can be regarded as a model of damped coupled nonlinear oscillators~see
Ref. 1, pp. 442–451! and a model of a discrete analog of the following continuous stron
damped semilinear wave equation inR:

utt2guxxt1h~ut!2uxx1lu1 f ~u!5g, ~2!

which arises in wave phenomena of various areas with a strong damping in mathematical p
The global attractor and its dimension to Eq.~2! in bounded domain have been widely studied; s
Refs. 6–9 and the references therein. It is important to have some rigorous study on the dy
of system~1!. Here we shall study the asymptotic behavior for system~1! when the initial date
belongs to the spacel 2.

This paper is organized as follows. In the second section, we show the existence and u
ness of solutions for system~1!. In Sec. III, we prove the existence of an absorbing set of~1! ~that
is, the uniform boundedness of solutions!. In Sec. IV, we prove the asymptotic compactness for
semigroup associated with~1! and the existence of the global attractor. In Sec. V, we consider
finite-dimensional approximations to the global attractor.

II. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section, we present the existence and uniqueness of solutions for system~1!. We
consider the system

üi2g~ u̇i 2122u̇i1u̇i 11!1h~ u̇i !2~ui 2122ui1ui 11!1lui1 f ~ui !5gi , i PZ, ~3!

a!Electronic mail: zhoushengfan@263.net
4520022-2488/2002/43(1)/452/14/$19.00 © 2002 American Institute of Physics
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with the initial conditions

ui~0!5ui ,0 , u̇i~0!5u1i ,0 , i PZ, ~4!

whereg>0, l.0, g5(gi) i PZ , andf, hPC1(R,R).
We make the following assumptions onf, h:

f ~s!s>nG~s!>0, ;sPR, ~5!

h~0!50, 0,a<h8~s!<b,1`, ;sPR; ~6!

heren, a, b are positive constants andG(s)5*0
s f (t)dt, sPR. Obviously, f (s)5( j 50

m ajs
2 j 11,

with aj.0, j 50,1,...,m, satisfies~5!.
We also assume thata, b, g, l satisfy

0<g<
b214l

al
. ~7!

For our purpose, we introduce some spaces and operators. Letl 25$u5(ui) i PZuS i PZuui u2

,`%. Define the linear operatorsB, B̄, A from l 2 to l 2 as follows. For anyu5(ui) i PZP l 2,

~Bu! i5ui 112ui , ~B̄u! i5ui 212ui , ~Au! i52~ui 2122ui1ui 11!, ; i PZ.

Then we have

A5B̄B5BB̄.

For any two elements ofl 2, u5(ui) i PZ , v5(v i) i PZP l 2, define bilinear forms as

~u,v !5(
i PZ

uiv i , iui25~u,u!5(
i PZ

uui u2;

~u,v !l5r~Bu,Bv !1l~u,v !, ~8!

iuil
25~u,u!l5riBui21liui25(

i PZ
~ruui 112ui u21luui u2!,

wherer is chosen as

r512
al

b214l
g>0.

It is easy to check that above two bilinear forms~•,•! and (•,•)l in ~8! are both the inner products
moreover, the normsi•i and i•il are equivalent to each other because

liui2<iuil
25(

i PZ
~ruui 112ui u21luui u2!<~4r1l!iui2.

Denote byl 2, l l
2 the spaces with the inner products and norms in~8!, respectively,

l 25„l 2,~•,• !,i•i…, l l
25„l 2,~•,• !l ,i•il…;

then l 2 and l l
2 are Hilbert spaces.

Let E5 l l
23 l 2, endowed with the inner product and norm as, forw j5(u( j ),v ( j ))

5„(ui
( j )),(v i

( j ))…i PZPE, j 51,2,
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~w1 ,w2!E5~u~1!,u~2!!l1~v ~1!,v ~2!!5(
i

@r~Bu~1!! i~Bu~2!! i1lui
~1!ui

~2!1v i
~1!v i

~2!#,

iwiE
25~w,w!E , ;wP l l

23 l 2. ~9!

Now we consider the existence and uniqueness of solutions of system~3!–~4!. With the above
notations, Eq.~3! can be written as

ü1gAu̇1h~ u̇!1Au1lu1 f ~u!5g, t.0, ~10!

and the initial data~4! are

u~0!5~ui ,0! i PZ5u0 , u̇~0!5~u1i ,0! i PZ5u10, ~11!

where

u5~ui ! i PZ , h~ u̇!5„h~ u̇i !…i PZ , f ~u!5„f ~ui !…i PZ , g5~gi ! i PZ .

It is convenient to reduce~10! to an evolution equation of the first order in time. Letv5u̇
1«u, where« is chosen as

«5
al

b214l
.0; ~12!

then system~10!–~11! is equivalent to the following initial value problem in Hilbert spaceE:

ẇ1C~w!5F~w!, w~0!5~u0 ,v0!T5~u0 ,u101«u0!T, ~13!

where

w5~u,v !T, v5u̇1«u, F~w!5„0,2 f ~u!1g…T,

C~w!5S «u2v
Au1lu2g«Au1«2u1gAv2«v D1S 0

h~v2«u! D . ~14!

Let us show that the functionF(w)2C(w) is locally Lipschitz continuous fromE to E. By
condition ~5!, f (0)50, and for anyu5(ui) i PzP l 2,

i f ~u!i25(
i PZ

u f ~ui !u25(
i PZ

u f 8~u iui !u2uui u2,

whereu iP(0,1). By uu iui u<uui u<iui ,

i f ~u!i<iui max
sP@0,iui #

u f 8~s!u; ~15!

thus, from f PC1, it follows that f (u)P l 2, i.e., f mapsl 2 into l 2, hence,F mapsE into itself.
By ~6!,

ih~v2«u!i25(
i PZ

uh8„ũ i~v i2«ui !…u2uv i2«ui u2<2b2~ ivi21«2iui2!; ~16!

thus, if w5(u,v)PE, thenh(v2«u)P l 2, i.e., H(w)5„0,h(v2«u)…T mapsE into E.
Let B be a bounded set inE, w j5(u( j ),v ( j ))5„(ui

( j )),(v i
( j ))…i PZPB, j 51,2, similar to~15!,

there existsL(B) depending onB such that
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iF~w1!2F~w2!iE
25i f ~u~1!!2 f ~u~2!!i2

5(
i Pz

u f 8„ui
~1!1u i~ui

~2!2ui
~1!!u2uui

~1!2ui
~2!u2

…

< S max
sP@0,iu~1!i1iu~2!i #

u f 8~s!u D •iu~1!2u~2!i2<L~B!iw12w2iE
2,

and similar to~16!,

iH~w1!2H~w2!iE
25ih~v ~1!2«u~1!!2h~v ~2!2«u~2!!i2

5(
i Pz

uh8~j i !u2u~v i
~1!2v i

~1!!2«~ui
~1!2ui

~2!!u2

<2b2~ iv ~1!2v ~1!i21«2iu~1!2u~2!i2!

<2b2~11«2/l!iw12w2iE
2,

which imply thatF(w)2C(w) is locally Lipschitz fromE to E. By the standard theory of ordinar
differential equations, we obtain the existence and uniqueness of local solutionw for problem~13!.

Lemma 2.1:If g5(gi) i PZP l 2 and f, h satisfy ~5!, ~6!, then for any initial dataw(0)
5(u0 ,v0)TPE, there exists a unique local solutionw(t)5„u(t),v(t)…T of ~13! such thatw
PC1

„(0,T0),E… for someT0.0. If T0,1`, then limt→T0
iw(t)iE51`.

In fact, it is shown from Lemma 3.2 below that the local solutionw(t) of ~13! exists globally,
that is,wPC1(R1 ,E), which implies that maps

S~ t !:w~0!5~u0 ,v0!PE→w~ t !5S~ t !w~0!5„u~ t !,v~ t !…PE, t>0, ~17!

generates a continuous semigroup$S(t)% t>0 on E, wherev(t)5u̇(t)1«u(t).
Remark:It is easy to see that the solutions of problem~13! are backward unique in timet, i.e.,

the solutionw(t)PC1(R,E).

III. ABSORBING SET

In this section, we consider the uniform boundedness of solutions of system~13!. First, we
present a positivity of the nonlinear operatorC.

Lemma 3.1:For anyw5(u,v)TPE,

„C~w!,w…E>siwiE
21

a

2
ivi2, ~18!

where

s5
al

Ab214l~b1Ab214l!
. ~19!

Proof: It is easy to check that

~Bu,v !5~u,B̄v ! and ~Au,v !5~Bu,Bv !, ;u,vP l 2. ~20!

By the definition of (•,•)E in ~9!, ~14!, and~20!,

„C~w!,w…E5«@riBui21liui2#1«2~u,v !1g~Av,v !1„h~v2«u!,v…2«~v,v !,

and by~6!,
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«2~u,v !1„h~v2«u!,v…5«2(
i PZ

uiv i1(
i PZ

h8„t i~v i2«ui !…~v i2«ui !v i

>aivi22«~b2«!iui•ivi ;

then

„C~w!,w…E2siwiE
22

a

2
ivi2>~«2s!@riBui21liui2#1giBvi2

1S a

2
2«2s D ivi22b«iui•ivi

>~«2s!@riBui21liui2#1S a

2
2«2s D ivi22

b«

Al
@riBui2

1liui2#1/2ivi ,

and a simple computation from~12!, ~19! shows

4~«2s!S a

2
2«2s D5

b2«2

l
.

Thus, the proof is completed.
Now we consider the boundedness of solutionsw(t) of ~13!.
Lemma 3.2:If ~5!–~7! hold andgP l 2, then there exists a bounded ballO5OE(0,r 0), cen-

tered at 0 with radiusr 0 , such that for every bounded setB of E, there existsT(B)>0 such that

S~ t !B,O, ;t>T~B!, ~21!

wherer 0
25(2/am)igi2. Therefore, there exists a constantT0>0 depending onO such that

S~ t !O,O, ;t>T0 . ~22!

Proof: Assume that~5!–~7! hold andgP l 2. Let w(t)5„u(t),v(t)…TPE be a solution of~13!,
wherev(t)5u̇(t)1«u(t). Taking the inner product (•,•)E of ~13! with w(t), we have

1

2

d

dt
iwiE

21„C~w!,w…E1„f ~u!,u̇…1«„f ~u!,u…5~g,v !. ~23!

By ~18!,

~C~w!,w!E>siwiE
21

a

2
ivi2. ~24!

By ~5!,

„f ~u!,u̇…5(
i PZ

f ~ui !u̇i5
d

dt S (i PZ
G~ui ! D , ~25!

„f ~u!,u…5(
i PZ

f ~ui !ui>n(
i PZ

G~ui !, ~26!

and

~g,v !<
1

2a
igi21

a

2
ivi2. ~27!
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By putting ~24!–~27! into ~23!, we find

d

dt F iwiE
212(

i PZ
G~ui !G1mF iwiE

212(
i PZ

G~ui !G< 1

a
igi2, ~28!

wherem5min$2s,n«%. Since

G~ui !>0, iwiE
212(

i PZ
G~ui !>0,

by Gronwall’s inequality,

iwiE
212(

i PZ
G~ui !<F iw~0!iE

212(
i PZ

G~ui0!Ge2mt1
1

am
igi2~12e2mt!. ~29!

By ~5!,

(
i PZ

G~ui0!<
1

n (
i PZ

f ~ui0!ui0<
1

n
max

sP@0,iu~0!i #

u f 8~s!u•iu~0!i2. ~30!

By ~29! and ~28!,

iwiE
2<F iw~0!iE

21
2

n
max

sP@0,iu~0!i #

u f 8~s!u•iu~0!i2Ge2mt1
1

am
igi2~12e2mt! ~31!

and

lim sup
t→`

iwiE
2<

1

am
igi2. ~32!

Inequality~31! @or ~32!# implies that the semigroup$S(t)% t>0 possesses a bounded absorbing
in E. The proof is completed.

From ~31!, for any initial dataw(0)5(u0 ,v0)TPE, then the solutionw(t)5„u(t),v(t)…T is
bounded for alltP@0,1`), that is, the solutionw(t) exists globally on@0, 1`!, maps$S(t) t>0%
defined by~17! form a semigroup onE.

IV. GLOBAL ATTRACTOR

In this section, we prove the existence of a global attractor for the semigroup$S(t) t>0%
associated with~13! on E. For this purpose, we need to prove the asymptotic compactnes
$S(t) t>0%.

Lemma 4.1:If ~5!–~7! hold,gP l 2 andw(0)5(u0 ,v0)PO, then;h.0, there existT(h) and
K(h) such that the solutionw(t)5(w i) i PZ5(„ui(t)…,„v i(t)…) i PZPE of problem ~13!, v(t)
5u̇(t)1«u(t), satisfies

(
u i u>K~h!

iw i~ t !iE
25 (

u i u>K~h!
@ru„Bu~ t !…i u21luui~ t !u21uv i~ t !u2#<h, ;t>T~h!, ~33!

where„Bu(t)…i5ui 11(t)2ui(t).
Proof: Choosing a smooth functionuPC1(R1,R) satisfies

u~s!50, 0<s<1,

0<u~s!<1, 1<s<2, ~34!
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u~s!51, s>2;

then there exists a constantC0 such thatuu8(s)u<C0 for sPR1.
Let w(t)5„u(t),v(t)…5(w i) i PZ5(„ui(t)…,„v i(t)…) i PZ be a solution of~13!, where v(t)

5u̇(t)1«u(t), w i5(ui ,v i), « is as in~12!.
Let k be a fixed integer. Setwi5u(u i u/k)ui , zi5u(u i u/k)v i , y5(w,z)5„(wi),(zi)…i PZ . Tak-

ing the inner product (•,•)E of ~13! with y, we have

~ ẇ,y!E1„C~w!,y…E5„F~w!,y…E . ~35!

It is possible to check that

~ ẇ,y!E5
1

2

d

dt (i PZ
uS u i u

k D iw i iE
2, ~36!

where

iw i iE
25ru~Bu! i u21luui u21uv i u25ruui 112ui u21luui u21uv i u2, ~37!

and

„C~w!,y…E5«r~Bu,Bw!2r~Bv,Bw!1l«~u,w!2l~v,w!1~Bu,Bz!1l~u,z!1«2~u,z!

2«g~Bu,Bz!2«~v,z!1„h~v2«u!,z…, ~38!

~Bu,Bw!~ t !5(
i PZ

H FuS u i 11u
k D2uS u i u

k D G~ui 112ui !ui 111uS u i u
k D ~ui 112ui !

2J
>2

4C0r 0
2

k
1(

i PZ
uS u i u

k D ~ui 112ui !
2, ;t>T0 ,

~Bv,Bw!5(
i PZ

FuS u i 11u
k D ~v i 112v i !ui 112uS u i u

k D ~v i 112v i !ui G ,
~Bu,Bz!5(

i PZ
FuS u i 11u

k D ~ui 112ui !v i 112uS u i u
k D ~ui 112ui !v i G ,

~12«g!~Bu,Bz!2r~Bv,Bw!5r(
i PZ

S uS i 11

k D2uS u i u
k D D ~ui 11v i2uiv i 11!

>2r(
i PZ

uu8~t i !u
k

uui 11v i2uiv i 11u

>2
4rC0r 0

2

k
, ;t>T0 ,

~u,w!5(
i PZ

uS u i u
k Dui

2, ~v,w!5(
i PZ

uS u i u
k Duiv i5~u,z!, ~v,z!5(

i PZ
uS u i u

k D v i
2,

«2~u,z!1„h~v2«u!,z…>a(
i PZ

uS u i u
k Dui

22«~b2«!(
i PZ

uS u i u
k Duiv i .

By ~38! and the proof of~18!,
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„C~w!,y…>2
8rC0r 0

2

k
1(

i PZ
uS u i u

k D Fsiw i iE
21

a

2
uv i u2G , ;t>T0 . ~39!

And

„F~w!,y…E52„f ~u!,z…1~g,z!,

„f ~u!,z…5(
i PZ

uS u i u
k D f ~ui !u̇i1«(

i PZ
uS u i u

k D f ~ui !ui

>
d

dt (i PZ
uS u i u

k DG~ui !1«n(
i PZ

uS u i u
k DG~ui !, ~40!

~g,z!5(
i PZ

uS u i u
k Dgiv i5 (

u i u>k
uS u i u

k Dgiv i<
a

2 (
u i u>k

u2S u i u
k D v i

21
1

2a (
u i u>k

gi
2

<
a

2 (
i PZ

uS u i u
k D v i

21
1

2a (
u i u>k

gi
2. ~41!

Putting inequalities~36!, ~39!–~41! into ~35!, we obtain

d

dt (i PZ
uS u i u

k D @ iw i iE
212G~ui !#1(

i PZ
uS u i u

k D @2siw i iE
212«nG~ui !#<

8rC0r 0
2

k
1

1

a (
u i u>k

gi
2.

SincegP l 2, then;h.0, there existsK(h) such that

8rC0r 0
2

k
1

1

a (
u i u>k

gi
2<h, ;k>K~h!,

i.e., for t>T0 ,k>K(h),

d

dt (i PZ
uS u i u

k D @ iw i iE
212G~ui !#1m(

i PZ
uS u i u

k D @ iw i iE
212G~ui !#<h,

wherem5min$2s,«n%. So, by Gronwall’s inequality,

(
i PZ

uS u i u
k D @ iw i iE

212G~ui !#<e2m~ t2T0!(
i PZ

uS u i u
k D @ iw i~T0!iE

212G„ui~T0!…#1
h

m

<e2m~ t2T0!r 0
2S 11

2

n
M0D1

h

m
, ;t>T0 ,

whereM05maxsP@0,r 0 /n#u f 8(s)u. Taking

T~h!5maxH T0 ,T01
1

m
ln

m

h S 11
2

n
M0D r 0

2J ,

then for t>T(h) andk>K(h), we have

(
u i u>2k

iw i iE
2<(

i PZ
uS u i u

k D iw i iE
2<

2h

m
, ~42!

which implies Lemma 4.1. The proof is completed.
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Lemma 4.2:If ~5!–~7! hold andgP l 2, then the semigroup$S(t)% t>0 is asymptotically com-
pact inE, that is, if $wn% is bounded inE and tn→1`, then$S(tn)wn% is precompact inE.

Proof: Since$wn%,E5 l l
23 l 2 is bounded, assume thatiwniE<r for some positive constantr,

n51,2,... . By Lemma 3.2, there existsTr such that

S~ t !$wn%,O, ;t>Tr , ~43!

whereO is the absorbing set in Lemma 2.3. Bytn→1`, there existsN1(r ) such thattn>Tr if
n>N1(r ), thus,

S~ tn!$wn%,O, ;n>N1~r !. ~44!

Since E is a Hilbert space and by~44!, there existsw0PE and a subsequence of$S(tn)wn%
~denoted still by$S(tn)wn%!, such that

S~ tn!wn→w0 , weakly in E. ~45!

In fact, the convergence here is a strong one, i.e.,;h.0, there existsN(h) such that

iS~ tn!wn2w0iE<h, ;n>N~h!.

For h.0, by Lemma 4.1 and~43!, there existK1(h),T(h) such that

(
u i u>K1~h!

i~S~ t !~S~Tr !!wn! i iE
2 <

h2

8
, t>T~h!.

By tn→1`, there existsN2(r ,h) such thattn>Tr1T(h) if n>N2(r ,h); hence,

(
u i u>K1~h!

i~S~ tn!wn! i iE
25 (

u i u>K1~h!
i~S~ tn2Tr !S~Tr !wn! i iE

2 <
h2

8
. ~46!

Again, sincew0PE, there existsK2(h) such that

(
u i u>K2~h!

i~w0! i iE
2 <

h2

8
. ~47!

Let K(h)5max$K1(h),K2(h)%, by ~45!,

~„S~ tn!wn…i ! u i u<K~h!→„~w0! i…u i u<K~h! , strongly in Rl
2K~h!113R2K~h!11, as n→1`,

that is, there existsN3(h) such that

(
u i u<K~h!

i„S~ tn!wn…i2~w0! i iE
2<

h2

2
,;n>N3~h!. ~48!

SettingN(h)5max$N1(r),N2(r,h),N3(h)%, from ~46!–~48!, then forn>N(h),

iS~ tn!wn2w0iE
25 (

u i u<K~h!
i„S~ tn!wn…i2~w0! i iE

21 (
u i u.K~h!

i„S~ tn!wn…i2~w0! i iE
2

<
h2

2
12 (

u i u.K~h!
~ i„S~ tn!wn…i iE

22i~w0! i iE
2 !<h2.

The proof is completed.
As a direct consequence of Lemma 3.2, Lemma 4.2 and Theorem I.1.1 in Ref. 10, we

the existence of a global attractor for semigroup$S(t)% t>0 .
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Theorem 4.1: If ~5!–~7! hold andgP l 2, then the semigroup$S(t)% t>0 associated with~13!
possesses a global attractor ß inE.

Remark:Since the solutions of problem~13! are backward unique in time, the invariance
the global attractor ß means

S~ t !ß5ß, for tPR. ~49!

V. APPROXIMATION OF ATTRACTOR

In this section, we present the approximation to the global attractor ß by the global attr
of finite-dimensional ordinary differential systems.

Let nPZ1 be a positive integer, we consider the (2n11)-dimensional ordinary differentia
equations:

ẅi2g~ẇi 2122ẇi1ẇi 11!1h~ẇi !5~wi 2122wi1wi 11!2lwi2 f ~wi !1gi ,
~50!

i 52n, 2n11, ..., n21, n, w2n5wn11 , wn5w2n11 ,

with the initial values

wi~0!5wi0 , ẇi~0!5zi0PR, i 52n,2n11,...,n21,n. ~51!

Then equations~50!–~51! can be written as

ẅ1gÃẇ1h~ẇ!52Ãw2lw2 f̃ ~w!1g̃,
~52!

w~0!5~wi0! u i u<n , ẇ~0!5~zi0! u i u<nPR2n11,

wherew5(wi) u i u<n , h(ẇ)5„h(ẇi)…u i u<n , f̃ (w)5„f (wi)…u i u<n , g̃5(gi) u i u<n ,

Ã5S 2 21 0 0 0 ¯ 0 0 21

21 2 21 0 0 ¯ 0 0 0

0 21 2 21 0 ¯ 0 0 0

• • • • • � • • •

0 0 0 0 0 ¯ 21 2 21

21 0 0 0 0 ¯ 0 21 2

D
~2n11!3~2n11!

.

Let us introduce some Hilbert spaces and operators similar to Sec. II.
Let

B5S 21 1 0 0 ¯ 0 0

0 21 1 0 ¯ 0 0

• • • • � • •

0 0 0 0 ¯ 21 1

1 0 0 0 ¯ 0 21

D
~2n11!3~2n11!

;

then

Ã5B̃B̃T5B̃TB̃.

For anyw5(wi) u i u<n , z5(zi) u i u<nPR2n11, define
                                                                                                                



l

t

462 J. Math. Phys., Vol. 43, No. 1, January 2002 Zhou Shengfan

                    
~w,z!5 (
u i u<n

wizi ,iwi25 (
u i u<n

uwi u2,

~w,z!l5r~B̃w,B̃z!1l~w,z!,

iwil
25riB̃wi21liwi25 (

u i u<n
~ruwi 112wi u21luwi u2!,

wherer is as in Sec. II. LetRl
2n115(R2n11,i•il), Ẽ5Rl

2n113R2n11, endowed with the inner
product and norm as follows: forWj5(w( j ),z( j ))5„(wi

( j )),(zi
( j ))…u i u<nPẼ, j 51,2,

~W1 ,W2!Ẽ5~w~1!,w~2!!l1~z~1!,z~2!!5(
i

@r~B̃w~1!! i~B̃w~2!! i1lwi
~1!wi

~2!1zi
~1!zi

~2!#,

iW1iE
25~W1 ,W1!Ẽ ;

then Ẽ is a Hilbert space.
Let z5ẇ1«w, where « is as in ~12!; then problem~52! is equivalent to the following

first-order system in Hilbert spaceẼ:

Ẏ1C̃~Y!5F̃~Y!, Y~0!5„w~0!,z~0!1«w~0!…TPẼ, ~53!

whereY5(w,z),

F̃~Y!5S 0

2 f̃ ~w!1g̃D ,

C̃~Y!5S «w2z

Ãw1lw1«2w2«gÃw1gÃz2«z1h~z2«w!
D .

Obviously, the problem~53! is well posed inẼ, that is, for anyY(0)PẼ, there exists a unique
solution YPC(@0,1`),Ẽ)ùC1

„(0,1`),Ẽ…, and maps of solutionsSn(t):Y(0)→Y(t)
5Sn(t)Y(0)PẼ generate a continuous semigroup$Sn(t)% t>0 on Ẽ.

Similar to Lemma 3.2 and Theorem 4.1, we have the following lemma.
Lemma 5.1:If ~5!–~7! hold andgP l 2, then there exists a bounded ballÕ5ÕẼ(0,r 0), cen-

tered at 0 with radiusr 0 , such thatÕ is an absorbing set of$Sn(t)% t>0 , wherer 0 is the same
constant in Lemma 3.2, which is independent ofn. The semigroup$Sn(t)% t>0 possesses a globa
attractor ßn,Õ,Ẽ.

It is easy to see that

Sn~ t !ßn5ßn , for all tPR.

To prove ßn being an approximation to ß, in the following, we extend the elemenw
5(wi) u i u<nPR2n11 to an element ofl 2 such thatwi50 for u i u.n ~we still denote it byw!.

Lemma 5.2:If ~5!–~7! hold, gP l 2, andwn(0)Pßn , then there exists a subsequence$wnk
(0)%

of $wn(0)% andw0Pß such thatwnk
(0) converges tow0 in E.

Proof: Let wn(t)5Sn(t)wn(0)5„un(t),vn(t)…PẼ5Rl
2n113R2n11 be a solution of problem

~53!. Sincewn(0)Pßn , wn(t)Pßn,Õ for all tPR, thus, for anytPR, n51,2,...,

iwn~ t !i Ẽ5iwn~ t !iE5~riBuni21liuni21ivni2!1/2<r 0 . ~54!
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By ~53!,

iẇn~ t !iE<iC̃„wn~ t !…iE1iF̃„w~ t !…iE . ~55!

Here

iC̃wn~ t !iE
2<8$«2riBuni21riBvni21~l«21l21«412b2«2!iuni2

1~l1«212b2!ivni21~12«g!2iÃuni21g2iÃvni2%,

and

iBvni2<4ivni2, iÃuni2<16iuni2, iÃvni2<16ivni2;

thus, by~54!, there existsC1(r 0) andC2(r 0 ,igi) such that

iC̃wn~ t !iE
2<C1~r 0!, iF̃„w~ t !…iE<C2~r 0 ,igi !, ;tPR, n51,2,... . ~56!

So, by~55! and ~56!,

iẇn~ t !iE<C3~r 0 ,igi !, ;tPR, n51,2,... . ~57!

Let Jk ~k51, 2,...! be a sequence of compact intervals ofR such thatJk,Jk11 and økJk

5R. Takings, tPJk , we have

iwn~ t !2wn~s!iE ,2C3~r 0 ,igi !ut2su,

which implies the equicontinuity of$wn(t)%n51
` in C(Jk ,E). By ~54!, $wn(t)%n51

` is uniformly
bounded inE for fixed t, hence there exists a subsequence of$wn(t)%n51

` ~still denoted by
$wn(t)%n51

` ! and w̃ tPE, such that

wn~ t !→w̃ t , weakly in E, as n→1`. ~58!

Similar to the proof of Lemma 4.2, we show that the weak convergence in~58! is a strong one,
that is,;tPJk , $wn(t)%n51

` is precompact inE. By Ascoli’s theorem, there exists a subsequen
$wn1

(t)% of $wn(t)% and w tPC(J1 ,E) such thatwn1
(t) converges tow t in C(J1 ,E). Again, by

Ascoli’s theorem and induction, there exists a subsequence of$wnk11
(t)% of $wnk

(t)% such that
wnk11

(t) converges tow t in C(Jk11 ,E). Taking a diagonal subsequence in the usual way, th
exists a subsequence$wnk

(t)% of $wn(t)% andw(t)PC(R,E) such that

wn~ t !→w~ t !, in C~J,E!, as n→1`, for any compact setJ,R. ~59!

By ~54!, for w(t)5„u(t),v(t)…5„ui(t),v i(t)…i PZPE, v(t)5u̇(t)1«u(t),

iw~ t !iE5~riBui21liui21ivi2!1/2<C4~r 0!, ;tPR. ~60!

Now we will provew(t)Pß, the global attractor for semigroup$S(t) t>0% associated with problem
~13!. We denote$wnk

(t)% by $wn(t)%, from ~57!,

ẇn~ t !→ẇ~ t !, weak star inL`~R,E!, as n→1`. ~61!

Let i PZ and n>u i u. Sincewn(t)5„un,i(t),vn,i(t)…u i u<nPẼ is the solution of problem~53!, for
every tPR,

ün,i2g~ u̇n,i 2122u̇n,i1u̇n,i 11!1h~ u̇n,i !5~un,i 2122un,i1un,i 11!2lun,i2 f ~un,i !1gi ;
~62!
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then;dPC0
`(J); we have

E
J
@ ün,i2g~ u̇n,i 2122u̇n,i1u̇n,i 11!#d~ t !dt1E

J
h~ u̇n,i !d~ t !dt

5E
J
@~un,i 2122un,i1un,i 11!2lun,i 111gi #d~ t !dt1E

J
f ~un,i !d~ t !dt,

where

U E
J
f ~un,i !d~ t !dt2E

J
f ~ui !d~ t !dtU

<E
J
u f ~un,i !2 f ~ui !id~ t !udtu

<sup
tPJ

u f 8„un,i1q i~ui2un,i !…usup
tPJ

uui2un,i u E
J
ud~ t !udt→0 ~n→`!,

and

U E
J
h~ u̇n,i !d~ t !dtU2E

J
h~ u̇i !d~ t !dt

<E
J
uh~ u̇n,i !2h~ u̇i !id~ t !udtu

<sup
tPJ

uh8„u̇n,i1q̃ i~ u̇i2u̇n,i !…usup
tPJ

uu̇i~ t !2u̇n,i~ t !u E
J
ud~ t !udt

<b sup
tPJ

uu̇i~ t !2u̇n,i~ t !u E
J
ud~ t !udt→0 ~n→`!,

because by~59!, suptPJuui2un,i u→0, suptPJuu̇i(t)2u̇n,i(t)u→0 asn→` and by~54!, ~60!,

uun,i1q~ui2un,i !u<iu~ t !i1iun~ t !i<C5~r 0 ,igi !, ;tPR.

Therefore, we have

üi2g~ u̇i 2122u̇i1u̇i 11!1h~ u̇i !5~ui 2122ui1ui 11!2lui2 f ~ui !1gi , tPJ. ~63!

SinceJ is arbitrary,~63! holds for alltPR, which meansw(t)5„u(t),v(t)… is a solution of~13!.
By ~60!, w(t) is bounded fortPR, so,w(t)Pß, hence,wn(0)→w(0)Pß. The proof is completed

As a direct consequence of Lemma 5.2, we obtain the upper semicontinuity of ß.
Theorem 4.1: If ~5!–~7! hold and gP l 2, then limn→1` dE(ßn ,ß)50, where dE(ßn ,ß)

5supaPßn
infbPßia2biE .

Remark:For the mappingS0(t):(u0 ,u10)
T→„u(t),u̇(t)…TP l 23 l 2 associated with problem

~3!–~4! in the spacel 23 l 2 with the usual inner product and norm, sinceS0(t)5R2«S(t)R« ,
R«5(« 1

1 0) is an isomorphism onl 23 l 2 and$S(t)% t>0 possesses a global attractor ß inE, the global
attractor of$S0(t)% t>0 in E is R2«ß, which implies that$S0(t)% t>0 possesses a global attractor
l 23 l 2 becausel 23 l 2 andE have the same elements and their norms are equivalent.
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A direct method for integrable couplings of TD hierarchy
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A direct method for establishing integrable couplings is proposed in this paper. As
an example illustration, integrable couplings of TD hierarchy are obtained by con-
structing a suitable transformation of Lax pairs and a new Lie algebra. ©2002
American Institute of Physics.@DOI: 10.1063/1.1398061#

I. INTRODUCTION

Integrable couplings are a quite new interesting aspect in the field of soliton theory. It
nates from an investigation on soliton equations. Mathematically, the problem of integrable
plings may be defined in the following way.

For a given integrable system of evolution equations

ut5K~u!, ~1!

the following system:

H ut5K~u!

v t5S~u,v !
, ~2!

is called integrable coupling of~1!, if ~2! is also integrable andS(u,v) includes u or its
x-derivatives explicitly.

Two methods for discovering integrable couplings were proposed in Refs. 1–3:

~1! the original system and its linearized system

Hut5K~u!

ut5K8~u!@v#
, ~3!

~2! the perturbation approach.

The above two methods have the common characteristics: Starting from the original eq
~1! yields the integrable coupling of only one equation. In this paper, we proceed first to con
an isospectral problem, then a suitable loop algebraG̃ is constructed. The results obtained a
integrable couplings of a family of evolution equations. As an example illustration, we tr
establish the integrable couplings of TD hierarchy. However, it is not easy to obtain direct
integrable coupling. Thus a transformation of Lax pairs is made first. The second section is t
hierarchy obtained by the Lax transformation. In the third section, integrable couplings o
hierarchy are presented. Finally some remarks are made in Sec. IV.

Consider the isospectral problem

wx5U1~u,l!w,l t50,u5~q,r !T,w5~w1 ,w2!T, ~4!

whereU15U1(u,l) is a matrix of order 2,T means transposition of the matrix.
Solving the adjoint representation of Eq.~4!

Vx5@U1 ,V#[U1V2VU1 ,V5S a b

c 2aD , ~5!
4660022-2488/2002/43(1)/466/7/$19.00 © 2002 American Institute of Physics
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yields recursion relations onai , bi , ci , i>1, where

a5(
i>0

ail
2 i ,b5(

i>0
bil

2 i ,c5(
i>0

cil
2 i .

The Lax pair is obtained by using Tu-model4

wx5U1w,w tn
5V1

(n)w. ~6!

The compatibility of~6! leads to the zero-curvature equation

U1t2V1x
(n)1@U1 ,V1

(n)#50. ~7!

By the use of the trace identity,4 the generalized Hamiltonian hierarchy in the Liouville sense
obtained

utn
5S q

r D
tn

5J
dHn

du
5JL

dHn21

du
, ~8!

where J, L are a Hamiltonian operator and a recursion operator, respectively,d/du denotes
variational derivative.

Consider the isospectral problem

wx5U~u,l!w,U5U1~u,l!1e~u,l!, ~9!

the matrixU is homogeneous rank, the second-order matrixe(u,l) meets that

@e,V#50,@e,V1
(n)#50. ~10!

Let f n5 f n(u,l) have the same order withU and meet the following:

@U1 , f n#50,@e, f n#50,etn
5 f nx . ~11!

Put V(n)5V1
(n)1 f n , we have

Utn
2Vx

(n)1@U,V(n)#5U1tn
2V1x

(n)1@U1 ,V1
(n)#50, ~12!

that is, the compatibility of the new Lax pairs

wx5Uw,w tn
5V(n)w, ~13!

leads to~8! as well. In fact,e5e(u,l) and f n5 f n(u,l) are chosen easily which satisfy~10! and
~11!. For example, we may take the formse5g(u,l)E2 , f n5hn(u,l)E2 , where E2 denotes
second-order unit matrix. When reducing the zero-curvature equation derived from~9! to the
Hamiltonian hierarchy, we have that4

K V,
]U

]l L 5 K V,
]U1

]l L ,K V,
]U

]u L 5 K V,
]U1

]u L . ~14!

Thus the same trace identities are obtained

d

du K V,
]U

]l L 5S l2g
]

]l
lgD K V,

]U

]u L ,
d

du K V,
]U1

]l L 5S l2g
]

]l
lgD K V,

]U1

]u L . ~15!
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Therefore,~4! and~9! lead to the same Hamiltonian system. But the Lax pair~6! is different from
~13!.

II. TD HIERARCHY

Taking the loop algebraÃ1 with the basish15(0 0
1 0), h25(0 1

0 0), e5(0 0
0 1), f 5(1 0

0 0) for which
we have that

@h1 ,e#52@h2 ,e#5e,@h1 , f #52@h2 , f #52 f ,@e, f #5h12h2[h,hi~n!5lnhi ,

e~n!5lne, f ~n!5lnf ,deghi~n!5dege~n!5degf ~n!5n,i 51,2.

Consider the spectral problem of TD equation5

wx5U1w,U15U1~u,l!5S 2l1r q

q l
D 52h~1!1rh1~0!1q~e~0!1 f ~0!!,

~16!
w5~w1 ,w2!T,u5~q,r !T.

Solving the adjoint equation

Vx5@U1 ,V#, ~17!

yields that

H anx5q~cn2bn!,bn115 1
2 ~rbn22qan2bnx!

cnx52cn1112qan2rcn ,a0521,b05c050,a150,b15c15q

a25 1
2 q2,b25 1

2 ~qr2qx!,c25 1
2 ~qr1qx!

. ~18!

Let

wx5U1w,w tn
5V1

(n)w,V1
(n)5S (

i 50

n

ail
n2 i1q21~bn111cn11! (

i 50

n

bil
n2 i

(
i 50

n

cil
n2 i 2(

i 50

n

ail
n2 i D . ~19!

Then the compatibility of the Lax pairs~19! leads to the well-known TD hierarchy as follows:

utn
5S q

r D
tn

5J
dHn

du
5JS bn111cn11

an11
D5JLn21S b21c2

a2
D , ~20!

where J5(]q21 0
0 q21]) is a Hamiltonian operator,L5 1

2(]21q] ]21r ]
r ]q21]24q), ][ ]/]x , ]21]5]]21

51. Pute52 r /2 (0 1
1 0), f n52 1/2q (bn111cn11)(0 1

1 0), it is easy to verify thate and f n meet~10!
and ~11!.

Taking loop algebraĀ1 with the basis

h~n!5S ln 0

0 2lnD , e~n!5S 0 ln

0 0 D , f ~n!5S 0 0

ln 0D ,

@h~m!, f ~n!#522 f ~m1n!,@h~m!,e~n!#52e~m1n!,@e~m!, f ~n!#5h~m1n!,

then the compatibility of the following Lax pair
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wx5Uw5~U11e!w5S 2l1
r

2
q

q l2
r

2

D S w1

w2
D5S 2h~1!1

r

2
h~0!1q~e~0!1 f ~0!! Dw,

w tn
5V(n)w5~V1

(n)1 f n!w,

V(n)5S (
i 50

n

ail
n2 i1

1

2q
~bn111cn11! (

i 50

n

bil
n2 i

(
i 50

n

cil
n2 i 2(

i 50

n

ail
n2 i2

1

2q
~bn111cn11!

D , ~21!

also gives rise to the TD hierarchy~20! and eq.Vx5@U,V# is equivalent to~18!.

III. INTEGRABLE COUPLINGS OF TD HIERARCHY

To obtain integrable couplings of TD hierarchy, we will establish a suitable loop algebrG̃.
Let G be a linear space with basis$e1 ,e2 ,e3 ,e4 ,e5%, we define the commutative relations a
follows:

5
@e1 ,e2#52e2 ,@e1 ,e3#522e3 ,@e1 ,e4#5e4

@e1 ,e5#52e5 ,@e2 ,e3#5e1 ,@e2 ,e4#50

@e2 ,e5#5e4 ,@e3 ,e4#5e5 ,@e3 ,e5#50

@e4 ,e5#50

. ~22!

Set a5( i 50
5 aiei , b5( i 50

5 biei , c5( i 50
5 ciei , where ai , bi , ci are all arbitrary constants o

functions, then we have

@a,@b,c##1@b,@c,a##1@c,@a,b##50, ~23!

that is, Jacobi identity holds. ThusG is a Lie algebra. If we let

H ei~n!5eil
n,i 51,2,3,4,5

@ei~m!,ej~n!#5@ei ,ej #l
m1n,1< i , j <5

degei~n!5n,i 51,2,3,4,5

, ~24!

then the loop algebraG̃ is constructed. Set the subalgebrasG̃1 , G̃2 to have bases

$e1(n),e2(n),e3(n)%,$e4(n),e5(n)%, respectively. Of course,G̃1 and G̃2 meet the relations as
follows:

G̃1 is isomorphic to Ā1 ,@G̃1 ,G̃2#,G̃2 . ~25!

Taking the form of linear spectral problem

H Cx5@U,C#,l t50

C t5@V,C#
, ~26!

where C5( i 51
5 C iei ,C i is an arbitrary function,U5U(u,l)PG̃,V5V(u,l)PG̃, and u

5(u1 ,u2 ,...,up)T is a function vector.l is a spectral parameter. The compatibility of~26! leads to
that
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Cxt5@Ut ,C#1@U,C t#5@Ut ,C#1@U,@V,C##5C tx5@Vx ,C#1@V,Cx#

5@Vx ,C#1@V,@U,C##,

@Ut ,C#1@U,@V,C##2@Vx ,C#2@V,@U,C##50. ~27!

By using Jacobi identity~23! and ~27! may reduce to that

@Ut ,C#2@Vx ,C#1@@U,V#,C#50. ~28!

SinceC is arbitrary,~28! reduces to the zero-curvature equation

Ut2Vx1@U,V#50. ~29!

In particular, we take the isospectral problem

Cx5@U,C#,l t50,

U52e1~1!1u1~e2~0!1e3~0!!1
u2

2
e1~0!1u3e4~0!1u4e5~0!, ~30!

V5 (
m50

`

~ame1~2m!1bme2~2m!1cme3~2m!1dme4~2m!1 f me5~2m!!.

Solving the adjoint representation equation

Vx5@U,V#, ~31!

yields that

amx5u1~cm2bm!,bmx522bm1122u1am1u2bm ,cmx52cm1112u1am2u2cm ,

dm115u1f m1
u2

2
dm2u3am2u4bm2dmx ,

~32!

f mx5 f m111u1dm2
u2

2
f m2u3cm1u4am ,

a0521,b05c05d05 f 050,a150,b15c15u1 ,d15u3 , f 152u4 .

Set

5
V11

(n) 5

(
m50

n

~ame1~n2m!1bme2~n2m!1cme3~n2m!1dme4~n2m!1 f me5~n2m!!

V12
(n) 5lnV2V11

(n)

.

Then we have

2V11x
(n) 1@U,V11

(n) #5V12x
(n) 2@U,V12

(n) #. ~33!

Note that the terms in the left-hand side of~33! are of degree>0, while the terms of the
right-hand side are of degree<0. Thus by using Tu-model, we have
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2V11x
(n) 1@U,V11

(n) #52bn11e2~0!22cn11e3~0!1dn11e4~0!2 f n11e5~0!.

In terms of~21!, takingV(n)5V11
(n) 1 1/2u1 (bn111cn11)e1(0), wehave

2Vx
(n)1@u,V(n)#5~bn112cn11!~e2~0!1e3~0!!2S 1

2u1
~bn111cn11! D

x

e1~0!

1S dn112
u3

2u1
~bn111cn11! De4~0!1S u4

2u1
~bn111cn11!2 f n11De5~0!.

The zero-curvature equation~29! determines the system

ut5S u1

u2

u3

u4

D
t

5S cn112bn11

S 1

u1
~bn111cn11! D

x

2dn111
u3

2u1
~bn111cn11!

f n112
u4

2u1
~bn111cn11!

D 51
1

u1
an11,x

S 1

u1
~bn111cn11! D

x

2dn111
u3

2u1
~bn111cn11!

f n112
u4

2u1
~bn111cn11!

2
5S 0 u1

21] 0 0

]u1
21 0 0 0

u3

2u1
0 21 0

2
u4

2u1
0 0 21

D S bn111cn11

an11

dn11

f n11

D 5JS bn111cn11

an11

dn11

f n11

D . ~34!

From ~32!, we have

S bn111cn11

an11

dn11

f n11

D 5
1

2 S u2 ]u1
21]24u1 0 0

]21u1] ]21u2] 0 0

2u4 u4u1
21]22u3 u222] 2u1

u3 u3u1
21]22u4 22u1 u212]

D S bn1cn

an

dn

f n

D
5LS bn1cn

an

dn

f n

D . ~35!

In terms of~35!, the hierarchy~34! reduces to the following:

ut5S u1

u2

u3

u4

D
t

5JLnS b11c1

a1

d1

f 1

D . ~36!

The hierarchy~36! is derived from the zero-curvature equation~29!, therefore, it is integrable
ComparisonJ andL in ~36! with those in~20!, we see that~36! is integrable coupling of the TD
hierarchy~20!.
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IV. CONCLUDING REMARKS

This paper proposed a new method—called a direct method to find integrable couplin
evolution equations, which developed the existed method for seeking for integrable coupli
Refs. 1–3. However, one open problem remains. The integrable couplings obtained by the
method are integrable in the Lax sense. Can we generalize the well-known trace identity in
loop algebraÃ2 so that the integrable couplings which are obtained by our method are integ
in the Liouville sense? Can we use the similar method to discover the integrable couplings o
hierarchy? These are problems to tackle in future.
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Propagator, tree-level unitarity and effective nonrelativistic
potential for higher-derivative gravity theories
in D dimensions
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Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145,
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A prescription for computing the propagator forD-dimensional higher-derivative
gravity theories, based on the Barnes–Rivers operators, is presented. A systematic
study of the tree-level unitarity of these theories is developed and the agreement of
their linearized versions with Newton’s law is investigated by computing the cor-
responding effective nonrelativistic potential. Three-dimensional quadratic gravity
with a gravitational Chern–Simons term is also analyzed. A discussion on the issue
of light bending within the framework of bothD-dimensional quadratic gravity and
three-dimensional quadratic gravity with a Chern–Simons term is provided as
well. © 2002 American Institute of Physics.@DOI: 10.1063/1.1415743#

I. INTRODUCTION

Undoubtedly, Einstein’s field theory accounts very well for all known macroscopic gra
tional phenomena. However, as a quantum theory it is less satisfactory: it has anS matrix which,
despite being finite at the one-loop level,1 diverges at the two-loop order.2 This is not surprising,
since one of the most difficult field theories when it comes to quantization is certainly the th
of the space–time structure itself. It is not known what the correct quantum theory of gravi
is.

Now, as is well known, the four-dimensional space–time is the most problematic place
quantum field theory to live. Indeed, quantum field theories are notorious for being ill defin
four-dimensional space–time but can often be handled in space–times of a different dime
ality. Dimensional regularization is a common example of such a procedure: results th
divergent in four dimensions are convergent forD.4. The divergences of the four-dimension
theory are removed by considering our space–time as a limitD→4 of higher-dimensional
space–times.3 On the other side of the dimensionality spectrum, there are field theories in sp
times with 2<D,4. In some cases, such quantum models are exactly soluble and prov
valuable insight into the clockwork of quantum field theory.

In this vein, here we study—at the tree level—various higher-derivative gravity theories.
we shall consider gravitational theories which will be called, for short,D-dimensional higher-
derivative gravity theories. These theories share some basic points with general relativity:

~i! General covariance and
~ii ! the action is extremized under variation of the metric.

On the other hand, they differ from general relativity in the following respects:

~i! The field equations for the metric are of fourth order.

a!Electronic mail: accioly@ift.unesp.br
4730022-2488/2002/43(1)/473/19/$19.00 © 2002 American Institute of Physics

                                                                                                                



lutely

Before
cerning
und a

avity,
-
is that

eory.
on the
s it is
s is a
es. In
lways

ional
iva-
ther

it-

ter or

imons

ur goal
n of
dratic
limit

om-
an
s
or
in a

y
for
that

n
ial
tial is
onal
e-

474 J. Math. Phys., Vol. 43, No. 1, January 2002 Accioly, Azeredo, and Mukai

                    
~ii ! Space–time is allowed to have any number of dimensions, which is a condition abso
necessary in the context of string theory.

Quadratic gravity in four dimensions is the most typical example of such a theory.4–6At this point
it is reasonable to pose the question: What is the use of probing into these theories?
answering this question, let us comment, in passing, on some results recently obtained con
quadratic gravity in four dimensions. In a series of papers on the photon propagation aro
massive body in quadratic theories of gravitation it was shown that, unlike Einstein’s gr
quadratic gravity produces dispersive photon propagation.7–9 To be more specific, quadratic grav
ity produces energy-dependent photon scattering. An interesting consequence of this fact
gravity’s rainbows and higher-derivative gravity can coexist without conflict.9 In this sense qua-
dratic gravity is closer to quantum electrodynamics than any currently known gravitational th
In fact, dispersive photon propagation is a trivial phenomenon in the context of QED. Based
fact that the rainbow effect which is present in quadratic gravity is undetectable, nowaday
possible to find a new constraint on the value of the contribution of the quadratic part. Thi
very important result given the scarcity of observational constraints on gravitational theori
addition, it was also found that the gravitational deflection predicted by quadratic gravity is a
smaller than that predicted by Einstein’s theory.7–9 It is worth mentioning that theR2 sector of the
theory of gravitation with higher derivatives does not contribute anything to the gravitat
deflection.10,11After this little digression we return to the question raised previously. Our mot
tion for studyingD-dimensional higher-derivative gravity theories is to try to answer, among o
things, the following questions:

~i! Which is the lowest dimension in which these theories make sense?
~ii ! Are theseD-dimensional theories unitary at the tree level?
~iii ! Is the massless excitation a dynamical degree of freedom in any dimension?
~iv! DoesD-dimensional linearized quadratic gravity agree with Newton’s theory in the lim

ing case of motion at low velocity in a weak gravitational field?
~v! Is the gravitational deflection within the context of the theories mentioned above grea

smaller than that related to the corresponding Einstein’s theory?

Second, we shall analyze three-dimensional quadratic gravity with a gravitational Chern–S
term. Now the action is extremizedà la Palatini ~independently varied connection!. In other
words, the propagation of the metric and affine structures of space–time are independent. O
here is, first of all, to find out how the nature of the field excitations is affected by the additio
a gravitational Chern–Simons term to the Lagrangian concerning three-dimensional qua
gravity. Second, we shall study the tree-level unitarity of the above theory, the nonrelativistic
of its linearized version and light bending within the framework of the same.

The plan of this work is as follows. In Sec. II we find the appropriate Lagrangian for c
puting the propagator concerningD-dimensional quadratic gravity. In Sec. III we present
algorithm for computing the propagator forD-dimensional higher-derivative gravity theorie
based on the Barnes–Rivers operators.12–16 Using this prescription we get the propagator f
D-dimensional quadratic gravity in an unconventional gauge. From this result we obtain
straightforward way the propagator in a series of interesting gauges which forD54 reduce to well
known results which are broadly used in the literature.17 In Sec. IV we study in a systematic wa
the tree-level unitarity ofD-dimensional higher-derivative gravity theories. It is shown that
D.2 quadratic gravity is nonunitary at the tree level. On the other hand, we get
D-dimensionalR1R2 gravity is unitary at the tree level forD.2. Section V is devoted to the
study of the effective nonrelativistic potential forD-dimensional quadratic gravity. An expressio
for computing this potential is obtained forD.2 and from that we get, in particular, the potent
for three-dimensional linearized quadratic gravity. Unlike the Newtonian potential, this poten
well behaved: it is finite at the origin and zero at infinity. In Sec. VI we analyze the gravitati
deflection in the framework ofD-dimensional quadratic gravity. Section VII deals with thre
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dimensional quadratic gravity with a gravitational Chern–Simons term. Finally, a summary o
main results is presented in Sec. VIII.

In our notation the signature is (12¯2). The curvature tensor is defined byRbgd
a

52]dGbg
a 1¯ , the Ricci tensor byRmn5Rmna

a , and the curvature scalar byR5gmnRmn , where
gmn is the metric tensor. Natural units are used throughout.

II. FINDING THE APPROPRIATE LAGRANGIAN FOR COMPUTING THE PROPAGATOR
CONCERNING D-DIMENSIONAL QUADRATIC GRAVITY

The action for quadratic gravity inD.1 dimensions is given by

I 5E dDxA~21!D21g F2R

k2 1
a

2
R21

b

2
Rmn

2 1
g

2
Rmnrs

2 1
d

2
hRG , ~1!

wherek2 is a suitable constant with dimensionLD22 which in four dimensions is equal to 32pG,
with G being Newton’s constant, anda, b, g andd are constants with dimensionL42D. ThehR
term in this action is manifestly a total covariant divergence and can be ignored. ForD51 the
space is flat and all the tensorsRmnab , Rmn , R identically vanish. Of course, there can be
dynamics in a space which does not possess both a spacelike and a timelike dimension. The
dimension in which the quadratic theory makes sense is thusD52.

Proposition 1: We can drop out the Rmnrs
2 term of the linearized Lagrangian related to gravi

with higher derivatives in dimensions higher than second.
Proof: Let L 1(L 2) be the Lagrangian corresponding to the gravity theory without~with! the

Rmnrs
2 term, namely,

L 1[A~21!D21g F2R

k2 1
a

2
R21

b

2
Rmn

2 G , ~2!

L 2[A~21!D21g F2R

k2 1
a

2
R21

b

2
Rmn

2 1
g

2
Rmnrs

2 G . ~3!

Decomposing the metric,gmn , as

gmn5hmn1khmn , ~4!

wherehmn is the Minkowski metric, and inserting~4! into ~2! and ~3! yields

L l in .
1 5

b

4
@hhmnhhmn2~A,m

m !22Fmn
2 1~114c!~Aa

,a2hf!2#2
1

2
@hmnhhmn1An

21~An2f ,n!2#,

~5!

Ll in .
2 5S b

4
1dD Fhhmnhhmn2~A,m

m !22Fmn
2 1

~b/4! ~114c!

b/41d
~Aa

,a2hf!2G2
1

2
@hmnhhmn1An

2

1~An2f ,n!2#,

whereAm[h,n
mn , f[h, Fmn5Am,n2An,m , b[ bk2/2 , c[ a/b , andd[ gk2/2. Indices are low-

ered~raised! usinghmn(hmn). h

It is worth mentioning that we could have arrived at the conclusion that theRmnrs
2 term need

never be considered in calculating the propagator by simply noting that the linearized G
Bonet invariant is a total derivative in any space–time dimension, the restriction toD54 coming
in only when we take the full nonlinear structure into account.

Thus, we come to the conclusion that the appropriate Lagrangian for computing the pro
tor concerning quadratic gravity inD.2 dimensions is
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L̄5A~21!D21g F2R

k2 1
a

2
R21

b

2
Rmn

2 G . ~6!

Proposition 2: In two dimensions

a

2
R21

b

2
Rmn

2 1
g

2
Rmnrs

2 5S a

2
1

b

4
1

g

2DR2.

Proof: In two dimensions both the Riemann tensor and the Ricci tensor can be expres
terms of the curvature scalar. Indeed,18

Rmnrs5 1
2 R~gmsgnr2gmrgns!,

and

Rmn5 1
2 Rgmn .

Therefore,

a

2
R21

b

2
Rmn

2 1
g

2
Rmnrs

2 5
a

2
R21

b

2

R2

2
1

g

2
R25S a

2
1

b

4
1

g

2DR2.

h

Obviously, for D52 the suitable Lagrangian for calculating the propagator related to
dratic gravity isL̄5A2g@2R/k2 1 (a/2) R2#. Nonetheless, we will not discuss this theory he
From now on we shall assume thatD.2.

III. FINDING THE PROPAGATOR FOR D-DIMENSIONAL HIGHER-DERIVATIVE GRAVITY
THEORIES

We begin by describing a prescription for computing the propagator for gravity theories
higher derivatives inD.2 dimensions. The algorithm is used afterward to get the propagato
D-dimensional quadratic gravity in an unconventional gauge. From this result we obtai
propagator in a series of gauges which in theD54 case reduce to well known gauges that a
widely used in the literature.17

A. The prescription

Let L̄ be the Lagrangian for any metric theory of gravity with higher derivatives. To com
the graviton propagator we need the bilinear part of this Lagrangian. The latter is obtain
decomposing the metric,gmn , as in~4!, and inserting~4! into L̄. Let Lg be the resulting Lagrang
ian. In the specific case of gauge-invariant theories, we add toLg a gauge-fixing LagrangianLg f .
Accordingly,L5Lg1Lg f can be written as

L5 1
2 hmnOmn,rshrs. ~7!

In performing these calculations it is extremely convenient to work in terms of the Barnes–R
operators12–16 in the space of symmetric rank-two tensors. The complete set ofD-dimensional
operators is given by

Pmn,rs
1 5 1

2 ~umrvns1umsvnr1unrvms1unsvmr!,

Pmn,rs
2 5

1

2
~umruns1umsunr!2

1

D21
umnurs ,
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Pmn,rs
0 5

1

D21
umnurs ,

P̄mn,rs
0 5vmnvrs ,

P% mn,rs
0 5umnvrs1vmnurs ,

whereumn andvmn are the usual transverse and longitudinal vector projection operators

umn5hmn2
kmkn

k2 , vmn5
kmkn

k2 ,

which satisfy the relations

umrun
r5umn , vmrvn

r5vmn , umrvn
r50.

Herekm is the momentum of the graviton exchanged andk2[kmkm.
The set of operators$P1,P2,P0,P̄0% is a complete set of projection operators for symme

rank-two tensors, i.e., they are idempotent, mutually orthogonal and satisfy the completnes
tion

@P11P21P01 P̄0#mn,rs5 1
2 ~hmrhns1hmshnr![I mn,rs .

In the rest frame of a massive tensor field, the family of operators$P1,P2,P0,P̄0% project out the
spin-1, spin-2, and two spin-0 parts of the field. The operatorP% 0, in turn, is nothing but the sum
of two spin-0 transfer operators, namely,

P% mn,rs
0 [@Puv1Pvu#mn,rs ,

wherePmn,rs
uv [umnvrs andPmn,rs

vu [vmnurs . Its multiplicative table is given by

P% 0P15P1P% 05P% 0P25P2P% 05O,

~P% 0!25~D21!~P01 P̄0!,

P0P% 05P% 0P̄05Puv,

P̄0P% 05P% 0P05Pvu,

whereO is the null operator.
The expansion of the operatorO in the basis$P1,P2,P0,P̄0,P% 0% is trivially obtained using the

following tensorial identities:

1
2 ~hmrhns1hmshnr!5@P11P21P01 P̄0#mn,rs ,

hmnhrs5@~D21!P01 P̄01P% 0#mn,rs ,

1

k2 ~hmrknks1hmsknkr1hnrkmks1hnskmkr!5@2P114P̄0#mn,rs , ~8!

1

k2 ~hmnkrks1hrskmkn!5@P% 012P̄0#mn,rs ,

1

k4 ~kmknkrks!5 P̄mn,rs
0 .
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The identities,

Pmn,rs
2 5

1

2
~hmrhns1hmshnr!2

1

D21
hmnhrs2FP11

D22

D21
P̄02

1

D21
P% 0G

mn,rs

,

~9!

Pmn,rs
0 5

1

D21
hmnhrs2

1

D21
@ P̄01P% 0#mn,rs ,

in turn, greatly facilitate the task of casting the propagator in a form wherein the terms pr
tional to the graviton momentum are omitted, which in practice widely simplifies computa
involving conserved currents.

We will not display the demonstrations of~8! and~9! since they follow straightforwardly from
the very definition of the operatorsP1, . . . ,P% 0.

We are now ready to find the propagator,O 21. To accomplish this we have to invert th
operatorO. Expanding the latter in the basis$P1,P2,P0,P̄0,P% 0% with the help of the identities~8!,
we get

O5x1P11x2P21x0P01 x̄0P̄01x% 0P% 0.

Assume then thatO 215y1P11y2P21y0P01 ȳ0P̄01y% 0P% 0, wherey1 ,y2 , . . . .,y% 0 are parameters
to be determined. SinceOO 215I , we promptly obtain the following set of simultaneous equ
tions:

x1y151,

x2y251,

x0y01~D21!x% 0y% 051,
~10!

x̄0ȳ01~D21!x% 0y% 051,

x% 0y01 x̄0y% 050,

x% 0ȳ01x0y% 050.

Before going on we need a lemma.
Lemma: If x1Þ0, x2Þ0, and @x0x̄02(D21)x% 0#Þ0, then (10) has one and only one solutio.
Proof: Row reducing the argumented matrix of the system~10! to echelon form yields

3
x1 0 0 0 0 1

0 x2 0 0 0 1

0 0 x0 0 ~D21!x% 0 1

0 0 x% 0 0 x̄0 0

0 0 0 x̄0 ~D21!x% 0 1

0 0 0 x% 0 x0 0

4 ;3
x1 0 0 0 0 1

0 x2 0 0 0 1

0 0 x0 0 ~D21!x% 0 1

0 0 0 x̄0 ~D21!x% 0 1

0 0 0 0 @x0x̄02~D21!x% 0
2# 2x% 0

0 0 0 0 0 0

4 .

h

Therefore, the propagator is given by

O 215
1

x1
P11

1

x2
P21

1

x0x̄02~D21!x% 0
2 @ x̄0P01x0P̄02x% 0P% 0#. ~11!
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In summary, the prescription for computing the propagator consists of the following p
dures.

~1! Linearize the original Lagrangian using~4!.
~2! Add to the previous result a suitable gauge-fixing Lagrangian. Obviously, we only do th

the case of gauge-invariant theories.
~3! Cast the resulting Lagrangian into the bilinear formL5 1

2h
mnOmn,rshrs.

~4! Find the coefficients x1 ,x2 , . . . ,x% 0 by expanding the operatorO in the basis

$P1,P2,P0,P̄0,P% 0% with the help of the identities~8!.
~5! Insert these coefficients in~11!.

B. Propagator for D-dimensional quadratic gravity in an unconventional gauge

Let us then find the propagator by means of the prescription developed in Sec. III A
course, the linearization of~6! leads to~5!. So,Lg[L l in .

1 . Lagrangian~5! is invariant under the
infinitesimal coordinate transformationxm→xm1kjm(x), wherejm(x) is an infinitesimal vector
field. It must be infinitesimal to avoid inconsistency with~4!. Under this transformation we hav
from ~4!

hmn~x!→hmn~x!2jm,n2jn,m . ~12!

The presence of the local gauge symmetry~12! requires the addition of a gauge-fixing term,Lg f ,
to Lagrangian~5!. It is common practice to choose a linear combination ofAm andf ,m as gauge
functions. However, looking at~5! we clearly see the presence not only of this linear combina
but also of its curl (Fmn) and its divergence (A,m

m 2hf). Hence, we choose the following uncon
ventional gauge-fixing Lagrangian,

Lg f5l1~An2lf ,n!21
b

4
@l2~A,m

m 2lhf!21l3Fmn
2 #,

wherel, l1 , l2 , andl3 are suitable gauge parameters. Casting the Lagrangian,L5Lg1Lg f ,
into the bilinear form L5 1

2h
mnOmn,rshrs, and expanding the operatorO in the basis

$P1,P2, . . . ,P% 0% with the help of~8!, we obtain

O5x1P11x2P21x0P01 x̄0P̄01x% 0P% 0,

whereupon

x1[
b

2 S l3k41
2l1k2

b D ,

x2[
b

2 S k41
2k2

b D ,

x0[
b

2 FDk42
2~D22!k2

b
14~D21!k4c1~D21!k4l2l21

4~D21!k2l1l2

b G ,
x̄0[

b

2 S k4l222k4ll21
4k2l1

b
2

8k2ll1

b
1k4l2l21

4k2l1l2

b D ,

x% 0[
b

2 S 4k2l1l2

b
1k4l2l22k4ll22

4k2ll1

b D .
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The propagator in momentum space is given by~11!. From this result we can find the propa
gator in a series of interesting gauges, by judiciously choosing the parametersl, l1 , l2 , andl3 .
We list below the most important covariant gauges that result from such choices.

~1! Julve–Tonin gauge(l50):19

Lg f5l1An
21

b

4
@l2~A,m

m !21l3Fmn
2 #.

Propagator:

O 215
m1

2

k2~m1
2l12l3k2!

P11
m1

2

k2~m1
22k2!

P21
m0

2

2k2@k22 @~D22!/2# m0
2#

P0

1
m1

2

~2m1
2l12l2k2!k2 P̄0, ~13!

where

m0
2[

2

Dbk2/41~D21!k2a
, m1

2[2
4

bk2 .

Absence of tachyons requiresb,0 and (D21)a1 bD/4.0. Note that the choicel50 gives a
propagator that only contains the spin-projection operators, i.e.,P1, P2, P0, P̄0, and it gives also
a propagator all parts of which behave likek24.

~2! de Donder gauge(l25l350,l5 1
2):

Lg f5l1~An2 1
2 ]nf!2.

Propagator:

O 215
1

l1k2 P11
m1

2

k2~m1
22k2!

P21
m0

2

2k2@k22 @~D22!/2# m0
2#

P0

1F 2

l1k2 1
~D21!m0

2

2k2@k22 @~D22!/2# m0
2#

G P̄01
m0

2

2k2@k22 @~D22!/2# m0
2#

P% 0.

~3! Feynman gauge(l25l350,l151,l5 1
2):

Lg f5~An2 1
2 ]nf!2.

Propagator:

O 215
1

k2 P11
m1

2

k2~m1
22k2!

P21
m0

2

2k2@k22@~D22!/2# m0
2#

P0

1F 2

k2 1
~D21!m0

2

2k2@k22@~D22!/2# m0
2#

G P̄01
m0

2

2k2@k22 @~D22!/2# m0
2#

P% 0.

IV. A SYSTEMATIC STUDY OF TREE-LEVEL UNITARITY

Now we present a method for analyzing the unitarity at the tree level ofD-dimensional
higher-derivative gravity theories.

In order to verify whether ghosts and tachyons are absent in a given theory of gravity
higher derivatives we require that the corresponding propagator has only first poles atk22M2
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50 with real massesM ~no tachyons! and with positive residues~no ghosts!.20–22 Therefore, to
probe the tree-level unitarity ofD-dimensional higher-derivative gravity theories we couple
propagator to external conserved currents,Tmn, compatible with the symmetries of the theory, a
afterward we examine the current-current amplitude at the poles. The transition amplitu
momentum space, in turn, can be cast in the form

A5g2TmnO mn,rs
21 Trs, ~14!

whereg is the effective coupling constant of the theory. Note that only the spin-projectorsP2 and
P0 will give a non-null contribution to the current-current amplitude sincekmTmn50.

Let us then expand the sources in a suitable basis. The set of independent vectors in m
tum space,

km[~k0,k!, k̃m[~k0,2k!, « i
m[~0,eW i !, i 51, . . . ,D22,

whereeW1 , . . . ,eWD22 are mutually orthogonal unit vectors which are also orthogonal tok, serves
our purpose. Accordingly, the symmetric current tensorTmn(k) can be written as

Tmn5akmkn1bk̃mk̃n1ci j « i
(m« j

n)1dk(mk̃n)1eik(m« i
n)1 f i k̃(m« i

n) . ~15!

The current conservation,kmTmn50, gives the following constraints for the coefficientsa, b,
d, ei and f i

ak21~k0
21k2!

d

2
50, ~16!

b~k0
21k2!1d

k2

2
50, ~17!

eik21 f i~k0
21k2!50. ~18!

If we saturate the indices ofTmn with momentakm , we obtain the equationkmknTmn50, which
yields a consistency relation for the coefficientsa, b, andd:

ak41b~k0
21k2!21dk2~k0

21k2!50. ~19!

Now, all we have to do is to compute the residue ofA at each first pole of the propagator an
verify whether its sign is positive.

Proposition 3: Higher-derivative gravity is nonunitary at the tree level in D.2 dimensions. If
m0

2.0 @Db/41(D21)a.0# and m1
2.0(2b.0), the theory is nontachyonic and has one no

mal massless spin-2 particle, one massive spin-2 ghost and one normal massive spin-0 p
The massless excitation is not a dynamical degree of freedom in D53.

Proof: From ~14! and ~13! we promptly obtain

A5g2TmnH m1
2

k2~m1
22k2!

P21
m0

2

2k2@k22~D22!m0
2/2#

P0J Trs

5g2H TmnTmn2T2/~D22!

k2 2
TmnTmn2T2/~D21!

k22m1
2

1
T2

~D21!~D22!@k22~D22!m0
2/2# J , ~20!
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whereT5hmnTmn. Thus, we have two poles for the spin-2 sector, i.e.,k250, k25m1
2 , and one

pole for the spin-0 sector, namely,k25(D22)m0
2/2. Let us then find the sign of the residue

these poles. We assume thatD-dimensional quadratic gravity has no tachyons, which imp
m0

2.0 andm1
2.0.

• Pole k250. From~16!–~18! and ~20!, we get that the residue ofA at the polek250 is

ResAuk2505g2F ~ci j !22
~cii !2

D22G
k250

.

Therefore, the massless excitation is not a dynamical degree of freedom in three dimensio
D.3 the result above tells us that ResAuk250.0.

• Pole k25(D22)m0
2/2. In this case

ResAuk25~D22!m0
2/25F g2T2

~D21!~D22!G
k25~D22!m0

2/2

,

which implies that the residue of the current-current amplitude at the polek25(D22)m0
2/2 is

always positive forD.2. Thence, the scalar massive particle is a physical one.
• Pole k25m1

2. The residue of the transition amplitude at the polek25m1
2 is given by

ResAuk25m
1
252g2H ab~k0

21k2!21b2k41bdk2~k0
21k2!1~ci j !22

1

2
~k0

21k2!ei f i2
k2

2
~ f i !2

2
1

D21
@ak21bk22cii 1d~k0

21k2!#2J
k25m

1
2
,

52g2H @~a2b!k2#21~ci j !21
k2

2
@~ei !22~ f i !2#2

1

D21
@~b2a!k22cii #2J

k25m
1
2
,

where use has been made of~16!–~19!. This expression can also be written as

ResAuk25m
1
252g2H D22

D21
@~a2b!k2#21F ~ci j !22

~cii !2

D21G1
k2

2
@~ei !22~ f i !2#

2
2

D21
~a2b!k2cii J

k25m
1
2
.

Now, assuming as usual thatT>0, we get thatcii <0, which implies that ResAuk25m
1
2,0 for

D.2. So, we have a nontachyonic massive spin-2 ghost in the propagator of higher-der
gravity. In conclusion we way say thatD-dimensional higher-derivative gravity is nonunitary
the tree level. h

Corollary 1: D-dimensional R1R2 gravity is unitary at the tree level for D.2. In three
dimensions the massless excitation is not a dynamical degree of freedom.

Proof: Clear. h

V. EFFECTIVE NONRELATIVISTIC POTENTIAL

In principle any relativistic theory of gravitation ought to agree with Newton’s theory in
limiting case of motion at low velocity in a weak gravitational field. Accordingly it is worthwh
to probe whetherD-dimensional linearized quadratic gravity leads to the right nonrelativistic
for gravitational interactions. To do this we compute the effective nonrelativistic potential fo
interaction of two identical massive bosons of zero spin via a graviton exchange. The expr
for the potential is
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U~r !5
1

4m2

1

~2p!D21 E dD21kMN.R.e
2 ik"r, ~21!

whereuponMN.R. is the nonrelativistic limit of the Feynman amplitude for the processS1S
→S1S, whereS stands for a spinless boson of massm. The corresponding Feynman diagram
shown in Fig. 1.

The Lagrangian for the interaction of gravity with a free, massive scalar fieldf̃ is

Lint52
khmn

2 F]mf̃]nf̃2
1

2
hmn~]af̃]af̃2m2f̃2!G .

From the previous expression the Feynman rule for the elementary vertex may read
deduced. It is shown in Fig. 2. The invariant amplitude for the process shown in Fig. 1 is

M5
m1

2

k2~m1
22k2!

k2

2 H ~p.q!~p8.q8!1~p.q8!~p8.q!1~p.p8!~m22q.q8!1~q.q8!~m22p.p8!

1
D

2
~m22p.p8!~m22q.q8!2

1

2~D21!
@Dm22~D22!p.p8#@Dm22~D22!q.q8#J

1
m0

2

k2~k22 @~D22!/2# m0
2!

k2

8~D21!
@Dm22~D22!p.p8#@Dm22~D22!q.q8#.

In the nonrelativistic limit this expression reduces to

FIG. 1. One-graviton-exchange contribution to the scattering of two identical spinless massive bosons.S denotes a scalar
particle with massm.

FIG. 2. The relevant Feynman rule for boson-boson interaction.
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MN.R.52
D22

D21

k2m4m1
2

k2~k21m1
2!

1
k2m4m0

2

2~D21!k2~k21@~D22!/2# m0
2!

. ~22!

Substituting~22! into ~21! we obtain23

U~r !5I 11I 2 ,

where

I 1[2
k2m2m1

2

4~2p!D21

D22

D21 E0

`E
0

p

¯E
0

pE
0

pE
0

2pF e2 ik.r

k2~k21m1
2!

ukuD22dukusinD23

3uD22duD22 ¯ sin2 u3du3 sinu2 du2du1G , ~23!

I 2[
k2m2m0

2

8~2p!D21

1

D21 E0

`E
0

p

. . . E
0

pE
0

pE
0

2pF e2 ik.r

k2~k21 @~D22!/2# m0
2!

ukuD22dukusinD23

3uD22duD22 ¯ sin2 u3du3 sinu2du2du1G . ~24!

Hence, the problem of computing the effective nonrelativistic potential was reduce
quadratures. We give in the following two examples to illustrate the efficacy of the me
linearized quadratic gravity in three and four dimensions, respectively.

• Three-dimensional linearized quadratic gravity. For D53 the expressions~23! and~24! tell
us that

U~r !5
k2m2

8~2p!2 E
0

`S E
0

2p

e2 i ukur cosudu D S 1

k21m1
2 2

1

k21 m0
2/2D ukuduku

5
k2m2

16p E
0

`S 1

k21m1
2 2

1

k21 m0
2/2D J0~ ukur !ukuduku,

whereJ0 is the Bessel function of the first kind of order zero. Now, from a mathematical poin
view, *0

` @xJ0(ax)/(x21b2)# dx only makes sense if24 a.0, Reb.0. Accordingly, we assume

that m0
2.0( 3

4b12a.0) andm1
2.0(2b.0), which is nothing but the condition for absence

tachyons~both positive and negative energy! in the dynamical field. Performing the integratio
yields

U~r !52Ḡm2@K0~m1r !2K0~m0r /& !#,

whereK0 is the modified Bessel function of the order of zero andḠ[k2/32p.
Therefore, the potential is given by

V~r !52Ḡm@K0~m1r !2K0~m0r /& !#.

Note that V(r ) behaves as 2Ḡm ln(m0 /m1&) at the origin and as 2Ḡm@Ap/2m1re2m1r

2Ap/m0r&e2m0r /&# asymptotically.25

Three comments are in order here:
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~i! Unlike the Newtonian potential,VN52Gm ln r0 /r, which has a logarithmic singularity a
the origin and is unbounded at infinity, the potential concerning three-dimensional li
ized quadratic gravity is extremely well behaved: it is finite at the origin and zero a
infinity.

~ii ! V(r )→0 asm0 andm1→`, confirming in this way the well known fact that the standa
correspondence of three-dimensional linearized Einstein’s theory with Newton’s th
breaks down.26

~iii ! Recently it was shown that the solution of the linearized field equations concerning t
dimensional linearized quadratic gravity, having as source a static point like massm, is
given by27

h005
km

8p
@K0~m1r !2K0~m0r /& !#,

h115h225
km

8p
@2 ln r1K0~m1r!1K0~m0r/&!#.

SinceV5kh00/2, we see that this independent computation of the potential leads t
same result as that obtained via the effective nonrelativistic potential. The former is
sense, a major test of our semiclassical computation.

• Four-dimensional linearized quadratic gravity. The effective nonrelativistic potential i
computed in this case as follows:

U~r !5
k2m2

6~2p!2 E
0

`S E
0

p

e2 i ukur cosu sinudu D F2
3

4

1

k2 1
1

k21m1
2 2

1

4~k21m0
2!Gk2duku

5
k2m2

6~2p!2

1

r
ImF E

2`

1`

eixS 2
3

4x
1

x

x21m1
2r 2 2

1

4

x

x21m0
2r 2DdxG . ~25!

Now, the condition for the existence of integrals like*2`
1` @(x sinx)/(x21a2)# dx (aÞ0) is thata

.0. In this case they can be easily evaluated by the method of contour integration. The
assuming that 3a1b.0 and 2b.0, which corresponds to the absence of tachyons in
dynamical field, we promptly obtain from~25!

U~r !5Gm2F2
1

r
1

4

3
e2m1r2

1

3
e2m0r G .

So, the potential for linearized higher-derivative gravity is given by the expression4,7

V~r !5GmF2
1

r
1

4

3

e2m1r

r
2

1

3

e2m0r

r G ,
which agrees asymptotically with Newton’s law. At the origin it tends to the finite va
Gm((m024m1)/3).

From the computation ofV(r ) for linearized quadratic gravity in three and four dimensio
we learned that the existence of the potential is related to the absence of tachyons in the dyn
field. Consequently, we may conjecture that this is so in any dimensionD.2. This issue will be
treated elsewhere.

VI. GRAVITATIONAL DEFLECTION

Using the mathematical apparatus developed in the last sections we consider now the i
light bending within the framework ofD-dimensional quadratic gravity. Accordingly, let us co
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sider the interaction between a fixed source and a light ray. The associated energy-mom
tensors will be designated respectively asTmn and Fmn. The current-current amplitude for thi
process is given by

A5g2TmnO mn,rs
21 Frs.

But, on mass shell,kmTmn50 andkmFmn50, implying that onlyP2 andP0 will give a non-null
contribution to the current-current amplitude. Therefore,

A5g2TmnFrsF m1
2

k2~m1
22k2!

P21
m0

2

2k2@k22 @~D22!/2# m0
2#

P0G
mn,rs

.

Now, taking ~9! into account and recalling that the energy-momentum tensor for light~electro-
magnetic radiation! is traceless, whileTmn5hm0hn0T00 for a static source, we promptly obtain

A5g2T00F00F 1

k2 2
1

k22m1
2G .

Sinceg2T00F00/k2 is precisely the current-current amplitude for the interaction between a fi
source and a light ray in the context ofD-dimensional linearized general relativity, we come to t
conclusion that the gravitational deflection predicted byD-dimensional linearized quadratic grav
ity is always smaller than that predicted byD-dimensional linearized Einstein’s theory.

Let us then discuss in more detail the result above in the particular caseD53. Proposition 3
tell us that the massless excitation is not a dynamical degree of freedom in three dimen
Consequently, only2 g2T00F00/(k22m1

2) will contribute to light deflection. Thus, we come to th
surprising result that in the framework of three-dimensional linearized quadratic gravity a ligh
is deflected upward instead of downward as its four-dimensional counterpart. This is, perh
property peculiar to quadratic gravity inD53. It is worth mentioning that a classical computatio
of the gravitational deflection27 assures us of the correctness of our result which is based
semiclassical approach.

VII. THREE-DIMENSIONAL QUADRATIC GRAVITY WITH A GRAVITATIONAL
CHERN–SIMONS TERM

To conclude we consider quadratic gravity with a gravitational Chern–Simons term.
topological Chern–Simons Lagrangian is given by

LC.S.5
1

2m
«mnlS Rbmn

a Gal
b 2

2

3
Gbm

a Ggn
b Gal

g D5
«lmn

m
Gsl

r S ]mGrn
s 1

2

3
Gvm

s Gnr
v D , ~26!

wherem is a dimensionless parameter. Linearizing~26!, we obtain

LC.S.l in .5
1

2

1

M
hmnPmn,rshrs, ~27!

where28

Pmn,rs[
h]l

4
@«mlruns1«mlsunr1«nlrums1«nlsumr#, ~28!

and M[ m/k2. In order to have a complete basis for the operator space of the field equa
concerning higher-derivative gravity theories in three dimensions with a Chern–Simons ter
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include in the collection of three-dimensional operators$P1,P2,P0,P̄0,P% 0% ~see Sec. III A! the
operatorP ~28!. The multiplication table for these operators is displayed in Table I.

We are now ready to compute the propagator. Expanding both operatorsO andO 21 in the
basis$P1,P2,P0,P̄0,P% 0%, we obtain

O5x1P11x2P21x0P01 x̄0P̄01x% 0P% 01pP,

O 215y1P11y2P21y0P01 ȳ0P̄01y% 0P% 01qP.

With the help of Table I and taking into account thatOO 215I , we find thaty151/x1 , y2

5x2 /(x2
22p2k6), y05 x̄0 /(x0x̄022x% 0

2), ȳ05x0 /(x0x̄022x% 0
2), y% 052x% 0(x0x̄022x% 0

2), and q
52p/(x2

22p2k6), while the propagator is given by

O 215
1

x1
P11

x2

x2
22p2k6 P21

x̄0

x0x̄022x% 0
2 P01

x0

x0x̄022x% 0
2 P̄02

x% 0

x0x̄022x% 0
2 P% 02

p

x2
22p2k6 P.

~29!

Accordingly, let us then find the propagator for quadratic gravity with a Chern–Simons term
theory is defined by the Lagrangian

L̄52
2RAg

k2 1
«mnl

m
Gsl

r S ]mGrn
s 1

2

3
Gvm

s Gnr
v D1S a

2
R21

b

2
Rmn

2 DAg.

In the Julve–Tonin gauge the operatorO has the form

O52k2S l11l3

b

2
k2D P11k2S k2

b

2
21D P21Fk21bk4S 3

2
14cD GP0

2k2S b

2
l2k212l1D P̄01

P

M
,

and the propagator is given by

O 215
22

k2@2l11bl3k2#
P11F2

1

k2 1
1

11~bM2
2/2!

1

k22M2
2 1

1

11~bM1
2/2!

1

k22M1
2GP2

1F 1

k2 2
1

k22m2GP02
1

k2@2l11l2 ~b/2! k2#
P̄0

2F 4

b2M ~M1
22M2

2! S 1

k22M1
2 2

1

k22M2
2D 1

k4GP, ~30!

where

TABLE I. Multiplication table for the three-dimensional operatorsP1, P2, P0, P̄0, P% 0, andP.

P1 P2 P0
P̄0 P% 0 P

P1 P1 O O O O O
P2 O P2 O O O P
P0 O O P0 O Puv O

P̄0 O O O P̄0 Pvu O

P% 0 O O Pvu Puv
2(P01 P̄0) O

P O P O O O 2k6P2
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M1
2[S 2

b2M2D @11bM21A112bM2#,

M2
2[S 2

b2M2D @11bM22A112bM2#,

m2[
21

bS 3

2
14cD .

If we do not want tachyons in the dynamical field, we may choose, for instance,b.0 and (32
14c),0. In this case the theory is causal at the tree level. In this vein we assume from no
m2, M1

2, M2
2, andM2.0.

We discuss in the following tree-level unitarity, nonrelativistic limit and gravitational defl
tion for quadratic-Chern-Simons gravity inD53.

A. Tree-level unitarity

From ~14! and ~30! we obtain at once

A5g2F 2

b2

bM2
222

~M2
22M1

2!M2
2

TmnTmn2
1

2
T2

k22M2
2 1

2

b2

22bM1
2

~M2
22M1

2!M1
2

TmnTmn2
1

2
T2

k22M1
2 2

1

2
T2

k22m2

1
4

b2M1
2M2

2

T22TmnTmn

k2
G . ~31!

Therefore, if b.0 and (3214c),0, ~20! tells us that ResAuk25M
1
2.0, ResAuk25M

2
2.0,

ResAuk25m2,0, and ResAuk25050.
Proposition 4: Quadratic gravity with a gravitational Chern–Simons term is nonunitary at th

tree level. If b.0 and ( 3
214c),0, the theory in nontachyonic and has one normal mass

spin-2 particle, one normal spin-2 particle of mass M2 , one normal spin-2 particle of mass M1
and one spin-0 ghost of mass m. The massless excitation is not a dynamical degree of freed.

Corollary 2: R1R2 gravity with a Chern–Simons term is nonunitary at the tree level. Ifa
,0, the theory is nontachyonic and has one physical massless spin-2 particle, one ph

particle of spin-2 and mass M and one spin-0 ghost of mass m[A2 1/2ak2. The massless
excitation is not a dynamical degree of freedom.

Proof: Clear. h

Therefore, we come to the conclusion that neither quadratic gravity with a Chern–Si
term norR1R2 gravity with a Chern–Simons term is unitary at the tree level.

A detailed comparison between three-dimensional quadratic gravity with quadratic g
with a Chern–Simons term clearly shows that the harmless massive scalar mode of the
becomes a troublesome massive spin-0 ghost within the context of the latter, while the m
spin-2 ghost related to three-dimensional quadratic gravity is now replaced by two massive
cal particles both of spin-2. On the other hand, if we make a comparison between
dimensionalR1R2 gravity with R1R2 gravity with a Chern–Simons term, we come to t
conclusion that the gravitational Chern–Simons term is responsible for breaking down the
ity of the former.
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B. Nonrelativistic limit

In this case the invariant amplitude for the processS1S→S1S, whereS denotes a spinles
boson of massm̃, as well as for its nonrelativistic limit, are given respectively by

M5k2F2
1

2k2 1
1

bM2
212

1

k22M2
2 1

1

b2M1
212

1

k22M1
2G3F ~p•q!~p8•q8!1~p•q8!~p8•q!

1p•p8~m̃22q•q8!1~m̃22p•p8!q•q81
3

2
~m̃22q•q8!~m̃22p•p8!2

1

4
~3m̃22p•p8!

3~3m̃22q•q8!G1
k2

8 H ~3m̃22p•p8!~3m̃22q•q8!F 1

k2 2
1

k22m2G J
and

MN.R.5k2m̃4F1

2

1

k21m2 2
1

21bM2
2

1

k21M2
2 2

1

21bM1
2

1

k21M1
2G . ~32!

Inserting~32! into ~21! and performing the integration yields

U~r !52m̃2ḠFK0~rm!2
1

11 ~bM1
2/2!

K0~rM 1!2
1

11~bM2
2/2!

K0~rM 2!G .
As a result, the potential is given by the expression

V~r !52m̃ḠFK0~rm!2
1

11 ~bM1
2/2!

K0~rM 1!2
1

11~bM2
2/2!

K0~rM 2!G .
Note thatV(r ) behaves as 2m̃Ḡ ln M

1
11 (bM1

2/2)
M

2
11 (bM2

2/2)
/m at the origin and as

2m̃ḠFA p

2mr
e2rm2

1

11~bM1
2/2!

A p

2M1r
e2M1r2

1

11 ~bM2
2/2!

A p

2M2r
e2M2r G

asymptotically. Two comments are in order here:

~i! Unlike the Newtonian potentialVN52Ḡm̃ ln r0 /r1 which has a logarithmic singularity a
the origin and is unbounded at infinity, the potential concerning linearized quad
Chern–Simons gravity in (211)D is extremely well behaved: it is finite at the origin an
zero at infinity.

~ii ! V(r )→0 asa andb→0, confirming in this way the fact that the standard corresponde
of three-dimensional linearized Einstein–Chern–Simons gravity with Newton’s th
breaks down.29,30

C. Light deflection

The current-current amplitude for the interaction of a light ray with a fixed source is give

A5g2TmnFrsF S 2
1

k2 1
1

11 ~bM2
2/2!

1

k22M2
2 1

1

11 ~bM1
2/2!

1

k22M1
2D P2

1S 1

k2 2
1

k22m2D P0G
mn,rs

.

Taking ~9! into account we can rewrite the expression above as
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A5A01A1 ,

where

A0[2
g2T00F00

k2 ,

A1[g2T00F00S 1

11~bM2
2/2!

1

k22M2
2 1

1

11 ~bM1
2/2!

1

k22M1
2D .

Of course, onlyA1 will contribute to light deflection since the massless excitation is not a de
of freedom. Hence, the light ray will be deflected downward as usual.

VIII. SUMMARY AND DISCUSSION

We proposed a prescription for finding the propagator concerning higher-derivative g
theory inD dimensions based on the Barnes–Rivers operators. Using this algorithm, we com
the propagator for the latter in an unconventional gauge and, by a suitable choice of the
parameters, we reobtained the propagator in a series of gauges which are used in day
physics.

A systematic study of the tree-level unitarity ofD-dimensional higher-derivative gravit
theory was presented afterward. It was shown that it is nonunitary at the tree level: the
quadratic in the Ricci tensor is the Achille’s heel of the theory. This term is responsible fo
presence of a massive spin-2 particle of negative residue, i.e., a ghost, in the bare prop
Nevertheless, this may be a hasty conclusion. Indeed, as pointed out by Antoniadi
Tomboulis,15 this excitation is unstable in four dimensions. Perhaps it would be unstable as w
any dimension. Therefore,D-dimensional quadratic gravity cannot yet be rejected as a vi
possibility.

On the other hand,D-dimensionalR1R2 gravity is unitary at the tree level. We call attentio
to the fact that our discussion was confined to a particular style of variational principle. Pe
there are richer unitary combinations in higher dimensions with the connection varied ind
dently. If this is the case, that would be worth knowing. This matter will be the object of a fu
investigation.

The problem of computing the effective nonrelativistic potential forD-dimensional quadratic
gravity was then reduced to quadratures. It seems that the existence of this potential
dimension is related to the absence of tachyons~both positive and negative energy! in the dynami-
cal field. It was also shown that, unlike three-dimensional linearized gravity which has no
tonian limit, three-dimensional linearized quadratic gravity has a potential that, despite
rather different from the corresponding Newtonian one, is extremely well behaved.

It was shown afterward that the gravitational deflection is always smaller than that pred
by the corresponding Einstein’s theory. This conclusion is totally independent of the valueD.
For D53 we arrive at the astonishing result that a light ray would be deflected upward inste
downward as its four-dimensional counterpart. It can be shown, in addition, that inD53 a
gravitational force is exerted on a slowly moving test particle.31 This force greatly resembles tha
of a straightU(1)-gauge cosmic string in the framework of linearized quadratic gravity in f
dimensions32 and it is absent in three-dimensional general relativity.

Finally, we discussed three-dimensional quadratic gravity augmented by a Chern–S
term. It was shown that neither the latter nor three-dimensionalR1R2 gravity with a Chern–
Simons term are unitary at the tree level. On the other hand, as it was shown previously
deflection has the ‘‘wrong sign’’ within the context of three-dimensional quadratic gravity.
addition of a topological massive term to the latter ‘‘repairs’’ the aforementioned sign. Is w
mentioning that ‘‘antigravity’’ is possible in the context of three-dimensional quadratic Che
Simons gravity.33

To conclude we raise two interesting questions:
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~i! Is it possible that gravity’s rainbows and quadratic gravity theories can coexist wit
conflict in any dimension?

~ii ! Is the photon propagation dispersive in the framework of three-dimensional quadratic
ity with a Chern–Simons term such as in four-dimensional quadratic gravity? These i
will be discussed elsewhere.
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We study the set of invariants CZ@E. Zakhary and J. Carminati, J. Math. Phys.42,
1474~2001!# for the class of space–times whose Ricci tensors do not possess a null
eigenvector. We show that all cases are completely backsolvable in terms of sets of
invariants from CZ. We provide algebraically complete sets for each canonically
different space–time. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1418427#

I. INTRODUCTION

In a previous paper1 we introduced a new set of polynomial Riemann invariants CZ, satisfy
the minimum degree property, which was claimed to be ‘‘determining.’’~The various new defini-
tions which are used here were introduced in the previous article.1 In particular, we shall use the
term ‘‘complete’’ to mean ‘‘algebraically complete’’ when referring to sets of invariants.! The main
purpose of this article and a sequel will be to rigorously establish this fact. This will be ach
with the use of a ‘‘backsolving’’ technique. Moreover, we will explicitly give algebraically co
plete sets of invariants for each canonically different space–time. Essential to our approach
notion of ‘‘maximally backsolvable,’’ which is the ability to backsolve, with a given set of inva
ants, for all of the theoretically possible, ‘‘independent,’’ Riemann curvature information, i.e
call a set of invariants ‘‘maximal’’ if it contains all of the theoretically possible~not necessarily all!
curvature information from the Riemann tensor, once all of the possible remaining tetrad fre
which can act on the curvature components, is completely used up. It follows that such a m
set must be determining and vice versa. Also, we need to further distinguish when a maxim
containsall of the information in the Riemann tensor and when it does not. We call a s
invariants ‘‘curvature complete’’ if it containsall of the independent information that is in th
Riemann tensor and complete backsolving is then achievable. Clearly, curvature complete
maximal but not vice versa.

Regarding explicitly giving algebraically complete sets of invariants for each canoni
different space–time, we will show that this is always possible by choosing certain subsets
We will, in general, not give explicit solutions of the independent curvature components in
of our invariants as in many cases this is not possible since the resulting polynomial expre
are very large and of high degree. As was shown previously,1 for some Segre and Weyl types n
all of the information that is in the Riemann tensor is in its second order polynomial invari
Hence, complete backsolving is not always possible for these cases but maximal backs
should always, at least in principle, be achievable with an algebraically complete set of inva
Note, obviously, that ‘‘completely backsolvable’’ implies ‘‘maximally backsolvable’’ but not v
versa.

a!Electronic mail: jcarm@deakin.edu.au
4920022-2488/2002/43(1)/492/16/$19.00 © 2002 American Institute of Physics
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Our backsolving procedure is carried out, in almost all cases, in the Ricci canonical fr
corresponding to the different Segre types~and general Petrov type!. We note that the backsolving
for the Ricci ~or Weyl! components only in terms of the pure Ricci~or pure Weyl! invariants, in
their respective canonical frames, has been previously done by Carminati and McLenagha2 and
Zakhary.3

Regarding our method of proof, after having established that a set of invariants is maxim
determining by backsolving and if necessary using the index theorem, we then check that w
retained the minimum possible number of invariants@i.e., that it cannot be further reduced~in
number4 of invariants! and still achieve the same ‘‘measure’’5 of backsolving#. It follows that once
this is done, we have established that the set is algebraically complete. In cases where co
backsolving has been achieved~i.e., we have curvature complete sets!, which is for all of class A
~see below!, the ‘‘minimal number’’ property is established by simply observing that the num4

of invariants is the same as the number4 of unknown functions in the curvature components~after
all of the possible remaining tetrad freedom, which can act on the curvature compone
completely used up!.

Since the backsolving method yields, in general, nonunique solutions, this could le
significantly different space–times and/or Petrov types. A full investigation of this issue is pla
for the future. However, our main concern in this article and a future paper~as was in Ref. 1! is
centered on how much algebraically independent information that is in the Riemann ten
present in its polynomial invariants and the backsolving technique introduced is achieving

Any Segre type falls into one of two classes: class A, in which the Ricci tensor doe
possess a null eigenvector, and class B, in which the Ricci tensor possesses a null eigenve
we shall show in this article and a future paper, all space–times in class A are always com
backsolvable~CB!, while space–times in class B are completely backsolvable except for sp
cases~excluding the trivial Segre type@~1,111!#!. These exceptional cases will be designated
‘‘not ~generally! completely backsolvable’’~NCB!.6 We will also show, in a future paper, that the
is a geometric link between the NCB space–times in class B and the alignment of the eigenv
of the Ricci tensor with the repeated principal null directions~PNDs! of the Weyl tensor. In this
article, we will consider only those Segre types in class A.

Recall, the CZ set consists of the following invariants:1

RªgabgcdRacdb,

w1ª
1
6CABCDCABCD,

w2ª
1
6CABCDCCD

EFCEFAB,

r 1ª
1
3FABȦḂFABȦḂ,

r 2ª
1
6FABȦḂEABȦḂ,

r 3ª
1

12EABȦḂEABȦḂ,
~1!

m1ªCABCDFCD
ĊḊFABĊḊ,

m2ªC~AB
EFCCD)EFFAB

ĊḊFCDĊḊ,

m3ªCABCDFAEȦḂFB
EȦĊFCFĊḊFD

FḊḂ ,

m4ªCAB
CDFCD

ȦḂC̄ ȦḂ
ĊḊFAB

ĊḊ,

m5ªC (AB
CDCEF)CDC̄ ȦḂĊḊFABĊḊFEFȦḂ,

m6ªCAB
CD CCD

EFFEF
ȦḂC̄ ȦḂ

ĊḊC̄ ĊḊ
ĖḞFAB

ĖḞ,
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where

EAB
ĊḊª2FA

EḞ(ĊFBEḞ
Ḋ) . ~2!

For future reference, we give, in Table I the relations between the various sets. Furth
give other tables~Tables II and III!7–9 which summarize the syzygies for the different Petrov a
Segre types of the Weyl and Ricci tensors, respectively.

II. RICCI CANONICAL FRAMES

In this section we will set up the canonical frames for the different Segre types using H
approach.10 Our analysis is somewhat more detailed than Hall’s in that we give more exp
descriptions of the canonical forms together with the remaining tetrad freedom for each
Briefly, a local real null tetrad$ l a,na,xa,ya%, with l a andna being null vectors andxa andya being
spacelike vectors, is introduced on the space–time manifoldM . The only nonvanishing inne
products arel ana51 andxaxa5yaya521. In this case the completeness relation takes the f

gab5 l anb1nal b2xaxb2yayb . ~3!

We note that the Newman–Penrose~NP! complex null tetrad$ l a,na,ma,m̄a% is related to the
above tetrad via the relationma5(1/A2)(xa1 iya).

The covariant Ricci tensor with componentsRab can be written as

Rab52R1l (anb)1R2l al b1R3nanb12R4l (axb)12R5l (ayb)12R6n(axb)

12R7n(ayb)12R8x(ayb)1R9xaxb1R10yayb . ~4!

TABLE I. Relations between sets.

CZ
set

Equivalent invariants in

ZC set~Ref. 8! CM set ~Ref. 9!

R R R

w1 I 1
6w1

w2 J 1
6w2

r 1 I 6
1
3r 1

r 2 I 7
1
3r 2

r 3 I 8
1
3r 32

1
12r 1

2

m1 K m1

m2 L m22
1
3w1r 1

m3 2M ¯

m4 M1 m3

m5 M2 m52
1
3w1m̄1

m6 ¯ ¯

TABLE II. The Weyl syzygies.

Petrov types Syzygies

I ¯

II, D w1
35w2

2

III, N, O w15w250
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The mixed Ricci tensor with componentsRa
b can be represented as a linear transformat

R:Tp(M )→Tp(M ) with matrix Ra
b .

The classification of the Ricci tensorR depends on the following general results due
Churchill:11

~i! There always exists a two-dimensional subspace ofTp(M ) which is an invariant two-space
of R.

~ii ! If V is an invariant two-space ofR, then so is the two-space orthogonal toV.
~iii ! R has two distinct spacelike eigenvectors.
~iv! R has a null invariant two-space⇔R has a null eigenvector.

It follows that the canonical forms of the Ricci tensor naturally split into two different classe~as
previously stated!: class A, the Ricci tensor has no null eigenvectors, and class B, the Ricci t
has a null eigenvector. Below, we summarize the results of our investigation for class A.

For later use, we present the transformations of the null tetrad, Weyl and Ricci compone
the following compact form:

X85PXP̄T, C85JCJT, F85JFJ̄T,

where

X5F l m

m̄ n G , P5F A B

C DG , C5F C0 C1 C2

C1 C2 C3

C2 C3 C4
G ,

F5F F00 F01 F02

F10 F11 F12

F20 F21 F22
G , J5F A2 2AB B2

AC AD1BC BD

C2 2CD D2 G ,

andAD2BC51.

A. Class A: The Ricci tensor has no null eigenvectors

1. PP type I, Segre type [1,111]:

Canonical form of Rab :

Rab52r1l (anb)1r2~ l al b1nanb!2r3xaxb2r4yayb ,

with

TABLE III. The Ricci syzygies.

Ricci
degeneracy Segre types Syzygies

$1111% @1,111#, @ZZ̄,11# ¯

$112% @1,1~11!#, @~1,1!11#,

@ZZ̄,~11!#, @2,11#
r 2

2(4r 1
326r 1r 31r 2

2)5r 3
2(3r 1

224r 3)

$22% @~1,1!~11!#, @2,~11!# r 25r 350
$13% @1,~111!#,

@~1,11!1#, @~2,1!1#, @3,1#
r 2

25r 1
3 ,r 35r 1

2

$4% @~3,1!#, @~2,11!#,
@~1,111!#

r 15r 25r 350
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r2Þ0, r2Þr4 , r16r2Þr3 , r16r2Þr4 .

Inner products:

Rabl
b5r1l a1r2na , Rabn

b5r2l a1r1na , Rabx
b5r3xa , Raby

b5r4ya .

Eigenvectors: la1na, l a2na, xa, ya.
Eigenvalues:r11r2 , r12r2 , r3 , r4 .
Canonical form of Ricci componentsFab :

F005F2252 1
2r2Þ0,

F115
1
8~r31r422r1!,

F025F205
1
4~r32r4!Þ0,

F015F1250,

with

4F11
2 Þ~F006F02!

2.

Remaining tetrad freedom:None.

2. PP type I, Segre type [ZZ ,̄11]:

Canonical form of Rab :

Rab52r1l (anb)1r2~ l al b2nanb!2r3xaxb2r4yayb ,

with

r2Þ0, r3Þr4 .

Inner Products:

Rabl
b5r1l a2r2na , Rabn

b5r2l a1r1na , Rabx
b5r3xa , Raby

b5r4ya .

Eigenvectors: la1 ina, l a2 ina, xa, ya.
Eigenvalues:r11 ir2 , r12 ir2 , r3 , r4 .

Canonical form of Ricci componentsFab :

F0052F225
1
2r2Þ0,

F115
1
8~r31r422r1!,

F025F205
1
4~r32r4!Þ0,

F015F1250.

Remaining tetrad freedom:None.

3. PP type D, Segre type [1,1(11)]:

Canonical form of Rab :

Rab52r1l (anb)1r2~ l al b1nanb!2r3xaxb2r3yayb ,
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with

r2Þ0, r16r2Þr3 .

Inner products:

Rabl
b5r1l a1r2na , Rabn

b5r2l a1r1na , Rabx
b5r3xa , Raby

b5r3ya .

Eigenvectors: la1na, l a2na, xa, ya.
Eigenvalues:r11r2 , r12r2 , r3 , r3 .

Canonical form of Ricci componentsFab :

F005F2252 1
2r2Þ0, F115

1
4~r32r1!, F015F025F1250,

with

4F11
2 ÞF00

2 .

Remaining tetrad freedom:Spatial rotations:D5Ā, AĀ51, B5C50.

4. PP type D, Segre type [ ZZ̄,(11)]

Canonical form of Rab :

Rab52r1l (anb)1r2~ l al b2nanb!2r3xaxb2r3yayb ,

with

r2Þ0.

Inner Products:

Rabl
b5r1l a2r2na , Rabn

b5r2l a1r1na , Rabx
b5r3xa , Raby

b5r3ya .

Eigenvectors: la1 ina, l a2 ina, xa, ya.
Eigenvalues:r11 ir2 , r12 ir2 , r3 , r3 .

Canonical form of Ricci componentsFab :

F0052F225
1
2r2Þ0, F115

1
4~r32r1!, F015F025F1250.

Remaining tetrad freedom:Spatial rotations:D5Ā, AĀ51, B5C50.

5. PP Type O, Segre Type [1,(111)]:

Canonical form of Rab :

Rab52r1l (anb)1r2~ l al b1nanb!2~r12r2!~xaxb1yayb!,

with

r2Þ0.

Inner products:

Rabl
b5r1l a1r2na , Rabn

b5r2l a1r1na , Rabx
b5~r12r2!xa ,

Raby
b5~r12r2!ya .
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Eigenvectors: la1na, l a2na, xa, ya.
Eigenvalues:r11r2 , r12r2 , r12r2 , r12r2 .

Canonical form of Ricci componentsFab :

F0052F115F2252 1
2r2Þ0,

F015F025F1250.

Remaining tetrad freedom:3-d spatial rotations SO~3!: D5Ā, C52B̄, AĀ1BB̄51.

At this point, we would like to compare our canonical forms with those as given by MacIn
et al.12 and Joly and MacCallum.7 Specifically, apart from changes due tol↔n interchange, our
work differs from theirs in thatF11 could be zero for Segre types@1,111#, @ZZ̄,11#, @1,1~11!# and
@ZZ̄,~11!# ~and also@2,11# and@~1,1!11#!, whereas they report thatF11 is necessarily nonzero fo
these types.

III. COMPLETE BACKSOLVING

In this section, we will prove that the CZ set is determined for class A by explicitly show
that complete backsolving is always possible for each Segre type, for certain selected s
chosen from CZ. These subsets are all algebraically complete since they are all curvature co
and a simple count4 shows that they are, in each case, the smallest possible sets. Most
computations were done with the algebraic computing system Maple.

A. Segre type †1,111‡

In this case, the algebraically complete set of invariants is$R,w1 ,w2 ,r 1 ,r 2 ,r 3 ,m1 ,m2 ,m3%
and we will now show that complete backsolving is always possible, at least in principle
begin with the backsolving for the Ricci componentsFab . In our canonical frame, the Ricc
invariants are

r 15 2
3~F00

2 1F02
2 12F11

2 !,

r 252F11~F00
2 2F02

2 !,

r 35 1
3~F00

4 22F00
2 F02

2 18F00
2 F11

2 18F02
2 F11

2 1F02
4 !.

Since the Jacobian which is given by64
9 J, where

J5F00F02~F001F0212F11!~F001F0222F11!~F002F0212F11!~F002F0222F11!

is always nonzero, it follows that the Ricci invariantsr 1 , r 2 , r 3 are always backsolvable forFab .
To facilitate the backsolving of the Weyl componentsCa , we make the following substitu

tions:

C05x1y, C15u1v, C35u2v, C45x2y.

The Weyl and mixed invariants then take the form

w15 1
3~x22y224u214v213C2

2!,

w252C2u222C2v22C2
322u2x14yuv22v2x1C2x22C2y2,

m152~F00
2 24F11

2 1F02
2 !C214F00F02x,
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m2522C2
2 F02

2 18C2
2F11

2 22C2
2F00

2 1 16
3 F11

2 v22 4
3F02

2 v22 4
3F00

2 v22 16
3 F11

2 u2

1 4
3F02

2 u21 4
3F00

2 u228F00v
2F0228F00u

2F022
8
3F11

2 x21 8
3F11

2 y2

1 2
3F02

2 x22 2
3F02

2 y21 2
3F00

2 x22 2
3F00

2 y218C2F00F02x,

m352~4F00
2 F11

2 12F00
2 F02

2 14F02
2 F11

2 2F00
4 2F02

4 !C2216F00F02F11
2 x.

We begin by noting that the system$m1 ,m3% which contains only the Weyl variablesx and
C2 has Jacobian equal to28J which is nonzero. Hence, we may regardx andC2 as ~locally!
implicit functions ofm1 andm3 andFab ~which in turn are determined by the Ricci invariants!.
Next, we solvew1 for u2 and use this equation to eliminateu from m2 . We can always solve this
resulting equation forv2, since its coefficient is nonzero. Finally, after solvingw2 for 4yuv and
squaring, we substitute the solutions foru2 and v2 into this expression to obtain a polynomi
equation of degree 6 iny with the coefficients being polynomials inx, C2 , Fab , and invariants.
This polynomial can always be solved fory, since the coefficient ofy6 is J/(F00F02)Þ0.

B. Segre type †ZZ̄,11‡

For this Segre type, the complete set of invariants is the same as that for@1,111#, and the
backsolving follows virtually the same procedure, providing the following substitutions:C05x
1y, C15u1v, C35 i (v2u), C45y2x are used instead of the previous ones.

C. Segre type †1,1„11…‡

For this Segre type, the Ricci canonical frame is determined up to a spatial rotation. A
appropriate stage, we will use this remaining tetrad freedom to simplify the Weyl component
will show that in all subcases complete backsolving can be achieved.

We begin with the backsolving for the Ricci componentsFab . In our canonical frame, the
independent Ricci invariants are

r 15 2
3~F00

2 12F11
2 !,

r 252F00
2 F11.

Since the JacobianJ5 8
3F00(F0022F11)(F0012F11)Þ0, it follows that the Ricci invariants

r 1 , r 2 are always backsolvable forFab .
Case 1:C0Þ0: In this case, we may use the tetrad freedom to makeC0 real. Further, we

shall need to treat the cases whereC350 separately.
Case 1A:C3Þ0: We now show that the complete set is$R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m2 ,m4%. We

begin by expressing the invariants in this frame.

w15 1
3~C0C424C1C313C2

2!,

w252C1C2C32C2
32C0C3

22C1
2C41C0C2C4 ,

m152C2~F00
2 24F11

2 !,

m25 2
3~F00

2 C0C412F00
2 C1C3112F11

2 C2
224F11

2 C0C423F00
2 C2

228F11
2 C1C3!,

m45F00
2 C4C̄4116F11

2 C2C̄21F00
2 C0

218F00F11C3C̄312F00
2 C2C̄218F00F11C1C̄1 .

m1 can always be solved forC2 sinceF00
2 24F11

2 Þ0. We can always solvew1 and m2 to get
C15C1 /C3 andC45C4 /C0 , whereC1 , C4 are given byFab , C2 and invariants. Substituting
these expressions intow2 we get the quadratic polynomial equation
                                                                                                                



form

ines

us

n for
that

500 J. Math. Phys., Vol. 43, No. 1, January 2002 Carminati, Zakhary, and McLenaghan

                    
c21~w222C1C22C4C21C2
3!c1C1

2C450

wherec5C0C3
2. This can always be solved forc in terms ofFab , C2 and invariants. Substi-

tuting C35(c/C0)1/2 into m4 , we get a quartic polynomial equation inC0 , which can always be
solved forC0 since the coefficient ofC0

4 is F00
2 (cc̄)1/2Þ0.

Case 1B(i):C350 & C4Þ0: In this case, the complete set is$R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m4%. This
is established as follows. The non-Ricci invariants, when expressed in this frame, take the

w15 1
3~C0C413C2

2!,

w25C0C2C42C2
32C1

2C4 ,

m152C2~F00
2 24F11

2 !,

m45F00
2 C4C̄4116F11

2 C2C̄21F00
2 C0

212F00
2 C2C̄218F00F11C1C̄1 .

Again, m1 can always be solved forC2 sinceF00
2 24F11

2 Þ0. We can always solvew1 andw2 to
get

C1
25C0~3C2w124C2

32w2!/@3~w12C2
2!# and C453~w12C2

2!/C0Þ0.

After solving the invariantm4 for C1C̄1 and squaring, we substitute the expressions forC1
2 , C̄1

and C4 to get a polynomial equation of degree 8 inC0 with coefficients being polynomials in
Fab , C2 and invariants. The leading term of this polynomial is 3F00

4 (C2
22w1)C0

8 . SinceC4

Þ0, the coefficient ofC0
8 is nonzero and consequently the polynomial algebraically determ

C0 for suitably restricted values of the invariants.
Case 1B(ii):C35C450: In this case, the complete set is$R,w1 ,r 1 ,r 2 ,m4 ,m5%. To prove

this, we consider the non-Ricci invariants, which in this frame become

w15C2
2,

m4516F11
2 C2C̄21F00

2 C0
212F00

2 C2C̄218F00F11C1C̄1 ,

m552F00
2 C0

2C222F00
2 C2

2C̄228F00F11C1C̄1C222F00
2 C0C1

2216F11
2 C2

2C̄2 .

w1 can always be solved forC2 . We eliminateC1 andC̄1 from m4 andm5 to obtain a polyno-

mial in C0 in the following manner. First, we eliminate the productC1C̄1 from m4 andm5 and

solve for C1
2. Then, we solvem4 for C1C̄1 , square this result and substitute in the previo

expression forC1
2. The resulting condition is a polynomial~bi-cubic! of degree 6 inC0 .

C0
6F00

6 12F00
4 ~2C2F00

2 C̄22m4256C2F11
2 C̄2!C0

41F00
2 ~4C̄2

2C2
2F00

4

24F00
2 C̄2C2m4164F00

2 C̄2
2C2

2F11
2 1256C2

2F11
4 C̄2

21m4
2148F11

2 C2m̄5

164C2F11
2 C̄2m4148F11

2 m5C̄2!C0
2216F11

2 ~C2m41m5!~m4C̄21m̄5!50.

Since the last term in the polynomial condition is negative definite, it has a positive solutio
C0

2. ThusC0 is ~implicitly ! determined in terms of the invariants and, therefore, we conclude
all of the Ricci and Weyl components are now determined~implicitly and nonuniquely! in terms
of the invariants.

Case 2:C050 and C1Þ0: In this case, we may use the tetrad freedom to makeC1 real.
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Case 2A:F11Þ0 or C4Þ0: In this case, the complete set is$R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m4%. To
show this, we begin by expressing the invariants in this frame:

w15 1
3~3C2

224C1C3!,

w252C1C2C32C2
32C1

2C4 ,

m152C2~F00
2 24F11

2 !,

m45F00
2 C4C̄4116F11

2 C2C̄218F00F11C3C̄312F00
2 C2C̄218F00F11C1

2.

m1 can always be solved forC2 sinceF00
2 24F11

2 Þ0. Using the invariantsw1 , w2 andm1 we
obtain

C25m1/@2~F00
2 24F11

2 !#, C35A3 /C1 , C45A4 /C1
2

whereA353(C2
22w1)/4 andA45(C2

323C2w122w2)/2.
Substituting these expressions intom4 we get the bi-cubic polynomial equation

8F00F11C1
62@m422~F00

2 28F11
2 !C2C̄2#C1

418F00F11A3Ā3C1
21F00

2 A4Ā450.

For suitably restricted values of the invariants, this polynomial equation can be solved forC1 .
Case 2B:F115C450: The complete set is$R,w1 ,w2 ,r 1 ,m6%. As before, we show this by

first expressing the invariants in this frame:

w15 1
3~3C2

224C1C3!,

w252C1C2C32C2
3,

m652F00
2 ~4C1

2C3C̄322C1C3C̄2
212C1

422C1C2
2C̄31C2

2C̄2
212C3

2C̄3
2!.

Eliminating the productC1C3 betweenw1 and w2 yields the equationC2
323w1C222w250,

which always determinesC2 in terms ofw1 and w2 . Next, we solvew1 for C3 to obtainC3

53(C2
22w1)/(4C1). Substituting these results into the expression form6 yields the following

polynomial condition which is quadratic inC1
4:

256C1
8F00

2 232~2m629w̄1w1F00
2 2C2

2F00
2 C̄2

213w̄1C2
2F00

2 13C̄2
2w1F00

2 !C1
4

181F00
2 ~w12C2

2!2~w̄12C̄2
2!250.

For suitably restricted values of the invariants, this polynomial equation can be solved forC1 .
Case 3:C05C150, and C3Þ0: In this case, we may use the tetrad freedom to makeC3

real.
Case 3A:F11Þ0 or C4Þ0: We will now show that the complete set

$R,w1 ,r 1 ,r 2 ,m4 ,m5%. We begin by expressing the invariants in this frame:

w15C2
2,

m4516F11
2 C2C̄21F00

2 C4C̄412F00
2 C2C̄218F00F11C3

2,

m552F00
2 C4C̄4C222F00

2 C2
2C̄228F00F11C2C3

222F00
2 C̄4C3

2216F11
2 C2

2C̄2 .

w1 determinesC2 . Combiningm4 andm5 we obtain the following rational expression forC̄4 :
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C̄45~2C2m4224C3
2C2F00F112m526C2

2C̄2F00
2 248C2

2C̄2F11
2 !/~2F00

2 C3
2!.

Substituting this equation and its complex conjugate into the expression form4 we obtain the
bi-cubic

32C3
6F11F00

3 14F00
2 ~2C2F00

2 C̄22m41160C2F11
2 C̄2!C3

4124F00F11~12C2
2F00

2 C̄2
2

196C2
2F11

2 C̄2
224C̄2C2m41m̄5C21C̄2m5!C3

21~48C̄2
2C2F11

2 22C̄2m4

16C̄2
2C2F00

2 1m̄5!~6C2
2C̄2F00

2 22C2m41m5148C2
2C̄2F11

2 !50,

which determinesC3 .
Case 3B:F115C450: The complete set is$R,w1 ,r 1 ,m6% since the invariants in this fram

are

w15C2
2,

m652F00
2 ~C2

2C̄2
212C3

4!,

which always determineC2 andC3 .
Case 4:C05C15C350: In this case, ifC4Þ0, we may use the tetrad freedom to makeC4

real. The invariants in this frame are

w15C2
2,

m4516F11
2 C2C̄21F00

2 C4
212F00

2 C2C̄2 ,

which always determineC2 andC4 . Hence the complete set is$R,w1 ,r 1 ,r 2 ,m4%. Note that if
C450, thenw1 determinesC2 ~andm4 is dependent!.

D. Segre type †ZZ̄,„11…‡

The backsolving analysis for this Segre type is virtually identical to that for Segre
@1,1~11!# except for minor sign differences.

E. Segre type †1,„111…‡

For this Segre type, it is easier to use the Weyl canonical frame. The Ricci components f
Segre type, in general, are3 F00562a2, F01562ab, F02562b2, F1156(ag1bb̄), F12

562bg, andF22562g2 ~with same sign all through! wherea andg are real,b is complex and
0<bb̄,ag. The only independent Ricci invariant isr 154(ag2bb̄)2, therefore,g5(2bb̄
1Ar 1)/(2a). Note that, in this case,a cannot equal zero.

1. Segre type [1,(111)], Petrov type I:

For this Petrov typew2
2Þw1

3. In our Weyl canonical frame, the only nonzero Weyl comp
nents areC2 and C05C4 whereC0

2Þ9C2
2. The Weyl invariants in this frame arew15 1

3(C0
2

13C2
2) and w25C2(C0

22C2
2). The Jacobian of this system of equations is2

3C0(C0
229C2

2)
Þ0 and, hence, it is backsolvable forC0 andC2 .

We will now show that the complete set is$R,w1 ,w2 ,r 1 ,m4 ,m5%. The mixed invariants in
this frame are

m454~C0b̄4C̄016C0a2b2C̄216C2a2b̄2C̄01C0b4C̄016C2C̄2a2g21C0C̄0g4

16C2b2C̄2b̄216C2b2C̄0g2124C2abC̄2b̄g16C0b̄2C̄2g21C0a4C̄0!,
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m558~4C̄2agbb̄1C̄2b̄2b21C̄2a2g21C̄0b2g21C̄0a2b̄2!C0
218C2~6a2b2C̄21C̄0g4

1C̄0b41C̄0b̄416b̄2C̄2g21C̄0a4!C0224C2
2~4C̄2agbb̄1C̄2b̄2b21C̄2a2g2

1C̄0b2g21C̄0a2b̄2!.

After eliminatingg using the Ricci invariantr 1 , and some simple recombining, these equ
tions reduce to

16~ q̄4C01C016q̄2C2!~6q2C̄21q4C̄01C̄0!a8132q̄Ar 1q~3C21q̄2C0!~C̄0q213C̄2!a6

1~24r 1q̄2q2C̄0C0124r 1C0q̄2C̄224u4124r 1C2q2C̄0!a418C0C̄0r 1
3/2qa2q̄1C0C̄0r 1

2

50, ~5!

8q̄2~6q2C̄21C̄0q41C̄0!a418q̄Ar 1q~C̄0q213C̄2!a212r 1C̄0q21u550, ~6!

where the nonzero term (3C22C0)(3C21C0) has been cancelled from Eq.~6! and whereq
5b/a andu4 andu5 are defined by

u45m426r 1C̄2C2 ,

m55u5~3C22C0!~3C21C0!12C2m4218r 1C̄2C2
212r 1C̄2C0

2 .

Solving Eq.~6! for q4 and substituting it into Eq.~5! yields

16q̄Ar 1C0q~ q̄21!~ q̄11!~ q̄211!~C̄0q213C̄2!a61~24C̄2q̄4C0r 1120q̄4C0r 1C̄0q2

212C2q̄2u524C0r 1C̄0q222q̄4C0u524u4q̄222C0u5!a428C0C̄0r 1
3/2qa2q̄3

1C0C̄0r 1
2q̄250. ~7!

Finally, making one more variables change$ f 5q2,h5qq̄a2% Eqs.~6! and ~7! become

~48f C̄218C̄0f 218C̄0!h218Ar 1f ~C̄0f 13C̄2!h1 f ~2C̄0r 1f 1u5!50 ~8!

and

16Ar 1C0~ f̄ 21!~ f̄ 11!~C̄0f 13C̄2!h31~24u4 f̄ 22C0u5124r 1C0 f̄ 2C̄2120C0r 1C̄0f f̄ 2

212C2 f̄ u524C0r 1C̄0f 22C0u5 f̄ 2!h218C0C̄0r 1
3/2h f̄2f 1C0C̄0r 1

2 f̄ 2f 50. ~9!

Next we compute the resultant of Eqs.~8! and ~9! with respect tof to obtain the consistency
condition

21024r 1C0
2~ f̄ 21!2~ f̄ 11!2~3C̄22C̄0!~3C̄21C̄0!h62512C0

2r 1
3/2~ f̄ 21!~ f̄ 11!~5 f̄ 221!

3~3C̄22C̄0!~3C̄21C̄0!h51~384r 1C0 f̄ 3C̄2u4164u4
2 f̄ 2116128C̄2

2C0
2r 1

2 f̄ 2

132C0
2u5

2 f̄ 2116C0
2u5

21384C̄2C0r 1u4 f̄ 2192C̄2C0
2r 1u51384C2 f̄ 2u5u4164C̄0

2C0
2r 1

2

164C0u5 f̄ 3u4116C0
2u5

2 f̄ 41192C2 f̄ 3u5
2C01192C2 f̄ u5

2C011152r 1C0 f̄ 3C̄2C2u5

223040r 1
2C0

2 f̄ 4C̄2
211152r 1C0

2 f̄ 2C̄2u52192r 1C0
2 f̄ 4C̄2u511152C̄2C0r 1C2 f̄ u5
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1576C2
2 f̄ 2u5

212624C̄0
2C0

2r 1
2 f̄ 421664C̄0

2C0
2r 1

2 f̄ 2164u4 f̄ C0u5!h4

232f̄Ar 1~218r 1C2u5C0C̄226r 1u4C0C̄22u4C0u5244r 1
2 f̄ 3C̄0

2C0
22 f̄ 3C0

2u5
2

112r 1 f̄ 3C̄2C0
2u5254r 1 f̄ 2C̄2C0C2u522 f̄ u4

22 f̄ C0
2u5

2218f̄ C2
2u5

223 f̄ 2C0u5u4

2144r 1
2 f̄ C̄2

2C0
2212f̄ C2u5u4218r 1 f̄ 2C̄2C0u429 f̄ 2C2u5

2C01360r 1
2 f̄ 3C̄2

2C0
2

23C2u5
2C0112r 1

2 f̄ C̄0
2C0

2236r 1 f̄ C̄2C0
2u5!h328 f̄ r 1~36r 1 f̄ 3C̄2C0

2u523C2u5
2C0

1360r 1
2 f̄ 3C̄2

2C0
223 f̄ 3C0

2u5
22u4C0u5252r 1

2 f̄ 3C̄0
2C0

2221f̄ 2C2u5
2C022 f̄ u4

2

212f̄ C2u5u423 f̄ C0
2u5

227 f̄ 2C0u5u4218f̄ C2
2u5

214r 1
2 f̄ C̄0

2C0
2236r 1 f̄ 2C̄2C0u4

2108r 1 f̄ 2C̄2C0C2u5248r 1 f̄ C̄2C0
2u5272r 1

2 f̄ C̄2
2C0

2!h228 f̄ 2C0r 1
3/2~36r 1

2C0 f̄ 2C̄2
2

28r 1
2C0 f̄ 2C̄0

2112r 1C0C̄2 f̄ 2u5218r 1 f̄ C̄2C2u526r 1 f̄ C̄2u426r 1C̄2C0u526 f̄ u5
2C2

2C0u5
2 f̄ 22u5

2C022 f̄ u5u4!h2 f̄ 2r 1
2C0~24r 1

2C0 f̄ 2C̄0
2112r 1C0C̄2 f̄ 2u52C0u5

2 f̄ 2

26 f̄ u5
2C222 f̄ u5u42u5

2C0!50. ~10!

Finally, we take the resultant with respect tof̄ of Eq. ~10! with the complex conjugate of Eq
~8! to obtain, after some nonzero common factors have been cancelled,

4 294 967 296r 1
2~C023C2!2~C013C2!2~3C̄22C̄0!2~3C̄21C̄0!2h16

1193 273 528 320r 1
5/2~C0

2C̄2
229C2

2C̄2
21C2

2C̄0
2!~22C0

2C̄0
219C0

2C̄2
2

281C2
2C̄2

219C2
2C̄0

2!h152134 217 728r 1~C023C2!~C013C2!~3C̄22C̄0!~3C̄21C̄0!

3~23276C̄2
2r 1

2C42129 160C̄2
2r 1

2C2
21216C̄2

2C2ū5r 1224C̄2C0
2r 1u51216C̄2r 1u5C2

2

136C̄2r 1C2u41364C̄0
2C0

2r 1
223276r 1

2C2
2C̄0

2224C2C̄0
2ū5r 12u4

2!h141¯50.

This is a polynomial of degree 16 inh. The leading term is

4 294 967 296r 1
2~C023C2!2~C013C2!2~3C̄22C̄0!2~3C̄21C̄0!2h16,

which is always nonzero. Hence, with suitable restrictions on the values of the invariants
polynomial can, in principle, determineh. Onceh is determined, the remaining variablesa,b and
g are determined and complete backsolving has been achieved.

2. Segre type [1,(111)], Petrov type II:

For this Petrov typew2
25w1

3 and C2
25w1 . In our Weyl canonical frame, the only nonze

Weyl components areC2 andC451. In this case, the complete set is$R,w1 ,r 1 ,m4 ,m5%. To show
this we consider the mixed invariants, which in this frame become

m452~2a4112C2a2b̄2112C̄2a2b2172b2b̄2C2C̄2136Ar 1bb̄C2C̄213r 1C2C̄2!,

m552~4C2a4212C2
2a2b̄2124C2C̄2a2b2272b2b̄2C2

2C̄2236Ar 1bb̄C2
2C̄223r 1C2

2C̄2!.

Eliminating b̄ from m4 andm5 yields
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a216C2b250

or

12C2a41C2C̄2a2b22C2m42m550

or both.
Eliminating b̄ from m4 andm̄5 and substituting the resulting expression forb into these two

equations yields, respectively,

144r 1C2C̄2a45m4
2112r 1C2m̄5136r 1C2

2C̄2
2

or

186 624r 1C2C̄2a121¯50,

which is a polynomial of degree 12 ina. Separately, each of these polynomials can determina
and henceb; then r 1 determinesg.

3. Segre type [1,(111)], Petrov type III:

For this Petrov typew15w250. In our Weyl canonical frame, the only nonzero Weyl co
ponent isC351.

The complete set is$R,r 1 ,m4 ,m5%. The mixed invariants in this frame take the form

m4564a2bb̄18Ar 1a2,

m5532a3b.

Eliminating b and b̄ from m4 , m5 andm̄5 we get

128Ar 1a6216m4a41m5m̄550,

which can be solved fora. Thenb andg are determined bym5 andr 1 , respectively, and complet
backsolving has been achieved.

4. Segre type [1,(111)], Petrov type D:

For this Petrov typew15C2
2 which determinesC2 . In our Weyl canonical frame, the onl

nonzero Weyl component isC2 . We will use the remaining tetrad freedom to simplify the Ric
components.

Case 1:bÞ0: In this case, we can makeb51/a ~real!. We will show that the complete set i

$R,w1 ,r 1 ,m4%. Note thatm5
25w1m4

2. Substitutingg5(2bb̄1Ar 1)/(2a) and b51/a into the

mixed invariantm4 we getm456C2C̄2(a4r 1112a2Ar 1124)/a4. This determinesa and hence,
b and theng.

Case 2:gÞ0 and b50: In this case, we can makea51, and hence,g5 1
2Ar 1. The complete

set is$R,w1 ,r 1%. Note thatm5
25w1m4

2536w1
2w̄1r 1

2.

5. Segre type [1,(111)], Petrov type N:

For this Petrov typew15w250. In our Weyl canonical frame, the only nonzero Weyl co
ponent isC451. We can use the remaining tetrad freedom to makeb50 ~sinceaÞ0).

In this case,m454a4, m550 andg5Ar 1/(2a). Hence, the complete set is$R,r 1 ,m4% and
complete backsolving is always possible.
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6. Segre type [1,(111)], Petrov type O

For this Petrov typew15w250 andC i50. We can use the tetrad freedom to makea5g and
b50, i.e., the Ricci canonical frame as well. In this case,m45m550 anda25 1

4r 1 . Hence, the
complete set is$R,r 1%.

IV. SUMMARY OF RESULTS

In Table IV, we give the complete sets of invariants for the different Segre types~with
‘‘essential’’ special cases! whose Ricci tensors do not have a null eigenvector. The ‘‘essen
special cases in this table, although expressed in the Ricci canonical frame, are linked to in
geometric properties. IfC05C450, then it follows that the two PNDs of the Weyl tensor lie
the two-plane spanned~real or complex! by the two eigenvectors, which lie in the timelike blad
$ l a,na%, of the Ricci tensor. IfC05C150, then the Weyl tensor is algebraically special and
repeated PND lies in the two-plane spanned~real or complex! by the two eigenvectors, which lie
in the timelike blade$ l a,na%, of the Ricci tensor. Similarly forC35C450. Finally, if F1150,
then the sum of the eigenvalues of the eigenvectors in the timelike blade$ l a,na% equals twice the
eigenvalue of either eigenvector in the spacelike blade$xa,ya%.

V. CONCLUSION

In this second article on the problem of algebraic completeness for the invariants o
Riemann tensor, we have exhaustively analyzed all canonically different space–times in wh
Ricci tensor does not have a null eigenvector. In each case, we have given algebraically co
sets. It follows from this work, at least for these cases~class A!, that the set CZ is determining, a
previously claimed.1 In a sequel paper, we will present a complete analysis of all Segre t
which correspond to the cases when the Ricci tensor has a null eigenvector~class B!. Interestingly,
we will then show that complete backsolving is, in general,13 not always possible when there is a
alignment between an eigenvector of the Ricci tensor with the repeated principal null directio
the Weyl tensor~excluding@~1,111!#!. As previously mentioned, we suspect that some space–t
within such classes will, in general, prove to be more difficult to distinguish as inequivalent.
final point, there still remains to fully clarify the geometric meaning of the invariants, princip
the mixed ones. This will be the main focus of future work in this area.

1E. Zakhary and J. Carminati, J. Math. Phys.42, 1474~2001!.
2J. Carminati and R. G. McLenaghan, unpublished work.
3E. Zakhary, Ph.D. thesis, Monash University, 1995.
4Equivalent real.
5Number~equivalent real! of curvature unknowns solved for in terms of the invariants and remaining, if any, curva
components.

TABLE IV. The complete sets for the different Segre types with no null eigenvector.

PP
type

Segre
type

Conditions
~in Ricci canonical frame!

Complete sets
~and subsets thereof!

I @1,111#

@ZZ̄,11#

$R,w1 ,w2 ,r 1 ,r 2 ,r 3 ,m1 ,m2 ,m3%

C05C45F1150 $R,w1 ,w2 ,r 1 ,m6%
D @1,1~11!#

@ZZ̄,~11!#

$C05C150 and~C4Þ0 or F11Þ0!%
or $C35C450 and~C0Þ0 or F11Þ0!%

$R,w1 ,r 1 ,r 2 ,m4 ,m5%

Otherwise $R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m2 ,m4%

O @1,~111!# $R,w1 ,w2 ,r 1 ,m4 ,m5%
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6However, if further information like the additional structure of the Weyl tensor is supplied, then a NCB case
become a CB one.

7G. C. Joly and M. A. H. MacCallum, Class. Quantum Grav.7, 541 ~1990!.
8E. Zakhary and C. B. G. McIntosh, Gen. Relativ. Gravit.5, 539 ~1997!.
9J. Carminati and R. G. McLenaghan, J. Math. Phys.32, 3135~1991!.

10G. S. Hall, J. Phys. A9, 541 ~1976!.
11R. V. Churchill, Trans. Am. Math. Soc.34, 784 ~1932!.
12C. B. G. McIntosh, J. M. Foyster, and A. W. C. Lun, J. Math. Phys.22, 2620~1981!.
13Special cases do exist which allow complete backsolving. Thus an alignment between an eigenvector of the Ric

with a repeated principal null vector of the Weyl tensor is a necessary but not sufficient condition to prevent co
backsolving. More details on this aspect will be provided in a sequel paper.
                                                                                                                



nd
field

have

-
by

non-
ed by
rity,
eories.

se the
erse.
in the
stars,
early

the
ection

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 1 JANUARY 2002

                    
On solitons with nonminimally coupled scalar fields
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~Received 17 January 2001; accepted for publication 4 October 2001!

A nonsingular static and spherically symmetric space–time endowed with nonmini-
mally coupled scalar field described by the actionS5*d4 x (A2g/2)(R
2gabf ,a f ,b2j R f2) is presented for the case in which the coupling parameter
j.1/6. This solitonlike space–time is obtained using the technique of conformal
transformation that associates solutions produced by ordinary scalar fields in gen-
eral relativity with those with nonminimally coupled scalar fields. The dynamical
stability of the solution is examined through the Galerkin method. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1421060#

I. INTRODUCTION

Nonminimally coupled scalar fields are characterized by the following action integral,

S5E d4 x
A2g

2
~R2gab f ,a f ,b2j R f2!, ~1.1!

where we are adopting 8p G5c51 andj is the coupling constant between the scalar field a
the gravitational field. This constant is a free parameter, since particle theory and quantum
calculations are not able to provide a definitive value. Nonminimally coupled scalar fields
been taken into consideration in the inflationary cosmological scenario,1 with black holes and the
No-Hair theorem,2 and recently connected with gravitational collapse.3 Some authors in the realm
of inflationary scenario have investigating possible constraints onj based in the recent observa
tional results from the cosmic microwave background.4 There are two exceptional cases given
j50 and that corresponds to minimal coupling andj5 1

6 for the conformal coupling.
We report here an interesting result concerning the existence of a soliton solution with

minimally coupled scalar field. In classical field theories a soliton configuration is characteriz
a finite distribution of matter confined to a finite region of space for all time, without singula
and, in general is associated to the existence of conserved Noether currents in the th
However, there are soliton solutions without an explicit conserved Noether current.5 The interest
on such solitonic configurations relies on the problem of dark matter in cosmology, becau
visible and baryonic matter can account for only a small fraction of the total mass of the Univ
Then, a possible solution of this problem is to consider that the dark matter is nonbaryonic
form of soliton configuration such as scalar soliton stars, oscillating soliton stars, boson
Q-balls6 and nontopological solitons that can arise in a second-order phase transition in the
universe.7

The plan of this work is as follows. In Sec. II we present the solution obtained by
technique of conformal transformation together with the discussion of its basic properties. S

a!Electronic address: otavio@dft.if.uerj.br
b!Electronic address: henrique@fnal.gov
5080022-2488/2002/43(1)/508/11/$19.00 © 2002 American Institute of Physics
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III deals with the problem of stability of the soliton under small radial perturbations, in which
we have used the Galerkin method. Finally, Sec. IV is devoted to our conclusions.

II. THE CONFORMAL TRANSFORMATION AND THE SOLITONLIKE SOLUTION

The starting point is to consider static and spherically symmetric space–times endowe
a nonminimally coupled scalar field. For the sake of simplicity, we make use of the confo
transformation technique that allows us to transform the action~1.1! in the Einstein frame. This is
done if the metric on the Einstein frame,g̃mn , is related to the metric of the physical framegmn by

g̃mn5V2 gmn , ~2.1!

whereV2512j f2. Also, we introduce the scalar fieldF such that

F5E A12j ~126 j! f2

12j f2 d f. ~2.2!

Introducing~2.1! and ~2.2! into the action~1.1!, we obtain

S5E d4 x
A2g̃

2
~R̃2g̃ab F ,a F ,b!, ~2.3!

where F is the minimally coupled scalar field in the Einstein frame. Therefore, once a g
solution is known in the Einstein frame, it is possible to determine the solution in the phy
frame from relations~2.1! and ~2.2!. Also, it is worthwhile mentioning that the conformal tran
formation does not modify the symmetries present in the space–time. There is a vast lite
about applications of conformal transformations that is not restricted to nonminimally cou
scalar fields, but it can be also used for general scalar-tensor theories and for nonlinear the
gravity.8

To generate static and spherically symmetric space–times with nonminimally coupled
fields, we consider the most general asymptotically flat solution for static and spherically
metric space–time found by Janiset al.9 and also by Wyman:10

d s̃252w2 a d t21w22 a d r21r 2 w2 (12a) ~d q21sin2 q d w2!, ~2.4!

F56 A2 ~12a2! ln w, ~2.5!

wherew5A12 2 M /r , M is a positive quantity, and the parametera is restricted to 0<a,1,
since the mass measured by an observer at infinity~the Bondi mass!, a M , must be positive. The
casea51 corresponds to the Schwarzshild space–time. The above solution has a naked
larity at r 52 M if 2 M,r ,`, or atr 50 if 2`,r ,0, which is in accordance with the No-Ha
theorem concerning the absence of a black hole with scalar charge. Bekenstein11 was the first to
present the method of conformal transformation applied to the casej5 1

6, and generate all classe
of static and spherically symmetric solutions for conformally coupled scalar fields. The main
was a solution representing a black hole with a nontrivial scalar field, which in principle th
ened the No-Hair theorem. However, later it was shown12 that the Bekenstein solution is actual
unstable under small radial perturbations. In order to complete the analysis connected w
issue, Bekenstein and Saa2 have proved that there is no black hole configurations with gen
nonminimally coupled scalar fields. Then, the question is: why would we be interested in se
ing for any new solution for static and spherically symmetric space–times with nonminim
scalar fields, if, except for the Bekenstein black hole, all remaining solutions have naked
larities? If this information is true, then our analysis would not make sense, but we are go
show that there exist a class of solitonlike configurations generated by nonminimally co
scalar fields.

Let us consider the casej. 1
6. Integrating Eq.~2.2!, the resulting relation betweenF andf is
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F52A6 j21

j
sinh21 Aj ~6 j21! f1A3

2
lnUA6 j f1A12j ~126 j! f2

A6 j f2A12j ~126 j! f2U . ~2.6!

From above, it is not possible to derive an expressionf5f(r ) after substituting Eq.~2.5! into Eq.
~2.6!, except for the conformally coupled casej5 1

6. This difficulty is overcome if we considerf
as the new ‘‘radial’’ coordinate, so thatr 5r (f), and consequentlyw5w(f). Therefore, the line
element in the physical frame can be written as

d s252
w2 a

~12j f2!
d t21

w22 a

~12j f2! S d r

d f D 2

d f21S~f!2 ~d q21sin2 q d w2!, ~2.7!

whereS(f) is the proper radius of the two-spheres given by

S~f!25
r 2 ~f! w2 (12a)

12j f2 , ~2.8!

with r (f)5 2 M /@12w2 (f)#. The function forw(f) is determined after substituting Eq.~2.5!
into Eq. ~2.6!. For sake of completeness, we have

w~f!5S 6
A6 j f1A11j ~6 j21! f2

2A6 j f1A11j ~6 j21! f2D g

expS 22 gA6 j21

6 j
sinh21~Aj ~6 j21! f! D ,

~2.9!

where g5 6)/2A12a2. The solutions can be divided into typesA(B) according the sign
1(2) taken on the rhs of the above equation. Indeed, both types of solutionA and B are
equivalent due the symmetry of the Eqs.~2.7!–~2.9! under the changef→2f andg→2g. For
our proposal, we shall consider typeA solutions only. Another very important quantity is the loc
mass functionm defined by

12
2 m

S
5gmn S ,m S ,n5V2 w2 a S d r

d f D 22 S d S

d f D 2

, ~2.10!

with m being interpreted as the effective gravitational mass inside the sphere of radiusS.
At this point a complete analysis is obtained after accomplishing the following items~a!

behavior of the proper areaS2 taking into account thatugu>)/2 ~this corresponds to 0<a
,1); ~b! behavior of the mass function;~c! determination of singularities and regular eve
horizons; and~d! behavior of radial null rays. As already mentioned, it was shown in prev
works that regular event horizons are present only forj5 1

6 andg51 ~or a5 1
2) corresponding to

the Bekenstein black hole.
In order to study the behavior of the proper areaS(f)2, the scalar field is restricted to assum

values inside the intervalufu,1/Aj, necessary for the positiveness of the conformal factorV2

512j f2. Thus, for all ugu>)/2, exceptugu51, the proper area varies fromS2 (ufu51/Aj)
50 to S2 (ufu50)5` for ugu.1, or is infinity in both extremes, namely,S2 (ufu51/Aj)5`
andS2 (ufu50)5`, if )/2<ugu<1. In both cases, the space–time is asymptotically flat and
a naked singularity atufu51/Aj, since invariants likeR, Rmn Rmn diverge in this region. Consid
ering now the caseg51 ~type A solution!, the scalar field varies in the following intervals:f*
<f<0 and 0<f<1/Aj, wheref* ,21/Aj is a solution ofw(f* )251 ~Ref. 13! distinct from
f50. Both domains off correspond to different solutions, and we are interested in the solu
of the first interval (f* <f<0). The proper areaS2 becomes unbounded atf50 or f5f* ,
having a minimum value distinct from zero forfP@f* ,0# as shown in Fig. 1. If one inspects th
behavior of the conformal factorV2512j f2, it is immediate to conclude that forf521/Aj,
V2 vanishes, and inside the intervalf* <f<21/Aj, V2 becomes negative, but the metr
remains finite and keeps its signature.14 This fact can be confirmed analytically after substituti
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a5 1
2 ~or g51! into Eq. ~2.8!, for instance, where forf521/Aj both w(f) and the conformal

factorV2512j f2 vanish, but the quantityw(f)/(12j f2) remains finite and positive; also fo
f* ,f,21/Aj, both terms of are negative, rendering, again, a positive quantity. The same
is valid for all metric coefficients. We have studied the behavior of the invariants likeR, Rmn Rmn,
Rmntb Rmntb andWmntb Wmntb, whereWmntb is the Weyl tensor, and the result is depicted in F
2. As we can see, such invariants reach to a finite maximum value at the minimum of the p
area S2 and tend to zero as the proper area approaches to infinity, either forf→0 and f
→f* . A better understanding of the structure of the space–time is obtained analyzing the b
ior of radial light rays, which is done properly using the coordinates (t,S). After a straightforward
calculation, it follows

d S

d t
56

1

2 Aw ~12j f2!
S 113 w2

2
2

3 j ~12w2! ufu

A6 A12j ~126 j! f2D , ~2.11!

FIG. 1. Plot of the proper radiusS given by Eq.~2.8!, where we have assumedj51.0 andM51.0. In this casef*
'21.596 441 702 3 that characterizes the asymptotically flat region together withf50. Here the minimum of the prope
radius occurs forf'21.020 491.
                                                                                                                



limits,

all
s

in
zon of

512 J. Math. Phys., Vol. 43, No. 1, January 2002 O. C. Castellani and H. P. de Oliveira

                    
where the signal1(2) denotes outgoing~ingoing! radial light rays. In Fig. 3, the plot of the
above equation is shown, making clear that an initially, say, ingoing ray (d S/d t,0) becomes an
outgoing ray (d S/d t.0) after bouncing at the minimum of the proper area whered S/d t 50.
An interesting effect appears when the above expression is evaluated in both asymptotic
that is, forf50 we haveu d S/d t u51, and forf5f* , it follows u d S/d t u51/Aj f

*
2 21, such

that this ratio is always less than 1~indeed, we have shown numerically that this is true for
j. 1

6). Therefore, in the asymptotic region characterized byf5f* , the radial null ray behaves a
if it propagates in a medium with an effective ‘‘index of refraction’’n5Aj f

*
2 21. In the limit

j@ 1
6 the velocity of light approaches to 1~here with the units adoptedc51!, whereas forj

tending to 1
6 the velocity decreases, and in the exact limitj5 1

6 corresponding to the Bekenste
black hole, the velocity vanishes. This means that the light rays are frozen in the event hori
the black hole in which the proper radius has a finite value andf* 52`. The last quantity to be

FIG. 2. InvariantsR, Rmn Rmn, Rmntb Rmntb and Wmntb Wmntb versus the scalar fieldf are plotted forj51.0 andM
51.0. The maximum value of them occurs at the minimum of the proper radius and tends to zero for eitherf→f* and
f→0.
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studied is the local mass function defined in Eq.~2.10!, whose behavior is sketched in Fig. 4 fo
g51 andj. 1

6. According to it, the mass function is positive everywhere and has maximum fi
value at the minimum of the proper area.

III. STABILITY ANALYSIS AND THE GALERKIN METHOD

We will proceed with the discussion of the stability of the soliton under radial perturbat
For this we first consider the following general spherically symmetric line element

ds252en(t,r)dt21el(t,r)dr21eb(t,r)~du21sin2 u d w2!, ~3.1!

wherer is a suitable radial coordinate whose relations with the coordinater and the scalar field of
the background solution,f0 , will be given later. From now on the subscript ‘‘0’’ denotes th
quantities related to the static background solution described in the last section. The metric
tions and the scalar field are perturbations around the background configuration written as

FIG. 3. Behavior of d S/d t for radial light rays. The bounce take place atSmin , where d S/d t 50 for f
'21.020 491, with the choicej51.0. In the asymptotic limitf→f* '21.596 441 702 3,d S/d t →0.814 53.
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n5n0~r!1dn~ t,r!, l5l0~r!1dn~ t,r!,
~3.2!

b5b0~r!1db~ t,r!, f5f0~r!1df~r,t !.

The set of equations fordn, dl, db anddf is obtained after substituting the previous ansatz i
the field equations and collecting only linear terms in the perturbations. It is possible to dec
the equation fordf from the other perturbed functions, and afterwards to expressdn, dl anddb
in terms ofdf. Then, the stability/instability is actually determined by the behavior ofdf. In
order to perform the mentioned decoupling, we impose the following coordinate condition,12

dn12db5dl, ~3.3!

together withn012b05l0 , that is, the same condition is valid for the background metric.
We begin with the equation of motion of the scalar field generated by the action~1.1!

gamf ,a;m1h~f!gabfafm50, ~3.4!

FIG. 4. Behavior of the mass function forj51.0 andM51.0, showing that it is positive everywhere.
                                                                                                                



ether

r

o

of
be

of the

-
ite-
re one

itable

ary

with

515J. Math. Phys., Vol. 43, No. 1, January 2002 Nonminimally coupled scalar fields

                    
where

h~f!5
1

D

dD

df
52

j~126j!f

12j~126j!f2 ,

with D5A12j(126j)f2, were introduced as a matter of convenience. Note that ifj50 or j
5 1

6, D51 andh(f)50. Considering in the above equation the background scalar field tog
with the coordinate conditionn012b05l0 , it can be shown thatdf0 /dr 5const/D0. Then, in

the special casesj50,1
6 the radial coordinater is proportional do the scalar fieldf0 . Taking the

line element~3.1!, the ansatz~3.2! and the condition~3.3!, the following linearized equation fo
df is derived:

el02n0(df )̈2~df!922h~f0!f08~df!82S dh

df D
0

f0
2df50, ~3.5!

where prime and dot denote derivative with respect tor and t, respectively. The next step is t
introduce the functionc(r,t) by

df5
ce2 b0/2

D0
, ~3.6!

such that Eq.~3.5! becomes

]2c

]x2 1V~x!c5
]2c

]t2 , ~3.7!

where V(x)5 1
2e

22b0( 1
2b08

22b09) and x is a new variable related tor by dx/dr 5eb0. Also,
dx/df0 5eb0D0 , which provides a useful relation betweenf0 and x, since the background
solution is given in function off0 . In Fig. 5 the potential is plotted as a function off0 . As
expectedV(x(f0)) is a well behaved function, its maximum value occurs for the minimum
S(f0), and it vanishes atf05f* ,0 which characterizes the asymptotic flat regions. It can
shown that the these asymptotic regions correspond tox51`,2`, respectively. To Eq.~3.7!
suitable boundary conditions must be specified in order to determine the dynamical stability
soliton. We choose

c→0 for f0→0,f* . ~3.8!

In the sequence we use the Galerkin method15 to study the dynamical stability of the back
ground solution. This method is known in applications involving the derivation of fin
dimensional dynamical systems from approximations of infinite-dimensional systems, whe
of the most celebrated systems of this form is the one obtained by Lorenz.16 To begin with we
expressc as a finite sum of time-dependent modal coefficients multiplied by elements of a su
basis as

c5(
j 51

N

aj~ t !bj~f0!, ~3.9!

wherebj (f0)5A2/L sin jp(f02f* )/L , L5uf* u are the basis functions that satisfies the bound
conditions~3.8! and are orthonormal, or (bj ,bk)5*f

*

0 bj (f0)bk(f0)df05d jk . Substituting Eq.

~3.9! into Eq. ~3.7! and taking the inner product with each basis function, say,bk(f0), k
51,2,...,N, thef0 dependence will be removed by the spatial integration and we will be left
a set ofN coupled ordinary differential equations for the coefficientsaj (t). Then, after direct
calculation,
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(
j 51

N

aj~ t !F1

2 Ef
*

0 S df0

dx D 2S d2bj

df0
2 bk2

dbj

df0

dbk

df0
D df01~Vbj ,bk!G5äk~ t !. ~3.10!

The first term on the lhs was obtained by integration by parts after taking into account the re
betweenx andf0 , whereas the rhs is a consequence of the orthogonality condition. Note th

potential is expressed as a function off0 , or V(f0)5 1
2e

22b0( 1
2b822b9) with eb0(f0)5S2(f0)

given by Eq.~2.8!.
The evaluation of the integrals on the lhs of Eq.~3.10! is performed using the backgroun

solution of Fig. 1 in whichj51.0, M51.0 andf* '21.596 441 702 3. Choosing the truncatio
of order five (N55), the set of coupled ordinary differential equations is

ä1~ t !520.091 674 171 681 681 25a1~ t !20.036 715 247 928 300 85a2~ t !

10.152 808 191 765 106 3a3~ t !10.073 750 165 035 988 63a4~ t !

20.028 833 005 465 299 63a5~ t !,

ä2~ t !520.021 125 139 415 259 99a1~ t !20.182 175 598 496 4850a2~ t !

20.040 747 263 640 001 60a3~ t !10.277 739 497 569 803 4a4~ t !

10.113 557 063 854 599 9a5~ t !,

FIG. 5. PotentialV(f0) for j51.0 andM51.0.
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ä3~ t !50.057 469 035 104 788 86a1~ t !20.031 992 557 900 804 12a2~ t !

20.360 250 782 811 640 0a3~ t !20.071 039 065 011 462 57a4~ t !

10.446 499 972 214 607 3a5~ t !, ~3.11!

ä4~ t !50.022 063 739 688 377 25a1~ t !10.145 486 338 858 8478a2~ t !

20.056 014 320 562 388 30a3~ t !20.611 788 072 949 546 4a4~ t !

20.109 873 233 512 505 2a5~ t !,

ä5~ t !520.007 321 852 906 258 496a1~ t !10.049 500 537 610 535 84a2~ t !

10.274 359 783 320 026 4a3~ t !20.089 803 091 260 416 16a4~ t !

20.935 094 586 190 751 3a5~ t !,

where we have retained only those terms in the sum containing modal coefficients with ind
to 5. It is not difficult to show that the solution for each mode has the form ofekt, wherek is
found to be

61.060 072 109 542 642i , 60.835 466 769 461 132 2i , 60.466 451 337 306 448 5i ,

60.182 644 756 929 545 0i , 60.329 073 934 727 850 6i . ~3.12!

For higher-order truncations, the number of equations for the modal coefficients increases,
have verified thatk is always pure imaginary numbers. This result indicates that all mo
oscillate about the background solution, implying the stability of the solution under small r
perturbations.

IV. CONCLUSIONS

We have discussed a static solitonlike solution generated by nonminimally coupled
field. The solution was obtained using the technique of conformal transformation that relat
actions integrals~1! and ~4!. In addition, we have examined the problem of dynamical stab
under small radial perturbations, in which the Galerkin method was applied successfully
method allowed us to reduce Eq.~3.7! to a set of five coupled linear differential equations for t
temporal evolution of the perturbations provided that we have restricted ourselves to a trun
of order five in the decomposition~3.9!. The system has shown to be identical to a set of coup
harmonic oscillators whose characteristics frequencies are given by~3.12!, therefore indicating the
stability of the soliton under radial perturbations. As a matter of fact, the effect of higher-o
truncations is to increase the number of equations, but not change the nature of the system
of coupled harmonic oscillators. As a final remark, we point out the possibility of using
Galerkin method to study semi-analytically the behavior of nonlinear perturbations of eithe
soliton presented here or any other static configuration, as for instance, a boson star. In th
the resulting finite set of ordinary differential equations is no longer linear and a wealthy beh
is expected.
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On the structure of degenerate solutions of the Einstein
conformally invariant scalar system
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We address the question of the existence and construction of nontrivial, regular
solutions of the Einstein–conformally invariant massless scalar field equations,
i.e., solutions (g,F) satisfying (12aF2)Rmn5a(4¹mF¹nF22F¹m¹nF
2gmn¹sF¹sF), ¹m¹mF50, and additionally geometry and the scalar field are
regular across the degeneracy region defined as the zeros of (12aF2). Under the
assumptions~1! the solution~g,F! is minimally of classC3 and admits a hypersur-
face orthogonal, timelike Killing vector fieldj, and~2! relative to the three space-
like hypersurfaces perpendicular to the Killing field, the degeneracy region consti-
tute regular two-surfaces, and the induced positive definite three metric possesses a
degenerate Ricci, we show that the conformal system admits nontrivial, regular
across the degeneracy region solutions and we demonstrate that any such solution
necessarily admits an additional localG(3) group of isometries possessing two-
dimensional orbits of constant Gaussian curvature coinciding with theF5cons-
equipotential two surfaces. Those solutions exhibit similar properties as the Levi–
Civita–Ehlers–Kundt class of static solutions of Einstein’s vacuum equations. We
investigate this coincidence and in particular we probe the origin of the additional
local G(3) group of isometries exhibited by both classes of solutions. From the
partial differential equations point of view, both systems, i.e., conformal system as
well as the vacuum system, degenerate or become singular, the conformal system
along solutions subject toaF251 within the static region, the vacuum along
solutions subject toV5(2j•j)1/2→01. We demonstrate that as a consequence of
the singular nature of the dynamical equations, among all solutions possessing
degenerate Ricci in the open vicinity ofaF251, respectively,V→01, the only
regular across degeneracy region solutions are those characterized by a vanishing
York–Cotton tensor and, furthermore, such solutions necessarily admit an addi-
tional local G(3) group of isometries possessing two-dimensional orbits of con-
stant Gaussian curvature. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1427760#

I. INTRODUCTION

It is well known that then-dimensional conformally invariant generalization of the fl
Laplace or massless Klein–Gordon equation is provided by1

gAB¹A¹BF2
~n22!

4~n21!
RF50. ~1a!

If F is a solution of this equation andV is any smooth positive function, thenF̄5V12n/2F also

a!Electronic mail: zannias@ginette.ifm.umich.mx
5190022-2488/2002/43(1)/519/35/$19.00 © 2002 American Institute of Physics
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satisfies~1a! provided all geometrical quantities are formed using the conformal metricḡAB

5V2gAB . Augmenting the conformally invariant action functionalS@g,F# by the Einstein–
Hilbert term and specializing ton54 space–time dimensions, a theory involving a massless s
field F conformally coupled to the background scalar curvatureR is generated. The combine
action functional is given by

S@g,F#5E S 1

16pG
R2

1

12
F2R1

1

2
¹mF¹mF DA2g d4x. ~1b!

and yields, after some rearrangement, the following coupled system:

~12aF2!Rmn5a~4¹mF¹nF22F¹m¹nF2gmn¹sF¹sF!, ~1c!

¹m¹mF50, ~1d!

where in the abovea5k/658pG/6 stands for an ‘‘effective’’ coupling constant and all indic
involved are four-dimensional. Thus the concept of the conformally invariant scalar wave eq
~1a! leads to a system which is no longer conformally invariant and, moreover,~1c! and ~1d!
exhibit features that are absent wheneverF is minimally coupled to gravity. The presence of th
second derivatives on the right-hand side of~1c!, as well as the presence of the (12aF2) factor
on its left-hand side, are two notable features.

Bekenstein,2,3 by cleverly exploiting conformal techniques, was able to generate solution
the conformal equations starting from solutions of the minimally coupled equations. Addit
solutions and properties of solutions can be found in Refs. 4–9. The black hole sector
theory has been explored in Refs. 10–12, and in summary the theory admits no other cla
static black holes besides the familiar Schwartzschild class, Refs. 10 and 12 The stationar
hole sector has not been exploited in all details, but the circular sector contains only the
family.11 Solutions of cosmological interest have been presented in Refs. 2 and 13. Noakes,
14, has shown that~1c! and~1d! admit a well-posed initial value formulation, a property that is
asset for the theory. Despite all this activity, still the peculiar structure of Eqs.~1c! and~1d! raises
a number of questions begging for an answer. If~g,F! is a solution~1c! and ~1d!, then its Ricci
tensor fails in general to be semi positive definite i.e., ifl is an arbitrary smooth timelike or nul
vector field, thenRmnl ml n can have any sign. As consequence one cannot easily infer geo
incompleteness, formation of trapped surface, or, for a black hole space–time, a well-be
domain of outer communication.1,15 In short, the analysis of the global structure of space–tim
~M, g,F! with ~g,F! a solution of~1c! and~1d! is not a trivial issue. The present article primari
is focused on exploring consequences of the intriguing (12aF2) factor multiplying the left-hand
side of~1c!. If ~g,F! is a solution of~1c! and~1d! so that (12aF2) is vanishing but only locally,
then ~1c! shows that regularity of the simplest scalar invariantRmnRmn across zeros of (1
2aF2) requires a special relationship betweenF its first and second derivatives. But what is th
precise nature of such interrelationship guaranteeing regularity of~g,F! across zeros of (1
2aF2)?

If such solutions~g,F! exist ~and in fact exist!, then from the partial differential equation
point of view the system~1c! and ~1d! degenerates or becomes singular, in the sense tha
highest-order derivatives are nullified on the set of points where 12aF250. This latter set will
be referred to hereafter as the degeneracy region associated with the particular solution~g,F!.
Accordingly, an answer to the above-posed questions calls for an understanding of the reg
properties of solutions of~1c! and~1d! in the local vicinity of the degeneracy region. Such inqu
is also relevant in another respect that partially motivated the present work. As is well kn
Müller zum Hagen,16 some time ago, has shown that all static, minimallyC3 solutions of Ein-
stein’s vacuum equations are real analytic tensor fields within the static region. This anal
property follows from the fact that sufficiently regular vacuum metrics, whenever expressed
tive to a local harmonic chart, satisfy a second-order manifestly elliptic system of equa
Standard result of the so-called elliptic regularity theory then implies real analyticity for
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space–time metric. As it is shown in Ref. 17, Mu¨ller zum Hagen theorem extends to suitab
smooth static solutions of the nonvacuum Einstein’s equations provided the latter equations
degenerate anywhere within the static region. In that regard static solutions of the Einstein–K
Gordon, electrovacuum, or Dilaton gravity of classC3, or more generally of classC21m, 0,m
,1, exhibit the same analyticity property as their vacuum counterparts:17 both geometry and
matter fields are analytic within the static region of the space–time manifold. However, an e
sion of this analyticity property to solutions along which the dynamical equations degenerat
into obstacles and, in fact, establishing their analyticity~if it holds! is by no means a trivial
problem. The conformal system~1c! and ~1d! is perhaps the simplest set of equations exhibit
such behavior. It degenerates on static solutions (g,F) subject to the vanishing of (12aF2)
within the static domain. Thus an understanding of the behavior of solutions of~1c! and ~1d!
across degeneracies would be helpful in formulating a suitable extension of Mu¨ller zum Hagen
theorem encompassing also solutions along which the relevant equations degenerate.

For orientation purposes, it is worth mentioning here that degenerate set of equatio
encountered in other context as well. For instance, the ‘‘conformal vacuum Einstein equa
written in the ‘‘unphysical manifold,’’ degenerate on any solution which is asymptotically fla
future J 1, pastJ 2 or spacelike infinityi 0.18 Also the conformally rescaled vacuum Einste
equations degenerate on static, asymptotically Euclidean solutions in the vicinity of the po
infinity.19–21 Moreover, degeneracies in the Einstein equations may also occur away from
asymptotic regions. On numerous occasions the field equations written relative to a local c
nate chart exhibit such degeneracies.22 Analysis of the above-mentioned systems reveals
solutions along which a given set of equations degenerates may be smooth across degen
Friedrich, in Ref. 18, has shown that the ‘‘conformal vacuum Einstein equations’’ admit ana
solutions across degeneracies while the work of Beig and Simon, and also of Kundu,21 shows that
sufficiently smooth asymptotically flat, static, or stationary solutions of Einstein vacuum equ
with nonzero ADM mass are analytic in a vicinity of the point at infinity. The results of Refs
and 21 have been established via a ‘‘desingularization’’ procedure, i.e., via a process by
solutions along which the original equations become singular are shown to satisfy an effect
of regular equations. An analysis, then, of the latter system establishes the existence of
solutions across the degeneracy region. In brief, therefore, an analysis of solutions of a deg
system of equations possesses the challenge of constructing an effective set of regular eq
where one regains the full strength of the highest-order derivatives. However, and dependin
the structure of the original set, the effective equivalent set is not obvious and often re
considerable labor in constructing it.

The present article is focused on an analysis and properties of solutions (g,F) along which
the conformal equations~1c! and ~1d! degenerate. As far as we are aware, the only knowle
regarding the behavior of solutions of~1c! and~1d! near degeneracies is provided by the work
Ref. 6. In this work static, spherically symmetric, and asymptotically flat solutions of the co
mal system have been analyzed and those results are very illuminating within the present c
The conformal system admits the following classes of static, asymptotically flat, and sphe
symmetric solutions:6

ds252S 12
r 0

r D 2

dt21S 12
r 0

r D 22

dr21r 2~du21sin2 u dw2!, ~2a!

F52a21/2
r 0

r 2r 0
, r 0.0, ~2b!

ds252K2~r !dt21Q2~r !@dr21r 2~du21sin2 udw2!#, ~2c!
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K~r !5
1

2
~R~h21!~h13!/4h1R~h11!~h23!/4h!, Q~r !5

~r 2r 0!2

2r 2 ~R~32h!/2h1R~31h!/2h!,

~2d!

F~r !5a21/2
12R

11R
, R~r !5S r 1r 0

r 2r 0
D 4h/~h213!

, h.0.

However, the curvature of the above metrics exhibits diverse behavior. The curvature of~2a! and
~2b! is perfectly smooth across the zeros of the 12aF2, occurring atr 52r 0 clearly within the
static region. In fact,~2a! and~2b! are the only regular, asymptotically flat, spherical and anal
metric within the static region.6 On the other hand, the curvature of~2c! and~2d!, away from the
value h51, exhibits different behavior. Even though the factor 12aF2 admits roots~again at
r 52r 0!, the curvature diverges as those roots are approached. The paradigm of~2a!–~2d! suggests
that ~1c! and ~1d! admit solutions where the geometry and the fieldF are perfectly regular ove
zeros of (12aF2), but also solutions where the zeros of (12aF2) are accompanied by a
singular geometry. Moreover, the ‘‘majority’’ of static, spherically symmetric, and asymptotic
flat solutions of~1c! and~1d! are singular ‘‘across degeneracies,’’ one parameter family of sing
solutions versus isolated regular ones. Notice, however, that a third class, involving all those
with or without spherical symmetry, solutions where the factor (12aF2) is nowhere vanishing
within the static region is nota priori excluded. This class can be handled rather ‘‘straightf
wardly’’ and according two theorems established by Bekenstein23 can be put, via a conforma
transformation, into a correspondence with solutions of the Einstein–Klein–Gordon ma
minimally coupled to gravity equations or even static vacuum solutions of Einstein equatio

The discussion so far and, in particular, the existence of the regular class~2a! and~2b! shows
that ~1c! and~1d! admit at least one class of regular solution across degeneracies. Naturall
we ask: Do~1c! and~1d! admit other classes of solutions exhibiting the same regularity prope
as the class~2a! and ~2b!? If so, how one can construct them explicitly? In principle, the c
struction question can be addressed by taking advantage of the fact that the initial value
lation of the theory is well posed14 or casting~1c! and~1d! into a system of elliptic equations, onc
considerations are restricted to static solutions. Unfortunately, however, there are a num
technical difficulties that have to be surpassed first. Solutions of the initial value constrai
choice of boundary data for the elliptic system have to be first addressed and those steps a
means trivial tasks.

In the present article we shall adopt a method that bypasses the above-mentioned diffi
and it is tailored towards to the construction of degenerate solutions of~1c! and ~1d!. We shall,
however, restrict our considerations to the question of the existence and regularity proper
degenerate solutions (g,F) of ~1c! and~1d! admitting a hypersurface orthogonal timelike Killin
vector field. Since, moreover, very little is known about the connection between the regu
properties of degenerate solutions and the structure of zeros of the (12aF2) factor, we shall also
invoke some assumptions regarding the structure of the latter ‘‘zero set.’’ The hypersurfa
thogonal property of the Killing field allows us to project~1c! and~1d! along the local spacelike
hypersurfaces perpendicular to the Killing field, thus casting~1c! and ~1d! into an equivalent
system involving a positive definite metric, the redshift factor, and the scalar field as the
variables. Since the projected equations involve a positive definite metric, the eigenstructure
associated Ricci tensor is rather simple. We exploit this property and, in fact, the present ar
focused exclusively on the investigation of the structure of static solutions of~1c! and ~1d!
admitting a degenerate three Ricci tensor.24 Degeneracy on Ricci implies that any static solutio
of ~1c! and ~1d! satisfy a set of nontrivial integrability conditions. Those integrability conditio
have been analyzed in detail for the particular case that the redshift factor and the scalar fi
functionally related. This functional relation reduces considerably the complexity of the
equations and associated integrability conditions. The latter enable us to write an effective
regular equations satisfied by any solution of~1c! and ~1d! along which the conformal equation
degenerate. The study of this effective system allowed us to infer the local existence of so
                                                                                                                



ate the
-
clear
ss
l

f those
tein
nerates
ishes.
and the
ns of
of
in the
in the
en-

hi

rty
ling

d

itive

f the

523J. Math. Phys., Vol. 43, No. 1, January 2002 On the structure of degenerate solutions

                    
of ~1c! and ~1d! regular across degenerate regions. Moreover, we have been able to integr
effective equations and thus provide explicit solutions of~1c! and ~1d! regular across the degen
eracy regions. Their construction is discussed in detail in Sec. III. Since, as it will become
further below, all static solutions of~1c! and~1d! admitting a degenerate Ricci and regular acro
the degeneracy region necessarily admit a localG(3) group of isometries with two-dimensiona
orbits of constant Gaussian curvature, we devote some effort to understanding the origin o
additional local isometries. As a part of this effort in Sec. IV we turn our attention to Eins
vacuo equations. This vacuum set, written relative to a specific coordinate gauge, also dege
on any static solution approaching the regions where the magnitude of the Killing field van
We then compare the properties of degenerate classes of solutions of the two systems,
results of this section make contact with the Levi–Civita–Ehlers–Kundt class of static solutio
the vacuum Einstein equations.25,26 This contact furnishes further insights into the structure
solutions of the conformal system and those insights are discussed in Sec. IV as well as
concluding part of the article. As a byproduct, using the integration techniques developed
present work anab initio construction of the Levi–Civita–Ehlers–Kundt class of vacuum deg
erate solutions is also presented.

II. ON STATIC, REGULAR SOLUTIONS OF THE CONFORMAL EQUATIONS

We start by considering a space–time manifold (M ,g,F) with M a Ck, for some integerk,
k>4, connected, orientable, and paracompact manifold and (g,F) a solution of~1c! and ~1d!
admitting a timelike, hypersurface orthogonal, Killing vector fieldj. We restrict considerations to
‘‘classical solutions,’’ i.e., solutions of classCm, m>3, so that the field equations and Bianc
identities are pointwise well defined and, in this section, we disregard any (g,F) subject to an
everywhere constant scalar fieldF. Exploiting the timelike and hypersurface orthogonal prope
of j, a standard construction1 yields a set of local coordinates, referred to hereafter as Kil
coordinates, so that the space–time metric takes the form

ds25gmndxmdxn52V2dt21gabdxadxb. ~3a!

Relative to such coordinates a solution (g,F) of ~1c! and ~1d! satisfies

~12F2!~Rab2V21DaDbV!5~4DaFDbF22FDaDbF2gabD
cFDcF!, ~3b!

~12F2!DaDaV5VDaFDaF12FDaFDaV, ~3c!

VDaDaF52DaFDaV, ~3d!

where above and hereafter the effective coupling constanta has been absorbed in the fieldF. For
part of this article, it is convenient to work with (U,Lab) whereV5eU, gab5V22Lab instead of
(V,gab). Performing the local conformal transformationgab5V22Lab , the above equations lea
into the following equivalent system:

~12F2!~R̄ab22D̄aUD̄bU !54D̄aFD̄bF22FD̄aD̄bF22FD̄aFD̄bU22FD̄aUD̄bF

22LabD̄
cFD̄cF, ~4a!

~12F!2D̄aD̄aU5D̄aFD̄aF12FD̄aFD̄aU, ~4b!

D̄aD̄aF50, ~4c!

where (R̄ab ,D̄) stand for the Ricci tensor and covariant derivative computed using the pos
definite metricL.

We are interested in analyzing solutions (L,U,F) subject to the vanishing of the 12F2

factor within the static region. However, at this point, we know nothing about the structure o
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‘‘zero set,’’ i.e., the set defined by$xPM u12F250%, except that it is a closed subset ofM.27 Its
precise nature requires the advance knowledge of the solution itself and the existence of so
characterized by a topologically complicated zero set cannot bea priori excluded. We break this
circular state by first imposing conditions on$xPM u12F250% and subsequently investigat
whether~4a!–~4c! admits solutions compatible with such conditions. As we have also indicate
the Introduction, we shall also functionally relateU and the scalar fieldF and more precisely we
shall inquire whether the set~4a!–~4c! admits solutions satisfying

~a! the equipotential ‘‘surfaces’’ ofU andF coincide and
~b! with reference to the local (x1,x2,x3) coordinates covering thet5const spacelike hypersur

faces, the~local! level surface$(x1,x2,x3)u12F2(x1,x2,x3)50% is not a critical one, i.e.,
D̄aFuF251Þ0.

Condition ~a! implies thatU5U(F) and this relation eliminates the fieldU from ~4a!–~4c!,
yielding a slightly simpler system to work with. Even though the conditionU5U(F) is restric-
tive, nevertheless it sheds considerable light on the nature of degenerate solutions of~4a!–~4c!. In
the conclusion section, a few comments regarding the existence of solutions of~4a!–~4c! away
from this assumption will be made. Condition~b! ensures that each connected component of
local level surface$(x1,x2,x3)u12F2(x1,x2,x3)50% is a regular two-surface. The fact tha
D̄aFuF251Þ0 coupled with the differentiability assumptions onF implies that an open vicinity of
anyF251 equipotential surface is characterized by the absence of critical points and this pr
will be used heavily in the upcoming sections. In the alternative possibility, i.e., if~b! is not
imposed, then the local level surface$(x1,x2,x3)u12F2(x1,x2,x3)50% may admit critical
points.28 The analysis and properties of solutions of~4a!–~4c! near critical points is a rathe
delicate and difficult issue. Ultimately a complete understanding of the behavior of dege
solutions of~4a!–~4c! @or of ~1c! and~1d!# has to address that possibility. In the present article
gloss it over on the grounds that an understanding of solutions of~4a!–~4c! near critical points
would require altogether different techniques than those employed in the present work. W
however, hope to present such an analysis in the near future. For this section and unless ot
explicitly stated, all solutions of~3b!–~3d!, or equivalently of~4a!–~4c!, will be assumed to obey
conditions~a! and ~b! defined above.

We begin by first utilizing the relationU5U(F) combined with~4b! and ~4c!. After some
algebra, Eqs.~4b! and ~4c! imply

U~F!52
1

2 F ln~12F2!1C1 ln S 12F

11F D G1C2 , ~5a!

where (C1 ,C2) are arbitrary integration constants. Substituting this expression into~4a! and
tracing, we arrive at

~12F2!2R̄52~C1
221!D̄aFD̄aF, ~5b!

which, combined with condition~b!, implies that scalar curvatureR̄ is regular on anyF251
equipotential surface providedC1

251. Accordingly, regularity of the geometry onF251 implies
via ~5b! that R̄ must be vanishing in an open vicinity of anyF251 equipotential surface. Choos
ing for the momentC151, relation~5a! leads to

U~F!52 ln ~12F!1C2 , ~6a!

which is manifestly regular on and near any equipotential surface labeled byF521, but it fails
to be so on equipotential surfaces labeled byF51. The choiceC1521 leads to

U~F!52 ln ~11F!1C2 , ~6b!
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which now exhibits the ‘‘reverse’’ behavior, namely it is regular in the vicinity ofF51 but
singular on theF521 ones. Since, however, a singularU(F) implies singular space–time
geometry, it follows that all solutions of~1c! and ~1d! are singular, if they satisfy conditions~a!
and ~b! and at the same time both types of equipotential surfaces labeled byF51 andF521
coexist within the static region covered by the local Killing coordinates. Notice that sincej•j
52e2U, the above-mentioned singularities are timelike in character. Thus we restrict con
ations hereafter to the construction of solutions admitting only one type of equipotential su
taken without loss of generality to be described byF51. Substituting~6b! in ~4a!–~4c! combined
with R̄50 leads to

~12F2!R̄ab56D̄aFD̄bF22FD̄aD̄bF22LabD̄
cFD̄cF, ~7a!

D̄aD̄aF50. ~7b!

Solutions~L,F! of this system are characterized byR50 and, ifF takes the valueF51 some-
where within the localt5const spacelike hypersurface, then necessarily~7a! and~7b! degenerate
on such solutions. Furthermore, every regular solution (g,F) satisfies an important property: it
York–Cotton tensorRabc ~Ref. 29! satisfies

F~12F2!R̄abc54D̄bFR̄ca24D̄cFR̄ab22D̄dFR̄dcLba12D̄dFR̄dbLca , ~8a!

where we recall thatR̄abc is defined byR̄abc5D̄bR̄ca2D̄cR̄ba1 1
4(LabD̄cR̄2LacD̄bR̄). The deri-

vation of ~8a! proceeds via differentiation of~7a!, antisymmetrization, use of the Ricci identit
D̄aD̄bD̄cF2D̄bD̄aD̄cF5R̄abcdD̄

dF, and the fact that at three dimensions the Riemann tens
determined entirely by the Ricci curvature, i.e.,

R̄abcd5LacR̄db2LbcR̄da1LbdR̄ca2LadR̄cb1 1
2~LadLcb2LacLdb!R̄. ~8b!

Relation~8a! is satisfied by all regular solutions of~7a! and ~7b!, and this property is of funda
mental importance. As it has been derived here, it holds for every regular solution~L,F! of ~7a!
and~7b!, but in the sequel we shall use it as a consistency-integrability condition in the follo
sense: Let (L̄,F̄) be a smooth configuration consisting of a three Riemannian metricL̄ and a
scalar functionF̄. In order that this configuration satisfies~7a! and ~7b!, it is necessary that the
Ricci tensor ofL̄ and the gradient ofF̄ satisfy~8a!. However,~8a! constrains the Ricci curvatur
of L̄ and this constraint sheds considerable light onto the nature of potential solutions of~7a! and
~7b!. Moreover, ~8a! must hold true across theF51 equipotential surfaces, provided regul
acrossF51 solution exists. Validity of~8a! across degeneracies demands a fine balance bet
the Ricci and the gradient ofF̄. In particular, whenever~8a! is applied to metrics possessing
degenerate Ricci, it imposes strong constraints on the behavior of the Ricci eigenvalues
turn, those constraints will help us to identify the classes of regular metrics across theF51
equipotential surface from those that are singular.

With those comments in mind, we first inquire whether in a local vicinity of theF51
equipotential surface, the system~7a! and ~7b! admits solutions~L,F! characterized by a degen
erate Ricci tensor. More precisely, we look for solutions~L,F! so that in an open vicinity ofF
51 their Ricci is given by

R̄ab5l̄~3F̂aF̂b2Lab!, ~9a!

whereF̂5F̂a]/]xa5@D̄aF/(D̄aFD̄aF)1/2#]/]xa and l̄ is a scalar field, a measure of the Ric
eigenvalues. It is implicitly assumed in~9a! that l̄ is not identically vanishing and is at least o
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classC1. The special case of an identically vanishingl̄ will be discussed at the end of this sectio
while the most general case of a degenerate Ricci will be addressed in Sec. VI. Combinin~9a!
with Eq. ~7a! one finds

D̄aD̄bF[lF~3F̂aF̂b2Lab!, ~9b!

where hereafterlF is defined by

lFª
2FaFa2~12F2!l̄

2F
. ~9c!

Thus D̄aD̄bF viewed as a real symmetric matrix admitsDaF also as its distinct eigendirectio
with corresponding eigenvalue determined byl̄ and the gradient ofF. Notice that had we as
sumed that a solution~L, F! existed so that in the open vicinity ofF51 the real symmetric
matrix D̄aD̄bF is given by~9b!, then~7a! and~7b! would imply Ricci degeneracy over the sam
region and thus there is no loss in generality by assuming degeneracy in the Ricci.

With regard to the system~9a!–~9c! one notices the following: If (L,F,l̄) is any regular
solution of ~9a!–~9c! so thatF51 is a regular two-surface, then this~L,F! necessarily satisfies
~7a! and~7b! and, moreover,~7a! and~7b! degenerates on such solutions. Indeed, substituting
right-hand sides of~9a! and~9b! into the left- and right-hand sides of~7a! and~7b!, respectively,
yields an equality, provided~9c! holds. But if ~9c! holds, then multiplying~9a! by (12F2) and
using ~9c! we obtain

~12F!R̄ab5~12F2!l̄~3F̂aF̂b2Lab!

5~12F2!
2~FcFc2FlF!

12F2 ~3F̂aF̂b2Lab!

56D̄aFD̄bF22FD̄aD̄bF22LabD̄
cFD̄cF. ~9d!

where the above string of equalities holds away fromF51, but by continuity arguments they ar
also valid acrossF51. Thus particular solutions of the manifestly regular system~9a! and ~9b!,
subject toF51 locally, also satisfy the system~7a! and ~7b! and, moreover, the latter syste
degenerates on such solutions. Accordingly the system~9a!–~9c! offers the means of constructin
degenerate solutions of~7a! and~7b! and, in fact, one could construct all degenerate solution
~7a! and~7b! subject of course to the satisfaction of~9a!. Indeed, if~7a! and~7b! admits a regular
solution~L, F! so that its Ricci tensor is given by~9a!, then~L,F! satisfy~9a! and~9b! for a lF

determined by~9c!. Regularity of the geometry on and aroundF51 implies R̄abR̄ab56l̄2 and
that l̄ is necessarily bounded. But for suchl̄ Eq. ~7a! implies thatD̄aD̄bF is also degenerate with
a corresponding eigenvaluelF related tol̄ via ~9c! from which it follows that~L,F! satisfy
~9a!–~9c!.

In view of those remarks, we now turn our attention to the local properties of solutions~L,F!

satisfying~9a!–~9c!. At first, if (L,F,l̄) is any such solution, then the Ricci identity applied
D̄aF in view of ~9b! and ~8b! implies

~3F̂bF̂c2Lbc!D̄alF2~3F̂aF̂c2Lac!D̄blF13lF~F̂bD̄aF̂c2F̂aD̄bF̂c!

5l̄~FdFd!1/2~F̂bLac2F̂aLbc!, ~10a!

where, in arriving at the above results, use of the following easily verifiable relation obtained
~9b! has been made:
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D̄aF̂b5lF

F̂aF̂b2Lab

~FcFc!
1/2 . ~10b!

Substituting~9a! in ~8a! it follows that the right-hand side of the latter is identically zero and th
necessarilyL is locally conformally flat. Consistency would requireD̄aR̄cb2D̄cR̄ab50 and this
relation demands that the ‘‘eigenvalue’’l̄, Fa , andLab ought to satisfy

R̄abc[~3F̂cF̂a2Lca!D̄bl̄2~3F̂bF̂a2Lba!D̄cl̄13l̄~F̂cD̄bF̂a2F̂bD̄cF̂a!50. ~10c!

Relations~10a! and~10c! constitute a set of tensorial consistency relations required to be sat

by lF , l̄, D̄aF as well asLab . Indeed, starting from~10c! and after contracting it withF̂b we
find

R̄abcF̂
a[2~F̂cD̄bl̄2F̂bD̄cl̄ !50. ~11a!

Utilizing this relation back inRabc we obtain

R̄abc[LbaD̄cl̄2LcaD̄bl̄13l̄~F̂cD̄bF̂a2F̂bD̄cF̂a!50. ~11b!

Forming nowR̄abcL
ab it yields

R̄abcL
ab[2D̄cl̄13l̄F̂cD̄

bF̂b50, ~11c!

while, on the other hand, contracting~11b! with F̂c we get

R̄abcF̂
c[LbaF̂

cD̄cl̄2F̂aD̄bl̄13l̄D̄bF̂a50, ~11d!

where in arriving at the above equation use of the fact thatF̂a is a unit geodesic field has bee
made a conclusion that follows directly from~10b!. Although in this and the next section we sha
not make use of~11b!, nevertheless it is an important relation and its significance will beco

clear in Sec. VI. Contacting~11c! with any arbitrary smooth vector fieldY perpendicular toF̂c

yields

R̄abcL
abYc[2YcD̄cl̄50, ~12a!

a relation implying that the gradient ofl̄ is parallel toFa. On the other hand, formingR̄abcL
abFc

and rearrangement yields

4FcD̄cl̄

3l̄
2

FaD̄a~FcFc!

FcFc

50, ~12b!

from which we infer

FcD̄cF logS l̄

~FcFc!
3/4D G50. ~12c!

However, this relation yields

l̄5A2~FcFc!
3/4, ~12d!

andA2 a nonvanishing function constant along the integral curves ofFc]/]xc. Substituting~12d!
back into~9a! and applying the contracted Bianchi identity onR̄ab we eventually conclude with
the help of~12a! thatA is constant. Thus the satisfaction of the integrability conditions~10c! leads
to the ‘‘specification’’ of l̄ @and thus also oflF via ~9c!#. Let us now turn our attention to
condition~10a!. As it stands, it involvesl̄ andlF , but eliminatinglF using~9c! and straightfor-
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ward but long algebra shows that~10a! reduces to~9a!. Accordingly, satisfaction of~10a! and~9c!
implies satisfaction of~9a!. Notice, however, if condition~9c! is nota priori imposed, then~10a!
yields the following differential constraint relatingl̄ andlF :

2FaD̄alF26lF
2 52l̄~FcFc!. ~13!

This constraint implies that not every solution of~9a! and~9b! is necessarily a solution of~7a! and
~7b!, but rather, and as we have discussed above, only those solutions of~9a! and ~9b! subject
additionally to satisfaction of~9c! are solutions of~7a! and~7b!. Of course~9c! satisfies~13! as it
can easily verified.

Thus the analysis of the integrability conditions~10a! and ~10c! leads us to the following
problem: Construct all~L,F! satisfying in the vicinity of theF51 equipotential surface the
following equations:

R̄ab5A2~FcFc!
3/4~3F̂aF̂b2Lab!, ~14a!

D̄aD̄bF5
1

2F
„FcFc2~12F2!A2~FcFc!

3/4
…~3F̂aF̂b2Lab!. ~14b!

Accordingly, the problem of the existence and properties of degenerate solutions of~7a! and~7b!
is now shifted in constructing solutions of the above regular effective system of equations
acterized by the property that the level surface~or surfaces! defined byF51 are regular two-
surfaces. Here the relatively ‘‘simple’’ structure of the effective system~14a! and~14b! is mainly
due to the special choice of Ricci shown in~9a!. In latter sections we shall move away fro
metrics obeying~9a! but still characterized by a degenerate Ricci. Again we shall construc
effective system of equations but the latter system would be much more complex in compar
~14a! and~14b!. For the moment we turn our attention to the integration of the system~14a! and
~14b!.

III. THE LOCAL BEHAVIOR OF GEOMETRY AND FIELD NEAR FÄ1

The construction of all Riemannian metrics and fields satisfying~14a! and~14b! is not a trivial
task since this system is a set of partial differential equations and at this point no spatial sy
tries have been imposed~and, in fact, will not be imposed!. Nevertheless, we shall be able
integrate it thanks to the insights furnished by the integrability conditions exploited in the pre
section. At first~14b!, or equivalently~10b! coupled with the regular nature of theF51 surface,
implies that the components of the extrinsic curvature of the family of two-surfacesF5c, c
P(12e,11e), are proportional to their intrinsic two-metricg (2) and that is an important insight
In order to take advantage of it, we shall cast Eqs.~14a! and ~14b! into an equivalent first-orde
system describing the ‘‘evolution’’ of the intrinsic metricg (2) and components of the extrinsi
curvatureK across the equipotential surfaces. Such a procedure is best performed by emp
Israel’s coordinates30 adapted to the present situation. Such coordinates are well defined
considerations are constricted to solutions obeying condition~b! of Sec. II. Under that assumption
the equipotential surfaceF51 is a regular two-space and this coupled with the minimallyC3

assumption onF, it follows that D̄aF is nonvanishing in a local vicinity ofF51 equipotential
surface. Accordingly, the vector fieldn5na]/]xa5F̂a]/]xa ‘‘normal’’ to F5c, cP(12e,1
1e) is nonsingular for somee.0. Let now (u1,u2) be arbitrary local coordinates on theF51
surface. Israel’s coordinates are constructed by first extending (u1,u2) of theF51 surface by Lie
dragging, them along the integral curves of the ‘‘normal’’ field, i.e.,na]u i /]xa50, i 51,2. We
augment (u1,u2) by taking as a third coordinate the value of the scalar fieldF viewed as param-
etrizing the family of the equipotential surfaces. The set (F,u1,u2) provides a local coordinaza
tion of an open vicinity of theF51 surface and, relative to such coordinates, the metric ca
written in the form
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ds25
dF2

FaFa
1g i j

~2!du idu j5
dF2

S2~F,u1,u2!
1g i j ~F,u1,u2!du idu j , ~15a!

where hereafterg i j stands for the intrinsic metric of theF5const two-surfaces. Relative to thos
coordinates, the components of the extrinsic curvature or second fundamental formKi j are given
by1

Ki j 5
1

2
Lng i j 5

1

2
~FaFa!1/2

]g i j

]F
5

1

2
S

]g i j

]F
. ~15b!

Projecting Eq.~14a! along the normal and perpendicular directions to theF5const two-surfaces
we lead into

2R~2!2Ki j Ki j 1K254A2S3/2, ~16a!

DiK2D jK
j
i50, ~16b!

2S
]Ki j

]F
12Kil K

l
j2KKi j 1

1

2
R~2!g i j 1

1

S
DiD jS2

2

S2 DiSDjS52A2S3/2g i j , ~16c!

1

2
S

]g i j

]F
5Ki j , ~16d!

]S

]F
1K50, ~16e!

where in the aboveR(2) is the scalar curvature of theF5c, cP(12e,11e) two-surfaces. Equa-
tions ~16a!–~16e! constitute a complete set of equations describing the ‘‘evolution’’ of (g i j ,Ki j )
along the family ofF5c, cP(12e,11e) surfaces. Equations~16a! and ~16b! are the ‘‘Hamil-
tonian’’ and ‘‘momentum’’ constraint, respectively, while Eqs.~16d! and~16c! are the ‘‘evolution’’
equation for (g i j ,Ki j ). Equation~16e! stands for the (211) content ofD̄aD̄aF50.

Our task is now shifted to the integration of the system~16a!–~16e!. We shall first satisfy the
‘‘Hamiltonian’’ and ‘‘momentum’’ constraints and then move into the evolution equations. To

with we recall that Eq.~10b! or equivalently~14b! implies thatD̄aF̂b52lFgab /S and, in view
of the fact thatF̂5@1/(FaFa)1/2#dF5nFdF is the field of the unit normals of theF5c, c
P(12e,11e), it follows that relative to the (F,u1,u2) coordinates, the components ofKi j are
also given by

Ki j 5D̄ iF̂ j52
lFg i j

S
52

1

2

]S

]F
g i j , ~17a!

where in passing to the second equality use of~10b! has been made which, via the relatio
(]/]F)[(Fa/FbFb)(]/]xa), leads to the following string of useful equalities:

lF5
1

2
F̂aF̂bD̄aD̄bF5

FaFb

2S2 D̄aD̄bF5
1

4
FaDa~ logS2!5

1

4

]S2

]F
5

1

2
S

]S

]F
. ~17b!

Substituting the right-hand side of~17a! in the ‘‘momentum constraint’’~16b! it follows that
S(F,u1,u2) satisfies

]2S

]u i]F
50. ~18a!
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This equation can be satisfied by anySof the formS(F,u1,u2)5 f (F)1g(u1)1h(u2). However,
using the fact thatS5(FaFa)1/25(l̄/A2)2/3 and appealing to the content of~12a! by identifying
Y with (]/]u1),(]/]u2), respectively, it follows immediately that

]S

]u1 5
]S

]u2 50, ~18b!

and thusS5S(F) alone, a conclusion of extreme importance. Taking now the trace part o
evolution equation~16c! combined with the ‘‘Hamiltonian constraint’’ we lead into

2S
d2S

dF2 1
1

2 S dS

dF D 2

12A2S3/250, ~18c!

R~2!5K21S
]K

]F
22A2S3/2, ~18d!

but now~18d! coupled with the fact thatA2 is a constant implies thatR(2) is a function only ofF
and thus the Gaussian curvatureG5 1

2R
(2) of any F5const surface is constant in the senseR(2)

5R(2)(F) and this is a second important conclusion. On the other hand, the integration of~18c!
yields

S~F!5S A2

2
F21C1F1C2D 2

, ~18e!

whereC1 andC2 are arbitrary integration constants. The components of the intrinsic metricg i j are
computed by taking into account that, on the one hand,Ki j 52 1

2(]S/]F)g i j while on the other
hand from~15b!, Ki j 51/2S]g i j /]F. It follows from those two equations that](g i j S)/]F50,
implying further the following expression for the components of the two-metric:

g i j 5
B

S~F!
ĝ i j , ~18f!

whereB is an arbitrary nonvanishing integration constant and we have takenĝ i j to be a two-
Riemannian metric of constant Gaussian curvatureG5(61,0). Since two-dimensional spaces
constant Gaussian curvature are locally isometric to a two-Euclidean plane, two-sphere, a
Lobachevsky plane, respectively,31 there exist local canonical coordinates (x̂1,x̂1) such thatĝ i j on
any F5const surface can be written in the standard form:

ds~2!
2 5~dx̂1!21S2~ x̂1!~dx̂2!2, ~18g!

with „S2( x̂)5sin2(x̂),sinh2(x̂),1… for the case thatG equals to~1, 21, 0! respectively. With the help
of ~18f! and the form ofS(F) shown in~18e!, it follows that the trace-free part of the evolutio
equations~16c! is identically satisfied. On the other hand,~16e! by virtue of the first and last
equalities in~17a! is identically satisfied while requiring equality between the last two express
requires that~18e! has to satisfy

1

2

]S

]F
5

lF

S
5

2S2~12F2!A2S1/2

2F
, ~18h!

and this yields an identity providedC25A2/2. Thus eventuallyS(F) reduces to

S~F!5S A2

2
F21CF1

A2

2 D 2

. ~18i!
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From ~18f! it follows that the scalar curvatureR(2) of any F5const surface is given byR(2)

562S(F)/B and zero, respectively, while use of~18i! in Eq. ~18d! gives R(2)52S(F)
3(C2;A4). Consistency of those two expressions fixes a relation between the free param
C2;A4 andB. The relationB5(C22A4)21.0 leads to a three-metric relative to which the fam
of F5c, cP(12e,11e), equipotential surfaces possess positive Gaussian curvature, whi
relationsB5(A42C2)21.0, C25A4, furnishes metrics where theF5c, cP(12e,11e), sur-
faces posses negative and zero curvature, respectively. In summary, therefore, all three mL
satisfying~14a! are given by

ds25
dF2

S~F!2 1
B

S~F!
@~dx1!21S2~x1!~dx2!2#, FP~12c,11c!, c.0, ~19a!

with S(F) given by ~18i! and the constantB is paired to the specific form ofS(x) according to

~B5~C22A4!21.0, S~x!5sinx!;

~B5~A42C2!21.0, S~x!5sinhx!; ~B51, C25A4,S~x!51!. ~19b!

As an overall check, the scalar curvature of~19a! for all choices implied by~19b! is identically
zero, while a computation of Ricci andD̄aD̄bF returns us back~14a! and ~14b! as it should be.
Notice hereafter we shall disregard the metrics with plane orbits obtained by takingC52A2 in
~19b!. Such solutions satisfy limF→1D̄aFD̄aF50, and although they are interesting, their ana
sis will get us away from the main focus of this article.

The metrics defined by~18g! admit a three-parameters group of isometries acting on anF
5const two-surfaces and if,j ( i ) , i 51,2,3, stand for the corresponding Killing vectors, they sati
the following algebra:

@j i ,j j #5« i jkjk , G51,

@j1 ,j2#5j3 , @j2 ,j3#5j1 , @j3 ,j1#5j2 , G521,

@j1 ,j2#5j3, @j2 ,j3#5j1 , @j3 ,j1#50 , G50.

Because of~18f! and ~18i!, it is clear that the above Killing vectors generate a local thr
parameter Lie group of isometriesG(3) for the full three-metric~19a!. Thus we arrive at the
conclusion that all solutions of~14a! and~14b! necessarily admit a localG(3) group of isometries
possessing two-dimensional orbits of constant Gaussian curvature identified with the equipo
F5c, cP(12e,11e), two-surfaces.32

The corresponding space–time metrics can be easily constructed. In fact, it is conven
express them relative to the same spatial coordinate chart~F, u1,u2! augmented with the Killing
parameter taken as the timelike coordinate.32 Relative to such coordinates they take the followi
form:

ds252
dt2

~11F!2 1
~11F!2

S~F! S dF2

S~F!
1Bds~2!

2 D , FP~12c,11c!, c.0, ~20!

whereS(F) and ds(2)
2 are given by~18i! and ~18g!, respectively. It can be verified thatF is a

harmonic coordinate relative to the above space–time metric, i.e.,¹a¹aF50 and the above
metrics combined with~6b! satisfy ~4a!–~4c!.

Before we analyze their properties, let us for the moment consider the special case wh
scalarl̄ defined in~9a! is assumed to be identically vanishing in the open vicinity ofF51. In that
event Eq.~9c! fixes lF to
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lF5
FaFa

F
,

and thus the conformal system leads~7a! and ~7b! to the following effective set of equations:

Rab50, ~21a!

D̄aD̄bF5
FcFc

F
~3F̂aF̂b2Lab!. ~21b!

This system can be integrated by applying the same technique used for~14a! and~14b!. Because
of ~21a! the constraint~10c! is trivially satisfied while a substitution of the value oflF in ~10a!
yields also an identity. The 211 splitting of ~21a! yields a set of equations obtained directly fro
~16a!–~16e! by settingA50, while from ~21b! one obtains

D̄aF̂b5
FcFc

F

~F̂aF̂b2Lab!

~FcF
c!1/2 5

~FcFc!
1/2

F
~F̂aF̂b2Lab!.

Following identical steps as that carried out in the integration of~14a! and~14b!, one now gets in
the place of~18c! and ~18d!

2S
d2S

dF2 1
1

2 S dS

dF D 2

50, ~22a!

R~2!5K21S
]K

]F
. ~22b!

Equation~22a! implies

S~F!5~C2F1C1!2, ~23a!

and the analog of~18h! for the present system requires the aboveS(F) ought to satisfy

1

2

]S

]F
5

lF

S
5

FaFa

SF
5

S

F
, ~23b!

which is the case, providedC150. However, nowS(F) reduces toS(F)5C4F2, where we have
to rename the integration constant, and in turn~22b! implies

R~2!52C4S~F!.

Thus for every solution of~21a! and ~21b! the F5c, cP(12c,11c), two-spaces are spaces
positive Gaussian curvature. Notice thatC50 implies D̄aF50, a case excluded by choice. F
S(F)5C4F2, Eq. ~15a! implies that the solution may be written in the form

ds25
dF2

C8F4 1
1

C8F2 ~du21sin2 udf2!, ~24a!

yielding the following space–time metric:

ds252
dt

~11F!2 1
~11F!2

C8F4 dF21
~11F!2

C8F2 ~du21sin2 udf2!. ~24b!

Introducing a new coordinater via r 25(1/C8)@(11F)2/F2#, then ~24b! can be written in the
form
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ds252S 12
r 0

r D 2

dt21S 12
r o

r D 22

dr21r 2~du21sin2 udf2!,

F5
r o

r 2r o
, r 056

1

C4 , ~24c!

but this is the solution~2a! and ~2b! discussed earlier on, originally discovered by Bekenstei2,3

and also by Bocharovaet al. ~Ref. 4!, rederived in Ref. 6 and analyzed further in Ref. 12. We m
add parenthetically that the metrics~2c! and ~2d! discussed earlier on, cannot be reached via
techniques of this section. Such metrics satisfyR̄Þ0 ~in fact R̄ diverges asF51! and thus via
Eqs.~5! and ~6! are automatically excluded from the present considerations.

Finally, for completeness, let us also examine an intermediate case, i.e., the case wh
scalarl̄ in ~9a! is a nonzero constant. In that event the contracting Bianchi identity applied to~9a!

implies D̄aR̄ab56l̄lF(D̄aFD̄aF)21/2F̂b and thus necessarilyl̄lF50. The casel̄50 has been
examined above, while the caselF50 andl̄Þ0 implies via~9b! thatD̄aD̄bF50. The contracted
Ricci identity applied toD̄aF yieldsD̄aD̄aD̄bF5R̄abD̄

aF1D̄b(D̄aD̄aF), from which we obtain
R̄abD̄

bF50, requiring in turnl̄50. Notice that imposing simultaneouslyl̄50 andlF50, then
~9c! requires D̄aFD̄aF50, i.e., D̄aF vanishes in the local vicinity ofF51 and thusF
5const. This case, however, has been excluded by choice and one expects all solution
vacuum solutions.

In summary we have constructed four classes of nontrivial solutions of the conformal s
obeying conditions~a! and~b! and satisfying 12F250 within the region covered by the Killing
chart. In Sec. V we shall establish their regular nature in the vicinity of the degeneracy, i.e.,
and across theF251 two-surface. Those solutions are highly symmetric, admitting a localG(3)
group of isometries possessing two-dimensional orbits of constant Gaussian curvature, a
striking property needs further elaboration. What is the origin of those local isometries? Is
something special in the structure of~7a! and~7b! that dictates this high degree of symmetry on
solutions, or they are artifacts of the special form of the Ricci employed in~9a!? Do solutions of
other degenerate system of equations exhibit such property? In the upcoming sections w
attempt to provide some insights in the above interrelated questions. We shall do so by com
properties of solutions of~7a! and ~7b! to solutions of a distinct degenerate system of equatio
This latter degenerate system of equations is provided by the Einstein’ vacuum equations. T
systems exhibit structural similarities and, due to the fact that static solutions of Einstein va
equation have been studied for a longer period of time, this comparison offers complem
insights.

IV. STATIC, VACUUM, DEGENERATE SOLUTIONS

In accordance with the above plan, in this section, we shall briefly recall a few aspe
Einstein vacuum equations that will be useful in the sequel. We consider a space–time m
(M ,g), with M a Ck, for some integerk, k>4, connected, orientable, and paracompact mani
andg a minimally C3 solution of Einsteins vacuum equations admitting a timelike, hypersur
orthogonal, Killing vector fieldj. Utilizing the timelike and hypersurface orthogonal property ofj,
local Killing coordinates can be employed so that the metric can be written in the form~3a!.
Relative to such coordinates, Eqs.~3b!–~3d! with F50 yield the effective Einstein vacuum
equations

VRab5DaDbV, ~25a!

DaDaV50, ~25b!

whereV252jmjm , andg stands for a positive definite metric, on eacht5const local coordinate
slice. For our purpose, we shall view the above equations as defined on a smooth, orie
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connected, and paracompact three-dimensional manifoldS. A triplet then (S,g,V), with (g,V)
satisfying~25a! and ~25b!, V a positive function onS andg a Riemannian metric, gives rise t
four-dimensional Ricci flat solutions of Einstein’s vacuum equations. As is well known,~25a! and
~25b! does not admit nonflat solutions on any closed manifoldS. Moreover, a classical theorem
due to Lichnerowicz33 asserts that if~S,g! is complete andV→1 at infinity, then necessarilyV
51 everywhere andS is the standardR3 with the flat metric or quotients ofR3 by discrete
isometry groups~for a recent derivation of Lichnerowicz theorem under weaker conditions, se
work in Ref. 34!. Thus nontrivial solutions (g,V) of ~25a! and ~25b! requireS to be on open

manifold possessing nontrivial metric boundaryṠ defined byṠ5S̄2S whereS̄ is the Cauchy
completion ofS. Solution (S,g,V), which cannot be extended into a larger domainS8 consistent

with V.0, possesses a metric boundaryṠ that may contain nonempty components whereV

50. Following the terminology in Ref. 34 we designate hereafter this part ofṠ by S and refer to
it as the ‘‘horizon’’ associated with the particular solution (S,g,V). If nonempty, it may contain
several disconnected components and some of them may even be noncompact. For our pur
shall be interested in examining solutions (S,g,V) that possess a nonemptyS and moreover,
(g,V) extends smoothly up to and includingS. In particular, we shall look for solutions subject
the condition that all geometrical scalars are bounded as the ‘‘horizon’’S is approached and
hereafter such solutions, if they exist, will be referred to as a regular in the ‘‘open vicinity
V50. Such solutions will obeyDaVÞ0 on S ~Ref. 35! and thus a local vicinity ofS can be
‘‘foliated’’ by a sequence ofV5c, cP(0,c), c.0 equipotential surfaces much the same way
the F5c, cP(12e,11e), e.0 equipotential surfaces foliate the local vicinity ofF51. More-
over, if such solutions exist then by considering any sequence of points inS with a limit point on
S, the system~25a! and ~25b! degenerates on any (g,V) as the ‘‘horizon’’ S is approached.
However, such behavior is also exhibited by the conformal Eqs.~7a! and~7b! as well. If ~L,F! is
any solution of~7a! and ~7b! satisfyingF.1, then by considering any sequence of points in
vicinity of F5c, cP(1,11e), e.0, and having a limit point onF51, then ~7a! and ~7b!
degenerates along such sequence@although such solutions can be extended as solutions of~7a! and
~7b! to a larger domain#. From this viewpoint, the~regular! ‘‘horizon’’ Splays an identical role as
the ~regular! F51 equipotential surface played in the analysis of regular solutions of the co
mal system. Besides this degeneracy aspect, both~25a! and ~25b!, respectively,~7a! and ~7b!
contain the second derivatives of theV, respectively,F, and as we shall shortly see that is
crucial importance. A minor difference between the two is due to the fact that the right-hand
of ~7a! contains additionally the gradient ofF. Below we shall access the significance of th
gradient, but it ought to be stressed that as far as the structure of the equations is concern
gradient is insignificant. The crucial structural similarities between the two systems lies i
factorsV, respectively (12F2) multiplying the highest-order derivatives in the field equations
well as the presence of the second derivatives ofV, respectively,F, on their right-hand sides
Those two properties are responsible for many common properties shared by correspondin
tions of the two systems.

In the previous section we have seen that solutions of the conformal system posses
degenerate Ricci and regular in the open vicinity ofF51 equipotential surface necessarily po
sesses an additional localG(3) group of isometries. Due to the similarities between the confor
and vacuo system discussed above it is natural to inquire first whether the vacuo system~25a! and
~25b! admits degenerate solutions (g,V) smooth up to and including the horizon and seco
whether such solutions, if they exist, exhibit similar properties to those of the conformal sy
Thus we shall look for solutions (g,V) of ~25a! and~25b! subject to the condition that the Ricc
tensor ofg is given by@compare to~9a!#

Rab5l~3V̂aV̂b2gab!, ~26a!

whereV̂a[Va/(VbVb)1/2 andl is minimally aC1 function of the local coordinates. Such a Ric
implies via ~25a!
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DaDbV5Vl~3V̂aV̂b2gab!5lV~3V̂aV̂b2gab!. ~26b!

Moreover, it is rather easy to show that any solution (g,V) of ~25a! and ~25b! possesses a
York–Cotton tensorRabc satisfying

VRabc52RbaVc22RcaVb1gbaRcdV
d2gcaRbdV

d , ~27!

a relation which is the analog of Eq.~8a! for the conformal system. Substituting the right-ha
side of~26a! in ~27! it follows immediately thatRabc50. By arguments similar to the conforma
case it follows that the analogs to Eqs.~10a! and ~10c! are for the present case given by

~3V̂bV̂c2gbc!DalV2~3V̂aV̂c2gac!DblV13lV~V̂bDaV̂c2V̂aDbV̂c!

5l~VaVa!1/2@gacV̂b2gbcV̂a#, ~28a!

Rabc[~3V̂cV̂a2gca!Dbl2~3V̂bV̂a2gba!Dcl13l~V̂cDbV̂a2V̂bDcV̂a!50. ~28b!

As long aslV5lV it follows that satisfaction of~28b! implies satisfaction of~28a! and similar
arguments as those used in the previous section leads us into a set of equations analo
~11a!–~11d! with the sole exception thatF̂a is replaced byV̂a . Thus contracting~28b! with gacVb

it follows again that

VaDa@ log „l~VbVb!23/4
…#50, ~29a!

implying l5A2(VbVb)3/4. Imposing further the contracted Bianchi identity to~26a!, it implies
eventually thatA2 is a constant. Thus we lead into the following set of effective equat
describing in the open vicinity ofV50, vacuo solutions possessing a degenerate Ricci:

Rab5A2~VbVb!3/4~3V̂aV̂b2gab!, ~30a!

DaDbV5A2V~VbVb!3/4~3V̂aV̂b2gab!, VP~0,e!, e.0. ~30b!

Obviously this system is identical in structure to that of~14a! and ~14b!. As a consequence th
integration of~30a! and~30b! proceeds in parallel to the method employed for~14a! and~14b! and
thus we shall be rather sketchy. The fact that a vicinity ofV50 is characterized by the absence
critical points ofV allows us to introduce again Israel coordinates.30 In fact Israel in the original
1967 paper introduced those coordinates precisely to analyze solutions of~25a! and~25b! without,
of course, imposing conditions~26a!. Thus we shall write locally the metric in the form~15a! with
the sole exception thatFaFa is replaced byVaVa . Projecting ~30a! and ~30b! along theV
5const two-surface we lead into the system analogous to~16a! where (V,DaV) replaces
(F,D̄aF) and in~15a! it is now understood thatS(V,u1,u2). Applying the same steps that lead u
into ~18c! and ~18d!, one now gets

S~V!5S A2

2
V21C1V1C2D 2

.

However, since the components of the extrinsic curvature of theV5const surfaces are differen
than theF5const surfaces, indeed are given byKi j 52A2VS1/2g i j @compare to~17a!#, it follows
now that~18h! rewritten for the present case requires thatC150, implying that

S~V!5S A2

2
V21CD 2

. ~30c!
                                                                                                                



s

of the
g

to the
ile to
e

e

re. The
d
they
by

ion
current

ss of
t of the

536 J. Math. Phys., Vol. 43, No. 1, January 2002 J. Estevez Delgado and T. Zannias

                    
Completing the integration procedure of~30a! and~30b! we are led to the following three classe
of vacuum metric, the analogs of~19a! and ~19b! for the conformal case:

ds25
dV2

S~V!2 1
1

BS~V!
@~dx1!21S2~x1!~dx2!2#, ~31a!

B522A2C, C,0, S~x!5sinx;

B52A2C, C.0, S~x!5sinhx; B51, C50, S~x!51. ~31b!

However, it is clear that those solutions exhibit identical symmetry properties as those
conformal system~7a! and ~7b!. Indeed, they admit a localG(3) group of isometries possessin
two-dimensional orbits of constant Gaussian curvature coinciding with theV5c, cP(0,e) equi-
potential surfaces. The corresponding algebra of the infinitesimal generators is identical
corresponding algebra obeyed by the conformal solutions. Before we continue it is worthwh
consider the associated space–time metrics. Using~31a!, it follows that corresponding space–tim
metrics are given by

ds252V2dt21
dV2

S~V!2 1
1

BS~V!
@dx12

1S2~x1!dx22
#, VP~0,c!, c.0, ~31c!

which are the analogs of~20!. Due to the relatively simple form ofS(V) the above metrics can b
reexpressed in a different coordinate gauge. In fact, settingS(V)51/Br2 wherer is an arbitrary
coordinate we lead into

ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr21r 2~dx21sin2 xdy2!,

2M,r ,`, if M.0 and 0,r ,`, if M,0, ~32a!

ds252S 2M

r
21Ddt21S 2M

r
21D 21

dr21r 2~dx21sinh2 xdy2!, 0,r ,2M , ~32b!

ds252
1

r
dt21rdr 21r 2~dx21dy2!, 0,r ,`, ~32c!

where we have definedM51/(2C)3/2A. For the case of~32c! the ranges of each of the~x,y!
coordinates is the entire real line, while for the classes~32a! and ~32b! the corresponding~x,y!
ranges are the familiar ones associated with metrics of constant nonzero Gaussian curvatu
metrics~32a!–~32c! have been derived long ago by Levi–Civita25 and much later by Ehlers an
Kundt26 with an entirely different motive and point of view than the one pursued here. Here
have been derived as the static solutions of~25a! and~25b! possessing a degenerate Ricci given
~26a! and, as we shall verify in the next sections, possessing regular ‘‘horizon’’S. In the classifi-
cation scheme of Ref. 26 they belong to the classA and we have chosen to present brief derivat
here since, and as far as we are aware, their construction has not been discussed in the
literature.36 The structure and properties of the above solutions will be compared with the cla
solutions of the conformal system constructed in the previous section and this is the subjec
next section.
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V. REGULARITY PROPERTIES OF THE DEGENERATE SOLUTIONS

We now briefly turn our attention to the regularity properties of the metrics constructed i
last two sections. At first, for all classes of solutions, the geometry is regular as the dege
points of the corresponding equations are approached. Indeed from~19a! and ~19b! or ~32a! and
~32b! one gets

R̄abR̄ab56l̄2,

wherel̄ equalsA2S3/2(F), respectively,A2S3/2(V), for the conformal respectively vacuum cas
and thus their regular nature asF51, respectively,V→01, is manifest. Examining the Kretch
man scalarK5RmnstRmnst and Ĝ5CmnstCmnst for the corresponding four metrics~20! one
obtains the following expressions:37

K5
F~F!

~11F!8 , Ĝ5
3~C2A2!2~A2F212CF1A2!6

4~11F!8 , G51, ~33a!

K5
F~F!

~11F!8 , Ĝ5
3~C2A2!2~A2F212CF1A2!6

4~11F!8 , G521, ~33b!

K5
3A16~11F!8

32
, Ĝ50, G50, ~33c!

where the functionF(F) is defined by

F~F!5 1
32@3A4F414A2~4A22C!F312~15A428A2C12C2!F214A2~4A22C!F

13~9A4216A2C18C2!#~A2F212CF1A2!6 ~33d!

and satisfiesF(21)556(A22C)8 and F(1)58(23A4218A2C17C2)(A21C)6. The corre-
sponding invariants for the vacuum metrics~31b! and ~31c! are given by

K5Ĝ5 3
4A

4~A2V212C!6, G51, ~33e!

K5Ĝ5 3
4A

4~A2V222C!6, G521, ~33f!

K5Ĝ5 3
4A

16V12, G50. ~33g!

Expressions~33a!–~33c! imply that the space–time metrics~20! are regular across theF51
timelike hypersurface, while~33e!–~33g! imply regularity of the geometry as theV50 null
hypersurface is approached@disregarding here the case ofM,0 in ~32a!#.

As it is clear from their derivations, the metrics~19a! and~19b! and thus also the space–tim
metrics~20! are local solutions valid within the space–time region covered by the local Kil
chart. However, we may extend them maximally and consistently with the existence of the
like Killing field, by enlarging theF-coordinate range, i.e., assumingFP(21,̀ ) and similarly
VP(0,̀ ) @or possiblyVP(0,1)#. Let us first consider extension of~20!. Disregarding the innocu-
ous coordinate singularities associated with the local (x1,x2), coordinates, then for allt
P(2e,e) and FP(21,̀ ) the extended metrics~20! satisfy the conformal equations~1c! and
~1d!. The three spacesF5c, cP(21,̀ ), are timelike hypersurfaces and, for the special c
where the equipotential surfacesF5const, t5const are assumed to be complete, simply c
nected Riemannian two-spaces, and thus identified as either the two-sphere, hyperbolic two
or the Euclidean plane, respectively, then anyF5c, cP(21,̀ ), timelike hypersurface is topo
logically (2e,e)3K with K either a two-sphere, the hyperbolic two-space or the Euclid
two-space, respectively.38 However, the so-extended solutions exhibit curvature singularities
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deed an examination of~33a! and~33b! shows that the space–time curvature grows unbounde
F→21 and thus no further extension of the space–time is possible across theF521 ‘‘timelike
hypersurface.’’ Exception to that rule constitutes the metrics with plane orbits. For such metrK,
Ĝ are given by~33c!, and thus both of them have smooth limit asF→211. This two-‘‘plane’’ is
at infinite proper distance away from any point on anyt5const spacelike hypersurface an
moreover, an analysis of the ‘‘outgoing’’ timelike, resp. null geodesics, shows that it is locat
the ‘‘space–time boundary.’’ An infinite amount of proper time, resp. affine parameter, a
outgoing causal geodesics is required in order to be reached. In addition to the above-dis
timelike singularities, the extended metrics~20! also exhibit unbounded growth asF→`. How-
ever, the structure of this singularity is not immediately obvious. In order to get some insight
its structure, let us first introduce advanced Eddington–Finkelstein coordinates1,15 associated with
the line element ~20!. In such (u,F,x1,x2) coordinate systems, withdu5dt1@(1
1F)2/S(F)#dF, ~20! takes the form

ds252
du2

~11F!2 12
2

S~F!
dudF1

B~11F!2

S~F!
ds~2!

2 .

An analysis of the geometry using this coordinates is rather tedious. However, since we ar
interested in analyzing the structure of the geometry asF→`, it is sufficient to examine the
behavior of the geometry for large values ofF. In such limits the leading behavior of the abo
line element takes the following form:

ds252
du2

F2 12
dudF

F4 1
1

F2 ds~2!
2 ,

where hereafter and for notational simplicity we have set all constants to unit values. De
further a new coordinatex via x521/F, xP(2e,0), e.0, it follows that the above line elemen
takes the form

ds252x2du212x2dudx1x2ds~2!
2 52y2/3du212dudy1y2/3ds~2!

2 , ~33h!

where in passing to the second equality we have defined the coordinatey via dy5x2dx. However,
in the above form, the limitF→` corresponds toy→02. An analysis of the curvature fory
P(2e8,0) shows thatK5RmnstRmnst[4/27@(27y4/326y2/312)/y8/3# and thus all null geodesic
generators of eachu5const null hypersurface terminate after a finite amount of affine param
in a curvature singularity. Moreover, the sety→02 corresponds to a ‘‘null hypersurface’’ and thu
the structure ofF→` singularity for all extended metrics~20! corresponds to a ‘‘null singularity.’’

Let us now briefly discuss the regularity properties of the vacuum metrics~32a!–~32c!. At first
~33e!–~33g! shows no pathologies in the geometry takes place as the ‘‘V50’’ null hypersurface is
approached, and the ‘‘bad behavior’’ of the metric across ‘‘V50’’ is simply a coordinate singu-
larity. The metric~32a! ~for M.0! as well as~32b! can be analytically extended across t
corresponding Killing horizons and their analytical extensions are discussed in the work of E
and Kundt.26 No analytical extension is required for the case of the metric~32c! since theV
→01 null hypersurface occurs at the boundary of the space–time, a situation similar to
encountered in the analysis of the metrics~20! possessing plane orbits at the limitF→21. On the
other hand, if the magnitude of the timelike Killing vector is left unrenormalized, then~33! shows
that all classes of vacuum metrics becomes singular as theV→` timelike hypersurface is ap
proached and this property is in accord with the behavior of the metrics~20! at the limit of F
→` with the exception that the later singularities are null whereas the former are tim
Imposing asymptotic flatness on~32a!–~32c!, one gets the well-known results.

A high degree of subtlety is, however, exhibited by the metric~24c!. At first and by construc-
tion, ~24! is a solution of~1c! and~1d! within the static region, i.e., for allr .r 0 . An examination
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of the scalar invariantsK andC shows that both of them are regular for allr .r 0 . Moreover, the
metric can be extended so that it is manifestly regular atr 5r 0 . Indeed, for an analysis along th
same lines as those that lead us into~33h! one gets

ds252x2du212dudx1~12x!2ds~2!
2 , xP~2e,0!,

as theF→` limit of the line element~20!. However, nowK5RmnstRmnst58(3x211)/(1
2x)2 from which now it follows that thex50 null hypersurface is regular one, an expectable f
since~20! is isometric to the metric of the extreme Reisner–Nordstrom manifold. Thus the
ometry can be extended through the Killing horizon and details of this extension are for ins
discussed in Ref. 15. However, due to the fact that the scalar fieldF diverges as the Killing
horizon is approached, the solution~24c! cannot be extended across the Killing horizon as
solution of the conformal equations~7a! and ~7b!. The reason for this failure as well as i
implications are discussed in detail in Ref. 12.

VI. DEGENERATE SINGULAR SOLUTIONS

In the last three sections we have analyzed solutions of the conformal system~7a! and~7b! as
well as of the vacuum system~25a! and~25b! possessing a degenerate Ricci tensor given by~9a!,
resp.~26a!. However, as we indicated in Sec. II, the Ricci of~9a!, resp.~26a!, is rather special in
the sense that its unique principal direction is normal toF5const, resp.V5const, equipotential
surfaces. Thus it is of considerable interest to investigate whether~7a! and ~7b!, resp.~25a! and
~25b!, admit other regular solutions across degeneracies subject to the condition that the
principal direction of the Ricci is no longer normal to the above-mentioned two spaces. Ac
ingly, in this section we shall examine whether~7a! and ~7b!, resp.~25a! and ~25b!, admit solu-
tions possessing a degenerate Ricci such that in the vicinity ofF51, respectively,V→01, the
distinct Ricci eigenvectorX is no longer parallel toD̄aF, resp.DaV. More precisely, we assum
a Ricci given by

R̄ab5l̄~3XaXb2Lab!, ~34a!

and shall focus our attention primarily on the conformal system~7a! and~7b!. As we shall see, the
treatment of the vacuum system follows identical steps.

Combining~34a! with Eqs.~7a! and ~7b!, it follows that the scalar fieldF satisfies

2FD̄aD̄bF52~3FaFb2LabF
cFc!2l̄~12F2!~3XaXb2Lab!, ~34b!

and thus the real symmetric matrixD̄aD̄bF longer exhibits identical eigenstructure as the cor
sponding Ricci. Substituting further~34a! in ~8a! and straightforward algebra yield

F~12F2!@~3XcXa2Lca!D̄bl̄2~3XbXa2Lba!D̄cl̄

13l̄~XcD̄bXa1XaD̄bXc2XbD̄cXa2XaD̄cXb!#

56l̄@2Xa~XcFb2FcXb!2Lca~Fb2XdFdXb!1Lab~Fc2XdFdXc!#. ~34c!

We write this equation hereafter in the formF(12F2)R̄abc5S̄abc , whereS̄abc stands for the
right-hand side of~34c!. It is clear thatF(12F2)R̄abc5S̄abc is the generalization of the con
straintR̄abc50 encountered in the previous sections. However, the structure of the new con
shows that if~7a! and ~7b! admit a solution (L,F) subject to~34a!, thenL is no longer locally
conformally flat and thus we are dealing with a more ‘‘complex geometry.’’ Moreover, since~34c!
is ‘‘singular’’ as theF51 two-surface is approached, it is expected that if~7a! and ~7b! admit
solutions characterized by a Ricci given by~34a!, then their properties would be different than t
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properties of their counterparts constructed in the previous sections. On the other hand, d
tiating once more~34b! and appealing to the Ricci commutation relation, we obtain the follow
condition, which is the analog of~10a!:

2F~D̄cD̄aD̄bF2D̄aD̄cD̄bF!12FcD̄aD̄bF22FaD̄cD̄bF

56~FaD̄cD̄bF2FcD̄aD̄bF!22Fd~LabD̄cD̄dF2LcbD̄aD̄dF!23l̄~12F2!

3~XaD̄cXb2XcD̄aXb1XbD̄cXa2XbD̄aXc!1~3XbXc2Lbc!@~12F2!D̄al̄22Fl̄Fa#

2~3XbXa2Lba!@~12F2!D̄cl̄22Fl̄Fc#.

Substituting~34b! in the above and after lengthy algebra it yields Eqs.~34c!. Thus it is sufficient
to examine the content of the integrability condition~34c!. FormingF(12F2)R̄abcX

a5S̄abcX
a it

yields

F~12F2!@2XcD̄bl̄22XbD̄cl̄13l̄D̄bXc23l̄D̄cXb#56l̄@XcFb2FcXb#, ~35a!

while the combinationF(12F2)R̄abcX
aXc5S̄abcX

aXc yields

F~12F2!@2D̄bl̄22XbXcD̄cl̄23l̄XcD̄cXb#56l̄@Fb2XcFcXb#. ~35b!

Combining the contents ofF(12F2)R̄abcX
aXc5S̄abcX

aXc, and F(12F2)R̄abcX
a5S̄abcX

a

with F(12F2)R̄abc5S̄abc , it yields F(12F2)R̂abc50 where hereafterR̂abc is defined by

R̂abc[~XcXa2Lca!D̄bl̄2~XbXa2Lba!D̄cl̄13l̄~XaD̄bXc2XaD̄cXb2XcD̄bXa1XbD̄cXa!

12XdD̄dl̄LcaXb22XdD̄dl̄LabXc13l̄LcaX
dD̄dXb23l̄LbaX

dD̄dXc50. ~35c!

However,F(12F2)R̂abc50 and continuity arguments show thatR̂abc50 in the open vicinity of
F51. FormingR̂abcX

c it follows that

R̂abcX
c[~Lba2XbXa!XcD̄cl̄23l̄XbXcD̄cXa13l̄D̄bXa50, ~35d!

while a contraction of above withLab implies

R̂abcX
cLab[2XaD̄al̄13l̄D̄aXa50. ~35e!

Considering nowR̂abcL
ab50 and taking into account the above equation results in

R̂abcL
ab[D̄cl̄23l̄XdD̄dXc2XcX

dD̄dl̄50. ~35f!

The content of this equation combined withR̂abcX
c50 yields

R̂abcX
c[LbaX

cD̄cl̄2XbD̄al̄13l̄D̄bXa50. ~36a!

This is an important equation and we shall make use of it later on. For the moment we
combine F(12F2)R̄abc5S̄abc with the content of R̂abc50. Indeed F(12F2)R̄abcX

aXb

5S̄abcX
aXb combined with the content ofR̂abcL

ab50 yields

F~12F2!@D̄al̄2XaXbD̄bl̄ #56l̄@Fa2XbFbXa#. ~36b!

Contracting the above equation with any arbitrary smooth vector fieldYa perpendicular toXa

yields

F~12F2!YaD̄al̄56l̄YaD̄aF,
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which in turn implies

YaD̄aF logS l̄1/3~12F2!

F2 D G50,

and thus eventually we conclude

l̄1/35
G2~x!F2

~12F2!
, ~36c!

where in the aboveG2(x) stands for a nonvanishing function constant along the integral curve
the vector fieldX and in the abovex stands for a set of comoving ‘‘coordinates’’ enumerating t
integral curves ofX. However, now~36c! implies thatR̄abR̄

ab is given by

R̄abR̄ab56l̄25
6G12~x!F12

~12F2!6 ,

which shows that if a solution~L,F! of ~7a! and~7b! exist so that the Ricci tensor ofL is given
by ~34a!, then the geometry is necessarily singular asF2→1. The only way that such a singularit
can be avoided is to assume thatG(x)[0, but this possibility implies thatR̄ab50 in the vicinity
of F51 and such a Ricci returns as to the system~21a! and~21b! analyzed in Sec. III. Thus~7a!
and ~7b! does not admit regular solutions acrossF51 possessing a Ricci given by~34a!. Inter-
estingly and in concordance to the results of Secs. II and IV, an identical conclusion holds tr
the vacuo system~25a! and ~25b! as well. In fact, starting from~25a! and ~25b! and looking for
solutions~g,V! subject to~34a!, then the analog of~34c! takes the formVRabc5Sabc , where, in
this particular case,Sabc is given by

Sabc53l@2Xa~XbVc2XcVb!1gba~XdVdXc2Vc!2gca~XdVdXb2Vb!#. ~37a!

Repetition of the steps that leads into~35c! shows thatR̂abc50, where the three tensorR̂abc has
precisely the same form as that shown in Eq.~35c!. It follows then that the corresponding eige
valuel satisfies

l1/35
G2~x!

V
, ~37b!

which is the analog of~36c!. Accordingly vacuum solutions~g,V! subject to~34a! become singu-
lar asV→01.

The above conclusions regarding the behavior of solutions of~7a! and~7b! characterized by a
Ricci given by~34a! were reached via an analysis of the integrability conditions alone and th
is not clear whether such solutions really exist. If they exist, and are defined in an open
borhood ofF51, respectively inVP(0,c), then they must become singular acrossF51, resp.
V→01. It would therefore be of an independent interest to devote some effort to analyz
existence question. Moreover, if we will be able to construct them explicitly, them we shall be
to study the local isometry groups~if any!, and thus compare their symmetry properties to th
exhibited by solutions of~14a! and ~14b!, resp.~26a! and ~26b!. We shall show below that suc
solutions indeed exist and shall present their explicit construction. Since, however, the integ
procedure is rather lengthy, we shall report below our findings and the reader is referred
Appendix for details of the intermediate computations leading to their constructions.

Our effective system of equations consists of~34a! and~34b! augmented by the integrability
condition ~34c!. By arguments along the lines that lead us to the equivalence of~7a! and ~7b! to
that of ~14a! and~14b! via ~9a!–~9c!, here as well it is easily inferred that any solution~L,F! of
~7a! and ~7b! subject to~34a! necessarily satisfies~34b! and ~34c! and conversely solutions o
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~34a! and~34b! satisfying additionally~34c! are also solutions of~7a! and~7b!. Of course here our
considerations are restricted to the local vicinity ofF5c, cP(1,11e) @or F5c, cP(12e,1)#.
One of the most important insights furnished by the integrability condition~34c! is the content of
~36a!. It implies the existence of a local coordinate system~x,y,z! covering the open vicinity of
F5c, cP(1,11e), and such that the metricL can be written in the following form:

ds25l̄22/3S dx2

a2~x!
1

dy2

b2~y!
1b2~y!dz2D . ~38!

Relative to such coordinates the eigenvectorX is parallel to]/]x, while ~y,z! are local coordinates
on the family of the two-surfaces perpendicular to]/]x ~see the Appendix!. With the help of the
above insight the integration of the field equations~34a! and ~34b! remarkably can be accom
plished and, after a long and tedious intermediate algebra, leads us to the solutions descr

l̄2/35~x1y!2,

a2~x!52x31
2k31mk2n

k2 x21mx1n.0, ~39a!

b2~y!52y32
2k31mk2n

k2 y21my2n.0, ~39b!

F~x,y!5S 2k~x1y!~x1k!

2k~x1k!y22k2x2km12nD 1/2

, ~39c!

where in the above~k,m,n! are integration constants chosen so that for a given range of the~x,y!
coordinates, the metric coefficients ought to be consistent with the positive definite charac
the metric. Furthermore, for such choices of (k,m,n), an analysis ofF(x,y) given by ~39c! or
more conveniently using~A30!, shows that the intersection of anyx5c, c,`, local two-
coordinate surface withF51 appears as limy→`. Moreover,~38!, ~39a!, and ~39b! show that
the proper distance of any pointy5y0 lying on anyx5c, c,`, is at finite proper distance awa
from the limiting value limy→` and at limy→` the scalar invariantRabRab diverges. Thus and
in accord with~36c!, indeed the geometry is singular as points subject toF(x,y)51 are ap-
proached. Away from such singular regions,~38! and ~39a!–~39c! show that the metric admits
local group of isometrics generated by]/]z , a situation that is in sharp contrast to the previou
constructed solutions. Even though still symmetric, one parameter local group of isometrics,
symmetric as the corresponding solutions of~7a! and ~7b! possessing a Ricci given by~9a!. We
shall return to that point below, after the construction of the corresponding vacuum solution
the vacuo case the corresponding equations are

Rab5l~3XaXb2Lab!, ~40a!

DaDbV5Vl~3XaXb2Lab!. ~40b!

We are again looking for solution valid in the local vicinity of the ‘‘horizon,’’ and relative to t
same coordinate gauge shown in~38! the above system admits the following solutions~see also
the Appendix for details!:

l2/35~x1y!2,
~41a!

a2~x!52x31mx1n.0, b2~y!52y31my2n.0,

V~x,y!5
c1a~x!

x1y
, ~41b!
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where again in the above (m,n,c1) are integration constants subject toc1.0. The set of points
lying on the horizon correspond to the limit ofy→` for all x finite. Like the corresponding
solution of the conformal system,~41a! and~41b! also admit a local group of isometrics generat
by ]/]z.

The space–time metric associated with~39a!–~39c!, ~41a!, and~41b! can be easily inferred
Indeed for the conformal system it is given by

ds252
dt2

~11F!2 1
~11F!2

~x1y!2 S dx2

a2~x!
1

dy2

b2~y!
1b2~y!dz2D , ~42a!

F~x,y!5S 2k~x1y!~x1k!

2k~x1k!y22k2x2km12nD 1/2

, ~42b!

while for the vacuum case it is given by

ds25
1

~x1y!2 S 2a2~x!dt21
dx2

a2~x!
1

dy2

b2~y!
1b2~y!dz2D . ~43!

It can be verified directly that~42a! and~42b!, resp.~43!, satisfy the covariant equations~1c! and
~1d!, resp.Gmn50, while their counterparts~39a!–~39c!, resp.~41a! and ~41b!, satisfy ~7a! and
~7b!, resp.~25a! and ~25b!, of course away from the degeneracies. The vacuum solution~43!
belongs to the C-class of metrics in the classification scheme proposed by Ehlers and K26

Judging from the corresponding comments in Ref. 26, it appears that originally this solutio
derived by Levi–Civita.25 Maintaining the same nomenclature as that adopted in Ref. 26 we
refer to~42a! and~42b! as the corresponding C-class of solutions for the conformal system. T
best of our knowledge, the solutions~42a! and~42b! are new and, due to their complexity, we sh
refrain from discussing here their global structure and particularly the structure of the singu
occurring asF→1. This analysis will be presented elsewhere. With the above explicit form o
C-class of solutions, it appears that the metrics possessing a degenerate Ricci and satisfy~7a!
and~7b! is now complete and those solutions, except~24c!, are in correlation with the correspond
ing degenerate solutions of the vacuo system~25a! and ~25b!.

It is worthwhile at this point to return to the important issue of the origin of the additio
local isometrics present in all constructed degenerate solutions of~7a! and ~7b!, resp.~25a! and
~25b!. Actually there are two intertwined issues involved here; first, the issue of the origin o
local isometrics and, second the regularity of the solutions across degeneracies. The analys
previous sections shows that a degenerate Ricci is not by itself solely responsible for the or
the local isometrics, but, rather, it is Ricci degeneracy combined with the fundamental cons
~8a!, resp.~27!. Whenever a particular solution possesses a~degenerate! Ricci so that the right-
hand-sides of~8a!, resp.~27!, are identically zero, and this occurs only whenD̄aF resp.DaV, are
parallel to the Ricci principal distinct eigendirection, as it can be easily inferred from the r
hand sides of~8a!, resp.~27!, then the corresponding Ricci eigenvalue has a gradient parallel
distinct eigendirections@see Eq.~12a!#. This fact combined with the Hamiltonian constraint sho
that the two surfaces perpendicular to the Ricci eigendirection lack any distinct direction an
are maximally symmetric@see Eqs.~18b! and ~18d!#. The existence then of the localG(3)
admitting orbits of constant Gaussian curvature follows naturally. However away from this
whenever a solution is characterized by a three-metric, which even though it possesses a
erate Ricci it is not by itself conformally flat, then the Ricci eigenvalue exhibits a gradient
possesses a nonvanishing component tangential to the family of the two-surfaces perpendi
the distinct Ricci eigendirection@see Eq.~36b!#. As a consequence this family of two-surface
their existence guaranteed by relations like~36a!, is no longer a space of constant Gauss
curvature@see Eqs.~A26!#. As a consequence the solution cannot have aG(3) possessing orbits o
constant Gaussian curvature. However, as it is clear from~42! and ~43!, Ricci degeneracy guar
antees only the existence of an additional localG(1).
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As far as the regularity of the geometry across the degeneracy region is concerned, it
be stressed that this issue involves the full system i.e.,~7a! and~7b!, resp.~25a! and~25b!. In the
previous sections we have worked with an effective regular set of equations, augmented b
of singular integrability conditions i.e., Eqs.~8a! and ~27!. Whenever a particular solution pos
sesses as a degenerate Ricci so that the right-hand sides of~8a! and ~27! are vanishing then this
solution satisfies a system of effective equations, namely~10c!, ~14a!, and~14b!, resp.~26a!, and
~26b!, and~28b!, which has no traces of the singular nature of the original singular equations
~7a!, ~7b!, ~25a!, and~25b!. Accordingly, any regular solution of the effective equations is nec
sarily regular over the degeneracy regions as well, since the latter region is not registe
anything peculiar in the structure of the effective equations@in that regard, recall the argumen
before and above Eq.~9d!#. The fact that all regular solutions of the effective equations~10c!,
~14a!, and~14b!, resp.~26a!, ~26b!, and~28b! exhibit high symmetry is to be interpreted as due
the special nonsingular structure of the effective system. Once, however, a particular so
possesses a degenerate Ricci so that the right-hand sides of~8a! and~27! are no longer vanishing
the situation is different. In such events the corresponding effective system is no longer r
since it also contains the integrability conditions~8a!, resp.~27!, which themselves are singula
along solutions subject toF51, resp.V→01. Equations~36c! and ~37b! then describe the
consequences.

This summary makes clear the importance of the York–Cotton tensor. Its special ro
controlling the symmetries and regularity properties of any solution of~7a!, and~7b!, resp.~25a!,
and~25b! is due to the special singular structure of~7a! and~7b!, resp.~25a! and~25b! since as we
have shown earlier, all solutions of those equations necessarily satisfy~8a!, resp.~27!. We may
recall that such a property of the York–Cotton tensor is encountered in other situations as w
Robinson’s derivations of the uniqueness of the Schwartzschild black hole,39 the vanishing ofRabc

on the asymptotically Euclidean three-manifoldS possessing a regularS was one of the key
elements in the proof. The existence of the SO~3! symmetry then followed as the consequence
the vanishing of the York–Cotton tensor combined with the asymptotically Euclidean charac
the geometry ofS.

VII. DISCUSSION

In this work we have analyzed some consequences of the (12F2) factor multiplying the
left-hand side of Eq.~1c! and, as it is clear, its presence adds a special flavor to the dynami
the conformal system. In accord with the results of Refs. 18 and 21, the mere fact th
conformal system degenerates on specific classes of solutions, it does not follow that suc
tions are singular over degeneracies. The regular solutions constructed in the previous s
offer another concrete example. It also clear from the analysis presented here that an unde
ing of the properties of solutions across degeneracies is a subtle and involved issue. The s
constructed in this work although on the one hand offer insights to the dynamics of the conf
system, on the other hand call for more work. Although we have been able to construc
analyze classes of regular solutions across degeneracies, they were derived under the ass
that such solutions possess a degenerate Ricci and, moreover, the zeros of the 12F2 factor
possess a ‘‘nice’’ structure. Naturally they lead us to ask: Do there exist other regular a
degeneracies solution characterized by a nondegenerate Ricci? If yes, are they always ac
nied by additional local isometries? And what is the role of the York–Cotton tensor if any? W
not have an answer to those questions, but we may add that the fundamental constrai~8a!,
holding for every solution of~7a! and ~7b!, imposes constraints on the two distinct Ricci eige
values. A preliminary analysis of the constraints indicates that it is conceivable that the conf
system may admit regular solutions across the degeneracy region possessing a non de
Ricci. Unfortunately, however, progress towards settling that issue is obstructed by the c
cated nature of the integrability conditions that is a set of coupled tensorial differential const
As far as the presence of additional local isometries as a requirement of regularity across
eracies, we may note that a contraction of~8a! by itself yields
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R̄abcR̄abc5
AabcAabc

12F2 ,

where Aabc is an expression involving gradients of the Ricci eigenvalues and correspon
eigenvectors. Thus any solution~L,F! would be singular asF2→1, unless some special arrang
ment is operating at the level of the York–Cotton tensor and the Ricci curvature. On the
hand, the comparison of the singular conformal equations to vacuum Einstein equations des
static solutions offers support to the contention that regularity of the solution across the sing
ties of the equations may be accompanied by additional isometries. Some time ago Israe40 and
much later Geroch and Hartle41 analyzed the so-called distorted class of black hole solution
Einstein vacuum equations. Such solutions possess a regular event horizon, distorted by th
ence of some axisymmetric distribution of matter. It can be easily seen that the distorted c
black holes can be put into a correspondence with local solutions of~25a! and~25b! possessing a
regular ‘‘horizon’’ S. Xanthopouloset al.42,43 showed that the distorted classes of black holes
necessary for typeD on the event horizon. Moreover, those solutions, within the present for
ism, do not possess a degenerate Ricci, but of course are axisymmetric and thus provid
amples of regular solutions as the degenerate region is approached possessing a localG(1) and
whose Ricci is not degenerate in the local vicinity of the ‘‘horizon’’S. The question of whethe
there exist local static black hole solutions possessing a regular horizon and without any add
symmetry is for the moment an open question. Some progress towards resolving that que
discussed in Ref. 44.

On an entirely different aspect, the results of the present work can be extended into di
directions. An obvious natural extension concerns the question of the existence of static, r
across degeneracies solutions of~1c! and~1d! without imposing the functional relationshipU(F)
nor the condition~b! introduced in Sec. II. As far as the first question is concerned, some pro
has been made in Ref. 45. It was shown there that~1c! and ~1d! indeed admit regular acros
degeneracies solutions and those solutions as well as their properties and construction
discussed elsewhere. Moreover, the method discussed in the present article can be ap
analyze the structure of solutions of other singular systems of equations, particularly equ
associated with theories involving scalar fields arbitrarily coupled to the background curv
One such system is provided by the theory involving Einstein gravity and a scalar fieldF non-
conformally coupled to the background curvature. For such theories the factor (12aF2) is
replaced by (12kjF2) and the dynamical equations have similar structure as those of the
formal system. It would be therefore illuminating to extend the present analysis to such th
and compare the behavior of their solutions to the corresponding solutions presented here

Finally, in closing we may add that scalar fields and relativistic gravity mix rather w
Primarily due to their simplicity, scalar fields often are employed to get insights into the com
dynamics of Einstein field equations. Soliton-like solutions46 as well as models of strongly grav
tating sources involving matter and scalar fields arbitrarily coupled to gravity with or wit
Higgs-type potentials have been studied in detail in the current literature.47 Even though still direct
observational evidence supporting the existence of long range scalar fields is lacking, c
cosmological observations are interpreted as favoring an accelerating universe, and the po
that scalars fields may provide a natural explanation is currently under active investiga48

Therefore, theories involving scalar fields besides their pure mathematical importance ma
out to be of physical importance as well. Observations will tell.
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APPENDIX: C-CLASS METRICS FOR THE CONFORMAL SYSTEM

In this appendix we shall present some intermediate computations leading to the const
of the singular metrics discussed in Sec. VI. Our problem is the integration of the system~34a! and
~34b! and as we have indicated earlier on, an extremely important insight is offered b
following relation, natural consequence of the integrability condition~8a! @see in particular, Eqs
~11d! and ~36a!#:

LabX
cD̄cl̄2XaD̄bl̄13l̄D̄aXb50. ~A1!

The significance of this relation has been pointed out in the influential report of Ehlers and K
in Ref. 26 and that remark helped us enormously. An initial attempt, centered on adoptin
integration technique of Sec. III to the system~34a! and ~34b!, lead us into a complex set o
unyielding coupled differential equations. It was only after we became aware of Ref. 26 th
were able to integrate~34a! and ~34b!.

In order to see the implications of~A1!, let us first consider a conformal transformatio
generated by an arbitrary conformal factorV2, i.e., definegab5V2Lab . Standard formula using
the behavior of the connection under conformal transformation1 shows that the following identity
holds true:

Da~VXb!5VD̄aXb2XaD̄bV1LabX
cD̄cV, ~A2!

where in the above the covariant derivative operatorDa is formed using theg metric. However, a
comparison of~A2! with ~A1! implies that by choosingV5l̄1/3 as the conformal factor, then

Da~ l̄1/3Xb!50, ~A3!

implying thatgab5l̄1/3Lab admitsl̄1/3Xa , a parallel vector field. However, the existence of su
a field imposes strong constraints ongab ~and thus also onLab andl̄!. A theorem in Ref. 29~see
also Ref. 26! assures that in the region admitting parallel fields exist local coordinates~x,y,z! so
that x is parallel to]/]x andg admits the following representation:

ds25gabdxadxb5dx21ds~2!
2 ,

from which we also conclude that

ds25Labdxadxb5l̄22/3gabdxadxb5l̄22/3~dx21ds~2!
2 !, ~A4!

whereds(2)
2 5ĝ i j (y,z)dxidxj . Thus, relative to the coordinate~x,y,z! predicted by the existence o

the parallel fieldl̄1/3Xa , the coordinate dependence of the metricL has been constrained consi
erably. We write~A4! in the following form,

ds25
dx2

S2~x,y,z!
1

1

S2~x,y,z!
ĝ i j ~y,z!dxidxj5

dx2

S2 1g i j dxidxj , ~A5!

and project first Eq.~34a! along and perpendicular tox5const local coordinate surfaces, thu
getting

2R~2!2Ki j Ki j 1K254S3, ~A6!

DiK2D jK
j
i50, ~A7!

2S
]Ki j

]x
12Kil K

l
j2KKi j 1

1

2
R~2!g i j 1

1

S
DiD jS2

2

S2 DiSDjS52S3g i j , ~A8!
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1

2
S

]g i j

]x
5Ki j , ~A9!

where the extrinsic curvature of thex5const two-surfaces is given by

Ki j 5
1

2
Lng i j 5

1

2
S

]

]x

ĝ i j

S2 52
ĝ i j

S2

]S

]x
52

]S

]x
g i j . ~A10!

Substituting thisKi j into the Hamiltonian, momentum constraint and evolution equations, we

R~2!14S322 S ]S

]xD 2

50, ~A11!

]2S

]x]xi 50, ~A12!

FS
]2S

]x22S ]S

]xD 2

2S3Gg i j 1
1

S
DiD jS2

2

S2 DiSDjS50. ~A13!

But Eq. ~A12! implies that one may write

S~x,y,z!5 f ~x!1g~y!1h~z!, ~A14!

where „f (x),g(y),h(z)… are arbitrary functions that ought to be specified. Taking the trac
~A13! leads into

2FS
]2S

]x22S ]S

]xD 2

2S3G1
1

S
DiDiS2

2

S2 DiSDiS50. ~A15!

It is convenient from this point onward to work with the metricĝ i j (y,z), and relative to this
metric the Hamiltonian and the trace of the evolution equation read

S2R̂~2!12SD̂iD̂ iS22D̂ iSD̂iS14S322S ]S

]xD 2

50, ~A16!

2FS
]2S

]x22S ]S

]xD 2

2S3G1SD̂iD̂ iS22D̂ iSD̂iS50, ~A17!

where in the aboveR̂(2) and all geometrical tensors are formed usingĝ i j 5ĝ i j (y,z). Due to the
fact that local coordinates~x,y,z! involve a considerable amount of gauge freedom, we exploit
freedom and define a new set (x̄,ȳ,z̄) by

x̄5 f ~x!, ȳ5g~y!, z̄5h~z!.

Relative to such coordinates, the scalar functionS takes the formS5 x̄1 ȳ1 z̄ and the metric~A5!
transforms into

ds25
1

S2 S dx̄2

a2~ x̄!
1ĝ i j ~ ȳ,z̄!dx̄idx̄j D . ~A18!

Expressing the derivatives ofS in terms of (x̄,ȳ,z̄) via

]S

]x
5

]S

] x̄

] x̄

]x
5

] x̄

]x
[a~ x̄!,

]2S

]x2 5a
da

dx̄
5

1

2

da2

dx̄
,
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then Eqs.~A16! and ~A17! take the form

S2R̂~2!12SD̂iD̂ iS22D̂ iSD̂iS14S322a250, ~A19!

SD̂iD̂ iS22D̂ iSD̂iS1S
da2

dx̄
22a222S350. ~A20!

Differentiating now~A20! with respect tox̄ we obtain

D̂ i D̂ iS1S
d2a2

dx̄2 2
da2

dx̄
26S250, ~A21!

and an additional differentiation of~A21! yields

SFd3a2

dx̄3 212G50, ~A22!

from which we get

a2~ x̄!52x̄31
l

2
x̄21mx̄1n, ~A23!

wherel, m, n are arbitrary integration constants. Substituting this equation back in~A21! we obtain

D̂ i D̂ iS56~ ȳ1 z̄!22 l ~ ȳ1 z̄!1m, ~A24!

while substituting~A23! and ~A24! back into~A20! we get

D̂ iSD̂iS52~ ȳ1 z̄!32
l

2
~ ȳ1 z̄!21m~ ȳ1 z̄!2n, ~A25!

and upon substituting~A23!–~A25! back into~A19! we get

R̂5212~ ȳ1 z̄!1 l . ~A26!

Since Eqs.~A24!–~A26! involves only the coordinatesȳ andz̄ via the combinationȳ1 z̄, we take
advantage of it and define new coordinates~y,z! via

y5 ȳ1 z̄, z5z~ ȳ,z̄!

with z5z( ȳ,z̄) arbitrary for the moment function of its arguments. Using the arbitrariness in
choice ofz, we demand

ĝyz5~ ĝ ȳ ȳ1ĝ ȳ z̄!
]z

] ȳ
1~ ĝ ȳ z̄1ĝ z̄ z̄!

]z

] z̄
50.

The above equation is a first-order linear partial differential equation and locally always a
solutions. In terms of the new coordinates (y,z), S takes the simpler form:S5x1y and, for such
S, ~A25! fixes ĝyy to the form

ĝyy5y32
l

2
y21my2n ~A27!

with the help of which Eq.~A24! implies
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]Aĝ

]y
50.

Since the two-metric is diagonal, we also getĝyy5c2ĝzz
21 wherec2 is an arbitrary constant that i

absorbed here after thez coordinate. Thus eventually we lead

ds25
1

S2 S dx2

a2~x!
1

dy2

b2~y!
1b2~y!dz2D ~A28!

with

a2~x!52x31
l

2
x21mx1n, b2~y!52y32

l

2
y21my2n. ~A29!

Computing the scalar curvatureR̂(2) of the x5const using the metricĝ i j , we find that R̂
5212y1 l , showing that~A26! is identically satisfied. Moreover, returning back to the trace-f
part of the evolution equations~A13!, using~A28! and~A29! and the form ofS, we find that it is
identically satisfied.

Up to this point we have constructed all metrics satisfyingR̄ab5l̄(3XaXb2Lab) subject to
(l̄,X) satisfying~A1!. In order, however, to complete the solution of~34a! and~34b! we must also
specifyF for the conformal case~or V for the vacuum case!. Let us first consider the conforma
case. Starting from the equationD̄aD̄aF50 and utilizing Eq.~36c! it follows via l̄21/35S5x
1y that

F~x,y!5S x1y

x1y1G2~x! D
1/2

, G2~x!.0. ~A30!

Demanding that thisF satisfyD̄aD̄aF50 and, after algebra, using~A28! and~A29! we obtain the
following consistency relations forG(x):

H1~x!y31@~3x1G2!H1~x!1 1
2H2~x!#y21x@~3x12G2!H1~x!1H2~x!#y

1x2@~x1G2!H1~x!1 1
2H2~x!#50, ~A31!

whereH1(x) andH2(x) are defined by

H1~x!5~4x21 lx212mx12n!
d2G2

dx2 1~6x21 lx1m!
dG2

dx
2~6G2112x1 l !G2, ~A32!

H2~x!52S 2x21
l

2
x21mx1nD S 21

dG2

dx D dG2

dx
2@4G41~12x1 l !G212~6x21 lx1m!#G2.

~A33!

Since, however,~A31! must be satisfied identically, it follows that necessarilyH1(x)5H2(x)
50. Due the fact thatH1(x)50 can be viewed as a differential equation forG2(x), andH1(x)
50 possesses analytic coefficients, we look for polynomial solutionsG(x). It takes a rather long
and tedious algebra to show that the following functionG2(x) satisfies~A32! and ~A33!,

G2~x!52
2k~x1k!222k31mk22n

2k~x1k!
, ~A34!

provided the integration constants appearing in~A29! are adjusted so thata2(x) andb2(y) have
the form
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a2~x!52x31
2k31mk2n

k2 x21mx1n.0, ~A35!

b2~y!52y32
2k31mk2n

k2 y21my2n.0. ~A36!

Using ~A34!, then the corresponding expression for the scalar fieldF takes the form

F~x,y!5S 2k~x1y!~x1k!

2k~x1k!y22k2x2km12nD 1/2

. ~A37!

Up to this point we have satisfied only the trace-free part of Eq.~34b!. In order to complete the
solution we must also satisfy the other components of Eq.~34b!. Setting

Kab52FD̄aD̄bF22~3FaFb2LabF
dFd!1l̄~12F2!~3XaXb2Lab! ~A38!

and substituting in~A34!–~A37!, then after a long and tedious algebra we find thatKab is diagonal
and, in fact, as long asH1(x)5H2(x)50, then necessarilyKab50. Thus the set of functions
~A35!–~A37! describes the general solution of~7a! and~7b! subject to Ricci given by~34a! and of
course satisfaction of the integrability conditions~34c!.

Let us now briefly discuss the integration of the vacuum system~40a! and~40b!. As it is clear
from the above integration procedure, we only need to verify Eq.~40b! for the metric~A28! and
~A29!. From Eq.~37b! we haveV5G2(x)/(x1y) and, demandingDaDaV50, we obtain the
following ordinary equations forG2(x):

G1~x!y21G2~x!y1x~G2~x!1xG1~x!22lx !50, ~A39!

whereG1(x) andG2(x) are defined by

G1~x!5a2
d2G2

dx2 1
1

2

da2

dx

dG2

dx
2S 6x1

5

2
l DG2, ~A40!

G2~x!52xa2
d2G2

dx2 1S x
da2

dx
23a2D dG2

dx
2S 1

2

da2

dx
2 lx22mDG2. ~A41!

Again ~A39! must be satisfy identically, and thus necessarilyG1(x)50, G2(x)50, and addition-
ally l 50. Forming a linear combination ofG1(x)5G2(x)50, namely,G2(x)22xG1(x)50, we
obtain

a2
dG2

dx
1

1

2

da2

dx
G222~6x21m!G250.

Since, on the other hand,a2(x)52x31mx1n, it follows that the above equation can be writte
in the form

1

G2

dG2

dx
2

1

2a2

da2

dx
50,

which in turn implies

d

dx F log S G2

a D G50
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from which we infer thatG2(x)5c1
2a(x). Substituting the above equation in~A40! and~A41! we

find that they are identically satisfied. Finally, the vacuum metric is given by~A28! combined with
a2(x) andb2(y) given by ~A29! with l 50 while V(x,y) given by

V~x,y!5
c1

2a~x!

x1y
.

That set of functions constitutes the general solution of~40a! and ~40b!.
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as the conformal equations~1c! and ~1d!. In fact, after multiplication withV2 this yieldsV2R̃mn(g̃)53g̃mn¹̃sV¹̃sV

2V(2¹̃m¹̃nV1g̃mn¹̃s¹̃sV), and thus the similarities with~1c! and ~1d! are manifest. In the present work emphasis
placed on the construction of solutions defined on the physical space–time while the conformal vacuum E
equations are mainly employed in the analysis of solutions in the vicinity of the conformal infinity.

19The behavior of static or stationary vacuum asymptotically Euclidean solutions of Einstein equations has been the
of many investigations. Within Geroch’s~Ref. 20! coordinates-free description of asymptotic flatness at spatial infin
a conformally rescaled positive metricg̃5V2g defined on an unphysical three manifold (M̃ ,g̃) satisfies a formally
degenerate system of equations in the neighborhood of the so-called point at infinityL attached toM so that M̃
5Mø$L% is diffeomorphic to an open ball ofR3. The analysis ofg̃ nearL has been performed in Ref. 21 where th
analyticity of g̃ is also established.

20R. Geroch, J. Math. Phys.11, 2580~1970!.
21R. Beig and W. Simon, Commun. Math. Phys.78, 75 ~1980!; P. Kundu, J. Math. Phys.22, 2006~1981!.
22A rather interesting case of such degeneracy is encountered in the analysis of static, spherically symmetric sol

Einstein non Abelian–Yang–Mills theory analyzed in detail in P. Breitenlohner, P. Forgacs, and D. Maison, Com
Math. Phys.163, 141~1994!. In particular, the content of Proposition 1 in this reference is very suggestive. It shows
a given set of singular ordinary differential equations under suitable conditions upon its coefficients admits local a
solutions in the vicinity of the degeneracy.

23Those theorems, established in Ref. 2 and so far highly unexplored, offer considerable insights into the structur
space of solutions of the conformal system. Briefly, their content has as follows: relative to the coordinate gauge~3a!,
if V5eU, gab5V22Lab is a static vacuum solution of Einstein equations, then for anyg5(123b2)1/2, b
P@2321/2,321/2#, the following configurations (F,g), F5a21/2(17e2bU)(16e22bU), g5

1
4(ebU6e2bU)(2e2gUdt2

1e2gULabdxadxb), satisfy the conformal equations~4a!–~4c!. However, since 12aF2564e2bU/(16e2bU)2 it fol-
lows that 12aF2 is nonwhere vanishing within the entire static region, and, unfortunately, this theorem canno
ployed, at least in a straightforward manner, to address our problem. The second theorem states that if (F̄,L̄ab) is a
solution of the Einstein–massless minimal coupled equations, thenF5tanhF̄, V5(12F2), and L̄ab5V2Lab is a
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static solution of the conformal equations~4a!–~4c!. Again regularity ofV requires 12F2Þ0 and thus similar com-

ments apply to the content of the this theorem as well.
24Unfortunately the term ‘‘degenerate’’ will appear in various places in the text with different meanings. It has bee

in the title, and there and elsewhere in the text degenerate solutions refers to solutions which in the first place are
in the vicinity of degeneracy and, moreover, in the same region satisfy the relevant equations. The term deg
equations has been explained in the text while the term degenerate Ricci refers to a Ricci where at least tw
eigenvalues coincide at a point or in an open vicinity of a given point.

25T. Levi-Civita, Rend Acc Lincei26~2!, 307 ~1918!, 27~1!, 3 ~1918!; 27~2!, 183 ~1918!; 27, 220 ~1918!; 27, 240 ~1918!;
27, 283 ~1918!; 27, 343 ~1918!; 28~1!, 3, 101~1919!.

26J. Ehlers and W. Kundt inRelativity, Introduction to Current Research, edited by L. Witten~Academic, New York, 1962!.
27A theorem proven in Mu¨ller zum Hagen, D. C. Robinson, and H. J. Seifert, Gen. Relativ. Gravit.4, 53 ~1973! asserts that

on general grounds, the zeros of any nonidentically zero, analytic function in three variables consist of a finite u
analytical submanifolds ofR3 of dimensions zero~the case of an isolated zero!, one, or two. Even thoughF satisfies an

elliptic equation, unfortunately at this point we cannot infer local analyticity ofF across degeneracies since nothing
known about the differentiability properties of the metric in an open vicinity of the zeros of 12F2. Thus the conclusion

of the above-mentioned theorem is not of any help within the present context.
28In such an event the level surface ofF is in general many-sheeted and a proof of this property can be found, for inst

in the appendix of Israel-1967 paper~Ref. 30!. Additional discussion can also be found in P. Kellogg,Potential Theory
~Dover, New York, 1931!.

29For the definition as well as properties of this tensor see for instance, L. P. Eisenhard,Riemannian Geometry~Princeton
University Press, Princeton, NJ, 1949!.

30W. Israel, Phys. Rev. D164, 1776~1967!.
31This is a standard result and a proof can be found, for instance, in M. Spivak,Introduction to Differential Geometry, Vol.

II ~Publish or Perish, Houston, TX, 1979!; J. A. Wolf, Spaces of Constant Curvature~McGraw-Hill, New York, 1967!.
32It should be noted though that during this integration procedure the range of theF-coordinate nonwhere enters in

crucial manner, except that one implicitly assumes that the level surface ofF5c admits no critical points. It is that

property that allows us to consider the solutions as valid in aF-range given by (12e,11e), e.0. In fact, since by

constructionS(F)uF51Þ0, one may introduce a new coordinater defined viadF/dr5c/S(F), and obeyingF(r

51)51. This ordinary equation admits a local solution and thus it is clear thatF(r ) satisfies 12F(r )50. We have

avoided introducing this parametrization since the resultingF(r ) is a rather complex expression involving in gener

transcendental functions.
33A. Lichnerowicz,Théories Relativistes de la Gravitation et de L’ Electromagne´tisme~Masson, Paris, 1955!.
34M. T. Anderson, gr-qc/0001018; Ann. Henri Poincare1, 995 ~2000!.
35This property ofS, rather than being assumed, can also deduced from different considerations. ViewingS as an

embedded spacelike hypersurface, the setS then is defined as the intersection ofS with a Killing horizon. Topological
properties of this intersection depend crucially on the structure of the Killing horizon and have been addresse
literature. A concise account of the situation can be found in the work of Chrus´ciel nicely summarized in the proposition
~3.2! and ~3.3! in P. T. Chrus´ciel, Class. Quantum Grav.16, 661 ~1999!.

36We are not aware of any work in the literature where the construction of those metrics is derivedab initio. A comment
in Ref. 26 indicates that in P. Jordan, J. Ehlers, and W. Kundt, Akad. Wiss. Lit. Mainz Abh. Math. Naturwiss. Kl.1960,
2 ~1960! a derivation of the vacuum degenerate metrics is presented. Unfortunately, however, we had no acces
reference and thus we cannot offer any comment regarding the way those metrics have been constructed. T
construction of the vacuum metrics presented in this work follows naturally from the integration procedure elabor
Sec. II and the Appendix.

37All computations involving the construction of the scalar invariants reported in the present article have been don
the algebraic manipulation package GRtensorII developed by P. Musgrave, D. Pollney, and K. Lake, GRT
~Queen’s University, Kingston, Ontario, 1994!.

38Note that, in general, we cannot infer that the timelike Killing vector field possesses complete orbits. The issue i
means trivial and it requires separate treatment. The passage from the local considerations, i.e., existence of th
field, to global considerations, i.e., completeness of its orbits, is a rather subtle issue and it is discussed at lengt
Chruściel, Class. Quantum Grav.10, 2091~1993!.

39D. C. Robinson, Gen. Relativ. Gravit.8, 695 ~1977!. For a consise summary, as well as an overview of black h
uniqueness theorems, see M. Heusler,Black Hole Uniqueness Theorems~Cambridge University Press, Cambridg
1996!; M. Heusler, http://www.livingreviews.org/Articles/Volume1/1998-6heusler

40W. Israel, Lett. Nuovo Cimento Soc. Ital. Fis.6, 267 ~1973!.
41R. Geroch and J. B. Hartle, J. Math. Phys.23, 680 ~1982!.
42B. C. Xanthopoulos, Proc. R. Soc. London, Ser. A388, 117 ~1983!.
43D. Papadopoulos and B. C. Xanthopoulos, Nuovo Cimento Soc. Ital. Fis., B83B, 113 ~1984!.
44J. Estevez Delgado and T. Zannias, ‘‘Perturbing the event horizon of a black hole with a scalar field,’’ IFM-UM

~report 2001 submitted!
45J. Estevez Delgado and T. Zannias, ‘‘On the structure of static solutions of Einstein conformally invariant scalar

II,’’ IFM-UMSNH ~report 2001 submitted!.
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46For a review see, for instance, E. Mielke and F. E. Schunk, inProceedings of the 8th Marcel Grossmann Meeting, edited
by T. Piran and R. Ruffini~World Scientific, Singapore, 1999!.

47M. Salgado, D. Sudarsky, and U. Nucamendi, Phys. Rev. D58, 104021~1998!; T. Damour and G. Esposito-Farese,ibid.
54, 1474~1996!.

48For an overview, see, for example, V. Faraoni, Phys. Rev. D62, 023504~2000! and references therein.
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A rigidity theorem for nonvacuum initial data
Gábor Etesia)

Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502 Kyoto, Japan

~Received 26 January 2001; accepted for publication 8 October 2001!

In this note we prove a theorem on nonvacuum initial data for general relativity.
The result presents a ‘‘rigidity phenomenon’’ for the extrinsic curvature, caused by
the nonpositive scalar curvature. More precisely, we claim that in the case of an
asymptotically flat nonvacuum initial data if the spatial metric has everywhere
nonpositive scalar curvature, then the extrinsic curvature cannot be compactly
supported. ©2002 American Institute of Physics.@DOI: 10.1063/1.1421422#

I. INTRODUCTION

According to our experiences there are many different gravitational configurations in
physical world. Therefore, if general relativity is a correct theory of gravitational phenomen~at
least at low energies!, then it is important to know whether or not these various patterns ca
modeled in general relativity, i.e., Einstein equations provide enough solutions for desc
many different gravitational fields. Unfortunately or fortunately, Einstein equations form an
traordinarily difficult system of nonlinear partial differential equations for the four dimensio
Lorentzian metric mainly because of the rich self-interactions of the gravitational field; hen
general it is a hard job to write down explicit solutions in this theory. Therefore, all methods w
prove at least the existence of solutions are very important. From this viewpoint, the C
problem or initial value formulation of general relativity is maybe the most powerful metho
generate plenty of solutions.

As it is well known, the initial value formulation gives rise to a correspondence betw
globally hyperbolic space–times and gravitational initial data. Maybe we can say witho
exaggeration that the class of globally hyperbolic space–times is the most important cl
space–times from the physical point of view. Consequently, the initial data formulation pro
not only many but also physically relevant solutions. The constraint equations between initia
are in the focal point of the initial data formulation. The question is whether or not these cons
equations are easier to solve than the original Einstein equation itself, making the method
tive. Of course, the answer is typically yes.

This motivates the serious efforts made in order to understand the structure and p
solutions of constraint equations. Far from being complete we just mention the early wo
Lichnerowicz ~1944!, Bruhat ~1962!, Choquet-Bruhat and Geroch~1969!, Choquet-Bruhat and
York ~1980!, Fisher and Marsden~1979!, and Christodoulou and Klainerman~1993!. These papers
mainly deal with the analytical properties of the solutions. Witt proved the existence of solu
on a general three-manifold~Witt, 1986!. More recently, in a sequence of papers Isenberg, M
crief, Choquet-Bruhat, and York proved the existence of solutions under milder and milde
sumptions~cf., e.g., Isenberg, 1995; Choquet-Bruhatet al., 1992; Isenberg and Moncrief, 1996
moreover Choquet-Bruhatet al., 2000!.

The constraint equations involve the scalar curvature of the metric on the underlying C
surface which is a three dimensional smooth manifold. Various properties of the solutions d
crucially on the scalar curvature, especially on its sign. But we know that in the proble
describing the sign of the scalar curvature, especially on a compact manifold, one encount
topology of the space. Parallel to the investigations of solutions of the constraint equatio

a!Electronic mail: etesi@yukawa.kyoto-u.ac.jp
5540022-2488/2002/43(1)/554/9/$19.00 © 2002 American Institute of Physics
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physicists and mathematicians, mathematicians proved remarkable results on the propertie
scalar curvature of Riemannian manifolds. By an early general result of Kazdan and W
~1975! we know that for compact manifolds of dimension greater than two there is no cons
on the scalar curvatureif there is at least one point where it is negative. This shows that it is easy
to construct manifolds with negative scalar curvature. If we wish to construct manifolds
non-negative scalar curvature, however, we have to face various obstacles coming from the
ogy of the manifold. We just mention two basic examples. By results of Lichnerowicz and Hit
on spin manifolds it is often impossible to construct metrics of positive scalar curvature beca
a subtle topological invariant, the so-calledÂ-genus~Hitchin, 1974; Lichnerowicz, 1963!. More-
over, in three dimensions, the size of the fundamental group provides another obstructi
positive scalar curvature by results of Gromow and Lawson~1983! and Schoen–Yau~1984!. An
excellent survey on this branch of differential geometry is Besse~1987!.

These observations make it not surprising that the topology of the Cauchy surface has a
influence on the properties of initial data on it. The goal of this article is to understand this l
bit better. Our motivation is a paper by Witt~1986! who studied the problem of existence of initi
data on general three-manifolds and examined certain characteristics of these initial data.
III we prove a theorem which states that on open Riemannian manifolds with everywhere
positive scalar curvature the extrinsic curvature field of nonvacuum initial data cannot be
pactly supported, i.e., it has a ‘‘tail’’ at infinity although this tail may have sufficiently fast fall-
to make such an initial data still asymptotically flat. The proof of this theorem is elementary
is based on the following idea.

By using the initial data set (M ,g,k) and the assumption that suppk is compact, we construc
another ‘‘universal’’ initial data set (M ,g,wg) wherew:M→R is a compactly supported at lea
once continuously differentiable~or C1-! function onM ~with a little more effort this function
could be smoothened but we do not need this!. However, this leads us to a contradiction if th
scalar curvature ofg is nonpositive everywhere. In other words, we deform the original initial d
set into a standard one whose properties are easier to understand.

II. BACKGROUND MATERIAL

First let us introduce some notations. LetW be a smooth manifold. We will call a tensor fiel
T of type (m,n) over W if it is a smooth section of the bundle

Remember that aninitial data set for general relativityis a triple (M ,g,k), whereM is a ~not
necessarily compact! connected, oriented, smooth three-manifold,g5(gi j ) is a smooth, complete
Riemannian metric onM , i.e., a nondegenerate smooth symmetric tensor field of type~0,2! on M
while k5(ki j ) is a smooth, symmetric tensor field onM also of ~0,2!-type. These fields mus
satisfy the following constraint equations~Hawking and Ellis, 1973; Wald, 1984!:

sg2ukug
21tr2k516pr,

div~k2~ trk!g!58pJ, ~1!

r>uJug>0.

Heresg is the scalar curvature of the metricg andu•ug denotes various norms given by the induc
scalar product onT(m,n)M , e.g., ukug

25^k,k&5ki j k
i j . The operator tr:T(m,n)M→T(m21,n21)M is

the trace with respect to the metric, e.g., trk5ki
i . For the sake of simplicity in the second equati

we also denote byg andk the ~1,1!-tensors with respect to the metricg @i.e., g5(gj
i ), k5(kj

i ) in
the second equation#. The linear differential operator div:C`(T(m,n)M)→C`(T(m21,n)M ) is the co-
variant divergence, defined by
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divTªtr~¹T!,

whereT is a tensor field of (m,n)-type and¹ is the Levi–Civitácovariant derivative of the metric
g. The smooth functionr:M→R is the energy-density, and the smooth covector fieldJ
PC`(T* M ) with uJug

25^J,J&5JiJ
i is interpreted as the momentum-density of matter.

Supposing the energy- and momentum-densities correspond to classical nondissipative
sources or vacuum~J50, r50!, the coupled Einstein equations can be used to evolve the in
data set (M ,g,k) into a ~globally hyperbolic! smooth space–time (N,h) whereN>M3R andM
is a Cauchy surface inN. Furthermore,huM5g andk is the second fundamental form or extrins
curvature ofM in (N,h) ~Hawking and Ellis, 1973; Wald, 1984!

Also remember that the open oriented three-manifoldM has anend E,M if there is a
compact setC,M such thatM \C5E and E>Sg3(R1\$0%) whereSg is a compact, oriented
surface of genusg andR15@0,̀ ). An initial value data set (M ,g,k) is calledasymptotically flat
along E if M has an end E>S23(R1\$0%) and the following asymptotical fall-off condition
hold for the complete metricg and the fieldk ~r parametrizesR1 in E!:

~guE! i j 5d i j 1O~1/r !, ~kuE! i j 5O~1/r 2!,

] l~guE! i j 5O~1/r 2!, ] l~kuE! i j 5O~1/r 3!,

] l]k~guE! i j 5O~1/r 3!.

Notice that the definition of a manifold with an end does not exclude the possibility thatM still
has a boundary, different from the endE ~strictly speaking,E is not a boundary!. But the boundary
points are added toM becauseC5M \E is compact according to our assumption. Conseque
geodesic completeness ofg requires that this extra boundary must be empty, in other wordsM is
diffeomorphic to the punctured manifoldM̃ \$y% where M̃ is a connected, compact, oriente
three-manifold without boundary.

Finally, thesupportof a tensor fieldTPC`(T(m,n)W) is the closed set

suppTª$xPWuT~x!Þ0%.

After this background material, we are in a position to prove our theorem. The motivation
following.

III. THE THEOREM

It was proved by Witt~1986! that every three-manifold with an end admits a nonvacuu
asymptotically flat initial data set. For a typical three-manifold, the resulting Cauchy deve
space–time does not admit maximal slices, however; i.e., there are no maximal spacelik
manifolds whose extrinsic curvature is identically zero. One may raise the question: to what
are these slices not maximal? In other words, what are the conditions on a Riemannian m
(M ,g) for its extrinsic curvature in the Cauchy development to be compactly supported at
We will answer this question in our theorem.

Theorem „rigidity for nonvacuum initial data …: Let (M ,g) be a connected, oriented, com
plete Riemannian three-manifold with an end E>S23(R1\$0%). Suppose the scalar curvature sg

of g is nonpositive everywhere and there is a nonvacuum initial data set(M ,g,k) on it which is
asymptotically flat along the end E. Thensuppk is noncompact.

Proof: Since the scalar curvature is nonpositive, the set suppsg consists of the closure of thos
points where sg is negative. Then the first and third~in!equalities of ~1! show that
suppsg#suppk; therefore, if the scalar curvature is negative everywhere, the statement is tri
true, consequently we may assume that suppsg,M . In the same fashion, since (M ,g,k) is a
nonvacuum data set, there is a pointx0PM such thatr(x0)Þ0. This yields supprÞB. Being the
scalar curvature nonpositive, via the first and third~in!equalities of~1! again we havek(x0)Þ0,
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i.e., suppr#suppk. Therefore, if the energy density is supported everywhere, the theore
again trivially valid, consequently we may assume suppr,M . Consider a subsetC,M such that
suppsg,C and suppr,C and suppose the decompositionM5CøE is valid whereE denotes
the end ofM . Consequently, by the structure ofM we may assume thatC is compact. This shows
that there is a constant

0,aªsup
xPC

~2uk~x!ug
21tr2k~x!!,`.

Consider a triple (M ,g,wg) wherew:M→R is aC1-function. This triple is a weak initial data se
if it obeys the constraint equations~here by ‘‘weak’’ we mean that the initial data set in questi
is not smooth, onlyCk for somekPN!:

sg16w2516pr,

22 div~wg!522tr~¹~wg!!522 tr~dw ^ g!58pJ,

r>uJug>0.

In the second equation we have used the fact that¹g50. These~in!equalities can be combine
into a first order partial differential inequality for the unknown functionw:

1
4 ~sg16w2!>udwug , ~2!

taking into account thatutr(dw ^ g)ug5udwug . AssumeBÞsuppk,M is compact, i.e., the theo
rem is not true. In this case we construct a compactly supported functionw out of the original data
(M ,g,k) such that (M ,g,wg) is a weak initial data set. We achieve this in three steps.

( i ) Construction ofw in the compact interior of M. Let us identify the endE,M with S2

3(R1\$0%). By assumption suppk is compact inM , consequently there is anR1PR1 satisfying
S23(R1 ,`)úsuppk. Note that this is possible only ifsguS23(R1 ,`)50. We can take the choice
CªM \(S23(R1 ,`)) for the compact set used in the definition of the constanta. We construct
the functionw in C as follows:

w~x!ª2Aa, xPC.

In other wordsw is a constant negative function onM except the infinite tubeS23(R1 ,`). Note
that with this function~2! is trivially satisfied inC because (M ,g,k) is an initial data set onC.

( i i ) Construction ofw along an annulus in E. Consider an inner pointx0PC,M where
r(x0).0 andk(x0)Þ0. There is an open~geodesic! ball B«(x0),M of radius«.0 such that
ruB«(x0).0 andkuB«(x0)Þ0. Consider the annulusU«ªB«(x0)\B«/2(x0)>S23@«/2 ,«#. Take an-
other constantR1,R2,` and the diffeomorphism

b:U«→S23@R1 ,R2#, xt5~p,t !°S p,R11
2t2«

«
~R22R1! D5~p,r !,

wherepPS2 and the pointxtPU« is identified with (p,t)PS23@«/2 ,«#. HereS23@R1 ,R2# is
also an annulus in the tubeE. By assumptiong is asymptotically flat, i.e., the functionAg11>0 is
bounded, consequently there is a constant

0,bª sup
xPM

Ag11~x!,`

~here x15r !. Choose a smooth functionc:@R1 ,R2#→R2. Viewing it as a function onS2

3@R1 ,R2# ~i.e., a function depending only onr !, one obtains the estimate
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buc8u>uAg11c8u5udcug , ~3!

where prime denotes differentiation with respect tor . Now we definec as follows:

c~b~xt!!ª5
2Aa, if t5

«

2

arbitrary but the derivative ofc is small, if tPS «

2
,« D ,

0, if t5«.

In this definition the smallness ofc8 means the following. Consider a differentiable cur
g:@«/2 ,«#→U« given by

t°xtª~Q«/21A sin~R22R1!t, f«/21A sin~R22R1!t,t !.

This is a high-speed curve because it oscillates rapidly insideB«(x0). More precisely, for its speed
uġ(t)ug;R22R1 is valid ~dot denotes differentiation with respect tot!. We can take a choice fo
the pointx0 and the amplitudeA, and initial phasesQ«/2 andf«/2 of the curveg such that

d~A2uk~xt!ug
21tr2k~xt!!~ ġ~ t !!;2~R22R1!,0

holds for eachtP@«/2 ,«#. Then we suppose

0<c8~b~xt!!<minS 2
«

4~R22R1!
d~A2uk~xt!ug

21tr2k~xt!!~ ġ~ t !!,
16p

b
r~xt! D . ~4!

It is also clear that such a function exists ifR2 is suitably large: letc be an arbitrarily smooth,
negative-valued functionc:S23@R1 ,R2#→R2 with initial value c(p,R1)5c(b(x«/2))52Aa.
Suppose there is an interval@R,R1T#,@R1 ,R2# such thatc8 obeys~4!, but there is a constan
c.0 with c8(p,r )>c if r P@R,R1T#. This constant can be chosen to be independen
R22R1 . In this case we can estimate for largeR1 andR2 as follows:

c~p,R2!>2Aa1
1

2 ER1

R2
c8~p,r !dr>2Aa1

1

2 ER

R1T

c8~p,r !dr>2Aa1
c

2
T.

In other words, ifT, that is,R22R1 , is sufficiently large, we can achieve thatc(p,R2)50. We
choosew on S23@R1 ,R2# to be thec just constructed.

It is not difficult to check thatw obeys~2! in S23@R1 ,R2#. Indeed, by the definition of the
constanta we have

w~p,R1!5w~b~x«/2!!52Aa<2A2uk~x«/2!ug
21tr2k~x«/2!.

Taking suitable largeR1 andR2 , exploiting the decay of the metricg and using~4! this implies
that for eachtP@«/2 ,«# we have

w~b~xt!!5w~p,r !52Aa1E
R1

r

dw~p,% !~b8~xt!!d%

52Aa1E
R1

r

w8~p,% !S g11~p,% !1A
«

2
~g12~p,% !1g13!~p,% !

3cos
«

2
~%1R2! Dd%
                                                                                                                



e

t

559J. Math. Phys., Vol. 43, No. 1, January 2002 A rigidity theorem for nonvacuum initial data

                    
<2Aa12E
R1

r

w8~p,% !d%

52Aa1
4~R22R1!

« E
«/2

t

w8~b~xt!!dt

<2A2uk~x«/2!ug
21tr2k~x«/2!2E

«/2

t

d~A2uk~xt!ug
21tr2k~xt!!~ ġ~t!!dt

52A2uk~xt!ug
21tr2k~xt!.

Consequently,

w2~b~xt!!>2uk~xt!ug
21tr2k~xt!.

Therefore, sincesg(b(xt))50 and 0>sg(xt), we can write

1
4 ~sg~b~xt!!16w2~b~xt!!!5 3

2 w2~b~xt!!>sg~xt!2uk~xt!ug
21tr2k~xt!516pr~xt!.

Moreover, also by~4!, we have for the samextPU« that 16pr(xt)>bw8(b(xt)). This gives rise
to our key inequality

3
2 w2~b~xt!!>bw8~b~xt!!, ~5!

showing via~3! that ~2! is again satisfied in the annulusS23@R1 ,R2#.
(iii) Construction ofw along the remaining part of the infinitely long tube in M. Finally, define

w~x!ª0 if xPS23@R2 ,`!.

Again, ~2! is trivially valid.
Consider the functionw:M→R2 defined through (i ) – (i i i ). This is a continuous negativ

function on M and is compactly supported: it is equal to zero for allr>R2 and equal to the
constant2Aa if r<R1 . Its derivative is also compactly supported inS23@R1 ,R2# and is positive.
Moreover,w can be adjusted to beC1 on M ~note thatw is smooth except at the junction points!:
it is clearlyC1 at r 5R2 by ~5!. However, by exploiting the freedom in the construction ofw in the
inner points of the annulus, we can deform it to beC1 at r 5R1 as well@i.e., we may assume tha
w8(p,r )→0 as r→R1#. In this way we have constructed a weakC1 initial data set (M ,g,wg)
~with a little effort we could smooth this data but we do not need this!.

The compactly supportedw depends nontrivially only onr with (p,r )5b(xt)PS2

3@R1 ,R2# and satisfies the ordinary differential inequality~5!. Now we demonstrate that it is
impossible. Dividing byw82 and taking reciprocies in~5! we get

S w8

w D 2

<
3w8

2b
,

which is nothing but

2A3w8

2b
<

w8

w
<A3w8

2b
.

By integrating the left inequality fromR1 to r ,R2 we arrive at the following estimate:

logAa2A 3

2b ER1

R2Aw8~p,% ! d%< log~2w~p,r !!.
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At this point we have used the inequality

0,E
R1

r
Aw8~p,% ! d%<E

R1

R2Aw8~p,% ! d%,`

for the non-negative functionw8. This shows that the logarithm ofw is bounded from below.
However, beingw compactly supported, log(2w(p,r)) is unbounded, asr approachesR2 . Conse-
quently the last but one inequality shows a contradiction yielding our original assumption
suppk is compact, was wrong. We finished the proof. L

Remarks.~1! We would like to summarize here how the original initial data (M ,g,k) was used
in the construction because apparently its behavior has been taken into account only in a pa
small ball B«(x0). But, in fact, the construction is sensitive for the global characteristics of
original initial data. In step (i ) we considered (M ,g,k) in the whole interiorC by exploiting the
existence of the constanta which is in some sense the maximum ofk in the whole compactC.
This enabled us to ‘‘pump up’’ the original initial data inC into a standard one which correspon
to the extremal point~s! of the original extrinsic curvature in some sense. Concerning part (i i i ),
we have seen in the beginning of the proof that the only interesting possibility for our wou
initial data with compactly supported extrinsic curvature was the case where both the
curvature and energy-density were compactly supported. Consequently all fields in the initia
vanish along the tube for very larger yielding the hypothetical initial data did not carry ‘‘infor
mation’’ along an infinitely long part of the endE. This is in accordance with the fact that ou
adjusted universal initial data (M ,g,wg) was also trivial on this portion. Finally, part (i i ), which
is the descending regime, is nothing but a magnification of the behavior of (M ,g,k) in a small ball
where matter is present via the diffeomorphismb. Indeed this small ball is responsible for th
details of the fall-off ofw ~we could have used equally well any other ball!, however, the fact tha
this function can vanish within a finite distance is again guaranteed by the global properties
original would-be initial data set: namely the only interesting case was when all fields
compactly supported.

~2! Note that even if suppk is noncompact the nonvacuum data (M ,g,k) may be asymptoti-
cally flat, as it is shown by Witt~1986! who constructs nonvacuum, asymptotically flat initial da
for every three-manifold with an end. But the above theorem is sharp in the following sense.
allow for a Riemannian manifold (M ,g) to have positive scalar curvature in a suitable region
M , it is possible to construct nonvacuum asymptotically flat initial data with compactly supp
second fundamental form. An example is the Tolman–Bondi solution. This is because in thi
the key inequality~5! can be written in the form

1
4 ~sg16w2!>bw8

with sg.0 in the positive scalar curvature regime and it may have compactly supported solu
But if sg is still negative somewhere, thenk is nonzero in that point; consequently, the initi
surface is not a maximal slice in this case.

~3! Notice that the above considerations do not remain valid forvacuum initial data. For
example, the Schwarzschild space–time has initial data with nonpositive scalar curvature~namely
it is identically zero! but the extrinsic curvature of the initial surface is compactly suppo
~namely identically zero, i.e., the initial surface is a maximal slice!. We conjecture that the analo
of the above theorem for vacuum initial data is the following: if (M ,g) is an asymptotically flat
three-manifold withsomewhere negative scalar curvature, then any vacuum initial data
(M ,g,k) cannot be asymptotically flat~i.e., the extrinsic curvature cannot decay at the requi
rate!. But in this moment we are unable to prove this.
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IV. CONCLUDING REMARKS

In the previous section we have studied gravitational initial data from a general point of
We have found that in the case of nonpositive scalar curvature, the behavior of the ex
curvature becomes very ‘‘rigid:’’ for open manifolds, the fall-off of the extrinsic curvature can
be arbitrary.

The negativity of the scalar curvature becomes important by an early general result of K
and Warner~1975!:

Theorem „Kazdan–Warner …: Let W be a compact manifold withdimW>3, and f:W→R be
a smooth function on it such that there is a point xPW obeying f(x),0. Then there is a smooth
Riemannian metric h on W such that sh5 f , i.e.,whose scalar curvature is the prescribed functi
f . L

The theorem demonstrates that a compact manifold of sufficiently large dimension alwa
be endowed with a metric with somewhere negative scalar curvature. This shows, takin
account the constraint equations, that it is relatively easy to construct initial data with some
non-zero extrinsic curvature.

The classical results of Gromow and Lawson~1983! and Schoen and Yau~Schoen, 1984!,
however, show that closed three-manifolds whose prime decomposition contains aK(p,1) factor
~this implies such manifolds have infinite fundamental groups! do not carry any metric with
positive scalar curvature. Consequently, initial data with positive scalar curvature must be
least in the compact case.

If the compactM̃ does not have positive scalar curvature, the punctured, open manifoM

5M̃ \$y% of this type, which is nothing but a manifold with an end, does not have a metric
non-negative scalar curvature, too. Consequently, these punctured manifolds do not admit
cuum, asymptotically flat initial data with identically zero extrinsic curvature. Furthermore, i
scalar curvature is everywhere nonpositive, then this extrinsic curvature has noncompact s
as we have seen.

These results are quite surprising because all the fields in question are defined in the c
smooth functions, so one would expect that initial data can be alteredlocally in a nontrivial way.
In other words, we have reduced the local degrees of freedom of the gravitational field in
sense.
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The Fermat principle in general relativity and applications
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In this paper we use a general version of Fermat’s principle for light rays in general
relativity and a curve shortening method to write the Morse relations for light rays
joining an event with a smooth timelike curve in a Lorentzian manifold with
boundary. The Morse relations are obtained under the most general assumptions
and one can apply them to have a mathematical description of thegravitational lens
effectin a very general context. Moreover, Morse relations can be used to check if
existing models are corrected. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1415428#

I. INTRODUCTION

Fermat’s principle in classical optics states that the trajectory of a light ray from a sourceA to
a targetB is such that it is a minimizer, or better, a stationary curve for the travel time amon
the paths joining pointsA andB.

This variational principle can be extended in the context of general relativity where
trajectory of a light ray under the action of the gravitational field in vacuum is given by a
geodesic in the Lorentzian manifold modeling the space–time generated by a gravitationa
distribution.

A formulation of Fermat’s principle is given once the following data are determined:

~1! a set oftrial curves joining the light source and the observer;
~2! a functional that associates to each trial curve a real number, which has to be related

measurement of thetime passed from the instant at which the photon departed from the
source to the instant at which the photon arrives to the observer.

A mathematical proof of Fermat’s principle consists in proving that the trajectory of a ligh
is characterizedas a stationary point of the time functional in the set of trial curves.

The geodesics in a semi-Riemannian manifold are characterized as solutions of diffe
equations, and thelocal theory of the light rays can be developed in terms of systems of di
ential equations inRn. However, the variational approach has the advantage of providing t
niques for provingglobal existence results, and also for producing several kinds of estimate
the number of solutions, given in terms of the topology of the space of trial curves. To this a
this paper we prove theMorse relationsfor light rays, which will be presented in detail in Sec. I
We now proceed to a general discussion of the mathematical problem, its physical applic
and a presentation of the results that will be proven in this paper.

We fix a Lorentzian manifold (M,g) that is the mathematical model of our relativistic spac
time, and we assume thatM is endowed with a time orientation given by the choice of
continuous timelike vector fieldW on M. Such assumption is indeed very mild; namely, giv

a!Electronic mail: giannoni@campus.unicam.it
b!Electronic mail: masiello@pascal.dm.uniba.it
c!Electronic mail: piccione@ime.usp.br
5630022-2488/2002/43(1)/563/34/$19.00 © 2002 American Institute of Physics
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any Lorentzian manifold, there always exists a twofold coveringM̃ of M that admits a time
orientation~cf. Ref. 1!, and clearly there is a two-to-one correspondence between the geode

M̃ and those onM. If we want to study the light rays emitted by some source at a given tim
the past, represented by an eventp of M, and reaching an observer sometimes during its l
whose worldline is given by a timelike curveg in M, then we need to determine all the lightlik
future pointing geodesics joiningp andg in M. We are assuming here that both the source and
receivers arepointlike, i.e., they have dimensions which are neglectible with respect to t
distance; a variational principle for light rays between a spatially extended source and a sp
extended receiver may be found in Ref. 2.

In analogy with the principle in classical optics, the set of trial curves is chosen to be th
of all possible future pointing trajectories joining the source with the observer, and that are
the speed of light. This amounts to saying that a trial curve is a curve whose tangent ve
everywhere in the light cone, and it belongs to the same half light cone as the vector fieldW.

The choice of theregularity to impose on the trial curves and, most of all, the choice of
functional to be extremized are rather delicate questions, which have deep consequences
mathematical theory to be developed.

The first relativistic formulation of the principle, valid in the case of astatic space–time, is
due to Weyl~see Ref. 3!; the validity of the general relativistic Fermat’s principle was successiv
extended to the case ofstationary space–times by Levi-Civita~see Ref. 4!. For conformally
stationaryspace–times an alternative formulation of the principle is given in Ref. 5.

The first attempt to extend Fermat’s principle beyond the~conformally! stationary case is due
to Uhlenbeck~see Ref. 6!, who considered a Lorentzian manifold diffeomorphic to a space–t
splitting M03R and a time-dependent metric which is diagonal with respect to this product.
variational principle proven in Ref. 6 employs the time functional given by the projection ont
second factor calculated at the final point of each trial curve. Such functional does not depe
the parametrization of the trial curve as, for instance, thelength functional for curves in a Rie-
mannian manifold, and this lack ofrigidity makes it a difficult task to obtain results of th
existence and multiplicity of critical points. For this reason, in order to prove the classical M
relations the author employs an action functional whose Lagrangian function depends qu
cally on the velocities. This kind of functional has a strict relationship with theenergyfunctional
for Riemannian geodesics, obtained byremoving the square rootinside the integral that defines th
length. The same variational principle was used in Ref. 7 to obtain Morse relations for ligh
on orthogonal splitting Lorentzian manifolds, using an infinite dimensional setting and cov
some gaps that occur in Ref. 6. Such a variational principle was extended in Ref. 8 tostably causal
Lorentzian manifolds having a smooth time function and applied in Refs. 9 and 10 to o
multiplicity results and Morse relations for light rays joining an eventp with a timelike curveg in
the presence of a smooth convex boundary.

A very general version of the principle, valid in all space–times, was given recentl
Kovner ~see Ref. 11!, who introduced the so calledarrival time functional with respect to the
observerg, defined on the space ofpiecewise smoothlightlike curves joiningp and g. Such
functional is given by fixing any~future pointing! parametrization ofg, and assigning to each tria
curve the value of the parameter ofg at the arrival point. Any two future pointing parametrizatio
of g differ by an order preserving diffeomorphism between two intervals of the real line; it i
easy observation that the stationary points of the arrival time functional do not indeed depe
the choice of the parametrization ofg.

A rigorous mathematical proof of the Kovner’s claim was given in Ref. 12. However,
proof in Ref. 12 needs the assumption that the critical points have nonzero derivative every

An alternative variational principle on the space of lightlike curvesz with a suitable pre-
scribed parametrization and satisfyingż(s)Þ0 for all s, can be found in Ref. 13. However, usin
this approach it is not possible to obtain Morse relations, as will be clear from the discu
presented in Appendix B.

In Ref. 10 the reader will find a more detailed presentation of the different versions o
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relativistic Fermat principle and some examples and applications to the multiple image effe~the
so called ‘‘gravitational lens effect’’!.

In Ref. 14 published in 1979, Walsh, Carlswell, and Weymann discussed the possibilit
the double quasar 09571561 would be a good candidate for a gravitational lens effect. Su
name refers to the phenomena occurring when a multiple image of some stellar object is ob
The multiple image effects are due to the deflection of the light in the presence of a gravita
field. We refer, e.g., to Refs. 15 and 16 for a detailed physical description of the gravitationa
effect and many physical examples. In Refs. 17 and 18 it is shown how one can use the
relations to check if a model is corrected or not. The version of the relativistic Fermat prin
introduced by Kovner also allows one to treat nonstationary situations such as a gravitationa
sweeping over a gravitational lensing situation. More details can be found in Ref. 19.

Some natural questions arise in the study of the gravitational lensing effect; for instan
attempt is made to understand under which circumstances a multiple imaging of a distant
can occur, and, in this case, how many images of the source can be seen. In mathematica
these questions can be answered by giving conditions on the topology and the metric
space–time that guarantee a multiplicity of lightlike geodesics betweenp and g lying inside an
open setL, which represent the region of the universe in which to localize the description fo
gravitational lens. As already mentioned, a technique for investigating these issues is provi
the Morse theory, which is a well-established mathematical theory that relates the critical po
a smooth functional with the topology of the underlying space.

The main purpose of this paper is to develop an infinite dimensional Morse theory u
minimalassumptions on the global structure of the space–time and on the timelike curveg. This,
in particular, allows us to extend the results in Refs. 5, 6, 7, and 10 concerning Morse rela
Most of all, we want to push the results beyond the compactness assumption ofglobal hyperbo-
licity made in Refs. 6 and 7; we also generalize the results of Ref. 10 in the following direc

~1! we do not assume thestable causalityof the Lorentzian manifold (M,g), which will only be
assumed to be time orientable;

~2! we do not assume any regularity for the boundary]L of the regionL;
~3! we do not assume thatg is embedded as aclosedsubset ofL#M.

Observe in particular that the second generalization above allows one to also exte
results to light rays moving on a region of the universe exterior to a static blackhole~see Ref. 20!.
For the functional framework, we will employ Kovner’s arrival time functional, denoted byt;
observe that the definition oft does not require the existence of aglobal time functiononL, which
was a crucial assumption in Refs. 7 and 10.

For a correct physical interpretation of our results, all the relevant information about the
rays joiningp andg must be encoded in the open subsetL. For this reason, ifLÞM, we assume
the following convexityproperty ofL:

every lightlike geodesic starting from any event inL

and moving outsideL̄ does not come back inL. ~* !

Note that assumption~* ! is not strictly necessary to develop our theory. As a matter of fact,
will use a more general assumption: the light convexity of the boundary ofL ~cf. ~3! in Sec. III!.
Observe also that in the Minkowski space–time a setL03R satisfies condition~* ! precisely when
L0 is convex. Other simple examples of space–times satisfying~* ! are the regions outside th
event horizon of the Schwarzschild and Reissner–Nordstro¨m space–times~see Ref. 21!.

Our Morse relations are given for future pointing lightlike geodesics; we remark here
there is also a time-reversed version of Fermat’s principle. Namely,p can be interpreted as
pointlike receiver at a particular instant of time andg as the worldline of a pointlike light source
in which case one is interested in determining the past pointing light rays fromp to g. Clearly, the
results proven in the paper are still valid in the past pointing case. From a mathematical p
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view, the case of past pointing light rays is completely analogous, and will not be treated exp
in this paper.

In Sec. II we will give a formal statement of our results, and we will present argumen
show that our assumptions cannot be weakened to obtain a Morse theory.

The reader is referred to classical books such as those noted in Refs. 1, 20, and 22 for th
notions and properties in Lorentzian geometry.

Finally, we remark that alternative approaches to the study of the Morse theory for ligh
are available in Refs. 23–25; the author applies the Morse theory in a time independentquasi-
Newtoniansetting.

II. STATEMENT OF THE RESULTS AND SOME DISCUSSION ABOUT THE ASSUMPTIONS

Let (M,g) be a smooth Lorentz manifold,L an open connected subset ofM, pPL,
g:]a,b@→L a smooth timelike curve such thatp¹g(#a,b@). Here and in the rest of the pape
we will often set^•,•&[g(z)@•,•#.

We assume that (M,g) is time orientable. This means that there exists a smooth vector
W on M such that̂ W(z),W(z)&,0 for anyzPM. With respect to the orientationW we assume
that
~1! g is future pointing,
namely

^ġ~s!,W~g~s!!&,0;sP]a,b@ .

Since we want to study future pointing light rays joiningp andg in L, we shall only consider pas
and future relative toL. More precisely given two pointsq1 andq2 in L, we say thatq2 is in the
future of q1 @in symbolsq2PJ1(q1 ,L)] if there exists a piecewise smooth curvey:@0,1#→L
such that^ ẏ,ẏ&<0 ~i.e., y is a causal curve!, ^ ẏ,W(y)&,0 ~i.e., y is future pointing!, y(0)
5q1 ,y(1)5q2 . In general ifA,L the future ofA ~in L) is the set

J1~A,L!5 ø
aPA

J1~a,L!,

while the past ofA ~in L) is the set

J2~A,L!5$qPL:AùJ1~q,L!5B%.

To have future pointing lightlike curves joiningp and g in L, clearly we need the following
assumptions:
~2! there exists q1Pg(#a,b@)ùJ1(p,L).
Moreover a light-convexity assumption on the closureL̄ of the open subsetL is needed:
~3! L̄ is light convex, i.e., all the lightlike geodesics inLø]L with endpoints inL are enterely
contained inL.
Here]L is the topological boundary ofL. Finally, to be able to define the arrival time function
we need
~4! g:]a,b@°L is in jective.
By ~4!, on the space of the curves joiningp andg on the interval@0,1#, the arrival time functional
is well defined

t~z!5g21~z~1!!. ~2.1!

The following assumptions says thatt is bounded from below on the set of the future pointi
lightlike curves joiningp andg.
~5! There exists q2Pg(#a,b@)\J1(p,L).

Since we do not require that]L is smooth we are not able to use the same penaliz
argument as in Refs. 9 and 10 to overcome the difficulties due to the presence of the bound
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develop a Morse theory for the arrival time functional we should need a flow which is str
decreasing far from the critical points. Since the boundary is not smooth a convenient appro
a shortening method.

Assumption~3! is necessary because we need a flow that it is invariant with respect t
lightlike curves with image inL. Note that to develop a Morse theory the presence of
boundary is a difficulty to bypass because we want to treat with ‘‘free’’ critical points lying inL̄.
Note also that, even if the boundary would be smooth, a shortening method seems tech
more simple that the penalized techniques used in Refs. 7, 9, and 10. Moreover, sincet is invariant
by reparametrizations, as well as the space of future pointing lightlike curves joiningp andg, a
shortening approach also seems to be a good help to overcome this kind of difficulty.

To use the shortening method we need an assumption assuring the existence of minim
L between events and timelike curves. For this reason we also need the following assu
~6! there exists a smooth timelike vector field W inM having the following properties:~a! g is an
integral curve of W ~namely ġ5W(g) for any sP]a,b@), ~b! for any qPJ1(p,L)
øJ2(g(#a,b@),L) if gq is the maximal integral curve of W such thatgq(0)5q, there is q̄
P@ Im gqùL#\J1(p,L).
Here Imgq denotes the image of the curvegq . Note that assumption~6! is certainly satisfied ifL
is invariant with respect to the flow ofW.

Morse theory gives an algebraic relation~in terms of formal series! between the critical points
of a suitable functional~in our case the arrival time functional! and the topology of the spac
where the functional is defined. At this point there are two options: to introduce a Sobolev
of lightlike curves or to use broken lightlike geodesics as space of trial curves.

To state Morse relations we prefer here to use the second choice since it does not req
use of any auxiliary~Riemann! structure. Nevertheless in Sec. III we shall give an infinite dim
sional formulation of the Fermat principle using Sobolev spaces. Indeed, even if we use a
ening procedure it is more convenient than an infinite dimensional approach to study the
time functional close to its critical points. This is due to the fact that here it is hard to try to re
~as, e.g., in Refs. 6 and 7! the study of the functionalt on a space of curves joining two fixe
points.

For this reason we are not able to adapt to our case the Milnor finite dimensional appro
tion scheme~cf. Ref. 26! close to critical points.

Now set

B p,g
1 ~L!

5$z:@0,1#→L:z is a C2 piecewice curve such that z(0)

5p,z~1!Pg~#a,b@! and, on any interval@a,b#,#a,b@

where z is of class C2, z is a constant or a future pointing light-like geodesic%.
~2.2!

We point out that a curvezPBp,g
1 (L) may be constant on some interval@a,b#,@0,1# ~and

thereforezu[a,b] is not a lightlike geodesic!. Nevertheless the topological structure of the probl
is carried on by the spaceBp,g

1 (L), instead of the spaceB̂p,g
1 (L) of the broken lightlike geodesic

~without subintervals wherez is constant!. A simple example in Appendix B shows that Mors
relations cannot be written usingB̂p,g

1 (L).
In Sec. V we shall prove the homotopy equivalence betweenB p,g

1 (L) ~endowed with the
uniform topology! and the Sobolev spaces of future pointing, lightlike,H1,r-curves joiningp and
g (r P@1,1`#).

Using the spaceB p,g
1 (L) we can state our last assumptions. In Sec. III we shall prove th

is equivalent to the one formulated in Refs. 9 and 10.
For anycP]a,b@ @cf. ~4!# we denote bytc the c-sublevel of the functionalt in B p,g

1 (L):
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tc5$zPB p,g
1 ~L!:t~z!<c%. ~2.3!

Definition 2.1: Fix c.a. We say thatB p,g
1 (L) is c-precompact if any sequence$zn :n

PN%,tc has a subsequence uniformly convergent inL̄, up to reparametrizations. We say thatt
is pseudocoercive inB p,g

1 (L), if B p,g
1 (L) is c-precompact for any cP]a,b@ .

Note that by assumption~5! there existsŝ.a such thattc is the empty set for anyc
P]a,ŝ]. !

WheneverL5M pseudocoercivity coincides with the global hyperbolicity of the set of
events in the future ofp, ~cf. Ref. 9!.

Before stating our main result, we recall some definitions.
Definition 2.2: Let(M,^•,•&) be a Lorentzian manifold, and z:@0,1#→M be a geodesic. A

smooth vector fieldz along z is called a Jacobi field if it satisfies

Ds
2z1R~z,ż!ż50, ~2.4!

where R is the curvature tensor of the metric^•,•& ~cf. Ref. 22!. A point z(s), sP]0,1] is said to
be conjugate to z(0) along z if there exists a nonvanishing Jacobi fieldz along zu[0,s] such that

z~0!5z~s!50. ~2.5!

The multiplicity of the conjugate point z(s) is the maximal number of linearly independent Jaco
fields satisfying (2.5).

By ~2.4! the set of the Jacobi fields is a vector space of dimension 2 dimM. Hence the
multiplicity of a conjugate point is finite and, by~2.5!, is at most dimM @actually it is at most
dimM21 becausez(s)5sż(s) is a Jacobi field which is zero only ats50#.

Definition 2.3: The indexm(z) is the number of conjugate points z(s), sP]0,1@ to z(0),
counted with their multiplicity.

It is well known that the index of a lightlike geodesic is finite~see Ref. 22!.
Definition 2.4: Let p be a point andg a timelike curve on a Lorentzian manifold(M,g). Then

p and g are said to be nonconjugate by lightlike geodesics if for any lightlike geodesic z:@0,1#
→M joining p andg, z(1) is nonconjugate to p along z.

It is well known that such a condition is true except for a residual set of pairs (p,g). For some
results wheneverp andg are conjugate see Ref. 27.

Let X be a topological space andK a field. For anyl PN let Hl(X;K) be thel th homology
group of X with coefficients inK. SinceK is a field, thenHl(X;K) is a vector space whos
dimensionb l(X;K) ~eventually1`! is called thel th Betti number of X~with coefficients inK!.
The PoincarépolynomialP(X;K) is defined as the following formal series:

P~X;K!~k!5(
l PN

b l~X;K!k l .

Let G p,g
1 (L) be the set of the future pointing lightlike geodesics joiningp andg and having image

contained inL. The main result of this paper is the following theorem.
Theorem 2.5:Let L, p, g satisfy~1!–~6!. Assume that the following assumptions hold tru
(L1) p andg are nonconjugate;
(L2) t is pseudocoercive onB p,g

1 (L);

then for any fieldK there exists a formal series S(k) with coefficients inNø$1`%, such that

(
zPG p,g

1 (L)

km(z)5P~B p,g
1 ~L!;K!~k!1~11k!S~k!. ~2.6!

The same result holds for the lightlike geodesics joiningp andg in the past ofp, under an
obvious modification of the assumptions.
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Remark 2.6:Observe that the Betti numbersb l(X;K) @and the coefficient of the formal serie
S(k) in ~2.6!# depend in a substantial way on the choice of the fieldK. On the other hand, the
left-hand side of the equality~2.6! does not depend onK, hence one can obtain more informatio
on G p,g

1 (L) by letting the coefficient fieldK be arbitrary in~2.6!. For example, a result of Serre
where the choice ofK is essential~cf. Ref. 28!, is used to prove part~b! of Theorem 2.11.

Remark 2.7:Note that assumption (L2) cannot be removed. Indeed, let (M0 ,^•,•&0) be a
Riemannian manifold such that there exist two pointsp1 , p2PM0 which are not joined by any
geodesic for the metriĉ•,•&0 . Consider the~static! Lorentzian manifold (M,^•,•&), whereM
5M03R and ^•,•& is given by

^z,z&5^j,j&02u2,

for any z5(x,t)PM03R andz5(j,u)PTzM. Let L5M. Consider the pointp5(p1,0) and
the timelike curveg(s)5(p2 ,s). Clearly assumptions~1!–~6! are satisfied, but not (L2). Theorem
2.5 does not hold forp and g, since there are no lightlike geodesics joiningp and g, while
P(B p,g

1 (L),K)(k)Þ50 for any fieldK.
Remark 2.8:Let cl be the number of the future pointing lightlike geodesics joiningp andg

having indexq. Then~2.6! can be written in the following way:

(
l 50

`

clk
l5(

l 50

`

b l~B!p,g
1 ~L!;K)k l1~11k!S~k!. ~2.7!

From ~2.7! we deduce that a certain number of future pointing light rays joiningp and g are
obtained according to the topology ofBp,g

1 (L). In particular, settingk51 in ~2.7!, we have the
following estimate on the number card(G p,g

1 (L)) of the light rays joiningp andg:

card~G p,g
1 ~L!!5(

l 50

`

b l~Bp,g
1 ~L!;K!12S~1!. ~2.8!

SinceS(1) is non-negative we also get the classical Morse inequalities

cl>b l~Bp,g
1 ~L!;K!, ; l PN. ~2.9!

An example of the influence of the topology ofB p,g
1 (L) on the number of future pointing

lightlike geodesics betweenp andg is given by the next theorem.
Theorem 2.9:Under the assumptions ofTheorem 1.5we have the following.

~a! If Bp,g
1 (L) is contractible the numbercardG p,g

1 (L) is infinite or odd.
~b! If Bp,g

1 (L) is not contractible, there exist at least two future pointing light rays joining p a
g. ~We recall that a topological space is said to becontractibleif it is homotopically equiva-
lent to a point.!

Actually, the topology ofBp,g
1 (L) is in general not known for arbitrary Lorentzian manifol

More information can be obtained if its topology can be related to the topology of the manifoL.
Let V~L! be the based loop spaceof all the continuous curvesz:@0,1#→L such thatz(0)
5z(1)5 z̄. SinceL is connected,V~L! does not depend onz̄. We equipV~L! with the uniform
topology. Since the Poincare´ polynomial is a homotopical invariant, we have the following res
as an immediate consequence of Theorem 2.5.

Theorem 2.10:Besides the assumptions of Theorem 2.5, assume also:
(L3) B p,g

1 (L) has the same homotopy type of the based loop spaceV~L!.
Then for any fieldK there exists a formal series S(k) with coefficients inNø$1`%, such that

(
zPGp,g

1 (L)

r m(z)5P~V~L!,K!~k!1~11k!S~k!. ~2.10!
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In Appendix A we give a general condition assuring that (L3) is satisfied. Thanks to the resul
proved in Sec. 5 and Appendix A we see that assumption (L3) is certainly satisfied if (L,^•,•&) is
conformally stationary and this is the case, with a good approximation, of the accepted ca
multiple quasars~see, e.g., Ref. 16!.

Theorem 2.11:Under the assumptions of Theorem 2.10 we have:

(a) If L is contractible, then the number of the future pointing lightlike geodesics joining p
g and with image inL is infinite or odd.

(b) If L is noncontractible, then the number of the future pointing lightlike geodesics joinin
with g and with image inL is infinite.

Conditions assuring the finiteness of the images can be found in Ref. 29. To write M
relations for light rays using the arrival time functionalt it does not seem that the pseudoco
civity assumption can be weakened. Indeed it is necessary to have that the sublevelstc of the
arrival time functional are complete with respect to a suitable metric and the Palais–Sma
quences are precompact~with respect to such a metric!. Note that the sequences in Definition 2
are allowed to reach]L. The light convexity ofL̄ will guarantee the existence of minimizers wi
image entirely included inL.

Morse relations are proved regarding lightlike geodesics as critical points of the functiot.
They are written using the geometric indexm instead of the Morse index thanks to Theorem 5.
Its proof is based on a different approach to the index theorem for lightlike geodesics, with re
to the one of Ref. 22, where the index theorem is proved on a quotient space of the adm
variations. For the proof of Theorem 5.13 we have to choose a suitable manifold where the c
points oft are lightlike geodesics.

III. MINIMIZERS FOR THE ARRIVAL TIME ON SOBOLEV CURVE SPACES

We begin the section by introducing the Sobolev spacesH1,r(@0,1#,L) with r P@1,1`#. This
can be rapidly done in the following way.

Let W be the smooth timelike vector field onM whose existence is assumed in~1!. The
manifold M can be equipped by a natural Riemannian structure setting

^z,z&R5^z,z&2
2^W~z!,z&2

^W~z!,W~z!&.
~3.1!

The Riemannian metric~3.1! can be used to introduce a Riemann distance onL that we shall
denote bydR . Such a distance allows us to introduce the space of the absolutely continuous
between@0,1# andL ~denoted byAC(@0,1#,L)). Finally for anyr P@1,1`@ we set

H1,r~@0,1#,L!5H zPAC~@0,1#,L!:E
0

1

~^ż,ż&R!r /2 ds,1`J
while

H1,̀ ~@0,1#,L!5$zPAC~@0,1#,L!:sup$^ ż~s!,ż~s!&R :sP@0,1#%,1`%.

Using local coordinates and the Palais definition of the Sobolev manifold~cf. Ref. 30! we see that
the above defined spaces do not depend on the choice ofW. Moreover we set

Vp,g
1,r ~L!5$zPH1,r~@0,1#,L!:z~0!5p,z~1!Pg~#a,b@!%. ~3.2!

For any absolutely continuous curvez we can extend the classical definition of causal curve say
thatz is a causal curve if̂ż(s),ż(s)&<0 almost everywhere~a.e.!. Moreover we say that a causa
curve is future pointing if
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^ż~s!,W~z~s!!&,0 for almost every s such that z˙~s!Þ0.

It is possible to prove that the above-presented notions are equivalent to the ones given in
for continuous curves, whenever we deal with absolutely continuous curves. This can be
using Proposition 3.2.

To develop a Morse theory for light rays the following spaces will be also used:

L p,g
1,r~L!5$zPVp,g

1,r ~@0,1#,L!:^ż,ż&50 a.e. andz is future pointing%. ~3.3!

More in general for any eventp* and any future pointing, injective, timelike curv
g* :]a* ,b* @→L we shall use the following notation:

L p
*

,g
*

1,r ~@a,b#,L!5$zPH1,r~@a,b#,L!:

^ż,ż&50 a.e., z is future pointing, z~a!5p* and z~b!Pg* ~ #a* ,b* @%.

We shall denote by the same symbolt the functional defined byg
*
21(z(b)! on the space

L p
*

,g
*

1,r (@a,b#,L).

Remark 3.1:Note that the above-mentioned spaces are not smooth manifold: a tangent
is not well defined on the curvesz such thatż(s)50 on a subset of@0,1# having positive Lebesgue
measure.

For this reason if we want to deal with smooth manifolds we need to use an approximat
L p,g

1,r(L) by suitable smooth manifolds and to studya priori estimates for the limit process~cf.
Refs. 9 and 10!. In this paper we shall work directly onL p,g

1,r(L) showing first that assumption
~1!–~6! and pseudocoercivity allow one to find smooth minimizers inL which are lightlike
geodesics.

This is a further motivation to choose a shortening procedure for the arrival time functi
since it permits one to bypass the nonsmoothness of the spaces defined by~3.3!. It will be possible
to write Morse relations using the Poincare´ polynomial ofB p,g

1 (L) because we shall prove in Se
IV that it is homotopically equivalent toL p,g

1,r(L).
The next result is a local version of the relativistic Fermat principle and it is the first ste

the shortening procedure.
Proposition 3.2: Let qPM. Then there existsr(q).0 having the following property. For any

g* timelike injective curve and integral curve of Y such that:

(1) 0,dR(q,Im g* )<r(q),
(2) Im g*ùJ1(q,M)ÞB,
(3) Im g* \J1(q,M)ÞB,

there exists a unique future pointing lightlike geodesic joining q andg* and minimizing the
arrival time onL q,g

*

1,r (M).

The proof can be, e.g., obtained as a limit process of timelike problems using the res
Ref. 31. Anyway here we shall give a variational proof working directly in the lightlike case.
proof is quite different from the classical geometrical one~cf. Ref. 20!. The following remarks will
be used for the proof of Proposition 3.2 and other results in the present paper.

Remark 3.3:For anyzPL there exists a neighborhoodUz of z and a coordinate systemw
5(x1 ,...,xN21 ,t) (N5dimL) on Uz such thatW5 ]/]t andUz5S3]a,b@ whereS is a space-
like hypersurface parametrized byx1 ,...,xN21 .

Moreover, in the coordinatesx5(x1 ,...,xN21) and tP]a,b@ the metricg is given by

g~x,t !@~j,u!,~j,u!#5^a~x,t !j,j&012^d~x,t !!,j&0u2b~x,t !u2,
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where (j,u)PT(x, (a1b)/2)S3R, ^•,•&0 is the restriction ofg to S, a is a smooth, symmetric
positive definite operator,d is a smooth vector field onS, andb is a smooth positive real function
Note that^•,•&0 is a Riemannian metric onS.

Indeed it is sufficient to chooseS5$(x,t):t5 (a1b)/2%, a(x,t), d(x,t), andb(x,t) such
that

^a~x,t !j1 ,j2&05g~x,t !@j1 ,j2# for any j1 ,j2PT(x, ~a1b!/2)S,

d~x,t !5@G0~x,t !#21~ d̄~x,t !!, d̄~x,t !5 (
i 51

N21

giN~x,t !
]

]xi
,

G0~x,t !5~gi , j ! i , j 51, . . . ,N21 ,

andb(x,t)52g(x,t)@W,W#.
Remark 2.4:We will assume henceforth thatW is renormalizedin such a way that

^W~z!,W~z!&521 for any zPM.

In particular,^ġ,ġ&[21, and so the parameter ofg can be interpreted as proper time.
Therefore, in the coordinate systems (x1 ,...,xN21 ,t) with ]/]t 5W ~cf. Remark 3.3!, z

5(x,t)PL p,g
1,r(L) if and only if

ṫ5^d,ẋ&01A^d,ẋ&0
21^a ẋ,ẋ&0 ~3.4!

because

b~x,t !52^W~z!,W~z!&[1.

Moreover, in such a coordinate system, any integral curve ofW can be written as

s°~ x̄,s!,

for somex̄PS.
In order to prove Proposition 2.2, the following preliminary results are needed.
Lemma 2.5: Under the assumptions of Proposition 3.2, ifr(q) is sufficiently small, there

exists a minimizer oft on L q,g
*

1,1 (M) having H1,̀ regularity.

Proof: By Remarks 3.3–3.4 and the assumptions of Proposition 3.2, ifr(q) is sufficiently
small, we can consider a sufficiently small neighborhoodU of q such thatU5V3I , whereV is an
open neighborhood contained inS, I 5] 2l0 ,l0@ , q5(q0,0)PV3I , the curveg* (t)5(q* ,t) is
defined in ]2l0 ,l0@ and dR(q0 ,q* )→0 whenever dR(q,Im g* )→0. If zPLp,g

1 and takes its
values inU, thenz(s)5(x(s),t(s)), x(0)5q0 , x(1)5q* , andt(s) satisfies the Cauchy problem

H ṫ5^d~x,t !,ẋ&01A^a~x,t !ẋ,ẋ&01^d~x,t !,ẋ&0
2,

t~0!50.
~3.5!

Moreover

t~z!5tx~1!5E
0

1

^d~x,tx!,ẋ&0 ds1E
0

1
A^a~x,tx!ẋ,ẋ&01^d~x,tx!,ẋ&0

2 ds,

where tx is the solution of the above-mentioned Cauchy problem above. Using a minimal
mannian geodesic betweenq0 andq* in V shows that
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inf
L q,g

*

1

t→0 as dR~q,g* !→0.

We show now the existence of a minimizer fort.
Consider a minimizing sequence (zm) for t and setzm5(xm ,tm). The coercivity ofa shows

that the Riemann length ofxm is bounded. Then by~3.5! we deduce thatṫm is bounded inL1. Then
we can reparametrizezm proportionally to arclength obtaining a curveymPL q,g

*

1,1 (L) such that

ym(u)5zm(s) where

u5
*a

s^2 żm ,W~zm!&ds

*a
b^2 żm ,W~zm!&ds

.

Since

E
a

b

użmuds

is uniformly bounded, there exists a positive constantM independent ofmPN such that

U E
a

b

^żm ,W~zm!&dsU<M .

Then it is not difficult to see thatẏm is uniformly bounded.
So we have a sequence of curveszm5(xm ,tm) such that, up to a reparametrization~and

replacingym with zm!,

~xm ,tm! uniformly converges to a curve z5~x,t !;

the sequence~ ẋm! is bounded in L`;

the sequence~ ẋm! weakly converges to x˙ in L2.

In particular the sequence (ẋm) weakly converges toẋ in L1 and then by well-known properties o
the weak convergence~see, e.g., Ref. 32!,

E
0

1
A^a~x,t !ẋ,ẋ&01^d~x,t !ẋ,ẋ&0

2 ds< lim inf
m→`

E
0

1
A^a~x,t !ẋm ,ẋm&01^d~x,t !ẋm ,ẋm&0

2 ds.

Moreover, we clearly have

U E
a

b

~A^a~x,t !ẋm ,ẋm&01^d~x,t !,ẋm&0
22A^a~xm ,tm!ẋm ,ẋm&01^d~xm ,tm!,ẋm&0

2!dsU
<E

a

b

~ u^~a~xm ,tm!2a~x,t !!ẋm ,ẋm&0u1u^d~xm ,tm!1d~x,t !,ẋm&0^d~xm ,tm!

2d~x,t !,ẋm&0u!1/2ds°0 as m→1`.

Finally, by the uniform convergence of (xm ,tm) to (x,t),

E
a

b

^d~xm ,tm!,ẋm&0→E
a

b

^d~x,t !,ẋ&0 .

It follows that for anys1,s2 ,
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lim inf
m→`

~ tm~s2!2tm~s1!!5 lim inf
m→`

S E
s1

s2

^d~xm ,tm!,ẋm&0 ds

1E
s1

s2A^a~xm ,tm!ẋm ,ẋm&01^d~xm ,tm!,ẋm&0
2 dsD

>S E
s1

s2

^d~x,t !,ẋ&0 ds1E
s1

s2A^a~x,t !ẋ,ẋ&01^d~x,t !,ẋ&0
2 dsD .

So we have obtained:

H ṫ>^d~x,t !,ẋ&01A^a~x,t !ẋ,ẋ&01^d~x,t !,ẋ&0
2,

t~0!50.

Let tx be the solution of the above-assigned Cauchy problem relative to the curvex. Comparison
theorems for ordinary differential equations show thattx<t. Hence, (x,tx) is a minimizer fort.

Finally, our ~reparametrized! minimizing sequencezm satisfies:

H ^żm ,W~zm!& is bounded and

żm is weakly convergent to z˙ in L2.

Therefore^ż,W(z)& is bounded and the minimizerz is therefore inH1,̀ . h

Lemma 3.6: Assume q¹g* (#a,b@). Let z be a minimizer oft on L q,g
*

1,1 (M) such that z

PH1,̀ (@0,1#,M). Then there exists a curve yPL q,g
*

1,` such that y minimizest and

inf$i ẏ~s!iR:sP@0,1#\N%.0, ~3.6!

where N is a subset of@0,1# having zero Lebesgue measure.
Moreover,

y~@0,1# !5z~@0,1# !.

Proof: Choosey(u)5z(s) where

u5
*0

s^2 ż,W~z!&ds

*0
1^2 ż,W~z!&ds

.

It is easy to see thatyPL q,g
*

1,` (L), y(@0,1#)5z(@0,1#) and

^ ẏ~u!,W~u!&5E
0

1

^2 ż,W~z!&ds a.e. ~3.7!

Since*0
1^2 ż,W(z)&dsÞ0 we deduce immediately~3.6!. h

Lemma 3.7: Let z be a curve inL p,g
1,` satisfying (3.6). Then there exists a neighborhoodV of

z in H1,̀ (@0,1#,L) such thatVùLp,g
1,` is a C1-manifold and for any zPV its tangent space is

given by

Tz~L p,g
1,`!5$zPH1,̀ ~@0,1#,TL!:z~s!PTz(s)L f or any s,

z~0!50,z~1!i ġ~t~z!!,^Dsz,ż&50 a.e.%.

Here TL denotes the tangent bundle ofL and Ds the covariant derivative along z.
Proof: Consider the mapc:Vp,g

1,̀ (L)→L`(@0,1#,R) such that
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c~z!5&^ż,W~z!&1A^ż,ż&12^ż,W~z!&25&^ż,W~z!&1A^ż,ż&R.

Note thatc21(0)5L p,g
1,` . The setVp,g

1,̀ (L) is a manifold and, for anyzPVp,g
1,̀ , its tangent space

is

TzVp,g
1,̀ 5$zPH1,̀ ~@0,1#,TL!:z~s!PTz(s)L for any sP@0,1#,

z~0!50, z~1!i ġ~t~z!!%.

By the above-mentioned formula we immediately deduce thatc is of classC1 in a neighborhood
of z. We claim that,;zPVùL p,g

1,` , the differential dc(z)@•# is surjective.
Indeed letUz be the parallel transport ofġ(t(z)) along z, i.e., the solution of the Cauch

problem

H DżUz50,

Uz~1!5ġ~t~z!!.

Then for anywPL`(@0,1#,R) it is easy to show the existence oflPH1,̀ (@0,1#,R) such that
l(0)50,

dc~z!@lUz#5w,

and the kernel of dc(z) splits. ThenVùc21(0) is a manifold whose tangent space atz is the
kernel ofdc(z) in TzVp,g

1,̀ . h

Remark 3.8:The functional t is differentiable onVp,g
1,̀ . Since t is defined by setting

g(t(z))5z(1), its differential satisfies

ġ~t~z!!dt~z!@z#5z~1!

and therefore

dt~z!@z#50,

if and only if

z~1!50 for any zPTz~L p,g
1,`!.

Now let V be a smooth vector field alongz such thatV(0)5V(1)50 andUz the parallel transport
of g(t(z)) alongz. If z satisfies~3.6! put

l~s!5E
0

sK DrV,
ż

^Uz ,ż&L dr .

ThenV2lUzPTz(L p,g
1,`) and if z is a critical point oft on L p,g

1,` it is

t~z!@V2lUz#50 for any V

and therefore

05l~1!5E
0

1K DsV,
ż

^Uz ,ż&L ds for any V.

Conversely ifz satisfies the above-mentioned condition,z(1)50 for anyV, hencez is a critical
point of t.

The following theorem is the relativistic Fermat principle proved inH1,̀ ~see also Ref. 12!.
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Theorem 3.9 „Fermat principle…: Let zPLp,g
1,` such that (3.6) is satisfied. Then, z is a

critical point of t if and only if it is a reparametrization of a C2-geodesic inLp,g
1,` .

Proof: If z is a critical point oft @satisfying~3.6!# it is

E
0

1K DrV,
ż

^Uz ,ż&L dr 50

for anyV alongz such thatV(0)5V(1)50. If y is a reparametrization ofz such that̂ Uw ,ẇ& is
constant we deduce*0

1^DrV,ẏ&50 for anyV and thereforey is a smooth geodesic.
Conversely if z is a reparametrization of aC2-geodesic, it isDs(m8ż)50 for somem

PH1,̀ (@0,1#,R). Then^Uz ,m8ż& is constant, so

E
0

1K DrV,
ż

^Uz ,ż&L dr 50

for any V such thatV(0)5V(1)50. Then, by Remark 3.8 we deduce thatz is a critical point of
t. h

We are finally ready to prove Proposition 3.2.
Proof of Proposition 2.2:By Lemmas 3.5 and 3.6 and Theorem 3.9 there exists a fu

pointing lightlike geodesicw joining q andg* , minimizing t on L q,*
1,r . The uniqueness ofw is

a consequence of the local invertibility of the exponential map~cf. Ref. 1!.
Remark 3.10:Fix zPL p,g

1,r(L) and @a1 ,a2#,@0,1#. Let g2 be the integral curve ofW such
thatg2(0)5z(a2). Since it is future pointing, a simple contradiction argument shows that, w
ever dR(z(a1),z(a2))→0, the infimum oft on L z(a1),g2

1,r (@a1 ,a2#,L) tends to 0, and ifz(a1)

5z(a2) the infimum is 0.
Remark 3.11:Sincet andL q,g

*

1,r (L) are invariant by reparametrizations, it is clear that th

are nonsmooth minimizers. Note that, among the minimizers there are also curves havin
derivatives in subsets of@0,1# with positive Lebesgue measure.

Now we shall prove the equivalence between Definition 2.1 and the corresponding defi
given in Refs. 9 and 10@where the pseudocoercivity oft is given inL p,g

1,r(L)#.
Lemma 3.12: Let zPL p,g

1,1(L). Then there exists zn in B p,g
1 (L) such that zn→z uniformly.

Proof: We can apply Proposition 3.2 to obtain the existence of a minimizer in the s
L z(a1),g2

1,1 (@a1 ,a2#,L) whereg2 is the integral curve ofw such thatg2(0)5z2 . Sincez is fixed, if

a22a1 is sufficiently small,*a1

a2A^ż,ż&R ds is small and also the length@with respect to the

Riemann structure~3.1!# of the geodesic minimizingt is small. Then, choosing a suitable partitio
of the interval@0,1# allows one to construct a broken geodesicẑ such that the distance betweenz
and ẑ with respect to theH1,1-norm is arbitrarily small. Therefore, the uniform distance can
made as small as we want and we are done. h

By Lemma 3.12 it follows immediately
Proposition 3.13: For any rP@1,1`#, t is pseudocoercive onL p,g

1,r(L) if and only if it is
pseudocoercive onB p,g

1 (L).
For anyzPH1,1(@0,1#,L) denote byl (z) its length induced by the Riemann structure~3.1!.
Lemma 3.14: Assumet is pseudocoercive onB p,g

1 (L). Then, for any cP ]a,b@ there exists
D(c).0 such that

t~z!<c⇒l ~z!<D~c! for any zPL p,g
1,r~L!.

Proof: Assume by contradiction the existence of a sequencezn in L p,g
1,r(L) such thatt(zn)

<cP]a,b@ and l (zn)→1`. Since t and l are invariant by reparametrizations, by th
pseudocoercivity oft ~and Proposition 3.13! we can assume thatzn has a subsequence~that we
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shall continue to denote byzn! uniformly convergent to a continuous curvez:@0,1#→L̄. Since
z(@0,1#) is compact, it can be covered by a finite number of open neighborhoodsUi in M such
that, on anyUi , the metricg has the form

ds25^a~x,t !j,j&012^d~x,t !,j&0u2u2

~cf. Remarks 3.3 and 3.4!. If ] an
i ,bn

i @ is an interval such thatzn(s)PUi for any sP]an
i ,bn

i @ and
zn5(xn ,tn) we have

tn~bn
i !2tn~an

i !5E
an

i

bn
i

ṫ n ds5E
an

i

bn
i

~^d,ẋn&01A^d,ẋn&0
21^a ẋn ,ẋn&0!ds.

Since anyŪ i is compact and the number ofUi is finite we deduce that*
a

n
i

bn
i

A^ẋn ,ẋn&0 ds ~and

consequently*
a

n
i

bn
i

u ṫ nuds! is bounded independently byn and i . Finally, since anyzn is included in

ø
i

Ui

and żn5( ẋn , ṫ n) on anyUi , we deduce that*
a

n
i

bn
i

i żniR ds is bounded independently byn and i .

Then l (zn) is bounded getting a contradiction. h

Lemma 3.14 will be used, together with the following proposition, to construct the shorte
flow for t.

Proposition 3.15: Let W, L, and g:]a,b@→L satisfy (1)–(6) of Sec. II. Assume thatt is
pseudocoercive onB p,g

1 (L) and fix cP]a,b@ .
Then there existsr* (c).0 satisfying the following property. Let zPtcùL p,g

1,r(L),
@a,b#,@0,1#, z1 ,z2Pz(@0,1#) with z15z(a),z25z(b), and dR(z1 ,z2)<r* (c). Let
g i :]a i

2 ,b i
1@→L( i 51,2) be the maximal integral curve~in L! of

H ḣ5W~h!,

h~0!5zi , i 51,2.
~3.8!

Moreover, for any zˆ1Pg(#a1
2,0]) with dR( ẑ1 ,z1)<r* (c) there exists a unique future pointin

lightlike geodesicG such thatG(a)5 ẑ1 , G(b) is in the image ofg2 , G(s)PL for any s
P@a,b#, and

t~G!5 inf$t~y!:yPL ẑ1 ,g2

1,r ~@a,b#,L!%. ~3.9!

Proof: By pseudocoercivity it is immediate to check the existence ofK, compact subset ofL̄,
such that

zPtc⇒z~@0,1# !,K. ~3.10!

Now take a finite familyU1 ,...,Um of open subsets ofM coveringK and such that anyUi is
compact andUi satisfies the properties of Remarks 3.3 and 3.4. By Proposition 3.2 and Re
3.10 if r* (c) is sufficiently small there exists a minimizerw in L ẑ1 ,g2

1,r (@a,b#,Ui) for some i

51,...,m. @Note that, by assumption~6!, w(b)PL#. Since

ø
i 51

m

Ūi
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is compact, by the local invertibility of the exponential map@and the minimality oft(w)# we see
that, if r* (c) is sufficiently small, the minimizing geodesic is unique. Then we have just to p
that the minimizer is included inL. If z15z2 this is obvious. Then suppose thatz1Þz2 . If r* (c)
is sufficiently small and dR(z1 ,z2)<r* (c), z1 ,z2PUiùL ~for somei !. Then, using Proposition
3.2 and choosingr* (c) sufficiently small, we can construct two continuous mapsu1 ,u2 :@0,1#
→UiùL having the following properties:

~1! for any lP@0,1#,u2(l) is in the future ofu1(l),
~2! u1(0)5 ẑ1u2(0)5z2 ,
~3! u1(l)Þu2(l) for any lÞ1,
~4! u1(1)5u2(1),
~5! for anylP@0,1# there exists a unique minimizer oft on Lu1(l),g2(l)(@a,b#,Ui) whereg2(l)

is the maximal integral curve ofW such thatg2(l)(0)5u2(l).

Now set

A5$lP@0,1#: the lightlike or constant geodesic minimizingt on

Lu1(l),g2(l)~@a,b#,Ui ! does not intersect]L%.

Sinceu1(1)5u2(1)PL,1PA. Take

l0[ inf A>0.

By the definition ofl0 , there existsln→l0
1 and a sequencewn of lightlike geodesic minimizing

t on L u1(ln),g2(ln)
1,r (@a,b#,Ui) such thatwn(@0,1#),L. Unless to consider a subsequence, by~3.4!

we obtain the existence of a lightlike geodesicw such that

wn→w with respect to theC22norm,

w~a!5u1~l0!, w~b!Pg2
21~l0! ~g2,L!,

w~@a,b# !,L̄.

If w(@a,b#),L, thenl050 and we are done. Ifw(@a,b#)ù]LÞB, sinceu1(l0)Þu2(l0) are
in L we get a contradiction with the light-convexity ofL̄. h

IV. HOMOTOPICAL EQUIVALENCE BETWEEN L p ,g
¿,r

„L… AND B p ,g
¿

„L…

In this section@under assumptions~1!–~6!# we shall introduce a shortening flow and we sh
use it to prove thatL p,g

1,r(L) andB p,g
1 (L) are homotopically equivalent for anyr P@1,1`#. This

flow will also be used to get the deformation of the sublevels oft for the Morse theory, wheneve
we are far from lightlike geodesics.

Indeed far from lightlike geodesics,t will be strictly decreasing with a speed uniformly fa
from zero. In other wordst will verify the Palais–Smale compactness condition along the flo

To construct the shortening flow we shall use the same ideas as in Ref. 26 adapting t
our case. Note that here we cannot use the finite dimensional approach near critical curve~used
in Ref. 26 for Riemannian geodesics! because we are not working with fixed end points. So
shortening approach will be used only far from geodesics.

The shortening procedure can be introduced in the following way. Fixc. inf$t(z),z
PL p,g

1,r(L)%. ConsiderD(c) as in Lemma 3.14,r* (c) as in Proposition 3.15, and takeN
5N(c) such that

D~c!

N
,r* ~c!.
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Choose a partition$05s0,s1 , . . . ,sN21,sN51% of @0,1# such that for anyi P$1, . . . ,N%,

si2si 215
1

N
.

For anyzPtcùL p,g
1,r(L), chooseN11 pointsz0 ,z1 , . . . ,zN on z(@0,1#) such thatz(0)5p, zN

5z(1), and dR(zi ,zi 21)5 l (z)/N, for any i P$1, . . . ,N%, wherel (z) denotes the length ofz with
respect to the Riemannian structure~3.1! ~see Fig. 1!.

Denote byg i ( i 51, . . . ,N) the maximal integral curve ofW such thatg i(0)5zi ~see Fig. 2!.
Observe thatgN(s)5g(s1t(z)) for all s.

FIG. 1.

FIG. 2.
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Let w1 be the lightlike geodesic minimizingt on L p,g1

1,r (@s0 ,s1#,L) ~recall thatz05p and

s050), w2 the lightlike geodesic minimizingt on L w1(s1),g2

1,r (@s1 ,s2#,L), and so on~see Fig. 3!.

In Figs. 3–5, the pointswi(si) are denoted byw̄i .
Note that the numberN can be chosen big enough in order that dR(wi(si),zi 11)<r* (c), for

any i 51, . . . ,N21 and for anyzPtc.
Remark 4.1:Let K5K(c) be a compact subset ofL̄ as in~3.10!. By compactness,K(c) can

be covered by a finite family (U j ) satisfying Remark 3.3. Moreover,N can be chosen so large th
z(@si 21 ,si #) and the minimizer oft on L wi 21(si 21),g i

1,r (@si 21 ,si #,L) are contained in someU j .

The Lorentzian metric onU j is described as

FIG. 3.

FIG. 4.
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^z,z&5^a j~x,t !j,j&012^d j~x,t !,j&0u2u2 ~4.1!

~cf. Remark 3.3!, wherea j (x,t) is a positive linear operator,d j (x,t) is smooth vector field,z
5(x,t)PU j , andz5(j,u)PTzM.

With the above notation, for any future pointing curvez with image contained in someU j ,
the condition^ż,ż&50 holds if and only if

ṫ5^d j~x,t !,ẋ&01A^a j~x,t !,ẋ,ẋ&01^d j~x,t !,ẋ&0
2. ~4.2!

Moreover, anyg i is an integral curve ofW, so, in U j , it has the forms°(xj ,t j1s), if zj

5(xj ,t j ).
Note thatL p,g1

1,r (@s0 ,s1#,L) is nonempty, since it contains the restrictionzu[s0 ,s1] . Now, using

elementary comparison theorems for ordinary differential equations and the metric~4.1! on U j

allow one to deduce also that any spaceL wi 21(si 21),g i ,e
1,r (@si 21 ,si #,L) is nonempty for anyi

P$2, . . . ,N%.
Note also that, ifh1 is the curve defined by settingh1(@si 21 ,si #)5wi , then t(h1)<t(z)

<c ~always by comparison theorems in O.D.E.!. In particularh1(@0,1#) is contained inK(c).
Remark 4.2:A second curveh2 will be constructed in the following way starting fromh1 . On

any minimizerwi ( i 51, . . . ,N) consider the pointmi such that d(wi(si 21),mi)5d(mi ,w(si)).
For i 51, . . . ,N, we denote byl i the maximal integral curve ofW such thatl i(0)5mi ;

moreover, we setlN11(s)5g(s1t(h1)) ~see Fig. 4!.
Consider now the following subdivision of the interval@0,1#. Let s050, s151/2N , s j

5(2 j 21)/2N for j 52,...,N, andsN1151.
Denote byu1 the minimizer of t on L p,l1

1,r (@s0 ,s1#,L), by u2 the minimizer of t on

L u1(s1),l2

1,r (@s1 ,s2#,L) and so, inductively, we denote byuj the minimizer of t in

Luj 21(s j 21),l j ,e(@s j 21 ,s j #,L), j 52,...,N11.
Finally, ~see Fig. 5! we denote byh2 the curve such that

FIG. 5.
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h2u [s j 21 ,s j ]
5uj .

Using again comparison theorems in ordinary differential equations one proves thatt(h2)
<t(h1).

The continuous flowh(s,z) can be constructed as follows. FixsP@0,1# and consider for
instance the interval@s0 ,s1#. We chooseh(s,z) u[s0 ,s1] as follows. Setp5(x0,0) and g1(s)
5(x1 ,t11s) ~in some neighborhoodU j as in Remark 4.1!. Sincez(s)5(x(s),t(s)), the curve
x(s) joins x0 with x1 .

Let y(s) be the minimizer of the functional

y°E
s0

ss1

^d i~y,ty!,ẏ&0 ds1E
s0

ss1A^a i~y,ty!,ẏ,ẏ&01^d i~y,ty!,ẏ&0
2 ds

with boundary conditionsy(0)5x0 and y(ss1)5x(ss1), wherety is the solution of~4.2! with
ty(0)50 in the interval@0,ss1#.

Denote byŷ(s) the extension ofy(s) to @s0 ,s1# taking ŷ(s)5x(s) for sP@ss1 ,s1#. Finally,
denote byt̂ y the corresponding solution of~4.2! in the interval@s0 ,s1#. The curve (ŷ(s), t̂ y(s))
will be h(s,z) in the interval@s0 ,s1#. In the same way we can constructh(s,z) on the other
intervals@si 21 ,si #. Note that, by construction,h(1,z)5h1 . Similarly, we can extend the flowh
to a map defined on@0,2#3tc in such a way thath(2,z)5h2 .

Now, we iterate the above-mentioned shortening argument, replacing the original curvez with
the curveh2 . Successively we apply the above-mentioned construction, starting fromh2 . By
induction we obtain a flowh(s,z), defined onR13tc.

Sincet(h(s,z))<t(z) for any s and for anyz, usingh we immediately deduce
Lemma 4.3: Fix rP@1,1`#. For any cP]a,b@ , L p,g

1,r(L)ùtc is homotopically equivalent to
B p,g

1 ùtc.
Moreover choosing a suitable continuous mapr* (c) (cP#a,b@) and arguing as in Sec. 9 o

Ref. 7 we can also obtain the following result.
Proposition 4.4:L p,g

1,r(L) is homotopically equivalent toB p,g
1 (L).

Suppose thatt(h1)5t(h2) and consider the situation is a single interval@s j ,s j 11#. Since
t(h1)5t(h2) simple comparison theorems in O.D.E. show thath1 is a minimizer on the interva
@s j ,s j 11#. Suppose that it consists of two~nonconstant! lightlike geodesics. If it is not a lightlike
geodesic, by the above-given construction it has a discontinuity atsj 115(s j 111s j )/2. Denote by
Uh1

the parallel transport ofġ(t(h1)) along the curveh1 . Sinceh1 is a minimizer satisfying
~3.6!, by Lemma 3.7 and Remark 3.8 it is

E
s j

s j 11 ^DsV, ḣ1&

^Uh1
,ḣ1&ds50

for any C`-vector field alongh1 such thatV(0)50,V(1)50. In particularḣ1 /^Uh1
,ḣ1& is a C1

curve. Thereforeḣ1(sj 11
2 )5ḣ1(sj 11

1 ), soh1 is the image of a future pointing lightlike geodesic
the interval@s j ,s j 11#.

Then, whenever we are far from lightlike geodesics and there are not intervals whereh1 is a
constant,t(h2),t(h1). If h1 possesses some interval where it is a constant it is possib
construct a ‘‘localized’’ flow wheret is strictly decreasing ignoring such intervals and using
above-given construction of the flow in a small neighborhood ofh1 .

Finally compactness arguments similar to the ones used for the shortening method fo
mannian geodesics~cf. Ref. 26! allow one to obtain the analogous of the classical deforma
results~see, e.g. Refs. 33 and 34! for the functionalt on L p,g

1,r(L).
Since, to obtain Morse relations, we shall work with respect to theH1,2 structure, we give the

statements of the deformation results only forr 52.
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Proposition 4.5: Let c be a regular value fort on L p,g
1,2 @namelyt21($c%) does not contain

geodesics#.
Then, there exists a positive numberd5d(c) and a continuous map HPC0(@0,1#

3tc1d,tc1d), such that:

(a) H(0,z)5z, for every zPtc1d,
(b) H(1,tc1d)#tc2d,
(c) H(s,z)Ptc2d

for any sP@0,1# and zPtc2d;

Proposition 4.6: Let Kc be the set of lightlike geodesics ont21($c%)ùL p,g
1,2 . Then for any

open neighborhood U of Kc , there exists a positive numberd5d(U,c) and a homotopy H
PC0(@0,1#3tc1d,tc1d), such that

(a) H(0,z)5z, for any zPtc1d,
(b) H(1,tc1d\U),tc2d,
(c) H(s,z)Ptc2d, for everysP@0,1# and zPtc2d.

Remark 4.7:There are two main differences between the shortening method described
ously and the classical shortening method for Riemannian geodesics. In our case, we
minimize a functional which is is not given in an integral form. Second, we minimize the f
tional in the space of curves joining a point with a curve, and not two fixed points.

Remark 4.8:The flows used in Propositions 4.5 and 4.6 are just what we need f
Ljusternik–Schnirelmann theory. Then, without using the nondegeneracy assumption of Th
2.5 we can obtain the existence of at last cat(B p,g

1 (L)) future pointing lightlike geodesic in
B p,g

1 (L). ~Here catX denotes the minimal number of contractible subsets ofX covering it!.
Moreover if cat(B p,g

1 (L))51` there is a sequencezn of future pointing lightlike geodesics in
B p,g

1 (L) such thatt(zn)→b.

V. ON THE BEHAVIOR OF t NEAR LIGHTLIKE GEODESICS

To develop a Morse theory we shall use the spaceL p,g
1,2(L) @that containsB p,g

1,2(L)], because
H1,2(@0,1#,L) is an Hilbert manifold~endowed with its natural metric!. SinceL p,g

1,2(L) is invari-
ant by reparametrization as well ast, it will be useful to consider equivalence classes of curves
better, to single out one parametrization. This will be done on an open neighborhoodNw of
w(@0,1#) for any lightlike geodesicw.

Toward this goal consider the parallel vector fieldUw along w of ġ(t(w)) ~which is a
timelike vector!. Sinceg is an integral curve ofW, by Remark 4.4 it iŝ Uw ,Uw&[21. Now, by
the pseudocoercivity oft it follows that w does not have self-intersection, so its image is
submanifold andUw can be extended to a smooth vector fieldY on L such that

^Y~z!,Y~z!&521 for any zPL, ~5.1!

Dẇ(s)Y~w~s!!50 for any sP@0,1# ~5.2!

~cf. Ref. 35!. Using the vector fieldY we define the following space:

Q p,g
1,2~L!5H zPL p,g

1,2~L!:^Y~z!,ż&5E
0

1

^Y~z!,ż&ds a.e.J . ~5.3!

Note that by~5.2!, the geodesicw is in Q p,g
1,2(L) and

E
0

1

^Y~w!,ẇ&ds,0..
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The spaceQ p,g
1,2(L) will be used to study Morse theory near the critical pointw for the functional

t. The first step in this direction is to prove thatQ p,g
1,2(L) is a C1-manifold.

Remark 5.1:It is well known that the spaceVp,g
1,2(L) defined by~3.2! is a C`-manifold and

its tangent space at anyz is given by

TzVp,g
1,2~L!5$zPH1,2~@0,1#,TL!:

z~s!PTz(s)L for any s,z~0!50,z~1!) is parallel to ġ~t~z!!%

whereTL denotes the tangent bundle ofL.
Remark 5.2:Consider the map

f:Vp,g
1,2~L!→H hPL2~@0,1#,R!:E

0

1

h ds50J
defined as

f~z!5^Y~z!,ż&2E
0

1

^Y~z!,ż&ds. ~5.4!

It is a standard computation to prove thatf is of classC` and its differential satisfies:

df~z!@z#5^Y,Dsz&1^DzY,ż&2E
0

1

~^Y,Dsz&1^DzY,ż&!ds, ~5.5!

whereD is the Levi-Civita connection relative to the Lorentzian structureg.
Proposition 5.3: The space

P p,g
1,2~L!5H zPVp,g

1,2~L!:^Y~z!,ż&5E
0

1

^Y~z!,ż&ds,0J ~5.6!

is a manifold whose tangent space is given by

TzP p,g
1,2~L!5H zPTzVp,g

1,2~L!:^Y,Dsz&1^DzY,ż&5E
0

1

~^Y,Dsz&1^DzY,ż&!dsJ . ~5.7!

Proof: Consider the mapf defined by~5.4!. By ~5.5! and the implicit function theorem it is
sufficient to prove that for anyhPL2(@0,1#,R) such that*0

1h ds50 there existszPTzVp,g
1,2(L)

such that

^Y,Dsz&1^DzY,ż&5h. ~5.8!

Choosez5mY with m(0)50. Thenz satisfies~5.8! if and only if m satisfies the Cauchy problem

H 2ṁ1m^DYY,ż&5h,
m~0!50,

because, by~5.1!, ^Y,Y&[21. Such a problem has a~unique! solution inH1,2(@0,1#,R) and we
are done. h

Remark 5.4:For any zPP p,g
1,2(L), i żiR is uniformly far from 0. @Here i•iR is the norm

induced by the Riemann structure~3.1!#. Indeed ifzPP p,g
1,2(L) it is

0,2E
0

1

^Y~z!,ż&ds52^Y~z!,ż&<u^Y~z!,ż&Ru<iY~z!iRi żiR .
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Lemma 5.5: Letc:P p,g
1,2(L)→L2(@0,1#,R) defined as

c~z!5&^ż,W~z!&1A^ ż,ż&R. ~5.9!

Thenc is of class C1 and, for anyzPP p,g
1,2(L),

dc~z!@z#5&~^Dsz,W~z!&1^DzW,ż&!

1
1

A^ż,ż&R

~^Dsz,ż&12^ż,W~z!&~^Dsz,W~z!&1^DzW,ż&!!. ~5.10!

Note that, by Remark 5.4, sincezPH1,2 it is dc(z)@z#PL2.
Proof: Standard computations show that the differential of the map

c1~z!5&^ż,W~z!&

along the directionz is given by

dc1~z!@z#5&~^Dsz,W~z!&1^DzW,ż&!.

To evaluate the differential of the map

c2~z!5A^ ż,ż&R

~at an instants0! we can assume that@in a neighborhood ofz(s0)# we are inRn and

^z,z&R5^L~z!@z#,z&E ,

where^•,•&E is the Euclidean scalar product ofRn andL(z) is a smooth positive definite linea
operator. Using such a position the vector fields in the tangent space at any curvez ~on a suitable
interval @s02d,s01d#) will be H1,2-vector fields~defined on@s02d,s01d#) with values inRn.

Suppose thatz is of classC1. Then, by Remark 5.4,ż1lż is uniformly far from 0 for anyl
sufficiently small, and

dc2~z!@z#5 lim
l→0

1

l
~A^L~z1lz!@ ż1lż#,ż1lż&E2A^L~z!@ ż#,ż&E!.

Therefore there existsu5u(l,s)P@0,1# such that

dc2~z!@z#5 lim
l→0

^dL~z1luz!@z#@ ż1lż#,ż1lż&E12^L~z1luz!@ ż#,ż1luż&E

2A^L~z1luz!@ ż1luż#,ż1luż&E

,

where the limit is done with respect to theL2-norm.
Then, by the Lebesgue convergence theorem we obtain

dc2~z!@z#5
^dL~z!@z#@ ż#,ż&E12^L~z!@ ż #,ż&E

2A^L~z!@ ż#,ż&E

,

which is a map inL2(@s02d,s01d#) by Remark 5.4.
Since

^L~z!@ ż#,ż#&E5^ż,ż&R5^ż,ż&12^W~z!,ż&2

and
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^dL~z!@z#@ ż#,ż&E12^L~z!@ ż #,ż&E5d~^L~z!@ ż#,ż&E!@z#,

we obtain

dc2~z!@z#5
1

A^ ż,ż&R

~^Dsz,ż&12^ ż,W~z!&~^Dsz,W~z!&1^DzW,ż&!!. ~5.11!

Now considerzPH1,2(@s02d,s01d#,Rn) andz1 of classC1. Then~in local coordinates! for
any l sufficiently small with respect toi ż1iL`, there existC1 ,C2.0 such that

Uc2~z1lz1!2c2~z1lz!

l
U

5
1

l U ^L~z1lz1!@ ż1lż1#,ż1lż1&E2^L~z1lz!@ ż1lż#,ż1lż&E

A^L~z1lz1!@ ż1lż1#,ż1lż1&E1A^L~z1lz!@ ż1lż#,ż1lż&E

U
<

C1iz2z1iL`^ż1lż1 ,ż1lż1&E

A^L~z1lz1!@ ż1lż1#,ż1lż1&E

1
C2uż1lż11 ż1lżuEuz12zuE

A^L~z1lz1!@ ż1lż1#,ż1lż1&E1A^L~z1lz!@ ż1lż#,ż1lż&E

,

whereu•uE is the Euclidean norm inRn. Then there existsC.0 such that

Uc2~z1lz1!2c2~z1lz!

l U<C~ iz12ziL`uż1lż1uE1u ż12 żuE!.

Therefore, sinceż is in L2, i ż1iL2 is bounded~according to theL2-norm ofz! andz(0)5z1(0) we
deduce the existence of a constantC0 such that for anyl<1,

1

l
ic2~z1lz1!2c2~z1lz!iL2<C0iz12ziH1,2. ~5.12!

Now, by the Lebesgue convergence theorem and Remark 5.4 it is not difficult to see that the
operator dc2(z) is continuous as linear map fromTzP p,g

1,2(L) to L2(@0,1#,R). Then for anye
.0 there existsqP]0,e@ such that

iz12ziH1,2<q⇒idc2~z!@z#2dc2~z!@z1#iL2,e. ~5.13!

Moreover always fixingz1 such thatiz12ziH1,2<q, for anyl<1 we have

1

l
ic2~z1lz1!2c2~z1lz!iL2<C0q<C0e. ~5.14!

Finally

c2~z1lz!2c2~z!

l
2dc2~z!@z#5

c2~z1lz1!2c2~z!

l
2dc2~z!@z1#1

c2~z1lz!2c2~z1lz1!

l

1dc2~z!@z1#2dc2~z!@z#.

Sincec2 is differentiable atz along the directionz1 , for anyl sufficiently small it is
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Ic2~z1lz1!2c2~z!

l
2dc2~z!@z1# I

L2

<e,

so, combining~5.13! and ~5.14! gives the existence ofl̂ such thatulu<l̂ implies

Ic2~z1lz!2c2~z!

l
2dc2~z!@z# I

L2

<e1C0e1e,

proving that~5.11! is satisfied for anyzPH1,2.
The continuity of dc2(•) ~which is a consequence of Remark 5.4 and the Lebesgue Theo!

says thatc2 is of classC1 in P p,g
1,2(L) and its differential is given by~5.11!. h

Remark 5.6:If zPQ p,g
1,2(L) then żÞ0 almost everywhere and it is lightlike. Since^Y(z),ż&

is negative andY is timelike, there exists a positive constantnz such that

2^Y~z!,ż&>nziY~z!iRi żiR .

Moreover^Y(z),ż& is constant, thereforei żiR is uniformly bounded.
Now we can finally prove thatQ p,g

1,2(L) is a manifold in a neighborhood ofw.
Proposition 5.7: There exists an open neighborhoodOw of the geodesic w inVp,g

1,2(L) such
that Q p,g

1,2(L)ùOw is a manifold of class C1 and, for any zPQ p,g
1,2(L)ùOw ,

Tz~Q p,g
1,2~L!ùOw!5H zPVp,g

1,2~L!:^Dsz,ż&50 a.e., and

^Y,Dsz&1^DzY,ż&5E
0

1

~^Y,Dsz&1^DzY,ż&!dsa.e.,J . ~5.15!

Proof: Let c:P p,g
1,2(L)→L2(@0,1#R) be theC1-map given by~5.9!. By ~5.10! its differential

at any pointzPQ p,g
1,2(L) is

dc~z!@z#5
^Dsz,ż&

A^ ż,ż&R

.

Since our result is of local nature~in a neighborhood of the geodesicw!, by ~5.7! it suffices to
show that, for anyhPL2(@0,1#R), there existszPTzVp,g

1,2(L) such that

5 ^Y~w!,Dsz&1^DzY~w!,ẇ&5E
0

1

~^Y,Dsz&1^DzY~w!,ẇ&!ds,

^Dsz,ẇ&

A^ẇ,ẇ&R

5h .

Choosez(s)5m(s)Y(w(s))1l(s)ẇ(s). Since ^Y,Y&[21, denoting bycw the real constant
^Y,ẇ&, it will be sufficient to verify the existence of two real functionsm andl such thatm(0)
50, l(0)5l(1)50 and

H m81m^DYY,ẇ&1l8cw is constant,

m8cw5hA^ẇ,ẇ&R,

and this can be done choosing
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m~s!5
1

cw
E

0

s

hA^ẇ,ẇ&R dr ,

and

cwl85c1
1

cw
hA^ẇ,ẇ&R2

^DYY,ẇ&
cw

E
0

s

hA^ẇ,ẇ&R dr ,

where~integrating both terms of the above mentioned equality! the constantc can be chosen so
that l(1)5l(0)50. h

Remark 5.8:To describe the tangent spaceTz(Q p,g
1,2(L)ùOw) we can operate in the following

way. TakezPTzP p,g
1,2(L) and choosemPH1,2(@0,1#,R) such thatm(0)50 and

^Dż@z2mY#,ż&50,

namely,m has to satisfy

H ^Dżz,ż&2m8cz2m^DżY,ż&50,

m~0!50,

wherecz[^Y,ż& is a negative constant. Thenm is given by

m~s!5E
0

s ^Dżz,ż&
cz

expS 2E
r

s ^DżY,ż&
cz

ds D dr , ~5.16!

and by~5.16!:

dt~z!@z2mY#52^ġ~t~z!,z~1!&1^ġ~t~z!!,Y~z~1!&m~1!

where

m~1!5E
0

1 ^Dżz,ż&
cz

expS 2E
r

1 ^DżY,ż&
cz

ds D dr .

Then, using Remark 5.4 and the same technique of the proof of Lemma 5.5 allows one to d
that t is of classC2 on Q p,g

1,2(L)ùOw .
In Sec. III we proved the existence~for any timelike curve sufficiently closed to a fixed even!

of minimizing lightlike geodesics for the functionalt. Now we need a sort of converse of th
above-mentioned principle.

Proposition 5.9: Any future pointing lightlike geodesic w is a critical point oft on
Q p,g

1,2(L)ùOw .
Proof: Take VPTwVp,g

1,2(L) such thatV(0)5V(1)50 and mPH1,2(@0,1#,R) such that
m(0)50 and

^Dẇ@V2mY#,ẇ&50. ~5.17!

By ~5.16!, Proposition 5.7, and Remark 5.8 it will be sufficient to prove that

05dt~w!@V2mY#5m~1!^Y~w~1!!,ġ~t~w!!&. ~5.18!

Now by ~5.17!

m~1!5E
0

1 ^DẇV,ẇ&

^Y,ẇ&
ds
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becauseDẇẇ50. Thenm(1)50 for anyV becausê Y,ẇ& is constant (Þ0) andw is a geode-
sic. h

Remark 5.10:The above-mentioned proof also shows that, for anyzPTw(Q p,g
1,2(L)ùOw),

sincew is a geodesic it isz(1)50.
Remark 5.11:Let w be a future pointing lightlike geodesic. The same computations as in

13 allow one to prove that, for anyzPTwQ p,g
1,2(L), the Hessian oft along the directionz is given

by

Ht~w!@z,z#5
21

^ġ~t~w!!,ẇ~1!& E0

1

~^Dsz,Dsz&2^R~z,ẇ!ẇ,z&!ds. ~5.19!

Now we equipTwQ p,g
1,2(L) with the Hilbert structure

^z1 ,z2&5E
0

1

^Ds
Yz1 ,Ds

Yz2&Y ds, ~5.20!

where^z,z&Y5^z,z&22^Y(w),z&2 @which is equivalent to~3.1!# andDs
Y is the covariant deriva-

tive with respect tô z,z&Y .
Proposition 5.12: The linear map associated with the quadratic form (5.19) on TwQ p,g

1,2(L) is
a compact perturbation of the identity with respect to the Hilbert structure (5.20).

Proof: It is

^Dsz,Dsz&5^Dsz,Dsz&12^Dsz,Y~w!&222^Dsz,Y~w!&25^Dsz,Dsz&Y22^Dsz,Y~w!&2.

~5.21!

Now there exists a bilinear mapG defined on the vector fields onL such that

Dsz5Ds
Yz1G~w!@z,z#.

Moreover, by~5.15!

^Dsz,Y~w!&52^DzY,ẇ&1E
0

1

~^Dsz,Y~w!&1^DzY,ẇ&!ds ~5.22!

while, by Remark 5.10,

E
0

1

^Dsz,Y~w!&52E
0

1

^z,DsY&. ~5.23!

SinceH1,2 is compactly embedded inL`, combining~5.21!, ~5.22! and ~5.23! gives the proof.h
Now denote bym(w,t) the maximal dimension of a subspace ofTw(Q p,g

1,2(L)ùOw) where
the restriction ofHt(w)@•,•# is negative definite. It is called the Morse index of the quadra
form Ht(w)@•,•#. The following index theorem holds:

Theorem 5.13:Let w be a geodesic inQ n,g
1,2(L). Then

m~w,t!5m~w!.

To prove Theorem 5.13 some preliminary results are needed.
Lemma 5.14: Letz be a Jacobi field along w such thatz(0)50,z(1)50. Then z

PTwQ p,g
1,2(L).

Proof: Let z be a Jacobi field alongw with z(0)50 andz(1)50. It is immediately checked
that ^ẇ,Dsz&[0. Therefore we just have to prove that the function

w~s!5^Dsz,Y~w!&1^z,DzY&

is constant. SinceDsY[0 andw is a geodesic
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w8~s!5^Ds
2z,Y~w!&1^z,DsDzY&.

Now, sincez is a Jacobi field and

DsDzY5DzDsY1R~ẇ,z!Y

~cf. Ref. 22!, it is

w8~s!52^R~z,ẇ!ẇ,Y~w!&1^DzDsY1R~ẇ,z!Y,ẇ&

52^R~z,ẇ!ẇ,Y~w!&1^R~ẇ,z!Y,ẇ&50

because of the symmetry properties of the curvature tensorR ~cf. Ref. 22!. h

An integration by parts shows immediately that the following Lemma holds.
Lemma 5.15: Ifz is a Jacobi field along w such thatz(0)50 and z(1)50, then

Ht~w!@z,z1#50 for any z1PTwQ p,g
1,2~L!. ~5.24!

Lemma 5.16: LetzPTwQ p,g
1,2(L) such that~5.24! is satisfied. Thenz is a C2-Jacobi field

along w such thatz(0)50 and z(1)50.
Proof: If zPTwQ p,g

1,2(L), z(0)50 and by Remark 5.10,z(1)50 becausew is a geodesic.
Then, assuming that~5.24! holds, we have to verify thatz is of classC2 and it satisfies~2.4!.

Let V be aC`-vector field alongw such thatV(0)50, V(1)50. Setcw5^Y(w),ẇ& ~which
is a nonzero constant! and choose

m~s!5E
0

s 1

cw
^DsV,ẇ&.

Now let l be the unique real map such that

^DsV,Y~w!&1^ẇ,DVY&2m8^Y~w!,Y~w!&2m^ẇ,DYY&2l8cw5const,

l~0!5l~1!50.

A straightforward computation shows thatz15V2mY(w)2lẇPTwQ p,g
1,2(L). Therefore by

~5.24! we have

E
0

1

~^Dsz,DsV2m8Y~w!2l8ẇ&2^R~z,ẇ!ẇ,V2mY~w!2lẇ&!ds50

for any C0
`-vector fieldV along w. Now ^Dsz,ẇ&[0 and^R(z,ẇ)ẇ,ẇ&[0. This allows us to

deduce immediately thatz is of classC2. So, to obtain~2.4!, it suffices to prove that, for anyV,

E
0

1

~2m8^Dsz,Y~w!&1m^R~z,ẇ!ẇ,Y~w!&!ds50, ~5.25!

which is equivalent to

E
0

1

~2^DsV,ẇ&^Dsz,Y~w!&1^V,ẇ&^R~z,ẇ!ẇ,Y~w!&!ds50.

Then an integration by parts shows that~5.25! is equivalent to

d

ds
~^Dsz,Y~w!&ẇ!1^R~z,ẇ!ẇ,Y~w!&)50.
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Now, w is a geodesic while, by~5.15!,

^Dsz,Y~w!&5E
0

1

~^Dsz,Y~w!&1^DzY,ẇ&!ds2^DzY,ẇ&,

therefore~5.25! is equivalent to

2
d

ds
~^DzY,ẇ&!1^R~z,ẇ!ẇ,Y~w!&50.

But

DsDzY5DzDsY1R~ẇ,z!Y,

w is a geodesic andDsY[0, therefore~5.25! follows by the symmetry properties ofR. h

Proof of Theorem 5.13:We prove a generalization of the Morse index theorem for Rieman
geodesics~see, e.g., Refs. 21 and 26! to lightlike geodesics. For anysP]0,1] set

Ts5$zPH1,2~@0,s#!,TL!:z~s!PTw(s) for any sP]0,s],

z~0!50, z~s!50,

^Y,Dsz&1^DzY,ẇ&[cz a.e. in @0,s#,

^Dsz,ẇ&50 a.e. in @0,s#%.

Note thatT15TwQ p,g
1,2(L). Set, for anyzPTs ,

Hs@z,z#5E
0

s

~^Dsz,Dsz&2^R~z,ẇ!ẇ,z&!ds.

Note that

Ht~w!@•,•#5
21

^ġ~t~w!!,ẇ~1!&
H1~@•,•#,

while 2^ġ(t(w)),ẇ(1)&.0 because

ġ~t~w!!5Y~g~t~w!!!5Y~w~1!!

and ^Y(w(s)),ẇ(s)& is constant.
Therefore, denoting byi (H1) the Morse index of the quadratic formH1 we have to prove tha

i ~H1!5m~w!. ~5.26!

On Ts we define the Hilbert structure

^z,z&s5E
0

s

^Dr
Yz,Dr

Yz&Y dr . ~5.27!

Denote byLs the linear operator inTs such that

^Lsz1 ,z2&s5Hs~@z1 ,z2# !. ~5.28!

By Proposition 5.12 we see that
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Ls5I s2Ks ,

whereI s is the identity onTs andKs :Ts→Ts is a compact operator. We shall denote byws the
geodesicwu[0,s] . It is well known thatTs has the following orthogonal decomposition consisti
of eigenspaces ofLs ,

Ts5Hs
1

% Hs
0

% Hs
2 ,

where~5.28! is positive definite onHs
1 , definite negative onHs

2 , andHs
05KerLs .

For anysP]0,1] let l1(s)>¯>lk(s) be the eigenvalues of the compact operatorKs . Any
eigenvalues are here repeated according to its~finite! multiplicity. By Lemmas 5.15–5.16w(s) is
conjugate tow(0) with multiplicity equal tom if and only if there existskPN such that

lk~s!,1, lk11~s!, . . . ,lk1m~s!51, and lk1m11~s!.1.

SinceKs is compact the eigenvalues ofKs are characterized by the well-known Poincare´ formula:

lk~s!5 max
dim V5k

@ min
zPV,uzus51

~^Ksz,z&s!#, ~5.29!

which holds whenever the eigenvalues are positive.~Hereu•us5^•,•&s
1/2). Since we are intereste

in studying the behavior oflk(s) when its value is close to 1, we shall assume that all thelk(s)’s
are positive. The general case can be treated by small changes.

Using ~5.29! it is not difficult to prove that anylk is a continuous function ofs. Moreover
using~5.21!–~5.23! it is easy to show that there existss0.0 such that, for anysP]0,s0], Hs is
positive definite onTs . Then it will be sufficient to show that

any lk is strictly increasing. ~5.30!

Fix kPN and 0<s1,s2<1. By ~5.29! there exists a subspaceV of Ts1
having dimensionk such

that

lk~s1!5 min
zPV,uzus1

51
~^Ks1

z,z&s1
!. ~5.31!

For anyzPV setcz[^Dsz,Y(w)&1^ẇ,DzY& andcw[^ẇ,Y(w)&. Take the vector field

Az5z1lẇ

wherel852cz /cw andl(s1)50. SincezPTs1
, w is a lightlike geodesic andDsY[0 it is

^DsAz ,ẇ&[0, ~5.32!

^DsAz ,Y~w!&1^ẇ,DAz
Y&[0, ~5.33!

and

Az~s1!50,Az~0!5l~0!ẇ~0!. ~5.34!

Now denote byÂz the extension to@0,s2# of As obtained by settingÂz50 on@s1 ,s2#. Note that,
for any zPV,

^Ks2
Âz ,Âz&s2

5^Ks1
z,z&s1

.

Now set
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Bz5Âz1mẇ,

wherem satisfies

m85const, m~0!52l~0!, m~s2!50. ~5.35!

Since Âz satisfies~5.32!–~5.34! ~with Az replaced byÂz), thanks to~5.35! we deduce thatBz

PTs2
. Note that the map

B. :V→Ts2

is a linear and injective. Then the space

V* 5$Bz :zPV%

is a subspace ofTs2
having dimensionk. Moreover, by our construction,

^Ks2
Bz ,Bz&s2

5^Ks1
z,z&s1

for anyzPV.

Then, by~5.29! and ~5.31!

lk~s1!5 min
zPV,uzus1

51
~~^Ks1

z,z&s1
!5 min

zPV
*

,uzus2
51

~^Ks2
z,z&s2

!<lk~s2!. ~5.36!

To conclude the proof assume by contradiction that

l[lk~s1!5lk~s2!. ~5.37!

By the spectral properties ofKs2
, Ts2

admits the orthogonal decomposition

Ts2
5H2

% H0
% H1,

such thatlI s2
2Ks2

is negative definite onH2, positive definite onH1, and H05Ker(lI s2

2Ks2
).

We claim that

V* ù~H0
% H1!5$0%. ~5.38!

Indeed ifz5z01z1PV* ù(H0
% H1), wherez0PH0 andz1PH1, if z1Þ50 anduzus2

51 it
is

^Ks2
z0 ,z0&s2

1^Ks2
z1 ,z1&s2

5l^z0 ,z0&s2
1^Ks2

z1 ,z1&s2
,l^z0 ,z0&s2

1l^z1 ,z1&s2
5l

in contradiction with~5.36! and ~5.37! becausezPV* . Thenz150 and

z5z0PKer~lI s2
2Ks2

!.

Then the same proof of Lemma 5.16 allows one to deduce thatz is of classC2. Sincemẇ is of
classC2 then Âz is of classC2, and by the construction ofÂz we deduce that

Ds~Az!~s1!50.

Sincez is a Jacobi field in@0,s1#, w is a geodesic andl8 is constant,Az5z1lẇ satisfies~2.4!
with initial condition Az(s1)50 and Ds(Az)(s1)50. Then by the uniqueness of the Cauc
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problem it isAz[0. Sincez(0)50, thenl(0)50 and thereforel[0. This implies thatm[0 and
Bs[0 proving ~5.38!. Then the orthogonal projection ofV* on H2 has dimensionn and

lk~s1!5l, min
zPV

*
,uzus2

51
^Ks2

z,z&s2
<lk~s2!

proving ~5.30! and concluding the proof of Theorem 5.13. h

VI. PROOF OF THEOREMS 2.5, 2.9, AND 2.11

Now we are finally ready to prove Theorem 2.5.
Proof of Theorem 2.5:Whenever we are far from the geodesics inL p,g

1,2(L), we can use the
shortening flow at Sec IV to obtain a flow wheret is strictly decreasing.

Near any geodesic we can construct an homotopy equivalence betweenL p,g
1,2(L) and

Q p,g
1,2(L) simply by a convex combination between the identity inH1,2(@0,1#,R) and the param-

etrization described by the condition

^ż,Y~z!&5E
0

1

^ż,Y~z!&ds a.e.

Then we can use the shortening flow fort far from geodesics and, thanks to Proposition 5
Remark 5.8, and Proposition 5.9, we can use the classical Morse theory~see, e.g., Refs. 33 and 34!
to describe the topology nearby a geodesic. In this way we obtain

(
wPGp,g(L)

lm(w,t)5P~Lp,g
1,2~L!!~k!1~11k!S~k!,

whereS is a formal series with coefficients inNø$1`%.
SinceB p,g

1 (L) is homotopically equivalent toL p,g
1,2(L) ~cf. Proposition 4.4!, applying Theo-

rem 5.13 gives the proof of~2.6!. h

Proof of Theorem 2.9:Assume thatB p,g
1 (L) is contractible. Then the Poincare´ polynomial of

B p,g
1 (L) with respect to any fieldK is given by

P~B p,g
1 ~L!,K!~k!51.

Let G p,g
1 (L) be the set of future pointing lightlike geodesics joiningp with g. Formula~2.6! gives

cardG p,g
1 ~L!5112S~1!.

Then cardG p,g
1 (L) is odd or infinite, according to whetherS(1) is finite or infinite. IfB p,g

1 (L) is
not contractible, catB p,g

1 (L)>2 so the conclusion follows by Remark 4.8. h

Proof of Theorem 2.11:If L is contractible, thenV(L) is contractible. Then by assumptio
(L3), B p,g

1 (L) is contractible and the proof follows from the first part of Theorem 2.9. IfL is not
contractible by (L3) and a result of Serre,28 for a suitable fieldK the Poincare´ polynomial
P(B p,g

1 (L),K) has infinitely many coefficients different from zero and the conclusion follo
from formula ~2.6!. h
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APPENDIX A: ON THE TOPOLOGY OF B p ,g
¿

„L…

Under light-convexity and pseudocoercivity oft we have seen in Sec. IV thatB p,g
1 (L) is

homotopically equivalent toL p,g
1,r(L) ~for any r P@1,1`#).
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In this Appendix we shall give a general condition assuring thatL p,g
1,1(L) is homeomorphic to

Vp,g
1,1 (L). Then, using a standard technique one sees thatVp,g

1,1 (L) is homotopically equivalent to
the based loop space ofL.

Proposition A1: Suppose that there exists a smooth hypersurfaceL0 in L and a smooth
timelike vector field Y inL such that

(1) Y is complete inL.
(2) L5$h(s,y):yPL0 ,sPR,ḣ5Y(h),h(0)5y%.
(3) For any integral curveh of Y there exists a unique sPR such thath(s)PL0 .
(4) g:R→L is an integral curve of Y withg(0)PL0 .
(5) pPL0 and pÞg(0).
(6) The Cauchy problem

H s85
21

^Y,Y& S ^Y,hy@ ẏ#&1
1

2
A^Y,hy@ ẏ#&22^Y,Y&^hy@ ẏ#,hy@ ẏ#& D

s~0!50
, ~A1!

can be solved in the interval@0,1# for any yPH1,1(@0,1#,L) such that y(0)5p and y(1)
5g(0).

ThenLp,g
1,1(L) is homeomorphic toVp,g

1,1 (L).
@HereY5Y(h(s,y)) andhy denotes the derivative ofh with respect to the second variable#.
Proof: Takez(s)5h(s(s),y(s)). SupposeyPH1,1(@0,1#,L), y(0)5p andy(1)5g(0). If s

satisfies~6! a straightforward computation shows that the curvez(s) is in L p,g
1,1(L). Conversely

z PL p,g
1,1(L) can be projected onL0 using the integral curve ofY @cf. assumption~3!#. Since

~A.1! has a unique solution we are done. h

APPENDIX B: MORSE RELATIONS ON THE SPACE OF THE PIECEWISE LIGHTLIKE
GEODESICS

In this Appendix we show by a simple example that we cannot write Morse relations usin
topology of the piecewise~non-null! lightlike geodesics~endowed with the topology of the uni
form convergence!. This space, as in Sec. II, will be denoted byB̂ p,g

1 (L).
On the spaceR23R we consider the flat Minkowski metric

ds25dx1
21dx2

22dt2.

Takep5(y0,0) andg(s)5(y1 ,s). It is immediate to verify thatB̂ p,g
1 (L) is homeomorphic to the

spaceCy0 ,y1
of the piecewise nonzero geodesics inR2 ~with respect to the Euclidean metric!

joining y0 with y1 endowed with the uniform topology. Considering the positions on the unit c
assumed by the unit speed of any broken geodesic it is not difficult to show thatCy0 ,y1

has
infinitely many connect components. Then, if Morse relations hold, one should obtain the
tence of infinitely many geodesics joiningp andg and this is clearly false.

Analogously one sees that in the (211)-dimensional Minkowski space–time the infini
dimensional space where the relativistic Fermat principle is proved has infinitely many co
components. Then also in this case it is not possible to write the Morse relations.
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Scaling behavior in the Einstein–Yang–Mills monopoles
and dyons

Yutaka Hosotania)

Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
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Scaling behavior in the moduli space of monopole and dyon solutions in the
Einstein–Yang–Mills theory in the asymptotically anti-de Sitter space is derived.
The mass of monopoles and dyons scales with respect to their magnetic and electric
charges, independent of the values of the cosmological constant and gauge coupling
constant. The stable monopole and dyon solutions are approximated by solutions in
the fixed anti-de Sitter spacetime. Unstable solutions can be viewed as the Bartnik–
McKinnon solutions dressed with monopole and dyon solutions in the fixed anti-de
Sitter space. ©2002 American Institute of Physics.@DOI: 10.1063/1.1421637#

I. INTRODUCTION

It has been shown that there exist a continuum of stable and unstable monopole an
solutions in the Einstein–Yang–Mills theory in the asymptotically anti-de Sitter~AdS! space.1,2

They generalize a discrete family of unstable particlelike solutions in the asymptoti
Minkowski or de Sitter space.3 Similarly, black hole solutions exist with discrete values of ma
netic charges in the asymptotically flat or de Sitter space,4,5 and with continuous values of non
Abelian electric and magnetic charges in the asymptotically AdS space.6,2,7,8

Monopole and dyon solutions are characterized by their mass and non-Abelian mag
electric charges. The spectrum defines the moduli space of the solutions, which varies w
cosmological constant~L! and the gauge and gravitational coupling constants~e and G!. The
spectrum consists of infinitely many discrete points forL>0, whereas it has a finite number o
continuous branches forL,0. When the parameterL,0 approaches zero, an already-existi
branch of monopole and dyon solutions collapses to a single point in the moduli space.
same time new branches of solutions emerge. A fractal structure in the moduli space ha
observed.2,9

In this paper we derive a scaling law for the mass spectrum of the solutions with resp
their magnetic and electric charges~QM andQE!, the cosmological constantL~,0!, and the ratio
of the gravitational constant to the gauge coupling constantv[4pG/e2. Some of the results in
Ref. 2 indicate that the mass of monopoles and dyons is expressed in terms of a universal f
f (QM ,QE). We shall show that this follows from the factorization property of the solutions
that f (QM ,QE) is determined by the monopole and dyon solutions in the fixed AdS backgr
metric.

AdS spacetime has many special properties. In some models it accommodates the holo
principle; the information on the boundary of the space determines physics in the bulk.10 We shall
see a trace of this property in the classical Einstein–Yang–Mills theory. The existence of
monopole and dyon solutions in the asymptotically AdS space seems tightly connected to b
ary data on non-Abelian charges, though a more thorough investigation is necessary.

II. MONOPOLES AND DYONS

There exist static, spherically symmetric monopole and dyon solutions in the Einstein–Y
Mills theory. The action of the system is

a!Electronic mail: hosotani@phys.sci.osaka-u.ac.jp
5970022-2488/2002/43(1)/597/7/$19.00 © 2002 American Institute of Physics
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S5E d4xA2gF 1

16pG
~R22L!2

1

4
FamnFa

mnG . ~1!

The Einstein and Yang–Mills equations are given by

Rmn2 1
2g

mn~R22L!58pGTmn,
~2!

Fmn
;m1e@Am ,Fmn#50.

The metric of spacetime is given by

ds252
H

p2 dt21
dr2

H
1r 2~du21sin2 u df2!,

~3!

H512
2m

r
2

L

3
r 2,

whereH, p, andm depend onr only. m(r )/G represents a total mass contained insider in thec51
unit. ~Numerical values below are given in thec5\5G51 unit.! The SU(2) Yang–Mills fields
take

A~0!5
t j

2e H u~r !
xj

r
dt2e jkl

12w~r !

r 2 xk dxl J , ~4!

in the Cartesian coordinates (x1
21x2

21x3
25r 2). The gauge coupling constant is denoted ase. With

these ansatz~3! and ~4! the Einstein and Yang–Mills equations~2! reduce to

S H

p
w8D 8

52
p

H
u2w2

w

p

~12w2!

r 2 , ~5!

~r 2pu8!85
2p

H
w2u, ~6!

m85vFH~w8!21
~12w2!2

2r 2 1
1

2
r 2p2~u8!21

u2w2p2

H G , ~7!

p852
2v
r

pF ~w8!21
u2w2p2

H2 G , ~8!

with the boundary conditionsu5m50 and w5p51 at the origin. The set of the equation
contains two parameters: the cosmological constantL and the ratio of the gravitational constant
the gauge coupling constantv54pG/e2.

There are soliton-type solutions with finite masses. There are infinitely many conse
gauge-covariant charges. In the spherically symmetric case the nonvanishing charges of
tance are1,2

S QE

QM
D5

e

4p E dSkA2gTrS Fk0

F̃k0D xjt j

r
5S 2u1p`

12w`
2 D , ~9!

whereu1 , p` , andw` are defined by the asymptotic expansionu;u`1(u1 /r )1..., etc. Each
solution is specified by its mass~multiplied byG!, M5m(`), non-Abelian electric and magneti
charges,QE and QM , and the number,n, of the nodes ofw(r ). For L>0 the spectrum of the
solutions is discrete,u(r )50 (QE50), n51,2,3,..., and all solutions are unstable. ForL,0 the
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spectrum is completely different. It is continuous. For eachn(50,1,2,...) there are a family o
solutions with continuous values ofQE andQM .1,2 In particular, the nodeless solutions (n50) are
stable. In the moduli space of the solutions,M of a particular point~solution! is a function ofL,
v, n, QE , andQM . M, L, andv have dimensions of~length!, ~length!22, and~length!2, respec-
tively, whereasn, QE , and QM are dimensionless. We show thatM is expressed in terms of
universal function ofQE andQM up to an overall factor.

III. SOLUTIONS IN THE FIXED AdS BACKGROUND METRIC

To understand why stable solutions exist only in the asymptotically AdS space (L,0), we
consider soliton solutions in the fixed AdS background metric, settingp51 andH512Lr 2/3 in
Eqs.~5! and~6! and on the rhs of Eq.~7!. Introducex5(uLu/3)1/2r andû5(3/uLu)1/2u. Then Eqs.
~5!, ~6!, and~7! become

d

dx H ~11x2!
dw

dxJ 52
w~12w2!

x2 2
û2w

11x2 ,

~10!
d

dx H x2
dû

dxJ 5
2w2û

11x2 ,

and

dm

dx
5vAuLu

3 H ~11x2!S dw

dx D 2

1
~12w2!2

2x2 1
x2

2 S dû

dxD
2

1
û2w2

11x2J . ~11!

The equations forû(x) andw(x) do not involve eitherv or L. The charges of the solutions ar

QM512w`
2 , QE5x2

dû

dxU
x5`

. ~12!

Hence a family of the solutions in the fixed AdS background metric satisfy

w~r ;L,w` ,QE!AdS5w̃AdS~x;w` ,QE!,
~13!

u~r ;L,w` ;QE!AdS5AuLu
3

ũAdS~x;w` ,QE!.

Here$w̃AdS(r ),ũAdS(r )% represents a solution forL523. Furtherdm/dx is expressed in terms o
û andw with an overall factorv(uLu/3)1/2, which implies that

m~r ;L,v,w` ,QE!AdS5vAuLu
3

m̃AdS~x;w` ,QE!,

~14!
MAdS5mAdSur 5`5vAuLu f ~QM ,QE!,

wherem̃AdS(r ) is the mass function forv51 andL523. f (QM ,QE) defines a universal scalin
function, as we shall see below. Note thatf is a double-valued function ofQM asQM512w`

2 .
The size of the solutions also scales. One definition of the size,l, of a solution is given in

terms ofm(r ) by m( l )50.5•m(`), where we have arbitrarily taken a size factor 0.5. It imm
diately follows that

l AdS5
1

AuLu
h~QM ,QE!. ~15!
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Typical solutions are depicted in Fig. 1. Bothw(x) and û(x) monotonically decrease o
increase. The solutions have, at most, one node inw(r ). Most of the energy of each solution i
localized inx,10.

There is a special solution,11

û50, w5
1

A11x2
, ~16!

for which QE50, QM51, andM5()p/8)vuLu1/2. QM51 corresponds to the same quantiz
magnetic charge as for the ’t Hooft and Polyakov monopole.

Further,wAdS;1 andmAdS;0 for x,0.1. It is also numerically confirmed that

Maxr

2mAdS

r
•

1

12~Lr 2/3!
;H 0.03~vuLu!1/2M1/2uLu1/4, for w`.1,

0.1M uLu1/2, for w`,1,
~17!

for monopole solutions. As far asvuLu and M uLu1/2 are small enough, corrections to the met
may be ignored, and the solution in the fixed AdS background metric gives a good approxim
to a solution in the EYM theory.@p(r );1 for those solutions.#

IV. FACTORIZATION

Let us turn to the EYM solutions in theL50 case. Setu50. Expressed in terms ofy
5r /Av, H512(2m̄/y), andm̄5m/Av, Eqs.~5!, ~7!, and~8! contain no parameter;

d

dy S H

p

dw

dy D52
w

p

~12w2!

y2 ,

dm̄

dy
5

~12w2!2

2y2 1HS dw

dy D 2

, ~18!

dp

dy
52

2p

y S dw

dy D 2

.

Solutions$w,p,m̄% are functions ofy only. In each solutionw(r ) crosses the axisn times (n
51,2,...), and approaches (21)n asymptotically. A physical mass is given byM /G, or
m̄(`)Av/G5m̄(`)MPl /Aa where a5e2/4p and G5MPl

22. The mass of thenth Bartnik–
McKinnon solution is

FIG. 1. w(x) and û(x) of typical monopole and dyon solutions in the fixed AdS metric. The particular dyon solu
displayed in the figure has (QM ,QE)5(0.954,0.527).
                                                                                                                



c
ed

ck-
ce
innon

e

he
y

601J. Math. Phys., Vol. 43, No. 1, January 2002 Scaling behavior in the EYM monopoles and dyons

                    
~mass!n
L50~v !5

MPl

Aa
en ~n51,2,...!. ~19!

en5Mn
L50uv51 is numerically given by (e1 ,e2 ,...)5(0.8286,0.9713,...). Forn@1, en;1

21.081e2pn/).12 wn
L50(r ), pn

L50(r ), and mn
L50(r ) of the nth solution reach their asymptoti

values atr;anAv, wherean;10n.5 The size of the Bartnik–McKinnon solutions is characteriz
by l n

L50;anAv.
Monopole and dyon solutions inL,0 are labeled by (n,v,L,w` ,QE). The indexn runs over

0, 1, 2,... . We would like to show that forl n
L50AuLu!1, the Einstein–Yang–Mills monopole

solutions are well approximated by

wn5wn
L50~r ;v !wAdS~r ;L,~21!nw` ,QE!,

un5uAdS
„r ;L,~21!nw` ,QE…/pn

A50~`;v !,
~20!

pn5pn
L50~r ;v !,

mn5mn
L50~r ;v !1mAdS

„r ;L~21!nw` ;QE ,v…,

where it has been understood thatw0
L50(r ;v)5p0

L50(r ;v)51 and m0
L50(r ;v)50. First, the

solution in the fixed AdS metric approximately solves the EYM equations forn50, as remarked
above.

Secondly, forn>1 we consider two regions;@I# r ,0.1(3/uLu)1/2 and@II # r .anAv. The two
regions overlap with each other ifuLuv,0.03an

22. In the region I,wAdS;1, mAdS;0, and
2Lr 2/3!1 so that the solution is well approximated by that in theL50 case, providedu2 is
sufficiently small. In the region II,wn

L50;(21)n, pn
L50;pn

L50ur 5` , andmn
L50;Aven . In Eqs.

~5!–~8! the value of constantp is irrelevant withpu substituted byu. H is approximated byH
512Lr 2/3 asmn

L50/r ,1/an!1. Hence the solutions are given by those in the fixed AdS ba
ground metric withw at r 5` given by (21)nw` . The solutions in the asymptotically AdS spa
are obtained by dressing solutions in the fixed-AdS background metric to the Bartnik–McK
solutions in the asymptotically flat space, as expressed in~20!.

The factorization property of the solutions,~20!, is confirmed by numerical evaluation of th
solutions. In Fig. 2,w(r ) of the monopole solutions atL521024, 21025, and v51 with
variousw`53, 0, 21, 23 are depicted. Forr ,10 these solutions are well approximated by t
first Bartnik–McKinnon solution atL50. For largerr the solutions are essentially given b
2wAdS(x;L521,2w`).

FIG. 2. Factorization property of the EYM monopole solutions.L521024 and21025 with v51.
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V. SCALING

A scaling law follows from the factorization property. From~14! and ~20!,

Mn~v,L,w` ,QE!2Aven

vAuLu
5 f ~QM ,QE!, ~21!

the rhs of which is independent ofL and v, and also ofn. The scaling law is valid foruLuv
,0.03an

22 and smalluQEu.
In Fig. 3 numerical data of monopole solutions for the lowest (n50) and second (n51)

branches is depicted. It is seen that all data forvuLu,0.01 falls on the universal functionf (QM,0)
for n50, and forvuLu,0.0001 forn51. It follows from ~21! that the mass is given by

~mass!n~v,L,w` ,QE!5
en

Aa
MPl1

AuLu
a

f ~QM ,QE!. ~22!

In the lowest branch the magnitude of the mass is determined byAuLu/a, whereas in the highe
branches it is given byMPl /Aa.

The size of a monopole or dyon is essentially the same as that of the solution in the fixe
background metric, as the dressed fields cover the inside Bartnik–McKinnon core.h(QM,0) in
~15! is depicted in Fig. 4.

As L~,0! approaches 0, the branch in theQM2M plane collapses to a flat lineM5Aven .
The size of the solution grows asuLu21/2 so that Bartnik–McKinnon solutions with highern can
be accommodated inside the AdS solutions, allowing more solutions in higher branches
explains the phenomenon observed in Ref. 2. In theL50 limit only solutions with QM50
survive.

FIG. 3. Scaling~a! for f 0[M0(v,L,w`,0)/(vuLu1/2), and ~b! for f 1[„M1(v,L,w`,0)2v1/2e1…/(vuLu1/2). The scaling
function f (QM,0) is also depicted.
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VI. SUMMARY

In this paper we have examined monopole-dyon solutions in the Einstein–Yang–Mills th
in the asymptotically AdS space. The monopole and dyon solutions in the lowest branch (n50)
are essentially the solutions in the fixed AdS background metric. The solutions in the h
branches (n.0) are obtained by dressing monopole and dyon solutions in the fixed AdS b
ground metric around the Bartnik–McKinnon solutions in the asymptotically flat space. A
Bartnik–McKinnon solutions are unstable, the monopole and dyon solutions in the h
branches are unstable, whereas the nodeless solutions are stable against small perturbati

Because of the factorization property of the solutions there arises a scaling law in the m
the solutions when regarded as a function ofe, G, L, QM , andQE . Up to an overall factor it
scales to a universal functionf (QM ,QE) determined by the solutions in the fixed AdS metric. T
factorization/dressing mechanism is expected to apply for black hole solutions as well.

In quantum theoryQM andQE are expected to be quantized. Solutions with minimaluQMu or
uQEu must be absolutely stable. The stable solutions discussed in the present paper are, in
nontopological solitons. They exist only with gravitational force. In this sense they may be c
gravitational solitons.13
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groups

A. B. Balantekina)

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706b)

and Max-Planck-Institut fu¨r Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany

P. Cassakc)

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

~Received 6 July 2001; accepted for publication 24 September 2001!

Formulas for the expansion of arbitrary invariant group functions in terms of the
characters for the Sp(2N), SO(2N11), and SO(2N) groups are derived using a
combinatorial method. The method is similar to one used by Balantekin to expand
group functions over the characters of the U(N) group. All three expansions have
been checked for allN by using them to calculate the known expansions of the
generating function of the homogeneous symmetric functions. An expansion of the
exponential of the traces of group elements, appearing in the finite-volume gauge
field partition functions, is worked out for the orthogonal and symplectic
groups. © 2002 American Institute of Physics.@DOI: 10.1063/1.1418014#

I. INTRODUCTION

The expansion of invariant functions of a group into its characters~traces of the representatio
matrices!1 is very useful in a number of physical situations. In U(N) lattice gauge theories and i
the lattice expansion of the nonlinear U(N)3U(N) sigma model calculation of certain U(N)
group integrals are needed.2–6 If the integrands can be expanded in terms of the U(N) characters,
then such integrals can easily be calculated.3,7,8 Similar U(N) integrals also arise in the statistic
theory of nuclear reactions.9 In 1980 Itzykson and Zuber calculated a particular unitary gro
integral10 which turned out to be a special case of a more general formula by Harish-Chan11

The Itzykson–Zuber integral and its generalizations12–15are also easily dealt with using charact
expansions.1

The character expansion of an invariant function of group elements is given by

f ~detU,TrU,...!5(
r

arx r~U !, ~1.1!

wherex r(U) is the character of the representationr . Since group characters form an orthogon
set16 the coefficients can be obtained by explicitly integrating the product of this function with
characters over the group manifold:

ar5E dUx r* ~U ! f ~detU,TrU,...!. ~1.2!

~Note thata0 is the integral of the function itself over the group manifold!. It is rather difficult to
obtain complicated character expansions by explicit integration. In 1984 Balantekin8 developed a
combinatorial method that enabled one to solve for the coefficients in some expansions o

a!Electronic mail: baha@nucth.physics.wisc.edu
b!Permanent address.
c!Electronic mail: pcassak@nucth.physics.wisc.edu
6040022-2488/2002/43(1)/604/17/$19.00 © 2002 American Institute of Physics
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U(N) group characters that was quite simple in comparison to performing group integrals.
ing a more general version, the result was recently extended in its range of applicability.1

In a parallel development it was shown that the spectral density of the Dirac operator
gauge theory near its zero eigenvalues should only depend on the symmetries in questi17–19

Although the original work17–19 used a Gaussian random matrix model, the results from
random matrix theory can be proven to be universal.20–24This implies that the spectral density o
the Dirac operator near the origin can be extracted from random matrix theories which pro
description of common aspects of various quantum phenomena~for a review see Ref. 25!. Hence
to study the low-energy limit of, for example, quantum chromodynamics~QCD!, one needs to
choose a random matrix theory with the global symmetries of the QCD partition function.
partition functions calculated from the effective field theory and random matrix th
agree.17,26,27These random matrix theories are characterized by the Dyson indexb which is the
number of independent variables per matrix element.19,28 For fermions in the fundamental repre
sentationb51 for Nc52 andb52 for Nc>2 whereNc is the number of colors. For fermions i
the adjoint representation andNc>2 we haveb54. For b52 the low-energy~finite-volume!
QCD partition function is the same as the one-link integral of two-dimensional lattice QCD5,29 and
is calculated using the U(N) character expansion1 and other methods.30,14,31For b54 the zero
momentum Goldstone modes belong to the coset space SU(Nf)/SO(Nf)

30,15 where Nf is the
number of fermion flavors. Hence the finite-volume partition function is a group integral wher
argument is the exponential of an SO(Nf) group element. Similarly in theb51 case the cose
space of the Goldstone modes is SU(2Nf)/Sp(2Nf).

30,15 Massive partition functions of random
matrix ensembles withb51 and 4 were considered in Refs. 24 and 32. To calculate these par
functions it is very useful to have expressions for character expansions over the orthogon
symplectic groups. Explicit expressions for these partition functions, for example, may he
finding solutions of Virasoro constraints which were found so far only for theb52 case.~For the
application of Virasoro constraints on the effective finite volume partition function, see, fo
ample, Refs. 33–35!.

The present work is an extension of Balantekin’s method of finding the expansion coeffi
for expansions over the characters for the symplectic group Sp(2N), the odd dimensional specia
orthogonal group SO(2N11), and the even dimensional special orthogonal group SO(2N). Some
background material will be treated in Sec. II, including general information about the chara
of the groups in question. The procedures for developing the expansions for the different g
are similar, so Sec. III will treat the general idea. The specific expressions will be derived in
IV for Sp(2N), in Sec. V for SO(2N11), and in Sec. VI for SO(2N). Finally, some examples o
expansions will be given for each of the groups in Sec. VII.

For quick reference, the expansions and the most general expressions for their coefficie
Sp(2N), SO(2N11), and SO(2N) are found in Eqs.~4.10! and~4.11!, ~5.8! and~5.9!, and~6.10!
and ~6.12!, respectively.

II. BACKGROUND AND FORMULAS FOR CHARACTERS

In order to calculate expressions for the character expansions, we will need expressions
characters. These characters have been furnished by Weyl.36 For reference, the Weyl formulas fo
the U(N), Sp(2N), SO(2N11,R), and SO(2N,R) group characters are reprinted below.@We
have included the formula for the U(N) group characters for completeness even though we
not need them in the present work.#

In the following, det@Ai j # refers to the determinant of theN3N matrix A whose entry in the
i th row andj th column isAi j . Furthermore, we will denote a matrix in the unitary group asU,
the symplectic group asP, and the orthogonal group asR, and the eigenvalues of any of thes
matrices are labeled byt i . For the U(N) case, there areN eigenvalues that are all phases. For t
Sp(2N) and SO(2N) cases, there are 2N eigenvalues, but they come in pairs of a phase and
reciprocal. Thus, a complete list of eigenvalues would bet1 ,t2 ,...,tN ,t1

21 ,t2
21 ,...,tN

21 . For the
SO(2N11) case, it is the same as the even dimensional cases with an additional eigenva
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t51. The determinants given below, then, are determinants ofN3N matrices which contain
functions of only the individual eigenvalues, not their reciprocals. Finally, the character
function of the representation, which is labeled by a partition (n1 ,n2 ,...,nN) where the non-
negative integersni satisfy n1>n2>¯>nN . Each representation corresponds to a permiss
Young tableau.

The expressions for the simple characters of the U(N), Sp(2N), and SO(2N11) groups are

x (n1 ,n2 ,...,nN)~U !5
det@ t i

nj 1N2 j
#

det@ t i
N2 j #

, ~2.1!

x (n1 ,n2 ,...,nN)~P!5
det@ t i

nj 1N2 j 11
2t i

2(nj 1N2 j 11)
#

det@ t i
N112 j2t i

2(N112 j )#
, ~2.2!

and

x (n1 ,n2 ,...,nN)~R!5
det@ t i

nj 1N2 j 11/2
2t i

2(nj 1N2 j 11/2)
#

det@ t i
N11/22 j2t i

2(N11/22 j )#
, ~2.3!

respectively.
The SO(2N) case requires more attention. We define

C(n1 ,n2 ,...,nN)~R!5
det@ t i

nj 1N2 j
1t i

2(nj 1N2 j )
2d jNdnN0#

det@ t i
N2 j1t i

2(N2 j )2d jN#
~2.4!

and

S(n1 ,n2 ,...,nN)~R!5
det@ t i

nj 1N2 j
2t i

2(nj 1N2 j )
#

det@ t i
N2 j1t i

2(N2 j )2d jN#
. ~2.5!

~The notation in the previous two equations is nonstandard, but they give the proper elem
stated in Ref. 16 in a more modern and manipulable form.! C(n1 ,n2 ,...,nN)(R) alone is the simple
character of SO(2N) if and only if nN50. If nNÞ0, thenC(n1 ,n2 ,...,nN)(R) is a double character
For this case, the simple characters are given by1

2(C(n1 ,n2 ,...,nN)(R)6S(n1 ,n2 ,...,nN)(R)). In the
present work, only the expression forC(n1 ,n2 ,...,nN)(R) given in Eq. ~2.4! will be needed. This
statement will be justified in Sec. VI where SO(2N) is treated.

One last property of these expressions that will be useful for checking the reliability o
expansions derived in this article is the value of the characters for representations correspon
Young tableaux of one row~n15n, all others are 0! and one column~nn51 for all n up to some
value, all others are 0!. The characters for representations with one row, labeled (n), and one
column, labeled (1n), are

x (n)~U !5hn~ t i !, x (1n)~U !5an~ t i !, ~2.6!

x (n)~P!5hn~ t i ,t i
21!, x (1n)~P!5an~ t i ,t i

21!2an22~ t i ,t i
21!, ~2.7!

x (n)~R!5hn~ t i ,t i
21,1!2hn22~ t i ,t i

21,1!, x (1n)~R!5an~ t i ,t i
21,1!, ~2.8!

C(n)~R!5hn~ t i ,t i
21!2hn22~ t i ,t i

21!, C(1n)~R!5an~ t i ,t i
21!, ~2.9!

for the U(N), Sp(2N), SO(2N11), and SO(2N) groups, respectively. The functionshn(t i) are
the homogeneous symmetric functions of ordern, and the functionsan(t i) are the elementary
symmetric functions of ordern. Further discussion is given in Ref. 1.
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III. GENERAL PROPERTIES OF THE DERIVATION

We are now ready to derive the form for the expansions of group functions over the char
of the various groups mentioned in the previous section. As with any expansion, the crux o
issue is being able to determine and calculate the coefficients in the expansion. The goa
next four sections will be to find these coefficients.

The derivation is very similar to the one used by Balantekin1 in finding the coefficients of the
expansion over the unitary group characters. As the expressions for the group charact
Sp(2N), SO(2N11), and SO(2N) are all similar, the derivations for all three will proceed
much the same manner. To make the general method more transparent, the common aspec
derivation will be presented in this section without mention of the specific groups. The follo
three sections will be devoted to using the result of this section to derive expressions f
coefficients in the expansions over the characters in each group.

We begin by noting that each of the expressions for the characters given by Eqs.~2.2!–~2.4!
are all ratios of determinants, so that we can write

x (n1 ,n2 ,...,nN)~M !5
N
D , ~3.1!

where M is a matrix element of the group in question andN and D refer to numerator and
denominator. For any of these groups, the denominatorD can be expressed generally as

D5det@ t i
N2 j 1q6t i

2(N2 j 1q)2dq0d jN#, ~3.2!

whereq can take on the value 1 for the Sp(2N) group, 1
2 for the SO(2N11) group, and 0 for the

SO(2N) group. In this form, we choose the appropriate value ofq and the proper sign of the
6 sign to specify which group we are discussing. Namely, we see that the minus sign will be
for Sp(2N) and SO(2N11) whereas the plus sign will be used for SO(2N).

In following the derivation of the U(N) expansion given in Ref. 1, we define a ‘‘generati
function,’’ G(x,t), to be some function of a variablet and any necessary parametersx. Later, we
will take t to be an eigenvalue of a group matrix. For now, we expand the generating funct
a power series in the variablet aroundt50. Thus,

G~x,t !5 (
n52`

`

An~x!tn. ~3.3!

We assume that the series expansion converges forutu51. However, there are no other restrictio
on the coefficients, so that some of theAn(x) can be zero. For instance, if the expansion is
Taylor series, thenAn[0 for all n,0.

Now, we define a functionF by

F5D)
i 51

N

G~x,t i !G~x,t i
21!, ~3.4!

whereD is given in Eq.~3.2!. By using the definition ofG(x,t) from Eq. ~3.3!, F can be written
as ~suppressing thex dependence ofAn!

F5DF (
n52`

`

Ant1
nGF (

n52`

`

Ant1
2nGF (

n52`

`

Ant2
nGF (

n52`

`

Ant2
2nG¯F (

n52`

`

AntN
n GF (

n52`

`

AntN
2nG ,

~3.5!

or, by combining the product of sums over the same variable, it can be written as
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F5DF (
n52`

`

(
p52`

`

AnApt1
n2pGF (

n52`

`

(
p52`

`

AnApt2
n2pG¯F (

n52`

`

(
p52`

`

AnAptN
n2pG . ~3.6!

To proceed, we use the expression forD in Eq. ~3.2!. This determinant can be laborious
expanded as an alternating sum of products of the elements@see Eq.~A3!#. Upon doing so, we can
combine the factors of the variablet i in the determinant with the factor in Eq.~3.6! of the same
variable. However, before naively doing so, we notice that there is a symmetry in the expone
the determinant. We also notice that the double summations of thet i ’s are unaffected by inter-
change of the dummy indicesn andp. So the symmetry of the exponents will be preserved if
usen2p in the product of the first term,p2n in the product of the second term, and split the de
term in half usingn2p in the first one andp2n in the second one. Upon doing so, we find th
the new expression is again a determinant. Rewriting this as a determinant, we obtain

F5detF (
n52`

`

(
p52`

`

AnApS t i
N2 j 1q1n2p6t i

2(N2 j 1q1n2p)2
1

2
dq0d jN~ t i

n2p1t i
p2n! D G . ~3.7!

Now, we change variables, defining a new integerr 5N2 j 1n2p. This gives

F5detF (
p52`

`

(
r 52`

`

Ar 2N1 j 1pApS t i
r 1q6t i

2(r 1q)2
1

2
dq0d jN~ t i

r 2N1 j1t i
N2 j 2r ! D G . ~3.8!

The order of the summation forr andp is interchangeable. Also, the delta term chooses onlyN
5 j . Thus,

F5detF (
r 52`

`

(
p52`

`

Ar 2N1 j 1pApS t i
r 1q6t i

2(r 1q)2
1

2
dq0d jN~ t i

r1t i
2r ! D G . ~3.9!

We notice that all of the dependence on the dummy variablep can be isolated by defining

cr , j5 (
p52`

`

Ar 2N1 j 1pAp . ~3.10!

Also, by combining the delta term with the other term@again remembering that it is only prese
for the SO(2N) case in whichq50 and we use the1 sign#, we can write our expression forF as

F5detF (
r 52`

`

cr , j~ t i
r 1q6t i

2(r 1q)!S 12
1

2
dq0d jND G . ~3.11!

We have come to the point in the derivation where it will be necessary to specialize Eq.~3.11! for
the three different types of groups by making appropriate choices forq and the6 sign. This will
be taken up in the next three sections.

IV. THE EXPANSION OVER SP„2N… CHARACTERS

We begin with the Sp(2N) case, as it is the simplest one. The starting point will be Eq.~3.11!.
For the Sp(2N) case,q51 and we choose the minus sign. Thus, we have

F5detF (
r 52`

`

cr , j~ t i
r 112t i

2(r 11)!G , ~4.1!

wherecr , j is defined in Eq.~3.10!. Before proceeding, it is beneficial to change dummy indi
again by lettingr 11→r . This gives us
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F5detF (
r 52`

`

cr , j8 ~ t i
r2t i

2r !G , ~4.2!

where

cr , j8 5 (
p52`

`

Ar 2N1 j 211pAp . ~4.3!

This sum overr from 2` to ` can be broken up into positiver , negativer , and r 50. The r
50 term vanishes becauset i

02t i
050. Then, changing the negative values to positive by replac

r with 2r and collecting terms, we get

F5detF (
r 50

`

dr , j~ t i
r2t i

2r !G , ~4.4!

where

dr , j5cr , j8 2c2r , j8 . ~4.5!

Equation~4.4! is very similar to an expression that is treated in Theorem 1.2.1 from Ref. 37
will need a slightly more general form of this theorem, which we present in the Appendix. U
the result, Eq.~A8!, we get

F5 (
r 1.r 2.¯.r N>0

`

det@dr j ,i #det@ t i
r j2t i

2r j #. ~4.6!

Now, if, in the summation,r N50, then both determinants vanish, so we can restrictr N>1. Let us
define

r j5nj1N2 j 11. ~4.7!

Then,r j.r j 11 implies thatnj>nj 11 . Furthermore, sincer N>1, thennN>0. Thus, we can write
the summation as

F5 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j 11,i #det@ t i
nj 1N2 j 11

2t i
2(nj 1N2 j 11)

#. ~4.8!

In the above expression, the second determinant is seen to be exactly the numerato
Weyl formula for the characters of the symplectic group given in Eq.~2.2!. We even have the
appropriate restrictions on the values of theni that are necessary to make the equation valid. Th
we can write the above expression as

F5 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j 11,i #N. ~4.9!

Now we recall our definition ofF from Eq. ~3.4!. If we divide both sides by the denominatorD
and recall that our expression for the character of the Sp(2N) group isx (n1 ,n2 ,...,nN)(P)5 N/D,
then we obtain

)
i 51

N

G~x,t i !G~x,t i
21!5 (

n1>n2>¯>nN>0

`

det@dnj 1N2 j 11,i #x (n1 ,n2 ,...,nN)~P!. ~4.10!
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This is our desired character expansion over the Sp(2N) group! It is a sum over all irreducible
representations of the symplectic group. Expressions for the coefficients are obtained usin
~4.5! and ~4.3!. The result is

dnj 1N2 j 11,i5 (
p52`

`

Ap~Anj 1 i 2 j 1p2A2nj 22N221 i 1 j 1p!. ~4.11!

In the special case in which the expansion of the generating functionG(x,t) is a Taylor series
expansion withAp[0 for all p,0, this simplifies slightly to

dnj 1N2 j 11,i5 (
p50

`

Ap~Ap1unj 1 i 2 j u2Ap1nj 12N122 i 2 j !. ~4.12!

We defer examples of the usage of this expansion until Sec. VII.

V. THE EXPANSION OVER SO„2N¿1… CHARACTERS

Once again, we start from Eq.~3.11!. For SO(2N11), we haveq5 1
2 and we choose the

minus sign. Then, we have

F5detF (
r 52`

`

cr , j~ t i
r 11/22t i

2(r 11/2)!G ~5.1!

andcr , j is defined in Eq.~3.10!.
This sum overr from 2` to ` can be broken up into ranges ofr>0 andr ,0, which gives

F5detF (
r 50

`

cr , j~ t i
r 11/22t i

2(r 11/2)!1 (
r 52`

21

cr , j~ t i
r 11/22t i

2(r 11/2)!G . ~5.2!

Changing variables in the second summation usingr→2(r 11) and collecting terms, we get

F5detF (
r 50

`

dr , j~ t i
r 11/22t i

2(r 11/2)!G , ~5.3!

where

dr , j5cr , j2c2r 21,j . ~5.4!

Once again, we refer to Eq.~A8! in the Appendix to simplify Eq.~5.3! and we write

F5 (
r 1.r 2.¯.r N>0

`

det@dr j ,i #det@ t i
r j 11/2

2t i
2(r j 11/2)

#. ~5.5!

If we define

r j5nj1N2 j , ~5.6!

then the summation becomes

F5 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #det@ t i
nj 1N2 j 11/2

2t i
2(nj 1N2 j 11/2)

#. ~5.7!

The second determinant is simply the numerator of the Weyl formula for SO(2N11) as given in
Eqs.~2.3!, so using the definition ofF from Eq. ~3.4! and dividing byD gives
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)
i 51

N

G~x,t i !G~x,t i
21!5 (

n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #x (n1 ,n2 ,...,nN)~R!. ~5.8!

This is the expansion for the SO(2N11) group, again a sum over all irreducible representatio
Note, however, that this expression does not include the spinor representations of SO(2N11).
The expression for the coefficient is found using Eqs.~5.4! and ~3.10! with the result given by

dnj 1N2 j ,i5 (
p52`

`

Ap~Anj 1 i 2 j 1p2A2nj 22N211 i 1 j 1p!. ~5.9!

In the special case of a Taylor series withAp[0 for all p,0, this simplifies to

dnj 1N2 j ,i5 (
p50

`

Ap~Ap1unj 1 i 2 j u2Ap1nj 12N112 i 2 j !. ~5.10!

We conclude this section with a reminder that care must be taken in the usage of the
formulas for SO(2N11). One must remember that the number 1 is always an additional e
value of the matrixR. Thus, in forming group functions, one must manually include a facto
G(x,1) on both sides of the equation in order to have a function on the left hand side that
all eigenvalues equally. This tricky point will be illustrated by example in Sec. VII, after we t
the SO(2N) case in the next section.

VI. THE EXPANSION OVER SO„2N… CHARACTERS

One more time, we start from Eq.~3.11!. Recall that for SO(2N), we haveq50 and we use
the 1 sign. Thus, we have

F5detF (
r 52`

`

cr , j~ t i
r1t i

2r !S 12
1

2
d jND G , ~6.1!

wherecr , j is defined in Eq.~3.10!. The delta function term serves to divide each entry in the
column by a factor of 2. When taking the determinant, a factor of 2 comes out and divide
equation. Thus,

F5
1

2
detF (

r 52`

`

cr , j~ t i
r1t i

2r !G . ~6.2!

This sum overr from 2` to ` can be broken up into positiver , negativer , andr 50. Then
changing the negative values to positive by replacingr with 2r and collecting terms, we get

F5
1

2
detF (

r 50

`

dr , j S 12
1

2
d r0D ~ t i

r1t i
2r !G , ~6.3!

where

dr , j5cr , j1c2r , j ~6.4!

and thed r0 is inserted to ensure the correct coefficient forr 50. Once again, we can use Eq.~A8!
from the Appendix to simplify Eq.~6.3! which gives

F5
1

2 (
r 1.r 2.¯.r N>0

`

det@dr j ,i #detF ~ t i
r j1t i

2r j !S 12
1

2
d r j0D G . ~6.5!
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Let us define

r j5nj1N2 j . ~6.6!

Then the summation becomes

F5
1

2 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #detF ~ t i
nj 1N2 j

1t i
2(nj 1N2 j )

!S 12
1

2
dnj 1N2 j ,0D G . ~6.7!

Focusing on the second determinant on the right hand side, we can multiply the two binom
give

detF t i
nj 1N2 j

1t i
2(nj 1N2 j )

2
1

2
dnj 1N2 j ,0~ t i

nj 1N2 j
1t i

2(nj 1N2 j )
!G . ~6.8!

Now, the delta function is only nonzero whennj1N2 j 50, which can only occur forj 5N and
nN50 becausenj is non-negative. In this event, the exponents vanish and the sum in paren
becomes 2, which cancels the1

2. Thus, we can write Eq.~6.7! as

F5
1

2 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #det@ t i
nj 1N2 j

1t i
2(nj 1N2 j )

2d jNdnN0#. ~6.9!

We see that the second determinant is precisely the appropriate numerator in the Weyl f
for the quantityC(n1 ,n2 ,...,nN)(R) given in Eq.~2.4!. By recalling the definition ofF from Eq.~3.4!
and dividing byD, we get

)
i 51

N

G~x,t i !G~x,t i
21!5 (

n1>n2>¯>nN>0

`
1

2
det@dnj 1N2 j ,i #C(n1 ,n2 ,...,nN)~R!, ~6.10!

This is the character expansion for SO(2N). As with the SO(2N11) case, the expansion does n
include the spinor representations. Note that the above expansion is not an expansion o
simple characters of the SO(2N) group because theC’s are double characters ifnN.0 as dis-
cussed in Sec. II. If one desires an expansion over the simple characters, one can write

C5 1
2 ~C1S!1 1

2 ~C2S!, ~6.11!

which puts the two simple characters on the right hand side, as explained earlier. At the p
time, we find it simpler to apply the formula in the state that it is in. The expression for
coefficient is found using Eqs.~6.4! and ~3.10! and is found to be

dnj 1N2 j ,i5 (
p52`

`

Ap~Anj 1 i 2 j 1p1A2nj 22N1 i 1 j 1p!. ~6.12!

In the special case of a Taylor series withAp50 for all p,0, this simplifies to

dnj 1N2 j ,i5 (
p50

`

Ap~Ap1unj 1 i 2 j u1Ap1nj 12N2 i 2 j !. ~6.13!

The derivations of the expansions are complete. We now turn to some examples.

VII. EXAMPLES OF CHARACTER EXPANSIONS

In this section, we give some examples of expansions of group functions over the cha
of the Sp(2N), SO(2N11), and SO(2N) groups. In Sec. VII A, we will present the expansion
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the generating function of the homogeneous symmetric functions. This can be used as a c
the formulas derived in the present article, as the expansions are known. In Sec. VII B, we p
the expansion for the function exp(xTrM), whereM is some matrix element of one of the thre
groups we treat.

A. Homogeneous symmetric functions

Consider the generating function of the homogeneous symmetric functions, namely

G~x,t !5
1

12xt
5 (

n50

`

xntn. ~7.1!

Thus, we haveAn(x)5xn for n>0 andAn(x)50 otherwise. Consider the Sp(2N) expansion.
Note that

)
i 51

N

G~x,t i !G~x,t i
21!5

1

det@ I 2xP#
, ~7.2!

where I is the 2N32N identity matrix. The expansion is given by Eq.~4.10!. Since the series
expansion of the generating function in Eq.~7.1! does not contain negative powers oft, the
coefficients are given by Eq.~4.12!. Thus, the coefficients are given by

det@dnj 1N2 j 11,i #5detF (
p50

`

xp~xp1unj 1 i 2 j u2xp1nj 12N122 i 2 j !G , ~7.3!

which after simplifying becomes

det@dnj 1N2 j 11,i #5detFxunj 1 i 2 j u2xnj 12N122 i 2 j

12x2 G . ~7.4!

We simplify by noticing that ifn2>1, then the first column of the determinant is a multiple of t
second column, thereby making the determinant vanish. Thus,n2 must be zero in order to have
nonvanishing coefficient. Now, sincen2>n3 and so on, we see that the only surviving terms in
expansion are those for whichn25n35¯5nN50. This corresponds to one row Young tableau
labeled (n) earlier. The above determinant then becomes

det@dnj 1N2 j 11,i #5detFxun1d1 j 1 i 2 j u2xn1d1 j 12N122 i 2 j

12x2 G . ~7.5!

This, in turn, can be written as

det@dnj 1N2 j 11,i #5
xn1

~12x2!N det@xu i 2 j u2x2N122 i 2 j #. ~7.6!

By an induction argument on the dimension of the determinant on the right hand side, on
prove that

det@xu i 2 j u2x2N122 i 2 j #5~12x2!N ~7.7!

and thus

det@dnj 1N2 j 11,i #5xn1, ~7.8!

where we recall that alln’s other thann1 are 0. Then, the character expansion is Eq.~4.10! with
the coefficients found above is
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1

det@ I 2xP#
5)

i 51

N S 1

12xti
D S 1

12xti
21D 5 (

n150

`

xn1x (n1)~P!. ~7.9!

If we use Eq.~2.7!, which relates the character of one row Young tableaux to the homogen
symmetric functions, we have

1

det@ I 2xP#
5)

i 51

N S 1

12xti
D S 1

12xti
21D 5 (

n50

`

xnhn~ t i ,t i
21!. ~7.10!

However, this is exactly the defining equation for the homogeneous symmetric functions. Th
see that the expansion derived for Sp(2N) agrees with the known expansion.

To perform the same expansion over the SO(2N11) group, one must use caution. As allud
to earlier, we must manually include the eigenvalue 1. Mathematically, we have

1

det@ I 2xR#
5G~x,1!)

i 51

N

G~x,t i !G~x,t i
21!, ~7.11!

whereG(x,t) is still given by Eq.~7.1! andI is the (2N11)3(2N11) identity matrix. Then, we
have the expansion from Eq.~5.8! and we scale both sides byG(x,1)5(12x)21 to get

G~x,1!)
i 51

N

G~x,t i !G~x,t i
21!5

1

12x (
n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #x (n1 ,n2 ,...,nN)~R!.

~7.12!

The coefficient is given by Eq.~5.10!

det@dnj 1N2 j ,i #5detF (
p50

`

xp~xp1unj 1 i 2 j u2xp1nj 12N112 i 2 j !G , ~7.13!

or, after simplifying,

det@dnj 1N2 j ,i #5detFxunj 1 i 2 j u2xnj 12N112 i 2 j

12x2 G . ~7.14!

Once again it can be shown that ifn2>1, the first two columns are multiples and the coefficie
vanishes. It can also be shown using the result of the similar expression for the Sp(2N) expansion
that if n15n and all otherni50, then

det@dnj 1N2 j ,i #5
xn

11x
~7.15!

so that

1

det@ I 2xR#
5

1

~12x! )i 51

N
1

~12xti !

1

~12xti
21!

5 (
n50

`
xn

12x2 x (n)~R!. ~7.16!

Finally, using the value of the single row characters for the SO(2N11) group from Eq.~2.8!, one
can show that

1

det@ I 2xR#
5

1

~12x! )i 51

N
1

~12xti !

1

~12xti
21!

5 (
n50

`

xnhn~ t i ,t i
21,1!, ~7.17!

which again agrees with the definition of the homogeneous symmetric functions.
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We continue on with the same expansion for the SO(2N) group. Using the same generatin
function and using the character expansion from Eq.~6.10!, we have

1

det@ I 2xR#
5)

i 51

N
1

~12xti !

1

~12xti
21!

5 (
n1>n2>¯>nN>0

`
1

2
det@dnj 1N2 j ,i #C(n1 ,n2 ,...,nN)~R!.

~7.18!

Note the appearance of the factor of1
2 in this expression. The coefficient is given by Eq.~6.13! to

be

det@dnj 1N2 j ,i #5detF (
p50

`

xp~xp1unj 1 i 2 j u1xp1nj 12N2 i 2 j !G , ~7.19!

or, after simplification,

det@dnj 1N2 j ,i #5detFxunj 1 i 2 j u1xnj 12N2 i 2 j

12x2 G . ~7.20!

Once again, the first two columns are multiples ifn2>1, so the only surviving coefficients are th
ones corresponding ton15n, all others are zero. Again, the determinant can be evaluated with
help of the result from the Sp(2N) case, and the result is

det@dnj 1N2 j ,i #5
2xn

12x2 . ~7.21!

We note that the 2 cancels with the1
2 built into the SO(2N) expansion and the remaining expre

sion is exactly the same as the SO(2N11) expression. Thus, we see that the expansions der
in the present work indeed give the correct expansion. In all three of these examples, w
tacitly assumed thatN is at least 2, but one can check that the expansions are correct for tN
51 cases as well.

We could also consider the generating function for the alternating symmetric func
G(x,t)512xt, and calculate the expansions as another check for reliability. One can chec
the expansions derived from the present work in fact give the known expansions. This tas
not be undertaken in the present work.

B. Expansion of exp „x Tr M…

Now that we have confidence in the character expansions derived here, we can start
ering more interesting examples. Of course, any generating function can be chosen as lo
can be expanded in a power series. For our example, we will choose the exponential fu
because it is expected that this technique will prove useful in performing group integrals tha
in low-energy effective QCD partition functions and the integrals are of exponential functio

We begin by defining the generating function

G~x,t !5ext5 (
n50

`
xn

n!
tn ~7.22!

so thatAn(x)5 xn/n! for n>0 and zero otherwise. Let us first consider Sp(2N). We have

)
i 51

N

G~x,t i !G~x,t i
21!5ex(t11t21¯1tN1t1

21
1t2

21
1¯1tN

21)5exp~xTrP!. ~7.23!

Our character expansion is given by Eq.~4.10! as
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exp~xTrP!5 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j 11,i #x (n1 ,n2 ,...,nN)~P!, ~7.24!

where the coefficients are given directly by Eq.~4.12! as

det@dnj 1N2 j 11,i #5detF (
p50

`
xp

p! S xp1unj 1 i 2 j u

~p1unj1 i 1 j u!!
2

xp1nj 12N122 i 2 j

~p1nj12N122 i 2 j !! D G . ~7.25!

This can be recognized as a modified Bessel function, which has the expansion

I l~x!5 (
p50

`
1

p! ~p1l!! S x

2D 2p1l

. ~7.26!

Note also thatI l(x)5I 2l(x) for any x. Thus, we can rewrite the coefficient as~dropping the
absolute value sign!

det@dnj 1N2 j 11,i #5det@ I nj 1 i 2 j~2x!2I nj 12N122 i 2 j~2x!# ~7.27!

so that, finally,

exp~xTrP!5 (
n1>n2>¯>nN>0

`

det@ I nj 1 i 2 j~2x!2I nj 12N122 i 2 j~2x!#x (n1 ,n2 ,...,nN)~P!.

~7.28!

We proceed with the same expansion for the SO(2N11) group. Using the same generatin
function, Eq.~5.8! gives us the expansion as

)
i 51

N

exp~xti !exp~xti
21!5 (

n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #x (n1 ,n2 ,...,nN)~R!, ~7.29!

where Eq.~5.10! gives

det@dnj 1N2 j ,i #5detF (
p50

`
xp

p! S xp1unj 1 i 2 j u

~p1unj1 i 2 j u!!
2

xp1nj 12N112 i 2 j

~p1nj12N112 i 2 j !! D G , ~7.30!

or, using the definition of the modified Bessel function,

det@dnj 1N2 j ,i #5det@ I nj 1 i 2 j~2x!2I nj 12N112 i 2 j~2x!#. ~7.31!

Thus, our expression is

)
i 51

N

exp~xti !exp~xti
21!5 (

n1>n2>¯>nN>0

`

det@ I nj 1 i 2 j~2x!2I nj 12N112 i 2 j~2x!#x (n1 ,n2 ,...,nN)~R!.

~7.32!

Now, the left hand side is not yet exp(xTrR). We need to include the eigenvalue 1. Thus
multiply both sides byex and we get
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exp~xTrR!5exp~x!)
i 51

N

exp~xti !exp~xti
21!

5ex (
n1>n2>¯>nN>0

`

det@ I nj 1 i 2 j~2x!2I nj 12N112 i 2 j~2x!#x (n1 ,n2 ,...,nN)~R!,

~7.33!

which is the desired expansion. We emphasize the appearance of theex on the right hand side o
the expression. This extra term is unique to the SO(2N11) group.

As our final example, we develop the same expansion for the SO(2N) group. As before, we
write the expansion from Eq.~6.10! as

exp~xTrR!5)
i 51

N

exp~xti !exp~xti
21!5 (

n1>n2>¯>nN.0

`
1

2
det@dnj 1N2 j ,i #C(n1 ,n2 ,...,nN)~R!.

~7.34!

The coefficients are given by Eq.~6.13! as

det@dnj 1N2 j ,i #5detF (
p50

`
xp

p! S xp1unj 1 i 2 j u

~p1unj1 i 2 j u!!
1

xp1nj 12N2 i 2 j

~p1nj12N2 i 2 j !! D G . ~7.35!

Again using the modified Bessel equation expansion, we get

det@dnj 1N2 j ,i #5det@ I nj 1 i 2 j~2x!1I nj 12N2 i 2 j~2x!#. ~7.36!

Thus, the desired expansion is

exp~xTrR!5 (
n1>n2>¯>nN>0

`
1

2
det@ I nj 1 i 2 j~2x!1I nj 12N2 i 2 j~2x!#C(n1 ,n2 ,...,nN)~R!.

~7.37!

Once again, we emphasize the factor of1
2 in this expression. This is unique to the SO(2N)

expansion.

VIII. CONCLUSIONS

The present article, along with Refs. 1 and 8 completes the program of finding cha
expansions for all classical Lie groups. We expect these formulas to be useful in a wide ra
applications. We already described some of these applications in the Introduction.

One should emphasize that the success in understanding the relationship between the
matrix theories and the low-lying eigenvalues of the QCD Dirac operator suggests investi
other aspects of QCD in a statistical framework~for a recent review see Ref. 38!. More recently
a similarity between disordered systems in condensed matter physics and QCD, namely th
tence of a universal energy scale known as Thouless energy, was suggested.39–41This problem can
be treated using the supersymmetry approach.42,25,43In the supersymmetry approach to this pro
lem one needs to calculate integrals over supergroups.44,45 One should note that integration ove
unitary supergroups was already considered in Refs. 13 and 45–47. Invariant integration o
Osp(N/2M ) manifold was also previously discussed in Refs. 48 and 49. An approach bas
Gelfand–Tzetlin coordinates was developed and a recursion formula for both ordinary and
group integrals was found.50–53Character expansions for supergroups may be useful to under
the nature and extent of this approach. The characters of supergroups are given by fo
similar to the Weyl formulas except that complete symmetric functions are replaced by the g
homogeneous symmetric functions or alternately traces by supertraces.54–57 Since our characte
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expansion formulas are basically combinatorial in nature they are applicable to the supergro
well by the appropriate substitution of traces with supertraces. Thus one can obtain ch
expansions of the orthosymplectic supergroup Osp(N/2M ) from our formulas for SO(N)54 and of
the supergroup P(N) from our formulas for Sp(2N).55
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APPENDIX: A THEOREM ON DETERMINANTS

Here we take up the issue of slightly generalizing a theorem on determinants that can be
in Hua’s book.37 His Theorem 1.2.1 states that

detF (
r 50

`

dr , j t i
r G5 (

r 1.r 2.....r N>0

`

det@dr j ,i #det@ t i
r j #. ~A1!

We would like to prove the following more general statement, which we state as a theorem
Theorem 1: Let fr(t) be an arbitrary function of the variable t with dependence on the in

r . Then the following equality holds:

detF (
r 50

`

dr , j f r~ t i !G5 (
r 1.r 2.....r N>0

`

det@dr j ,i #det@ f r j
~ t i !#. ~A2!

To prove the theorem, we recall the expansion of determinants ofN3N matrices, namely,

det@Ai , j #5 (
m151

N

(
m251

N

¯ (
mN51

N

em1m2¯mN
A1,m1

A2,m2
¯AN,mN

, ~A3!

where the tensorem1m2¯mN
is completely antisymmetric. Then, the left hand side of Eq.~A2!

becomes

detF (
r 50

`

dr , j f r~ t i !G5 (
m151

N

(
m251

N

¯ (
mN51

N

em1m2¯mNF (
r 150

`

dr 1 ,m1
f r 1

~ t1!G
3F (

r 250

`

dr 2 ,m2
f r 2

~ t2!G¯F (
r N50

`

dr N ,mN
f r N

~ tN!G . ~A4!

Isolating the dependence on themi ’s, we get

detF (
r 50

`

dr , j f r~ t i !G5 (
r 150

`

(
r 250

`

¯ (
r N50

`

f r 1
~ t1! f r 2

~ t2!¯ f r N
~ tN!

3F (
m151

N

(
m251

N

¯ (
mN51

N

em1m2¯mN
dr 1 ,m1

dr 2 ,m2
¯dr N ,mNG . ~A5!

We recognize the term on the right hand side in the large brackets as a determinant, so
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detF (
r 50

`

dr , j f r~ t i !G5 (
r 150

`

(
r 250

`

¯ (
r N50

`

f r 1
~ t1! f r 2

~ t2!¯ f r N
~ tN!det@dr i , j #. ~A6!

Now, if any of ther i are equal, then the determinant on the right hand side will vanish bec
two rows would be identical. Thus, the sum can be restricted to distinct values of ther i ’s. Next,
since ther i ’s are all different, we would like to order them in descending order so thar i

.r i 11 . In doing so, we would like to not change the form of the determinant on the right h
side. So, for any switch of labels, we permute the rows to leave the form unchanged. This
in a factor of11 or 21, depending on how many permutations are needed. We can expres
simply by using theNth rank alternating tensor as

detF (
r 50

`

dr , j f r~ t i !G
5 (

r 1.r 2.¯.r N>0

`

det@dr i , j # (
m151

N

(
m251

N

¯ (
mN51

N

em1m2¯mN
f r m1

~ t1! f r m2
~ t2!¯ f r mN

~ tN!.

~A7!

Here we note that the term involvingmi sums is a determinant. Thus, taking the transpose of
determinant of thed’s, we conclude

detF (
r 50

`

dr , j f r~ t i !G5 (
r 1.r 2.¯.r N>0

`

det@dr j ,i #det@ f r j
~ t i !#, ~A8!

which proves the theorem.
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Algebro-geometric solution of the 2 ¿1 dimensional
Burgers equation with a discrete variable

Cewen Cao,a) Xianguo Geng, and Hongye Wang
Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052,
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The quasiperiodic solution of the 211 dimensional Burgers equation with a dis-
crete variable is obtained through three steps:~a! decomposition into a symplectic
map plus two finite-dimensional Hamiltonian systems;~b! straightening out of both
the discrete and the continuous flows in the Jacobian variety;~c! inversion into the
original variables. Inner relation with the modified Kadomtsev–Petviashvili equa-
tion is presented. The explicit theta function solutions for these two 211 integrable
models are given. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1415427#

I. INTRODUCTION

The most attractive point in the celebrated Liouville–Arnold theory is the straightening o
various flows on the invariant torus, which reveals the basic structure of the Liou
integrability.1 There were a series of brilliant examples in the development of classical mech
such as the two-body problem of Newton, the geodesic flow on the ellipsoid of Jacob
harmonic oscillator constrained on the sphere of C. Neumann, and the integrable tops of
Lagrange, and Kovalevski. They have a common feature: the motions are all quasiperiodi
ingenious mathematical skill in solving these problems is essentially reduced in finding the
lar variables and proving the uniform way of their evolution. Hence, in the window of ang
coordinates, the motion is linear locally, and quasiperiodic globally.

The discovery of theN-soliton solution to the Korteweg–de Vries equation~KdV! in 1967 is
a prominent event in mathematical physics. As for the quasiperiodic solutions, after a se
independent works by Novikov,2 Matveev,3 Lax,4,5 and Marchenko,6 the final expression,

u~x,t !522]x
2 ln u~V1x1V2t1K !1C, ~1.1!

was found by Its and Matveev in 1975.7,8 This is tremendous progress along the direction initia
by the pioneer studies in classic mechanics. Since the solution is closely related to the finit
spectrum of the associated differential operator, it is also called the finite-band solution
angular argumentf5V1x1V2t1K suggests the straightening out ofx- and t-flows:

df

dx
5V1 ,

df

dt
5V2 . ~1.2!

Further exciting results appeared later, including the finite-band solution of the 111 dimen-
sional discrete Toda equation,9–14 that of the Kadomtsev–Petviashvili~KP! equation and others
which could be found in the wonderful work of Belokolos,et al.15 The straightening out of the
discrete flow

f~n11!2f~n!5VS , ~modT! ~1.3!

a!Electronic mail: CWCao@public2.zz.ha.cn
6210022-2488/2002/43(1)/621/23/$19.00 © 2002 American Institute of Physics
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was first proved by Toda through the spectral analysis of the discrete Toda eigen
problem.11–13As for the KP equation, we have the beautiful formula in Ref. 15:

w~x,y,t !52]x
2 ln u~V1x1V2y1V3t1D !1w0 , ~1.4!

which suggests the straightening out of thex-, y-, and t-flows in the framework of the angula
variablef5V1x1V2y1V3t1D:

df

dx
5V1 ,

df

dy
5V2 ,

df

dt
5V3 . ~1.5!

However, the number of positive results remain very limited for the~211!-dimensional case
since it is very hard to find the angular variable. Based on the observation and analysis of t
representation of soliton models, we have developed an approach to get finite-band solut
spatially multidimensional integrable models. The well-known formula~1.4! for the KP equation
is again derived through different means.16 We also succeeded in getting an algebro-geome
solution of the special~211!-dimensional Toda lattice model.17

Our method is divided into three steps:

~a! decomposition;
~b! straightening out;
~c! inversion.

First the well-known Lax representation is used to decompose the higher dimensional inte
system into lower dimensional ones. A clear formalism of the decomposition is obtained th
the so-called nonlinearization technique.16–28 Second, the resulting finite-dimensional integrab
system~the nonlinearized eigenvalue problem! serves as a base to construct the associated a
braic curve and the Abel–Jacobi coordinates, through which the flows are straightened out a
linear superposition yields the solution of the~211!-dimensional integrable models, expressed
the Abel–Jacobi coordinates. Third, an inverse procedure is indispensable in transformi
explicit solution in the original coordinates, which manifests abundant diversity in differen
amples. The main tool in our theory is the algebraic curve associated with the Lax matrix.

In the present paper we are going to investigate the 211 dimensional Burgers equation wit
a discrete variable

By52BBx1 1
2 Bxx1D21Bxx , ~1.6!

whereD is the onward difference operator with regard to the discrete variable:D f (n)5 f (n11)
2 f (n), which is closely related to the first two members of the Kac–van Moerbeke~KvM ! lattice
hierarchy:

da~n!

dx
5X05a~n!@a2~n11!2a2~n21!#, ~1.7!

da~n!

dy
5X15a~n!@a2~n12!a2~n11!1a4~n11!1a2~n11!a2~n!2a2~n!a2~n21!

2a4~n21!2a2~n21!a2~n22!]. ~1.8!

The Kac–van Moerbeke equation~1.7! and its variants are sometimes called the Langmuir latt
the Volterra system or the discrete Korteweg–de Vries equation, which have attracted
attention.9,14,29–38A thorough investigation is made by Bullaet al., for the algebro-geometric
solutions of the KvM hierarchy.39
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Let a(n,x,y) be a compatible solution of Eqs.~1.7! and ~1.8!. Then B(n,x,y)5a2(n,x,y)
solves Eq.~1.1!, which is verified by direct calculations. The KvM hierarchy is the isospec
class of the discrete eigenvalue problem

Ex5Ux, U5
1

a S 0 a2

21 l
D , ~1.9!

whereE is the shift operator:E f(n)5 f (n11). The nonlinearization ofN copies of Eq.~1.9! with
l5a1 ,a2 ,...,aN yields an integrable symplectic mapS in the symplectic space (R2N,dp∧dq)
with N functionally independent integralsH0 ,H1 ,...,HN21 , involutive with each other~see Sec.
II !. Let (p(n,tk),q(n,tk)) be the compatible solution of theHk-flow and the discrete flow gen
erated byS. Then the nonlinearized mapf S maps (p,q) exactly into a solution of the KvM flow
Xk ~see Sec. III!. Thus we have the decomposition diagram:

~1.10!

which is the basis of computing the algebro-geometric solution of Eq.~1.6!.
The discrete 211 Burgers model~1.6! has an inner relation with the modified Kadomtse

Petviashvili~mKP! equation:

v t5
1

16 ~vxx22v3!x1 3
4 ]x

21vyy2
3
4 vx]x

21vy , ~1.11!

which is a continuous 211 dimensional integrable model, and whose decomposition leads t
same Hamiltonian functions$Hk% as noted previously~see Sec. IV!:

~1.12!

In other words, the algebro-geometric solution of the discrete 211 model~1.6! is built up with the
‘‘bricks’’ H0 ,H1 , andS, while that of the continuous 211 model~1.11! is made up of the bricks
H0 ,H1 , andH2 .

The meaning of straightening out of the flows is that the velocities of the Abel–Jacobi
dinates along theHk flow and the discreteS flow are constants:

df

dtk
5Vk ,

dc

dtk
52Vk , k50,1,2,..., ~1.13!

f~2m11!2f~2m21!5c~2m11!2c~2m21![VS ~modT!,
~1.14!

f~2m12!2f~2m!5c~2m12!2c~2m![VS ~modT!.

Let v5(v1 ,...,vg) be the standard holomorphic differential of the associated elliptic curveG. It
is interested to see that the continuous speedVk is thekth coefficient in the asymptotic expansio
of v, while the discrete speedVS is the integral ofv from `1 and`2 ~see Secs. IV and V!.

The discrete evolution~1.14! is a little more complicated than~1.3! in the Toda case. We hav
given another proof of Eq.~1.3! through the nonlinearization approach,17 which makes it possible
to treat other types of examples, including the present one.
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Thus through the ‘‘window’’ of the Abel–Jacobi coordinate we have a clear evolution pic
of various flows; the special algebro-geometric solutions of higher dimensional integrable m
could be essentially reduced as a linear superposition. The same pictures are observed in
and the 211 Toda cases. The final explicit solutions, expressed resorting to the theta functio
obtained through the Abel–Riemann–Jacobi inversion.16,17,40,41

II. THE KAC–van MOERBEKE HIERARCHY

The Kac–van Moerbeke hierarchy is the isospectral class of the discrete eigenvalue p

ES pj

qj
D5U~a,a j !S pj

qj
D , ~2.1!

U~a,l!5
1

a S 0 a2

21 l
D , ~2.2!

whereE is the shift operator:E f(n)5 f (n11). DenoteE2 f (n)5 f (n21), D5E21, and

s15S 1 0

0 21D , s25S 0 1

0 0D , s35S 0 0

1 0D .

Proposition 2.1. (Fundamental identity):Let s(a,l) be a linear map defined by

V5s~a,l!@G#5$~a2E2E2a22l2!G%s11~2lE2a2G!s21~22lG!s3 . ~2.3!

Then the discrete commutative relation

~EV!U2UV5U* $~K2l2J!G% ~2.4!

holds for any functionG, where

K5a~E11!~a2E2E2a2!, J5aD, ~2.5!

U* ~a!da5
d

de U
e50

U~a1eda!5
1

a2 S 0 a2

1 2l
D da. ~2.6!

Corollary 2.2: (K2l2J)G50 implies dets@G#5constant, independent ofn.
Proof: By ~2.4!, V5s@G# satisfiesVn115UVnU21. Thus detVn115detVn .
The Lenard gradients$gk% are universal polynomials ofa:

g21~n!51, g0~n!5a2~n!1a2~n21!,
~2.7!

g1~n!5a2~n11!a2~n!1@a2~n!1a2~n21!#21a2~n21!a2~n22!, etc.,

satisfying the recursive formula:

Jg2150, Kgj 215Jgj , ~2.8!

which means (K2l2J)gl50 for the generating function:

gl5(
j 50

`

gj 21l22 j . ~2.9!
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By Corollary 2.2, dets@gl#5constant. Since the Lenard gradients are universal polynomials oa,
this constant can be determined by considering the class ofa with rapidly decaying condition as
n→`. This yields

dets@gl#52l4. ~2.10!

The discrete Kac–van Moerbeke equations are defined as (m50,1,2,...):

da

dtm
5Xm5Jgm . ~2.11!

The first two are Eqs.~1.7! and ~1.8! with x5t0 andy5t1 .

III. THE INTEGRABLE SYMPLECTIC MAP

ConsiderN copies of Eq.~2.1! with distinct eigenvaluesa1 ,...,aN , and write them in the
vector form:

p~n11!5a~n!q~n!,
~3.1!

a~n!q~n11!5Aq~n!2p~n!,

wherep5(p1 ,...,pN)T, q5(q1 ,...,qN)T, andA5diag(a1,...,aN). Denote the usual inner produc
of two N-dimensional vectorsj, h by ^j, h&. According to the principle of nonlinearization,18

consider the Bargmann condition

g05(
j 51

N

a jqj
2 , ~3.2!

i.e.,

a2~n!1a2~n21!5^Aq~n!,q~n!&. ~3.3!

Lemma 3.1:The sufficient condition for Eq.~3.2! is

a5A^Aq,q&2^p,q&[ f S~p,q!. ~3.4!

Proof: By ~3.1! we have

a2~n!5^Aq~n!,q~n!&2^p~n!,q~n!&5^a~n!q~n11!,q~n!&5^p~n11!,q~n11!&,
~3.5!

a2~n21!5^p~n!,q~n!&.

Hence we obtain Eq.~3.3!.
We take Eq.~3.4! as the starting point and call it the Bargmann constraint, which implies

Bargmann condition~3.2!. Equations~3.4! and~3.2! are not equivalent as in the case of the To
lattice.17 Nevertheless, it is enough for our purpose. Substituting Eq.~3.4! into Eq.~3.1!, we obtain
a symplectic map:

ES p
qD5S aq

a21~Aq2p! D[SS p
qD ,

~3.6!
a5A^Aq,q&2^p,q&,

with
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dp~n11!∧dq~n11!5dp~n!∧dq~n!.

Lemma 3.2:For the solution (pj ,qj ),a j of the spectral problem~2.1!, we have

~K2a j
2J!qj

250, ~3.7!

s~a,l!qj
25@2~l22a j

2!qj
222a j pjqj #s11~2lpj

2!s21~22lqj
2!s3 . ~3.8!

Proof: By direct calculations.
Lemma 3.3:Under the Bargmann constraint~3.4!, the equation (K2l2J)Gl50 has a solu-

tion

Gl5g211(
j 51

N a jqj
2

l22a j
2 511Qz~Aq,q!, ~3.9!

wherez5l2 and

Qz~j,h!5(
j 51

N
j jh j

l22a j
2 .

Proof: Using Eqs.~3.7! and ~3.2!, we calculate

~K2l2J!Gl5Jg01(
j 51

N a j~a j
22l2!qj

2

l22a j
2 5JS g02(

j 51

N

a jqj
2D 50.

We define the Lax matrix of the Kac–van Moerbeke hierarchy as

Vl5s~ f S~p,q!,l!@Gl#, ~3.10!

which satisfies the stationary zero-curvature equation~discrete version!:

~EVl!U2UVl50. ~3.11!

By corollary 2.2, its determinant gives rise to the generating function of the conserved integr
the symplectic mapS:

Fl5detVl . ~3.12!

The expression ofVl andFl is obtained from Eq.~3.8!:

1

l
Vl5S 2l 2^p,q&

22 l
D 22S lQz~p,q! 2Qz~Ap,p!

Qz~Aq,q! 2lQz~p,q!
D , ~3.13!

1

l2 Fl52l224Qz~A2p,q!14Qz~Ap,p!14^p,q&Qz~Aq,q!14$Qz~Ap,p!Qz~Aq,q!

2l2Qz
2~p,q!%52l21 (

m50

`

l22m22Fm . ~3.14!

Hence we have the integrals of the mapS (m51,2,...):
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1
4 F052^A2p,q&1^Ap,p&1^p,q&^Aq,q&2^p,q&2,

~3.15!
1

4
Fm52^A2m12p,q&1^A2m11p,p&1^p,q&^A2m11q,q&

1 (
k1 j 5m21

^A2 j 11p,p&^A2k11q,q&2 (
k1 j 5m

^A2 j p,q&^A2kp,q&.

The proof of the involutivity of$Fm% is based on the generating function method. ConsiderFl

as a Hamiltonian function in the symplectic space (R2N,dp∧dq) and denote the flow variable b
tl . Then the canonical equation is expressed as

d

dtl
S pk

qk
D5S 2]Fl /]qk

]Fl /]pk
D5W~l,ak!S pk

qk
D , ~3.16!

W~l,m!52
4lm

l22m2 Vl12lS 2
2

l1m
Vl

111Vl
21Ds1 . ~3.17!

Proposition 3.4:

d

dtl
Vm5@W~l,m!,Vm#, ;l,mPC, ~3.18!

~Fm ,Fl!50, ;l,mPC, ~3.19!

~F j ,Fk!50, ; j ,k50,1,2,... . ~3.20!

Proof: A direct calculation yields~3.18!, which implies the invariance ofFm5detVm along the
tl-flow. By definition, the Poisson bracket is essentially a derivative along the phase flow, th
have:

05
dFm

dtl
5~Fm ,Fl!.

The expansion of~3.19! according to the negative powers ofl,m gives rise to~3.20!.

IV. DECOMPOSITION OF THE INTEGRABLE MODELS

In order to decompose the KvM equations and further the 211 discrete Burgers equation, on
should establish the inner relation between the Hamiltonian vector fieldI¹Fm and the KvM vector
field Xm . It turns out that the derivative map df S does mapI¹Fm into Xm , but with an annoying
remainder.Fm should be adjusted into someHm so that df S mapsI¹Hm exactly intoXm . Fortu-
nately, just as in the case of KP and Toda, the square root ofFl yields the desired generatin
function Hl of $Hm% @see Eq.~4.8!#. Later ~in Sec. VI! we shall see thatHl is essentially the
eigenvalue of the Lax matrixVl , acting on the invariant solution space of the linear equa
Ex5Ux under the commutative condition~3.11!.

We start from the Bargmann condition~3.2!, which becomes (k50,1,2,...)

(
j 51

N

a j
2k11qj

2~n!5gk1c2gk221¯1ckg01ck11g21 , ~4.1!

after being exertedk times by the operatorJ21K. An extra termcg21 appears each time, since th
linear space kerJ is one dimensional with the generatorg21 . The coefficientcm is a constant of
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motion. It is surprising thatcm12 is the desiredHm up to a factor 2@see Eq.~4.10!#. Two kinds of
linear combinations of Eq.~4.1! give the following two important relations.

Proposition 4.1:The solution (p(n),q(n))T5S n(p0 ,q0) of the discrete flow generated by th
symplectic mapS is mapped byf S into a solution of the stationary KvM equation:

XN1cN1XN211¯1cNNX050. ~4.2!

Proof: Define a polynomial

a~l2!5)
j 51

N

~l22a j
2!5l2N1aN1l2N221¯1aNN . ~4.3!

Let l5a j . A linear combination of Eq.~4.1! with the coefficientsaNN ,¯ ,aN1 ,1 yields

05(
j 51

N

a~a j
2!a jqj

25gN1cN1gN211¯1cNNg01cN,N11g21 ,

which becomes Eq.~4.2! after being acted withJ.
Proposition 4.2:Under the Bargmann constraint~3.4!, Gl andgl have a direct relation:

Gl5clgl , ~4.4!

wherecl is the generating function of the coefficients$ck% in Eq. ~4.1!,

cl511 (
k52

`

ckl
22k. ~4.5!

Proof: Multiplied by l2k21 and summed with respect tok from 0 to`, the linear combination
of Eq. ~4.1! becomes Eq.~4.4!.

As a corollary we have the following expressions for the Lax matrixVl and the generation
function Fl of the conserved integrals:

Vl5clsl@gl#, ~4.6!

Fl52cl
2l4, ~4.7!

where Eq.~2.10! is used. IntroduceHl by cl5112Hl . Then

~112Hl!252
1

l4 Fl , ~4.8!

from which the coefficients$Hm% of the expansion

Hl5 (
m50

`
Hm

l2m14 ~4.9!

are determined uniquely (ck1252Hk),

H052 1
4 F0 , H152 1

4 F1 ,

~4.10!

Hm52 1
4 Fm2 (

i 1 j 5m22
i , j >0

HiH j , m52,3,4,... .

Specifically,
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H05^A2p,q&2^Ap,p&2^p,q&^Aq,q&1^p,q&2. ~4.11!

We shall see later~in Sec. VIII! that the integralH0 is the starting point to link up the discrete 211
model ~1.6! and the continuous 211 model~1.11!.

Denote the variables of theHl- andHm-flows by tl andtm , respectively. Resorting to Eqs
~3.1! and ~3.16!, we have the evolution equation ofa5 f S(p,q) alone these flows:

da

dtl
524l4JGl , ~4.12!

da

dtl
5

1

l2 Jgl , ~4.13!

in virtue of

d

dtl
5

21

4l4cl

d

dtl
, ~4.14!

which is a corollary of Eq.~4.8!. Comparing the coefficients in the asymptotic expansions of b
sides of Eq.~4.13!, we get

da

dtm
5Jgm5Xm . ~4.15!

Theorem 4.3: Let (p(n,tm),q(n,tm)T be a compatible solution of the discrete flow~3.6!
~S-flow for short! and theHm-flow:

d

dtm
S p
qD5I¹Hm5S 2]Hm /]p

]Hm /]q D . ~4.16!

Thena(n,tm)5 f S(p(n,tm),q(n,tm)) solves themth KvM equation~4.15!.
Theorem 4.4:Let (p(n,x,y),q(n,x,y)T be a compatible solution of theS-flow, H0-flow, and

H1-flow with x5t0 ,y5t1 . Then

B~n,x,y!5^Aq~n,x,y!,q~n,x,y!&2^p~n,x,y!,q~n,x,y!& ~4.17!

is a solution of the discrete 211 dimensional Burgers equation~1.6!.
Proposition 4.5:

df S~p,q!: I¹Hm→Xm . ~4.18!

Proof:

Xm5
da

dtm
5df S~p,q!F d

dtm
S p
qD G5df S@ I¹Hm#.

Decomposition diagram:
~4.19!

V. STRAIGHTENING OUT OF THE CONTINUOUS Hk-FLOW

In later analysis, especially in the construction of the algebraic curveG, it is indispensable to
consider the analytic dependence uponz5l2, rather thanl. Note thatFl ,l21Vl

12,l21Vl
21 are

rational functions ofz5l2 with simple poles atz5a j
2 , which are factorized as:
                                                                                                                



rs

630 J. Math. Phys., Vol. 43, No. 1, January 2002 Cao, Geng, and Wang

                    
Fl52Vl
12Vl

212~Vl
11!25

2zb~z!

a~z!
5

2R~z!

a2~z!
, ~5.1!

Vl
1252l@^p,q&1Qz~Ap,p!#52l^p,q&

m~z!

a~z!
, ~5.2!

Vl
21522l@11Qz~Aq,q!#522l

n~z!

a~z!
, ~5.3!

where

a~z!5)
j 51

N

~z2a j
2!, b~z!5 )

j 51

N11

~z2b j
2!,

R~z!5za~z!b~z!5z )
j 51

2N11

~z2z j !, ~5.4!

m~z!5)
j 51

N

~z2g j !, n~z!5)
j 51

N

~z2« j !.

with z j5a j
2 , j 51,...,N;zN1 j5b j

2 , j 51,...,N11. $g j% and$« j% are called elliptic coordinates.
Note: m(z) andn(z) are polynomials ofz, while m andn are indices. The shortage of lette

causes the abuse of symbols. There will be no confusion sincem(z) andn(z) are used temporarily
and do not appear in the final results of this section.

Proposition 5.1:

^Ap,p&

^p,q&
5(

j 51

N

~a j
22g j !, ^Aq,q&5(

j 51

N

~a j
22e j !, ~5.5!

]x ln a~n21!5(
j 51

N

~g j~n!2e j~n!!. ~5.6!

Proof: The first asymptotic terms of Eqs.~5.2! and~5.3! give rise to Eq.~5.5!. By Eq. ~4.11!,
the canonical system of theH0-flow is

px5~2A21^Aq,q&22^p,q&!p12^p,q&Aq,
~5.7!

qx5~A22^Aq,q&12^p,q&!q22Ap.

Thus
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^p,q&x52^p,q&^Aq,q&22^Ap,p&,

]x ln a2~n21!5]x ln^p,q&52^Aq,q&22
^Ap,p&

^p,q&
52(

j 51

N

~g j2e j !.

The calculation of the evolution of the elliptic coordinates along theFl-flow is based on the
components of the Lax equation~3.18!:

d

dtl
Vm

12522Wlm
12 Vm

1112Wlm
11 Vm

12,

d

dtl
Vm

2152Wlm
21 Vm

1122Wlm
11 Vm

21,

and ~5.1! with z5gk and«k , respectively:

Vl
11uz5gk

5
@R~gk!#

1/2

a~gk!
, Vl

11uz5ek
5

@R~ek!#
1/2

a~ek!
.

Differentiate Eqs.~5.2! and~5.3! with respect totl , and letz5gk andek , respectively. Then we
have

1

2AR~gk!

dgk

dtl
52

4zm~z!

a~z!~z2gk!m8~gk!
,

~5.8!
1

2AR~ek!

dek

dtl
5

4zn~z!

a~z!~z2ek!n8~ek!
.

Resorting to the interpolation formula, we have (j 51,2,...,N)

(
k51

N gk
N2 j

2AR~gk!

dgk

dtl
52

4zN2 j 11

a~z!
,

~5.9!

(
k51

N ek
N2 j

2AR~«k!

dek

dtl
5

4zN2 j 11

a~z!
.

These formulas lead naturally to the consideration of the elliptic curveG given by the affine
equation,j22R(z)50. The genus isg5N since degR52N12. DenoteP(z)5(z,j5AR(z)).
The usual holomorphic differentials onG:

ṽ j5
zg2 j dz

2AR~z!
, j 51,...,g ~5.10!

imply the introduction of the quasi-Abel–Jacobi coordinates:

f̃ j5 (
PPD1

E
P0

P

ṽ j , c̃ j5 (
PPD2

E
P0

P

ṽ j , ~5.11!

with fixed point P0PG and the divisors:D15S1
g P(gk), D25S1

g P(ek), which make Eq.~5.9!
very simple:
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df̃ j

dtl
52

4zg2 j 11

a~z!
,

dc̃ j

dtl
5

4zg2 j 11

a~z!
. ~5.12!

Hence

df̃ j

dtl
5

zg2 j

AR~z!
,

dc̃ j

dtl
52

zg2 j

AR~z!
~5.13!

by ~4.14!, ~4.8!, and~5.1!.
The Abel–Jacobi coordinates are obtained through some normalization. Leta1 ,b1 ,...,ag ,bg

be the canonical basis of the homology group of cycles onG, and C5(Ajk)g3g
21 , whereAjk is

equal to the integral ofṽ j along the pathak . Then we have the normalized holomorphic diffe
ential v5Cṽ with the following properties:

E
ak

v j5d jk , E
bk

v j5Bjk , ~5.14!

where the matrixB5(Bjk) is symmetric and has positively definite imaginary part and is use
construct the Riemann theta function ofG.16,17,40,41The Abel map is defined as

A~P!5E
P0

P

v

and is extended linearly to the whole divisor group ofG, A: Div(G)→J(G)5Cg/T, where the
lattice T is spanned by the periodic vectors$dk ,Bk% with components given by Eq.~5.14!. The
Abel–Jacobi coordinates are defined as

f5A~D1!5Cf̃, c5A~D2!5Cc̃. ~5.15!

Theorem 5.2„Straightening out of the continuous flow…: The Hk-flow is straightened out
by the Abel–Jacobi coordinates:

df

dtk
5Vk ,

dc

dtk
52Vk , ~5.16!

where the angular speedVk is determined as the coefficient in the asymptotic expansion of
normalized holomorphic differentialv at infinities`s(s51,2) with z5z21:

v5
1

2
~21!s21 (

k50

`

Vkz
k dz. ~5.17!

The proof is completed with the help of the following lemmas, which also give the algor
to calculateVk .

Lemma 5.3:Let Sk5z1
k1¯1z2g11

k . Then the coefficients in

zg11

AR~z!
5 (

k50

`

Lkz
2k ~5.18!

are determined by the recursive formula
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L051, L15 1
2 S1 ,

~5.19!

Lk5
1

2k S Sk1 (
i , j >1
i 1 j 5k

SiL j D .

Lemma 5.4:Let C1 ,...,Cg be the column vectors ofC. Then the coefficients in

zg11

AR~z!
~C1z211¯1Cgz2g!5 (

k50

`

Vkz
2k21 ~5.20!

are written as

Vk5LkC11Lk21C21¯1L1Ck ~5.21!

with supplementary definedL2s50, s51,2,... . Specifically:

V05C1 , V15L1C11C2 , V25L2C11L1C21C3 . ~5.22!

Proof of theorem 5.2:

df

dtl
5C

df̃

dtl
5S C1

df̃1

dtl
1¯1Cg

df̃g

dtl
D 5~C1z211¯1Cgz2g!

zg

AR~z!
5 (

k50

`

Vkz
2k22,

df

dtl
5~f,Hl!5 (

k50

`

~f,Hk!z
2k22.

Hence (f,Hk)5Vk . The second equation of~5.16! is obtained similarly. Note that for the sam
z there are two corresponding pointsP(z)5(z,AR(z)) and P2(z)5(z,2AR(z)) on the upper
and lower sheets ofG, respectively. Thus in the local coordinatez5z21 near the infinities̀ s(s
51,2), we have

v5Cṽ5C1ṽ11¯1Cgṽg5~C1z211¯1Cgz2g!
zg dz

2@R~z!#1/2

5
1

2
~21!s(

k50

`

Vkz
2k22 dz5

1

2
~21!s21(

k50

`

Vkz
k dz.

Note: It is in this section~and only in this section! that ak andBk are used to designate th
cycle and periodic vector, respectively. In other sections, they have different meaning. Th
some abuse of letters, but no confusion.

VI. STRAIGHTENING OUT OF THE DISCRETE FLOW S n

In the present sectionp andq are designated as scalars, notN dimensional vectors. It would
not cause any confusion since nop,q are contained in the final results of this section. Consider
discrete eigenvalue problem

x~n11!5Unx~n!, Un5
1

a~n! S 0 a2~n!

21 l
D . ~6.1!

with x(n)5(p(n),q(n))T. The fundamental solution matrix
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M ~n!5~x (1)~n!,x (2)~n!!5S p(1)~n! p(2)~n!

q(1)~n! q(2)~n!
D , M ~0!5S 1 0

0 1D
has an explicit expression:

M ~n11!5UnUn21¯U0 . ~6.2!

Denoteak5a(k) for short. By mathematical induction, we have

M ~1!5
1

a0
S 0 a0

2

21 l
D , M ~2!5

1

a0a1
S 2a1

2 a1
2l

2l l22a0
2D ,

M ~3!5
1

a0a1a2
S 2a2

2l a2
2l22a0

2a2
2

2l21a1
2 l32~a0

21a1
2!l

D ,

M ~4!5
1

a0a1a2a3
S 2a3

2l21a1
2a3

2 a3
2l32~a0

21a1
2!a3

2l

2l31~a1
21a2

2!l l42~a0
21a1

21a2
2!l21a0

2a2
2D ,

p(1)~n!5
2a~n21!

a~0!¯a~n22! H ln222F (
j 51

n23

a2~ j !Gln241¯J , ~6.3!

p(2)~n!5
a~n21!

a~0!¯a~n22! H ln212F (
j 50

n23

a2~ j !Gln231¯J ,

q(1)~n!5
21

a~0!¯a~n21! H ln212F (
j 51

n22

a2~ j !Gln231¯J ,

q(2)~n!5
1

a~0!¯a~n21! H ln2F (
j 50

n22

a2~ j !Gln221¯J .

Lemma 6.1:The following functions are polynomials ofz5l2 with degrees as tabled:

l21p(1)(2k21) k22 p(1)(2k) k21
p(2)(2k21) k21 l21p(2)(2k) k21
q(1)(2k21) k21 l21q(1)(2k) k21
l21q(2)(2k21) k21 q(2)(2k) k

The discrete commutative equation~3.11! satisfied by the Lax matrixVl is the key to straight-
ening out the discrete flow generated by the symplectic mapS. It implies that the solution spac
of the linear equation~6.1!: Ex5Ux is invariant under the action ofVl . Let r and x be the
eigenvalue and eigenfunction, respectively, of the linear operatorVl in the solution space. Then
they satisfy:

Ex5Ux, Vlx5rx. ~6.4!

Evidently detur2Vlu5r21Fl50, which yields the algebraic curveG used in Sec. V. There are tw
eigenvaluesr656r, whereby Eqs.~5.1!, ~4.7!, and~4.8!:

r5l2~112Hl!5
@R~z!#1/2

a~z!
. ~6.5!
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Proposition 6.2:The eigenvaluer of the Lax matrixVl is the generating function of the
conserved integrals$Hm% of the symplectic mapS.

The eigenfunction of the Lax matrixVl is called the Baker function after some kind
normalization. It could be taken as

x6~n!5c6x (1)~n!1x (2)~n!, ~6.6!

where

c65
Vl

11~0!6r

Vl
21~0!

5
2Vl

12~0!

Vl
11~0!7r

. ~6.7!

The proof is based on the equation

05~Vl~n!7r!x6~n!5~Vl~n!7r!M ~n!S c6

1 D ,

which yields Eq.~6.7! after letting n50. There is a wonderful relation between the ellip
coordinates and the Baker function.

Proposition 6.3 (formula of Dubrovin–Novikov type):Let q6(n,l) be the second componen
of the Baker functionx6(n,l). Then

q1~n,l!q2~n,l!5
Vl

21~n!

Vl
21~0!

5)
j 51

N
l22e j~n!

l22e j~0!
. ~6.8!

Proof: Resorting to Eqs.~3.11! and ~6.2!, we have

Vl~n!M ~n!5M ~n!Vl~0!, ~6.9!

which serves as the main tool in the direct calculation to derive Eq.~6.8!.
Proposition 6.4:For l→`,

q1~n,l!5
ln

a~0!¯a~n21!
@11O~l22!#, ~6.10!

q2~n,l!5a~0!¯a~n21!l2n@11O~l22!#. ~6.11!

Proof: By Eqs.~3.13!, ~6.5!, and~5.3!, we have

Vl
1152l222l2Qz~p,q!52l222^p,q&1O~l22!, ~6.12!

r5l212l2Hl5l21O~l22!, Vl
21~0!522l1O~l21!. ~6.13!

Substituting into Eq.~6.7!, we get

c15^p,q&l211O~l23!, c25l1O~l21!. ~6.14!

Put this and Eq.~6.3! into q15c1q(1)1q(2), and we have Eq.~6.10!. The estimation Eq.~6.11!
for q2 is obtained from Eq.~6.10! andq1q2511O(l22), which is a corollary of the Dubrovin–
Novikov formula ~6.8!.

According to Eqs.~5.2!, ~5.3!, ~6.12!, and ~6.3!, lc1 and lc2 are analytic functions ofz,
which can be regarded as the values of the single-valued function@lc#(P) on the upper and lowe
sheets ofG. Furthermore, resorting to Lemma 6.1 and the following expressions:
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q6~2k,l!5~lc6!H 1

l
q(1)~2k,l!J 1q(2)~2k,l!,

lq6~2k21,l!5~lc6!q(1)~2k21,l!1zH 1

l
q(2)~2k21,l!J ,

we have two meromorphic functions onG: q(2k,P) and @lq#(2k21,P).
In the local coordinatesz5z21,ĵ5z2N21j, the equation ofG near infinity is written as

ĵ22R* ~z!50, R* 5 )
j 51

2N11

~12z j z!. ~6.15!

There are two infinities̀ s5(z50,ĵ5(21)s), s51,2, located on the upper (s52) and lower
(s51) sheets, respectively. By Proposition 6.4, the principal asymptotic terms ofq(2k,P) near
`2 and`1 are

z2k

a~0!¯a~2k21!
, a~0!¯a~2k21!zk,

respectively, while those of@lq#(2k21,P) are

z2k

a~0!¯a~2k22!
, a~0!¯a~2k22!zk21,

respectively. Based on the Dubrovin-Novikov formula~6.8! and through an elementary analys
we have

Proposition 6.5:The Baker functionq(2k,P) has
~i! g simple poles ate1(0),...,eg(0) and a pole ofkth order at̀ 2 ;
~ii ! g simple zeros ate1(2k),...,eg(2k) and a zero of thekth order at̀ 1 . The Baker function

@lq#(2k21,P) has
~i! g simple poles ate1(0),...,eg(0) and a pole ofkth order at̀ 2 ;
~ii ! g11 simple zeros at 0,e1(2k21),...,eg(2k21) and a zero of the (k21)th order at̀ 1 .
Note: In the above-given expressions, we usee j , instead of (e j ,AR(e j )), for short.
Theorem 6.6„Straightening out of the discrete flow…:

c~2k!2c~0![kVS ~modT !, ~6.16!

c~2k21!2c~0![kVS2h1 ~modT !, ~6.17!

or

c~n!2c~0![
n

2
VS1

~21!n21

4
~h11h2!, ~modT !, ~6.18!

whereT is the lattice spanned by the periodic vectors and

VS5 È
1

`2
v, hs5 È

s

P0
v, ~s51,2!, ~6.19!

with P05(0,AR(0)).
Proof: For n52k, consider the meromorphic differential onG:
                                                                                                                



l-

637J. Math. Phys., Vol. 43, No. 1, January 2002 Algebro-geometric solution

                    
vS~2k!5H d

dz
ln q~2k,P!J dz ~6.20!

with the residue21,1 ate j (0),e j (2k), respectively, and the residue2k,k at `2 ,`1 , respectively.
Expand Eq.~6.20! as a linear combination13,40

vS~2k!5V1kv@`1 ,`2#1(
j 51

g

v@e j~2k!,e j~0!#1(
j 51

g

ejv j , ~6.21!

wherev j is the normalized Abel differential of the first kind given by Eq.~5.14!, V is the Abel
differential of the second kind, andv(P,Q) is the Abel differential of the third kind with the
residue 1,21 at P,Q, respectively, and the properties

E
aj

v~P,Q!50, E
bj

v~P,Q!52pA21E
Q

P

v j .

Integrating~6.21! alongai andbi , we have

(
j 51

g E
e j (0)

e j (2k)

v5k È
1

`2
v1(

j 51

g

~njBj1mjd j !,

for some integersnj ,mj . This completes the proof of Eq.~6.16!.
For n52k21, consider the meromorphic differential

vS~2k21!5H d

dz
ln@lq#~2k21,P!J dz5V1~k21!v@`1 ,`2#1v@0,̀ 2#

1(
j 51

g

v@e j~2k21!,e j~0!#1(
j 51

g

ejv j . ~6.22!

Similar treatments lead to the proof of Eq.~6.17!.
In order to investigate the evolution of anther Abel–Jacobi coordinatef along the discrete

flow generated by the symplectic mapS, consider the Baker function with the following norma
ization:

p6~n,l!5p(1)~n,l!1d6p(2)~n,l!,
~6.23!

d65~c6!2152
Vl

11~0!7r

Vl
12~0!

.

In a similar way, we have:
Proposition 6.7:

p1~n,l!p2~n,l!5
Vl

12~n!

Vl
12~0!

5)
j 51

g
z2g j~n!

z2g j~0!
, ~6.24!

p1~n,l!5
a~n21!ln

^p,q&a~0!¯a~n22!
@11O~l22!#,

~6.25!

p2~n,l!5
^p,q&a~0!¯a~n22!l2n

a~n21!
@11O~l22!#.
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The functionsp(2k,P) and@lp#(2k21,P) are defined similarly, by which we construct th
meromorphic differentials

vS~2k!5H d

dz
ln p~2k,P!J dz, ~6.26!

vS~2k21!5H d

dz
ln@lp#~2k21,P!J dz. ~6.27!

vS(2k) has the residuek,2k,1,21, at`1 ,`2 ,g j (2k),g j (0), respectively, whilevS(2k21) has
the residuek21,2k,1,1,21, at `1 ,`2 ,0,g j (2k21),g j (0), respectively. Having these prepar
tions, finally we obtain:

Theorem 6.8 (Straightening out of the discrete flow):

f~2k!2f~0![kVS , ~modT !, ~6.28!

f~2k21!2f~0![kVS2h1 , ~modT !, ~6.29!

or

f~n!2f~0![
n

2
VS1

~21!n21

4
~h11h2!, ~modT !. ~6.30!

Now we have a clear evolution picture of the continuousHm-flows and discreteS-flow in the
‘‘window’’ of the Abel–Jacobi coordinates:~i! they are straightened out and have uniform velo
ties; ~ii ! they commute each other. Therefore, the compatible solution of various flow is obt
simply through a linear superposition. Specifically, for the KvM equation~2.11! with the labelm
we have

f~n,tm!5
n

2
VS1tmVm1

~21!n21

4
~h11h2!1f0 ,

~6.31!

c~n,tm!5
n

2
VS2tmVm1

~21!n21

4
~h11h2!1c0 ,

based on the decomposition diagram~4.19!. Moreover, for the 211 Burgers equation~1.6! with a
discrete variable, we have

f~n,x,y!5
n

2
VS1xV01yV11

~21!n21

4
~h11h2!1f0 ,

~6.32!

c~n,x,y!5
n

2
VS2xVm2yV11

~21!n21

4
~h11h2!1c0 ,

based on the decomposition diagram~1.10!.

VII. INVERSION. ALGEBRO-GEOMETRIC SOLUTION

Equation~6.32! gives the explicit solution of the 211 Burgers equation~1.6! with a discrete
variable in the Abel–Jacobi coordinates~f,c!. In order to get the solution in the original coord
nateB, the following steps should be completed:

~f,c!→~g j ,e j !→a→B. ~7.1!

We haveB5a2 and
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]x ln a~n!5(
j 51

g

@g j~n11!2e j~n11!# ~7.2!

by Eq. ~5.6!. To express(g j and (e j by means of (f,c), we use the Riemann theorem,40,41

which asserts that there exist constant vectorsK1 and K2 ~the Riemann constants! such that
u(A(P(z))2f2K1) has exactlyg zeros:g1 ,...,gg ; and u(A(P(z))2c2K2) has exactlyg
zeros:e1 ,...,eg as well. Resorting to the asymptotic expansion~5.17! and through a standar
treatment,16,17 we obtain:

(
j 51

g

g j5I 1~G!2(
s51

2

Res
`s

zd ln u~A~P~z!!2f2K1!5I 1~G!1
1

2 (
j 51

g

V0
j ] j ln

u~f1K11h1!

u~f1K11h2!
,

~7.3!

(
j 51

g

e j5I 1~G!2(
s51

2

Res
`s

zd ln u~A~P~z!!2c2K2!5I 1~G!2
1

2 (
j 51

g

V0
j ] j ln

u~2c2K22h1!

u~2c2K22h2!
,

~7.4!

where] j denotes the differentiation with regard to thej th argument of the theta function and

I k~G!5(
j 51

g E
aj

zkv j . ~7.5!

After these preparations, we transform the solution~6.32! into the original coordinateB through
direct calculations.

Theorem 7.1:The 211 dimensional Burgers equation with a discrete argument~1.6! has the
quasiperiodic solution:

B~2k21,x,y!

5
u@xV01yV11~k11!VS1f01K11h2#u@xV01yV12~k11!VS2c02K22h2#

u@xV01yV11kVS1f01K11h2#u@xV01yV12kVS2c02K22h2#

•

u@yV11kVS1f01K11h2#u@yV12kVS2c02K22h2#

u@yV11~k11!VS1f01K11h2#u@yV12~k11!VS2c02K22h2#
B~2k21,0,y!,

~7.6!

B~2k,x,y!5
u@xV01yV11~k11!VS1f01K1#u@xV01yV12~k11!VS2c02K2#

u@xV01yV11kVS1f01K1#u@xV01yV12kVS2c02K2#

•

u@yV11kVS1f01K1#u@yV12kVS2c02K2#

u@yV11~k11!VS1f01K1#u@yV12~k11!VS2c02K2#
B~2k,0,y!,

VIII. THE MODIFIED KADOMTSEV–PETVIASHVILI EQUATION

The canonical equations~5.7! of the HamiltonianH0 defined by Eq.~4.11! is put in the linear
form

S pj

qj
D

x

5Û~u,v,a j !S pj

qj
D , Û~u,v,l!5S 2l21u 2lv

22l l22uD ~8.1!

with the nonlinearization condition~the Bargmann constraint!:

S u
v D5S ^Aq,q&22^p,q&

22^p,q&
D[ f C~p,q!. ~8.2!
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In a standard way, Eq.~8.1! leads to the 211 dimensional mKP equation~1.11! and its
algebro-geometric solution, just as in the above-presented example of the 211 Burgers equation
and in the previous examples of the KP equation16,17 and the special 211 Toda equation.17 The
general structure and steps are basically the same, though with different features in variou
tinuous and discrete models. We list the main steps and results without proof as follows.

Proposition 8.1 (The fundamental identity):Let G5(G1 ,G2)T be an arbitrary smooth func
tion of x (]5]/]x), andŝ be a linear operator defined as

V̂5ŝ~u,v,l!@G#5$~ 1
2 ]1u2l2!G2%s11$l~ 1

2 ]G12vG2!%s21~22lG2!s3 . ~8.3!

Then

V̂x2@Û,V̂#5Û* $~K̂2l2Ĵ!G%, ~8.4!

where

K̂5S 0 1
2 ]21]u

2 1
2 ]21u] v]1]v

D , Ĵ5S ] ]

] 0D , ~8.5!

Û* S du
dv D5S du 2ldv

0 2du D . ~8.6!

The Lenard gradients are defined recursively byĴĝm5K̂ĝm21 , with

ĝ225S 1
0D , ĝ215S 0

1D , ĝ05S v
u2v D ,

ĝ15S 2 1
2 vx12uv2 3

2 v2

1
2 ux1u223uv1 3

2 v2 D , ~8.7!

ĝ25S 1
4 vxx1

3
2 vvx2 3

2 uvx13u2v26uv21 5
2 v3

1
4 uxx2

1
4 vxx1

3
2 uux2 3

2 uxv1u326u2v1 15
2 uv22 5

2 v3 D , etc.

with

detŝl@ ĝl#52l4, ĝl5ĝ211 (
k50

`

ĝkl
2k21. ~8.8!

The associated soliton vector field is defined asYj5Jĝj with

Y05S ux

vx
D , Y15S ]~ 1

2 ux2 1
2 vx1u22uv !

]~2 1
2 vx12uv2 3

2 v2!
D ,

~8.9!

Y25S ]~ 1
4 uxx1

3
2 ~uux2uxv2uvx1vvx!1u323u2v1 3

2 uv2!

]~ 1
4 vxx1

3
2 ~vvx2uvx!13u2v26uv21 5

2 v3!
D .

Proposition 8.2:Let (u(x,y,t),v(x,y,t)) be the compatible solution of
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S u
v D

y

5Y1 , S u
v D

t

5Y2 . ~8.10!

Thenv(x,y,t) satisfies the 211 dimensional mKP equation~1.11!.
Let (pj ,qj )

T be the solution of Eq.~8.1!. Then

¹̂a j5S da j /du
da j /dv D5S 22pjqj

a jqj
2 D . ~8.11!

It is easy to see that Eq.~8.2! is equivalent with

ĝ05(
j 51

N

¹̂a j . ~8.12!

The Lenard eigenvalue problem (K2a j
2J)G50 has the solution¹̂a j , which is used to construc

the solution of (K2l2J)G50 with general eigenparameterl25z;

Ĝl5ĝ211(
j 51

N
¹̂a j

l22a j
2 5S 22Qz~p,q!

11Qz~Aq,q! D , ~8.13!

under the Bargmann condition~8.2! or ~8.12!. By the fundamental identity~8.4!, the commutator
equation]V̂2@Û,V̂#50 has a solution

V̂l5ŝ@Ĝl#5S 2l2@112Qz~p,q!# 2l@^p,q&1Qz~Ap,p!#

22l@112Qz~Aq,q!# l2@112Qz~p,q!#
D , ~8.14!

which coincides with the Lax matrix~3.13! of the KvM hierarchy:V̂l5Vl . Hence in the context
of the soliton hierarchy$Ym%, we again obtain the integrals$Fm%, generated as the coefficients
the asymptotic expansion ofFl5detVl . Again we have the integrals$Hm% by Eqs.~4.7!, ~4.8!,
and ~4.10!. The present formalism enables us to establish the direct relation between$Hm% and
$Ym%.

Proposition 8.3: ~i! f C defined by the Bargmann condition~8.2! maps the solution
(p(x),q(x))T of the H0-flow ~5.7!, or equivalently (8.1)1(8.2), into a solution of the stationar
soliton equation

YN1 ĉN1YN211¯1 ĉNNY050. ~8.15!

~ii ! Let (p(x,tm),q(x,tm))T be the compatible solution of theH0- and theHm-flows. Then
(u(x,tm),v(x,tm))T5 f C(p,q) satisfies both Eq.~8.15! and

d

dtm
S u
v D5Ym . ~8.16!

Besides,

df C~ I¹Hm!5Ym . ~8.17!

~iii ! Let (p(x,y,t),q(x,y,t))T be the compatible solution of theH0-, H1-, andH2-flow with the
flow variablesx5t0 ,y5t1 , andt5t2 , respectively. Then

v~x,y,t !522^p~x,y,t !,q~x,y,t !& ~8.18!

is a solution of the mKP equation~1.11!.
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Graphically, for the decomposition of the mKP equation, we have diagram~1.12!, and for the
Ym-flow, we have the diagram:

~8.19!

Since there is no more discrete flowS, which is a little more complicated since it splits into tw
series according ton even or odd, we have a rather simple evolution picture:

Bargmann flow

stationary flowJ f5f01xV0 , c5c02xV0 ,

Hm-flow: f5f01tmVm , c5c02tmVm ,
~8.20!

Ym-flow: f5f01xV01tmVm , c5c02xV02tmVm ,

mKP-flow: f5f01xV01yV11tV2 , c5c02xV02yV12tV2 .

The feature of linear superposition is clear. By Eqs.~5.5!, ~5.7!, ~8.3!, and~8.4! we have

]x ln v5
vx

v
5

^p,q&x

^p,q&
52 (

j 51

g

~g j2e j !5]x ln
u~f1K11h1!u~2c2K22h1!

u~f1K11h2!u~2c2K22h2!
, ~8.21!

so long asf andc contain the termsxV0 and2xV0 , respectively. Thus we get:
Theorem 8.4: The modified Kadomtsev–Petviashvili equation~1.11! has the algebro-

geometric solution:

v~x,y,t !5
u~xV01yV11tV21f01K11h1!u~xV01yV11tV22c02K22h1!

u~xV01yV11tV21f01K11h2!u~xV01yV11tV22c02K22h2!

•

u~yV11tV21f01K11h2!u~yV11tV22c02K22h2!

u~yV11tV21f01K11h1!u~yV11tV22c02K22h1!
v~0,y,t !. ~8.22!
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On the symplectic structures for geometrical theories
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We present a new approach for constructing covariant symplectic structures for
geometrical theories, based on the concept of adjoint operators. Such geometric
structures emerge by direct exterior derivation of underlying symplectic potentials.
Differences and similarities with other approaches and future applications are dis-
cussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1421636#

I. INTRODUCTION

Usually quantum field theories are studied by means of Feynman path integrals or by
of canonical quantization. Path integral quantization has the virtue to preserve all relevan
metries, including Poincare´ invariance; however, the resultant theory has not~unlike the canonical
formalism! necessarily the standard interpretation in terms of quantum mechanical state
operators. On the other hand, the canonical formalism is considered to be the antithes
manifestly covariant treatment.

However, more recently, the essence of the canonical formulation has been develope
pendently by Wittenet al.1,2 and Suckerman3 in such a way that manifestly preserves Poinc´
invariance as well as other relevant symmetries. Such a formulation is based on a co
description of Poisson brackets in terms of a symplectic structure defined on the manifold
senting the phase space of classical solutions; thus, quantization is carried out as the repla
of Poisson brackets with commutators, and the resultant quantum theory will be of the co
tional type. Specifically, the Wittenet al.approach requires the construction,a priori, of a bilinear
product on variations of classical solutions. Subsequently, one needs to verify that such a b
form corresponds to a nondegenerate closed two-form on the phase space. Moreover, the
form must be a covariantly conserved current in its spacetime dependence, as required for
ing a symplectic structure manifestly covariant. More specifically, in such a description
classical phase space is defined asthe space of solutions of the classical equations of motion: such
a definition is manifestly covariant. The construction of a covariantly conserved two-formJm on
such phase space yields a symplectic structurev, defined asv[*SJm dSm ~S being an initial
value hypersurface!, independent of the choice ofS and, in particular, Poincare´ invariant. Addi-
tionally, in terms of the symplectic structurev, the fact that Poisson brackets satisfy the Jaco
identity, is equivalent thatv to be a closed two-form on the phase space, which holds ifJm itself
is closed. With these properties,Jm is known asthe symplectic current. Such a quantization
scheme has been applied, for example, for the analysis of two-dimensional gravity~Ref. 4 and
references therein!, and for the investigation of the Wess–Zumino–Witten model on a circle.5

Although in the present article we shall obtain essentially the same geometric stru
described above, the main novelty is that such structures emerge in a direct and natural wa
the concept of adjoint operators. Particularly, the concept of self-adjoint operators shows t
the cases considered here, there exist, in general, covariantly conserved currents, which
spond on the phase space, to zero-, one-, and, two-forms. Such differential forms are no
pendent, but that the two-form turns out to be the exterior derivative of the corresponding

a!Electronic mail: rcartas@sirio.ifuap.buap.mx
b!Permanent address.
6440022-2488/2002/43(1)/644/7/$19.00 © 2002 American Institute of Physics
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form, and correspond, thus, to anexact two-form ~and automatically to a closed two-form, a
required for the symplectic structure!. In this manner, the present approach allows us to fi
unlike the Witten–Zuckerman procedure, fundamental one-forms playing the role ofsymplectic
potentialsfor the theory.

In the next section, we shall discuss the key concept of adjoint operators, and its conseq
on the existence of covariantly conserved currents. The interpretation of the terms involv
such a definition as wedge products on the phase space is also discussed. In Sec. III o
non-Abelian gauge theories and pure general relativity are considered with the purpose o
fying our basic ideas and to have a direct comparison with previously known results, partic
with those given in Ref. 2. In Sec. IV, we shall finish with some concluding remarks on our re
and possible extensions of the present approach.

Concepts and definitions on differential forms, wedge products, exterior derivative, etc.,
entirely from Ref. 2.

II. ADJOINT OPERATORS AND CONSERVED CURRENTS

The general relationship between adjoint operators and covariantly conserved curren
been already given in previous works~Ref. 6 and references cited therein!, however, we shall
discuss it in this section for completeness.

If P is a linear partial differential operator that takes matrix-valued tensor fields into th
selves, then, the adjoint operator ofP, is that operatorP†, such that

Tr$ f rs¯@P~gmn¯!#rs¯2@P†~ f rs¯!#mn¯gmn¯%5¹mJm, ~1!

where Tr denotes the trace andJm is some vector field. From this definition, ifQ andR are any
two linear operators, one easily finds the following properties:

~QR!†5R†Q†, ~Q1R!†5Q†1R†,

and in the case of a functionF,

F†5F,

which will be used implicitly below.
From Eq.~1! we can see that this definition automatically guarantees that, if the fieldf is a

solution of the linear systemP( f )50, andg a solution of the adjoint systemP†(g)50, then we
obtain the continuity law¹mJm50, which establishes thatJm is a covariantly conserved curren
depending on the fieldsf andg. This fact means that for any homogeneous equation system
can always construct a conserved current, taking into account the adjoint system. This g
result contains the self-adjoint case (P†5P) as a particular one, for whichf andg correspond to
two independent solutions~in fact, the cases treated in the present article are self-adjoint!. Al-
though this result has been established assuming only tensor fields and the presence of
equation, such a result can be extended in a direct way to equations involving spinor fields,
fields, and the presence of more than one field.6,7

Our main task in this work is to apply this very general result for the analysis of the s
plectic forms on the phase space of the theories under consideration. Hence, it is impor
clarify, in the first instance, what the fieldsf, g, Jm and the differential operatorsP, P†, and¹m

will mean on the phase space at the level of Eq.~1!. First, such operators will depend only on th
background fields, and will correspond thus to zero-forms. Second, although in our previous
we have identified the fieldsf and g with solutions of the equations governing the first-ord
variations@P( f )505P(g)#, in the present work we shall see that it is possible to find simu
neously thatP(G)50, whereG is some background field. Thus, since the background fields
the first-order variations correspond, on the phase space, to zero-forms and one
respectively,2 the left-hand side of Eq.~1! must be understood as a wedge product, Tr$ f `P(g)
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2P†( f )`g%5¹mJm, on such phase space, and something similar for the fieldJm in its depen-
dence on the fieldsf andg. This subject will be clarified in the examples below.

III. GEOMETRICAL THEORIES AND THEIR SYMPLECTIC STRUCTURES

In this section we shall see that the problem of finding the symplectic structures~and in some
cases the symplectic potentials!, is reduced to identify some fields satisfying some homogene
linear equations.

A. Yang–Mills theory

Let us consider first the Yang–Mills equations:

]”mFmn50, ~2!

whereFmn5]”mAn2]” nAm is the Yang–Mills curvature,Am the background gauge connection, a
]”m[]m1@Am , #, the gauge covariant derivative.

From Eq.~2!, the variations of the background fields are governed by the equations

]”mdFmn1@dAm,Fmn#5@dn
a]”m]”m2]”a]” n#dAa1@dAa ,Fa

n#[@P~dAa!#n50, ~3!

wheredFmn5]”mdAn2]” ndAm , is the variation of the curvature,dAm the variation of the gauge
connection, and the operatorP is a homogeneous linear operator depending only on the b
ground fields. Up to here, the usual equations for the Yang–Mills fields and their variations

Now the idea is to apply our present approach for obtaining all on the symplectic structu
the theory, directly from the basic equations~2! and ~3!. For this purpose, letBm andCm be any
two matrix-valued fields~which will be identified below as a pair of gauge connection variatio
in one case, and as the background gauge connection and its variation in the particular
Abelian fields!, and using the explicit form of the operatorP in Eq. ~3!, we have that

Bn`@P~Ca!#n2@P~Bn!#a`Ca5]”m@Bn`~]”mCn2]” nCm!1~]” nBm2]”mBn!`Cn#

1@Fmn ,Bm`Cn#, ~4!

where

Bn`@Ca ,Fa
n#2@Ba ,Fa

n#`Cn5@Fmn ,Bm`Cn#, ~5!

and identities of the formBn`]”a]” nCa[]”m(Bn]” nCm2]” nBm`Cn)1]” n]”aBn`Ca have been used
Taking the trace of Eq.~4!, we obtain

Tr@Bn`@P~Ca!#n2@P~Bn!#a`Ca#5]m Tr@Bn`]” @mCn]2]” @mBn]`Cn#, ~6!

which has the form of Eq.~1! with P5P†. Thus, we can obtain the continuity equation:

]mJm50, Jm[Tr@Bn`]” @mCn]2]” @mBn]`Cn#, ~7!

provided that

@P~Ca!#n50 and @P~Bn!#a50. ~8!

As we shall see, the whole physical information about the covariant symplectic structu
the Yang–Mills theory is contained in Eq.~7!, it remains only to identify the fieldsBm and Cm

satisfying Eqs.~8!. In according to Eq.~3!, the obvious case is to choose such fields as a pa
variations, sayBm5dAm

1 , and Cm5dAm
2 ~they have not to correspond necessarily to the sa

variation!. In this manner,Jm in Eq. ~7! corresponds, in this case, to the following~nondegenerate!
two-form on the phase space:
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Jm5Tr@dA1
n`dFmn

2 2dFmn
1 `dA2

n#5 1
2d Tr@A1

n dFmn
2 2Fmn

2 dA1
n2Fmn

1 dA2
n1A2

n dFmn
1 #[dum ,

~9!

whereFmn
i 5]”mAn

i 2]” nAm
i , dFmn

i 5]”mdAn
i 2]ndAm

i ( i 51,2), and we have used the Leibniz ru
for the exterior derivatived, and the fact thatd250. In particular, ifdAm

1 5dAm5dAm
2 , from Eq.

~9! Jm52 Tr(dAn`dFmn), which is essentially the Crncovic´–Witten current.2 Furthermore, we
have defined the one-formum as

um[ 1
2Tr@A1

n dFmn
2 2Fmn

2 dA1
n2Fmn

1 dA2
n1A2

n dFmn
1 #, ~10!

in this manner,um is thesymplectic potentialfor the theory. Note that, according to Eq.~9!, the
symplectic potential is defined up to the exterior derivative of any matrix-valued fieldlm :Jm

5d(um1dlm).
In the particular case of Abelian fields, from Eqs.~2! and ~3! we have that@P(Aa)#n50,

where Aa is the background gauge connection. In this manner, we can identifyBn5dAn
1 and

Cn5An
2 ~a variation and a background gauge connection, respectively!, and then the symplectic

potentialum given in Eq.~10! is @like the corresponding symplectic current in Eq.~9!# covariantly
conserved. Moreover, we can identify for Abelian fieldsBn5An

1, and Cn5An
2 ~a pair of back-

ground fields! in Eq. ~8!; thus, from Eq.~7! Jm5A1
nFmn

2 2A2
nFmn

1 , which is a covariantly conserve
zero-form on the phase space~a conserved current for the exact theory!.

Since Jm in Eq. ~9! is an exact two-form ~it comes from the variations of the symplect
potentialum!, corresponds automatically to a closed two-form (dJm5d2um50), as required for
the symplectic structure. Unlike the Crncovic´–Witten approach, we do not need to verify th
covariant conservation of our symplectic current, such a property is guaranteed for Eqs.~7! and
~8!. Therefore,v5*SJm dSm is the symplectic structure with the wanted properties for the Yan
Mills theory.2 Moreover, since the present symplectic structure is essentially the Crncovic´–Witten
result, it has the same invariance properties under gauge transformations.2 Specifically, as shown
in Ref. 2, under gauge transformations of the gauge connectionAm→Am1]m«1@Am ,«#, dAm

i

anddFmn
i transform homogeneously, and thenJm andv are gauge invariant. Furthermore, follow

ing Ref. 2, one can verify easily thatv has vanishing components in the gauge directions in fi
space@see Eq.~30! in such a reference#, which allows us to construct the symplectic structure
the corresponding gauge-invariant space~reduced phase space!.

The above results are obtained displaying explicitly the variation of the gauge connectiodAa

in Eq. ~3!. However, it is not the only way for obtaining such results. One can consider Eq.~3! in
its original form]”mdFmn1@dAm,Fmn#50, and the relationdFmn5]”mdAn2]” ndAm , as a system
of equations governing the field variationsdFmn , anddAm , considering them as independent fie
variables:

F ]”m 2@Fa
n , #

1 ~dm
a]” n2dn

a]”m!
G FdFmn

dAa
G50,

and using again the definition~1! with P now being the matrix operator in the preceding equati
one obtains essentially the same results.

B. General relativity

The variations of the vacuum Einstein equationsRmn50 are

¹adGmn
a 2¹mdGna

a 50, ~11!

where ¹a is the covariant derivative compatible with the background metricgmn , and dGmn
a

5 1
2g

ab(¹mdgnb1¹ndgmb2¹bdgmn), the variation of the metric connection.2 Displaying explic-
itly the metric variationsdgmn , Eqs.~11! take the form
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@gn
a¹b¹m1gm

a¹b¹n2gm
agn

b¹r¹r2gab¹m¹n1gmn~gab¹r¹r2¹b¹a!#dgab50, ~12!

which can be written in a compact form as

@E~dgab!#mn50, ~13!

whereE is the linear operator~depending only on the background fields! appearing in Eq.~12!.
With the same idea of the above case, letAmn , andBmn be any two 2-index~symmetric! tensor
fields ~in the first case these fields will be identified as a pair of metric variations for constru
the symplectic current, and as the background metric and a metric variation in the second c
obtaining the corresponding symplectic potential!, and using the explicit form of the operatorE,
we have that

Bmn`@E~Aab!#mn2@E~Bmn!#ab`Aab5¹mSmablrg~Bab`¹lArg2¹lBrg`Aab!, ~14!

where

Smablrg5gm(rgg)(agb)l2 1
2g

mlga(rgg)b2 1
2g

m(agb)lgrg2 1
2g

abgm(rgl)l1 1
2g

abgmlgrg.
~15!

Like the Yang–Mills case, Eq.~14! has the form of Eq.~1! with E5E†. Then, we obtain the loca
continuity equation:

¹mJm50, Jm[Smablrg~Bab`¹lArg2¹lBrg`Aab!, ~16!

provided that

@E~Aab!#mn50 and @E~Bmn!#ab50. ~17!

In according to Eq.~13!, an obvious identification for the fieldsAmn , andBmn satisfying Eqs.~17!
is

Aab5dgab
1 and Bmn5dgmn

2 , ~18!

we mean, a pair of variations. In this manner, from Eq.~16!,

Jm5Smablrg~dgab
2 `¹ldgrg

1 2¹ldgrg
2 `dgab

1 !, ~19!

corresponds to a covariantly conserved two-form on the phase space. The last expression
rewritten, using Eq.~15!, in terms of the variations of the metric connection:

Jm5~dGab
m !1`[dg2

ab1 1
2 gab~d ln g!2] 2~dGan

n !1`@dg2
ma1 1

2 gma~d ln g!2#2~1↔2!,
~20!

where (dGab
m )15 1

2g
mr@¹adgbr

1 1¹bdgar
1 2¹rdgab

1 #, (d ln g)25gmn dgmn
2 52gmn dg2

mn , and
(1↔2) means a term similar to the first one, just interchanging the subscripts 1 and 2, such
~19!. If we setdgmn

1 5dgmn
2 5dgmn , Jm in Eq. ~20! reduces exactly to the Crncovic´–Witten current

@see Eq.~34! of Ref. 2#.
However, the choice~18! for the fieldsAab , andBmn , is not the unique one for satisfyin

Eqs. ~17!. We can keepAab5dgab
1 , but to identify Bmn as the background metricgmn , since

¹lgmn50, and the explicit form ofE in Eq. ~12!, we have that

@E~gmn!#ab50. ~21!

Therefore, from Eq.~16!, we have that the one-form
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um[Smablrggab ¹ldgrg
1 , ~22!

is also a covariantly conserved current on the phase space.um can also be rewritten in terms of th
variations of the metric connection:

um5gma~dGan
n !12gab~dGab

m !1 . ~23!

Moreover, the conserved currentsJm andum given in Eqs.~19!–~20! and ~22!–~23!, respec-
tively, are not independent. Considering thatdAg5 1

2Agd ln g, from Eq. ~23!, we have that

d~Agum!5Ag@dg2
ma`~dGan

n !12dg2
ab`~dGab

m !1#

2 1
2Ag@gma~dGan

n !12gab~dGab
m !1#`~d ln g!2 , ~24!

where we have considered also thatd250, the Leibniz rule for the exterior derivative, and
variation of the background metric appearing in Eq.~23!, in general, different fromdgmn

1 , and
denoted conveniently bydgmn

2 . Making a direct comparison, the right-hand side of Eq.~24!
corresponds, by a factor ofAg, to the first term on the right-hand side of Eq.~20!. With an
interchange of the superscripts 1 and 2 in Eq.~24! ~which corresponds to identifyAab with the
background metric andBmn with the metric variation!, we obtain essentially the second term
the right-hand side of Eq.~20!. In this manner, we can rewrite

um5Smablrg~gab
2 ¹ldgrg

1 1gab
1 ¹ldgrg

2 !, ~25!

and then

d~Agum!5AgJm, ~26!

which means thatAgJm is anexacttwo-form, andAgum is then thesymplectic potentialfor the
theory ~which is defined up to the exterior derivative of any vector field!. Since¹lgmn50 and
g5g(gmn), Agum andAgJm are, likeum andJm, also covariantly conserved.

In the Crncovic´–Witten approach, one needs to show that¹mJm50; in the present approac
Jm comes directly from the continuity equation~16!. Moreover, from Eq.~26!, AgJm is an exact
two-form, and automatically a closed two-form, as required for the symplectic structuv
5*SAgJmdSm , which has the wanted properties. Sincev is essentially that given in Ref. 2, it ha
the same invariance properties under gauge transformations described in such a referenc

If we chooseAmn5gmn
1 , andBab5gab

2 ~a pair of background solutions!, both satisfying Eq.
~21!, then from the local equation~16!, we have thatJm50, which means that there no exist
~local! conserved current for the exact theory different to the trivial one.

Finally, if we consider Eq.~11! and the relation betweendG anddgmn as a system for thes
field variations~considering them as independent!, one obtains essentially the same results.

IV. CONCLUDING REMARKS

As we have seen, the present approach based on the concept of~self-!adjoint operators leads
in a rigorous way, to local continuity laws for the theory under study. Such continuity equa
disclose the existence of different conserved currents, in particular those associated with a
riant description of the corresponding symplectic structure.

The symplectic structures described in Refs. 1–3, are always related to a pair of soluti
the equations governing the variations of classical solutions. In the present scheme, the self
case corresponds, as we have seen in the examples, to that case. Nevertheless, as discuss
II, there exists a more general case, which establishes the possibility of constructing a~nondegen-
erate! two-form related to a solution of the equations governing the variations, and a soluti
the corresponding adjoint system. No such possibility was previously known in the litera
However, such a two-form is not necessarily closed, remaining to study under what condition
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two-form represents a symplectic structure. In fact, there are several cases in physics inv
operators that are not self-adjoint, where the present approach will be useful: usual free m
fields equations of spin greater that one on a curved spacetime, equations for first-order va
coming from string-inspired actions, etc. Works along these lines are in progress and will b
subject of forthcoming communications.

On the other hand, the Zuckerman formalism, unlike the present one, requires an e
extension for covering fermionic fields.3 Even though in the present article we have limited o
discussion to bosonic field theories, the adjoint operator formalism allows us to treat boson
fermionic fields~and the simultaneous presence of both! on the same footing, since the fund
mental definition~1!, which is our starting point, extends for spinor fields.7 In this case, we are
particularly interested in superstring theory, and works along these lines are also in progre

Finally, the connection between adjoint operators and conserved currents used in the
article, has been also used in Ref. 6, although for a different purpose: for obtaining cons
quantities from non-Hermitian systems. In this manner, a scheme based on adjoint operat
different ramifications of wide interest in physics, whose applications also will be the aim of f
investigations.
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APPENDIX: NO ‘‘PUZZLE’’ FOR THE SYMPLECTIC CURRENT

In the Crncovic´–Witten approach,2 unlike the present scheme, there is not a procedure
obtaining the explicit form for the symplectic structure~or for the symplectic potential!. In fact, it
may be very difficult to guess such an explicit form for more general and complicated c
However, without invoking the concept of adjoint operators used in the present scheme, on
be able to obtain the explicit form of the potential symplectic, starting directly from the b
equations for the variations. For example, in the general relativity case, the equation~11! for the
variations can be rewritten in the form

¹a~dGmn
a 2dm

adGnl
l !50, ~A1!

which implies that the tensor fieldTmn
a [dGmn

a 2dm
adGnl

l is a covariantly conserved one-form o
the phase space. Since¹lgmn50, andg5g(gmn), the one-formTa[AggmnTmn

a is also covari-
antly conserved:¹aTa50. Using Eq.~23!, it is very easy to find thatgmnTmn

a 5ua, thus Ta

5Agua. In this manner,Ta coming from Eq.~A1!, is the symplectic potential, whose variation
generate automatically a closed two-form. However, regardless of adjoint operators, one
verify the covariant conservation of such a two-form in order to obtain a covariant descript

1E. Witten, Nucl. Phys. B276, 291 ~1986!.
2C. Crncovićand E. Witten, inThree Hundred Years of Gravitation, edited by S. W. Hawking and W. Israel~Cambridge
University Press, Cambridge, 1987!.

3E. Zuckerman, inMathematical Aspects of String Theory, edited by S. T. Yau~World Scientific, Singapore, 1986!, p. 259.
4K.-S. Soh, Phys. Rev. D49, 1906~1994!.
5M. Chu, P. Goddard, I. Halliday, D. Olive, and A. Schwimmer, Phys. Lett. B266, 71 ~1991!.
6R. Cartas-Fuentevilla, J. Math. Phys.41, 7521~2000!.
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Hyper-complex four-manifolds from the Tzitze ´ ica equation
Maciej Dunajskia)

The Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, United Kingdom
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It is shown how solutions to the Tzitze´ica equation can be used to construct a
family of ~pseudo! hyper-complex metrics in four dimensions. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1426687#

I. INTRODUCTION

A striking universalfeature of integrable systems is that the same integrable equations
arise from many unrelated sources. The Tzitze´ica equation1

vxy5ev2e22v ~1!

is a good example. It first arose in a study of surfaces inR3 for which the ratio of the negative
Gaussian curvature to the fourth power of a distance from a tangent plane to some fixed p
a constant. Tzitze´ica has shown that ifx and y are coordinates on such a surface in which
second fundamental form is off-diagonal, then there exists a real functionv(x,y) such that the
Peterson–Codazzi equations reduce to~1!. Moreover, he has demonstrated2 that ~1! is a consis-
tency condition for an otherwise overdetermined system of partial differential equations~PDEs!
for c i(x,y), i 51,2,3:

]xS c1

c2

c3

D 5S 2vx 0 l

1 vx 0

0 1 0
D S c1

c2

c3

D ,

~2!

]yS c1

c2

c3

D 5S 0 e22v 0

0 0 ev

l21ev 0 0
D S c1

c2

c3

D .

@Strictly speaking the linear system given by Tzitze´ica consisted of three second order PDEs
one function. These three equations can be recovered from~2! if one eliminatesc1 and c2 by
cross-differentiating.# The above linear system is in modern terminology known as a ‘‘Lax p
with a spectral parameter.’’ It underlines the complete integrability of the Tzitze´ica equation.3

Equation~1! reappeared in the context of soliton solutions,4 gas dynamics5 as well as geom-
etry of affine spheres.6 In this article I shall reveal yet another occurrence of~1!, and show how its
solutions can be used to generate explicit pseudo-hyper-complex structures in four dime
This will be done by regarding~2! as a reduced Lax pair for SL(3,R) anti-self-dual Yang–Mills
~ASDYM! equations, embedding SL(3,R) in Diff( RP2), and reinterpreting the Lax pair in term
of vector fields onM5R23RP2. Four independent vector fields in this Lax pair will provide
null frame for a pseudo-hyper-complex conformal structure onM.

In the next section the Lax formulation of the pseudo-hyper-complex condition in four dim
sions will be given following Refs. 7 and 8. In Sec. III the connection with the ASDYM will
established, and the explicit embedding ofsl(3,R) in diff (RP2) will be given. The resulting

a!Electronic mail: dunajski@maths.ox.ac.uk
6510022-2488/2002/43(1)/651/8/$19.00 © 2002 American Institute of Physics
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pseudo-hyper-complex structure will be constructed in Sec. IV. All considerations in this se
will be local. Finally, Sec. V contains the twistor interpretation of the construction.

II. PSEUDO HYPER-COMPLEX STRUCTURES

A smooth real 4n-dimensional manifoldM equipped with three real endomorphism
I ,S,T:TM→TM of the tangent bundle satisfying the algebra of pseudo-quaternions

2I 25S25T251, IST51,

is called pseudo-hyper-complex iff the almost complex structure

Jl5aI1bS1cT ~3!

is integrable for any point of the hyperboloida22b22c251. @We identify two sheets of this
hyperboloid with two unit discsD2 andD1 , and usel as a projective coordinate on a Riema
sphereCP15D21D11S1. The coordinatel plays a role of a complex spectral parameter in
Lax pair ~4!.# This integrability is equivalent to a vanishing of its Nijenhuis tensor

N~X1 ,X2!ª~Jl!2@X1 ,X2#2Jl@JlX1 ,X2#2Jl@X1 ,JlX2#1@JlX1 ,JlX2#

for arbitrary vectorsX1 and X2 . A convenient matrix representation of the canonical pseu
hyper-complex structure onR4 is given by

I 5S 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0

D , S5S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D , T5S 1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D .

In the general case the components ofI ,S,T depend smoothly on coordinates onM. The endo-
morphismI endowsM with the structure of a two-dimensional complex manifold, andS andT
determine a pair of transverse null foliations. Letg be a metric of signature (2n,2n) on M. If
(M,Jl) is pseudo-hyper-complex and

g~TX1 ,TX2!5g~SX1 ,SX2!52g~ IX1 ,IX2!52g~X1 ,X2!

for all vectorsX1 ,X2 , then the triple (M,Jl ,g) is called a pseudo-hyper-Hermitian structure
From now on we shall restrict ourselves to oriented four manifolds, where the notio

pseudo-hyper-complex and pseudo-hyper-Hermitian structures coincide. To see it choose a
tor XPTM, and define a conformal structure@g# of signature (1122), by choosing a con-
formal frame of vector fields (X,IX,SX,TX). Any gP@g# is then pseudo-hyper-Hermitian. W
shall use the following characterization of the pseudo-hyper-Hermiticity condition:

Proposition 1:7 Let (X,Y,U,V) be four independent real vector fields on a four-dimensio
real manifoldM, and let

L05X2lV, L15U2lY, where lPCP1. ~4!

If

@L0 ,L1#50 ~5!

for everyl, then (X,Y,U,V) is a null tetrad for a pseudo-hyper-Hermitian contravariant metr

g5X^ Y1Y^ X2U ^ V2V^ U

on M. Every pseudo-hyper-Hermitian metric arises in this way.
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For a future reference we write Eq.~4! in full:

@X,U#50, @Y,V#50, @X,Y#2@U,V#50. ~6!

Given the null tetrad (X,Y,U,V) we define the pseudo hyper-complex structure by

I ~X!52V, I ~U !52Y, I ~Y!5U, I ~V!5X,

S~X!5V, S~U !5Y, S~Y!5U, S~V!5X, ~7!

T~X!5X, T~U !5U, T~Y!52Y, T~V!52V.

Proposition 1 asserts that integrability ofI, S, T is guaranteed by~6!. Let nPL4(T* M) be the
volume form onM. The covariant metric is conveniently expressed in a dual frame

eX5n~ . . . ,Y,U,V!, eY5n~X, . . . ,U,V!,

eU5n~X,Y, . . . ,V!, eV5n~X,Y,U, . . . !,

and is given by

g5eX^ eY1eY^ eX2eU ^ eV2eV^ eU .

The result of Boyer9 originally formulated for hyper-complex manifolds still applies~with some
sign alterations! in the (1122) signature: a four-manifold is pseudo-hyper-complex iff the
exists a basis (V1 ,V2 ,V3) of the space of self-dual two formsL1

2 , and a one-formA ~called a
Lee form! such that

dV i5A∧V i . ~8!

If we change a representative of a pseudo-conformal structure according tog→efg, then

V i→efV i , A→A1df .

Therefore, ifA is exact, theng is conformally pseudo-hyper-Ka¨hler ~Ricci-flat!.

III. FROM THE TZITZÉICA EQUATION TO ASDYM

The idea of looking at integrable systems as reductions of the anti-self-dual Yang-
~ASDYM! equations goes back to Ward.10 In this section the list of possible reductions will b
enlarged by showing that~1! arises from the SL(3,R) ASDYM with two commuting translationa
symmetries. In Sec. III A the connection matrices will be reinterpreted as vector fields o
projective plane.

Consider the flat metric of signature~2,2! on R4, which in double null coordinatesxa

5(x,y,u,v) takes a form

dxdy2dudv,

and choose the volume element dx∧dy∧du∧dv. Let APT* R4
^ sl(3,R) be a connection one-form

on a real rank-three vector bundle, and letF be its curvature two-form. In a local trivalizatio
A5Aadxa andF5Fabdxa∧dxb, whereFab5@Da ,Db# takes its values insl(3,R). HereDa5]a

2Aa is the covariant derivative. The connection is defined up to gauge transformatioA
→h21Ah2h21dh, wherehPMap(R4,SL(3,R)). The ASDYM equations onAa areF52* F, or

Fxu50, Fxy2Fuv50, Fyv50.

These equations are equivalent to the commutativity of the Lax pair
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L05Dx2lDv , L15Du2lDy ~9!

for every value of the parameterl.
We shall require that the connection possess two commuting translational symmetriesX1 ,X2 ,

which in our coordinates are inX15]u andX25]v directions. The direct calculation shows th
the ASDYM equations are solved by the following ansatze for Higgs fieldsAu andAv , and gauge
fields Ax andAy

Au52S 0 0 0

0 0 0

ev 0 0
D , Av52S 0 0 1

0 0 0

0 0 0
D ,

~10!

Ax52S 2vx 0 0

1 vx 0

0 1 0
D , Ay52S 0 e22v 0

0 0 ev

0 0 0
D ,

iff v(x,y) satisfies the Tzitze´ica equation~1!. We note that the reduced Lax pair~9! could be
obtained directly from~2! multiplying the second equation byl.

We connect the ASDYM equations and those on a pseudo-hyper-complex four-dimen
metric ~5! by considering gauge potentials that take values in a Lie algebra of vector field
some manifold. Proposition 1 reveals one such connection: We make the identification:X5Dx ,
Y5Dy , U5Du , V5Dv . By comparing~9! with ~4!, we see that the pseudo-hyper-compl
equation is a reduction of the ASDYM with the infinite-dimensional gauge group Diff(M) by
translations along the four coordinate vectors]x , ]y , ]u , ]v .

To reveal the connection with the Tzitze´ica equation we shall proceed in a slightly differe
way: Consider the ASDYM equations with the gauge groupG, being a sup-group of Diff(S),
whereS is some two-dimensional real manifold. We can represent the components of the co
tion form of A by vector fields onS depending also on the coordinates onR4. Now we suppose
that A is invariant under two translations. The reduced Lax pair will then descend toM5R2

3S and give rise to a pseudo-hyper-complex metric. A similar idea has been used in Refs.
12 to construct new classes of hyper-Ka¨hler four-manifolds out of solutions to some integrab
ODEs and PDEs.

Because we are interested in the caseG5SL(3,R), we takeS to be a real projective plane
RP2 with a natural PSL(3,R) group action. The relevant vector fields will be constructed in
next subsection.

A. sl „3,R… as a subalgebra of diff „RP2
…

To construct a null tetrad for a pseudo-hyper-complex metric we will need an explicit em
ding sl(3,R)→diff (RP2). Let

S A11 A12 A13

A21 A22 A23

A31 A32 A33

D PSL~3,R!.

Consider the projective transformations of a plane with local coordinates (p,q):

p→ A11p1A12q1A13

A31p1A32q1A33
, q→ A21p1A22q1A23

A31p1A32q1A33
.

This gives rise to a representation of the Lie algebrasl(3,R) of SL(3,R) by vector fields onRP2.
The easiest way to obtain this representation is to consider the infinitesimal linear left act
SL(3,R) on R3. The generators of this action pushed down to the projective plane are
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]p , ]q , p]q , q]p , 2p2]p2pq]q , 2pq]p2q2]q ,

p]p2q]q , p]p12q]q .

More precisely, a vector field corresponding to an element

M5S a11 a12 a13

a21 2a112a33 a23

a31 a32 a33

D Psl~3,R!

is

XM5@a131~a112a33!p1a12q2a31p
22a32pq#]p

1@a231a21p2~a1112a33!q2a31pq2a32q
2#]q . ~11!

IV. CURVED METRICS FROM THE TZITZÉICA EQUATION

Consider the reduced ASDYM Lax pair~9!,

L05]x2Ax2lAv , L152Au2l~]y2Ay!,

such that@L0 ,L1#50 yields ~1! and use~11! to replace the matrices~10! by vector fields. Now
compare the resulting Lax pair with~4!, and read off the null tetrad for a hyper-complex met
~some care needs to be taken with signs because@XM ,XN#52X[ M ,N]!. This yields

X5]x1~2vxp1pq!]p1~vxq2p1q2!]q , U52evp2]p2evpq]q ,
~12!

Y5]y2e22vq]p2ev]q , V5]p .

The first two equations in~6! are satisfied trivially, and the third one yields

@X,Y#2@U,V#5~vxy1e22v2ev!~p]p2q]q!,

which is 0 if v(x,y) satisfies Eq.~1!. Let p5exp(P),q5exp(Q). The frame of dual one-forms is

eX5dx, eU5~vxe
2v2P1e2v2P1Q2e2v2Q!dx2e2P2Qdy2e2v2PdQ,

~13!
eY5dy, eV5~2vxe

P2e2P2Q!dx1~eQ22v2ev1P2Q!dy2ePdQ1ePdP.

Finally, the metric is given by

g52~eXeY2eUeV!. ~14!

It is instructive to verify our calculation by considering the dual formulation of Boyer. Using
identification between the two-forms, and endomorphisms given byg, define a basis (V I ,VS ,VT)
of L1

2 by

V I~X1 ,X2!52g~ IX1 ,X2!, VS~X1 ,X2!52g~SX1 ,X2!, VT~X1 ,X2!52g~TX1 ,X2!,

so that

VS5eX∧eU2eY∧eV , VT5eX∧eY2eU∧eV , V I5eX∧eU1eY∧eV .

The Lee formA can be found, such that Eqs.~8! reduce down to~1!. Indeed, taking

A5~3eP2Q24vx!dx1~3ev2Q2vy!dy2dP12dQ
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yields

dV I2A∧V I50, dVS2A∧VS50,

dVT2A∧VT5ev@vxy1e22v2ev#dx∧dy∧d~P1Q!50.

The metric~14! is therefore never conformal to pseudo-hyper-Ka¨hler because dAÞ0. Even the
simplest solutionv50 yields a nontrivial hyper-complex structure

g5~eP2e2P22Q!dx21~322eP22Q2e2Q2P!dxdy1~e2P2e2Q!dy222dQ212dQdP

1~eP2Q2eQ!dxdP1e2QdydP1~eQ22eP2Q!dxdQ1~eQ2P22eQ!dydQ.

@It is worth remarking that a Tzitze´ica surface corresponding tov50 ~so called Jonas Hexenhu!
is also nontrivial.# The Backlund transformations for the Tzitze´ica equation2,13,14may now be used
to generate more complicated metrics.

V. THE TWISTOR CORRESPONDENCE

From the point of view of the Yang–Mills equations, the solutions~14! that we have obtained
are metrics on the total space ofE, theRP2-bundle associated to the Yang–Mills bundle. In th
section we explain how our construction ties in with the twistor correspondences.

Consider the manifoldZ5R2,23CP1 @R2,2 denotesR4 with a flat metric of signature~2,2!#. It
decomposes into two open sets

Z15$~xa,l!PZ; Im~l!.0%5R2,23D1 ,

Z25$~xa,l!PZ; Im~l!,0%5R2,23D2 ,

whereD6 are two copies of a Poincare disc. These submanifolds are separated by

F05$~xa,l!PZ; Im~l!50%5R2,23RP1.

The complex structures onZ6 are specified by a distributionD of anti-holomorphic vector fields

D5$]x2l]v , ]u2l]y , ]l̄%.

The above distribution withlPRP1 defines a foliation ofF0 with a quotientZ0 which leads to a
double fibration:

M←
r

F0→
s

Z0 . ~15!

The twistor spaceZ is a three complex dimensional union of two open subsetsZ6 separated by
a three-dimensional real boundary~real twistor space! Z0ªs(F0).

Each pointxPR2,2 determines a holomorphic curveLx made up of two sheetsD6 of complex
structures~3! compactified by addingS1:

x5~x,y,u,v !→Lx5$~v0,v1,l!:v0~l!5v1lx, v1~l!5u1ly, lPCP1%.

The normal bundleN5TZuLx
/TLx of Lx in Z is a direct sum of two line bundles with a Che

class equal to oneO(1)% O(1). If x andx8 both lie on a self-dual null plane inR2,2 thenLx and
Lx8 intersect inZ at one point for whichlPRP1.

Now we turn to the SL(3,R) ASDYM equations onR2,2 with two commuting symmetries
X1, X2 . Let E5R2,23RP2 be the bundle associated to the Yang–Mills bundle by the repre
tation of SL(3,R) as projective transformations ofRP2. The SL(3,R) ASDYM connection defines,
by a (1122) version of a Ward construction,15 two holomorphic vector bundlesEW6

→Z6 .
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The following construction describes also the general case ofG5Diff( RP2). For this it is con-
venient to use the bundlesEW6

associated toEW6
by theG action onRP2 ~the Ward bundles have

infinite-dimensional fibers!.
On the other hand, any pseudo-hyper-complex four-metric corresponds to a deformed

spaceZM .7,9

Proposition 2: LetZM be a three-dimensional complex manifold with

~i! a four parameter family of rational curves with normal bundleO(1)% O(1),
~ii ! a holomorphic projectionm:ZM→CP1, and
~iii ! an anti-holomorphic involutionr:ZM→ZM fixing a real equator of each rational curve.

Then the real moduli spaceM of ther-invariant curves is equipped with conformal class@g# of
pseudo-hyper-Hermitian metrics. Conversely, given a real analytic pseudo-hyper-Hermitian
rics, there exists a corresponding twistor space with the above structures.

The existence of the holomorphic projectionm reflects the fact that the Lax pair~4! for the
pseudo-hyper-complex equations does not contain vector fields]l .

In this article we have explained how the quotientq of E by lifts of X1 ,X2 is, by Proposition
4, equipped with a pseudo-hyper-complex metric. To give a more complete picture we ca
struct the deformed twistor space directly fromEW6

and show that this is the twistor space ofM.
Given an analytic solution to~1! one can obtain the corresponding twistor space by equipp

M3CP1 with a structure of a complex manifoldZ: The basis of@0,1# vectors is given by the
distributionDM consisting of the Lax pair for the Tzitze´ica equation together with the standa
complex structure on theCP1. The point is that this distribution can be obtained directly fromD.
To see it consider the following chain of correspondences:

ZM5ZM2
øZM0

øZM1 ←
k̃

EW5R2,23RP23CP1 →
p

$Z,D%

↓ ↑ ↓

M ←
k

E5R2,23RP2 → R2,2.

Here Z and ZM are the twistor spaces ofR2,2 and M, respectively. The twistor spaceZM is
defined as the quotientk̃ of EW by lifts of symmetriesX1 ,X2 . The complex structures onZM6

are
given a subbundle

DM5k̃~p* D!5$L0 ,L1 ,]l̄%,TZM ,

where

L05]x1~2vxp1pq!]p1~vxq2p1q2!]q2l]p ,

L152evp2]p2evpq]q2l~]y2e22vq]p2ev]q!.

Here p is a holomorphic fibration of the associated Ward bundle. The real three-dimens
surfaceZM0

,ZM is a quotient ofR2,23RP23RP1 by the four-dimensional real distributio

$L0 ,L1 ,X1 ,X2%. Moreover,ZM is holomorphically fibered overCP1 and it has aO(1)% O(1)
rational curve embedded in it. Both structures are pulled back fromZ and projected byk̃. The
compatibility of these projections is a consequence of the commutativity of the the above dia
which follows from the integrability the the distribution spanned by~lifts of!

X1 , X2 , L0 , L1 , ]l̄

and from the fact that (X1 ,X2) commute with (L0 ,L1).
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Dimensionally dependent tensor identities by double
antisymmetrization
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Some years ago, Lovelock showed that a number of apparently unrelated familiar
tensor identities had a common structure, and could all be considered consequences
in n-dimensional space of a pair of fundamental identities involving trace-free
(p,p)-forms where 2p>n. We generalize Lovelock’s results, and by using the fact
that associated withany tensor inn-dimensional space there is associated a funda-
mental tensor identity obtained by antisymmetrizing overn11 indices, we estab-
lish a very general ‘‘master’’ identity forall trace-free (k,l )-forms. We then show
how various other special identities are direct and simple consequences of this
master identity; in particular we give direct application to Maxwell, Lanczos, Ricci,
Bel, and Bel-Robinson tensors, and also demonstrate how relationships between
scalar invariants of the Riemann tensor can be investigated in a systematic
manner. ©2002 American Institute of Physics.@DOI: 10.1063/1.1425428#

I. INTRODUCTION

In ann-dimensional space any tensor expressionTa1a2 ...ak
with k.n indices satisfies a tenso

identity

T[a1a2 . . . ak]50. ~1!

Such mathematically obvious identities can be very useful in practical calculations. Howeve
antisymmetrization process may not be so explicit since it need not be applied only on
indices; it could also involve dummy indices, some of which could be absorbed into traces,
shall demonstrate in the following example.~Here, and in the rest of this paper, we use the abst
index notation.1 However, any index notation would probably work well as long as the abo
mentioned property holds.!

Example I.1:Dianyan Xu2 constructed the following two scalar identities for the Riema
tensor infour dimensionalspaces,

Ra
bRbcdeRacde5

1
4 RRabcdRabcd12RacRbdRabcd12Ra

bRb
cR

c
a22RRa

bRb
a1 1

4 R3 ~2!

and

Ra
c
b

dRc
e
d

fR
e
a

f
b5 1

2 Rab
cdR

cd
e fR

e f
ab2 3

8 RRab
cdR

cd
ab23RacRbdRabcd24Ra

bRb
cR

c
a

1 9
2 RRa

bRb
a2 5

8 R3. ~3!

These were obtained after a lengthy calculation by decomposing the Riemann tensorRabcd into
its Weyl and Ricci components, and thenusing spinor methods; in fact Dianyan Xu claimed
that it was not possible to obtain these identities from the algebraic properties of the Rie
tensor alone.

a!Electronic mail: bredg@mai.liu.se
b!Electronic mail: anhog@mai.liu.se
6590022-2488/2002/43(1)/659/19/$19.00 © 2002 American Institute of Physics
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However, it was pointed out by Harvey3 that the first identity could be obtained directly b
expanding

Rab
[abR

cd
cdR

e
e]50 ~4!

and the second identity by expanding

Rab
[abR

cd
cdR

e f
e f]50 ~5!

and combining the result with the first identity.
So it is now clear that identities of the type of~2! and~3! exist not only for Riemann tensors

nor even just for Riemann candidates~any four-tensors with the index symmetries of a Riema
tensor!; they are in fact valid for any tensors which permit the antisymmetrization construc
~4! and ~5!. However it should be noted that to get the precise forms of~2! and ~3! some of the
symmetries of the Riemann tensor must be used.

Harvey’s approach also confirmed that both identities were valid in four and lo
dimensions—irrespective of the signature of the space~a fact that was missing from Dianyan Xu
spinor derivation!. So this insight into the structure of the two identities not only led to a be
appreciation of the relevance of these identities in the original context~concerning counterterms in
Lagrangians3–5!, but also highlights the importance of identities built from the antisymmetriza
property~1! in the study of Riemann scalar invariants.

Of course the pattern and discussion above suggest how to obtain many more ana
identities for other tensors, for higher dimensions, and for higher order. In fact the identitie~2!
and~3! can be obtained more directly and compactly by instead using the Weyl tensorCabcd ~the
trace-free part of the Riemann tensor!, e.g., ~3! can be obtained from the identit
Cab

[abC
cd

cdC
e f

e f]50.3,5–7

It is also interesting to note that it is not just scalar identities which can be constructed i
manner; for example, similar tensor identities can be considered to underlie the familiar Ca
Hamilton theorem:

Example I.2:Antisymmetrizing overn11 indices for matricesMa
b in n dimensions gives the

Cayley–Hamilton theorem

Mc1
[c1

Mc2
c2

...Mcn
cn

da]
b 50. ~6!

Considering the Cayley–Hamilton theorem from this viewpoint suggests generalization
volving more than one matrix,

Mc1
[c1

Nc2
c2

...Pcn
cn

da]
b 50. ~7!

This generalized Cayley–Hamilton theorem has been used to find relations,~syzygies!, between
scalar invariants of matrices involving more than one matrix.7–9

An important question is whether this technique of antisymmetrizing is just a useful ‘‘trick
very special circumstances, or whether there is deeper structure to be better understood a
fully exploited.

Some time ago Lovelock10 noted the significance of certain types of identities—which
called dimensionally dependent identities—and demonstrated their existence and importance
quite a wide context~Lovelock10 has defined a dimensionally dependent identity as an iden
which is a direct consequence of the dimension of the space taking on a particular valu
which therefore is not valid for arbitrary dimensionn in general!. By showing precisely how and
where dimensionality plays its role in familiar identities, Lovelock revealed a technique w
could be generalized to arbitrary dimension. In fact Lovelock’s technique simply involved
antisymmetrizing process being applied inn dimensions, to tensors withtwo sets of indices~upper
and lower, in practice! and specialized in two theorems to trace-free tensors with an equal nu
p of upper and lower indices where 2p>n.
                                                                                                                



sat-
f the
hich

tigate
ture; in
results

lso to

motiva-

hich

ces of
pling
f the

s when
plete

strate
e Rie-

have
seful-

sense

on

trized

t

ups of

661J. Math. Phys., Vol. 43, No. 1, January 2002 Dimensionally dependent tensor identities

                    
Lovelock’s investigations were motivated mostly by familiar four-dimensional identities
isfied by Weyl tensors~and Weyl candidates, i.e., tensors with the algebraic symmetries o
Weyl tensor!; however, there are other identities which appear to be of a similar nature, but w
cannot be confirmed by Lovelock’s two theorems. It is the purpose of this paper to inves
dimensionally dependent identities in a systematic manner and obtain a more complete pic
doing so we develop results more general than Lovelock’s, and demonstrate that these new
can be used to confirm identities which cannot be obtained from Lovelock’s results, and a
confirm other identities which can only be confirmed indirectly from Lovelock’s results.

In Sec. II we make some general observations and present some examples as further
tion for the subsequent sections. We summarize and illustrate Lovelock’s results10 in Sec. III.
Lovelock’s theorems applied only to trace-free (p,p)-forms inn dimensions where 2p>n. How-
ever, in Sec. IV, we shall develop more general results in the form of a ‘‘master’’ identity w
will be applicable to any tensor in any dimension, and in particular to trace-free (k,l )-forms in any
dimension. In Sec. V we will then show that a number of important identities are consequen
this master identity. In particular, we show that the simplification of the gravity–matter cou
terms in the Weyl wave equation and in the Bel tensor, and the complete symmetry o
super-energy tensor for the Lanczos potential of the Weyl tensor are all trivial consequence
the master identity is specialized to four dimensions; in a similar manner we confirm the com
symmetry of the Bel–Robinson tensor in four and five dimensions. In addition, we demon
how the results permit a systematic study of relationships between scalar invariants of th
mann tensor. We also illustrate how the importance of dimensionally dependent identities
been overlooked by reducing the algebraic Rainich condition, and point out the potential u
ness of these results in more general situations.

II. IDENTITIES BY DOUBLE ANTISYMMETRIZATION

We consider the tensorTA
a1

where we have adopted the convention thatA denotes an
arbitrary number of additional lower and/or upper indices.1

Associated with this tensorTA
a1

, in n-dimensional space, there will always be an identity

TA
[a1

da2

b2da3

b3...dan11]
bn11 50. ~8!

For future reference we should note that such identities cannot be made ‘‘simpler,’’ in the
that taking the trace of~8! ~on explicit indices, i.e., indices which are not implicit inA! simply
gives zero on the left-hand side also.

An alternative approach would be to assume the presence of a volume elementha1a2 . . . an
,

and formulate analogous results in theh notation making use of duals; but we shall concentrate
developing results using thed notation.

There will of course be one such identity associated with each separate index onT. We could
obtain other identities, with less deltas, by taking more than one index ofT explicitly into the
antisymmetrization operation, but these new identities would involve only the antisymme
part of T with respect to the explicit indices.

However, when the tensorT is in fact antisymmetric in a group ofk indices, then we can ge
an identity involving less deltas than the original identity

TA
[a1 ...ak

dak11

bk11dak12

bk12...dan11]
bn11 50, ~9!

but without losing any part ofT. Again, it is important to note that taking the trace of~9!, on
explicit indices, simply gives zero on the left-hand side also.

We next consider a tensor with both upper and lower indices, each of which contain gro
antisymmetric indices, i.e.,TA

a1 . . . ak

b1 . . . bl5TA
[a1 . . . ak]

[b1 . . . bl ] is a (k,l )-form with respect to
its explicit indices; then we have the associated identity
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TA
a1 . . . ak

[b1 . . . bldak11

bk11 . . . dan11

bn11]
50 ~10!

when l>k. ~The analogous case obtained by antisymmetrizing on the lower indices fork< l is
obvious.!

Such classes of tensors include many familiar tensors~Riemann, Weyl, Ricci, Maxwell, Lanc-
zos, torsion! and they shall be the main focus of our investigation in this paper.

It is important to note that, although some traces of~10! yield the trivial identity,there are
some traces of~10! which yield a nontrivial identity involving the trace of T. It is these nontrivial
traces which yield Lovelock’s identities, and our generalizations of them. We illustrate this
the following example.

Example II.1:We consider the~2,2!-form Rab
cd.

In three dimensions: Re f
[ghda

cdb
d]50.

Contracting once overe andg gives

Rf [a
[hcdb]

d]2Re f
e[hda

cdb
d]50, ~11!

and then overh and f gives,

Rab
cd24Re[a

e[cdb]
d]1Re f

e fda
[cdb

d]50. ~12!

From this last result follows the well-known fact that the trace-free part of a Riemann ten
identically zero in three dimensions.

In four dimensions: Rgh
[ i j da

ddb
edc

f ]50.
Contracting once overg and i gives

3Rh[a
[ jddb

edc]
f ] 22Rgh

g[ jda
ddb

edc
f ]50, ~13!

and then overh and j gives

3R[ab
[dedc]

f ] 26Rg[a
g[ddb

edc]
f ] 1Rgh

ghda
[ddb

edc
f ]50. ~14!

A third contraction gives zero on the left-hand side also.
All of the above-mentioned identities can be expressed in a more concise form ifRabcd is

decomposed into trace-free and trace parts.
We note that certain of these contractions yield identities which, if we were to encounter

not knowing their source, would seem~to our surprise! to come from antisymmetrizing overn or
n21 explicit indices inn dimensions; on the other hand, when one takes into accountall the
terms in each identity and also notes that these contractions involve antisymmetrizing over
and lower indices, of course, we would realize that our first judgment was superficial, and we
a disguised antisymmetrization overn11 indices. However, we have noted previously that
identities exist in their most concise form when presented in terms of the trace free part ofRabcd;
so such identities can be even more deceptive especially when constructed explicitly in term
trace-free tensor.

So we now specialize to the important special situation where the (k,l )-form
TA

a1 . . . ak

b1 . . . bl5TA
[a1 . . . ak]

[b1 . . . bl ] is trace-free, i.e., TA
a1a2 . . . ak

a1b2 . . . bl50, and the under-
lying structure of the resulting identities become less transparent. To illustrate this we will
three simple examples involving, respectively, a trace-free~2,2!-form Wab

cd @of which the Weyl
conformal curvature tensorCab

cd is a special example being a symmetric trace-free~2,2!-form
since Cabcd5Ccdab, with the additional propertyC[abc]d50#, a trace-free~2,1!-form Lab

c @of
which the torsion and Lanczos potential with the additional propertyL [abc]50 ~Ref. 11! are
special examples#, and a trace-free~1,1!-form Sa

b ~of which the trace-free symmetric Ricci tens
R̃a

b , the trace-free symmetric energy tensorT̃a
b and the antisymmetric Maxwell tensorFa

b , are
special examples!.
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Example II.2: We now apply the above-presented arguments to the trace-free~2,2!-form
Wab

cd.
In three dimensions: We f

[ghda
cdb

d]50.
Contracting overf andh gives

We[a
[gcdb]

d]50, ~15!

and then overe andg gives

Wab
cd50. ~16!

In four dimensions: Wgh
[ i j da

ddb
edc

f ]50.
Contracting overh and j gives

Wg[a
[ iddb

edc]
f ] 50, ~17!

and then overg and i gives

W[ab
[dedc]

f ] 50. ~18!

A third contraction gives zero on the left-hand side also.
In five dimensions: Wi j

[klda
edb

f dc
gdd

h]50.
Contracting overj and l gives

Wi [a
[kedb

f dc
gdd]

h]50, ~19!

and then overi andk gives

W[ab
[e fdc

gdd]
h]50. ~20!

A third contraction gives zero on the left-hand side also.
So, in each of the three cases, the first identity is obvious in the sense that it is an e

antisymmetrization overn11 indices inn dimensions. What is particularly interesting, and at fi
sight perhaps surprising in these situations, is the existence of simple identities inn dimensions
which involve explicit antisymmetrization over onlyn21 indices. But of course, in addition, ther
is antisymmetrization on both lower and upper indices and the comparatively simple versio
due to the vanishing of the trace ofW.

Example II.3:Consider the trace-free~2,1!-form Lab
c.

When we apply the above-mentioned arguments we obtain,
In three dimensions: L[ f a

gdb
ddc]

e 50.
Contracting once on the upper index onL gives

L [ab
[ddc]

e]50, ~21!

and contracting once more gives zero on the left-hand side also.
In four dimensions: L[ha

idb
edc

f dd]
g 50.

Contracting once on the upper index onL gives

L [ab
[edc

f dd]
g]50, ~22!

and once more gives zero on the left-hand side also.
So, once again, we obtain identities inn dimensions involving explicit antisymmetrizatio

over less thann11 indices; although in this case it involvesn indices.
Example II.4:Consider the trace-free~1,1!-form Sa

b.
When we apply the above-mentioned arguments we obtain,
In three dimensions: S[g

hda
ddb

edc]
f 50.
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Contracting once on the upper index onS gives

S[a
[ddb

edc]
f ] 50, ~23!

and contracting once more gives zero on the left-hand side also.
In four dimensions: S[ i

jda
edb

f dc
gdd]

h 50.
Contracting once on the upper index onS gives

S[a
[edb

f dc
gdd]

h]50, ~24!

and once more gives zero on the left-hand side also.
So, once again, we obtain identities inn dimensions involving explicit antisymmetrizatio

over onlyn indices.
In the above-given examples we have obtained obvious identities by antisymmetrizatio

n11 indices inn dimensions; but in addition, as a result of taking traces, we have obtained
obvious identities containingless deltas and explicit antisymmetrization overless than n11
indices. The existence of these additional identities, which contain less deltas than the o
ones, are very important for building up more complicated identities. For example, conside
of the obvious four-dimensional identity for the Weyl tensorC[ab

f gdc
hdd

i de]
j 50 ~with 10 free

indices!, would not suggest the possibility of any third-orderscalar identities forC; on the other
hand, the less obvious one formed from the double trace,C[ab

[ f gdc]
h]50 ~with 6 free indices!,

certainly permits the constructions of third-order Weyl scalar identities by multiplication wi
pair of C tensors.

For each case considered we have gone as far as we could, in the sense that ta
additional trace simply reduces the left-hand side to zero. Nevertheless, this does not in itse
that there could not exist additional identities with even less deltas than those given previ
however, for each of the cases it can be shown directly that removing further deltas g
restriction rather than an identity, e.g.,in four dimensions, when the trace is calculated fo
L [ab

[cd f ]
g]50 we find thatLab

c50.
In Sec. III we shall give results due to Lovelock10 and show that the results for three and fo

dimensions of Example II.2 follow directly as a special case; it will also be shown that the r
for five dimensions can be deduced, more subtly, from Lovelock’s results. In Sec. IV we
derive even more general results of which Lovelock’s and the above-mentioned three exa
will be seen to be special cases.

III. LOVELOCK’S DIMENSIONALLY DEPENDENT IDENTITIES

Some years ago, Lovelock10 noted that familiar tensors,~such as the Weyl and Maxwe
tensors!, with antisymmetry and trace-free properties, obeyed assorted—apparently unrela
identities. However, although there was no common structural link in the original derivatio
these assorted identities, Lovelock10 showed that they could all be considered to be conseque
of two underlying basic tensor identities. These underlying identities had a very simple stru
and were a mathematically trivial consequence of dimension alone. We will now quote Love
two theorems, each of which he proved in two different ways; our proofs are essentially
concise presentations of one of his versions.

Theorem III.1: In an n-dimensional space let TAa1 ...ak

b1 ...bk5TA
[a1 ...ak]

[b1 ...bk] be trace-free

on its explicit indices. If2k.n then

TA
a1 ...ak

b1 ...bk50. ~25!

Proof: Since 2k.n, antisymmetrizing over 2k indices gives an identity

05TA
[a1 ...ak

i 1 ...i kd i 1

b1...d i k]
bk . ~26!
                                                                                                                



riza-

, 2

r; we

ems,
t, and

duced

665J. Math. Phys., Vol. 43, No. 1, January 2002 Dimensionally dependent tensor identities

                    
Since the tensorT is trace-free, we get

05TA
a1 ...ak

i 1 ...i kd i 1

b1...d i k

bk. ~27!

Absorbing the deltas gives the theorem. h

Theorem III.2: In an n-dimensional space let TAa1 ...ak

b1 ...bk5TA
[a1 ...ak]

[b1 ...bk] be trace-free

on its explicit indices. If2k5n then

TA
[a1 ...ak

[b1 ...bkdak11]
bk11]

50. ~28!

Proof: The proof is analogous to the proof of Theorem II.1 but this time the antisymmet
tion is over 2k11 indices. Starting with

05TA
[a1 ...ak

i 1 ...i kdak11

bk11d i 1

b1...d i k]
bk 5TA

[a1 ...ak

i 1 ...i kdak11

[bk11d i 1

b1...d i k]
bk] , ~29!

since the tensor is trace-free, we get

05TA
[a1 ...ak

i 1 ...i kdak11]
[bk11d i 1

b1...d i k

bk] . ~30!

Absorbing the deltas gives the theorem. h

~This proof shows that this second theorem is actually true for the weaker conditionk
>n; but the validity of the second theorem when 2k.n also follows from the first theorem, which
has the more fundamental condition.!

The theorems immediately yield the familiar results in Example II.2:
Example III.3: Theorem III.1 with k52 applied to the trace-free~2,2!-form Wabcd gives

Wabcd50 whenn<3.
From Theorem III.2 we find directlyW[cd

[e fdb]
a]50 whenn<4.

An additional well-known result is found by multiplying this withWe f
cd to get

Wac
deW

de
bc5

1
4 db

aWcd
e fW

e f
cd . ~31!

Multiplying with We f
gaW

bg
cd instead yields the scalar identity cubic inWab

cd ,

Wab
ceW

cd
a fW

e f
bd5 1

4 Wab
cdW

cd
e fW

e f
ab . ~32!

The third result in Example II.2 may also be obtained—but in a more indirect manne
consider the tensorTabe f

cdkl5W[ab
[cddk

ed l ]
f ] andby a direct calculationwe can confirm its trace to

be zero in five dimensions. Hence, from Theorem III.1, it follows immediately thatTabe f
cdkl is

identically zero in five dimensions.
The results in Example II.4 can also be obtained in the same way.
As well as showing how familiar identities were direct consequences of his theor

Lovelock10 also deduced some new interesting identities. More recently, additional importan
sometimes unexpected, identities have been shown to follow from Lovelock’s theorems.12–15

However, we emphasize again that the results in Examples II.3 and II.4 cannot be de
directly from Lovelock’s theorems.

IV. GENERAL THEOREMS ON DIMENSIONALLY DEPENDENT IDENTITIES

The natural generalization of Lovelock’s theorems is the following theorem.
Theorem IV.1: In an n-dimensional space let TAa1 ...ak

b1 ...bl5TA
[a1 ...ak]

[b1 ...bl ] be trace-free

on its explicit indices. Then

TA
[a1 ...ak

[b1 ...bldak11

bl 11 ...dak1d]
bl 1d]

50, ~33!
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where n11<d1k1 l and d>0.
Proof: The proof is analogous to the proof of Theorem III.2. This time we antisymme

over k1 l 1d>n11 indices to get the identity.

05TA
[a1 ...ak

i 1 ...i ldak11

bl 11 ...dak1d

bl 1d d i 1

b1...d i l ]
bl 5TA

[a1 ...ak

i 1 ...i ldak11

[bl 11...dak1d

bl 1d d i 1

b1...d i l ]
bl ] . ~34!

Since the tensorT is trace-free, we get

05TA
[a1 ...ak

i 1 ...i ldak11

[bl 11...dak1d]
bl 1d d i 1

b1...d i l

bl ] . ~35!

Absorbing the deltas gives the result. h

Remarks:
~1! For completeness, we add that if we adopt the convention that tensors with only low

only upper indices are considered ‘‘trace-free,’’ then the above-mentioned results also hold
two classes of tensors wherek50 or l 50. In addition, for the casek50 andl 50, i.e.,T a scalar,
we simply get the trivial result of the vanishing of the Kronecker delta symbol withn11 index
pairs inn-dimensional space.

~2! The theorem generalizes Lovelock’s results by associating, inn-dimensional space, an
identity with any tensor, since—no matter what its index configuration—part of it can be con
ered as a (k,l )-form, with the above-mentioned conventions whenk50 or l 50. But it is for
trace-free double forms withkÞ0Þ l that it will be most useful. So whenl 50 or k50 andd
50 we have identity~9!; whenk5 lÞ0 andd50 this is Theorem III.1 and whenk5 lÞ0 and
d51 this is Theorem III.2. Had we wished only to generalize to the casek5 l for anyd, we could
have used Theorem III.1 directly in our proof, as in Example II.2.

~3! No stronger result onT can be obtained by taking the trace of~33!, since then the left-hand
side just collapses to zero. In addition, the discussion at the end of Sec. II would strongly s
that the conditions ond cannot be relaxed for nonzeroT; we shall confirm later in Theorem IV.5
that this is indeed so.

~4! Of course this theorem does not mean that we cannot construct results beginnin
double forms which are not trace-free. Rather, what will happen is that if we begin with su
tensor we will get an apparently more complicated identity with explicit trace terms; if the do
form is then decomposed into trace-free and trace parts, the resulting simplification will lea
with the identity which would be obtained by beginning with the trace-free part of the do
form.

We shall now illustrate the relevance of the new results in Theorem IV.1 to familiar tenso
follows,

Example IV.2:Applying Theorem IV.1 to the trace-free (2,1)-formLab
c ( l 51,k52) in di-

mensionsn53 with d51 gives the identity

L [ab
[ddc]

e]50 ~36!

and in dimensionsn54, with d52,

L [ab
[edc

f dd]
g]50. ~37!

For trace-free~2,2!-forms (l 5k52) in dimensionsn55 with d52 gives the identity

W[ab
[e fdc

gdd]
h]50. ~38!

For trace-free~1,1!-forms Sa
b ( l 5k51), in dimensionsn54 with d53 gives the identity

S[a
[edb

f dc
gdd]

h]50. ~39!
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Analogous basic identities can be found in other dimensions, and all such identities can t
exploited to build up other useful important identities, as we shall demonstrate in Sec. V.

We now consider whether we can generalize these results in another manner, by
whether any kind of converses exist. First, by way of example, we consider the identity~38!
obtained from Theorem IV.1 for the trace-free~2,2!-forms whenn<5. As mentioned in the third
remark above, we would like to confirm explicitly that the stronger conditionW[ab

[dedc]
f ] 50,

which holds in four dimensions, does not hold in dimensionsn55. A related task would be to
confirm explicitly that the same identity~38! as holds inn<5 dimensions does not hold in highe
dimensions. We shall see from Theorem IV.5 that we can confirm explicitly an even stro
version of these results.

Second, with respect to the same example, a natural question to ask is whether the tra
condition is also a necessary condition, i.e., whether any forms withnonzero tracecan satisfy this
identity W[ab

[e fdc
gdd]

h]50 in dimensionsn<5. Whether an alternative~2,2!-form—lacking the
trace-free properties but perhaps with different symmetry properties—can satisfy the basic id
is not obviously ruled out. As an example, we could ask whether a~2,2!-form like the Riemann
tensorRab

cd—lacking the trace-free properties ofWab
cd, but having the additional propertie

Ra[bcd]50 andRabcd5Rcdab—can satisfy the identities. However, we shall see from Theo
IV.6 that only trace-free~2,2!-forms satisfy the identity~38! in dimensionsn<5.

We first present a lemma which is then used in the proof of the two theorems. We emp
that this lemma is also useful in its own right, and we shall demonstrate how it can be view
a generalization of a familiar result for the Kronecker delta.

Lemma IV.3: In n-dimensional space let TAa1 ...ak

b1 ...bl5TA
[a1 ...ak]

[b1 ...bl ] , k, l and d>0 and

(k1d)( l 1d).0. Then

TA
[a1 ...ak

[b1 ...bldak11

bl 11 ...dak1d]
bl 1d] dbl 1d

ak1d5
d~n2~d1k1 l 21!!

~k1d!~ l 1d!
TA

[a1 ...ak

[b1 ...bldak11

bl 11 ...dak1d21]
bl 1d21]

1
~21!k1 lkl

~k1d!~ l 1d!
TA

c[a1 ...ak21

c[b1 ...bl 21dak

bl ...dak1d21]
bl 1d21] .

~40!

Proof: If k, l , or d is zero the lemma is trivial. Assume they are nonzero.
On the left-hand side the last two deltas combine to give

TA
[a1 ...ak

[b1 ...bldak11

bl 11 ...dak1d21

bl 1d21 dc]
c] . ~41!

By summing over all possible positions of the dummy indicesc we get

~k1d21!! ~ l 1d21!!

~k1d!! ~ l 1d!! (
i , j

ci j T
A

[a1 ...ak

[b1 ...bldak11

bl 11 ...d
ucu

bki ...dal j

ucu ...dak1d21]
bl 1d21] , ~42!

whereci j 561 depending on whether the index configuration is an even or an odd permut
It is now clear that we get only the two types of terms that are on the right-hand side o

theorem; the last type when both dummy indices are onT and the other type when at least one
them is on ad. What remains is to confirm the coefficients, which essentially means counting
many of each kind occurs and what sign they have.

When both dummy indices are onT they can be moved to the first position. That means t
they have moved a total of (k1d21)1( l 1d21) positions and changed sign equally ma
times. That gives a factor (21)k1 l . There are a total ofkl such terms.

When both dummy indices are on the samed they have moved equally many positions; th
such terms are added. There ared such terms and we also get a factorn sinced i

i5n.
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When both dummy indices are on differentd one of them can be absorbed thereby distort
the order of the other indices. Once that order is restored we have overall an odd permutatio
such terms are subtracted. There is a total ofd(d21) such terms.

The same situation occurs when one of the dummy indices is on ad and the other one is on
T. There areld such terms with the upper index onT andkd with the lower index onT.

Taking all this together gives the identity in the lemma. h

When we considerk50 andl 50, with T a nonzero constant, in Lemma IV.3 we get a famil
identity for the Kronecker delta,

Corollary IV.4: In n-dimensional space

d [a1

[b1...dad]
bd]dbd

ad5
~n2d11!

d
d [a1

[b1...dad21]
bd21] . ~43!

We now use Lemma IV.3 to establish the two theorems.
Theorem IV.5: In an n-dimensional space let TAa1 ...ak

b1 ...bl5TA
[a1 ...ak]

[b1 ...bl ] . If

TA
[a1 ...ak

[b1 ...bldak11

bl 11 ...dak1d]
bl 1d]

50 ~44!

then

n11.d1k1 l⇒TA
a1 ...ak

b1 ...bl50. ~45!

Proof: The basic idea is to repeatedly take traces of Eq.~44! getting a sequence of equation
in the last of these nod remains. The result follows from substituting equations at the end of
sequence into earlier ones. However, care must be taken so that no unwanted canceling o
occur which forces this process to stop prematurely.

To make the proof easier to overview we define the following notation. Let (d,k,l )
5TA

[a1 ...ak

[b1 ...bldak11

bl 11 ...dak1d]
bl 1d] and if k andl are less than the actual number of indices onT then

we contract over the remaining ones. Thus Lemma IV.3 can be written as

trace~d,k,l !5
d~n2~d1k1 l 21!!

~k1d!~ l 1d!
~d21,k,l !1

~21!k1 lkl

~k1d!~ l 1d!
~d,k21,l 21!

andT itself as (0,k,l ) and the trace ofT as (0,k21,l 21).
We observe that the coefficients in Lemma IV.3 are nonzero ifd is nonzero andk and l are

nonzero, respectively.
First assume thatk1 l is even, then the coefficients in Lemma IV.3 are non-negative. S

with Eq. ~44! and multiply with dbl 1d

ak1d and use Lemma IV.3. Then we get 05(d21,k,l )1(d,k

21,l 21) where we have omitted the coefficients.
Doing that once more gives us 05(d22,k,l )1(d21,k21,l 21)1(d,k22,l 22). Repeating

this process gives a sequence of equations as illustrated in Fig. 1 where each row corresp
one equation.

The last equation is 05(0,k2 l ,0) ~assumingk> l !. Putting this into the second to last equ
tion gives 05(0,k2 l 11,1) by using that 05( j ,k,l )⇒05( j 11,k,l ). Feeding the new informa
tion into earlier equations gives the desired conclusion 05(0,k,l ).

If k1 l is odd then there is a minus sign in Lemma IV.3, which means that there is a ri
cancellation in the above-mentioned process. However, checking how the signs propagate g
Fig. 2 where the sign at a node is the sign of the term and the sign at the edge is the sign
coefficient in the identity in Lemma IV.3.

It is now clear that there will be no cancellations since each term originates as the diffe
between two terms with different sign. h
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Theorem IV.6: In an n-dimensional space let TAa1 ...ak

b1 ...bl5TA
[a1 ...ak]

[b1 ...bl ] where n11
>k1 l and let d5n2k2 l 11. Then

TA
[a1 ...ak

[b1 ...bldak11

bl 11 ...dak1d]
bl 1d]

50⇔TA
a1 ...ak

b1 ...bl is trace-free on its explicit indices.

~46!

Proof: ⇐: Follows directly from Theorem IV.1
⇒: The cased50 is trivial. Assumed.0. Contracting

05TA
[a1 ...ak

[b1 ...bldak11

bl 11 ...dak1d]
bl 1d]

~47!

once and using Lemma IV.3 gives

05TA
i [a1 ...ak21

i [b1 ...bl 21dak

bl ...dak1d21]
bl 1d21] . ~48!

The theorem now follows from Theorem IV.5 applied to the tensor

T̃A
a1 ...ak21

b1 ...bl 215TA
ia1 ...ak21

ib1 ...bl 21. ~49!

h

Example IV.7:We know that for the Weyl curvature tensorCabcd @a trace-free symmetric
~2,2!-form#, C[ab

[e fdc
gdd]

h]50 in dimensionsn<5. From Theorem IV.5 we can conclude that th

FIG. 1. Sequence of equations.

FIG. 2. Signs.
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tensor@or indeedany nonzero~2,2!-form# cannot satisfy the stronger conditionC[ab
[dedc]

f ] 50 in
dimensionsn>5; in addition we can conclude that there are absolutely no nonzero~2,2!-forms
Tab

cd satisfyingT[ab
[e fdc

gdd]
h]50 in dimensions greater than five.

From Theorem IV.6 we can conclude that there are no~2,2!-forms Rab
cd with nonzero trace

~e.g., a Riemann tensor! satisfying the identityR[ab
[e fdc

gdd]
h]50 in dimensionsn55.

The trace in Lemma IV.3 is not the only trace that is possible for expressions of the typ
are investigating. For completeness we here present the other possibility.

Lemma IV.8: Let TAa1 ...ak

cb1 ...bl5TA
[a1 ...ak]

c[b1 ...bl ] , k and d>0 and k1d.0. Then

TA
[a1 ...ak

c[b1 ...bldak11

bl 11 ...dak1d]
bl 1d] dc

ak1d5
d~21! l 1d21

k1d
TA

[a1 ...ak

[b1 ...blbl 11dak11

bl 12 ...dak1d21]
bl 1d]

1
k~21!k1d21

k1d
TA

c[a1 ...ak21

c[b1 ...bldak

bl 11...dak1d21]
bl 1d] .

~50!

Proof: If k or d is zero the lemma is trivial. Assume they are nonzero.
Absorbing the last delta on the left-hand side gives

TA
[a1 ...ak

c[b1 ...bldak11

bl 11 ...dc]
bl 1d] . ~51!

By summing over all possible positions of the lower dummy indexc we get

~k1d21!!

~k1d!! (
i

ciT
A

[a1 ...ak

c[b1 ...bldak11

bl 11 ...d ucu
bi ...dak1d21]

bl 1d] , ~52!

whereci561 depending on whether the index configuration is an even or an odd permuta
When thec is on a delta it can be absorbed giving terms of the same type as the first te

the right-hand side of~50! There ared such terms and on each of them the indices have b
moved a total ofl 1d21 steps.

When thec is on T it can be moved to the first position of the lower indices giving terms
the same type as the second term on the right-hand side of~50!. There arek such terms and on
each of them the index has been moved a total ofk1d21 steps. h

V. APPLICATIONS

In the previous sections we have noted that, associated with each tensor are a num
fundamental identities; and it is from such identities that more involved and more subtle ide
can be constructed, which in turn yield familiar identities. So, we shall now exploit our resu
two particular types of applications.

A. Identities involving scalar invariants of Riemann tensors

Relationships between scalar invariants of tensors@such as~2!, ~3!, and ~32!# play a very
important role in classical invariant theory, as well as in many practical applications. For ins
the study of the scalar invariants of the Riemann tensor in four dimensions has posed
interesting problems, which have not all been resolved.3,5–9,16,17The theorems given in this pape
provide important tools for a systematic study of invariants of the Weyl, trace-free Ricci,
Lanczos tensors. However, now we shall just apply our results to some representative exa

Example V.1:Although we can form different scalars from two~2,2!-forms Wab
cd, in four

dimensions, the simplest basic identity isW[cd
[e fdb]

a]50 ~with 6 free indices!, and so we can
immediately see that it cannot yield relationships between scalar invariants involving only
~2,2!-forms.
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However, we already know that multiplying this identity byWe f
gaW

bg
cd gives us the scala

identity ~32!, which yields a relationship between some cubic scalar invariants; while multipl
by other quadratic terms will give different relationships between different cubic scalar invar
Clearly we can also choose various suitable expressions involving three~2,2!-forms, which will
yield scalar identities of fourth order when multiplied withW[cd

[e fdb]
a]50. Hence, it is possible to

investigate, for each order, all such possible relationships between all scalar invariants
order.

When we consider higher dimensions we have analogous basic identities. Infive dimensions
the simplest basic identity isW[ab

[e fdc
gdd]

h]50 ~with eight free indices!, and hence the lowest orde
where we can get relationships between scalar invariants from this identity is also at third
while in six dimensionswith the simplest basic identity having 10 free indices there can exis
relationships between scalar invariants at third order coming from this identity. These resu
be applied to the Weyl tensor, where they may simplify a little because of its extra symme

It is interesting to note that Dianyan Xu’s work2 was motivated by a concern that nontrivi
relationships might exist between counterterms in the Lagrangian~essentially invariant scalar
constructed from products of the Riemann tensor! of a renormalizable quantum field theory;
particular, if his identities~2!, ~3!, or any other cubic scalar identities, are true in six dimensi
then work by Jack and Parker4 would need to be reevaluated. However, Jack and Parker5 have
subsequently shown explicitly that no such third-order identities can exist in six dimension
result in the above-mentioned example agrees with this. Jack and Parker5 have conjectured that in
2n dimensions there do not exist any identities between Riemann scalars of ordern; we shall
show how our results relate to this conjecture in a subsequent paper.

Example V.2:In order to confirm that the second identity found in Ref. 2 was a fo
dimensional one, Harvey first established the intermediate third-order identity~5! by antisymme-
trizing oversix indices and this intermediate identity is therefore valid in five as well as in
dimensions; in our previous example we noted that five dimensions was the lowest dime
where such third-order identities could be constructed for the Weyl tensor. However, one
suspect that the second four-dimensional identity~3! could be obtained directly; this is confirme
by using the four-dimensional identityC[cd

[e fdb]
a]50 and expandingCe f

aiC
ib

cdC
[cd

[e fdb]
a]50. It

can also be obtained, in the manner of Harvey, by antisymmetrizing over 5 indices and exp

Rab
[abR

e f
cdR

cd
e] f50. ~53!

Example V.3:An important application of the identity in Example IV.2 is to find relationsh
between scalar invariants of the Lanczos potential11 in four dimensions. Since the identit
L [ab

[edc
f dd]

g]50 has seven free indices, the lowest order relationship between scalar invarian
we can obtain from it is of order four. For example, by expanding

05L [ab
[edc

f dd]
g]Lab

eL f g
hLcd

h , ~54!

we obtain the relationship

05LabcL
abcLde fL

de f1LabcL
ab fLde fL

dec24La f cL
aecLdehL

d f h22LabcL
abdLde fL

ce f

24LabcL
ad

fL
b f hLc

dh . ~55!

This of course will not be the only relationship; we could instead multiply the original identity
Lab

eL f h
cLg

hd. Therefore, we can investigate all possible contractions of the original identity
three Lanczos tensors and find the corresponding relationship between all possible quartic L
scalars in a systematic manner.

There is an important caveat in the above-given examples. By a systematic study we a
to obtain all relationships between scalar invariants of a particular orderwhich arise from our
dimensionally dependent identities. Of course, we would like to be able to conclude that we ha
obtainedall such possible relationships. Recent work on invariant theory by Gover18 links rela-
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tionships involving scalar invariants of tensors inn dimensions to antisymmetrizing overn11
indices. Although this does not, at this stage, enable us to conclude that all relationships b
scalar invariants originate from our dimensionally dependent identities, it would lead us to b
that the results in this paper will be useful in such difficult tasks as determining complete
independent sets of scalar invariants, and their syzygies.

B. Simplifying complicated expressions in four dimensions

There have recently been situations12–15 where rather complicated tensor expressions inn
dimensions have been shown, unexpectedly, to be identically zero when specialized to fo
mensions via Lovelock’s theorems. So we would anticipate that the more general results ob
in this paper should also be useful in simplifying such expressions, and we now give
examples.

Example V.4:In Ref. 13 Lovelock’s identities were used to show that, when the wave equ
for the Weyl tensor is constructed from the Bianchi identities, the sum of terms which inv
products of Weyl and trace-free Ricci tensors disappeared infour, and only four, dimensions,
because from the four-dimensional identityC[ab

[dedc]
f ] 50 we can obtainC[ab

[dedc]
f ] R̃f

c50 whose
left-hand side, when expanded, is precisely this sum of terms.

We shall now show that the analogous component of the Bel tensor19 disappears in four
dimensions by virtue of the same identity. The Bel tensor is given inn dimensions by

Babcd5Raec fRb
e
d

f1Raed fRb
e
c

f2 1
2 gabRe f cgR

e f
d

g2 1
2 gcdRae f gRb

e f g1 1
8 gabgcdRe f ghR

e f gh.
~56!

When the standard decomposition is substituted we obtain20

Babcd5Tabcd1Qabcd1Mabcd, ~57!

whereTabcd is the Bel–Robinson tensor consisting of quadratic terms in the Weyl tensor,Mabcd

consists of quadratic terms in the Ricci tensorRab , andQabcd consists of products of Weyl an
Ricci components~gravity-matter coupling term!,21

Qabcd5
1

n22
~24Ci

(cd)(aR̃b) i24Ci
(ab)(cR̃d) i

12R̃i j ~Ca
i
(c

jgd)b2Cc
i
d

jgab1Cb
i
(c

jgd)a2Ca
i
b

jgcd!!1
2

n~n21!
R~Cacbd1Cadbc!.

~58!

The structure ofQ ~maximum of one delta, or equivalently as presented here with some in
lowered, maximum of oneg! suggests that we investigate thefour-dimensional identity
C[ac

[bdde]
f ] 50; when we multiply this identity byR̃f

e we obtain the identity

Cdi j [agc]bR̃i j 2Cbi j [agc]dR̃i j 1Caci[bR̃b]
i1Cbdi[aR̃c]

i50. ~59!

By symmetrizing over the index pair (cd) we get precisely the identity

4Ci
(cd)(aR̃b) i14Ci

(ab)(cR̃d) i22R̃i j ~Ca
i
(c

jgd)b2Cc
i
d

jgab1Cb
i
(c

jgd)a2Ca
i
b

jgcd!50 ~60!

and so the gravity–matter coupling term~58! simplifies, in four dimensions, to

Qabcd5R~Cacbd1Cadbc!/6. ~61!
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Bonilla and Senovilla20 have obtained this result, but since they were working with duals, they
not encounter the four-dimensional identity explicitly; Zund22 has also found the remarkabl
simple gravity–matter coupling term, using spinors.

The possibility of thefive-dimensionalidentity C[ab
[cdde

f dh]
g]50 supplying significant simpli-

fication is obviously ruled out since, after multiplication with one trace-free Ricci tensor, there
still be at least one term with two deltas.

Example V.5:The four-dimensional identity for the Lanczos potentialLab
c,

2Lde fg[aucuCb]de f22L [a
deCb]edc2

1
2 Lde

cCdeab50 ~62!

plays an important role in the derivation of the wave equation of the Lanczos potential.23 Its
existence was first noted because the spinor equivalence of the left-hand side collapsed;
quently, it was proven by Edgar12 by using four-dimensional duals, and also by using Loveloc
four-dimensional identityC[ab

[cdde]
f ] 50. We can also deduce it by using the four-dimensio

identity in Example IV.2, and then expanding

L [ab
[cdd

f de]
g]Cde

f g50. ~63!

The remaining examples involve identitities which cannot be deduceddirectly from Lovelock’s
identities.

Example V.6:In Ref. 16, Bonanos demonstrated that a complicated tensor

xabcd8 5R̃acR̃b
mR̃md1R̃bdR̃a

mR̃mc2R̃adR̃b
mR̃mc2R̃bcR̃a

mR̃md1R̃a
mR̃m

nR̃ncgbd1R̃b
mR̃m

nR̃ndgac

2R̃a
mR̃m

nR̃ndgbc2R̃b
mR̃m

nR̃ncgad2 1
2 ~R̃mnR̃

mn!~R̃acgbd1R̃bdgac2R̃adgbc2R̃bcgad!

2 1
3 ~R̃mnR̃

mrR̃n
r !~gacgbd2gadgbc! ~64!

of third order in the trace-free Ricci tensorR̃ab , which had been used in the study of Riema
invariants in four dimensions,17 was in fact, surprisingly, identically zero.

In Ref. 14 it was demonstrated how this result could be seen as anindirect consequence o
Lovelock’s results.10 By applying Theorem III.2 to the trace-free Plebanski tensorPab

cd which is
the ‘‘square’’ of the Ricci tensor given by

Pab
cd52R̃[a

[cR̃b]
d]12R̃[a

iR̃u i u
[cdb]

d]2 1
3R̃j

i R̃i
jd [a

c db]
d , ~65!

the following identity of second order in the trace-free Ricci tensor was obtained:

2R̃[a
[cR̃b

dde]
f ] 12R̃[a

iR̃u i u
[cdb

dde]
f ] 2 1

3R̃j
i R̃i

jd [a
c db

dde]
f 50. ~66!

It was then shown in Ref. 14 that the identically zero tensorxabcd8 found by Bonanos was just
direct consequence of multiplying the identity~66! by R̃f

e.
But we now have the complete picture. The basic identity in four dimensions for the trace

Ricci tensor is the first-order identity~39!,

R̃[a
[cdb

dde
f dg]

h]50. ~67!

By successive multiplications by the trace-free Ricci tensor we obtain, first of all, the identity~66!
which is second order in the trace-free Ricci tensor; subsequently by multiplying the left-han
of ~67! by R̃f

eR̃h
g we obtain the third-order identity which isxabcd8 identically zero, and finally the

fourth-order identity, which is the Cayley–Hamilton theorem for the matrix representation oR̃a
b

in four dimensions, as shown in Ref. 14.
Example V.7:The Bel–Robinson tensor24 is given inn dimensions by
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Tabcd5Caec fCb
e
d

f1Caed fCb
e
c

f2 1
2 gabCe f cgC

e f
d

g2 1
2 gcdCae f gCb

e f g1 1
8 gabgcdCe f ghC

e f gh.
~68!

It is obviously symmetric over the first and last pair of indices, but in order to investigat
symmetry overall indices we need to examine,

Ta[bc]d5 1
4 Cade fCbc

e f2Cea f[bCc]
e
d

f2Cf ge[agd][ bCc]
e f g1 1

8 ga[bgc]dCe f ghC
e f gh. ~69!

Its structure~maximum of two deltas! suggests that we investigate the five-dimensional iden
C[bc

[adde
gd f ]

h]50; by multiplying withCgh
e f we obtain precisely the right-hand side of~69!. So the

Bel–Robinson tensor is completely symmetric in both four and five dimensions, but of cours
calculation does not give us any information about higher dimension.@Although we know that
C[ab

[cddg
edh]

f ] 50 is not an identity in higher dimensions, we are considering the more complic
expression~69!.# However, by taking the nontrivial double trace on~69! we obtain

T a
[ab]

b5
~n24!~n25!

16
CabcdC

abcd, ~70!

which shows that the dimensions four and five are both necessary and sufficient conditions
Bel–Robinson tensor to be completely symmetric.

The fact thatTabcd is completely symmetric, in, and only in, dimensions four and five w
originally given by Senovilla21 from its definition in terms of duals, but in a less direct mann
where each dimension was considered separately.

Example V.8:The Bel–Robinson tensor~constructed from the Weyl tensor!, discussed in the
last example, has the wrong dimension for energy, so Roberts25 has proposed instead using a
analogous construction with the Lanczos potential of the Weyl tensor which has the c
dimensions for energy. He has suggested looking at the most general expression quadrati
Lanczos potential, but if instead we use Senovilla’s definition ofsuper-energy tensor21 we find
the super-energy tensor associated with the Lanczos potentialLab

c @a trace-free~2,1!-form# is
given in n dimensions by

T abcd
L 5LaecLb

e
d1LaedLb

e
c2 1

2 gabLe f cL
e f

d2gcdLae fLb
e f1 1

4 gabgcdLe f gL
e f g. ~71!

It is obviously symmetric over the first and last pair of indices, respectively. It is not symm
over all indices which can be shown by choosing a local orthonormalized basis andL131

52L31152L2325L32251, all others zero inn dimensions. ThenT 1[12]2
L 56 1

2 ~the sign depends
on the signature!.

The Bel–Robinson tensor in the previous example had the pairwise symmetryTabcd

5Tcdab. That symmetry can be imposed on the super-energy tensor for the Lanczos poten
examining

TL
abcd5

1
2T abcd

L 1 1
2T cdab

L ~72!

instead. In order to investigate whether this makes it symmetric overall indices we examine

TLa
[bc]

d5TL[a
[bc]

d]5 1
4 LbceL

ade2L [a
e[bLc]

ueud]2 1
2 d [b

[aL ue fuc]L
ue fud]2d [b

[aLc]e fL
d]e f

1 1
4 d [b

a dc]
d Le f gL

e f g. ~73!

Its structure~maximum of two deltas! suggests that we investigate the four-dimensional id
tity L [e f

[gdb
adc]

d]50. By multiplying with Le f
g we obtain the right-hand side of~73!, so TL

abcd is
completely symmetric in four dimensions and lower. It is, however, necessary to use the add
symmetry of the Lanczos potentialL [abc]50 so this result does not hold for any~2,1!-form.

By taking the nontrivial double trace of~73! we obtain~by usingL [abc]50 again!
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TLa
[ab]

b5
~n24!~n23!

8
LabcL

abc, ~74!

which shows that the dimension being four or less is both a necessary and sufficient condit
the symmetrized super-energy tensorTL

abcd for the Lanczos potential to be completely symmetr
Although we can follow Senovilla’s construction for the super-energy tensor from any~2,1!-

form Lab
c in n dimensions, we should point out that the Lanczos potential for the Weyl tens

unlikely to exist generally in dimensions above four.15

Example V.9:The four-dimensional algebraic Rainich identity associated with the en
momentum tensorTa

b5Fa
cF

c
b2 1

4db
aFc

dFd
c of an electromagnetic fieldFab is given by

Ta
cT

c
b5 1

4 db
aTc

dTd
c . ~75!

When written out in full this identity is

Fa
cF

c
dFd

eF
e
b2 1

2 Fa
cF

c
bFd

eF
e
d2 1

4 db
aFc

dFd
eF

e
fF

f
c1 1

8 db
aFc

dFd
cF

e
fF

f
e50. ~76!

But this is simply the Cayley–Hamilton theorem forFa
b as given in Example I.2,

Fc
[cF

d
dFe

eF
f
fdb]

a 50 ~77!

when specialized to antisymmetricFab . Equivalently the structure immmediately suggests s
cializing the four-dimensional identity for trace-free~1,1!-formsF [ f

[cdd
gde

hdb]
a]50 given in~39! to

antisymmetric forms, from which we obtain the identity

F [ f
[cdd

gde
hdb]

a]Fc
fF

d
gFe

h50 ~78!

which, when expanded and specialized to antisymmetricFab , is identical to~76!
A more direct way to obtain~76! is to expand

FcdFe fF [cdFe fdb]
a 50. ~79!

VI. SUMMARY AND DISCUSSION

Of course, Lovelock’s identities and our generalizations found in this paper are not
‘‘new’’ since they are just simple and direct specializations of those fundamental identities f
by antisymmetrizing overn11 indices inn dimensions. Rather, the significance of these identi
is that they highlight the fact that there exist heavily disguised versions of these fundam
identities when trace-free and antisymmetry properties are also introduced; and since we of
dealing with tensors with these explicit properties it is often the specializations of the fundam
identities which are relevant in practical applications.

The use of dimensionally dependent identities is a powerful method which has been l
overlooked, perhaps because of its simplicity. A very striking example of this is to be seen
algebraic Rainich condition for the electromagnetic energy tensor in four dimensions. Ov
past 75 years this condition has been obtained by a variety of very different methods: Ra26

used invariant planes, while others have used duality rotations,27 complex duals,28,29 and compli-
cated matrix manipulation based on the Cayley–Hamilton theorem;30 in spinors, a simple direc
calculation has been given.1 In fact Rainich’s result was one of the motivations for Lovelock
work10 and although he rederived the result using an explicit four-dimensional identity,10,31 it is
still a somewhat roundabout and contrived calculation. We have shown in example V.9 th
result can be viewed as simply the four-dimensional Cayley–Hamilton theorem when cons
as a dimensionally dependent identity, or equivalently a trivial application of our basic resu

In this particular example, as in the others in Sec. V, we have been able to focus direc
the fundamental dimensionally dependent identity underlying the result. By identifying this
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derlying identity in our various applications to four dimensions in this paper, we are in a po
to explore directly the possibility of generalizations to other dimensions and to other forms
shall present such generalizations in a subsequent paper.

Of course, it is possible to establish results peculiar to four dimensions without having to
explicitly with dimensionally dependent identities; this is most easily done by using spinors, w
the dimension is built into the formalism. Indeed, it was the apparent discrepency between
in spinors and tensors which originally gave the clue to the existence of a number of
four-dimensional identities. If we were only dealing with four-dimensional spaces with Lor
signature, then spinors would be the more efficient formalism to use; on the other han
advantage of the tensor formalism is that once we have identified the underlying four-dimen
tensor identity, generalizations to other dimensions can be sought.

In a similar way, when explicit four-dimensional duals are used, then the dimension can
be built in by some of the identities satisfied by duals. For instance, the key identities asso
with duals in work on super-energy tensors by Senovilla@Eqs. ~2! and ~3! in Ref. 21# have
dimensionn built in explicitly; so these are dimensionally dependent identities constructed
identities of the form

T[a1

A ha2a3 . . . an11]50. ~80!

In this context, it is significant that the four-dimensional identity~31! is obtained in Ref. 21
essentially by taking double duals.

As emphasized in Sec. V, important applications of these results will be to Riemann te
Of course the Riemann tensor has additional symmetries to those of a~2,2!-form; these additional
symmetries have not been explicitly considered in this paper, but would need to be cons
explicitly in an exhaustive treatment of invariants of the Riemann tensor.

In conclusion, we emphasize that when examining what actually was required in the pro
the theorems in Sec. IV one discovers that very little structure was needed. First, the resul
pointwise so the manifold structure is not needed. Second, there was no raising or lower
indices so no assumption on what to use for that is needed; indeed not even the existence
operations is needed. Third, no metric was used. This means that those theorems can be a
objects other than tensors, e.g., spinors whenn52; matrices when the number of indices on t
objects are appropriate; or other indexed objects such as Christoffel symbols or tensors in
dinate index notation or tetrad index notation.
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We present numerical evidence that singularities form in finite time during the
evolution of 211 wave maps from spherically equivariant initial data of sufficient
energy. © 2002 American Institute of Physics.@DOI: 10.1063/1.1418717#

I. INTRODUCTION

While it has been shown that wave maps on a 111-dimensional Minkowski spacetime bas
evolved from smooth initial data exist for all time,1,2 and that those on anm11 (m>3)
Minkowski spacetime base can blow up in finite time,3 the global existence for the 211 case
remains as yet unresolved. Scaling considerations identify 211 as the critical dimension for wav
maps, and so there is considerable interest in determining if indeed 211 wave maps develope
from smooth initial data can become singular in finite time or not. Here, we describe num
work that strongly supports the contention that, at least for some sets of smooth initial data
can.

There are special classes of 211 wave maps for which global existence has been show
hold: ~a! spherically equivariant wave maps with convex,4 or slightly more general targets,5 ~b!
spherically symmetric wave maps with compact targets~plus a further technical condition on th
target!,6 ~c! general wave maps~general target! with sufficiently small energy.

Not included in any of these three classes are spherically equivariant wave maps from11
Minkowski spacetime into the round two-sphere with initial data of arbitrary energy. Shatah
Struwe7 have conjectured that singular behavior should be found in this class. Our num
results reported here strongly support the validity of this conjecture.

We examine one-parameter families of data, with small values of the parameter corresp
to small energy data and therefore global existence, and with large values of the par
corresponding to data possibly leading to singularity formation. One might hope to find espe
interesting wave map development for data at or near the transition between small and
values. While this sort of ‘‘critical’’ behavior has been seen and studied in 311 wave maps,8,9 we
have not found nearly as clear an indication of universal critical behavior for the present11
case. This criticality issue needs further study, and is not treated in this paper. Here, our fo
on numerical evidence for singular wave map evolution from regular initial data.

We note that our studies of singularity formation in 211 wave maps have been carried o
independently of the work of Bizon´, Chmaj, and Tabor10 using numerical algorithms that diffe
from theirs. However, their results and ours agree substantially.

II. THE EQUATIONS

Generally a wave map is defined to be a mapfA from a spacetime~the ‘‘base’’! into a
Riemannian geometry~the ‘‘target’’!, with fA a critical point for the action

a!Electronic mail: jim@newton.uoregon.edu
b!Electronic mail: steve@mozart.liu.edu
6780022-2488/2002/43(1)/678/6/$19.00 © 2002 American Institute of Physics
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S@f#5E
Mm11

hmngAB~f!~]mfA ]nfB!, ~1!

wheregAB is the Riemannian metric on the target manifoldNn, andhmn is the~inverse! Lorentz-
signature metric on the spacetimeMm11. The Euler–Lagrange equations for this action take
form

]m]mfA1GBC
A ]mfB ]mfC50, ~2!

whereGBC
A represents the Christoffel symbols corresponding to the target metricgAB . This is a

semilinear hyperbolic PDE system forfA. We note that for certain targets, wave maps are kno
to physicists as ‘‘nonlinear sigma models.’’

As noted above, the case of primary interest here is 211 Minkowski spacetime for the bas
and the round two sphere for the target. In this case, the wave map PDE system~2! may be
rewritten in the following form:

hfa1~]mfb ]mfc!dbcf
a50, ~3!

where the indicesa,b,c take the values$1,2,3% ~indexing the ambient Euclidean 3-space for t
target two sphere!, anddbc is the metric for this ambient space. If we now impose the condi
that the mapsfa be spherically equivariant with angular wrapping numberk, and writefa(r ,u,t)
in the ‘‘hedgehog’’ form

fa5S sinx~r ,t !sinku
sinx~r ,t !cosku

cosx~r ,t !
D , ~4!

wherer is the radial distance from the origin andu is the azimuthal angle; then the wave map PD
system~2! reduces to the single equation,

ẍ5
1

r
~rx8!82

k2 sin 2x

2r 2 ~5!

where a prime and an overdot denote partial derivatives with respect tor andt, respectively. Thus,
the study of the Cauchy problem for 211 spherically equivariant~k-wrapped! wave maps into the
round two sphere focuses on finding solutionsx(r ,t) to Eq. ~5! with regular initial data
x(r ,0),ẋ(r ,0). Note that regularity atr 50 requires that we setx(0,t)50 for all t.

While it may be interesting to examine if there is any variation of the behavior of solution
wrapping numbersk greater than one, we restrict our attention here to the single angular wra
casek51.

As for any field theory on Minkowski space, there is a divergence-free stress–energy
Tmn associated with wave maps. FromTmn , we obtain the energy density function for spherica
equivariant wave maps,

r~r ,t !5
1

2
@ ẋ21~x8!2#1

sin2 x

2r 2 , ~6!

whose integral

E~ t !5E
r
r~r ,t !r dr ~7!

is conserved@i.e., E(t)5E(0) for all t#. The energy is a useful monitor of numerical accuracy,
discussed below.
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III. NUMERICAL STUDIES OF SINGULARITY FORMATION

Our numerical experiments consist of specifying parametrized families of initial
$xl(r ,0),ẋl(r ,0)% and numerically evolving a number of sets of such data in each famil
typical family—one of the simplest—is the approximately ingoing Gaussian pulse,

x~r ,0!5Ae2~r 2R0!2/d2
, ẋ~r ,0!5x8~r ,0!. ~8!

This family has three parametersA, R0 , andd, with the most important one for our discussio
being the scale parameterA. Note that the ingoing character of these solutions, which results f
the choice ofẋ(r ,0), minimizes outer boundary effects. Note also that while, analytically,x~0,0!
is not zero, for the choices ofR0 andd that we make, we can forcex~0,0! to be zero and retain
smoothness to within numerical accuracy.

We evolve using a second-order finite difference approximation to Eq.~5!. We use an iterative
Crank–Nicholson scheme implemented with RNPL,11 and also make use of the adaptive me
framework developed by Choptuik.12 We have verified that the code generates solutions
converge quadratically in the grid spacing and conserve energy. In arguing that we are
generating singularities, we will discuss the convergence and energy conservation tests i
detail below.

For a general set of ingoing Gaussian pulse data, regardless of amplitude, the wav
evolution has the pulse maximum and energy density maximum initially moving inward~decreas-
ing r!. For small~subcritical! values ofA, this inward motion of the maximum proceeds for a fin
time, after which the maximum ‘‘bounces’’ away from the origin and begins to move outward~see
Fig. 1!. There is a general dispersal of the energy density; and for larget, there is very little energy
density remaining near the origin.

For large~supercritical! values ofA, the behavior of the evolving wave map is qualitative
the same initially. However, rather than bouncing away from the origin, the maxima for s
critical data continue to approach the origin~Fig. 1!, with the concentration of energy around th
origin appearing to grow without bound. As the energy density and the gradient of the funcx
grow very large at the origin, the numerical evolution inevitably becomes unable to resolv
gradient, and the solution becomes sufficiently nonsmooth to cause the numerical evolu

FIG. 1. Snapshots of the energy densities~timesr! for a single family of initial data with varying amplitude. Att50 the
initial energy densities corresponding to ingoing Gaussian initial data (R058,d52.3) are shown. Supercritical (A51.4) is
shown as long-dashed line that exists only untilt56. Subcritical (A51.0) is shown as a solid line. Two near-critica
evolutions are also shown: slightly subcritical (A51.19) is shown as a dotted line and slightly supercritical (A51.195) is
shown as a short-dashed line. The two near-critical evolutions coincide at the scale of this graph untilt512 after which we
cannot compute the apparently singular supercritical solution. The energy densities reached by the supercritical
extend significantly off the scale of this graph.
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stop. If this accumulation is indeed a singularity forming, there is no hope for the nume
evolution to resolve it, being itself of finite resolution. The task then is to examine the behav
the numerical solution up to this point.

Before doing so, we first discuss a couple of standard tests of a numerical solution. W
x(r ,t) be some solution to the~continuum! partial differential equation~5! and letx̃h(r ,t) be the
solution to a discrete form of that equation, for corresponding initial data, on a grid spach
[Dr . The hope is that, as the grid spacingDr gets smaller, the solutions to the discrete equat
generated by the evolution code converge to the solutions of the PDE,x̃(r ,t)→x(r ,t). Because in
general the explicit solutions to the PDE are unknown, we instead consider a series of num
solutions on grids of increasing resolution, sayx̃4h ,x̃2h ,x̃h . If these are to converge to the PD
solution, then they must converge themselves. To examine this convergence, we define a
gence factor~Q! as follows:

Q[
ux̃4h2x̃2hu2
ux̃2h2x̃hu2

, ~9!

where the norms are thel 2 norm. For these solutions to converge, the difference between solu
for increasing resolution must decrease and henceQ must be greater than one. For second-or
schemes,Q is expected to be 4.

Another common test of numerical accuracy focuses on the degree to which energy i
served by the numerical evolution. The evolution governed by the PDE~5! does conserve energy
the question is whether this remains true for the numerical evolution. LettingEnum(t) denote the
energy calculated from the numerical solution at timet ~on the finite grid!, and settingD(t)
[ lnu(Enum(t)2Enum(0))/Enum(0)u, we monitorD(t) for different choices of grid spacing. Th
expectation is thatD(t) should decrease with increasing resolution; if we observe this, our
fidence in the accuracy of our numerical solution is enhanced.

In Fig. 2, we show the evolution in time of three quantities—lnx8(0,t), Q(t), andD(t)—for
numerical runs of supercritical ingoing Gaussian pulse data, done with nine different grid
ings. In the top frame, we show the behavior of the derivative ofx at the origin as a function o
time. The figure shows that as the pulse travels inward, the derivative increases. Until just
t58, all the resolutions show the same behavior as would be expected for a convergent evo

FIG. 2. Results of a supercritical evolution for an initially ingoing Gaussian pulse (A52,R0510,d52.3,Rmax530). The
results are shown for increasing resolutionsn528 ~solid!, n529 ~dot!, n5210 ~short dash!, n5211 ~long dash!, n5212

~dot–short dash!, n5213 ~dot–long dash!, n5214 ~short dash–long dash!, n5215 ~solid!, and n5216 ~dot!, where h
5Rmax/n. The top frame shows the rapid growth ofx8(0,t) near the time of the blowup (t'8). The middle frame shows
the convergence factor@defined in Eq.~9!#. Factors greater than one indicate convergence. The bottom frame show
change in energy with respect to the initial energy. As the resolution increases, so does the level of energy cons
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However, near the blow-up time, the solutions diverge with higher resolutions providing a l
derivative. The convergence factorQ(t) is shown in the middle frame; it likewise shows secon
order convergence up to times close to the blow-up time. In the bottom frame, the chan
energyD(t) is shown. We see that as the resolution is increased, energy conservation imp

What does this tell us about singularity formulation in wave maps evolved from~supercritical!
ingoing Gaussian pulse data? We first argue that these results are consistent with what w
expected for such a formation. As the singularity forms, higher- and higher-frequency compo
become important, and they are represented numerically only if one uses higher and high
resolutions. Hence, the behavior of the derivative ofx as the resolution improves would b
expected to show larger and larger gradients, as seen in Fig. 2~a!. Next, we note that the formation
of a singularity should not hinder convergence except quite near the formation time, as is s
Fig. 2~b!. Finally, energy conservation should be fine until the high-frequency components
their role, as we see in Fig. 2~c!. Hence, the results observed appear to be consistent w
singularity forming neart58.

This does not guarantee that a singularity forms in these wave maps. There are other
that might produce the apparently unbounded growth of the derivative ofx and of the energy
density near the origin in these numerical simulations. For example, perhaps some unph
unstable mode grows because of the particulars of our chosen evolution scheme. We belie
this is not the case, for a number of reasons. First, the presence of such a mode would likel
much larger growth inD(t) than we see. Second, such modes would have to be excited only
some time~roughly independent of resolution! and only for families of sufficiently large energy
This is not consistent with our observations. Third, the excitation of this sort of instability w
almost certainly depend critically on the precise finite difference scheme. Because Bizon´ and his
collaborators10 observe similar behavior, using a different numerical evolution scheme, this
not appear to be the case. Thus, we believe it very unlikely that the effects we are seeing
result of a numerically unstable nonsingular mode.

Another situation in which one might numerically observe the formation of singularities
do not, in fact, evolve analytically from the corresponding data is if the continuum PDE sol
is regularized by high-frequency components which cannot be seen by the finite grid reso
we use. The rather strong convergence behavior we see in our numerical solutions lead
believe that this is not happening. We note in particular that such unresolved components
have to be separated in frequency space from the nontrivial low-frequency components
substantial margin, with a large range of dynamically irrelevant frequencies separating th
regimes. This seems to be very unlikely.

IV. CONCLUSION

The numerical studies we present here very strongly support the contention, previousl
jectured by Shatah and Struwe,7 that smooth initial data for wave maps from 211 Minkowski
spacetime into the round two sphere can develop singularities~with unbounded derivatives! in
finite time. As we note, there are many ways in which the numerical exploration of pos
singularity formation might produce misleading indications. However, we believe that as a
sequence of the numerical tests we have carried out, together with those done independe
Bizoń and his collaborators,10 the formation of singularities is the most likely conclusion.

There is much more one would like to know about these spatially equivariant wave ma
well as about those without such symmetry. One would like to know, for example, if the solu
assume any universal form as one approaches the singularity. Our work~see Fig. 3! supports the
results of Bizon´ et al.,10 which indicate that indeed the family of static spherically equivari
wave maps,

x~r !562 arctan~lr !, ~10!

does serve as a sort of universal model for singularity formation. This needs to be studied f
One would also very much like to understand the behavior of the wave maps that evolve
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initial data near the transition from subcritical to supercritical data. The recent numerical wo
Bizoń et al.10 suggests that the static solutions~10! play a central role in the evolution of th
transitional wave maps as well in that of supercritical ones; however, this issue needs
investigation.~Note the absence of any self-similar solutions to the 211 wave map equations; fo
311 wave maps, such solutions play a key role in the behavior of solutions evolving from cr
or near critical data!.
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Uniqueness of a convex sum of products of projectors
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Relative to a given factoring of the Hilbert space, the decomposition of an operator
into a convex sum of correlated products of pairs of distinct 1-projectors, one set of
projectors linearly independent, is unique. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1423764#

I. INTRODUCTION

Utilizing the Tridecompositional Uniqueness Theorem of Elby and Bub,1 I establish the
uniqueness, relative to a given factoring of the Hilbert space, of a decomposition of a
operator into a convex sum of correlated products of pairs of distinct 1-projectors,

r5(
j

wj uaj&^aj u ^ ubj&^bj u, ~1!

one set of projectors linearly independent.
In the Appendix, I present a slightly strengthened version and simplified proof of the T

compositional Uniqueness Theorem.
For the remainder of this paper I use the notationuajbk& for the direct productuaj& ^ ubk&.

II. PRELIMINARIES

All vectors are normalized.
Definition 1: ua& and ub& are collinear iffua&5eiaub&, aPR; we denote thisua&iub&.
Definition 2: The set$uaj&% is noncollinear iff no pair of the set is collinear.
Definition 3: r is an operator onH1^ H2 . The null space ofr on Ha is Na8$uf&

PHauruf&50% (aP$1,2%).
Lemma 1: With sets$uaj&PH1%, $ubj&PH2%, and $wj.0%, j P$1¯N%, and the operator

r5(wj uajbj&^ajbj u, the set$uaj&% spansG18(N1)' and the set$ubj&% spansG28(N2)'.
Proof: For uf&PN1 and any ub&PH2 , ^fburufb&505(wj u^aj uf&u2u^bj ub&u2; thus

^aj uf&50;uf&PN1 , so uaj&P(N1)'5G1 . If $uaj&% does not spanG1 , there is a vector inG1

orthogonal to$uaj&%; but any such vector is annihilated byr and is thus inN1 , a contradiction.h
The following result appears in Ref. 2, in the midst of the proof of another theorem:
Lemma 2: uC& and uF& are vectors inH1^ H2 . If Tr2$uC&^Cu%5Tr2$uF&^Fu%, then there

exists a unitary transformationU on H2 such thatuC&5(1^ U)uF&.

III. THE UNIQUENESS THEOREM

Theorem 1: With noncollinear sets$uaj&PH1% and $ubj&PH2%, j P$1¯n%, one set linearly
independent, and with noncollinear sets$uAk&PH1% and $uBk&PH2%, kP$1¯N%, one set lin-
early independent, and with sets$wj.0% and $Wk.0%, if

(
j 51

n

wj uajbj&^ajbj u5 (
k51

N

WkuAkBk&^AkBku,

a!Electronic mail: kirkpatrick@physics.nmhu.edu
6840022-2488/2002/43(1)/684/3/$19.00 © 2002 American Institute of Physics
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then N5n, and, for all jP$1¯n%,

uAj&iuap~ j !&, uBj&iubp~ j !&, and Wj5wp~ j ! ,

with p~•! a permutation function on$1¯n%.
Proof: Call the operatorr. Apply Lemma 1, withd18dimG1 andd28dimG2 , and recall: A

set ofm vectors spans a space of dimensiond<m; d5m iff the vectors are linearly independen
Without loss of generality we take the set$uaj&%, which spansG1 , to be linearly independent; thu
n5d1 . Either $uAk&% or $uBk&% must be linearly independent; in either case,N5n: If $uAk&% is
linearly independent, thenN5d15n. On the other hand, if$uBk&% is linearly independent, then
N5d2 ; then vectors$ubj&% must spanG2 , hencen>d25N. Similarly, theN vectors$uAk&% must
spanG1 , henceN>d15n, thusN5n.

Introduce a third Hilbert spaceH3 , with dimH3>n; $ucj&% and$uCj&% are orthonormal base
of H3 . Construct the two vectors,

uc&5(
j 51

n

Awj uajbjcj& and uC&5(
j 51

n

AWj uAjBjCj&;

clearly,r5Tr3$uc&^cu%5Tr3$uC&^Cu%. By Lemma 2, there exists a unitary transformationU on
H3 such thatuc&5(1^ 1^ U)uC&; defining uD j&8UuCj&, we have

(
j 51

n

Awj uajbjcj&5(
j 51

n

AWj uAjBjD j&,

to which we apply Theorem A. h

IV. DISCUSSION

‘‘Uniqueness’’ is relative to the identification of system and apparatus. Elby and Bub
claim that Eq.~1! ‘‘suffers from a version of the basis degeneracy problem.’’ For example, w
^a1ua2&5^b1ub2&50, the sum-of-products expression

r5 1
2ua1b1&^a1b1u1 1

2ua2b2&^a2b2u ~2!

~which, according to Theorem 1, is unique! is the diagonalization of a degenerate Hermiti
operator~with eigenvalues 1/2 twice, and 0 twice!. The eigenvectors may be taken to beua1b1&,
ua2b2&, ua1b2& andua2b1&—products of vectors taken pairwise fromH1 andH2 . Because of this
degeneracy, we can rotate the eigenvectors intouq1,2&5221/2(ua1b1&6ua2b2&), uq3&5ua1b2&, and
uq4&5ua2b1&. Then Eq.~2! may be written

r5 1
2uq1&^q1u1 1

2uq2&^q2u; ~3!

‘‘the pointer reading loses its ‘special’ status.’’
This argument is flawed—after all, the same claim may be made against the tridecom

tional uniqueness theorem itself:

uC&5
1

&
~ ua1b1c1&1ua2b2c2&)5

1

&
~ uq1d1&1uq2d2&), ~4!

with ud1,2&5221/2(uc1&6uc2&). Equation~4! is no more a counterexample to the tridecompo
tional uniqueness theorem than Eq.~3! is a counterexample to Theorem 1, and for the sa
reason: the ‘‘special’’ nature of a pointer basis is based on the uniqueness of the form
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decomposition in Eq.~1!, which in turn is based on a particular identification of system a
apparatus. One cannot speak of the ‘‘pointer basis’’ without having settled on the ‘‘pointer’’—
apparatus—thus having already specified the factor spaces.

Only having chosen a fixed identification of the subsystems~and the associated factoring o
the space! may either of these uniqueness theorems then be applied.

APPENDIX: THE TRIDECOMPOSITIONAL UNIQUENESS THEOREM

This version of the Tridecompositional Uniqueness Theorem1 avoids two assumptions of th
original: that the linearly dependent set is in the same space in each expansion, and t
expansions each have the same number of terms. The proof here is similar to that of Ref. 1
considerably shorter and, perhaps, clearer.

Definition A: uC& is factorable inH1^ H2 iff there exist ua&PH1 and ub&PH2 such that
uC&5uab&.

Lemma A „Similar to Lemma 1 of Ref. 1…: With the set$uaj&PH1% linearly independent and
the set$ubj&PH2% noncollinear, uC&5( j sj uajbj& is factorable inH1^ H2 iff the set $sjPC%
contains exactly one nonzero element.

Proof: Let uC&5uab&, with ua&PH1 and ub&PH2 . Expand ua&5( jaj uaj&, so uC&
5( jaj uajb&; the set$uaj&% is linear independent, so, for eachj, aj ub&5sj ubj&. For everysjÞ0,
ubj&iub&. If more than onesjÞ0, $ubj&% is not noncollinear, contrary to hypothesis, contradicti
the assumption of factorability. The converse is obvious. h

Theorem A „Tridecompositional uniqueness…: With noncollinear sets$uaj&PH1%, $ubj&
PH2%, and $ucj&PH3%, j P$1¯n%, two sets linearly independent, and noncollinear sets$uAk&
PH1%, $uBk&PH2%, and $uCk&PH3%, kP$1¯N%, two sets linearly independent, and sets$f j

PCuf jÞ0% and $wkPCuwkÞ0%, if

(
j 51

n

f j uajbjcj&5 (
k51

N

wkuAkBkCk&,

then N5n, and, for all jP$1¯n%,

uAj&iuap~ j !&,uBj&iubp~ j !&, uCj&iucp~ j !&, and uw j u5ufp~ j !u,

with p~•! a permutation function on$1¯n%.
Proof: Take$uCk&% and$ucj&% to be linearly independent~with no loss of generality: in each

expansion, two of the three sets are linearly independent, requiring coincidence in at lea
space!. These sets must span the same subspace ofH3 ; thusN5n. Expanducj&5(kg jkuCk&; then
wkuAkBk&5( jf jg jkuajbj&. For eachk, Lemma A requiresg jk50 for all but onej; define the
function p: $1¯n%→$1¯n% by the relation gp(k)kÞ0. We have ucp(k)&5gp(k)kuCk&, so
ucp(k)&iuCk& ~and normalization requiresugp(k)ku51!. Because the set$uCk&% is noncollinear,p~•!
must be 1:1, i.e., a permutation function on$1¯n%. We also have wkuAkBk&
5fp(k)gp(k)kuap(k)bp(k)&, so uap(k)&iuAk& and ubp(k)&iuBk&; normalization requiresuwku
5ufp(k)u. h

1A. Elby and J. Bub, Phys. Rev. A49, 4213~1994!.
2N. D. Mermin, Found. Phys.29, 571 ~1999!.
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New cohomology ring for supermanifolds
S. Varsaiea)

Institute for Advanced Studies in Basic Sciences,
P.O. Box 45195-159, Gava-Zang, Zanjan, Iran

~Received 31 January 2001; accepted for publication 20 September 2001!

In this paper the concept of pesudodifferential forms on supermanifolds is extended
and a new complex is introduced. At last it is shown that the corresponding coho-
mology ring is sensitive to ‘‘super’’ structure. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1416888#

I. INTRODUCTION

Supermanifolds, in local view, are spaces with commuting and anticommuting varia
Supermanifolds provide a framework for quantum field theory. In this regard, one can con
fermion fields as anticommuting fields.

In order to understand the geometry and topology of supermanifolds, different conce
differential geometry have been extended to supermanifolds. However, some concepts ha
found any satisfactory generalization. Characteristic classes is an example. In conventiona
ential geometry, there is a duality between characteristic classes and Schubert cells.1 Although the
superanalog of Schubert cells defined,2 it is not clear in what homology theory these supercells
closed.3 It seems that homology classes corresponding to supercells are in cyclic cohomolog
proper algebra. Since there is a correspondence between cyclic cohomology classes an
(V,d,*) where (V,d) is a differential graded algebra and* is a closed trace onV,4 thus proper
generalization of differential forms, exterior differential operator and integration lead to find c
cohomology classes, different from the ones associated with underlying manifold. One cy
defined by Monge in Refs. 5, 6. In Ref. 5 aZ2-graded de Rham like cohomology developed wh
is not determined by cohomology of its underlying manifold and has a functorial definition w
the category of supermanifolds. An integration theory is extended for theseZ2-forms in Ref. 6.
Establishing Stokes theorem shows that the integral is a closed trace. But projection which
in the definition of an integral causes the fast elimination of odd variables. So its cycle doe
seem to define a new invariant for supermanifolds.

In this paper we extendP, the algebra of pseudodifferential forms, to an algebra of matr
overP, in rough statement. This idea comes from the point which Connes made in Ref. 4. T
he proves the Gauss–Bonnet theorem forS, smooth closed surface inR3, by considering the
algebra of 232 matrices with entries inC`(().

At last we show that the corresponding cohomology ring is sensitive to a ‘‘super’’ struc
This provides a counterexample for the conjecture of Voronov.5

Integration theory is introduced in the coming paper.

II. PRELIMINARIES

Let M be a topological space andA be a sheaf ofZ2-graded commutative real algebras onM .
By a real supermanifold with dimension (m,n) we mean a pair (M ,A) with the following con-
ditions.

~i! M is a second countable Hausdorff space.

a!Electronic mail: varsaie@iasbs.ac.ir
6870022-2488/2002/43(1)/687/5/$19.00 © 2002 American Institute of Physics
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~ii ! For every pointmPM there exists a neighborhoodU in which AuU is isomorphic to
C`(U) ^ ∧Rn as the sheaves ofZ2-graded commutative algebras.U is called a splitting neigh-
borhood. Letz1, . . . ,zm be a coordinate function onU ande1, . . . ,en be a basis forRn. Thenzi ’s
are called even coordinates andej ’s are called odd coordinates.

Let TA be the sheaf of derivations ofA. A R-linear mapX:A→A is called a derivation if

X(ab)5X(a)b1(21)ãX̃aX(b) whereã andX̃ are degrees~or parities! of a andX according to
Z2-graded structures ofA and Hom(A,A), respectively.7

This sheaf is locally free and is generated by$ ]/]zj , ]/]ei %. These derivations have the sam
parity as the coordinates$zi ,ej%. The cotangent sheafVM

1 can be defined as HomA(TA ,PA).
HereP can be considered as a formal factor of degree 1 andPA is anA-module such that

Pa1Pb5P~a1b!,

a~Pb!5~21! ãP~ab!.

Locally, VM
1 is generated by$dzi ,dej%. Obviously these differentials are of a parity opposite to

parity of coordinates$zi ,ej%. Thus the elements]/]zj ,dei are commutative and]/]ej ,dzi are
anticommutative. It is natural to consider functionsv(zi ,ej ,]/]zi ,dej ,dzi ,]/]ej ) which depend
on commuting differentials as infinitely differentiable functions.8 Berezine calls them pseudodi
ferential forms.

The sheaf of such forms, denoted byP, is Grassmann algebra with generators]/]ej ,dzi , and
a coefficient inP0 , the sheaf of smooth functions ofzi ,ej ,]/]zi ,dej .

III. EXTENDED BEREZIN PESUDODIFFERENTIAL FORMS

On pseudodifferential forms, Berezine introduced the differential

d5(
i

dzi
]

]zi 1(
j

dej
]

]ej 1(
i

dwi
]

]wi 1(
j

dtj
]

]t j ,

wherewi5]/]zi and t j5dej .
Obviously the action ofd does not produce integral forms. Thus in order to make a comp

analogy with a de Rham complex we extendd. For this, it is necessary to have a proper extens
of A.

The sheaf of TA is a locally free sheaf ofA-modules. It is locally generated b
$ ]/]zi , ]/]ej %. The parities of]/]zi and]/]zj are 0 and 1, respectively. Denote bytM the sheaf
of algebras which is generated byTA over A. ObviouslytM has a structure of a real superman
fold with dimension (2m,2n) and is called a supermanifold that corresponds toTA . For this
consider the homomorphism of algebras induced by transition maps due to the splitting rep
tation of TA .

Denote bydM the supermanifold corresponding toPTtM
.

Now consider the sheafEM of all endomorphismw on PTtM
.

Definition 3.1:By the extended pesudodfferential forms we mean the elements ofP^ EM .
There is a structure of algebra onP^ EM which is defined by

~a^ w!•~b^ c!5ab^ wc;

let Vp,q(U) be aA(U)-module with generators

H dzi 1 . . . dzi k
]

]ej 1
. . .

]

]ej l
,

]

]zt1
. . .

]

]zts
der 1 . . . der u,k1 l 5p s1u5qJ ;

any element of algebra onVp,q(U) ^ EM is called a (p,q) form. There is also a differential on th
algebra of all extended pesudodifferential forms defined as follows:
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d̃~a^ w!5(
zi

dzi S ]

]zi aD ^ w1(
zi

dei S ]

]ei aD ^ w1~21! ã(
ej

a^
]

]ej LP ]/] ~]/]ej !w

1~21! ã(
zi

a^
]

]zi LP ]/] ~]/]zi !w. ~1!

By LP @]/](]/]ej )#w we mean the Lie derivation alongP @]/](]/]ej )#. For this, considerw as a 1.1
tensor on tM . Then the Lie derivative of the covariant component, sayv, is just
(ds i „P @]/](]/]ej )#…1 i (P @]/](]/]ej )#)sd)(v) and the Lie derivative of contravariant com
ponent, say X, is†X,P @]/](]/]ej )#‡. A straightforward computation shows the following.

Proposition 3.2: d˜ does note depend upon the choice of coordinates.
Proof: The first two summations on the left-hand side of the equality in~1! obviously make an

invariant statement under the change of coordinates. Now consider the last two summatio
yk5y(zi ,ej ), f l5 f (zi ,ej ) be a new coordinate; we have

]

]ej 5
]yk

]ej

]

]yk 1
] f l

]ej

]

] f l ,

]

]zi 5
]yk

]zi

]

]yk 1
] f l

]zi

]

] f l ,

]

]
]

]ej

5
]ej

]yk

]

]
]

]yk

1
]ej

] f l

]

]
]

] f l

,

]

]
]

]zi

5
]zi

]yk

]

]
]

]yk

1
]zi

] f l

]

]
]

] f l

.

By substitution we get

( a^ S ]yk

]ej

]

]yk 1
] f l

]ej

]

] f l DLP„~]ej /]yt!@]/]~]/]yt!# 1 ~]ej /] f r !@]/]~]/] f r !#…w

1( a^ S ]yk

]zi

]

]yk 1
] f l

]zi

]

] f l DLP„]zi /]yt)@]/]~]/]yt!# 1 ~]zi /] f r !@]/]~]/] f r !#…w

5( a^ S ]

]yk LP @]/]~]/]yk!#w1
]

] f l LP @]/]~]/] f l !#w D .

Thus the last two summations are also invariant under a change of coordinates.
Theorem 3.3: (P^ EM ,d̃) is a complex of differential graded algebra.
Proof: It is sufficient to proved̃250. It can be checked by direct computation. Let us u

Li ,L j instead ofLP @]/](]/]zi )# andLP @]/](]/]ej )# respectively, then

d̃~a^ w!5dzi S ]

]zi aD ^ w1dej S ]

]ej aD ^ w1~21! ãa^
]

]ej L jw1~21! ãa^
]

]zi Liw,
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d̃„d̃~a^ w!…5dzk dzi S ]

]zk

]

]zi Da^ w2del dzj S ]

]el

]

]zi aD ^ w1~21! ã dzi S ]

]zi aD ^
]

]el Llw

1~21! ã11 dzi S ]

]zi aD ^
]

]zk Lkw1dzk dej S ]

]zk

]

]ej aD ^ w1del dej S ]

]el

]

]ej aD
^ w1~21! ã21 dej S ]

]ej aD ^
]

]el Llw1~21! ã21 dej S ]

]ej aD ^
]

]zk Lkw

1~21! ãFdzk
]

]zk a^
]

]ej L jw1del
]

]el a^
]

]ej L jw1~21! ã11a^
]

]el

]

]ej Ll L jw

1~21! ã11a^
]

]zk

]

]ej LkL jw G1~21! ãFdzk
]

]zk a^
]

]zi Liw1del
]

]el a^
]

]zi Liw

1~21! ãa^
]

]el

]

]zi LlLiw1~21! ãa^
]

]zk

]

]zi Lk LiwG .
Since ]/]el ’s are odd andLlL j2L jLl50 thus the first underlined term is zero. Equali

LkLi

52LiLk implies that the second underlined term is zero too. Other terms are cancelled by
inverses.

To establish a correspondence with cyclic cohomology classes, we neew

5d̃ f 1∧¯∧d̃ f m1n to be an integral form for everyf iPA ~Ref. 4, p. 186!. So w must contain a
section of Berezinian ofM ~Ref. 7, p. 213!. Obviously, d̃ satisfies this condition. As far as w
know, it is not true for other presented complexes on supermanifolds.

IV. COHOMOLOGY

A Z2-graded cohomology groups corresponding to complex of extended pesudodiffer
forms can be defined as follows:

H
d̃

(p,q)
~M,A!5

Ker d̃uVp,q^ EM

Im gd̃u(Vp21,q% Vp,q21) ^ EM

.

Now we show that these groups are sensitive to the ‘‘super’’ structure. For this, it is sufficie
compute them for a purely odd supermanifoldR(0,1).

Proposition 4.1:

H
d̃

(1,1)
~R(0,1)!5R2.

Proof: On ER(0,1) there are two endomorphism with nonvanishing differentials. Call themE1

5ed(]/]e) ^ ]/]e ,E25ed(]/]e) ^ ]/](]/]e). We haved̃(1^ E1)52de^ ]/]e and d̃(1^ E2)
52de^ ]/](]/]e). ThusH

d̃

(1,1)
(R(0,1)) as anR-vector space is generated by the classes of

1–1 formsde^ (]/]e) E1 andde^ (]/]e) E2 .
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We describe all the localization observables of a quantum particle in a one-
dimensional box in terms of sequences of unit vectors in a Hilbert space. An
alternative representation in terms of positive semidefinite complex matrices is
furnished and the commutative localizations are singled out. As a consequence, we
also get a vector sequence characterization of the covariant phase observables.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1425958#

I. INTRODUCTION

We investigate the problem of the localization of a free quantum particle moving in a
dimensional box with periodic boundary conditions, adopting the point of view that observ
are represented as appropriate normalized positive operator measures.~For that approach, see, e.g
Refs. 1–4.! Therefore, if one chooses the one-dimensional torusT as the configuration space o
the system, then a localization observableE is a map that defines for any~Borel! subsetX,T a
bounded operatorE(X) such that, ifc is the~vector! state of the system, the number^cuE(X)c&
is the probability that a localization measurement of the particle in that state leads to a resuX.
For example, the group of motions of the system is the torus itself that acts on the vector sta
means of thegeometricrepresentation. The basic requirement forE to represent a localization
observable is, therefore, thatE is covariant with respect to this action. Hence a localizat
observable is a normalized positive operator measure covariant under the geometric action
torusT.

In the following we call such observablesT-covariant localization observables and we sh
that they are characterized in terms of sequences of unit vectors in an infinite dimensional H
space. In this framework we select the measures that are projection valued or commutativ
we discuss the problem of the equivalence of such operator measures. As a by-product, we
a representation of the phase observables, that is, the normalized positive operator measure
are covariant under the shifts generated by the number observable. Our proof is based on
application of a theorem due to Cattaneo,5 which generalizes Mackey’s imprimitivity theorem fo
positive operator measures. Instead, one could use the results of Holevo,6,7 based also on group
theoretical arguments, to obtain a classification in terms of measurable fields of sesquilinear
which in the present context can be described as infinite-dimensional positive semidefinite
plex matrices with diagonal elements equal to one. For the sake of comparison, we also der

a!Electronic mail: cassinelli@ge.infn.it
b!Electronic mail: devito@unimo.it
c!Electronic mail: pekka.lahti@utu.fi
d!Electronic mail: juhpello@utu.fi
6930022-2488/2002/43(2)/693/12/$19.00 © 2002 American Institute of Physics
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matrix characterization by direct methods, using only basic analysis and measure theor
approach has been used in Ref. 8 to work out all the phase observables in terms ofphase matrices.

II. T-COVARIANT LOCALIZATION OBSERVABLES

Let T5$zPC:uzu51% denote the one-dimensional torus, regarded as a compact~second
countable! Abelian group. LetB~T! be the Borels-algebra ofT, m the Haar measure onT,
L2(T,m) the Hilbert space of square integrable Borel functionsf :T→C, andL„L2(T,m)… the set
of bounded operators onL2(T,m).

The groupT acts onL2(T,m) via the geometric action

@U~a! f #~z!5 f ~az!, aPT, f PL2~T,m!, zPT,

which is unitary and continuous with respect to the strong operator topology.
A T-covariant localization observable is a positive normalized operator measure oT,

E:B(T)→L„L2(T,m)…, such that, for allXPB(T), aPT,

U~a!E~X!U~a!* 5E~aX!. ~1!

Since the action ofT on itself is transitive, Eq.~1! means that~U,E! is a transitive system o
T-covariance based onT and, hence,~U,E! is described by Ref. 5, Proposition 2.

In order to apply the cited result, let us notice the following facts. The stability subgrou
any point ofT is the trivial subgroup$1%. The trivial representations of $1% acting onL2(T,m)
contains all the~trivial! representations of$1% and the corresponding imprimitivity system~R,P!
for T based onT induced bys acts onL2(T3T,m3m).L2

„T,m,L2(T,m)… as

„R~a!w…~z1 ,z2!5w~az1 ,z2!,

„P~X!w…~z1 ,z2!5xX~z1!w~z1 ,z2!,

wherewPL2(T3T,m3m), aPT, XPB(T), andz1 , z2PT.
Proposition 2 of Ref. 5 shows that, given aT-covariant localization observableE, there exists

an isometry

V:L2~T,m!→L2~T3T,m3m!,

which intertwines the actionU with R and such that

E~X!5V* P~X!V, XPB~T!. ~2!

Conversely, given an intertwining isometryV from L2(T,m) to L2(T3T,m3m), Eq. ~2! defines
a positive normalized operator measureE satisfying Eq.~1!.

Hence, to classify all theT-covariant localization observables, one has to determine all
isometric mappingsV such that

VU~a!5R~a!V, aPT. ~3!

To perform this task, observe that the monomialsen , nPZ, en(z)5zn, zPT, form an ortho-
normal basis ofL2(T,m) and the action ofU on them is diagonal, that is,

U~a!en5anen .

Moreover, the vectors

~enej !~z1 ,z2!5en~z1!ej~z2!5z1
nz2

j ,
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wheren, j PZ, form an orthonormal basis ofL2(T3T,m3m), and the action ofR on them is
simply

R~a!enej5anenej .

It follows that, for anynPZ, the subspace ofL2(T,m) generated byen and the subspace o
L2(T3T,m3m) generated by$enej% j PZ carry the representation ofT, z°zn.

Hence, if V:L2(T,m)→L2(T3T,m3m) is an isometry intertwiningU and R, for any n
PZ, Ven must be in the vector space span$(enej )% j PZ.L2(T,m), that is,Ven5enhn for some
unit vectorhn in L2(T,m).

Conversely, if (hn)nPZ is a sequence of unit vectors inL2(T,m), then the mappingen°enhn

extends to a unique linear isometryV:L2(T,m)→L2(T3T,m3m) which intertwines the actions
U andR and, by means of Eq.~2!, the corresponding operator measureE is explicitly given by

^enuE~X!em&5^enuV* P~X!Vem&

5^VenuP~X!Vem&

5^enhnuP~X!emhm&5^hnuhm&E
X
zm2ndm~z!,

where n, mPZ. Then, if uen&^emu denotes the rank one operatorL2(T,m){ f °^emu f &en

PL2(T,m), we may thus write, for allXPB(T),

E~X!5 (
n,mPZ

^hnuhm&E
X
zm2n dm~z!uen&^emu, ~4!

where the double series converges in the weak operator topology. We observe that two seq
of unit vectors (hn)nPZ and (kn)nPZ define the sameT-covariant localization observable if an
only if ^hnuhm&5^knukm& for all n, mPZ.

For the sake of completeness we also compute the adjoint mapV* :L2(T3T,m3m)
→L2(T,m). We get

^V* enej uep&5^enej uVep&

5^enej uephp&5H 0, when nÞp,

^ej uhn&, when n5p,
~5!

showing that for anyn, j PZ,

V* enej5^hnuej&en . ~6!

We now discuss the problem of the equivalence. TwoT-covariant localization observablesE
and E8 are equivalent if there is a unitary operatorW:L2(T,m)→L2(T,m) such that, for alla
PT, XPB(T),

WU~a!5U~a!W, WE~X!5E8~X!W.

Clearly, this definition is the requirement that~U,E! and (U,E8) are equivalent asT-covariant
systems.

The first condition implies now that for eachnPZ, Wen5znen , for someznPT. Therefore,
the equivalence of~U,E! and (U,E8) equals the fact that for eachn, mPZ andXPB(T),

^enuE8~X!em&5znz̄m^enuE~X!em&,
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for somezn , zmPT. Then, taking into account Eq.~4!, two sequences of unit vectors (hn8)nPZ and
(hn)nPZ define equivalentT-covariant localization observables if and only if for eachn, mPZ,

^hn8uhm8 &5^znhnuzmhm&.

Finally, we consider the problem of projection-valued measures. LetK be the closed subspac
of L2(T3T,m3m) generated by$P(X)enhn :XPB(T),nPZ%. The spaceK is stable under the
action of the imprimitivity system~R,P!. Since the projection measureP acts only on the vectoren

and$xXen :XPB(T)% generatesL2(T,m), one has

K.L2~T,m! ^ L,

whereL is the closed subspace generated by the vectorshn , nPZ. According to Ref. 5, Propo-
sition 1,E is projection valued if and only ifV„L2(T,m)…5K, that is,L is one-dimensional.

We summarize the above construction in the form of a theorem.
Theorem 1: Any T-covariant localization observable E:B(T)→L2(T,m) is of the form

E~X!5 (
n,mPZ

^hnuhm&E
X
zm2n dm~z!uen&^emu, XPB~T!,

for some sequence of unit vectors(hn)nPZ in L2(T,m). Two sequences of unit vectors(hn)nPZ and
(kn)nPZ in L2(T,m) determine the sameT-covariant localization observable if and only
^hnuhm&5^knukm& for all n, mPZ.

Two such operator measures E and E8 are equivalent if and only if

^hn8uhm8 &5^znhnuzmhm&,

for some sequence(zn)nPZ in T.
The operator measure E is projection valued exactly when the vectors hn , nPZ, are of the

form hn5znh for some unit vector h and phase factors znPT.

A. Commutative localizations

By means of the above theorem, we are now in position to characterize the commu
T-covariant localization observables. We recall that such an observableE is commutative if
E(X)E(Y)5E(Y)E(X), for all X, YPB(T), that is, if E is a commutative operator measure.

Let (hn)nPZ be a sequence of unit vectors inL2(T,m), E the corresponding operator measu
given by Theorem 1, and define, for alln, mPZ, cn,m5^hnuhm&.

Proposition 1: TheT-covariant localization observable E is commutative if and only if

cn,n1kcn1k,m5cn,m2kcm2k,m ~7!

for all, n, m, kPZ.
Proof: Define mn,m,Y(X)ª^nu@E(X)E(Y)2E(Y)E(X)#um& for all n, mPZ and X, Y

PB(T). Let kPZ, and calculate

E
T
zk dmn,m,Y~z!5@cn,n1kcn1k,m2cn,m2kcm2k,m#E

Y
zn1k2m dm~z!.

If E(X)E(Y)5E(Y)E(X) for all X, YPB(T), then mn,m,Y(X)50 and, thus,cn,n1kcn1k,m

5cn,m2kcm2k,m for all n, m, kPZ.
Conversely, ifcn,n1kcn1k,m5cn,m2kcm2k,m , n, m, kPZ, holds, then

mn,m,Y~X!5 (
k52`

`

~cn,n1kcn1k,m2cn,m2kcm2k,m!E
X
z2k dm~z!E

Y
zk1n2m dm~z!50
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for all n, mPZ andX, YPB(T). Therefore,E(X)E(Y)5E(Y)E(X) for all X, YPB(T). h

An example of a commutativeT-covariant localization observable is the following one. L
jP@21,1# andf, cPL2(T,m) be two-unit vectors such that

^cuf&5j.

Consider the sequence of unit vectors (hn)nPZ , with

hn5c, for even n ~ including 0!,

hn5f, for odd n.

The coefficientscn,m5^hnuhm&, n, mPZ, satisfy condition ~7! so that the correspondin
T-covariant localization observableEj is commutative. Notice thatEj is projection valued if and
only if j561.

B. Matrix characterization

To end this section, we discuss an alternative characterization of theT-covariant localization
observables. If follows from Theorem 1 that the operator measureE is uniquely defined in terms
of the complex matrix elementscn,m5^hnuhm&, n, mPZ. It is clear that they satisfy the following
two conditions:

~a! cn,n51, for all nPZ,
~b! (n,m52k

k cn,muen&^emu>O, for all kPN.

Conversely, it is known,~see, for example, Ref. 9, Chap. 3!, that given a family of complex
numbers$cn,mPCun,mPZ% which has the properties~a! and ~b!, there exists a sequence of un
vectors (hn)nPZ such thatcn,m5^hnuhm& and, hence, aT-covariant localization observableE
defined by

E~X!5 (
n,mPZ

cn,mE
X
zm2n dm~z!uen&^emu,

for all XPB(T).
For completeness, we give a simple construction of a sequence of unit vectors which ge

the matrix. The construction is slightly more general than actually needed here.
Let J#Z ~especiallyJ5Z or J5N!. A matrix (bn,m)n,mPJ is positive semidefiniteif for all

sequences (dn)nPJ,C, for which dnÞ0 for only finitely manynPJ,

(
n,mPJ

dnbn,mdm>0.

For J5Z this is equivalent to the above condition~b!. @Condition~a! is equivalent to the fact tha
ihni51 for all nPZ.#

Proposition 2: Fix J#Z. Let l2(J) be a sequence space with the basis(x$n%)nPJ . A matrix
(bn,m)n,mPJ is positive semidefinite if and only if there is a sequence(hn)nPJ of vectors of l2(J)
such that bn,m5^hnuhm& for all n, mPJ.

Proof: Consider a sequence (hn)nPJ of vectors ofl 2(J) and putbn,m5^hnuhm&. If ( dn)nPJ,C
is a sequence for whichdnÞ0 for only finitely manynPJ, then

(
n,mPJ

dnbn,mdm5K S (
nPJ

dnhnD US (
mPJ

dmhmD L >O,

the sums being finite.
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Suppose then that (bn,m)n,mPJ is positive semidefinite. It follows thatbn,n>0, bn,m5bm,n,
and

Ubn,n bn,m

bm,n bm,m
U5bn,nbm,m2ubn,mu2>0 ~8!

for all n,m. Especially, ifbn,nbm,m50, thenbn,m50. Then the doubles series

(
n,mPJ

bn,nÞ0Þbm,m

bn,m

Abn,nbm,m~ unu11!~ umu11!
ux$n%&^x$m%u

converges in the weak operator topology to a bounded and positive operatorS. Let A be its square
root and, for allnPJ,

hnªAbn,n~ unu11!Ax$n% .

Then, taking into account thatS5A2, one gets, for alln, mPJ such thatbn,nbm,mÞ0,

^hnuhm&5Abn,n~ unu11!Abm,m~ umu11!^x$n%uA
2x$m%&5bn,m .

If bn,nbm,m50, for example,bn,n50, thenhn50 and, for allmPJ, bn,m505^hnuhm&. h

The above proposition, when applied together with the natural isomorphisml 2(Z)
{x$n%°enPL2(T,m), gives then a vector sequence representation of the matrix (cn,m)n,mPZ of a
T-covariant localization observableE. In Sec. IV we prove by direct methods a characterization
T-covariant localization observables in terms of the matrix (cn,m)n,mPZ . The same result can als
be obtained from a theorem of Holevo~Ref. 7, Theorem 1!, whose proof is also based on grou
theoretical arguments.

III. COVARIANT PHASE OBSERVABLES

Theorem 1 leads also to a characterization of the covariant phase observables. To d
them, letH be a complex separable Hilbert space, and let (un&)nPN be an orthonormal basis ofH.
We call it the number basis. We define the number operator

Nª(
nPN

nun&^nu

with the domainD(N)ª$cPH:(nPNn2u^nuc&u2,`%, and the unitary ‘‘phase shifter’’ as

UN~a!ª(
nPN

anun&^nu,

for all aPT. We say that a positive normalized operator measureẼ:B(T)→L(H) is a phase
observableif it is covariant under the phase shifts, that is, if for anyXPB(T), aPT,

UN~a!Ẽ~X!UN~a!* 5Ẽ~aX!. ~9!

To determine all the phase observables, letT:H→L2(T,m) be the linear isometry with the
property

Tun&5en , for all nPN.
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Clearly, T intertwines the unitary actionsUN and U, TUN5UT, and X°TẼ(X)T* is a
T-covariant localization observable acting inL2(T,m). Using Theorem 1, and the fact thatT* T
5I , one has the following result.

Corollary 1: A normalized positive operator measure E˜ :B(T)→L(H) is a phase observable
if and only if it is of the form

Ẽ~X!5T* E~X!T, XPB~T!,

for someT-covariant localization observable E.
Equivalently, Ẽ:B(T)→L(H) is a phase observable if and only if

Ẽ~X!5 (
n,mPN

^jnujm&E
X
zm2n dm~z!un&^mu, XPB~T!,

for some sequence of unit vectors(jn)nPN of H. Two sequences of unit vectors(jn)nPN and
(hn)nPN define the same phase observable exactly when^jnujm&5^hnuhm& for all n, mPN.

Two phase observables E˜ and Ẽ8 are equivalent (in the sense of covariance systems) if
only if any of their generating vector sequences(jn) and (jn8) are such that, for each n, mPN,
^jn8ujm8 &5^znjnuzmjm& for some zn , zmPT.

Since T:H→L2(T,m) is not surjective, there is no projection-valued phase observable.
We note, in addition, that Proposition 1, when applied to phase observables, gives Eq.~7! for

all n, m, kPN with m>k. For n5m this givesucn,n1ku5ucn2k,nu for all n>k, which implies that
cn,m50 for all nÞm ~for details, see Ref. 11!. This means that the only commutative pha
observable is the trivial one

B~T!{X°m~X!I PL~H!.

Following Ref. 8 we say that a positive semidefinite complex matrix (cn,m)n,mPN is a phase
matrix if cn,n51 for all nPN. According to Ref. 8, Phase Theorem 2.2, any phase observ
Ẽ:B(T)→L(H) is of the form

Ẽ~X!5 (
n,mPN

cn,mE
X
zm2n dm~z!un&^mu

for a unique phase matrix (cn,m), and any phase matrix determines a phase observable in this
The equivalence of the two characterizations of the phase observables is again a consequ
Proposition 2.

IV. COVARIANT LOCALIZATIONS IN A BOX: A DIRECT METHOD

We determine next the covariant localizations by direct methods, using only basic analys
measure theory. Actually, we determine all the normalized~not necessarily positive nor self
adjoint! operator measures which are translation covariant on the interval@0, 2p!. In the rest of
this article, we use the interval@0, 2p! instead ofT when it simplifies the calculations. Note tha
the Haar measurem is the normalized Lebesgue measure onB(@0,2p)), the Borels-algebra of@0,
2p! transferred by the mapu°eiu.

Let, again,H be a complex separable Hilbert space, but choose now an orthonormal
(un&)nPZ,H labeled by the integers. Define the ‘‘extended number operator’’ as followsN̂

ª(nPZnun&^nu with its domainD(N̂)ª$cPH:(nPZn
2u^nuc&u2,`%, and define the correspond

ing unitary shift operators as

R~u!ªeiuN̂5 (
nPZ

einuun&^nu
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for all uPR.
We say thatE:B(@0,2p))→L(H) is an operator measure if it iss-additive with respect to the

weak operator topology. IfE(X)* 5E(X), or E(X)>O, for all XPB(@0,2p)), we say thatE is
self-adjoint, or positive. IfE(@0,2p))5I , we say that the operator measureE is normalized.
Finally, E is covariant ifR(u)E(X)R(u)* 5E(X% u) for all XPB(@0,2p)) anduPR, where the
symbol % means addition modulo 2p.

Before characterizing covariant normalized operator measures we prove the following le
Lemma 1: Fix qPZ, and letnq :B(@0,2p))→C be as-additive set function such thatnq(X

% u)5eiqunq(X) for all XPB(@0,2p)) and uP@0,2p), and for whichnq(@0,2p))5d0,q . Then
nq(X)5cq(2p)21*Xeiqu du for all XPB(@0,2p)), where cqPC and c051.

Proof: Fix qPZ, and letkPZ1. Now

d0,q5nq~@0,2p!!5nqS ø
l 50

k21

@ l2pk21,~ l 11!2pk21! D
5 (

l 50

k21

nq~@0,2pk21!1 l2pk21!

5F (
l 50

k21

ei2pqk21l Gnq@0,2pk21!5H knq@0,2pk21!, when qk21PZ,

0, when qk21¹Z.
~10!

Suppose thatqPZ and kPZ1 are such thatqk21¹Z. Then *0
2pk21

eiqu duÞ0, and we can
define

cq~k!ª
nq~@0,2pk21!!

~2p!21*0
2pk21

eiqu du
,

so that

nq~@0,2pk21!!5cq~k!
1

2p E
0

2pk21

eiqu du5cq~k!
eiq2pk21

21

iq2p
.

On the other hand, for allr PZ1, q(rk)21¹Z, and

nq~@0,2pk21!!5nqS ø
l 50

r 21

@ l2p~rk !21,~ l 11!2p~rk !21! D 5F (
l 50

r 21

ei2pq~rk !21l Gnq~@0,2p~rk !21!!

5cq~rk !
eiq2pk21

21

iq2p
.

This shows thatcq(k)5cq(rk), r PZ1. Sinceq(uqu11)21¹Z, one hascq(k)5cq((uqu11)k)
5cq(uqu11). Thus, for allkPZ1, for which qk21¹Z, the numbercq(k) is the same, and we
may definecqªcq(uqu11) for all qPZ andqÞ0.

If qk21PZ, qPZ, kPZ1, Eq. ~10! gives

nq~@0,2pk21!!5
d0,q

k
5

1

2p E
0

2pk21

eiqu du. ~11!

Thus, if we definec0ª1 we get
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nq~@0,2pk21!!5cq

1

2p E
0

2pk21

eiqu du, ~12!

for all kPZ1 andqPZ.
Let qPZ. Now one gets

nqS ø
p51

`

$p21% D 5nq~$0%! (
p51

`

eiqp21
,

which implies that nq($0%)50. Thus the measurenq is nonatomic, that is,nq($x%)
5eixqnq($0%)50, xP@0,2p), which implies that its distribution functionx°nq(@0,x)) is con-
tinuous. From Eq.~12! it follows that for all kPZ1, pP$1,2,...,k%,

nq~@0,2ppk21!!5nqS ø
l 50

p21

@ l2pk21,~ l 11!2pk21! D 5cq

1

2p E
0

2ppk21

eiqu du. ~13!

Sincex°nq(@0,x)) is continuous, and the set$2ppk21P@0,2p)ukPZ1,pP$1,2,...,k%%, is dense
in @0, 2p!, it follows that for allxP(0,2p#

nq~@0,x!!5cq

1

2p E
0

x

eiqu du.

By the Hahn extension theorem

nq~X!5cq

1

2p E
X
eiqu du ~14!

for all XPB(@0,2p)) andqPZ. h

Theorem 2: Let E:B(@0,2p))→L(H) be a covariant normalized operator measure. For a
XPB(@0,2p)),

E~X!5 (
n,mPZ

cn,m

1

2p E
X
ei ~n2m!u duun&^mu, ~15!

where cn,mPC and cn,n51 for all n,mPZ. If E is self-adjoint, thencn,m5cm,n for all n,mPZ,
and if E is positive, then

(
n,m52k

k

cn,mun&^mu>O, ~16!

for all kPN.
Proof: Denoting, in Lemma 1,q5n2m andnq(X)5^nuE(X)um&, Eq. ~15! follows. If E is

self-adjoint, then from~15! one gets

cn,m52p lim
e→01

^nuE~@0,e!!um&
e

5cm,n

for all n, mPZ.
Suppose thatE is positive and, thus, self-adjoint. Hence, if~16! does not hold, one may

choose awPH and anl PN such that(n,m52 l
l cn,m^wun&^muw&,0, and define a function
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g:@0,2p!→R, u°g~u!ª (
n,m52 l

l

cn,mei ~n2m!u^wun&^muw&.

Due to the continuity ofg one can choose aneP(0,2p) such that*0
eg(u)du,0. Thus, denoting

I lª(n52 l
l un&^nu,

^I lwuE~@0,e!!I lw&5
1

2p E
0

e

g~u! du,0,

which contradicts the positivity ofE. h

For later use we note that the positive semi-definiteness condition~16! of the matrix
(cn,m)n,mPZ can be written equivalently as the following determinant condition~see, e.g., Ref. 9
Chap. 3.1!

Uck1 ,k1
ck1 ,k2 ¯ ck1 ,ks

ck2 ,k1
ck2 ,k2 ¯ ck2 ,ks

] ] � ]

cks ,k1
cks ,k2 ¯ cks ,ks

U>0 ~17!

for all sPZ1, $k1 ,k2 ,...,ks%,Z, and k1,k2,¯,ks . Note that in this casecn,m5cm,n and
ucn,mu<1 for all n, mPZ.

Remark 1:One may ask if the converse statement of Theorem 2 is also true. Let (cn,m)n,mPZ
be an infinite-dimensional complex matrix, and suppose thatcn,n51 for all nPZ. Let M
ª lin$un&unPZ%, and define the following function for allw, cPM:

R{u°Cw,c~u!ª (
n,m52`

`

cn,mei ~n2m!u^wun&^muc&PC.

For w, cPM, define

Ew,c~@0,2p!!ª
1

2p E
0

2p

Cw,c~u! du5^wuc&.

Clearly,Ew,c(@0,2p))5^wuc&, and (w,c)°Ew,c(@0,2p)) is a bounded sesquilinear form define
on the dense subspaceM of H. Hence the mapping (w,c)°Ew,c(@0,2p)) has a unique bounde
extension toH which is (w,c)°^wuc&. We letE(@0,2p)) denote the unique bounded operat
which, actually, is the identity operatorI.

Consider the following sesquilinear form defined for allXPB(@0,2p)):

M3M{~w,c!°Ew,c~X!ª
1

2p E
X
Cw,c~u! duPC.

This form need not be bounded, so that it does not necessarily define a bounded operatoH.
Thus, the formal notation

E~X!5 (
n,mPZ

cn,m

1

2p E
X
ei ~n2m!u duun&^mu, XPB~@0,2p!!, ~18!

must be understood as the sesquilinear form (w,c)°Ew,c(X) defined onM.
SinceR(u)M5M, it follows thatX→E(X) is covariant in the sense that

ER~u!* w,R~u!* c~X!5Ew,c~X% u!
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for all w, cPM, uP@0,2p), andXPB(@0,2p)).
Finally, if Ew,c(X)>0 for all XPB(@0,2p)) and wPM, we say thatE is positive. If E is

positive, then the matrix (cn,m)n,mPZ is positive semidefinite~see the proof of Theorem 2!. Hence,
0<Ew,w(X)<Ew,w(@0,2p))5iwi2, wPM, XPB(@0,2p)), and (w,c)°Ew,c(X) is bounded on
M. In this case, the sesquilinear formE(X), for all XPB(@0,2p)), can be regarded as a bound
operator with the unique matrix elementsEun&,um&(X)5cn,m(2p)21*Xei (n2m)u du, n, mPZ. The
mappingE:B(@0,2p))→L(H) is s-additive~see the proof of Phase Theorem 2.2 of Ref. 8!. Thus,
Eq. ~18! defines weakly a covariant normalized positive operator measureX°E(X).

A. Projection-valued covariant normalized positive operator measures

The application of Ref. 5, Proposition 1, in Sec. II gave, in Theorem 1, also a characteriz
of the T-covariant projection measures. In the present approach one has to determine sep
which of the solutions of Theorem 2 are projection valued. We shall do that next.

Proposition 3: Let E:B(@0,2p))→L(H) be a covariant normalized positive operator measu
with the associated structure matrix(cn,m)n,mPZ . E is projection valued, that is, E(X)25E(X) for
all XPB(@0,2p)), if and only if ucn,mu51 for all n,mPZ.

Proof: Let xP(0,1) and nPZ. Using the equations(k51
` k225p2/6 and y25p2/3

14(k51
` k22 cos(k(y1p)), yP(2p,p), one gets

^nuE~@0,2px!!2un&5 (
s52`

`

ucn,su2U 1

2p E
0

2px

ei ~s2n!u duU2

~put kªs2n!

<x21
1

2p2 (
k51

` ue2p ikx21u2

k2

5x21
1

p2 (
k51

`
1

k22
1

p2 (
k51

`
cos~2pxk!

k2 5x5^nuE~@0,2px!!un&,

where the equality sign holds only whenucn,mu51 for all n,mPZ.
On the other hand, ifucn,mu51, thencn,m5ei (vn2vm), vnP@0,2p), for all n, mPZ, since

(cn,m)n,mPZ is the structure matrix ofE.10 Define the following unitary transformations:W:H
→H, un&°e2 ivnun& and T:H→L2@0,2p), un&° f n , where f n(x)51/A2pe2 inx, xP@0,2p).
Now E is unitarily equivalent to the canonical spectral measureEQ, EQ(X) f 5xXf , X
PB(@0,2p)), f PL2@0,2p), that is,E(X)5W* T* EQ(X)TW, and, thus,E is projection valued.h

Remark 2:The T-covariant localization observablesE:B(T)→L(H) are compactly sup-
ported, suppE5T. Therefore, all their moment operators

V~k!5E
T
zk dE~z!, E~k!5E

T
arg~z!k dE~z!,

with kPZ, are bounded operators. The cyclic momentsV(k) are contractions whereas the pha
momentsE(k) are self-adjoint. The operator measureE is uniquely determined by both of it
moment operator sequences (V(k))kPZ and (E(k))kPZ .

The operator measureE is projection valued if and only if all its cyclic moment operato
V(k), kPZ, are unitary. IfE is not projection valued, then, at least, some of the moment opera
V(k) are nonunitary. However, if the first cyclic moment operatorV(1) of E is unitary, thenE is
projection measure. Indeed,

V~1!5 (
nPZ

cn,n11un&^n11u,
                                                                                                                



, the
se

704 J. Math. Phys., Vol. 43, No. 2, February 2002 Cassinelli et al.

                    
so thatV(1)(V(1))* 5I implies thatucn,n11u51 for all nPZ. By induction, using~17!, one then
quickly computes thatucn,n1ku51 for all nPZ andkPZ1, which confirms thatE is a projection
measure~and hence allV(k) are unitary!.

We recall further thatE(2)5(E(1))2 exactly whenE is projection valued~Ref. 12, Appendix,
Sec. 3!. In view of that, it is interesting to observe that, due to the covariance condition
operator measureE ~projection valued or not! is uniquely determined already by its first pha
moment operator

E~1!5E
T

arg~z! dE~z!5E
0

2p

u dE~u!5pI 1 (
nÞm52`

`
cn,m

i ~n2m!
un&^mu

sincecn,m5 i (n2m)^nuE(1)um& for all nÞm. Clearly, the spectral measureEE(1)
of the bounded

self-adjoint operatorE(1) is shift covariant if and only if it is unitarily equivalent toEQ.
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Global time asymmetry as a consequence of a wave
packets theorem

Mario A. Castagnino and Jorge Gueron
Instituto de Astronomı´a y Fı́sica del Espacio, Casilla de Correos 67 Sucursal 28,
1428 Buenos Aires, Argentina

Adolfo R. Ordóñeza)

Instituto de Fı´sica Rosario, Av. Pellegrini 250, 2000 Rosario, Argentina
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When t→` any wave packet in the Liouvillian representation of the density ma-
trices becomes a Hardy class function from below. This fact, in the global frame of
the Reichenbach diagram, is used to explain the observed global time asymmetry of
the universe. ©2002 American Institute of Physics.@DOI: 10.1063/1.1421061#

I. INTRODUCTION

Many authors consider time asymmetry as having aglobal origin.1 In the last few years, we
have shared this position following Davies’s reinterpretation of a remarkable idea conceiv
Reichenbach.2 Reichenbach’s original idea concerning the arrow of time was that it appea
quasi-isolated systems with nonmaximum entropy at a certain timet50, and he used a ‘‘branche
diagram’’ originating out of an unstable state to explain thislocal phenomenon. Even if this
unstable state can be—at least, theoretically—produced by a fluctuation, in practice it is a
due to the noncomplete isolation of the system beforet50. In fact, the truth is that it was
interacting with a wider system containing it, in such a way that the energy flowing from
environment results in the production of the unstable initial state of the smaller orbranched
system. This idea was afterwards put in a cosmological scenario by Davies: ‘‘In daily life
arrow of time manifiests itself in the way of quasi-isolated branch systems separated off fro
main environment in uncorrelated, less-than-maximum entropy state. Such an explanatio
pose, of course, that the wider environment is a less-than-maximum entropy state itself. So
we confine our attention to subsystems, the question of why their initial state are able to p
less-than-maximum entropy can always be explained by appealing to the wider environme
examination of realistic branch systems usually shows that they emerge as a result a ch
hierarchy of branching which, if traced back, expand out into wider and wider regions o
universe. Thus, most of the important time-asymmetric phenomena on Earth are driven
thermodynamics disequilibrium that exists in the vicinity of the sun, while the sun’s own dis
librium can be traced back to its nuclear constitution, which in turns takes back to the big
Eventually, the origin of the arrow of time always refers back to the initial cosmological condi
There exists an arrow of time only because the universe originated in a less-than-max
entropy state’’~see also the coincident opinion of Feynman in Ref. 1!.

We have developed this idea in great detail in several papers.1 Its obvious simplest graphica
representation is the Reichenbach diagram~Fig. 1!, where each box represents a physical proce
and the lines in the interior of some boxes represent unstable states. The arrow incoming fr
left of each box represents the energy that produces the unstable state originating the pro
the branch system, while the outgoing arrows emerging from the right of the box represe
energy produced by the process. The big box at the far left-hand side is the initial instabilit
originates all the branch systems of the diagram: the big-bang~the existence of the unstable initia
state was explained in previous papers3!. Originally, this figure can be considered as a mac

a!Electronic mail: ordoniez@fceia.unr.edu.ar
7050022-2488/2002/43(2)/705/9/$19.00 © 2002 American Institute of Physics
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scopic process diagram, but as the deep essence of the phenomena is just nonequilibrium,
also considered as a microscopic-quantum one, using the quantum mechanics of an u
system.4 Then, the Reichenbach diagram is the combination of all the scattering processes
the evolution of the universe, beginning at the initial global instability or big-bang, whic
considered as the source of all energy that subsequently flows through all the lines of the di
In each scattering process, the incoming energy is used to produce unstable forming sta
decay, thus originating the outgoing ones. So, the set of outgoing lines of the diagram c
considered as evolutions from an unstable state toward equilibrium. Essentially, the whole d
can be considered as only having outgoing lines. In fact, the incoming lines in each scatterinS’’
are just outgoing lines of a previous process. Moreover, the incoming lines~with their associated
forming states!, cannot be considered asspontaneous evolutions, since they just show the pumpin
of energy from a precedent process, which is really coupled with the scattering systemS, ’’
making these incoming lines representatives ofnonspontaneousor forced evolutions. On the
contrary, spontaneity clearly characterizes outgoing lines. Considered as a whole, the Reich
diagram symbolizes the asymmetrical flow of all the energy within the universe from its in
instability toward a final equilibrium state, resolving this flow as a sum of scattering proces

Then, time asymmetry~which cannot be explained as a consequence of the local t
symmetric physicallaws!, can be easily explained as a consequence of the time asymmetry
universe~as Fig. 1 shows!, which must be considered—in cosmology, at least—as a really exis
physical objectand, as such, endowed with symmetries and asymmetries. Furthermore, the
corresponding to outgoing spontaneous states belong to some spaceC2 while the incoming
nonspontaneous ones belong to another spaceC1 . These spaces are related by:C15KC2

ÞC2 , whereK is Wigner time-reversal operator,5 and time asymmetry—as well as other inte
esting phenomena—can be considered as a consequence of the existence of such
asymmetric space of physical admissible states.6 The aim of this paper is to mathematical
characterize these spaces.

For causality reasons, the spaceC2 was associated with the space of Hardy class functi
from below,7 but this is not completely satisfactory, because it means to postulate causalitybefore
defining past and future. If all the lines in the Reichenbach diagram would be electroma
waves, this choice would be natural, since the outgoing waves of electromagnetic scatteringcanbe
represented as states belonging to the just mentioned Hardy space.8 This conclusion can be ex
tended to all hyperbolic scatterings, but not to the parabolic equation of nonrelativistic qua
mechanics. Nevertheless, we are going to show thatfar from the scatterer, the outgoing line
belong to a Hardy space if the physical admissible states are wave packets of density ma.
Thus, eventually all the spontaneously evolving states of the universe would belong to such
of space, that we will callC2 . On the other hand, the unphysical nonspontaneous time-inve
states would belong to a spaceC1. ~In the usual popularization language,C2 would be the space

FIG. 1.
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of the spontaneous evolutions: the sugar lump dissolving in the coffee, or the elephant br
the crystal shop. WhileC1 will be the space of impossible—or better, nonspontaneou
evolutions: the sugar lump concentrating in the coffee, or the elephant reconstructing the
shop.! The arrow of time would be the consequence of this asymmetry.

II. THE BAKER’S TRANSFORMATION

As a didactical introduction to the subject we will show how spacesC2 andC1 appear in the
famous Baker transformation.

Let us consider the unit squareS5@0,1#3@0,1# with its restricted Lebesgue measurem and
the Baker’s transformation:

B~x,y!5H ~2x, 1
2y! if 0<x< 1

2

~2x21,1
2y1 1

2! if 1
2<x<1

. ~1!

Let us consider theindependent and generating partitionof B,9 i.e., the partition of the unit
square into its left and right halves or ‘‘vertical’’ rectangules,P5$D1 ,D2%. ‘‘Independence’’ of the
partition P with respect toB means that

mS ù
n52m1

m2

Bn~D i n
!D 5 )

n52m1

m2

m~D i n
!, ~2!

whereD i n
PP. The ‘‘generating’’ character of the partitionP with respect toB means that any

Borel measurable set of the unit square can be obtained by formingcountableunions and inter-
sections of sets of the form

ù
n52m1

m2

Bn~D i n
! with D i n

PP.

Let U:L2(S,m)→L2(S,m) be the unitary map

~Unr!~w!5r~B2n~w!!, ~3!

whererPL2(S,m), wPS. As is well known,U has a countable uniform Lebesgue spectrum, a
therefore10 there is asystem of imprimitivityin L2(S,m) based onZ for the group$Un:nPZ%. In
other words, there is a spectral measureE defined onZ and taking its values in the set of th
orthogonal projection operators ofL2(S,m), such that

;n,mPZ: U2nEmU5Em1n , ~4!

whereEm5E($m%) andEm1n5E($m1n%). Then, we can define theage operator9 by

A5E
Z
n dE5 (

n52`

1`

nEn . ~5!

As a consequence of Eqs.~4! and ~5!, and taking into account the properties ofE, we have

;nPZ: U2nAU5A1nI. ~6!

The age operatorA hasZ as uniform spectrum with countable multiplicity. In fact, the fun
tions
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a0~w!5H 11 if wPD1

21 if wPD2
,

together with its transformed byUn:an5Un(a0), and all their finite products

aF5an1
¯anr

@F5$n1 , . . . ,nr% njPZ# constitute an orthonormal eigenbasis$aF :F,Z% of A, eachaF being a
‘‘state’’ of age n5max$n1, . . . ,nr%, in the sense that

AaF5naF . ~7!

~Clearly, there are countably many states corresponding to each eigenvalue or agen, showing its
multiplicity.! Because of Eq.~4!, U acts as aright bilateral shift10 on this basis:

UaF5aF11 ~8!

~whereF11ª$n111, . . . ,nr11%!. Equations~6! and~8! show how the age brought about by th
dynamical evolution and growing with it matches with the progress of external~or observer’s!
time labeling the dynamical group.

Now, we can decomposeL2(S,m) as a direct sum of two Hardy functions spaces10 H1
2 and

H2
2 such that

H1
2 5H r:rPL2~S,m!∧r5 (

F,Z1
aFaFJ ~9!

having only non-null Fourier coefficientsaFPC for positive indices, and

H2
2 5H r:rPL2~S,m!∧r5 (

F,Z0
2

aFaFJ ~10!

having only nonvanishing Fourier coefficients for negative~or zero! indices.
Then, it is obvious that

UH1
2 ,H1

2 ,UH2
2 ,H1

2
% H2

2 5L2~S,m!ÞH2
2 ~11!

and that

lim
n→1`

Un~H1
2

% H2
2 !5H1

2 . ~12!

We will describe this fact by saying that the states belonging toH1
2 are ‘‘stable toward the

future’’ under the induced evolutionU, while those belonging toH2
2 are ‘‘unstable.’’ In this way,

when acted on byUn, any function belonging toL2(S,m) will end in spaceH1
2 in the ‘‘far future’’

~precisely whenn→1`!. Of course, with respect to the inverse evolutionU21 ‘‘toward the
past’’—a left bilateral shift—we must reverse these terms, and also change Eq.~12! into

lim
n→1`

U2n~H1
2

% H2
2 !5H2

2 . ~13!

In Sec. III we will consider the ‘‘quantum version’’ of what we have said previously.

III. PURE STATES AND THE HAMILTONIAN

Let us begin considering just pure statesuc&, belonging to a Hilbert spaceH, of a quantum
system with HamiltonianH, such that
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Huv,n&5vuv,n&, ~14!

where 0<v,` or vPR1 andn belongs to a set of indicesN, which is the same for anyv ~for
didactical reasons we will assume that this set is numerable, and therefore the indexn will be
discrete!. Thus,H can be considered as a typical scattering Hamiltonian just endowed wit
absolutely continuous and uniform energy spectrum. Precisely, there is a nuclear spaceF and a
rigging of it with H,

F,H,F3,

such that

$uv,n&:vPR1`nPN%,F3

~we wil denote byF3 the antidual space ofF, composed of all continuous antilinear functiona
on F, and byF8 its dual! is a generalized eigenbasis ofH11,12 in the sense that

;w,cPF:^wuc&5(
n
E

0

`

dv^wuv,n&^v,nuc&, ~15!

where the left-hand side means the scalar product inH ~antilinear in its left factor!, while on the
right-hand side^wuv,n& means the evaluation of the antilinear functionaluv,n& on w, and
^v,nuc& is the evaluation of the linear functional^v,nu on c. This justifies Dirac’s notation:

uc&5(
n

E
0

`

dvuv,n&^v,nuc&. ~16!

Moreover, let us consider that real physical states are wave packets, mathematically m
by Schwarz functions ofvPR1, for each value ofn, so,

f ~v!5^v,nuc&PS 15S~R1!. ~17!

~S 1 is the space of all infinite differentiable complex-valued functions defined on@0,1`), such
that converge to zero forv→1` faster than the inverse of any polynomial.!

Taking into account all the values ofn we can say that

f ~v!5^v,nuc&P %
n

S n
1 . ~18!

This mathematical model is adopted for the following reasons:

~1! It is clear that we do not find infinite energies in nature, and so^v,nuc& must somehow go to
zero whenv→1`.

~2! In order to use derivatives in our calculations it is not enough to postulate that the
belong to a Hilbert space. They must be representable by differentiable functions. We
late that they are infinitely differentiable. After all, we cannot find an experimental contra
tion to this assumption.

~3! But since these functions must also be square integrable, we can take for granted that
to zero whenv→1`. We postulate that they go to zero faster than the inverse of
polynomial.

Of course, we are free to choose other spaces instead ofS 1, but it is evident thatS 1 is the
simplest model endowed with all the usual properties of wave packets~that is why the same choic
is made in Ref. 13!.
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IV. MIXED STATES AND THE LIOUVILLIAN

We will use the notation of Ref. 14. Then, the Liouville operator reads

L5@H,.#5H3I 2I 3H. ~19!

Let us consider the space of ‘‘density matrices’’L5H^ H, the rigged Hilbert space

F ^ F,H^ H,F3
^ F8,

and the generalized basis

$uv,n&^v8,n8u:v,v8PR1`n,n8PN% ~20!

~whereuv,n&^v8,n8u5uv,n& ^ ^v8,n8uPF3
^ F8!.

Let us define the Riezs indices:14

n5v2v8, 2`,n,`,
~21!

s5
1

2
~v1v8!,

unu
2

<s,`.

It will be convenient to label the basis~20! as

uv,n&^v8,n8u5un,s,n,n8!. ~22!

Then:

Lun,s,n,n8)5nun,s,n,n8). ~23!

So

H un,s,n,n8):nPR`
unu
2

<s,``n,n8PNJ ~24!

is a generalized eigenbasis of the Liouvillian,n being the corresponding generalized eigenva
ands, n, n8, the ‘‘degeneration indices.’’ From~21! we see thatnPR, while n andn8PN, and
sPR1, and these spaces have the same cardinality for anyn. So L has uniform Lebesgue
spectrumR.

In the basis~24! ‘‘the n-wave function’’ reads

r~n!5~run,s,n,n8!. ~25!

Following the ideas of Sec. III~and taking into account that we are considering mixed sta
as ‘‘density matrices,’’ identified withtensor productsof pure states!, it is physically justified to
suppose that these functions are sums of products of functionsf (v)PS(R1), namely:

f ~v!g~v8!5 f S s1
n

2DgS s2
n

2D . ~26!

They will have infinite derivatives with respect ton, sincef andg are infinitely differentiable.
Moreover,r~n! goes to zero whenn→6` faster than the inverse of any polynomial since this
a property off andg. Thus, for anys, n, n8:

r~n!5~run,s,n,n8!PS~R!. ~27!
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V. THE AGE OPERATOR

SinceL has uniform Lebesgue spectrumR, there is a system of imprimitivity inL based on
R for the group$Ut :tPR%. In other words, there is a spectral measureE defined onR and taking
its values in the set of the orthogonal projection operators ofL,10 such that

;t,sPR:Ut
21EsUt5Et1s , ~28!

whereEs5E((2`,s#), andEt1s5E((2`,t1s#). Then we can define theage operator15 by

A5E
R
t dE. ~29!

As a consequence of Eqs.~28! and~29!, and taking into account the properties ofE, we have

;tPR:Ut
21AUt5A1tI . ~30!

The age operatorA hasR as a uniform Lebesgue spectrum. In fact, for the physical state
have

Ar~n,s,n,n8!8 i
]

]n
r~n,s,n,n8!us,n,n85const, ~31!

that is equivalent to the commutation relation

@A,L#5 i . ~32!

~A andL have essentially the same commutation relation as position and momentum operaq
andp.! Thenr̂(a,s,n,n8), the Fourier transform in variablesn↔a of r(n,s,n,n8), is an eigen-
vector ofA, precisely:

Ar̂~a,s,n,n8!5ar̂~a,s,n,n8!. ~33!

Moreover r̂(a,s,n,n8)PS(R) in the variable a since it is the Fourier transform o
r(n,s,n,n8). Then, the time evolution ofr̂(a,s,n,n8) reads:

~e2 iLt r̂ !~a,s,n,n8!5~e2 intr̂ !~a,s,n,n8!

5E
2`

1`

e2 intr~n,s,n,n8!e2 iatdn

5E
2`

1`

e2 i (a1t)nr~n,s,n,n8!dn5 r̂~a1t,s,n,n8!. ~34!

Thus,L is the generator of the time translations, andr̂(a,s,n,n8) increase its age asa→a
1t becomingr̂(a1t,s,n,n8). This fact justifies the name given toA. But Eq. ~34! tells us that
during its time evolution, the wave packetr̂(a,s,n,n8)PS(R) does not change its shape, bein
merely shifted to the left. So, in the basis~24! all physical states are wave packets at any time,
we have

lim
t→1`

r̂~a1t,s,n,n8!50 ~35!

~in the pointwise convergence sense! because functions in Schwarz space go to zero when
variable goes toward the infinite.
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VI. THE THEOREM

The quantum version of the Baker’s transformation example would be as follows. L
consider a quantum system whose statesr are ‘‘density matrices’’ belonging to a Hilbert–Liouville
spaceL. Let L be the Liouville superoperator inL, assumed as havingR as uniform Lebesgue
spectrum. This amounts to saying that the evolution superoperator exp@2iLt# is a bilateral shift,
closely related with Hardy classes.16,10

We can decompose the space of physical statesC5F ^ F asC1 % C2 , where

C15$rPC:@;a,0:r̂~a,s,n,n8!50#%5$rPC: r̂~a,s,n,n8!PL2~R1!%, ~36!

C25$rPC:@;a.0:r̂~a,s,n,n8!50#%5$rPC: r̂~a,s,n,n8!PL2~R2!% ~37!

are spaces of wave packets that are also Hardy class functions in then variable from above (C1),
or below (C2), because of a Paley–Wiener Theorem~Ref. 12, Theorem II, p. 47!. Then our
theorem states that:

Theorem: The limit of any physical state, when t→1`, belongs toC2 .
Proof: Because of the fact thatL2(R)5L2(R2) % L2(R1), we can decompose anyr̂(a)

@abbreviation forr̂(a,s,n,n8)# as

r̂~a!5 r̂2~a!1 r̂1~a!, ~38!

where

r̂2~a!5 r̂~a! for a,0, r̂2~a!50 for a.0,
~39!

r̂1~a!5 r̂~a! for a.0, r̂1~a!50 for a,0.

In particular

r̂~a1t !5 r̂2~a1t !1 r̂1~a1t ! ~40!

~first the shift to the left, and then the decomposition into the negative and positive parts
respect toa50, not with respect toa1t50!.

From Eqs.~40! and ~35! we see thatr̂1(a1t)→0 in L2(R1), when t→1`, and therefore
r̂(a1t)2 r̂2(a1t)→0 in L2(R1). So, whent→1` the functionr̂(a1t) belongs toL2(R2),
and thus its inverse Fourier transform, namely (e2 iLtr)(n), belongs toC2 . h

So, we have proved

lim
t→1`

e2 iLtC5C2 ~41!

the wave packets analog of Eq.~13! for the left shift, as announced.

VII. CONCLUSION

As the typical distance among the scatterers is much bigger than the characteristic dim
of the scatterers itself, most of the states can be considered far from these scatterers. Th
most of the physical statesdo belong to spaceC2 , thus explaining time-asymmetry~see Sec. I!.
Moreover, using the space of physical admissible statesC2 , most of the irreversible phenomen
of nature can be foreseen, obtaining the same results as those of other formalisms~such as
‘‘coarse-graining,’’ Lindblad, etc.17!.
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The so-called Gazeau–Klauder and Perelomov coherent states are introduced for an
arbitrary quantum system. We give also the general framework to construct the
generalized intelligent states which minimize the Robertson–Schro¨dinger uncer-
tainty relation. As illustration, the Po¨schl–Teller potentials of trigonometric type
will be chosen. We show the advantage of the analytical representations of
Gazeau–Klauder and Perelomov coherent states in obtaining the generalized intel-
ligent states in analytical way. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1429321#

I. INTRODUCTION

Coherent states, known as the closest states to classical ones, play an important role i
different contexts of theoretical and experimental physics, especially quantum optics.1–3 Schrö-
dinger first discovered the coherent states for the harmonic oscillator potential in 19264 and much
work has been done since then on their properties and applications.5,6 The coherent states hav
also been found in systems with the Lie group symmetry.7,8 Recently, coherent states have be
found in special Hamiltonians.9 These coherent states are called minimum uncertainty cohe
states. In coherent states the standard deviation ofX ~coordinate! andP ~momentum! are equal and
their product is minimum over states. There are also quantum states where, though w
minimum uncertainty for the standard deviation of coordinate and momentum, they are not
any more; those states are called squeezed states. These states are as important as cohe
Their generation plays an important role in many different branches of physics.

There exist three definitions of coherent states. The first one defines the usual coheren
as eigenstates of the annihilation operatora2 for each individual oscillator mode of the electro
magnetic field

a2uz&5zuz&. ~1!

Here@a2,a1#51 ((a2)†5a1) andz is a complex constant with conjugatez̄. The resulting unit
normalized statesuz& are given by

uz&5e2 uzu2/2(
n50

`
zn

An!
un&, ~2!

whereun& is an element of the Fock spaceH[$un&,n>0%. A second definition of coherent state
for oscillators assumes the existence of a unitary ‘‘displacement’’ operatorD(z) defined as

D~z!5exp~za12 z̄a2!. ~3!
7140022-2488/2002/43(2)/714/20/$19.00 © 2002 American Institute of Physics
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The coherent states parametrized byz are given by the action ofD(z) on the ground stateu0&. The
unitarity of D(z) ensures the correct normalization ofuz&. The Baker–Campbell–Hausdorff rela
tion ~BCH!

eAeB5eA1B1 ~1/2![A,B] , ~4!

valid only for any two operatorsA andB that both commute with the commutator@A,B#, implies
the equivalence of this definition with the one above.

A third definition is based on the uncertainty relation, with the positionX and momentumP
given, as usual, by

X5
1

&
~a21a1!, P5

i

&
~a12a2!. ~5!

The coherent states defined above have the minimum-uncertainty value 2DXDP51 and maintain
this relation in time~temporal stability of coherent states!. Coherent states have two importa
properties. First, they are not orthogonal to each other. Second, they provide a resolution
identity, i.e., they form an over-complete set states.

A central goal of this article is to extend the above three definitions for an arbitrary qua
system~exactly solvable! and compare the equivalence between them. Note that an attempt i
sense was considered by Nietoet al.9 concluding that the three definition are generally inequi
lents. Our analysis is different from the Nietoet al.ones for several reasons which will be clear
the sequel of this article.

The method we adopt is an extension of the group-theoretical approach to coherent
which generalizes the displacement operator definition. We call the obtained coherent
coherent states of Perelomov type. The latter will be compared with Gazeau–Klauder co
states constructed using the approach adopted by Barut–Girardello10,11 ~see also Refs. 12–14! for
an arbitrary quantum system. To extend to third definition, we solve the eigenvalue equat
states minimizing the Robertson–Schro¨dinger uncertainty relation which extends the Heisenb
one. These states are called generalized intelligent states~GIS!.15,16 We show that the set of GIS
includes the Gazeau–Klauder coherent states in a particular situation.

This article is organized as follows: Creation and annihilation operators for an arb
quantum system~exactly solvable! are introduced in Sec. II. These operators are used to de
Gazeau–Klauder coherent states in Sec. III. Section IV is devoted to giving a general alg
leading to the Perelomov coherent states. States minimizing the Robertson–Schro¨dinger uncer-
tainty relation are constructed in Sec. V. The results of Secs. III–V are applied to a qua
system evolving in Po¨schl–Teller potentials. In particular, using the analytical representation
Gazeau–Klauder coherent states and Perelomov ones, we give the generalized intelligen
under analytical forms~Sec. VI!. The last section concerns a summary of the main results of
work.

II. CREATION AND ANNIHILATION OPERATORS FOR AN ARBITRARY QUANTUM
SYSTEM

We start with general consideration on the creation and annihilation operators from th
torization of a given Hamiltonian admitting a nondegenerate discrete infinite energy spectru
us assume that the HamiltonianH of a quantum system admits infinite spectrum of ene
$En , n50,1,2, . . .% such that the fundamental energyE050 and the others are in increasing ord
i.e.,

E050,E1,E2,¯,En21,En,¯ . ~6!
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For such a system, we know that the fundamental statec0(x) and the potentialV(x) are closely
related so that the factorization is possible. Indeed, the time independent Schro¨dinger equation for
c0(x) reads

Hc0~x!5S 2
1

2

d2

dx2 1V~x! Dc0~x!50, ~7!

and we have

V~x!5
1

2

c09~x!

c0~x!
, ~8!

where the prime means the derivation with respect tox.
The usual factorization ofH is then given by

H5A1A2 ~9!

with

A15
1

&
S 2

d

dx
1W~x! D , A25

1

&
S d

dx
1W~x! D , ~10!

where the superpotentialW(x) satisfies the Riccati equation

V~x!5 1
2 ~W2~x!2W8~x!!. ~11!

It is clear, from Eqs.~8! and ~11!, thatW(x) takes the form

W~x!52
c08~x!

c0~x!
. ~12!

From Eq.~10!, we have

@A2,A1#5W8~x!, ~13!

which generalizes the usual one for the harmonic oscillator (W(x)5x). The operatorsA1 andA2

are not the creation and annihilation operators ofH. Then, we are interested now in identifying th
operators creating and annihilating the quantum states of the system under consideration. T
ingredients in constructing them is to define the operatorH15A2A1 obtained fromH5H2

5A1A2 by reversing the order ofA2 andA1. The operatorH1 is in fact a Hamiltonian corre-
sponding to a new potentialV1(x):

H152
1

2

d2

dx2 1V1~x!, V1~x!5
1

2
~W2~x!1W8~x!!. ~14!

The potentialsV2(x)5V(x) and V1(x) are known as supersymmetric partner potentials
H2[H andH1 are isospectrals~H1 is also exactly solvable!. Indeed, the Schro¨dinger equation
for H2 ,

H2ucn&5Enucn&, ~15!

implies

H1~A2ucn&)5En~A2ucn&). ~16!
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Similarly, the Schro¨dinger equation forH1 ,

H1uun&5enuun&, ~17!

implies

H2~A1uun&)5en~A1uun&), ~18!

whereen are the eigenvalues anduun& are eigenstates ofH1 . From the latter equations and th
fact thatE050, it is clear that the energies and eigenstates ofH2 andH1 are related by

en5En11 ,

A2ucn11&5AEn11ei (En112En)auun&, ~19!

A1uun&5Aene2 i (En112En)aucn11&, ~20!

whereaPR. Notice that if the eigenstatesucn11& (uun&) of H2 (H1) are normalized, then the
wavefunctionsuun& (ucn11&) in Eqs.~19! and~20! are also normalized. Further, the operatorA2

(A1) converts an eigenfunction ofH2 (H1) into an eigenfunction ofH1 (H2) with the same
energy. Thus, the operatorsA2 andA1 connect the statesucn& anduun& and cannot be considere
as creation and annihilation operators forH[H2 . To define the ladder operators for the quantu
system described byH, we consider the unitary transformationU connecting the basis$ucn&% and
$uun&% as follows:

uun&5Uucn& ~21!

with

UU15U1U5I . ~22!

The explicit structure of the unitary operatorU is given by

U5(
n,m

Unmucn&^cmu, ~23!

where the elementsUnm are evaluated by

Unm5^cnuum&5E cn* ~x!um~x!dx. ~24!

Note that in the harmonic oscillator caseU5I .
At this stage, we can introduce the creation and annihilation operators ofH by

a15A1U, a25U1A2. ~25!

The actions of the operatorsa1 anda2 on the states$ucn&% are given by

a1ucn&5AEn11e2 i (En112En)aucn11&, ~26!

a2ucn&5AEnei (En2En21)aucn21&. ~27!

Note thata1a25A1A25H. It is easy to show that

ucn&5
~a1!n

AE~n!
eiEnauc0&, n.0, ~28!
                                                                                                                



tor and
low-

system

718 J. Math. Phys., Vol. 43, No. 2, February 2002 A. H. EI Kinani and M. Daoud

                    
where we have defined

E~n!5E1E2¯En ~29!

and, forn50, E(0)51.
The exponential factor appearing in all these expressions produces only a phase fac

will be significant for the temporal stability of the coherent states we will construct in the fol
ing. From Eqs.~26! and ~27!, we have also

@a2,a1#ucn&5~En112En!ucn&. ~30!

Let us now introduce the operatorN such that

Nucn&5nucn&, ~31!

which is, in general~for an arbitrary quantum system!, different from the producta1a2 (5H).
We can see that it satisfies the following properties:

a2N5~N11!a2, a1~N11!5Na1. ~32!

We are then able to define an operatorG such that

@a2,a1#5G~N!, ~33!

which acts in the statesucn& as

G~N!ucn&5~En112En!ucn&. ~34!

The operatorG is Hermitian.

III. GAZEAU–KLAUDER COHERENT STATES

A. Eigenstates of annihilation operator

The Gazeau–Klauder coherent states are eigenstates of the annihilation operator of the
under consideration. For the system governed by the HamiltonianH (5A1A25a1a2), such
states are labeled byuz,a&, zPC andaPR ~a is the parameter entering in Eqs.~26! and ~27!!,
and they are assumed to be the solution of the eigenvalue equation

a2uz,a&5zuz,a&. ~35!

To have their explicit form we decompose it in the basis$ucn&% such that

uz,a&5 (
n50

1`

anucn& ~36!

and insert this equation in~35!. Using Eq.~27!, we find

an5
zn

AE~n!
e2 iEnaa0 , n.0, ~37!

with E(n) is given by ~29!. For n50, the stateuc0& is an eigenstate ofa2 with eigenvalue 0.
Finally, the coherent statesuz,a& take the form

uz,a&5a0(
n50

1`
zn

AE~n!
e2 iEnaucn&. ~38!
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The constanta0 will be fixed by imposing the normalization to unity. We get

ua0u225 (
n50

1` uzu2n

E~n!
. ~39!

The coherent states~38! are continuous inzPC andaPR. Moreover, the presence of the pha
factor in the definition equations~26! and~27! of thea2 anda1 actions leads to temporal stabilit
of the coherent states. Indeed, we have

eiHt uz,a&5uz,a1t&. ~40!

The analysis of completeness~in fact, the overcompleteness! requires us to compute the identit
resolution, that is,

E uz,a&^z,audm~z!5I H . ~41!

Note that the integral is over the disk$zPC,uzu,R%, where the radius of convergenceR is

R5 lim
n→1`

An E~n! ~42!

and the measuredm(z) has to be determined. To determine it, we suppose thatdm(z) depends
only on uzu ~isotropy condition!. We take

dm~z!5@a0#22h~r 2!rdrdw; z5reiw. ~43!

Hence, the identity resolution can be written in the following form:

I H5 (
n50

1`

ucn&^cnuF p

E~n!
E

0

R 2

h~u!unduG . ~44!

The last equation is satisfied when we have

E
0

R 2

h~u!undu5
E~n!

p
. ~45!

It is clear that the identity resolution is then equivalent to the determination of the functionh(u)
satisfying Eq.~45!. For R→`, the functionh(u) is the inverse Mellin transform ofp21E(s
21),

h~u!5
1

2p2i Ec2 i`

c1 i`

E~s21!u2sds; cPR. ~46!

Note that explicit computation of the functionh(u) requires the knowledge of the spectrum of t
quantum mechanical system under consideration.

Using Eq.~35!, one can obtain the mean value of the HamiltonianH in the statesuz,a&:

^z,auHuz,a&5uzu2. ~47!

This relation in known as the action identity.
Finally, we remark that the coherent statesuz,a& can be written as an operatorU(z) acting in

the ground stateuc0&
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U~z!5a0 expS z
N

g~N!
a1D ~48!

such that we have

uz,a&5U~z!uc0&. ~49!

In ~48!, g(N)[H5a1a2. The operatorU(z) is not unitary and cannot be interpreted as t
displacement operator in the Perelomov’s sense.

A final comment can be made in connection with the work of Gazeau and Klauder.11 In fact,
the coherent states~38! satisfy all the requirements~continuity, temporal stability, identity resolu
tion, action identity! given in their approach but they are more general since we are working
zPC andaPR. They are eigenstates of the annihilation operatora2. Additional properties of this
set of states will be considered in Sec. V.

B. Fock–Bargmann representation

It is well known that the Fock–Bargmann representation enables one to find simple sol
to a number of problems, exploiting the theory of analytical entire functions. In this subse
generalizing the pioneering work of Bargmann17 for the usual harmonic oscillator, we give th
Bargmann representation of an arbitrary quantum mechanical system. We recall that in the
Bargmann representation for the standard harmonic oscillator, the creation operatora1 is the
multiplication byz while the annihilation operatora2 is the differentiation with respect toz.

For an arbitrary quantum system, we define the Fock–Bargmann space as a space of fu
which are holomorphic on a ringD of the complex plane. The scalar product is written with
integral of the form

^ f ug&5E f ~z!g~z!dm~z!, ~50!

wheredm(z) is the measure defined above~see Eq.~43!!. Let u f & be an arbitrary quantum state o
the system under study,

u f &5 (
n50

1`

f nucn&, with (
n50

1`

u f nu2,`. ~51!

Any stateu f & is represented, in the Fock–Bargmann representation, as a function of the co
variablez ~using the so-called coherent states associated with the quantum system under
eration!:

f ~z![^z̄,au f &5 (
n50

1`
zn

AE~n!
eiEna f n . ~52!

In particular, to the vectorsucn& there correspond the monomials

^z̄,aucn&5
zn

AE~n!
eiEna. ~53!

Using Eqs.~52! and ~53!, we can prove the following result: In the Fock–Bargmann represe
tion, we realize the annihilation operatora2 by

a25z21gS z
d

dzD , ~54!
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the creation operatora1 by

a15z, ~55!

and the operator number by

N5z
d

dz
. ~56!

The Fock–Bargmann representation exists if we have a measure such that

E uz,a&^z,audm~z!5I H . ~57!

The existence of the measure, discussed previously for the so-called Gazeau–Klauder c
states, ensures that the scalar product takes the form~50!. We note that in the case where

gS z
d

dzD5z
d

dz
, i.e., g~N!5N, ~58!

we recover the well-known Fock–Bargmann representation of the harmonic oscillator. The F
Bargmann realization discussed here will be the main tool to construct the generalized inte
states~see Sec. VI!.

IV. COHERENT STATES OF PERELOMOV’S TYPE

In view of the second definition of coherent states for the standard harmonic oscillator~group-
theoretical approach!, we define, for an arbitrary quantum system, the states

uz,a&5exp~za12 z̄a2!uc0&, for zPC, ~59!

which we call of Perelomov’s type. We have to compute the action of the displacement op

D~z!5exp~za12 z̄a2! ~60!

on the ground stateuc0& of the quantum system under study. We will give the result of this ac
in a closed form. An illustration is treated for the Po¨schl–Teller and square-well potentials~in Sec.
VI !.

Using the actions of the annihilation and creation operators on the Hilbert space$ucn&,n
50,1,2, . . .% ~Eqs.~26! and~27!!, one can, after more or less complicated computations, show
the statesuz,a& can be written as follows:

uz,a&5 (
n50

1`
zn

AFn~ uzu!
e2 iEnaucn&. ~61!

The quantitiesFn(uzu) satisfy

Fn~ uzu!E~n!~cn~ uzu!!251, ~62!

where the coefficientscn(uzu) are given by

cn~ uzu!5(
j 50

1`
~2uzu2! j

~n12 j !! S (
i 151

n11

Ei 1 (i 251

i 111

Ei 2
¯ (

i j 51

i j 2111

Ei j D . ~63!

Setting
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p~n11,j !5 (
i 151

n11

Ei 1 (i 251

i 111

Ei 2
¯ (

i j 51

i j 2111

Ei j
and p~n11,0!51, ~64!

one can verify that thep’s satisfy the following relation:

p~n11,j !2p~n, j !

En11
5p~n12,j 21!. ~65!

Using this recurrence formula, one can show that the coefficientscn(uzu5r ) satisfy the following
differential equation:

dcn~r !

dr
5

1

r
cn21~r !2

n

r
cn~r !2En11cn11~r !r . ~66!

Hence, solving this equation, we can obtain explicitly the coherent statesuz,a& of Perelomov’s
type. Of course, to solve this equation for an arbitrary quantum system is, in general, not a
task. However, solutions in some particular~and interesting physical system! will be given in Sec.
VI. Here, as a first illustration of the approach leading to coherent states of Perelomov’s typ
give the standard harmonic oscillator coherent states using the above considerations. In th
we show that~61! coincides with~2!. For the harmonic oscillatorEn5n andE(n)5n!.

To solve Eq.~66!, we set

cn~r !5
1

n! (
m50

1`

amr m. ~67!

Substituting this expression in~66!, we get the coefficientsam ,

a2p5
~21!p

2pp!
a0 and a2p1150, ~68!

wherea051 becausec0(r 50)51. Finally, we have

Fn~ uzu!5n! exp~ uzu2! ~69!

and

uz,a&5expS 2
uzu2

2 D (
n50

1`
zn

An!
e2 ianun&. ~70!

We recover a well-known result.

V. GENERALIZED INTELLIGENT STATES

These states minimize the Robertson–Schro¨dinger uncertainty relation,18,19and generalize the
Gazeau–Klauder coherent states.

Using the creationa1 and annihilationa2 operators, we introduce the Hermitian operator

X5
1

&
~a11a2!, P5

i

&
~a12a2!, ~71!

which satisfy the commutation relation

@X,P#5 iG~N![ iG. ~72!
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The operatorG(N), defined by~34! is not necessarily a multiple of the unit operator~for an
arbitrary quantum system!. It is well known that for two Hermitian operatorsX andP satisfying
the noncanonical commutation relation~72!, the variances (DX)2 and (DP)2 satisfy the
Robertson–Schro¨dinger uncertainty relation

~DX!2~DP!2> 1
4 ~^G&21^F&2!, ~73!

where the operatorF is defined by

F5$X2^X&,P2^P&% ~74!

or by

F5 i @~2a22^a2&!^a2&1~22a11^a1&!^a1&2a221a12# ~75!

in terms of the operatorsa2 anda1. The symbol$,% in ~74! stands for the anticommutator. Whe
there is a correlation betweenX and P, i.e., ^F&Þ0, the relation~73! is a generalization of the
usual one~the Heisenberg uncertainty condition!,

~DX!2~DP!2> 1
4 ^G&2. ~76!

The special form~76! is identical to the general form~73! if X andP are uncorrelated, i.e.,^F&
50. The general uncertainty relation~73! is better suited to determine the lower bound on
product of variances in the measurement of observables corresponding to the noncanonica
tors. The so-called generalized intelligent states are obtained when the equality in the Robe
Schrödinger uncertainty relation is realized.20 The inequality in~73! becomes equality for the
states satisfying the equation~see also Refs. 20–23!

~X1 ilP!uc&5z&uc&, l,zPC. ~77!

As a consequence, we have the following relations

~DX!25uluD, ~DP!25
1

ulu
D, ~78!

with

D5 1
2A^G&21^F&2. ~79!

The average valueŝG& and ^F&, in the states satisfying the eigenvalue equation~77! can be
expressed in terms of the variances as follows:

^G&52 Re~l!^DP&2, ^F&52 Im~l!^DP&2. ~80!

It is clear, from~78! that if ulu51, we have

~DX!25~DP!2. ~81!

We call the states satisfying~81! with ulu51 the generalized coherent states. ForuluÞ1, the states
are called generalized squeezed states.

Using Eq.~77! one can obtain some general relations for the average values and dispers
X and P in the states which minimize the Robertson–Schro¨dinger uncertainty relation~73!. We
have

~DX!25 1
2 ~Re~l!^G&1Im~l!^F&!, ~82!
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~DP!25
1

2ulu2 ~Re~l!^G&1Im~l!^F&!, ~83!

Im~l!^G&5Re~l!^F&. ~84!

In order to give a complete classification of the so-called generalized intelligent states f
arbitrary quantum system, we have to solve the eigenvalue equation~77!. Such computation was
considered previously by the authors in Refs. 15 and 16. The states minimizing the Robe
Schrödinger uncertainty relation are given by

uc&[uz,l,a&5 (
n50

1`

dnucn&, dn[dn~z,a,l!. ~85!

For the case wherelÞ21, the coefficientsdn are given by the following expression:

dn5d0

~2z!n

~11l!nAE~n!
F (

h50(1)[n/2]
~21!h

~12l2!h

~2z!2h D~n,h!Ge2 iaEn, ~86!

where the symbol@n/2# stands for the integer part ofn/2 and the functionD(n,h) is defined by

D~n,h!5 (
j 151

n2(2h21)

Ej 1F (
j 25 j 112

n2(2h23)

Ej 2
. . . F . . . F (

j h5 j h2112

n21

Ej hG G . . . G . ~87!

We note that the casel521, leading to the unnormalized solution, is not of interest.
The statesuz,l,a& can be also given as the action of some operator on the ground stateuc0&

of H. A more or less complicated manipulation gives the following result:

uz,l,a&5U~l,z!uc0&, ~88!

where

U~l,z!5d0(
n50

` S S 2z

l11D a1

g~N!
1S l21

l11D 1

g~N!
~a1!2D n

. ~89!

Note that the statesuz,l,a& are stable temporally. As a first illustration of this construction, we
obtain the generalized intelligent states for the standard harmonic oscillator (g(N)5N). We have
~up to normalization constant!

uz,l,a&5expF S l21

l11D ~a1!2

2 GexpF S 2z

l11Da1G u0&, ~90!

whereu0& is the ground states for the harmonic oscillator.
The Gazeau–Klauder coherent states correspond to the situationl51. In this case, the coef

ficientsdn are given by

dn5d0

zn

AE~n!
e2 iaEn, ~91!

and the coherent statesuz,l51,a& coincide with Gazeau–Klauder onesuz,a& given by Eq.~38!.
The normalization factord0 is given by Eq.~39!. The statesuz,l51,a&[uz,a& minimize the
Heisenberg uncertainty relation~76! and are eigenvectors of the annihilation operatora2. We
have
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~DX!25~DP!25 1
2 ^G&, ~92!

where

^G&5d0
2(

n50

1` uzu2n

E~n!
En112uzu2 and ^F&50. ~93!

The latter equation traduces the fact that there is no correlation betweenX and P. For the
harmonic oscillator, it is easy to see that^G&51 and 2 (DX)252(DP)251.

As we mentioned above, the coherent states minimizing Robertson–Schro¨dinger uncertainty
relation correspond to the caseulu51. The casel51 corresponds to the Gazeau–Klauder coh
ent states andl521 is not allowed by our construction. Settingl5eiu (uÞkp;kPN), the states
uz,l,a& are coherent and dispersions are given by

~DX!25~DP!25
1

2ucosuu ^G&. ~94!

The main value of the operatorF is nonvanishing~vanishes only in the Gazeau–Klauder coher
states, i.e.,l51! and it is given by

^F&5tgu^G&. ~95!

From the latter equation, we conclude that the presence of the correlation (^F&Þ0) does not
forbid the system to be prepared in coherent states. This result is true for any quantum syste
properties of the statesuz,l,a& turned out to be sensitive about the spectral properties of
commutator@a2,a1#5G(N).

To close this section, we note that the minimization of the Robertson–Schro¨dinger uncertainty
relation leads to more general expressions of coherent states associated to an arbitrary q
system. The Gazeau–Klauder coherent states (l51) ~eigenvectors of the annihilation operato!
constitute a particular case of such coherent state classess (ulu51).

VI. APPLICATION: PÖ SCHL–TELLER POTENTIALS

We start by recalling the eigenvalues and eigenstates of infinite square well and Po¨schl–Teller
potentials24 ~see also Ref. 25 and references therein!. We consider the Hamiltonian

H52
d2

dx2 1Vk,k8~x! ~96!

describing a particle on the line, and submitted to the potential

Vk,k8~x!5H 1

4a2 F k~k21!

sin2~x/2a!
1

k8~k821!

cos2~x/2a!G2
~k1k8!2

4a2 , 0,x,pa

` x<0, x>pa,

~97!

for k.1 andk8.1. It is well known that the Po¨schl–Teller potentials interpolate between t
harmonic oscillator and infinite square well. The infinite square well takes place in the limk
5k851.

The HamiltonianH can be written in the factorized form

H5Ak,k8
1 Ak,k8

2 , ~98!

where the operatorsAk,k8
2 andAk,k8

1 are given by
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Ak,k8
6

57
d

dx
1Wk,k8~x! ~99!

in terms of the superpotentialsWk,k8(x),

Wk,k8~x!5
1

2a FkcotgS x

2aD2k8 tangS x

2aD G . ~100!

The eigenvectors are given by

cn~x!5@cn~k,k8!#2 1/2S cos
x

2aD k8S sin
x

2aD k

Pn
(k2 1/2 ,k82 1/2)S cosS x

aD D ~101!

with cn(k,k8) the normalization constant which takes the form

cn~k,k8!5a
G~n1k1 1/2!G~n1k81 1/2!

G~n11!G~n1k1k8!G~2n1k1k8!
~102!

andPn
(a,b)’s stands for the Jacobi polynomials.

The eigenvalues ofH are given by

Hucn&5n~n1k1k8!ucn&. ~103!

To find the annihilation and creation operators for the Po¨schl–Teller system, we follow the stra
egy given in Sec. II. So, we denoteH by H2 and Vk,k8(x) by Vk,k8

2 (x). The HamiltonianH1

5Ak,k8
2 Ak,k8

1 ~supersymmetric partner ofH[H2!,

H152
1

2

d2

dx2 1Vk,k8
1

~x!, ~104!

describes a quantum system trapped in the potentials

Vk,k8~x!5H 1

8a2 F k~k21!

sin2~x/2a!
1

k8~k821!

cos2~x/2a!G2
~k1k8!2

8a2 , 0,x,pa,

0, x<0, x>pa.

~105!

The eigenstates ofH1 are given by

un~x!5@cn~k11,k811!#2 1/2S cos
x

2aD k811S sin
x

2aD k11

Pn
(k1 1/2 ,k81 1/2)S cosS x

aD D , ~106!

where thecn(k,k8) are defined by~102!.
The eigenvalues areen5(n11)(n1k1k811). Using the operatorsAk,k8

2 andAk,k8
1 and the

unitary transformationU connectingcn(x) and un(x) ~see Sec. II!, we define the creation an
annihilation operators by

ak,k8
1

5Ak,k8
1 U and ak,k8

2
5U1Ak,k8

2 . ~107!

The creation and annihilation operatorsak,k8
1 andak,k8

2 act onucn& as follows,

ak,k8
1 ucn&5A~n11!~n111k1k8!e2 ia(2n111k1k8)ucn11&,

~108!
ak,k8

2 ucn&5An~n1k1k8!eia(2n211k1k8)ucn21&,
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and satisfy the following commutation relation,

@ak,k8
2 ,ak,k8

1
#5Gk,k8~N!, ~109!

where

Gk,k8~N![G~N!52N1~11k1k8!. ~110!

We note thatNÞak,k8
1 ak,k8

2
5H.

A. Gazeau–Klauder coherent states

Using the result of Sec. III, the so-called Gazeau–Klauder coherent states~eigenstates of the
annihilation operatorak,k8

2 ! read as

uz,a&5N~ uzu! (
n50

1`
zne2 ian(n1k1k8)

AG~n11!G~n1k1k811!
ucn&, ~111!

with N(uzu) the normalization constant which takes the form

@N~ uzu!#25
uzuk1k8

I k1k8~2uzu!
, ~112!

whereI k1k8(2uzu) is the modified Bessel function of the first kind.
The identity resolution is given explicitly by

E uz,a&^z,audm~z!5I H , ~113!

where the measure can be computed by the inverse Mellin transform26

dm~z!5
2

p
I k1k8~2r !K ~k1k!8/2~2r !rdrdf, z5r if. ~114!

The Gazeau–Klauder coherent states of the infinite square well are obtained from the P¨schl–
Teller ones simply by puttingk1k852.

The Gazeau–Klauder coherent states form an overcomplete family of states~resolving the
unity by integration with respect to the measure given by~114!!, and provide a representation o
any stateu f & by an entire function

f ~z,a!5AI k1k8~2uzu!

uzuk1k8
^z̄,au f &5 (

n50

1`

^cnu f &
zneian(n1k1k8)

AG~n11!G~n1k1k811!
. ~115!

In particular, the analytic functions corresponding to the vectorsucn& are

Fn~z,a!5
zneian(n1k1k8)

AG~n11!G~n1k1k811!
. ~116!

Using the Fock–Bargmann representation discussed in Sec. III B, the creation and annih
operators, for a quantum system evolving in Po¨schl–Teller~or in the infinite square well! poten-
tials, are realized by

ak,k8
1

5z, ak,k8
2

5z
d2

dz2 1~k1k811!
d

dz
, ~117!
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and the operatorGk,k8(N), in this representation, acts as

G52z
d

dz
1~k1k811!. ~118!

In fact, one can verify that

ak,k8
1 Fn~z,a!5A~n11!~n111k1k8!e2 ia(2n111k1k8)Fn11~z,a!, ~119!

ak,k8
2 Fn~z,a!5An~n1k1k8!eia(2n211k1k8)Fn21~z,a!, ~120!

Gk,k8~N!Fn~z,a!5~2n111k1k8!Fn~z,a!. ~121!

This realization will be useful, as we will see, to construct the Po¨schl–Teller generalized intelli-
gent states which minimize the Robertson–Schro¨dinger uncertainty relation.

B. Pöschl–Teller coherent states of Perelomov’s type

In Sec. IV, we defined coherent states of Perelomov’s type for an arbitrary quantum sy
The expressions of these states are given by infinite series~more or less complicated!. As a first
illustration, we discussed the harmonic oscillator system. Here, we construct the Po¨schl–Teller
coherent states a` la Perelomov. In this order, we have to solve the differential equation~66! for the
Pöschl–Teller potentials (En5n(n1k1k8)). In this case, the solutions are

cn~r !5
1

n! r n ßm,n1 ~1/2!(k1k811)
2 ~1/2!(k1k811)

~cosh~2r !!, ~122!

because the Jacobi functionsß satisfy the following differential equation.27

d

dr
ßm,n2 l

l ~cosh~2r !!5nßm,n212 l
l ~cosh~2r !!2~n22l !ßm,n112 l

l ~cosh~2r !!, ~123!

where l 52 1
2(k1k811) and m is a free integer parameter which will be fixed after. The

functions play an important role in the representation theory of theQU(2) group of unimodular
quasi-unitary matrices.

The differential equation~123! admits several solutions. However, an admissible solutio
obtained by noting thatD(z50)51. Using the definition of the Jacobi functions,27 the unique
solution, compatible with the conditionD(z50)51, is given by

cn~r !5
1

n! r n ß~1/2!(k1k811),n1 ~1/2!(k1k811)
2 ~1/2!(k1k811)

~cosh~2r !!, ~124!

which can be written also as

cn~r !5
1

n!
~cosh~r !!2(k1k811)S tanhr

r D n

. ~125!

The coherent states of Perelomov’s type take the form

uz,a&5~12tanh2uzu!~1/2!(k1k811)(
n50

1` S z tanhuzu
uzu D n

3F G~n1k1k811!

G~n11!G~k1k811!G
1/2

e2 ian(n1k1k8)ucn&. ~126!
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Finally, settingz5 z tanhuzu/uzu, we obtain

uz,a&[~12uzu2!~1/2!(k1k811)(
n50

1`

znF G~n1k1k811!

G~n11!G~k1k811!G
1/2

e2 ian(n1k1k8)ucn&. ~127!

We note that the parameterz belongs to the unit diskD5$zPC, uzu,1%.
The states are stable temporally. Indeed,

e2 iHt uz,a&5uz,a1t&. ~128!

The identity resolution is given by

E uz,a&^z,audm~z!5I H , ~129!

where the measure is

dm~z!5
k1k8

p

d2z

~12uzu2!2 . ~130!

There are two main consequences arising from the former result. First, we can expre
coherent stateuz8,a8& in terms of the others:

uz8,a8&5E uz,a&^z,auz8,a8!dm~z!. ~131!

The kernel̂ z,auz8,a8& is easy to evaluate from~127!:

^z,auz8,a8&5A~12uzu2!(k1k811)~12uz8u2!(k1k811)

3 (
n50

1`

z̄nz8n G~n1k1k811!

G~n11!G~k1k8111!
e2 i (a82a)n(n1k1k8). ~132!

The coherent states are normalized (^z,auz,a&51), but they are not orthogonal to each other
Second, an arbitrary element state of the Hilbert spaceH, let us call itu f &, can be written in

terms of the coherent states,

u f &5E ~12uzu2!~1/2!(k1k811)f ~ z̄,a!uz,a&dm~z!, ~133!

where the analytic function

f ~ z̄,a!5~12uzu2!2 ~1/2!(k1k811)^z̄,au f & (
n50

1`

znF G~n1k1k811!

G~n11!G~k1k811!G
1/2

eian(n1k1k8)^cnu f &

~134!

determines in a complete way the stateu f &PH. The stateucn& is represented by the function

F n8~z,a!5znF G~n1k1k811!

G~n11!G~k1k811!G
1/2

eian(n1k1k8). ~135!

The creationak,k8
1 , annihilationak,k8

2 , andGk,k8(N) operators act in the Hilbert space of analy
functions f (z,a) as first-order differential operators:
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ak,k8
1

5z2
d

dz
1~k1k811!z, ak,k8

2
5

d

dz
,

~136!

Gk,k8~N![G52z
d

dz
1~k1k811!.

One can verify that

ak,k8
1 F n8~z,a!5A~n11!~n111k1k8!e2 ia(2n111k1k8)Fn118 ~z,a!, ~137!

ak,k8
2 F n8~z,a!5An~n1k1k8!eia(2n211k1k8)Fn218 ~z,a!, ~138!

Gk,k8~N!F n8~z,a!5~2n111k1k8!F n8~z,a!. ~139!

The analytic representation of the Gazeau–Klauder coherent states and the analytical realiz
the Perelomov ones in the unit disk are related through a Laplace transform. Indeed, one ca
easily that

F n8~z,a!5
z2(k1k811)

AG~k1k811!
E

0

1`

zk1k8Fn~z,a!e2 z/zdz, ~140!

which means that the functionF n8(1/z ,a) is the Laplace transform ofzk1k8Fn(z,a). A similar
result was obtained in Ref. 28 showing that the representation in the unit disk and B
Girardello one, based on the su~1,1! coherent states, are related through a Laplace transform

C. Pöschl–Teller generalized intelligent states

The generalized intelligent states can be determined by using two analytic representatio
based on the so-called Gazeau–Klauder coherent states~Sec. III! and the other one on the Pe
elomov’s coherent states~Sec. IV!.

1. The Gazeau –Klauder analytic representation

We introduce the analytic function

F (z8,l,a)~z!5AI k1k8~2uzu!

uzuk1k8
^z̄,auz8,l,a& ~141!

by means of which one converts the eigenvalues equation

@~11l!ak,k8
2

1~12l!ak,k8
1

#uz8,l,a&52z8uz8,l,a& ~142!

into the second-order linear homogeneous differential equation

F ~11l!S z
d2

dz2 1~k1k811!
d

dzD1~12l!z22z8GF (z8,l)~z!50. ~143!

We first consider the general caselÞ61. Setting

F (z8,l)~z!5expS 6Al21

l11
zDF (z8,l)~z!, ~144!

the equation can be transformed in the Kummer equation
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FZ
d2

dZ2 1~k1k8112Z!
d

dZ
2S k1k811

2
7

z8

Al221
D GF (z8,l)~z!50, ~145!

whereZ572A(l21)/(l11)z.
Then the solutions of Eq.~143! are given by

F (z8,l)~z!5expS 6Al21

l11
zD 1F1S k1k811

2
7

z8

Al221
,k1k811;72Al21

l11
zD

~146!

or

F (z8,l)~z!5expS 6Al21

l11
zD z2(k1k8)

1F1S 12~k1k8!

2
7

z8

Al221
,12~k1k8!;72Al21

l11
zD .

~147!

The first solution~146! is always analytic, but the solution~147! is not.~Remember thatk.1 and
k8.1.! The upper and lower signs in Eq.~146! are equivalent, because the confluent hyp
geometric function1F1(a,g;z) can be written in two equivalents forms which are related
Kummer’s transformation:

1F1~a,g;z!5ez
1F1~g2a,g,2z!. ~148!

Using the properties of this hypergeometric functions, we conclude that the squeezing par
l obeys the condition

AUl21

l11U,1⇔Re~l!.0, ~149!

which is exactly the restriction onl imposed by the positivity of the commutator@ak,k8
2 ,ak,k8

1
#

5Gk,k8(N) @see Eqs.~109! and ~110!#.
We consider now the degenerate casesl521 andl51. For thel521 Eq. ~143! does not

have any normalized analytic solution~the operatorak,k8
1 does not have any eigenstate!. For l

51, using the power series of1F1(a,b;z), we get

F (z8,l51)~z!50F1~k1k811;zz8!. ~150!

The result~150! coincides with the solution~111! ~up to normalization constant! for l51, and we
recover the Po¨schl–Teller coherent states defined as theak,k8

2 eigenstates.

2. The Perelomov coherent state basis and analytic representation in the unit disk

To solve the eigenvalues equation~142!, using the analytic representation of Perelomov
herent states in the unit disk, we introduce the analytic function

F (z8,l)~z!5~12uzu2!2 ~1/2!(k1k811)^z̄,auz8,l,a&. ~151!

Equation~142! is then converted to the following differential equation:

F @~12l!z21~11l!#
d

dz
1~12l!~k81k11!z22z8GF (z8,l)~z!50. ~152!

Admissible values ofl andz8 are determined by the requirements that the functionsF (z8,l)(z)
must be analytic in the unit disk. We consider the general case. The solution of Eq.~152! is
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F (z8,l)~z!5N 2 1/2 )
l 561

S 11 l S l21

l11D 1/2

z D 2 ~1/2!(k1k811)1 l z8/Al221

, ~153!

whereN is a normalization constant. The condition of analyticity requires

Ul21

l11U,1⇔Rel.0. ~154!

If Rel,0, the functionF (z8,l)(z) cannot be analytic in the unit disk.
The decomposition of the generalized intelligent statesuz8,l,a& over the Hilbert orthonorma

basis$ucn&% can be obtained by expanding the functionF (z8,a)(z) into a power series inz. This
can be done using the following relations:

S 11S l21

l11D 1/2

z D a1S 12S l21

l11D 1/2

z D a2

5 (
n50

1`

znS 2Al21

l11D n

Pn
(a12n,a22n)

~0!, ~155!

where

a652
1

2
~k1k811!6

z8

Al221
. ~156!

Then, the functionF (z8,a)(z) can be expanded in terms of the Jacobi polynomialsPn
(a,b)(x).

Using the relation between the hypergeometric function and Jacobi polynomials,27 one can show

uz8,l,a&5N 2 1/2(
n50

1` F G~k1k811!

n!G~k1k8111n!G
1/2F G~a111!

G~a12n11!G S 2Al21

l11D n

32F1~2n,2n2~k1k8!,a12n11; 1
2!e

2 iaEnucn& ~157!

or

uz8,l,a&5N 2 1/2(
n50

1` F n!G~k1k811!

G~k1k8111n!G
1/2S 2Al21

l11D n

Pn
(a12n,a22n)

~0!e2 iaEnucn&.

~158!

The generalized intelligent statesF (z8,l)(z) and F (z8,l)(z) are related through a Laplace tran
form. In fact, Eq.~152! can be written as

F @~11l!z21~12l!#
d

dz
2

~12l!~k81k11!

z
12z8GF (z8,l)S 1

z D50. ~159!

Using

F (z8,l)S 1

z D5
z2(k1k811)

AG~k1k811!
E

0

1`

zk1k8F (z8,l)~z…e2 z/zdz. ~160!

It is easy to see that the eigenvalue equation~159! becomes

F ~11l!S z
d2

dz2 1~k1k811!
d

dzD1~12l!z22z8GF (z8,l)~z!50, ~161!

which coincides with those in~143! (z85z8) that gives the generalized intelligent states~146!.
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VII. SUMMARY

In this work, we have explicitly constructed the Gazeau–Klauder and Perelomov coh
states for an arbitrary quantum system. As an application of this construction, we consider
system trapped in the Po¨schl–Teller potential type. We showed that the analytical representa
of Gazeau–Klauder and Perelomov coherent states~which are related through a Laplace tran
form! enable us to compute the generalized intelligent states for the Po¨schl–Teller potentials.
Finally, it should be interesting to investigate further applications of the results obtained o
work. Indeed, it is interesting, in our opinion, to construct the coherent states and gener
intelligent states for the shape invariant potentials.29 This matter will be considered in a forthcom
ing work.
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We study the chaotic behavior and the quantum-classical correspondence for the
Baker’s map. Correspondence between quantum and classical expectation values is
investigated and it is numerically shown that it is lost at the logarithmic timescale.
The quantum chaos degree is computed and it is demonstrated that it describes the
chaotic features of the model. The correspondence between classical and quantum
chaos degrees is considered. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1420743#

I. INTRODUCTION

The study of chaotic behavior in classical dynamical systems dates back to Lobachevs
Hadamard, who have studied the exponential instability property of geodesics on manifo
negative curvature, and to Poincare, who initiated the inquiry into the stability of the solar sy
One believes now that the main features of chaotic behavior in the classical dynamical syste
rather well understood~see, for example, Refs. 1 and 2!. However, the status of ‘‘quantum chaos
is much less clear although significant progress has been made on this front.

Sometimes one says that an approach to quantum chaos, which attempts to genera
classical notion of sensitivity to initial conditions, fails for two reasons: first, there is no quan
analog of the classical phase space trajectories and, second, the unitarity of linear Schr¨dinger
equations precludes sensitivity to initial conditions in the quantum dynamics of state vector.
remind, however, that in fact there exists a quantum analog of the classical phase space t
ries. It is quantum evolution of expectation values of appropriate observables in suitable
Also, let us remind that the dynamics of a classical system can be described either by the Ha
equations or by the linear Liouville equations. In quantum theory the linear Schro¨dinger equation
is the counterpart of the Liouville equation while the quantum counterpart of the classical H
ton equation is the Heisenberg equation. Therefore, the study of quantum expectation
should reveal the chaotic behavior of quantum systems. In this article we demonstrate this f
the quantum Baker’s map.

If one has the classical Hamilton equations

dq/dt5p, dp/dt52V8~q!,

then the corresponding quantum Heisenberg equations have the same form

dqh /dt5ph , dph /dt52V8~qh!,

whereqh andph are quantum canonical operators of position and momentum. For the expec
values one gets the Ehrenfest equations

a!Electronic mail: volovich@mi.ras.ru
7340022-2488/2002/43(2)/734/22/$19.00 © 2002 American Institute of Physics
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d^qh&/dt5^ph&, d^ph&/dt52^V8~qh!&.

Note that the Ehrenfest equations are classical equations but for nonlinearV8(qh) they are
neither Hamilton equations nor even differential equations because one can not write^V8(qh)& as
a function of^qh& and ^ph&. However, these equations are very convenient for the consider
of the semiclassical properties of quantum system. The expectation values^qh& and ^ph& are
functions of time and initial data. They also depend on the quantum states. One of imp
problems is to study the dependence of expectation values from the initial data. In this artic
will study this problem for the quantum Baker’s map.

The main objective of ‘‘quantum chaos’’ is to study the correspondence between cla
chaotic systems and their quantum counterparts in the semiclassical limit.3,4 The quantum-classica
correspondence for dynamical systems has been studied for many years~see for example Refs
5–10 and reference therein!. A significant progress in understanding this correspondence has
achieved in the Wentzel–Kromers–Brillouin~WKB! approach when one considers the Plan
constanth as a small variable parameter. Then it is well known that in the limith→0 quantum
theory is reduced to the classical one.11 However, in physics the Planck constant is a fixed cons
although it is very small. Therefore, it is important to study the relation between classica
quantum evolutions when the Planck constant is fixed. There is a conjecture12–14,8that a charac-
teristic timescalet appears in the quantal evolution of chaotic dynamical systems. For time
than t there is a correspondence between quantum and classical expectation values, w
times greater thatt the predictions of the classical and quantum dynamics no longer coincide
important problem is to estimate the dependencet on the Planck constanth. Probably a universa
formula expressingt in terms ofh does not exist and every model should be studied case by
It is expected that certain quantum and classical expectation values diverge on a timesc
versely proportional to some power ofh.15 Other authors suggest that a breakdown may
anticipated on a much smaller logarithmic timescale.16–23The characteristic timet associated with
the hyperbolic fixed points of the classical motion is expected to be of the logarithmic fot
5(1/l)ln(C/h), wherel is the Lyapunov exponent andC is a constant which can be taken to b
the classical action. Such a logarithmic timescale has been found in the numerical simulat
some dynamical models.7 It was shown also that the discrepancy between quantum and clas
evolutions is decreased by even a small coupling with the environment, which in the quantum
leads to decoherence.7

The chaotic behavior of the classical dynamical systems is often investigated by com
the Lyapunov exponents. An alternative quantity measuring chaos in dynamical systems, w
called the chaos degree, has been suggested in Ref. 24 in the general framework of infor
dynamics.25 The chaos degree was applied to various models in Ref. 26. An advantage
chaos degree is that it can be applied not only to classical systems but also to quantum sys
well.

In this work we study the chaotic behavior and the quantum-classical correspondence
Baker’s map.15,27 The quantum Baker’s map is a simple model invented for the theoretical s
of quantum chaos. Its mathematical properties have been studied in numerical works. In pa
its semiclassical properties have been considered,16–23quantum computing and optical realization
have been proposed,28–30various quantization procedures have been discussed,18,31–33and a sym-
bolic dynamics representation has been given.33

It is well known that for the consideration of the semiclassical limit in quantum mechan
is very useful to use coherent states. We define an analog of the coherent states for the q
Baker’s map. We study the quantum Baker’s map by using the correlation functions of the s
form which corresponds to the expectation values, translated in time by the unitary evo
operator and taken in the coherent states.

To explain our formalism we first discuss the classical limit for correlation functions
ordinary quantum mechanics. Correspondence between quantum and classical expectatio
for the Baker’s map is investigated and it is numerically shown that it is lost at the logarit
timescale. The chaos degree for the quantum Baker’s map is computed and it is demonstra
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it describes the chaotic features of the model. The dependence of the chaos degree on the
constant is studied and the correspondence between classical and quantum chaos degrees
lished.

II. QUANTUM VERSUS CLASSICAL DYNAMICS

In this section we discuss an approach to the semiclassical limit in quantum mechan
using the coherent states~see Ref. 6!. Then in the next section an extension of this approach to
quantum Baker’s map will be given. Consider the canonical system with the Hamilton func

H5
p2

2
1V~x! ~1!

in the plane (p,x)PR2. We assume that the canonical equations

ẋ~ t !5p~ t !, ṗ~ t !52V8~x~ t !! ~2!

have a unique solution (x(t),p(t)) for times utu,T with the initial data

x~0!5x0 , p~0!5v0 . ~3!

This is equivalent to the solution of the Newton equation

ẍ~ t !52V8~x~ t !!, ~4!

with the initial data

x~0!5x0 , ẋ~0!5v0 . ~5!

We denote

a5
1

&
~x01 iv0!. ~6!

The quantum Hamilton operator has the form

Hh5
ph

2

2
1V~qh!,

whereph andqh satisfy the commutation relations

@ph ,qh#52 ih.

The Heisenberg evolution of the canonical variables is defined as

ph~ t !5U~ t !phU~ t !* , qh~ t !5U~ t !qhU~ t !* ,

where

U~ t !5exp~2 i tH h /h!.

For the consideration of the classical limit we take the following representation,

ph52 ih1/2]/]x, qh5h1/2x,

acting to functions of the variablexPR. We also set
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a5
1

&h1/2
~qh1 iph!5

1

&
S x1

]

]xD , a* 5
1

&h1/2
~qh2 iph!5

1

&
S x2

]

]xD .

Then,

@a,a* #51.

The coherent stateua& is defined as

ua&5W~a!u0&, ~7!

wherea is a complex number,W(a)5exp(aa*2aa* ) andu0& is the vacuum vector,au0&50. The
vacuum vector is the solution of the equation

~qh1 iph!u0&50. ~8!

In the x-representation one has

u0&5exp~2x2/2!/A2p. ~9!

The operatorW(a) one can write also in the form

W~a!5Ceiqhv0 /h1/2
e2 iphx0 /h1/2

, ~10!

whereC5exp(2v0x0/2h).
The mean value of the position operator with respect to the coherent vectors is the real

function

q~ t,a,h!5^h21/2auqh~ t !uh21/2a&. ~11!

Now one can present the following basic formula describing the semiclassical limit

lim
h→0

q~ t,a,h!5x~ t,a!. ~12!

Herex(t,a) is the solution of~4! with the initial data~5! anda is given by~6!.
Let us notice that for timet50 the quantum expectation valueq(t,a,h) is equal to the

classical one:

q~0,a,h!5x~0,a!5x0 ~13!

for any h. We are going to compare the time dependence of two real functionsq(t,a,h) and
x(t,a); these functions are approximately equal. The important problem is to estimate for w
t the large difference between them will appear. It is expected that certain quantum and cl
expectation values diverge on a timescale inversely proportional to some power ofh.15 Other
authors suggest that a breakdown may be anticipated on a much smaller logar
timescale.16–23 One of very interesting examples5 of classical systems with chaotic behavior
described by the Hamilton function

H5
p1

2

2
1

p2
2

2
1lx1

2x2
2.

The consideration of this classical and quantum model within the described framework w
presented in another publication.
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III. COHERENT STATES FOR THE QUANTUM BAKER’S MAP

The classical Baker’s transformation maps the unit square 0<q, p<1 onto itself according to

~q,p!→H ~2q,p/2!, if 0<q< 1
2,

~2q21,~p11!/2!, if 1
2,q<1.

This corresponds to compressing the unit square in thep direction and stretching it in theq
direction, while preserving the area, then cutting it vertically and stacking the right part on t
the left part.

The classical Baker’s map has a simple description in terms of its symbolic dynamics.34 Each
point (q,p) is represented by a symbolic string

j5¯j
–2j

–1j0 .j1j2¯ , ~14!

wherejkP$0,1%, and

q5 (
k51

`

jk2
2k, p5 (

k50

`

j2k2
2k21.

The action of the Baker’s map on a symbolic stringj is given by the shift map~Bernoulli shift! U

defined byUj5j8, wherejk85jk11 . This means that, at each time step, the dot is shifted
place to the right while the entire string remains fixed. Aftern steps theq coordinate becomes

qn5 (
k51

`

jn1k2
2k. ~15!

This relation defines the classical trajectory with the initial data

q5q05 (
k51

`

jk2
2k. ~16!

Quantum Baker’s maps are defined on theD-dimensional Hilbert space of the quantized u
square. To quantize the unit square one defines the Weyl unitary displacement operatorsÛ andV̂
in D—dimensional Hilbert space, which produces displacements in the momentum and po
directions, respectively, and the following commutation relation is obeyed,

ÛV̂5eV̂Û,

wheree5exp(2pi/D). We chooseD52N, so that our Hilbert space will be theN qubit spaceC^ N.
The constanth51/D522N can be regarded as the Plank constant. The spaceC2 has a basis

u0&5S 1
0D , u1&5S 0

1D .

The basis inC^ N is

uj1& ^ uj2& ^¯^ ujN&, jk50,1.

We write

j5 (
k51

N

jk2
N2k.
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Thenj50,1,. . . ,2N21 and we denote

uj&5uj1j2¯jN&5uj1& ^ uj2& ^¯^ ujN&.

We will also use for this basis notations$uh&5uh1h2¯hN&, hk50,1% and $u j &
5u j 1 j 2¯ j N&, j k50,1%.

The operatorsÛ and V̂ can be written as

Û5e2p i q̂, V̂5e2p i p̂,

where the position and momentum operatorsq̂ and p̂ are operators inC^ N which are defined as
follows. The position operator is

q̂5 (
j 50

2N21

qj u j &^ j u5 (
j 1 , . . . ,j N

qj u j N . . . j 1&^ j 1 . . . j Nu,

where

u j &5u j 1 j 2¯ j N&, j k50,1,

is the basis inC^ N,

j 5 (
k51

N

j k2
N2k,

and

qj5
j 1 1

2

2N , j 50,1,...,2N21.

The momentum operator is defined as

p̂5FNq̂FN* ,

whereFN is the quantum Fourier transform acting to the basis vectors as

FNu j &5
1

AD
(
j50

D21

e2p i j j /Duj&,

whereD52N.
The symbolic representation of quantum Baker’s mapT was introduced by Schac

and Caves33 and studied in Refs. 35 and 36. Let us explain the symbolic representatio
the quantum Baker’s map as a special case:33 By applying a partial quantum Fourier transform

to the position eigenstates, one obtains the following quantum Baker’s mapT:

Tu•j1¯jN&[uj1•j2¯jN&,

where

T5GN21+GN
21

and
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uj1¯jN2m•jN2m11¯jN&[GmujN2m11¯jNjN2m¯j1&

5ujN2m11& ^¯^ ujN& ^ FN2mujN2m& ^¯^ uj1&.

The quantum Baker’s mapT is the unitary operator inC^ N with the following matrix ele-
ments,

^juTuh&5
12 i

2
expS p

2
i uj12hNu D )

k52

N

d~jk2hk21!, ~17!

where uj&5uj1j2¯jN&, uh&5uh1h2¯hN& and d(x) is the Kronecker symbol,d(0)51; d(x)
50, xÞ0.

We define the coherent states by

ua&5Ce2p i q̂ve22p i p̂xuc0&. ~18!

Herea5x1 iv, x andv are integers,C is the normalization constant anduc0& is the vacuum
vector. This definition should be compared with~10!. The vacuum vector can be defined as t
solution of the equation

~qh1 iph!uc0&50

@compare with~8!#. We will use the simpler definition which in the position representation is

^qj uc0&5C exp~2qj
2/2!

@compare with~9!#. HereC is a normalization constant.

IV. CHAOS DEGREE

Let us review the entropic chaos degree defined in Ref. 24. This entropic chaos deg
given by a probability distributionw and a dynamics~channel! L* sending a state to a state;w
5(kpkdk , wheredk is the delta measure such as

dk~ j ![H 1 ~k5 j !,

0 ~kÞ j !.

Then the entropic chaos degree is defined as

D~w;L* !5(
k

pkS~L* dk! ~19!

with the von Neumann entropyS, equivalent to the Shannon entropy because the probab
distributionw is a classical object.

A dynamicsF of the orbit produces the above channelL* , so let$xn% be the orbit andF be
a map fromxn to xn11 .

Take a finite partition$Bk% of I 5@a,b# l (a,bPR),Rl such as

I 5ø
k

Bk ~BiùBj5B,iÞ j !

for a mapF on I with xn115F(xn) ~a difference equation!. The statew (n) of the orbit determined
by the difference equation is defined by the probability distribution (pi

(n)), that is, w (n)5p(n)

5( i pi
(n)d i , where for an initial valuexPI and the characteristic function 1A
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pi
(n)[

1

m11 (
k5n

m1n

1Bi
~F kx!.

When the initial valuex is distributed due to a measuren on I , the abovepi
(n) is given as

pi
(n)[

1

m11 EI
(
k5n

m1n

1Bi
~F kx!dn.

In the case thatF is a classical Baker’s transformation, if the orbit is not stable and periodic,
it is shown that them→` limit of pi

(n) exists and equals a natural invariant measure for a fi
nPN.37

The joint distribution (pi j
(n,n11)) between the timen andn11 is defined by

pi j
(n,n11)[

1

m11 (
k5n

m1n

1Bi
~F kx!1Bj

~F k11x!

or

pi j
(n,n11)[

1

m11 EI
(
k5n

m1n

1Bi
~F kx!1Bj

~F k11x!dn.

Then the channelLn* at n is determined by

Ln* [S pi j
(n,n11)

pi
(n) D⇒p(n11)5Ln* p(n),

and the chaos degree is given by

Dc~p(n);Ln* !5sup
$Bk%

H(
i

pi
(n)S~Ln* d i !5(

i , j
pi j

(n,n11) log
pi

(n)

pi j
(n,n11) ;$Bk%J . ~20!

We can judge whether the dynamics causes a chaos or not by the value ofD as

D.0⇔chaotic, D50⇔stable.

Therefore, it is enough to find a partition$Bk% such thatD is positive when the dynamics produce
chaos.

This classical chaos degree was applied to several dynamical maps, such as a logistic
Baker’s transformation and a Tinkerbel map, and it could explain their chaotic characters.24,26Our
chaos degree has several merits compared with usual measures such as the Lyapunov ex

V. EXPECTATION VALUES AND CHAOS DEGREE

In this section, we show a general representation of the mean value of the position opeq̂
for the time evolution, which is constructed by the quantum Baker’s map. Then we giv
algorithm to compute the chaos degree for the quantum Baker’s map.

To study the time evolution and the classical limith→0 which corresponds toN→` of the
quantum Baker’s mapT, we introduce the following the mean value of the position operatorq̂ for
time nPN with respect to a single basisuj&:

r n
(N)5^juTnq̂T2nuj&, ~21!
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whereuj&5uj1j2¯jN&.
From ~17!, the following formula of the matrix elements ofTn for any nPN is easily ob-

tained:

^juTnuz&5

¦

S 12 i

2 D nS )
k51

N2n

d~jn1k2zk!D S )
l 51

n

Aj lzN2n1 l D if n,N,

S 12 i

2 D nS )
k51

n

AjkzkD if n5N,

S 12 i

2 D nS )
k51

p

~Am11!jkzN2p1kD S )
l 51

N2p

~Am!jp1 lz l D if n5mN1p,

S 12 i

2 D n

)
k51

N

~Am!jkzk
if n5mN,

~22!

where A is the 232 matrix with the elementAx1x2
5exp((p/2) i ux12x2u) for x1 ,x250, 1, p

51,...,N21 andmPN.
Using these formulas, the following theorems are obtained and their proofs are given

Appendix.
Theorem 5.1:

r n
(N)5

¦

(
k51

N2n

jn1k2
2k1

2n

2N11 if n,N,

1

2
if n5N,

1

2n (
j 50

2N21 j 1 1
2

2N )
k51

p

u~Am11!jkj N2p1k
u2 )

l 51

N2p

u~Am!jp1 l j l
u2 if n5mN1p,

1

2n (
j 50

2N21 j 1 1
2

2N )
k51

N

u~Am!jkj k
u2 if n5mN,

~23!

where A is the232 matrix with the element Ax1x2
5exp((p/2) i ux12x2u) for x1 ,x250, 1, p

51,...,N21 andmPN.
By diagonalizing the matrixA, we obtain the following formula of the absolute square of

matrix elements ofAn for any nPN.
Lemma 5.2: For any nPN, we have

u~An!k ju25H 2ncos2S np

4 D if k5 j

2nsin2S np

4 D if kÞ j

.

Combining Theorem 5.1 and Lemma 5.2, we obtain the following two theorems with respe
the mean valuer n

(N) of the position operator.
Theorem 5.3:For the case n5mN1p, p51,2,...,N21 and mPN, we have
                                                                                                                



r n
(N)5

¦

(
k51

N2p

jp1k2
2k1

2p

2N11 if m50~mod 4!,

(
k5N2p11

N

hk2(N2p)2
2k1

2N22p11

2N11 if m51~mod 4!,

(
k51

N2p

hp1k2
2k1

2p

2N11 if m52~mod 4!,

N N p

~24!

ap,
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(
k5N2p11

jk2(N2p)2
2k1

2 22 11

2N11 if m53~mod 4!,

wherehk5jk11(mod2),k51,...,N.
Theorem 5.4:For the case n5mN, mPN, we have

r N
(n)55

(
k51

N

jk2
2k1

1

2N11 if m50~mod 4!,

1

2
if m51,3~mod 4!,

(
k51

N

hk2
2k1

1

2N11 if m52~mod 4!.

~25!

Using formulas~23!–~25!, the probability distribution (pi
(n)) of the orbit of mean valuer n

(N) of
the position operatorq̂ for the time evolution, which is constructed by the quantum Baker’s m
is given by

pi
(n)[

1

m11 (
k5n

m1n

1Bi
~r n

(N)!

for an initial valuer 0
(N)P@0,1# and the characteristic function 1A . The joint distribution (pi j

(n,n11))
between the timen andn11 is given by

pi j
(n,n11)[

1

m11 (
k5n

m1n

1Bi
~r k

(N)!1Bj
~r k11

(N) !.

FIG. 1. The distribution ofr N
(n) for the caseN5500.
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Thus the chaos degree for the quantum Baker’s map is calculated by

Dq~p(n);Ln* !5(
i , j

pi j
(n,n11)log

pi
(n)

pi j
(n,n11) , ~26!

whose numerical value is shown in the next section.

VI. NUMERICAL SIMULATION OF THE CHAOS DEGREE AND CLASSICAL-QUANTUM
CORRESPONDENCE

We compare the dynamics of the mean valuer n
(N) of position operatorq̂ with that of the

classical valueqn in the q direction. We take an initial value of the mean value as

FIG. 2. The distribution of the classical valueq(n) for the caseN5500.

FIG. 3. The change of the chaos degree for severalN’s up to timen51000.
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r 0
(N)5(

l 51

N

j l2
2 l1

1

2N11
50•j1j2¯jN1,

wherej i is a pseudo-random number valued with 0 or 1. At the time zero we assume th
classical valueq0 in the q direction takes the same value as the mean valuer 0

(N) of position
operatorq̂. The distribution ofr n

(N) for the caseN5500 is shown in Fig. 1 up to the timen
51000. The distribution of the classical valueqn for the caseN5500 in theq direction is shown
in Fig. 2 up to the timen51000.

Figure 3 represents the change of the chaos degree for the caseN5100,300,500,700 up to the
time n51000.

The correspondence between the chaos degreeDq for the quantum Baker’s map and the cha
degreeDc for the classical Baker’s map for some fixedN’s (100,300,500,700 here! is shown for
the time less thanT5 log2(1/h) 5 log22

N5N, and it is lost at the logarithtic time scaleT. Here we
took a finite partition$Bk% of I 5@0,1# such asBk5@k/100, (k11)/100))(k50,1,...,98) andB99

5@99/100,1# to compute the chaos degree numerically.
The difference of the chaos degrees between the chaos degreeDq for the quantum Baker’s

map and the chaos degreeDc for the classical Baker’s map for a fixed timen (1000, here! is
displayed w.r.t.N in Fig. 4.

Thus we conclude that the dynamics of the mean valuer n
(N) reduces the classical dynamic

qn in the q direction in the classical limitN→`(h→0).
The appearance of the logarithmic timescale have been proved rigorously in our

paper.38
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FIG. 4. The difference of the chaos degree between quantum and classical for the casen51000.
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APPENDIX A:

Proof of Theorem 5.1:By a direct calculation, we obtain

r n
(N)5^juTnq̂T2nuj&

5^juTnS (
j 50

2N21 j 1 1
2

2N u j &^ j u D T2nuj&

5 (
j 50

2N21 j 1 1
2

2N ^juTnu j &^ j uT2nuj&

5 (
j 50

2N21 j 1 1
2

2N ^juTnu j &^ j uT* nuj&

5 (
j 50

2N21 j 1 1
2

2N ^juTnu j &^juTnu j &

5 (
j 50

2N21 j 1 1
2

2N u^juTnu j &u2.

Using ~22!, the mean valuer n
(N) in the casen,N can be expressed as

r n
(N)5 (

j 50

2N21 j 1 1
2

2N u^juTnu j &u2

5 (
j 50

2N21 j 1 1
2

2N US 12 i

2 D nS )
k51

N2n

d~jn1k2 j k!D S )
l 51

n

Aj l j N2n1 l D U2

5 (
j 50

2N21 j 1 1
2

2N S 12 i

2 D nS )
k51

N2n

d~jn1k2 j k!D S )
l 51

n

Aj l j N2n1 l D
3S 12 i

2 D nS )
k51

N2n

d~jn1k2 j k!D S )
l 21

n

Aj l j N2n1 l D
5 (

j 50

2N21 j 1 1
2

2N S 12 i

2 D nS 11 i

2 D nS )
k51

N2n

d~jn1k2 j k!D S )
l 51

n

uAj l j N2n1 l
u2D

5 (
j 50

2N21 j 1 1
2

2N S 12 i

2 D nS 11 i

2 D nS )
k51

N2n

d~jn1k2 j k!D
5

1

2N1n (
j 1 ,¯ j N

H S (
k51

N

j k2
N2kD 1

1

2J S )
k51

N2n

d~jn1k2 j k!D
5

1

2N1n (
j 1 ,¯ j N

S (
k51

N

j k2
N2kD S )

k51

N2n

d~jn1k2 j k!D 1
1

2N1n11 (
j 1 ,¯ j N

S )
k51

N2n

d~jn1k2 j k!D
5

1

2N1n (
j N2n11 ,¯ j N

S (
l 51

N2n

jn1 l2
N2 l1 (

l 5N2n11

N

j l2
N2 l D 1

1

2N1n11 S (
j N2n11 ,¯ j N

1D
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5
1

2N1n S (
l 51

N2n

jn1 l2
N2 l D S (

j N2n11 ,¯ j N

1D 1
1

2N1n (
j N2n11 ,¯ j N

S (
l 5N2n11

N

j l2
N2 l D

1
1

2N1n11 S (
j N2n11 ,¯ j N

1D
5

2n

2N1n S (
l 51

N2n

jn1 l2
N2 l D 1

1

2N1n (
j N2n11 ,¯ j N

S (
l 5N2n11

N

j l2
N2 l D 1

2n

2N1n11

5
1

2N S (
l 51

N2n

jn1 l2
N2 l D 1

1

2N1n (
j N2n11 ,¯ j N

S (
l 51

n

j N2n1 l2
n2 l D 1

1

2N11

5
1

2N S (
l 51

N2n

jn1 l2
N2 l D 1

1

2N1n

1

2
~2n21!2n1

1

2N11

5
1

2N S (
l 51

N2n

jn1 l2
N2 l D 1

2n

2N11 .

For the casen5N, we similarly obtain

r n
(N)5 (

j 50

2N21 j 1 1
2

2N u^juTnu j &u2

5 (
j 50

2N21 j 1 1
2

2N US 12 i

2 D NS )
k51

N

Ajkj kDU2

5 (
j 50

2N21 j 1 1
2

2N US 12 i

2 D NU2

)
k51

N

uAjkj k
u2

5
1

22N (
j 50

2N21 S j 1
1

2D
5

1

22N

1

2
~2N21!2N1

1

2N11 5
1

2
.

For n5mN1p, p51,2,...,N21, mPN,

r n
(N)5 (

j 50

2N21 j 1 1
2

2N u^juTnu j &u2

5 (
j 50

2N21 j 1 1
/2

2N US 12 i

2 D nS )
k51

p

~Am11!jkj N2p1kD S )
l 51

N2p

~Am!jp1 l j l DU2

5
1

2n (
j 50

2N21 j 1 1
2

2N )
k51

p

u~Am11!jkj N2p1k
u2 )

l 51

N2p

u~Am!jp1 l j l
u2,

and forn5mN, mPN,
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r N
(n)5 (

j 50

2N21 j 1 1
2

2N u^juTnu j &u2

5 (
j 50

2N21 j 1 1
2

2N US 12 i

2 D n

)
k51

N

~Am!jkj kU2

5
1

2n (
j 50

2N21 j 1 1
2

2N )
k51

N

u~Am!jkj k
u2.

j

Proof of Lemma 5.2:By a direct calculation, the matrixA is diagonalized as follows:

A5FDF* , ~A1!

where

F5
1

&
S 1 21

1 1 D , D5S 11 i 0

0 12 i D .

From ~A1!, we have

An5FDnF*

5
1

&
S 1 21

1 1 D S ~11 i !n 0

0 ~12 i !nD 1

&
S 1 1

21 1D
5

1

2 S ~11 i !n1~12 i !n ~11 i !n2~12 i !n

~11 i !n2~12 i !n ~11 i !n1~12 i !nD . ~A2!

Using ~A2!, it follows that for anyk5 j , k51,2,

u~An!k ju25 1
2$~11 i !n1~12 i !n% 1

2$~11 i !n1~12 i !n%

5 1
4$~11 i !n1~12 i !n%$~12 i !n1~11 i !n%

5 1
4$~11 i !n1~12 i !n%2

5
1

4 H S& 11 i

&
D n

1S& 12 i

&
D nJ 2

5
1

4 H ~& !nS 11 i

&
D n

1~& !nS 12 i

&
D nJ 2

5
2n

4 H S expS p

4
i D D n

1S expS 2
p

4
i D D nJ 2

5
2n

4 H expS np

4
i D1expS 2

np

4
i D J 2

5
2n

4 F H cosS np

4 D1 i sinS np

4 D J 1H cosS np

4 D2 i sinS np

4 D J G2

5
2n

4 H 2 cosS np

4 D J 2

52n cos2S np

4 D
and for anykÞ j , k51,2,
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u~An!k ju25 1
2$~11 i !n2~12 i !n% 1

2$~11 i !n2~12 i !n%

5 1
4$~11 i !n2~12 i !n%$~12 i !n2~11 i !n%

52 1
4$~11 i !n2~12 i !n%2

52
1

4 H S& 11 i

&
D n

2S& 12 i

&
D nJ 2

52
1

4 H ~& !nS 11 i

&
D n

2~& !nS 12 i

&
D nJ 2

52
2n

4 H S expS p

4
i D D n

2S expS 2
p

4
i D D nJ 2

52
2n

4 F H cosS np

4 D1 i sinS np

4 D J 2H cosS np

4 D2 i sinS np

4 D J G2

52
2n

4 H 2i sinS np

4 D J 2

52n sin2S np

4 D .

j
Proof of Theorem 5.3:For the casen5mN1p, p51,...,N21 andmPN,

r n
(N)5

1

2n (
j 50

2N21 j 1 1
2

2N )
k51

p

u~Am11!jkj N2p1k
u2 )

l 51

N2p

u~Am!jp1 l j l
u2.

By a direct calculation, we obtain

r n
(N)5

1

2n (
j 50

2N21 j 1 1
2

2N )
k51

p

u~Am11!jkj N2p1k
u2 )

l 51

N2p

u~Am!jp1 l j l
u2

5
1

2n (
j 50

2N21 j 1 1
2

2N )
l 51

N2p

u~Am!jp1 l j l
u2)

k51

p

u~Am11!jkj N2p1k
u2

5
1

2n1N (
j 50

2N21 S j 1
1

2D )
l 51

N2p

u~Am!jp1 l j l
u2)

k51

p

u~Am11!jkj N2p1k
u2

5
1

2n1N (
j 1 ,¯ , j N

H S (
k51

N

j k2
N2kD 1

1

2J )
l 51

N2p

u~Am!jp1 l j l
u2)

k51

p

u~Am11!jkj N2p1k
u2

5
1

2n1N (
j 1 ,¯ , j N

H S (
k51

N2p

j k2
N2kD 1S (

k5N2p11

N

j k2
N2kD 1

1

2J
3 )

l 51

N2p

u~Am!jp1 l j l
u2)

k51

p

u~Am11!jkj N2p1k
u2

5
1

2(m11)N1p (
j 1 ,¯ , j N

H S (
k51

N2p

j k2
N2kD 1S (

k5N2p11

N

j k2
N2kD 1

1

2J
3 )

l 51

N2p

u~Am!jp1 l j l
u2 )

k5N2p11

N

u~Am11!jk2(N2p) j k
u2. ~A3!

~i! m50(mod 4)
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From the above lemma, we have

u~Am!jp1 l j l
u25H 2m if j l5jp1 l ,

0 if j lÞjp1 l ,
u~Am11!jk2(N2p) j k

u252m

for any l 51,̄ ,N2p andk5N2p11,̄ ,N. Using this formula the product of absolute squar
can be expressed as

)
l 51

N2p

u~Am!jp1 l j l
u2 )

k5N2p11

N

u~Am11!jk2(N2p) j k
u2

5H ~2m!N2p~2m!p if j l5jp1 l for all l 51,̄ ,N2p,

0 otherwise,

5H 2mN if j l5jp1 l for all l 51,̄ ,N2p,

0 otherwise.

Equation~A3! can be rewritten as

r n
(N)5

1

2(m11)N1p (
j 1 ,¯ , j N

H S (
k51

N2p

j k2
N2kD 1S (

k5N2p11

N

j k2
N2kD 1

1

2J
3 )

l 51

N2p

u~Am!jp1 l j l
u2 )

k5N2p11

N

u~Am11!jk2(N2p) j k
u2

5
2mN

2(m11)N1p (
j N2p11 ,¯ , j N

H S (
k51

N2p

jp1k2
N2kD 1S (

k5N2p11

N

j k2
N2kD 1

1

2J ~A4!

5
1

2N1p S (
k51

N2p

jp1k2
N2kD S (

j N2p11 ,¯ , j N

1D
1

1

2N1p (
j N2p11 ,¯ , j N

S (
k5N2p11

N

j k2
N2kD 1

1

2N1p

1

2 S (
j N2p11 ,¯ , j N

1D
5

1

2N (
k51

N2p

jp1k2
N2k1

1

2N1p (
j N2p11 ,¯ , j N

S (
k5N2p11

N

j k2
N2kD 1

1

2N11

5
1

2N (
k51

N2p

jp1k2
N2k1

1

2N1p (
j N2p11 ,¯ , j N

S (
k51

p

j N2p1k2
p2kD 1

1

2N11

5
1

2N (
k51

N2p

jp1k2
N2k1

1

2N1p (
k50

2p21

k1
1

2N11

5
1

2N (
k51

N2p

jp1k2
N2k1

1

2N1p

1

2
~2p21!2p1

1

2N11

5 (
k51

N2p

jp1k2
2k1

2p

2N11 .

~ii ! m51(mod 4)
From the above lemma, we have
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u~Am!jp1 l j l
u252m21, u~Am11!jk2(N2p) j k

u25H 2m11 if j kÞjk2(N2p) ,

0 if j k5jk2(N2p) ,

for any l 51,̄ ,N2p andk5N2p11,̄ ,N. Using this formula the product of absolute squar
can be expressed as

)
l 51

N2p

u~Am!jp1 l j l
u2 )

k5N2p11

N

u~Am11!jk2(N2p) j k
u

5H ~2m21!N2p~2m11!p if j kÞjk2(N2p) for all k5N2p11,̄ ,N,

0 otherwise

5H 2(m21)N12p if j kÞjk2(N2p) for all k5N2p11,̄ ,N,

0 otherwise.

Let hk2(N2p)5jk2(N2p)11(mod2),k5N2p11, . . . ,N. It follows that

r n
(N)5

1

2(m11)N1p (
j 1 ,¯ , j N

H S (
k51

N2p

j k2
N2kD 1S (

k5N2p11

N

j k2
N2kD 1

1

2J
3 )

l 51

N2p

u~Am!jp1 l j l
u2 )

k5N2p11

N

u~Am11!jk2(N2p) j k
u2

5
2(m21)N12p

2(m11)N1p (
j 1 ,¯ , j N2p

H S (
k51

N2p

j k2
N2kD 1S (

k5N2p11

N

hk2(N2p)2
N2kD 1

1

2J ~A5!

5
1

22N2p (
j 1 ,¯ , j N2p

H S (
k51

N2p

j k2
N2kD 1S (

k5N2p11

N

hk2(N2p)2
N2kD 1

1

2J
5

1

22N2p (
j 1 ,¯ , j N2p

S (
k51

N2p

j k2
N2kD 1

1

22N2p S (
k5N2p11

N

hk2(N2p)2
N2kD S (

j 1 ,¯ , j N2p

1D
1

1

22N2p

1

2 S (
j 1 ,¯ , j N2p

1D
5

1

22N2p (
j 1 ,¯ , j N2p

S (
k51

N2p

j k2
N2kD 1

2N2p

22N2p S (
k5N2p11

N

hk2(N2p)2
N2kD 1

2N2p

22N2p

1

2

5
1

22N2p (
j 1 ,¯ , j N2p

S (
k51

N2p

j k2
N2kD 1 (

k5N2p11

N

hk2(N2p)2
2k1

1

2N11

5
2p

22N2p (
j 1 ,¯ , j N2p

S (
k51

N2p

j k2
N2p2kD 1 (

k5N2p11

N

hk2(N2p)2
2k1

1

2N11

5
2p

22N2p (
k50

2N2p21

k1 (
k5N2p11

N

hk2(N2p)2
2k1

1

2N11

5
2p

22N2p

1

2
~2N2p21!2N2p1 (

k5N2p11

N

hk2(N2p)2
2k1

1

2N11

5 (
k5N2p11

N

hk2(N2p)2
2k1

2N22p11

2N11 .

~iii ! m52(mod 4)
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From the above lemma, we have

u~Am!jp1 l j l
u25H 2m if j lÞjp1 l

0 if j l5 j p1 l
, u~Am11!jk2(N2p) j k

u252m

for any l 51,̄ ,N2p andk5N2p11,̄ ,N. Using this formula the product of absolute squar
can be expressed as

)
l 51

N2p

u~Am!jp1 l j l
u2 )

k5N2p11

N

u~Am11!jk2(N2p) j k
u

5H ~2m!N2p~2m!p if j lÞjp1 l for all l 51, . . . ,N2p,

0 otherwise,

5H 2mN if j lÞjp1 l for all l 51,...,N2p,

0 otherwise.

Let hp1 l5jp1 l11(mod 2), l 51,...,N2p. It follows that

r n
(N)5

1

2(m11)N1p (
j 1 ,¯ , j N

H S (
k51

N2p

j k2
N2kD 1S (

k5N2p11

N

j k2
N2kD 1

1

2J
3 )

l 51

N2p

u~Am!jp1 l j l
u2 )

k5N2p11

N

u~Am11!jk2(N2p) j k
u2

5
2mN

2(m11)N1p (
j N2p11 ,¯ , j N

H S (
k51

N2p

hp1k2
N2kD 1S (

k5N2p11

N

j k2
N2kD 1

1

2J .

Substitutinghp1k for jp1k in ~A4!, we get

r n
(N)5 (

k51

N2p

hp1k2
2k1

2p

2N11 .

~iv! m53(mod 4)
From the above lemma, we have

u~Am!jp1 l j l
u252m21,u~Am11!jk2(N2p) j k

u25H 2m11 if j k5jk2(N2p) ,

0 if j kÞjk2(N2p) ,

for any l 51,...,N2p andk5N2p11,...,N. Using this formula the product of absolute squar
can be expressed as

)
l 51

N2p

u~Am!jp1 l j l
u2 )

k5N2p11

N

u~Am11!jk2(N2p) j k
u2

5H ~2m21!N2p~2m11!p if j k5jk2(N2p) for all k5N2p11,...,N,

0 otherwise,

5H 2(m21)N12p if j k5jk2(N2p) for all k5N2p11,̄ ,N,

0 otherwise.

Equation~A3! can be rewritten as
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r n
(N)5

1

2(m11)N1p (
j 1 ,¯ , j N

H S (
k51

N2p

j k2
N2kD 1S (

k5N2p11

N

j k2
N2kD 1

1

2J
3 )

l 51

N2p

u~Am!jp1 l j l
u2 )

k5N2p11

N

u~Am11!jk2(N2p) j k
u2

5
2(m21)N12p

2(m11)N1p (
j 1 ,¯ , j N2p

H S (
k51

N2p

j k2
N2kD 1S (

k5N2p11

N

jk2(N2p)2
N2kD 1

1

2J .

Substitutingjk2(N2p) for hk2(N2p) in ~A5!, we get

r n
(N)5 (

k5N2p21

N2p

jk2(N2p)2
2k1

2N22p11

2N11 .

j

Proof of Theorem 5.4:For anyn5mN, mPN,

r n
(N)5

1

2n (
j 50

2N21 j 1 1
2

2N )
k51

N

u~Am!jkj k
u2.

By a direct calculation, we obtain

r n
(N)5

1

2n (
j 50

2N21 j 1 1
2

2N )
k51

N

u~Am!jkj k
u2

5
1

2n1N (
j 50

2N21

~ j 1 1
2!)

k51

N

u~Am!jkj k
u2

5
1

2(m11)N (
j 1 ,¯ , j N

H S (
k51

N

j k2
N2kD 1

1

2J )
k51

N

u~Am!jkj k
u2.

~i! m50(mod 4)
From the above lemma, we have

u~Am!jkj k
u25H 2m if j k5jk ,

0 if j kÞjk,

for any k51,...,N. Using this formula the product of absolute squares can be expressed as

)
l 51

N

u~Am!jkj k
u25H 2mN if j k5jk for all k51,...,N,

0 otherwise.

Using this formula the mean valuer n
(N) of the position operator can be expressed as

r n
(N)5

1

2(m11)N (
j 1 ,¯ , j N

H S (
k51

N

j k2
N2kD 1

1

2J )
k51

N

u~Am!jkj k
u2

5
2mN

2(m11)N H S (
k51

N

jk2
N2kD 1

1

2J 5 (
k51

N

jk2
2k1

1

2N11 .

~ii ! m51,3(mod 4)
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From the above lemma, we have

u~Am!jkj k
u252m21

for any k51,...,N. Note that

)
l 51

N

u~Am!jkj k
u252(m21)N.

Using this formula the mean valuer n
(N) of the position operator can be expressed as

r n
(N)5

1

2(m11)N (
j 1 ,¯ , j N

H S (
k51

N

j k2
N2kD 1

1

2J )
k51

N

u~Am!jkj k
u2

5
2(m21)N

2(m11)N (
j 1 ,¯ , j N

H S (
k51

N

j k2
N2kD 1

1

2J
5

1

22N .H (
j 1 ,¯ , j N

S (
k51

N

j k2
N2kD 1

1

2 S (
j 1 ,¯ , j N

1D J
5

1

22N (
k50

2N21

k1
1

2N11 5
1

22N 2N21~2N21!1
1

2N11 5
1

2
.

~iii ! m52(mod 4)
From the above lemma, we have

u~Am!jkj k
u25H 2m if j kÞjk ,

0 if j k5jk ,

for any k51,...,N. Using this formula the product of absolute squares can be expressed as

)
l 51

N

u~Am!jkj k
u25H 2mN if j kÞjk for all k51,...,N

0 otherwise.

Let hk5jk11(mod 2),k51,...,N. It follows that

r n
(N)5

1

2(m11)N (
j 1 ,¯ , j N

H S (
k51

N

j k2
N2kD 1

1

2J )
k51

N

u~Am!jkj k
u2

5
2mN

2(m11)N H S (
k51

N

hk2
N2kD 1

1

2J 5 (
k51

N

hk2
2k1

1

2N11 . j
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in electromagnetic fields

M. V. Karasev
Department of Applied Mathematics, Moscow Institute of Electronics and Mathematics,
Moscow 109028, Russia and Department of Physics and Astronomy,
University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

T. A. Osborna)

Department of Physics and Astronomy, University of Manitoba, Winnipeg,
Manitoba R3T 2N2, Canada

~Received 22 February 2000; accepted for publication 22 October 2001!

A gauge invariant quantization in a closed integral form is developed over a linear
phase space endowed with an inhomogeneous Faraday electromagnetic tensor. An
analog of the Groenewold product formula~corresponding to Weyl ordering! is
obtained via a membrane magnetic area, and extended to the product ofN symbols.
The problem of ordering in quantization is related to different configurations of
membranes: A choice of configuration determines a phase factor that fixes the
ordering and controls a symplectic groupoid structure on the secondary phase
space. A gauge invariant solution of the quantum evolution problem for a charged
particle in an electromagnetic field is represented in an exact continual form and in
the semiclassical approximation via the area of dynamical membranes. ©2002
American Institute of Physics.@DOI: 10.1063/1.1426688#

I. INTRODUCTION AND OVERVIEW

The works by Berezin,1 Berry,2 as well as by Marinov3 have introduced and focused attentio
on several geometrical formulas representing the phases of three primary quantum objec~the
noncommutative product, semiclassical Wigner eigenfunctions, and the evolution Wigner
tions! in terms of symplectic area of simple two-dimensional membranes whose boundary co
of line segments and pieces of Hamiltonian trajectories in phase space. The area of thes
branes is determined with respect to the canonical 2-form

v05 1
2 Jjkdxk∧dxj , x5~q,p!PR2n, J5F 0 I

2I 0G .
Attempts to generalize some of these formulas to phase spaces with a generic symplect

have been undertaken. For spaces with flat symplectic connection, a product of membran
was constructed in Ref. 4. For curved symmetric spaces~see Ref. 5! the opportunity to represen
the quantum product via the area of triangle membranes was mentioned by Berezin, and
actually proved by Weinstein,6 that the semiclassical phase of the product-generating kern
given by such an area in this case. Over Ka¨hlerian manifolds formulas for the noncommutativ
product and for the solutions of stationary or evolution problems via the area of membranes
complexification of phase space were obtained in Refs. 7–9~see also Ref. 10!. However, formulas
which use only the usual symplectic area are still unavailable for the general case.

In the present paper we analyze three problems related to this topic.
A first and trivial remark, which one can make regarding generalization of the origina

proach of the works,1,2,3 is that the specific matrixJ in the definition of the symplectic formv0

a!Electronic mail: tosborn@cc.umanitoba.ca
7560022-2488/2002/43(2)/756/33/$19.00 © 2002 American Institute of Physics
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can be replaced by an arbitrary skew-symmetric matrix without any changes in the geom
picture. In particular, one can takeJ to be the matrix@2I

F
0
I #, where the constant blockF represents

a homogenous electromagnetic field. But the next and more interesting generalization to co
is that of inhomogeneous~not constant! tensorsF.

The second natural question is about ordering. All treatments of the geometrical pictu
works1,2,3 were made for one specific ordering choice: For the Weyl symmetrization of the
commutative coordinates~operators!. What happens with other possible orderings?

The third question which our paper addresses is the application of such Weyl and non
symbolic calculus, in the presence of an inhomogeneous field, to solving the Cauchy proble
developing a semiclassical representation.

We begin with the first question and consider the linear phase spaceR2n with the following
inhomogeneous symplectic form

vF5v01F, F5 1
2 F jk~q! dqk∧dqj . ~1.1!

In casesn53, n54 the form~1.1! describes the structure of the phase space for charged par
in an electromagnetic field;11,12 the additional summandF is the Faraday 2-form multiplied by th
charge coupling constante/c. For simplicity of notation we include this constant inF jk ; also note
that the order of indicesj ,k in ~1.1! is opposite to that used in some textbooks.13

In detail one has the following. In the three-dimensional case withq5(q1,q2,q3) then

F jk5
e

c
ek j lB

l ~ j ,k51,2,3!,

~1.2a!

F5
e

c
~B1~q!dq2∧dq31B2~q!dq3∧dq11B3~q!dq1∧dq2!.

HereB is the magnetic field, anddF50 is equivalent to divB50. In the four-dimensional cas
with q5(q0,q1,q2,q3), q0[ct one has

F jk5
e

c
ek j lB

l , ~ j ,k51,2,3!, F0 j5
e

c
Ej ~ j 51,2,3!,

~1.2b!

F5
e

c
~B1~ t,q! dq2∧dq31B2~ t,q! dq3∧dq11B3~ t,q! dq1∧dq2!1eEj~ t,q!dqj∧dt.

The electric field is denoted byE, and dF50 is equivalent to the pair of Maxwell equation
c21]B/]t1curlE50, divB50; see Refs. 13 and 14.

The formvF is called themagnetic symplectic form. We show how this form generates th
Weyl–symmetrized associative product!

F
of functions over the phase space.

The general mathematical framework for such products was established by Bayen,
Fronsdal, Lichnerowicz, and Sternheimer,15 by Berezin,1 Rieffel,16 Fedosov17 and intensively de-
veloped in many other works. The specific ‘‘magnetic’’ product!

F
we construct and investigate i

just a particular example of these quantization schemes. The method which we use to de
!

F
follows Ref. 18 and is based on the creation of the left~right! regular representation for th

magnetic commutation relations between the quantum position and the kinetic momentum
The qj ,pk are coordinates corresponding to the position of the charged particle and its

invariant kinetic momentum. The commutation relations between the corresponding qu
operatorsq̂ j ,p̂k are the following:

@ q̂ j ,q̂k#50, @ q̂ j ,p̂k#5 i\dk
j , @ p̂ j ,p̂k#5 i\Fk j~ q̂!. ~1.3!
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The usual realization of these operators in the Hilbert spaceL2(Rq
n) is q̂5q, p̂52 i\]/]q

2(e/c)F(q), where (e/c)d(Fdq)5F, andF is the gauge potential. Specifically, forn53:

F5~A1 ,A2 ,A3!, curlA5B, p̂ j52 i\
]

]qj
2

e

c
Aj~q! ~ j 51,2,3!, ~1.4a!

for n54

F5~2a,A1 ,A2 ,A3!, curlA5B, 2S 1

c

]A
]t

1
]a

]qD5E,

p̂052
i\

c

]

]t
1

e

c
a~ t,q!, p̂ j52 i\

]

]qj
2

e

c
Aj~ t,q! ~ j 51,2,3!. ~1.4b!

All the formulas obtained in the paper depend on the symplectic form~1.1! only, but not on the
choice of potentials, and so, all results are gauge independent.

The noncommutative product!
F

which we construct necessarily reproduces the commuta

relations~1.3! on coordinate functions

qj!
F

qk2qk!
F

qj50, qj!
F

pk2pk!
F

qj5 i\dk
j , pj!

F
pk2pk!

F
pj5 i\Fk j~q!.

The operators of left multiplicationq!
F

and p!
F
, as well as right multiplication, are derive

without difficulty from these relations, using the noncommutative calculus;18,19 the result incor-
porates Valatin’s20 primitive of the closed 2-formF ~see Sec. II!. We note that the problem of a
finding a gauge invariant symbol product in a convenient closed form was first address
Stratonovich.21

In Sec. III we derive explicit formulas for!
F

in two equivalent forms, both valid whenF

50 and whenFÞ0. The first is analogous to the exponential Janus derivative representatio22–24

due to Groenewold. The second is a modification of the (F50) Berezin’s integral for the non
commutative product. In both versions there appears an additional electromagnetic action,
over triangles in phase space. Moreover, the Groenewold-type product formula admits ge
zation forN multipliers via the magnetic area of polygon membranes.

Our exact formulas for the!
F

product can be easily expanded to obtain formal\→0 power

series. Higher-order terms beyond the Poisson bracket contribution are functions of derivat
F jk . This series coincides structurally with that obtained by Mu¨ller.25

Our integral formula for!
F

is similar to that found in Ref. 26 and is also related

constructions27–29of the Wigner function in the presence of electromagnetic fields, but the me
and the geometric interpretation is our case are completely different. In Sec. IV we show th
!

F
product can be produced by a convolution overTRn. This convolution is generated by

version of the Connes’ tangential groupoid30–32 but with an additional rapidly oscillating facto
represented by the electromagnetic flux.

In Sec. V we analyze, following the general approach of Ref. 33, the structure of the
plectic groupoid corresponding to!

F
. This structure is given on the secondary cotangent bun

T* (T* Rn)5T* Rn
% R2n. The first cotangent bundle,T* Rn5Rq

n
^ Rp

n , is the primary phase space
over which we construct the product!

F
. We show how the symplectic groupoid structure

T* (T* Rn) senses the magnetic correctionF in the symplectic form, and how the spaceR2n, dual
to T* Rn, is equipped with a pseudogroup structure controlled by a hidden magnetic moment
membranes.
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From this point of view, we claim that in the formula for!
F

it would be more natural to

consider not the usual geodesic triangle, but the triangle with three additional ‘‘wings’’ dire
vertically ~i.e., parallel to thep-direction! in the phase space. The shape of wings is determine
the symplectic groupoid structure.

Then in Sec. VI we investigate what happens if the Weyl ordering of noncommuting co
nates is changed to some other ordering. The wide~matrix! family of orderings introduced in Ref
34 we relate to phases in the exponential representation of the* -product. These phases can b
again presented as symplectic areas of membranes. The membranes are combinations of
triangle with additional wings that are now not necessarily vertical. The shape and direction
wings exactly control the choice of the ordering in quantization, and again it is related t
symplectic groupoid structure over the secondary phase spaceT* (T* Rn).

The symplectic area of the wings give three additional contributions to the phase. The
form from the original Berezin phase~the Weyl case! to the new one, generated by the wings, c
be considered as a type of gauge transformation of the ‘‘symplectic potential.’’ On the lev

* -products this is the transformation from the distinguished Weyl choice to other ordering ch
In a sense this is the ‘‘gauge’’ of quantization.

The special features of the Weyl quantization which have made it the prefe
choice2,23,24,35,36for physical applications are:~1! It treatsq̂ and p̂ symmetrically;~2! self-adjoint
operators have real symbols; and,~3! the Groenewold–Moyal bracket is an even function of\, in
particular its leading semiclassical correction isO(\2), not O(\). From the symplectic point of
view, the Weyl ordering seems distinguished since the corresponding membranes are of th
plest shape~having no wings!.

The Wick normal and anti-normal orderingsẑ*
2

,ẑ
1

and ẑ*
1

,ẑ
2

~wherez5q1 ip! correspond to
pure imaginary wings of membranes in the product formulas.

Other convenient orderings—the standardq̂
2

,p̂
1

and anti-standardq̂
1

,p̂
2

—correspond to the cas
when the wings are parallel to the basic triangle and the total membrane becomes a plan
angle. These standard and anti-standard cases correspond to the push- and pull-groupoid
on TRn ~see Sec. IV!. From the symplectic point of view these cases are singular because o
totally caustic character of the graph of symplectic groupoid multiplication corresponding to
cases.

In Secs. VII and VIII we apply these ideas to the quantum dynamical problem: A cha
particle in an electromagnetic field. The basic results for this system were found by Dirac,
Peierls, and Schwinger. Gauge invariant versions of the WKB approximation were develope37–42

mostly in terms of integral kernels~Green functions!. In the context of the present paper we c
use the!

F
symbol calculus to obtain a phase space gauge invariant treatment of this probl

We first study, in Sec. VII, the pure magnetic situation without electric field. We represen
gauge invariant version of the quantum evolution equation over phase space and show h
Berry and Marinov geometrical representation for the solution of the Hamilton–Jacobi equ
as well the geometrical phase summation rule are generalized in the presence of the magne

At the end of Sec. VII, using the membrane generalization of the Groenewold formula
represent the symbol of the evolution operator exactly in a continual form. This continual m
brane formula is dual to the Feynman path integral representation.

Then, in Sec. VIII, we consider a time-dependent electromagnetic field and represe
gauge invariant quantum equations over phase space in both the nonrelativistic and rela
cases. Here we use dynamical quantum products which are time-dependent. The evolu
commutation relations in time is controlled by the electric field.

We describe the semiclassical solution of the Cauchy problem using membranes in
dimensional contact spaceRt3Rq

33Rp
3 . The boundary of these dynamic membranes are given
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the solution of two classical systems: one for the given particle and an additional one
‘‘virtual’’ particle of infinite mass.

The first draft of this paper appeared in the electronic archive: quant-ph/0002041.

II. MAGNETIC PRODUCT FOR WEYL ORDERING

We begin with the definition of magnetic product on a function space overR2n. The logic is
the following: We transform relations~1.3! to the standard Heisenberg relations, apply the s
dard operators of regular representation, and then transform back to the magnetic variables
result, we obtain a formula for magnetic product in terms of left and right regular represen
of the algebra~1.3!.

First we recall the properties of closed forms onRn.
Lemma 1: Let F5 1

2F jk(q)dqk∧dqj be a closed two-form onRn. Consider the vector-valued
1-form Fdq with components(F(q) dq) j5F jk(q) dqk and define the two point vector potentia

A~q,q8!5
1

uq2q8u Eq8

q

uq̃2q8uF~ q̃!dq̃, ~2.1!

where the integral is taken along the straight line path from q8 to q, and u•u denotes the Euclidean
norm onRn. Then for an arbitrary fixed q8PRn the 1-form A(q,q8)dq is a primitive of F

d~A dq!5F.

The choice of a primitive~2.1! (gauge choice) is uniquely characterized by the orthogona
condition

A~q,q8!•~q2q8!50. ~2.2!

Note that construction~2.1! is different from that usually used in proofs of the known Po
carélemma in the theory of differential forms. On the other hand,~2.1! is just a simple particular
case of the solution of Lie system related to a general Poisson bracket;~see Ref. 18, p. 81, and
references therein!. Formula ~2.1! was obtained by Valatin20 for electromagnetic tensors. Th
characteristic condition~2.2! was stressed by Dirac~see Ref. 20, p. 101!.

We need several other properties of Valatin’s primitive.
Lemma 2: The following formulas hold:

dq8~A~q,q8! dq!5dq~A~q8,q! dq8!,

A~q,q8!2A~q8,q!5E
q8

q

F~ q̃! dq̃,

A~q,q8!1A~q8,q!5
1

uq2q8u Eqm

q

uq̃2q̃* u~F~ q̃!2F~ q̃* !! dq̃,

where the integrals are taken along the straight line paths, and q˜ * 52qm2q̃ is the point symmet-
ric to q̃ with respect to the middle point qm5 1

2(q1q8).
Let D be the triangle inRn with verticesq, q8, q9. Consider the integral~flux! of the formF:

Fluxq9~q,q8![E
D
F. ~2.3!

Note that here and everywhere in the sequel the orientation of a membrane corresponds
sequence of its vertices~or sides! read from right to left; so the orientation ofD corresponds to the
sequenceq←q8←q9.

Lemma 3: The following formulas hold:
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Fluxq9~q,q8!5E
q8

q

A~ q̃,q9!dq̃,

~2.4!
]

]q
Fluxq9~q,q8!5A~q,q9!2A~q,q8!,

where the integral in~2.4! is taken along the straight line path.
Now let us fix the second argument ofA(q,q8) at some point, say,q850 and introduce the

operators

p̂85 p̂1A~ q̂,0!.

Sinceq̂, p̂ satisfy relations~1.3!, the new set of operatorsq̂, p̂8 satisfy the standard Heisenbe
commutation relations

@ q̂ j ,p̂k8#5 i\dk
j , @ q̂ j ,q̂k#5@ p̂ j8 ,p̂k8#50. ~2.5!

Any Weyl-symmetrized function of operatorsq̂,p̂ can be transformed to a function of oper
tors q̂, p̂8 by the formula

f ~ q̂,p̂!5 f S q̂
3

1q̂
1

2
, p̂8

2

2Ã~ q̂
3

,q̂
1

!D , ~2.6!

where

Ã~q,q8![E
0

1

A~qm1q8~12m!,0!dm.

We have used here formulas of noncommutative analysis19 and Ref. 18, pp. 277–295; the supe
scripts on top of operators denote the order of application.

Throughout the paper we will not give a characterization of the spaces the symbols
belong to in order that~2.6! and the subsequent product formulas are well defined. This
separate technical~and often not simple! question which has been extensively investigated in
pseudodifferential operator literature.18,34,43,44The reader can consider all formulas as forma
algebraic or, depending on the formula, assume an appropriate simple symbol class s
polynomials, smooth rapidly decreasing functions, etc.

For the Heisenberg algebra~2.5! the operators of left and right regular representation are w
known. Namely, consider arbitrary Weyl-symmetrized functiong8 with operator argumentsq̂,p̂8:

ĝ8[g8~ q̂,p̂8!5g8S q̂
3

1q̂
1

2
, p̂8

2 D . ~2.7!

Then the following left and right multiplication formulas hold:18,34,43,45

q̂ĝ85Lq8g8̂, Lq85q1 1
2 i\]p8 ;

p̂8ĝ85Lp8g8̂, Lp85p82 1
2 i\]q ;

~2.8!
ĝ8q̂5Rq8g8̂, Rq85q2 1

2 i\]p8 ;

ĝ8p̂85Rp8g8̂, Rp85p81 1
2 i\]q .
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Here we denote]q[]/]q and ]p85]/]p8. OperatorsL8,R8 satisfying multiplication formulas
~2.8! are called the left and right regular representation of the given algebra, in our cas
algebra~2.5!.

On the right-hand side of the formula~2.6! operatorsq̂
1

and q̂
3

in arguments ofÃ can be
considered as multiplication byq̂ from the left and from the right, and so they can be replaced
Lq8 andRq8 acting on arguments off . Thus we obtain from~2.6!

f ~ q̂,p̂!5 f 8S q̂
3

1q̂
1

2
, p̂8

2 D 5 f 8~ q̂,p̂8!,

where

f 8~q,p8!5 f ~q,p82Ã~Lq8Q ,Rq8Q !!5exp$2Ã~Lq8 ,Rq8!]p8% f ~q,p8!,

and the left arrows mean that operators act on arguments standing to their left. After subs
of explicit formulas forLq8 , Rq8 from ~2.8! we conclude

f 8~q,p8!5exp$2Ã~q1 1
2 i\]p8 ,q2 1

2 i\]p8!]p8% f ~q,p8!.

Note that by Lemma 2

Ã~q1u/2,q2u/2!u5E
q2u/2

q1u/2

A~ q̃,0!dq̃5Flux0~q1u/2,q2u/2!.

So we obtain the transformation formula
Proposition 1: Any Weyl-symmetrized function f in operators qˆ , p̂, satisfying commutation

relations~1.3!, can be transformed to the Weyl-symmetrized function f8 in operators qˆ , p̂8 satis-
fying Heisenberg relations~2.5!. This transform is given by formula

f 85UFf , UF5expH i

\
Flux0S q1

1

2
i\]p ,q2

1

2
i\]pD J , ~2.9!

where theFlux0 was defined in~2.3!.
Using this transform one easily obtains all objects which are needed for the algebra~1.3!. For

instance, the operators of left and right regular representation for~1.3! are the following

Lq5UF
21

•Lq8•UF , Rq5UF
21

•Rq8•UF ,

Lp5UF
21

•Lp8•UF2A~Lq,0!, Rp5UF
21

•Rp8•UF2A~Rq,0!.

Applying explicit formulas~2.8! for L8,R8, ~2.9! for UF and using Lemma 3 we get

Lq5q1 1
2i\]p , Rq5q2 1

2i\]p ,
~2.10!

Lp5p2 1
2i\]q2A~Lq ,Rq!, Rp5p1 1

2i\]q2A~Rq ,Lq!.

Lemma 4: Operators Lq , Lp satisfy commutation relations~1.3!, and operators Rq , Rp satisfy
the conjugate relations (with opposite signs). Operators L commute with R.

If we know the regular representation of commutation relations, we know the produ
symbols~see Ref. 18 Appendix 2!.

Theorem 1: The product of Weyl-symmetrized functions in operators satisfying relations~1.3!
is given by
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f ~ q̂,p̂!•g~ q̂,p̂!5~ f !
F

g!~ q̂,p̂!, ~2.11!

where!
F

is the associative product of functions overR2n defined by

f !
F

g5 f ~Lq ,Lp!g5g~Rq ,Rp! f .

We call !
F

the magnetic productof Weyl-symmetrized type. In particular, we haveLq

5q!
F
, Lp5p!

F
, andRq5!

F
q, Rp5!

F
p. These multiplication operators satisfy relations~1.3!

and their conjugate companions; left and right multiplications commute with each other.
Note that the magnetic product,!

F
, since it one-to-one corresponds, by~2.11!, to the operator

product in the Hilbert spaceL2(Rn), is an example of Rieffel’s ‘‘strict deformation
quantization.’’16 Moreover, the operator realizationf→ f (q̂,p̂) possesses the usual trace prope

tr f ~ q̂,p̂!5
1

~2p\!n E
R2n

f ~x!dx.

In particular, this means that the space of symbolsL2(R2n) is invariant with respect to the!
F

product~and isomorphic to the algebra of Hilbert–Schmidt operators onL2(Rn)). Also note the
following useful identity:

E
R2n

~ f !
F

g!~x! dx5E
R2n

f ~x!g~x! dx,

which implies that the product!
F

is ‘‘closed’’ in the sense of Connes, Flato, and Sternheime46

III. EXPONENTIAL FORMULA FOR MAGNETIC PRODUCT

The next useful stage in evaluation of the!
F
-product is to bring it into an exponential form

First, we apply Proposition 1 and the usual Groenewold formula22,43known for Weyl-symmetrized
product of symbols over the Heisenberg algebra, namely

f 8!g85 f 8 expH 2
i\

2
]Q J21]W J g85 f 8~q1uW /2,p! g8~q2uQ /2,p!, ~3.1!

where

uQ 5 i\]Q p , uW 5 i\]W p , ]5~]q ,]p!.

From ~2.9! we calculate

UFf !UFg5 f expH i

\
Flux0~q1~uQ 1uW !/2,q1~uW 2uQ !/2!

1
i

\
Flux0~q1~uW 2uQ !/2,q2~uQ 1uW !/2!2

i\

2
]Q J21]W J g.

Applying the inverse transformationUF
21 we obtain
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UF
21~UFf !UFg!5 f expH 2

i

\
Flux0~q1~uQ 1uW !/2,q2~uQ 1uW !/2!1

i

\
Flux0~q1~uQ 1uW !/2,

q1~uW 2uQ !/2!1
i

\
Flux0~q1~uW 2uQ !/2,q2~uQ 1uW !/2!2

i\

2
]Q J21]W J g.

The sum of three fluxes which appeared at last exponent can be simplified if we look
geometrical picture. Indeed, the three fluxes represent integrals of the formF over three triangles
with common vertex 0. They are sides of the tetrahedron. By the Stokes theorem these three
together are equal to the flux over the bottom triangle; see Fig. 1, in which the vectorsu1 andu2

represent the operatorsuW anduQ , respectively.
The relation

f !
F

g5UF
21~UFf !UFg!,

and the representation of its right-hand side which we have derived above generate the fol
statement.

Proposition 2: The magnetic product!
F
, corresponding to commutation relations~1.3!, can

be calculated by the formula

~ f !
F

g!~q,p!5 f ~q,p!expH i

\
f~q,i\]Q p ,i\]W p!1

i\

2
~]Qq]W p2]Q p]Wq!J g~q,p!. ~3.2!

Here

f~q,u2 ,u1!5E
Dq(u2 ,u1)

F, ~3.3!

and Dq(u2 ,u1) is a membrane inRn whose boundary is the triangle constructed by the mid
point q of one side and by the two other sides u2 , u1 . The magnetic flux~3.3! can also be
represented in the form

f5E
0

1

dmE
0

m

dn u2F~q1~m2 1
2!u11~n2 1

2!u2!u1 .

Note the differential operators in the exponent~3.2! act only on the arguments of targe
functions f andg, but not on the argumentq in the flux f.

Also note that operatorsi\]p , which we substitute into the fluxf in the exponent~3.2!, are
of orderO(\) over the space of non-oscillating functions as\→0. So the fluxf actually is of
orderO(\2), and the right-hand side of~3.2! can be easily expanded as a power series in\. Thus
for nonoscillating~as\→0! functions f ,g

FIG. 1. MembraneDq(u2,u1) is the base plane.
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f !
F

g. (
ugu,u«u50

`
~21! u«u

g!«! S 2
i\

2 D ugu1u«u

]q
«]p

g f expH 2
i\

2 (
uau,ubu50

`
cuau,ubu

a!b!

3S 2
i\

2 D uau1ubu

~]Q p!a^]Q p ,]a1bF~q!]W p&~]W p!bJ ]q
g]p

«g,

where

cs,m5
e@m11#

~s11!~m11!
2

e@s1m#

~s11!~s1m12!
,

ande@ l #50 if l is even, ande@ l #51 if l is odd. Herê •,•& is the Euclidean scalar product inRn

and the Greek letters are multi-indices. Of course, the first two terms of this expansion are

f !
F

g5 f g2
i\

2
$ f ,g%F1O~\2!,

where$,%F is the Poisson bracket onR2n corresponding to the symplectic formvF , i.e.,

$ f ,g%F5]pf ]qg2]qf ]pg1^]pf ,F~q!]pg&. ~3.4!

In the case whereF is restricted to be the pure magnetic form~1.2a!, then the\ series above is
equivalent to the one derived in Ref. 25.

Now we return to the formula~3.2! and observe that it is still not presented in a complet
symplectic manner. We have there the fluxf, which is the integral of the formF over the triangle
in q-space. The other part of the exponent in~3.2! can also be related to the area of a triangle,
in the (q,p)-space; see Fig. 2.

This triangleSx(V2 ,V1) is constructed by the middle pointx of one side, and by the two
opposite sidesV2 , V1 . Its projection ontoRq

n coincides with the triangleDq(u2 ,u1).
Theorem 2: The magnetic product can be represented in the form

~ f !
F

g!~x!5expH i

\ E
Sx(V̂2 ,V̂1)

vFJ f ~x2!g~x1!U
x15x25x

, ~3.5!

wherevF is the magnetic symplectic form~1.1!, V̂5( i\]p ,i\]q), and x5(q,p)PR2n.
In ~3.5! one has to evaluate first the symplecticvF-area of the membraneSx(V2 ,V1), and

then substitute the operatorsV̂1 ,V̂2 for the vectorsV1 ,V2 ; the operatorV̂1 is applied to the
argumentx1 and V̂2 to the argumentx2 .

FIG. 2. Membrane(x(V2,V1).
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Actually, formula ~3.5! may be immediately generalized to the case of several multipl
Consider a membrane inR2n whose boundary is formed byN vectorsV1 ,V2 , . . . ,VN as sides of
a polygon, and by additional pointx as a middle point of the (N11)th side. Denote this mem
brane bySx(VN , . . . ,V1); see Fig. 3.

Corollary 1: The following formula holds:

~ f N!
F
¯ !

F
f 1!~x!5expH i

\ E
Sx(V̂N , . . . ,V̂1)

vFJ f N~xN!¯ f 1~x1!U
x15¯5xN5x

. ~3.6!

An immediate consequence of~3.5! is an integral formula forf !
F
g. Indeed, in~3.5! we have

a pseudodifferential operator acting onf and g. By the usual formulas via Fourier and inver
Fourier transform we easily calculate this action and obtain an integral representation forf !

F
g.

The triangleSx(V2 ,V1) in this new formula will be described not by the sidesV2 ,V1 , but by the
middle pointsx2 ,x1 of those sides. Such a triangle inR2n, constructed by three middle point
x,x2 ,x1 , we denote byS(x,x2 ,x1).

Proposition 3: The magnetic product is given by the integral formula

~ f !
F

g!~x!5
1

~p\!2n E
R2n

E
R2n

expH i

\ E
S(x,x2 ,x1)

vFJ f ~x2!g~x1! dx2 dx1 . ~3.7!

Actually, the magnetic partF of the formvF is integrated in~3.5! and~3.7! over the projec-
tion of S(x,x2 ,x1) onto q-space.

In the caseF50, ~3.7! becomes the Berezin formula for the Weyl-symmetrized product,
~3.6! becomes equivalent to theN-factor products obtained in Refs. 23 and 24.

IV. TANGENTIAL GROUPOID AND MAGNETIC COCYCLE

Formula ~3.7! for magnetic noncommutative product overR2n5T* Rn can also be derived
from the Connes type tangential groupoid structure onTRn,30–32 equipped with an additiona
magnetic phase factor~cocycle!.

The spaceTRn consists of pairs (q,u), whereqPRn anduPTqR
n. Vectoru is interpreted as

a ‘‘displacement’’ at pointq. The first and simplest groupoid structure onTRn is given by formula
(q2 ,u2)+(q1 ,u1)5(q1 ,u21u1) iff q15q2 . This groupoid is commutative; it is called theGalileo
groupoid. This structure is shown in Fig. 4. The set of units of this groupoid consists of all p
(q,0); so, the set of units is the configuration spaceRq

n considered as the zero-section inTRn.

FIG. 3. Membrane(x(VN, . . . ,V1).

FIG. 4. Galileo groupoid.
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Other geometric combinations of the vectorsu1 ,u2 and the pointsq1 ,q2 may be assembled to
give noncommutative groupoids. Three simple possibilities are shown in Fig. 5. The multiplic
rule, for instance, in thepull-groupoid is (q2 ,u2)+(q1 ,u1)5(q1 ,u21u1) iff q11u15q2 . For the
saddle-groupoidone has

~q2 ,u2!+~q1 ,u1!5~q,u21u1! iff q11u1/25q22u2/2.

In this case,q is the middle point of the third side of the triangle:q5q11u2/25q22u1/2.
All these groupoids are specific cases of a generalt-groupoid, where 0<t<1. Pull-, push-,

and saddle-cases correspond tot51, t50, andt51/2, respectively. In Fig. 6 one can see t
generic case corresponding to somet (1/2,t,1); in this caseq25q11tu11(12t)u2 and
q5q11(12t)u2 . The set of units for all of these groupoids isRq

n,TRn.
On any~measurable! groupoid there is a convolution of distributions30,47

~f2(f1!~a!5E
a5b+c

f2~b!f1~c! dmb~c!, ~4.1!

wheredmb is the Haar measure on fibres of the left groupoid mappingc→c+c21. For example, in
the case of saddle-groupoid we have

~f2(f1!~q,u!5E
Rn

f2~q1u1/2,u2u1!f1~q2~u2u1!/2,u1!du1 . ~4.2!

Each convolution overTRn generates a noncommutative product overT* Rn just by Fourier
transform betweenu andp coordinates

f ;~q,u![
1

~2p\!n E
Rn

eiup/\ f ~q,p! dp5
1

~2p!n E
Rn

eiukf ~q,\k! dk. ~4.3!

For example, if one takes the saddle-groupoid convolution( ~4.2! then the corresponding
product overT* Rn is the usual Groenewold–Moyal product! ~3.1!, i.e.,

~ f !g!;5 f ;(g;. ~4.4!

Remark 1:In this approach the quantum convolution( is not an\-deformation of a com-
mutative one. The deformation parameter\ appears only in the Fourier transform~4.3!; this is

FIG. 5. Pull-groupoid; push-groupoid; saddle-groupoid.

FIG. 6. t-groupoid.
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what makes it possible to include into the quantization scheme functions overT* Rn that oscillate
rapidly as\→0. For nonoscillating functionsf (q,p) the transform~4.3! admits the classical limit
\50. With this limit one obtains the correspondencef (q,p) f (q,0)d(u) between the classica
commutative algebra of functions over the phase spaceT* Rn and the commutative subalgebra
distributions overTRn of the type w(q)d(u) concentrated at the zero ‘‘displacement’’u50.
Displacement by a nonzero vectoru0 , represented overTRn as the distributiond(u2u0), after
the transform inverse to~4.3! generates the phase space observablef (q,p)5exp$2iu0p/\%. The
corresponding operatorf̂ ~if the magnetic tensorF50! is just the Heisenberg translation operat
f̂c(q)5c(q2u0). This is the simplest example of rapidly oscillating functionsf which one has
to include into algebra of observables overT* Rn, but which lie outside the formal deformatio
quantization approach;15,17 see also Refs. 31 and 48.

Now let us return to the relation~4.4! between star-product and convolution. The quest
arises: how to get the magnetic product!

F
~3.7! via the groupoid structure onTRn? Let us slightly

generalize~4.1! by introducing an exponential phase factor

~f2(f1!~a!5E
a5b+c

eiF(b,c)f2~b!f1~c! dmb~c!. ~4.5!

HereF is a groupoid cocycle, i.e.,

F~d,b+c!2F~d+b,c!1F~b,c!2F~d,b!50, F~b,c!52F~c21,b21!,

for any multiplicableb,c,dPTRn. The cocycleF is called the coboundary iff

F~b,c!5c~b!1c~c!2c~b+c!, c~b21!52c~b!.

If F in ~4.5! is a coboundary, then convolutions~4.5! and ~4.1! are actually equivalent.
In the case of saddle-groupoid we can take the following magnetic cocycle~coboundary!:

F5
1

\ E
D(q,q2 ,q1)

F, ~4.6!

whereF is the Faraday 2-form overRn, andD(q,q2 ,q1) is the triangle with middle pointsq, q2 ,
q1 . In this case the coboundary functionc at the pointb5(q,u) is given by the integralc(b)
5 1/\ *A(q̃,0) dq̃ along the chord@q2 1

2u,q1 1
2u#. Note thatc controls the additional phas

factor in the gauge invariant version of the Wigner function.21,28,29

Proposition 4: Let(
F

be the saddle-groupoid convolution, equipped with the magnetic

cycle~4.6!. Then the Fourier transform~4.3! relates this convolution to the magnetic product!
F

via

~ f !
F

g!;5 f ;(
F

g;.

Note that other types of groupoids~like pull-, push-! will also generate some magnetic pro
ucts overR2n5T* Rn. In Sec. VI we will consider a variety of such products. On the other ha
we will show that not all of products overT* Rn are generated from the convolution overTRn in
this fashion.

In Sec. V we analyze the magnetic product~3.7! from the view point of symplectic groupoid
structure of the secondary phase space~on the secondary cotangent! T* (T* Rn). Regarding this
we mention the following.

Proposition 5: Each groupoid structure on TRn whose set of units isRq
n , uniquely determines

a symplectic groupoid structure on T* (T* Rn). Here T* Rn is equipped with the symplectic form
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v05dp∧dq. If, in addition, on TRn a cocycle of type~4.6! is given, then on T* (T* Rn) we have
a symplectic groupoid structure corresponding to the magnetic formvF .

V. SYMPLECTIC GROUPOID AND MEMBRANES WITH WINGS

Formula~3.7! represents the exact magnetic product. On the other hand, it is known,18 in a
very general context, how to construct quantum products of functions over an arbitrary P
manifold N in the semiclassical approximation, to all orders in\→0. This approximate produc
takes the form

~ f * g!~x!.E E K\~x,x2 ,x1! f ~x2!g~x1! dx1 dx2 . ~5.1!

Herex,x2 ,x1PN, andK\ is a ‘‘wave function’’ corresponding to some Lagrangian submanif
L* in the ‘‘phase space’’E3E3E, whereE is the symplectic groupoid overN. In our caseN
5R2n5T* Rn with Poisson bracket~3.4!. The Lagrangian submanifoldL* is the graph of
groupoid multiplication inE. If this graph is one-to-one projected onto the ‘‘configuration’’ spa
N3N3N along the polarization then the functionK\ is just a Wentzel–Kramers–Brillouin
~WKB! function

K\5exp$ iS/\%w1O~\!, ~5.2!

whose phaseS is the Poincare´–Cartan action onL* andw is the solution of the correspondin
transport equation.

In specific cases, for instance, in our caseN5R2n with bracket~3.4!, the asymptotic formula
~5.1! becomes exact and the remainderO(\) in ~5.2! is absent. Indeed, let us compare~5.1!, ~5.2!
with formula ~3.7! for the magnetic product!

F
. First, one can describe the symplectic groupoidE

in our specific case. Let us setE5T* R2n5Rx
2n

% Ry
2n , and denote by (x,y) points inE. The space

Rx
2n is imbedded intoE as a zero section$y50%. The symplectic form onE is dy∧dx. The

operatorsL,R ~2.10! of left and right regular representation of algebra~1.3! generate two map-
pings

l :E→R2n, r :E→R2n. ~5.3!

Here l 5( l q ,l p) and r 5(r q ,r p) are just symbols ofL5(Lq ,Lp) andR5(Rq ,Rp), i.e.,

L5 l ~x,2 i\]x!, R5r ~x,2 i\]x!.

In our case formula~2.10! reads

l q~x,y!5xq2yp/2, l p~x,y!5xp1yq/22A~ l q ,r q!,
~5.4!

r q~x,y!5xq1yp/2, r p~x,y!5xp2yq/22A~r q ,l q!.

Mappings~5.3! are Poisson and anti-Poisson, i.e.,l preserves brackets,r changes the sign o
brackets@recall that onR2n we have the bracket~3.4!, and the bracket onE corresponds to the
symplectic formdy∧dx#.

The groupoid structure onE is defined as follows: pointsm2 ,m1PE are calledmultiplicable
iff r (m2)5 l (m1); the productm5m2+m1 , by definition, is a point inE such thatl (m)5 l (m2),
r (m)5r (m1). The subspaceRx

2n,E is the set of units of this groupoid, and mappings~5.3! are
left and right reduction mappings:

l ~m!5m+m21, r ~m!5m21+m.
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The graphL* ,E3E3E of this groupoid multiplication consists of all multiplicable poin
and their products

L* 5$~m,m2 ,m1! u m5m2+m1%. ~5.5!

If on E3E3E we introduce the symplectic formdy∧dx2dy2∧dx22dy1∧dx1 , then the submani-
fold L* is Lagrangian~see details in Refs. 33 and 49!.

In the caseF50 ~i.e., A50! formulas ~5.4! are interpreted as ‘‘middle point of chord
relations: x5 1

2( l 1r ), y5JV, where V5 l 2r PTR2n. So, the groupoid structure onR4n

5T* R2n is given by the triangle rule~see Fig. 7!

m5m2+m1 , m5~x,y!, m15~x1 ,y1!, m25~x2 ,y2!,
~5.6!

y5y11y2 , x5x11 1
2 J21y25x22 1

2 J21y1 .

For arbitrary given triple of pointsx,x2 ,x1PR2n we uniquely construct the triangle for whic
these points are the middle points of its sides, and so reconstruct elementsm,m2 ,m1PE such that
m5m2+m1 . This means that the graphL* is one-to-one projected ontoR2n3R2n3R2n along the
‘‘vertical’’ y-polarization. Hence, the kernelK\ has the WKB form~5.2!, and its phase is

S~x,x2 ,x1!5E
(0,0,0)

(x,x2 ,x1)

~ydx2y2dx22y1dx1!. ~5.7!

Herey, y2 , y1 are determined viax, x2 , x1 following the triangle multiplication rule; the initia
point ~0,0,0! corresponds to triple of elementsm05m0+m0 , wherem05(0,0)PE.

The integral~5.7! is taken over an arbitrary path onL* connecting the triple~0,0,0! ~i.e., the
degenerate triangle! with the triple (x,x2 ,x1) ~i.e., the given triangle!. This path is actually a
family of triangles inR2n; see Fig. 8. The phase~5.7! in the caseF50 ~for more general
‘‘symmetric’’ cases see in Ref. 6! is just equal to the area of the final triangle

FIG. 7. Groupoid structure onT* R2n.

FIG. 8. Path on graphL* .
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S~x,x2 ,x1!5E
D(x,x2 ,x1)

v0 .

Now let us see what happens in the general magnetic caseFÞ0. From~5.4! it follows that the
groupoid structure now is given by formulas:

x5 1
2 ~ l 1r !1VF , y5JV1YF , where V5 l 2r . ~5.8!

Here we have introduced notations

VF5~0;As!PRq
n

% Rp
n , YF5~Aa;0!PRyq

n
% Ryp

n ,

~5.9!
As5 1

2 ~A~ l q ,r q!1A~r q ,l q!!, Aa5A~ l q ,r q!2A~r q ,l q!.

Comparing with the multiplication rule~5.6! in the caseF50 we see that pointsx, x2 , x1 are
no longer the middle points of sides of the basic triangle and do not even belong to those
They are shifted in thep-direction by the vectorsVF .

Another difference from the caseF50 is that the usual multiplication ruley5y11y2 @see
~5.6!# fails to hold for inhomogeneous magnetic case. New magnetic rule is

y5y11y21S E
D
¹F;0D , ~5.10!

where the vector-valued closed two-form¹F is defined by ¹F5 1
2¹F jkdqk∧dqj , and D

5D(q,q2 ,q1) is the triangle inq-space with middle points (q,q2 ,q1), which are projections of
x,x2 ,x1PR2n onto Rq

n . We have obtained the interesting physical quantity:

2E
D
¹F5 R

]D
Fdq;hidden momentum.

The vector 2-form¹F is a measure ofmagnetic inhomogeneity. So, this form controls the modi
fication of the usual (F50) multiplication rule. The spaceRy

2n ~dual toRx
2n! now is not even a

group, it is a pseudogroup over the Poisson manifoldRx
2n @see details in general case in Ref. 1

the word ‘‘pseudo’’—reflects the fact that the product~5.10! in the y-space depends o
x-coordinates as additional parameters, and the condition of ‘‘associativity’’ of the product~5.10!
senses this dependence#. The nontrivial part of the pseudogroup structure~5.10! is determined by
the hidden momentum of the membraneD in the magnetic field.

Formula~5.7! in the caseFÞ0 still represents the phase in the product~3.7! if we put there
the corrected valuesy5JV1YF . But now the triangle no longer represents the groupoid mu
plication rule, and from this point of view, it seems unnatural to keep this triangle in the for
for the phase.

Actually, we have another configuration~see Fig. 9! related to the triple (x,x2 ,x1). This

FIG. 9. Membrane(F(x,x2,x1).
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configuration consists of triangleS( x̃,x̃2 ,x̃1), where x̃5x2VF , and also of three additiona
triangles directed ‘‘vertically’’~parallel top! with ‘‘top’’ vertices x, x2 , x1 . We call themmagnetic
wings.

A magnetic wing is characterized by a sequence of its vertices@ l ,x,r # related to each other by
~5.8! ~see Fig. 10, left picture!. The configuration of membrane with wings, as we see, exa
corresponds to the new groupoid multiplication rule forFÞ0.

Lemma 5:

E
S( x̃,x̃2 ,x̃1)

vF5E
S(x,x2 ,x1)

vF , E
vertical wing

vF50.

Both statements of the Lemma follow from the orthogonality condition~2.2!.
Denote bySF(x,x2 ,x1) the triangleS( x̃,x̃2 ,x̃1) together with three magnetic wings describ

above; see Fig. 9. The boundary of this figure consists of six straight line segments. The
itself looks like inflected hexagon. More generally,SF could be any membrane in the phase spa
R2n with that six segment boundary. In view of Lemma 5 we have

E
S(x,x2 ,x1)

vF5E
SF(x,x2 ,x1)

vF .

Theorem 3: The magnetic product over T* Rn is given by

~ f !
F

g!~x!5
1

~p\!2n E E expH i

\ E
SF(x,x2 ,x1)

vFJ f ~x2!g~x1!dx2dx1 , ~5.11!

where SF is the wing membrane corresponding to the magnetic groupoid structure~5.8! on
T* (T* Rn).

VI. ORDERING IN QUANTIZATION

Now we demonstrate that membrane wings introduced in previous section are actuall
natural objects in the quantization framework. We show how different configurations of w
relate to different choices in the ordering problem. In particular, we’ll see why the Weyl orde
choice~Weyl symmetrization! looks like an optimal choice.

Let us take a constant real 2n32n matrix M ~actually, a linear operator in the space tange
to T* Rn! which obeys the condition

MTJ1JM50, ~6.1!

whereMT is the transposed matrix. One can representM by its n3n blocks as follows:

M5S N K

S 2NTD .

FIG. 10. Magnetic wing andM-wing.
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Now let us take an arbitrary functionf 5 f (q,p) ~say, a polynomial! and determine the fol-
lowing general ordering of operatorsq̂,p̂8 ~generators of the Heisenberg algebra!:

f̂ M[ f ~ 1
2 N~ q̂

4

2q̂
2

!1 1
2 ~ q̂

2

1q̂
4

!2 1
2 K~ p̂8

5

2 p̂8
1

!, p̂8
3

2 1
2 S~ q̂

4

2q̂
2

!2 1
2 NT~ p̂8

5

2 p̂8
1

!!. ~6.2!

We would like to obtain the product formula

f̂ M
•ĝM5 k̂M, k5 f *

M

g. ~6.3!

To derive the product* M we first note that theM -ordering ~6.2! is related to the Weyl
ordering via

f̂ M5~UM f !~ q̂,p̂8!, ~6.4!

where

UM5expH i

\
SM~V̂!J , V̂5~ i\]p ,i\]q!,

and the functionSM is defined by the matrixM as follows

SM~V!5 1
2 ^JMV,V&5E

DM(V)
v0 .

HereDM(V) is the triangle, called theM -wing, generated by vectorV and by vectorMV applied
at the middle point ofV ~see Fig. 10!, right picture.

Using UM we can calculate the product~6.3! by the formula

f *
M

g[U2M~UM f !UMg!,

where ! is the Weyl-symmetrized product~without magnetic correction, at first!. Looking at
exponential representation of the Weyl product, one concludes that

f *
M

g5expH i

\
FM~V̂2 ,V̂1!J f ~x2!g~x1!ux15x25x ,

whereV̂5( i\]p ,i\]q). In this formula we use the notation

FM~V2 ,V1!5E
S(V2 ,V1)

v01SM~V1!1SM~V2!2SM~V11V2!,

whereS(V2 ,V1) is the triangle generated by vectorsV1 , V2 .
The phase functionFM can be written as the symplectic area of thewing membrane

Sx
M(V2 ,V1) generated by four triangles:

Sx
M~V2 ,V1!5D~V2 ,V1!øDM~V1!øDM~V2!øDM~V11V2!.

Its boundary consists of six line segments. For reasons of uniformity in notation the poinx is
shown; actually, thev0-area ofSx

M(V2 ,V1) is independent ofx.
The picture forSx

M is the same as in Fig. 9, but wings now areM -wings as in Fig. 10~right
picture!.
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Theorem 4: For an arbitrary real2n32n matrix M, satisfying~6.1!, there is a star-product
over R2n given by the wing membranes:

~ f *
M

g!~x!5expH i

\ E
Sx

M(V̂2 ,V̂1)
v0J f ~x2!g~x1!ux15x25x . ~6.5!

This product corresponds to the M-ordering rule ~6.2! of noncommutative operators qˆ , p̂8 ~gen-
erators of the Heisenberg algebra!, so that formula~6.3! holds.

The family of orderings~6.2! was introduced and studied in detail in Ref. 34, where
following pseudodifferential formulas forM -product were obtained:

~ f !
M

g!~x!5 f ~x
2

2 i\~ 1
2 2M !J21]x

1

!g~x!5g~x
2

1 i\~ 1
2 1M !J21]x

1

! f ~x!.

In the particular case

M5~ 1
2 2t!S I 0

0 2I D , ~6.6!

the ordering~6.2! simplifies to

f̂ t5 f ~tq̂
1

1~12t!q̂
3

,p̂8
2

!. ~6.7!

The family of t-wings corresponding to this family of orderings is represented in Fig. 11.
whole membraneSx

M for the specific caset50 is shown in Fig. 12.

FIG. 11. t—wings.

FIG. 12. Membrane(x
M for t50.
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The casest50 and t51 are called the standard and anti-standard ordering choices~they
correspond to push- and pull- groupoid structures onTRn, see Sec. IV!, and the caset51/2 is the
Weyl ordering~corresponding to the saddle-groupoid structure onTRn!. In the later caseM50
and wings in membranesSM are absent.

Matrix M is assumed to be real, but if we formally takeM5 iJ/2 ~i.e., N50, S52 i /2, K
5 i /2!, then the transformUM5exp$2\(]q

21]p
2)/4% relates Weyl ordering to the Wick norma

ordering choice. In this case wings are pure imaginary~see Fig. 13!, and the membraneSM

coincides with hexagon membrane introduced in Refs. 7 and 8.
Remark 2:In the general case, blockN of the matrixM controls the position of the pointq

PRn with respect to the middle point of the vectoru in the TRn-groupoid interpretation. The
block S controls an additionalTRn-groupoid cocycle~in u-coordinates! which appears in the
convolution formula~see Sec. IV!. In contrast to that, the blockK in the matrixM generates the
transformation of distributions overTRq

n of the following type: exp$2i\K]q•]q/2%. This is not a
point transformation. Thus the product* M corresponding to matrixM with KÞ0 can not be
obtained from the groupoid convolution overTRn by construction of Sec. 4. In particular, th
Wick product is of such type.

Now let us consider the symplectic groupoid structure on the secondary phase
T* (T* Rn) corresponding to the* M product~6.3!. In the same way as in Sec. II we calculate f
the Heisenberg algebra~2.5! operators of left and right representations corresponding to
ordering choice~6.2!. We know the transformation from~6.2! to the Weyl ordering; it is given by
operator~6.4!. Thus the left operatorsLq

M5q* M, Lp8
M

5p8* M and right operatorsRq
M5* Mq,

Rp8
M

5* Mp8 are given by

LM5U2M
•L8•UM, RM5U2M

•R8•UM, ~6.8!

whereL8, R8 are determined in~2.8!. We representLM,RM via their symbolsl ,r :

LM5 l ~x,2 i\]x!, RM5r ~x,2 i\]x!,

and easily calculatel , r by ~6.8! and by the definition ofUM. The result is

l ~x,y!5x1~ 1
2 2M !J21y, r ~x,y!5x2~ 1

2 1M !J21y.

The inverse mapping (l ,r )→(x,y) is given by

x5 1
2 ~ l 1r !1MV, V[ l 2r 5J21y. ~6.9!

For example, for the ordering cases~6.7!, formulas~6.9! are represented in Fig. 11.
The corresponding symplectic groupoid structure onT* (T* Rn)5Rx

2n
% Ry

2n is given by the
rule represented in Fig. 14. We observe that this structure is exactly given by the membran
wings SM which we described at the beginning of this section. What is new now is that we
identified the positions of pointsx,x2 ,x1 exactly as vertices of wings of the membraneSM.

FIG. 13. Pure imaginary wing.
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Corollary 2: Let det(122M)Þ0, then the integral version of the product formula~6.5! reads

~ f *
M

g!~x!5
1

~2p\!2nudet~ 1
22M !u

E E expH i

\ E
SM(x,x2 ,x1)

v0J f ~x2!g~x1!dx2dx1 , ~6.10!

whereSM(x,x2 ,x1) is the membrane with three M-wings having vertices x, x2 , x1 .

Note that for thet-ordering case~6.6! the denominator in formula~6.10! det(122M)5tn(1
2t)n is zero if t50 or t51. We see that the casest50 ~standard ordering! and t51 ~anti-
standard ordering! are special. In these cases the graphL* of the groupoid multiplication~see Sec.
V! is not one-to-one projected onto the ‘‘configuration space’’Rx

2n3Rx2

2n3Rx1

2n , i.e., the graph is

totally caustic and the integral kernelK\(x,x2 ,x1) ~5.1! is not of WKB-type~5.2!. This is one of
essential differences between representations~6.5! and ~6.10! for the * -product.

Corollary 3: For several multipliers there is the following product formula

~ f N*
M

¯ *
M

f 1!~x!5expH i

\ E
Sx

M(V̂N , . . . ,V̂1)
v0J f N~xN! ¯ f 1~x1!U

x15¯5xN5x

, ~6.11!

whereSx
M(VN , . . . ,V1) is the membrane with N11 wings.

These formulas are naturally generalized for products of differently quantized multipliers
for the case when each multiplier has its own ordering choice

f̂ N
MN

• ¯ f̂ 1
M15 k̂MN11,

~6.12!

k~x!5expH i

\ E
S

x

MN11 , . . . ,M1(V̂N , . . . ,V̂1)
v0J f N~xN! ¯ f 1~x1!U

x15¯5xN5x

.

Here the membraneSx
MN11 , . . . ,M1 is constructed byN11 wings each of different configuratio

determined by different matricesMN11 , . . . ,M1 .
In conclusion of this section we consider the magnetic caseFÞ0. For simplicity, we concen-

trate on thet-ordering choice

f̂ t5 f ~tq̂
1

1~12t!q̂
3

, p̂
2

!, ~6.13!

whereq̂, p̂ satisfy the magnetic commutation relations~1.3!.
We first transform the magnetict-ordering to the magnetic Weyl ordering:

f̂ t5~Ut f !~ q̂,p̂!, Ut5exp$~ 1
2 2t!û]q%, ~6.14!

whereû5 i\]p . Then for product of twot-ordered observables we have from~2.11!

FIG. 14. M -groupoid.
                                                                                                                



g

rule

777J. Math. Phys., Vol. 43, No. 2, February 2002 Symplectic areas, quantization, and dynamics

                    
f̂ t
•ĝt5~Ut f !~ q̂,p̂!•~Utg!~ q̂,p̂!5~Ut f !

F
Utg!~ q̂,p̂!,

where!
F

is the magnetic product~3.2!, ~3.5!, corresponding to the Weyl ordering. Transformin

back the Weyl symbol tot-symbol by the transform (Ut)21, we obtain the product formula

f̂ t
•ĝt5 k̂t,

where

k[ f !
F

t

g5~Ut!21~Ut f !
F

Utg!.

By formula ~3.2! we calculate the newt-magnetic product as follows

~ f !
F

t

g!~q,p!5expH S t2
1

2D û]qJ S expH i

\
f~q,û2 ,û1!1

1

2
~ û1]q2

2û2]q1
!J

3expH S 1

2
2t D ~ û1]q1

1û2]q2
!J f ~q2 ,p2!g~q1 ,p1! D U

q15q25q, p15p25p

5expH i

\
fS q1S t2

1

2D ~ û11û2!,û2 ,û1D1
1

2
~ û1]q2

2û2]q1
!1S t2

1

2D
3~~ û11û2!~]q1

1]q2
!2û1]q1

2û2]q2
!J f ~q2 ,p2!g~q1 ,p1!U

q15q25q, p15p25p

.

~6.15!

Note that the fluxf(q,u2 ,u1) was defined by~3.3! via the triangleDq(u2 ,u1) in Rn with the
middle pointq of one of sides. Now we see that the position of the middle pointq̃ differs fromq
by an additional vector (t2 1

2)(u11u2). So,

q5q̃1~ 1
2 2t!~u11u2!5q̃1~MV!q ,

whereM is matrix ~6.6! corresponding tot-ordering, andV5V11V2 is a vector inR2n whose
q-component isu5u11u2 .

The total phase in~6.14! is equal to the magnetic area of the membrane inR2n constructed by
the triangle with sidesV1 ,V2 ,V11V2 and by three additional wings generated by matrixM of
special type~6.6!. The configuration of the wings in this special case is shown in Fig. 11.

The position of the vertex of the wing isxt5 x̃1MV, wherex̃5( l 1r )/2. But actually this
position should be changed to match the symplectic groupoid multiplication rule. To find this
we have to calculate the operators of left and right regular representation in ourt-case. In view of
~6.14! these operators are given by formulas

Lt5~Ut!21
•L•Ut, Rt5~Ut!21

•R•Ut,

whereL, R are operators~2.10!, corresponding to the magnetic Weyl ordering. From~6.14! and
~2.10! we obtain

Lq
t5q1t i\]p , Rq

t5q2~12t!i\]p ,

Lp
t5p2~12t!i\]q2A~Lq

t ,Rq
t !, Rp

t5p1t i\]q2A~Rq
t ,Lq

t !.

So, if we represent these operators by symbolsLt5 l (x,2 i\]x), Rt5r (x,2 i\]x), then two
groupoid mappings appear
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l :T* R2n→R2n, r :T* R2n→R2n,

where

l ~x,y!5x1~ 1
2 2M !J21y2~0;A~ l q ,r q!!,

~6.16!
r ~x,y!5x2~ 1

2 1M !J21y2~0;A~r q ,l q!!.

From ~6.16! we reconstructx andy via l ,r

x5 1
2 ~ l 1r !1VF1MV, y5JV1YF , ~6.17!

whereV5 l 2r , and vectorsVF ,YF are given by the same formulas as in~5.9! ~i.e., the same as
in the caset51/2 or M50!.

Relations~6.17! determine the final configuration of themagnetict-wing. Position of the
vertexx of this magnetic wing is shifted by vectorVF with respect to positionxt.

Lemma 6: The magnetic area of the magnetict-wing with the vertex x is equal to the magne
area of the wing with vertex xt.

In view of this lemma the phase~6.15! can be represented by the area of a membr
Sx

t(V2 ,V1) constructed by the triangle of vectorsV1 ,V2 ,V11V2 , and by three magnetict-wings
over each of these vectors. The pointx is the vertex of the magnetict-wing overV11V2 .

Theorem 5: The magnetic product corresponding tot-ordering ~6.13! of noncommutative
coordinates qˆ ,p̂ is given by formula

~ f !
F

t

g!~x!5expH i

\ E
Sx

t(V̂2 ,V̂1)
vFJ f ~x2!g~x1!U

x15x25x

,

whereSx
t is a membrane with magnetict-wings.

The immediate corollaries from this statement are formulas for several multipliers and al
integral formula for!

F
t via the magnetic area of membranesSt(x,x2 ,x1) supplied with magnetic

t-wings. These corollaries are formulated by the same way as~6.10!–~6.12!, but with magnetic
form vF in the exponent.

VII. DYNAMICS VIA MEMBRANE AREA

Quantum dynamics of a charged~spinless! particle in electromagnetic field can be describe

~i! in the nonrelativistic case by the Schro¨dinger equation

i\
]c

]t
5F 1

2mS2i\
]

]q
2

e

c
AD 2

1eaGc, ~7.1!

~ii ! in the relativistic case by the Klein–Gordon equation

Si\ ]

]t
2eaD2

c5c2FS2i\
]

]q
2

e

c
AD 2

1m2c2Gc, ~7.2!

whereA and a are magnetic and electric potentials of the field, and metric is assumed
Euclidean.

First, we consider the pure magnetic time-independent situationa50, A5A(q). Let us
introduce operatorsp̂52 i\]/]q2 (e/c)A(q). Then the dynamical equations can be reduced
studying the evolution operator exp$2itH(p̂)/\%, whereH(p)5p2/2m in the nonrelativistic case
andH(p)56cAp21m2c2 in the relativistic case.
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More generally, in a presence of an additional non-Euclidean metric~gravitational field! the
Hamiltonian will depend on theq-coordinate as well:H5H(q,p). Say,H.gjk(q)pj pk/2m in the
nonrelativistic case.

So, the general problem is to study the operator

Ut5expH 2
i t

\
ĤJ , Ĥ5H~ q̂,p̂!. ~7.3!

In particular, we are interested in its asymptotic behavior as\→0.
Note that the symbolH and the permutation relations between quantum coordinatesq̂, p̂ ~1.3!

are independent of the gauge choice of the magnetic potentialA. Thus the semiclassical approx
mation forUt as\→0, written in terms of the phase space symbolH(q,p) and the phase spac
noncommutative structure~1.3!, is automatically gauge invariant.

Let us represent the operatorUt in the Weyl-symmetrized form

Ut5U t~ q̂,p̂!,

then for symbolU t one obtains the following equations

i\
]U t

]t
5H!

F
U t, U 051. ~7.4!

Using Theorem 1 we transform~7.4! to a pseudodifferential form

i\
]U t~x!

]t
5H\~x,2 i\]x! U t~x!, U 051. ~7.5!

Here H\(x,y) is the Weyl symbol of the operatorH(Lq ,Lp), andLq , Lp are given by~2.10!.
Obviously,

H\5H01O~\2!, H0[H~ l !, ~7.6!

where l is the Weyl symbol ofL, i.e., L5 l (x,2 i\]x). The explicit formulas forl 5( l q ,l p) are
found in ~5.4!.

In view of ~7.6! the principal term of the semiclassical solution of the Cauchy problem~7.5!
is determined by the Hamilton functionH0 . For small enough time intervaltP@0,T# the approxi-
mate solution has the simplest WKB-form

U t~x!5expH i

\
S~ t,x!J ut~x!1O~\!, ~7.7!

where the phaseS is the solution of the Hamilton–Jacobi equation

]S

]t
1H0S x,

]S

]xD50, Su t5050, ~7.8!

and the nonoscillatory amplitudeut is the solution of the ‘‘transport’’ equation

]ut

]t
1

]

]x S ]H0

]y S x,
]S

]xDutD50, u051. ~7.9!

In order to solve~7.8! and ~7.9! one has to consider the Hamiltonian system

Ẋ5
]H0

]Y
, Ẏ52

]H0

]X
, Xu t505x0, Yu t5050, ~7.10!
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and determine

S5E
0

t

~YẊ2H0! d t̃, ut5detS ]X

]x0D 21/2

, ~7.11!

wherex05(q0,p0) is taken from the equation

X~x0,t !5x.

The time intervaltP@0,T# over which the JacobianDX/Dx0>d.0 ~for any x0PR2n! is exactly
the interval where the solutionU t can be represented in the WKB form~7.7!.

Lemma 7: Trajectories of~7.10! are given by formulas

X~x0,t !5 1
2 ~g t~x0!1x0!1v t~x0!,

~7.12!
Y~x0,t !5J~g t~x0!2x0!1yt~x0!,

where

v t5~0; 1
2~A~gq

t ,q0!1A~q0,gq
t !!!, yt5~A~gq

t ,q0!2A~q0,gq
t !;0!,

andg t5(gq
t ,gp

t ) is the trajectory of the Hamiltonian system corresponding to the function H
the magnetic Poisson bracket~3.4!

ġq5
]H

]p
~gq ,gp!, ġp52

]H

]q
~gq ,gp!2F~gq!

]H

]p
~gq ,gp!,

~7.13!
gu t505x05~q0,p0!.

The proof of this lemma follows from~5.8! and from the fact thatH05H( l ), and so compo-
nents of the mappingr :Rx

2n
% Ry

2n→R2n ~5.4! are integrals of motion for system~7.10!, i.e.,
r (X,Y)5r (x0,0)5x0 is constant in time.

After substitution of~7.12! into ~7.11! one obtains the following result.
Theorem 6: Let q̂, p̂ satisfy commutation relations~1.3! with magnetic tensor Fk j , and Ĥ

5H(q̂,p̂). Then for small enough time t the semiclassical approximation for the magnetic

symbol of the evolution operatorexp$2 (it/\)Ĥ%5U t(q̂,p̂) is given by the formula

U t5J 21/2expH i

\ E
S
vF2

i t

\
HJ 1O~\!. ~7.14!

Here the membraneS5Sx
t ~see Fig.15, left picture! is constructed from the piece of the Hamilto

trajectory ~7.13!, which connects points x0 andg t(x0), and from the magnetic wing with vertice
@g t(x0),x,x0#, where

FIG. 15. Membrane(x
t and trajectory of virtual particle.
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x5 1
2 ~g t~x0!1x0!1v t~x0!. ~7.15!

Here

v t~x0!5~0; 1
2 ~A~g t~x0!q ,q0!1A~q0,g t~x0!q!!!, x0[~q0,p0!,

and A is the Valatin primitive~2.1!. The JacobianJ in ~7.14! is given by

J~x0,t !5det@ 1
2 ~ I 1dg t~x0!!1dv t~x0!#, J>d.0 f or tP@0,T#,

the Hamilton function H in~7.14! is evaluated on the trajectory, i.e., H5H(x0), and x0 is
assumed to be expressed in terms of x,t via Eq. ~7.15!.

Remark 3:The group property of the family of symbolsU t over R2n reads

U t2 !
F

U t15U t21t1. ~7.16!

In terms of WKB-phase functions~7.14!, the identity~7.16! requires that

E
S

x2

t2

vF1E
S

x1

t1

vF1E
SF(x,x2 ,x1)

vF5E
S

x

t21t1

vF , ~7.17!

~see Fig. 16!, whereSF(x,x2 ,x1) is the hexagon membrane with magnetic wings, defined at
end of Sec. V. Note that in the caseF50 formula ~7.17! coincides with the phase addition ru
obtained by Marinov.3 In that particular case the magnetic ‘‘anomaly’’v t in ~7.15! is absent and
the magnetic wings of the membranes disappear.

Also note that the Hamilton functionH could be time-dependent. In this case the first me
brane phase factor in formula~7.14! is the same, but the second phase factor beco

exp$2 (i/\) *0
t H(g t̃(x0),t̃)dt̃%; the trajectoryg t is now the solution of system~7.13! with time-

dependent HamiltonianH.
Remark 4:One can use not only Weyl but any other ordering choice to represent the evo

operator as a function in coordinatesq̂,p̂. Then formula~7.14! still holds with membraneS
constructed by wings corresponding to the given ordering choice~see Sec. VI!; Eq. ~7.15! and the
JacobianJ are changed following~6.17!. Moreover, in Ref. 34 it was proved that using an
combining different orderings it is possible to avoid the difficulty with time limitationstP@0,T#
where the WKB-approximation works.

For the Wick ordering choice the wings are pure imaginary~see Fig. 13! and the membrane
representation~7.14! coincides with those obtained in Ref. 9. In this case the JacobianJ is never
zero and representation~7.14! is global in t.

In conclusion of this section we apply formula~3.6! to derive the symbolU t not asymptoti-
cally but in an exact continual form. Namely, one can use the approximationU t/N

5exp$2 (it/\N) H%1O(N22) and obtain the Trotter type formula

FIG. 16. Group property for membranes with wings.
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U t5 lim
N→`

expH 2
i t

\N
HJ !

F
¯!

F
expH 2

i t

\N
HJ ,

~N multipliers!. Applying ~3.6!, one derives

U t~x!5 lim
N→`

expH i

\ E
Sx(V̂N , . . . ,V̂1)

vFJ expH 2
i t

\N (
j 51

N

H~xj !J U
x15¯5xN5x

. ~7.18!

Now the question is how to represent this formula in a continual form.
Note that each vector fieldv on R2n and any pointxPR2n, tPR determines a membran

Sx
t (v),R2n whose boundary is constructed from a piece$Gmu0<m<t% of the trajectory of the

field v in R2n and from the magnetic wing with vertices@G t,x,G0# ~or, the magnetict-wing if one
wants to use the generalt-ordering!. The integral over the membrane in~7.18! is an approximation
of the integral overSx

t (v) with a convenient choice ofv.
Theorem 7: The following continual formula for the symbol of the evolution operator~7.3!

holds:

U t~x!5expH i

\ E
Sx

t ( v̂)
vFJ expH 2

i

\ E
0

t

H~x~m!! dmJ U
x(m)[x

. ~7.19!

Here $x(m)5(q(m),p(m))u0<m<t% are continuous paths inR2n and v̂5( i\d/dp(m),
i\d/dq(m)) is the variational derivative operator acting on the path functional.

Formula~7.19! is dual to the Feynman path-integral formula.24,50–53The difference between
~7.19! and the path integral is the same as between~3.5! and ~3.7!. The known Wick and Hori
derivations54,55 for the symbol of the evolution operator~see also generalizations in Ref. 56! are
structurally close to~7.19!, but use a different first exponential factor. The membrane expone
factor in ~7.19! clearly demonstrates the influence of the magnetic formvF to the quantum
dynamics.

VIII. ELECTROMAGNETIC FIELDS AND SPACE–TIME MEMBRANES

Let us now consider general time-dependent case, i.e.,A5A(t,q), a5a(t,q) in ~7.1!, ~7.2!.
We again study the Cauchy problem for the Schro¨dinger or Klein–Gordon equations.

As a first step one can remove the electric potentiala from equations by introducing the new
wave functionc exp$ (ie/\) *0

t a dt%. After such a transform the magnetic potentialA is replaced by
A1c*0

t (]a/]q) dt, but the electromagnetic tensorF jk ~1.2b! remains unchanged. So, without lo
of generality one can assume that

a[0, E52c21]A/]t, B5curlA.

The quantum dynamical equations have the following form:

~i! in the nonrelativistic case

i\
]c

]t
5H~q̂,p̂~t!!c, where H.

1

2m
gjk~q!pj pk , ~8.1a!

~ii ! in the relativistic case

\2
]2c

]t2
1H2~q̂,p̂~t!!c50, where H2.c2~gjk~q!pj pk1m2c2!. ~8.1b!

In the latter case the metricgjk is assumed to be non-negative definite; the symbols. in ~8.1a!
and ~8.1b! mean that some terms of order\, \2 could be added to the Hamilto
function.23,29,38,57,58
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In Eqs. ~8.1! for each fixed timet the operatorsp̂(t)52 i\]/]q2 (e/c)A(t,q) and q̂5q
satisfy relations~1.3! with time-dependent tensor

F jk~ t,q!5
e

c
ek j lB

l~ t,q!, qPR3, j ,k51,2,3.

The time derivative of the operatorsp̂(t) in ~8.1! is the following:

d

dt
p̂j~ t !5eEj~ t,q!, j 51,2,3. ~8.2!

So we see that the electric field is responsible for ‘‘dynamical evolution’’ of the quantum mag
algebra~1.3!.

Let us introduce two-point electric potential

b~ t,q,q8![E
q

q8
E~ t,q̃!dq̃ ~8.3!

~the integral is taken along the straight line segment!, and also the two-point magnetic potentia

a~ t,q,q8![
1

uq2q8u Eq8

q

uq̃2q8uB~ t,q̃!3dq̃. ~8.4!

We stress that these potentials are different from those used by Valatin20 in the time dependen
case, since in our present definitions there is no integration over the time variable. Time and
are separated because we study the Cauchy problem in time.

Lemma 8: The relation holds:

2
]b

]q
2

1

c

]a

]t
5E~ t,q!.

Now from ~8.2! and from composition formulas~2.11! we obtain the following statement.
Proposition 6:

~i! The time derivative of any Weyl-symmetrized function in quantum coordinates qˆ , p̂(t) is
given by

2i\
d

dt
f~q̂,p̂~t!!5fe~q̂,p̂~t!,t!,

where

fe~q,p,t!5eb~t,Lq ,Rq!f~q,p!,

and Lq5q1 1
2i\]p , Rq5q2 1

2i\]p are operators of the regular representation~2.10!;
~ii ! the composition of two Weyl-symmetrized functions is given by

@f2~q̂,p̂~t!!#•@f1~q̂,p̂~t!!#5k~q̂,p̂~t!!, k5f2~Lq ,Lp~t!!f1,

where Lp(t)5p2 1
2i\]q2 (e/c) a(t,Lq ,Rq).

The solution of the evolution problem~8.1a! has the general form

c~ t,q!5U t~ q̂,p̂~ t !!~cu t50!. ~8.5!

In view of Proposition 6 equations for symbolU t are the following:
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F2 i\
]

]t
1eb~ t,Lq ,Rq!1H~Lq ,Lp~ t !!GU t~x!50, U 051. ~8.6!

The operator acting onU t can be represented@as in~7.5!# via a symbolH\ overRt3Rx
63Ry

6 . In
the same way as in~7.6! we have

H\5H01O~\2!, H0~ t,x,y!5eb~ t,l q~x,y!,r q~x,y!!1H~ l q~x,y!,l p~ t,x,y!!, ~8.7!

wherex5(q,p), y5(yq ,yp), and

l q5q2
1

2
yp , r q5q1

1

2
yp , l p5p1

1

2
yq2

e

c
a~ t,l q ,r q!.

@Of course, here we just re-state identities~5.4! in a new notation.# As in Sec. VII, the WKB-
solution of~8.6! has the form~7.7!, ~7.11!, where (X,Y) is now the trajectory of the Hamiltonian
system

Ẋ5
]H0

]y
~ t,X,Y!, Ẏ52

]H0

]x
~ t,X,Y!, Xu t505x0, Yu t5050. ~8.8!

The solution of problem~8.1b! with additional Cauchy data]c/]tu t5050 can also be con-
structed in the form~8.5!, whereU t satisfies the equations

F i\
]

]t
2eb~ t,Lq ,Rq!G2

U t5H2~Lq ,Lp~ t !!U t, U 051,
]

]t
U tu t5050.

The WKB-approximation has the form

U t5
1

2 (
6

expH i

\
S6J u6

t 1O~\!, ~8.9!

where the phasesS6 and amplitudesu6
t correspond@by formulas~7.11!# to the Hamilton function

H0 of type~8.7! with 6 signs in the definition ofH. The Hamiltonian system~8.8! again plays the
basic role.

The difference in Hamiltonian system~8.8! from the earlier~7.10! is that functionH0 in ~8.8!
now depends onl q , l p and onr q as well. So,r p is not an integral of motion for~8.8!. Thus instead
of dynamical system~7.13! we get now two systems: one forg5 l (t,X,Y) and another forl
5r (t,X,Y). They are the following:

ġq5
]H

]p
~gq ,gp!, ġp52

]H

]q
~gq ,gp!2

e

c
B~ t,gq!3ġq1eE~ t,gq! ~8.10!

and

l̇q50, l̇p5eE~ t,lq!, ~8.11!

with one and the same initial conditiongu t505lu t505x0.
The functionH(q,p) has the following form:H(q,p)5gjk(q)pj pk/2m in the nonrelativistic

case andH(q,p)56cAgjk(q)pj pk1m2c2 in the relativistic case.
Note that~8.10! is the standard dynamical system for charged massive particle in the ele

magnetic field. The additional system~8.11! can be interpreted as the dynamical system fo
particle of chargee and massm5`. The appearance of this additional ‘‘virtual particle’’ is due
the presence of the electric fieldE.

The phaseS of the WKB-solution is given by~7.11!; hence
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S~ t,x!5E
0

t

Y Ẋd t̃2eE
0

t

b~ t̃ ,gq
t̃ ,lq

t̃ ! d t̃2E
0

t

H~g t̃ ! d t̃. ~8.12!

Lemma 9: The following identity holds:

E
0

t

Y Ẋd t̃5E
Sx

t
vF5E

Sx
t
v01

e

c ES̃q
t
B~ t,q̃! dq̃∧dq̃, ~8.13!

where the membraneSx
t ,R65T* R3 is constructed from the two trajectoriesg5g t ~8.10! and

l5l t ~8.11! and from the magnetic wing with vertices@g t,x,l t#, where x5(q,p) ~see Fig.15,
right picture!. The projection ofSx

t onto R3 is the membraneS̃q
t constructed by a piece of th

trajectory $gq
t̃ u 0< t̃<t% and by the chord@q0,gq

t # with middle point q.
This is the membrane area interpretation of the first term in~8.12!. The second term in view

of definition ~8.3! can also be written as two-dimensional area, but in extended space-time

2eE
0

t

b d t̃5eE
0

t

d t̃E
q0

gq
t̃

E~ t̃ ,q̃! dq̃5eE
S̃ t,q0

E dq∧dt. ~8.14!

Here S̃ t,q0 is a membrane inRt3Rq
3 whose boundary consists of the trajectory~the world line!

$( t̃ ,g t̃) u 0< t̃<t%1 the chord@g t,q0#1 the straight time-segment$( t̃ ,q0) u 0< t̃<t%.
Now one can combine~8.13! and ~8.14! and apply the Stokes theorem to transform t

integration area to be of the most elegant geometry. Let us denote byS t,x the membrane inRt

3Rx
6 whose boundary is constructed by the world line of the given particle$( t̃ ,g t̃) u 0< t̃<t%, the

world line of the virtual infinitely heavy particle$( t̃ ,l t̃)u0< t̃<t%, and also by the magnetic win
with vertices@l t,x,g t# ~see Fig. 17!. We refer toS t,x as adynamical membrane.

Proposition 7: The WKB-phase of symbolU t in ~8.5! can be represented as

S~ t,x!5E
S t,x

~v01F !2E
0

t

H~g t̃ ! d t̃, ~8.15!

wherev05 1
2Jdx∧dx, the two-form F is given by~1.2b!, S t,x is the dynamical membrane inR7

5Rt3Rx
6 , and g t is the solution of classical dynamical system~8.10!.

Remark 5:The closed two-formṽF5v01F, which appeared in~8.15!, generates a contac
structure onR75Rt3Rx

6.59,60 The ‘‘virtual’’ system ~8.11! is the characteristic system forṽF .
More precisely, the vector field onR7 corresponding to~8.11! is

v05
]

]t
1eE~ t,q!

]

]p
, x5~q,p!.

FIG. 17. Dynamical membrane( t,x.
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This is the null-field forṽF

v0cṽF50,

and the flow ofv0 preservesṽF

Lv0
ṽF50.

Here we denote byL the Lie derivative and use the signc for the contraction of a vector field an
a form: v cv (u)[v(u,v) for all u. If one denotes byvH the vector field onR7 corresponding to
~8.10!

vH5
]

]t
1

]H

]p
~q,p!

]

]q
1S eE~ t,q!2

e

c
B~ t,q!3

]H

]p
~q,p!2

]H

]q
~q,p! D ]

]p
,

then

vHcṽF5dH2v0~H ! dt, LvH
ṽF5d~v0~H !!∧dt.

Here v0(H)5eE]H/]p; so we see how the electric fieldE determines the ‘‘nonconservation
properties of the charged particle dynamics in the contact spaceR75Rt3Rx

6 .
Now let us return to the WKB-representation~7.7!, ~7.11! of symbol U t and calculate the

JacobianJ5DX/Dx0. The trajectoryX of system~8.9! is given now by a modification of~7.12!:
X(x0,t)5 1

2(g
t(x0)1l t(x0))1v t(x0), where v t is the same as in~7.12!. Since the solutionl

5l t of ~8.11! is easily calculated:lq
t 5q0, lp

t 5p01e*0
t E( t̃ ,q0) d t̃, we derive

J5detF1

2
~ I 1dg t!1S 0 0

Ct DtD G . ~8.16!

Here

Ct[
e

c

]

]q0 ~as~ t,gq
t ~x0!,q0!!1eE

0

t ]E~ t̃ ,q0!

]q0 d t̃, Dt[
e

c

]

]p0 ~as~ t,gq
t ~x0!,q0!!.

The functionas is determined byas(t,q,q8)[ 1
2(a(t,q,q8)1a(t,q8,q)), where the two-point

magnetic potentiala is given by ~8.4!. The pointx0 everywhere in these formulas has to
expressed viat,x by means of the equation

x5 1
2~g t~x0!1l t~x0!!1v t~x0!. ~8.17!

This equation is uniquely solvable while the Jacobian is positive

J>d.0, tP@0,T#. ~8.18!

So, we conclude with the following result.
Theorem 8: The symbolU t of the evolution operator~8.5! solving the equation of motion

~8.1a! or ~8.1b! can be represented@for sufficiently small time~8.18!# in the WKB-form~7.7! or
~8.9! over the contact spaceR75Rt3Rx

6 . The phases S are given by membrane formula~8.15!
and amplitudes ut5J 21/2 by ~8.16!.

Remark 6:Of course, the contact spaceR7 can be symplectified~see Refs. 59 and 60! up to
R85(Rp0

% Rt)3Rx
6 with symplectic formvF85dp0∧dt1ṽF . The dynamical membraneS t,x in

~8.15! can be blown up to a membraneS t,x8 in such a way that the pathg t is put on the level
p052H, and the pathl t is put on the levelp050; so, the summand*0

t H d t̃ in ~8.15! is included
into the membrane area, and altogether one obtains
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S~ t,x!5E
S t,x8

vF8 .
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Ensemble fluctuations and the origin of quantum
probabilistic rule

Andrei Khrennikova)

International Center for Mathematical Modeling in Physics and Cognitive Sciences, MSI,
University of Va¨xjö, S-35195, Sweden
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We demonstrate that the origin of the so-called quantum probabilistic rule~which
differs from the classical Bayes’ formula by the presence of cosu-factor! might be
explained in the framework of ensemble fluctuations which are induced by prepa-
ration procedures. In particular, quantum rule for probabilities~with nontrivial
cosu-factor! could be simulated for macroscopic physical systems via preparation
procedures producing ensemble fluctuations of a special form. We discuss prepara-
tion and measurement procedures which may produce probabilistic rules which are
neither classical nor quantum; in particular, hyperbolic ‘‘quantum theory.’’
© 2002 American Institute of Physics.@DOI: 10.1063/1.1432485#

I. INTRODUCTION

It is well known that the classical probabilistic rule based on the Bayes’ formula for co
tional probabilities cannot be applied to quantum formalism, see, e.g., Refs. 1–3 for ext
discussions. In fact, all special features of quantum systems are just consequences of viola
the classical probability rule, Bayes’ theorem.1 In this paper we restrict our investigations to th
two-dimensional case. Here Bayes’ formula~the formula of total probability! has the form (i
51,2):

p~A5ai !5p~C5c1!p~A5ai /C5c1!1p~C5c2!p~A5ai /C5c2!, ~1!

whereA andC are physical variables which take, respectively, valuesa1 , a2 andc1 , c2 . Symbols
p(A5ai /C5cj ) denote conditional probabilities. There is a large diversity of opinions on
origin of violations of~1! in quantum mechanics. The common opinion is that violations of~1! are
induced by special~quite mysterious! features of quantum systems.

Let f be a quantum state. Let$f i% i 51
2 be an orthogonal basis consisting of eigenvectors

the operatorĈ corresponding to the physical observableC.
The quantum theoretical rule~derived in the Hilbert space formalism! has the form (i

51,2):

qi5p1p1i1p2p2i62Ap1p1ip2p2i cosu, ~2!

where qi5pf(A5ai), pj5pf(C5cj ), pi j 5pf i
(A5aj ), i , j 51,2. Here probabilities have in

dexes corresponding to quantum states. The common opinion is that this quantum proba
rule must be considered as a peculiarity of nature. However, there exists an opposition
general opinion, namely the probabilistic opposition. The main domain of activity of this pr
bilistic opposition is Bell’s inequality and the EPR paradox,4 see, e.g., Refs. 1, 5–11. The gene
idea supported by the probabilistic opposition is that special quantum behavior can be unde
on the basis of local realism, if we are careful with the probabilistic description of phy
phenomena. It seems that the origin of all ‘‘quantum troubles’’ is probabilistic rule~2!. It seems
that the violation of Bell’s inequality is just a new representation of the old contradiction betw

a!Electronic mail: andrei.khrennikov@msi.vxu.se
7890022-2488/2002/43(2)/789/14/$19.00 © 2002 American Institute of Physics
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rules ~1! and ~2! ~the papers of Accardi1 and De Muynck, De Baere, and Martens7 contain
extended discussions on this problem!. Therefore, the main problem of the probabilistic justific
tion of quantum mechanics is to find the clear probabilistic explanation of the origin of qua
probabilistic rule~2! and the violation of classical probabilistic rule~1! and explain why~2! is
sometimes reduced to~1!.

Accardi5 introduced a notion of thestatistical invariantto investigate the relation betwee
classical Kolmogorovean and quantum probabilistic models, see also Gudder and Zanghi in
He was also the first who mentioned that Bayes’ postulate is a ‘‘hidden axiom of the Kolm
ovean model . . . which limits its applicability to the statistical description of the natu
phenomena.’’5 In fact, this investigation plays a crucial role in our analysis of classical
quantum probabilistic rules.

An interesting investigation on this problem is contained in the paper of Shummhammer11 He
supports the idea that quantum probabilistic rule~2! is not a peculiarity of nature, but just
consequence of one special method of the probabilistic description of nature, the so-called m
of maximum predictive power. We do not directly support the idea of Shummhammer. It see
that the origin of~2! is not only a consequence of the use of one special method for the descr
of nature, but merely a consequence of our manipulations with nature, ensembles of ph
systems, in quantum preparation/measurement procedures.

In this paper we provide probabilistic analysis of quantum rule~2!. In our analysis ‘‘probabil-
ity’’ has the meaning of thefrequency probability, namely the limit of frequencies in a lon
sequence of trials~or for a large statistical ensemble!. Hence, in fact, we follow von Mises
approach to probability.12 It seems that it would be impossible to find the roots of quantum rule~2!
in the conventional probability framework, A. N. Kolmorogov, 1933.13 In the conventional
measure-theoretical framework probabilities are defined as sets of real numbers having
special mathematical properties. Classical rule~1! is merely a consequence of the definition
conditional probabilities. In the Kolmogorov framework to analyze the transition from~1! to ~2! is
to analyze the transition from one definition to another. In the frequency framework we
analyze behavior of trails which induce one or another property of probability. Our analysis s
that quantum probabilistic rule~2! can be explained on the basis of ensemble fluctuations~one of
the possible sources of ensemble fluctuations is the so-called ensemble nonreproducibility,
Baere;7 see also Ref. 10 for the statistical variant of nonreproducibility!. Such fluctuations can
generate~under special conditions! the cosu-factor in ~2!. Thus trigonometric fluctuations o
quantum probabilities can be explained without using the wave arguments.

An unexpected consequence of our analysis is that quantum probability rule~2! is just one of
the possible perturbations~by ensemble fluctuations! of classical probability rule~1!. In principle,
there might exist experiments which would produce perturbations of classical probabilistic ru~1!
which differ from quantum probabilistic rule~2!.

II. QUANTUM FORMALISM AND ENSEMBLE FLUCTUATIONS

A. Frequency probability theory

The frequency definition of probability is more or less standard in quantum theory; espe
in the approach based on preparation and measurement procedures.14,3

Let us consider a sequence of physical systemsp5(p1 ,p2 , . . . ,pN , . . . ). Suppose that
elements ofp have some property, e.g., position, and this property can be described by n
numbers:L5$1,2,. . . ,m%, the set of labels. Thus, for eachp jPp, we have a numberxjPL. So
p induces a sequence

x5~x1 ,x2 , . . . ,xN , . . . !, xjPL. ~3!

For each fixedaPL, we have the relative frequencynN(a)5nN(a)/N of the appearance ofa in
(x1 ,x2 , . . . ,xN). Here nN(a) is the number of elements in (x1 ,x2 , . . . ,xN) with xj5a. von
Mises12 said thatx satisfies the principle of thestatistical stabilizationof relative frequencies, if,
for each fixedaPL, there exists the limit
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p~a!5 lim
N→`

nN~a!. ~4!

This limit is said to be a probability ofa.
We shall not consider the so-called principle ofrandomness, see Ref. 12 for details. This

principle, despite its importance for the foundations of probability theory, is not related to
frequency analysis. We shall be interested only in the statistical stabilization of relative fre
cies.

Remark 2.1 (randomness):The second von Mises’ principle, randomness, was introduce
exclude from consideration deterministic sequences that satisfy the principle of statistical s
zation. For example,x5(010101. . . 0101. . . ) satisfies the principle of the statistical stabilizatio
but, of course, it could not be considered as a random sequence. By the principle of rando
limits in ~4! must be invariant with respect to selections of subsequences in~3! by using some
class of so-called place selections. The notion of place selection induces numerous difficu
von Mises theory, see, e.g., Ref. 10. In fact, the problem—to define randomness by using
selections—was not solved. Mathematicians escape this problem by using other approach
Kolmogorov complexity or Marti–Lo¨f tests for randomness, see, e.g., Ref. 10.

B. Preparation and measurement procedures and quantum formalism

We consider a statistical ensembleS of quantum particles described by a quantum statef.
This ensemble is produced by some preparation procedureE, see, e.g., Refs. 14 and 3 for detai
There are two discrete physical observablesC5c1 ,c2 andA5a1 ,a2 .

The total number of particles inS is equal toN. Suppose thatni
c , i 51,2, particles inS would

give the resultC5ci andni
a , i 51,2, particles inS would give the resultA5ai . Suppose that,

among those particles which would produceC5ci , there areni j , i , j 51,2, particles which would
give the resultA5aj . So

ni
c5ni11ni2 , nj

a5n1 j1n2 j , i , j 51,2.

We use the objective realist model in that bothC andA areobjective propertiesof a quantum
particle, see Refs. 2, 3, and 10 for details. Such a viewpoint to quantum observables co
called Einstein’s viewpoint. In such a model we can consider in the ensembleS subensembles
Sj (C) andSj (A), j 51,2, of particles having propertiesC5cj andA5aj , respectively. Set

Si j ~A,C!5Si~C!ùSj~A!.

Thenni j is the number of elements in the ensembleSi j (A,C) ~subensemble ofS!. We remark
that the ‘‘existence’’ of the objective property~C5ci andA5aj ! need not imply the possibility to
measure this property. For example, such a measurement is impossible in the case of incom
observables. So in general~C5ci andA5aj ! is a kind of hidden property.

The quantum experience says that the following frequency probabilities are well define
all observablesC, A:

pi5pf~C5ci !5 lim
N→`

pi
(N) , pi

(N)5
ni

c

N
; ~5!

qi5pf~A5ai !5 lim
N→`

qi
(N) , qi

(N)5
ni

a

N
. ~6!

Can we say something about the behavior of frequenciesp̃i j
(N)5ni j /N , N→`?

In fact, not so much. Suppose that they stabilize, whenN→`. This implies that probabilities
p̃i j 5pf(C5ci ,A5aj )5 limN→` p̃i j

(N) would be well defined. The quantum experience says
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~in general! this probability distribution could not be measured. Thus it may be the frequen
p̃i j

(N) fluctuate, whenN→`. Such fluctuations can, nevertheless, produce the statistical stab
tion ~5!, ~6!, see Ref. 10 for details.

Remark 2.2:The common interpretation of experimental violations of Bell’s inequality is t
realism cannot be used in quantum theory~at least in the local framework!. However, Bell’s
considerations only imply that we cannot use realist models under the assumption thatp̃i j

(N) stabi-
lize. The realist models with fluctuating frequenciesp̃i j

(N) can coexist with violations of Bell’s
inequality, see Ref. 10.

Let us now consider statistical ensemblesTi , i 51,2, of quantum particles described by th
quantum statesf i which are eigenstates of the operatorĈ: Ĉf i5cif i . These ensembles ar
produced by some preparation proceduresEi . For instance, we can suppose that particles produ
by a preparation procedureE for the quantum statef pass through additional filtersFi , i 51,2. In
quantum formalism we have

f5Ap1f11Ap2eiuf2 . ~7!

In the objective realist model this representation may induce the illusion that ensemblesTi , i
51,2, for statesf i must be identified with subensemblesSi(C) of the ensembleS for the statef.
However, there are no physical reasons for such an identification. There are two main sou
troubles with this identification.

~a! The additional filterF1 ~andF2! changes the properties of quantum particles. The pr
ability distribution of the propertyA for the ensembleS1(C)5$pPS:C(p)5c1% @and S2(C)#
may differ from the corresponding probability distribution for the ensembleT1 ~andT2! obtained
by filtration. So different preparation procedures produce different distributions of propertie

~b! As we have already mentioned, frequenciesp̃i j
(N)5ni j /N may fluctuate. Even if additiona

filters do not change properties of quantum particles, nonreproducibility implies that the dis
tion of the propertyA may be essentially different for statistical ensemblesS1(C) and S2(C)
~subensembles ofS! and T1 and T2 . Moreover, distributions may be different even for sube
semblesS1(C) andS18(C) @or S2(C) andS28(C), of two different ensemblesS andS8 of quantum
particles prepared in the same quantum statef, see Ref. 10#.

Fluctuations of physical properties which could be induced by~a! or ~b! will be called en-
semble fluctuations.

Of course, principle~a! looks more attractive from the experimentalist~instrumentalists! point
of view. This is the original viewpoint of Heisenberg, who paid much attention to the rol
perturbations in quantum measurements. Similar ideas were presented by Bohr, who paid
attention to the role of experimental arrangement. Principle~a! implies that the transition from one
context~complex of physical conditions! given by the preparation procedureE to other contexts
given by the preparation proceduresEj , j 51,2, produces statistical perturbations of properties
physical systems. Principle~a! has some relation to von Mises’ principle of randomness. FiltersF j

can be considered as place selections in the original ensembleS. Principle ~a! is the hypothesis
that we could not perform such place selection without changing properties of the physica
tems.

Principle ~b! looks more exotic, since we always observe the statistical stabilization of
quencies in our experiments. However, we shall also keep in mind this possibility.

Suppose thatmi j is the number of particles in the ensembleTi having the objective property
A5aj .

The quantum experience says that the following frequency probabilities are well define

pi j 5pf i
~A5aj !5 lim

N→`

pi j
(N) , pi j

(N)5mi j /ni
c .
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Here it is assumed that an ensembleTi consists ofni
c particles,i 51,2. It is also assumed tha

ni
c5ni

c(N)→`, N→`. In fact, the latter assumption holds true if both probabilitiespi , i 51,2,
are nonzero.

We remark that probabilitiespi j 5pf i
(A5aj ) cannot be~in general! identified with condi-

tional probabilitiespf(A5aj /C5ci)5 p̃i j /pi . As we have remarked, these probabilities are
lated to statistical ensembles prepared by different preparation procedures, namely byEi , i
51,2, andE. The latter probabilities may be not exist at all, see principle~b!.

Let $c j% j 51
2 be an orthonormal basis consisting of eigenvectors of the operatorA. We can

restrict our consideration to the case:

f15Ap11c11eig1Ap12c2 , f25Ap21c11eig2Ap22c2 . ~8!

As (f1 ,f2)50, we obtain

Ap11p211ei (g12g2)Ap12p2250.

Hence, sin(g12g2)50 ~we suppose that all probabilitiespi j .0! and g25g11pk. We also
have

Ap11p211cos~g12g2!Ap12p2250.

This implies thatk52l 11 and Ap11p215Ap12p22. As p12512p11 and p21512p22, we
obtain that

p115p22, p125p21. ~9!

These equalities are equivalent to the condition:p111p2151,p121p2251. So the matrix of prob-
abilities (pi j ) i , j 51

2 is the so-calleddouble stochastic matrix, see, e.g., Ref. 3 for general conside
ations.

Thus, in fact,

f15Ap11c11eig1Ap12c2 , f25Ap21c12eig1Ap22c2 . ~10!

So w5d1c11d2c2 , where

d15Ap1p111eiuAp2p21, d25eig1Ap1p122ei (g11u)Ap2p22.

Thus

q15pf~A5a1!5ud1u25p1p111p2p2112Ap1p11p2p21cosu; ~11!

q25pf~A5a2!5ud2u25p1p121p2p2222Ap1p12p2p22cosu. ~12!

C. Probability relations connecting preparation procedures

Let us forget at the moment about the quantum theory. We consider an arbitrary prepa
procedureE for microsystems or macrosystems. Suppose thatE produced an ensembleS of
physical systems. LetC(5c1 ,c2) andA(5a1 ,a2) be physical quantities which can be measur
for elementspPS. Let E1 andE2 be preparation procedures which are based on filtersF1 andF2

corresponding, respectively, to valuesc1 andc2 of C. Denote statistical ensembles produced
these preparation procedures by symbolsT1 andT2 , respectively. SymbolsN, ni

c , ni
a , ni j , mi j

have the same meaning as in the previous considerations. Probabilitiespi , pi j , qi are defined in
the same way as in the previous considerations. The only difference is that, instead of in
corresponding to quantum states, we use indexes corresponding to statistical ensembpi

5PS(C5ci), qi5PS(A5ai), pi j 5PTi
(A5ai).
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In the classical frequency framework we obtain:

q1
(N)5

n1
a

N
5

n11

N
1

n21

N
5

m11

N
1

m21

N
1

~n112m11!

N
1

~n212m21!

N
.

But, for i 51,2, we have

m1i

N
5

m1i

n1
c •

n1
c

N
5p1i

(N)p1
(N) ,

m2i

N
5

m2i

n2
c •

n2
c

N
5p2i

(N)p2
(N) .

Hence

qi
(N)5p1

(N)p1i
(N)1p2

(N)p2i
(N)1d i

(N) , ~13!

where

d i
(N)5

1

N
@~n1i2m1i !1~n2i2m2i !#, i 51,2.

In fact, this rest term depends on the statistical ensemblesS, T1 , T2 , d i
(N)5d i

(N)(S,T1 ,T2).

D. Behavior of fluctuations

First we remark that limN→` d i
(N) exists for all physical measurements. This is a conseque

of the property of statistical stabilization of relative frequencies for physical observable~in
classical as well as in quantum physics!. It may be that this property is a peculiarity of nature.
may be that this is just a property of our measurement and preparation procedures, see Re
an extended discussion. In any case we always observe that

qi
(N)→qi , pi

(N)→pi , pi j
(N)→pi j , N→`.

Thus there exist limits

d i5 lim
N→`

d i
(N)5qi2p1p1i2p2p2i .

Suppose that ensemble fluctuations produce negligibly small~with respect toN! changes in
properties of particles. Then

d i
(N)→0, N→`. ~14!

This asymptotic implies classical probabilistic rule~1!. In particular, this rule appears in a
experiments of classical physics. Hence, preparation and measurement procedures of c
physics produce ensemble fluctuations with asymptotic~14!. We also have such a behavior in th
case of compatible observables in quantum physics. Moreover, we can obtain the same c
probabilistic rule for incompatible observablesC andA if the phase factoru5p/21pk. There-
fore classical probabilistic rule~1! is not directly related to commutativity of corresponding o
erators in quantum theory. It is a consequence of asymptotic~14! for ensemble fluctuations.

Suppose now that filtersFi , i 51,2, produce relatively large~with respect toN! changes in
properties of particles. Then

lim
N→`

d i
(N)5d iÞ0. ~15!

Here we obtain probabilistic rules which differ from the classical one—~1!. In particular, this
implies that behavior of ensemble fluctuations~15! cannot be produced in experiments of classi
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physics. A rather special class of ensemble fluctuations~15! is produced in experiments of quan
tum physics. However, ensemble fluctuations of form~15! are not reduced to quantum fluctuatio
~see further considerations!.

To carefully study behavior of fluctuationsd i
(N) , we represent them as

d i
(N)52Ap1

(N)p1i
(N)p2

(N)p2i
(N)l i

(N) ,

where

l i
(N)5

1

2Am1im2i

@~n1i2m1i !1~n2i2m2i !#.

We have used the fact:

p1
(N)p1i

(N)p2
(N)p2i

(N)5
n1

c

N
•

m1i

n1
c •

n2
c

N
•

m2i

n2
c 5

m1im2i

N2 .

We have:d i52Ap1p1ip2p2il i , where the coefficientsl i5 limN→` l i
(N) , i 51,2.

In classical physics the coefficientsl i50. We have the same situation in quantum physics
all compatible observables as well as for some incompatible observables. In the general
quantum physics we can only say that

ul i u<1. ~16!

Hence, for quantum fluctuations, we always have

U~n1i2m1i !1~n2i2m2i !

2Am1im2i

U<1, N→`.

Thus quantum ensemble fluctuations induce a relatively small~but in general nonzero!! variations
of properties.

E. Fluctuations which induce the quantum probabilistic rule

Let us consider preparation proceduresE, Ej , j 51,2, which have the deviations, whenN
→`, of the following form (i 51,2):

e1i
(N)5n1i2m1i52j1i

(N)Am1im2i , ~17!

e2i
(N)5n2i2m2 j52j2i

(N)Am1im2i , ~18!

where the coefficientsj i j satisfy the inequality

uj1i
(N)1j2i

(N)u<1, N→`. ~19!

Suppose thatl i
(N)5j1i

(N)1j2i
(N)→l i , N→`, where ul i u<1. We can representl i

(N)

5cosu i
(N) . Thenu i

(N)→u i ,mod 2p, whenN→`. Thusl i5cosui .
We obtained that

d i52Ap1p1ip2p2i cosu i , i 51,2. ~20!

Thus fluctuations of the form~17!, ~18! produce the probability rule (i 51,2):

qi5p1p1i1p2p2i12Ap1p2p1ip2i cosu i . ~21!
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The usual probabilistic calculations give us

15q11q25p1p111p2p2111p1p121p2p2212Ap1p2p11p21cosu112Ap1p2p12p22cosu2

5112Ap1p2@Ap11p21cosu11Ap12p22cosu2#.

Thus we obtain the relation

Ap11p21cosu 11Ap12p22cosu250. ~22!

Suppose that ensemble fluctuations~17! and ~18! satisfy the additional condition

lim
N→`

p11
(N)5 lim

N→`

p22
(N) . ~23!

This condition implies that the matrix of probabilities is a double stochastic matrix. Hence, w

cosu152cosu2 . ~24!

So we demonstrated that ensemble fluctuations~17! and ~18! in combination with the double
stochastic condition~23! produce quantum probabilistic relations~11! and ~12!.

It must be noticed that the existence of the limitsl i5 limN→` l i
(N) does not imply the exis-

tence of limitsj1i5 limN→` j1i
(N) and j2i5 limN→` j2i

(N) . For example, letj1i
(N)5l i cos2 ai

(N) and
j2i

(N)5l i sin2ai
(N) , where ‘‘phases’’a i

(N) fluctuate mod 2p. Then numbersj1i and j2i are not
defined, but limN→`@j1i

(N)1j2i
(N)#5l i , i 51,2, exist.

If j i j
(N) stabilize, then probabilities for the simultaneous measurement of incompatible ob

ables would be well defined:

p~A5a1 ,C5c1!5 lim
N→`

n11

N
5p1p1112Ap1p2p11p21j11,... .

The quantum formalism implies that in general such probabilities do not exist.
Remark 2.3:The magnitude of fluctuations can be found experimentally. LetC andA be two

physical observables. We prepare free statistical ensemblesS, T1 , T2 corresponding to state
f, f1 , f2 . By measurements ofC andA for pPS we obtain frequenciesp1

(N) , p2
(N) , q1

(N) , q2
(N) ,

by measurements ofA for pPT1 and forpPT2 we obtain frequenciesp1i
(N) . We have

f i~N!5l i
(N)5

qi
(N)2p1

(N)p1i
(N)2p2

(N)p2i
(N)

2Ap1
(N)p1i

(N)p2
(N)p2i

(N)
.

It would be interesting to obtain graphs of functionsf i(N) for different pairs of physical
observables. Of course, we know that limN→` f i(N)56cosu. However, it may be that such
graphs can present a finer structure of quantum states.

III. ON THE MAGNITUDE OF FLUCTUATIONS WHICH PRODUCE THE CLASSICAL
PROBABILISTIC RULE

We remark that the classical probabilistic rule~which is induced by ensemble fluctuations wi
j i

(N)→0! can be observed for fluctuations having relatively large absolute magnitudes. F
stance, let

e1i
(N)52j1i

(N)Am1i , e2i
(N)52j2i

(N)Am2i , i 51,2, ~25!

where sequences of coefficients$j1i
(N)% and$j2i

(N)% are bounded (N→`). Here
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l i
(N)5

j1i
(N)

Am2i

1
j2i

(N)

m1i
→0, N→`

~as usual, we assume thatpi j .0!.
Example 3.1:Let N'106, n1

c'n2
c'53105, m11'm12'm21'm22'253104. So p15p2

51/2; p115p125p215p2251/2 ~symmetric state!. Suppose we have fluctuations~25! with j1i
(N)

'j2i
(N)'1/2. Then e1i

(N)'e2i
(N)'500. So ni j 52431046500. Hence, the relative deviatio

e j i
(N)/mji 5 500/253104 '0.002.

Thus fluctuations of the relative magnitude'0,002 produce the classical probabilistic rule
It is evident that fluctuations of essentially larger magnitude

e1i
(N)52j1i

(N)~m1i !
1/2~m21!

1/a, e2i
(N)52j2i

(N)~m2i !
1/2~m1i !

1/b, a,b.2, ~26!

where$j1i
(N)% and $j2i

(N)% are bounded sequences (N→`), also produce~for pi j Þ0! the classical
probability rule.

Example 3.2:Let all numbersN,...,mi j be the same as in Example 3.1 and let deviations h
behavior~26! with a5b54. Here the relative deviationj i j

(N)/mi j '0.045.

IV. CLASSICAL, QUANTUM, AND ‘‘SUPERQUANTUM’’ PHYSICS

In this section we find relations between different classes of physical experiments. Fir
consider the so-called classical and quantum experiments. Classical experiments prod
classical probabilistic rule~Bayes’ formula!. Therefore the corresponding ensemble fluctuati
have the asymptoticd i

(N)→0, N→`.
Nevertheless, we cannot say that classical measurements give just a subclass of q

measurements. In the classical domain we have no symmetric relationsp115p22 and p125p21.
This is the special condition which connects the preparation proceduresE1 andE2 . This relation is
a peculiarity of quantum preparation/measurement procedures.

Experiments with nonclassical probabilistic rules are characterized by the conditiond i
(N)

→0, N→`. Quantum experiments give only a particular class of nonclassical experiments. Q
tum experiments produce ensemble fluctuations of form~17! and~18!, where coefficientsj1i

(N) and
j20

(N) satisfy ~19! and the orthogonality relation

lim
N→`

~j11
(N)1j21

(N)!1 lim
N→`

~j12
(N)1j22

(N)!50. ~27!

In particular, nonclassical domain contains~nonquantum! experiments which satisfy conditio
of boundedness~19!, but do not satisfy orthogonality relation~27!. Here we have only the relation
of quasiorthogonality~22!. In this case the matrix of probabilities is not double stochastic.
corresponding probabilistic rule has the form:

qi5p1p1i1p2p2i12Ap1p2p1ip2i cosu i . ~28!

Here in generalp111p21Þ1, p121p22Þ1.

We remark that, in fact,~28! and ~22! imply that

q15p1p111p2p2112Ap1p2p11p21cosu1 ;

q25p1p121p2p2222Ap1p2p11p21cosu1 .

V. HYPERBOLIC ‘‘QUANTUM’’ FORMALISM

Let us consider ensemblesS, T1 , T2 such that ensemble fluctuations have magnitudes~17!
and ~18! where
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uj1i
(N)1j2i

(N)u>11c,c.0, N→`. ~29!

Here the coefficientsl i5 limN→`(j1i
(N)1j2i

(N)) can be represented in the forml i5chu i , i 51,2.
The corresponding probability rule is the following:

qi5p1p1i1p2p2i12Ap1p2p1ip2ichu i , i 51,2.

The normalizationq11q251 gives the orthogonality relation:

Ap11p21chu11Ap12p22chu250. ~30!

Thus

chu252chu1Ap11p21

p12p22

and, hence,

q25p1p121p2p2222Ap1p2p11p21chu1 .

Such a formalism can be called ahyperbolic quantum formalism. It describes a part of
nonclassical reality which is not described by ‘‘trigonometric quantum formalism.’’ Experim
~and preparation proceduresE, E1 , E2! which produce hyperbolic quantum behavior could
simulated on computer. On the other hand, at the moment we have no ‘‘natural’’ physica
nomena which are described by the hyperbolic quantum formalism. ‘‘Trigonometric qua
behavior’’ corresponds to essentially better control of properties in the process of preparatio
‘‘hyperbolic quantum behavior.’’ Of course, the aim of any experimenter is to approach ‘‘trig
metric behavior.’’ However, in principle there might exist such natural phenomena that ‘‘trig
metric quantum behavior’’ could not be achieved. In any case even the possibility of com
simulation demonstrates that quantum mechanics~trigonometric! is not complete~in the sense tha
not all physical reality is described by the standard quantum formalism!. ~We can compare the
hyperbolic quantum formalism with the hyperbolic geometry.!

Example 6.1:Let p15a, p2512a, p115¯5p2251/2. Then

q15 1
21Aa~12a!l1 , q25 1

22Aa~12a!l1 .

If a is sufficiently small, thenl1 can be, in principle, larger than 1:l15chu.
A kind of Hilbert space representation of the hyperbolic transformations of probabilities

proposed in Ref. 15.

VI. QUANTUM BEHAVIOR FOR MACROSCOPIC SYSTEMS

Our analysis shows that ‘‘quantum statistical behavior’’ can be demonstrated by ense
consisting of macroscopic systems, e.g., balls having colorsC5c1 , red, orc2 , blue, and weights
A5a151 or a252. Suppose that additional filtersFi , i 51,2, produce fluctuations~17!, ~18!, and
~27!. Then, instead of classical Bayes’ formula~1!, we obtain quantum probability rule~2!.

In the context of the statistical simulation of quantum statistical behavior via fluctuations~17!
and ~18! @with ~27!# it would be useful to note that, in fact, we can choose constant coeffic
j i j

(N)5j i j . Moreover, we havej1152j12 and j2152j22. The latter is a consequence of th
general relations:

j11
(N)

j12
(N) →21,

j22
(N)

j21
(N) →21, N→`. ~31!

Asymptotic ~31! can be obtained from~17! and ~18!:
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Proof: By ~17! we have

~n112m11!1~n122m12!52j11Am11m2112j12Am12m22. ~32!

The left-hand side is equal to zero: (n111n12)2(m111m12)5n1
c2n1

c50 ~as the ensembleT1 has
n1

c elements!. Hence, by~23! we get

j1152j12Am12

m21

m22

m11
→2j12, N→`

~asp115p22 andp125p21). In the same way we obtain that

j2152j22Am12

m21

m22

m11
→2j22, N→`.

VII. CORRELATIONS BETWEEN PREPARATION PROCEDURES

In this section we study the frequency meaning of the fact that in the quantum formalis
matrix of probabilities is double stochastic. We remark that this is a consequence of orthogo
of quantum statesf1 andf2 corresponding to distinct values of a physical observableC. We have

p11

p12
5

p22

p21
. ~33!

Suppose that~a!, see Sec. II, is the origin of quantum behavior. Hence, all quantum fea
are induced by the impossibility to create new ensemblesT1 andT2 without changing properties
of quantum particles. Suppose that, for example, the preparation procedureE1 practically destroys
the propertyA5a1 ~transforms this property into the propertyA5a2!. So p1150. As a conse-
quence, theE1 makes the propertyA5a2 dominating. Sop12'1. Then the preparation procedu
E2 must practically destroy the propertyA5a2 ~transforms this property into the propertyA
5a1!. Sop22'0. As a consequence, theE2 makes the propertyA5a1 dominating. Sop21'1.

Frequency relation~23! can be represented in the following form:

m11

n1
c 2

m22

n2
c '0, N→`. ~34!

We recall that the number of elements in the ensembleTi is equal toni
c .

Thus

S n112m11

n1
c D 2S n222m22

n2
c D'

n11

n1
c 2

n22

n2
c . ~35!

This is nothing than the relation between fluctuations of propertyA under the transition from the
ensembleS to ensemblesT1 , T2 and distribution of this property in the ensembleS.

VIII. PHYSICAL CONSEQUENCES

By using frequency probabilistic analysis of transitions from one context~complex of physical
conditions, preparation procedure! to other contexts we derived general transformation of pr
abilities induced by such transitions. In particular, quantum interference rule~2! was obtained as
a particular case of our general transformation of probabilities.

The following consequences of our investigation might be interesting for physicists.
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A. Contextualism

The crucial role of context~complex of physical conditions, experimental arrangement! in
experiments with elementary particles was many times~at many occasions! underlined by ‘‘fa-
thers’’ of quantum theory~especially, Heisenberg, Bohr, Dirac, see, e.g., Refs. 16 and 17!; see also
later investigations of Accardi, Ballentine, De Baere, De Muynck, Gudder, Khrenni
Pitowsky.1,5–10,15In particular, Heisenberg mentioned that perturbations of quantum system
duced by context transitions are responsible for the violation of the classical rule of additi
probabilities~the formula of total probability! and the appearance of the quantum rule~interfer-
ence!, see Ref. 16. In fact, Bohr’s complementarity principle is nothing other than the philos
of contextualism. In this paper we present quantative probabilistic measure of statistical pe
tions induced by context transitions. This gives the possibility to formulate contextual ideas
mathematical framework.

B. Wave–particle dualism

It is well known, see, e.g., the historical introduction in Dirac’s book17 or see Feynman in Ref
18, that the wave–particle dualism was proposed to solve the contradiction between the ‘‘
cal’’ and ‘‘quantum’’ rules for the addition of probabilistic alternatives. The violation of
classical rule was observed in the well-known two slit experiment~by comparing results of
measurements for three different complexes of physical conditions: both slits are open, only
the slits is open!. By using the frequency probabilistic framework we obtained ‘‘quantum in
ference’’ without applying wave arguments. Of course, as we have mentioned in this articl
can introduce complex amplitudes of probabilities, see Ref. 15. However, this wave descrip
just a mathematical description, complex linearization of nonlinear transformation of probabi
So, in principle, we could use purely corpuscular phemenology.

C. Quantumlike behavior for macrosystems

Our derivation of ‘‘quantum interference’’ was purely mathematical. The only physical
straint is that context transitions induce statistical perturbations of relatively small magnitu
principle, such perturbations could be produced in experiments with macroscopic systems
we predict the possibility to observe quantumlike interference for macroscopic objects. In pa
lar, recent experiments of the group of Zeilinger19 and the Boulder-group20 can be interpreted a
successful steps in this direction.

By using contextual probabilistic calculus developed in this paper we can associate co
‘‘wave-amplitudes’’ with macroscopic objects. This approach eliminates the gap between m
and macroworlds. In particular, well-known experiments with Bose–Einstein condensate c
interpreted as the successful step in this direction.

D. Macroscopic quantum computers

The above arguments give the possibility to create experimental situations in that mac
tems would exhibit wave behavior. This implies the possibility to create computing devices
on quantumlike calculus of probabilities and composed of macrosystems.

E. Macroscopic quantum cryptography

The same arguments imply that, in principle, there could be created quantumlike c
graphic schemes based on macrosystems.
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F. Hyperbolic interference

One of the unexpected consequences of our frequency probabilistic analysis of experi
statistical data is the possibility to produce not only usual trigonometric, but also hyper
interference. This is the concrete experimental prediction. We hope that in the future there w
performed experiments to observe hyperbolic interference.

G. Superquantum scale

We obtained hyperbolic interference for complexes of physical conditions that produce
tical perturbations of relatively large magnitude. Here physical systems are ‘‘supersensitiv
perturbations produced by measurement devices. Such a behavior would be natural for p
systems having essentially higher sensitivity~to perturbations induced by our macroscopic d
vices! than ordinary quantum systems~elementary particles!. We can talk about ‘‘superquantum
scale of sizes and energies. In particular, on this scale there must exist a newhyperbolic Planck
constant. Formally such a parameter appears in the hyperbolic analogue of Schro¨dinger equation
in hyperbolic quantum mechanics, see Ref. 15. Of course, in accordance with our genera
ogy, hyperbolic interference also could be produced in some experiments with macrosyste

H. Hyperbolic quantum computing and cryptography

Hyperbolic interference could be used~in a similar way as trigonometric! to realize hyperbolic
quantumlike computing and cryptographic schemes. On one hand, hyperbolic quantumlike
puting and cryptographic schemes might be realized for super quantum scales. On the othe
they might be realized for macrosystems.

I. Cognitive quantumlike models

Our probabilistic derivation of interference rules was performed in the general framewo
principle, we can use quantumlike probabilistic calculus to investigate statistical data obtai
cognitive experiments, see Ref. 21.

IX. CONCLUSION

We demonstrated that the so-called quantum probabilistic rule has a natural explanation
framework of ensemble fluctuations induced by preparation procedures. In particular, the qu
rule for probabilities~with nontrivial cosu-factor! could be simulated for macroscopic physic
systems via preparation procedures producing the special ensemble fluctuations.
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Global minimizer for the Ginzburg-Landau functional
of an inhomogeneous superconductor
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In this paper, we prove that the global minimizer of the Ginzburg-Landau func-
tional of an inhomogeneous superconductor in an external magnetic field below the
first critical fieldHc1

is the vortexless solution. Here,Hc1
is defined as the value of

hex , the applied field, for which the minimal energy among vortexless configura-
tions is equal to the minimal energy among single-vortex configurations. ©2002
American Institute of Physics.@DOI: 10.1063/1.1428808#

I. INTRODUCTION

We are interested in describing the global minimizers of the Ginzburg-Landau function

J~u,A!5
1

2 EV
u¹Auu21uh2hexu22hex

2 1
k2

2
~a~x!2uuu2!2 ~1.1!

that corresponds to the free energy of a superconductor in a prescribed, constant magne
hex . HereV,R2 is the smooth, bounded, simply connected section of the superconducto
a(x):V→R is a given function satisfying 0,minV̄a(x)<a(x)<1 in V. The unknowns in Eq.~1.1!
are the complex-valued order parameteruPH1(V,C) and theU(1) connectionAPH1(V,R2).
Hereh5curlA is the induced magnetic field and¹Au5¹u2 iAu. The order parameteru indicates
the local state of the material:uuu is the density of superconducting electron pairs, so that, w
uuu.1, the material is in its superconducting state, whereas whenuuu.0, it is in its normal state.
k5 1/«.0 is the Ginzburg-Landau parameter depending on the material.

Minimizers of J(u,A) in H1(V,C)3H1(V,R2) solve the Euler equations

~G.L.!H 2¹A
2u5k2u~a~x!2uuu2! in V

2¹'h5~ iu,¹Au! in V
,

with the boundary conditions

h5hex on ]V

~¹u2 iAu!•n50 on ]V.
~1.2!

Here¹' denotes (2]x2
,]x1

), n is the unit outer normal vector to]V and (z,w)5Re(zw̄), where
z andw are inC.

The mathematical and physical importance of solutions is to determine the zeros o
solutions for a certain range of value ofhex . The points where the the zeros ofu appear, with their

a!Author to whom correspondence should be addressed. Electronic mail: zuhanl@yahoo.com
8030022-2488/2002/43(2)/803/15/$19.00 © 2002 American Institute of Physics
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topological degrees, are called the vortices of the mapu. Understanding the vortex structures
the solutions and describing the vortices ashex varies are of significance both in mathematics a
in physics.

There have been many works toward dealing with such problems. The first work is due
Bethuel, H. Brezis, and F. Helein.1 They discuss the functional

F~u!5
1

2 EV
u¹uu21

1

2e2 ~12uuu2!2 ~1.3!

with Dirichlet boundary conditionu5g:]V→S1. They proved that minimizes ofF(u) in
Hg

1(V,R2) haveudeg(g,]V)u isolated vortices of degree one and they located them by minimi
a renomalized energy. The extensions to the functional

Fa~u,V!5
1

2 EV
u¹uu21

1

2e2 ~a~x!2uuu2!2 ~1.4!

with Dirichlet boundary conditions were made by Ding and Liu.2 They showed that the vortices o
the minimizers are located at the points wherea(x) takes its minimum value. Bethuel, Brezis, an
Helein3 studied the functional~1.1! with hex50, a(x)[1 and replaced by a gauge invaria
variant of the Dirichlet condition. Results similar to those in Ref. 1 are obtained. However, a
above discussions are assumed that there is a nonzero topological degree in the Dirichlet bo
conditions which implies the existence of vortices in the minimizers.

Recently numbers of works on the minimizers ofJ(u,A) with applied fields~without impos-
ing boundary conditions! were done by Aftalion, Sandier, and Serfaty.4–9 As we may see, there is
no a priori bound on the numbers of the vortices for the minimizers inH13H1 at this time. To
overcome this difficulty, i.e., to havea priori control on the numbers of the vortices, Serfa
studied in Refs. 5 and 6 the local minimizers in some open subdomain of functional space
functional

G~u,A!5
1

2 EV
u¹Auu21uh2hexu22hex

2 1
1

2«2 ~12uuu2!2.

By constructing the local minimizer, Serfaty obtained the first critical magnetic fieldHc1
and the

location of vortices. In Ref. 8, Sandier and Serfaty concluded that ifhex<Hc1
, then global

minimizer ofG(u,A) in H13H1 is the vortexless solution. For other discussions, refer to Ref
and 9 and references therein.

We studied the local minimizers ofJ(u,A) in DM
a whereDM

a is defined with some suitable
M.0 as

DM
a 5$~u,A!:Fa~u,V!,M u ln «u% ~1.5!

and the following Theorem was obtained.10

Theorem A: There exist k151/2 maxV̄u j0(x)/a(x) u , k2
«5O«(1), k3

«5o«(1) and «05«0(M )
.0 such that

Hc1
5k1u ln «u1k2

« ~1.6!

and for e,e0 , the following holds:
( i ) If hex<Hc1

, a solution of(G.L.), that is minimizing J(u,A) in DM
a exists, and satisfies

1
2minV a(x)<uuu<1.

( i i ) If H c1
1k3

«<hex<Hc1
1O(1), a solution of(G.L.) that is minimizing J(u,A) in DM

a

exists. It has a bounded positive number of vortices ai
« of degree one such thatdist(ai

« ,L)→0 as
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«→0, whereL5$xPV:u j0(x)/a(x) u5maxVu j0 /a u%, 2div(1/a ¹j0)1j0521 in V, j050 on
]V and there exists a constant C.0 such thatdist(ai

« ,aj
«)>C for iÞ j .

In this paper, we will study the global minimizers ofJ(u,A) in H13H1 and our main result
is the following theorem.

Theorem 1.1: Let V be a smooth, bounded, simply connected domain inR2. Assume that

a(x)PC2(V̄) and 0,b05minV̄ a(x)<a(x)<1 in V. Then there exists a value Hc1
8 5Hc1

2O(u lnuln «i) such that, for any sufficiently small«, if hex<Hc1
8 , a globally minimizing solution of

the functional J(u,A) in H13H1 satisfiesuuu> 3
4b0 on V̄ and coincides with the solution found i

(i) of Theorem A.
The energyJ that we are going to study in this paper is slightly different from the class

Ginzburg-Landau energy in the sense that there is a term penalizing the variation of the
parameteru. We denote this function bya(x). The minima ofa(x) corresponds to the impuritie
in the material. In the original study by Ginzburg and Landau,a(x)[1. The modified functional
~1.1! was first written down by Likharev.11 Then this model has been used and developed in R
4 and 12.

This paper is organized as follows. In the next section, we shall give some basic estima
Sec. III, we shall split the energyJ. In Sec. IV, we shall prove Theorem 1.1. In Sec. V, we sh
prove Lemma 2.2 which is given in Sec. II.

II. PRELIMINARY RESULTS

Consider (u,A) such that

J~u,A!5 min
(v,B)PH1(V,C)3H1(V,R2)

J~v,B!,

then (u,A) satisfies (G.L.). Recall thatJ(u,A) is invariant underU(1)-gauge transformations
i.e., of the type

v5eifu, B5A1¹f for any f PH2~V,R!

which make the problem non-compact. Therefore, we shall impose the gauge condition

div~aA!50 in V, A•n50 on ]V. ~2.1!

Since we assumed thatV is simply connected, there is a functionjPH2(V,R) such that

aA5¹'j5~2jx2
,jx1

! in V, j50 on ]V. ~2.2!

Hence

h5curlA5divS 1

a
¹j D in V, ~2.3!

h5hex on ]V, ~2.4!

]u

]n
50 on ]V. ~2.5!

Now, let j0 be the unique solution of the following equation:

2divS 1

a
¹S divS 1

a
¹j0D D D1divS 1

a
¹j0D50 in V, ~2.6!
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divS 1

a
¹j0D50 on ]V, ~2.7!

j050 on ]V. ~2.8!

Then, by Lemma 4.4 in Ref. 10,j0 satisfies

2divS 1

a
¹j0D1j0521 in V, ~2.9!

j050 on ]V. ~2.10!

Denote

J052
1

2
hex

2 E
V
UdivS 1

a
¹j0D U2

1
1

a
u¹j0u2, ~2.11!

and decomposej as in Ref. 10 such that

j5hexj01z. ~2.12!

Thenz50 and div((1/a) ¹z)50 on ]V. From now on, we shall assume that

hex<Cu ln «u. ~2.13!

Lemma 2.1: Let(u,A) be a solution of(G.L.) with gauge condition~2.1!. Then the following
holds:

i¹uiL`(V)<
C

«
, iuiL`(V)<1, ~2.14!

i¹jiL`(V)<Chex . ~2.15!

Moreover, if(u,A) is a minimizer of the energy J, then

J~u,A!<J01
1

2 EV
u¹Aau2<Chex

2 , ~2.16!

i¹uiL2(V)<Chex . ~2.17!

Proof: Equations~2.14!–~2.16! have been proven in Ref. 10. Now, we shall show Eq.~2.17!.
By using Eq.~2.16!, we have

E
V

u¹Auu2<Chex
2 .

Noting

E
V

u¹Auu25E
V

u¹uu22
1

a
~ iu,jx2

ux1
2jx1

ux2
!1uuu2uAu2<Chex

2 ,

we see that
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E
V

u¹uu2<Chex
2 1Ci¹jiL`(V)•i¹uiL2(V)<Chex

2 1Ci¹jiL`(V)
2

1
1

2 EV
u¹uu2. ~2.18!

Then, by using Eq.~2.15! in Eq. ~2.18!, we get

E
V

u¹uu2<Chex
2 , ~2.19!

which is the relation~2.17!. h

Lemma 2.2: Let uPH1(V,C) be such thati¹uiL`(V)< C/«, and Fa(u,V)<Chex
2 . Then, for

any a.2, there is an«0.0 such that; «,«0 there exists a finite family of disjoint ball
$Bi% i PI5$B(ai ,r i)% i PI such that

$x:uu~x!u, 3
4 b0%,ø i PIBi , ~2.20!

Fa~u,Bi !>pa~ai !udi u~ u ln «u2O~ u lnu ln «uu!!, ~2.21!

where di5deg(u,]Bi) if B̄ i,V, and di50 otherwise. Moreover

r i<Cu ln «u2a, ~2.22!

Card I<Chex
2 . ~2.23!

Proof: The proof of this Lemma is postponed to Sec. V. h

III. SPLITTING OF THE ENERGY J „u ,A …

DenoteṼ5V\ø i PIBi , where$Bi% i PI is the family of balls defined in Lemma 2.2 witha
.5, then we have the following Lemmas.

Lemma 3.1: We have

1

2 EV
u¹Auu25

1

2 EV
U¹u2

i

a
¹'z uU2

1
1

2
hex

2 E
V

1

a
u¹j0u2

1hexE
V

1

a
¹j0¹z12phex(

i PI
dij0~ai !1o~1!. ~3.1!

Proof: We divide the proof into three steps.
Step 1: In this step, we show that

u¹u2 iAuu25U¹u2
i

a
hex¹

'j0u2
i

a
¹'z uU2

5U¹u2
i

a
¹'z uU2

1
1

a2 hex
2 uuu2u¹j0u212S ¹u2

i

a
¹'zu,2

i

a
hex¹

'j0uD
5U¹u2

i

a
¹'zuU2

1
1

a2 hex
2 uuu2u¹j0u212hexS ¹u, 2

i

a
¹'j0uD

1
2

a2 hexuuu2¹j0¹z. ~3.2!

Step 2: Ifa.5, we claim that
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E
V
S ¹u,2

i

a
hex¹

'j0uD52phex(
i PI

dij0~ai !1o~1!. ~3.3!

In order to prove Eq.~3.3!, by using Eqs.~2.13!, ~2.17!, ~2.22!, and~2.23!, we first have

U E
øBi

S ¹u,2
i

a
hex¹

'j0uDU<C~CardI !hexi¹uiL2(V)max
i PI

r i<Cu ln «u42a. ~3.4!

On the other hand,

E
Ṽ
S ¹u,2

i

a
hex¹

'j0uD5hexE
Ṽ

1

a
~ iu,~j0!x2

ux1
2~j0!x1

ux2
!. ~3.5!

By the change of variablesv5 u/uuu , h5uuu and integrating by parts of the integral term on t
right-hand side of Eq.~3.5!, we obtain

E
Ṽ

1

a
~ iu,~j0!x2

ux1
2~j0!x1

ux2
!5E

Ṽ

1

a
h2~ iv,dv`dj0!1E

Ṽ

1

a
h~~j0!x2

hx1
2~j0!x1

hx2
!~ iv,v !

5E
Ṽ

~ iv,~j0!x2
vx1

2~j0!x1
vx2

!1E
Ṽ

1

a
~h22a!~ iv,~j0!x2

vx1

2~j0!x1
vx2

!5C1D. ~3.6!

But since

C5E
Ṽ

~ iv,~j0!x2
vx1

2~j0!x1
vx2

!5E
Ṽ

~ iv,dv`dj0!5(
i PI

E
]Bi

j0S iv,
]v
]t D , ~3.7!

D<CS E
V

~a2h2!2D 1/2

i¹viL2(Ṽ)i¹j0iL`5o~ u ln «u21!, ~3.8!

we can rewrite Eq.~3.6! as

E
Ṽ

1

a
~ iu,~j0!x2

ux1
2~j0!x1

ux2
!5(

i PI
E

]Bi

j0S iv,
]v
]t D1o~ u ln «u21!. ~3.9!

Now, denoteJ5$ i PI :B̄i,V% and letUi5$xPBi :uuu< 1
2b0% ; i PJ. Then, by notingUi does

not intersect]Bi and by using Stokes’ theorem, we get

U E
]Bi

~j02j0~ai !!S iv,
]v
]t D2E

]Ui

~j02j0~ai !!S iv,
]v
]t DU

5U E
Bi\Ui

dj0`~ iv,dv !U<Ci¹j0iL`r i S E
Bi \Ui

u¹vu2D 1/2

<Cu ln «u2a. ~3.10!

Hence,

hexE
]Bi

~j02j0~ai !!~ iv,dv !5hexE
]Ui

~j02j0~ai !!~ iv,dv !1o~ u ln «u22!. ~3.11!

On the other hand, in the case thata>5, we have
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hexU E
]Ui

~j02j0~ai !!~ iv,dv !U5hexU E
]Ui

~j02j0~ai !!
~ iu,du!

uuu2 U
5

4

b0
2 U E

]Ui

~j02j0~ai !!~ iu,du!U
5

4

b0
2 U E

Ui

dj0`~ iu,du!1~j02j0~ai !!~ idu,du!U
<Chexr i i¹uiL21Chexr i i¹j0iL`E

V
u¹uu2

<Cu ln «u32a<o~ u ln «u22!. ~3.12!

Thus, from Eqs.~3.10!–~3.12!, we get

hexE
]Bi

j0S iv,
]v
]t D52phexdij0~ai !1o~ u ln «u22!. ~3.13!

Now, ; i PI \J, letting Ui5Biù$uuu< 1
2b0% and noting thatj050 on ]V, we have

hexE
]BiùV

j0~ iv,dv !5hexE
]UiùV

j0~ iv,dv !1o~ u ln «u22!

5
4

b0
2 U E

UiùV
dj0`~ iu,du!1j0~ idu,du!U1o~ u ln «u22!5o~ u ln «u22!.

~3.14!

Therefore, combining Eqs.~3.4!, ~3.5!, ~3.9!, ~3.13!, and ~3.14! and noting CardI<Chex
2 , the

claim ~3.3! is proved.
Step 3: From Eqs.~3.2! and ~3.3!, we obtain

1

2 EV
u¹Auu25

1

2 EV
U¹u2

i

a
¹'z uU2

1
1

2
hex

2 E
V

1

a2 uuu2u¹j0u21hexE
V

1

a2 uuu2¹j0¹z

12phex(
i PI

dij0~ai !1o~1!. ~3.15!

But we know that

1

«2 E
V

~a~x!2uuu2!2<Chex
2 ,

and thus we get

hex
2 E

V

1

a2 ua2uuu2uu¹j0u2<Chex
2 S E

V
~a2uuu2!2D 1/2

<C«hex
3 <o~1!. ~3.16!

With the same manipulations, we also have

hexU E
V

~a2uuu2!¹j0¹zU<C«hex
3 <o~1!. ~3.17!
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Hence, combining Eqs.~3.15! with ~3.16! and ~3.17!, we obtain Eqs.~3.1! and thus the proof of
Lemma 3.1 is completed. h

Lemma 3.2: We have

1

2 EV
~ uh2hexu22hex

2 !1
1

2
hex

2 E
V

1

a
u¹j0u21hexE

V

1

a
¹j0¹z5J01E

V
UdivS 1

a
¹z D U2

.

~3.18!

Proof: First, consider

E
V

uh2hexu22hex
2 5E

V
h222hhex

5E
V
UhexdivS 1

a
¹j0D1divS 1

a
¹z D U2

22hexS hexdivS 1

a
¹j0D1divS 1

a
¹z D D

5hex
2 E

V
UdivS 1

a
¹j0D U2

1E
V
UdivS 1

a
¹z D U2

22hex
2 E

V
divS 1

a
¹j0D

12hexE
V

divS 1

a
¹j0DdivS 1

a
¹z D22hexE

V
divS 1

a
¹z D . ~3.19!

But we know that

E
V

1

a
u¹j0u21UdivS 1

a
¹j0D U2

5E
V

divS 1

a
¹j0D

and

E
V

1

a
¹z¹j01divS 1

a
¹z DdivS 1

a
¹j0D5E

V
S div

1

a
¹z D .

Therefore

1

2 EV
~ uh2hexu22hex

2 !1
1

2
hex

2 E
V

1

a
u¹j0u21hexE

V

1

a
¹j0¹z

52
1

2
hex

2 E
V

1

a
u¹j0u21UdivS 1

a
¹j0D U2

1UdivS 1

a
¹z D U2

5J01E
V
UdivS 1

a
¹z D U2

.

Thus the proof of Lemma 3.2 is completed. h

Lemma 3.3: We have

1

2 EV
U¹u2

i

a
u¹'zU2

1
1

2«2 ~a2uuu2!2>(
i PI

Fa~u,Bi !1o~1!. ~3.20!

Proof: We know the fact that

1

2 EV
U¹u2

i

a
u¹'zU2

>E
ø i PIBi

U¹u2
i

a
u¹'zU2

5E
ø i PIBi

u¹uu21
1

a2 uu¹'zu22
2

a
~¹u, iu¹'z!.
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But whena.5,

U E
ø i PIBi

S ¹u,
i

a
u¹'z DU<C~CardI !i¹ziL`i¹uiL2max

i PI
r i<Cu ln «u42a5o~1!.

Hence,

1

2 EV
U¹u2

i

a
u¹'zU2

>
1

2 (
i PI

E
Bi

u¹uu21o~1!.

Now, if we add the term 1/«2 (a2uuu2)2 to both sides of the above inequality, we have

1

2 EV
U¹u2

i

a
u¹'zU2

1
1

«2 ~a2uuu2!2>(
i PI

Fa~u,Bi !.

This completes the proof of Lemma 3.3. h

IV. PROOF OF THEOREM 1.1

Let (u« ,A«) be the minimizing solution, then it follows from Lemmas 3.1 and 3.2 that

J~u« ,A«!5
1

2 EV
U¹u«2

i

a
u«¹'zU2

1
1

2«2 ~a2uu«u2!21E
V
UdivS 1

a
¹z D U2

1J0

12phex(
i PI

dij0~ai !1o~1! ~4.1!

Then, by using Lemma 3.3 and Eq.~2.21!, we get from Eq.~4.1!

J~u« ,A«!>J012phex(
i PI

dij0~ai !1p (
i PI

a~ai !udi u~ u ln «u2O~ u ln u ln «i !!. ~4.2!

On the other hand, we have by minimality

J~u« ,A«!<JSAa,
1

a
¹'j0D5J01

1

2 EV
u¹Aau2. ~4.3!

Thus, combining Eqs.~4.2! and ~4.3! and notingj0,0, we obtain

p(
i PI

a~ai !udi u~ u ln «u2O~ u lnu ln «uu!!<2phex(
i PI

udi uuj0~ai !u

<2phex(
i PI

udi ua~ai !Uj0~ai !

a~ai !
U

<2phexS (
i PI

udi ua~ai ! DmaxUj0~ai !

a~ai !
U.

Now, if ( i PI udi uÞ0, then( i PI udi ua(ai)Þ0 and thus

hex>
1

2 maxuj0/au ~ u ln «u2O~ u lnu ln «i !!5Hc1
8 .

But sinceHc1
5 1/2 maxu j0 /a u uln «u1O(1), we see that
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Hc1
8 5Hc1

2O~ u lnu ln «uu!. ~4.4!

Moreover, we deduce thatdi50, ; i PI if hex,Hc1
8 and hence we can reduce Eq.~4.1! to

J~u« ,A«!5
1

2 EV
U¹u«2

i

a
u«¹'zU2

1
1

2«2 ~a2uu«u2!21E
V
UdivS 1

a
¹z D U2

1J01o~1!. ~4.5!

Here, noting that

E
V
U¹u«2

i

a
u«¹'zU2

5E
V

u¹u«u21
1

a2 uu«u2u¹'zu21
1

a
~ iu« ,zx2

~u«!x1
2zx1

~u«!x2
!, ~4.6!

and with the same manipulations as in Step 2 of the Lemma 3.1, the third term on the righ
side of Eq.~4.6! becomes

E
V

1

a
~ iu« ,zx2

~u«!x1
2zx1

~u«!x2
!52p (

i PI
diz~ai !1o~1!5o~1!, ~4.7!

we obtain from Eq.~4.5!

J~u« ,A«!5
1

2 EV
u¹u«u21

1

2«2 ~a2uu«u2!21
1

a
uu«u2u¹'zu21E

V
UdivS 1

a
¹z D U2

1J01o~1!

>Fa~u« ,V!1J01o~1!. ~4.8!

On the other hand, we also have by minimality that

J~u« ,A«!<J01
1

2 EV
u¹Aau2,

and thus

Fa~u« ,V!<
1

2 EV
u¹Aau21o~1!. ~4.9!

Now, we claim that

1

2 EV
u¹u«u2→ 1

2 EV
u¹Aau2 as «→0. ~4.10!

In fact, for any given sequence«n→0 asn→`, we see by Eq.~4.9! that there exists a subse
quence~still denote$«n%n51

` ! «n→0 asn→`, andu0PH1(V,C) such thatu«n
→u0 weakly in

H1(V,C). Thus, we have from Eq.~4.9! that

E
V

~a2uu«n
u2!2<C«n ,

and henceuu0u5Aa a.e. inV. On the one hand, we have

E
V

u¹u0u2< lim inf
n→`

E
V

u¹u«n
u2<E

V
u¹Aau2,

and on the other hand, we get by direct calculation,
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E
V

u¹u0u2>E
V

u¹uu0i25E
V

u¹Aau2,

so that the following equality holds:

E
V

u¹u0u25E
V

u¹Aau2. ~4.11!

Combining Eqs.~4.9! and ~4.11!, we have

E
V

u¹u«n
u2<E

V
u¹u0u21o~1!.

Hence, asn→`,

E
V

u¹u«n
2¹u0u25E

V
u¹u«n

u21u¹u0u22¹ū«n
¹u02¹u«n

¹ū0

<2E
V

u¹u0u22¹ū«n
¹u02¹u«n

¹ū01o~1!5o~1!. ~4.12!

Therefore,u«n
→u0 strongly inH1(V,C) and thus

E
V

u¹u«n
u2→E

V
u¹Aau2, ~4.13!

which is the proof of our claim~4.10!. Combining now Eqs.~4.9! with ~4.10!, we also have

1

2«2 E
V

~a2uu«u2!2→0 as «→0, ~4.14!

from which we conclude thatuu«(x)u> 3
4b0 in V. In fact, asu¹u«u< C/«, if uu«(x0)u, 3

4b0 , then
there exist constantsl, m.0 such that; «.0,

1

«2 E
B(x0 ,l«)

~a2uu«u2!2>m.0, ~4.15!

which contradicts Eq.~4.14!. Hence,u is the vortexless solution. Sinceu is the vortexless solu-
tion, we may re-use the computation of Ref. 10 to find that

J~u,A!5J01Fa~u,V!1Ṽ~z!1o~1!,

where Ṽ(z)>0. HenceFa(u,V)< 1
2*Vu¹Aau21o(1), and by thedefinition of DM

a , we have
(u,A)PDM

a . This proves that forhex,Hc1
8 , a globally minimizing solution (u« ,A«) for the

functionalJ(u,A) coincides with the solution found in~i! of Theorem A. Hence, the Theorem 1
is proved.

V. PROOF OF LEMMA 2.2

In this section, the methods in Refs. 13 and 5 are used to prove Lemma 2.2. We also ne
Lemmas 5.3, 5.4, and 5.5. In order to prove those Lemmas, we need the following two lem8

Lemma 5.1: Let u:St→C, where St is a circle of radius t inR2 such that t.«. Let m
5min$minSt

uuu,1%. If mÞ0, d5deg(u,St). If m50, let d50. Then
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E
St

1

2
u¹uu21

a~x!

4«2 ~12uuu2!2>m2
pd2

t
1

C1~12m!C1

«
, ~5.1!

where C1 is an absolute constant.
Lemma 5.2: If u:V→C, there existr(V) and C(V).0 such that; xPV, ;«,r ,r, letting

m5minSrùVuuu,

E
Sr

1

2
u¹uu21

1

4«2 ~12uuu2!2>
~12m!C

C«
. ~5.2!

Lemma 5.3: Let u:V→C be such thatu¹uu,C/«. Then there exist disjoint balls B1 , ¯ ,Bk

with radii r i such that; 1< i<k,

~ i ! r i.«,

~ i i ! H uuu,
3b0

4 J ,ø iBi andBiùH uuu,
3b0

4 J ÞB,

~ i i i ! Fa~u,BiùV!>
C2r i

«
, ~5.3!

where C2 is a constant.
Proof: We divide this proof into four steps.
Step 1: LetS1 , ¯ ,Sk be the connected components of$uuu,4b0/5% that intersect$uuu

,3b0/4% and x1PS1 , ¯ ,xkPSk be points such thatuu(xi)u,3b0/4. For every i , define r i

5sup$r .0:]B(xi ,r )ù$uuu,4b0/5%ÞB%, then

Fa~u,B~xi ,r i !ùV!>
C2r i

«
. ~5.4!

Indeed, ifr i<2«, sinceu¹uu< C/«, we have

Fa~u,B~xi ,r i !ùV!>
1

«2 E
B(xi ,r i )ùV

~a~x!2uuu2!2>C>
C

2

r i

«
,

and the conclusion~5.4! is true. If r i.2«, by the definition of r i , we have that; t
P@«,t i #, min]B(xi ,t)uuu,4b0/5. Now, letv5Au/Aa, then by Lemma 5.2,; tP@«,r i #, we have

E
]B(xi ,t)ùV

1

2
u¹vu21

1

4«2 ~12uvu2!2>
C

«
.

Thus, if «<«0 as long as«0 is small enough, we get from the above equation that

Fa~u,]B~xi ,t !ùV!5E
Vù]B(xi ,t)

1

2
uAa¹v1v¹Aau21

a2

4«2 ~12uvu2!2

>
1

2 EVù]B(xi ,t)
aF u¹vu21

a

2«2 ~12uvu2!2G2Cuvuu¹vu

>
1

2
b0E

Vù]B(xi ,t)
u¹vu21

b0

2«2 ~12uvu2!22C2
b0

4 E
Vù]B(xi ,t)

u¹vu2
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>
1

4
b0E

Vù]B(xi ,t)
u¹vu21

b0

2«2 ~12uvu2!22C>
C

«
2C>

C

«

Hence

Fa~u,VùB~xi ,r i !!>E
«

r i
Fa~u,]B~xi ,t !ùV!d t>

C

«
~r i2«!>

Cri

«
.

The conclusion~5.4! is true in this case.
Step 2: We writeBi for B(xi ,r i) for the simplicity of our notation. Then, we claim that; i

Þ j , either Bj,Bi ~in this case, we dropBj ) or xj¹Bi . In fact, assume thatxjPBi . By the
definition of ballsBi , ]Biùø lSl5B, thus

Sj5~SjùB̄i
C!ø~SlùBi !.

Since xjPBi , SjùBiÞB, using the connectedness ofSj , Sj,Bi , and we can dropBj . The
claim is proved.

Step 3: Dropping the unnecessary balls, we reduce to ballsBi such thatø iSi,økBk and
; iÞ j , xj¹Bi . It follows from the Besicovitch covering Lemma, anyxPøBi belongs to at most
N of the balls, whereN is an absolute constant.

Step 4: The rest of the proof of Lemma 5.3 is the same argument as the Lemma III.4 in
8. The proof of Lemma 5.3 is completed. h

Lemma 5.4:; a.2, u ln «u2a.r.s.«, if Br(b) and Bs(b) are two concentric balls with

respective radii r and s, and if u:Br \B̄s→C is such that Fa(u,Br \B̄s)<Cu ln «u2, uuu. 3
4b0 , d

5deg(u,]Br), then

Fa~u,Br \B̄s!>a~b!uduS L«S r

udu D2L«S s

udu D D1o~1!, ~5.5!

whereL« is a function that satisfies the following properties:
( i ) L«(s)/s is decreasing onR1,
( i i ) supsPR1 L«(s)/s< C2 /«,
( i i i ) there exist«0 ,t0.0 such that if«,«0 and «,t,t0 then uL«(t)2p ln t/« u<C.
Proof: Let v:St→C andm5min$minst

uuu,1% then by Lemma 5.1, we have

E
St

1

2
u¹vu21

a~x!

4«2
~12uvu2!2>m2

pd2

t
1

C1~12m!C1

«

>~mC8!
pudu

t
1

C1~12m!C8

«

> min
mP[0,1]

H ~mC8!
pudu

t
1

C1~12m!C8

«
J 5

ãb̃

~ ãq1b̃q!1/q
,

where C85max(2,C1)>2, ã5p udu/t and b̃5 C1 /«. Denote f «(s)5 ãb̃/(ãq1b̃q)1/q , ã(s)
5 p/s , b̃(s)5 C1 /« , l«(s)5min$f«(s), C1 /« % andL«(t)5*0

t l«(s)ds, respectively. HereC1 is
defined in Lemma 5.1. ThenL« satisfies properties~i!, ~ii ! and ~iii ! of this lemma.

Now we prove~5.5!. Let a.2, u ln «u2a.r.s.« andu5Aav, then
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Fa~u,Br !2Fa~u,Bs!>E
r

s

Fa~u,St!dt5
1

2 Er

sE
St

F u¹uu21
1

2«2 ~a2uuu2!2Gdv t dt

>
1

2 Er

sE
St

aF u¹vu21
1

2«2 ~12uvu2!2G2Cu¹vu.

Noting that

E
r

sE
St

u¹vu<uBr\BsuS E
Br\Bs

u¹vu2D 1/2

<Culn «u22au ln «u5o~1!,

we have

Fa~u,Br !2Fa~u,Bs!>
1

2
a~b!E

r

sE
St

u¹vu21
a

2«2 ~12uvu2!22CE
r

sE
St

tF u¹vu21
a

2«2 ~12uvu2!2G
1o~1!>

1

2
a~b!E

r

sE
St

u¹vu21
a

2«2 ~12uvu2!22Cu ln «u2a121o~1!

>
1

2
a~b!E

r

sE
St

u¹vu21
a

2«2 ~12uvu2!21o~1!.

Hence,

Fa~u,Br !2Fa~u,Bs!>
1

2
a~b!E

r

sE
St

u¹vu21
a

2«2 ~12uvu2!21o~1!

>a~b!E
r

s

l«S t

udu Ddt>a~b! uduS L«S r

udu D2L«S s

udu D D1o~1!,

and the proof of Lemma 5.4 is completed. h

Lemma 5.5: Let u:V→C be such thatu¹uu< C/«; and $Bi% i be a family of balls of radii ri
satisfying the results of Lemma 5.3. Define

di5H deg~u,]Bi ! if B̄i,V

0 otherwise
. ~5.6!

Denote s05min$i:diÞ0%ri /udiu. Then, for everyu ln «u3>s>s0, there exists a family B(s) of disjoint

balls B1(s), ¯ ,Bk(s)(s) of radii r i(s) such that
( i ) the family of balls is monotone, i.e., if s,t thenø iBi(s),ø iBi(t),
( i i ) for every i, Fa(u,Bi(s))>a(ai)r i(s) (L«(s)/s), where L« is defined in Lemma 5.4,

Bi(s)5Bi(ai ,r i(s)),
( i i i ) if B̄ i(s),V and di(s)5deg(u,]Bi(s)), then ri(s)>sudi(s)u.
Proof: This proof is exactly the same as Proposition III.1 in Ref. 8. h

Proof of Lemma 2.2:In order to apply Lemma 5.5 we first need to checks0 . From the
assertion ~iii ! of Lemma 5.3, we haveC1r i,«Fa(u,BiùV)<C«u ln «u2, note that s0

5min$i:diÞ0% ri /udiu. So,s0<C«u ln «u2. We can apply Lemma 5.5 for alls>C«u ln «u2. We choose

s15
1

u ln «ua11 . ~5.7!

It follows from Lemma 5.5 that final family of balls B(s1) such that ifB̄i(s1),V for every i ,
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Fa~u,Bi~s1!!>a~ai !
L«~s1!

s1
r i~si ! ~5.8!

with r i(s1)>s1udi(s1)u. Therefore Fa(u,Bi(s1))>a(ai)L«(s1)udi(s1)u, where Bi(s1)
5Bi(ai ,r i(s1)), and by Lemma 5.4

Fa~u,Bi~s1!!>a~ai !udi~s1!uS p ln
s1

«
2CD>pa~ai !udi~s1!u~ u ln «u2O~ u lnu ln «uu!,

thus Eq.~2.21! is proved. By Eq.~5.8!, we have

r i~s1!
L«~s1!

s1
<Cu ln «u2.

From Lemma 5.4, we know thatL«(s).p ln s/«, note that Eq.~5.5!,

L«~s1!>pu ln «u2O~ u ln u ln «uu!.

Hence

r i~s1!<C
s1

L«~s1!
u ln «u2<

C

u ln «ua11 •
u ln «u2

u ln «u
<

C

u ln «ua

which is conclusion ~2.22!. From Lemma 5.3, Fa(u,BiùV)>C2r i /« with r i.«, so,
Fa(u,BiùV)>C2 . SinceFa(u,V)<Cu ln «u2, we see that the number of balls there has to
bounded byCu ln «u2. Thus, we have shown~2.23! and the proof of Lemma 2.2 is completed.h
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A set of data supposed to give possible axioms for spacetimes with a sufficient
number of isometries in spectral geometry is given. These data are shown to be
sufficient to obtain 111 dimensional de Sitter spacetime. The data rely at the
moment somewhat on the guidance given by a required symmetry, in part to allow
explicit calculations in a specific model. The framework applies also to the non-
commutative case. Finite spectral triples are discussed as an example. ©2002
American Institute of Physics.@DOI: 10.1063/1.1420744#

I. INTRODUCTION

Spacetime is the fairy tale of a classical manifold. It is irreconcilable with quantum effec
gravity and most likely, in a strict sense, it does not exist. But to dismiss a mythical being tha
inspired generations just because it does not really exist is foolish. Rather it should be unde
together with the story tellers through whom and in whom the being exists.

The story tellers of spacetime are the physical fields. It is the interaction with fields tha
one believe that there was a spacetime in which particles of a field have propagated.

Here, the fairy tale of classical spacetime will be uncritically retold again: no quantum ef
will be considered and the result will be an ordinary manifold of Lorentzian signature. And y
is not at all the same old story: the story tellers, the fields are put into the place they deser
the center of the matter.

The right framework to allow the fields to play their distinguished role is noncommuta
geometry, in particular the notion of a spectral triple.1–3A spectral triple (A,H,D,J,g) consists of
a pre-C* -algebraA represented~faithfully! on a Hilbert spaceH, an unbounded self-adjoin
operatorD on H, an antiunitary operatorJ and of a grading operatorg on H. These structures
satisfy a set of seven conditions given in Ref. 3.

~1! Classical dimension.The inverseD21 of D is an infinitesimal of order 1/n. Here,n is the
dimension of the space.

~2! First order condition. For anya in the algebraA andb in the opposite algebra~represented
with the help ofJ!,

@@D,a#,bop#50. ~1!

~3! Regularity. The elementsa of the algebraA as well as their commutators@D,a# with D are
smooth vectors of the derivation@ uDu,•#.

~4! Orientability. There exists the imageg of a Hochschild cycle in degreen such that forn even
g5g* , g251, gD52Dg, ~2!

and forn odd
g51. ~3!

~5! Finiteness.The subspace of smooth Hilbert space vectorsH` is a finite projective module
over A with a local Hermitean structure.

~6! Poincaré duality. The intersection formK •3K •→Z on theK-theoryK • is invertible.
8180022-2488/2002/43(2)/818/29/$19.00 © 2002 American Institute of Physics
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~7! Reality. J satisfies

J25~21!@(n21)n(n11)(n12)#/8, JD5~21!@n(n11)(n12)#/12 DJ, ~4!

and forn even

Jg5~21!n/2gJ. ~5!

If the algebraA is commutative then in a rather deep sense the spectral triple is more o
the same as a spin manifoldM with positive definite metric3 that can be recovered~for a proof see
Refs. 4 and 5! in the following way: the algebraA is the algebra of functions on the spin manifol
H is the Hilbert space of square-integrable sections of the spinor bundle overM , D is the Dirac
operator,C is the charge conjugation, andg is the volume element. All spin manifolds wit
positive definite metric can be obtained in this way. A generalization covering the orien
Riemannian case without a spin structure was recently given by Lord.6

The possibility of choosing a noncommutative algebraA even allows to go beyond ordinar
manifolds.

However, this description is not directly applicable to spin manifolds with Lorentzian si
ture. One problem seems to be that in this case the canonical inner product on spinor field
positive definite.

A way to deal with this is to foliate spacetime with spacelike leaves and to describ
Euclidean geometry of the leaves as above. Under the assumption that the spinor fields sa
Dirac equation, spinor fields on different leaves belonging to the same solution can be iden7

Then the algebrasA(t) for different leaves are represented on the same Hilbert space and
causal relationships may be tested by examination of their commutators. This can be explo
obtain considerable information on the geometry and render further structures typical for H
tonian approaches, e.g., the lapse and the shift superfluous.8

The Hilbert spaceH has in this picture a clear physical interpretation as the phase space
spinor field. An interpretation of the algebrasA(t) was suggested in Ref. 9 and will be scrutiniz
in future work.

However, previous results did not show how to obtain meaningful spectral information
what axioms to start with in order to get interesting spacetime geometries. As a first step
direction, the definition of a spectral quadruple, a set of data that aspires to take the place
axioms is given. The spectral quadruple is called so because, compared to the spectral tripl
structure~the time vector! is added. The spectral quadruple is to be understood as a wo
hypothesis rather than as a fixed concept. Nevertheless, in specific examples, the data
spectral quadruple are strongly suggested and turn out to be sufficient to reconstruct space
particular, 111-dimensional de Sitter space is worked out in great detail, based on the reali
that postulated symmetries allow to completely carry out explicit calculations. Such an und
ing is not easy even in the Riemannian case10 where a set of conditions as reviewed above
available. The example of de Sitter space provides at the same time a model against which
of axioms may be tested.

This paper is structured as follows: Practical calculations to extract the spacetime geom
a globally hyperbolic spin manifold out of commutators11 and the generators of evolution~Hamil-
tonians! are reviewed in Sec. II. These motivate the definition of a spectral quadruple in Se
This definition is to provide definiteness rather than definitiveness and is to be understoo
working hypothesis. In Sec. IV, the representation theory of the relevant symmetry group, S2(R)
is reviewed. The spacetime of the postulated spectral quadruple is calculated in Sec. V. A d
spectral quadruple is discussed as a further example in Sec. VI. The Conclusion cont
discussion of the obtained results and of possibilities for further investigations. A collectio
calculations and formulas for 111 de Sitter spacetime, that might be useful for other purpo
also, is contained in the Appendix.
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II. THE RECONSTRUCTION OF SPACETIME FROM COMMUTATORS

In this section, a globally hyperbolicn-dimensional spacetimeM with a given foliationS t ,
tPR by spacelike Cauchy hypersurfaces is preassumed. This is sufficient to define a familyAt of
commutative algebras, the algebras of smooth functions on the hypersurfacesS t ,

At5C`~S t!, ~6!

and to consider their action on the classical phase space~the space of solutions! H of a Dirac
spinor field satisfying the Dirac equation

~D” 2m!c50, for cPH. ~7!

This action is just the pointwise multiplication of the initial data of the spinor field by functions
the corresponding Cauchy space slice,

~atc!~x!5at~x!c~x! for atPAt , cPH, and xPS t . ~8!

It is well defined, since a solution is uniquely given by its initial values on any Cauchy hype
face.

While the algebrasAt are themselves commutative, they do not commute with each othe
proceed now, following Ref. 11, to express this noncommutativity in terms of commutators
then show that the knowledge of the calculated commutators is sufficient to recover the
sumed spacetime manifold including its metric structure and spin structure.

The commutators of interest will be those of functions taken at different times and of
tions with the~generically time-dependent! HamiltonianH of the family At of algebras. In the
calculations, we will assume to be given the standard data of the Hamiltonian descripti
gravity, the ADM ~Arnowitt–Deser–Misner! formalism.12 A time flow identifying the Cauchy
surfaces in the family and the metric tensorgi j on the hypersurfaces describe the leaves. A
needed is a lapse functionN describing the infinitesimal distance between hypersurfaces and
shift functionNi expressing, how much the identification of neighboring hypersurfaces~the time
vector field]/]t! is shifted from the normal directione' along the spatial directionsei ~see Fig.
1!,

]

]t
5Ne'1Niei . ~9!

In addition, the Dirac generatorse”' , e” i corresponding to the vectorse' , ei and the canonica
spin connectionv will appear in the calculations.~Here, the common slash notation is used. T
natural insertiongm of covectorsam into the Clifford algebra generated by covectors is ju
indicated by a slash,a”ªgmam .!

With this, the Hamiltonian of the spinor field can be written as

FIG. 1. Then11 splitting of spacetime in the ADM formalism. The time vector]/]t giving the evolution from a Cauchy
hypersurface at timet0 to the infinitesimally later Cauchy hypersurface at timet1 can be decomposed into its partNiei

parallel to the hypersurfaces and into its orthogonal partNe' . Hereei , e' are unit vectors adapted to the hypersurfac
andNi , N are the shift and the lapse.
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iH 52N~v'
S1e”'e” ig

i j D j2me”'!1Ni] i . ~10!

It is obtained byn11 splitting of the Dirac equation~7!

S 2g'S 1

N
Dt2

Ni

N
Di D1g ig

i j D j2mDc50, ~11!

multiplying from the right bye”' and then extracting the time derivative term. The form~10! is
then obtained using the splitting of the spin connection form in the time direction,

v t
S5Nv'

S1Niv i
S . ~12!

The commutator of the Hamiltonian with a functionf 5 f (t0) belonging to a particular algebr
At0

is easily computed,

@ f ,iH #5Ne”'e” ig
i j ~] j f !2Ni] i f . ~13!

The commutator of two functionsgPS t0
, f PS t1

is a more subtle issue. A not so sho
calculation, taking into account the possible time dependence of the Hamiltonian, gives th
lowing expansion in timet12t0 :

@ f ~ t1!,g~ t0!#5~ t12t0!00 ~14!

1~ t12t0!10 ~15!

2~ t12t0!2~N2gi j gkl~] i f !@e” j ,e” k#] lg! ~16!

1~ t12t0!34e”'mN3gi j ~] i f !~] jg!1S terms vanishing
in 111 dimensionsD ~17!

1O~~ t12t0!4!. ~18!

Note 1.All functions on the right-hand side are taken at the timet0 . It is understood that
f (t0)PAt0

is the element corresponding tof (t1)PAt1
under the identification ofAt0

, At1
induced

from the identification ofS t0
, S t1

.
The formulas~10!–~17! contain a wealth of information. They are interpreted in the follow

remarks.
Remark 1.Commutativity. The vanishing of the zeroth order~14! just expresses the commu

tativity of the algebra of functions. This is a particularity typical of classical geometry and i
course, not to be expected to hold in generalizations to noncommutative geometry.

Remark 2.First order condition. The vanishing of the first order~15! can be traced back to th
fact that the spinor field obeys a first order differential equation. It can be restated in the follo
formula valid for any Hamiltonian originating from an arbitrary choice of slicing and time:

@@ f ~ t0!,iH #,g~ t0!#50. ~19!

Remark 3.Conformal structure. The second order~16! provides the generators@e” i ,e” k# of
spatial orthonormal rotations, also called Coriolis fields. Thus, while it does not provide a l
scale, it allows to compare ratios of lengths in different spatial directions. This means th
second order fixes the conformal structure. This term is absent in 111 dimensions as there is n
conformal information to talk about.

Remark 4.Time vector and scale. In 111 dimensions, the third order provides the time vec
e”' . This is uniquely extractable by requiring that it be normalized,
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e”'
2 521. ~20!

Moreover, the term sets a scale for the metric, the inverse mass 1/m of the Dirac field. This scale
could not be extracted, e.g., from the spectrum of the Hamiltonian, since an arbitrary resca
time by a constant factor will give a rescaling of the Hamiltonian. In this sense the Hamilto
alone is not sufficient to set a scale.

However, in the general case ofn11 dimensions, it is more useful to abandon the expans
to orders higher than one in time~for high energy and low energy expansions, see Ref. 13! and
ratherpostulatethe existence of a suitable time vectore”' with the correct properties. This allow
to avoid a complicated extraction procedure fore”' andm. The ADM data for spacetime can the
be extracted from

@@ iH ,e”'#, f #→Ngi j e” j , ~21!

tr ~ iHe”'!→Nm, ~22!

tr ~@ iH , f # !→Ni . ~23!

This is the approach taken in the next section.
Remark 5.Gauge and spatial Clifford generators. The use of the commutator~13! is the

following: Given the time vector, it is easy to recognize the commutator’s two terms in
operational way and to extract thus the shiftNi , the spatial Clifford generatorse”' together with
their correspondence with spatial codirections. The lapseN is obtained by checking the prefacto
of the first term against~17!. Thus the commutator~13! expresses the arbitrary choices~gauge
freedom! of the ADM formalism, including the choice of a spinor basis and is in this sen
somewhat supplementary structure.

The following corollary and remark show that in 111 dimensions the idea of reconstructin
spacetime from commutators of the algebrasAt meets complete fulfillment~massive case! as well
as complete failure~massless case!. Both are due to special properties of the dimension.

Corollary 1. In111 dimensions and under the assumption that mÞ0, the geometric structure
of spacetime can be recovered from the knowledge of the commutators~13! and ~15!–~17!.

Remark 6.If m50 in 111 dimensions then the commutator@ f (t1),g(t0)# vanishes at all
times. Any~generalized! eigenspaces of an algebraAt0

can be split into a right-moving eigenvec
tor and a left-moving eigenvector. These form a common eigenbasis for all algebrasA• .

III. THE SPECTRAL QUADRUPLE

In this section, the structures and properties that were found useful in Sec. II to reco
spacetime manifold from spectral data are pronounced to be first principles, whose collec
called a spectral quadruple. At the same time, they are fused with an imposed symmetry,
it is hoped that the general suggestions are still visible. The imposition of symmetry is don
two reasons: First, it provides a computationally manageable example and in direct genera
the possibility of a large set of important analogous examples. Second, the imposed symm
provide automatic smoothness which allows to leave this further difficulty for this work on
side lines.~For a physically motivated principle of smoothness see Ref. 9.!

Given a category~a collection of objects and morphisms between objects that can be
posed, satisfying a certain set of axioms!, a subset of morphisms such that each of its elements
an inverse morphism forms a groupoid.

The following Definition 1 is to be understood as a conceptual step and does not attemp
free of any redundance. Note that, in the notation of the definition, the dependence of the op
e”'5e”'(•), g5g(•) on the symbolically written index • is present but mostly suppressed.
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Definition 1. The spectral quadruple (A• ,H,G,C,g(•),e”'(•)) consists of a collection o
algebras A• represented on the Hilbert spaceH, of a groupoid G and of an antilinear operator C.
In addition, for each of the algebras A• two operators e”' , g are given. These structures satisfy th
following conditions.

~1! Evolution. Any two algebras A0 , A1 of the collection A• are required to be mutually
unitarily equivalent through a (not necessarily unique) unitary U(A0 ,A1) and not mutually com-
mutative, @At1

,At2Þt1
#Þ0. The groupoid G consists of a subset of all possible unitary equ

lences between the algebras in the collection A• . It is assumed that for each algebra A0 in the
collection there exists an evolution, a (not necessarily unique) differentiable patha t :tPR
→Ut(A0 ,At) with a051 such that the generator (derivative) at t50, denoted by iH is compatible
with the further requirements.

~2! Charge conjugation.The antilinear operator C commutes with G and satisfies

C25~21!s(n) ~24!

for the spacetime dimension n and with

s~n!ª 1
8 ~n21!~n22!~n23!~n24!. ~25!

~3! First order condition „dynamics…

@@ f ,iH #,gop#50 for any f ,gPA0 and any generatoriH , ~26!

with gop5Cg* C.
~4! The time vector. For each algebra A0 in the collection A• there exists an operator e”'

called the time vector satisfying

e”'
2 521, ~27!

e”'
* 52e”' , ~28!

and the compatibility conditions in (5) and (6) of this definition.
~5! The volume element.For any At there exists an operatorg such that

g2561, ~29!

$e”' ,g%50 for even spacetime dimension, ~30!

@e”' ,g#50 for odd spacetime dimension, ~31!

and

g5e”' (
f •PAt

f i 0
@D, f i 1

#¯@D, f i n
# for even spacetime dimensionn11, ~32!

g5 (
f •PAt

f i 0
@D, f i 1

#¯@D, f i n
# for odd spacetime dimensionn11, ~33!

and for suitable functions f• where D is given by

D5H g@ iH ,g# for even spacetime dimension,

iH for odd spacetime dimension.
~34!

~6! Geometry of space.For any algebra At of the collection(At ,H,e”'@H,e”'#,g,C) is
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~i! a spectral triple for odd spacetime dimension,
~ii ! a spectral triple for even spacetime dimension, if restricted to each of the two eigens

of e”' .

Remark 7.The right-hand sides of Eqs.~32! and ~33! are to be understood as~images of!
Hochschild cycles. The principal part of the operatorD @compare with~10!# is the same as the
principal part of the spatial Dirac operator but multiplied from the left bye”' . Sincee”'

2 521, this
has no effect on the form of~33! but requires the appearance ofe”' in ~33!, to cancel one
superfluouse”' coming from the commutators. Note that, together with the requirements in pa
6 of the definition, it follows that

Dg5~21!n11gD. ~35!

Remark 8.A minimal version ofG would beG5R.
An interesting model in this respect would be the classical evolution induced from the m

lar automorphism group determined by a quasifree state on the Dirac-quantized phase spH.
This would make contact with the work of Connes and Rovelli.14

However,G may be much larger and it is in this context that the concept of many-fing
time of general relativity comes to its full expression.

For a largeG, the definition does not exclude the possibility that, along with generatorsiH
satisfying the definition, there may be some that may not satisfy the definition. These are
thought of as in some sense singular and are to be avoided~see Remark 11!.

Remark 9.The last requirement in the definition of a spectral quadruple puts things on the
side in order to be sure that reasonable spacetime geometries deserving to be called manifo
be obtained. It is to be noted though thate”'@H,e”'# is in general not the spatial Dirac operato
though it can be used as such for making sure the corresponding spatial section is a ma
since only the principal symbol of the Dirac operator matters and is in this way obtained corr

Remark 10.Spacetime points.Compared with the situation in the preceding section,
definition of the spectral quadruple provides for more general situations, in particular for a m
fingered time. This leads to an additional difficulty: Assume, that the algebras in the collectio
commutative. Then it is fine to take the characters of an algebra as being points of spac
However, some characters of different algebras in the collection describe the same point. In
to compare characters, one has to extend them as functionals on a larger algebra encompa
of the collectionA• . But since the characters are distributions, they cannot be extended
bounded operators onH. It is natural to expect that this algebra should be determined b
smoothness principle common to the whole collectionA• .

Two types of spectral quadruples are of particular interest.
Definition 2. A general spectral quadrupleis a spectral quadruple where G is given by a

smooth unitary equivalences U(A• ,A•).
A symmetric spectral quadrupleis a spectral quadruple distinguished by the following con

tions:

~1! G is a finite dimensional Lie group (and iH is then in the Lie algebra of G).
~2! For any algebra At0, the subgroup K preserving the algebra coincides with a maximal c

pact subgroup of G.
~3! The operators e”' , g commute with the group K,

@k,e”'#50, ~36!

@k,g#50, ~37!

for any kPK.
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Remark 11.Specializing Remark 8 to a symmetric spectral quadruple, the generatoriH for an
algebraA0 is not to be chosen as a compact generator in the Lie algebra ofG preservingA0 as it
may not fulfill the geometry-of-space requirement in Definition 1 of a spectral quadruple.

Following these general consideration, we will choose a particular class of symmetric sp
quadruples which we will call de Sitter spectral quadruples.

The groupG is chosen to be SL2(R).
The set of algebras is generated from one algebra by the action ofG. This algebra in turn is

generated from one unitary generatoru,

u* 5u21. ~38!

The mutual position ofG andu on the representation spaceH is partially determined by the
commutation relation ofu, e”' , andg with a compact generatorT21 of the Lie algebra ofG,

@T21,u#5 iu, ~39!

@T21,e”'#50, ~40!

@T21,g#50. ~41!

The above set of structures is irreducibly represented. This requirement is to avoid d
with multiple copies.

Note 2.The compact generators of a Lie group generate the maximal compact subgrou
Lie group.15 In the case of SL2(R) a compact subalgebra of the Lie algebra is just one-dimensi
and thus spanned by one elementT21. This indicates how to proceed in higher dimensional cas

As is clear from the definitions, the Hilbert spaceH of a de Sitter spectral quadruple is
particular the representation space of a unitary representation ofG5SL2(R). Therefore, in the
next section, the representation theory ofG5SL2(R) will be reviewed.

IV. SL2„R… AND ITS REPRESENTATION THEORY

The group SL2(R) is treated in a number of sources. The present review is based on
15–19.

Definition 3. The group SL2(R) is the Lie group of232-matrices of real numbers with uni
determinant. sl2(R) is the Lie algebra of traceless232-matrices of real numbers.

Remark 12~see Ref. 15!. The Lie group SL2(R) and the Lie algebra sl2(R) have the following
decomposition~Iwasawa decomposition!:

for f,a,b,c,d,nPR.
SL2(R) is a simple Lie group and has thus a nondegenerate Killing metric on its Lie alg

with signature (2,1,1).
SL2(R) is a double cover for SO~1,2!.
The Lie algebra sl2(R) can be given by three generatorsT01, T02, and T21 satisfying the

following commutation relations:

@T01,T21#52T02, @T02,T21#51T01, @T01,T02#52T21. ~42!
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In a complex representation, raising and lowering operators may be defined

T65T017 iT02. ~43!

Together withT21, these operators generate the complexification of sl2(R). Their commutation
relations are

@T21,T6#56 iT6 , ~44!

@T1 ,T2#522iT21. ~45!

In addition, the following holds in unitary representations:

T21* 52T21, ~46!

T01* 52T01, ~47!

T02* 52T02, ~48!

T6* 52T7 . ~49!

Representations.The group SL2(R) is a noncompact group. Its unitary representations
thus bound to be infinite dimensional while there are nonunitary finite dimensional repres
tions, e.g., the defining representation.

Any representation can be decomposed into irreducible representations of the maxima
pact subgroupK which is just the circle groupU1 . The irreducible representations ofU1 are one
dimensional and given bypn :f→einf with nPZ. The maximal compact subgroup can be tak
to be generated byT21. That the eigenvalues ofT21 are to be integers or half-integers is a glob
requirement of the group representation and can in this case not be seen on the level
generatorT21 alone but comes from the requirement that the representation ofK5U1 should be
single valued.

We will consider only admissible unitary representations16 in which all eigenspaces ofT21 are
only finite dimensional.

The eigenvectors ofT21 will be labeled byun&:

T21un&5 inun& for n integer or half-integer ~50!

and will be assumed to be normalized

^nun&51. ~51!

For any eigenvector in such an irreducible representation, the vectorsT2T1un&, T2T1un& are
proportional toun&.

Define

T1un&5cnun11&. ~52!

It follows from unitarity ~49!,

T2un11&52 c̄nun&. ~53!

From ~49! and ~45!, it follows that

^nu@T1 ,T2#n&522i ^nuT21n&, ~54!

2^T2nuT2n&1^T1nuT1n&52n, ~55!
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ucnu22ucn21u252n, ~56!

and solving the recursion relation gives

ucnu25~n1 1
2!

21R2m2, ~57!

with R2m2 being a real number~possibly negative; writing for this number the expressionR2m2

is convenient for latter interpretation and has no importance here!. Sinceucnu2 is positive,R2m2

has to satisfy the following condition:

~n1 1
2!

21R2m2>0 ~58!

for all half-integersn appearing in the representation. This condition allows us to get insight
the classification of the unitary irreducible representations of SL2(R):

~i! As long asR2m2.0, the condition~58! is always satisfied andcn never vanishes. Given
one eigenvectorun& of the Hermitean operator2 iT21 and for some half-integern, one
obtains eigenvectorsun1k&, for all kPR. These then span the representation space of
irreducible representation. These representations, labeled by the numberR2m2 and by
whether the eigenvalues are integers or true half integers~i.e., integers1 1

2!, are referred to
as theprincipal series.

~ii ! If 0>R2m2. 1
4 then the condition~58! is always satisfied andcn never vanishes under th

assumption that the eigenvalues are integers. These representations are called thecomple-
mentary series.

~iii ! If the condition~58! cannot be satisfied for eigenvalues shifted by an arbitrary amount,
somecn have to vanish in order not to run into contradictions with~58! while applying
raising and lowering operators. This bounds the eigenvalues of2 iT21 in the unitary irre-
ducible representation from above or from below. The numberR2m2 has then to satisfy

R2m252~n01 1
2!

2 ~59!

for some half integern0 . These unitary irreducible representations are thus discre
indexed byn0 and by whether the eigenvalues of2 iT21 are bound from above or from
below. This set of unitary irreducible representations is thediscrete series.

V. THE SYMMETRIC SPECTRAL QUADRUPLES OF DE SITTER SPACE

The Hilbert space of the spectral quadruple is required to carry a representation of the
SL2(R) and has in addition to accommodate the operatorsu, e”' , andg. Sincee”' andg commute
with T21, they can be considered separately on each eigenspace ofT21. Mutually, e”' and g
anticommute and do not vanish, as follows from the definition of the spectral quadruple. Thu
force the eigenspacesHn of T21 to be at least two dimensional. In addition,u is an invertible
raising operator and its inverseu* an invertible lowering operator, as follows from Eq.~39!. Thus
all the eigenspacesHn of T21 are bound to have the same dimension. From the requireme
irreducibility and from the invertibility of the operatoru we obtain that this dimension has to b
2 and that the discrete series can therefore not be a candidate.

We will further assume that the eigenvalues are true half-integers, as we are interes
interpreting the representation space as the phase space of a spinor field. This exclu
complementary series of representations as well as the part of the principal series with
eigenvalues of2 iT21.

A common orthonormal eigenbasisun,6& for the mutually commuting anti-Hermitean oper
tors T21, e” 0 can be given as

T21un,6&5 inun,6&, ~60!
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e” 0un,6&56 i un,6&, ~61!

^n8,sign8un,sign&5dn8ndsign8sign. ~62!

The eigenvectors are then unique, up to phases. The relative phases are fixed by requiring

uun,6&5un11,6&. ~63!

This leaves only two phases free, one of them an overall phase.
The order-one condition.The only unspecified operators of the spectral quadruple are

T1 andT2 , the raising and lowering operators.
They are given by their restrictions

T6~n!:Hn→Hn61 . ~64!

The eigenspacesHn can be identified using the unitary bijections given by restrictions ou.
Then the operatorsT6(n) can all be understood to operate on a common, two-dimensional Hi
space.

The order-one condition for the raising and lowering operators can then be written as

T6~n11!22T6~n!1T6~n21!50. ~65!

Note that

T1~n!* 52T2~n11!, ~66!

T2~n!* 52T1~n21!, ~67!

so that both equations~65! can be solved recursively, if two restrictionsT6(•) are known.
In order to keep the symmetric way in which the raising and lowering operators appear

calculations, we choose the two required restrictions to beT1(1 1
2), T2(2 1

2).
From the preceding section, it is clear that theT6(n) have to be unitaries times the facto

A(n1 1
2)

21R2m2.
We set

T1~1 1
2!5A11R2m2 u1 , u1* u15u1u1* 51, ~68!

T2~2 1
2!5A11R2m2u2 , u2* u25u2u2* 51. ~69!

Solving the order-one recursion condition, one obtains

T1~n!5A11R2m2S S 1
n

2
2

1

4D ~u11u2* !1u1D , ~70!

T2~n!5A11R2m2S S 2
n

2
2

1

4D ~u21u1* !1u2D . ~71!

Charge conjugation. It remains to determine the 232-matricesu1 , u2 .
For that purpose we use a general parametrization of unitary 232 matrices,

u15eir1
1

A11x1
2 1y1

2 S 2 ix11tanhu1

1

coshu1
1 iy1

2
1

coshu1
1 iy1 ix11tanhu1

D , ~72!
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u25eir2
1

A11x2
2 1y2

2 S 2 ix21tanhu2

1

coshu2
1 iy2

2
1

coshu2
1 iy2 ix21tanhu2

D . ~73!

As a consequence of the commutation of the charge conjugationC with G in the definition of
a spectral quadruple, one obtains

eir
ªeir152eir2, ~74!

xªx152x2 , ~75!

uªu15u2 , ~76!

yªy15y2 . ~77!

Out of the remaining four parameters, two of them,r and y can be set to zero, since the
exactly correspond to the two remaining phases in the above choice of basis.r is the overall phase
and y is connected with a phase freedom in the spinor basis as will become apparent on
geometric interpretation of the de Sitter quadruple is reached.

Thus the de Sitter spectral quadruples form a two-parametric family. Comparing wit
representation theory of SL2(R), one finds thatx can be identified with the parameterRm while
there are no further restrictions onu. Thus the two matricesu1 andu2 can be written as

u15S 2 iRm1tanhu
1

coshu

2
1

coshu
iRm1tanhu

D , ~78!

u25S 2 iRm1tanhu 2
1

coshu

1

coshu
iRm1tanhu

D . ~79!

Following Remark 4 and Remark 10~or Corollary 1 and Remark 10, since this is the spec
111-dimensional case!, the corresponding spacetime geometry can be directly calculated.

The result is 111 dimensional de Sitter space of radiusR containing a Dirac spinor field o
massm. The massm and the radiusR may be reinterpreted at will, as long asRm is kept constant.
In that sense, the mass of the Dirac field becomes the meter stick. The parameter does not
the geometry: The algebra generated byu, from which all other algebras are obtained by sy
metry group actions describes a spacelike circle invariant under the action ofT21. There is a one
parameter set of such circles.u can be chosen as that parameter.

Instead of carrying out the detailed calculations, one can get these results by checking t
de Sitter spectral quadruples obtained here are identical with the spectral data of 111 de Sitter
space calculated in the Appendix, see~A122!–~A127!.

Remark 13.The fact that different symmetric spectral quadruples describe the same geo
is not surprizing. It is a consequence ofG having been chosen too small to provide for all unita
equivalences that take any smooth spacelike circle into any other smooth spacelike circle
Sitter. A one-to-one correspondence between spacetimes and spectral quadruples sh
searched for with a sufficiently large choice ofG only.

Remark 14.Going through a direct calculation, one cannot avoid the problem of exten
characters of one algebra in the collection to generalized vectors, on which other algebras m
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This requires to see the characters as distributions~functionals! on a dense subspace of the Hilbe
space.20 But suitable subspaces of test vectors are in this case obtained for free from the ac
the groupG: They can be chosen to consist of vectors with rapidly decaying coordinates i
eigenbasis ofT21. In this point, the employed Lie symmetry provides substantial help with ma
of smoothness.

VI. FINITE SPECTRAL QUADRUPLES

A finite spectral quadruple is based on a collection of finite dimensional algebras wit
necessary additional structures.

Here, we will build a spectral quadruple out of a spectral triple (A0 ,H,D,g,J). This allows us
to take advantage of the fact that the relevant spectral triples have already been
characterized:21,22 Finite spectral triples are classified by their algebraA which is a finite direct
sum of matrix algebras,A5 % i 51

k Mni
(C) and a symmetric and invertiblek3k matrix with integer

entries, the intersection formqi j :K •(A)3K •(A)→Z, from which the remaining data of the spe
tral quadruple can be read off. In particular, the Hilbert spaceH is given by

H5 %
i , j

k

Hi jª%
i , j

k

~Cni ^ Cuqi j u ^ Cnj !, ~80!

on which the algebraA acts by left multiplication asa^ 1^ 1 for aPA while the opposite algebra
JA* J, with J:Hi j →H ji , J(v i ^ v i j ^ v j )5 v̄ j ^ v̄ i j ^ v̄ i antilinear, acts by right matrix multiplica
tion as1^ 1^ aT for aPA. Furthermore,

gHi j 5Hi j , guHi j
5sign~qi j !1Hi j

, ~81!

and the Dirac operatorD:Hkl→Hi j satisfies the equations

Di j kl 5Di j kl
1 , Di j kl 5D ji lk , ~82!

following from the requirements

D5D* , ~83!

JD5DJ. ~84!

The Dirac operator is further restricted by the order-one condition of a spectral triple.
Example 1.Let a finite spectral triple be given by the algebra

A5C% C ~85!

and by the intersection form

q5S 1 21

21 0 D . ~86!

Then

H5C3, ~87!

g5S 1 0 0

0 21 0

0 0 21
D , ~88!
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J5complex conjugation3S 1 0 0

0 0 1

0 1 0
D . ~89!

The representationsp, pop of the algebra A and of the opposite algebra Aop are given by

p~z1% z2!5S z1 0 0

0 z1 0

0 0 z2

D , ~90!

pop~z1% z2!5S z1 0 0

0 z2 0

0 0 z2

D , ~91!

and

D5S 0 m m̄

m̄ 0 0

m 0 0
D for mPC. ~92!

In order to construct a spectral quadruple, it is now sufficient to find in addition to the spe
triple data an operatore”' :

e”'
2 521, ~93!

e”'
* 52e”' , ~94!

@e”' ,g#50, ~95!

as required by the definition of a 110-dimensional spectral quadruple, and to supply a Ham
tonianH as a function of time.

The operatore”' and the HamiltonianH can be chosen as

e”'ª ig~ t !, ~96!

H~ t !ªe”'~ t !D~ t !. ~97!

Denoting the evolution operator byU(t), one can write the time dependent operatorD(t) as
U21(t)D0(t)U(t) with respect to a comoving basis in which the representation of the alg
remains diagonal. HereD0(t) has the same form for all timest as the Dirac operatorD just with
its entries replaced by smooth functions.

In particular,D0(t) has the form~92!, if the spectral triple of Example 1 is taken. The equ
time distance of the two pointsxt , yt of this discrete spectral geometry can be calculated
Connes’ distance formula:1

d~xt ,yt!5 sup
atPAt ,i [D(t),at] i<1

$uxt~at!2yt~at!u% ~98!

5 sup
a0PA0 ,i [D0(t),a0] i<1

$ux0~a0!2y0~a0!u% ~99!

5
1

um~ t !u
. ~100!
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Thus this spectral quadruple describes two points with varying spatial distance 1/um(t)u.
To determine the distance between the points, rather than to prescribe it, one would h

provide the corresponding theory of gravity given by an action functional. For example, one
use a spectral action for the Wick rotated system, thus avoiding problems of nondefinitene
Lorentzian action. Alternatively, one could try to write down an action directly, in terms ofH and
its time derivativeḢ. However, H is noninvertible and it becomes difficult to write a ter

invariant under time parametrization. For instance, typical terms likeḢ2/H3 , A4 Ḣ are pested with
singularities whileḢ/H leads to the solutionH50. But this is beyond the scope of the prese
work.

Remark 15.The here presented type of a discrete spectral quadruple is built in a rather
way on the basis of a discrete spectral triple, just by adding time. Its value is in showing ho
Lorentzian signature is taken up in the discrete case@see especially~96!# rather than in examining
all possibilities of the discrete case.

VII. CONCLUSION

In this work, we have arrived at a spectral characterization of spin manifolds with Loren
metric through a spectral quadruple. While the spectral geometry of Riemannian spin manifo
given by the spectral triple has motivated and was incorporated into the spectral quadrup
spectral quadruple is not just a stack of spectral triples with time vectorse”' and some sign
changes added on. The results are derived from the Hamiltonian rather than from the
operator, allowing thus for the many-fingered time typical of general relativity. The requirem
of the order-one condition and of charge conjugation are significantly generalized with the fi
the two containing the main information on dynamics: These requirements are not to hold fo
algebra but instantly for all algebras in the collectionA• at once.

Note also that the axioms do not presuppose global hyperbolicity. The lack of global h
bolicity and the eventual occurrence of closed timelike curves leaves one still with a mean
structure. For example, closed timelike curves will not allow an arbitrary choice of initial dat
spatial sections and will thus severely restrict the size of the phase space but still a fuzzy d
tion of spacetime is eventually left. This should not be seen as a failure. It simply mean
certain details of geometry, though possibly existent in mathematical imagination, are aut
cally dropped, if there is no field to resolve them. This is not unrelated to the features o
Euclidean spectral quadruple presented in Joke 1 at the end of this section.

On the practical side, the notion of a spectral quadruple is backed up by the non
example of de Sitter spectral quadruples which successfully describe 111-dimensional de Sitter
space. This is an achievement in itself as it is not so easy, despite the generality of s
geometry, to produce examples.~This does not mean that there are no examples available in
Riemannian case, as the collection has been built up for some time. But still this is an area i
of substantial further work.! While the requirements of the spectral quadruple are in a prelimin
form and confrontation with further examples is definitely needed, a number of importan
amples is under firm control: It is clear, how to deal with generalizations to higher dimension
Sitter spaces and other cosmologies of high symmetries. Situations of such high symmetr
not just toy examples but have claim to be directly interpreted: the Friedmann–Robertson–W
class of models is the one used as the background of realistic cosmology.

With this in hand it is now only natural to have a second look at the standard mod
elementary particle physics along the lines of Ref. 23. Judging from the results of Sec.
particular Eq.~97!, no fermion doubling is to be expected.

Joke 1.It is amusing to note that the machinery of the spectral quadruple which was des
to deal with Lorentzian manifolds can be turned onto Euclidean situations. To give an examp
define a class of symmetric spectral quadruples which we will call ‘‘spherical spectral a
quadruples.’’ The wordalmost refers to one necessary adaptation of the definition of a spe
quadruple to the Euclidean signature: instead ofe”'

2 521 we requiree”'
2 511.

The groupG is chosen to be SU2.
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The set of algebras is generated from one algebra by the action ofG. This algebra in turn is
generated from one unitary generatoru:

u* 5u21. ~101!

The mutual position ofG andu on the representation spaceH is partially determined by the
commutation relation ofu, e”' , andg with a compact generatorT21 of the Lie algebra ofG:

@T21,u#5 iu, ~102!

@T21,e”'#50, ~103!

@T21,g#50. ~104!

The above set of structures is irreducibly represented. This requirement is to avoid d
with multiple copies.

The resulting space should be thought of as being a sphereS2 with an axis of rotational
symmetry determined by the chosen generatorT21. The algebra generated byu describes a circle
preserved under the rotational symmetry generated byT21. This circle may or may not be chose
at the equator of the sphere and is moved over the sphere by the action of the group SU2. In this
way any point of the sphere is reached by some circles. However, points of the sphere
resolved only in a limit for the following reason: In analogy with the de Sitter example,
algebras are represented on the space of solutions of the counterpart of the Dirac equatio

D” c5~ l 1 1
2!c ~105!

for a fixed angular momentuml of the spherical harmonics. Since SU2 is a compact group, the
Hilbert space of any unitary irreducible representation is finite dimensional and so is the H
space of the spectral quadruple. As seen from the point of view of a true sphere only max
localized vectors in the Hilbert space rather than points of the sphere may be found a
representation of the algebras generates the matrix algebra on the Hilbert space. Thus the s
spectral almost quadruples describe the fuzzy spheres.
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APPENDIX: SPINORS ON de SITTER SPACE

In this appendix, a self-contained exposition of de Sitter space and of spinor fields on de
space is given. The main purpose is to collect formulas and facts on this model for use as a
case for Lorentzian spectral geometry. We will concentrate on two-dimensional de Sitter
However, at instances where this restriction does not bring any simplification, the ge
n-dimensional case is dealt with directly.

In the course of this, an important particularity is obtained: There is a set of spectral dat
can be compared with the spectral quadruples of Sec. V to provide for one of the main res
this paper: The de Sitter spectral quadruples describe de Sitter space.

The first three subsections deal with the differential geometry, with the symmetries and
the spin geometry of de Sitter space from both the point of view of an imbedding into Minko
space as well as from the intrinsic point of view. In the following two sections, the Dirac ope
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of de Sitter space is discussed and employed to construct the action of the symmetries on th
of solutions of the Dirac equation. There, the spectral data in a form comparable to the de
spectral quadruples are obtained.

The geometry of de Sitter space

Definition 4. The n-dimensional de Sitter geometry is a submanifold of n11 dimensional
Minkowski space given in a fixed Lorentz frame by the equation

2~x0!21~x1!21¯1~xn!25R2 ~A1!

with the metric induced from the metric of the Minkowski imbedding space,

ds252~dx0!21~dx1!21¯1~dxn!2. ~A2!

The induced metric has signature

Remark 16.The intrinsic de Sitter geometry may be defined without any reference to an im
ding space. This is not done here as the imbedding space proves to be a very useful techn
for doing calculations. But for the sake of clarity, some calculations are done or redone
entirely intrinsic way.

Following Definition 4, the two-dimensional de Sitter geometry can be embedded int
three-dimensional Minkowski space as the hyperboloid

2~x0!21~x1!21~x2!25R2, ~A3!

and can be parametrized by generalized spherical coordinates

x05R sinhu, uP~2`,`!, ~A4!

x15R coshu cosf, fP@0,2p!, ~A5!

x25R coshu sinf, ~A6!

The coordinate vectors of the spherical coordinates~]/]u! ~]/]f! are expressed in terms of th
Cartesian basis (]/]x0) , (]/]x1) , (]/]x2) of Minkowski space by

]

]u
5

]xi

]u

]

]x1 5R coshu
]

]x0 1R sinhu cosf
]

]x1 1R sinhu sinf
]

]x2 , ~A7!

]

]f
5

]xi

]f

]

]x1 5R coshuS 2sinf
]

]x1 1cosf
]

]x2D . ~A8!

The induced metric is then

guu52R2, guf5gfu50, gff5R2 cosh2 u, ~A9!

g••5
u
fS 2R2 0

0 R2 cosh2 f D
u f

, g••5
u
fS 2

1

R2 0

0
1

R2 cosh2 0

D
u f

. ~A10!
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The symbol • is used to indicate various types of indices without giving them names.
The Christoffel symbols of the unique torsion-free metric connection¹ • can be calculated a

GA
BC5 1

2 gAD~gBD,C1gDC,B2gBC,D! ~A11!

with the nonzero components

Gu
ff5coshu sinhu, ~A12!

Gf
uf5Gf

fu5
sinhu

coshu
. ~A13!

The wave operator~Laplace–Beltrami! is then

h f 5gAB
“A“Bf 5gABS ]

]jA

]

]jB 2GC
AB

]

]jCD f ~A14!

52
1

R2 S 1

coshu

]

]u
u

]

]u
2

1

cosh2 u

]2

]f2D f , ~A15!

Apart from the above intrinsic structures, the extrinsic curvatureKA
B of the imbedding of de

Sitter space into Minkowski space may be calculated, see Lemma 3.

Symmetries

The de Sitter spacetime is a homogeneous space with respect to the Lorentz group
embedding space. The Lorentz group is generated by boosts and rotations. The generator
given explicitly, decorated for convenience by a double index: rotation with axisx0,

L215x1
]

]x2 2x2
]

]x1 5
]

]f
; ~A16!

boost with axisx1,

L025x0
]

]x2 1x2
]

]x0 5sinf
]

]u
1cosf tanhu

]

]f
; ~A17!

boost with axisx2,

L015x0
]

]x1 1x1
]

]x0 5cosf
]

]u
2sinf tanhu

]

]f
. ~A18!

The generators satisfy the commutation relations

@L01,L21#5L02, ~A19!

@L02,L21#52L01, ~A20!

@L01,L02#5L21. ~A21!

The Casimir operator is

L •L •52R2¹A¹A . ~A22!

The action of~the double cover of! these symmetries on spinors and spinor fields is given
the next section, after a description of spinors.
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Spinors on de Sitter space

It is possible to construct spinors either intrinsically or as seen from the Minkowski space
which the de Sitter geometry is embedded.

In both cases it is useful to fix a frame~triad!.
For the extrinsic description we chose

bi5
]

]xi . ~A23!

For the intrinsic description, only two vector fieldse0 , e2 are needed but for further calcula
tions it is useful to add a third vector fielde1 , normal to the manifold in embedding space. T
resulting triad is then

e05
1

R

]

]u
5

1

R

]xi

]u

]

]xi , ~A24!

e15
]

]R
5

1

R
xi

]

]xi , ~A25!

e25
1

R coshu

]

]f
5

1

R coshu

]xi

]f

]

]xi , ~A26!

e05coshu
]

]x0 1sinhu cosf
]

]x1 1sinhu sinf
]

]x2 , ~A27!

e15sinhu
]

]x0 1coshu cosf
]

]x1 1coshu sinf
]

]x2 , ~A28!

e252sinf
]

]x1 1cosf
]

]x2 . ~A29!

The two frames coincide for

u50, f50. ~A30!

The triad can then be chosen to generate the corresponding Clifford algebra for the C
generatorse” • by the anticommutation relations

e” ie” j1e” je” i5gi j 1. ~A31!

The same anticommutation relations are satisfied by the Clifford generators correspond
b• but usually denoted byg • rather than byb” • . One is free to choose a basis in the spinor sp
and this freedom will be used here to get the following representation of the Clifford generatg •

~and similarly fore” •!:

g05S i 0

0 2 i D , g15S 0 2 i

i 0 D , g25S 0 1

1 0D . ~A32!

The choice was made in such a way as to makeg0 diagonal which seems to be useful in lat
computations.
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Intrinsic description

The vectorse0 , e2 are inside the de Sitter space ande1 is orthogonal to it.e1 can of course
not be part of an intrinsic description but is useful for matters of comparison with extr
calculations.

The intrinsic spin connectionDA can be calculated from the connection form

vA
b

c5eB
b¹Aec

B5eB
b]Aec

B1eC
b GCB

Aec
B . ~A33!

The forms

e05R du, ~A34!

e25R coshu df ~A35!

are a basis dual toe0 , e2 ,

~A36!

¹0e050, ¹0e250, ~A37!

¹2e05
1

R
tanhue2 , ¹2e25

1

R
tanhue0 . ~A38!

From the~tangent space! connection formvA , the spin connection formvA
S can be obtained

as

vA
S5

1

4
vA

b
ce” be” c5

1

2
e” 0e” 2 sinhudf5

1

2
e” 0e” 2 sinhu

e2

R coshu
. ~A39!

The intrinsic Dirac operator is then

D” 5e” aDa5e” 0
1

R

]

]u
1e” 2

1

R coshu

]

]f
1

1

2R
e” 0 tanhu. ~A40!

Extrinsic description

Definition 5. Let M be given as a submanifold inRn11 of codimension 1, equipped with th
metric induced from a global (translation invariant) metric onRn11. TheLevi-Civita covariant
spin derivative (in an extrinsic basis) along a line parametrized byl is given by

¹d/dlc5
dc

dl
1

1

2
n”

dn”

dl
. ~A41!

This may be used to define an extrinsic Dirac operator, as discussed in the next sectio

Comparison of extrinsic and intrinsic calculations

The intrinsic calculations proceed from the extrinsic point of view in a moving framee• ,
related to the global frameb• by orthogonal transformations. It is thus useful to know the s
matrices implementing those orthonormal transformations on spinor space.

The generators of rotations and boosts in spinor space can be constructed out of the C
generatorsg i by

v i j 5
1
4 @g i ,g j #. ~A42!
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The Clifford generatorsg i satisfy

@g0 ,g1#52g2 , ~A43!

@g0 ,g2#522g1 , ~A44!

@g1 ,g2#522g0 . ~A45!

It follows for the generators of rotations and boosts on the spinor space

@v01,v21#52v02, ~A46!

@v02,v21#5v01, ~A47!

@v01,v02#52v21. ~A48!

These are the commutation relations of the Lie algebra sl2(R) @see Sec. IV for additional facts
on sl2(R) and on the corresponding Lie group Sl2(R)#, the generators of~the double cover of! the
group of Lorentz transformations.

The boost and rotation spin matrices are

S012boost5S eu/2 0

0 e2u/2D , S012boost
21 5S e2u/2 0

0 eu/2D , ~A49!

S022boost5S coshS u

2D sinhS u

2D
sinhS u

2D coshS u

2D D , S022boost
21 5S coshS u

2D 2sinhS u

2D
2sinhS u

2D coshS u

2D D , ~A50!

S122rotation5S cosS f

2 D sinS f

2 D
2sinS f

2 D cosS f

2 D D , S122rotation
21 5S cosS f

2 D 2sinS f

2 D
sinS f

2 D cosS f

2 D D . ~A51!

As the fact that the framesb• , e• agree in a point@see~A30!# and from the knowledge of the
spin matrices, the the transformation fromb• the global frame of Minkowski space to a loc
framee• can be calculated asSu,f5S122rotationS012boost,

Su,f5S eu/2 cosS f

2 D sin~f/2!

eu/2

2S eu/2 sinS f

2 D D cos~f/2!

eu/2

D , Su,f
21 5S cos~f/2!

eu/2 2S sin~f/2!

eu/2 D
eu/2 sinS f

2 D eu/2 cosS f

2 D D .

~A52!

This is the spin matrix that allows an explicit comparison of extrinsic and intrinsic calc
tions.

At times, it is also useful to know the spin matrix implementing the reflection exchanginb1

andb2 :

S1↔25S1↔2
21 5S 21 1

1 1D . ~A53!
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The full action of the symmetry group Sl2(R) on spinor fields is given by the simultaneou
action on the spinor space and on the spacetime manifold. The full symmetry generators a

Ti j 52Li j 1v i j ~A54!

and satisfy the commutation relations

@T01,T21#52T02, ~A55!

@T02,T21#5T01, ~A56!

@T01,T02#52T21 ~A57!

analogous to~A19!–~A21! and ~A46!–~A48!. From the point of view of representation theory,
is useful to work with the rising and lowering operators

T65T017 iT02, ~A58!

satisfying

@T6 ,T21#52T027 iT0157T6 , ~A59!

@T1 ,T2#522iT21. ~A60!

The Dirac operator on de Sitter space

In the following, it is shown that the Dirac operator on Minkowski space commutes with
generators of the Lorentz group action on Minkowski space spinors. Then the Dirac operato
surface of codimension 1 in flat space is defined and re-expressed in terms of the in
curvature of the surface and calculated for spacelike hyperboloids in Minkowski space
further shown that the Dirac operators on the hyperboloids also commute with the genera
the Lorentz group.

Lemma 2. The Dirac operator D” M5g i] i commutes with the symmetry generatorsi j
52Li j 1v i j .

Proof. By definition

Li j 5xkgk[ i] j ] with gk[ i] j ]5gki] j2gk j] i , ~A61!

v i j 5
1
4 @g i ,g j #. ~A62!

A direct calculation gives then

~A63!

The coordinates of the commutator vanish for the following reasons.
If i 5 j then it vanishes due to antisymmetry ini , j .
If i , j , k are all different then the Kroneckerds vanish and@g i ,g j # commutes withgk , thus

everything vanishes.
If k5 iÞ j thend j

k vanishes and

@@g i ,g j #,g
k#52@g ig j ,gk#522$g i ,gk%g j524d i

kg j ,

and the resulting term cancels with2g jd i
k .

If k5 j Þ i then use antisymmetry ini , j to transform it into the previous case.
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Definition 6. ~The Dirac operator on a surface of codimension 1.! Let eA be a Vielbein on the
n21-dimensional surface in n-dimensional flat space and letg • be global generators of the
global Clifford algebra. Then the Dirac operator on the surface is given by

D” 5gAeA
B¹B , ~A64!

where¹ • is the extrinsic connection of Definition 5.
A direct calculation, using the definitionKA

B
ªeA

C]CnB of the extrinsic curvatureKA
B gives

~A65!

~A66!

~A67!

~A68!

In the following lemma, the needed extrinsic curvature is calculated.
Lemma 3. The extrinsic curvature tensor KA

B and its trace KA
A of the hyperboloid2(x0)2

1( i(x
i)25R2 in n-dimensional Minkowski space are given by

KA
B5

1

R
dA

B , ~A69!

KA
A5

n21

R
. ~A70!

Proof. Due to the transitive action of the symmetries on the hyperboloid, it is sufficien
calculate the formulas in one point only which may conveniently be chosen to be

xa5~0,R,0,0,...,0!

with normalized coordinates around this point,

xA5
1

R
~x0,x2,x3,...,xn21!,

and with the normal vector

na5
1

R
~x0,x1x2,x3,...,xn21!.

Then a simple calculation gives

KA
B5

dnB

dxA 5
1

R
dA

B . ~A71!

Corollary 4. On the hyperboloid2(x0)21( i(x
i)25R2 in n-dimensional Minkowski space

the Dirac operator D” is given by
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D” 5e”B]B2
n21

2R
n” . ~A72!

Corollary 5. On the hyperboloid2(x0)21(xi)25R2 in n-dimensional Minkowski space, th
Dirac operator D” can be induced from the Dirac operator D” M on Minkowski space by extendin
the spinors outside the hyperboloid by (value on hyperboloid)3e2 n21/2R(r 2R) along the rayslxa,
with r being the spacetime interval as measured form the origin.

Corollary 6. The Dirac operator D” on the hyperboloid commutes with the symmetry gene
tors Ti j .

Proof. Note first that the symmetry generatorsTi j preserve the hyperboloid2(x0)21(xi)2

5R2 in n-dimensional Minkowski space. The Minkowski space Dirac operatorD” M commutes
with the symmetry generatorsTi j . From the previous corollary,D” can be understood to be
restriction ofD” M to a subset of functions behaving radially ase2 (n21)/2R(r 2R).

The implementation of symmetries on the spinor field on de Sitter

The de Sitter hyperboloid embedded in Minkowski space is left invariant under the acti
the Lorentz group and thus an an action of the Lorentz group can be given on spinor fields
hyperboloid.

A representation of the Lorentz group can be given by restricting to the spinor fieldsc which
are solutions of the Dirac equation:

~D” 2m!c50. ~A73!

This is reasonable, since the Dirac operator commutes with the generators of the Lorentz
and since the space of solutions of the Dirac equation is equipped with an invariant sesqu
positive definite inner product:

~c1 ,c2!5E
S
c 1̄gAc2 dAS, ~A74!

with S being an arbitrary spacelike Cauchy surface on the hyperboloid.
The Hilbert space of the representation is then the classical phase space of spinor fie

space of initial values of the spinor field on a Cauchy surface satisfying the Dirac equatio
order to give the action of the Lorentz group on the initial values, the Dirac equation has
used.

The Cauchy hypersurface will be taken a sphereSn22 on the hyperboloid atx05constant. It
has a normal vectornW 5 1/R (x0,x1,...,xn21) and an ~unnormalized! spatial normal vectorrW
5(0,x1,...,xn21). The time evolution vector will be taken as

]

]t
ªe05

1

R

]

]u
5coshu

]

]x0 1sinhu
rW

urWu
~A75!

5
1

coshu S ]

]x0 1sinhunW D . ~A76!

The Dirac operator can then be written as

D” 5e” 0] t1e” I] I2
n21

2R
n” , ~A77!

and using the Dirac equation

~D” 2m!c50, ~A78!
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the infinitesimal time evolution can be given as

~A79!

~A80!

The generatorsTi j of the Lorentz transformations in three-dimensional Minkowski sp
acting on spinor fields on the de Sitter space of radiusR can now be expressed in terms of] t , ]f

which in turn can be expressed in terms of the Cartan subalgebra generatorT21, eliminating all
derivatives in the following formulas:

]

]t
5

n”

R coshu
~L212e” 0 coshu!1me” 0 ~A81!

5
n”

R coshu S 2T211
1

2
g02e” 0 coshu D1me” 0 , ~A82!

]

]f
52T211

1

2
g0 , ~A83!

v215
1
2 g0 , ~A84!

v0252 1
2 g1 , ~A85!

v015
1
2 g2 , ~A86!

L215
]

]f
, ~A87!

L025R sinf
]

]t
1cosf tanhu

]

]f
, ~A88!

L015cosf
]

]u
2sinf tanhu

]

]f
, ~A89!

T2152
]

]f
1

1

2
g0 , ~A90!

T0252R sinf
]

]t
2cosf tanhu

]

]f
2

1

2
g1 , ~A91!

T0152R cosf
]

]t
1sinf tanhu

]

]f
1

1

2
g2 . ~A92!

There are now two natural bases in the space of spinors onSn22(x0)5S1(x0), namely the
eigenbasisuL:n,6& of L21 and the eigenbasisuT:n,6& of T21. The first choice looks to be
simpler, if written in the local basis of eigenvectors ofg0 :
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uL:n,1&5S einf

0 D , ~A93!

uL:n,2&5S 0
e2 inf D . ~A94!

with n being integers ... ,22,21,0,11,12,... . and is maybe somewhat easier to visualize. Co
pare it with the second basis

uT:n,1&5S e2 i (n2 1/2)f
0 D , uT:n,2&5S 0

e2 i (n1 1/2)f D , ~A95!

with n being half-integers ... ,2 5
2,2

3
2,2

1
2,1

1
2,1

3
2,1

5
2,... .

However it is more appropriate to use the second one since it is the full symmetry gene
Ti j that are to play the key role in the representation theory of the symmetry group; the gene
Li j may not exist on the spinor bundle of a higher dimensional example, due to its nontriv
and is thus not the right concept to be used. To give a meaning toLi j one would have to enlarge
the spinor bundle, e.g., by adding to it an inverse bundle.

Note 3.For the reasons given above, the calculations of the action of the symmetry gene
T• will be continued in the basisuT:n,6&. But for completeness, analogous results in the ba
uL:n,6& are stated here, in advance,

T21uL:n,1&5
i

2
~122n!uL:n,1&,

T21uL:n,2&5
i

2
~2122n!uL:n,2&,

T01uL:n,1&5 1
2 @nuL:n,2&1~n21!uL:n22,2&2 isuL:n11,1&2 isuL:n21,1&],

T01uL:n,2&5 1
2 @2nuL:n,1&2~n11!uL:n12,1&1 isuL:n11,2&1 isuL:n21,2&],

T02uL:n,1&5
i

2
@2nuL:n,2&1~n21!uL:n22,2&1 isuL:n11,1&2 isuL:n21,1&],

T02uL:n,2&5
i

2
@2nuL:n,1&1~n11!uL:n12,1&2 isuL:n11,2&1 isuL:n21,2&],

T1uL:n,1&5~n21!uL:n22,2&2 isuL:n21,1&, ~A96!

T1uL:n,2&52nuL:n,1&1 isuL:n21,2&, ~A97!

T2uL:n,1&5nuL:n,2&2 isuL:n11,1&, ~A98!

T2uL:n,2&52~n11!uL:n12,1&1 isuL:n11,2&. ~A99!

We now proceed with the calculation of the action of the sl2(R)-symmetries~Lorentz sym-
metries! on the space of solutions of the Dirac equation in the basisuT:n,d&.

By definition,

T21uT:n,6&5 inuT:n,6&, ~A100!
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~A101!

n”5sinhub” 01coshu
r”W

R
, ~A102!

r”W

R
ª

x1

R
g11

x2

R
g25eif~g12 ig2!1e2 if~g11 ig2! ~A103!

52 ieifS 0 1

0 0D 1 ie2 ifS 0 0

1 0D . ~A104!

The actions on the basis are

r”W

R
uT:n,6&ª6 i uT:n,7&, ~A105!

e” 0uT:n,6&ª6 i coshuuT:n,6&6 i sinhuuT:n,7&, ~A106!

n” uT:n,6&ª6 i sinhuuT:n,6&6 i coshuun,7&. ~A107!

A direct calculation of]/]u 5R (]/]t) from ~A82! using ~A104!–~A106! gives

]

]u
uT:n,6&5S S 6n2

1

2D tanhu6 iRmcoshu D uT:n,6& ~A108!

1S S 6n1
1

2D6 iRmsinhu D uT:n,7&, ~A109!

T1uT:n,6&5@~n1 1
2!tanhu~171!7 iRmcoshu#uT:n11,6& ~A110!

7@n1 1
2 1 iRmsinhu#uT:n11,7&, ~A111!

T2uT:n,6&5@2~n2 1
2!tanhu~161!7 iRmcoshu#uT:n21,6& ~A112!

7@n2 1
2 1 iRmsinhu#uT:n21,7&. ~A113!

In matrix notation, on the subspaceuT:n,•&, one gets

T1~n!5S 2 iRmcoshu n1 1
2 1 iRmsinhu

2~n1 1
2 1 iRmsinhu! 2~n1 1

2!tanhu1 iRmcoshu
D u, ~A114!

T2~n!5S 22~n2 1
2!tanhu2 iRmcoshu n2 1

2 1 iRmsinhu

2~n2 1
2 1 iRmsinhu! iRmcoshu

D u* , ~A115!

and the time vectore” 0 is given by

e” 05 i S coshu 2sinhu

sinhu 2coshu D . ~A116!
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These matrices are understood to be given with respect to the basisuT:n,6&. This basis is
however not orthonormal. In order to find an orthogonal basis which would be suitabl
comparison with representation–theoretic calculations, the structure of the inner product
space of spinor fields has to be clarified.

Spacetime spinor fields are equipped with a Hermitean inner product, the Dirac pr
B(•,•) which is given as the intertwinerB

gm
1B52Bgm , ~A117!

B5S 2 i 0

0 i D , ~A118!

so that the inner product can be calculated as

B~c,w!5~ c̄1 c̄2!S 2 i 0

0 i D S w1

w2
D . ~A119!

Note 4.There is a second possibility to choose a Hermitean inner productA by taking the
opposite sign in the intertwining relation:

gm
1A51Agm . ~A120!

But this is irreconcilable with other choices already made or to be required, in particular, the
operator was defined to beD” 5gm]m rather thanigm]m ; the Dirac equation was chosen to b
(D” 2m)c50; the Dirac operator is required to be formally self-adjoint,

B~c,D” w!2B~D” c,w!5]mB~c,gmw!;

The physical time directions given by the metric are negative definite~rather than positive
definite!, i.e., pmpm52m2 for an approximate plane wave~rather thanpmpm51m2)

It follows from the global hyperbolicity of the spacetime and the formal self-adjointness o
Dirac operator that the following is a well-defined Hermitean inner product on the spa
solutions of the Dirac equation, independent of the spacelike Cauchy surfaceS, see~A74!:

~c,w!5E
S1(u5constant)

B~c~f!,e0w~f!!df. ~A121!

With respect to this inner product, the normalized eigenvectorse6 i of e” 0 for the eigenvalues
6 i are

e6 i5
1

A2 coshu62
S coshu61

sinhu D , ~A122!

and in this orthogonal eigenbasis ofe” 0 we have

e” 05S i 0

0 2 i D , ~A123!

e” 25S 0 1

1 0D , ~A124!
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T1~n!5S 2 iRm1~n1 1
2!tanhu

1

coshu
~n1 1

2!

2
1

coshu
~n1 1

2! iRm1~n1 1
2!tanhu

D , ~A125!

T2~n!5S 2 iRm2~n2 1
2!tanhu

1

coshu
~n2 1

2!

2
1

coshu
~n2 1

2! iRm2~n2 1
2!tanhu

D , ~A126!

and in particular

u15T1~1 1
2!5S 2 iRm1tanhu

1

coshu

2
1

coshu
iRm1tanhu

D , ~A127!

u25T2~2 1
2!5S 2 iRm1tanhu 2

1

coshu

1

coshu
iRm1tanhu

D . ~A128!

These data may be compared with the data of the de Sitter spectral quadruples obta
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Baxter T-Q equation for shape invariant potentials.
The finite-gap potentials case

Ovidiu Lipana)

Harvard University, HSPH, Boston, Massachusetts 02115

Constantin Rasinariub)

Columbia College Chicago, Chicago, Illinois 60605

~Received 14 November 2000; accepted for publication 22 October 2001!

The Darboux transformation applied recurrently on a Schro¨dinger operator gener-
ates what is called adressing chain, or from a different point of view, a set of
supersymmetric shape invariant potentials. The finite-gap potential theory is a spe-
cial case of the chain. For the finite-gap case, the equations of the chain can be
expressed as a time evolution of a Hamiltonian system. We apply Sklyanin’s
method of separation of variables to the chain. We show that the classical equation
of the separation of variables is the Baxter T-Q relation after quantization. ©2002
American Institute of Physics.@DOI: 10.1063/1.1426689#

I. INTRODUCTION

What is the most universal method of solving completely integrable models? From Sklya
point of view1 it is the separation of variables in its most general form. Therefore, it is desir
to understand old methods of integration in the light of the modern approach to the separa
variables. One of the most important ‘‘old’’ techniques applied with success to many physica
mathematical problems is the Darboux transformation. In short, the two main themes of this
can be best described by two keywords: The Darboux transformation and the Sklyanin met
separation of variables. The Darboux transformation is a fundamental tool in the supersym
approach to quantum mechanics and in the theory of dressing chains.2,3 Though our example is
different from the DST model studied in Ref. 4, this paper and Ref. 4 are closely related
Sklyanin method aims to connect the separation of variables as we know it from the Hamilt
mechanics with the new techniques of exactly solving mathematical physics problem, name
Inverse Scattering Method and its quantum version.5 The worked example in this paper is th
dressing chain representation of the finite-gap potential theory. We review the main ideas fro
Darboux transformations with an emphasis on the Hamiltonian view-point on the finite-gap th
following Veselov and Shabat.2 We then work the Sklyanin method1,6,7 on the finite-gap theory.
We find the canonical separated variables for the dressing chain representation of the fin
potential theory. From the Quantum Inverse Scattering Theory point of view, the equation f
separated variables is the classical version of the Baxter T-Q equation. Then the quantum
of the finite-gap theory is presented, together with the corresponding R-matrix and the B
Q-operator. The conclusions and outlook will close the paper.

II. THE DARBOUX TRANSFORMATION AND THE HAMILTONIAN APPROACH FOR THE
FINITE-GAP THEORY

Consider the Schro¨dinger operator for a potentialu(x), H52D21u(x) where D[d/dx.
Factorize it as a product of two first order operators

H5A* A, ~2.1!

a!Electronic mail: olipan@hsph.harvard.edu
b!Electronic mail: crasinariu@popmail.colum.edu
8470022-2488/2002/43(2)/847/19/$19.00 © 2002 American Institute of Physics
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whereA5D2 f (x) andA* 52D2 f (x). The Darboux transformation sendsH15A* A into H2

5AA* 1a1 where1 is the identity operator anda is a constant. The functionsf 1 and f 2 obtained
from the factorization

Hi52~D1 f i !~D2 f i !, ~2.2!

are related by the equation

~ f 11 f 2!85 f 1
22 f 2

21a, ~2.3!

where the prime means differentiation with respect tox. From the supersymmetric quantum
mechanics point of view, Eq.~2.3! is exactly the shape invariance condition,3 written in terms of
the superpotentialsWi52 f i .

We can continue this process of factorization and Darboux transformation and obtain a
of equations

~ f i1 f i 11!85 f i
22 f i 11

2 1a i i 51,2, . . . . ~2.4!

This chain is called adressing chain. In what follows we will consider only periodic chains

f i5 f i 1N , a i5a i 1N , ~2.5!

where the periodN is a positive integer. Supersymmetrically speaking, periodic chains corres
to the cyclic shape invariant potentials.8 The properties of the dressing chain depend drastically
the periodN and the suma5a11 ¯ 1aN . There are four cases to be considered dependin
N is even or odd anda is equal to zero or not. The finite-gap theory, to be studied in this pa
corresponds to the caseN odd anda50. In this case the chain is a completely integrable Ham
tonian system. We will use for the casea50 instead of the constanta i , the constantsb i related
with a by b i2b i 115a i . If we regard the variablex in f i(x) as atimevariable, then the dressin
chain expresses the time evolution of the variablesf i(x), i 51, . . . ,N. Their evolution is gener-
ated by the Hamiltonian

H5(
i 51

N

~ 1
3 f i

31b i f i !, ~2.6!

with the Poisson bracket

$ f i , f j%5~21!( j 2 i )modN, ~2.7!

$ f i , f i%50. ~2.8!

This Poisson bracket is not canonical. To obtain canonical variables, first let us denote bygi a set
of variables defined by

gi5 f i1 f i 11 , ~2.9!

with the Poisson structure

$gi ,gi 21%51, ~2.10!

all other brackets being zero. Though the variablesgi seem to be redundant at this point, later
they will prove to be useful. Now, the canonical variables (Xi ,xi)

$Xi ,Xj%5$xi ,xj%50, $Xi ,xj%5d i j , ~2.11!

will generate the Poisson structure for the variablesgi if
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gi5Xi1xi 11 . ~2.12!

As we mentioned before, the finite-gap case (N52n115odd) is completely integrable. There
fore, the Hamiltonian responsible for the time evolution belongs to a set ofn-independent invo-
lutive Hamiltonians. To show this, we use the method of inverse scattering theory. The Lax m
build on canonical variables (Xi ,xi) is

Li
(x)~u!5S xi 1

xiXi1b i1u Xi
D , ~2.13!

where (x)[(Xi ,xi) andu is a complex parameter. Then we construct the monodromy matri

L (x)~u!5)
i 5N

1

Li
(x)~u!5LN

(x)~u!LN21
(x) ~u!¯L1

(x)~u! ~2.14!

and take its trace

tN~u!5TrL~u!. ~2.15!

The tracetN(u) generates the set of involutive Hamiltonians

tN~u!5H1un1H3un211 ¯ 1H2N11 . ~2.16!

The HamiltonianH3 is just the Hamiltonian for the chain. The fact that the set of the Hamilton
is involutive, is a consequence of the classical r-matrix identity. Denoting byid2 the unit 232
matrix and introducing the notations for the tensor productsl (1)5 l ^ id2 , l (2)5 id2^ l , the
r-matrix identity for the Lax matricesl i(u)5Li

(x)(u)

$ l i
(1)~u1!,l j

(2)~u2!%5@r 12~u12u2!,l i
(1)~u1!l i

(2)~u2!#d i j , ~2.17!

where

r 12~u!52
1

u
P12, ~2.18!

and P12 is the permutation operator inC2
^ C2. It is important to notice that although the La

matrix is written in terms of the variable (X,x), the HamiltoniansHi ~2.16! depend only on the
variablesgi , i 51,2,...,N. Moreover, it is possible to generate the HamiltoniansHi as a trace of
a monodromy matrix written directly in terms of the chain variablesf i

F~u!5)
i 51

N S f i 1

f i
21b i1u fi

D , ~2.19!

tN~u!5TrF~u!. ~2.20!

The connection of the dressing chain with the finite-gap theory for the Schro¨dinger operators is
described in Ref. 2. For the finite-gap theory see also9,10 and the references therein. Here we w
emphasize only those notions which will be important later on. To each solutionf i(x) of the
dressing chain, or in other words, to each solution of the time evolution of the Hamilto
system, corresponds a sequence ofN finite-gap Schro¨dinger operators

Hi52D21ui~x!, ~2.21!

where the potentialsui(x) are given by

ui5 f i81 f i
2 . ~2.22!
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The spectral curve of these operators is the spectral curve of the monodromy matrixF(u)

det~F~l!2m 1!50, ~2.23!

where1 is the unit matrix, and it can be written as

m22tN~l! m2)
i 51

N

~l1b i !50. ~2.24!

From the Darboux transformation we can obtain a recurrence relation between the logar
derivatives of the Bloch eigenfunctions. The Bloch eigenfunctionsc i of the operatorHi are given
by

Hic i5~l1b i !c i . ~2.25!

Due to the Darboux transformation, two successive Bloch eigenfunctions are connected th

c i 115~D2 f i !c i . ~2.26!

This implies that for the logarithmic derivativesx i5D ln ci we have the recurrence

x i5 f i1
b i1l

f i1x i 11
. ~2.27!

III. SKLYANIN METHOD OF SEPARATION OF VARIABLES

To understand the Sklyanin method,1,5–7let us start with an old example. For a Hamiltonian
the form

H5 1
2 ~p1

21¯1pn
2!1 1

2 ~v1q1
21 ¯ 1vnqn

2!, ~3.1!

we notice that the variables are not onlycanonical, $pi ,qj%5d i j but alsoseparated, i.e., each pair
(pi(t),qi(t)) lies on the curve

pi
21v iqi

25const. ~3.2!

In general, let us consider a Hamiltonian system havingd degrees of freedom and integrable
Liouville’s sense. This means that it is given a 2d-dimensional symplectic manifold andd inde-
pendent HamiltoniansHi in involution

$Hi ,H j%50, i , j 51¯d. ~3.3!

A system of canonical variablesl[$l i% i 51
d andm[$m i% i 51

d satisfying

$l i ,l j%5$m i ,m j%50, $l i ,m j%5d i j , ~3.4!

will be calledseparatedif there existsd relations of the form

Wj~l j ,m j ,H1 , . . . ,Hd!50. ~3.5!

For the dressing chain the variables (X,x) are canonical but not separated. We can raise then
question of how to findcanonical separatedvariables for the dressing chain. If the integrab
system is solvable via the Inverse Scattering Method then we can use a method propo
Sklyanin to find the transformation from the canonical variables (X,x) to the canonical separate
variables (l,m). The desired transformation will be obtained as a composition of Ba¨cklund
transformations. The next section is devoted to the Ba¨cklund transformation for the dressing chai
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IV. BÄCKLUND TRANSFORMATIONS

Following Sklyanin, we need to find a canonical transformation~we will use also the name
Bäcklund transformation! from the variables (X,x) to (Y,y). The important property is that th
canonical transformation will depend on the spectral parameterl. This parameterl will allow us
to find at the end the canonical separated variables. Being a canonical transformation, the P
structure and the set of HamiltoniansHi must remain unchanged when expressed in the vari
(Y,y). Since Lax matrixL(u) is a monodromy matrix

L (x)~u!5LN
(x)~u!¯L2

(x)~u!L1
(x)~u!, ~4.1!

we can transform the Lax matrices at each siteLi
(x)(u)

Mi~u2l!Li
(x)~u!5Li

(y)~u!Mi 21~u2l!, ~4.2!

because the tracetN(u) is invariant due toMN(u2l)L (x)(u)5L (y)(u)MN(u2l). To keep the
same Poisson structure we ask that the matricesMi(u) should obey the same Poisson brack
~2.17! asLi(u) obeys. Practically, we first have to choose one out of many matrices which o
the r-matrix Poisson bracket~2.17! and then be lucky enough to find that~4.2! has a solution
Y(X,x), y(X,x) for every spectral parameteru. The solution will depend on the parameterl
which is exactly what we want. The technical way to solve~4.2! is quite interesting. The idea is t
use, besides the phase spaces (X,x) and (Y,y), two more spaces: (S,s) and (T,t). The phase
spaces (S,s) and (T,t) are auxiliary spaces, the Ba¨cklund transformation being between (X,x)
and (Y,y). With the help of these auxiliary spaces, we can write a version of~4.2! as

Mi
(s)~u2l!Li

(x)~u!5Li
(y)~u!Mi

(t)~u2l!. ~4.3!

To go back to~4.2! we simply need to impose the constraints

t i5si 21 , Ti5Si 21 . ~4.4!

We apply now the above method to the dressing chain. The Lax matrix is

Li
(x)~u!5S xi 1

xiXi1b i1l Xi
D . ~4.5!

Here (x) stands for the pair of variables (X,x) and u is the spectral parameter. We choose t
matrix M to be identical withL. Because in~4.3! the indexi is the same on both sides, we ca
drop it and write the matrix equation as

S s 1

u2l1sS SD S x 1

u1b1xX XD 5S y 1

u1b1yY YD S t 1

u2l1tT TD . ~4.6!

The solution to the system is

S52x1j, ~4.7!

X52s1
l1b

t2x
, ~4.8!

T52y1
l1b

t2x
, ~4.9!

Y52t1j. ~4.10!
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We remark thatj is a free variable. This is a consequence of the fact that the conserved H
tonians depend only on the combinationXi1xi 11 . The generating functionFl(y,tux,s) is

Fl~y,tux,s!5y~ t2j!2~x2j!s2~l1b!ln~ t2x!, ~4.11!

from which we get

X5
]Fl

]x
, S5

]Fl

]s
, ~4.12!

Y52
]Fl

]y
, T52

]Fl

]t
. ~4.13!

To simplify the formulas we choose thej5x. The generating function becomes

Fl5y~ t2x!2~l1b!ln~ t2x!. ~4.14!

The constrainst i5si 21 , Ti5Si 21 give

Xi52si1
l1b i

si 212xi
, ~4.15!

which can be solved, in principle, forsi . Then

Yi1yi 115Xi 111xi1si 112si 21 . ~4.16!

In terms of the old variablesgi5Xi1xi 11 the transformation reads

gi5zi2
l1b i

zi 21
, ~4.17!

g̃i5gi 111zi 212zi 11 , ~4.18!

whereg̃i are the transformed variables and

zi5xi 112si . ~4.19!

Note that~4.17! and~4.18! are just the canonical transformations we were looking for. To ob
the concrete form of these transformations we need to solve~4.17! for zi , and then to use thes
values to findg̃i . Because for an arbitraryl equation~4.17! cannot be explicitly solved, we leav
the canonical transformation in an implicit form. However, for special values ofl, the canonical
transformation can be explicitly solved, as we are going to exemplify in Sec. X, Eqs.~10.2!–
~10.4!.

The first equation in~4.17! is the discrete Riccati equation. It can be linearized with the h
of the following change of variables:

zi5
c i 11

c i
. ~4.20!

We obtain

c i 115c igi1~l1b i !c i 21 , i 50,...,N. ~4.21!

The periodic boundary conditionz05zN implies

c1cN215c0cN . ~4.22!
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From ~4.14!, the generating function for the canonical transformation is

Xi5
]Fl

]xi
, ~4.23!

Yi52
]Fl

]yi
, ~4.24!

Fl~y,x!5(
i 51

N

Fl~yisi 21uxisi !5(
i 51

N

yi~si 212xi !2~l1b i !ln~si 212xi !. ~4.25!

Here we denote byx5(x1 ,...,xN). Finally in terms ofzi the generating function can be written a

Fl~y,x!5(
i 51

N

yi~2zi 21!2~l1b i !ln~2zi 21!. ~4.26!

V. CANONICAL TRANSFORMATIONS AND DARBOUX FACTORIZATION

To decipher the meaning of the variableszi present in the canonical transformation~4.17! we
will use the knowledge obtained from the Darboux method of factorization. First, from~4.17!,
find zi 21

2zi 215
l1b i

gi2zi
. ~5.1!

Then, compare this result with formula~2.27! that gives the recurrence relation between t
logarithmic derivatives of the Bloch eigenfunctions

x i5 f i1
l1b i

f i1x i 11
. ~5.2!

We obtain thus

zi 215 f i2x i , ~5.3!

which in terms of the superpotentialsWi52 f i reads as

2zi5Wi1x i .

Therefore the variablezi taken with a minus sign, is the sum between the superpotentialWi and
the logarithmic derivative of the Bloch eigenfunction. It is interesting to obtain the time evolu
of the variableszi . From

2c i91uic i5~l1b i !c i , ~5.4!

ui5 f i81 f i
2 , ~5.5!

zi 218 5 f i82~c i8/c i !8, ~5.6!

we get

zi 218 5x i
22 f i

21l1b i . ~5.7!
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VI. SEPARATED CANONICAL VARIABLES

At this point we have the canonical Ba¨cklund transformations~4.17!. Let us use the symbo
Bl for this transformation. Our goal is to find separated canonical variables. Following Skly
we consider the compositionBl1¯lN

5Bl1
+ ¯ +BlN

of Bäcklund transformations and the corre
sponding generating functionFl1¯lN

(y,x). If we treat l’s as dynamical variables andy’s as
parameters thenFl1 ¯ lN

(y,x) becomes the generating function of theN-parametric canonica
transformation from (X,x) to (m,l) given by

Xi5
]Fl1 ¯ lN

]xi
, m i52

]Fl1 ¯ lN

]l i
. ~6.1!

This transformation is not only canonical but also separates the variables. See Ref. 5 for d
Each pair (l i ,m i) lie on a curve given implicitly by

W~l i ,m i !50. ~6.2!

To find the curve W we use the parameterm which is the variable conjugated tol

m52
]Fl

]l
, ~6.3!

and search for a functionf (m) such that

det~ f ~m!2L~l!!50. ~6.4!

Then the spectral curveW is

W~l i , f ~m i !;Hi ![det~ f ~m i !2L~l i !!50. ~6.5!

For the dressing chain

f ~m!52em. ~6.6!

To prove this, we will show that2em is aneigenvaluefor L(l) so the property det(f(m)2L(l))
50 is immediate.

From the definition ofm ~6.3! and from the generating function~4.26! we get

z1¯zN52em. ~6.7!

Now, by a simple computation

Li
(x)~l!S 1

2si 21
D5zi 21S 1

2si
D . ~6.8!

This proves that forL5LN¯L1 the eigenvalue isz1¯zN .
The spectral curveW(l,m) can be expressed in terms of the tracetN andb i

det~v2L~l!!5v22tN~l! v1)
i 51

N

~l1b i !, ~6.9!

so

e2m1tN~l! em2)
i 51

N

~l1b i !50. ~6.10!
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Here

tN~l!5H1ln1H3ln211¯1H2N11 , ~6.11!

whereN52n11 andH1 ,H3 ,...,H2N11 are integrals of the chain.

VII. QUANTUM CASE

To get the quantum version of the theory described so far we will use the R-matrix appr
This will ensure the commutativity of the HamiltoniansHi after quantization. From classica
variables (x,X) we move to the quantum variables (x,]x). The local quantum Lax matrix

L~uux,]x!5S x 1

u1x]x ]x
D , ~7.1!

verifies the quantum commutation relation

R12~u12u2!L (1)~u1!L (2)~u2!5L (2)~u2!L (1)~u1!R12~u12u2!, ~7.2!

where

R12~u!5u1P12, ~7.3!

is theSL(2)-invariant solution to the quantum Yang–Baxter equation.11 The monodromy operato
and its trace are defined like in the classical case. The commutativity of the HamiltoniansHi

@Hi ,H j #50, ~7.4!

is a consequence of~7.2!. The whole machinery of the Quantum Inverse Scattering Method ca
put to work at this stage. We will limit to study only the Baxter Q-operator and the Baxter
relation. The Q-operator will depend upon the spectral parameterl. Let us denote it byQ(l). The
interesting aspect is that the classical Ba¨cklund transformationBl is the classical limit of the
similarity transformation

O→Q~l!OQ21~l!. ~7.5!

For details see Ref. 5. In the next section we will explicitly constructQ(l) as an integral operator

VIII. Q-OPERATOR

For the BaxterQ-operator we require the three usual properties. First, it has to commute
the trace of the monodromy matrixtN(u)5) i 5N

1 L(uuxi ,]xi
)

@tN~u!,Q~l!#50, ~8.1!

second, it has to commute with itself

@Q~l1!,Q~l2!#50, ~8.2!

and the last important property imposed is the Baxter T-Q equation, i.e., theQ-operator should
satisfy a finite difference equation

tN~l!Q~l!5A~l!Q~l21!1B~l!Q~l11!, ~8.3!

whereA(l) andB(l) are two functions~not operators! of the spectral parameterl.
We will follow Ref. 4 and constructQ(l) as an integral operator
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~Q~l!c!~x!5E dtE dy)
i 51

N

Rl1b i21~ t i ,xi ut i 21yi !c~y!. ~8.4!

Heredt5dtN¯dt1 and similar for alike symbols. If we introduce theR-operator as

~Rlc!~s,x!5E dyE dtRl~s,xut,y!c~y!, ~8.5!

the formula~8.4! can be understand in the general sense of the trace of a monodromy mat

Q~l!5TrtN
Rl1bN21

1
¯ Rl1b121

N . ~8.6!

In the notationRl(t,yus,x) we recognize theauxiliary indexess, t, and thequantumindexes
x, y. TheQ-operator can be expressed as an integral operator

~Q~l!c!~x!5E dy1 ¯ E dyNQl~xuy!c~y!, ~8.7!

with the kernel

Ql~xuy!5E dtN ¯ E dt1)
i 5N

1

Rl1b i21~ t i 21 ,xi ut i ,yi !. ~8.8!

After this general introduction, we move forward to find the concrete form of the operatorRl .
The first property of the Baxter Q-operator, namely the commutation@tN(u),Q(l)#50 is fulfilled
if Rl is a solution of an equation similar to~7.2!

M ~u2lus,]s!L~uux,]x!Rl5RlL~uuy,]y!M ~u2lut,] t!, ~8.9!

whereL(uux,]x) is the local quantum Lax matrix~7.1! and M (u2l) is another matrix which
obeys the quantum commutation~7.2.! The main difficulty is how to choose the matrixM (u
2l) so that, Eq.~8.9! for R(l) has a solution for every complex parameteru and by the other
hand theQ-operator thus obtained has the required properties. The second property
Q-operator comes from the Yang–Baxter equation which can be obtained from~8.9! by a standard
technique, see Ref. 11. Returning to Eq.~8.9! we takeM to be of the same form as the Lax matr
~7.1!. We obtain

S s 1

u2l1s]s ]s
D S x 1

u1x]x ]x
DRl~ t,yus,x!5Rl~ t,yus,x!S y 1

u1y]y ]y
D S t 1

u2l1t] t ] t
D .

~8.10!

On the right-hand side of the above equation, moveRl(ty,sy) from the left side of the matrices
product, to the right side. We have to change]x→2]x andx]x→212x]x . Then the equation
becomes

S s 1

u2l1s]s ]s
D S x 1

u1x]x ]x
DRl~ t,yus,x!

5S y 1

u212y]y 2]y
D S t 1

u2l212t] t 2] t
DRl~ t,yus,x!. ~8.11!

The solution is:

Rl~ t,yus,x!5rld~s2y!ey(t2x)~ t2x!2l21. ~8.12!
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We notice thatR;exp(Fl) for b51. Due to the Dirac function, the solution is gauge ind
pendent, i.e., the solution does not depend on the free variablej from ~4.11!. TheR-operator~8.5!
becomes, after integration overy and changing the variablet2x5j

~Rc!~s,x!5rlE djesj j2l21c~x1j,s!, ~8.13!

or

~Rc!~s,x!5rlslE djej j2l21c~x1s21j,s!. ~8.14!

The branch for the many valued functionsl from ~8.14! is fixed by making a cut along
(2`,0) and taking arg(s)P@2p,p#. We have to specify the factorrl and the integration contou
~in the complexj pane! in ~8.14!. The integration contour is the Hankel contour for the Gam
function12

E
2`

(01)

ejj2zdj5
2p i

G~z!
. ~8.15!

The previous formula inspired us to choose

rl5
1

2p i
G~l11!. ~8.16!

Then

~Rl~c!!~s,x!5
1

2p i
G~l11!slE djejj2l21c~x1s21j,s!. ~8.17!

We are ready now to write the kernel of the Q-operator~8.8!. From~8.12! and~8.6! we obtain

Ql~xuy!5)
i 51

N

wi~l;yi 21 ,yi ,xi !, ~8.18!

where

wi~l;yi 21 ,yi ,xi !5
1

2p i
G~l1b i !e

yi (yi 212xi )~yi 212xi !
2l2b i. ~8.19!

Therefore we have found an explicit form for the BaxterQ-operator~8.18!. Next we are going
to investigate the third property of theQ-operator, namely the Baxter T-Q equation.

IX. BAXTER T-Q EQUATION

This last paragraph aims to show that the Baxter T-Q equation is the quantum version
classical separation of variables~6.1!. The computation parallels the one in Ref. 4. Start from
left side of the Baxter T-Q equation~8.3!

@t~l!Q~l!c#~x!5TrF E dtdyS )
i 5N

1

L~luxi ,]xi
!Rl1b i21~ t i ,xi ut i 21 ,yi !Dc~y!G . ~9.1!

We can integrate overt i and get
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@t~l!Q~l!c#~x!5TrF E dyS )
i 5N

1

L~luxi ,]xi
!wi Dc~y!G , ~9.2!

wherewi are given by~8.19!.
Move all wi to the left using

L~luxi ,]xi
!wi5wiL̃~luxi ,]xi

!, ~9.3!

with

L̃~luxi ,]xi
!5S xi 1

l1b i1xi]xi
ln wi ]xi

ln wi
D , ~9.4!

or

L̃~luxi ,]xi
!5S xi 1

2xiyi1
~l1b i !yi 21

yi 212xi
2yi1

~l1b i !

yi 212xi

D . ~9.5!

At this point we can write

@t~l!Q~l!c#~x!5E dy)
i 5N

1

wiTr~ L̃~luxN ,]xN
!¯L̃~lux1 ,]x1

!!c~y!. ~9.6!

The last step is to perform a gauge transformation which leaves the trace invariant and ma
matricesL̃(luxi ,]xi

) triangular, so the trace will be easy to compute

L̃~luxi ,]xi
!→Ni

21L̃~luxi ,]xi
!Ni 21 . ~9.7!

With the help of the following gauge matrix:

Ni5S 1 0

yi 1D , ~9.8!

the triangular form forL̃(luxi ,]xi
) is

Ni
21L̃~luxi ,]xi

!Ni 215S 2~yi 212xi ! 1

0
l1b i

yi 212xi

D . ~9.9!

The entries of the previous matrix can be expressed in terms of thewi ~8.19!

2~yi 212xi !52~l1b i !
wi~l21!

wi~l!
, ~9.10!

l1b i

yi 212xi
5

wi~l11!

wi~l!
, ~9.11!

so we get for the trace
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Tr~ L̃~luxN ,]xN
!¯L̃~lux1 ,]x1

!!5)
i 51

N

2~l1b i !
wi~l21!

wi~l!
1)

i 51

N
wi~l11!

wi~l!
. ~9.12!

The last result implies the Baxter T-Q equation

t~l!Q~l!52)
i 51

N

~l1b i !Q~l21!1Q~l11!. ~9.13!

Compare~9.13! with the classical result~6.10! written in the form

em1tN2)
i 51

N

~l1bi !e
2m50. ~9.14!

The connection is obvious if we quantify the canonical pair (m,l) as

m→ d

dl
, l→l. ~9.15!

Then ~9.14! becomes an operator acting on the Q-operator

S em1tN2)
i 51

N

~l1b i !e
2mD Q~l!50, ~9.16!

which is the T-Q equation up to a minus sign. To obtain a T-Q equation which exactly match
classical formula, we have to choose forrl the one in~8.16! multiplied with (21)l.

X. THE CASE NÄ3

It is instructive to study the caseN53 which corresponds to the one-gap potentials. The tr
~2.15! of the monodromy matrix~2.14! for N53 is

t3~u!5~g11g21g3!u1g1g2g31g1b31g2b11g3b2 . ~10.1!

The variablesgi , i 51,2,3 are~2.12!: g15X11x2 , g25X21x3 , andg35X31x1 . The transfor-
mation B(l) @~4.17!, ~4.18!# can be explicitly found forl52b i , i 51,2,3. For example, forl
52b2 we get

g̃15g31
b32b2

g2
, ~10.2!

g̃25g12
b32b2

g2
1

b12b2

g31
b32b2

g2

, ~10.3!

g̃35g22
b12b2

g31
b32b2

g2

. ~10.4!

This transformation can be recovered from the Ba¨cklund transformationsTk , k51,2,3
from.2,13 Recall thatTk is given by

Tk~gk61!5gk616
bk112bk

gk
, ~10.5!
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Tk~bk!5bk11 , ~10.6!

Tk~bk11!5bk , ~10.7!

the remainingb j andgj being not changed. We also need to introduce the shiftS acting as

S~b i !5b i 21 , ~10.8!

S~gi !5gi 21 . ~10.9!

In terms of these last transformations, we can write

B~2b2!5T2ST1 . ~10.10!

We cannot recoverTk from B(l) because of the difference in nature between these transfo
tions.Tk transforms the parametersb j so it changes solutions of one system of equations~2.4! to
solutions of another system of the same type~2.4!. The transformationsB(l) change the solutions
of the same system~2.4! among themselves. In this respectB(l) is an auto-Ba¨cklund transfor-
mation.

We can try to solve the discrete Riccati equation~4.20! for c i . In this case, we will get
c1 ,...,c3 in terms ofc0 andc4

c15
1

Z
@c42c0~g2g31l1b3!~l1b1!#, ~10.11!

c25
1

Z
@c4g11c0g3~l1b2!~l1b1!#, ~10.12!

c35
1

Z
@c4~g1g21l1b2!2c0~l1b1!~l1b2!~l1b3!#, ~10.13!

with Z5g1g2g31g1(l1b3)1g3(l1b2). It obvious thatzi5c i 11 /c i will depend onc4 andc0

only through their ratioc4 /c0 . This ratio is not a free parameter because the periodic boun
conditionz05z3 imposes a restriction on it.

Though thet-functions are not one of the major players of this paper, it is worthwhile
mention the connection it has with canonical transformations.

Thet-functions for the dressing chain were reported in Ref. 14 forN53. ForN53 case, the
dressing chain~2.4! written in variablesgi , ~2.9!, is

g0852g0~g12g2!1b02b1 ,

g1852g1~g22g0!1b12b2 , ~10.14!

g2852g2~g02g1!1b22b0 .

With the change of variables

g05F182F281c, g15F282F081c, g25F082F181c, ~10.15!

where the constantc is given by 3c5g01g11g2 , the system of equations~10.14! transforms
into

F091F191~F082F18!22c ~F082F18!1b150,

F191F291~F182F28!22c ~F182F28!1b250, ~10.16!
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F291F091~F282F08!22c ~F282F08!1b050.

The t-functionst0 , t1 , t2 are now given by

F05 logt0 , F15 logt1 , F25 logt2 . ~10.17!

In terms of thet-functions, the dressing chain becomes a Hirota type system of equations

~Dx
22cDx1b1! t0•t150, ~Dx

22cDx1b2! t1•t250, ~Dx
22cDx1b0! t2•t050,

~10.18!

where for a polynomialP, the operatorP(Dx) is defined as

P~Dx! F~x!•G~x!5P~]y! F~x1y!G~x2y!uy50 . ~10.19!

At this point the goal is to work the canonical transformation~4.17! and~4.18! in terms of the
t-functions. The canonical transformation~4.17!, ~4.18! namely

gi5zi2
l1b i

zi 21
~10.20!

and

g̃i5gi 111zi 212zi 11 , ~10.21!

cannot be written explicitly as a formula which comprise onlyg̃i andgi . Therefore, we use the
following strategy: Givengi , we have to solve forzi in ~10.20!, and then obtain the transforme
variablesg̃i with the aid of~10.21!. As a result, the canonical transformation for thet-functions
will be written in terms of the variableszi .

First, by simple manipulations of~10.14! and ~10.15! we get

F095g1g22c22
b01b12b2

2
, ~10.22!

and similarly forF19 andF29 . Using ~10.17! we get

~ loge2g0x2
t0!95g1g2 , ~10.23!

and similarly fort1 andt2 . Hereg052 1
2(c

21 (b01b12b2)/3).
After we apply the canonical transformation we obtain the functiont̃0 given by

~ loge2g0x2
t̃0!95g̃1g̃2 . ~10.24!

Now it is easy to write the canonical transformation fort0 , t1 , t2 in terms of the variablezi . Use
~10.20! and ~10.21! in ~10.23! and ~10.24! and get

~ loge2g0x2
t0!95S z12

l1b1

z0
D S z22

l1b2

z1
D ,

~ loge2g1x2
t1!95S z22

l1b2

z1
D S z02

l1b0

z2
D , ~10.25!

~ loge2g2x2
t2!95S z02

l1b0

z2
D S z12

l1b1

z0
D
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and

~ loge2g0x2
t̃0!95S z02

l1b2

z1
D S z12

l1b0

z2
D ,

~ loge2g1x2
t̃1!95S z12

l1b0

z2
D S z02

l1b1

z0
D , ~10.26!

~ loge2g2x2
t̃2!95S z22

l1b1

z0
D S z02

l1b2

z1
D ,

with

g052
1

2 S c21
b01b12b2

3 D , g152
1

2 S c21
b11b22b0

3 D , g252
1

2 S c21
b21b02b1

3 D .

The meaning of the transformations as presented in~10.25! and ~10.26! is that first we must
factorize like in ~10.25! and then use the factorization variableszi to obtain the transformed
t-functions, like in~10.26!.

For the caseN53, the canonical transformation must be carried on three times, each time
anotherl in order to obtain separated canonical variables, see~6.1!. In variablesgi , these trans-
formations read as

g̃i5gi 111zi 212zi 11 , gi5zi2
l11b i

zi 21
,

g5 i5g̃i 111 z̃i 212 z̃i 11 , g̃i5 z̃i2
l21b i

z̃i 21
, ~10.27!

g̃̃̃i5g5 i 111z5 i 212z5 i 11 , g5 i5z5 i2
l31b i

z5 i 21
.

If we addm1 , m2 , m3 given by ~6.7!

em152z1z2z3 , em152 z̃1z̃2z̃3 , em152z51z52z53 , ~10.28!

the variables (l1 ,l2 ,l3 ,m1 ,m2 ,m3) are separated canonical variables. The time evolution
these variables, inherited from the dressing chain~10.14! is such that,~6.10!,

e2m11em12~l11b1!~l11b2!~l11b3!50, ~10.29!

and similarly for the pairs (l2 ,m2) and (l3 ,m3). HeretN(l1) is given by~10.1! with l1 instead
of u.

If we use the notationt (1)5t, t (2)5 t̃, t (3)5t5 and similarly for zi , the transformations
~10.27! for the t-functions, can be compactly expressed as follows:

factorization:

~ loge2g i x
2
t i

(k)!95S zi 11
(k) 2

lk1b i 11

zi
(k) D S zi 12

(k) 2
lk1b i 12

zi 11
(k) D ,

transformation

~ loge2g i x
2
t i

(k11)!95S zi
(k)2

lk1b i 12

zi 11
(k) D S zi 11

(k) 2
lk1b i

zi 12
(k) D .
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Here i 50,1,2, modulo 3, andk51,2,3. The variablesm are given by~10.28! as before.

XI. HAMILTONIAN FLOW FOR THE CASE NÄ3

Here we discuss the time dependence of the canonical variables (Xi ,xi). We regard the
variablex ~i.e., thespacevariable! in the system of Eqs.~2.4! as being a timet for the Hamil-
tonian flow. The Hamiltonian that governs the motion in time is in variablesf i ~2.9! given by

H5 1
3 ~ f 1

31 f 2
31 f 3

31b1f 11b2f 21b3f 3!. ~11.1!

It is useful to list all the variables which appeared so far

g15 f 11 f 2 , f 15 1
2 ~g12g21g3!, g15X11x2 , ~11.2!

g25 f 21 f 3 , f 25 1
2 ~g22g31g1!, g25X21x3 , ~11.3!

g35 f 31 f 1 , f 35 1
2 ~g32g11g2!, g35X31x1 . ~11.4!

The evolution of the variablex1 in time is given by

dx1

dt
5$x1 ,H%. ~11.5!

The Poisson bracket can be computed for two arbitrary functionsf andg from

$ f ,g%5(
a,b

] f

]ya

]g

]yb
$ya ,yb%, ~11.6!

where (y1 ,...,y2N)5(X1 ,...,XN ,x1 ,...,xN). In this way we arrive at

2
dx1

dt
5~ f 1

21 f 2
22 f 3

21b11b22b3!$x1 ,X1%, ~11.7!

which gives the evolution forx1 knowing that the variables (X1 ,x1) are canonical, i.e.,

$x1 ,X1%51. ~11.8!

From the paper of Veselov and Shabat2 we even know the solutions for the dressing chain in ter
of the elliptic WeierstrassP-functions

f i~ t !5
1

2

P 8~ t1ai !2P 8~bi !

P~ t1ai !2P~bi !
. ~11.9!

We can integrate~11.7! to

2x1~ t !5j~ t1a31b3!1j~ t1a3!1j~b3!2j~ t1a11b1!2j~ t1a1!2j~b1!

2j~ t1a21b2!2j~ t1a2!2j~b2!1b11b22b3 . ~11.10!

Herej852P,bi5P(b i) andai 112ai5bi .
In the quantum case the Hamiltonians are generated from the Lax matrix~7.1!. The trace of

the monodromy matrix is

t3~u!5H1u1H3 , ~11.11!

where
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H15x11x21x31]x1
1]x2

1]x3
, ~11.12!

H35]x1
]x2

]x3
1x1 ]x1

]x3
1x2 ]x2

]x1
1x3 ]x3

]x2
1x2x1 ]x1

1x3x2 ]x2
1x1x3 ]x3

1x1x2x3 .
~11.13!

An interesting feature of the quantum case is the absence of evolution of the variabgi

5]xi
1xi 11 due to

@gi ,H3#50. ~11.14!

This means that there is no quantum analog of the dressing chain in terms of the variablesgi . The
only surviving variables areXi5]xi

and xi which each separately evolve in time under t
HamiltonianH3 .

XII. CONCLUSIONS

For the finite-gap potentials we have shown that the Darboux transformations can be v
as canonical transformations if we apply the method of separation of variables propos
Sklyanin. Not only the finite-gap case~N5odd, a50! is interesting but also the other cases. F
example, the spectrum of the potentials which are solution of the chain in the caseaÞ0 and
arbitraryN is described as following. The ground state is at zero energy; the next (p21) eigen-
values areEl5(k50

l ak , l 50,1,...,(p22), and all other eigenvalues are obtained by add
arbitrary multiples of the quantitya[a01a11¯1ap21 . The general formula for the excite
energy levels is8

na1 (
k50

l

ak ; $n50,1,2,...,`; l 50,1,...,~p21!%. ~12.1!

The above potentials~also calledcyclic shape invariant potentials! are a direct generalization o
the harmonic oscillator. ForN53 the potentials are Painleve´ transcendents.2

In this work we have also shown that there exists a quantum version of the dressing
namely the time evolution of the variables (X,x) under the HamiltonianH1 . From here there are
many ways to proceed. One way is along Bethe–Ansatz procedure. It will be interesting to fi
spectrum of the quantum Hamiltonians. Also, each HamiltonianHi has its own timet i for evolu-
tion, so there must be at-function which depends on all time variablest(t1 ,t2 , . . . ,tN). The
t-function for the dressing chain was reported in Ref. 14 forN53 in connection with the Painleve´
equations. See also Refs. 15, 18, and 19.

We have analyzed the role oft-functions in connection with the factorization method a
canonical transformation. Thet-functions are an important tool in understanding integrable s
tems and we believe that the connections between thet-functions and the Darboux transforma
tions is worth to be studied further.

Finally, a word about KdV. The finite-gap potential theory provides solutions of the peri
boundary problems for KdV equation. The KdV equation

uxt5uxxx26uuxx , ~12.2!

is a partial differential equation in two variables. One variablex we interpreted as a time variabl
associated with the HamiltonianH1 . To what Hamiltonian is the second variable, i.e.,t, associ-
ated? Forb i50 the Hamiltonian isH5

22H1H3 . This result is buried in the paper.16 What is the
meaning of the Sklyanin separation of variables for KdV equation, both classical and qua
From the conformal field point of view, the quantum KdV and the T-Q relation was already stu
in the paper of Ref. 17.

In conclusion, the Darboux transformation together with the new approach of the separa
variables is a promising research direction.
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Regularizing divergences in the von Neumann entropy
Juan C. Retamal and Lautaro Vergara
Departamento de Fı´sica, Universidad de Santiago de Chile, Casilla 307 Correo 2,
Santiago, Chile
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We study the decoherence process of a harmonic oscillator in a dissipative envi-
ronment by considering the von Neumann entropy. Derivatives of the von Neu-
mann entropy around the initial time exhibit divergences when the system is ini-
tially in a pure state. A regularization procedure based on the zeta function
technique is considered in order to extract information about decoherence. ©2002
American Institute of Physics.@DOI: 10.1063/1.1428809#

Quantum-mechanical coherence is of central importance in quantum mechanics. Funda
implications were pointed out in the early days of the quantum theory.1,2 Presently, a problem
which has received considerable attention is the irreversible loss of quantum coherence,
quantum decoherence.3,4 The unavoidable presence of the environment makes a quantum sy
experience a dissipative dynamics,5–8 which is mainly responsible for destroying quantu
coherence.4

Great effort has been devoted to the generation of pure quantum states in a variety of qu
optical devices.9–13 Recently, great importance has been given to the study of those quan
mechanical systems which are capable of preserving quantum-mechanical coherence,14,15 One
important issue closely related to this problem is the characterization of the time scales
decoherence process.16–19Presently, the understanding of these ideas is very important becau
their potential applications in quantum computing, the challenge to provide us with faster
puting machines.

A pure state is defined asr(t)5uc(t)&^c(t)u, in such a way thatr2(t)5r(t) and Trr2(t)
51. A mixed state instead is defined by the class of states which satisfies the inequalityr2

<1; this simple relation leads to the definition of the linear entropy of a quantum stateSl(t)
512Tr r2(t), a quantity which is positiveSl(t)>0 and boundedSl(t)<1.

In a recent paper,19 fundamental questions such as which are the states that remain pure
the time evolution of an open system were addressed. To that end, the dissipative proc
scribed by a Lindblad form20

] tr5
g

2
~2 f r f †2 f †f r2r f †f !, ~1!

was considered and time derivatives ofSl(t) were used both to find whether the eigenstates of
are the only states that remain pure under Eq.~1! and the time scale for the onset of instabilitie
In particular, it was found that the instabilities ofSl(t) are at least of third order in time if the
initial state is an eigenstate off . That is, when considering an initial pure state which is
eigenstate of the operatorf , i.e., f uc0&^c0u5buc0&^c0u, it is found that

Sl1~0!5Sl2~0!50, Sl3~0!5g3ubu2~^A2&2^A&2!, ~2!

whereA5@ f , f †# and

Sln~0!5
dnSl~ t !

dtn U
t50

. ~3!
8660022-2488/2002/43(2)/866/6/$19.00 © 2002 American Institute of Physics
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If A is a constant, then fluctuations ofA are zero in an eigenstate off . However, this can occu
only for either f 5a or f 5ma1na†, that is, the initial state being either a coherent state o
squeezed state; they remain pure for all times. This result establishes that the linear ent
unstable at third order in time for any other kind of states associated to other classes of res
Lindblad dynamics given by Eq.~1!. This result does not contradict that found in Refs. 21 and
because, as is known, the condition for the Lindblad theory is that the time scale considered
open system should be very long compared to the relaxation time of the reservoir.

Since in general any nonlinear invariant of the density matrix is a good measure of qua
coherence, it is natural to ask how those results look if one uses an alternative and widely
functional ofr: the von Neumann entropyS(t)52Tr r(t)ln r(t), which is an ideal parameter with
which to characterize the decoherence, and is in fact the key to understanding the con
between decoherence and fluctuations.

In this work we address this problem, our main result being related to the appearan
divergences of the derivatives of the von Neumann entropy around an initial pure state
system. We show here how to solve the problem of their presence by using the zeta fu
technique, well known in both spectral and quantum field theory.

We know that the von Neumann entropy can be written in terms of the eigenvalues ofr as

S52(
i

l i ln l i . ~4!

For a pure state there exists only the eigenvalues 0 and 1 ofr; and then,S can be conveniently
expressed as

S52 lim
l i→1

l i ln l i1 (
i 8Þ i

lim
e i 8→0

e i 8 ln e i 8 . ~5!

It is clear thatS→0, when we consider the limite i 8 ln ei8→0 whene i 8→0. A different situation
arises when we calculate the derivatives of the von Neumann entropy around the initial tim
the system initially in a pure state. In this case we have

S1~0!52 lim
l i (0)→1

l̇ i~0!ln l i~0!2 lim
l i (0)→1

l̇ i~0!2(
i 8

lim
e i 8(0)→0

ė i 8~0!ln e i 8~0!2(
i 8

lim
e i 8(0)→0

ė i 8~0!.

~6!

We observe that in the decoherence processl̇ i(0),0, ė i 8(0).0 for somee i 8 , such thatS1(0) is
divergent because of the presence of the lnei8(0). This simple calculation raises the question
whether one can consider the derivatives of the von Neumann entropy as giving physical
mation about the decoherence process. In this work we consider this question and sh
comparing with previous results using the linear entropy, that the von Neumann entropy co
the correct information, and in order to extract it unambiguously from the calculation we
consider a procedure to regularize the von Neumann entropy and separate from its derivat
a consistent way, the finite and infinite parts.

A first step to analyze the problem is to characterize which kinds of divergence appear
we consider the derivatives of the entropy evaluated in a pure state. In order to do this we e
the logarithm as

ln~11~r21!!5 (
n51

`
~21!n11

n
~r21!n. ~7!

In a pure state we have (r21)n5(21)n(12r), so that ln(11(r21))52(12r)z(1), wherez(1)
is the Riemann zeta functionz(s)5(n51

` n2s evaluated ats51. From here, it follows that the
entropy isS5Trr(12r)z(1), a result that in principle is not well defined becauser~12r!50
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andz~1! diverges logarithmically. However, if we consider the series term by term, it is evi
that the entropy vanishes in agreement with Eq.~5!. Moreover, when calculating derivatives o
S(t), derivatives of the lnr appear and we can use the formal expansion~7!. In this case,S1(t) is
given by

S152
d

dt
Tr (

n51

`
~21!n11

n
r~r21!n52Tr (

n51

`
~21!n11

n Fr1~r21!n1r
d

dt
~r21!nG

5Tr r1~12r!z~1!1Tr (
n51

`
1

n
r~12r!n21r1 , ~8!

wherern5dnr(t)/dtn. By taking into account thatr(12r)n2150 for n.1, we have

S152@11z~1!#Tr rr1 . ~9!

A similar calculation shows that

S252@11z~1!#Tr~2rr1
21rr2!12z~0!Tr~2rr1

22r1
2!, ~10!

wherez~0!521/2.
It must be stressed that expressions in Eqs.~9! and~10! are completely general because th

are calculated assuming only that the initial state is pure for any dissipative dynamics and
fore are applicable to the exact dynamics. These results contain the divergencez(1), thepresence
of which cannot be an accident as could be implied from the previous calculation forS. For
example, in Eq.~9! the precise value of Trrr1 depends on the particular dynamics and the ini
conditions. In the particular case outlined in Eq.~2!, for an eigenstate off evolving according to
Eq. ~1!, we obtain that Trrr150, butS1 is not well defined because ofz(1). In addition, in the
case of the second derivative ofS, it is not difficult to prove that for the particular case of a
eigenstate off evolving according to Eq.~1!, Tr 2rr1

25Tr r1
2, and

S252@11z~1!#Tr~r1
21rr2!. ~11!

The finite factor inS2 is similar to that found in the case of the linear entropy19

Sl2~ t !522 Tr~r1
21r0r2!, ~12!

which vanishes according to Eq.~2! for an eigenstate off , so that the second derivative of the vo
Neumann entropy is stillS250•`, which is not well defined.

From this analysis we realize that divergences in the derivatives of the von Neumann e
around a pure state are independent of the particular kind of dissipative dynamics. A way
the problem is simply to discard any divergent term appearing in the calculations, but thi
only give a correct result after one manage to define, without ambiguity, the finite part of th
Neumann entropy and its derivatives. This is the essence of a regularization procedure
important to keep in mind that the divergences in the derivatives of the von Neumann entro
related to the existence of zero eigenvalues of the density matrix.

In order to solve the problem, we can benefit from well-established regularization techn
widely used in field theory. It is well known that the calculation of functional determinant
some Hermitian operators involves the evaluation of the logarithm of the operator which co
zero modes~zero eigenvalues!. The technique used in this case to regularize the express
~remove divergent parts arising from zero modes! is the zeta function regularization.23–26We show
in what follows that the von Neumann entropy can be defined in terms of the zeta functio
similar way.

The zeta function associated with a Hermitian operator, the density matrixr(t) in our case, is
defined as
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zr~s,t !5Tr r~ t !2s5(
n

ln
2s~ t !, ~13!

whereln(t) are the eigenvalues ofr(t). We included here a time dependence of the zeta func
which comes from the temporal dependence of the density matrix. It is easy to see from
definition that the von Neumann entropy reads

S~ t !5
d

ds
zr~s,t !us52152Tr r~ t !ln r~ t !. ~14!

The usefulness of this definition resides in the fact that one can represent the zeta functio
integral

zr~s,t !5
1

G~s!
E

0

`

dt ts21 Tr e2tr(t), ~15!

where Tre2tr(t)5( ie
2tl i (t). When the operator involved has zero modes, the integral ab

leads to a divergent part associated with each zero modes. The procedure to remove th
gences is to redefine the integrand in the equation above, such that

zr~s,t !5
1

G~s!
E

0

`

dt ts21Tr@e2tr(t)2P0~r~ t !!#, ~16!

whereP0(r(t)) is the projector onto the zero modes ofr(t).24,25 In this way the remnant part in
the integral is associated only with the nonzero modes, which is the convergent part. We
stress that in this way the expression

S~ t !5 lim
s→21

d

ds
zr~s,t ! ~17!

is an analytic function of time.
Now, let us apply this technique to the problem at hand. It is clear that if we take as the

condition that the system is in a pure state, we have

e2tr512r1re2t, ~18!

such that att50 we have

zr~s,0!5
1

G~s!
E

0

`

dt ts21 Tr@12r1re2t2P0~r!#511
1

G~s!
E

0

`

dt ts21 Tr@12r2P0~r!#.

~19!

This expression clearly shows the existence of a divergence of the zeta function when eva
in a pure state. In this way, in a pure state the projector onto zero modes isP0512r, so that
zr(s,0)51, and hence the entropy in a pure state vanishes, as it should. This procedure is a
giving us a way to recognize, without ambiguity, the finite part of thezr(s,0), which can be
identified with the term in the integrand containing the exponential factore2t. Clearly, any other
term inside gives rise to a divergence with no physical interpretation. This is precisely the id
want to extend to solve the problem with the derivatives of the von Neumann entropy.

We are interested in evaluating temporal derivatives of the entropy using Eq.~14!. To that end,
we must know the temporal derivatives ofzr(s,t). In general, we have that

d

dt
Tr@e2tr(t)#52t (

n52

~2t!n21

~n21!!
Tr rn21r152t (

n51

~2t!n

n!
Tr rnr1 . ~20!
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Assuming an initial pure state, we have

d

dt
Tr@e2tr(t)#u t5052t (

n51

~2t!n

n!
Tr rr15t Tr rr12t (

n50

~2t!n

n!
Tr rr1

5t Tr rr12te2t Tr rr1 ; ~21!

then, the derivative ofzr(s,t) is

d

dt
zr~s,t !U

t50

5
1

G~s!
E

0

`

dt ts21 TrH t~12e2t!rr12
d

dt
P0U

t50
J . ~22!

According to the argument given above, we recognize in this expression the existence
~logarithmic! divergence; this may be assumed to be removed by a counterterm given b
derivative ofP0 .

Tr
d

dt
P0U

t50

5t Tr rr1 . ~23!

Then, the convergent part is given by

d

dt
zr~s,t !U

t50

52
G~s11!

G~s!
Tr rr1 , ~24!

and therefore the first derivative of the entropy att50 for an initial pure state is obtained b
deriving with respect tos according to Eq.~17!

S1~0!5
d

ds

d

dt
zr~s,0!us52152Tr rr1 . ~25!

Notice that this result coincides with that of Eq.~9! once the divergentz~1! is discarded.
The second derivative of the von Neumann entropy can be calculated in a similar way.

case, in order to subtract the divergence we assume this is removed with

Tr
d2

dt2
P05t Tr~r1

222rr1
2!1t Tr~2rr1

21rr2!1~23t212t312t!Tr rr1rr1 , ~26!

and then the finite part of thezr(s,t) at t50 is

d

dt
zr~s,t !u t5052s Tr ~2rr1

21rr2!1~s22s! Tr rr1rr1 ; ~27!

therefore, the second time derivative ofS is

S2~0!5
d

ds

d2

dt2
zr~s,0!us52152Tr~2rr1

21rr2!23 Trrr1rr1 . ~28!

This expression is similar to that found in Eq.~11! once the divergentz~1! is discarded. The
particular case of an eigenstate off , S2(0), gives a similar result to Eq.~12!, because in that cas
Tr 2rr1

25Tr r1
2 and because the term Trrr1rr150.

Of course, in some cases it is not necessary to calculate higher-order derivatives beca
first-order derivative is nonzero, and this derivative gives enough information about the de
                                                                                                                



In
e finite

in Eq.
for-
by the
ction

d. This

d

,

a

hys.

, D.

s

n

871J. Math. Phys., Vol. 43, No. 2, February 2002 Regularizing divergences in von Neumann entropy

                    
ence process.19 However, for the case in Eq.~1! we have to calculate higher-order derivatives.
this case, applying the same procedure and discarding the divergent part, we find that th
part of the third derivative of the von Neumann entropy is

S3~0!5
d

ds

d3

dt3
zr~s,0!us52152Tr~rr313r1r2!.

This can be compared with the corresponding derivative of the linear entropy

Sl3~ t !522 Tr~3r1r21r0r3!, ~29!

showing that upon a factor we get essentially the same information.
These calculations show that the regularized expression for the von Neumann entropy

~17! allows us to distinguish, without ambiguity, the divergent part of its derivatives. The in
mation that these derivatives give about the decoherence process is similar to that found
linear entropy upon a factor. In addition, we have found a new application of the zeta fun
technique, unknown in the literature, to the best of our knowledge.

Since the completion of this work, we have been informed of a recent reference,27 where some
remote connection of the zeta function techniques to information theory has been discusse
is a subject that warrants further investigation.
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Noncommutative cohomological field theory
and GMS soliton
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We show that it is possible to construct a quantum field theory that is invariant
under the translation of the noncommutative parameterumn . This is realized in a
noncommutative cohomological field theory. As an example, a noncommutative
cohomological scalar field theory is constructed, and its partition function is calcu-
lated. The partition function is the Euler number of Gopakumar, Minwalla, and
Strominger~GMS! soliton space. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1418428#

I. INTRODUCTION

Recently noncommutative geometry and noncommutative field theory revived in the
theory.1 There are some correspondences between commutative and noncommutative geo26

For example, in the gauge theory, it was shown that the commutative theory with some
ground field is equivalent to the noncommutative theory.2 After that, a few kinds of nontrivial
solitons in the noncommutative space are discovered. In the gauge theory, U(1) instanton s
was discovered by Nekrasov and Schwartz,3 and in the scalar theory a nontrivial solution w
discovered by Gopakumar, Minwalla, and Strominger,4 which is called the GMS soliton. There i
no corresponding solution in the commutative space, i.e., the GMS soliton is a specific solu
the noncommutative space.

In the noncommutative space, it is difficult to define the length or metric. There are
examples, like a noncommutative torus case, derived the differential geometry, e.g., conn
and curvature.5 But in general noncommutative space, to define the Riemannian geome
difficult. What we can do is to classify the geometry to the extent of the algebric K-the
However, it is not enough to classify the noncommutative space from a point of view of d
ential topology. If there are some characteristic classes that do not vary under the shif
commutative to noncommutative space, then they are useful for the classification of spac
instance, in the noncommutative torus the Euler number is independent of the noncomm
parameteru.6 We expect that some other topological invariants would be extended to noncom
tative space and independent ofu.

The aim of this article is to construct a quantum field theory that is invariant unde
transformation of the noncommutative parameterumn. This parameter characterizes the nonco
mutativity of spaces as

@xm,xn#5
umn

2p i
, ~1.1!

wherexm are the coordinates of the noncommutative space. Noncommutative parameter in
dence of the theory means that the partition function of the theory is independent ofumn. Co-
homological field theory is nominated as such a theory. We construct a cohomological field

a!Electronic mail: sako@math.sci.hiroshima-u.ac.jp
b!Electronic mail: kuroki@theo.phys.sci.hiroshima-u.ac.jp
c!Electronic mail: tomomi@theo.phys.sci.hiroshima-u.ac.jp
8720022-2488/2002/43(2)/872/25/$19.00 © 2002 American Institute of Physics
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on the noncommutative space, and we show that it is actually a usual cohomological field
in the umn50 limit. This fact means that noncommutative space succeed to some geome
topological information of commutative space.

Another purpose of this article is to construct a concrete example of the invariants und
transformation of noncommutative parameterumn. The discovery of the GMS solution is one o
the most important developments in recent work on noncommutative field theory. Therefor
calculate the Euler number of the GMS soliton space as the example ofumn independent partition
function. We will see the relation between the GMS soliton and commutative cohomologica
theory.

Our example of the noncommutative cohomological field theory is a balanced scalar m
that has two multiplets, the scalar and the vector. We consider the case that the potent
general degree polynomial of the scalar field. In the commutative space, the degree of the p
determines the structure of the vacuum. We will show that in the noncommutative space th
similar picture of vacuum structure. As a result of investigation, the correspondence betwe
commutative limitu→0 and the noncommutative limitu→` is obtained. Especially in the larg
u limit, the potential term plays a dominant role, and there are the specific GMS solutions. A
of this article is how we deal with the GMS solitons in quantum field theory.

This article is organized as follows. In Sec. II, we will construct theumn invariant quantum
field theory in general. In Sec. III, we construct a scalar model as a simple example. Bal
topological theory will be used there. It is necessary to introduce potential in topological s
field theory. The partition function is calculated in both limits, commutative and noncommuta
In Sec. IV, we introduce the Morse theory on the noncommutative field theory, and show th
Euler number of the GMS soliton space is well-defined. In the last section, we summariz
discuss our result.

II. GENERAL FORMALISM

The aim of this section is to make a theory that is invariant under the shift of the non
mutative parameterumn . We discuss how we construct the cohomological field theory on
noncommutative space.

A. Cohomological field theory on noncommutative space

The noncommutative parameter is defined in the commutation relation Eq.~1.1!. We introduce
the infinitesimal rescaling operatords as follows:

~12ds!@xm,xn#[@x8m,x8n#5
umn2dumn

2p i
. ~2.1!

This commutation relation is given by definingds as

x8m5xm2dsx
m, ~2.2!

dsx
m5~ 1

2 dumn~u21!nr!xr. ~2.3!

This transformation corresponds tox8m5Auxm in Ref. 4. We denote the inverse matrix of th
transformation~2.2! by

Jr
m[dm

r1 1
2 dumn~u21!nr . ~2.4!

Then, the integration measure and the differential operator are transformed into

dxD5detJdx8D,
]

]xm 5~J21!mn

]

]x8n,
~2.5!

where detJ is the Jacobian. By~2.5! the Moyal product~see, e.g., Ref. 7! is shifted as
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~12ds!~* u!5ds~exp~2p i ]Qm~u2du!mn]W n!!5* u2du , ~2.6!

becauseds(]Qmumn]W n)5]Qmdumn]W n . Note that this transformation is just a rescaling of the coo
nate, so that any action and its partition function are not changed under this transformatio

Su5E dxDL~* u ,]m!5E detJdx8DLS * u2du ,~J21!mn
]

]x8nD , ~2.7!

whereL(* u ,]m) is an explicit description to emphasize that the products of fields are the M
product and it contains derivative terms in the Lagrangian. For convenience, we will often om* u

when we do not misunderstand. In the next step, we shift the noncommutative parameter:

u→u85u1du. ~2.8!

This shift changes the action and the partition function in general, as follows:

Su85E detJdx8DLS * u ,~J21!mn
]

]x8nD . ~2.9!

Compared with~2.7!, the shift is regarded as a rescaling without the Moyal product.
On the contrary, our purpose is to construct a field theory invariant under this shift. Imm

ately we expect the cohomological field theory would be an example since it is scale inv
theory.8–10 Cohomological field theory is understood through several ways. Twisted SUSY is
of them, but noncommutative SUSY is not adverted here.11–13Meanwhile, a geometrical point o
view is closely studied in Sec. IV. The Lagrangian of cohomological field theory is BRST-e
We denote the BRST operator byd̂, and generic bosonic fields byf i , which are sections of som
vector bundlesa(* uf i). The BRST operator is defined as

d̂f i5c i , d̂c i50,
~2.10!

d̂xa5Ha, d̂Ha50,

wheref i andHa are bosonic andc i andxa are fermionic fields. Following the Mathai–Quille
formalism, the action of the cohomological field theory is written as

V5xa~ isa1Ha!, ~2.11!

Su5E dxDL~* u ,]m!5E dxDd̂V. ~2.12!

The partition function is defined by

Zu5E DfDcDxDH exp~2Su!. ~2.13!

In the commutative space, the Mathai–Quillen formalism tells us that the partition function
a representation of the Euler number of the spaceM5$sa

21(0)%.
This partition function is invariant under an infinitesimal transformation which comm

with the BRST transformation~2.10!.

d̂d856d8d̂,

~2.14!
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d8Zu5E DfDcDxDHd8S 2E dxDd̂VDexp~2Su!

5E DfDcDxDH d̂S 2E d8VDexp~2Su!50.

The vacuum expectation value~VEV! of any BRST-exact observable is zero. Note that the p
integral measure is invariant underd8 transformation since every field has only one supersy
metric partner and the Jacobian is totally canceled.

We introduce theu-shift operator as

dsxm52dsxm ,duumn5umn1dumn . ~2.15!

Generally, it is possible to definedu to commute with the BRST operator. Following~2.14!, the
partition function is invariant under thisu-shift and it means that the Euler number of the spaceM
is independent of the noncommutative parameteru.

In the end of this section, we list some general nature of this partition function. First
Gaussian integral is formally defined and an exact result can be given by one-loop calcu
Second, naively the commutative limit (u→0) is given by removing potential terms withou
constant field, and theu→` limit is given by omitting kinetic terms in the action, because t
limit u→0 (u→`) meansJ→0 (J→`) in Eq. ~2.9!.

In the next section, as an example of noncommutative cohomological field theory, we i
tigate the balanced scalar model.

III. BALANCED SCALAR MODEL

In this section, we study a concrete example of noncommutative cohomological field the
u-shift invariant field theory. For simplicity, we use a real scalar model to construct a coh
logical field theory. However, there is no nontrivial example under usual construction of coh
logical field theory. Therefore, we introduce the balanced topological field theory.14,15This theory
is used in the investigation of the Vafa–Witten theory whose partition function is the sum of
number of the zero section spaceM without a sign, in general.16–18 When we calculate the
Vafa–Witten theory, zero mode integration is not essential because there is no ghost n
anomaly. On the contrary, in this article, we carefully calculate the zero mode integrati
compare the commutative limit with the largeu limit.

A. The action

We construct the balanced scalar model. The theory is composed of bosonic scalar fif
andH, fermionic scalar fieldsc andx, bosonic vector fieldsBm andHm , fermionic vector fields
cm andxm , and every field is Hermitian field. We give the BRST transformations~Fig. 1! as

d̂1f5c, d̂2f5x,

FIG. 1. BRST multiplets in the balanced scalar model.d1(d2) carries ghost number11(21).
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2 d̂2c5 d̂1x5H,

d̂1c5 d̂2x5 d̂1H5 d̂2H50,
~3.1!

d̂1Bm5cm,d̂2Bm5xm,

2 d̂2cm5 d̂1xm5Hm,

d̂1cm5 d̂2xm5 d̂1Hm5 d̂2Hm50,

whered̂1 and d̂2 satisfy the following relations,

d̂1
2 5 d̂2

2 50, d̂1d̂21 d̂2d̂150. ~3.2!

The action of the balanced scalar model is

S5E dxDAgL, ~3.3!

where the LagrangianL is given by an exact form with a ghost-number zero functionalF as

L5 i d̂1d̂2F. ~3.4!

In our case, the functionalF is chosen as

F5Bm]mf2 ixmcm2 ixc1V~f,Br!, ~3.5!

whereV(f,Br) is a potential. Therefore the LagrangianL becomes

L5 i d̂1d̂2F5 i d̂1H xm]mf1Bm]mx2 ixmHm2 ixH1S x
d

df DV~f,Br!1S xm
d

dBmDV~f,Br!J
5 i d̂1FxH 2]mBm1

d

df
V~f,Br!2 iH J 1xmH ]mf1

d

dBm V~f,Br!2 iH mJ G5LB1LF , ~3.6!

whereLB(LF) is the bosonic~fermionic! part of the Lagrangian,

LB5 iH H 2]mBm1
d

df
V~f,Br!2 iH J 1 iH mH ]mf1

d

dBm V~f,Br!2 iH mJ , ~3.7!

LF5 ixH ]mcm2S c
d

df D d

df
V~f,Br!2S cm

d

dBmD d

df
V~f,Br!J

2 ixmH ]mc1S c
d

df D d

dBm V~f,Br!1S cn
d

dBnD d

dBm V~f,Br!J . ~3.8!

Here we consider the only case that the potential has separated form as

V~f,Br!5V~f!1 1
2 BmBm. ~3.9!

As a result of taking this potential,Bm has only zero solution in the largeu limit, and this is a
necessary condition to investigate the GMS soliton space. If there is a nontrivialBm solution, then
the moduli space is changed from GMS soliton moduli space and we are not interested in
case.LB andLF , therefore, become
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LB5 iH H 2]mBm1
dV~f!

df
2 iH J 1 iH m~]mf1Bm2 iH m!, ~3.10!

LF5 ixH ]mcm2c
d2V~f!

df2 J 2 ixm~]mc1cm!. ~3.11!

Note that every product of fields should be defined by replacing the normal product b
Moyal product when we consider the noncommutative field theory.

B. Commutative limit u\0

We consider the balanced scalar model in two-dimensional flat noncommutative space
can get the theory on noncommutative space by changing the ordinary product into th
~Moyal! product* u . Although noncommutativity is represented by the noncommutative param
u in the star product, this parameter is absorbed by the rescaling,

xm→Auxm,

* u→* u51 . ~3.12!

However, the action is changed as follows:

SB5E d2xuF iH * H 2
]mBm

Au
1

dV~* f!

df
2 iH J 1 iH m* S ]mf

Au
1Bm2 iH mD G , ~3.13!

SF5E d2xuF ix* H ]mcm

Au
2c

d2V~* f!

df2 J 2 ixm* S ]mc

Au
1cmD G , ~3.14!

whereSB(SF) is the bosonic~fermionic! part of the action and* means* u51 implicitly.
Let us consider theu→0 limit and calculate its partition function, which is compared with t

u→` limit in the next subsection. The partition function is calculated as

Z5E DfDxDcDxmDcmDBmDHDHm exp~2SB2SF!. ~3.15!

The part of the action which contributes to the nonzero modes off andH is

E d2xAu i ~Hm* ]mf2H* ]mBm!. ~3.16!

We perform the integration of the nonzero modes ofHm andBm, and it yields delta functionals

d~A2pu]mf!d~A2pu]mH !. ~3.17!

Therefore, forf and H, only zero mode integrals remains. Next, the part of the action wh
contributes to the nonzero modes ofx andc is

E d2xAu i ~x* ]mcm2xm* ]mc!. ~3.18!

Integration of nonzero modes ofx,c andxm,cm yields the factor

@det~ iAu]m!#xBcm@det~ iAu]m!#xmcB
, ~3.19!
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where the fields with the subscriptB denote nonzero modes. Therefore, forx and c, only zero
modes remain and the partition functionZ becomes

Z5
@det~ iAu]m!#xmcB

@det~A2pu]m!#HmfB

@det~ iAu]m!#xBcm

@det~A2pu]m!#HBBm
E dydx0dc0DxmDcmDBmdH0DHm

3exp~2SB82SF8 !, ~3.20!

where the fields with the subscript0 denote zero modes and the variabley denotes the zero mod
of f ~this is just a real constant number! and

SB85E d2xuFH0H H01 i
dV~y!

dy J 1Hm* ~Hm1 iBm!G , ~3.21!

SF85E d2xu i F2x0c0

d2V~y!

dy2 2xm* cmG . ~3.22!

The factors in front of the integral in Eq.~3.20! cancel each other and only@det(2p)#HmfB

21 remains.

Hm,Bm and the zero mode ofH can be integrated out, and it yields the factor

1

@vu/p#H0

1/2

1

@det~u/p!#Hmf0

1/2

1

@det~u/4p!#H0Bm
1/2 , ~3.23!

wherev is the volume of space–time. This volume is infinity but this will be canceled out bf,
x andc zero mode integration, later. Integration ofxm,cm yields the factor@det(iu)#xmcm, and the
partition functionZ becomes

Z5A p

vu
det~21!E dydx0dc0 exp~2SB92SF9 !, ~3.24!

where

SB95E d2x
u

4 H dV~y!

dy J 2

, ~3.25!

SF952E d2xu ix0c0

d2V~y!

dy2 . ~3.26!

Before integratingy, we expanddV(y)/dy as

dV~y!

dy
5y

d2V~y!

dy2 U
y5yc

1O~y2!, ~3.27!

whereyc is a point of the extrema of the potential,

dV~y!

dy U
y5yc

50, ~3.28!

and we should sum up allyc in the calculation ofZ:

Z5A p

vu
det~21!(

yc

E dydx0dc0 exp~2S8!, ~3.29!
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where

S85vuF1

4 H y
d2V~y!

dy2 U
y5yc

J 2

2 ixc
d2V~y!

dy2 U
y5yc

G . ~3.30!

Note that these zero modes do not depend onxm; then the volumev is factorized out. By
integrating the zero modes off,x andc, we get the partition function,

Z5A p

vu
det~21!(

yc

ivu d2V~y!/dy2 uy5yc

$~vu/4p! d2V~y!/dy2 uy5yc

2 %1/2

52p i det~21!(
yc

sgnF d2V~y!

dy2 U
y5yc

G . ~3.31!

The factor in front of(yc
is removable as a normalizing factor.

Generally, the potentialV(f) is a polynomial of the scalar fieldf:

V~f!5b01b1f1
b2

2!
f21¯1

bm

m!
fm~m>2!, ~3.32!

and so the result Eq.~3.31! becomes

Z5H sgn@bm#: m is even number,

0: m is odd number.
~3.33!

In the limit u→0, it seems that the kinetic term plays a dominant role, but the effect of
potential term survives. By this effect, the degree of the polynomial completely determine
partition function as a cyclic form of Eq.~3.33!.

C. Noncommutative limit u\`

In the strong noncommutative limitu→`, the terms that have derivatives are effective
ignored, and the remaining terms which are potential and mass terms in the balanced scala
determine the field configuration. In the noncommutative space, there is a specific field co
ration, that is, a GMS soliton.4 This soliton is the solution of the field equation, and there
infinite solutions. Hence, the partition function is the sum of contributions from infinite vac
states.

In the largeu limit, the balanced scalar model, Eqs.~3.10! and ~3.11!, is written as

S5SB1SF , ~3.34!

where

SB5E d2xuFH* H dV~* f!

df
2HJ 1Hm* ~Bm2Hm!G , ~3.35!

SF5E d2xuF2 ix* S c
d

df D dV~* f!

df
1 ixm* cmG . ~3.36!

After integrating over the fieldsH, Hm, the action is

S5E d2xuF1

4

dV~* f!

df

dV~* f!

df
2 ix* S c

d

df D dV~* f!

df
1

1

4
Bm* Bm1 ixm* cmG . ~3.37!
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Integration of the fieldsBm, xm andcm is simply performed, and the partition function is writte
as

Z5E DfDxDce2S, ~3.38!

where the action is

S5E d2xuF1

4

dV~* f!

df

dV~* f!

df
2 ix* S c

d

df D dV~* f!

df G . ~3.39!

In the largeu limit, the derivative terms are irrelevant, and the potential terms dominate.~Actually
the kinetic term integral is survived for next order integral but it yields nothing because o
BRST symmetry.! The field configuration is determined by the form of the potential. In partic
the stationary field configuration is obtained by solving the field equation:

dV~* f!

df
50. ~3.40!

In the calculation of the partition function, we should treat these GMS solitons as the stati
points, and the quantum fluctuation is a perturbation from the GMS soliton. In the follo
section, we discuss the treatment of the GMS soliton in the partition function, and understa
GMS soliton from a topological view point.

We consider thefm12 potential,

V~f!5$f-polynomial of~m12!degree%, ~3.41!

and the field equation takes the following factorized form

dV

df
5bmf* ~f2v1!* ~f2v2!*¯* ~f2vm!, ~3.42!

where we assume thev i are real constant numbers withv1,v2,¯,vm21,vm ~see Fig. 2!. The
GMS soliton is given by

fGMS5l iPi , ~3.43!

wherePi is a projection, and satisfies the idempotent relationPi* Pj5d i j Pi . The coefficientl i is
determined by Eq.~3.42!. In the Moyal plane, this projection is given by the Laguerre polynom
2(21)ie2x2

L i(2x2).4 It is possible to choose concrete representation of a corresponding
mapped projection operator, for example,

P̂i5u i &^ i u, ~3.44!

FIG. 2. dV/df , bm.0 andm is odd.
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whereu i & is the number representation base.19,20 The Weyl mapped GMS soliton is written as

f̂GMS5l iP̂i . ~3.45!

We substitute the GMS solution tof of Eq. ~3.42!:

dV~f̂ !

df̂
U

GMS

5bml i~l i2v1!~l i2v2!¯~l i2vm!Pi50. ~3.46!

The solutions of Eq.~3.46! are given by

l i50,v1 ,v2 ,...,vm . ~3.47!

These solutions are coefficients of the GMS soliton. The general GMS solution is a linear
bination of the projections,

f̂GMS5(
i

l iP̂i5v1 (
i PS1

P̂i1v2 (
i PS2

P̂i1¯1vm (
i PSm

P̂i5v1P̂S1
1v2P̂S2

1¯1vmP̂Sm
,

~3.48!

whereSA(AP$1,2,...,m%) is a set of the indices of the projections, and it is defined that if
coefficient of a projectionP̂i is vA in ~3.48!, then the index ‘‘i ’’ belongs toSA . For example, if a
GMS soliton takes the formf̂GMS5v1(P̂11P̂2)1v2(P̂0), thenS15$1,2% andS25$0%. We define
P̂SA

[( i PŜA
Pi . For AÞB(A,BP$1,2,...,m%) the setsSA and SB are disjoint to each othe

SAùSB5B, and the projections are orthogonal,P̂SA
•P̂SB

50. In the commutative space, the fie
equation~3.42! has only constant solutions. On the contrary, in the noncommutative space,
exist GMS solitons that are operators for the Hilbert space of quantized coordinate, and th
make new solutions with linear combinations of projections. The indices of the projection ar
bound above; then the number of the element ofSA (rank SA) is allowed to be infinite. In the
following, we introduce a cut-offN of total number of the rankSA , and then there areN projec-
tions $P̂0 ,P̂1 ,P̂2 ,...,P̂N21%. After the calculation we take the limitN→`.

Next step, we perform a Gaussian integral around each vacuum. Note that, in the comm
space, the number of the solution is (m11), On the contrary, in the noncommutative space th
are (m11)N solutions. In the commutative space, we can take the quantum fluctuation from
vacua of the finite number of simply constant solutions of Eq.~3.42!. On the contrary, there ar
infinite GMS solitons in noncommutative space. Let us take the quantum fluctuation around
of the GMS solitons asf5fuGMS1fq . We expand the Lagrangian around the specific G
soliton,

LS5
1

4 S fq

d

df D dV~* f!

df U *
GMSS fq

d

df D dV~* f!

df U
GMS

2 ix* S c
d

df D dV~* f!

df U
GMS

. ~3.49!

The subscriptS of L means that the Lagrangian is expanded around the GMS soliton specifi
S that is the family of$S1 ,S2 ,...,Sm%. ~The rank k single GMS soliton space is an infinit
dimensional moduli space of solution and it is concretely described as the coset
U(N)/U(k)U(N2k).21 In our case, the GMS solution space contains not only a single soliton
also multi-solitons that have any rank solutions. The moduli space specified byS is
U(N)/U(n0)U(n1)¯U(N21), whereni is the rank ofSi .! On the Moyal plane, the field op
eratorsf̂q , x̂ and ĉ are expanded as

f̂q5 (
i , j 50

`

f i j u i &^ j u,
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x̂5 (
i , j 50

`

x i j u i &^ j u, ~3.50!

ĉ5 (
i , j 50

`

c i j u i &^ j u.

The field operatorsf̂q , x̂ and ĉ are Hermitian operators,

fq
†5fq , x†5x, c†5c. ~3.51!

We rewrite the field such asf i j 5f i j
R1 if i j

I (f i j
R ,f i j

I PR). Then the Hermitian conditions nee
that real~imaginary! parts are symmetric~anti-symmetric!:

f i j
R5f j i

R ,f i j
I 52f j i

I ,

x i j
R5x j i

R , x i j
I 52x j i

I , ~3.52!

c i j
R5c j i

R , c i j
I 52c j i

I .

In the operator picture, the integration in the action is replaced by the trace over the field
tors. The Lagrangian is always described as the Weyl mapped Lagrangian

SS5TrL̂S5SB
S1SF

S , ~3.53!

whereSB
S andSF

S are given by

SB
S5

1

4
uTrS f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

S f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

, ~3.54!

SF
S52 iuTrx̂S ĉ

d

df̂
D dV~f̂ !

df̂
U

GMS

. ~3.55!

First, we consider the bosonic part of the action. The second derivative of the potential is

S f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

5S f̂q

d

df̂
D $bmf̂~f̂2v1!~f̂2v2!¯~f̂2vm!%U

GMS

5bm@f̂q~f̂2v1!~f̂2v2!¯~f̂2vm!

1f̂f̂q~f̂2v2!¯~f̂2vm!1f̂~f̂2v1!fq¯~f̂2vm!

A

1f̂~f̂2v1!~f̂2v2!¯f̂q#f̂5f̂GMS
. ~3.56!

We put the GMS soliton into Eq.~3.56!, and we get

S f̂q

d

df̂ D dV~f̂ !

df̂
U

GMS
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5bm(
A50

m

(
B5A

m

)
i 50

A21

~vB2v i ! (
C50

A

)
j 5A11

m

~vC2v j !P̂SB
f̂P̂SC

5bm(
A50

m

)
i 50

A21

~vA2v i ! )
j 5A11

m

~vA2v j !P̂SA
f̂qP̂SA

1bm (
A.B

A,BP$0,̄ ,r %

(
k5B

A

)
i 50

k21

~vA2v i ! )
j 5k11

m

~vB2v j !P̂SA
f̂qP̂SB

, ~3.57!

where we define the zeroth solution and the zeroth projection by

v0[0,P̂S0
[1̂2P̂S1

2P̂S2
2¯2P̂Sr

, ~3.58!

and we introduce the following symbols for convenience:

)
i 50

21

~v02v i ![1, )
j 5m11

m

~vm2v j ![1. ~3.59!

The coefficient of the cross termP̂SA
f̂qPSB

(A.B) in Eq. ~3.57! is

(
k5B

A

)
i 50

k21

~vA2v i ! )
j 5k11

m

~vB2v j !. ~3.60!

Equation~3.60! is written as

(
k5B

A

)
i 50

k21

~vA2v i ! )
j 5k11

m

~vB2v j !5~vA2v0!~vA2v1!¯~vA2vB21!~vA112vB!

3~vA122vB!¯~vm212vB!~vm2vB!$A2B , ~3.61!

where $A2B is defined as

$A2B[~vB2vB11!~vB2vB12!¯~vB2vA!

1~vA2vB!~vB2vB12!¯~vB2vA!

A

1~vA2vB!~vB112vA!¯~vA212vA!. ~3.62!

We can see $A2B always vanishes for any set ofv i ~see Appendix D!. Then the cross term does no
appear. Finally, the remaining terms are closed in each setSA such as

S f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

5bm(
A50

m

)
i 50

A21

~vA2v i ! )
j 5A11

m

~vA2v j !P̂SA
f̂qP̂SA

. ~3.63!

Then the bosonic part of the action is written as

SB
S5

1

4
u (

A50

m S bm)
i 50

A21

~vA2v i ! )
j 5A11

m

~vA2v j !D 2

Tr@P̂SA
f̂qP̂SA

f̂q#. ~3.64!
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For the fermionic part, the calculation is the same as the bosonic part. Here (ĉ (d/df̂)
3(dV(f̂)/df̂) is given as

S ĉ
d

df̂
D dV~f̂ !

df̂
U

GMS

5bm(
A50

m

)
i 50

A21

~vA2v i ! )
j 5A11

m

~vA2v j !P̂SA
ĉP̂SA

. ~3.65!

Then the fermionic part of the action is written as

SF
S52 iubm(

A50

m

)
i 50

A21

~vA2v i ! )
j 5A11

m

~vA2v j !Tr@ x̂P̂SA
ĉP̂SA

#. ~3.66!

We substitutePSA
5( i PSA

Pi into Eqs. ~3.64! and ~3.66!, and use Eq.~3.50!, Then we get the
action,

SS5SB
S1SF

S5 (
A50

m H 1

4
u (

i , j PSA

~bmzA!2f i j f j i 2 iu (
i , j PSA

bmzAx i j c j i J , ~3.67!

where we define

zA[ )
k50

A21

~vA2vk! )
l 5A11

m

~vA2v l !,AP$0,1,2,...,m%. ~3.68!

Note that thef i j , x i j andc i j are the c-numbers. Using the result in Appendix C, we can estim
both the partition function in the operator representation and in the commutative field repre
tion with the Moyal product, but the results have no difference. Here, we perform the integ
the operator representation. Then the pathintegral becomes simply an integral of real numb~real
Grassmann number!:

ZS5E DxDcDfe2SS

5E )
A50

m

)
m.n

i , j PSA

S df i j

A4pu
D dx i j dc i j exp$2SB

S2SF
S%

5 )
A50

m

@AbmzA#2nA
2
@bmzA#nA

2
, ~3.69!

and we get

ZS5 )
A50

m

@sgn~bmzA!#nA. ~3.70!

HerenA is the number of the elements belonging to the setSA , and we call this number the ‘‘rank’
of SA ; nA5rankSA . The noncommutative parameteru contained under integral measuredf in
the second line of~3.69! comes from the integral ofH. The path integral of the fieldsf i j , x i j and
c i j with indices (i PSA , j PSB ,AÞB) is done with the weight of the kinetic terms, which co
tributes ‘‘1’’ in the partition function. The number of the GMS solitons specified byS
5$S1,S2,...,Sm% is N!/n0!n1!¯nm!, where ni5rankSi. Therefore, the total partition function
that includes all the GMS solitons is given by
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ZTotal5 lim
N→`

(
S

ZS

5 lim
N→`

(
n0 ,¯ ,nm50

n01¯1nm5N

N
N!

n0!n1!¯nm! )
A50

m

@sgn~bmzA!#nA ~3.71!

5 lim
N→`

~sgn@bm# !N~sgnz01sgnz11¯1sgnzm!N. ~3.72!

Under the same condition ofv0,v1,¯,vm as in the previous section~see Fig. 2, too!, the sign
of zA is a simple form,

sgn~zA!5~21!m2A,AP$0,1,2,...,m%. ~3.73!

Then the partition function is

~3.74!

Note that through a simple calculation, the partition function Eq.~3.71! is rewritten as

ZTotal5 lim
N→`

@sgn~bm!#N~21!m (
np50

N

~21!np
N!

~N2np!!np!
@~m11!/2#np~@m/2#11!N2np,

~3.75!

where the bracket@¯# is the Gauss notation. The integernp is the number of negative solutions
and it is the sum ofn2i 11 . This numbernp is related to the Morse theory. This is discussed in
next section.

IV. EULER NUMBER OF GMS SOLITON SPACE

In this section we discuss the properties of the partition function from the point of vie
quantum geometry.

A. Noncommutative Mathai–Quillen formalism

In the beginning, we study the partition function with Mathai–Quillen formalism.
As in the usual cohomological field theory,c is a tangent vector to the zero section, i.e., t

tangent vector to the solution space,$f,Bmusa(f,Bm ,u)50%5M. Note that the vanishing theo
rem asserts that the zero section space is identified with the GMS solution space. In our
sinceBmBm50 has only a trivial solution, the zero section space is identified with$fu dV/df
50%. A condition like the vanishing theorem appears in general in the balanced topologica
theory.

In the commutative limit (u→0), the relevant terms of the bosonic action are

u]mfu21UdVU2

. ~4.1!

df
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So the lowest energy solutions~true vacua! are constant that satisfydV/df 50. The number of
solutions ism11, that is, the exponent ofdV/df in the commutative limit. Hence, there is n
problem in defining the Euler number of the spaceM which consists ofm11 isolated points as
6(k50

m (21)k. On the contrary, in the largeu limit, the number of GMS soliton solutions i
infinite, that is, rank ofK0 . Generally, it is a difficult case to define the Euler number ofM.
However, as we saw in the previous sections, the partition function is invariant under the s
u. Finally, the Euler number of the moduli space is invariant under the noncommutative def
tion of dV/df 50.

The Gaussian integral in the noncommutative field theories is not familiar in general. B
this case, it is well-defined by the supersymmetry. As we see at first, the result of the path in
in the strong noncommutative limit does not contradict the commutative limit. This is eviden
the validity of the Gaussian integral of the noncommutative field theory. Note that the largeu limit
is not the strong coupling limit. We have to consider two parameters, the noncommutative p
eteru and the coupling constantg multiplying overall. In order to get exact results by perturbat
calculations, it is necessary forg to approach zero.

In the cohomological field theory, the partition function does not depend on an overa
rameter like thisg.

We summarize the previous sections by taking account of the fact that the partition funct
cohomological field theory can be regarded as the Euler number ofM by Mathai–Quillen
formalism.22

Theorem IV.1 „u-shift invariants …: The partition functions Zu of the noncommutative co
homological field theories are invariant under the shift of the noncommutative parameteru:

d

du
Zu50. ~4.2!

j

Theorem IV.2 „Euler number of GMS solution space…: On the Moyal plane, when the GM
solution space for real scalar fieldf is

~4.3!

and any two ofv i are different(v iÞv j for iÞ j ), then the Euler number of the spaceMm is
given by

xm5H 1 :m is even number,

0 :m is odd number.
~4.4!

j

B. Noncommutative Morse theory

In this subsection, we see that the noncommutative cohomological field theory can
garded as the noncommutative Morse theory.23,27

In the commutative limit, the partition function of our theory is given by the Hessian
d2V/df2 as we saw in Sec. III. Especially, the zero mode of]mf50 is just a real constan
number. Then the determinant of the Hessian at the critical pointp is determined by the sign of th
second derivative of the real function atp, where the critical pointp is the solution of
dV(x)/dx up50(xPR). We denote the number of negative eigenvalues of the Hessian asnp . In
the commutative limitnp is either 0 or 1, so the partition function is written by
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Z5(
p

detd2V~p!/dp2

udetd2V~p!/dp2u
5(

p
~21!np5H 1: m is even number,

0: m is odd number.
~4.5!

By the fundamental theorem of Morse theory, this is the Euler number of the isolated poin$p%
and this result is consistent with the result of applying Mathai–Quillen formalism to cohomo
cal field theory.

On the other hand, the partition function is determined by the determinant of the op
valued Hessiand2V(f)/df2 in the largeu limit. The critical points are operators, too, i.e. GM
solitons are critical points and they exist infinitely at eachp. But for each critical point, we can
estimate det(d2V(f)/df2). Now we introduce the Morse indexMnp

. Mnp
is defined as the numbe

of GMS solitons satisfying the condition that the Hessian consisting of the GMS solitons hnp

negative eigenvalues. As we saw in Sec. III and the Appendix, thenp is the number of projection
operatorsPi whose coefficients belong top2 in the GMS solution. Here we definep2 andp1 as
the set of critical points that satisfy

d2V~p!

dp2 U
p2

,0,

~4.6!
d2V~p!

dp2 U
p1

.0.

In the case of positive bm , the critical points are p25$v0 ,v2 ,...,vm%, and p1

5$v1 ,v3 ,...,vm21% ~see Fig. 2!. The number ofp2 elements is@(m11)/2#, and the number of
p1 is @m/2#11. Then the number of combinations thatnp projections is combined with@(m
11)/2# points ofp2 in the soliton is@(m11)/2#np. When the total number of projections is fixe
by N, then the remaining (N2np) projections are combined withp1 and its number of combi-
nations is (@m/2#11)(N2np). Then the Morse index is given by

Mnp
~m,N!5@~m11!/2#np~@m/2#11!(N2np)

•

N!

~N2nP!!np!
. ~4.7!

Mnp
is divergent in the limit ofN→`. But we can define the Euler number of the isolated GM

soliton solutions as the fundamental theorem of Morse theory,

xm5 (
GMS

~21!np5(
np

~21!npMnp
~4.8!

5~2@~m11!/2#1@m/2#11!N5H 1: m is even number,

0: m is odd number.
~4.9!

This is a result consistent with Sec. III and the Mathai–Quillen formalism. Therefore we
conclude that the noncommutative cohomological field theory makes it possible to generali
Morse theory for the noncommutative field theory.

V. CONCLUSION AND DISCUSSION

We have studied the noncommutative cohomological field theory. Especially, the bal
scalar model is investigated carefully. A couple of theorems are provided. First, the pa
function is invariant under the shift of the noncommutative parameter. Second, the Euler n
of the GMS soliton space on the Moyal plane is calculated and it is ‘‘1’’ for the scalar pote
with even degree and ‘‘0’’ for odd degree.~Note that the potential in the original GMS pap
corresponds todV(f)/df in our theory. So, the degree of potential is shifted fromm to m11.! In
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general, Mathai–Quillen formalism tells us that the partition function of cohomological
theory is the Euler number of solution spaceM when the space is commutative. We expect t
the noncommutative case is the same as the commutative case. Indeed, as we saw in the
section, it is possible to identify the partition function of the noncommutative cohomological
theory with the Euler number as a result of the fundamental theorem of Morse theory, t
extended to the noncommutative field theory. In this article, we saw this relation in a scalar m
but it is expected that there is no obstacle to applying general cases.

It is possible to use our method for more complex models. For example, we can estima
Euler number of the moduli space of instantons on noncommutativeR4. In that case, the partition
function is the Euler number of the instanton moduli space, and there is some new moduli
of the new instanton like Nekrasov–Schwarz.3,24 For another example, we can change the b
manifold to noncommutative torus. In that case, we will have to use the Powers–Rieffel proje
for calculation in the strong noncommutative limit.20,25 From another point of view, we shoul
study other types of noncommutativity. For example, the noncommutative parameter is a l
defined type, a fuzzy sphere type and so on. To study such various cases it is impor
construct the local geometry of noncommutative spaces. They are left as future works.

Most of the geometric nature of the noncommutative space is still unknown. But, as we
it is likely that some kinds of commutative space are succeeded by noncommutative spa
will have to study a huge number of them to throw light on the noncommutative geometry.
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APPENDIX A: LARGE u LIMIT: f3 POTENTIAL

In this appendix, we show calculations in the largeu limit for simple examples of the balance
scalar model. One example is thef3 potential, and another is thef4 potential that is discussed i
Appendix B.

We consider the cubic potential,

V~f!5b01b1f̂1
1

2
b2f* f1

1

3!
b3f* f* f. ~A1!

The field equation is written as

dV

df
5b11b2f1

1

2
b3f* f5

1

2
b3~f2a!* ~f2b!, ~A2!

where we put

a,b52~b2 /b3!6A~b2 /b3!222~b1 /b3!. ~A3!

We consider the case where botha andb are real numbers. By the redefinition of the fieldf by
a translation,

f8[f2a, ~A4!

the field equation is written as

dV

df
5

1

2
b3f8* ~f82~b2a!!50. ~A5!
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The GMS solution is given by

f̂GMS8 5l iP̂i , ~A6!

where the projection operator isP̂i5u i &^ i u. We put the GMS solution to the field equation,

dV~f̂ !

df̂
5

1

2
b3l i~l i2~b2a!!P̂i50. ~A7!

The solution is

l i50, l i5b2a[v. ~A8!

The general GMS solution is a linear combination of projections with coefficientsl i ,

f̂GMS5v(
i PS

P̂i5vP̂S . ~A9!

The bosonic part of the action is

SB
S52

1

4
u TrS f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

S f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

. ~A10!

The linear terms of expansion ofV(f̂) around the GMS soliton are

S f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

5S f̂q

d

df̂
D Fb3

2
f̂~f̂2v !G

f5fGMS

5
b3

2
$f̂q~f̂GMS2v !1f̂GMSf̂q%

5
b3v

2
$2f̂q~ 1̂2P̂S!1P̂Sf̂q%. ~A11!

Hence, we get

SB
S52

1

4
uS b3v

2 D 2

Tr@f̂q~ 1̂2P̂S!f̂q~ 1̂2P̂S!1P̂Sf̂qP̂Sf̂q#. ~A12!

The fermionic part of the action is

SF
S52 iuTrx̂S ĉ

d

df̂
D dV~f̂ !

df̂
U

GMS

. ~A13!

As is the same as the bosonic part, the leading terms of quantum field are given by

S ĉ
d

df̂
D dV~f̂ !

df̂
U

GMS

5
b3v
2

$2ĉ~ 1̂2P̂S!1P̂Sĉ%. ~A14!

Then the fermionic part of the action is written as

SF
S52

ub3v
2

Tr@2x̂~ 1̂2P̂S!ĉ~ 1̂2P̂S!1x̂P̂SĉP̂S#. ~A15!
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The partition function is given by

ZS5E DxDcDfe2S

5E )
i . j

i , j ÞPS

df i j

A4pu
dx i j dc i j )

i . j
i , j PS

df i j

A4pu
dx i j dc i j e

2SB
S

2SF
S

5FAS b3v
2 D 2G2(N2n)2FAS b3v

2 D 2G2n2F2
b3v
2 G (N2n)2Fb3v

2 Gn2

, ~A16!

and we get

ZS5@2sgn~b3!# (N2n)2
@sgn~b3!#n2

5@2sgn~b3!#N2n@sgn~b3!#n, ~A17!

wheren5rankS. There areN!/(N2n)!n! sets of the GMS solution which has the rankn. Then
the total partition function is the sum overZS with the weightN!/(N2n)!n!,

ZTotal5(
S

ZS

5 lim
N→`

(
n50

N

NCn@2sgn~b3!#N2n@sgn~b3!#n. ~A18!

From the binomial theorem, we find that

ZTotal50. ~A19!

In the f3 potential, the partition function is zero.

APPENDIX B: LARGE u LIMIT: f4 POTENTIAL

Here we consider another simple example which hasf4 potential,

V~f!5b01b1f1
1

2
b2f* f1

1

3!
b3f* f* f1

1

4!
b4f* f* f* f. ~B1!

The field equation is always written as a factorization form

dV

df
5

1

3!
b4~f2a!* ~f2b!* ~f2g!. ~B2!

As is the same as thef3, we translate the scalar field

f8[f2a. ~B3!

Then the field equation is rewritten as

dV

df
5

1

3!
b4f8* ~f82~b2a!!* ~f82~g2a!!5

1

3!
b4f8* ~f82v1!* ~f82v2!, ~B4!

where we define
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v1[~b2a!,v2[~g2a!. ~B5!

For simplicity we takea, b andg are real numbers. We put the GMS solutionfGMS8 5l iPi into the
field equation; then

dV

df
5

1

3!
b4l i~l i2v1!~l i2v2!Pi50. ~B6!

The solution is

l i50,v1 ,v2 . ~B7!

The general GMS solution is a linear combination of projections with coefficientsl i ,

fGMS5v1 (
i PS1

Pi1v2 (
i PS2

Pi ~B8!

5v1PS1
1v2PS2

. ~B9!

The bosonic part of the action is given by

SB
S52

1

4
TrF S f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

S f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

G . ~B10!

The linear terms of expansion ofV(f̂) around the GMS soliton are

S f̂q

d

df̂
D dV~f̂ !

df̂
U

GMS

5S fq

d

df̂
D Fb4

3!
f̂~f̂2v1!~f̂2v2!G

f̂5f̂GMS

5
b4

3!
$f̂q~f̂GMS2v1!~f̂GMS2v2!1f̂GMSf̂q~f̂GMS2v2!

1f̂GMS~f̂GMS2v2!f̂q%

5
b4

3!
$~v1v2!f̂q~ 1̂2P̂S1

2P̂S2
!1~v1P̂S1

v2P̂S2
!f̂q@2v2~ 1̂2P̂S1

2P̂S2
!

1~v12v2!P̂S1
#1v2~v22v1!P̂S2

f̂q%. ~B11!

The bosonic part of the action is

SB
S52

1

4
uTr@~b4z0!2f̂q~ 1̂2P̂S1

2P̂S2
!f̂q~ 1̂2P̂S1

2P̂S2
!

1~b4z1!2P̂S1
f̂qP̂S1

f̂q1~b4z2!P̂S2
f̂qP̂S2

f̂q#, ~B12!

where we define

z0[
1

3!
v1v2 , z1[

1

3!
v1~v12v2!, z2[

1

3!
v2~v22v1!. ~B13!

The fermionic part of the Lagrangian is written as
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SF
S52 iuTrx̂S ĉ

d

df̂
D dV~f̂ !

df̂
U

GMS

. ~B14!

The BRST operation is given by

S ĉ
d

df̂
D dV~f̂ !

df̂
U

GMS

5
b4

3!
$~v1v2!ĉ~ 1̂2P̂S1

2P̂S2
!1~v1P̂S1

1v2P̂S2
!ĉ

3@2v2~ 1̂2P̂S1
2P̂S2

!1~v12v2!P̂S1
#1v2~v22v1!P̂S2

ĉ%. ~B15!

Then the fermionic part is

SF
S52 iuTr@b4z0x̂~ 1̂2P̂S1

2P̂S2
!ĉ~ 1̂2P̂S1

2P̂S2
!1b4z1x̂P̂S1

ĉP̂S1
1b4z2x̂P̂S2

ĉP̂S2
#.

~B16!

The partition function is given by

ZS5E DxDcDfe2S ~B17!

5E )
SÄS0

S2 F )
m.n
i , j PS

df i j

A4pu
dx i j dc i j e

2SB
S

2SF
S

5@A~b4z0!2#2(N2n12n2)2
@A~b4z1!2#2n1

2
@A~b4z2!2#2n2

2

3@b4z0# (N2n12n2)2
@b4z1#n1

2
@b4z2#n2

2
. ~B18!

Hence, we get

ZS5@sgn~b4z0!# (N2n12n2)2
@sgn~b4z1!#n1

2
@sgn~b4z2!#n2

2
, ~B19!

wheren15rankS1 , andn25rankS2 . From the definition ofz i ’s, one of sgn(zi) is always nega-
tive, and the others are positive. Then the partition function is always written as

ZS5@sgn~b4!# (N2n12n2)2
@2sgn~b4!#n1

2
@sgn~b4!#n2

2
~B20!

5@sgn~b4!#N2n12n2@2sgn~b4!#n1@sgn~b4!#n2. ~B21!

There areN!/(N2n12n2)!n1!n2! sets of the GMS solution when the ranks ofS1 andS2 aren1

and n2 . Then the total partition function is the sum overZS with the weight N!/(N2n1

2n2)!n1!n2!:

ZTotal5(
S

ZS

5 lim
N→`

(
n1 ,n250

N
N!

~N2n12n2!!n1!n2!
@sgn~b4!#N2n12n2@2sgn~b4!#n1@sgn~b4!#n2

5 lim
N→`

~sgn~b4!2sgn~b4!1sgn~b4!!N5 lim
N→`

~sgn~b4!!N. ~B22!

In the f4 potential, the partition function takes a nonvanishing value limN→`(sgn(b4))
N.
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APPENDIX C: GAUSSIAN INTEGRAL IN THE NONCOMMUTATIVE SPACE

In our calculations, the Gaussian functional integral appears, whose form is

E Df expH 2E d2xf~x!* V~f~x!!U
GMS

* f~x!J , ~C1!

and we convert it into the number representation. Generally, the difference of the operator or
may yield some difference of the result. Therefore we must show that our prescription is co

Generally operators can be represented in the number representation as

Ô5(
m,n

Omnum&^nu, ~C2!

whereÔ is any operator andum&^nu is the basis of the number representation. Any operator ca
represented as the Weyl ordered operator, so the basisum&^nu can be written as

and its Weyl ordered symbol corresponding to the basisum&^nu is

~C3!

f mn~x!5E d2k

~2p!2 f̃ mn~k!ei (k1x11k2x2). ~C4!

Here, we consider the following integral,

E dx̂1dx̂2um&^nup&^qu5E dx̂1dx̂2E d2k

~2p!2

d2k8

~2p!2 f̃ mn~k! f̃ pq~k8!ei (k1x̂11k2x̂2)ei (k18x̂11k28x̂2)

5E d2k

~2p!2 f̃ mn~k! f̃ pq~2k!, ~C5!

where we set@x1,x2#51 for simplicity and use the Baker–Campbell–Hausdorff formula. On
other hand, sinceum&^nup&^qu5um&dnp^qu,

E dx̂1dx̂2um&dnp^qu5E dx̂1dx̂2E d2k

~2p!2 f̃ mq~k!dnpe
i (k1x̂11k2x̂2)5E d2k f̃mq~k!d2~k!dnp .

~C6!

Therefore, we can derive a relation:

E d2k

~2p!2 f̃ mn~k! f̃ pq~2k!5E d2k f̃mq~k!d2~k!dnp . ~C7!

Using Eq.~C7!, we get the following relation:

E d2x fmn~x!* f pq~x!5E d2x fmq~x!dnp . ~C8!

A similar calculation gives
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E d2x fp1q1
~x!* f p2q2

~x!*¯* f pnqn
~x!5E d2x fp1qn

~x!dq1p2
dq2p3

¯dqn21pn
. ~C9!

It is possible to expand any function in terms off mn(x), sof(x) andV(f)uGMS in Eq. ~C1!
are expanded as

f~x!5(
mn

fmnf mn~x!, ~C10!

V~f!uGMS5(
l

Vl f ll ~x!. ~C11!

Therefore we perform the functional integral~C1! using Eqs.~C8! and ~C9! as follows:

E Df expH 2E d2xfmnVlfpq~ f mn~x!* f l l ~x!* f pq!J 5@detuVl u1/2#21. ~C12!

On the other hand, a calculation in the number representation gives

E Df̂ exp$2TrfmnVlfpq~ um&^nu l &^ l up&^qu!%5E Df exp~2fmlVlf lm!5@detuVl u1/2#21,

~C13!

which is the same result as Eq.~C12! without normalizing constant which is canceled out. The
fore, we can perform integration in both representations, and the number operator is used
calculations.

APPENDIX D: $ nÄ0

We prove a theorem here.
The theorem which we will prove here is

(
i 5B

A

)
a50

i 21

~vA2va! )
b5 i 11

r

~vB2vb!50, ~D1!

where integersA,B satisfy 0<B,A<r , and v i is any real number. We defined the followin
notation formally for convenience:

)
a50

21

~vA2va!5 )
a5r 11

r

~vA2va!51. ~D2!

Its proof is as follows.
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Proof:

~D3!

To show that$¯% in Eq. ~D3! equals zero, we define $n as ~Fig. 3!

$n5~v02v1!~v02v2!~v02v3!¯~v02vn!1~vn2v0!•~v02v2!~v02v3!¯~v02vn!

1~vn2v0!~vn2v1!•~v02v3!¯~v02vn!1¯1~vn2v0!¯~vn2vn23!•~v02vn21!

3~v02vn!1~vn2v0!¯~vn2vn23!~vn2vn22!•~v02vn!1~vn2v0!¯~vn2vn23!

3~vn2vn22!~vn2vn21!. ~D4!

We prove $n50 using mathematical induction as follows. First, forn51,

$15~v02v1!1~v12v0!50. ~D5!

Next, we suppose $n50.
And we consider $n11 as ~Fig. 4!

FIG. 3. Graphical representation of $n . The arrowv i←v j means (v j2v i), and all arrows in one figure should b
multiplied.
                                                                                                                



s

os

.

48.

896 J. Math. Phys., Vol. 43, No. 2, February 2002 Sako, Kuroki, and Ishikawa

                    
$n115~v02v1!~v02v2!~v02v3!¯~v02vn21!~v02vn11!~v02vn!1~vn2v0!•~v02v2!

3~v02v3!¯~v02vn21!~v02vn11!~v02vn!1~vn2v0!~vn2v1!•~v02v3!¯~v0

2vn21!~v02vn11!~v02vn!1¯1~vn2v0!¯~vn2vn22!•~v02vn11!~v02vn!

1~vn2v0!¯~vn2vn22!~vn2vn21!•~v02vn!1~vn2v0!¯~vn2vn22!~vn2vn21!

3~vn2vn11!

5$$n2~vn2v0!~vn2v1!¯~vn2vn21!%~v02vn11!1~vn2v0!~vn2v1!¯~vn2vn21!

3$~v02vn!1~vn2vn11!%

5~vn2v0!~vn2v1!¯~vn2vn21!$2~v02vn11!1~v02vn!1~vn2vn11!%50. ~D6!

Therefore $n50 is valid for anyn. Using it, $¯% in Eq. ~D3! equals zero, so the proof i
completed.
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Closure of orbits and dynamical symmetry of screened
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It is shown that for any central potentialV(r ) there exist a series of conserved
aphelion and perihelion vectorsR̃5p3L2g(r )r , g(r )5rV8(r ). However, if and
only if V(r ) is a pure or screened Coulomb potential,R̃ andL constitute anSO4

algebra in the subspace spanned by the degenerate states with a given energy
eigenvalueE,0 at the aphelia and perihelia (ṙ 50). For a pure Coulomb potential,
R̃ is reduced to the Pauli–Runge–Lenz~PRL! vector R and for a screened Cou-
lomb potentialR̃ is reduced to the extended PRL vectorR8. While dR/dt50
always holds, dR8/dt50 holds only at the aphelia and perihelia. Moreover, the
space spanning theSO4 algebra for a screened Coulomb potential is smaller than
that for a pure Coulomb potential. The relation of closed orbits for a screened
Coulomb potential with that for a pure Coulomb potential is clarified. The ratio of
the radial frequencyv r and angular frequencyvf , v r /vf5k51 for a pure Cou-
lomb potential irrespective of the angular momentumL and energyE(,0). For a
screened Coulomb potentialk is determined by the angular momentumL, and
whenk is any rational number~k,1!, the orbit is closed. The situation for a pure
or screened isotropic harmonic oscillator is similar. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1430900#

I. INTRODUCTION

The orbits of a classical particle in an arbitrary central potential, due to the angular mome
conservation, always lie in a plane perpendicular to the angular momentum. However, the
are in general not closed. In classical mechanics, there is a celebrated Bertrand’s theorem,1,2 which
says that the only central forces that result in closed orbits for all bound particles are the in
square law and Hooke’s law. The closure of orbits is guaranteed by an additional cons
quantity ~apart from the energy and angular momentum!—the Runge–Lenz vector for Kepler’
problem3,4 and a quadrupole tensor for the isotropic harmonic oscillator,5,6 which implies a higher
dynamical symmetry than the geometric symmetry~space isotropy!.7–9

In a previous paper, Bertrand’s theorem was extended. It was shown10,11 that for a screened
Coulomb potential~in natural units!

V~r !521/r 2l/r 2 ~0,l!1! ~1!

there may exist an infinite number of closed orbits~rather than ellipses! characterized by a serie
of conserved aphelion and perihelion vectors, i.e., extended Runge–Lenz vector (m51)

R85pÃL2~112l/r !r /r , ~2!

a!Electronic mail: zengbei@yahoo.com
8970022-2488/2002/43(2)/897/7/$19.00 © 2002 American Institute of Physics
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dR8/dt50 at the aphelia and perihelia (ṙ 50), and each closed orbit corresponds to a disc
angular momentum

L5A2l/~12k2! ~3!

~k being a rational number!. It was also shown12 that L andR8 constitute anSO4 algebra in the
subspace spanned by the degenerate states belonging to a given bound energy eigenvalueE,0 at
the aphelia and perihelia (ṙ 50). However, in this case only the energy~but not angular momen
tum! raising and lowering operators can be constructed from the factorization of radial S¨-
dinger equation.10,12A similar situation exists for the isotropic harmonic oscillator.

In this paper we will show that for an arbitrary central potentialV(r ), there always exist a
series of conserved aphelion and perihelion vectors,

R̃5pÃL2g~r !r , ~4!

whereg(r )5rV8(r ), and dR̃/dt50 at ṙ 50. However, it is found that in generalL andR̃ do not
constitute anSO4 algebra at the aphelia and perihelia (ṙ 50). Therefore, the existence ofR̃ does
not imply the closure of an orbit. In Sec. II we will show a theorem concerning the restrictio
the form of V(r ) that L and R̃ constitute anSO4 algebra. A similar theorem concerning th
extended quadrupole tensor for the screened isotropic harmonic oscillator will be presented
III. However, whether these restrictions imply the closure of orbits needs further investig
Finally, the closure of orbits for a bound particle in the screened Coulomb potential and iso
harmonic oscillator will be discussed in Sec. IV from another perspective.

II. DYNAMICAL SYMMETRY OF A SCREENED COULOMB POTENTIAL

Using the angular momentum conservation, it is easy to show that for an arbitrary c
potential V(r ), there always exist a series of conserved aphelion and perihelion vectorsR̃5p
3L2g(r )r , g(r )5rV8(r ). However, not allR̃ can constitute anSO4 algebra withL in a
subspace spanned by the degenerate states belonging to a given bound energy eigenvalueE,0 at
the aphelia and perihelia (ṙ 50). In fact, we have the following theorem.

Theorem 1: If and only if V(r ) is a pure or screened Coulomb potential,L andR̃ constitute
a closedSO4 algebra in a subspace spanned by the degenerate states belonging to a given
energy eigenvalueE,0 at the aphelia and perihelia (ṙ 50).

Proof: The quantum counterpart ofR̃ @see Eq.~4!# is

R̃5 1
2 ~pÃL2LÃp!2g~r !r . ~5!

In addition to the well-known commutation relations

@La ,Lb#5 i eabgLg , ~6!

@La ,R̃b#5 i eabgR̃g , ~7!

it can be shown for the operatorR̃ ~5!,

R̃ÃR̃522i Fp2

2
2

3g~r !1rg8~r !

2 GL . ~8!

Therefore, only when

p2

2
2

3g~r !1rg8~r !

2
5H, ~9!
                                                                                                                



the
a
-

tor

tor

b
mb
tential
ging

, the
is

ates

899J. Math. Phys., Vol. 43, No. 2, February 2002 Screened Coulomb potential

                    
whereH is the Hamiltonian, doL andR̃ constitute anSO4 algebra in a subspace spanned by
degenerate states belonging to a given bound energy eigenvalueE,0 at the aphelia and periheli
( ṙ 50), i.e.,2@3g(r )1rg8(r )#/25V(r ). Thus,V(r ) must satisfy the following differential equa
tion of Euler type;

r 2
d2V

dr 2 14r
dV

dr
12V50. ~10!

Solving the equation, we get

V~r !5
C1

r
1

C2

r 2 , ~11!

whereC1 andC2 are two integral constants. To ensure the existence of bound states,C1,0. Thus,
we have two cases:

~1! C250.
V(r ) is a pure Coulomb potential andR̃ is reduced to the well-known Pauli–Runge–Lenz vec
R5 1

2(pÃL2LÃp)2r /r .
~2! C2Þ50.

V(r ) is just the screened Coulomb potential~in natural units! V(r )521/r 2l/r 2(0,l!1) and
R̃ is reduced toR85 1

2(pÃL2LÃp)2(112l/r )r /r , i.e., the extended Pauli–Runge–Lenz vec
introduced in Refs. 11 and 12.

It is noted that for the pure Coulomb potential,rg(r )2150, and for the screened Coulom
potential, rg(r )2152l/r . rg(r )21 may be considered as a deviation from a pure Coulo
potential. From the above-given discussions, only when the deviation from the Coulomb po
rg(r )21}1/r , R̃ andL constitute anSO4 algebra in a subspace spanned by the states belon
to a given bound energy eigenvalueE,0 at the aphelia and perihelia (ṙ 50). However, even in
this case there exist two distinct features between the two algebras.~a! While dR/dt50 always
holds for a pure Coulomb potential, dR8/dt50 holds only at the aphelia and perihelia.~b! For the
screened Coulomb potential, theL degeneracy of the energy eigenstates is removed. Therefore
dimension of the subspace spanning theSO4 algebra for the screened Coulomb potential
smaller than that for the pure Coulomb potential.

The two-dimensional~2D! case is similar. For any 2D central potentialV(r), one also can
construct a conserved aphelion and perihelion vector,

R̃5pÃL2g~r!r, ~12!

whereg(r)5rV8(r), dR̃/dt50 at ṙ50. The quantum counterpart ofR̃ is

R̃5 1
2 ~pÃL2LÃp!2g~r!r. ~13!

Also, it can be shown that, if and only ifV(r) is a pure or screened Coulomb potential,

@Lz ,R̃x#5 iR̃y , ~14!

@Lz ,R̃y#52 iR̃x , ~15!

@R̃x ,R̃y#522iHL z , ~16!

i.e. ~Lz5xpy2ypx ,R̃x ,R̃y! constitute anSO3 algebra in the subspace spanned by the st
belonging to a given bound energy eigenvalueE,0 at the aphelia and perihelia (ṙ50).
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III. DYNAMICAL SYMMETRY OF A SCREENED ISOTROPIC HARMONIC OSCILLATOR

Now we address the isotropic harmonic oscillator. First we consider the 2D case. It c
shown that for an arbitrary 2D central fieldV(r), there always exist two conserved aphelion a
perihelion quantities,

Q̃xy5h~r!xy1pxpy , ~17!

Q̃15 1
2 @h~r!~x22y2!1~px

22py
2!#, ~18!

where h(r)5V8(r)/r, and dQ̃xy /dt50 and dQ̃1 /dt50 at the aphelia and perihelia (ṙ50).
Similar to theorem 1, we have

Theorem 2: If and only if V(r) is a pure or screened isotropic harmonic oscillator, do
operators~Lz ,Q̃xy ,Q̃1! constitute anSU2 algebra.

Proof: For anyh(r), we have the following commutation relations:

@Lz ,Q̃xy#522iQ̃1 , ~19!

@Lz ,Q̃1#52iQ̃xy , ~20!

@Q̃xy ,Q̃1#522i @h~r!1 1
4 rh8~r!#Lz . ~21!

Therefore, only when

h~r!1 1
4 rh8~r!5C, C.0 ~22!

do ~Lz ,Q̃xy ,Q̃1! constitute anSU2 algebra, i.e.,

rV9~r!13V8~r!24Cr50. ~23!

Solving the equation, we obtain

V~r!5C11C2 /r21
C

2
r2, ~24!

whereC1 andC2 are two integral constants. Neglecting a trivial additional constant ofV(r), i.e.,
letting C150, we have two cases:

~1! C250.
V(r) is a pure isotropic harmonic oscillator andQ̃xy and Q̃1 ~in natural unitsC51! are

reduced to the well-known conserved quantities8,9

Qxy5xy1pxpy , ~25!

Q15 1
2 @~x22y2!1~px

22py
2!#. ~26!

~2! C2Þ0.
V(r) is just the screened isotropic harmonic oscillator~in natural units!

V~r!5 1
2 r22l/r2 ~0,l!1!, ~27!

and

Qxy8 5~112l/r4!xy1pxpy , ~28!
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Q185 1
2 @~112l/r4!~x22y2!1~px

22py
2!#, ~29!

which was introduced in Ref. 12.
It is noted that for a pure isotropic harmonic oscillator,h(r)2150, and for a screened

isotropic harmonic oscillator,h(r)2152l/r. h(r)21 may be considered as a deviation from
pure isotropic harmonic oscillator. From the above discussions, only when the deviation fro
isotropic harmonic oscillatorh(r)21}1/r do (Lz ,Q̃xy ,Q̃1! constitute anSU2 algebra. However,
while dQxy /dt50 and dQ1 /dt50 always hold for a pure isotropic harmonic oscillator, for
screened isotropic harmonic oscillator dQxy8 /dt50 and dQ18/dt50 hold only at the aphelia and
perihelia.

Now we turn to the three-dimensional case. Similarly, we can construct a conserved ap
and perihelion quadrupole tensor for any central fieldV(r ),

Q̃xy5h~r !xy1pxpy , ~30!

Q̃yz5h~r !yz1pypz , ~31!

Q̃zx5h~r !zx1pzpx , ~32!

Q̃15 1
2 @h~r !~x22y2!1~px

22py
2!#5 1

2 ~Q̃xx2Q̃yy!, ~33!

Q̃05
1

2)
@h~r !~x21y222z2!1~px

21py
222pz

2!#5
1

2)
~Q̃xx1Q̃yy22Q̃zz!, ~34!

where h(r )5V8(r )/r . It can be shown that at the pointsṙ 50, dQ̃xy /dt5dQ̃yz /dt5dQ̃zx /dt

5dQ̃1 /dt5dQ̃0 /dt50.
In a similar way as in the 2D case, it can be shown that if and only ifV(r ) is a pure or

screened isotropic harmonic oscillator in the eigen-coordinates8,12 do ~Lj ,Q̃jh ,Q̃1! constitute an
SU2 algebra.

IV. CLOSURE OF ORBITS

From the above-mentioned text, it has been shown that on the one hand the screened C
potential and isotropic harmonic oscillator have higher dynamical symmetry than the geom
symmetry~space isotropy!, and on the other hand there may exist profound relations betwe
pure Coulomb potential~isotropic harmonic oscillator! and a screened Coulomb potential~isotro-
pic harmonic oscillator!. To display this point of view, let us investigate further the condition
closure of classical orbits (L5A2l/(12k2), k,1 being any rational number! for a particle in a
screened Coulomb potential or screened isotropic harmonic oscillator.

Consider the bound states. LetF be the angle between the rays leading from the center to
successive aphelion and perihelion, thenF is given by the integral13

F5E
r p

r a L/r 2

A2~E2V~r !2L82/2r 2!
dr , ~35!

wherer p(r a) is the distance between the center and the perihelion~aphelion!. It was shown13 that
the orbit is closed only whenF is commensurable with 2p. It is easy to verify that for a Coulomb
potential,F[p, and for an isotropic harmonic oscillator,F[p/2, which result in closed orbits
for all bound particles. This may be considered as an alternative argument for the Bert
theorem.

Now we discuss the screened Coulomb potential. For a particle in this field, the equatio
motion are
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ṙ 5A2~E11/r 2L2/2r 2!, ~36!

ḟ5L/r 2, ~37!

and

Fsc5E
r p

r a L/r 2

A2~E11/r 2L82 /2r 2!
dr , ~38!

where

L85AL222l. ~39!

By contrast, let us consider another particle in a pure Coulomb potential with energyE and
angular momentumL8; the equations of motion are

ṙ 5A2~E11/r 2L82 /2r 2!, ~40!

ḟ5L8/r 2, ~41!

and

Fc5E
r p8

r a8
L8/r 2

A2~E11/r 2L82 /2r 2!
dr . ~42!

Comparing~36! and~40!, it is seen that the radial motions of the two particles are the sa
Therefore, we getr p85r p , r a85r a . Let

L8/L5k, ~43!

k<1 for l>0. From~38! and ~42!, we have

Fsc5Fc /k5p/k. ~44!

Obviously, if and only ifk is a rational number, the orbit of a particle in the screened Coulo
potential is closed. In this case, the radial frequencyv r and angular frequencyvf are commen-
surable, andv r /vf5k. For a pure Coulomb potential,k51, and for a screened Coulomb pote
tial whenk is a rational number (k,1), the orbit is closed. Equations~43! and~39! imply thatk
is determined by the angular momentum, or inversely,

L5A2l/~12k2! ~k,1, rational!, ~45!

which is just Eq.~3!. The above-presented discussion intuitively clarifies the relation of the clo
of orbits for a pure and a screened Coulomb potential, and why there exist an infinite num
closed orbits for a particle in the screened Coulomb potential with suitable discrete an
momenta and any negative energy (E,0).

In quantum mechanics, it is well known that for a pure Coulomb potential,v r /vf

5(]E/]nr)/(]E/] l ) 51. Similarly, it can be shown that in the large quantum number limit, fo
screened Coulomb potentialv r /vf5(]E/]nr)/(]E/] l ) 5k.

A similar situation exists for the isotropic harmonic oscillator, butv r /vf52k. For a pure
isotropic harmonic oscillator,k51, and for a screened isotropic harmonic oscillator whenk is a
rational number (k,1), the orbit is closed.
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The generalization a` la Kolmogorov of Tsallis entropy, introduced by the authors in
a previous work@J. Math. Phys.37, 4480~1996!#, is revisited. Invariance properties
are pointed out under weaker conditions than before. This result leads us to wonder
if Tsallis entropy at the Kolmogorov abstraction level brings new information with
respect to the generalization that Kolmogorov did of Shannon entropy. The nega-
tive answer motivates us to look for other generalizations of Tsallis entropy in order
to avoid the lack of new information. Correlation entropies seem to be good can-
didates for this purpose. The relationship of this kind of entropy with the multi-
fractal analysis is studied with the help of the thermodynamic formalism. We also
outline its usefulness to generalize properties of Tsallis entropy. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1429323#

I. INTRODUCTION

The concept of entropy, first introduced in classical thermodynamics, was reinterpret
Shannon in his Mathematical Theory of Communications1 as a measure of uncertainty. Shann
did his formulation at a level which involves just probabilistic vectors. He defines entropy a
positive number

H152 (
i 50

k21

pi log pi , ~1!

where (p0 ,p1 , . . . ,pk21) is a probability vector, i.e.,(pi51.
After Gibbs gave his formulation of the statistical mechanics, it was posed the fundam

problem of relating temporal and ensembles averages~ergodic problem of the classical statistic
mechanics!. It was evident that the simple structure considered in Shannon theory was not e
to treat a problem of this nature, therefore a more elaborated one was necessary. In pa
dynamical aspects should be considered. It is the context in which Kolmogorov2 generalizes
Shannon entropy. He did it by using structures including measure preserving transformatio
allow one to codify in a discrete way the temporal evolution of the systems. For a given pa
of phase space, the quantity of information is calculated by replacing in Eq.~1! probabilities by the
measure of the partition members. Then, Kolmogorov–Shannon entropy involves the aver
the quantity of information of successive partitions.

One parameter families of entropies that contain Shannon entropy as a particular m
have been introduced. Among these, we mention Renyi3 and Tsallis4 entropies. This last one
appeared motivated by problems that require a nonextensive formalism.5 It has been applied to
study, e.g., gravitational systems6,7 and phenomena like anomalous diffusion8 and turbulence.9

For a probability vector (p0 ,p1 , . . . ,pk21) Tsallis entropy reads

a!Author to whom correspondence should be addressed. Electronic mail: vericat@iflysib.unlp.edu.ar
9040022-2488/2002/43(2)/904/14/$19.00 © 2002 American Institute of Physics
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Hq5
12( i 50

k21pi
q

q21
, ~2!

whereq is any real number. Notice that forq→1, Shannon entropy is recovered.
In a previous work,10 hereafter denoted I, we have generalized Tsallis entropy in the s

sense that Kolmogorov did for Shannon’s. There we have shown that, for anyq, the Kolmogorov–
Tsallis family of entropies is invariant under isomorphisms and that invariance is comple
Bernoulli schemes. This last result says to us that two Bernoulli schemes with the same e
are ‘‘finitarilly’’ isomorphic.

The main goal of this article is to point out the true role played by the members o
Kolmogorov–Tsallis family of entropies about their ability to bring new information with resp
to that contained in Kolmogorov–Shannon entropy. The invariance of the Kolmogorov-T
entropies and a theorem by Ya Sinai11 lead us to conclude that, under certain conditions, ma
the ergodicity, there is no substantial contribution of new information. Nevertheless, we d
believe that this claim invalidates the many results in several fields, especially in physics, de
from Tsallis entropy@Eq. ~2!# because in these cases what is actually considered is a part
quantity of information. In fact, in I it was shown that, for Bernoulli schemes, Tsallis entrop
obtained from one step in the definition of the Kolmogorov–Tsallis entropy if the quantit
information is calculated for a particular partition~the canonical generator!.

The cause of the lack of new information may be due to the use of partitions. This is im
in the statement of Sinai’s theorem.11 A way to introduce a family of entropies without usin
partitions is to consider correlation entropies.12 These entropies are associated to a structure
involves, besides a measure, a metric. They are not only invariants under isomorphism
measure theoretic sense, but also under other conditions which are not taken into acc
Sinai’s theorem. These additional conditions are related to the metric and are imposed
function that determines the isomorphism. The family of correlation entropies that we shall
duce directly conducts to Tsallis entropy in the particular case of Bernoulli schemes~endowed
with a metric!. Also it contains, as a particular member, Kolmogorov–Shannon entropy, as i
be shown from the Brin–Katok theorem.13 The correlation approach allows us to extend, in
relatively direct way, some properties of the Tsallis entropy to the level of abstract dyna
systems.

The article is organized as follows. In the next section, the main definitions and results o
briefly reviewed and one of the isomorphism theorems thereof is reformulated under w
conditions. In Sec. III we analyze the possibility that Kolmogorov–Tsallis entropy gives
information with respect to Kolmogorov–Shannon’s. Section IV is devoted to introducing
correlation entropies in the above mentioned sense and also to establish invariant conditi
them. Then, a multifractal analysis is discussed for correlation entropies.

II. KOLMOGOROV–TSALLIS ENTROPY

The mathematical idea of measure preserving transformations generalizes, in some se
physical concept of dynamical system. Let recall that, physically, a dynamical system is u
stood as a collection of particles or states which obey a law that determines their tem
evolution and in such a way that the Liouville theorem is satisfied besides. Recall that the
librium condition are mathematically interpreted as the existence of an invariant measure w
the probability that a state belongs to a certain subspace of the phase space in a given in

From a mathematical point of view a dynamical system or, more precisely, a measur
serving dynamical system is a quadrupleS5(X,B,m,T), whereX is a set~phase space!, B is a
s-algebra,m is a probability measure onB andT is an invertible mapT:X→X which is measur-
able and preservesm, i.e., for any BPB, T21BPB and m(T21B)5m(B).

A particular structure that we shall frequently mention is the so calledBernoulli schemes. In
this case the phase space is
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BS~p!5$x5~xi ! i PZ :xiPV,; i PZ%[)
2`

`

$0,1,2,. . . ,k21%, ~3!

wherep is a probability vector andV5$0,1, . . . ,k21%.
The s-algebra B is that generated by the semi-algebra of the cylindersCa2m , . . . ,am

2m, . . . ,m

5$xPSA :xi5a i : i 52m, . . . ,m%. The measure is defined in the following way: to each po
$xi% is assigned a probabilityP($xi%)5pxi

and the measure of the cylinderCa2m , . . . ,am

2m, . . . ,m is the

product measure

m~C!5P~$a2m%!¯P~$am%!5pa2m
¯pam

. ~4!

These measures can be extended to the wholes-algebraB by the extension Kolmogorov
theorem.14,15

The measure preserving transformation is, finally, the Bernoulli shifts:BS(p)→BS(p) given
by sx5x8, wherexi85xi 11 .

The generalization a` la Kolmogorov of Shannon entropy~1! is defined, first, by measuring th
available quantity of informationH1 which is associated to a partition of the phase spaceX. If
A5$A0 ,A1 ,...,Ak21% is such thatø i 50

k21Ai5X; AiùAj5f ; iÞ j , then

H1~A!52 (
i 50

k21

m~Ai !logm~Ai !. ~5!

Here m(Ai) is interpreted as the probability that a random point lies inAi . Further, the
average of this information quantity, when the experiment repeats infinitely, is calculated. F
all the available information is involved by taking the supreme over all the partitions by me
able sets.

Next we review the generalization presented in I. In order to generalize Tsallis entropy E~2!
according to the previous procedure, we begin by replacing ‘‘probabilitiespi by measuresm(Ai): ’’

Hq~A!5~q21!21S 12 (
i 50

k21

@m~Ai !#
qD , ~6!

whereq is any real number. The caseq51 will be imposed by continuity, and so Eq.~6! yields
expression~5!.

GivenxPX, we consider the following points of its orbit:x, Tx, T2x, . . . ,Tn21x. SinceA is
a partition, for each one of these points there is only one member ofA to which it belongs. Then
we can associate to each pointx a stringl 5(l 0 ,l 1 , . . . ,l n21), which will be called the name
of x of length n. The assignation is done according toTixPAl i

, i 50,1,. . . ,n21. Consequently,
a new partition can be obtained fromA:

A n5$An~ l !:An~ l ! is the set of points with same namel of lengthn%. ~7!

Definition 2.1:Themean generalized entropy, associated to a transformationT that preserves
a measurem, is

hq~T!5~q21!21@12exp~ h̃q~T!!# ~8!

with

h̃q~T!5sup
A

h̃q~A,T! ~9!

and
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h̃q~A,T!5 lim
n→`

1

n
$ log@11~12q!Hq~A n!#%, ~10!

where, forHq(A n), the sum in Eq.~6! must be taken over all the names of lengthn.
Remark:For the particular case of Bernoulli schemesBS(p0 ,p1 , . . . ,pk21), as partition is

considered the ‘‘canonical generator’’G5$Gi%, with Gi5$x5(xl) l PZ : x05 i %5Ci
0 for 0< i<k

21. Thenm(G n)5pa2m
¯pam

and

@ h̃q~G,s!#BS(p0 ,p1 , . . . ,pk21)5 log (
i 50

k21

pi
q , ~11!

which leads to Tsallis entropy for arbitraryq @Eq. ~2!#:

@hq~G,s!#BS(p)[Hq~p!5~q21!21F12 (
i 50

k21

pi
qG , ~12!

and the Shannon expression@Eq. ~1!# is recovered forq→1.
Remark:We have~by the Kolmogorov–Sinai theorem! H1(p)[h1(G,s)5h1(s). However,

for arbitraryq, Hq(p) does not necessarily agree withhq(s).

A. Isomorphism theorems and other properties

In I we have proved the following isomorphism theorem:
Theorem I.1: Let S5(X,B,m,T) andS 85(X8,B 8,m8,T8) be a two isomorphic dynamica

system. Thenhq(T)5hq(T8).
Actually, it can be reformulated under a weaker hypothesis. Before doing this we reca

definition of factor.
Definition: A dynamical systemS 85(X8,B 8,m8,T8) is a factor of the dynamical systemS

5(X,B,m,T) if there exists a measurable subjective mapf :X→X8, such that

~i! For everyB8PB, m( f 21B8)5m8(B8).
~ii ! For everyx, f (Tx)5T8( f x).

Two systemsS andS 8 areweakly isomorphicif S is a factor ofS 8 andS 8 is a factor ofS.
When f is bijective the systems areisomorphic.

Theorem 2.2: Let S 85(X8,B 8,m8,T8) be a factor of the dynamical systemS
5(X,B,m,T). Thenhq(T)<hq(T8) for q.1 andhq(T)>hq(T8) for q,1.

The proof is similar to that given for Theorem I.1, so we omit the details.
The equality holds when the systems are weakly isomorphic. In this case the gene

entropy becomes an invariant under weak isomorphisms.
The generalization in the spirit of Kolmogorov for the Renyi entropy was done in Ref.

There the analogous invariant result was proved.
Proposition 2.3:For any integerm>2 it holds
hq(Tm)5(q21)21@12exp(mh̃q(T))# for everyq.
Proof: We write H̃q(A)511(12q)Hq(A). We recall that a partitionA is a refinement of a

partition C, if any element ofC can be expressed as union of elements ofA. If q,1, then
H̃q(A)>H̃q(C), whereas forq.1 is H̃q(A)<H̃q(C).

Let q,1. We consider a partitionA, and letA m be the partition by names of lengthm
obtained fromA andT. We haveH̃q((A m)n)511(12q)Hq((A m)n) where now (A m)n is the
partition with names of lengthn obtained fromA m andTm. Then
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h̃q~A m,Tm!5 lim
n→`

1

n
$ log@H̃q~~A m!n!#%5 lim

n→`

m

mn
$ log@H̃q~A mn!#%

>m lim
s→`

1

s
H̃q~A s!5mh̃q~A,T!, ~13!

whereA mn is the partition with names of lengthmn built from the partition first given andT.
Thus, by taking the supreme over the finite partitions, we have

h̃q~Tm!>mh̃q~T!. ~14!

For the other inequality, we have the following.
If l PN, then a partition by names of lengthl , with respect to (A,T), involves the orbits

x,Tx, . . . ,Tl 21x, for any pointx. A partition by names of lengthn, with respect to (A m,Tm)
involves the orbitsx,Tmx, . . . ,(Tm)n21x. Further, if l 5mn,mn11, . . . ,mn1m, then A l is a
refinement of (A m)n. Then

1

n
$ log@H̃q~~A m!n!#%<

1

n
$ log@H̃q~A l !#%5

l

n

1

l
$ log@H̃q~A l !#%<

mn1m

n

1

l
$ log@H̃q~A l !#%.

Consequently,

1

n
$ log@H̃q~A mn!#%<mS 11

1

nD 1

l
$ log@H̃q~A l !#%,

and thus

sup
j >n

1

j
$ log@H̃q~A m j!#%<msup

j >n
S 11

1

j D sup
l 5m j,m j11, . . . ,m j1n

1

l
$ log@H̃q~A l !#%.

Therefore,

h̃q~Tm!5 lim
n→`

1

n
$ log@H̃q~~A m!n!#%5 lim

j→`

sup
j >n

1

j
$ log@H̃q~A m! j #%<m lim

n→`

1

l
$ log@H̃q~A l !#%.

Finally,

h̃q~A,Tm!<mh̃q~A,T!, ~15!

for every finite partitionA.
For q.1 the demonstration is similar, taking into account the inversion of the above ineq

ties. j

Proposition 2.4: hq(T13T2)5(q21)21@12exp(h̃q(T1))exp(h̃q(T2))#, where the product of
transformation is defined in the usual form.

Proof: We consider two dynamical systems,S15(X1 ,B1 ,m1 ,T1) and S25(X2 ,B2 ,m2 ,T2),
and define their ‘‘product:’’

S13S25~X13X2 ,B,m,T13T2!,

whereB is the s-algebra generated by rectanglesA1i3A2 j with AakPBa(a51,2) andm is the
product measurem(A1i3A2 j )5m1(A1i)•m2(A2 j ). Let A 8 andA 9 be partitions ofX1 and X2 ,
respectively, and letA be a product partition ofA8 andA9.

Since thes-algebra considered is generated by the rectangles, we have
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h̃q~T13T2!5sup$h̃q~A83A9,T13T2!:A8 partition of X1 A9 partition ofX2%.

h̃q~A83A9,T13T2!5 lim
n→`

1

n
H̃q~~A 83A 9!n!5 lim

n→`

1

n
logS (

l
@m1~~A 8!n!#qD

1 lim
m→`

1

n
logS (

l
@m2~~A 9!n!#qD ,

where both sums are extended over the namesl , of lengthn for T1 andT2 . Then,

h̃q~A 83A 9,T13T2!5h̃q~A 8,T1!1h̃q~A 9,T2!.

Because this is valid for any partition by rectangles, it results in

h̃q~T13T2!5h̃q~T1!1h̃q~T2!,

and so

hq~T13T2!5~q21!21@12exp~ h̃q~T1!!exp~ h̃q~T2!!#. ~16!

j

III. LACK OF NEW INFORMATION IN THE ERGODIC CASE

In view of the previous results, it is natural to ask if the statement of Theorem I.1~or its
stronger version Theorem 2.2! could actually be due to the lack of new information, with resp
to that involved inh1(T,m), of the members of the entropy family. We have an answer in the
that the systems are ergodic. For definition of ergodicity and related topics, see, for example
16 and 14.

Herein we consider as an additional hypothesis that the space (X,m) be ‘‘countable,’’ i.e.,
L2(X,m) have a dense countable subset. We recall the following basic result.

Theorem „Ya Sinai…:11 Let S5(X,B,m,T) be an ergodic Lebesgue space and aBS(p) Ber-
noulli scheme such thath1(T)>@h1#BS(p) , thenBS(p) is a factor ofT.

This theorem, together with Theorem I.1~or Theorem 2.2! and Proposition 2.6 will serve as
basis to answer the question about the lack of new information.

Proposition 2.6:Let S5(X,A,m,T) be an ergodic Lebesgue space such thath1(T)> logK,
for some integerK.1. Then, forq.1,

hq~T!<
12K12q

q21
. ~17!

Proof: Let T be ergodic withh1(T)> logK, for some integerK.1. The right hand side of the
inequality is the classical entropy of the Bernoulli schemeBS(p), with p5(1/K , . . . , 1/K).

By Sinai theoremBS(1/K , . . . , 1/K) is a factor ofT. Then by Theorem I.1~or Theorem 2.2!,

h̃q~T!>@ h̃q#BS(p)>@ h̃q ,G#BS(p)5 logK12q, ~18!

where the last equality follows by taking in Eq.~12! pi51/K. Thus

hq~T!<
12K12q

q21
, for q.1. ~19!

j
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Definition:A dynamical system is aBernoulli automorphismif it is isomorphic to a Bernoulli
scheme.

We are now in conditions of demonstrating that the familyhq does not contain new informa
tion with respect toh1 .

Theorem 2.7:Let S5(X,A,m,T) be a Lebesgue space withT ergodic andh1(T).0. Then

hq~T!5H Cq~h1! if q.1,

` if q,1,
~20!

whereCq is a certain function.
Proof: ~I! Caseq,1. We will use the following result.12

Lemma (Takens and Verbistki):Let h be a real number such that 0<2t log t,h,`, with t
P@0,1#. Then there exists a natural numberm and a vectorp5(p0 , . . . ,pm21) such that

~i! ( i 50
m21pi5t, ~ii ! 2( i 50

m21pi log pi5h.
Then let us consider 0,q,1, nPN and definepi5n2 (11q)/2q, i 50,1,2,. . . ,n21. We have

(
i 50

n21

pi5n3n2 ~11q!/2q5n~q21!/2q→0, with n→` ~21!

and

2 (
i 50

n21

pi log pi5
11q

2q
n~q21!/2q logn→0, with n→`. ~22!

Let t512( i 50
n21pi512n(q21)/2q,

h̄5h1(T)1( i 50
n21pi log pi5h1(T)2

11q

2q
n(q21)/2q.

Now by the above lemma~notice thath̄.2t log t, for n large enough!, there is a natural
numberm and a vector (w0, . . . ,wm21) with (wi5t and2(wi logwi5h̄. Let us define

p5(p0 , . . . ,pn21,pn , . . . ,pn1m21), where pi5n2 (11q)/2q, i 50,1,2,. . . ,n21, pn

5w0 , . . . ,pn1m215wm21 .
Then

(
i 50

n1m21

pi51 and 2 (
i 50

n1m21

pi log pi5h1~T!.

We have determined a Bernoulli schemeBS(p) with classical entropy equal toh1(T). There-
fore by the Sinai theoremBS(p) is a factor ofT and so by Theorem I.1~or Theorem 2.2! we have
hq(T)>@hq#BS(p) . On the other hand, since( i 50

m21pi
q>( i 50

n21pi
q5n(q21)/2q, and withG the canoni-

cal generator we get

@ h̃q~G!#BS(p0 , . . . ,pn21)5 logS ( pi
qD5 log~n~q21!/2q!. ~23!

Therefore,

hq~T!>@hq#BS(p)>
12( i 50

n21pi
q

q21
5

12n~q21!/2q

q21
. ~24!

Becausen can be taken arbitrarily large, we havehq(T)5`, for q,1.
For q negative, we haveq,q0 with 0,q0,1, and, sincehq.hq0

, the theorem also holds in
this case.
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~II ! Caseq.1. We shall consider first the particular situation in whichTm is ergodic, for any
m>2 and h1(Tm).0. For eachx.0, we choose a negative numberMq 5Mq(x) with the
following property: for anyy.0, x>y if and only if Mqx>(12q)y.

If, in particular, x5h1(T).0, and K is an integer such thatK.1, it holds thath1(T)
> logK if and only if Mqh1(T)>(12q)logK. Besidesh1(T)> logK implies BS(1/K , . . . , 1/K)
is a factor ofT ~by Sinai theorem!, and consequentlyh̃q(T)>(12q)logK ~cf. Proposition 2.6!.

Also we haveh1(T)> h̃q(T)/(12q) ; if q.1, this deduces directly from the correspondi
definitions. ThereforeMqh1(T)>h̃q(T), and so

Mqh1~T!

12q
<

h̃q~T!

12q
. ~25!

If it were

Mqh1~T!

12q
,

h̃q~T!

12q
, ~26!

then, by applying Proposition 2.6 in particular toTm, we have

h̃q~Tm!

12q
2

Mqh1~Tm!

12q
5mS h̃q~T!

12q
2

Mqh1~T!

12q
D→1`, with m→1`. ~27!

Then for anm large enough there will an integerK.1 such that

Mqh1~Tm!

12q
, logK,

h̃q~T!

12q
. ~28!

Now we have a contradiction with Proposition 2.6 applied toTm. Let recall that we are
assuming that all the positive iterations ofT are ergodic.

Therefore, ifT is ergodic andTm is ergodic,m>2, it holdsMqh1(T)5h̃q(T).
Next we consider the general situation in which it is required that justT be ergodic. For a

given ergodic transformationT with h1(T).0, there exists a Bernoulli scheme with classic
entropy equal toh1(T).16,17This also will be valid for dynamical systems isomorphic to Bernou
schemes, which are calledBernoulli automorphisms. Thus if T is ergodic withh1(T).0, there
exists Bernoulli automorphismS with h1(T)5 h1(S). Then by the Sinai theoremS is a factor of
T, so thath̃q(T)>h̃q(S). For any transformationT there is associated an operatorLT :L2(X,m)
→L2(X,m), defined byLT@ f #(x)5 f (Tx). It says that this operator has discrete spectrum if th
is an orthonormal basis of eigenfunctions. By a theorem of Rohlin, ifT:X→X is a Bernoulli
automorphism withX countable, the associated operatorLT has discrete spectrum~see e.g., Ref.
16, p. 109!. It can be proved~Ref. 16, p. 66! that if LT has discrete spectrum, thenT is strong-
mixing. What is actually proved is

lim
n→`

~L T
n f ,g!5~ f ,1!~1,g!,

where(.,.) denotes the usual product in the Hilbert spaceL2(X,m).
Thus the Bernoulli automorphismS is mixing and soSm is ergodic for anym>1.18

Recall thath1(T)>h̃q(T)/(12q) , if q.1. Consequently,

Mqh1~T!>h̃q~T!>h̃q~S!5Mqh1~S!5Mqh1~T!. ~29!

Now Cq(h1)5(q21)21@12exp(Mqh1)#, and the theorem is proved. j
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Remarks:A similar theorem for Renyi entropy was proved in Ref. 12.
According to Theorem 2.7, the ergodicity implies a functional relationship betweenh1(T) and

hq(T) ~for q.1!. If this relationship does not occur, then the dynamical system (X,T,m) cannot
be ergodic. In this way the generalization of the Tsallis entropy may be useful to detect ergo

It would be interesting to relax the condition of ergodicity in Theorem 2.7. It is a matte
future investigation. So far we could anticipate that forq.1 the dependence is not directly wit
h1(T), but with a quantity which involves it. Forq,1 the result would be the same, i.e
hq(T)5`. If Tnx5x, for somen, the last assertion could not be true. This is clear from Pro
sition 2.3 and the fact ofhq( id)50. Therefore, it must be required that the set$x:Tnx
5x, for somen% have zero measure. The hypothesish1(T).0 might be also relaxed.

IV. CORRELATION ENTROPIES

Let (X,d) be a compact metric space in which are also given a probability measurem and a
continuous mapT:X→X. Let consider the metricdn(x,y)5max$d(Ti(x)),Ti(y)):i50,1,. . . ,n
21% and let denote withB«,n(x) the ball of radius« in the metricdn .

Definition 3.1:The generalized correlation entropy is

hq
corr~T!5

12eh̃q
corr(T)

q21
, ~30!

where

h̃q
corr~T!5 lim

«→0
h̃q,«

corr~T! ~31!

and the average of the information quantity is given by

h̃q,«
corr~T!5 lim

n→`

1

n
logF E

X
m~B«,n~x!!q21dmG . ~32!

It can see that this entropy generalizesh1(T). For this the following result is used.
Theorem „Brin-Katok 13

…: Let T:X→X be a continuous map in a compact metric spa
(X,d) and letm be aT-invariant Borel measure inX. The following functions are defined inX:

h1~x,T!5 lim
«→0

lim
n→`

2
1

n
logm~B«,n~x!! ~33!

h1~x,T!5 lim
«→0

lim
n→`

2
1

n
logm~B«,n~x!! ~34!

~h1(x,T), h1(x,T) are called theupper and lower local entropies, respectively!. Then

~i! the local entropy does exist, i.e.,h1(x,T)5h1(x,T)5h1(x,T), for everyxPX, and
~ii ! h1(x) is a T-invariant function and*h1(x)dm5h1(T).

Corollary 3.2: limq→1 h̃q
corr(T)5h1(T).

Proof: This corollary follows immediately by using standard results in measure theory~Fatou
lemma, Monotone convergence theorem! and the Brin–Katok theorem. j

The invariance is established in the following terms:
                                                                                                                



ider

count
re.’’

noulli

913J. Math. Phys., Vol. 43, No. 2, February 2002 Generalized entropy

                    
Proposition 3.3:Let (X1 ,d1) and (X2 ,d2) be compact metrizable spaces, and let us cons
mapsT1 : X1→X1 , T2 : X2→X2 andTi invariant measuresm1 , m2 . Let f :X1→X2 be a measur-
able bijection such thatf +T15T2+ f andm1( f 21(A)) 5 m2(A), for every measurable setA. If the
condition

1

K
d1~x,y!<d2~ f ~x!, f ~y!!<Kd1~x,y!, for someK.1, ~35!

holds forx,yPX1 , thenhq
corr(T1) 5hq

corr(T2).
A map f which verifies the above condition is called ofbounded distortion.
Proof: Let x,yPX1 . We have

1

K
d1~T1

i x,T1
i y!<d2~ f ~T1

i x!, f ~T1
i y!!<Kd1~T1

i x,T1
i y!; i 50,1,. . . ,n21. ~36!

Let us call

B«,n
1 ~x!5$y:max$d1~T1

i x,T1
i y!: i 50,1,. . . ,n21%,«%,

B«,n
2 ~x8!5$y8:max$d2~T2

i x8,T2
i y8!,i 50,1,. . . ,n21%,«%.

The condition of bounded distortion is equivalent to

1

K
d1~T1

i x,T1
i y!<d2~T2

i ~ f ~x!!,T2
i ~ f ~y!!!<Kd1~T1

i x,T1
i y!, i 50,1,. . . ,n21. ~37!

Then we haveB«,n
1 (x), f 21(BK«,n

2 ( f (x))), or

m1~B«,n
1 ~x!!<m1~ f 21~BK«,n

2 ~ f ~x!!!!5m2~BK«,n
2 ~ f ~x!!!. ~38!

Analogously

m2~B«,n
2 ~ f ~x!!!<m1~BK«,n

1 ~x!!. ~39!

Thus, forq.1,

lim
n→`

1

n
logF E

X1

m1~B«,n
1 ~x!!q21dm1G< lim

n→`

1

n
logF E

X2

m2~BK«,n
2 ~z!!q21dm2G ,

and

lim
n→`

1

n
logF E

X2

m2~B«,n
2 ~z!!q21dm2G< lim

n→`

1

n
logF E

X1

m1~BK«,n
1 ~x!!q21dm1G .

For q,1, we proceed in a similar way but invert the inequalities.
Therefore, with«→0 we haveh̃q

corr(T1)5h̃q
corr(T2) and, finally,hq

corr(T1) 5hq
corr(T2). j

The invariance conditions related with the metric impose a restriction not taken into ac
in Sinai theorem. So, to have new information it should work in spaces with ‘‘more structu

A. Bernoulli schemes

We shall see that the correlation entropies generalize Tsallis entropy, i.e., for Ber
schemesBS(p0 ,p1 , . . . ,pk21), we havehq

corr5Hq5(12( i 50
k21pi

q/(q21). The metric considered
is
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dBS~x,y!522unu,

wheren5min$uiu:xi5yi%.
For eachm, the ballB22m,n(x), in the metricdn

BS, with respect to the shifts, is the cylinder

$y:xi5yi : i 52n,...,m2n11%.

Thusm(B22m,n(x))5) i 52m
n2m11pxi

, so that

@ h̃q
corr#BS5 lim

n,m→`

1

n
logF E

X
m~B22m,n~x!!q21dmG5 logS ( pi

qD , ~40!

where the last equality is obtained by direct calculus. Then

@hq
corr#BS5

12(pi
q

q21
5Hq~p0 ,p1 , . . . ,pk21!. ~41!

V. RELATIONSHIP WITH MULTIFRACTAL ANALYSIS

The concept of ‘‘multifractal analysis’’ was suggested in relation to the scaling behavio
physical measures on strange attractors.19 In the study of chaotic behaviors one is frequently fac
with invariant sets with a complex mathematical structure and the multifractal analysis trea
so-calledfractal decompositionof these sets. The aim of this procedure is to encode informa
about very complex structures by means of a sufficiently well behaved real function.

Here we will relate~Proposition 4.1! the correlation entropies introduced earlier to the fun
tion

t~q!ªP~qw!2qP~w!, ~42!

whereP(w) is the topological pressureassociated to a given potentialw.
More precisely, letT:X→X be a homeomorphism withX a compact metric space. A ma

w:X→R will be called a ‘‘potential’’ and the topological pressure associated to it is
number17,16

P~w!5sup
m

Hh1~T,m!1E wdmJ , ~43!

where the supreme is taken over all the Borel measuresm, T-invariant onX.
The functiont(q) has been used to describe completely the multifractal spectrum for

entropies and its properties, e.g., the convexity, have been studied.20,21

Now we give some definitions and declare the main hypothesis under which the relatio
between the correlation entropy and the functiont(q) holds. These conditions are much weak
than those used in the multifractal analysis done by other authors.20

An equilibrium statefor the potentialw is a measuremw which satisfies

P~w!5h1~T,mw!1E w dmw . ~44!

Under certain conditions imposed on the mapT and the potentialw an equilibrium state can
be constructed.17 The specification propertyfor a mapT:X→X, introduced by R. Bowen in Ref
22, reads as follows.

A homeomorphismT:X→X has thespecification propertyif, given a finite disjoint collection
of integer intervalsI 1 , . . . ,I k , then, for «.0, there is an integerM («) and a functionF:I
5øI i→X such that
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~i! dist(I i ,I j ).M («) ~Euclidean distance!,
~ii ! Tn12n2(F(n1))5F(n2), and
~iii ! d(Tn(x),F(n)),«, for somex:Tm(x)5x, with m>M («)1 length(I ) and for everyn

PI .

A homeomorphismT:X→X is called expansiveif there is a constantd.0, such that
d(Tn(x),Tn(y)),d, for any integern, impliesx5y.

For a potentialw we put

Sn~w!~x!5 (
i 50

n21

w~Ti~x!!. ~45!

Following Ref. 17, we say that a potentialw belongs to the classnT(X) if the following
condition is fulfilled:

There are constants«,K.0 in a such way that

dn~x,y!,«⇒uSn~w!~x!2Sn~w!~y!u,K. ~46!

A measurem on X is called aGibbs stateif, for sufficiently small«.0, there are constant
A« , B«.0, such that, for anyxPX and for any positive integern, there is

A«$exp@Sn~w!~x!#2nP~w!%<m~Bn,«~x!!<B«$exp@Sn~w!~x!#2nP~w!%. ~47!

Theorem:17–23 Let T be an expansive homeomorphism which has the specification pro
andw be a potential belonging to the classnT(X), Thenmw is an equilibrium state associated
w, which is a Gibbs state. Besides, it is ergodic.

Proposition 4.1:Under the same hypothesis of the previous theorem it holds that

hq
corr~T!5

12exp@t~q!#

q21
. ~48!

Proof: Let m be the equilibrium statemw associated to the potentialw, which exists. It is a
Gibbs state by the theorem above. ForE,X, an (n,«)-separate set16,17 we have

E
X
m~Bn,«~x!!q21dm> (

xiPBn,«/2

E
Bn,«/2

m~Bn,«~x!!q21dm> (
xiPE

m~Bn,«~xi !!q. ~49!

This is becausexPBn,«(xi)⇒Bn,«(xi),Bn,«(x). Denote

Zn~w,E!5 (
xPE

exp@Sn~w!~x!#.

We shall need the following estimations.17

~i! Let E,X be a finite set. IfEn are (n,«)-separate, then the topological pressure can
calculated by

P~w!5 lim
n→`

1

n
logZn~w,En!. ~50!

~ii ! If d is the constant of the expansiveness and«,d/2, then there exists a constantC
5C(w,«) such that

u logZn~w,En!2nP~w!u,C for all n and all maximal~n,«!-separated sets. ~51!
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We consider firstq.1. By using thatE is (n,«)-separated and thatm is a Gibbs state, we
obtain

E
X
m~Bn,«~x!!q21dm>sup

E
H (

xiPE
A«/2

q expF2qnP~w!1 (
j 50

n21

qw~Tj~xi !!G J . ~52!

Therefore, using estimations and taking corresponding limits, we have

h̃q
corr~T!5 lim

«→0
lim
n→`

1

n
logF E

X
m~B«,n~x!!q21dmG>P~qw!2qP~w!5t~q!. ~53!

For the other inequality, letE be (n,«/2)-separated,

E
X
m~Bn,«/2~x!!q21dm< (

xiPE
E

Bn,«/2(xi )
m~Bn,«/2~x!!q21dm< (

xiPE
m~Bn,«~xi !!q21dm, ~54!

since xPBn,«/2(xi)⇒Bn,«/2(x),Bn,«(xi). Thus by using again the estimations and thatm is a
Gibbs state,

E
X
m~Bn,«/2~x!!q21dm<sup

E
H (

xiPE
B«

qexpF2qnP~w!1 (
j 50

n21

qw~Tj~xi !!G J , ~55!

so that

h̃q
corr~T!<P~qw!2qP~w!5t~q!. ~56!

The caseq,1 is proved similarly by inverting inequalities. Finally,

hq
corr~T!5

12exp@t~q!#

q21
. ~57!

j

The facts thatt(q) is strictly convex and its derivative is

dt

dq
5E

X
wdmq2P~w!, ~58!

wheremq is the equilibrium state for the potentialwq5qw2qP(w), were demonstrated first in
Ref. 20 and, under the weaker hypothesis considered in the above results, in Ref. 21.

We finish by outlining the usefulness of this correlation approach to extend properties
Tsallis entropies to general dynamical systems. We show as a sample two of them, s
properties (i ) and (i i ) of Lemma 1 in Ref. 24.

~ i ! h̃q
corr~lT11~12l!T2!>

<lq21E
X
~m1~Bn,«~x!!!q211~12l!q21E

X
m2~Bn,«~x!!q21.

~59!

We have *X(m1(Bn,«(x))1m2(Bn,«(x)))q21dm>
<*X(m1(Bn,«(x)))q211*Xm2(Bn,«(x))q21,

<or> accordingly toq,1 or q.1. The result follows immediately.
For the special case of Bernoulli schemes, (i ) of Lemma 1 in Ref. 24 is obtained.

~ i i ! hq
corr~T!<

12exp@~12q!htop#

q21
, for 0,q,1, ~60!
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wherehtop is the topological entropy ofT. To prove it we use that, for 0,q,1, it holds that

h̃q
corr~T!

12q
<h̃0

corr~T!5t~0!5P~0!, ~61!

and, sinceP(0)5htop,16,17 we get

h̃q
corr~T!<~12q!htop, ~62!

given Eq.~60! which generalizes property (i i ) of Lemma 1 in Ref. 24.
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We prove that the short distance asymptotics for the even Ising model scaling
functions from belowTc is given by the Luther–Peschel formula. Generalizations
to the odd scaling functions and holonomic fields are given. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1425960#

I. INTRODUCTION

In this paper we will use the Sato–Miwa–Jimbo~SMJ! characterization of the scaling func
tions for the two-dimensional Ising model to show that the short distance asymptotics of the
scaling functions below the critical point are given by the Luther–Peschel formula1 ~see Theorem
1!. We will then present results for the odd correlations belowTc and also for holonomic quantum
fields which are a consequence of the same technique used to prove Theorem 1.

This paper is a sequel to Ref. 2 and the reader is referred to that paper for a more d
explanation of the Ising model scaling limits than we will give here. Continuum limits for
two-dimensional Ising correlations on a lattice were first considered in Ref. 3, where, in add
a connection with Painleve´ transcendents was discovered. In a series of papers Sato, Miwa
Jimbo showed that the continuum correlations~the scaling functions! were associated with mono
dromy preserving deformations of the Euclidean Dirac equation and that this connection su
to account for the appearance of the Painleve´ transcendents.4–8 Here we exploit the fact that the
SMJ formula for the log derivative of the scaling function~a t function in their terminology! can
be expressed in terms of the Fourier coefficients of a solution to thelinear Dirac equation. We
analyze the linear problem in order to control the short distance asymptotics. This analys
suggested by the success of Riemann–Hilbert techniques in obtaining asymptotics for no
integrable systems,9 where a similar connection with a linear problem is a central feature.

We would like to point out that the two point function both for the Ising model and
holonomic fields in general has been analyzed in more detail than the result we obtain he
Refs. 10–12. In particular, the constant term in the short distance asymptotics is obtaine
result for the log derivative has nothing to say about this.

We will begin by recalling some of the results of Ref. 2, where a sketch of the the proo
presented. The SMJ characterization involves certain solutions to the Dirac equation in tw
mensions so we will start with a description of the situation of interest to us. The Euclidean
operator inR2 ~with a mass perturbation! is given by

mI2]”5F m 22]

22]̄ m G ,

where

]ª
1

2 S ]

]x1
2 i

]

]x2
D ,

a!Electronic mail: palmer@math.arizona.edu
9180022-2488/2002/43(2)/918/36/$19.00 © 2002 American Institute of Physics
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]̄ª
1

2 S ]

]x1
1 i

]

]x2
D .

Although we will not be working exclusively with holomorphic functions, the presence of] and]̄
in the Dirac operator makes it very convenient to introduce the complex variablez5x11 ix2 with
z̄5x12 ix2 ; we thus identifyR2 with C in the usual fashion. For brevity we will writef (z) for a
function of two real variables even though it is customary to use a notation likef (z,z̄) to avoid the
temptation to regardf (z) as a holomorphic function ofz.

Let a5$a1 ,a2 ,...,aN% denote a collection ofN distinct points inC. The solutions of the Dirac
equation that we are interested in are smooth sections of a rank 2 vector bundle over the pu
planeC\a.

For the purpose of allowing some later remarks we will begin by defining a slightly m
general family ofline bundles,El , than is relevant for the Ising model. Forj 51,2,...,N suppose
real numbersl j are given withul j u<

1
2. Define

L j5e2p il j

and write

l5~l1 ,l2 ,...,lN!.

Roughly speaking the smooth sections of the bundleEl→C\a will be multivalued functions
on C\a with values inC which have multiplierL j when continued about a loop that circlesaj

counterclockwise. This can be made precise in an elegant fashion by working on the s
connected covering space ofC\a and then restricting attention to smooth sections that transf
appropriately under the action ofp1(C\a) by deck transformations. However, some later dev
opments will be clearer for us if we can use functions with specific branching behavior as m
pliers taking sections ofEl to sections of the trivial bundle overC\a. It will be easiest to be
precise about this multiplier action if we define the bundlesEl by giving transition functions, in
spite of the fact that this is a little clumsy.

To begin, note that there are only a finite number of lines each of which consists o
multiples ofai2aj for i and j distinct. Thus it is possible to choose a vectorrÞ0 which is not
contained in any of these lines. Then the rays,r j , defined by

r j5$z:z5aj1tr ,t.0%,

do not intersect. Choose an argumentu r for r so thatr5ur ueiur with uu ru<p and letu(z) denote
the polar angle with

u r2p,u~z!,u r1p, z5uzueiu~z!.

This angle is branched along the ray2r . For e.0 define a tubular neighborhood,t j (e), of r j by

t j~e!5$z:dist~z,r j !,e%ùH z:uu~zj !2u ru,
p

4 J .

Now choosee.0 small enough so that the tubular neighborhoodst j (e) are mutually disjointand
so that the disks,

D j~2e!ª$z:uz2aj u,2e%,

are also mutually disjoint~this will be useful later on!.
We now introduce a covering ofC\a over each element of which the bundleEl is trivial. Let

U0ª$zPC\a:z¹r j for j 51,2,...,N%.
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Let

Ujªt j~e! for j 51,2,...,N.

Now we glue together the trivial bundles,

UkÃC→Uk for k50,1,...,N,

by giving the transition functionssj that define the bundleEl . For j 51,...,N define

sj~z!5H L j for u~zj !,0

1 for u~zj !.0.

Then the bundleEl is defined by the following transition maps between vectors (z,v)0PU0ÃC in
the trivial bundle overU0 and vectors (z,v) jPUjÃC in the trivial bundle overUj ~for k
51,2,...,N!,

~z,v !05~z,sj~z!v ! j for zPU0ùUj .

The functionsj (z) is smooth since it is constant on each of the two components ofU0ùUj . The
bundle that is relevant for the Ising model is the one with the choiceL j521 for all j
51,2,...,N. For simplicity we will denote this bundle byE with no subscript.

The rank 2vectorbundles that are more directly of interest to us areEl ^ C2 andE^ C2, the
direct sum of two copies ofEl andE, respectively. For simplicity we will use the same notatio
El andE, to denote these vector bundles and when necessary make distinctions by referring
line bundlesEl andE.

The differential operatormI2]” acts onC`(El), the space of smooth sections of the vec
bundleEl , since it commutes with multiplication by constants. We will now define a family
local smooth sections ofC`(El) which are simultaneously solutions of the Dirac equation, (mI
2]” )w50 and eigenfunctions for the infinitesimal rotation aboutaj ,

Rj5zj] j2 z̄j ]̄ j1
1

2 S 1 0

0 21D ,

which commutes withmI2]” . We writezj5z2aj and] j5]zj
. Note that this infinitesimal rotation

has eigenvalues which are translated by6 1
2 compared to the infinitesimal monodromy. Followin

SMJ we will parametrize our local wave functions by theRj eigenvalue rather than the infinites
mal monodromy.

Let Q(z) denote the angular coordinate at 0 defined so that forz¹$tr :t.0% we have,

z5uzueiQ~z! with u r,Q~z!,u r12p.

For l a real number we define a functionwl(z) for zPC\r by

wl
0~z!5S ei ~ l 21/2!Q~z! I l 21/2~muzu!

ei ~ l 11/2!Q~z! I l 11/2~muzu! D ,

whereI k is the modified Bessel function of orderk. For zPC\(2r ) we define

wl
p~z!5S ei ~ l 21/2!u~z! I l 21/2~muzu!

ei ~ l 11/2!u~z! I l 11/2~muzu! D .

The only difference being, of course, the choice of angle. Where defined these are solutions
Dirac equation (mI2]” )w50 and are eigenfunctions of the infinitesimal rotationRwl5 lwl about
0.6 Now let l denote a real number and define~for uzj u,2e say!
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wl~zj !5wl
0~zj ! in the U0 trivialization,

wl~zj !5wl
p~zj ! in the Uj trivialization.

Then it is easy to check thatwl(zj ) is a local section ofC`(El) providedl[ 1
21l j modZ. Now

define a conjugation onC2 by

S a
bD *

5S b̄
āD .

This conjugation commutes with the Dirac operator]” and we define

wl* ~z!5S w̄l ,2~z!

w̄l ,1~z! D .

One can check thatwl* (zj ) is a local smooth section ofC`(El) if and only if l[ 1
22l j modZ. It

is a result of SMJ that every solution to (mI2]” )w50 in C`(El) has local expansions,

w~z!5 (
kPZ11/2

ak
j ~w!wk1l j

~zj !1bk
j ~w!uk2l j

* ~zj !, ~1!

valid for 0,uzj u,2e.6,13 As the reader may check the coefficientsak
j (w) andbk

j (w) are simply
related to Fourier coefficients in the expansion of the restriction ofw to say the circleuzj u5e. We
will refer to these coefficients as local expansion coefficients.

For the Ising casel j56 1
2 and it is better not to use this form of the expansion~which would

require a somewhat arbitrary choice of6 1
2 at eachaj !; instead we will just write

w~z!5 (
nPZ

en
j ~w!wn~zj !1cn

j* ~w!wn* ~zj !. ~2!

Note that we have changed the names of the local expansion coefficients in~2! to cn
j (w) and

cn
j* (w) so that it coincides with the terminology in Ref. 6. Our way of writing~1! is different than

the corresponding local expansions in Ref. 6 and so we have given different names to th
expansion coefficients.

Before we move on we will make one further observation about local expansions in a n
borhood of̀ . Suppose thatR.0 is big enough so that all the pointsaj for j 51,2,...,N are inside
the circle of radiusR. Then$z:uzu.R%\ø j r j splits intoN distinct components and theU0 trivial-
ization is not very convenient for the description of sections ofE over this set. In particular
suppose thatN is even. Then we can alternately flip the signs of sections supported in adj
components of theU0 trivialization to produce a trivializationU` for E over $z:uzu.R%. Actually
the U0 trivialization is not defined over the raysr j but because of the sign flips on adjace
components it is easy to see thatU` extends to a trivialization ofE over the exterior of the disk o
radiusR. It is also clear thatU` is only determined itself up to an overall sign which we fix b
declaring theU` trivialization of theU0 sectionP j (z2aj )

e j for ueu50 to be

)
j

S 12
aj

z D e j

for uzu.R,

where the fractional powers in this last product are the holomorphic functions ofz normalized to
be 1 atz5`.

It can be shown~Refs. 6 and 13! that sectionswPL2(E) which are solutions to the Dirac
equation in the exterior of the disk of radiusR have convergent expansions~in the U` trivializa-
tion!,
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w~z!5 (
nPZ

cn
`~w!ŵn~z!, ~3!

where,

ŵu~z!ªF 2einuKn~muzu!
e2 i ~n21!uKn21~muzu!G .

The functionsKn are the modified Bessel functions that tend to zero at`. The reader should note
that there is more than one definition of these functions~differing by a factoreinp!. We are using
the version defined in Ref. 14. Also note that becausen is an integer the choice of angleu is
irrelevant.

Now write x•y5x1y11x2y2 for the standard bilinear form onC2, so thatx̄•y is the standard
Hermitian form. Forw, vPC0

`(El) define an inner product,

~w,v !5
i

2 EC
w̄•v dz dz̄,

which is well defined sincew̄(z)•v(z) descends to a compactly supported function onC\a. We
will write L2(El) for the Hilbert space completion ofC0

`(El) with respect to the norm induced b
this inner product.

For the rest of this introduction we will specialize our considerations to the situation rele
to the Ising model. Forn an integer we write,

wn
R5 1

2~wn1wn* !, wn
I 5

1

2i
~wn2wn* !,

for the real and imaginary parts ofwn with respect to the conjugation* . SinceL j521 is real for
all j it follows that wn

R(zj ) andwn
I (zj ) are local sections ofC`(E). In Ref. 2 it is shown that for

j 51,2,...,N there exists a real solutionWj (Wj* 5Wj ) to the Dirac equation,

~mI2]” !Wj50,

which is in L2(E) and which has leading order local expansions given by

Wj~z!5d i j w0
I ~zi !1Ti j w0

R~zi !1¯ for i 51,2,...,N. ~4!

Note that the coefficientswn(z) are less and less locally singular atz50 asn increases. The1¯

in ~4! refer to terms withwn andwn* for n.0. Also note that in~4! it is not necessary to specif
what the coefficientsTi j are—they are already uniquely determined by the other condition
Wj .2

We are now ready to present the SMJ characterization of the Ising model scaling fun
from belowTc , t2(ma)5t2(ma1 ,ma2 ,...,maN). It is,

da logt2~ma!5
m

2i (j
c1

j ~Wj !daj2c1
j ~Wi !dā j . ~5!

The reader might want to consult Ref. 15 or 2 for an explanation of what exactlyt2 is and how
it is related to two-dimensional Ising correlations. Most of the rest of this paper will be devot
understanding the solutionWj well enough in the limitm→0 so that we can compute the limitin
values of the coefficientsmc1

j (Wj ) which appear in~5!. Our principal result is
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Theorem 1 „Luther –Peschel Asymptotics…: Suppose that N is even. Then

lim
m→0

da logt2~ma!5
1

2
da log (

ueu50
)
i , j

uai2aj u2e ie j ~6!

where the sum is over all choices ofek56 1
2 with

ueuªe11e21¯1eN50.

After the proof of this result we will indicate the changes that are needed to adapt the proof
case whereN is odd. We find forN odd,

lim
m→0

da logt2~ma!5
1

2
da log (

ueu561/2
)
i , j

uai2aj u2e ie j .

We will also indicate how to derive the short distance behavior of the correlations for holon
fields.

Very briefly the rest of the paper is organized as follows. In Sec. II we characterizeWj as the
solution to a boundary value problem on a finite domain. In Sec. III we introduce the G
function for them→0 limit of this boundary value problem. In Sec. IV we introduce the ass
ated boundary value projection. In Sec. V we discuss the inversion of a suitable restriction
projection. In Sec. VI we discuss how to put these results together to give the perturbation s
which we use to approximateWj in the limit m→0. In Sec. VII we examine the application of th
same technique to other problems.

II. AN EQUIVALENT BOUNDARY VALUE PROBLEM

The tool we will use in dealing with them→0 limit of Wj is a characterization ofWj as the
solution to an inhomogeneous boundary value problem. We will now describe this charac
tion. It is a result of SMJ6 that the space of solutionswPC`(E) to the Dirac equation,

~mI2]” !w50,

which are also inL2(E) is N dimensional. We writeN for this space of solutions. ForwPN define

c0~w!5~c0
1~w!,c0

2~w!,...,c0
N~w!!PCN,

with a similar definition forc0* (w). Now let N denote the image ofN in CN
% CN under the map,

N{w→~c0~w!,c0* ~w!!.

Suppose now thatI is any subspace ofCN
% CN which istransverseto N. If f PC0

`(E) then in Ref.
2 it was proved that there exists a unique solutionwPL2(E) to

~mI2]” !w5 f ,

which satisfies the boundary condition (c0(w),c0* (w))PI. It was also shown there that th
subspaceI given by the set of vectors (v,v) for vPCN ~the diagonal subspace! is transverse toN.
Henceforth we will work with the subspaceI which corresponds to the boundary condition,

c0~w!5c0* ~w!. ~7!

Now we will make a subtraction fromWj which will put the result in the subspace of sections
E satisfying ~7!. Let w(z) denote a non-negative function inC0

`(R2) which is identically 1 for
uzu,1 and identically 0 outside the ball of radius 2. Define,
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w j ,e~z!5wS z2aj

e D .

Then sincee has been chosen small enough we know thatw j ,e is one in a neighborhood ofaj and
vanishes nearai for all iÞ j . Now define

dWj~z!5m1/2~Wj~z!2w j ,e~z!w0
I ~z2aj !!. ~8!

Then consulting~4! we see that if we look at the local expansion fordWj in ane neighborhood of
aj then the local expansion coefficients satisfy condition~7!. The scale factorm1/2 has been
introduced so that the following limit exists:

lim
m→0

m1/2w0
I ~zj !5

1

A2p i
F zj

21/2

2 z̄j
21/2G .

Here we usedG( 1
2)5Ap, the fractional powers ofzj and z̄j that occur are branched alongz5r j

and we employ the convention that the sectionw0
I can be identified with itsU0 trivialization

~which appears on the right-hand side!. Using the fact that bothWj andw0
I (zj ) satisfy the massive

Dirac equation we find that

~m2]” !dWj5F 0 22]w j

22]̄w j 0 Gm1/2w0
I ~zj !ª f j . ~9!

We are now prepared to give an alternative characterization ofdWj . ChooseR.0 big enough so
that Di(2e) is contained insideuzu5R for i 51,2,...,N. Let D`5$z:uzu>R% and define the
bounded domain,V, by

V5C\$ø i 51
n Di~e!øD`%.

We writeHk(EV) for the Sobolev space of sections ofE overV which are inL2(V) together with
all their weak derivatives up to and including those of orderk.

Lemma 1: The smooth sectiondWj of EV ~the restriction ofE to V! is uniquely characterized
by the following three properties:

~1! dWjPH1(EV) satisfies the inhomogeneous Dirac equation (9) inV.
~2! For i 51,2,...,N the local Fourier expansions (2) fordWj restricted to Ce(ai) have coeffi-

cients ck
i (dWj ) and ck

i* (dWj ) that vanish for k,0 and are equal for k50.
~3! The sectiondWj has a Fourier expansiondWj5SnPZcn

`(dWj )ŵn(z), on the circle of radius
R.

Remark:Henceforth we interpret the local expansions~2! as the Fourier expansions of th
restrictions of theU0 trivialization of dWj to uzi u5e in powersei (n11/2)Q i for nPZ. In a similar
fashion we interpret~3! as the Fourier expansions of theU` trivialization of dWj restricted to the
circle of radiusR.

Proof of Lemma 1:Because the solution,dWj , of condition~1! of the Lemma is assumed t
be in H1(EV) it follows from local elliptic regularity that the solution is actually inC`(EV). The
support properties of the inhomogeneous termf j makes it possible to enlarge each circleCe(ai) to
an annular region in whichdWj satisfies the homogeneous Dirac equation. In this region it
have a convergent local expansion of type~2!. Since the Fourier coefficientsck

i (dWj ) and

ck
i* (dWj ) @for the restriction ofdWj to Ce(ai)# vanish fork,0 and are equal fork50 it follows

~by the uniqueness of Fourier expansions! that the same is true for the local expansion coefficie
in the annulus. Since the Bessel functionsI l(r ) are monotone increasing functions ofr for l>0
this restriction on the local expansions implies that they converge in a domain 0,uzi u,e8, where
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e8 is slightly bigger thane ~only a finite number of Fourier coefficients will get larger for smal
values ofuzj u!. This shows that a solution,dWj , to ~1! and~2! of the Lemma extends to a solutio
of the Dirac equation which is inL2 nearai and has appropriate restrictions on its local expans
coefficients. The same sort of argument shows that restriction~3! allows one to extenddWj to an
L2 solution to the Dirac equation in a neighborhood of`. Q.E.D.

Without much difficulty the reader should be able to verify the following formula for the lo
expansion coefficientsmc1

j (Wj ) that appear in the SMJ formula for the log derivative of thet
function:

mc1
j ~Wj !5

Am

2pI 1/2~me!
E

ur

ur12p

~dWj !1~eeiQ j !expS 2 i
Q j

2 DdQ j . ~10!

In this formula (dWj )1 is the first component ofdWj in theU0 trivialization. The formula follows
easily from the standard formula for Fourier coefficients and the fact that the subtracti
w jw0(zj ) does not alter the local expansion coefficients at level 1, so thatc1

j (dWj )
5Amc1

j (Wj ).
Our strategy in controlling them→0 limit of the coefficientsmc1

j (Wj ) will be to use the
characterization of Lemma 1 in conjunction with formula~10!. Since

lim
m→0

Am

I 1/2~me!
5A2

e
GS 3

2D5Ap

2e
,

it will suffice for our purposes to control them→0 convergence ofdWj in Lp(Ce(ai)) for any
p>1 and alli. HereCe(ai) is the circle of radiuse aboutai .

Next we introduce convenient orthornormal bases for the subspaces that are of interes
Define

en
~m!~r ,Q!5Fei ~n21/2!Qan

~m!~mr!

ei ~n11/2!Qbn
~m!~mr!G ,

where

an
~m!~mr!5

I n21/2~mr!

AI n21/2
2 ~mr!1I n11/2

2 ~mr!
, bn

~m!~mr!5
I n11/2~mr!

AI n21/2
2 ~mr!1I n11/2

2 ~mr!
.

Also defineen
(m)* (r ,Q)5@1

0
0
1#ēn

(m)(r ,Q). The collection

$en
~m!~e,Q j !,en

~m!* ~e,Q j !%,

asn ranges over the integers is an orthonormal basis forL2(Ce(aj )) ~with values inC2!. Here we
write

Q j~z!ªQ~z2aj !.

Definition 1: Let Wj
(m) denote the subspace of L2(Ce(aj )) which is the L2 closure of the span

of en
(m)(e,Q j ), and en

(m)* (e,Q j ) for n.0 and the vector e0
(m)(e,Q j )1e0

(m)* (e,Q j ).
Define

ên
~m!~r ,u!5F e2 inuan

`~mr!

e2 i ~n21!ubn
`~mr!G

with
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an
`~mr!5

2Kn~mr!

AKn21
2 ~mr!1Kn

2~mr!
, bn

`~mr!5
Kn21~mr!

AKn21
2 ~mr!1Kn

2~mr!
.

Then$ên
(m)(R,u)%, wheren ranges over the integers, is an orthonormal set inL2(CR).

Definition 2: Let Ẁ(m) be the L2 closure of the span of the eˆ n
(m)(R,u) for nPZ.

The boundary conditions~2! and ~3! in Lemma 1 become

dWj uCe~ai !
PWi

~m! , dWj uCR
PW`

~m! .

As a first step toward controlling them→0 limit of the solution of the boundary value proble
described in Lemma 1 we will now record some elementary estimates for the converge
en

(m)(r ,Q) and ên
(m)(r ,u) to their limits asm→0. For l .0 the Bessel functionI l(r ) behaves like

a constant timesr l as r→0. It immediately follows that~for n>1!,

lim
m→0

an
~m!~mr!51, lim

m→0
bn

~m!~mr!50,

and hence that

lim
m→0

en
~m!~r ,Q!5en~Q!ªFei ~n21/2!Q

0 G for n>1.

For similar reasons we find that

lim
m→0

ên
~m!~r ,u!5ên~u!ªF2e2 inu

0 G for n>1,

and recalling thatKn(r )5K2n(r ) we find

lim
m→0

ên
~m!~r ,u!5ên~u!ªF 0

e2 i ~n21!uG for n>0.

For l .0, I l(r ) is an increasing function ofr and sinceI l8(r )52( l /r )I l(r )1I l 21(r ) the
right-hand side is non-negative and hence

I l~r !

I l 21
<

r

l
for l .0. ~11!

For n.0, Kn(r ) is a decreasing function ofr and sinceKn8(r )5(n/r )Kn(r )2Kn11(r ) the right-
hand side is nonpositive and hence

Kn~r !

Kn11~r !
<

r

n
for n.0. ~12!

Now suppose that 0,a,b, then we have,

a

Aa21b2
<

a

b
, ~13!

and

1>
b

Ab21a2
5

1

A11~a/b!2
>12

1

2
S a

b
D 2

. ~14!
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Using Eqs.~11!, ~12!, ~13!, and~14!, we obtain the following estimates:

uan
~m!~mr!21u<

1

2 S I n11/2~mr!

I n21/2~mr! D
2

<
1

2 S mr

n11/2D
2

for n>1, ~15!

ubn
~m!~mr!u<

I n11/2~mr!

I n21/2~mr!
<

mr

n11/2
for n>1, ~16!

and

uan
`~mr!11u<

1

2 S Kn21~mr!

Kn~mr! D 2

<
1

2 S mr

n21D 2

for n>2, ~17!

ubn
`~mr!u<

Kn21~mr!

Kn~mr!
<

mr

n21
for n>2. ~18!

For n<21 we also have

uan
`~mr!u<

K unu~mr!

K unu11~mr!
<

mr

unu
, ~19!

and

ubn
`~mr!21u<

1

2 S K unu~mr!

K unu11~mr! D
2

<
1

2 S mr

unu D
2

. ~20!

We will use these bounds in Sec. V to estimate the norm of a graph operator for the invers
a certain projection. Then dependence in these bounds will be of use to us there. Note
estimates~17! and ~18! obviously fail for n51. However, the first part of those estimates s
holds forn51 and since

K0~mr!

K1~mr!
——→

m→0

0,

it follows that ua1
`(mr)11u and ub1

`(mr)u both tend to 0 asm→0. For the same reason eve
though~19! and~20! are not valid forn50 we still find thatua0

`(mr)u andub0
`(mr)21u both tend

to 0 asm→0.
We write

W~m!
ªW`

~m!
% W1

~m!
%¯% WN

~m! ,

andW(0) for the m→0 limit of W(m). The estimates we have just given allow us to calculate
limiting behavior of the basis elements ofW(m). This makes it natural to define

Wj
~0!5spann>1H Fei ~n21/2!Q j

0 G ,F 0
e2 i ~n21/2!Q j G J % CFe2 iQ j /2

eiQ j /2 G , ~21!

for j 51,...,N and

W`
~0!5spann>1H Fe2 inu

0 G J % spann>1H F 0
einuG J , ~22!

with
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W~0!
ªW`

~0!
% W1

~0!
% W2

~0!
¯% WN

~0! .

To be a little more precise we will writeW(0) for the L2 closure of the span of the basis vecto
given previously@recall thatW(m) was also a closed subspace ofL2#.

We will always regard

Wj
~0!,L2~ECe~aj !

!, W`
~0!,L2~ECR

!,

so thatW(0),L2(E]V). Notice that the basis elements of the subspacesWj
(0) can be regarded a

smoothsections ofECe(aj )
in the U0 trivialization. Similarly the basis elements ofW`

(0) can be
regarded assmoothsections ofECR

in theU` trivialization. We will do this henceforth and it will
make a difference for us when we look at the subspaces ofW(0) obtained by taking the closure o
the span of the same basis elements in the Sobolev spacesW1/2,p(E]V).

III. THE mÄ0 GREEN FUNCTION

The Green function we want to understand has the following matrix kernel:

G0~z,z8!52
1

4p i F( juj~z!v j~z8!

g~z,z8!

g~z,z8!

( juj~z!v j~z8!G , ~23!

where

uj~z!ª~z2aj !
21/2)

kÞ j

~z2ak!
1/2

~aj2ak!
1/2, ~24!

g~z,z8!ª (
ueu50

c~e!
) j~z2aj !

e j~z82aj !
2e j

z82z
, ~25!

with e5(e1 ,...,en) and eache j56 1
2. Also

ueuª(
j 51

N

e j , c~e!ª
) j ,kuaj2aku2e jek

( ueu50) j ,kuaj2aku2e jek
, ~26!

and

v j~z!5~z2aj !
21/2 (

ueu50,e j 51/2
c~e!)

kÞ j

~z2ak!
ek

~aj2ak!
ek

. ~27!

The multivalued functions (z2aj )
e j are all defined using the argumentQ j and are consequentl

branched alongzPr j . We regardG0(z,z8) as defining an operator,G0 , acting on sections ofEV

in the following manner:

G0f ~z!ªE
V

G0~z,z8! f ~z8!dz8 dz̄8, ~28!

where the sectionf (z8) is identified with itsU0 trivialization. We also regardG0f as a section of
EV given in theU0 trivialization.

When working withG0f (z) for uzu.R it is useful to rewritev j (z) and g(z,z8) in terms
appropriate for theU` trivialization. The conversion from theU0 to theU` trivialization is given
as follows:
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)
k

~z2ak!
ek→)

k
S 12

ak

z D ek

for ueu50 and uzu.R,

where the fractional powers on the right are holomorphic functions ofz normalized to be 1 atz
5`. In a similar fashion,

v j~z!→z21S 12
aj

z D 21/2

(
ueu50,e j 51/2

c~e!)
kÞ j

S 12
ak

z D ek

~aj2ak!
ek

for uzu.R. ~29!

Our goal in this section is to show thatG0 inverts2]” with W(0) boundary conditions. It is
precisely this property that determines our interest inG0 . We will at the same time establish som
elementary but useful estimates.

It is helpful to recall some well-known results for the kernel 1/(z82z). Let f PC1(V̄) ~the
continuously differentiable functions onV which are continuous together with their derivative
the closure ofV! and define

T f~z!ª
1

2p i EV

f ~z8!

z82z
dz8 dz̄8. ~30!

Then
Theorem 2: The distribution derivative of Tf is

dT f5T~]zf !dz1 f dz̄. ~31!

For p.2 one has the estimate,

iT fiW1,p~V!<Cpi f iW1,p~V! , ~32!

for a constant Cp that depends only on p andV, and Wk,p(V) is the subspace of Lp(V) which
consists of functions whose first k weak derivatives are in Lp(V).

Proof: Supposef PC1(V̄) and fPC0
`(V). To compute the distribution derivative]zT f(z)

we wish to ‘‘integrate by parts’’ in

2E
V

T f~z!]zf~z!dz dz̄.

To stay away from the singularity in the kernel we introduce

Te f ~z!ª
1

2p i EV\De~z!

f ~z8!

z82z
dz8 dz̄8,

whereDe(z)5$z8:uz82zu,e%. Also suppose for simplicity thate is chosen small enough so th
the distance from the support off to the boundary ofV is greater thane. For e this small it
follows that for allz in the support off the set ofz8 with uz2z8u5e is completely contained in
V.

In order to do the ‘‘integration by parts’’ efficiently we calculate the exterior derivative o
particular three form on the domainV3V\$z5z8%,
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dS f ~z8!f~z!2 f ~z!f~z8!

z82z Ddz̄ dz8 dz̄8

5S f ~z8!]f~z!2] f ~z!f~z8!

z82z
1

f ~z8!f~z!2 f ~z!f~z8!

~z82z!2 Ddz dz̄ dz8 dz̄8.

Now integrate this last identity over

~V3V!eªV3V\$~z,z8!:uz82zu,e%,

and use Stokes’ theorem. Then make use of

E
~V3V!e

f ~z8!f~z!2 f ~z!f~z8!

~z82z!2 dz dz̄ dz8 dz̄850,

which follows from the fact that the integrand is odd under the transformation (z,z8)→(z8,z) and
the domain (V3V)e is invariant under this map. After multiplication by 1/2p i the resulting
identity simplifies directly to,

2E
V

Te f ~z!]zf~z!dz dz̄5E
V

Te~] f !~z!f~z!dz dz̄

1
1

2p i EV
dz8 dz̄8E

uz2z8u5e

f ~z8!f~z!2 f ~z!f~z8!

z82z
dz̄.

Since bothf andf areC1(V) it is easy to see that the second term on the right-hand side of
last equation tends to 0 in the limite→0. Because 1/(z82z) is in L loc

1 (C2) it follows that Te f
→T f in the sense of distributions ase→0. Hence,

]T f5T] f ,

which is the first part of~31!. To obtain the second part consider the exterior derivative,

dS f ~z8!f~z!

z82z Ddz dz8 dz̄852 ]̄zS f ~z8!f~z!

z82z Ddz dz̄ dz8 dz̄852S f ~z8!]̄f~z!

z82z
D dz dz̄ dz8dz̄8.

Integrate this over (V3V)e and multiply the result by 1/2p i . Using Stokes’ theorem again, on
finds that

2E
V

Te f ~z!]̄f~z!dz dz̄52
1

2p i EV
dz8 dz̄8E

uz2z8u5e

f ~z8!f~z!

z82z
dz.

As e→0 the right-hand side tends to

E
V

dz8 dz̄8 f ~z8!f~z8!.

Hence,

]̄T f5 f ,

which is the second part of~31!.
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To prove the second part of the theorem we first observe that sinceV is a bounded domain i
is straightforward to show thatT defines a bounded operator onLp(V) for p.2. Hölder’s in-
equality implies that

U E
V

f ~z8!

z82z
i dz8 dz̄8U<i f iLp~V!S E

V
uz82zu2qi dz8 dz̄8D 1/q

,

where 1/p11/q51. However sincep.2 it follows that 1,q,2 and hence that

z→E
V

uz82zu2qidz8 dz̄8

is a bounded function onV. It follows at once thatT is bounded onLp(V) sinceV is a finite
domain and bounded functions are inLp(V) @note: the analogue ofT on V5C is also bounded on
Lp(C) for p.2 ~see Ref. 16!#.

To see that it defines a bounded operator onW1,p(V) for p.2 it is enough to use~31!, which
implies that forf PC1(V̄),

idT fiDp~V!<iT] f iLp~V!1i f iLp~V!<Ci f iW1,p~V! for p.2,

where we used the fact thatT is bounded onLp (p.2). Since the boundary ofV is smooth,
C1(V̄) is dense inW1,p(V), and the second part of the theorem is proved. Q

We will now use theorem 2 to establish thatG0 is a Green function for2]” on W1,p(EV) for
p.2. Incidentally, we work in the spaceW1,p(EV) only in order to simplify some boundar
estimates by using the Sobolev trace theorems; we could work inLp(EV) at the cost of using more
complicated global ellipticity estimates~see Ref. 17!.

Theorem 3: Suppose p.2 and suppose that fPW1,p(EV) and that f is compactly supporte
in V. Then G0f PW1,p(EV) and

~1! iG0f iW1,p<Cpi f iW1,p,
~2! 2]”G0f 5 f ,
~3! G0f u]VPW(0).

Proof: Let zj
e5(z2aj )

e be defined using the argumentQ j so that these functions are branch
along r j . For any choicee j561/2 the function,

ze
ª)

j 51

N

zj
e j ,

defines a map,

C`~EV!{ f ~z!→ze f ~z!PC`~V!,

which has an inverse,

C`~V!{ f ~z!→z2e f ~z!PC`~EV!,

where in each case sections ofC`(EV) are identified with theirU0 trivializations. Since the
derivatives ofz6e are bounded onV it follows that these maps induce bounded maps,

W1,p~EV!{ f ~z!→ze f ~z!PW1,p~V!

and

W1,p~V!{ f ~z!→z2e f ~z!PW1,p~EV!.
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The upper right matrix element of the kernelG0(z8,z) is a linear combination of terms,

ze~z8!2e

z82z
,

each of which is the kernel of an operator we can interpret as a composition,

W1,p~EV! ——→
z2e

W1,p~V!1/~z82z!W1,p~V! ——→
ze

W1,p~EV!,

which is bounded forp.2 as a consequence of Theorem 2. To be more precise we note tha
the line bundleEV which appears in this composition. The same argument forz̄6c and 1/(z̄8
2 z̄) coupled with the complex conjugate version of Theorem 2 shows that the lower left ker
G0(z,z8) determines a bounded linear transformation onW1,p(EV). The diagonal elements o
G0(z,z8) are finite rankL2 kernels with a range that consists of smooth sections ofEV . Conse-
quently, they determine bounded operators onW1,p(EV) as well and this finishes the proof of pa
~1! of the theorem.

The proof of part~2! of the theorem is a straightforward computation using~1! of Theorem 2
~and its complex conjugate!, the fact that]̄zz

e50, ] z̄e50, ]̄zuj (z)50, ]zūj (z)50, and finally,

(
ueu50

c~e!51.

Note that both]̄ and ] act onC`(EV) since the transition functions that define the bundle
piecewise constant.

To establish part~3! of the theorem it is useful to observe that the subspaceWj
(0) consists of

L2 boundary values onCe(aj ), of functions,

Fzj
1/2h1~z!

zj
1/2h̄2~z!

G1c0Fzj
21/2

z̄j
21/2G ,

whereh1 and h2 are holomorphic functions on the diskDe(aj ) and c0 is a complex constan
~technically,h1 andh2 should be in the appropriate Hardy space!. We wish to show that

E
V

G0~z,z8! f ~z8!dz8 dz̄8,

restricted tozPCe(aj ), lies in Wj
(0) . Because we have assumed that the support off is contained

insideV it follows that for z8 in the support off we haveuz82aj u.uz2aj u and so

1

z82z
5

1

zj82zj
5 (

n50

`
1

zj8
S zj

zj8
D n

will converge uniformly forzPDe(aj ) andz8 in the support off. Substituting this expansion in
the formula forG0f (z) ~and the analogue obtained by taking complex conjugates! one sees easily
that the boundary value ofG0f (z) has the form,

Fzj
21/2h1~z!

z̄j
21/2h̄2~z!

G ,

whereh1 andh2 are holomorphic inDe(aj ). The only issue is whether the coefficient ofzj
21/2 in

the first component is the same as the coefficient ofz̄j
21/2 in the second component. A computatio

shows that the coefficient ofzj
21/2 in the Fourier expansion onCe(aj ) of the first component of

G0f is
                                                                                                                



us

933J. Math. Phys., Vol. 43, No. 2, February 2002 Short distance asymptotics of Ising correlations

                    
2
1

4p i EV
dz8 dz̄8H v̄ j~z8! f 1~z8!1 (

ueu50,e j 51/2
c~e!zj8

21/2)
kÞ j

~z82ak!
ek

~aj2ak!
ek

f 2~z8!J ,

where we used the fact that

(
ueu50,e j 521/2

S~e!5 (
ueu50,e j 51/2

S~2e!.

Computing the coefficient ofz̄j
21/2 in the Fourier expansion of the second component ofG0f we

find

2
1

4p i
E

V
dz8 dz̄8H v j~z8! f 2~z8!1 (

ueu50,e j 51/2
c~e!z̄j8

21/2)
kÞ j

~z82ak!
ek

~aj2ak!
ek

f 1~z8!J .

Comparing these two coefficients using the definition ofv j (z) we see that they are the same. Th
G0f uCe(aj )

PWj
(0) .

To finish the proof we need to show that

G0f uCR
PW`

~0! .

Recalling the definition ofW`
(0) we see that it consists of boundary values onCR of functions,

Fh1~z!

h̄2~z!
G ,

whereh1(z) and h2(z) are holomorphic functions onD` which vanish atz5`. The condition
ueu50 in the sum that definesg(z,z8) makes it easy to see that

E
V

g~z,z8! f 2~z8!dz8 dz̄8

is holomorphic forzPD` and tends to 0 at̀ . For precisely the same reason,

E
V

g~z,z8! f 1~z8!dz8 dz̄8

is antiholomorphic inD` and vanishes at̀ . The diagonal contributions,

2
1

4p i EV
(

j
uj~z!v̄ j~z8! f 1~z8!dz8 dz̄8,

and

2
1

4p i EV
(

j
ū j~z!v j~z8! f 2~z8!dz8 dz̄8,

do not at first appear to vanish at infinity sinceuj (z) does not tend to 0 at̀ . However in the
lemma which follows this theorem we will prove the homogeneous function identity,

(
j

uj~z!v̄ j~z8!5(
j

v j~z!ū j~z8!. ~33!
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Sincev j (z) is holomorphic foruzu.R and does tend to 0 at̀ @see~29!# this identity finishes the
proof of the theorem. Q.E.D

We turn to the proof of the identity~33!.
Lemma 2: The following identity is true for the functions uj and v j defined in~24! and ~27!,

(
j

uj~z!v̄ j~z8!5(
j

v j~z!ū j~z8!.

Proof: Suppose thatv(z) is a holomorphic function branched along the raysr j such that

V~z!5v~z!)
k

zk
21/2

is holomorphic in the punctured plane,C\a, with simple poles at eachaj and which tends to 0 as
z→` ~this will be the case for each of the functionsv j !. Then V(z) has the partial fraction
decomposition,

V~z!5(
k

Vk

z2ak
,

whereVk5Resz5ak
V(z). Rewriting this in terms ofv(z) one finds

v~z!5(
k

Vkzk
21/2)

lÞk
zl

1/25(
k

Vk)
lÞk

~ak2al !
1/2uk~z!.

Thus we have,

v j~z!5(
k

vk juk~z!,

where the coefficientsvk j are found by residue calculation to be

v j j 5 (
ueu50,e j 51/2

c~e!,

and forkÞ j ,

vk j5
~ak2aj !

1/2

~aj2ak!
1/2 (

ueu50
e j 51/2,ek521/2

c~e! )
lÞ j ,k

~ak2al !
e l

~aj2al !
e l

. ~34!

We will now show thatvk j5 v̄ jk , which will have~33! as a simple consequence. Sincev j j is real
it is clear thatv j j 5 v̄ j j . Now suppose thatkÞ j and note that

~ak2aj !
1/2

~aj2ak!
1/25

~aj2ak!
1/2

~ak2aj !
1/2

,

since cross multiplication produces the identity

uak2aj u5uaj2aku.

Thus the first factor in~34! is Hermitian symmetric and it remains only to check that the sec
factor is also. First we rewritec(e) for e j5

1
2 andek52 1

2 in the following manner:
                                                                                                                



ic

ry

935J. Math. Phys., Vol. 43, No. 2, February 2002 Short distance asymptotics of Ising correlations

                    
c~e!e j 51/2
ek521/2

5
uaj2aku21/2

c )
a,b

a,b¹$ j ,k%

uaa2abu2eaeb )
lÞ j ,k

uaj2al ue l

uak2al ue l
,

wherecª(a,buaa2abu2eaeb. Now define,

sk j~e!5
uaj2aku21/2

c )
a,b

a,b¹$ j ,k%

uaa2abu2eaeb.

The second factor in~34! becomes

(
ueu50

e j 51/2,ek521/2

sk j~e! )
lÞ j ,k

uaj2al ue l~ak2al !
e l

uak2al ue l~aj2al !
e l

.

Sincesk j(e) is real and obviously equal tosjk(e) this last expression will be Hermitian symmetr
provided that

)
lÞ j ,k

uaj2al ue l

uak2al ue l

~ak2al !
e l

~aj2al !
e l

5 )
lÞ j ,k

uak2al ue l

uaj2al ue l

~aj2al !
e l

~ak2al !
e l

.

But this follows directly from cross multiplication as before. We have shown thatvk j5 v̄ jk and the
following simple calculation now proves the identity~33!:

(
j

uj~z!v̄ j~z8!5(
j ,k

uj~z!v̄k jūk~z8!5(
j ,k

v jkuj~z!ūk~z8!5(
k

vk~z!ūk~z8!.

Q.E.D.

IV. THE PROJECTION ON W „0…

In this section we will introduce the projectionP0 from L2(E]V) ontoW(0) which is naturally
associated with the Green functionG0 . Another goal is a description of the complementa
subspace forP0 acting onH1/2(E]V). We will show that the complementary projectionI 2P0

projectsH1/2(E]V) onto the boundary values of sectionsCPH1(EV) which are solutions to the
Dirac equation,]”C50 in V.

It is useful to start with a calculation. Write

G0~z,z8!5FG11~z,z8! G12~z,z8!

G21~z,z8! G22~z,z8!
G ,

for the matrix elements ofG0 .
Now suppose thatf PC1(EV̄) and choosezPC\V̄. Then,

2G0~]” f !~z!522E
V
FG11~z,z8!]z8 f 2~z8!1G12~z,z8!]̄z8 f 1~z8!

G21~z,z8!]z8 f 2~z8!1G22~z,z8!]̄z8 f 1~z8!
Gdz8 dz̄8

522E
V

dz8FG11~z,z8! f 2~z8!dz̄82G12~z,z8! f 1~z8!dz8
G21~z,z8! f 2~z8!dz̄82G22~z,z8! f 1~z8!dz8G ,

which Stokes’ theorem transforms into

2G0~]” f !~z!522E
]V

FG11~z,z8! f 2~z8!dz̄82G12~z,z8! f 1~z8!dz8
G21~z,z8! f 2~z8!dz̄82G22~z,z8! f 1~z8!dz8G .
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The first equality follows from the fact thatGk2(z,z8) is holomorphic forz8PV andGk1(z,z8) is
antiholomorphic inz8PV ~rememberz is outside ofV!. Of course, this is not precisely accura
since these functions are branched along the raysr j . However, it is not hard to argue that th
application of Stokes’ theorem is still correct using the fact thatGk2(z,z8) f 1(z8) and
Gk1(z,z8) f 2(z8) are continuous forz8 on the raysr j . Also note that the orientation of]V
appropriate for this Stokes’ calculation is thatCR has the usual counterclockwise orientation a
the circlesCe(aj ) are all clockwise oriented. With this as our motivation, we define, forf
PL2(E]V),

P0f ~z!ª22E
]V

FG11~z,z8! f 2~z8!dz̄82G12~z,z8! f 1~z8!dz8
G21~z,z8! f 2~z8!dz̄82G22~z,z8! f 1~z8!dz8G , ~35!

where we understand this as a section ofE]V by letting z→]V from outside ofV. As usual
sections ofE are identified with theirU0 or U` trivializations. If 2]” f is compactly supported inV
we saw in the last section that the restriction of2G0]” f to ]V is in W(0). Thus~35! suggests that
if f u]VPW(0), we should haveP0f 5 f . Our first result in this section is,

Theorem 4: The map P0 defined by~35! is a projection from L2(E]V) onto W(0). P0 restricts
to a continuous map,

P0 :H1/2~E]V!→H1/2~E]V!.

Proof: We will show thatP0 mapsL2(E]V) into W(0). Observe first that the functions,f, in
L2(ECe(aj )

), which are restrictions tozPCe(aj ) of the type

f ~z!5 (
n52L

L F f 1nzj
n11/2

f 2nz̄j
n11/2G , ~36!

for L finite, are dense inL2(ECe(aj )
), and have extensions toC\r j which are solutions to]” f 50. If

w is aC0
` function which is 1 foruzu<1.5e and 0 foruzu.2e andf is a function of type~36! then

it is easy to see thatw j f (z)ªw(zj ) f (z) is a section ofEV and ]” (w j f ) is compactly supported
insideV. For such a function the calculation that we began this section with shows that

2G0]” ~w j f !u]V5P0f ,

and it follows from Theorem 3 thatP0f PW(0). The first part of the theorem now follows from th
fact thatW(0) is closed inL2(E]V) andP0 is continuous onL2. We won’t bother to give the proo
that P0 is continuous onL2 since the argument we now present to show thatP0 is continuous on
H1/2(E]V) adapts directly to showL2 continuity.

Observe first that the finite rank part ofP0 associated with the kernelsG11 andG22 has a range
which is a subset ofC`(E]V),H1/2(E]V) and is clearly continuous inL2 and hence also inH1/2.
Next consider the part ofP0 associated withG12. The component of this operator which ma
H1/2(ECe(aj )

) into H1/2(ECe(ak)) can be written as a sum of operators each of which has a fa
ization of the following sort:

H1/2~ECe~aj !
! ——→

zj
1/2

H1/2~Ce~aj !! ——→
f~z!

H1/2~Ce~aj !!

——→
1/~z82z!

H1/2~Ce~ak!! ——→
c~z!

H1/2~Ce~ak!! ——→
zk
1/2

H1/2~ECe~ak!!),

where the first, second, fourth, and fifth maps are multiplication operators and the third ma
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f ~z!→ 1

2p i ECe~aj !

f ~z8!

z82z
dz8, ~37!

which must be interpreted as a suitable boundary value whenj 5k. In this factorizationf(z) and
c(z) are smooth functions and hence determine bounded maps onH1/2. The Cauchy projection
~37! is easily seen to be continuous fromH1/2(Ce(aj )) to H1/2(Ce(ak)) even whenj 5k. Nothing
changes ifCR is one or both of the two components of]V that are involved and it follows that th
part of P0 associated withG12 is bounded onH1/2(E]V). The kernelG21 is just the complex
conjugate ofG12 and so it too defines a bounded operator onH1/2(E]V). This completes the proo
that P0 is continuous onH1/2(E]V).

To finish the proof of the theorem we need to show that iff PW(0) thenP0f 5 f . Clearly it is
enough to show this for the basis elements~21! and ~22!. For the calculation onWj

(0) it is
preferable to use the alternate forms forG11 andG22 found in Lemma 2. Thus~35! becomes

P0f ~z!5
1

2p i E]V
F(k vk~z!ūk~z8! f 2~z8!dz̄82g~z,z8! f 1~z8!dz8

g~z,z8!f 2~z8!dz̄82(kv̄k~z!uk~z8! f 1~z8!dz8 G . ~38!

The following residue calculations suffice to evaluateP0 on the basis elements ofWj
(0) @note that

in these resultsCe(aj ) is counterclockwise oriented, as usual#,

1

2p i ECe~aj !
uk~z!zj

n21/2dz5d jkdn0 for n50,1,2,... .

And for n50,1,2,...,

1

2p i ECe~aj !
(

ueu50
c~e!

)kzk
ek~zk8!2ek

z82z
~z8!n21/2dz85H zj

n21/22dn0v j~z! for zPCe~aj !

2dn0v j~z! for zP]V\Ce~aj !.

One finds@being careful to recall the orientation of theCe(aj ) component of]V is clockwise# that
P0 fixes the elements of the basis forWj

(0) . The reader might find the cancellation of thev j (z)

terms that appear in the calculation of the action ofP0 on @
z̄

j
21/2

zj
21/2

# instructive.

To compute the action ofP0 on the basis elements forW`
(0) the original form for the kernel of

the Green functionG0 is preferable and one can do the needed calculation with the follow
residues:

1

2p i ECR

vk~z!z2n dz50 for n51,2,3,...,

which follows from the fact thatvk(z) is holomorphic in the exterior ofCR and vanishes at̀ in
the U` trivialization. And forn51,2,3,...,

1

2p i ECR
(

ueu50
c~e!

)kzk
ek~zk8!2ek

z82z
~z8!2n dz85H z2n for zPCR

0 for zP]V\CR .

Again one finds thatP0 fixes the basis~22! and this finishes the proof of the theorem. Q.E.
Next we turn to a characterization of the complementary projectionI 2P0 .
Theorem 5: The projection I2P0 maps H1/2(E]V) into the subspace of H1/2(E]V) which

consists of boundary values of functionsCPH1(EV) which satisfy the Dirac equation

]”C50
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in V. Furthermore, there exists a constant C so that for all fPH1/2(E]V) we have

i~ I 2P0! f iH1~EV!<Ci f iH1/2~E]V! . ~39!

Proof: Using ~38! and the well-known identity,

~z82zint!
212~z82zext!

2152p id~z82z!,

for the difference of the interior and exterior boundary values of the Cauchy kernel on a circ
find the following formula forP0

c
ªI 2P0 ,

P0
c f ~z!52

1

2p i E]V
F Sk vk~z!ũk~z8! f 2~z8!dz̄82g~z,z8! f 1~z8!dz8

g~z,z8! f 2~z8!dz̄82Sk v̄k~z!uk~z8! f 1~z8!dz8G , ~40!

with the difference compared to~38! being that in this formulaz tends to]V from the interior of
V. It is clear from this formula that (I 2P0) f (z) extends to a section ofEV which is in the null
space of]” . We need only establish the estimate~39! to finish the proof. The finite rank operato

f→ 1

2p i E]V
(

k
vk~z!ūk~zx8! f ~z8!dz̄8,

is obviously continuous onH1/2(E]V) since each uk is in L2 and the functionsvk

PC`(EV),H1(EV). The other finite rank operator that occurs in~40! is continuous from
H1/2(E]V) into H1(EV) for the same reason. Next we turn to the operator,

f→ 1

2p i E]V
g~z,z8! f ~z8!dz8.

This operator is a linear combination of operators each of which we wish to interpret
composition,

H1/2~E]V! ——→
z2e

H1/2~]V! ——→
1/~z82z!

H1~V! ——→
ze

H1~EV!.

The first and third maps are multiplication operators which are obviously continuous. The m
map is shorthand for the operator,

f→ 1

2p i E]V

f ~z8!

z82z
dz8,

which is well known to be continuous fromH1/2(]V) to H1(V). For the reader’s convenience w
recall a simple argument for this continuity.

Write zj5z2aj and consider a function,f, defined on]V by

f ~z!5H Sn52L
L f nzj

n for zPCc~aj !

0 for zP]V\Ce~aj !
. ~41!

DefinePintf (z) for z in V by

Pintf ~z!5
1

2p i EV

f ~z8!

z82z
dz8.

Then
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Pintf ~z!5 (
n52L

21

f nzj
n .

SinceV is bounded the Poincare´ inequality18 implies that theH1(V) norm ofPintf is bounded by
the L2(V) norm of

]Pintf ~z!5 (
n52L

21

n fnzj
n21.

TheL2(V) norm of]Pintf is in turn dominated by theL2 norm of]Pintf on uzj u>e. To compute
this norm it suffices to observe that~for n, m521,22,...!,

E
uzj u>e

zj
n21z̄j

m21i dz dz̄5E
uzj u>e

dS zj
nz̄j

m21

n
i dz̄D 52

1

n ECe~aj !
zj

nz̄j
m21i dz̄5

2p

unu
e2ndnm .

We then see that

iPintf iH1~V!
2 <C (

n52L

21

e2nunu f n f̄ n<Ci f iH21/2~Ce~aj !!
2 .

Now suppose that

f ~z!5H (
n52L

L

f nzn for zPCR

0 for zP]V\CR .

~42!

Then the argument we just gave is easily modified to show that

iPintf iH1~V!<Ci f iH1/2~CR! .

Sums of functions of type~41! for j 51,2,...,N and type~42! are dense inH1/2(]V) and it follows
that Pint extends to a continuous map fromH1/2(]V) to H1(V).19

Taking complex conjugates the result we just proved also shows that the map,

f→2
1

2p i E]V
g~z,z8! f ~z8!dz̄8,

is bounded fromH1/2(E]V) to H1(EV). This finishes the proof of the theorem. QE

V. INVERTING THE PROJECTION P0 :W „m …\W „0…

Remark: In this section we will write W(m) for W(m)ùH1/2(E]V) and W(0) for
W(0)ùH1/2(E]V). We will prove the following theorem.

Theorem 6: For all sufficiently small values of m the projection

P0 :W~m!→W~0!

is an isomorphism. Furthermore, there is a linear mapd from W(0) into (I 2P0)H1/2(E]V) and a
constant C which is independent of f and m so that for all fPW(0),

~1! f 1d f PW(m),
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~2! id f iH1/2(E]V)<Cmi f iH1/2
(E]V)

.

Remark:The mapd givesW(m) as a graph overW(0).
Proof: Suppose first thatf PW(m) and let f j denote the restriction off to Ce(aj ) and let f `

denote the restriction off to CR . Write en, j
(m) for en

(m)(e,Q j ) and ên,`
(m) for ên

(m)(R,u). Then the
Fourier expansions off on Ce(aj ) andCR can be written,

f j5a0,j~e0,j
~m!1e0,j

~m!* !1 (
n51

`

$an, jen, j
~m!1bn, jen, j

~m!* % ~43!

and

f `5 (
n52`

`

an,`ên,`
~m! . ~44!

Now let p0f denote the element ofW(0) which has the same ‘‘Fourier coefficients’’ in them
→0 limiting basis. That is,

p0f j5a0,j~e0,j1e0,j* !1 (
n51

`

$an, jen, j1bn, jen, j* % ~45!

and

p0f `5 (
n52`

`

an,`ên,` , ~46!

whereen, j denotes the basis vectoren(Q j ) and ên,` denotes the vectorên(u). It is easy to check
that

^ek, j
~m!2ek, j ,el , j

~m!2el , j&H1/2~E]V!5dkliek, j
~m!2ek, j iH1/2~E]V!

2 ,

and from~15! and ~16! it follows that

iek, j
~m!2ek, j iH1/2~E]V!<Cm.

Analogous results forek, j
(m)* and for êk

(m) @which follow from ~17! and ~18!# imply the inequality

ip0f 2 f iH1/2~E]V!<Cmi f iH1/2~E]V! , ~47!

for some constantC and all f PW(m). Now write Dp05p02I . Then for f PW(m) we have

f 1Dp0f PW~0!.

It follows from this that

~ I 2P0!~ f 1Dp0f !50,

or

~ I 2P0! f 52~12P0!Dp0f .

From this,~47!, and the fact thatP0 is bounded onH1/2(E]V) it follows that

i f 2P0f iH1/2~E]V!<Cmi f iH1/2~E]V! ,
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for some constantC and all f PW(m). Whenm is small enough so thatCm,1 this last inequality
implies thatP0 :W(m)→W(0) is injective sinceP0f 50 givesi f i<Cmi f i with Cm,1, which in
turn forcesi f i50.

Now start with f 0 PW(0) with Fourier expansion given by~45! and ~46! and definepmf 0

PW(m) to be the element ofW(m) with the Fourier expansion~43! and ~44!. Then the same
estimates we gave previously imply that forf 0 PW(0) we have

iDpmf 0iH1/2~E]V!<Cmi f 0iH1/2~E]V! ,

for Dpmªpm2I and some constantC. Now choosem small enough so that the map,

P01P0Dpm :W~0!→W~0!,

is invertible. Define

g0ª~P01P0Dpm!21f 0 .

Then one can easily check that

g01Dpmg0PW~m!

and

P0~g01Dpmg0!5 f 0 .

This shows thatP0 :W(m)→W(0) is subjective. Furthermore if we define

d5~ I 2P0!Dpm~P01P0Dpm!21

as a map fromW(0) to (I 2P0)H1/2(E]V), then it is easy to check thatf 01d f 0PW(m) and d
satisfies the estimate~2! of the theorem. Q.E.D.

VI. CONVERGENCE RESULTS

In this section we provide the details for the approximation scheme fordWj that was outlined
in Ref. 2. Letf j denote the section ofEV defined in~9!. As a first approximation todWj we define

d1Wj5G0~11mG0!21f j . ~48!

We will show that for all sufficiently smallm, d1Wj is well defined and

~m2]” !d1Wj5 f j , ~49!

with d1Wj u]V
PW(0). Thusd1Wj satisfies the same differential equation asdWj but has boundary

values inW(0) instead ofW(m). Next we define

d2Wj5d~d1W1!. ~50!

Then the boundary values ofd1Wj1d2Wj are inW(m) but since]”d2Wj50 on V we find that

~m2]” !~d1Wj1d2Wj !5 f j1md2Wj .

Now let d3Wj denote the solution of

~m2]” !d3Wj52md2Wj , ~51!

such thatd3Wj u]V
PW(m). The solution we are interested in is then
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dWj5d1Wj1d2Wj1d3Wj .

The following theorem gives convergence results that will allow us to calculate~10! in the limit
m→0. We write f 0 j for the m→0 limit of f j ,

f 0 j~z!5 iA2

p F2 z̄j
21/2]w j~z!

zj
21/2]̄w j~z!

G . ~52!

Theorem 7: For dkWj defined previously(k51,2,3) we have,
~1! As m→0, d1Wj converges to G0f 0 j in W1,p(EV) for all p.2.
~2! id2Wj iH1(EV)<Cm for some constant C independent of m.
~3! The Fourier coefficient,

E
ur

ur12p

~d3Wj !1~eeiQ j !expS 2 i
Q j

2 DdQ j , ~53!

tends to0 as m→0.
Remark:As we shall see in the following, the upshot of these estimates is that we can com

the m→0 limit of mc1
j (Wj ) by calculating the appropriate Fourier coefficient ofG0f 0 j . Also in

the course of proving~1!–~3! of theorem 7 we will confirm the properties asserted fordkWj , k
51,2,3, when they were introduced above.

Proof: Estimate 1 of theorem 3 shows that forp.2, G0 is bounded onW1,p(EV). Thus for
small enoughm, the map I 1mG0 is invertible on W1,p(EV). Since it is clear thatf j

PC0
`(EV),W1,p(EV) it follows that d1WjPW1,p(EV) for p.2. Sinced1Wj is in the image of

G0 , part~3! of theorem 3 implies that the boundary value ofd1Wj on ]V is in W(0). We use part
~2! of theorem 3 to do the following calculation:

~m2]” !G0~ I 1mG0!21f j5mG0~ I 1mG0!21f j1~ I 1mG0!21f j

5~mG01I !~ I 1mG0!21f j5 f j ,

which confirms~49!. Since G0 is bounded onW1,p(EV) the operator (I 1mG0)21 converges
uniformly to I on W1,p(EV) asm→0. Thus to finish the proof of 1 we need only show that for
p.2 the sectionf j converges inW1,p(EV) to f 0 j . Using ~9! one finds

f j5 iAmF expS i
Q j

2 D ~ I 1/2~mr!2I 21/2~mr!)]w j~z!

expS 2 i
u j

2 D ~ I 21/2~mr!2I 1/2~mr!) ]̄w j~z!
G . ~54!

The simple estimate,

I 61/2~mr!5S mr

2 D 61/2

(
n50

`
~mr!2n

22nn!G~n71/2!
<S mr

2 D 61/2 expS 2me

2 D 2

G~3/2!
,

which is valid for r ,2e ~which contains the support of]w j and ]̄w j ! shows that dominated
convergence applies to

lim
m→0

E
V

u f j2 f 0 j upi dz dz̄50,
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for all p>1. The same estimate shows that dominated convergence applies to them→0 limit of
the integral,

E
V

udf j2df 0 j upi dz dz̄

and this proves thatf j converges tof 0 j in W1,p(EV). Now fix p.2. Since f j converges in
W1,p(EV) as m→0 it follows that its norm in this space is uniformly bounded. Hence theW1,p

norm ofd1Wj is also uniformly bounded. However since the domainV is bounded theW1,p(EV)
norm forp.2 dominates~a constant times! theH1(EV) norm. This shows thatd1Wj is uniformly
bounded inH1(EV) as m→0. The Sobolev trace theorem18 implies that the boundary value o
d1Wj is uniformly bounded inH1/2(E]V) and estimate 2 of theorem 6 then shows thatd2Wj

5d(d1Wj ) has norm inH1/2(EV) bounded byCm. Finally estimate~39! shows that the extensio
of d2Wj to V hasH1(EV) norm dominated byCm, which is estimate~2! of theorem 7.

Before we turn to the proof of part~3! of theorem 7 it will be useful to establish the followin
estimates for solutions to the massive Dirac equation.

Theorem 8: Suppose thatCPL2(EV) is a weak solution to the Dirac equation,

~m2]” !C5 f ,

in V, where fPC0
`(EV). Suppose thatCu]VPW(m) so that for zPCe(aj ) the sectionC has the

local expansion

C~z!5 (
n>0

cn
j ~C!wn~zj !1cn

j ~C!wn* ~zj !,

with c0
j (C)5c0

j* (C), and for zPCR the sectionC has the local expansion

C~z!5 (
nPZ

cn
`~C!ŵn~z!.

Then,

iCiL2~EV!<
1

m
i f iL2~EV! , ~55!

(
j

uc0
j ~C!u2<

1

8
i f iL2~EV!

2 , ~56!

4p (
n>0

$ucn
j ~C!u21ucn

j* ~C!u2%I n11/2~me!I n21/2~me!e<
1

m
i f iL2~EV!

2 , ~57!

4p (
nPZ

ucn
`~C!u2Kn~mR!Kn21~mR!R<

1

m
i f iL2~EV!

2 . ~58!

Proof: Since f PC0
`(EV), the existence theorem in Ref. 2 then gives us a weak solutioC

PL2(EV) of

~m2]” !C5 f ,

which is smooth as a consequence of local elliptic regularity. Next we calculate the ex
derivative of 2i C̄1C2dz̄ using the fact thatC satisfies the Dirac equation,
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d~2i C̄1C2 dz̄!5muCu2i dz dz̄2~C̄1f 11C2 f̄ 2!i dz dz̄.

Integrating this equality overV and using Stokes’ theorem we find

miCiL2~EV!
2

22i E
]V

C̄1C2 dz̄5E
V

~C̄1f 11C2 f̄ 2!i dz dz̄. ~59!

From this we deduce the inequality

miCiL2~EV!
2

22i E
]V

C̄1C2 dz̄<iCiL2~EV!i f iL2~EV! . ~60!

Next we compute the boundary term in~60! using the local expansions forC. We find

22i E
CR

C̄1C2 dz̄54p(
n

ucn
`~C!u2Kn~mR!Kn21~mR!R, ~61!

and recalling the appropriate orientation of]V,

2i E
Ce~aj !

C̄1C2 dz̄54p (
n>0

~ ucn
j ~C!u21ucn

j* ~C!u2!I n11/2~me!I n21/2~me!e

14p c̄0
j ~C!c0

j* ~C!I 21/2
2 ~me!e14p c̄0

j* ~C!c0
j ~C!I 1/2

2 ~me!e.

The boundary conditionc0
j (C)5c0

j* (C) implies that the right-hand side of this last equation
positive definite. Thus the boundary term on the left-hand side of~60! is positive and we imme-
diately deduce

miCiL2~EV!
2 <iCiL2~EV!i f iL2~EV! ,

which is ~55!. Now ~61! and~60! coupled with the positivity of all the boundary contributions a
~55! together imply~57! and~58!. For the same reasons we can pick out just one term from e
of the Ce(aj ) boundary terms to find the inequality

4p(
j

uc0
j ~C!u2I 21/2

2 ~me!e<
1

m
i f iL2~EV!

2 .

This must be true for alle and since

lim
e→0

I 21/2
2 ~me!e5

2

mp
,

we have proved~56!. ~Theorem 8.! QED
Now suppose as in the preceeding theorem thatC is anL2(EV) solution to,

~m2]” !C5 f ,

wheref PC0
`(EV). To finish the proof of~3! of Theorem 7 we want to estimatec1

j (C) in terms of
f. To do this we first introduce the function

Vj~z!5~z2aj !
23/2)

kÞ j
~aj2ak!

1/2~z2ak!
21/2,
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which we take to be branched along the raysr j . Next observe that ifC is identified with itsU0

trivialization thenVjC is differentiable onV and

d~2VjC1 dz!52 ]̄~2VjC1!dz dz̄522Vj ]̄C1 dz dz̄5mVjC2 dz dz̄2Vj f 2 dz dz̄.

Stokes’ theorem implies

E
]V

2VjC1 dz5E
V

mVjC2 dz dz̄2E
V

Vj f 2 dz dz̄,

from which, together with~55!, we deduce the inequality

U E
]V

VjC1 dzU<iVj iL2~V!i f iL2~EV! . ~62!

Next we wish to estimate the boundary integrals overCe(ak). First observe that in a neigh
borhood ofak the functionVj has a ‘‘Laurent’’ expansion in powers ofzk5z2ak ,

Vj~z!5 (
n>21

cn
k~Vj !zk

n21/2,

andz is restricted to an annulus aboutuzku5e. One finds

1

2pe i ECe~ak!
VjC1 dz5c1

k~C!c21
k ~Vj !I 1/2~me!e23/21c0

k~C!c0
k~Vj !I 21/2~me!e21/2

1 (
n>0

cn
k* ~C!cn

k~Vj !I n11/2~me!en21/2.

Observe that the term withc1
k(C) is present only fork5 j since one can easily check that

c21
k ~Vj !5d jk .

Next we use the fact that the Taylor expansion ofVj for uzu>R has the form

Vj~z!5 (
n,21

cn
`~Vj !z

n

to calculate

1

2pRi ECR

VjC1~z!dz52 (
n,21

cn
`~Vj !R

ncn11
` ~C!Kn11~mR!.

Note: The coefficientscn
`(Vj ) are zero forn.2(N/2)21, whereN is the number of branch

points, but we will not need this.
Next we use~57! and Cauchy’s inequality for thel 2 norm with weight,

I n11/2~me!I n21/2~me!e,

to estimate

(
n>0

ucn
k* ~C!icn

k~Vj !uI n11/2~me!een21/2<AkBk , ~63!

where
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Ak
25 (

n>0
uck

k* ~C!u2I n11/2~me!I n21/2~me!e

and

Bk
25 (

n>0
Uck

k~Vj !e
n21/2

I n21/2~me!
U2

I n11/2~me!I n21/2~me!e.

Combining this with~11! we see that

Bk
2< (

n>0
ucn

k~Vj !e
n21/2u2

me2

n11/2
<emiVj iL2~Ceak!)

2 ,

since cn
k(Vj )e

n21/2 are Fourier coefficients forVj on the circleCe(ak). The norm ofVj that
appears here is actually theH21/2 norm, but this won’t matter for us. This last estimate forBk

combined with~57! for Ak give us

AkBk<A e

4p
iVj iL2~Ce~ak!!i f iL2~EV! . ~64!

In a similar fashion we estimate

(
n,21

ucn
`~Vj !R

nin11
` ~C!uKn11~mR!R<A`B` , ~65!

where

A`
2 5 (

n,21
ucn11

` ~C!u2Kn11~mR!Kn~mR!R<
1

4pm
i f iL2~EV!

2 ,

and

B`
2 5 (

n,21
ucn

`~Vj !R
nu2

Kn11~mR!

Kn~mR!
R.

In this equation it is important for us thatn,21. Forn,21 we have

Kn11~mR!

Kn~mR!
5

K unu21~mR!

K unu~mR!
<

mR

unu21
,

so that

B`
2 <mRiVj iL2~CR!

2 ,

and

A`B`<A R

4p
iVj iL2~CR!i f iL2~EV! . ~66!

Combining the expressions for the boundary integrals with the estimates that follow from~63! to
~66! we find the following lower bound;
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1

2p U E
]V

VjC1 dzU>uc1
j ~C!uI 1/2~me!e21/22(

k
uc0

k~Vj !uuc0
k~C!I 21/2~me!e1/2

2CiVj iL2~]V!i f iL2~EV! ,

for a constantC which is independent ofm. Now we put together this lower bound with~62! to
find

I 1/2~me!uc1
j ~C!u<C(I 21/2~me!(

k
uc0

k~C!u1i f iL2~EV! , ~67!

where the constantC is independent ofm but incorporates all the dependence onVj . The form of
this estimate that we will use is now obtained by combining~56! with ~67!. We find

I 1/2~me!uc1
j ~C!u<C~ I 21/2~me!11!i f iL2~EV! ~68!

for a different constantC.
We are now prepared to finish the proof of part~3! of Theorem 7. Recall thatd3Wj is defined

as the solution to

~m2]” !d3Wj52md2Wj , ~69!

with boundary values inW(m). We could make this description technically precise and prove
existence of such a solution usingH1 estimates along the lines of theL2 estimate~55!. The
relevant estimates can be obtained via a Stokes’ theorem calculation involving the exterior d
tive,

2id~~C̄1]̄C11C̄2]̄C2!dz̄2~C̄1]C11C̄2]C2!dz!

for a solutionC to

~M2]” !C5 f .

However it will be simpler to proceed differently. The solution of~69! which is relevant to us is
the one constructed via functional analysis in Ref. 2. This solution is a weakL2 solution to~69!
insideV which extends to a solution of the homogeneous equation (m2]” )d3Wj50 outsideV and
is globally inL2(E). We can obtain such a solution by approximating the right-hand sided2Wj in
L2(EV) by a sequence of functionsf nPC0

`(EV). Theorem 8 shows that the resulting sequence
solutions to the approximate equations tends strongly inL2(EV) to a weak solution to~69!. The
norms on the left-hand sides of~57! and~58! are equivalent to theL2 norms of limiting solution
in the components of the exterior ofV and so the resulting solution is globally inL2(E) ~this is a
consequence of the same Stokes’ theorem calculation that went into the proof of Theorem
done in the components of the exterior ofV!. We may thus identify the limiting solution with
d3Wj and by obtaining the solutiond3Wj in this fashion we see that estimate~68! remains valid,
so that

I 1/2~me!uc1
j ~d3Wj !u<C~ I 21/2~me!11!mid2Wj iL2~V! .

The left-hand side of this last inequality is the Fourier coefficient~53! and the right-hand side
tends to 0 using estimate~2! of Theorem 7. This finishes the proof of Theorem 7. Q.E

Remark:The norms on the left-hand side of~57! and~58! which are the appropriate norms fo
boundary values ofL2 solutions also appear to be equivalent to theH21/2 norms on the corre-
sponding circles. The loss of one half derivative for boundary values of solutions to (m50) Dirac
equations is a general property.17 In our case, this would follow from the following Bessel functio
estimate:
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Kn~r !

Kn21~r !
<2~n21!S 11

1

r D
for r .0 andn>2 which seems to be true.

We now substitutedWj5d1Wj1d2Wj1d3Wj into ~10! and use Theorem 7 to determine th
limit as m→0. According to part~1! of Theorem 7,d1Wj converges toG0f 0 j in W1,p(EV) for
p.2. The Sobolev trace theorem implies that it converges inW1/2,p(E]V) and this is enough to
show that the Fourier coefficient ofd1Wj which appears in~10! converges to

Ap

2e

1

2p E
ur

ur12p

~G0f 0,j !1~eeiQ j !expS 2 i
Q j

2 DdQ j . ~70!

Estimate~2! of Theorem 7 implies that theH1(EV) norm of d2Wj tends to 0 asm→0 and again
the Sobolev trace theorem implies that the boundary value tends to 0 inH1/2(E]V), which is
enough to show that the contribution made byd2Wj to ~10! is 0 in this limit. Finally part~3! of
Theorem 7 shows thatd3Wj makes no contribution to them→0 limit of ~10!. Thus to finish the
proof of Theorem 1 we need only calculate~70!.

We turn now to the calculation of~70!. Using the definition off 0,j found in ~52! we see that

(G0f 0,j )1~z!5 iA2

p E
V

~2G11~z,z8!z̄j8
21/2]w~z8!1G12~z,z8!zj8

21/2]̄w!dz8 dz̄8.

Using the fact thatG11(z,z8) is antiholomorphic inz8 andG12(z,z8) is holomorphic inz we can
rewrite this last integral as the integral of an exact form,

iA2

p E
V

d~2G11~z,z8!z̄j8
21/2w~z8!dz̄82G12~z,z8!zj8

21/2w~z8!dz8!.

Sincew(z)51 on Ce(aj ) and vanishes on the rest of]V, Stokes’ theorem implies that the la
integral is

iA2

p E
Ce~aj !

G11~z,z8!z̄j8
21/2dz̄81G12~z,z8!zj8

21/2dz8.

Now substitute

G11~z,z8!2
1

4p i (k
vk~z!ūk~z!

and ~25! for G12(z,z8) in this last integral and use the residue calculations that are found in
results that follow~38! to find

~G0f 0,j !1~z!52 i
zj

21/2

A2p
1 iA2

p
v j~z!.

Using this result it is now a simple matter to convert the Fourier integral~70! into the following
residue calculation:

1

2p E
Ce~aj !

zj
22 (

ueu50,e j 51/2
c~e!)

Þ j

~z2ak!
ek

~aj2ak!
ek

dz,

which in turn gives
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i
]

]z (
ueu50,e51/2

c~e!)
kÞ j

~z2ak!
ek

~aj2ak!
ek U

z5aj

5 i (
ueu50,e j 51/2

c~e!(
kÞ j

ek

aj2ak
.

Dividing by 2i to get the limiting value of the coefficient that appears in them→0 of the log
derivative of the tau function we find

lim
m→0

mc1
j ~Wj !

2i
5

1

2 (
ueu50,e j 51/2

c~e!(
kÞ j

ek

aj2ak
. ~71!

To finish the proof of Theorem 1 we compare this result with

]

]aj
(

ueu50
)
a,b

uaa2abu2eaeb5 (
ueu50

(
kÞ j

e jek

aj2ak
)
a,b

uaa2abu2eaeb, ~72!

which we obtained using

]

]aj
uaa2abu2eaeb5

eaeb

aa2ab
~da j2db j !uaa2abu2eaeb.

In ~71! observe that theueu50 sum has two different possible values fore j , eithere j5
1
2 or e j

52 1
2. However since the summand on the right-hand side of~71! is clearly invariant under the

complete sign reversalea→2ea it follows that the whole sum is just twice the result fore j

5 1
2. That is,

]

]aj
(

ueu50
)
a,b

uaa2abu2eaeb5 (
ueu50,e j 51/2

(
kÞ j

ek

aj2ak
)
a,b

uaa2abu2eaeb.

Comparing this with~71! and recalling the definition ofc(e) we have finished the proof o
Theorem 1.

VII. ODD CORRELATIONS AND HOLONOMIC FIELDS

In this section we make some observations about the application of the technique u
prove Theorem 1 to work out the asymptotics of the odd Ising scaling functions from beloTc

and also the short distance behavior of the correlations for holonomic quantum fields.
First we treat the case whereN is odd. The one difference in the analogue of Lemma 1 foN

odd is that the subspaceW`
(m) is now theL2 closure of the span of

ŵn~z!5F2e2 i ~n11/2!u Kn11/2~muzu!

2e2 i ~n21/2!u Kn21/2~muzu!G ,

for nPZ. For definiteness we make the choice 0,u,2p and choose theU` trivialization ~in the
complement ofu50! so that finite linear combinations of theŵn(z) are smooth sections ofE in
the U` trivialization. Without difficulty one can compute them→0 limit of the normalized ver-
sions of these vectors and as a consequence we defineW`

(0) as theL2 closure of the span of

H Fe2 i ~n11/2!u

0 G J
n>1

,F2e2 i ~u/2!

ei ~u/2! G ,H F 0
ei ~n11/2!uG J

n>1

.

Next we introduce a Green function2]” with W(0) boundary conditions in the following
manner:
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G0~z,z8!52
1

4p i F (
j

uj~z!v j~z8! g~z,z8!

g~z,z8! (
j

uj~z!v j~z8!
G , ~73!

where

uj~z!ª~z2aj !
21/2)

kÞ j

~z2ak!
1/2

~aj2ak!
1/2, ~74!

g~z,z8!ª (
ueu561/2

c~e!
) j~z2aj !

e j~z82aj !
2e j

z82z
, ~75!

with e5(e1 ,...,eN) and eache j56 1
2. Also

ueuª(
j 51

N

e j , c~e!ª
) j ,kuaj2aku2e jek

( ueu561/2) j ,kuaj2aku2e jek
, ~76!

and

v j~z!5~z2aj !
21/2 (

ueu561/2,e j 51/2
c~e!)

kÞ j

~z2ak!
ek

~aj2ak!
ek

. ~77!

The multivalued functions (z2aj )
e j are all defined using the argumentQ j and are consequentl

branched alongzPr j . We regardG0(z,z8) as defining an operator,G0 , acting on sections ofEV

in the following manner:

G0f ~z!ªE
V

G0~z,z8! f ~z8!dz8 dz̄8, ~78!

where the sectionf (z8) is identified with itsU0 trivialization. We also regardG0f as a section of
EV given in theU0 trivialization.

The homogeneous function identity,

(
k

ūk~z!vk~z8!5(
k

v̄k~z!uk~z8!,

can be proved along the lines of Lemma 2 and this makes it possible to establish the desired
concerning the Green function and the projectionP0 . One matter that requires a little furthe
analysis is the proof thatG0f has boundary values onCR which are inW`

(0) . For this purpose it
is useful to introduce aU` trivialization for E over $z:uzu.R%\$tPR:t.0% by introducing square
root z1/25uzu1/2eiu/2 for 0,u,2p, which is branched along the positive real axis. Smooth s
tions ofE over$z:uzu.R%\$tPR:t.0% can then be represented in theU` trivialization as products
z1/2f(z) for a smooth mapf from D`ª$z:uzu.R% into C2. For the purpose of analyzing th
behavior of the Green functionG0(z,z8) for uzu.R it is useful to note thatv j (z) has a represen
tation in this domain given by
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v j~z!5z21/2S 12
aj

z D 21/2

(
ueu51/2,e j 51/2

c~e!)
kÞ j

S 12
ak

z D ek

~aj2ak!
ek

1z23/2S 12
aj

z D 21/2

(
ueu521/2,e j 51/2

c~e!)
kÞ j

S 12
ak

z D ek

~aj2ak!
ek

.

Using this one can check that forwPC0
`(EV) we haveG0wuCR

PW`
(0) provided the following

reality conditions are satisfied:

(
ueu51/2,e j 51/2

c~e!)
kÞ j

~aj2ak!
2ek5 (

ueu51/2,e j 51/2
c̄~e!)

kÞ j
~aj2ak!

ek.

This will be true for our choice ofc(e) provided that

(
ueu51/2,e j 51/2

)
a,b

a,bÞ j

uaa2abu2ea eb)
kÞ j

uaj2akuek~aj2ak!
2ek,

is real. However, under the transformationek→2ek for kÞ j the product

)
kÞ j

uaj2akuek~aj2ak!
2ek,

maps into its complex conjugate while in the preceeding sum the coefficient of this product
and invariant. This implies reality for the sum.

The rest of the analysis closely follows that in the even case and so we will only quot
final result. ForN odd we have

lim
m→0

da logt2~ma!5
1

2
da log (

ueu561/2
)
a,b

uaa2abu2eaeb.

Finally we describe the situation for the tau functions for holonomic fields in the formalis
Ref. 13. Suppose that forj 51,...,N we have

2 1
2,l j,

1
2,

and for simplicity we also suppose that

(
j

l j50.

The restricted local expansion that determines the subspaceWj
(m) is

w~z!5 (
kPz11/2

k.0

ak
j ~w!wk2l j

~zj !1bk
j ~w!wk1l j

* ~zj !.

At infinity the restricted expansion that determinesW`
(m) is

w~z!5 (
kPz11/2

ck~w!ŵk~z!.
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Without difficulty one can check that the limiting subspaces,Wj
(0) , are spanned by

Fzj
k2l j

0 G ,F 0

z̄j
k1l j G for k5

1

2
,
3

2
,...

andW`
(0) is spanned by

Fz2n

0 G ,F 0
z̄2nG for n51,2,3,... .

The mass 0 Green function for the Dirac operator of interest is clearly~see Proposition 1.1 in
Ref. 13!,

G0~z,z8!52
1

4p F 0 g~z,z8!

g~z,z8! 0 G ,

where

g~z,z8!5
) j zj

2l j~zj8!l j

z82z
.

There are no ‘‘chiral symmetry breaking’’ terms. In the notation of~4.3! of Ref. 13 we have

da logt~ma,l!5
m

2 (
j

$a1/2,j
j ~2l!daj1ā1/2,j

j ~l!dā j%,

and we find for them→0 limit,

lim
m→0

da logt~ma,l!5(
j 51

N H (
kÞ j

l jlk

aj2ak
daj1(

kÞ j

l jlk

āj2āk
dā j J ,

which is also just

da log)
j ,k

uaj2akul jlk.
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19P. Di Francesco, P. Mathieu, and D. Se´néchal,Conformal Field Theory~Springer, New York, 1997!.
                                                                                                                



letely
f. 1

ebra
‘‘non-
at the
a

the
the

in a
-

agates’’
-
s
ns of
em and

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 2 FEBRUARY 2002

                    
Classical Hamiltonian systems with sl „2… coalgebra
symmetry and their integrable deformations
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Several families of classical integrable systems with two degrees of freedom are
derived from phase-space realizations ofsl(2) Poisson coalgebras. As a remarkable
fact, the existence of theN-dimensional integrable generalization of all these sys-
tems is always ensured~by construction! due to their underlying dynamical coal-
gebra symmetry. By following the same approach, different integrable deformations
for such systems are obtained from theq-deformed analogues ofsl(2). Thewell-
known Jordan-Schwinger realization is also proven to be related to a~non-
coassociative! coalgebra structure onsl(2) and the 2N dimensional integrable
Hamiltonian generated by such Jordan-Schwinger representation is obtained. Fi-
nally, the relation between complete integrability and the properties of the initial
phase-space realization is elucidated through two more examples based on the
Heisenberg-Weyl andso(3,2) Poisson coalgebras. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1428810#

I. INTRODUCTION

A Poisson coalgebra (A,D) is a Poisson algebraA endowed with a Poisson mapD betweenA
andA^ A that defines a way to construct tensor product representations ofA. In the case whereA
is the dynamical algebra for a one-particle problem, the coproductD provides a two-particle
realization of the same dynamical symmetry. In fact, under certain conditions the coproductD can
be generalized to a Poisson map betweenA andA^ A^ . . . N)

^ A, and theN-particle realization
of the symmetry arises. By following this approach, a systematic construction of comp
integrable~classical and quantum! Hamiltonians from coalgebras has been introduced in Re
and several applications of this formalism have been proposed~see, for instance, Refs. 2–4!.

It is worth stressing that, in order to obtain the complete integrability from the coalg
structure, the phase-space realization of the symmetry coalgebra has to fulfill some
degeneracy’’ conditions. Actually, classical complete integrability is guaranteed provided th
coalgebra comes from a simple Lie algebra of rankr endowed with a symplectic realization on
2 r -dimensional phase space and the coproductsD(Ci) of the r Casimirs are non-trivial and
functionally independent~note that this was the case for all the examples presented within
previous references!. Under these conditions the very role of the coproduct map is to provide
explicit form of all the integrals of motion. By construction, such integrals are organized
hierarchical way: thek-th integral is defined on thek-th order tensor product of the initial repre
sentation. From this perspective, the coproduct can be also seen as the vehicle that ‘‘prop
the integrability from the initial~trivial! Hamiltonian system to a new non-trivial family of sys
tems with an arbitrary number of degrees of freedom. Moreover, since quantum deformation~see,
for instance, Refs. 5–8! can be understood in a classical mechanical context as deformatio
Poisson algebras preserving a coalgebra structure, such construction can be applied for th
leads to a systematic derivation of integrable deformations of Hamiltonian systems.
9540022-2488/2002/43(2)/954/16/$19.00 © 2002 American Institute of Physics

                                                                                                                



previ-
this

ebra. In
tion of
licitly

oice of
on.

ion
eir

rnitz
or-
defor-
d the
sitions
e

ing
of
, now
resting
at this
t
ard

be

metry
yl one.

rove the
com-

uct.
k-
of the
n be

d-

955J. Math. Phys., Vol. 43, No. 2, February 2002 Hamiltonians with sl(2) coalgebra symmetry

                    
The aim of the present paper is two-fold. On one hand, we use thesl(2) Poisson coalgebra
and its deformations to provide new families of completely integrable systems through the
ous construction. On the other hand, we would like to clarify the limitations imposed on
formalism by the choice of the phase-space representation of the dynamical Poisson coalg
particular, we shall analyze the systems coming from a four-dimensional phase space realiza
a rank one algebra, showing why, in this case, the complete integrability can also be exp
proven. On the contrary, we also present some particular examples for which a specific ch
the representation gives rise to either trivial or functionally dependent integrals of the moti

In Sec. II we recall both classical and quantum Poissonsl(2) coalgebras. In Sec. III the
general construction is reviewed through an example based on the Gelfan’d-Dyson realizat9 of
sl(2), and inSec. IV new families ofN52 integrable systems are given, together with th
standard and non-standard integrable deformations. Among them, we find as~canonically equiva-
lent! examples of two-dimensional coalgebra symmetry the well-known Smorodinsky-Winte
Hamiltonian10,11 and the rational Calogero system,12 as a consequence, two new integrable def
mations for them can be constructed. In general, it is interesting to mention that quantum
mations introduce hyperbolic functions of the canonical variables in the Hamiltonian, an
associated integrals of the motion have also such kind of hyperbolic terms depending on po
and/or momenta. Note also that the existence of theN-dimensional generalization of all thes
systems is, by construction, ensured~although we will not describe their explicit form here!.

In Sec. V we present the generalization of this construction tosl(2) systems for which the
phase-space realization ofsl(2) is defined in terms of two pairs of canonical variables. By us
the classical Jordan-Schwinger~JS! realization13,14 as an outstanding example of this kind
situation, we show how complete integrability is also preserved for the corresponding system
with 2 N degrees of freedom. Consequently, the deformation of such systems poses the inte
problem of deforming the JS map. It turns out that coalgebra symmetry is also essential
point, since we show that the Jordan-Schwinger~JS! realization ofsl(2) is canonically equivalen
to a reducible representation ofsl(2) given by a non-coassociative coproduct. From it, a stand
deformation of the JS realization is given and related 2N dimensional integrable systems can
defined.

Finally, in Sec. VI we turn to Poisson coalgebras other thansl(2) in order to illustrate the
above-mentioned limitations of the formalism for certain phase-space realizations of the sym
coalgebra. First, we consider an example of non-simple algebra, namely the Heisenberg-We
In this case, for the usual phase space realization the coalgebra method does not allow to p
complete integrability of the non-deformed system. Remarkably enough on the contrary, the
plete integrability of the systems obtained through one of itsq-deformations~compatible with the
same phase-space realization! can be explicitly demonstrated through the deformed coprod
Second, a particular two-particle representation of the Poissonso(3,2) algebra is used as a ran
two benchmark for the coalgebra formalism. In this example, the functional dependence
coproduct of the two Casimir functions implies that only half of the integrals of the motion ca
explicitly derived from the coproduct.

II. sl „2… POISSON COALGEBRAS

Let us consider classical angular momentum variablesJ3 , J6 and the associatedsl(2)
Poisson-Lie algebra

$J3 ,J6%56 2 J6 , $J1 ,J2%5J3 ~2.1!

with Casimir function

C~J3 ,J1 ,J2!5 1
4J3

21J1J2 . ~2.2!

The Poisson algebra~2.1! is endowed with a coalgebra structure by the usual ‘‘primitive’’ copro
uct defined betweensl(2) andsl(2)^ sl(2)
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D~J3!51^ J31J3^ 1, D~J6!51^ J61J6 ^ 1. ~2.3!

Compatibility between Eqs.~2.3! and ~2.1! means thatD is a Poisson map: the three function
defined through Eq.~2.3! close also a Poissonsl(2) algebra.

There are few deformations of thesl(2) algebra for which there exist compatible deform
tions of the coproduct@Eq. ~2.3!#. In fact, two relevant and distinct structures appeared in quan
group literature during last years, and they can be realized as Poisson algebras as follows

• The ‘‘standard’’ deformation slq(2) (q5ez)5,6,15 given by the following deformed Poisso
brackets

$J̃3 ,J̃1%52 J̃1 , $J̃3 ,J̃2%522 J̃2 , $J̃1 ,J̃2%5
sinh~zJ̃3!

z
, ~2.4!

which are compatible with the deformed coproduct

Dz~ J̃3!51^ J̃31 J̃3^ 1,

Dz~ J̃1!5e2 ~z/2!J̃3^ J̃11 J̃1 ^ e~z/2!J̃3; ~2.5!

Dz~ J̃2!5e2 ~z/2!J̃3^ J̃21 J̃2 ^ e~z/2!J̃3;

in the sense that Eq.~2.5! is a Poisson algebra homomorphism with respect to~2.4!. The function

Cz~ J̃3 ,J̃6!5S sinh~~z/2!J̃3)

z
D 2

1 J̃1J̃2 , ~2.6!

is the deformed Casimir for this Poisson coalgebra.
• The ‘‘non-standard’’ deformation slh(2)16–18 whose defining relations are

$J̃3 ,J̃1%52
sinh~hJ̃1!

h
, $J̃3 ,J̃2%522 J̃2cosh~hJ̃1!, $J̃1 ,J̃2%5 J̃3 . ~2.7!

Dh~ J̃1!51^ J̃11 J̃1 ^ 1,

Dh~ J̃2!5e2hJ̃1 ^ J̃21 J̃2 ^ ehJ̃1, ~2.8!

Dh~ J̃3!5e2hJ̃1 ^ J̃31 J̃3^ ehJ̃1.

The non-standard deformed Casimir is now

Ch~ J̃3 ,J̃1 ,J̃2!5
1

4
J̃ 3

21
sinh~hJ̃1!

h
J̃2. ~2.9!

Equivalently, an isomorphic non-standard Poisson deformation is obtained by choosingJ̃2 as the
primitive generator. We then find that
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$J̃3 ,J̃1%52 J̃1 cosh~hJ̃2!, $J̃3 ,J̃2%522
sinh~hJ̃2!

h
, $J̃1 ,J̃2%5 J̃3 . ~2.10!

Dh~ J̃2!51^ J̃21 J̃2 ^ 1,

Dh~ J̃1!5e2hJ̃2 ^ J̃11 J̃1 ^ ehJ̃2, ~2.11!

Dh~ J̃3!5e2hJ̃2 ^ J̃31 J̃3^ ehJ̃2.

The non-standard deformed Casimir is now

Ch~ J̃3 ,J̃1 ,J̃2!5
1

4
J̃ 3

21 J̃1

sinh~hJ̃2!

h
. ~2.12!

In what follows we shall make use of these coalgebra symmetries in order to construc
integrable systems. Note that the undeformedsl(2) structure is smoothly recovered when defo
mation parameters vanish. Jacobi identity can be also easily checked for Eqs.~2.4!, ~2.7!, and
~2.10!.

III. GELFAN’D-DYSON MAP, GAUDIN MAGNET, AND DEFORMATIONS

Let us now recall the general construction1 through an example provided by the classic
phase space analogue of the one-boson~polynomial! Gelfan’d-Dyson~GD! realization ofsl(2):

J352 p q2b, J15p, J252p q21b q, ~3.1!

whereb is a real constant that labels the representation through the Casimir@Eq. ~2.2!#, which
turns out to beb2/4 under Eq.~3.1!.

Let us now consider anarbitrary function H(J3 ,J6). Since the coproduct@Eq. ~2.3!# is an
algebra homomorphism, it is immediate to prove that the two-particle Hamiltonian that ca
defined through the coproduct ofH in the form

H (2)5D~H~J3 ,J6!!5H~D~J3!,D~J6!! ~3.2!

will commute with the coproductC(2) of the Casimir element:

$H (2),C(2)%5$D~H!,D~C!%5D~$H,C%!50. ~3.3!

Therefore, in this caseany function of the generators defines a two-site integrable Hamilton
with sl(2) coalgebra symmetry. In particular, the Casimir itself can be taken as the functiH
itself. In that case, the constant of motion will be given by the coproduct of any of the gene
of the algebra. Explicitly, in thesl(2) case we have

HC
(2)
ªC~D~J!,D~J1!,D~J2!!5 1

4~1^ J31J3^ 1!21~1^ J11J1 ^ 1!~1^ J21J2 ^ 1!

51^ C1C^ 11 1
2 J3^ J31J2 ^ J11J1 ^ J2 , ~3.4!

which is just the two-site hyperbolic Gaudin magnet.19–21 Once Eq.~3.4! is realized in terms of
two copies of Eqs.~3.1! we shall obtain an integrable two-particle Hamiltonian
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HC
(2)~q1 ,q2 ,p1 ,p2!ª

b2

4
1

b2

4
1

1

2
~2 p1 q12b!~2 p2 q22b!

1~2p1 q1
21b q1! p21p1 ~2p2 q2

21b q2!

52 p1 p2 ~q12q2!22b ~p12p2! ~q12q2!1b2. ~3.5!

SinceHC
(2) is the coproduct ofC, it will commute, for instance, withD(J1), which is just the total

momentump11p2 and gives us the integral of the motion. The generalization of this result t
N-site Gaudin magnet is straightforward by taking into account the appropriateN-th generaliza-
tion of the coproduct. By following Ref. 1, we obtain that

H (N)5(
i 51

N

Ci1(
i , j

N

~ 1
2 J3

i J3
j 1J2

i J1
j 1J1

i J2
j ! ~3.6!

5(
i , j

N

$2 pi pj ~qi2qj !
22b ~pi2pj ! ~qi2qj !%1

b2

4
N2. ~3.7!

The m52, . . . ,N Hamiltonians H (m), together with the total momentumD (N)(J1)5p11p2

1 . . . 1pN are again the functionally independentN constants of the motion in involution. Not
also that we could have taken a different realization on each lattice site through differebi

constants in Eq.~3.1!, and the formalism will guarantee the integrability in the same manner~this
kind of realizations will be relevant when the coalgebra symmetry of the Calogero syste
analyzed in Sec. IV!.

Now, the same construction can be applied to deformedsl(2) coalgebras. We shall conside
the non-standard one@Eqs. ~2.7!–~2.9!#. The following deformed phase-space realization of E
~2.7! can be found

J̃15p, J̃52
sinh~h p!

h
q2b cosh~h p!,

~3.8!

J̃252
sinh~h p!

h
q21b cosh~h p! q2b2

h

4
sinh~h p!,

which leads again the sameb2/4 constant when substituted in the deformed Casimir function@Eq.
~2.9!#. Therefore, an integrable deformation of the system@Eq. ~3.5!# will be given by the de-
formed coproduct of the~also deformed! Casimir @Eq. ~2.9!#. In terms of two phase-space rea
izations of the type@Eq. ~3.8!#, the coproduct@Eq. ~2.8!# defines the two-particle functions

f̃ 15Dh~ J̃1!5p11p2 ,

f̃ 25Dh~ J̃2!5e2h p1H 2
sinh~h p2!

h
q2

21b cosh~h p2! q22b2
h

4
sinh~h p2!J

1H 2
sinh~h p1!

h
q1

21b cosh~h p1! q12b2
h

4
sinh~h p1!J eh p2; ~3.9!

f̃ 35Dh~ J̃3!5e2h p1H 2
sinh~h p2!

h
q22b cosh~h p2!J 1H 2

sinh~h p1!

h
q12b cosh~h p1!J eh p2.

The corresponding Hamiltonian is obtained as
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Hh
(2)~q1 ,q2 ,p1 ,p2!5DhS 1

4
J̃3

21
sinh~hJ̃1!

h
J̃2D

5
1

4
~ f̃ 3!21

sinh~h f̃1!

h
f̃ 2

52
sinhhp1

h
e2h(p12p2)

sinhhp2

h
~q12q2!22b

12e22h(p12p2)

2h
~q12q2!

1
b2

4
~11e22h p11e2h p21e22h(p12p2)!. ~3.10!

This Hamiltonian will commute, by construction, with the coproduct ofJ̃1 ~i.e., the total momen-
tum p11p2 again! and the limith→0 of this expression leads to Eq.~3.5!. TheN-th dimensional
integrable generalization of this system is given by theN-th deformed coproduct of the deforme
Casimir, and the integrals of motion will be the lower degree coproducts of such Casimi
the N-th total momenta. Apart from the GD realization@Eq. ~3.1!#, the essential ingredients fo
the explicit formulation of such system can be extracted from Ref. 1. We stress that, althou
next section will be devoted to systems with two degrees of freedom, their correspo
N-dimensional integrable generalizations will be—by construction—completely defined.

IV. NÄ2 SYSTEMS AND THEIR INTEGRABLE DEFORMATIONS

Let us now use realizations ofsl(2) linked to well-known dynamical symmetries of phys
cally relevant potentials like the Morse and the harmonic oscillator with centrifugal term in o
to obtain new systems withsl(2) coalgebra symmetry.

A. Morse potential realization

If we consider the followingsl(2) phase-space realization

J352 p1 , J15 1
2e

2q1, J2522 p1
2 eq12a1 eq1. ~4.1!

The dynamical Hamiltonian

Hm5 1
8J3

224 s J114 s J1
2 ~4.2!

leads to the Morse one:

Hm5 1
2p1

21s ~e22 q122 e2q1!. ~4.3!

The corresponding Casimir is

Cm5
1

2
J3

21J1 J252
a1

2
. ~4.4!

The two-body system is obtained by applying the method described previously. The cop
of the Hamiltonian@Eq. ~4.2!# in the realization@Eq. ~4.1!# is

Hm
(2)5 1

2~p11p2!21s ~e22 q122 e2q1!1s ~e22 q222 e2q2!12 s e2( q11q2). ~4.5!

Note that, in general, we could have performed another coalgebra construction by taking di
symplectic realizations on each copy of the algebra@for instance@Eq. ~4.1!# and @Eq. ~3.1!#. Of
course, in order to have a Morse-type Hamiltonian, two realizations@Eq. ~4.1!# are needed, though
with possibly different Casimir valuesa1 and a2 . In this way, the coproduct of the Casim
providess a two-parametric family of constants of the motion in the form:
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Cm
(2)52 1

2~a11a2!2~ 1
2a11p1

2! e q12q22~ 1
2a21p2

2!e2(q12q2)12 p1 p2 . ~4.6!

The Hamiltonian@Eq. ~4.5!# can be diagonalized if we consider a canonical transformati

P15p11p2 , P25p2 , Q15q1 Q25q22q1 . ~4.7!

This leads to a Hamiltonian in whichP2 does not appear, and consequently the relative pos
between the particlesQ25q22q1 is a constant of the motion. Namely

HQ2

(2)5 1
2P1

21s~e22 Q1 ~11e2Q2!222 e2Q1 ~11e2Q2!!. ~4.8!

Note that Eq.~4.8! is a Morse-type problem depending on the constant parameterQ2 . Actually, in
the limit Q2→` we recover the original Morse potential. It is worth recalling that this kind
parameter-dependent dynamics was already observed in Ref. 22, where the classical motio
Poisson-Liesl(2) group was considered. On the other hand, it is immediate to check tha
N-dimensional generalization of the system@Eq. ~4.5!# can be reduced to the same type of on
dimensional Morse-type problem~now with N22 parameters! through a canonical transformatio
containing the new total momentaP15( i 51

N pi .

B. Deformed Morse systems

• The standardcase. The phase space realization

J̃352p1 , J̃15 1
2e

2q1, J̃2522S sinh~z p1!

z D 2

eq12a eq1, ~4.9!

leads to theslq(2) Poisson algebra@Eq. ~2.4!#. Therefore, the one-particle Hamiltonian

Hz5
1
8J̃3

224 s J̃114 s J̃1
2 , ~4.10!

does not change under deformation:

Hz5
1
2p1

21s ~e22 q122 e2q1!, ~4.11!

and the deformed Casimir element@Eq. ~2.6!# is just 2a1/2.
Let us now construct the associated two-body integrable deformation. By applying th

formed coproduct onto Eq.~4.10! and with the aid of two copies of the realization@Eq. ~4.9!# we
get

Hz
(2)5 1

2~p11p2!21s ~e22 (q12z p2)22 e2(q12z p2)!1s ~e22(q21zp1)22 e2(q21zp1)!

12 s e2$(q12z p2)1(q21zp1)%. ~4.12!

If we substitute again in terms ofP1 , we see thatP2 does appear within the Hamiltonian, and t
deformation would imply thatQ2 is no longer a constant of motion~however, note the persisten
coupling of the typeq12z p2 andq21z p1!. The constant of motion for@Eq. ~4.12!# would be just
the result of taking the phase-space realization of

Cz
(2)5Dz~Cz!5S sinh~~z/2)Dz~ J̃3!!

z
D 2

1Dz~ J̃1! Dz~ J̃2!. ~4.13!

Explicitly, Eq. ~4.13! gives the following two-particle function:
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Cz
(2)5S sinh~z~p11p2!!

z D 2

2S S sinhz p2

z D 2

1
a2

2 D ~e22zp11e2(q12q2)2z (p12p2)!

2S S sinhz p1

z D 2

1
a1

2 D ~e2zp21e(q12q2)2z (p12p2)!. ~4.14!

Note that the limitz→0 of Eq. ~4.14! leads to Eq.~4.6!.
• The non-standardcase. The deformed phase-space realization corresponding to the2a/2

value of the deformed Casimir is now

J̃352
sinh~h e2q1/2!

~h e2q1/2!
p1 , J̃15

1

2
e2q1,

~4.15!

J̃2522eq1
sinh~h e2q1/2!

~h e2q1/2!
p1

22h
a1

sinh~h e2q1/2!
.

Therefore, the one-particle Hamiltonian

H5 1
8J̃3

224 s J̃114 s J̃1
2 , ~4.16!

leads to:

Hh
(2)5

1

2 S sinh~h e2q1/2!

~h e2q1/2! D 2

p1
21s ~e22 q122 e2q1!. ~4.17!

The two-particle Hamiltonian is obtained from the deformed coproduct@Eq. ~2.8!# of Eq.
~4.16!:

Hh
(2)5

1

4 S e2 ~h/2! e2q12
sinh~h e2q2/2!

~h e2q2/2!
p212

sinh~h e2q1/2!

~h e2q1/2!
e~h/2! e2q2 p1D 2

1s ~e22 q122 e2q1!1s ~e22 q222 e2q2!12 s e2( q11q2). ~4.18!

Again, the role of thep11p2 dynamical variable is no longer relevant under deformation. T
two-particle Casimir would be obtained as the phase-space realization of

Dh~Ch!5
1

4
~Dh~ J̃3!!21

sinh~h Dh~ J̃1!!

h
Dh~ J̃2! ~4.19!

in terms of two copies of the non-standard deformation@Eq. ~4.15!#.

C. The Smorodinsky-Winternitz system

The following realization ofsl(2)

J35p1 q1 , J15
1

2
p1

21
c1

q1
2 ; J252

1

2
q1

2 ~4.20!

underlies thesl(2) dynamical symmetry of the harmonic oscillator potential with centrifugal te
(c1.0), since by defining

Hc5J12v2 J2 ~4.21!

we obtain that
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H5
1

2
~p1

21v2 q1
2!1

c1

q1
2 . ~4.22!

Note that the Casimir function is related to the centrifugal term, since

Cc5
1

4
J3

21J1 J25
2c1

2
. ~4.23!

The realization@Eq. ~4.20!# exhibits a singularity atJ250: hence, even if the Poisson vect
fields associated with Eq.~4.21! are of course complete, such completeness may not be guara
at the level of phase-space dynamics. In this particular example, a finite-time divergence
whenc1,0. Actually, for each concrete symplectic realization, a careful analysis of the rel
between the Poisson dynamics and the corresponding description~s! in terms of canonical vari-
ables is needed.

A two-particle Hamiltonian with coalgebra symmetry can be immediately derived by com
ing the coproduct of Eq.~4.21!. Since this dynamical Hamiltonian is linear in the generators,
have that

H (2)5
1

2
~p1

21p2
2!1

1

2
v2~q1

21q2
2!1

c1

q1
2 1

c2

q2
2 , ~4.24!

in case we assume both phase-space representations not to be the same (c1Þc2). This system is
the well-known Smorodinsky-Winternitz Hamiltonian~SW!,10,11 and its Casimir function can be
straightforwardly obtained through the coproduct ofCc in the actual representation, which rea

D~Cc!5C(2)~q1 ,q2 ,p1 ,p2!52
1

4
~p1q22p2q1!22

~q1
21q2

2!

2 S c1

q1
2 1

c2

q2
2D . ~4.25!

1. Integrable deformations of the SW system

The very same deformation machinery can be now used provided suitable deformed r
tions generalizing Eq.~4.20! are found. Hereafter it will be useful to consider the function

I ~1/2!@ t,x#ª
sinh~ t x/2!

t x
. ~4.26!

Note that limt→0I (1/2)@ t,x#51/2.
• The standardcase. The deformed realization is

J̃35p1 q1 , J̃15I ~1/2!@z,p1 q1# p1
21

1

2 I ~1/2!@z,p1 q1#

c1

q1
2 ,

~4.27!
J̃252I ~1/2!@z,p1 q1# q1

2 .

The one-particle Hamiltonian derived from

Hz5 J̃12v2 J̃2 ~4.28!

that in this realization becomes:

Hz5I ~1/2!@z,p1 q1#~p1
21v2q1

2!1
1

2 I ~1/2!@z,p1 q1#

c1

q1
2 . ~4.29!

The deformed Casimir function is again
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Cz5S sinh~z J̃3/2!

z
D 2

1 J̃1 J̃25
2c1

2
. ~4.30!

When the deformed coproduct of Eq.~4.28! is realized in terms of two-phase space realiz
tions of the type@Eq. ~4.27!# it leads to the following integrable two-particle Hamiltonian:

Hz
(2)5S I ~1/2!@z,p1 q1#~p1

21v2q1
2!1

1

2 I ~1/2!@z,p1 q1#

c1

q1
2D ez p2q2/2

1S I ~1/2!@z,p2 q2#~p2
21v2q2

2!1
1

2 I ~1/2!@z,p2 q2#

c2

q2
2D e2z p1q1/2

5H (2)1zH p2 q2S 1

2
p1

21
1

2
v2q1

21
c1

q1
2D 2p1 q1S 1

2
p2

21
1

2
v2q2

21
c2

q2
2D J 1o@z2#.

~4.31!

Note that this power series expansion shows how the undeformed one-particle Hamiltonians
in the first order of the perturbation. As usual, the constant of the motion wil be given by
~4.13! where we should use two copies of the proper realization Eq.~4.27!. As a result, we obtain

Cz
(2)5S sinh~z~p11p2!/2!

z D 2

2H e2z p1 q1S I ~1/2!@z,p2 q2#2 p2
2 q2

21
c2

2 D
1ez p2 q2S I ~1/2!@z,p1 q1#2 p1

2 q1
21

c1

2 D J 2I ~1/2!@z,p1 q1# I ~1/2!@z,p2 q2#

3H ~ p1
2 q2

21 p2
2 q1

2!1
1

2 S c1

I ~1/2!@z,p1 q1#2

q2
2

q1
2 1

c2

I ~1/2!@z,p2 q2#2

q1
2

q2
2D J . ~4.32!

A straightforward computation shows that the limitz→0 of this integral gives the undeformed on
@Eq. ~4.25!#.

• The non-standardcase. The deformed realization for the non-standardslh(2) Poisson alge-
bra with J̃2 as primitive generator@Eq. ~2.10!# is:

J̃352 I ~1/2!@h,q1
2# q1 p1 , J̃15I ~1/2!@h,q1

2# p1
21

c1

2 I ~1/2!@h,q1
2# q1

2 , J̃252
1

2
q1

2 . ~4.33!

If we consider again the dynamical one-particle Hamiltonian as

Hh5 J̃12v2 J̃2 , ~4.34!

we obtain the following deformation of Eq.~4.22!:

Hh5p1
2 I ~1/2!@h,q1

2#1
1

2
v2 q1

21
c1

2 I ~1/2!@h,q1
2# q1

2 . ~4.35!

The corresponding two-body system is, as usual, provided by the non-standard coprod
the dynamical Hamiltonian@Eq. ~4.34!#, that reads
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Hh
(2)5S I ~1/2!@h,q1

2#p1
21

c1

2 I ~1/2!@h,q1
2# q1

2D e2h q2
2/21S I ~1/2!@h,q2

2#p2
21

c2

2 I ~1/2!@h,q2
2# q2

2D eh q1
2/2

1
1

2
v2 ~q1

21q2
2!5H (2)1

h

2 H q1
2S 1

2
p2

21
c2

q2
2D 2q2

2S 1

2
p1

21
c1

q1
2D J 1o@h2#. ~4.36!

Note that this power series expansion shows the presence of ‘‘crossed’’ oscillator and cent
terms coming from the deformation. Finally, the associated constant of the motion can be de
from the coproduct of the non-standard Casimir equation~2.12! under two realizations of the typ
@Eq. ~4.33!#. We recall that that theN-dimensional generalization of this non-standard deforma
has been explicitly obtained in Ref. 4.

2. Coalgebra symmetry of the N Ä2 rational Calogero system

Let us now consider theN52 rational Calogero Hamiltonian12

Ha,b
(2) ~Q,P!5 1

2~P1
21P2

2!1V2~Q1
21Q2

2!1
a

~Q12Q2!2 1
b

~Q11Q2!2 . ~4.37!

It turns out that the canonical transformation

Q1ª~q11q2!/2, Q2ª~q22q1!/2, P1ªp11p2 , P2ªp22p1 ~4.38!

leads to the identification

Ha,b
(2) ~Q,P!52 H (2)~q,p!, ~4.39!

whereH (2)(q,p) is given by Eq.~4.24! with V25v2/2, a52 c1 , andb52 c2 .
Therefore, the Calogero Hamiltonian@Eq. ~4.37!# does havesl(2) coalgebra symmetry, bein

canonically equivalent to the~non-deformed! coproduct ofHª2 (J12v2 J2) and provided that
two appropriate~and in general, different! phase-space realizations ofsl(2) are considered. More
over, an integral of the motion for Eq.~4.37! is immediately deduced from the coalgebra symm
try, since it will be given by the~canonically transformed! coproduct of thesl(2) Casimir given
by Eq. ~4.25!, namely:

Ca,b
(2) ~Q,P!52 1

4~P1Q22P2Q1!22~Q1
21Q2

2!S a/2

~Q12Q2!2 1
b/2

~Q11Q2!2D . ~4.40!

As a further consequence, the coalgebra symmetry provides a systematic procedure
integrable deformations of theN52 Calogero system. In particular, a factor two times the
formed Hamiltonians@Eqs.~4.31! and~4.36!# will give rise @respectively, and by using the invers
of the canonical transformation of Eq.~4.38!# to the standard and non-standard deformations
Ha,b

(2) (Q,P). Once again, corresponding deformed integrals would be given by the inverse ca
cal transformation of the coproduct of the deformed Casimirs in the original (q,p) variables.

V. TWO-PARTICLE REALIZATIONS AND 2 N DIMENSIONAL SYSTEMS

So far we have considered one-particle phase-space realizations of coalgebras, but thi
the most general possibility. For instance, the classical analogue of the so-called Jordan-Sch
~JS! realization ofsl(2) would be

J35a1
1 a12b1

1 b15N 1
a2N 1

b , J15b1 a1
1 , J25a1 b1

1 , ~5.1!
                                                                                                                



s by

ra-

at,
nc-

ith a

o
al JS

ven
e

965J. Math. Phys., Vol. 43, No. 2, February 2002 Hamiltonians with sl(2) coalgebra symmetry

                    
where $a1 ,a1
1%5$b1 ,b1

1%51. This realization can be used to construct integrable system
using the coalgebra approach, but now eachsl(2) copy will have two degrees of freedom.

Therefore, Eq.~5.1! would give rise to a 2N dimensional system, whose complete integ
bility will be linked to the existence of 2N quantities in involution.N of them are provided from
the previous formalism~the m-th coproducts of the Casimir and theN-th coproduct of the dy-
namical Hamiltonian!. However,N more integrals are also available if we take into account th
under Eq.~5.1!, the Casimir ofsl(2) is no longer a numerical constant, but a two-particle fu
tion. Namely,

Ci5
1
4~J3

i !21J1
i J2

i 5 1
4~ai

1 ai1bi
1 bi !

25 1
4~N i

a1N i
b!2. ~5.2!

And we haveN of this quantities~in terms of classical number operators! that, by construction,
will commute with theN integrals coming from the coproduct. For instance, from Eq.~3.6! we
find that the JS classical Gaudin magnet is

HJS
(N)5(

i 51

N

Ci1(
i , j

N

~ 1
2 J3

i J3
j 1J2

i J1
j 1J1

i J2
j !

5
1

4 (
i 51

N

~N i
a1N i

b!21
1

2 (
i , j

N

~N i
a2N i

b!~N j
a2N j

b!1(
i , j

N

~ai
1 bj

1 aj bi1bi
1 aj

1 bj ai !.

~5.3!

Therefore, this Hamiltonian is completely integrable, since it is in involution with both theCi

functions@Eq. ~5.2!# and the ‘‘lower dimensional’’ HamiltoniansHJS
(m) . Finally, we remark that the

last term in Eq.~5.3! is just the classical counterpart of a long-range interacting system w
four-wave interaction Hamiltonian mixing each pair of sites~see Ref. 23 for related quantum
optical integrable systems!.

A. Jordan-Schwinger map and coalgebra structure

At this point, it becomes clear that a suitable deformation of the classical JS map@Eq. ~5.1!#
would give rise to a new class of 2N dimensionalslq(2) invariant Hamiltonians. The answer t
this question can be directly related to the study of the reducibility properties of the classic
map, and it will lead us to a new interesting type of coalgebra structures.

A straightforward computation shows that theJ̄i functions

J̄35D̄~J3!51^ J31J3^ 1,

J̄15D̄~J1!51^ J12J1 ^ 1, ~5.4!

J̄25D̄~J2!51^ J22J2 ^ 1

close asl(2) algebra. We could now consider a pair of ‘‘harmonic oscillator’’ realizations-gi
by Eq.~4.20! with c50-and obtain a realization of Eq.~5.4! on the two-particle phase space in th
form

J̄35p1 q11p2 q2 , J̄15 1
2~p1

22p2
2!, J̄252 1

2~q1
22q2

2!. ~5.5!

Now, the following canonical transformation can be defined
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p15b11 1
2a1

1 , q15a12 1
2b1

1 ,
~5.6!

p25b12 1
2a1

1 , q252a12 1
2b1

1 .

By substituting Eq.~5.6! into Eq. ~5.5! we recover Eq.~5.1!. Therefore, the JS realization i
canonically equivalent to a ‘‘fermionic coproduct’’@Eq. ~5.4!# of two irreps ofsl(2). Note that the
map D̄ defined by Eq.~5.4! is not coassociative since

~ id ^ D̄ !+DÞ~D̄ ^ id !+D̄. ~5.7!

The coalgebra structure allows us to perform the same trick in the deformed case, wh
can obtain the deformed realization by setting

D̄z~ J̃3!51^ J̃31 J̃3^ 1,

D̄z~ J̃1!5e2 ~z/2!J̃3^ J̃12 J̃1 ^ e~z/2!J̃3, ~5.8!

D̄z~ J̃2!5e2 ~z/2!J̃3^ J̃22 J̃2 ^ e~z/2!J̃3.

These expressions are compatible withslq(2) brackets @Eq. ~2.4!# and define a non-
cocommutative and non-coassociative homomorphism. From them, theslq(2) generators can be
expressed in terms of two phase-space realizations@Eq. ~4.27!# with c50:

f̃ 35D̄z~ J̃3!5p1 q11p2 q2 ,

f̃ 15D̄z~ J̃1!5e2 ~z/2! p1 q1 I ~1/2!@z,q2 p2# p2
22I ~1/2!@z,q1 p1# p1

2 e~z/2! p2 q2, ~5.9!

f̃ 25D̄z~ J̃2!52e2 ~z/2! p1 q1 I ~1/2!@z,q2 p2# q2
21I ~1/2!@z,q1 p1# q1

2 ez/2 p2 q2.

Now, if we apply the canonical transformation@Eq. ~5.6!# onto the functionsf̃ i , we shall obtain
the appropriate standard deformation of the JS map@Eq. ~5.1!#, that can be recovered in the lim
z→0.

Note that theq-deformation of the JS map has been treated in the previous literature24 by
making use of a deforming functional approach.25,26 However, the discovery of its ‘‘internal’’
coalgebra structure makes it possible to give an answer in terms of thesuq(2) properties. It is also
worthy to stress that the non-standard deformation seems not to be compatible with such ‘
onic’’ comultiplication.

Finally, we mention that the construction of a 2N dimensional standard deformation of th
Gaudin-JS system@Eq. ~5.3!# is straightforward by consideringN copies of the deformed JS ma
@Eq. ~5.9!# and by representing through them theN-th deformed coproduct of the standardslq(2)
Casimir @Eq. ~2.6!#. The integrals of motion will be given by theM -th coproducts (M
52, . . . ,N21) of such deformed Casimir and by theN different functionsCi

z defined by the
expressions of theslq(2) Casimir on each copy of the JS realization.

VI. ON THE ROLE OF THE REPRESENTATION: BEYOND sl „2…

The aim of this Section is to emphasize that the coalgebra symmetry of the Hamiltonia
be used to obtain the full set of integrals of the motion provided that the initial phase s
representation fulfills the sufficient conditions that have been stated in Sec. I. This has be
case for the examples presented so far, all of them based onsl(2). As weshall see in the seque
if we consider either non-simple algebras or higher rank ones, it could happen that the
representation does not satisfy such requirements. In the cases presented here the integral
from the coproduct of the Casimirs turn out to be either trivial ones~Heisenberg-Weyl example! or
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functionally dependent@so(3,2) representation#. However, it is worth mentioning that certai
deformations can help to overcome these restrictions, as we shall see in the Heisenberg-We

A. Heisenberg-Weyl coalgebras

The Heisenberg-Weyl Poisson algebrah3

$A2 ,A1%5M $A2 ,M %50 $A1 ,M %50 ~6.1!

is endowed with a Poisson coalgebra structure by means of the usual primitive coproduct

D~M !51^ M1M ^ 1, D~A6!51^ A61A6 ^ 1. ~6.2!

Note that the Casimir function forh3 is just the central generatorM . The natural phase-spac
realization forh3 is given by

A25v1 q1 , A15p1 , M5v1 . ~6.3!

If we consider the quadratic function

H5A1
2 1A2

2 , ~6.4!

the associated one-particle Hamiltonian will beH (1)5p1
21v1

2q1
2 , and the Casimir function is jus

the constantC(1)5M5v1 . By following the coalgebra picture, the two-particle Hamiltoni
H (2)5D(H) reads:

H (2)5p1
21p2

21v1
2q1

21v2
2q2

212~p1p21v1v2q1q2!. ~6.5!

The constant of motionC(2) would be the coproduct of the CasimirC(2)5D(C)5v11v2 . Ob-
viously, the generalization of this construction toN-particles will give the sum of the constantsv i

as the corresponding integrals. Therefore, the coalgebra symmetry is not able to provide a
non-trivial constants of motion for this system~which is actually a completely integrable one!.

However, this problem is surprisingly removed when we consider a certain quantum d
mation of the Heisenberg-Weyl algebra. Let us introduce the quantum algebraUz(h3) with de-
formed coproduct,27

Dz~A2!51^ A21A2 ^ 1

Dz~A1!5e2zA2 ^ A11A1 ^ ezA2 ~6.6!

Dz~M !5e2zA2 ^ M1M ^ ezA2.

This coproduct is compatible with the non-deformed Poisson brakets@Eq. ~6.1!#. As a conse-
quence, the Casimir coincides again withM and the one-particle representation@Eq. ~6.3!# also
holds for the deformed case.

In fact, the deformation is restricted to the coproduct and, consequently, it will bec
apparent in the two-particle system. Although the phase-space realizations on each sp
classical ones, their composition law@Eq. ~6.6!# is not, and leads to the following two-particl
functions

Dz~A2!5v1q11v2q2

Dz~A1!5p2e2zv1q11p1 ezv2q2 ~6.7!

Dz~M !5v2e2zv1q11v1ezv2q2,
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whose Poisson brackets will close again theh3 Poisson algebra. If the functionH given in Eq.
~6.4! is considered, these expressions will lead to a deformed two-particle Hamiltonian

Hz
(2)5Dz~H!5p1

2 e2zv2q21p2
2e22zv1q11v1

2q1
21v2

2q2
212$p1 p2e2z(v1q12v2q2)1v1v2q1q2%.

~6.8!

But now the deformed two-particle Casimir is no longer a constant:

Cz
(2)5Dz~C!5v1ezv2q21v2e2zv1q1. ~6.9!

Therefore, the non-primitive nature of the coproduct of the Casimir turns out to be an ess
difference with respect to the non-deformed coalgebra and provides the non-trivial integral f
system~6.8!.

B. A Poisson- so „3,2… coalgebra

Finally, let us consider a representation of the Poissonso(3,2) algebra with generator
$E0 ,E6 ,F0 ,F6 ,C6 ,D6% given by the two-particle functions

E05 1
2p1 q1 , E15 1

2p1
2 , E25 1

2q1
2 ,

F05 1
2p2 q2 , F15 1

2p2
2 , F25 1

2q2
2 , ~6.10!

C15p1 q2 , C25q1 p2 , D15p1 p2 , D25q1 q2 .

The algebraso(3,2) is of rank two~E0 andF0 are the generators of the Cartan sub-algeb!
and, consequently, it has two independent Casimir functions,28,29 that in this Poisson algebr
context are given by

I 152 ~2E0
21E1 E2!12 ~2F0

21F1 F2!, ~6.11!

I 25$C1 ,F% $C2 ,F%2$D1 ,F% $D2 ,F%2F2, ~6.12!

whereF5(2E0
21E1 E2)2(2F0

21F1 F2) and$•,•% is the Poisson bracket onso(3,2)* . Note
that in the representation@Eq. ~6.10!# both Casimir functions vanish.

Obviously, the primitive coproductD(X)51^ X1X^ 1 endows theso(3,2) algebra with a
coalgebra structure and the representation@Eq. ~6.10!# has the same number of degrees of freed
as the rank of the algebra. A straightforward computation of the coproduct of the CasimirI 1 gives
the four-particle integral

I 1
(2)5D~ I 1!5 1

2~p3 q11p4 q22p1 q32p2 q4!2, ~6.13!

where the variables (p3 ,q3 ,p4 ,q4) come from to the second copy of the algebra. However,
coproduct of the second Casimir leads to a non-trivial second integral that is functionally d
dent with respect to Eq.~6.13!; namelyI 2

(2)52(I 1
(2))2/4. As a consequence, the realization@Eq.

~6.10!# of the so(3,2) coalgebra can be used as the elementary block in order to construN
integrals of the motion in involution for a number of Hamiltonian systems with 2N degrees of
freedom, but it does not account for the complete integrability of such systems. In this conte
interestingly open problem would be to determine whether some Poisson coalgebra deforma
so(3,2) could break the functional dependence of the second set of corresponding~deformed!
integrals.
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8C. Gómez, M. Ruiz-Altaba, and G. Sierra,Quantum Groups in Two-Dimensional Physics~Cambridge University Press
Cambridge, 1995!.

9J. F. Dyson, Phys. Rev.102, 1217~1956!.
10P. Winternitz, Ya. A. Smorodinsky, M. Uhlir, and I. Fris, Sov. J. Nucl. Phys.4, 444 ~1966!.
11N. W. Evans, J. Math. Phys.32, 3369~1991!.
12F. Calogero, J. Math. Phys.12, 419 ~1971!.
13P. Jordan, Z. Phys.94, 531 ~1935!.
14J. Schwinger,On Angular Momentum, U.S. At. Energy Comm., NYO-3071~1952!.
15M. Jimbo, Lett. Math. Phys.10, 63 ~1985!.
16E. E. Demidov, Yu I. Manin, E. E. Mukhin, and D. V. Zhdanovich, Prog. Theor. Phys. Suppl.102, 203 ~1990!.
17S. Zakrzewski, Lett. Math. Phys.22, 287 ~1991!.
18C. Ohn, Lett. Math. Phys.25, 85 ~1992!.
19M. Gaudin,La Fonction d’Onde de Bethe~Masson, Paris, 1983!.
20V. B. Kuznetsov, J. Math. Phys.33, 3240~1992!.
21F. Calogero, Phys. Lett. A201, 306 ~1995!.
22F. Lizzi, G. Marmo, G. Sparano, and P. Vitale, Mod. Phys. Lett. A8, 2973~1993!.
23B. Jurco, J. Math. Phys.30, 1739~1989!.
24V. I. Man’ko, G. Marmo, P. Vitale, and F. Zaccaria, Int. J. Mod. Phys. A9, 5541~1994!.
25T. L. Curtright and C. K. Zachos, Phys. Lett. B243, 237 ~1990!.
26A. Ballesteros and J. Negro, J. Phys. A25, 5945~1992!.
27A. Ballesteros, F. J. Herranz, and P. Parashar, J. Phys. A30, L149 ~1997!.
28J. M. Cervero´ and J. D. Lejarreta, J. Phys. A29, 7545~1996!.
29N. T. Evans, J. Math. Phys.8, 170 ~1967!.
                                                                                                                



a
e-

its

-

ing

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 2 FEBRUARY 2002

                    
Superintegrability in a two-dimensional space
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A Hamiltonian with two degrees of freedom is said to be superintegrable if it
admits three functionally independent integrals of the motion. This property has
been extensively studied in the case of two-dimensional spaces of constant~possi-
bly zero! curvature when all the independent integrals are either quadratic or linear
in the canonical momenta. In this article the first steps are taken to solve the
problem of superintegrability of this type on an arbitrary curved manifold in two
dimensions. This is done by examining in detail one of the spaces of revolution
found by G. Koenigs. We determine that there are essentially three distinct poten-
tials which when added to the free Hamiltonian of this space have this type of
superintegrability. Separation of variables for the associated Hamilton–Jacobi and
Schrödinger equations is discussed. The classical and quantum quadratic algebras
associated with each of these potentials are determined. ©2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1429322#

I. INTRODUCTION

A Hamiltonian system in classical mechanics withn degrees of freedom is described by
Hamiltonian functionH(x1 ,...,xn ,p1 ,...,pn)5H(x,p). The dynamics of such a system is d
scribed by Hamilton’s equations

ẋi5
]H

]pi
, ṗi52

]H

]xi
. ~1!

The time rate of change of a classical observablel 5l (x,p) is given by

dl

dt
5$l ,H%5(

i 51

n S ]l

]xi

]H

]pi
2

]l

]pi

]H

]xi
D , ~2!

where$,% is the Poisson bracket. A Hamiltonian system is called ‘‘Liouville integrable’’ if it adm
n functionally independent integrals of motion$X1 ,...,Xn% which are mutually in involution, i.e.,

$Xi ,Xj%50, i , j 51,...,n, ~3!

where one of these constants can be taken to be the HamiltonianH.1,2 The system is superinte
grable if a furtherm integrals$Y1 ,...,Ym,1<m<n21% exist such that the set of constants$X1

5H,X2 ,...,Xn ,Y1 ,...,Ym% is functionally independent. The additional integrals have vanish

a!Electronic mail: e.kalnins@waikato.ac.nz
b!Electronic mail: jonathan@math.waikato.ac.nz
c!Electronic mail: wintern@crm.umontreal.ca
9700022-2488/2002/43(2)/970/14/$19.00 © 2002 American Institute of Physics
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Poisson bracket withH, but not necessarily with each other or with theXi ’s. A classical Hamil-
tonian system is maximally superintegrable ifm5n21. There are then 2n21 functionally inde-
pendent integrals of motion. The concepts of complete integrability and superintegrability
their analog in quantum mechanics. In this case a superintegrable quantum mechanical sy
described byn1m quantum observables$X̂15Ĥ,X̂2 ,...,X̂n ,Ŷ1 ,...,Ŷm% which satisfy the com-
mutation relations

@Ĥ,X̂i #5ĤX̂i2X̂i Ĥ50, @Ĥ,Ŷj #50, @X̂i ,X̂k#50, ~4!

where i ,k51,...,n, j 51,...,m. For superintegrable classical Hamiltonian systems it is often
case that the elements of our set of constants are polynomial in the canonical momenta. T
known maximally superintegrable systems in Euclidean spaceEn are the Kepler problem and th
harmonic oscillator. All finite~bounded! trajectories in these two systems are closed. Moreo
these are the only spherically symmetric potentials for which all finite trajectories are close3

Systematic studies of superintegrable systems have been conducted for spaces of c
curvature in two and three dimensions.4–10 In particular, a complete classification of all superi
tegrable systems in the real Euclidean spacesE2 and E3 with at most second order integrals o
motion was given.4–8 More recently, a relation between superintegrable systems and gener
Lie symmetries has been established,11 as well as their relation to exactly solvable problems
quantum mechanics.12 Recently13–15 it has been possible to classify all maximally superintegra
systems for spaces of constant curvature~possibly zero! in two dimensions for which all the extra
constants of the motion are at most quadratic in the canonical momenta.

A natural question to ask is whether the concept of superintegrability is restricted to spa
constant curvature. The purpose of this article is to show that this is not so and to start a st
superintegrable systems in more general Riemannian, pseudo-Riemannian and complex R
ian spaces. More specifically, we consider real two-dimensional spaces and search for Ham
systems allowing additional constants of the motion that are at most quadratic in the mom

To make initial progress on this problem we first need to know which Riemannian spac
two dimensions have associated with them more than one classical quadratic constant
motion. This is a problem that has been comprehensively solved by Koenigs16 in a note written in
Vol. IV of the treatise of Darboux.17

In addition to being of intrinsic interest, additional motivation for this problem comes f
the observation that all two-dimensional Riemannian spaces can be embedded in the
dimensional Euclidean or pseudo-Euclidean space. Consequently, any such two-dimension
sical motion is equivalent to a constrained motion in three dimensions. It is also possib
interpret the motion, via general relativity, as motion in a two-dimensional gravitational field

Given that we have a Riemannian space in two dimensions with infinitesimal distance

ds25gi j ~u!duiduj , i , j 51,2, ~5!

andu5(u1,u2), the classical Hamiltonian has the form

H5 1
2 gi j pipj1V~u! ~6!

and the corresponding Schro¨dinger equation can be taken to have the form

ĤC52
1

2Ag
]ui~Aggik]ukC!1V~u!C5EC, ~7!

whereg5det(gij). For the classical HamiltonianH our problem is to look for potentialsV(u) and
Riemannian spaces specified by the metricgi j for which there are at least two extra functional
independent constants of the motion of the form

l15ai j ~u!pipj1b~u! ~8!
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or

l25ai~u!pi1c~u!, ~9!

other thanH. One well known way of solving the corresponding classical problem is to
Hamilton–Jacobi theory. The crucial equation to solve is then the Hamilton–Jacobi equ
obtained from the equationH5E via the substitutionpi5]S/]ui , that is,

H5
1

2
gi j

]S

]ui

]S

]uj 1V~u!5E. ~10!

This equation is sometimes solvable by the method of separation of variables using the a
separation ansatz

S5S1~u1,a,E!1S2~u2,a,E!. ~11!

The corresponding Schro¨dinger equation can also be solved by separation of variables with
product ansatz

C5c1~u1,l,E!c2~u2,l,E!. ~12!

The quantitiesl i are constants of the motion if

$l i ,H%50. ~13!

For l2 this implies thatai(u) is a Killing vector andai(u)pi is a symmetry of the free Hamil
tonian@H without V(u)#. In the case ofl1 this implies thatai j (u) is a Killing tensor. Such tensor
are directly related to the notion of additive separation as described above. We note th
constants of the typel2 , the condition impliesc(u)50. It is also clear that for every constan
linear in the momenta, its square is a constant quadratic in the momenta, that is, of the forml1 .

As mentioned earlier, Darboux and Koenigs have given a comprehensive analysis of w
two-dimensional Riemannian space admits more than one quadratic constant. In Sec. II w
marize some of these results.16,17 In the remaining sections we concentrate on a particular sp
with a Killing vector and two Killing tensors. Section III deals with the free Hamilton–Jac
equation and we show that the Schro¨dinger equation allows separation of variables in th
different coordinates systems which we determine explicitly. Potentials that allow separat
variables in these systems are then introduced. In Sec. IV we find all potentials with this
integrability property. We then discuss in Sec. V the various surfaces that may be represen
the infinitesimal distances that we have and the consequent special functions that arise fr
corresponding Schro¨dinger equation.

II. ON GEODESICS WITH QUADRATIC INTEGRALS

In 1889 G. Koenigs16 wrote a note in the last volume of Darboux’s treatise ‘‘The´orie générale
de surfaces,’’ the title of which coincides with the title of this section. This note contai
summary of results which are the solution of the problem outlined in the Introduction, viz. w
does the free Hamiltonian of a two-dimensional Riemannian space admit more than one qu
constant of the motion. The analysis was performed over the field of complex numbers and
be modified over the reals. What Koenigs did was to write the infinitesimal distance for a ge
two-dimensional Riemannian space in the form

ds254 f ~x,y!dxdy. ~14!

This can always be done in two dimensions overC. The corresponding free Hamiltonian then h
the form
                                                                                                                



be a

space
hich
mil-

t Kill-
ctor

types.

n. We

, it is

d one

973J. Math. Phys., Vol. 43, No. 2, February 2002 Superintegrability in a curved space

                    
H5
1

2 f ~x,y!
pxpy . ~15!

By making the requirement that there is a second order Killing tensor of the form

l5ai j ~u!pipj , ~16!

Darboux and Koenigs establish the following propositions.

~1! Any two-dimensional Riemannian space that admits more than one Killing vector must
space of constant curvature and admit three linearly independent Killing vectors.

~2! Any two-dimensional Riemannian space that admits more than three Killing tensors is a
of constant curvature. It then actually admits five linearly independent Killing tensors w
are all bilinear expressions in the Killing vectors. The sixth bilinear combination is the Ha
tonian itself.

~3! Any two-dimensional Riemannian space that admits precisely three linearly independen
ing tensors will be a Riemannian space of revolution. In fact, there will be one Killing ve
and two Killing tensors.

Two-dimensional Riemannian spaces of this latter type were distinguished to be of four
The infinitesimal distances of these types are given by

~I! ds25(x1y)dxdy,
~II ! ds25(a/(x2y)2 1b)dxdy,
~III ! ds25(ae2 (x1y)/21be2x2y)dxdy,
~IV ! ds25 (a(e(x2y)/21e(y2x)/2)1b)/(e(x2y)/22e(y2x)/2)2 dxdy.

It is the first of these infinitesimal distances that we analyze in some detail in the next sectio
shall call the spaces ‘‘Darboux spaces’’ and denote them byD1 , D2 , D3 andD4 , respectively.

III. THE FREE PARTICLE AND SEPARATION OF VARIABLES IN A DARBOUX SPACE
OF TYPE ONE

If we consider the first space of Darboux’s list and look at real forms of this space only
convenient to make the new choice of variables

x5u1 iv, y5u2 iv. ~17!

The corresponding infinitesimal distance can then be taken as

ds252u~du21dv2!, ~18!

and the corresponding Hamiltonian has the form

H5
1

4u
~pu

21pv
2!. ~19!

Associated with this Hamiltonian are three integrals of the free motion, two quadratic an
linear:

K5pv , X15pupv2
v

2u
~pu

21pv
2!,

~20!

X25pv~vpu2upv!2
v2

4u
~pu

21pv
2!.

These three integrals satisfy the polynomial Poisson algebra relations,
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$K,X1%52H, $K,X2%52X1 , $X1 ,X2%52K3. ~21!

They cannot be functionally independent and, in fact, satisfy the relation

4HX21X1
21K450. ~22!

For the analogous quantum problem it is sufficient to consider the operators

Ĥ52
1

4u
~]u

21]v
2!, K̂52 i ]v ,

~23!

X̂152]u]v1
v

2u
~]u

21]v
2!, X̂252

1

2
@]v ,v]u2u]v#11

v2

4u
~]u

21]v
2!,

where@A,B#15AB1BA. The quantum versions of the quadratic constants are obtained vi
formula

l̂52
1

Ag
] i~ai jAg] j !. ~24!

These operators have the same commutation relations as for the classical constants w
Poisson bracket replaced by the commutator bracket:

@K̂,X̂1#52iĤ , @K̂,X̂2#52 iX̂1 , @X̂1 ,X̂2#522iK̂ 3. ~25!

There is also the operator relation

4ĤX̂21X̂1
21K̂450. ~26!

The question we address in this section relates to the various possible ways that separa
variables can be achieved in the case of free classical motion or its quantum analogue, t
Schrödinger equation. The criteria for this to occur is the same in either case. Classically,
have a general quadratic first integrall and free Hamiltonian

H5 1
2 gi j ~u!pipj , ~27!

and if the characteristic equation,

uai j 2rgi j u50, ~28!

has two distinct rootsr1 andr2 , the Hamiltonian will have Liouville form when written in term
of the new variablesr1 , r2 . That is,

H5
s~r1!pr1

2 1t~r2!pr2

2

r11r2
. ~29!

In this form, both classical and quantum systems can be solved by the separation of va
ansatz.

If we want to classify all different separable coordinate systems for a given Hamiltonian
need to know how many essentially different quadratic first integrals are possible. To decide
notion of equivalence we first observe that the variablev does not explicitly appear in the metri
tensor, that is, it is an ignorable variable. This means that the transformationsv→v1b form a
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one-dimensional Lie group. Accordingly, we determine the notion of equivalence to mean th
quadratic integrals are equivalent if they are related by a motion of this group. Consequen
most general quadratic constant can be written

l5aX11bX21cK2 ~30!

to within the addition of a multiple ofH. The second order elementsXi transform under the
adjoint action according to

Xi→exp~aK !Xi exp~2aK !5exp~aAd~K !!Xi5Xi1a$K,Xi%1 1
2 a2$K,$K,Xi%%1..., ~31!

or specifically

X1→X112aH, X2→X22aX12a2H. ~32!

There are three classes of possible quadratic first integrals under this equivalence relation.
representatives are

X11aK2, X21aK2, K2. ~33!

We can now explicitly demonstrate the separable coordinates in each of these cases.
~1! Separating coordinates associated with X11aK2. If we choose a representative to be

L5X11sinhc K2, ~34!

the corresponding roots of the characteristic equation and hence new variables are

r 5r1522~Cu1v !, s5r25
2

C
~u2Cv !, C5e2c. ~35!

In terms of these coordinates the Hamiltonian has the form

H5
2~C211!2

C~s2r ! S 1

C2 ps
21pr

2D , ~36!

and the corresponding quadratic constant in these coordinates is

L52
~C211!2

C~s2r ! S r

C2 ps
21spr

2D . ~37!

~2! Separating coordinates associated with X21aK2. Taking the second representative in t
list ~33!, that is,L5X21aK2, a convenient choice of new variablesj, h is related to the rootsr i

by

r15h2~2a2h2!, r252j2~2a1j2!. ~38!

The corresponding classical Hamiltonian then has the form

H5
pj

21ph
2

2~j21h2!~j22h212a!
. ~39!

The associated constant of the motion in the new coordinatesj andh is

L5
h2~2a2h2!pj

22j2~j212a!ph
2

2~j21h2!~j22h212a!
. ~40!
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The defining coordinatesu,v are written in terms of the new coordinatesj,h via

u5 1
2 ~j22h2!1a, v5jh, ~41!

which looks like displaced parabolic coordinates in theu,v plane.
~3! Separating coordinates associated with K2. For the last representative,K2, we need only

the coordinatesu,v and to recognize the fact thatK5pv .
We conclude this section by discussing the solutions to the free particle and free Schro¨dinger

equation in these three cases.
In case 1 above it is more convenient to choose the variables according to

u5r cosu1s sinu, v52r sinu1s cosu. ~42!

The classical Hamilton–Jacobi equation then has the form

H5
~]S/]r !21~]S/]s!2

4~r cosu1s sinu!
5E, ~43!

which has the general separable solution

S5S1~r !1S2~s!5
~4Er cosu2l!3/2

6E cosu
1

~4Essinu1l!3/2

6E sinu
. ~44!

The corresponding free Schro¨dinger equation

ĤC52
1

4~r cosu1s sinu!
~] r

21]s
2!C5EC ~45!

has the typical product solutions

C5AS r 2
m

4E cosu D S s1
m

4E sinu DC1/3S 2

3
A4E cosuS r 2

m

4E cosu D 3/2D
3C1/3S 2

3
A4E sinuS s1

m

4E sinu D 3/2D , ~46!

whereCn(z) is a solution of Bessel’s equation.
In the second case the classical Hamilton–Jacobi equation is

H5
~]S/]j!21~]S/]h!2

2~j21h2!~j22h212c!
5E ~47!

and has a general solution of the form

S5E A2Ej412Ecj22ldj1E A22Eh412Ech21ldh, ~48!

which can be expressed in terms of elliptic integrals. The corresponding Schro¨dinger equation has
a solution of the formC5c1(j)c2(h), where thec i satisfy

~]j
212Ej414Ecj21l!c1~j!50,

~49!
~]h

222Eh414Ech22l!c2~h!50.

These equations are readily identified as the equations for the anharmonic oscillator.
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In the third case the classical Hamilton-Jacobi equation is

H5
1

4u S S ]S

]uD 2

1S ]S

]v D 2D5E, ~50!

which has separable solutions

S5
1

6E
~4Eu2k2!3/21kv. ~51!

The separable solutions to the corresponding free Schro¨dinger equation

2
1

4u
~]u

21]v
2!C5EC ~52!

have the form

C5Au2
m2

4E
C1/3S 2

3
A4ES u2

m2

4ED 3/2Deimv. ~53!

It is clear that the actual solutions to the classical motion or the corresponding Schro¨dinger
equation depend on the range of values assumed by the various real variables, that is, on
which real manifold we are considering.

IV. INTEGRABLE AND SUPERINTEGRABLE SYSTEMS FOR THE DARBOUX SPACE OF
TYPE ONE

In this section we address the problem of superintegrability for the Hamiltonian

H5
1

4u
~pu

21pv
2!, ~54!

that is, look for potentialsV(u,v) for which

H̄5H1V~u,v ! ~55!

admits at least two extra quadratic integrals. The way to solve this problem is as follows. Fi
consider that we already have one quadratic first integral

L̄5a~u,v !pu
21b~u,v !pupv1c~u,v !pv

21d~u,v !. ~56!

We know that the quadratic part ofL̄ @i.e., that part obtained by puttingd(u,v)50 in ~56!# must
correspond to one of the three possibilities outlined in the previous section. For each of
possibilities separation of variables is possible in coordinatesa,b where u5u(a,b), v
5v(a,b). The addition of a potential implies that separation is preserved. As a conseque
this, H̄ can be written as

H̄5
pa

21pb
21 f ~a!1g~b!

s~a!1t~b!
~57!

and the corresponding first integral will be

L̄5
s~a!~pb

21g~b!!2t~b!~pa
21 f ~a!!

s~a!1t~b!
. ~58!
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The next step is to impose the condition that there is a further quadratic first integral and se
conditions this imposes on the functionsf (a) and g(b). If we do these calculations systema
cally, we arrive at the following three cases.

~1!

H5
pu

21pv
2

4u
1

b1~4u21v2!

4u
1

b2

u
1

b3

uv2 . ~59!

The additional constants of the motion have the form

R15X22
b1v4

4u
2

b2v2

u
2

b3~4u21v2!

v2u
, R25K21b1v21

4b3

v2 ~60!

and the corresponding quadratic algebra18,19 relations are determined by

$R,R1%58HR116R2
2116b2R2232b1b3 ,

$R,R2%528HR2216b1R1 , ~61!

R25216HR1R224R2
3216b2R2

2264b3H2216b1R1
2164b1b3R21256b1b2b3 ,

whereR5$R1 ,R2%. The Hamiltonian clearly separates in the coordinatesu andv as well as the
coordinatesj,h given byu5 1

2(j
22h2)1a, v5jh. This can be seen from the explicit form

H5
pj

21ph
2

2~j21h2!~j22h212a!
1

b1~~j22h212a!21j2h2!14b21 ~4b3 /j2h2!

2~j22h212a!
. ~62!

The corresponding quadratic quantum algebra relations are

@R̂,R̂1#526R̂2
228ĤR̂1116b2R̂212b1~3116b3!,

@R̂,R̂2#58ĤR̂2216b1R̂1 , ~63!

R̂2514R̂2
328Ĥ@R̂1 ,R̂2#1216b2R̂2

2216b1R̂1
224b1~11116b3!R̂2

24~3116b3!Ĥ2116b1b2~3116b3!,

whereR̂5@R̂1 ,R̂2#.
~2!

H5
pu

21pv
2

4u
1

a1

u
1

a2v
u

1
a3~u21v2!

u
. ~64!

The additional constants of the motion have the form

R15X12
2a1v

u
1

2a2~u22v2!

u
1

2a3v~u22v2!

u
,

~65!
R25K214a2v14a3v2,

and the corresponding quadratic algebra relations are determined by

$R,R1%528H2116a3R218~a2
214a1a3!,
                                                                                                                



form

ee that
of

c

979J. Math. Phys., Vol. 43, No. 2, February 2002 Superintegrability in a curved space

                    
$R,R2%516a2H216a3R1 , ~66!

R2516H2R2216a3R2
2132a2HR1216a3R1

2216~a2
214a1a3!R2264a1a2

2.

If we change the coordinates according tou5r cosu1ssinu, v52r sinu1scosu, the Hamil-
tonian assumes the form

H5
pr

21ps
214a114a2~2r sinu1s cosu!14a3~r 21s2!

4~r cosu1s sinu!
, ~67!

which clearly also separates in these coordinates.
The commutation relations of the corresponding quantum algebra are

@R̂,R̂1#516a3R̂218Ĥ228~a2
214a1a3!,

@R̂,R̂2#5216a3R̂1116a2Ĥ, ~68!

R̂25216a3R̂2
2216a3R̂1

2116Ĥ2R̂2132a2ĤR̂1216~a2
214a1a3!R̂2164~a3

22a1a2
2!.

~3! The third potential gives rise to a Hamiltonian of the form

H5
pu

21pv
2

4u
1

a

u
. ~69!

There are three extra constants associated with this Hamilonian,

R15X12
2av

u
, R25X22

av2

u
and K. ~70!

The associated Poisson bracket relations are

$K,R1%52H, $K,R2%52R1 , $R1 ,R2%52K~K212a!, ~71!

and the corresponding functional relation among these constants is

4HR21R1
21K414aK250. ~72!

The commutation relations associated with the corresponding quantum problem have the

@K̂,R̂1#52iĤ , @K̂,R̂2#52 iR̂1 , @R̂1 ,R̂2#522iK̂ ~K̂222a!, ~73!

and the identity amongst the defining operators is

4ĤR̂21R̂1
21K̂424aK̂250. ~74!

Upon examination of the various superintegrable potentials we have constructed, we s
by multiplying the equationH5E by a suitable factor we essentially recover a variant of one
the superintegrable systems already classified for spaces of constant~or zero! curvature. For the
first potential above, the equationH5E may be written

pu
21pv

21b1~4u21v2!14b21
4b3

v2 24Eu50. ~75!

This equation is known to have separable solutions in coordinatesu, v and associated paraboli
coordinatesj,h given byu5 1

2(j
22h2), v5jh. With the second potential,H5E becomes
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pu
21pv

214a3~u21v2!14a114a2v24Eu50, ~76!

and the third becomes

pu
21pv

224Eu14a50. ~77!

This observation is crucial to the whole program that we will undertake which aims at findin
superintegrable systems associated with a curved space in two dimensions and having q
constants.

All three of the above systems are special cases of the superintegrable systems fo
E2 .4,11 They were shown to be exactly solvable in Ref. 12.

V. EMBEDDINGS OF A DARBOUX SPACE OF REVOLUTION OF TYPE ONE

It is clear that the infinitesimal distance

ds252u~du21dv2! ~78!

does not uniquely determine a manifold. This then gives rise to the question of just what s
surfaces can this infinitesimal distance represent. A particular choice of such a surface
determine the range of variation of the parametersu, v which in turn enables the solution of th
geodesic equations in the case of classical mechanics and the quantum mechanics of
particle. It is known that any two-dimensional Riemannian space can be embedded in a
dimensional Euclidean space of indefinite or definite signature. In this section we look at a n
of natural embeddings and discuss their associated geodesics and quantum mechanics. Th
tesimal distance that we are dealing with can be embedded in three-dimensional Euclidean
E3 via the formulas

X5A2u cosv, Y5A2u sinv, ~79!

Z5
&

3 S FS w,
1

&
D 1A4u32uD , ~80!

whereu> 1
2, v0<v<2p1v0 , sinw5A2u11 andF(w,k) is an elliptic integral of the first kind.

This embedding gives the infinitesimal distance

dX21dY21dZ252u~du21dv2!. ~81!

To do quantum mechanics on this surface let us first look for separable solutions to th
Schrödinger equation. A typical solution has already been found in the previous section, viz

C5Au2
m2

4E
C1/3S 2

3
A4ES u2

m2

4ED 3/2Deimv, ~82!

wherem is an integer. Asu> 1
2 and we see thatu5 1

2 is not a singular point of the separab
equation inu, we can impose a condition of the form

aC~ 1
2 ,v !1bCu~ 1

2 ,v !50 ~83!

together with the periodic boundary conditionC(u,v)5C(u,v12p), which is already satisfied
If we takea51, b50, thenE>0, otherwise there is no solution satisfying the boundary condi
at u5 1

2. If E>0, then we can find a suitably behaved solution that vanishes asu→` and satisfies
the boundary condition atu5 1

2, viz.

C5~UU8!1/2~J1/3~U !J2 1/3~U8!2J1/3~U8!J2 1/3~U !!, ~84!
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whereU5 2
3A4E(u2 m2/4E)3/2 andU85 2

3A4E( 1
22 m2/4E)3/2. These solutions are the analog

the scattering states on this manifold subject to the boundary condition we have adopted.
An interesting embedding in pseudo-Euclidean space is given by

X5A2uv, Y5Au~ 4
5 u22v21 1

2!, T5Au~ 4
5 u22v22 1

2!, ~85!

for which dX21dY22dT252u(du21dv2). In this case the variables vary over the ranges2`
,v,`, 0<u,`. We could indeed do an analysis of the free Schro¨dinger equation on this
surface and come to a similar conclusion if we imposed the condition that the wave funct

zero atu50. However, if we consider the first potential~59! and chooseb152b2, b35 1
4(

1
4

2g2) for real b and g>0, and if we write the solutions to Schro¨dinger’s equation in the form
C5U(u)V(v), then two independent solutions of the separation equation satisfied byV can be
taken as

V65expS 2
1

2
bv2D v6g11/2

1F1S 1

2
~16g!2

m

b
,16g,bv2D . ~86!

If we wish to interpret these solutions as being associated with an angle variable which va
the range 0,v0<v<v012p, then we would require the periodic boundary conditions

V~v0!5V~v012p!, V8~v0!5V8~v012p!. ~87!

The possibility of imposing these boundary conditions depends on whetherv50 occurs inside the
domain ofv. If it does not, then the spectrum is determined from the condition

W@V1~x!2V1~x12p!,V2~x!2V2~x12p!#ux5v0
50. ~88!

If v50 is included, then the same conditions no longer work as this is a regular singular po
the equation. Indeed, ifv050 and we assumeg. 1

2, then we choose the solutionV1 and impose
the condition

V1~2p!50 ~89!

asV1(0) is already zero. The quantization condition is then determined by

1F1S 1

2
~11g!2

m

b
,11g,4bp2D50. ~90!

For theu separation equation the range of variation of the variableu. 1
2 is clear andu5 1

2 is not
a singularity of the the separation equation. We can accordingly take typical solutions to b

U6~u!5a1DnS 2AbS u2
E

2b2D D1a2DnS 22AbS u2
E

2b2D D , ~91!

wheren5 (1/4b) (E2/b2 14b22m)2 1
2. To obtain a solution that vanishes asu→` requires that

a250. The remaining boundary condition becomes

DnS 2AbS 1

2
2

E

2b2D D50. ~92!

This condition determines the nature of the discrete spectrum. For large eigenvalues the d
spectrum is given by

E>22Ab3n ~93!
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for suitable large integern.
If we consider the second potential~64!, then puttinga352a2 the equation forV(v) has

solutions of the form

V5d1DnS 2AaS v2
a2

2a2D D1d2DnS 22AaS v2
a2

2a2D D5d1V11d2V2 , ~94!

where

n5
1

4a S 4m1
a2

2

a2D 2
1

2
. ~95!

As there are no singularities inv in this equation and we can require thatw0<v<w012p,

V~w0!5V~w012p!, V8~w0!5V8~w012p!, ~96!

which is equivalent to

W@V1~x!2V1~x12p!,V2~x!2V2~x12p!#ux5w0
50. ~97!

The solutions for the functionU(u) that are well behaved for largeu are

U~u!5DrS 2AaS u2
E

2b2D D , ~98!

wherer5 (1/4b) (4a124m1 E2/a2)2 1
2.

VI. CONCLUSION

In this article we have examined one of the four spaces of revolution listed by Koenigs.16 For
the space that we have considered, it has been shown that there are three potentials tha
added to give superintegrable Hamiltonian systems of the type we seek. In each of these c
have exhibited the various inequivalent ways in which a separation of variables can be ac
for both the classical and quantum equations that result. This is equivalent to determinin
various inequivalent ways in which a Hamiltonian can be written in Liouville form~57! for
suitable separable coordinatesa, b. In particular, we note that each of the three superintegra
systems we have examined are such that when we write out the classical equationH5E and factor
out the denominator we recover a variant of a superintegrable system corresponding to flat4

This is an example of what is called coupling-constant metamorphosis.20 It has been proven in
Ref. 12 that all of the superintegrable systems in the plane are such that the bound state e
can be calculated algebraically. In all cases the Hamiltonian lies in the enveloping alge
sl(3,R). We conclude that analogous statements apply to the superintegrable systems that w
found.
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Dark soliton generation for the intermediate nonlinear
Schrö dinger equation
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The generation of dark solitons due to a small change of the initial data is studied
within the framework of the intermediate nonlinear Schro¨dinger ~INLS! equation.
In particular, we analyze the spectral problem associated with the INLS equation
when the potential consists of a small perturbation imposed on a constant back-
ground. We derive a criterion for the perturbation to generate a pair of new discrete
eigenvalues as well as their explicit expressions in terms of the perturbation. In
addition, we demonstrate that the eigenvalues appear without a threshold on the
magnitude of the perturbation. We also consider both the shallow- and deep-water
limits of various results obtained for the INLS spectral problem. In the former case,
the limiting procedure can be performed smoothly whereas in the latter case, the
spectral equation exhibits a new feature of bound states, showing that the eigen-
value is exponentially small compared with the magnitude of the
perturbation. ©2002 American Institute of Physics.@DOI: 10.1063/1.1430623#

I. INTRODUCTION

It is well known that the nonlinear Schro¨dinger ~NLS! equation describes the long-ter
evolution of a quasiharmonic wave on the surface of a liquid layer.1 Recently, a similar nonlinea
evolution equation was derived in the context of internal~or interfacial! waves.2,3 It can be written
in an appropriate dimensionless form as follows:

iut5uxx1u~ i 1Ṫ!~ uuu2!x . ~1.1a!

Here, u5u(x,t) is a complex function representing the envelope of the wave,T is an integral
operator defined by

Tu~x,t !5
1

2d
PE

2`

`

cothFp~y2x!

2d Gu~y,t !dy, ~1.1b!

whered ia a parameter proportional to the depth of the fluid, the symbolP stands for the Cauchy
principal value integral, and the subscriptst andx appended tou denote partial differentiation. It
has been demonstrated that the constant stateu5r is modulationally stable against infinitesim
perturbation2 and as a result, Eq.~1.1! has a dark soliton solution of the form2

u5r

11
V2 ik

V1 ik
e2k(j2 id)

11e2k(j2 id) , uuu25r22
k sin~kd!

cosh~kj!1cos~kd!
, ~1.2!

a!Electronic mail: matsuno@po.cc.yamaguchi-u.ac.jp
9840022-2488/2002/43(2)/984/24/$19.00 © 2002 American Institute of Physics
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where j5x2Vt2x0 and V is determined by the algebraic equationV212r2V1k2

52r2k cot(kd) ~k: positive constant,x0 : real constant!. The profile of uuu2 shows a dip on a
constant background. It is noteworthy that the generalN-soliton solution is now available which
represents the interaction ofN dark solitons.2,4,5

In the shallow-water limitd→0, Eq. ~1.1! reduces to the defocusing NLS equation

iu t̃5ux̃x̃2ũ~ uũu22r2!, ũ5ũ~ x̃, t̃ !, ~1.3!

after rescaling the variablesx, t, and u according to the relationsx5Ad x̃, t5d t̃ , and u(x,t)
5ũ( x̃, t̃ ), respectively, where the expansionT fx52d21f 1O(d) was used together with th
boundary conditionuuu→r,uxu→`. In the deep-water limitd→`, on the other hand, Eq.~1.1!
reduces simply to the nonlocal NLS equation

iut5uxx1u~ i 1H !~ uuu2!x , ~1.4a!

with the Hilbert transform operatorH defined by

Hu~x,t !5
1

p
PE

2`

` u~y,t !

y2x
dy. ~1.4b!

Thus, Eq.~1.1! is an intermediate version of Eqs.~1.3! and~1.4! and hence it is referred to as th
intermediate nonlinear Schro¨dinger ~INLS! equation.2

The initial value problem of Eq.~1.1! under the boundary conditionuuu→r,uxu→` has been
solved by means of the inverse scattering transform~IST! method.5 It turns out that Eq.~1.1! has
common properties to completely integrable nonlinear evolution equation such asN-soliton solu-
tion, Bäcklund transformation, and infinite number of conservation laws. However, it shoul
remarked that its complete integrability is still an open problem. Although a number of works
been done for the defocusing NLS equation~1.3!,6,7 many open problems are left for the nonloc
NLS equation~1.4!. In particular, the deep-water limitd→` of the IST scheme for the INLS
equation would exhibit a novel feature to be resolved by a new method. Thus, the initial
problem of Eq.~1.4! is left for a future work. As for exact solutions, however, the multiperio
and multisoliton solutions have recently been constructed8 without recourse to the IST and th
stability of the latter solution has been proved.9

The linear system~or the so-called Lax pair! associated with Eq.~1.1! is given by5

ifx2
m

2
f1uc150, ~1.5a!

c12lc21u* f50, ~1.5b!

if t1 imfx1fxx22iuxc
11nf50, ~1.5c!

ic t
61 imcx

61cxx
6 1@~6 i 1T!~ uuu2!x1n#c650. ~1.5d!

Here,f5f(x,t) andc65c6(x,t) are Jost functions andl, m, andn are constants related to
spectral parameter wherec6(x,t)[c(x7 id,t) represent the boundary values of functions a
lytic in the horizontal strip between Imx50 and Imx562d and the asterisk appended tou denotes
the complex conjugate.

In this paper, we shall deal with the problem of soliton generation within the framewor
system~1.5!. Our main concern here is as to whether a small initial data can support new e
values. To be more specific, we consider the following initial data:

u~x,0!5r1ev~x!, ~1.6!
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wherer(.0) is the boundary value ofu as uxu→`, v(x) is a complex function decreasing a
infinity, and e is a small positive parameter so thatev represents a perturbation imposed on
constant background. It is important that the above-noted initial data exhibit no phase c
whenx varies from2` to 1`. However, we can impose the more general boundary cond
such thatu(x,0)→re2 if(x→2`) andu(x,0)→r(x→`) wheref is a real constant. A simple
example is given by the initial conditionu(x,0)5re2 if(x,0), u(x,0)5r(x.0), which shows a
phase step on a constant background. In this case, we can solve the eigenvalue proble~1.5!
explicitly and obtain the equation tan(f/2)5k/m that determines the eigenvaluek where m
5m( ik) satisfies the equationm212r2m1k252r2k cot(kd). Comparing this equation with
~1.2!, one sees thatm5V52r26Ar42k212r2k cot(kd)[m6 . Thus, the above-noted initia
data produce a single dark soliton whose amplitude and velocity are determined uniquely
phase changef. Note in particular that if the phase change is very small, i.e., 0,f!1, thenk
.mf/2 andm5m1.2r21Ar41(2r2/d), implying the generation of a small dark soliton wit
a positive velocity. Another important example of the background field is provided by a s
soliton solution~1.2!. Obviously, this exhibits a finite phase change whenx varies from2` to `.
It turns out that the generation of solitons due to small perturbation is a difficult problem
handled by means of the Fourier transform method developed in this paper. One needs to s
eigenvalue equation with variable coefficient. This issue is, however, beyond the scope
present paper.

We now summarize the main result in this paper as follows: if the condition

E
2`

`

~v~x!1v* ~x!!dx,0 ~1.7!

is satisfied, then a small initial data generate a pair of new discrete eigenvalues~i.e., new solitons!
in the linear spectral problem~1.5!. These eigenvalues are found to emerge from the edge o
continuous spectrum without athresholdon the amplitude of the perturbationev. We also show
that the similar conclusion holds for both shallow- and deep-water limits. In connection wit
problem under consideration, it is worth mentioning that the soliton generation by a small c
of the initial date was studied recently in the context of the Benjamin–Ono~BO!,10 intermediate
long wave~ILW !,11 and Kadomtsev–Petviashvili~KPI!12 equations. It was demonstrated that t
linear systems associated with the BO and ILW equations exhibit a thresholdless generatio
new eigenvalue whereas for the KPI equation, the corresponding linear system yields a thr
generation.

In Sec. II, we analyze the eigenvalue problem@~1.5a!, ~1.5b!# with the initial data~1.6!. We
first transform Eqs.~1.5a! and ~1.5b! to an equivalent system of integral equations by using
Fourier transform and then employ a systematic perturbation method to obtain new eigen
The criterion~1.7! is established for the generation of a pair of new eigenvalues. The ex
expressions of new eigenvalues as well as the corresponding eigenfunctions are obtained
of the initial disturbancev. In Sec. III, the shallow-water limitd→0 is taken straightforwardly for
the expressions of the eigenvalues and eigenfunctions derived in Sec. II. We recover the firs
correction to the eigenvalues which has already been obtained by a different method.13 We em-
phasize that the second-order correction is presented here for the first time. In Sec. IV, we c
the deep-water limitd→`. We find that unlike the shallow-water limit, this limiting procedu
yields no meaningful results. In particular, the eigenvalues are shown to vanish identically
fact would imply that the order of the limitse→0 andd→` cannot be interchanged. Hence, w
start from a system of integral equations equivalent to the eigenvalue problem associated w
nonlocal NLS equation~1.5!. By developing the similar analysis to that used for finited, we obtain
a criterion for a new eigenvalue to emerge from a small change of the initial data. The res
eigenvalue is found to be exponentially small compared withe. Section V is devoted to concludin
remarks. In Appendix A, we describe some properties of a function as well as those of the s
parametersm and l, which play important roles in developing the perturbation analysis. In
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pendix B, we investigate the asymptotic behavior of the two-soliton solution of the INLS equ
and show that the solution can be used to simulate a pair of dark solitons produced by a
perturbation.

II. EIGENVALUE PROBLEM ASSOCIATED WITH THE INLS EQUATION

A. Eigenvalue problem

We start our analysis with the system of eigenvalue equations~1.5a! and ~1.5b! subjected to
the initial data~1.6!. It reads in the form

ifx2
m

2
f1rc152evc1, ~2.1a!

c12lc21rf52ev* f. ~2.1b!

In the following, we focus our attention on the spatial part of the Lax pair since the tempora
is used only for determining the time dependence of the spectral parameters. We first spec
asymptotic forms of the Jost functionsf and c as f;e6 ikx/2, c;e6 ikx/2 wherek is a spectral
parameter. Then, the constantsm andl are related tok by the following relations:5

m212r2m52r2k coth~kd!1k2, ~2.2a!

l5
k

k cosh~kd!2m sinh~kd!
. ~2.2b!

It has been shown that thenth zerokn5 ikn , 0,kn,kc of the scattering data corresponds to t
nth soliton5 where kc is a solution of the equationkc tan(kcd/2)5r2. Hence, we assumem
5m( ik) andl5l( ik) (0,k!1) in ~2.1! and solve it by using a perturbation method.

It is convenient to rewrite Eq.~2.1! into an equivalent system of integral equations. For t
purpose, we decomposef andc6 in the form of the Fourier integral as

f~x!5E
2`

`

a~k!eikx/2 dk, ~2.3a!

c6~x!5E
2`

`

b~k!eik(x7 id)/2 dk. ~2.3b!

Substituting~2.3! into ~2.1! and taking the inverse Fourier transform, we obtain the follow
system of integral equations fora andb:

2
1

2
$k1m~ ik!%a~k!1rekd/2b~k!52

e

4p E
2`

`

K~k,k8!ek8d/2b~k8!dk8, ~2.4a!

ra~k!1$ekd/22l~ ik!e2kd/2%b~k!52
e

4p E
2`

`

K* ~k8,k!a~k8!dk8, ~2.4b!

where we have put

K~k,k8!5E
2`

`

v~x!e2 i (k2k8)x/2 dx, ~2.4c!

for simplicity. If we introduce the new variablesA andB according to

A~k!5D~k,k!a~k!, ~2.5a!
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B~k!5D~k,k!b~k!ekd/2, ~2.5b!

with

D~k,k!52 1
2 $k1m~ ik!%$12l~ ik!e2kd%2r2, ~2.5c!

Eq. ~2.4! can be put into the form

A~k!5
er

4p E
2`

` K* ~k8,k!

D~k8,k!
A~k8!dk82

e

4p
$12l~ ik!e2kd%E

2`

` K~k,k8!

D~k8,k!
B~k8!dk8, ~2.6a!

B~k!5
e

8p
$k1m~ ik!%E

2`

` K* ~k8,k!

D~k8,k!
A~k8!dk81

er

4p E
2`

` K~k,k8!

D~k8,k!
B~k8!dk8. ~2.6b!

The above-noted system of integral equations forA(k) and B(k) is the starting point of the
following analysis. It is crucial to observe that the quantityD(k8,k) in the integrand in~2.6! has
zeros atk856 ik. To show this, we take the limituxu→` in ~2.1!, use the asymptotic formf,
c;eikx/2 and obtain the relation

12l~k!e2kd52
2r2

k1m~k!
. ~2.7!

Combining~2.7! with ~2.5c! yields

D~k,k!52
1

2
$k1m~ ik!%$l~k!2l~ ik!%e2kd2r2

m~k!2m~ ik!

k1m~k!
. ~2.8!

Since m(k)5m(2k), l(k)5l(2k) by ~2.2!, one can see thatD(6 ik,k)50. The function
D(k,k) plays an important role in developing the perturbation analysis. Some properti
D(k,k) are summarized in Appendix A for later use. Thus, we see that the integrand in~2.6!
exhibits singularities in the limit ofk→0. It turns out that these singularities become the origin
the generation of new eigenvalues, as will be demonstrated in the following. In order to regu
the singular behavior in each integrand, we modify the integral by subtracting the contrib
from the two polesk856 ik as

E
2`

` K* ~k8,k!

D~k8,k!
A~k8!dk85E

2`

` 1

k821k2 F k821k2

D~k8,k!
K* ~k8,k!A~k8!

2$CR~k!k81CI~k!k%K* ~0,k!A~0!Gdk81pCI~k!K* ~0,k!A~0!,

~2.9a!

where

CR~k!5
1

Dk~ ik,k!
1

1

Dk~2 ik,k!
, ~2.9b!

CI~k!5 i F 1

Dk~ ik,k!
2

1

Dk~2 ik,k!G , ~2.9c!

Dk~6 ik,k!5F]D~k,k!

]k G
k56 ik

. ~2.9d!
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Substituting~2.9! and an analogous expression forB into ~2.6!, we obtain the system of equation
for A andB:

A~k!5
e

4
CI~k!@rK* ~0,k!A~0!2$12l~ ik!e2kd%K~k,0!B~0!#

1
er

4p F E
2`

` 1

k821k2 H k821k2

D~k8,k!
K* ~k8,k!A~k8!

2~CR~k!k81CI~k!k!K* ~0,k!A~0!J dk8G2
e

4p
$12l~ ik!e2kd%

3F E
2`

` 1

k821k2 H k821k2

D~k8,k!
K~k,k8!B~k8!

2~CR~k!k81CI~k!k!K~k,0!B~0!J dk8G , ~2.10a!

B~k!5
e

4
CI~k!F1

2
$k1m~ ik!%K* ~0,k!A~0!1rK~k,0!B~0!G1

e

8p
$k1m~ ik!%

3F E
2`

` 1

k821k2 H k821k2

D~k8,k!
K* ~k8,k!A~k8!2~CR~k!k81CI~k!k!K* ~0,k!A~0!J dk8G

1
er

4p F E
2`

` 1

k821k2 H k821k2

D~k8,k!
K~k,k8!B~k8!2~CR~k!k81CI~k!k!K~k,0!B~0!J dk8G .

~2.10b!

B. Perturbation analysis

1. Leading-order analysis

Now, we solve~2.10! by means of a perturbation method. We expandA, B, andk in powers
of e as

A~k!5A0~k!1eA1~k!1¯ , ~2.11a!

B~k!5B0~k!1eB1~k!1¯ , ~2.11b!

k5ek11e2k21¯ , ~2.11c!

substitute these expressions as well as~A1! and ~A6! into ~2.10!, and compare the coefficient o
en (n50,1,. . . ) onboth sides. AtO(e0), one obtains

A0~k!52
1

2k1l0d~12~dm0/2!!
@rK* ~0,k!A0~0!2~12l0e2kd!K~k,0!B0~0!#, ~2.12a!

B0~k!52
1

2k1l0d~12~dm0/2!! F1

2
~k1m0!K* ~0,k!A0~0!1rK~k,0!B0~0!G . ~2.12b!

The constantsl0 andm0 are given explicitly by~A2a!. If we put k50 in ~2.12!, we have

~z1rK* ~0,0!!A0~0!2~12l0!K~0,0!B0~0!50, ~2.13a!

1
2 m0K* ~0,0!A0~0!1~z1rK~0,0!!B0~0!50, ~2.13b!
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where

z[2k1l0d~12 1
2 dm0!. ~2.13c!

The compatibility condition for~2.13! now yields the following algebraic equation forz:

~z1rK* ~0,0!!~z1rK~0,0!!1 1
2 m0~12l0!K* ~0,0!K~0,0!50. ~2.14!

In view of relation~A3a! as well as the conditionzÞ0, we can find the solution of Eq.~2.14! that
determinesk1 ,

z52r~K~0,0!1K* ~0,0!!. ~2.15!

Using ~2.13c!, ~A2a!, and~A3b!, this expression can be rewritten in an explicit form as

k152
r

2d

12dm0

12~dm0/2!
~K~0,0!1K* ~0,0!!52

r

2d S 17
1

A11~2/dr2!
D ~K~0,0!1K* ~0,0!!.

~2.16!

The conditionk.0 impliesk1.0 whene→0 by virtue of~2.11c!. Thus, the conditionk1.0 is
equivalent to

K~0,0!1K* ~0,0![E
2`

`

~v~x!1v* ~x!!dx,0. ~2.17!

Under condition~2.17!, the small perturbation on the constant background always gene
two discrete eigenvalues whose explicit values are given by~2.16!. These correspond to a pair o
dark solitons of the form~1.2! with the amplitude parametersk[k6 and corresponding velocitie
V[V6 given, respectively, by

k;ek1 , V5m~ ik!;m01m1~ek1!252r26Ar41
2r2

d
7

2~11 2
3 r2d!

Ar41~2r2/d!
~ek1!2.

~2.18!

Note that the6sign ink andV is ordered vertically. The two solitons thus generated propaga
opposite directions with different amplitudes and velocities. This two-soliton state may b
proximated by a two-soliton solution2,4,5 of the INLS equation with the soliton parameters giv
by ~2.18!. See Appendix B for details. It should be stressed that the generation of solitons o
without a threshold on the magnitude of the perturbation to a constant background. In Fig.
display the three-dimensional plot of a two-soliton solution~B1!. The soliton parameters ar
chosen in accordance with~2.18!. Explicitly, r5d51, e50.2, k15k150.2, k25k2

50.746,v15V150.655,v25V2521.66,x105x2050. The amplitude of each soliton may b
defined ask tan(kd/2), which is equal to the maximum value of the dip ofuuu2 @see~1.2!#. In the
above-given example, the amplitude ratio is found to be 14.5. In the shallow-limitd→0, this ratio
approaches 1 while in the deep-water limitd→`, it increases indefinitely. As will be demon
strated in Sec. III, the former case represents the generation of two solitons with equal am
and opposite velocities.

It now follows from ~2.13! and ~2.15! that

A0~0!52
1

r
~12l0!B0~0!. ~2.19!

Substituting~2.19! into ~2.12!, we obtain the leading terms for the coefficientsA(k) andB(k),
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A0~k!52
1

z FrK* ~0,k!1r
12l0e2kd

12l0
K~k,0!GA0~0!, ~2.20a!

B0~k!52
1

z FrK~k,0!2
1

2r
~12l0!~k1m0!K* ~0,k!GB0~0!. ~2.20b!

The eigenfunctions corresponding to the eigenvaluek;ek1 are given from~2.3!, ~2.5!, and~2.20!
as

f~x!52
A0~0!

z E
2`

`
rK* ~0,k!1r

12l0e2kd

12l0
K~k,0!

D~k,k!
eikx/2 dk1O~e!, ~2.21a!

c6~x!52
B0~0!

z E
2`

`
rK~k,0!2

1

2r
~12l0!~k1m0!K* ~0,k!

D~k,k!
e2kd/2eik(x7 id)/2 dk1O~e!.

~2.21b!

The unknown constantsA0(0) andB0(0) are fixed by specifying the asymptotic behavior of the
eigenfunctions for largeuxu;O(1/e). We first observe that in view of~A4! the functionD(k,k)
behaves like

D~k,k!52
1

2
l0dS 12

1

2
dm0D S k21

~12l0!m12l1m0

l0d~12~dm0/2!!
k2D1O~k2k!, ~2.22!

for smallk andk. The coefficient ofk2 in ~2.22! is seen to be 1 by~A3c!. Thus, we evaluate~2.21!
with the aid of the Cauchy residue theorem to obtain

FIG. 1. Plot of a two-soliton solution of the INLS equation. The solution simulates a two-soliton state generated by
perturbation.
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f~x!5
2pA0~0!

ek1z

r$K~0,0!1K* ~0,0!%

l0d~12~dm0/2!!
e2ek1uxu/21O~e!, ~2.23a!

c6~x!5
2pB0~0!

ek1z

r$K~0,0!1K* ~0,0!%

l0d~12~dm0/2!!
e2ek1uxu/21O~e!. ~2.23b!

If we chooseA0(0),B0(0);O(e), then ~2.23! represent appropriate asymptotic forms for t
bound states corresponding to the eigenvaluesm( ik) given by ~2.18!.

2. Second-order analysis

We now proceed to the second-order analysis. The main purpose here is to derive the
sion of the second-order correctionk2 to the eigenvaluek in terms of the initial datav. It follows
from theO(e) terms of~2.10! that

A1~k!52
1

z FrK* ~0,k!A1~0!2~12l0e2kd!K~k,0!B1~0!

2
k2

k1
$rK* ~0,k!A0~0!2~12l0e2kd!K~k,0!B0~0!%G

1
r

4p FPE
2`

` 1

k82 H k82

D~k8,0!
K* ~k8,k!A0~k8!

1
2

l0d~12~dm0/2!!
K* ~0,k!A0~0!J dk8G

2
1

4p
~12l0e2kd!FPE

2`

` 1

k82 H k82

D~k8,0!
K* ~k,k8!B0~k8!

1
2

l0d~12~dm0/2!!
K* ~0,k!B0~0!J dk8G , ~2.24a!

B1~k!52
1

z F1

2
~k1m0!K* ~0,k!A1~0!1rK~k,0!B1~0!

2
k2

k1
H 1

2
~k1m0!K* ~0,k!A0~0!1rK~k,0!B0~0!J G1

1

8p
~k1m0!

3FPE
2`

` 1

k82 H k82

D~k8,0!
K* ~k8,k!A0~k8!1

2

l0d~12~dm0/2!!
K* ~0,k!A0~0!J dk8G

1
r

4p FPE
2`

` 1

k82 H k82

D~k8,0!
K~k,k8!B0~k8!1

2

l0d~12~dm0/2!!
K~0,k!B0~0!J dk8G ,

~2.24b!

where

D~k,0!52 1
2 ~k1m0!~12l0e2kd!2r2, ~2.24c!

by ~2.5c!. We see from~A4! that for smallk, D(k,0) behaves like

D~k,0!52 1
2 l0d~12 1

2 dm0!k21O~k3!. ~2.25!
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Hence, the principal value should be taken for all the integrals in~2.24! since the integrands
behave likek821 whenk8→0. If we putk50 in ~2.24! and eliminateA1(0) andB1(0) with use
of ~2.15! and ~A3a!, we obtain

k2z

k1
@rK* ~0,0!A0~0!2~12l0!K~0,0!B0~0!#

1
rz2

4p
PE

2`

` 1

k2 H k2

D~k,0!
K* ~k,0!A0~k!1

4k1

z
K* ~0,0!A0~0!J dk

2
12l0

4p
z2PE

2`

` 1

k2 H k2

D~k,0!
K~0,k!B0~k!1

4k1

z
K~0,0!B0~0!J dk50. ~2.26!

Last, introducing~2.19!, ~2.20!, and~A2! into ~2.26!, we arrive at an explicit expression ofk2 as
follows:

k252
r2k1

4pz
PE

2`

` 1

k2 F k2

D~k,0! H ~K~0,k!1K* ~k,0!!~K~k,0!1K* ~0,k!!

2
1

dm0
~12e2kd!K~k,0!K* ~k,0!1

1

m0
kK~0,k!K* ~0,k!J

1
2~12dm0!

d~12~dm0/2!!
~K~0,0!1K* ~0,0!!2Gdk. ~2.27!

Here, the ratiok1 /z is obtained from~2.13c!. We can express~2.27! in terms ofv by substituting
the definition~2.4c! of K(k,k8). However, the resulting integral with respect tok is too formidable
to perform analytically. Thus, the expression~2.11c! with ~2.16! and~2.27! gives the second-orde
approximation to the new eigenvalues generated by a small perturbation imposed on a c
background.

III. SHALLOW-WATER LIMIT

A. Eigenvalue problem

In this section, we consider the shallow-water limit of various formulas derived in Sec. I
the INLS spectral problem. It will be demonstrated that the limiting procedure can be perfo
smoothly by introducing appropriate scalings for the spectral parameters.

We first scale the variablesx,t, andu according to the relations

x5Ad x̃, t5d t̃ , u5ũ~ x̃, t̃ !, ~3.1!

respectively. In this limit, the INLS equation reduces to the defocusing NLS equation~1.3! and the
one-soliton solution~1.2! becomes

ũ5r

11
Ṽ2 i k̃

Ṽ1 i k̃
e2k̃ j̃

11e2k̃ j̃
, uũu25r22

k̃2/2

cosh2~ k̃ j̃/2!
, ~3.2a!

with the scalings

k5
k̃

Ad
, V5

Ṽ

Ad
, x05Ad x̃0 . ~3.2b!
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Here, j̃5 x̃2Ṽ t̃ 2 x̃0 , and the soliton velocityṼ is now given by Ṽ56A2r22k̃2 (0,k̃
,&r).

To find the appropriate form of the IST equations corresponding to~2.1!, we rescale the wave
numberk ask5 k̃/Ad. It then turns out that

m52r26A2r2

d
1r41k2;6

1

Ad
Ak̃212r2[

sm̃

Ad
, ~3.3a!

l511md1O~d2!;16AdAk̃212r2[11sAdm̃, ~3.3b!

wheres[61.
Under these scalings, the Jost functionsf andc6 take the form

f~x![Adf̃~ x̃!, ~3.4a!

c6~x!5c~x7 id!5c~x!7 idcx~x!1O~d2![c̃~ x̃!7 iAdc̃ x̃~ x̃!1O~d!. ~3.4b!

Substituting~3.3! and ~3.4! into ~2.1! and taking the limitd→0, we obtain

i f̃ x̃2
m̃

2
f̃1ũc̃50, ~3.5a!

2 i c̃ x̃2
m̃

2
c̃1

ũ*

2
f̃50, ~3.5b!

which coincides with the spatial part of the IST equations6 for the defocusing NLS equation.
A system of integral equations equivalent to~3.5! can be reduced from~2.6!. For this purpose,

we introduce the scalings

k5 k̃/Ad, k85 k̃8/Ad, a~k!5dã~ k̃!, b~k!5Adb̃~ k̃!, A~k!5dÃ~ k̃!, B~k!5AdB̃~ k̃!,
~3.6!

K~k,k8!5AdK̃~ k̃,k̃8!5AdE
2`

`

ṽ~ x̃!e2 i ( k̃2 k̃8) x̃/2 dx̃.

At the leading order,~2.5! then become

A~k!;2
d

2
~ k̃21k̃2!ã~ k̃![dÃ~ k̃!, ~3.7a!

B~k!;2
Ad

2
~ k̃21k̃2!b̃~ k̃![AdB̃~ k̃!, ~3.7b!

D~k,k!;2 1
2 ~ k̃21k̃2!. ~3.7c!

Substituting~3.3!, ~3.6!, and~3.7! into ~2.6!, we obtain the system of integral equations forÃ and
B̃:

Ã~ k̃!52
er

2p
E

2`

` K̃* ~ k̃8,k̃!

~ k̃8!21k̃2
Ã~ k̃8!dk̃81

e

2p
~ k̃2sA2r22k̃2!E

2`

` K̃~8,k̃!

~ k̃8!21k̃2
B̃~ k̃8!dk̃8,

~3.8a!
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B̃~ k̃!52
er

4p
~K̃1sA2r22k̃2!E

2`

` K̃* ~ k̃8,k̃!

~ k̃8!21k̃2
Ã~ k̃8!dk̃82

er

2p
E

2`

` K̃~ k̃8,k̃!

~ k̃8!21k̃2
B̃~ k̃8!dk̃8.

~3.8b!

B. Perturbation analysis

1. Leading-order analysis

We expandÃ, B̃, andk̃ in powers ofe as

Ã~ k̃!5Ã0~ k̃!1eÃ1~ k̃!1¯ , ~3.9a!

B̃~ k̃!5B̃0~ k̃!1eB̃1~ k̃!1¯ , ~3.9b!

k̃5ek̃11e2k̃21¯ . ~3.9c!

The expressions corresponding to~2.12!, ~2.16!, and~2.19! become

2k̃1Ã0~ k̃!52rK̃* ~0,k̃!Ã0~0!1~ k̃2s&r!K̃~ k̃,0!B̃0~0!, ~3.10a!

2k̃1B̃0~ k̃!52 1
2 ~ k̃1s&r!K̃* ~0,k̃!Ã0~0!2rK̃~ k̃,0!B̃0~0!, ~3.10b!

k̃152
r

2
$K̃~0,0!1K̃* ~0,0!%52

r

2 E2`

`

~ ṽ~ x̃!1 ṽ* ~ x̃!dx̃, ~3.11!

Ã0~0!5&sB̃0~0!, ~3.12!

respectively. Thus, ifk̃1.0, then the new eigenvalues

sm̃56A2r22~ek̃1!2;6~A2r22~ek̃1!2/~2A2r2!!, ~3.13!

with k̃1 given by ~3.11! appear from the small initial datae ṽ without a threshold. Namely, an
small perturbation generates a pair of dark solitons with an equal amplitude and opposite ve
6m̃. This result is in agreement with the corresponding one derived by a different method.13 The
expressions~2.20! now reduce to

Ã0~ k̃!52
r

2k̃1
H s

&r
~2 k̃1s&r!K̃~ k̃,0!1̃K* ~0,k̃!J Ã0~0!, ~3.14a!

B̃0~ k̃!52
r

2k̃1
H K̃~ k̃,0!1

s

&r
~ k̃1s&r!K̃* ~0,k̃!J B̃0~0!. ~3.14b!

The eigenfunctions corresponding to the eigenvaluek̃;ek1 follow from ~2.21! as

f̃~ x̃!5
2rÃ0~0!

z̃
E

2`

`

s

&r
~2 k̃1s&r!K̃~ k̃,0!1K̃* ~0,k̃!

k̃21k̃2
eik̃x̃/2 dk̃1O~e!, ~3.15a!

c̃~ x̃!5
2rB̃0~0!

z̃ E
2`

`
K̃~ k̃,0!1

s

&r
~ k̃1s&r!K̃* ~0,k̃!

k̃21k̃2
eik̃x̃/2 dk̃1O~e!, ~3.15b!
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where

z̃52r$K̃~0,0!1K̃* ~0,0!%. ~3.15c!

If we takeÃ0(0),B̃0(0);O(e), then we can see that~3.14! represent the appropriate bound sta
for the eigenvaluessm̃ given by ~3.13!.

2. Second-order analysis

In the limit of d→0, l0;1 andm0;sA2r2/d (s561) as seen from~A7!. Substituting these
approximate values as well as~3.6! and ~3.7c! into ~2.27!, we find the second-order correctio
to k̃,

k̃25
r2

4p
PE

2`

` 1

k̃2
F ~K̃~0,k̃!1K̃* ~ k̃,0!!~K̃~ k̃,0!1K̃* ~0,k̃!!2~K̃~0,0!1K̃* ~0,0!!2

2
s

&r
k̃K̃~ k̃,0!K̃* ~ k̃,0!1

s

&r
k̃K̃~0,k̃!K̃* ~0,k̃!Gdk̃. ~3.16!

If we use~3.6! for K̃( k̃,k̃8) and the formulas

1

p
PE

2`

` eikx21

k2 dk52uxu, ~3.17a!

PE
2`

` eikx

k
dk5p i sgnx, ~3.17b!

~3.16! can be rewritten in terms of the perturbationṽ as

k̃252
r2

8 E
2`

` E
2`

`

dx̃ dỹux̃2 ỹu~ ṽ~ x̃!1 ṽ* ~ x̃!!~ ṽ~ ỹ!1 ṽ* ~ ỹ!!

1
irs

2&
E

2`

` E
2`

`

dx̃ dỹ sgn~ x̃2 ỹ!$ṽ~ x̃!ṽ* ~ ỹ!2 ṽ* ~ x̃!ṽ~ ỹ!%. ~3.18!

This expression for the second-order correction to the new eigenvalue is obtained here for t
time.

IV. DEEP-WATER LIMIT

A. Eigenvalue problem

In the deep-water limitd→`, we find it appropriate to scale the parameterk as

k5
p

d S 12
1

ad D , 0,a,
r2

2
. ~4.1!

Then, the one-soliton solution~1.2! reduces to the algebraic soliton of the form

u5r

aj1 i S 11
2a

V D
aj1 i

, uuu25r22
2a

~aj!211
, ~4.2!

wherej5x2Vt2x0 and V is the velocity of the soliton determined by the algebraic equa
V212r2V12r2a50. In the deep-water limit, the eigenvalue derived in Sec. II for the IN
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equation does not yield a nonzero value. Indeed, we can see by using~A2! that both the first-order
correction~2.16! and second-order one~2.27! vanish identically. This fact would imply that th
limiting procedurese→0 andd→` cannot be interchanged. We should take the limitd→` first
and then develop a perturbation expansion ine. It turns out that the eigenvalue problem for th
nonlocal NLS equation would exhibit a novel feature when compared with that of the INLS
defocusing NLS equations.

The linear system~2.1! remains the same form

ifx2
m

2
f1rc152evc1, ~4.3a!

c12lc21rf52ev* f, ~4.3b!

but herec1(c2) represents the boundary value of a function analytic in the upper-~lower-!half
complex x plane. For the bound states, we impose the boundary conditionsf;f0 /x,
c6;61/x, uxu→` wheref0 is a constant. Using~2.2!, the parametersm andl are expanded as

m~k!52r26~r21uku!H 11
2r2uku

~r21uku!2 e22ukud1¯J , ~4.4a!

l~k!5
2uku

~ uku2m!eukud1~ uku1m!e2ukud . ~4.4b!

By virtue of ~4.1!, the expressions ofm( ik) andl( ik) which follow from ~2.2! become

m~ ik!;r2S 216A12
2a

r2 D[m6 , ~4.5a!

l~ ik!;2
1

11
m~ ik!

a

. ~4.5b!

With m( ik) andl( ik) given by ~4.5!, the functionD(k,k) defined by~2.5c! has the following
leading-order expression:

D~k,k!;2 1
2 ~k1m~ ik!12r2! ~k.0!, ~4.6a!

D~k,k!; 1
2 ~k1m~ ik!!l~ ik!e2kd ~k,0!. ~4.6b!

In order to find an appropriate form of the linear system corresponding to~2.6!, we define the new
variablesA6 andB6 by the relations

A~k!5u~k!A1~k!1l~ ik!e2kdu~2k!A2~k!, ~4.7a!

B~k!5u~k!B1~k!1u~2k!l~ ik!B2~k!, ~4.7b!

whereu(k) is the Heaviside function, i.e.,u(k)51 for k.0, andu(k)50 for k,0. Substituting
~4.6! and~4.7! into ~2.6!, we obtain, in the limit ofd→`, the following closed system of integra
equations forA6 andB1 :
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A1~k!52
er

2p E
0

` K* ~k8,k!

k81m~ ik!12r2 A1~k8!dk81
er

2p E
2`

0 K* ~k8,k!

k81m~ ik!
A2~k8!dk8

1
e

2p E
0

` K~k,k8!

k81m~ ik!12r2 B1~k8!dk8 ~k.0!, ~4.8a!

A2~k!52
e

2p E
0

` K~k,k8!

k81m~ ik!12r2 B1~k8!dk8 ~k,0!, ~4.8b!

B1~k!5
e

4p
~k1m~ ik!!F2E

0

` K* ~k8,k!

k81m~ ik!12r2 A1~k8!dk81E
2`

0 K* ~k8,k!

k81m~ ik!
A2~k8!dk8G

2
er

2p E
0

` K~k,k8!

k81m~ ik!12r2 B1~k8!dk8 ~k.0!. ~4.8c!

Note that the equation forB2(k) (k,0) is obtained simply by replacingB1(k) by l( ik)B2(k)
on the left-hand side of~4.8c!.

The eigenfunctions corresponding to the eigenvaluem( ik) follow from ~2.3!, ~2.5!, ~4.6!, and
~4.7!. Explicitly, they take the form

f~x!522E
0

` A1~k!

k1m~ ik!12r2 eikx/2 dk12E
2`

0 A2~k!

k1m~ ik!
eikx/2 dk, ~4.9a!

c1~x!522E
0

` B1~k!

k1m~ ik!12r2 eikx/2 dk, ~4.9b!

c2~x!52E
2`

0 B2~k!

k1m~ ik!
eikx/2 dk. ~4.9c!

B. Perturbation analysis

1. Leading-order analysis

Now, we shall apply a perturbation method to Eq.~4.8! for two different valuesm6 given by
~4.5a!. The constanta in m6 should be a small quantity since it represents a dip on the con
background@see~4.2!# induced by a small initial data.

a. m( ik)5m2 . We first consider the casem( ik)5m25r2(212A12(2a/r2)). Note that
m2;22r2, m1;2a, l( ik);a/(2r2) in the limit of a→0. Hence, the integrand including
factor (k82m1)21 in Eq. ~4.8! becomes singular whenk8→0. Indeed, it yields a logarithmic
singularity upon integration. We remove this singularity by a similar procedure to that used in
II @see~2.10!#. The resulting integral equations are written in the form

A1~k!5
er

2p F2E
0

1 K* ~0,k!

k82m1
A1~0!dk82E

0

1 K* ~k8,k!A1~k8!2K* ~0,k!A1~0!

k82m1
dk8

2E
1

` K* ~k8,k!

k82m1
A1~k8!dk81E

2`

0 K* ~k8,k!

k81m2
A2~k8!dk8G

1
e

2p F E
0

1 K~k,0!

k82m1
B1~0!dk81E

0

1 K~k,k8!B1~k8!2K~k,0!B1~0!

k82m1
dk8

1E
1

` K~k,k8!

k82m1
B1~k8!dk8G ~k.0!, ~4.10a!
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A2~k!52
e

2p F E
0

1 K~k,0!

k82m1
B1~0!dk81E

0

1 K~k,k8!B1~k8!2K~k,0!B1~0!

k82m1
dk8

1E
1

` K~k,k8!

k82m1
B1~k8!dk8G ~k,0!, ~4.10b!

B1~k!5
e

4p
~k1m2!F2E

0

1 K* ~0,k!

k82m1
A1~0!dk82E

0

1 K* ~k8,k!A1~k8!2K* ~0,k!A1~0!

k82m1
dk8

2E
1

` K* ~k8,k!

k82m1
A1~k8!dk81E

2`

0 K* ~k8,k!

k81m2
A2~k8!dk8G2

er

2p F E
0

1 K~k,0!

k82m1
B1~0!dk8

1E
0

1 K~k,k8!B1~k8!2K~k,0!B1~0!

k82m1
dk81E

1

` K~k,k8!

k82m1
B1~k8!dk8G ~k.0!.

~4.10c!

We now solve Eq.~4.10! in the form of an asymptotic series ine. By inspecting the magnitude o
each term in~4.10!, it is legitimate to expandA6 , B1 , andm1 as

A6~k!5A6
(0)~k!1eA6

(1)~k!1¯ , ~4.11a!

B1~k!5B1
(0)~k!1eB1

(1)~k!1¯ , ~4.11b!

ln~2m1!5
1

e
m1

(21)1m1
(0)1¯ . ~4.11c!

Note that the expression ofm2 is simply derived by the relationm252m122r2. At O(e0), one
obtains

A1
(0)~k!5

1

2p
m1

(21)@rK* ~0,k!A1
(0)~0!2K~k,0!B1

(0)~0!#, ~4.12a!

A2
(0)~k!5

1

2p
m1

(21)K~k,0!B1
(0)~0!, ~4.12b!

B1
(0)~k!5

1

4p
m1

(21)@~k22r2!K* ~0,k!A1
(0)~0!12rK~k,0!B1

(0)~0!#. ~4.12c!

If we put k50 in ~4.12!, we have

H 12
r

2p
m1

(21)K* ~0,0!J A1
(0)~0!1

1

2p
m1

(21)K~0,0!B1
(0)~0!50. ~4.13a!

r2

2p
m1

(21)K* ~0,0!A1
(0)~0!1H 12

r

2p
m1

(21)K~0,0!J B1
(0)~0!50, ~4.13b!

which gives the leading-order expression ofm1 ,

m1
(21)5

2p

r

1

K~0,0!1K* ~0,0!
. ~4.14!
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This corresponds to the expression~2.16! for the INLS equation and the expression~3.11! for the
defocusing NLS equation. To assure the convergence of the expansion~4.11c!, one must impose
the conditionm1

(21),0, which is equivalent to

K~0,0!1K* ~0,0!5E
2`

`

~v~x!1v* ~x!!dx,0. ~4.15!

Under this condition, a small eigenvalue would appear from the edgek50 of the continuous
spectrum. It is quite interesting to observe that the mechanism of the soliton generation is
to that of the BO equation.10 This result may be expected since Eq.~1.4! has been derived from th
BO equation by means of an asymptotic multiscale expansion.2

It now follows from ~4.13! and ~4.14! that

B1
(0)~0!52rA1

(0)~0!. ~4.16!

Substituting~4.16! into ~4.12!, one obtains

A1
(0)~k!5

r

2p
m1

(21)$K~k,0!1K* ~0,k!%A1
(0)~0!, ~4.17a!

A2
(0)~k!52

r

2p
m1

(21)K~k,0!A1
(0)~0!, ~4.17b!

B1
(0)~k!5

1

4p
m1

(21)$~k22r2!K~k,0!22r2K* ~0,k!%A1
(0)~0!. ~4.17c!

The eigenfunctions corresponding to the eigenvaluem( ik)5m2 follow from ~4.9!, ~4.17! and the
relationm11m2522r2. They read in the form

f~x!522E
0

` A1
(0)~k!

k2m1
eikx/2 dk12E

2`

0 A2
(0)~k!

k1m2
eikx/2 dk1O~e!, ~4.18a!

c1~x!522E
0

` B1
(0)~k!

k2m1
eikx/2 dk1O~e!, ~4.18b!

c2~x!52E
2`

0 B2
(0)~k!

k1m2
eikx/2 dk1O~e!. ~4.18c!

The asymptotic forms of these eigenfunctions foruxu→` can be evaluated easily upon integrati
by parts and using~4.16! and the relationl( ik)B2

(0)(0)5B1
(0)(0). Theresulting expressions ar

given by

f~x!;
4i

m1

A1
(0)~0!

x
, ~4.19a!

c1~x!;2
4ir

m1

A1
(0)~0!

x
, ~4.19b!

c2~x!;
4ir

m1

A1
(0)~0!

x
. ~4.19c!

The boundary conditions are satisfied if we putA1
(0)(0)52m1 /(4ir).
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b. m( ik)5m1 . Next, we consider the generation of another eigenvaluem( ik)5m1

5r2(211A12(2a/r2)). It then follows thatm1;2a, m2;22r2, l( ik);2r2/a when a
→0. This case can be treated following the same procedure as that developed form2 .

The linear system~4.8! now becomes

A1~k!52
er

2p E
0

` K* ~k8,k!

k82m2
A1~k8!dk81

er

2p E
2`

0 K* ~k8,k!

k81m1
A2~k8!dk8

1
e

2p E
0

` K~k,k8!

k82m2
B1~k8!dk8 ~k.0!, ~4.20a!

A2~k!52
e

2p E
0

` K~k,k8!

k82m2
B1~k8!dk8 ~k,0!, ~4.20b!

B1~k!5
e

4p
~k1m1!F2E

0

` K* ~k8,k!

k82m2
A1~k8!dk81E

2`

0 K* ~k8,k!

k81m1
A2~k8!dk8G

2
er

2p E
0

` K~k,k8!

k82m2
B1~k8!dk8 ~k.0!. ~4.20c!

The singularity arises from a factor (k81m1)21 whenk8→0. The balance of the magnitude ine
would be satisfied if we assume the following expansions:

A1~k!5A1
(0)~k!1eA1

(1)~k!1¯ , ~4.21a!

A2~k!5eA2
(1)~k!1e2A2

(2)~k!1¯ , ~4.21b!

B1~k!5B1
(0)~k!1eB1

(1)~k!1¯ , ~4.21c!

ln~2m1!5
1

e2 m1
(22)1

1

e
m1

(21)1¯ . ~4.21d!

We substitute~4.21! into the linear system analogous to~4.10! and compare the coefficients o
en (n50,1,...). At thelowest order, we obtain the relations

A1
(0)~k!5

r

2p
m1

(22)K* ~0,k!A2
(0)~0!, ~4.22a!

A2
(1)~k!52

1

2p E
0

` K~k,k8!

k812r2 B1
(0)~k8!dk8, ~4.22b!

B1
(0)~k!5

k

4p
m1

(22)K* ~0,k!A2
(1)~0!. ~4.22c!

If we introduce~4.22! into ~4.9! with m( ik)5m1 , we obtain the lowest-order expressions of t
Jost functions. The asymptotic evaluation of the Jost functions foruxu→` reveals thatf(x)
;O(x21) and c6;O(x22). The latter expression comes from the factB1

(0)(0)50 by ~4.22c!,
which may be contrasted with the corresponding valueB1

(0)(0)Þ0 derived from~4.17c!. Obvi-
ously, these asymptotic forms are not consistent with the boundary conditions. Thus, we co
that the perturbation does not produce a new eigenvalue in the eigenvalue problem~4.3! with
m( ik)5m1 .
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2. Second-order analysis

We now evaluate the second-order correction to the eigenvalue in the case ofm( ik)5m2 . At
O(e), ~4.10! and~4.11! yield the following linear system of integral equations forA1

(1) , A2
(1) and

B1
(1) :

A1
(1)~k!5

r

2p
@$m1

(21)A1
(1)~0!1m1

(0)A1
(0)~0!%K* ~0,k!2F~k!#

1
1

2p
@2$m1

(21)B1
(1)~0!1m1

(0)B1
(0)~0!%K~k,0!1G~k!#, ~4.23a!

A2
(1)~k!5

1

2p
@$m1

(21)B1
(1)~0!1m1

(0)B1
(0)~0!%K~k,0!2F~k!#, ~4.23b!

B1
(1)~k!5

1

4p
~k22r2!@$m1

(21)A1
(1)~0!1m1

(0)A1
(0)~0!%K* ~0,k!2F~k!#

2
2r

p
@2$m1

(21)B1
(1)~0!1m1

(0)B1
(0)~0!%K~k,0!1G~k!#, ~4.23c!

with

F~k![E
0

1 1

k8
$K* ~k8,k!A1

(0)~k8!2K* ~0,k!A1
(0)~0!%dk8

1E
1

` K* ~k8,k!A1
(0)~k8!

k8
dk82E

2`

0 K* ~k8,k!A2
(0)~k8!

k822r2 dk8, ~4.24a!

G~k![E
0

1 1

k8
$K~k,k8!B1

(0)~k8!2K~k,0!B1
(0)~0!%dk81E

1

` K* ~k,k8!B1
(0)~k8!

k8
dk8.

~4.24b!

If we put k50 in ~4.23a! and ~4.23b! and eliminateA1
(1)(0) andB1

(1)(0) with use of~4.14!, we
obtain

1

2p
$rK* ~0,0!A1

(0)~0!2K~0,0!B1
(0)~0!%m1

(0)5
r

2p
F~0!2

1

2p
G~0!. ~4.25a!

Substitution of~4.16! into ~4.25a! gives

r

2p
$K~0,0!1K* ~0,0!%A1

(0)~0!m1~0!5
r

2p
F~0!2

1

2p
G~0!. ~4.25b!

The specific valuesF(0) andG(0) are expressed in terms ofK(k,k8) and K* (k,k8) by intro-
ducing ~4.17! into ~4.24!. The resulting expressions are substituted into~4.25b! to obtain the
second-order quantitym1

(0) ,
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m1
(0)

m1
(21) 5

r

2p E
0

1 1

k F $K~0,k!1K* ~k,0!%$K~k,0!1K* ~0,k!%

K~0,0!1K* ~0,0!
2$K~0,0!1K* ~0,0!%Gdk

1
r2m1

(21)

4p2 E
1

` 1

k
$K~0,k!1K* ~k,0!%$K~k,0!1K* ~0,k!%dk

1
m1

(21)

8p2 F2E
0

`

K~0,k!K* ~0,k!dk12r2E
2`

0 K~k,0!K* ~k,0!

k22r2 dkG . ~4.26!

Lastly, we use the definition~2.4c! for K(k,k8) and the formula

E
0

1 eizs21

s
ds1E

1

` eizs

s
ds52g2 lnuzu1

ip

2
sgn~z! ~g:Euler’s constant!, ~4.27!

to expressm1
(0) in terms of the initial datav. The result is

m1
(0)5S rm1

(21)

2p D 2F2~g2 ln 2!H E
2`

`

~v~x!1v* ~x!!dxJ 2

2E
2`

` E
2`

`

dx dy~v~x!1v* ~x!!~v~y!1v* ~y!!lnux2yu

2E
2`

` E
2`

`

dx dyv~x!v* ~y!E
0

` s12

s11
eir2(x2y)sdsG . ~4.28!

Note that ifv(x) is an analytic function in the upper-half complexx plane, then the third-term on
the right-hand side of~4.28! vanishes identically.

Up to the second-order approximation ine, we thus obtain the expression of a new eigenva
generated by a small initial data. Actually, it follows from~4.11c! that

m1;2em1
(0)

em1
(21)/e, ~4.29!

wherem1
(21) andm1

(0) are given, respectively, by~4.14! and~4.28!. This implies the generation o
a new soliton of the form~4.2! whose amplitude parametera and velocityV are given, respec-
tively, by the relationsa52m1(m112r2)/(2r2);2m1 andV5m2;22r2. The magnitude of
a is exponentially small compared withe in contrast to the corresponding result for the INLS a
defocusing NLS equations for which the magnitude is comparable to that of the perturbatio

V. CONCLUDING REMARKS

In this paper, we studied the problem of the soliton generation by a small perturbation o
basis of the INLS equation. In particular, we analyzed the spectral problem associated with
means of the Fourier transform. An important generalization of our approach would be to
tigate the mechanism of the soliton generation induced by a small perturbation on the g
N-soliton state. This problem has been discussed in the case of the BO10 and KPI12 equations
where the completeness relations for the Jost functions have played a central role in the
bation analysis. For the spectral problem associated with the INLS equation, however, the
sponding completeness relation has not been established yet. We also remark that the
generation for the nonlocal NLS equation~1.4! has been considered quite recently in conjunct
with the linear stability of theN-soliton solution.9 We have found that any small perturbation o
the N-soliton solution would produce a new soliton if the conditione*2`

` (uN(x)v* (x)
1uN* (x)v(x))dx,0 is satisfied whereuN is anN-soliton solution andev(x) is a perturbation. If
we putuN5r ~‘‘0-soliton’’ state!, then the above-given condition reduces to~4.15!, which is just
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a condition for the generation of a new soliton. One may extract a similar condition for the
equation through a full development of the associated spectral problem. Undoubtedly, th
become an important issue in the near future.

APPENDIX A: PROPERTIES OF THE FUNCTION D„k ,k…

In this Appendix, we describe some properties of the functionD(k,k) introduced in~2.8! as
well as those of the spectral parametersm andl.

By taking into account the fact that the parametersm( ik) andl( ik) are even functions ofk,
we expandm( ik) andl( ik) in powers ofk2,

m~ ik!5m01m1k21¯ , l~ ik!5l01l1k21¯ . ~A1!

Substituting these expressions into~2.2! and comparing the coefficient ofk2n (n50,1,. . . ), one
can determinem j andl j ( j 50,1,. . . ) successively. The first two terms of which read in the fo

m0
212r2m02

2r2

d
50, l05

1

12dm0
, ~A2a!

m152
11 2

3 r2d

2~m01r2!
, l15

d1 1
3 r2d2

2~m01r2!~dm021!
. ~A2b!

Note thatm0 has two real roots given bym052r21sAr41(2r2/d) (s[61) and the coeffi-
cientsl0 , m j andl j ( j >1) are expressed in terms ofm0 . Direct calculations using~A2! give the
relations

m0~12l0!12r250, ~A3a!

12dm0

12~dm0/2!
512s

1

A11~2/dr2!
, ~A3b!

~12l0!m12l1m0

l0d~12~dm0/2!!
51. ~A3c!

If we introduce~A1!–~A3! into ~2.5c!, we obtain the Taylor series expansion ofD(k,k),

D~k,k!5
21

2
$~12l0!m12l1m0%k

22
1

2
$d~l0m11l1m0!2l1%k

2k

2
1

2 Fl0d2
d2

2
l0m01H l1d2

d2

2
~l0m11l1m0!J k2Gk21O~k2k3!. ~A4!

Differentiating ~A4! by k and puttingk56 ik, one has

Dk~ ik,k!52 il0d~12 1
2 dm0!k2 1

2 $d~l0m11l1m0!2l1%k
21O~k3!, ~A5a!

Dk~2 ik,k!5 il0d~12 1
2 dm0!k2 1

2 $d~l0m11l1m0!2l1%k
21O~k3!. ~A5b!

It follows from ~A5! that

CR~k![
1

Dk~ ik,k!
1

1

Dk~2 ik,k!
52

d~l0m11l1m0!2l1

S l0d2
d2

2
l0m0D 2 1O~k2!, ~A6a!
                                                                                                                



qua-
priate

of

1005J. Math. Phys., Vol. 43, No. 2, February 2002 Dark soliton generation

                    
CI~k![ i F 1

Dk~ ik,k!
2

1

Dk~2 ik,k!G52
2

l0d~12 1
2 dm0!k

1O~k!. ~A6b!

The following expansions ind are useful in taking the shallow-water limitd→0:

m05sA2r2

d
2r21

sr3

4
A2d1O~d3/2!, ~A7a!

l0511sA2r2d1O~d!, ~A7b!

m152sA d

2r2S 11
5

12
dr2D1O~d5/2!, ~A7c!

l152
d3/2

2A2r2
~s1A2r2d!1O~d5/2!. ~A7d!

APPENDIX B: TWO-SOLITON SOLUTION OF THE INLS EQUATION

Here, we investigate the asymptotic properties of the two-soliton solution of the INLS e
tion. In particular, we show that the solution has a common asymptotic value under appro
choice of the soliton parameters.

The two-soliton solution may be expressed in the form2,4,5

u5r
G

F
, uuu25r22 i

]

]x
lnS F

F* D , ~B1a!

where

F511eh11 if11eh21 if21eh11h21 i (f11f2)1A12, ~B1b!

G511eh11 ic11eh21 ic21eh11h21 i (c11c2)1A12, ~B1c!

h j5kj~x2v j t2xj 0!, ~B1d!

f j52dkj , c j52dkj1 i lnS v j2 ik j

v j1 ik j
D , ~B1e!

eAi j 5
~ki2kj !

21~v i2v j !
2

~ki1kj !
21~v i2v j !

2 ~ iÞ j !, ~B1f!

v j
212r2v j1kj

252r2kj cot~kjd!. ~B1g!

Note that the soliton parameterskj andv j correspond, respectively, tok andV in ~2.18!. It follows
from ~B1g! that the velocity of thej th soliton is determined by

v j52r26Ar42kj
212r2kj cot~kjd!

52r26A$kj1r2 tan~kjd/2!%$~r22kj tan~kjd/2!%/tan~kjd/2!. ~B2!

Hence, if 0,kj,kc with kc being a positive solution of the equationkc tan(kcd/2)5r2, thenv j

has two real roots. This inequality is assumed in the following analysis. The asymptotic formu
as uxu→` is easily obtained from~B1!. It takes the form
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u→r, x→2`, ~B3a!

u→rei (c11c22f12f2)5r
v11 ik1

v12 ik1

v21 ik2

v22 ik2
,x→1`. ~B3b!

We can see that the solution exhibits a change of the phase given by~B3b!. However, if the
condition

v1k21v2k150, ~B4!

is satisfied, then the solution has the same asymptotic valuer without the phase shift. We now
show that~B4! holds for particular values ofk1 and k2 . Note that since bothk1 and k2 are
positive,v1 andv2 must have different signs. We may take them as

v152r21Ar42k1
212r2k1 cot~k1d!, ~B5a!

v252r22Ar42k2
212r2k2 cot~k2d!, ~B5b!

so thatv2,0,v1 . The positivity ofv1 is assured by imposing the condition

k1,2r2 cot~k1d!. ~B6!

If we substitute~B5! into ~B4!, condition~B4! is transformed into the form

~k11k2!222r2~k11k2!$cot~k1d!1cot~k2d!%1$k1 cot~k2d!2k2 cot~k1d!%250. ~B7!

It can be verified that there exist pairs (k1 ,k2) (0,k1,k2,kc) that satisfy the conditions~B6!
and~B7! simultaneously. We shall demonstrate this statement by a numerical calculation. W
r5d51 as a typical example. Then,kc51.307 and condition~B6! becomesk1,1.077. In the
following, we shall write down some numerical solutions (k1 ,k2) of ~B7!:

~k1 ,k2!5~0.05,0.186!, ~0.1,0.367!, ~0.2,0.695!, ~0.3,0.958!,

~0.4,1.14!, ~0.5,1.25!, ~0.6,1.30!, ~0.65,1.306!. ~B8!

When bothk1 andk2 are sufficiently small,~B7! reduces to

~k12k2!252r2dk1k2 . ~B9!

Solving this equation, the ratiok1 /k2 is found to have a limiting value

k1

k2
511r2d2Ar2d~21r2d!. ~B10!

In the above-given example, this ratio is 22).0.268, which is in agreement with the numeric
values~B8! for small kj ( j 51,2).

It is quite interesting to observe that the two eigenvalues given by~2.16! exactly satisfy
condition~B9!. Hence, if we approximate a pair of dark solitons with the soliton parameters~2.18!
by a two-soliton solution~B1!, then we can see that the boundary conditionu→r, uxu→` is
satisfied within the approximation up to ordere.
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In this paper, five 211 dimensional lattices considered by several authors are re-
visited again. First of all we will show that two lattices proposed by Blaszak and
Szum@J. Math. Phys.42, 225 ~2001!# become the so-called differential-difference
KP equation due to Date, Jimbo, and Miwa@J. Phys. Soc. Jpn.51, 4116~1982!; 51,
4125 ~1982!; 52, 388 ~1983!; 52, 761 ~1983!; 52, 766 ~1983!# by simple variable
transformations, while another lattice found by Blaszak and Szum can be viewed as
a higher-dimensional generalization of a lattice given by Wu and Hu@J. Phys. A32,
1515 ~1999!#. Some integrable properties on these three lattices are derived. Sec-
ond, it is shown that a 211 dimensional Toda-like lattice studied by Cao, Geng, and
Wu @J. Phys. A32, 8059~1999!# can be transformed into the bilinear equation given
by Hu, Clarkson, and Bullough@J. Phys. A30, L669 ~1997!#. For this bilinear
version we also present some rational solutions and Lie symmetries. Finally, a
lattice due to Levi, Ragnisco, and Shabat@Can. J. Phys.72, 439 ~1994!# is trans-
formed into coupled bilinear equations. It is shown that these coupled bilinear
equations do not have two-soliton solutions. This further confirms that the lattice
under consideration is not completely integrable. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1430899#

I. INTRODUCTION

The subject of discrete systems described by differential-difference, difference, lattice
tions and mappings has undergone remarkable development in recent years. With such d
ment, there has also been an increasing interest in integrable discrete systems. Currentl
progress is being made in the understanding of the mathematical aspects of integrable d
systems, including integrable dynamical mappings, ordinary and partial difference equation
tice solitons, discrete versions of the Painleve´ equations, and application to numerical analys
computer science, physics, etc. Several powerful approaches, such as the inverse sc
method, singularity confinement criteria, symmetry approaches, etc., have been proposed
with discrete nonlinear systems toward their complete integrability, linearizability, and solvab

a!Electronic mail: tam@comp.hkbu.edu.hk
b!Electronic mail: hxb@lsec.cc.ac.cn
10080022-2488/2002/43(2)/1008/10/$19.00 © 2002 American Institute of Physics
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~See, e.g., Refs. 1–3, and references therein.! Among these approaches, Hirota’s bilinear form
ism provides us with an efficient tool in the search for exact solutions of discrete systems, an
in the search for new integrable discrete equations.

Until now, much research has been conducted on many 111 dimensional lattices such as th
Toda lattice

d2

dt2 u~n!5eu(n21)2u(n)2eu(n)2u(n11)

and the Lotka–Volterra lattice

d

dt
u~n!5u~n!~u~n11!2u~n21!!.

Comparatively less research has been done on 211 dimensional lattices. Recently, the followin
five 211 dimensional lattices have been proposed by several authors:

ut~n!52u~n!uy~n!1Huyy~n!, ~1!

v t~n!5Hvyy~n!2~v~n!Hv~n!!y , ~2!

ut~n!5u~n!H 21p~n21!, ~3!

v t~n!5u~n11!2u~n!1~E11!21py~n!, ~4!

pt~n!5v~n11!2v~n!2p~n!H 21p~n!, ~5!

]2Qn

]x]y
5exp~Qn112Qn!

]

]x
~Qn111Qn!2exp~Qn2Qn21!

]

]x
~Qn1Qn21!, ~6!

and

xxy~n!5ex(n12)1x(n11)22x(n)1e2x(n11)2x(n)2x(n21)

2ex(n11)1x(n)22x(n21)2e2x(n)2x(n21)2x(n22), ~7!

whereE is a shift operator, i.e.,Eu(n)5u(n11) andH5(E11)/(E21). The lattices~1!, ~2!
and ~3!–~5! are constructed by Blaszak and Szum as an application of the so-called ‘‘ce
extension procedure and operand formalism’’ in a very recent paper.4 Lattice ~6! was considered
by Cao, Geng, and Wu in a remarkable paper,5 and lattice~7! was proposed by Levi, Ragnisco
and Shabat in a short but interesting paper.6 In view of the fact that there are not many integrab
211 dimensional lattices available in the literature, it would be of interest for us to revisi
above-mentioned five lattices again.

The purpose of this paper is to study these five 211 dimensional lattices in Hirota’s bilinea
formalism. Several new results, such as rational solutions, Lie symmetries, nonlinear superp
principles, etc., have been obtained on these lattices.

The organization of the paper is as follow. In Sec. II we show that lattices~1! and~2! become
the so-called differential-difference KP equation considered in Refs. 7 and 8 by simple va
transformations. In Sec. III, it is shown that lattice~3!–~5! could be viewed as a higher dimen
sional generalization of a lattice derived in Ref. 9. By a dependent variable transformatio
lattice ~3!–~5! is transformed into coupled bilinear equations. A bilinear Ba¨cklund transformation
and its associated nonlinear superposition formula are presented. As a result, soliton solutio
lump solutions to~3!–~5! are obtained. In Sec. IV, we show that the lattice~6! can be transformed
into a bilinear equation found by Hu, Clarkson, and Bullough in Ref. 10. Some particular solu
to the bilinear equation are derived by using the corresponding Ba¨cklund transformation. Finally,
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in Sec. V, by a dependent variable transformation, the lattice~7! is transformed into coupled
bilinear equations. For these coupled bilinear equations, we have obtained one-solition s
but failed to obtain two-soliton solutions. This further confirms that lattice~7! is not completely
integrable.

II. LATTICES „1… AND „2…

It is noted that lattices~1! and~2! are related by the relationv(n)5(12E)u(n). Therefore in
the following we only consider lattice~1!. Lattice ~1! can be rewritten as

ut~n11!2ut~n!52~u~n11!uy~n11!2u~n!uy~n!!1uyy~n11!1uyy~n!. ~8!

Settingu(n)5(ln f(n11)/f(n))y , Eq. ~8! is transformed into the bilinear equation

~Dt2Dy
2!e~1/2! Dnf ~n!"f ~n!50, ~9!

where Hirota’s bilinear differential operatorDy
mDt

k and the bilinear difference operator exp(dDn)
are defined by11

Dy
mDt

ka"b[S ]

]y
2

]

]y8D
mS ]

]t
2

]

]t8D
k

a~y,t !b~y8,t8!uy85y,t85t ,

exp~dDn!a~n!"b~n![expFdS ]

]n
2

]

]n8D Ga~n!b~n8!un85n5a~n1d!b~n2d!.

Equation~9! becomes the bilinear form

~Dt12Dy2Dy
2!e~1/2! Dnf ~n!"f ~n!50 ~10!

by the linear transformationy→y12t,t→t. Equation~10! is just the bilinear form for the so
called differential-difference KP equation7,8

DS ]w

]t
12

]w

]y
22w

]w

]y D5~21D!
]2w

]y2 ~11!

through the dependent variable transformation given by

w5
]

]y
ln

f ~n11!

f ~n!
,

whereD5E21, i.e.,Dw(n)5w(n11)2w(n). Besides, it is obvious that~8! and~11! are linked
by u(n)5w(n)21. Concerning~9!, we can easily obtain its bilinear BT

~Dy1l21e2Dn1m! f ~n!"g~n!50, ~12!

~Dt2l21Dye
2Dn2l21me2Dn2g! f ~n!"g~n!50, ~13!

and nonlinear superposition formula

exp~2 1
2 Dn! f 0"f 125k@l1 exp~2 1

2 Dn!2l2 exp~ 1
2 Dn!# f 1"f 2 , ~14!
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wherel, m, andg are arbitrary constants andk is a nonzero constant. By using these results,
can easily rederive soliton solutions and rational solutions. For example, we have

where

G12~n!5A1A2Q1Q21Q1S A1b21
A1A2

l12l2
D1Q2S A2b12

A1A2

l12l2
D1b1b21

A2b12A1b2

l12l2
,

~15!

with

Q i[l i
21n12l i

23t1l i
22y, m i52l i

21 , g i5l i
22 .

Thus we have the following rational solution to~8! or ~1!:

u~n!5
]

]y
ln

G12~n11!

G12~n!
.

We can obtain a hierarchy of rational solutions for the lattice~9! using the above-mentione
process. In particular, if we choose

A15A2 , l15a1 ib, l25l1* 5a2 ib ~A1 ,a,bPR!,bÞ0,

b15
A1

l12l2
, b25

A2

l22l1
,

we have from~15! that

G12~n!5A1
2Q1Q1* 1

A1
2

4b2 2
A1

2b2 , ~16!

which becomes a one-lump solution when we chooseA1,0 or A1.2. Correspondingly, we have
the one-lump solution to~8! or ~1!:

u~n!5
]

]y
ln

G12~n11!

G12~n!
,

whereG12(n) is given by~16!.
Since ~9! is an integrable lattice, it would be interesting to derive some other integr

properties. In the following we write down five Lie symmetries for~9!:

s05h~ t ! f , s15yh~ t ! f ,

s25~h~ t !n1 1
4ḣ~ t !y2! f , s35h~ t ! f y1~ 1

2 nyḣ1 1
24 y3ḧ! f ,

s45h~ t ! f t1
1
2 yḣf y1~ 1

8 ny2ḧ1 1
192 y4h(3)1 1

4 n2ḣ! f ,

where h(t) is an arbitrary function of t and ḣ(t)[ dh(t)/dt , ḧ(t)[ d2h(t)/dt2 , h(3)

[ d3h(t)/dt3.
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III. LATTICES „3…–„5…

Settingw(n)5(E11)21p(n), lattices~3!–~5! can be rewritten as

ut~n!5u~n!~w~n!2w~n21!!, ~17!

v t~n!5u~n11!2u~n!1wy~n!, ~18!

wt~n11!1wt~n!5v~n11!2v~n!2w2~n11!1w2~n!. ~19!

By the dependent variable transformation

u~n!5
f ~n11! f ~n21!

f 2~n!
, v~n!5

Dt
2f ~n!"f ~n11!

f ~n! f ~n11!
, w~n!5S ln

f ~n11!

f ~n! D
t

,

Eqs.~17!–~19! become

Dt~Dt
2f ~n!"f ~n11!!"f ~n! f ~n11!

5 f ~n12! f 3~n!2 f ~n21! f 3~n11!1Dy~Dt f ~n11!"f ~n!!"f ~n11! f ~n!. ~20!

By introducing an auxiliary variablez, ~20! can be decoupled into the bilinear form:

~Dze
~1/2! Dn2Dt

2e~1/2! Dn! f ~n!"f ~n!50, ~21!

~DtDz2DtDy! f ~n!"f ~n!54 sinh2~ 1
2 Dn! f ~n!"f ~n!. ~22!

In particular, if f is independent ofy, then ~21! and ~22! become the bilinear form for a lattic
proposed in Ref. 9. Therefore~21! and~22! may be viewed as a two-dimensioal generalization
the lattice in Ref. 9. Concerning~21! and ~22!, we have the following results:

Proposition 1:The system of bilinear equations~21! and~22! has the Ba¨cklund transformation

~Dt1l21e2Dn1m! f ~n!"g~n!50, ~23!

~Dze
2 ~1/2! Dn2Dye

2 ~1/2! Dn2le~1/2! Dn1ge2 ~1/2! Dn! f ~n!"g~n!50, ~24!

~Dz2l21Dte
2Dn2l21me2Dn2v! f ~n!"g~n!50, ~25!

wherel, m, g, andv are arbitrary constants.
Proposition 2:Let f 0 be a solution of~21! and~22!. Suppose thatf i( i 51,2) are solutions of

~21! and ~22!, which are related tof 0 under the BT~23!–~25! with parameters (l i ,m i ,g i ,v i).
Then f 12 defined by

exp~2 1
2 Dn! f 0"f 125c@l1 exp~2 1

2 Dn!2l2 exp~ 1
2 Dn!# f 1"f 2 ~26!

is a new solution related tof 1 and f 2 under the BT~23!–~25! with parameters (l2 ,m2 ,g2 ,v2),
(l1 ,m1 ,g1 ,v1), respectively. Herec is a nonzero constant.

These results can be proved in a way similar to those of Ref. 9. We omit the details. In
we are going to construct soliton solutions to~21! and ~22! by using these results. Choose, f
example,f 051, c51/(l12l2). It can be easily verified that
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where

F12~n!511
l1e2p12l2

l12l2
eh11

l12l2e2p2

l12l2
eh21

l1e2p12l2e2p2

l12l2
eh11h2, ~27!

with

h i5pin1l i
21~epi21!t1l i

22~e2pi21!z1@l i
22~e2pi21!1l i~e2pi21!#y1h i

0 ,

m i52l i
21 , g i5l i , v i5l i

22 .

The corresponding two-soliton solution to~17!–~19! is given by

u~n!5
F12~n11!F12~n21!

F12
2 ~n!

, v~n!5
Dt

2F12~n!"F12~n11!

F12~n!F12~n11!
, w~n!5S ln

F12~n11!

F12~n! D
t

.

In general, along this line, we can obtain multisoliton solutions for the lattice~21! and ~22!
step by step. Besides, we have

where

G12~n!5A1A2Q1Q21Q1S A1b21
A1A2

l12l2
D1Q2S A2b12

A1A2

l12l2
D1b1b21

A2b12A1b2

l12l2
,

~28!

with

Q i[l i
21n1l i

22t1~2l i
2321!y12l i

23z, m i52l i
21 , g i5l i , v i5l i

22 .

The corresponding rational solution to~17!–~19! is given by

u~n!5
G12~n11!G12~n21!

G12
2 ~n!

, v~n!5
Dt

2G12~n!"G12~n11!

G12~n!G12~n11!
, w~n!5S ln

G12~n11!

G12~n! D
t

.

We can obtain a hierarchy of rational solutions for the lattice~21! and ~22! using the above-
mentioned process. In particular, if we choose

A15A2 , l15a1 ib, l25l1* 5a2 ib ~A1 ,a,bPR!, bÞ0,

b15
A1

l12l2
, b25

A2

l22l1
,

we have from~28! that

G12~n!5A1
2Q1Q1* 1

A1
2

4b2 2
A1

2b2 , ~29!

which becomes a one-lump solution when we chooseA1,0 or A1.2. In this case, the one-lum
solution to~17!–~19! is given by
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u~n!5
G12~n11!G12~n21!

G12
2 ~n!

, v~n!5
Dt

2G12~n!"G12~n11!

G12~n11!
, w~n!5S ln

G12~n11!

G12~n! D
t

,

where G12(n) is given by ~29!. Furthermore, starting from 1 ——→
(l i ,2l i

21 ,l i ,l i
22)

AQ i1b i ( i
51,2,3,4), it is possible to construct two-lump solutions.

IV. THE SPECIAL 2¿1 TODA LATTICE „6…

In Ref. 5, Caoet al.have considered the special 211 Toda lattice~6! and obtained the explici
theta-function solutions by resorting to separation techniques. Here we will show that th
some connection between this special 211 Toda lattice~6! and a bilinear equation found in Re
10. In fact, by the dependent variable transformation

Qn52
x

2
1h~y!1 ln

f ~n11!

f ~n!

with h(y) being an arbitrary function ofy, we can transform~6! into the bilinear equation

DxDyf ~n!"f ~n!52@Dxe
Dn1eDn21# f ~n!"f ~n!, ~30!

which is a special case of the bilinear equation proposed in Ref. 10. Therefore we ha
following bilinear BT for ~30!:

Dyf ~n!"g~n!5S le2Dn2
1

l
eDn1m D f ~n!"g~n!, ~31!

~24lDxe
2 ~1/2! Dn24Dxe

~1/2! Dn! f ~n!"g~n!5F S 41
g

l De~1/2! Dn1ge2 ~1/2! DnG f ~n!"g~n!,

~32!

where l, m, and g are arbitrary constants. Starting from BT~31! and ~32!, we have obtained
explicit soliton solutions to~30!.10 Its Pfaffian solution was given in Ref. 12. Starting from B
~31! and ~32!, we can also obtain polynomial solutions to~30!. For example, starting from the
trivial solution f (n)51 and using BT~31! and ~32! with

m5
1

l
2l, g52

4l

11l
,

we have

g~n!5n2
l

~11l!2 x2
~l211!

l
y1a.

Furthermore, starting from the solution

f ~n!5n2
l1

~11l1!2 x2
~l1

211!

l1
y1a

and using BT~31! and ~32! with m51/l2l, g524l/~11l!, we have
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g~n!5n21nF2S l

~11l!2 1
l1

~11l1!2D x2S l211

l
1

l1
211

l1
D y1bG

1F ~l1
211!l

l1~11l!2 1
~l211!l1

l~11l1!2Gxy1
~l211!~l1

211!

ll1
y2

1
ll1

~l111!2~l11!2 x21yFl221

l
1aS l1

211

l1
2

l211

l D 2b
l1

211

l1
G

1x
2al1@~11l!~211b1l1bl!1a~11l2!#l12all1

2

~11l!2~11l1!2

1
ll1

l1~l211!2l~l1
211!

Fl211

l
~ab2a221!1

l221

l
~2b12a!1

l1
211

l1
~a22ba!G ,

wherea, b, l, andl1 are constants. The corresponding rational solution to~6! is given by

Qn52
x

2
1h~y!1 ln

g~n11!

g~n!
.

In addition, concerning bilinear equation~30!, we have found the following Lie symmetries

s15~h1~x!1h2~y!! f , s25nh2~y! f ,

s35h1~x! f x1~yh1~x!1 1
2 nh1~x!! f ,

s45h2~y! f y1~xh2~y!1 1
2ḣ2~y!n2! f ,

whereh1(x) andh2(y) are arbitrary functions ofx andy, respectively, andḣ2(y)[ dh2(y)/dy.

V. THE LEVI–RAGNISCO–SHABAT LATTICE „7…

In this section, we will consider the Levi–Ragnisco–Shabat lattice~7!. In Ref. 6, it was
mentioned that~7! can be reduced to a nonintegrable equation under some reduction. This m
that ~7! is not completely integrable in such a sense. In what follows, we will show that~7! does
not have multisoliton solution. To this end, we setx(n)5 ln(f(n11)/f(n)). Then~7! can be trans-
formed into the quadrilinear form

~DxDyf ~n!"f ~n!! f 2~n!54 cosh~Dn!~eDnf ~n!"f ~n!!"f 2~n!24 f 4~n!. ~33!

By introducing an auxiliary variablez, ~33! may be decoupled into the bilinear equations

~DxDy1424e2Dn1Dze
2Dn! f ~n!"f ~n!50, ~34!

~Dze
Dn1222eDn! f ~n!"f ~n!50. ~35!

We can easily obtain one-soliton solution to~34! and ~35!:

f ~n!511eh, h5pn1qx1ry1sz1h0,

s5
2 cosh~p!22

sinh~p!
, r 5

4 cosh~2p!2424 cosh2~p!14 cosh~p!

q
.

Now it is natural to go on to seek the following two-soliton solution to~34! and ~35!:
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f ~n!511eh11eh21A12e
h11h2, h i5pin1qix1r iy1siz1h i

0 ,

si5
2 cosh~pi !22

sinh~pi !
, r i5

4 cosh~2pi !2424 cosh2~pi !14 cosh~pi !

qi
.

From ~34! and ~35! we can determineA12, respectively,

A1252
~s12s2!sinh~p12p2!1222 cosh~p12p2!

~s11s2!sinh~p11p2!1222 cosh~p11p2!
, ~36!

A1252
~q12q2!~r 12r 2!141~s12s2!sinh~2~p12p2!!24 cosh~2~p12p2!!

~q11q2!~r 11r 2!141~s11s2!sinh~2~p11p2!!24 cosh~2~p11p2!!
. ~37!

It is obvious to see that the system~34! and ~35! has the above-mentioned two-soliton solutio
provided that

~s12s2!sinh~p12p2!1222 cosh~p12p2!

~s11s2!sinh~p11p2!1222 cosh~p11p2!

[
~q12q2!~r 12r 2!141~s12s2!sinh~2~p12p2!!24 cosh~2~p12p2!!

~q11q2!~r 11r 2!141~s11s2!sinh~2~p11p2!!24 cosh~2~p11p2!!
~38!

for arbitrary constantsp1 ,p2 ,q1 and q2 and without any additional condition. But by usin
MATHEMATICA it turns out that~38! does not hold automatically. Therefore our computations g
further evidence that~7! is not completely integrable.

VI. CONCLUSION

In this paper, five 211 dimensional lattices studied by several authors have been review
Hirota’s bilinear formalism. First, we have shown that two lattices proposed by Blaszak
Szum4 share the same bilinear form with the so-called differential-difference KP equation d
Date, Jimbo, and Miwa.7 This means that these two lattices are linked to the differential-differe
KP equation by simple variable transformations. We have also transformed another lattice
by Blaszak and Szum4 into a set of coupled bilinear equations, which is a higher-dimensio
generalization of the bilinear form for a lattice given by Wu and Hu.9 Several integrable propertie
on these three lattices given by Blaszak and Szum, such as lump solutions, Lie symmetrie
have been derived. Second, we have shown that a 211 dimensional Toda-like lattice considere
by Cao, Geng, and Wu5 can be transformed into a bilinear equation given by Hu, Clarkson,
Bullough.10 For this bilinear version, some rational solutions and Lie symmetries have also
obtained. Finally, a lattice due to Levi, Ragnisco, and Shabat is transformed into coupled b
equations. Based on the fact that these coupled bilinear equations do not have two-solito
tions, we further confirm that the lattice under consideration is not completely integrable.
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Euclidean scalar Green function in a higher dimensional
global monopole space–time

E. R. Bezerra de Melloa)

Departamento de Fı´sica-CCEN, Universidade Federal da Paraı´ba,
58.059-970, J. Pessoa, PB, C. Postal 5.008, Brazil

~Received 1 August 2001; accepted for publication 8 October 2001!

We construct the explicit Euclidean scalar Green function associated with a mass-
less field in a higher dimensional global monopole space–time, i.e., a
(11d)-space–time withd>3 which presents a solid angle deficit. Our result is
expressed in terms of an infinite sum of products of Legendre functions with Ge-
genbauer polynomials. Although this Green function cannot be expressed in a
closed form, for the specific case where the solid angle deficit is very small, it is
possible to develop the sum and obtain the Green function in a more workable
expression. Having this expression it is possible to calculate the vacuum expecta-
tion value of some relevant operators. As an application of this formalism, we
calculate the renormalized vacuum expectation value of the square of the scalar
field, ^F2(x)&Ren, and the energy-momentum tensor,^Tmn(x)&Ren, for the global
monopole space–time with spatial dimensionsd54 andd55. © 2002 American
Institute of Physics.@DOI: 10.1063/1.1421424#

I. INTRODUCTION

In this article we consider the Euclidean scalar Green function associated with a massle
in the higher dimensional global monopole space–time. We define this space–time as a ge
zation of the previous one given in Ref. 1~the metric of cosmic string space–time, which
spatially flat, was considered in Ref. 2!. The generalization of the Euclidean line element of R
1 for a higher dimensional case is given by

ds25dt21
dr2

a2 1r 2dVd21
2 5gmn~x!dxmdxn, ~1!

where m, n50,1,2 ,. . .,d, with d>3 and xm5(t,r ,u1 ,u2 , . . . ,ud22 ,f). The coordinates are
defined in the intervalstP(2`,`), u iP@0,p# for i 51,2 ,. . .,d22, fP@0,2p# and r>0. The
parametera, which codifies the presence of the global monopole, is smaller than unity. In
coordinate system the metric tensor is explicitly defined as shown:

g0051, g1151/a2, g225r 2,
~2!

gj j 5r 2 sin2 u1 sin2 u2 . . . sin2 u j 22 ,

for 3< j <d, andgmn50 for mÞn.
This space–time corresponds to a pointlike global monopole. It is not flat: the scalar cur

R5(d21)(d22)(12a2)/r 2, and the solid angle associated with a hypersphere with unity ra

a!Electronic mail: emello@fisica.ufpb.br
10180022-2488/2002/43(2)/1018/11/$19.00 © 2002 American Institute of Physics
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is V52pd/2a2/G(d/2), so it is smaller than an ordinary one. The energy-momentum te
associated with this object has a diagonal form and its nonvanishing components readT0

05T1
1

5(a221)(d22)/r 2.
The Euclidean scalar Green function associated with a massless field in the geometry d

by ~2! should obey the nonhomogeneous second order differential equation

~h2jR!GE~x,x8!52dn~x,x8!52
dn~x2x8!

Ag
, ~3!

wheren5d11, h denotes the covariant d’Alembertian in the space–time defined by~2!, j is an
arbitrary coupling constant,dd(x,x8) is the bidensity Dirac distribution andR is the scalar cur-
vature.

The vacuum expectation value of the square of the scalar field,^F2(x)&, is given by the
evaluation of the Green function at the same point which provides a divergent result. So, in
to obtain a finite and well defined one, we should apply some renormalization procedure
method which we shall adopt here is the point-splitting renormalization procedure. The bas
of this method consists of subtracting from the Green function all the divergences which ap
in the coincidence limit.~As it is well known, this procedure is ambiguous in even dimensions
the ambiguity is a consequence of mass scale parameterm which is introduced after the renor
malization procedure. In this way the final result contains a finite part which depends on the
m.!

In Ref. 3 Wald observed that the singular behavior of the Green function in the coincid
limit has the same structure as the Hadamard function, so his proposal was to subtract fr
Green function the Hadamard one. In fact, the use of the Hadamard function to renormali
vacuum expectation value of the energy-momentum tensor in a curved space–time wa
introduced by Adleret al.4 In Ref. 3 Wald added a modification to this technique in order
provide the correct result for the trace anomaly. In this way the renormalized vacuum expec
value of the square of the field operator is given by

^F2~x!&Ren5 lim
x8→x

@GE~x,x8!2GH~x,x8!#. ~4!

The renormalized vacuum expectation value of the energy-momentum tensor can a
obtained in a similar way:

^Tmn~x!&Ren5 lim
x8→x

Dmn8~x,x8!@GE~x,x8!2GH~x,x8!#, ~5!

whereDmn8(x,x8) is a bivector differential operator. Moreover, this vacuum expectation v
should be conserved, i.e.,

¹m^Tn
m~x!&Ren50, ~6!

and gives us the correct conformal trace anomaly,

^Tm
m~x!&Ren5

1

~4p!n/2an/2~x! ~7!

for n511d even and

^Tm
m~x!&Ren50 ~8!

for n511d odd.5

In this article we study the quantum field theory associated with a massless scalar field
background space–time defined by~2!. More specifically, we shall specialize in the cases wh
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the spatial section of our space–time has dimensionsd54 andd55. In Sec. II, we construct
explicitly the Euclidean Green function for a massless scalar field in a higher dimensional g
monopole space–time. We show that this Green function is expressed in terms of an infini
of product of the Legendre function with Gegenbauer polynomials. In Sec. III we calculat
plicitly the renormalized vacuum expectation value of the square of the scalar field operat
d54 and d55 dimensions in the case whereh2!1, whereh2512a2. The parametera is
related to the energy scale where the global symmetry of the system is spontaneously brok~see
Ref. 1!. For a typical grand unified theory in a physical (113)-dimensional space–time, this sca
is of order 1016Gev. So, 12a25h2;1025. We show that for six dimensions the expressi
obtained presents an ambiguity given by the mass scale parameter and that this ambiguity v
if we assume for the nonminimal coupling constant its conformal value,j5 1

5. In Sec. IV we
present the formal expressions for the vacuum expectation values of the energy-momentum
for the casesd54 andd55. For the six dimensional case we present, after a long calculation
explicit expression for the scale dependent term up to the first order inh2. We explicitly show that
this term is traceless for the conformal coupling. In Sec. V we present our conclusions and
important remarks about this article. Although the formalism developed here is applied only
the dimension of the space section isd>3, in the Appendix we present an expression for
Green function in a limiting cased→2.

II. GREEN FUNCTION

In this section we calculate the Euclidean scalar Green function associated with a ma
field in the space–time described by~2!. This Green function must obey the nonhomogene
second order differential equation

~h2jR!GE~x,x8!52dd~x,x8!52
d2~x2x8!

Ag
, ~9!

where we have introduced the nonminimal coupling of the scalar field with the geometry. A
have already said, the scalar curvature for this space–time isR5(d21)(d22)(12a2)/r 2.

The Euclidean Green function can also be obtained by the Schwinger–DeWitt formalis
follows:

GE~x,x8!5E
0

`

dsK~x,x8;s!, ~10!

where the heat kernel,K(x,x8;s), can be expressed in terms of eigenfunctions of the oper
h2jR as follows:

K~x,x8;s!5(
s

Fs~x!Fs* ~x8!exp~2ss2!, ~11!

s2 being the corresponding positively defined eigenvalue. Writing

~h2jR!Fs~x!5s2Fs~x!, ~12!

we obtain the complete set of normalized solutions of the above equation:

Fs~x!5Aap

2p

1

r d/221 e2 ivtJnn
~pr !Y~n,mj ;f,u j !, ~13!

with

s25v21a2p2, ~14!
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Y(n,mj ;f,u j ) being the hyperspherical harmonics of degreen,6 Jn the Bessel function of orde

nn5a21A~n1~d22!/2!21~d21!~d22!~12a2!~j2 j̄ !, ~15!

with j̄5 (d22)/4(d21). So according to~11! our heat kernel is given by

K~x,x8;s!5E
2`

`

dvE
0

`

dp(
n,mj

Fs~x!Fs* ~x8!e2ss2

5
1

8ap~d11!/2s3/2

1

~rr 8!d/221

G~d/2!

d22
e2 ~Dt2a21r 21r 82!/4a2s

3 (
n50

`

@2~n21!1d#I nnS rr 8

2a2sDCn
~d22!/2~cosg!, ~16!

I n being the modified Bessel function,Cn
m(x) the Gegenbauer polynomial of degreen and orderm

andg is the angle between two arbitrary directions. Our final expression~16! was obtained using
the addition theorem for the hyperspherical harmonics6 and the integral table.7

Now we are in position to obtain the Euclidean Green function substituting~16! into ~10!. Our
final result is

GE
(d)~x,x8!5

1

4pd/211

1

~rr 8!~d21!/2

G~d/2!

d22 (
n50

`

@2~n21!1d#Qnn21/2~u!Cn
~d22!/2~cosg!,

~17!

where

u5
a2Dt21r 21r 82

2rr 8
~18!

and Qm is the Legendre function. Unfortunately because the dependence of the order
Legendre functions on the parametera is not a simple one, it is not possible to develop t
summation and to obtain a closed expression for the Green function even in the simplerd

53.8 However, forj5 j̄, nn becomes equal to (n1(d22)/2)/a and for g50 it is possible to
represent this Green function in an integral form using the integral representation for the Leg
function

Qn21/2~coshr!5
1

&
E

r

`

dt
e2nt

Acosht2coshr
~19!

and

Cn
~d22!/2~1!5

~n1d23!!

n! ~d23!!
. ~20!

Now it is possible to develop the summation and after some intermediate steps we get

GE
(d)~r ,t;r 8,t8!5

1

4pd/211

1

~rr 8!~d21!/2

G~d/2!

2d23/2 E
r

`

dt
1

Acosht2coshr

cosh~ t/2a!

~sinh~ t/2a!!d21 .

~21!
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For the case wherea5 1
2, i.e., a large solid angle deficit, the above expression can be written

simpler form by performing the integral. Making an appropriate transformation of variabt
ªarccosh((u21)/q11), we get

GE
(d)~r ,t;r ,t8!5

1

4&pd/211

G~d/2!

d22

~rr 8!~d23!/2

@~r 2r 8!21Dt2/4#d/221

1

@~r 1r 8!21Dt2/4#d/221 .

~22!

The next section is devoted to the obtainment of the renormalized vacuum expectation
of the square of the field operator. As an explicit application we shall develop these quantiti
the cases whered54 andd55.

III. CALCULATION OF ŠF2
„x …‹Ren

The calculation of the vacuum expectation value of the square of the field operator is ob
computing the Green function in the coincidence limit:

^F2~x!&5 lim
x8→x

GE~x,x8!. ~23!

However, this procedure provides a divergent result. In order to obtain a finite and well de
result, we must apply in this calculation some renormalization procedure. Here we shall ado
point-splitting renormalization. This procedure is based upon a divergence subtraction sch
the coincidence limit of the Green function. In Ref. 3, Wald examined the behavior of the G
function in this limit. He observed that its divergences have the same structure as given
Hadamard function, which, on the other hand, can be explicitly written in terms of the squa
the geodesic distance between the two points. So, we shall adopt the following prescriptio
subtract from the Green function the Hadamard one before applying the coincidence lim
shown:

^F2~x!&Ren5 lim
x8→x

@GE~x,x8!2GH~x,x8!#. ~24!

Now let us develop this calculation explicitly. As we have mentioned earlier, it is not pos
to proceed exactly with the summation which appears in the Green function. By this reas
best that we can do is to obtain an approximate expression for it, developing a series expan
powers of the parameterh2512a2, which is much smaller than unity for the physical fou
dimensional space–time. Moreover, because we want to take the coincidence limit in the
function, let us take firstg50 andDt50 in ~17!. The approximate expression for the order of t
Legendre function, up to the first power inh2, is

nn'S n1
d22

2 D ~11h2/2!1
~d21!~d22!~j2 j̄ !

2n1d22
h21O~h4!. ~25!

We also need to develop the summation

S5 (
n50

`

@2n1d22#
~n1d23!!

n!
e2nnt. ~26!

Substituting the approximate expression fornn into the summation in~26!, we get, after some
intermediate steps,

S5
~d22!!

2d22

cosh~ t/2!

sinhd21~ t/2! F12
th2~d21!

2 sinh~ t !
~114j sinh2~ t/2!!G . ~27!
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So the approximate Green function is given by

GE
(d)~r ,r 8!5

1

2d11/2pd/211

G~d/2!

~rr 8!~d21!/2 E
r

`

dt
1

Acosht2coshr

3
cosh~ t/2!

sinhd21~ t/2! F12
th2~d21!

2 sinh~ t !
~114j sinh2~ t/2!!G . ~28!

In his beautiful paper Christensen5 has given a general expression for the Hadamard func
for any dimensional space-time, which is expressed in terms of the square of the geodesic d
2s(x,x8). Moreover, there he has called attention to the different behavior of this function w
the dimension of the space–time is an even or odd number. In the latter case there is no lo
mic term in the expansion of the Hadamard function. So because of this fact we shall de
separately, the calculation of the renormalized vacuum expectation value of the square of th
operator, forn511d odd and even.

Following Ref. 5, next we write down the Hadamard function for the massless case whe
dimension of the space–time is an odd number. This function is given by

GH~x,x8!5
D1/2~x,x8!

2~2p!n/2

1

sn/221~x,x8! (
k50

~n23!/2

ak~x,x8!sk~x,x8!
G~n/22k21!

2k , ~29!

whereD(x,x8), the Van Vleck–Morette determinant, and the factorak(x,x8), for k50,1,2, have
been computed by many authors. See Refs. 9 and 10.

Now let us apply this formalism for the casen55, i.e.,d54. The Euclidean Green functio
in this case is

GE
(4)~r ,r 8!5

1

16&p3

1

~rr 8!3/2E
r

`

dt
1

Acosht2cosr

3
cosh~ t/2!

sinh3~ t/2! F12
3th2

2 sinh~ t !
~114j sinh2~ t/2!!G . ~30!

Because we need to evaluate the Hadamard function in the coincidence limit we can wri
function exhibiting only its divergent contributions as shown:

GH~x,x8!5
1

16&p2

1

s3/2~x,x8! F11S 1

6
2j DR~x!s~x,x8!G , ~31!

where we have substituted the explicit expression forD, a0 anda1 in the coincidence limit. The
scalar curvature in this five-dimensional space–time isR56h2/r 2. The radial one-half of the

geodesic distance,s(x,x8)5(1/2a2)(r 2r 8)2, in our approximation is equal tos'( 1
2)(r

2r 8)2(11h21 ¯). Now substituting~30! and ~31! into ~24! we get, after a long calculation,

^F2~x!&Ren5
3h2

64pr 3 S j2
3

16D . ~32!

We can see that for the conformal coupling in five dimensional space–time,j5 3
16, the above

expectation vanishes, i.e., the renormalized vacuum expectation value of the operatorF2(x) is
zero up to the first order inh2.

The six dimensional case will be analyzed now. This case, together with the four dimen
one studied in Ref. 8, exhibits explicitly the ambiguity in the renormalization procedure give
a mass subtraction pointm. ~Moretti, in Ref. 11, has used the localz-function renormalization
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technique to show, by a general argument, that the scale ambiguity is present in the calcula
vacuum expectation value of the square of scalar field operator in a curved space–time of
sion even.!

The Hadamard function in even dimensions is explicitly written in the paper by Christen5

so we shall not reproduce it here. The singular behavior of the Hadamard function in th
dimensional space–time is

GH~x,x8!5
D1/2~x,x8!

16p3 F a0~x,x8!

s2~x,x8!
1

a1~x,x8!

2s~x,x8!
2

a2~x,x8!

4
lnS m2s~x,x8!

2 D G . ~33!

Substituting the expressions for the factorsak , we get, up to the first order in the parameterh2,
the following result:

GH~r ,r 8!5
1

2p3 F ~122h2!

~r 2r 8!4 1
~126j!h2

2r 2~r 2r 8!2 2
h2

4r 4 S j2
1

5D lnS m2~r 2r 8!2

4 D G . ~34!

Now takingd55 in ~28! and substituting the result, together with Eq.~34!, into ~24!, we get,
after some calculation, the following expression:

^F2~x!&Ren52
h2

96p3r 4 S 47

25
210j D1

h2

8p3r 4 S j2
1

5D ln~mr !. ~35!

We can see that for the conformal coupling in six dimensions,j5 1
5, there is no ambiguity, the

logarithmic contribution disappears and we get^F2(x)&Ren5h2/800p3r 4. @In order to obtain the
above result we expressed the logarithmic term which is present in~33! in terms of theQ0(ū), ū
being (r 21r 82)/2rr 8, and write this Legendre function in its integral representation~19!.#

The next section is devoted to the analysis of the vacuum expectation value of the e
momentum tensor in five and six dimensional space–time.

IV. VACUUM EXPECTATION VALUE OF THE ENERGY-MOMENTUM TENSOR

In this article we are working with a massless scalar quantum field theory in the m
space–time defined by~2!, which does not present any dimensional parameter. Moreover, w
adopting the natural system units where\5c51, so because of these reasons the physical q
tities calculated in this model can only depend on the radial coordinater or on the renormalization
mass scalem. By dimensional point of view we could expect that^F2(x)&Ren be proportional to
1/r n22 and ^Tm,n(x)&Ren proportional to 1/r n. The factor of proportionality should be given i
terms of the parameterh2 and the nonminimal couplingj. As to the square of the scalar field, th
calculation has been done in this article for the cases where the dimension of the space–ti
and 6 up to the first order inh2. In this section we want to analyze the vacuum expectation v
of the energy-momentum tensor. We start considering the five dimensional case.

The renormalized vacuum expectation value of the energy-momentum tensor in five d
sions does not depend on the subtraction mass parameter. So, there is no logarithmic term
can be written in a general form by

^Tm
n ~x!&Ren5

Am
n ~j,h2!

r 5 . ~36!

Because there is no trace anomaly in odd dimension, forj5 3
16, we can write

^Tm
m~x!&Ren50, ~37!

so Am
m50. On the other hand, by symmetry of this space–time, the above vacuum expec

value should be diagonal. Moreover, the conservation condition
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¹n^Tm
n ~x!&Ren50 ~38!

imposes additional restrictions on the components of the tensorAm
n . So, under these conditions w

have

A0
05A1

1 , A2
25A3

35A4
4 . ~39!

Using these relations and the traceless condition we can express all nonzero components oAm
n in

terms of one of them. Let us chooseA0
0 , so we can write

Am
n 5A0

0 diag~1, 1, 2 2
3, 2 2

3, 2 2
3!. ~40!

The explicit calculation of the componentA0
0 involves an extensive calculation which we shall n

do here.
The vacuum expectation value of the energy-momentum tensor in six dimensions re

more details. By the expression obtained for the vacuum expectation value of the square
field, it is possible to infer that there exists a logarithmic contribution to this tensor. Moreove
the trace anomaly5 we have

^Tm
m~x!&Ren5

1

64p3 a3~x!. ~41!

So, we can conclude that the general expression for this object is

^Tm
n ~x!&Ren5

1

64p3r 6 @Am
n ~h2,j!1Bm

n ~h2,j!ln~mr !#, ~42!

whereAm
n , in principal, are arbitrary numbers. Because the cutoff factorm is completely arbitrary,

there is an ambiguity in the definition of this renormalized vacuum expectation value. More
the change in this quantity under the change of the renormalization scale is given in terms
tensorBm

n as shown:

^Tm
n ~x!&Ren~m!2^Tm

n ~x!&Ren~m8!5
1

64p3r 6 Bm
n ~h2,j!ln~m/m8!. ~43!

In Ref. 5, Christensen pointed out that the difference between them is given in terms
effective action which depends on the logarithmic terms whose final expression, in arbitrary
dimension, is

^Tm
n ~x!&Ren~m!2^Tm

n ~x!&Ren~m8!5
1

~4p!n/2

1

Ag

d

dgmn E dnxAgan/2~x!ln~m/m8!. ~44!

In our six dimensional case we need the factora3(x). The explicit expression for this factor ca
be found in the paper by Gilkey12 and in a more systematic form in the paper by Jack and Park13

for a scalar second order differential operatorD21X, Dm being the covariant derivative includin
gauge field andX an arbitrary scalar function. This expression involves 46 terms and we sha
repeat it here in a complete form. The reason is that our calculation has been developed u
first order in the parameterh2 and only the quadratic terms in Riemann and Ricci tensors, an
the scalar curvature, are relevant for us. This reduces to 12 the number of terms which w
considered. Discarding the gauge fields and takingX52jR we get
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ā3~x!5
1

6 S 1

6
2j D S 1

5
2j DRhR1

j2

12
R;mR;m1

j

90
RmnR;mn2

j

36
R;mR;m2

1

7!
@28RhR

117R;mR;m22Rmn;rRmn;r24Rmn;rRmr;n19Rmnrs;gRmnrs;g28RmnhRmn

124RmnR r
mr;n 112RmnrshRmnrs1O~R3!. ~45!

This expression is of sixth order derivative on the metric tensor. Our next step is to tak
functional derivative ofa3(x). Using the expressions for the functional derivative of the Riem
and Ricci tensor, together with the scalar curvature,14 we obtain after a long calculation th
following expression for the tensorBm

n :

Bm
n ~h2,j!5

r 6

6 F2dm
n h2RS j22

j

3
1

23

840D1
1

40
h2Rm

n 1¹n¹mhRS j22
j

3
1

1

42D G1O~R2!.

~46!

Moreover, developing all the terms which appear in Eq.~46! we obtain, after some calculations

Bm
n ~h2,j!5

h2

225
diag~6,6,23,23,23,23!116h2~j21/5!~j22/15! diag~1,24,2,2,2,2!.

~47!

As in the last case, it is possible to make some restrictions on the tensorAm
n . Again because

of the spherical symmetry of the problem, we can infer that this tensor should be diag
Moreover, the renormalized vacuum expectation value of the energy-momentum tensor m
conserved, i.e.,

^Tm
n ~x!&Ren;n50. ~48!

From these six equations and defining the variableT564p3r 6^Tm
m(x)&Ren we obtain

A0
05T1A1

12B1
11~B1

12B0
0!ln~mr ! ~49!

and

A2
25A3

35A4
45A5

55
B1

1

4
2

A1
1

2
2S B2

21
B1

1

2 D ln~mr !. ~50!

When the nonminimal couplingj coincides with the conformal one,1
5, we get

A0
05T1A1

12B1
1 , ~51!

A2
25A3

35A4
45A5

55
B1

1

4
2

A1
1

2
, ~52!

with

T5r 6a3~x!52
1

4200
h2R1O~R2!5

8

350

h2

r 6 1O~h4!. ~53!

Again the complete evaluation of^Tm
n (x)&Ren requires the knowledge of at least one componen

the tensorAm
n , sayA1

1 . However, we do not attempt to do this straightforward and long calcula
here.
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V. CONCLUDING REMARKS

In this article we have found a formal expression for the Euclidean scalar Green fun
associated with a massless field in higher dimensional global monopole space–time defined~2!,
i.e., space-time where the dimension is bigger than four and presents a solid angle defic
expression for this function is given in terms of an infinite sum of products of Legendre func
with Gegenbauer polynomials or hyperspherical harmonics. Having this Green function i
hands, we can use it to calculate the vacuum expectation value of some physically re
operators, as the square of the field and the energy-momentum tensor. We have appl
formalism to calculatêF2(x)& and ^Tmn(x)& in five and six dimensions. However, these calc
lations become effective only for the case when the parametera, associated with the solid angl
deficit, is close to unity. In this case we can expand the Green function in powers of the para
h2512a2, and obtain closed results for these two quantities.

As it was mentioned, the vacuum expectation values for these quantities are diverge
these divergences are a consequence of the evaluation of the two-point Green functions
coincidence limit. In order to obtain finite and well defined results we adopted the point-spl
renormalization procedure and eliminated all divergences, subtracting from the Green funct
Hadamard one. An interesting result of our calculation was that the renormalized vacuum
tation value of the square of the field in the five dimensional global monopole space–time
ishes when we take for the nonminimal coupling constantj the conformal value3

16. A similar
calculation in the six dimensional case shows that a finite contribution remains forj5 1

5, which is
independent of the mass cutoff parameter.

Moreover, in the six dimensional case, there appears in the renormalized vacuum expe
value of the energy-momentum tensor, the functiona3(x). This function, according to Ref. 15 o
p. 159, is associated with a purely geometric~divergent! Lagrangian that should renormalize th
modified classical Einstein one. When similar terms are inserted into the gravitational actio
field equation is modified by the presence of order six terms proportional to

c1gmnh2R1c2h2Rmn1c3¹m¹nhR1O~R2!. ~54!
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APPENDIX: THE „1¿2…-DIMENSIONAL CASE LIMIT

In this appendix we present a nontrivial extension of our Green function~17! for the case
where d52. Although this Green function constructed ford>3 presents a pole atd52, the
Gegenbauer polynomial is also not defined when its order is zero. However, it is possible
such an expression if we admit that~17! is a function of a continuous parameterd. According to
Ref. 16, it is possible to obtain a well defined limit for the ratio of the Gegenbauer polynomi
its order when it goes to zero. This limit is given by

lim
d→2

1

d22
Cn

~d22!/2~x!5
Tn~x!

n
, ~A1!

where Tn(x) is the Chebychev polynomials typeI . Moreover, in the limitd52, nn5unu/a.
However, we have to be careful when we try to substitute the above limit into~17!. The definition
of the Chebychev polynomial typeI by its generating function reproduces explicitly the polyn
mials with ordern>1 in a recurrence equation separated from theT0(x) ~see Ref. 16!. Taking into
account this fact we have to consider a multiplicity factor in the summation. Finally, we arri
the following Green function:
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G(2)~x,x8!5
1

2p2

1

Arr 8
(
n50

`

Qn/a21/2Tn~cosg!e~n!, ~A2!

with e(0)51 ande(n.0)52. However,Tn(cosg)5cos(ng) ~see again Ref. 16, p. 631!. Finally,
substituting the integral representation for the Legendre function~19!, we obtain

G(2)~x,x8!5
1

2p2

1

A2rr 8
E

r

`

dt
1

Acosht2coshr

sinh~ t/a!

cosh~ t/a!2cos~g!
. ~A3!

This equation is equivalent with the Euclidean Green function for the three dimensional co
space given in Eq.~2.19! of Ref. 17. We can see that by changing in a compatible way
coordinatesr by r /a, g by g/a andt by z.
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Integrable cases of gravitating static isothermal
fluid spheres

B. V. Ivanova)

Institute for Nuclear Research and Nuclear Energy, Tzarigradsko Shausse 72, Sofia 1784,
Bulgaria

~Received 24 July 2001; accepted for publication 7 November 2001!

It is shown that different approaches toward the solution of the Einstein equations
for a static spherically symmetric perfect fluid with ag-law equation of state lead to
an Abel differential equation of the second kind. Its only integrable cases at present
are flat space–time, de Sitter solution and its Buchdahl transform, Einstein static
universe, and the Klein–Tolman solution. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1431259#

I. INTRODUCTION

The Einstein equations for static and spherically symmetric perfect fluids have been in
gated by many authors.1–3 The metric of a static spherically symmetric space–time reads:

ds25e2ndt22eldr 22R2~du21sin2 u dw2!, ~1!

wheren,l,R depend only on the radial coordinater . We use units in which 8pG5c51. Spheri-
cal symmetry requires that the energy–momentum tensor is diagonal,Tm

n 5diag(r,2pr ,2p0 ,
2pw) wherer(r ) is the fluid density,pr(r ) is the radial pressure, andpu(r ),pw(r ) are the tan-
gential pressures. It also requires thatpu5pw . Perfect fluids, in addition, have no pressure a
isotropy, namelyp[pr5pu5pw .

An abundance of solutions has been found when no equation of state is prescribed, sin
the unknown functions are more than the equations. The problem becomes very difficult wp
is defined as a known function ofr. A realistic equation of state is provided by the Newtoni
polytropesp5 (1/n) r111/k, which have been studied for many years.4,5 In the limit when k
→` a softer isothermal equation of state emerges

r5np, ~2!

usually called theg-law, because it is traditionally written asp5(g21)r. Physically realistic
perfect fluid solutions should have finite and positive density and pressure andr>p, i.e., we
impose the weak and dominant energy conditions. The fluid should be causal; the speed o
(dp/dr)1/2 must be positive and less than 1, the speed of light. Stability against radial pulsa
requires thatp should decrease outwards andr should not increase outwards.3 For the equation of
state~2! these conditions demand thatn>1 and at least one of the fluid characteristics is fini
positive, and decreasing. Important special cases include dust (n5`), incoherent radiation (n
53), and stiff fluid (n51) where the speed of sound equals the speed of light.

Even for such a simple relation, few analytic solutions have been found. Whenn5` andr
Þ0 the pressure vanishes, giving the case of dust. In fact, the density also vanishes an
remains is trivial flat space–time. Whenn521 the pressure and the density are constant and
solution is equivalent to a vacuum solution with a cosmological constant found by de Sitte
show in this paper that the casen525 is connected to it by the Buchdahl transformationn
→2(n16)6–8 and is also soluble. The casen523 leads to the Einstein static universe.2 It is

a!Electronic mail: boyko@inrne.bas.bg
10290022-2488/2002/43(2)/1029/15/$19.00 © 2002 American Institute of Physics
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clear that the unphysical cases (n,1) should be studied too since they produce cosmolog
solutions or are connected to the physical ones by a general transformation, valid also w
equation of state is prescribed.

A simple solution for a generaln was hidden among the solutions found by Tolman.9 In fact,
he studied the field equations under simplifying assumptions for the metric components, w
imposing an equation of state. The pressure and the density in some of his solutions hap
satisfy Eq.~2! when certain constants are sent to zero or to infinity.3 The first who systematically
investigated relation~2! was Klein. He rediscovered the Tolman solution first forn53 and later
for arbitraryn.10,11His approach and results, published in a not-readily available journal, rema
unnoticed for a long time. Even in Ref. 1 his second work is mentioned as referring t
polytropic equation of state, which is true only for its beginning. For a third time this Kle
Tolman ~KT! solution was found by Misner and Zapolsky12 where its relevance to neutron sta
was studied. The radial dependence of the density, however, was omitted due to a m
causing additional confusion. Nevertheless, this paper became a standard reference towar
further rediscoveries13,14 were directed.15 This solution is singular at the center wherer and p
become infinite.

Klein also found numerically a regular solution forn53, starting in phase space from
Minkowski space–time and spiraling toward the KT solution. His work was based on a ce
first-order differential equation. This solution was also rediscovered later by numeric stud
two-dimensional autonomous dynamical systems5,16,17and generalized for arbitrary realisticn. Its
phase space is contaminated by grossly unrealistic solutions with density, vanishing in som
interval @0,r c#, and metric possessing curvature singularities. Only the exact KT solution an
numerical regular solution are acceptable. Unfortunately, solutions satisfying Eq.~2! are not as-
ymptotically flat and the fluid sphere extends to infinity. Nevertheless they can describ
superdense core of a neutron star and have finite masses when a cutoff is done at some d
despite the singularity in the KT solution.12,18 They can be joined smoothly to the exteri
Schwarzschild solution with the help of an intermediate layer of perfect fluid with boundary
the degenerate nonrelativistic neutron gas12 or the Schwarzschild interior solution.

Another way for the fluid to acquire a boundary is to add to the right-hand side o
scale-invariant Eq.~2! a positive constantr0 . The numerical study of a perfect fluid with suc
linear equation of state19 stresses once more the importance of the solutions of Eq.~2! which
appear as scale-invariant boundaries for all orbits in a three-dimensional compact phase sp
equilibrium points lie on these boundaries, including Minkowski space–time, which is a sta
point for the regular subset of solutions. The high pressure limit which probes the relati
effects lies there too. The KT and the regular scale-invariant solutions, together with some
regular solution, play a crucial role in the understanding of the structure of solution space f
linear equation of state. Therefore it is desirable to have analytic expressions for these
solutions. They will allow one to study in detail the qualitative changes in their behavior
respect to the parametern such as the change of the KT equilibrium point from focus to no
whenn5A64/723, the bifurcation point atn51 or the relation to the simple integrable cases
negativen.

The question whether the regular solution to Eq.~2! has an explicit expression has never be
answered in a satisfactory way. The persistent closure of analytic methods on the irregu
solution suggests that there are no more integrable cases except it and the few above-me
solutions. On the other hand, similar problems have been completely solved explicitly. Fo
ample, static dust solutions are not possible. The dust must be nonstatic or charged. In bot
the general solution has been found.20–22The cylindrically symmetric static case has been solv
in simple functions, using two different gauges.23,24 The relation between them was clarified
Ref. 25. The planar case follows easily from the cylindrical one24 or from the spherical one.17,26

The purpose of this paper is to derive the integrable cases in a unified manner and to el
the mathematical difficulty of the problem. We show that in its heart stands the Abel equat
the second kind, whose normal form is
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ww,z2w5 f ~z!. ~3!

Derivatives are denoted by a comma and subscript. Derivatives with respect tor are also denoted
by a prime. The integrable cases of Eq.~3! depend on the shape off (z) and are tabulated in Ref
27. The functions that emerge are in general transcendental, but simplify for special valuesn.
The integrable cases that we find are given byn525,23,21,̀ and the KT solution withn
outside the interval (25.83,20.17).

In the following three sections three different approaches are discussed which invariabl
to Eq.~3! with functionsf (z) possessing the same general structure but with different coeffici
In Sec. II we start from the well-known Tolman–Oppenheimer–Volkoff~TOV! equation9,28 writ-
ten in a general spherical metric. In Sec. III the starting point is a differential equation deriv
Klein in curvature coordinates. In Sec. IV we utilize the approach of Haggag and Hajj-Bo
~HH! described in Ref. 14 for a stiff perfect fluid in isotropic coordinates. Section V is dedic
to the Buchdahl transformation which supplies the integrable casen525. Finally, Sec. VI con-
tains some discussion and conclusions.

II. ANALYSIS OF THE TOV EQUATION

The Einstein equations for the metric~1! and the energy–momentum tensor of a perfect flu
discussed in Sec. I, are written as29

r5
1

R2 2e2lS 2R9

R
1

R82

R2 D2~e2l!8
R8

R
, ~4!

p52
1

R2 1e2l
R8

R S R8

R
12n8D , ~5!

p5e2lFR9

R
1n91S n82

l8

2 D S n81
R8

R D G . ~6!

The contracted Bianchi identity

p852~r1p!n8, ~7!

follows from Eqs.~4!–~6! and usually replaces Eq.~6!. Thus Eqs.~4!, ~5!, and ~7! determine
n, l, R, r and p. One of the metric functions is redundant and can be used to fix the ga
Different coordinate systems have been introduced in the literature. Curvature coordinate~also
called Schwarzschild coordinates! are obtained whenR5r . Isotropic coordinates haveR5rel/2

while polar Gaussian coordinates setel51. Other coordinates are known as well. Fixing t
gauge and the equation of state equals the number of unknowns and equations. For the tim
we proceed in full generality to derive the TOV equation. Let us define the so-called mass fu
m(r ), which is obtained from the sectional curvature of the spherical two-surfaces:

m~r ![ 1
2 R~12e2lR82!. ~8!

Then Eq.~4! may be written as

r5
2m8

R2R8
, ~9!

which integrates to

m~R!5
1

2 E0

R

rR2 dR. ~10!
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Passing fromr to R dependence, insertinge2l from Eq. ~8! and nR from Eq. ~7! into Eq. ~5!
results in the general TOV equation

p,R52
~r1p!~2m1pR3!

2R~R22m!
. ~11!

In the case of dustp50. Then Eq.~11! yieldsrm50, which combined with Eqs.~9! and~10!
givesr50. There is no matter and the solution is trivial flat space–time. In the general case
p5p(r), Eq.~9! shows that Eq.~11! is a differential equation form(R). Let us now introduce the
variablesM5m/R, D5 1

2rR2 andP5 1
2pR2. Then Eq.~11! becomes

RD,R52D2
~D1P!~M1P!

~122M !p,r
. ~12!

Specializing to theg-law equation of state and introducingt5 ln R we obtain from Eqs.~12! and
~9! the autonomous system29

~2M21!D ,t5DF ~n15!M221
n11

n
DG , ~13!

D5M ,t1M . ~14!

The casen50 is excluded because it gives vanishing density. This system was derived in
Gaussian coordinates by Collins5 and further analyzed by him in Refs. 17 and 30.

Now, let us insert Eq.~14! into Eq. ~13! and definex5M21/2. The result is

xx,t,t5
n11

2n
x,t

2 1F ~n11!~n12!12n

2n
x1

~n11!~n12!

4n Gx,t1A~x!, ~15!

A~x![S x1
1

2D F ~n11!214n

2n S x1
1

2D21G . ~16!

Equation~8! indicates thatx,0. The solution of Eq.~15! determinesM and consequentlym as
functions ofR. ThenD is given by Eq.~14! which determinesr(R). The pressure is given by Eq
~2!, while n follows from Eq.~7! written as

~r1p!n ,R52p,R . ~17!

Finally, e2lR82 is found from Eq.~5!, written as

e2lR825
11pR2

112Rn ,R
. ~18!

In order to determinel(r ) one should specifyR(r ), the most simple choice beingR5r . In polar
Gaussian coordinates Eq.~18! yields an equation forR(r ) with separated variables. The same
true in isotropic coordinates.

Equation~15! simplifies enormously whenx is constant, becoming

M F ~n11!214n

2n
M21G50. ~19!

The choiceM150 leads tom5p5r50, i.e., to flat space–time. The choice
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M25
2n

~n11!214n
~20!

gives via Eq.~14! D5M5const andl5const,r52D/R2 which is exactly the KT solution. At
the center the density and the pressure have poles and diverge. This solution does not exi
25.8352322&,n,2312&520.17 because thenx25M221/2 is positive or vanishes
~whenn521!. In the intervals20.17,n,0 andn,25.83 the solution exists butr andp have
different signs.

Whenx,tÞ0 we can decrease the order of Eq.~15! by the standard change of variablesx,t

[2y(x):

xyy,x5
n11

2n
y22F ~n11!~n12!12n

2n
x1

~n11!~n12!

4n Gy1A~x!. ~21!

Equation~21! falls in the class

@g1~x!y1g0~x!#y,x5 f 2~x!y21 f 1~x!y1 f 0~x!. ~22!

There is a standard procedure for the solution of such equations.27 It consists of two changes o
variables which bring them to the Abel equations of the second kind given by Eq.~2! or by

ww,z5g~z!w11. ~23!

This procedure is much easier wheng050 and f 25const as in Eq.~21!. Namely, we havew
5yE, f (z)5 f 0E/ f 1 , g(z)5 f 1 / f 0E, and

E5expS 2E f 2

g1
dxD , ~24!

z~x!5E f 1

g1
Edx, ~25!

z~x!5E f 0

g1
E2dx. ~26!

Sincef 1 is a simpler polynomial thanf 0 we shall use Eqs.~3! and~25!. The use of Eqs.~23! and
~26! is more complicated, but does not bring additional integrable cases.

Applied to Eq.~21! the chosen alternative of the general method yields

w5yx2 ~n11!/n, ~27!

z52
1

4n E @~n215n12!2x1~n11!~n12!#x2 ~n11!/2n 21dx. ~28!

The casen51 ~stiff fluid! is special because a logarithmic term appears inz,

z524 lnuxu1
3

2x
, ~29!

f ~z!52
~2x11!~4x11!

x~8x13!
. ~30!

The relationz(x) is transcendental and throwsf (z) out of the tables with integrable cases pres
in Ref. 27. The casen521 also leads to a logarithmic term but its coefficient vanishes. This c
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is integrable. In fact, we may go back directly to Eq.~13! which becomesD ,t52D if MÞ1/2 and
yields r52p5const. This is the well-known de Sitter solution. WhenM51/2, Eq. ~13! is
satisfied identically and we obtain formally the KT solution~20! with n521, but it has
e2lR8250 which is unacceptable.

In the generic casenÞ61 and Eq.~28! integrates to

z52
x2 ~n11!/2n

2~n21!
@~n215n12!2x2~n21!~n12!#, ~31!

f ~z!5
~n21!~2x11!@~n216n11!2x1~n11!2#z

@~n215n12!2x2~n21!~n12!#@~n215n12!2x1~n11!~n12!#
. ~32!

The z–x connection in Eq.~31! is transcendental, except for special values ofn, and Eq.~3! is
nonintegrable in general. Let us investigate the special cases.

Whenn523, f 1 divides f 0 and f (z)58z, z52 1
2(2x11)x21/3. This is an integrable case

corresponding to the Einstein static universe. It is discussed in more detail in Sec. III. There
the formaln523 case of the KT solution~20!. It does not exist sincex51/4.0.

One may try to simplify Eq.~31! by nullifying the coefficients on the right-hand side. Th
conditionn215n1250 givesn5 1

2(256A17). This is of no good since the radical enters t
power of x. The other possibilityn522 looks more promising. Then Eq.~31! becomesx3/4

523z/4 and Eq.~32! reduces to

f ~z!5 21
16 z2 9

16 ~ 4
3!

4/3z21/31 3
64 ~ 4

3!
8/3z25/3. ~33!

This function leads to an integrable equation when the coefficient in front ofz is 23/16, which is
not true here.

There are severaln which convert Eq.~31! into an algebraic equation forx of fourth order or
lower. It can be solved explicitly forx(z) and the answer replaced in Eq.~32!. Third- and
fourth-order equations appear whenn561/5,61/7,21/2,23/5. The radical structure off (z),
however, is incompatible with the tables with integrablef (z). Second-order equations appe
whenn571/3, respectively,

4x5256A25148z, ~34!

6zx5176A17142z. ~35!

Unfortunately, the only integrable functions with square roots include the termAz21z0, which is
not present in the above-given relations.

Comparison between Eqs.~31!–~32! and Eq.~20! shows how complex the numerical regul
solution must be, which starts inx,y coordinates from flat space–time and focuses on the
solution, following a spiral around it. The innocent parametern, introduced in Eq.~2!, proliferates
like cancer in the process of solution, ending with the intricate coefficients inz(x) and f (z). It
even determines the transcendental or algebraic nature ofz(x). In conclusion, the only integrable
cases found within this approach aren5` ~trivial dust solution!, n521 ~de Sitter solution!, n
523 ~Einstein static universe!, andM5const~the KT solution!.

Finally, let us discuss for comparison the case of planar symmetry, which is solvable. G
to polar Gaussian coordinates, the metric element reads

ds25e2ndt22dr 22R2~dx2
21F~x2!2dx3

2!, ~36!

whereF(x2)5sinx2 for spherical symmetry andF(x2)51 for planar symmetry.17,26 It is possible
to generalize the TOV equation to encompass both cases. Instead of Eq.~13! one should write
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~2M2K !D ,t5DF22K1~n15!M1
n11

n
DG , ~37!

whereK51 or 0, corresponding to spherical or planar symmetry, respectively. In the second
Eq. ~37! simplifies

2MM ,t,t5
n11

n
M ,t

2 1bMM ,t1aM2, ~38!

wherea5n11/n16, b5n12/n15. This is the analog of Eq.~15!. Proceeding in the same wa
we again obtain the Abel equation~3! with y52M ,t and

w5yM2 ~n11!/2n, ~39!

z5
bn

12n
M ~n21!/2n, ~40!

f ~z!5
~n21!a

nb2 z. ~41!

As mentioned before, Eq.~3! with f (z)5az1b, wherea andb are constants, is integrable. Th
solution, in parametric form, reads

z5CeT2
b

a
, ~42!

w5CseT, ~43!

T52E sds

s22s2a
, ~44!

with C being an arbitrary constant. In Ref. 17 the problem was solved in a different wa
introducing the variableD̃5D/M . Then Eqs.~14! and ~37! are equivalent to

2D̃ ,t5D̃S n171
12n

n
D̃ D . ~45!

This is a Bernoulli equation and is easily solved. Further details may be found in Ref. 17 w
also a connection with earlier work31,32 on the particular casesn51 andn53 is established.

III. THE APPROACH OF KLEIN

This approach was developed in curvature coordinates where Eqs.~4!, ~5!, and~7! simplify to

p5
2

r
n8e2l2

1

r 2 ~12e2l!, ~46!

r5
1

r
l8e2l1

1

r 2 ~12e2l!, ~47!

p852~r1p!n8. ~48!

Imposing theg-law, we can integrate Eq.~48!:
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p5p0e2(n11)n. ~49!

Like before, the case of dustn5`, p50 gives a trivial solution with constantn andl. Supposing
that pÞ0, let us introduce the variabless5p0r 2, j5e(n11)n/s and

x5je2l5
e2l

pr2 . ~50!

Obviouslyx andj always have the same sign and are positive when the pressure is positiv
We shall derive an equation forx, similar to Eq.~15!. In Secs. II–IV the main functions ar

denoted byx although they are different, in order to simplify notation and to stress the role o
~22! in the whole problem. Let us multiply Eq.~46! by (n11)/4, Eq.~47! by 21/2, and sum. The
result is

4~sx! ,s2~n13!~12e2l!j512n. ~51!

Let us introduce 2t5 ln s. It differs by a constant from the variable in Sec. II, but this is n
important since the final equation will be autonomous. Laying temporarily aside the specia
n523, we can expressj from Eq. ~51! as

j5
1

n13
@2x,t1~n17!x1n21#. ~52!

Equation~46! may be written in the following way:

4~sj! ,s2~n11!~el21!j5~n11!el. ~53!

The usage of Eqs.~50! and~52! transforms this relation into an autonomous second-order equa
for x. The change of variablesx,t52y(x) applies again, leading to

2~n13!xyy,x52~n11!y212~n111!xy2~n11!~3n11!y24~n17!x2

1~n319n2111n111!x1~n11!2~n21!. ~54!

This is exactly the equation of Klein derived in Refs. 10 and 11, where the notationn52nKl

11 andx5(nKl11)2xKl was used. He studied it by series expansion and numerically, and
the first to find its regular solution~see Fig. 1 from Ref. 10!. Whenx(t) is known Eq.~52! gives
j, and Eq.~50! determines bothl andp. Then Eq.~49! becomes an expression forn and finally
r is given by Eq.~2!. Modulo coefficients, Eq.~54! is the same as Eq.~21! and also falls in the
class~22!. Therefore, the procedure described in Sec. II can be applied to bring it to the fo
Eq. ~3! with

w5yx2 ~n11!/~n13!, ~55!

z5 1
2 @~n111!x13n11#x2 ~n11!/~n13!, ~56!

f ~z!52
2@4x2~n11!2#@~n17!x1n21#z

@2~n111!x2~n11!~3n11!#@~n111!x13n11#
. ~57!

There are no logarithmic terms inz within this approach. As with Eq.~31!, x(z) is transcendenta
except in special cases.

Equation~54! shows that the KT solution is given here by

x05
~n11!2

4
. ~58!
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The other rootx52 (n21)/(n17) leads toj50 ande2n5el50, r5np5`, which is unac-
ceptable. Now, sincex0>0 for anyn, we must ensure thatj0.0 in order to have positivee2l.
Equation~52! givesj05n216n11 and we obtain the same conditions for the existence of the
solution as Sec. II.

In the casen521, Eq. ~48! yields p5p0 , r52p0 , while the sum of Eqs.~46! and ~47!
provides the relation 2n52l. Equation~47! is a linear equation fore2l, its solution being

e2l512
2m0

r
1

p0

3
r 2, ~59!

where m0 is a constant of integration, identified as the gravitating mass. This is precisel
Kottler solution.2 It can be used as a regular interior solution whenm050. Then it becomes the d
Sitter solution. The KT solution forn521 hasx050 and does not exist.

Whenn523, Eq. ~51! determines directlyx: x511x1 /s, while Eq. ~49! gives p5p0e2n.
Then we have from Eq.~50! e22n2l5x11s. Equation~46! becomes a linear equation fore2n

when these results are taken into account. There are two possibilities. When the constantx150,
x51, which is the formal KT solution~58! for n523. In fact, it does not exist. Whenx1Þ0 the
solution is

x1e2n511C1S 11
x1

s D 1/2

, ~60!

whereC1 is another integration constant. A regular solution is obtained whenx151 andC150.
Thenn50 and

el5
1

11p0r 2 . ~61!

The last two equations represent the metric of the Einstein static universe. The pressure
density are constant,p5p0 , r523p0 .

There are two cases when the coefficients ofz(x) are simplified, namelyn5211 andn
521/3. In the first case, Eq.~57! reads

2320f ~z!575z1168/5z23/51223164/5z1/5. ~62!

The function

f ~z!5c1z1c2zq11c3zq2 ~63!

is integrable for a set of (q1 ,q2) but (23/5,1/5) is not among them. Whenn521/3 we have

f ~z!52 15
64 z1 7

96 ~ 16
3 !4/3z21/32 1

192~ 16
3 !8/3z25/3. ~64!

The set (21/3,25/3) is integrable, but only whenc1523/16, which is not the case here.
Finally, there are fewn when Eq.~56! is an algebraic equation up to the fourth order. Only

casesn525,22,1 are candidates for integrability because they lead to quadratic equation
these,n525,22 yield radicals resembling those in Eqs.~34! and ~35! and should be rejected
More interesting is the case of stiff fluid when

x5 1
72 ~z22246zAz2248!, ~65!

f ~z!52
2z@~z2260!x24#

9@~z2224!x28#
. ~66!
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The radicals inf (z) are of the necessary type, but its structure is too complex to figure in
tables with integrable cases.

Like in Sec. II, the only integrable cases found aren523,21,̀ andx5x0 . The unsuccessfu
candidates for explicit solutions have in general different values ofn in the two approaches. Whe
they coincide, as is the casen51, the reasons for rejection are different—a logarithmic term in
TOV–Collins approach and a complicatedf (z) in the Klein approach.

It is interesting to compare the main variable in this sectionx[xK to the variables in the TOV
approach, specialized to curvature coordinates. Equation~8! becomes

M5
m

r
5

1

2
~12e2l!, ~67!

and transforms Eq.~50! into

xK5
122M

2nD
. ~68!

Thus, not onlyx5M21/2, but also the above-mentioned combination satisfy Abel equation
the second kind. The functionxK resemblesD̃, used in the planar case. It is well known that wh
D̃ satisfies the Bernoulli equation~45!, D̃215M /D satisfies a linear equation. This fact stress
once more the conclusion that the spherical case is much more complicated than the plan

IV. APPROACH IN ISOTROPIC COORDINATES

One can pass from arbitrary to isotropic coordinates in Eqs.~4!–~6! by puttingR5rel/2. Let
us make also the changes5 ln r. Then

rr 2el52l ,s,s2
1
4 l ,s

2 2l ,s , ~69!

pr2el5 1
4 l ,s

2 1l ,sn ,s1l ,s12n ,s , ~70!

pr2el5 1
2 l ,s,s1n ,s,s1n ,s

2 . ~71!

Let us introduce next the variable

1

t
5l ,s12, ~72!

and impose theg-law equation of state. An expression forn ,s is obtained from Eqs.~69! and~70!:

n ,s5
t ,s

nt
2

n11

4n S 1

t
24t D . ~73!

Next, let us combine Eqs.~70! and ~71! and replace in theml ,s andn ,s from Eqs.~73! and
~74!. A long, but straightforward computation produces an autonomous equation fort,

2ntt,s,s522~12n!t ,s
2 1 1

2 ~n215n12!t ,s22~n11!~n12!t2t ,s22~n11!2t4

1@~n11!212n#t22
n

2
2

~n11!2

8
. ~74!

A solution of this master equation determines all characteristics of the metric and the fluid
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When n51, Eq. ~74! is exactly Eq.~9! from Ref. 14. In this section we generalize the H
approach to arbitraryn and bring it to its logical end—the Abel equation~3!. We first lower the
order of the polynomial in Eq.~74! by settingt25x/4 and then perform the change of variable

~Ax! ,s52 1
2 y. ~75!

The conditionx>0 should be maintained throughout the calculations. Equation~74! acquires its
final form

2nxyy,x5~n21!y21@~n11!~n12!x2~n215n12!#y1~x21!@4n1~n11!22~n11!2x#.
~76!

It falls in the class~22! and resembles Eqs.~21! and ~54!, but its coefficients are differen
functions ofn. Proceeding like before, we get

w5yx2 ~n21!/2n, ~77!

~n21!z5@~n21!~n12!x1n215n12#x2 ~n21!/2n, ~78!

f ~z!5
~n21!~x21!@4n1~n11!22~n11!2x#z

@~n11!~n12!x2~n215n12!#@~n21!~n12!x1n215n12#
, ~79!

in the generic casenÞ61.
The stiff fluid case leads to a logarithmic term inz(x), which makes

f ~z!52
2~x21!~x22!

3x24
~80!

nonintegrable.
The casen521 is pseudologarithmic since the coefficient in front of lnx vanishes. We have

x51/z and f (z)52z22. This case is integrable and the solution is given by Eqs.~42!–~44! with
a52b52.

The casen523 leads to a gross simplification off (z) and is also soluble. One obtain
f (z)52z, i.e., a52, b50.

The other candidate cases may be investigated in the same manner as in Secs. II and
valuesn561/3 lead to quadratic equations with radicals of the wrong type. The casen522
yields

f ~z!5 21
16z2 18

16 ~ 4
3!

4/3z21/32 3
16 ~ 4

3!
8/3z25/3. ~81!

This equation belongs to the class~63! but againc1Þ23/16 and integrability is not gained.
Finally, let us discuss the KT solution in the HH approach. Whenx5const Eq.~76! becomes

purely algebraic and has two roots:x151 and

x2511
4n

~n11!2 . ~82!

When n521, x2 does not exist. In fact, the requirementx2.0 shows thatn must satisfy the
conditions derived in Sec. II. The first root leads tot1561/2. In the first subcase Eqs.~72! and
~73! give flat space–time. In the second subcase the following line element is obtained

ds25dt22r 24~dr 21r 2 dV2!. ~83!

The transformationr̃ 51/r converts this element into the usual element for flat space–time.
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The second rootx2 represents the KT solution in isotropic coordinates, namelyel5r a1,
e2n5r a2 where

a156
2~n11!

A4n1~n11!2
22, ~84!

a256
4

A4n1~n11!2
. ~85!

When n51, a156&22 anda256&. These values were found in Ref. 14, where the
solution was discovered for a fifth time.

The integrable cases found in the HH approach coincide with those found in the Klein o
TOV–Collins approaches. In order to make connection with the last one, we must pass in
to isotropic coordinates. We have

R85el/2S 11
l ,s

2 D , ~86!

2x52M2152R82e2l52
1

4t2 . ~87!

We cannot obtain Eq.~74! from Eq. ~15! by replacing there justx from Eq. ~87! becauses
5 ln r, while t5 ln R5s1l/2. The necessary additional relations are

x,t5
t ,s

2t2 , ~88!

x,t,t5
t ,s,s

t
2

2t ,s
2

t2 . ~89!

Therefore, the HH approach combines the TOV equation in isotropic coordinates together w
linear equation~18! for l.

V. BUCHDAHL TRANSFORMATION AND THE CASE NÄÀ5

This transformation was found by Buchdahl6 and rediscovered by Glass and Goldman.7 Its
general formulation refers to static perfect fluid solutions, not necessarily satisfying an equa
state. In the case of spherical symmetry it states that if

ds25e2n dt22el~dr 21r 2 dV2! ~90!

is the metric of a perfect fluid solution with pressurep and densityr then there is a reciproca
solution which hasnb52n, lb54n1l, and

pb5e24np, ~91!

rb52e24n~r16p!. ~92!

The transformation is simplest in isotropic coordinates and may be applied to the results ob
in Sec. IV. Whenp and r satisfy theg-law, the same is true forpb and rb but with a different
parameter:

rb52~n16!pb . ~93!
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Thus, the transformation of the parameter isn→2(n16). It is clear that when the startin
solution is physically realistic (n>1), the transformed one is unphysical,2(n16)<27. How-
ever, when the starting solution is unphysical andn<27, then the reciprocal one is physica
Whenn is in the interval27,n,1 both solutions are unphysical. The existence of this tra
formation teaches that unphysical solutions should not be neglecteda priori and the whole spec
trum of n must be investigated.

Let us apply the transformation to the integrable cases found in Sec. IV. The KT solut
self-reciprocal, i.e., transforms into itself. The reason is that 4n1(n11)2 is invariant under the
transformation. Takinga12 anda22 as the powers ofr in the starting solution, it is easy to sho
that a2152a22 anda115a1212a22 when the plus solution is Buchdahl transformed. So
tions with n outside the interval (25.83,20.17) transform between themselves.

The casen523 is also self-reciprocal, as was noticed already by Buchdahl. This exp
why n50 when the element of the Einstein static universe is written in isotropic coordina33

This is necessary to ensure the equality between the starting and the transformed solution
The interesting case is the de Sitter solution (n521) which transforms into an explici

solution withn525. In isotropic coordinates the de Sitter solution reads33

e2n5S 11cr2

12cr2D 2

, ~94!

el5~12cr2!22, ~95!

andp512/c, r5212/c, wherec is some constant. The transformed solution has

e2nb5S 12cr2

11cr2D 2

, ~96!

elb5
~11cr2!4

~12cr2!6 , ~97!

pb5S 12cr2

11cr2D 4 12

c
, ~98!

and, of course,rb525pb . Equation~72! supplies the correspondingt:

t5
12cr2

2~11cr2!
, ~99!

tb5
12c2r 4

2~1110cr21c2r 4!
. ~100!

From Eq.~75! we getx54t2 andy524rt ,r . Whentb is plugged in these relations we obtain th
parametric solutionx(r ), y(r ) of Eq. ~76! for n525:

xyy,x5 3
5 y22 6

5 xy1 1
5 y1 2

5 ~4x223x21!. ~101!

Equations~78! and ~79! yield in this case

23z5~9x11!x23/5, ~102!

f ~z!5
6~x21!~4x11!

~6x21!~9x11!
z. ~103!
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Equation~102! is a fifth-order equation forx and seems to be transcendental. Obviouslyf (z) is
not among the tabulated integrable functions. Equation~101! does not coincide with any of the
equations in Sec. 1.3.4. from Ref. 27 which belong to the class~22!. If we use Eq.~23! instead,
g(z)51/f (z) and

3zx6/556x2118x11. ~104!

This equation is even more complicated than Eq.~102! andg(z) is not among the few integrabl
cases listed in Sec. 1.3.2 from the same handbook. Unless some mistake has been made, E~101!
is integrable, but is not covered by Ref. 27. This situation is not unique. Recently, non
charged perfect fluid distributions were discovered which, too, are missing in the handbook
solutions of differential equations.34

VI. DISCUSSION AND CONCLUSIONS

In this paper we have discussed explicit solutions of the Einstein equations for a static s
cally symmetric perfect fluid with theg-law equation of state. Three approaches may be foun
the literature which, at first sight, have nothing in common. The approach of Collins trans
the TOV equation in polar Gaussian coordinates into a two-dimensional autonomous sys
differential equations. He studies it numerically.5,17,30 This is a representative example of oth
similar dynamical systems.16,19 In his approach Klein finds a second-order autonomous ma
equation, whose solution determines all characteristics of the metric and the fluid. He low
order and studies it by series expansion and numerically. Klein also discovers a simple ex
singular solution. This work is done in curvature coordinates.10,11 Haggag and Hajj-Boutros per
form a similar study but in isotropic coordinates and only for a stiff fluid.14 They also obtain an
autonomous second-order equation and transform it into another second-order equation@see Eqs.
~9! and ~14! in their paper#. Then they look for polynomial solutions and find either flat spac
time or the KT solution.

We have generalized these three approaches and pursued them further, to their logical e
equation, whose integrable cases are tabulated in the handbooks, like Ref. 27. Surprisin
invariably reach the Abel equation of the second kind~3!. It behaves like a ‘‘strange attractor’’ an
underlines the common features in the different approaches. The question of integrability
swered by the form off (z), the known integrable cases being tabulated. For this purpose we
generalized to an arbitrary coordinate system the dynamical system of Collins and to arbitn
the HH approach. The functionsz(x) and f (x) have the same general structure in all approac
but with different coefficients. The relations between the master variablesx, xK , andxHH have
been elucidated, the TOV–Collins approach serving as a basis.

The integrable cases found are one and the same and includen5` ~trivial dust solution!, n
521 ~de Sitter solution!, n523 ~Einstein static universe! and x5const, n,25.83 or n
.20.17 ~Klein–Tolman solution!. They appear either as exceptional cases, when equations
pler than Eq.~3! are to be solved, or as Eq.~2! with f (z)5az1b, the simplest integrable case
Some candidate values ofn lead to Eq.~63!, but at least one of the constants there has the wr
value.

It has been shown that Eq.~3! stands in the center of the problem, independent from
approach or the coordinate system and the integrable cases may be derived in a unified
The problem is a very strange mixture of simple integrable cases and extremely difficult n
tegrable ones. Perhaps this gives some explanation why the de Sitter and the Einstein s
were found in 1917, two years after the appearance of general relativity, and why the next
have brought only a fivefold discovery of the KT solution.

An important point is that the problem has been pushed to the mathematical realm o
differential equations and further progress depends on developments in this field. Using the
dahl transformation we have shown that the casen525 is integrable and have given its metr
and fluid characteristics. However, its master equation in isotropic coordinates~101! does not
seem to be present in the handbooks. This leaves this paper with an open end and one m
that other integrable cases will be found in the future.
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Finally, it is interesting to note that all discrete integrable casesn521,23,25 are regular
and fall in the interval where the singular KT solution does not exist. One is tempted to spe
that in this interval there is a regular one-parameter solution, encompassing the discrete c
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The inverse scattering theory of the heat equation is developed for a special sub-
class of potentials nondecaying at space infinity—perturbations of the one-soliton
potential by means of decaying two-dimensional functions. Extended resolvent,
Green’s functions, and Jost solutions are introduced and their properties are inves-
tigated in detail. The singularity structure of the spectral data is given and then the
inverse problem is formulated in an exact distributional sense. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1427410#

I. INTRODUCTION

The equation of the heat conduction, or heat equation for short,

LF~x!50, ~1.1!

where the operator

L~x,]x!52]x2
1]x1

2 2u~x!, x5~x1 ,x2!, ~1.2!

for more than 25 years has been known1,2 to be associated to the Kadomtsev–Petviashvili~more
precisely, KPII! equation

~ut26uux1
1ux1x1x1

!x1
523ux2x2

. ~1.3!

The scattering theory for the equation of heat conduction with a real potentialu(x) was developed
in Refs. 3–5, but only the case of potentials rapidly decaying at large distances on thex-plane was
considered. On the other side, it is well known that~1.3! is a (211)-dimensional generalization o
the famous KdV equation: if the functionu1(t,x1) obeys KdV, then

u~ t,x1 ,x2!5u1~ t,x11mx223m2t ! ~1.4!

solves~1.3! for an arbitrary constantmPR. Thus it is natural to consider solutions of~1.3! that are
not decaying in all directions at space infinity but have one-dimensional rays with behavior
type ~1.4!. The scattering theory for the operator~1.2! with such potentials is absent in th
literature. Moreover, it is easy to observe that, like in the KPI case~see Ref. 6!, the standard
integral equation for the Jost solution3 is meaningless for this situation and does not determine
solution itself. In trying to solve this problem for the nonstationary Schro¨dinger operator, associ
ated to the KPI equation, a new general approach to the inverse scattering theory was intro
which was called resolvent approach~see Refs. 6–10 and references therein!. In Ref. 11 we
10440022-2488/2002/43(2)/1044/19/$19.00 © 2002 American Institute of Physics
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developed the scattering theory for theN-soliton solutions given in terms of Ba¨cklund transfor-
mations of the decaying background potential. These results for the simplest caseN51 are
essentially used below.

Here we apply the resolvent approach to the heat equation~1.2! with a potentialu(x) that is
a perturbation of a one-dimensional potentialu1(x) of the kind~1.4! by means of a potentialu2(x)
rapidly decaying in all directions:

u~x!5u1~x!1u2~x!. ~1.5!

We introduce and study properties of the resolvent, dressing operators, Jost solutions and
ing data, and formulate the inverse problem relevant to this case. In fact, we consider he
simplified version of~1.4! in which m50. The generic case is reconstructed by means of
Galilean invariance of~1.3!. Thus in what followsu1(x)[u1(x1) and, moreover, we consider fo
simplicity the case whereu1 is the one-dimensional soliton potential@see~3.1!#.

Thus here we apply the inverse scattering theory to a nonscattering situation since th
stacle’’ is infinite. Such extension of the inverse scattering theory results in the new and
pected properties of familiar objects, like the Jost solutions and the spectral data. We sho
they get specific singularities in the complex domain of the spectral parameter. Derivatio
description of these singularities are our main results here. The article is organized as follo
Sec. II we sketch some general aspects of the resolvent approach that are necessary
construction. In Sec. III we present results of embedding the theory of the one-dimen
one-soliton potential in two dimensions. Presentation here is based on work Ref. 11. We de
in detail properties of the extended resolvent and Green’s functions of operator~1.2! with u(x)
5u1(x1). On this basis in Sec. IV the resolvent of the operator~1.2! now with the generic
potentialu(x) given in ~1.5! is introduced and its properties are described. The departure
analyticity of the resolvent leads us to definitions of the Jost solutions and spectral dat
description of their properties~Sec. V!. In this way we supply all terms of the inverse proble
with proper meaning in terms of distributions. In the Conclusion some generalizations and
developments of these results are discussed. The main results of this article were announce
earlier work, Ref. 12.

II. EXTENSION OF DIFFERENTIAL OPERATORS AND RESOLVENT

In the framework of the resolvent approach we work in the spaceS 8 of tempered distributions
A(x,x8;q) of the six real variablesx5(x1 ,x2),x8,qPR2. It is convenient to considerq as the
imaginary part of a two-dimensional complex variableq5qR1 iqI5(q1 ,q2)PC2 and to introduce
the ‘‘shifted’’ Fourier transform

A~p;q!5
1

~2p!2 E dxE dx8 ei (p1qR)x2 iqRx8A~x,x8;qI!, ~2.1!

where pPR2, px5p1x11p2x2 and qRx5q1Rx11q2Rx2 . We consider the distributions
A(x,x8;q) and A(p;q) as kernels in two different representations, thex- and p-representation,
respectively, of the operatorA(q) ~A for short!. The composition law in thex-representation is
defined in the standard way, that is,

~AB!~x,x8;q!5E dx9 A~x,x9;q! B~x9,x8;q!. ~2.2!

Since the kernels are distributions, this composition is neither necessarily defined for all p
operators nor associative. In terms of thep-representation~2.1!, this composition law is given by
a sort of a ‘‘shifted’’ convolution, (AB)(p;q)5*dp8A(p2p8;q1p8)B(p8;q). On the space of
these operators we define the conjugationA* , which in thex-representations reads as

A* ~x,x8;q!5A~x,x8;q!, ~2.3!
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where bar denotes complex conjugation, or asA* (p;q)5A(2p;2q̄) in the p-representation.
Below we say that the operatorA(q) is real if A* (q)5A(q), which in terms ofp-representation
means thatA(p;q)5A(2p;2q̄). The set of differential operatorsD(x,]x)5(dn(x)]x

n is embed-
ded in the introduced space of operators by considering the operatorsD with kernel D(x,x8)
5D(x,]x)d(x2x8), whered(x)5d(x1)d(x2) is the two-dimensionald-function and, then, by
mapping them in the operatorsD(q) with kernel

D~x,x8;q![e2q(x2x8)D~x,x8!5D~x,]x1q!d~x2x8!, ~2.4!

to which we refer as theextendedversion of the differential operatorD. The notion of reality for
a differential operatorD is exactly the condition that its coefficientsdn(x) are real.

For the operator~1.2! the extensionL(q) is given by

L5L02U, ~2.5!

whereL0 is the extension ofL(x,]x) in the case of zero potential, i.e., it has kernels

L0~x,x8;q!5@2~]x2
1q2!1~]x1

1q1!2#d~x2x8!, L0~p;q!5~ iq22q1
2!d~p!, ~2.6!

and the multiplication operatorU can be called the potential since it has kernel

U~x,x8;q!5u~x!d~x2x8!. ~2.7!

Below we always suppose thatu(x) is real, which by~2.3! means that the operator~1.2! is real
also:L* 5L.

The main object of our approach is theextended resolventM (q) of the operatorL(q), which
is defined as the inverse of the operatorL, that is,

LM5ML5I , ~2.8!

in the space of operators. HereI is the unity operator,I (x,x8;q)5d(x2x8), I (p;q)5d(p). In
order to make this inversion uniquely defined we impose the condition that the product

E dp8M ~p2p8;q1s1p8!M ~p8;q! ~2.9!

exists as distribution inp andq and that it is a continuous function ofs in a neighborhood ofs
50 whensÞ0.

Thanks to definitions~2.5!, ~2.6!, and~2.8!, M is real and, in particular, the resolventM 0 of
the bare operatorL0 has in thep-representation kernel

M0~p;q!5d~p!
1

iq22q1
2 . ~2.10!

As function ofq it is singular whenq5l (q1), where the special two-component vector

l ~k!5~k,2 ik2! ~2.11!

was introduced. The kernel ofM0 in the x-representation

M0~x,x8;q!5
1

2p E da @u~q1
22a22q2!2u~x22x28!# e2( i l (a1 iq1)1q)(x2x8) ~2.12!

is obtained from~2.10! by using~2.1!.
                                                                                                                



e-

o-

y.

r

the
ively.

r is
the
ty, in

intro-

n
me
olu-

s

1047J. Math. Phys., Vol. 43, No. 2, February 2002 Inverse scattering theory

                    
For a generic operatorA with kernelA(x,x8;q) the operation inverse to the extension proc
dure, defined in~2.4! for a differential operator, is given by

Â~x,x8;q!5eq(x2x8)A~x,x8;q!. ~2.13!

In contrast with the case of the extended differential operators for whichD̂(x,x8;q)5D(x,x8)
[D(x,]x)d(x2x8), in generalÂ(x,x8;q) does depend onq and, moreover, can have an exp
nential growth at space infinity. ThereforeÂ(x,x8;q) does not necessarily belong to the spaceS 8

of tempered distributions. The fact thatÂ(x,x8;q) can depend onq will play a crucial role in the
following. For instance, also in the case of the simplest resolvent~2.12!, we have that the function
M̂ 0(x,x8;q) depends effectively on the variableq and is exponentially growing at space infinit
More generally from~2.8! we have

L~x,]x!M̂ ~x,x8;q!5L d~x8,]x8!M̂ ~x,x8;q!5d~x2x8!, ~2.14!

whereL d is the operator dual toL. The functionM̂ (x,x8;q) can be considered a parametric (q
PR2) family of Green’s functions of the operatorL. In what follows we use special notations fo
the equalities of the type~2.14!, writing them as

LW M̂ ~q!5M̂ ~q!LQ 5I , ~2.15!

whereLW denotes the operatorL applied to thex-variable of the functionM̂ (x,x8;q) andLQ denotes
the operator dual toL applied to thex8-variable of the same function. Operation~2.13! has no
analog in terms of thep-representation. Nevertheless, local properties of the kernels in
x-representation are preserved, and we use the kernels with the hat in what follows intens

Thanks to our definitions~2.1! and~2.4! it is easy to see that in terms of thep-representation
the dependence on theq-variables of the kernels of the extension of a differential operato
polynomial @like in the example~2.6!#. Correspondingly, the essential role in the study of
properties of the resolvent is played by the investigation of its departure from analytici
particular, by its d-bar derivatives with respect to theq-variables. Thus to a generic operatorA

with kernelA(p;q) in the p-representation we associate two operators]̄ jA with kernels

~ ]̄ jA!~p;q!5
]A~p;q!

]q̄j
, j 51,2, ~2.16!

where the derivatives are considered in the sense of distributions. In terms of the objects
duced in~2.13! we get by inversion of~2.1! that

~ ]̄ j Â!~q!5
i

2

]Â~q!

]qj
. ~2.17!

Multiplying equalities in~2.8! from the left and right, correspondingly, byM0 we get, thanks
to ~2.5!,

M5M01M0UM , M5M01MUM0 . ~2.18!

Since the resolventM0 is explicitly given, these are integral equations determining the solutioM
of ~2.8!. In the literature~see, say, Refs. 4 and 5! on the Jost solutions of the heat equation so
small norm conditions on the potentialu are known to guarantee the existence of the Jost s
tions. So it is natural to assume that under such conditions the solutionM of the above integral
equations exists and is unique~the same for both integral equations!. In this case the resolventM
can be considered as a small perturbation of the resolventM0 and this bare resolvent determine
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the properties ofM by means of~2.18!. The main problem of construction of the inverse scatter
transform for the operator~1.2! is that the potentialu(x) in ~1.5! does not obey any small norm
condition.

In order to overcome this difficulty we use a so-called inverse scattering transform
nontrivial background.10 Let us consider a kind of Hilbert identity, known in the standard spec
theory of operators. Precisely, ifM (q) is the extended resolvent of the operatorL(q) with poten-
tial u andM 8(q) the extended resolvent of the operatorL8(q) with a different potentialu8, then,
by ~2.8! we have

M 82M52M 8~L82L !M . ~2.19!

Strictly speaking, this follows under the assumption that the product on the rhs is associativ
is a natural assumption sinceL8(x,x8;q)2L(x,x8;q)5(u(x)2u(x8))d(x2x8) and M satisfies
condition~2.9!. Let nowL1 denote the operator~1.2! in the special case where the potentialu(x)
in ~1.5! is purely one-dimensional, i.e.,u2(x)[0. LetL1 denote its extension andM1 its resolvent,
that is, let@cf. ~2.5!#

L15L02U1 , L1~x,]x!52]x2
1]x1

2 2u1~x!, ~2.20!

L5L12U2 , L1M15M1L15I , ~2.21!

where as in~2.7! U j (x,x8;q)5uj (x)d(x2x8). Choosing now in~2.19! L85L1 we get

M5M11M1U2M , M5M11MU2M1 , ~2.22!

where the second equality is derived in analogy. These equations generalize~2.18! for the case
whereM1 is nontrivial and, if the resolventM1 is known, they also can be considered as defin
the resolventM . If we chooseU2 obeying the small norm condition mentioned above, we c
assume that the solutionM of both Eqs.~2.22! exists and is unique. Then, thanks to~2.21!, M
obeys~2.8!. Contrary to~2.18!, now M can be considered a perturbation of the resolventM1 . So,
in the next section, we study the properties of the resolventM1 in detail.

III. ONE-DIMENSIONAL POTENTIAL

We already mentioned in the Introduction that in this article we deal with the case wheu1

in ~1.5! is the one-dimensional soliton potential

u1~x!5
22a2

cosh2@a~x12x0!#
, ~3.1!

with a.0 andx0 real constants. In this section we consider the case where the perturbat
absent,u2[0. We reformulate in the two-dimensional space the well known facts about
solutions of this one-soliton potential and introduce and study the properties of the resolve
Green’s functions in this case.

The differential equationsL1(x,]x)F1(x,k)50, L 1
d(x8,]x8)C1(x8,k)50 for the Jost solution

F1(x,k) and its dualC1(x8,k), by using the notation introduced in~2.15! and by considering
F1(x,k) andC1(x8,k) as kernel operators independent, respectively, ofx8 andx, can be rewritten
in the operatorial form

LW 1F1~k!50, C1~k!LQ 150, ~3.2!

which we will use frequently in the following. These solutions are given explicitly by

F1~x,k!5
k2 ia tanh@a~x12x0!#

k2 ia
e2 i l (k)x , ~3.3!
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C1~x,k!5
k1 ia tanh@a~x12x0!#

k1 ia
ei l (k)x , ~3.4!

wherekPC and the two-component vectorl (k) is defined in~2.11!. They obey the conjugation
properties

F1~x,k!5F1~x,2 k̄!, C1~x,k!5C1~x,2 k̄! ~3.5!

that are equivalent to the reality condition for the potentialu1 , and are normalized atk-infinity as
follows:

lim
k→`

ei l (k)xF1~x,k!51, lim
k→`

e2 i l (k)xC1~x,k!51. ~3.6!

The functionsF1(x,k) andC1(x,k) are meromorphic in the complex domain of the spec
parameterk with poles atk5 ia and k52 ia, correspondingly. Thus, these functions obey t
d-bar equations

]F1~x,k!

] k̄
5 ipF1,a~x!d~k2 ia !,

]C1~x,k!

] k̄
5 ipC1,2a~x!d~k1 ia !, ~3.7!

where we introduced the notations

F1,a~x!52 i res
k5 ia

F1~x,k!, C1,2a~x!52 i res
k52 ia

C1~x,k!. ~3.8!

Explicitly we have

F1,a~x!5
aeax01a2x2

cosh@a~x12x0!#
, C1,2a~x!52

aeax02a2x2

cosh@a~x12x0!#
. ~3.9!

Let

c52ae2ax0 ~3.10!

andF1,2a(x) andC1,a(x) be the values of the Jost solutions in the conjugated points,

F1,2a~x!5F1~x,2 ia !, C1,a~x!5C1~x,ia !. ~3.11!

Then, thanks to~3.3!, ~3.4!, and ~3.9!, the Jost solutions obey in the complex domain of t
spectral parameter the following scalar products:

E dx1C1~x,k1p!F1~x,k!52pd~p!, pPR, ~3.12!

cE dx1 F1,2a~x!C1,a~x!51, ~3.13!

E dx1 C1,a~x!F1~x,k!50, kI
2,a2, ~3.14!

E dx1 F1,2a~x!C1~x,k!50, kI
2,a2, ~3.15!

and the completeness relation
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1

2p E
x25x28

dkR F1~x,k!C1~x8,k!1cu~a22kI
2!F1,2a~x!C1,a~x8!U

x25x
28

5d~x12x18!.

~3.16!

Equations~3.7! can be considered as two inverse problems defining the Jost solution an
dual Jost solution. The formulation of these problems is closed by giving the normaliz
conditions~3.6! and the following relations:

F1,a~x!5cF1,2a~x!, C1,2a~x!52cC1,a~x!, ~3.17!

whereF1,2a(x) andC1,a(x) are defined in~3.11!.
These formulas show that the embedding in two dimensions of the Jost solutions

one-soliton potential is trivial and just mimics the one-dimensional construction up to the wa
that, due to their exponential dependence onx2 , the functionsF1,a(x) and C1,2a(x) are not
square integrable with respect to thex-variables and, therefore, are not eigenfunctions of
operatorL1 .

On the contrary, the two-dimensional resolventM1(q) as well as the Green’s functionG1 of
the two-dimensional operatorL1 with the one-dimensional potentialu1 are not trivial extensions
of the corresponding one-dimensional objects associated to the operator (k21]x1

2 2u1(x1)). In

terms of the Jost solutions introduced above, we can write the kernel of this resolvent obtai
Ref. 11 as

M̂1~x,x8;q!5
1

2p E
kI5q1

dkR @u~q1
22q22kR

2 !2u~x22x28!# F1~x,k!C1~x8,k!

1cu~a22q1
2!@u~a22q2!2u~x22x28!#F1,2a~x!C1,a~x8!, ~3.18!

where the hat over the kernel is used in the sense of notation~2.13!.
Thanks to the equalities~3.2! and ~3.16! it is easy to check directly thatM̂1(q) obeys the

equations

LW 1M̂1~q!5M̂1~q!LQ 15I , ~3.19!

which means@cf. ~2.15!# thatM1(q) obeys~2.21! and is indeed the inverse of the operatorL1(q).
Moreover, using the explicit formulas~3.3!, ~3.4! and~3.9! we get thatM1(x,x8;q)PS 8(R6), i.e.,
it belongs to the space of operators under consideration. It can also be proved directly thM1

obeys condition~2.9!, so it is the extended resolvent according to our definition. By means of~3.5!
we get also thatM1 is real,M1* 5M1 according to definition~2.3!.

We emphasize that in order to prove these results it is not necessary to use the e
formulas for F1 and C1 but only their general properties. In fact, if one considers a o
dimensional potentialu1 which, in addition, has a nontrivial continuous spectrum, one gets
same formula for the resolventM1 . If the discrete~one-dimensional! spectrum ofu1 containsN
solitons with parametersaj andcj ( j 51,2,. . . ,N), then the last term in~3.18! must be substituted
by the sum of similar terms each corresponding to a value ofj .

Now we describe in detail the properties ofM1(x,x8;q). The first term on the rhs of~3.18! is
a continuous function ofq5(q1 ,q2) on theq-plane with discontinuities on the linesq156a due
to the pole singularities ofF1(k) and C1(k). The second term, thanks to theu functions, has
discontinuities on the linesq156a and on the cutq25a2, uq1u,a. The singularities on the lines
q156a are exactly compensated among the two terms. Thus the kernelM1(x,x8;q) is a con-
tinuous function ofq with a discontinuity on the cutq25a2, uq1u,a. This discontinuity is
specific of the potentialu1(x), or more generally of a potential with discrete spectrum and it gi
the essential difference ofM1 with respect to the bare resolventM0 ~2.12!. Let us underline that,
in spite of the fact thatL1 applied to the term withu(a22q2) that causes this discontinuity give
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zero, this term cannot be omitted in~3.18!, since, only thanks to the fact thatu(x22x28) and
u(a22q2) have opposite signs, the kernelM1(x,x8;q)[e2q(x2x8)M̂1(x,x8;q) is a tempered dis-
tribution with respect to thex-variables.

The kernelM1(p;q) in the p-representation is not an analytic function ofq. By ~2.17! the
d-bar derivatives ofM1 with respect toqj are proportional to]M̂1 /]qj and for the latter we ge
from ~3.18! equalities

]M̂1~q!

]q1
5

i

p E
kI5q1

dkR k̄d~ l 2I~k!2q2! F1~k! ^ C1~k!, ~3.20!

]M̂1~q!

]q2
5

21

2p E
kI5q1

dkR d~ l 2I~k!2q2! F1~k! ^ C1~k!, ~3.21!

where (F1(k) ^ C1(k))(x,x8)[F1(x,k)C1(x8,k) is the standard direct product,l 2I(k) is the
imaginary part of the second component of the vectorl (k) defined in~2.11! and where by the
above discussion we considerq2Þa2. For the discontinuity along this line we get

M̂1~q!uq25a2102M̂1~q!uq25a22052cu~a22q1
2!F1,2a^ C1,a . ~3.22!

We have to study now the behavior ofM1(q) at the end points of the cut, i.e., whenq
;(6a,a2). First, it is convenient to subtract fromM1(q) its value, say, on the upper or lowe
edges of the cut:

g1
65 lim

q25a260

M̂1~q!u uq1u,a . ~3.23!

SinceF1(k) andC1(k) are analytic forukIu,a, we deduce from~3.18! thatg1
6 are independen

also ofq1 and their kernels equal

g1
6~x,x8!52

u~x22x28!

2p E da F1~x,a!C1~x8,a!7cu~6~x22x28!!F1,2a~x!C1,a~x8!,

~3.24!

where*da denotes integration along the whole real axis. Now extracting explicitly from the
term on the rhs of~3.18! the contribution coming from the poles ofF1(k) andC1(k) we get that,
say, differenceM̂1(q)2g1

2 behaves at pointsq5(6a,a2) as

M̂1~q!2g1
252cS u~q1

22q2!

p
arccot

a2uq1u

Aq1
22q2

1u~q22q1
2!u~q22a2!D F1,2a^ C1,a1o~1!,

q;~6a,a2!. ~3.25!

ThusM̂1(q) is bounded but discontinuous atq5(6a,a2), while its regular part,g1
2 , is the same

for both these points.
Now it is easy to see that the discontinuity of the resolvent along the cutq25a2, uq1u,a and

the ill definiteness at the pointsq5(6a,a2) are the result of embedding the one-dimensio
potential in the two-dimensional space. Indeed, the resolvent of the Sturm–Liouville ope
]x1

2 2u1(x1)2q2 is obtained from M1(q) by means of the operation

*dx2 e2q2(x22x28)M̂1(x,x8;q). By ~3.18! and~3.3!, ~3.4!, and~3.9! we get the standard expressio
for the one-dimensional Green’s function with a pole atq25a2.
                                                                                                                



e

e

e

o

1052 J. Math. Phys., Vol. 43, No. 2, February 2002 Boiti et al.

                    
We already noted thatM̂1(x,x8;q) defines a family of Green’s functions. Among them that w
expect should play a special role are those obtained considering the values ofq belonging to the
support of the defects of analyticity given in~3.20!, ~3.21! and~3.22!. We consider, therefore, th
Green’s functions

G1~x,x8,k!5M̂1~x,x8;q!uq5l I(k) , ~3.26!

G1
6~x,x8;k!5M̂1~x,x8;q!uq15kI , q25a260 , ~3.27!

where kPC is the spectral parameter and we denoteq15kI @see~2.11!# in order to meet the
standard notation. From these definitions it follows directly that

LW 1G1~k!5G1~k!LQ 15I , LW 1G1
6~k!5G1

6~k!LQ 15I , ~3.28!

G1~k![G1~2 k̄![G1~k!, ~3.29!

G1~k!ukR505G1~0!, G1
6~k!5G1

6~ ikI!, ~3.30!

i.e., G1
6(k) are independent onkR and then inside the strip they coincide withg1

6 introduced in
~3.23!,

G1
6~x,x8;k!u ukIu,a5g1

6~x,x8!. ~3.31!

As well from ~3.18! we get the representations

G1~x,x8,k!5
1

2p E
kI85kI

dk8 @u~ ukRu2ukR8 u!2u~x22x28!#F1~x,k8!C1~x8,k8!

1c u~a2ukIu!u~x282x2!F1,2a~x!C1,a~x8!, ~3.32!

G1
6~x,x8,k!5

1

2p E
kI85kI

dkR8 @u~~kI!22a22~kR8 !2!2u~x22x28!#F1~x,k8!C1~x8,k8!

7c u~a22kI
2!u~6~x22x28!!F1,2a~x!C1,a~x8!. ~3.33!

The first of these equalities shows that the cut of the resolvent atq25a2, uq1u,a is not inherited
by G1(k) ~in contrast to the case of the nonstationary Schro¨dinger equation, as mentioned in th
Introduction! and thatG1(k) is discontinuous only at the pointsk56 ia. Its behavior in the
neighborhoods of these points follows from~3.25! and reads as

G1~k!5g1
22

c

p H arccot
a2ukIu

ukRu J F1,2a^ C1,a1o~1!, k;6 ia. ~3.34!

Also the Green’s functionsG1
6(k) are discontinuous only atkI56a and one gets, thanks t

~3.25!, that fork; ia or k;2 ia

G1
6~k!5g1

22c
16u~a2ukIu!

2
F1,2a^ C1,a1o~1!. ~3.35!

Notice that these functionsG1
6(k) coincide whenukIu.a and are independent ofkI @and then of

k by ~3.30!# when ukIu,a. On the borders of these strips they have the discontinuity
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G1
6~k!uoutside2G1

6~k!u inside56
c

2
F1,2a^ C1,a . ~3.36!

Taking into account the discontinuous behavior of the Green’s functions we see that equal
the typeG1

6( ia)5G1( ia) and G1
6(2 ia)5G1(2 ia) have no meaning in our case. Thanks

~3.32! and ~3.35! we have only that

lim
ukIu→a20

lim
kR→0

G1~k!5g1
2 , ~3.37!

where the limiting procedure must be performed in such a way thatukRu/(a2ukIu)→10.
In order to complete the study of the Green’s functions we mention thatG1(k) obeys the

standard equalities

lim
k→`

~22ik !
]

]x1
ei l (k)(x2x8)G1~x,x8,k!5d~x2x8!, ~3.38!

]G1~x,x8,k!

] k̄
5

sgnkR

2p
F1~x,2 k̄!C1~x8,2 k̄!. ~3.39!

The first of them follows either from the differential equations~3.28!, or from the integral repre-
sentation~3.32! and properties~3.6!. The second one also follows from~3.28!, or it can be derived
from ~3.26! by means of~3.20! and ~3.21!. This equality must be understood in the sense
distributions and we see that the discontinuity ofG1(k) at pointsk56 ia leads@by ~3.3! and
~3.4!# to the pole singularities of the rhs at these points. In view of~3.39! in what follows we refer
to G1(k) as the Green’s function of the Jost solutions.

IV. RESOLVENT OF THE PERTURBED L-OPERATOR

Now we consider the general case of the operator~1.2! with potential given in~1.5!, where
u2(x) is a real function of two space variables, smooth and rapidly decaying at space infinity
extended resolventM (q) is determined by~one of! Eqs.~2.22! and we need to study its analyticit
properties first. The incrementM (p;q1s)2M (p;q) of M can be obtained from the Hilber
identity ~2.19! where prime means the increments of q. We haveM 82M52M 8(L182L1)M and,
then, using~2.21!,

M 82M5M 8L18~M182M1!L1M . ~4.1!

Thus for the d-bar derivatives with respect toqj we get

]̄ jM5~ML1!~ ]̄ jM1!~L1M !, j 51,2, ~4.2!

in the region whereM1 is continuous, i.e., forq2Þa2. In terms of the objects introduced in~2.13!,
we obtain

]̄ j M̂5M̂LQ 1~ ]̄ jM 1̂!LW 1M̂ , j 51,2, ~4.3!

where we used thatL̂1(x,x8;q)5L1d(x2x8) and took into account that when kernels with ha
are considered, the multiplication byL1 is no longer associative and it is necessary to use
arrows to indicate the correct order of operations@cf. ~2.15!#. Now, thanks to~2.17! and using
~3.20! and ~3.21! we get forq2Þa2
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]M̂ ~q!

]q1
5

i

p E
kI5q1

dkR k̄d~ l 2I~k!2q2! F~k! ^ C~k!, ~4.4!

]M̂ ~q!

]q2
5

21

2p E
kI5q1

dkR d~ l 2I~k!2q2! F~k! ^ C~k!, ~4.5!

whereF(k) andC(k) are defined by

F~k!5G~k!LQ 1F1~k!, C~k!5C1~k!LW 1G~k!, ~4.6!

with

G~x,x8,k!5M̂ ~x,x8;q!uq5l I(k) . ~4.7!

More explicitly, say, the first of Eqs. ~4.6! stands for F(x,k)5*dx8(L 1
d(x8,]x8)

3G1(x,x8,k))F1(x8,k). The functionG(k) with kernelG(x,x8,k) defined in~4.6! satisfies the
differential equations

LW G~k!5G~k!LQ 5I , ~4.8!

which can be obtained as a direct reduction of~2.15!. Therefore,G(k) is a Green’s function. Since
the reduction is the same used in~3.26! for gettingG1(k) from M̂1 we derive from~2.22! that this
Green’s function obeys the integral equations

G~k!5G1~k!1 G1~k!U2G~k!, G~k!5G1~k!1 G~k!U2G1~k!. ~4.9!

Again, as in Sec. III, thanks to~4.7! and~4.4! and~4.5! we get the d-bar derivative of the Green
function in the form

]G~k!

] k̄
5

sgnkR

2p
F~2 k̄! ^ C~2 k̄!, ~4.10!

whereF(k) andC(k) are defined in~4.6!. These objects, due to their definition and~4.9!, obey
the integral equations

F~k!5F1~k!1 G1~k!U2F~k!, C~k!5C1~k!1C~k! U2G1~k!, ~4.11!

where again the first equation more explicitly reads asF(x,k)5F1(x,k)1*dx8G1(x,x8,k)
3u2(x8)F(x8,k). It is clear that the differential equations

LW F~k!50, C~k!LQ 50 ~4.12!

hold and, therefore, we can considerF(x,k) andC(x,k) as the generalization of the Jost solutio
to the case where the perturbationu2(x) is different from zero. Let us mention that thanks to the
definitions we succeeded in avoiding the indeterminacy in the definition of the Jost solu
discussed in the Introduction. Later we study the properties of the Green’s function and th
solutions in more detail and discuss the singular structure of the terms involved in~4.10!. Now let
us mention the following standard properties

22i lim
k→`

k]x1
~ei l (k)(x2x8)G~x,x8,k!!5d~x2x8!, ~4.13!

G~k!5G~2 k̄!5G~k!, ~4.14!
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F~x,k!5F~x,2 k̄!, C~x,k!5C~x,2 k̄!, ~4.15!

which can be obtained by means of the integral equations~4.9! and properties~3.5!, ~3.29!, and
~3.38! for the Green’s functionG1(k).

Till now we studied the departure from analyticity of the resolvent in the caseq2Þa2. Since
the resolventM1(q) is discontinuous along the lineq25a2 @see~3.22!#, the integral equations
~2.22! suggest that alsoM (q) has a discontinuity. Let us denote the limiting values on the
edges of the line by

M 6~q!5M ~q!uq25a260 . ~4.16!

Then from the Hilbert identity~4.1! we derive that

M 1~q!2M 2~q!5M 6~q!L1~q!~M1
1~q!2M1

2~q!!L1~q!M 7~q!, q25a2, ~4.17!

where the lhs is independent of the choice of the sign on the rhs. In analogy with~3.27! we
introduce the two Green’s functions

G6~x,x8;k!5M̂ ~x,x8;q!uq15kI, q25a260 ~4.18!

and rewrite ~4.17! in these terms as G1(k)2G2(k)5(G6(k)LQ 1)(G1
1(k)2G1

2(k))
3(LW 1G7(k)). Then by~3.22! and ~3.27! we get

G1~k!2G2~k!52cu~a22kI
2!F6~k! ^ C7~k!, ~4.19!

where the new solutions@cf. ~4.6!# were introduced:

F6~k!5G6~k!LQ 1F1,2a , C6~k!5C1,aLW 1G6~k!. ~4.20!

Following properties ofG1
6(k) it is easy to show that these Green’s functions obey the follow

differential and integral equations and reality condition:

LW G6~k!5G6~k!LQ 5I , ~4.21!

G6~k!5G1
6~k!1 G1

6~k!U2G6~k!, G6~k!5G1
6~k!1 G6~k!U2G1

6~k!, ~4.22!

G6~k!5G6~k!. ~4.23!

By definition they are independent ofkR and by the corresponding properties ofG1
6(k) we have

that G1(k)5G2(k) when ukIu.a and they are independent ofkI when ukIu,a. By ~4.20! and
~4.21! we get thatF6(k) andC6(k) are solutions of the heat equation with potential~1.5!,

LW F6~k!50, C6~k!LQ 50. ~4.24!

Integral equations for these solutions follow by applying operations~4.20! to the equations~4.22!:

F65F1,2a1 G1
6U2F6, C65C1,a1C6 U2G1

6 . ~4.25!

Let us also mention that, thanks to~4.23!, these solutions are real and are independent ofk inside
the stripukIu,a, due to the corresponding property ofG6(k) and ~4.20!. Since in the following
we use intensively the Green’s functions and these solutions inside the strip, it is conven
introduce the following specific notations:

g6~x,x8!5G6~x,x8,k!u ukIu,a , ~4.26!
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and also

f6~x!5F6~x,k!u ukIu,a , c6~x!5C6~x,k!u ukIu,a . ~4.27!

Equality ~4.19! enables us to find relations between solutions~4.20!. Let ukIu,a. Then ap-
plying, say,LQ 1F1,2a to this equality from the right and using~4.20! we derive that

~11l!f15f2, ~4.28!

where

l5c~C1,aLW 1g2LQ 1F1,2a!. ~4.29!

Explicitly l5c*dx*dx8C1,a(x)(L1(x,]x)L 1
d(x8,]x8)g

2(x,x8)F1,2a(x8)). By ~4.23! this con-
stant is real and, thanks to~4.20!, it is also equal tol5c(C1,aLW 1f2)5c(c2LQ 1F1,2a). Inserting
hereL15L1U2 we get by~4.21! and ~4.24! that

l5c$~C1,aU2F1,2a!1~C1,aU2g2U2F1,2a!%, ~4.30!

or l5c(C1,aU2f2)5c(c2U2F1,2a), where we also usedLW 1F1,2a50 andC1,aLQ 150, which
follow from ~3.2! and~3.8!. Next, applying to~4.28! C1,aLW 1 from the left and again by~4.20! we
get

~11l!@12c~C1,aLW 1g1LQ 1F1,2a!#51, ~4.31!

where a new constant (C1,aLW 1g1LQ 1F1,2a)5(C1,aU2F1,2a)1(C1,aU2g1U2F1,2a) @cf. ~4.30!#
appeared. Since we choseu2 to be rapidly decaying at infinity, all terms must be finite. Th
11lÞ0 and, more precisely, taking into account that foru2→0 alsol→0, we have that

11l.0. ~4.32!

Summarizing, we get the following relations:

c~C1,aLW 1g1LQ 1F1,2a!5
l

11l
, ~4.33!

f15
f2

11l
, c15

c2

11l
, ~4.34!

G1~k!5G2~k!2
cu~a2ukIu!

11l
f2

^ c2. ~4.35!

Here~4.33! is just ~4.31!, the first equality in~4.34! is ~4.29! and the second equality is derived b
analogy, and~4.35! follows from ~4.19! thanks to~4.34!. In their turn ~4.33! and ~4.34! follow
from ~4.35! thanks to~4.20! and ~4.28!.

We have shown in~3.36! that the Green’s functionsG1
6(k) are discontinuous atkI5a and

kI52a. By ~4.22! we deduce thatG6(k) have the same behavior. In order to study this disc
tinuity we use, as above, the Hilbert identity~4.1! whereM5M (q), M 85M (q8), etc. We choose
q25q285a260, q15a2«, q185a1«, and in the limit«→10 we use the hat notation~2.13! and
definitions~3.27! and ~4.18! of the Green’s functions. Then we getG6( i (a10))2g65G6( i (a
10))LQ 1(G1

6( i (a10))2g1
6)LW 1g6, where again~3.31! and ~4.26! were used. Now by~3.36! for

the discontinuity of the unperturbed Green’s functions we obtain
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G6~ i ~a10!!2g656
c

2
F6~ i ~a10!! ^ c6, ~4.36!

where notations~4.20!, ~4.26! and~4.27! were used. ApplyingLQ 1F1,2a from the right andC1,aLW 1

from the left in analogy with the derivation of~4.35! we get by~4.28! that c(C1,aLW 1G6( i (a
10))LQ 1F1,2a)52l(21l)21, which is finite due to~4.32!. Then omitting details we derive th
equalitiesG6( i (a10))5G6(2 i (a10))5g22c(21l)21f2

^ c2, that, say, for the bottom
sign can also be rewritten in the form

G2~k!5g22
cu~ ukIu2a!

21l
f2

^ c21o~1!, k;6 ia, ~4.37!

where we took~4.26! into account.

V. PROPERTIES OF THE JOST SOLUTIONS AND INVERSE PROBLEM

In this section we complete the investigation of the properties of the Jost solutions by de
ing their behavior at the pointsk56 ia. Formulas~4.6! suggest to study first the behavior of th
Green’s functionG(k). We expect that it is ill defined at these points, so in order to describe
behavior we compareG(k) with some well defined Green’s function, say,g2. For this aim, as we
have already shown, relations of the type~4.19! can be very useful. In order to derive them w
start again from the Hilbert identity~4.1! whereM 85M (q8) and M5M (q) and we chooseq8
5l I(k), q15kI , q25a220 @see~2.11!, ~4.7! and~4.16!#. Then, passing to the objects with ha
by ~2.13!, recalling definitions~4.7! and ~4.18! and keeping only the leading term in the neig
borhood ofk;6 ia, we get

G~k!2G2~k!5G~k!LQ 1~G1~k!2G1
2~k!!LW 1G2~k!1o~1!, k;6 ia.

Inserting the explicit singular behaviors ofG1(k), G1
2(k) andG2(k) at k56 ia given in ~3.34!,

~3.35! and ~4.37!, we have

G~k!2g252
cu~ ukIu2a!

21l
f2

^ c21cS 2
1

p
arccot

a2ukIu
ukRu

1
u~ ukIu2a!

2 DG~k!LQ 1F1,2a

^ C2~k!1o~1!,

where in the last multiplier the definition ofC2(k) in ~4.20! was used. Again by~4.20! and~4.37!
C2(k)5 $@21lu(a2ukIu)#/(21l) %c2, where as alwaysc2 denotesC2(k) for ukIu,a by
~4.27!. Then

G~k!2g25H 2
cu~ ukIu2a!

21l
f21cS 2

1

p
arccot

a2ukIu
ukRu

1
u~ ukIu2a!

2 D
3

21lu~a2ukIu!
21l

G~k!LQ 1F1,2aJ ^ c21o~1!. ~5.1!

Thus in order to get the behavior ofG(k) we need to find that ofG(k)LQ 1F1,2a , which follows by
applying to~5.1! operationLQ 1F1,2a from the right and using again~4.20!, ~4.27! and~4.29!. Then

G~k!LQ 1F1,2a5
pf2

A~k!
1o~1!, k;6 ia, ~5.2!

where we denoted for brevity
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A~k!5p1l arccot
a2ukIu

ukRu
. ~5.3!

This function is real positive thanks to~4.32! and discontinuous atk56 ia. Now inserting~5.2!
in ~5.1! we derive finally that

G~k!5g22
c

A~k! S arccot
a2ukIu

ukRu D f2
^ c21o~1!, k;6 ia. ~5.4!

Applying to ~5.4! from the left the operationC1,aLW 1 and recalling the definitions~4.20! and~4.27!
we derive

C1,aLW 1G~k!5
pc2

A~k!
1o~1!, k;6 ia, ~5.5!

and by~4.29! also

cC1,aLW 1G~k!LQ 1F1,2a5
pl

A~k!
1o~1!, k;6 ia. ~5.6!

Correspondingly, we get for the behavior of the Jost solutions in the neighborhood ofk56 ia,
thanks to~3.3! and ~5.2!,

F~k!5
ipcf2

A~k!~k2 ia !
1O~1!, k; ia, ~5.7!

F~k!5
p f2

A~k!
1o~1!, k;2 ia ~5.8!

and analogous relations forC(k).
Now we are ready to consider the d-bar derivative in the sense of distributions of the

solution, say,F(k). Let first kÞ6 ia. Then we use~3.3!, ~4.6!, and~4.10! to derive

]F~k!

] k̄
5F~2 k̄!r ~k!, kÞ6 ia, ~5.9!

where the spectral data are defined as follows:

r ~k!5
sgnkR

2p
~C1~2 k̄!LW 1G~k!LQ 1F1~k!!. ~5.10!

Thanks to~3.3!, ~3.4! and ~5.6! we get the singular behavior of these spectral data in the for

r ~k!5
il sgnkR

2~kR1 i ukIu2 ia !A~k!
1o~1!, k;6 ia, ~5.11!

i.e., in both points it has a pole singularity multiplied by the discontinuous functionA(k). Taking
into account that the singular behavior ofF(2 k̄) is given by the denominator(k2 ia)A(k) at
point k5 ia and byA(k) at pointk52 ia we see that the rhs in~5.9! is integrable at the latte
point but it has a singularity sgnkRuk2 iau22A(k)22 at pointk5 ia, which is not integrable. On
the other hand,F(k) is locally integrable for anyk, so F(x,k)ei l (k)x is a Schwartz distribution
with respect tok. Thus its d-bar derivative in the sense of distributions exists and can be de
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in the standard way. Letf (k) be a test function that properly decays at infinity~we are now not
interested in the exponential growth due to the multipliere2 i l (k)x). Then the d-bar derivative o
F(k) is defined as

E d2k
]F~k!

] k̄
f ~k!52E d2k F~k!

] f ~k!

] k̄
52 lim

«→0
E

uk6 iau.«
d2k F~k!

] f ~k!

] k̄
,

where in the last equality we again used the property of local integrability ofF(k). Integrating by
parts for«.0 we can use~5.9! and we have

2 lim
«→0

E
uk6 iau.«

d2k F~k!
] f ~k!

] k̄
5

f ~ ia !

2i
lim

«→0
R

uk2 iau5«
dk F~k!1 lim

«→0
E

uk2 iau.«
d2k

3F~2 k̄!r ~k! f ~k!,

where we omitted the termruk1 iau.« since thanks to~5.8! it gives zero in the limit«→0. Thanks
to ~5.7! and~5.8! both limits on the rhs exist. To be more precise, let us introduce the distribu

p.v.E d2k
sgnkRf ~k!

uk2 iau2A~k!2 5 lim
«→0

E
uk2 iau.«

d2k
sgnkRf ~k!

uk2 iau2A~k!2 . ~5.12!

Notice the presence in the numerator of sgnkR that guaranties existence of the limit. We used t
principal value~p.v.! notation in analogy with the one-dimensional case. It can be checked dir
that

p.v.E d2k
sgnkRf ~k!

uk2 iau2A~k!2 5E d2k
sgnkR

uk2 iau2A~k!2 @ f ~k!2u~d2uk2 iau! f ~ ia !#

5
1

2 E d2k sgnkR

f ~k!2 f ~2 k̄!

uk2 iau2A~k!2 , ~5.13!

whered is some real positive parameter and the second term in~5.13! is independent of the choic
of d. In the case where a distribution has singularities of this form at some finite number of p
a1 , a2 , etc., we use the same notation for the integral assuming that either the cutoff proced
~5.12! or the subtraction procedure in~5.13! is performed at each point. Of course, the parame
« j andd j must be chosen in such a way that corresponding discs do not overlap.

Let us denote

Fa52
1

2p
lim

«→0
R

uk2 iau5«
dk F~k!, ~5.14!

so thatiFa can be considered as an extension of the definition of residuum to the case in
the pole singularity is multiplied by a function discontinuous at the same point. Thanks to~5.7! we
get that this limit also exists and equals

Fa5c
log~11l!

l
f2. ~5.15!

Thus, summarizing all above definitions we get that

]F~k!

] k̄
5F~2 k̄!r ~k!1 ipFad~k2 ia !, ~5.16!
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whereF(x,2 k̄)r (k) is now a distribution ink defined by the p.v. prescription given above. B
~5.7!, ~5.8! and ~5.11! it is integrable atk52 ia, but it behaves asuk2 iau22A22(k) in the
neighborhood of the pointk5 ia.

Equation~5.16! supplies us with the first equation of the inverse problem. In order to clo
we need the analog of the first relation in~3.17!, where it is stated that the residuum of th
function is proportional to its value in the conjugated point. But in our caseF(k) is discontinuous
at pointk52 ia, so again some modification of the notion of ‘‘value’’ at this point must be giv
Following the procedure used in~5.14! we can define it as

F2a5
1

2p i
lim

«→0
R

uk1 iau5«

dk

k1 ia
F~k!. ~5.17!

Thanks to~5.8! this limit also exists and equals

F2a5
log~11l!

l
f2, ~5.18!

so that by~5.15! we have

Fa5cF2a , ~5.19!

which shows that the parameterc is not modified by the perturbation. This equality closes
formulation of the inverse problem~5.16!. Finally, taking into account the asymptotic behavior
F(x,k) and ~5.17! and ~5.19!, we can formulate the inverse problem as the following system
integral equations:

F~x,k!5e2 i l (k)x1
1

p
p.v.E d2k8

k2k8
ei (l (k8)2l (k))xF~x,2k8!r ~k8!1 i

ei (l ( ia)2l (k))x

k2 ia
Fa~x!,

~5.20!

1

c
Fa~x!5e2 i l (2 ia)x2

1

p
p.v.E d2k

F~x,2 k̄!r ~k!

k1 ia
ei (l (k)2l (2 ia))x1

ei (l ( ia)2l (2 ia))x

2a
Fa~x!.

~5.21!

The integrands on the rhs of these two equations are not locally integrable, respectively, th
at k5 ia and the second atk56 ia. Correspondingly, their integrals are regularized by mean
the principal value prescription, as in~5.12! or ~5.13!, at k5 ia and atk56 ia.

The potential is reconstructed by means of

u~x!52
2i

p
p.v.E d2k

]

]x1
~ ei l (k)xF~x,2 k̄!r ~k!!12

]

]x1
~ei l ( ia)x Fa~x!!. ~5.22!

VI. CONCLUSION

In this article on the basis of the resolvent approach we gave a detailed presentation
extension of the inverse scattering theory for the heat operator to the case where the potent~1.5!
is a perturbation of the one-dimensional one-soliton potentialu1(x1) ~3.1! by means of a smooth
decaying at infinity functionu2(x) of two space variables. To our knowledge this is the first ti
that inverse scattering theory is applied to a nonscattering situation, i.e., a situation with an i
obstacle. As a result of our investigation we proved that under such a perturbation th
solutions get specific singularities~5.7! and ~5.8! on the complex plane of the spectral parame
k. We demonstrated that the d-bar problem~5.16! and~5.19!, while looking familiar for a potential
whose spectrum has a discrete and continuous part, needs a substantially modified approac
the singularity structure of the spectral data given in~5.11!. It was necessary to establish th
                                                                                                                



le to

that

-

e case
ur

c
is

shown,
olution

ase of
act

kind
sup-
1 and

1061J. Math. Phys., Vol. 43, No. 2, February 2002 Inverse scattering theory

                    
meaning in the sense of distributions of all terms involved in this problem, in order to be ab
formulate the inverse problem as the system of integral equations~5.20! and ~5.21!. It is easy to
check that the singular behavior of the spectral data and Jost solution as given in~5.11! and~5.7!
and~5.8! is compatible with this inverse problem. On the other side, it is necessary to prove
the potentialu(x) reconstructed by means of~5.22! is of the type~1.5!. We plan to address this
problem in a forthcoming work.

Another open problem is the application of these results to the KPII equation~1.3! itself. In
particular, investigation of the time asymptotics of solutions with initial data of the type~1.5! must
be performed. Let us mention only that the singular behavior~5.11! of the spectral data is pre
served under evolution~1.3!. Indeed,3 the time dependence of the spectral data is given as

r ~k,t !5e4i (k31 k̄3). ~6.1!

Thus we get that

a5const, l5const, ~6.2!

also with respect to time.
In Sec. III we mentioned that the above construction can be easily generalized to th

where the potentialu1(x1) is a pureN-soliton one-dimensional potential. At the same time o
approach also admits straightforward generalization to the case whereu1(x) is not a function of
one space variable but the result of application of the Ba¨cklund transformation to a generi
background two-dimensional potentialu0(x) decaying on thex-plane. Then the inverse problem
again given by Eqs.~5.20! and ~5.21!, where the spectral datar (k) are replaced with

r ~k!1
~k1 ia !~ k̄1 ia !

~ k̄2 ia !~k2 ia !
r 0~k!, ~6.3!

wherer (k) is of the type~5.11! andr 0(k) are the spectral data of the potentialu0(x) ~see Ref. 11!.
The theory of the heat equation with respect to the nonstationary Schro¨dinger equation is in

some respects simpler and in some other respects unexpectedly more difficult. As we have
under perturbation the Jost solution get singularities more complicated than poles, but this s
has no additional cut in the complex domain, in contrast with the nonstationary Schro¨dinger case
as discovered in Ref. 13. On the other hand, the generalization of this scheme to the c
multi-ray structure of the potentialu(x) meets with essential problems, first of all due to the f
that the resolvent~or Green’s function! of the heat equation even of a two-soliton~generic!
potential is unknown in the literature. This problem also needs future development.
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Angle operators on weighted Bergman spaces
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Among the multiplication operators on weighted Bergman Hilbert spaces are those
where the multiplying function~operator symbol! depends only on the angular
polar coordinate in the unit disk: we call these ‘‘angle operators.’’ As these Hilbert
spaces carry a CCR representation unitarily equivalent to the Schro¨dinger repre-
sentation, angle operators are associated with quantum phase in the same way as
are Toeplitz operators, for example. We determine the matrix elements of the angle
operators with respect to the natural orthonormal basis on each of these spaces, and
also with respect to the appropriate family of coherent states. By using a method of
comparison with the corresponding results for Toeplitz operators, asymptotic ex-
pressions for the expectations and variances in these two families of states are
obtained for the angle operators whose symbols are the polar angle function and its
two complex exponentials. Notable is the fact that the asymptotic limit of the
variance of the polar angle operator in the natural basis family isp2/3, which many
authors take to be a requirement for a quantum phase operator. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1423401#

I. INTRODUCTION

In order to understand the phenomena collectively known as ‘‘quantum phase,’’ a num
operators have been proposed as a quantum phase observable. These proposals have
scribed in a number of reviews and book,1–5 highlighting different points of view, and particularl
in a book by the authors together with Smith,6 whose conventions we shall adopt here.

Among the proposals are the Toeplitz operatorX of multiplication by the angle variable in th
Hardy spaceH2(T), and the operator of multiplication by the angle variable in Bargmann–S
space~Fock space overC!. In addition, functions of these operators~in the sense of spectra
theory! have been considered as describing aspects of the quantum phase, and so we tak
there is a respectable pedigree to considering operators of multiplication by functions of an
on Hilbert spaces of functions whose domain is a subset of the complex plane—notwithsta
that these operators are not diagonal~so that the angle is not the spectral variable which will
measured!.

In this paper we add a one-parameter family to the catalog of such operators by consi
angle operators on the weighted Bergman spaces~Hilbert spaces associated with the weight
Bergman kernels!.

The paper is organized as follows. In Sec. II we set down our conventions for weig
Bergman spaces and general multiplication operators on them. In Sec. III we introduce
Toeplitz–Bergman operators we call angle operators, denotedBf

(a) . These are multiplication
operators on the weighted Bergman Hilbert space by functions of the form (r ,u)°f(reiu), where
f is essentially bounded. We determine their matrix elements with respect to the natura
$en

(a) :n>0% on the Hilbert space in Sec. IV, in particular for the expectation and variance in

a!Electronic mail: d.a.dubin@open.ac.uk
b!Electronic mail: mah30@cam.ac.uk
10630022-2488/2002/43(2)/1063/11/$19.00 © 2002 American Institute of Physics
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statesen
(a) . By interpolation from integera, we are able to obtain an asymptotic expression~as

n→`! of the difference between the expectations and variances of the mapsBf
(a) and those of the

Toeplitz operators whose symbols aref. We find this difference to be at least as fast asO(1/n).
Knowledge of the asymptotic properties of the variance of Toeplitz operator whose symbol
angle function on the circle enables us to show that, in the limitn→`, the variance ofBw

(a) is
p2/3, wherew is the~suitably defined! argument function. This establishesBw

(a) as being as closely
related to quantum phase as are the Toeplitz and Bargmann–Segal angle operators.

In Sec. V we introduce a family of coherent states onHa , and consider the expectation of th
angle operators with respect to them. Employing a comparison method, we then obta
asymptotic form for the variance ofBw

(a) . In the final section we note some open mathemat
problems.

II. WEIGHTED BERGMAN SPACES

Let D be the open unit disc anddA(z)5dxdy/p the normalized Lebesgue area measure onD.
For all aP(21,̀ ), define the measure

dma~z!5~a11!~12uzu2!adA~z!. ~1!

We write Ha for the Hilbert space of functionsF which are both holomorphic inD and square
integrable with respect todma . If f, gPHa , we write i f ia for the norm off and^g, f &a for the
inner product off and g: the inner product is antilinear in the first variable. The spaceHa is a
weighted Bergman space in the terminology of Hendenmalm, Korenblum, and Zhu,7 whose con-
ventions we adopt~for the most part!. The original Bergman space corresponds toa50, but we
shall refer to all of theHa simply as Bergman spaces.

In several places we shall be using the Hilbert spaceL2(D,dma) as a space in whichHa is
embedded. There will be no possibility of confusion if we use the same symbols for the norm
inner product on both spaces.

The functions,

en
~a!~z!5 i 2nAS n1a11

n D zn, nPN0 , zPD, ~2!

constitute an orthonormal basis forHa . ~The binomial coefficients are extended to noninteg
values by use of the Gamma function.! This choice differs from that of Hedenmalmet al.7 and
other authors through the appearance of the factori 2n, which is necessary for consistency with th
conventions of Dubinet al.6

The spaceHa is equipped with the reproducing kernel~see Neeb8 for the general theory!
which is the integral kernel of the projection operator,

Pa f 5 (
n50

`

^en
~a! ,Pa f &a en

~a! , ~3a!

of L2(D,dma) onto Ha . This series converges pointwise onD, uniformly on compact subsets o
D, and is norm-convergent inL2(D,dma). Its reproducing kernel is then the positive defin
kernel,

Ka~z,w!5~12zw̄!2~21a!, ~3b!

so that

@Pa f #~z!5E
D
Ka~z,w! f ~w!dma~w! ~3c!
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belongs toHa for every f PL2(D,dma). TheKa are the weighted Bergman kernels; the origin
kernel of Bergman results from puttinga50.

We mention parenthetically that the Bergman metric is the Ka¨hler metric,

ds25]2 logKa~z,z̄!/]z] z̄dzdz̄.

If F is a function which is bounded except on ama-null set ~the usual convention of identifying
functions which differ only on a null set is in force!, pointwise multiplication byF will, in general,
take a functionf in Ha to the functionF f in L2(D,dma). If we want an operator onHa we must
act with the projection operatorPa on F f. Now f °F f is bounded onL2(D,dma) with the bound
not greater than the sup norm ofF. As Pa is a projection operator, it can only reduce the bou
and so we come to the following result: a functionFPL`(D) determines a bounded operatorBF

(a)

on Ha by BF
(a)(g)5Pa(Fg). For the bound we haveiBF

(a)i<iFi` . In accordance with the
standard practice in function theory, we shall refer toBF

(a) as the Toeplitz–Bergman operator~on
Ha! andF as thesymbolof BF

(a) .
As a last topic in our cursory discussion of weighted Bergman spaces, we wish to not

eachHa carries a representation of the canonical commutation relation for one degree of fre
which is equivalent to the Schro¨dinger representation onL2(R). As such, these representations a
irreducible and gauge invariant and, if one has a quantum phase in mind, could be though
describing a single mode of the quantized electromagnetic field whose state is the coherent
radiation. For a discussion of these points, see Dubinet al.6

This representation arises from the fact that the correspondencehn°Wa(hn)5en
(a) , n>0,

extends to a unitary transformationL2(R)→Ha . ~Here hn is the nth Hermite–Gauss vector.!
Since the raising operator of the Schro¨dinger representation is

A1hn5An11hn11 , n>0,

the raising operator onHa is

Aa
15Wa A1Wa* ,

with action

Aa
1en

~a!5An11en11
~a! , n>0:

similarly for the lowering operator. We have no explicit expression for these ladder operator
we can describe the number operatorNa . From

Na en
~a!5nen

~a! ,

we obtain

Na5zd/dz.

Although every f PHa is analytic, z f8(z) need not belong toHa , and soNa is unbounded;
similarly, the raising and lowering operators are unbounded. The appropriate domains for w
with this representation can be transferred from those for the Schro¨dinger representation via th
mapWa , but we shall have no need of this here. We note that, up to a phase factor,e0

(a) is the only
normalized function inHa which is invariant under the gauge group generated byNa .

III. ANGULAR TOEPLITZ–BERGMAN OPERATORS

Our interest is in the class of Toeplitz–Bergman operators obtained by starting fr
bounded function of the angle,f:T→C, and using it to define a functionfangPL`(D) on D by the
formula
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fang~reiu!5f~eiu!. ~4!

To avoid excessive notation, the multiplication operator determined byfangwill be written asBf
(a) ,

but the distinction betweenf and fang will be otherwise maintained.
We shall be considering the Fourier series forf, and our convention for the Fourier coefficien

is

f̂n5
1

2p E
p

p

f~eiu!e2 inudu. ~5!

SinceL`(T),L2(T), it is clear that the identity,

f~eiu!5 (
nPZ

f̂neinu, ~6a!

holds inL2(T). It is elementary to show that the functions

reiu°einu, nPZ,

form an orthonormal collection inL2(D,dma) ~but not an orthonormal basis!, and so we deduce
that fangPL2(D,dma) for all fPL`(T), and that

fang~reiu!5 (
nPZ

f̂neinu, ~6b!

with this series converging in the norm topology onL2(D,dma).
In order that our notation not cause any misunderstanding, we note that the functionf has a

smooth harmonic extensionfext:D→C given by

fext~reiu!5 (
nPZ

f̂nr unueinu, ~7!

but fext is not the same function asfang—which has the unfortunate consequence of our not be
able to use the known spectral theory for the harmonic case; cf. McDonald and Sundberg9

In connection with the quantum phase, the exponential and angle function onD are particu-
larly important. We reserve the symbolw for the angle~argument! function w:D→C given by

w~reiu!5H u, 0,r<1,2p<u,p,

0, r 50.
~8!

If we identify T with the real interval@2p, p!, thenw5pang for p(eiu)5u. The functionw is
bounded but discontinuous~across the cut!.

Similarly, the complex exponential function onD will be taken to be given by

e6 iw~reiu!5H e6 iu, if 0,r ,1,

1, if r 50.
~9!

These definitions are consistent with the complex exponentials of the values ofw.
We shall refer to an operator of the formBf

(a) as a Toeplitz–Bergman angle operator—mo
simply, as an angle operator.

IV. MATRIX ELEMENTS FOR THE NATURAL BASIS

For the purposes of application we need the matrix elements of the angle operators: the
determine the quantum expectations and variances in the pure states we shall consider he
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When taking matrix elementŝg,Bf
(a) f &a , because bothf and g belong toHa and Pa is

Hermitian and idempotent, the projection operator drops out of the integral, and so we ha
following.

Lemma 1:For f, gPHa , FPL`(D),

^g,BF
~a! f &a5E

D
g~w!F~w! f ~w!dma~w!, ~10!

and

iBF
~a!gia

25^Fg,PaFg&a5E
D
F~z!g~z!S E

D
Ka~z,w!F~w!g~w!dma~w! D dma~w!. ~11!

When we apply this lemma to the special casef 5en
(a) , g5em

(a) and F5fang, after a certain
amount of calculation we can express the integral in terms of choose and beta functions
result is basic to the application to quantum mechanics.

Proposition 2:Let fPL`(T). The matrix elements ofBf
(a) with respect to the basis elemen

en
(a) andem

(a) on Ha are

^em
~a! , Bf

~a!en
~a!&a5 i m2n~a11!AS m1a11

m D S n1a11
n DBX12 ~m1n!11,a11Cf̂m2n .

~12!

Proof: We have that

^em
~a! ,Bf

~a! ,en
~a!&a

5 i m2nE E
D
AS m1a11

m D S m1a11
n Dzmfang~z!zndmaz

5 i m2n
a11

p
AS m1a11

m D S n1a11
n D E

0

2p

duE
0

1

rdr r m1nei ~n2m!uf~eiu!~12r 2!a

5 i m2n
a11

p
AS m1a11

m D S n1a11
n D E

0

1

r m1n11~12r 2!adrE
0

2p

f~eiu!ei ~n2m!udu

52i m2n~a11!AS m1a11
m D S n1a11

n D E
0

1

r m1n11~12r 2!adr f̂m2n

5 i m2n~a11!AS m1a11
m D S n1a11

n D E
0

1

r ~m1n! / 2~12r !adr f̂m2n

5 i m2n~a11!AS m1a11
m D S n1a11

n DBX12 ~m1n!11,a11Cf̂m2n ,

completing the proof. h

If we introduce the expression

Xm,n
~a! 5~a11!AS m1a11

m D S n1a11
n DBX12 ~m1n!11,a11C, ~13!

this last identity reads as

^em
~a! , Bf

~a! en
~a!&a5 i m2nXm,n

~a! f̂m2n . ~14!
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Our further results depend on a close analysis of these positive real numbersXm,n
(a) .

We will now show that the limita→21 results in the matrix elements of the~usual! Toeplitz
operator of multiplication byf on H2(T). To this end we recall that, ifP1 is the projection
operator fromL2(T) to H2(T), the Toeplitz operatorM~f! with symbolf is the bounded operato
on H2(T) defined by

M~ f!~F !5P1~ fF !, FPH2~T!. ~15a!

If xn is the function inH2(T) taking valuesxn(eiu)5 i 2neinu, uPT, so that the set of vector
$xn :n>0% forms an orthonormal basis forH2(T), we see that

^xm , M~ f!xn&5 i m2nf̂m2n . ~15b!

The precise connection is the following.
Proposition 3:For fPL`(T) and allm, n>0,

lim
a→21

^em
~a!, Bf

~a!en
~a!&a5^xm, M~ f!xn&. ~16!

Proof: We rewrite Xm,n
(a) in a form in which thea-dependence is easier to work with; th

expression we obtain will be used further on as well:

Xm,n
~a!2

5~a11!2S m1a11
m D S n1a11

n DBX12 ~m1n!11,a11C2

5

G~m1a12!G~n1a12!GX12 ~m1n!11C2

G~m11!G~n11!GX12 ~m1n!1a12C2 5
J~m11,n11!

J~m1a12,n1a12!
,

where the functionJ(r ,s) is defined forr, s>1 by the formula

J~r ,s!5

GX12 ~r 1s!2C2

G~r !G~s!
5)

k>0
F12S r 2s

r 1s12kD 2G
~see Gradshteyn and Ryzhik,10 Sec. 8.325!.

It follows from this thatXm,n
(a) 5Xn,m

(a) for all m, n>0. Clearly,Xm,n
(a) is a continuous function of

aP(21,̀ ) for all m, n>0, andXm,n
(21)51 for all m, n>0. Consequently the limita→21 can be

taken from above, and yields the indicated result. h

The expressions for the matrix elements evidently simplify whena is a positive integer.
Further analysis ofXm,n

(a) allows us to interpolate from the integers. The precise estimate we
is the following.

Lemma 4:For all m, n>0 andaP@21,̀ ),

1>Xm,n
~a! >12

1

2
~ ba c12!S m2n

m1n12D 2

. ~17!

Proof: We see that

J~m1a12,n1a12!5)
k>0

F12S m2n

m1n12a1412kD 2G ,
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from which it is clear thatJ(m1a12,n1a12) is an increasing function ofa P@21,̀ ), and
hence it follows thatXm,n

(a) is a decreasing function ofa P@21,̀ ).
Restrictinga to the non-negative integers, we obtain

Xm,n
~a!2

5

)k>0F12S m2n

m1n1212kD 2G
)k>0F12S m2n

m1n12a1412kD 2G

5

)k>0F12S m2n

m1n1212kD 2G
)k>a11F12S m2n

m1n1212kD 2G
5)

k50

a F12S m2n

m1n1212kD 2G ,
and so

1>Xm,n
~a!2

>F12S m2n

m1n12D 2Ga11

.

As the quantity in braces is less than 1, we can sharpen this ‘‘squeeze’’ to

1>Xm,n
~a! >12

1

2
~a11!S m2n

m1n12D 2

,

for all m, n>0.
SinceXm,n

(a) is decreasing ina generally, extrapolation toa P@21,̀ ) is immediate, and yields
the estimate asserted in the lemma. h

Settingm5n we see thatXn,n
(a)51, from which we obtain the expectation of the angle opera

Bf
(a) in the stateen

(a) , and observe that it is identical to the expectation of the Toeplitz oper
M~f! in the statexn . That is, we have the following.

Proposition 5:For all fPL`(T) andn>0,

Exp@en
~a! ;Bf

~a!#5^en
~a! ,Bf

~a! ,en
~a!&5Xn,n

~a!5 f̂05Exp@xn ;M~ f!#. ~18!

The general form of the variance ofBf
(a) in the stateen

(a) is as a series:

Var@en
~a! ;Bf

~a!#5Exp@en
~a! ;Bf

~a!2
#2Exp@en

~a! ;Bf
~a!#2 ~19a!

5 (
m>0

u f̂m2nu2Xm,n
~a!2

2u f̂0u2. ~19b!

Things become more tractable if we compare this with the variance for the corresponding To
operator. Indeed, the comparison allows us to obtain an asymptotic form for the difference

Proposition 6:For all fPC1@2p,p# andn>0,

Var@xn ;M~ f!#2Var@en
~a! ;Bf

~a!#5O~1/n!, n→`. ~20!

Proof: Starting from the known result, cf. Dubinet al.,6
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Var@xn ;M~ f!#5 (
m>0

u f̂m2nu2,

the expression

0>Var@xn ;M~ f!#2Var@en
~a! ;Bf

~a!#

5 (
m>0

u f̂m2nu2~12Xm,n
~a! !2

>
1

2
~ ba c12! (

m>0
S ~m2n!

m1n12D 2

u f̂m2nu2.

~for any n>0! follows from our two-sided bound onXm,n
(a) .

At this point we use the assumption thatfPC1@2p,p#, from which standard calculation
then show the existence of a constantK(f).0 such that

ukf̂ku>K~ f!, kPZ.

This implies that

0<Var@xn ;M~ f!2#2Var@en
~a! ;Bf

~a!2
#>

1

2
~ ba c12!k~ f!2 (

m>n12
m22< ba c12K~ f!2/2~n11!,

for all n>0. As the right hand side isO(1/n), the proof is complete.
Now we are in a position to use known results for the Toeplitz operators to obtain

asymptotic forms forBw
(a) , BC

(a) andBS
(a) , whereC(eiu)5cosu andS(eiu)5sinu. The latter two

operators are preferred to the exponentials because they are~bounded! Hermitian. ~Cf. Dubin
et al.6 for the relevant Toeplitz asymptotics.! h

Proposition 7:For the expectation and variance ofBw
(a) ,

Exp@en
~a! ;Bw

~a!#50, n>0, ~21a!

Var@en
~a! ;Bw

~a!#5p2/31O~1/n!, n→`. ~21b!

For the trigonometric angle operators,

Exp@en
~a! ;BC

~a!#5Exp@en
~a! ;BS

~a!#50, n>0, ~22a!

Var@en
~a! ;BC

~a!#5Var@en
~a! ;BS

~a!#51/21O~1/n2!, ~22b!

asn→`. Taking the limit

lim
n→`

Var@en
~a! ;Bw

~a!#5p2/3, ~23!

lim
n→`

Var@en
~a! ;BC

~a!#5 lim
n→`

Var@en
~a! ;BS

~a!#51/2. ~24!

The sharpening of the order fromO(1/n) to O(1/n2) results from the fact thatC andShave only
a finite number of nonzero Fourier coefficients—we omit the details.

These limiting results forn→` are in accord with the feeling of many physicists concern
the distribution law phase operators should obey in the ‘‘classical’’ limit, here representedn
→`. For a discussion of this point, see Dubinet al.6
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V. ANGLE OPERATORS AND BERGMAN COHERENT STATES

In all of the Hilbert spaces on which the various angle operators~of quantum phase! act, there
are distinguished states known ascoherent. These states characteristically act as classically as
laws of quantum mechanics permit. For example, the coherent states in the Schro¨dinger represen-
tation, they are states of minimal uncertainty~in position and momentum!.

We will not need the general theory, and refer the reader to the excellent review o
Antoine, Gazeau, and Mueller,11 for a mathematical account. It suffices for our purposes simpl
define the coherent states forHa as

Cz
~a!5e2uzu2/2(

n>0
z̄nen

~a!/An!. ~25!

HerezPC is a parameter labelling the family of coherent states.
This family forms a weak overcomplete decomposition of the identity in the sense that, f

f ,gPHa ,

E
C
^g,Cz

~a!&a^Cz
~a! , f &adA~z!5^g, f &a . ~26!

The ‘‘classical’’ region for these coherent states is obtained from restrictingz by z52 iR/& and
taking R large. For this choice ofz we simplify the notation by writingC (a,R) for the vector in
question, in which case

C~a,R!5e2R2/4(
n>0

i nRnen
~a!/A2nn!. ~27!

By substituting our result for the matrix elements with respect to theen
(a) , we obtain the expec-

tation of Bergman angle operators with respect to these states.
Proposition 8:For fPL`(T) andR.0,

Exp@C~a,R!;Bf
~a!#5e2R2/2 (

m,n>0
i n2mRn1m^em

~a! ,Bf
~a!en

~a!&a /A2m1nm!n!

5e2R2/2 (
m,n>0

Rm1nXm,n
~a! f̂m2n /A2m1nm!n!. ~28!

If f is odd on@2p, p#, this expectation is zero, and so, in particular,

Exp@C~a,R!;Bw
~a!#50. ~29!

Considering onlyBw
(a) , its variance in these states reduces to

Var@C~a,R!;Bw
~a!#5iBw

~a!C~a,R!ia
2. ~30!

This can be written as a series with terms containing theXm,n
(a) , but that is not very illuminating.

More information is obtained from the largeR asymptotic expression, but we will not attempt
compute this directly. Instead, we shall carry over a technique used in Dubinet al.6 to obtain
asymptotics for Toeplitz operators with respect to the coherent states onH2(T).

The first step is to note that the variance is smaller than the expression

iw•C~a,R!ia
25^C~a,R!, Buwu2

~a! C~a,R!&a5e2R2/2 (
m,n>0

Rm1nXm,n
~a! ~ uwu2!m̂2n /A2m1nm!n!.

This can be successfully compared to the quantity
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F~R!5e2R2/2 (
m,n>0

Rm1n~ uFu2!m2n
∧ /A2m1nm!n!, ~31!

which is the expectation of the Toeplitz operator with symbolp2(eiu)5u2 with respect to a certain
Hardy space coherent state, the details of which will not be needed here.

The asymptotic form forF(R) is6

F~R!51/~2R2!1O~1/R3!. ~32!

The result is the following.
Proposition 9:The estimate

uF~R!2iw•C~a,R!ia
2 u<C/R, ~33!

holds for some constantC. Hence

Var@C~a,R!;Bw
~a!#5O~1/R!, as R→`. ~34!

From our work with Toeplitz operators, we expect that this result could be sharpened t
asymptotic orderO(R22).

Proof: Using our estimate forXm,n
(a) ,

uF~R!2iw•C~a,R!ia
2 u<e2R2/2 (

m,n>0
Rm1n~12Xm,n

~a! !u~ uwu2!m2n
∧ u/A2m1nm!n!

<
1

2
~ ba c12!e2R2/2 (

m,n>0
Rm1nS m2n

m1n12D 2

u~ uwu2!m2n
∧ u/A2m1nm!n!.

The Fourier coefficients of the functionp2(eiu)5u2 are

~p2! k̂5 H2~21!k/k2, kÞ0,
p2/3, k50.

Substituting this back, then applying some manipulations to the result,

uF~R!2iw•C~a,R!ia
2<~ ba c12!e2R2/2(

mÞn

Rm1n

A2m1nm!n!

1

~m1n12!2

<~ ba c12!e2R2/2(
mÞn

Rm1n

A2m1nm! ~n11!!

1

~m1n12!3/2

<~ ba c12!e2R2/2S (
mÞn

R2~m1n!

2m1nm! ~n11!! D 1/2S (
mÞn

1

~m1n12!3D 1/2

<C/R,

for some constantC. With the asymptotic form forF(R) given above, the variance is seen to
as asserted. h

VI. SUMMARY

The angle operatorsBf
(a) , and in particularBw

(a) , Be6 iw
(a) , play the same role in relation to

quantum phase theory forHa as do the Toeplitz and Bargmann–Segal operators do on
respective Hilbert spaces. The connection to physics relies on the fact that these Hilbert
carry ~unitarily equivalent! irreducible and gauge invariant representations of the canonical c
mutation relation for one degree of freedom. The asymptotic variance of the operators
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symbolw in the natural basis all have the limitp2/3. Whether or not this is a convincing argume
for the relevance of these operators for the quantum phase is left to the reader to decide: it
taken so.

There are a number of mathematical questions left unanswered by this work. First, there
technical question of sharpening the asymptotic order of the variance forBw

(a) for the coherent
state family. Next, we have not considered all the families of states usually taken to be inter
for the quantum phase. Notably, we have omitted the family

js;b
~a!5

1

As11
(
n50

s

einben
~a! , ~35!

which span thes11-dimensional subspace ofHa with the alternate basis$e(a), ...,es
(a)%. Since

e2 igNzs;b
~a!5zs;b1g

~a! ,

these states can be interpreted as being uniformly distributed over gauge—though some ph
identify gauge with quantum phase, which we do not believe to be justified. As all sums are
there is no particular difficulty in filling this gap in our asymptotic analysis.

There is the question of finding an explicit form for the raising and lowering operators a
on Ha . This is not essential for the quantum phase, but it would be useful to know noneth

Most worrying is that we have no results at all for the spectrum of theBf
(a) . This is a problem

for Toeplitz–Bergman operators with symbols which do not happen to be special, e.g., harm
and any spectral results would be of interest to pure mathematicians as well.
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semigroup
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This article introduces a concept of subharmonic projections for a quantum Markov
semigroup, in view of characterizing the support projection of a stationary state in
terms of the semigroup generator. These results, together with those of our previous
article @J. Math. Phys.42, 1296~2001!#, lead to a method for proving the existence
of faithful stationary states. This is often crucial in the analysis of ergodic proper-
ties of quantum Markov semigroups. The method is illustrated by applications to
physical models. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1424475#

I. INTRODUCTION

This article continues the investigation on normal stationary states initiated in Ref. 1
main goal is to characterize the support projection of a stationary state under the actio
quantum Markov semigroup. This is an important problem in several respects, which is s
here for the first time, in terms of the semigroup generator.

The qualitative analysis of a quantum dynamics usually enquiries whether the evolution
tually goes in the steady state regime. This is information primarily carried by the suppor
jection of a stationary state.

We recall that a normal statev is calledfaithful if v(a)50, for a positivea, implies thata
50. In this case its support projection coincides with the identity. The existence of a no
faithful stationary state is often assumed as a crucial hypothesis in the analysis of the e
behavior of a quantum Markov semigroup~see, e.g., Refs. 2–4!.

The support of a normal stationary state here is characterized through subharmonic proj
~see Definition II.1!. This name is borrowed from potential and classical Markov processes
ries ~see Refs. 5 and 6!. In the latter, the absence of nontrivial subharmonic projections is equ
lent to the concept ofirreducibility, which roughly means that the dynamics cannot end
eventually in a smaller subspace. In this article~see Corollary III.1 and the related discussion!, we
compare this notion with its operator-algebraic counterpart~see Refs. 7 and 8!.

The article is organized as follows. The next section characterizes the support projectio
stationary state on a semi-finite von Neumann algebra. Then we analyze subharmonic proj
for semigroups on the algebra of all linear bounded operators on a given Hilbert space. T
further specialized to a class of quantum Markov semigroups with unbounded infinitesima
erators of Lindblad type. The main result~Theorem III.1! shows that, in this case, the suppo
projection of a stationary state determines an invariant subspace for the coefficient operator
infinitesimal generator. A full description of invariant subspaces for a family of operators, o
infinite dimensional space, is usually a hard mathematical problem~see Ref. 9!. However, this
article also provides some useful tools~Theorems IV.1 and IV.2! for actually solving this problem.
The last section is devoted to physical applications10,11 illustrating our method.

a!Electronic mail: rrebolle@mat.puc.cl
10740022-2488/2002/43(2)/1074/9/$19.00 © 2002 American Institute of Physics
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II. THE SUPPORT OF A STATIONARY STATE

Let there be given a semifinite von Neumann algebraA of operators over a complex separab
Hilbert spaceh, endowed with a trace tr(•) and a unit1. A quantum Markov semigroup~QMS!
T5(Tt) t>0 on A is aw* -continuous semigroup of normal, completely positive maps preservin1.
Its generator is the operatorL whose domainD(L) is the vector space of all elementsaPA for
which thew* -limit of t21(Tt(a)2a) exists. ForaPD(L), L(a) is defined as the limit above.

Throughout this article we will be concerned only with normal states; moreover, we will o
identify such states with their density matrices. Thesupport projectionof a stater is the orthogo-
nal projection over the closure of its range. Aninvariant (or stationary) stater is characterized
through the equation tr(rTt(a))5tr(ra)5tr(T* t(r)a) for anyaPA, t>0, whereT* denotes the
predual semigroup.

Definition II.1: A positive operator aPA is subharmonic~resp. superharmonic, resp. ha
monic) for the semigroup ifTt(a)>a ~resp.Tt(a)<a, respTt(a)5a), for all t>0.

Subharmonic functions play a fundamental role in the potential theory of classical Ma
semigroups~see, for instance, Ref. 5!. They allow us to establish useful criteria for decidin
whether the dynamics scatters or eventually remains in a bounded region. In our framewo
will start by showing a relation between invariant states and subharmonic projections.

Theorem II.1: The support projection of a normal stationary state for a quantum Mar
semigroup is subharmonic.

This theorem has important consequences like the following proposition.
Proposition II.1: For any quantum Markov semigroupT the following are equivalent:

~a! p is subharmonic forTt(•), for any t>0,
~b! the subalgebra p'Ap' is invariant underTt(•), for all t>0, and
~c! for any normal stater such that prp5r, we havetr(rTt(p'))50, for all t>0.

Postponing the proof, we introduce a definition motivated by this result.
Definition II.2: We say that a quantum Markov semigroup is irreducible if there is no n

trivial subharmonic projection.
This notion will be compared with that oftopological irreducibility ~see Ref. 7, Definition

2.3.7! in the next section.
We now proceed to the proofs, starting with a lemma of frequent use in this article.
Lemma II.1: Let p be a projection of the von Neumann algebraA, and xPA a positive

element. If pxp50, then p'xp5pxp'50.
Proof: SupposeA#B(h) and let u,vPh with pu5u, pv50. Since x is positive, ^zu

1v,x(zu1v)&52R(z^v,xu&)1^v,xv& is positive for everyzPC. Thereforê v,xu& must vanish
and the conclusion readily follows. h

Proof (of Theorem II.1):Let p be the support projection of a normal stationary stater of
(Tt) t>0 . Thus rp5pr5r. Fix t>0. We first notice thatpTt(p)p<p, since p<1. Therefore,
tr(r(p2pTt(p)p))5tr(r(p2Tt(p)))50, and, sincer is faithful on the subalgebrapAp, it fol-
lows

pTt~p!p5p. ~1!

On the other hand,pTt(p')p5pTt(1)p2pTt(p)p5p2p50. Thus, sinceTt(p') is positive and
Tt(p)512Tt(p'), Lemma II.1 yieldspTt(p')p'505p'Tt(p')p. This identity, together with
~1!, lead toTt(p)5p1p'Tt(p)p', showing thatp is subharmonic. h

Proof (of Proposition II.1):Assume that condition~a! holds. Then~1! yields pTt(p')p
5pTt(1)p2pTt(p)p50. Therefore, for any positivexPp'Ap' it follows pTt(x)p50 since 0
<pTt(x)p<ixipTt(p')p50. From Lemma II.1,pTt(x)p'5p'Tt(x)p50, sinceTt(x) is posi-
tive. ThusTt(x)5p'Tt(x)p'Pp'Ap'. The same conclusion holds for any arbitraryxPp'Ap'

since it is a linear combination of four positive elements ofp'Ap'.
We now prove that~b! implies ~c!. By hypothesis, for anyxPp'Ap', it holds Tt(x)

5p'yp' for someyPA. Clearly, the above equality yieldsy5Tt(x) since^v,Tt(x)u&5^v,yu&
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for all vectorsu andv belonging to the range ofp'. Therefore,Tt(x)5p'Tt(x)p'. In particular,
Tt(p')5p'Tt(p')p'. Hence, given a stater such thatpr5rp5r, we havep'r5rp'50 which
yields tr(rTt(p'))50.

Finally, ~c! implies ~a!. From~c! we obtain tr(rpTt(p')p)50, thuspTt(p')p50. As a result,
by Lemma II.1,Tt(p')5p'Tt(p')p'<p', which givesTt(p)5Tt(12p')>p. h

III. SUBHARMONIC PROJECTIONS. THE CASE AÄB„h…

We now concentrate on the caseA5B(h). From now on, the QMS is the minimal obtaine
from an unbounded generator given as a quadratic form~generalizing the representations given
Gorini, Kossakowsky, and Sudharshan,12 and Lindblad13 and extended by Davies14!:

£~x!@v,u#5^Gv,xu&1 (
l >1

^L l v,xLl u&1^v,xGu&,

(xPB(h),v,uPD(G)), under the following hypotheses:

~1! „H-min … The operatorG is the generator of a strongly continuous contraction semigr
(Pt) t>0 on h. The domainD(L l ) of each operatorL l contains the domainD(G) of G and
£(1)@v,u#50, for all u,vPD(G).

~2! „H-Markov … Tt(1)51, for all t>0.

Thus, for allxPB(h), the quadratic form £(x) is defined over the domainD(G)3D(G).
The main result of this section is the following characterization of subharmonic project
Theorem III.1: Assume„H-min … and „H-Markov …. A projection p is subharmonic forT if

and only if the range R(p) of p is invariant for the operators Pt ( t>0) and

L l u5pLl u, ~2!

for all uPD(G)ùR(p), l >1.
If G and theL l ’s are bounded, Theorem III.1 says that a projectionp is subharmonic if and

only if its rangeR(p) is an invariant subspace for these operators. In the general case, this
to be handled more carefully as shows the following lemma.

Lemma III.1: Let(Pt) t>0 be the semigroup generated by G. A closed subspace R(p) is
invariant for the operators Pt ( t>0) if and only if D(G)ùR(p) is dense in R(p),
(l2G)(D(G)ùR(p))5R(p) for any l.0 and Gu5pGu for any uPD(G)ùR(p).

Remark:In other wordsp is invariant for the operatorsPt(t>0) if and only if the restriction
of G to R(p) is the infinitesimal generator of the semigroup (PtuR(p)) t>0 on R(p).

Proof: Suppose first thatR(p) is invariant for the operatorsPt ( t>0). ThenR(p) is also
invariant for the resolvent operatorsR(l;G) (l.0). Therefore, for eachuPR(p), the vector
ul5lR(l;G)u belongs toD(G)ùR(p) and, by the well-known properties of the Yosida a
proximations,ul converges tou as l goes to infinity. ThusD(G)ùR(p) is dense inR(p).
Moreover, for anyuPD(G)ùR(p) we have t21(Ptu2u)5t21(Ptpu2pu)5pt21(Ptu2u).
Therefore, lettingt→0, we obtainGu5pGu.

Finally, sinceR(p)5(l2G)R(l;G)R(p) andR(l;G)(R(p))#D(G)ùR(p),

R~p!#~l2G!~D~G!ùR~p!!5p~l2G!~D~G!ùR~p!!#R~p!.

It follows that (l2G)(D(G)ùR(p))5R(p).
Conversely, sinceR(l;G)R(p)5R(l;G)(l2G)(D(G)ùR(p))5D(G)ùR(p), the closed

subspaceR(p) is invariant forR(l;G) for any l.0. From the equality

Pt5strong2 lim
n→`

~nt21R~nt21;G!!n, ~3!
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~Ref. 15, Cor. 5.45, p. 92! it follows that R(p) is Pt-invariant. h

To proceed with the proof of Theorem III.1 we recall some notations and well-known fac
the minimal QMS~see, e.g., Refs. 16, 1, and 17!. Under „H-min … and „H-Markov …, for any x
PB(h), (Tt(x)) t>0 is the uniquew* -continuous family of operators inh such that, for allu,v
PD(G), any of the equivalent equations below holds:

^v,Tt~x!u&5^Ptv,Ptu&1 (
l >1

E
0

t

^L l Pt2sv,Tt~x!L l Pt2su&ds, ~4!

^v,Tt~x!u&5^v,xu&1E
0

t

^v,£~Ts~x!!u&ds. ~5!

Moreover, the solution to~4! is obtained as the limit of an approximating sequence (T (n))n>0

defined recursively byT t
(0)(x)5Pt* xPt and

^u,T t
(n11)~x!u&5^Ptu,xPtu&1 (

l >1
E

0

t

^L l Pt2su,T t
(n)~x!L l Pt2su&ds,

for anyxPB(h) anduPD(G). Given a positive elementxPB(h) the above sequence is increa
ing with n and this allows us to defineTt(x)5supnT t

(n)(x), which is the well-knownminimal
quantum Markov semigroup~see, for instance, Ref. 16!.

Proof (of Theorem III.1):We start assuming thatp is subharmonic, thusTt(p)>p for all t
>0. From Eq. ~4! we obtain p'>Tt(p')>Pt* p'Pt . Therefore, for all uPR(p) it holds
^u,Pt* p'Ptu&5ip'Ptui250, that is,p'Ptp50. ThusPtp5pPtp, for all t>0, i.e., the range
R(p) of p is invariant for the operatorsPt (t>0). In addition, Eq.~5! yields

E
0

tS ^Gu,Ts~p'!u&1 (
l >1

^L l u,Ts~p'!L l u&1^u,Ts~p'!Gu& Dds<0,

for all t>0 and alluPD(G)ùR(p). As a result, computing the derivative at 0 of the abo
equation, we obtain^Gu,p'u&1( l >1^L l u,p'L l u&1^u,p'Gu&<0. Now, pu5u implies
p'Gu50. The above inequality yields( l >1ip'L l pui2<0, that is,p'L l pu50 and~2! follows.

Conversely, we assume condition~2!. We will prove thatp is subharmonic by an induction
argument which relays on the sequence (T (n))n>0 used in the construction ofT. First, p is
subharmonic forT (0) sinceT t

(0)(p')5Pt* p'Pt5p'Pt* p'Ptp
'<p'. Second, assume thatp is

subharmonic forT (n). We prove that it is subharmonic forT (n11), too. Indeed, for allu
PD(G)ùR(p), the definition ofT (n11) and the induction hypothesis yield

^u,T t
(n11)~p'!u&<^u,Pt* p'Ptu&1 (

l >1
E

0

t

^L l Pt2su,p'L l Pt2su&ds50,

for any t>0. It follows that pT t
(n11)(p')p50 and Lemma II.1 impliesp'T t

(n11)(p')p
5pT t

(n11)(p')p'50. Therefore,T t
(n11)(p')<p', for all t>0 andp is subharmonic forT (n).

Hence,p is subharmonic for the minimal semigroupT and the proof is complete. h

In what follows, given a setM of bounded operators onh, we denoteM8 the commutator
algebra. We recall thatM is called topologically irreducibleif M85C1 ~see Ref. 7, Definition
2.3.7!. This is equivalent to saying that the only closed subspaces ofh which are invariant under
the action ofM are the trivial subspaces$0% andh.

If G and theL l ’s are bounded operators, Theorem III.1 implies thatT is irreducible if and
only if $G,L l ; l >1% is topologically irreducible. If G and theL l ’s satisfy only„H-min …, we can
prove the following:

Corollary III.1: Assume that„H-min … and „H-Markov … hold and denote byT the related
minimal quantum Markov semigroup. Let
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M5$L l PB~h!:l >1,'m>1s.t.Lm5L l* %.

Then every subharmonic projection belongs toM8.
If M is topologically irreducible, thenT is an irreducible semigroup.
Moreover, if T admits a normal stationary stater, then r is the unique normal faithful

stationary state andT* t(s) converges in trace-norm tor as t goes tò , for any normal states.
Proof: Let p be a subharmonic projection. Clearly, by~2! p satisfiesL l p5pLl p, for all

L l PM. In addition, ifLm* 5L l , thenpLl 5(L l* p* )* 5(Lmp)* 5(pLmp)* 5pLl p5L l p. This
shows thatpPM8. In particular, ifM8 is trivial, then the semigroup is irreducible.

If T has a normal stationary stater, then Theorems III.1 and II.1 imply that its suppo
projection coincides with the identity, so that this state is faithful.

Now, given any normal states, T* t(s) satisfies tr(T* t(s)x)→tr(rx), by Theorem 2.1 in Ref.
4. Suppose thatr0 is another normal stationary state. Then tr(r0x)5tr(T* t(r0)x)→tr(rx), for all
xPB(h). Thenr05r.

Finally, notice that for eacht>0 bothT* t(s) andr have unit trace norm. This fact, togeth
with the weak convergence of the family (T* t(s)) t>0 , finally implies its trace-norm convergenc
towardsr. h

IV. INVARIANT SUBSPACES

The problem of findingall the invariant subspaces for a given bounded operator on an infi
dimensional Hilbert space is far from being simple~see, e.g., Ref. 9!. Therefore, it is so far unclea
how ~2! will actually be useful for an unboundedL l . To overcome this difficulty, we start from
the operatorsPt and prove that any subharmonic projection is invariant also for semigro
generated by suitable perturbations ofG by means of theL l ’s.

The first theorem is inspired by Theorem 3.2, on p. 81 of Ref. 15.
Theorem IV.1: Let G be the generator of the strongly continuous contraction semigrou

and let B an operator onh such that

~i! D(B)$D(G),
~ii ! iBui<aiGui1biui , for uPD(G), with 0<a,1 and b>0, and
~iii ! G1rB is dissipative for each rP@0,1#.

Then, G1rB generates a strongly continuous contraction semigroup P(r ).
Moreover, if the range R(p) of a projection p is invariant for the operators Pt and

B(D(G)ùR(p))#R(p), then R(p) is also invariant for the operators Pt
(r ) , for each rP@0,1#.

Proof: We prove that there exists ad.0, depending only ona andb, such that ifG1r 0B is
maximal dissipative~hence its generates a strongly continuous contraction semigroup b
Lumer–Phillips’ theorem! andR(p) is invariant for the operatorsPt

(r 0) , then the same conclusio
holds forG1rB for r P@r 02d,r 01d#ù@0,1#. The result follows since every point of@0,1# can
be reached from 0 in a finite number of steps of lengthd.

SinceG1r 0B is maximal dissipative, thenl12(G1r 0B) is invertible for everyl>1 and its
inverseI (l,r 0) satisfiesi I (l,r 0)i<l21. The inequality~i i ! allows us to show thatBI(l,r 0) is a
bounded operator. Indeed, foruPD(G) we have

iBui<ai~G1r 0B!ui1ar 0iBui1biui<ai~G1r 0B!ui1aiBui1biui .

It follows that iBui<a(12a)21i(G1r 0B)ui1b(12a)21iui . Moreover, sinceI (l,r 0):h
→D(G) and satisfies (G1r 0B)I (l,r 0)5lI (l,r 0)21, the above inequality implies

iBI~l,r 0!ui<
a

12a
i~lI ~l,r 0!21!ui1

b

12a
i I ~l,r 0!ui<

2a1b

12a
iui ,

for all uPD(G). ThereforeBI(l,r 0) (l>1) is bounded.
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Let d5(12a)(4a12b)21. We show now that, for everyr P@r 02d,r 01d#ù@0,1#, G
1r 0B is maximal dissipative by proving that it is invertible so that its range is all ofh. The
identity l12(G1rB)5l12(G1r 0B)1(r 02r )B5(11(r 02r )BI(l,r 0))(l12(G1r 0B))
shows thatl12(G1rB) is invertible if and only if11(r 02r )BI(l,r 0) is invertible. But this
operator is indeed invertible for allr such thatir 2r 0i,(12a)(2a1b)21<iBI(l,r 0)i21 and
its inverse is given by the von Neumann series

~11~r 02r !BI~l,r 0!!215 (
n>0

~r 2r 0!nBI~l,r 0!n. ~6!

This shows thatG1rB is maximal dissipative and

~l12~G1rB !!215~l12~G1r 0B!!21~11~r 02r !BI~l,r 0!!21. ~7!

If R(p) is invariant for the semigroup generated byG1r 0B and B(D(G)ùR(p))#R(p),
then BI(l,r 0)(R(p))#B(D(G)ùR(p))#R(p). Therefore, by~6!, R(p) is invariant also for
(11(r 02r )BI(l,r 0))21. It follows then from~7! that R(p) is invariant also under the resolven
(l12(G1rB))21. Finally, the approximation~3! shows thatR(p) is invariant also for the op-
eratorsPt

(r ) . h

Invariant subspaces are also stable under appropriate multiplicative perturbations ofG.
Theorem IV.2: Let G be the generator of the strongly continuous contraction semigrou

and let R(p) be an invariant subspace under the operators Pt . Let BPB(h) such that

~i! the domain of G is invariant under both B and B* ,
~ii ! the closure of B* GB generates a strongly continuous contraction semigroup PB, and
~iii ! R(p) is an invariant subspace for both B and B* .

Then R(p) is an invariant subspace for the operators Pt
B .

Remark:Notice thatB* GB is dissipative, hence it is closable~see, e.g., Ref. 7, Prop. 3.1.15!.
Moreover, its closure is dissipative, too, therefore the hypothesis (i i ) is equivalent to require tha
B* GB is maximal dissipative by the Lumer–Phillips theorem.

Proof: We first assume thatG is bounded. In this case, for everyl.iB* GBi , we have

~l12B* GB!215 (
n>0

l2(n11)~B* GB!n.

It follows then from~i i i ! thatR(p) is invariant under (l12B* GB)21 and, by the approximation
~3!, we obtain thatR(p) is invariant under all the operatorsPt

B .
In the general case, withG unbounded, for everyl.0, let Gl5lG(l12G)21. The sub-

spaceR(p) is invariant underGl, thus, by the first part of the proof, it is also invariant under
operatorsPt

B,l of the semigroup generated byB* GlB.
Clearly, for eachuPD(B* GB) we haveB* GBu5 liml→`B* GlBu, and D(B* GB) is a

core for the closure ofB* GB, i.e., (h12B* GB)(D(B* GB)) is dense inh for anyh.0. There-
fore, by Theorem 4.5 on p. 88 of Ref. 15,Pt

B,l converges strongly toPt
B asl→` uniformly for

t in bounded intervals. The conclusion readily follows. h

V. APPLICATIONS

A. A quantum model of absorption and stimulated emission

This example corresponds to a family of models introduced by Gisin and Percival in Re
The framework is given by the Hilbert spaceh5 l 2(N) where, as usual, we call (en)n>0 the
canonical orthonormal basis. The operators defining the form-generator £(•) areL15na* a, L2

5ma, H5j(a* 1a), where m,n.0 and jPR. Thus, G52 i j(a* 1a)2221(n2(a* a)2

1m2a* a), whose domain isD(G)5D(N2), whereN5a* a is the number operator. We skip th
straightforward verification of„H-min …. „H-Markov … can be checked applying the main result
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Ref. 18. The existence of an invariant state has been proved in Ref. 17 as an application
main result in Ref. 1. To continue the analysis, we prove its faithfulness and uniqueness.

Corollary V.1: If jÞ0, the QMS which corresponds to the model of absorption and stimul
emission here before is Markovian and has a unique faithful stationary stater` .

Moreover, given any other states, limt→`tr(T* t(s)x)5tr(r`x), for any xPB(h).
Proof: We must characterizeall common invariant subspaces forPt , which satisfy addition-

ally ~2! We will repeatedly use Theorem IV.1 to obtain the desired classification of inva
subspaces.

Note that, foruPD(N2), L1
2u5(2G1m2(a* a)12i j(a* 1a))u. Hence, a standard compu

tation, using Young’s inequality (2ts<e2t21e22s2) and the canonical commutation relation
yields

iL1
2ui<2iGui1m2n22iL1ui14ujuia* ui

<2iGui1S m2

n2 1
2uju
n2 D iL1ui14ujuiui

<2iGui1
m212uju

n2 iL1
2ui1/2iui1/214ujuiui

<2iGui1eiL1
2ui1F S m212uju

n2e D 2

14ujuG iui .

Therefore, (12e)iL1
2ui<2iGui1@(m212uju)2n24e2214uju#iui , for any uPD(N2), 0,e

,1. Thus, for all 0<l,1, there exists 0<a,1 and b.0 such thati(l/2)L1ui<aiGui
1biui . Clearly, Gl5G1(l/2)L1

2 is dissipative and generates a semigroupP(l), by Theorem
IV.1. Moreover, the same theorem shows that all our invariant subspaces are also invarian
the operatorsPt

(l) .
We now let l→1. Since D(N2) is a core forG1 and Glu→G1u as l→1 for any u

PD(N2) it follows from Ref. 15, Theorem 4.5, p. 88, thatPt
(l)u→Pt

(1)u, uniformly in t for t in
bounded intervals. As a result, all our invariant subspaces arePt

(1)-invariant as well.
Repeating the above argument, it turns out that the sought invariant subspaces are in

under the semigroup generated byG11(m2/2n)L1 too. This generator is a restriction o
2 i j(a* 1a). It follows from Lemma III.1 that (a* 1a)(D(N)ùR(p))#R(p). At this point, we
can apply again Theorem IV.1, addingi j(a* 1a) to G1 , so that the desired invariant subspac
are also invariant under the operatorse2tN, for all t. These operators are compact and self-adjo
therefore their invariant subspaces are generated by eigenvectors~see Ref. 19, Theorem 4!, i.e.,
they are the subspacesIK , spanned by$ek : kPK% whereK#N.

In the above argument we obtained also that, ifjÞ0, (a* 1a)(IKùD(N))#IK . This, to-
gether witha(IKùD(N))#IK , yieldsa* (IKùD(N))#IK , for all K#N, if jÞ0. As a result, if
jÞ0, the only invariant subspaces are$0% andh. If j50, it is easy to show that the full collectio
of invariant subspaces is$0%,h,I$0,...,k% , for all kPN.

To summarize, ifjÞ0, the QMS has a faithful normal stationary stater` , say.
Moreover, since the generalized commutator of$L l ,L l* ,l >1% is trivial, the semigroup con-

verges towards the equilibrium~cf. Refs. 2 and 4, Theorem 2.1, p. 567! and the set of norma
stationary states is reduced to a single element. h

B. A multimode Dicke model in quantum optics

This model has been introduced by Alli and Sewell in Ref. 11. In our previous article,1 we
proved that a stationary state exists for this semigroup. We recall the corresponding no
briefly.

The system consists ofN identical two-level atoms coupled with a radiation field correspo
ing to n modes. Therefore, one can chooseh5(C2) ^ N

^ ( l 2(N)) ^ n.
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Let s1 , s2 , s3 be the Pauli matrices and define the spin raising and lowering oper
s65(s16 is2)/2. We denote byse,r (e51,2,3,1,2) the spin component of the atom at the s
r . The free evolution of the atoms is described by a generatorLmat:

Lmat~x!5 i @H,x#2
1

2 (
j 51

3N

~Vj* Vjx22Vj* xVj1xVj* Vj !, ~8!

where H5(«/2)( r 51
N s3,r , and theVj ’s are the operatorsVj5c6s6,r if j 53r 61, and Vj

5c3s3,r if j 53r , with «,c1 ,c2.0, c3>0.
We denote byaj* , aj , the creation and annihilation operators corresponding to thej th mode

of the radiation (j 51,...,n), which clearly satisfy the CCR:@aj ,ak* #5d jk1, @aj ,ak#50.
The free evolution of the radiation is given by the formal generator

Lrad~x!5 (
l 51

n

~k l ~2al* al x12al* xal 2xal* al !1 iv l @al* al ,x# !, ~9!

wherek l .0 andv l is real. The operator

H int5
i

N1/2 (
r 51

N

(
l 51

n

l l ~s2,ral* e22p ik l r2s1,ral e2p ik l r ! ~10!

(kl ,l l real! describes the coupling between radiation and matter.
With the above notations, the generator of the whole dynamics is given by

L~x!5Lmat~x!1Lrad~x!1 i @H int ,x#. ~11!

Identifying L l andG in our notations,L l 5Ak l al (l 51,...,n). All the remainingL l ’s are
bounded. Among them a finite number (3N) coincide with some of theVj ’s appearing in~8! and
the others vanish. The operatorG, with domainD(( l 51

nal* al ), becomes

G52
1

2 (
l

L l* L l 2 i(
l

v l al* al 2 iH 2 iH int . ~12!

In Ref. 1 we checked both„H-min …, „H-Markov … and proved that a stationary state exists.
a further step we now show the following.

Corollary V.2: The Alli–Sewell QMS has a unique faithful normal stationary state.
Characterizing subharmonic projectionsp is not a trivial problem at all because the annihil

tion operators admit plenty of nontrivial invariant subspaces~e.g., the linear span of any finit
family of exponential vectors!.

Proof: Call M the set$s1,r ,s2,r :r 51,...,N%. M is a self-adjoint set, and by Corollary III.1
any invariant projection is an element ofM8, therefore it is of the form1^ p, where p is a
projection on l 2(N). Now, 1^ p must be invariant under the operatorsPt of the semigroup
generated byG. We apply Theorem IV.1 as in the previous example to removeiH
1(1/2)( l .nL l* L l from G, to end up withG152 1

2( l 51
n(k l 12iv l )al* al 2 iH int . Theorem

IV.1 shows that1^ p is invariant under the operatorsPt
(1) of the semigroup generated byG1 , too.

Applying Theorem IV.2 withB5s1,1 ,...,s1,N , sinceB* H intB50, the sought projections
are also invariant under the operatorsPt

B of the semigroup generated by 2B* G1B
52B* B( l 51

n(k l 12iv)al* al . Therefore, being of the form1^ p, it follows that p is an
invariant projection for exp(2t(l 51

n(k l 12iv)al* al ), for all t. These are normal operators b
normality alone does not guarantee that the eigenspaces are generated by eigenvectors~see Ref. 9!.
However, the above operators are compact, too. Thus, Theorem 4 on p. 272 in Ref. 19 appli
shows that all the invariant subspaces are generated by eigenvectors.
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At this point, since the eigenvectors are explicitly known andL l 5Ak l al , with k l .0, we
can repeat the argument of the previous example to conclude thatp must be trivial. h

C. A classical Markov semigroup

Let E be a metric space and letE its Borels-field. Given a positive measurem on (E,E) call
A5L`(E,E,m). Let M (x,A)5*Am(x,y)m(dy) be a transition function onE3E. Then~see, for
instance, Ref. 6!,

L f ~x!5E
E
~ f ~y!2 f ~x!!M ~x,dy!

defines a bounded operator onA which is the generator of a~classical! Markov semigroup.
In this case, the predual von Neumann algebraA* is L1(E,E,m) and any normal state is

represented by a probability measuren absolutely continuous with respect tom.
Proposition V.1: A projection1A (APE) is subharmonic for the given Markov semigroup

and only if M(x,Ac)50 for m almost all xPA.
In particular, the semigroup is irreducible if and only if the support of M(x,•) coincides with

that of m for m-almost all xPE.
It is worth noticing that the Markov process, starting from a pointxPA, can only go inside

the support ofM (x,•). Then to say that 1A is subharmonic means thatA includes the support o
any M (x,•) for xPA, m2 almost surely. That is, for anyxPA, the process cannot jump outsid
of A.

Proof: Take a projectionp51APA. This projection is subharmonic if and only ifL1A>0.
However, forxPA, L1A(x)5(M (x,A)2M (x,E))<0, and forxPAc, L1A(x)5M (x,A). There-
fore, 1A is subharmonic if and only if, form, almost allxPA, M (x,Ac)50.

The second assertion now follows easily. h

ACKNOWLEDGMENTS

This research has been supported by ‘‘Ca´tedra Presidencial en Ana´lisis Cualitativo de Siste-
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We consider the grading ofsl(n,C) by the groupPn of generalized Pauli matrices.
The grading decomposes the Lie algebra inton221 one-dimensional subspaces. In
the article we demonstrate that the normalizer of grading decomposition ofsl(n,C)
in Pn is the group SL(2,Zn), where Zn is the cyclic group of ordern. As an
example we considersl(3,C) graded byP3 and all contractions preserving that
grading. We show that the set of 48 quadratic equations for grading parameters
splits into just two orbits of the normalizer of the grading inP3 . © 2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1430046#

I. INTRODUCTION

Among the gradings of reductive Lie algebras over the complex number field and the s
taneous gradings of their representation spaces, by far the most important ones are the gra
maximal torus. In the case of the Lie algebra it is also called root or Cartan decomposition
a grading means a decomposition into eigenspaces of the maximal torus. For a greater pa
past century such gradings have been the workhorses of the theory and applications.

The typical role a Lie algebra plays in physics is the algebra of infinitesimal symmetries
physical system, which themselves are described in terms of elements of representation
eigenvectors of the maximal torus. The corresponding eigenvalues are then the quantum nu

The question about the existence of other gradings, like those by maximal torus~called fine
gradings!, has been raised systematically in Ref. 1 and solved for the simple Lie algebras o
C in Refs. 2–4 and recently also for the real number field in Refs. 5 and 6.

Gradings of Lie algebras are closely related to their automorphisms. In a seminal pap1 in
1989, it was shown that the finest gradings~called fine! of finite-dimensional simple Lie algebra
L can be classified~up to equivalence generated by elements of AutL! by the maximal Abelian
groups of diagonable automorphisms ofL, briefly the MAD groups. In general, the MAD group

a!Electronic mail: havlicek@km1.fjfi.cvut.cz
b!Electronic mail: patera@crm.umontreal.ca
c!Electronic mail: pelantova@km1.fjfi.cvut.cz
d!Electronic mail: tolar@br.fjfi.cvut.cz
10830022-2488/2002/43(2)/1083/12/$19.00 © 2002 American Institute of Physics
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are composed, besides subgroups of the maximal torus, by well-known outer automorphism7 and
by elements of finite order~EFO! in the corresponding Lie groups. Since the conjugacy classe
EFO were systematically described in Ref. 8~see also Ref. 7!, it was not difficult to classify the
fine gradings in the lowest cases likesl(2,C) andsl(3,C).9–11

A prominent role in the grading problem of simple Lie algebras is played by the finite g
Pn of n3 matricesCn3n. A subset ofPn , consisting ofn221 traceless matrices, can be taken
a basis ofsl(n,C). Since these traceless matrices are used as a basis of a Lie algebra, they
normalized in any convenient way. In particular, forn52 the Pauli matrices ofsl(2,C) are
obtained.

Most importantly, the adjoint action ofPn , though non-Abelian in general, induces an Ab
lian action onsl(n,C). The fine grading ofsl(n,C), which arises in this way, decomposes t
algebra into one-dimensional subspaces generated by traceless elements ofPn .9

In further prospect, the gradings are to be used, e.g., for constructing grading pres
contractions~graded contractions! of semisimpleL.12,13 For gradings involving a decompositio
into a small number of grading subspaces, this is a relatively easy task.14–16 However for fine
gradings of algebras with ranks>3, the system of quadratic equations for contraction parame
one needs to solve often gets quite large. The task of solving of such a system would be sim
by knowledge of its symmetries. Symmetries that are available are provided by those elem
Aut L which leave the given grading invariant.

The main goal of this paper is to demonstrate that the decomposition ofsl(n,C), as the fine
grading by Pn , is preserved by the finite group SL(2,Zn), acting through itsn-dimensional
representation on the labels (a,b) of the one-dimensional subspace ofsl(n,C). Thus the group
SL(2,Zn) plays a role analogous to the Weyl group in the case of root decomposition/gradi
sl(n,C). HereZn is the cyclic group of ordern. We also illustrate an application of this fact.

The special role of matricesPn has been recognized in the physical literature for a lo
time.17 In more recent years there were a number of papers where the matrices were us
basic part of the formalism in the development of quantum mechanics in discrete spacesZn . Here,
the finite groupPn plays the role of the discrete Weyl group acting in ann-dimensional complex
Hilbert space. See Refs. 18 and 19 and references therein.

The Pn-grading ofsl(n,C) has other special properties. Let us name just two.
~1! All generators are in the same conjugacy class of SL(n,C). Considered as group element

they are of ordern, belonging to the Costant conjugacy class of finite order elements, specifi
@1,1, . . . ,1# in the notation introduced in Ref. 8.

~2! ThePn-grading makes explicit the decomposition ofsl(n,C) into the sum ofn11 Cartan
subalgebra. Indeed, if the element ofPn defined by a couple (a,b) ~a,b considered modn!,
belongs to one such Cartan subalgebra, that subalgebra is then generated by then21 elements
carrying labels (a,b),(2a,2b), . . . ,((n21)a,(n21)b). Clearly such elements commute an
have a nonzero determinant.

In Sec. II, the role of automorphisms of the Lie algebra in its gradings is recalled. Gra
groups ofsl(n,C) which do not involve outer automorphisms are described in Sec. III. Our m
result is in Sec. IV, namely the normalizers of the grading groups. Sec. V contains an appli
to sl(3,C): It is shown that the set of 48 quadratic equations for contraction parameters split
just two orbits of the normalizer of the grading groupP3 .

II. GRADINGS AND AUTOMORPHISMS OF LIE ALGEBRAS

A grading of Lie algebraL is a decomposition ofL into direct sum of subspaces

G: L5 %

i PI
Li ~1!

such that for any pair of indicesi , j PI there exists an indexkPI with the property

@Li ,Lj #ª$@X,Y#uXPLi ,YPLj%#Lk .
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A grading which cannot be further refined is calledfine.
Gradings can be obtained by looking at AutL, the group of all automorphisms ofL. It

consists of all non-singular linear transformationsf of L as linear space@fPGL(L)# which
preserve the binary operation inL:

f @X,Y#5@f X,f Y#.

If f is diagonableandX, Y are its eigenvectors with nonzero eigenvaluesl, m,

f X5l X, f Y5m Y,

then clearly

f @X,Y#5@f X,f Y#5lm @X,Y#. ~2!

This means that the element@X,Y# is either an eigenvector off with eigenvaluelm, or is the zero
element. The given automorphismf thus leads to a decomposition of the linear spaceL into
eigenspaces off,

L5 %

i PI
Ker~f2l i id!,

which, according to~2!, satisfies the definition of a grading.
Refinements of a given grading, i.e., further decompositions of the subspaces, can be o

by adjoining further automorphisms commuting withf. Hence, in general, setsf1 , . . . , fm of
mutually commuting automorphisms determine gradings.

Conversely, if a grading~1! of a simple Lie algebraL is given, it defines a particular Abelia
subgroup DiagG,Aut L consisting of those automorphismsfPGL(L) which

~i! preserveG, f(Li)5Li ,
~ii ! are diagonal,fX5l iX ;XPLi , i PI , wherel iÞ0 depends only onf and i PI .

In Ref. 1 an important theorem was proved:
Theorem 1: Let L be a finite-dimensional simple Lie algebra over an algebraically clo

field of characteristic zero. Then the gradingG is fine, if and only if the diagonal subgroupDiagG
is a maximal Abelian group of diagonable automorphisms (MAD group).

A general algorithm to construct all MAD groups for the class of simple classical Lie alge
over complex numbers was given in Refs. 2–4.~Further results concerning the real forms can
found in Refs. 5 and 6.! These Lie algebras are Lie subalgebras ofgl(n,C), hence their MAD
groups can be determined from the MAD groups ofgl(n,C) by imposing certain conditions.

The automorphisms ofgl(n,C) can be easily written as combinations of inner and ou
automorphisms. For allXPgl(n,C), inner automorphismshave the general form

AdA X5A21XA for any APGL~n,C!;

outer automorphimshave the general form

OutC X52~C21XC!T5OutI AdC X, where CPGL~n,C!.

Relevant properties of inner and outer automorphisms ofgl(n,C) are summarized in the following
lemma ~Ref. 2! which allows one to express MAD groups in Autgl(n,C) in terms of special
elements ofGL(n,C):

Lemma 2: Let A,B,CPGL(n,C).
~1! AdA is diagonable automorphism if and only if the corresponding matrix A is diagona.
~2! Inner automorphisms commute, AdA AdB5AdB AdA , if and only if there exists qPC such

that
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AB5qBA, where q satisfies qn51. ~3!

~3! OutC is diagonable if and only if C(CT)21 is diagonable.
~4! Inner and outer automorphisms commute, AdA OutC5OutC AdA , if and only if ACAT

5rC; sinceAdaA5AdA for aÞ0, number r can be normalized to unity.
Remark 3:The sets of complexn3n matrices satisfying~3! were to our knowledge firs

studied by Weyl.17

III. MAD GROUPS WITHOUT OUTER AUTOMORPHISMS

In this contribution we are going to look at the MAD groups in Autgl(n,C) without outer
automorphisms, i.e., generated by inner automorphisms@the Ad action inGL(n,C) only#. It is
shown in Ref. 2 that there exists a one-to-one correspondence between MAD groups withou
automorphisms and Ad groups~to be defined in the following! in GL(n,C).

Definition 4: A subgroup of diagonable matrices G,GL(n,C) will be called anAd group if
~1! for any pair A,BPG the commutator q(A,B)5ABA21B21 lies in the center Z

5$aI nuaPC* %,GL(n,C);
~2! G is maximal, i.e., for each M¹G there exists APG such that q(A,M )¹Z.
In order to describe Ad groups we introduce the following notation. The subgroup ofGL(n,C)

containing all regular diagonal matrices will be denoted byD(n). We also define specialk3k
diagonal matrices~for k51 we setQ15P151!

Qk5diag~1,vk ,vk
2 ,...,vk

k21!,

wherevk is the primitivekth root of unity,vk5exp(2pi/k), and

Pk5S 0 1 0 ¯ 0 0

0 0 1 ¯ 0 0

A �

0 0 0 ¯ 0 1

1 0 0 ¯ 0 0

D .

The unitary matricesPk , Qk appear in the finite-dimensional quantum mechanics~FDQM!,17–20

where their integral powers play the role of exponentiated operators of position and momen
the position representation. The matricesPk , Qk satisfy the identity~3! with q5vk ,

PkQk5vkQkPk , ~4!

which in FDQM replaces the usual Heisenberg commutation relations. The discrete subgr
GL(k,C) generated by powers ofPk , Qk is thediscrete Weyl (or Heisenberg) groupof FDQM in
k-dimensional Hilbert spaceHk . In Ref. 9 this group was called thePauli group; it consists ofk3

elements

Pk5$vk
l Qk

i Pk
j u i , j ,l 50,1,...,k21%. ~5!

The classification of Ad groups inGL(n,C) is given by the following theorem3

Theorem 5: G,GL(n,C) is an Ad group if and only if G is conjugated to one of the fin
groups

Pp1
^¯^ Pps

^ D~n/p1 ...ps!,

wherep1 ,...,ps are powers of primes and their productp1 ...ps divides n, with the exception of
the caseP2¯^ P2^ D(1). ~In this case there is an outer automorphism in the MAD group.!
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The simplest form of an Ad group isG5D(n). The MAD group corresponding to this Ad
group gives the Cartan decomposition ofgl(n,C).

In this article we shall focus on the other extremal case, namely on the Ad group

Pn^ D~1!5Pn .

The corresponding fine grading decomposesgl(n,C) into a sum of n2 one-dimensional
subspaces1,9

GP : gl~n,C!5 %

(r ,s)PZn3Zn

Lrs , ~6!

whereLrs5CXrs with Xrs being the basis elements ofgl(n,C) representingn2 cosets ofPn with
respect to its center$v l u l PZn%:

Xrs5Qr Ps.

Their commutators@henceforth the indexk in vk , Pk , Qk as well as explicit notation~modn! will
be omitted#

@Xrs ,Xr 8s8#5Qr PsQr 8Ps82Qr 8Ps8Qr Ps5~vsr82v rs8!Xr 1r 8,s1s8 ~7!

clearly satisfy the grading property with the index setI being the Abelian groupZn3Zn . The
binary correspondence ((r ,s),(r 8,s8))°(r 1r 8,s1s8), 0Þ@Lrs ,Lr 8s8##Lr 1r 8,s1s8 is the group
multiplication in Zn3Zn written additively modulon.

The corresponding grading ofsl(n,C) containsn221 subspaces

sl~n,C!5 %

(r ,s)Þ(0,0)
Lrs ,

since Tr(Xrs)50 exceptr 5s50.

IV. SYMMETRIES OF THE FINE GRADINGS GP

In this section we are going to study the symmetries of the fine gradings~6! of gl(n,C). From
Sec. III we know that they are induced by the Pauli groupPn,GL(n,C).

Generally, the symmetry group or the automorphism group AutG, Aut L of the grading~1!
consists of those automorphismsf of L which permute the components of~1!,

fLi5Lf̄( i ) .

Heref̄:I→I is a permutation of the elements ofI , so we have a permutation representationDG of
Aut G,

f̄5DG~f!, fPAut G.

The kernel ofDG is the stabilizer ofG in Aut G,

StabG5kerG5$fPAut LufLi5Li ; i PI %.

It is a normal subgroup of AutG with quotient group isomorphic to the group of permutatio
of I ,

Aut G/StabG.DG Aut G.

For fine gradings StabG5G. Thesymmetry groupAut G is by definition1 the normalizer ofG in
Aut gl(n,C):
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N~G!5Aut G5$fPAut gl~n,C!ufGf21,G%.

Why do we look for the symmetry group AutG? We know that

~1! elements of AutG/StabG permute the grading subspaces,
~2! given a grading subspace, the action of AutG/StabG will yield some other grading subspace

So its knowledge may give us the way to construct the grading decomposition~1! from one or a
small number of starting subspaces. AutG/StabG may also be valuable as a symmetry of t
contraction equations which enables one to lower their number and so simplify their soluti

Let us denote the MAD group AdPn
by Pn . It is an Abelian subgroup of Autgl(n,C)

5GL(n2,C) with generators AdP , AdQ ,

Pn5$AdQi Pj u~ i , j !PZn3Zn%.

It is obvious thatn2 elements ofPn stabilize the grading: namely, taking the generators AdP ,
AdQ , one has

AdP Xrs5PQr PsP215v rXrs , AdQ Xrs5QQr PsQ215v2sXrs

andPn5StabGP sincePn is maximal.
In order to describe the quotient groupN(Pn)/Pn we note that its elements are classes

equivalence inN(Pn) given by

f;c if and only if fc21PPn .

Let f;c, i.e., fc215b for somebPPn . Using the commutativity ofPn we have

f21af5c21b21abc5c21ac

for any aPPn . On the other hand, letf21af5c21ac for any aPPn . Thenfc21 commutes
with every element inPn and thereforefc21PPn . It means that

f;c if and only if f21af5c21ac for any aPPn .

Since the groupPn has only two generators AdP and AdQ , the previous condition can be rewritte

f;c if and only if f21 AdP f5c21 AdP c and f21 AdQ f5c21 AdQ c. ~8!

If f belongs to the normalizerN(Pn), then there exist elementsa,b,c,d in the cyclic group
Zn such that

f21 AdQ f5AdQaPb and f21 AdP f5AdQcPd.

Thus to any equivalence class a quadruple of indices is assigned. Denote this assignmenF.
According to ~8!, quadruples assigned to distinct classes are different. We shall see tha
convenient to write the quadruple as a matrix

F~f!5S a b

c dD with entries from Zn .

Suppose that the equivalence classes containing the automorphismsf1 andf2 correspond to the
quadruplesa1 , b1 , c1 , d1 anda2 , b2 , c2 , d2 , respectively. Computing the quadruple assign
to the compositionf1f2 ,
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~f1f2!21 AdQ~f1f2!5~f2
21 AdQf2!a1~f2

21AdPf2!b1

5~AdQa2Pb2!
a1~AdQc2Pd2!

b1

5AdQa2a1Pb2a1AdQc2b1Pd2b1

5AdQa1a21b1c2Pa1b21b1d2 ,

~f1f2!21 AdP~f1f2!5AdQa1a21b1c2Pa1b21b1d2

we see that to the automorphismf1f2 the product matrix is assigned,

F~f1f2!5F~f1!F~f2!.

ThusF is an injective homomorphism of the quotient groupN(Pn)/Pn .
Let fPN(Pn) be aninner automorphism, say AdA with the corresponding matrix

F~f!5S a b

c dD with entries fromZn .

Then

AdA
21 AdQ AdA5AdA21QA5AdQaPb implies A21QA5mQaPb, ~9!

AdA
21 AdP AdA5AdA21PA5AdQcPd implies A21PA5nQcPd ~10!

for somem,nPC* . Multiplying Eqs.~9! and~10! by PA andQA from the right, respectively, and
using the relationPQ5vQP, we obtain

PQA5mnAQcPdQaPb5vadmnQa1cPb1d

and

QPA5mnAQaPbQcPd5vbcmnQa1cPb1d.

SincePQA5vQPA we obtain the identity

vad215vbc, i.e., ad215bc~modn!,

hence

detF~f!51.

A simple computation further shows that for this inner automorphism one has

A21XrsA5rXr 8s8 ,

whereuru51 and

~r 8,s8!5~r ,s!S a b

c dD . ~11!

Consider now the outer automorphism OutI Xª2XT. Because of

~OutI !
21AdQOutI5Ad(Q21)T5AdQ21PPn ,

~OutI !
21AdPOutI5Ad(P21)T5AdPPPn ,
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the automorphism OutI belongs to the normalizerN(Pn). The matrix corresponding to OutI is

F~OutI !5S 21 0

0 1D and detF~OutI !521.

Note that

OutI Xrs52v2rs Xr ,2s

corresponds to the permutation of indices

~r ,s!°~r ,2s!.

Any other outer automorphismf from N(Pn) is the composition of OutI and an inner automor
phism fromN(Pn) and thus detF(f)521. We conclude with

Proposition 6:F is an injective homomorphism ofN(Pn)/Pn into the group

H5H S a b

c dD Ua,b,c,dPZn ,ad2bc561modn,J .

The groupH contains as its subgroup the group of matrices with determinant11. This group
is usually denoted by SL(2,Zn). Note thatZn is a field iff n is prime. Clearly

H5SL~2,Zn!øS 1 0

0 21DSL~2,Zn!.

Let us briefly show that for anynPN, the group SL(2,Zn) is generated by two matrices

A5S 1 0

1 1D and B5S 0 21

1 0 D .

In order to show it, we have to realize that in the ringZn , the matricesA andB are of ordersn and
4, respectively. The matrixC5AT is generated byA andB:

C5S 1 1

0 1D 5S 0 21

1 0 D S 1 0

1 1D
n21S 0 21

1 0 D 3

.

Moreover, any matrix of SL(2,Zn) satisfies

S a b

c dD 5S 1 0

1 1D S a b

c2a d2bD 5S 1 1

0 1D S a2c b2d

c d D . ~12!

Now recall that Euclid’s algorithm for finding the greatest common divisor of integers is base
the trivial fact that gcd(x,y)5gcd(x2y,y). By several repetitions of this rule, where we repla
the pair of non-negative integers$x,y%,x>y, by another pair of non-negative integers$x
2y,y%, the Euclid’s algorithm gives finally a pair of integers, where one of them is 0 and the
is gcd(x,y).

Denote gcd(a,c)5s. Then by suitable applications of~12! we obtain

S a b

c dD 5Ak1Cl 1 . . . AkpCl pT,

wherek1 ,l 1 , . . . ,kp ,l pPN0 andT is a matrix with detT51, of the form
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T5S s t

0 uD or T5S 0 v

s wD .

But any matrixT of such form is a product of several matricesA,B, andC, since

S s t

0 uD 5S 1 1

0 1D
s(t21)S 1 0

1 1D
uS 0 1

21 0D S 1 0

1 1D
s

S 0 v

s wD 5S 0 1

21 0D S 2s 2w

0 v D .

This proves that SL(2,Zn) has two generators, the matricesA andB.
Now we shall present two elements of the normalizer—special unitaryn3n matrices inducing

Ad actions which represent generating elements of SL(2,Zn).
Example 7:Since the matricesQ and P have the same spectra, they are similar with

similarity matrix S such thatS21PS5Q. SuchS is not determined uniquely. We choose for th
matrix S the Sylvester matrix defined as follows:

Si j 5v2 i j , for i , j PZn .

It is easy to verify thatS2 is a parity operator

Si j
2 5d i ,2 j for i , j PZn such that S45I .

Note that the indices~and operations on them! are always considered to be elements of the r
Zn . Let us verify that AdS belongs to the normalizer. Note thatS is a symmetric matrix and
thereforeQ5QT5(S21PS)T5SPTS215SP21S21, which impliesS21QS5P21. Now we can
easily check the conditions on AdS to be in the normalizer:

~AdS!21AdQAdS5AdS21QS5AdP21PPn

~AdS!21AdPAdS5AdS21PS5AdQPPn .

By ~9! and ~10! the matrix corresponding to AdS is

F~AdS!5S 0 21

1 0 D .

Example 8:For this example we shall use the similarity of matricesP andPQ. Put«51, if
n is odd, and«5Av, if n is even. Denote by

D5diag~d0 ,d1 , . . . ,dn21!, where dj5«2 jv2(2
j ), for j PZn .

It is easy to see thatQ5D21QD andPQ5«D21PD; it implies

~AdD!21AdQAdD5AdD21QD5AdQPPn

and

~AdD!21AdPAdD5AdD21PD5AdPQPPn ,

which means that AdD belongs to the normalizer. By~9! and ~10! the matrix assigned to AdD is
therefore
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F~AdD!5S 1 0

1 1D .

The homomorphismF maps three elements of the normalizer OutI , AdS , and AdD into three
matrices generating the whole groupH. This observation together with Proposition 6 gives us

Theorem 10: The quotient groupN(Pn)/Pn is isomorphic to the group

H S a b

c dD Ua,b,c,dPZn , ad2bc561 modnJ 5SL~2,Zn!øS 1 0

0 21DSL~2,Zn!.

The direct consequence of Theorem 10 is
Corollary 11: The normalizerN(Pn) of the groupPn is generated by

OutI ,AdS ,AdD ,AdQ and AdP .

If n is prime, i.e.,Zn is a field, we can use the Bruhat decomposition of SL(2,Zn) and
explicitly describe the normalizer. It enables us to count the number of its elements. The
SL(2,Zn) is the union of two disjoint sets

H S 1 0

a 1D S b 0

0 b21D UaPZn ,bPZn* J
and

H S 1 0

a 1D S b 0

0 b21D S 0 21

1 0 D S 1 0

c 1D Ua,cPZn ,bPZn* J .

Corollary 12: Let n be a prime. Any element of the normalizerN(Pn) has the formAdA or
OutI AdA , where A5DiM jQkPl or A5DiM jSDsQkPl .

The normalizerN(Pn) has therefore2(n221)n3 elements for an odd prime n and 24 el
ments for n52 (here the outer automorphism does not play any role).

Summarizing, for any natural numbern we described the generators of the normaliz
N(Pn)/Pn . For n prime we moreover were able to determine the cardinality of normalizer, u
the Bruhat decomposition of the group SL(2,Zn). For the explicit description of the specia
n-dimensional representation of SL(2,Zn), wheren is prime of the formn54K61, see Ref. 20.

V. GRADED CONTRACTIONS OF sl „3,C…

In this section we want to illustrate how the explicit knowledge of the normalizer of a
grading can simplify and, indeed, bring further insight into the structure of the problem of fin
all graded contractions ofsl(3,C). Practically one needs to solve a system of 48 quadratic e
tions involving 28 contraction parameters. The normalizer is the symmetry group of that sy
It turns out that there are only two orbits of the normalizer among the 48 quadratic equation
more conventional approach to this problem see Refs. 11 and 21.

Let L5 % i PILi be a grading decomposition of a Lie algebra with the commutator@ • ,• #.
Definition of the contracted commutator of the algebra involves the contraction parameters« i j for
i , j PI and the old commutator. The new bilinear mapping of the form

@x,y#newª« i j @x,y# for all xPLi , yPLj

is a commutator on the same vector spaceL.
To satisfy antisymmetry of the commutator we have to choose« i j 5« j i . To satisfy the Jacob

identity one has to solve a system of quadratic equations for the unknown contraction para
« i j .
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Let us illustrate this problem on the graded algebrasl(3,C)5 % ( i , j )Þ(0,0)Li j , which has 8
one-dimensional graded subspacesLi j 5CXi j , where 0< i , j <2. For example, for the triple o
vectorsX(0,1) , X(0,2) , andX(1,0) the Jacobi identity has the form

@X(0,1) ,@X(0,2) ,X(1,0)#new#new1cyclically50.

The commutation relations~7! give us

« (02)(10)« (01)(12)~v21!~v221!X(1,0)1« (10)(01)« (02)(11)~12v!~v221!X(1,0)50

and therefore

« (02)(10)« (01)(12)2« (10)(01)« (02)(11)50. ~13!

For all possible triples of basis elementsX( i , j ) we have to write similar equations. There a
(3

8)556 triples. Since triples of the formX(a,b) , X(c,d) , andX(e, f ) , with a1c1e50(mod 3) and
b1d1 f 50(mod 3) satisfy@X(a,b) ,@X(c,d) ,X(e, f )##50, we have in fact only 48 equations.

The Jacobi identity for the tripleX(0,1) , X(1,0) , andX(1,1) , is the equality

« (10)(11)« (01)(21)2« (11)(01)« (10)(12)50. ~14!

The triple of indices~0,1!, ~1,0!, and~1,1! is distinguished by the property that the indices of a
epsilon appearing in~14! are linearly independent over the fieldZ3 . Quite different are the indices
in ~13! There the pair of indices~0,1! and~0,2! is linearly dependent over the fieldZ3 . These two
cases exhaust all distinct possibilities for the choice of triples in the Jacobi identity.

Consider now the mappings on the index setI defined by~11!

~ i , j !°~ i , j !A where APSL~2,Z3!.

Applying such a mapping with a fixed matrixA to the indices occurring in Eq.~13! we obtain a
new equation corresponding to the Jacobi identity for another triple of grading subspaces
gradually apply all 24 matrices from SL(2,Z3) to Eqs.~13! and ~14!, we obtain all 48 quadratic
equations which should be satisfied. In this way the symmetries of the system of equatio
directly seen.
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Reduction restrictions of Darboux and Laplace
transformations for the Goursat equation
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We study Darboux and Laplace transformations of the solutions and potentials of
the Goursat equation which is equivalent to one of the Lax pair equations for the
2D-MKdV hierarchy. The reduction restrictions for these transformations are con-
sidered. The derived reduction equations are generalizations of the Liouville and
sinh-Gordon equation. The integrability of these equations by the ST method is
proved. The binary Darboux transformation for the Goursat equation is suggested.
We find exact rational nonsingular solutions of the 2D-MKdV equations via the
Moutard transformation for the Goursat equation. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1427761#

I. INTRODUCTION

A covariance of general Lax pairs leads to abundant but generally useless integrable s
while reductions of them may have straight applications in mathematical physics.1 In 211 or
higher dimensions there exists the problem of an elaboration of similar or another appro
classification or at least of a choice of invariant subsets by some key rule.2 Such a rule is directly
connected with discrete covariance of Lax equations3 that appears in the classic Laplace sche
developed by Darboux, Moutard, and Le Roux4 and investigated recently from different points
view ~e.g., Refs. 5 and 6!. We consider subclasses of Laplace~Darboux!-covariant ‘‘potentials,’’
i.e., introduce a notion of ‘‘reduction equation’’ that follows directly from the constraint fo
invariance. It means that Darboux~Laplace! transforms together with the appropriate partial s
lutions of a basic equation determine some discrete symmetry and chains of solutions.
demonstrate this by an example.

It is known that the Laplace transformation~LT! of the equation

cxy1acy1bc50 ~1!

has the form

a→a215a2]x ln~b2ay!, b→b215b2ay , c→c215cx1ac, ~2!

a→a15a1]x ln b, b→b15b1]y~a1]x ln b!, c→c15
cy

b
, ~3!

and plays a significant role in the theory of soliton equation development.
The Goursat equation~GE! has the form7

zxy52Alzxzy,

a!Electronic mail: leble@mifgate.pg.gda.pl
b!Electronic mail: yurov@freemail.ru
10950022-2488/2002/43(2)/1095/11/$19.00 © 2002 American Institute of Physics
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wherez5z(x,y) andl5l(x,y). We calll a potential function. This equation can be lineariz
by the substitutionc5Azx andx5Azy. We get

cy5Alx, xx5Alc

or

cxy5
1
2~ ln l!xcy1lc, ~4!

and the similar equation for thex but we will not need one.
Equation~4! is the particular case of Eq.~1! with two potentialsa5a(x,y) andb5b(x,y).

This equation has two types of local discrete symmetries:

~1! Laplace transformations~2! and ~3!, mentioned above, and
~2! Darboux transformations~DT!:

a→a15a2]x ln ~a1t!, b→b15b1ty , c→c15cx2tc, ~5!

a→1a52~t1br!, b→1b5b2~br!y , c→1c5rcy2c, ~6!

wheret5fx /f, r5f/fy , c andf are particular solutions of~1! by preassigneda and
b, and we callf the support function of the DT.

The aim of this work is to study the validity of LT and DT for the GE. It is clear that af
single DT or LT the reduction restriction

a52]x ln b ~7!

will be true only for the special class of potentials and we will specify it in Sec. II.
Our interest in the GE is connected with the two applications of this equation in geometr

in the solitons theory, respectively.
~1! Let x be the complex coordinate,y52 x̄, Al is the real-valued function, andc andx from

~1! are complex-valued functions. Then one defines three real-valued functionsXi , i 51,2,3,
which are the coordinates of surface inR3:8

X11 iX252i E
G
~c2dy82x2dx8!,

X12 iX2522i E
G
~c2dy82x2dx8!, ~8!

X3522E
G
~c̄xdy81x̄cdx8!,

whereG is an arbitrary path of integration in the complex plane. The corresponding first fu
mental form, the Gaussian curvatureK, and the mean curvatureH yield

ds254U2dxdy, K5
1

U2 ]x]y ln U, H5
Al

U
,

where

U5ucu21uxu2,

and any analytic surface inR3 can be globally represented by~8! ~see Ref. 9!.
~2! The system of the 2D-MKdV equations looks like:
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4l2~l t2Alx1Bly2l3x2l3y!14l3@~2l1B!y1~2l2A!x#

16l~lylyy1lxlxx!23~lx
31ly

3!50, ~9a!

Bx53ly2lx , Ay5ly23lx .

Herel5l(x,y,t), A5A(x,y,t), B5B(x,y,t). If we introduce the functionu5Al then we can
rewrite ~9! in the more customary form~see Ref. 10!:

ut12u2~ux1uy!1 1
2 ~By2Ax!u1Buy2Aux2u3y2u3x50

~9b!
Bx5~3]y2]x!u

2, Ay5~]y23]x!u
2.

The reduction conditions

A52B522u2, uy5ux ,

lead us to the MKdV equation,

ut112u2ux22u3x50,

so we call~9a! the 2D-MKdV equations.
The 2D-MKdV equations~9! is the compatibility condition of the linear system~so-called@L,

A# pair! which contains Eq.~4! and

c t5c3x1c3y2
3

2

ly

l
cyy1F3

4 S ly

l D 2

2l2BGcy1~A2l!cx1
1

2
~Ax2lx!c.

We will study ~9a! in the last section~Sec. IV!.
Remark 1: In Ref. 11 A. I. Zenchuk studied the discrete transformation~2!, ~3!, ~5!, and~6! of

solutions and potentials in the general case of the linear second order partial differential eq
with two independent variables. The simplest (k52) closed chains of these transformations a
considered and the author obtain a novelintegrable equation:

1
2Sxy2eS2e2S@C12C2]x

21~e2S!y#50, ~10!

whereC2.0.
In the present work we use reduction restriction~7! as a~weak! condition of closing. In Sec.

II we will obtain a new integrable equation@see~19!# which looks like~10! and it is a somewha
two-dimensional generalization of the sinh-Gordon equation. In Sec. III we suggest the bina
for a construction of explicit solutions of the GE. These transformations allow one to obtain
solutions of the GE without solving some reduction equation. We also discuss the transform
for Laplace invariants.

II. THE REDUCTION EQUATIONS

The reduction restriction~7! is valid only for special types of potentials. These functions
solutions of the special equations which we callreduction equations. In this section we will
obtain these equations for the LT and DT.

~I! Let us consider the Laplace transformations~2!. The invariance of the reduction constrai
means

l215l2
1

2
]x]y ln l5

C

2l
. ~11!
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It is obvious that Eq.~11! is valid for the LT~3! because the one is inverse to the transformat
~2!.

It easy to show that the reduction equation for this transformation is the well-known
Gordon equation:

]x]y ln l52l2
C

l
, ~12!

whereC5const, and the new potentiall21 is a solution of~12! too.
Let us remark that in the case ofC50 we obtainl2150 and the Liouville equation instea

of ~12!. In this case the GE may be integrated and

l5
f 8g8

~ f 1g!2 , z52
1

C2 ]y ln ~ f 1g!1V,

where f 5 f (x) and g5g(y) are arbitrary differentiable functions,C5const, V5V(y) is the
function such that

V85F 1

2C
~ ln g8!8G2

5
1

4C2 S g9

g8D
2

,

and

c5
Af 8g8

C~ f 1g!
, x5

1

2C
]y ln S 2]y

1

f 1gD .

Proposition 1: Let M andL be two Laplace invariants of Eq.~4!. It means that

M5 1
2]x]y ln l2l, L52l.

Using the reduction equation~11! we get

M52
C

2l
, L52l

and

M 215M15L, L215L15M .

~II ! Let us consider the DT~5!. Inserting both transforms into the reduction condition~7!
yields

l215l2ty5lS t2
lx

2l D . ~13!

Denote nowa5 ln f, L5 ln l. Since

l2ty5~2 1
2Lx1ax!ay ,

andt5ax one gets from the transform~13! the condition forL:

~ax2 1
2Lx!@ay2exp~l!~ax2 1

2Lx!#50. ~14!

The setting zero for the first parentheses yields

Lxy52 exp~L!,
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and a5L/22c(y), wherec(y) is arbitrary function. But in this case we getl150, and the
Liouville equation is in the realm of the reduction equation.

Setting equal to zero the square brackets in~14! one arrives at the relevant equation

„exp~22a!l…x5„exp~22a!…y , ~15!

therefore

ux5c25
1

Fx1C2
, l5

Fy1C1

Fx1C2
,

whereF5F(x,y) is any differentiable function andC1,25const. Substituting~15! into ~4! we get

2~C21Fx!C1
21@~Fyxx14Fy!C21FxFyxx14FyFx2FxxFyx#C11~FyxxFy2 1

2Fyx
2 12Fy

2!C2

12Fy
2Fx2 1

2Fyx
2 Fx2FyFxxFyx1FxFyFyxx50. ~16!

We define new fields:

Fx5P2C2 , Fy5Q2C1 .

Then ~16! can be split into the system

2QxQPx2~2QxxQ2Qx
214Q2!P50, Py5Qx . ~17!

After integration of the first equation we get

P5
CQx

AQ
exp~G!, Gx52

Q

Qx
,

whereC is the third constant of integration. It is necessary that the second equation in~17! will be
true. Let

Q5n2, G5 ln m,

wherem5m(x,y) andn5n(x,y). The reduction equation takes the simple form

~n2!x52C~mnx!y , mxnx5mn. ~18!

This system can be rewritten in more convenient form. Let

nx5n exp~S!, mx5m exp~2S!,

S5S(x,y). After substituting into~18! we get

Sy5
1

C

n

m
2]y ln ~mn!,

therefore

Sxy54 sinhS]y]x
21 coshS. ~19!

Equation ~19! is the reduction equation for the DT~5!. It looks like Eq. ~10! and it is the
generalization ofd52 sinh-Gordon equation. We will present the Lax pair analog for Eq.~19! by
the following proposition:

Proposition 2:Let us introduce the@L,A# pair for Eq.~19! in the form
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Kc50, K1Dc50

where

K5]x]y2
1

2

lx

l
]y2l, K15]x]y2

1

2

l1,x

l1
]y2l1 , D5]x2t,

the variablesl andl1 are defined by the equalities

l5
~Sx12 coshS!y

4 sinhS
exp~2S!, l15

~Sx12 coshS!y

4 sinhS
exp~S!, ~20!

and

ty[l2l1 .

It is possible to check the statement by direct substitution. Thus the reduction equations
DT ~5! has either the form of Eq.~19! or the Liouville equation.

We can study the reduction equations for the DT~6! analogously. As a result we get

l5C1fy exp~F !, 1l52
C1C2f2

fy
exp~F !, ~21!

wheref is the support function of the DT~6! and the reduction equation can be written like t
system:

fxy5fy@Fx12C1f exp~F !#, Fyfy2C2f.

Proposition 3:By the construction~20! for the DT ~5! we get

M52l1 , L52l,

and

M15M exp~22S!, L15L exp~2S!.

Quite similar for the DT~6! the use of~21! gives

M52
C2„2fx1fFx1C1f2 exp~F !…

fy
, L52C1fy exp~F !,

and

1M52
fy

2

C2f2 M , 1L52
C2f2

fy
2 L.

The multiple of the Laplace invariantsML is invariant in both cases.

III. BINARY DT

In Ref. 12 Ganzha studied the analog of the Moutard transformation for the Goursat equ
This transformation is valid without a reduction restriction and reduction equations. In this se
we obtained binary Darboux transformation for the GE with the same property.

We introduce new variablesj andh:

]y5]h2]j , ]x5]h1]j ,
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and rewrite~4! in the matrix form

Ch5s3Cj1UC, ~22!

where

C5S c1 c2

x1 x2
D , U5Als1 , ~23!

ck5ck(j,h), xk5xk(j,h) with thek51,2 particular solutions of~1! with somel~j, h!, ands1,3

are the Pauli matrices. LetC1 some solution of Eq.~22! andCÞC1 . We define a matrix function
t[C1,jC1

21. Equation~22! is covariant with respect to DT:

F@1#5Fj2tF, U@1#5U1@s3 ,t#. ~24!

Remark 2:It is not difficult to check that the DT~24! is the superposition formula for the tw
simpler Darboux transformations given by formulas~5! and ~6!.

Remark 3:Equation~22! is the spectral problem for the Davey–Stewartson~DS! equations.13

The LTs produce an explicitly invertible Ba¨cklund autotransformation for the DS equations.
Ref. 14 we showed that these transformations allow one to construct solutions to the DS eq
that fall off in all directions in the plane according to exponential and algebraic law.

Let us consider a closed one-form

dV5djFC1dhFs3C, V5E dV,

where a 232 matrix functionF solves the equation

Fh5Fjs32FU. ~25!

We shall apply the DT for~22!. One can verify by immediate substitution that~25! is covariant
with respect to the transform if

F@11#5V~F,C1!C1
21.

Now we can alternatively affectU by the following transformation:

U@11,21#5U1@s3 ,C1V21F#.

The particular solution of Eq.~25! has the form

F15S s1c11s2c2 2s1x12s2x2

s3c11s4c2 2s3x12s4x2
D , ~26!

wheresk5const (k51,...,4). It is convenient to choose one in the form

F15C1
Ts3 , ~27!

whereC1
T is the transposed matrixC1 @~27! is the particular case of~26!#.

In this case

U@11,21#5U22AF , ~28!

whereAF is the off-diagonal part of the matrixA:

A5C1V21C1
T ,
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V5V(F1 ,C1), and

AF
T5AF5 f s1 , ~29!

where f 5 f (j,h) is a some function.
Using ~23!, ~28!, and~29! we can see thatU@11,21# has the same form as the initial matr

U:

U@11,21#[S 0 Al@11,21#

Al@11,21# 0
D 5S 0 Al22 f

Al22 f 0
D ,

thus the reduction restriction is valid without the reduction equations.
The new functionF@11,21# has the form

F@11,21#5F2V~F,C1!~V~C1 ,C1!!21F1 , ~30!

whereF is arbitrary solution of Eq.~25!.
Using binary DT~28! and~30! we can construct a new solution of the GE from understand

particular solutions of one.
As a result we get the following theorem~in the old variablesx andy!:
Theorem: Let

ck,y5Alxk , xk,x5Alck , ak,y52Albk , bk,x521Alak ,

wherek51,2. Then new functions

a185a12
A1c11A2c2

D
, b185b11

A1x11A2x2

D

are solutions of the equations

a1,y8 5Al8b18 , b1,x8 5Al8a18 ,

where

Al852Al1
c1x1V221c2x2V112~c1x21c2x1!V12

D
,

and

V115E dxc1
21dyx1

2, V125V215E dxc1c21dyx1x2 ,

V225E dxc2
21dyx2

2, D5V11V222V12
2 ,

L115E dxa1c11dyb1x1 , L125E dxa1c21dyb1x2 ,

L215E dxa2c11dyb2x1 , L225E dxa2c21b2x2 ,

A15L11V222L12V12, A25L12V112L11V12.
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Here *5*G where G is an arbitrary path of integration in the plane. It is easy to obtain
expressions for the functionsa28 andb28 , but we will not do it.

Thus the binary DT allows one to construct explicit solutions of the GE without the solvin
some reduction equation.

IV. THE MOUTARD TRANSFORMATION FOR THE 2D-MKdV EQUATIONS

The Lax (@L,A#) pair for the 2D-MKdV equations~9a! has the form

cxy5
ux

u
cy1u2c,

~31!

c t5c3x1c3y23
uy

u
cyy1F3S uy

u D 2

2u22BGcy1~A2u2!cx1
1

2
~A2u2!xc.

In Ref. 12 Ganzha studied the one of analog of the Moutard transformation for the Go
equation. To use this transformation for obtaining exact solutions of~9a! we must complete a
definition of the Moutard transformation. It is easy to do. Letf be the second solution of~31! ~the
support function!. Then we have a closed one-form,

du5dxu11dyu21dtu3 , u[E du,

where

u15f2, u25S fy

u D 2

,

u35~A2u2!f22fy
22fx

212ffxx1
~2f3yfy2fyy

2 2Bfy
2!u222ufy~uyfy!y13~uyfy!2

u4 .

We define thegeneralizedMoutard transformation in the following way:

u→ũ5u2A~ ln u!x~ ln u!y, A→Ã5A2~]x]y23]x
2! ln u,

~32!

B→B̃5B1~]x]y23]y
2! ln u, c→c̃5

fQ

u
,

where

Q[E dQ,

dQ5dxQ11dyQ21dtQ3 ,

and (w5c/f)

Q15uwx , Q252
u3~1/u!xywy

uxy
,

Q35uw3x1c1w3y1c2wxx1c3wyy1c4wx1c5wy ,

with
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c152
uxy

2u2 1u, c25
3

2
u~ ln ux!x2ux , c45S 3fxx

f
1A2u2D u2

uxx

2
,

c35
uyuxy

2u3 1
ffyy

u2 2
3uyu

u
13S u

2
~ ln ux!y2uyD ,

c552
3uy

2uxy

2u4 1
1

u3 ~uxyuyy1uyffyy!1
1

u2 S 3uuy
22ff3y1

1

2 FB2
fyy

f GuxyD
1S 3fyy

f
2BD1

uy

u S 2uy2
3uuxy

ux
D1

uxy

2
2u2u.

The one-formdQ is closed,

Q1,y5Q2,x , Q1,t5Q3,x , Q2,t5Q3,y .

It is easy to verify that the@L,A# pair ~31! is covariant with respect to the generalized Mouta
transformation~32!.

Now we use these transformations to construct exact solutions of the 2D-MKdV equa
~9a!. First we would mention the known localized solutions from Ref. 10. Let us choosu
5const,A5B50. We will consider two examples.

~1! If we take the solution of~31! asf5sinhj, where

j5ax1
u2

a
y1

~u22a2!~u42a4!

a3 t, ~33!

with the reala5const, then using~32! we get new solutions of the 2D-MKdV equations,

ũ5
u@2h2a3 sinh~2j!#

2h1a3 sinh~2j!
, Ã5

16a3 sinhj@3a5 sinhj2~u223a2!h coshj#

„2h1a3 sinh~2j!…2
,

B̃5
16av2 coshj@3a3u2 coshj2~3u22a2!h sinhj#

„2h1a3 sinh~2j!…2
,

where

h5a2~u2y2a2x!1~u22a2!~3u413a412a2u2!t. ~34!

~2! To construct the algebraic solutions of~9a! we choose the solutions of~31! as

f5~21!nE
a

b

dkz~k! exp„j~k!…
dn

dkn d~k2k0!,

with j(k) from ~33!, a5a(k), b.k0.a.0, andz(k) is some arbitrary differentiable function
For n51, z51, we get

ũ5
u~a622h222a3h!

2h212a3h1a6 , Ã52
8a6~u213a2!h~h1a3!

~2h212a3h1a6!2 ,

~35!

B̃5
8u2a4~3u21a2!h~h1a3!

~2h212a3h1a6!2 ,

with theh from ~34! anda5a(k0). Equation~35! is a simple nonsingular algebraic solution of th
2D-MKdV.
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On analytic properties of higher analogs of the second
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In the present paper, we investigate value distribution of the higher analogs of the
second Painleve´ equation (vP2). After getting the precise expression of the domi-
nant term of (vP2), we obtain some value distribution properties for the transcen-
dental meromorphic solutions of (vP2) in the general case which generalize the
theorems in Gromak and He@Proc. Math. Inst. Belarus Natl. Acad. Sci.4, 37–48
~2000!#. We further get other results for the (vP2) and (4P2). © 2002 American
Institute of Physics.@DOI: 10.1063/1.1420396#

I. INTRODUCTION

It is well known that the Painleve´ equations (P1) – (P6) are the most important second-ord
algebraic ordinary differential equations. They were first derived by Painleve´ ~1897! and by his
colleagues at the end of the 19th century from strictly mathematical considerations. In the la
years, there has been considerable interest in the Painleve´ equations due to the fact that some
their affinities with mathematical and physical equations, such as (P2) and the Korteweg–de Vries
~KdV! equation, have been found. They arise as reduction of solutions of soliton equations
by the inverse scattering method.

On the other hand, many works have focused on a variety of properties of Painleve´ equations.
Recently, Hinkkanen and Laine~1999! completely proved that every local solution of (P1) and
(P2) admits unrestricted analytic continuation, and hence is a meromorphic function in the
plex plane. Steinmets~2001! and Shimomura~2001! proved, by different methods, that the grow
order of the solutions of (P1) and (P2) are finite. In addition, value distribution properties of th
solutions of the Painleve´ equations are studied in Baesch~1992!, Schubart~1996!, Shimomura
~2000!, Steinmetsz~1989!, and Wittich~1968!.

In this paper, we are concerned with value distribution of the higher analog of (P2) which
arises as an exact reduction of the higher analog of the KdV equation (mKdV!. Let Lu be the
operator

Luª2~u1D̂uD̂21!2D̂2, ~1.1!

whereD̂5]/]x, D̂21 denotes the integral operator*•dx. Consider the higher analog of the Kd
equation in the form

~2m21!ut5Xmu ~mKdV!

Xmu5LuXm21u5D̂
]Hm

]u
, ~1.2!

a!Electronic mail: yzhe@math03.math.ac.cn
11060022-2488/2002/43(2)/1106/10/$19.00 © 2002 American Institute of Physics
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where X1u5D̂u5ux5D̂(]H1 /]u) and Hm is the Hamiltonian system. Letz5xt21/(2m21),
u(x,t)5t22/(2m21)q(z), thenq(z) satisfies the differential equation

Xmq12q1zq850,

where Lq and Xmq are defined by~1.1! and ~1.2! with q and z instead ofu and x. If q(z)
5y8(z)1y2(z), and we define the operatorSy54y214y8D21y2D2 as in Adler and Moser
~1979!, we have

~2y1D !Sy5Lq~2y1D !

and
Xmq5~2y1D !Sy

m21~y8!. ~1.3!

Airault ~1979! proved that the system

y81y25q, yS 2
]Hm21

]q
1zD1a5Xm21q

is equivalent to the algebraic differential equation

~vP2! D21Sy
m21~y8!1zy1a50,

wherea is an arbitrary parameter. The order of (vP2) is v52m22. We call (vP2) the higher
analog of the second Painleve´ equation. Ifm52, equations (mKdV) and (vP2) become

3ut56uux2uxxx

and the second Painleve´ equation
y952y31zy1a,

respectively, with the connection between the solutionsu(x,t)5t22/3(y8(z)1y2(z)), z5xt21/3,
which is the well-known Ablowitz’s result. Form53, 4, and 5 in (vP2), we have

~4P2! y~4!510y2y9110y~y8!226y52zy2a,

~6P2! y~6!514y2y~4!156yy8y~3!142y~y9!2270~y42~y8!2!y92140y3~y8!2120y71zy1a,

~8P2! y~8!518y2y~6!1108yy8y~5!26~21y4235~y8!2238yy9!y~4!2138y~y~3!!2

2252y8~4y323y9!y~3!1182~y9!32756y3~y9!2184y2~5y4237~y8!2!y9

2798y~y8!411260y5~y8!2270y92zy2a.

Throughout this paper, we use the standard notations and basic results of the Neva
theory such asm(r , f ), N(r , f ), T(r , f ), N1(r , f )5N(r , f )2N̄(r , f ),

d~ f ,c!5 lim inf
r→`

mS r ,
1

f 2cD
T~r , f !

512 lim sup
r→`

NS r ,
1

f 2cD
T~r , f !

~cÞ`!,

d~ f ,`!5 lim inf
r→`

m~r , f !

T~r , f !
512 lim sup

r→`

N~r , f !

T~r , f !
,

q~ f ,`!5 lim inf
r→`

N1~r , f !

T~r , f !
.
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And T(r ,1/(f 2c))5N(r ,1/(f 2c))1m(r ,1/(f 2c))5T(r , f )1O(1), (cÞ`) is called Nevanlin-
na’s first fundamental theorem.

II. MAIN RESULTS

Theorem 2.1:Let y(z) be a nonrational meromorphic solution of (vP2), then
~i! if aÞ0, theny(z) assumes every complex numbercPC an infinite number of times;
~ii ! if a50, theny(z) assumes every nonzero complex numbercPC\$0% an infinite number

of times. In both of the cases,y(z) has an infinite number of poles and

d~y,c!5d~y,`!50,

~iii ! if a50, thend(y,a)5d(y,0)<1/2,
~iv! q( f ,`)50.
Corollary 2.2:Supposey(z) is a nonrational meromorphic solution of (vP2), then there exists

a setE in R with finite linear measure such that for alla, bPC, aÞb and (uau1uau)(uau1ubu)
Þ0, we have

lim
r→`

NS r ,
1

y2aD
NS r ,

1

y2bD 51

for r ¹E.
Theorem 2.3:Let y(z) be the nonrational meromorphic solution of (vP2), then foraÞ0,

lim inf
r→`

NS r ,
1

y8D
T~r ,y!

52.

Theorem 2.4: Supposey(z) is a nonrational meromorphic solution of (4P2), for a5(e/2)
(e251), theny(z) has infinite number of poles with residue2e or 2e, and there is not any pole
with residue22e.

III. PROOF OF THEOREMS

To prove Theorem 2.1, we need the following propositions and lemmas.
Proposition 3.1:The differential polynomial of the left-hand side of (vP2) has only one

dominant term in the formAmy2m21 where

Am5 )
j 51

m21
2~2 j 21!

j
.

The degree of other terms is no greater than 2m23 and the coefficients are constants except
y whose coefficient isz.

Proof: First, we assert that differentiating or integrating a differential polynomial will neit
increase nor decrease the degree of its leading term. In fact, letyl o(y8) l 1

¯(y(n)) l n be a differential
monomial with degreenl5 l o1 l 11¯1 l n , then

~yl o~y8! l 1
¯~y~n!! l n!85(

i 50

n

l iy
l o~y8! l 1

¯~y~ i !! l i21~y~ i 11!! l i 1111
¯~y~n!! l n. ~3.1!

It is obvious that the highest degree of the differential polynomial of the right-hand side of~3.1!
is alsonl . On the other hand, ifyl o(y8) l 1

¯(y(n)) l n can be integrated into another differenti
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polynomial and the highest degree of*yl o(y8) l 1
¯(y(n)) l ndz were greater or less thannl , then the

degree of (*yl o(y8) l 1
¯(y(n)) l ndz)8 is also greater or less thannl . It is impossible, therefore, tha

the degree of*yl o(y8) l 1
¯(y(n)) l ndz is nl .

We are going to prove proposition 3.1 by inductive method. Form52, we have

D21Sy
m21~y8!1zy1a5D21Sy~y8!1zy1a

5D21~4y214y8D21y2D2!~y8!1zy1a

5D21~4y2y814y8D21yy82y-!1zy1a

5E ~6y2y82y-!dz1zy1a

52y31zy2y91a.

The dominant term ofD21Sy(y8) is 2y3 whose degree 3 is greater than the degree of
remaining terms ofD21Sy(y8). Therefore, the result holds whenm52. Form53, we have

D21Sy
2~y8!1zy1a5D21Sy~6y2y82y-!1zy1a

5D21@30y4y81y~5!2D12y~y8!22D6y2y924y2y~3!24yy8y912~y8!3#

1zy1a56y5210y2y9210y~y8!21y~4!1zy1a.

Obviously, the conclusion also holds andD21Sy
2(y8) has only one dominant term 6y5. The degree

of the remaining term ofD21Sy
2(y8) is no greater than 3(52m23).

Now we may assume that the conclusion in proposition 3.1 holds form5k, i.e., the dominant
term of T5D21Sy

k21(y8) is only Aky
2k21 ~Ak is a constant only depending onk! and the degree

of the remaining monomials is no greater than 2k23. We wish to show the result also holds fo
m5k11. In fact,

D21Sy
k~y8!1zy1a5D21SyD@D21Sy

k21~y8!#1zy1a

5D21~4y214y8D21y2D2!D@T#1zy1a

5D214y2D@T#1D214y8D21yD@T#2D2@T#1zy1a

54y2~T!2D218yy8@T#2D2@T#1D214y8~y@T#2D21@T#y8!1zy1a

524yD21@T#y814y2@T#2D2@T#1zy1a

524yD21FAky
2k211 (

l o1¯1 l 2k22<2k23
bkl~y! l o

¯~y~2k22!! l 2k22G
3Dy14y2S Aky

2k211 (
l o1¯1 l 2k22<2k23

bkl~y! l o
¯~y~2k22!! l 2k22D

2D2@T#1zy1a

5
4~2k21!Ak

2k
y2k1114y2~T2Aky

2k21!

2D2@T#24yD21@T2Aky
2k21#Dy

5
4~2k21!Ak

2k
y2k111¯1zy1a1 (

l o1¯1 l 2k<2k21
bkl~y! l o

¯~y~2k!! l 2k.
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So the result holds form5k11. In addition, notingA252, from the above-mentioned computin
process, we have

Ak115
4~2k21!Ak

2k
5

4~2k21!

2k

4@2~k21!21#

2~k21!
Ak21

5
4~2k21!

2k

4@2~k21!21#

2~k21!
¯

4~421!

4
A2

5A2)
j 52

k
4~2 j 21!

2 j
5)

j 51

k
2~2 j 21!

j
.

Now we can rewrite (vP2) in the following form:

P~a,z,y,y8,...,y~2m22!!5~Amy2m211¯1zy1a!1y~2m22!

1 (
l 5 l o1¯1 l 2m22<2m23

Bl~y! l o
¯~y~2m22!! l 2m2250, ~3.2!

wherel o1 l 11¯1 l 2m22>2, l 11¯1 l 2m22>1 andBl is constant.
Lemma 3.2 (J. Clunie):Let f be a transcendental meromorphic solution of

f nP~z, f !5Q~z, f !,

whereP(z, f ) andQ(z, f ) are polynomials inf and its derivatives with meromorphic coefficient
say $alulPI %, such thatm(r ,al)5S(r , f ) for all lPI . If the total degree ofQ(z, f ) as a
polynomial in f and its derivatives is<n, then

m~r ,P~z, f !!5S~r , f !.

Lemma 3.3 (A. Z. Mohon’ko and V. D. Mohon’ko):Let

P~z, f , f 8,...,f ~n!!50 ~3.3!

be an algebraic differential equation, i.e.,P(z,uo ,u1 ,...,un) is a polynomial in all of its argu-
ments, and letf be a transcendental meromorphic solution of~3.3!. If a constantcPC does not
solve ~3.3!, then

mS r ,
1

f 2cD5S~r , f !.

For proofs of the lemmas, see Lemma 2.4.2 and Proposition 9.2.3 in Laine~1993!.
Proposition 3.4:Supposey(z) is a nonrational solution of (vP2). If a5c50, thenm(r ,y)

< 1
2T(r ,y)1S(r ,y).

Proof: If a50, multiply (vP2) by 2y8 and integrating, we get

E
zo

z

2D21Sy
m21~y8!y8 dz1E

zo

z

2zyy8 dz

52yD21Sy
m21~y8!

2E
zo

z

2ySy
m21~y8!dz1zy22E

zo

z

y2 dz50 . ~3.4!

By ~1.2! and ~1.3!, we have
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2ySy
m21~y8!5Xm~y81y2!2DSy

m21~y8!5D
]Hm~q!

]q
2DSy

m21~y8!,

whereq5y81y2, Hm is the Hamiltonian system. Therefore

E
zo

z

2ySy
m21~y8!dz5

]Hm~q!

]q
2Sy

m21~y8!

is a differential polynomial. Since differentiating or integrating a differential polynomial does
change its total degree, by~3.2!, ~3.4! can be written in the following form:

E
zo

z

y2 dz5zy21 (
l 5 l o1¯1 l 2m23<2m23

Cl~y! l o
¯~y~2m23!! l 2m231C0

with l o1 l 11¯1 l 2m23>2 andCl , C0 are constants. Set

G~z!5zy21 (
l 5 l o1¯1 l 2m23<2m23

Cl~y! l o
¯~y~2m23!! l 2m23

by proposition 3.1 and lemma 3.2, we havem(r ,G)5S(r ,y).
From G8(z)5y2, it is easy to know thatm(r ,G/G8)5S(r ,y). Sincey(z) has only simple

poles@Gromak and He~2000!#, we have

N~r ,G!5N~r ,G8!2N̄~r ,G8!5N~r ,y2!2N̄~r ,y2!5N~r ,y!

henceT(r ,G)5T(r ,y)1S(r ,y) andS(r ,G)5S(r ,y). From all the above, we have

2mS r ,
1

yD5mS r ,
1

y2D5mS r ,
1

G8D<mS r ,
G

G8D1mS r ,
1

GD5mS r ,
1

GD1S~r ,y!<T~r ,y!1S~r ,y!

so we can get the result of proposition 3.4.
Proof of Theorem 2.1:Supposey(z) is a nonrational solution of (vP2). By ~3.2!, (vP2) can be

written as

Amyy2m225 (
l 5 l o1¯1 l 2m22<2m23

Bl~y! l o
¯~y~2m22!! l 2m221zy1a

then by lemma 3.2 it follows

m~r ,y!5S~r ,y!.

Therefore,d(y,`)50 and soy has infinitely many poles. And through computation, it is n
difficult to know c does not solve~3.2! in both cases of~i! and ~ii !. By lemma 4.3, we have
m(r ,1/(y2c))5S(r ,y) for both cases, henced(y,c)50 andy has infinitely manyc points.

If a50, by proposition 3.4 and the definition ofd(y,0), we haved(y,0)< 1
2.

Note: Especially, for (4P2), the multiplicity of zeros ofy(z) is no more than 3. In fact, by
(4P2), we have

y~4!

y
510yy9110y~y8!226y42z. ~3.5!

If zo is a zero ofy(z) with multiply k(k>4), thenzo must be a pole of the left-hand side of~3.5!,
this contradicts with the right-hand side of~3.5!.

~iv! follows from the fact thaty(z) has only simple poles.
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Proof of Corollary 2.2:If uau1uauÞ0, then by Theorem 2.1 and Nevanlinna’s first fundam
tal theorem

NS r ,
1

y2aD5T~r ,y!2mS r ,
1

y2aD1O~1!5T~r ,y!1S~r ,y!

and then

NS r ,
1

y2aD5T~r ,y!~11o~1!!, r ¹E1 ,

whereE1 is a set with finite linear measure. Similarly foruau1ubuÞ0,

NS r ,
1

y2bD5T~r ,y!~11o~1!!, r ¹E2 ,

whereE2 is a set with finite linear measure. SetE5E1øE2 , then

lim
r→`

NS r ,
1

y2aD
NS r ,

1

y2bD 51

for r ¹E.
Proof of Theorem 2.3:Differentiating ~3.2!, we get

y52~2m21!Amy2m22y82¯2zy8

2 (
l<2m23

Bl (
i 50

2m22

l i y
l o
¯~y~ i !! l i21~y~ i 11!! l i 1111

¯~y~2m22!! l 2m22 ~3.58!

dividing ~3.5! by y8 and rewriting it as the following form:

y

y8
52~2m21!Amy2m222¯2z

2 (
l<2m23

Bl (
i 50

2m22

l i y
l o~y8! l 121

¯~y~ i !! l i21~y~ i 11!! l i 1111
¯~y~2m22!! l 2m22

5L1~y!1L2~y!1L3~y!5L~y! ,

whereL1(y)52(2m21)Amy2m222¯2z, L2(y)52S l<2m23Bl l oyl o21(y8) l 1
¯(y(2m22)) l 2m22,

L3~y!52 (
l<2m23

Bl (
i 51

2m22

l i y
l o~y8! l 121

¯~y~ i !! l i21~y~ i 11!! l i 1111
¯~y~2m22!! l 2m22

andl 11¯1 l 2m22>1 for L3(y). Notingm(r ,y)5S(r ,y) andm(r ,y( i 1k)/y( i ))5S(r ,y) outside a
set of r with finite linear measure, from the above-mentioned expression, we have

mS r ,
y

y8D5m~r ,L~y!!<M1m~r ,y!1M2 (
i 51

2m22

mS r ,
y~ i !

y D 1M3 (
i 52

2m22

mS r ,
y~ i !

y8
D 5S~r ,y!,

~3.6!

whereM1 , M2 , andM3 are constants. Sincem(r ,1/y)5S(r ,y) for aÞ0, we get
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mS r ,
1

y8D<mS r ,
y

y8D1mS r ,
1

yD5S~r ,y!

we know thaty(z) just has simple poles, thus

T~r ,y8!5m~r ,y8!1N~r ,y8!52N~r ,y!1S~r ,y!.

By Nevanlinna’s first fundamental theorem, we have

NS r ,
1

y8D5T~r ,y!2mS r ,
1

y8D1O~1!52T~r ,y!1S~r ,y!

therefore

lim inf
r→`

NS r ,
1

y8D
T~r ,y!

52.

This proves Theorem 2.3.
To prove Theorem 2.4, we need the following proposition:
Proposition 3.5:Supposey(z) is a nonrational meromorphic solution of (4P2) andzo is a pole

of y(z), theny(z) just has its poles with residues61, 62 and if the residuesa21561, y(z) have
the following expression

y~z!56~z2zo!211a1~z2zo!1a2~z2zo!21¯ ~3.7!

if the residuesa21562, then

y~z!562~z2zo!211a3~z2zo!31¯ . ~3.8!

Proof: Supposey(z)5a21(z2zo)211Sn51
` an(z2zo)n, substituting it into (4P2), then we

have

24a21~z2zo!251( n~n21!~n22!~n23!an~z2zo!n24

510S a21~z2zo!211 (
n51

`

an~z2zo!nD 2S 2a21~z2zo!231 (
n51

`

n~n21!an~z2zo!n22D
110S a21~z2zo!211 (

n51

`

an~z2zo!nD S 2a21~z2zo!221 (
n51

`

nan~z2zo!n21D 2

26S a21~z2zo!211 (
n51

`

an~z2zo!nD 5

2zS a21~z2zo!211 (
n51

`

an~z2zo!nD 2a. ~3.9!

Comparing the coefficients of (z2zo)25, we have 24a21520(a21)3110(a21)326(a21)5, since
a21Þ0, we geta21561 or 62; comparing the coefficients of (z2zo)23 of both sides of Eq.
~3.9!, we get 40a1(a21)2210a1(a21)2230a1(a21)450, it follows that a150 or a21561;
Similarly from the coefficients of (z2zo)22, we get 60a2(a21)2230a2(a21)226C5

4a2(a21)4

50 and thena250 or a21561. Soy(z) has the property shown in the theorem.
Proof of Theorem 2.4:According to Airault~1979! and Gromak and Lukashevich~1990! for

a5e/2, (4P2) is equivalent to the system
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y852ey21w, w953ew21
ez

2
. ~3.10!

Let (w(z),e)5we(z) denote the solution of~3.10! with parametere; Let z21 , z1 , z22 , andz2

denote the poles ofy(z) with residue21, 1,22, and 2, respectively. Ife51, then by~3.8!, ~3.9!,
and the first equation of~3.10!, the Laurent expansions ofw(z) aroundz21 , z2 andz1 are

w1~z!5
2

~z2z21!222a3~z2z21!21¯ ,

w1~z!5
2

~z2z2!2 17a3~z2z2!21¯ ,

w1~z!53a114a2~z2z1!1¯ ,

respectively. These expansions show thatw1(z) has double poles atz21 andz2 and it is analytic
at z1 . For z5z22 , from ~3.8! and the first equation of~3.10!, we have

w1~z!5
6

~z2z2!22a3~z2z2!31¯ .

It is obvious thatw1(z) is not a solution of~3.10!, because it does not satisfy the second equa
of ~3.10!. So in the casee51, y(z) has no poles with residue22. If e521, by using the same
reasoning, we get the following conclusions:w21(z) has second-order poles atz1 , z22 and is
analytic atz21 ; y(z) has no poles with residue 2.

Let Ee denote the set of poles ofy(z) with residues2e and 2e, thenEe is also the set of the
poles ofwe(z). We assertEe is an infinite set. In fact, from the second equation of~18!, we have

2m~r ,we!5mS r ,we

we9

we
D 1O~ log r !<m~r ,we!1S~r ,we!

hence,m(r ,we)5S(r ,we). Then N(r ,we)5T(r ,we)1S(r ,we), and by definitionwe(z) has an
infinite number of poles. This proves Theorem 2.4.

Question:Related to Theorem 2.4, we are not sure whethery has infinitely many poles with
residues2e and infinitely many with12e, but we believe this to be the case.
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L p spectral independence of the streaming operator
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The Lp spectrum of the streaming operator in spherical geometry with detailed
balancing wall is discussed. First, theLp-independence of the spectrum is estab-
lished. Second, the Browder essential spectrum is proved to be empty except for`
under the assumption that the wall is nonmultiplying. Finally, we give a simple
example to show that theLp spectral independence of the operator is not valid if the
wall is not detailed balancing. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1430045#

I. INTRODUCTION

The systematic study ofLp spectral independence of differential operators inLp spaces was
initiated by Simon. He conjectured in Refs. 1 and 2 that the spectrum of the Schro¨dinger operator
2D1V is of Lp independence whenV belongs to Kato class. This problem was solved
Hempel and Voigt.3,4 Since then, theLp spectral independence for some general and higher o
elliptic operators was established by many researchers~see, e.g., Refs. 5–7, and the referenc
therein!. On the other hand, Hempel and Voigt4 gave an interesting example~a second-order
singular differential operator on the half line! which shows that the spectrum isLp dependent. So
generally speaking, the spectra of physical interesting operators are not alwaysLp independence.
Nevertheless, we will show in this paper that theLp spectral independence of the streami
operator, which is important in physics~especially in gas dynamics,8 neutron transport,9,10 and
radiative transfer,11 etc.!, is valid if the material wall satisfies the detailed balancing principle

Roughly speaking, the streaming operator is a first-order singular differential ope
equipped with a half range boundary condition which is expressed by an integral operator8,12–14

So, we may regard the streaming operator as a differential-integral operator~rather than a differ-
ential operator! which is different from the Schro¨dinger operator in its physical backgroun
Physics suggests that the natural space for Schro¨dinger operator isL2 ~Refs. 1, 2, and 15! whereas
the natural space for streaming operator isL1.8,12–14But the streaming operator is also treated
Lp spaces for some technical reasons~see, e.g., Refs. 8, 16, and 17!. Generally speaking, we ca
calculate the spectrum of an operator more easily inL2 than inL1. Then a question arises: Is th
L2 spectrum just theL1 one? This is the problem ofLp spectral independence. If the answer to t
problem is negative, then the dynamics governed by the operator inL2 may differ greatly from
that in L1 and results obtained inL2 space do not tell the real story of the original physic
problem. So just as in the theory of Schro¨dinger operators, the problem ofLp spectral indepen-
dence is also important in the theory of streaming operators. Of course, this problem i
interesting from a pure mathematical point.

This paper is organized as follows: In Sec. II we describe the problem and the main re
and give the equivalent description of the problem. In Sec. III we prepare some auxiliary p
sitions which will be used in the proof of the main results. Section IV is devoted to the pro
Theorems 2.1 and 2.2, and we will finish the proof by several steps. In Sec. V, a counterex
is given to show that the spectrum isLp dependent if the wall does not satisfy the detail
balancing principle@condition ~2! of Sec. II#.

a!Electronic mail: xwzhang@public.wh.hb.cn
11160022-2488/2002/43(2)/1116/11/$19.00 © 2002 American Institute of Physics
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II. DESCRIPTION OF THE PROBLEM AND MAIN RESULTS

For simplicity, we will restrict ourselves to the one-speed and spherical symmetric case
spectrum of this operator was discussed in Refs. 12 and 13 in theL1 setting. The multispeed cas
was thoroughly studied in Refs. 14 and 18, and we will follow the notations used there. Not
the results obtained in Ref. 14 are also valid for the one-speed case if we letVm5VM51. It should
be mentioned here that the spectra of the operator in slab geometry were discussed in Refs
20 in L1 space and in Refs. 16 and 17~more general boundary conditions were considered! in Lp

setting, and that more general cases~multidimensional and abstract boundary conditions! were
discussed in Refs. 8 and 21 in theL2 andL1 spaces. Nevertheless, those authors did not inve
gate theLp independent properties of the spectra.

Let G5@0,R#3@21, 1#, V5@21, 1#, the streaming operatorBp defined in the space
Lp(G,r 2drdm) for 1<p<` reads:

~Bpf !~r ,m!52m
]

]r
f ~r ,m!2

12m2

r

]

]m
f ~r ,m!2S~r ,m! f , ~r ,m!P@0,R#3@21, 1#5G.

The domain D(Bp)5$ f u f and Bpf PLp(G,r 2 dr dm) such that f (r ,m) satisfies the diffuse
reflection boundary condition, i.e., f (R,m)PLp(V,umudm), and umu f (R,m)
5*0

1a0(m,m8)m8 f (R,m8)dm8 for mP@21,0)%. WhereS(r ,m) is a bounded non-negative an
measurable function, anda0(m,m8) is a non-negative and measurable function defined
@21,0)3(0,1# which describes the interaction of particles with the boundary wall, we de
inf$S(r ,m)u(r ,m)PG% by l0 .

In the following, we suppose that the boundary wall is bounded multiplying~including con-
servative and nonmultiplying cases! and satisfies the detailed balancing principle, i.e.,a0(m,m8)
satisfies

a5supH E
21

0

a0~m,m8!dmUm8P~0,1#J ,`, ~1!

um8ua0~m,m8!5umua0~2m8,2m!, ~m,m8!P@21,0!3~0,1#. ~2!

Furthermore, we also suppose that for every measurable subsetE,@21,0) we have

lim
mesE→0

supH E
E
a0~m,m8!dmUm8P~0,1#J 50. ~3!

Now we can write down our main results.
Theorem 2.1:For every pP@1,̀ #, we have, s(Bp)5s(B1).
Theorem 2.2: If a<1, then for every pP@1,̀ #,sess(Bp)5$`%, wheresess(Bp) is the Brow-

der essential spectrum of Bp .
We remark that there exist several definitions of the essential spectrum and the Br

essential spectrum is the largest one among them~see, e.g., Ref. 22, p. 40!. We also remark that the
Browder essential spectrum is the complement of the discrete spectrumsdis(•) relative to the
spectrums(•) and the discrete spectrumsdis(•) consists of all isolated eigenvalues with fini
algebraic multiplicity~Ref. 23, pp. 242–243!.

As in Refs. 12 and 14, we use the transformationx5rm, y5rA12m2, then Bp has the
following equivalent form:

Bp :Xp→Xp ;~Bpw!~x,y!52
]

]x
w~x,y!2s~x,y!w~x,y!,

D~Bp!5$wuw and BpwPXp such thatw~6AR22y2,y!PYp ,
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and

y

R2 w~2AR22y2,y!5E
S
a~y,y8!

y8

R2 w~AR22y82,y8!dy8%,

whereXp5Lp(D,y dx dy) and Yp5Lp(S,(y/R2) dy) with D5$(x,y)ux21y2<R2,y>0% and S
5@0,R#. We denote the norms ofXp and Yp by i•ip . Here for simplicity we introduced the
following symbols:

s~x,y!5SS Ax21y2,
x

Ax21y2D ,

a~y,y8!5
y

RAR22y2
a0S 2

AR22y2

R
,
AR22y82

R D .

With those in mind, we can rewrite Eqs.~1!–~3! as the following:

a5supH E
S
a~y,y8!dyUy8PSJ ,`, ~4!

y8a~y,y8!5ya~y8,y!,~y,y8!PS3S, ~5!

lim
mesE→0

supH E
E
a~y,y8!dyUy8PSJ 50. ~6!

We will follow the notations of Ref. 14 and define the following operators:

M p,l :Yp→Yp ;~M p,lc!~y!5E
S
M ~l;y,y8!c~y8!dy8,

Hp,l :Xp→Yp ;~Hp,lw!~y!5E
D

H~l;y,x8,y8!w~x8,y8!dx8 dy8,

Lp,l :Yp→Xp ;~Lp,lc!~x,y!5expS 2E
2AR22y2

x

D~l;z,y!dzDc~y!,

Pp,l :Xp→Xp ;~Pp,lw!~x,y!5E
2AR22y2

x

expS 2E
x8

x

D~l;z,y!dzDw~x8,y!dx8,

where

M ~l,y,y8!5
y8

y
a~y,y8!expS 2E

2AR22y82

AR22y82

D~l;z,y8!dzD ,

H~l,y,x8,y8!5
y8

y
a~y,y8!expS 2E

x8

AR22y82

D~l;z,y8!dzD ,

D~l;x,y!5l1s~x,y!.

Remark 2.1:~i! If we denote the streaming operator defined inXp with non-reentry boundary
condition@i.e., a0(m,m8)50# by Bp,0 , thenPp,l is nothing else but the resolvent ofBp,0 and the
resolvent setr(Bp,0)5C ~the whole complex plane!.
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~ii ! The proof of the main theorems, which follows from several properties of the oper
M p,l , Hp,l , Lp,l , andPp,l established in Sec. III, will be given in Sec. IV, at present we wan
describe the strategy used in the proof. We will show that~Proposition 4.3!

s~Bp!5$lu1Ps~M p,l!%ø$`%,pP@1,̀ #.

Then the problem reduces to prove thep independence ofs(M p,l)\$0%, which will be established
in Proposition 4.2. It is worth notice that in proving Proposition 4.3 we also need to use P
sition 4.2. In general, spectra of integral operators~even with positively definite and symmetri
kernels! may be dependent uponp.3 In our situation, the kernel ofM p,l is unsymmetrical and very
complicated. Nevertheless, we are able to show that it is of power compactness forp51,̀ , which
enables us to obtain the conclusions.

III. AUXILIARY THEOREMS

In this section, we prepare some auxiliary results which are useful in the proof of the
theorems. Especially, we will establish some compactness results and the analyticity ofM p,l and
Hp,l . In theL1 setting, those results were obtained in Refs. 12–14, in order to derive those r
in the Lp spaces, the detailed balancing principle is needed. In the following, we will denot
adjoint number ofp by p8.

Proposition 3.1: The operators Mp,l , Hp,l , Lp,l , and Pp,l have the following properties:
~i! For every lPC and every pP@1,̀ #, M p,l , Hp,l , Lp,l , and Pp,l are bounded linear

operators.
~ii ! If Rel.2l0, then,

r ~M1,l!,a, iM p,li,a for pP~1,̀ #,

where r(M1,l) is the spectral radius of M1,l .
~iii ! If Rel.2l0, then for every pP@1,`#,

iHp,li<~Rel1l0!2 1/p8R2 2/pa, iLp,li<R2/p~p~Rel1l0!!2 1/p, iPp,li<
1

Rel1l0
.

Proof: The case ofp51 has been proved in Ref. 14, for 1,p,` andcPYp we have

iM p,lcip
p5E

S
u~M p,lc!~y!up

y

R2 dy

5E
S
U E

S
M ~l;y,y8!c~y8!dy8Up y

R2 dy

<E
S
S E

S

y8

y
a~y,y8!exp~2AR22y82~Rel1l0!!uc~y8!udy8D p y

R2 dy.

Using Hölder inequality and~5!, we obtain,

iM p,lcip
p<E

S
S E

S
a~y8,y!exp~2AR22y82~Rel1l0!!dy8D p/p8

3S E
S
y8a~y,y8!exp~2AR22y82~Rel1l0!!uc~y8!up dy8D 1

R2 dy.

If Rel.2l0, let
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a15supH E
S
a~y8,y!exp~2AR22y82~Rel1l0!!dy8UyPSJ

since

a~y8,y!exp~2AR22y82~Rel1l0!!,a~y8,y!, ~y,y8!PS3S,

hencea1,a, which implies that

iM p,lcip
p<a1

p/p8aE
S
uc~y8!up

y8

R2 dy8,

i.e., iM p,li<a1
1/p8a1/p,a. Hence,iM p,li,a.

If Rel<l0, by a similar method we get

iM p,lcip
p<a~p/p8! 11 expS RuRel1l0uS p

p8
11D D E

S
uc~y8!up

y8

R2 dy8

so, iM p,lcip<a exp(RuRel1l0u)icip , which implies thatiM p,lip<a exp(RuRel1l0u).
If p5`, then forcPY` we get from~4! and ~5!,

iM`,lci`<sup
yPS

E
S
M ~l;y,y8!uc~y8!udy8,

<sup
yPS

E
S

y8

y
a~y,y8!exp~2AR22y82~Rel1l0!!uc~y8!udy8

<sup
yPS

E
S
a~y8,y!exp~2AR22y82~Rel1l0!!uc~y8!udy8.

Consequently, we obtainiM`,lci`<a1ici` for Rel.2l0 and iM`,lci`<a exp(RuRel
1l0u)ic i` for Rel<2l0. That is to say,iM`,li`<a1,a for Rel.2l0 and iM`,li`

<a exp(RuRel1l0u! for Rel<2l0.
Hence,~i! and~ii ! of the theorem forM p,l are proved. We can manage~i!–~iii ! for the other

three operators by similar procedures. Q.E.
Proposition 3.2: If p51 or `, then for everylPC, M p,l

2 is compact. If furthermore1
Pr(M p,l) and mPr(Pp,l), then (Lp,l(I 2M p,l)21Hp,l(mI 2Pp,l)21)2 is compact.

Proof: It has been proved~see, Ref. 14, Lemma 2.3 and the proof of Theorem 3.2! that for
p51,M p,l

2 and (Lp,l(I 2M p,l)21Hp,l(mI 2Pp,l)21)2 are compact operators forlPC satisfying
the conditions described previously. Forp5`, we consider the following operators:

N1,l :Y1→Y1 ;~N1,lc!~y!5E
S

y8

y
M ~l;y8,y!c~y8!dy8,

J1,l :Y1→X1 ;~J1,lc!~y!5E
D

1

R2

y8

y
H~l;y8,x,y!c~y8!dy8.

Obviously,M`,l5N1,l
! andH`,l5J1,l

! , where! means the adjoint operator. Define vector-valu
functionsG1,l andG2,l as
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G1,l :S→Y1 ;G1,l~y8!5
y8

y
M ~l;y8,y!, y8PS,

G2,l :S→X1 ;G2,l~y8!5
1

R2

y8

y
H~l;y8,x,y!, y8PS,

then we have

iG1,l~y8!i1<E
S
a~y8,y!exp~22AR22y2~Rel1l0!!

y

R2 dy

<E
S
a~y,y8!exp~22AR22y2~Rel1l0!!

y8

R2 dy

<a exp~2RuRel1l0u!
1

R
, ~7!

iG2,l~y8!i1<E
D

a~y8,y!exp~2~AR22y22x!~Rel1l0!!
y

R2 dxdy

<E
D

a~y,y8!exp~2~AR22y22x!~Rel1l0!!
y8

R2 dx dy

<a exp~2RuRel1l0u!
1

R
. ~8!

Furthermore, for measurable subsetsEPS andFPD we have

E
E

y8

y
uM ~l;y8,y!u

y

R2 dy<E
E
a~y,y8!exp~2RuRel1l0u!

1

R2 dy,

E
F

1

R2

y8

y
uH~l;y8,x,y!uy dx dy<E

F

1

R2 a~y,y8!exp~2RuRel1l0u!dx dy.

By ~6!, we obtain that

lim
mesE→0

supH E
E

y8

y
uM ~l;y8,y!u

y

R2 dyUy8PSJ 50, ~9!

lim
mesF→0

supH E
F

1

R2

y8

y
uH~l;y8,x,y!uy dx dyUy8PSJ 50. ~10!

It follows from ~7!–~10! and Ref. 24 thatN1,l andJ1,l are weakly compact operators, co
sequently,N1,l

2 is compact. Hence,M`,l
2 5(N1,l

2 )! is a compact operator. If 1Pr(M`,l) and m
Pr(P`,l), we consider the following operators:

T1,l :X1→Y1 ;~T1,lw!~y!5E
2AR22y2

AR22y2

R2 expS 2E
2AR22y2

x

D~l;z,y!dzDw~x8,y!dx8,

Q1,l :X1→X1 ;~Q1,lw!~x,y!5E
x

AR22y2

expS 2E
x

x8
D~l;z,y!dzDw~x8,y!dx8.
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Obviously, T1,l
! 5L`,l and Q1,l

! 5P`,l . So, we have 1Pr(N1,l) and mPr(Q1,l), further-
more, (L`,l(I 2M`,l)21H`,l(mI 2P`,l)21)25$((mI 2Q1,l)21J1,l(I 2N1,l)21T1,l)2%!. But
J1,l is weakly compact, so ((mI 2Q1,l)21J1,l(I 2N1,l)21T1,l)2 is compact.24 Hence, (L`,l(I
2M`,l)21H`,l(mI 2P`,l)21)2 is compact. Q.E.D.

Proposition 3.3: For every pP@1,̀ #, the operator-valued functions Mp,l , Hp,l ,Lp,l and
Pp,l are analytic on the whole complex plane C.

Proof: Define bounded linear operators:M p,l8 :Yp→Yp ,Hp,l8 : Xp→Yp , andLp,l8 : Yp→Xp as

~M p,l8 c!~y!5E
S
22AR22y82M ~l;y,y8!c~y8!dy8,

~Hp,l8 w!~y!5E
S
~x82AR22y82!H~l;y,x8,y8!w~x8,y8!dx8 dy8,

~Lp,l8 c!~x,y!52~x1AR22y2!~Lp,lc!~x,y!.

It follows from Ref. 25 that we only need to show that forcPYp andwPXp ,

d

dl
M p,lc5M p,l8 c,

d

dl
Hp,lw5Hp,l8 w,

d

dl
Lp,lc5Lp,l8 c.

Let 0,uDlu,1 and denoteM (l1Dl;y,y8)2M (l;y,y8) by DM (l;y,y8), then we have

uDl21DM ~l;y,y8!12AR22y82M ~l;y,y8!u<exp~2R!uM ~l;y,y8!u

and

lim
Dl→0

~Dl21DM ~l;y,y8!12AR22y82M ~l;y,y8!!50.

On the other hand, by Ho¨lder inequality we have

iDl21~M p,l1Dlc2M p,lc!2M p,l8 cip

<E
S

y

R2 dyS E
S

exp~2R!uM ~l;y,y8!udy8D
3S E

S
uDl21DM ~l;y,y8!12AR22y82M ~l;y,y8!uuc~y8!up dy8D

<C~l!E
S

y

R2 dyE
S
uDl21DM ~l;y,y8!12AR22y82M ~l;y,y8!uuc~y8!up dy8,

whereC(l)5a exp(2R(11uRel1l0u)). Using the above-given inequalities and the method u
in the proof of Ref. 14, Lemma 2.3~note thatucupPY1 whencPYp!, we obtain

d

dl
M p,lc5M p,l8 c.

Similarly, we can verify (d/dl) Hp,lw5Hp,l8 w and (d/dl) Lp,lc5Lp,l8 c. The analyticity of
Pp,l follows from Remark 2.1~i!. Q.E.D.
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IV. PROOF OF THE MAIN THEOREMS

We will finish the proof of Theorems 2.1 and 2.2 by the following several propositions:
Proposition 4.1: For everylPC,

s~M1,l!\$0%5sdis~M1,l!\$0%5s~M`,l!\$0%5sdis~M`,l!\$0%.

Proof: We have by Proposition 3.2 and Riesz–Schauder theory that

s~M1,l!\$0%5sdis~M1,l!\$0%, ~11!

s~M`,l!\$0%5sdis~M`,l!\$0%. ~12!

On the other hand, it is easy to verify that the adjoint operator ofM1,l is

M1,l
! :Y`→Y` ;~M1,l

! c!~y!5E
S
a~y8,y!expS 2E

2AR22y2

AR22y2

D~l,z,y!dzDc~y8!dy8.

Define bounded linear operatorsT1 andT2 as follows,

T1 :Y`→Y` ;~T1c!~y!5expS 2E
2AR22y2

AR22y2

D~l,z,y!dzDc~y!,

T2 :Y`→Y` ;~T2c!~y!5E
S
a~y8,y!c~y8!dy8

obviously,T1T25M1,l
! andT2T15M`,l . It follows from Ref. 25 that

s~M1,l
! !\$0%5s~M`,l!\$0%. ~13!

So, the result follows from~11!–~13! ands(M1,l)5s(M1,l
! ). Q.E.D.

Proposition 4.2: For everylPC and pP@1,̀ #,

s~M p,l!\$0%5sdis~M p,l!\$0%5sdis~M1,l!\$0%5sdis~M`,l!\$0%.

Proof: It follows from Proposition 4.1 that

s~M1,l!\$0%5sdis~M1,l!\$0%5s~M`,l!\$0%5sdis~M`,l!\$0%. ~14!

By the definition ofM p,l , the above~14! andY`,Yp,Y1 for pP@1,̀ #, we have

sdis~M`,l!\$0%,sp~M p,l!\$0%,sdis~M1,l!\$0%, ~15!

wheresp(•) represents the point spectrum of an operator.
If mPr(M1,l)\$0%5r(M`,l)\$0%, then (mI 2M1,l)21 and (mI 2M`,l)21 are bounded op-

erators, further,

~mI 2M1,l!~mI 2M1,l!215~mI 2M1,l!21~mI 2M1,l!5I ,

~mI 2M`,l!~mI 2M`,l!215~mI 2M`,l!21~mI 2M`,l!5I .

For everycPY1ùY`5Y` , we have

~mI 2M1,l!~mI 2M1,l!21c5~mI 2M1,l!21~mI 2M1,l!c5c,

~mI 2M`,l!~mI 2M`,l!21c5~mI 2M`,l!21~mI 2M`,l!c5c,
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so (mI 2M1,l)21uY`
5(mI 2M`,l)21. By Riesz–Thorin interpolation theorem15 (mI 2M`,l)21

can be extended to anyYp for pP@1,̀ #. Furthermore, for everycPY` we have

~mI 2M p,l!~mI 2M`,l!21c5~mI 2M`,l!21~mI 2M p,l!c5c.

SinceY` is dense inYp , hencemPr(M p,l). This shows that

s~M p,l!\$0%,s~M1,l!\$0%. ~16!

It follows from ~14!–~16! and the trivial inclusionsp(M p,l)\$0%,s(M p,l)\$0% that

s~M p,l!\$0%5sp~M p,l!\$0%5sdis~M1,l!\$0%5sdis~M`,l!\$0%.

The fact that sp(M p,l)\$0%5sdis(M p,l)\$0% is obvious since N((mI 2M`,l)k),N((mI
2M p,l)k),N((mI 2M1,l)k) for everymPsp(M p,l) and every positive integerk, whereN(•) is
the null space of an operator. Q.E.D

Proposition 4.3 (Theorem 2.1): For every pP@1,̀ #, s(Bp)5s(B1). Furthermore s(Bp)
5$lu1Ps(M p,l)%ø$`% and (lI 2Bp)215Lp,l(I 2M p,l)21Hp,l1Pp,l for lPr(Bp).

Proof: The proof of $lu1Pr(M p,l)%,r(Bp) and (lI 2Bp)215Lp,l(I 2M p,l)21Hp,l

1Pp,l is the same as that of Ref. 14, Theorem 3.1~i!. In the following, we show that$lu1
Ps(M p,l)%,s(Bp).

It follows from Propositions 4.1 and 4.2 that$lu1Ps(M p,l)%5$lu1Psdis(M p,l)%. Hence,
for every lP$lu1Ps(M p,l)% there exists an eigenvectorcPYp and cÞ0 such thatM p,lc
5c. Let

f ~x,y!5~Lp,lc!~x,y!5~Lp,lM p,lc!~x,y!;

then f PXp and f Þ0. On the one hand, we have

f ~2AR22y2,y!5~M p,lc!~y!5c~y!,

f ~AR22y2,y!5expS 2E
2AR22y2

AR22y2

D~l,z,y!dzDc~y!,

so f PXp is continuously differentiable with respect tox and satisfies the boundary conditio
which shows thatf PD(Bp). On the other hand, it is easy to verify that (lI 2Bp) f 50. Therefore,
we have shown$lu1Ps(M p,l)%,s(Bp). s(Bp)5s(B1) follows from the above-mentioned
result and Propositions 4.1 and 4.2. Q.E.

Remark 4.1:It follows from the proof of Proposition 4.3 thats(Bp)\$`%5sp(Bp)\$`% and
Lp,lN(I 2M p,l),N(lI 2Bp) for pP@1,̀ #,lPsp(Bp)\$`%. On the other hand, we can sho
that Lp,lN(I 2M p,l).N(lI 2Bp) ~see Ref. 14, Proof of Theorem 3.2!. Hence we obtain tha
Lp,lN(I 2M p,l)5N(lI 2Bp).

Proposition 4.4 (Theorem 2.2): If the boundary wall is nonmultiplying or conservative,,
a<1, then for every pP@1,̀ #,sess(Bp)5$`%.

Proof: If p51, the result has been proved@see, Ref. 14, the proof of Theorem 3.2~i!#, if p
5`, with Remark 2.1~i! and Propositions 3.1–3.3, we can manage it by the same perturb
method as in Ref. 14~note that Proposition 3.1 and Ref. 26 show that there exist at most coun
lPC such that 1Psp(M`,l)). If 1,p,`, let lPs(Bp)5sp(Bp) ~see Remark 4.1!, then for
every positive integern we have

N~~lI 2B`!n!,N~~lI 2Bp!n!,N~~lI 2B1!n!

since B`,Bp,B1 . On the other hand, sincesess(B`)5sess(B1)5$`%, the closure of
ùn51

` N((lI 2B1)n) is finitely dimensional, so isùn51
` N((lI 2Bp)n). Hence,lPsdis(Bp), that

is, sess(Bp)5$`%. Q.E.D.
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V. DISCUSSION

In this section we shall give an example which shows that when the wall is not det
balancing the spectrum ofBp is Lp dependent. LetS(r ,m)5S anda0(m,m8)5a0 be constants,
then the detailed balancing condition~2! is not valid: um8ua0(m,m8)Þumua0(2m8,2m). In this
case we have

a~y,y8!5
a0y

RAR22y2
,

M ~l,y,y8!5
a0y8

RAR22y2
expS 2E

2AR22y82

AR22y82

D~l;z,y8!dzD ,

H~l,y,x8,y8!5
a0y8

RAR22y2
expS 2E

x8

AR22y82

D~l;z,y8!dzD ,

and it has been proved that
Proposition 5.1~Ref. 12, Theorems 1 and 2): If p51 and a0<1, then

s~B1!5sdis~B1!ø$`%5H lU a0~12exp~22~l1S!R!!

2~l1S!R
51J ø$`%

and eachlPsdis(B1) is a simple eigenvalue of B1 .
Remark 5.1:In fact, this result is also valid for everya0.0 ~i.e., multiplying boundary wall

is covered! andpP@1,2). The proof is similar to that of Ref. 12, Theorems 1 and 2.
If p>2, there is a different result. In fact, we have,
Proposition 5.2: If p>2, thens(Bp)5Cø$`%.
Proof: For everylPC, we shall showR(lI 2Bp)ÞXp , i.e., the range oflI 2Bp does not

equalXp . Consequently, everylPC belongs to the spectrum ofBp . We know thatYp is con-
tinuously embedded inXp . Let gPYp , if wPD(Bp) satisfies (lI 2Bp)w5g, then we obtain by
integrating it,

w~AR22y2,y!5exp~22~l1S!AR22y2!w~2AR22y2,y!

1~l1S!21~12exp~22~l1S!AR22y2!!g~y!. ~17!

On the other hand,w(6AR22y2,y) satisfy the boundary condition, i.e.,w(6AR22y2,y)PYp

and

y

R2 w~2AR22y2,y!5E
S
a~y,y8!

y8

R2 w~AR22y82,y8!dy8. ~18!

It follows from ~17! and ~18! that w(2AR22y2,y)5c(R22y2)21/2, wherec is a constant.
So, we havec50, otherwisew(2AR22y2,y)¹Yp ~note thatp>2!, i. e.,w(2AR22y2,y)50. In
consideration of~17! and ~18!, we obtain

E
S
~l1S!21~12exp~22~l1S!AR22y2!!g~y!y dy50,

which is impossible for manygPYp . The proof is complete. Q.E.D
Remark 5.2:It follows from Propositions 5.1 and 5.2 and Remark 5.1 that the spectrum oBp

is possiblyLp dependent if the material wall is not detailed balancing.
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On page 1151, Eq.~18! should be replaced by

eabb12z

2p E
2`

1`

dt
eibt

~a1 it !z 5H 1

G~z!
for b.0

0 for b,0

.

Also on page 1151, in line 4 the equation forb should be replaced by

b5F12~12q!b(
i 51

N

~Pi
2/2m!Y S 11~q21!b(

iÞ j
Gm2 lnuxi2xj u D G .
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The relativisticJ-matrix is investigated in the case of Coulomb-free scattering for
a general short-range spin-dependent perturbing potential and in two differentL2

bases. The resulting recursion relation of the reference problem, in this case, has an
analytic solution. The nonrelativistic limit is obtained and shown to be identical to
the familiar nonrelativisticJ-matrix. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1445288#

The J-matrix1–3 is an algebraic method of quantum scattering whose structure in fun
space parallels that of theR-matrix method in configuration space. The perturbing short ra

potential,Ṽ(r ), in the R-matrix method is confined to an ‘‘R-box’’ in configuration space@i.e.,

Ṽ(r )50 for r>R#, while in theJ-matrix method it is confined to an ‘‘N- box’’ in function space.

That is the matrix representationṼnm50 for n,m>N. In the two methods, the unperturbe
~reference! problem is solved analytically, enabling scattering calculation over a continuous r
of energy despite the fact that confinement in both methods produce discrete energy spec
basis of the function space, in theJ-matrix method, is chosen such that the matrix representa
of the reference Hamiltonian,H0 , is tridiagonal. This has no parallel in theR-matrix method. It
restricts the type ofL2 bases and limits reference Hamiltonians to those with this type of sym
try that admits such tridiagonal representations. It turns out that this restriction implies th
reference Hamiltonian must belong to the dynamical symmetry group SO~2,1!.4,5 Recently, a
simple and robust numerical scheme was developed that lifts this restriction without compr
ing any of the advantages offered by the method.6 The reference wave equation in theJ-matrix
method gives a symmetric three-term recursion relation for the expansion coefficients
unperturbed wave function. The regularized analytic solutions of this recursion give
asymptotic scattering states that enable calculation of the phase shift after the introduction

perturbing potentialṼ(r ). The method together with its multi-channel extension7,8 has been used
successfully in a large number of scattering problems in atomic and nuclear physics.

P. Horodecki introduced a relativistic extension of the theory for the Coulomb
interaction.9 This was followed by a systematic development of the theory for the Dirac–Coul
problem that includes perturbing short-range potentials with spin-dependent coupling.10 In this
article, we investigate the case whereZ50 of the latter development and in two differentL2

bases: the Laguerre-type and oscillator-type functions. The motivation for this treatment
from the fact that the resulting three-term recursion relation, in this case, has an analytic so
This is in contrast to the general case,ZÞ0, where the recursion relation was too difficult to sol
analytically and a numerical solution is obtained.10 It turns out that in the Coulomb-free case, th
recursion relation is identical to the nonrelativistic one, whose analytic solution is well kno3

except for a redefinition of the energy variable. The nonrelativistic limit is found and show
coincide with the familiar nonrelativisticJ-matrix. We carry out the detailed analysis of th
problem in the two-component Laguerre-typeL2 basis. The extension to the oscillator-type bas

a!Electronic mail: haidari@mailaps.org
11290022-2488/2002/43(3)/1129/7/$19.00 © 2002 American Institute of Physics
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which is straightforward, is summarized in Table I that lists all quantities needed for relati
scattering calculations in this basis.

In atomic units (m5e5\51) and taking the speed of lightc5a21, the free radial Dirac
equation for a two-component spinor is10,11

S 1 aS k

r
2

d

dr D
aS k

r
1

d

dr D 21
D S f~r !

u~r ! D5«S f~r !

u~r ! D , ~1!

wherea is the fine structure parameter and« is the relativistic energy. Herek is the spin-orbit
coupling parameter defined byk56( j 1 1

2) for l 5 j 6 1
2, where j is the total angular momentum

quantum number. Equation~1! relates the two components of the spinor wave function as

u~r !5
a

«11 S k

r
1

d

dr Df~r !. ~2!

Substituting this back into Eq.~1! gives the following second-order differential equation for t
upper component,

F2
d2

dr2 1
k~k11!

r 2 2
«221

a2 Gf~r !50, ~3!

which is analogous to the radial potential-free Schro¨dinger equation

F2
d2

dr2 1
l ~ l 11!

r 2 22EGx~r !50 ~4!

with the substitutionE5(«221)/2a2 and l 5k or l 52k21.
For building the relativisticJ-matrix formalism, we need to construct anL2 discrete repre-

sentation in which the reference Hamiltonian,

H05S 1 aS k

r
2

d

dr D
aS k

r
1

d

dr D 21
D ,

is tridiagonal so that the Dirac operatorJ5H02« gives a symmetric three-term recursion relati
for the expansion coefficients of the spinor wave function. The solution of this recursion rel
subject to proper initial conditions, gives the two ‘‘regularized’’ solutions of the relativistic w
equation~1! that behave asymptotically as sin (kr) and cos (kr), wherek is the energy-dependen
wave number. Therefore, theJ-matrix formalism can be applied giving the relativisticS-matrix for
a scattering problem with perturbing short-range potentialṼ(r ).3,10 The L2 space is spanned b
the two-component radial spinor wave functions$cn(r )%n50

` whose upper component isfn(r )
and lower component isun(r ). The conjugate space is spanned by$c̄n(r )%n50

` such that

^c̄nucm&5E
0

`

f̄n~r !fm~r !dr1E
0

`

ūn~r !um~r !dr5dnm . ~5!

Now, the analogy of the second order differential equation~3! to the Schro¨dinger equation~4!
suggests that the upper spinor component can be taken to be either of the Laguerre-
oscillator-type basis functions of the nonrelativisticJ-matrix3 with l 5k. We shall work out the
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details in the first basis. The results for the second basis are obtainable the same way a
straightforward manner. These results are summarized in Table I, which lists all quantities n
for relativistic scattering calculations in this basis.

In the Laguerre-type basis the stated analogy suggests that we can write

fn~r !5an~lr !k11e2lr /2Ln
2k11~lr !, ~6!

wherel is the basis scale parameter andLn
2k11(x) is the generalized Laguerre polynomial. Th

normalization constantan will be determined from the normalization condition~5!. Herefn(r )
satisfies the following differential equation

F2
d2

dr2 1
k~k11!

r 2 2
l~k1n11!

r
1

l2

4 Gfn~r !50.

TABLE I. The table gives the oscillator-type spinor basis$fn ,un%n50
` , its J-matrix coefficients$sn ,cn%, the matrix

elements of the reference Hamiltonian and that of the scattering short range potential. In the tablez is an arbitrary real
parameter,1F1(a;c;z) is the confluent hypergeometric function,h(«)[k(«)/l wherek(«) is as defined in Eq.~15!, and
Gnm

n [(k50
M21Lnk

n Lmk
n f @(jk

n)1/2/l#, Qnm
n [(k50

M21(jk
n)21/2Lnk

n Lmk
n f @(jk

n)1/2/l#, where the eigenvalues$jn
n%n50

M21 and corre-
sponding normalized eigenvectors$Lmn

n %n,m50
M21 are associated with the sameM3M tridiagonal matrix~17! but for a

different value of the parametern.

fn(r ) an~lr!k11e2l2r2/2Ln
k11/2~l2r 2!

un(r ) lCan~lr!ke2l2r2/2@~n1k1
1
2!Ln

k21/2~l2r 2!1~n11!Ln11
k21/2~l2r 2!#

an A2lG~n11!/G~n1k1
3
2!

f̄n(r ) zfn~r!1
~12z!/2

2n1k1
3
2

~lr !2fn~r !

ūn(r )
~12z!/2l2C2

2n1k1
3
2

un~r !

(H0)nm ~H0!nn511l2C2~2112a/C!~2n1k1
3
2!

~H0!n,n215l2C2~2112a/C!An~n1k1
1
2!

~H0!n,n115l2C2~2112a/C!A~n11!~n1k1
3
2!

I nm Inn511l2C2~2n1k1
3
2!

I n,n215l2C2An~n1k1
1
2!

I n,n115l2C2A~n11!~n1k1
3
2!

Ṽnm Ṽnm>a2Ṽ1Gn,m
k11/21a2l2C2Ṽ2@A~n1k1

1
2!~m1k1

1
2!Gn,m

k21/21A~n11!~m11!Gn11,m11
k21/2

1A~m11!~n1k1
1
2!Gn,m11

k21/2 1A~n11!~m1k1
1
2!Gm,n11

k21/2 #

12a2lCṼ0@A~n1k1
1
2!~m1k1

1
2!Qn,m

k21/22A~n11!~m11!Qn11,m11
k21/2 #

cn(«) ~21!n
G~k1

1
2!

A2p

an

l
h2ke2h2/2

1F1~2n2
1
22k;

1
22k;h2!

sn(«)
~21!n

l
Ap

2
anhk11e2h2/2Ln

k11/2~h2!
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The requirement that the matrix representation of the reference Hamiltonian and the basis-o
matrix, ^cnucm&, be at most tridiagonal is satisfied by the following expression for the lo
component,

un~r !5CS k

r
1

d

dr Dfn~r !, ~7!

where the small component strength parameter,C, is nonzero and independent ofn. This expres-
sion is also motivated by the solution of the wave equation in~2!. Using the differential and
recursion properties of the Laguerre polynomials,12 we can write~7! explicitly as

un~r !5
lC

2
an~lr !ke2lr /2@~2k1n11!Ln

2k~lr !1~n11!Ln11
2k ~lr !#. ~8!

The orthogonal conjugate representation defined in~5! gives

f̄n~r !5
~12z!/4

k1n11
fn~r !1

z

lr
fn~r !, ūn~r !5

~12z!/l2C2

k1n11
un~r !,

wherez is an arbitrary constant parameter. The normalization constant obtained is

an5AlG~n11!/G~2k1n12!.

In this basis, which is defined by the set of functions in Eqs.~6! and~8!, the matrix representation
of the reference HamiltonianH0 is tridiagonal and has the following elements:

~H0!n,n52~k1n11!@12~lC/2!2~122a/C!#,

~H0!n,n1152A~n11!~2k1n12!@11~lC/2!2~122a/C!#, ~9!

~H0!n,n2152An~2k1n11!@11~lC/2!2~122a/C!#.

The tridiagonal basis-overlap matrix elements,I nm5^cnucm&, are

I n,n52~k1n11!@11~lC/2!2#,

I n,n1152A~n11!~2k1n12!@12~lC/2!2#, ~10!

I n,n2152An~2k1n11!@12~lC/2!2#.

These will define the matrix elements of the tridiagonal Dirac operatorJnm(«)5(H0)nm2«I nm

that gives the symmetric three-term recursion relation.
The expansion coefficients of the spinor wave function that solves the reference equat~1!

satisfy this recursion relation, which reads

Jn,n21hn211Jn,nhn1Jn,n11hn1150, n>1, ~11!

wherehn stands for eithersn or cn ~the asymptotic sinelike and cosinelike solutions, respective!.
The initial relations are10

J00s01J01s150, J00c01J01c152a2W/2s0 ,

whereW(«) is the Wronskian of the regular and irregular solutions of the free Dirac proble
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W~«!5W~c reg,c irreg!5c reg

dc irreg

dr
2c irreg

dc reg

dr
52

2

a
A«21

«11
.

These coefficients also satisfy the Wronskian-like relation

Jn,n21~cnsn212cn21sn!52a2W/2, n>1.

Using the matrix elements given in~9! and~10!, we can write the homogeneous recursion relat
~11! as

2~n1k11!H ~«21!@11~lC/2!2#2 ~l2C2/2! ~a/C21!

~«21!@12~lC/2!2#1 ~l2C2/2! ~a/C21! J hn~«!

1bn21hn21~«!1bnhn11~«!50, ~12!

where the recursion coefficientbn5A(n11)(2k1n12). This is to be compared with the wel
known analytically solved nonrelativisticJ-matrix recursion relation in the Laguerre-type basi3

2~n1 l 11!FE2l2/8

E1l2/8Ghn8~E!1bn218 hn218 ~E!1bn8hn118 ~E!50, ~13!

wherebn85A(n11)(2l 1n12) andhn8 stands for either the sinelike or cosinelike solutions for
nonrelativistic problem. Therefore, by comparing relation~12! with ~13! we conclude that

hn~«!5hn8S 21

2C2

«21

«2112~12a/C! D U
l 5k

and that the range of the small component strength parameter isa.C.0. Using the analytic
solution of the nonrelativistic recursion,hn8(E), derived by Yamani and Fishman,3 we can write

cn~«!52
2k

Ap

an

l

G~k11/2!

~sinv!k 2F1S 2n2122k,n11;1/22k; sin2
v

2 D ,

~14!

sn~«!5
2k

l
anG~k11!~sinv!k11Cn

k11~cosv!,

where2F1(a,b;c;z) is the hypergeometric function andCn
n(x) is the Gegenbauer polynomial. Th

anglev is defined by

cos~v!5
@k~«!/l#22 1

4

@k~«!/l#21 1
4

,

where

k~«!5A21

C2

«21

«2112~12a/C!
. ~15!

The nonerelativistic limit is achieved by lettinga→0 @i.e., c(speed of light)→`#, which
gives«>11a2E andk5 l . Moreover, in the same limit, the small component,un(r ), of the wave
function will be negligible compared to the larger componentfn(r ). That is, the small componen
strength parameterC in Eq. ~7! will be of the order ofa. Taking this limit in the relativistic
recursion relation~12! gives
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2~n1 l 11!Fa2E2 ~l2C2/2! ~a/C21!

a2E1 ~l2C2/2! ~a/C21!Ghn~«!1bn21hn21~«!1bnhn11~«!50.

This nonrelativistic limit can be identified with the nonrelativistic recursion relation~13! if we
chooseC51a/2. Therefore, the nonrelativisticJ-matrix limit for the caseZ50 is achieved by
making the following choice of parameters in the relativisticJ-matrix formalism developmen
above:

a→0, k5 l , C5a/2

with the nonrelativistic energyE>(«21)/a2.
The solution~14! gives theJ-matrix kinematical coefficients$Rn

6%n51
` and$Tn%n50

` defined by

Tn5
cn2 isn

cn1 isn
; Rn11

6 5
cn116 isn11

cn6 isn
; n>0.

These will be the coefficients that enter in the calculation of theNth order relativisticS-matrix,10

S(N)~«!5TN21~«!
11gN21,N21~«!JN21,N~«!RN

2~«!

11gN21,N21~«!JN21,N~«!RN
1~«!

, ~16!

where gN21,N21(«) is the finite Green’s function in the conjugate subspace3,10 spanned by

$c̄n(r )%n50
N21 and carries the dynamical effects of the short range model potentialṼ(r ):

gN21,N21~«!5^c̄N21u~H01Ṽ2«!21uc̄N21&.

Due to the fact that the basis of theL2 space is nonorthogonal, care should be exercised in
calculation of the finite Green’s function as outlined in Appendix B of Ref. 10.

Now, for scattering we consider a general short-range perturbing potential, which has
dependent coupling, that is, the potential is a 232 real symmetric matrix of the following form

Ṽ~r !5S Ṽ1~r ! Ṽ0~r !

Ṽ0~r ! Ṽ2~r !
D .

Its matrix elements in the spinor basis are, therefore, written as

Ṽnm5a2E
0

`

fn~r !Ṽ1~r !fm~r !dr1a2E
0

`

un~r !Ṽ2~r !um~r !dr

1a2E
0

`

fn~r !Ṽ0~r !um~r !dr1a2E
0

`

un~r !Ṽ0~r !fm~r !dr.

We will consider the case whereṼ(r )5Ã0f (r ) andÃ0 is a constant 232 real symmetric matrix
~i.e., the coupling parametersṼ6 ,Ṽ0 are constants!. To evaluate these integrals we utilize
scheme based on Gauss quadrature as outlined in Appendix A of Ref. 10 The result
computation is
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Ṽnm>a2Ṽ1@A~2k1n12!~2k1m12!Gn,m
2k121AnmGn21,m21

2k12 2Am~2k1n12!Gn,m21
2k12

2An~2k1m12!Gm,n21
2k12 #1S alC

2 D 2

Ṽ2@A~m11!~2k1n11!Gn,m11
2k

1A~n11!~2k1m11!Gm,n11
2k #1a2lCS lC

4
Ṽ21Ṽ0DA~2k1n11!~2k1m11!Gn,m

2k

1a2lCS lC

4
Ṽ22Ṽ0DA~n11!~m11!Gn11,m11

2k ,

whereGnm
n is the Gauss quadrature integral approximation

Gnm
n > (

k50

M21

Lnk
n Lmk

n f ~jk
n/l!5Gmn

n , M.N.

The eigenvalues$jn
n%n50

M21 and corresponding normalized eigenvectors$Lmn
n %n,m50

M21 are associated
with the M3M tridiagonal matrix

S â0 b̂0

b̂0 â1 b̂1 0

b̂1 â2 b̂2

b̂2 3 3

3 3 3

0 3 3 3

3 3

D ~17!

whose recursion coefficients are parametrized byn and defined asân52n1n11 and b̂n

52A(n11)(n1n11).
Finally, with these potential matrix elements for the given problem, we have all the phy

quantities that are needed for evaluating the relativistic scattering matrix in~16!. Scattering ex-
amples have already been worked out where the accuracy of the nonrelativistic limit is ve
and the relativistic effects in the phase shift were calculated. However, the present mathem
treatment of the problem may not be suitable for such presentation. These results will be re
shortly elsewhere.
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Stable orbits in a Higgs-Monopole field
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~Received 4 September 2001; accepted for publication 20 November 2001!

Motion of Yang–Mills particles in Yang–Mills–Higgs fields are studied. By regard-
ing the Higgs field contribution on the particle’s motion, a complete set of equa-
tions is worked out for the particle and fields. The planar motions as well as
three-dimensional bounded motions are studied. Stable orbits are allowed in this
scenario. ©2002 American Institute of Physics.@DOI: 10.1063/1.1433942#

I. INTRODUCTION

In our last article1 we described the motion of a colored test particle in which the color
coupled only to the Yang–Mills field, and the nonrelativistic real space motion at large dist
was stated to be the same as for an electric point particle in a Dirac point monopole fiel
introduced planar motion of a non-Abelian particle in field of a BPS monopole. There, a mon
exerts a force on the particle via its non-Abelian charge. We studied various characteris
orbits and their stabilities. With some numerical analysis we stated that the planar bound m
are not stable, and three-dimensional bound orbits were not observed.

In this work, we introduce the Higgs field to exert a force on the particle in addition to
monopole force. We introduce Wong’s equations in five dimensions, and modify the equatio
motion for a particle in the Yang–Mills–Higgs fields. We have chosen the extra fifth dimensi
have no contribution in the fields, leaving it as a dynamical variable. A close relation betwee
time evolution of the fifth dimension and the isospace vectors, the Higgs and non-Abelian c
are observed. Motion of a test particle, now in the presence of a force from the Higgs fie
studied. Three-dimensional bounded orbits are observed, and stable planar orbits are allo

Fehér2 has given a reinvestigation for a classical motion of a colored test particle in
Prasad–Sommerfield monopole field. He has considered coupling of the particle to bo
Yang–Mills and the Higgs fields, and mentioned the existence of bounded orbits at nonrela
limit at large distances. He has used the Wong equations and regarded the Higgs field as t
component of a Yang–Mills vector field in five dimensions~Ref. 3, p. 46!, interpreting the motion
in the fifth direction as providing an effective mass of the particle. Fehe´r has supposed an affin
parameter on the path of the particle in the five-dimensional manifold to write down the W
equations. Then he has reformulated the equations by using the proper time parameter
projection of the affine parameter in the four-dimensional space–time path of the particle
interpreted the mass as the derivative of the proper time by this affine parameter. We thin
formalism is not a natural generalization of the four-dimensional Wong equations.4 In addition, the
limit of nonrelativistic motion is unclear, so the bounded orbits at far distances are questio
We have searched the literature but we have not found any other work in this direction. S
have reformulated the problem again.

II. GENERALIZING EQUATIONS OF MOTION TO FIVE DIMENSIONS

In this section we want to rebuild the equations of motion of a colored particle in a
Abelian Yang–Mills–Higgs field in a five-dimensional space–time as Wong extracted his e
tions from a four-dimensional analysis. The Lagrangian regarding to the Kinetic part of the
~with the usual definition! is

a!Electronic mail: azizi@physics.susc.ac.ir
11360022-2488/2002/43(3)/1136/16/$19.00 © 2002 American Institute of Physics
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2 1
4 FamnFmn

a 2 1
2 ~DmF!a~DmF!a, ~2.1!

whereFmn
a is the field strengths,Fa is the Higgs’s fields andDm is covariant derivative. This field

system can be regarded as a pure Yang–Mills system over a five-dimensional flat spac
M 5, for which the corresponding connection is invariant with respect to translations of the
coordinate. We suggest the fifth coordinate, sayx5 here, as an internal but dynamical coordinate
that no field variables depend on this internal coordinate. So the field Lagrangian~2.1! can
formally be written in pure Yang–Mills fields in five dimensions in a compact form:

Lf52 1
4 FaABFAB

a , ~2.2!

whereA,B,...50,1,2,3 and 5 denote indices in the five-dimensional space–time, and

FAB
a 5]AAB

a2]BAA
a1e fabcAA

bAB
c ~2.3!

is the gauge field strength wheref abc are the structure constants, ande is the coupling constant o
the particle with the Yang–Mills–Higgs field. We have defined the Higgs field as the fifth c
ponent of the Yang–Mills field:

Fa[A5
a , ~2.4!

Fm5
a 5]mA5

a2]5Am
a 1e fabcAm

b A5
c5~DmF!a, ~2.5!

wherem50,1,2,3 shows the usual four-dimensional space–time indices, anda, b, andc shows
the isospace indices—that is51,2,3 for SU(2) gauge group.

Now consider the interaction between the Yang–Mills fieldAA(x) ~x0 standing for time
component and the rest for spatial components! and a spin-12 field C(x) which transforms under
the fundamental representation of the gauge group with generatorsxa @for SU(2) gauge group,
xa5sa/2i wheresa with a51,2,3 are Pauli matrices#. So we may add the particle-field intera
tion term to the Lagrangian~2.2! to get

L52 1
4 FaABFAB

a 2C̄~gA]A1e gAAA
axa1m!C, ~2.6!

wheree is the coupling constant,m is the mass of particle andgA are Dirac gamma matrices, wit
g55g0g1g2g3. Comparing Lagrangian~2.6! with Wong analysis in four dimension, the extr
term

2C̄~g5]51e g5Faxa!C52eC̄g5FaxaC

appears in five-dimensional generalization, which indicates the interaction between the p
and the Higgs field.5–7

The field equations are

~DBFAB!a52eC̄gA xaC, ~2.7!

gA~]A1exaAA
a !C1mC50. ~2.8!

This is the usual Dirac-type treatment to find classical equations of motion from quantum r
by regarding Eq.~2.8! as a one-particle Dirac equation for a colored particle in a given exte
field AA . This has been done by Wong4 in four dimensions. The equations of motion are ess
tially similar to the Wong equations in four dimensions. The five-dimensional motion of a pa
in this pure Yang–Mills field is governed by the following Wong equations:
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m
d2xA

dt2 5e
dxB

dt
FaA

BI a, ~2.9!

dIa

dt
1e fabc

dxA

dt
AA

bI c50, ~2.10!

whereI a is the charge isovector andt is proper time.
The fifth dimension is a dynamical variable, so the evolution of this internal coordinatex5)

is governed by

m
d2x5

dt2 5e
dxB

dt
Fa5

BI a52e
dxm

dt
~DmF!aI a. ~2.11!

For the components of the real four-dimensional space–time, the equations of motion are

m
d2xm

dt2 5e
dxB

dt
Fam

BI a5e
dx5

dt
Fam

5I a1e
dxn

dt
Fam

nI a5e
dxn

dt
Fam

nI a1e
dx5

dt
~DmF!aI a.

~2.12!

In Fehér’s work an extra term appears on the right-hand side of Eq.~2.12! which comes from the
difference between the affine parameter in the five dimensions and four dimensions. The
equation for non-Abelian chargeI in five dimensions~2.10! can be expanded as

dIa

dt
1e fabc

dxm

dt
Am

b I c1e fabc
dx5

dt
FbI c50. ~2.13!

Multiplying both sides of Eq.~2.13! by I a, we obtain the same result as in four-dimension
analysis:

d~ I aI a!

dt
50, so I aI a5const, ~2.14!

which indicates conservation of the length of charge isovector. It is in this sense that non-A
charge is conserved.

The field equations which arise from the Lagrangian~2.6! are

DBFAB5JA, ~2.15!

whereJA are current due to the colored particle~s!. In the matrix representation

AB[AB
axa, F[Faxa, FAB[FAB

a xa, DB[1]B1e@AB , #. ~2.16!

One may simply show the identities

DADBFAB50, ~2.17!

DAFBC1DCFAB1DBFCA50. ~2.18!

From Eqs.~2.17! and~2.15! the conservation of the colored~non-Abelian! currentJA is given by

DAJA50. ~2.19!

Expanding Eq.~2.15!, the fifth and the space–time components of the current are

J55DBF5B5DmF5m52DmDmF, ~2.20!
                                                                                                                



n

m the

ns

e,
y

r-

1139J. Math. Phys., Vol. 43, No. 3, March 2002 Stable orbits in a Higgs-Monopole field

                    
Jm5DBFmB5DnFmn1D5Fm5. ~2.21!

When the potentialV(A5)[V(FaFa)5 (l/4) (FbFb2a2)2 is considered in the Lagrangia
~2.6!, the fifth component of current will be

J552DmDmF1lF~FaFa2a2!.

The last term on the right-hand side of Eq.~2.21! is simplified by our initial principles:

D5Fm55@A5 ,Fm5# ~]5Fm550!.

Then

Jm5DnFmn1@F,DmF#, ~2.22!

which shows the usual current in the four-dimensional space–time has a contribution fro
Higgs field.

For a non-Abelian point particle with chargeI , the current can be defined in five dimensio
in the normal way as in Wong’s work in four dimensions:

JA~y!5eE dt I ~t!
dxA~t!

dt
d5~y2x~t!!, ~2.23!

wherex(t) is the location~world-line! of the charged particle in the five-dimensional space–tim
y is an arbitrary point in the space–time, andd is the Dirac delta function. The consistenc
between the above definition and the equations of motion is valid, i.e., from Eqs.~2.19! and~2.23!
and the definition of covariant derivative we may obtain Eq.~2.10!.

Equations~2.11!–~2.13!, ~2.20! and ~2.22! completely describe the motion of a colored pa
ticle in the non-Abelian Yang–Mills–Higgs field. It is possible to find a first integral of Eq.~2.11!.
The right-hand side of Eq.~2.11! can be expanded as

2e
dxm

dt

dFa

dxm I a2e2
dxm

dt
f abcAm

b FcI a,

and then Eq.~2.11! can be written

m
d2x5

dt2 52e
dFa

dt
I a2e2

dxm

dt
f abcI aAm

b Fc. ~2.24!

Multiplying both sides of Eq.~2.13! by Fa, one can show

Fa
dIa

dt
5e

dxm

dt
f abcI aAm

b Fc, ~2.25!

which, if substituted in Eq.~2.24!, we have

m
d2x5

dt2 52e
dFa

dt
I a2e Fa

dIa

dt
52e

d

dt
~FaI a!. ~2.26!

From this equation we obtain a first order differential equation for the internal coordinate

m
dx5

dt
52e FaI a1h, ~2.27!
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whereh is the constant of integration, which is indeed a constant of motion. As the field
independent of the fifth dimensionx5, in a Lagrangian approach8–10 in five dimensions]L/]x5

vanishes. Therefore]L/] ẋ55mẋ51eFaI a is a constant, in agreement with Eq.~2.27!. So the
momentum conjugate tox5, h, is a constant of motion. Equation~2.27! presents a relation for the
internal component of the particle’s momentum. In fact, this is an internal variable, i.e.
variable is only a function of isovectors, the Higgs field and charge isovectors. We called the
dimension,x5, an internal dimension, which is now sensible in the same way as the spa
symmetry~isospace! is called an internal space. The time variation of the internal direction,x5, is
related to the field and particle internal~isospace! vectors. If we replacedx5/dt in the equations of
motion, it gives a completely four-dimensional equations, which contain terms correspond
the Higgs interaction with the particle. The only remnant of the fifth dimension in the equatio
the free parameterh, which depends on the initial value ofdx5/dt.

The constant,h, in Eq. ~2.27! depends on the initial orientation of the two isovectors and
initial value of dx5/dt. For example, in the field of the ’tHooft–Polyakov monopole, if t
particle starts the motion from the rest,dxA/dt50, in the Higgs vacuum (FW 5ar̂), and if the
particle’s charge isovector lies in the radial direction, the constant will beeaI, whereI is the norm
of the charge isovector which is always constant. If the particle starts the motion while the c
isovector lies in a tangential direction, then the constant will be zero. Regardless of the co
Eq. ~2.27! shows the internal component of momentum is proportional to the projection o
Higgs field on the direction of the particle’s charge isovector, and the proportionality fact
2eI, i.e., the particle’s charge. One can replacedx5/dt from Eq.~2.27! in Eqs.~2.12! and~2.13!
to obtain a complete set of equations independent of the internal coordinate.

The equations of motion become simpler with some interesting consequences if we use
magnetic monopole as the source of the Yang–Mills–Higgs field.

III. PARTICLE IN THE FIELD OF A BPS MONOPOLE

One of the most important solutions of the Yang–Mills fields is monopoles. Although ex
mentally no monopole is found yet, but monopole solutions in the field theory are very
phenomena in theoretical physics. The ’tHooft ansatz is a solution which gives the right be
of a magnetic monopole at far distances. The BPS monopole is an exact solution which giv
answer everywhere. About the behavior of motion of a particle in a monopole at far distanc
may find some results in literature. The goal of this section is to explain some solution not o
far distances, but everywhere. So we have used the BPS monopole to discuss solutions at
close distances from the origin. In this section we use the procedure described in the pr
section and apply the conditions of the BPS monopole for a test particle. With a test partic
mean, relative to the monopole, the particle is so small in mass and charge such that the re
perturbation due to the particle can be ignored. Therefore, the particle has no contribution
evolution of the fields, and we ignore the currentJ on the left-hand side of field equations~2.20!
and~2.22!. Thus the field equations satisfy the BPS monopole conditions,11 and we can use BPS
solution

Aa050, ]0Aia5]0Fa50,

Aai5eai j
xj

er2 ~12K !, K5
aer

sinh~aer!
, ~3.1!

Fa5
xa

er2 H, H5aer coth~aer!21,

for the fields.
Equations~3.1! satisfy the field equations, and in a nonrelativistic framework the equation

motion ~2.12! and ~2.27! become
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m
d2xi

dt2
5e

dxj

dt
Fi j

a I a1e p~DiF!aI a, ~3.2!

m p52e FaI a1h, ~3.3!

where we have substitutedt by t5x0, dropped the equation forx0 and defined

p5
dx5

dt
. ~3.4!

The constanth depends on the initial conditions as we explained after its introduction in
~2.27!. A force due to the Higgs field has appeared in the equation of motion, Eq.~3.2!, beyond the
usual Lorentz force. The equation of evolution of the charge isovector~2.13! becomes

dIa

dt
1e eabc

dxi

dt
Ai

bI c1e peabcFbI c50. ~3.5!

By replacingFi j
a , (DiF)a, Ai

a and Fa from Eqs.~3.1! into Eqs.~3.2!–~3.5!, the equations in a
convenient form are

mvẆ 5evW 3BW aI a2e pBW aI a5
rW• IW

r 4 ~K22rK 821!@~vW 3rW !2prW#1
K8

r
@~vW 3 IW !2pIW#, ~3.6!

m p52
H

r 2 ~rW• IW !1h, ~3.7!

IẆ5
12K

r 2 ~rW3vW !3 IW2
pH

r 2 ~rW3 IW !, ~3.8!

where the magnetic field is

Bi
a5

1

2
e i jkF jk

a 52~DiF!a5
1

er2 H xaxi

r 2 ~K22rK 821!1rK 8 daiJ . ~3.9!

The energy and the total angular momentum are constants of motion. Using the g
equation in five dimensions~2.9!, multiplying both sides bydxA/dt, one can simply find

d

dt F1

2
mS dxA

dt D 2G50,

which in a nonrelativistic framework implies

E[ 1
2 mv21 1

2 mp25const. ~3.10!

Here,vW is velocity of the particle (v5uvW u), andp is defined in Eq.~3.4!. The validity of relation
~3.10! can be checked directly by using the equations of motion~3.3!, ~3.6!, and~3.8! to show

mvẆ •vW 1mṗp50.

Another constant isJW , the total angular momentum of particle and fields,12 which is

JW5m~rW3vW !1KIW1
~12K !~ IW•rW !

r 2 rW . ~3.11!
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Replacing from Eqs.~3.6! and ~3.8! in Eq. ~3.11!, after some algebra, one may easily showJẆ

50 and so

JW5const. ~3.12!

In the first view, we find Eqs.~3.6! and~3.8! are too complicated to be solved. Therefore,
consider the asymptotic behavior of the equations at large distances. Because of the d
behavior ofK and K8 with H at large distances we may consider two cases. At large dista
K(r ) andK8(r ) vanish exponentially, andBW a52(xa/er4)rW. If r is not too much bigger than 1
H(r )→aer21, and if r @1, then 1 might be ignored and soH5aer. So at large distances~but
not too far! Eqs.~3.6! and ~3.7! become

mvẆ 5
a

r 3 @rW3vW 1prW#, ~3.13!

p5S 2e aa1h1
a

r D /m, ~3.14!

where we have defined the charge isovector as

IW5a r̂ 1bŵ1g ẑ, ~3.15!

in an orthogonal moving frame along the particle trajectory:

rW,wW 5rW3vW S vW 5
drW

dt D ,zW5rW3wW , ~3.16!

where hatted letters denote the unit vectors along each axis. Evidently the coefficientsa, b, and
g satisfy

I[~ I aI a!1/25~a21b21g2!1/25const. ~3.17!

From Eq.~3.8!, after a little algebra we find

ȧ52
KuwW u

r 2 g, ~3.18!

ḃ5H r
vẆ •wW

uwW u2 1
pH

r J g, p5
1

m S 2
aH

r
1hD , ~3.19!

ġ5H 2r
vẆ •wW

uwW u2
2

pH

r J b1
KuwW u

r 2 a. ~3.20!

These equations, by using the asymptotic behaviors ofK andH at large distances, and using th
asymptotic equation~3.13!, become

ȧ50, ~3.21!

ḃ5F a

mr2 1p
aer21

r Gg, ~3.22!

ġ52F a

mr2 1p
aer21

r Gb, ~3.23!
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wherep has the asymptotic value in Eq.~3.14!. From Eq.~3.21!, obviouslya5a0 is a constant.
For this asymptotic case, using Eqs.~3.13! and ~3.21!, the length of the angular momentum

l 5um(rW3vW )u, the total angular momentum vectorjW5 lW1a0r̂ , and in addition,jW• r̂ 5a0 are con-
stants of motion@in agreement with Eq.~3.11!#. From Eqs.~3.13! and~3.14! one may simply find
m(v21p2)/2 is also a constant of motion@see Eq.~3.10!#. If j 5u jWu50 so l 5a050, then the
particle moves uniformly in a radial direction~or stays at rest!. For j Þ0, the motion will take
place on a cone with the axisjW and the half-angle cos21(a0 /j).

We may compare the forces on the right-hand side of the asymptotic equation~3.13! with
forces due to certain point objects sitting at the origin. From the components of the isov
chargeIW, only a ~that is a constant! has appeared in the equation of motion, Eq.~3.13!. Therefore,
we may assume only theea portion of the particle’s charge,eI, participates in the motion at larg
distances

mvẆ 52
a

r 3 ~vW 3rW !1
a~h2e aa!

mr3 rW 1
a2

mr4 rW . ~3.24!

The first term on the right-hand side of Eq.~3.24! is a force due to a point magnetic monopo
The second and the third terms are forces exerted from the scalar Higgs field on the color
particle. The second term corresponds to the force due to an electric point charge on t
particle and the third term has the characteristic of a spherical charge distribution of total c
zero. At close distances the force from the fields on the particle are very complicated, and
distances the dominant terms are those on the right-hand side of Eq.~3.24!. For r @1 the dominant
forces are the first and second terms on the right-hand side of Eq.~3.24!.

For too large distances, i.e.,r @1, where the Higgs field asymptotically becomes

FW 5ar̂, ~3.25!

we may neglect 1 in the termaer21, and rewrite the equations of motion~3.13!, ~3.14!, and
~3.21!–~3.23!,

mvẆ 5
a

r 3 @rW3vW 1p rW#, ~3.26!

p5
~2e aa1h!

m
, ~3.27!

ȧ50, ~3.28!

ḃ5eapg, ~3.29!

ġ52eapb, ~3.30!

where nowp is a constant andḃ and ġ have simpler forms. In this approximation~too large
distances! l , a, and jW ~so ĵ • r̂ ! are constants of motion~the same as in the large distances appro
mation!. Now p is a constant, so from Eq.~3.26! mv2/21ap/r 5const@that can be obtained by
expandingE5m(v21p2)/25const at large distances using Eq.~3.14! and then dropping the orde
of 1/r 2 and redefiningp as in Eq.~3.27!#.

Equations~3.29! and~3.30! provide a precession motion for the charge isovectorIW, around the
radial direction of the particle in the isospace

b~ t !5AI 22a2 sin~aep t1V0!,g~ t !5AI 22a2 cos~aep t1V0!, ~3.31!
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whereV0 is a constant. The charge isovector moves around a circle of radius (I 22a2)1/2 with a
constant angular frequencyv5aep. Thereforep measures how fast the charge isovector mo
around in the isospace, when the particle travels its path in the real space. Sop which was defined
as the velocity in the fifth-spatial direction@Eq. ~3.4!# appears as the velocity of the charg
isovector in its precession around the particle’s radial direction@note, ae has the dimension o
(length)21#.

IV. SOLUTIONS OF THE EQUATIONS OF MOTION

In our previous work1 we observed planar and bounded motions and we presented num
works in two and three dimensions. There the only force on the particle was the force fro
monopole and a force from the Higgs field on the particle was not considered. In the first p
this article we explained the equations of motion containing the Higgs and the particle inter
as well as the monopole force, and in this section we search for some solutions.

A. Planar motions

It is interesting to know if the planar motions occur here. In a planar motionrW3vW is always
normal to the plane of motion, so in the equations of motion the coefficient ofwW 5rW3vW must be
set to zero and we find some consistent solutions. Using the moving frame~3.16!, the component
of Eq. ~3.6! in the ŵ-direction is

2
a~K22rK 821!

r 3 uwW u2
K8

r 2 ~auwW u1g~rW•vW !!2
K8

r
p b. ~4.1!

For a planar motion this coefficient must identically be equal to zero, so

~K221!uwW ua1r 2K8 p b1rK 8~rW•vW ! g50. ~4.2!

Under these considerations the equations of motion~3.6! and ~3.18!–~3.20! become

mvẆ 5F2
K22rK 821

r 2 pa1
K8

r 2 ~ uwW ub2rpa!G r̂ 1
K8

r 2 @~rW•vW !b2r p g# ẑ, ~4.3!

ȧ52
K w

r 2 g, ~4.4!

ḃ5
p H

r
g, ~4.5!

ġ5
K w

r 2 a2
p H

r
b, ~4.6!

andp is unchanged:

mp52
H

r
a1h. ~4.7!

Let us first examine the above equations at large distances. At large distances whereK andK8
vanish, Eq.~4.2! necessitatesa50. Replacing this result in Eq.~4.3! shows the particle move on
a straight line at large distances@see also Eq.~3.13!#. Also at large distancesp is a constant andb
andg have a precessional motion~if pÞ0!, which are compatible with the asymptotic behavior
equations we studied before.

In fact, Eq.~4.2! is an extra equation and might not be consistent with the equations of m
~4.3!–~4.6! in general. But it might be consistent with equations of motion under some circ
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stances. Finding the conditions where this extra equation might be consistent with the othe
not seem to be easy. Looking at Eq.~4.2!, one may choosea5b5g50, which is, of course, a
contradiction~while IW is a nonzero vector!. One acceptable possibility isa5g5p50, which
causes Eq.~4.2! to vanish identically. From Eq.~4.7! the conditionp50 is equivalent toh50. So,

a5g5h50 ~4.8!

are conditions for planar motion subject to the validity of equations of motion. Replacing from
~4.8! in Eqs.~4.3!–~4.6! we obtain exactly the planar equations of Ref. 1. So the planar motion
indeed the bounded orbits are allowed in this regime as well. Because the equations of
motion are the same as in Ref. 1 we skip their solutions in this article. The stability of p
motion must be studied independently. In the planar solutions of Ref. 1 we stated the
motions were not stable, but in this case the Higgs field might play a role to keep the particle
to the plane and does not let it scatter to infinity. I have not checked this problem.

A proper question is, under what circumstances the force from the Higgs field on the pa
fails and the particle feels only a force from the monopole~i.e., the generalized equations o
motion we found in this article shrink to the equations of motion of Ref. 1!. In fact, it is not
possible to ignore the Higgs field interaction with the particle in general. Equatingp to zero is an
obvious way, but this equation exerts an extra constraint. Settingp50 occasionsa5hr/H, then
from Eq.~3.18! we findg and from Eq.~3.20! b. So we may replacea, b, andg in Eqs.~3.19! and
~3.6! to find two parallel equations which are too complicated~and I think they are not consisten
in general!. A possible case~maybe the only one! is the mentioned planar motion, which means
the specified planar motions the Higgs interaction has no contribution.

B. Radial motions

A radial motion is possible if initially the charge isovector and the particle velocity are ra
In this case from Eq.~3.8! the charge isovector remains constant,a5I andb5g50, and from
Eq. ~3.6!

mr̈5
I

r 2 ~K221!p, ~4.9!

wherep52IH /r 1h. In the previous case~the monopole interaction only!, the right-hand side of
Eq. ~4.9! was vanishing (p50) and the particle had a uniform radial motion, and could p
through the origin. Equation~4.9! shows a different situation.

Assume the particle is moving along a radial direction, say thez-axis. From Eq.~3.10! we
may write

E5 1
2 mṙ21V~r !, ~4.10!

where

V~r !5
1

2
m p25

1

2
m S 2IH ~r !

r
1hD 2

~4.11!

is the one-dimensional potential, andr ~is the variable along thez-axis and! takes both negative
and positive values. The time derivative of Eq.~4.10! leads to Eq.~4.9!. Regardless of mass,a, e,
andI , the potentialV(r ) depends on the constanth. Figure 1 shows the different shapes ofV(r )
with respect to the different values ofh. To see these results one may equateV8(r ) to zero and
find the roots~that are indeed the roots ofp50!. For a negative value ofh, V(r ) is the mirror
image of the the potential for2h, with respect to the vertical axis.
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From Fig. 1, ifuhu>1, the particle may be repelled back~before reaching the origin, just at th
origin or after passing the origin!, or just passes through the origin depending on the energyE. For
0,uhu,1, in addition to the mentioned possibilities foruhu<1, bounded motions are also possib
~in the h50 case, the particle just passes or is bound!.

Referring to Fig. 2, forE>E1 the particle passes through the origin and travels to infinity.
E1,E<E3 , such asE2 , the particle is repelled back~even before reaching the origin or afte
passing through the origin! in its trajectory and travels to infinity. For 0,E,E3 , the orbit is
bounded and the particle oscillates along thez-axis. Forh50 the oscillation is symmetric with
respect to the origin~the origin is the equilibrium point!. But in the other cases, the origin is n
the equilibrium point~center of the oscillatory motion! and the amplitude of the motion on the tw
sides of the origin are not equal~even not equal on either side of the equilibrium point!. And, on
top of it all, for the energies less thanE4 , the particle oscillates only on one side of the origin.

FIG. 1. One-dimensional potentialV(r ) ~vertical axis! vs r ~horizontal axis!. For a givenh, the mirror image ofV(r ) with
respect to the vertical axis givesV(r ) for 2h.

FIG. 2. Different possibilities of motion for 0,h,1.
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the equilibrium pointp50, the position of equilibrium~with respect to the origin! depends on the
constanth. For largeruhu, the location of the equilibrium point is more distant.

The role ofh in the radial motion is similar to the role ofj in the planar motion. As the
orientation of the charge isovector and the Higgs field are fixed in the radial motion, the co
h depends only on the initial starting point,r 0 , and the initial value ofp, p0 . The initial value of
p, p0 , is a free parameter in the radial motion and it must be determined by the overall the
motion. From Eq.~4.10! one may write an integral equation fort and r :

t56E
r 0

r dr

A2E/m2@2IH ~r !/r 1h#2
. ~4.12!

C. Three-dimensional bounded orbits

We studied the planar and radial motions in the previous subsections. In both cases, b
orbits were allowed. Suppose a particle is moving in a bounded orbit in a plane, say thexy-plane,
so that the charge isovector is normal to the plane of motion along thez-axis. Regardless of the
motion in the plane, suppose the particle has also a motion in thez-direction such that the particle
can oscillate in thez-direction. This is a motivation to believe, if we mix the initial condition
the both motions, we may get a bounded motion in three dimensions. Of course, we do not s
the resulting motion is the superposition of the two previously mentioned motions. It is clea
the equations governing the motion@i.e., Eqs.~3.6! and ~3.8!# are not linear, therefore the supe
position of the solutions is not necessarily a solution. The above motivation is correct only f
starting point, and for the other instants we must follow the equations of motion. Let us exa
an example by numerical solution. Under these circumstances, the planar motion condit
quiresh50. For example, withh50, if the particle is launched into the fields with the initi
values @rW0 ,vW 0 ,IW0#5@@1,0,0#,@0.1,0,0#,@0,0,1##, the result is a bounded planar motion in th
xy-plane~see plot on the bottom-left of Fig.~2!. If the particle is launched in the field with th
initial values @@0,0,0#,@0,0,0.1#,@0,0,1##, the result is a symmetric bounded oscillation along
z-axis around the origin. So we expect, if the particle is launched with the initial va
@@1,0,0#,@0.1,0,0.1#,@0,0,1##, the result will be a bounded orbit in three dimensions. By chance
right. Using the three-dimensional equations of motion~3.6! and ~3.8!, a numerical analysis
confirms the claim as it is plotted in Fig.~3!. We have tested the motion for a remarkable amo
of time ~10 000 units of time!, and numerically a result is obtained.

FIG. 3. Bounded orbit in three dimensions.
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One result that we may get quickly from the above discussion is the stability of the p
motions. In fact, it is sensible to understand the stability of the planar motions in the new sce
When small perturbations normal to the plane of motion disturb the motion, there is a ve
force to keep the motion oscillating close to the plane so that the pattern of the planar orbi
unchanged. So, involving the Higgs field interaction makes a significant difference. In Ref.
Higgs field interaction was ignored, so the planar motions were not stable~in the sense of vertica
perturbations!. We have checked the stability of the planar motions by considering small pe
bations in any of the motion’s parameters, numerically by using the general equations of m

In general the closed orbits are unknown in the nonplanar motions. For example, if we
the motion from the initial values@@1,0,0#,@0,0.266,0#,@0,0,1## andh50, we obtain a closed circu
lar motion, and if we start the motion from@@0,0,0#,@0,0,0.1#,@0,0,1## we obtain a symmetric radia
oscillation. The motion with initial values@@1,0,0#,@0,0.266,0.1#,@0,0,1## forms a bounded orbit
such that the intersection of the orbits with thexy-axis is bounded between two circles, and t
z-direction has an oscillatory motion along thez-axis with the domain changes between a mi
mum and a maximum periodically@see Fig.~4!#. If the equations of motions were linear, we mig
say the superposition of two closed orbits is closed if the ratio of periods of two motions
rational number. But in our case the equations of motion are not linear, so we are not able
this theorem. We might play with the parameters to gain a closed orbit in three dimen
Studying the bounded and closed orbits needs an analytic description of the equations of m
which is not available here.

With h50 we may choose any combination of the initial values~not only a combination of
the planar and radial motions initial values! and test the equations of motion by numerical co
putations. The bounded orbits are observed for different kinds of combinations of the
values. Of course for many initial values we cannot expect a bounded orbit. For nonzeroh’s the
combination of initial values is too sensitive and for most of them the orbit is unbounded. Bu
for some initial values bounded orbits are observed. An example is@@1,0,0#,@0.1,0,0#,@1,0,1## with
h50.5. Now the initial values@@1,0,0#,@0.1,0,0#,@0,0,1## with h50.5 is neither a planar motion no
a nonplanar bounded motion, but when it mixes with an oscillatory motion in thex-direction, the
resulting three-dimensional motion will be bounded.

At far distances a particle moves on a surface of a cone~see Sec. III!. Figure 5 shows the orbi
for an initial values@@10,10,0#,@0,20.1,0#,@0,0,1## with h51 in 200 units of time. The variations
on x and z are small and of the order 1024 ~the unusual ticks in the vertical axis are bad
managed byMATLAB , and means the variations in this axis are of order 1024!. The particle, which
has started the motion with an initial velocity in the negativey-direction, moves along the
y-direction almost uniformly.

V. THE FORCE LAW

In this section we consider further the force on a non-Abelian particle in a BPS monopole
configuration@Bi56DiF, A050, V(F)50# which we studied in the previous section. We sh
show the force has the form of a ‘‘generalized’’ Lorentz force.

FIG. 4. The left plot shows the variation ofz-direction vs time, the middle one shows the intersection of the motion in
xy-plane, and the right plot shows the three-dimensional orbit.
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Looking at the first equality in Eq.~3.6!, if we supposeeIa is an electric charge of the particl
~in a non-Abelian sense!, theneIavW 3BW a is a magnetic force due to a magnetic fieldBW a on the
particle, andeIa pBW a may be interpreted as an electric force due to an electric fieldpBW a on the
particle ~regardless of the notationBW a that is used for magnetic field!.

Let us explain more. In the usual electrodynamics, the force of an electric fieldEW on an
electric charged particle with the chargeq is qEW , and the force of a magnetic fieldBW on an electric
charged particle with the chargeq is qvW 3BW , wherevW is the velocity of particle. Let us switch to
the non-Abelian fields and particles. Assume a fieldBi

a in the space and a non-Abelian test partic
with charge isovectorYa in this field. The particle feels only the component of the magnetic fi
that is projected along its charge isovector. Let us choose a unit vectorn̂ along the charge
isovector~remember in the isospace!,

YW 5qn̂, ~5.1!

whereq5uYW u5const is the charge of the particle. Now the effective magnetic field the par
feels is

Hi5BW i•n̂, ~5.2!

or equivalentlyHW 5BW an̂a. Now we can write down the equation of motion of the particle, E
~3.6!, in a familiar form~for positive magnetic charge!:

mvẆ 5qvW 3HW 1p qHW , ~5.3!

where hereq5eI.
Equation~5.3! is a generalization of the Lorentz force. Comparing with the usual electr

namics, two major differences show themselves in Eq.~5.3!. The first difference is the following:
In Eq. ~5.3!, rather than a term analogous to the usual Lorentz force~first term on the right-hand
side!, there is another term that is similar to the Coulomb force in the usual electrodynamic
should remember that this new term is originally different from the Coulomb force. The Cou
force is regarded as the zeroth component of the Yang–Mills fields, which in our discussion
been ignored~remember we are working in stationary fields withA050!, but here the origin of the
Coulomb-like force is the Higgs field. The coefficientp in front of the Coulomb-like force
contains some information about the interaction of the Higgs field and the charge isovecto
will say how this generalized equation reduces to the normal Lorentz force when the fiel
particle can be regarded as a non-Abelian field and particle. The second difference i

FIG. 5. Three-dimensional motion at large distance.
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In the usual Lorentz force, the force vanishes if and only if the nonvanishing magnetic fiel
the particle’s velocity become parallel. But in the non-Abelian case it might happen that neit
the particle’s velocity or the non-Abelian magnetic field vanish, nor the particle’s velocity an
magnetic field~in any sense, either in the non-Abelian formBi

a or in the Higgs gauge-invarian
form Bi ~Ref. 13! are parallel, but the force vanishes. This happens when the projection o
magnetic field along the charge isovector vanishes, i.e.,HW 50.

We can define a usual~say Abelian! particle in general as a non-Abelian particle whose cha
isovector is fixed in the isospace, i.e.,

Ya5qda3. ~5.4!

Now when the charge isovectorYW takes a radial direction in the isospace, we can transform
direction to the three-direction by a proper gauge transformation.14 This happens for both the
charge isovector and the Higgs field simultaneously when both the isovectors take radial dir
in a part of the space. A good example is the regions too far from the core of the fields, whe
found the equations of motion asymptotically.

SupposeYW 5qr̂ (q5eI) andFW 5ar̂ in the asymptotic case. So, the charge isovector has
components in the directions normal to the radial direction, and thereforeb5g50. In this case
our definitions ofB andH overlap, and the equation of motion~5.3! transforms to Eq.~3.26! ~for
self-dual case!:

mvẆ 5
I

r 3 @~vW 3rW !1prW#, p5~2eaI1h!/m. ~5.5!

Both of the isovectors can be rotated by a gauge transformation to lie in the three-directio
gauge transformation, where we expect to have the usual Abelian electrodynamics laws.
rotation, the particle will be the usual particle that is defined in Eq.~5.4!, and the electromagneti
field becomes the usual one. In addition, in the usual space that we are talking about, there
be no trace of the free parameterp which is related to the extra dimension. So, we may havp
50, and set the constanth

h5eaI. ~5.6!

Now Eq. ~5.5! is reverted to the proper usual Lorentz force. The differences between the g
alized force and the usual Lorentz force we enumerated before automatically disappear, b
the factorp vanishes and the extra term in the generalized force is gone. Also the Higgs fiel
the charge isovector have become parallel, therefore the second difference we mentioned
longer happen.

In general we need 13 initial values@xA(t0), ẋA(t0), andI a(t0)# to determine solutions of the
equations of motion. In the nonrelativistic framework there are 11 values, 9 of which are pos
velocity, and charge isovector that are indeed needed to solve the equations~3.2! and ~3.5!. The
other two initial values are connected to the internal fifth dimensionx5. Because neither the field
nor the equations of motions depend on the internal direction, therefore the initial starting po
the x5-direction is not important. But the time variation of internal directiondx5/dt, which was
calledp, is very important.
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Quantum mechanics of layers with a finite number
of point perturbations
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K. Němcová
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We study spectral and scattering properties of a spinless quantum particle confined
to an infinite planar layer with hard walls containing a finite number of point
perturbations. A solvable character of the model follows from the explicit form of
the Hamiltonian resolvent obtained by means of Krein’s formula. We prove the
existence of bound states, demonstrate their properties, and find the on-shell scat-
tering operator. Furthermore, we analyze the situation when the system is put into
a homogeneous magnetic field perpendicular to the layer; in that case the point
interactions generate eigenvalues of a finite multiplicity in the gaps of the free
Hamiltonian essential spectrum. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1431710#

I. INTRODUCTION

The object of our interest in this article is a spinless quantum particle living in a layer
fixed widthd with the Dirichlet boundary conditions and interacting with a finite number of po
perturbations. An obvious motivation for this problem is to find a description for an electron
semiconductor layer with impurities. However, such physical systems are in reality rather
plicated objects which involve a crystal lattice with some alien atoms and an electron gas,
has to ask first whether such a simple model can reproduce the basic features know
experiments.

It is well known that an electron in an ideally pure bulk semiconductor material ca
modeled as a free particle with an effective massm* which characterizes the relation between t
energy and quasi-momentum at the Fermi level. Properties of the crystalline structure ar
expressed through a single material constant, which may be very different from the ‘‘bare’’ m
recall that for GaAs we havem* 50.067me .

There are two other assumptions in the ‘‘free’’ part of the model. The first is its one-pa
character which neglects the interactions between the electrons. There are situations wh
repulsion plays an important role, such as the Coulomb blockade in quantum wires. On the
hand, the one-electron model is known to work when the electron-gas density is sufficientl
Another assumption is the neglection of spin which is also not entirely trivial; recall that s
dependent effects in nanostructures have been studied recently—see Ref. 1 and references
In most situations, however, spinless electrons are a reasonable approximation.

The next question concerns the way in which we model the impurities. Using again a c
idealization, we describe them by point interactions. This method proved rather useful in th
two decades and gave rise to numerous solvable models; our aim here is to add one more
this family. Intuitively point interactions are understood as sharply localized potentials, bu

a!Electronic mail: exner@ujf.cas.cz
11520022-2488/2002/43(3)/1152/33/$19.00 © 2002 American Institute of Physics
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known that a sophisticated coupling constant renormalization is required to give this co
meaning in terms of a limit of scaled potentials~Ref. 2, Secs. I.1 and I.5!. Mathematically such
operators can be handled since they differ from the free HamiltonianH0 just by a change of the
boundary conditions at the interaction sites. However, the counterintuitive features of
dimensional point interactions are reflected both in the slow way in which they found their
in the theory and in the fact that the parameters appearing in these conditions cannot be inte
asd potential coupling constants but rather as the inverse scattering lengths corresponding
point ‘‘obstacles’’~cf. Ref. 2, Chap. I.3!.

Scores of papers discussing point-interaction models in the Euclidean space, both for p
otherwise free or with a background regular potential, are summarized in Ref. 2. Only in th
decade has the attention shifted to systems with point interactions restricted to a certain re
configuration space; the reason clearly was a wide collection of new physical phenomena ob
in such spatially restricted systems, mostly mesoscopic objects, but also electroma
waveguides, photonic crystals, etc.~see Ref. 3!. Here, too, point-interaction Hamiltonians prove
a useful tool and yielded some unexpected results such as the existence of a chaotic beh
systems whose classical counterparts are integrable.4

Today there are many papers treating point interaction in restricted areas; a bibliogra
given in the introduction of Ref. 5. They typically put emphasis on the description of a spe
model rather than a proper handling of the point interaction. Among the few existing rigo
treatments of the problem, it is Ref. 5 which motivates the present study analyzing point in
tions in an infinite planar strip with Dirichlet boundary conditions, together with similar syste
There are two ways in which the results can be generalized to dimension three. One is a s
Dirichlet tube inR3 with a fixed compact cross section discussed in Ref. 6; it is a straightforw
extension, a part of a different way of computing the regularized Green’s function.

In the present article we are going to study a less trivial generalization, with point interac
situated in a flat layer with a Dirichlet boundary. The free system allows here again a separa
variables, so the free resolvent kernel and all the quantities derived from it such as eigenfun
etc., can be written by means of an explicitly given series~in this sense models considered here
little ‘‘less solvable’’ than those in the full space when such quantities can be written in term
elementary or special functions!.

Although the model description is simple, it covers many different situations. For the sa
brevity we restrict ourselves in this article to systems with a finite number of point perturba
in the absence of a background potential, leaving other cases to a sequel. We make an ex
however, by devoting a separate section to the case when the particle is under the influen
homogeneous magnetic field perpendicular to the layer. The spectrum of the unperturbed sy
then changed, completely consisting of infinitely degenerate eigenvalues which are sums
Landau levels and the transverse eigenvalues; for ‘‘rational’’ combinations of parameters dif
Landau levels may lead to the same eigenvalue. A finite number of point perturbations then
rise to a nontrivial discrete spectrum.

Let us describe briefly the contents. The next section is devoted to the case of a
perturbation. We start from the definition of the point-interaction Hamiltonian by means of bo
ary conditions coupling generalized boundary values. After that we use Krein’s formula to d
the explicit expression for the resolvent; it involves the regularized Green’s function whi
given by a specific series as mentioned earlier@see~2.14!#. In Sec. II D we use this result to
analyze spectral properties of such Hamiltonians. The bound state energies are given
implicit equation~2.19!, and it is just the limits of strong and weak coupling where we are abl
write the explicit expressions for the leading term of the asymptotics. In both the extreme cas
eigenvalue behavior can be easily understood: in the strong-coupling situation it goes to2` in the
same way as if there were no boundaries because the corresponding eigenfunction is s
localized, while in the weak-coupling case the eigenvalue approaches the threshold of the e
spectrum and the wavefunction is dominated transversally by the lowest mode. We also fin
the eigenvalue decreases with the distance from the layer boundary. In the last part of Sec
shall discuss the scattering in the presence of a perturbation. If there is a single point inter
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we can employ the symmetry of the problem with respect to rotation around the axis pa
through the perturbation and perpendicular to the layer. The partial wave decomposition
‘‘longitudinal’’ coordinates shows that the only nontrivial contribution to the scattering co
from the s-wave, i.e., from states with the orbital momentumm50. Within this subspace, the
scattering problem is reduced to transitions between transverse modes; the final S-matr
describes a coupling of the ‘‘open’’ channels, i.e., the transverse modes with the energies
than that of the incoming spherical wave. We also derive the on-shell scattering operator
maps the incoming wave vector and transverse mode into the outgoing ones; the advantage
approach is that it does employ the symmetry and allows for a generalization to the cas
multiple perturbations.

Section III extends the described analysis to any finite numberN of point perturbations. The
technique remains the same, and since the difference between the two resolvents is of rankN, the
essential and absolutely continuous spectra are again preserved. On the other hand, the an
the discrete spectrum becomes more complicated. There aren eigenvalues, where 1<n<N,
which are found by solving the implicit equation detL(z)50 with theN3N matrix L given by
~3.8!. The numbern depends on the coupling strength. In the strong coupling limit there e
exactlyN eigenvalues having the same asymptotic behavior as in the one-center case. On th
hand, for weak coupling we find only one eigenvalue approaching the threshold of the es
spectrum; in this sense our system exhibits a behavior typical for all weakly coupled Schro¨dinger
operators.

A new feature for systems withN>2 is that they can possess eigenvalues embedded in
essential spectrum. This is possible, e.g., when the point perturbations are placed symme
with respect to the layer axis and have the same~sufficiently strong! coupling: the corresponding
eigenfunction cannot then contain contributions from transverse modes with the energy eq
smaller than this eigenvalue. We will show that this is true for embedded eigenvalues gen
their eigenvectors have to be orthogonal to the subspace spanned by the ‘‘lower’’ tran
modes. ForN>2 the system no longer exhibits a rotational symmetry, hence we cannot em
the partial-wave decomposition to describe the scattering. However, the second approac
tioned above is applicable here and we can derive again the on-shell scattering operato
similar to that of the one-center case differing just by replacement of a single regularized G
function by a sum of the elements of the matrixL @see~3.34!#.

Section IV deals with the situation when the layer is placed into a homogeneous ma
field perpendicular to its boundary. The Krein’s formula is applicable but the free resolve
substantially different from the nonmagnetic case; this is reflected in the form of the ess
spectrum which now consists the ‘‘sum’’ of the Landau levels and the transverse mode energ
of course, is preserved by a finite number of point perturbations. If there is a single perturb
we get exactly one eigenvalue in each spectral gap, i.e., between any two neighboring lev
the strong and weak coupling limits it approaches the upper and lower endpoint of correspo
‘‘free’’ gap, respectively. Only for the lowest gap we find a different behavior in the stro
coupling limit case; the eigenvalue goes to2` with the same asymptotics as in the nonmagne
case. Finally, we present a generalization to the case ofN point interactions analogous to th
considerations of Sec. III.

II. A SINGLE PERTURBATION

A. The free system

Consider an infinite layerSªR23@0,d# with the coordinates denoted asxW5(x,y), wherex
5(x1 ,x2)PR2 andyP@0,d#. We consider a single spinless nonrelativistic particle confined toS.
Since the actual values of physical constants are not essential throughout the article, we\
52m51 and suppose that the free motion of the particle is governed by the Dirichlet Lapl
2DD

S .
Recall that this operator can be defined for rather general domains inRn as the Friedrichs

extension of an appropriate quadratic form~Ref. 7, Sec. XIII.15!. However, since the boundary o
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S consists of two disjoint planes and has therefore the segment property, the operator acts
as H0c52Dc on the domain of allc of the local Sobolev spaceW2,2(S) which satisfy the
boundary conditions

c~x,0!5c~x,d!50 ~2.1!

for all xPR2 ~see again Ref. 7, Sec. XIII.15!.
We will make use of the fact that the ‘‘longitudinal’’ and ‘‘transverse’’ variables decouple

the free system. The state Hilbert space of our problem can then be decomposed into t
modes,

L2~S!5 %
n51

`

L2~R2! ^ $xn%, xn~y!ªA2

d
sinS pny

d D ,

because the functionsxn(y) form an orthonormal basis inL2(@0,d#). The free Hamiltonian can be
correspondingly written in the form of a direct sum,

H05 %
n51

`

hn^ I n , hnª2
]2

]x1
2 2

]2

]x2
2 1S pn

d D 2

. ~2.2!

Since the resolvent (H02z)21 of the two-dimensional Laplacian is known explicitly, the abo
decomposition yields in turn the free resolvent kernel

G0~x,y;x8,y8;z!5
i

4 (
n51

`

H0
(1)~knux2x8u!xn~y! xn~y8!, ~2.3!

wherekn[kn(z)ªAz2(pn/d)2.

B. Definition of a point interaction

Our first goal is to construct a one-center perturbation supported by a pointaWª(a,b) with
aPR2 andbP(0,d). This can be done in a standard way.2 We restrict2DD

S to functions which
vanish in a neighborhood ofaW ; the operator obtained in this way is symmetric but not self-adjo
and we look for the perturbed one among its self-adjoint extensions. Since the restrictio
deficiency indices~1,1!, the family of extensions is by the standard von Neumann theory~Ref. 7,
Sec. X.1! characterized by a single parameter.

What is equally important is that the perturbation is local, and therefore we can charac
the extensions by the usual boundary condition derived in Ref. 2, Chap. I.1, for point intera
in R3. We introduce the generalized boundary values,

L0~c,aW !ª lim
uxW2aW u→0

uxW2aW uc~xW !, L1~c,aW !ª lim
uxW2aW u→0

Fc~xW !2
L0~c,aW !

uxW2aW u G ,
and require

L1~c,aW !24paL0~c,aW !50. ~2.4!

For a fixedaPR this leads to the self-adjoint operatorH(a,aW ) acting as

~H~a,aW !c!~xW !52~Dc!~xW ! ~2.5!

for xWÞaW on the domain

D~H~a,aW !!ª$c:2DcPL2~S\$aW %! and ~2.1! and ~2.4! are satisfied% ~2.6!
                                                                                                                



of

l-

t.

ularity
r

cal

ior

h

1156 J. Math. Phys., Vol. 43, No. 3, March 2002 P. Exner and K. Němcová

                    
in L2(S), where 2Dc is, of course, understood in the sense of distributions. The family
self-adjoint extension also includes the case which is formally given bya5`, which means
L0(c,aW )50. It is easy to see that the correspondingH(a,aW ) is nothing else than the free Hami
tonianH0 .

C. The resolvent

As usual the spectral properties of the operatorH(a,aW ) can be studied using its resolven
SinceH(a,aW ) andH0 have a common restriction with deficiency indices~1,1!, the kernel of the
full resolvent can be obtained by means of Krein’s formula~Ref. 2, Appendix A!

~H~a,aW !2z!21~xW1 ,xW2!5G0~xW1 ,xW2 ;z!1
G0~xW1 ,aW ;z! G0~aW ,xW2 ;z!

a2j~aW ;z!
, ~2.7!

where

j~aW ;z!ª
1

4p
lim
xW→aW

H 2p i

d (
n51

`

H0
(1)~knux2au!sinS pny

d D sinS pnb

d D2
1

ux2auJ ~2.8!

is the regularized Green’s function; we have employed here the fact that the resolvent sing
is the same as for the kernel of2D in L2(R3) ~see Ref. 8, Sec. 13.5!. The form of the denominato
in expression~2.7! follows from the boundary condition~2.4! applied toc5(H(a,aW )2z)21w,
wherew is an arbitrary vector fromL2(S). However, the above definition does not give a practi
way to computej(aW ;z). To this end we use firstK0(z)5 (p i /2) H0

(1)( iz) and introducekn

ªA(pn/d)22z52 ikn . Then we have

j~aW ;z!5 lim
%→0

H 1

pd (
n51

`

K0~kn% !sin2S pnb

d D2
1

4p%J , ~2.9!

where%ªux2au and we have already puty5b. We use the asymptotic behaviorkn' pn/d as
n→` to write the identity

K0~kn% !5K0S n
p%

d D1FK0~kn% !2K0S n
p%

d D G ~2.10!

and to divide the functionj into two parts,j(aW ;z)5j11j2 , where

j1ª lim
%→0

1

pd (
n51

` FK0~kn% !2K0S pn%

d D Gsin2S pnb

d D ,

j2ª lim
%→0

H 1

2pd (
n51

` FK0S pn%

d D2K0S pn%

d D cosS 2pnb

d D G2
1

4p%J ;

we have used 2 sin2 a512cos 2a. To deal with the first term we employ the asymptotic behav
of the Macdonald function~Ref. 9, Sec. 9.6.13! which yields

K0~kn% !2K0S pn%

d D52 lnA12zS d

pnD 2

~11O~%2!!

as%→0. It shows that the sum converges uniformly wrt% and the limit can be interchanged wit
the series thus giving
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j152
1

pd (
n51

`

lnA12zS d

pnD 2

sin2S pnb

d D . ~2.11!

The second part can be computed by means of the formula~Ref. 10, II, 5.9.1.4.!,

(
n51

`

K0~nx!cos~na!5
p

2Ax21a2
1

1

2 S g1 ln
x

4p D1
p

2 (
n51

` F 1

A~2np2a!21x2
2

1

2npG
1

p

2 (
n51

` F 1

A~2np1a!21x2
2

1

2npG .

So, introducingbªb/d andmª%/d and performing the limitm→0, we get

j25
1

4pd H 2
1

2b
2 (

n51

`
b2

n~n22b2!J . ~2.12!

The last sum equals Ref. 10, I, 5.1.15.2. expressed by means of the digamma function ac(1)
2 1/2 (c(11b)1c(12b)), and sincec(1)52g, whereg50.577 . . . is the Euler number, an
c(12b)5c(b)1p cot(pb), c(11b)5c(b)1 1/b, we arrive at

j25
g

4pd
1

1

8pd
~2c~b!1p cot~pb!!. ~2.13!

Putting the results together, we get the sought formula

j~aW ;z!52
1

pd (
n51

`

lnA12zS d

pnD 2

sin2S pnb

d D1
1

4pd Fg1cS b

dD1
p

2
cotS pb

d D G ,

~2.14!

expressing the regularized Green’s function in the form of a series. It is certainly more co
cated than an expression of the corresponding quantity for the whole space in terms of elem
functions~Ref. 2, Chap. I.1!, but it allows us to derive the needed properties of the functionj to
compute the values ofj(aW ;z) numerically.

Remark 2.1:Notice the scaling behavior with respect to the change of the layer thickness
the formulas relating properties of the familySs5R23@0,ds#, s.0. Here the dimension of the
configuration space is decisive. While for a two-dimensional system the scaling amounts to
rithmic shift of the functionj as shown in Ref. 5, in three dimensions the transformation
multiplicative. We find easily that the situation is the same as for straight tubes inR3 studied in
Ref. 6, i.e., we havej(aW s;zs22)5s21j(aW ;z), whereaW s

ª(as,bs). This means, in particular
that the singularities of the resolvent which we will discuss later using Eq.~2.19! are related as
follows:

es~as,aW s!5s22e~a,aW !, as
ªs21a. ~2.15!

Without loss of generality we put therefored5p in the rest of this and the next section.

D. Spectral properties

The explicit form of the resolvent~2.7! allows us to derive information about the spectru
Since its difference from (H02z)21 is a rank one operator, the essential spectrum remain
Weyl’s theorem~Ref. 7, Thm. XIII.14! the same as for the free HamiltonianH0 , i.e., we have
sess(H(a,aW ))5@1,̀ ). At the same time, also the absolutely continuous spectrum is prese
sac(H(a,aW ))5@1,̀ ), this time by Birman–Kuroda theorem~Ref. 7, Thm. XI.9!.
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Next we would like to prove the absence of the singularly continuous spectrum. To thi
we have to check that the expression (c,(Ez2Ec)c) for all cPL2(S) is an absolutely continuou
function forz from any interval (c,t),(1,̀ ); in other words, that it can be written as an integ
of a locally integrable function. Sincessc cannot be supported by discrete points, we may cho
the interval (c,t) in such a way that it contains none of the pointsm2, mPN. We exclude these
points because the free Green’s functionG0(z) diverges at them. For the spectral projectionEt

2Ec to the interval (c,t) we employ Stone’s formula,

~c,~Et2Ec!c!5
1

p
lim

«→01

E
c

t

~c,Im G~u1 i«!c! du; ~2.16!

we have used here the fact which we will establish a little later, namely thatH(a,aW ) has no
eigenvalues in (1,̀), and therefore the spectral projections to (c,t) and @c,t# are the same. The
Green’s function~2.7! is analytic forz with RezP(c,t) and 6Im zP(0,«), and, furthermore, its
limits when z approaches the real axis from above and from below exist and are contin
functions ofz. Recall that by assumptions no thresholds are contained in (c,t) andj has nonzero
imaginary part forzÞm2,

Im j~aW ;z!5
1

2p (
n51

[Az]

sin2~nb!.0, ~2.17!

where we have usedAz2m25 iAm22z; hence, the denominator of the second term in~2.7!
cannot be singular. Consequently, the integrated function is bounded in (c,t)3@0,«), and by the
dominated convergence theorem the limits can be interchanged with the integral giving

~c,~Et2Ec!c!5
1

p E
c

t

~c,Im G~u!c! du. ~2.18!

The function under the integral is again continuous in the interval (c,t), hence it is integrable and
the statement is proved. Ift5t0 would be an isolated eigenvalue embedded in the continu
spectrum andc the corresponding eigenfunction, the above relation remains valid fortP(t0

2h,t0)ø(t0 ,t01h) with someh.0, while at the pointt0 the lhs should have a jump, which i
clearly impossible due to the continuity of the integrated function.

To determine the discrete spectrum, we have to find the poles of the resolvent. Recall
perturbation which can be reduced to a self-adjoint extension of a common symmetric rest
with deficiency indices~1,1! can give rise to at most one simple eigenvalue in each gap of
spectrum~Ref. 11, Sec. 8.3, Cor. 1!. In our case it means one simple eigenvalue in the inte
(2`,1). In view of the relation~2.7! one can find it by solving the implicit equation

j~aW ;z!5a ~2.19!

for zPR. The series contained in the formula~2.14! converges for allzPR\$n2:nPN%, because
its terms decay liken22 asn→` as we can see using the Taylor expansion of ln(12z) to the first
order. The remaining termj2 is independent ofz and finite for anybP(0,p).

The value ofj(aW ;z) is real for anyzP(2`,1). In particular, it is easy to compute

j~aW ;z50!5
1

4p2 Fg1cS b

p D1
p

2
cot~b!G .

Differentiatingj(aW ,•) we get

dj

dz
5

1

2p2 (
n51

`
1

n22z
sin2~nb!.0, ~2.20!
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so the function is monotonously increasing forz,1. Moreover, it diverges at both endpoints. A
the continuum threshold we have

j~aW ;z!52
1

p2 lnA12z sin2~b!1O~1! as z→12, ~2.21!

while on the opposite side we may employ a simple estimate

j~aW ;z!,2
1

p2 lnA12z sin2~b!1j2→2` as z→2`.

We will need more precise asymptotics at large negative energies. Below we shall prove t

j~aW ;z!52
A2z

4p
1O~e2cA2z! as z→2` ~2.22!

for any c,dist(aW ,bdV)5 p/22ub2 p/2 u. In other words, the leading term corresponds to
analogous function for the point-interaction Laplacian inR3 computed in Ref. 2, Chap. I.1; i
corresponds to the heuristic concept that strongly bound states are well localized, and there
much influenced by the presence of the boundary. Another property ofj(aW ,z) is its monotonicity
across the half-layer,

j~aW ;z!.j~aW 8;z! if ub2p/2u,ub82p/2u, a5a8. ~2.23!

To prove it we employ the relation~2.8! which yields

j~aW ;z!2j~aW 8;z!5 lim
ux2au→0

i

2p (
n51

`

H0
(1)~kn~z!ux2au!@sin2~nb!2sin2~nb8!#.

Since sin2(nb)2sin2(nb8)5sin(n(b1b8))sin(n(b2b8)) holds for 0,b8,b<p/2 we arrive at

j~aW ;z!2j~aW 8;z!5G0~a,b1b8;a,b2b8;z!; ~2.24!

the monotonicity then follows from the fact thatzP(2`,1# and from the positivity of free
resolvent kernel~cf. Ref. 7, Appendix to Sec. XIII.12!. This behavior is illustrated in Fig. 1.

This confirms the mentioned general conclusion: it follows from the stated propertie
j(aW ;•) that Eq. ~2.19! has for anyaPR a unique eigenvalue«(a,aW ) in (2`,1# and that the
function «(•,aW ) is monotonously increasing,

«~a,aW !.«~a8,aW ! if a.a8.

Furthermore,j(aW ,•) is a real-analytic function because for a fixedz1,21 it is expressed on a
complex neighborhood of (2`,z1) through a uniformly convergent series whose terms are a
lytic. It follows from the implicit-function theorem that«(•,aW ) is a C` function ~see Ref. 12,
Chap. XIV!. The function«(•,aW ) is also monotonous withb:

«~•,aW !,«~•,aW 8! if ub2p/2u,ub82p/2u. ~2.25!

The behavior of the eigenvalue is shown in Fig. 2.
We are also interested in the asymptotic behavior of the eigenvalue in the limits of wea

strong coupling. In the former case we have

«~a,aW !'12expS 2
2p2a

sin2~b! D as a→`, ~2.26!
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where the symbol' means that for anye.0 anda large enough the eigenvalue can be squee
between a pair of expressions from the rhs in which 2p2 is replaced by 2p26e. On the other
hand, the strong coupling asymptotics can be proved directly. By Dirichlet bracketing~Ref. 7, Sec.
XIII.15! «(a,aW ) is for a,0 bounded from below by2(24pa)2, and from above by the groun
state of the Dirichlet Laplacian in a ball of radiusc with the point interaction in the center. Th
latter is easily found: writing«(a,aW )52k2 one has to solve the equation

~24pa!25k2~11sinh22kc!.

It yields the sought asymptotic behavior

«~a,aW !5216p2a21O~eac! as a→2`, ~2.27!

which justifies in view of~2.19! a posteriori the relation~2.22!.
The formula~2.7! provides us with the~non-normalized! wavefunction of the bound stat

through the residue at the pole,c(xW ;a,aW )5G0(xW ,aW ;«(a,aW )), so we have

c~xW ;a,aW !5
i

2p (
n51

`

H0
(1)~A«~a,aW !2n2 ux2au!sin~nb!sin~ny!. ~2.28!

For a→2` we can writeH0
(1)(u)'A2/pu ei (u2p/4) so we see that the wavefunction is we

FIG. 1. The functionj(aW ;•) for three different positions of the point interaction. The dash-dotted line is the leading
of the asymptotics~2.22!.
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localized,

c~xW ;a,aW !' (
n51

` A 1

p3A16p2a21n2ux2au
e2A16p2a21n2ux2au sin~nb!sin~ny!; ~2.29!

this is illustrated in Fig. 3. On the other hand, in the limita→` the wavefunction forux2au from
a compact set behaves as

FIG. 2. The dependence of the eigenvalues«(a,aW ) on the parametera for three positions of the point interaction.

FIG. 3. The non-normalized eigenfunction forb5p/6 anda520.1.
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c~xW ;a,aW !'a
siny

sinb
2

1

p2 lnux2ausinbsiny1
i

2p (
n52

`

H0
(1)~A12n2 ux2au!sin~nb!sin~ny!.

~2.30!

The wavefunction is dominated by the first transverse mode as Fig. 4 shows.
Let us finally return to embedded eigenvalues. We have excluded their existence awa

the thresholds. Ifz5m2, we use Eq.~2.7! again to check that the singularities on the rhs can
In the vicinity of z5m2 the free resolvent kernel and the denominatora2j(aW ;z)
behave as

G0~xW1 ,xW2 ;z!52
1

p2 ln Am22z sin~my1!sin~my2!~11O~Am22z!!,

a2j~aW ;z!5ã1
1

p2 lnAm22zsin2~mb!,

where

ãªa2j21
1

p2 (
nÞm

lnA12
m2

n2 sin2~nb!2
1

p2 ln m sin2~mb!.

Then the full-resolvent kernel asymptotically behaves as

S ã1
1

p2 lnAm22z sin2~mb! D 21 ã

p2 lnAm22z sin~my1!sin~my2!~11O~Am22z!!

and cannot thus have a pole-type singularity atz5m2.
Let us summarize the results obtained so far:
Theorem 2.2:Let H(a,aW ) be defined by (2.5) and (2.6) for d5p. Then

~a! sess(H(a,aW ))5sac(H(a,aW ))5@1,̀ ) and ssc(H(a,aW ))5B.
~b! For any aPR there is a single eigenvalue«(a,aW ) in (2`,1) which is increasing and

infinitely differentiable wrta. The corresponding eigenfunction is given by (2.28).
~c! The eigenvalue is by (2.25) strictly monotonous across the half-layer, «(a,aW ),«(a,aW 8) if

ub2p/2u,ub82p/2u.
~d! In the limit a→` the bound state behaves according to (2.26) and (2.30). In the st

coupling case the eigenvalue asymptotic is given by (2.27) and the eigenfunction
scribed by (2.29).

~e! There are no eigenvalues in@1,̀ ).

FIG. 4. The unnormalized eigenfunction forb5p/6 anda51.
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E. Scattering

Since the HamiltonianH(a,aW ) is invariant under rotations around the axis passing through
point aW and perpendicular toS, we may simplify the treatment of stationary scattering usin
partial-wave decomposition. We use the tensor-product representation

L2~S!5L2~~0,̀ !3@0,d#;rdr dy! ^ L2~S1!, ~2.31!

whereS1 is the unit circle inR2 and rªuxu. This can be written as

L2~S!5 %
m52`

`

Ũ21L2~~0,̀ !3@0,d# ! ^ $Ym%, ~2.32!

where Ũ:L2((0,̀ )3@0,d#;rdr dy)→L2((0,̀ )3@0,d#) is the unitary operator defined b
(Ũc)(r )ªr 1/2c(r ), the ‘‘spherical’’ functionsYm(v)ª(2p)21/2eimu with v5(cosu,sinu) form a
basis inL2(S1), and the symbol$•% means, as above, the linear envelope. Shifting the pointaW to
the origin of the polar coordinates byTa :(Taf)(x,y)5f(x1a,y), we can decompose the co
responding free HamiltonianH052DD

S as

H05Ta
21H %

m52`

`

Ũ21hm
(0)Ũ ^ I J Ta , ~2.33!

with the partial-wave operators

hm
(0)52

]2

]r 22
]2

]y2 1
4m221

4r 2 , mPZ. ~2.34!

Their domains are given in a standard way~Ref. 13, Sec. 5.7!; the only nontrivial part is the radia
boundary condition at the origin. As in Ref. 2, Chap. I.5, none are imposed in ‘‘higher’’ pa
waves,mÞ0, because the radial part of~2.34! is then limit-point at zero~Ref. 7, Appendix to Sec.
X.1!. Consequently, this part of the Hamiltonian is trivial from the point of view of the po
interaction. On the other hand, form50 we introduce the generalized boundary values,

l 0~f!~y!ª lim
r→0

f~r ,y!Ar , l 1~f!~y!ª lim
r→0

r 21/2@f~r ,b!2l 0~f!~y!r 21/2#. ~2.35!

The s-wave component of the free Hamiltonian is specified by the conditionl 0(f)(y)50 @for
any yP(0,d)#, while the s-wave componenth0

a of H(a,aW ) is given by the same differentia
expression~2.34! with the boundary condition aty5b changed to

l 1~f!~b!24pal 0~f!~b!50. ~2.36!

It is also clear from this discussion that the eigenfunction ofH(a,aW ) analyzed in the previous
section exhibits a symmetry,c(R(w)xW ;a,aW )5c(xW ;a,aW ), whereR(w) is the rotation ofS on an
anglew around the axis passing through the pointaW and perpendicular toS.

Let us return to the scattering problem. As in Ref. 2, Chap. I.5, the rotational symmetry m
that the S-matrix part corresponding to partial waves withmPZ\$0% is trivial, i.e., the unit
operator. In distinction to Ref. 2, Chap. I.5, however, the s-wave part~we denote it asS again to
keep the notation simple! is still in general a complicated operator because the point interac
can couple different transverse modes. Its dimension depends on the number of the ‘‘open
nels,’’ i.e., of the transverse modes in which the particle of energyz can propagate; ford5p the
latter is@Az#. Using the partial-wave operator~2.34! with m50 it is easy to see that the functio
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ca,n
(0) ~xW ;k!5J0~kn~z!r !xn~y!1

1

a2j~aW ;z!

i

2p (
j 51

`

H0
(1)~kj~z!r !sin~ jb !sin~nb!x j~y! , ~2.37!

with r 5ux2au satisfies the boundary condition~2.4! and r 1/2ca,n
(0) (xW ;k) is a generalized eigen

function of h0
(0)

^ (2]2/]y2) with the eigenvaluez5k2. In the limit r→` it behaves as

ca,n
(0) ~xW ;k!'A 2

pkn~z!r
cos~kn~z!r 2p/4!xn~y!

1
1

a2j~a;z!

i

2p (
j 51

[Az] A 2

pkj~z!r
ei (kj (z)r 2p/4) sin~nb!sin~ jb !x j~y!. ~2.38!

To find the matrix elementsSn j one has to compare this with the asymptotics of the outgoing w
in the j th transverse mode expressed by means of the scattering phase shift. For the wave s
back into the incidentnth mode we have

A 2

pkn~z!r Fcos~kn~z!r 2p/4!1
1

a2j~a;z!

i

2p
ei (kn(z)r 2p/4) sin2~nb!G

5A 2

pkn~z!r
eidnn cos~kn~z!r 2p/41dnn~k!!,

which yields

Snn~k!5e2idnn(k)511
i

p

sin2~nb!

a2j~aW ;z!
.

In a similar way scattering to thej th mode,nÞ j , requires the identification

1

a2j~aW ;z!

i

2p
ei (kj (z)r 2p/4) sin~nb!sin~ jb !5eidn j(k) cos~kn~z!r 2p/41dn j~k!!;

together we get

Sn j~k!5e2idn j(k)5dn j1
i

p

sin~nb!sin~ jb !

a2j~aW ;z!
. ~2.39!

We have to check that the obtained S-matrix is unitary, i.e.,

(
j 51

[Az]

Sn jS̄s j5dns . ~2.40!

Using ~2.39! we can write

(
j 51

[Az]

Sn jS̄s j5(
j 51

[Az]

~Sn j2dn j!~S̄s j2d js!12 Re~Sns2dns!1dns

5
2

p

sin~nb!sin~sb!

ua2j~aW ;z!u2 S 1

2p (
j 51

[Az]

sin2~ jb !2Im j~aW ;z!D 1dns ,

so the desired property follows from~2.17!.
                                                                                                                



ttering

ion of

n

g

e
In the
er

1165J. Math. Phys., Vol. 43, No. 3, March 2002 Quantum mechanics of layers

                    
The scattering problem can be also described in another way—by means of a sca
operator inL2(S1) ^ L2(@0,d#). Applying ~2.7! to an arbitraryfPL2(S) we see that to anyc
PD(H(a,aW )) and a nonrealz there isczPD(H0) such that

c~xW !5cz~xW !1
1

a2j~aW ,z!
G0~xW ,aW ;z!cz~aW !. ~2.41!

If we choose, in particular,cz
«(xW )5eikn(z)vx2«uxu2xn(y) with v a unit vector inR2, then the

correspondingc«(xW )PD(H(a,aW )) satisfies the equation

~~H~a,aW !2z!c«!~xW !54«@12«uxu21 iknvx# cz
«~xW !. ~2.42!

The rhs converges in theL2 sense asz approaches the real line and the resultingc« belongs to
D(H(a,aW )) for a fixedzP@1,̀ ). Furthermore, the pointwise limit exists as«→01 and equals

ca,n~xW ;kn~z!v!5eikn(z)vxxn~y!1
eikn(z)va

a2j~aW ;z!

i

2p (
j 51

`

H0
(1)~kj~z!ux2au!sin~ jb !sin~nb!x j~y!.

~2.43!

The function defined by the rhs is locally square integrable, solves the equation (H(a,aW )2z)c
50 and satisfies the appropriate boundary condition, i.e., it is a generalized eigenfunct
H(a,aW ). Let us expand it into partial waves. We know already the s-wave eigenfunction~2.37!;
the remaining ones are trivial,cn

(m)(xW ;kn(z))5Jm(kr)xn(y) if mÞ0. Here again, this expressio
describes an eigenfunction ofhm

(0)
^ ]2/]y2 in the Hilbert space~2.31!; multiplying it with r 1/2 one

obtains an eigenfunction in the Hilbert space~2.32!. Using the known identity

eikv(x2a)52p (
m52`

`

i mJm~kux2au!Ym~v!Ym~vx2a!, ~2.44!

whereYm are the functions introduced above andvx2aª(x2a)/ux2au, we get

e2 ikn(z)vaca,n~xW ;kn~z!v!5ca,n
(0) ~xW ;kn~z!!12p (

0Þ l PZ
i lcn

( l )~x2a,y;kn~z!!Yl~v!Yl~vx2a!.

Components of the on-shell scattering amplitude (f a(kn(z),vx ,v)) jn are then given by
limuxu→`,x/uxu5vx

uxu1/2e2 ik j uxu@ca,n(xW ;kn(z)v)2eiknvxxn(y)#. Specifically, its part correspondin
to the j th transverse mode is

~ f a~kn~z!,vx ,v!! jn5
ep i /4

pA2pkj~z!

sin~ jb !sin~nb!

a2j~aW ;z!
eikn(z)va2 ik j (z)vxa ~2.45!

and the on-shell scattering operatorSa(z) on L2(S1) ^ L2(@0,d#) has the form

Sa~z!5I 1
i

p (
n, j 51

[Az]
sin~nb!sin~ jb !

a2j~aW ;z!
~e2 ikn(z)(•)aY0xn ,• !e2 ik j (z)(•)aY0x j . ~2.46!

It follows from ~2.17! that the denominator is nonzero in@1,̀ ). However, we have argued abov
thatj(aW ;•) can be continued analytically to the complex plane where zeros exist in general.
weak coupling case there is one resonance pole ofSa(z) close to the threshold of each high
transverse mode similarly as in the two-dimensional case.5
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III. A FINITE NUMBER OF POINT INTERACTIONS

A. Boundary conditions

Consider now a finite numberN of point interactions and suppose that their positions areaW j

5(aj ,bj ), whereajPR2 andbjP(0,p). For the sake of brevity we denoteaW 5(aW 1 ,...,aW N) and
a5(a1 ,...,aN). The way to define a point interaction is the same as above; now we haN
independent boundary conditions

L1~c,aW j !24pa jL0~c,aW j !50, j 51,...,N. ~3.1!

The HamiltonianH(a,aW ) is given again by the formulas~2.5! and ~2.6! with the boundary
condition~2.4! replaced by~3.1! andaW understood in the sense mentioned above. Any of the p
interactions can be switched off when corresponding coupling constanta j is formally put equal to
infinity.

B. The resolvent

We again use the Krein formula to find the resolvent kernel. Since the deficiency indices
operator obtained by restriction of the free Hamiltonian to the set of functions which vanish
vicinity of the pointsaW are equal to (N,N), the rhs is a rankN operator expressed in terms o
vectors from the corresponding deficiency subspaces,

~H~a,aW !2z!21~xW1 ,xW2!5G0~xW1 ,xW2 ;z!1 (
j ,k51

N

l jk~a,aW ;z! G0~xW1 ,aW j ;z! G0~aW k ,xW2 ;z!. ~3.2!

Applying this to an arbitrary vector ofL2(S) we get

c~xW !5c0~xW !1 (
j ,k51

N

l jk~a,aW ;z! G0~xW ,aW j ;z! c0~aW k! , ~3.3!

with c0PD(H0). The generalized boundary values are

L0~c,aW m!5 (
j ,k51

N
l jk

4p
d jm c0~aW k!, ~3.4!

L1~c,aW m!5c0~aW m!1 (
j ,k51

N

l jk~12d jm!G0~aW m ,aW j ;z!c0~aW k!

1 (
j ,k51

N

l jkd jm c0~aW k! lim
uxW2aW mu→0

S G0~xW ,aW j ;z!2
1

4puxW2aW mu D . ~3.5!

The limit contained in the expression ofL1(c,aW m) equalsj(aW m ;z). After substituting these
boundary values into~3.1! we arrive at the conditions

c0~aW m!1 (
j ,k51

N

l jk@d jm~j~aW m ;z!2am!1~12d jm!G0~aW m ,aW j ;z!#c0~aW k!50, ~3.6!

which should be satisfied for an arbitrary vectorc0 belonging toD(H0), i.e., for anyN-tuple
(c0(aW 1), . . . ,c0(aW N)). This is possible only if the expressions in the square brackets are up t
sign elements of the matrix inverse tol(a,aW ;z), in other words, if the coefficients are

l~a,aW ;z!5L~a,aW ;z!21, ~3.7!

where
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L j jªa j2j~aW j ;z!5a j1
1

p2 (
n51

`

lnA12
z

n2 sin2~nbj !2
1

4p2 Fg1cS bj

p D1
p

2
cot~bj !G ,

~3.8!

L jmª2G0~aW j ,aW m ;z!52
i

2p (
n51

`

H0
(1)~Az2n2uaj2amu!sin~nbj !sin~nbm!, j Þm.

The Green’s function valueG0(aW j ,aW m ;z) is finite for any pair of mutually different vectorsaW j and
aW m . When the point interactions are arranged vertically, i.e.,aj5am , the expression through
Hankel’s functions is useless and the corresponding nondiagonal elementL jm can be alternatively
written as

L jm5
1

p2 (
n51

`

lnA12
z

n2 sin~nbj !sin~nbm!2j2S bj1bm

2 D1j2S ubj2bmu
2 D . ~3.9!

To derive this expression we employ the argument analogous to that leading to the value
function j(aW ;z) in Sec. II C.

C. The discrete spectrum

Since a finite rank operator is both compact and trace class, the argument presented
opening of Sec. II D remains valid. In other words, a finite number of point interaction cha
neither the essential nor the absolutely continuous spectrum,sess(H(a,aW ))5sac(H(a,aW ))
5sess(H0)5@1,̀ ). The singularly continuous spectrum is empty because the proof given in
II D can be used here again.

The discrete spectrum is determined by poles of the resolvent, which occur if the coef
matrix (l jk)21 becomes singular. This leads to the condition

det L~a,aW ;z!50. ~3.10!

To find the eigenfunctions we use the procedure from Ref. 2, Sec. II.1. Suppose thH
ªH(a,aW ) satisfies the equationHw5zw for somezPR and pick an arbitraryz8P%(H). Then in
accordance with~3.3! there is a functionc0PD(H0) which makes it possible to write

w~xW !5c0~xW !1(
j 51

N

djG0~xW ,aW j ;z8!, ~3.11!

with the coefficientsdjª(k51
N (L(z8)21) jkc0(aW k). We also see that

~H02z8!c05~H2z8!w5~z2z8!w. ~3.12!

Applying the resolvent (H02z8)21 to the last identity we arrive at the expression

c05~z2z8!F ~H02z8!21c01(
j 51

N

dj~H02z8!21G0~•,aW j ;z8!G , ~3.13!

which allows us to find the action of (H02z) at the vectorc0 ,

~H02z!c05~H02z8!c02~z2z8!c05~z2z8!(
j 51

N

djG0~•,aW j ;z8!. ~3.14!

If z,1, the resolvent (H02z)21 exists and may be applied to the last relation, giving by me
of the first resolvent identity
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c05(
j 51

N

dj@G0~•,aW j ;z!2G0~•,aW j ;z8!#. ~3.15!

Substituting this into~3.11! we get an expression for the eigenfunction,

w~xW !5(
j 51

N

djG0~xW ,aW j ;z!, ~3.16!

where it remains to determine the coefficients. Equation~3.15! taken at the pointxW5aW j can be
rewritten using the components of matrixL as

c0~aW j !5 (
m51

N

dm~L~a,aW ;z8! jm2L~a,aW ;z! jm!. ~3.17!

We already know thatdm5(k51
N (L(z8)21)mkc0(aW k); taking the inverse we getc0(aW j )

5(m51
N L(z8) jmdm . In combination with~3.17! this yields

(
m51

N

L~z! jmdm50, ~3.18!

i.e., dª(d1 ,...,dN) has to be an eigenvector of the matrixL(a,aW ;z) corresponding to zero
eigenvalue. The corresponding system of linear equations is solvable under the condition~3.10!,
and the sought eigenfunctions ofH(a,aW ) are given by the formula~3.11!.

It remains to check that Eq.~3.10! can have a solution in (2`,1). Let us start with the
limiting situations of strong and weak coupling. We know from~2.22! how j(aW j ;z) behaves as
2A2z/4p asz→2`. At the same time, the nondiagonal part of matrixL vanishes in the limit
in view of the asymptotics

H0
(1)~Az2n2uaj2amu!5H0

(1)~ iAn22zuaj2amu!'A 2

ipAn22z uaj2amu
e2An22zuaj 2amu2 ip/4

for z→2`. This argument is not applicable ifaj5am for j Þm. Nevertheless, the nondiagon
matrix elements are up to the sign equal to Green’s function values, and thus they are boun
this way we get

L~a,aW ;z!5
A2z

4p
I 1O~1! as z→2` ~3.19!

with the coefficienta j included into the error term. On the other hand,

L~a,aW ;z!5
1

p2 lnA12z M1O~1! as z→12, ~3.20!

where Mª(sinbj sinbm)j,m51
N . This matrix has zero eigenvalue of multiplicityN21 and the

positive eigenvalue( j 51
N sin2 bj corresponding to the eigenvector (sinb1,...,sinbN). The latter is

more important, because it means that one eigenvalue ofL(a,aW ;z) tends to2` as z→12.
Furthermore, the eigenvalues ofL(a,aW ;z) are continuous functions ofz, so comparing the las
claim with ~3.19! we find that at least one of the eigenvalues crosses zero for somez, i.e., that
H(a,aW ) has at least one isolated eigenvalue.

We may ask whether some of the eigenvalues may be degenerate. For the sake of bre
rewrite the matrixL(a,aW ;z) as

L~a,aW ;z!5d jm~a j2j j~z!!1~12d jm!gjm~z!, ~3.21!
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wherej j (z)ªj(aW j ;z) and gjm(z)ª2G0(aW j ,aW m ;z). Since allgjm are negative, the maximum
possible degeneracy isN21, which means that for a pair of point interactions the discrete sp
trum is always simple. Let us consider the caseN53. Let z,1, aW 1,35(6a,b1) and aW 2

5(0,b2). If b2→0, then the valueg125g23 approaches zero, thus being smaller thang13 for b2

small enough. On the contrary, ifb25b1 we obtain the opposite inequality; this follows from th
expression~2.3! and from the monotonicity of the Macdonald functionK0(u) with a positive
argument~see Ref. 9, 9.6.24!. Hence there exists ab2P(0,b1) such that all the nondiagona
elements of the matrix are the same,g135g125g23. Choosinga j which satisfya j2j j5g12 we
obtain a matrix of rank one, i.e.,z is an eigenvalue of multiplicity two.

D. Embedded eigenvalues

We have shown in the previous section, that a single point interaction cannot produce
values embedded in the continuous spectrum. This is no longer true ifN>2 as the following
example shows.

Example 3.1:Consider a pair of perturbations with the samea placed ataW 15(0,0,b) and
aW 25(0,0,p2b). We can divide the eigenvalue problem into symmetric and antisymmetric
with respect to the plane$(x,p/2):xPR2%. We obtain properties of the antisymmetric part
scaling the one-center problem: substitutings5 1/2 into the relation~2.15! we see that the anti
symmetric part has a single eigenvalue which tends to 4 asa→`, hence it is embedded in th
continuous spectrum fora large enough.

Thus we cannot exclude existence of embedded eigenvalues in general. We can, ho
prove a weaker result. In the example the symmetry was essential, which means in particu
the eigenfunction is dominated by the second transverse mode. We will show that in geneany
eigenvalue z.1 cannot contain contributions from transverse modes with n<@Az#. Suppose that
H(a,aW )w5zw for z.1. We employ the relation~3.11! and take c0 in the form c0(xW )
5(n51

` gn(x)xn(y), wheregnPL2(R2). Substituting thisc0 into ~3.11! and using the fact tha
$xn% is an orthonormal basis inL2((0,p)) we get

F2
]2

]x1
2 2

]2

]x2
2 2z1n2Ggn~x!5~z2z8!(

j 51

N

dj

i

4
H0

(1)~kn~z8!ux2aj u!xn~bj !

for n51,2,.... TheFourier–Plancherel operator transforms this into

@ upu22z1n2#ĝn~p!5
~z2z8!

2p (
j 51

N

dj xn~bj !
e2 ipaj

upu22z81n2 . ~3.22!

If gnPL2(R2), then ĝn should also belong toL2(R2). It is not possible ifz.n2 and the rhs of
~3.22! is nonzero atpnv, wherepn5Az2n2 andv is a unit vector inR2. Recall that the factor
(upu22z81n2)21 has no singularity, becausez8Pr(H) by assumption.

To avoid the singularity ofĝn at upu5pn we have to require

(
j 51

N

djxn~bj !e
2 ipnvaj50 ~3.23!

for an arbitrary unit vectorv from R2. If all the aj ’s are different, it follows thatdjxn(bj )50 for
each j . If some of them are the same, the condition changes to( jdjxn(bj )50 where j runs
through theaj ’s which coincide. In both casesĝn is identically zero forn2,z.

Consider now an arbitrarygPL2(R2) andn2,z. Using ~3.11! and ~2.3! we arrive at

~gxn ,w!5~ ĝ,ĝn!1(
j 51

N

dj xn~bj !S g,
i

4
H0

(1)~kn~z8!ux2aj u! D . ~3.24!
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The first scalar product is equal to zero becauseĝn is zero. If all theaj ’s are different, then
djxn(bj )50 for all j and the whole rhs is equal to zero. If someaj ’s are the same, the conditio
( j 51

N djxn(bj )50 leads to (gxn ,w)50 again. The conclusion holds true for alln51,...,@Az#,
what we have set out to prove.

E. The limits of strong and weak coupling

Of the two extreme situations, consider first the strong coupling. One can write the m
L(a,aW ;z) in the form

L~z!5S S a j1
A2z

4p D d jkD F I 1S S a j1
A2z

4p D d jkD 21

L̃~z!G , ~3.25!

whereL̃(z) is the remainder matrix, which is independent ofa j and has a bounded norm asz
→2`. For an arbitrary finite intervalJ,(2`,1) we can always choosea j ’s large enough
negative that no eigenvalues are contained inJ and the two matrices in the above product a
regular inJ. It means that the roots of Eq.~2.19! come from the region whereL(z) is dominated
by its diagonal part. Then there are exactly N eigenvalues~including a possible degeneracy!,
which behave asymptotically as

« j~a,aW !'216p2a j
2 as max

1< j <N
a j→2`. ~3.26!

As we expect the eigenfunctions in the strong limit are strongly localized and only slig
influenced by the other perturbations. The eigenfunction localized ataW j has the same form as i
Sec. II D where we putaW 5aW j .

Consider now on the contrary that all the point interactions are weak, i.e., that all thea j ’s are
large positive. DenotingAªdiag(a1,...,aN) we can write

L~z!5A1
1

p2 lnA12zM1L̃~z!, ~3.27!

where L̃(z) is a remainder matrix, which is again independent ofa with its norm bounded,
iL̃(z)i<CaW for zP(z0,1). In Sec. III C we found thatL(z) was asymptotically a rank on
operator onCN. Hence only one isolated eigenvalue ofH(a,aW ) exists in this asymptotic situation

To find the leading term of the asymptotic expansion, we have to solve the spectral pr
for matrix M2hA2hL̃(z), wherehª22p2(ln(12z))21. The largest eigenvalue of this matri
satisfiesmN(h)>mN(0)2(CaW1a1)h, wherea1ªmaxaj , while for j 51, . . . ,N21 we have
m j (h)<(CaW2a2)h, wherea2ªminaj . SincemN(0).0 we see that fora2 large enough the
condition has just one solution forh.0. One can check directly that withoutL̃(z) the condition
is satisfied forh5( ja j

21 sin2 bj . Thush5O(a2
21) and the eigenvalue expansion follows. Hen

the bound-state energy in the weak-coupling case behaves as

«~a,aW !'12expH 22p2S (
j 51

N
sin2 bj

a j
D 21J ~3.28!

as min1<j<Naj→`. Since the eigenvector of matrixM corresponding to the nonzero eigenvalue
(sinb1,...,sinbN), the asymptotic expression of the eigenfunction forxW from a restricted part of
S is
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w~xW !'sin yS ( j 51
N sin2 bj

( j 51
N ~sin2 bj !/a j

2
1

p2 (
j 51

N

sin2 bj lnux2aj u D
1

1

p2 (
n52

`

sin~ny! (
j 51

N

sinbj sin~nbj ! K0~An221ux2aj u!. ~3.29!

Let us summarize the spectral properties of our Hamiltonian in theN-center case derived in
the previous three paragraphs.

Theorem 3.2:Let H(a,aW ) be defined by (2.5) and (2.6) for d5p, where aW 5(aW 1 ,...,aW N) and
a5(a1 ,...,aN) and the boundary condition (2.4) is replaced by (3.1). Then we have the fo
ing.

~a! sess(H(a,aW ))5sac(H(a,aW ))5@1,̀ ) and ssc(H(a,aW ))5B.
~b! For any aPRN there is at least one eigenvalue«(a,aW ) in (2`,1). The maximum numbe

of eigenvalues is N with the multiplicity taken into account; the maximum multiplicit
N21. The corresponding eigenfunction is given by (3.16), where the coefficients dm , m
51,...,N, are components of a vector solving the equationLd50 with the matrixL given
by (3.8).

~c! In the limit min1<j<Naj→` the bound state wave function behaves according to (3.28)
(3.29). On the other hand, in the strong coupling case there are exactly N eigenvalues
asymptotics is given by (3.26); the corresponding eigenfunctions are strongly loca
around the points xW5aW j and given by (2.29) with aW 5aW j and a5a j .

~d! If an eigenvalue zP@1,̀ ) exists, the corresponding eigenvector is orthogonal to the s
space% n51

[Az] L2(R2) ^ $xn%.

F. Scattering

Comparing to the one-center case, the HamiltonianH(a,aW ) with a finite number of perturba
tions loses in general the invariance with respect to rotations around an axis perpendiculaS.
Hence we cannot employ here the partial wave decomposition and we turn directly to the ‘‘c
form’’ of the on-shell scattering amplitude and on-shell scattering operator. By~3.3!, to any c
PD(H(aW ,a)) and a nonrealz there existsczPD(H0) such that

c~xW !5cz~xW !1 (
j ,k51

N

l jk~a,aW ;z! G0~xW ,aW j ;z! cz~aW k!. ~3.30!

We take againc0
«(xW )5eikn(z)vx2«uxu2xn(y) for cz , wherev is a unit vector inR2. Denoting the

lhs of ~3.30! asc« we havec«PD(H(a,aW )) and

~~H~a,aW !2z!c«!~xW !54«@12«uxu21 iknvx# cz
«~xW !. ~3.31!

The rhs converges inL2(R2) asz approaches the real line and thec« belongs toD(H(a,aW )). The
pointwise limit «→01 exists and equals

ca,n~xW ;kn~z!v!5eikn(z)vxxn~y!1 (
j ,k51

N

l jk~a,aW ;z! G0~xW ,aW j ;z! eikn(z)vakxn~bk!. ~3.32!

The limiting function is locally square integrable and it thus is a generalized eigenfunctio
H(a,aW ).

The components (f a(kn(z),vx ,v))mn of the on-shell scattering amplitude are then given
the part of the following expression corresponding to the outgoingmth transverse mode,
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lim
uxu→`,x/uxu5vx

uxu1/2e2 ikmuxu@ca,n~xW ;kn~z!v!2eiknvxxn~y!#.

It yields

~ f a~kn~z!,vx ,v!!mn5
eip/4

pA2pkm~z!
(

j ,k51

N

e2 ikm(z)vxaj l jk~a,aW ;z! eikn(z)vaksin~mbj !sin~nbk!,

~3.33!

and the on-shell scattering operatorSa(z) on L2(S1) ^ L2(@0,d#) is

Sa~z!5I 1
i

2p2 (
k, j 51

N

(
m,n51

[Az]

sin~mbj !sin~nbk! l jk~a,aW ;z! ~e2 ikn(z)(•)akxn ,• !e2 ikm(z)(•)ajxm .

~3.34!

As in the one-center case, resonances are determined by the poles in the meromorphic c
tion of the matrix-valued function (l jk(a,aW ;•)).

IV. A LAYER IN MAGNETIC FIELD

A. The free Hamiltonian

In this section, the layerS5R23(0,d) is placed into a homogeneous magnetic fieldBW

5(0,0,B). As usual the vector potential generating this field can be chosen in different ways
we can employ the symmetric gauge,AW 5 1/2 (2Bx2 ,Bx1,0). We again use the decompositio
into transverse modes,

H0
B5 %

n51

`

hn
B

^ I n ,

~4.1!

hn
B5S 2 i

]

]x1
1

1

2
Bx2D 2

1S 2 i
]

]x2
2

1

2
Bx1D 2

1S pn

d D 2

.

The first two terms on the rhs denoted ashB describe a two-dimensional particle in the perpe
dicular homogeneous field. The resolvent kernel of such an operator is well known:14

~hB2z!21~x,x8!5
1

4p
expS iB

2
~2x1x281x2x18!2

uBu
4

ux2x8u2D
3GS uBu2z

2uBu DUS uBu2z

2uBu
,1;

uBu
2

ux2x8u2D ,

where U is the irregular confluent hypergeometric function~Ref. 9, 13.1.33!. For the sake of
brevity we denote the exponential term in the above formula asFB(x,x8). The decomposition
~4.1! then yields the sought resolvent kernel

G0
B~xW ,xW8;z![~H0

B2z!21~x,y;x8,y8!

5
1

2pd
expS iB

2
~2x1x281x2x18!2

uBu
4

ux2x8u2D
3 (

n51

`

GS uBu2kn
2~z!

2uBu DUS uBu2kn
2~z!

2uBu
,1;

uBu
2

ux2x8u2D sinS npy

d D sinS npy8

d D .

~4.2!
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B. The perturbed resolvent

As in the nonmagnetic case we start from a single point interaction located at the poaW
PS and modify to the present situation the argument of Sec. II C. We employ the fact thatlocally
the magnetic field means a regular perturbation of the Schro¨dinger equation; motivated by this w
definethe one-center Hamiltonian in the same way as in Sec. II: it acts as free

~HB~a,aW !c!~xW !5S F S 2 i
]

]x1
1

1

2
Bx2D 2

1S 2 i
]

]x2
2

1

2
Bx1D 2

2
]2

]y2Gc D ~xW ! ~4.3!

for xWÞaW with the domain changed to

D~HB~a,aW !!5$cPL2~S\$aW %!: HB~a,aW !cPL2~S\$aW %!,
~4.4!

c~x,0!5c~x,d!50, L1~c,aW !24paL0~c,aW !50%,

whereL0 andL1 in the last relation are again the generalized boundary values from Ref. 2, C
I.1.

Remark 4.1:To justify such a definition we have to check that the resolvent kernel~4.2! has
the same singularity as the nonmagnetic expression~2.3! for xW8→xW . We haveG0

B(xW ,xW8;z)'cuxW8
2xW u21 by Ref. 15, Thm. III.5.1, with a nonzeroc independent ofz. To check that the constant ha
the needed value it is sufficient to find operatorsH2 andHb with b from some interval (b0,1)
whose resolvent kernels are;(4p)21uxW82xW u around the singularity and which satisfy the i
equalities

H2<H0
B<b21Hb , ~4.5!

since the last named property implies easily

~H22z!21>~H0
B2z!21>b~Hb2bz!21

for a fixed z,0 andc5(4p)21 follows by contradiction. For the lower bound we choose t
projection to the layer of the magnetic Schro¨dinger operator (2 i¹W 2AW )2 in L2(R3) obtained by
removing the Dirichlet boundaries ofS, because the latter is of the formhB^ I 1I ^ (2]y

2) and we
may apply the bracketing argument~Ref. 7, Sec. XIII.15! to the nonmagnetic part in th
y-direction. Its kernel is known16,17 to be

G̃0
B~xW ,xW8;z!5

1

4p S uBu
2 D 1/2

FB~x,x8!(
l 50

`
exp@2~ uBu~2l 11!2z!1/2uy2y8u#

~ l 1 1
22 z/2uBu!1/2

Ll S B

2
ux2x8u2D ,

~4.6!

where the factorFB is the same as in the relation~4.2! andLl are the Laguerre polynomials. W
want to prove thatuxW2xW8uG̃0

B(xW ,xW8;z) tends to (4p)21 in the limit uxW2xW8u→0. Puttingux2x8u
50, we can neglect the Laguerre polynomials and the factorFB; it remains to compute the
simplified sum. For a givenz there exists an integer numberl 0 such thatuBu(2l 021)2z.0. Then
one could split the series into two parts: the finite sum overl 50,...,l 021 which is irrelevant for
the singularity and the truncated series withl 5 l 0 ,... . Thelatter can be estimated as follows,

I 2<
uBu
4p (

l 5 l 0

`
exp@2~ uBu~2l 11!2z!1/2%#

~ uBu~2l 11!2z!1/2 <I 1 , ~4.7!

where
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I 6ª
uBu
4p E

l 0

` exp@2~ uBu~2l 71!2z!1/2%#

~ uBu~2l 71!2z!1/2 dl5
1

4p%
e2(uBu(2l 071)2z)1/2%.

Hence the resolventG̃0
B has the needed singularity.

In the opposite direction we add a Dirichlet boundary atuxu5R, cutting thus a finite cylinder
of S. It is clearly sufficient to find a bound of the type~4.5! for the ‘‘planar’’ part of the operator
and this task is further reduced to finding bounds for its partial-wave components,

h̃m
B52

]2

]r 22
1

r

]

]r
1S m

r
2

Br

2 D 2

~4.8!

on L2(0,R) with the boundary condition limr→0f(r )(r 1/2ln r)2150 at the origin~Ref. 2, Sec. I.5!
and Dirichlet atr 5R. A comparison of the potential terms shows thath̃m

B<b21h̃m
0 holds if R

,((2/uBu) (b21/221))1/2, so one can choose forHb the nonmagnetic Dirichlet Laplacian in th
cylinder of an arbitrarily small radius. This operator has again the resolvent kernel with the n
singularity.8 Notice finally that alternative ways to prove this result can be found in Ref. 1
derived by techniques from the classical theory of partial differential equations~Ref. 19, Thm.
20.6!.

Remark 4.2:The previous remark still does not answer the question about the Green’s
tion singularity fully. To explain why it is the case, recall that the requirement of symmetry o
magnetic Hamiltonian yields for any functionsc1 , c2 from the domain by means of the Gau
theorem the condition18

lim
r→0

E
SaW
S 2c̄1

]c2

]r
1c2

]c̄1

]r
12i c̄1c2

AW rW

r
D dS50,

whererW5xW2aW , r 5urWu and the integral is taken over the surface of the sphereSaW with center ataW
and radiusr . It is satisfied if the functions have the following asymptotic behavior in the vicin
of the point interaction:

c~xW !5c0

11AW ~aW !~xW2aW !

uxW2aW u
1c11O~ uxW2aW u!. ~4.9!

This motivates us to change the generalized boundary valueL1 to

L1~c,aW !5 lim
uxW2aW u→0

Fc~xW !2L0~c,aW !
11 iAW ~aW !~xW2aW !

uxW2aW u G . ~4.10!

This suggests to use forj(B,aW ;z) the following limit,

j~B,aW ;z!5 lim
xW→aW

FG0
B~xW ,aW ;z!2

11 iAW ~aW !~xW2aW !

4puxW2aW u G , ~4.11!

which has the disadvantage that it is direction dependent and can be altered by a gauge c
However, it is possible to employ the functionj(B,aW ;z) defined by means of the pole singu

larity alone. By~4.2! the Green’s functionG0
B(xW ,aW ;z) has the form exp(iAW (aW)(xW2aW))F(uxW2aWu;z) in

the symmetric gauge. In Remark 4.1 we have shown thatF(uxW2aW u;z) has the following
asymptotic behavior for smalluxW2aW u,

F~ uxW2aW u;z!5
1

4puxW2aW u
1c~z!1O~ uxW2aW u!,
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wherec(z)ª lim%→0@F(%;z)2 1/4p%#. The functionc defined in this way can be understood
j(B,aW ;z) obtained for the Green’s function without the exponential factor; the correspon
generalized boundary valueL1 does not contain the extra partAW (aW )(xW2aW ). In the respective
asymptotic formula for complete Green’s function one has to multiply the last expression b
two first terms of the Taylor series of the exponential factor,

G0
B~xW ,aW ;z!5

11 iAW ~aW !~xW2aW !

4puxW2aW u
1c~z!1O~ uxW2aW u!.

Using now the modified boundary valueL1 we find thatj(B,aW ;z)5c(z). This justifies the choice
of the generalized boundary values made in the beginning of this section; one has to keep i
to ignore the exponential termFB(x,a) when computingj(B,aW ;z). This argument also remain
valid for a finite number of point interactions, hence the functionsj(B,aW j ;z) for j 51,....,N
contained in matrixL(B,a,aW ;z) in Sec. IV D are computed in the way described here.

After this digression we can return to evaluation of the Green’s function of the ope
HB(a,aW ). By construction it is given by Krein’s formula,

GB~xW ,xW8;z!5G0
B~xW ,xW8;z!1

G0
B~xW ,aW ;z!G0

B~aW ,xW8;z!

a2j~B,aW ;z!
, ~4.12!

where the regularized Green’s functionj(B,aW ;•) is, as we have explained in the above remar
now given by

j~B,aW ;z!5 lim
uxW2aW u→0

FG0
B~xW ,aW ;z!2

1

4puxW2aW uG
5 lim

%→0
F 1

2pd (
n51

`

GS uBu2kn
2~z!

2uBu DUS uBu2kn
2~z!

2uBu
,1;

uBu
2

%2D sin2S npb

d D2
1

4p%G .

~4.13!

One can check directly the consistency requirement

lim
B→0

GB~xW ,xW8;z!5G~xW ,xW8;z! ~4.14!

for fixed a, aW andxWÞxW8, whereG(•,•;z) is the non-magnetic Green’s function of Sec. II C.
follows easily from a known relation~Ref. 9, 13.3.3! for the confluent hypergeometric function

lim
u→`

G~u!US u,1,
s

uD52K0~2As!.

To make use of the Green’s function, we have to evaluate the rhs of~4.13!. We employ again
the same trick and split a part of the series which can be summed explicitly for a general% while
in the remaining series the limit%→0 can be interchanged with the sum. SinceU(u,1;•) and
K0(•) both have a logarithmic singularity at zero, we modify the ansatz of Sec. II C wr
j(B,aW ;z)5j11j2 with

j1ª lim
%→0

1

2pd (
n51

` FGS uBu2kn
2~z!

2uBu DUS uBu2kn
2~z!

2uBu
,1;

uBu
2

%2D 22K0S %
pn

d D Gsin2S npb

d D ,

j2ª lim
%→0

F 1

2pd (
n51

`

2K0S %
pn

d D sin2S npb

d D2
1

4p%G .
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The functionj2 is evaluated as above: In analogy with~2.13! we have

j25
g

4pd
1

1

8pd S 2cS b

dD1p cotS pb

d D D . ~4.15!

As for the first part,j1 , we employ the small% asymptotics for the confluent hypergeometric a
Macdonald functions,

U~u,1;s!52
1

G~u!
@ ln s1c~u!22c~1!#1O~ us ln su! as s→0,

K0~s!52F ln
s

2
2c~1!G1O~s2! as s→0

~see Ref. 20, 6.7.13 and Ref. 9, 9.6.13!. Putting them together we see that the summand beh
for small % as

lnS ~pn!2

2uBud2D2cS uBu2z1~pn/d!2

2uBu D1O~ u%2 ln %u!.

For largen the digamma functionc(s)5 ln(s)22/s1O(s22), so the above expression can b
written for largen as

2 lnS 11~ uBu2z!S d

pnD 2D1
1

2

2uBu
uBu2z1~pn/d!2 1O~n24!5zS d

pnD 2

1O~n24!.

Hence the series in the definition ofj1 converges uniformly and the limit can be interchanged w
the sum giving the sought formula for the regularized Green’s function,

j~B,aW ;z!5j11j25
1

2pd (
n51

` F lnS ~pn!2

2 uBud2D2cS uBu2z1~pn/d!2

2uBu D Gsin2S pnb

d D
1

1

4pd Fg1cS b

dD1
p

2
cotS pb

d D G . ~4.16!

Remark 4.3:The scaling behavior for the familySs5R23@0,ds#, s.0, is similar to that of
Remark 2.1; however, one has to scale simultaneously the magnetic field by

Bs5s22B. ~4.17!

In distinction to the previous sections we shall keep a generald in the following discussion.

C. Spectral properties

The essential spectrum ofHB(aW ,a) remains the same as that of the free HamiltonianH0
B

which follows easily from Weyl’s theorem~Ref. 7, Thm. XIII.14!. The latter is in turn obtained
from the essential spectrum of the two-dimensional Landau Hamiltonian,s(hB)5sess(h

B)
5$uBu(2m11): mPN0% ~see, e.g., Ref. 21, Thm. 1!. Using the transverse-mode decompositi
~4.1! we arrive at

sess~HB!5sess~H0
B!5H uBu~2m11!1S pn

d D 2

: m,n21PN0J . ~4.18!
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Furthermore, the general properties of self-adjoint extensions mentioned in Sec. II D impl
there is at most one eigenvalue in each spectral gap of the unperturbed operator, i.e., betw
two neighboring values fromsess(H

B) and in the interval (2`,uBu1(p/d)2); to find these
eigenvalues one has to solve the equation

j~B,aW ;z!5a. ~4.19!

We have already checked that the terms of the series expressingj(B,aW ;z) decay asn22, so the
series converges with the exceptions of the points where thec function has a singularity, i.e., fo
any zPR2sess(H

B). It is also obvious thatj(B,aW ;z) is real for any suchz. We have

d

dz
j~B,aW ;z!5

1

4pduBu (n51

`

c8S uBu2z1~pn/d!2

2uBu D sin2S pnb

d D , ~4.20!

wherec8(s)5 (d/ds) c(s) is the trigamma function. For largen it behaves as

c8S uBu2z1~pn/d!2

2uBu D5
2uBu

uBu2z1~pn/d!2 1O~n24!,

so the series converges forzPR\sess(H
B) and we are allowed to interchange the sum with

derivative. The explicit expression~Ref. 9, 6.4.10! for the digamma derivative,

c8~s!5(
j 50

`
1

~s1 j !2 for sÞ0,21,22,...,

shows thatj(B,aW ;z) is monotonously growing with respect toz in each gap. Using the relatio
~Ref. 9, 6.3.16!

c~11s!52g1(
j 51

`
s

j ~ j 1s!
, sÞ21,22,...,

we find thatj diverges asz approaches any point of the essential spectrum behaving in its vic
as

j~B,aW ;z!52
uBu
pd

sin2~pnb/d!

z2uBu~2m11!2~pn/d!2 1O~1!, ~4.21!

provided the considered value fromsess(H0) is ‘‘nondegenerate’’ in the sense that it can
expressed by means of a single pair of indicesm,n. This is the generical case since the last na
property is valid always if the ratio of the coefficientsuBu and (p/d)2 is irrational. If it is rational,
then to a givenz0Psess(H0) there may exist different pairsmj ,nj with the index belonging to a
family J(z0) such thatuBu(2mj11)1(pnj /d)25z0 for all j PJ(z0).

Taking this degeneracy into account we have

j~B,aW ;z!52
uBu
pd

1

z2z0
(

j PJ(z0)
sin2S pnjb

d D1O~1!. ~4.22!

Whenz approachesz0 from below,j diverges tò , while if it approachesz0 from above,j goes
to 2`. The formula~4.22! also shows that we can disregard thosej for which sin(pnjb/d)50: as
above the system does not ‘‘feel’’ a point perturbation situated at a transverse eigenfunction

To find the behavior asz→2`, recall that the argument leading to the expression~4.16!
shows that the latter differs from the nonmagnetic formula~2.14! by the replacementz→z2uBu
together with the addition of terms which remain bounded asz→2`. Consequently, the asymp
totics is independent ofB and given by the formula
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j~B,aW ;z!52
A2z

4p
1O~1! as z→2`. ~4.23!

The behavior of the functionj(B,aW ;•) is illustrated in Fig. 5.
Having discussed the properties of the functionj, we can apply the conclusions on Eq.~4.19!.

Sincej is strictly increasing between every pair of neighboring singularities, there is a un
eigenvalue« r(B,a,aW ) in each gap for anyaPR and it satisfies the inequality

« r~B,a,aW !.« r~B,a8,aW ! if a.a8, ~4.24!

where the indexr is labeling the gaps ofH0 . The valuer 50 corresponds to the interval
(2`,uBu1(p/d)2), r 51 represents the first finite gap with the left endpointuBu1(p/d)2, etc.

Since we know the behavior ofj around the singularities, we can write the explicit express
of « r(B,a,aW ) in the limits of strong and weak coupling. Suppose that the pointuBu(2mj11)
1(pnj /d)25z0Psess(H0) separates ther th and (r 11)th gap. Then, using the implicit-functio
theorem, we get

« r~B,a,aW !5z02
1

a

uBu
pd (

j PJ(z0)
sin2S pnjb

d D1O~a22! as a→`,

~4.25!

« r 11~B,a,aW !5z02
1

a

uBu
pd (

j PJ(z0)
sin2S pnjb

d D1O~a22! as a→2`.

We see that the strong and weak limits are similar in the magnetic case. A different behav
find only for the lowest eigenvalue for which the asymptotic formula~4.23! gives

FIG. 5. The functionj(B,aW ;•) for B51, d5p andb5p/6,p/3.
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«0~B,a,aW !5216p2a2~11O~a21!! as a→2`. ~4.26!

A finer estimate with the error term replaced byO(a22) can be obtained when thej is expressed
in terms of the Hurwitzz-function ~see, e.g., Ref. 17!. As in the nonmagnetic case, the residuu
of the resolvent pole in the formula~4.12! yields a~non-normalized! eigenfunction

c~xW ;a,aW !5G0
B~xW ,aW ;« r~B,a,aW !! ~4.27!

corresponding to« r(B,a,aW ), whereG0
B is the free resolvent~4.2!.

We are naturally interested in the behavior of the eigenfunction in the limituau→` for
eigenvalues satisfying the asymptotic relations~4.25!. In both cases, by Ref. 20, 1.17.11 th
gamma functions in the sum~4.2! corresponding tonj , j PJ(z0), diverge as

G~2mj1e!5
~21!mj

mj !

1

e
1O~1! as e→0.

This makes it possible to write the leading term of the asymptotics explicitly,

c~xW ;a,aW !5
a

( j PJ(z0) sin2~pnjb/d!
FB~x,x8!

3 (
j PJ(z0)

US 2mj1
1

a

1

2pd (
j PJ(z0)

sin2S pnjb

d D ,1;
uBu
2

ux2au2D
3

~21!mj

mj !
sinS pnjb

d D sinS pnjy

d D1O~1! as uau→`. ~4.28!

By Ref. 9, 13.6.27, the hypergeometric function is reduced to a Laguerre polynomial,

U~2n,1,u!5~21!nn!Ln~u!,

at positive-integer values of the first index, so the wave function can be rewritten as

c~xW ;a,aW !'
a

( j PJ(z0) sin2~pnjb/d!
FB~x,a! (

j PJ(z0)
Lmj S uBu

2
ux2au2D sinS pnjb

d D sinS pnjy

d D .

~4.29!

In the last formula we have not specified the error term which has an extra part coming fro
variation of the hypergeometric functionU(•,1,u) around integer values.

We stated that the eigenvalue«0(B,a,aW ) in the strong coupling limit case has the sam
behavior as if there were no magnetic field. The same is true for the corresponding eigenfu
which is strongly localized,

c~xW ;a,aW !5
1

d
FB~x,a! (

n51

` S 2pAuBu116p2a21S pn

d D 2

ux2au D 21/2

3e2AuBu116p2a21~pn/d!2ux2au sinS pny

d D sinS pnb

d D1O~a21!. ~4.30!

Let us summarize the results obtained for the layer in the magnetic field with one
interaction.

Theorem 4.4:Let HB(a,aW ) be defined by (4.3) and (4.4). Then

~a! sess(H
B(a,aW ))5$uBu(2m11)1(pn/d)2: m,n21PN0%.
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~b! For any aPR there exists a single eigenvalue« r(B,a,aW ) between every two neighborin
values from the essential spectrum, with the exception of the case when the leadin
coefficient in (4.22) is zero and the eigenvalue coincides with the Landau in question
particular value ofa. Each of these eigenvalues is increasing and infinitely differentiable
a. The corresponding eigenfunction is given by (4.27).

~c! In both limitsa→6` the eigenvalue behaves similarly according to (4.25), except for
strong coupling limit for the lowest eigenvalue, where the formula (4.26) is valid.
eigenfunctions corresponding to the eigenvalues (4.25) and (4.26) are given by (4.28
(4.30), respectively.

D. Finite number of point interactions

Next we consider a finite numberN of point interactions supported by pointsaW j , j
51,...,N. We define the Hamiltonian in a way similar to that of Sec. III, i.e., it will be given
~4.3! and ~4.4!, whereaW , a are again shorthands foraW 5(aW 1 ,...,aW N) and a5(a1 ,...,aN), and
instead of a single boundary condition there is anN-tuple of them,

L1~c,aW j !24pa jL0~c,aW j !50, j 51,...,N. ~4.31!

Accordingly, Krein’s formula reads

~HB~a,aW !2z!21~xW ,xW8!5G0
B~xW ,xW8;z!1 (

j ,k51

N

l jk~B,a,aW ;z! G0
B~xW ,aW j ;z! G0

B~aW k ,xW8;z!.

~4.32!

Repeating the argument of Sec. III B, we findl(B,a,aW ;z)215L(B,a,aW ;z) with

Lm j~B,a,aW ;z!ªd jm~am2j~B,aW m ;z!!2~12d jm!G0
B~aW m ,aW j ;z!, ~4.33!

or, more explicitly by means of~4.16! and ~4.2!,

L j j 5a j2
1

2pd (
n51

` F lnS ~pn!2

2uBud2D2cS uBu2kn
2~z!

2uBu D Gsin2S pnbj

d D
2

1

4pd Fg1cS bj

d D1
p

2
cotS pbj

d D G ~4.34!

and

Lm j52
1

2pd
FB~am ,aj ! (

n51

`

GS uBu2kn
2~z!

2uBu D
3US uBu2kn

2~z!

2uBu
,1;

uBu
2

uam2aj u2D sinS pnbj

d D sinS pnbm

d D ~4.35!

for j Þm. If some perturbations are arranged vertically,aj5am for j Þm, the last expression ca
be written as

Lm j52
1

2pd (
n51

` F lnS ~pn!2

2uBud2D2cS uBu2z1~pn/d!2

2uBu D GsinS pnbm

d D sinS pnbj

d D
2j2S bj1bm

2 D1j2S ubj2bmu
2 D , ~4.36!

as we find by a direct modification of the argument yieldingj(B,aW ;z).
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Consider again a pointz0Psess(H0). If z approaches this value, the appropriate contributi
to the sums in~4.16! and~4.2! diverge and the matrix elements ofL behave in the limitz→z0 as

L j j 5a j2
uBu
pd

1

z02z (
i PJ(z0)

sin2S pnibj

d D1O~1!,

Lm j52
uBu
pd

FB~aW m ,aW j !
1

z02z (
i PJ(z0)

~21!mi

mi !
US uBu1~pni /d!22z

2uBu
,1;

uBu
2

uaj2amu2D
3sinS pnibj

d D sinS pnibm

d D1O~1! if j Þm, ~4.37!

Lm j52
uBu
pd

1

z02z (
i PJ(z0)

sinS pnibj

d D sinS pnibm

d D1O~1! if j Þm, aj5am .

Moreover, the hypergeometric functions reduce to the Laguerre polynomials in the limit, so

Lm j'2
uBu
pd

FB~am ,aj !
1

z02z (
i PJ(z0)

LmiS uBu
2

uam2aj u2D sinS pnibj

d D sinS pnibm

d D . ~4.38!

For large negative energies,z→2`, we employ the asymptotic behavior ofj given by ~4.23!,
arriving thus at

L j j 5a j1A2z

4p
1O~1! , ~4.39!

with B dependence being hidden in the error term. The nondiagonal part of the matrixL vanishes
in the limit of large negative energy, because by Ref. 9, 13.3.3, one has

Lm j'2
1

2pd
FB~aW m ,aW j ! (

n51

`

K0~AuBu2kn
2~z!uam2aj u!sinS pnbj

d D sinS pnbm

d D ,

which is exponentially decreasing,K0(s)'Ap/2s e2s ass→` . In the case of a vertical arrange
ment,aj5am for j Þm, we can again claim only that the matrix elementL jm is bounded.

Having obtained the coefficient matrixL(B,a,aW ;z) given by ~4.34! and ~4.35! we proceed
with finding the eigenvalues~the essential spectrum is preserved, of course!. In the same way as
in Sec. III C we check that an eigenvaluez is a solution of the implicit equation

detL~B,a,aW ;z!50, ~4.40!

and the corresponding eigenfunction can be written as

w~xW !5(
j 51

N

djG0
B~xW ,aW j ;z!, ~4.41!

wheredª(d1 ,...,dN) is an eigenvector of the matrixL(B,a,aW ;z).
As in the Sec. IV C we would like to say something about the number of eigenvalues in

gap. We already know that this number is limited from above byN. Denotinga j5ã j1ā we can
split the matrixL(z,a) into two parts,

L~z,a!5āI 2M ~z,ã !, ~4.42!
                                                                                                                



s
e

ing
r
atrix
ts:
a

alues
ding

to
h the
g limit
given

e

that

finite
ein’s
other

etween
ons of

on. To
el.
wider
thy of

1182 J. Math. Phys., Vol. 43, No. 3, March 2002 P. Exner and K. Němcová

                    
where ãª(ã1 ,...,ãN). The explicit form of the matrixM can be obtained from the relation
~4.34! and~4.35! by changing the signs and substitutinga j by ã j . The same can be done for th
formulas ~4.37! which express the behavior around the singularity. In the limitz→z0 one can
neglect the parametersã j ’s. Then it is possible to write

M ~z,ã !5
1

z02z

uBu
pd

M̄ ~z0!1O~1!,

where

M̄ j j ~z0!5 (
i PJ(z0)

sin2S pnibj

d D ,

M̄m j~z0!5FB~aW m ,aW j ! (
i PJ(z0)

LmiS uBu
2

uam2aj u2D sinS pnibj

d D sinS pnibm

d D .

Following Ref. 22 the eigenvalues ofL(z) monotonously increase between two neighbor
singularities. Then all eigenvalues of M̄ are non-negative numbers. Fo
( j 51

N ( i PJ(z0) sin2(pnibj /d)Þ0 at least one is positive, hence at least one eigenvalue of the m
M (z,ã) diverges to2` or to ` asz→z01 , z→z02 , respectively. Let us summarize the resul

Theorem 4.5: Let the operator HB(a,aW ) be defined by (4.3) and (4.4), whereW
5(aW 1 ,...,aW N) and a5(a1 ,...,aN) and the boundary condition is replaced by (4.31). Then

~a! sess(H
B(a,aW ))5$uBu(2m11)1(pn/d)2: m,n21PN0%.

~b! For any aPRN there exists at most N eigenvalues between every two neighboring v
from the essential spectrum with the multiplicity taken into account. The correspon
eigenfunctions are given by (4.41).

~c! In the limits min1<j<N aj→` and max1<j<N aj→2` at least one eigenvalue converges
each value z0 from the essential spectrum from below and from above, respectively, wit
exception of the case when the leading term coefficients in (4.37) are zero. In the stron
case there are also N eigenvalues given by (4.26) with corresponding eigenfunctions
by (4.30), wherea and aW is replaced bya j and aW j for j 51,...,N.

Further results on the number of eigenvalues of the HamiltonianH0
B can be obtained in the sam

way as in Ref. 23.
Remark 4.6:If some of the point interactions are vertically arranged, we cannot exclude

eigenvalues are absent in a particular gap for somea.
Consider two point interactions placed at (0,0,1/4d) and (0,0,2/3d) with ã15ã250. The

numerical calculation forB51 and d5p shows that the eigenvalues of matrixM (z,ã) for z
P(z0(1,1),z0(0,2)) cover the wholeR except one gap~see Fig. 6!. The symbolz0(m,n) repre-
sents the Landau levelz05uBu(2m11)1(pn/d)2. Hence forā from this gap the matrixL has no
eigenvalue in the interval (z0(1,1),z0(0,2))5(4,5).

V. CONCLUSIONS

We have analyzed here spectral and scattering properties of a hard-wall layer with a
number of point interactions. The results offer one more illustration of the efficiency of Kr
formula which allows us to reduce the task in fact to an algebraic problem. There are
interesting questions related to systems with finitely many perturbations such as relations b
the perturbation configurations and the spectra including the nodal structure, etc., positi
resonances including those coming from perturbation of the embedded eigenvalues, and so
keep this article within reasonable limits, however, we postpone these questions to a sequ

The same applies to systems with an infinite number of point obstacles which offer a
variety of spectral types. Let us briefly mention several problems which we regard as wor
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attention. One of them concerns the number of gaps in periodic systems. A periodic layer o
interactions inR3 has at most one gap~Ref. 2, Sec. III.1, or Ref. 24!. On the other hand, it is
known that the presence of boundaries can enhance the number of gaps in the two-dime
case;5 a similar effect is expected in dimension three: for a thin enough layer there will be m
open gaps between the first and the second transverse threshold. A more difficult questio
cerns the validity of the Bohr–Sommerfeld conjecture in such systems.

Even more interesting are spectral properties of periodically perturbed layers in the pre
of a magnetic field. It is well known that a combination of a square lattice of point interactions
a homogeneous magnetic field leads to a very rich spectrum whose properties depend subs
on the number-theoretical properties of the ratio between the lattice spacing and the field in
~which determines the cyclotronic radius! ~see Ref. 2, Sec. III.2.5, or Ref. 25!. Putting such a
system into a layer brings a third parameter~the layer widthd! which will determine how
‘‘thickly’’ the transverse-mode component are overlayed in the spectrum.

The same applies to edge-type states. It was shown recently that an equidistant array o
interaction in combination with a homogeneous magnetic field can produce bands of abs
continuous spectrum away from the Landau levels.26 One is naturally interested in how the spe
trum will change if the array is confined between a pair of hard walls. Other problems co
aperiodic perturbations, external electric field, spin effects, etc.
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This article deals with the comparison between the strong Thomas–Fermi theory
and the quantum mechanical ground state energy of a large atom confined to lowest
Landau band wave functions. Using the tools of microlocal semiclassical spectral
asymptotics we derive precise error estimates. The approach presented in this ar-
ticle suggests the definition of a modified strong Thomas–Fermi functional, where
the main modification consists in replacing the integration over the variables per-
pendicular to the magnetic field by an expansion in angular momentum eigenfunc-
tions. The resulting DSTF theory is studied in detail in the second part of the
article. © 2002 American Institute of Physics.@DOI: 10.1063/1.1432776#

I. INTRODUCTION

In this article we study semiclassical theories describing the ground state energies of
atoms in strong homogeneous magnetic fields, where additionally the electrons are confine
lowest Landau band.

An atom withN electrons of charge2e and massme and nuclear chargeZe is described by
the nonrelativistic Pauli Hamiltonian operator

HN5 (
1< j <N

H ~~2 i¹ ( j )1A~xj !!•s j !22
Z

uxj u
J 1 (

1< i , j <N

1

uxi2xj u
, ~I.1!

acting on the Hilbertspace∧1< j <NL2(R3,C2) of electrons. The units are chosen such that\
52me5e51. The magnetic field isB5(0,0,B), with vector potentialA5 1

2B(2x2 ,x1,0), where
B is the magnitude of the field in units ofB05me

2e3c/\3 52.353109 G, the field strength for
which the cyclotron radiusl B5(\c/(eB))1/2 is equal to the Bohr radiusa05\2/(mee

2). The
ground state energy is

EQ~N,Z,B!5 inf$~c,HNc!:cPdomain HN ,~c,c!51%. ~I.2!

Recall that the spectrum of the free Pauli Hamiltonian onL 2(R3;C2) for one electron in the
magnetic fieldB,

HA5@s•~2 i¹1A~x!!#2, ~I.3!

is given by

pz
212nB, n50,1,2,. . . , pzPR. ~I.4!

The projectorP0 onto the lowest Landau band,n50, is represented by the kernel

P0~x,x8!5
B

2p
expH i

2
~x'3x'8 !•B2

1

4
~x'2x'8 !2BJ d~z2z8!P↓ , ~I.5!

a!Present address: Institut fu¨r Mathematik, LMU-München, Theresienstr. 39, D-80333 Mu¨nchen; electronic mail:
hainzl@rz.mathematik.uni-muenchen.de
11850022-2488/2002/43(3)/1185/26/$19.00 © 2002 American Institute of Physics
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wherex' andz are the components ofx perpendicular and parallel to the magnetic field, andP↓
denotes the projection onto the spin-down component.

In this article we are especially interested in the ground state energy,

Econf
Q ~N,Z,B!5 inf

ici51
~c,P0

NHNP0
Nc!, ~I.6!

whereP0
N denotes theNth tensorial power ofP0 . Lieb, Solovej, and Yngvason pointed out th

for B@Z4/3 the electrons are to the leading order confined to the lowest Landau band, wh
expressed by the following theorem.

Theorem I.1: (Ref. 1, Theorem 1.2): For any fixedl5N/Z there is ad(x) with d(x)→0 as
x→` such that

Econf
Q >EQ>Econf

Q ~11d~B/Z4/3!!. ~I.7!

The energy~I.6! can be approximated by means of the STF-functional~strong Thomas–
Fermi!,

ESTF@r#5
4p4

3B2 E r32E Vr1D~r,r!, ~I.8!

V(x)5Z/uxu and D(r,r)5 1
2(r,uxu21* r). In Ref. 2 it is shown thatEQ/ESTF→1 if Z→`,

B/Z3→0 andB/Z4/3→`, where

ESTF~N,Z,B!5 infH E STF@r#Ur>0,rPDSTF,E r<NJ , ~I.9!

with an appropriately chosen domainDSTF. Combined with Theorem I.1 this implies Theorem I
Theorem I.2: (Ref. 2) If Z→` with N/Z fixed, B/Z3→0 and B/Z4/3→`, then

Econf
Q ~N,Z,B!/ESTF~N,Z,B!→1. ~I.10!

This article contains an intensive study of the STF functional and of related functio
describing lowest Landau band particles. A justification for such studies is the fact that
functionals are of much simpler form than the original MTF~Magnetic Thomas-Fermi! functional
~cf. Ref. 2!, since the concerning kinetic energy density is the Legendre transform of the F
pressurePB , i.e.

tB~ t !5 sup
w>0

@ tw2PB~w!#, ~I.11!

with

PB~w!5
B

3p2 S w3/222(
i 51

` U2iB2wU2
3/2D , ~I.12!

which is probably somewhat harder to deal with than~I.8!.

A. Comparing the STF energy with the QM ground state energy in the lowest Landau
band

In this article we not only want to give a direct proof of Theorem I, but we want to de
precise error estimates. In this respect our procedure is related to Refs. 3 and 4. Our main t
is the following:

Theorem I.3: Let N;Z and Z4/3<B<Z3. Then

uEconf
Q ~N,Z,B!2ESTF~N,Z,B!u<CB4/5Z3/5 ~I.13!
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for an appropriate constant C.
Remark I.4:In Ref. 4 Ivrii estimated the difference between the full quantum mechan

energyEQ and the MTF energy, which is given by minimizing the MTF functional~cf. Ref. 2!,
where all Landau levels are taken into account. The main theorem in Ref. 4 reads as follo

Theorem I.5: (Ref. 4, Theorem 0.2): Let B<Z3 and N;Z. Then

uEQ~N,Z,B!2EMTF~N,Z,B!2 1
4 Z2u<R11R2 , ~I.14!

with

R15CZ4/3~N1B!1/3 and R25CZ3/5B4/5. ~I.15!

Remark I.6:Although true for allB<Z3, it should be noted that only forB,Z7/4 are the error
termsR1 andR2 smaller than the Scott term14Z

2.
One of the main difficulties Ivrii has to cope with in the proof of Theorem I.5 is the fact

the self-consistent MTF potential is not smooth, because it includes all Landau levels. So
to create an approximatingC` potential in order to apply the tools of microlocal semiclassi
spectral asymptotics. Fortunately, in our case of Theorem I.3 we need not care about suc
lems, since the STF potential@see~I.19!# has all required properties for semiclassical spec
asymptotics.

Moreover, in Theorem I.5 Ivrii already captures~I.13! on the region where only the lowes
Landau band is occupied, i.e., on$xuuxu>C0Z/B% with a large constantC0 .

Remark I.7:A good guess cencerning the magnitude of the difference between the ph
ground state energyEQ and the confined energyEconf

Q is given by

uEQ2Econf
Q u;uEMTF2ESTFu&Z3/B1/2, ~I.16!

as presented in Ref. 5. Combined with~I.13! this leads to the estimate

uEQ2ESTFu&Z3/B1/21B4/5Z3/5. ~I.17!

Therefore, the region, where from a physical point of view it is meaningful to use the
functional intead of the MTF functional, is given by

Z24/13<B<Z3, ~I.18!

which is imposed by the conditionZ3/B1/2<B4/5Z3/5. Nevertheless,ESTF produces the right lead
ing order forZ4/3!B!Z3, which justifies, in some sense, the mathematical analysis of Theo
I.3 on the whole regionZ4/3<B<Z3.

Next we mention some important steps of the proof of Theorem I.3. LetfSTF denote the
effective STF potential~for simplicity think of the neutral caseN5Z!

fSTF~x!5Zuxu212rSTF* uxu21, ~I.19!

whererSTF is the minimizer of the STF functional~I.8!. We will see in Sec. II.A that the main
contribution of~I.13! is given by

UTr@P0~HA2fSTF~x!!P0#22
B

2p E
R3
E

R

dpdx

2p
@p22fSTF~x!#2U, ~I.20!

with @ t#25min$0,t%. Recall

ESTF5
B

2p E
R3
E

R

dpdx

2p
@p22fSTF~x!#22D~rSTF,rSTF!. ~I.21!
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With the decompositionL 2(R3,dx;C2)5L 2(R2,dx') ^ L 2(R,dz) ^ C2 the projectorP0 can be
written as

P05 (
m>0

ufm&^fmu ^ 1^ P↓ , ~I.22!

wherefm denotes the function in the lowest Landau band with angular momentum2m<0, i.e.,
using polar coordinates (r ,w),

fm~x'!5A B

2p

1

Am!
S Br2

2 D m/2

e2 imwe2Br2/4. ~I.23!

Using this andHAFm50, we can write

P0HAP05 (
m>0

ufm&^fmu ^ ~2]z
2! ^ P↓ . ~I.24!

By means of the above decompositions one gets the relation~cf. Ref. 5, Theorem 3.13!

Tr@P0~2]z
22fSTF~x!!P0#25(

m
TrL 2(R)@2]z

22fm
STF~z!#2 , ~I.25!

with

fm
STF~z!5E dx'fSTF~x!ufm~x'!u2. ~I.26!

Next we multiply themth term of the right hand side of~I.25! with (B/2p) xm(x'), where

xm~x'!5H 1 for A2m/B<ux'u<A2~m11!/B,

0 otherwise,
~I.27!

and integrate overx' , which is just an identity operation. Since we are allowed to put the sum
the trace as well into the@ #2 bracket we arrive at

Tr@P0@2]z
22fSTF~x!#P0#25

B

2p E dx'TrL 2(R)@2]z
22fSTF̃~x!#2 , ~I.28!

with

fSTF̃~x!5(
m

xm~x'!fm
STF~z!. ~I.29!

The equation~I.28! follows from the fact that the termsxm(x')fm
STF(z) in ~I.29! have disjoint

supports.
Hence,~I.20! can be written as

U B

2p E
R2

dx'S TrL 2(R)@2]z
22fSTF̃~x!#22E

R2

dzdp

2p
@p22fSTF~x!#2D U. ~I.30!

We shall estimate~I.30! by splitting into the following two terms:

U B

2p E
R2

dx'S TrL 2(R)@2]z
22fSTF̃~x!#22E

R2

dzdp

2p
@p22fSTF̃~x!#2DU. ~I.31!
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and

U B

2p E
R2

dx'S E
R

dzdp

2p
@p22fSTF̃~x!#22E

R2

dzdp

2p
@p22fSTF~x!#2D U. ~I.32!

B. Modified STF functionals

From Eqs.~I.25! and ~I.28! it is apparent that the STF energy~I.9! is not the most natura
semiclassical approximation ofEconf

Q . As already argued in Ref. 5,~I.25! suggests the definition o
a functional, where the integration overx' , the variables orthogonal to the magnetic field,
replaced by an expansion in angular momentum eigenfunctions in the lowest Landau ban
leads to adiscrete STF functional~DSTF! depending on a sequence of one-dimensional dens
r5(rn)nPN0

, i.e.,

E DSTF@r#5 (
mPN0

S kE rm~z!32ZE Vm~z!rm~z!dzD1D̄~r,r!, ~I.33!

wherek5p2/3,

D̄~r,r!5
1

2 (
m,n

E Vm,n~z2z8!rm~z!rn~z8!dzdz8, ~I.34!

and the potentialsVm andVm,n are given by

Vm~z!5E 1

uxu
ufm~x'!u2dx' ,

~I.35!

Vm,n~z2z8!5E ufm~x'!u2ufn~x'8!u2

ux2x8u
dx'dx'8 .

An equivalent functional, depending on a three-dimensional densityr, can be obtained as in~I.28!,
if in STF theory the Coulomb potential is replaced by

uxu21̃5(
m

xm~x'!E
R2

dx'uxu21fm~x'!. ~I.36!

The resultingmodifiedSTF functional is given by

EMSTF@r#5
4p4

3B2 E dxr~x!32E dxuxu21̃r~x!1D̃~r,r!, ~I.37!

with

D̃~r,r!5
1

2 (
m,n

E dxdyVm,n~z2z8!xm~x'!xn~y'!r~x!r~y!. ~I.38!

Let rDSTF5(rm
DSTF(z))m andrMSTF5rMSTF(x) be the ground state densities of~I.33! and ~I.37!,

respectively, corresponding to a fixed particle numberN. Then the relationship between th
densities reads

rMSTF~x!5
B

2p (
m

rm
DSTF~z!xm~x'!. ~I.39!

Furthermore, the energies are equal,
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EMSTF~N,Z,B!5EDSTF~N,Z,B!. ~I.40!

Since a short computation shows that forB>Z4/3 the difference between the D~M!STF energy
and the STF energy is smaller thanB4/5Z3/5, the estimate~I.13! with STF replaced by D~M!STF
immediately follows for this region (B>Z4/3).

Theorem I.8: Let Z4/3<B<Z3 and N;Z. Then

uEconf
Q ~N,Z,B!2ED(M)STF~N,Z,B!u<CB4/5Z3/5. ~I.41!

II. PROOF OF THEOREM I.3

A. Derivation of lower and upper bounds to Econf
Q

First of all, recall that the TF equation satisfied by the minimizer of~I.8! under the constrain
*r5N is

k~rSTF!2/B25@Zuxu212rSTF1n#15@fSTF1n#1 , ~II.1!

wheren5n(N) is the chemical potential corresponding to the electron numberN. Using~II.1! one
sees that the STF energy~I.9! can be written as

ESTF5
B

2p E
R2

dx'E
R

dzdp

2p
@p22fSTF~x!2n#21nN2D~rSTF,rSTF!. ~II.2!

This expression will be used for deriving upper and lower bounds to the quantum mech
ground state energyEconf

Q .

1. Lower bound

Let c denote a ground state wave function ofHN . Then we can writeEconf
Q as

Econf
Q 5~c,P0

NHNP0
Nc!5(

i 51

N

~c,P0
N@HA~xi !2Zuxi u211rSTF* uxi u212n#P0

Nc!

1Nn22D~rc ,rSTF!1(
i , j

~c,uxi2xj u21c!, ~II.3!

where we have added and subtracted the termrSTF* uxu212n and used the definition

rc~x!5N(
si

E uc~x,x2 ,...,xN ;s1,...,sN!u2dx2¯dxN . ~II.4!

By means of the Lieb–Oxford inequality6

(
i , j

~c,uxi2xj u21c!>D~rc ,rc!21.68E rc
4/3, ~II.5!

~II.3! can be bounded from below by

Econf
Q >Tr@P0~HA2fSTF2n!P0#22D~rSTF,rSTF!1nN21.68E rc

4/3, ~II.6!

where we have used that

D~rc2rSTF,rc2rSTF!>0. ~II.7!

Furthermore, by~I.28! and ~II.2! we get
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Econf
Q >ESTF2R121.68E rc

4/3, ~II.8!

with

R15U B

2p E
R2

dx'S TrL 2(R)@2]z
22fSTF̃~x!2n#22E

R2

dzdp

2p
@p22fSTF~x!2n#2DU. ~II.9!

Sincec is a ground state wave function, or at least an approximate ground state wave functio
can estimate@cf. Ref. 1,~8.5!#

E rc
4/3<S E rc

3 D 1/6S E rc D 5/6

<const~B2uESTFu!1/6N5/6<constZ1/5N14/15B2/5<CB4/5Z3/5,

~II.10!

usingN;Z andB>Z4/3.

2. Upper bound

For every fixed integerN and a normalizedN-particle wave functionc we have

Econf
Q <~c,P0

NHNP0
Nc!5(

i 51

N

~c,P0
N@HA~xi !2Zuxi u211rSTF* uxi u212n#P0

Nc!

1Nn22D~rc ,rSTF!1(
i , j

~c,uxi2xj u21c!. ~II.11!

We set

c5
1

AN!
f1∧ ¯ ∧fN , ~II.12!

where f i is the eigenvector corresponding to thei th lowest eigenvaluel i of the one-particle
operator

P0~HA2Zuxu211rSTF* uxu21!P0 . ~II.13!

By means of the decomposition,

Tr@P0~HA~x!2fSTF~x!2n!P0#25(
i

@l i2n#25(
i 51

N

~l i2n!1 (
lN,l i,n

~l i2n!,

~II.14!

and the equation~II.7! we can estimate~II.11! as

Econf
Q <Tr@P0~HA2fSTF2n!P0#21nN2D~rSTF,rSTF!

1D~rc2rSTF,rc2rSTF!2 (
lN,l i,n

~l i2n!, ~II.15!

which implies

Econf
Q <R11R21R3 , ~II.16!

with
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R252 (
lN,l i,n

~l i2n!, ~II.17!

R35D~rc2rSTF,rc2rSTF!. ~II.18!

Since it is difficult to tackle directly the termR2 , we estimateR2 by ulN2nu multiplied by the
number of eigenvalues of the operator~II.13! betweenlN andn. We know

B

2p E dx'E dzdp

2p
Q2~p22fSTF~x!2n!5E rSTF5N, ~II.19!

with

Q2~ t !5H 1 for t<0,

0 otherwise.
~II.20!

So the number of eigenvalues of~II.13! betweenlN andn can be expressed by

TrQ2~P0~2]z
22fSTF~x!2n!P0!2

B

2p E dx'E dzdp

2p
Q2~p22fSTF~x!2n!. ~II.21!

Mimicking the derivation of~I.28!, with @ t#2 being replaced byQ2(t), leads to

~ II.21!5
B

2p E
R2

dx'S TrL 2(R)Q2~H̃x'
2n!2E dzdp

2p
Q2~hx'

2n! D , ~II.22!

where we have defined

H̃x'
52]z

22fSTF̃~x! and hx'
5p22fSTF~x!. ~II.23!

Hence, instead ofR2 we estimate the error term

R25ulN2nu
B

2p E
R2

dx'S TrL 2(R)Q2~H̃x'
2n!2E dzdp

2p
Q2~hx'

2n! D . ~II.24!

We introduce the notation

e~H̃x'
,m!5Q2~H̃x'

2m!, ~II.25!

the projector of the operatorH̃x'
onto the eigenspace corresponding to the eigenvalues smal

equal tom. Let c be given by~II.12!. Then we have

rc~x!5
B

2p
e~z,z;H̃x'

,lN!, ~II.26!

whereas the semiclassical densityrSTF can be written as

rSTF~x!5
B

2p E
R
dpQ2~hx'

2n!5
B

2p
@fSTF~x!1n#1

1/2. ~II.27!

Furthermore, we introduce the auxiliary density

r̄~x!5
B

2p
@fSTF~x!1lN#1

1/2. ~II.28!
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In order to bound the error termR3 from above, we combine the two terms

R35D~rc2 r̄,rc2 r̄ !, ~II.29!

R45D~rSTF2 r̄,rSTF2 r̄ !, ~II.30!

which are easier to handle thanR3 alone. Observe that by convexity one hasR3<2R312R4 . In
the next sections we will separately have to carry out the estimations

R i<CB4/5Z3/5 ; i 51,...,4. ~II.31!

B. Methods used in the proof

The methods used here in order to estimate the error termsR124 , have been established i
Refs. 3 and 7. For the sake of better understanding we will state here the most important th
which we use throughout this section.

Consider the Schro¨dinger operator

H52 1
2 D2f~x! on Rd. ~II.32!

Its symbol is denoted by

h̄5 1
2 p22f~x!. ~II.33!

In addition there are the following conditions imposed on the real potentialf:
There are Lipschitz functionsl (x).0 and f (x).0, such that

~ i ! u¹ l ~x!u<M , ~II.34!

~ i i ! c f~y!< f ~x!<C f~y!, ~II.35!

~ i i i ! u]nf~x!u<Cn f ~x!2l ~x!2unu;nPNd. ~II.36!

Under these assumptions Ivrii and Sigal have proved the following theorem:
Theorem II.1: (Ref. 3, Theorem 7.1.): Assume conditions (i)2(iii) are obeyed and letc be

smooth and obeyu]nc(x)u<Cnl (x)2unu for any n. Let gs(l)5@2l#1
s for some sP@0,1#. Then

UTr~cgs~H !!2E dxdp

2p
cgs~ h̄!U ~II.37!

<CE
suppc

dxmaxF S 1

f ~x!l ~x! D
a2s2d

,1G l ~x!22s2d. ~II.38!

Here a51 if either d>2 or d51 andf obeys

uf~x!u1 l ~x!u¹f~x!u>« f ~x!2 ~II.39!

on $xu l (x) f (x)>1%, with some«.0, anda51/2 otherwise.
The most important tools for the proof of Theorem II.1 are multiscale analysis and sem

sical spectral asymptotics. First of all, the domain, i.e., the support ofc, is covered by a countable
number of balls. Then on each of these ballsB(y,l (y)), the operatorH is transformed into

Kh5 f 22U~ l !HU~ l !2152
h2

2
D2V~x!, ~II.40!
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with h5 l (y)21f (y)21, by means of a unitary scaling transformationU( l ), which maps the ball
B(y,l (y)) into B(0,1). Next Theorem 6.1 from Ref. 3, which we state below, is applied to the
of the negative eigenvalues ofgs(Kh). After rescaling and summing over all balls one arrives
Theorem II.1.

The symbol ofKh is given by

k~x,p!5p2/22V~x!. ~II.41!

If, furthermore, all derivatives ofV are bounded by a constant, i.e.,

u]nV~x!u<Cn on B~0,2!; i , ~II.42!

then the following theorem is valid:
Theorem II.2: Let cPC0

`(B(0,1)) and let 0 be a regular value of the function k0 restricted
to suppc3Rd. Then for h<1

Tr~cgs~Kh!!5h2dE dxdp

2p
cgs~k~x,p!!1O~hs112d!. ~II.43!

Assume next that the potentialV can be written as

V~x!5V0~x!1hV̄~x,h!, ~II.44!

such that the principal symbol ofKh readsk0(x,p)5p2/22V0(x). Then, if additionallyV̄ fulfills
~II.42! ~uniformly in h!, Theorem II.2 remains valid fors50 with k replaced by the principa
symbolk0 . ~cf. Ref. 7, Theorem 4.5.3!.

Theorem II.3: Let cPC0
`(B(0,1)) and let 0 be a regular value of the function k0 restricted

to suppc3Rd. Then for h<1

Tr~cg0~Kh!!5h2dE dxdp

2p
cg0~k0~x,p!!1O~h12d!. ~II.45!

C. Relationship between the potentials fSTF and fSTF̃

Next we collect some information about the potentialsfSTF andfSTF̃.
The scaling functions, which we will use in order to apply Theorem II.1 to the operatorHx'

,

have to be chosen such that the conditions~II.34!–~II.36! hold for the potentialsfSTF andfSTF̃,
at least away from the origin.

Since we will see thatfSTF behaves likeZuxu21 for uxu<r S , the edge of the STF atom, it i
thus natural to define

l ~x!5~const!uxu and f ~x!25Zuxu21. ~II.46!

If we denote the effective STF potential as

Veff
STF~x!5fSTF~x!1n, ~II.47!

then the following lemma is valid:
Lemma II.4: (i) (Ref. 2) The densityrSTF(x) as well as@Veff

STF(x)#1 have compact support with
radius rS<3.3p2Z1/5B22/5.

(ii) For fixed but arbitraryx' , fSTF(x) and fSTF̃(x) are PC`(R20) as a function of z and

u]z
nfSTF~x!u<Cn f ~x!2l ~x!2n, u]z

nfSTF̃~x!u<Cn8 f ~x!2l ~x!2n, ~II.48!
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for all nPN and xPR3.
Proof: ~ii ! The C` property follows from the TF equation~II.1! and the definition~I.29!.

Equation~II.48! follows from ~II.1! and ~I.29! and the fact that

u]z
nZuxu21u< f ~x!2uxu2n

z

uxu
< f ~x!2l ~x!2n. ~II.49!

The proof of~i! is given in Ref. 2, Theorem 4.11. h

Remark II.5:The estimates~II.48! seem to be very crude, especially in the vicinity ofr S , but
nevertheless they are good enough to provide precise error estimates. Next let us try to get
of how Veff

STF behaves in the vicinity of the radiusr S . We consider the neutral caseN5Z. Since
Veff

STF is spherical symmetric, we can make the ansatzVeff
STF(x)5x(r )/r (uxu5r ), which leads by

~II.1! to

x9~r !5Br1/2x~r ! and x~0!5Z. ~II.50!

Around each pointr 0 , this equation has a solutionx that can be expanded in a series of ter
ci@r 02r # i with i>4. In the vicinity of r 05r S we get the approximate solution

Veff
STF;

Z1/5B8/5

r
@r S2r #1

4 , ~II.51!

which shows thatVeff
STF tends to 0 as@r S2r #1

4 as r→r S .
Next we fix a pointyPR3 and we setl 5 l (y) and f 5 f (y)5Z1/2uyu1/2. ~We assume tha

~II.34!–~II.36! are fulfilled in B(y,l (y)). This in our case can be done by definingl (y), e.g., as
uyu/2.! Furthermore, we define the unitary transformation

U~ l !:c~x!→ l 3/2c~ lx1y!, ~II.52!

which maps the ballB(y,l (y)) to B(0,1) and transforms the operator2]z
22fSTF̃ into

2 l 22]z
22fSTF̃~ lx1y!. ~II.53!

Introduce the new potential

W̃~x!5 f 22fSTF̃~ lx1y!. ~II.54!

The resulting operator is related to the original one~II.23! as

U~ l !H̃x'
U~ l !215 f 2K̃h , ~II.55!

with

K̃h52h2]z
22W̃~x! and h5~ l f !21. ~II.56!

If we denoteW(x)5 f 22fSTF( lx1y), then one easily sees thatW̃ can equivalently be defined b
applying ~I.29!, i.e., the operation•̃, to W, with B replaced byB85Bl2. In other words the
unitary transformationU( l ) scales the magnetic field strengthB to B85Bl2 and for the difference
W̃2W we get the following lemma.

Lemma II.6: There exists a function a(x,a) such that

W̃~x!2W~x!5aa~x,a!, ~II.57!

wherea5B21/2l 21 and a(x,a) fulfills (II.42) uniformly ina for a<1.
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Proof: Since the potentialfSTF is spherically symmetric and Eq.~II.48! is fulfilled for deriva-
tives in all directions, we get forxPB(0,2)

u]nW~x!u5u f 22]nfSTF~ lx1y!u<Cn for all nPN3. ~II.58!

Hence,W(x), together with all derivatives, is bounded above by a constant on a ball aroundx50.
Since the operation•̃ smears the potential, for everyx, over a region;a in the ux'u-direction, the
differenceW̃2W can be expressed bya times a functiona(x,a) which is bounded by a constan

Since]z
nW̃(x)5]z

nW̃(x) the same argument can be given for all derivatives. h

Let us rewrite the operatorKh in the form

Kh52h2]z
22~W~x!1aa~x,a!!. ~II.59!

In order to be allowed to apply Theorem II.3 to~II.59!, i.e., in order to guarantee thatp2

2W(x) is the principal symbol ofKh , it is necessary, that

a<h⇔B21/2l 21< l 21f 21, ~II.60!

which leads to the condition

uyu>Z/B. ~II.61!

Hence, in the sense of Theorem II.3, this implies that in the region$xu uxu>Z/B% Theorem II.1,

with s50, can be applied to the error termsR224 , with fSTF̃ replaced byfSTF. Next we decom-
poseR3 into V15$xuuxu<Z/B% and V25$xu uxu>Z/B% and estimate the error termsR124 on
each of these regions separately.

D. Analysis in the region V1

We first assume thatB,Z2. This assumption is made in order to be sure thatV1 is not
completely contained in the non-semiclassical region$xuuxu<1/Z%, where each term, the quantu
mechanical as well as the semiclassical, has to be estimated separately. Furthermore, letc (1)(x) be
supported in$xu0<uxu<Z/B(11e)% and fulfill c (1)(x)51 in $xuuxu<(Z/B)(12e)%, as well as
u]z

nc (1)u<Cnl (x)2n for all nPN.
With respect toR1 andR2 , we in particular have to estimate the term

B

2p E dx'S TrL 2(R)~c (1)gs~H̃x'
2n!!2E dzdp

2p
c (1)gs~hx'

2n! D , ~II.62!

with H̃x'
andhx'

given by ~II.23!. Let h̃x'
be defined analogously, i.e.,h̃x'

5p22fSTF̃. Adding

and subtracting* (dzdp/2p) c (1)gs(h̃x'
2n) in ~II.62!, we split ~II.62! into

R1
s~c (1)!5

B

2p E dx'S TrL 2(R)~c (1)gs~H̃x'
2n!!2E dzdp

2p
c (1)gs~ h̃x'

2n! D ~II.63!

and the fully semiclassical part

R2
s~c (1)!5

B

2p E dx'S E dzdp

2p
c (1)gs~ h̃x'

2n!2E dzdp

2p
c (1)gs~hx'

2n! D . ~II.64!

Sincel (x) f (x)>1, which is equivalent touxu>Z21, is necessary for being able to apply Theore
II.1, we have to carry out a corresponding decomposition ofV1 . Let c1

(1)1c2
(1)5c (1) be a

partition of unity onV1 , with
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suppc1
(1)5$xuuxu<Z21~11e!%, supp c2

(1)5$xuZ21~12e!<uxu<Z/B~11e!%, ~II.65!

and u]z
nc i

(1)u<Cnl (x)2n for i 51,2, with Cn independent ofZ andB.
Lemma II.7: With the above definitions we have for (II.63)

R1
s~c (1)!<CB~3/2! s21Z22 ~1/2! s. ~II.66!

Proof: On suppc2
(1) we apply Theorem II.1 to~II.62! with a51 andd51, which implies for

arbitrary but fixedx' ~we may set the chemical potentialn50 for simplicity; the computations for
arbitraryn are essentially the same!

UTrL 2(R)~c2
(1)gs~H̃x'

!!2E dzdp

2p
c2

(1)gs~ h̃x'
!U<CE

suppc2
(1)(x' ,z)

dzl~x!212sf ~x!s. ~II.67!

Hence, multiplying withB/2p and integrating overx' leads to

R1
s~c (1)!<C

B

2p E dxl ~x!212sf ~x!s<BZ~1/2! sE
Z21

Z/B

r 12~3/2! sdr<CB~3/2! s21Z22 ~1/2! s.

~II.68!

In the case ofr<Z21 the terms of~II.63! have to be estimated separately. The semiclassical
reads

B

2p E dxdp

2p
c1

(1)@ h̃x'
#2

1/21s<
B

2p E
uxu<Z21

dx@fSTF̃#1
1/21s<CBZ2s22 . ~II.69!

An analogous estimate is derived for (B/2p) *dx'TrL 2(R)(c1
(1)gs(H̃x'

)) by using Ref. 3, Lemma
7.9. h

Lemma II.8: For (II.64) we have

R2
s~c (1)!<CZs11/2Bs/221/4. ~II.70!

Proof: Obviously, the main contribution to the magnitude of the semiclassical term

R2
s~c (1)!<

B

2p E
R3

dxc (1)u@fSTF̃~x!#1
s11/22@fSTF~x!#1

s11/2u ~II.71!

is produced by the Coulomb singularity, i.e.,

R2
s~c (1)!<

B

2p E
uxu<B21/2

dxufSTF~x!u1
s11/2 ~II.72!

<CBE
uxu<B21/2

dxS Z

r D s11/2

<CZs11/2Bs/221/4. ~II.73!

h

Hence, we are ready to carry out the estimate of the error termsR124 , restricted toV1 ,
which we denote asRi(V1).

Proposition II.9: For Z4/3<B<Z3 one has

R1~V1!5
B

2p E
R2

dx'S TrL 2(R)~c (1)@H̃x'
2n#2!2E dzdp

2p
c (1)@hx'

2n#2D<CB4/5Z3/5.

~II.74!
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Proof: This is done by putting together Lemmas II.7 and II.8 and settings51. h

Before turning toR2(V1) we need a preparing lemma.
Lemma II.10: LetlN be the Nth eigenvalue of (II.13) andn the chemical potential of (II.1)

belonging to the electron number N. Then

ulN2nu<CB3/5Z1/5. ~II.75!

Proof: We assume now that we already have the estimate

UTrQ2~P0~2]z
22fSTF!P0!2

B

2p E dx'E dzdp

2p
Q2~p22fSTF!U<CB1/5Z2/5, ~II.76!

which until now we have only proven onV1 , by settings50 in Lemmas II.7 and II.8. The
missing part will be proved in Lemma II.16. Since we know by definition

B

2p E
R2

dx'TrL 2(R)Q2~H̃x'
2lN!5N5

B

2p E dx@fSTF~x!1n#1
1/2, ~II.77!

we get

B1/5Z2/5>
B

2p E dx~@fSTF1lN#1
1/22@fSTF1n#1

21/2! ~II.78!

>CulN2nuBE
0

r S
@fSTF1n8#1

21/2r 2dr

>CulN2nu~BZ21/2r S
7/2!, ~II.79!

for somen8P@n,lN#. This implies the statement of the lemma. h

Proposition II.11:

R2~V1!5UlN2nU B

2pU E
R2

dx'~TrL 2(R)~c (1)Q2~H̃x'
2n!!u ~II.80!

2E dzdp

2p
c (1)Q2~hx'

2n!)U
<CB4/5Z3/5. ~II.81!

Proof: By Lemma II.10 and combining the estimations of Lemmas II.7 and II.8 withs50.h
Remarki II.12:We remark here that if one has a partition of unityw11w251, then the relation

D~ f , f !<2D~ f w1 , f w1!12D~ f w2 , f w2! ~II.82!

is valid, which one gets by the simple inequality

D~ f w12 f w2 , f w12 f w2!>0. ~II.83!

Remark II.12 justifies the notationsR3(V i),R4(V i), since~II.82! means that we can conside
each regionV i separately.

Proposition II.13: For Z4/3<B<Z3 we get with (II.28)

R4~V1!5D~c (1)~rSTF2 r̄ !,c (1)~rSTF2 r̄ !!<CB4/5Z3/5. ~II.84!

Proof: Recall
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rSTF5
B

2p
@fSTF1n#1

1/2 and r̄5@fSTF1lN#1
1/2. ~II.85!

By the Hardy–Littlewood–Sobolev inequality we derive

R4~V1!5D~c (1)~rSTF2 r̄ !,c (1)~rSTF2 r̄ !!

<CB2ic (1)~rSTF2 r̄ !i6/5
2

<CB2ulN2nu2ic (1)~fSTF1n8!21/2i6/5
2

<Z27/5B214/5. ~II.86!

h

In the case ofR3(V1) we proceed as above, namely we introduce the auxiliary den

r̃(x)5 (B/2p) @fSTF̃(x)1lN#1
1/2 and decomposeR3(V1) by using convexity.

Proposition II.14: For Z4/3<B<Z3 we have

R3~V1!5D~c (1)~rSTF2rc!,c (1)~rSTF2rc!!<CB4/5Z3/5. ~II.87!

Proof: By decomposition we have, on the one hand, the fully semiclassical and eas
handle part

R4~V1!5D~c (1)~rSTF2 r̃ !,c (1)~rSTF2 r̃ !!<B2ic (1)~rSTF2 r̃ !i6/5
2 <B4/5Z3/5. ~II.88!

On the other hand, there is the more interesting term

D~c (1)~rc2 r̃ !,c (1)~rc2 r̃ !!. ~II.89!

For r<Z21 we separately calculate

S B

2p D 2

D~c1
(1)e~z,z;H̃x'

,lN!,c1
(1)e~z,z;H̃x'

,lN!!<CB2ic1
(1)e~z,z;H̃x'

,lN!i6/5
2 ~II.90!

and

S B

2p D 2

D~c1
(1)@fSTF̃1lN#1

1/2,c1
(1)@fSTF̃1lN#1

1/2!<CB2ic1
(1)@fSTF̃1lN#1

1/2i6/5
2 . ~II.91!

Whereas~II.91! can be bounded by

CB2ic1
(1)@Z/uxu#1/2i6/5

2 <CB2/Z3, ~II.92!

~II.90! can analogously be estimated by Ref. 3, Lemma 10.7, or Ref. 4, Proposition 4.3.
The term

D~c2
(1)~rc2 r̃ !,c2

(1)~rc2 r̃ !! ~II.93!

is a bit more delicate. We can either use Ref. 4, Proposition 4.3, or Ref. 7, Theorem 4.5i ),
which states that forKh , given in ~II.40!, with V fulfilling ~II.42! and uV(x)1tu>e,

Ue~x,x;Kh ,t!2h2dE Q2~k~x,p!2t!U<h12d ;xPBS 0,
1

2D . ~II.94!

SinceulNu<B3/5Z1/5, we get thatufSTF̃1lNu>e f (x)2 in V1 . Hence, we can apply~II.94! to our
case, withd51, yielding
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ue~z,z;H̃x'
,lN!2@fSTF̃~x!1lN#1

1/2u< l ~x!21. ~II.95!

The terml 21 stems from rescalingB(0,1) toB(0,l ). So,

D~c2
(1)~rc2 r̃ !,c2

(1)~rc2 r̃ !!<CB2ic2
(1)l ~x!21i6/5

2 <CB2@Z/B#3. ~II.96!

h

In the caseB>Z2, Z/B is smaller than 1/Z and in the above calculations only the separ
terms have to be taken into account, which yields analog estimates as above.

E. Analysis in the outer region V2

This region has already been treated by Ivrii in Ref. 4, Sec. 4.
Recall first thatr S is the radius of the support offSTF, in the neutral case, and of@fSTF

1n#1 otherwise. In order that Theorem II.1 can be appliedfSTF andfSTF̃ have to fulfill condition
~II.39!. We know that¹fSTF(r S)5fSTF(r S)50. Hence, we look for a parameter 0,c,1, and the
concerning radiuscrS , such that the separate quantum mechanical as well as semiclassical p
R124 in $xuuxu>crS% do not exceedCB4/5Z3/5 and thatfSTF fulfills ~II.39!. The existence of such
a c is a consequence of the behavior offSTF in the vicinity of r S @cf. ~II.51!#. By means of such
a parameterc we decompose the outer regionV2 into V2

1øV2
2 and define a concerning partitio

of unity, i.e.,

suppc1
(2)5$xu @Z/B#~11e!<uxu<crS%, suppc2

(2)5$xu uxu>crS~12e!%, ~II.97!

with c1
(2)1c2

(2)51 for r>@Z/B#(11e). On V2
2, by definition, all terms separately are bound

above byCB4/5Z3/5 and onV2
1 condition ~II.39! is fulfilled for « small enough.

Throughout this section we assumeZ4/3<B<Z3.
Proposition II.15:

R1~V2
1!<CB4/5Z3/5. ~II.98!

Proof: First we assumeB,Z2. Applying Theorem II.1 witha51 and d51 we get for
arbitrary but fixedx' ~we setn50!

UTrL 2(R)~c1
(2)g1~H̃x'

!!2E dzdp

2p
c1

(2)g1~ h̃x'
!U<CE

suppc1
(2)(x' ,z)

dzl~x!22f ~x!. ~II.99!

After multiplying with B and integrating overx' we get

~ II.99!<C
B

2p E dxl ~x!22f ~x!<CBZ1/2E
Z/B

crS
r 21/2dr<CBZ1/2@r S#1/2. ~II.100!

In the case ofB.Z2 we again have to decomposeV2
1, sinceZ/B is smaller than 1/Z. So for fixed

but arbitraryB, V2
1 is decomposed with respect tor 51/Z. For r<1/Z we proceed as in the

previous section and estimate each term separately and forr>1/Z we immediately arrive at
~II.100!.

The pure semiclassical part

B

2p E dx'S E dzdp

2p
c (2)g1~ h̃x'

2n!2E dzdp

2p
c (2)g1~hx'

2n! D ~II.101!

can analogously be estimated as in Lemma II.8 h

Denote
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R0~c1
(2)!5

B

2p E dx'S TrL 2(R)~c1
(2)Q2~H̃x'

2n!!2E dzdp

2p
c1

(2)Q2~hx'
2n! D .

~II.102!

Lemma II.16:

R0~c1
(2)!<CB1/5Z2/5. ~II.103!

Proof: As in Proposition II.15 we first assumeB,Z2. The other case, where the terms ha
to be computed separately, works as in Lemma II.7. Applying Theorem II.1 witha51 and d
51 we get for arbitrary but fixedx' ~we setn50!

UTrL 2(R)~c1
(2)Q2~H̃x'

!!2E dzdp

2p
c1

(2)Q2~hx'
!U<CE

suppc1
(2)(x' ,z)

dzl~x!21. ~II.104!

This implies

R0~c1
(2)!<C

B

2p E dxl ~x!21<CBE
Z/B

crS
rdr<CB@r S#2. ~II.105!

h

Proposition II.17:

R2~V2
1!<CB4/5Z3/5. ~II.106!

Proof: Note that by the Lemmas II.7, II.8 and II.16 the estimate~II.76! is proved and the
assumption of Lemmas II.10 justified. So by Lemmas II.10 and II.16 we arrive at~II.106!. h

Proposition II.18:

R4~V2
1!,R3~V2

1!<CB4/5Z3/5. ~II.107!

Proof: Let us start with

R4~V2
1!5D~c1

(2)~rSTF2 r̄ !,c1
(2)~rSTF2 r̄ !!. ~II.108!

By the HLS inequality we get

R4~V2
1!<CB2ic1

(2)~rSTF2 r̄ !i6/5
2 <CB2ulN2nu2ic1

(2)~fSTF1n!21/2i6/5
2 <CB4/5Z3/5.

~II.109!

The term

R3~V2
1!5D~c1

(2)~rSTF2rc!,c1
(2)~rSTF2rc!! ~II.110!

is a bit more delicate and we refer to Ref. 4 Propositions 4.2 and 4.3, for a proof of the es
~II.107!.

Note:Proposition 4.3 in Ref. 4 is proved for regionx45$xuuxu>C0Z/B% with possibly a very
large parameterC0 . This parameterC0 is chosen in a way such that only the lowest Landau b
contributes to Ivrii’s calculations. Since we only treat the lowest Landau band case, the as
of Proposition 4.3 holds in our case on the whole regionV2

1.
Furthermore, we remark that if~II.95! would be valid onV2

1, we could immediately conclude
by the HLS inequality thatR4(V2

1)<CB2@r S#3. But since the validity of~II.95! cannot be guar-
anteed onV2

1, we have to refer to Ivrii’s method. h

Recall that we have made a partition of unity,( i , j 51
2 c j

( i )(x)51. So, collecting all estimations
of the Secs. II D and II E, we have finished the proof of Theorem I.3.
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III. SEMICLASSICAL THEORIES APPROXIMATING Econf
Q

As we have already argued throughout the introduction, the natural semiclassical appro
tion of Econf

Q is given by the DSTF functional

E DSTF@r#5 (
mPN0

S kE rm~z!32ZE Vm~z!rm~z!dzD1D̄~r,r!. ~III.1!

Here r is a sequence of one-dimensional densitiesr5(rm(z))mPN0
. Contrary to the usual STF

theory, the integration over the variables orthogonal to the magnetic field is replaced
expansion in angular momentum eigenfunctions in the lowest Landau band. The potentialsVm and
D̄ are defined in~I.35!. The corresponding energy is given by

EDSTF~N,Z,B!5 infH E DSTF@r#UrPD and (
m

E rm<NJ , ~III.2!

with

D5H ru(
m

E rm
3 ,`,(

m
E Vmrm,`,D̃~r,r!,`J . ~III.3!

Another semiclassical approximation, where the variables, as in the usual STF theory, ar
dimensional densities, is realized by the MSTF functional

EMSTF@r#5
4p4

3B2 E dxr3~x!2E dxuxu21̃r~x!1D̃~r,r!, ~III.4!

with respective energy

EMSTF~N,Z,B!5 infH E MSTF@r#UrPD̃ and E r<NJ , ~III.5!

where

D̃5 H rUrPL 3~R3!,E uxu21̃r,`,D̃~r,r!,`J . ~III.6!

First of all, we will show that these two functionals are equivalent.
Lemma III.1: For allrPD̃ let

r̄~x!5
B

2p (
m

xm~x'!rm~z!, ~III.7!

with rm(z)5*r(x)xm(x')dx' , and denoter̃5(rm)m . Then one gets

E MSTF@r#>E MSTF@ r̄#5E DSTF@ r̃#. ~III.8!

Proof: By the definition of the MSTF functional, it suffices to show that*r3>*r̄3.
For this purpose we note that for every non-negative functionf , on a general measure spac

one derives from convexity that

1

m~V!
E f 3dm>S E 1

m~V!
f dm D 3

. ~III.9!

Hence for everymPN andzPR, we have
                                                                                                                



o the

e

1203J. Math. Phys., Vol. 43, No. 3, March 2002 Semiclassics in the lowest Landau band

                    
1

uxmu Esuppxm

r~x!3xm~x'!dx'>S 1

uxmu E r~x!xm~x'!dx'D 3

. ~III.10!

Sinceuxmu5 2p/B, we arrive at

4p4

3B2 E r~x!3dx>
p2

3 (
m

E rm~z!3dz5
4p4

3B2 E r̄~x!3dx. ~III.11!

h

Proposition III.2: For all N,Z,B

EMSTF~N,Z,B!5EDSTF~N,Z,B!. ~III.12!

Proof: Lemma III.1 immediately implies

EMSTF~N,Z,B!5 infH E MSTF@r#Ur5
B

2p (
m

rm~z!xm~x'!, ~rm!mPDJ . ~III.13!

h

For simplicity we first concentrate on the DSTF functional and then apply our results t
MSTF functional.

Lemma III.3:E DSTF@r# is uniformly bounded from below onD. There exists even a positiv
constanta and a C, such that

E DSTF@r#>aS (
m

E rm
3 1D̄~r,r! D 2C ~III.14!

for all rPD.
Proof: We setr(x)5(mrm(z)ufm(x')u2 for an arbitrary (rm)mPD. We get from Ref. 8,

Lemma 2, that for every«.0 there exists aC« , such that

E uxu21r<«iri31C«D~r,r!1/2. ~III.15!

Hence, this implies

(
m

E Vmrm<«S E dxS (
m

ufm~x'!u2rm~z! D 3D 1/3

1C«D̄~r,r!1/2. ~III.16!

By convexity ofx3, for x>0, and by the equation(mufmu25B/2p, we get

S 2p

B (
m

ufmu2rmD 3

<
2p

B (
m

ufmu2rm
3 . ~III.17!

Using ~III.17! and integrating over thex'-variable, the inequality~III.16! can be written as

(
m

E Vmrm<«S B

2p D 2/3S (
m

E rm
3 D 1/3

1C«D̄~r,r!1/2. ~III.18!

Consequently, the functionalE DSTF@r# can be estimated from below by@e5«(B/2p)2/3#
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E DSTF@r#>k(
m

E rm
3 2eS (

m
E rm

3 D 1/3

1D̄~r,r!2C«D̄~r,r!1/2

> inf
X,Y>0

$kX32eX1Y22C«Y%

>a~X31Y2!2C, ~III.19!

for a,C appropriately chosen, where we used the notationsX5((m*rm
3 )1/3 andY5D̄(r,r)1/2.h

Lemma III.4: There exists ar (`), which minimizesE DSTF@r# uniquely in D, i.e.,
inf$E DSTF@r#urPD%5E DSTF@r (`)#.

Proof: Let r ( i ) be a minimizing sequence ofE DSTF. Lemma III.3 yields that there exists
constantC, such that

(
m

kE ~rm
~ i !!3<C, D̄~r~ i !,r~ i !!<C, (

m
rm

~ i !Vm<C ~III.20!

for all mPN0 . By the Banach–Alaoglu theorem there exists a subsequence, still denoted ar ( i ),
and ar (`), with rm

( i )PL 3(R) ;mPN0 , such that

rm
~ i !⇀rm

~`! weakly in L 3~R! ; i PN0 . ~III.21!

SinceL p-norms are weakly lower semicontinuous, we derive for allm

lim inf
i→`

E ~rm
~ i !!3>E ~rm

~`!!3, ~III.22!

and, using Fatou’s lemma, we consequently arrive at

lim inf
i→`

(
m

E ~rm
~ i !!3>(

m
E ~rm

~`!!3. ~III.23!

Moreover, sinceVmPL 3/2(R) for all m, we conclude by weak convergence

lim
i→`

E dzVm~z!rm
~ i !~z!→E dzVm~z!rm

~`!~z! ~III.24!

for eachm. By ~III.20! and the dominated convergence theorem we have

lim
i→`

(
m

E dzVm~z!rm
~ i !~z!→(

m
E dzVm~z!rm

~`!~z!. ~III.25!

In order to show

lim inf
i→`

D̄~r~ i !,r~ i !!>D̄~r~`!,r~`!!, ~III.26!

we use the fact that for sequences of functionsf 5( f m(z))m , g5(gm(z))m ,

^ f ,g&D5D̄~ f ,g! ~III.27!

defines a real inner product and, consequently, a real Hilbert-spaceHD . Since ~III.20! yields
ir ( i )iD5A^r ( i ),r ( i )&D<C for all i , we can extract another subsequencer ( i ), such that

^ f ,r~ i !&→^ f ,r~`!& for all f PHD . ~III.28!
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Hence, we conclude

D̄~r~`!,r~`!!5 lim
i→`

^r~ i !,r~`!&<^r~`!,r~`!&1/2 lim inf
i→`

^r~ i !,r~ i !&1/2

5D̄~r~`!,r~`!!1/2 lim inf
i→`

D̄~r~ i !,r~ i !!1/2, ~III.29!

and consequently get~III.26!. Altogether we have shown

lim inf
i→`

E DSTF@r~ i !#>E DSTF@r~`!#. ~III.30!

The uniqueness follows from the strict convexity ofE DSTF. h

Theorem III.5: Denote Nc5(m*rm
(`) . Then (i) for each N<Nc there exists a unique mini

mizerrN for E DSTF, under the restriction(m*rm<N, i.e., EDSTF(N,Z,B)5E DSTF@rN#. Moreover,
rN satisfies(m*rm

N5N.
(ii) E DSTF(N,Z,B), as a function of N, is strictly decreasing and strictly convex up to Nc , and

constant for N.Nc .
Proof: Let N<Nc . Then the same proof as in Lemma III.4 shows that there exists arN

PD, with (m*rm
N<N and

E DSTF@rN#5EDSTF~N,Z,B!. ~III.31!

Obviously EDSTF(N,Z,B), as a function ofN, is nonincreasing, and the convexity ofE DSTF

implies the convexity ofEDSTF. Hence, by definition ofNc and Lemma III.4 it is clear thatEDSTF

is strictly decreasing up toNc and constant forN.Nc . Furthermore, we get that(m*rm
N5N for

N<Nc . ~Note that(m*rm
N,N would be a contradiction toN<Nc .! h

Proposition III.6: Let N<Nc . Then for every minimizerrN there exists a parameterm(N),
the chemical potential, such thatrN obeys the coupled TF equations

3k~rm
N~z!!25FZVm~z!2(

n
E Vm,n~z2z8!rn

N~z8!1m~N!G
1

;~mPN0!, ~III.32!

and m(N) fulfills the relation

]

]N
EDSTF~N,Z,B!5m~N!. ~III.33!

Proof: The proof works analogously to Ref. 9, Theorem II.10, if the variable perpendicul
the field is replaced by the angular momentum quantum numbers. h

Theorem III.7: All statements of Theorem III.5 and Proposition III.6 are also valid for
MSTF theory, where the minimizing MSTF densitiesrN(x) and the minimizing DSTF densitie
(rm

N(z))m are related as

rN~x!5
B

2p (
m

xm~x'!rm
N~z!. ~III.34!

The corresponding TF equation reads

3k~rN~x!!25FZuxu21̃2(
n,m

E dx8xm~x'!Vm,n~z2z8!xn~x'8 !rN~x8!1m~N!G
1

. ~III.35!

Proof: The existence of a minimizing densityrN(x) we get from Theorem III and Lemma
III.1. The uniqueness follows from the strict convexity ofr3 in r. h
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Next we try to collect some information about the ‘‘critical’’ particle numberNc , which
measures the maximal particle number that can be bound to the nucleus in the D~M!STF theory.

Proposition III.8: Nc>Z.
Proof: By definition of Nc , we havem(Nc)50, so the TF equation reads (rNc5r)

3krm~z!5@weff
~m!~z!#1 ;mPN0 , ~III.36!

with

weff
~m!~z!5ZVm~z!2(

n
E Vm,n~z2z8!rn~z8!. ~III.37!

We assumeNc,Z.
References 10 and 11 tell us that the potentialsVm(z) andVn,m(z2z8) behave like 1/uzu as

z→`. Hence, we get that for eachm

lim
z→`

uzu@ZVm~z!#5Z, ~III.38!

as well as

lim
z→`

uzuF(
n
E Vm,n~z2z8!rn~z8!G5(

n
E lim

z→`

uzuVm,n~z2z8!rn~z8!5(
n
E rn5Nc .

~III.39!

Since we therefore get

lim
z→`

uzuweff
~m!~z!5Z2Nc.0, ~III.40!

we can conclude that there exists an«.0 and az̄.0, such that

weff
~m!~z!>«uzu for z> z̄, ~III.41!

which by ~III.36! is a contradiction tormPL 1(R). h

In the usual STF theory the inequalityNc<Z is a consequence of Newton’s potential theo
Since we miss this powerful tool in our DSTF theory we cannot expect to get an analo
estimate. But if we use methods similar to those applied in Refs. 10, 12, and 13 we at least
following B-independent upper bound forNc .

Proposition III.9: Nc<4Z.
Proof: If we multiply ~III.36! with rm /Vm and integrate overz, we get

3kE dz
rm~z!3

Vm~z!
5ZE dzrm~z!2(

n
E dzdz8

1

Vm~z!
rn~z8!Vn,m~z2z8!rm~z!. ~III.42!

Note that by multiplication withrm the @ #1-bracket can be dropped, sincerm50 whereweff
(m)(z)

<0. Clearly*rm
3 /Vm>0, so after summing overm we arrive at

ZNc>(
n,m

E dzdz8
1

Vm~z!
rn~z8!Vn,m~z2z8!rm~z!. ~III.43!

Moreover, Ref. 13, Lemma 4.1, tells us

S 1

Vm~z!
1

1

Vn~z!
1

1

Vm~z8!
1

1

Vn~z8! DVm,n~z2z8!>1, ~III.44!
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which we use, together with symmetry, in order to estimate the right side of~III.43!:

(
m,n

E 1

Vm~z!
rm~z!Vm,n~z2z8!rn~z8!dzdz8

5
1

4 (
m,n

E S 1

Vm~z!
1

1

Vn~z!
1

1

Vm~z8!
1

1

Vn~z8! D rm~z!Vm,n~z2z8!rn~z8!dzdz8

>
1

4
Nc

2 . ~III.45!

Inserting into~III.43! finally leads to

Nc<4Z. ~III.46!

h

Remark III.10 (The difference between EDSTF and ESTF) : Obviously, the magnitude of differ-
ence between the D~M!STF and the STF energy is given by

BF E ufMSTF~x!u3/22E ufSTF~x!u3/2G . ~III.47!

Due to the singularity of the STF potential,~III.47! has to be split into

BE
uxu<B21/2

F ufMSTF~x!u3/22E ufSTF~x!u3/2G1BE
uxu>B21/2

F ufMSTF~x!u3/22E ufSTF~x!u3/2G .
~III.48!

The magnitude of the first term is proportional to

Z3/2BE
uxu<B21/2

uxu23/25O~Z3/2B1/4!. ~III.49!

The second term of~III.48! could be estimated by

BE
uxu>B21/2

ufSTF~x!u1/2u]ufSTF~x!uB21/2<Z3/2B1/2@r S#3/2, ~III.50!

with u5ux'u. So we see that the main contribution to~III.47! stems from theB21/2-vicinity of the
nucleus, i.e.,

EDSTF2ESTF5O~Z3/2B1/4!. ~III.51!

A. Some notes about the one-dimensional case

If we reduce the DSTF functional to the angular momentum channel withm50, one gets the
functional

E 1DSTF@r#5kE dzr~z!32ZE dzV0~z!r~z!1
1

2 E dzdz8V0,0~z2z8!r~z!r~z8!,

~III.52!

which can be treated analogously to the three dimensional case, and Theorem III.5 and Prop
III.8 are also valid. Concerning the upper bound ofNc , it is not necessary to symmetrize overn
andm, and in this case~III.45! reads
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E 1

V0~z!
r~z!V0,0~z2z8!r~z8!dzdz85

1

2 E S 1

V0~z!
1

1

V0~z8! D r~z!V0,0~z2z8!r~z8!dzdz8

>
1

2
Nc

2 .

Consequently, one getsNc<2Z for the maximum particle number that can be bound to
nucleus in the one-dimensional theory.

Moreover, let us regard the absolute minimumĒ1DSTF(Z,B) of the functionalE 1DSTF@r#
5EZ,B@r#. If we use the scaling relations

V0~z!5B1/2V0
1~B1/2z!, V0,0~z!5B1/2V0,0

1 ~B1/2z!, ~III.53!

and define

r̄~z!5B1/4Z1/2r~B1/2z!, ~III.54!

we get

EZ,B@ r̄#5B1/4Z3/2E1,1
l @r#, ~III.55!

with

E1,1
l @r#5kE dzr~z!32E dzV0

1~z!r~z!1
1

l E dzdz8V0,0
1 ~z2z8!r~z!r~z8!, ~III.56!

andl52B1/4Z1/2.
Let Ew

1D(Z,B) be the minimum of the functional

E w
1D@r#5kE dzr~z!32ZE dzV0~z!r~z!, ~III.57!

where the repulsive energy term is omitted. Using the above scaling~III.54!, one immediately gets
Ew

1D(Z,B)5Z3/2B1/4Ew
1D(1,1). So we can formulate the following theorem:

Theorem III.11: If Z,B>1 are fixed, then

Ew
1D~Z,B!<Ē1DSTF~Z,B!<Ew

1D~Z,B!1Z~112 ln@BZ2#2!. ~III.58!

Proof: The lower bound is obvious.
For the upper bound we use the relation~III.55! and take the TF-solution ofE1,1

` , i.e.,

r~z!5
1

p
AV0

1~z!. ~III.59!

This density is neither inL 1 nor in L 2, so we define a cut-off densityrR(z)5pAV0
1(z)Q(R

2uzu) and use this as comparison density in~III.55!, which leads to

E1,1
l @rR#5Ew

1D~1,1!1E
R

`

~V0
1~z!!3/21

1

l E rR~z!V0,0
1 ~z2z8!rR~z8!dzdz8. ~III.60!

SinceV0,0
1 (z)<min$1/uxu ,Ap/4% we get by Young’s inequality

E rR~z!V0,0
1 ~z2z8!rR~z8!dzdz8<F S E rRD 2 1

b
12 ln~b!E rR

2 G ;b>1. ~III.61!
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After estimating*rR and*rR
2 we see that the minimum of~III.61! as a function ofb is achieved

for b5R/ ln(R), which implies

E rR~z!V0,0
1 ~z2z8!rR~z8!dzdz8<@ ln~R!1 ln~R!2#. ~III.62!

Next, optimizing the last two term on the right side of~III.60! with respect toR and multiplying
with B1/4Z3/2 yields the statement of the theorem. h

By aid of this theorem we can also prove thatĒ1DSTF(Z,B) is the semiclassical approximatio
of TrL 2(R)@2]z

22ZV0(z)#2 , the sum of all negative eigenvalues of2]z
22ZV0(z).

Corollary III.12: Let B,Z>1 and B<Z2. Then there exists a constant C, such that

uTrL 2(R)@2]z
22ZV0~z!#22Ē1DSTF~Z,B!u<C max$Z ln@BZ2#,B3/4Z1/2%. ~III.63!

Proof: This is an immediate consequence of Theorem III.11 and Ref. 5, Theorem 3.19,
says that

uTrL 2(R)@2]z
22ZV0~z!#22Ew

1D~Z,B!u<CB3/4Z1/2. ~III.64!

h

We learn from Theorem 3.10 that in a model of a one dimensional semiclassical atom,
the electrons are forced to stay in the angular momentum channelm50, the repulsive interaction
energy does not contribute to the leading order of the energyĒ1DSTF(Z,B) for large Z and B
>1.

An analogous effect is obtained for the quantum mechanical interaction energy ofN particles
reduced to the angular momentumm50, i.e.,

C5f0^¯ ^ f0c~z1 , . . . ,zN!. ~III.65!

For c a Slater determinant or at least forc close to the ground state of the correspond
N-particle HamiltonianH0 , which is the projection onto the angular momentum eigenspace
angular momentumm50, the interaction energy can be bounded from above by~for a precise
lower bound see Ref. 14!

1

2 ER2
rc~z!rc~z8!V0,0~z2z8!dzdz8, ~III.66!

which can be estimated by an analogous method to~III.61!. This leads to

1

2 ER2
rc~z!rc~z8!V0,0~z2z8!dzdz8<CE0

1/2N1/2@11 ln~BN3/E0!#, ~III.67!

where we have used that^C,HNC&<0 andE0 is the corresponding ground state energy@of wave
functions of the form~III.65!#, which is of the same order asĒ1DSTF as long asB<Z2. Relation
~III.67! yields that the quantum mechanical interaction energy in one dimension is!E0 as long as
E0@N.
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Coherent states on spheres
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We describe a family of coherent states and an associated resolution of the identity
for a quantum particle whose classical configuration space is thed-dimensional
sphereSd. The coherent states are labeled by points in the associated phase space
T* (Sd). These coherent states arenot of Perelomov type but rather are constructed
as the eigenvectors of suitably defined annihilation operators. We describe as well
the Segal–Bargmann representation for the system, the associated unitary Segal–
Bargmann transform, and a natural inversion formula. Although many of these
results are in principle special cases of the results of Hall and Stenzel, we give here
a substantially different description based on ideas of Thiemann and of Kowalski
and Rembielin´ski. All of these results can be generalized to a system whose con-
figuration space is an arbitrary compact symmetric space. We focus on the sphere
case in order to carry out the calculations in a self-contained and explicit
way. © 2002 American Institute of Physics.@DOI: 10.1063/1.1446664#

I. INTRODUCTION

In Ref. 1, Hall introduced a family of coherent states for a system whose classical co
ration space is the group manifold of a compact Lie groupG. These coherent states are labeled
points in the associated phase space, namely the cotangent bundleT* (G). The coherent state
themselves were originally defined in terms of theheat kernelon G, although we will give a
different perspective here. One may identify2 T* (G) with the complexified groupGC , where, for
example, ifG5SU(2) thenGC5SL(2;C). The paper1 establishes a resolution of the identity fo
these coherent states, and equivalently, a unitary Segal–Bargmann transform. The
Bargmann representation of this system is a certain Hilbert space of holomorphic function
the complex groupGC . Additional results may be found in Refs. 2–4 and the survey paper.5

The coherent states forG ~in the form of the associated Segal–Bargmann transform! have
been applied to quantum gravity in Ref. 6, with proposed generalizations due to Thiemann.7 More
recently the coherent states themselves have been used by Thiemann and co-authors8 in an attempt
to determine the classical limit of the quantum gravity theory proposed by Thiemann in Ref.
particular, the second entry in Ref. 8 establishes good phase space localization proper~in
several different senses! for the coherent states associated to the configuration spaceG5SU(2).

In another direction, Wren,10 using a method proposed by Landsman,11 has shown that the
coherent states forG arise naturally in the canonical quantization of (111)-dimensional Yang–
Mills theory on a space–time cylinder. HereG is the structure group of the theory and plays t
role of the reduced configuration space, that is, the space of connections modulo based
transformation over the spatial circle. Wren considers first the ordinary canonical coherent
for the unreduced~infinite-dimensional! system. He then shows that after ‘‘projecting’’ them in
the gauge-invariant subspace~using a suitable regularization procedure! these become precisel
the generalized coherent states forG, as originally defined in Ref. 1. Driver and Hall12 elaborate

a!Electronic mail: bhall@nd.edu
b!Electronic mail: jeffrey–mitchell@baylor.edu
12110022-2488/2002/43(3)/1211/26/$19.00 © 2002 American Institute of Physics

                                                                                                                



w the
om the
ance of
Yang–

s

de-

tion.

es by

oherent
tates are
ndle

roup, it

ne uses

n the
n of the

a

tion of
it way
n

space

t
lace of

trast the
d only

of the
defined
is

results

1212 J. Math. Phys., Vol. 43, No. 3, March 2002 B. C. Hall and J. J. Mitchell

                    
on the results of Wren, using a different regularization scheme. They show in particular ho
resolution of the identity for the generalized coherent states can be obtained by projection fr
resolution of the identity for the canonical coherent states. See also Ref. 13 for an appear
the generalized Segal–Bargmann transform in the setting of two-dimensional Euclidean
Mills theory.

Finally, the paper14 shows that the generalized Segal–Bargmann transform forG can be
obtained by means of geometric quantization~see also Ref. 5, Sec. 3.2!. This means that the
associated coherent states forG are of ‘‘Rawnsley type’’15 and are thus in the spirit of Berezin’
approach to quantization.

We emphasize that the coherent states forG are not of Perelomov type.16 Instead they are
realized as the eigenvectors of certain non-self-adjoint ‘‘annihilation operators,’’ as will be
scribed in detail in the present paper.~See Sec. X for further comments.!

The coherent states and the resolution of the identity forG ‘‘descend’’ in a straightforward
way to the case of a system whose configuration space is a compact symmetric spaceX ~Ref. 1,
Sec. 11!. Compact symmetric spaces are manifolds of the formG/K, whereG is a compact Lie
group andK is a special sort of subgroup, namely, the fixed-point subgroup of an involu
Examples include the spheresSd5SO(d11)/SO(d) and the complex projective spacesCPd

5SU(d11)/SU(d). Compact Lie groups themselves can be thought of as symmetric spac
identifying G with (G3G)/D(G) whereD(G) is the ‘‘diagonal’’ copy ofG insideG3G.

We emphasize that in the caseX5S2 the 2-sphere is playing the role of theconfiguration
spaceand thus the coherent states discussed here are completely different from the spin c
states in which the 2-sphere plays the role of the phase space. Whereas the spin coherent s
labeled by points inS2 itself, our coherent states are labeled by points in the cotangent bu
T* (S2).

Although the case of compact symmetric spaces can be treated by descent from the g
is preferable to give a direct treatment, and such a treatment was given by Stenzel.17 In particular
Stenzel gives a much better description, in the symmetric space case, of the measure that o
to construct the resolution of the identity~see also Ref. 5, Sec. 3.4!. Although Stenzel formulates
things in terms of a unitary Segal–Bargmann transform and does not explicitly mentio
coherent states, only a notational change is needed to re-express his results as a resolutio
identity for the associated coherent states.

More recently, the coherent states for the 2-sphereS2 were independently discovered, from
substantially different point of view, by Kowalski and Rembielin´ski.18 ~Reference 18 builds on
earlier work of Kowalski, Rembielin´ski, and Papaloucas19 on theS1 case.! These authors were
unaware at the time of the work of Hall and Stenzel. Reference 20 then describes the resolu
the identity for the coherent states on the 2-sphere, showing in a different and more explic
that the result of Ref. 17, Theorem 3 holds in this case.~See Sec. VII of Ref. 20 for comments o
the relation of their work to that of Stenzel.!

The purpose of this paper is to describe the coherent states for a compact symmetric
using the points of view advocated by Thiemann and by Kowalski and Rembielin´ski. For the sake
of concreteness we concentrate in this paper on the caseX5Sd. In Refs. 1 and 17 the coheren
states are defined in terms of the heat kernel on the configuration space, which takes the p
the Gaussian that enters into the description of the canonical coherent states. Here by con
coherent states are defined to be the eigenvectors of suitable annihilation operators, an
afterwards does one discover the role of the heat kernel, in the position wave function
coherent states and in the reproducing kernel. The annihilation operators, meanwhile, are
by ~a special case of! the ‘‘complexifier’’ method proposed by Thiemann, which we will show
equivalent to~a generalization of! the polar decomposition method of Kowalski and Rembielin´ski.
We emphasize, though, that the approach described in this paper gives ultimately the same
as the heat kernel approach of Hall and Stenzel.
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II. MAIN RESULTS

In this section we briefly summarize the main results of the paper. All results are explain
greater detail in the subsequent sections. Briefly, our strategy is this. First, we construct co
valued functionsa1 ,...,ad11 on the classical phase space that serve to define a complex stru
on phase space. Second, we construct the quantum counterparts of these functions, o
A1 ,...,Ad11 that we regard as the annihilation operators. Third, we construct simultaneous e
vectors for the annihilation operators, which we regard as the coherent states. Fourth, we co
a resolution of the identity for these coherent states.

We consider a system whose classical configuration space is thed-dimensional sphereSd of
radiusr . We consider also the corresponding phase space, the cotangent bundleT* (Sd), which we
describe as

T* ~Sd!5$~x,p!PRd113Rd11ux25r 2,x"p50%,

wherep is the linear momentum.
In Sec. III we consider the classical component of Thiemann’s method. To apply this m

we must choose a constantv with units of frequency. The classical ‘‘complexifier’’ is then define
to bekinetic energy function divided byv, which can be expressed as

complexifier5
kinetic energy

v
5

j 2

2mvr 2 ,

wherej 2 is the total angular momentum.~Thiemann’s method allows other complexifiers; see S
III. ! We construct complex-valued functionsa1 ,...,ad11 by taking the position functions
x1 ,...,xd11 and applying repeated Poisson brackets with the complexifier. Specifically,

~1!

If we let a5(a1 ,...,ad11) then the calculations in Sec. III will give the following explicit for
mula:

a5coshS j

mvr 2D x1 i
r 2

j
sinhS j

mvr 2Dp. ~2!

These complex-valued functions satisfya1
21¯1ad11

2 5r 2 and$ak ,al%50. In the cased52 this
agrees with Eq.~6.1! of Ref. 18.

In Sec. IV we consider the quantum component of Thiemann’s method. We conside
quantum counterpart of the classical complexifier, namely,

complexifier5
kinetic energy

v
5

J2

2mvr 2 ,

whereJ2 is the total angular momentum operator. Then ifX1 ,...,Xd11 denote the position opera
tors we define, by analogy with~1!,

~3!

This may also be written as

Ak5e2J2/2mvr 2\Xke
J2/2mvr 2\. ~4!
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Equation~30! in Sec. IV gives the quantum counterpart of~2!; it is slightly more complicated than
~2! because of quantum corrections. The annihilation operators satisfyA1

21¯1Ad11
2 5r 2 and

@Ak ,Al #50. Applying the same procedure in theRd case produces the usual complex coordina
on phase space and the usual annihilation operators~Sec. VIII!.

One can easily deduce from~4! a ‘‘polar decomposition’’ for the annihilation operator, give
in ~33! in Sec. IV. In the cased52 this is essentially the same as what Kowalski and Rembielin´ski
take as the definition of the annihilation operators. This shows that Thiemann’s comple
approach is equivalent to the polar decomposition approach of Kowalski and Rembielin´ski. Simi-
larly, the polar form of the annihilation operators in thed51 case is essentially the same as wh
Kowalski, Rembielin´ski, and Papaloucas take as the definition of the annihilation operator in
19.

In Sec. V we consider the coherent states, defined to be the simultaneous eigenvector
annihilation operators. Using~4! we may immediately write down some eigenvectors for theAk’s,
namely, the vectors of the form,

uca&5e2J2/2mvr 2\uda&, ~5!

whereuda& is a simultaneous eigenvector for the position operators corresponding to a poina in
Sd. A key result of Sec. V is that one can perform an analytic continuation with respect t
parametera, thereby obtaining coherent statesuca& corresponding to any pointa in thecomplexi-
fied sphere,SC

d5$aPCd11u a25r 2%. These vectorsuca& are normalizable and satisfy

Akuca&5akuca&, aPSC
d .

Equation~5! shows that the coherent states are expressible in terms of the heat kernel
sphere, thus demonstrating that Thiemann’s definition of the coherent states is equivalent
definition in Refs. 1, 17 in terms of the heat kernel. The reproducing kernel for these coh
states is also expressed in terms of the heat kernel on the sphere.

In Sec. VI we describe a resolution of the identity for these coherent states. In a su
coordinate system this takes the form

I 5E
xPSd

E
p•x50

uca&^caun~2t,2p!S sinh 2p

2p D d21

2ddpdx, ~6!

wherea is a function ofx andp as in~2!. Heren is the heat kernel ford-dimensional hyperbolic
space andt is the dimensionless quantity given byt5\/mvr 2. Explicit formulas forn are found
in Sec. VI. The resolution of the identity for the coherent states is obtained by a contin
deformation of the resolution of the identity for the position eigenvectors.

In Sec. VII we discuss the Segal–Bargmann representation for this system, namely, the
of holomorphic functions on the complexified sphere that are square-integrable with respect
density in~6!. We think of the Segal–Bargmann representation as giving a sort ofphase space
wave functionfor any state. There is an inversion formula stating the position wave function
be obtained from the phase space wave function by integrating out the momentum var
specifically,

^dxuf&5E
p"x50

^ca(x,p)uf&n~t,p!S sinhp

p D d21

dp

for any stateuf&. Note that whereas the resolution of the identity involvesn(2t,2p), the inversion
formula involvesn(t,p).

In Sec. VIII we show that the complexifier method, when applied to theRd case, yields the
usual canonical coherent states and their resolution of the identity. In Sec. IX we summarize
of the relevant representation theory for the Euclidean group. Finally, in Sec. X we compa
construction to other constructions of coherent states on spheres.
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Although all of the results here generalize to arbitrary compact symmetric spacesX, we
concentrate for the sake of explicitness on the caseX5Sd. We will describe the general case in
forthcoming paper.

III. COMPLEX COORDINATES ON PHASE SPACE

In this section we define Poisson-commuting complex-valued functionsa1 ,...,ad11 on the
classical phase space. In Sec. IV we will introduce the quantum counterparts of these fun
commuting non-self-adjoint operatorsA1 ,...,Ad11 which we regard as the annihilation operato
for this system. In Sec. V we will consider the coherent states, that is, the simultaneous eig
tors of the annihilation operators.

Consider thed-dimensional sphere of radiusr in Rd11, namely,

Sd5$xPRd11ux1
21¯1xd11

2 5r 2%,

regarded as theconfiguration spacefor a classical system (d>1). Then consider the associate
phase space, the cotangent bundleT* (Sd), which we think of as

T* ~Sd!5$~x,p!PRd113Rd11ux25r 2, x•p50%.

Herep is the linear momentum, which must be tangent toSd, i.e., perpendicular tox.
We also have theangular momentum functions j kl , 1<k,l<d11, given by

j kl5pkxl2plxk . ~7!

We may think of j as a function onT* (Sd) taking values in the space of (d11)3(d11)
skew-symmetric matrices, that is, in the Lie algebra so(d11). Thinking of j as a matrix we may
rewrite ~7! as

j ~x,p!5p^ x2x^ p,

where^ denotes the outer product.@That is, (a^ b)kl5akbl .#
For a particle constrained to the sphere it is possible and convenient to express everyt

terms ofx andj instead ofx andp. We may alternatively describeT* (Sd) as the set of pairs (x,j )
in which x is a vector inRd11, j is a (d11)3(d11) skew-symmetric matrix, andx andj satisfy

x25r 2 ~8!

and

r 2 j kl5 j kmxmxl2xkj lmxm ~9!

~sum convention!. This last condition says that if wedefinep to be r 22jx , then j5p^ x2x^ p.
Equation~9! reflects the constraint to the sphere and does not hold for a general particle inRd11.
On T* (Sd) we have the relations

jx5r 2p,
~10!

jp52p2x.

Recall thatj is a matrix; thusjx is the vector obtained by applying the matrixj to the vectorx, and
similarly for jp .

In the cased52 ~S2 sitting insideR3! a standard vector identity shows that for any vec
vPR3, jv5(x3p)3v, where 3 is the cross-product andx3p is the usual angular momentum
vector l. So in theR3 casejv5 l3v.

The symplectic structure onT* (Sd) may be characterized by the Poisson bracket relation
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$ j kl , j mn%5dknj lm1d lmj kn2dkmj ln2d ln j km ,

$xk , j lm%5dklxm2dkmxl , ~11!

$xk ,xl%50.

These are the commutation relations for the Euclidean Lie algebra, which is the semidirect p
e(d11)>so(d11)›Rd11.

Poisson bracket relations involvingp should be derived from~11! using the relationp
5r 22jx . Since the constraint to the sphere alters the dynamics and hence the Poisson
relations, we will not get the same formulas as inRd11. For example, we have

$xk ,pl%5dkl2
xkxl

r 2 . ~12!

The complex coordinates on phase space will be constructed from the position functionsxk by
means of repeated Poisson brackets with a multiple of the kinetic energy function. In the s
case it is convenient to express the kinetic energy in terms of the total angular momentuj 2,
given by

j 25(
k, l

~ j kl!
2. ~13!

The total angular momentum satisfiesj 25r 2p2, and the kinetic energy isp2/2m5 j 2/2mr2.
We now choose a constantv with units of a frequency. The significance of this constant is t

mv has the units of momentum divided by position. Thusv ~together withm! allows us to put
position and momentum onto the same scale, which is necessary in order to define complex
functions that involve bothx andp. Ultimately,mv will control the ratio of the width in position
space of the coherent states to the radius of the sphere.

Kowalski and Rembielin´ski do not have a parameter comparable to ourv; the only dimen-
sional parameters in Ref. 18 arem, r , and\. This affects the interpretation of their Eq.~6.1! for
the complex coordinates on phase space~what we calla!. Equation~6.1! involves coshl and sinhl,
wherel is the classical angular momentum. The argument of cosh and sinh should be dime
less, and the only way to makel dimensionless using onlym, r , and\ is to divide l by \. Thus
in Eq. ~6.1! of Ref. 18,l implicitly meansl /\. In our view it is unnatural in aclassicalformula
to insist that the angular momentum be measured in units of Planck’s constant. In our ap
@see~18! below#, angular momentum is measured in units ofmvr 2. Although nothing prevents
one from choosingv so thatmvr 25\, it seems artificial to us to insist on this. After all, Eq.~6.1!
concerns a classical construction that ought to be independent of the value of Planck’s co

We are now ready to apply the ‘‘complexifier’’ method of Thiemann.7 We take as our classica
complexifier the kinetic energy function divided byv,

complexifier5
kinetic energy

v
5

j 2

2mvr 2 . ~14!

We then define complex-valued functionsa1 ,...,ad11 on T* (Sd) by

~15!

Note that theak’s are obtained from thexk’s by means of the classical time-evolution genera
by the kinetic energy function, evaluated at theimaginary time i /v. The calculations below will
show that the series~15! converges for allx andp.
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In Ref. 7, Thiemann allowsany function C on the phase space to be the complexifier, p
vided that exp(i$•,C%)xk converges.~Thiemann also allows any cotangent bundle to be the ph
space.! The condition of convergence, however, imposes severe restrictions on the choiceC,
even whenC is quadratic in the momenta. We consider in this paper only the complexifier~14!.

To compute the functionsak explicitly, we first compute using~11! and ~13! that, in vector
notation,

H x,
j 2

2mvr 2J 5
1

mvr 2 jx5
1

mv
p. ~16!

On the other hand, it is easily verified that$ j kl , j
2%50, which means that if we compute furthe

Poisson brackets withj 2, the matrixj gets ignored and we get

Here jnx means the matrixj appliedn times to the vectorx.
We obtain, then, the following ‘‘polar coordinates’’ expression fora5(a1 ,...,ad11)

a~x,p!5ei j (x,p)/mvr 2
x. ~17!

@Compare Eq.~3.37! in the first entry of Ref. 8.# Using ~10! we can compute this explicitly as

a~x,p!5coshS p

mvr D x1 i
r

p
sinhS p

mvr Dp5coshS j

mvr 2D x1 i
r 2

j
sinhS j

mvr 2Dp. ~18!

We may at this point check the units:p/mvr 5 j /mvr 2 is dimensionless and the whole expressi
has units of position. Note also thata(x,2p)5a(x,p).

With d52 ~and r 5mv51! ~18! agrees with Eq.~6.1! of Ref. 18.@See also Eq.~3.6! in the
second entry of Ref. 8.# In any dimension~18! agrees with the ‘‘adapted complex structure’’ o
T* (Sd) as defined by Lempert and Szo˝ke21 and Guillemin and Stenzel,22 which for the special
case of rank one symmetric spaces was constructed earlier by Morimoto and Nagano.23 See, for
example, p. 410 of Ref. 24.

It is instructive to consider how this works out in the case ofS1,R2. In that case we have
only a single component of angular momentum,j 125p1x22p2x1 , so that j 5u j 12u. Since both
terms in ~18! are even functions ofj , we may replacej by j 12 there. Then letu be the usual
angular coordinate and letr52 j 12/mvr 2, so thatr is ~up to a constant! the canonically conju-
gate momentum tou. Our phase space is the set of points (x1 ,x2 ,p1 ,p2) with x1

21x2
25r 2 and

p1x11p2x250. On this set we have the easily verified identityj 12(x2 ,2x1)5r 2(p1 ,p2). Upon
using this identity andx5r (cosu,sinu), ~18! becomes

a5r ~coshr cosu2 i sinhr sinu,coshr sinu1 i sinhr cosu!5r ~cos~u1 ir!,sin~u1 ir!!.
~19!

This result facilitates comparison with the analysis of theS1 case in Ref. 19 and should be thoug
of as the ‘‘complexification’’ of the identityx5r (cosu,sinu).

As is well known, the Poisson bracket satisfies a Leibniz-type product rule,$ f 1 , f 2f 3%
5$ f 1 , f 2% f 31 f 2$ f 1 , f 3%, and the analogous formula for Poisson brackets,$ f 1 ,$ f 2 , f 3%%
5$$ f 1 , f 2%, f 3%1$ f 2 ,$ f 1 , f 3%%. ~This last expression is equivalent to the Jacobi identity.! Suppose
then that we define the ‘‘complexification’’f C of any functionf to be

f C5ei $•,complexifier% f
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whenever the power series for the exponential converges. Then by a standard power serie
ment we have

~ f 1f 2!C5~ f 1!C~ f 2!C ~20!

and

$ f 1 , f 2%C5$~ f 1!C ,~ f 2!C%. ~21!

Equation~20! shows that if we ‘‘complexify’’ any polynomial in the variablesx1 ,...,xd11 we will
get simply the same polynomial ina1 ,...,ad11 . Furthermore, since$xk ,xl%50, ~21! shows that

$ak ,al%50, ~22!

which implies that$āk ,āl%50. The formula for$ak ,āl%, however, is complicated and we will no
compute it here.

Equation~20! also shows that

a2~x,p!5r 2 ~23!

for all x,p, which is also evident from~18!. Thus the map (x,p)→a(x,p) defines a map of the
cotangent bundleT* (Sd) to thecomplexified sphere,

SC
d5$aPCd11ua1

21¯1ad11
2 5r 2%. ~24!

It is not hard to see that this map is invertible, indeed a diffeomorphism ofT* (Sd) with SC
d .

IV. THE ANNIHILATION OPERATORS

We now consider the quantum counterpart of the constructions in the previous section
means that the functionsj kl andxk should be replaced by self-adjoint operatorsJkl andXk acting
on ~suitable domains in! some separable complex Hilbert space. These should satisfyJlk52Jkl

and the quantum counterpart of the Poisson-bracket relations~11!, namely,

1

i\
@Jkl ,Jmn#5dknJlm1d lmJkn2dkmJln2d lnJkm ,

1

i\
@Xk ,Jlm#5dklXm2dkmXl , ~25!

1

i\
@Xk ,Xl #50.

We recognize this as a representation of the Euclidean Lie algebrae(d11)5so(d11)›Rd11.
We assume that this representation ofe(d11) comes from an irreducible unitary representation
the associated connected, simply connected Lie groupẼ(d11). Here Ẽ(d11)>Spin(d
11)›Rd11 for d>2 andẼ(2)>R›R2, where ›denotes a semidirect product with the norm
factor on the right.

The irreducible unitary representations ofẼ(d11) may be classified by the Wigner–Macke
method. One first chooses an orbit of Spin(d11) on Rd11, namely, a sphere of some radiusr
>0. Since the caser 50 is presumably unphysical~though mathematically permitted!, we assume
from now on thatr .0. Next one selects any one point in the sphere of radiusr and considers the
‘‘little group,’’ that is, the stabilizer in Spin(d11) of the point. Forr .0 the little group is simply
Spin(d). The irreducible representations ofẼ(d11) are then labeled by the value ofr and by an
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irreducible unitary representation of the little group. In this paper we will consider only the
in which the representation of the little group is trivial. Nevertheless the definitions of the
hilation operators and of the coherent states make sense in general. Concretely, the represe
in which the little group acts trivially may be realized in the Hilbert spaceL2(Sd), with the
position operators acting as multiplication operators and the angular momentum operators
as the differential operators given in~52! below.

Choosing a sphere of radiusr amounts to requiring that the operators in~25! satisfy

X25r 2. ~26!

We will shortly impose an additional condition among theX’s andJ’s that forces the representa
tion of the little group to be trivial. For now, however, we will assume only thee(d11) relations
~25! and the condition~26!.

We define the total angular momentumJ2 as in the classical case by

J25(
k, l

Jkl
2 . ~27!

As in the classical case we define

complexifier5
kinetic energy

v
5

J2

2mvr 2 .

We then define the annihilation operators by replacing$•,complexifier% in ~15! with its quan-
tum counterpart, (1/i\)@•,complexifier#,

Ak5expS i

i\ F •,
J2

2mvr 2G DXk5 (
n50

`
1

~2mvr 2\!n

1

n!
@¯@@Xk ,J2#,J2#¯ ,J2#. ~28!

By a standard formula from Lie group theory this may be written as

Ak5e2J2/2mvr 2\Xke
J2/2mvr 2\. ~29!

In the general form of Thiemann’s method,~29! would be exp(2Ĉ/\)Xk exp(Ĉ/\), whereĈ is the
quantum operator corresponding to the classical complexifierC.

For determining the eigenvectors of the annihilation operators~i.e., the coherent states!, ~29!
is the most useful expression for theAk’s. Nevertheless we will give two other formulas, a pol
decomposition and an ‘‘explicit’’ formula in terms of the position and momentum operators.
Ak’s are unbounded operators and so something must be said about their domains; see the
sion at the end of this section. The annihilation operators satisfy~in analogy to~22! and ~23!!

@Ak ,Al #50, ~30!

A25r 2 ~31!

~since@Xk ,Xl #50 andX25r 2).
To computeA we first compute using~25! and ~27! that

1

i\
@Xk ,J2#5JklXl1XlJkl52JklXl1 i\~d lkXl2d l l Xk!52JklXl2 i\dXk .

Here we have chosen to order things with theJ’s to the left of theX’s and we use the sum
convention. Thus in vector notation we have

1

i\ FX,
J2

2mvr 2G5
1

mvr 2 S J2
i\d

2 DX. ~32!
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Here the term involvingi\d/2 is a ‘‘quantum correction;’’ compare~16!.
Since @Jkl ,J

2#50, further brackets will give just another factor of the matrix operatoJ
2 i\d/2. Thus the polar coordinates decomposition ofA has just a single quantum correctio
namely,

A5expH iJ1\d/2

mvr 2 J X. ~33!

In the cased52, a formula very similar to this is taken in Ref. 18 as the definition of
annihilation operators. The only difference is that Kowalski and Rembielin´ski formulate things in
terms of 232 matrix operators, whereas in the cased52, ~33! is in terms of 333 matrix
operators. Nevertheless, our expression is equivalent to that of Kowalski and Rembielin´ski; see
below and Eq.~5.9! of Ref. 20. The analog of~33! for the group case is given in Eq.~3.44! of the
first entry in Ref. 8 and in Eq.~3.13! of the second entry in Ref. 8.

Note that the definition~28! makes sense in any irreducible representation ofẼ(d11) ~with
X25r 2.0,! and that the formula~33! is valid in this generality. However, to computeA more
explicitly than this we need to further specify the irreducible representation ofẼ(d11). We limit
ourselves to the case in which the representation of the little group Spin(d) is trivial. This
corresponds to a quantum particle on the sphere with no internal degrees of freedom. In th
of S2, this corresponds to taking the ‘‘twist’’~in the notation of Kowalski and Rembielin´ski! to be
zero. We show in Sec. IX that the little group acts trivially if and only if the following relat
holds:

X2Jkl5JkmXmXl2JlmXmXk . ~34!

This is the quantum counterpart of the classical constraint~9!.
In computingA it is convenient to introduce ‘‘momentum’’ operatorsPk given by

Pkª
JklXl

r 2 .

These operators arenot self-adjoint and we have chosen to put theJ’s to the left of theX’s
@because we have putJ to the left ofX in ~32! and~33!#. We may rewrite~34! in terms of thePk’s
as

Jkl5PkXl2PlXk . ~35!

The position and momentum operators satisfy

1

i\
@Xk ,Pl #5dklI 2

XkXl

r 2 ~36!

@compare~12!#. We may also compute using~25! the quantum counterpart ofx"p50, which is
really two relations on the quantum side,

P"X50,

X"P5 i\dI.

We now write down the formulas that allow us to computeA in terms ofX andP,

JX5r 2P,
~37!

JP52P2X1 i\~d21!P.
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The first line is simply the definition ofP. The second line comes from~34! or ~35! and is essentia
to the explicit calculation of the annihilation operators in terms ofX andP. Note that there is an
additional quantum correction here. To verify the second line of~37!, write J in terms ofP using
~35! and then use~36!.

We now treatJ as a 232 matrix acting on the ‘‘basis’’X andP, as given in~37!. Since all the
entries of this 232 matrix commute, we can just treatP2 as a scalar and compute an ordina
232 matrix exponential. So effectively we have

J5S 0 2P2

r 2 i\~d21!
D .

One can then compute the exponential of this matrix either by hand or using a computer a
program. A calculation shows thatP25r 22J2 as in the classical case. It is convenient to expr
things in terms of the scalar operator,

JªAJ21\2~d21!2/4.

Then after exponentiatingJ, ~33! becomes

A5e\/2mvr 2
coshS J

mvr 2DX1e\/2mvr 2 \~d21!

2J
sinhS J

mvr 2DX1 ie\/2mvr 2 r 2

J
sinhS J

mvr 2DP.

~38!

Equation~38! is similar to the corresponding classical expression~18!, with only the follow-
ing differences:~1! there is an overall factor of exp(\/2mvr 2); ~2! the quantity j in ~18! is
replaced by (J21\2(d21)2/4)1/2; and~3! there is an extra sinh term in the coefficient ofX that
does not occur in the classical formula. Note that the above expression formally coincides w
classical one in the limit\→0. In the cased52 with r 5mv5\51, ~38! agrees with Eq.~4.16!
in Ref. 18. In the cased53 @identifying S3 with SU(2) and adjusting for minor differences o
normalization# ~38! agrees with Eq.~3.132! in the last entry in Ref. 8. In the cased51 we get an
expression identical to the classical expression~19! except for an overall factor of exp(\/mvr2)
@compare Eqs.~3.3! and ~3.4! of Ref. 19#.

It is clear from ~38! that theAk’s are unbounded operators, as expected since theak’s are
unbounded functions. This means that theAk’s cannot be defined on the whole Hilbert space,
only on some dense subspace, which should be specified. We take the expression~29! as our
definition of the annihilation operators. We first define theAk’s on what we will call the ‘‘minimal
domain,’’ namely, the space of finite linear combinations of spherical harmonics~that is, of eigen-
vectors forJ2!. Expression~29! makes sense on the minimal domain, since each of the t
factors making upAk preserve this space. We consider also a ‘‘maximal domain’’ for theAk’s,
defined as follows. Given any vectoruf& in the Hilbert space, we expanduf& in a series expansion
in terms of spherical harmonics. Then we applyAk term-by-term, that is, by formally interchang
ing Ak with the sum. The result will then be a formal series of spherical harmonics. If this fo
series converges in the Hilbert space then we say thatuf& is in the maximal domain ofAk and that
the value ofAkuf& is the sum of this series.~It can be shown that the product ofxk and a spherical
harmonic of degreen is the sum of a spherical harmonic of degreen11 and a spherical harmoni
of degreen21. It follows that the degreel term in the expansion ofAkuf& involves only the
degreen21 and degreen11 terms ofuf&. So each term in the formal series forAkuf& can be
computed by means of a finite sum.!

It can be shown that if one starts with the operatorAk on its minimal domain and then take
its closure~in the functional analytic sense! the result is the operatorAk on its maximal domain.
Thus if we wantAk to be a closed operator there is only one reasonable choice for its domain
coherent states will not be finite linear combinations of spherical harmonics but will be in
maximal domain of all theAk’s.
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V. THE COHERENT STATES

We are now ready to introduce the coherent states, which we define to be the simulta
eigenvectors of the annihilation operators. These coherent states arenot of Perelomov type. Al-
though we have described the quantum Hilbert space as an irreducible representationẼ(d
11), the coherent states are not obtained from one fixed vector by the action ofẼ(d11). Indeed
the only elements ofẼ(d11) that preserve the set of coherent states are the rotations. See S
for a comparison of these coherent states to the generalized Perelomov-type coherent st
Ẽ(d11), as constructed either by De Bie`vre or by Isham and Klauder.

The coherent states will be simultaneous eigenvectors of the annihilation operatorsAk , and
thus can be thought of as the quantum counterparts of a classical state with definite values
complex coordinatesak . On the quantum side, however,Ak

† does not commute withAk , and thus
although the coherent states satisfyAkuc&5akuc& they donot satisfyAk

†uc&5ākuc&.
We use formula~29! for the annihilation operators. If we introduce the dimensionless form

the total angular momentum,

J̃25
1

\2 J2,

then this may be expressed as

A5e2t J̃2/2Xet J̃2/2, ~39!

wheret is the dimensionless quantity given by

t5
\

mvr 2 .

The parametert is a new feature of the sphere case; no such dimensionless quantity ari
theRd case. The significance oft for the coherent states is that it controls the ratio of the spa
width of the coherent states to the radius of the sphere. Specifically, we expect the appro
spatial widthDX of a coherent state to beA\/2mv, at least if this quantity is small compared
r . In that case

DX

r
'

A\/2mv

r
5At

2
.

So if t!1 we expect the coherent states to be concentrated in a small portion of the sphe
to look, in appropriate coordinates, approximately Gaussian. This has been proven8 for the case of
S35SU(2).

Kowalski and Rembielin´ski implicitly take t51 in their treatment of thed52 case, since
they choose units withm5r 5\51, and since they do not have the parameterv. ~See our
comments in Sec. III about the parameterv.! To us this seems a needless loss of generality, e
though it is easy to insertt in the appropriate places in their formulas.

We now proceed with the construction of the coherent states. For eacha in the real sphereSd,
let uda& be the~generalized! position eigenfunction withXkuda&5akuda&. Since we assume that th
little group acts trivially these position eigenfunctions are~for eacha! unique up to a constant an
we may normalize them so that the action of the rotation group takesuda& to udRa&, RPSO(d
11). If we let

uca&5e2t J̃2/2uda&, ~40!

then it follows immediately from~39! that uca& is a simultaneous eigenvector for eachAk with
eigenvalue ak . Although uda& is non-normalizable, the smoothing nature of the opera
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exp(2tJ̃2/2) guarantees thatuca& is normalizable for allaPSd. A key result of this section is the
following proposition, which asserts that we can analytically continue the coherent statesuca&
with respect toa so as to obtain states labeled by pointsa in the complexsphereSC

d .
Proposition 1: There exists a unique family of statesuca& parameterized byaPSC

d such that
~1! the states depend holomorphically ona, and ~2! for aPSd, they agree with the states in~40!.
These are normalizable states and satisfy

Akuca&5akuca&, aPSC
d .

We call these states thecoherent states. Note that we have then one coherent state for e
point in SC

d , that is, one coherent state for each point in the classical phase space. It can be
that these are~up to a constant! the only simultaneous eigenvectors of the annihilation operat
These coherent states arenot normalized to be unit vectors. The proof of Proposition 1 is at
end of this section.

Note that since the operatorJ̃2 commutes with rotations, the action of the rotation subgro
SO(d11) of E(d11) will take uca& to ucRa& for anyRPSO(d11). On sufficiently regular state
we can analytically continue the action of SO(d11) to an action of SO(d11;C), which will take
uca& to ucRa& for anyRPSO(d11;C). Then any coherent state can be obtained from any othe
the action of SO(d11;C). Since, however, the action of SO(d11;C) is neither unitary nor
irreducible, this observation still does not bring the coherent states into the Perelomov frame

We can give an explicit formula for the coherent states in the position representation in
of the heat kernel on Sd. The heat kernel is the function onSd3Sd given by rt(x,y)

5^dxue2t J̃2/2udy&. It can be shown~see Ref. 1 or the formulas below! that the rt extends
~uniquely! to a holomorphic function onSC

d3SC
d , also denotedrt . In terms of the analytically

continued heat kernel the coherent states are given by

^dxuca&5rt~a,x!, aPSC
d , xPSd. ~41!

Meanwhile, explicit formulas for the heat kernel may be found, for example, in Refs. 25
26. Forx andy in the real sphere,rt(x,y) depends only on the angleu betweenx andy, where
u5cos21(x"y/r 2). This remains true forrt(a,x), with aPSC

d , except nowu5cos21(a"x/r 2) is
complex-valued. Of course the inverse cosine function is multiple-valued, but because th
kernel is an even, 2p-periodic function ofu, it does not matter which value ofu we use, provided
that cosu5a"x/r 2.

We now record the formulas, writingrt
d to indicate the dependence on the dimension.

d51,2,3 we have

rt
1~a,x!5~2pt!21/2 (

n52`

`

e2(u22pn)2/2t,

rt
2~a,x!5~2pt!21et/8

1

Apt
E

u

p 1

Acosu2cosf
(

n52`

`

~21!n~f22pn!e2(f22pn)2/2t df,

rt
3~a,x!5~2pt!23/2et/2

1

sinu (
n52`

`

~u22pn!e2(u22pn)2/2t.

In the formula forrt
2 we may without loss of generality takeu with 0<Reu<p, in which case the

integral is to be interpreted as a contour integral in the strip 0<Ref<p. The relatively simple
formula for the heat kernel onS35SU(2) allows for detailed calculations for the coherent sta
in this case, as carried out in Ref. 8. To find the formula in higher dimensions we use the ind
formula,
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rt
d12~a,x!52edt/2

1

2p sinu

d

du
rt

d~a,x!.

There is also an expression for the heat kernel in terms of spherical harmonics. For ex
whend52 we have

rt
2~a,x!5(

l 50

`

e2t l ( l 11)/2A2l 11Pl~cosu!, ~42!

where thePl is the Legendre polynomial of degreel . @Compare Eq.~5.3! of Ref. 18.# The earlier
expression forrt

2 is a sort of Poisson-summed version of~42! ~see Ref. 26!.
We also consider the reproducing kernel, defined by

Rt~a,b!5^cbuca&, a,bPSC
d . ~43!

In terms of the analytically continued heat kernel the reproducing kernel is given by

Rt~a,b!5r2t~a,b̄!, a,bPSC
d .

Note thatRt(a,b) depends holomorphically ona and antiholomorphically onb.
In the case ofS15U(1) andS35SU(2), Thiemann and Winkler have proved in the seco

and third entries of Ref. 8 that the coherent states defined here satisfy good phase space
tion properties and that the Ehrenfest theorem holds infinitesimally. We fully expect that
results hold for alld. This expectation is based on the idea that the heat kernel in~41! will behave
for smallt like c exp(2u2/2t), even for complex values ofu. Thiemann and Winkler have verifie
this in the casesd51,3 and a similar analysis should be possible in general, using the ex
formulas for smalld and the inductive formula forrd12 in terms ofrd.

Proof of Proposition 1:There are two ways to prove this proposition. The simplest way i
use the expression forca in terms of the heat kernelrt and the explicit formulas above forrt . It
is easily seen thatrt extends to an entire holomorphic function ofu. Thus the expression
^dxuca&5rt(a,x) makes sense for anya in SC

d , with cosu and thus alsou taking complex values.
It is not hard to see that theuca&, so defined, is in the~maximal! domain of the annihilation
operators and that it depends holomorphically onaPSC

d . SinceAkuca&5akuca& for aPSd, an
analytic continuation argument will show that this equation remains true for allaPSC

d . Alterna-
tively we may use the expansion of the coherent states in terms of spherical harmonics as~42!
and show that this expression can be analytically continued term-by-term ina. ~Compare Sec. IV
of Ref. 1.! h

VI. THE RESOLUTION OF THE IDENTITY

We now choose a coordinate system in whichr 51 andmv51. This amounts to using the
normalized positionx/r and normalized momentump/mvr . Since these choices set our positio
and momentum scales we cannot also take\51. Note that the dimensionless parametert
5\/mvr 2 equals\ in such a coordinate system. We now writeucx,p& for uca(x,p)&.

Theorem 2: The coherent states have a resolution of the identity of the form,

I 5E
xPSd

E
p"x50

ucx,p&^cx,pu n~2t,2p!S sinh 2p

2p D d21

2ddp dx, ~44!

wheren(s,R) is the solution to the differential equation,

dn~s,R!

ds
5

1

2 F ]2n

]R2 2~d21!
coshR

sinhR

]n

]RG ,
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subject to the initial condition,

lim
s↓0

cdE
0

`

f ~R!n~s,R!~sinhR!d21 dR5 f ~0!

for all continuous functions f on@0,̀ ) with at most exponential growth at infinity. Here dx is the
surface area measure on Sd, t is the dimensionless quantityt5\/mvr 2, and cd is the volume of
the unit sphere inRd.

The operator on the right-hand side of the equation forn is just the radial part of the Laplacia
for d-dimensional hyperbolic space~Ref. 27, Sec. 5.7!. This means thatn(s,R) is the heat kernel
for hyperbolic space, that is, the fundamental solution of the heat equation. Hyperbolic space
noncompact, negatively curved ‘‘dual’’ of the compact, positively curved symmetric spaceSd.
Note that the functionn is evaluated at ‘‘time’’ 2t and radius 2p. The inversion formula for the
Segal–Bargmann transform, described in Sec. VII, involves the functionn evaluated at timet and
radiusp.

The resolution of the identity for the coherent states will be obtained by continuously va
the dimensionless parametert. Whent50 the coherent states are simply the position eigenv
tors, which have a resolution of the identity because the position operators are self-adjoint. W
show that the functionn satisfies the correct differential equation to make the resolution of
identity remain true as we move to nonzerot.

Theorem 2 is a special case of Theorem 3 of Ref. 17, written out more explicitly and res
in terms of coherent states instead of the Segal–Bargmann transform. However we give b
self-contained and elementary proof. The cased52 is also described~with a different proof! in
Ref. 20. SinceS35SU(2), thed53 case belongs to the group case, which is found in Ref. 1.
also Sec. IV D of the second entry in Ref. 8 for another proof in the SU~2! case.

We report here the formulas for the functionn(s,R), which may be found, for example, in
Ref. 27 Sec. 5.7 or Ref. 26 Eq.~8.73!. Writing nd(s,R) to make explicit the dependence on th
dimension we have

n1~s,R!5~2ps!21/2e2R2/2s,

n2~s,R!5~2ps!21e2s/8
1

Aps
E

R

` re2r2/2s

~coshr2coshR!1/2dr,

n3~s,R!5~2ps!23/2e2s/2
R

sinhR
e2R2/2s,

and the recursion relation

nd12~s,R!52
e2ds/2

2p sinhR

]

]R
nd~s,R!.

Estimates on the behavior asR→` of n may be found in Ref. 27, Sec. 5.7 and in Ref. 28. No
the similarities between the formulas forn and the formulas for the heat kernelrt on the sphere.

Some care must be taken in the interpretation of the integral~44!. Even in theRd case this
integral is not absolutely convergent in the operator norm sense. Rather the appropriate s
convergence is the weak sense. This means that for all vectorsf1 ,f2 in the Hilbert space we have

^f1uf2&5E
xPSd

E
p"x50

^f1ucx,p&^cx,puf2& n~2t,2p!S sinh 2p

2p D d21

2ddp dx, ~45!
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where the integral~45! is an absolutely convergent complex-valued integral. This of cours
formally equivalent to~44!. We will prove Theorem 2 at first without worrying about convergen
or other similar technicalities. Then at the end we will explain how such matters can be deal

Proof of Theorem 2:We now write the coherent states asuca
t& to emphasize the dependence

the dimensionless quantityt5\/mvr 2. We regard the coherent statesuca
t& as living in some fixed

~t-independent! Hilbert space@for example,L2(Sd)# and given heuristically by

uca
t&5e2t J̃2/2uda&, aPSC

d , ~46!

whereuda& is a position eigenvector. Our strategy is essentially the one proposed by Thiema
a more general setting in Ref. 7, Sec. 2.3. We begin with two lemmas that allow us to carry o
strategy explicitly in this situation. The proofs of these lemmas are given at the end of the
of Theorem 2.

Lemma 3: The measure

S sinh 2p

2p D d21

2ddp dx

is invariant under the action ofSO(d11;C) on SC
d>T* (Sd).

Lemma 4: Let Ja
2 and Jā

2 denote the differential operators on SC
d given by

Ja
252(

k, l
S al

]

]ak
2ak

]

]al
D 2

,

Jā
252(

k, l
S āl

]

]āk
2āk

]

]āl
D 2

.

Let f be a smooth, even, real-valued function onR and consider the function on SC
d given by

f~2p!,

where p is regarded as a function ofa by means of (18). Then,

Ja
2f~2p!5Jā

2f~2p!52F]2f

]R2 1~d21!
coshR

sinhR

]f

]RG
R52p

.

Assuming for now the two lemmas, we proceed with the proof of the resolution of the ide
Because the coherent states depend holomorphically ona they satisfy

Jā
2uca

t&50.

Furthermore, it follows from the definition of the coherent states that

d

dt
uca

t&5
1

2
Ja

2uca
t&.

The proof of this is essentially the standard calculation of the action ofJ̃2 in the position repre-
sentation. It then follows that the projection operatoruca

t&^ca
tu satisfies the operator-valued diffe

ential equation,

]

]t
uca

t&^ca
tu5

1

2
~Ja

21Jā
2!uca

t&^ca
tu.

Now we let
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b~p!52dS sinh 2p

2p D d21

. ~47!

Since by Lemma 3 the measureb(p) dp dx is invariant under the action of SO(d11;C) the
operatorsJa

2 andJā
2 are self-adjoint inL2(SC

d ,b(p) dp dx). Thus differentiating under the integra
sign and using the self-adjointness gives

d

dt ExPSd
E

p•x50
uca

t&^ca
tu n~2t,2p!b~p! dp dx

5E
xPSd

E
x•p50

uca
t&^ca

tu F ]

]t
1

1

2
~Ja

21Jā
2!n~2t,2p!Gb~p! dp dx.

Lemma 4 and the differential equation satisfied byn(s,R) tell us that the last integral is zero
Thus the operator on the right-hand side in~44! is independent oft. On the other hand, the initia
conditions forn imply that ast tends to zero the measuren(2t,2p)b(p) dp dx ‘‘collapses’’ to the
Lebesgue measuredx on the real sphere, i.e., the set wherep50. Furthermore, if we conside
coherent statesucx,p

t & with p50, these become simplyudx& in the t↓0 limit. Thus

lim
t↓0

E
xPSd

E
p"x50

ucx,p
t &^cx,p

t u n~2t,2p!b~p! dp dx5E
Sd

udx&^dxu dx5I .

Since the value of the first integral is independent oft this shows that the integral equals th
identity for all t. h

It remains now to prove Lemmas 3 and 4. We begin with the second lemma.
Proof of Lemma 4:Note that expressions such as]/]ak do not make sense when applied to

function that is defined only on the complex sphereSC
d . So the operatoral]/]ak2ak]/]al ~and its

complex conjugate! should be interpreted as follows. Given a smooth functionf on SC
d , extendf

smoothly to a neighborhood ofSC
d , then applyal]/]ak2ak]/]al , and then restrict again toSC

d .
Since (al]/]ak2ak]/]al)a

250 the derivatives are all in directions tangent toSC
d . This means

that the value of the operator onSC
d is independent of the choice of the extension. It is in this w

that Ja
2 andJā

2 are to be interpreted as operators onSC
d .

Now let R52p and leta5uau25Suaku2. Then~18! ~with r 5mv51! tells us that

aªuau25cosh2 p1sinh2 p5cosh 2p.

So,R52p5cosh21 a. We now need to applyJa
2 to a function of the formf(R), which we do by

using the chain rule

]f

]ak
5

df

dR

dR

da

]a

]ak
.

Calculation shows that~for kÞ l !,

S al

]

]ak
2ak

]

]al
D 2

f~R!5
~akāl2al āk!

2

uau421

]2f

]R22
~ uaku21ual u2!~ uau421!1uau2~akāl2alāk!

2

~ uau421!3/2

]f

]R
.

~48!

We now note that

(
k, l

~ uaku21ual u2!5
1

2 (
k,l

~12dkl!~ uaku21ual u2!5
1

2
@2~d11!uau222uau2#5d uau2. ~49!

We use also the easily verified identity
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(
k, l

~akāl2al āk!
252~ uau42ua2u2!52~ uau421!, ~50!

where the first equality is valid everywhere and the second equality is valid on the complex s
SC

d5$a251%.
Using ~49! and ~50! we get, upon summing~48! over k, l ,

(
k, l

S al

]

]ak
2ak

]

]al
D 2

f~R!52
]2f

]R2 2~d21!
uau2

Auau421

]f

]R
.

Recalling thatuau25coshR, so thatAuau4215sinhR, we get the claimed formula. This complete
the proof of the second lemma~with the same argument for the conjugated case!. h

Proof of Lemma 3:Our proof is indirect and uses Lemma 4. We regardSC
d as the quotient

SO(d11;C)/SO(d;C). Since both SO(d11;C) and SO(d;C) are unimodular, general principle
~Ref. 29 Theorem. 8.36! tell us that there is a smooth SO(d11;C)-invariant measure onSC

d and
that it is unique up to a constant. This measure must be in particular SO(d11)-invariant, which
means that it must be of the formg(p) dp dx, sincedp dx is also SO(d11)-invariant. Now the
operatorJa

2 must be self-adjoint with respect to the SO(d11;C)-invariant measure. In particula
Ja

2 must be self-adjoint when restricted to the space of SO(d11)-invariant functions, which can
all be written in the formf (a)5f(2p), as in Lemma 4.

Meanwhile, according to Lemma 4, on SO(d11)-invariant functionsJa
2 is just the hyperbolic

Laplacian, rescaled by a factor of 2. This operator is therefore self-adjoint@on SO(d11)-invariant
functions# with respect to the measureb(p) dp dx, which is just hyperbolic volume measure wit
the same rescaling.

We conclude, then, that on SO(d11)-invariant functions,Ja
2 is self-adjoint with respect to

both the measuresg(p) dp dx andb(p) dp dx. From this it follows that

F ]2g

]R2 1~d21!
coshR

sinhR

]g

]RG
R52p

50, ~51!

whereg(p)5g(p)/b(p). But since bothg andb are smooth, SO(d11)-invariant functions onSC
d

we must have]g/]RuR5050. Solving~51! gives]g/]R5c exp@2(d21)*cothS dS#, so we have

]g

]RU
R50

5c lim
«→0

expF ~d21!E
«

1

cothS dSG50,

which can occur only ifc50, i.e., if g is constant. Thusg is a constant multiple ofb, which is
what we want to show. h

We conclude this section with a few remarks about technicalities in the proof of the reso
of the identity. We have already said that the integral in Theorem 2 is to be interpreted in the
sense, as in~45!. We first establish~45! in the case whereuf1& and uf2& are finite linear combi-
nations of spherical harmonics. In that case it can be shown that the integrand^f1ucx,p

t &
3^cx,p

t uf2& grows only exponentially withp. Sincen has a faster-than-exponential decay~namely,
Gaussian! the integral~45! is convergent. In this case there is not much difficulty in justifying
formal manipulations we have made, such as interchanging derivatives with the integra
integrating by parts. Then once~45! is established for such ‘‘nice’’ vectors, a simple passage to
limit will establish it for all uf1& anduf2& in the Hilbert space. See Refs. 1 or 17 for more deta
on these technicalities.

VII. THE SEGAL–BARGMANN REPRESENTATION

As shown in Sec. IX, any two irreducible unitary representations ofẼ(d11) satisfying~26!
and ~34! are equivalent. The simplest concrete realization of such representations is the p
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representation, in which the Hilbert space isL2(Sd), the position operators act by multiplication
and the angular momentum operators act as differential operators given by

Jkl52 i\S xl

]

]xk
2xk

]

]xl
D . ~52!

The resolution of the identity for the coherent states can be used to give another reali
the ~generalized! Segal–Bargmann representation. In the Segal–Bargmann representation th
bert space is the space of holomorphic functions onSC

d that are square-integrable with respect
the density occurring in the resolution of the identity. In this representation the action o
position operatorsXk is somewhat complicated, but the action of the creation operators~the
adjoints of the annihilation operators! becomes simply multiplication byak . The resolution of the
identity can be reinterpreted as the unitary intertwining map between these two represen
that is, the generalized Segal–Bargmann transform.

Specifically, given any functionf in L2(Sd) we define the Segal–Bargmann transformC f of
f by

C f~a!5^c āu f &. ~53!

Then for anyf , C f(a) is a holomorphic function ofaPSC
d . Note that in the interests of consis

tency with Refs. 1, 17 we have put a complex conjugate on thea in ~53!, so that the dependenc
of C f on aPSC

d is holomorphic rather than antiholomorphic. The Segal–Bargmann transform
be computed as

C f~a!5E
Sd

rt~a,x! f ~x!dx, aPSC
d . ~54!

Herert(a,x) is the heat kernel onSd, with thea variable extended by analytic continuation fro
Sd to SC

d .
Theorem 5 „Segal–Bargmann transform…: The map C defined by (53) or (54) is a unita

map of L2(Sd,dx) onto HL2(SC
d ,n), whereHL2(SC

d ,n) denotes the space of holomorphic fun
tions F on SC

d for which

E
xPSd

E
p"x50

uF~a~x,p!!u2n~2t,2p!S sinh 2p

2p D d21

2ddp dx,`.

The isometricity of the mapC as a map fromL2(Sd) into L2(SC
d ,n) is equivalent to the

resolution of the identity@compare~45!#. ThatC maps into the holomorphic subspace ofL2(SC
d ,n)

follows from the holomorphic dependence of the coherent states ona. It remains only to show tha
the image ofC is all of HL2(SC

d ,n). The proof of this is a fairly straightforward density argume
using spherical harmonics, which we omit.~See Sec. IV of Ref. 17 and Sec. VIII of Ref. 1.!

In the Segal–Bargmann spaceHL2(SC
d ,n) the angular momentum operators act by the ho

morphic analog of~52!, namely,

Jkl52 i\S al

]

]ak
2ak

]

]al
D .

Meanwhile, thecreationoperators, defined as the adjoints of the annihilation operators, are g
by

Ak
†F~a!5akF~a!.

The annihilation operators can be described asToeplitz operators. This means that

AkF5P~ ākF !,
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where P is the orthogonal projection from the fullL2-spaceL2(SC
d ,n) onto the holomorphic

subspace~see Ref. 33!. In the Segal–Bargmann representation the action of the position oper
is more complicated.

Another important feature of the Segal–Bargmann representation is the reproducing
identity. Recall from Sec. V that the reproducing kernelRt(a,b)5^cbuca& is holomorphic ina and
antiholomorphic inb. We then have the following result, which follows easily from gene
principles.~See, for example, Sec. IX of Ref. 1.!

Proposition 6 (Reproducing kernel identity): For any FPHL2(SC
d ,n) we have

F~a!5E
xPSd

E
p•x50

Rt~a,b!F~b~x,p!!n~2t,2p!S sinh 2p

2p D d21

2ddp dx.

Here Rt(a,b)5r2t(a,b̄) is the reproducing kernel, and the integral is absolutely convergent.
The Segal–Bargmann representation can be thought of as defining aphase space wave func

tion for a quantum particle on the sphere, which is related to the position wave function b
Segal–Bargmann transform. This phase space wave function can then be turned into aphase space
probability densityin the usual way: iff is a unit vector inL2(Sd) then the associated probabilit
density is

uC f~a~x,p!!u2n~2t,2p! S sinh 2p

2p D d21

2d. ~55!

This is a manifestly non-negative function on the phase space that integrates to one. InRd

case,33 the expression corresponds to theHusimi functionof f .
If one takes the probability density~55! and integrates out the momentum variables one w

not get the standard position probability densityu f (x)u2 ~even in theRd case!. That is, with this
definition, the position probability density cannot be obtained from the phase space prob
density by integrating out the momentum variables. On the other hand, there is a nice inv
formula for the generalized Segal–Bargmann transform that can be stated roughly as follow
positionwave functioncan be obtained from the phase spacewave functionby integrating out the
momentum variables.

Theorem 7 „Inversion Formula…: Given any function f in L2(Sd), let F5C f be the Segal–
Bargmann transform of f. Then f may be recovered from F by the formula,

f ~x!5E
p•x50

F~a~x,p!!n~t,p!S sinhp

p D d21

dp. ~56!

This result is a special case of Ref. 17; the group analog of this inversion formula was
in Ref. 3. An analog of this formula holds also in theRd case~Ref. 4, Sec. IV!, but does not seem
to be well known. Note that whereas the resolution of the identity involvesn(2t,2p), the inver-
sion formula involvesn(t,p).

This statement of the inversion formula is a bit imprecise, because we have glossed o
question of the convergence of the integral in~56!. The integral cannot always be converge
since a general functionf in L2(Sd) can have singularities. As shown in Theorems 1 and 2 of R
17, we have the following two precise statements. First, iff is sufficiently smooth, then the
integral in ~56! is absolutely convergent for allx and is equal tof (x). Second, for anyf
PL2(Sd) we have

f ~x!5 lim
R→`

Ep•x50
p<R

F~a~x,p!!n~t,p!S sinhp

p D d21

dp,

where the limit is in the topology ofL2(Sd).
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We will describe the proof of Theorem 7 in greater detail in the setting of general com
symmetric spaces. Here we give only the barest outline. The Cauchy–Riemann equationsSC

d

imply that, when applied to holomorphic functions, the hyperbolic Laplacian in the mome
variables is the negative of the spherical Laplacian in the position variables, just as for hol
phic functions onC we have]2F/]y252]2F/]x2. For this result to hold, we must omit th
rescaling of the momentum variables that is present in the resolution of the identity; hen
inversion formula involvesn(t,p) rather thann(2t,2p). The integration in~56! against the
hyperbolic heat kernel is computing the forward heat equation in the momentum variables,
for holomorphic functions is then the same as the backward heat equation in the position var
Since the Segal–Bargmann transform may be computed in terms of the forward heat equa
the position variables,~56! is inverting the Segal–Bargmann transform. Although this is the b
idea of the proof, the convergence questions are more subtle.

Note that there are, besides~56!, many other inversion formulas for the Segal–Bargma
transform. The ‘‘overcompleteness’’ of the coherent states means that there is a lot of red
information in the Segal–Bargmann transform, and therefore many different ways that on
recoverf from C f . To look at it another way, it is possible to have many different integrals
all give the same value when applied to holomorphic functions, as in the Cauchy integral for
Of particular importance is the inversion formula,

f ~x8!5E
SC

d
rt~a,x8!F~a~x,p!! n~2t,2p! S sinh 2p

2p D d21

2ddp dx,

wherert is the analytical continuation of the heat kernel forSd. This formula is obtained by
noting thatC is isometric, and therefore its inverse is its adjoint. One can apply the above int
to any function F in L2(SC

d ,n) ~not necessarily holomorphic!, in which case we havef
5C21PF, where PF is the orthogonal projection ofF onto the holomorphic subspace o
L2(SC

d ,n). See Ref. 1, Sec. IX and Ref. 20, Eq.~6.13!.

VIII. THE Rd CASE

We verify in this section that the methods in this paper, when applied to theRd case, do indeed
reproduce the canonical coherent states. Our ‘‘complexifier’’ is 1/v times the kinetic energy
function, namely,p2/2mv. ~In theRd case the kinetic energy cannot be expressed in terms o
angular momentum.! Then we define

Since$xk ,p2%52pk and$$xk ,p2%,p2%50 we obtain

ak5xk1 i
pk

mv
.

This is, up to an overall constant, the standard complex coordinate on phase space. More g
one can apply the same method to any function of thexk’s, and one will obtain the correspondin
function of ak . For example, it is easily verified by induction that

ei $•,complexifier%~xk
n!5S xk1 i

pk

mv D n

for all positive integersn.
Similarly on the quantum side if we define the complexifier to beP2/2mv and
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Ak5ei [ •,complexifier]/i\Xk5 (
n50

`
1

~2mv\!n

1

n!
@¯@@Xk ,P2#,P2#¯ ,P2#

we get simply

Ak5Xk1 i
Pk

mv
.

This is, up to an overall constant, the usual annihilation operator. Applying the same proced
any function of theXk’s will give the corresponding function of theAk’s.

Following the same normalization procedure as in the sphere case we obtain coheren
given by

uca&5e2P2/2mv\uda&,

at first for aPRd and then by analytic continuation for anyaPCd. In the Rd case we have the
formula

uca&5eia"P/\uc0&.

This normalization coincides with what Hecht30 calls type I coherent states. In the position re
resentation we have

^dxuca&5~2p\/mv!2d/2 expF2
~x2a!2

2\/mv G .
With this normalization of the coherent states the resolution of the identity takes the fo

I 5E
Cd

uca&^caug~a!da,

whereda is 2d-dimensional Lebesgue measure and whereg is the density

g~a!5S p\

mv D 2d/2

expF2
~ Im a!2

\/mv G .
The associated Segal–Bargmann space is the space of holomorphic functions onCd that are
square-integrable with respect to the densityg. This normalization of the Segal–Bargmann spa
is different from that of Segal31 and Bargmann,32 because of the different normalization of th
coherent states. See Ref. 33, Sec. VI for comparisons with the conventions of Segal
Bargmann.

To compare this to what we have in the sphere case, lets5\/mv and consider the Euclidea
heat kernel in the imaginary directions, given by

n~s,a!5~2ps!2d/2 expF2
~ Im a!2

2s G .
Theng(a)52dn(2s,2a), similar to what we have in the sphere case. Note that in the Euclid
casen(2s,2a) is the same, up to an overall constant, asn(s/2,a). Thus it is hard to see the
‘‘correct’’ scaling of the space and time variables from the Euclidean case.

An inversion formula similar to Theorem 7 holds in theRd case; see Ref. 4, Sec. IV.
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IX. REPRESENTATION THEORY OF THE EUCLIDEAN GROUP

We consider representations by self-adjoint operators of the commutation relations~25! for the
Lie algebrae(d11). We further assume that these operators are the Lie algebra represen
associated to a representation of the corresponding connected, simply connected Lie groẼ(d
11). It is known that all the irreducible unitary representations ofẼ(d11) can be realized in
spaces of sections of smooth vector bundles with the Lie algebra acting by smooth diffe
operators. The action of the Lie algebra then extends to an action on distributional se
including the generalized eigenvectors of the position operators. With this discussion in mi
will make free use of position eigenvectors in what follows.

We apply the Wigner–Mackey method and consider an orbit of Spin(d11) in Rd11, namely,
a sphere of radiusr . We consider only the caser .0, in which case the little group is Spin(d).
Fixing a value forr amounts to assuming that the operatorsXk satisfy(Xk

25r 2.
The purpose of this section is to show that the little group acts trivially if and if the follow

relation holds for allk and l ,

X2Jkl5JkmXmXl2JlmXmXk ~57!

~sum convention!. This is equivalent to the relation

Jkl5PkXl2PlXk , ~58!

where by definitionPk5r 22JklXl .
Note that~57! is the quantum counterpart of the constraint to the sphere~9! and therefore

representations ofẼ(d11) satisfying it are closest to the classical motion on a sphere. Neve
less, other representations are of interest, and describe a quantum particle on a sphere with
degrees of freedom. We will consider the general case in a future work.

Suppose now that~57! holds. We wish to show that this implies that the representation of
little group is trivial. So we consider the space of generalized eigenvectors for the operatoXk

satisfying

Xkuc&50, k51,...,d

Xd11uc&5r . ~59!

This is the space on which the little group acts, where the Lie algebra of the little group is
by the operatorsJkl with 1<k,l<d. But now if ~57! holds then fork,l<d we have

r 2Jkluc&50

since in that caseXkuc&5Xl uc&50. This shows~for r .0! that if ~57! holds, then the little group
acts trivially.

Consider now the quantity,

WklªX2Jkl2JkmXmXl1JlmXmXk , ~60!

which satisfiesWlk52Wkl . Condition~57! is equivalent toWkl50. Consider also the quantity

Cª(
k, l

Wkl
2 . ~61!

As we will show below,C is a Casimir, that is, an element of the universal enveloping algebr
e(d11). This implies thatC acts ascI in each irreducible representation.~The value of the
constantc is r 4 times the value of the quadratic Casimir for the little group in each genera
eigenspace for the position operators.!
                                                                                                                



t for
nly

epre-
es

e

o other
here
Ref.

fferent

res that
ced by

1234 J. Math. Phys., Vol. 43, No. 3, March 2002 B. C. Hall and J. J. Mitchell

                    
Let us now assume that the little group acts trivially and determine the value ofc in this case.
We may computec by applyingC to a position eigenvector as in~59!. That the little group acts
trivially means thatJkluc&50 for k, l ,d11. Since alsoXkuc&5Xl uc&50 for k, l ,d11 we
get

Cuc&5cuc&5(
k

~X2Jk,d112JkmXmXd111Jd11,mXmXk!
2uc&.

But sinceXmuc&50 unless andm5d11 ~and sinceJd11,d1150! we get that

~X2Jk,d112JkmXmXd111Jd11,mXmXk!uc&5~X2Jk,d112Jk,d11Xd11
2 10!uc&

5~r 2Jk,d112r 2Jk,d11!uc&50.

This means that if the representation of the little group is trivial then the constantc must be
zero, which means the elementC must be zero in that representation. A calculation shows tha
eachk, l , Wkl is self-adjoint. ThusC is a sum of squares of self-adjoint operators, and the o
way the sum can be zero is if each term is zero, that is, if~57! holds. So if the little group acts
trivially, ~57! must hold, which is what we want to prove.

In the cased52 ~considered in Ref. 18! it is possible to verify that

C5X2~L•X!2, ~62!

where L is the angular momentumvector, related to our angular momentummatrix by L
5(J32,J13,J12). One can easily check that at least this relation holds in each irreducible r
sentation~which is all that is really relevant! as follows. Both sides are Casimirs and so it suffic
to check~62! on the generalized eigenspace in~59!. But for uc& in this space we calculate that

Cuc&5X2~L•X!2uc&5X4J12
2 uc&,

and indeed~62! holds. From~62! we see that takingC50 is equivalent in thed52 case to taking
L•X50 as in Ref. 18.

It remains only to show that the elementC in ~61! is a Casimir. To do this we first comput
the commutation relations ofWkl with the J’s and theX’s. These come out to be

1

i\
@Xk ,Wlm#50, ~63!

1

i\
@Jkl ,Wmn#5dknWlm1d lmWkn2dkmWln2d lnWkm . ~64!

Equation~64! is what we expect for a matrix operator—compare this to the formula for@Jkl ,Jmn#.
Equation~63! implies immediately thatC commutes with eachXk , and Eq.~64! implies, after a
short calculation, thatC commutes with eachJkl .

X. CONCLUDING REMARKS

We end this paper by discussing how the coherent states described here compare t
coherent states that have been proposed for systems whose configuration space is a sp~or
homogeneous space!. As we have explained in detail above, the coherent states introduced in
18 are equivalent to those in Refs. 1, 17, but were discovered independently and from a di
point of view.

Meanwhile, there are several other generalized Segal–Bargmann transforms for sphe
have been considered. These are similar but not identical to each other and were introdu
Bargmann and Todorov,34 Rawnsley,35 Ii,36 Wada,37 Thomas and Wassell,38 and Villegas-Blas.39 In
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most cases the transform is unitary, and this unitarity can be reformulated as a resolution
identity for the associated coherent states. These constructions all have in common that
herent states are labeled by points in the cotangent bundleminus the zero section~i.e., with the
points of zero momentum removed!. In these papers the cotangent bundle minus the zero se
is identified with the null quadric$aPCd11ua250%. This is to be contrasted with the prese
paper, in which the full cotangent bundle of the sphere is identified with the quadric$a25r 2% with
r .0. Thus these constructions are inequivalent to the one considered in this paper. Furth
these constructions do not generalize to higher-rank symmetric spaces.40

Besides these, there have been to our knowledge two other proposed constructions of c
states on spheres~and other homogeneous spaces!. These constructions, inequivalent to Refs. 1,
and to each other, are those of De Bie`vre41 and of Isham and Klauder.42 Both Refs. 41 and 42 are
based on extensions of the Perelomov approach, in that their coherent states are all obtain
one fixed vectorc0 by the action of the Euclidean group. As explained in those papers
ordinary Perelomov approach is not applicable in this case, because the irreducible represe
of the Euclidean group are not square-integrable. Non-square-integrability means that the
Perelomov-type integral, which should be a multiple of the identity operator, is in this
divergent.

De Bièvre’s approach to this problem is to apply to the fiducial vectorc0 only a part of the
Euclidean group. We describe just the simplest case of Ref. 41.~This special case was worked o
independently in a more elementary way by Torresani.43! Specifically, if we work inL2(Sd) then
start with a basic coherent statec0 such that~a! c0 is invariant under rotations about the nor
pole n and ~b! c0 is supported in the northern half-sphere with a certain rate of decay a
equator. One may think ofc0 being concentrated near the north pole and approximating a
whose position is at the north pole and whose momentum is zero. The other coherent sta
then of the form,

exp~ ik"x!c0~R21x!,

where we consider only pairs (k,R) satisfyingk•Rn50. This last restriction is crucial. Sincec0

is invariant under rotations about the north pole, the coherent states are determined by the
of k andRn and are thus labeled by points in the cotangent bundle ofSd. The resolution of the
identity for these coherent states follows from the general procedure in Ref. 41 but can a
proved in this case by an elementary application of the Plancherel formula. The condition thc0

be supported in the northern half-sphere is crucial to the proof.
It is clear that the coherent states considered in this paper are quite different from those

41. First, De Bie`vre’s coherent states do not depend holomorphically on the parameters. Se
each coherent state must be supported in a half-sphere, hence cannot be real-analytic in th
variable. Third, there does not seem to be any preferred choice forc0 in Ref. 41, whereas for the
coherent states considered here the only choice one has to make is the value of the paramv.

Meanwhile, Isham and Klauder use a different method of working around the nonsq
integrability of the irreducible representations ofE(d11). They use reducible representation
corresponding to integration over some small range@r ,r 1«# of radii. This allows for a family of
coherent states invariant under the full Euclidean group and allows a more general basic co
statec0 , without any support conditions. On the other hand it seems natural to get back
irreducible representation by letting« tend to zero, so that the particle is constrained to a sph
with one fixed radius. Unfortunately, although the representation itself does behave well und
limit ~becoming irreducible! the coherent states themselves do not have a limit as« tends to zero.
~See the remarks at the bottom of the first column on p. 609 in Ref. 42.! This seems to be a
drawback of this approach.

Finally, we mention that in the group case, the coherent states described in this paper
obtained by means of geometric quantization, as shown in Ref. 14. This means that in the
case the coherent states are of ‘‘Rawnsley type.’’15 However, this result does not carry over to th
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case of general compact symmetric spaces. In particular the results of Ref. 14 apply only to
spheres that are also groups, namely,S15U~1! andS35SU~2!.
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We study the lowest energyE of a relativistic system ofN identical bosons bound
by harmonic-oscillator pair potentials in three spatial dimensions. In natural units
\5c51 the system has the semirelativistic~or ‘‘spinless-Salpeter’’! Hamiltonian,
H5( i 51

N Am21pi
21( j . i 51

N gur i2r j u2, g.0. We derive the following energy
bounds: E(N)5minr.0@N(m212(N21)P2/(Nr2))1/21(N/2)(N21)gr 2#, N>2,
whereP51.376 yields a lower bound andP5 3

2 yields an upper bound for allN
>2. A sharper lower bound is given by the functionP5P(m) which makes the
formula forE(2) exact: with this choice ofP, the bounds coincide for allN>2 in
the Schro¨dinger limit defined bym→`. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1446245#

I. INTRODUCTION AND MAIN RESULT

Many-body problems form essential links between quantum-theoretical models and
nuclear, atomic, or macroscopic systems. However, even for nonrelativistic quantum theory
are very few many-body problems that have explicit analytic solutions; the harmonic osc
and the attractive delta interaction are well-known exceptions. In relativistic quantum theori
situation is even worse, in spite of the fact that the phenomenon of particle creation allow
quantum field theory would suggest that there is no such thing as a one-body problem
theory. Therefore, it is of considerable interest to study modelN-body systems within the frame
work of the semirelativistic ‘‘spinless-Salpeter’’ equation. For this problem there exists a
defined nonrelativistic limit which yields a useful consistency check. Specifically, we invest
in this article the relative energyE of a system ofN identical bosons represented by a semire
tivistic ‘‘spinless-Salpeter’’ Hamiltonian1,2 of the form

H5(
i 51

N

Am21pi
21 (

j . i 51

N

gur i2r j u2, ~1.1!

wherem is the boson mass, andg.0 is a coupling parameter, and we have chosen units in w
\5c51. The operatorspi are defined3,4 in the momentum-space representation where they
come multiplicative operators~c-variables!. The present work is an extension to the case oN

a!Electronic mail: rhall@mathstat.concordia.ca
b!Electronic mail: wolfgang.lucha@oeaw.ac.at
c!Electronic mail: franz.schoeberl@univie.ac.at
12370022-2488/2002/43(3)/1237/10/$19.00 © 2002 American Institute of Physics
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bosons of our earlier study5 in which we derived energy bounds for the corresponding one-b
problem. We may compareH with the corresponding Schro¨dingerN-body problem with Hamil-
tonian

HS5(
i 51

N pi
2

2m
1 (

j . i 51

N

gur i2r j u2. ~1.2!

Given our goal of investigating therelative ~that is, binding! energies, both of these Hamiltonian
have the unwelcome feature that they include the kinetic energy of the center-of-mass m
This is easy to remedy forHS, but a correct form is not so immediate in the relativistic caseH.
The exact solution to~1.2! is periodically ‘‘rediscovered’’ but has been known at least since 1
when Houston solved the problem.6,7 The ground-state energyES of the nonrelativistic problem is
given for N>2 ~in three dimensions! by the simple formula

«53v1/2, «5
mES

N21
, v5

mNg

2
. ~1.3!

Thus « is exactly the bottom of the spectrum of the one-body Hamiltonian2D1vr 2. In this
article we shall prove the following statement.

Theorem 1: Bounds on the ground-state energy eigenvalue E of the semirelativistic H
tonian (1.1) are provided by the formula

E5min
r .0

FNS m21
2~N21!P2

Nr2 D 1/2

1
N

2
~N21!gr 2G , N>2, ~1.4!

which yields an upper bound on E when P5 3
2, and a lower bound on E when P5P(m), a

function that makes the approximation (1.4) exact in the case N52. The function P(m) is mono-
tone increasing with m, has bounds

1.376,P~m!, 3
2, ~1.5!

and has the limit

lim
m→`

P~m!5 3
2. ~1.6!

In the large-m limit, the upper and lower bounds coalesce to the corresponding exact (non
tivistic) Schrödinger energy ENR5ES1Nm.

The article is primarily concerned with proving Theorem 1. The main technical difficulties
twofold: to keep the fundamental symmetries of translation invariance and boson permu
symmetry, and to find ways of ‘‘penetrating’’ the square-root operator of the Salpeter ki
energy. Our policy is to work with Jacobi relative coordinates to guarantee translation inva
of the wave functions, and to accept the concomitant complications of permutation symmet
discuss the relative coordinates and some of their properties in Sec. II. We shall explo
necessary permutation symmetry to relate theN-body energy to that of a scaled and reduc
two-body problem. The exact solution of the one-body problem is discussed in Sec. III. It is
known that the one-body Salpeter problem is equivalent to a Schro¨dinger problem with Hamil-
tonian2D1Am21r 2.8,9 We take the position in this article that the lowest eigenvaluee(m) of
this problem, which is easy to find numerically, is at our disposal. In Fig. 1 we exhibit grap
the functions$e(m),P(m)%. The extension of these results to the two-body problem is treate
Sec. IV. The lower bound discussed in Sec. V is rendered possible by an operator pr
introduced in Sec. II that allows us, in a sense, to remove certain annihilation operators
inside the square-root operator. For theN-body upper bound discussed in Sec. VI we use
Gaussian wave function and minimize the energy expectation with respect to a scale variab
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calculation is helped by special factoring properties of the Gaussian and by the use of Je
inequality. The bounds corresponding toP5$1.376,1.5% are depicted in Fig. 2, and the conve

gence of the boundsP5$P(m), 3
2% with increasingm is shown in Fig. 3, for 2<N<8.

II. RELATIVE COORDINATES

Jacobi relative coordinates may be defined with the aid of an orthogonal matrixB relating the
column vectors of the new@r i # and old@r i # coordinates according to

@r i #5B@r i #. ~2.1!

The first row ofB defines a center-of-mass variable with every entry 1/AN, the second row define
a pair distancer25(r12r2)/&, and the kth row, k>2, has the firstk21 entries Bki

51/Ak(k21), the kth entry Bkk52A(k21)/k, and the remaining entries zero. We define t
corresponding momentum variables as

@p i #5~B21! t@pi #5B@pi #. ~2.2!

These coordinates have some nice properties which we shall need. First, we have

k(
i 52

k

r i
25 (

j . i 51

k

~r i2r j !
2, k52,3,...,N, ~2.3!

and similarly for the momenta

FIG. 1. The monotone energy functione(m) of the one-body problem defined by~3.1!, and the monotone functionP(m)

used in our standard representation~3.8! for e(m); the functionP(m) is bounded byP(0)51.376<P(m)<P(`)5
3
2.
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k(
i 52

k

p i
25 (

j . i 51

k

~pi2pj !
2, k52,3,...,N. ~2.4!

It follows immediately that ifC is a translation-invariant wave function which is symmet
~or antisymmetric! under the permutation of the individual-particle indices, then it follows tha

~C,r i
2C!5~C,r2

2C!, 2< i<N, ~2.5!

and

~C,p i
2C!5~C,p2

2C!, 2< i<N. ~2.6!

These expectation symmetries might suggest that the wave functionC is symmetric under per-
mutation of the relative coordinates, but this stronger property is only true for Gaussian
functions. Moreover, Gaussian boson wave functions of Jacobi relative coordinates unique10,11

have the further factoring property that

F~r2 ,r3 ,...,rN!5f~r2!u~r3 ,...,rN!, ~2.7!

wheref andu are also Gaussian.

III. THE ONE-BODY PROBLEM

We consider the one-body problem with Hamiltonian

H15Am21p21r 2→e~m!, ~3.1!

FIG. 2. Upper~full lines! and lower~dashed lines! bounds to the lowest energyE(m) of theN-boson relativistic harmonic-
oscillator problem forN52,3,...,8 obtained by employing the constant valuesP51.376 andP51.5, respectively, in Eq.
~1.4! of Theorem 1.
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where, for couplingg51, e(m) is the lowest eigenvalue as a function of the massm. By trans-
forming this problem into momentum space we obtain the equivalent problem

H̃152D1Am21r 2→e~m!. ~3.2!

Since this Schro¨dinger problem is easy to solve numerically to arbitrary accuracy, we shall
the position thate(m) is ‘‘known’’ and at our disposal. We note that in the large-m ~nonrelativistic
or Schrödinger! limit, we have

e~m!.eNR~m!5m1
3

~2m!1/2. ~3.3!

We now define, for a given value ofm, the~lowest! ‘‘kinetic potential’’ 12–14 h̄(s) associated with
the relativistic-kinetic-energy square-root operatorAm21p2 and the harmonic-oscillator potentia
r 2 by

h̄~s!5 inf
cPD~H1!

ici51

~c,Am21p2c!5s

~c,r 2c!, ~3.4!

wherec(r ) is a wave function in the domainD(H1) of H1 . That is to say, we find the minimum
mean-value of the potential, subject to the constraint that the mean kinetic energy is held co
at the values. It follows that the eigenvalue may now be recovered fromh̄(s) by a further
minimization with respect to the kinetic energys. Thus we have

FIG. 3. Upper~full lines! and lower~dashed lines! bounds to the lowest energyE(m) of theN-boson relativistic harmonic-
oscillator problem forN52,3,...,8 obtained by employing the valuesP5P(m) and P51.5, respectively, in Eq.~1.4! of
Theorem 1. ForN52, the lower bound is exact.
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e~m!5min
s.m

@s1h̄~s!#. ~3.5!

An important and useful aspect of this representation fore(m) is that the identical kinetic potentia
h̄(s) can be used for a more general one-body problem in which the kinetic-energy te
multiplied by the positive factorb, say, and the couplingg.0 is returned. We have explicitly

bAm21p21gr 2→«~m,b,g!5min
s.m

@bs1gh̄~s!#. ~3.6!

However, we still have to find the kinetic potentialh̄(s). We do this by changing the mini
mization variable froms.m to r .0 according to the following defining equation forP(m):

h̄~s!5r 2, s5Am21S P~m!

r D 2

. ~3.7!

Now, by rewriting~3.5! in terms of the functionP(m), we obtain

e~m!5min
r .0

FAm21S P~m!

r D 2

1r 2G , ~3.8!

and, by solving~3.8!, we obtain the following expression forP(m) in terms of the one-body
energye(m):

P~m!5S 2~e~m!1Ae2~m!13m2!

27 D 1/2

~2e~m!2Ae2~m!13m2!. ~3.9!

The graphs ofe(m)2m andP(m) are shown in Fig. 1: bothe(m) andP(m) are monotone
increasing withm; e(m)2m, however, is monotonedecreasing, in agreement, for largem, with
the Feynman–Hellmann theorem for the corresponding nonrelativistic case. In the~ultrarelativis-
tic! limit m→0 we haveH̃1→2D1r , that is to say, the operator limit is the Schro¨dinger operator
for the linear potential in three dimensions, with lowest energye(0)52.338 107 41. In the~non-
relativistic! large-m limit we have H1→m2(1/2m)D1r 2, that is to say, the Schro¨dinger har-
monic oscillator with energye(m).m13/A2m. By substituting these ‘‘outer’’ energies in~3.9!,
we obtain the bounds

1.376,P~m!, 3
2. ~3.10!

It is clear from Eq.~3.8! that the expression fore(m), as a function ofm and P, is monotone
increasing inP. Thus, by substituting, respectively, the constantsP51.376 andP51.5, we obtain
from this formula lower and upper bounds on the one-body energye(m). These bounds agre
exactly with the bounds we obtained earlier5,14 for this one-body harmonic-oscillator problem. I
summary—and with the introduction of one more parameterl.0, which we shall need later—we
have

bAm21lp21gr 2→«~m,b,gl!5min
r .0

FbS m21lS P

r D 2D 1/2

1gr 2G . ~3.11!

For eachb.0, g.0, l.0, this formula is exact whenP5P(m), is a lower bound whenP
51.376, and is an upper bound whenP51.5. We have chosen to express this result in this fo
because of the extension to theN-body problem. By elementary scaling arguments we may a
express«(m,b,gl) directly in terms of the energy functione(m) by the explicit formula
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«~m,b,gl!5~b2gl!1/3eS mS b

gl D 1/3D . ~3.12!

As we shall see in the next section, the two-body energy is obtained from~3.11! or ~3.12! by
simply settingl51, b52. It is an extension of this reasoning that will allow us, in Sec. V,
obtain also theN-body,N>2, lower energy bound by using suitable values forb, g, andl.

IV. THE TWO-BODY PROBLEM

For the caseN52 we have explicitly

H5Am21p1
21Am21p2

21gur12r2u2. ~4.1!

Let c(r2) be a normalized boson wave function. Then the lowest relative eigenvalue o
operatorH is the infimum of expectation values of the form (c,Hc). But the boson symmetry o
c(r2) means that the two kinetic-energy terms in (c,Hc) must have the same value. Moreove
in terms of relative coordinates, the operatorp2

2 may be written

p2
25

~p12p2!2

2
. ~4.2!

Now, the operatorp1 would immediately annihilatec(r2) if it were not contained in the squar
root. We claim that, inside the expectation value, the operatorp1 may simply be removed; this
may be seen as an immediate generalization of the following observation.

Lemma 1: SupposeC(x,y)5c(x), then

F12S ]

]x
2

]

]yD 2G1/2

C5S 12
]2

]x2D 1/2

C. ~4.3!

Proof of Lemma 1:If F indicates the two-dimensional Fourier transform and our new v
ables are$p,q%, then we findF(C)(p,q)5c̃(p)d(q), and, by definition, the Fourier transform o
the left-hand side of~4.3! becomes

~11~p2q!2!1/2 c̃~p!d~q!5~11p2!1/2c̃~p!d~q!. ~4.4!

By transforming back to the variables$x,y%, we obtain the right-hand side of~4.3!. h

Applying the generalization of this lemma to our problem in three dimensions, we find
c5c(r2),

~c,Hc!5~c,~2Am21 1
2p2

212gr2
2!c!. ~4.5!

By defining the pair-distance variabler5r12r25&r2 , and the corresponding momentum asp
52 i¹r5p2 /&, we may rewrite~4.5! as

~c,Hc!5~c,~2Am21p21gr 2!c!. ~4.6!

By using a formal relative coordinater , we have thus recovered the well-known15 two-body result:
the minimum of the right-hand side of~4.6! is the bottom of the spectrum ofH which corresponds
precisely to the energy of a one-body problem with the kinetic-energy parameterb52. This result
may also be expressed in terms of the one-body energy functione(m) by means of Eq.~3.12!.
Thus we have explicitly forN52

E5~4g!1/3eS mS 2

g D 1/3D . ~4.7!
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In the next section we shall apply a similar reasoning to theN-body problem; however, for
N.2 we obtain, instead of the exact energy, a lower energy bound.

V. THE LOWER BOUND

Suppose thatC(r2 ,r3 ,...,rN) is a normalized translation-invariantN-boson wave function.
Boson symmetry and, in particular, formula~2.3! allow us to write

E<~C,HC!5N~C,~m21pN
2 !1/2C!1S N

2 Dg~C,2rN
2 C!. ~5.1!

Now, from the definition of the relative coordinates, we have

pN5
1

AN
p12AN21

N
pN . ~5.2!

Consequently, an application of an immediate generalization of Lemma 1 allows us to ‘‘rem
the operatorp1 from the square root of the kinetic-energy term and write

E<NS C,S m21
N21

N
pN

2 D 1/2

C D1S N
2 Dg~C,2rN

2 C!. ~5.3!

Adapting the argument presented in Sec. IV for the two-body caseN52, we define a relative
coordinater5&rN , and the corresponding momentump5pN /&. The expression for the uppe
bound to the lowestN-boson energyE then becomes

E<NS C,S m21
2~N21!

N
p2D 1/2

C D1S N
2 Dg~C,r 2C!. ~5.4!

The inequality~rather than an equality! in ~5.4! comes only from the choice of wave function.
we find the infimum of such expressions over all normalized translation-invariantN-boson wave
functions, we would obtain the exact energyE; if we find this minimum but without the constrain
of boson symmetry, then the right-hand side of~5.4! will in general fall belowE but will in any
case be bounded from below by the bottom of the spectrum of the one-body semirelat
Salpeter Hamiltonian

H5NS m21
2~N21!

N
p2D 1/2

1S N
2 Dgr 2. ~5.5!

But this latter problem corresponds precisely to Eq.~3.11! if we make the parameter substitution

b5N, l5
2~N21!

N
, g→S N

2 Dg5
N~N21!

2
g. ~5.6!

Thus, in view of theP representation~3.8!, it is clear that we have established the lower bou
~1.4! of Theorem 1.

It is interesting to note that we can substitute theN-body values~5.6! for the parametersb, g,
andl into the result~3.12! for the one-body ground-state energy«(m,b,gl) in order to obtain the
following explicit expression for the lower bound:

E>~N2~N21!2g!1/3eS mS N

~N21!2g D 1/3D . ~5.7!
                                                                                                                



t

-

s

lativ-

l with
ergy

f a

1245J. Math. Phys., Vol. 43, No. 3, March 2002 Relativistic N-boson systems

                    
This expression—which is equivalent to the lower bound~1.4! of Theorem 1—gives the exac
energy and agrees with Eq.~4.7! when N52. Meanwhile, for allN>2, in the nonrelativistic
large-m ~Schrödinger! limit it yields the exactN-body energy

ENR5Nm13S g

2mD 1/2

N1/2~N21!, ~5.8!

reproducing thus the old result of Houston recalled in Eq.~1.3!.

VI. THE UPPER BOUND

For the upper bound we employ a Gaussian wave function of the form

F~r2 ,r3 ,...,rN!5C expS 2a(
i 52

N

r i
2D , a.0, ~6.1!

whereC is a normalization constant. The factoring property~2.7! of this function and the boson
symmetry reduction leading to~5.4! allows us to write

E<NS f,S m21
2~N21!

N
p2D 1/2

f D1S N
2 Dg~f,r 2f!, ~6.2!

where the functionf(r ) is given by

f~r !5S a

p D 3/4

expS 2
ar 2

2 D . ~6.3!

Since the kinetic-energy operator is aconcavefunction of the squarep2 of the momentum, we
can use Jensen’s inequality16 to move the expectation value^p2& inside the square root and thu
estimate the mean value of this operator from above and write

E<NS m21
2~N21!

N
~f,p2f! D 1/2

1S N
2 Dg~f,r 2f!. ~6.4!

We shall minimize this upper bound with respect to the scale variablea.0. We parametrize the
basic kinetic-energy and potential-energy expectation values in terms of a variabler .0 by the
following relations:

~f,r 2f!5
3

2a
ªr 2, ~f,p2 f!5

3a

2
5S P

r D 2

, Pª
3

2
. ~6.5!

By substituting these expressions in Eq.~6.4! and minimizing over the variabler, we establish the
upper bound~1.4! of Theorem 1.

VII. SUMMARY AND CONCLUSION

This article is devoted to the investigation of the ground-state eigenvalue of the semire
istic ~‘‘spinless-Salpeter’’! Hamiltonian~1.1! which governs the dynamics of a system ofN iden-
tical bosons that experience pair interactions described by a harmonic-oscillator potentia
coupling strengthg. For a fixed couplingg51, we have represented the exact ground-state en
eigenvalue of the corresponding one-body problem, regarded as a functione(m) of the boson
mass m, by a monotone rising functionP(m), which is bounded by 1.3765P(0)<P(m)
<P(`)51.5. Our bounds~1.4! on the energy of theN-body problem are expressed in terms o
formula which has this functionP as a parameter.
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In Fig. 2 we have plotted the energy bounds corresponding to fixed lower and upper lim
values ofP(m), namely,P5$1.376,1.5%. In Fig. 3 we have kept the same upper energy bou
obtained with the help of a Gaussian trial wave function and corresponding toP51.5, but added
the best lower energy bound of this type, using a ‘‘running’’P5P(m). The lower energy bound
of Fig. 3 is identical to the exact energy for the caseN52. For higherN.2, Fig. 3 shows the
approach of both upper and lower bounds to the well-known exact nonrelativistic solution~1.3! in
the large-m limit.

A key ingredient in this analysis is the use of relative coordinates: only in such a frame
could the upper and lower energy bounds be made to converge in the Schro¨dinger limit. This study
of the semirelativistic harmonic-oscillator problem is a first step towards energy bounds val
more general central pair interactions.
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Maximization of capacity and l p norms for some product
channels

Christopher Kinga)

Department of Mathematics, Northeastern University, Boston, Massachusetts 02115

~Received 23 March 2001; accepted for publication 20 November 2001!

It is conjectured that the Holevo capacity of a product channelV ^ F is achieved
when product states are used as input. Amosov, Holevo, and Werner have also
conjectured that the maximall p norm of a product channel is achieved with product
input states. In this article we establish both of these conjectures in the case thatV
is arbitrary andF is a CQ or QC channel~as defined by Holevo!. We also establish
the Amosov, Holevo and Werner conjecture whenV is arbitrary and eitherF is a
qubit channel andp52, or F is a unital qubit channel andp is integer. Our proofs
involve a new conjecture for the norm of an output state of the half-noisy channel
I ^ F, whenF is a qubit channel. We show that this conjecture in some cases also
implies additivity of the Holevo capacity. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1433943#

I. INTRODUCTION

A quantum channel is the mathematical description of a device which stores and tran
quantum states. Much work has been devoted to the study of particular quantum channe
highly nonclassical properties, and also to general questions such as the information capa
classes of channels. In this article we will consider some problems of the second type, conc
additivity and multiplicativity properties that are believed to hold for all product channels.

The basic components of a quantum channel are a Hilbert spaceH and a noise operatorF.
The quantum states are positive operators onH, with trace equal to one. The noise operatorF is
a completely positive, trace-preserving map which acts on the set of states. Positivity mea
F is a positive operator onB(H) ~the algebra of bounded operators onH!. Complete positivity
means that the mapI ^ F is also a positive operator onB(CK

^ H) for everyK.
When the channel (H,F) is used to store or transmit information, it is assumed that

information is encoded as a state on the product spaceH^ n for somen, and that the noise acts o
this state through the product operatorF ^ n, thereby mimicking the action of a memoryles
channel in classical information theory. The basic properties of such quantum memoryless
nels have been studied by many authors.1–5 One outstanding problem is to determine the ultim
rate at which classical information can be transmitted through this channel, when no prio
tanglement is available between sender and receiver. The protocol that achieves this capac
require messages to be encoded using entangled states and/or decoded using collective m
ments. It is conjectured that this ultimate capacity is given by the well-known Holevo boun3

CHolv~F!5sup
p, r

FSS ( p iF~r i ! D2( p iS~F~r i !!G , ~1!

where S(r)52Trr logr is the von Neumann entropy, and the sup runs over all probab
distributions$p i% and collections of states$r i% on H. This capacity conjecture is equivalent to th
statement that there is no benefit gained when entangled states are used to encode mes
transmission through a quantum channel. As shown by Holevo3 and Schumacher–Westmoreland5

a!Electronic mail: king@neu.edu
12470022-2488/2002/43(3)/1247/14/$19.00 © 2002 American Institute of Physics
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the ultimate rate for information transmission using non-entangled coding states is exactlyCHolv .
Thus the capacity conjecture is implied by theadditivity conjecturefor CHolv , which states that for
any channelsV andF

CHolv~V ^ F!5CHolv~V!1CHolv~F!. ~2!

Although the equality~2! has been shown in some special cases,4–8 it remains a challenging
problem to prove this result for a general pair of channels (V,F). Amosov, Holevo, and Werne
introduced a related conjecture, concerning the noncommutativel p norm of output states from a
product channel6 ~this norm is defined later in this work!. In this article we report progress towar
establishing these conjectures for some special product channels, namely the cases whV is
arbitrary and either (i ) F is a CQ or QC channel~these are defined later!, or (i i ) F is a qubit
channel. In the first case we establish both conjectures. In the second case we estab
Amosov, Holevo, and Werner conjecture for integer values ofp. A principal ingredient in our
proof in the second case is a new bound concerning thel p norm of the output from a ‘‘half-noisy’’
channelI ^ F, for integer values ofp. We conjecture that this bound holds for allp>1, and we
show that in some cases this conjecture implies additivity of the Holevo bound~2!.

The article is organized as follows. Section II contains a precise statement of the resul
the conjectured bound for half-noisy channels. In Sec. III we review the relation of rel
entropy and the Holevo bound. In Secs. IV and V we prove the results for CQ and QC cha
Then in Sec. VI we prove the results for qubit channels, and in Sec. VII we prove the corol
of our new conjecture. In Sec. VIII we give a summary and overview of the results in the p
Finally, the Appendix contains a proof by Lieb and Ruskai of a special case of the conject

II. STATEMENT OF RESULTS

The noncommutativel p norm of a matrixA is defined by

iAip5~TruAup!1/p5@Tr~A* A!p/2#1/p. ~3!

The corresponding maximall p norm for a positive mapF on B(H) is

np~F!5sup
r

iF~r!ip , ~4!

where the sup runs over states inH ~this quantity was introduced in Ref. 6, where it was called
‘‘maximal output purity’’ of the channel!. It is always true that for any mapsV andF, and any
p>1,

np~V ^ F!>np~V! np~F!. ~5!

The multiplicativity conjecture of Ref. 6 states that for any completely positive trace-prese
mapsV andF, and for allp>1,

np~V ^ F!5np~V! np~F!. ~6!

Equality always holds in~6! for p51. It has been shown in several different ways that~6!
holds for allp>1 and allV whenF5I .6,9,10Recently, it has been shown that~6! holds when both
V and F are depolarizing channels, andp is integer.11 In this article we provide some furthe
examples where it holds.

The first case we consider involves the CQ and QC channels introduced by Holevo,4 so we
recall their definitions now. Let$Xb% be a POVM onH ~so Xb>0 and(Xb5I ! and let$Qb% be
any collection of states. Then we can define a channelF by the formula

F~r!5( Tr~r Xb! Qb . ~7!
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Holevo considered two special cases of~7!. First, if $Xb5ueb&^ebu% are projections onto an
orthonormal basis$ueb&% in H, then~7! is called a CQ channel. Second, if$Qb5ueb&^ebu%, then
~7! is called a QC channel. Holevo proved the additivity result~2! whenV5F is either a CQ or
QC channel. Our first result generalizes this by allowing one of the channels,V, to be arbitrary.

Theorem 1: Let F be a CQ or QC channel. Then for any completely positive tra
preserving mapV, l p-multiplicativity ~6! holds for all p>1, and Holevo additivity~2! holds.

For our second set of results we restrict to channels on a two-dimensional Hilbert spac
brevity of notation we will say thatF is a qubit channelif it is a completely positive trace-
preserving map onB(C2).

Theorem 2: Let F be a qubit channel. Then the equality~6! holds for p52, that is, n2(V
^ F)5n2(V)n2(F) for all channelsV.

In order to state the next result we need to recall the classification of qubit maps. Any
mapF can be represented by a real 434 matrix with respect to the basisI ,s1 ,s2 ,s3 , wheres i

are the Pauli matrices. In Ref. 8 it was explained that by using independent unitary transform
in its domain and range, this matrix can be put into the following form:

F5S 1 0 0 0

t1 l1 0 0

t2 0 l2 0

t3 0 0 l3

D . ~8!

This form makes it easy to see howF acts on the Bloch sphere. The sphere is first compresse
an ellipsoid with semi-major axesul1u,ul2u,ul3u, and is then translated by the vectort
5(t1 ,t2 ,t3). There are constraints on the allowed values of these six parameters~coming from the
requirements thatF be completely positive and trace-preserving!, and these constraints have be
fully worked out in Ref. 12. Ift i50 for i 51,2,3, thenF(I )5I , in which caseF is aunital qubit
map.

Our next result requires a slightly stronger condition on the mapF, which we now state in
terms of these parameters:

if ul i u,ul j u,ulku, then t i t j50. ~9!

This condition can be stated in words as follows: the ellipsoid may be translated only in dire
lying in the two planes that are perpendicular to its two smaller axes~if any two axes have equa
length, there is no restriction!.

Theorem 3: Let F be a qubit channel satisfying the condition~9!. Then lp-multiplicativity ~6!
holds for all integer p, that is, np(V ^ F)5np(V) np(F) for all channelsV and all integers p.

The proofs of Theorems 2 and 3 make use of a bound for thel p norm of the output state from
the half-noisy channelI ^ F. We believe that this bound holds for allp>1, however we can prove
it only for the cases listed in the theorems. So, we state the general bound as a conjectur

Conjecture 4: LetF be a qubit channel, and let M>0 be a2K32K matrix. Write M in the
form

M5S X Y

Y* ZD , ~10!

where X, Y and Z are K3K matrices. Then for all p>1

i~ I ^ F!~M !ip<np~F! ~ iXip1iZip!. ~11!

This conjecture has several important consequences, which we list in the next three co
ies. In particular, the first corollary shows that Conjecture 4 implies Theorems 2 and 3.
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Corollary 5: Let F be a qubit channel, and suppose that~11! holds for all positive2K
32K matrices M, for some p>1. Then for any completely positive mapV on B(CK),
l p-multiplicativity ~6! holds for the same value of p.

In Sec. V we will prove that~11! holds for all qubit mapsF whenp52, and also for the case
listed in Theorem 3. Combining this with Corollary 5 will prove Theorems 2 and 3.

Our next result concerns the additivity of minimal entropy. The minimal entropy of a c
pletely positive trace-preserving mapF is defined by

Smin~F!5 inf
r

S~F~r!!. ~12!

The additivity of minimal entropy is the statement that

Smin~V ^ F!5Smin~V!1Smin~F!. ~13!

Corollary 6: Let F be a qubit channel, and suppose that~11! holds for all positive2K
32K matrices M, and for all pP@1,s) for some s.1. Then for any completely positive mapV on
B(CK), additivity of minimal entropy~13! holds.

For our last corollary, recall that a mapF is unital if F(I )5I , which means roughly thatF
leaves unchanged the ‘‘noisiest’’ state through the channel.

Corollary 7: Let F be a unital qubit channel, and suppose that~11! holds for all positive
2K32K matrices M, and for all pP@1,s) for some s.1. Then for any completely positiv
trace-preserving mapV on B(CK), Holevo additivity~2! holds.

Remarks:
~1! There are two special cases where it is easy to verify Conjecture 4. First, ifM is a

one-dimensional projection, then the right side of~11! becomesnp(F) Tr(M ), and then the resul
follows immediately from the definition~4!. Second, suppose thatF is the identity map, so
np(F)51. Define the projections

P05S I 0

0 0D , P15S 0 0

0 I D . ~14!

Then convexity of thel p norm for p>1 implies that

iM ip5iM1/2~P01P1!M1/2ip<iM1/2P0M1/2ip1iM1/2P1M1/2ip . ~15!

Furthermore, for any matrixA, the matricesAA* andA* A have the same spectrum, so we dedu
that

iM ip<iP0M P0ip1iP1M P1ip5iXip1iZip ~16!

~this derivation is a special case of a more general result for POVMs which is described in
13!.

~2! Lieb and Ruskai have recently established Conjecture 4, Eq.~11!, for a depolarizing
channel in the special caseX5Z, for all p>1. Recall that the depolarizing channel is described
the parameter valuesl15l25l35l, and t15t25t350, so that in this case the bound~11!
becomes

I S X lY

lY* X D I
p

<np~F! ~2iXip!, ~17!

where

np~F!5F S 11l

2 D p

1S 12l

2 D pG1/p

. ~18!
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Their proof appears as an Appendix to this article.
~3! Theorem 3 was proved in Ref. 8 for unital maps in the casep5`, and our proof here

extends this result to all integer values ofp ~and to a larger class of maps!. The class of qubit maps
which satisfy~9! includes all unital qubit maps and many nonunital maps. In particular, our p
applies to any extreme point in the set of qubit maps~this refers to recent work in Ref. 12, and w
discuss it more fully in Sec. III!.

~4! To prove Corollaries 6 and 7 we need only the derivative of~11! at p51, which we now
state as a separate bound. Assume thatM has the form~10! with Tr(M )51, and define the state

j5
1

TrX
X, z5

1

TrZ
Z. ~19!

Then taking the derivative of~11! at p51 gives

S~~ I ^ F!~M !!>Smin~F!1Tr~X!S~j!1Tr~Z!S~z!. ~20!

~5! WhenV andF are both unital qubit maps, the additivity result~2! follows immediately
from the additivity of minimal entropy~13!, as was discussed in Ref. 8. This is also true ifV
5F1^¯^ Fn is a product of unital qubit maps. Additivity of Holevo capacity~2! for the
‘‘half-noisy’’ case F5I was proved by Schumacher and Westmoreland,10 and their analysis un-
derlies our proof of Corollary 7.

III. RELATIVE ENTROPY AND THE HOLEVO BOUND

The Holevo bound~1! can be reexpressed in terms of relative entropy in several ways~see, for
example, the discussion in Ref. 14!. Here we will follow the approach of Ohya, Petz, an
Watanabe15 and Schumacher and Westmoreland,10 who express~1! as an optimization of relative
entropy.

Let F be a channel, and letE5$p i ,r i% be an ensemble of input states for the channel. De

x~F;E!5SS ( p iF~r i ! D2( p iS~F~r i !!. ~21!

Following the notation of Ref. 10, the Holevo capacity of the channel is denoted

x* ~F!5CHolv~F!5sup
E

x~F;E!. ~22!

As shown in Ref. 10 there is an ensemble which achieves this supremum. The ensemble m
be unique, however its average input state is unique. We letr* 5(p ir i denote this optimal
average input state.

The relative entropy of a statev with respect to a stater is defined by

S~vur!5Trv~ logv2 logr!. ~23!

Relative entropy is non-negative:S(vur)>0, with equality if and only ifv5r. There is a useful
characterization of the capacityx* (F) in terms of relative entropy, namely

x* ~F!5 inf
r

sup
v

S~F~v!uF~r!!. ~24!

This result was derived in Ref. 15 and also in Ref. 10. For our purposes it is convenient to r
it as follows: for any stater,

x* ~F!<sup
v

S~F~v!uF~r!! ~25!
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and equality holds in~25! if and only if r5r* .
Our goal is the additivity result~2!. By restricting to product states it is clear that

x* ~V!1x* ~F!<x* ~V ^ F!. ~26!

So, to establish~2! it is sufficient to prove the bound

x* ~V ^ F!<x* ~V!1x* ~F!. ~27!

For a channelF, denote the optimal averageoutputstate by

rFªF~r* !. ~28!

Then ~25! implies that

x* ~V ^ F!<sup
t

S~~V ^ F!~t!urV ^ rF!. ~29!

Therefore, in order to prove~27!, and hence~2!, it is sufficient to show that for any statet,

S~~V ^ F!~t!urV ^ rF!<x* ~V!1x* ~F!. ~30!

IV. PROOF FOR CQ CHANNEL

Let F be a CQ channel onB(CN), so that

F~r!5( Tr~rXb!Qb , ~31!

where$Xb% are one-dimensional orthogonal projections. It follows that for allb51, . . . ,N,

Qb5F~Xb!. ~32!

Let V be a completely positive map onB(CK). Then for any statet in B(CK
^ CN),

~V ^ F!~t!5(
b

V~Tr2@~ I ^ Xb!t#! ^ Qb , ~33!

where Tr2 is the trace over the second factor. For eachb51, . . . ,N let

nb5Tr~~ I ^ Xb!t!, ~34!

and define the state

tb5
1

nb
Tr2~~ I ^ Xb!t!. ~35!

Then ~33! can be written

~V ^ F!~t!5(
b

nbV~tb! ^ Qb5(
b

nbV~tb! ^ F~Xb!, ~36!

where in the second equality we used~32!.
Turning first to thel p norm result, it follows from~36! and the definition~4! that

i~V ^ F!~t!ip<( nb np~V!np~F!5np~V!np~F!, ~37!
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and this proves~6!.
Turning next to the channel capacity result, we will prove that~30! holds. Indeed~36! implies

that

S~~V ^ F!~t!urV ^ rF!<( nb @S~V~tb!urV!1S~F~Xb!urF!#, ~38!

where we used the additivity of relative entropy for product states. Now~24! implies

S~V~tb!urV!<x* ~V!, S~F~Xb!urF!<x* ~F!, ~39!

which proves the result.

V. PROOF FOR QC CHANNEL

Let F be a QC channel, so that

F~r!5( Tr~rXb!Qb , ~40!

where now$Qb% are one-dimensional orthogonal projections. For any statet,

~V ^ F!~t!5( V~Tr2~ I ^ Xb!t! ^ Qb5( nbV~tb! ^ Qb , ~41!

where we use the definitions~34! and ~35!. Now define

u5Tr1~t!. ~42!

Then it follows that

nb5Tr~u Xb! ~43!

and ~41! can be written as

~V ^ F!~t!5( V~tb! ^ ~Tr~u Xb!Qb!. ~44!

First we prove the bound for thel p norm. Using the fact that$Qb% are orthogonal projections
we get

Tru~V ^ F!~t!up5( TruV~tb!up ~Tr~u Xb!!p. ~45!

The definition of thel p norm implies that for any positive matrixA,

iV~A!ip<np~V! Tr~A!, ~46!

and hence~45! implies that

Tru~V ^ F!~t!up<~np~V!!p ( ~Tr~u Xb!!p. ~47!

Furthermore, from~40! it follows that

TruF~u!up5( @Tr~uXb!#p. ~48!
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Combining~47! and ~48! and taking thepth root gives

iV ^ F~t!ip<np~V! iF~u!ip<np~V!np~F!, ~49!

which then proves the result.
Turning now to the additivity of the channel capacity, we will again establish the bound~30!.

We claim that the following identity holds:

S~~V ^ F!~t!urV ^ rF!5( Tr~u Xb!S~V~tb!urV!1S~F~u!urF!. ~50!

From the result~25! it follows that

S~F~u!urF!<x* ~F!, S~V~tb!urV!<x* ~V!. ~51!

Therefore~50! implies

S~~V ^ F!~t!urV ^ rF!<( Tr~u Xb!x* ~V!1x* ~F!5x* ~V!1x* ~F!, ~52!

and this proves the result.
So it remains to verify the identity~50!. This follows easily from the definition of relative

entropy, and the fact that$Qb% are orthogonal projections.

VI. PROOFS FOR QUBIT CHANNELS

In this section we prove Theorems 2 and 3. We do this by establishing the bound~11!, and
then using Corollary 5, which will be proved in the next section.

Let F be a qubit map, and assume that bases have been chosen in its domain and rang
it has the form~8!. Clearly, the maximall p norm ofF is invariant under permutations of the thre
coordinates. It is also invariant under the following symmetry operations.

Lemma 8: For every p, np(F) is invariant if the signs of any two of(l1 ,l2 ,l3) are reversed,
or if the signs of any two of(t1 ,t2 ,t3) are reversed.

The proof is easy: first notice that conjugation bys1 in the domain ofF switches the signs o
l2 ,l3 without any other changes, and similarly for conjugation bys2 ands3 . Then notice that
simultaneous conjugation bys1 in both the domain and range ofF switches the signs oft2 ,t3

without any other changes, and similarly fors2 ands3 .
As a consequence, we will assume henceforth without loss of generality that

t1>0,t2>0 and l1>l2>0. ~53!

Our first goal is to establish Conjecture 4 forp52, for any mapF. We rewrite~10! more fully
as

M5S X Y12 iY2

Y11 iY2 Z D , ~54!

whereX.0, Z.0 andY1 , Y2 are Hermitian. LetW5(X1Z)/2. Then using the special form~8!
we get

~ I ^ F!~M !5S c11X1c21Z ~ t1W1l1Y1!2 i ~ t2W1l2Y2!

~ t1W1l1Y1!1 i ~ t2W1l2Y2! c22X1c12Z D , ~55!

where

c115~11l31t3!/2, c215~12l31t3!/2,

~56!
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c125~11l32t3!/2, c225~12l32t3!/2.

Note that sinceM>0 andF is a qubit map, it follows that (I ^ F)(M )>0 for all choices ofX and
Z. Hence the four coefficients in~56! are positive, for all allowed values oft3 andl3 .

Taking the trace of the square of~55! gives

Tru~ I ^ F!~M !u25Tr~c11X1c21Z!21Tr~c12X1c22Z!212Tr~ t1W1l1Y1!2

12Tr~ t2W1l2Y2!2. ~57!

Define

x5iXi2 , z5iZi2 , y15iY1i2 , y25iY2i2 . ~58!

Then using the Cauchy–Schwarz inequality for the Hilbert–Schmidt norm and our posi
condition ~53! we get

Tru~ I ^ F!~M !u2<~c11x1c21z!21~c12x1c22z!212S t1

~x1z!

2
1l1y1D 2

12S t2

~x1z!

2
1l2y1D 2

. ~59!

Define the 232 matrix

m5S x y12 iy2

y11 iy2 z D . ~60!

Then ~59! can be rewritten as

i I ^ F~M !i2<iF~m!i2 . ~61!

The positivity ofM implies that

y1
21y2

25TruY12 iY2u2<iXi2iZi25xz, ~62!

and hence thatm is positive. Therefore

i~ I ^ F!~M !i2<n2~F!Tr~m!5n2~F!~x1z!5n2~F!~ iXi21iZi2!, ~63!

which establishes~11! for p52, and hence by Corollary 5 proves Theorem 2.
In order to prove Theorem 3 we will assume that the condition~9! is satisfied. Without loss of

generality, this condition can be rewritten as follows:

t1>0 and t250 and l1>l2>0. ~64!

To see this, suppose first thatul i uÞul j u for any i , j . Then the condition~9! implies that at least one
of the t i is zero, and also that the correspondingul i u is not the largest. Hence by permutin
coordinates we can arrange thatt250 and thatul1u.ul2u. By switching signs of pairs of param
eters we can then restate~9! as ~64!. Suppose now thatul i u5ul j u for somei , j . By permuting
coordinates we can assume thatul1u5ul2u, and by changing signs thatl15l2>0. This allows a
further symmetry transformation, namely we can conjugate by a unitary matrixU5eius3 in the
range ofF without changingnp(F). With such a conjugation we can sett250, and then the
condition ~64! again holds.
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The condition~64! is clearly satisfied for all unital maps, since in that caset i50 for all i . It
is also satisfied by all maps in the closure of the set of extreme points of the~convex! set of qubit
maps. This fact follows from Theorem 4 in Ref. 12, where it was shown that all such maps
only one of the parameterst1 ,t2 ,t3 being nonzero.

In order to prove~11!, we rewrite~55! as

~ I ^ F!~M !5S R11 R12

R21 R22
D 5R11^ E111R12^ E121R21^ E211R22^ E22, ~65!

whereEi j is the 232 matrix with 1 in position (i , j ) and 0 elsewhere, and where

R115c11X1c21Z,

R125~ t1W1l1Y1!2 il2Y2 ,
~66!

R215~ t1W1l1Y1!1 il2Y2 ,

R225c22X1c12Z

@we have used the condition~64! to sett250#.
For integerp we can evaluate Tru(I ^ F)(M )up by multiplying the right side of~65! with itself

p times, and taking the trace with respect to a product basisei ^ f j where$ei% spanCK and f 1 , f 2

spanC2. The result is

Tru~ I ^ F!~M !up5( Tr@Ei 1 j 1
Ei 2 j 2

¯ Ei pj p
#Tr@Ri 1 j 1

Ri 2 j 2
¯ Ri pj p

#, ~67!

where the sum runs over all indicesi 1 , j 1 , . . . ,i p , j p51,2. The coefficient Tr@Ei 1 j 1
Ei 2 j 2

¯ Ei pj p
#

in each of these terms is non-negative, since the matrices$Ei j % are all non-negative. Furthermore
repeated application of Ho¨lder’s inequality shows that

uTrA1A2 ¯ Apu<iA1ipiA2ip¯ iApip ~68!

for any product ofp matrices. Hence the sum in~67! is bounded above by

Tru~ I ^ F!~M !up<( Tr@Ei 1 j 1
Ei 2 j 2

¯ Ei pj p
#iRi 1 j 1

ipiRi 2 j 2
ip ¯ iRi pj p

ip . ~69!

We define the 232 matrix

m85S x8 y8

y8 z8
D , ~70!

where now

x85iXip , z85iZip , y85iY12 iY2ip . ~71!

The matrixm8 is positive. This can be seen most easily by noting that the positivity ofM implies
that Y12 iY25AX TAZ where T is a contraction,12 and hence by Ho¨lder’s inequality y8
<Ax8 z8. Applying the mapF gives

F~m8!5@c11x81c21z8# ^ E111@ t1~x81z8!/21l1y8# ^ E12

1@ t1~x81z8!/21l1y8# ^ E211@c22x81c12z8# ^ E22. ~72!

Applying the same method to evaluate TruF(m8)up gives
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TruF~m8!up5( Tr@Ei 1 j 1
Ei 2 j 2

¯ Ei pj p
#r i 1 j 1

r i 2 j 2
¯ r i pj p

, ~73!

where

r 115c11x81c21z8,

r 125r 215t1~x81z8!/21l1y8, ~74!

r 225c22x81c12z8.

We now claim that

Tru~ I ^ F!~M !up<TruF~m8!up. ~75!

If we assume for the moment that~75! is valid, then it implies

i~ I ^ F!~M !ip<iF~m8!ip<np~F!Tr~m8!<np~F!~x81z8!. ~76!

This proves~11!, which by Corollary 5 implies Theorem 3.
So, it is sufficient to demonstrate~75!. From ~69! and ~73! it is sufficient to show that

iRi j ip<r i j ~77!

for all i , j 51,2. First, using the positivity ofc11 , etc., we have

iR11ip5ic11X1c21Zip<c11x81c21z85r 11,

iR22ip5ic12X1c22Zip<c12x81c22z85r 22.

The remaining bound also follows easily, since

iR12ip5i t1

~X1Z!

2
1l1Y12 il2Y2ip<i t1

~X1Z!

2
ip1i~l12l2!Y11l2~Y12 iY2!ip

<t1~x81z8!/21~l12l2!iY1ip1l2iY12 iY2ip ,

~78!

where in the last line we used~53!. Furthermore,

iY1ip5i~Y12 iY2!/21~Y11 iY2!/2< 1
2 iY12 iY2ip1 1

2 iY11 iY2ip5y8.

Hence~78! becomes

iR12ip<t1~x81z8!/21~l12l2!y81l2y85t1~x81z8!/21l1y85r 12, ~79!

which establishes the result.

VII. PROOFS OF COROLLARIES

A. Corollary 5

Let V be any completely positive map onB(CK), and lett be a state onB(CK
^ C2) of the

form

t5S A B

B* CD , ~80!
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whereA,B,C areK3K matrices, withA>0, C>0 and Tr(A1C)51. ThenM5(V ^ I )(r) has
the form~10! with X5V(A), Y5V(B) andZ5V(C). Hence from the definition of the maxima
l p norm it follows that

iXip<np~V!Tr~A!, iZip<np~V!Tr~C!. ~81!

Applying ~11! and using the facts that (I ^ F)(M )5(V ^ F)(r) and Tr(A)1Tr(C)5Tr(r)51
we immediately deduce Corollary 5.

B. Corollary 6

Recall that the entropy of a stater is defined by

S~r!52Trr logr. ~82!

Using Trr51 it follows that

d

dp
~ irip!p5152S~r!, ~83!

and hence that

d

dp
~np~F!!p5152Smin~F!. ~84!

Therefore taking the derivative of~6! at p51 yields immediately~13!.

C. Corollary 7

From the results of Sec. II, it is sufficient to establish the bound~30!. For any statesv andr
we have

log~v ^ r!5 logv ^ I 1I ^ logr. ~85!

Furthermore, sinceF is a unital qubit map it follows that its optimal average output state is

rF5 1
2I . ~86!

Since log(1/2I )52 log(2)I and Tr(V ^ F)(r)51 it follows that the left side of~30! can be
written as

2S~~V ^ F!~t!!2Tr~~V ^ F!~t!log~rV! ^ I !1 log~2!. ~87!

Define

v5Tr2t. ~88!

Then the second term in~87! is equal to

2TrV~v!log~rV!. ~89!

Also, the fact thatF is unital implies that

x* ~F!5 log~2!2Smin~F!. ~90!

Hence to prove~30! it is sufficient to prove that

2S~~V ^ F!~t!!2TrV~v!log~rV!<x* ~V!2Smin~F!. ~91!
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Now we use the bound~20!, which is implied by~11!. Again lett have the form~80!, so that
M5(V ^ I )(t) has the form~10! with X5V(A) andZ5V(C). Let a5TrA5TrX, and define the
states

a5
1

TrA
A5

1

a
A, g5

1

TrC
C5

1

12a
C. ~92!

Then using the notation of~19!, j5V(a) andz5V(g), and~20! can be written

S~~V ^ F!~t!!>Smin~F!1aS~V~a!!1~12a!S~V~g!!. ~93!

Comparing with~91!, it is sufficient to prove that

2aS~V~a!!2~12a!S~V~g!!2Tr V~v! log~rV!<x* ~V!. ~94!

Sincev5aa1(12a)g, we can rewrite the left side of~94! as

aS~V~a!urV!1~12a!S~V~g!urV!. ~95!

SincerV is the optimal output state for the channelV, it follows from ~24! that

S~V~a!urV!<x* ~V!, ~96!

S~V~g!urV!<x* ~V!. ~97!

Combining~94!–~96! yields the result.

VIII. SUMMARY

The results in this article all concern product channels of the formV ^ F, where in every case
V is an arbitrary channel. For these product channels we prove a variety of results inv
different measures of the purity of output states from the channel.

The first set of results apply whenF is a CQ or QC channel. Recall that the CQ channel fi
maps an input state to a letter in a classical alphabet, and then maps this to a quantum sta
output. The QC channel measures the input state with some POVM, and assigns different
to orthogonal output states. In both cases we prove that the output state with maximall p norm is
a product state, and also that the Holevo capacity is achieved on a product state. In other
the maximall p norm of the product channel is multiplicative and the Holevo capacity is addi
These results were previously shown to be true in the case whereF is the identity map~and the
additivity of the Holevo capacity also whenV5F!.

The second set of results applies whenF is a qubit map, that is, a map on states inC2. We
prove multiplicativity for thep52 norm, for any qubit mapF. We also prove multiplicativity for
the l p norm whenp is any integer, and with some restrictions onF. The class of mapsF
satisfying the restrictions includes all unital qubit maps.

The third set of results revolves around a conjectured bound~11! for the l p norm of any output
state from the half-noisy channelI ^ F, when F is a qubit channel. We show that this boun
implies multiplicativity of thel p norm for any product channelV ^ F. We also show that whenF
is unital the bound implies additivity of the Holevo capacity of the product channelV ^ F.
Therefore we believe that this conjecture provides a new and useful approach to the con
that the Holevo capacity is universally additive. In a hopeful sign of future progress on
important problem, Lieb and Ruskai have established Conjecture 4 in one nontrivial case~their
proof appears as the Appendix that follows!.
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APPENDIX: THEOREM OF LIEB AND RUSKAI

Let M5(Y*
X

Z
Y) and recall thatM is positive semi-definite if and onlyY5AXRAZ with R a

contraction. Moreover, any contraction can be written as a convex combination of unitary m
ces.~See Ref. 16 or 12 for details and further references.! Hence, by the convexity of thep-norm,
it suffices to prove~17! under the assumption thatY5AXVAZ with V unitary.

We now consider the special caseX5Z and note that we can write

~ I ^ F!~M !5S X lY

lY* X D 5AFGAF ~A1!

with F5(0
X

X
0) andG5(lV*

I
I
lV). We will use a result of Lieb and Thirring~Appendix B of Ref. 17!

that, for p>1 andF,G>0,

Tr~F1/2GF1/2!p<Tr~FpGp!. ~A2!

The critical feature is to note thatG has eigenvalues (16l). Moreover,

S I lV

lV* I D 5
1

2 S I V

V* 2I D S ~11l!I 0

0 ~12l!I
D S I V

V* 2I D . ~A3!

Thus

Tr@~ I ^ F!~M !#p<
1

2
TrS I V

V* 2I D S Xp 0

0 XpD S I V

V* 2I D S ~11l!pI 0

0 ~12l!pI D
5~11l!pTr

1

2
~Xp1VXpV* !1~12l!p Tr

1

2
~Xp1V* XpV!

5@2np~F!#piXip
p .

Taking thepth root gives the desired result,i(I ^ F)(M )ip<np(F)2iXip .
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Pinning phenomena near the lower critical field
for superconductor
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In this paper, we prove that for fields close to the lower critical field, minimizers of
the Ginzburg–Landau functional of an inhomogeneous superconductor have a
number of vortices bounded independently from the Ginzburg–Landau parameter.
We also locate the vortices. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1448681#

I. INTRODUCTION AND STATEMENT OF THE RESULTS

We are interested in describing the global minimizers of the Ginzburg–Landau function

J~u,A!5
1

2 EV
u¹Auu21uh2hexu21

k2

2
~a~x!2uuu2!2 ~1.1!

that corresponds to the free energy of a superconductor1,2 in a prescribed, constant magnetic fie
hex. HereV,R2 is the smooth, bounded, simply connected section of the superconducto
a(x):V→R is a given function satisfying 0,minV̄ a(x)<a(x)<1 in V. The unknowns in~1.1! are
the complex-valued order parameteruPH1(V,C) and theU(1) connectionAPH1(V,R2). Here
h5curlA52]2A11]1A2 is the induced magnetic field and¹Au5¹u2 iAu. The order paramete
u indicates the local state of the material:uuu is the density of superconducting electron pairs,
that, whenuuu.1, the material is in its superconducting state, whereas whenuuu.0, it is in its
normal state.k.0 is the Ginzburg–Landau parameter depending on the material. The minim
a(x) corresponds to the impurities in the material. It is expected that these minima will b
pinning sites for the vortices.

Minimizers of J(u,A) in H1(V,C)3H1(V,R2) solve the Euler equations

H 2¹A
2u5k2u~a~x!2uuu2! in V,

2¹'h5~ iu,¹Au! in V,
~1.2!

with the boundary conditions

H h5hex on ]V,

~¹u2 iAu!•n50 on ]V.
~1.3!

Here¹' denotes (2]x2
,]x1

), n is the unit outer normal vector to]V, and (z,w)5Re(zw̄) where
z andw are inC.

The functionalJ(u,A) are invariant underU(1) gauge transformations of the type

v5ueiw, B5A1¹w for any wPH2~V,R!. ~1.4!

It is well known that there are two critical fieldsHc1
and Hc2

for which a phase transition
occurs. AboveHc2

, superconductivity is destroyed and material is in the normal phase. B

a!Electronic mail: zuhanl@yahoo.com
12610022-2488/2002/43(3)/1261/12/$19.00 © 2002 American Institute of Physics
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Hc1
, the material is superconducting everywhere. WhenHc1

<hex<Hc2
, the material is in mixed

state. In this state, the minimizers of~1.1! exhibit vortices, i.e., points where the order parame
vanishes. It is of interest to determine where these points are located. We refer to Refs. 3–
a discussion of this functional in the casea(x)51.

In this paper, we want to address the question of how the term will modify the properti
the superconductor in the presence of an exterior magnetic field here. In particular, our inte
the pinning phenomena of vortices. First, we recall some results. In Ref. 14, we obtaine
asymptotic expansion

Hc1
;

u logku

maxVUj0

a U as k→`, ~1.5!

whereh0 is the solution of

H 2divS 1

a
¹h0D1h050 in V,

h051 on ]V,

~1.6!

and

j05h021,0. ~1.7!

In Ref. 15, we prove the following theorem.
Theorem A: There exist constantsk0 ,C.0 such that for anyk.k0 and hex,Hc1

2C log logk, the minimizer(u,A) of (1.1) satisfiesuuu> 1
2 minV a.0 in V̄, that is, the minimizer

(u,A) has no vortex.
In this paper, we are interested in the casehex<Hc1

1C log logk. We prove that the minimiz-
ers have bounded vorticity and locate them. Before stating our main results, we recall th
struction of vortex balls.

Proposition 1.1: Assume thatV,R2 is a smooth simply connected, bounded doma,
a(x):V→R` is a C22-smooth function satisfying0,minV a<a(x)<1. Then, for any k
.k0 ,hex,K logk, and critical point (u,A) of J(u,A) satisfying the a priori bound J(u,A)
,K(logk)2 the following is true.

There exists a finite family of disjoint balls$Bi%, where Bi5Br i
(pi) and

~1! $uuu,Aa2 1/(logk)2%,øiBi ,
~2! ( i r i,(logk)210.
~3! Writing u5reiw,

1

2 EBi

r2u¹w2Au21uh2hexu2>pa~pi !udi u~ logk2C log logk!, ~1.8!

where di is the degree of the map u/uuu restricted to]Bi if Bi,V and di50 otherwise.
We say that$(pi ,di)% is a family of vortices associated to (u,A), and we call$Bi% the family

of vortex balls. It is easily seen by testingJ with the configuration (u[Aa,A[0) that a minimizer
(u,A) of ~1.1! satisfies thea priori boundJ(u,A), 1

2(*Vu¹Aau2)hex
2 , and therefore can be asso

ciated with a family of vortices by the above proposition wheneverhex,K logk. We may now
state our main theorem.

Theorem 1.2: Let V be a smooth, bounded, simply connected domain inR2. Assume that
a(x):V→R is an analytic function satisfying0,a05minV a(x)<a(x)<1 in V. For any K.0,
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there exist positive constantsk0 , C, a such that for anyk.k0 and any hex,Hc1
1K log logk, if

(u,A) is a global minimizer of (1.1) and$(pi ,di)% is an associated family of vortices then th
following holds:

~1! ; i , di>0,
~2! ( idi<C,
~3! dist(pi ,L)<C(logk)2a for any i such that diÞ0, where

L5H xPV:
j0~x!

a~x!
5maxVUj0

a UJ ~1.9!

and j05h021.
Remark:It follows from conclusion~3! of Theorem 1.2 that the distribution of the vortice

location is governed both by the terma(x) and by the functionj0 . This is called the pinning
phenomena in superconductor. This conclusion extends the results in Ref. 10.

This paper is organized as follows. In Sec. II, we shall prove Proposition 1.1. In Sec. II
shall split the energyJ. In Sec. IV, we shall prove Theorem 1.2.

II. CONSTRUCTION OF VORTEX BALLS

In this section we will give a proof of Proposition 1.1. We will divide the proof into thr
steps.

Step 1:Denotinguuu by r, since*Vu¹uu2>*Vu¹ru2, we have fromJ(u,A),K(logk)2,

E
V

u¹ru21
k2

2
~a2r2!2<2K~ logk!2.

Hence,

E
V

u¹~r2Aa!u21
k2

2
~a2r2!2<C~ logk!2.

Step 2:For any tPR, let V t5$xPV:ur2Aau.t% and g t5]V t . Applying the Coarea for-
mula and arguing as in Lemma 4.2 of Ref. 7,

Cu logku2>E
V

u¹~r2Aa!u21
k2

2
~a2r2!2>CkE

V
u¹~r2Aa!uua2r2u>CkE

0

1`

r ~g t!dt.

~2.1!

Here, as in Ref. 7,r (g t) is defined as the infimum over all finite covering ofg t by ballsBi ,...,Bk

of the sumr 11¯1r k , wherer i is the radius ofBi . Combining the previous inequality with th
mean-value theorem, we find that there exists atP@0,1/(logk)2# such thatr (g t),C (logk)4/k.

Step 3:The next step to construct the vortex balls: starting from the choseng t , covered by
balls B1 ,...,Bk , we use the method of growing and merging of balls used in Refs. 16 and 7
needs to grow these ballsBi , keeping a suitable lower bound on the energy they contain, unti
desired size is reached, with the desired lower bound. When some balls happen to intersec
the growth process, they are merged into a large one.7 Here we only need to apply the result o
Proposition 4.1 of Ref. 7 toA and v5u/uuu5eiw in V\V t ,s5(logk)210. We then obtain the
existence of ballsBi5B(pi ,r i) such that conclusions~1!, ~2! of Proposition 1.1 hold,17,18 and

1

2 EBi \V t

u¹w2Au21
1

2 EBi

uh2hexu2>pudi uS log
s

r ~g t!
2CD>pudi u~ logk2C log logk!,

~2.2!
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with di5(u,]Bi) if B̄i,V, and 0 otherwise. But we also have, from the Ginzburg–Lan
equation2¹'h5r2(¹w2A), and fromr<1 ~Ref. 1!,

E
V

u¹hu25E
V

r4u¹w2Au2<E
V

u¹Auu2<C~ logk!2, ~2.3!

hence

E
Bi

uh2hexu2<Cri ih2hexiL4(V)
2 <Cri ih2hexiH1(V)

2
5o~1!. ~2.4!

Thus, by~2.2!, we have

1

2 EBi \V t

u¹w2Au2>pudi u~ logk2C log logk!. ~2.5!

Now, by using conclusion~1! of this proposition,

1

2 EBi \V t

r2u¹w2Au25
1

2 EBi \V t

au¹w2Au21
1

2 EBi \V t

~r22a!u¹w2Au2

>
1

2
~minBi

a!E
Bi \V t

u¹w2Au22
C

~ logk!2 E
Bi \V t

u¹w2Au2. ~2.6!

In view of ~2.5!, we have

1

2 EBi \V t

u¹w2Au2>p~minBi
a!udi u~ logk2C log logk!. ~2.7!

Now, using mean-valued theorem and conclusion~2! of this proposition, we have the following
lower bound:

1

2 EBi \V t

u¹w2Au2>p~a~pi !udi u~ logk2C log logk!. ~2.8!

This proves the conclusion~3! of Proposition 1.1. The proof of Proposition 1.1 is completed.h

III. SPLITTING OF THE ENERGY J „u ,A …

The proof of Theorem 1.2 relies on an expansion of the energy of a minimizer in terms o
positions and degrees of its vortices. To get this expansion of the energy, we need the fol
lemma.

Lemma 3.1:~Ref. 1! We have for any q,2,

I2divS 1

a
¹hD1h22p(

i
didpi I

W21,q(V)

5o~1!. ~3.1!

Proposition 3.2: For any K.0, there exist positivek0 ,C such that for anyk.k0 and any
hex,K logk, if (u,A) is a critical point of J(u,A) satisfying J(u,A),K(logk)2 and$(pi ,di)% is
an associated family of vortices then
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J~u,A!>
1

2 EV
u¹Aau21hex

2 J01pS (
i

a~pi !udi u D ~ logk2C log logk!12phex(
i

dij0~pi !

1
1

2 EV\ø iBi

1

r2 u¹~h2hexh0!u21
1

2 EV
uh2hexh0u22o~1!, ~3.2!

where we have written h5curlA and

J05
1

2 EV

1

a
u¹h0u21uh021u2. ~3.3!

Proof: Since the quantities involved are gauge invariant we may assume we are workin
Coulomb gauge, i.e., that divA50 in V andA•n50 on]V. In the Coulomb gauge, the following
a priori bounds holds~see Refs. 1 and 14!,

iAiH1(V)<C logk, iAiL`(V)<C logk, iuiH1(V)<C logk. ~3.4!

Let Ṽ5V\ø iBi , where$Bi% i PI is the family of vortex balls defined in Proposition 1.1. Writin
u5reiw, it follows from 2¹'h5( iu,¹Au)5r2(¹w2A) that

u¹Auu25u¹ru21r2u¹w2Au25
1

r2 u¹hu21u¹ru2. ~3.5!

Thus,

J~u,A!>
1

2 Eø iBi

r2u¹w2Au21uh2hexu21
1

2 EV
u¹ru21

k2

2
~a2r2!2

1
1

2 EṼ

1

r2 u¹hu21uh2hexu2. ~3.6!

Note that

1

2 EV
u¹ru21

k2

2
~a2r2!2>minvPH1(V,R)

1

2 EV
u¹vu21

k2

2
~a2v2!2. ~3.7!

Now let

1

2 EV
u¹vku21

k2

2
~a2vk

2!25minvPH1(V,R)

1

2 EV
u¹vu21

k2

2
~a2v2!2, ~3.8!

we claim

1

2 EV
u¹vku25

1

2 EV
u¹Aau21o~1! as k→`. ~3.9!

In fact, for any given sequencekn→`, we have

1

2 EV
u¹vkn

u21
kn

2

2
~a2vkn

2 !2<
1

2 EV
u¹Aau2. ~3.10!

Hence, there exist a subsequence of$vkn
% ~still denote $vkn

%) and v0PH1(V,R) such that

vkn
⇀v0 weakly in H1(V,R). From ~3.10! we have
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E
V

~a2vkn

2 !2<
C

kn
2 →0,

which imply thatv05Aa a.e. inV. So, we have

E
V

u¹Aau25E
V

u¹v0u2. ~3.11!

Hence, using~3.10! and ~3.11!,

E
V

u¹~vkn
2v0!u25E

V
u¹vkn

u21E
V

u¹v0u222E
V

¹vkn
¹v0

<2E
V

u¹v0u222E
V

¹vkn
¹v0

5o~1!. ~3.12!

This proves~3.9!. Combining~3.7! with ~3.9!, we have

1

2 EV
u¹ru21

k2

2
~a2r2!2>

1

2 EV
u¹Aau22o~1!. ~3.13!

Also, from Proposition 1.1,

1

2 Eø iBi

r2u¹w2Au1uh2hex
2 u>p(

i
~a~pi !udi u!~ logk2C log logk!

and, lettingh5hexh01 f ,

1

2 EṼ

1

r2 u¹hu21uh2hexu25
1

2
hex

2 E
Ṽ

1

r2 u¹h0u21uh021u2

1
1

2 EṼ

1

r2 u¹ f u21 f 21hexE
Ṽ

1

r2 ¹ f ¹h01 f ~h021!. ~3.14!

Note thatJ(u,A)<C(logk)2 and conclusion~1! of Proposition 1.1, we have

hex
2 E

Ṽ

1

r2 u¹h0u25hex
2 E

Ṽ

1

a
u¹h0u21hex

2 E
Ṽ

a2r2

ar2 u¹h0u2

>hex
2 E

Ṽ

1

a
u¹h0u22

C~ logk!3

k
i¹h0iL4(V)

2

>hex
2 E

Ṽ

1

a
u¹h0u22o~1!. ~3.15!

From 2¹'h5( iu,¹Au) andJ(u,A)<C(logk)2, we have

i¹hiL2(V)<C logk. ~3.16!

Hence, byi¹h0iL`<C, ~3.16!, J(u,A)<C(logk)2 and Holder inequality,

hexE
Ṽ

1

r2 ¹ f ¹h05hexE
Ṽ

1

a
¹ f ¹h01hexE

Ṽ

a2r2

ar2 ¹ f ¹h0

>hexE
Ṽ

1

a
¹ f ¹h02

C~ logk!3

k

>hexE
Ṽ

1

a
¹ f ¹h02o~1!. ~3.17!
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Note thathex
2 *ø iBi

(1/a) u¹h0u21uh021u25o(1), combining the above relations, we have

J~u,A!>
1

2 EV
u¹Aau21pS (

i
a~pi !udi u D ~ logk2C log logk!1hex

2 E
V

1

a
u¹h0u21uh021u2

1
1

2 EṼ

1

r2 u¹ f u21 f 21hexE
Ṽ

1

a
¹ f ¹h01 f ~h021!. ~3.18!

Since, f 5hexh02h and bothh andhexh0 are bounded inH1 norm and therefore inL4 norm for
instance, byC logk. Then, by Holder inequality

S E
ø iBi

f 2D 2

<S (
i

uBi u D E
ø i

u f u45o~1!.

Also,

hexE
ø iBi

1

a
¹ f ¹h01 f ~h021!<ChexE

ø iBi

u¹ f u1u f u5o~1!.

Combining these relations with~3.17!, we have

J~u,A!>
1

2 EV
u¹Aau21hex

2 J01pS (
i

a~pi !udi u D ~ logk2C log logk!

1
1

2 EṼ

1

r2 u¹ f u21
1

2 EV
f 21hexE

V

1

a
¹ f ¹h01 f ~h021!. ~3.19!

Moreover,

2divS 1

a
¹ f D1 f 52divS 1

a
¹hD1h

and using Lemma 3.1,

E
V

1

a
¹ f ¹~h021!1 f ~h021!52p(

i
di~h021!~pi !1o~1!,

which, together with~3.19!, proves Proposition 3.2. h

IV. PROOF OF THEOREM 1.2

In this section, we will give a proof of Theorem 1.2. We need the following lemmas.
Lemma 4.1: For anyk,hex.0, a minimizer(u,A) of (1.1) satisfies

J~u,A!<
1

2 EV
u¹Aau21hex

2 J0 . ~4.1!

Proof: Let A05¹'h0 , then,

J~u,A!<JSAa,
1

a
hexA0D5

1

a EV
u¹Aau21

1

2
hex

2 E
V

1

a
u¹h0u21uh021u2

5
1

a EV
u¹Aau21hex

2 J0 . ~4.2!

This proves Lemma 4.1. h

Lemma 4.2: The setL wherej0 /a attains its minimum is finite and there existd,N.0 such
that j0(p)/a(p) >minV (j0 /a) 1d dist(p,L)N for every pPV.
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Proof: Sincea(x) is a real analytic function, we have thej0(x) is also a real analytic function
Also, V is a simply connected domain inR2. The standard analytic function theory implie
directly the assertion of the lemma. h

Proof of Theorem 1.2:Let (u,A) be a minimizer of~1.1! and $(pi ,di)% i PI are associated
vortices. We assume thathex,Hc1

1K log logk. Using Proposition 3.2 and Lemma 4.1 we hav

pS (
i

a~pi !udi u D ~ logk2C log logk!12phex(
i

dij0~pi !

1
1

2 EV\ø iBi

1

r2 u¹~h2hexh0!u21
1

2 EV
uh2hexh0u2<o~1!. ~4.3!

We let

D5(
i

a~pi !udi u. ~4.4!

Step 1: Vortices have mostly positive degrees. Let

I 25$ i PI :di,0%, I 15I \I 2 ,
~4.5!

D25 (
i PI 2

a~pi !udi u, D15 (
i PI 1

a~pi !udi u,

so thatD5D11D2 . Sincej0 is negative inV, thus

(
i

dij i~pi !5(
i

a~pi !di

j0~pi !

a~pi !
>D1minV

j0

a
52D1maxVUj0

a U. ~4.6!

Sincehex<Hc1
1C log logk, using~4.3!, we have

pD~ logk2C log logk!2D1~p logk1C log logk!<o~1!,

which imply that

D2<CD
log logk

logk
1o~1!.

Hence

D2<CD1

log logk

logk
1o~1!.

Note thata(pi>a0).0, we have

(
i PI 2

udi u<CS (
i PI 1

udi u D log logk

logk
1o~1!.

Hence,

(
i PI

udi u5S (
i PI 1

udi u D ~11o~1!!. ~4.7!

Step 2: Vortices are mostly close toL. Let
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I 05$ i PI :dist~pi ,L!,~ logk!2 1/2N%, D05 (
i PI 0

a~pi !udi u, ~4.8!

whereN is defined in Lemma 4.2. Ifi ¹I 0 , Lemma 4.2 yields

j0

a
~pi !>2maxVUjo

a U1 C

Alogk
, ~4.9!

while, if i PI 0 , we have the obvious inequality (j0 /a) (pi)>2maxVu (jo /a) u. Combining this
relation with ~4.3! we have

pD~ logk2C log logk!22p~D2D0!~Hc1
1C log logk!S maxVUj0

a U2 C

Alogk
D

22pd0~Hc1
1C log logk!maxVUj0

a U<o~1!. ~4.10!

From this we have

2CD log logk1C~D2D0!Alogk<o~1!

and then

D2D0<CD
log logk

Alogk
1o~1!,

which imply that

(
i PI \I 0

udi u<CS (
i PI

udi u D log logk

Alogk
1o~1!.

Hence,

(
i PI

udi u5 (
i PI 0

udi u1 (
i PI \I 0

udi u5 (
i PI 0

udi u1S (
i PI

udi u Do~1!, ~4.11!

which implies

(
i PI 0

udi u5S (
i PI

udi u D ~11o~1!!. ~4.12!

Step 3:To conclude the proof of Theorem 1.2, it suffices to prove that

D<C. ~4.13!

Let f 5h2hexh0 ,Ṽ5V\ø iBi . Now we will deal with the term

E
Ṽ

1

r2 u¹ f u21E
V

f 2. ~4.14!

Let Ct be a circle of radiust lying entirely in Ṽ, i.e., not intersecting the vortex balls, an
bounding a ballBt . In Ṽ we write u5reiw. Then,
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2¹'h5r2~¹w2A! in Ṽ.

Also, we have

2divS 1

a
¹h0D1h050 in V.

Hence,

E
Ct

1

a

]h0

]n
52E

Bt

h0 , E
Ct

1

r2

]h

]n
5E

Ct

]w

]t
2A•t5E

Ct

]w

]t
2E

Bt

h,

wheren is the inward unit normal vector toBt and (t,n) is a direct frame. We deduce

E
Ct

1

r2

] f

]n
1E

Bt

f 1E
Ct

r22a

ar2

]h0

]n
52pdt , ~4.15!

where dt is the winding number ofu:Ct→S1. Equivalently,dt is the sum of the degrees o
vortices included inBt . Using Holder inequality, we have

1

2 ECt

1

r2 S ] f

]n D 2

1
t

4 EBt

f 2>2pdt
22CE

Ct

~a2r2!2. ~4.16!

Now, L is a finite set, we haveL5$b1 ,...,bn% wherebiPV. Let 1.a.0 be such that for all
1< iÞ j <n,

a,
ubi2bj u

2
, a,dist~bi ,]V!.

We denote byCi ,t the circle with centerbi and radiust and letE be the set of 0,a,t such that
for all 1< i<n we haveCi ,t,Ṽ. For tPE, we letdi ,t be the winding number ofu restricted to
Ci ,t . From ~4.16! we have

1

2 ECi ,t

1

r2 S ] f

]n D 2

1
t

4 EBi ,t

f 2>2pdi ,t
2 2CE

Ci ,t

~a2r2!2, ~4.17!

whereBi ,t is the ball bounded byCi ,t . Summing over 1< i<n we find

1

2 Eø iCi ,t

1

r2 S ] f

]n D 2

1
t

4 Eø iBi ,t

f 2>2p(
i

di ,t
2 2CE

ø iCi ,t

~a2r2!2. ~4.18!

Now we know from step 2 that most of the vortices are close toL in a sense precise enough
imply that if t>(logk)2 1/2N then

(
i 51

n

udi ,tu5(
i PI

udi u~11o~1!!1o~1!. ~4.19!

But since step 1 the degrees of the vortices are mostly positive,

(
i 51

n

di ,t5(
i 51

n

udi ,tu~11o~1!!1o~1!. ~4.20!

It follows that if t>(logk)2 1/2N that
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(
i 51

n

di ,t5(
i PI

udi u~11o~1!!1o~1!. ~4.21!

Using Cauchy–Schawarz’s inequality, we have

1

2 Eø iCi ,t

1

r2 u¹ f u21
t

4 Eø iBi ,t

f 2>
C

t S (
i PI

udi u D 2

2CE
ø iCi ,t

~a2r2!2>
C

t
D22CE

ø iCi ,t

~a2r2!2

~4.22!

for all tPE,t>(logk)2 1/2N. We now wish to integrate this inequality with respect tot. Since the
sum of the radius of the vortex ball is less than (logk)210 and the function 1/t is decreasing, we
may bound from below the integral of the right-hand side of~4.22! over tPE,

E
$tPE%ù$t>(log k)2 1/2N%

dt

t
>E

(log k)21/2N1(log k)210

a dt

t
.

This yields the lower bound

1

2 EṼ

1

r2 u¹ f u21
1

2 EV
f 2>CD2 log logk2CE

V
~a2r2!2

>CD2 log logk2
C~ logk!2

k2

5CD2 log logk2o~1!. ~4.23!

Using ~4.23! in ~4.3! together with the fact thatj0(pi)/a(pi) <2maxVu j0 /a u we have

2CD log logk2CD2 log logk<o~1!,

which yields

D<C.

This relation, step 1, step 2, anda(x)>a0.0 prove the other assertions of Theorem 1.2. h
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On asymptotic perturbation theory for quantum
mechanics: Almost invariant subspaces and gauge
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Singular perturbation theory for quantum mechanics is considered in a framework
generalizing the spectral concentration theory. Under very general conditions,
asymptotic estimations on the Rayleigh–Schro¨dinger expansions of the perturbed
spectral projections are obtained. As a consequence almost invariant subspaces of
exponential order are constructed. The results cover practically all singular pertur-
bations considered in nonrelativistic quantum mechanics. In the magnetic field
case, under the condition that the magnetic field does not increase at infinity, a
gauge invariant perturbation theory leading to convergent series with field-
dependent coefficients is developed. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1408281#

I. INTRODUCTION

While the regular perturbation theory achieved its final form in the papers of Sz-Nagy, R
and Kato @see Kato~1980!, Reed and Simon~1978b!, and references therein#, in the case of
singular perturbations~Stark and Zeeman effects in quantum mechanics are in this class! the
progress has been much slower, at least for the degenerate eigenvalues case. In the
framework laid down in Kato’s book a systematic theory of asymptotic Rayleigh–Schro¨dinger
perturbation theory for degenerate eigenvalues has been developed fairly recently by Hunzi
co-workers: Vock and Hunziker~1982!, Hunziker and Pillet~1983!, Hunziker ~1988! @see the
beautiful review paper by Hunziker~1988! and also the recent book by Hislop and Sigal~1996! for
detailed exposition and an extensive bibliography#. The key condition which selects the allowe
class of perturbations is the so-called ‘‘stability condition;’’ in the cases where the consid
eigenvalues are not stable one considers, in the spirit of Aguilar–Balslev–Combes theor@see
Aguilar and Combes~1971!, Balslev and Combes~1971!#, a related~e.g., dilated! Hamiltonian for
which the stability condition holds true. The main point of the theory is that the stability condi
together with the exponential decay of unperturbed eigenvectors given by Combes–T
~1973! theory@see also Hunziker~1988!#, allows one to obtain powerful asymptotic estimates. T
price to be paid are strong conditions~e.g., dilation analyticity! on the perturbation. Also, at th
technical level the theory is far from being elementary since one has to deal with non-self-a
operators, analytic continuation, etc. In addition, as far as we understand, it does not seem
obtain information on the perturbed eigenvectors.

In this paper which, with the exception of the last section, is a continuation of Nenciu~1981!
we follow a different route, closer in its spirit to the theory of spectral concentration, in which
main objects are the perturbed subspaces. The aim is twofold: First, using the results in N
~1993! we push the estimations in Nenciu~1981!, Nenciu and Nenciu~1981! up to exponential
order; second, and more important, we extend the analysis to cases where the techniques in
~1981! and Nenciu~1993!, based on adiabatic expansions, do not apply.

a!Electronic mail: nenciu@barutu.fizica.unibuc.ro
12730022-2488/2002/43(3)/1273/26/$19.00 © 2002 American Institute of Physics
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The content of the paper is as follows. In Sec. II we set up the framework. Almost inva
subspaces of families of self-adjoint operators are defined and it is shown that their existenc
~up to some errors! similar spectral and evolution information as the existence of invariant
spaces. In this context we give a very general form of the Hylleraas–Wigner ‘‘2n11’’ theorem:
‘‘the knowledge of eigenfunction up to errors of orderd, gives the knowledge of the correspondin
eigenvalue up to errors of orderd2.’’ Section III, again of general nature, is devoted to t
construction of almost invariant subspaces out of asymptotic Rayleigh–Schro¨dinger series of the
perturbed projection. Section IV contains one of the main results of the paper: For the Schro¨dinger
operator inR3 ~actually all the arguments work in an appropriate abstract setting!, under very
general conditions on the perturbing potential, we are able to construct formal Rayle
Schrödinger expansions for the perturbed projection@see also Howland~1991!# and to obtain good
asymptotic estimates on the coefficients of this expansions. The results~or their easy extensions t
Rn! cover the perturbations by polynomially bounded potentials of bound states in atomic
lecular, and solid state physics. Also for perturbing potentials growing up at infinity at
linearly ~as in the case of the Stark effect! one can treat the perturbations of the energy band
solids~the Stark–Wannier problem!. In all these cases one obtains that the perturbed subspace
almost invariant up to exponentially long times, which in the present setting is the analog
fact that the imaginary part of the corresponding resonances~in the cases when they can b
defined! are exponentially small.

Section V concerns perturbations given by magnetic fields which do not grow at infinity~the
most important particular case being the Zeeman effect, i.e., the case of constant magnet!
and can be read independently of the rest of the paper. The main result is that this case is
to regular perturbation theory. More exactly, one finds thatafter factorizingthe so-called ‘‘nonin-
tegrable gauge phase factor’’ on can write down a gauge invariantconvergentperturbation series
for the integral kernel of the perturbed resolvent, with coefficients depending themselves up
perturbing magnetic field. This dependence comes fromphase factorscontaining fluxes through
some polygonal contours and the asymptotic nature of the usual expansions comessolely from
expanding these phase factors. In particular this leads~for the first time to our best knowledge! to
a convergent expansion for the usual Zeeman effect. The fact that the factorization of the
tegrable gauge phase factor makes the perturbation given by magnetic fields less singular h
used many times in the physical literature@see, e.g., Luttinger~1951!, Nenciu~1991!, and refer-
ences therein in connection with the Peierls–Onsager problem# and has been fully used recent
by Cornean and Nenciu~1998! in connection with decay of eigenfunctions@see also Cornean
~2000! for the use of the same idea to control the thermodynamic limit for quantum gas
constant magnetic field#.

The results have been announced in Nenciu~2001!.

II. ALMOST INVARIANT SUBSPACES: GENERAL THEORY

We start with the definition of almost invariant subspaces~a.i.s.!.
Definition II.1: Let He ,Pe , eP@0,e0#,e0.0 be families of self-adjoint operators and o

thogonal projections, respectively, in a separable Hilbert space, H, satisfying the following con-
ditions:

(i)

lim
e→0

iPe2P0i50, ~2.1!

(ii) P eD(He),D(He) whereD(He) is the domain of He and onD(He),

i@He ,Pe#i<d~e!, 0<d~e!,`, lim
e→0

d~e!50. ~2.2!

Then we say that PeH are almost invariant subspaces of orderd(e) for He .
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The definition implies thatP0H is an invariant subspace ofH0 . In what follows we shall
restrict ourselves to the case whenP0 is the spectral projection ofH0 corresponding to a bounde
isolated part,s0 , of s(H0). That is,

(iii)

P05
i

2p R
G
~H02z!21dz, ~2.3!

where G is a contour enclosings0 . In particular, we shall not consider the perturbation
embedded eigenvalues.

Remark 2.1:Condition~2.1! implies that for sufficiently smalle ~for which iPe2P0i,1!, Pe

and P0 are unitarily equivalent; in particular dimPeH5dim P0H. Notice that~2.1! cannot be
replaced bys2 lime→0 Pe5P0 even if dimP0H,` and He→H0 in the strong resolvent sens
@see, e.g., Hunziker~1988!#.

Remark 2.2:Condition ~ii ! is equivalent to the following one:PeDe,D(He) whereDe is a
core ofHe and ~2.2! holds true onDe .

If we write He in a matrix form according to the decompositionH5PeH% (12Pe)H then
the off-diagonal part,Be ,

Be5PeH~12Pe!1~12Pe!HPe5~122Pe!@He ,Pe#, ~2.4!

is bounded onD(He),

iBei<d~e!. ~2.5!

It follows that bothPeHePe and (12Pe)He(12Pe) are self-adjoint onPeD(He) and (1
2Pe)D(He), respectively. Notice thatPeHePe need not be bounded.

In what follows we shall use the notations:

He,D[He2Be5PeHePe1~12Pe!He~12Pe!, ~2.6!

he[PeHePe :PeD~He!→PeH. ~2.7!

Taking into account~2.4!–~2.7! the above-given definition of a.s.i. coincides with the defi
tion of asymptotic invariant subspaces in Nenciu~1981!.

One expects the existence of a.i.s. to give@up to some errors controlled byd(e)# similar
spectral information onHe as the existence of invariant subspaces.

Proposition II.2: If PeH are a.i.s. of orderd(e) for He then

i~12Pe!exp~2 i tH e!Pei<utud~e!. ~2.8!

If he has an eigenvalue Ee and

hece5Eece ~2.9!

then

exp~2 i tH e!ce5exp~2 i tEe!ce1xe~ t ! ~2.10!

with

ixe~ t !i<utud~e!. ~2.11!

In particular,

u^ce ,exp~2 i tH e!ce&u>12utud~e!, ~2.12!
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i.e., in the physicists languagece describes a metastable state.
Proof: The direct consequence of the definition and of the formula:

exp~2 i tH e!5exp~2 i tH e,D!2 i E
0

t

exp~2 i tH e,D~ t2s!!Be exp~2 isHe!ds. ~2.13!

Remark 2.3:Iterating once~2.13! and taking into account thatBe is off-diagonal one can
improve ~2.12! to

u^ce ,exp~2 i tH e!ce&u>12utu2d~e!2/2. ~2.14!

Consider now the case whenHe→H0 in the strong resolvent sense ands05$l0% with l0 an
isolated,m-degenerate eigenvalue so that

dim P0H5m,`. ~2.15!

From ~2.1! it follows that for sufficiently smalle,

dim PeH5m,`. ~2.16!

In this case the existence of a.i.s. of orderd(e) is equivalent@see Nenciu~1981!# to the spectral
concentration as defined in Riddell~1967! and Kato~1980!. Indeed supposePeH are a.i.s. of order
d(e) for He . SincePeH are finite dimensional there exist

fe, jPPeH, ^fe, j ,fe,k&5d j ,k , l̃e, jPR, j ,k51,2,. . . ,m

such that

hefe, j5l̃e, jfe, j . ~2.17!

From ~2.1!, ~2.2!, and~2.6! it follows that

lim
e→0

i~12P0!fe, j i50, ~2.18!

i~He2l̃e, j !fe, j i<d~e!, ~2.19!

i.e., fe, j ,l̃e, j are pseudoeigenvectors and pseudoeigenvalues of all orderspPN for which
lime→0 e2pd(e)50 and this is equivalent to the spectral concentration according to Rid
~1967! theorem. Conversely ifl̃e, j andfe, j satisfying~2.18! and ~2.19! exist thenPeH with

Pe5(
j 51

m

^fe, j ,•&fe, j ~2.20!

are a.i.s. of orderd(e) for He .
Finally let us consider the case when, in addition,l0 is stable@see Hunziker~1988! and also

Kato ~1980!, Hislop and Sigal~1996!#. From the definition of stability there existd.0,e1.0 such
that for eP@0,e1#, G5$ziz2l0u5d%,r(He), and

inf
zPG

dist~z,s~He!!>d/2. ~2.21!

In addition, if
                                                                                                                



e of
t

to the
in the

or the

e
d.

1277J. Math. Phys., Vol. 43, No. 3, March 2002 On asymptotic perturbation theory

                    
Qe5 R
G
~He2z!21dz ~2.22!

then

lim
e→0

iQe2P0i50. ~2.23!

From ~2.1!, ~2.2!, and~2.23! there existe2.0 such that for alleP@0,e2# one has

iQe2P0i,1/6, iPe2P0i,1/6, d~e!<d/8. ~2.24!

As expectedQe and the spectrum ofQeHeQe ~as an operator in them-dimensional space
QeH! are close toPe ands(he), respectively.

Proposition II.3: For eP@0,min$e1,e2%#,

iPe2Qei<c1~d!d~e!, ~2.25!

dist~s~QeHeQe!,s~he!<c2~d!d~e!2. ~2.26!

Remark 2.4:The proof gives the following~nonoptimal! values forci(d): c1(d)516/3d,
c2(d)5 512/9d.

Remark 2.5:The interesting part of Proposition II.3 is~2.26!, which is a general form of the
so called Hylleraas–Wigner ‘‘2n11’’ theorem in perturbation theory@see Gonze~1995!, and
references therein#: Knowledge of the perturbed wave function to orderd(e) gives the perturbed
eigenvalue with errors of orderd(e)2. To see the connection, consider the elementary cas
regular perturbations of nondegenerate isolated eigenvalues. LetHece5lece and suppose tha
one knows an approximatenormalized wave function c̃e , ic̃ei51 with ic̃e2cei<d(e),
iHe(c̃e2ce)i<Md(e); M uniformly bounded ase→0. Then if

Pe5^c̃e ,•&c̃e

one has

i@Pe ,He#i<2~M1uleu!d~e!,

which according to Proposition II.3 gives

ule2^c̃e ,Hec̃e&u<constd~e!2. ~2.27!

Actually in this simple case one can obtain~2.27! at once from

ule2^c̃e ,Hec̃e&u5u^c̃e ,~He2le!c̃e&u

5u^c̃e ,~He2le!~c̃e2ce!&u

5u^~He2le!~c̃e2ce!,c̃e2ce&u.

Notice, however, that the above-presented argument cannot be generalized directly
degenerate case and actually we do not know a reference for the Hylleraas–Wigner theorem
degenerate case in spite of the fact that it is probably known to experts. The reason f
quadratic estimation in~2.26! is the fact thatBe is an off-diagonal perturbation ofHe,D . Let us
stress that the conditionPe5Pe

2 is essential for~2.26! to hold true; actually it replaces th
condition thatc̃e , in the above-mentioned proof of Hylleraas–Wigner theorem, is normalize
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Remark 2.6:Proposition II.3 can be easily extended to the case whens0 is a stable, bounded
isolated part of the spectrum ohH0 but the constants in~2.25!, ~2.26! become more complicate
and depend also upon the diameter ofs0 .

Proof of Proposition II.3:We apply regular perturbation theory to the pairHe,D ,He5He,D

1Be . From ~2.5!,~2.6!, and~2.24!,

dist~G,s~He,D!!>3d/8. ~2.28!

If

Te5
i

2p R
G
~He,D2z!21dz, ~2.29!

then

Qe2Te52
i

2p R
G
~He,D2z!21Be~He2z!21dz, ~2.30!

which gives

iQe2Tei<16d~e!/3d,2/3. ~2.31!

From ~2.24! and ~2.31! one has

iPe2Tei,1. ~2.32!

Now ~2.32! implies that

Pe5Te , ~2.33!

which together with~2.31! gives~2.25!. Indeed sincePe , Te are orthogonal projections commu
ing with He,D , in a L2(M ,dm) representation ofHe,D they are multiplications with some cha
acteristic functions soPe2Te is the multiplication with a function taking only the values 0 a
61. As the values61 are ruled out by~2.32! the equality~2.33! follows.

For the proof of~2.26! consider the Sz–Nagy transformation matrix@see Kato~1980!# corre-
sponding to the pairPe , Qe ,

Ue5~12~Qe2Pe!
2!21/2@QePe1~12Qe!~12Pe!#. ~2.34!

As is well knownUe is unitary and intertwinesQe andPe ,

Qe5UePeUe* . ~2.35!

As a consequence,

Ue* QeHeQeUe5PeUe* HeUePe , ~2.36!

i.e., QeHeQe is unitarily equivalent with the ‘‘effective’’ HamiltonianPeUe* HeUePe . On the
other hand, the analytic perturbation theory@see Kato~1980!# applied to the pairHe,D , He

5He,D1Be gives forPeUe* HeUePe :

PeUe* HeUePe5he1PeBePe1O~Be
2! ~2.37!

so that~since the second terms on the right-hand side vanishes!

iPeUe* HeUePe2hei<O~Be
2!, ~2.38!
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which in particular implies~2.26!. The computation in the following gives a precise form of t
error in terms ofd(e) andd. Without restricting the generality one can takel050. Using

QeHeQe5
i

2p R
G
z~He2z!21dz ~2.39!

and

~He2z!215~He,D2z!212~He,D2z!21Be~He,D2z!21

1~He2z!21Be~He,D2z!21Be~He,D2z!21, ~2.40!

one has

PeQeHeQePe5Pe

i

2p R
G
z~He,D2z!21dz Pe2Pe

i

2p R
G
z~He,D2z!21Be~He,D2z!21dz Pe

1Pe

i

2p R
G
z~He2z!21Be~He,D2z!21Be~He,D2z!21dzPe . ~2.41!

Now from ~2.39! written for He,D , the first terms on the right-hand side of~2.41! giveshe while
the second vanishes due to the fact thatBe is off-diagonal andPe commutes withHe,D . Then
estimating brutally the third terms on the right-hand side of~2.41! one obtains

iPeQeHeQePe2hei<128d~e!2/9d. ~2.42!

On the other hand,

PeUe* HeUePe2PeQeHeQePe5~PeUe* 2PeQe!QeHeQeUePe1PeQeHeQe~UePe2QePe!

~2.43!

and then

iUe* QeHeQeUe2PeQeHeQePei<2iUePe2QePei•iQeHeQei . ~2.44!

Now from

UePe2QePe5@~12~Qe2Pe!
2!21/2!21]QePe ~2.45!

one obtains@see~2.31! and ~2.33!#

iUePe2QePei5iPeUe* 2PeQei<128d~e!2/3d2. ~2.46!

Since~remember that we tookl050!

iQeHeQei<d/2, ~2.47!

putting all together one obtains

iPeUe* HeUePe2hei<
512

9d
d~e!2, ~2.48!

which gives in particular~2.26! with the value ofc2 given in Remark 2.4.
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III. PERTURBATIVE CONSTRUCTION OF ALMOST INVARIANT SUBSPACES

We turn now to the problem of constructing a.i.s. for families,He , of self-adjoint operators
The setting we shall consider, which is sufficiently general to cover practically all physical
ations in nonrelativistic quantum mechanics, is as follows:e.0 is a small parametereP@0,e0#;
H0 and V(e) are self-adjoint operators such that there exists a dense subspacD,
D,D(H0)ùD(V(e)) on which H01eV(e) has self-adjoint extensions@in most examplesH0

1eV(e) is essentially self-adjoint onD#; we shall denote byHe any of its self-adjoint extension
with the propertyD(He).D(H0)ùD(Ve).

We shall consider explicitly only the particular case whenV(e)5V is independent ofe, and
in this caseD5D(H0)ùD(V), but all the results generalize as far asV(e) obeys the needed
technical conditions uniformly ine. Indeed in this case one obtains results~uniformly in h
P@0,e0#! for

He,h5H01eV~h!

and at the end one setsh5e.
At the heuristic level the problem of finding a.i.s. forHe can be viewed as the search f

solutions of

@He ,Pe#5@H0 ,Pe#1e@V,Pe#.0, ~3.1!

Pe
22Pe.0. ~3.2!

Making the ‘‘perturbational’’ ansatz

Pe.(
j

Eje
j ~3.3!

one is led to the problem of solving the following equations forEj , j 51,2,...:

P05E0 , ~3.4!

@H0 ,Ej #52@V,Ej 21#, ~3.5!

(
l 50

j

ElEj 2 l5Ej . ~3.6!

Equation~3.4! is nothing but~2.1! for e50 while ~3.5! and~3.6! follow from plugging~3.3! into
~3.1! and ~3.2!, respectively.

In the rest of this section we shall outline how the existence of solutions,E0 , E1 ...,EN ; N
<` of ~3.4!–~3.6! together with estimates on the norm ofEj and @V,Ej # gives the existence o
a.i.s. in the sense of~2.1! and~2.2! with control on the constantd(e). Of course the technical cor
of the theory is the proof of existence of solutions of~3.4!–~3.6! with bounds on their norms an
this question will be addressed in Sec. IV.

SupposeEjH,D(H0)ùD(V), j 50,1,...,N and there satisfy~3.4!–~3.6!. In addition,

iEj i<ej , ~3.7!

i@V,Ej #i< f j , j 51,2...,N. ~3.8!

Consider

TN~e!5(
j 50

N

Eje
j , ~3.9!
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where N can depend upone. UnfortunatelyTN(e) is not a projection@in particular TN(e)2

ÞTN(e) and even ifTN(e) is self-adjointi @(d/de) TN(e),TN(e)# is not self-adjoint; this point has
been overlooked in Howland~1991! but without consequences on the result there#. So the first step
is to construct out ofTN(e) a projection operator,PN(e), whose expansion ine should coincide
with TN(e) up to orderN. Of course such a ‘‘completion’’ is far from being unique; we shall u
the method employed in Nenciu~1993! since it gives an easy control oni@He ,PN(e)#i .

We need a few elementary facts about projections. Here we consider the self-adjoint ca
the non-self-adjoint case see the Appendix where a more elaborate version of~elementary! Propo-
sition 3 in Nenciu~1993! is given. LetT be a bounded self-adjoint operator satisfying

iT22Ti<d,1/4. ~3.10!

Then by the spectral theorem

s~T!,F12A114d

2
,
12A124d

2 GøF11A124d

2
,
11A114d

2 G .
In particular 1/2Pr(T), iTi< (11A114d)/2, and

sup
uz21u51/2

i~T2z!21i<
2

A124d
. ~3.11!

Now, if P is the spectral projection ofT corresponding to the part of the spectrum around

P5
i

2p R
uz21u51/2

~T2z!21dz. ~3.12!

Then again by the spectral theorem

iT2Pi<
12A124d

2
5

2d

11A124d
. ~3.13!

Consider nowTN(e). Due to~3.6! and~3.7! iTN(e)22TN(e)i;O(eN11), i.e., for sufficiently
small e,

iTN~e!22TN~e!i,1/4,

and one can definePN(e) by

PN~e!5
i

2p R
uz21u51/2

~TN~e!2z!21dz. ~3.14!

PN(e) is a projection and according to~3.13!

iPN~e!2TN~e!i;O~eN11!. ~3.15!

We now compute@He ,PN(e)#. Notice first that due to the identity

~T2z!215z21~T~T2z!2121!,

@He ,PN(e)# is well defined on a dense subspace and the following computation can be
From ~3.5!

@He ,TN~e!#5eN11@V,EN#
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and then

@He ,PN~e!#52
i

2p R
uz21u51/2

~TN~e!2z!21@He ,TN~e!#~TN~e!2z!21dz

52eN11
i

2p R
uz21u51/2

~TN~e!2z!21@V,EN#~TN~e!2z!21dz. ~3.16!

We summarize the above-given discussion in the following lemma:
Lemma III.1: Suppose Ej satisfy (3.4)–(3.8), TN(e) is given by (3.9), and leteN be the positive

solution of

(
l 5N11

2N

e lal51/8, ~3.17!

where

al5 (
j 1m5 l ,0< j ,m<N

ejem .

Then for0<e<eN :

iTN~e!22TN~e!i< (
l 5N11

2N

e lal[dN~e!<1/8 ~3.18!

and if PN(e) is given by (3.14)

iPN~e!2TN~e!i<2dN~e!, ~3.19!

i@He ,PN~e!#i<4eN11i@V,EN#i . ~3.20!

Proof: For ~3.18! notice that from~3.6!

TN~e!22TN~e!5 (
l 5N11

2N

e l S (
j 1m5 l ,0< j ,m<N

EjEmD .

Then ~3.19! follows from ~3.18! and ~3.14! while ~3.20! follows from ~3.16! and ~3.19!.
Remark 3.1:The main point of the lemma is the estimate~3.20!.
Remark 3.2:Notice that in each particular case one has still to prove thatPeDe,D(He) @see

Remark 2.2 and recall thatDe is a core ofHe#.
At a more elaborate level of perturbation theory the task is to obtain, under specific cond

on H0 , V, andP0 the dependence onj of ej , f j ; the rate of increase of these constants ‘‘me
sures’’ the singularity of the perturbation. The simplest case is whenej<ej for some finite con-
stante; this corresponds to the well-known regular perturbations and there is no need for f
discussion. The most interesting case is whenN5` and there exist constantsE,F8g,`, a.0
such that

ej<Egj~ j ! !a, f j<Fgj 11~~ j 11!! !a, j 51,2, . . . . ~3.21!

In this case the series in~3.3! is not convergent and the idea here is to use a best rema
estimate a la Necharosev, i.e., to takeN depending one in ~3.9! in order to have the right-hand
side of ~3.16! as small as possible. This requirement leads toNe given by
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Ne115F S 1

ge D 1/aG , ~3.22!

where@ # means the integer part. Plugging~3.22! into ~3.9! one obtains:
Lemma III.2: Let Ne be given by (3.22). Then there existse0.0 such that foreP@0,e0#,

(3.18) holds true and Pe[PNe
satisfies (2.2) with

d~e!54FKa
1

~ge!1/2expS 2
a

~ge!1/aD , ~3.23!

where K is an absolute constant.
Proof: From ~3.21!

al<(
j 50

l

ejel 2 j<E2gl~ l 11!~ l ! !a. ~3.24!

From the Stirling formula there existK.`, K̃.0 such that

K̃ j je2 j< j !<K j j 11/2e2 j ~3.25!

and from this and the fact that for allNe11<k<2Ne :

a ln k<a ln 2Ne<a ln 22 ln~ge! ~3.26!

one obtains

e jaj<E2Ka~ j 11!11a/2e2 j a(12 ln 2), ~3.27!

so

dN~e!<E2Ka (
j 5Ne11

`

~ j 11!a11/2e2a(12 ln 2) j . ~3.28!

Since Ne→` as e→0 the first part of the lemma is proved. Then~3.23! follows from
~3.8!,~3.20!,~3.21!, ~3.22!, and~3.25!.

Remark 3.3:If ge,1, in the limit a→0 one hasd(e)→0, which fits with the fact that for
a50 the series in~3.3! is convergent fore,g21.

IV. ASYMPTOTIC ESTIMATIONS

In this section we consider the problem of finding solutionsEj of ~3.4!–~3.6! satisfying
estimations like~3.7! and ~3.8! with ej , f j satisfying ~3.21!. In spite of the fact that all the
following arguments work in an appropriate abstract setting~covering in particularN-body Stark
and Zeeman effects in atoms and molecules!, for definiteness we shall discuss a simple Sch¨-
dinger case inR3,

He52D1V0~x!1eV~x![H01eV~x!, e.0, ~4.1!

with

V0PLuloc
2 , i.e., sup

xPR3
E

ux2yu<1
uV0~y!u2dy,`, ~4.2!

uV~x!u<^x&b, ^x&5~11x2!1/2, bPR, ~4.3!
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ande.0. In particularH0 is essentially self-adjoint onC 0
`(R3) @see Reed and Simon~1978a!#. In

what followsHe is anyself-adjoint extension ofH01eV(x) defined onD(H0)ùD(V).C 0
`(R3).

As P0 we shall take the spectral projection ofH0 corresponding to a bounded isolated part,s0 , of
its spectrum.

The main fact aboutH0 we shall use is the following elementary result from Combes–Tho
theory @see Combes and Thomas~1973!, Hunziker~1988!, Nenciu~1991!#:

Proposition IV.1: Let K,r(H0) be compact, l0 an isolated finitely degenerate eigenvalue
H0 . Then there existg0.0,M,` such that for allgP@0,g0#:

sup
zPK

iR0,g~z!i<M , ~4.4!

ieg^•&P0eg^•&i<M , ~4.5!

where

R0,g~z!5eg^•&~H02z!21e2g^•& ~4.6!

and P0 is the spectral projection of H0 corresponding tol0 .
If bP@2`,0# thenVR0(z) (R0(z)5(H02z)21) is bounded andEj given by the well-known

perturbation formula

Ej5~21! j
i

2p R
G
R0~z!~VR0~z!! jdz, ~4.7!

whereG is a contour enclosings0 , satisfying~3.4!–~3.6! and the estimations~3.7!, ~3.8!, ~3.21!
with a50. Now, if b.0, VR0(z) is not bounded and one cannot decide at once from~4.7!
whether or notEj are bounded and the main idea in what follows is to find alternative formula
Ej which coincide with~4.7! for b<0 but still make sense forb.0. Many such formulas, eac
of them making sense under various assumptions onb and dimP0 , will appear in the following
@see~4.12!, ~4.17!, ~4.31! and~4.41!#. The need for alternative formulas comes from the fact t
a formula covering all interesting cases does not seem to exist; for example, if dimP0,` one
uses the exponential decay of the corresponding eigenvalues~see Proposition IV.1! while for
dim P05` when ~4.5! does not hold true one has to rely on the fact that@V,R0(z)# might be
bounded even for potentials which are unbounded at infinity. Let us stress that although the
different, as far as they make sense, they give the sameEj : For example, ifb<1 and dimP0

,` ~4.12! gives the sameEj as the recurrence formula~4.31!. This is due to the fact@see Nenciu
~1993!# that as far as it exists and is bounded, the solution of~3.4!–~3.6! is unique.

We prove first that, for allb, Ej is well defined and bounded onC 0
`(R3).

Lemma IV.2: For allbPR, Ej given by (4.7) are well defined and satisfy (3.4)–(3.6) on
C 0

`(R3).
Proof: The key observation@see Hunziker~1988!# is that due to~4.3! and ~4.4! expressions

like R0(z)(VR0(z)) l , VR0(z)(VR0(z)) lV are well defined onC 0
`(R3). In particular from~4.7!, for

uPC 0
`(R3), Eju is well defined for allgP@0,g0# since

Eju5~21! j
i

2p R
G
R0~z!~Ve2 ~g/ j !^•&!R0,g/ j~z!¯R0,g~z!eg^•&u dz. ~4.8!

For all zÞz8Pr(H0), j 51, . . . , anduPC 0
`(R3),

1

z2z8
@R0~z!~VR0~z!! j2R0~z8!~VR0~z8!! j #u5(

l 50

j

@R0~z!~VR0~z!! l #@R0~z8!~VR0~z8!! j 2 l #u.

~4.9!
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Indeed from the resolvent formula

~z2z8!(
l 50

j

@R0~z!~VR0~z!! l #@R0~z8!~VR0~z8!! j 2 l #u

5~R0~z!2R0~z8!!VR0~z8!¯VR0~z8!u1R0~z!V~R0~z!2R0~z8!!VR0~z8! . . . VR0~z8!u

1¯1R0~z!VR0~z!¯~R0~z!2R0~z8!!u5R0~z!~VR0~z!! j2R0~z8!~VR0~z8!! ju.

Integrating~4.9! on two contoursG,G8,r(H0),G8,Int G enclosings0 one obtains

Eju5(
l 50

j

ElEj 2 lu. ~4.10!

From H0R0(z)511zR0(z), again onuPC 0
`(R3),

H0R0~z!~VR0~z!! jVR0~z!u2R0~z!~VR0~z!! jVR0~z!H0u

5~VR0~z!! jVR0~z!u2R0~z!~VR0~z!! jVu,

which after the integration onG gives

@H0 ,Ej 11#u52@V,Ej #u

and the proof is finished.
Consider first the case whens05$l0% with l0 a finite degenerate, isolated eigenvalue ofH0 :

dist~l0 ,s~H0!\l0!5d0.0, dimP05m,`,G5$zil02zu5d0/2%. ~4.11!

By the residue theorem, for allb anduPC 0
`(R3), from ~4.7!

Eju5~21! j 21 (
n1 ,n2¯n j 11 ;n l>0;S l 51

j 11n l5 j

Sn1VSn2V¯VSn j 11u, ~4.12!

whereS is the reduced resolvent atl0 :

S5S~l0!, S~z!5
i

2p R
G
R0~z!~z2z!21dz,uz2l0u,

d0

2
~4.13!

and by convention

S052P0 . ~4.14!

Taking K5G in Proposition IV.1, one obtains from~4.13! that for uz2l0u,d0/4:

ieg^•&S~z!e2g^•&i<
d0

d022ul02zu
<2M , all gP@0,g0#. ~4.15!

The main point about~4.12! is that all terms on its right-hand side contain atleastone P0 ; this
together with the decay property~4.5! of P0 and ~4.15!, which allows to propagate this decay
order to control the unboundedness ofV, implies thatEj defined initially onC 0

`(R3) are bounded
and their extensions by continuity satisfy~3.5! and~3.6!. Consider now the problem of estimatin
iEj i . Estimating as in the proof of Lemma IV.2, one can see directly that each term in~4.12! is
bounded by

M j 11iVje2g0^•&i
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so that

iEj i<N~ j !M j 11iVje2g0^•&i , ~4.16!

whereN( j ) is the number of terms on the right-hand side of~4.12!. Unfortunately, due to the fac
that N( j ) is at least of orderj ! ~4.16! is much weaker than the expected estimation; for exam
if b51 one expectsiEj i<constej j! while ~4.16! gives at best constej(j!)2. In order to overcome
this difficulty we shall write down yet another formula forEj :

Lemma IV.3: For allbPR and uPC 0
`(R3):

Eju5~21! j
i

2p E
uz2l0u5 d0/4

1

l02z (
k50

j

~S~z!V!kP0~VR0~z!! j 2kdz u. ~4.17!

Proof: Formula ~4.17! follows from ~4.7! by using repeatedly the decomposition@see Kato
~1980!#:

R0~z!5
P0

l02z
1S~z!

and remarking that due to the analyticity ofS(z);

E
uz2l0u5 d0/4

~S~z!V! jS~z!dz u50.

The advantage of~4.17! over~4.12! is clear: on one hand all terms on the right-hand side of~4.17!
still contain oneP0 and on the other hand the number of terms is onlyj 11.

We are now ready to state one of the main results of this section.
Theorem IV.4: Let b, g0 , M , d0 as given by (4.3) and (4.4) with K5$zu d0/4<uz2l0

u< d0/2% and (4.11). Then the operators Ej , j 50,1,2, . . . defined as extensions by continui
starting from any of the formulas, (4.7), (4.12), (4.17) have the following properties:

E05P0 , ~4.18!

EjL
2~R3!,D~H0!ùD~V!, ~4.19!

Ej5(
l 50

j

ElEj 2 l , ~4.20!

@H0 ,Ej #u52@V,Ej #u all uPD~H0!ùD~V!, ~4.21!

and for any g.2M (b/eg0)b there exist E,`, F,` such that for j51,2,. . . :

iEj i<Egj j b j , ~4.22!

i@V,Ej #i<Fgj 11 j b( j 11). ~4.23!

Proof: The property~4.19! can be read from~4.12! and then~4.20!, ~4.21! follows from ~4.19!
and Lemma IV.2.

Writing (Sg(z)[eg^•&S(z)e2g^•&),

~S~z!V!kP0~VR0~z!! j 2k5S~z!Ve2 g0^•&/ jSg0 / j~z!¯S@(k21)g0#/ j~z!Ve2 g0^•&/ jekg0^•&/ j P0

3e( j 2k)g0^•&/ jVe2 g0^•&/ j . . . R0,(j 2k21)g0 / j~z!Ve2 g0^•&/ jR0~z!,
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from

iVe2 g0^•&/ j i j5iVje2g0^•&i<sup
a.0

ab je2g0a5~b j /eg0!b j , ~4.24!

~4.17!, ~4.15! and IV.1 one obtains

iEj i<M ~ j 11!~2M ! j S b

eg0
D b j

j b j . ~4.25!

In a similar way,

i@V,Ej #i<~ j 11!~2M ! j 11S b

eg0
D ( j 11)b

~ j 11!b( j 11), ~4.26!

which together with~4.25! gives the needed estimates.
Remark 4.1:One can also prove estimations of the form~4.22! and~4.23! by recurrence using

the identity~4.20! in the form:

Ej5P0Ej1Ej P01(
l 51

j 21

ElEj 2 l ~4.27!

and taking advantage of the extraP0 in P0Ej andEj P0 which allows one to use~4.7! instead of
~4.12!.

Remark 4.2:By Stirling’s formula j b j<eb j ( j !) b so ~4.22!, ~4.23! can be rewritten as

iEj i<Eg̃j~ j ! !b, ~4.28!

i@V,Ej #i<Fg̃j 11~~ j 11!! !b ~4.29!

with

g̃52M ~b/g0!b.

Remark 4.3:As already said the result in Theorem IV.4 can be extended in a variet
situations as for example for Zeeman effect

He5~P2ea!21V0 , P52 i¹

with ~4.3! replaced by

uau1u¹"au<^x&b.

Also if V0(x)→` asuxu→` one can replace the decay factore2g0^•& by a better one, e.g., in th
‘‘harmonic oscillator’’ caseV0(x);uxu2 as uxu→` one can take@see Hunziker~1988!# e2g0^•&2

instead ofe2g0^•& and in this case the asymptotic estimations are in terms ofiVje2g0^•&2
i . Notice

also that even in the case~4.3! one can allowuV(x)u<eh^•& with h sufficiently small, but in this
case only a finite number ofEj can be controlled.

Remark 4.4:There is another way of proving thatEj given by~4.12! satisfy~4.20! and~4.21!
namely starting with a cutoff perturbation,Vl(x)5V(x) if uV(x)u<l and zero otherwise, for
which ~4.20! and ~4.21! are true~since the seriesPe,l5S j 50

` e jEj ,l is convergent and satisfie
2e@Pe,l ,Vl#5@Pe,l ,H0#, Pe,l5Pe,l

2 ! and then taking the limitl→`. Yet another proof can be
found in Howland~1991!.
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The proof of Theorem IV.4 rests heavily on exponential decay of eigenfunctions@see~4.5!#,
that is on the fact that dimP0,`. We consider now the case dimP05` when~4.5! does not hold
true. Still, as far asb<1 @see~4.3!# one can find solutions of~3.4!–~3.6!. More exactly:

Theorem IV.5: Suppose d05dist(s0 ,s(H0)\s0).0, D05supl,mPs0
,` and

sup
xPR3

u¹V~x!u<1. ~4.30!

Then:
(i) E j given recurrently by

E05P0 ,

Ej 115
i

2p R
G
R0~z!$P0@V,Ej #Q02Q0@V,Ej #P0%R0~z!dz1Sj22P0Sj P0 , ~4.31!

where

Q0512P0 , ~4.32!

Sj5 (
k51

k5 j

EkEj 112k ~4.33!

have the properties:

EjD~V!,D~H0!ùD~V!, ~4.34!

iEj i<gj j !, ~4.35!

i@V,Ej 21#i<gj j ! ~4.36!

for some g,` and satisfy (3.4)–(3.6).
(ii) Let Pe as given by (3.14), (3.9), and (3.22) witha51. Let He be the [unique by Faris–

Lavine theorem: see Reed and Simon (1978a)] self-adjoint extension of H01eV defined on
D(H0)ùD(V). Then for sufficiently smalle :

PeD~H0!ùD~V!,D~H0!ùD~V! ~4.37!

and onD(H0)ùD(V)

i@He ,Pe#i<
K

~ge!1/2expS 2
1

ge D , ~4.38!

where K is an absolute constant.
Remark 4.5:In order to see why boundedEj should however exist considerE1u with u

PC 0
`(R3) as given by~4.7!. Then

E1u52
i

2p S R
G
R0~z!VR0~z!dzD u

52
i

2p S R
G
R0

2~z!VdzD u2
i

2p S R
G
R0~z!@V,R0~z!#dzD u. ~4.39!

Now for uPC 0
`(R3),
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@V,R0~z!#u5 iR0~z!~P"¹V1¹V"P!R0~z!u ~4.40!

so the operator in the last term on the right-hand side of~4.39! is bounded. On the other hand, b
residue theorem, the first term on the right-hand side of~4.39! vanishes. It follows thatE1 as given
by ~4.39! is bounded onC 0

`(R3) and then it has a bounded extension by continuity. In additio
follows that E1L2(R3),D(H0) and one can argue that~see the proof of Lemma 4.2! that
E1D(V),D(V). Actually one can prove the existence ofEj ‘‘rewriting’’ ~4.7! in a form in which
V enters only in multiple commutators@V,@V¯@V,R0(z)#¯#. This is achieved by the construc
tion of the adiabatic projections based on the theory of pseudodifferential operators@see Sjostrand
~1993!, Martinez and Nenciu~1995!# which gives yet another recurrence formula forEj :

Ej5
i

2p R
G
qj~z!dz, ~4.41!

where

q0~z!5R0~z!, qj~z!5R0~z!@qj 21~z!,V#. ~4.42!

Let us stress once again that various formulas forEj must coincide since the solution of~3.4!–
~3.6! ~as far as it exists and is bounded! is unique@see Nenciu~1993!#.

Remark 4.6:Actually, the result in Theorem IV.5 holds true for all potentials satisfying~4.3!
with b<1 since such a potential can be written as the sum of a potential satisfying~4.30! with a
bounded one.

Proof of Theorem IV.5:As already said Theorem 4.4 follows from the treatment of the S
effect in Nenciu~1981!, Nenciu and Nenciu~1981! combined with the adiabatic exponenti
estimations in Nenciu~1993!, so we shall only outline the main points.

Consider the family of self-adjoint operators

H~s!5eisVH0e2 isV5~P2 is¹V!21V0 . ~4.43!

Let G,r(H0) be a contour of finite length enclosings0 . By regular perturbation theory, (H(s)
2z)21 is, for all zPG, analytic ins, in a strip around real axis and uniformly bounded there
we can apply the methods in Nenciu~1993!. In the following lemma we collect some results fro
Nenciu ~1993! in an appropriate form.

Lemma IV.6:( i ) Let

P0~s!5eisVP0e2 isV, R~s;z![~H~s!2z!215eisV~H02z!21e2 isV. ~4.44!

Then Ej (s) given by the reccurence formula

Ej 11~s!5
1

2p R
G
R~s;z!H P0~s!

d

ds
Ej~s!Q0~s!2Q0~s!

d

ds
Ej~s!P0~s!J

3R~s;z!dz1Sj~s!22P0~s!Sj~s!P0~s! ~4.45!

where

Q0~s!512P0~s!, ~4.46!

Sj~s!5 (
k51

k5 j

Ek~s!Ej 112k~s! ~4.47!

are the unique solution of

E0~s!5eisVP0e2 isV[P0~s!, ~4.48!
                                                                                                                



en by

1290 J. Math. Phys., Vol. 43, No. 3, March 2002 G. Nenciu

                    
i
d

ds
Ej~s!5@H~s!,Ej 11~s!#, ~4.49!

Ej~s!5 (
k50

k5 j

Ek~s!Ej 2k~s!, ~4.50!

are norm differentiable, and satisfy

Ej~s!L2~R3!,D~H~s!!, ~4.51!

iEj~s!i<gj j !, I d

ds
Ej~s!I<gj 11~ j 11!!, ~4.52!

for some g,`.
( i i ) Let Pe(s) as given by (3.14), (3.9), and (3.22) witha51. Then Pe(s) is norm differen-

tiable

Pe~s!L2~R3!,D~H~s!! ~4.53!

and there existse0.0 such that foreP@0,e0#:

I e
d

ds
Pe~s!2@H~s!,Pe~s!# I<

K

~ge!1/2expS 2
1

ge D , ~4.54!

where K is an absolute constant.
Let A be a bounded operator, such thatA(s)5eisVAe2 isV is norm differentiable. Then from

Stone’s theorem forf PD(V) one hasA fPD(V) and

i
d

ds
A~s! f 5eisV@A,V#e2 isVf . ~4.55!

Notice that@A,V# is bounded onD(V). SinceE0(s)5eisVP0e2 isV, from ~4.45! and ~4.55! it
follows thatEj (s) are of the form

Ej~s!5eisVEje
2 isV, ~4.56!

whereEj have all the properties stated in Theorem IV.5.i.
By the same argument@see~3.14!#

Pe~s!5eisVPee
2 isV, PeD~V!,D~V!, ~4.57!

and

i e
d

ds
Pe~s!5eeisV@Pe ,V#e2 isV, ~4.58!

which together withPeL
2(R3),D(H0) and ~4.54! finishes the proof of Theorem IV.5.

V. MAGNETIC SCHRÖDINGER OPERATORS: GAUGE INVARIANT PERTURBATION
THEORY

The aim of this section~which can be read independently of the rest of the paper! is to point
out how the gauge covariance can be used to control the singularitiy of perturbations giv
magnetic fields which do not vanish~or decay very slowly! asuxu→`. In order not to obscure the
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main ideas we shall consider here a particular case: a particle inR3, subjected to a magnetic fiel
b(x), and an electric potentialV0(x). Also the proofs of some technical lemmas in the followi
will be given at the end of the section.

Concerning the magnetic field,b(x), we suppose that

ub~x!u1(
j 51

d

u] jb~x!u<^x&b, b<0 ~5.1!

and forV0(x) as before, we suppose to be uniformlyL loc
2 , i.e.,

sup
xPR3

E
ux2yu<1

uV0~y!u2dy,`. ~5.2!

As is well known@see, e.g., Cyconet al. ~1986!#, for a large class of vector potentials,a(x),
corresponding tob(x) andeP@0,̀ ) the Hamiltonian

He,a5~P2ea!21V0 ~5.3!

is essentially self-adjoint onC 0
`(R3) and we shall denote by the same symbol its self-adjo

closure. As before, the unperturbed Hamiltonian~i.e., e50! is denoted byH0 ,

H05P21V0 . ~5.4!

The results in the following can be extended in many directions: arbitrary dimensions;
~locally! singularb~x! and V(x); many particle systems; the presence of a fixed magnetic
which amounts to replacing in~4.4! P by (P2A0) whereA0(x) corresponds to afixedmagnetic
field, B0(x); Dirac operators, etc.

Suppose thatH0 has an isolated and bounded part,s0 , of the spectrum, i.e.,

s~H0!5s0øs1 , dist~s0 ,s1!5d.0 ~5.5!

and let P0 be the spectral projection ofH0 corresponding tos0 . The problem is to study the
‘‘deformation’’ of s0 and P0 when eÞ0, e→0. If b in ~5.1! is less than21 then there exist
magnetic potentials which are uniformly bounded~e.g., the transversal gauge, see the followin!
there is nothing new to say since in that case

He,a5H02e~P"a2a"P1e2uau2![H02eWe,a , ~5.6!

whereWe,a is a regular perturbation ofH0 and the analytic perturbation theory works.
On the contrary, if in~5.1!, b>21 it is not possible in general to finda which is uniformly

bounded and this implies thatWe,a(H02z)21 is not bounded so one cannot obtain an expans
in e of (He,a2z)21 from

~He,a2z!~H02z!21512eWe,a~H02z!21. ~5.7!

If s0,sdiscr(H0) the asymptotic perturbation theory developed in previous sections work
all bPR and gives asymptotic expansions for perturbed eigenvalues and corresponding eig
tors. The situation is more involved whens0 is not contained in the discrete spectrum ofH0 . On
the one hand forb<0, i.e., for magnetic fields which are uniformly bounded, it has been pro
by Avron and Simon~1985! in a particular case and by Nenciu~1986! and Helffer and Sjostrand
~1989! in the general case that the spectrum~as a set! is stable and then for sufficiently smalle one
can still define the spectral projectionPe,a of He,a corresponding to the part ofs(He,a) coinciding
with s0 in the limit e→0. Now the singularity of the perturbation manifests itself in the ‘‘non
mooth’’ behavior ofPe,a ase→0; There are examples@see Nenciu~1991!# in solid state theory
~i.e., V periodic andb constant! where
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lim
e→0

iPe,a2P0i51 ~5.8!

~of course one still hass2 lime→0 Pe,a5P0! so there is no room for a~norm! asymptotic expan-
sion of Pe,a . Since, in contrast tos(He,a), Pe,a is not a gauge invariant quantity, the abov
mentioned discussion suggests that, in general, the gauge invariant quantities behave mu
smoothly in the limite→0 than the nongauge invariant ones. In other words if one want
develop a perturbation theory, one has to consider gauge invariant quantities. The problem
in almost all perturbation schemes, the basic object is the resolvent which is not a gauge in
quantity.

Fortunately, one can ‘‘factor’’ out the nongauge invariant part. LetGe,a(x,y;z), zPr(He,a) be
the integral kernel~we shall prove in the following that it exists! of (He,a2z)21 andfa(x,y) be
the famous nonintegrable phase factor corresponding toa, i.e.,

fa~x,y!5E
y

x
a~u!•du, ~5.9!

where the integral is along the straight line joiningx andy. Alternatively one can write~5.9! as

fa~x,y!5S E
0

1

a~y1t~x2y!!dt D "~x2y!. ~5.10!

Then as one can easily check

Ke~x,y;z!5e2 i efa(x,y)Ge,a~x,y;z! ~5.11!

is a gauge invariant quantity. In other words we have to make the ansatz

Ge,a~x,y;z!5ei efa(x,y)Ke~x,y;z! ~5.12!

and seek a perturbation expansion forKe(x,y;z). The formula~5.12! is crucial for all that follows;
it says that the whole gauge noninvariance of the integral kernel of the resolvent~and then for
other related objects such as spectral projections, evolution, etc.! is contained in an exponentia
factor ei efa(x,y). Coming back to perturbation theory,~5.12! suggests to take as the ‘‘zeroth
approximation for (He,a2z)21 the operatorSe,a(z), given by the following integral kerne
~‘‘twisted’’ unperturbed resolvent!

~Se,a~z! f !~x!5E
R3

ei efa(x,y)G0~x,y;z! f ~y!dy, ~5.13!

where G0(x,y;z) is the integral kernel of (H02z)21. Let us consider now~5.7! with (H0

2z)21 replaced bySe,a(z) and defineTe,a(z) by

~He,a2z!Se,a~z!512eTe,a~z!. ~5.14!

Before computingTe,a(z) let us give the following gauge covariance formula.
Lemma V.1: Leta(x) be an arbitrary continuous vector potential corresponding tob(x), c

PR3 and fa(x,c) the corresponding nonintegrable phase factor. Then

e2 i efa(x,c)~Px2ea~x!!ei efa(x,c)5~Px2eac~x!! ~5.15!

where Px52 i¹x and ac(x) is the vector potential given by the transversal (Poincare) gau
relative to the pointc :
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ac~x!5S E
0

1

tb~c1t~x2c!!dt D `~x2c!. ~5.16!

Notice thata0(x) is the usual transversal gauge@see Thaller~1992!#:

a0~x!5S E
0

1

tb~ tx!dt D `x. ~5.17!

The most interesting properties ofac(x) andfac
(x,y) are given in the following:

Lemma V.2: (i)

fac
~x,y!52S E

0

1

dtE
0

1

ds sb~st~x2y!1s~y2c!!"~~x2c!`~y2c!! D ~5.18!

i.e., fac
(x,y) is the flux through the trianglex c y.

(ii)

uac~x!u<ux2cu/2, ~5.19!

u¹ac~x!u<2ux2cu. ~5.20!

(iii)
If b(x)5b05constthen

ac~x!5b0∧~x2c!/2, ~5.21!

fac
~x,y!52b0"~~x2c!∧~y2c!!/2. ~5.22!

Computing the right-hand side of~5.14! applied tof PC 0
`(R3) by using Lemma V.1 one finds

~Te,a~z! f !~x!5E
R3

ei efa(x,y)M e~x,y;z! f ~y!dy, ~5.23!

where

M e~x,y;z!5~22iay~x!"“x2 i ~¹xay~x!!2euay~x!u2!G0~x,y;z!. ~5.24!

Notice thatM e depends only uponb, i.e., is gauge invariant. Up to now the discussion was
the heuristic formal level. The main technical point of this section is contained in:

Theorem V.3: Suppose: (5.1) and (5.2) hold true, zPr(H0), eP@0,e0#, e0,`, K,r(H0)
compact. Then (5.23), (5.24) define a bounded operator in L2(R3) and there exist t(z),` (de-
pending upon V, b, and e0 but not upona) such that uniformly foreP@0,e0# and zPK:

iTe,a~z!i<t~z!. ~5.25!

As a direct consequence we obtain the following perturbation formula for (He,a2z)21:
Lemma V.4: IfeP@0,t(z)21# then zPr(He,a) and

~He,a2z!215Se,a~z!(
j 50

`

e jTe,a~z! j ~5.26!

as a norm convergent series.
Combining~5.13!, ~5.23!, and~5.26! one can write down the expansion forKe(x,y;z):
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Ke~x,y;z!5G0~x,y;z!1(
j 51

`

e jKe, j~x,y;z!, ~5.27!

where

Ke, j~x,y;z!5E ¯E du1du2 ¯duje
i eF(x,u1 ,u2 . . . uj ,y)

3G0~x,u1 ;z!M e~u1 ,u2 ;z! ¯M e~uj ,y;z! ~5.28!

and

F~x,u1 ,u2 . . . uj ,y!5fa~y,uj !1fa~uj ,uj 21!1 ¯ 1fa~u1 ,x!1fa~x,y!. ~5.29!

Notice thatF is gauge invariant and is the flux through the polygonal contouryujuj 21 . . . xy. In
terms of integral kernels,~5.26! rewrites as

Ge,a~x,y;z!5ei efa(x,y)H G0~x,y;z!1(
j 51

`

e jKe, j~x,y;z!J . ~5.30!

Formulas~5.28! and ~5.30! are the main result of this section.
Starting from ~5.30!, as in the analytic perturbations case, one can compute all phy

quantities as convergent series ine but with coefficients which depend themselves upone. For
example, if s05$l0% where l0 is nondegenerate, then for sufficiently smalle the perturbed
eigenvalue,l(e), has an expansion:

l~e!5(
j 50

`

e jle, j , ule, j u<kj for some k,`. ~5.31!

The expressions forle, j can be obtained from

l~e!5Tr~He,aPe,a!5Tr
i

2p R
G
z~He,a2z!21dz,

whereG is a contour enclosingl0 . Notice that@c0(x) is the eigenfunction ofH0 corresponding to
l0#

le,05
i

2p E
R3

dx R
G
z

uc0~x!u2

l02z
dz5l0 . ~5.32!

For j >1, due to the fact thatKe, j (x,x) is finite one can write

le, j5
i

2p E
R3

dx R
G
zKe, j~x,x;z!dz. ~5.33!

In order to see thatle, j as given by~5.33! are finite and satisfy~5.31! one has to plug the
decomposition

R0~z!5
P0

l02z
1S~z! ~5.34!

into ~5.33!, observe that the term containing noP0 vanishes due to the contour integral and th
use the exponential decay of the eigenfunction corresponding tol0 . Further details and applica
tions of Theorem V.3 will be given elsewhere.
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The rest of this section is devoted to the proofs of Lemmas V.1 and V.2 and Theorem
Proof of Lemma V.1:By the usual computation

e2 i efa(x,c)~Px2ea~x!!ei efa(x,c)5~Px2e~a~x!2¹fa~x,c!!. ~5.35!

To compute¹xfa one uses~5.10! and the vector analysis formula@see Spain~1965!#

¹~A~x!"B~x!!5B~x!`~¹`A~x!!1A~x!`~¹`B~x!!1~B~x!"¹!A~x!1~B~x!"¹!A~x!

~5.36!

with

A~x!5E
0

1

a~c1t~x2c!!dt,

B~x!5~x2c!.

One obtains four terms; the first one gives2ac(x), the second vanishes, and the fourth giv
*0

1a(c1t(x2c))dt. Observing that

t
d

dt
a~c1t~x2c!!5~~x2c!"¹x!a~c1t~x2c!!

the third term gives*0
1t (d/dt) a(c1t(x2c))dt and then, after integration by partsa(x)2*0

1a(c
1t(x2c))dt. Summing up all the terms one obtains~5.15!.

Proof of Lemma V.2:The only thing to be proved is~5.18! since~5.19!–~5.22! can be read
directly from ~5.10!,~5.16!, and ~5.1!. Now ~5.18! follows, either directly by direct computation
from ~5.10!, and~5.16! or from Stokes’s theorem by observing that

E
c

x
ac~u!•du5E

c

y
ac~u!"du50.

Proof of Theorem V.3:We have to estimateM e(x,y;z). The key fact is that@see~5.19! and
~5.20!# ay(x) and¹x"ay(x) diverge only whenux2yu→` and this divergence is canceled by th
decay ofG0(x,y;z) and¹x"G0(x,y;z) as given by the following proposition which is the poin
wise analog of Proposition IV.1.

Proposition V.5: (i) For all zPr(H0), (H02z)21 is a Carleman operator; in particular it has
an integral kernel G0(x,y;z).

(ii) Let K,r(H0) be compact. Then there exist C,`, g.0 such that uniformly in zPK :

uG0~x,y;z!u<
C

ux2yu
e2gux2yu, ~5.37!

u¹xG0~x,y;z!u<
C

ux2yu2
e2gux2yu. ~5.38!

From

sup
r .0

r me2nr5M ~m,n!,`, m>0,n.0, ~5.39!

~5.19!, ~5.20!, ~5.37!, ~5.38!, and~5.24! one obtains that uniformly foreP@0,e0#, zPK,

uM e~x,y;z!u<const
1

ux2yu
e2gux2yu/2 ~5.40!
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and then by Young inequality

iTe f i<constS E
R3

e2guxu/2

uxu
dxD i f i ~5.41!

and the proof is finished.
Proof of Proposition V.5:The proposition follows from the results in Simon~1982!, so we

shall only outline the proof. The fact that (H02z)21 is a Carleman operator follows from the fa
that V0 is 2D bounded and then (H02z)21PB(L2(R3),L`(R3)) @see Corollary A.1.2 in Simon
~1982!#. The inequality~5.37! follows from Theorem B 7.2. in Simon~1982! @actually Theorem B
7.2. in Simon~1982! is stated for a fixedz but the proof covers the given case#.

For z52a, a.0 and sufficiently large

G0~x,y;2a!5
1

4pux2yu
e2a1/2ux2yu2E

R3

1

4pux2uu
e2a1/2ux2uuV~u!G0~u,y;2a!du ~5.42!

and then

¹xG0~x,y;2a!5¹xS 1

4pux2yu
e2a1/2ux2yu D2E

R3
¹xS 1

4pux2uu
e2a1/2ux2uu DV~u!G0~u,y;2a!du,

~5.43!

which gives~5.38! for z52a. Finally ~5.38! is ‘‘carried’’ from 2a to zPK via the resolvent
equation

¹xG0~x,y;z!5¹xG0~x,y;2a! ~5.44!

1~z1a!E
R3

¹xG0~x,u;2a!G0~u,y;z!du. ~5.45!
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APPENDIX: ALMOST IDEMPOTENT OPERATORS

Although the Proposition 3 in Nenciu~1993! provides the needed construction we shall g
below a more aesthetical form of it.

Let P be a bounded idempotent. Then@see, e.g., Kato~1980!, Chap. III.4# H5M1N such
that if f 5m1n, mPM, nPN thenP f5m, i.e., P is a projection. By direct computation

~P2z!~P1z21!5z~z21!,

which in particular implies thats(P)5$0,1%. Moreover it gives the following formula for the
resolvent ofP:

~P2z!215
~P1z21!

z~12z!
.

Let T now be bounded and ‘‘almost’’ idempotent~but not necessarily self-adjoint!. The prob-
lem is whetherT is close to an idempotent.

Proposition VI.1: Let T be a bounded operator, D5T22T.
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Then foriDi[d<1/4 one has$uz21u51/2%,r(T) and

iT2Pi<
4d~2iTi11!

124d
,

where

P5
i

2p R
uz21u51/2

~T2z!21 dz.

Proof: By direct computation,

~T2z!~T1z21!5z~12z!@11D/z~12z!#

whereof foriDi /uz(z21)u,1

~T2z!215
T1z21

z~12z! F11
D

z~12z!G
21

5S T

z~12z!
2

1

zD F12
D

z~12z! S 11
D

z~12z! D
21G ,

whereof ford,1/4

P2T52D
i

2p R
uz21u51/2

1

z~12z! S T

z~12z!
2

1

zD S 11
D

z~12z! D
21

dz, ~A1!

which gives the result.
Remark 6.1:If T is self-adjoint thenP is also self-adjoint.
Remark 6.2:By performing the integral in the last equation by using the residue theorem

can show that

P2T5~T21/2!@~114D!21/221#,

which gives the estimation

iP2Ti<
2d~2iTi11!

124d
, ~A2!

which is better than the result in Proposition VI.1 by a factor of 2.

Aguilar, J., and Combes, J.-M., ‘‘A class of analytic perturbations for one-body Schro¨dinger Hamiltonians,’’ Commun.
Math. Phys.22, 259–279~1971!.

Avron, J., and Simon, B., ‘‘Stability of gaps for periopdic potentials under variations of the magnetic field,’’ J. Phys.18,
2199–3009~1985!.

Balslev, E., and Combes, J.-M., ‘‘Spectral properties of many body Schro¨dinger operators with dilation analytic interac
tions,’’ Commun. Math. Phys.22, 280–294~1971!.

Combes, J.-M., and Thomas, L., ‘‘Asymptotic behaviour of eigenfunctions for multiparticle Schro¨dinger operators,’’
Commun. Math. Phys.34, 251–276~1973!.

Cornean, H. D., ‘‘On the magnetization of a charged Bose gas in the canonical ensemble,’’ Commun. Math. Phy212,
1–27 ~2000!.

Cornean, H. D., and Nenciu, G., ‘‘On the eigenfunction decay for magnetic Schrodinger operators,’’ Commun. Math
192, 671–685~1998!.

Cycon, H. L., Froese, R. G., Kirch, W., and Simon, B.,Schrödinger Operators, with Applications to Quantum Mechani
and Global Geometry~Springer, New York, 1986!.

Gonze, X., ‘‘Perturbation expansions of variational principles at arbitrary order,’’ Phys. Rev. A52, 1086–1095~1995!.
Helffer, B., and Sjostrand, J., ‘‘Equation de Schro¨dinger avec champ magnetique et equation de Harper,’’ Lect. Notes P

345, 118–197~1989!.
Hislop, P. D., and Sigal, I. M.,Introduction to Spectral Theory. With Applications to Schro¨dinger Operators~Springer, New

York, 1996!.
                                                                                                                



l

ladder

ians,’’

1298 J. Math. Phys., Vol. 43, No. 3, March 2002 G. Nenciu

                    
Howland, J., ‘‘A note on spectral concentration for non-isolarwd eigenvalues,’’ J. Math. Anal. Appl.158, 285–292~1991!.
Hunziker, W., ‘‘Notes on asymptotic perturbation theory for Scho¨dinger eigenvalue problem,’’ Helv. Phys. Acta61,

219–233~1988!.
Hunziker, W., and Pillet, C. A., ‘‘Degenerate asymptotic perturbation theory,’’ Commun. Math. Phys.90, 219–233~1983!.
Kato, T.,Perturbation Theory for Linear Operators, 2nd ed.~Springer, Berlin, 1980!.
Luttinger, J. M., ‘‘The effect of a magnetic field on electrons in a periodic potentials,’’ Phys. Rev.15, 814–817~1951!.
Martinez, A., and Nenciu, G., ‘‘On adiabatic reduction theory,’’ inPartial Differential Operators and Mathematica

Physics, OT 78, edited by M. Demuth and B.-W. Schultze~Birkhauser Verlag, Basel, 1995!, pp. 243–252.
Nenciu, A., and Nenciu, G., ‘‘Dynamics of Bloch electrons in external fields. II. The existence of Stark–Wannier

resonances,’’ J. Phys. A14, 2817–2827~1981!.
Nenciu, G., ‘‘Adiabatic theorem and spectral concentration,’’ Commun. Math. Phys.82, 121–135~1981!.
Nenciu, G., ‘‘Linear adiabatic theory. Exponential estimates,’’ Commun. Math. Phys.152, 479–496~1993!.
Nenciu, G., ‘‘Dynamics of band electrons in electric and magnetic fields: Rigorous justification of effective hamilton

Rev. Mod. Phys.63, 91–127~1991!.
Nenciu, G., ‘‘Stability of energy gaps under variations of the magnetic field,’’ Lett. Math. Phys.11, 127–132~1986!.
Nenciu, G., ‘‘On asymptotic perturbation theory for quantum mechanics,’’ inLong Time Behaviour of Classical and

Quantum Systems, edited by S. Graffi and A. Martinez~World Scientific, Singapore, 2001!, pp. 238–256.
Reed, M., and Simon, B.,Methods of Modern Mathematical Physics. II~Academic, New York, 1978a!.
Reed, M., and Simon, B.,Methods of Modern Mathematical Physics. IV. Analysis of Operators~Academic, New York,

1978b!.
Riddell, R. C., ‘‘Spectral concentration for self-adjoint operators,’’ Pac. J. Math.23, 371–401~1967!.
Simon, B., ‘‘Schrödinger semigroups,’’ Bull. Am. Math. Soc.7, 447–526~1982!.
Sjostrand, J., ‘‘Projecteurs adiabatiques du point de vue pseudo-differentiel,’’ C. R. Acad. Sci., Ser. I: Math.317, 217–220

~1993!.
Spain, B.,Vector Analysis~Van Nostrand, London, 1965!.
Thaller, B.,The Dirac Equation~Springer, Berlin, 1992!.
Vock, E., and Hunziker, W., ‘‘Stability of Schro¨dinger eigenvalue problems,’’ Commun. Math. Phys.83, 281–302~1982!.
                                                                                                                



,
g

phase
iant

a-

r

e new

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 3 MARCH 2002

                    
On the structure of covariant phase observables
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We study the mathematical structure of covariant phase observables. Such observ-
ables can alternatively be expressed as phase matrices, as sequences of unit vectors
as sequences of phase states, or as equivalence classes of covariant trace-preservin
operations. Covariant generalized operator measures are defined by structure ma-
trices which form a W* -algebra with phase matrices as its subset. The properties of
the Radon–Nikody´m derivatives of phase probability measures are studied.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1446663#

I. INTRODUCTION

Covariant phase observables constitute a particular solution to the problem of quantum
~see, e.g., Ref. 1, and 2!. In this article, we study general mathematical properties of covar
phase observables and represent them as covariant trace-preserving operations~Sec. III!. We also
analyze the structure matrix W* -algebra of covariant generalized operator measures~Sec. IV! and
the pointwise convergence of phase probability densities~Sec. V!

Let H be a complex Hilbert space with a fixed basis$un&PH u nPN%. Define the number
operatorNª(n50

` nun&^nu with its usual domainD(N)ª$cPH u n2u^nuc&u2,`% and the phase
shifterR(u)ªeiuN for all uPR. Let L(H), T(H), andT(H)1

1 denote the sets of bounded oper
tors, trace-class operators, and states~positive trace-one operators! on H, respectively.

Let B(@0,2p)) denote thes-algebra of the Borel subsets of@0,2p), and consider an operato
measureE: B(@0,2p))→L(H). The measureE is normalized if E(@0,2p))5I , positive if
E(X)>O for all XPB(@0,2p)), and phase shift covariant ifR(u)E(X)R(u)* 5E(X% u) for all
XPB(@0,2p)) and for alluP@0,2p), whereX% uª$xP@0,2p) u (x2u)(mod 2p)PX%. A phase
shift covariant normalized positive operator measure is called a(covariant) phase observable.

In the next section we collect some known properties of covariant phase observables. Th
results are contained in Secs. III–V.

II. THE STRUCTURE OF PHASE OBSERVABLES

Any covariant phase observable is of the~weakly convergent! form

E~X!5 (
n,m50

`

cn,mi n2m~X!un&^mu, XPB~@0,2p!!, ~1!

wherei k(X)ª(2p)21*Xeikudu for all kPZ, and where the phase matrix (cn,m)n,mPN is a positive
semidefinite~complex! matrix with cn,n51, nPN ~see, e.g., Phase Theorem 2.2 of Ref. 2!. A
complex matrix (cn,m) is a phase matrix if and only if there exists a sequence (cn)nPN of unit
vectors such thatcn,m5^cnucm&, n, mPN.3 A constant sequence, e.g.,cn5u0&, nPN, defines the
canonical phase observable

Ecan~X!ª (
n,m50

`

i n2m~X!un&^mu, XPB~@0,2p!!,

a!Electronic mail: juhpello@utu.fi
12990022-2488/2002/43(3)/1299/10/$19.00 © 2002 American Institute of Physics
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whereas any orthonormal sequence, e.g.,cn5un&, nPN, gives thetrivial phase observable

Etriv~X!ª i 0~X! I , XPB~@0,2p!!.

Next we show how any phase observable can be constructed by using a sequence of pha
~Theorem 2!.

DefineH1ª$cPH u (n50
` u^nuc&u,`%. A phase matrix (cn,m) can be interpreted as a pha

kernel, that is, a positive~possible unbounded in the norm ofH! sequilinear formC: H13H1

→C defined as

C~w,c!ª (
n,m50

`

cn,m^wun&^muc&, w, cPH1 ,

where the sum converges absolutely. Keeping this in mind, we may formally write

C5 (
n,m50

`

cn,mun&^mu.

Since R(u)H15H1 for all uP@0,2p) we can define a continuous integrable function@0,2p#
→C,

u°C~R~2u!w,R~2u!c!5 (
n,m50

`

cn,mei (n2m)u^wun&^muc&,

for all w, cPH1 , and thus a bounded positive sesquilinear formH13H1→C,

~w,c!°E~X!w,cª
1

2p E
X
C~R~2u!w,R~2u!c!du5 (

n,m50

`

cn,mi n2m~X!^wun&^muc&,

for all XPB(@0,2p)).4 The form (w,c)°E(X)w,c has a unique bounded positive extension
H3H which is determined by a unique bounded operator, say,E(X)PL(H). OperatorsE(X),
XPB(@0,2p)), constitute a covariant phase observable. The following route to define a p
observable is thus justified:

~1! Take a phase matrix (cn,m) and define the phase kernel(n,m50
` cn,mun&^mu.

~2! Act on it by R(u) to get

R~u! (
n,m50

`

cn,mun&^muR~u!* 5 (
n,m50

`

cn,mei (n2m)uun&^mu.

~3! Integrate it overXPB(@0,2p)) to get a bounded sesquilinear formH13H1→C,

1

2p E
X
R~u! (

n,m50

`

cn,mun&^muR~u!* du5 (
n,m50

`

cn,mi n2m~X!un&^mu.

~4! This has a unique bounded extensionH3H→C which defines the phase observable

E~X!ª (
n,m50

`

cn,mi n2m~X!un&^mu.

Let H` be a complex Banach space of vectors(n50
` gnun& for which the norm

i(n50
` gnun&i`ªsup$ugnu u nPN%,`.5 EmbeddingH in H` we get the following triplet:

H1,H,H` .
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We have the following theorem.6

Theorem 1: For any phase matrix(cn,m),

(
n,m50

`

cn,m^wun&^muc&5 (
k50

`

^wuFk!~Fkuc&,

for all w, cPH1 , that is, briefly,

(
n,m50

`

cn,mun&^mu5 (
k50

`

uFk)~Fku,

whereuFk)PH` for all kPN and(k50
` u^nuFk)u251 for all nPN. Conversely, if(uFk))kPN,H`

is such that(k50
` u^nuFk)u251, then(k50

` uFk)(Fku is a phase kernel.
Let uF)PH` and define uF;u)ªR(u)uF) and (F;uuª(FuR(u)* for all uPR. Since

R(u8)uF;u)5uF;u1u8) we say thatuF;u) is a phase state. It is easy to see that the following
sesquilinear formH13H1→C,

~w,c!°
1

2p E
X

^wuF;u!~F;uuc&du,

is positive and bounded for allXPB(@0,2p)) and it defines a covariant positive operator meas

B([0,2p)){X°EF(X)5 (
n,m50

`

^nuF !~Fum& i n2m~X!un&^muPL~H!. ~2!

The operator measureEF is normalized, that is, a phase observable, if and only ifu^nuF)u51 for
all nPN, that is, when

uF)5 (
n50

`

ei ynun&,

where (yn)nPN,@0,2p). Let Uª(n50
` ei ynun&^nu. ThenEF is a phase observable if and only i

EF~X!5UEcan~X!U* , XPB~@0,2p!!.

If, for two phase observablesE1 and E2 , the conditionE1(X)5UE2(X)U* , XPB(@0,2p)),
holds, we say thatE1 is E2 up to unitary equivalence, or, briefly,E1 is E2 ~u.e.!. Thus, using
Theorem 1 we get a variant of Phase Theorem 2.2 of Ref. 2.

Theorem 2: E is a phase observable if and only if for all XPB(@0,2p))

E~X!5w2lim
n→`

(
k50

n

EFk
~X!,

where EFk
(X) is the bounded operator defined by a sesquilinear form

1

2p E
X
uFk ;u)~Fk ;uudu,

whereuFk)PH` , kPN, and (k50
` u^nuFk)u251.

The phase observable E is defined by a single phase state if and only if E is Ecan (u.e.).
Since the sequencen°(k50

n EFk
(X) is increasing,E(X)5s-limn→` (k50

n EFk
(X) also.
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III. PHASE OBSERVABLES AS OPERATIONS

A linear mappingF:T(H)→T(H) is a covariant trace-preserving operationif it is covariant
@R(u)F(T)R(u)* 5F(R(u)TR(u)* ), uP@0,2p), TPT(H)], trace-preserving @ tr(F(T))
5tr(T), TPT(H)], and positive@F(T(H)1

1)#T(H)1
1# ~for the theory of operations, see e.g

Refs. 7 and 8!. We prove next a theorem essentially due to Hall and Fuss.9,10

Theorem 3: A mapping E: B(@0,2p))→L(H) is a phase observable if and only if

tr~TE~X!!5tr~F~T!Ecan~X!! ~3!

for all XPB(@0,2p)) and TPT(H) whereF:T(H)→T(H) is a covariant trace-preserving op
eration.

Proof: Let E be a phase observable with the phase matrix (cn,m). For all TPT(H) define

Q~T!ª (
n,m50

`

cm,nTn,mun&^mu. ~4!

SinceT5aTa2bTb1 igTg2 idTd whereTa , Tb , Tg , andTd are states, anda, b, g, andd are
non-negative real numbers, it suffices to consider only states. Thus, assume thatT is a state. Since
sup$u^wuQ(T)c&u u iwi<1, ici<1%<sup$(n,m50

` uTn,mu u^wun&u u^muc&u u iwi<1, ici<1%<1 it
follows that Q(T) is a bounded operator. Using a decompositionT5( j 50

` uf j&^f j u, f jPH, j
PN, one sees that̂cuQ(T)c&5( j 50

` (n,m50
` ^muf j&^cum&cm,n^nuf j&^cun&>0 for all cPH1

and, thus,Q is positive. Since(n50
` ^nuQ(T)un&51, Q(T) is a trace-one operator. Moreove

tr(TE(X))5tr(Q(T)Ecan(X)), XPB(@0,2p)), andQ is covariant. Thus,Q is a covariant trace-
preserving operation. The converse part is trivial. h

There are many covariant trace-preserving operationsF which satisfy Eq.~3! for a givenE.
One such operationQ is defined in~4!. It is the identity operation in the case of the canonic
phase whereas for the trivial phase it is of the formQ(T)5(n50

` Tn,nun&^nu. We note also that, in
the case of the trivial phase,T°T0,0u1&^1u1T1,1u0&^0u1(n52

` Tn,nun&^nu is another operation
fulfilling Theorem 3. Since the diagonal elementsTn,n do not ‘‘contain’’ any phase information o
the stateT we see that the trivial phase ‘‘loses’’ all phase information. In the general cas
cn,m50 for somenÞm, there are vector states~other than number states! cªdnun&1dmum&, dn ,
dmPC\$0%, udnu21udmu251, for which the probability measureX°^cuE(X)c& is random. Next
we study the properties ofQ.

Let E be a phase observable with the phase matrix (cn,m), and let Q(T)
5(n,m50

` cm,nTn,mun&^mu for all TPT(H). The dual mappingQ* : L(H)→L(H) of an operation
Q defined by the relation tr(TQ* (A))5tr(Q(T)A), APL(H), TPT(H), is a positive linear
mapping, and

Q* ~A!5 (
n,m50

`

cn,mAn,mun&^mu, APL~H!.

From Theorem 1 one gets~weakly!

Q~T!5 (
k50

`

AkTAk* , TPT~H!,

whereAkª(n50
` (Fkun&un&^nu for all kPN showing thatQ is completely positive~see the First

Representation Theorem of Ref. 8!. Note that (k50
` AkAk* 5I and Q* (A)5(k50

` Ak* AAk , A
PL(H).

Let Q1
1 : T(H)1

1→T(H)1
1 be the restriction ofQ to the set of states.

Theorem 4: ~1! Q and Q1
1 are injections if and only if cn,mÞ0 for all n, mPN.

~2! Q1
1 is surjection if and only if E is Ecan (u.e.).

~3! Q1
1 is bijection if and only if E is Ecan (u.e.).
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~4! Q preserves pure states@Q(uc&^cu)25Q(uc&^cu) for all unit vectorscPH# if and only
if E is Ecan (u.e.).

Proof: It is easy to see thatQ andQ1
1 are injections if and only ifcm,nTn,m50 for all n, m

PN whereTPT(H) implies thatT5O. Thus,Q andQ1
1 are injections if and only ifcn,mÞ0 for

all n, m.
Suppose thatQ1

1 is a surjection. Ifcm,n505cn,m for somenÞm, thenQ1
1(T)ÞT8ª(un&

1um&)(^nu1^mu)/2 for all TPT(H)1
1 and, thus,cn,mÞ0 for all n, m andQ1

1 is an injection and
bijection. If ucn,mu,1 for somenÞm, then there is no stateT such thatQ1

1(T)5T8. Thus,
ucn,mu51, n, mPN, andE5Ecan ~u.e.!. This proves items~2! and ~3!.

Let cª(n50
` dnun& wheredn.0 for all n and (n50

` dn
251. Now Q(uc&^cu)25Q(uc&^cu)

implies that(n50
` ucn,mu2dn

251 for all m which shows thatucn,mu51, n, mPN, andE5Ecan~u.e.!.
This completes the proof. h

IV. COVARIANT GOMS AND PHASE MATRICES

The standard way to represent an observable in quantum mechanics is to find an appr
self-adjoint operator, or an idempotent POM, which describes that observable. However, in
cases this representation is too narrow and it is convenient to give up the idempotency~see, e.g.,
Ref. 11!. The strength of POMs is that they associate a probability measure toall states. If we
restrict ourselves to a subset of~vector! states to be called physical states, we can give up
positivity of POM and require that the operator measure gives a probability measure~via trace
formula! only for physical states. Actually, we do not have to assume that the observable can
be ‘‘defined’’ for other states than physical ones. Hence, define a set of physical statesV. It is a
linear subspace of the Hilbert space of the physical system. The linearity is assumed bec
the possibility to superpose the physical states. LetSL(V,V;C) be the set of sesquilinear form
from V3V to C ~the first argument is antilinear!. A generalized operator measure,12 or aGOM, G
is the mapping from thes-algebraA of the set of measurement outcomesV to SL(V,V;C) such
that A{X→@G(X)#(w,c)PC is a complex measure for allw, cPV. It is normalized if
@G(V)#(w,c)5^wuc&, w, cPV.

In the case of phase, it is natural to assume thatV5@0,2p), A5B(@0,2p)), andV contains
number states, coherent states, etc. Since they are elements ofH1 we assume thatV5H1 . If we
study the coherent state phase measurements with the associated GOME: B(@0,2p))
→SL(H1 ,H1 ;C), it is natural to assume the following phase shift covariance condition:

@E~X!#~ uze2a&,uze2a&)5@E~X% a!#~ uz&,uz&) ~5!

for all XPB(@0,2p)), zPC, andaP@0,2p). The following GOMs are solutions of~5!:

@E~X!#~w,c!5 (
n,m50

`

dn,mi n2m~X!^wun&^muc&, ~6!

where (dn,m)PCN3N, sup$udn,mu u n,mPN%,`, XPB(@0,2p)), andw, cPH1 . We use the fol-
lowing short notation forE:

E~X!5 (
n,m50

`

dn,mi n2m~X!un&^mu,

and we say thatE is a covariant GOM defined by thestructure matrix (dn,m). Note that
E(@0,2p))5(n50

` dn,nun&^nu can be extended to a unique bounded operator. Ifdn,n51, nPN,
then E is normalized. If (dn,m) is a phase matrix, thenE is a phase observable. For allw, c
PH1 , the complex measureX→@E(X)#(w,c) has a continuous density which is
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u° (
n,m50

`

dn,mei (n2m)u^wun&^muc&.

Let M` be a set of structure matrices (dn,m)n,mPNPCN3N, sup$udn,mu u n,mPN%,`. Since
for all (dn,m)PM` we have a unique covariant genaralized operator measureE defined in~6!, we
can identify (dn,m) with E. Now M` is a W* -algebra ~over C! with the norm i(dn,m)i
ªsup$udn,mu u n,mPN%,`. The summation, scalar product, and algebra product are de
pointwise. Let! be the algebra product operation, that is, (dn,m)!(en,m)ª(dn,men,m). The iden-
tity of M` is the canonical phase matrix (cn,m) with cn,m51, n, mPN. The algebraM` is
commutative and the involution is (dn,m)°(dn,m)*ª(dn,m). The unique predual ofM` is the
Banach spaceM1 of matrices (dn,m) for which (n,m50

` udn,mu,`. A matrix (dn,m)PM` has an
inverse if and only ifdn,mÞ0 for all n, mPN. The inverse is (dn,m

21 ). A matrix (dn,m)PM` is
positive if dn,m>0 for all n, mPN. However, we are not interested in this standard positivity;
rather study positive semidefinitess of matrices.

The positive semidefinite matrices ofM` form a convex cone. We denote it byM `
1 . Any

(dn,m)PM `
1 defines a covariant positive operator measureE via Eq.~6!. The phase matrices ar

such matrices ofM `
1 whose diagonal elements equal 1. LetC be thes-convex set of phase

matrices.13 Phase matrices define phase observables. The phase matrices of phase obs
unitarily equivalent toEcan are only phase matrices which have phase matrix inverses. Note
C* 5C, and for all (cn,m)PC the normi(cn,m)i51, that is, all phase matrices lie on the unit ba

We can embed the bounded operators, trace-class operators, and states inM` . We simply
define

LªH ~An,m!PM`U (
n,m50

`

An,mun&^muPL~H!J ,

TªH ~Tn,m!PM` U (
n,m50

`

Tn,mun&^muPT~H!J ,

T 1
1
ªH ~Tn,m!PM` U (

n,m50

`

Tn,mun&^muPT~H!1
1J .

Thus, T 1
1 contains such (Tn,m)PM `

1 for which (n50
` Tn,n51. Note thatTùC5B and C#” L

ÞM` .
As we saw in the previous section, for any phase matrix (cn,m) and a state (Tn,m) the product

(cn,m)!(Tn,m) is a state. Thus,C!T 1
15T 1

1 . An operationQ defined in~4! corresponds a mappin
T{(Tn,m)°(cm,n)!(Tn,m)PT, (cn,m)PC, which is continuous with respect to the trace-norm
Q1 and Q2 are the operations@defined in~4!# of phase observablesE1 and E2 with (cn,m

1 ) and
(cn,m

2 ), respectively, then the matrix (cm,n
1 )!(cm,n

2 ) corresponds to the composition operati
Q1+Q2 . Note thatQ1+Q25Q2+Q1 .

Let (dn,m) and (en,m) be elements ofM `
1 . Now there exist vector sequences (wn)nPN and

(cn)nPN such thatdn,m5^wnuwm& and en,m5^cnucm& for all n, mPN.3 Now dn,men,m5^wn

^ cnuwm^ cm&, n, mPN, and (dn,m)!(en,m) is positive semidefinite.14 Hence, M `
1!M `

1

5M `
1 andC!C5C.

Let (dn,m)PM `
1 . Now we can writedn,m5(k50

` dn,m
(k) where dn,m

(k) 5^nuFk)(Fkum& for all
n, mPN, and uFk)PH` , kPN. Hence, the finite sums of matrices (^nuF)(Fum&)n,mPN , uF)
PH` form a dense subset ofM `

1 . EveryuF)PH` defines a covariant positive operator meas
EF of Eq. ~2!.

Following Ref. 10, we can define a certain ordering relation onM` as follows: (dn,m)
d(en,m) if ( dn,m)5(en,m)!( f n,m) for some (f n,m)PM` . Let (1)n,mPN and (dn,m)n,mPN be the
                                                                                                                



Now

he

asure

e

e

m-

e

he

1305J. Math. Phys., Vol. 43, No. 3, March 2002 On the structure of covariant phase observables

                    
phase matrices of the canonical and the trivial phase observables, respectively.
(dn,m)n,mPNd(1)n,mPN for all (dn,m)PM` and (dn,m)d(cn,m) for all (cn,m)PC. Note thatd is
not a partial ordering. It does not satisfy the antisymmetry condition.

Define the following equivalence relation inC:

~cn,m!.~dn,m! if ~cn,m!5~dn,m!!~ei (yn2ym)!, ~yn!nPN,@0,2p!.

Denote the equivalence class of (cn,m)PC by @(cn,m)#, and define a partial orderingd in the set
of equivalence classes as follows:@(cn,m)#d@(dn,m)# if ( cn,m)5(dn,m)!(en,m) for some (en,m)
PC. Now @(dn,m)#d@(cn,m)#d@(1)# for all (cn,m)PC and, thus, the equivalence class of t
canonical phase matrix is the upper bound.

V. ON THE POINTWISE CONVERGENCE OF PHASE KERNELS

As we have seen, a phase observableE is determined uniquely by a phase matrix (cn,m) via
Eq. ~1!. For any trace-class operatorT we can define a complex measureX°pT

E(X)
ªtr(TE(X)) which is absolutely continuous with respect to the normalized Lebesgue me
and, thus, has a Radon–Nikody´m derivative gT

E such that pT
E(X)5(2p)21*XgT

E(u)du, X
PB(@0,2p)). Following Eq. ~1! it is tempting to writegT

E(u)5(n,m50
` Tm,ncn,mei (n2m)u where

the summation converges pointwise for du-almost alluPR. But is it possible? In this section w
study this problem.

Let us start with the simplest case. LetE be the canonical phase, and letT5uw&^cu where
w, cPH. From the Carleson theorem15 we know that anyL2-Fourier series converges pointwis
for almost alluPR. Thus, we get

guw&^cu
Ecan ~u!5 (

n50

`

^cun&einu (
m50

`

^muw&e2 imu5 (
n,m50

`

^muw&^cun&ei (n2m)u

for almost all uPR. Let then T be an arbitrary trace-class operator, and letE be any phase
observable with the covariant trace-preserving operationF of Theorem 3. Now we can write
F(T)5Ta2Tb1 iTg2 iTd where the operatorsTu are positive trace-class operators with deco
positionsTu5(k50

` uwk
(u)&^wk

(u)u, wk
(u)PH, kPN, whereu5a, b, g, d. Thus,

gT
E~u!5gTa

Ecan~u!2gTb

Ecan~u!1 igTg

Ecan~u!2 igTd

Ecan~u!

and, by monotonic convergence,

gTu

Ecan~u!5 (
k50

`

(
n,m50

`

^muwk
(u)&^wk

(u)un&ei (n2m)u ~7!

for all u5a, b, g, d and for almost alluPR. We will get a similar equation without using th
operationF. Namely, by using Theorem 2 one gets for anyuw&^wu

guw&^wu
E ~u!5 (

k50

`

(
n,m50

`

^wun&^nuFk!~Fkum&^muw&ei (n2m)u ~8!

for almost alluPR. A problem of Eqs.~7! and ~8! is that it is not clear that we can change t
order ofk- and (n,m)-sums. So we have to consider other methods.

First we prove a simple proposition. LetB be a complex Banach space, and letS: H3H
→B be a bounded sesquilinear form~the first argument is antilinear!, that is, iSi
ªsup$iS(w,c)i u iwi<1, ici<1%,`. Note thatT(H) is equipped with the trace norm.

Proposition 1: Denote Sn,mªS(un&,um&) for all n, mPN. Then for allw, cPH
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S~w,c!5 lim
s,t→`

(
n50

s

(
m50

t

Sn,m^wun&^muc&,

that is,

S5 (
n,m50

`

Sn,mun&^mu

weakly, and S can be uniquely extended to a continuous linear mapping S˜ : T(H)→B,

T°S̃~T!ª (
n,m50

`

Sn,mTm,nª lim
s,t→`

(
n50

s

(
m50

t

Sn,mTm,n ,

where Tm,nª^muTun&, n, mPN. Clearly, S̃(uc&^wu)5S(w,c) for all w, cPH.
Proof: For w, cPH one gets

iS~w,c!2S~Psw,Ptc!i<iSi iwi ic2Ptci1iSi iw2Pswi iPtci→0

when s, t→0, where Psª(n50
s un&^nu. Fix TPT(H)1

1 . One can writeT5(k50
` lkuwk&^wku

where lkP@0,1#, (k50
` lk51, wkPH, and iwki51 for all kPN. Define aT

ª(k50
` lkS(wk ,wk) and as,t

T
ª(k50

` lkS(Pswk ,Ptwk)5(n50
s (m50

t Sn,mTm,n which exist since
(k50

` lk51 and iS(w,c)i<iSi for all vectorsw, c with iwi<1, ici<1. Also we see that
iaTi<iSi . By the dominated convergence theorem

iaT2as,t
T i<(

k50

`

lkiS~wk ,wk!2S~Pswk ,Ptwk!i<iSi (
k50

`

lk~ iwk2Ptwki1iwk2Pswki !→0

when s, t→`. As we can easily see from the beginning of the proof, the matrix elementsTn,m

define the operatorT uniquely and, thus,S̃(T)ªaT is well-defined. Since anyTPT(H) can be
uniquely written in the formT5aTa2bTb1 igTg2 idTd whereTa , Tb , Tg , andTd are states,
and a, b, g, and d are non-negative real numbers, we can defineS̃(T)ªaS̃(Ta)2bS̃(Tb)
1 igS̃(Tg)2 idS̃(Td). The rest of the proof follows immediately. h

Note that it follows from Proposition 1 that any bounded operatorA can be written in the form
A5(n,m50

` An,mun&^mu ~weakly! and tr(AT)5(n,m50
` An,mTm,n for any TPT(H) where An,m

ª^nuAum&, n, mPN.
Let E be a phase observable with (cn,m), and letgT

E be a Radon–Nikody´m derivative of the
complex measurepT

E associated toTPT(H). The sesquilinear mappingH3H{(w,c)°guc&^wu
E

PL1@0,2p) is bounded since by using the polarization identity and the parallelogram
(2p)21*0

2puguc&^wu
E (u)udu<ici21iwi2 for all c, wPH. From Proposition 1 one gets

gT
E5 (

n,m50

`

Tm,ncn,menem,

whereen(u)5einu and the double series converges with respect to theL1-norm. This implies~Ref.
16, Theorem 3.12, p. 68! the following theorem:

Theorem 5: There exists a subsequenceN{k°nkPN, n1,n2,n3,¯ , such that

gT
E~u!5 lim

k→`
(

n,m50

nk

Tm,ncn,mei (n2m)u

for almost alluPR.
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It can be shown~Ref. 16, Theorem 7.8, p. 140! that

gT
E~u!52p

dpT
E@0,x!

dx
U

x5u

for almost alluP@0,2p). Thus, by direct calculation, one gets

gT
E~u!5 lim

e→01
(

n,m50

`

Tm,ncn,mei (n2m)u f n2m
(1) ~e!

for almost all uPR where f k
(1)(e)ª(eike21)/(ike), kÞ0, and f 0

(1)(e)51. Thus,
lime→01 f k

(1)(e)51 for all kPZ. Also, by a theorem of Fatou~Ref. 17, p. 34!, one can show tha

gT
E~u!5 lim

e→01
(

n,m50

`

Tm,ncn,mei (n2m)u f n2m
(2) ~e!

for almost alluPR where f k
(2)(e)ª(12e) uku for all kPZ and the double series converges ab

lutely wheneP(0,1#. Also lime→01 f k
(2)(e)51 for all kPZ.

Since the operators

Ce
( j )
ª (

n,m50

`

cn,mf n2m
( j ) ~e!un&^mu, j 51, 2,

are bounded withiCe
(1)i<2p/e and iCe

(2)i<2/e21 for eacheP(0,1# it follows that

gT
E~u!5 lim

e→01

tr@TR~u!Ce
( j )R~u!* #, j 51, 2,

for almost alluPR.
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A family of maximally superintegrable systems containing the Coulomb atom as a
special case is constructed inn-dimensional Euclidean space. Two different sets of
n commuting second-order operators are found, overlapping in the Hamiltonian
alone. The system is separable in several coordinate systems and is shown to be
exactly solvable. It is solved in terms of classical orthogonal polynomials. The
Hamiltonian andn further operators are shown to lie in the enveloping algebra of
a hidden affine Lie algebra. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1435077#

I. INTRODUCTION

We shall consider the stationary Schro¨dinger equation

Hc5Ec, H52
1

2 (
i 51

n
]2

]xi
2 1V~x1 ,...,xn! ~1!

in ann-dimensional Euclidean spaceEn . By analogy with classical Hamiltonian mechanics, su
a system is called integrable if there existn21 algebraically independent linear operatorsXa

satisfying

@H,Xa#50, @Xa ,Xb#50, a,b51,...,n21. ~2!

The system is called ‘‘superintegrable’’ if there exist furtherk operators$Y1 ,...,Yk% commuting
with the Hamiltonian

@H,Yj #, j 51,...,k, ~3!

such that the set$H,X1 ,...,Xn ,Y1 ,...,Yk% is algebraically independent. Note that the addition
operatorsYi need not commute with the operatorsXa nor amongst each other. The number
additional operators satisfies

1<k<n21. ~4!

For k51 we call the system ‘‘minimally superintegrable,’’ fork5n21 it is ‘‘maximally super-
integrable.’’

The best known superintegrable systems inE3 ~and also inEn for anyn>2! are the harmonic
oscillator and the hydrogen atom~or Kepler system in classical mechanics!. The harmonic oscil-

a!Electronic mail: rodrigue@fis.ucm.es
b!Electronic mail: wintern@crm.umontreal.ca
13090022-2488/2002/43(3)/1309/14/$19.00 © 2002 American Institute of Physics
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lator is superintegrable because of thesu(n) algebra of first- and second-order operators comm
ing with the Hamiltonian.1,2 The hydrogen atom inEn is superintegrable, because of theo(n
11) Lie algebra of linear operators commuting with the Hamiltonian.3–7 In both cases it is
possible to choose different subsets ofn operators commuting with each other and overlapp
only in the Hamiltonian. Each subset corresponds to the separation of variables in the Schro¨dinger
equation in a different system of coordinates.8

Characteristic features of these two superintegrable systems are as follows.

~1! In classical mechanics all finite~bounded! trajectories are periodic. Moreover, Bertrand
theorem9,10 tells us thatg/r andgr 2 are the only spherically symmetric potentials for whi
all finite trajectories are periodic.

~2! In quantum mechanics these two systems are exactly solvable: their energy levels
calculated algebraically, as can the degeneracies of these levels. Their eigenfunctio
polynomials in the appropriate variables, multiplied by some overall factor.

~3! These systems are extremely important in physical applications, both in classical and qu
physics.

It makes sense to search systematically for superintegrable systems in classical and q
mechanics, especially for maximally superintegrable ones. It can be safely assumed that th
all have the above-mentioned properties~1! and~2! and hoped that they will also, to some degre
share property~3!.

In searches for superintegrable systems restrictions are imposed on the form of the com
operatorsXa andYi . A systematic search inE2 andE3 was conducted some time ago.11–16 The
restriction was that all operators involved should be at most of second order. All superinte
systems satisfying this restriction inE2 andE3 were found.11–16Four classes of them exist inE2 ,
five maximally superintegrable~2n2155 operators commuting withH! and eight minimally
superintegrable ones~n1154 operators! in E3 . These results have been recently extended
two- and three-dimensional spaces of constant curvature and to complex spaces17–20 and also to
certain two-dimensional spaces of nonconstant curvature.21

With the restriction to second-order operators all superintegrable systems turned out
multiseparable, that is, separable in at least two different coordinate systems. In two-dimen
spaces they also turned out to be exactly solvable.22 By this we mean that their energy spectra c
be calculated algebraically~by solving algebraic equations only!.22–24 It was also shown tha
superintegrable systems are obtained by considering non-Abelian algebras of generaliz
symmetries.25

The purpose of this article is to consider a family of integrable systems inn-dimensional
Euclidean space for anyn. The family, containing then-dimensional hydrogen atom as a spec
case, is introduced in Sec. II, together with a set of 2n21 algebraically independent operator
commuting with the Hamiltonian. In Sec. III we solve the Schro¨dinger equation in parabolic an
spherical coordinates and show that it is exactly solvable in a precise and well-defined sen22–24

Finally, in Sec. IV we introduce parabolic rotational coordinates inEn and solve the Schro¨dinger
equation in these coordinates and also in spherical ones. We also prove the exact solvability
case. Some conclusions are drawn in Sec. 5.

II. A FAMILY OF MAXIMALLY SUPERINTEGRABLE SYSTEMS IN En CONTAINING THE
HYDROGEN ATOM

Let us first consider the hydrogen atom inn-dimensional Euclidean spaceEn ,

H52
1

2
D2

g

r
, D5(

i 51

n
]2

]xi
2 , r 5~x1

21¯1xn
2!1/2. ~5!

This Hamiltonian commutes withn(n11)/2 linear operators, namely
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Lik5xi

]

]xk
2xk

]

]xi
, 1< i ,k<n,

~6!

Ai5
1

2 (
a51

n

~paLia1Liapa!1g
xi

r
, 1< i<n

with pi5]xi
. The operatorsLik correspond to angular momentum,Ai to the n-dimensional

Laplace–Runge–Lenz vector, characterizing the Coulomb or Kepler problem.6,10 Only 2n21 of
the operators$H,Lik ,Ai% can be, and are, algebraically independent. They satisfy the commut
relations

@H,Lik#5@H,Ai #50,

@Li j ,Lab#5d jaLib1d ibL ja2d iaL jb2d jbLia ,
~7!

@Li j ,Ak#5d jkAi2d ikAj ,

@Ai ,Aj #522HLi j .

The commutation relations~7! in general correspond to a Kac–Moody algebra.26,27For a fixed
energy,H5E they correspond to the Lie algebra of the rotation groupO(n11), the Lorentz
group O(n,1), and the Euclidean groupE(n) for E,0, E.0 and E50, respectively. These
symmetries forn53 were discovered implicitly by Pauli3 and explicitly by Fock4 and Bargmann.5

According to the operator approach to the separation of variables,28–33separation of variables
in the Schro¨dinger equation is achieved by looking for eigenfunctions of a complete setn
commuting second-order operators$H,X1 ,...,Xn21%,

Hc5Ec, Xac5lac, a51,...,n21. ~8!

The operatorsXa will be at most linear inAi and bilinear inLik . If more than one inequivalent se
of commuting operators exists, the system is multiseparable, i.e., separable in more th
coordinate system.

In view of the commutation relations~7! any set of commuting operators$Xi% can contain at
most one operator involvingAi :

X5(
i

aiAi1 (
i ,k, j ,m

bik, jmLikL jm , (
i 51

n

ai
2Þ0. ~9!

The complete sets of commuting operators can be classified under the action ofO(n); in particular
we can rotate and normalize so as to havean51, ak50 for k51,...,n21. Here we just give the
example of the casen53. It is easy to verify by a direct calculation that in this case, precisely f
inequivalent sets exist:$H,X1 ,X2% with

X15A3 , X25L12
2 , ~10!

X15A31a~L12
2 1L23

2 1L31
2 !, X25L12

2 , ~11!

X15L12
2 1L23

2 1L31
2 , X25L12

2 , ~12!

X15L12
2 1L23

2 1L31
2 , X25L23

2 1 f L31
2 . ~13!

They correspond to the separation of variables in parabolic rotational coordinates, shifted
roidal coordinates, spherical coordinates, and spheroconical coordinates, respectively.
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In each coordinate system it is possible to add further terms to the potential2g/r in such a
manner that the Schro¨dinger equation still separates. The system will remain integrable and
corresponding operatorsX1 andX2 will only be modified by the addition of a scalar function. It
also possible to preserve superintegrability and to require that the extended potentials shoul
separation of variables in at least two coordinate systems.

Here we will be interested in the most general potential allowing separation of variables
same four coordinate systems as the hydrogen atom itself. InE3 there is, up to equivalence, onl
one such Hamiltonian, namely~see Refs. 13 and 14!

H52
1

2
D2

g

r
1

b1

x1
2 1

b2

x2
2 . ~14!

One triplet of commuting operators for the Hamiltonian~14! consists of

X5
1

2
~p1L311L31p11p2L321L32p2!12x3S g

2r
2

b1

x1
2 2

b2

x2
2 D ,

~15!

Z5L12
2 22r 2S b1

x1
2 1

b2

x2
2 D .

Another triplet can be chosen to beH and

Y15L12
2 1L23

2 1L31
2 22r 2S b1

x1
2 1

b2

x2
2 D ,

~16!

Y25L23
2 22b2

x2
21x3

2

x2
2 .

It is the set of five algebraically independent operators$H,X1 ,X2 ,Y1 ,Y2% which guarantees tha
the Hamiltonian~14! is maximally superintegrable.

The generalization to then-dimensional Euclidean spaceEn is immediate. Thus, the Hamil
tonian will be

H52
1

2
D2

g

r
1 (

i 51

n21
b i

xi
2 ~17!

with D andr as in Eq.~5!. One of the two different complete sets of commuting operators ca
chosen to beH and

X5
1

2 (
k51

n21

~Lnkpk1pkLnk!12xnS g

2r
2 (

i 51

n21
b i

xi
2 D ,

~18!

Zl5 (
1< i ,k< l 11

Lik
2 22S (

i 51

l 11

xi
2D S (

k51

l 11
bk

xk
2 D , 1< l<n22.

Another complete set of commuting operators is againH and

Yp5 (
p< i ,k<n

Lik
2 22S (

i 5p

n

xi
2D S (

k5p

n21
bk

xk
2 D , 1<p<n21. ~19!
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The two sets~18! and~19! are disjoint. If we setb i50, 1< i<n21, then the operatorZl will be
a Casimir operator of the groupO( l 11) acting on the coordinates$x1 ,...,xl 11%. The operatorYp

will be a Casimir operator ofO(n112p) acting on the coordinates$xp ,...,xn%.
It is the Hamiltonian~17! that we shall study in the following sections, first forn53, then for

arbitraryn.

III. EXACT SOLVABILITY OF THE SUPERINTEGRABLE SYSTEM FOR nÄ3

A. Solution by separation of variables

Let us first consider the Hamiltonian~14! and the complete set of commuting operators~15!.
We are looking for eigenvalues and common eigenfunctions of the systems:

Hc5Ec, Xc5lc, Zc5kc. ~20!

To do this we introduce parabolic rotational coordinates, putting

x15mn cosf, x25mn sinf, x35 1
2 ~m22n2!. ~21!

In these coordinates the operators in~20! are

H52
1

2~m21n2! S ]2

]m2 1
1

m

]

]m
1

]2

]n2 1
1

n

]

]n
14g D2

1

2m2n2 S ]2

]f2 2
2b1

cos2 f
2

2b2

sin2 f D
X5

1

2~m21n2! S 2n2S ]2

]m2 1
1

m

]

]m D1m2S ]2

]n2 1
1

n

]

]n D12g~m22n2! D
1

m22n2

2m2n2 S ]2

]f2 2
2b1

cos2 f
2

2b2

sin2 f D ~22!

Z5
]2

]f2 2
2b1

cos2 f
2

2b2

sin2 f
.

We see immediately that the variables separate and we can solve the corresponding o
differential equations to obtain

cN1 ,N2 ,J5~sinf!p2~cosf!p1~mn!me2A2E/2(m21n2)

3PJ
(p221/2,p121/2)

~cos 2f!LN1

m ~A22Em2!LN2

m ~A22En2!, ~23!

wherePJ
(a,b)(z) andLN

m(x) are Jacobi and Laguerre polynomials, respectively. We have put

b i5
1
2 pi~pi21!, m52J1p11p2

and the eigenvalues in Eq.~20! are equal to

E52
g2

2~N11N212J1p11p211!2 ,

l52
g~N12N2!

N11N212J1p11p211
, ~24!

k52m252~2J1p11p2!2.

We see that the bound state energy is given by a shifted Balmer formula and the only effect
b i /xi

2 terms in the potential is to add a constantp11p2 to the principal quantum number. Th
                                                                                                                



’’ It

of

r-
nian

licitly
eans

ed by

1314 J. Math. Phys., Vol. 43, No. 3, March 2002 M. A. Rodrı́guez and P. Winternitz

                    
solutions ~23! are square integrable and correspond to bound states whenJ, N1 , and N2 are
integers. They are polynomials multiplied by a factor which, however, is not ‘‘universal.
depends on the energyE and also on the angular quantum numberJ ~since we havem52J
1p11p2!.

The second set of commuting operators, namely~16!, also corresponds to the separation
variables, this time in spherical coordinates, chosen as

x15r cosu, x25r sinu cosa, x35r sinu sina. ~25!

In these coordinates we have

Hc52
1

2 F ]2

]r 2 1
2

r

]

]r
1

1

r 2 S ]2

]u2 1cotu
]

]u
1

1

sin2 u

]2

]a2D1
2g

r
2

2

r 2 S b1

cos2 u
1

b2

sin2 u cos2 a D Gc
5Ec,

Y1c5S ]2

]u2 1cotu
]

]u
2

2b1

cos2 u
1

k2

sin2 u Dc5k1c, ~26!

Y2c5S ]2

]a2 2
2b2

cos2 a Dc5k2c.

The coordinates separate and we obtainc5R(r )F(u)G(a) whereF andG can be expressed
in terms of Jacobi polynomials andR in terms of Laguerre ones.

The explicit expression for the eigenfunctions in this type of spherical coordinates is

cN,J1 ,J2
~r ,u,a!5r m121/2e2A22E rLN

2m1~2A22E r !~sinu!m1~cosu!p1~cosa!p2

3PJ1

(m2 ,p121/2)
~cos 2u!PJ2

(21/2,p221/2)
~cos 2a! ~27!

with eigenvalues equal to

E52
g2

2~N12J112J21p11p211!2 ,

~28!

k15 1
4 2m1

2 , k252m2
2 , m152J112J21p11p21 1

2 , m252J21p2 .

B. Exact solvability and underlying affine Lie algebra

We have established that the potential~14! provides a Hamiltonian that is maximally supe
integrable and multiseparable. Let us now turn to the question of exact solvability. A Hamilto
is exactly solvable if its spectrum can be calculated algebraically. This occurs if it can be exp
transformed into block diagonal form where each block is finite dimensional. This in turn m
that there exists an infinite flag of finite dimensional subspaces in the Hilbert spaceH of bound
state solutions that is preserved by the Hamiltonian22–24

H1,H2,¯,H, HHi#Hi . ~29!

Typically this occurs under the following circumstances.
~1! The bound state wave functions are polynomials in some variables, possible multipli

some factorg, i.e., c5gP. We then have

h5g21Hg, hP5EP, ~30!
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that is, there exists a gauge transformation and a change of variables to a new Hamiltonianh that
has polynomial eigenfunctions.

~2! The gauge transformed Hamiltonianh is an element of the enveloping algebra of som
affine Lie algebraL, a basis of which can be realized by the operators

Ki5
]

]si
, Mik5si

]

]sk
, i ,kP$1,...,n% ~31!

~in some coordinatessi!.

Let us now investigate the Hamiltonian~14! and the commuting set of operators~15! and ~16!
from this point of view.

Consider the wave function~23! in parabolic coordinates. They do have the required form

cN1 ,N2 ,J5gPN1 ,N2 ,J~s,t,z!, s5A22Em2, t5A22En2, z5cos 2f,

~32!

g5S 11z

2 D p1/2S 12z

2 D p2/2S s t

22ED m/2

e2(s1t)/2,

whereP is a polynomial~a product of three polynomials in one variable each!. To proceed further
we must get rid of the conformal factor (m21n2)21 figuring in Eq.~22! and replace the system
~20! by

Q0c52gc, Q1c52lc, Zc52m2c ~33!

Q05~m21n2!~H2E!12g52
1

2 S ]2

]m2 1
1

m

]

]m
1

]2

]n2 1
1

n

]

]n D1
m2

2 S 1

m2 1
1

n2D2E~m21n2!,

Q152X1~m22n2!~H2E!52
1

2 S ]2

]m2 1
1

m

]

]m
2

]2

]n2 2
1

n

]

]n D1
m2

2 S 1

m2 2
1

n2D2E~m22n2!,

Q25Z.

We see here a phenomenon which has been called ‘‘metamorphosis’’34 or ‘‘migration’’ 22 of the
coupling constant. In Eq.~33! the energyE plays the role of the frequency of a harmonic oscilla
whereas the Coulomb coupling constantg plays the role of an eigenvalue ofQ0 . The other
eigenvalues,l andm2, remain eigenvalues~of Q1 andZ, respectively!.

Similarly as in the case of potentials containing the Coulomb atom as a special case
dimensions, it is the system~33! @rather than the original system~20!# that is exactly solvable in
the sense defined above. Indeed, let us gauge rotate the operatorsQ0 , Q1 , andQ2 and transform
to the variabless, t, andz. We obtain

Q̃05g21Q0g522A22E~s]s
21~m112s!]s1t] t

21~m112t !] t2m21!,

Q̃15g21Q1g522A22E~s]s
21~m112s!]s2t] t

22~m112t !] t!, ~34!

Q̃25g21Q2g54~12z2!]z214~p12p22~p11p211!z!]z2~p11p2!2.

We see thatQ̃m , m50, 1, 2 lie in the enveloping algebra of the direct sum of three affine
algebras, saff(1,R) % saff(1,R) % saff(1,R), realized by

$]s ,s]s ,] t ,t] t ,]z ,z]z%. ~35!
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Now let us consider the two remaining operatorsY1 andY2 of ~26!. They are not diagonal in the
basis that we use~whereH,X,Z and equivalentlyQ0 ,Q1 ,Q2 are diagonal!. They do, however,
commute with the Hamiltonian so they can only mix states of equal energy. We also have

@Y1 ,Z#50, @Y2 ,Z#Þ0, @Y1 ,X#Þ0. ~36!

It follows thatY1 also preserves the quantum numberk52m2 of Eq. ~20!, whereasY2 mixes
all states of a given energy. The gauge factorg depends not only on the energy, but also onm, the
eigenvalue ofZ. Thus, Ỹ15g21Y1g should transform polynomials into polynomials, where
Ỹ25g21Y2g is not obliged to. Performing the gauge transformation and change of variable
find

Ỹ15g21Y1g5s t~]s2] t!
22~m11!~s2t !~]s2] t!2m~m11!. ~37!

The algebra underlying this expression includest]s ands] t , in addition to the elements liste
in ~35!. We recognize this to be the Lie algebra saff(2,R) % saff(1,R)

Superintegrable systems, including the hydrogen atom as special case, in two dimension
associated with the algebra saff(2,R). The extension ton53 is seen to lead to saff(2,R)
% saff(1,R), not to saff(3,R) as one might have expected. It follows from expression~37! that Ỹ1

will take polynomials into polynomials and indeed we have

Ỹ1PN1 ,N2 ,J52@2N1N21~N11N21m!~m11!#PN1 ,N2 ,J1~N11m!~N211!PN121,N211,J

1~N111!~N21m!PN111,N221,J . ~38!

The operatorỸ2 does not take polynomials into polynomials and cannot be written as an ele
of the enveloping algebra of an affine Lie algebra.

The one-dimensional equations appearing above are easily shown to be related to the s
types in the classification of exact and quasiexact solvable one-dimensional systems.35,36

IV. EXACT SOLVABILITY OF THE SUPERINTEGRABLE SYSTEM IN En

A. Solution by separation of variables

We now consider the Hamiltonian~17! for arbitrary n. It allows separation of variables in
many coordinate systems. We shall use parabolic rotational coordinates corresponding to th
operators~18! and spherical ones corresponding to the set~19!. The parabolic coordinate
(m,n,u1 ,...,un22) are defined by

x15mn cosu1 cosu2¯ cosun23 cosun22 ,

x25mn cosu1 cosu2¯ cosun23 sinun22 ,

x35mn cosu1 cosu2¯ sinun23 ,

A ~39!

xn225mn cosu1 sinu2 ,

xn215mn sinu1 ,

xn5 1
2 ~m22n2!.

We putb i5pi(pi21)/2 in Eq.~17!. The eigenvalue problem that we have to solve is

Hc5Ec, Xc5lc, Zlc5klc, 1< l<n22. ~40!
                                                                                                                



1317J. Math. Phys., Vol. 43, No. 3, March 2002 Superintegrability and solvability in n dimensions

                    
In parabolic coordinates the operatorsH and X will involve all variables, the operatorsZl will
involve the angles only. Indeed, we have

H52
1

2~m21n2! S ]2

]m2 1
n22

m

]

]m
1

]2

]n2 1
n22

n

]

]n D2
2g

m21n2 2
1

2m2n2 FD~Sn22!

2
p1~p121!

cos2 u1¯cos2 un22
2

p2~p221!

cos2 u1¯cos2 un23 sin2 un22
2¯2

pn21~pn2121!

sin2 u1
G ~41!

X5
1

2~m21n2! F2n2S ]2

]m2 1
n22

m

]

]m D1m2S ]2

]n2 1
n22

n

]

]n D G1g
m22n2

m21n2 1
m22n2

2m2n2

3FD~Sn22!2
p1~p121!

cos2 u1¯ cos2 un22
2

p2~p221!

cos2 u1¯ cos2 un23 sin2 un22
2¯2

pn21~pn2121!

sin2 u1
G ,

~42!

whereD(Sn22) is the Laplace operator on ann22 dimensional sphere.
The operatorsZl satisfy

Z1c5S ]2

]un22
2 2

p1~p121!

cos2 un22
2

p2~p221!

sin2 un22
Dc5k1c,

Z2c5S ]2

]un23
2 2tanun23

]

]un23
1

k1

cos2 un23
2

p3~p321!

sin2 un23
Dc5k2c,

and in general

Zlc5S ]2

]un2 l 21
2 2~ l 21!tanun2 l 21

]

]un2 l 21
1

kl 21

cos2 un2 l 21
2

pl 11~pl 1121!

sin2 un2 l 21
Dc5klc,

~43!

1< l<n22, k052p1~p121!.

We write

c5M ~m!N~n!)
l 51

n22

Fl~un2 l 21! ~44!

and solve~43! to obtainFl in terms of Jacobi polynomials

Fl~un2 l 21!5~sinun2 l 21!pl 11~cosun2 l 21!ml 21112 l /2PJl

(pl 1121/2,ml 21)
~cos 2un2 l 21!, ~45!

ml52(
i 51

l

Ji1(
i 51

l 11

pi1
l 21

2
, kl5

~ l 21!2

4
2ml

2. ~46!

The equations forM (m) andN(n) are obtained from Eqs.~41! and~42! once the angular part is
replaced bykn22 . The final result is that the wave functions are
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cN1 ,N2 ,J1 ,J2 ,...,Jn22
~m,n,u1 ,...,un22!

5~mn!se2A2E/2(m21n2) )
l 51

n22

~sinun2 l 21!pl 11~cosun2 l 21!ml 21112 l /2LN1

mn22~A22Em2!

3LN2

mn22~A22En2!)
l 51

n22

PJl

(pl 1121/2,ml 21)
~cos 2un2 l 21!, s52(

i 51

n22

Ji1 (
i 51

n21

pi . ~47!

The energy is given by a shifted Balmer formula

E52
g2

2S N11N212( i 51
n22Ji1( i 51

n21pi1
n21

2 D 2 ~48!

and the remaining quantum number is

l52
g~N12N2!

N11N212( i 51
n22Ji1( i 51

n21pi1
n21

2

. ~49!

We see that the case ofn arbitrary is a straightforward generalization ofn53 and involves the
same functions, namely, Jacobi and Laguerre polynomials.

Obviously, one can also solve in spherical coordinates. In fact, formulas~39! can be written as

xa5mnsa , xn5
1

2
~m22n2!, a51,...,n21, (

a51

n21

sa
251 ~50!

and we could introduce any coordinates on theSn22 sphere that allow separation of variables
the Laplace–Beltrami equation. For a discussion of such coordinate systems see Refs. 33,

We will write for the sake of completeness the explicit expression of the eigenfunctions i
following set of spherical coordinates on theSn21 sphere@which are a generalization to dimensio
n of those we used in the casen53, see Eq.~25!#:

x15r cosu1

x15r sinu1 cosu2

A ~51!

xn215r sinu1¯ sinun22 cosun21

xn5r sinu1¯ sinun22 sinun21

and the Hamiltonian can be written in these coordinates as
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H52
1

2 F] r
21

n21

r
] r1

2g

r G2
1

2r 2 H F]u1

2 1~n22!cotu1]u1
2

p1~p121!

cos2 u1

1
1

sin2 u1
F]u2

2 1~n23!cotu2]u2
2

p2~p221!

cos2 u2
1¯1

1

sin2 un23
F]un22

2 1cotun22]un22

2
pn22~pn2221!

cos2 un22
1

1

sin2 un22
F]un21

2 2
pn21~pn2121!

cos2 un21
G¯G J . ~52!

The set ofYl , l 51,...,n21 operators are:

Yl5]u l

2 1~n2 l 21!cotu l]u l
2

pl~pl21!

cos2 u l
1

kl 11

sin2 u l
, l 51,...,n22,

~53!

Yn215]un21

2 2
pn21~pn2121!

cos2 un21

and the eigenvalue equations:

Hc5Ec, YlGl~u l !5klGl~u l !, l 51,...,n21, c5R~r !)
l 51

n21

Gl~u l ! ~54!

can be easily solved. The solution for the angular part is (mn521/2):

)
l 51

n21

Gl~u l !5 )
l 51

n21

~sinu l !
ml 11112(n2 l )/2~cosu l !

plPJl

(ml 11 ,pl21/2)
~cos 2u l ! ~55!

and for the radial part:

R~r !5r m12(n22)/2e2A22ErLNr

2m1~2A22Er !. ~56!

The energy is written as

E52
g2

2S Nr12( i 51
n21Ji1( i 51

n21pn2 i1
1

2
~n21! D 2 ~57!

and the eigenvalues of the operatorsYl are

kl5
1

4
~n2 l 21!22ml

2 , ml52(
i 5 l

n21

Ji1 (
i 5 l

n21

pi1
1

2
~n2 l 21!, l 51,...,n21. ~58!

Finally, the eigenfunctions are

cN,J1 ,...,Jn21
~r ,u1 ,...,un21!5r m12(n22)/2e2A22ErLNr

2m1~2A22Er !

3 )
l 51

n21

@~sinu l !
ml 11112(n2 l )/2~cosu l !

plPJl

(ml 11 ,pl21/2)
~cos 2u l !#.

~59!
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B. Exact solvability

The exact solvability of the system~17! for generaln can be treated in the same way as f
n53. We can gauge transform each of the operators in the set~18! separately and transform to th
variables

s5A22Em2, t5A22En2, zn2 l 115cos 2un2 l 11 , l 51,...,n22. ~60!

Before doing this, we again introduceQ0 andQ1 as in Eq.~33!.
The final result is

Q̃01Q̃15g21~Q01Q1!g522A22E~2s]s
212~11mn222s!]s2mn2221!,

Q̃02Q̃15g21~Q02Q1!g522A22E~2t] t
212~11mn222t !] t2mn2221!, ~61!

Z̃l5g21Zlg54~12zn2 l 21
2 !

]2

]zn2 l 21
2 14S ml 212pl 111

1

2
2S pl 111ml 211

3

2D zn2 l 21D ]zn2 l 21

1
l ~ l 22!

4
2~ml 211pl 11!~ml 211pl 1111!.

We see that the entire set of operators$Q0 ,Q1 ,Z1 ,...,Zn22% lies in the enveloping algebra o
direct product ofn special affine Lie algebras saff(1,R).

Finally let us turn to the other complete set of commuting operators~19!, associated with the
separation of variables in spherical coordinates. Among these operators there is just one,
Y1 , that commutes with all the operatorsZl . We have

@Y1 ,Zl #50, @Y1 ,X#Þ0, @Yp ,Zl #Þ0, 1< l<n22, 2<p<n21. ~62!

Thus,Ỹ1 will take polynomials into polynomials but$Ỹ2 ,...,Ỹn21% will not. We have

Ỹ15g21Ỹ1g5s t~]s2] t!
22~mn2211!~s2t !~]s2] t!2mn22~mn2211!1

~n23!~n21!

4
.

~63!

Finally we see that the ‘‘hidden Lie algebra’’ that is not a symmetry algebra of the prob
but underlies its exact solvability is saff(2,R) % @saff(1,R)#1%¯% @saff(1,R)#n22 generated by

$]s ,] t ,s]s ,t] t ,s] t ,t]s ,]z1
,z1]z1

,...,]zn22 ,zn22]zn22
%. ~64!

V. CONCLUSIONS

Superintegrability and exact solvability were defined in completely different ways, tho
both have a group theoretical underpinning. Superintegrability for a Hamiltonian system is d
by the requirement that there be more integrals of motion than degrees of freedom.11 It can be
characterized by the fact that the corresponding Schro¨dinger equation allows a non-Abelian alg
bra of generalized symmetries, containing ann-dimensional Abelian subalgebra.25 Exact solvabil-
ity is defined by the requirement that the energy spectrum can be calculated algebraically.22–24 It
can be characterized by the fact that the Hamiltonian lies in the enveloping algebra of a c
type of finite dimensional affine Lie algebra. It was conjectured22 that all maximally superinte-
grable systems are exactly solvable. In this article we have confirmed the conjecture f
considered integrable system inEn .

The exact connection between superintegrability and exact solvability remains an open
lem.
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Fiber bundles in quantum physics
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The theory of fiber bundles provides a natural setting for the description of mac-
roscopic quantum systems, wherein their classical and quantum features are repre-
sented by actions on the base manifolds and the fibers, respectively, of the relevant
bundles. We provide realizations of this picture in the description of~a! quasipar-
ticle excitations of many-body systems, especially those in superfluid helium,~b!
the interplay between the microscopic and macroscopic dynamics in certain irre-
versible processes, such as that of a laser, and~c! local thermodynamic equilibrium.
In particular,~b! involves the treatment of a dynamical system which is defined on
a vector bundle. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1447309#

I. INTRODUCTION

As pointed out by Bohr, the description of a quantum system,S, must have a classica
component: otherwise, we could not tell our friends what we have observed! A natural w
expressing this basic fact is to represent the classical and essentially quantum features oS by
actions on the base spaceM and the fibersY, respectively, of a fiber bundleB. In fact, this picture
has already been employed in Refs. 1–3 for the description of quasiparticle excitations, s
phonons, magnons, etc., in many-particle systems. In the simplest cases,M was the space o
Galilei boosts andY the single particle Hilbert representation space. The natural action o
Galilei group on the bundleM3Y permitted a simple description of the quasiparticle spectr
and yielded the noteworthy result that the energy,E, and momentum,p, of a phonon in superfluid
helium transformed, under boosts of velocityv, according to Landau’s formula

p→p, E→E1p"v.

The object of this article is to enlarge the above-presented picture in two ways. Firs
extend the actions on the bundle from groups to semigroups, in order to accommodate a d
tion of the irreversible dynamics of open dissipative systems; and second we obtain a pic
the interplay between the macroscopic~classical! and microscopic~quantum! dynamics of many-
particle systems in terms of these actions.

We shall organize our material as follows. In Sec. II, we present a simple sketch of the t
of fiber bundles. In Sec. III, we formulate the action thereon of both groups and semigroup
in Sec. IV, we apply the resultant theory to the description of quasiparticle excitations in m
particle systems. Here, the key action is that of the Galilei semigroup, as given by the rest
of the Galilei group to non-negative time translations, and this serves to extend the results o
1–3 to quasiparticles with finite lifetimes.

a!On sabbatical leave from the Department of Mathematics, Ben-Gurion University, 84105 Beer Sheva, Israel; ele
mail: rsen@math.bgu.ac.il

b!Electronic mail: g.l.sewell@qmw.ac.uk
13230022-2488/2002/43(3)/1323/17/$19.00 © 2002 American Institute of Physics
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The rest of the article is devoted to a demonstration that the interplay between the m
scopic and microscopic properties of many-particle quantum systems may naturally be exp
in terms of actions on fiber bundles. Since dynamics is perceived as a group or semigroup
but studied by infinitesimal~Hamiltonian! methods, we start in Sec. V by obtaining the infinite
mal form of the action of a one-parameter group or semigroup on a product bundle, provide
the action is fiber-preserving. We continue in Sec. VI with a brief sketch of the operator alge
description of macroscopic quantum systems, including a formulation of local thermodyn
equilibrium conditions. We then turn, in Sec. VII, to a class of open systems, such as the
model, in which the microscopic evolution is piloted by the macroscopic dynamics~Refs. 4 and 5!.
Here we show explicitly that the macroscopic-cum-microscopic dynamics of such a system
responds to the action of a one-parameter semigroup of transformations of the bundleB5M
3A, whereM , the base, is the space of its macroscopic~classical! variables andA, the fiber, is
theC!-algebra of its microscopic~quantum! observables. Likewise, in Sec. VIII, we show that t
local thermodynamic equilibrium conditions of Sec. VI can also be naturally expressed in ter
actions on a fiber bundle.

We conclude in Sec. IX with a brief discussion of the picture presented here and of its po
further ramifications.

Since some readers might not be conversant with both fiber bundles and operator-alg
quantum theory, we have included brief sketches of these topics in Secs. II and V, respect

II. FIBER BUNDLES

A fiber bundleB5$B,X,p,G,Y% is, first and foremost, a topological spaceB which is locally,
but not ~necessarily! globally, a product. The notation and terminology are suggestive; one
visualize a fiber bundle as a bunch of fibers ‘‘tied together’’ byX, the base space.Y is the
~abstract! fiber, andp:B→X a map called theprojection and, for xPX, the inverse imageYx

5p21(x) is called the fiber overx. All fibers Yx are homeomorphic to each other and toY. G is
a topological group, called the group of the bundle, which has an effective action on the fi

The spaceB5X3Y is a bundle with baseX, fiber Y, and projectionp(x,y)5x. It is called
a trivial bundle because it is globally a product of the base and the fiber, andG consists only of
the identity. The Euclidean plane is also a product, but one needs a coordinate system to
it as a productX3Y. For this reason, it is said to beequivalent to the product, and is sometimes
called trivializable. However, the mathematical literature is not consistent about the use of
terms.

A simple example of a nontrivial bundle is theMöbius band, which may be constructed a
follows. Take the rectangular stripB0 in R2 delimited by the points

~a,1!,~a,21!,~2a,21!, ~2a,1!.

It is the topological productB05@2a,a#3@21,1#. Now give this strip a twist and glue the sho
edges together; mathematically, identify the point@a,21# with @2a,1#, and @a,1# with @2a,
21#. The twist flips the fibers, which destroys the global product structure. The Mo¨bius band is
a nontrivial bundle, with a circleS1 as base and a real interval, here@21,1#, as fiber. Observe tha
if glueing had been done without the twist, we would have obtained the cylinderS13@21,1#,
which is again a trivial bundle.

The local product~or local triviality! condition in the bundle$B,X,p,G,Y% is expressed as
follows. There is an open cover$Va%aPA of X and, for eachaPA, a fiber-preserving homeomor
phism fa :p21(Va)→Va3Y; a mapc:B1→B2 between two bundles or subbundlesB1 ,B2 is
called fiber-preserving ifb,b8PB1 , p1(b)5p1(b8) implies that p2(c(b))5p2(c(b8)). The
mapsfa are called local trivializations. The local trivializations are glued together to form
bundle, and this is where the group of the bundleG comes in. We shall omit the details, and ref
the reader to the standard text of Steenrod~Ref. 6!.

The fact that the Mo¨bius band is locally trivial means that, for any open arcC in S1 , there is
a fiber-preserving homeomorphism betweenp21(C) andC3@21,1#. S1 can be covered by two
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such arcsC1 andC2 . In this case the topological groupG is the two-element group$e,g%, where
e is the identity andg acts to flip the fibers on one of the two components of the intersec
C1ùC2 .

A bundle is equivalent to the product if either~1! the baseX is paracompact and contractible
or if ~2! the base is paracompact and the groupG is contractible. Therefore any Banach bundle~a
bundle of Banach spaces! on a paracompact and contractible base is equivalent to the produ
stronger result holds for Hilbert bundles,7 because the group which preserves the inner prod
structure of an infinite-dimensional Hilbert space~called the ‘‘big’’ unitary group! is contractible
~Ref. 8!. Therefore any Hilbert bundle on a paracompact base is equivalent to the produc
Hilbert and Banach bundles that we shall consider will be equivalent to the product, and m
written asX3K, whereK is a Hilbert space or a Banach space. Their interest would lie in the
that they bring together two different structures, the differential or symplectic structure of the
space and the linear inner-product or normed space structure of the fiber.

III. ACTIONS OF GROUPS AND SEMIGROUPS ON PRODUCT BUNDLES

A. Principal and associated bundles; the bundle structure theorem

A bundleB5$B,X,p,G,G% is called aprincipal bundleif the fiber is the same as the grou
and the group of the bundle acts upon the fiber by left-translations. A bundleB8
5$B8,X,p,G,Y% is said to beassociatedwith the principal bundleB if the groupG acts effec-
tively upon the topological spaceY. Note that changing the fiber changes the total space,
therefore the projection. However, we continue to use the same letter to denote the projectio
associated bundles as well. As the context will always be clear, there will be no confusion

An important result in fiber bundle theory, known as thebundle structure theorem, has the
following corollary ~see Steenrod, Ref. 6, Secs. 7.4 and 7.5!: If G is a Lie group andH a
~topologically! closed subgroup ofG, then G is a principal bundle over the spaceG/H of
left-cosets with respect to the natural projectionp:G→G/H which sends an element ofgPG to
its left-cosetgH, with group and fiberH: G5$G,G/H,p,H,H%.

B. Actions of groups

Any group acts upon itself by left-translations. Therefore any Lie groupG has a natural action
upon the principal bundleG5$G,G/H,p,H,H%. An important special case is that of an associa
Hilbert bundleB5$B,G/H,p,H,H%, but since the groupH will generally have many possible
actions on the Hilbert spaceH, we shall have to choose a particular action, or representationD(H)
of H uponH, and write the associated bundle accordingly:

GD5$B,G/H,p,D~H !,H%. ~1!

However, ifG is a Lie group, thenG/H is necessarily paracompact, and any Hilbert bundle o
the baseG/H is necessarily equivalent to the product,

GD[G/H3H. ~2!

The action ofG uponG ~i.e., uponG! by left-translations is known, and so therefore is
action uponGD , as given by Eq.~1!. We have to derive an explicit formula for this action, a
then to rework this formula when the total space ofGD is given in the product form.

It turns out to be simpler to do it directly. This has the further advantage that the res
formulas are valid for the action of the group uponany product bundle, for example a bundle o
Banach spaces or operator algebras. We shall therefore work with the generic product bun

B5G/H3F, ~3!

where the only demand onF is that it be a complete normed linear space, and determine
actions of the groupG on it.
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Let gPG, xPG/H, fPF, andb5(x,f)PB. Write

gb5g~x,f!5~gx,u~g,x!f!, ~4!

whereu(g,x) is an appropriate linear map uponF which depends upong andx. u(g,x) has to
satisfy the condition

u~g8g,x!5u~g8,gx!u~g,x! ~5!

that arises from the associativity of multiplication inG:

~g8g!•b5g8~g•b!. ~6!

Observe that Eq.~6! has to hold even ifG is only a semigroup.
The action ofG on G/H being known, it only remains to determine the quantityu(g,x) which

appears in Eq.~4!. u(g,x) must be a linear transformation ofF, and it must satisfy Eq.~5!. The
method of solving Eq.~5! was devised by Wigner in 1939~Ref. 9!. It is as follows.

Let

h:G/H→G ~7!

be analgebraic cross sectionof the bundleG, i.e., a map which satisfies

p+h5 id, ~8!

wherep is the projection in the bundleG and id is the identity map. An important theorem in fib
bundle theory states that acontinuouscross section of a principal bundleG exists if and only if the
bundle is equivalent to the product,G[G/H3H, so that in general the maph cannot be continu-
ous. We shall presently return to this point. Givenh, define the map

k:G3G/H→G ~9!

by

k~g,x!5h~gx!21gh~x!. ~10!

Thenk(g,x) obviously satisfies

k~g8g,x!5k~g8,gx!k~g,x!, ~11!

and it is easily seen thatk(g,x)PH, i.e., k is actually a map,

k:G3G/H→H. ~12!

Finally, choose a linear actionD(H) of H on F, and set

u~g,x!5D~k~g,x!!. ~13!

The continuity of the action~4! remains to be established. It follows from the definition of t
quotient topology that the action ofG on G/H by left translations is continuous. According to
theorem of von Neumann, a unitary Hilbert-space representation of a locally compact gr
strongly continuous if it is weakly measurable. Ifh is a measurable map, so isk(g,x) defined by
Eq. ~10!. Thus, for unitary representations, measurability ofh suffices to ensure the continuity o
D(k(g,x)), and therefore of the action~4!. In practice,h can always be chosen to be piecewis
continuous. Finally, it is again a standard result in the theory of infinite-dimensional unitary g
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representations that the passage from one sectionh to another is equivalent to a change of basis
H. ~Detailed treatments of infinite-dimensional unitary group representations may be fou
Refs. 9–11.!

The arguments of the previous paragraph do not apply if the fiberF is not a Hilbert space and
the groupH does not act upon it as a unitary representation. In this case the problem of con
has to be studied separately. In the examples we shall consider, the maph will always be con-
tinuous, so that the continuity ofD(H) would be a sufficient requirement.

The mapk of Eq. ~10! is sometimes called a (G,G/H,H) cocycle in the mathematics litera
ture, and sometimes a ‘‘Wigner rotation’’ ofG into H in the physics literature. In Wigner’s
language,H is the ‘‘little group.’’

C. Actions of semigroups

The results of Sec. III B were based on the bundle structure theorem for Lie groups, a
theory of unitary representations on locally compact groups. Neither is available for an arb
semigroupG. However, for physical applications one is mainly interested in a very restricted
of semigroups, those that arise from symmetry groups like the Galilei or the Poincare´ group by
dropping the requirement of time reversibility. In these cases one may mimic the general the
by ad hocconstructions. We shall illustrate the procedure for the ‘‘Galilei semigroup.’’

Let g5(b,a,v,R) be an element of the inhomogeneous Galilei groupG, whereb is a time
translation,a is a space translation,v is a ~velocity! boost, andR is a rotation. The multiplication
law in the group is

g8g5~b8,a8,v8,R8!~b,a,v,R!5~b81b,a81R8a1v8b,v81R8v,R8R!, ~14!

the identity element ise5(0,0,0,1), and the inverse ofg is

g215~2b,2R21~a2bv!, R21v,R21!. ~15!

We define the Galilei semigroupG1 by the condition

b>0. ~16!

Then the generic elementg does not have an inverse, but group elements withb50 are invertible,

~0,a,v,R!215~0,2R21a,R21v,R21!, ~17!

andG1 has an identity which is the same as the identity of the group. Clearly, the one-para
subsemigroupT1 of time translations has an identity. Therefore, by the Hille–Yosida theo
~Ref. 12!, T1(b) will be strongly differentiable and will have an infinitesimal generator in a
bounded strongly continuous Hilbert space representation. We shall confine our search for
sentations to these cases.

Now T1 is also topologically closed. The following facts are readily established:

~1! For any closed subsemigroupH1 of G1, the factor spaceM5G1/H1 is defined and is
identical withG/H.

~2! If H1 is a normal subsemigroup ofG1, then M is a group, andG1 is equivalent to the
product bundleM3H1.

~3! If the above-mentioned condition is satisfied, then there exists a self-evident cross sec
M in G1 which is continuous, and invertible inG1.

In this case the action of the semigroupG1 on the bundleM3H may be constructed exactly as
the case of the group.
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We shall exhibit the above-mentioned procedures by the following simple example. LeG1

be the Galilei semigroup, andH1 the subsemigroup of time translations. ThenM5G1/H1 is a
group, the semidirect product of the group of boostsV and the Euclidean groupE3 in three
dimensions. WritexPM explicitly as

x5~z;w;r!, ~18!

wherez is a space translation,w a boost, andr a rotation. The maph:M→G1 defined by

h~x!5~0,z,w,r!, ~19!

is a continuous cross section which is invertible inG1, andG1 acts onM as follows:

gx5 ~b,a,v,R!•~z;w;r!5~a1Rz2~v1Rw!b;v1Rw;Rr!. ~20!

The cocyclek takes the simple form

k~g,x!5~b,0,0,1!. ~21!

Finally, we choose a bounded representation,D, of H1 on H:

D~b,0,0,1!f5D~k~g,x!!f5e( ia2b)bf, ~22!

wherefPH, a,bPR, andb.0. Hence, by Eq.~12!,

u~k~g,x!!f5e( ia2b)bf. ~23!

Equations~20! and ~23! provide a representation ofG1 on the bundleM3H. To see this repre-
sentation in a more transparent form, we look at the fiber(0;0;1), in amore familiar notation:

g~x0 ,f!5~ t,x,v,R!"~0;0;1!5~~x2vt;v;R!, e( ia2b)tf!. ~24!

The representation ‘‘decays’’ ast increases.

IV. ELEMENTARY EXCITATIONS AS BUNDLE REPRESENTATIONS

The description of elementary excitations by bundle representations of the Galilei and
caré groups has been discussed at length in earlier works~Refs. 2 and 3!. Therefore we shall
confine ourselves, in the following, to one particular representation of the Galilei group w
seems to describe~stable! nonrelativistic zero-mass excitations, and consider how the repres
tion changes if the Galilei group is replaced by the Galilei semigroup.

A. Case of the Galilei group

Here G is the Galilei group andH5T3E3 , the direct product of the subgroup of tim
translationsT and the Euclidean groupE3 . In this case the base spaceM is just the space of the
boosts, and there is a natural invertible cross section:

x5w,
~25!

h~x!5~0,0,w,1!.

Easy computations yield the formulas

gx5v1Rw,
~26!

k~g,x!5~b,a2~v1Rw!b,0,R!.
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To construct the bundle representation, we recall that irreducible unitary representationsE3

are characterized by the invariants$p2,n%, where, loosely speaking,p2 is the square of the
momentum andn is the helicity~a non-negative integer!. The irreducible representation space
L2(S2 ,dS), whereS2 is the two-sphere anddS is the rotation-invariant measure on it. For o
purposes, it is convenient to usenot the irreducible unitaries, but the following one,U, on H
5L2(p,d3p), which is the direct integral of copies ofL2(S2 ,dS) over two spheres of all radii.

U~a,R!f~p!5eins(R,v)e2 ia"pf+R21~p!. ~27!

In the above,s(R,v) is an (O3 ,S2 ,O2)-cocycle or Wigner rotation, whereO3 ,O2 are the or-
thogonal ~rotation! groups in three and two dimensions, respectively,S25O3 /O2 is the two
sphere, andv a point onS2 . All component irreducibles in Eq.~27! have the same helicity
Finally, we representT3E3 on H as follows:

U~b,a,R!f~p!5eiE(p2,n)bU~a,R!f~p!. ~28!

In the previous text,E is a positive, but otherwise arbitrary function ofp2, andn is fixed. By Eqs.
~13! and ~26!, the bundle representations are obtained by takingD(k(g,x))f5U(b,a2(v
1Rw)b),R)f.

On the fiberw50, the bundle representation takes the explicit form

~b,a,v,R!~0,f!5~v,eiL~f+R21!p!, ~29!

where

L52a"p1b~E1v"p!1ns~R,v!. ~30!

In the previous text, we have suppressed the arguments inE. Formulas~29! and ~30! show that
under a boost,

p→p,
~31!

E→E1p"v.

In their analysis of irreducible unitary representations of the Galilei group, Ino¨nü and Wigner
~Ref. 13! had concluded that these representations had no physical interpretation because t
not admit either localizable states~sincep2 was constant in an irreducible, not enough mome
were available to form a delta function! or states that were—like the photon—localizable
velocity space. The first argument would not apply to areduciblerepresentation which contains a
values ofp2 with the same weight. However, the invariance group imposes no relationshi
tweenE andp2, and, as the second equation of~31! shows, in any linear representation, for a
value ofp2, the quantityE takes—owing to the boosts—all values between2` and1`. This
alone would rule out the possibility of a physical interpretation for these representations.

In the above-constructedbundlerepresentations, the boosts are represented not on the
but on the base space. Specializing formulas~29! and ~30! to the casea50, R51 and setting
s(1,v)50 ~which can be done without loss of generality!, we find that

~b,0,v,1!~0,f!5~v,eib(E1p"v)f~p!!, ~32!

i.e., on any given fiber, we are able to assign a value ofE to a givenp2, because this assignmen
will not be disturbed by the boosts. That is, we may choose, arbitrarily, adispersion law E
5E(p2). Since all values ofp occur with the same weight, it becomes possible to const
localizable states, which may be interpreted as excitations corresponding to the chosen dis
law. Finally, Eq.~31! shows that these excitations havezero nonrelativistic mass.
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Equation~31! constitutes the transformations laws, under boosts, of the excitations posit
Landau in his explanation of superfluidity~Refs. 14 and 15!.

B. Case of the Galilei semigroup

For the Galilei semigroupG1, we shall construct a representation that is as close as pos
to that previously mentioned, above, without being identical to it. We shall takeH15T13E3 , so
thatG1/H1 will again be the space of the boosts. The natural cross section will again be giv
the second equation in~25!, and formula~26! for gx and k(g,x) will remain valid, with the
proviso thatb>0. We shall representE3 on H as before, i.e., by formula~27!. However, the
subsemigroup of time translations will be represented, not by a character expieb, but by a quantity
exp (ie2g)b, whereg>0. Equation~28! will @cf. Eqs.~22! and ~23!# accordingly change to the
following formula for the relevant representation,D, of H1:

D~b,a,R!f~p!5e( iE(p2,n)2G(p2,n))bU~a,R!f~p!, ~33!

whereG is a positive function,n is a fixed positive integer, andb>0. Formally, the passage from
the group to the semigroup is equivalent to replacingE by E1 iG in the representationU(b,a,R).
Clearly,p,E, andG will transform under boosts as

p→p,

E→E1p"v, ~34!

G→G.

The quantityG(p2) may be interpreted as the inverse lifetime of the excitation with mom
tum p. For large values ofG(p2), the excitations become very unstable, and perhaps no lo
experimentally detectable. As the last equation in~34! shows, properties of the excitations th
depend onG are invariant under the boosts.

Since the representationD is bounded and continuous, and since the semigroup has an
tity, the semigroup of time translations has an infinitesimal generator.

V. DYNAMICS ON BANACH BUNDLES

Symmetries are usually studied via group rather than Lie algebra actions, because the
the problems associated with unbounded operators. By contrast, dynamics is usually stud
the infinitesimal generator of the one-parameter group or semigroup of time translations
Hamiltonian—because the Hamiltonian represents the total energy of the system. In qu
mechanics, the Hamiltonian is an operator on a Hilbert space. In classical mechanics,
complete vector field on a manifold of states. From physical considerations, one would ex
one-parameter group or semigroup of time translations of a Banach bundle to possess an
tesimal generator, which would act like a linear transformation on the fibers and a vector fie
the base space. To the best of the authors’ knowledge, such mathematical objects have not
studied, and there is no generalized ‘‘Stone–Whitney theorem’’ which asserts their existen
dynamics on vector bundles. We therefore begin—assuming that time translations indeed a
one-parameter group or semigroup of fiber-preserving maps on a vector bundle—by defini
two constituents of this generator, one acting on the base space and the other on the fibe
dynamical systems these pairs define will be seen in Sec. VII to be realized by certain qu
mechanical models.

Let G be a dynamical system (B,T), where B5X3Y is a Banach bundle andT5$Ttut
PR or R1% is a one-parameter group or semigroup of fiber-preserving transformationsB.
These maps define a one-parameter group or semigroup of base maps$StutPR or R1%, and the
action ofT on B is analogous to that ofg in Eq. ~4!, i.e.,
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Tt~x,y!5~Stx,V~ t,x!y![~xt ,yt!; xPX, yPY, tPR or R1, ~35!

whereV(t,x) is a linear transformation ofY. Then it follows immediately from the semigrou
properties ofS andT that

St1t8x5St~St8x!,
~36!

V~ t1t8,x!5V~ t8,Stx!V~ t,x!.

Furthermore, assuming thatStx and V(t,x)y are differentiable with respect tot in the natural
topologies ofX and Y, respectively, it follows from Eqs.~35! and ~36! that the equations o
motion for xt andyt are

dxt

dt
5F~xt! ~37!

and

dyt

dt
5L~xt!yt , ~38!

where

F~x!5 lim
h→0

h21~Sh2I !x ; xPX ~39!

and

L~x!y5 lim
h→0

h21~V~h,x!2I !y; xPX, yPY. ~40!

Thus, Eqs.~37! and ~38! signify that the flowx→xt in the base spaceX is not only autonomous
but also serves to drive the flowy→yt in the fibers.

VI. THE GENERIC OPERATOR ALGEBRAIC QUANTUM MODEL

A. Observables, states, dynamics

In a standard way~cf. Refs. 15–20!, we idealize a macroscopic quantum system,S, as an
infinitely extended assembly of interacting particles living in a spaceX, which may be either a
Euclidean spaceRd or a latticeZd. The generic model ofS is given21 in the Schro¨dinger picture,22

by an algebra of observablesA, a state spaceV of expectation functionals onA, and a one-
parameter group or semigroupt of transformations ofV representing the dynamics of the syste
The model conforms to the following specifications.

~I! A is theC!-algebra of observables. This has a local structure, which is as follows.
~a! Each bounded regionL of X carries aC!-subalgebraAL , comprising the bounded opera

tors in a local Hilbert spaceHL , whose self-adjoint elements are the observables inL.
~b! The algebrasAL satisfy the conditions of isotony and local commutativity, namely

AL,AL8 if L,L8

and

@a,a8#50 if aPAL , a8PAL8 and LùL850/.

Furthermore, space translations correspond to a homomorphism,s, of the additive groupX into
Aut(A), and the local algebrasAL transform covariantly unders(X), i.e.,
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s~x!AL5AL1x .

The unbounded observables for the regionL are the unbounded self-adjoint operators inHL ~Ref.
23!.

~c! A is the norm-closure of the union of the local algebrasAL . We shall denote this union
which is a subalgebra ofA, by Aloc .

~II ! The state spaceV and the dynamical group or semigroupt are defined as follows.21 V is
a folium24 of positive, normalized, locally normal25 linear functionals onA that is stable under the
dual ofs, while t is a representationeitherof R or of R1 in the affine transformations of the sta
spaceV. The interpretation of the model is that the expectation value of an observablea at time
t, subject to the condition thatv is the initial state of the system, iŝt(t)v;a&, where^v;a&
[v(a). We assume thatt andV satisfy the following conditions.

~a! t is the infinite volume limit, in a sense we shall presently specify, of the one-param
dynamical group or semigrouptL of the finite volume version,SL , of S consisting of the
particles of the given species confined to the bounded regionL. Here tL is the predual of a
one-parameter group of automorphisms or a semigroup of completely positive,26–28 identity pre-
serving transformations ofAL , depending on whetherSL is a conservative system or an ope
dissipative one. In either case, its form is obtained, by standard constructions, in terms
interactions between the particles of the system. Denoting now byvL the restriction of a statev
of S to AL , i.e., the state it induces inSL , we express our condition thatt is an infinite volume
limit of tL by

^t~ t !v;a&5 lim
L↑X

^tL~ t !v;a&; aPAloc , vPV,tPR or R1.

~b! V is the maximal locally normal folium of states that supports the dynamics given by
formula.

It follows from these specifications thatV andt, like tL , are determined by the interaction
in the system. We note here that the norm-closed linear span@V# of V is a Banach space, whos
dual is aW!-algebraÂ ~Ref. 29! which in turn is just the weak closure of the representation,P,
of A given by the direct sum of the GNS representations of this algebra for all states in the
V ~Ref. 21!. Correspondingly, the transformationst!(t) of Â dual tot(t) form a one-paramete
group of automormorphisms ofÂ or a semigroup of completely positive, identity preserving line
transformations ofÂ, according to whetherS is a conservative system or an open dissipative o

B. Macroscopic observables

These areclassicalnonlocalized observables~such as the global space averages of the tra
lates of local ones! that are attached, not toA, but to certain representations ofA. We define them
as follows~cf. Ref. 30!. Let p be a representation ofA in a Hilbert spaceH, such that the set,Vp ,
of states onA corresponding to the density matrices inH is a subset ofV. Then the macroscopic
observables associated with the representationp are defined to be the strong limits,F̂, of uni-
formly bounded sequences$p(Fn)unPN%, where theFn’s are elements ofA such that

norm2 lim
n→`

@Fn ,A#50 ; APA.

It follows easily from these specifications that the macroscopic observablesF̂ belong the center of
the von Neumann algebrap(A)9. They therefore form an AbelianW!-algebra,M, i.e., an algebra
of functions on a classical phase space.29 Evidently, they may be identified with functionals on th
set of statesVp according to

F̂~v!5 lim
n→`

v~Fn!; vPVp .
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A prototype of a macroscopic observable is obtained by choosing

Fn5uLnu21E
Ln

dx s~x! f ,

wheref PA and$Ln% is a increasing sequence of bounded spatial regions, whose union isX. F̂ is
then the global space average ofp(s(x) f ), i.e.,

F̂5s2 lim
n→`

uLnu21E
Ln

dx p~s~x! f !.

We shall now provide a sketch of how the above-mentioned general definition ofF̂ can be
extended, for some representationsp, to cases where the local observablesFn are unbounded, e.g.
when they correspond to space averages over bounded regions of the locally conserved d
of standard thermodynamic observables~Refs. 14 and 20!. Thus, we consider the case whe
(H,p,F) is the GNS representation ofA for a primary,31 translationally invariant statev. We
assume thatĵ is a Hermitian quantum field such thatĵ(x) is a distribution-valued observable fo
the ball of centerx and somex-independent radiusa and thatĵ is covariant with respect to spac
translations, i.e.,s(x8) ĵ(x)5 ĵ(x1x8). We define~formally! the derivationd and the local ob-
servableFn by

d5 i E
X
dx@p~ ĵ~x!!,.#,

where the dot on the right refers to the argument ofd and

Fn5uLnu21E
Ln

dx ĵ~x!.

We then make the following assumptions concerningĵ.

~a! v(Fn) converges to a limit,F̂(v), asn→`. In view of the assumed translational invarian
of v, this is equivalent to the condition thatv( ĵ(x)) is well-defined.

~b! There is a dense subset,B, of Aloc such thatF lies in the domain of the~possibly un-
bounded! observabledB, for all BPB. Here we note that it follows from the above
mentioned specifications that, in view of the local commutativity property ofA, dB reduces
here toi *Ln

dx@ ĵ(x),B# for n sufficiently large.

~c! For eachAPA, the correlation functionv(Aĵ(x))2v(A)v( ĵ(x)) is of classL1 , in keep-
ing with the standard cluster properties of primary states~Ref. 32!.

It follows easily from these specifications that, for allBPB, the expectations of the observ
ablesFn in the statesvB(.)ªv(B!(.)B)/v(B!B) satisfy the condition

lim
n→`

vB~Fn!5F̂~v! ;BPB.

This is equivalent to the statement that the sequence$p(Fn)% converges toF̂(v)I asn→`, and
therefore signifies that the limit of the sequence is a macroscopic observableF̂ªF̂(v)I .

Equilibrium states and thermodynamical variables. In the case whereS is conservative, its
equilibrium states at inverse temperatureb comprise the convex setVb of states that satisfy the
Kubo–Martin–Schwinger condition, whose general significance was first exposed by Haag
genholtz, and Winnink~Ref. 33!. This takes the form
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v~AtB!5v~BAt1 i\b! ;A,BPA,

where, in our Schro¨dinger picture~cf. Refs. 34 and 21!, v is the canonical extension of the sta
denoted by the same symbol, andAt is the elementt!(t)p(A) of the von Neumann algebr
generated by the corresponding GNS representation,p, of A. The extremal elements ofVb are
precisely the primary ones and therefore may naturally be interpreted as the pure thermod
phases of the system~Refs. 35 and 36!. Furthermore, it follows from their primary property tha
they may be indexed by an appropriate set of macroscopic observables~Ref. 30!; and, in accor-
dance with the demands of classical thermodynamics, we shall assume that the latter obse
are the global space averages of locally conserved fieldsq̂(x)5(q̂1(x),..,q̂n(x)), such as those
representing densities of energy, mass, etc. We shall denote the pure equilibrium phase at
temperatureb for which these macroscopic variables take the values (q1 ,...,qn) by vb,q .

C. Local equilibrium

The concept of local equilibrium is natural for a hydrodynamic, i.e., large scale, descripti
S, in which a point corresponds to cell containing an enormous number of particles in the m
scopic picture. We shall now formulate this concept for the case whereS is a conservative system
whose algebra of observables,A, is generated by a quantum field,c, that satisfies the canonica
commutation or anticommutation relations, according to whetherS consists of bosons or fermions
Thus,

@c~x!,c!~y!#65d~x2y!; @c~x!,c~y!#650,

and the action of the space translational automorphisms is given by

s~x!c~y!5c~x1y!.

We defineg(L) to be the automorphism ofA representing the distance rescalingx→Lx, i.e.,

g~L !c~y!5Ld/2c~Ly!,

the factorLd/2 ensuring thatg preserves the canonical commutation and anticommutation
tions. It follows easily from these definitions that$g(L)uLPR1% form a group, with
g(L1)g(L2)5g(L1L2), and thatg ands satisfy the important equation

g~L !s~x!5s~Lx!g~L !. ~41!

Now let $v (L)uLPR1% be a family of states indexed byL, where the parameterL is a
characteristic length governing the spatial variations ofv (L) in the following sense. For any loca
observablea, v (L)(s(Lx)a) reduces to anL-independent function ofx, at least for sufficiently
largeL. We defineṽ (L) to be the version ofv (L) in the scaling for which the unit of length isL,
i.e.,

ṽ (L)~a!5v (L)~g~L !a!; aPA. ~42!

Our hydrodynamic picture ofS will be based on the structure of this state in the large scale l
whereL→`.

We now note that, by Eqs.~41! and ~42!,

ṽ (L)~s~x!a!5v (L)~g~L !s~x!a!5v (L)~s~Lx!g~L !a!.

Hence, replacinga by g(L21)a and defining

a~L,x!5s~x!g~L21!, ~43!
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it follows that

ṽ (L)~a~L,x!a!5v (L)~s~Lx!a!. ~44!

In order to see the significance of this equation, we note that it follows from our definitions o
automorphismss,g, anda that

a~L,x!c~y!5L2d/2c~x1L21y!. ~45!

Thus, for largeL, the action ofa(L,x) serves to localize the observables around the poinx.
Hence the left-hand side of our formula forṽ (L) yields the state in the vicinity ofx, according to
the large scale description.

Suppose now thatD is a fixed, bounded spatial region that is sufficiently large to contain
enormous number of particles, in the microscopic description. Thus, the subsystem inD is meso-
scopic, in that, on the one hand, it contains a huge number of particles, while, on the other
the ratio of its span to the distance,L, vanishes in the limitL→`. In other words,D corresponds
to a hydrodynamic point.

Our local equilibrium condition is that the restriction ofv (L) to the space translate,D1Lx, of
D reduces to an equilibrium state corresponding to some position-dependent values,b(x) and
q(x), of the thermodynamic variablesb andq, in the limit L→`, i.e., that, ifa is an arbitrary
observable for the regionD, then

lim
L→`

v (L)~s~Lx!a!5vb(x),q(x)~a!, ~46!

which is consistent with our earlier assertion thatv (L)(s(x)a) is L independent forL sufficiently
large. Evidently, (b(x),q(x)) is a classical field, representing the local thermodynamic varia
in the hydrodynamic description. Further, sinceD is an arbitrary bounded region, the abov
specified local equilibrium condition extends to all elementsa of the algebraA. Moreover, by Eq.
~44!, it takes a particularly simple form when expressed in terms of the rescaled state,ṽ (L),
namely

lim
L→`

ṽ (L)~a~L,x!a!5vb(x),q(x)~a! ; aPA. ~47!

In other words, the state as described in the large scale limit reduces, at any spatial pointx, to the
equilibrium statevb(x),q(x) . In fact, this condition has been proved to be fulfilled by Gibbs sta
of nonrelativistic gravitational systems~Ref. 37!.

Finally, this formulation of local equilibrium may easily be extended to the dynamical s
tion in the case where the macroscopic equations of motion for the evolutes, (b t(x),qt(x)), of
(b(x),q(x)) are invariant under the transformationx→Lx,t→Lkt, for some positive constantk,
as in the cases of both diffusion or Eulerian hydrodynamics. For then, the space–time ge
zation of the above-mentioned local equilibrium condition is simply

lim
L→`

^t~Lkt !v (L);~s~Lx!a!&5vb t(x),qt(x)~a!. ~48!

Equivalently, defining the time-dependent state,ṽ t
(L) , in the hydrodynamic description by

ṽ t
(L)~a!5^t~Lkt !ṽ (L);g~L !a&, ~49!

the local equilibrium condition takes the form

lim
L→`

ṽ t
(L)~a~L,x!a!5vb t(x),qt(x)~a! ; aPA. ~50!

This condition has been proved to be satisfied by various classical stochastic models~Ref. 38!.
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VII. BUNDLE DYNAMICAL MODEL OF MACROSCOPIC-CUM-MICROSCOPIC
EVOLUTION

In the generic model of a many-particle system, as formulated in Sec. VI, the micros
observables are quantum mechanical variables, whereas the macroscopic ones are classi
dichotomy is essential for the reconciliation of quantum microphysics with the empirical fac
the macroscopic dynamics of ‘‘large’’ systems generally conforms to classical laws, such as
of hydrodynamics or heat conduction. Furthermore, it has been established that, at least
ticular models~cf. Refs. 39 and 5!, the macroscopic dynamics is governed by self-contai
deterministic laws and acts so as to ‘‘pilot’’ the microdynamics. We shall now show tha
macroscopic-cum-microscopic evolution of such systems provides a concrete example
bundle dynamical model of Sec. V.

We base our treatment on the modelS of Sec. VI, and for simplicity, we restrict our consid
eration to the case where this is an open dissipative system, i.e., wheret is a one-paramete
semigroup. The treatment of the conservative case can be carried out analogously.

We assume that, as in the laser model of Refs. 4 and 5,t induces macroscopic and micro
scopic evolutions that may be described as follows.

~I! S has a set of macroscopic observables that are functions on a phase spaceM and evolve
according to a deterministic law given by a one-parameter semigroup$StutPR1% of transforma-
tions m→Stm5mt of M . Thus, assuming thatStm is differentiable with respect tot, the macro-
scopic equation of motion takes the form

dmt

dt
5F~mt!, ~51!

whereF is a vector field onM .
~II ! The microscopic evolution of the system is piloted by its macroscopic dynamics in

a way that the equation of motion for the evolute,at , of an observablea at time t has the form

dat

dt
5L~mt!at , ~52!

where L(mt) acts linearly onA. To be precise, the microscopic dynamics is given by a tw
parameter family,$W(t,u;m)ut>u%, of completely positive, identity-preserving linear transform
tions of A, such that

at5W~ t,u;m!au , ~53!

and

W~ t,u;m!W~u,v;m!5W~ t,v;m!, ~54!

which is essentially a determinacy condition. Equations~51!–~54! then signify thatL(mt) is the
generator of the transformationsW, i.e., that

L~mt!5~]W~ t,u;m!/]t ! t5u ~55!

and hence that

]

]t
W~ t,u;m!5L~mt!W~ t,u;m![L~Stm!W~ t,u;m!, ; mPM , t>u. ~56!

~III ! L(mt) is indeed a true generator, in that Eq.~56! determinesW uniquely, subject to the
condition thatW(t,t;m)[I .
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We shall now show that, under assumptions~I!–~III !, the macroscopic-cum-microscopic dy
namics ofS reduces to that on a fiber bundle, as formulated in Sec. V. To this end, we sta
defining B to be the bundleM3A and V(t,m) and Tt to be the transformations ofA and B,
respectively, given by

V~ t,m!5W~ t,0;m! ; mPM , tPR1 ~57!

and

Tt~m,a!5~Stm,V~ t,m!a! ; mPM , aPA, tPR1. ~58!

We then prove the following proposition, which establishes that the transformationsTt form a
one-parameter semigroup that satisfies all the conditions of the bundle dynamical model of

Proposition 7.1: Under the above-given assumptions, V satisfies the bundle structure proper
~sometimes called thecocycle condition!

V~ t1u,m!5V~u,Stm!V~ t,m! ; mPM ,t,uPR1 ~59!

and T possesses the semigroup properties

TtTu5Tt1u and T05I ;t,uPR1. ~60!

Comment:This proposition establishes that the transformationsTt form a one-parameter sem
group that satisfies all the conditions of the bundle dynamical model of Sec. V. In other word
macroscopic-cum-microscopic dynamics of the systemS are completely captured by that mode

Proof of Proposition 7.1:It follows from the replacement ofm, t, u by Sum, t2u,0, respec-
tively, in Eq. ~56! that

]

]t
W~ t2u,0;Sum!5L~St2uSum!W~ t2u,0;Sum!,

which, in view of the semigroup property ofS, is equivalent to

]

]t
W~ t2u,0;Sum!5L~Stm!W~ t2u,0;Sum!. ~61!

Hence,W(t2u,0;Sum), as well asW(t,u;m), is a solution of Eq.~56!, and therefore, in view of
the uniqueness assumption~III !,

W~ t2u,0;Sum!5W~ t,u;m! ; mPM , u,t~>u!PR1.

On replacingt by t1u in this equation, we see that

W~ t,0;Sum!5W~ t1u,u;m! ; mPM , t,uPR1. ~62!

The bundle structure formula~59! for V now follows immediately from this formula, together wit
Eqs. ~54! and ~57!. Furthermore, this result, together with the semigroup property ofS, implies
that the transformationsT, defined by Eq.~58!, form a one-parameter semigroup.

VIII. FIBER BUNDLE DESCRIPTION OF LOCAL EQUILIBRIUM

We shall now show that local thermodynamic equilibrium~LTE!, as formulated in Sec. VI C
may be simply described in terms of actions on a fiber bundle. For notational simplicity, we d
by u(x) the (n11)-component hydrodynamic field (b(x),q(x))[(b(x),q1(x),...,qn(x)) speci-
fied in Sec. VI C. Thus, the LTE formula~47! takes the form
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lim
L→`

ṽ (L)~a~L,x!a!)5vu(x)~a!. ~63!

Evidently,u is a mapping fromX into Rn11 whose range is the Cartesian product of those of
thermodynamic variables (b,q1 ,...,qn). We shall denote byQ the space of kinematically possibl
forms of the fieldu. For present purposes, it is not necessary to specify the topology ofQ. We
shall assume that the dynamical group,t, of S induces a phenomenological dynamics given b
semigroup$f(t)utPR1% of transformations ofQ. Thus,

f~ t !u5u t[~b t ,qt!, ~64!

whereb t , qt are the time-dependent fields that appear in Eq.~50!.
We now define the fiber bundleB, in the notation of Sec. V, to beX3A. Its fiber at the spatial

point x therefore consists of elementsax of A. We then defineP to be the mappingu→Pu of Q
into the complex-valued functions onB given by

Pu~x,ax!5vu(x)~ax!. ~65!

On comparing this equation with Eq.~63!, we see immediately thatP carries a full description of
LTE in that, for eachuPQ, Pu represents the local equilibrium corresponding to the hydro
namic fieldu at each spatial pointx. Likewise, defining the evolutePt of P to be the mapping
u→Pt

u of Q into the complex functions onB given by

Pt
u5Pu t

, ~66!

we see from Eqs.~50! and~64! thatPt carries a full representation of the LTE at timet. Moreover,
by Eqs.~64! and ~66!,

Pt
u5Pf(t)u , ~67!

which signifies that the time dependence of the local equilibrium profile is completely determ
by the phenomenological semigroupf.

IX. CONCLUDING REMARKS

The purpose of this paper has been to combine the geometric picture of fiber bundles w
operator algebraic one of quantum theory for the purpose of describing macroscopic qu
systems. The combination of these mathematical structures is quite natural in this context,
offers the means of representing the complementary classical and quantum aspects of c
systems by actions on the bases and the fibers, respectively, of the relevant bundles. Here,
shown that it serves to provide simple pictures of quasiparticle excitations, of local therm
namic equilibrium, and of the interplay between the macroscopic~classical! dynamics and micro-
scopic~quantum! dynamics of certain systems, e.g., lasers. In view of its apparent generalit
envisage that the fusion of geometric and operator algebraic concepts presented here sho
wider ramifications for the theory of complex systems.

Finally, in view of the results of this paper, it would appear that the mathematical proble
establishing the existence of infinitesimal generators of one-parameter groups of bundle m
vector bundles is of physical interest as well. We have not addressed this problem in its a
form, but have given an explicit construction in Sec. V which is of fairly wide applicability.
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In this paper we study the largeNc limit of SO(Nc) gauge theory coupled to a real
scalar field following ideas of Rajeev@Int. J. Mod. Phys. A9, 5583~1994!#. We will
see that the phase space of this resulting classical theory isSp1(H)/U(H1) which
is the analog of the Siegel disk in infinite dimensions. The linearized equations of
motion give us a version of the well-known ’t Hooft equation of two dimensional
quantum chromodynamics. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1430898#

I. INTRODUCTION

Gauge theories are the fundamental theories that describe nature: Quantum chromody
~QCD! is the gauge theory of hadrons, and it is believed that one can compute the mass
excitations of all these hadrons from QCD. As yet there is no satisfactory understanding of
bound states. All the hadrons are color singlets, in fact we never see the underlying qua
asymptotic states. That means QCD should be a confining theory and there should be an in
dent formulation of it which is expressed completely in terms of these color invariant state

In Ref. 1, Rajeev has constructed such a theory of mesons in two dimensions in the limNc ,
the number of colors inSU(Nc), goes to infinity. The idea that QCD should simplify whi
keeping all its essential features in this limit goes back to ‘t Hooft2,3 and that this limit should be
a kind of classical mechanics to Migdal and Witten. Even this large-Nc theory is quite complicated
and ‘t Hooft looked at a two-dimensional model to understand the meson spectrum in this
and obtained his bound state equation.3 It is not so clear how to treat the baryons in the large-Nc

limit. Witten suggested that baryons could also be understood~as solitonic excitations! in his
classic papers~Refs. 4 and 5!. A much more ambitious program was presented by Lee and Raj6

for the large-Nc limit of more complicated gauge theories.
In this paper we study the largeNc limit of SO(Nc) gauge theory coupled to a real scalar fie

This theory is not physical, but it is a good model to test some of the ideas about gauge th
We will apply the methods developed by Rajeev to this toy model. We recommend the lectu
Rajeev for a more detailed exposition of the underlying ideas.7 Rajeev in his work1 has shown that
the phase space of the two-dimensional QCD is an infinite dimensional Grassmannian, well
from the theory of integrable systems and loop groups.8 Scalar QCD was worked out using th
same methods in Ref. 9, where it was shown that the phase space of the theory is an
dimensional disk. Originally scalar two-dimensional QCD was worked out by Shei and Ts
Ref. 10 following ‘t Hooft, and later by Tomaras using Hamiltonian methods in Ref. 11. T
works obtained the analog of the ‘t Hooft equation for this case. A natural extension of
would be to look at combined~fermionic! QCD and scalar QCD. This is done in a paper of Aoki12

where it is shown that the various types of mesons are possible and they all obey ‘t
equations. At about the same time, following a path integral approach and bilocal fields, co
fermions and bosons as well as some other models in two dimensions were worked ou

a!Electronic mail: turgutte@boun.edu.tr
13400022-2488/2002/43(3)/1340/13/$19.00 © 2002 American Institute of Physics
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beautiful article by Cavicchi.13 Recently, Konechny and O.T.T. have extended the methods of
1 to the above-mentioned case and showed that the underlying large-Nc phase space is a certa
kind of super-Grassmannian. The linearized equations agree with the ones found in Ref. 1
correct equations are nonlinear, and there is a baryon number operator which correspond
supertrace of the basic variable.14

The real scalar field is an interesting testing ground. There are some ideas in the lite
which suggest that gauge theories in two dimensions all behave in a very similar way.15 In this
work we show that the phase space of the resulting classical theory isSp1(H)/U(H1), which is
the analog of the Siegel disk in infinite dimensions. The linearized equations of motion give
version of the well-known ’t Hooft equation of two-dimensional QCD, and this new one is
same equation found in Ref. 10 apart from some numerical factors. That means that we ha
same spectral behavior for the mesons of the theory. Since most of the details are very sim
the ones in Rajeev’s lectures7 and various aspects of the geometry of the phase space were
in a few other places16–18 our treatment will be brief.

II. THE SCALAR SO„Nc… MODEL IN THE LIGHT CONE

Since the basic philosophy was explained in Ref. 1 we will state our conventions and
down the Lagrangian of the theory. We will use the light cone coordinatesx15(1/&) (t1x),
x25(1/&) (t2x) and chooseA250 gauge,

S5E dx1 dx2F1

2
Tr F12F121

1

2
fa~22]2!]1fa

1
g

2
~]2faA1a

bfb2faA1a
b]2fb!2

m2

2
fafaG . ~1!

Here we haveSO(Nc) gauge theory for which the matter fields are in the fundamental repre
tation and Tr denotes an invariant inner product in the Lie algebra. The Lie algebra con
implies thatA1

T 52A1 . To compute the variations we need the independent degress of free
we can expandA15A1

a Ta, whereTa are the generators ofSO(Nc) Lie algebra. We can choos
them such that TrTaTb52 1/2dab. When we use the light cone approach in 111 dimensions, the
gauge fields do not carry dynamical degrees of freedom. We first eliminate the gauge field
then write the resulting action. Let us find the equation of motion for the gauge field onc
rewrite the action,

S5E dx1 dx2F1

2
fa~22]2!]1fa1

g

2
A1

a ~]2faTa
a
bfb2faTa

a
b]2fb!

1
1

2
~]2A1

a !22
m2

2
fafaG . ~2!

If we define the currentJa51/2 (faTa
a
b]2fb2]2faTa

a
bfb), we get

2]2
2 A1

a 5gJa, ~3!

which can be solved formally~an actual solution can be found if we specify some bound
conditions! and by substituting this into our Lagrangian again,

S5E dx1 dx2S 1

2
fa~22]2!]1fa1Fg2

2
Ja

1

]2
2 Ja1

m2

2
fafaG D . ~4!

Written in this form we immediately see that1,19 we have the following symplectic form:

v21~x2,y2!5^x2u~22]2!21uy2&52 1
4 sgn~x22y2! ~5!
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and the Hamiltonian,

H5E dx2F2
g2

2
Ja

1

]2
2 Ja1

m2

2
fafaG . ~6!

The same boundary conditions as the one used to find the symplectic form gives us the
explicit expression,

H5
m2

2 E dx2 fa~x2!fa~x2!2
g2

4 E dx2 dy2Ja~x2!ux22y2uJa~y2!. ~7!

We note that one needs the properties of the group and its represention to compute the inte
term. This can be achieved due to the identity(a(Ta)ab(Ta)lg52 1/2(dagdlb2daldbg).

It is now possible to compute the equations of motion for the classical variablef(x2;x1)
using

]f

]x1 5$f,H%. ~8!

It is a useful exercise to find the equations of motion even for the free field theory~see the
beautiful lectures by Heinzl19!. Another important exercise is to check that the theory is Poinc´
invariant written in this new way, by finding the generators.

We will follow Ref. 1 ~or Ref. 7! and rewrite the theory in terms of the color invaria
bilinears of the field variablef after canonical quantization. In the largeNc limit these will be the
only dynamical variables, and the theory has a completely classical formulation in terms of
bilinears. We will see that the remaining globalSO(Nc) symmetry we have imposes a constra
for these variables and that means the phase space of the theory is a curved manifold in
dimensions.

Canonical quantization is standard, since the theory is super-renormalizable the resul
same as free field theory and the choice of vacuum is exactly the same. The equal ‘
commutator is given by

@f̂a~x2,x1!,f̂b~y2,x1!#52
i

4
dab sgn~x22y2!. ~9!

This means that it is simpler to introduce creation and annihilation operators, satisfying

@aa~p!,ab~q!#52pd~p1q!dab sgn~p!, ~10!

such that

f̂a~x2!5E dp

2p

aa~p!

A2upu
e2 ipx2

. ~11!

For quantum theory we introduce the Fock vacuumu0&:

aa~p!u0&50 when 0<p. ~12!

To get well-defined expressions for various operators—such as the Hamiltonian—we n
normal ordering prescription:

:aa~p!ab~q!ªH ab~q!aa~p! if q,0, p.0

aa~p!ab~q! otherwise.
~13!
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We note that it is also possible to think about the creation and annihilation operators via a F
expansion,

f̂a~x2!5E
0

` dp

2pA2upu
~aa~p!e2 ipx2

1aa
†~p!eipx2

!, ~14!

manifesting the real valuedness of the fieldf̂a
†5f̂a . This automatically implies thataa

†(p)
5aa(2p) for p.0. In Sec. III we will see that this is a more appropriate way to think ab
quantization, yet from a calculational point of view the other is better. One notes that th
consistent with the commutation relations ofaa’s. ~See Refs. 19 and 20 for more details about
light-cone vacuum structure of the real scalar field.!

The normal ordering can be written in terms of the ordinary products of the operators
vacuum subtraction,

:aa~p!ab~q!ªaa~p!ab~q!2 1
2 ~sgn~p!11!2pd~p1q!dab . ~15!

We will make use of this relation quite frequently in Sec. III.

III. ALGEBRA OF COLOR INVARIANT OPERATORS

In this section we will discuss the class of operators we will use to reformulate the g
theory in the large-Nc limit. Since we have fixed the gauge asA250 we are not allowed to make
any more space-dependent gauge transformations.~The equations of motion at the quantum lev
imply that the ‘‘time’’-dependent transformations cannot be made arbitrarily but given by
evolution of the scalar field. We do not need to look at these in any case since in the Hamil
formalism observables at a fixed ‘‘time’’ slice are enough.! Yet there is still a globalSO(Nc)
symmetry which is left over. To emphasize the contraction we write down the color inva
bilinears with one index up, the other index down,

N~x2,y2!5
1

Nc
:f̂a~x2!f̂a~y2!:. ~16!

The set of these equal time bilinears constitute the set of all possible color invariant ope
for this theory. One may equally look at the Fourier transform of these operators, so the
bilinears in this case become

T̂~p,q!5
2

Nc
(
a

:aa~p!aa~q!:. ~17!

As we will see in Sec. IV conceptually it is more natural to use the variables

K̂~p,q!52
2

Nc
sgn~p!(

a
:aa

†~p!aa~q!:, ~18!

but for calculations it is easier to keep the above-given variables. The basic idea of the laNc

theory is to write everything in terms of these color invariant bilinears. In the limitNc becomes
large only the color invariant operators survive and furthermore the expectation values of
invariant operators split as a product up to 1/Nc corrections. This implies that the set of colo
invariant operators becomes classical; all color invariant operators should be represent
classical observables. The resulting theory, restricted to the space of color invariant states
fore becomes a classical theory.1,7,21To define this classical theory we compute the commutato
two such color invariant operators and then take the appropriate large-Nc limit. The result will be
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postulated as a classical Poisson bracket of these classical variables. We will see later on t
Poisson bracket actually comes from a symplectic form on a very natural infinite dimens
homogeneous symplectic manifold.17

When we compute the commutator of such bilinears we get

@ T̂~p,q!,T̂~s,t !#5
2

Nc
~sgn~p!d@p1s#T̂~q,t !1sgn~q!d@q1s#T̂~p,t !

1sgn~p!d@p1t#T̂~s,q!1sgn~q!d@q1t#T̂~s,p!

1~sgn~p!1sgn~q!!~d@p1s#d@q1t#1d@p1t#d@s1q# !!,

where we definedd@p1q#52pd(p1q) for convenience.
If we take the limitNc→` we assume that there are corresponding classical observable

the commutators go to Poisson brackets of these observables. We still denote them by th
letter except we drop the caret on the top. Applying the rule2 ( i /\) @A,B#°$A,B%, as \
5Nc

21→0, we get

$T~p,q!,T~s,t !%522i ~sgn~p!d@p1s#T~q,t !1sgn~q!d@q1s#T~p,t !

1sgn~p!d@p1t#T~s,q!1sgn~q!d@q1t#T~s,p!

1~sgn~p!1sgn~q!!~d@p1s#d@q1t#1d@p1t#d@s1q# !!.

~There is really no way to determine the correct quantization parameter in this approach. W
only find this when we quantize the theory back again. The most natural method to emp
geometric quantization, due to the natural geometry of the phase space. We will come b
these issues in a separate publication.! We will postulate these to be the basic Poisson bracket
our dynamical variables. It is a good exercise to compute the equations of motion for the fre
in this language and write down the solution.

These variables acting on the color invariant sector are not completely independent, the
constraint coming from the global color invariance. Recall that the globalSO(Nc) is generated by
the operators acting on the Fock space,

Q̂ab5E
0

` dp

2p
aa

†~p!ab~p!2E
0

` dp

2p
ab

†~p!aa~p!. ~19!

These operators satisfyQ̂abu0&50 and

@Q̂ab ,Q̂lg#5Q̂ladbg1Q̂bldag1Q̂gbdla1Q̂ladgb . ~20!

One can see thatQ̂ab52Q̂ba . Recall the related set of bilinear variables,

K̂~p,q!52
2

Nc
sgn~p!:aa

†~p!aa~q!:, ~21!

a careful computation shows that when we restrict these variables to the color invariant se
the Fock space in the large-Nc limit we get

E
2`

`

K~p,s!K~s,q!@ds#2sgn~p!K~p,q!2K~p,q!sgn~q!50. ~22!

This operator equation is now interpreted as an equation for the kernel of an integral op
acting on the one-particle Hilbert space. We can write the same constraint in a more s
manner as
                                                                                                                



talk
rtant
aint
a

iza-

l steps

on
e in

the
ackets
ear

con-

for a

ok at
t

qua-
e

1345J. Math. Phys., Vol. 43, No. 3, March 2002 Large N limit of SO(N) scalar gauge theory

                    
~K1e!25I , ~23!

wheree(p,q)52sgn(p)d @p2q# and we interpret this as an operator equation again. We will
about the meaning of this equation from a more geometric point of view in Sec. IV. The impo
assumption is that when we letNc°`, the above-mentioned constraint translated into a constr
for the classical variablesK. So the dynamical variablesK satisfy this constraint, which implies
constraint forT(p,q) trivially.

We rewrite the Hamiltonian by redefining the coupling constant asg2Nc°g2 and dividing the
Hamiltonian by an overall factor ofNc . Thus the Hamiltonian becomes, after mass renormal
tion,

H05
1

8 S mR
22

g2

2p DPE @dp#

upu
T~2p,p!, ~24!

where the renormalized mass is given bym25mR
21 (g2/4p) ln (LU /LI) , LU , L I referring to the

ultraviolet and infrared cutoffs, respectively, we also used the shorthand@dp#5 dp/2p, and P
denotes the principal value prescription. This is not a simple computation but the essentia
are given in Ref. 7, and the interaction part

HI5
g2

64
FPE @dp dq ds dt#

Aupqstu
d@p1q1s1t#

sq2st1pt2pq

~p1s!2 T~p,q!T~s,t !, ~25!

whereFP denotes the finite part, as explained in Ref. 7. For simplicity of notation from now
we will drop the symbols,P andFP, but the calculations should be performed keeping thes
mind. At this point we have the complete formulation of our theory—one can compute
equations of motion using the above-mentioned form of the Hamiltonian and the Poisson br
of the variablesT(u,v). At this stage we will not be able to give an analysis of these nonlin
equations and instead confine ourselves to the linear approximation.

For the linear approximation we follow Ref. 7 and we will write the above-mentioned
straint in terms of theT variables and ignore the second-order term inT. This will be our
linearized constraint,

@12sgn~u!sgn~v !#T~u,v !50. ~26!

In the following we will keep all the equations of motion to this approximation and search
bound state solution.

We can compute the equations of motion in the linear approximation: this means we lo
T(u,v) for u,v.0 or u,v,0, the other cases implyT(u,v)50 from the constraint equation. Le
us look at theu,v,0 case and defineP52(u1v) and x52u/P. This meansu52Px,
v52P(12x) and 0,x,1. If we actually compute the equations of motion]1T(u,v;x1)
5$T(u,v;x1),H%, and make an ansatz,T(u,v)5eiP1x1

z(x), we get

m2z~x!5S mR
22

g2

2p D F1

x
1

1

12xGz~x!2
g2

8p E
0

1Fy~12x!1x~12y!1y~12y!1x~12x!

~x2y!2

1
xy1~12x!~12y!1y~12y!1x~12x!

~y2~12x!!2 G z~y!dy

Ax~12x!y~12y!
,

wherem252P1P is the invariant mass of this excitation. We should solve this eigenvalue e
tion to find the allowed values ofm2 and the functionz. This will determine the spectrum of th
theory. One notes that the equation is symmetric underx°12x and y°12y, that means we
may choosez(x)5z(12x). This simplifies our equation to
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m2z~x!5S mR
22

g2

2p D F1

x
1

1

12xGz~x!2
g2

4p E
0

1 ~x1y!~22x2y!

~x2y!2

z~y!dy

Ax~12x!y~12y!
. ~27!

The above-given form is in fact identical to the bound state equation found in Ref. 10 and la
by Tomaras using Hamiltonian methods apart from the numerical factors~this approach is close
to the one in Ref. 1!. It is known that this theory has only discrete states, that is we only h
bound state solutions and no scattering states.

We may search for the baryons in this theory@from a more standard point of view, we do n
have anyU(1) symmetry in the classical action; this suggests that there should not be b
number conservation and no baryons—we will see that the baryon number is indeed not con
for the gauge theory#.

Note that there is no antibaryon. Let us write down a typical baryonic operator,

B~p1 ,p2 , . . . ,pNc
!5

1

Z
ea1a2 . . . aNc

aa1

† ~p1!aa2

† ~p2! ¯ aaNc

† ~pNc
!, ~28!

whereZ is an appropriate normalization factor. When we take the large-Nc limit these operators
become infinite strings which are not representable in a simple way. But we can still detec
if they are present in a physical state. We write a one-baryon state asB(p1 ,p2 , . . . ,pNc

)u0&, and
define the baryon operator,

B̂5
1

Nc
E

0

`

@dp#:aa
†~p!aa~p!:. ~29!

In general we have the action of the baryon operator on many baryon states,

1

Nc
E

0

`

@dp#:aa
†~p!aa~p!:B~p1 ,p2 , . . . ,pNc

!B~q1 ,q2 , . . . ,qNc
! . . . B~s1 ,s2 , . . . ,sNc

!u0&

5~number of baryons!B~p1 ,p2 , . . . ,pNc
!B~q1 ,q2 , . . . ,qNc

! ¯ B~s1 ,s2 , . . . ,sNc
!u0&.

We may have mesonic parts in general, but in this picture they seem to be of smaller orde
that this operator will survive the large-Nc limit and can be represented as the half trace of
variable T(p,q) evaluated only for the positive momenta. A natural question is if the bar
number operator is conserved under the evolution of our system—it does not follow from a s
symmetry principle—a direct method is to see if this operator Poisson commutes with a qua
Hamiltonian. Let us write down a general quadratic Hamiltonian as

H5E @dp#h~p!T~2p,p!1E @dp dq ds dt#G~p,q;s,t !T~p,q!T~s,t !. ~30!

The Poincare´ invariance will impose certain restrictions on the choice of functionsh, G. There are
a few obvious symmetries coming from the properties of the variableT, the considerations of Sec
IV show all the symmetries required onG(p,q;s,t). If we now compute

H H,E
2`

`

T~2u,u!@du#J 52i E @sgn~p!1sgn~q!#G~p,q;s,t !T~p,q!T~s,t !@dp dq ds dt#,

~31!

the use of the symmetries in general will not give zero: this means that the baryon number
conserved in general! In our case the computation gives a nonzero result, thus in the conve
sensewe do not have baryons, yet we may have nonzero values of the trace implying poss
baryonic states. We will see more comments on this from the geometry in Sec. IV.
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IV. GEOMETRY OF THE PHASE SPACE

In this section we present a somewhat more rigorous approach and provide an interpreta
the underlying phase space of the theory. To do this let us discuss quantization again, for
closely follow the ideas in the article by Bowick and Rajeev17 and for a more detailed presentatio
we refer to the beautiful article by Gracia-Bondia and Varilly.16 There is also a nice group theoret
presentation in Ref. 22.

When we look at a real scalar field in two dimensions in the light cone formalism, we
formally quantize the system by declaring the existence of operators corresponding to the
and we replace the Poisson bracket relations of these fields by commutators with an add
factor of i . Of course we assume that there is an underlyingcomplexHilbert space on which thes
operators act! In this formal process we do not see where the complex structure comes fr
fact there is a natural complex structure: let us assume that the free Hamiltonian is for
written as a quadratic form in the fields,H05* 1/2faQabfb , and we have a symplectic struc
ture, v, * 1/2favab]1fb . This symplectic structure defines a skew form on the space of s
tions to the classical field equations. The natural operator to introduce isṽ5v21Q, this is a real
antisymmetric operator~matrix! of type (1,1), and comes from the equations of motion. We use
polar decomposition,ṽ5JS, whereJTJ51 andST5S with S.0. Now using the antisymmetry
of ṽ we see thatJ2521. This defines a complex structure which we can use to complexify
real Hilbert space. If we apply this to our case, the metric coming from the free Hamilto
H05(m2/2) * dx2fa(x2)fa(x2), becomesQab(x2,y2)5m2d(x22y2)dab , and the symplec-
tic form ~see Sec. III! vab(x2,y2)5^x2u22]2uy2&dab . If we write down the polar decompo
sition, we have

Jab~x2,y2!5^x2u2~]2
T ]2!1/2]2

21uy2&dab5^x2u2~2]2
2 !1/2]2

21uy2&dab . ~32!

Written in this form this is a real operator acting on theL2 space of initial data on the light cone
We can extend this operator to a complex Hilbert space and it is then possible to diagonal
above-mentionedJ in this complexified space. So we think of a complexL2 space,VC5V^ C
5W% W̄, whereW is isomorphic toW̄, in the infinite dimensional case they are both separa
The decomposition we use corresponds to the eigenspaces ofJ. If we write J as a block diagona
on such a decomposition we get

J5S i 0

0 2 i D .

We know from our experience in physics that this is the form we use. If we decompose the
into Fourier modes at the initial data surfacex150,

fa~x2!5E
0

` @dp#

A2p
~ z̄a~p!e2 ipx2

1za~p!eipx2
! ~33!

and act upon it byJ, we see that we get

~Jfa!~x2!5E
0

` @dp#

A2p
~2 i z̄a~p!e2 ipx2

1 iza~p!eipx2
!. ~34!

So we see that the decomposition of the field into its positive and negative frequency modes
same as using the eigenvalue decomposition of the underlying complex structure.~We note that
this decomposition is relativistically invariant, and the division by momentum variableA2p is for
convenience.! Now we can also see that the inverse of our skew form transforms under s
change of basis asR21v21(R21)T, where we represent the Fourier transform asR. HereT refers
to the ordinary transpose. Thus we evaluate
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E dx2 dy2 eiqx2A2uquS 21

2]2
Deipy2A2upu5 i sgn~p!d@p1q#, ~35!

which shows that the symplectic form transforms to the standard form now defined on a co
Hilbert space.

The correct quantization in the infinite dimensional case requires this complex structur
formal quantization rule,

@f̂a~x2!,f̂b~y2!#52
i

4
dab sgn~x22y2!, ~36!

clearly requires a complex space, we assume the real field is a self-adjoint operator,f̂(x2)
5f̂(x2). In fact we really think of this system in terms of creation and annihilation opera
acting on a complex Hilbert space. This is best done by going into a Fourier decompositio
introducing the creation and annihilation operators corresponding to positive and negativ
quency components. Such a decomposition is necessary to make the commutation relation
ingful, a glance at them shows that@aa(p),ab(q)#5sgn(p)d @p1q# is consistent with the creation
and annihilation operator interpretation if we defineaa(p) to be the annihilation andaa(2p) to
be the creation operators forp.0. Now we see that what determines this is precisely the com
structure,J52 i sgn(p). This form of the complex structure reveals another important aspe
this problem: there is no dependence on the mass.If the bare mass changes due to the interactio
this does not change the quasifree representation of our commutation relations that were cho
the start using the free part only. The frequencies obviously change but that does not affect
representation. To make the Hamiltonian and various other operators of physical interes
defined in this Fock space we must introduce a normal ordering prescription.

If we compute the commutator of two normal ordered bilinears of the field operators,
provides a realization of the real symplectic Lie algebra in its standard form. When we swi
the Fourier modes, and use the corresponding creation and annihilation operators we u
embedding of the real symplectic Lie algebra into the complex symplectic Lie algebra. In fa
operatorsK(p,q), in the large-Nc limit, correspond to the Lie algebra generators with respec
this embedding. We will discuss this in the following. If we define our symplectic form as a m
v5(21

0
0
1), and the complex structure asJ5(21

0
0
1), we can diagonalize our complex structure

a complex Hilbert space byR5 (1/&) (1
i

1
2 i ), thenR21JR5( 0

2 i
i
0), whereasRTvR5 i (21

0
0
1). In

such an embedding the real symlectic group defined byv becomes

S a b

b̄ āD , ~37!

and naturally still preserves the transformed form ofv, but that is the same as the comple
symplectic group, sincev as a matrix preserves its form. A general complex symplectic ma
g5(c d

a b), satisfies,

aTc5cTa, bTd5dTb, aTd2cTb51. ~38!

In our example we see that the Fourier transform does this transformation: it bringsJ into diagonal
form andv to the standard form.

The real Lie algebra can be written as

11 i S F G

2Ḡ 2F̄
D , ~39!

whereF†5F andGT5G. In fact one can check that the large-Nc limit operatorsK(p,q) obey
these conditions. Furthermore there will be convergence conditions coming from the s
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renormalizability of our theory. This corresponds to the fact that we require normal ord
bilinears to create finite norm states when they act on any other state constructed from the v
by the action of creation operators—of course strictly speaking we should think about smear
operators but we will ignore this technical part for this work. We can simply say that the
diagonal components of these operators, that isb parts, should be Hilbert–Schmidt operators.
the same way we demand the same for the Lie algebra elements.~In higher dimensional theorie
this requirement is not satisfied and one needs a much more sophisticated not completely
stood approach. One possibility was proposed by Mickelsson and Rajeev.23,24!

In this language the constraint should be written as (iK 1 i e)2521, andi e5J, i.e., it is the
diagonal form of the complex structure we were to begin with. There is the skew form whic
a matrix form in this basisv5(21 0

0 1), which defines the symplectic group onW% W̄. We will see
that the constraint actually defines a homogeneous manifold of the underlying real symp
group. If we introduce a variableF5K1e, the constraint becomes

F251. ~40!

One can also verify the following condition:

FT5v21Fv. ~41!

This is nothing but the Lie algebra condition. In this basis there is no difference as ma
betweenv and v21 but we should remember that they transform differently. Furthermore
convergence condition becomes,

@e,F#PHilbert– Schmidt. ~42!

As we will see in the following part these conditions correspond to the infinite dimens
version of the Siegel disk.

We now define a homogeneous manifold which will be denoted byD1
R . It is essentially a real

version of the disk which corresponds to the pseudounitary group. Let us define a Hilbert
H1 , which refers to the positive frequency modes of the theory. We can also say that these
functions which have only positive modes in their Fourier decomposition. We introduce a s
operatorsZ:H1→H2 , whereH2 is H̄1 in the above-given language.~If we use the full complex
Hilbert space,H5H1 % H2.) We imposeZT5Z. We have a complex conjugations, this inter-
twines betweenH1 and H2 , we defineZT5sZ†s, note thatZ†:H2→H1 , thus ZT:H1

→H2 . FurthermoreZ̄5sZs:H1→H2 . There is an extra condition onZ: 12Z†Z.0. We also
need a convergence condition which comes from the infinite dimensionality of the theoZ
PI2 , whereI2 denotes the Hilbert–Schmidt ideal.7,24,25

We introduce a real restricted symplectic group,Sp1 embedded into the above-mentione
complex symplectic group, which we precisely define in the following:

Sp1
c~H!5$g:H→Hug21 exits, gTvg5v and @e,g#PI2%. ~43!

Here we are using ordinary matrix transpose to be able to write explicit matrix elements. W
see that this is a group and we call it the restricted complex symplectic group, and its subgr
the form

S a b

b̄ āD , wherebPI2 ~44!

corresponds to the restricted real symplectic groupSp1(H). J itself is a real symplectic matrix and
we are using a basis for the complexified Hilbert space in whichJ becomes diagonal.

The real symplectic group has an action on the space of operatorsZ, given by
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g+Z5~aZ1b!~ b̄Z1ā!21. ~45!

We can check that the action obeys the usual ruleg1+(g2+Z)5(g1g2)+Z. To prove that the action
preserves all the conditions we look at the orbit ofZ50, which is obviously in this setD1

R . We see
that the resulting elementbā21 satisfies all the properties, hence the orbit remains inside the
~We should of course see that the inverse ofā exists, but that is easy using the properties of
group.! Let us assume that aZ is given, we claim that any such element lies in the orbit ofZ
50. To show this we explicitly construct a group element which does this:

g~Z!5S ~12Z̄Z!21/2 Z~12Z̄Z!21/2

Z̄~12ZZ̄!21/2 ~12Z̄Z!21/2 D . ~46!

Note that everything here is well-defined. We leave it to the reader to check thatg(Z) is an
element of the real group. This shows that the disk is actually a homogeneous space: ta
elementZ, pull it back toZ50 by g21(Z) and to reach any elementZ̃ use the group elemen
corresponding to this for the orbit ofZ50, g(Z̃) and use the compatibility condition,Z̃
5(g(Z̃)g21(Z))+Z. It is clear that the action then remains inside the disk.

We see that the disk is actually a complex homogeneous space, the stability subgroup
sponding toZ50 is given by

U~H1!5S a 0

0 āD . ~47!

If we use symplectic condition we geta†a5aa†51, which meansa is an element of the unitary
group ofH1 . This means we have

D1
R5

Sp1~H!

U~H1!
. ~48!

We will in fact see that the above-mentioned space is a complex homogeneous symplectic
fold, but before this it is useful to introduce a variableF(Z):

F~Z!52112S ~12ZZ̄!21 2~12ZZ̄!21Z

Z̄~12ZZ̄!21 2Z̄~12ZZ̄!21Z
D . ~49!

Using the defining properties ofZ we can check that

F~Z!251, F~Z!T5v21F~Z!v, @e,F~Z!#PI2 , ~50!

where we used the explicit standard matrix form ofv. Note that these are the same conditions
our physical variableF. We claim that all suchF(Z) lie on the orbit ofe5F(Z50). This is easy
to see using

F~Z!52g~Z!ev21g~Z!Tv, ~51!

which also verifies the above-mentioned conditions once more. One can see using the
mentioned identification that the action of the group onZ becomes quite simple in terms ofF,

g+Z°gFg21. ~52!

We can check that this action preserves all the conditions onF.
The manifold we have found is actually symplectic. We may define a natural two form,
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V5
i

4
Tr F dF∧dF. ~53!

This formal expression should be understood as follows. We look at vector fields at a pointF, any
such thing can be expressed in terms of the Lie algebra elements,Vu(F)5@u,F#, whereu is an
element of the Lie algebra. then the two form becomes.

V~Vu ,Vv!5
i

8
Tr F@@u,F#,@v,F##5

i

8
Tr e@@e,g21ug#,@e,g21vg##. ~54!

The above-mentioned form shows that the trace is well-defined due to the Hilbert–Sc
conditions.1,7,9 From this point of view it is easy to see that the above-mentioned form is ho
geneous, and it is closed~see Refs. 1 and 7!. Nondegeneracy can be proved atF5e and using
homogeneity this is true over the manifold. If we look at the symplectic form ate by using theZ
coordinates, we get

Vue52i Tr dZ̄∧dZ. ~55!

A short computation reveals that when we writeg21ug5 i (
2Ḡ1 2F̄1

F1 G1 ) and the same forv,

g21vg5 i (
2Ḡ2 2F̄2

F2 G2 ) we get

V~Vu ,Vv!52
i

2
Tr~G1Ḡ22G2Ḡ1!52 i Im TrG1Ḡ2 . ~56!

In fact the previous Poisson brackets come from this sympectic form, as can be checked. W
leave the details to the reader. We note an important point aboutF. The reader can verify that

F2e5S 2Z~12Z̄Z!21Z̄ 2~12ZZ̄!21Z

2Z̄~12ZZ̄!21 22Z̄~12ZZ̄!Z
D PS I1 I2

I2 I1
D , ~57!

whereI1 denotes the ideal of trace class operators, hence a conditional trace for the va
F2e exists. We may therefore find moment maps which generate the underlying symmetry
theory. We write down the answer but do not spend much time on it since we will not mak
of these maps:Fu52 1/2Tre u(F2e), here Tre A5 1/2Tr(A1eAe). These provide a Poisso
realization of the Lie algebra.

There could be baryonic states in the finiteNc theory given by

1

Z
ea1a2 ¯ aNc

aa1

† ~p1!aa2

† ~p2! ¯ aaNc

† ~pNc
!u0&, ~58!

where all the momenta are positive~see Sec. III!. We can measure this baryonic content by t
half-trace of the operatorK. We iterate again thatthis is not a conserved quantity, hence there is
no baryon in the usual sense or a baryon number. The full trace gives zero since there
antibaryon. Let us see this by looking at the operatorF. If we evaluate the trace Tre(F2e)
52(Trbb†2Tr b̄bT), where we used the appropriate group elementg5(

b̄ ā

a b
) to write F. One can

see that Trb̄bT5Tr bb†5Trbb† sincebb† is poisitive Hermitian. This shows that the trace is ze
In fact physically the correct one to take is half of this trace as we have seen in Sec. III,
define

B5
1

2
TrF S 11e

2 D ~F2e!G . ~59!
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We see that this is a positive number, which in the large-Nc limit corresponds to the some type o
baryonic content. The authors are unable to find a reason for this to be an integer, unlike th
discussed by Rajeev in Ref. 1, where the trace is related to the Fredholm index of the ope
and thus is automatically an integer. Not only is the baryonic content noninteger, it is a
nonzero. That is, when there are mesons there are also baryonic states. The limit we use s
suggest that the baryon content and mesonic states start to mix up, since the above-me
trace is zero only for the vacuume. Another perspective on baryons is to think of the solito
excitations of the gauge theory, and in our case a nonzero trace perhaps implies these
excitations. The reader may then question the validity of the linear approximation, since we
that the baryon number is always nonzero. In the linear approximation the above-mentione
should be taken as zero, since it corresponds to a quadratic.
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We show the emergence of Clifford algebras of nonsymmetric bilinear forms as
cotangent algebras of Kaluza–Klein~KK ! spaces pertaining to teleparallel space–
times. These spaces are canonically determined by the horizontal differential in-
variants of Finsler bundles of the type,B8(M )→S(M ), whereB8(M ) is the set of
all the tangent frames to a differentiable manifoldM , and whereS(M ) is the
sphere bundle. IfM is space–time itself,M4, the ‘‘geometric phase space,’’
S(M4), has dimension seven. This reformulation of the horizontal invariants as
pertaining to a KK space removes the mismatch between the dimensionality of the
tangent frames toM4 and the dimensionality ofS(M4). In the KK space, a sym-
metric tangent metric induces a cotangent metric which is not symmetric in general.
An interior covariant derivative in the sense of Kaehler is defined. It involves the
antisymmetric part of the cotangent metric, which thus enters electrodynamics and
the Dirac equation. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1448682#

I. INTRODUCTION

In this paper, we follow Fauser and Ablamowicz in using the term quantum Clifford alg
~QCA! to refer to the Clifford algebra of a bilinear, not necessarily symmetric, metric.1 The main
interest of these algebras is their applicability to problems in quantum field theory, particle
ics, and condensed matter physics. Some of the applications that have been suggested are
creation and annihilation,2 regularization,3 vertex ordering,4 generating functionals,5 and compos-
ite and multiparticle theory.1 Also, the relation of QCAs toq-deformations of Clifford algebras6

allows one to claim for QCA applications such as collective excitations, already claime
q-deformations of Clifford algebras.7 The impending issue is: where do these Clifford algebras
nonsymmetric form come from? In this paper, we show that they emerge naturally in the Ka
Klein ~KK ! context intimated in the abstract. But, first, we shall explain the title of the pape

A more precise, though cumbersome, version of the title could have been as follows:Quantum
Clifford algebra from the differential invariants that are already present in (and are usually
incorrectly thought to be exclusive of) the traditional sector of classical differential geometry. We
use the term ‘‘classical’’ to refer to geometry in the tangent bundle, rather than Yang–
geometry. The term ‘‘traditional sector’’ is used to refer to the part of classical differential ge
etry that studies connections, metric relations, their interplay, etc. The term ‘‘nontraditiona
tor’’ is used to refer to Ka¨hler’s exterior–interior calculus and concomitant theory of Dir
equations.8 The basic equations of structure of the traditional sector concern clearly the diff
tials of deeply geometric objects. In the case of the Ka¨hler theory, on the other hand, the equati
which plays the central role, the Ka¨hler equation, is

a!Electronic mail: vargas@att.net
13530022-2488/2002/43(3)/1353/12/$19.00 © 2002 American Institute of Physics
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]u5a∨u, ~1!

where ] represents the sum of the exterior and interior covariant derivatives, ‘‘a’’ is a given
tensor-valued differential form~TVDF!, and ‘‘u’’ is the unknown TVDF. Dirac’s original equation
is a most simple particular case of Eq.~1!. It corresponds toa being given by the scalar-value
differential formm1eA, up to universal constants~m is mass,e is charge, andA is electromag-
netic potential!. The motivation to view the theory of Eq.~1! as an extension of classical diffe
ential geometry is enhanced by the possibility of using a geometric object to play the role ofa,9,10

especially since the unknown TVDFu does not make part of the differential invariants whi
makea and define].

It is legitimate to ask why even bother about classical differential geometry in connection
QCAs, given the success of Yang–Mills theory. The reason is that ‘‘the key feature of Yang–
theory is that it deals with connections on auxiliary bundles, not directly tied to the geome
the base manifold.’’11 In mathematics, a bundle is auxiliary because we make it to be so
matter of definition in the context of some geometry, say Riemannian geometry. In physics,
other hand, the Riemannicity of space–time might in principle be just the geometrically iden
part of a deeper classical-geometric reality of the world. For instance, a Riemannian structu
be reconfigured on the Finsler bundle without loss of information but with increased stru
richness. A bundle may be auxiliary simply because of our inability to identify it as pertainin
a more sophisticated bundle directly tied to the base manifold, like a Finsler bundle. Weyl g
etry was considered—and still is considered—as the first of the Yang–Mills theories, ahead
times. And yet, Weyl geometry is directly related to the geometry of base manifolds endowe
metric-compatible affine connections of the particular type that Cartan called metric conne
~whose fibers contain the rotations, as in Riemannian geometry, plus the dilatations or sim
transformations!.12 For Cartan’s related discussions of Weyl’s spaces see Refs. 13–15. On
has to leave open the possibility that some Yang–Mills theories may eventually become p
classical differential geometry of some more general type.

The contents of the paper is organized as follows. In Sec. II, we refer to the evolution of
modern mathematics that are relevant for this work, like the emergence of the concept of qu
Clifford algebra and recent developments in both the exterior–interior calculus of Ka¨hler and in
Finsler geometry. It is precisely in the context of these developments that, in Sec. III, non
metric cotangent algebras emerge from symmetric tangent algebras, both pertaining to a K
Klein ~KK ! structure that is canonical of Finslerian teleparallelism. However, the same stru
arises if one confronts the issue of making the metric, ds25gmndxm

^ dxn, fit the mold of Clifford
algebras. In Sec. IV, we relate this KK space to standard geometric structures, for the purp
deriving in Sec. V the expression for the interior covariant derivative in the KK space. In Sec
we discuss issues that should follow this work.

II. RECENT DEVELOPMENTS IN CLIFFORD ALGEBRA AND THE EXTERIOR–INTERIOR
CALCULUS

Clifford algebras of nonsymmetric metrics were first considered in implicit form
Chevalley16 and explicitly by Helmstetter,17 Crumeyrolle,18 and Lounesto.19 Independently of
these developments, Oziewicz also suggested new directions in Clifford algebras~algebras of
multivectors and algebras of nonsymmetric metrics! and pointed out applications of these algeb
to quantum field theory.2 The physical impact of nonsymmetric metrics was not yet sugges
however. These two lines of development started to come together first in a paper by Ablam
and Lounesto,20 but especially when applications of nonsymmetric metrics to quantum field th
were shown.1,3–5

At an even earlier time, Ka¨hler’s incorporation of Clifford algebras in the Cartan calcul
resulted in a powerful, general theory of harmonic functions and Dirac equations.8 Kähler’s
scheme is so clean and general that, in principle, it can be used to extend the concepts of
derivatives and Laplacian operators to new realms of classical differential geometry, like F
geometry, provided that the new spaces have the appropriate algebraic structure. In the
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Finsler geometry, for example, this requires that it be viewed from the enhanced algebra
spective that frame bundles and affine connections bring to differential geometry, rather tha
the purely metric perspective, as was the case with Riemannian geometry before the Levi
connection.21 Unfortunately the metric perspective is still dominant in Finsler geometry, whic
indeed viewed, more often than not, as the geometry of spaces in which the length of cu
defined. In the alternative perspective, it is the geometry of purely affine~and of metric-compatible
affine! connections in bundles where the total space is the same set of vector bases~respectively,
orthonormal frames or Euclidean bases! tangent to a differentiable manifoldM , but refibrated over
the tangent bundle or, better yet, the bundle of directions,S(M ).22

In Sec. I, we suggested the possibility that the classical geometric reality of the space m
richer than it presently appears to be. It is then worth emphasizing that~a! the Levi-Civita affine
connection is two years younger than general relativity itself and~b! although this connection use
the much older Cristoffel symbols, the two should not be identified at the conceptual level. F
enormous significance of this connection as a conceptual breakthrough, see Cartan.23–25 Eventu-
ally, general relativity incorporated the Levi-Civita affine connection, but it might as well h
incorporated any other metric compatible affine connection. All such theories share the
metric relations. No experiment has been proposed or performed that would test the affin
nection of space–time, as an issue separate from the testing of the metric relations. By vi
the fact that teleparallel connections—and only they—define an equality of vectors from diff
tangent spaces to a differentiable manifold, teleparallelism~TP! enhances geometric structu
beyond the enhancement already achieved by the use of affine connections and bundles.

The status of the mathematical subjects that we have touched upon is as follows. The¨hler
calculus has limitations9,10 ~for minimal background on the Ka¨hler calculus, we refer readers to th
appendix of our paper on the adaptation of this calculus to TP26!. The important issue of the
interior derivative remains unresolved in Finsler geometry. We have shown how the proble
these two areas are solved at the same time in a KK type of context corresponding to a tele
Finsler structure.9,10,27This paper constitutes a new step in the understanding of this KK struc
the arena where the QCA emerges. It can, however, be viewed in a way which does not ex
resort to those developments. First, reformulate space–time geometry in a Hamilton fram
~meaning that we have additional independent coordinates!, as opposed to an Euler framewor
since this is what our view of a particular sector of Finsler geometry amounts to. Insteadui

5dxi /dt, we now have dxi2ui dt50. These two sets of equations are equivalent only on cur
Second, further reformulate this Hamiltonian theory in five dimensions so as to include th
tance element ds as an additional differential one-form, which presently it is not.

III. CANONICAL QUANTUM CLIFFORD ALGEBRA

In order to motivate the ‘‘logical necessity,’’ or at least the ‘‘naturalness’’ of quantum Cliff
algebras, we provide a brief introduction to the ‘‘Hamiltonian view’’ of the base space for a
and Euclidean~i.e., metric compatible affine! connections. In other words, the affine Finsl
bundle and Euclidean Finsler bundle~which we call the metric Finsler bundle, even if we do n
include the dilations! provide an alternative arena for the treatment of metric-compatible con
tions on Lorentzian metrics of the usual pre-Finslerian type. On differentiable manifoldsM with
no metric yet assumed, denote one of the coordinates asx0, and lete0 be its dual basis vector. Th
dxi /dx0 on curves generates velocity coordinates of the ‘‘phase-space–time manifold’’S(M ). Via
an isomorphism, one refibrates overS(M ), with coordinates (x0,xi ,ui), the set of all tangent base
to M . This refibration constitutes a bundleB(M )→S(M ) which we call the affine-Finsler
bundle.22 In the isomorphism, the basis vectors namede0 play the role of a preferred direction.

Assume that we now put onM a pseudo-Riemannian metric of Lorentzian signature. T
restricts the bundle of bases to the bundle of frames, or metric-Finsler bundle,B8(M )→S(M ). If
e0 is timelike, the group on the fibers isO(3). But thegroup isO(2,1) if e0 is spacelike. This
second choice artificially creates a special role for a spatial direction, rather than assigning t
of the preferred direction that is used in the aforementioned isomorphism to the canon
distinguished time direction. Hence, the Lorentzian signature is distinguished or canonical f
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Finsler bundle, since it is the only one which has a direction to match the preferred direction
Finslerian structure. The Finsler bundle of space–time with canonical choice of direction is
useful to do geometry of manifolds where the distance on curves is post-Riemannian or Fins
Doing Finsler geometry on this bundle complies with Cartan’s view of geometry as pertaini
the tangent bundles rather than to the base manifold proper. But this is by no means the o
of this bundle, and it is not the one in which we are interested. When the usual affine conne
are formulated on the Finsler bundle, the new formulation is to the old formulation of t
connections what the Hamiltonian formalism is to the Euler/Lagrange formalism. Furtherm
Finsler bundles have the advantage of accepting more general connections than the usual

As in the usual bundles,vm determines the translation part, dP5vmem , of the affine connec-
tion. When a metric is given, thevm are implicit in the canonical form of the metric, since ds2

5(v0)22( i(v
i)2. On sections of Finsler bundles, we need to specify, in addition, a numbn

21 of differential one-forms,v0
i , which are linear combinations of dx0,dxi , and dui . They

determine the derivative of the four-velocity vector through du5de05v0
.iei . The identification of

u with e0 is due to the fact that, in the refibration, the bases and frames become adapted toS(M ):
all those at the point of coordinates (t,xi ,ui) have the common velocity of componentsui and are
related just by theO(3) rotations. Correspondingly, the subset (v0

.i) of the set (vm
.n) has left the

fibers to sit on the new~larger! base space, for both the affine-Finsler and metric-Finsler con
tions. The metric determines the dot product dxm

•dxn5gmn. Equivalently, it determines what ar
the vm such thatvm

•vn5dmn. But there is no satisfactory definition of the other dot produc
vm

•v0
.i andv0

j
•v0

.i , of the horizontal invariant formsvm andv0
.i of the metric-Finsler bundles.

Consider now the direct sumM4
% M1 of a teleparallel space–timeM4, endowed with a

metric-compatible connection, and a spaceM1 whose mission is to represent space–time cur
when lifted toM4. As in traditional KK, one is limited on the allowed transformations on t
space by virtue of its nature as a direct sum. We endowM4

% M1 with connection equations:

d`5dP1dt e4 , deA5vA
.BeB , ~2!

whereA,B, . . .50,1,. . . ,4 andwheree4 is viewed as a tangent vector onM1 of square minus
one.27 The $em% will be chosen to be orthonormal though not necessarily constant. Thus, withgAB

defined aseA"eB , the entriesgmn are thehmn . The basis$eA% is not a canonical basis, i.e., not
~pseudo!-orthonormal basis, of the tangent Clifford algebra defined by this dot product sinc
productse4"em5g4m5em"e4 , which evolve into components of the four-velocity on the pullbac
to ~curves of! space–time, are assumed to be different from zero. We postulated

vA
•vB50 f or AÞB ~3!

and saw the double dot product of d` with itself become

d`~•,• !d`5vA
•vBeA"eB5v0

•v02v1
•v12 . . . 2dt•dt. ~4!

We further postulated d̀(•,•)d`50, which yielded thenatural lifting condition:

dt•dt5ds•ds, ~5!

where

ds•ds[v0
•v02v1

•v12v2
•v22v3

•v3. ~6!

Equations~5! and~6! justify referring to dt ande4 , respectively, as the differential of proper tim
and as the five-vector whose ‘‘differential’’ plays the role of the acceleration one-form, evene4

has projection on but is not contained in space–time~i.e., it is not a linear combination of only th
em’s!. We shall now relax the conditions~3! and still obtain Eqs.~4!–~6!.

We introduce the symbols ‘‘∧̇ ’’ and ‘‘ • ’’ to refer to the antisymmetric and symmetric parts
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a∧̇b5 1
2 ~a∨b2b∨a!, a•b5 1

2 ~a∨b1b∨a!, ~7!

of the Clifford product ‘‘∨ ’’ of two vectors,a andb, from some vector space. We obviously ha
a∨b5a∧̇b1a•b. It is well known that the usual Clifford algebras are specified when the s
metric productsgm

•gn are given, where the (gm) constitute a basis of the vector space~or the
module! to which thea andb belong. The Clifford algebra can be tangent or cotangent, depen
on whethera and b are both tangent vectors or both differential one-forms. As explai
elsewhere,9 our differential r -forms are functions ofr -surfaces and not antisymmetricr -linear
functions of vectors. Let us illustrate this for one-forms, like thevm. These are functions of curve
and their exterior derivative in the sense of Ka¨hler is the usual exterior derivative. On the oth
hand, an elementfm of a field of bases (fm) of the space of linear functions of vector
fm(en)5d n

m , can be replaced withem defined byem"en5d n
m . The exterior derivative ofem in the

sense of Ka¨hler is the connection-dependent derivative dem52vn
men. Hence the tangent algebr

~of the fm and en! and cotangent algebras~of the vm! are intertwined but not identifiable with
each other. We assume that the tangent metric is symmetric. The tangent algebra is then de
em"en1en"em52gmn . Equivalently, it is defined byem∨en1en∨em52gmn with gmn5gnm . The
symbol∧̇ is in this case the symbol∧ of standard Clifford algebra. No other symbols for produ
are needed in the symmetric case.

Since we have to deal with two algebras at the same time, we need to introduce symb
pairs of products. Given a pair of symbols for products within parentheseis, the first sy
will refer to the cotangent algebra and the second one to the tangent algebra. As an ex
aa(∧̇,•)bb5(a∧̇b)(a"b). If A andB are vector-valued one-forms, we have

A~∨,∨ !B5A~ ∧̇,∧̇ !B1A~ ∧̇,• !B1A~•,∧̇ !B1A~•,• !B. ~8!

When A equalsB, mixed products, likeA(∧̇,•)A and A(•,∧̇)A, cancel out. We thus hav
d`(∨,∨)d`5d`(∧,∧)d` if d`(•,•)d`50.

The key point now is that we let the cotangent algebra emerge as it may, not necessari
a symmetric inner product even if the inner product of the tangent algebra is. We use closed
(d) to refer to nonsymmetric inner products. Let the center dot (•) and the open circle (s)
denote the symmetric and antisymmetric parts of the inner product ‘‘d ’’ of two differential
scalar-valued differential one-forms, i.e.,adb5asb1a•b. Since the first equation of~7! is the
definition of the∧̇ product,a∧̇b contains the antisymmetric partasb of adb. In other words,
a∧̇b has bivector and scalar parts, namelya∧b andasb, respectively,

a∧̇b5a∧b1asb, ~9!

where the grading is with respect to the undotted product. The definition of∧ is such thata∧b is
the suface integrand formed with the one-formsa andb in the given order. We thus have

a∨b5a∧b1asb1a•b5a∧b1adb. ~10!

In the same way as the usual Clifford algebra is specified when a symmetric quadratic fo
given, the quantum Clifford algebra is specified when both theasb anda•b products are given

vAsvB5AAB, vA
•vB5QAB, ~11!

vAdvB5AAB1QAB. ~12!

Hence, a nonsymmetric cotangent algebra is specified byAAB andQAB. We letAAB be an arbitrary
antisymmetric matrix whose entries are numbers or real valued functions. We defin
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vA
•vB, equivalently theQAB, so that we precisely obtain Eq.~6!. In terms of a basis of differ-

ential forms, Eq. ~6! reads dt•dt5gmndxm
•dxn and means nothing other than dt dt

5gmndxm dxn, usually written as ds25gmndxm dxn.
We still need to verify that Eq.~5! is satisfied. This is indeed the case,

05d`~•,• !d`5QABgAB5vm
•vn2dt.dt12Qm4gm4 , ~13!

if we require that

Qm4gm450. ~14!

In matrix form, the symmetric part,vm
•vn, of the cotangent inner product,vmdvn, is

QAB5vA
•vB5F v0

•v0 0 0 0 Q0

0 v1
•v1 0 0 Q1

0 0 v2
•v2 0 Q2

0 0 0 v3
•v3 Q3

Q0 Q1 Q2 Q3 dt.dt

G . ~15!

The matrixQAB is not to be confused with the matrixgAB inverse togAB . The conditions~15! are
far more general than the conditions~3!. There is no restriction on the quantitiesAAB other than
antisymmetry. Hence, the specification of the intertwined tangent and cotangent algebras r
the specification ofgmn , gm4(5g4m), AAB and aQm that satisfies Eq.~14!. Thegm4 will now be
interpreted.

IV. RELATION BETWEEN THE KALUZA–KLEIN AND STANDARD GEOMETRIC
FORMULATIONS

In this section, we relate the KK formulation to the standard formulation of classical di
ential geometry by first identifying flat space–time itself in the first of these formulations. In
27, we produced a KK connection for teleparallel Finsler spaces. We simply assumed
compatibility and that

vr
.s50 ~16!

and obtained

v4r5dg4r , ~17!

and

v4
.r5hr~v4r2g4rv4

.4!, v4
.45G21hrg4rdg4r5v4

.rg4r , vr
.450, ~18!

wherehr is (11,21,21,21) and where

G[11~g40!
22~g41!

22~g42!
22~g43!

2. ~19!

We return momentarily to the Finsler bundle. One imposes six conditions among the
horizontal forms ofS(M4) to obtain curves. Three of these conditions constitute, for instance
statement that de450, or, as another important option, the statement of stationary length. T
additional conditions are the ‘‘Cartan conditions,’’ dxi2ui dt50. These six forms together dete
mine the curves of interest in the seven-dimensionalS(M4) space. All differential one-forms
become proportional to just one, say dt. In the five-dimensional KK space, we need to impo
only four conditions. For example, the statement du50 achieves this. Although this amounts
the five equations
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v4
.A50, ~20!

these equations are not independent since

v4
.45v4

.mg4m . ~21!

Equation~20! thus provides four independent conditions to determine curves in the KK spa
The conditionvm

.n50 ~constant frame fields in TP! together with metric compatibility yielded
the full set ofvA

.B . These equations then allowed us in turn to reduce the torsion to the for

V8m5dvm2dt∧v4
.m , ~22!

V8452dt∧v4
.4. ~23!

The conditionsv4
.m50 andv4

.450 that determine the autoparallels are the same conditions
project V8m and V84 down to space–time. This opens the door for the interpretation thatv4

.m

embodies inertial forces, since they do not affect the space–time structure. In this case,v4
.4 also

does, by virtue of Eq.~21!. Only when the ‘‘additional structure’’ generated byv4
.m is zero, all the

forces are noninertial.28

We proceed to unearth in the KK formalism the standard equations of the autoparall
space–time. For this, we do not assume constant frame fields, wherevm

.n50, even if we assume
TP. The reason is that, in these fields, we have

du5d~umem!5dumem1umvm
.nen5dumem . ~24!

The statement du50 would amount to assuming constantum. In the relativistic analog thatu were
the four-velocity, this would represent motion under gravitational forces being referred to
falling comoving reference frames. The problem of finding the equations of the motion
metamorphosed into the problem of finding the relation of the free falling frames to the
attached to matter~say, the coordinate basis fields!. We readily have

dg4r5d~e4"er!5de4"er1e4"vr
.nen2vr

.4 . ~25!

By virtue of the assumption de450 for the equations of the motion, we further get

dg4r5g4nvr
.n2vr

.4 . ~26!

With orthonormal frames, we have:vr
.n5hnvrn52hnvnr52v .r

n . Hence:

dg4r1v .r
n g4n52vr

.4 . ~27!

The equations of the autoparallels are present here if the pull-back ofg4r to space–time curves i
interpreted as constituting the components of the four-velocity on those curves, consistent
a previous related discussion.27 The interpretation ofvr

.4 will be dealt with in a paper in prepara
tion. Notice that this equation is not affected by the antisymmetric part of the dot product i
cotangent Clifford algebra. We shall now see the impact of this antisymmetric part on the p
through the interior derivative.

V. IMPACT OF THE QCA ON THE INTERIOR DERIVATIVE

The combined exterior–interior derivative,], of the Kähler calculus is given by

]a5vm∨dma5vm∧̇dma1vm
•dma5vm∧dma1vmddma ~28!
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where the symbols for the products are as defined in Sec. III and where dma is what Kähler
denotes as the covariant derivative ofa. So far, the relation between the two exterior products m
be viewed from the equivalent definitions

vm∧̇dma5vm∧dma1vmsdma ~29!

and

vm∧dma5vm∧̇dma2vmsdma. ~30!

We identify the gradation of ‘‘∧ ’’ with the one defined by Stokes theorem. The choice ofABC

together with Eq.~9! ~viewed as a definition! then fix the∧̇ product. Kähler’s interior derivative
must then be taken to be the complement,vmddma, of the exterior derivative,vm∧dma, that
enters Stokes’ theorem~Kähler conceived the covariant derivative so thatvm∧dma coincides with
the exterior derivative whena is scalar-valued, and with the exterior covariant derivative whe
is a TVDF!. The interior derivative so defined has both symmetric and antisymmetric cont
tions from the ‘‘d ’’ product.

It is clear that electrodynamics and quantum mechanics will depend on the nonsymmetr
of the metric in this new scenario, since the interior derivative enters both of these theories
essential way. The relevance of the interior derivative in the case of gravitation, precisely the
geometric of all these theories in the present paradigm, depends on what we assume to
connection of space–time and the role that this connection is postulated to play in the t
Indeed, the affine curvature is the exterior covariant derivative d(vm

.nen) of vm
.nen , i.e.,

d~vm
.nen!5~dvm

.n2vm
.l∧vl

.n!en . ~31!

Einstein’s field equations involve only the Einstein tensor and thus fail to involve the full cu
ture in the field equations. Hence they fail to involve the full exterior derivative ofvm

.nen . The
interior derivative is not even mentioned in general relativity. Denoting this derivative with
symbold, we have

d~vm
.nen!5vrdRm.rs

.n vsen , ~32!

which is not zero for general connection. It is, however, zero for teleparallel connections
Rm.rs

.n itself is then zero. The conclusion is that the cotangent Clifford algebra~QCA! does not
impact the gravitational sector of the physical theory canonically determined by TP. It fa
impact general relativity for a completely different reason, namely that this theory doe
involve the Kähler derivative of the connection.

We proceed to consider interior derivatives. In order to avoid the clutter produced by co
tion terms, we shall assume space–time TP, so that we can use frame fields wherevm

.n50.
Whether we assume TP or not, we can still neglect the connection terms in the computatio
restore them in the final results through replacement of the partial derivatives with cov
derivatives. A connection-dependent result, however, is thatvm

.n50 ~TP! implies vm
.A50, at least

when all theg4m are different from zero.27

We shall limit ourselves to space–time differential forms on practical grounds, although
may well be deep reasons not to consider differential forms with a term proportional to dt for most
purposes. This is reminiscent of the limited form of the transformations allowed in the tradit
KK theory. In order to deal with basesvm, we extend the meaning of the comma when used a
subscript. Thef ,m means the coefficients defined by the equation df 5 f ,mvm. The f ,m become the
partial derivatives whenvm is dxm itself.

Let a be the one-formamvm. We then have:

d~amvm!5I1II1III, ~33!
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where

I5an,mvm∧vn, ~34!

II5anVn, ~35!

III 5anvC∧vC
n 5anv4∧v4

n . ~36!

The interior derivative,d I , resulting from the I term is

d I5an,mvmdvn5an,mAmn1(
n

an,nvn
•vn. ~37!

For the II term, we use that the torsion in KK space is

V85d~d` !5d~dP1dte4)5V2dt∧de4 . ~38!

Hence, we haveV8m5Vm2dt∧v4
.m andV8452dt∧v4

.4. It follows that

II5anV8n5anVn2an dt∧v4
.n . ~39!

For the above-stated reasons, we drop the term III, or simply compute modv4
.n . We thus have

d II5anRml
n vmdvl5anRml

n Aml. ~40!

The symmetric part of the product has dropped out becauseRml
n 52Rlm

n . The third term disap-
pears modv4

.n . Collecting terms, we get

d~amvm!5(
n

an,nvn
•vn1an,mAmn1anRml

n Aml. ~41!

Consider now a two-form,b5blrvl∧vr, and assume the same simplifying assumptions.
have

db5d~blrvl∧vr!5blr,mvm∧vl∧vr1bsrdvs∧vr2brsvr∧dvs. ~42!

The first term on the right of this equation contributes to the interior derivativedb with

d I5blr,mvmd~vl∧vr!5blr,mvmd~vl∧̇vr2vlsvr!. ~43!

We proceed to compute this ‘‘d ’’ product. For any clifformB, we have

vmdB5vm∨B2vm∧B5vm∧̇B1vm
•B2vm∧B. ~44!

Hence, forB5vl∧vr, we get

vmd~vl∧vr!5vmd~vl∧̇vr2vlsvr!

5vm∧̇~vl∧̇vr2vlsvr!1vm
•~vl∧̇vr2vlsvr!2vm∧vl∧vr. ~45!

Of the five terms that arise from Eq.~45!, the first and fifth together yieldvmAlr1vlArm

1vrAml. The second term is2vmAlr. The third term is (vm
•vl)vr2(vm

•vr)vl. The fourth
term is zero, sincevlsvr(5Alr) is scalar-valued. All this together yields

vmd~vl∧vr!5vlArm1vrAml1~vm
•vl!vr2~vm

•vr!vl. ~46!
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Combining the first term with the fourth one and the second with the third, we get

vmd~vl∧vr!5vr~vmdvl!2vl~vmdvr!. ~47!

Either Eq.~46! or ~47! is to be substituted in Eq.~43!.
The second term of Eq.~42! yields, with vm

.n50, thatbsrdvs∧vr equalsbsrVs∧vr. We
shall denote asd IV the contribution to the interior derivative of this term. We readily get

d IV5bsrRml
s vmd~vl∧vr!. ~48!

Finally, the last term on the right-hand side of Eq.~42! can be written as2brsdvs∧vr, which
equals the second term. The soughtdb then isd I12d IV . Using first Eqs.~43! and~48!, and then
Eq. ~46!, we obtain

db5d~blrvl∧vr!5@blr,m12bsrRml
s #vmd~vl∧vr!

5blr,m~vlArm1vrAml!1blr,m@~vm
•vl!vr2~vm

•vr!vl#

12bsrRml
s ~vlArm1vrAml!12bsrRml

s @~vm
•vl!vr2~vm

•vr!vl#.

~49!

Hence, we finally get

db52~bmr,m2bsmRmr
s !~vm

•vm!vr12blr,mArmvl12~bsrRml
s 2bslRmr

s !Armvl. ~50!

The factorsblr,m go into blr;m when the connection is taken into account. The factor o
~actually r ! if we were dealing with anr -form! disappears when we introducer -forms with the
standard coefficient of (1/r !).

It is now clear what the interior derivative,dT, of a vector-valued two-formT
5(1/2)Tlr

p vl∧vrep is

dT5@~Tmr,m
p 2Tsm

p Rml
s !~vm

•vm!vr1Tlr,m
p Armvl1~Tsr

p Rml
s 2Tsl

p Rmr
s !Armvl#ep . ~51!

The most interesting result happens when the vector-valued two-form is the torsion itself, w
for present purposes, we shall restrict to the space–time type,V5(1/2)Rlr

p vl∧vrep . We then
have

dV5@~Rmr,m
p 2Rsm

p R.ml
s !~vm

•vm!vr1Rlr,m
p Armvl1~Rsr

p Rml
s 2Rsl

p Rmr
s !Armvl#ep .

~52!

In this case,Arm multiplies linear terms on the torsion’s partial derivatives, and quadratic bu
linear terms on the torsion itself. This seems to indicate that the effects ofArm will be the larger
in absolute terms the greater the torsion is~the termsRlr,m

p Armvl, however, make qualitative
arguments nontrivial!.

VI. CONCLUDING REMARKS

The issue of the interior derivative is one which typically resists treatment in post-Riema
contexts, especially when Finsler metrics are involved. In contrast, Finslerian TP on Riema
metrics yields one such derivative in a canonical way. A better understanding of terms propo
to vm

•vm and (vm
•vm)vr is to be sought. It is probably safe to assume, however, thatvm

•vm

and (vm
•vm)vr have to be seen as members of a basis. The coefficients of these basis el

on the left- and right-hand sides of equations would have to be matched. On the right-hand
they would arise in the process of obtaining Hodge duals of the three-formsj andj that constitute
the current, in equations such as dF5* j and dV5* j . The process of obtaining this dual shou
give rise to terms of this type in a natural way, but this is a topic which certainly deserves c
scrutiny.
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A second area of research to follow the present work has to do with the possibility of usin
equations of structure of the traditional and nontraditional sectors of Finslerian TP as the
equations of the physics.10 In this regard recall that, in a Finslerian torsion,

V05Rmn
0 vm∧vn1Sm j

0 vm∧v0
. j , ~53!

V i5Rmn
i vm∧vn1Sm j

i vm∧v0
. j . ~54!

The coefficientsRmn
0 , Rmn

i , and Sm j
0 can tentatively be interpreted as the components of

electromagnetic, strong, and weak fields.28 One must then associateSm j
i with some weak/strong

complex. The interpretation ofRmn
i as the weak interaction is already present in Pandres,29,30

though his context is not Finslerian. One would, therefore, expect that boosts would mix thRmn
0

andRmn
i components, which does not make sense. The way in which this problem is avoided

non-Finslerian context is by using tetrads, use which comes accompanied by a separate tr
of the superscript and the subscripts in the tetrads. One further stipulatesab initio that the Lorentz
transformations~or at least the boosts! only affect the subscripts in the tetrads, equivalently in
components of the torsion. The Finslerian context provides a natural interpretation of this,
the boosts are no longer transformations in the fibers of the Finsler bundles, but rather ‘‘tr
tions’’ in the seven-dimensional ‘‘phase-space–time’’ manifoldS(M4).

The differential invariants that determine the teleparallel Finslerian classical differentia
ometry are the same ones as those that determine the KK space. One thus has to assume
degrees of freedom contained in theS components of the torsion have moved to other places in
KK structure. We thus tentatively associate theABC entries withSm j

0 and, therefore, with the stron
interaction. It then appears that theQm would have to be associated with the otherS quantities,
namely with theSm j

i interaction, if the basic equations of the physics happen to be a manifes
of a teleparallel Finsler structure of space–time. The association ofQm with the weak/strong
complex represented bySm j

i is suggested by Eq.~13!, expressing the orthogonality of the veloci
andQm ~recall that, from a Finslerian perspective, ‘‘weak’’ appears to be associated with orth
nality to the four-velocity28!. Of course, it would seem that there are too few degrees of free
in the Qm, as compared with the three indices inSm j

i . This is not, however, the case, for th
following reason. Thev i

. j represents a rotation of both the moving frame~MF! and the reference
frame ~RF! in standard differential geometry viewed as a theory of moving frames, since
motion of the MF is referred to itself and the MF and RF coincide. In our KK treatment, the bo
of the MF are represented by du, and the boosts and rotations of the RF are represented byem .
The rotations of the MF have been removedab initio from our KK construction. This was possibl
because a standard teleparallel structure is determined once thevm’s are given in a constant fram
field, and a Finslerian teleparallel structure is determined once the~vm, v0

i ! are given on a
constant section (v j

i 50) of the metric-Finsler bundle. Thus the active rotations must be in
duced by hand~say like a direct product! in the KK formalism, which is consistent with, but is no
in principle about, MFs. It is in the context of such process that the relation toSm j

i of Qm ~together
with the differential invariants of the attached rotations! have to be viewed. The corresponden
between the differential invariants in the teleparallel Finsler structure, on the one hand, and
associated KK structure, on the other hand, thus emerges as an interesting subject for
research.

We conclude with the statement of our main finding, namely that the canonical geome
Finslerian TP and its ramifications provides a solution to the issue of the interior derivative w
is deeply connected with the cutting edge subject of Clifford algebras of nonsymmetric me
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On separable Pauli equations
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We classify ~113!-dimensional Pauli equations for a spin-1
2 particle interacting

with the electro-magnetic field, that are solvable by the method of separation of
variables. As a result, we obtain the 11 classes of vector-potentials of the electro-
magnetic fieldA(t,xW )5(A0(t,xW ), AW (t,xW )) providing separability of the correspond-
ing Pauli equations. It is established, in particular, that the necessary condition for
the Pauli equation to be separable into second-order matrix ordinary differential
equations is its equivalence to the system of two uncoupled Schro¨dinger equations.
In addition, the magnetic field has to be independent of spatial variables. We prove
that coordinate systems and the vector-potentials of the electro-magnetic field pro-
viding the separability of the corresponding Pauli equations coincide with those for
the Schro¨dinger equations. Furthermore, an efficient algorithm for constructing all
coordinate systems providing the separability of Pauli equation with a fixed vector-
potential of the electro-magnetic field is developed. Finally, we describe all vector-
potentialsA(t,xW ) that ~a! provide the separability of Pauli equation,~b! satisfy
vacuum Maxwell equations without currents, and~c! describe non-zero magnetic
field. © 2002 American Institute of Physics.@DOI: 10.1063/1.1436563#

I. INTRODUCTION

A quantum mechanical system consisting of a spin-1
2 charged particle, moving with momen

tum pW in a time-dependent electro-magnetic field with the four-component vector-pote
~A0 ,AW !, is described in a nonrelativistic approximation by the Pauli equation~see, e.g., Ref. 1!

~p02eA0~ t,xW !2~pW 2eAW ~ t,xW !!21esW HW !c~ t,xW !50. ~1!

Here c(t,xW ) is the two-component wave function in three space dimensionsxW5(x1 ,x2 ,x3), HW

5rotAW is the magnetic field, andsW 5(s1 ,s2 ,s3) is a vector consisting of three Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~2!

Hereafter we use the notations

p05 i
]

]t
, pW 52 i¹W , a51,2,3, ~3!

and summation over the repeated Latin indices from 1 to 3 is implied.
As the Pauli equation has variable coefficients, we cannot apply the standard Fourier

formation. The only regular way for solving~1! is the classical method of separation of variab
in curvilinear coordinate systems. In this respect, a natural question arises, which equations
form ~1! are separable, namely, which potentialsA0 , AW allow for separability of the Pauli equatio

a!Electronic mail: zhaliy@imath.kiev.ua
13650022-2488/2002/43(3)/1365/25/$19.00 © 2002 American Institute of Physics
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in some curvilinear coordinate system? One of the principal objectives of the present articl
provide an efficient algorithm for answering these kinds of questions for systems of partia
ferential equations. It is essentially based on the results of Ref. 2, where the problem of sep
of variables in the Schro¨dinger equation has been analyzed in detail. As the Pauli equatio~1!

differs from the Schro¨dinger equation by the termesW HW only, it is natural to attempt modifying the
technique employed in Ref. 2 in order to make it applicable to system of partial differe
equations~PDEs! ~1!.

Integrable Hamiltonian systems with velocity-dependent potentials have been studied f
casen52, i.e., in a Euclidean plane by Winternitz with co-authors.3,4 Recently Benenti with
co-authors5 studied the problem of separation of variables in the stationary Hamilton–Ja
equation with vector-potential from a geometrical point of view.

The problem of separation of variables for linear systems of first-order partial differe
equations such as the Dirac equation has been repeatedly addressed by Shapovalov and
with co-authors6,7 and by Kalnins and Miller with co-authors.8–10 They developed a symmetr
approach to the separation of variables in the Dirac equation where separability is character
the existence of a complete set of first-order matrix symmetry operators.

Symmetry and supersymmetry properties of the Pauli equations are studied in Ref. 11–
us also mention Ref. 14, where physical aspects of the problem of separation of variables in
~113!-dimensional Pauli equations with time-dependent potentials are studied, and Ref. 7,
some classes of exact solutions of the Pauli equation are presented.

With all the variety of approaches to separation of variables in PDEs one can notice the
generic principles, namely,

~a! representation of a solution to be found in a separated~factorized! form via several functions
of one variable,

~b! requirement that the above mentioned functions of one variable should satisfy some or
differential equations, and

~c! dependence of so found solution on several arbitrary~continuous or discrete! parameters,
called spectral parameters or separation constants.

By a proper formalizing of the above features we have formulated in Ref. 2 an algorithm
variable separation in the Schro¨dinger equation with vector-potential. Below we generalize t
algorithm for the case of system of PDEs~1!.

To have a right to talk about description ofall potentials andall coordinate systems enablin
us to separate the Pauli equation, one needs to provide a rigorous definition of separa
variables. The definition we intend to use is based on ideas contained in the pap
Koornwinder.15

Let us introduce a new coordinate systemt, va5va(t,xW ), a51,2,3, whereva are real-valued
functions, functionally independent with respect to the spatial variablesx1 , x2 , x3 , i.e.,

detI ]va

]xb
I

a,b51

3

Þ0. ~4!

For a solution to be found we adopt the following separation ansatz:

c~ t,xW !5Q~ t,xW !w0~ t !)
a51

3

wa~va~ t,xW !,lW !x, ~5!

whereQ, wm , (m50,1,2,3) are nonsingular 232-matrix functions of the indicated variables an
x is an arbitrary two-component constant column. What is more, the condition of commutativ
the matriceswm is imposed, namely,

@wm ,wn#5wmwn2wnwm50, m,n50,1,2,3. ~6!
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Note that the restriction~6! is an extra requirement, which narrows the class of separable P
equations. However, without this condition an efficient handling of the ansa¨tze of the form~6!
seems to be impossible. At least, in all papers devoted to variable separation in a systems o
the condition of commutativity is imposed~explicitly or implicitly!.

Definition 1: We say that the Pauli equation (1) admits separation of variables in a coord
system t, va5va(t,xW ), a51,2,3,if there are nonsingular232 -matrix function Q(t,xW ) and four
matrix ordinary differential equations

i ẇ052~P00~ t !1P0b~ t !lb!w0 ,
~7!

ẅa5~Pa0~va!1Pab~va!lb!wa , a51,2,3,

jointly depending in an analytic way on three independent complex parametersl1 , l2 , l3

(separation constants), such that, for each triplet~l1 , l2 , l3! and for each set of solutionsw0(t),
w1(v1), w2(v2), w3(v3) of (7), function (5) under condition (6) is a solution of (1).

In the above formulasPmn , m, n50,1,2,3, are some complex 232-matrix functions of the
indicated variables.

Definition 2: Three complex parametersl1 , l2 , l3 in (7) are called independent if the
equality

rankiPmaim50
3

a51
3 56 ~8!

holds, wheneverw0(t)w1(v1)w2(v2)w3(v3)Þ0.
Condition ~8! secures essential dependence of a solution with separated variables

separation constantslW .
Note that puttingQ5I , va5xa , a51,2,3, in~6! yields the standard separation of variables

the Cartesian coordinate system. Next, choosing the spherical coordinates asv1 , v2 , v3 we
arrive at the variable separation in the spherical coordinate system and so on. The principal
describing all possible forms of the functionsQ, va , a51,2,3, that provide separability of th
Pauli equation in the sense of the definition given above. Solution of this problem, in its
requires describing the functionsA0 ,...,A3 that enable variable separation in the Pauli equation
the corresponding coordinate system. More precisely, we will need to solve the two mu
connected principal problems:

~i! to describeall cases of coefficients, for which the corresponding Pauli equation~1! is
separable~in the sense of Definition 1! in at least one coordinate system, and

~ii ! to constructall coordinate systems that allow for separation of variables~in the sense of
Definition 1! in the Pauli equation~1! with some fixed vector-potential~A0 ,AW !.

Note, that formulas~5!–~8! form the input data of the method. We can change these condi
and thereby modify the definition of separation of variables. For instance, we can change th
of the reduced equations~7! or the number of essential parametersla ~a more detailed analysis o
this problem for the Schro¨dinger equation can be found in Ref. 16!. So, our claim of obtaining the
complete descriptionof vector-potentials and coordinate systems providing separation of varia
in ~1! makes sense only within the framework of Definition 1. If one uses a more general d
tion, it might be possible to construct new coordinate systems and vector-potentials pro
separability of Eq.~1!. But all solutions of the Pauli equation with separated variables known t
fit into the above suggested scheme.

Transformations

la→la85La~l1 ,l2 ,l3!, a51,2,3, ~9!

under condition
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detI ]La

]lb
I

a,b51

3

Þ0, ~10!

preserve the form of relations~5!–~8!. So we can regard the corresponding spectral parametelW

andlW 8 asequivalentones. Within the framework of this equivalence relation we can chooselW in
such a way that all matricesPmn , m, n50,1,2,3, in reduced Eqs.~7! are Hermitian ones and
parametersl1 , l2 , l3 are real numbers.

Next, we introduce an equivalence relation on the set of all vector-potentialsA0(t,xW ), AW (t,xW )
providing separability of Eq.~1!, on the sets of solutions with separated variables and corresp
ing coordinate systems.

Definition 3: We say that two vector-potentials A(t,xW ) and A8(t,xW ) are equivalent if they are
transformed one into another by the gauge transformation

AW →AW 85AW 1¹W f , A0→A085A02
] f

]t
, ~11!

where f5 f (t,xW ) is an arbitrary smooth function.
For the Pauli equations to be invariant with respect to the above transformation, the

function c(t,xW ) is to be transformed according to the rule

c→c85cexp~ ie f !. ~12!

Indeed, if the transformations~11! and ~12! in the Pauli equation~1! are performed one afte
another, we obtain the initial equation, provided we replace the functionsAW , A0 , c with AW 8,
A08 ,c8.

Note that the system of PDEs~1! admits a wider equivalence group from the point of view
the standard theory of partial differential equations~Shapovalov and Sukhomlin, Ref. 17!. How-
ever this group cannot be regarded as an equivalence group within the context of quantu
chanics, since allowed transformations of the wave function must preserve the probability d
c* c. And it is straightforward to check the the wider Shapovalov and Sukhomlin equival
group breaks this rule, because it, generally speaking, does not preservec* c. By this very reason,
we restrict our considerations to the gauge transformations only.

Definition 4: Two solutions of the Pauli equation with separated variables are called equ
lent if they can be transformed one into another by group transformations from the Lie tran
mation group admitted by Pauli equation (1). Moreover, solutions of the Pauli equation
separated variables having equivalent [in the sense of equivalence relation (9) and (10)] sp

parameterslW are equivalent.
Definition 5: Two coordinate systems t, v1 , v2 , v3 and t8, v18 , v28 , v38 are called equivalent

if they give equivalent solutions with separated variables. In particular, two coordinate sys
are equivalent if the corresponding ansa¨tze (5) are transformed one into another by reversib
transformations of the form

t→t85 f 0~ t !, va→va85 f a~va!, a51,2,3, ~13!

Q→Q85Ql0~ t !l 1~v1!l 2~v2!l 3~v3!, ~14!

where f0 ,...,f 3 are some smooth functions and l0 ,...,l 3 are some smooth232-matrix functions of
the indicated variables.
Indeed, transformations~13! and ~14! preserve the form of ansa¨tze ~5!. So, after completing the
procedure of separation of variables in these coordinate systems we obtain the same solutio
separated variables.

These equivalence relations reflect the freedom in choice of the functionsQ, v1 , v2 , v3 and
separation constantsl1 , l2 , l3 preserving the form of the conditions~5!–~8!. They split the set
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of all possible vector-potentials, providing separability of Eq.~1!, and sets of solutions with
separated variables and corresponding coordinate systems into equivalence classes. In a
when presenting the corresponding lists we will give only one representative for each equiv
class.

II. CLASSIFICATION OF SEPARABLE PAULI EQUATIONS „1…

In this section we obtain an exhaustive classification of the Pauli equations solvable with
framework of the approach described in the Introduction. Furthermore, we describe curv
coordinate systems enabling separation of variables in~1!.

Using the equalities~7! and ~6! we get

@Pm01Pmala ,Pn01Pnala#50.

Splitting the expression with respect tola yields

@Pma ,Pnb#1@Pmb ,Pna#50, ~15!

where m,n,a,b50,1,2,3 and henceforth summation over repeated Greek indices is not
Choosinga5b we have

@Pma ,Pna#50.

Taking into account this equality and the fact that any Hermitian (232)-matrix can be represente
as a linear combination of the unit and Pauli matrices~2!, we get the following form ofPma :

Pma5Fma~vm!I 1Gma~vm!sWasW , ~16!

whereFma , Gma are some smooth scalar functions of the indicated variables,v05t andsWa is a
constant three-component vector. Substitution of expression~16! into ~15! yields

~GmaGnb2GmbGna!@sWasW ,sWbsW #50.

From this equality we conclude that there are two distinct cases: eithersWa;sWb or Gma;Gmb . In
view of this fact we get the two possible forms for the Eqs.~7!:

i ẇ052~F00~ t !1F0b~ t !lb1~G00~ t !1G0b~ t !lb!sWsW !w0 ,
~17!

ẅa5~Fa0~va!1Fab~va!lb1~Ga0~va!1Gab~va!lb!sWsW !wa ,

and

i ẇ052~F00~ t !1F0b~ t !lb1G0~ t !~sW01sWblb!sW !w0 ,
~18!

ẅa5~Fa0~va!1Fab~va!lb1Ga~va!~sW01sWblb!sW !wa ,

with a51,2,3.
Definition 1 is quite algorithmic in the sense that it contains a regular algorithm of var

separation in Pauli equation~1!. Formulas~5!, ~17!, and~18! form the input data of the method
The principal steps of the procedure of variable separation in Pauli equation~1! are as follows.

~1! We insert the ansatz~5! into the Pauli equation and express the derivativesẇ0 , ẅ1 , ẅ2 , ẅ3 in
terms of functionsw0 , w1 , w2 , w3 , using Eqs.~17! and ~18!.

~2! We regardw0 , w1 , w2 , w3 , l1 , l2 , l3 as new independent variablesy1 ,...,y7 . As the
functionsQ, v1 , v2 , v3 , A0 , A1 , A2 , A3 are independent on the variablesy1 ,...,y7 , we can
demand that the obtained equality is transformed into identity under arbitraryy1 ,...,y7 . In
other words, we should split the equality with respect to these variables under condit
                                                                                                                



dif-

linear

tem of

ed in
e

of

tions

1370 J. Math. Phys., Vol. 43, No. 3, March 2002 Alexander Zhalij

                    
commutativity~6!. After splitting we get an overdetermined system of nonlinear partial
ferential equations for unknown functionsQ, v1 , v2 , v3 , A0 , A1 , A2 , A3 .

~3! After solving the above system we get an exhaustive description of vector-potentialsA(t,xW )
providing separability of the Pauli equation and corresponding coordinate systems.

Having performed the first two steps of the above algorithm we obtain the system of non
matrix PDEs:

~ i !
]vb

]xa

]vc

]xa
50, bÞc, b,c51,2,3.

~ ii ! (
a51

3

Fab~va!
]va

]xc

]va

]xc
5F0b~ t !, b51,2,3.

~iiia ! For the case of reduced equations given by~17!,

(
a51

3

Gam~va!
]va

]xc

]va

]xc
5G0m~ t !, m50,1,2,3.

~iiib ! For the case of reduced equations given by~18!,

(
a51

3

Ga~va!
]va

]xc

]va

]xc
5G0~ t !.

~ iv! 2S ]Q

]xb
2 ieQAbD ]va

]xb
1QS i

]va

]t
1DvaD50, a51,2,3.

~v! Q(
a51

3

Fa0~va!
]va

]xb

]va

]xb
1 i

]Q

]t
1DQ22ieAb

]Q

]xb

1S 2F00~ t !2 ie
]Ab

]xb
2eA02e2AbAb1esW HW DQ50.

Thus the problem of variable separation in the Pauli equation reduces to integrating a sys
nonlinear PDEs for eight unknown functionsA0 , A1 , A2 , A3 , Q, v1 , v2 , v3 of four variables
t,xW . What is more, some coefficients are arbitrary matrix functions which should be determin
the process of integrating of the system of PDEs (i ) – (v). We succeeded in constructing th
general solution of the latter which yields, in particular, all possible vector-potentialsA(t,xW )
5(A0(t,xW ),...,A3(t,xW )) such that Pauli equation~1! is solvable by the method of separation
variables.

In view of ~8! we can always choose from each set of the equations (ii ), (iiia ), and (ii ), (iiib )
three such equations that the matrix of coefficients ofvaxc

vaxc
~a51,2,3! is nonsingular. It is

called the Sta¨ckel matrix.18 The system consisting of these three equations and of the equa
~i ! was integrated in Ref. 2. Its general solutionvW 5vW (t,xW ) is given implicitly within the equiva-
lence relation~13! by the following formulas:

xW5O~ t !L~ t !~zW~vW !1vW ~ t !!. ~19!

HereO(t) is a time-dependent 333 orthogonal matrix with Euler anglesa(t), b(t), g(t):
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O~ t !5S cosa cosb2sina sinb cosg 2cosa sinb2sina cosb cosg sina sing

sina cosb1cosa sinb cosg 2sina sinb1cosa cosbcosg 2cosa sing

sinb sing cosb sing cosg
D ;

~20!

vW (t) stands for the vector-column whose entriesv1(t), v2(t), v3(t) are arbitrary smooth function
of t; zW5zW(vW ) is given by one of the eleven formulas

~1! Cartesian coordinate system,

z15v1 , z25v2 , z35v3 ,

v1 ,v2 ,v3PR.

~2! Cylindrical coordinate system,

z15ev1 cosv2 , z25ev1 sinv2 , z35v3 ,

0<v2,2p, v1 ,v3PR.

~3! Parabolic cylindrical coordinate system,

z15~v1
22v2

2!/2, z25v1v2 , z35v3 ,

v1.0, v2 ,v3PR.

~4! Elliptic cylindrical coordinate system,

z15a coshv1 cosv2 , z25a sinhv1 sinv2 , z35v3 ,

v1.0, 2p,v2<p, v3PR, a.0.

~5! Spherical coordinate system,

z15v1
21 sechv2 cosv3 ,

z25v1
21 sechv2 sinv3 ,

z35v1
21 tanhv2 ,

v1.0, v2PR, 0<v3,2p.

~6! Prolate spheroidal coordinate system,

z15a cschv1 sechv2 cosv3 , a.0,

z25a cschv1 sechv2 sinv3 ,
~21!

z35a cothv1 tanhv2 ,

v1.0, v2PR, 0<v3,2p.

~7! Oblate spheroidal coordinate system,

z15a cscv1 sechv2 cosv3 , a.0,

z25a cscv1 sechv2 sinv3 ,
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z35a cotv1tanhv2 ,

0,v1,p/2, v2PR, 0<v3,2p.

~8! Parabolic coordinate system,

z15ev11v2 cosv3 , z25ev11v2 sinv3 ,

z35~e2v12e2v2!/2,

v1 ,v2PR, 0<v3<2p.

~9! Paraboloidal coordinate system,

z152a coshv1 cosv2 sinhv3 , a.0,

z252a sinhv1 sinv2 coshv3 ,

z35a~cosh 2v11cos 2v22cosh 2v3!/2,

v1 ,v3PR, 0<v2,p.

~10! Ellipsoidal coordinate system,

z15a
1

sn~v1 ,k!
dn~v2 ,k8! sn~v3 ,k!, a.0,

z25a
dn~v1 ,k!

sn~v1 ,k!
cn~v2 ,k8!cn~v3 ,k!,

z35a
cn~v1 ,k!

sn~v1 ,k!
sn~v2 ,k8! dn~v3 ,k!,

0,v1,K, 2K8<v2<K8, 0<v3<4K.

~11! Conical coordinate system,

z15v1
21dn~v2 ,k8! sn~v3 ,k!,

z25v1
21cn~v2 ,k8! cn~v3 ,k!,

z35v1
21sn~v2 ,k8! dn~v3 ,k!,

v1.0, 2K8<v2<K8, 0<v3<4K;

andL(t) is a 333 diagonal matrix

L~ t !5S l 1~ t ! 0 0

0 l 2~ t ! 0

0 0 l 3~ t !
D , ~22!

where l 1(t),l 2(t),l 3(t) are arbitrary nonzero smooth functions that satisfy the following con
tions:

~i! l 1(t)5 l 2(t) for the partially split coordinate systems@cases 2–4 from~21!#,
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~ii ! l 1(t)5 l 2(t)5 l 3(t) for nonsplit coordinate systems@cases 5-11 from~21!#.

Here we use the usual notations for the trigonometric, hyperbolic and Jacobi elliptic func
numberk (0,k,1) being the modulus of the latter andk85(12k2)1/2.

From a geometric point of view the right-hand side of formula~19! is a result of application
to vectorzW(vW ) of the following time-dependent transformations performed one after anothe

~1! translationszW→zW85zW1vW (t),
~2! dilatationszW→zW85L(t)zW,
~3! three-dimensional rotationszW→zW85O(t)zW with Euler anglesa(t), b(t), g(t).

Together with the rotations the following vectorVW (t)5(V1 ,V2 ,V3) is considered~Ref. 19,
Sec. 35!,

V1~ t !5ġ~ t !cosa~ t !1ḃ~ t !sina~ t !sing~ t !,

V2~ t !5ġ~ t !sina~ t !2ḃ~ t !cosa~ t !sing~ t !, ~23!

V3~ t !5ȧ~ t !1ḃ~ t !cosg~ t !,

that is directed along momentary axis of rotation and calledangular velocity vector.
Note that we have chosen the coordinate systemsv1 , v2 , v3 by means of the equivalenc

relation ~13! in such a way that the relations

Dva50, a51,2,3, ~24!

hold for all the cases 1–11 in~21!.
After integration of system (i ) – (iii ) it is not difficult to integrate the remaining (iv) and (v)

from the system under study, since they can be regarded as algebraic equations for the fu
Aa(t,xW ),(a51,2,3) andA0(t,xW ), correspondingly.

Multiplying ( iv) from the right by Q21 we obtain for each component of matrice
(]Q/]xb) Q21, b51,2,3, the systems of three linear algebraic equations. The determinants
systems do not vanish according to~4!. So they have the unique solution

]Q

]xb
Q215 f b~ t,xW !I , b51,2,3, ~25!

where f b(t,xW ) are scalar smooth functions andI is unit 232-matrix. From the compatibility
conditions

] f a

]xb
5

] f b

]xa
, a,b51,2,3,

of the above system of PDEs we obtain that there exists such functiong(t,xW ) that the equalities
f a5]g/]xa , a51,2,3, hold. So~25! takes the form

]Q

]xb
5

]g

]xb
Q, b51,2,3.

The general solution of this system of matrix PDEs is

Q5U~ t !expg~ t,xW !, ~26!

whereU(t) is arbitrary 232-matrix function oft.
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Let us represent the complex-valued functiong(t,xW ) in ~26! asg5S11 iS, whereS1 , S are
real-valued functions. Now, if we take into account that the components of the vector pot
A(t,xW ) and functionsv1 , v2 , v3 are real-valued functions, then after inserting~26! into (iv) with
the use of~24! we can split the obtained equations into real and imaginary parts:

]S1

]xb

]va

]xb
50, a51,2,3; ~27!

2S ]S

]xb
2eAbD ]va

]xb
1

]va

]t
50, a51,2,3. ~28!

Taking into account the equality~4!, we obtain from~27! the equalities]S1 /]xb50, b51,2,3. It
gives thatS15S1(t).

Let us denoteeAW 5eAW 2¹W S. Then the system~28! takes the form of three linear algebra
equations for functionsA1 , A2 , A3 :

]va

]t
52e

]va

]xb
Ab , a51,2,3.

The determinant of this system does not vanish due to~4!. Consequently, it has a unique solutio
Making in this solution the hodographic transformation

t5t, xa5ua~ t,v1 ,v2 ,v3!, a51,2,3, ~29!

we get the following expressions forA1 , A2 , A3 :

AW 52
1

2e

]uW ~ t,vW !

]t
.

After substitution into this formula expression foruW (t,vW ) ~19!, we return to variablest,x1 ,x2 ,x3

and thus obtain the following system:

2~2eAW ~ t,xW !1¹W S!5M~ t !xW1O~ t !L~ t !vẆ . ~30!

Here we use the designation

M~ t !5Ȯ~ t !O 21~ t !1O~ t !L̇~ t !L 21~ t !O 21~ t !, ~31!

whereO(t), L(t) are variable 333 matrices defined by formulas~20! and~22!, correspondingly,

vW 5(v1(t),v2(t),v3(t))T. Note thatȮO 21 is antisymmetric andOL̇L 21O 21 is the symmetric
part of matrixM.

The direct calculation shows that (v) and~30! are invariant under gauge transformations~11!.
Thus the functionS is transformed by the rule

S→S85S1e f, ~32!

which follows from~12!. In other words, if the transformations~11! and~32! in (v) and~30! are
performed one after another, we obtain the initial equations where functionsAW , A0 , S should be
replaced with functionsAW 8, A08 , S8. So, if the Pauli equation~1! with potentialAW , A0 admits
separation of variables in some coordinate system, then the Pauli equation with potentialAW 8, A08
admits separation of variables in the same coordinate system@the multiplier Q ~26! is changed
only#. Therefore, it is worthwhile to fix some gauge and to work only with representatives o
equivalence classes of potentialsA(t,xW ) @in the sense of equivalence relation~11!#.

We choose the gauge in a way that the equality
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2¹W S5O~ t !L̇~ t !L 21~ t !O 21~ t !xW1O~ t !L~ t !vẆ ~33!

holds. After integration of this system of PDEs we obtain the expression forS

S5
1

4 (
a51

3 S l̇ a

l a
x8a

212l av̇axa8D , ~34!

where we use the notations

xW85O 21xW . ~35!

Next, we obtain from Eq.~30! the explicit form for spacelike components of vector-poten
of electromagnetic field

AW ~ t,xW !52
1

2e
ȮO 21xW , ~36!

where the explicit form of matrixȮO 21 is given by the formula

ȮO 215S 0 2~ ȧ1ḃ cosg! ġ sina2ḃ cosa sing

ȧ1ḃ cosg 0 2~ ġ cosa1ḃ sina sing!

2~ ġ sina 2ḃ cosasing! ġ cosa1ḃ sina sing 0
D ,

~37!

wherea,b,g are arbitrary functions oft.
Thus formula~36! means that the spacelike components of electromagnetic fieldA(t,xW ) are

linear with respect of spatial variables. So the magnetic fieldHW 5rotAW should be homogeneous
i.e., independent of spatial variablesxW . From formulas~36! and ~37! we can obtain its explicit
form

eH152ġ~ t !cosa~ t !2ḃ~ t !sina~ t !sing~ t !,

eH252ġ~ t !sina~ t !1ḃ~ t !cosa~ t !sing~ t !, ~38!

eH352ȧ~ t !2ḃ~ t !cosg~ t !.

Now the spacelike components of the electromagnetic field take the final form

AW ~ t,xW !5
1

2 S 0 2H3~ t ! H2~ t !

H3~ t ! 0 2H1~ t !

2H2~ t ! H1~ t ! 0
D xW5

1

2
HW ~ t !3xW , ~39!

where symbol3 denotes cross product.
Within the equivalence relation~14! we can always choose the functionU(t) to be a solution

of matrix ODE

i U̇5~2esW HW ~ t !!U ~40!

with the initial conditionsU(0)5I . Due to the theorem of existence and the uniqueness of
solution of the Cauchy problem for the system of ODEs there is unique solutionU(t) of system
~40! for each fixed configuration of magnetic fieldHW (t). Moreover, matrixU(t) is a unitary one.
Indeed, taking into account~40!, we have the equality
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d

dt
~U* U!5U* ~ iesW HW !U1U* ~2 iesW HW !U50,

i.e., U* U5const. The initial conditions giveU* U5I .
Thus we can consider the following change of variables in the Pauli equation~1!,

c5U~ t !c̃. ~41!

Due to the unitarity of the matrixU the quantityc* c, which is regarded in quantum mechanics
the probability density, is not changed. So the change of variables~41! is the correct one. As a
result, the termesW HW in Pauli equation~1! vanishes, and we obtained a system of two Schro¨dinger
equations for the functionc̃.

Thus we proved the following assertion.
Lemma 1: A necessary condition for the Pauli equation (1) to be separable (in the sen

Definition 1) is that it has to be equivalent [in the sense of equivalence relation (41)] to a sy
of two uncoupled Schro¨dinger equations.

Let us substitute the equality~26! into (v), taking into account Eq.~40! and S15S1(t).
Splitting the equation obtained into real and imaginary parts~note that all functionsF00,Fa0 , a
51,2,3, are real-valued ones!, we obtain the equalities

(
a51

3

Fa0~va!
]va

]xb

]va

]xb
2

]S

]t
2

]S

]xb

]S

]xb
12eAb

]S

]xb
2F00~ t !2eA02e2AbAb50, ~42!

Ṡ11DS2e
]Ab

]xb
50. ~43!

Inserting into Eq.~42! expressions forS ~34! andA1 , A2 ,A3 ~39!, we obtain the explicit form of
A0 :

eA0~ t,xW !5 (
a51

3

Fa0~va!
]va

]xb

]va

]xb
2F00~ t !2e2AbAb2

1

4
P. ~44!

HereAbAb follows from ~39! and ~37!:

4AbAb5~H2x32H3x2!21~H3x12H1x3!21~H2x12H1x2!2, ~45!

whereH1 , H2 , H3 are components of magnetic field~38!; function P has the form

P5 (
a51

3 S l̈ a

l a
x8a

212~ l av̈a12 l̇ av̇a!xa81 l a
2v̇a

2D , ~46!

where x18 ,x28 ,x38 are given by formula~35! and l a5 l a(t), va5va(t), a51,2,3, are arbitrary
smooth functions, which define new coordinate system~19!.

Let us emphasize that the expression forA0 includes arbitrary functionsF10(v1), F20(v2),
F30(v3), F00(t), where functionsva5va(t,xW ), a51,2,3, belong to one of 11 classes, who
representatives are given implicitly by the formulas~19!–~22!.

Below we give explicit forms of the eikonalsRa
225(]va /]xb)(]va /]xb) for each class of

va ~see also Ref. 2!:

~1! Ri
225hi

22 , i 51,2,3;

~2! R1
225R2

225h1
22e22v1, R3

225h3
22 ;
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~3! R1
225R2

225h1
22~v1

21v2
2!21, R3

225h3
22 ;

~4! R1
225R2

225h1
22a22~cosh2v12cos2v2!21, R3

225h3
22 ;

~5! R1
225h1

22v1
4 , R2

225R3
225h1

22v1
2cosh2v2 ;

~6! R1
225h1

22a22 sinh2v1~sinh22v11cosh22v2!21,

R2
225h1

22a22 cosh2v2~sinh22v11cosh22v2!21,

R3
225h1

22a22 sinh2v1 cosh2v2 ; ~47!

~7! R1
225h1

22a22 sin2v1~sin22v12cosh22v2!21,

R2
225h1

22a22 cosh2v2~sin22v12cosh22v2!21,

R3
225h1

22a22 sin2v1 cosh2v2 ;

~8! R1
225h1

22e22v1~e2v11e2v2!21,

R2
225h1

22e22v2~e2v11e2v2!21, R3
225h1

22e22(v11v2);

~9! R1
225h1

22a22~cosh 2v12cos 2v2!21~cosh 2v11cosh 2v3!21,

R2
225h1

22a22~cosh2v12cos 2v2!21~cos 2v21cosh 2v3!21,

R3
225h1

22a22~cosh 2v11cosh 2v3!21~cos 2v21cosh 2v3!21;

~10! R1
225h1

22a22S dn2~v1 ,k!

sn2~v1 ,k!
2k82cn2~v2 ,k8! D 21S dn2~v1 ,k!

sn2~v1 ,k!
1k2cn2~v3 ,k! D 21

,

R2
225h1

22a22S dn2~v1 ,k!

sn2~v1 ,k!
2k82cn2~v2 ,k8! D 21

~k82cn2~v2 ,k8!1k2cn2~v3 ,k!!21,

R3
225h1

22a22S dn2~v1 ,k!

sn2~v1 ,k!
1k2cn2~v3 ,k! D 21

~k82cn2~v2 ,k8!1k2cn2~v3 ,k!!21;

~11! R1
225h1

22v1
4 , R2

225R3
225h1

22v1
2~k82cn2~v2 ,k8!1k2cn2~v3 ,k!!21.

At last, let us find the multiplierQ. Substituting the formulas~34! and~39! into Eq.~43! gives

Ṡ152
1

2 (
a51

3
l̇ a

l a
,

where it follows that

S152
1

2 (
a51

3

ln l a . ~48!

Taking into account expression forS ~34!, we obtain from formula~26! the explicit form ofQ
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Q5U~ t !
1

Al 1l 2l 3

exp(
a51

3
i

4
S l̇ a

l a
x8a

212l av̇axa8D , ~49!

whereU(t) is given by Eq.~40!, andx18 ,x28 ,x38 are given by formula~35!.
Thus we have proved the main result of the article:
Theorem 1: Pauli equation (1) admits separation of variables (in the sense of Definition

and only if it is gauge equivalent to Pauli equation where

~i! the magnetic field HW 5rot AW is independent of the spatial variables,
~ii ! the spacelike components A1 , A2 , A3 of the vector-potential of the electromagnetic field a
given by~39!, and
~iii ! the timelike component A0 is given by formulas (44)–(47).

Comparing the components of magnetic field~38! with components of angular velocity vecto
~23! of rotation of coordinate system~19!, we obtain the equalityeHW 52vW . So, we prove the
following assertion:

Corollary 1: Let Pauli equation (1) admit separation of variables in some nonstation
coordinate system t, va5va(t,xW ), a51,2,3,where functionsv1(t,xW ), v2(t,xW ), v3(t,xW ) are given
implicitly by formulas~19!–~22!. Then angular velocity vector~23! of rotation of this coordinate

system equals2eHW , where HW 5rot AW is magnetic field.
It follows from the corollary that a necessary condition for the Pauli equation~1! with nonzero

magnetic fieldHW to be separable~in the sense of our Definition 1! is that the angular velocity
vector ~23! of rotation of the separation coordinate system~19!–~22! has to be nonzero.

Summing up we conclude that coordinate systems and vector-potentials of the electroma
field A(t,xW )5(A0(t,xW ),AW (t,xW )) providing separability of the corresponding Pauli equations co
cide with those for the Schro¨dinger equations. Namely, we prove that the magnetic fieldHW

5rot AW has to be independent of the spatial variables. Next, we have 11 classes of pot
A0(t,xW ), corresponding to 11 classes of coordinate systemst,va5va(t,xW ), a51,2,3, where the
functionsv1(t,xW ),v2(t,xW ),v3(t,xW ) are given implicitly by formulas~19!–~22!. Pauli equation~1!

for each class of the functionsA0(t,xW ),AW (t,xW ) defined by~39!, ~44! and ~47! under arbitrary
F00(t),Fa0(va) and fixed arbitrary functionsa(t), b(t), g(t), va(t), l a(t), a51,2,3, separates in
exactly one coordinate system.

The solutions with separated variables are of the form~5!, whereQ is given by ~49!. The
separation equations read as~17! or ~18!, where the functionsFm0 , m50,1,2,3, are arbitrary
smooth functions defining the form of the timelike component of the vector-potentialA(t,xW ) @see
~44!#. The explicit forms of other coefficientsFma , Gmn , Gm of reduced equations can be o
tained by splitting relations (i i ) and (i i i ) with respect to independent variablesv1 , v2 , v3 , t for
each class of the functionszW5zW(vW ) given in ~21!. Let us denote

S5S T1 T2 T3

S11 S12 S13

S21 S22 S23

S31 S32 S33

D , ~50!

where the functionsSab(va) (a,b51,2,3) are given below as entries of 333 Stäckel matrices,
whose structure is determined by the choice of the functionszW5zW(vW ):

F15S 1 0 0

0 1 0

0 0 1
D , F25S e2v1 21 0

0 1 0

0 0 1
D , F35S v1

2 21 0

v2
2 1 0

0 0 1
D ,
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F45S a2 cosh2v1 1 0

2a2 cos2v2 21 0

0 0 1
D , F55S v1

24 2v1
22 0

0 cosh22v2 21

0 0 1
D ,

F65S a2 sinh24v1 2sinh22v1 21

a2 cosh24v2 cosh22v2 21

0 0 1
D , F75S a2 sin24v1 2sin22v1 1

2a2 cosh24v2 cosh22v2 21

0 0 1
D ,

~51!

F85S e4v1 2e2v1 21

e4v2 e2v2 21

0 0 1
D , F95S a2 cosh22v1 2a cosh 2v1 21

2a2 cos22v2 a cos 2v2 1

a2 cosh22v3 a cosh 2v3 21
D ,

F105S a2
dn4~v1 ,k!

sn4~v1 ,k!
2

dn2~v1 ,k!

sn2~v1 ,k!
1

2a2k84 cn4~v2 ,k8! k82 cn2~v2 ,k8! 21

a2k4 cn4~v3 ,k! k2 cn2~v3 ,k! 1

D ,

F115S v1
24 2v1

22 0

0 k82cn2~v2 ,k8! 21

0 k2cn2~v3 ,k! 1
D .

The functionsT1(t), T2(t), T3(t) are expressed in terms of the functionsh1(t), h2(t), h3(t):

~1! Ti5hi
22 , i 51,2,3;

~2!-~4! T15h1
22 , T250, T35h3

22 ; ~52!

~5!-~11! T15h1
22 , T25T350.

Let K andM be 333 constant matrices. Now, if the reduced equations are given by~17!, then

F5iFmaim50
3

a51
3 , G5iGmaim50

3
a51
3

are block (638)-matrices, whereFma andGma are 232-matrices that are equal to products of t
corresponding entries of the matricesSK andSM by the unit~in the case of the matrixF! or sWsW
~in the case of the matrixG! matrices. Accordingly, Eq.~8! takes the form

rank~F1G!56. ~53!

If rank K53, then we can always rearrangel1 ,l2 ,l3 with the use of the equivalence relation~9!
in order to getK5I . Analogously, without loss of generality we may putM5I , provided rank
M53 andsW2Þ0.

If rank M50, then the columniGm0im50
3 has necessarily the formSgW , wheregW is a constant

three-component column. If rankMÞ0, then we can always kill this column by a proper re
ranging ofl1 ,l2 ,l3 with the use of the equivalence relation~9!.

Next, if the reduced equations are given by~18!, then the matrixF is defined in the same wa
as in the previous case. Furthermore,

G5iGmsWasW im50
3

a51
3
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is a block (638)-matrix, whereGm are the three-component columnsSgW m ~gW m is a constant
three-component column!. In addition, in this case identity~53! holds, so that we can putK5I ,
when rankK53. If sWa , (151,2,3) are three linear independent vectors, then we can alway
sW050.

We will finish this section with the following remark. It follows from Theorem 1 that a cho
of magnetic fieldsHW allowing for variable separation in the corresponding Pauli equation is
restricted. Namely, the magnetic field should be independent of spatial variablesx1 ,x2 ,x3 in order
to provide the separability of Pauli equation~1! into three second-order matrix ordinary differe
tial equations of the form~7!. However, if we allow for separation equations to be of a lower ord
then additional possibilities for variable separation in the Pauli equation arise. As an examp
give the vector potential

A~ t,xW !5~A0~Ax1
21x2

2!, 0, 0, A3~Ax1
21x2

2!!,

whereA0 , A3 are arbitrary smooth functions. The Pauli equation~1! with this vector-potential
separates in the cylindrical coordinate system

t, v15 ln~Ax1
21x2

2!, v25arctan~x1 /x2!, v35x3

into two first-order and one second-order matrix ordinary differential equations. The corres
ing magnetic fieldHW 5rotAW is evidentlyx-dependent. In this respect, let us also mention the re
paper by Benenti with co-authors,5 where the problem of separation of variables in the station
Hamilton–Jacobi equation with vector-potential has been studied. They have presented a
of vector-potentials, for which the Hamilton–Jacobi equation is separable, and the corresp
magnetic fields are inhomogeneous ones. These potentials allow for separation of variable
stationary Schro¨dinger and Pauli equations with vector-potentials as well~see, e.g., Ref. 15 con
cerning the relationship between the separation of variables in the Schro¨dinger and Hamilton–
Jacobi equations!. These facts imply an importance of application of our approach to classify
nonstationary Pauli equations of the form~1!, which admit separation of variables into first- an
second-order matrix ordinary differential equations. We remind that here we give the classifi
results for the case, when all the reduced equations are second-order ones. We intend to
this problem in one of our future publications.

III. ALGORITHM OF SEPARATION OF VARIABLES IN THE PAULI EQUATION WITH
FIXED POTENTIAL

Theorem 1 gives the solution of the problem of classification of the Pauli equations~1! with
variable coefficients that are separable~in the sense of Definition 1! at least in one coordinate
system.

Let us consider the problem of classification of coordinate systems that allow for separat
variables~in the sense of Definition 1! in the Pauli equation~1! with fixed vector-potentialA0 , AW .

Let some fixed vector-potentialAW (t,xW ), A0(t,xW ) be given. The scheme of finding all coord
nate systems providing separation of variables is as follows:

~1! With help of gauge transformations~11! we reduce the spacelike components of vect
potentialAW (t,xW ) to the form ~39!. If it is impossible, then Pauli equation~1! with this vector-
potential is not solvable by the method of separation of variables in the framework of ou
proach.

~2! We solve the system of ODE~38! for given magnetic fieldHW (t) and obtain the explicit
form of functionsa(t), b(t), g(t).

~3! For each of 11 classes of coordinate systemst, va5va(t,xW ), a51,2,3, which are given by
formulas~19!–~22!, taking into account restrictions obtained on the first step of the algorithm
find the explicit form of
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~a! the timelike componentA0 of the vector-potential in terms ofvW ;
~b! function P, substituting in~46! the expression forxW8 in terms ofvW @see formulas~35! and
~19!#:

xW85L~ t !~zW~vW !1vW ~ t !!; ~54!

~c! quantitye2AbAb by the formula

4e2AbAb5~n2x382n3x28!21~n3x182n1x38!21~n2x182n1x28!2,

wherex18 , x28 , x38 are given by the formula~54!, and functionsn1 , n2 , n3 are as follows

n15ġ~ t !cosb~ t !1ȧ~ t !sinb~ t !sing~ t !,

n252ġ~ t !sinb~ t !1ȧ~ t !cosb~ t !sing~ t !, ~55!

n35ḃ~ t !1ȧ~ t !cosg~ t !;

~d! eikonals (]va /]xb)(]va /]xb )5Ra
22 , a51,2,3, which are determined from the list~47! for

given class of coordinates.
~4! We substitute the equalities obtained into Eq.~44! and obtain 11 equations for each of 1

classes of coordinate systemst, v1 , v2 , v3 . For each of these equalities we find all possib
functionsFa0(va), a51,2,3,F00(t) that reduce it to the identity by the independent variablet,
v1 , v2 , v3 ~i.e., we split this equality with respect to these variables!. It gives, in its turn, the
explicit form of the functionsva(t), l a(t), a51,2,3, and additional restriction ona(t), b(t),
g(t), giving the form of the coordinate system in question. All obtained coordinates for whic
functionsFa0(va), a51,2,3,F00(t) exist are only coordinate systems providing separability
Pauli equations in the sense of Definition 1.

Example:As illustration of this algorithm consider the problem of separation of variable
Pauli equation~1! for a particle interacting with a constant magnetic field. Without loss of ge
ality we can always choose it as directed along axesOZ: eHW 5(0,0,c)T, wherec is a nonzero real
constant. The vector-potential of electro-magnetic field has the form

2eAW 5S 0 2c 0

c 0 0

0 0 0
D xW , eA05

q

uxW u
2

c2

12
~x1

21x2
222x3

2!, ~56!

whereq is a nonzero real constant anduxW u5Ax1
21x2

21x3
2.

A direct check shows this vector-potential satisfies the vacuum Maxwell equations wi
currents,

hA02
]

]t S ]A0

]t
1div AW D50,

~57!

hAW 1gradW S ]A0

]t
1div AW D50W ,

where h5]2/]t22D is d’Alembert operator. Therefore, it is a natural generalization of
standard Coulomb potential, which is obtained from~56! underc→0.

Proposition 1: The set of inequivalent coordinate systems providing separability of the
equation (1) with vector potential of electromagnetic field (56) is exhausted by the following:

xW5O~ t !zW, ~58!
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whereO is a time-dependent333 orthogonal matrix~20!, with Euler angles

a~ t !52ct, b5const, g5const, ~59!

and zW is one of the following coordinate systems:

~1! spherical [formula 5 from list (21)#,
~2! prolate spheroidal II [formula 6 from (21), where one should replace z3 with z3

5a(cothv1tanhv261)],
~3! conical [formula 11 from (21)].

Proof: The spacelike componentAW (t,xW ) of the given vector-potential~56! is already reduced
to form ~39!.

The system of ODE~38! for given magnetic field takes the form

ġ cosa1ḃ sina sing50, ġ sina2ḃ cosa sing50, ȧ1ḃ cosg52c.

This implies the equivalent system

ġ50, ḃ sing50, ȧ1ḃ cosg52c.

Its general solution up to translation byt is given by formulas~59! @solutiona6b52ct for case
sing50 is included into~59! as a particular case after denotinga6b→a#.

The steps 3 and 4 of the above algorithm will be illustrated by the case of spherical coor
system 5 from~21! ~for other coordinate systems this procedure is an analogous one!. For this case
the equality~44! in termsv1 , v2 , v3 takes the form

l 22~F10~v1!v1
41~F20~v2!1F30~v3!!v1

2cosh2v2!2F00~ t !

5
q

uxW8u
1S c2

6
1

1

4

l̈

l
D uxW8u21 (

a51

3

~2~ l v̈a12 l̇ v̇a!xa81 l 2v̇a
2!, ~60!

wherel 5 l 15 l 25 l 3 , lÞ0 ~because of the spherical coordinate system is a nonsplit one!, and

x185 l ~v1
21 sechv2 cosv31v1~ t !!,

x285 l ~v1
21 sechv2 sinv31v2~ t !!,

x385 l ~v1
21 tanhv21v3~ t !!.

Next we perform on both parts of equality~60! the following step by step operations:

~1! multiplying by v1 ,
~2! differentiation with respect tov1 ,
~3! division by v1

2,
~4! differentiation with respect tov1 ,
~5! differentiation with respect tov2 ,
~6! multiplying by lv1

7uxW8u7,
~7! twice multiplying byv1 .

As result we get

224qsech3v2~v1
21v2

21v3
2!~v1 cosv31v2 sinv31v3 sinhv2!

3~2v31~v1 cosv31v2 sinv3!sinhv2!50.
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The equality obtained is transformed into an identity with respect to independent variablev1 ,
v2 , v3 if and only if the conditionv15v25v350 holds. Now the equality~60! takes the form

l 22~F10~v1!v1
41~F20~v2!1F30~v3!!v1

2cosh2v2!2F00~ t !5
q

l
v11S c2

6
1

1

4

l̈

l
D l 2

v1
2 . ~61!

Performing on both parts of equality~61! the following step by step operations,

~1! differentiation with respect tov1 ,
~2! multiplying by l 2,
~3! differentiation with respect tot,
~4! multiplying by v1

3,
~5! differentiation with respect tov1 ,

we get the equality 3q l̇v1
250. This impliesl 5const and with the help of dilatations we can p

without loss of generalityl 51. Thus the coordinate system takes the form~58!.
The equation~61! yields

F10~v1!v1
41~F20~v2!1F30~v3!!v1

2cosh2v22F00~ t !5qv11
c2

6
v1

22 .

We can split the equation obtained by the independent variablesv1 , v2 , v3 . As a result we get

F105qv1
231

c2

6
v1

261k1v1
242k2v1

22 ,

F205k2 sech2v22k3 , F305k3 , F005k1 .

The theorem is proved. h

IV. SEPARATION OF VARIABLES IN THE PAULI–MAXWELL SYSTEM

The expressions~39! and~44!–~47! give the most general form of the vector-potential of t
electromagnetic field, providing separability of the corresponding Pauli equations. But, beca
generality of the results, these expressions are too cumbersome, and their physical interpre
somewhat difficult. Therefore it would be interesting to know the form of these potentials u
certain physical restrictions. The most natural restriction is that the vector-potential satisfi
vacuum Maxwell equations without currents~57!.

In this section we describe all explicit forms of the vector-potentialsA(t,xW ) that

~a! provide separability of Pauli equation,
~b! satisfy vacuum Maxwell equations without currents~57!, and
~c! describe the nonzero magnetic field.

Furthermore, we construct inequivalent coordinate systems enabling us to separate variable
corresponding Pauli equation.

The similar problem with more strong restrictions was analyzed in Ref. 20 for a
dimensional Schro¨dinger equation with vector-potential. Note that an analogous problem fo
Dirac equation for an electron was analyzed in Ref. 21.

Taking into account the form ofAW ~39!, the Maxwell equations~57! take the form

DA050, ~62!

and
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]2A0

]t]x1
52 l̈ 3x21 l̈ 2x3 ,

]2A0

]t]x2
5 l̈ 3x12 l̈ 1x1 ,

]2A0

]t]x3
52 l̈ 2x11 l̈ 1x2 .

From the compatibility conditions of the above system of PDEs we get

l̈ 15 l̈ 25 l̈ 250,
~63!

]2A0

]t]xa
50, a51,2,3.

Inserting expression for potentialA0(t,xW ) ~44! into ~62! with subsequent change of indepe
dent variables~19! yields ~we use the relationsDv i50, v ixa

v jxa
50, iÞ j , i , j 51,2,3!

(
j 51

3
]2

]v j
2 S (

i 51

3

Fi0~v i !Ri
22DRj

225
1

2 (
i 51

3
l̈ i

l i
1e2~H1

21H2
21H3

2!, ~64!

where the eikonals

Ri
225

]v i

]xa

]v i

]xa
, i 51,2,3, ~65!

are given in the list~47!.
Thus we get 11 functional relationsP1 ,...,P11 for each class of coordinate system~19!, whose

form is determined by the form of 1 of the 11 expressionsz1(v1 ,v2 ,v3), z2(v1 ,v2 ,v3),
z3(v1 ,v2 ,v3) from the list~21!. As t, v1 , v2 , v3 are functionally independent, we can split th
above relations with respect to the variablest, v1 , v2 , v3 , thus getting ordinary differentia
equations for the functionsFi0(v i),l i(t), i 51,2,3. After solving them the formula~44! yields the
expressions forA0 in terms of variablest, v1 , v2 , v3 . Returning to variablest, x1 , x2 , x3 @with
the aid of~19!#, we should split the expression obtained forA0(t,xW ) with respect tot. Indeed, the
general solution of the second equation from the system~63! is

A0~ t,xW !5 f 1~xW !1 f 2~ t !.

At the expense of the gauge invariance of the Pauli equation we may choosef 2(t)50. Thus the
potentialA0 should be a function ofxW only. This condition restricts the choice ofA0 , thus giving
ordinary differential equations for the functionsl i(t), v i(t), i 51,2,3. Solving them we obtain th
explicit forms of the functionF00(t) and coordinate systems~19!. After simplifying these coordi-
nate systems with the aid of equivalence transformations we get a full description of the v
potentialsA(t,xW ) and coordinate systems, giving the solution of the problem under study.

Omitting the details of the calculations~they are very cumbersome! we present below the
results. Note, when presenting lists of the vector-potentialsA(t,xW ) and coordinate systems we us
invariance of the system of the Pauli and Maxwell equations with respect to the groups of rot
by spatial variablesx1 , x2 , x3 and translations by all variablest, x1 , x2 , x3 ~see, e.g., Ref. 22!.

A. Case of nonstationary magnetic field

eHW 5~0,0,At1B!,

eA052
k

2
~x1

21x2
222x3

2!1a1x11a2x21a3x3 ,

whereA, B, k, a1 , a2 , a3 are arbitrary real constants.
The coordinate system is
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xW5LO~zW1vW !.

HereO is a time-dependent 333 orthogonal matrixO(a,b,g), where

a52 1
2 At22Bt, b50, g50;

zW is a cartesian, cylindrical or elliptic cylindrical coordinate system@formulas 1, 2, and 4 from
~21!#; L is the 333 diagonal matrix

L5S l ~ t ! 0 0

0 l ~ t ! 0

0 0 l 3~ t !
D ,

andvW (t) is vector-columnvW (t)5(v1 ,v2 ,v3)T where functionsl (t), l 3(t), v1(t), v2(t), v3(t) are
solutions of the following system of ordinary differential equations:

2
c

l 4 2
1

2

l̈

l
1k5

1

2
~At1B!2,

c3

l 3
4 2

1

4

l̈ 3

l 3
5k,

l v̈112 l̇ v̇114c
v1

l 3 22c11

1

l
522~a1 cosa1a2 sina!,

l v̈212 l̇ v̇214c
v2

l 3 22c12

1

l
522~2a1 sina1a2 cosa!,

l 3v̈312 l̇ 3v̇314c3

v3

l 3
3 22c13

1

l 3
522a3 .

Herec, c3 , c11, c12, c13 are arbitrary real constants.

B. Cases of stationary magnetic field

1. Case 1

Here

eHW 5~0,0,k!, k5constÞ0;

eA052
k2

12
~x1

21x2
222x3

2!1a1x11a2x21a3x3 ,

whereaW 5(a1 ,a2 ,a3) is constant vector.
The coordinate system is

xW5 lO~zW1vW !.

Here O is a time-dependent 333 orthogonal matrixO(a,b,g), wherea52kt, b5const,g
5const;zW is one of coordinate system, given by formulas 1–11 from~21!; function l (t) is solution
of the equation

k21
3

2

l̈

l
5

c

l 4

given by one of the formulas
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c571, l 25AC1
26

1

k2sinS 2A2

3
ktD 1C1 ,

for coordinate systemzW given by the formulas 1, 2, 4, 5, 6, 7, 10, and 11 from the list~21! and

c50, l 5C1 sinSA2

3
ktD

for coordinate systemzW given by the formulas 1–11 from the list~21!. HereC1 is an arbitrary real
constant. VectorvW is a solution of the following system of ordinary differential equations:

3l v̈W 16 l̇ v̇W 1
2c

l 3 vW 526O 21aW .

2. Case 2

Here

eHW 5~0,0,k!, k5constÞ0;

eA05
a

Ax1
21x2

21x3
2

2
k2

12
~x1

21x2
222x3

2!, a5constÞ0.

The coordinate system is

xW5OzW.

Here O is a time-dependent 333 orthogonal matrixO(a,b,g), wherea52kt, b5const,g
5const; andzW is one of the following coordinate systems:

~1! spherical@formula 5 from~21!#,
~2! prolate spheroidal II @formula 6 from ~21!, where one should replacez3 with z3

5a(cothv1tanhv261)#, and
~3! conical @formula 11 from~21!#.

3. Case 3

Here

eHW 5~0,0,k!, k5constÞ0;

eA052
k2

12
~x1

21x2
222x3

2!1
a1

r
1a2

x3

r 3 1
a3

r 2 S x3

2r
ln

r 1x3

r 2x3
21D ,

wherer 5Ax1
21x2

21x3
2 anda1 , a2 , a3 are real constant numbers.

The coordinate system is

xW5 lOzW.

HereO is a time-dependent 333 orthogonal matrixO(a,b,g), wherea52kt, b5g50; zW is
the spherical coordinate system, given by formula 5 from~21!; and functionl (t) is given by

l 25AC1
26

1

k2sinS 2A2

3
ktD 1C1 , or l 5C1 sinSA2

3
ktD

under conditiona150 and l 51 under conditiona1Þ0. HereC1 is an arbitrary real constant
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4. Case 4

Here

eHW 5~0,0,k!, k5constÞ0;

eA052
k2

12
~x1

21x2
222x3

2!1
a1

r 1 1
a2

r 2 1a3S 1

r 1 arctanh
x3

1

r 1 2
1

r 2 arctanh
x3

2

r 2 D ,

wherex3
65x36a and r 65Ax1

21x2
21(x36a)2, anda, a1 , a2 , a3 are arbitrary real constants

The coordinate system is

xW5OzW.

HereO is a time-dependent 333 orthogonal matrixO(a,b,g), wherea52kt, b5g50, andzW
is a prolate spheroidal coordinate system, given by formula 6 from~21!.

5. Case 5

Here

eHW 5~0,0,k!, k5constÞ0;

eA052
k2

12
~x1

21x2
222x3

2!12a1a
f 1

f
12a2

x3

f f 1
22a3S a

f 1

f
arccotf 12

x3

f f 1
arctanh

x3

a f1
D ,

where

f 5A~a22r 2!214a2x3
2, f 15A2a21r 21 f

2a2 , r 5Ax1
21x2

21x3
2,

anda, a1 , a2 , a3 are arbitrary real constants. The coordinate system is

xW5OzW.

HereO is a time-dependent 333 orthogonal matrixO(a,b,g), wherea52kt, b5g50, andzW
is an oblate spheroidal coordinate system, given by formula 7 from~21!.

Note that expression forA0 can be rewritten in the form

eA052
k2

12
~x1

21x2
222x3

2!1
a11 ia2

r̃ 1 1
a12 ia2

r̃ 2 1 ia3S 1

r̃ 1 arctanh
x̃3

1

r̃ 1 2
1

r̃ 2 arctanch
x̃3

2

r̃ 2 D ,

wherex̃3
65x36 ia and r̃ 65Ax1

21x2
21(x36 ia)2.

6. Case 6

Here

eHW 5~0,0,k!, k5constÞ0;

eA052
k2

6
~x1

21x2
222x3

2!1
a1

r
1a2x31

a3

r
ln

r 1x3

r 2x3
,

wherer 5Ax1
21x2

21x3
2 anda1 , a2 , a3 are arbitrary real constants.
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The coordinate system is

xW5OzW.

HereO is a time-dependent 333 orthogonal matrixO(a,b,g), wherea52kt andb5g50, and
zW is a parabolic coordinate system, given by formula 8 from~21!.

7. Case 7

Here

eHW 5~0,0,k!, k5constÞ0;

eA052
q

2
~x1

21x2
222x3

2!1aln ~x11x2!1a3x3 ,

wherek, a, a3 are arbitrary real constants.
The coordinate system is

x15ev1 cos~v12kt!, x25ev1 sin~v12kt!, x35 l 3v31v3 ,

wherel 3 , v3 are solutions of the system of ordinary differential equations

c3

l 3
4 2

1

4

l̈ 3

l 3
5q, l 3v̈312 l̇ 3v̇314c3

v3

l 3
3 22c13

1

l 3
522a3 .

Note that some of the potentials obtained have the clear physical meaning. For instance
2 and 3 under conditionk5a25a350 give the standard Coulomb potential. Case 4 under c
dition k5a350 gives the potential for a well-known two-center Kepler problem, i.e., the prob
of finding wave functions of electrons moving in the field of two fixed Coulomb centers
chargesa1 , a2 and intercenter distance 2a ~the model of ionized hydrogen molecule!. Coulson
and Joseph23 showed that the corresponding Schro¨dinger equation admits separation of variab
in the prolate coordinate system only. We obtained this potential as a particular case of the
general potential.

V. CONCLUDING REMARKS

Theorem 1 provides the complete solution of the problem of classification of the Pauli
tions ~1!, which are solvable within the framework of the method of separation of variables i
sense of our Definition 1. According to these theorems the coordinate systems and the
potentials of the electromagnetic fieldA(t,xW )5(A0(t,xW ),AW (t,xW )) providing separability of the
corresponding Pauli equations coincide with those for the Schro¨dinger equations with vector
potential. So the results obtained in the article are valid for the Schro¨dinger equation as well.

It is well known that the possibility of variable separation in a system of PDEs is clo
connected to its symmetry properties.9,10 Namely, solutions with separated variables are comm
eigenfunctions of three matrix mutually commuting symmetry operators of the equation
study. For all the cases of variable separation in Pauli equation~1! such matrix second-orde
operators can be constructed in the explicit form, by analogy to what has been done in Ref.
the ~112!-dimensional Schro¨dinger equation. They are expressed in terms of the matrix co
cients of the separation equations~17! and ~18!.

A promising development of the research is classification and study of superintegrabl~ad-
mitting sufficiently many higher symmetries! cases of Pauli equation. Notice that the notions
separability and superintegrability are closely related. By now, superintegrable physical sy
can be regarded as one of the most intensively developed and significant fields of mathe
physics. The problem of classifying superintegrable stationary Schro¨dinger equations with scala
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potential has been solved by Winternitz with co-workers25 and Evans26 for space dimensionsn
52 andn53 ~see also Ref. 4!. They have found all potentials that allow for separability of t
corresponding Schro¨dinger equation in more than one coordinate system. We intend to modify
generalize this approach to~113!-dimensional Pauli equation~1!. A study of the problem is in
progress now and will be reported in our future publications.
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14V. A. Kostelecký, V. I. Man’ko, M. M. Nieto, and D. R. Truax, Phys. Rev. A48, 951 ~1993!.
15T. H. Koornwinder, Lect. Notes Math.810, 240 ~1980!.
16R. Z. Zhdanov, J. Math. Phys.38, 1197~1997!.
17V. N. Shapovalov and N. B. Sukhomlin, Izv. Vyssh. Uchebn. Zaved., Fiz.12, 100~1974! @Sov. Phys. J.17, 1718~1976!#.
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We consider an arbitrary translationally invariant chain model with nearest neigh-
bors interaction and satisfying periodic boundary condition. The approach devel-
oped here allows a thermodynamic description of the chain model directly in terms
of grand potential per site. This thermodynamic function is derived from an auxil-
iary function constructed only from open connected subchains. In order to exem-
plify its application and how this approach works we consider the Heisenberg XXZ
model. We obtain the coefficients of the high temperature expansion of the free
energy per site of the model up to third order. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1432484#

I. INTRODUCTION

Chain models, such as the spin-1
2 Heisenberg models XYZ and XXZ1,2 and their extensions,3,4

the one-dimensional Hubbard model,5 etc., have attracted intense interest due to their propert
integrability. We also have other models like the one-dimensionald-p model6 and its
generalizations,7,8 employed to simulate a Cu–O linear chain with strong Coulomb repuls
These models are also relevant because they may explain high temperature superconduc

The solution of the XXZ model9 and the one-dimensional Hubbard model5 at T50 are
examples of the success of the Bethe ansatz. In 1972 Takahashi and Suzuki10 obtained the exac
thermodynamics of the XXZ model. More recently the same results were reobtained by K
et al.11 using the quantum transfer matrix approach. The exact thermodynamics of the
dimensional Hubbard model was also derived by this same method.12–14 In all those models the
thermodynamic functions are solutions of integral coupled equations, and it is possible to
their behavior in the very high temperature limit. However, it is not an easy task to der
systematic temperature expansion for the thermodynamic functions in such temperature ra

The high temperature limit of any model can be obtained by a standard expansion in te
the inverse of temperatureb,15 b5 1/kT, wherek is the Boltzmann constant andT is the absolute
temperature. Sometimes, perturbation theory can be applied to obtain the coefficients
b-expansion method; this approach is also called the high temperature expansion and it ha
applied to thet-J model16 and to the Hubbard model.17–19 In all standard high temperatur
expansions we always need to calculate the weight of each graph in the grand canonical p
function as well as to determine all graphs that contribute at a givenb-order term.

Recently, we applied the basic properties of the Grassmann generators to calculate ana
the coefficients of theb-expansion of the grand canonical partition functionZ(b,m) of self-
interacting fermionic fields in any dimension.20 We applied it to the one-dimensional Hubba
model.21,22 We have two drawbacks in our method: a large number of graphs must be calcu
as well as counting the number of times each graph contributes to eachb-term in the expansion o
Z(b,m).
13900022-2488/2002/43(3)/1390/18/$19.00 © 2002 American Institute of Physics
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In this article restrict ourselves to the study of translationally invariant chain models with
neighbor interactions and subject to periodic boundary condition. Instead of calculating the
canonical partition function, we derive ab-expansion for the grand potential per site, that is,
intensive quantity. The coefficient of orderbn is exactly obtained for arbitrary values ofn. The
proposed approach is not restricted to self-interacting fermionic models.

In Sec. II, we expand the grand canonical partition function as a Taylor series aroundb50. In
fact, the idea behind this method was previously developed, up to orderb5, in Ref. 20 for
fermions only. Here we generalize the expansion for fermionic and bosonic fields to arb
orders ofbn. In performing this expansion we writeZ(b,m) as a sum of traces whose coefficien
are known. We obtain the expansion of the grand potential per site, and verify that it
intensive quantity. In this calculation we do not use the traditional method of quantum tra

matrix. As an illustrative example of the method developed here, in Sec. III we apply it to s1
2

Heisenberg XXZ model. We calculate theb-expansion of the Helmholtz free energy of the mod
up to orderb3. Taking D5h50 we recover theb-expansion of this thermodynamic function o
the free fermion model23 whereas whent50 we recover the limiting Ising model.24 In Sec. IV we
draw our main conclusions. In Appendix A we explain our graphic representation of the no
ized traces; in Appendix B we extend our results for^Kn& with arbitrary n; in Appendix C we
write the grand potential per site in terms of an auxiliary functionw(l) that is constructed only
from open connected subchains; and finally in Appendix D we write the function K1,m

(n) as sums of
normalized traces forn up to 4.

II. GRAND CANONICAL PARTITION FUNCTION FOR A CHAIN MODEL

Let us consider a one-dimensional regular lattice~a periodic chain! with N sites, so that the
Hilbert space of the chain model is simplyH (N)5 ^

NH, H being the irreducible representation
one site, including all its degrees to freedom. The dimension of this Hilbert space is dimH (N)

5trN(1). The notation trN means the trace over allN sites and their internal degrees of freedo
such as spin.

The grand canonical partition function of a quantum system in the chain withN sites is given
by

ZN~b,m!5trN~e2bK!, ~1!

whereK5H2mN, with m being the chemical potential andN being an operator that acts onH (N)

and that commutes with the Hamiltonian of the system. The expansion ofZN(b,m) aroundb
50 is

ZN~b,m!5trN~1!1 (
n51

`

~2b!n
trN~Kn!

n!
. ~2!

Let A be any operator that acts onH (M ) whereM<N. We define^A&[ trM(A)/trM(1), for
any dimension ofH (M ). From now on, we call̂ A& the normalized traceof operatorA. The
dimension of the subspaceH (M ) is determined by the operatorA.

Using the definition of normalized trace, Eq.~2! becomes

ZN~b,m!5trN~1!H 11 (
n51

`

~2b!n ^Kn&
n! J . ~3!

Along this section we consider a general HamiltonianH subject to two constraints: the inte
action is only between first neighbors and the HamiltonianH is invariant under translation alon
the chain. The most general operatorK satisfying both conditions is
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K5(
i 51

N

K̃ i ,i 11 , ~4!

whereK̃ i ,i 11PH (N). Each operatorK̃ i ,i 11 is defined as

K̃1,25K1,2^ 13^¯ ^ 1N

K̃2,3511^ K2,3^ 14^¯ ^ 1N

A

K̃ i ,i 11511^¯ ^ 1i 21^ K i ,i 11^ 1i 12^¯ ^ 1N ~5!

and K i ,i 11PHi ^ Hi 11 . We use the notation1iPHi for the identity matrix on the irreducible
subspace of thei th particle.

Our aim is to get the coefficients^Kn&, on the rhs of Eq.~3!, in terms of the normalized trace
of products of operatorsK i ,i 11 . Let us calculate explicitly the first three coefficients~n51,
n52, andn53! of the expansion~3!. They will help us to construct the coefficient^Kn& for
arbitraryn. We begin withn51.

Since the operatorK i ,i 11 acts only on the sitesi and i 11, we have

trN~K̃ i ,i 11!5tr2~K i ,i 11!~ tr1~1!!N22. ~6!

We stress out that the traces of the rhs of Eq.~6! are calculated on the subspaceH (1) andH (2)

whereas the trace on the lhs is calculated on the complete spaceH (N). Dividing both sides of Eq.
~6! by trN(1),

trN~K̃ i ,i 11!

trN~1!
5

tr2~K i ,i 11!

tr2~1^ 1!
5^K i ,i 11&. ~7!

Due to the property of the Hamiltonian being translationally invariant we have^K̃ i ,i 11&
5^K i ,i 11&5^K1,2&. Taking into account the periodic boundary condition (KN,N115KN,1), we
have that̂ K& is equal to

^K&5(
i 51

N

^K i ,i 11&5N^K1,2&. ~8!

For n52 on the rhs of expansion~3! we have to calculate the normalized traces of^K2&. From the
definition of operatorK @see Eq.~4!#, we have

^K2&5 (
i , j 51

N

^K i ,i 11K j , j 11&. ~9!

In the normalized tracêK i ,i 11K j , j 11& we have three different cases~in Appendix A we explain
our graphic representation!:

~10a!
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This equality comes from the invariance under translation and the periodic boundary con
satisfied by the model. In the double sum~9! we haveN terms of this type.

~10b!

~10c!

In the double sum on the rhs of Eq.~9! we haveN terms of the type of one of these two previo
configurations. Using the cyclic property of traces and translation invariance, we get th
normalized traces~10b! and ~10c! are equal. Therefore, we can writêK i ,i 11K i 21,i&
5^K i ,i 11K i 11,i 12&.

~10d!

The normalized trace~10d! can be written aŝK i ,i 11&^K j , j 11&5^K1,2&
2. The number of terms in

the double sum in Eq.~9! that satisfies configuration~10d! is equal toN(N23).
The terms that contribute tôK2&, with respective of number of configurations~weight! in the

sum on the rhs of Eq.~9! are

^K2&5N^K1,2
2 &12N^K1,2K2,3&1N~N23!^K1,2K3,4&. ~11!

The last term on the rhs of~11! can be written as a product of normalized traces withn51.
The term^K3& has a richer structure of traces than the two previous ones. Its explicit s

will help us to generalize the results for arbitraryn. The expansion of normalized traces in^K3&
is

^K3&5 (
i , j ,k51

N

^K i ,i 11K j , j 11K k,k11&. ~12!

Similarly to ^K& and ^K2&, we determine the types of configurations we have in the sum
the rhs of Eq.~12! and their respective weights. For^K3& we have

^K3&5N^K1,2
3 &13NH ^K1,2

2 K2,3&
2!

1
^K1,2K2,3

2 &
2! J 13N$^K1,2K2,3K3,4&1^K1,2K3,4K2,3&%

13N~N23!H ^K1,2
2 K3,4&
2!

1
^K1,2K3,4

2 &
2! J 13N~N24!$^K1,2K2,3K4,5&1^K1,2K3,4K4,5&%

1N~N24!~N25!^K1,2K3,4K5,6&. ~13!

From the expressions~8!, ~11! and ~13! we have that each type of normalized trace~in the
expression of̂K3& we collect them inside of braces! corresponds to all normalized traces that w
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can write for that set of operators. For example, the term: 3^K1,2K2,3K3,4&13^K1,2K3,4K2,3& in-
cludes all normalized traces that we can write for the set of operators$K1,2,K2,3,K3,4%. The
factors 3 come from the fact that some of them are equals by the cyclic property of the tra

To make ours simpler and generalize our results for arbitraryn, we define theg-trace:

^K i 1 ,i 111
n1 K i 2 ,i 211

n2 . . . K i m ,i m11
nm &g[

n1!¯ nm!

n! (P ^P~K i 1 ,i 111
n1 ,K i 2 ,i 211

n2 , . . . ,K i m ,i m11
nm !&,

~14!

where ( i 51
m ni5n with niÞ0 and the indicesi k , k51,...,m are distinct among themselves. B

definition, ^P(K i 1 ,i 111
n1 ,K i 2 ,i 211

n2 , . . . ,K i m ,i m11
nm )& represents all distinct permutations that we c

write then operators$K i 1 ,i 111 ,K i 2 ,i 211 , . . . ,K i m ,i m11%. In the particular case when the operato

$K i 1 ,i 111 ,K i 2 ,i 211 , . . . ,K i m ,i m11% commute among themselves, ^K i 1 ,i 111
n1 K i 2 ,i 211

n2
¯

K i m ,i m11
nm &g reduces to the normalized trace^K i 1 ,i 111

n1 K i 2 ,i 211
n2

¯ K i m ,i m11
nm &.

The normalized traceŝK&, ^K2& and ^K3& written in terms of theg-traces become

^K&5N^K1,2&g , ~15a!

^K2&
2!

5N
^K1,2

2 &g

2!
1N^K1,2K2,3&g1

N~N23!

2!
^K1,2K3,4&g , ~15b!

and

^K3&
3!

5N
^K1,2

3 &g

3!
1NH ^K1,2

2 K2,3&g

2!
1

^K1,2K2,3
2 &g

2! J 1N^K1,2K2,3K3,4&g1
N~N23!

2! H ^K1,2
2 K3,4&g

2!

1
^K1,2K3,4

2 &g

2! J 1
N~N24!

2!
$^K1,2K2,3K4,5&g1^K1,2K3,4K4,5&g%

1
N~N24!~N25!

3!
^K1,2K3,4K5,6&g . ~15c!

Some of theg-traces at ordern can be written as the product of the normalized traces of lo
order. The latter are already calculated, which means that we have a smaller number o
normalized traces to be calculated at ordern. To distinguish the normalized traces that appear
the first time at ordern from the others we use the notation Kr ,m

(n) , wheren is the power (̂Kn&) of
the term in expansion~3! to which theg-traces contribute,r is the number of products of th
traces that the original trace can be broken andm is the number of distinctK i ,i 11 operators that
appear in theg-trace. The terms Kr ,m

(n) with r 51 are theg-traces that appear in the expansion f
the first time at orderbn.

We begin by defining K1,m
(n) as

K1,1
(n)5

^K1,2
n &g

n!
, ~16a!

K1,2
(n)5( 9

$ni %

n ^K1,2
n1 K2,3

n2 &g

n1! n2!
, ~16b!

A

K1,m
(n) 5( 9

$ni %

n ^K1,2
n1 K2,3

n2
¯ Km,m11

nm &g

n1!n2!¯ nm!
. ~16c!
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From now on we use the notation($ni %
n 9 to mean the restriction( i 51

n ni5n and niÞ0 for i

51,2,...,m. The indexm satisfies the condition: 1<m<min(n,N). In Eq. ~16c! we are assuming
m<n. However, ifm.n, we define K1,m

(n) 50.
Since in the definition of theg-traces are included all possible permutations of then operators,

we have

K1,m
(n) 5( 9

$ni %

n K )
i 51

m K i ,i 11
ni

ni !
L

g

. ~17!

For r 52, the natural definition is

K2,2
(n)5( 9

$ni %

n ^K1,2
n1 K3,4

n2 &g

n1! n2!
5( 9

$ni %

n ^K1,2
n1 &g

n1!

^K3,4
n2 &g

n2!
5( 9

$ni %

n

K1,1
(n1)K1,1

(n2) , ~18a!

K2,3
(n)5( 9

$ni %

n S ^K1,2
n1 K2,3

n2 K4,5
n3 &g

n1!n2!n3!
1

^K1,2
n1 K3,4

n2 K4,5
n3 &g

n1!n2!n3!
D 5( 9

$ni %

n

~K1,1
(n1)K1,2

(n2)
1K1,2

(n1)K1,1
(n2)

!, ~18b!

where we took into account the invariance of the model under translations and the fact tha

@K i ,i 11 ,K j , j 11#5H 0, when iÞ j 61,

Þ0, when i 5 j 61.
~19!

To obtain the second equality on the rhs of Eq.~18b! we rearrange the indices in the double su
We see that theseg-traces can always be written as the product ofg-traces of lower order which
give us

K2,m
(n) 5( 9

$ni %

n

(
l 51

m21

K1,l
(n1)K1,m2 l

(n2)
5( 9

$ni %

n

( 9
$mj %

m

K1,m1

(n1) K1,m2

(n2) . ~20!

The indicesni satisfy the conditionn11n25n while m11m25m and 2<m<min(n,N). We are
assumingm<n, otherwise K2,m

(n) 50. For K3,3
(n) and K3,4

(n) we have

K3,3
(n)5( 9

$ni %

n

K1,1
(n1)K1,1

(n2)K1,1
(n3) , ~21a!

K3,4
(n)5( 9

$ni %

n

~K1,1
(n1)K1,1

(n2)K1,2
(n3)

1K1,1
(n1)K1,2

(n2)K1,1
(n3)

1K1,2
(n1)K1,1

(n2)K1,1
(n3)

!. ~21b!

It follows for arbitrarym, where 3<m<min(n,N),

K3,m
(n) 5( 9

$ni %

n

( 9
$mi %

m

K1,m1

(n1) K1,m2

(n2) K1,m3

(n3) , ~22!

and K3,m
(n) 50 for m.n.

We generalize our definition of Kr ,m
(n)

Kr ,m
(n) [( 9

$ni %

n

( 9
$mi %

m

)
j 51

r

K1,mj

(nj ) , ~23!
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where$ni%[$n1 ,n2 , . . . ,nr% and$mi%[$m1 ,m2 , . . . ,mr%. Equation~23! is valid for r .1 and it
makes possible to write Kr ,m

(n) as products of K1,m
(n) @see Eq.~16c!#. The indicesr andm satisfy the

conditions 1<r<min(n,N) and r<m<min(n,N). We are assumingn>r andm, otherwise Kr ,m
(n)

50.
In terms of Kr ,m

(n) , the normalized traceŝK&, ^K2& and ^K3& are simply

^K&5NK1,1
(1) , ~24a!

^K2&
2!

5NK1,1
(2)1NK1,2

(2)1
N~N23!

2!
K2,2

(2) , ~24b!

^K3&
3!

5NK1,1
(3)1NK1,2

(3)1NK1,3
(3)1

N~N23!

2!
K2,2

(3)1
N~N24!

2!
K2,3

(3)1
N~N24!~N25!

3!
K3,3

(3) .

~24c!

In Appendix B we writê K4& in terms of Kr ,m
(4) and the coefficients of K1,m

(n) , K2,m
(n) and K3,m

(n) for
n51,2 and 3 are rewritten in terms of binomial coefficients. In this appendix we also exten
previous results for arbitraryn.

For arbitraryn, Eq. ~B8! gives the expression of^Kn&, that is,

^Kn&
n!

5 (
r 51

[n,N]

(
m5r

[n,N]
N

r S N2m21
r 21 DKr ,m

(n) . ~25!

The notation@n,N# means the min(n,N). Differently from our previous work,20–22 in Eq. ~25! we
already have the weight of each set of subchain Kr ,m

(n) in ^Kn&. The coefficient that multiplies Kr ,m
(n)

in Eq. ~25! is independent of the particular Hamiltonian under consideration.
For n,N the trace will be calculated on a maximum subspace given byH (n11), whereas for

n>N due to the periodic boundary condition the operators act on the whole Hilbert spaceH (N),
therefore we can say that the operators act more than one period in the periodic chain.

Rewriting the coefficient of Kr ,m
(n) in Eq. ~25! in a more convenient way,

^Kn&
n!

5 (
r 51

[n,N]

(
m5r

[n,N]

(
k51

r

~21!r 1k
k

r S m1r 2k21
r 2k D S N

k DKr ,m
(n) [ (

k51

[n,N] S N
k DKk,n ~26!

with

Kk,n[ (
r 5k

[n,N]

(
m5r

[n,N]

~21!r 1k
k

r S m1r 2k21
r 2k DKr ,m

(n) . ~27!

From Eq.~27! we have that the biggest possible value ofk is min(n,N) while there is no restriction
on n. The functionKk,n has the property,

Kk,n5( 9
$ni %

n

)
i 51

k

K1,ni
, ~28!

where$ni%[$n1 ,n2 , . . . ,nk%. Replacing Eq.~26! in Eq. ~3! we get

ZN~b,m!5trN~1!H 11 (
k51

N S N
k D (

n5k

`

~2b!nKk,nJ . ~29!

From property~28! and recombining the summations conveniently, Eq.~29! is finally written for
any value ofN as
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ZN~b,m!5H tr1~1!S 11 (
n51

`

~2b!nK1,nD J N

. ~30!

The grand potential per siteW(b,m) is

WN~b,m!52
1

Nb
ln ZN~b,m!52

1

b
lnS tr1~1!S 11 (

n51

`

~2b!nK1,nD D . ~31!

This expansion can be used to obtain analytical results of chain models in the high tempe
limit.

We can be misled by the notationK1,n in Eq. ~31! since in it are included not only connecte
subchains but also disconnected ones. For finiteN, Eq. ~31! is the simplest form of the grand
potential per site since in this casen can be bigger thanN which means to go around the cha
more than once.

A. The thermodynamic limit

Our main interest is to get the thermodynamical behavior of physical quantities that ch
terize physical systems. Those are attained only in the thermodynamic limit (N→`). We first take
the thermodynamic limit and after make the expansion~2!, so that we never goes along the cha
more than once when we calculate the normalized traces. In this thermodynamic limit the
Eq. ~30! is equal to the highest eigenvalue obtained from the associated quantum transfer m24

to the quantum system of interest. From Eq.~31!, the grand potential per siteW(b,m) in this limit
is

W~b,m!52 lim
N→`

1

Nb
ln ZN~b,m!52

1

b
lnS tr1~1!S 11 (

n51

`

~2b!nK1,nD D . ~32!

Equations~31! and~32! look alike. Their difference relies on the fact that in Eq.~32! the biggest
subchain that contributes toK1,n has at most the length of the chain. Equation~32! confirms that
the grand potential is an intensive quantity.

Certainly our aim is to be able to calculate the smallest possible number of open subch
obtain the grand potential per site. But the definition ofK1,n @see Eq.~27!# includes connected a
well disconnected subchains. In Eq.~32! we have the following sum to calculate:

j[ (
n51

`

~2b!nK1,n . ~33!

Let us define

Gm[ (
n5m

`

~2b!nK1,m
(n) ~34!

as a summation of powers series ofb. The expression of K1,m
(n) is given by Eq.~16c!. We point out

that only connected open subchains contribute to the functionsGm . We define the functionw(l)
in terms of the functionsGm as follows:

w~l!5 (
m51

`
Gm

lm , ~35!

wherel is a parameter. In Appendix C we show that the
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j5 (
n50

`
dn

dln S w~l!n11

~n11!! D U
l51

. ~36!

From Eqs.~27! and ~32! we have that the connected and disconnected open subchains
tribute to the grand potential per site. In the thermodynamic limit we have from Eqs.~34!–~36!
that all these subchains can be derived only from a sum of connected open subchains~for details
see Appendix C!. We finally write the grand potential per site simply as

W~b,m!52
1

b
$ ln~ tr1~1!!1 ln~11j!%. ~37!

Due to the fact thatj can be derived from the functionw(l), one has the consequence tha
much smaller number of terms has to be calculated at eachb-order in theb-expansion of
W(b,m). The weight of eachg-trace in Eq.~37! is already included in the definition ofj.

III. THE HEISENBERG XXZ MODEL

Let us consider the Hamiltonian of the well known anisotropic one-dimensional Heisen
XXZ model with spin-12,

1,2

H5
1

2 (
j 51

N

~s j
xs j 11

x 1s j
ys j 11

y 1Ds j
zs j 11

z 22hs j
z!, ~38!

whereh is the external magnetic field and (s j
x ,s j

y ,s j
z) are the Pauli matrices at thej th site on a

periodic chain withN space sites andD is called the anisotropy parameter. ForD.0 (D,0) we
have a repulsive~attractive! interaction core. The caseD51 (D521) corresponds to the isotro
pic antiferromangetic~ferromagnetic! Heisenberg model with fully polarized ground state.

Through the Jordan–Wigner transformation,25 the Hamiltonian~38! is mapped on a spinles
fermionic model, whose Hamiltonian is

H5(
j 51

N

~ t~aj
†aj 111aj 11

† 1aj !1Vnjnj 111Enj !1NS h1
D

2 D , ~39!

with V52D, E522h22D, whereni5ai
†ai and ai

†(ai) is the fermionic creation~annihilation!
operator at sitej . The operatorsai

† and ai satisfy the usual anticommutation relations of t
fermionic fields. The hopping constantt is included in Hamiltonian~39! only to help us count the
powers of the terms that contribute to a given orderbn in the b-expansion of the Helmholtz free
energy per site. Throughout our calculations, we taket51. The termN(h1 D/2) leads to a shift
in the energy of the ground state of the model.

A. High temperature expansion

In this section we calculate theb-expansion of the Helmholtz free energy per site of the XX
model, whose Hamiltonian is given by Eq.~39!, up to orderb3.

In order to apply the method derived in Sec. II, we write Hamiltonian~38! as H
5( i 51

N H i ,i 11 , where

H i ,i 11[Ei ,i 111T i ,i 11
1 1T i ,i 11

2 1V i ,i 11 , ~40!

and each term on the rhs of Eq.~40! is defined asEi ,i 11[ 1
2E(ni1ni 11), T i ,i 11

2 [tai
†ai 11 ,

T i ,i 11
1 [tai 11

† ai andV i ,i 11[Vnini 11 .
Our aim is to obtain the Helmholtz free energy per site of the XXZ model in the therm

namic limit. For doing that we need the auxiliary functionw(l) @see Eq.~35!# of the XXZ model.
This function is calculated from the functionsGm that are written in terms of K1,m

(n) @see Eq.~34!#.
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Since we intend to calculate theb-expansion of the Helmholtz free energy per site of the XX
model up to orderb3, we need to obtain the analytical expressions ofG1 , . . . ,G4 , namely,

G152bK1,1
(1)1b2K1,1

(2)2b3K1,1
(3)1b4K1,1

(4)1O~b5!, ~41a!

G25b2K1,2
(2)2b3K1,2

(3)1b4K1,2
(4)1O~b5!, ~41b!

G352b3K1,3
(3)1b4K1,3

(4)1O~b5!, ~41c!

G45b4K1,4
(4)1O~b5!. ~41d!

In Appendix D the functions K1,m
(n) in Eqs.~41! are written as sums of normalized traces.

In particular, for Hamiltonian~39! the hopping terms (T i ,i 11
1 and T i ,i 11

2 ) in the normalized
traces only contribute to those functions K1,m

(n) where we haveH i ,i 11
l with l .1. Since we are

calculating traces, the number ofT i ,i 11
1 ’s in a given normalized trace has to be equal to the num

of termsT i ,i 11
2 ’s in it. Otherwise, the normalized trace is null.

Calculating explicitly the normalized traces that contribute to K1,m
(n) ~see Appendix D! for the

XXZ model, we obtain the following.
( i ) m51:

K1,1
(1)5

E

2
1

V

4
, ~42a!

K1,1
(2)5

t2

4
1

3E2

16
1

EV

4
1

V2

8
, ~42b!

K1,1
(3)5

5E3

96
1

V3

24
1

Et2

8
1

VE2

8
1

EV2

8
, ~42c!

K1,1
(4)5

t4

48
1

E2t2

32
1

3E4

256
1

VE3

24
1

E2V2

16
1

EV3

24
1

V4

96
. ~42d!

( i i ) m52:

K1,2
(2)5

5E2

16
1

3EV

8
1

V2

8
, ~43a!

K1,2
(3)5

E3

4
1

V3

8
1

Et2

4
1

17VE2

32
1

7EV2

16
1

Vt2

8
, ~43b!

K1,2
(4)5

t4

24
1

5E2t2

24
1

95E4

768
1

25VE3

64
1

33E2V2

64
1

5EV3

16
1

7V4

96
1

t2V2

24
1

EVt2

6
. ~43c!

( i i i ) m53:

K1,3
(3)5

3E3

16
1

V3

16
1

23VE2

64
1

EV2

4
, ~44a!

K1,3
(4)5

41E2t2

192
1

59E4

256
1

85VE3

128
1

101E2V2

128
1

7EV3

16
1

7t2V2

96
1

23EVt2

96
1

3V4

32
. ~44b!
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( iv) m54:

K1,4
(4)5

29E4

256
1

19VE3

64
1

5E2V2

16
1

5EV3

32
1

V4

32
. ~45!

Substituting those expressions in Eqs.~41! ~taking t51! and those in Eq.~35! we obtain the
auxiliary functionw(l) for the XXZ model. Using the algebraic languageMAPLE 5.1 we calculate
the Helmholtz free energy per site of the model up to orderb3, that is,

W~b!5
ln~2!

b
1WI~b!1WF~b!2

D

8
b21

1

4 S h21
D2

6 Db31O~b4!, ~46!

whereWI(b) is the Helmholtz free energy per site of the Ising model24,26 up to orderb3, that is,

WI~b!52
ln~2!

b
2S h2

2
1

D2

8 Db1
h2D

2
b21S h4

12
2

h2D2

4
1

D4

192Db31O~b4! ~47!

and WF(b) is the Helmholtz free energy per site of the free fermion model23,26 up to same
b-order,

WF~b!52
ln~2!

b
2

t2

4
b2

t4

32
b31O~b4!. ~48!

We rewrite the Helmholtz free energy per site@Eq. ~46!# using the constants of Hamiltonian i
Ref. 27. Comparing our results with Eq.~6.5! of this reference, we conclude (i ) both results agree
up to orderb; ( i i ) our coefficient at orderb2 is 2J3 cos(g)1Jcos(g)h2, which means that we
have two misprints in Eq.~6.5! of Ref. 27, that is, the sign of2J3 cos(g)b2 and a missing power
of J multiplying h2 @the two terms that contribute to orderb2 in Eq. ~6.5! have different dimen-
sions#; ( i i i ) and it is missing the term2J2 cos2(g)h2b3 in Eq. ~6.5! of Ref. 27~we point out that
without this term we do not recover the limiting case of Ising model24,26(t50) from XXZ model!.
Morever, the other terms at orderb3 in Eq. ~6.5! have the following misprints:2 1

4J
4b3 should be

1
2J

4b3 and the term2 1
6J

4 cos2(g)b3 should be2
3J

4 cos2(g)b3. With the previous corrections we ge
the Helmholtz free energy per site of the Ising model and the free fermion model as limiting
of the XXZ model.

In Ref. 27 Destri and de Vega obtained the Helmholtz free energy per site of the XXZ m
as a nonlinear integral equation~NLIE!, as similarly obtained by Klu¨mper.23 Once our disagree
ment with the result of Ref. 27 is proportionalh2 at orderb3, we calculate theb-expansion of the
magnetic susceptibilityx(b) @x(b)52 ]2W(b)/]h2#, obtained from Eq.~46!. In Fig. 1 we plot
the curve of the magnetic susceptibility derived from NLIE in Refs. 23 and 27, theb-expansion of

FIG. 1. The pointed line corresponds theb-expansion~46!, the dashed line represents theb-expansion obtained by Destr
and de Vega~Ref. 27! and the solid line corresponds to the numerical solution of the NLIE in Ref. 23 and 27.
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x(b) derived in Ref. 27 and our ownb-expansion ofx(b). From Fig. 1 we see that our resu
with D5 1

2 andD5&/2 coincides with the one derived from the NLIE in Refs. 23 and 27 fob
up to 0.3, while theb-expansion of Destri and de Vega does not.

As a final check of ourb-expansion~46! we plot in Fig. 2 the third partial derivative with
respect tob of the functionbW(b). We compare the numerical solution for this function obtain
from the NLIE,23,27 in the same reference, and our results derived from Eq.~46!. In the region
b'0, the function (]3/]b3) (bW(b)) is a straight line. From Fig. 2 we see that the result deriv
from Eq.~46! is identical to the one from the NLIE forb up to 0.1. ForhÞ0 in Fig. 2 we get that
the function (]3/]b3) (bW(b)) derived from theb-expansion in Ref. 27 does not even touch t
exact curve.

We conclude that even though the NLIE derived in Refs. 23 and 27 gives the exact th

dynamics of the XXZ model with spin-1
2 the b-expansion obtained in Ref. 27 is not correct.

IV. CONCLUSIONS

There are several interesting one-dimensional models with translational invariance, w
teractions between first neighbors only, satisfying periodic boundary conditions. They are g
cally called chain models, some of which have the property of integrability and to which the B
ansatz has been applied to solve them exactly atT50 and at finiteT. Their thermodynamical
properties are obtained through coupled integral equations which demand numerical analys
solved~as examples see Refs. 10–14!.

In this article we present a new analytical method to get theb-expansion coefficients of the
grand potential per site, for translationally invariant chain models with nearest-neighbors in
tions. Differently from our previous works20–22we calculate directly theb-expansion of the grand
potential per siteW(b,m). The weight of each subchain inW(b,m) is obtained, and we show
explicitly that the grand potential per site is an intensive quantity. In the thermodynamic
(N→`) we show thatW(b,m) can be derived from an auxiliary functionw(l) that is written
only in terms of open connected subchains. The present approach gives ab-expansion of
W(b,m), whose coefficient of orderbn can be obtained exactly for arbitrary value ofn. The
existence of this auxiliary function allows us to get higher order terms in theb-expansion of
W(b,m) than we were able to before, in Refs. 20–22. The coefficient of orderbn is analytically
obtained, and it is exact. The number of terms~traces! to be calculated when deriving eac
coefficient in theb-expansion ofW(b,m) is much smaller than before.

The present method applies to chains in both real space and momentum space, and th
given by Eq.~37! is valid for both classic and quantum models~bosonic and/or fermionic fields!.

FIG. 2. We plot the function (]3/]b3) (bW(b)) vs b. The pointed line~a straight line! corresponds to the results obtaine
from ~46!, the dashed line theb-expansion obtained by Destri and de Vega~Ref. 27! and the solid line the numerica
solution of the NLIE~Refs. 23 and 27!.
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As an illustrative application of the method, we consider the spin-1
2 Heisenberg XXZ chain

model and derive its Helmholtz free energy per site up to orderb3. The exact thermodynamics o
the XXZ model is derived in Refs. 23 and 27. Our results in the high temperature region
agree with the numerical solution of the NLIE derived in those references in this interv
temperature. Ourb-expansion~46! recovers the Helmholtz free energy per site in two limiti
cases: the Ising model (t50) and the free fermion model (D5h50). We compare our high
temperature expansion of theW(b) Eq. ~46! of the XXZ model with the one derived by Dest
and de Vega.27 We show that Eq.~6.5! of this last reference has misprints and it is missing a te
at orderb3.

As a final word we want to point out that the present approach can be well applied to m
that do not have the property of integrability. Besides, once we have closed expressions
coefficients of theb-expansion ofW(b), the method can be implemented through a procedur
an algebraic language to get highb-order terms of the high temperature expansion ofW(b) for
the model under interest. We hope to report in the future progress in this direction.
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APPENDIX A: GRAPHIC REPRESENTATION OF NORMALIZED TRACES

We have a better visualization of the normalized traces that contribute to^Kn& through a
graphic representation. In the graph, the operatorK i ,i 11 is represented by a straight line that link
the sitesi and i 11. In the case where we have a product of operatorsK i ,i 11 , for each operator a
line is drawn at a different step of the ladder. It is important in the normalized trace the ord
which the operatorsK i ,i 11 appear in the string. We take this order into account in our gr
representation of the normalized traces. To exemplify how to take into account the order
operators in the string, we consider the following examples:

~A1!

~A2!

~A3!

~A4!

The graphs~A1!–~A4! are connectedgraphs, which means that the normalized trace canno
written as a product of normalized traces of smaller number of operatorsK i ,i 11 .
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APPENDIX B: CALCULATION OF ŠKn
‹

In this appendix we give the explicit definition of Kr ,m
(4) in terms of which we writêK4&. The

expression of̂ K4& plus Eqs.~24! will allow us to write down^Kn& for arbitraryn.
We define K1,m

(4) as

K1,1
(4)5

^K1,2
4 &g

4!
, ~B1a!

K1,2
(4)5

^K1,2
3 K2,3&g

3!
1

^K1,2K2,3
3 &g

3!
1

^K1,2
2 K2,3

2 &g

2!2!
, ~B1b!

K1,3
(4)5

^K1,2
2 K2,3K3,4&g

2!
1

^K1,2K2,3
2 K3,4&g

2!
1

^K1,2K2,3K3,4
2 &g

2!
, ~B1c!

K1,4
(4)5^K1,2K2,3K3,4K4,5&g . ~B1d!

The other traces can be written as products of traces of lower order and they are

K2,2
(4)5

^K1,2
3 K3,4&g

3!
1

^K1,2K3,4
3 &g

3!
1

^K1,2
2 K3,4

2 &g

2!2!
, ~B2a!

K2,3
(4)5

^K1,2
2 K2,3K4,5&g

2!
1

^K1,2K2,3
2 K4,5&g

2!
1

^K1,2K2,3K4,5
2 &g

2!

1
^K1,2

2 K3,4K4,5&g

2!
1

^K1,2K3,4
2 K4,5&g

2!
1

^K1,2K3,4K4,5
2 &g

2!
, ~B2b!

K2,4
(4)5^K1,2K2,3K3,4K5,6&g1^K1,2K3,4K4,5K5,6&g1^K1,2K2,3K4,5K5,6&g , ~B2c!

K3,3
(4)5

^K1,2
2 K3,4K5,6&g

2!
1

^K1,2K3,4
2 K5,6&g

2!
1

^K1,2K3,4K5,6
2 &g

2!
, ~B2d!

K3,4
(4)5^K1,2K2,3K4,5K6,7&g1^K1,2K2,3K4,5K6,7&g1^K1,2K2,3K4,5K6,7&g , ~B2e!

K4,4
(4)5^K1,2K3,4K5,6K7,8&g . ~B2 f!

From those definitions, the normalized trace^K4& is written as

^K4&
4!

5NK1,1
(4)1NK1,2

(4)1NK1,3
(4)1NK1,4

(4)1
N~N23!

2!
K2,2

(4)1
N~N24!

2!
K2,3

(4)1
N~N25!

2!
K2,4

(4)

1
N~N24!~N25!

3!
K3,3

(4)1
N~N25!~N26!

3!
K3,4

(4)1
N~N25!~N26!~N27!

4!
K4,4

(4) .

~B3!

We use the following notations to write the coefficients of Eqs.~24! and ~B3!:

C1,1
N 5N,

C1,2
N 5N, C2,2

N 5
N~N23!

2!
,

~B4!
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C1,3
N 5N, C2,3

N 5
N~N24!

2!
, C3,3

N 5
N~N24!~N25!

3!
,

C1,4
N 5N, C2,4

N 5
N~N25!

2!
, C3,4

N 5
N~N25!~N26!

3!
, C4,4

N 5
N~N25!~N26!~N27!

4!
.

Replacing the definitions given by Eqs.~B4! in Eqs.~24! and~B3!, we obtain a compact way
of writing the normalized traces:

^K&5C1,1
N K1,1

(1) , ~B5a!

^K2&
2!

5C1,1
N K1,1

(2)1C1,2
N K1,2

(2)1C2,2
N K2,2

(2) , ~B5b!

^K3&
3!

5C1,1
N K1,1

(3)1C1,2
N K1,2

(3)1C1,3
N K1,3

(3)1C2,2
N K2,2

(3)1C2,3
N K2,3

(3)1C3,3
N K3,3

(3) , ~B5c!

^K4&
4!

5C1,1
N K1,1

(4)1C1,2
N K1,2

(4)1C1,3
N K1,3

(4)1C1,4
N K1,4

(4)1C2,2
N K2,2

(4)1C2,3
N K2,3

(4)

1C2,4
N K2,4

(4)1C3,3
N K3,3

(4)1C3,4
N K3,4

(4)1C4,4
N K4,4

(4) . ~B5d!

From Eqs.~B4! we see that the coefficient that multiplies Kr ,m
(n) is independent ofn and it is equal

to

C1,m
N 5N, 1<m, ~B6a!

C2,m
N 5

N~N2m21!

2!
, 2<m, ~B6b!

C3,m
N 5

N~N2m21!~N2m22!

3!
, 3<m, ~B6c!

C4,m
N 5

N~N2m21!~N2m22!~N2m23!

4!
, 4<m. ~B6d!

Afterwards, for anyr<m<min(n,N), we obtain a general relation from Eqs.~B6! given by

Cr ,m
N 5

N

r S N2m21
r 21 D5

1

r (
k51

r

~21!r 1kkS m1r 2k21
r 2k D S N

k D , ~B7!

such that

^Kn&
n!

5 (
r 51

[n,N]

(
m5r

[n,N]
N

r S N2m21
r 21 DKr ,m

(n) . ~B8!

We are using the notation@n,N#5min(n,N).
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APPENDIX C: RELATION BETWEEN THE AUXILIARY FUNCTION w„l… AND j

In Eq. ~34! we define the functionGm ,

Gm[ (
n5m

`

~2b!nK1,m
(n) , ~C1!

and the auxiliary functionw(l),

w~l![ (
m51

`
Gm

lm . ~C2!

In this appendix we show that the grand potential per site, in the thermodynamic limit, ca
obtained from derivatives of powers of the functionw(l).

To calculate the grand potential per site@see Eq.~32!# we need to perform the sum

(
n50

`

~2b!nK1,n[j. ~C3!

Substituting the expression ofK1,n @Eq. ~27! with k51# in j and taking into account that in K1,m
(n)

we have to haven.m, Eq. ~C3! becomes

j5 (
n51

`

(
m51

n

~2b!nK1,m
(n) 2

1

2 (
n52

`

(
m52

n

~2b!nS m
1 DK2,m

(n) 1
1

3 (
n53

`

(
m53

n

~2b!nS m11
2 DK3,m

(n) 1 . . .

~C4!

[(
r 51

`

w r , ~C5!

wherew r is such that

w r[
~21!r 11

r (
n5r

`

(
m5r

n

~2b!nS m1r 22
r 21 DKr ,m

(n) . ~C6!

We drop the upper limit@n,N# condition in the sum overm @see Eq.~27!# because now we are
taking first the thermodynamic limit (N→`), which means that we always haven,N.

Applying the equality

(
n5r

`

(
m5r

n

¯ 5 (
m5r

`

(
n5r

`

¯ ~C7!

on Eq.~C6!, we obtain

w r5
~21!r 11

r (
m5r

` S m1r 22
r 21 D (

n5r

`

~2b!nKr ,m
(n) . ~C8!

From Eqs.~C1! and ~C2! we have

w~l!5 (
m51

`
1

lm (
n51

`

~2b!nK1,m
(n) . ~C9!

Our next step is to take powers of the functionw(l). We begin withw(l)2:
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w~l!25 (
m1 ,m251

`
1

lm11m2 (
n1 ,n251

`

~2b!n11n2K1,m1

(n1) K1,m2

(n2)

5 (
m52

`
1

lm (
n52

`

~2b!n( 9
$ni %

n

( 9
$mi %

m

K1,m1

(n1) K1,m2

(n2)

5 (
m52

`
1

lm (
n52

`

~2b!nK2,m
(n) . ~C10!

For arbitraryr we obtain

w~l!r5 (
m5r

`
1

lm (
n5r

`

~2b!nKr ,m
(n) ~C11!

and we note that

w~l!ul515w1 , ~C12a!

d

dl S w~l!2

2! D U
l51

5w2 , ~C12b!

A

dr 21

dl r 21 S w~l!r

r ! D U
l51

5w r . ~C12c!

Finally we have

j5(
r 51

`

w r5(
r 51

`
dr 21

dl r 21 S w~l!r

r ! D U
l51

, ~C13!

which shows that the sum~C3! can be obtained from a function that contains only open conne
subchains.

APPENDIX D: USEFUL RELATIONS BETWEEN K 1,m
„n … AND THE NORMALIZED TRACES

In Sec. III we calculate theb-expansion of the Helmholtz free energy per site of the XX
model up to orderb3. In order to do so, we need to write the functions K1,m

(n) @see Eq.~16c!# in
terms of the normalized traces instead of theg-traces.

For any quantum system driven by a Hamiltonian with interactions between first neig
only, invariant under translations along the chain, and null chemical potential, we have th
lowing.

~i! m51:

K1,1
(1)5^H1,2&, ~D1a!

K1,1
(2)5

1

2!
^H1,2

2 &, ~D1b!

K1,1
(3)5

1

3!
^H1,2

3 &, ~D1c!
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K1,1
(4)5

1

4!
^H1,2

4 &. ~D1d!

~ii ! m52:

K1,2
(2)5^H1,2H2,3&, ~D2a!

K1,2
(3)5

1

2!
@^H1,2

2 H2,3&1^H1,2H2,3
2 &#, ~D2b!

K1,2
(4)5

1

3! F ^H1,2
3 H2,3&1

1

2!
~2^H1,2

2 H2,3
2 &1^H1,2H2,3H1,2H2,3&!1^H1,2H2,3

3 &G . ~D2c!

~iii ! m53:

K1,3
(3)5^H1,2H2,3H3,4&, ~D3a!

K1,2
(4)5

1

2 F ^H1,2
2 H2,3H3,4&1

2

3
^H1,2H2,3

2 H3,4&1^H1,2H2,3H3,4
2 &1

1

3
^H1,2H2,3H3,4H2,3&G . ~D3b!

~iv! m54:

K1,4
(4)5^H1,2H2,3H3,4H4,5&. ~D4!
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A bi-Hamiltonian formulation for triangular systems
by perturbations

Wen-Xiu Maa)

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China

~Received 15 January 2001; accepted for publication 15 November 2001!

A bi-Hamiltonian formulation is proposed for triangular systems resulting from
perturbations around solutions, from which infinitely many symmetries and con-
served functionals of triangular systems can be explicitly constructed, provided that
one operator of the Hamiltonian pair is invertible. Through our formulation, four
examples of triangular systems are exhibited, which also show that bi-Hamiltonian
systems in both lower dimensions and higher dimensions are many and varied. Two
of four examples give local 211 dimensional bi-Hamiltonian systems and illus-
trate that multiscale perturbations can lead to higher-dimensional bi-Hamiltonian
systems. ©2002 American Institute of Physics.@DOI: 10.1063/1.1432775#

I. INTRODUCTION

The bi-Hamiltonian formulation is a great success in the Hamiltonian theory of differe
equations.1 It has attracted the attention of a wide audience within both the mathematical
munity and the physical community due to its importance in producing symmetries and cons
functionals, and has already become one of active research directions in the field of soliton
and integrable systems.

In this paper, we are concerned with the bi-Hamiltonian formulation of triangular sys
resulting from various perturbations around solutions, specific systems of which were furnis
Refs. 2–4. Such triangular systems provide candidates of integrable couplings for given inte
systems.5,6 A general triangular system reads as

H ut5K~u!5K~u,...,u(k)!,

v t5S~u,v !5S~u,v,...,u( l ),v ( l )!,
~1.1!

whereu5u(t,x), v5v(t,x), andu(n) andv (n) are derivatives with respect to the spatial variab
x. Such a concrete example by a first-order perturbation is given by

H ut5K~u!,

v t5K8~u!@v#,
~1.2!

whereK8(u)@v# denotes the Gateaux derivative ofK(u) at a directionv, i.e.,

K8~u!@v#5
]

]« U
«50

K~u1«v !.

A mathematical structure called the perturbation bundle has been established in Ref. 5 to s
integrable properties. Note that the second component of the above-mentioned system is
linearized system of the original systemut5K(u), and thus the symmetry problem leads to
triangular system together with the original system, which also shows the importance of stu
triangular systems~see Ref. 6 for more discussion!. Other similar examples of specific triangula

a!Also at Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700. Electronic
mawx@cityu.edu.hk
14080022-2488/2002/43(3)/1408/14/$19.00 © 2002 American Institute of Physics
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systems were presented by means of perturbations in Refs. 2–4. However, there is no dis
on the bi-Hamiltonian formulation of general triangular systems by perturbations, even the sp
systems mentioned previously.

With a view to exposing integrability, we would like to answer whether there exists
bi-Hamiltonian formulation for triangular systems resulting from various perturbations ar
solutions. It will be shown that a bi-Hamiltonian formulation of the resulting triangular syst
can be inherited from an original bi-Hamiltonian system. The general formulation allows
present various examples of bi-Hamiltonian systems, in both 111 and 211 dimensions.

The paper is organized as follows. In Sec. II, we shall choose perturbed systems of
bi-Hamiltonian systems as starting systems and introduce our triangular systems by using
bations around solutions of starting systems, which contain many special triangular syste
Refs. 2–4. Then in Sec. III, a bi-Hamiltonian formulation for the resulting triangular systems
be proposed, based on the bi-Hamiltonian formulation of starting systems. In Sec. IV, we w
on to exhibit four examples of triangular systems through the general bi-Hamiltonian formul
which also show that bi-Hamiltonian systems in both 111 and 211 dimensions are many an
varied. Two of four examples give local 211 dimensional bi-Hamiltonian systems and illustra
that multiscale perturbations can lead to higher-dimensional bi-Hamiltonian systems. Fina
Sec. V, some concluding remarks will be given.

II. TRIANGULAR SYSTEMS BY PERTURBATIONS

A. Bi-Hamiltonian systems

Assume that we have a bi-Hamiltonian system

ut5K~u!5J
dH̃1

du
5M

dH̃0

du
, H̃05E H0 dx, H̃15E H1 dx, ~2.1!

whereJ andM constitute a Hamiltonian pair~see Refs. 7–9 for more information!, t is a single
variable butx can be a single or vector variable. If one operator of the Hamiltonian pa
invertible, we can have infinitely many symmetries$Kn%n50

` and conserved functionals$H̃n%n50
` ,

which can be explicitly computed through

H Kn5Fn21K~u!5~MJ21!n21K~u!, n>1,

H̃5E Hn dx, Hn5E
0

1

^u,~J21Fn21K !~lu!&dl, n>0,
~2.2!

where^•,•& denotes the standard inner product of the corresponding Euclidean space. Mor
they are related through the bi-Hamiltonian formulation10

Kn5J
dH̃n

du
5M

dH̃n21

du
, n>1. ~2.3!

Fuchssteiner and Fokas11 discovered an important fact that whenJ and M constitute a Hamil-
tonian pair andJ is invertible, the operatorF5MJ21 is hereditary,12 i.e.,

F8@FX#Y2FF8@X#Y5F8@FY#X2FF8@Y#X

holds for any vector fieldsX andY, whereF8@X# denotes the Gateaux derivative

F8@X#5
]

]e u «50F~u1«X!.
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This condition is actually equivalent to an invariance of Lie derivative ofF ~see, e.g., Refs. 13 an
14!. It is the hereditariness ofF that gives rise to an explanation why soliton systems come
hierarchies.

B. Perturbed systems

Let us now choose a perturbed system with a perturbation parameter«:

ut5Kper~u!ª(
j 50

m

a j«
jKi j

~u!5J
dH̃1

per

du
5M

dH̃0
per

du
, ~2.4!

wherem>0, thea j are arbitrary constants, thei j are arbitrary natural numbers@which means to
take arbitrary vector fieldsKi j

(u) from $Kn%n51
` #, and two Hamiltonian functionals read

H̃0
per5E H0

perdx, H0
per5(

j 50

m

a j«
jHi j

, H̃1
per5E H1

perdx, H1
per5(

j 50

m

a j«
jHi j 11 . ~2.5!

This system~2.4! is called a starting system, which is nothing but a generalized system o
original bi-Hamiltonian system~2.1!. Following the general scheme shown in~2.2!, we have
infinitely many symmetries and conserved functionals

5 Kn
per
ªFn21Kper5(

j 50

m

a j«
jKi j 1n21~u!, n>1,

H̃n
per
ªE Hn

perdx, Hn
per5(

j 50

m

a j«
jHi j 1n~u!, n>0,

~2.6!

for the starting system~2.4!, since we can directly check that

Kn
per5J

dH̃n
per

du
5M

dH̃n21
per

du
, n>1.

C. Triangular systems

For any integersN>0 andr>0, take a perturbation series:

ûN5(
i 50

N

« ih i , h i5h i~y0 ,y1 ,y2 ,...,yr ,t !, ~2.7!

whereyi5« ix, 0< i<N, are all slow variables. Now we make a perturbation around solution
the starting system~2.4! and observe theNth order perturbation system

ûNt5Kper~ ûN!1o~«N!,

whereu, h i , 0< i<N are supposed to be column vectors of the same dimension. By the T
expansion, this leads to an equivalent and bigger system

h i t5
1

i !

] i

]« i Kper~ ûN!U«505 (
j 50

min(m,i )
a j

~ i 2 j !!

] i 2 j

]« i 2 j Ki j
~ ûN!U

«50

, 0< i<N. ~2.8!

For brevity, we rewrite it as a concise form

ĥNt5~perNKper!~ ĥN!5~~perNKper!0
T ,...,~perNKper!N

T !T, ĥN5~h0
T ,...,hN

T !T, ~2.9!
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whereT denotes the matrix transpose. Noting that

ûN5ûi1« i 11 (
j 50

N2 i 21

« jh j 1 i 11 , ûi5(
j 50

i

« jh j , 0< i<N21,

an application of the Taylor expansion tells us that

~perNKper! i5
1

i !

] i

]« i Kper~ ûN!U
«50

5
1

i !

] i

]« i Kper~ ûi !U
«50

, 0< i<N21,

and thus the perturbation system~2.8! is triangular, i.e., the (i 11)th component h i t

5(perNKper) i just involves the firsti 11 dependent variablesh0 ,...,h i but no the other dependen
variablesh i 11 ,...,hN .

In our formulation, the superscript ‘‘per’’ denotes the perturbed objects such as the pert
tensor fields and the perturbed functionals as in~2.4! and ~2.5!, but the prefix ‘‘perN’’ means the
perturbation resulting from theNth order perturbation~2.7! of the dependent variableu. The small
parameter« is involved in both the starting system~2.4! and the perturbation series~2.7!, but there
is no relation among three integersm, N, andr that we need to take in the starting system~2.4!
and the perturbation series~2.7!. This demonstrates diversity to formulate our triangular syste
If we take a special choice ofa051 andKi 0

5K in our construction, the triangular system~2.8!
becomes a coupling system ofut5K(u), because its first component ish0t5K(h0). This paves
a way for constructing integrable couplings of given integrable systems.4,6 If a starting system is
particularly chosen as

ut5Kper~u!5K~u!1a«K~u!, a5const, ~2.10!

the following specific triangular system

H h0t5K~h0!,

h1t5K8~h0!@h1#1aK~h0!,
~2.11!

will be engendered upon making a first-order perturbation. This system looks simple,
generalizes the triangular system~1.2! resulting from the symmetry problem. The main objecti
of this paper is to propose a bi-Hamiltonian formulation for the triangular systems determin
~2.8!, which contain two specific interesting triangular systems~1.2! and ~2.11!.

III. BI-HAMILTONIAN FORMULATION

For now on, we focus on the establishment of a bi-Hamiltonian formulation for the triang
systems determined by~2.8!. We would actually like to show that a bi-Hamiltonian formulation
the resulting triangular systems can be inherited from an original bi-Hamiltonian system~2.1!.

To the end, let us first introduce a new Hamiltonian pair:

~perNJ!~ ĥN![ ĴN~ ĥN!, ~perNM !~ ĥN![M̂N~ ĥN!, ~3.1!

which are defined as follows:
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~perNP!~ ĥN![ P̂N~ ĥN!5@~ P̂N~ ĥN!! i j # (N11)3(N11)

5F 1

~ i 1 j 2N!!

] i 1 j 2NP~ ûN!

]« i 1 j 2N U
«50

G
(N11)3(N11)

53
0 ¯ 0 P~h0!

A � A
1

1!

]P~ ûN!

]« U
«50

0 A A A

P~h0!
1

1!

]P~ ûN!

]« U
«50

¯

1

N!

]NP~ ûN!

]«N U
«50

4 , P5J,M ;

~3.2!

and a new hereditary recursion operator defined by

~perNF!~ĥN![F̂N~ ĥN!5@~F̂N~ ĥN!! i j # (N11)3(N11)

5F 1

~ i 2 j !!

] i 2 jF~ ûN!

]« i 2 j U
«50

G
(N11)3(N11)

53
F~h0! 0 ¯ 0

1

1!

]F~ ûN!

]« U
«50

F~h0! � A

A � � 0

1

N!

]F~ ûN!

]« U
«50

¯

1

1!

]F~ ûN!

]« U
«50

F~h0!
4 , ~3.3!

wherei , j 50,1,...,N, andûN is defined by~2.7!. These operators will be used to establish our n
bi-Hamiltonian formulation for the triangular systems by~2.8!. The structures of these operato
originate from those proposed for single Hamiltonian formulations in Ref. 4. The only differ
is the scale of perturbations. In our previous work,4 single-scale perturbations were considered,
in this paper, multiscale perturbations will need to be considered. Like single-scale perturb
multiscale perturbations also guarantee that two operators defined by~3.2! constitute a Hamil-
tonian pair and the operator defined by~3.3! is hereditary. The proofs are direct and very simi
to those in the case of single-scale perturbations,4 although they are rather laborious and mu
harder~see Ref. 6 for a detailed proof!. Obviously, however, new operators still satisfy the fo
lowing coupled condition:

F̂N5M̂N~ ĴN!21, ĴNĈN5F̂NĴN , ĈN5~F̂N!†, ~3.4!

where the superscript † means to take the adjoint operation. The existence of the inverse o
( ĴN)21 is guaranteed by the existence ofJ21, following the definition ofĴN

21 as in~3.1! and~3.2!.

The coupled condition~3.4! ensures1 that conserved functionals recursively determined byF̂N

commute with each other under two Poisson brackets generated byĴN andM̂N .
For the triangular system defined by~2.8!, new Hamiltonian functionals can be chosen as

~perNH̃0
per!~ ĥN!ª

1

N!

]N

]«N H̃0
per~ ûN!U

«50

5 (
j 50

min(m,N)
a j

~N2 j !!

]N2 j

]«N2 j H̃ i j
~ ûN!U

«50

, ~3.5!
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~perNH̃1
per!~ ĥN!ª

1

N!

]N

]«N H̃1
per~ ûN!U

«50

5 (
j 50

min(m,N)
a j

~N2 j !!

]N2 j

]«N2 j H̃ i j 11~ ûN!U
«50

, ~3.6!

whereH̃0
per andH̃1

per are defined by~2.5!, andûN is defined by~2.7!. They will offer the required
Hamiltonian functionals in our bi-Hamiltonian formulation of the triangular system~2.8!. The
above-mentioned crucial form of the Hamiltonian functionals are motivated by a study o
perturbation system of the KdV equation.16

Now a direct computation can show that the triangular system~2.8! has the following bi-
Hamiltonian formulation:

ĥNt5 ĴN

d~perNH̃1
per!

dĥN
5M̂N

d~perNH̃0
per!

dĥN
, ĥN5~h0

T ,h1
T ,...,hN

T !T. ~3.7!

Here a Hamiltonian pair ofĴN and M̂N is defined by~3.1! and ~3.2!, and two Hamiltonian
functionals perNH̃0

per and perNH̃1
per are defined by~3.5! and~3.6!. The bi-Hamiltonian formulation

~3.7! is what we intend to establish for the triangular system~2.8!. It follows that the triangular
system~2.8! is a good example of integrable systems.

In fact, let us first introduce

5 perNKn
per
ªS ~Kn

per~ ûN!!TU
«50

,
1

1!

]

]«
~Kn

per~ ûN!!TU
«50

,...,
1

N!

]N

]«N ~Kn
per~ ûN!!TU

«50
D T

, n>1,

perNH̃n
per
ª

1

N!

]N

]«N H̃n
per~ ûN!U

«50

, n>0, ~3.8!

where Kn
per and H̃n

per are defined by~2.6!, and ûN is defined by~2.7!. Then it can directly be
verified that

H perNKn
per5~F̂N!n21~perNKper!, n>1,

perNH̃n
per5 (

j 50

min(m,N)
a j

~N2 j !!

]N2 j

]«N2 j H̃ i j 1n~ ûN!U
«50

, n>0,

and further

perNKn
per5 ĴN

d~perNH̃n
per!

dĥN
5M̂N

d~perNH̃n21
per !

dĥN
, n>1.

Therefore, it follows from the bi-Hamiltonian formulation~3.7! that perNKn
per, n>1, and

perN(H̃n
per),n>0, defined by~3.8!, are symmetries and conserved functionals of the triang

system~2.8!, respectively. This implies that the triangular system~2.8! is integrable if we start
from a bi-Hamiltonian system~2.1!.

Summing up, the above-given manipulation shows how to inherit the bi-Hamiltonian fo
lation and to compute symmetries and conserved functionals for the triangular system~2.8! while
taking perturbations for the starting system~2.4!. In Sec. IV, we perform applications of th
above-given formulation to four concrete examples, in which new bi-Hamiltonian systems in
111 dimensions and 211 dimensions will be formulated.
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IV. ILLUSTRATIVE EXAMPLES

Let us consider the KdV equation

ut5K~u!5uxxx16uux . ~4.1!

It is well known that it has a local bi-Hamiltonian formulation1,10

ut5K~u!5J
dH̃1

du
5M

dH̃0

du
, ~4.2!

where the Hamiltonian pair and the Hamiltonian functionals are given by

J5]x , M5]x
314u]x12ux , H̃05E 1

2
u2 dx, H̃15E S 1

2
uuxx1u3D dx. ~4.3!

Therefore, it has infinitely many symmetries and conserved functionals

Kn5Fnux , H̃n5E Hn dx, Hn5E
0

1

u~Cnu!~lu! dl, n>0, ~4.4!

where the hereditary recursion operatorF and its adjoint operatorC read as

F~u!5MJ215]x
214u12ux]x

21 , C5F†5]x
214u22]x

21ux , ~4.5!

where]21]5]]2151. For example, we can obtain

H K2~u!5u5x110uuxxx120uxuxx130u2ux ,

H2~u!5
1

2
uu4x1

10

3
u2uxx1

5

3
uux

21
5

2
u4.

~4.6!

Note that in~4.4! we addedK05ux to the Abelian symmetry algebra$Kn%n51
` as defined in~2.2!.

If we choose the original KdV equation as a starting equation, taking single-scale per
tions leads to the standard perturbation KdV systems,15 which were proved to be bi-Hamiltonian.16

In what follows, we will formulate other examples of integrable couplings for the KdV equa
by choosing proper perturbed equations as starting equations and taking biscale perturba
Sec. IV B. All examples also show that bi-Hamiltonian systems in both 111 and 211 dimensions
are many and varied.

A. The case of single-scale perturbations

We take a special perturbed equation

ut5Kper~u!5K1~u!1«K1~u!5J
dH̃1

per

du
5M

dH̃0
per

du
~4.7!

with two Hamiltonian functionals

H̃0
per5H̃01«H̃0 , H̃1

per5H̃11«H̃1 ~4.8!

as a starting equation. HereK15K,J,M ,H̃0 ,H̃1 are given by~4.3!, ~4.4!, and~4.5!. The first-order
perturbation

û15h01«h1

yields the following triangular system:
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H h0t5K1~h0!5h0xxx16h0h0x ,

h1t5K18~h0!@h1#1K1~h1!5h1xxx16~h0h1!x1h0xxx16h0h0x .
~4.9!

According to our scheme of construction in Sec. III, its Hamiltonian pair and correspon
hereditary recursion operator are

Ĵ15F 0 ]x

]x 0 G , M̂15F 0 M0

M0 M1
G , F̂15FF0 0

F1 F0
G , ~4.10!

with the entries ofM̂1 andF̂1 being defined by

Mi5d i0]x
314h0]x12h0x , F i5d i0]x

214h i12h ix]x
21 , i 50,1, ~4.11!

whered0i is the Kronecker symbol. The triangular system~4.9! has a local bi-Hamiltonian for-
mulation:

ĥ1t5 Ĵ1

d~per1H̃1
per!

dĥ1
5M̂1

d~per1H̃0
per!

dĥ1
, ĥ15~h0 ,h1!T, ~4.12!

with two Hamiltonian functionals

¦

per1H̃0
per5~per1H̃0

per!~ ĥ1!5
]H̃0~ û1!

]«
U

«50

1H̃0~h0!

5E S h0h11
1

2
h0

2D dx,

per1H̃1
per5~per1H̃1

per!~ ĥ1!5
]H̃1~ û1!

]«
U

«50

1H̃1~h0!

5E S 1

2
h0xxh11

1

2
h0h1xx13h0

2h11
1

2
h0h0xx1h0

3D dx.

~4.13!

Noting that in this example, we have

Kn
per5Kn1«Kn , H̃n

per5H̃n1«H̃n , n>0,

infinitely many symmetries and conserved functionals of the triangular system~4.9! are computed
as follows:

5 per1~Kn
per!5F Kn~h0!

]Kn~ û1!

]« U
«50

1Kn~h0! G , n>0,

per1~H̃n
per!5

]H̃n~ û1!

]«
U

«50

1H̃n~h0!, n>0.

~4.14!

Second, we take another special perturbed equation

ut5Kper~u!5K1~u!1«K2~u!, ~4.15!

as a starting equation, which can be written as a bi-Hamiltonian system
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ut5Kper~u!5J
dH̃1

per

du
5M

dH̃0
per

du
, H̃0

per5H̃01«H̃1 , H̃1
per5H̃11«H̃2 . ~4.16!

HereK15K, J, M , H̃0 , H̃1 , H̃2 , K2 , are determined by~4.1!, ~4.3!, and~4.6!. The second-order
perturbation yields the following triangular system:

5
h0t5h0xxx16h0h0x ,

h1t5h1xxx16~h0h1!x1K2~h0!,

h2t5h2xxx16~h0h2!x16h1h1x1
]K2~ û2!

]« U
«50

,

~4.17!

where

]K2~ û2!

]« U
«50

5h1,5x110h1h0xxx110h0h1xxx120h1xh0xx

120h0xh1xx160h0h0xh1130h0
2h1x . ~4.18!

The corresponding Hamiltonian pair and hereditary recursion operator are

Ĵ25F 0 0 ]x

0 ]x 0

]x 0 0
G , M̂25F 0 0 M0

0 M0 M1

M0 M1 M2

G , F̂25FF0 0 0

F1 F0 0

F2 F1 F0

G , ~4.19!

where the entries ofM̂2 andF̂2 are given by

Mi5d i0]x
314h0]x12h0x , F i5d i0]x

214h i12h ix]x
21 , 0< i<2. ~4.20!

Through our scheme of construction in Sec. III, the triangular system~4.17! has a local bi-
Hamiltonian formulation

ĥ2t5 Ĵ2

d~per2H̃1
per!

dĥ2
5M̂2

d~per2H̃0
per!

dĥ2
, ĥ25~h0 ,h1 ,h2!T, ~4.21!

with two Hamiltonian functionals

¦

per2H̃0
per5~per2H̃0

per!~ ĥ2!5
1

2

]2H̃0~ û2!

]«2 U
«50

1
]H̃1~ û2!

]«
U

«50

5E S 1

2
h1

21h0h21
1

2
h0xxh11

1

2
h0h1xx13h0

2h1Ddx,

per2H̃1
per5~per2H̃1

per!~ ĥ2!5
1

2

]2H̃1~ û2!

]«2 U
«50

1
]H̃2~ û2!

]«
U

«50

5E S 1

2
h0xxh21

1

2
h1h1xx1

1

2
h0h2xx13h0h1

213h0
2h2D dx

1
]H̃2~ û2!

]«
U

«50

,

~4.22!

where
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]H̃2~ û2!

]«
U

«50

5E S 1

2
h0,4xh11

1

2
h0h1,4x1

5

3
h0x

2 h11
10

3
h0h0xh1x

1
20

3
h0h0xxh11

10

3
h0

2h1x110h0
3h1D dx. ~4.23!

Its infinitely many symmetries and conserved functionals read as

5 per2~Kn
per!5F Kn~h0!

]Kn~ û2!

]« U
«50

1Kn11~h0!

1

2

]2Kn~ û2!

]«2 U
«50

1
]Kn11~ û2!

]« U
«50

G , n>0,

per2H̃n
per5

1

2

]2H̃n~ û2!

]«2 U
«50

1
]H̃n11~ û2!

]«
U

«50

, n>0,

~4.24!

by usingKn
per5Kn1«Kn11 and H̃n

per5H̃n1«H̃n11 in this example.

B. The case of biscale perturbations

We would like to exhibit two examples in the case of biscale perturbations and show
multiscale perturbations can lead to bi-Hamiltonian systems in higher spatial dimensions. A
crete example in 211 dimensions for the KdV equation is the following triangular system:

H h0t1
5h0xxx16h0h0x ,

h1t1
5h1xxx13h0xxy16~h0h1!x16h0h0y ,

~4.25!

resulting from the KdV equation~4.1! by a first-order biscale perturbation

û15h0~ t,x,y!1«h1~ t,x,y!, y5«x. ~4.26!

This system was furnished in Ref. 16, and based on our scheme of construction in Sec. III
the following local bi-Hamiltonian formulation:

ĥ1t5 Ĵ1

d~per1H̃1!

dĥ1
5M̂1

d~per1H̃0!

dĥ1
, ĥ15~h0 ,h1!T, ~4.27!

where the Hamiltonian pair reads as

Ĵ15F 0 ]x

]x ]y
G , M̂15F 0 ]x

312h0x14h0]x

]x
312h0x14h0]x Q

G , ~4.28!

with Q being defined by

Q5
]

]«
M ~ û1!U

«50

53]x
2]y12h1x12h0y14h1]x14h0]y , ~4.29!

and the Hamiltonian functionals are
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5 per1H̃05
]

]«
H̃0~ û1!U

«50

5E E h0h1 dx dy,

per1H̃15
]

]«
H̃1~ û1!U

«50

5E E S 1

2
h0h1xx1h0h0xy1

1

2
h1h0xx13h0

3h1Ddx dy.

~4.30!

Moreover, the above-given Hamiltonian pair yields a hereditary recursion operator in 211 di-
mensions

F̂15F ]x
212h0x]x

2114h0 0

2]x]y22h0x]x
22]y12~h1x1h0y!]x

2114h1 ]x
212h0x]x

2114h0
G , ~4.31!

for the triangular system~4.25!.
The second example is the following:

¦

h0t1
5K1~h0!5h0xxx16h0h0x ,

h1t1
5

]K1~ û2!

]« U
«50

1K1~h0!

5h1xxx13h0xxy16~h0h1!x16h0h0y1h0xxx16h0h0x ,

h2t1
5

1

2!

]2K1~ û2!

]«2 U
«50

1
]K1~ û2!

]« U
«50

5h2xxx13h1xxy13h0xyy16~h0h2!x16h1h1x16~h0h1!y

1h1xxx13h0xxy16~h0h1!x16h0h0y ,

~4.32!

which can be generated from a perturbed KdV equation~4.7! under the second-order bisca
perturbation

û25h~ t,x,y!1«h1~ t,x,y!1«h2~ t,x,y!, y5«x. ~4.33!

According to our scheme of construction in Sec. III, the corresponding Hamiltonian pair
recursion operator read as

Ĵ25F 0 0 ]x

0 ]x ]y

]x ]y 0
G , M̂25F 0 0 M0

0 M0 M1

M0 M1 M2

G , F̂25FF0 0 0

F1 F0 0

F2 F1 F0

G , ~4.34!

where the entries ofM̂2 are defined by

5
M05M (û2)u«505]x

312h0x14h0]x,

M15
1

1!

]M (û2)

]« U
«50

53]x
2]y12h1x12h0y14h1]x14h0]y ,

M25
1

2!

]2M (û2)

]«2 U
«50

53]x]y
212h2x12h1y14h2]x14h1]y ,

~4.35!

and the entries ofF̂2 by
                                                                                                                



5
F05F(û2)u«505]x

212h0x]x
2114h0 ,

F15
1

1!

]F~ û2!

]« U
«50

52]x]y12(h1x1h0y)]x
2122h0x]x

22]y14h1 ,

F25
1 ]2F(û2)

2 U 5]y
212(h2x1h1y)]x

2122(h1x1h0y)]x
22]y12h0x]x

23]y
214h2 .
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2! ]«
«50

~4.36!

The 211 triangular system~4.32! has a local bi-Hamiltonian formulation

ĥ2t5 Ĵ2

d~per2H̃1!

dĥ2
5M̂2

d~per2H̃0!

dĥ2
, ĥ25~h0 ,h1 ,h2!T, ~4.37!

with a Hamiltonian pairĴ2 andM̂2 being defined by~4.34!, and two Hamiltonian functionals by

¦

per2H̃0
per5

1

2!

]2H̃0
per

]«2 U
«50

5
1

2!

]2H̃0

]«2 U
«50

1
]H̃0

]«
U

«50

5E E S 1

2
h0h21

1

4
h1

21h0h1Ddx dy,

per2H̃1
per5

1

2!

]2H̃1
per

]«2 U
«50

5
1

2!

]2H̃1

]«2 U
«50

1
]H̃1

]«
U

«50

5E E F1

4
(h0h2xx1h1h1xx1h2h0xx12h0h1xx12h1h0xx)

1
1

2
(h0h1xy1h1h0xy12h0h0xy)1

1

4
h0h0yy13(h0h1

21h0
2h11h0

2h2)Gdx dy.

~4.38!

Both 211 dimensional triangular systems above have infinitely many symmetries and
served functionals due to the existence of hereditary recursion operators, and thus they a
integrable in the sense of the existence of the Abelian symmetry algebra.17 Note that under the
biscale perturbation

ûN5(
i 50

N

« ih i~ t,x,y!, y5«x,

we have, for example,

]x→]x1«]y , ûNx→(
i 50

N

« i~h ix1«h iy!, ûNxx→(
i 50

N

« i~h ixx12«h ixy1«2h iyy!.

These equalities have been used in the above-mentioned deduction of bi-Hamiltonian sys
211 dimensions.

V. CONCLUDING REMARKS

We have proposed a bi-Hamiltonian formulation~3.7! for the triangular systems~2.8! result-
ing from perturbations around solutions of the perturbed systems. The symmetry problem ca
to a special case~1.2! of our triangular systems~2.8!, which is generated by the first-orde
perturbation. However, the perturbation system~1.2! is a little more general than the symmet
problem itself. It is because the second component system of the perturbation system~1.2! needs
to hold only for a solution of the original systemut5K(u), but the same system in the symmet
problem needs to hold for all solutions ofut5K(u). The resulting formulation gives a way t
construct various integrable couplings in both lower dimensions and higher dimensions f
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Hamiltonian systems, all of which at least possess infinitely many commuting symmetrie
conserved functionals. Four illustrative examples were given for the KdV equation, which co
two 211 dimensional local bi-Hamiltonian systems~4.27! and ~4.37!.

The triangular system~4.25! was first introduced in Ref. 16, whose Painleve´ property and zero
curvature representation were discussed by Sakovich.18 General triangular systems resulting fro
multiscale perturbations also can possess rich structures of zero curvature representat
multiscale perturbations are taken into account, the involved spectral parameters, deno
m i , 0< i<N, may vary with respect to the spatial variables,18,6 although they need to satisf
some conditions, for example,

m0x50, m ix1m i 21,y50, 1< i<N,

in the case of biscale perturbations

ûN5(
i 50

N

« ih i~x,y,t !5(
i 50

N

« ih i~x,«x,t !.

More interestingly, our 211 dimensional bi-Hamiltonian systems~4.27! and~4.37! are local and
possess hereditary recursion operators, and thus they enjoy a different feature from known
integrable equations in 211 dimensions. To our best knowledge,~4.27! and ~4.37! are the first
two examples of local 211 dimensional bi-Hamiltonian systems with hereditary recursion op
tors. They also can provide useful information for classifying integrable systems in 211 dimen-
sions by the symmetry approach.19

We remark that our general bi-Hamiltonian formulation in Sec. III can be used to esta
bi-Hamiltonian formulations for a hierarchy of coupled KdV systems introduced in Ref.
although it does not work for the other two hierarchies of coupled KdV systems furnished in
21, 22 and 23. Moreover, our triangular systems, especially~2.11!, starting from the KdV equa-
tion, provide examples of bi-Hamiltonian systems among the integrable coupled KdV sy
described by Gu¨rses and Karasu,24 and general triangular systems can provide new bi-Hamilton
systems of other types, e.g., bi-Hamiltonian systems of coupled fifth KdV equations and co
modified KdV equations. Nonlinearization resulting from symmetry constraints also can be
nipulated for linking our triangular systems to finite-dimensional integrable Hamilto
systems.25

We finally point out that our general scheme requires a bi-Hamiltonian structure of the st
system. Nevertheless, we can still make the perturbation to get triangular systems from
Hamiltonian systems such as the KP hierarchy, and study integrable properties for the re
triangular systems.
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Group invariant classification of separable Hamiltonian
systems in the Euclidean plane and the
O„4…-symmetric Yang–Mills theories of Yatsun
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We present a new and effective method of determining separable coordinate sys-
tems for natural Hamiltonians with two degrees of freedom in flat Riemannian
space. The method is based on intrinsic properties of the associated Killing tensors
and their invariants under the group of rigid motionsE(2). Applications to the
Hamiltonian systems derived by the late V. A. Yatsun fromO(4)-symmetric Yang–
Mills theories are presented. In addition, an equivalence between separability of
two-dimensional Hamiltonian systems and the existence of Pfaffian quasi-bi-
Hamiltonian representations is specified. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1445501#

I. INTRODUCTION

The aim of this paper is twofold. First, we present a comprehensive and tractable meth
classifying orthogonally separable Hamiltonian systems with two degrees of freedom in ter
intrinsic properties of the associated Killing tensors. This leads to a direct algorithm for dete
ing the transformation to separable coordinates which in practice iscompletely algebraic, and
hence can be easily implemented in a symbolic computer algebra system. Our second go
use the above-mentioned algorithm to solve explicitly the two integrable Hamiltonian sys
derived by the late Yatsun1–5 from O(4)-symmetric Yang–Mills theories. Notably, to the best
our knowledge, these two integrable cases~referred throughout this paper as YIC1 and YIC
respectively! have not been integrated before by quadratures in the most general case.

We consider a general Hamiltonian system defined by a Hamiltonian~total energy! function in
the following general form:

H~q,p!5 1
2 gi j ~q!pipj1V~q!, i , j 51,2, ~1!

wheregi j denote the components of the contravariant metric tensorg on a pseudo-Riemannia
two-dimensional base manifoldM̂ , V is a scalar potential field onM̂ , andq5(q1,q2) denote local
~position! coordinates, whilep5(p1 ,p2) are the corresponding conjugate~momenta! coordinates.
This means that the corresponding Hamiltonian vector fieldXH is determined by the equation

XH5@P0 ,H#, ~2!

whereP05( i 51
n ]/]qi ∧ ]/]pi is the standard canonical Poisson bi-vector. Here in the follow

unless otherwise indicated,@ , # denotes the Schouten bracket,6 which generalizes the usual Li

a!Electronic mail: rgmclena@uwaterloo.ca
b!Electronic mail: rsmirnov@uwaterloo.ca
c!Current address: Department of Mathematics, University of British Columbia, 121-1984 Mathematics Rd., Vanc
BC V6T 1Z2, Canada; electronic mail: dthe@math.ubc.ca
14220022-2488/2002/43(3)/1422/19/$19.00 © 2002 American Institute of Physics
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bracket of vector fields. In terms of the componentsXH
i of the Hamiltonian vector fieldXH ,

formula ~2! means thatXH
i 5P0

i j (]H/]xj ) , where x5(x1,...,x4) are local coordinates on th
cotangent bundleTM̂.

The problem of solving the Hamiltonian system defined by~1! by the method of separation o
variables can be traced back to Bertrand,7 who considered the situation when a Hamiltoni
system admits an additional integral of motion, yet the external forces acting on the syste
unknown. This problem was later resurrected in the study of Hamiltonian systems with
degrees of freedom admitting an additional integral of motion. The fundamental result, comm
known as theBertrand–Darboux theorem~see Ref. 8 and the relevant references therein!, is the
following: If a Hamiltonian system defined by~1! admits an additional first integral quadratic
the momenta which is functionally independent ofH, then there exists a system of coordinat
(u,v) with respect to which the Hamiltonian~1! takes theLiouville form ~see the following!. The
latter result immediately entails separability of the Hamiltonian system defined by~1! in the
framework of the Hamilton–Jacobi theory. This method is still widely used. We note, how
that its main drawback is in having to solve every time a second-order partial differential equ
~PDE! for a given V of ~1! by the method of characteristics~first used by Darboux in this
context8!, thus transformingV to the form~10! in separable coordinates (u,v). This fact indicates
that this analytical technique is not tensorial.

Another approach to this problem was initiated by Eisenhart9 for the n-dimensional geodesic
case and recently generalized by Benenti~Ref. 10, see also references therein! for a general
Hamiltonian system withn degrees of freedom defined by a Hamiltonian with potential.
before, the problem of finding a solution to the system of ordinary differential equations c
sponding to a general Hamiltonian vector field~2! defined by~1! can be related via Jacobi’
theorem to the problem of finding an orthogonally separable complete integralW of the corre-
sponding Hamilton–Jacobi equation

1
2 gi j ~q!] iW] jW1V~q!5E, ~3!

under the standard separation ansatz:

W~q;c!5W1~q1;c!1W2~q2;c!, ~4!

wherec5(c1 ,c2) is an integration constant. This is possible iffH admits a second first integralF
quadratic in momenta:

F5Ki j ~q!pipj1U~q!, i , j 51,2. ~5!

Here the emphasis is on the quantityK of ~5! rather than the potentialV of ~1! as is the case in the
Bertrand–Darboux theorem. Recall thatK is a symmetrictensorwith pointwise simple and rea
eigenvalues satisfying theKilling tensor equation:

@g,K #50, ~6!

which in component form may be written as

@g,K # i jk5g( i j
,lK

k) l2K ( i j
,lg

k) l50. ~7!

A solution K of ~6! is called aKilling tensor. The quantityU in ~5! is defined by

dU5K̂ dV, ~8!

where the~1,1! tensorK̂ is defined byK̂ªKg, or in terms of its componentsK̂ i
j
ªKil g

l j . We note
that the integrability condition for~8! gives rise to thecompatibility condition:

d~K̂ dV!50. ~9!
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The Hamiltonian system defined by~1! is Liouville-integrable in this case. Furthermore, it is wor
noting that the involutiveness ofH andF, namely

05$H,F%5P0
i j ]H

]xi

]F

]xj ,

is equivalent to~6! and ~8!. In what follows we use intrinsic properties of the associated Killi
tensorK to recover canonical separable coordinates (u,v) leading to integration by quadratures
the system~1!. More specifically, we classify the four separable cases in the Euclidean p
known to be Cartesian, polar, parabolic, and elliptic-hyperbolic coordinates, according to v
combinations afforded by the eigenvaluesl1 and l2 of K . We also classify the Killing tensors
corresponding to the four separable cases in terms of their invariants under the group o
motionsE(2) of the Euclidean plane. Our classification scheme is equivalent to that give
Benenti and Rastelli,11 who based their treatment on a classification of the singular points o
Killing tensors represented in terms of sums of symmetrized products of the Killing tensors
Euclidean plane. Our approach allows us to recognize immediately the Liouville-integrable H
tonian systems YIC1 and YIC2 as separable in parabolic and translated elliptic-hyperbolic sy
of coordinates, respectively. The existence of the canonical coordinates (u,v) in either case leads
to the conclusion that both YIC1 and YIC2 are Pfaffian quasi-bi-Hamiltonian~QBH! systems.
These are the subjects of the considerations that follow.

II. GEOMETRICAL BACKGROUND

The underlying structure of an orthogonally separable Hamiltonian system with two de
of freedom~1! defined on a pseudo-Riemannian space is such that in the separable coor
(u,v) the Hamiltonian function~1! takes on theLiouville form:12

H5~A~u!1B~v !!21@ 1
2 ~e1pu

21e2pv
2!1C~u!1D~v !#, ~10!

while the second first integral~5! quadratic in momenta enjoys the following representation:

F5
e1B~v !pu

22e2A~u!pv
212~B~v !C~u!2A~u!D~v !!

A~u!1B~v !
, ~11!

whereA(u),C(u) and B(v),D(v) are arbitrary smooth functions ofu and v respectively, and
(e1)25(e2)251. Liouville12 showed that the Hamiltonian systems defined by~10! are separable
while Morera13 established the converse via an ingenious use of local coordinates. More pre
if a Hamiltonian system defined by~1! admits additive separation of variables, it enjoys t
Liouville form ~10!–~11! in the canonical separable coordinates (u,v). Alternatively, this equiva-
lence can be established by employing the coordinate-free moving frames method,14–17which also
leads to additional interpretations of this remarkable fact, namely, the Killing tensor of~5! in this
case has real and distinct eigenvalues and the system defined by~1! admits a certain quasi-bi
Hamiltonian~QBH! representation.18 Formulas~10! and~11! describe separable Hamiltonian sy
tems with two degrees of freedom defined in pseudo-Riemannian manifolds of arbitrary curv
We note that the metric defined by~10! is the metric of the Liouville surface:

ds25~A~u!1B~v !!~e1 du21e2 dv2!. ~12!

Similarly, the general covariant Killing tensor corresponding to~11! reads

Ki j
(L)5~A~u!1B~v !! diag~e1B~v !,2e2A~u!!. ~13!

Hence,B(v) and2A(u) are the eigenvalues of the linear operatorK̂5K (L )g21. It can be shown
by integrating the Killing tensor equations~6! in the moving frame of normalized eigenvectors
K that the general solution has the form
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K5 lg1mK (L ), ~14!

where l and m are arbitrary constants. In order to classify the separable coordinate system
Hamiltonian systems of the type~10! on Liouville surfaces of given curvature one has to impo
conditions on the corresponding Riemann curvature tensorRi jkl . Important cases are the spaces
constant curvature for which

Ri jkl 5kgi [kgu j u l ] , ~15!

wherek is constant~see Ref. 19 for more details!. The casesk50 andkÞ0 have to be distin-
guished in addition to the two possible signatures of the pseudo-Riemannian metric. In eac
the separable coordinate systems may be determined based on the eigenvalues ofK which are
invariants. For more details on this method see Refs. 16 and 18 where the Riemannia
Lorentzian cases have been studied, respectively.

In the present paper we focus attention on the locally flat Riemannian casek50. It is well
known that for this case~the Euclidean plane! there exist four separable coordinate system
namely Cartesian, polar, parabolic, and elliptic-hyperbolic coordinates. The corresponding m
coordinate transformations, and associated Killing tensors for each case are listed in the foll

Cartesian: H ds25du21dv2,

x5u, y5v,

Ki j
(C)5diag~1,0!,

~16!

Polar: H ds25du21u2 dv2,

x5u cosv, y5u sinv,

Ki j
(P)5diag~0,u4!,

~17!

Parabolic: H ds25~u21v2!~du21dv2!,

x5 1
2 ~u22v2!, y5uv,

Ki j
(PB)5~u21v2! diag~v2,2u2!,

~18!

Elliptic-
Hyperbolic:H ds25k2~cosh2 u2cos2 v !~du21dv2!,

x5k coshu cosv, y5k sinhu sinv,

Ki j
(EH)5k4~cosh2 u2cos2 v ! diag~cos2 v,cosh2 u!.

~19!

In ~19! the parameterk is assumed positive and is interpretable as half the distance betwee
foci of the elliptic-hyperbolic coordinate system.

We observe that the metric~17! for polar coordinates is not in Liouville form. However, it ca
be written in this form by an appropriate coordinate transformation. We further observe that
the above-mentioned cases except for polar coordinates we can immediately read off the fu
A(u) andB(v) appearing in~12! and thus determine the form of the Hamiltonian~10! for which
a complete integral of the corresponding Hamilton–Jacobi equation~3! can be obtained by quadra
tures from the ansatz~4!. However, in most physical applications, a given Hamiltonian system~1!
is defined in terms ofCartesian~usually, position-momenta! coordinates and hence has the for

H5 1
2 ~p1

21p2
2!1V~q1,q2!. ~20!

The following questions are then crucial:

~1! Is the system separable in one of the above-mentioned coordinate systems?
~2! If yes, how does one determine the coordinate transformation to separable coordinate
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An answer to question~1! may be obtained from Benenti’s theorem.10 One first derives the genera
solution of the Killing tensor equation~7! in Cartesian coordinates obtaining

Ki j 5S A12aq21g~q2!2 C2aq12bq22gq1q2

C2aq12bq22gq1q2 B12bq11g~q1!2 D , ~21!

where A, B, C, a, b, g are arbitrary parameters. These six constants obviously represen
maximumdimension of the space of linearly independent Killing tensors in our Riemannian s
that can also be computed by employing the Takeuchi–Thompson formula:20,21

dimKp~M ,g!5
1

n S n1p
p11D S n1p21

p D , p>0

for the dimension of the space of (p,0) Killing tensors defined in a pseudo-Riemannian manif
(M̂ ,g) of constant curvature. One next imposes the compatibility condition~9!, which may restrict
the values of the parameters in~21!. Finally, one determines whether the eigenvalues of
resultingKi j are distinct. If they are, the system is orthogonally separable. The answer to qu
~2! is more difficult, due to the fact that Cartesian coordinates are not unique being define
up to a translation and a rotation. One of the main objectives of this paper is to prov
theoretical framework in which question~2! may be answered based on a set of invariants of
Killing tensor ~21! under the group of rigid motionsE(2) of the Euclidean plane. We furthe
describe an algorithm for determining the transformation to separable coordinates wh
straightforward and easy to apply.

III. SEPARABLE KILLING TENSORS IN CARTESIAN COORDINATES

We begin our study of orthogonal separability in terms of the associated Killing tenso
observing that the canonical Killing tensors corresponding to the four separable metrics~16!–~19!
can be easily transformed tocanonical Cartesian coordinates(x,y), i.e., the Cartesian coordinate
centered at the origin and properly aligned with the four separable systems of coordinates d
by ~16!–~19!. Note that thegiven Cartesian coordinates(q1,q2) may differ, namely when they are
related to the canonical Cartesian coordinates through a combination of translations and ro
Indeed, using the standard coordinate transformations from canonical Cartesian coordinate
separable coordinates, and the appropriate tensor transformation law we easily obtain the
nents of the four corresponding ‘‘separable’’ Killing tensorsK (C), K (P), K (PB), andK (EH) with
respect to canonical Cartesian coordinates (x,y), namely:

Ki j
(C)

ªS 1 0

0 0D , Cartesian,

Ki j
(P)

ªS y2 2xy

2xy x2 D , Polar,

~22!

Ki j
(PB)

ªS 0 y

y 22xD , Parabolic,

Ki j
(EH)

ªS k21y2 2xy

2xy x2 D , Elliptic-hyperbolic.

It is easy to see that the polar case is a limiting case (k50) of the elliptic-hyperbolic case, sinc
limk→0 K (EH)5K (P).

Cartesian coordinates are determined only up to the transformations that preserve the mg,
namely the isometry group which consists of translationsta , rotationsru , and reflections of the
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Euclidean plane. We consider only the translations and rotations since it can be show
reflections play no role in the invariant classification scheme to be presented. Thus, the
Cartesian coordinates (q1,q2) of the physical situations are related to the canonical Carte
coordinates (x,y) via the formula:

S q1

q2D5taruS x
yD5S cosu 2sinu

sinu cosu D S x
yD1S a

bD ~23!

for some fixed parametersu, a5(a,b). The above-mentioned transformation induces the follo
ing transformation laws for the parameters appearing in~21!:

ḡ5g,

ā5a cosu1b sinu2gb,

b̄5b cosu2a sinu2ga,
~24!

Ā5A cos2 u22C cosu sinu1B sin2 u22ba cosu22bb sinu1gb2,

B̄5A sin2 u12C cosu sinu1B cos2 u22ab cosu12aa sinu1ga2,

C̄5~A2B!sinu cosu1C~cos2 u2sin2 u!1~aa1bb!cosu1~ab2ba!sinu2gab,

where the quantities with a bar refer to the components of the Killing tensor in the (q1,q2)
coordinates system. It follows that the components of the four separable Killing tensors rela
(q1,q2) coordinates are:

K̃ i j
(C)

ªS cos2 u cosu sinu

cosu sinu sin2 u D ,

K̃ i j
(P)

ªS ~q22b!2 2~q12a!~q22b!

2~q12a!~q22b! ~q12a!2 D ,

~25!

K̃ i j
(PB)

ªS 2 sinu~b2q2! ~q22b!cosu1~q12a!sinu

~q22b!cosu1~q12a!sinu 2 cosu~a2q1!
D ,

K̃ i j
(EH)

ªS k2 cos2 u1~q22b!2 k2 cosu sinu2~q12a!~q22b!

k2 cosu sinu2~q12a!~q22b! k2 sin2 u1~q12a!2 D .

SupposeK (L) ~for someL5C, P, PB, or EH! is a compatible Killing tensor whose compo
nents with respect to given Cartesian coordinates are of the formK̃ i j

(L) for fixed parametersk, u,
a. Then the transformation to separable coordinates (u,v) can be realized as

S q1

q2D5~ taru+TL!S u
v D , ~26!

where (x,y)5TL(u,v) is one of the standard coordinate transformations associated
L-coordinates listed in~16!–~19!.

Now if every compatible Killing tensorK had components relative to (q1,q2) coordinates in
the form K̃ i j

(L) , or a multiple thereof, then we could intrinsically characterize the separable c
using the natural invariants ofK . Indeed, the signs of the determinants along with their eigen
ues could be used in a classification scheme as follows:

Cartesian: detK (C)50 and both eigenvalues constant,
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Polar: detK (P)50 and one nonconstant eigenvalue,

Parabolic: detK (PB),0, ~27!

Elliptic-hyperbolic: detK (EH).0.

However, if K is a compatible Killing tensor with componentsK̃ i j
(L) relative to (q1,q2) coordi-

nates, thenlg1mK , wherel andmÞ0 are arbitrary constants, is also a compatible Killing ten
whose components are not of the assumed form. Indeed, addition of the metric chang
eigenvalues and the determinant. Hence, a more precise classification is needed.

IV. GROUP INVARIANTS OF KILLING TENSORS

To classify the separable coordinate systems based on their associated Killing tenso
study invariants of Killing tensors under the three-parameter group of rigid motionsE(2). Since
the components of a Killing tensor take the form~21! with respect toany Cartesian coordinates
the action ofE(2) on the spaceK of Killing tensors can be represented by the induced chang
the six parameterss5(A,B,C,a,b,g) given by~24!. We will search for real-valued functions o
s that are invariants ofE(2).

As a compatible Killing tensor,g only indicates that the HamiltonianH is a first integral.
Thus, the subspaceG5$ lg u l PR% generated by the metric is trivial, since it does not give a
information concerning the separable coordinates. Hence, ifK is a compatible Killing tensor, then
both K andK1 lg, ; l PR, should determine the same separable coordinate systems. Thes
siderations motivate us to focus on the action ofE(2) on the quotient spaceQªK/G, in whichK
andK1 lg, ; l PR are considered to be the same element. There is a natural bijection betwQ
and the parameter spaceR5 defined by

Q.H S ~A2B!12ay1gy2 C2ax2by2gxy

C2ax2by2gxy 2bx1gx2 D J .$~A2B,C,a,b,g!%.R5.

Essentially, in this framework we will be searching for invariants ofK with respect toE(2) which
are also invariant under ‘‘metric additions.’’

The groupE(2) is a Lie group whose Lie algebrae(2) is the space of Killing vectors. The
algebrae(2) is generated by the three basis vectors

X5
]

]x
, Y5

]

]y
, R5y

]

]x
2x

]

]y
,

satisfying the commutator relations@X,Y#50, @X,R#52Y, @Y,R#5X.
Take any vectorvPe(2). Exponentiation ofv gives a connected one-parameter subgro

Tv5$exp(ev)u;ePR% of E(2). The set oftransformationsTv induces a family of one-paramete
curves inM . Denote the maximal parametrized curve passing throughsPM by C(exp(ev),s),
whereC is the flow generated byv in Q.

Definition 4.1: LetK be a Killing tensor, whose components with respect to Cartesian c
dinates(x,y) are

Ki j 5S A12ay1gy2 C2ax2by2gxy

C2ax2by2gxy B12bx1gx2 D .

Then an E(2)-invariantof K is a real-valued function F:R6→R of s5(A,B,C,a,b,g) such that

~1! F(C(m,s))5F(s), ;mPE(2),
~2! F(s1 l ĝ)5F(s), ; l PR, where ĝ5(1,1,0,0,0,0).
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Letting E(2) act on the quotient spaceQ, we can use standard techniques from the Lie gro
theory of differential equations to construct theE(2)-invariants. In the proof of the following
proposition, the notations are consistent with those used in Ref. 22.

Proposition 4.1: Let

D5~a22b21g~B2A!!214~gC1ab!2. ~28!

Then every smooth E(2)-invariant of K is of the form F(D,g), where F:R2→R is an arbitrary
smooth function.

Proof: The corresponding infinitesimal action of the Lie algebrae(2) on M is given by

c~v!U
s

5
d

de
C~exp~ev!,s!U

e50

for any vPe(2), sPM . Equivalently, we can write

c~v!5p~Lv~K !!, ~29!

whereLv(K ) is the Lie derivative ofK with respect tov and p:K→R5 is the projection map
defined by

pS A012a0y1g0y2 C02a0x2b0y2g0xy

C02a0x2b0y2g0xy B012b0x1g0x2 D
5~A02B0!

]

]~A2B!
1C0

]

]C
1a0

]

]a
1b0

]

]b
1g0

]

]g
.

Note thatp is a linear surjection andp(K (1))5p(K (2)) iff K (1)5K (2)1 lg for any l PR. Equation
~29! follows from a straightforward application of the definitions ofc, L, andp.

The corresponding infinitesimal generators inQ are

V15p~LX~K !!522b
]

]~A2B!
2a

]

]C
1g

]

]b
,

V25p~LY~K !!52a
]

]~A2B!
2b

]

]C
1g

]

]a
,

V35p~LR~K !!524C
]

]~A2B!
1~A2B!

]

]C
1b

]

]a
2a

]

]b
.

Note thatV1 , V2 , V3 satisfy the commutator relations

@V1 ,V2#50, @V1 ,V3#52V2 , @V2 ,V3#5V1 .

Hence,c is a Lie algebra homomorphism frome(2) to the Lie algebra of vector fields generat
by $V1 ,V2 ,V3% on Q.

It is well known that invariance of an object under an entire Lie group is equivalen
infinitesimal invariance under the infinitesimal generators of the corresponding Lie algebra
image in Q of the Lie algebrae(2) has basis$V1 ,V2 ,V3%. Hence, F:Q→R is a smooth
E(2)-invariant iff Vi(F)[0 for i 51,2,3. This is a system of three homogeneous linear pa
differential equations in five variables. Solving this system by the method of characteristics
the solutionF(D,g). h

As a consequence of Proposition IV, we obtain two essentialE(2)-invariants,D andg. Let
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sgnuxu5H 1 if xÞ0

0 if x50
,

and impose the following equivalence relation onK:

K (1);K (2)⇔H sgnuDK (1)u5sgnuDK (2)u

sgnugK (1)u5sgnugK (2)u.

Note that; partitionsK\G into four equivalence classes corresponding to whetherD andg are
zero or nonzero. Take the components of the ‘‘separable’’ Killing tensors with respect to can
Cartesian coordinates listed in~22!, and designate them to be representative elements from
respective equivalence classes. Evaluating theE(2)-invariantsD and g on each produces th
following classification scheme:

g50, D50: Cartesian,

g50, DÞ0: Parabolic,
~30!

gÞ0, D50: Polar,

gÞ0, DÞ0: Elliptic-hyperbolic.

Now recall that the general solution of the Killing tensor equation is given by thetensorequation
~14!. This implies that ifK is linearly independent ofg, we have in (q1,q2) coordinates,

Ki j 5 lgi j 1mK̃i j
(L) ~31!

for some l ,mPR,mÞ0, some uniqueL5C, P, PB, or EH, and whereK̃ i j
(L) depends on the

parametersu, a, b, k as in ~25!. By comparing the components on both sides~31! and using the
E(2)-invariant classification, we can expressu, a, b, k as functions of the constantsA, B, C, a,
b, g for any particular Killing tensor. We illustrate this method for the elliptic-hyperbolic cas
the following.

Take a particular Killing tensorK whose components with respect to Cartesian coordin
(q1,q2) are of the form~21! and suppose thatgÞ0, DÞ0. K is of elliptic-hyperbolic type, and so
comparing the components on both sides of~31!, we obtain

A12aq21g~q2!25 l 1m~k2 cos2 u1~q22b!2!, ~32!

C2aq12bq22gq1q25m~k2 cosu sinu2~q12a!~q22b!!, ~33!

B12bq11g~q1!25 l 1m~k2 sin2 u1~q12a!2!. ~34!

The coefficients of the terms quadratic and linear inq1, q2 yield m5g, and a52 b/g ,
b52 a/g, respectively. Simplifying, we now have

A2
a2

g
2 l 5gk2 cos2 u, ~35!

C1
ab

g
5gk2 cosu sinu, ~36!

B2
b2

g
2 l 5gk2 sin2 u, ~37!
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Note that the product of the left-hand sides of~35! and~37! equals the square of the left-han
side of ~36!. Solving this forl yields

l 65
1

2g
~g~A1B!2a22b26AD!. ~38!

Adding ~35! and ~36! and solving fork2 yields

k25
g~A1B!2a22b2

g2 2
2l

g
57

AD

g2 Þ0, ~39!

which forcesl 5 l 2 .
Let sªa22b21g(B2A). To find the rotation angleu, we have to consider various cases.

gC1abÞ0, then dividing~37! by ~36! gives

tanu5
g~B1 l !2b2

gC1ab
5

s1D

2~gC1ab!
.

If gC1ab50, then by~36! we have sinu cosu50, sincegÞ0. By ~35! and~37!, this implies that
either g(A2 l )2a250 ~if cosu50! or g(B2 l )2b250 ~if sin u50). Using ~38!, ~39!, and the
fact thatl 5 l 2 , we obtain

s51k2g2, if cosu50, or

s52k2g2, if sin u50.

Thus if s.0, then tanu56`, and if s,0, then tanu50. Clearly,u is only unique modp. In a
similar fashion, expressions foru, a, b in terms of the constantsA, B, C, a, b, g can be found for
the Cartesian, polar, and parabolic cases.

The singular pointsof each coordinate system can also be described in this framewo
follows from Benenti10 that they are characterized as the points where the eigenvalues o
Killing tensor Ki j are equal. The conditions for equal roots for the characteristic equation a

K115K22, K1250, ~40!

which in view of ~21! give rise to

A12aq21g~q2!25B12bq11g~q1!2,

gq1q21aq11bq25C.
~41!

We consider the solution of the above-mentioned system for each equivalence class of
tensors inK\G:

~1! Cartesian(g50,D50): In this case,a5b50, and~41! is equivalent toA5B, C50,
which is true only for elements inG. Hence, there are no solutions in this case.

~2! Parabolic (g50,DÞ0). One solution:

~q1,q2!5S b~A2B!12aC

2~a21b2!
,
a~B2A!12bC

2~a21b2! D .

~3! Polar (gÞ0,D50). One solution:

~q1,q2!5S 2b

g
,

2a

g D .

~4! Elliptic-hyperbolic (gÞ0,DÞ0). Two solutions:
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~q1,q2!5S 2b

g
1

1

g SAD2s

2 D 1/2

,
2a

g
1

1

g SAD1s

2 D 1/2D ,

~q1,q2!5S 2b

g
2

1

g SAD2s

2 D 1/2

,
2a

g
2

1

g SAD1s

2 D 1/2D .

In the elliptic-hyperbolic system, there are two singular points corresponding to the foci wk
being half the distance between them, as mentioned earlier. The polar system is a limiting c
the elliptic-hyperbolic system when the foci coincide, so herek25 limD→0 AD/g250 and there is
one singular point at the center of the polar system. The parabolic system is also a limiting c
the elliptic-hyperbolic system in the sense that there is one finite singular point and one si
point which has been ‘‘pushed’’ to infinity, sok25 limg→0 AD/g25`. Finally, in the Cartesian
system, both singular points from the elliptic-hyperbolic system have been ‘‘pushed’’ to infi
Hence, no~finite! singular points exist. The above classification of the singular points is equiv
to that given by Benenti and Rastelli.11 Our results are summarized in Table I.

V. MAIN ALGORITHM

The above-presented considerations lead to the following systematic and computat
efficient method of determining separable coordinates for the natural Hamiltonian~20!:

~1! Using a generic Killing tensorK of the form~21! in terms of the given Cartesian coord
nates (q1,q2), impose the compatibility condition~9! to obtain the equivalent conditions on th
parametersA, B, C, a, b, g.

~2! Decompose the general solution obtained in step~1! as follows:

K5 l 0g1 l 1K (1)1 ¯ 1 l nK (n), ~42!

TABLE I. Formulas for transformation to separable coordinates. Transformation to separable coordinates:

Sq1

q2D5Scosu 2sinu

sinu cosu
DTLSuvD1SabD.

Standard coordinate transformations:TC :x5u, y5v, TP :x5u cosv, y5u sinv, TPB :x5
1
2(u22v2), y5uv,

TEH :x5k coshu cosv, y5k sinhu sinv.

Coordinate
type g D a b tan(u) k2

Singular
points

Cartesian 0 0 Arbitrary Arbitrary
H0 if C50,

B2A1A~B2A!214C2

2C
if CÞ0.

S u unique mod
p

2 D
0/0 Two at`

Parabolic 0 Þ0
b~A2B!12aC

2~a21b2!

a~B2A!12bC

2~a21b2!
H6` if b50,

a

b
if bÞ0.

~u unique modp!

`
One ata,
One at`

Polar Þ0 0 2
b

g
2

a

g
Arbitrary 0

Two coincide
at a

Elliptic-
hyperbolic

Þ0 Þ0 2
b

g
2

a

g

Defines5a22b21g(B2A).

5
0 if gC1ab50, s,0,

6` if gC1ab50, s.0,

s1AD

2~gC1ab!
if gC1abÞ0.

~u unique modp!

AD

g2
Two distinct
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wherel i , i 50,1,...,n are arbitrary constants and$g,K (1), ...,K (n)% is a pointwise linearly indepen
dent set of Killing tensors. Since dimK56, then n<5. If n50, then H is not orthogonally
separable. Ifn>2, thenH is superseparable.

~3! EachK ( i) will characterize separation in some coordinate system. For eachK ( i), evaluate
the E(2)-invariantsg andD. Then use Table I to determine:~1! the separable coordinate syste
type, and~2! the essential parametersu, a, b, k. The transformation to separable coordinates c
be carried out by using Eq.~26!.

A main feature of this algorithm is that once an additional Killing tensor is known, the tas
finding separable coordinates reduces to simply looking up the appropriate parameters in T
No additional computations are necessary. Computationally, the most difficult part of the algo
rithm is finding the general solution of the compatibility condition~9! in step~1!. However, using
the generic form~21! of K with respect to Cartesian coordinates, this computation only amo
to solving a system of linear equations in six variables. This method should be contrasted wi
which implements the Bertrand–Darboux theorem in which a second-order PDE must be
by the method of characteristics. Our algorithm iscompletely algebraic, and hence is well suited
for implementation in a symbolic computer algebra system. We have implemented such a pr
in the MAPLE system and it has been used successfully to analyze the Hamiltonian sy
discussed in this paper.

As a brief illustration, we discuss the implications of this algorithm on the two known s
rable cases of the He´non–Heiles system~see Ref. 23, and references therein! which is defined by
the Hamiltonian

HHH5
1

2
~p1

21p2
21c~q1!21d~q2!2!1aq1~q2!22

b

3
~q1!3 ~43!

for some constantsa, b, c, andd. Imposing the compatibility condition~9! with a generic Killing
tensor~21! and the above-given potential, we can identify all integrable cases which correspo
an additional first integral quadratic in momenta. In particular, the only nontrivial~i.e., abÞ0!
systems we recover are the first and second known integrable cases. We list these in the fol
along with the corresponding compatible Killing tensors, and the transformation to sepa
coordinates obtained by using Table I:

~1! b52a, c5d:

Ki j 5 l 0gi j 1 l 1S 0 1

1 0D ,

q15
1

&
~u2v !, q25

1

&
~u1v !.

~2! b526a, c, d arbitrary:

Ki j 5 l 0gi j 1 l 1S 4d2c

2a
2bq2

2bq2 2bq1
D ,

q15
4d2c

4a
1

1

2
~u22v2!, q25uv.

The third known integrable caseb5216a, d516c is not recovered by this method. Th
indicates that the corresponding system does not have an additional first integral quadr
momenta, and hence is not orthogonally separable.

In step~2! of the algorithm, we remarked that ifn>2, thenH is superseparable. An examp
of such a system is the two-dimensional Calogero–Moser system defined by the Hamilton
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HCM5
1

2
~p1

21p2
2!1

1

~q12q2!2 . ~44!

Solving the compatibility condition yields the following general compatible Killing tensor:

Ki j 5 l 0gi j 1 l 1S 0 1

1 0D 1 l 2S ~q2!2 2q1q2

2q1q2 ~q1!2 D 1 l 3S 2q2 2q12q2

2q12q2 2q1 D , ~45!

from which we conclude that the system is separable in the following coordinate systems:

~1! Cartesian:q15(1/&) (u2v), q25(1/&) (u1v),
~2! Polar:q15u cosv, q25u sinv,
~3! Parabolic:q15(1/2&) (u222uv2v2), q25(1/2&) (u212uv2v2),

thus recovering known results. Again, in contrast with previous methods, the algorithm th
have presented isexhaustivein the sense that a given system is separable in some syste
coordinates iff the associated Killing tensor is a particular solution of the compatibility cond
The general form of the compatible Killing tensor gives us essentially all the information abo
separation properties of a given system. We remark that the algorithm can be used in the
direction as a method for determining the general forms of the superseparable potentials
Euclidean plane. In order to classify such potentials, we specify two~or more! Killing tensors
linearly independent from the metric, construct the general Killing tensor~42!, and then proceed to
solve the compatibility condition~9! for the potentialV. For example, if we wish to find the
potentialV which is separable in both polar and parabolic coordinates, let

Ki j 5 l 0gi j 1 l 1S y2 2xy

2xy x2 D 1 l 2S 0 y

y 22xD , ~46!

wherel 0 , l 1 , l 2 are arbitrary parameters. Solving the compatibility condition recovers the kn
potential

V5
1

Ax21y2 S c01
c1x

y2 D1
c2

y2 , ~47!

where c0 , c1 , c2 are arbitrary constants of integration. Note that for anykPR, if we let l 0

5k2, l 151, l 25k in ~46!, we obtain the Killing tensor

Ki j 5S k21y2 2~x2k!y

2~x2k!y ~x2k!2 D , ~48!

which indicates separation intranslatedelliptic-hyperbolic coordinates, with the origin of th
polar and parabolic systems located at one of thefoci of the elliptic-hyperbolic system of coordi
nates. Hence, the potential~46! which is superseparable in polar and parabolic coordinate
necessarily also separable in these specific coordinates. This is theonly translated and rotated
elliptic-hyperbolic coordinate system for whichV is also separable in polar and parabolic coor
nates. Although this method is a systematic way of determining superseparable potentia
computationally intensive. Solving the compatibility condition for the potentialV given K
amounts to solving the associated PDEs satisfied byV. Using this method, we have recovered t
known set of superseparable potentials~see Ref. 24, and the relevant references therein!.

In Sec. VI, and the remainder of this paper, we will illustrate this algorithm in more detai
the two integrable systems YIC1 and YIC2 derived by Yatsun.1–5
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VI. SEPARABLE COORDINATES EXHIBITED

Recall that the Yang–Mills theories provide a reasonable model for the unification of ele
magnetic and weak forces. Naturally, many aspects of the theory have become active a
research developed from algebraic, differential geometric, dynamical, etc., points of vie
particular, many integrable models~see, for instance, Ref. 25! have been derived from self-dua
Yang–Mills equations by symmetry reductions.

In a series of papers1–5 Yatsun investigated two SU~2! gauge theories defined inR4 over the
bundleP(R4,SU(2)) from this viewpoint.

A. Yatsun’s integrable case 1 „YIC1…

The first SU~2! Yang–Mills theory considered has a Lagrangian density of the form

L15
1

4g2 Fmn
a Fmn

a 1
1

2
Dmf iDmf i1

1

4
l~f if i !

2, ~49!

for f i ,i 51,...,4 in vector representations, where under SU~2! gauge transformationsh5u4

1 iuasaf i transforms into f̃ i5u4f i1h̄ai juaf j and Dmf i5]mf i2
1
2h̄ai jAm

a f j , h̄ai j5eai j 4

1d i4da j2d j 4dai is the anti-self-dual ’t Hooft tensor.~For the symmetry properties of the Yang
Mills Lagrangians see Fatibeneet al.26!. To solve the problem of finding the fieldsAm and fn

satisfying the equations of motion of the model~49!, namely

D̃mFmn
a 1 1

2 g2h̄artfrDnft50,

~50!
DmDmfm1lf2fn50,

whereD̃mFmn
a 5]mFmn

a 1eabcAm
b Fmn

c , andf25fnfn for which the integral of action is bounded
the author employs theO(4)-symmetry reduction

Am
a 52c~x!h̄amn

xn

x2 , fn5w~x!
xn

x
, ~51!

wherex5(xnxn)1/2. These equations transform the equations of the motion~50! into the following
system of second-order ordinary differential equations~ODEs!:

c91
1

x
c82

4

x2 c~12c!~122c!2
g2

4
w2~12c!50,

~52!

w91
3

x
w82

3

x2 w~12c!21lw350.

By the coordinate transformation

t5 ln x, q15c11, q25S g2

12D
1/2

xw, pi5
dqi

dt
, ~53!

wherei 51,2, Eq.~52! is reduced to the canonical Hamilton equations defined by the Hamilto

H15 1
2 ~p1

21p2
2!1V1 , ~54!

where
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V1522S ~q1!41
3

4
~q1!2~q2!21

3

2

l

g2 ~q2!4D112S ~q1!31
1

2
q1~q2!2D

226S ~q1!21
1

4
~q2!2D124q1. ~55!

It is shown next that forg2524l the Hamiltonian system is completely integrable having
following additional integral of motion independent ofH1 :

F15p1p2q22p2
2q12~q2!2$~q1!31 1

2 q1~q2!226~~q1!21 1
4 ~q2!2!113q1212%. ~56!

Note that~56! is quadratic in momenta, hence the system is orthogonally separable. At this
the author uses the technique developed in Ref. 27 which utilizes the Hamilton–Jacobi equa
~55! to find a particular solution of ~52! by first finding a particular solution to the Hamilton
Jacobi equation in order to reduce the system of second-order ODEs to a system of firs
ODEs inc(x) andw(x) that can be solved explicitly. We are able to show that the Hamilton
system defined by~55! can be solved in full generality by making use of the Hamilton–Jac
method of separation of variables under the separation ansatz~4! as described previously. Indee
we observe that any Killing tensor compatible withV1 @i.e., d(K dV1)50# is of the form K
5 l 0g1 l 1K (1), l 0 , l 1 arbitrary parameters, where

Ki j
(1)5S 0 2q2

2q2 2q1 D . ~57!

ComparingKi j
(1) with ~21!, we see thatA5B5C5a5g50, b51. Table I indicates that the

separable coordinates are of parabolic type withu5a5b50. Hence, we use the standard tran
formation to parabolic coordinates:

q15 1
2 ~u22v2!,

q25uv.
~58!

Transforming the momenta and potential accordingly, we obtain the following form of the Ha
tonianH1 in parabolic coordinates:

H15

1
2 ~pu

21pv
2!1h1~u2!1h2~v2!

u21v2 , ~59!

wherepu5]W/]u , pv5]W/]v, and

h6~h!5
2h5

8
1

3h4

2
2

13h3

2
612h2. ~60!

The HamiltonianH1 is separable inu,v coordinates. SettingH15E, E an arbitrary constant
and seeking a separable solutionW5W1(u)1W2(v)2Et, the Hamilton–Jacobi equation be
comes

S dW1

du D 2

12h1~u2!22Eu252S dW2

dv D 2

22h2~v2!12Ev25s, ~61!

wheres is the separation constant. Consequently, the separated equations yield the solutio
quadrature:
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W1~u!5E A2Eu21s22h1~u2! du, ~62!

W2~v !5E A2Ev22s22h2~v2! dv. ~63!

Next, solving

b15
]W

]s
, t2t05

]W

]E
, ~64!

whereW(u,v)5W1(u)1W2(v), one can obtain the general solution to the dynamical system
closed form.

B. Yatsun’s integrable case 2 „YIC2…

A similar approach is used to treat the Yang–Mills theory with the Lagrangian density

L25
1

4g2 Fmn
a Fmn

a 1
1

2
Dmf i

aDmf i
a1

1

4
l@f i ,f j #

a@f i ,f j #
a, ~65!

where the real scalar fieldsf i ,i 51,...,4 aregiven in adjoint representation andDmf i
a5]mf i

a

1@Am ,f i #
a, thus leading to the Hamiltonian system defined by

H25 1
2 ~p1

21p2
2!1V2 , ~66!

where

V2522S ~q1!412~q1!2~q2!21
2l

g2 ~q2!4D14~~q1!31q1~q2!2!22~~q1!21~q2!2!. ~67!

It is shown that the Hamiltonian system is completely integrable ifg252l enjoying the following
additional first integral independent from~66!:

F25~~q2!21 3
4!p1

22~2q121!q2p1p21~q121!q1p2
223~q1!4

22~q1!2~q2!21~q2!416~q1!312~q1!~q2!223~q1!2. ~68!

As in the previous case the integralF2 is quadratic in momenta, thus confirming orthogon
separability of~66!. More specifically, any Killing tensor compatible withV2 is of the formK
5 l 0g1 l 1K (1), l 0 , l 1 arbitrary parameters, where

Ki j
(1)5S 3

4 1~q2!2 1
21 q22q1q2

1
2 q22q1q2 2q11~q1!2D . ~69!

ComparingKi j
(1) with ~21!, we see thatA5 3

4, B5C5a50, b52 1
2, g51. Table I indicates that

the separable coordinates are of elliptic-hyperbolic type withu5b50, a5 1
2, k51. We usetrans-

lated elliptic-hyperbolic coordinates:

q15 1
2 1cosh~u!cos~v !,

q25sinh~u!sin~v !.
~70!

Transforming the momenta and potential accordingly, we obtain the following form of
HamiltonianH2 in parabolic coordinates
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H25

1
2 ~pu

21pv
2!1g~cos2~v !!2g~cosh2~u!!

cosh2~u!2cos2~v !
, ~71!

wherepu5]W/]u , pv5]W/]v, and

g~h!52h323h21 9
8 h. ~72!

The HamiltonianH2 is separable inu, v coordinates. SettingH25E, E an arbitrary constant
and seeking a separable solutionW5W1(u)1W2(v)2Et, the Hamilton–Jacobi equation be
comes

S dW1

du D 2

22g~cosh2~u!!22E cosh2~u!52S dW2

dv D 2

22g~cos2~v !!12Ecos2~v !5s, ~73!

wheres is the separation constant. Consequently, the separated equations yield the solutio
quadrature:

W1~u!5E A2E cosh2~u!1s12g~cosh2~u!! du, ~74!

W2~v !5E A22E cos2~v !2s22g~cos2~v !! dv. ~75!

Finding the complete solutionW(u,v)5W1(u)1W2(v) leads to the general solution of the d
namical system in closed form@see~64!#.

VII. QUASI-BI-HAMILTONIAN REPRESENTATIONS

It is instructive to comment on yet another important property of the completely integ
Hamiltonian systems defined by~55! and ~66!, respectively, considered in Sec. VI. Recall tha
Hamiltonian system is said to be quasi-bi-Hamiltonian~QBH! if its vector fieldXH1 ,H2

enjoys the
following representations:

XH1 ,H2
5@P1 ,H1#5

1

r
@P2 ,H2#, ~76!

whereP1 andP2 are compatible Poisson bi-vectors~i.e., @P1 ,P2#50), H1 , H2 are the correspond
ing Hamiltonians, andr is some function. Ifr52) i 51

n l i , wherel i , i 51,...,n are eigenvalues
of the operatorA5P2P1

21, assumingA is of minimal degeneracy~i.e., it has exactlyn distinct
eigenvalues! having real eigenvalues andP1 is invertible, the QBH system~76! is calledPfaffian.
For the case of a Hamiltonian system with two degrees of freedom defined by~1! we will show
that this property is equivalent to the Hamilton–Jacobi separability.

Theorem 7.1:The following statements are equivalent:

(a) The pseudo-Riemannian manifold(M̂ ,g) defined by (1) admits a valence two Killing tens

K with real and distinct eigenvalues satisfyingd(K̂dV)50, where the~1,1! tensorK̂ is given

by K̂5Kg.
(b) The Hamiltonian system defined by (1) in the pseudo-Riemannian manifold(M̂ ,g) can be

integrated by separation of variables within the framework of the Hamilton–Jacobi theorem.
(c) A Hamiltonian system defined by (1) admits a Pfaffian QBH representation (76), whereP1 is

canonical andA5P2P1
21 is of minimal degeneracy with real and distinct eigenvalues.

Proof: We note that a version of this theorem was announced in Ref. 18. The equivalen~a!
⇔ ~b! is simply a restatement of Benenti’s theorem.10 To prove the validity of the implication~b!
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⇒ ~c!, we use the fact that a completely integrable Hamiltonian system defined by~1! that can be
integrated by separation of variables admits the Liouville form~10!–~11! in the canonical sepa
rable coordinates (u,v)13 @although it may also be separable in other coordinates related to (u,v)#.
Then direct substitution of the functionsH15H, H25F/2, whereH andF are defined by~10! and
~11!, respectively,r52A(u)B(v) and the Poisson bi-vectors defined by

P15
]

]u
∧

]

]pu
1

]

]v
∧

]

]pv
,

~77!

P252A~u!
]

]u
∧

]

]pu
1B~v !

]

]v
∧

]

]pv
,

into the representation formula~76! confirms the claim. We note that the functionsA(u) andB(v)
are the eigenvalues of both the linear operatorA 5P2P1

21 ~A has doubly degenerate eigenvalue!

and Killing tensorK̂5Kg. Next, ~c! ⇒ ~b! can be easily obtained by making use of the princi
result of Ref. 28, namely that there is a canonical transformation to the Darboux–Nije
coordinates with respect to which the Poisson bi-vectorsP1 and P2 are given by~77! ~see also
Ref. 29!. Moreover, the system admits the Gantmakher form in these coordinates. Indeed
easy to verify that in our notations the Hamiltonian~1! takes the following form, corresponding t
~77!:

H15H5
C1~u,p1!1C2~v,p2!

A~u!1B~v !
, ~78!

whereC1 and C2 are arbitrary functions, and thus is separable with respect to the coordi
(u,v). h

Remark 7.1:Taking into account that under the assumption of the theorem the linear ope
K̂ and A share the same eigenvalues@A(u) and B(v) in the canonical separable coordinat
(u,v)#, we conclude that it is possible to classify alternatively the separable cases in terms
eigenvalues ofA using the Pfaffian QBH representation~76!.
The following corollary describes separation of variables with respect to Cartesian coordin

Corollary 7.1: A Hamiltonian system defined by (1) is separable in Catesian coordinates
admits the Pfaffian QBH representation (76) with the~1,1! tensorA: 5P2P1

21 having constant
and distinct eigenvalues.
Separation of variables of two-dimensional Hamiltonian systems and the existence of P
QBH representations are thus intimately related. In conclusion we observe that the Liou
integrable Hamiltonian systems investigated in Sec. VI, that is YIC1 and YIC2, are Pfaffian
systems, for example, in the canonical separable coordinate systems.

VIII. CONCLUDING REMARKS

In this paper we have developed an algebraic method of determining separable coordin
the Euclidean plane based on group invariants of Killing tensors. The main advantage
approach is that once an additional first integral quadratic in momenta is known, no add
nontrivial computations need to be performed. In a forthcoming paper, we will describe a s
algorithm for investigating orthogonal separability in the Minkowski plane based on an analo
set of group invariants. This framework also provides another starting point for investig
orthogonal separability in three-dimensional pseudo-Riemannian manifolds of constant cur
in a systematic and efficient manner. Work in this direction is under way.

We have also demonstrated that separation of variables in Hamiltonian systems wit
degrees of freedom is intimately related to the existence of the Pfaffian QBH representatio
the Hamiltonian systems in question. As a matter of fact the separable cases can also be c
by considering the eigenvalues of the linear operatorA5P2P1

21 associated with the QBH repre
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sentation. The results presented in the last part of the paper may also lead to general
involving Hamiltonian systems defined in three-dimensional pseudo-Rimemannian manifol
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Multi-Lagrangians for integrable systems
Y. Nutku and M. V. Pavlov
Feza Gu¨rsey Institute, P.O. Box 6, C¸ engelko¨y, Istanbul 81220, Turkey

~Received 15 May 2001; accepted for publication 25 October 2001!

We propose a general scheme to construct multiple Lagrangians for completely
integrable nonlinear evolution equations that admit multi-Hamiltonian structure.
The recursion operator plays a fundamental role in this construction. We use a
conserved quantity higher/lower than the Hamiltonian in the potential part of the
new Lagrangian and determine the corresponding kinetic terms by generating the
appropriate momentum map. This leads to some remarkable new developments. We
show that nonlinear evolutionary systems that admitN-fold first order local Hamil-
tonian structure can be cast into variational form with 2N21 Lagrangians which
will be local functionals of Clebsch potentials. This number increases to 3N22
when the Miura transformation is invertible. Furthermore we construct a new La-
grangian for polytropic gas dynamics in 111 dimensions which is afree, local
functional of the physical field variables, namely density and velocity, thus dispens-
ing with the necessity of introducing Clebsch potentials entirely. This is a conse-
quence of bi-Hamiltonian structure with a compatible pair of first and third order
Hamiltonian operators derived from Sheftel’s recursion operator. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1427765#

I. INTRODUCTION

In this paper we shall point out a general technique for the construction of inequiv
solutions to the inverse problem in the calculus of variations. We shall show that comp
integrable partial differential equations in 111 dimensions that admit multi-Hamiltonian structu
can be cast into variational form with multiple Lagrangians. It is remarkable that all these
Lagrangians can be obtained directly from our present knowledge of complete integrability
evolutionary system without doing any new calculations.

One of the important properties we expect from a completely integrable system is m
Hamiltonian structure. A vector evolutionary system can then be cast into Hamiltonian fo
more than one way

ut:1a21

i 5$ui ,Ha%:5J:
ikdkHa i 51,2, . . . ,n :51,2, . . .N. a521,0,1,. . . ,`, ~1!

where the variational derivative is denoted bydk[d/duk andJ is a matrix of differential operators
satisfying the properties of a Poisson tensor, namely skew-symmetry and Jacobi identit
integrable systems there exists more than one such Hamiltonian operator and Hamiltonian fu
as the respective Hebrew and Greek indices indicate. Then, by the theorem of Magri1 completely
integrable systems admit infinitely many conserved Hamiltonian functions which are in invol
with respect to Poisson brackets defined by compatible Hamiltonian operators.

The essential element in the multi-Hamiltonian approach to integrability is the constructi
the Hamiltonian operators themselves. Fortunately this is a rich subject2 that can be put to good
use. We shall be interested in the consequences of multi-Hamiltonian structure on the Lagr
formulation of completely integrable evolutionary equations. We shall work in the opposite d
14410022-2488/2002/43(3)/1441/19/$19.00 © 2002 American Institute of Physics
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tion to the traditional approach of deriving Hamiltonian structure from a Lagrangian. The cr
fact that we shall exploit is the relationship between Hamiltonian operators and Dirac bracke3 for
degenerate Lagrangian systems which was first pointed out by Macfarlane.4 In the case of com-
pletely integrable systems we have much more information on Hamiltonian structure tha
grangian and it became clear only recently5–7 how we can construct multiple Lagrangians f
systems that admit multi-Hamiltonian structure. We shall now present the general and most
technique for generating these new Lagrangians.

II. MULTI-LAGRANGIANS

Evolutionary systems~1! cannot be cast into variational form with a local expression for
Lagrangian using the velocity fieldsui alone but require the introduction of Clebsch potentials.
111-dimensions the general expression for Clebsch potentials is given by

ui5fx
i ~2!

and in this paper we shall only consider Lagrangians that are local functionals of these pote
In the time-honored way we shall split the Lagrangian density for Eqs.~1! into two

L5T2V. ~3!

that consist of the kinetic and potential pieces, respectively. For the first Lagrangian dens
enumeration which will become clear presently, the kinetic term is always given by

T15gikf t
ifx

k , ~4!

wheregik are constants with detgikÞ0 and

V152H1 ~5!

is the Hamiltonian density. We note that the Hamiltonian function that appears in~1! is the space
integral of the density. We shall number the conserved Hamiltonians by reserving the subs
to the ‘‘usual’’ Hamiltonian function but of course there exists conserved quantities suc
Casimirs and the momentum which are of lower order. In fact, for complete integrability
n-component vector evolutionary system~1! must admitn infinite series of conserved Hamilto
nians. We shall denote their densities by

Ha@ i # , i 51,2,...,n, a521,...,̀ ~6!

and recall that each series starts with a Casimir

H21@ i #5gikuk ~7!

which will carry the label minus one. One of these series is distinguished in that it contain
‘‘usual’’ Hamiltonian function which is the one that appears in Eqs.~1!. For the two-componen
systems that we shall discuss in this paper these are the Eulerian and Lagrangian series.
also that the two series may coincide up to a relabelling dictated by the recursion operator.
in fact the case for theg52 case of gas dynamics and in most examples of completely integ
dispersive equations except the Boussinesq equation.

The potential part of the Lagrangian does not depend on the velocities and from Eq.~4! it
follows that the Hessian

detU ]2L1

]f t
i]f t

kU50
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vanishes identically. We have therefore a degenerate Lagrangian system and in order to cas
Hamiltonian form we must use Dirac’s theory of constraints,3 or the covariant Witten–Zuckerma
theory8,9 of symplectic structure. In particular, the first Hamiltonian operator obtained from
first Lagrangian is given by

J1
ik5gikD, D[

d

dx
, ~8!

wheregik is the inverse of the coefficients in the kinetic part of the first Lagrangian~4! which is
nondegenerate.

The construction of multiple Lagrangians relies on the use of the Lenard recursion re
which is implicit in Eqs.~1! that in the Greek and Hebrew indices we have a symmetric ma

~9!

where square brackets denote complete skew-symmetrization and bars enclose indices w
excluded in this process. Provided we can invert these Hamiltonian operators, we can co
recursion operators

~10!

that map gradients of conserved Hamiltonians into each other~9!.
For the construction of Lagrangians we start with the crucial observation that the firs

grangian is of the form

L15H21@ i #f t
i22H1 , ~11!

which is manifest from~4!. The original fields that enter into the evolutionary system~1! are
Casimirs which is evident from the subscript minus one. The second Lagrangian will be o
same general structure as~11! if we further suppose that Eqs.~1! can be written in bi-Hamiltonian
form. Thus there will existH2 which is the next conserved Hamiltonian function in the hierarc
and the momentumH0 which comes after Casimirs. The higher Lagrangian should simply b

L25H0@ i #f t
i22H2 ,

but there is an important refinement that we need to insert here. It is not the conserved den
rather the momentum map that enters into the kinetic part of the Lagrangian. The two diffe
by total derivatives which is irrelevant in the context of conservation laws and therefore gen
skipped over. However, these divergence terms are of crucial interest as the momentum ma
theory of symplectic structure. We shall show that givenath local Hamiltonian structure, the ful
new Lagrangian is simply given by

La5$Ha22@ i #1~Ga22@ i #!x%f t
i22Ha , ~12!

whereGa@ i # is a functional of the potentials. The coefficient off t
i above is the momentum map an

this is the only calculation necessary to find the new Lagrangian.
The fact that it is the momentum map rather than the conserved density that plays an

tant role in the Lagrangian can be seen at the level of the first Lagrangian. Now the Casimir
the role of the momentum map and they are used to construct the next higher conserved q
according to the construction of the canonical energy-momentum tensor

H05
]L1

]f t
i fx

i 5H21@ i #u
i5

1

2
gikH21@ i #H21@k# ,
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which is the momentum. This classical result for Lagrangians linear in the velocity can be
eralized at each level we have a higher Lagrangian. We have

2Ha215gik@Ha22@ i #1~Ga22@ i #!x#H21@k# ~13!

ending at the level where a local Lagrangian is no longer possible. In fact the validity o
equation is directly related to the existence of the Lagrangian. If a check of~13! fails for somea,
then there exists no local Lagrangian atath level.

Now we come to an important reservation that our new Lagrangians will necessarily
The Euler equations that follow from the variation of the action with the second Lagrangian
be

R2 k
1 i @ut

k2J1
kmdmH1#50, ~14!

so that the first variation of the second action will certainly be an extremum for the ori
equations of motion~1! but the Euler equations~14! require something weaker, namely line
combinations of functionals in the kernel of the recursion operator can be added to the righ
side of the equations of motion and the new action will still be an extremum.

From this construction it is manifest that for every Hamiltonian function in the infinite h
archy of conserved Hamiltonians that we have for completely integrable systems, there e
degenerate Lagrangian~12! that yields the equations of motion as its Euler equation up to fu
tionals in the kernel of the recursion operator. The number of Lagrangians that can be cons
in this way is therefore infinite in number. Given bi-Hamiltonian structure we have two l
Hamiltonian operators but the Lenard recursion operator~10! is nonlocal. However, the specia
form of the first Hamiltonian operator~8! leads to a local expression for the second Lagrangia
terms of Clebsch potentials. But it is clear that the repeated application of the recursion op
will require the introduction of nonlocal terms in higher Lagrangians. Strictly speaking, this i
a problem because the original Lagrangian is itself nonlocal in terms of the velocity fielui

which are the original variables. We swept this problem under the rug by introducing Cle
potentials. Higher Lagrangians for evolutionary equations~1! can be written in local form by
introducing potentials for the Clebsch potentials themselves. If, however, the equations of m
admit N local Hamiltonian operators, then our construction guarantees the existenceN
Lagrangians which are local functionals of the Clebsch potentials. Thus we have the follo
theorems.

Theorem 1: A completely integrable system that admits N-fold local first order Hamilton
structure can be given N different variational formulations with degenerate Lagrangians tha
local functionals of the Clebsch potentials.

By a convenient abuse of language we claim that we have a Lagrangian for an equatio
involves fields when the Lagrangian is in fact only a functional of the Clebsch potentials for
fields. Then we have the audacity to put in by hand the expression for the fields in ter
potentials after the variation. This can be at best only a shorthand for the real variational pri
where we must impose the relationship between the fields and their potentials through La
multipliers.

So far we have been guilty of this abuse ourselves. But now we must say that the
Lagrangian is actually

L1
full5L1~f i ,fx

i ,fxx
i ,...!1l i~ui2fx

i ! ~15!

so that upon variation with respect to all the variablesf i , ui , l i we get~2!, l i50 and arrive at the
equations of motion~1! expressed in terms of the original fieldsui without fudging.

Now this obvious observation may seem correct but naive, however, we shall now find
dramatically increases the number of new Lagrangians we can construct for integrable sys

For every evolutionary equation that admits, say for simplicity, bi-Hamiltonian structure t
exists a differential substitution
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ui5Mi~r k,r x
k ,...! ~16!

that brings the second Hamiltonian operator to the canonical form~8! of Darboux. This differential
substitution is a Miura transformation. Strictly speaking the theorem of Darboux remain
proved in field theory where the number of degrees of freedom is infinite but we shall assu
Miura transformation works in a direction opposite to the usual action of the recursion opera
leads to Hamiltonian equations

r t
i5$r i ,H0%15gikDd r kH0uum5Mm~r n! , ~17!

whereH0 is the momentum for Eqs.~1! expressed through~16!. These are modified equation
different from the original equations, but the two sets are related by

ut
i2J2

ikdukH0~u!5Oj
i ~r l !@r t

j2J1
jkd r kH0uum5Mm~r n!# ~18!

up to functions in the kernel of some matrix differential operatorOj
i .

A comparison of Eqs.~14! and Miura’s relation~18! shows us that using the differentia
substitution of Miura we can obtain new Lagrangians for nonlinear evolution equations that
multi-Hamiltonian structure in the opposite direction to our earlier construction. Transformin
the variablesr i and using new Clebsch potentials

r i5cx
i ~19!

we can write the classical Lagrangian for the modified system~17!

L1
modified5gikcx

i c t
k22H0uum5Mm~cx ,cxx ,...! , ~20!

where the labeling ofH0 refers to its expression in the original variablesui but these need to be
substituted for in terms ofr i according to~16! and expressed through the potentials~19!. We note
that the Casimirsr i5cx

i for the modified system are absent in the polynomialHa(u) hierarchy.
We would expect naively that the Euler equations resulting from the first variation of the a
with the Lagrangian~20! would result in the modified equations~17!. This would indeed be the
case if we were to impose the constraint between the fieldsr i and their potentialsc i as in~15! but
now using~19!. However, by imposing the constraint through Miura’s differential substitution

L0
full5L1

modified~cx
i ,cxx

i ,...!1l i@ui2Mi~cx
i ,cxx

i ,...!# ~21!

we obtain a new Lagrangian for the original equation~1! in the original variablesui . We shall use
this construction to derive new Lagrangians, in particular for KdV in Sec. III. It is evident that
construction can be extended when there exists multi-Hamiltonian structure but, as we shall
the example of KdV, sometimes it is possible to arrive at local Lagrangians using non
Hamiltonian operators as well. We conclude with the following.

Theorem 2: The first Lagrangian of every modified equation obtained through a Mi
transformation will serve as a new zeroth Lagrangian for the original equations of motion
vided the constraint between the fields and their potentials is imposed through a Miura
differential substitution. For N-fold Hamiltonian structure there exists N21 such new
Lagrangians.

Miura transformation is in general not invertible because it is a differential substitution
there exist interesting examples where it reduces to a point transformation which is invertib
that case we can constructN21 further Lagrangians.

We conclude that for an evolutionary system that admitsN-fold first order Hamiltonian struc-
ture, the number of different variational principles where the first variation will be an extremu
virtue of the original equations of motion is 2N21 and in the case Miura transformation
invertible 3N22. We illustrate this situation for the case of bi-Hamiltonian structure in Tabl
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and II. The general situation is much more complicated than what these tables would lead
expect. Starting with tri-Hamiltonian structure the individual entries in each one of these t
will need to be a table by itself because there are inequivalent Hamiltonian operators that yie
same equations of motion with the same Hamiltonian function. We shall discuss this inter
situation in a future publication on the Chaplygin–Born–Infeld equation.

III. KDV

KdV stands as the symbol of completely integrable systems. We think we know it, but it
out to be so rich that there is still new information to be learned about it. We recall that Kd

ut16uux2uxxx50 ~22!

admits the Kruskal sequence of conserved Hamiltonian densities

H21
KdV5u, ~23!

H0
KdV5 1

2u
2, ~24!

H1
KdV5u31 1

2ux
2, ~25!

H2
KdV5 5

2u
415uux

21 1
2uxx

2 , ~26!

¯

which are in involution with respect to Poisson brackets defined by two Hamiltonian opera

J15D, J252D312uD12Du, ~27!

that form a Poisson pencil. By introducing the potential

u5fx . ~28!

KdV can be cast into variational form with two Lagrangians

L1
KdV5H21

KdVf t22H1
KdV , ~29!

TABLE I. The hierarchy of local Hamiltonian structures and Lagrangians which are local functionals of Clebsch pot
for evolutionary systemut5J1dH15J2dH0 whereJ1 is in the canonical Darboux form.

Equations of motion ut5J2dH0 ut5J1dH1 J2J1
21ut52dfH2

Local Hamiltonian op. J2 J1 no
Local Lagrangian no L1 L2

Modified equations r t5 J̃2dH0 r t5 J̃1dH1

Local Hamiltonian op. J̃25J1 J̃1

Local Lagrangian L0 no

TABLE II. When the Miura transformation is invertible we need to include an additional column to the left of Tab

Equations of motion ut5J2dH0 ¯

Local Hamiltonian op. J2 ¯

Local Lagrangian no ¯

Modified equations J̃1J̃2
21r t52dcH21 r t5 J̃2dH0

¯

Local Hamiltonian op. no J̃25J1
¯

Local Lagrangian L21 L0 ¯
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L2
KdV5~H0

KdV1fxxx!f t22H2
KdV , ~30!

which consist of the classical Lagrangian and the second Lagrangian,5 respectively. Note that there
is a misprint in the potential term of the second Lagrangian reported in Ref. 6 but the resul
follow are correct. Here we observe that both~29! and~30! are examples of our general expressi
~12! for higher Lagrangians.

The second application of Lenard’s recursion operator toJ1 results in a third Hamiltonian
operator which is nonlocal so we cannot continue to generate higher Lagrangians. But we c
Theorem 2 to generate new lower Lagrangians for KdV. For this purpose we note that in
Lagrangians~29! and ~30! we should have added the constraintl(u2fx) and written the full
Lagrangian. But following the convenient abuse of language we did not do so because
manifest. It is, however, necessary to write the full Lagrangian in the case of lower Lagran

According to our general construction of lower Lagrangians we first recall the original M
transformation

u5r 21r x ~31!

that bringsJ2 to the canonical form ofJ1 in the variabler. The equation of motion forr is mKdV
which is different from~22! but under the substitution~31! we have Miura’s result

ut16uux2uxxx5~D12r !~r t16r 2r x2r xxx!50, ~32!

so that, on shell, if mKdV is satisfied then so is KdV. Now we can introduce the Clebsch pot
for the modified field variable

r 5cx ~33!

and write the first Lagrangian for mKdV

L1
mKdV5cxc t1H0

KdVuu5c
x
21cxx

~34!

in a straightforward manner. But now enforcing the constraint in the full Lagrangian throug
Miura transformation

L0
KdV full 5L1

mKdV1l~u2cx
22cxx! ~35!

we shall arrive at a new Lagrangian for KdV because the Euler equation that comes from th
variation of this action will be satisfied by virtue of~32!. Unlike ~30! which is a higher Lagrang-
ian, ~35! is a lower Lagrangian in the sense of the action of the recursion operator on the equ
of motion.

And the saga of KdV continues. We consider the third Hamiltonian operator for KdV

J35R2J1 ~36!

which is nonlocal but the relationship between differential substitutions and Hamiltonian s
tures of KdV ~Ref. 24! enables us to construct another new local Lagrangian for KdV. For
purpose we recall that the differential substitution

r 5aq1
«

q
1

qx

2q
, ~37!

which transforms mKdV into twice modified KdV

qt5S qxx2
3qx

2

2q
1

6«2

q
22a2q3D

x

~38!
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is a Miura transformation for~36!. This can best be seen by the expression

J35 1
2~q2D1Dq2!2qxD

21qx ~39!

for the third nonlocal Hamiltonian operator for KdV in terms of the twice modified variableq. We
recall thatJ3 is fifth order inu. We have the Miura relation

r t16r 2r x2r xxx5S a2
«

q22
qx

2q2 1
1

q
D D Fqt2S qxx2

3qx
2

2q
1

6«2

q
22a2q3D

x
G50 ~40!

between modified and twice modified KdV’s. Introducing the potential for the twice mod
variableq5xx we have

u5F~xx ,xxx ,xxxx![
xxxx

xx
2

xxx
2

xx
2 12axxx1a2xx

212a«1
«2

xx
2 ~41!

in terms of the original fieldu. The first Lagrangian for twice modified KdV is simply

L1
m2KdV

5xxx t1H21
KdVuu5F~xx ,xxx ,xxxx!

~42!

and therefore the second lower Lagrangian for KdV is given by

L21
KdV full 5L1

m2KdV
1l@u2F~xx ,xxx ,xxxx!# ~43!

which provides another illustration of~21!. This process can be continued.
We note that an alternative to the Clebsch potential for KdV is the Schwartzian which

pointed out by Schiff.10 We shall postpone consideration of Schwartzian potentials to future w

IV. POLYTROPIC GAS DYNAMICS

The simplest examples for applying our construction of multi-Lagrangians consist of q
linear second order hyperbolic equations that Dubrovin and Novikov11 have called equations o
hydrodynamic type. The distinguished example in this set consists of the Eulerian equati
polytropic gas dynamics in 111 dimensions,

r t1urx1rux50, ut1uux1rg22rx50, ~44!

and in particular forg521 we have the case of Chaplygin gas, or Born–Infeld equation that
recently shown to have a string theory antecedent.12 This system can be cast into quad
Hamiltonian form.13 For the Chaplygin–Born–Infeld case the complete Hamiltonian structure
be found in Ref. 14 and its symmetries were given in Ref. 15. In the following we shall us
labelingu15r andu25u.

First we have three local Hamiltonian structures of first order16

J15S 0 D

D 0 D 5s1D, ~45!

J25S rD1Dr ~g22!Du1uD

Du1~g22!uD rg22D1Drg22D , ~46!
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1
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1F1

2
u21

1

g21
rg21GD

DF1

2
u21

1

g21
rg21G

urg22D1Durg22
D , ~47!
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1F1

2
~g22!u21

1

g21
rg21GD

which form a Poisson pencilJ5J11c1J21c2J3 with c1 ,c2 constants, i.e., these Hamiltonia
operators are compatible. In Eq.~45! s1 is the Pauli matrix and this is the canonical Darboux fo
of first order Hamiltonian operators. The equations of polytropic gas dynamics admit two in
hierarchies of conserved Hamiltonians which are in involution with respect to Poisson bra
defined by all three of these Hamiltonian operators. In the first set, which is called Eulerian13 the
Hamiltonian densities are given by

H21
E 5r, ~48!

H0
E5ur, ~49!

H1
E5

1

2
u2r1

1

g~g21!
rg, ~50!

H2
E5

1

6
u3r1

1

g~g21!
urg, ~51!

H3
E5

1

24
u4r1

1

2g~g21!
u2rg1

1

2g~g21!2~2g21!
r2g21, ~52!

¯ ,

where~49! is the momentum,~50! is the familiar Hamiltonian function, the Casimir is in~48! and
the rest consist of higher Hamiltonians. Therefore, the Euler series is the distinguished one
terminology of Sec. II. The second series

H21
L 5u, ~53!

H0
L5

1

2
~g22!u21

1

g21
rg21, ~54!

H1
L5

1

6
~g22!u31

1

g21
urg21, ~55!

H2
L5

1

24
~g22!u41

1

4~g21!
u2rg211

1

2~g21!2~2g23!
r2~g21!, ~56!

¯

is the Lagrangian series which starts with the Casimir~53!. Note that forg52 this series is no
longer polynomial as logarithms will enter and the same remark holds for integer and half-in
values ofg in both series.
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Finally, we note that the recursion operatorR2
15J2J1

21 can be used to write infinitely man
Hamiltonian operators by letting it to actn times onJ1 . However, in general none of thes
operators will be local. In particular we note that

R3
15J3~J1!21Þ~R2

1!2, J3ÞJ2J1
21J2 , ~57!

except in the case of shallow water waves whereg52 which admits extension to integrab
dispersive equations.

Next, there is a third order Hamiltonian operator17 which was obtained from Sheftel’s remark
able recursion operator18

J45DUx
21DUx

21s1D, ~58!

where

U5S u r

1

g22
rg22 uD ~59!

which is only compatible withJ0 . Higher conserved Hamiltonians start with the density18,19

Ĥ21
SV~E!5

rx

ux
22rg23rx

2 ~60!

and its flux,

F 21
SV~L !52

ux

ux
22rg23rx

2 , ~61!

which is the first in an infinite hierarchy of non-polynomial conservation laws for gas dyna
that depend on space derivatives.

We will be interested in the Lagrangian formulation of the equations of polytropic gas
namics ~44! that correspond to all these Hamiltonian structures. Introducing the Cle
potentials20

u5wx , r5cx ~62!

we have the first Lagrangian representation for this system

L1
g5H21

L c t1H21
E w t22H1

E~wx ,cx! ~63!

but using the recursion operatorsJ2J1
21 andJ3J1

21 we find two further Lagrangians

L2
g5H0

Lc t1H0
Ew t22H2

E~wx ,cx!, ~64!

L3
g5H1

Lc t1H1
Ew t22H3

E~wx ,cx!, ~65!

which are local functionals of the Clebsch potentials. The Lagrangian obtained through the
of the recursion operatorJ4J1

21 is the most interesting one. BecauseJ4 is a third order operator
the fourth Lagrangian

L4
g5H21

SV~E!ut1F 21
SV~L !r t22H21

E ~wx ,cx!, ~66!

L4
g5

rxut2uxr t

ux
22rg23rx

222r ~67!
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is free, i.e., it does not contain any Lagrange multipliers, and furthermore it islocal in the original
fields, namely the density and velocity. This is the first time it has been possible to write d
such a Lagrangian for polytropic gas dynamics. It was made possible only because
Hamiltonian structure with a pair of first and third order Hamiltonian operators. Here we
another remarkable situation in that the number of Lagrangians that we can construct by re
application of Sheftel’s recursion operatorJ4J1

21 is infinite in number. All of these Lagrangian
will be free and local in the original field variablesr andu.

Now we come to lower Lagrangians that will arise from Miura transformations. The M
transformations that bring the Hamiltonian operators~46! and~47! to the Darboux form of~45! are
point transformations for equations of hydrodynamic type. Dubrovin and Novikov had pointe
that first order Hamiltonian operators for equations of hydrodynamic type are given by

Jik5gikD2gimGmn
k ux

n ~68!

where gik are the components of a Riemannian metric which is flat by virtue of the Ja
identities. The Miura transformation provides manifestly flat coordinates for this metric.
example from~46! we find the flat metric

ds2
25

2

4rg212~g21!2u2 @rg22 dr22~g21!u dr du1r du2# ~69!

and it can be verified that the Miura transformation

r5rp, u5
1

g21
~r g211pg21! ~70!

brings it into the manifestly flat form 2dr dp. In these variables we find the first modifie
equations of gas dynamics

r t1
g

g21
~r g211pg21!r x1grpg22px50,

~71!

pt1gprg22r x1
g

g21
~r g211pg21!px50,

and linear combinations of these equations with variable coefficients give Eqs.~44! of gas dy-
namics. Introducing the potentials

r 5xx , p5vx , ~72!

we have the Lagrangian

L0
gfull5xxv t1vxx t22H0

E1lS u2
xx

g211vx
g21

g21 D 1s~r2xxvx!, ~73!

whereH0
E is the momentum~49! expressed in terms of the potentialsx andv. Transforming to the

first modified variablesr, p we getJ̃1 , J̃25J1 andJ̃3 defining the tri-Hamiltonian structure of Eqs
~71!. Now there is a new lower Lagrangian that we can construct from the recursion op
J̃1J̃2

21. We find

J̃15S ~12g!@rpg22DD1Drpg22D# @~g22!r g211pg21#DD

@r g211~g22!pg21#DD 1D@r g211~g22!pg21#D

1D@~g22!r g211pg21#D ~12g!@prg22DD1Dprg22D#
D , ~74!
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D[
1

~g21!~r g212pg21!2 ,

where the labeling of the variables is in the orderr andp. The new Lagrangian is given by

L21
gfull5

xxv t2vxx t

xx
g212vx

g212H21
E 1lS u2

xx
g211vx

g21

g21 D 1s~r2xxvx!, ~75!

where the momenta do not belong to the polynomial series of conserved Hamiltonians. Ho
we can identify the lower momenta from this Lagrangian

H22
g65j6

~32g!/~g21!~j1j2!21/2, j21~g21!uj1rg2150

where6 refers to Eulerian and Lagrangian series as well as the roots of the quadratic equ
We now turn to the third Hamiltonian structure~47! defined by the flat metric

ds3
252

8~g21!2

@~g21!2u224rg21#2 H urg22 dr22
1

2~g21!
@~g21!2u214rg21#dr du1ur du2J

52 dq dw, ~76!

and the coordinate transformation that brings it to the manifestly flat form is given by

q5@~g21!2u224rg21#@~g23!/2~12g!#, ~77!

w5Ez 1

A11j2
j~g23!/~12g! dj, ~78!

z5sinhH 1

2
ln

~g21!u12r~g21!/2

~g21!u22r~g21!/2J ,

where, in general, the last integral cannot be done in closed form. For some specific valueg
the integral~78! is elementary as in the notable case of Chaplygin–Born–Infeld. But this pap
devoted to the general case of polytropic gas dynamics and we shall not consider invertin~77!,
~78! to obtainu, r as functions ofq andw. We shall only remark that after this inversion we c
obtain two more new Lagrangians.

The Lagrangians~63!, ~64!, and~65! for polytropic gas dynamics are examples illustrating t
general expression~12! for higher Lagrangians. For equations of hydrodynamic type there is
dispersion and henceG vanishes identically. We have given only two~73!, ~75! of the four lower
Lagrangians because the integral~78! must be carried out before we arrive at the second modi
equations of gas dynamics which will lead to two further new Lagrangians. Certainly the Lag
ian ~67! which is derived from bi-Hamiltonian structure with a compatible pair of first and th
order operators according to~12! is the most remarkable one because this is the first time it
been possible to write an unconstrained Lagrangian for polytropic gas dynamics that is loca
original field variables, namely the density and velocity. Furthermore it is only the first eleme
an infinite series of such Lagrangians.

V. KAUP–BOUSSINESQ SYSTEM

Gas dynamics withg52 governs the behavior of long waves in shallow water. From the p
of view of complete integrability it is a remarkable case, because in this case we find s
completely integrable dispersive generalizations of Eqs.~44!. Most prominent among them is th
well-known Kaup–Boussinesq system21
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ut5S u2

2
1pD

x

, r t5~ur1«2uxx!x , ~79!

which admits tri-Hamiltonian structure. The first Hamiltonian structure is given by the Ha
tonian operator~45! and

J2
KBq5S D 1

2Du

1
2uD 1

2~rD1Dr!1«2D3D , ~80!

whereD21 denotes the principal value integral, is the second Hamiltonian operator for the K
Boussinesq system. In the limit«→0 this Hamiltonian operator reduces to~46! with g52. The
recursion operator is given by

R2
1 KBq5S 1

2u1 1
2uxD

21 1

«2D21r1 1
2rxD

21 1
2u
D ~81!

and there is a third local Hamiltonian operator obtained by the action of the recursion op
J2

KBq5(R2
1KBq)2J0 as in theg52 case of gas dynamics.

The conserved Hamiltonians in the Eulerian and Lagrangian series are

H21
KBq5r, ~82!

H0
KBq5ur, ~83!

H1
KBq5 1

2~ru21r21«2uuxx!, ~84!

H2
KBq5 1

2@ru313r2u2«2~4uxrx13uux
2!#, ~85!

H3
KBq5 1

4u
4r1 3

2u
2r21 1

2r
31«4uxx

2 2«2~ 5
2rux

214uuxrx1rx
21 3

2u
2ux

2!, ~86!

¯ ,

and the degeneracy in theg52 case of gas dynamics is repeated in its dispersive generaliza
In particular, the Lagrangian and Eulerian series coincide apart from a relabeling

H22
KBq~E!5u5H21

KBq~L ! ,

H21
KBq~E!5r5H0

KBq~L ! , ~87!

¯ ,

H221n
KBq~E!5H211n

KBq~L ! ,

that is dictated by the recursion operator.
With the aid of the Clebsch potentials

u5wx , r5cx , ~88!

we obtain

L1
KBq5H21

KBqw t1H22
KBqc t22H1

KBq~wx ,cx ,wxx ,cxx ,...! ~89!
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for the first Lagrangian. Using the technique we have presented in Sec. II we shall now con
higher Lagrangians. These three local Hamiltonian structures enable us to construct tw
Lagrangians

L2
KBq5~H0

KBq1«2wxxx!w t1H21
KBqc t22H2

KBq~w t ,cx ,wxx ,cxx ,...! ~90!

and

L3
KBq5@H1

KBq1«2~2cxxx1wxx
2 1wxwxxx!#w t1~H0

KBq1«2wxxx!c t22H3
KBq~wx ,cx ,...!

~91!

for the Kaup–Boussinesq system. The determination ofGb;@ i # is according to Eq.~12! with b
52,3 and@2#5@1#21 because of the relabeling difference~87! between the Lagrangian an
Eulerian series. Note that the momentum map which is the coefficient off t in ~90! is exactly the
same as the momentum in front ofc t in ~91!. The reason for this goes back to the degeneratio
the Eulerian and Lagrangian series into one and the fact that it is the momentum map tha
important element in the general construction~12!. In the dispersionless limit the Lagrangian
~89!, ~90!, ~91! reduce to the gas dynamics Lagrangians~63!, ~64!, and~65! with g52.

VI. KAUP–BROER SYSTEM

There is another completely integrable dispersive version of theg52 case of gas dynamic
which is the Kaup–Broer system.21,22 The triangular invertible differential substitution

r5h1«ux ~92!

transforms the Kaup–Boussinesq system~79! into the Kaup–Broer system

ut5uux1hx1«uxx , h t5~hu!x2«hxx , ~93!

which also has three local Hamiltonian structures.23 For the Kaup-Broer system the conserv
Hamiltonians in the Eulerian series are given by

H0
KBr5uh, ~94!

H1
KBr5 1

2@u2h1h222«hux#, ~95!

H2
KBr5 1

2@u3h13uh216«huux24«2uxhx#, ~96!

H3
KBr5 1

4u
4h1 3

2u
2h21 1

2h
31«~ 3

2h
2ux2u3hx!1«2~2u2hxx2hux

22hx
2!22«2hxuxx , ~97!

which can be obtained from~83!–~85! through the substitution~92!. The first Hamiltonian opera-
tor for the Kaup–Broer system is given by~45! and the second Hamiltonian operator

J1
KBr5S D 1

2Du1«D2

1
2uD2«D2 1

2~hD1Dh!
D ~98!

can be obtained from~80! of the Kaup–Boussinesq system using the substitution~92!.
For Kaup–Broer system we introduce the potentials

h5wx , c5w1«wx , ~99!

and arrive at the first Lagrangian

L1
KBr5H21

KBqwL1H22
KBrwt22H1

KBr~wx ,wx ,wxx ,wxx ,...!, ~100!
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but now we can derive two further Lagrangians using the recursion operator obtained fro
Hamiltonian operators~98! and ~45!. Following our procedure of Sec. II we find the seco
Lagrangian

L2
KBr5~H0

KBr22«wxx!w t1H21
KBrwt22H2

KBr~wx ,wx ,wxx ,wxx ,...! ~101!

which is the same as the Lagrangian of Kaup–Boussinesq system~91! subject to the differential
substitution~92!. Similarly we find

L3
KBr5~H1

KBr12«2wxxx!w t1~H0
KBr1«wxwxx1«2wxxx!wt22H3

KBr~wx ,wx ,...! ~102!

for the third Lagrangian for the Kaup–Broer equations~93!. As in the case of Kaup–Boussines
these Lagrangians reduce tog52 gas dynamics Lagrangians in the dispersionless limit. In
Kaup–Broer Lagrangians we find another example of the general formula~12! for Lagrangians.

VII. NONLINEAR SHRÖDINGER EQUATION

We shall consider the nonlinear Shro¨dinger equation in the two-component real version

v t5Fv2

2
1h1«2S hxx

h
2

hx
2

2h2D G
x

, h t5~hv !x , ~103!

which is a reaction–diffusion system. Again this reduces to theg52 case of gas dynamics in th
dispersionless limit. This version of NLS can be obtained by another triangular differential
stitution

u5v1«hx /h ~104!

from the Kaup–Broer system.
NLS has the same first local Hamiltonian structure~45! as in the case of Kaup–Boussinesq

Kaup–Broer systems. Once again the second Hamiltonian operator for NLS can be found
transformation~104! from the second Hamiltonian operator~98! of the Kaup–Broer system. Thu
for the two-component real version of NLS the second Hamiltonian operator is given by

J2
NLS5S D1«2H h21D31D3h21

2 1
2@~h21!xxD1D~h21!xx#

J 1
2Dv

1
2vD 1

2~hD1Dh!
D ~105!

and the conserved Hamiltonians are

H22
NLS5v, ~106!

H21
NLS5h, ~107!

H0
NLS5vh, ~108!

H1
NLS5

1

2 S hv21h22«2
hx

2

h D , ~109!

H2
NLS5

1

2 Fhv213vh21«2S vxhx23
vhx

2

h D G , ~110!
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H3
NLS5

3

4
h2v21

1

4
h31

1

8
v4h1«4S hxx

2

2h
2

5hx
4

24h3D 1«2S v2hxx2
5

4
hx

22
3

4

hx
2

h
v22

1

2
vx

2h D ,

~111!

¯

which forms an infinite sequence combining both Eulerian and Lagrangian series acc
to ~87!.

In order to construct the Lagrangians for NLS we introduce the potentials

v5zx , z5w2« ln wx , ~112!

together with the definition~99! and the first Lagrangian

L1
NLS5H21

NLSzt1H22
NLSwt22H1

NLS~wx ,zx ,...! ~113!

is the classical result. Once again we shall use the techniques of Sec. II to construct
Lagrangians with the recursion operator obtained from~105! and ~45!. We obtain two higher
Lagrangians for NLS,

L2
NLS5H0

NLSzt1FH21
NLS1«2S wxxx

wx
2

wxx
2

wx
2 D Gwt22H2

NLS~wx ,zx ,...! ~114!

and

L3
NLS5HH0

NLS1«2Fzxxx1S zxwxx

wx
D

x
G J wt1~H1

NLS12«2wxxx!zt22H3
NLS~zx ,wx ,...!, ~115!

that are local functionals of the potentials. Here again, in the dispersionless limit we findg
52 gas dynamics Lagrangians. The remarkable strength of the general expression~12! for new
Lagrangians is manifest.

VIII. BOUSSINESQ EQUATION

In order to discuss the bi-Hamiltonian structure and the Lagrangians for the Bouss
equation in a unified framework we first turn to its dispersionless limit. For polytropic gas
namics we had

r t5~ru!x , ut5S u2

2
1

rg21

g21D
x

~116!

with its first nontrivial commuting flow

ry5ux , uy5S rg22

g22D
x

, ~117!

both of which reduce to a second order quasi-linear wave equation.13 If we express Boussines
equation in the form

ryy2~ 1
2r

22«2rxx!xx50 ~118!

or
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ry5ux , uy5S r2

2
2«2rxxD

x

~119!

as a first order evolutionary system and compare its dispersionless limit to polytropic gas d
ics, we find that it corresponds to the commuting flow forg54. The completely integrable
dispersive equation

r t5@ru22«2uxx#x , ut5Fu2

2
1

1

3
r32

3

2
«2~2rrxx1rx

2!12«4rxxxxG
x

~120!

is the commuting flow to the Boussinesq equation.
This system admits bi-Hamiltonian structure25 with the Hamiltonian operators~45! and

J2
B5S rD1Dr28«2D3 3uD12ux

3Du22ux 8~r2D1Dr2!18«4D52«2@5~rD31D3r!23~rxxD1Drxx!#
D

~121!

which are compatible. The conserved Hamiltonian densities for the Boussinesq syste
given by

H21
E 5r, ~122!

H0
E5ru, ~123!

H1
E5 1

4@2ru21 1
3r

41«2~6rrx
214ux

2!14«4rxx
2 #, ~124!

H2
E5 1

28@
14
3 ru31 7

3r
4u114«2~2uux

214r2rxux13urrx
2!

128«4~urxx
2 1rx

2uxx14rxxuxx!164«6rxxxuxxx# ~125!

in the Eulerian sequence and we also have

H21
L 5u, ~126!

H0
L5u21 1

3r
31«2rx

2, ~127!

H1
L5 1

3u
31 1

3r
3u2«2u~4rrxx13rx

2!1 16
5 «4uxxrxx , ~128!

H2
L5 2

3u
41 4

3r
3u21 4

45r
61«2~ 28

3 r3rx
214u2rx

2132rurxux18r2ux
2!1«4~ 136

5 r2rxx
2 2 248

5 rx
4

1 128
5 uuxxrxx1

16
5 ux

2rxx1
96
5 ruxx

2 !1«6~32rrxxx
2 2 592

15 rxx
3 1 64

5 uxxx
2 !1 64

5 «8rxxxx
2 ~129!

in the Lagrangian sequence. The Hamiltonian function of Boussinesq system with the first
Hamiltonian operator in Darboux form~45! is 1

2H0
L . We note that the system~119! for the

Boussinesq equation differs from all dispersive integrable examples we encountered earlier
its familiar Hamiltonian function~128! is in the Lagrangian sequence. This is because Boussi
equation belongs to the family of commuting flows of the regular gas dynamics hierarchy. Th
commuting higher flow for the Boussinesq system~120! has the Hamiltonian function~124! in the
Eulerian series.

By introducing potentials

u5wx , r5cx ~130!
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we can obtain two local Lagrangian densities for the Boussinesq system. First we ha
classical Lagrangians

L1
B~L !5H21

L g54cy1H21
E g54wy2H0

L g54, ~131!

L1
B~E!5H21

L g54c t1H21
L g54w t22H1

E g54 ~132!

for Boussinesq system and its first nontrivial commuting flow~120!. The second Lagrangians ar
given by

L2
B~L !5~H0

E g5424«2wxxx!wy1@H0
L g5425«2~cxcxx!x14«4cxxxxx#cy2H1

L g54, ~133!

L2
B~E!5~H0

E g5424«2wxxx!w t1@H0
L g5425«2~cxcxx!x14«4cxxxxx#c t22H2

E g54, ~134!

according to the general construction of Lagrangians in~12!. Here we see also that the Lagrangi
for the commuting flow is obtained by flipping the Hamiltonian functions between the Lagran
and Eulerian series while keeping the momenta fixed. In Sec. IV we had constructed Lagra
for gas dynamics using the Hamiltonians from the Eulerian series in the potential part o
Lagrangian. The general formula~12! can readily be used to construct Lagrangians for the co
muting flow ~119! by this simple flip in the potential.

IX. CONCLUSION

This is the first time it has been possible to write an unconstrained Lagrangian for poly
gas dynamics that is local in the original field variables, namely the density and velocity. E
variational principles enforced the continuity equation through Lagrange multipliers.26,27 It is a
result of the general expression~12! that serves to identify immediately multi-Lagrangians f
completely integrable systems. What is even more remarkable is that this is only the first e
in an infinite series of such local Lagrangians for polytropic gas dynamics.

It is worth emphasizing again that the scheme we have presented in Sec. II is a univers
for the construction of multi-Lagrangians appropriate to evolutionary systems. The expre
~12! and~21! for Lagrangians of completely integrable systems has general validity. We note
~12! with a51 is true even in the case of nonintegrable equations, provided the equation
presented in the form of conservation laws and the system admits one further conserved q
namely the Hamiltonian. We have discussed in detail the higher Lagrangians for the comp
integrable nonlinear evolution equations of polytropic gas dynamics, Kaup–Boussinesq, K
Broer, NLS, and Boussinesq equations all of which bear out the universal applicability of~12! in
the construction of higher Lagrangians. We have also presented the lower Lagrangians~21! fully
for KdV and partially for gas dynamics owing to the difficulty of writing the second modifi
variables in closed form.

The invariance group of these multi-Lagrangians and their Noether currents should pr
be of interest in discovering new hidden symmetries of fluid mechanics. We did not discus
important issue here. Recently Jackiw and co-workers28 have used hidden symmetries in th
classical Lagrangian for fluid mechanics to construct very interesting field theory models of
mechanics. Multi-Lagrangians may prove to be of interest in this connection also.
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Perturbation theory for nearly integrable multicomponent
nonlinear PDEs
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The Riemann–Hilbert problem associated with the integrable PDE is used as a
nonlinear transformation of the nearly integrable PDE to the spectral space. The
temporal evolution of the spectral data is derived with account for arbitrary pertur-
bations and is given in the form of exact equations, which generate the sequence of
approximate ordinary differential equations in successive orders with respect to the
perturbation. For vector nearly integrable PDEs, embracing the vector nonlinear
Schrödinger and complex modified Korteweg–de Vries equations, the main result
is formulated in a theorem. For a single vector soliton the evolution equations for
the soliton parameters and first-order radiation are given in explicit form. ©2002
American Institute of Physics.@DOI: 10.1063/1.1448135#

I. INTRODUCTION

Multicomponent~or coupled! nonlinear PDEs have been a subject of considerable interes
many years~see, for instance, Ref. 1, and references therein!. Recent revival of interest in multi-
component PDEs is due to new discoveries and technological advances in nonlinear opt
physics of condensed matter. An important example is the incoherent spatial optical solito
self-trapped spatially incoherent light beams, recently experimentally observed in non
media,2 which are described by the multicomponent nonlinear Schro¨dinger ~NLS! equations.3

Another example of possible application of the coupled NLS equations is the creation and d
ics of solitary waves in the multispecies Bose–Einstein condensates.4 Similar models of coupled
nonlinear PDEs appear in the wavelength division multiplexing, i.e., copropagation of pulses
optical fiber on beams with different wavelengthes5–7 and in other important applications.8,9

Some of the multicomponent models are integrable. Integrable multicomponent PDEs
another specific feature, which makes them important for applications as zero-approxim
models for analytical description of the real phenomena. It has been known for quite som
that dimensional reductions of matrix generalizations of the integrable PDEs, such as the NL
Korteweg–de Vries~KdV! equations, can produce a variety of new integrable equations.10 For
instance, some of the coupled NLS equations are integrable reductions of the general matr
equation. TheN-dimensional matrix NLS equation is the simplest integrable PDE associated
the (N11)-dimensional Zakharov–Shabat spectral problem.11–13Recently a variety of integrable
coupled higher-order NLS equations was discovered,14–16 which are important in view of appli-
cations to the soliton propagation of subpicosecond pulses in optical fiber.17–19 Some of these
integrable PDEs arise as dimensional reductions of the matrix complex modified KdV~cmKdV!
equation, which is also associated with the Zakharov–Shabat spectral problem.

In most cases, the multicomponent PDE is not integrable. However, frequently the
destroying integrability contain small parameters and the nonintegrable equation can be c
ered as a perturbation of the integrable one. In this case, a perturbation theory is requi
analytical description of the effect of small perturbations. For instance, one is especially inte

a!On leave from the Division for Optical Problems in Information Technologies, National Academy of Sciences of Be
Zhodinskaya St. 1/2, 220141 Minsk-41, Belarus; electronic mail: valery@maths.uct.ac.za
14600022-2488/2002/43(3)/1460/27/$19.00 © 2002 American Institute of Physics
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in the dynamics of solitons in nearly integrable PDEs. Soliton solutions to multicomponent
tions have many parameters, and their evolution may exhibit a variety of new interesting reg
Therefore, it is necessary to have at hand a perturbation theory for multicomponent nearl
grable equations. Such perturbation theory is developed in the present paper.

Perturbation theory for nearly integrable PDEs has a long history.20–45 There are two basic
approaches in the perturbation theory based on the inverse scattering transform~IST! method. The
first one originated in works of Kaup20 and Karpman and Maslov,21 where the perturbation theor
was developed for nearly integrable PDEs associated in the integrable limit with the 232 matrix
Zakharov–Shabat spectral problem. A quite different approach originated from other works~Refs.
22–26!. It was found that an integro-differential operator, generating the whole hierarch
integrable PDEs related to a given spectral problem, called the recursion operator, has a co
set of eigenfunctions, which can be used for the perturbation expansion. Several other m
not related to the IST, were applied for description of the perturbed soliton dynamics. For ins
a method based on the Green functions was developed in Ref. 29. The IST-independent pe
tion theories for solitons are usually referred to as the direct perturbation theories~see, e.g., Ref.
40, and references therein!. However, notwithstanding the long history of the perturbation the
with rare exceptions, only the 232 matrix spectral problems were considered. It was noted
construction of the perturbation theory for higher-dimensional matrix spectral problems alon
standard approach becomes technically more involved.

To overcome technical difficulties of the standard approach when dealing with multico
nent PDEs, the method based on the Riemann–Hilbert~RH! problem was proposed in Ref. 41
where the perturbation theory was developed for the Zakharov–Shabat spectral problem
arbitrary matrix dimension. The RH problem was used before for construction of the perturb
theory for the Landau–Lifschitz equation,30 the NLS, and Maxwell–Bloch equations,34 which are
integrable by the 232 matrix spectral problem. The approach of Ref. 41 was applied to
Manakov system42 ~i.e., the two-component NLS equation!, modified NLS equation,43 and mas-
sive Thirring model.44 These examples demonstrate that the perturbation theory based on th
problem always works. Recently, the RH problem was applied to nearly integrable equatio
the half line, arising from the singular dispersion relations.45 In Refs. 41–45 the perturbation
induced evolution equations for the spectral data were derived with the help of some m
functional@in the following, the evolution functionalP(x,t,k)#. It is important to emphasize tha
the form of the evolution functional is invariant under the gauge transformations of the consi
PDE.43 Thus, once constructed, the evolution functional is valid not only for the whole hiera
of PDEs associated with a given spectral problem, but also for their images under the
transformations. Writing the dispersion law, generating the spectral problem, in an abstrac
L(k) ~see Sec. II for details! we discover that the form of the evolution functional rema
invariant under the change of thespectral problemas well. This invariance trivially extends to th
general initial-boundary value problems. For instance, for the half-line, where one would ex
difference, we have found that the evolution functional has similar form.45 Therefore, it seems tha
the approach based on the evolution functional is universal for construction of the pertur
theories for nearly integrable PDEs. It is also technically simple. Derivation of the perturba
induced evolution equations for the spectral data using the evolution functional reduces to
lation of integrals.

This paper is a further development of Ref. 41. The previous results are substantial
vanced. In particular, the evolution equations for the spectral data are considerably simplifie
the help of some identities found for the evolution functional. We start Sec. II with a b
discussion of the multicomponent integrable PDEs associated with the Zakharov–Shabat s
problem. We consider two examples, the matrix NLS and cmKdV equations, however, ou
proach is valid for many other multicomponent PDEs. We have not made an attempt to
complete exposition of the properties of integrable equations. We need only the Lax repre
tion. Hence a way of deriving the Lax pair for an integrable PDE from the dispersion relatio
its linearization is briefly indicated. For completeness of the exposition, a detailed derivation
RH problem is given in Sec. III. Solution of the RH problem for multicomponent equat
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involves some technicalities, which are discussed and detailed derivations are provided
appendices. We derive evolution equations for the spectral data with account for perturbat
Sec. IV. There, for an important special case of the vector nearly integrable PDEs the main
of this paper is formulated in a theorem. In Sec. V the equations of the first-order perturb
theory for a single vector soliton are given in explicit form.

II. PRELIMINARIES: INTEGRABLE MULTICOMPONENT NONLINEAR PDEs

Here we briefly discuss integrable PDEs with emphasis on the multicomponent equ
whose reductions are important for applications. In particular, we consider the matrix non
Schrödinger and complex modified Korteweg–de Vries equations. We do not try to review
subject, for general considerations the reader can consult, for instance, Refs. 1, 10–13, 46–
the references therein. The purpose of this section is to recall some of the basic notions in t
method. Though the approach in the following can be applied to any nonlinear PDE solva
the RH problem, we restrict the consideration to the integrable equations associated w
N-dimensional Zakharov–Shabat spectral problem~1!.

Consider the integrable PDEs which arise as the compatibility condition for the follow
N3N matrix linear system~Lax pair!:

]xF5 ik@A,F#1 iQ~x,t !F[FL~k!1U~x,t,k!F, ~1!

] tF5 iv~k!FA1V~x,t,k!F[FV~k!1V~x,t,k!F, ~2!

with

A5S I n 0

0 2I N2n
D , Q5S 0 q

q̄ 0D ,

q5S q11 q12 ¯ q1,N2n

q21 q22 ¯ q2,N2n

A A A

qn1 qn2 ¯ qn,N2n

D , q̄5S q̄11 q̄21 ¯ q̄n1

q̄12 q̄22 ¯ q̄n2

A A A

q̄1,N2n q̄2n ¯ q̄n,N2n

D ,

whereL(k)52 ikA andV5 iv(k)A are the dispersion laws,Q is called the potential. Here th
overline does not mean complex conjugation by default, e.g., in general, the functionsqi j andq̄i j

are not considered as complex conjugate to each other. When the overline does denote c
conjugation in the following text, each time it will be specially indicated. This special c
corresponds to the Hermitian potentialQ, Q†5Q or q†5q̄, and it will be referred to as the
involution. The temporal evolution equation~2! is specified by choice of the dispersion relatio
v(k) in the following manner. For simplicity, let the dispersion relation be polynomialv(k)
5(p51

M wpkp, then

V~k!52P$FVF21%[2V~k!1 (
p50

M21

Vpkp. ~3!

Here the matrix functionF(k) is expanded into the asymptotic series:

F~k!5I 1k21F (1)1k22F (2)1 ¯ , k→`,

and the operatorP takes the polynomial ink part ofFVF21 on the asymptotics. For example, th
Zakharov–Shabat spectral problem~1! is derived in this way,

U52P$FLF21%5 ikA1 i @F (1),A#,
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with the obvious relation

Q5@F (1),A#. ~4!

Hence, the Lax pair satisfies the property TrU52Tr L and TrV52Tr V.
The integrable nonlinear PDE related to the Lax pair~1!–~2! is given by the compatibility

condition ~in our case, polynomial ink!

i ] tQ2]xV1@ ikA1 iQ,V#50 ~5!

via settingk50, while the positive powers ofk supply the expressions of the coefficientsVp in ~3!
as functions of the potentialQ and its x-derivatives,Vp5Vp(Q,Qx ,Qxx , . . . ). For instance,
choosingv(k)52k2 we obtain the well-known matrix nonlinear Schro¨dinger equation. Indeed, in
this case

V522ik2A22ikQ2AQx1 iAQ2

and Eq.~5! becomes

iAQt1Qxx12Q350. ~6!

For a complete classification of the matrix integrable NLS equations with various reductio
Hermitian symmetric spaces consult Ref. 10. A particular important case of Eq.~6! is the vector
NLS equation, a generalization of the two-component vector NLS, which was shown to be
grable by Manakov.12 The vector NLS equation corresponds to the Hermitian potential and
reductionn5N21 ~see the expression forA.! In this case we have

Q5S 0 ... 0 q1

A A A

0 ... 0 qn

q̄1 ... q̄n 0

D ~7!

and matrix equation~6! becomes the vector NLS equation:

i ] tql1]x
2ql12S (

j 51

n

uqj u2D ql50, l 51, . . . ,n. ~8!

Let us consider another important example of multicomponent nonlinear integrable equa
It is given by settingv(k)54k3. After simple computation we get

V524ik3A14ik2Q12ikA~ iQx1Q2!2 iQxx1@Q,Qx#22iQ3,

which produces the matrix cmKdV equation

Qt1Qxxx13~Q2Qx1QxQ
2!50. ~9!

Combining together the two considered dispersion laws, i.e., lettingv(k)54i ek312ibk2,
one can obtain

iQt1bA~Qxx12Q3!1 i eQxxx13i e~Q2Qx1QxQ
2!50,

a special case of the~generally, nonintegrable! matrix higher-order NLS equation

iEz1A~a1Ett1a2E3!1 i $a3Ettt1a4~E3!t1a5~E2!tE%50. ~10!
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Our examples are just illustrative. There are many other integrable matrix PDEs which
not mention here. However, the perturbation theory developed in Sec. IV applies to such
also.

III. RIEMANN–HILBERT PROBLEM FOR MULTICOMPONENT PDEs

In this section we derive the RH problem for the multicomponent integrable PDEs and di
its solution ~for more details consult Refs. 46, 54–57!. We are interested in the initial-valu
problem for nonlinear PDEs on the whole real line with the asymptotically vanishing condi
~Cauchy problem! qi j →0 asuxu→`. The vanishing asymptotics allows us to concentrate enti
on the spectral equation~1! in derivation of the RH problem, whilet dependence enters paramet
cally in our approach~for the RH problem for initial-boundary value problems consult Ref. 47!. In
the following we omit the explicitt dependence for simplicity of the presentation. To begin w
let us summarize the properties of the spectral problem~1!. Define the followingN3N matrix
projectors:

H15diag~ I n,0!, H25diag~0,I N2n!. ~11!

ThenA5H12H2 and any matrix can be decomposed into the sum of two matrices, comm
and anticommuting withA:

F5F (c)1F (a), F (c)5H1FH11H2FH2 , F (a)5H1FH21H2FH1 , ~12!

where@A,F (c)#50 and$A,F (a)%50. We will use the block-index notations for the decomposit
of matrix F with respect to the projectorsH1 andH2 :

F5S F I,I F I,II

F II,I F II,II
D .

The RH problem is a one-to-one mapping~nonlinear Fourier transform! between the set o
smooth~e.g., belonging to the Schwartz space! potentialsQ(x) and some set of the spectral dat
To identify the RH problem one must construct two solutions, one,F1(x,k), to the spectral
equation~1! and the other,F2

21(x,k), to the adjoint equation@the second function is inverse o
some matrix function satisfying~1!, hence the ‘‘21’’ in its definition#, holomorphic with respect to
the spectral parameterk in some complementary domains covering the whole complexk-plane.
Such solutions can be built from the columns and rows of the Jost solutionsJ6 , i.e., solutions
defined by the asymptotic conditions:J6(x,k)→I asx→6`.

As TrQ50, lettingx→6` we conclude that detJ651. Hence, the columns of either of th
two Jost solutions give a linear basis in the space of solutions of the spectral equation. The
matricesJ6

21 satisfy the adjoint spectral equation:

]xF̃5 ik@A,F̃#2 i F̃Q. ~13!

Each column ofJ6(x,k) and, respectively, row ofJ6
21(x,k) is holomorphic and bounded in eithe

upper~Im k>0) or lower ~Im k<0) half of the complexk-plane. Indeed, this can be easily se
from the Volterra integral equations for the Jost matrices written for the two blocks of colum

J6~x,k!H15H11 i E
6`

x

dj e22ik(x2j)H2Q~j!J6~j,k!H1 ,

J6~x,k!H25H21 i E
6`

x

dj e2ik(x2j)H1Q~j!J6~j,k!H2 .
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The columns ofJ1(k)H1 and J2(k)H2 are holomorphic and bounded in the upper half of t
complex plane, while columns ofJ1(k)H2 andJ2(k)H1 have the same property in the lower ha
plane. Similarly, the rows ofJ6

21 satisfy integral equations

H1J6
21~x,k!5H12 i E

6`

x

dj H1J6
21~j,k!Q~j!e2ik(x2j)H2,

H2J6
21~x,k!5H22 i E

6`

x

dj H2J6
21~j,k!Q~j!e22ik(x2j)H1,

from which we immediately conclude thatH1J1
21(k) andH2J2

21(k) are holomorphic and bounde
in the upper half plane, whileH2J1

21(k) andH1J2
21(k) have the same properties in the lower h

plane.
On the real line, the Jost solutions are transformed into each other by the scattering

S(k),

J2~x,k!5J1~x,k!eikxAS~k!e2 ikxA. ~14!

For the Hermitian potential,Q†5Q, the matrix Jost solutions satisfy the involution~here the
overline means complex conjugation!

J6
† ~x,k!5J6

21~x,k̄!, ~15!

where the spectral parameter takes complex values in the upper or lower half plane depen
the considered column of the Jost matrix. In this case, the scattering matrix also satisfi
involution

S†~k!5S21~k!, kPRe. ~16!

The holomorphic matrix functionsF1(k) andF2
21(k), satisfying Eqs.~1! and ~13!, respec-

tively, are given in terms of columns and rows of the Jost solutions:

F15J1H11J2H2 , F2
215H1J1

211H2J2
21 . ~17!

The above-defined matrix functions are holomorphic and bounded in the upper and lowe
planes, respectively. They have the following asymptotics:

F6~x,k!→I , k→`, ~18!

which follow from the Volterra integral equations for the Jost solutions. For the involution~15! the
matricesF1(k) andF2

21(k) are related via

F1
† ~k!5F2

21~ k̄!. ~19!

These matrices can be conveniently expressed in terms of only one Jost solution and elem
the scattering matrixS(k). Indeed,

F15J1eikxA~H11SH2!e2 ikxA[J2eikxA~H21S21H1!e2 ikxA,

F2
215eikxA~H11H2S21!e2 ikxAJ1

21[eikxA~H21H1S!e2 ikxAJ2
21 .

DenoteS15H11SH2 , S25H21S21H1 . These matrices provide a factorization of the scat
ing matrix: S15SS2 . Similarly, S̄15H11H2S21 and S̄25H21H1S, which also factorize the
scattering matrix:S̄1S5S̄2 . Then
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F15J1eikxAS1e2 ikxA[J2eikxAS2e2 ikxA, ~20a!

F2
215eikxAS̄1e2 ikxAJ1

21[eikxAS̄2e2 ikxAJ2
21 . ~20b!

The factorization matrices have the block-triangular structure. For instance,S1 and S̄1 are
upper and lower block-triangular, respectively:

S15S I n b

0 aD , S̄15S I n 0

b̄ āD , ~21!

where b5SI,II , a5SII,II , b̄5(S21)II,I , and ā5(S21)II,II . The following identity follows from
these definitions:

b̄b1āa5I N2n , kPRe. ~22!

For the involution~19! the factorizations satisfy

S6
† ~k!5S̄6~k!, kPRe.

Hence,b̄5b† and ā5a† in the case of involution.
Considering the productF2

21F1 we obtain the problem of analytic factorization of a matr
G(k) given on the real line, i.e., the matrix RH problem:

F2
21~x,k!F1~x,k!5eikxAG~k!e2 ikxA, kPRe ~23!

andF6(x,k)→I for k→`. Here the matrixG5S̄1S1[S̄2S2 reads

G5S I n b

b̄ I N2n
D . ~24!

As was mentioned, the RH problem is a nonlinear mapping between the potentialQ(x) and
the set of the spectral data, which are necessary for unique identification of the solution to~23!.
For instance, given a potential, one can obtain the spectral data by solving the spectral e
and its adjoint forF1(x,k) andF2

21(x,k). Conversely, by asymptotic expansion ofF6(x,k) as
k→` one recovers the potential. The asymptotic expansion ofF6(x,k) can be derived via
integration by parts~in the blocks withe62ikx) in the Volterra integral equations forJ6 andJ6

21 .
It reads

F6~x,k!5I 2S AQ~x!1 i E
2`

x

dj Q2~j!H21 i E
x

`

dj Q2~j!H1D 1

2k
1OS 1

k2D .

Hence, we obtain@cf. with ~4!#

Q~x!5 lim
k→`

k@F1~x,k!,A#5 lim
k→`

k@A,F2
21~x,k!#. ~25!

Solution of the RH problem: Normalization. Let us discuss the way of solution of the R
problem. The coordinate dependence is not important for this purpose and is omitted
following. In general, the determinants detF1(k) and detF2

21(k) have zeros and the RH problem
is said to be nonregular or with zeros. Note that the determinants do not depend onx as readily
seen from Eqs.~1! and ~13!. We consider only the RH problem with zero index, i.e.,
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E
2`

`

d ln$detG~k!%50,

assuming thatG(k) is nondegenerate. SinceF6→I ask→`, the index is equal to the differenc
between the number of zeros in the upper and lower half planes. Letk1 , . . . ,kM and k̄1 , . . . ,k̄M

be zeros~where some may be equal! of detF1(k) and detF2
21(k), respectively. Two conditions ar

imposed on the zeros. First, the geometric multiplicity of a zero must be equal to its order~which
we will refer to as the algebraic multiplicity!. Here the geometric multiplicity ofkj is defined as
the dimensiondj of the null space ofF1(kj ), i.e., dj5N2rankF1(kj ). Trivially, the two mul-
tiplicities are equal to 1 in the case of simple zeros. In the case of involution zeros of th
problem come in complex conjugate pairs@due to formula~19!#, with coinciding algebraic~and
geometric! multiplicities within each pair.~Due to the involution the index is equal to zero, in th
case detG(k) is real and definite.! Second, as we are mainly interested in the Hermitian poten
Q, i.e., in the case of the involution, we will consider only paired zeroskj and k̄ j , j 51, . . . ,s
<M , whose algebraic multiplicities are equal, however without assuming them to be com
conjugate to each other. The algebraic multiplicityn j of kj always satisfies the following inequa
ity ~see Appendix A!:

n j>N2rankF1~kj !5dj ,

while rankF1>max(n,N2n) by construction ofF1 ~17!. For instance, ifn5N21, there can be
not more than one vector in the null space ofF1(k), i.e.,dj51 for all j 51, . . . ,s. Hence, for this
reduction, zeros of detF1(k) must be simple to satisfy the equal multiplicity condition. Similar f
zeros ofF2

21(k). ~More detailed consideration of the multiplicities of zeros is placed in Appen
A.!

Let detF1(k) and detF2
21(k) have zerosk1 , . . . ,ks and k̄1 , . . . ,k̄s , respectively, with the

~algebraic and geometric! multiplicities n1 , . . . ,ns . Exactlyn j independent vector-columnsupl
( j )&

~vector-rows^ p̄l
( j )u), wherel 51, . . . ,n j , correspond to each zerokj ~respectively,k̄ j ), such that

F1~kj !upl
( j )&50, ^ p̄l

( j )uF2
21~ k̄ j !50. ~26!

To specify a unique solution to the RH problem, additionally to the continuous datumG(k), the
set of the discrete data$kj ,upl

( j )&,k̄ j ,^ p̄l
( j )u,l 51, . . . ,n j , j 51, . . . ,s% must be given. This become

evident from the fact that the RH problem with zeros~i.e., nonregular! can be regularized, i.e.
reduced to a modified RH problem without zeros by factoring them out with some rational m
G(k):

F1~k!5f1~k!G~k!, F2
21~k!5G21~k!f2

21~k!. ~27!

The regularized RH problem reads

f2
21~k!f1~k!5G~k!eikxAG~k!e2 ikxAG21~k!, kPRe ~28!

andf6(k)→I ask→`.
The rational matrix functionsG(k) andG21(k)—for details see Appendix B,

G5I 2 (
j ,l ; i ,m

upm
( i )&~D21! im, j l ^ p̄l

( j )u

k2 k̄ j

, G215I 1 (
j ,l ; i ,m

upl
( j )&~D21! j l ,im^ p̄m

( i )u

k2kj

, ~29!

where
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Dim, j l 5
^ p̄m

( i )upl
( j )&

kj2 k̄i

,

have the same zeros asF1(k) andF2
21(k), respectively, and the same null spaces:

G~kj !upl
( j )&50, ^ p̄l

( j )uG21~ k̄ j !50, l 51, . . . ,n j , j 51, . . . ,s.

Moreover,

detG5) j 51
s S k2kj

k2 k̄ j
D n j

.

Precisely these properties allow us to factor out zeros ofF1(x,k) andF2
21(x,k).

It is important to emphasize that there is a freedom in choice of the basis vectors spann
null spaces. Indeed, it is easy to verify that the regularization matrixG is invariant under the
transformations:

upl
( j )&→ (

m51

n j

upm
( j )&Mml

( j ) , ^ p̄l
( j )u→ (

m51

n j

M̄ lm
( j )^ p̄m

( j )u, ~30!

whereM ( j ) andM̄ ( j ) are arbitrary nondegeneraten j3n j -matrices. For the involution, due to Eq
~19! we can choosêp̄l

( j )u5upl
( j )&†. This evidently leads to

G†~k!5G21~ k̄!. ~31!

The (x,t)-dependence of the RH data can be found in the following way. Thet-dependence of
the continuous datum~which does not depend onx! can be derived from Eqs.~23! and ~2!. We
obtain

] tG5@G,V#. ~32!

This equation can be cast in a more explicit form:

] tb522iv~k!b, ] tb̄52iv~k!b̄. ~33!

Recalling that TrQ50 and TrV52Tr V, one can verify that the determinants ofF6 do not
depend on the coordinates. Therefore, the zeros are coordinate independent as well:

]xkj5] tkj50, ]xk̄j5] tk̄ j50, j 51, . . . ,s. ~34!

Now, let us derive the coordinate dependence of the vector-parameters. Differentiatin
~26! we obtain

F1~kj !~]xupl
( j )&2 ik jAupl

( j )&)50, F1~kj !~] tupl
( j )&1V~kj !upl

( j )&)50.

Therefore

]xupl
( j )&5 ik jAupl

( j )&1 (
m51

n j

F lm
( j )upm

( j )&, ] tupl
( j )&52V~kj !upl

( j )&1 (
m51

n j

Klm
( j )upm

( j )&,

whereF andK are some matrices. Using a suitable invariance transformation of the type~30! one
can putF5K50 without loss of generality. Hence we have
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]xupl
( j )&5 ik jAupl

( j )&, ] tupl
( j )&52V~kj !upl

( j )&. ~35!

Similarly,

]x^ p̄l
( j )u52^ p̄l

( j )u i k̄ jA, ] t^ p̄l
( j )u5^ p̄l

( j )uV~ k̄ j !. ~36!

Some comments are needed on the reconstruction of the potentialQ. First of all, the soliton
part of the potential is given by the rational matrix functionG(k) ~29!. The pure soliton potentials
are also called reflectionless; they solve the simplest RH problem withG5I , i.e., with zero
reflection coefficients:b(k)5b̄(k)50. The discrete RH data have the following meaning. Ze
provide the amplitudes and velocities of the solitons, while the null vectors give their in
position, polarization, and phase parameters. Second, the radiation part of the potential is g
the solution to the regularized RH problem~28!. The continuous RH datab(k) andb̄(k) represent
the nonlinear spectral densities of radiation. The regular RH problem is equivalent to some
integral equation of the Fredholm type~for instance, consult Ref. 46!. Though the solution canno
be given in explicit form, its properties can be explored by the standard technique of the the
Fredholm integral equations.

For the following, it is convenient to introducex-independent null vectorsuPl
( j )& and ^P̄l

( j )u
setting

upl
( j )&5eik jxAuPl

( j )&, ^ p̄l
( j )u5^P̄l

( j )ue2 i k̄ j xA. ~37!

Then, we have anx-independent set of the RH data, which we will call the spectral d

$b(k),b̄(k),kj ,uPl
( j )&,k̄ j ,^P̄l

( j )u,l 51, . . . ,n j , j 51, . . . ,s%.
As the illustrative example, consider one-soliton solution. It is given byG(k) having only one

pole, sayk15 ih1j. In this case,

Q5~k12 k̄1!@A,Pr #, Pr5 (
l ,m51

n1

upl&~D21! lm^ p̄mu,

with D lm5^ p̄l upm&. Here ^ p̄l uF2
21( k̄1)50 andF1(k1)upl&50. In the particular case ofn5N

21 and the Hermitian potential we get the vector soliton solution, for which

Pr5
up&^pu
^pup&

, up&5exp$ ik1xA%uP&.

Define complex parametersCl5Pl /PN . The t-dependence ofCl then follows from Eq.~35!. It
can be accounted for in a convenient way by introducing realt-dependent parametersx̄, andd l ,
l 51, . . . ,n, the soliton position and phases of its components. LetCl5u le

2(h2 i j) x̄, whereu l

5sle
id l. The amplitudessl , satisfying

(
l 51

n

sl
251, ~38!

describe polarization of the multicomponent soliton. Integrating Eq.~35! we obtain

x̄5 x̄01
Im$v~ ih1j!%t

h
, d l5d l01

2

h
Im$~j2 ih!v~ ih1j!%t. ~39!

The vector soliton then takes the form

ql52ihu le
i (j/h)z sechz ~40!
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with z52h(x2 x̄). For instance, for the vector NLS equationv(k)52k2 and we arrive at the
n-component generalization of the well-known vector soliton solution for the two-component
equation.12

IV. PERTURBATION-INDUCED EVOLUTION OF THE SPECTRAL DATA

A perturbation of the integrable PDE, following from the Lax representation~1!–~2!, can be
written in the form

iQt2Vx1@ ikA1 iQ,V#5R, ~41!

whereR ~which isk-independent in case of the Zakharov–Shabat spectral problem! represents the
terms destroying integrablity. The perturbation matrixR, similar to the potentialQ, satisfies
@A,R#50. For the Hermitian potentialQ†5Q we also getR†52R.

In the following we derive evolution equations for the spectral data with account for arbi
perturbation. For simplicity of the presentation we will frequently omit the explicit dependenc
x andt. To distinguish between the ‘‘integrable’’ and ‘‘perturbation’’ contributions to the evolut
let us assign the variational derivatives to the latter. For instance, the perturbation-induced
tion in Eq. ~41! reads

i
dQ

dt
5R,

or, explicitly

i
dq

dt
5r and i

dq̄

dt
52 r̄ ,

wherer5RI,II and r̄52RII,I . For HermitianQ, r̄5r†.
We start with derivation of evolution equations forF1 and F2

21, the solution to the RH
problem~23!. In other terms, we are going to derive the generalized Lax pair@see Eqs.~52! and
~53!# for the perturbednonlinear PDE~41!. Differentiation of Eq.~1! with respect tot gives

]xS dF

dt D5 ikFA,
dF

dt G1 iQ
dF

dt
1RF,

and consequently

]xS F21
dF

dt D5 ikFA,F21
dF

dt G1F21RF.

Let us integrate the above-given formula forF5J6 . We get

dJ6

dt
~x,k!5J6~x,k!eikxAS E

6`

x

dj e2 ikjAJ6
21~j,k!R~j!J6~j,k!eikjAD e2 ikxA.

Here we have used thatdJ6→0 asx→6`. Let us employ the relation betweenJ6 andF1 to
rewrite this formula in a more convenient form. Using~20a! we get

dJ6

dt
~x,k!5J6~x,k!eikxAS6~k!Y~6`,x;k!S6

21~k!e2 ikxA. ~42!

In much the same way, using~20b!, we derive
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dJ6
21

dt
~x,k!52eikxAS̄6

21~k!Ȳ~6`,x;k!S̄6~k!e2 ikxAJ6
21~x,k!. ~43!

Here we have introduced the notations:

Y~6`,x;k!5E
6`

x

dj e2 ikjAF1
21RF1eikjA, ~44!

Ȳ~6`,x;k!5E
6`

x

dj e2 ikjAF2
21RF2eikjA. ~45!

These matrix functionals will enter every formula describing perturbation-induced evolution o
spectral data. For the involution, due to formula~19! these matrix functionals satisfy

Y†~6`,x;k!52Ȳ~6`,x,k̄!. ~46!

Using Eqs.~42!, ~43!, and the definition of the scattering matrixS ~14! we get

dS

dt
5e2 ikxA

d

dt
~J1

21J2!eikxA52S̄1
21Ȳ~`,x!S̄1S1SS2Y~2`,x!S2

21

5S1Y~2`,x!S2
211S̄1

21Ȳ~x,`!S̄2 .

Settingx→6` in this formula produces two simple equivalent formulas:

dS~k!

dt
5S1~k!Y~2`,`;k!S2

21~k![S̄1
21~k!Ȳ~2`,`;k!S̄2~k!. ~47!

Now we can easily obtain the perturbation-induced evolution of the solution to the RH pro
Taking into account the definitions ofS6 and S̄6 and ~20! we write:

dF1

dt
5

dJ1

dt
eikxAS1e2 ikxA1J1eikxA

d

dt
~H11SH2!e2 ikxA

5F1eikxA~2Y~x,`!1Y~2`,`!H2!e2 ikxA

5F1eikxAPe2 ikxA, ~48a!

dF2
21

dt
5eikxAS̄1e2 ikxA

dJ1
21

dt
1eikxA

d

dt
~H11H2S21!J1

21e2 ikxA

5eikxA~Ȳ~x,`!2H2Ȳ~2`,`!!F2
21e2 ikxA

52eikxAP̄F2
21e2 ikxA. ~48b!

The right-hand sides of the above formulas contain the evolution functionals,

P~x,k!52Y~x,`;k!H11Y~2`,x;k!H2 , ~49!

P̄~x,k!5H1Ȳ~x,`;k!2H2Ȳ~2`,x;k!, ~50!

which account for the perturbation-induced evolution of the solution to the RH problem
follows from formula~46!, for the case of the involution the evolution functionals satisfy

P†~k!52P̄~ k̄!. ~51!
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From the definitions~49!, ~50! and also ~44!, ~45! it is easy to see that the matrice
eikxAP(k)e2 ikxA andeikxAP̄(k)e2 ikxA are meromorphic and bounded in the upper and lower
planes of thek-plane, respectively. They have simple poles, respectively, at zeros of detF1(k) and
detF2

21(k).
Let us write down the generalized Lax representation for the perturbed PDE~41! in terms of

F1(x,k):

]xF15 ik@A,F1#1 iQF1 , ~52!

] tF15F1V1VF11F1eikxAPe2 ikxA. ~53!

It is easy to check by direct calculation that the compatibility condition for the above-given l
system is equivalent to the perturbed equation~41! ~indeed,]xP5e2 ikxAF1

21RF1eikxA).
Now, let us derive the perturbation-induced evolution of the spectral data. From~48! we

immediately obtain

dG

dt
5

d

dt
~e2 ikxAF2

21F1eikxA!5GP2P̄G.

Hence, the complete evolution of the continuous datum reads

] tG5@G,V#1GP2P̄G, ~54!

where we have taken into account the integrable evolution given by~32!. It is important to notice
that the left-hand side of~54! does not depend onx. Therefore, we can putx→6` in this
equation to simplify it. Equation~54! can be rewritten in a more explicit form. Using the definitio
~24!, formulas~49! and~50! we get two equivalent evolution equations forb corresponding to the
two limits x→6`:

] tb522iv~k!b1bH2Y~2`,`;k!H21H1Y~2`,`;k!H2 , ~55a!

] tb522iv~k!b2H1Ȳ~2`,`;k!H1b2H1Ȳ~2`,`;k!H2 . ~55b!

Similarly,

] tb̄52iv~k!b̄1b̄H1Y~2`,`;k!H11H2Y~2`,`;k!H1 , ~56a!

] tb̄52iv~k!b̄2H2Ȳ~2`,`;k!H2b̄2H2Ȳ~2`,`;k!H1 . ~56b!

Evolution of zeroskj and k̄ j of detF1(k) and detF2
21(k), respectively, is derived by differ

entiation of the determinants. In the integrable limit zeros do not depend ont. Then, for instance,

dkj

dt
52

] t detF1~k!

]k detF1~k!
U

k5kj

52
Tr$P~k!%detF1~k!

]k detF1~k!
U

k5kj

.

To calculate the right-hand side in this formula recall that the evolution functionalP has simple
pole atk5kj and that detF1(k) can be written as

detF1~k!5detf1~k!detG~k!5detf1~k!)
i 51

s S k2ki

k2 k̄i
D n i

,

where detf1(k)Þ0. Simple calculations give
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dkj

dt
52

Tr$ResP~kj !%

n j
.

Here ‘‘Res’’ denotes the residue ofP(k) at k5kj . Noticing that the left-hand side does n
depend onx, we simplify the above-mentioned equation settingx→6`:

dkj

dt
52

Tr$ResY~2`,`;kj !H2%

n j
[

Tr$ResY~2`,`;kj !H1%

n j
. ~57!

Similarly, using detF2
21, we get

dk̄ j

dt
52

Tr$ResȲ~2`,`; k̄ j !H2%

n j
[

Tr$ResȲ~2`,`; k̄ j !H1%

n j
. ~58!

In derivation of the perturbation-induced evolution of the null vectors we will use the foll
ing remarkable identities@written for thex-independent null vectors; see~37!#:

ResP~kj !uPl
( j )&52

dkj

dt
uPl

( j )&, ^P̄l
( j )uResP̄~ k̄ j !5^P̄l

( j )u
d k̄ j

dt
, ~59!

as well as other two identities:

F1~kj !e
ik jxAResP~kj !50, ResP̄~ k̄ j !e

2 i k̄ j xAF2
21~ k̄ j !50, ~60!

which follow from ~48!. To verify the identities~59! one can proceed as follows. Introduc
functions F j

(1)(k)5(k2kj )F1
21(k) and F j

(2)(k)5(k2 k̄ j )F2(k). The regularization matrices
G21(k) andG(k) have simple poles atk5kj andk5 k̄ j , respectively. Hence the introduced matr
functions are holomorphic in some neighborhoods of these points. Now compute the prod

H F j
(1)~k!

dF1~k!

dt
upl

( j )&J
k5kj

5$~k2kj !e
ikxAP~k!e2 ikxAupl

( j )&%k5kj

5eik jxAResP~kj !e
2 ik j xAupl

( j )&.

On the other hand,

H F j
(1)~k!

dF1~k!

dt J
k5kj

5H d

dt
~k2kj !I J

k5kj

2H dF j
(1)~k!

dt
F1~k!J

k5kj

52
dkj

dt
I 2

dF j
(1)~kj !

dt
F1~kj !.

Multiplication by upl
( j )& of the latter formula and comparison with the former leads to the

identity in ~59!. The second one can be checked in a similar way.
Now let us derive evolution equations for thex-independent null vectors defined in~37!. To

this goal we simply differentiate Eq.~26!,

d

dt
~F1~kj !e

ik jxAuPl
( j )&)5$F1~k!eikxAP~k!uPl

( j )&%k5kj
1

dkj

dt

]F1~kj !

]k
eik jxAuPl

( j )&

1
dkj

dt
F1~kj !ixAeik jxAuPl

( j )&1F1~kj !e
ik jxA

duPl
( j )&

dt
50.
                                                                                                                



dding

s

se
e

1474 J. Math. Phys., Vol. 43, No. 3, March 2002 V. S. Shchesnovich

                    
DenoteP r(kj ) the value of the regular part ofP(k) at k5kj ,

P r~kj !5H P~k!2
ResP~kj !

k2kj
J

k5kj

. ~61!

Then, using~59! and ~60! to cancel out secular terms, we arrive at

F1~kj !e
ik jxAH duPl

( j )&
dt

1P r~kj !uPl
( j )&J 50.

Using the same arguments as in Sec. III for derivation of the integrable evolution we get, a
the latter,

duPl
( j )&

dt
52V~kj !uPl

( j )&2P r~kj !uPl
( j )&. ~62!

Similarly,

d^P̄l
( j )u

dt
5^P̄l

( j )uV~ k̄ j !1^P̄l
( j )uP̄ r~ k̄ j !, ~63!

where

P̄ r~ k̄ j !5H P̄~k!2
ResP̄~kj !

k2 k̄ j
J

k5 k̄ j

. ~64!

In the case of the involution equation~63! is Hermitian conjugate to~62!. Note that the left-hand
sides of Eqs.~62! and ~63! do not depend onx. Hence we can sendx→6` to considerably
simplify these equations. Consider, for instance,~62!. Letting x→` and introducing the notation

uPl
( j )&5H1uPl

( j )&1H2uPl
( j )&[uPl

( j ) ,1&1uPl
( j ) ,2&

andY (1)5H1YH2 , Y (2)5H2YH2 we get the following system;

duPl
( j ) ,1&
dt

52 iv~kj !uPl
( j ) ,1&2Y r

(1)~2`,`;kj !uPl
( j ) ,2&, ~65a!

duPl
( j ) ,2&
dt

5$ iv~kj !2Y r
(2)~2`,`;kj !%uPl

( j ) ,2&. ~65b!

HereY r(kj ) is the value of the regular part of the matrixY(k) at k5kj :

Y r~kj !5H Y~k!2
ResY~kj !

k2kj
J

k5kj

. ~66!

When dealing with vector PDEs, i.e., forn5N21, one can define the polarization-pha
parameters of vector solitons as quotients of components of the null vectors~note that the zeros ar
simple in this particular case!. Let Cl

( j )5Pl
( j )/PN

( j ) , l 51,...,n5N21, where uP( j )&
5(P1

( j ) , ...,PN
( j ))T. Then from~65! we obtain

dCl
( j )

dt
5$22iv~kj !1Y rNN~2`,`;kj !%Cl

( j )2Y rlN~2`,`;kj !, l 51,...,n.
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This particular case (n5N21) contains the vector NLS~8! and the complex modified KdV~9!
equations as examples. In view of the considerable importance of such vector nonlinear PD
formulate the result of this section in the following theorem.

Theorem: Let

iQt1V0~Q,Qx ,Qxx ,...!5eR~x,t,Q,Qx ,Qxx ,...! ~67!

be a perturbed nonlinear PDE associated with the N3N matrix Zakharov–Shabat spectral prob-
lem,

]xF5 ik@A,F#1 iQ~x,t !F, A5diag~ I n ,21!, ~68!

where(n5N21)

Q5S 0 q

q† 0D , R5S 0 r

2r† 0D , q5~q1 ,q2 ,...,qn!T, r5~r 1 ,r 2 ,...,r n!T.

Here the matrix function V0 represents the limiting integrable evolution given by the dispers
relation V(k)5 iv(k)A, while R contains the terms destroying integrability(e is a small param-
eter). Then the perturbed evolution is equivalent to the following evolution of the spectral d:

dkj

dt
52e ResYNN~ t,kj !, ~69!

dCl
( j )

dt
5$22iv~kj !1eY rNN~ t,kj !%Cl

( j )2eY rlN~ t,kj !, l 51,...,n, ~70!

]bl~k!

]t
5$22iv~k!1eYNN~ t,k!%bl~k!1eY lN~ t,k!, l 51,...,n. ~71!

Here

Y~ t,k!5E
2`

`

dxe2 ikxAF1
21~x,t,k!R~x,t !F1~x,t,k!eikxA, ~72!

Y r~ t,kj !5H Y~ t,k!2
ResY~ t,kj !

k2kj
J

k5kj

.

The matrix functionF1(x,t,k) solves the spectral problem (68) and the RH problem

F1
† ~x,t,k!F1~x,t,k!5eikxAG~k,t !e2 ikxA, kPRe,

F1~k!→I , k→`

of analytic factorization of matrix G(k,t),

G~k,t !5S I n b~k,t !

b†~k,t ! 1 D , b5~b1 ,b2 ,...,bn!T.

The Riemann–Hilbert problem has (simple) zeros kj (t), j 51,...,s, given by a(kj ,t)
5detF1(x,t,kj)50. The vector-columnsuC( j )(t)&5(C1

( j )(t),C2
( j )(t),...,Cn

( j )(t),1) are the null vec-
tors of the matricesF1(x,t,kj )e

ik jxA:

F1~x,t,kj !e
ik jxAuC( j )~ t !&50, j 51,...,s.
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The initial spectral data are obtained via solution of the spectral equation (68) and represen
spectral characterization of the potential Q(x,0). For real k, the spectral densities of radiation
bl(k,t) and the function a(k,t) satisfy the following identity

āa512(
l 51

n

b̄lbl .

The potentialq(x,t) is reconstructed by the formula

ql~x,t !52 lim
k→`

k~F1! l ,N~x,t,k!, l 51,...,n.

Some comments are necessary on the use of Eqs.~69!–~71! for the spectral data. Thes
equations areexact, i.e., they account for the perturbation exactly. As a consequence, fo
nonintegrable PDE~67!, these equations are nonclosed ODEs. Equations~69!–~71! are nonclosed
because they explicitly contain the matrixF1(x,t,k), solution of the RH problem. Therefore, Eq
~69!–~71! serve as the generating equations for the perturbation expansion: expanding the s
data into the asymptotic power series ine, one obtains the sequence of closed approximate O
for the spectral data. In this way, one does not need to solve the RH problem—the compu
are algebraic. In Sec V, we consider a single multicomponent soliton as an example.

V. MULTICOMPONENT SOLITON UNDER PERTURBATIONS

In this section we apply the theorem for construction of the perturbation theory for a s
multicomponent soliton. This can be done without specifying the dispersion relationv(k) deter-
mining the evolution of the spectral data in the unperturbed PDE. Hence our results apply
nearly integrable vector PDEs associated with the Zakharov–Shabat spectral problem.
following, we derive equations describing the evolution of the soliton parameters and give fo
las for the first-order radiation. For a single vector soliton given by formula~40!, i.e., ql

52ihu le
i (j/h)zsechz, wherez52h(x2 x̄), the regularization matrixG has the form

G5I 2
ih

~k2 k̄1!coshz
S e2zuu&^uu ei (j/h)zuu

^uue2 i (j/h)z ez D . ~73!

Herek15j1 ih and we have used the vector notationsuu&5(u1 ,...,un)T and ^uu5( ū1 ,...,ūn).
To simplify some of the calculations introduce the following basis~in the n-dimensional sub-
space!:

uu (1)&5uu&, uu (2)&, ..., uu (n)&; ^u ( l )uu (m)&5d lm .

The explicit form of the vectorsuu ( l )& for l 52,...,n will not be needed at all. Also we will use th
basis

ue1&5~1,0,...,0!T, ue2&5~0,1,0,...,0!T, ..., uen&5~0,...,0,1!T.

With the help of the unitary transformation matrixJ, defined as

J5S B 0

0 1D , B5(
l 51

n

uel&^u
( l )u, ~74!

the regularization matrixG can be considerably simplified:

G̃5JGJ215I 2
ih

~k2 k̄1!coshz
S e2zue1&^e1u ei (j/h)zue1

^e1ue2 i (j/h)z ez D . ~75!
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Note the evident propertyG̃215G̃†.
The transformation matrixJ depends ont due to the perturbation-induced time dependence

the u-parameters, but does not depend onx. This simple fact allows us to use the transformati
with J inside the integrals definingY ~72!. Taking into account thatF15G for the pure soliton
solution of the unperturbed PDE, in the first order we get

Ỹ5JYJ215E
2`

`

dx e2 ikxAG̃21R̃G̃eikxA.

Here we have defined

R̃5JRJ215S 0 Bur &

2^r uB† 0 D , ~76!

where, for convenience of the following presentation, we have changed the notation fo
perturbation:ur &5r5(r 1 ,...,r n)T.

In fact, we will need only one diagonal element

YNN5~J21ỸJ!NN5E
2`

`

dx~ G̃†R̃G̃ !NN

and the following nondiagonal matrix elements:

Y lN5~J21ỸJ! lN5 (
m51

n

Blm
21ỸmN5u lỸ1N1 (

m52

n

Blm
21ỸmN5u lỸ1N1Fl ,

wherel 51,...,n. The second term simplifies as follows:

Fl5E
2`

`

dx e22ikx (
m52

n

Blm
21R̃mNG̃NN

5E
2`

`

dx e22ikxG̃NN (
m52

n

^el uB21uem&^emuBur &

5E
2`

`

dx e22ikxG̃NN~r l2u l^uur &!. ~77!

After simple calculations we get

YNN5
i

4
E

2`

`

dz sech2 zS e2z

k2k1

1
ez

k2 k̄1
D ~r 0~z!1 r̄ 0~2z!!, ~78!

Y lN5
u l

8h
E

2`

`

dz sech2z
exp$22ikx1 i ~j/h!z%

~k2k1!~k2 k̄1!

3$24h2r̄ 0~2z!1@e22z~k2 k̄1!1e2z~k2k1!#2r 0~z!%1Fl . ~79!

Here we have used the notation

r 05e2 i (j/h)zR̃1N5e2 i (j/h)z^uur &5e2 i (j/h)z(
l 51

n

ū l r l . ~80!
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A. Evolution of the soliton parameters

Let us first derive evolution equations for the soliton parametersh, j, x̄, and u l , l
51, . . . ,n. Using the identity 22ik1x1 i (j/h)z5z12h x̄22i j x̄ and the definition Cl

5u le
2(h2 i j) x̄ from Sec. III, we obtain

ResYNN~k1!5
i

4 E2`

`

dz e2zsech2 z~r 0~z!1 r̄ 0~2z!!, ~81!

Y rNN~k1!5
1

8h E
2`

`

dz ezsech2 z~r 0~z!1 r̄ 0~2z!!, ~82!

Y rlN~k1!5Cl$22i x̄ Res$YNN~k1!%1Y rNN~k1!1J0%1 f l , ~83!

where

J05
1

4h E
2`

`

dz sech2 z~coshz1ze2z!~r 0~z!2 r̄ 0~2z!!

and

f l5Fl~k1!5
e2(h2 i j) x̄

4h E
2`

`

dz sechz~e2 i (j/h)zr l2u l r 0!.

Let us first consider the more involved derivation of equations forx̄ andu l . From Eqs.~70!,
~82!, and~83! we get

dCl

dt
5~22iv~k1!12e i x̄ ResYNN~k1!2eJ0!Cl2e f l , ~84!

from which it follows that

duCl u2

dt
5@4 Im$v~k1!%24e x̄ Im$ResYNN~k1!%22e Re$J0%#uCl u222e Re$ f l C̄l%.

Recalling that( l 51
n uu l u251 we obtain

dx̄

dt
5

e24h x̄

4h (
l 51

n
duCl u2

dt
2

x̄

h

dh

dt
,

du l

dt
5u l S Cl

21 dCl

dt
22

d~h x̄!

dt
12i

d~j x̄!

dt D .

The rest calculations are straightforward substitutions and using the identity( l 51
n f l C̄l50, which

follows from the definitions ofCl , r 0 , and f l . After simple calculations one gets a system
equations for the soliton parameters:

dh

dt
52

e

2 E2`

`

dz sechz Re$r 0%, ~85!

dj

dt
52

e

2 E2`

`

dz sechz tanhz Im$r 0%, ~86!
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dx̄

dt
5

Im$v~k1!%

h
2

e

4h2 E
2`

`

dz zsechz Re$r 0%, ~87!

du l

dt
5 iu l H 2 Im$k̄1v~k1!%

h
2

e

2h2 E
2`

`

dz sechz@jz Re$r 0%1h~12z tanhz!Im$r 0%#J
1

e

4h E
2`

`

dz sechz~u l r 02e2 i (j/h)zr l !. ~88!

These equations can be compared with the adiabatic equations derived by Karpman21 for the
single scalar soliton. First, it is convenient to introduce the average phased̄ of the soliton by
setting

d̄5(
l 51

n

uu l u2d l .

The evolution equation for the average phase then follows from Eq.~88!:

dd̄

dt
5

2 Im$k̄1v~k1!%

h
2

e

2h2 E
2`

`

dz sechz@jz Re$r 0%1h~12z tanhz!Im$r 0%#. ~89!

Remarkably, the slow evolution of the soliton amplitudeh, phase gradientj, position x̄, and
average phased̄ is given by equations similar to those derived for the single scalar soliton.
only trace of the vector nature of the soliton in Eqs.~85!–~87! and ~89! is that the ‘‘scalar’’
perturbationr 0 obtains by averaging the original vector perturbation as follows:

r 05e2 i (j/h)z(
l 51

n

ū l r l .

The equation foru l5sle
id l can be cast in the form of two separate equations, one for

polarization parameterssl and the other for the phasesd l . We get

dsl

dt
5

e

4h E
2`

`

dz sechz Re$slr 02e2 i (j/h)z2 id l r l%, ~90!

dd l

dt
5

2 Im$k̄1v~k1!%

h
2

e

2h2 E
2`

`

dz sechz@jz Re$r 0%1h~12z tanhz!Im$r 0%#

1
e

4h E
2`

`

dz sechz Im$r 02sl
21e2 i (j/h)z2 id l r l%. ~91!

Note that the equation ford l containssl in the denominator as a reflection of the fact that the ph
is not defined for the components which are not excited.

B. First-order radiation

Now let us consider the evolution of the spectral densitiesbl(k) of radiation. Taking into
account radiation in the first-order approximation amounts to solving the linearized re
Riemann–Hilbert problem~or the jump problem!,

f1~k!2f2~k!5G~k!S 0 e2ikxub~k!&

^b~k!ue22ikx 0 DG21~k!,
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where we have used the notationub&5b5(b1 , . . . ,bn)T. Solution of the above-mentioned jum
problem is obtained by integration and using the normalization conditionf6(k)→I ask→`. We
obtain

f~k!5I 1
1

2ip E
2`

` dl

l 2k
G~ l !S 0 e2i l xub~ l !&

^b~ l !ue22i l x 0 DG21~ l !.

The contribution from radiation to the solution follows from the formula~4!,

ql
(rad)522 lim

k→`

kf lN~k!5
1

ip E
2`

`

dkH G(k)S 0 e2ikxub(k)&

^b(k)ue22ikx 0 DG21~k!J
lN

.

As in derivation of the equations for the soliton parameters it is convenient to use the tra
mation with the matrixJ. Using this transformation and formula~75! one can easily simplify the
formula for radiation contribution. We getql

(rad)5ql
(i)1ql

(') , where the ‘‘parallel’’ and ‘‘perpen-
dicular’’ parts of radiation are defined as follows:

ql
(i)5

hu le
i (j/h)z

ip E
2`

` dl

l211
$~l1 i tanhz!2eilz^uug~l!&1sech2 ze2 ilz^g~l!uu&%, ~92a!

ql
(')5

hei (j/h)z

ip E
2`

` dl

l2 i
eilz~l1 i tanhz!~gl~l!2u l^uug~l!&!. ~92b!

Here, for convenience, we have introduced the modified spectral parameter by settingk5hl
1j and the modified spectral densities of radiation:

gl~l!5e2i (hl1j) x̄bl~hl1j!. ~93!

The separation of radiation into parallel and perpendicular parts is due the following facts.
the perpendicular partql

(') satisfies the orthogonality property

(
l 51

n

ū lql
(')50, ~94!

the parallel part of the radiation is given by the same formula as the radiation of the scalar s
~multiplied by u l!, but for the averaged spectral density^uug(l)&.

Consider the evolution equation~71! for the spectral densities of radiation. In the first-ord
approximation the term withYNN can be neglected. When deriving evolution equations for
modified spectral densities in the first-order approximation one must take into account on
fast ~or ‘‘integrable’’! evolution of the soliton parameters involved in the definition ofg(l). In
particular, the modified spectral parameterl is t-independent. The only parameter which has
fast t-dependence in~93! is x̄. By differentiation of~93! and using~71! and ~87! we obtain

]gl~l!

]t
5 iV r~l!gl~l!1eu lY

(i)~l!1eY l
(')~l!, ~95!

where

V r~l!52@l Im$v~k1!%1Re$v~k1!%2v~hl1j!#. ~96!

The last two terms in Eq.~95! come fromY lN ~79! @the second one is the contribution ofFl ~77!#.
They read
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Y (i)~l!5
1

2h~l211!
E

2`

`

dz e2 ilz@~l2 i tanhz!2r 02sech2 z r̄0#, ~97!

Y l
(')~l!5

1

2h~l1 i ! E2`

`

dz e2 ilz~l2 i tanhz!~e2 i (j/h)zr l2u l r 0!. ~98!

Due to the definition ofr 0 ~80!, the perpendicular component satisfies the identity

(
l 51

n

ū lY l
(')50. ~99!

Integrating the equation forgl(l) with gl(l,t50)50 and using the result in~92! we arrive
at the first-order correction to initially pure soliton solution. In this case we obtain

ql
(i)5e

hu le
i (j/h)z

ip E
2`

` dl

l211
$~l1 i tanhz!2eilz1 iVr (l)tg (i)~l!1sech2 ze2 ilz2 iVr (l)tḡ (i)~l!%,

~100a!

ql
(')5e

hei (j/h)z

ip E
2`

` dl

l2 i
~l1 i tanhz!eilz1 iVr (l)tg l

(')~l!, ~100b!

where

g (i)5
1

2h~l211!
E

2`

`

dz e2 ilz@~l2 i tanhz!2r̂ 0
(1)2sech2 z r̂0

(2)#,

g l
(')5

1

2h~l1 i ! E2`

`

dz e2 ilz~l2 i tanhz!~e2 i (j/h)zr̂ l2u l r̂ 0
(1)!,

with

r̂ 0
(1)~z,t,l!5E

0

t

dt e2 iVr (l)tr 0~z,t!, r̂ 0
(2)~z,t,l!5E

0

t

dt e2 iVr (l)t r̄ 0~z,t!,

r̂ l~z,t,l!5E
0

t

dt e2 iVr (l)tr l~z,t!.

VI. CONCLUSIONS

In construction of the perturbation theory our main idea is to use the Riemann–Hilbert
lem associated with the integrable PDE for the nonlinear transformation of theperturbedPDE to
the spectral space. The evolution equations for the spectral data follow from the evolution
tional, an additional object one needs to introduce into the IST theory to account for perturba
For a single vector soliton, the equations describing evolution of the soliton parameter
first-order radiation are given in explicit form. The method is not restricted to the first order
For instance, the second-order equations can also be derived. The perturbation theory
applied for description of dynamics of the spatial optical solitons, soliton pulses in the mul
cies Bose–Einstein condensates, soliton propagation in optical fiber with account of the ar
polarization of light pulses, and for many other applications of the multicomponent soliton e
tions.

In this paper we have restricted the consideration to the Zakharov–Shabat spectral pr
However, the approach of this paper was successfully applied to other spectral proble
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well.41–45There, the evolution functional was derived and the evolution equations for the sp
data were obtained. The overall result of this and the previous works on the perturbation
based on the Riemann–Hilbert problem is that this approachalways works. The explicit form of
the evolution functional was the same for all considered spectral problems and, moreo
undergoes only insignificant changes in the transition from the Cauchy problem to an i
boundary value problem.45
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APPENDIX A: SOME COMMENTS ON MULTIPLICITY OF ZEROS

Here we explore in more detail the algebraic and geometric multiplicities of zero
detF1(k) and detF2

21(k). For instance, consider the determinant

detF15J11∧¯∧J1n∧J2n11∧¯∧J2N . ~A1!

None of the columnsJ6 l(x,k) is equal to zero@otherwise, due to uniqueness of solution to Eq.~1!
we would haveJ6 l50 for all x#. Moreover, the minors in the wedge products of columns ofJ1

andJ2 satisfy linear homogeneous equations, which follow from~1!, Sec. III,

]xJ11∧¯∧J1n5H ikS Â(n)2
n~n11!

2
Î (n)D1 iQ̂ (n)J J11∧¯∧J1n ,

]xJ2n11∧¯∧J2N5H ikS Â(N2n)2
~N2n!~N2n11!

2
Î (N2n)D1 iQ̂ (N2n)J 3J2n11∧¯∧J2N .

Here M̂ ( j ) denotes a supermatrix, whose action on the wedge products of vector-colum
defined by the rule

M̂ ( j )C1∧¯∧C j5 (
p51

j

C1∧¯∧MCp∧¯∧C j .

Therefore, rankJ11∧¯∧J1n5ranke1∧¯∧en5n, and rank J2n11∧¯∧J2N5ranken11∧¯
∧eN2n5N2n. Hence, the only possibility for detF1(k)50 is the linear dependence of the co
umns inJ1H1 andJ2H2 , e.g., at least one of the columns ofJ2H2 is given as a linear combi
nation of the columns ofJ1H1 .

Let n j anddj be the algebraic and geometric multiplicities of thej th zerokj , i.e.,

detF1~k!5~k2kj !
n jc~k!, c~kj !Þ0, dj5N2rankF1~kj !.

Writing down the Taylor expansion ofF1(k) aboutk5kj we immediately conclude that

rankF1~kj !>N2n j . ~A2!

Therefore, in general, the algebraic multiplicity is greater than the geometric one; trivially,
coincide for simple zeros. Representation~A1! gives

rankF1~kj !>max~n,N2n!.

Hence the geometric multiplicity satisfies

dj<N2max~n,N2n!. ~A3!
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We consider only zeros whose algebraic multiplicity is equal to the geometric one. In pa
lar, if n5N21, there can be only one vector in the null space ofF1 , i.e., dj51. Hence, in this
case, zeros of detF1(k) must be simple to satisfy the equal multiplicity condition. This condit
requires that the only case of a multiple zero, detF1(kj)50, of ordern j is that there are precisel
n j columns of J2(kj )H2 and J1(x,k)H1 which are linear combinations of the columns
J1(kj )H1 andJ2(kj )H2 , respectively.

The equal multiplicity condition can be guaranteed by the following constraint@imposed for
some (x,t)#

rankS F1 ,
]F1

]k D5N. ~A4!

Indeed, for algebraic multiplicityn j , by the Taylor expansion,~A4! gives rankF1(kj )5N2n j .
Conversely, if rankF1(kj )5N2n j , for algebraic multiplicityn j , then there are at leastn j col-
umns in]F1(kj )/]k independent from the columns ofF1(kj ). Hence~A4! also holds. Similar
results are valid for multiplicities of zerosk̄ j , j 51, . . . ,s, of detF2

21(k).

APPENDIX B: PROPERTIES OF THE REGULARIZATION MATRIX

Here we derive the regularization matrixG(k) and prove its properties~in the main, we follow
Refs. 13 and 58!. Dependence on the coordinatesx and t is not important for this purpose an
omitted. Consider one pair of zeros, say,ks and k̄s of detF1(k) and detF2

21(k), respectively. Let
the vectorsupl

(s)& and ^ p̄l
(s)u, l 51, . . . ,ns , satisfying

F1~ks!upl
(s)&50, ^ p̄l

(s)uF2
21~ k̄s!50, ~B1!

span the respective null spaces. Construct the following rational matrix functions

xs~k!5I 2
ks2 k̄s

k2 k̄s

Ps , x̄s~k!5I 1
ks2 k̄s

k2ks

Ps ,

where

Ps5 (
l ,m51

ns

upl
(s)&~M 21! lm^ p̄m

(s)u, Mlm5^ p̄l
(s)upm

(s)&

and Ps is a projector:Ps
25Ps , rankPs5ns . It is easy to verify thatx̄s(k) is inverse toxs(k):

xs(k)x̄s(k)5I .
The determinant ofxs(k) is easily computed in some appropriate basis, where the projec

represented by a diagonal matrix withns ones andN2ns zeros on the diagonal. We get

detxs~k!5S k2ks

k2 k̄s
D ns

.

Hence, with such rational matrices we can factor out thesth pair of zeros. Indeed, consider th
productsF1(k)xs

21(k) andxs(k)F2
21(k). These matrix functions are holomorphic in the upp

and lower half planes, respectively@the poles are removable due to the identities~B1!#. On the
other hand, the determinants are nonzero fork5ks andk5 k̄s , respectively; thus one pair of zero
is factored out. By introducing a sequence of such matrices,

x j~k!5I 2
kj2 k̄ j

k2 k̄ j

Pj , x̄ j~k!5I 1
kj2 k̄ j

k2kj

Pj , j 51, . . . ,s, ~B2!
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wherex̄ j (k)5x j
21(k), we factor out all zeros using the regularization matrixG and its inverse,

where

G~k!5x1~k!x2~k!¯xs~k!. ~B3!

The projectorPj is given by

Pj5 (
l ,m51

s

uel
( j )&~M 21! lm^ēm

( j )u, Mlm5^ēl
( j )uem

( j )&.

Here the vectorsuel
( j )& and^ēl

( j )u are related to the basis vectors of the null spaces ofF1(kj ) and
F2

21( k̄ j ) by triangular equations~if scanned starting froms down to 1!:

upl
( j )&5xs

21~kj !•xs21
21 ~kj !¯x j 11

21 ~kj !uel
( j )&, ~B4!

^ēl
( j )ux j 11~ k̄ j !•x j 12~ k̄ j !¯xs~ k̄ j !5^ p̄l

( j )u. ~B5!

Due toPj
25Pj , these vectors satisfy the identities:

x j~kj !uel
( j )&50, ^ēl

( j )ux j
21~kj !50, l 51, . . . ,n j . ~B6!

The regularization matrixG(k) can be made parametrized entirely by the vectors from the
spaces. Indeed, let us decomposeG(k) and the inverse matrix into the partial fractions:

G~k!5I 2(
j 51

s
B̄j

k2 k̄ j

, G21~k!5I 1(
j 51

s
Bj

k2kj

, ~B7!

where due to~B4! and ~B5! we have

Bj5(
l 51

n j

upl
( j )&^v l

( j )u, B̄j5(
l 51

n j

uv̄ l
( j )&^ p̄l

( j )u. ~B8!

From ~B7! and the identityGG215G21G5I it follows that

G~kj !upl
( j )&50, ^ p̄l

( j )uG21~ k̄ j !50, l 51, . . . ,n j , j 51, . . . ,s. ~B9!

These are the equations defining the unknown vectorsuv̄ l
( j )& and^v l

( j )u. Indeed, rewriting~B9! we
have

upl
( j )&5(

i 51

s
1

kj2 k̄i

(
m51

n i

uv̄m
( i )&^ p̄m

( i )upl
( j )&, ^ p̄l

( j )u52(
i 51

s
1

k̄ j2ki

(
m51

n i

^ p̄l
( j )upm

( i )&^vm
( i )u.

Inversion of these formulas gives

uv̄ l
( j )&5(

i 51

s

(
m51

n i

upm
( i )&~D21! im, j l , ^v l

( j )u5(
i 51

s

(
m51

n i

~D21! j l ,im^ p̄m
( i )u. ~B10!

Here the matrixD is defined by

Dim, j l 5
^ p̄m

( i )upl
( j )&

kj2 k̄i

.

Substitution of~B10! into ~B7! produces the needed formula~29!.
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JETP73, 623 ~1991!#.
35V. V. Konotop and V. E. Vekslerchik, Phys. Rev. E49, 2397~1994!.
36D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, Phys. Rev. Lett.75, 591 ~1995!; D. E. Pelinovsky, Yu. S. Kivshar,

and V. V. Afanasjev, Phys. Rev. E53, 1940~1996!.
37I. V. Barashenkov, D. E. Pelinovsky, and E. V. Zemlyanaya, Phys. Rev. Lett.80, 5117~1998!.
38N. V. Alexeeva, I. V. Barashenkov, and D. E. Pelinovsky, Nonlinearity12, 103 ~1999!.
39J. Yang and D. J. Kaup, SIAM~Soc. Ind. Appl. Math.! J. Appl. Math.60, 967 ~2000!.
40J. Yang, J. Math. Phys.41, 6614~2000!.
41V. S. Shchesnovich, Chaos, Solitons Fractals5, 2121~1995!.
42V. S. Shchesnovich and E. V. Doktorov, Phys. Rev. E55, 7626~1997!.
43V. S. Shchesnovich and E. V. Doktorov, Physica D129, 115 ~1999!.
44V. S. Shchesnovich and I. V. Barashenkov~unpublished!.
45E. V. Doktorov and V. S. Shchesnovich, Inverse Probl.~to be published!.
46M. J. Ablowitz and P. A. Clarkson,Solitons, Nonlinear Evolution Equations and Inverse Scattering~Cambridge Univer-

sity Press, Cambridge, 1991!.
47A. S. Fokas, SIAM~Soc. Ind. Appl. Math.! J. Math. Anal.27, 738 ~1996!; Proc. R. Soc. London, Ser. A453, 1411

~1997!; J. Math. Phys.41, 4188~2000!.
48L. D. Faddeev and L. A. Takhtajan,Hamiltonian Methods in the Theory of Solitons~Springer, Berlin, 1987!.
49J. Leon, J. Math. Phys.35, 3504~1994!.
50A. C. Newell,Solitons in Mathematics and Physics~SIAM, Philadelphia, 1985!.
51M. J. Ablowitz and H. Segur,Solitons and the Inverse Scattering Transform~SIAM, Philadelphia, 1981!.
                                                                                                                



1486 J. Math. Phys., Vol. 43, No. 3, March 2002 V. S. Shchesnovich

                    
52F. Calogero and A. Degasperis,Spectral Transform and Solitons~North-Holland, Amsterdam, 1982!.
53V. S. Gerdjikov, M. I. Ivanov, and P. P. Kulish, Lett. Math. Phys.6, 315 ~1982!.
54X. Zhou, SIAM ~Soc. Ind. Appl. Math.! J. Math. Anal.20, 966 ~1988!; Commun. Pure Appl. Math.42, 895 ~1989!.
55R. Beals and R. R.Coifman, Commun. Pure Appl. Math.37, 39 ~1984!; 38, 29 ~1985!; Inverse Probl.5, 577 ~1989!.
56R. Beals, P. Deift, and C. Tomei,Direct and Inverse Scattering on the Line, Math. Surv. Monograph, Vol. 28~American

Mathematical Society, Providence, 1988!.
57P. J. Caudrey, Physica D6, 51 ~1982!.
58T. Kawata, inAdvances in Nonlinear Waves, edited by L. Debnath~Cambridge University Press, Cambridge, 1984!, p.

210.
                                                                                                                



moge-
rtson–

n
tor is
he

,
ribed by

r the

ravity

time are

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 3 MARCH 2002

                    
Euclidean Friedman–Robertson–Walker cosmology
in Brans–Dicke-like theories of gravity

Bertrand Chauvineaua)

UMRILGA, Département Fresnel, Observatoire de la Coˆte d’Azur, Avenue Copernic,
06130 Grasse, France

~Received 6 September 2001; accepted for publication 12 December 2001!

An explicit and tractable form of the complete solution of Brans–Dicke Euclidean
Friedman–Robertson–Walker cosmology, in the matter dominated area, is pro-
posed. In this derivation, the~generally imposed! constraint on the Brans–Dicke
parameterv.23/2 is relaxed. An isolated power-law solution is exhibited, which
turns out to describe an accelerated expansion of the universe, without recourse to
any cosmological constant or quintessence matter. It appears that this solution can
be generalized for all Brans–Dicke-like theories of gravity. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1447589#

I. INTRODUCTION

In the standard cosmological model, the universe is modeled as being isotropic and ho
neous. The metric of such a space–time can always be written in the Friedman–Robe
Walker form

ds252dt21a~ t !2F dr 2

12kr2 1r 2~du21sin2 u dw2!G , ~1!

wherea(t) (.0) is the universe scale factor.k ~511,0,21 for a closed, a flat and an ope
universe, respectively! describes the geometrical properties of spatial sections. The scale fac
determined inserting the metric~1! in the field equation of the considered theory, in which t
matter content is described by a perfect fluid stress tensor,Tab5(r1p)uaub1pgab , where the
density and pressure fields are related by the state equationp(r). For cosmological applications
two extreme cases are generally considered: the so-called matter dominated area, desc
p50, and the so-called radiative area, described byp5r/3. The cosmological model derived from
the general relativity theory~GRT! can be completely integrated, in the matter area, whateve
geometry, leading to the well-known Friedman models.

As soon as Brans and Dicke obtained the equations of their scalar-tensor theory of g
~BDT, for Brans–Dicke theory!, they have reconsidered the standard cosmological model.1 They
have considered the matter dominated area only. The geometrical properties of the space–
described by the metric~1! and by a time-dependent scalar fieldF(t). The BDT equations, when
written for the metric~1! and the scalar fieldF(t), are

S ȧ

a
1

Ḟ

2F
D 2

1
k

a2 5
2v13

12
S Ḟ

F
D 2

1
4K

3Fa3 , ~2!

d

dt
~Ḟa3!5

4K

2v13
. ~3!

The upper point represents the time derivative.K is a~positive! constant, corresponding to 2pra3

in Brans–Dicke~and standard! notations, wherer is the mass density~ra3 being conserved in the

a!Electronic mail: chauvineau@obs-azur.fr
14870022-2488/2002/43(3)/1487/6/$19.00 © 2002 American Institute of Physics
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pressureless case!. In the Euclidean case, they have derived an exact solution, where the
factor and scalar field are power laws of time.1 The time exponent of the scale factor converges
the GRT value~2/3!, whenv→`, while the scalar field, and then the related ‘‘effective gravi
tional constant’’~Ref. 1!, reduces to a true constant.

Recently, Park and Sin2 have investigated the Euclidean problem, with a barotropic equa
of statep5(g21)r, whereg is a constant. They find the solution under a parametric inte
form, from which they derive the main properties~singularities, asymptotic forms, . . .! of the
solutions. More recently, Quiros, Bonal, and Cardenas3 have reinvestigated this problem. As
Park and Sin, the solution is found under a~non easily tractable! parametric integral form. How-
ever, these authors point out some divergences between their results and those of Park and
23/2,v,24/3. Holden and Wands4 have derived, from a phase-plane analysis, the qualita
properties of the solutions for the elliptic and hyperbolic problems. All these papers are res
~in the four-dimensional case we are interested in! to the casev.23/2.

In this paper, we concentrate on the sole matter dominated case (p50), described by Eqs.~2!
and ~3!. We obtain the complete solution,a(t) and F(t), without the constraintv.23/2 ~but
with the restrictionvÞ3/2, the scalar Brans–Dicke equation being not defined forv523/2!. A
power law solution, different from the one considered by Brans and Dicke, is exhibited, in the
v,23/2, which describes an accelerated expanding universe. This solution turns out to h
counterpart in the framework of all Brans–Dicke-like theories of gravity.

II. THE GENERAL SOLUTION OF THE EUCLIDEAN CASE IN BRANS–DICKE THEORY

Let us consider the Euclidean case (k50). Equation~2! reduces to

S ȧ

a
1

Ḟ

2F
D 2

5
312v

12
S Ḟ

F
D 2

1
4K

3Fa3 , ~4!

while Eq. ~3! can be integrated as

Ḟa35
4K

312v
t. ~5!

Let us remark that, setting the integration constant to zero in Eq.~5!, a choice of the origin of time
has been made implicitly. As a consequence, looking for solutions under the forma}tq ~andF
}t r!, as made by Brans and Dicke for their exact solution, has the consequence of selectin
solutions with singularity at the so defined origin of time.

Multiplying Eq. ~4! by 9F2a6, and using Eq.~5!, it turns out that

F d

dt S Fa31
Kt2

312v D G2

512KS Fa31
Kt2

312v D . ~6!

Using the new variableZ5Fa31Kt2/(312v), this equation is rewritten as

FdZ

dt G2

512KZ. ~7!

This equation shows that one has necessarilyZ>0. Let us rewrite this equation under the form

dZ

dt
5e.2A3KAZ, ~8!

wheree561. Since the choicee521 corresponds to a mere reversal of time, let us consider
casee511 only.

Equation~8! admits the trivial solutionZ50, which leads to an isolated family of solution
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F5Pt24, ~9!

a5At2, ~10!

whereA andP are two constants related byA3P52K/(312v).
If now Z.0, Eq. ~8! integrates into

Fa31
Kt2

312v
5SA3Kt1AA K

u312vu D
2

, ~11!

whereA is an integration constant. Combining this equation with Eq.~5!, one obtains

Ḟ

F
5

4t

~312v!S)t1
A

Au312vu
D 2

2t2

. ~12!

Now, two cases have to be distinguished, according to the sign of 312v.
If 3 12v.0, Eq. ~12! leads to

F5Put2t1u22/(A3(312v)11)ut2t2u2/(A3(312v)21) ~13!

and Eq.~5! gives

a35s
2K

P

413v

312v
ut2t1u(A3(312v)13)/(A3(312v)11)ut2t2u(A3(312v)23)/(A3(312v)21), ~14!

wheres is the sign of (t2t1)(t2t2). t1 and t2 are given by

t15
2A

A3~312v!11
~15!

and

t25
2A

A3~312v!21
. ~16!

This solution corresponds to the caseg51 ~the pressureless case! given, for instance, in Ref. 4.
Let us remark that this solution is well-defined for all positive value of 312v, apart from

v524/3, for whicht2 is not defined. This case can be obtained directly from the integratio
Eq. ~12!. This leads to

F5PU11
2t

AU21

expS 2t

A D ~17!

and Eq.~5! gives

a35s
3KA2

P S 11
2t

A D 2

expS 2
2t

A D , ~18!

wheres is the sign of 112t/A.
If 3 12v,0, Eq. ~12! leads to, up to a mere change of time origin,
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F5PH 11S t

t D 2J 21/u413vu

expH 2
A3u312vu

u413vu
arctanS t

t D J ~19!

while a3, derived from Eq.~5!, writes

a35
2K

P

u413vu
u312vu

t2H 11S t

t D 2J 3u11vu/u413vu

3expH 22
A3u312vu

u413vu
arctanS t

t D J . ~20!

In these expressions, one has written

t5
A

2u413vu
. ~21!

Remark that solutions~13!, ~14!; ~17!, ~18!; and~19!, ~20!, when time reflected, correspond
the same solutions~respectively!, with the integration constantA changed for2A, in such a way
that both casese561 are described by the solutions~13!, ~14!; ~17!, ~18! and ~19!, ~20!.

III. DETAILED PROPERTIES OF THE SOLUTION AND DISCUSSION

SinceF determines the effective gravitational constant~Ref. 1!, which is positive, we will
consider, in all the present discussion, only solutions such thatP.0. The peculiar properties o
these solutions are highlighted in this section.

Consider first the casev.23/2. If the integration constantA is chosen to be zero, th
Brans–Dicke power law solution is recovered.

If AÞ0, two peculiar datest1 and t2 (Þ0) enter the solution. As pointed out in Sec.
changing the sign ofA is the same as considering the time-reflected solution. Let us then con
the caseA.0 only. Sinceq15(A112v/311)/(3A112v/311).0, t1 is a date of singularity,
while t2 is a date of singularity if and only ifq25(A112v/321)/(3A112v/321).0, i.e., if
and only if v¹@24/3,0#. The conditiona.0 shows thats511 ~respectively21! in the case
v.24/3 ~respectively,24/3!.

If v.24/3, one then hast2,t1,0, and the timet is necessarily outside the time interv
@ t2 ,t1#. The solution exhibits two disconnected branches. Let us point out that, in both bran
a varies asutuq11q2 at 6`, whereq11q252(11v)/(413v). Studying the variations of~14!,
one finds the following.

~1! If v.0, a decreases in the first branch from1` at t52` to zero att5t2 , and increases
in the second branch from zero att5t1 to 1` at t51`. ä, the second time derivative of th
scale factor, remains negative in both branches.

~2! If v50, one hasq250. The solution takes the forma}ut2t1u1/2. Let us point out that it
is defined outside the interval@ t2 ,t1# (5@2A/2,2A/4#) only. a decreases in the first branch fro
1` at t52` to a finite nonzero value att5t2 , and increases in the second branch from zero
t5t1 to 1` at t51`. ä remains negative in both branches.

~3! If 21,v,0, a decrease in the first branch from1` at t52`, reaches a strictly
positive minimum value at a datetmin , and increases to1` at t5t2 . In the second branch,a
increases from zero att5t1 to 1` at t51`. In the first branch,ä,0 until a datet infl

(,tmin), and is positive betweent infl and t2 . ä remains negative in the second branch.
~4! If v521, one hasq11q250. The solution takes the forma}u(t2t1)/(t2t2)u1/). It

reaches asymptotically a constant value whent→6`.
~5! If 24/3,v,21, a increases in the first branch from 0 att52` to 1` at t5t2 . In the

second branch,a increases from zero att5t1 to a maximum value at a datetmax, and decreases to
zero att51`. ä is positive in all the first branch, is negative in the second branch betweent1 and
a datet infl (.tmax), and is positive betweent infl and1`.

If v524/3, the solution is given by~17! and~18!. This solution exhibits a singularity at th
time t152A/2. Sincea.0, one hass511, and thent/A.21/2. The caseA.0, being under
consideration, one finds the following.
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~6! If v524/3, the solution has one branch.a increases from zero att152A/2 to 1` at
t51`. ä,0 from t1 to a datet infl , and is positive after.

If v,24/3, t1,0,t2 , and the conditiona.0 leads tos521. The timet is then inside the
time interval@ t1 ,t2#, and one has the following.

~7! If 23/2,v,24/3, a increases from zero att5t1 , reaches a maximum value at a da
tmax, and decreases to zero att5t2 . It is remarkable that the singularity att5t1 is such thatȧ
5`, while the singularity att5t2 is such thatȧ50. ä,0 from t1 to a datet infl (.tmax), and is
positive after.

Consider now the casev,23/2. In this case, the solutiona(t) is defined for all real value of
the time, and turns out to be singularity-free. It reaches a minimum value at a timetmin . Here
again, if the integration constantA is chosen to be~asymptotically! zero, the Brans–Dicke powe
law solution is recovered. If, besides,v522, one findsa;t andF;1/t, the linear solution~in
t for the scale factor! to which reduces the linear solution exhibited by Banerjee and Pavon, i
Euclidean case.5

Here again, since changing the sign ofA is the same as considering the time-reflected so
tion, we consider the caseA.0. From Eq.~20!, one finds the following two cases.

~8! If 22<v,23/2, a decreases from1` at t52`, reaches a minimum value attmin , and
increases to1` at t51`. ä remains positive for all time.

~9! If v,22, a decreases from1` at t52`, reaches a minimum value attmin , and
increases to1` at t51`. ä is positive in an interval@ t infl1 ,t infl2# containingtmin , and is negative
outside.

The time-reflected cases (18) – . . . .(98) of the nine previous cases~in the same order! cor-
respond to the same cases, but with negative values ofA.

One has to add the isolated solution~9! and~10! to these cases. For this solution, the relati
PA352K/(312v) shows thatv,23/2 ~from a.0, A is necessarily.0 for this solution!. One
then adds the tenth case.

~10! If v,23/2, a} t2, andä is positive for all time.
Let us insist on the, at first sight, very strange comportment of the solution~2! near the date

t2 : the first branch of the solution ends suddenly att2 , encountering neither a singularity nor
divergence. This can be checked directly inserting the solution~13! and ~14!, with v50, in the
field equations~4! and ~5!. A careful inspection of the transition from the solution~1! to the
solution~3! shows, indeed, that it is a reasonable comportment, since the first branches of~1! and
~3! become closer and closer to the curvea}ut2t1u1/2, but remain outside@ t2 ,t1#, when v
→01 or 02. The second branch of the time reversed (28) of ~2! begins then suddenly at the da
2t2 (.2t1), which is neither the date of a singularity nor of an infinite value for the scale fa
a(t).

It could seem disturbing that the solution~6! possesses one branch only. In fact, this is
logical continuity of the case~5!, since limv→24/31(t2)52`.

Let us remark that the solution~7! does not fill the conclusion derived by Quiros, Bonal a
Cardenas for the same values ofv. In this case, these authors have concluded that the problem@as
well in the pressureless case as in the barotropic perfect fluid casep5(g21)r# is singularity-free
in the Jordan frame~the frame considered in the current paper!, which, from the present approac
made directly in this frame, seems not to be correct, at least in the pressureless case.

It is worth pointing out that the solutions~3!, (38), ~5!, (58), ~6!, (78), ~8!, (88), ~9!, (98),
and~10! exhibit phases of accelerated expansion without any recourse to quintessence ma~or
to cosmological constant!. This possibility, which has already been pointed out5 for some peculiar
power law exact solutions, is enforced here, since it appears to be the case for a wide c
solutions.

Besides, let us mention that, whenv@1, both the exponentsq1 andq2 are close to 1/3, with
the consequence that near the singularity~i.e., at dates such thatut2tku!t12t2), one hasa}ut
2tku1/3 (@ut2tku2/3). The scale factor varies then as the power 1/3 of time, a comportm
drastically different from that of the Friedman solution of GRT~power 2/3 of time!. Since
limv→`(t12t2)50, this comportment disappears as soon as the limit is reached.
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It can easily be checked that both solutions~13! and~14! and~19! and~20! develop in power
series of 1/v, and then converge through the analog GRT solution, i.e.,F5P ~i.e., a constant! and
a}t2/3, when uvu→`. However, let us point out the pathological comportment of the isola
solution~9!, ~10! in this limit process. Indeed, the limit of this solution is highly unphysical~whilst
the solution itself, i.e., for a finitev, is physical!, since limuvu→`(PA3)50, which means that
eithera→0 ~no universe! and/orF→0 ~infinitely strong effective gravitational constant!.

IV. A SOLUTION FOR ALL BRANS–DICKE-LIKE THEORIES OF GRAVITY

Let us now consider the previous problem in the framework of general scalar-tensor th
~STT! of gravity, where the Brans–Dicke parameterv is replaced by an arbitrary functionv(F)
~each such function defining a peculiar STT!. For a general presentation of these theories, see
instance Ref. 6. Modulo this change, Eq.~4! remains unchanged, while Eq.~3! is replaced by

d

dt SAu2v~F!13u
dF

dt
a3D5s

4K

Au2v~F!13u
, ~22!

wheres is the sign of 2v(F)13. Let us define a new time variablet by

dt5dtAu2v~F!13u ~23!

and let us writeX* for dX/dt. Equation~22! can be integrated, and gives

a3F* 5s4Kt, ~24!

while Eq. ~4! can be rewritten as

F d

dt
~Fa31sKt2!G2

512K~Fa31sKt2!, ~25!

which generalizes Eq.~6!. As in the Brans–Dicke case, this equation admits a trivial solut
which verifiesFa31sKt250. Since the caseF.0 only is considered, one has necessarilys
521, and then 312v(F),0. This leads to the solution under the parametric form

F5Pt24, ~26!

a5At2, ~27!

and

t5E dtA2322vS P

t4D , ~28!

whereA andP are related byA3P5K. This solution extends the isolated solution~9! and~10! of
the Brans–Dicke problem to the general case of STT.

As in the Brans–Dicke case, this solution leads to an accelerated expansion for a larg
of STT. For instance, considering gravity theories characterized by 312v(F);Fl, wherel is a
constant, an accelerated expansion is recovered for21/2,l,11/2, which includes, of course
the Brans–Dicke casel50.

1C. Brans and R. H. Dicke, Phys. Rev.124, 925 ~1961!.
2C. Park and S.-J. Sin, Phys. Rev. D57, 4620~1998!.
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This work is devoted to a mathematical analysis of the distributional Schwarzschild
geometry. The Schwarzschild solution is extended to include the singularity; the
energy momentum tensor becomes ad-distribution supported atr 50. Using gen-
eralized distributional geometry in the sense of Colombeau’s~special! construction
the nonlinearities are treated in a mathematically rigorous way. Moreover, general-
ized function techniques are used as a tool to give a unified discussion of various
approaches taken in the literature so far; in particular we comment on geometrical
issues. ©2002 American Institute of Physics.@DOI: 10.1063/1.1448684#

I. INTRODUCTION

Since the formulation of the first singularity theorems it is generally conceded that sin
space–times are of fundamental importance in general relativity. Geometrically, a singula
defined via the notion of~geodesic! incompleteness, a viewpoint which fits in the singular
theorems of Hawking and Penrose~see, e.g., Ref. 1, Chap. 8!, forcing us to regard a singularity a
some kind of singular boundary point of space–time. Recently, as an alternative, it has
suggested to describe~mild! singularities as internal points, where the field equations are sati
in a weak~probably distributional! sense~cf. Ref. 2!. General relativity as a physical theory
governed by particular physical equations; the focus of interest is the breakdown of physics
need not coincide with the breakdown of geometry.

In the context of conical space–times algebras of generalized functions3,4 have been used to
overcome the problem of simultaneously dealing with singular~i.e., distributional! metrics and the
nonlinearities of general relativity.5–7 These techniques allow one to assign to the cone metr
singular energy momentum tensor supported on a submanifold of codimension two, which
result of Geroch and Traschen,8 is not possible within classical~i.e., linear! distribution theory.

The main focus of this work is a~nonlinear! distributional description of the Schwarzschi
space–time. Although the nature of the Schwarzschild singularity is much ‘‘worse’’ than
quasiregular conical singularity, there are several distributional treatments in the literature~cf. Ref.
9–13!, mainly motivated by the following considerations: the physical interpretation of
Schwarzschild metric is clear as long as we consider it merely as an exterior~vacuum! solution of
an extended~sufficiently large! massive spherically symmetric body. Together with the inte
solution it describes the entire space–time. The concept of point particles—well understood
context of linear field theories—suggests a mathematical idealization of the underlying ph
one would like to view the Schwarzschild solution as defined on the entire space–time and
it as generated by a point mass located at the origin and acting as the gravitational source.
course amounts to the question of whether one can reasonably ascribe distributional cu
quantities to the Schwarzschild singularity at the origin.

a!Electronic mail: mheinzle@galileo.thp.univie.ac.at
b!Electronic mail: roland.steinbauer@univie.ac.at
14930022-2488/2002/43(3)/1493/16/$19.00 © 2002 American Institute of Physics
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The emphasis of the present work lies on mathematical rigor. We derive the ‘‘phys
expected’’ result for the distributional energy momentum tensor of the Schwarzschild geom
i.e., T0

058pmd (3)(xW ), in a conceptually satisfactory way. Additionally, we set up a unified l
guage to comment on the respective merits of some of the approaches taken so far. In pa
we discuss questions of differentiable structure as well as smoothness and degeneracy prob
the regularized metrics, and present possible refinements and workarounds. These aims
complished using the framework of nonlinear generalized functions~Colombeau algebras!3,4 and,
in particular, the geometric approach taken in Refs. 14 and 15.

The paper is organized in the following way: in Sec. II we discuss the conceptual as w
the mathematical prerequisites. In particular we comment on geometrical matters~differentiable
structure, coordinate invariance! and recall the basic facts of nonlinear distributional geometry
the context of algebras of generalized functions. Moreover, we derive sensible regularizati
the singular functions to be used throughout the paper. Section III is devoted to a first appro
the problem; a detailed discussion follows in Sec. IV: we comment on problems and obs
associated with the direct approach. Finally, in Sec. V, we present a new conceptually satis
method to derive the main result. Overly technical calculations are shifted to various appen
In Sec. VI we investigate the horizon and describe its distributional curvature. Using non
distributional geometry and generalized functions it seems possible to show that the h
singularity is only a coordinate singularitywithout leaving Schwarzschild coordinates.

II. PREREQUISITES

To begin with, let us have a look at the conceptually much simpler problem of point ch
in Maxwell’s theory and consider the Coulomb solution 1/r of an extended spherically symmetr
body. In an idealized picture the charged body is reduced to a point charge, and this w
looking at the problem has proven to be very fruitful, mainly due to the following two reas
first, the function 1/r PC 2(R3\$0%), since also inL loc

1 (R3), naturally gives rise to a distribution o
R3. Reinserting this distributional potential into the field equation we obtainD (1/r ) 524pd,
which has the clear physical interpretation as the charge density of a point charge. Second,
accordance with physical intuition, the situation may be interpreted in terms of the follo
sensible regularization scenario: consider a regularization of the ‘‘singular’’ potential by
sequence of~say smooth! functions converging weakly to 1/r . Then, by virtue of linearity of the
field equation, distribution theory guarantees that the corresponding sequence of charge d
will converge weakly to24pd, i.e., the density of the point charge.

The general relativistic case is much more involved. Consider the Schwarzschild metric
the horizon: extending the space–time tor 50 we are confronted with several distinct problem
First—according to the standard picture of general relativity—no manifold structure is given
singularity r 50, since the field equations are meaningless there within the smooth catego
addition, the differentiable structure of the extended manifold cannot be uniquely determined
the differentiable structure of the original space–time. This problem is dealt with in the rel
literature by fixing some differentiable structure by hand, most often the one induced by C
sians associated with Schwarzschild coordinates.

In analogy to the Maxwell case, we want to regard the metric as a distribution on the w
extended space–time. Now, the second conceptual problem is due to the inherently no
nature of general relativity: no distributional meaning can be given to the field equations, si
is not possible to calculate the curvature from a distributional metric. In the literature, this ob
is circumvented by using various—more or less—ad hoc regularization approaches in order
calculate a regularized Ricci tensor within the smooth category. Eventually, its distributional
is computed and—via the field equations—a distributional energy momentum tensor is obt
This tensor may then be interpreted as distributional source of the Schwarzschild geome9–13

However, using ad-hoc regularizations we are confronted with the problem of regulariz
independence of the results which may not be suitably addressed within this setting.

In this work, while arguing from a related point of view, we are going to use a diffe
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apparatus to deal with the nonlinearities of general relativity: the theory of algebras of gener
functions gives us the additional flexibility and power of a rigorous mathematical framewo
which distributions may undergo nonlinear operations. In particular, following the procedu
Ref. 5, we will first model the distributionally extended Schwarzschild metric by a genera
metric obtained by a suitable~and general! regularization procedure. Then, after entering t
generalized framework~cf. Ref. 15! we may calculate all the relevant curvature quantities from
generalized metric and subject it to the field equations. Note that within the generalized sett
field equations possess a well-defined meaning. Finally, we may descend to the distributiona
for the purpose of interpretation using the concept of association~see the following!.

Note that, in general, a regularization procedure depends on the coordinate system it
formed in ~for a diffeomorphism invariant notion of regularization using paths of mollifiers
Refs. 16 and 17!. However, since we had to fix the differentiable structure beforehand this i
further restriction. Actually, geometric considerations play an important role: as shown i
following, a brute force regularization attempt does not lead to a sensible description o
problem at hand. Indeed, we shall see that a satisfactory treatment of the distribu
Schwarzschild space–time has to use the Kerr–Schild form of the Schwarzschild metric~which
fixes both the differentiable structure and the coordinates!; moreover, it must be retained durin
the whole regularization process. Note that this is in accordance with physical intuition since
Kerr–Schild form the radial coordinate retains its spatial character near the singularity wh
course is not the case in Schwarzschild coordinates.

In Secs. II A and II B we are going to introduce some mathematical prerequisites. First, w
going to briefly recall generalized tensor analysis and generalized curvature~in Colombeau’s
so-called special setting!. For all further details we refer the reader to Refs. 14 and 15. Second
explicitly calculate the regularization of the relevant components of the metric tensor to be
throughout the paper.

A. Nonlinear distributional geometry

The basic idea of Colombeau’s theory of generalized functions3,4 is regularization by se-
quences~nets! of smooth functions and the use of asymptotic estimates in terms of a regulariz
parametere. Let (u«)«P(0,1] with u«PC `(M ) for all « ~M a separable, smooth orientable Hau
dorff manifold of dimensionn!. The algebra of generalized functions onM is defined as the
quotientG(M )ªEM(M )/N(M ) of the spaceEM(M ) of sequences of moderate growth modulo t
spaceN(M ) of negligible sequences. More precisely the notions of moderateness, respec
negligibility are defined by the following asymptotic estimates@X(M ) denoting the space o
smooth vector fields onM #:

EM~M !ª$~u«!« :;K,,M , ;kPN0'NPN;j1 , . . . ,jkPX~M !: sup
pPK

uLj1
¯ Ljk

u«~p!u

5O~«2N!%,

N~M !ª$~u«!« :;K,,M , ;k,qPN0;j1 , . . . ,jkPX~M !: sup
pPK

uLj1
¯ Ljk

u«~p!u5O~«q!!%.

Elements ofG(M ) are denoted byu5cl@(u«)«#5(u«)«1N(M ). With componentwise opera
tions G(M ) is a fine sheaf of differential algebras with respect to the Lie derivative define
Ljuªcl@(Lju«)«#. The spaces of moderate, respectively, negligible sequences and hen
algebra itself may be characterized locally, i.e.,uPG(M ) iff u+caPG(ca(Va)) for all charts
(Va ,ca), where on the open setca(Va),Rn in the respective estimates Lie derivatives a
replaced by partial derivatives. Smooth functions are embedded intoG simply by the ‘‘constant’’
embeddings, i.e.,s( f )ªcl@( f )«#, henceC `(M ) is a faithful subalgebra ofG(M ). On open sets
of Rn compactly supported distributions are embedded intoG via convolution with a mollifierr
PS(Rn) with unit integral satisfying*r(x)xadx50 for all uau>1; more precisely setting
r«(x)5(1/«n)r(x/«) we havei(w)ªcl@(w* r«)«#. In case supp(w) is not compact one uses
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sheaf-theoretical construction. However, in the special case of the functions to be treated
context of the Schwarzschild metric this will not be necessary~see the following!. From the
explicit formula it is clear that~on open subsets of Euclidean space! embedding commutes with
partial differentiation. On a general manifold, however, there is no canonical embeddingD8
available; a suitable replacement~cf. Ref. 14! is provided by physically motivated modeling an
the use of the notion of association~see the following!. InsertingpPM into uPG(M ) yields a
well-defined element of the ring of constants~also called generalized numbers! K ~corresponding
to K5R, respectively,C!, defined as the set of moderate nets of numbers ((r «)«PK(0,1] with
ur «u5O(«2N) for someN! modulo negligible nets (ur «u5O(«m) for eachm!. Finally, generalized
functions onM are characterized by their generalized point values, i.e., by their values on p
in M̃ c , the space of equivalence classes of compactly supported nets (p«)«PM (0,1] with respect to
the relationp«;p«8 :⇔dh(p« ,p«8)5O(«m) for all m, wheredh denotes the distance onM induced
by any Riemannian metric.

The G(M )-module of generalized sections in vector bundles—especially the space of g
alized tensor fieldsGs

r(M )—is defined along the same lines using analogous asymptotic estim
with respect to the norm induced by any Riemannian metric on the respective fibers. Howe
is more convenient to use the following algebraic description of generalized tensor fields:

Gs
r~M !>G~M ! ^ T s

r~M !, ~1!

whereT s
r(M ) denotes the space of smooth tensor fields and the tensor product is taken ov

moduleC `(M ). Hence generalized tensor fields are just given by classical ones with gener
coefficient functions. Many concepts of classical tensor analysis carry over to the gener
setting,14 in particular Lie derivatives with respect to both classical and generalized vector fi
Lie brackets, exterior algebra, etc. Moreover, generalized tensor fields may also be view
G(M )-multilinear maps taking generalized vector and covector fields to generalized function
asG(M )-modules we have

Gs
r~M !>LG(M )~G1

0~M !r ,G0
1~M !s;G~M !!.

In particular a generalized metric is defined to be a symmetric, generalized~0,2!-tensor field
gab5cl@(gab «)«# ~with its index independent of« and! whose determinant det(gab) is invertible in
G(M ). The latter condition is equivalent to the following notion called strictly nonzero on c
pact sets: for any representative det(gab «)« of det(gab) we have ;K,,M'm
PN: infpPKudet(gab «)u>«m for all « small enough. This notion captures the intuitive idea o
generalized metric to be a sequence of classical metrics approaching a singular limit
following sense:gab is a generalized metric iff~on every relatively compact open subsetV of M !
there exists a representative (gab «)« of gab such that for fixed« ~small enough! gab « ~respec-
tively, gab «uV! is a classical pseudo-Riemannian metric and det(gab) is invertible in the algebra of
generalized functions. A generalized metric induces aG(M )-linear isomorphism fromG0

1(M ) to
G1

0(M ) and the inverse metricgab
ªcl@(gab «

21 )«# is a well-defined element ofG0
2(M ) @i.e., inde-

pendent of the representative (gab «)«#. Also the generalized Levi-Civita connection as well as
generalized Riemann, Ricci, and Einstein tensor of a generalized metric are defined simply
usual coordinate formulas on the level of representatives.

Finally, the above-introduced setting displays maximal consistency~in the light of Schwartz’s
impossibilty result18! with respect to smooth, respectively, distributional geometry most co
niently formalized in terms of the notion of association. A generalized functionuPG(M ) is called
associated to zero,u'0, if one ~hence any! representative (u«)« converges to zero weakly.~In a
sloppy fashion we shall often writeu«'0.! The equivalence relationu'v:⇔u2v'0 gives rise
to a linear quotient ofG that extends distributional equality. Moreover we call a distributionw
PD8(M ) the distributional shadow or macroscopic aspect ofu and writeu'w if for all com-
pactly supportedn-forms n and one~hence any! representative (u«)« ,
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lim
«→0

E
M

u«n5^w,n&,

where^,& denotes the distributional action. By~1! the concept of association extends to generali
tensor fields in a natural way.

B. Regularizations of the singular functions occurring in the Schwarzschild metric

The two most important singular functions we will work with throughout this paper~namely
the singular components of the Schwarzschild metric! are 1/r and 1/(r 2c) ~r 5ixW i ; c a positive
constant!. Since 1/r PL loc

1 (R3), it gives rise to the regular distribution 1/r PD 8(R3). By convo-
lution with a mollifier r ~adapted to the symmetry of the space–time, thus chosen radially
metric! we embed it into the Colombeau algebraG(R3),

1

r
→
i

iS 1

r D5S 1

r * r«D5..S 1

r D
«

. ~2!

Using radial symmetry of the convoluted function and insertingr«(r )5 (1/«3) r(r /«) we obtain

S 1

r D
«

5
4p

r E
0

r /«

dt t2 r~ t !1
4p

« E
r /«

`

dt tr~ t !. ~3!

It is easy to confirm that (1/r )«5s(1/r )«5(1/r ) on R3\$0%, and at the origin we have
(1/r )«ur 505(4p/«) *0

`dt tr(t).
In contrast to 1/r , the function 1/(r 2c) is not in L loc

1 (R3). A canonical regularization~in the
sense of Gelfand–Shilov19! is the principal valuevp(1/(r 2c))PD 8(R3) which can be embedde
into G(R3),

1

r 2c
→vpS 1

r 2cDPD 8~R3!→
i

iS vpS 1

r 2cD D5..S vpS 1

r 2cD D
«

. ~4!

Making use ofvp(1/(r 2c))5 (]/]r )logur2cu we obtain

iS vpS 1

r 2cD D ~x!5S 11r
]

]r D E d3y
1

ux2yu
logu ux2yu 2cu r«~y!

2
]

]xi E d3y yi
1

ux2yu
logu ux2yu 2cu r«~y!

and finally forv>c,

iS vpS 1

r 2cD D ~x!5
4p

r 2c E0

r 2c

ds r«~s!s21
4p

r E
r 2c

`

ds r«~s!s2

1
4p

r 2c

c

r E0

r 2c

ds r«~s!s2(
l 51

`
1

2l 11 S s

r 2cD 2l

1
4p

r 2c

c

r Er 2c

`

ds r«~s!~r 2c!2(
l 50

`
1

2l 11 S r 2c

s D 2l

. ~5!

For 0,r<c the roles ofr and c are interchanged and we obtainvp(1/(r 2c))« ur 5052 1/c
1O(«).
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III. A FIRST APPROACH TO THE PROBLEM

In this section we present a first approach to the ‘‘Schwarzschild point mass prob
thereby essentially following earlier treatments in the literature~Refs. 9, 11–13!. However, we are
going to use the language of nonlinear distributional geometry introduced previously in ord
obtain a unified view, which will enable us to carry out a detailed analysis of the prev
approaches in Sec. IV.

In the usual Schwarzschild coordinates (t,r .0,u,f) the metric takes the form

ds25h~r !dt22h~r !21dr 21r 2 dV2 with h~r !5211
2m

r
. ~6!

Following the above-presented discussion we consider the singular metric coefficienth(r ) as an
element ofL loc

1 (R3)#D8(R3) and embed it intoG(R3) by convolution with a mollifier. Note that
accordingly, we have fixed the differentiable structure of the manifold: the Cartesian coord
associated with the spherical Schwarzschild coordinates in~6! are extended through the origin. W
have

h~r !5211
2m

r
→
i

i~h~r !!5h«~r !52112mS 1

r D
«

PG~R3!, ~7!

where (1/r )« is given by~3!. Inserting~7! into ~6! we obtain a generalized object modeling t
singular Schwarzschild metric, i.e.,

dse
25he~r !dt22he~r !21dr 21r 2 dV2. ~8!

The generalized Ricci tensor may now be calculated componentwise using the classical fo

~R 0
0 !«5~R 1

1 !«5
1

2 S h«91
2

r
h«8D5

1

2
Dh« , ~9!

~R 2
2 !«5~R 3

3 !«5
h«8

r
1

11h«

r 2 . ~10!

Due to the linear structure ofR 0
0 it is evident that it is associated to a constant times

d-distribution, i.e.,

~R 0
0 !«5

1

2
Dh«5mDS 1

r D
«

→24pmd ~«→0!. ~11!

Investigating the weak limit of the angular components of the Ricci tensor@using the abbreviation
F̃(r )5* sinu du dfF(xW )] we get ~cf. Appendix A!

E ~R 2
2 !«Fd3x5E ~rh«8111h«!F̃~r !dr

5
~3!

8pmE 1

« F E
r /«

`

tr~ t !dtGF̃~r !dr

58pmE dx F̃~«x!E
x

`

tr~ t !dt

→32p2m F~0!E
0

`

dxE
x

`

tr~ t !dt 5
~A3!

8pm^duF& ~«→0!.
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Hence, the Ricci tensor and the curvature scalarR are ofd-type, i.e.,

R 0
0 5R 1

1 '24pm d, R 2
2 5R 3

3 '8pm d, R'pm d. ~12!

Equation~12! is obviously given in spherical coordinates. Strictly speaking this is not
sible, because the basis fields$ ]/]r ,]/]f , ]/]u % are not globally defined. Representing dist
butions concentrated at the origin requires a basis regular at the origin. Transforming the
for (Rj

i )« @i.e., ~9! and ~10!# into Cartesian coordinates associated with the spherical ones~i.e.,
$r ,u,f%↔$xi%! we obtain, e.g., for the Einstein tensor

G j
i '28pm d d0

i d j
0 . ~13!

Note that the use of the particular regularization~7! is not essential here. We could hav
replaced~7! by any other smoothad hocregularization ofh(r ), as has been done, e.g., in Ref. 1
by settingh«(r )5211 2m/(Ar 21«2). Indeed, we can show that the results~12! hold for all
regularizations, i.e., for all sequences of the formh«(r )52112ms«(r )→h(r ) ~i.e., ; s«

smooth,s«→ 1/r in D8!. For the~0,0!- and~1,1!-components of the Ricci tensor the result follow
from the special form of~9!. For the angular components@cf. ~10!# we write

2mE
0

`

r 2S s«8~r !

r
1

s«~r !

r 2 D F̃~r ! dr 522mE
0

`

dr r 2s«

1

r
F̃8~r ! → 8pmF~0!, ~14!

where in the last step we used the fact that (1/r ) F̃8PD(R).

IV. COMMENTS AND PROBLEMS

In order to be able to calculate the curvature from the metric we must keep the regulari
h«(r ) smooth on the entire space–time. This fact—although somewhat hidden because we
with spherical coordinates—is essential from the conceptual point of view. In fact, choos
regularizationh«(r ) which is smooth only onR3\$0% is not sufficient to derive the result as
explicitly shown by the following counterexample. Seth«52112ms« and s«5(1/r ) o« ~with
o«→1 weakly! consisting of regular distributions, so thats«PL loc

1 (R3) with s«→ 1/r PD8(R3).
Moreover, we may requireo«(r ) to be smooth onR3\$0%. Summing over~9! and ~10! we get
R«52m((1/r ) o«91(2/r 2) o«8). Choosingo«(r )5(11c @r «21#) we obtain forR« different weak
limits as the constantc varies, i.e.,

R«→8pmcd. ~15!

For o«5r 2« the situation is even worse. Althougho«PL loc
1 ; « ando«→1PD8 as«→0, R« does

not converge weakly, so that we obtain no distributional result whatsoever.
Nonetheless, similar nonsmooth regularizations have been considered in the literatu

these cases the desired result~12! can only be produced by means of a clever choice of exp
formulas; in particular,o«5r « in Ref. 13 ando«(r )5Q(r 2«) in Ref. 12. The authors of Ref. 9
have shown that the result~12! may be reproduced as long aso«ur 5050. However, the conceptua
problem remains untouched:R«@h«# can only be derived for smooth regularizationsh« ; distribu-
tions cannot be used as an input for nonlinear operations.

Prior to a more detailed investigation of the choice of regularization, we briefly comme
two more attempts in the literature. In Ref. 12 a regularization of the metric using thin
solutions is investigated. The limit («→0) corresponds to a shrinking of the shell. However,
shells can only be placed outside the horizon~of a black hole with identical mass!. This implies
that a shrinking of the shell must be coupled to a decrease in mass:m converges to zero in the
limiting process, so the obtained results should either be considered trivial (R; md um5050) or
be rejected completely.
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In Ref. 11 the authors claim to have found different results for the curvature quantitie
regularizing the Schwarzschild metric in a different coordinate system. They study the inte
tions of regularizations and coordinate transformations for this particular problem. However,
details are not overly convincing. If we choose a new radial coordinater̃ such thatr 5L r̃ 1a with
a52m, then r̃ 50 does not describe the Schwarzschild singularity. Instead,r̃ 50 corresponds to
the coordinate singularity at the horizonr 52m, but shrunk to one point. Obviously, we should n
compare the outcome of these considerations with our former results.

We now begin with an in-depth analysis of certain aspects of the regularization proc
commencing with the issue of componentwise regularization and invertibility of the regula
metric. According to~1! in Sec. II, regularizing a tensor such as the Schwarzschild metric~6!
comes up to regularizing each distribution-valued component separately. Following this ru
obtain a regularized metric slightly different from~8!, namely

ds«
25h«~r !dt22~h21!«~r !dr 21r 2 dV2. ~16!

Since cl@h«#cl@(h21)«#Þ1PG, the determinant of the regularized metric~16! is no longer iden-
tically one. ~This, in fact, does not come as a surprise; cf. Schwartz’s impossibility resu18!
However, the productis preserved in the sense of association, i.e.,h«(h21)«'1. Analogous issues
arise from the inverse metric: embedding alsog21 componentwise intoG we obtain regularized
objects,g« and (g21)« , which are only inverse to each other in the sense of association. Ta
a different viewpoint, however, it is comparatively easy to avoid these issues: on the classica
the Schwarzschild geometry is uniquely determined by the set of variables$gtt ,grr ,guu ,gww%, or,
e.g., equivalently by$gtt ,guu ,gww ,detg%. Embedding the second set of variables intoG leads
directly to the regularization~8! used previously; no invertibility problems arise at all since deg«

is forced to equal one.
Finally we return to discussing the problem of smoothness of the regularized metric fr

different, more geometrical point of view. We regard this problem to be so essential that in S
we propose an approach entirely different form the one taken so far.

In fact, the regularizations used so far~as all the other regularizations in the relevant literatu!
do not provide asmoothregularized metric tensor. This fact is hidden again by the use of sphe
coordinates. In Cartesian coordinates pertaining to (r ,u,f)—which we used to fix the differen
tiable structure of the extended manifold atr 50—however, it can be explicitly seen from th
form of the metric

ds25h~r !dt21dxW22~11h~r !21!
xixj

r 2 dxi dxj . ~17!

In order to obtain a smooth regularization it is not sufficient to merely regularizeh(r ). In fact, we
must embed the singular coefficient (11h(r )21)(xixj /r 2) as a whole intoG. Apart from technical
difficulties this approach should provide a smooth regularized metric ds« . However, we have
reached an impasse: the regularized metric will not be invertible at some distinct valuer 0 of the
radial coordinate, wherer 0→0(«→0). This will be shown in the remainder of this section.

As shown in Appendix B, the regularization of~17! takes the form

ds«
25h«~r !dt21~12a«~r !!dr 21~12b«~r !!r 2 dV2, ~18!

with a«(0)→ 1
3(«→0). This implies that therr -component of the regularized metric~18! is

positive atr 50 ~at least for small«!, because (grr )«(0)5(12a«(0))→ 2
3 («→0). On the other

hand, (12a«) approximates2h21, i.e., (grr )«(rÞ0)→2 r /(2m2r ),0 («→0). So we con-
clude that at some valuer 0 of r the smooth function (grr )«(r ) must have a zero at least for sma
«. ~Interestingly enough, this is not the case for negative masses since2 r /(2m2r ) is positive
then!. In other words, this means that the regularization of the metric~17! degenerates at som
radiusr 0 . Evidently, r 0→0 as«→0.
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Note that the occurrence of this radius of degeneracy is neither due to the fact that we c
the particular regularization~18!, nor is it possible to avoid it by giving up spherical symmetry.
see this in some more detail consider the spatial part of~17! @set h̃(r )ªh21(r )# and consider a
certain class of regularizations

ds«
25dxW22~11h̃«~r !!

xixj

r 2 dxi dxj , ~19!

whereh̃«(r ) denotes an arbitrary regularization ofh̃(r ). However, for ds«
2 to become smooth, we

must require thath̃«(r ) be 211O(r 2) for (r→0). Now, an arbitrary regularization of ds2 not
necessarily respecting spherical symmetry is obtained by adding zero-sequences to~19!,

ds«
25dxW22~11h̃«~r !!

xixj

r 2 dxidxj1~ai j !«~xW ! dxi dxj . ~20!

For special cases of (ai j )« it is easy to show that~20! is degenerate. Choose, e.g., (ai j )« such that
only (a12)«5..b«(xW ) is nonvanishing. The determinant of~20! at xW5(0,0,r ) is equal to2h̃«(r )
3(12b«(xW )2). As 2h̃«(0)51 and2h̃«(r ),0 for small« and finiter , there exists a radiusr «

~with r «→0 for «→0!, such that det(g«)50. Again, we observe degeneracy.

V. THE KERR–SCHILD APPROACH

To begin with let us summarize what we have done so far: we considered regularizatio
the Schwarzschild metric~using the language of algebras of generalized functions! to calculate the
~distributional! curvature at the singularity. The regularizations used were essentially bas
Cartesian coordinates associated with the spherical Schwarzschild coordinates. However, i
out that all these regularizations were either nonsmooth or not invertible.Smoothness and invert
ibility mutually exclude each otherin this context. Hence, we are going to take another m
geometrical viewpoint in this section. The main idea—following Refs. 20 and 10—is to us
Kerr–Schild form of the Schwarzschild metric. Retaining this preferred structure also durin
whole regularization process will enable us to derive the physically desired result in a rig
manner.

A metric belongs to the so-called Kerr-Schild class21 if it can be written as

gi j 5h i j 1 f kikj with kiki50. ~21!

Here, the null vector fieldkPX is normalized (k051) andf is a smooth function. Exploiting the
Kerr–Schild form, some curvature quantities take a particularly simple form, e.g.,

R5]a]b~ f kakb!. ~22!

The Schwarzschild metric is a member of the Kerr–Schild class. In fact, transformatio
Eddington–Finkelstein coordinates (t̄ 5t12m logu2m2ru) yields

ds252dt̄ 21dr 21r 2 dV21
2m

r
~dt̄ 2dr !2. ~23!

Evidently, ~23! is of Kerr–Schild form,gi j 5h i j 1 f kikj , with

k5
]

] t̄
1

]

]r
, f 5

2m

r
. ~24!
                                                                                                                



not
n
c-

in

e

to

oss of
tions

plays

ining

geo-

1502 J. Math. Phys., Vol. 43, No. 3, March 2002 J. M. Heinzle and R. Steinbauer

                    
Analogous to Sec. III, we regardf andk as distributions onR4. By this we again implicitly fix the
differentiable structure: the coordinates (t̄ ,xi) are extended through the origin.

We now proceed by regularizingboth f andk. Indeed, this is necessary due to the fact that
only the profile functionf is singular, but also the null vector fieldk is nonsmooth. Recall that, o
account of the nonlinearities inR@g#, ~22! can only be derived for smooth functions; it is ina
cessible for distributional input.@Note the analogy of this situation with the one encountered
~8!.# Hence,f andk are chosen to be the fundamental variables characterizing the metric~compare
with the remarks in Sec. IV!. Regularizing the functionf as in Sec. III gives

f ~r !5
2m

r
→
i

i~ f ~r !!5 f «~r !52mS 1

r D
«

. ~25!

The regularization ofki is carried out in detail in Appendix C, yielding

ki~r !5
xi

r
→
i

iS xi

r D5ki«5S xi

r D
«

5xiF«~r ! ~ i 51,...,3!, ~26!

where F« is given by ~C3!. Note that, for the moment,k051 is embedded trivially intoG.
Collecting the results of~25! and ~26! we get the regularized metric

ds«
25~211 f «!dt222r f «F« dt dr 1~11 f̃ «!dr 21r 2 dV2, ~27!

where, for simplicity,t̄ has been replaced byt again, andf̃ « abbreviatesr 2f «F«
2 . Unfortunately,

~27! is no longer of Kerr–Schild form. This can be shown indirectly: assuming that~27! is
Kerr–Schild, i.e., assuming that ds«

252dt821dr 21r 2 dV21 f «8(dt82dr )2 can be achieved by a
transformationt→t8(t,r ), it follows that f «85 f̃ « /(12 f «1 f̃ «) and (dt/dt8)251/(12 f «1 f̃ «). As
a consequence, the denominator 12 f «1 f̃ « must be a strictly positive function. In fact, in th
sense of association, it is equal to one. However, at the originr 50, we obtain 12 f «1 f̃ «

5128pm1/« *0
` tr(t)dt, which is negative for small« as long as*0

` tr(t)dt.0, a contradiction.
The fact that the embedding~27! is no longer of Kerr–Schild form bears a strong relation

the fact that smooth regularizations degenerate at a certain value ofr ~see Sec. IV!: the determi-
nant of ~27! contains the factor 12 f «1 f̃ « , which was shown to possess a zero.

Additionally, in analogy to the statements made at the end of Sec. IV, we note that the l
the Kerr–Schild form does not stem from choosing to regularize the singular coefficient func
via convolution. On the contrary, it may be shown that any regularization of the metric dis
this behavior as long as only the spatial components ofk are taken into account.

We will now take the announced geometrical viewpoint: we consider regularizations reta
the Kerr–Schild decomposition. This requires, in particular, that the regularized vectork« is still
null. Thus, we consider the regularization

k«
i 5rF «ki ~ i 50, . . . ,3!. ~28!

While the spatial components of~28! coincide with ~26!, k«
0 is only associated to 1(k«

05rF «

'1). As required,k« satisfies the conditionk«
i k« i50. Note that, in order to obtain~28!, the

functions f , ki( i 51, . . . ,3) andk•k are chosen as fundamental variables determining the
metric structure of the spacetime.

Using ~25! and ~28! the regularized metric takes the form

gi j «5h i j 1 f «k« ik« j5h i j 1~r 2F«
2f «!kikj5h i j 1 f̃ «kikj . ~29!
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Obviously, ~29! is of Kerr–Schild form. Finally we have arrived at a regularization of
Schwarzschild metric which isboth smooth and invertible~the inverse beingh i j 2 f̃ «kikj ). This
allows us to fully exploit the Kerr–Schild form, i.e., to use~22!, to obtain

R«5]a]b~ f̃ «kakb!5
4

r
f̃ «81 f̃ «91

2

r 2 f̃ « . ~30!

To complete our program we calculate the weak limit ofR« . The technically involved calculation
are deferred to Appendix D. Finally we derive

~R«!«'8pmd. ~31!

The Ricci tensor can be treated in complete analogy to obtain the Einstein tensor

~Gb«
a !«'28pmdd0

adb
0 . ~32!

VI. THE HORIZON

In this section we leave the neighborhood of the singularity at the origin and turn to
singularity at the horizon. The question we are aiming at is the following: using distribut
geometry~thus without leaving Schwarzschild coordinates!, is it possible to show that the horizo
singularity of the Schwarzschild metric is merely a coordinate singularity? In order to inves
this issue we calculate the distributional curvature at the horizon~in Schwarzschild coordinates!.

Examining the Schwarzschild metric~6! in a neighborhood of the horizon, we see th
whereash(r ) is smooth,h21(r ) is not evenL loc

1 ~note that the origin is now always excluded fro
our considerations; the space we are working on isR3\$0%). Thus, regularizing the Schwarzschi
metric amounts to embeddingh21 into G @as done in~5!#.

ds«
25h~r !dt22~h21!«~r !dr 21r 2 dV2 ~33!

with

h~r !5211
2m

r
, ~h21!«~r !52122mFvpS 1

r 22mD G
«

. ~34!

Obviously,~33! is degenerate atr 52m, becauseh(r ) is zero at the horizon. However, this doe
not come as a surprise. Bothh(r ) andh21(r ) are positive outside of the black hole and negat
in the interior. As a consequenceany ~smooth! regularization ofh(r ) ~or h21! must pass through
zero somewhere and, additionally, this zero must converge tor 52m as the regularization param
eter goes to zero~note the analogy to the situation in Sec. IV!.

Due to the degeneracy of~33!, the Levi-Civitàconnection is not available. Consider, ther
fore, the following connectionGk j

l PG:

Gk j
l 5 1

2 @i~g21!# lm@i~g!mk, j1i~g!m j,k2i~g!k j ,m#. ~35!

Clearly, G coincides with the Levi-Civita` connection onR3\$r 52m,r 50%, as i(g)5g and
i(g21)5g21 there.

Unfortunately,G does not respect the regularized metrici(g) ~33!, i.e., i(g) i j ;kÞ0, e.g.,
i(g)00;15(12h(h21)«)h8. However, compatibility with the metrici(g) is a priori ruled out by
the following statement: there exists no connection whatsoever under whichi(g) would be a
parallel tensor. To show this, just look at~L jk

i denoting a not necessarily torsion-free connectio!
i(g)00;15i(g)00,122L10

0 i(g)00. At the horizon i(g)0050, so that i(g)00;1ur 52m5h8(2m)
52 (1/2)mÞ0. In the sense of association, however, the connection~35! is in fact metric com-
patible: i(g) i j ;k'0.
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We now investigate the curvature pertaining to the connection~35!, picking out R00« as a
characteristic example. The result of the calculations displays the following structure:

R00«~r !5vp«8S 2
m2

r 2 14
m3

r 3 24
m4

r 4 D1vp«S 2
m3

r 4 24
m4

r 5 D1S 2
m2

r 4 22
m3

r 5 D ~36!

5vp«8~r !(
l 52

`

clx
l1vp«~r !(

l 51

`

dlx
l2

1

8m2 2
1

16m2 (
l 51

`

elx
l . ~37!

Here, the abbreviationsvp«5@vp(1/(r 22m))#« andx5 (r 22m)/2m are used;cl , dl , andel are
constants. Equation~37! holds for uxu,1; the infinite sums converge in this case.

If the horizon is excluded,R00«50(modN), because~35! coincides with the Schwarzschil
Levi-Cività connection there. In the neighborhood ofr 52m we aim at comparingR00«(r ) with a
Colombeau object of the typef ((r 22m)/«) ~f a Schwartz function!. To this end we choose a
fundamental sequencer «52m1«qa0 converging tor 52m and examineR00«(r «) @use~37! to-
gether with~5!#.

q.1: R00«(r «)5const1o(«q21).

q,1: Using~5! we find thatvp«(r «)5 1/(r «22m) andvp«8(r «)52 1/(r «22m)2 ~in the sense
of generalized numbers!. Inserting these results into Eq.~36!, we obtainR00«(r «)50.

q51: R00«(r «)5const1o(1).

Thus,R00«(r «) has the same asymptotic behavior as a sequence of the typef ((r «22m)/«) ~as
«→0!. As a consequence, the weak limit ofR00«(r ) can be calculated easily, simply by evaluatin
*dr r 2F̃(r ) f ((r 22m)/«). Evidently, this expression vanishes ase→0. Since analogous result
hold for the other components of the Ricci tensor, we are finally able to state

Ri j «'0. ~38!

In other words: viewed as a distribution,Ri j 50 onR3\$0%, i.e., including the horizon. If we
were courageous enough we could take this as a proof that the metric singularity at the hor
only a coordinate singularity.

We conclude this section with a remark on the connection~35!. Due to the degeneracy of an
regularization of the metric@e.g., ~33!# no canonical~Levi-Cività! connection could be defined
The choice of connection~35! bears a strong relation to the regularized metric; however, th
seems no way of telling if this choice is canonical in some sense and thus preferred to
choices. Despite this open question, at least it is clear that the connection~35! is a regularization
of the Schwarzschildconnection. Indeed, we could change our viewpoint: we consider
Schwarzschild connection~forgetting where it came from, i.e., forgetting about the metric!, regu-
larize its distribution-valued components, and calculate the distributional curvature from it.
ceeding in this manner, we obtain the result~38!, i.e., the space–time is weakly Ricci-flat~the
origin was excluded from our considerations!.
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APPENDIX A: MOLLIFIER INTEGRALS

Throughout this paper we work invariably with radially symmetric mollifiersr(r ) ~cf. Sec.
II !. Most importantly, we have the properties
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E
0

`

dt t2r~ t !5
1

4p
, E

0

`

dt t2kr~ t !50 ~k.1!. ~A1!

We investigate multiple integrals involving the mollifierr(r ) and powers ofr :

E
x

`

dt tnE
t

`

sr~s!ds52
xn11

n11 Ex

`

tr~ t !dt1
1

n11 Ex

`

dt tn12r~ t !. ~A2!

~A2! holds for (n,kÞ21), it is proven by simply performing integration by parts.
One of the most interesting cases resulting from~A2! is n50 andx→0:

E
0

`

dtE
t

`

sr~s!ds5
1

4p
. ~A3!

APPENDIX B: EMBEDDING OF THE CARTESIAN COMPONENTS

Referring to Sec. IV we investigate

iS 11h~r !21

r 2 xixj Ddxi dxj5S 2mE f ~ izWi !zizjr«~ izW1xW i !d3zDdxi dxj , ~B1!

where f (q)5 1/(2m2q)(1/q2). In order to simplify~B1! we show the following relation:

iS 11h~r !21

r 2 xixj D5xixjc«~xW ! for iÞ j ~c« smooth!. ~B2!

Proof: Since bothf (izWi) andr« are even functions inzi , we observe that

iS 11h~r !21

r 2 xixj D uxi5052mE f ~ izWi !zizjr«~ ...,zi ,...!d3z50. ~B3!

We can conclude that

iS 11h~r !21

r 2 xixj D5xic«8~xW ! ~c«8 smooth!. ~B4!

Also,

iS 11h~r !21

r 2 xixj D U
xj 50

50,

from which follows thatc«8(xW )5xjc«(xW ), yielding ~B2!. Note, however, that the smooth functio
c«(xW ) in ~B2! is not equal toi((11h(r )21)/r 2). j

In the casei 5 j , Eq.~B2! is no longer valid. We are able to calculate thei i 2component in the
limiting case«→0, i.e.,

iS 11h~r !21

r 2 xi
2D U

xW50

52mE f ~ izWi !zi
2r«~ izWi !d3z→ 1

3
~«→0!. ~B5!
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Proof: Clearly, 2m* f (izWi)zi
2r«(izWi)d3z is independent of the choice of the indexi , so that

we may substitute it by (2m/3) * f (izWi)izWi2r«(izWi)d3z. Obviously, this converges to13 as« goes
to zero. j

The regularized metric~B1! is radially symmetric,R* g«5g« ~R a rotation!, as long as radi-
ally symmetric mollifiers are used. Thus, it must be of the form of a general radially symm
metric ds25a(r )dr 21r 2b(r ) dV2, hence

iS 11h~r !21

r 2 xixj Ddxi dxj5~a«2b«!~r !
xi

r

xj

r
dxi dxj1b«~r !dxW2. ~B6!

For the general radially symmetric metric~B6! to be smooth (a«2b«)(r )5O(r 2) is required.
We observe consistency with~B2! and conclude

a«~r !5b«~r !1c«r 2. ~B7!

At the origin r 50 only the second termb(r )dxW2 remains relevant, since

~a2b!~r !
xi

r

xj

r U
r 50

5c«xixj ur 5050.

Turning Eq.~B5! to good account we obtain

b«~0!→ 1
3 ~«→0!, a«~0!→ 1

3 ~«→0!. ~B8!

Combining~17! with ~B6!, we finally obtain

ds«
25h«~r !dt21~12a«~r !!dr 21~12b«~r !!r 2 dV2. ~B9!

APPENDIX C: EMBEDDING OF k i

We explicitly embed the radially outward pointing unit vector fieldki5(xi /r )
( i 51, . . . ,3) into the Colombeau algebra, i.e.,

iS xi

r D5E d3x8
xi2xi8

ixW2xW8i r«~ ixW8i !52E d3z
zi

izWi r«~ ixW1zWi !. ~C1!

Equation~C1! is of an analogous form to~B1!. We may conclude thati(xi /r ) is a radially
symmetric vector field. Moreover, despitei(xi /r )Þxii(1/r ), we must still have@repeating~B2!ff.#

iS xi

r D5xi F«~xW ! ~ i 51, . . . ,3!. ~C2!

Here,F«(xW ) is a smooth function and moreover, because this function must be radially symm
F«(xW )5F«(r ).

This fact makes it possible to calculatei(xi /r ) explicitly. Take x5(0,0,r ) and investigate
i(x3 /r )5x3F«(r )5rF «(r ):
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rF «~r !5E x32x38

ixW2xW8i r«~r 8! d3x8

52pE r 82 dr 8 r«~r 8!E
21

1

d~cosu8!
r 2r 8 cosu8

Ar 21r 8222rr 8 cosu8

5r S 1

r D
«

22pE r 82 dr 8 r« S 1

r
~ ur 2r 8u1~r 1r 8!!1

1

3

1

r 2

1

r 8
~ ur 2r 8u32~r 1r 8!3! D

5r S 4p

r E
0

r

ds s2r«~s!1
8p

3 E
r

`

ds sr«~s!2
4p

3

1

r 3 E
0

r

ds s4r«~s! D . ~C3!

Clearly,F«(r )5 1/r on R3\$0% and, moreover,F«(r )' 1/r on the whole space. We can writ
the latter also in the formrF «(r )'1.

APPENDIX D: WEAK LIMITS FOR THE KERR–SCHILD CASE

We investigate the distributional limit of~30!. Inserting for f̃ « , ~30! becomes

R«5
128p3m

3 S 16@1#«
31

4

r 7 @2#«@4#«
21

2

r 6 @1#«@4#«
22

4

r 5 @4#«@2#«
21

32

r
@2#«@1#«

21
14

r 2 @1#«@2#«
2

23r«@2#«
224rr«@1#«@2#«2

4r 2

3
r«@1#«

22
1

3r 4 r«@4#«
212

1

r 2 r«@2#«@4#«1
4

3r
r«@1#«@4#«D ,

~D1!

where@1#«ª* r
`ds sr«(s), @2#«ª*0

r ds s2r«(s), @4#«ª*0
r ds s4r«(s).

In order to compute the weak limit of~D1!, expressions of the form~D2! and~D3! have to be
investigated@note that the negative powers ofr are compensated by the integrals so that both~D2!
and ~D3! are well-defined asr→0#,

r 2412 j 13i r«~r ! @1#«
i @2#«

j @4#«
k ~ i 1 j 1k52!, ~D2!

r 2912 j 13i @1#«
i @2#«

j @4#«
k ~ i 1 j 1k53!. ~D3!

Terms of the forms~D2! and ~D3! possess related distributional limits:

~r 2912 j 13i @1#«
i @2#«

j @4#«
k!«'1

i

2 j 13i 26
~r 2712 j 13ir«~r !@1#«

i 21 @2#«
j @4#«

k!«

2
j

2 j 13i 26
~r 2612 j 13ir«~r !@1# «

i @2# «
j 21@4# «

k !«

2
k

2 j 13i 26
~r 2412 j 13ir«~r !@1# «

i @2# «
j @4# «

k21!« .

In order to show this, consider the distributional action on a test functionF(xW ), i.e.,
*0

` dr F̃(r )r 2712 j 13i@1# «
i @2# «

j @4# «
k . Here, we have introducedF̃(r )ª* sinu du df F(xW ). Inte-

grating by parts and usingF̃8(0)50, the claim is established.
Taking (j 52;k51) as an example, we obtain the following weak limit:
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E dr F̃~r !
1

r 3 @2# «
2 @4#« →

«→0

F̃~0!E dx r~x!@2#@4#1
1

2
F̃~0!E dx x2r~x!@2#2

5
~A1!

F̃~0!E dx r~x!@2#@4#1
1

6

1

64p3 F̃~0!.

Here,

@1#ªE
x

`

dt tr~ t !, @2#ªE
0

x

dt t2r~ t !, @4#ªE
0

x

dt t4r~ t !.

Eventually, we obtain the result~31! for the distributional limit of~D1!.
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Adding twist to anisotropic fluids
J. P. Krisch and E. N. Glassa)

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109
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We present a solution generating technique for anisotropic fluids which preserves
specific Killing symmetries. Anisotropic matter distributions that can be used with
the one parameter Ehlers–Geroch transform are discussed. Example space–times
that support the appropriate anisotropic stress-energy are found and the transforma-
tion applied. The 311 black string solution is one of the space–times with the
appropriate matter distribution. Use of the transform with a black string seed is
discussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1448683#

I. INTRODUCTION

Physically relevant solution generating techniques were developed in the 1960s and
Ehlers,1 Harrison,2 and Geroch3,4 showed that a projective transform on the norm and twist (l,v),
of a Killing vector will generate a Killing vector with norm and twist (l8,v8). Starting with a
vacuum space–time and a twist-free Killing vector, their method adds twist. For example,
method applied to the vacuum Schwarzschild metric generates a NUT metric. The gene
method can be applied to any vacuum space–time with a Killing vector and has been gene
to the Einstein–Maxwell spaces5 and to some matter space–times.6 The extension to matte
metrics is restrictive; Stephani7 has shown that the only two equations of state that can be tre
within this formalism are

r5P,
~1!

r13P50.

Raca and Zsigrai8 have also considered solution generating on fluids with this equation of s
The result clearly applies to fluids with isotropic stress. A close examination of the method u
generate the allowed matter distributions shows that it can be generalized to fluids with aniso
stresses.

There has been increasing interest in general relativistic systems with anisotropic stres
rera and Santos9 have reviewed some of the possible causes and the related general rela
solutions. Anisotropic fluid spheres have been a useful model for discussing anisotropy sin
early work of Bowers and Liang10 on anisotropic fluid spheres. More recently Corchero11 has
discussed a post-Newtonian approximation to anisotropic fluid spheres. Daset al.12 and Das and
Kloster13 have investigated the spherically symmetric collapse of anisotropic fluid objects i
black hole. Hernandez, Lunez, and Percoco14 have treated anisotropy and nonlocal equations
state in radiating spheres. Conformally flat anisotropic spheres were examined by Herreraet al.15

Glass and Krisch16 have discussed diffusion induced anisotropies in a Vaidya atmosphere
lowing up the recent interest in dimensional effects, Harko and Mak17 discussed charged aniso
tropic fluid spheres inD-dimensions. Anisotropy in cosmological solutions has also been stu
by McManus and Coley,18 vandenHoogen and Coley,19 Giovannini,20 and Rainsford.21 Relative
motion as a source of anisotropy in multifluid systems was suggested long ago by Je22

a!Permanent address: Physics Department, University of Windsor, Ontario N9B 3P4, Canada; electronic
englass@umich.edu
15090022-2488/2002/43(3)/1509/10/$19.00 © 2002 American Institute of Physics
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Letelier23 has shown that two perfect fluids in relative motion can be described as a system
anisotropic pressures and has given the standard two-fluid stress energy form.

Physically, anisotropy is finding increasing application in systems at the density extrem
very compact objects and very diffuse mass clusters. This increasing interest in fluid solution
anisotropic pressures suggests it would be of interest to extend the solution generating tec
to space–times that have anisotropic fluid content. While it is relatively simple to create a
tropic fluid solutions by changing the functional dependence of metric potentials, the gene
technique here will preserve specific Killing symmetries while obtaining new anisotropic
tions.

In Sec. II, we briefly review the formalism that leads to the isotropic pressure restriction
the standard solution generating technique. The extension to anisotropic stresses follows
from this. Isotropic seed space–times are discussed in Sec. III. Some examples of space
containing the allowed anisotropies are in Sec. IV. Killing symmetries for the possible aniso
spaces are covered in Sec. V, and Sec. VI has a discussion of the effect of the Geroch tr
mation on the fluid description in these spaces.

II. FORMALISM

A. The Killing description

Let (M ,gab) be a solution of the Einstein field equations with energy densityr and isotropic
pressureP. Assume thatgab has a Killing vectorja with norm l and twistva where

lªjaja ,
~2!

va
ªeabcdjb¹cjd .

The induced metric on the three-dimensional space of vectors orthogonal to the Killing vec

hab5gab2jajb /l. ~3!

The vacuum field equations can be written in terms ofl, v andgab ,

gab5uluhab ,
~4!

va5Dav,

wheregab is conformally related tohab ,3 v is the scalar potential associated with the Killin
twist, andDa is the covariant derivative for metricgab .

B. Vacuum space–times

Consider the action written in the conformal three-space ofgab ,

I 5E d3xAgFR2
1

2l2 ~DalDal1DavDav!G . ~5!

A projective transform of the complex potentialt5v1 il can be written

t85
t cos~d!1sin~d!

cos~d!2tsin~d!
, ~6!

whered is a transformation parameter. The action is invariant under this transformation, s
have added twist to the Killing vector withgab unchanged and can generate the new 311
space–time,gab8 , from the formalism. The development of the transformation method is desc
in Refs. 3 and 4. We briefly review the transformation method for twist-free Killing vectors.
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C. Generating the new space–time from a twist-free seed

The generation method as described by Geroch3,4 for vacuum will be the same in the matte
space–times. Starting with metricgab , define formsaa , ba , and ha based on a seed Killing
vector,ja , with norml and transformation parameterd,

ba5ja~l2l21!, ~7a!

2a [b,a]5«abcd¹
cjd, ~7b!

ha5l21ja1aa sin~2d!. ~7c!

The new metric is then given by

gab8 5F~gab2l21jajb!1~l/F !hahb ~8!

with

F5cos2~d!1l2 sin2~d!. ~9!

The norm of the Killing vector becomes

l85l/F. ~10!

The scalar twist potential that has been added to the Killing vector is

v85
sin~d!cos~d!~12l2!

F
. ~11!

These are the equations that will generate the new space–time from static seed metrics.

III. ISOTROPIC MATTER DESCRIPTIONS

A. Isotropic model 1

To find the isotropic matter space–times that can be used with this method, consid
action24

I 5E d3xAgFR2
DalDal

2l2 1C G ~12!

with C a specified function. Stephani7 has shown that the Ricci tensor in four dimensions is

Rab52Culu~gab2jajb /l! ~13!

and clearly the action will be invariant under the projective transform ont. In the isotropic case
this Ricci tensor is associated with a perfect fluid forja timelike. The fluid has an equation of sta
r13P50, with 8pr53Cl/2.

B. Isotropic model 2

A second action that one can consider is24

I 5E d3xAgFR2
DalDal

2l2 2sasaG ~14!

with
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saja50. ~15!

The four-dimensional Ricci tensor for this action is

Rab5sasb ~16!

which, in the isotropic case, describes a perfect fluid if the Killing vector is spacelike. The
has density and pressure

8pr52sasa/2,
~17!

P5r.

Solution generating with both of these isotropic forms has been examined by Garfinkle, Glas
Krisch.25

IV. ANISOTROPIC MATTER DESCRIPTION

The form of the Ricci tensor will be the same for fluids with nonisotropic stress. The st
energy content can be written as

~1/8p!Tab5ruaub1p1ea
(1)eb

(1)1p2ea
(2)eb

(2)1p3ea
(3)eb

(3) , ~18!

where (ua,ea
( i ) ,i 51,2,3) is a convenient orthogonal tetrad. The associated Ricci tensor is

Rab5Tab2~T/2!gab , ~19!

~1/8p!Rab5ruaub1p1ea
(1)eb

(1)1p2ea
(2)eb

(2)1p3ea
(3)eb

(3)1S r2pS

2 Dgab , ~20!

wherepS5p11p21p3 .

A. Anisotropic model 1

Consider Ricci tensorRab52Culu(gab2jajb /l). There are two Killing vector possibilities
ja5lua andja5lea

(1) , where we have chosenea
(1) for convenience. The timelike Killing vecto

will generate isotropic stress. Consider the spacelike vectorja5lea
(1) . We have

2~1/8p!Culu~gab2ea
(1)eb

(1)!5ruaub1p1ea
(1)eb

(1)1p2ea
(2)eb

(2)1p3ea
(3)eb

(3)1S r2pS

2 Dgab .

~21!

Multiplying by ea
(1) we have

p11r5p21p3 . ~22!

Contracting withua we find

~1/8p!2Culu5r1pS . ~23!

The other spatial contractions give

2~1/8p!2Culu5p22p12p31r,
~24!

2~1/8p!2Culu5p32p12p21r.

Comparing, we must havep25p3 , and
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2~1/8p!2Culu52p11r. ~25!

Combining, we find an anisotropic fluid with density and stress

8pr52Cl/2,

8pp153Cl/2, ~26!

p25p352r.

B. Anisotropic model 2

Consider Ricci tensorRab5sasb . This Ricci tensor model requires that the vectorsa be
orthogonal to the Killing vector. Again there are two choices for the Killing vector, and in
model it is the timelike Killing vector that generates the anisotropic stress energy. Considja

5lua . Sincesa is orthogonal to the Killing vector,sa is spacelike. Choose functionF and sa

5Fea
(1) ,

sasb

8p
5

F2ea
(1)eb

(1)

8p
5ruaub1p1ea

(1)eb
(1)1p2ea

(2)eb
(2)1p3ea

(3)eb
(3)1S r2pS

2 Dgab . ~27!

Following the same method used in the previous section, we obtain

8pr58pp15F2/2,
~28!

8pp258pp352F2/2.

The indices can be relabeled to describesa lying alongea
(2) or ea

(3) .

V. SPACE–TIMES FOR THE ANISOTROPIC MATTER DISTRIBUTIONS

In Sec. IV we examined two anisotropic models. One has a timelike Killing vector and o
spacelike Killing vector. We now find examples of space–times that could contain the aniso
matter distribution.

A. Timelike Killing vector

For density and pressuresr5p152p252p3 consider the metric with functionx(z):

ds252e2nx dt21dz21e2x~dr 21r 2 dw2!. ~29!

The field equations are

8pr522x ,zz23x ,z
2 ,

8ppz5x ,z
2 ~2n11!, ~30!

8ppk5~n11!x ,zz1x ,z
2 ~n21n11!

with pk labeling bothpr andpw . Enforcing the stress relations, one finds the solution

e(n12)x5az1b

with fluid r5pz52pk

8pr5
~2n11!a2

~n12!2~az1b!2 ~31!
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and metric

ds252~az1b!2n/(n12)dt21dz21~az1b!2/(n12)~dr 21r 2 dw2!. ~32!

For n51, this space–time is conformally flat.

B. Spacelike Killing vector

A simple space–time whose fluid content has the necessary anisotropic structure is th
formally flat space–time with metric

ds25e2az~2dt21dr 21r 2 dw21dz2!. ~33!

The fluid parameters are easily shown to be

8pr52a2e22az,

8ppz53a2e22az, ~34!

8ppk5a2e22az,

where pk are the radial andw-stresses. The negative density does not readily lend itself
physical description. An interesting space–time that also has the appropriate anisotropic
relations is the simple lift of the 211 BTZ black hole space–time26 describing an infinite black
string:27,28

ds252~2m1L3r 2!dt21
dr 2

2m1L3r 2 1r 2 dw21dz2. ~35!

In 211 there is a stress energy

Tii 5L3gii

with L3 the 211 cosmological constant. When thez coordinate is added the fluid content is

8pr52L3 ,

8ppr58ppw5L3 , ~36!

8ppz53L3 ,

which has the required anisotropic stress-energy structure. The relation between the 211 BTZ
solution and the 311 black string has been studied by Lemos and Zanchin.29 The negative density
in this case can be physically motivated from the cosmological constant. It will be of intere
apply the Geroch transform to this 311 BTZ lift and then project back down to 211 to examine
the effects on the cosmological fluid.

VI. APPLYING THE GEROCH TRANSFORMATION

In this section we will use the Geroch formalism described by Eqs.~7!–~10! to add twist to the
Killing vectors of our example space–times. The new space–time will be generated and the
of the transformation on the fluid parameters examined.

A. Timelike Killing vector

The space–time with a timelike Killing vector that we found had metric

ds252~az1b!2n/(n12)dt21dz21~az1b!2/(n12)~dr 21r 2 dw2!.
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The Geroch transform process can be applied to this space–time adding twist to the ti
Killing vector and vorticity to the fluid. From Eqs.~7! to ~9! we have

ja
(t)j (t)

a 5l52~az1b!2n/(n12), ~37!

F5cos2~d!1l2 sin2~d!, ~38!

aw,r2a r ,w52
2nar

n12
h trwz , ~39!

aw52
nar2

n12
1a0 , ~40!

whereh trwz51. The new metric is

ds252
~az1b!2n/(n12)

F
@dt1sin~2d!aw dw#21F dz21F~az1b!2/(n12)~dr 21r 2 dw2!.

~41!

The fluid parameters in this space–times are the original parameters scaled byF:

r85r/F,
~42!

pi85pi /F.

The fluid has acquired vorticity along thez axis

v (z)5
2na sin~2d!

~n12!F2 ~az1b!(n22)/(n12). ~43!

The projective transform on the Killing parameters that generates the new space–time h
fixed points. For the case where the initial space is twist free, the fixed points of the proje
transform arel561. For this example,F51 at the fixed points, and the fluid parameters are
same in both the seed and transformed space–times.

B. Spacelike Killing vector

In this example, we wish to add twist to a spacelike Killing vector. We will consider the lif
the BTZ metric as the seed spacetime. The seed metric is

ds252~2m1L3r 2!dt21
dr 2

2m1L3r 2 1r 2 dw21dz2. ~44!

There are two Killing vector choices:ja
(w) or ja

(z) . We will work with the w-Killing vector and
assume that the metric remains independent of thez-coordinate. From Eq.~7! we have

ja
(w)j (w)

a 5l5r 2, ~45!

a t,z2az,t52h tzrw~2m1L3r 2!. ~46!

Calculatingaa andha we have

az52~m2L3r 2!t1a0 , ~47!

ha5ja
(w)/l1sin~2d!aa , ~48!
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with F5cos2(d)1r4 sin2(d). The new 311 metric is

ds25FF2~2m1L3r 2!dt21
dr 2

2m1L3r 2 1dz2G1
r 2

F
@dw1az sin~2d!dz#2. ~49!

This black string solution is an anisotropic member of the cylindrical black hole solution fa
discussed by Lemos.30

Using d5p/2, it is easy to see the effect of the transform on the fluid parameters. Fo
value, the new 311 space–time becomes

ds25r 4F2~2m1L3r 2!dt21
dr2

2m1L3r 2 1dz2G1
1

r 2 dw2 ~50!

with a fluid content

8pr52L3 /r 4,

8ppr5L3 /r 4,
~51!

8ppw59L3 /r 4,

8ppz53L3 /r 4.

The new general space–time can be projected back into 211 with the result

hab5gab2ja
(z)jb

(z)/lz ,
~52!

habdxa dxb5FF2~2m1L3r 2!dt21
dr 2

2m1L3r 2G1
r 2

F
dw2,

which can be written as

habdxa dxb52~2m1L3r 2!dt21
dr 2

2m1L3r 2 1r 2dw21~r 421!

3sin2~d!F2~2m1L3r 2!dt21
dr 2

2m1L3r 2 1
r 2

11~r 421!sin2~d!
dw2G . ~53!

For d50 the original 211 BTZ space–time is recovered. It is also recovered at ther 251 fixed
point. The fluid content of the 211 space–time is

8pr5
2L3

F
1

2r 2 sin2~d!

F3 $mF1~2m1L3r 2!@7 cos2~d!2r 4 sin2~d!#%,

8ppr5
L3

F
2

2r 2 sin2~d!

F3 $mF12r 4 sin2~d!~2m1L3r 2!%, ~54!

8ppw5
L3

F
1

2r 2 sin2~d!

F3 $2mF1~2m1L3r 2!@5 cos2~d!1r 4 sin2~d!#%.

The original BTZ solution described a black hole of massm surrounded by a cosmological flui
with parameters 8pr52L3 , 8ppr58ppw5L3 . From Eq.~54! it is clear that the cosmologica
fluid is still present but scaled byF, and that in addition a new fluid has been added. Fod
5p/2, for example, the fluid parameters are
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8pr5~4m23r 2L3!/r 6,

8ppr5~2m23r 2L3!/r 6, ~55!

8ppw5~2m13r 2L3!/r 6.

At infinity, the new solution describes an empty vacuum in contrast to the cosmological va
found in the BTZ asymptotic limit. The original BTZ solution had constant negative curva
making it locally isometric to AdS while the new space–time has a nonconstant Ricci scala

R52
6L3

F
1~2m1L3r 2!

8r 2 sin2~d!cos2~d!

F3 . ~56!

VII. DISCUSSION

We have shown that the simple one parameter Ehlers–Geroch transform can be app
space–times with anisotropic matter content for two different stress-energy situations. Th
malism broadens the way in which anisotropy can be introduced and studied with relation
Killing symmetry of the space–time. The formalism was applied to the simple lift of the B
solution and when the new 311 solution was projected back to 211, a different static 211
solution was obtained. It describes a 211 black hole with a horizon at the same position as
original BTZ horizon but with an additional fluid atmosphere. The asymptotic structure of the
solutions is very different. This result suggests that it would be useful to develop the formali
dimensions higher than 311, and use the projection technique to generate and study the res
anisotropic 311 solutions. Another generalization which could prove interesting is to broade
fixed point structure of the projective transform. The fixed points described by Eq.~6! are l
561, as discussed previously. When using the Ehlers–Geroch method with a spacelike
vector, generalizing the projective transform by placing the fixed points atl5L2 offers a better
chance of interpreting the fixed points and would broaden the applicability of the method.

In summary, the solution generating method developed here preserves specific Killing
metries while creating new anisotropic solutions. These solutions may be useful for investi
relativistic behavior at the density extremes.

1J. Ehlers, inLes The´ories Relativistes de la Gravitation, edited by A. Lichnerowicz and M. A. Tonnelat~Colloques
Internationaux C.N.R.S. No. 91, Paris, 1962!.

2B. K. Harrison, J. Math. Phys.9, 1744~1968!.
3R. Geroch, J. Math. Phys.12, 918 ~1971!.
4R. Geroch, J. Math. Phys.13, 394 ~1972!.
5W. Kinnersley, J. Math. Phys.14, 651 ~1973!.
6V. A. Belinski, Sov. Phys. JETP50, 623 ~1979!.
7H. Stephani, J. Math. Phys.29, 1650~1988!.
8I. Racz and J. Zsigrai, Class. Quantum Grav.13, 2783~1996!.
9L. Herrera and N. O. Santos, Phys. Rep.286, 53 ~1997!.

10R. L. Bowers and E. P. T. Liang, Astrophys. J.188, 657 ~1974!.
11E. S. Corchero, Class. Quantum Grav.15, 3645~1998!.
12A. Das, N. Tariq, D. Aruliah, and T. Biech, J. Math. Phys.38, 4202~1998!.
13A. Das and S. Kloster, Phys. Rev. D62, 104002~2000!.
14H. Hernandez, L. A. Nunez, and U. Percoco, Class. Quantum Grav.16, 871 ~1999!.
15L. Herrera, A. DiPrisco, J. Ospino, and E. Fuenmayor, J. Math. Phys.42, 2129~2001!.
16E. N. Glass and J. P. Krisch, Phys. Rev. D57, R5945~1998!.
17T. Harko and M. K. Mak, J. Math. Phys.41, 4752~2000!.
18D. J. McManus and A. A. Coley, Class. Quantum Grav.11, 2045~1994!.
19R. J. vandenHoogen and A. A. Coley, Class. Quantum Grav.12, 2335~1995!.
20M. Giovannini, Phys. Rev. D59, 123518~1999!.
21T. Rainsford, Gen. Relativ. Gravit.33, 1047~2001!.
22J. H. Jeans, Mon. Not. R. Astron. Soc.82, 122 ~1922!.
23P. S. Letelier, Phys. Rev. D22, 807 ~1980!.
24D. Garfinkle~private communication!.
25D. Garfinkle, E. N. Glass, and J. P. Krisch, Gen. Relativ. Gravit.29, 467 ~1997!.
                                                                                                                



1518 J. Math. Phys., Vol. 43, No. 3, March 2002 J. P. Krisch and E. N. Glass

                    
26M. Banados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett.69, 1849~1992!.
27N. Kaloper, Phys. Rev. D48, 4658~1993!.
28J. S. F. Chan and B. Mann, Phys. Rev. D51, 5428~1995!.
29J. P. S. Lemos and V. Zanchin, Phys. Rev. D53, 4684~1996!.
30J. P. S. Lemos, Phys. Lett. B353, 46 ~1995!.
                                                                                                                



them
ayer.
sidered
n
of light
general
-

ties in
erties

of the
ust be

xtrinsic
rgy

vature
to the
a null

not be
gency
ture is
metric

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 3 MARCH 2002

                    
The methods of gluing manifolds in general relativity
Kourosh Nozaria)

Department of Physics, Faculty of Basic Sciences, University of Mazandaran,
P.O. Box 47415-453, Babolsar, Iran

Reza Mansouri
Department of Physics, Sharif University of Technology,
P.O. Box 11365-9161, Tehran, Iran

~Received 17 June 2001; accepted for publication 4 January 2002!

Some areas of modern theoretical physics such as modern cosmology contain dif-
ferent manifolds which must be glued together along a common boundary. These
boundaries can be spacelike, timelike, or lightlike hypersurfaces. This paper shows
how this gluing for different hypersurfaces is possible. Two different approaches
are considered and the extent to which these approaches are equivalent are dis-
cussed. In particular, we will construct a distributional approach for dynamics of
lightlike hypersurfaces in general relativity. Since Einstein’s equations are nonlin-
ear PDEs, for discontinuous metrics such as signature changing metrics, product of
distributions are unavoidable. To glue two different manifolds which admit signa-
ture change, we consider this problem in the context of Colombeau’s new theory of
generalized functions. Some examples are given for clarification. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1452758#

I. INTRODUCTION

In the inflationary scenario of cosmology, when two phases coexist, the wall separating
can be treated as an infinitely thin bubble or shell, whose history is a timelike surface l1

Analogously, in sudden global phase transition, the transition region can sometimes be con
as an infinitely thin spacelike surface layer.2,3 Lightlike thin shells arise, for example, whe
sufficiently large bubbles in a sea of false vacuum are rapidly accelerated toward the speed
by the imbalance of normal pressures. So the dynamics of bubbles and surface layers in
relativity has been studied extensively in the last two decades.4–7 There are two different ap
proaches to study these hypersurfaces: the Darmois–Israel~DI!8–10 and Mansouri–Khorrami
~MKh! distributional approach.11,12

In the DI approach, the formalism now commonly in use expresses the surface proper
terms of the jump of the extrinsic curvature across the shell wall. In this approach, the prop
are obtained directly as functions of the shell’s intrinsic coordinates. The intrinsic geometry
layer must be continuous at the hypersurface, i.e., the intrinsic metric of the hypersurface m
the same determined from either side, and the discontinuity across the hypersurface of its e
curvature~second fundamental form! is related via the Einstein field equations to the stress-ene
associated with the surface layer.

This approach must be modified for the case of null hypersurfaces. The extrinsic cur
tensor of a spacelike or timelike hypersurface measures the change in the normal vector
hypersurface as that vector is transported along the hypersurface. But the normal vector to
hypersurface is also tangential to it, and the definition of Gaussian normal coordinates can
based on a null hypersurface. Since the normal to the null hypersurface declines into tan
with hypersurface, the normal prescription breaks down, because the normal extrinsic curva
disabled as a carrier of transverse geometrical information. The degeneration of the induced

a!Electronic mail: knozari@umcc.ac.ir
15190022-2488/2002/43(3)/1519/17/$19.00 © 2002 American Institute of Physics
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to the hypersurface is the other complication and definition of the normal distance to the nul
is not simple as the case of timelike or spacelike shells.

On the other hand, the distributional approach of MKh considers the whole space–
including the singular hypersurface, with a unified metric without bothering about the jun
conditions along the hypersurface. These conditions are shown to be automatically fulfilled a
of the field equations. In this approach one chooses special coordinates which are con
along the singular hypersurface to avoid nonlinear operations of distributions.

The aim of this paper is to compare different approaches to gluing space–time manifol
do this we first give an overview of the DI approach for both nonlightlike and lightlike hyper
faces. Since Mansouri and Khorrami in Ref. 12 constructed their distributional approach f
case of nonlightlike hypersurfaces, here we will show that this approach is applicable for th
of null hypersurfaces also and there is no need for considerable change in their formalism
examining this claim, we consider the well-known example of spherical lightlike shells in
framework and compare the results with the DI approach. It is shown that two formalism give
same results and so our distributional approach for the case of a null shell is correct.
equations of general relativity are nonlinear PDEs, for steplike metrics such as signature ch
metrics, nonlinear operations on distributions are unavoidable. Here, using Colombeau a
which allows for nonlinear operations of distributions,13–16we generalize the MKh method to th
special case of signature changing cosmological models. In each case, for clarification
examples are given.

Notations and Conventions:We use the signature~2 1 1 1!, and follow the curvature
conventions of Misner, Thorne, and Wheeler.17 However, our sign convention for extrinsic curva
ture is that of Israel.8 The Greek indices run from 0 to 3 and Latin indicesi, j, andk from 1 to 3.
A semicolon indicates covariant derivatives with respect to either the four-metric of the w
space–time or the three-metric of the layer.¹6 denotes the covariant derivative with respect
either of the metrics of partial manifoldsM 6 which are to be glued together. The square brack
@F#, are used to indicate the jump of any quantityF at the layer, and the terms proportional to t
d-function in equations are denoted byF̆.

The organization of the paper is as follows: Section II first considers spacelike and tim
hypersurfaces in the DI approach. As we have stated, lightlike hypersurfaces must be studie
carefully and therefore Sec. II B is devoted to this subject. Section III considers dynami
hypersurfaces in the MKh distributional approach in a unified formalism. Section IV give
example which shows both the possibility of application of the MKh approach to the ca
lightlike hypersurfaces and comparison of its results with respect to the DI method. Sect
considers discontinuous metrics, which leads to nonlinear operations on distributions. To p
such operations, we use Colombeau theory of new generalized functions. As an examp
consider signature changing manifolds with steplike metrics and, as a special case, junctio
ditions for de Sitter space–time in this framework are derived.

II. DARMOIS–ISRAEL FORMALISM

A. Spacelike and timelike hypersurfaces

Assume two space–time manifoldsM 1 and M 2 with spacelike or timelike boundariesS1

and S2. We want to glue these two space–time manifolds together. Coordinates on th
space–time manifolds are defined independently asx1

m and x2
m , and the metrics denoted b

gab
1 (x1

m ) andgab
2 (x2

m ). The induced metrics on the boundaries are calledgi j
1(j1

k ) andgi j
2(j2

k ),
wherej6

k are intrinsic coordinates onS6, respectively. Now to paste the manifolds together,
demand that the boundaries be isometric having the same coordinates,j2

k 5j1
k 5jk. The identi-

ficationS25S15..S gives us the single glued manifoldM5M 1øM 2 . This condition, which is
the minimum requirement for gluing two manifolds together formulated as

@gi j #50, ~1!
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gives, together with the continuity of second fundamental form onS,

@Ki j #50, ~2!

the Darmois conditions. Both conditions should be satisfied ifS is just a boundary surface. But i
the case of a thin shell we do not expect the second condition to be satisfied since the
content of the shell should lead to a jump in the extrinsic curvatureKi j . On S we define a
three-bein

ei5
]

]j i ~3!

having the component

ei
m5

]xm

]j i . ~4!

The induced metric onS is given by the scalar product

gi j 5ei•ej5gmnei
mej

n . ~5!

Let the parametric equation of theS be

F~xm~j i !!50 ~6!

having the unit normal four-vectornm given by

nm5a21]mF, ~7!

where

a56AS Ugmn
]F

]xm

]F

]xnU D . ~8!

Therefore

nmei
m50 ~9!

and

nmnm5e, ~10!

where

e[sign~a!5
uau
a

~11!

and in our case, sinceS is spacelike or timelike,e becomes by definition equal to21 or 11,
respectively. The extrinsic curvature ofS is defined as

Ki j
65ei

mej
n¹m

6nn5K ji
6 . ~12!

Now we have all the prerequisites to write Einstein’s equations for hypersurfaceS in the
Darmois–Israel approach. These are ten equations which will be written in components n
and tangent to the hypersurface. The first and second contracted Gauss–Kodazzi equatio
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Gmnnmnn5 1
2~K22Ki j K

i j 2e3R!, ~13!

Gmnei
mnn5Ki j

j 2K ,i , ~14!

whereK5Ki j K
i j and3R is the Ricci scalar of the three metric,gi j . Now to discover the effect of

the energy–momentum tensorSi j of S on space–time geometry, we perform a ‘‘pill-box’’ inte
gration of Einstein’s equation acrossS:

Smn5 lim
s→0

E
2s

s S Tmn2gmn

L

k Ddn5
1

k
lim

s→0
E

2s

s

Gmn dn, ~15!

wheren is the proper distance throughS in the direction of the normalnm. Smn is the associated
four-tensor of energy–momentum of the shell. According to Eqs.~13! and ~14!, there is no
moment associated with the surface layer, flows out ofS. ThereforeSmn vanishes off theS,

Smnnn50. ~16!

The energy–momentum four- and three-tensors ofS are related as

Smn5ei
mej

nSi j . ~17!

Similarly we can associate to the three-tensorKi j defined on S, the corresponding four-
dimensional tensor:

Kmn5Ki j ei
mej

n , ~18!

satisfying

Kmnnn50. ~19!

The remaining components of Einstein’s equations lead to the following nonvanishing resu

lim
s→0

E
2s

s

Gmnei
mej

n dN5e~@Ki j #2gi j @K# !5kSi j . ~20!

This distributional equivalent of Einstein’s equation is called the Lanczos equation, which p
determines the dynamics of the thin shell. The other dynamical equations come from the d
equation of the matter contents of the shell.

B. Lightlike hypersurfaces

Now assume two space–time manifoldsM 1 andM 2 with lightlike boundariesS1 andS2.
We want to glue these two manifolds together. In this case,Ki j must be defined carefully, sinc
normal prescription breaks down. For this end we proceed as follows. We want to de
coordinate system in the vicinity of a null hypersurface of discontinuity, tied to the geomet
that hypersurface and analogous to Gaussian normal coordinates. SupposeS denotes the intended
null hypersurface of discontinuity. A well-known theorem says that the null generators ofS must
be geodesics, i.e., if a congruence of curves is both null and hypersurface-orthogonal, th
also geodesic.18 Each generator possesses an affine parameter,h, unique up to change of origin on
each generator and changes of scale uniform on each generator. SinceS is a three-dimensiona
hypersurface, the null generators are labeled by two parameters. These two parameters,xa where
a52, 3 are constant on any given generator, and the affine parameterh along the generators
provide a reasonably natural coordinate system forS. The coordinatesh and xa:a52, 3, the
coordinate basis vectors]/]h and]/]xa, and the metric componentsgi j , on the hypersurfaceS,
are components of the intrinsic geometry ofS. To calculate the curvature associated with a
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d-function surface layers onS for the rest of the junction conditions, it is necessary to extend
coordinate system offS. One way to do this, in the spirit of Gaussian normal coordinates, i
follows. At each point ofS, the tangent vectors]/]h and]/]xa define a unique null direction of
S on both sides, i.e., on each side ofS there exists a unique null vectorN satisfyingN•(]/]h)
521 andN•(]/]xa)50. At each point ofS a null geodesic tangent to this direction extends
S. Defining these geodesics to be loci of constanth andxa and using an affine parameterN on
each geodesics~with N50 onS! as fourth coordinate establishes the desired coordinate syste
some neighborhood ofS. The direction of the vectorN plays the same role here as the norm
direction for timelike or spacelike hypersurfaces of discontinuity. Note that for null hypersu
S, the normal direction is that of]/]h, which is also tangent toS. Now, the parametric equatio
for S is

F~xm~j i !!50, ~21!

wherej i5(xa,h) with a52, 3. The normal four-vector toS is given by

nm5a21]mF, ~22!

wherenmnm50, sinceS is null hypersurface. Here we use the normalization condition,

Nmnm521. ~23!

We now introduce a slight generalization of the concept of extrinsic curvature by defining

Ki j 52Nm

dei
m

dj j 5K ji , ~24!

whered/dj j shows the absolute derivatives andei
m5]xm/]xi , wherexi5(h,xa). Ki j so defined is

called the transverse extrinsic curvature.Ki j is not independent of the choice of transversal vec
Now we have all the prerequisites to write Einstein’s equations for null hypersurfaces i
Darmois–Israel approach. To do this we define

g i j 52@Ki j #, ~25!

which is well defined and free of arbitrariness in the transversalN. g i j is the projection ontoS of
the gmn , which is defined as

gmn5Na@]agmn#, ~26!

i.e.,

g i j 5gmne~ i !
m e~ j !

n . ~27!

The four vectors (N,e( i)) form an oblique basis with respect to which the normal vectorn can be
decomposed as

n52eN1 l iei , ~28!

wherel i are smooth functions ande5n"n50. This decomposition gives

gi j l
j5eNi50, ~29!

which shows that the induced metric is degenerate and its inverse cannot be defined. To rais
indicesi, j we see that a symmetric matrixg

*
i j exists such that

g
*
ikgjk5d j

i 1 l iNj . ~30!
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In particularg
*
i j could be chosen as the contravariant two-metricgab in convected coordinate

( l i5d1
i ) with the choiceN"ei50.9,10 In this casegi j g*

i j 52, gi j l
j50 andg i j l

i l j50 and we find for
dynamics of the null hypersurfaceS:

kSi j 52 1
2~g

*
ikl j l l1 l i l kg

*
j l 2 l i l jg

*
kl!gkl , ~31!

which implies thatSi j nj50 whereSi j is the singular part ofTmn in the distributional sense.

III. DISTRIBUTIONAL APPROACH

In this section we give a unified distributional approach to glue two different manifolds
boundaries which can be spacelike, timelike, or lightlike hypersurfaces. We assume the me
be continuous at the hypersurfaceS,

@gmn#50. ~32!

Write the metric in the following form:

gmn5gmn
1 Q~F~x!!1gmn

2 Q~2F~x!!, ~33!

whereQ is the Heaviside step function and

gmn
1 uF~x!505gmn

2 uF~x!50 . ~34!

This condition guarantees the smoothness of the metric on the hypersurface. Should this no
case we try a coordinate transformationx5x(x8) having a jump in the first derivative:

]xm

]x8r 5ar
1mQ~F~x!!1ar

2mQ~2F~x!!. ~35!

The condition for the new metric to be continuous comes out to be

ar
1mas

1ngmn
1 uF~x!505ar

2mas
2ngmn

2 uF~x!50 . ~36!

We assume from now on that the metric is smooth everywhere,C0 at the hypersurface, an
C` on both sides of it. Although the metric is continuous onS, its derivatives, and so the
corresponding connection coefficients, are discontinuous. The connection coefficients can b
ten as

Gmn
r 5 1

2g
rs~gms,n1gns,m2gmn,s!5Q~F~x!!Gmn

1r1Q~2F~x!!Gmn
2r , ~37!

where Gmn
6r are the ordinary connection coefficients onM 6. The above connection has jum

discontinuity onS. To write the field equation for the hypersurfaceS, we define the energy–
momentum tensor of the hypersurface as

T̆mn5CSmnd~F~x!!, ~38!

whereC is a constant which can be calculated as follows. We integrate~38! in the direction normal
~transverse in the lightlike case! to the hypersurfaceS,

E T̆mn dz5CSmnE d~F~x!!dz5CSmnU dz

dFU, ~39!

wherez is a distance in the direction ofnm or Nm for nonlightlike or lightlikeS, respectively. Now
by means of~15!, we obtain
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C5UdF

dz U5uzm]mFu5uau, ~40!

wherezm is nm or Nm for nonlightlike or lightlikeS, respectively. Therefore~38! can be written as

T̆mn5CSmnd~F~x!!5Smnuzr]rFud~F~x!!5uauSmnd~F~x!!. ~41!

In order to write field equations, there is no need to change the ordinary concept of cov
derivative. The covariant derivative of the tensor

T~r!5Q~F!T1~r!1Q~2F!T2~r!, ~42!

where~r! stands for any number of indices, is calculated to be

T;n
~r!5¹nT~r!1@T~r!#~]nF!d~F!. ~43!

Now to writing Einstein’s field equation for hypersurface,S, we expect the curvature an
Einstein tensor to be proportional tod. This means that in calculating the connection coefficie
and the components of the Ricci tensor we consider only terms proportional tod. Since

Rmn5Gmr,n
r 2Gmn,r

r 1Gmr
s Gsn

r 2Gmn
s Grs

r , ~44!

the term proportional tod is

R̆mn5Ğmr,n
r 2Ğmn,r

r . ~45!

Now,

Gmr
r 5

1

2g
g,m , ~46!

whereg is the determinant of the metricgmn . The d distribution can only occur in the secon
derivatives of the metric. Therefore,

Ğmr,n
r 5

1

2g
ğ,mn . ~47!

For the second term in~45! we have

Ğmn,r
r 5 1

2g
rs~ ğsm,nr1ğsn,mr2ğmn ,sr!. ~48!

Having the metric in the form~33!, we obtain

ğab,mn5@gab,m#~]nF!d~F~x!! ~49!

and

ğ,mn5@g,m#~]nF!d~F~x!!. ~50!

Therefore we obtain for terms in the Ricci tensor proportional tod,

R̆mn5S 1

2g
@g,m#]nF2grs~@gsm,n#1@gsn,m#2@gmn,s#!]rF D d~F!

5S 1

2g
@g,m#]nF2@Gnm

r #]rF D d~F~x!!. ~51!
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Now we can write Einstein’s field equation for the hypersurfaceS as

Ğmn5kT̆mn . ~52!

Defining

Qmn5~a21!S 1

2g
@g,m#dn

r2@Gmn
r # D ]rF5S 1

2g
@g,m#dn

r2@Gmn
r # Dnr , ~53!

we obtain, using Eqs.~41! and ~51! for the energy–momentum tensor, the field equations in
four-dimensional form

Qmn2 1
2gmnQ5ekSmn , ~54!

whereQ5Qmngmn ande5uau/a. Qmn is a tensor with support onS and this equation describe
the dynamics ofS. Multiplying ~53! with nm we obtain

Smnnn50, ~55!

which tells us that the components corresponding toSmnnmnn and Smnnmei
n in the nonlightlike

case andSmnNmnn and Smnnmei
n in the lightlike case identically vanishes. To obtain the pro

three-dimensional components we have

Qi j 5Qmnei
mej

n52@Gmn
r #nrei

mej
n5@Ki j #. ~56!

The three-dimensional analoge of~54! is therefore

Qi j 5ek~Si j 2
1
2gi j S!, ~57!

whereS5Si j S
i j and this is equivalent to Lanczos equation~20!, ~31!.

IV. EXAMPLE: SPHERICAL LIGHTLIKE SHELLS

The equivalence of the DI and MKh methods for spacelike and timelike thin shells in ge
relativity has been shown in Ref. 12. In Sec. III it was shown that the MKh method is applic
for the case of the null shell with few changes. Now to examine our claim, we conside
familiar example of lightlike shells with spherical symmetry. This example has been stu
extensively in the DI approach,9 but we want to consider it in our distributional method. Express
in terms of Eddington retarded or advanced timeu, the metric of a general spherisymmetr
geometry is

ds252ec du~ f ec du12j dr !1r 2 dV2, ~58!

wherec and f are functions ofu and r. The sign factorj is 11 if r increases toward the futur
along a rayu5constant, i.e., if the light coneu5constant is expanding; if it contracts thenj5
21. It is useful to introduce a local mass functionm(u,r ) defined asf 5122m/r . We consider
the case where the geometry on both sides of the lightlike shell is static, i.e.,c50 andf 5 f (r ) in
~58!. The Einstein field equations then take the form

Trr 50,

Tu
r 50, ~59!

]m

]r
524pr 2Tu

u .
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We consider a thin shell whose historyS, a light coneu5constant, splits space–time into pa
and future domainsM 2 and M 1 . The four metric has the form~58! in both M 2 and M 1 , but
with different functionsf 2 and f 1 . We want to glue two space–timesM 2 and M 1 along the
hypersurfaceS defined asF(x)5u5const, using the distributional approach. The normal vec
to the hypersurfaceS has the component

nm5]mF5~1,0,0,0!. ~60!

Now using~53! we find

Quu5
1

2 Fdf

dr G ~61!

and other component ofQmn are vanishing. The inverse four-metric nonvanishing components

gur5gru521,

grr f ,
~62!

guu5
1

r 2 ,

gff5
1

r 2 sin2 u
.

Therefore it is easy to show thatQ50. Now from ~54! we find

Quu2 1
2guuQ58pSuu , ~63!

which leads to

1

2 Fdf

dr G58pSuu ~64!

or in terms ofm,

@m#58pr 2Suu . ~65!

This equation tell us how we can embedS in four-dimensional space–time and is the same as
~51! of Ref. 9.

V. DISCONTINUOUS METRICS

In this section we consider the general case of discontinuous metrics. Since Einstein’
equations are nonlinear, with these types of metrics, product of distributions are unavoi
Classical theory of distributions~the so-called Schwartz–Sobolov theory of distributions! do not
allow nonlinear operations on distributions, thus we consider the problem in the context o
lombeau’s new theory of generalized functions. We consider the case of signature changing
folds as an interesting problem in modern cosmology. It is important to note that the
distributional approach assumes the continuity of the metric at the hypersurface. Since
Colombeau algebra, step function and other classically sharp functions become smooth a
tinuous, it is possible to continue to use the MKh method for classically discontinuous~in the
sense of Schwartz–Sobolov! metrics.
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A. New generalized functions

SupposeFPD(Rn) with D(Rn) the space of smooth~i.e.,C`! C-valued test functions onRn.
For f :Rn→C, not necessarily continuous, we define the smoothing process forf as one of the
convolutions

f̃ ~x!ªE f ~y!F~y2x!dny, ~66!

or

f̃ e~x!ªE f ~y!
1

en FS y2x

e Ddny. ~67!

This smoothing procedure is valid for distributions too. Take the distributionR, then by smoothing
of R we mean one of the two convolutions~66! or ~67! with f replaced byR. Now we can perform
the productRf of the distributionR with the discontinuous functionf through the action of the
product on a test functionC as follows:

~R f,c!5 lim
e→0

E R̃e~x! f̃ e~x!C~x!dnx. ~68!

The multiplication so defined does not coincide with the ordinary multiplication even
continuous functions. To resolve this difficulty consider one-parameter families (f e) of C` func-
tions used to construct the algebra

EM~Rn!5$~ f e!u f ePC`~Rn!;K,Rn compact,

;aPNn'NPN, 'h.0, '.0

such that sup
xPK

uDa f e~x!u<ce2N;0,e,h%, ~69!

where

Da5
] uau

~]x1!a1
¯~]xn!an

, ~70!

and

uau5a11a21¯1an .

Accordingly,C`-functions are embedded intoEM(Rn) as constant sequences. Now, we ha
to identify different embeddings ofC` functions. Take a suitable idealN(Rn) defined as

N~Rn!5$~ f e!u~ f e!PEM~Rn!;K,Rn compact,

;aPNn, ;NPN'h.0, 'c.0,

such that sup
xPK

uDa f e~x!u<cPN;0,e,h%, ~71!

containing negligible functions such as

f ~x!2E dny
1

en wS y2x

e D f ~y!. ~72!
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Now, the Colombeau algebraG(Rn) is defined as

G~Rn!5
EM~Rn!

N~Rn!
. ~73!

A Colombeau generalized function is thus a moderate family (f e(x)) of C` functions modulo
negligible families. Two Colombeau objects (f e) and (ge) are said to be associated@written as
(ge)'( f e)# if

lim
e→0

E dnx~ f e~x!2ge~x!!w~x!50,

~74!
;wPD~Rn!.

For example, ifw(x)5w(2x) thendu' 1
2d, whered is Dirac delta function andu is Heaviside

step function. Moreover, we have in this algebraun'u and notun5u.

B. Signature changing manifolds

In distributional formalism of gluing manifolds, the whole space–time, including the sing
hypersurface, is treated with a unified metric without bothering about the junction conditions
the hypersurface. These conditions are shown to be automatically fulfilled as part of the
equations.12 In this approach one chooses special coordinates which are continuous alon
singular hypersurface to avoid nonlinear operations of distributions. Here, using Colombeau
bra, which allows for nonlinear operations of distributions, we generalize our distribut
method to the special case of signature changing cosmological models.

Consider as a simple model universe a space–time with the following FRW metric conta
a steplike lapse function

ds252 f ~ t !dt21a2~ t ! S dr 2

12kr2 1r 2 du21r 2 sin2 u dr2D , ~75!

where

f ~ t !5u~ t !2u~2t ! ~76!

and

a2~ t !5a1
2 ~ t !u~ t !1a2

2 ~ t !u~2t !. ~77!

We assume@a#5a12a250 to achieve continuity of the metric on the surface of signat
change. Note that we have assumed for simplicityk15k25k. This metric describes a signatur
changing space–time with the singular surfacet50. It describes a Riemannian space fort,0 and
a Lorentzian space–time fort.0. In Colombeau’s point of view,f (t) has a microscopic structur
aroundt50 with a jump equal toe as shown in Fig. 1. Since we are going to construct a signa
changing model, we choose

u~ t !u t505t with t. 1
2. ~78!

Sinceu(2t)512u(t), we haveu(2t)512t and

f ~ t !u t5052t21. ~79!

This value gives us the correct change of sign in going fromt,0 to t.0. This ‘‘regularization’’
of f (t) at t50 allows us to use operations such asf (t)21, f 2(t), andu f (t)u21.
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In what follows we considerf (t) to be the regularized functionf̃ e , defined according to
Colombeau’s algebra. Now, we are prepared to calculate the dynamics of the signature ch
hypersurface in the line of distributional procedure.19 First we calculate the relevant componen
of the Einstein tensor for the metric~75!:

Gtt52
23k f3f 3

f 2a2 2
3 f 2~ ȧ2!

f 2a4 , ~80!

Grr 5
1

12kr2 S 2aäf

f 2 2
aȧḟ

f 2 1
f ~aȧ!2

a2f 2 1
k f2

f 2 D , ~81!

Guu5r 2S 2aäf

f 2 2
aȧf̈

f 2 1
f ~aȧ!2

a2f 2 1
k f2

f 2 D , ~82!

Gww5r 2 sin2 uS 2aäf

f 2 2
aȧḟ

f 2 1
f ~aȧ!2

a2f 2 1
k f2

f 2 D . ~83!

According to standard calculus of distributions, we have

ḟ ~ t !5 u̇~ t !2 u̇~2t !5d~ t !1d~2t !52d~ t !, ~84!

taking into accountd(2t)5d(t). Now, using Colombeau algebra we can write

u~ t !d~ t !' 1
2d~ t !. ~85!

Therefore we may write

f ~ t !d~ t !5u~ t !d~ t !2u~2t !d~ t !' 1
2d~ t !2 1

2d~ t !'0. ~86!

FIG. 1. The profile of Heaviside step function as it is used in Colombeau’s theory.
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In evaluating~80!–~83! we should take care of the following property of association. Hav

AB'AC,

we are not allowed to conclude

B'C.

Since the time derivative of any discontinuous functionF is given by

Ḟ5Ḟ1u~ t !1Ḟ2u~2t !1@F#d~ t !, ~87!

using relations~80!–~83! we obtain for the singular parts of these equations:

Ĝt
t'0, ~88!

Ĝr
r'S f @ ȧ#

f 2a
2

@ ȧ#

f 2aD d~ t !, ~89!

Ĝu
u'S f @ ȧ#

f 2a
2

@ ȧ#

f 2aD d~ t !, ~90!

Ĝw
w'S f @ ȧ#

f 2a
2

@ ȧ#

f 2aD d~ t !, ~91!

where multiplication of the distributiond(t) with the generalized functions 1/f 2 and f / f 2 is
defined as in~68!.

This is a rigorous calculation which shows definitely that there are nonvanishing terms o
left-hand side of the field equations related to the signature change surface. Now we have
at the energy–momentum tensor on the right-hand side of the field equations, its possible
pretation, and consequences for the dynamics of the signature change surface.

The complete energy–momentum tensor of space–time~with any kind of matter content! can
be written as

Tmn5u~ t !Tmn
1 1u~2t !Tmn

2 1CSmnd~ t !, ~92!

whereTmn
6 are energy–momentum tensors corresponding to Lorentzian and Euclidean re

respectively, andC is a constant which can be obtained by a little algebra to find

C5UdF

dn U5unm]mFu5
1

u f ~ t !u
, ~93!

whereF5t50 defines the singular surfaceS, the vectornm is normal to the surfaceF, andn
measures the distance along it. The distributional part of the Einstein equations read as fo

Ĝmn5kT̂mn ~94!

using Eqs.~88!–~91!, ~93!, ~94! we obtain

0'
k

u f ~ t !u
St

td~ t !, ~95!

Ĝr
r'S f @ ȧ#

f 2a
2

@ ȧ#

f 2aD d~ t !'
k

u f ~ t !u
Sr

rd~ t !, ~96!
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Ĝu
u'S f @ ȧ#

f 2a
2

@ ȧ#

f 2aD d~ t !'
k

u f ~ t !u
Su

ud~ t !, ~97!

Ĝw
w'S f @ ȧ#

f 2a
2

@ ȧ#

f 2aD d~ t !'
k

u f ~ t !u
Sw

wd~ t !. ~98!

Now using Eq.~68!, we must define the multiplication ofd-distribution with the discontinuous
functions 1/u f u and 1/f 2. To this end we consider them as Colombeau’s regularized function

G̃1e~ t !ªde~ t !S 1

u f ~ t !u D
e

, ~99!

and

Ĝ2e~ t !ªde~ t !S 1

f 2~ t ! D
e

. ~100!

Now according to~68!, these two multiplications are defined as follows:

S d~ t !
1

u f ~ t !u
,C Dª lim

e→0
E G̃1e~ t !C~ t !dt, ~101!

and

S d~ t !
1

f 2~ t !
,C Dª lim

e→0
E G̃2e~ t !C~ t !dt, ~102!

for any test function,C. Now we argue thatG̃1e andG̃2e are associated in Colombeau’s sense, i

lim
e→0

E ~G̃1e~ t !2G̃2e~ t !!C~ t !dt50. ~103!

This is correct for any test functionC because, althoughG̃1e andG̃2e are divergent at a commo
point, the difference in their ‘‘microscopic structure’’ at that point tends to zero fore→0. There-
fore, we obtain from~95! to ~98! the final form of the energy–momentum tensor of the singu
surface, or the dynamics ofS:

St
t'0, ~104!

kSr
r'S f @ ȧ#

a
2

@ ȧ#

a D , ~105!

kSu
u'S f @ ȧ#

a
2

@ ȧ#

a D , ~106!

kSw
w'S f @ ȧ#

a
2

@ ȧ#

a D . ~107!

Therefore the ‘‘energy–momentum’’ tensor of the singular hypersurface is
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kSm
n 5diagS 0,

f @ ȧ#

a
2

@ ȧ#

a
,

f @ ȧ#

a
2

@ ȧ#

a
,

f @ ȧ#

a
2

@ ȧ#

a D
5diag~0,2@H0#~t21!,2@H0#~t21!,2@H0#~t21!!, ~108!

where we have used~79!. In this equation all quantities are to be taken att50, andH0 is defined
as

H05
ȧ

a
u t50 , ~109!

which is the familiar Hubble constant at the signature change surface. This is our nontrivia
nonexpected result. One may question the validity of Coloumbeau algebra,20 although it sounds
physically well motivated and based on good physical intuition.16,21,22The above-given result is
telling us that within this algebra it is not reasonable to assume that the energy–momentum
at the singular hypersurface of signature change is vanishing, as is usually assumed in the
ture. If we assume that@ ȧ#50 ~as is usually assumed in the literature! then Eq.~108! will give
Sm

n 50, but this is not necessary in general. Therefore the condition@ ȧ#50 is not compulsory on
the singular surface.

We have seen that the requirement of signature change leads to a very specific and n
ishing form for theSmn . Since the nonvanishing terms ofSmn are related to the extrinsic curvatur
of the signature change surface, they tell us how it is embedded in the space–time. Theref
should not be bothered about its matter interpretation. This form of the energy–momentum
of the singular hypersurface we have obtained set limits to the possible space–times em
after signature change. As an example, we will consider in Sec. V C the possibility of the
gence of de Sitter space–time after signature change.

C. Junction conditions for de Sitter space–time

According to the Hartle–Hawking proposal,23–25the universe after signature change should
a de Sitter universe~inflationary phase!. Let us assume that the space–time after signature ch
is a de Sitter one. Consider now the following de Sitter metric with appropriate lapse functionf (t)
in order to contain signature change att50. The t5const sections of this metric are surfaces
constant curvaturek51:26

ds252 f ~ t !dt21a2~ t !~dx21sin2 x~du21sin2 u du2!! ~110!

where f (t) is defined as in~77! and

a2~ t !5a1
2 cosh2~a1

21t !u~ t !1a2
2 cos2~a2

21t !u~2t !. ~111!

Since@a#50 we will havea15a2ªR. Now, the Euclidean sector can be interpreted as aS4

with S3 sections defined byt5const. The boundary of the Euclidean sector, defined byt50, is an
S3 having the radiusR5a25H0

21 which is the maximum value ofa2 cos(a2
21t). In the Lorent-

zian sector the cosmological constant is given byL53a1
2253H0

2.26 The t5const surfaces areS3

with radiusa1 cosh(a1
21t) having the minimum valueR5a15H0

21.23 Therefore, the following
relation between the cosmological constant and the radius of the boundary is obtained:

L5
3

R2 . ~112!

Following the same procedure as for the metric~75! and again using Colombeau’s algebra,
simply using~108!, we find for the elements of energy–momentum tensor of the hypersurfa

kSm
n 5diag~0,P,P,P!, ~113!
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whereP is defined as

P5S 2

R
tanh~R21t !2

2

R
tan~R21t ! D u~ t50!~t21!50. ~114!

We therefore conclude that given the de Sitter metric in the form of~110! the energy–momentum
tensor of the hypersurface of signature change defined byt50 vanishes. This is a familiar resu
the previous authors usually assume from the beginning but we obtain it as a special case d
ing on the form of the metric of space–time.

It may be useful to look at the Darmois–Israel approach. There we have the following re
between the energy–momentum tensor of the singular hypersurface and the jump of the e
curvature:

kSi
j5@Ki

j #2hi
j@K#, ~115!

wherehi
j is the three-metric of the singular hypersurface. The extrinsic curvature is defined

Ki j 5ei
mej

n¹mnn , ~116!

whereei , the mutually normal unit four-vectors in signature changing surfaceF, are defined as

ei
m5

]xm

]j i , i 51,2,3. ~117!

j i are coordinates adopted to the signature changing surfaceS and ¹m denotes the covarian
derivative with respect to the four-geometry. We then find for the nonvanishing compone
extrinsic curvature in Lorentzian sector@with f (t)511#

Ki
1 i52

1

a1
tanh~a1

21t !, i 51,2,3. ~118!

The corresponding components in the Euclidean sector are@with f (t)521#

Ki
2 i5

1

a2
tan~a2

21t !, i 51,2,3. ~119!

Now we obtain for the jump of the extrinsic curvature on the signature change surface

@Ki
i #5~Ki

1 i2Ki
2 i !u t505S 2

1

R
tanh~R21t !2

1

R
tan~R21t ! D u t5050, i 51,2,3. ~120!

Within the Darmois–Israel approach to signature change it is used to assume that the e
momentum tensor of the singular hypersurface vanishes. Therefore, given the above-me
result, the junction condition~115! is satisfied and it is concluded that the matching is possible
contrast to this within the distributional approach, using Coloumbeau algebra, we obtain in g
a nonvanishing expression for the energy–momentum tensorSmn and no explicit junction condi-
tion. The Einstein equations written for the whole manifold imply the junction conditions. On
the special case of the metric~110! does the matching att50 lead toSmn50. One could require
a matching along other sections corresponding to a nonmaximum radius of the Euclidean se
a nonminimum radius of the Lorenzian sector. In this case the energy–momentum tensor
singular surface may not be vanishing anymore, and has to be checked in each case.
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VI. CONCLUSIONS

There are two different approaches for gluing manifolds in general relativity: the Darm
Israel and distributional approaches. In this paper we have shown how these approaches
used to find dynamics of hypersurfaces in general relativity and modern cosmology. We
discussed the extent to which these approaches are equivalent and it has been shown that
hypersurfaces can be treated in the framework of distributional approach and there is a
formalism for treating all kinds of hypersurfaces. Also it has been shown that theory of
generalized functions combined with distributional approach is a reasonable framework for
ing signature changing manifolds. It is important to note that one of our main results is no
ishing jump of extrinsic curvature in general signature changing hypersurfaces. This pote
contains interesting results about the nature of space–times emerging after signature cha
theory of cosmological perturbations in signature changing space–times.26 The other main result is
the possibility of treating null hypersurfaces in the framework of distributional approach.
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A. Pravdováa) and V. Pravdab)

Mathematical Institute, Academy of Sciences, Zˇ itná 25, 115 67 Prague 1, Czech Republic
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Boost–rotation symmetric vacuum space–times with spinning sources which cor-
respond to gravitational field of uniformly accelerated spinning ‘‘particles’’ are
studied. Regularity conditions and asymptotic properties are analyzed. News func-
tions are derived by transforming the general spinning boost–rotation symmetric
vacuum metric to Bondi–Sachs coordinates. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1433941#

I. INTRODUCTION AND SUMMARY

Boost–rotation symmetric space–times correspond to gravitational field of uniformly a
erated ‘‘particles.’’ Usually conical singularities, which provide the ‘‘source’’ of the accelerat
are also present on the axis of the axial symmetry.

Boost–rotation symmetric space–times have two Killing vectors~the axialj and the boosth
Killing vectors! and it has been proven that they are the only axially symmetric space–times
an additional symmetry that are radiative and admit global null infinity.1 This result was general
ized for spinning sources, i.e., for nonhypersurface orthogonal Killing vectors, in Ref. 2. More
boost–rotation symmetric space–times are the only radiative asymptotically flat space–
known in an analytical form which represent moving sources. While there are several k
boost–rotation symmetric solutions with nonrotating sources~see Refs. 3 and 4, and referenc
therein!, there is only one known exact solution with spinning sources—the spinningC-metric5–8

corresponding to two uniformly accelerated Kerr black holes.
Thanks to the rotation of sources there appear torsion singularities besides conical sin

ties on the axis of the axial symmetry and consequently there can be regions with closed ti
curves~see Ref. 9, Refs. 6, 8 and 10 for examples, and Ref. 10 for references!.

The structure of a boost–rotation symmetric space–time with hypersurface orthogonal K
vectors was studied in Ref. 11 and the general form of its news function was found in Ref
and 13. Recently, news functions for spinning boost–rotation symmetric Petrov-type D s
times were computed in late time approximation in Ref. 14.

The present paper, where some results by Bicˇák and Bičák and Schmidt from Refs. 11–13 ar
generalized, is organized as follows. In Sec. II spinning boost–rotation symmetric~brs! vacuum
space–times in coordinates adapted to the boost and rotation symmetries and null coordin
examined, e.g., regularity of the space–time on the roof and on the axis and asymptotic flat
null infinity are studied. In Sec. III the spinning brs metric is transformed from the coordin
adapted to the boost and rotation symmetries to the Bondi–Sachs coordinates,15–17 suitable for
examining radiation, to find the news functions of spinning brs space–times.

II. SPINNING BOOST–ROTATION SYMMETRIC SPACE–TIMES: REGULARITY
CONDITIONS, ASYMPTOTIC BEHAVIOR

The general form of a spinning brs metric in coordinates adapted to the boost and ro
symmetries$t,r,z,w% is6

a!Electronic mail: pravdova@math.cas.cz
b!Electronic mail: pravda@math.cas.cz
15360022-2488/2002/43(3)/1536/11/$19.00 © 2002 American Institute of Physics

                                                                                                                



ial

ing
pinning
re the
like
he

the

1537J. Math. Phys., Vol. 43, No. 3, March 2002 Boost–rotation symmetric vacuum space–times

                    
ds252el dr22r2e2m dw212aem~z dt2t dz!dw1a2em~z22t2!dw2

2
1

z22t2 @~elz22emt2!dz222zt~el2em!dz dt2~emz22elt2!dt2#, ~1!

wherem, l, anda are functions of

A5r2, B5z22t2.

It has two Killing vectors

j5
]

]w
, h5t

]

]z
1z

]

]t
~2!

with norms

jaja5gww52r2e2m1a2~z22t2!em52Ae2m1a2Bem,

haha5gttz
21gzzt

212gztzt5Bem.

As in the nonspinning case,11 two null hyperplanesB50, i.e.,z56t, will be called the ‘‘roof,’’
the points withA50 the ‘‘axis,’’ the region of the space–time withB,0 ‘‘above the roof,’’ and
finally the region withB.0 ‘‘below the roof.’’ Notice that the behavior of the boost and ax
Killing vectors ~2! is more complicated in the spinning case. Below the roof (B.0), the boost
Killing vector h is mostly timelike as in the nonspinning case but in the vicinity of spinn
sources there may also occur ergoregions where it is spacelike. Due to the presence of s
strings there may be also regions in their neighborhood with closed timelike curves whe
axial Killing vector j is timelike. In order to determine if there exist both timelike and space
Killing vectors everywhere below the roof (B.0), we study a general linear combination of t
boost and the axial Killing vectors with constant coefficientsX5c1j1c2h. Its norm may be both
positive and negative if the product of eigenvalues of the quadratic form (c1

2gff1¯) given by
the norm is negative, i.e., if2r2B,0, which is satisfied everywhere below the roof, where
space–time is thus stationary and may be transformed to the stationary Weyl metric~A1! ~see, e.g.,
Ref. 6!. However, above the roof (B,0), the product is everywhere positive2r2B.0 and thus
there does not exist a timelike Killing vector and the space–time is nonstationary there.~It is
easier to perform these calculations in coordinates$g,r,b,w% and$b,r,x,w%, given in Appendix
A, for regions below and above the roof, respectively.!

Vacuum Einstein’s equations for the spinning brs metric~1! are

Am,AA1Bm,BB1m,A1m,B52
B

A
e2m~Aa,A

21Ba,B
2!, ~3!

05AB~e2ma,A!,A1~B2e2ma,B!,B , ~4!

~A1B!l,A5~A2B!m,A22Bm,B2B~Bm,B
22Am,A

2!12ABm,Am,B

1
B2

A
e2m~Ba,B

22Aa,A
222Aa,Aa,B!, ~5!

~A1B!l,B5~A2B!m,B12Am,A1A~Bm,B
22Am,A

2!12ABm,Am,B

2Be2m~Ba,B
22Aa,A

212Ba,Aa,B!. ~6!

Notice that Eqs.~3! and ~4! are integrability conditions for Eqs.~5! and ~6!.
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First let us investigate the regularity of the roof and the axis. From Eq.~5! it follows that on
the roof ~i.e., for B50!

l,A~A,0!5m,A~A,0! → l~A,0!2m~A,0!5K15const.

The roof is regular@i.e., gzz, gtt , andgtz in ~1! are nonsingular on the roof# if for B50

l~A,0!5m~A,0!, i.e., K150. ~7!

From Eqs.~3!, ~5!, and~6! on the axis (A50) we get

a,B~0,B!50 → a5ã01ã1~B!A1O~A2!, ã05const,

l,B~0,B!1m,B~0,B!50 → l~0,B!1m~0,B!5K25const.

The axis regularity condition

lim
r0→0

1

2p

*0
2pAgwwur0

dw

*0
r0Agrrdr

51

@or equivalentlygxx , gyy are nonsingular andgxy50 there, see~A5!# is satisfied if

a~0,B!50 → a5ã1~B!A1O~A2!, i.e., ã050, ~8!

l~0,B!1m~0,B!50, i.e., K250. ~9!

If K2Þ0 there is a conical singularity along the axis and ifã0Þ0 a torsion singularity is presen
there. The regularity condition of the roof~7! is the same as for nonspinning brs space–time11

however, a new condition~8! arises for the regularity of the axis except for~9! which also appears
in the nonspinning case.11

Now let us turn our attention to asymptotic behavior of spinning brs space–times a
infinity. For this purpose we transform~1! to null coordinates in two steps: first transforming it
coordinates$b,r,x,w% by ~3.10! in Ref. 11

b5A2B5At22z2, tanhx56
z

t

we obtain the metric

ds25el~db22dr2!2r2e2m dw22b2em~dx1a dw!2. ~10!

Finally transforming~10! to coordinates$ū,v̄,x,w% by ~3.15! in Ref. 11

ū5b2r, v̄5b1r

we obtain

ds25el dū dv̄2
~ v̄2ū!2

4
e2m dw22

~ v̄1ū!2

4
em~dx1a dw!2. ~11!

Vacuum Einstein’s equations for~11! read
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m,ūv̄1
1

v̄22ū2 ~ v̄m,ū2ūm,v̄!5S v̄1ū

v̄2ūD 2

e2ma,ūa,v̄ ,

05a,ūv̄1a,ūS m,v̄1
v̄22ū

v̄22ū2D1a,v̄S m,ū1
2v̄2ū

v̄22ū2D ,

~12!

2ūl,ū5 v̄m,ū1
v̄22ū2

4
m,ū

21
~ v̄1ū!3

v̄2ū

e2m

4
a,ū

2,

2 v̄l,v̄5ūm,v̄2
v̄22ū2

4
m,v̄

22
~ v̄1ū!3

v̄2ū

e2m

4
a,v̄

2.

Assuming the metric functionsm, l, and a to have expansions inv̄21 for v̄→`(m(ū,v̄)
5m0(ū)1m1(ū)/ v̄1¯) and solving Eqs.~12! at null infinity, i.e., for the limitv̄→` and ū, x,
w constant, we get

m5m01
m1~ ū!

v̄
1O~ v̄22!, l5l0~ ū!1

l1~ ū!

v̄
1O~ v̄22!, a5a01

a1~ ū!

v̄
1O~ v̄22!,

~13!

wherea0 andm0 are constants andl0(ū) satisfies

l0 ,ū52
1

4ū
~4m1 ,ū1m1 ,ū

21e2m0a1 ,ū
2!.

The metric~11! with the metric functions~13! is asymptotically Minkowskian at null infinity as in
the limit v̄→` and ū, x, w constant, it can be transformed to the Minkowski metric using
transformations~3.23! and ~3.24! in Ref. 11

ū85e~1/2! m0E el0(ū) dū, v̄85e2 ~1/2! m0v̄, x85em0x

and

x95x81a0em0w.

III. THE BONDI–SACHS COORDINATES AND NEWS FUNCTIONS FOR SPINNING brs
SPACE–TIMES

In this section we transform the spinning brs metric~1! into the Bondi–Sachs coordinate
$u,r ,u,f%, in which the metric that does not depend onf because of the axial symmetry, has t
form15–17

ds25guu du212gur du dr 12guu du du12guf du df1guu du21gff df212guf du df
~14!

with the following expansion forr→` andu, u, andf constant:
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guu512
2M

r
1O~r 22!,

gur512
c21d2

2r 2 1O~r 24!,

guu52~c,u12c cotu!1O~r 21!,

guf52~d,u12d cotu!sinu1O~r 21!, ~15!

guu52r 222cr22~c21d2!1O~r 21!,

guf522dr sinu1O~r 0!,

gff52r 2 sin2 u12cr sin2 u22~c21d2!sin2 u1O~r 21!,

where c, d, and M are functions ofu and u. As a consequence of Einstein’s equations, ti
dependence of the mass aspectM is determined by the news functionsc,u andd,u ~Refs. 16 and
17!,

M ,u52~c,u
21d,u

2!1 1
2 ~c,uu13c,ucotu22c!,u .

If there is nonvanishing news function, gravitational radiation is present and the total Bondi
at future null infinity is decreasing.

In order to find the transformation of spinning brs space–times from the coordinates$t,r,z,w%
with the metric ~1! into the Bondi–Sachs coordinates$u,r ,u,f% with the metric ~14! and its
expansions~15! we follow Ref. 12 and we first transform the metric~1! to flat-space spherica
coordinates$R,Q,w% and a flat-space retarded timeU using the relations

t5U1R, r5R sinQ, z5R cosQ. ~16!

We assume the metric functions to have the expansions in powersR21,

l~U,Q!5l0~U,Q!1
l1~U,Q!

R
1O~R22!,

m~U,Q!5m01
m1~U,Q!

R
1O~R22!, ~17!

a~U,Q!5a01
a1~U,Q!

R
1O~R22!,

wherem0 anda0 are constants and thus

el5b~U,Q!S 11
l1~U,Q!

R
1O~R22! D , em5aS 11

m1~U,Q!

R
1O~R22! D ~18!

with

b~U,Q!5el0(U,Q), a5em0. ~19!

Now we transform the metric further to the Bondi–Sachs coordinates by an asymptotic
formation
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U5p
0

~u,u!1
p
1

~u,u!
r 1

p
2

~u,u!

r 2 1O~r 23!,

R5q~u,u!r 1s
0
~u,u!1

s
1
~u,u!

r 1O~r 22!,

~20!

Q5t
0
~u,u!1

t
1
~u,u!

r 1
t
2
~u,u!

r 2 1O~r 23!,

w5f1 f
0
~u,u!1

f
1
~u,u!

r 1
f
2
~u,u!

r 2 1O~r 23!.

Comparing the resulting metric expansions with the expansions~15! we obtain differential
equations for coefficients entering the asymptotic transformation~20!. Since these equations ar
lengthy we present only their solutions in Appendix B. Their integrability condition@obtained
comparing~B4! and ~B5!# turns out to be the same as in the nonspinning case12

b,p
0p

0

1b,t
0 tant

0

50, or equivalently l0 ,UU1l0 ,Q tanQ50,

where the relationsb,u5b,p
0

p
0

,u andb,u5b,t
0
t
0
,u1b,p

0
p
0

,u have been used. Solving Eqs.~B1!,
~B2!, ~B3!, and~B6! one may infer the first-order coefficients in the expansions~20!,

t
0
52 arctan@e2n~ tan 1

2 u!K#, ~21!

q5
1

AK
sin

1

2
u cos

1

2
uFenS cot

1

2
u D K

1e2nS tan
1

2
u D KG , ~22!

f
0
5

a0a
K lnS sint

0

11cost
0D , ~23!

p
0

,u5
1

bq , ~24!

where K[ (11a0
2a2)/a and n is an arbitrary constant. The axis~which is the same in both

coordinates, i.e.,Q50, p→u50, p! is singular forKÞ1 asq goes to 0 forK,1 and to` for
K.1 there. Since the coordinate system$t,r,z,w% can be chosen in such a way thata050, we
present here news functions fora050 and the casea0Þ0 is given in Appendix B. From Eqs.~B7!
and ~B8! we obtain the news functions

c,u5
1
2 m1 ,u2

q,u
2

2q2 2
q,u cott

0

q2Aa
1

1

2q2b sin2 t
0 2

1
2 2

cot2 t
0

2q2a
, ~25!
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d,u52 1
2 aa1 ,u . ~26!

Having the news functions of the system one can then compute the Bondi mass~see Ref. 2!.
For a special caseK5a51, i.e., for a regular axis, we get from~21!, ~22!, and~23!

t
0
52 arctan~e2n tan 1

2 u!, q5coshn1cosu sinhn, f
0
50. ~27!

Coordinate systems with differentn are connected by Lorentz transformations along the a
belonging to the Bondi–Metzner–Sachs group and thus as in Ref. 12 we may without lo

generality putn51 which impliesq51 and
0

t5u. Then the coefficient
0

t can be computed from
the relation

E el0(p
0

,u) dp
0

5u1v~u! ~28!

obtained from Eq.~24!. The functionv(u) in ~28! represents a supertranslation also belonging
the Bondi–Metzner–Sachs group and thus it may be again put equal to zero without lo
generality. Finally the news functions~25! and ~26! read

c,u52
1

2 sin2 u
1

1

2b sin2 u
1

1

2
m1 ,u5

1

2b sin2 u
~12b1m1 ,ub sin2 u!, ~29!

d,u52 1
2 a1 ,u . ~30!

For a150 ~29! and~30! reduce to news functions as given in Refs. 12 and 13 for the nonrota
case.
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APPENDIX A: COORDINATE SYSTEMS ADAPTED TO THE BOOST AND ROTATION
SYMMETRIES

In the nonradiative stationary region below the roof, a spinning brs metric can be transfo
to the stationary Weyl coordinates$ t̄ ,r̄,z̄,w̄% with the Killing vectorsj5]w̄ , h5] t̄ , and the
metric

ds252e22U@e2n~dr̄21dz̄2!1 r̄2 dw̄2#1e2U~dt̄ 1a dw̄ !2. ~A1!

Vacuum Einstein’s equations have the form18
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U,r̄ r̄1U,z̄z̄1
U,r̄

r̄
52

e4U

2r̄2 ~a,r̄
21a,z̄

2!,

05S e4U
a,r̄

r̄ D ,r̄1S e4U
a,z̄

r̄ D ,z̄ ,

~A2!
n,r̄

r̄
5U,r̄

22U,z̄
22

e4U

4r̄2 ~a,r̄
22a,z̄

2!,

n,z̄

r̄
52U, r̄U,z̄2

e4U

2r̄2 a,r̄a,z̄ .

Another appropriate coordinate system in the stationary region below the roof is$g,r,b,w%
with Killing vectors j5]w , h5]g and the metric

ds252el~dr21db2!2r2e2m dw21b2em~dg1a dw!2, ~A3!

connected with the stationary Weyl coordinates by@see~5.4! and ~5.6! in Ref. 11#

t̄ 5g, r̄5rb, z̄2 z̄05
b22r2

2
, w̄5w, z̄05const, e2U5b2em, e2n5

b2

r21b2 em1l.

Vacuum Einstein’s equations read

m,rr1m,bb1
m,r

r
1

m,b

b
52

b2

r2 e2m~a,r
21a,b

2!,

05S b3

r
e2ma,rD ,r1S b3

r
e2ma,bD ,b ,

~A4!

~r21b2!l,r5~r22b2!m,r22rbm,b2 1
2 rb2~m,b

22m,r
2!1r2bm,rm,b

1
b4

2r
e2mS a,b

22a,r
222

r

b
a,ra,bD ,

~r21b2!l,b5~r22b2!m,b12rbm,r1 1
2 r2b~m,b

22m,r
2!1rb2m,rm,b

2
1

2
b3e2mS a,b

22a,r
212

b

r
a,ra,bD .

The stationary region of a brs space–time, under the roof, is composed of two identical re
~z.0, z.utu andz,0, z,2utu! and each of them can be transformed to coordinates$ t̄ ,r̄,z̄,w̄% or
$g,r,b,w%.

By further transformation~3.5! in Ref. 11 to coordinates$t,r,z,w%

tanhg56
t

z
, b5Az22t2, B[b2, A[r2,

we arrive at the metric~1! where a nonstationary region above the roof~again composed of two
identical regions! appears as in the nonspinning case.11

For examining regularity of the axis it is convenient to transform~1! to coordinates$t,x,y,z%,
wherex5r cosw, y5r sinw:
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ds252
1

x21y2 F ~elx21e2my2!dx21~ely21e2mx2!dy212xy~el2e2m!dx dy

2
z22t2

x21y2 a2em~2y dx1x dy!222aem~2yzdx dt1yt dx dz1xzdy dt2xt dy dz!

2
1

z22t2 @~elz22emt2!dz222zt~el2em!dz dt2~emz22elt2!dt2#. ~A5!

Let us finally write down vacuum Einstein’s equations for the metric~10! with the Killing
vectorsj5]w , h5]x

m,rr2m,bb1
m,r

r
2

m,b

b
5

b2

r2 e2m~a,r
22a,b

2!,

05S b3

r
e2ma,rD ,r2S b3

r
e2ma,bD ,b ,

~A6!
~r22b2!l,r5~r21b2!m,r22rbm,b2 1

2 rb2~m,b
21m,r

2!1r2bm,rm,b

1
b4

2r
e2mS 2a,b

22a,r
212

r

b
a,ra,bD ,

~r22b2!l,b52~r21b2!m,b12rbm,r2 1
2 r2b~m,b

21m,r
2!1rb2m,rm,b

1
b3

2
e2mS 2a,b

22a,r
212

b

r
a,ra,bD .

The coordinates$b,r,x,w% for the nonstationary region above the roof are analogical to coo
nates$g,r,b,w% ~A3! in the stationary region below the roof.

As for ~3!–~6!, in each set of Einstein’s equations~A2!, ~A4!, and ~A6!, the first two are
integrability conditions for the other two.

APPENDIX B: TRANSFORMATION OF THE SPINNING brs METRIC TO THE
BONDI–SACHS COORDINATES

The spinning brs metric~1! with expansions~17!–~19! being transformed to the Bondi–Sach
coordinates with the metric~14! using transformations~16!, ~20! and compared with~15! leads to
lengthy equations for coefficients of the asymptotic transformation~20! and metric functions from
~15!. We present here only their solutions:

~guf ,r 2!50 → f
0

,u5t
0

,u

a0a

K sint
0

,

~guu ,r 2!50 →t
0

,u505 f
0

,u ,
~B1!

~guu ,r 1!50 →q,u50,

~guf ,r 2!50 → f
0

,u5t
0

,u

a0a

K sint
0

,
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~guu ,r 2!521 →t
0
,u56

AK
q ~we use the sign1!, ~B2!

~gur ,r 0!51 →p
0

,u5
1

bq , ~B3!

~grf ,r 0!50 → f
1
5

a0a

q sin2 t
0

t
1
q sint

0
1p

0
cost

0

K ,

~gru ,r 0!50 →t
1
52

1

t
0
,uq sint

0 @p
0

,ubK sint
0
1p

0
t
0
,u cost

0
~12bK !#, ~B4!

~grf ,r 0!50 → f
1
5

a0ab

qt
0
,u sin2 t

0 ~p
0

t
0
,u cost

0
2p

0
,u sint

0
!,

~guu ,r 1!50 →t
1
,u5

1

bq3t
0
,u sint

0 @q,ubK sint
0
1t

0
,uq cost

0
~211bK !#, ~B5!

~guugff ,r 3!50 →s
0

5
1

2t
0
,u
3 sin2 t

0 $t
0
,u
3~122 sin2 t

0
!p

0
~12bK !1K sint

0
@bp

0
,u~t

0
,u
2 cost

0

2t
0
,uusin t

0
!1t

0
,u~b,u~p

0
,u sint

0
2p

0
t
0
,u cost

0
!1bp

0
,uu sint

0
!#%,

~gff ,r 2!52sin2 u →sint
0

56
sinu

qAK
, ~B6!

~gff ,r 1!52c sin2 u

→c52
1

2q sin2 t
0
~11a0

2a2!
@2 sint

0
~11a0

2a2!~s
0

sint
0
1t

1
q cost

0
!

1m1q sin2 t
0
~211a0

2a2!12a0a2~a0p
0

1a1q sin2 t
0

!#

→c,u52
a0a
K a1 ,u1

12a0
2a2

2~11a0
2a2!

m1 ,u2
q,u

2

2q22
q,u cott

0
AK

q2

1
12a0

2a2

2q2b sin2 t
0
~11a0

2a2!
2

1
2 2

K cot2 t
0

2q2 , ~B7!
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~guf ,r 1!522d sinu →d52
1

2qK sin2 t
0 @~12a0

2a2!qa1 sin2 t
0

12qa0m1 sin2 t
0

12a0p
0

#

→d,u52
a0

q2Kb sin2 t
0 2

a0

K m1 ,u2
12a0

2a2

2K a1 ,u . ~B8!

Equations (guu ,r 0)51, (guu ,r 2)50, (guf ,r 1)50, (grr ,r 21)50, (gru ,r 1)50, (grf ,r 1)50, and
(guu ,r 1)522c are satisfied identically.
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The multiple sum formulas for 12 j coefficients of SU „2…
and u q„2…

Sigitas Ališauskas
Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, Vilnius 2600, Lithuania

~Received 22 September 2000; accepted for publication 29 November 2001!

The expressions for 12j coefficients of the both kinds~without and with braiding! of the
SU~2! group and the quantum algebrauq(2) are considered. Using Dougall’s summatio
formula of the very well-poised hypergeometric5F4(1) series and itsq-generalization,
several fourfold sum formulas@with each sum related to the balanced5F4(1) or 5f4 series#
for the q-12j coefficients of the second kind~without braiding! are derived. Applying
q-generalizations of rearrangement formulas of the very well-poised hypergeom

6F5(21) series@which correspond to a new expression for the Clebsch–Gordan co
cients of SU~2! anduq(2)#, the new expressions with five sums@of the4F3(1) and3F2(1)
or 4f3 and3f2 type# are derived for theq-12j coefficients of the first kind~with braiding!
instead of the usual expansions in terms ofq-6 j coefficients. Stretched and doub
stretchedq-12j coefficients@as triple, double, or single sums, related to composed
separate hypergeometric4F3(1) and 5F4(1) or 4f3 and 5f4 series and, particularly, to
q-9 j or q-6 j coefficients# are considered. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1436305#

I. INTRODUCTION AND PRELIMINARIES

The 3n j coefficients arise as the recoupling coefficients of several irreducible represent
~irreps! of the SU~2! group and play the important role in the quantum mechanical ang
momentum theory1,2 and the Wigner–Racah irreducible tensor calculus, for construction of
complicated matrix elements of the coupled irreducible tensor operators. After the 6j ~Racah! and
9 j ~Wigner! coefficients~with single and triple sums in expressions, respectively!, the 12j coef-
ficients of both kinds1,2 also have many applications as the recoupling coefficients of the
irreps of the SU~2! group.

There are two known types of expressions for 9j coefficients: the usual expansion1,2 of
9 j coefficients in terms of 6j coefficients@including four sums, three in 6j coefficients and the
last one weighted with factor (2j 11)# and the more compact formula, derived originally b
Ališauskas and Jucys.3 Different new expressions~of the second type, i.e., as a triple sum seri!
for the 9j coefficients of the SU~2! group and the quantum algebrauq(2) were derived recently,4

generalizing the second Rosengren5,6 approach to the 9j coefficients of thesu(1,1) algebra, when
their expansion in terms of 6j coefficients was rearranged using Dougall’s summation formula7 of
the very well-poised4F3(21) series.

For the quantum algebrauq(2), the expansion of theq-9 j coefficients in terms ofq-6 j
coefficients~Nomura8–10 and Smirnovet al.11! was also extended toq-3n j coefficients~particu-
larly, those of the second and the first kinds! by Nomura,9,10 who discussed their role in frames o
the Yang–Baxter relations. The corresponding summation formula of the twistedq-factorial series
~generalizing Dougall’s summation formula and resembling the very well-poised basic hype
metric5f4 series!, depending on three parameters and used in our previous paper,4 was derived by
Ališauskas,12 when the twisted very well-poisedq-factorial series, resembling the basic hyperge
metric 7f6 series~depending on five parameters! appear in a new approach13 to the Clebsch–
Gordan~CG! coefficients ofuq(2). In theuq(3) context, Ališauskas12 also used the summatio
formula of theq-factorial series depending on four parameters which correspond to Dou
summation formula of the very well-poised hypergeometric5F4(1) or basic hypergeometric6f5

series.7,14
15470022-2488/2002/43(3)/1547/22/$19.00 © 2002 American Institute of Physics
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The main purpose of the present article is to rearrange expressions for theq-12j and the usual
12j coefficients of both kinds into more convenient forms, with minimal number of sums,
least without the cumbersome factorial sums weighted with factors@2 j 11# or (2j 11), which
appear from the compositions of theq-6 j or usual 6j coefficients expanded in different forms. W
also consider the stretched and doubly stretched 12j andq-12j coefficients, representative for th
new types of the higher single and multiple~ordinary and basic! hypergeometric series.

Further in this section, the appropriate expressions for the 6j coefficients of SU~2! anduq(2)
are discussed, which allow one to generalize Rosengren’s6,4 approach. Section II is devoted t
rearrangement of the usual expansion formula~in terms of 6j andq-6 j coefficients! of 12j and
q-12j coefficients of the second kind1,2,10 ~i.e., without braiding9! into the fourfold sums, using
Dougall’s summation formula7,14 of the very well-poised5F4(1) and6f5 series, depending on
four parameters~see Appendix A, where usable Saalschu¨tzian and Minton’s summation formula
are also presented!. Also, specific stretched and doubly stretched 12j andq-12j coefficients of the
second kind are studied. As a rule, we present explicitly only those doubly stretchedq-12j
coefficients, which cannot be derived simply by inserting some fixed values of summation p
eters.

In Sec. III, expressions of 12j andq-12j coefficients of the first kind1,2 ~with braiding10! in
terms ofq-6 j coefficients are rearranged using the transformation formula12 of the very well-
poised 6F5(21) series orq-factorial sums~depending on five parameters and weighted w
factors (2j 11) or @2 j 11#!, resembling the very well-poised basic hypergeometric7f6 series and
related to a new expression for the Clebsch–Gordan coefficients of SU~2! anduq(2) ~see Appen-
dix B!. Diversity of the stretched and doubly stretched 12j andq-12j coefficients of the first kind
are also considered, including the explicit doubly stretchedq-12j coefficients, which are propor
tional to someq-9 j andq-6 j coefficients.

Here and in what follows@x# and @x#! are, respectively,q-numbers andq-factorials,

@x#5~qx2q2x!/~q2q21!, @x#! 5@x#@x21# ¯ @2#@1#, @1#! 5@0#! 51, ~1.1!

which are invariant under substitutionq→q21 and turn into usual integersx and factorialsx! for
q51.

Only those expressions~see Sec. II of Ref. 4! for the 6j ~Racah! coefficients2,15–17of SU~2!
anduq(2) are appropriate for our purpose, that include asymmetric triangle coefficients,

¹@abc#5S @a1b2c#! @a2b1c#! @a1b1c11#!

@b1c2a#! D 1/2

, ~1.2!

before theq-factorial sum. They are given by

H a b e

d c fJ
q

5
¹@ac f#¹@db f#

¹@abe#¹@dce# (z

~21!a1b1c1d1z@c1 f 2a1z#!

@z#! @a1c2 f 2z#! @b1d2 f 2z#!

3
@b1 f 2d1z#! @a1d1e2 f 2z#!

@e1 f 2a2d1z#! @2 f 1z11#!
~1.3a!

5
¹@eab#¹@ f bd#

¹@ecd#¹@ f ac# (
z

~21!b1c1e1 f 1z@2b2z#!

@z#! @b1e2a2z#! @b1 f 2d2z#!

3
@b1e1 f 2c2z#! @b1c1e1 f 2z11#!

@a1b1e2z11#! @b1d1 f 2z11#!
, ~1.3b!

where each parameterb,c,e, or @after some shift of summation parameter, see~2.1b! of Ref. 4# f
appears only twice in the factorial arguments under the summation sign in~1.3a!, as well as each
parametera,c,d, or @after inversion of summation parameter, see~2.2b! of Ref. 4# b under the
summation sign in~1.3b!. Hence, the very well-poised series may appear only when thej -type
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summation parameters~weighted with factors@2 j 11#! accept the corresponding position in e
pansions in terms ofq-6 j coefficients. Otherwise, the most symmetric~Racah! and the remaining
expressions for 6j and q-6 j coefficients1,2,15,16 ~which include only usual symmetric triangl
coefficientsD@abc# in the numerator and denominator before the summation sign, with
parameter appearing four times in the factorial arguments under the summation sign! for this
purpose are useless.

It should also be noted that only the expressions presented above~1.3a! and~1.3b! are corre-
lated with the Racah polynomials as introduced by Askey and Wilson,18,19 ~see Ref. 14!. In
contrast, the most symmetric and the remaining expressions for 6j andq-6 j coefficients turn into
the Racah polynomials only after some Whipple20 ~Bailey21! or Sears22 transform14 of the bal-
anced hypergeometric4F3(1) or 4f3 series are used.

II. EXPRESSIONS FOR 12j COEFFICIENTS OF THE SECOND KIND
OF SU„2… AND Uq„2…

A. Generic properties

The 3n j coefficients of the second kind1,23 (n>4), whose graphs are planar@hence without
braiding,9,10 in contrast with the 3n j coefficients of the first kind (n>3), whose graphs are
possible only on the Mo¨bius strip# usually are expanded1,2 in terms of factorizedn different 6j
coefficients,

F j 1 j 2 ¯ j n

l 1 l 2 ¯ l n

k1 k2 ¯ kn

G
5(

x
~2x11!~21!Rn1nx1H j 1 k1 x

k2 j 2 l 1
J

3H j 2 k2 x

k3 j 3 l 2
J¯H j n21 kn21 x

kn j n l n21
J H j n kn x

k1 j 1 l n
J , ~2.1!

where

Rn5(
i 51

n

~ j i1ki1 l i !,

and the triangular conditions are satisfied by the triplets of the nearest neighbors asl i , j i , j i 11 , or
l i ,ki ,ki 11 ( i 51,2,. . . ,n21), or l n , j n , j 1 , or l i ,kn ,k1 , respectively.

The 12j coefficients of the second kind, which may be extracted from the recoupling co
cients of the five irreps without braiding,9 hence, with the cubic graph1

~2.2!
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were introduced by Elliott and Flowers24 and redefined by Vanagas and Cˇ iplys.25 These
12j coefficients and theirq-generalizations satisfy 24 symmetries,1,2,25generated by the following
substitutions:

F j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 k4

G
q

5~21! j 12 j 22 j 31 j 41k12k22k31k4F j 1 k1 j 2 k3

l 1 l 3 l 4 l 2

j 3 k2 j 4 k4

G
q

~2.3a!

5F j 4 j 3 j 2 j 1

l 4 l 3 l 2 l 1

k4 k3 k2 k1

G
q

5F l 1 l 2 l 3 l 4

k1 k2 k3 k4

j 1 j 2 j 3 j 4

G
q

~2.3b!

5F k4 k2 k3 k1

l 4 l 2 l 3 l 1

j 4 j 2 j 3 j 1

G
q

5F j 1 j 2 j 3 j 4

l 2 l 1 l 4 l 3

k3 k4 k1 k2

G
q

. ~2.3c!

Eight triangular conditions may be visualized2 by means of the extended array

F j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 k4

G
j 2 j 3

l 2 l 3

and are satisfied by the triplets of parameters in the first and fourth columns, as well as
skew triplets descending from some parameter of the first or fourth column, e.g., byl 1 ,k2 , j 3 , or
by j 4 ,l 3 ,k2 .

We restrict ourselves to the following rearrangements of theq-6 j coefficients in
expressions1,2,10 for the q-12j coefficients of the second kind:

F j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 k4

G
q

5~21! l 12 l 22 l 31 l 4(
x

@2x11#H k1 j 1 l 1

j 3 k2 x J
q

3H k3 k4 x

j 3 j 1 l 2
J

q
H k3 j 2 l 4

j 4 k4 x J
q
H k1 k2 x

j 4 j 2 l 3
J

q

~2.4a!

5~21! l 12 l 22 l 31 l 4(
x

@2x11#H k1 j 1 l 1

j 3 k2 x J
q

3H j 3 x j1

k3 l 2 k4
J

q
H k3 k4 x

j 4 j 2 l 4
J

q
H k1 x k2

j 4 l 3 j 2
J

q

~2.4b!
                                                                                                                



ng on

ter-
e, when

nd
e

1551J. Math. Phys., Vol. 43, No. 3, March 2002 The multiple sum formulas for 12j coefficients

                    
5~21! l 12 l 22 l 31 l 4(
x

@2x11#)H k1 j 1 l 1

j 3 k2 x J
q

3H k3 k4 x

j 3 j 1 l 2
J

q
H j 4 x j2

k3 l 4 k4
J

q
H k1 x k2

j 4 l 3 j 2
J

q

~2.4c!

5~21! l 12 l 22 l 31 l 4(
x

@2x11#H j 3 x j1

k1 l 1 k2
J

q

3H k3 x k4

j 3 l 2 j 1
J

q
H j 4 x j2

k3 l 4 k4
J

q
H l 3 j 2 k1

x k2 j 4
J

q

(8)

. ~2.4d!

This allows us to cancel the differently distributed asymmetric triangle coefficients dependi
the summation parameterx, when all theq-6 j coefficients are expressed by means of~1.3a!, with
exception of the last~primed! q-6 j coefficient in~2.4d!, in which case~1.3b! should be used. In
particular, using expression~1.3a! with shifted summation parameter@see~2.1b! of Ref. 4# for the
q-6 j coefficients with summation parameterx in the right lower position, then Eq.~1.3a! with
inverted summation parameter for theq-6 j coefficients withx in the middle column, followed by
Eq. ~1.3a! in the remaining cases@with exception of the last one in~2.4d!#, the summation
intervals are ensured, and we may use the summation formula~A1a! for expansion~2.4a! and
formula ~A1b! ~see Ref. 12! for expansions~2.4b!–~2.4d!. Again ~cf. the rearrangement4 of ex-
pressions forq-6 j coefficients! the formal summation intervals may exceed the interval de
mined by triangular conditions, and we need to consider each case separately. For exampl
min(j21j4,k31k4),x<min(j11j3,k11k2), or max(j12j3,k22k1).x>max(uj22j4u,uk32k4u,j32j1,k1

2k2), the definite sum of the type~1.3a! ~from two depending on the parameters in the left-ha
side of the corresponding inequality! in expansion of~2.4b! turns into 0, in accordance with th
q-version14 of Karlsson’s summation formula26 as presented by Eq.~2.13! of Ref. 4.

B. General expressions with fourfold sums

By carrying out the steps outlined above, we derive four different expressions for theq-12j
coefficients of the second kind:

F j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 k4

G
q

5~21! l 22 l 31k12k32 j 31 j 4
¹@k3 j 1l 2#¹@ j 3k4l 2#¹@k1 j 2l 3#¹@ j 4k2l 3#

¹@k1 j 1l 1#¹@ j 3k2l 1#¹@k3 j 2l 4#¹@ j 4k4l 4#

3 (
z1 ,z2 ,z3 ,z4

~21!z11z21z31z4@k21 j 32 l 11z1#! @k11 j 12 l 11z1#!

@z1#! @z2#! @z3#! @z4#! @ l 11k22 j 32z1#! @ j 11 l 12k12z1#!

3
@2l 12z1#! @ j 11 l 22k31z2#! @ l 22 j 31k41z2#!

@ j 12 l 21k32z2#! @ j 31k42 l 22z2#! @2l 21z211#!

3
@ j 41k42 l 41z3#! @ j 21k32 l 41z3#! @2l 42z3#!

@k41 l 42 j 42z3#! @ j 22k31 l 42z3#! @k11 j 22 l 32z4#! @2l 31z411#!

3
@ j 21 l 32k11z4#! @k21 l 32 j 41z4#!

@k22 l 31 j 42z4#! @k11k31 j 31 j 42 l 12 l 41z11z311#!
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3
@k11k31 j 31 j 42 l 22 l 32z22z4#!

@k11 l 22 l 12k31z11z2#! @ l 32 l 11 j 32 j 41z11z4#!

3
@ l 21 l 32 l 12 l 41z11z21z31z4#!

@ l 22 l 42 j 31 j 41z21z3#! @k32k11 l 32 l 41z31z4#!
~2.5a!

5~21! j 12 j 32k11k22 l 12 l 22 l 31 l 4
¹@ j 3k4l 2#¹@k3 j 2l 4#¹@k1 j 2l 3#¹@ j 4k4l 4#

¹@k1 j 1l 1#¹@ j 3k2l 1#¹@k3 j 1l 2#¹@ j 4k2l 3#

3 (
z1 ,z2 ,z3 ,z4

~21!z21z31z4@k21 j 32 l 11z1#! @k11 j 12 l 11z1#!

@z1#! @z2#! @z3#! @z4#! @ l 11k22 j 32z1#! @ j 11 l 12k12z1#!

3
@2l 12z1#! @2l 22z2#! @ j 12 l 21k31z2#!

@ l 21 j 32k42z2#! @ j 11 l 22k32z2#! @ l 21 j 31k42z211#!

3
@ j 22k31 l 41z3#! @k41 l 42 j 41z3#!

@ j 41k42 l 42z3#! @ j 21k32 l 42z3#! @2l 41z311#! @k12 j 21 l 32z4#!

3
@2l 32z4#! @k22 l 31 j 41z4#!

@k21 l 32 j 42z4#! @k11 j 21 l 32z411#! @k11k32 l 12 l 21z11z2#!

3
@ j 31 j 41 l 22 l 42z22z3#! @k11k31 l 32 l 42z32z4#!

@k12k31 j 32 j 42 l 11 l 41z11z3#! @ j 31 j 42 l 12 l 31z11z4#!

3
@ j 32 j 41k12k31 l 21 l 32z22z4#!

@ l 11 l 21 l 32 l 42z12z22z32z4#!
~2.5b!

5~21!k12k21 l 12 l 21 l 31 l 42 j 21 j 4
¹@k3 j 1l 2#¹@ j 3k4l 2#¹@ j 4k4l 4#¹@k1 j 2l 3#

¹@k1 j 1l 1#¹@ j 3k2l 1#¹@k3 j 2l 4#¹@ j 4k2l 3#

3 (
z1 ,z2 ,z3 ,z4

~21!z21z31z4@ j 31k22 l 11z1#! @ j 11k12 l 11z1#!

@z1#! @z2#! @z3#! @z4#! @ l 11k22 j 32z1#! @ j 12k11 l 12z1#!

3
@2l 12z1#! @ j 11 l 22k31z2#! @ l 22 j 31k41z2#!

@ j 12 l 21k32z2#! @ j 31k42 l 22z2#! @2l 21z211#! @ j 42k41 l 42z3#!

3
@2l 42z3#! @ j 22 l 41k31z3#!

@ j 22k31 l 42z3#! @ j 41k41 l 42z311#! @k12 j 21 l 32z4#!

3
@2l 32z4#! @k22 l 31 j 41z4#!

@k21 l 32 j 42z4#! @k11 j 21 l 32z411#! @k12k32 l 11 l 21z11z2#!

3
@ j 31 j 42 l 21 l 42z22z3#! @ j 32 j 41k11k32 l 21 l 32z22z4#!

@ j 32 j 41k11k32 l 12 l 41z11z3#! @ j 31 j 42 l 12 l 31z11z4#!

3
@k12k31 l 31 l 42z32z4#!

@ l 12 l 21 l 31 l 42z12z22z32z4#!
~2.5c!

5~21!k31k42 l 11 l 21 l 32 l 42 j 12 j 3
¹@ j 3k2l 1#¹@k3 j 1l 2#¹@ j 4k4l 4#¹@k1 j 2l 3#

¹@k1 j 1l 1#¹@ j 3k4l 2#¹@k3 j 2l 4#¹@ j 4k2l 3#

3 (
z1 ,z2 ,z3 ,z4

~21!z11z21z3@2l 12z1#! @ j 11k12 l 11z1#!

@z1#! @ l 12k21 j 32z1#! @ j 12k11 l 12z1#! @ l 11k21 j 32z111#!

3
@2l 22z2#! @k41 j 32 l 21z2#!

@z2#! @k31 l 22 j 12z2#! @ l 22 j 31k42z2#! @ j 11 l 21k32z211#!
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3
@2l 42z3#! @ j 21k32 l 41z3#!

@z3#! @z4#! @ j 41 l 42k42z3#! @ j 22k31 l 42z3#! @ j 41k41 l 42z311#!

3
@2 j 22z4#! @ j 21 j 41k12k22z4#! @ j 21 j 41k11k22z411#!

@k11 j 22 l 32z4#! @k11 j 21 l 32z411#! @ j 21k32 l 41z32z4#!

3
@ l 11 l 22k11k32z12z2#! @ j 31 j 42k32k11 l 11 l 42z12z3#!

@ j 22 j 31 j 41k12 l 11z12z4#! @ j 21 j 31 j 42k32 l 21z22z4#!

3
@ l 21 l 42 j 31 j 42z22z3#!

@ l 11 l 21 l 42k12 j 22z12z22z31z4#!
. ~2.5d!

The numerator–denominator distribution of factorials, depending on the summation para
z1 ,z2 ,z3 ,z4 , is different in each expression~2.5a!–~2.5d!. No single formula exhibites the ful
symmetry~2.3b!–~2.3c! of theq-12j -symbol, but~2.5a! is invariant with respect to the transitio
from the main notation to the left array of~2.3c!, as well as under transposition

F j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 k4

G
q

5F k2 k4 k1 k3

l 1 l 3 l 2 l 4

j 3 j 1 j 4 j 2

G
q

, ~2.6!

which, in turn, is a composition of symmetry relations~2.3b!–~2.3c!. Expression~2.5b! is invari-
ant with respect to the same symmetry~2.6!, but ~2.5c! and ~2.5d! do not satisfy any symmetry
relations. Since all the sums in these expressions correspond to the balanced hyperge
functions, theq-phases are also trivial.9

All the terms in the first sum of~2.5b! and ~2.5c! are of the same sign, as well as in the la
sum of ~2.5d!. Each separate sum corresponds in these expressions to the finite balance
hypergeometric series5F4@q,1# as defined by Eq.~3.2! of Ref. 4, which also appeared in th
elementary overlap coefficients of the definite biorthogonal coupled states12 of uq(3) and SU~3!.
The summation intervals are mainly restricted by eight@in ~2.5a!–~2.5c!#, or seven@in ~2.5d!#
triangle linear combinations of parameters, respectively. In addition to the corresponden
numerator and denominator factorials, determined by Eq.~A1a! or ~A1b!, definite correlation
between the factorials under summation signs reveals itself in four quintuplets of factorials o
expression~2.5a!–~2.5d!, depending on the couples of adjacent summation parameters~zi and
zi 11 , wherei 51,2,3, orz1 and z4!, although their expansion using the Chu–Vandermonde
mulas~cf. Sec. IV of Ref. 4! is not helpful for further rearrangement of the generic expressio

C. Stretched cases of the q -12j coefficients of the second kind

Let us consider the stretched cases ofq-12j coefficients. For definite stretched triangles som
summation parameters in~2.5a!–~2.5d! are either fixed~31 times!, or expressions are partiall
summable~in the 11 cases! by means of Minton’s summation formulas~A3a! or ~A3b! ~see Ref.
14!. One of three remaining sums turns into the balanced basic hypergeometric series4F3@q,1#,
the rearrangement14 of which enables us to transform a5F4@q,1# type series into a4F3@q,1# type
series, with only the last one remaining of the5F4@q,1# type. Particularly, forj 11 l 15k1 with
z150, the sum overz2 in expression~2.5a! corresponds to aq-6 j coefficient, which may be
reexpressed in such a form~using Regge symmetry and change of the summation parameter! that
the sum overz3 also corresponds to aq-6 j coefficient. Hence, we obtain
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F j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

j 11 l 1 k2 k3 k4

G
q

5
~21! j 11 l 22k3¹@k1 j 2l 3#¹@ j 4k2l 3#

¹@ j 1l 2k3#¹@k4 j 3l 2#¹@k3 j 2l 4#¹@ j 4k4l 4#¹@ l 1k2 j 3# S @2l 1#! @2 j 1#!

@2k111#! D 1/2

3 (
z1 ,z3 ,z4

~21!z11z3@ l 22 j 31k41z1#! @ j 11 j 31k32k42z1#!

@z1#! @z3#! @z4#! @ l 21 j 32k42z1#! @ j 32 j 42 l 11 l 31z42z1#!

3
@2 j 32z1#! @ j 41k42 l 41z3#! @ j 21k32 l 41z3#! @2l 42z3#!

@ j 22k31 l 42z3#! @k31 j 11 j 31 j 42 l 42z11z311#!

3
@ j 21 l 32k11z4#! @k21 l 32 j 41z4#!

@k41 l 12 l 31 l 42 j 31z12z32z4#! @k32k11 l 32 l 41z31z4#!

3
@k11k31k41 j 42 l 32z411#!

@k11 j 22 l 32z4#! @k22 l 31 j 42z4#! @2l 31z411#!
, ~2.7!

which is the composition of two balanced4F3@q,1# series and the third balanced5F4@q,1# series.
After the summation overz3 of the balanced3F2@q,1# series is carried out@see Eqs.~A2a! and

~A2b!# in this doubly stretched case ofq-12j coefficient withk15 j 11 l 1 and l 35k11 j 2 @i.e., for
adjacent consecutive stretched triangles in graph~2.2!#, we recognize someq-6 j coefficients,
which may also be obtained using the symmetries~2.3b!–~2.3c! and the defining relations~2.4a!–
~2.4d! of the q-12j coefficients. In this way, we derive the following relation:

F j 1 j 2 j 3 j 4

l 1 l 2 k11 j 2 l 4

j 11 l 1 k2 k3 k4

G
q

5
~21! j 11 l 22k31 j 41k41 l 4 ¹@ l 3 j 4k2#¹@ j 11 j 2 ,l 2 ,l 4#

¹@ j 1l 2k3#¹@ j 2k3l 4#¹@ l 1k2 j 3#¹@ j 11 j 2 , j 3 , j 4#

3S @2l 1#! @2 j 1#! @2 j 2#!

@2k111#@2l 311#! D
1/2H j 11 j 2 l 4 l 2

k4 j 3 j 4
J . ~2.8!

In the doubly stretched case of theq-12j coefficient for j 15k12 l 15 l 22k3 @i.e., when the
adjacent stretched triangles in graph~2.2! are diverging#, we obtain from Eq.~2.5a! or ~2.5c!, and
from Eq. ~2.5b! with fixed z15z250, two different double sum expressions, each depending
ten parameters and corresponding to theq-generalizations of the Kampe´ de Fériet27 functionF1:3

1:4,
as defined by Eq.~4.6! of Ref. 4. Each separate sum corresponds to the balanced basic hyp
metric 5F4@q,1# series. Again, we may identify the couples of quintuplets of factorials un
summation signs in the numerator and denominator, each depending on the summation par
z3 andz4 .

Otherwise, in the case of the merging adjacent stretched triangles~e.g., for k15 j 11 l 15 j 2

1 l 3!, the straightforwardly derived expressions include the triple sums; in particular all
sums in~2.8! correspond to the balanced basic hypergeometric4F3@q,1# series. The4F3@q,1# type
sum overz4 may be rearranged in analogy with expressions for theq-6 j coefficients2,16 into
another form~cf. Ref. 14! in a such way that the sum overz3 turns into summable balanced bas
hypergeometric3F2@q,1# series. Hence, we obtain the doubly stretchedq-12j coefficient in terms
of the double sum,
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F j 1 j 2 j 3 j 4

l 1 l 2 k12 j 2 l 4

j 11 l 1 k2 k3 k4

G
q

5
~21! j 11 l 22k3~@2l 1#! @2 j 1#! @2 j 2#! @2l 3#! !1/2¹@k4l 4 j 4#

¹@ l 3k2 j 4#¹@ j 1l 2k3#¹@k4 j 3l 2#¹@ j 2k3l 4#¹@ l 1k2 j 3#

3(
z,u

@ l 22 j 31k41z#! @ l 11k22 j 31z#! @ j 11 j 31k32k42z#!

@z#! @ l 21 j 32k42z#! @k22 l 11 j 32z#! @k31k42 j 12 j 31z#!

3
@2 j 32z#! ~21!z1u@ j 42k41 l 41u#! @ j 41 l 32k21u#!

@u#! @k42 j 41 l 42u#! @k32k42 j 21 j 41u#! @2 j 41u11#!

3
@k31k41 j 22 j 42u#! @k21 l 31 j 41u11#!

@ j 11 j 21 j 32 j 42z2u#! @ l 11 l 32 j 31 j 41z1u11#!
, ~2.9!

which again depends on ten parameters and corresponds to theq-generalization of the Kampe´ de
Fériet27 functionF1:3

1:4, with each separate sum corresponding to the balanced basic hypergeo

5F4@q,1# series. Perhaps this expression is related to the above mentioned special case o~2.5a!
with fixed z15z250 and the adjacent diverging stretched triangles ofq-12j coefficient with
respect to some composition of the usual and ‘‘mirror reflection’’ (j→2 j 21) symmetries.2

In the doubly stretched case of theq-12j coefficient withk15 j 11 l 1 and j 45k41 l 4 @i.e., for
antipode stretched triangles of graph~2.2!#, we derive from Eq.~2.7!, with fixed z350 andz4

5 l 12 l 32 j 31 j 41z1 , an expression with a single sum, which corresponds to the balanced
hypergeometric6F5@q,1# series and depends on ten parameters:

F j 1 j 2 j 3 l 41k4

l 1 l 2 l 3 l 4

j 11 l 1 k2 k3 k4

G
q

5
~21! j 11 l 22k3 ¹@k1 j 2l 3#¹@ j 4k2l 3#

¹@ j 1l 2k3#¹@k4 j 3l 2#¹@ l 4k3 j 2#¹@ l 1k2 j 3#

3S @2l 1#! @2 j 1#! @2l 4#! @2k4#!

@2k111#! @2 j 411#! D 1/2

3(
z1

~21!z1@ l 22 j 31k41z1#! @ j 42 j 31 j 22 j 11z1#!

@z1#! @ l 21 j 32k42z1#! @ j 11 j 21 j 32 j 42z1#!

3
@ l 11k22 j 31z1#! @2 j 32z1#!

@k21 j 32 l 12z1#! @k31k42 j 12 j 31z1#!

3
@ j 11 j 31k32k42z1#!

@ l 12 l 32 j 31 j 41z1#! @ l 11 l 32 j 31 j 41z111#!
. ~2.10!

In the doubly stretched case withk15 j 11 l 1 and k45 j 41 l 4 ~again for antipode stretched tr
angles! from ~2.5c!, after the summation overz2 of the balanced3F2@q,1# series~see Appendix
A!, we obtain
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F j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

j 11 l 1 k2 k3 j 41 l 4

G
q

5
~21! l 12 l 22k21k4 ¹@k1 j 2l 3#¹@k4 j 3l 2#

¹@ j 1l 2k3#¹@ l 4k3 j 2#¹@ j 4l 3k2#¹@ l 1k2 j 3#

3S @2l 1#! @2 j 1#! @2l 4#! @2 j 4#!

@2k111#! @2k411#! D 1/2

3(
z4

~21!z4@ j 21 l 32k11z4#! @k11k22 j 21 j 42z4#!

@z4#! @k12 j 21 l 32z4#! @k21 j 22k12 j 41z4#!

3
@ l 42k31 j 21z4#! @ j 32 j 41 j 22 j 11z4#!

@ j 12 j 21 j 31 j 42z4#! @ l 42 l 22 j 11 j 21z4#!

3
@ j 21k31 l 41z411#!

@2 j 21z411#! @ l 21 l 42 j 11 j 21z411#!
. ~2.11!

Again the summation corresponds to the balanced6F5@q,1# series and depends on ten paramete
Both expressions~2.10! and ~2.11! satisfy some Regge type symmetry relations.

Consider also the doubly stretched cases ofq-12j coefficients, the case of the remo
stretched triangles of graph~2.2! with touching angular momenta forming four-cycles~quad-
rangles!. There are four possible different distributions of the total~maximal! angular momenta of
the stretched triangles: both these momenta may be in the same four-cycle, either~a! adjacent,~b!
antiparallel,~c! the first angular momentum may be inside and the second one outside o
four-cycle, or~d! both these momenta may be outside of the four-cycle. Forq-12j coefficients of
the ‘‘adjacent’’ ~a! type, e.g., withk15 j 11 l 1 and l 35k21 j 4 , we derive from Eq.~2.7! the
relation

F j 1 j 2 j 3 j 4

l 1 l 2 k21 j 4 l 4

j 11 l 1 k2 k3 k4

G
q

5
~21! j 11 l 22k3¹@ l 3 j 2k1#

¹@ j 1l 2k3#¹@k4 j 3l 2#¹@k3 j 2l 4#¹@ j 4k4l 4#¹@ l 1k2 j 3#

3S @2l 1#! @2 j 1#! @2k2#! @2 j 4#!

@2k111#! @2l 311#! D 1/2

3 (
z1 ,z3

~21!z11z3@ l 22 j 31k41z1#! @ j 11 j 31k32k42z1#!

@z1#! @ l 21 j 32k42z1#! @ j 31k22 l 12z1#!

3
@2 j 32z1#! @2l 42z3#! @ j 41k42 l 41z3#!

@z3#! @ j 22k31 l 42z3#! @k41 l 12 l 31 l 42 j 31z12z3#!

3
@ j 21k32 l 41z3#!

@k32k11 l 32 l 41z3#! @k31 j 11 j 31 j 42 l 42z11z311#!
.

~2.12!

The double sum depends on nine~from ten free! parameters and corresponds to t
q-generalization of the Kampe´ de Fériet27 functionF1:2

1:3, again defined by Eq.~4.6! of Ref. 4 with
b11b185c1 , and each separate sum corresponding to the balanced4F3@q,1# or 4f3 series. Dif-
ferent ~i.e., not equivalent! expressions of the~a! type appear also fork35 j 11 l 2 and j 25k1
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1l3 from Eq. ~2.5b! and for j 35 l 11k2 andk45 j 41 l 4 from Eq. ~2.5c!. Furthermore, the doubly
stretchedq-12j coefficients of the ‘‘antiparallel’’~b! type, with k15 j 11 l 1 and k35 j 21 l 4 , ex-
pressions~2.5a!, ~2.5c!, and ~2.5d! ~with fixed parametersz1 and z3! also turn into~mutually
different! double sums again depending on nine~from ten free! parameters and related to theF1:2

1:3

type functions. This is also the case for expression~2.5b! ~with fixed z15z350! for the doubly
stretchedq-12j coefficients of the ‘‘inside–outside’’~c! type, withk15 j 11 l 1 and l 45 j 21k3 @or,
expression~2.5c! with l 25 j 11k3 and j 25k11 l 3#. Finally, expression~2.5a! with fixed z25z4

50 andl 25 j 11k3 and l 35k11 j 2 again turns into the double sums depending on nine~from ten
free! parameters and related to theF1:2

1:3 type function for the doubly stretchedq-12j coefficients
with the both total angular momenta of the ‘‘outside’’~d! type. These eight independent expre
sions should be related to~2.12! by means of some compositions of the usual and ‘‘mir
reflection’’ ( j→2 j 21) symmetries.2 Otherwise, many special versions of~2.5a!–~2.5d! with
fixed zi5zi 1150 (i 51,2,3) orz15z450 give expressions for the doubly stretchedq-12j coef-
ficients with remote stretched triangles in terms of the double sums, related to compositions
balanced4F3@q,1# and5F4@q,1# series.

Equation~2.5b! also turns into a single term forl 11 l 21 l 32 l 450 ~when the all summation
parameterszi are fixed!,

F j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 11 l 21 l 3

k1 k2 k3 k4

G
q

5
~21! j 12 j 32k11k2@2l 1#! @2l 2#! @2l 3#!¹@ l 4k3 j 2#¹@ l 4 j 4k4#

@2l 411#!¹@ l 1 j 1k1#¹@ l 1k2 j 3#¹@ l 2 j 1k3#¹@ l 2 j 3k4#¹@ l 3 j 2k1#¹@ l 3k2 j 4#
. ~2.13!

For this specialq-12j coefficient@as well as in~2.5c! for l 12 l 21 l 31 l 450 and in~2.5d! for l 1

1 l 22 l 31 l 450#, four linearly dependent angular momenta appear as disconnected in c
positions on a Hamilton line of graph~2.2!. Actually, the single term expression of this virtual
stretched case appears in accordance with symmetries~2.3b!–~2.3c! from expansion~2.4a! with
j 11 j 22 j 31 j 450 and fixedx5 j 32 j 15 j 21 j 4 .

III. EXPRESSIONS FOR 12j COEFFICIENTS OF THE FIRST KIND

A. Generic properties

Next, we consider the rearrangement of expressions for theq-12j coefficients of the first
kind1,2,28,29whose graphs are not planar:

~3.1!

~include some braiding10!. These coefficients satisfy 16 symmetries, generated by the follow
substitutions:
                                                                                                                



uch as

er-

1558 J. Math. Phys., Vol. 43, No. 3, March 2002 Sigitas Ališauskas

                    
H j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 k4

J
q

5H j 2 j 3 j 4 k1

l 2 l 3 l 4 l 1

k2 k3 k4 j 1

J
q

~3.2a!

5H k1 j 4 j 3 j 2

l 4 l 3 l 2 l 1

j 1 k4 k3 k2

J
q

.

~3.2b!

There expression1,2,10 in terms of the factorized four differently rearrangedq-6 j coefficients is

H j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 k4

J
q

5(
x

~2x11!~21!R42xqx(x11)1Zj 1 j 2 j 3 j 4
1Zk1k2k3k4

3H j 1 j 2 l 1

k2 k1 x J
q
H j 3 k3 x

k2 j 2 l 2
J

q
H j 3 j 4 l 3

k4 k3 x J
q
H k1 j 1 x

k4 j 4 l 4
J

q

~3.3a!

5(
x

~2x11!~21!R42xqx(x11)1Zj 1 j 2 j 3 j 4
1Zk1k2k3k4

3H j 1 j 2 l 1

k2 k1 x J
q
H k2 x j2

j 3 l 2 k3
J

q
H j 3 k3 x

k4 j 4 l 3
J

q
H k1 x j1

k4 l 4 j 4
J

q

, ~3.3b!

where

Zabcd52a~a11!2b~b11!2c~c11!2d~d11!,

and the triangular conditions are to be satisfied by all the triplets of the nearest neighbors s
l i , j i , j i 11 , or l i ,ki ,ki 11 ( i 51,2,3), orl 4 , j 1 ,k4 , or l 4 ,k1 , j 4 , respectively.

Again, after using expression~1.3a! with shifted summation parameter@see Eq.~2.1b! of Ref.
4# for the q-6 j coefficients with summation parameterx in the right lower position, Eq.~1.3a!
with inverted summation parameter forq-6 j coefficients withx in the middle column, and~1.3a!
directly in the remaining cases, the differently distributed asymmetric triangle coefficients~de-
pending on the summation parameterx! cancel in the numerators or denominators of theq-6 j
coefficients in expansions~3.3a! and ~3.3b!, with the exception of the factors

¹@ j 1k1x#

¹@k1 j 1x#
5

@ j 12k11x#!

@k12 j 11x#!
.

Then, the sums overx correspond to theq-generalization of the very well-poised classical hyp
geometric6F5(21) series~resembling the basic hypergeometric7f6 series! and may be rear-
ranged into the3f2 or 3F2@q,x# type series using the following two formulas:
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(
j

~21!p21 j 11qj ( j 11)@2 j 11#@ j 2p121#! @ j 2p221#! @ j 2p321#!

@p11 j 11#! @p21 j 11#! @p31 j 11#! @p42 j #! @p41 j 11#! @p52 j #! @p51 j 11#!

5
q2(p411)(p511)2p2(p41p511)@2p12p322#!

@p11p411#! @p21p511#! @p31p411#!

3(
u

~21!uqu(p21p511)@p42p3212u#! @p42p1212u#!

@u#! @2p12p3222u#! @p21p4112u#! @p41p5112u#!
~3.4a!

with parameters

p15k12 j 121, p45 j 11k22 l 11z1 , p55 j 31k42 l 31z3 ,

p25 l 22k22 j 31z221, p35 l 42k12k41z421;

(
j

qj ( j 11)@2 j 11#@ j 2p121#! @ j 2p221#! @ j 2p321#! @ j 2p521#!

@p11 j 11#! @p21 j 11#! @p31 j 11#! @p42 j #! @p41 j 11#! @p51 j 11#!

5q2(p411)(p511)2p2(p41p511)
@2p12p322#! @2p22p522#!

@p11p411#! @p31p411#!

3(
u

~21!uqu(p21p511)@p42p3212u#! @p42p1212u#!

@u#! @p41p5112u#! @p21p4112u#! @2p12p3222u#!
~3.4b!

with parameters

p15k12 j 121, p25 j 32k32z221, p35 j 12k12z421,

p45 j 11k22 l 11z1 , p55 l 32 j 32k41z321.

Equation~3.4a! may be derived by comparing alternative expressions for the Clebsch–Go
coefficients ofuq(2) ~see Appendix B! and corresponds to Eq.~5.5! @or ~5.6!, whenq51# of Ref.
12, with the right-hand side of~5.5! replaced by the less symmetric~Bandzaitis–Jucys!
expression2,17,30 for the Clebsch–Gordan coefficients of SU~2! and uq(2), instead of the most
symmetric~Van der Waerden! expression1,2,8,17,31,32~cf. also Refs. 13 and 33!. Relation ~3.4b!
is derived from~3.4a! using the analytical continuation technique. Summation formulas~A1!
and ~A2! of Ref. 4 ~each depending on three parameters! may be obtained after cancelin
some factorials in the numerators and denominators of~3.4a! and ~3.4b!, respectively, forp3

52p122.

B. General expressions with five sums

Substituting the summation parameteru, which appeared after using~3.4a! and ~3.4b! in
~3.3a! and~3.3b!, by u1z1 , we obtain the following expressions for theq-12j coefficients of the
first kind:
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H j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 k4

J
q

5~21!k11k22k32 j 21 j 31 j 42 l 4
¹@ j 3 j 2l 2#¹@k2k3l 2#¹@k1 j 4l 4#¹@k4 j 1l 4#

¹@ j 1 j 2l 1#¹@k2k1l 1#¹@ j 3 j 4l 3#¹@k4k3l 3#

3q2( j 11k22 l 111)(k42 l 31 l 22k2)2( l 22k22 j 321)( j 31k42 l 3)1Zj 1 j 2 j 3 j 4
1Zk1k2k3k4

3 (
z1 ,z2 ,z3 ,z4 ,u

~21!z31z41u@ j 11 j 22 l 11z1#! @2l 12z1#!

@z1#! @z2#! @z3#! @z4#! @k12k21 l 12z1#! @ l 12 j 11 j 22z1#!

3
q2z2( j 11 j 31k21k42 l 12 l 31z311)@ l 21 j 22 j 31z2#! @ l 21k32k21z2#!

@ j 21 j 32 l 22z2#! @k21k32 l 22z2#! @2l 21z211#! @2l 41z411#!

3
@k31k42 l 31z3#! @ j 31 j 42 l 31z3#! @2l 32z3#!

@k31 l 32k42z3#! @ l 32 j 31 j 42z3#! @k11 j 42 l 42z4#!

3
qz3( l 12 l 22 j 11 j 3)@ j 41 l 42k11z4#! @ j 11 l 42k41z4#!

@ l 22 l 32k21k41z21z3#! @ j 12k11k22k42 l 11 l 41z11z4#!

3
qu(k42k22 l 31 l 21z21z3)@ j 11k11k21k42 l 12 l 42z42u#!

@u1z1#! @ j 11k42 l 42z12z42u#! @ j 12 j 32 l 11 l 21z22u#!

3
@2 j 12k11k22 l 12u#!

@ j 11 j 31k21k42 l 12 l 31z32u11#!
~3.5a!

5~21! j 11 j 31 j 41k22k32k41 l 22 l 31 l 4
¹@ j 3 j 4l 3#¹@k4k3l 3#¹@k2k3l 2#¹@k1 j 4l 4#

¹@ j 1 j 2l 1#¹@k2k1l 1#¹@ j 3 j 2l 2#¹@k4 j 1l 4#

3q( j 11k22 l 111)(l 21k22 l 31k411)2( l 21k22 j 311)( j 31k42 l 311)1Zj 1 j 2 j 3 j 4
1Zk1k2k3k4

3 (
z1 ,z2 ,z3 ,z4 ,u

~21!z21z31z41u@ j 11 j 22 l 11z1#! @2l 12z1#!

@z1#! @z2#! @z3#! @k12k21 l 12z1#! @ l 12 j 11 j 22z1#!

3
q2z2( j 12 j 31k22k42 l 11 l 31z3)@ j 21 j 32 l 21z2#! @2l 22z2#!

@ l 21k22k32z2#! @ j 22 j 31 l 22z2#! @ l 21k21k32z211#!

3
q2z3( j 11 j 32 l 12 l 2)@k32k41 l 31z3#! @ j 42 j 31 l 31z3#!

@k31k42 l 32z3#! @ j 31 j 42 l 32z3#! @2l 31z311#!

3
@2l 42z4#! @ j 11k42 l 41z4#! @k21k41 l 22 l 32z22z3#!

@z4#! @k11 l 42 j 42z4#! @ j 12k11k21k42 l 12 l 41z11z4#!

3
q2u(k21k41 l 22 l 32z22z311)@2 j 12k11k22 l 12u#!

@k11 l 41 j 42z411#! @u1z1#! @ j 12k41 l 42z12z42u#!

3
@ j 11k11k22k42 l 11 l 42z42u#!

@ j 11 j 32 l 12 l 21z22u#! @ j 12 j 31k22k42 l 11 l 31z32u#!
. ~3.5b!

Each of expressions~3.5a! and ~3.5b! includes five summations, with four separate sums~over
z1 ,z2 ,z3 , andz4! corresponding to the finite~balanced in the first and last cases! basic hypergeo-
metric series4f3 or 4F3@¯ ;q,1# @as defined by Eq.~3.2! of Ref. 4#, and the fifth sum~over u
1z1! corresponding to the finite hypergeometric series3f2 or 3F2(1), related in the case of~3.5a!
to the Clebsch–Gordan coefficients ofuq(2) or SU~2!. However, it is impossible to rearrange a
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five sums together into standard basic hypergeometric seriesp11fp . Some correlation betwee
the factorials under the summation signs reveals itself in two quintuplets of factorials of
expression~3.5a! and~3.5b!, depending on the couples of summation parametersz2 ,z3 andz1 ,z4 .
Definite correspondences may be observed in Eqs.~3.5a! and~3.5b! between theq-phase structure
and three particular factorial arguments, depending on the couples of summation para
z2 ,z3 , andu, respectively@as well as inq-9 j coefficients, presented by Eqs.~3.1a!–~3.1e! of Ref.
4, between theq-phases and three factorial arguments, depending on the couples of summ
parametersz1 ,z2 , andz3#. The summation intervals in~3.5a! and ~3.5b! are mainly restricted by
eight triangle linear combinations of parameters, respectively, but in the stretched cases only~3.5a!
for k45 l 42 j 1 and~3.5b! for k45 l 41 j 1 ~with z45u1z150 in the both cases! turn into the triple
sums.

C. Stretched cases of the q -12j coefficients of the first kind

When the total~maximal! angular momentum in a stretched triangle of theq-12j coefficient
of the first kind corresponds to a crossbar of the Mo¨bius strip~3.1! @in the middle row of standard
array ~3.2a!, e.g., forl 45k41 j 1#, we obtain the following expression:

H j 1 j 2 j 3 j 4

l 1 l 2 l 3 k41 j 1

k1 k2 k3 k4

J
q

5~21!k11k22k32 j 21 j 31 j 42 l 4

3
¹@ j 3 j 2l 2#¹@k2k3l 2#¹@ l 4 j 4k1#

¹@ j 1 j 2l 1#¹@k2k1l 1#¹@ j 3 j 4l 3#¹@k4k3l 3# S @2k4#! @2 j 1#!

@2l 411#! D 1/2

3q2( j 11k22 l 111)(k42k21 l 22 l 3)2( l 22k22 j 321)( j 31k42 l 3)1Zj 1 j 2 j 3 j 4
1Zk1k2k3k4

3 (
z1 ,z2 ,z3

~21!z11z3@ j 11 j 22 l 11z1#! @k11k22 l 11z1#! @2l 12z1#!

@z1#! @z2#! @z3#! @k12k21 l 12z1#! @ l 12 j 11 j 22z1#!

3
@ l 21 j 22 j 31z2#! @ l 21k32k21z2#!

@ j 21 j 32 l 22z2#! @k21k32 l 22z2#! @2l 21z211#!

3
@k31k42 l 31z3#! @ j 31 j 42 l 31z3#! @2l 32z3#!

@k31 l 32k42z3#! @ l 32 j 31 j 42z3#! @ j 12 j 32 l 11 l 21z11z2#!

3
qz3( l 12 l 22 j 11 j 3)2z2( j 31k22 l 12 l 31 l 41z311)2z1( l 22 l 32k21k41z21z3)

@ l 22 l 32k21k41z21z3#! @ j 31k22 l 12 l 31 l 41z11z311#!
. ~3.6!

This special case of~3.5a! with three separate sums corresponds to the finite basic hypergeom
series4F3@¯ ;q,x#. Expression~3.6! does not simplify noticeably for two adjacent mergin
stretched triangles~with l 45k41 j 15k11 j 4! in the sameq-6 j coefficient of expansion~3.3a!, but
one of the sums turns into a3F2@¯ ;q,x# series for two adjacent diverging stretched triang
~e.g., with j 15 l 42k45 l 12 j 2 , or with j 15 l 42k45 j 22 j 1!. The Chu–Vandermonde summatio
formula @see~B1c! of Ref. 4# may be used in Eq.~3.6! for j 150, l 15 j 2 , k45 l 4 and fork450,
l 45 j 1 , k35 l 3 . In these cases, the couples of theq-6 j coefficients appear in accordance with E
~33.21! of Ref. 2, as well as the consequences of expansions~3.3a!–~3.3b! for fixed x.

When the total angular momentum in a stretched triangle of theq-12j coefficient of the first
kind is located along the Mo¨bius strip ~3.1! ~e.g., fork45 l 41 j 1!, we obtain from~3.5b!, after
change of summation parameterz2→ l 21k22k32z2 the following expression:
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H j 1 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 l 41 j 1

J
q

5
~21! j 31 j 42 l 31 l 21k22k3¹@ j 3 j 4l 3#¹@k4k3l 3#¹@k2k3l 2#

¹@ j 1 j 2l 1#¹@k2k1l 1#¹@ j 3 j 2l 2#¹@ l 4k1 j 4# S @2 j 1#! @2l 4#!

@2k411#! D 1/2

3q( j 11k22 l 111)(k21k41 l 22 l 311)2( l 21k22 j 311)( j 32 l 31k411)1Zj 1 j 2 j 3 j 4
1Zk1k2k3k4

3 (
z1 ,z2 ,z3

@ j 11 j 22 l 11z1#! @k11k22 l 11z1#! @2l 12z1#!

@z1#! @z2#! @z3#! @k12k21 l 12z1#! @ l 12 j 11 j 22z1#!

3
~21!z11z21z3@ j 21 j 32 l 21z2#! @2l 22z2#!

@ l 21k22k32z2#! @ j 22 j 31 l 22z2#! @ l 21k21k32z211#!

3
qz1(k21k41 l 22 l 32z22z311)@k32k41 l 31z3#! @ j 42 j 31 l 31z3#!

@k31k42 l 32z3#! @ j 31 j 42 l 32z3#! @2l 31z311#!

3
q2z2(k22 j 32 l 11 l 32 l 41z3)2z3( j 11 j 32 l 12 l 2)@k21k41 l 22 l 32z22z3#!

@ j 11 j 32 l 12 l 21z11z2#! @k22 j 32 l 11 l 32 l 41z11z3#!
. ~3.7!

Expression~3.7! does not simplify for two couples of adjacent diverging stretched triangles@with
l 45k42 j 15k12 j 4 , or with l 45k42 j 15 j 42k1 , respectively, again in the sameq-6 j coefficient
of expansion~3.3b!#, but for l 450, k45 j 1 , j 45k1 ~after substitutionq→q21! it corresponds to
the general expression~3.1a! of Ref. 4 for theq-9 j coefficients,

~@2 j 111#@2k111# !21/2H j 1 l 1 j 2

k3 k2 l 2

l 3 k1 j 3

J
q

@cf. Eq. ~33.20! of Ref. 2#. The triple sums in~3.6! and ~3.7! resemble expressions for theq-9 j
coefficients and definite correspondences may be observed between theq-phases and three facto
rial arguments, depending on the couples of summation parametersz1 ,z2 , andz3 , respectively.
Expansion of the present couples of the factorial quintuplets~depending on parametersz1 ,z2 and
z2 ,z3 , respectively!, using the Chu–Vandermonde summation formulas enables one to pe
the summation overz2 and thus obtain expressions for the stretchedq-12j coefficients of the first
kind as fourfold sums, related to compositions of3F2@¯ ;q,x# series.

Again, one of the sums in~3.7! turns into a3F2@¯ ;q,x# series for two adjacent divergin
stretched triangles in two adjacentq-6 j coefficients of expansion~3.3a! ~e.g., with j 15k42 l 4

5 l 12 j 2 , or with j 15k42 l 45 j 22 l 1!, as well as for two adjacent merging stretched triang
~e.g., with k45 l 41 j 15k31 l 3!. The possible rearrangement of the3F2@¯ ;q,x# series is not
helpful for reducing the remaining4F3@¯ ;q,x# series.

The doubly stretchedq-12j coefficients of the first kind with the adjacent consecut
stretched triangles may be expressed fork45 l 41 j 1 and j 15 l 11 j 2 or l 35k31k4 by means of
~3.7!, as well as forl 45k41 j 1 and j 15 l 11 j 2 or k45k31 l 3 by means of~3.6!, as the double
sums, related to the stretchedq-9 j coefficients, respectively, of the type~3.1a! or ~3.1b! of Ref. 4
~with some ‘‘reflected’’ parameters in the last cases!. In this way we derive, fork45 l 41 j 1 and
j 15 l 11 j 2 @comparing~3.7! with Eq. ~3.1a! of Ref. 4#, the following relation:
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H l 11 j 2 j 2 j 3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 l 41 j 1

J
q

5~21! j 31 j 42 l 31 l 21k22k3qZj 1 j 2 j 3 j 4
1Zk1k2k3k4

2Zl 2 ,l 3 ,l 11 l 4

¹@ l 11 l 4 , j 4 ,k2#

¹@ l 1k1k2#¹@ l 4k1 j 4#

3S @2l 1#! @2l 4#!

@2l 112l 4#! @2 j 111# D
1/2H k4 k3 l 3

j 2 l 2 j 3

l 11 l 4 k2 j 4

J
q21

. ~3.8!

Similarly, for k45 l 41 j 1 and l 35k31k4 we obtain

H j 1 j 2 j 3 j 4

l 1 l 2 k31k4 l 4

k1 k2 k3 l 41 j 1

J
q

5qZj 1 j 2 j 3 j 4
1Zk1k2k3k4

2Zl 2 , j 11k3 ,l 1
~21! j 31 j 42 l 42 l 22k22 j 21 l 1¹@ l 3 j 3 j 4#

¹@ l 4k1 j 4#¹@ j 11k3 , j 3 ,k1#

3S @2l 4#! @2 j 112k311#!

@2l 311#! @2k411# D 1/2H j 1 k3 j 11k3

j 2 l 2 j 3

l 1 k2 k1

J
q21

. ~3.9!

We remark that the doubly stretchedq-12j coefficients of the first kind forl 45k41 j 1 and
l 25 j 21 j 3 or l 25k21k3 as obtained from~3.6!, as well as fork45 l 41 j 1 and j 35 l 21 j 2 or k3

5 l 21k2 as obtained from~3.7!, turn into double sums equivalent to compositions of4F3@¯ ;q,x#
and3F2@¯ ;q,x# series. However, although the3F2@¯ ;q,x# series may be rearranged into oth
forms, these double sums are not equivalent to any composition of two generic3F2@¯ ;q,x#
series and, moreover, they are not related to anyq-9 j coefficient. Minton’s summation formula
~A3a! ~see Ref. 14! may be helpful in the analogical position of the stretched triangles in~3.6! for
l 45k41 j 1 and j 25 l 21 j 3 or k35k21 l 2 , as well as in~3.7! for k45 l 41 j 1 and l 25k21k3 .
Otherwise, the3F2@¯ ;q,x# series appearing in the triple sums, which remain in Eq.~3.6! for
j 35 j 21 l 2 or k25 l 21k3 , and in Eq.~3.7! for j 25 l 21 j 3 or k25 l 21k3 , may be rearranged, bu
it is more reasonable in such a case to use the different expansions of the type~3.3a!–~3.3b! with
inserted stretchedq-6 j coefficients and adapted@e.g., expansion~3.3b! for l 45k41 j 1 and j 3

5 j 21 l 2 or expansion~3.3a! for k45 l 41 j 1 and j 25 l 21 j 3 , with transposed the middle and th
right columns of the thirdq-6 j coefficients in the both cases# for summation by means of~A2! or
~A3! of Ref. 4.

Furthermore, expression~3.6! turns into double sums equivalent to compositions of t

4F3@¯ ;q,x# series for the remote stretched triangles of graph~3.1! l 45k41 j 1 and j 35 l 31 j 4 or
k25k11 l 1 ~when two couples of the touching angular momenta form the four-cycles, or q
rangles!, as well as expression~3.7! for k45 l 41 j 1 andl 35 j 31 j 4 or k25k11 l 1 . Again, Minton’s
summation formula~A3a! may be used in~3.7! for j 45 j 31 l 3 and the3F2@¯ ;q,x# series may be
rearranged in the triple sums, which remain in Eq.~3.6! for l 15k11k2 or l 35 j 31 j 4 and in Eq.
~3.7! for j 35 l 31 j 4 or k15k21 l 1 . Expansion~3.3a! with inserted stretchedq-6 j coefficients may
be used for summation by means of~A1! of Ref. 4 for l 45k41 j 1 and l 15k11k2 , as well as
expansion~3.3b! for summation by means of~A2! of Ref. 4 fork45 l 41 j 1 andk15k21 l 1 , after
in the both cases the middle and the right columns of the secondq-6 j coefficients are transposed

In general, the triply stretched cases of theq-12j coefficients of the first kind may always b
expressed in terms of the double sums, applying some ‘‘mirror reflection’’ (j→2 j 21) operations
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to the above mentioned expressions, or using the above mentioned rearrangements. In pa
the double sums~compositions of two3F2@¯ ;q,x# series! related to the most generic Kampe´ de
Fériet27 functions of the typeF1:1

0:3 ~with nine independent parameters! appear instead of~3.7! in
the triply stretched cases withk45 l 41 j 15k31 l 3 and j 35 j 21 l 2 , or with j 15k42 l 45 j 22 j 1 and
k35k21 l 2 .

Let us return to the generic expressions~3.5a! and ~3.5b!. In both formulas, forj 250, l 1

5 j 1 , l 25 j 3 , the summation parametersz1 ,z2 andu are fixed, the two remaining separate sum
~over z3 ,z4! correspond to the balanced4F3@q,1# series, and the couples of theq-6 j coefficients
appear straightforwardly, in accordance with the expansion~3.3a!–~3.3b! for fixed x. Furthermore,
in both~3.5a! and~3.5b!, the parametersz1 ,z2 andu are also fixed forj 11 j 21k12k250, i.e., for
the adjacent consecutive stretched trianglesk25k11 l 15k11 j 11 j 2 with the intermediate angula
momentum corresponding to a crossbar of the Mo¨bius strip~3.1!. Two remaining separate sum
~over z3 ,z4! correspond to the balanced~Saalschu¨tzian! 4F3@q,1# @related toq-6 j coefficient of
the type ~1.3a!# and summable@see Eq.~A2a!# 3F2@q,1# series. In this way, we derived th
following relation:

H j 1 j 2 j 3 j 4

j 11 j 2 l 2 l 3 l 4

k1 k11 l 1 k3 k4

J
q

5~21!k11 j 32 l 32 l 412k3
q2 j 1k11Zj 2 j 3 j 4

1Zk2k3k4¹@k2k3l 2#¹@k11 j 1 , j 4 ,k4#

¹@ j 1k4l 4#¹@ j 2l 2 j 3#¹@k1 j 4l 4#¹@k11 j 1 , j 3 ,k3#

3S @2 j 2#! @2 j 1#! @2k1#!

@2k211#! @2l 111# D
1/2H j 3 j 4 l 3

k4 k3 k11 j 1
J

q

. ~3.10!

For 4 mutual positions of the couples of the stretched triangles in the graph of theq-12j
coefficient of the first kind, there are 22 different orientations of the total~maximal! angular
momenta. In seven cases, the expressions include triple sums, twice they are proportiona
stretchedq-9 j coefficients, and once to theq-6 j coefficient. In the remaining 12 cases, doub
sums may be obtained. Otherwise, for three mutual positions of the stretched triangles
q-12j coefficient of the second kind, only nine different orientations of the total angular mom
are possible, and in six cases double sums appear, and in three cases the expressions a
sums~only once proportional to theq-6 j coefficient!.

Finally, the summation parametersz1 ,z3 andu in ~3.5b! are fixed forj 12 j 31k11k350, as
well as forx5 j 32k35 j 11k1 in expansion~3.3a!, in which cases four linearly dependent angu
momenta appear~disconnected! on the Hamilton line of graph~3.1!. In this case, two remaining
separate sums~over z2 ,z4! are summable Saalschu¨tzian series3F2@q,1# @see Eqs.~A2a! and
~A2b!#, and the following expression may be derived:

H j 1 j 2 j 11k11k3 j 4

l 1 l 2 l 3 l 4

k1 k2 k3 k4

J
q

5~21! j 21 j 42 l 12k12 j 12 l 4

3
q2 j 1k11Zj 2 j 3 j 4

1Zk2k3k4@2 j 1#! @2k1#! @2k3#!¹@ j 3 j 4l 3#¹@ j 3 j 2l 2#

@2 j 311#!¹@ j 1 j 2l 1#¹@k1k2l 1#¹@ j 1k4l 4#¹@k1 j 4l 4#¹@k3k2l 2#¹@k3k4l 3#
. ~3.11!

As for ~2.13!, the virtually stretched triangles are seen only in theq-6 j coefficients, which appea
in expansion of theq-12j coefficient of the first kind with extreme parameters.
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IV. CONCLUDING REMARKS

Using Dougall’s summation formula7 of the very well-poised5F4(1) series and the transfor
mation formula12 of the very well-poised6F5(21) series, we eliminated the factorial sum
weighted with factor (2j 11) and the very well-poised series in the traditional expressions o
12j coefficients of SU~2! in terms of 6j coefficients, as well as in the expressions of theq-12j
coefficients ofuq(2) weighted with factor@2 j 11#. Although the obtained generic expressions
the q-12j coefficients of the first kind include fivefold sums and the generic expressions fo
q-12j coefficients of the second kind contain fourfold sums, the stretched and doubly stre
q-12j coefficients of both become considerably simpler and present some new versions of
double, or single basic hypergeometric series, but more unusual and complicated than ap
the manuals of the angular momentum theory~cf. Ref. 34!. The single term expressions for th
q-12j coefficients of the both kinds also embrace the virtually stretched cases with four ex
linearly dependent disconnected angular momentum parameters appearing on the Hamilto
of graphs~2.2! or ~3.1!.

The symmetry properties and variety of expressions for the 12j andq-12j coefficients of the
both kinds may inspire new possibilities of rearrangement of the classical and basic hyperg
ric series. Expressions for 3n j coefficients of SU~2! ~with n.4! in terms of 6j coefficients also
may be rearranged using, e.g., Watson’s transformation formula of the very well-poised7F6(1)
series@see Eq.~2.5.1! of Ref. 14 or Eq.~6.10! of Ref. 35#. One may also use Eq.~5.3! of Ref. 12
for rearrangement of the very well-poised8F7(21) series, or Eqs.~A5! of Ref. 36 for rearrange-
ment of the very well-poised9F8(1) series. The number of sums in two last cases increases
elimination of the sums dependent on (2j 11).

APPENDIX A: DOUGALL’S, SAALSCHU¨ TZIAN, AND MINTON’S SUMMATION
FORMULAS

In Appendix A of Ref. 4, we presented three summation formulas of the twisted very
poisedq-factorial series as generalizations of Dougall’s summation formula~2.3.4.8! of Ref. 7 of
the 4F3(21) series, depending on three parameters. We present here two summation form
the very well-poisedq-factorial series, depending on four parameters:12

(
j

@2 j 11# @ j 2p121#! @ j 2p221#!

@p11 j 11#! @p21 j 11#! @p32 j #! @p31 j 11#! @p42 j #! @p41 j 11#!

5
@2p12p222#! @p11p21p31p412#!

@p11p411#! @p21p411#! @p31p411#! @p21p311#! @p11p311#!
; ~A1a!

(
j

~21!p42 j @2 j 11# @ j 2p121#! @ j 2p221#! @ j 2p321#!

@p11 j 11#! @p21 j 11#! @p31 j 11#! @p42 j #! @p41 j 11#!

5
@2p12p222#! @2p22p322#! @2p12p322#!

@p11p411#! @p21p411#! @p31p411#! @2p12p22p32p423#!
. ~A1b!

@Cf. Dougall’s summation theorem of special very well-poised hypergeometric series5F4(1) as
~2.3.4.5! of Ref. 7 and special very well-poised basic hypergeometric series6f5 as~2.4.2! of Ref.
14. Note that the very well-poised basic hypergeometric series2kf2k21 cannot be expressed i
terms of2kF2k21@¯ ;q,x# series.4,13#

Under conditionc1d5a1b1e, we may use also the summation formulas of the balan
~Saalschu¨tzian! 3F2@q,1# series@cf. Eq.~2.3.1.4! of Ref. 7 and Eqs.~1.7.1! and~1.7.2! of Ref. 14#:

(
s

~21!s@c1s#! @d2s#!

@s#! @a2s#! @b2s#! @e1s11#!
5

@c#! @d2a#! @d2b#! @c1d11#!

@a#! @b#! @a1e11#! @b1e11#! @e2c#!
~A2a!
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for e2c>0 and

(
s

~21!s@c2s#! @d2s#!

@s#! @a2s#! @b2s#! @e2s11#!
5

@c2a#! @c2b#! @d2a#! @d2b#!

@a#! @b#! @e2c#! @e2d#! @e11#!
~A2b!

for e2c>0 ande2d>0.
It is sometimes useful to implement theq-version of Minton’s summation formula37 or its

inverse@cf. Eq. ~1.9.6! of Ref. 14#:

(
s

~21!sqs(n2( i 51
r mi )

@s#! @n2s#! @S1s# )
j 51

m

~bj1suq!mj
5

qS(( i 51
r mi2n)

~Suq!n11
)
j 51

m

~bj2Suq!mj
, ~A3a!

if S1sÞ0 for s50,1,. . . ,n, andn>( i 51
r mi ;

(
s

~21!sqs(a1b2c2m)@c2s#!

@s#! @a2s#! @b2s#! @S2s11# )j 51

m

@Aj2s#

5~21!a1b2c2mq(S11)(a1b2c2m)
@S2a#! @S2b#!

@S2c#! @S11#! )
j 51

m

@S2Aj11#, ~A3b!

which is valid if S2s11Þ0 for s50,1,. . . ,min(a,b) anda1b2c2m>0. Note that the analyti-
cal continuation of the summation formulas~A3a! and ~A3b! of the alternating series to relate
series with the fixed sign of all terms is impossible.

APPENDIX B: CLEBSCH–GORDAN COEFFICIENTS OF SU „2… AND u q„2… AND
TWISTED VERY WELL-POISED SERIES

The very well-poised6F5(21) and7F6(1) series appear in context of the Clebsch–Gord
and 6j coefficients of SU~2! as presented in Ref. 33~see also Ref. 2!, as well as theirq-analogs
in the CG~cf. Ref. 13, where the dual Hahnq-polynomials are considered! and 6j coefficients~cf.
Ref. 35! of uq(2).

We deduce here a new expression for the Clebsch–Gordan coefficients of SU~2! anduq(2)
directly from the recoupling relation:

F ~ j 21m2!/2 ~ j 22m2!/2 j 2

~ j 21m2!/2 ~m22 j 2!/2 m2
G

q

F j 1 j 2 j

m1 m2 mG
q

5(
x

~21! j 11 j 21 j~@2x11#@2 j 211# !1/2H ~ j 21m2!/2 ~ j 22m2!/2 j 2

j j 1 x J
q

3F j 1 ~ j 21m2!/2 x

m1 ~ j 21m2!/2 m8
G

q

F x ~ j 22m2!/2 j

m8 ~m22 j 2!/2 mG
q

, ~B1!

wherem85m11 1
2( j 21m2)5m1 1

2( j 22m2). Inserting the stretched 6j and extreme CG coeffi-
cients expressed without sums, we obtain the following expression,

F j 1 j 2 j

m1 m2 mG
q

5¹@ j 2 j 1 j #S @2 j 11#@ j 21m2#! @ j 22m2#! @ j 12m1#! @ j 2m#!

@ j 11m1#! @ j 1m#! D 1/2

3q$ j 2( j 211)2 j 1( j 111)2 j ( j 11)%/22m1 j 22( j 21m2)( j 21m212)/4

3(
x

~21! j 11( j 21m2)/22xqx(x11)@2x11#@x1m8#!

¹2@ 1
2~ j 21m2!, j 1 ,x#¹2@ 1

2~ j 22m2!, j ,x#@x2m8#!
, ~B2!
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where the right-hand side is related to the left-hand side of Eq.~3.4a! with parameters

p15 1
2~ j 22m2!2 j 21, p252m821, p35 1

2~ j 21m2!2 j 121,

p45 1
2 ~ j 22m2!1 j , p55 1

2 ~ j 21m2!1 j 1 .

Expression~B2! is invariant under 12 relations of the Regge symmetry, corresponding to
permutations in the setsp1 ,p2 ,p3 or p4 ,p5 . After expressing the CG coefficient ofuq(2) by
means of Eq.~5.17! of Ref. 30@which after some cyclic permutation, is equivalent to Eq.~65! of
Chapter 3 of Ref. 17 or, forq51, related to Eq.~13.1c! of Ref. 2#, and using the symmetry
relation~4.13! of Ref. 15~which allows one to interchange the parametersj 2 ,m2 and j ,2m in the
CG coefficients, cf. Ref. 17!, we derive our Eq.~3.4a! straightforwardly. The remaining very
well-poised series with different numerator and denominator distributions ofq-factorial arguments
@e.g., the nonalternating left-hand side of~3.4b! or the nonalternating right-hand side of Eq.~5.3!
of Ref. 12 with p352p222, and their other analytical continuations# are not related to the
Clebsch–Gordan coefficients ofuq(2), although sometimes they may be related to the CG co
ficients ofuq(1,1).
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Modified braid equations for SO q„3… and noncommutative
spaces
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General solutions of theR̂TT equation with a maximal number of free parameters
in the specrtal decomposition of vector SOq(3) R̂ matrices are implemented to
construct modified braid equations~MBE!. These matrices conserve the given,
standard, group relations of the nine elements ofT, but are not constrained to
satisfy the standard braid equation~BE!. Apart from q and a normalization factor
our R̂ contains two free parameters, instead of only one such parameter for de-
formed unitary algebras studied in a previous paper@Math. QA/0009178# where the
nonzero right hand side of the MBE had a linear term proportional to (R̂(12)

2R̂(23)). In the present case the rhs is, in general, nonlinear. Several particular
solutions are given~Sec. II! and the general structure is analyzed~Appendix A!.
Our formulation of the problem in terms of projectors yields also two new solutions
of standard~nonmodified! braid equation~Sec. II! which are further discussed
~Appendix B!. The noncommutative three-spaces obtained by implementing such
generalizedR̂ matrices are studied~Sec. III!. The role of coboundaryR̂ matrices
~not satisfying the standard BE! is explored. The MBE and Baxterization are pre-
sented as complementary facets of the same basic construction, namely, the general
solution ofR̂TT equation~Sec. IV!. A new solution is presented in this context. As
a simple but remarkable particular case a nontrivial solution of BE is obtained
~Appendix B! for q51. This solution has no free parameter and is not obtainable
by twisting the identity matrix. In the concluding remarks~Sec. V!, among other
points, generalization of our results to SOq(N) is discussed. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1413225#

I. INTRODUCTION

In a previous paper1 a particular class of inhomogeneous, modified, braid equations~MBE!

was shown to correspond to general solutions ofR̂TT relations. Fundamental 232 T matrices and
the corresponding 434 R̂(5PR) matrices for GLp,q(2), GLg,h(2) and GLq,h(1/1) were used as
examples. The inputs were the known group relations of the elements (a,b,c,d) for each of the
above cases. Then the most general solution~without imposing the Yang–Baxter~YB! equation
for R or, equivalently, the braid equation forR̂! was sought, for each case, of the relation

R̂T1T25T1T2R̂, ~1!

where

T15T^ I 2 , T25I 2^ T.

a!Electronic mail: chakra@cpht.polytechnique.fr
15690022-2488/2002/43(3)/1569/15/$19.00 © 2002 American Institute of Physics
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The only constraint onR̂ was the conservation of the given group relations for (a,b,c,d). In
each caseR̂ was found to depend, apart from the two parameters ((p,q),(g,h),(q,h)), linearly on
a third one (K) such that, for a suitable normalization, one obtains

R̂(12)R̂(23)R̂(12)2R̂(23)R̂(12)R̂(23)5S K

K1
21D S K

K2
21D ~R̂(23)2R̂(12)!. ~2!

This is the MBE with

~K1 ,K2!5~1,p/q!, ~1,1!, ~1,1/q!, ~3!

respectively, for the above-mentioned cases.
It was pointed out in Ref. 1 that~2! reexpressed in terms ofR provides a particular, interestin

class of modified quantum YB equations~MQYBE! of Gerstenhaber, Giaquinto, and Schack~see
Ref. 2 and sources cited therein!.

The special features of~2! as indicated in Ref. 1, are as follows.
~1! The explicit stucture on the right carries interesting information. After obtaining the

eral solution of~1! and the MBE it corresponds to, one obtains the unmodified, standard bra
YB matrices as byproducts. One just setsK5K1 or K5K2 , the two solutions being relate
through

R̂~K2!5R̂~K1!21. ~4!

~2! Setting, as explained in Ref. 1,

K52K1K2~K11K2!21, ~5!

one obtains

~R̂~K !!25I . ~6!

Hence the construction of ‘‘triangular’’~or ‘‘unitary’’ or ‘‘coboundary’’! R matrices is again
reduced to the choice of a particular value ofK in the general solution. This aspect will be studi
further later in this work.

~3! It was pointed out in Ref. 1 that MBE and Baxterization are complementary facets o
same basic construction, namely, the general solution of~1!. This links MBE to integrable models
This aspect will be taken up in Sec. IV with new examples.

~4! The parameterK plays an interesting role in noncommutative spaces obtained by im
menting the generalR̂(K). The detailed discussion in Ref. 1 of this aspect will be generalize
higher dimensions in Sec. III.

A. Spectral decomposition and generalization to higher dimensions

Our construction can be generalized to higher dimensional cases most conveniently by
ducing arbitrary constant coefficients in the spectral decomposition ofR matrices forvector
representations. The standard solutions~not ‘‘modified’’ in our sense! are well-known.3,4 Instead
of wading through larger and larger numbers of group relations@n2(n221)/2 for n2 elements of
T# one starts with the following results for vector representations.

For GLq(N) one has, in terms of the projectorsP(6),

R̂5qP(1)2q21P(2), ~7!

where

P(1)P(2)50, ~P(6)!25P(6), P(1)1P(2)5I . ~8!
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Here R̂ satisfies the braid equation and

~R̂2qI !~R̂1q21I !50. ~9!

One has also

P(1)5
~R̂1q21I !

~q1q21!
, P(2)52

~R̂2qI !

~q1q21!
. ~10!

If one sets,with the same projectors,

R̂~u,v !5uP(1)1vP(2), ~11!

where (u,v) are nonzero, unequal but otherwise arbitrary parameters, one obtains

~R̂~u,v !2uI !~R̂~u,v !2vI !50, ~12!

P(1)5
~R̂~u,v !2vI !

~u2v !
, P(2)5

~R̂~u,v !2uI !

~v2u!
. ~13!

Of the two parameters (u,v) one can be fixed by choosing a suitable normalization, lead
effectively to one independent, arbitrary parameter. Apart from differences in notations, ou
struction ofR̂(K) in Ref. 1 ~see Sec. 3.2 in Ref. 1!, namely,

R̂~K !5~12~K/K11K/K2!!P11P2 , ~14!

corresponds directly to~11!. This and certain other aspects of our previous formalismcan be
directly generalizedto GLq(N), though the noncommutative spaces will now be ofN dimensions.

For SOq(N) @and for Spq(N) which we do not consider here# there is a major change. One ha
now threeprojectors in the spectral decomposition ofR̂ matrices for vector representations. Th
consequences for MBE will be seen to be important.

For R̂ satisfying the braid equation one obtains3,4

~R̂2qI !~R̂1q21I !~R̂2q12NI !50 ~15!

and

R̂5qP(1)2q21P(2)1q12NP(0), ~16!

where@with ( i , j ) denoting a pair from (1,2,0)#

P( i )P( j )5P( i )d i j , P(1)1P(2)1P(0)5I . ~17!

Generalizing as before, we introduce@with nonzero and unequal (u,v,w) and the projectors
being thesameas before, independent of (u,v,w)#

R̂~u,v,w!5uP(1)1vP(2)1wP(0). ~18!

Now @denotingR̂(u,v,w) as R̂#,

~R̂2uI !~R̂2vI !~R̂2wI !50 ~19!

and
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P(1)5
~R̂2vI !~R̂2wI !

~u2v !~u2w!
,

P(2)5
~R̂2uI !~R̂2wI !

~v2u!~v2w!
, ~20!

P(0)5
~R̂2uI !~R̂2vI !

~w2u!~w2v !
.

Here, fixing the normalization,two independent parameters are left.
In the next section we will study the MBE corresponding to~18!. We will setN53. This will

permit us to display explicitly matrices of managaeble size.The essential new features wil
however, be present already for N53.

Let us now note how the number of coboundary~or unitary! solutions for vector representa
tions changes with the number of projectors.

For GLq(N) it is seen from~8! and ~11! that

~R̂~u,v !!25u2P(1)1v2P(2)5P(1)1P(2) ~21!

for

u25v251.

Hence, apart from an overall (6) sign, the only nontrivial solution is

R̂c5P(1)2P(2)5I 22P(2)52~ I 22P(1)!, R̂c
25I . ~22!

For SOq(n), from ~17! and ~18! apart from an overall sign one obtains analogouslythree
solutions

R̂c5~ I 22P(1)!, ~ I 22P(2)!, ~ I 22P(0)!. ~23!

Each satisfies

R̂c
25I

and the product of any two gives the third one with a change of sign. Thus, for example,

~ I 22P(1)!~ I 22P(2)!52~ I 22P(0)!. ~24!

If the coefficient (22) in ~23! is replaced by an arbitrary number,R̂ still satifies as is easily
seen aquadraticequation, not the cubic~19!.

If complex solutions are considered for realq but with complex coefficients in~18!, one
obtains the unitarity relation when (u,v,w) are phases in~18!. Thus~with real deltas!

R̂5eid1P(1)1eid2P(2)1eid3P(0) ~25!

gives, since the projectors are symmetric for the orhogonal case,

R̂†R̂5I .

In ~18!, (u,v,w) were postulated to be unequal. This permits one to expressall the three

projectors in terms ofR̂ as in ~20!. But this is not obligatory. As noted in~23! other cases~with
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u5v52w51 and so on! can indeed be of special interest. For~23! in each case one hastwo
mutually orthogonal combinations. Selecting the second case, for example, one obtains

P(2)52 1
2 ~R̂c2I !, P(1)1P(0)5 1

2 ~R̂c1I !. ~26!

We conclude with a fully explicit statement of our approach. If one has

R̂T1T25T1T2R̂,

then any functionf (R̂) of R̂ satisfies

f ~R̂!T1T25T1T2f ~R̂!. ~27!

To start with let us suppose~for definiteness, such a starting point not being essential! that R̂
satifies BE.

For GLq(N), R̂ satisfies a quadratic constraint~9!. Hence any power series inR̂ can be
reduced to a linear function inR̂. Hence, apart from an overall normalization factor, the m
general solution of~27!, for a given set of group relations, becomes effectively~14! as studied in
Ref. 1. @It is easy to see from~7! and~10! that even fractional powers ofR̂ can be obtained as
linear funtion ofR̂ but, in general, with complex coefficients. Having noted this, we will usua
implicitly consider real coefficients. An analogous situation will hold for the orthogonal c
considered later. Complex coefficients, such as in~25!, will not be introduced explicitly. Excep
when roots of unity are involved, complexification of our formalism is, however, straightforwa#

For SOq(N), R̂ satisfies a cubic constraint~15!. Hence the general solution, using analogo
arguments, is seen effectively to be, with constant coefficientsci ,

f ~R̂!5c1~R̂!21c2R̂1c3I . ~28!

Using the spectral decomposition~16! along with ~17!,

f ~R̂!5c1~q2P(1)1q22P(2)1q2(12N)P~0!!1c2~qP(1)2q21P(2)

1q(12N)P~0!!1c3~P(1)1P(2)1P(0)!.

Hence, collecting together the coefficients one obtains the form

f ~R̂!5uP(1)1vP(2)1wP(0). ~29!

This is the motivation for~18!. The starting point is the most general solution, for a given
of group relations, as given by~29!. The right hand side of the MBE will be aconsequence~see
Appendix A!. In this larger space one then looks for points with particularly attractive prope
~for example, those corresponding toR̂c! and, more generally, explores the consequences of
free parameters in~29! such as in related noncommutative geometries~Sec. III!.

II. MBE FOR SOq„3…

We fix the normalization by choosing the top left element~row 1, col. 1! to be unity. In order
to simplify the explicit form ofR̂ we denote the remaining parameters in~18! as follows:

R̂5P(1)1~11a~11q2!!P(2)1~11b~11q1q2!!P(0)

5I 1a~11q2!P(2)1b~11q1q2!P(0). ~30!

The projectors are given explicitly at the end of Appendix A. The 939 symmetricR̂ is now
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R̂~a,b;q!

51
1 0 0 0 0 0 0 0 0

0 ~11a! 0 2aq 0 0 0 0 0

0 0 ~11aq1b! 0 ~b1a~q21!!Aq 0 ~b2a!q 0 0

0 2aq 0 ~11aq2! 0 0 0 0 0

0 0 ~b1a~q21!!Aq 0 ~11a~q21!21bq! 0 ~bq2a~q21!!Aq 0 0

0 0 0 0 0 ~11a! 0 2aq 0

0 0 ~b2a!q 0 ~bq2a~q21!!Aq 0 ~11aq1bq2! 0 0

0 0 0 0 0 2aq 0 ~11aq2! 0

0 0 0 0 0 0 0 0 1

2 .

~31!

This R̂(a,b;q) satisfies the braid equation for

case 1: a52q22, b52q221q23,
~32!

case 2: a521, b5211q,

the two sets giving mutually inverse matrices.
For this R̂ @the parameters (a,b) being implicit andI being the 333 unit matrix# we define

R̂125R̂^ I , R̂235I ^ R̂. ~33!

The general structure of the MBE is presented in Appendix A. We present here three
obtained for particular constraints on (a,b). One has

R̂12R̂23R̂122R̂23R̂12R̂235 l 1~R̂122R̂23!1 l 2~R̂12
22R̂23

2!, ~34!

where for case 1,a50 and arbitraryb,

l 250, l 15~11b~11q1q2!1b2q2!; ~35!

and for case 2,b5(12q)a,

l 25~11a!, l 15~312~21q2!a1~112q2!a2!; ~36!

Settinga521 one obtains case 2 of~32! with

l 150, l 250.

For case 3,b5(12q21)a,

l 25~11q2a!, l 15~312~112q2!a1q2~21q2!a2!. ~37!

Settinga52q22 one obtains case 1 of~32! with

l 150, l 250.

Let us note the following features:
The right hand side of~34! is linear only fora50 ~case 1!. This is evidently not included in

the standard cases~32!. Yet the braid equation is satisfiedfor

a50, ~b2q21b~11q1q2!11!50,

hence~whenqÞ0! for
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b52
1

2q2 ~11q1q2!6
1

2q2 ~~113q1q2!~12q1q2!!1/2. ~38!

This gives realb for q.0. ~See Appendix B for further discussion.!
To complete the picture, we note that the braid matrix becomes for

q50, a50, b521,
~39!

R̂~0,21;0!5diag~1,1,0,1,1,1,1,1,1!.

Whena andb are independent and arbitrary even the quadratic terms of the rhs of~34! do not
suffice ~Appendix A!.

III. NONCOMMUTATIVE THREE-SPACE FROM R̂„a,b ;q …:

WhenR̂ satisfies the braid equation@for ~32!# the quantum vector space is discussed in Re
3–5.@See, in particular, Sec.~9.3.2! of Refs. 4 and Ex.~4.1.22! of Ref. 5. Our results below are t
be compared to these treatments.# We will treat the more general case with parameters (a,b). The
explicit form of the rhs of the MBE~Sec. II! is not directly relevant here. We treat (a,b) as free
parameters to start with. With a slight change of notation~with respect to Sec. I! we set in~30!

v5a~11q2!, w5b~11q1q2!,

giving

R̂5I 1vP(2)1wP(0)5P11~11v !P(2)1~11w!P(0). ~40!

The coordinates are denoted (x2 ,x0 ,x1). Let (x^ x) ~without ‘‘tilde’’ for simplicity ! denote
the nine-componentcolumnobtained from the tensor product. Let (j2 ,j0 ,j1) denote the differ-
entials (dx2 ,dx0 ,dx1). Let the columns for the other tensor products be denoted, in evi
notations, as (j ^ j), (x^ j), (j ^ x).

As in Ref. 1 we will adopt prescriptions that give commutators of (xi ,xj ) and of (j i ,j j )
independent of (v,w) while those of (xi ,j j ) do depend on them.

Let

~R̂2I !~R̂2~11w!I !~x^ x!50

or

P(2)~x^ x!50. ~41!

This agrees with Refs. 3–5. Now set

~x^ j!5M ~j ^ x!. ~42!

Exterior derivation gives

~j ^ j!52M ~j ^ j! ~43!

or

~M1I !~j ^ j!50.

Now exterior derivation of~41! along with ~42! gives the typical constraint

~R̂2I !~R̂2~11w!I !~M1I !50. ~44!
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Hence one can choose~k being an arbitrary constant parameter!

~M1I !5k~R̂2~11v !I !5k~2vP(1)1~w2v !P(0)!. ~45!

From ~43! and~45!, due to the orthogonality of the projectors, one obtains~in agreement with
Refs. 4 and 5!

P(1)~j ^ j!50, P(0)~j ^ j!50. ~46!

From ~41! and ~46! one obtains~as in the standard treatments cited earlier!

x2x05qx0x2 , x0x15qx1x0 ,
~47!

x1x22x2x15hx0
2,

with

h[S Aq2
1

Aq
D

and

j2
2 50, j1

2 50, j2j11j1j250,

qj2j01j0j250, qj0j11j1j050, ~48!

j0
25hj2j1 .

Now we come to the part specific to our formalism. We define

F25~j2x02qj0x2!, F15~j0x12qj1x0!,
~49!

F05~j2x11Aqj0x01qj1x2!, F085~j2x11hj0x02j1x2!.

Then, implementing the definition ofM in terms ofR̂(a,b) and the explicit form of the latter
one obtains from~42!, denoting

k152~kv11!52~ka~q211!11!,

the module structure

x2j25k1j2x2 , x2j05k1j2x01kaF2 ,

x2j15k1j2x11kaqF081kbF0 , x0j25k1j0x22kaqF2 ,

x0j05k1j0x01ka~q21!AqF081kbAqF0 , ~50!

x0j15k1j0x11kaF1 , x1j25k1j1x22kaqF081kbqF0 ,

x1j05k1j1x02kaqF1 , x1j15k1j1x1 .

One can verify that one obtains the relations given in Ex. 4.1.22 of Ref. 5~p. 133! on setting

k5q2, a52q22, b52q221q23. ~51!

For
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k51, a522~11q2!21, b50 ~52!

one obtains the case~26! of R̂(c) ~with R̂(c)
25I ! where

P(2)5 1
2 ~R̂(c)21!, ~M1I !52~P(1)1P(0)!. ~53!

Hence~47! and ~48! are conserved along with a particularly simple form of~50!. Here one
moves out of the restricted space of solutions of BE~or YBE! to implement the particular sim
plicity of R̂(c) . ~See the relevant remarks in Sec. V.!

IV. MBE AND BAXTERIZATION

In Ref. 1 we briefly pointed out that MBE and Baxterization are two complementary as
of the same basic construction: the general solution ofR̂TT equation for a given set of grou
relations of the elements ofT. For the cases considered in Ref. 1@generalizable to GLq(N)# the
correspondence is relatively simple. In~2! the same, single parameterK appears in each membe
on the left leading to the nonzero rhs~thus modifying the BE! as shown in~2!. In a complementary
approach, one can varyK in different members on the left in a prescribed fashion~indicated in
Ref. 1! so that the rhs remains zero. This is Baxterization. Thesameparameter that leads to MBE
thus leads also to integrable systems in a complementary fashion.

One can make a parallel study for SOq(3) @generalizable to SOq(N) and Spq(N)#. But the
presence of three projectors and hence~apart from a normalization factor! of two arbitrary param-
eters leads to a more complex situation. Even restricted cases give the MBE of~34! with quadratic
terms on the right, the general structure being given in Appendix A. Let us now look a
complementary situation, namely, Baxterization.

In Sec. 3.9 of Ref. 6 solutions of

R̂~12!~x!R̂~23!~xy!R̂~12!~y!5R̂~23!~y!R̂~12!~xy!R̂~23!~x! ~54!

are given. In our notations and conventions they can be expressed as

R̂~x!5I 1v~x!P~2 !1w~x!P~0!, ~55!

where

v~x!5211
f ~x!

f ~x21!
, w~x!5211

g~x!

g~x21!
,

f ~x!5~xq2x21q21!

and

g~x!5~xq31x21!

or

g~x!5~x212qx!~xq2x21q21!.

Here we consider SOq(N) for N53. But f (x) is independent ofN and N appears ing(x) in a
simple! fashion.6 Above v(x) is assumed to be nonzero. We present a distinct class of solu
which is a Baxterization of the new class ofBE given by our~38!. For

R̂~x!5I 1w~x!P~0! ~56!

using ~A.15! one finds from~54! the single constraint
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w~xy!5
w~x!1w~y!1w~x!w~y!

12k2w~x!w~y!
, ~57!

where

k25~11q1q21!225~11@2# !22.

For N.3, @2# is replaced by@N21#. The solutions are

w~x!5211
g~x!

g~x21!

~58!
g~x!52~x2x21!6A124k2~x1x21!.

For realq,

~124k2!5
~~q1/21q21/2!211!~~q1/22q21/2!211!

~11q1q21!2

is positive and the square root real. Note that for any (v(x),w(x))

~R̂~x!!215I 2
v~x!

11v~x!
P~2 !2

w~x!

11w~x!
P~0! ~59!

provided that the denominators are nonzero. Considering the inverse of both sides of~54! one
finds that if (v(x),w(x)) are to be general solutions one must have

2
v~x!

11v~x!
5v~x8!, 2

w~x!

11w~x!
5w~x8!, ~60!

wherex8 is some suitable function ofx. The forms following~55!, independently of the explicit
expressions for (f ,g) assure that

x85x21

and

R̂~x!R̂~x21!5I . ~61!

The same is valid for~58!. In ~55!, respectively, for

x@1, x!1

one obtains the limits

v52~11qe2!, w52~12qe3!

~wheree561! the braid values noted in~A.9!, ~A.10!. Let us finally note that setting

eA124k25tanh!ta, x5exp~u!

one obtains from~58! the elegant Baxterization

w~x!5211
sinh~h2u!

sinh~h1u!
. ~62!
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For q51 with

thanh5e
5

A3

one obtains Baxterization of the case studied in Appendix B.

V. REMARKS

We conclude by noting the following points.

~1! After the introductory remarks~Sec. I! on the spectral decomposition ofR̂ for vector repre-
sentations of GLq(N), SOq(N) and Spq(N), from Sec. II onwards we restricted our study
SOq(3). But a substantial part of our results are evidently generalizable to SOq(N) with
N.3. The crucial feature is the number of projectors in the spectral decomposition. The
for GLq(2) with two projectors and that for SOq(3) with three exhibit major differences
made explicit here. But in SOq(N) the number of projectors does not vary withN. Still, a
careful study of the case of SOq(4) and comparison of the results with those for SOq(3)
would be of real interest. This is beyond the scope of this article.

~2! In Ref. 1 we started with the criterion of using the most general solutionR̂ of the R̂TT
relations for a given set of group relations of the elements ofT. This, being implemented in
the standard trilinear structure of the braid equation, modified the right hand side, mak
nonzero butlinear in theR’s as shown in~2!. No a priori postulate was made concerning th

rhs of the equation. The explicit form was aconsequenceof the free parameterK in R̂. It was
then noted in Ref. 1 that the MBE thus obtained@Eq. ~2! of this article# coincided with that
introduced in Ref. 2~and sources cited there!. Now this is seen to be acoincidencevalid for
the cases studied in Ref. 1@generalizable to GLq(N)#. All those cases involved two projector
~the sum beingI !. As soon as this number increases@such as already for SOq(3)#, the rhs has
a more complex structure. Our starting point~the general solution ofR̂TT! is exactly the same
here. But only in the very particular case~35! one has a linear structure on the right.

~3! In Sec. III we present all the relations involving the coordinates and the differentials
much remains to be done to better understand the noncommutative space thus obtain
properties of theF’s introduced in~49! deserve study. To render the geometry more trans
ent one should construct the ‘‘frame basis’’ in terms of operators commuting with the alg
~See Refs. 5 and 7 and sources cited there.! Thus equipped, one can study possible attrac
consequences concerning the metric of implementingR̂c as in~53!. We hope to explore thes
aspects elsewhere.

~4! After Ref. 1 we emphasize here again the complementary nature of MBE and Baxteriz
We provide a simple new example of the latter in~57!. Let us repeat another point made
Ref. 1. The standard braid equation can be made to correspond to the third Reidemeiste
in knot theory. Hence~54! can be viewed as a parametrization of this move. It would be w
exploring in the context of knot theory whether this provides access to a richer cla
invariants.

~5! Here we have studied coboundaryR̂ martices in vector representations in terms of projecto
An approach using Drinfeld’s transformation can be found in Ref. 8.

~6! Finally, let us recapitulate the remarkable properties of the solution provided by~38!. It satifies
the R̂TT equation for the standard group relations of SOq(3). It satisfies the standard brai
equation@~34! with zero rhs#. It continues~as shown in Appendix B! to be nontrivial even for
q51. It can be relatively simply Baxterized as shown at the end of Sec. IV. This sets the
for a full study of the corresponding integrable model. This also suggests a search of
gous new solutions, more generally, for SOq(N) and Spq(N) and also for higher dimensiona
representations of SOq(3). Wehope to explore such possibilities elsewhere.
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APPENDIX A: GENERAL STRUCTURE OF MBE

In the notation of~30! or ~40!,

R̂5I 1vP(2)1wP(0). ~A1!

For elucidating the sructure of the consequent MBE we start with a number of definition
auxiliary relations.

We define

X15P(12)
(2) , X25P(23)

(2) , Y15P(12)
(0) , Y25P(23)

(0) . ~A2!

The orthonormal properties of the projectors imply@for i 5(1,2)#

Xi
25Xi , Yi

25Yi , XiYi5YiXi50. ~A3!

We also define

S15X12X2 , S25Y12Y2 , ~A4!

S35~X1X2Y11X1Y2X11Y1X2X1!2~X2X1Y21X2Y1X21Y2X1X2!, ~A5!

S45~Y1Y2X11Y1X2Y11X1Y2Y1!2~Y2Y1X21Y2X1Y21X2Y1Y2!, ~A6!

S55~X1X2X12X2X1X2!, S65~Y1Y2Y12Y2Y1Y2!. ~A7!

Using these definitions and the properties~A3! one obtains quite generally,

R̂12R̂23R̂122R̂23R̂12R̂235~v1v2!S11~w1w2!S21v2wS31vw2S41v3S51w3S6 . ~A8!

TheS’s depend onq only. The dependence on (v,w) is explicitly displayed in the coefficients
of ~A8!.

Now we exploit systematically the constraints on theS’s provided by the known solutions
namely,~32! and ~34!–~37!.

The rhs of~A8! must vanish for the braid solutions~32!, namely, for

v52~11q22!, w52~12q23!, ~A9!

and also for

v52~11q2!, w52~12q3!. ~A10!

Implementing these~for qÞ1! we choose to express (S3 ,S4) as

S35
q2

~q211!~q21q11!
S12

q2

~q211!2 S22
~q211!

~q21q11!
S52

~q321!2

q~q211!2 S6 , ~A11!

S45
q3

~q321!2 S11
q2

~q211!~q21q11!
S22q

~q211!2

~q321!2 S51
~q321!~q21!

q~q211!
S6 . ~A12!
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Now note that implementing~A3! one can express the rhs of~34! as

l 1~R̂122R̂23!1 l 2~R̂12
22R̂23

2!5~ l 1v1 l 2~2v1v2!!S11~ l 1w1 l 2~2w1w2!!S2 . ~A13!

Combining this result with~case 1! or ~35! one obtains~sincev50, l 250!

l 1wS25S ~w1w2!1
q2w3

~q21q11!2DS25~w1w2!S21w3S6 . ~A14!

Hence

S65q2~q21q11!22S2 . ~A15!

From ~A11!, ~A12! and ~A15! one obtains

S35
q2

~q211!~q21q11!
S12

q~q22q11!

~q211!2 S22
~q211!

~q21q11!
S5 , ~A16!

S45
q3

~q321!2 S11
q~q22q11!

~q211!~q21q11!
S22q

~q211!2

~q321!2 S5 . ~A17!

Combining all the preceding results one finally obtains

R̂12R̂23R̂122R̂23R̂12R̂23

5c1S11c2S21c5S5

5c1~P(12)
(2) 2P(23)

(2) !1c2~P(12)
(0) 2P(23)

(0) !1c5~P(12)
(2) P(23)

(2) P(12)
(2) 2P(23)

(2) P(12)
(2) P(23)

(2) !.

~A18!

Here

c15v1v21
v2wq2

~q211!~q21q11!
1vw2

q3

~q321!2 ,

c25w1w21
w2vq~q22q11!

~q211!~q21q11!
2wv2

q~q22q11!

~q211!2 1
w3q2

~q21q11!2 , ~A19!

c55
v

~q321!2 ~~q321!v1~q211!w!~~q321!v2q~q211!w!.

As checks one verifies thatc15c25c550 for ~A9! and ~A10!. Moreover,c550 for

~q211!w52~q321!v

and

q~q211!w5~q321!v.

Thus one gets back, respectively, case 2 of~36! and case 3 of~37!.
The form ~A18! makes the dependence on (v,w) entirely explicit, thec’s being given by

~A19! and theS’s depending only onq. This is particularly suitable for our purpose. TheP’s can
be reexpressed in terms ofR̂(v,w) using ~20!. But only for c550 @cases 1–3 of~35!–~37!,
respectively# one obtains a relatively simple form as in~34!. For S5 there is no crucial simplifi-
cation as forS6 in ~A15!. Settingw50 in ~A18! one gets no new simplification but an identit
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Throughout this article the projectorsP(2) and P(0) have served as the essential buildi
blocks. They can be easily extracted comparing~30! and ~31!. But for completeness and conve
nience they are presented below explicitly.

~q211!P(2)51
0 0 0 0 0 0 0 0 0

0 1 0 2q 0 0 0 0 0

0 0 q 0 ~q21!Aq 0 2q 0 0

0 2q 0 q2 0 0 0 0 0

0 0 ~q21!Aq 0 ~q21!2 0 2~q21!Aq 0 0

0 0 0 0 0 1 0 2q 0

0 0 2q 0 2~q21!Aq 0 q 0 0

0 0 0 0 0 2q 0 q2 0

0 0 0 0 0 0 0 0 0

2 .

~A20!

~q21q11!P(0)51
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 Aq 0 q 0 0

0 0 0 0 0 0 0 0 0

0 0 Aq 0 q 0 qAq 0 0

0 0 0 0 0 0 0 0 0

0 0 q 0 qAq 0 q2 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2 . ~A21!

APPENDIX B: NONTRIVIAL BE FOR qÄ1

We pointed out in Sec. II that fora50 andb satisfying~38! one obtains two solutions of BE
~not modified, with vanishing rhs!. Setting

q51

in ~38! one obtains

b213b1150

or

b5 1
2 ~236A5![2e7m. ~B1!

@It is amusing to note the relation ofb, or rather that of2(b11) with the famous Golden
Mean i.e.,1

2(A521).#
Now one obtains

R̂~7m!5I 23e7mP̂(0), ~B2!

where the projectorP̂(0) is obtained fromP(0) by settingq51. Thus
                                                                                                                



3P̂(0)51
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0 02 .

ers.
9

n three
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0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

From ~B2! one easily obtains the nontrivial Hecke condition

~R̂~7m!2I !~R̂~7m!1~3e7m21!I !50. ~B3!

Thus R̂(7m) arenot coboundary matrices. They cannot be obtained by twistingI since

~R̂~7m!!2ÞI .

For

q51, b50, a521 ~B4!

again@from ~30!, ~36!, and~37!# one obtainsR̂ satifying BE given by

R̂5I 22P̂(2), ~B5!

whereP̂(2) is obtained fromP(2) settingq51 in ~A20!.
But now, in contrast to~B3!, one has

R̂25I .

The R(7m) satisfying YB ~Yang–Baxter equation! can be obtained from~B2! as

R~7m!5PR̂~7m!5P23e7mP̂(0), ~B6!

where the matrixP @permuting the rows~2,4!, ~3,7!, ~6,8!# leavesP̂(0) invariant.
In Hieterinta’s classification9 of 434 R matrices appear examples without free paramet

Such a case has been studied10 in the context of ‘‘exotic bialgebras.’’ Here we have obtained
39 examples of such matrices.

1A. Chakrabarti, ‘‘RTT relations, a modified braid equation and noncommutative planes,’’ J. Math. Phys.~unpublished!,
math.QA/0009178.

2M. Gerstenhaber and A. Giaquinto, ‘‘Boundary solutions of the quantum Yang–Baxter equation and solutions i
dimensions,’’ q-alg/9710033.

3N. Y. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, Leningrad Math. J.1, 193 ~1990!.
4A. Klimyk and K. Schmudgen,Quantum Groups and their Representations~Spinger, New York, 1997!.
5J. Madore,An Introduction to Noncommutative Differntial Geometry and its Physical Applications, 2nd ed.~Cambridge
University Press, Cambridge, 1999!.

6A. P. Isaev, Phys. Part. Nuclei26, 501 ~1995!.
7B. L. Cerchiai, G. Fiore, and J. Madore, ‘‘Geometrical tools for quantum Euclidean spaces,’’ math.QA/0002007.
8E. V. Damaskinsky, P. P. Kulish, and M. A. Sokolov, Zap. Nauchn. Semin. LOMI269, 193 ~2000! ~in Russian!.
9J. Hietarinta, J. Math. Phys.34, 1725~1993!.

10D. Arnaudon, A. Chakrabarti, V. K. Dobrev, and S. G. Mihov, ‘‘Duality for exotic bialgebras,’’ math.QA/0101160.
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Understanding singularities in Cartan’s and null surface
formulation geometric structures

D. M. Forni,a) M. S. Iriondo, C. N. Kozameh, and M. F. Parisi
FaMAF, Universidad Nacional de Co´rdoba, 5000, Co´rdoba, Argentina

~Received 16 February 2001; accepted for publication 14 August 2001!

In this work we establish a relationship between Cartan’s geometric approach to
third-order ordinary differential equations and the three-dimensional null surface
formulation. We then generalize both constructions to allow for caustics and sin-
gularities that necessarily arise in these formalisms. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1408282#

I. INTRODUCTION

During the first half of the twentieth century, while trying to understand the group of tr
formations of differential equations, Cartan laid down the foundations of modern differe
geometry and established a link between analysis and geometry. One particular example t
be discussed in this work shows Cartan’s approach to the classification of solutions of or
differential equations~ODEs!.1–3 Consider the two-dimensional~2D! spaceE2 with local coordi-
nates (x,y) and the following third-order ODE,

y-5F~x,y,y8,y9!, ~1!

with ‘‘prime’’ denoting the derivative with respect to the independent variable.
If one performs a coordinate transformation onE2 one gets another ODE that is triviall

related to Eq.~1!. Cartan thus considered the issue of how to classify solutions of third-o
ODEs into equivalence classes, with two solutions belonging to the same class if the corre
ing ODEs were related by a coordinate transformation onE2. It is clear that one can spend man
hours before finding the appropriate coordinate transformation that will turn one ODE int
other. Cartan showed that with the general solution of a given third-order ODE, like that s
previously, one can explicitly construct a connection one form on a four-dimensional~4D! space
E4 with local coordinates (x,y,y8,y9) ~the details are presented in Sec. II!. Furthermore, Cartan
showed that two third-order ODEs are equivalent if their corresponding solutions yield the
geometric structure onE4. Cartan also showed that whenF satisfies a given partial differentia
equation~PDE! on E4, symbolically written asM @F#50, then the connection is torsion free an
a unique conformal structure can be given on the solution space@three-dimensional~3D! param-
eter space# of the starting ODE.

It is worth mentioning that the same equationM @F#50 arises in the three-dimensional ve
sion of the so-called null surface formulation~NSF! of general relativity~GR!.4 As we will see in
the following, this is not mere coincidence since we will show that the 3D version of NS
almost contained in one of Cartan’s works.1 Finding the correspondence between these two c
structions was one of the motivations for writing this work.

In the NSF the main variable is a functionu5Z(f), with fPS1, subject to a third-order
ordinary differential equation of the form

u-5L~f,u,u8,u9!, ~2!

a!Electronic mail: forni@fis.uncor.edu
15840022-2488/2002/43(3)/1584/14/$19.00 © 2002 American Institute of Physics
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where the functionL is restricted to satisfy the ‘‘metricity condition’’M @L#50. The general
solution of~2! is given byu5Z(xa,f), with the constants of integrationxa taken as coordinate
of the 3D solution manifoldE3. From this solution a space–time metric forE3 can be constructed
such that the level surfaces ofZ are null foliations ofE3 for each fixed value off. Furthermore,
the covectorl a[]aZ spans, for fixed values ofxa, the circle of null directions and thus th
parameterfPS1. Except for the relabeling of functions and the topology of the starting spaceE2,
both formulations share many geometric features, with Cartan emphasizing the role of th
nection one-form and the NSF the explicit construction of a metric on the solution space o~2!.

But a key point arises by noting that, by assumption, both formulations are local constru
in the 2D manifold. It follows from this fact that the solutions to~1! are families of smooth curve
and~as we will see in the following! that the level setsZ(xa,f)5const are smooth null surface
of the induced metric in the 3D solution space. However, we know that characteristic su
develop caustics and singularities as a result of the ‘‘focusing’’ properties of null geodesic
gruences established in GR singularity theorems.5 Moreover, the solutions to~1! that yield these
null surfaces with caustics cannot be smooth curves onE2, so they must develop self-intersection
and singular points.

A second motivation for this work is thus to consider the nondiffeomorphic generalizatio
these geometric constructions in order to account for the folds and nondifferentiable ed
curves onE2 that yield null congruences with caustics. The first step is to introduce the curv
E2 according to Arnold’s theory of Lagrangian manifolds as6

u5G~p!2pG8~p!, ~3!

f52G8~p!; ~4!

@G(p) is called the generating function#. Although G may be smooth, the curve (u(p),f(p))
might have self-intersections and singular points iff(p) is not injective. The question is how t
find the properG such that~3! and~4! define a null surface by settingu andf constant. As we will
show in this work, curves with singular points inE2 will induce null surfaces with caustics inE3.
Conversely, we will also show that if the null surfaces have conjugate points then the corres
ing families of curves onE2 have singularities.

In this reformulation, Eq.~2! for Z is changed to an equation forG, of the same type,

d3G

dp3 5L̃~p,G,G8,G9! ~5!

and the metricity conditionM @L#50, which becomes singular at a caustic point, yields an
tirely well-behaved equationM̃ @L̃#50 whose solutions are the ‘‘appropriate’’ right-hand side
~5!. As we will see in an example, among the solutions of~5! we obtain generating functions o
caustics as listed in Ref. 6. This result encounters an immediate application inside the 211 NSF
and also in the full theory because, to be in complete agreement with the standard GR formu
it always remained as an open problem to write the metricity conditions of NSF in a form
explicitly shows the existence of the singular solutions.7

The work is organized as follows: In Sec. II we first give an account of Cartan’s geom
construction obtained in Ref. 1 starting from the third-order equation~2!. This review is presented
in modern language since the original reference was written before modern differential geo
was invented and it is very difficult to follow.~It is worth mentioning that one ‘‘variation’’ on
Cartan’s work has appeared in the literature8 but it is different from the original construction.! We
then give a brief review of the NSF in 3D and show that this formalism is a particular ca
Cartan’s construction. In Sec. III we proceed to generalize the local analysis of Sec. II and
the regularized metricity conditionM̃ @L̃#50. We also find a relation between curves with caust
on E2 and null surfaces with conjugate points onE3. A simple example shows how to genera
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germs of caustics for the solutions to~5!. We conclude this work with some comments on t
possibility of attaching a similar geometric structure to the original construction of the NSF in
dimensions.

II. GEOMETRIC APPROACHES TO A THIRD-ORDER ODE

In this section we present two geometric constructions that arise from a third-order ord
differential equation

u-5L~f,u,u8,u9!, ~6!

where (f,u) are coordinates on the cylinderS1ÃR. As we will see in the following, it turns ou
that one of these constructions is almost contained as a particular case of the other.

A. Cartan’s construction

We first present Cartan’s approach,1,3 achieved by interpreting the integral curvesu(f,xa) as
pointsxa(a51,2,3) of the three-dimensional solution spaceE3, attaching to it a Lorenztian metric
gab and giving the structure of a one-dimensional fiber bundle overE3, with fP@0,2p) as the
coordinate of the fiber. On the base space we attach a ‘‘null frame’’ satisfying

e1"e15e1"e25e3"e35e2"e350, e2"e21e1"e350, ~7!

whereei "ej5gab ei
aej

b5gi j . In terms of the dual basissa
i of the null frame, the metric can b

written as

gab5gi j sa
isb

i5sa
2

^ sb
222sa

(1
^ sb

3),

where we have choseng13521. Note that for fixed values off, the three functions

~u0,u1,u2![~u,v,r ![~u,u8,u9!, ~8!

can be taken as coordinates on the base space of the bundle. Thus, each point of the b
locally described by (f,u,v,r ).

Equation~6! yields the associated pfaffian system9 on the bundle which, written in terms o
these coordinates, reads

s15du2v df,

s25dv2r df, ~9!

s35l~dr 2L df2a s12b s2!,

wherea, b, andl are functions to be determined. The bundle of null directions is constructe
selectings i as the soldering forms and thesa

i as the projections of~9! to the base space. Note th
the solution of~6! will give null surfacesSPE3 by settingu(f,xa)5const,f5const. The bundle
constructed in this way will be denoted byN(E3,g).

To characterize the geometric structure defined from~6!, Cartan introduces a connection an
a covariant exterior derivative as

Dei5v i
jej ,

whereD is the covariant exterior derivative with respect to this connection~see Refs. 10–12! and
v i

j are the connection one-forms. Furthermore, Cartan demands that the connection will b
patible with the metric in the sense that a null frame remains null under parallel transport,

Dgi j 52v̄ gi j ,
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wherev̄ is a one-form on the bundle. Therefore,

v i j 1v j i 522gi j v̄,

wherev i j 5v i
kgk j .

It follows from the above that

v115v3350, v131v31522v̄,

v1252v21, v2352v32,v225v̄.

Thus, the connection is determined by four arbitrary one-forms, namely

v12,v23,v31, v̄.

Note thats i ,v23 are linearly independent forms inN(E3,g). This assertion can be understoo
from the geometrical meaning that these forms have.

~1! s15v2350 is the differential system for null 2 surfaces, since on this surfaceD e35v13 e3

andD e252v22 e21v12 e3 .
~2! s15s25v2350 is the differential system for null geodesic, since on this cu

D e35v13 e3 .
~3! s15s25s350 is the differential system for a point ofE3.

Note also that the vanishing ofs1 and v23 is equivalent to imposingu5const,f5const.
Thus, v23 can be chosen to be of the formv235m(df1gs1) with g and m being a priori
arbitrary.

The idea is to write the nontrivial connection one-forms in terms of the basiss i ,v23 and then
to impose certain conditions on the torsion and curvature of the connection to uniquely dete
the functionsa, b, g, l, andm.

Using Cartan’s structure equations,

Q i5ds i1v i
j`s j , ~10!

V i
j5dv i

j1v i
k`vk

j , ~11!

and imposing

Q15Q250, Q35A s1`v23 ~12!

on the torsion two-forms, we find that

l5m51,

a5 1
3] rL,

b5a22
1

2

da

df
1

1

2
]vL,

where

dF

df
~u,v,r ,f!5]fF1v ]uF1r ]vF1L] rF ~13!
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for any functionF(u,v,r ,f). Equation~12! has the following geometrical meaning: Given
point in E3 and two vectors, we construct a geodesic parallelogram from that point~see Ref. 13!;
then in order to come back to the same point, we only need a translation in the null directioe3 .
If the parallelogram is on the null surface~whens150 andv2350!, no translation is needed.

Furthermore, if we require

V235Bs1`s21Cs1`s3, ~14!

we find that

g5 1
2 ] ra.

The geometrical meaning of~14! is that the above-mentioned curvature two-form should van
when e3 is parallely transported around a parallelogram with one of its sides being the
geodesic generated bye3 .1

Summarizing, conditions~12! and ~14! suffice to uniquely determine the non trivial comp
nents of the connection one-form. They are given by

v235df1gs1,

v̄52a df1S 2
dg

df
2 ]va Ds122gs2,

~15!

v315a df1S dg

df
1ag Ds11gs2,

v1252b df1~]ua2]vb13bg2a] rb!s11S 2
dg

df
2]va Ds22gs3.

Using the equations in~15! one determines the remaining coefficients for the torsion and curva
in terms ofL. In particular, the only nontrivial coefficient of the torsion is given by

A5
1

6

d2] rL

df2 2
1

3
] rL

d] rL

df
2

1

2

d]vL

df
1

2

27
~] rL!31

1

3
]vL] rL1]uL.

A connection compatible with a Lorenztian metric constructed in this way was calle
Cartan a normal metric connection. The main result of Cartan can be stated as follows:

Theorem 2.1: To each third-order ordinary differential equation [up to diffeomorphism
(f,u)] one can associate a null bundle with a unique normal metric connection and vice v
i.e., to each bundle of null directions with normal metric connection one can associate a
order ordinary differential equation up to diffeomorphism.

One special class of Cartan’s connection is particularly interesting to us. If we impoA
50, the connection is torsion free and Monge’s equation

gabY
aYb50

is constant along the fiber, since

dgab

df
52

2

3
] rLgab12Asa

1
^ sb

1. ~16!
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Thus, the conditionA50 defines a unique conformal structure on the solution space of~6!.
Moreover,A50 is also the condition that the third-order ODE must satisfy so that the conta
two neighboring integral curves can be given by a Monge’s equation of the second order be
the parameters of those curves.14

Note that even in the case that the connection is torsion free, the metric so obtained d
on f, i.e., we have a monoparametric family of conformally related metrics.

B. NSF’s construction

We now turn our attention to the NSF formulation, in which we have a functionu5Z(f)
satisfying a third-order ODE

u-5L~f,u,u8,u9!, ~17!

with fPS1 and L a smooth generic function. The solutions to this equation are of the foru
5Z(xa;f), with xa(a51,2,3) representing three constants of integration which define the
manifold of solutionsE3 ~equivalent toR3!.

Note that the functionZ(xa;f) plays a double role, namely:

~1! For each fixedxa in E3, u5Z(xa;f) yields a curveCx on E2 with coordinates (u,f); these
curves will be called cuts.

~2! Fixing (u,f) in E2, the relationu5Z(xa;f) now defines a surfaceS(u,f) living in E3.

It is important to realize that the analysis is merely done at a local level, so that the curCx

is certainly the graph of a function inE2 andS(u,f) turns out to be a smooth surface inE3.
The key assumption of NSF comes when we require that, for any value ofu andf, S(u,f) be

indeed a null surface of some space–time metricgab(x
a) to be attached toE3. This condition

implies that for fixed values ofxa and arbitrary values off the gradient ofZ satisfies

gab~xa!¹aZ~xa;f!¹bZ~xa;f!50. ~18!

Note that as the families of foliations intersect at a single but arbitrary pointxa, the enveloping
surface forms the light cone of the pointxa. Thus, the parameterf spans the circle of null
directions.

The idea now is to consider~18! as an algebraic equation from which the five component
the conformal metric can be determined in terms of¹aZ(xa,f). Given an arbitrary functionZ, the
problem has no solution since we have an infinite number of algebraic equations~one for each
value of f! for five unknowns. Therefore, we must impose conditions onZ(xa,f) so that a
solution exists. The solution and conditions are obtained by repeatedly operating d/df on ~18!.
They are best expressed when written in the canonical coordinate system (u,v,r ) given in Eq.~8!.
The final expression for the metric components reads

gi j 5V2S 0 0 1

0 21 2 1
3] rL

1 2 1
3] rL 2 1

3]~] rL!1 1
9~] rL!21]vL

D , ~19!

where the conformal factor must satisfy the differential equation~see Ref. 4 for details!

d

df
V5

1

3
] rL V,

so that the metric is independent off. Note that the above-mentioned equation is invariant un
V(x,f)→V8(x,f)5 f (x)V(x,f) for an arbitraryf (x). This freedom is a consequence of th
conformal invariance of the formulation.
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The metricity condition is given by

M @L#[2S d~] rL!

df
2]vL2

2

9
~] rL!2D ] rL2

d2~] rL!

df2 13
d~]vL!

df
26]uL50,

and constraints the availableL’s that must enter in the differential equation~17!, for only if
M @L#50 holds, one is able to construct from the solutionsZ(xa;f) to the ODE a metric accord
ing to ~19! such that the level surfacesS(u,f) of Z are its characteristic surfaces. Note that th
condition is the one deduced by Cartan imposing the connection in the three-dimensional m
E3 to be torsion free (A50).

Summarizing, one solvesM @L#50, which is a partial differential equation in the variabl
(u,v,r ,f) and, denoting byL0(u,v,r ,f) its solution and using the coordinates definitions~8!,
Eq. ~17! becomes

Z-5L0~f,Z,Z8,Z9!, ~20!

which is the ODE whose solutionsZ(xa;f) allow for the construction of a metricgab on E3 such
that the level surfaces ofZ are its null hypersurfaces.

Remark 2.1:It is clear from the above that the NSF construction is the special case of Ca
geometric structure with vanishing torsion.

III. SINGULARITIES IN TERMS OF SMOOTH MANIFOLDS

By assumption, both Cartan’s and the NSF are local constructions in the 2D manifo
follows from this that the cutsCx,E2 are families of smooth curves and~as we will see in the
following! that the level setsZ5u0 are smooth null surfaces of the induced metric in the
solution space.

It also follows from the above-mentioned assumption that these formalisms are not capa
including the caustics that null surfaces necessarily possess.6,15,16Moreover, one might foresee tha
the families of cuts that yield these null surfaces with caustics will also fail to be smo
developing self-intersections and singular points. Thus, in this section, we are faced wi
problem of generalizing the geometric constructions presented in Sec. II to include the desc
of singularities of both, cuts and null hypersurfaces.

Our starting assumption is that the cuts develop caustics in the 2D space. Technical
means that cuts are projections ontoE2 of a ~smooth! Legendrian submanifold and the causti
arise where the projection map fails to be one to one. In a similar way as in Ref. 17, we
generating function to describe a cut in the neighborhood of a caustic. Using this function w
be able to see howL diverges at a caustic point. Since the original equation and the metr
condition become useless around that point, we will obtain a regularized metricity conditi
select the class of generating functions which yield conformal metrics on the solution spac
will also show that caustics come inseparably paired in the Cartan and NSF constructions,
sense that the existence of caustics in the cut implies the same singular behavior in th
surfaces of the manifoldE3 ~and vice versa!. Section III C presents an example of a generat
function in a Minkowskian space–time.

A. The generating function

The regular solutions of~17! can be used to define smooth curves on the so-called proje
cotangent space ofE2 with local coordinates (u,f,p), wherep is the momentum canonically
conjugated tof. The curves are given by

u5Z~xa;p!,

f5p,
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p5
dZ

dp
,

with xa parameters to be interpreted as coordinates in the solution space. These smooth cu
called Legendrian submanifolds and the projection of these submanifolds onto the spaceu,f)
gives the local description of the cuts ofE2. The above-mentioned equations describe the L
endrian submanifolds in the diffeomorphic region since the coordinatef is used as a parameter t
describe these curves.

In order to describe the cuts in regions containing caustic points, we introduce a gene
function of the formG5G(xa;p). In this case the Legendrian submanifold is given locally a

u5G2pG8,

f52G8, ~21!

p5p,

whereG8 denotes the derivative ofG with respect top holding xa fixed. The equations of~21!
locally describe smooth curves on the projective cotangent space ofE2. Note that the projection of
these curves onto the space (u,f) is not necessarily a diffeomorphism, sincef fails to be injective
in p whenG9 vanishes. Therefore, this description includes caustic points in a natural way
easy to see thatL diverges at the caustic points. For this we analyze the behavior of the co
nates (u,v,r ,f) and the functionL as we approach a caustic inE2. These variables, expressed
terms ofG andp, become

u5G2pG8,

v5
du

df
5p, ~22!

r 5
dv

df
52~G9!21,

and sinceL5 d3u/d3f we obtain

L5
2G-

~G9!3 .

Since at a caustic pointG950, we see from Eq.~22! that bothu andv are bounded whiler
and L diverge at that point. One might argue thatG could be such thatG- also vanishes at a
caustic point in such a way thatL remains finite. However, smoothness requiresG to be expand-
able as a polynomial around a caustic point. ThusG- is always a polynomial of lower degree tha
G9 and the previous argument does not apply. It follows from these considerations that~a! the
third-order ODE~17! will not be defined around caustic points and~b! the coordinate system
metric construction, and metricity condition will not be regular on the 3D solution space.

We look then for a regular third-order ODE where the right-hand side of this equation sa
a regularized metricity condition. For this we introduce a new set of coordinates (G,G8,G9,p). In
terms of these coordinates we have

G-5L̃~G,G8,G9,p!52~G9!3L~G2pG8,p,2~G9!21,2G8!

and the metricity conditionM̃ @L̃#50 becomes
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M̃ @L̃#5G9S 2~L̃p1G8L̃G!L̃G923L̃
d

dp
L̃G925

dL̃

dp
L̃G912L̃~L̃G9!

2D
1 G9S 3

d2L̃

dp2 23
d

dp
~L̃p1G8L̃G! D 1~G9!2S 2L̃G9

d

dp
L̃G926L̃GD

2~G9!2S 4

9
~L̃G9!

31
d2

dp2 L̃G9D13L̃S ~L̃p1G8L̃G!1L̃L̃G92
dL̃

dp
D

50, ~23!

where dF/dp 5Fp1G8 FG1G9 FG81L̃ FG9 for any functionF(G,G8,G9,p). Note that Eq.
~23! is regular in a neighborhood of the caustic (G950).

Finally, to obtain null surfaces and study them near a caustic, we proceed in a similar w
we did in the diffeormophic region, i.e., we first solveM̃ @L̃#50. Denoting byL̃0 a particular
solution to this equation we then generate solutions of the ordinary differential equation

G-5L̃0~G,G8,G9,p!, ~24!

and construct families of curves with caustics onE2.
Remark 3.1:Note that in the (G,p) space the solutions to~24! will generate smooth curves

To construct the families of curves with caustics one must useG as the generating function of th
contact transformation~21! and the null surfaces are given by the conditionsu5const, f
5const.

Remark 3.2:Note that the contact transformation~21! induces a coordinate transformatio
~22! which preserves the metric tensor defined onE3. Thus, Cartan’s theorem 2.1 is immediate
generalized to include coordinate and contact transformations onE2.

B. Caustics on null surfaces and cuts

In this section, we prove that the existence of caustic points in the cuts yields the existe
caustic points in the null surfaces ofE3 and vice versa. As it is known~Ref. 5!, the divergence of
a congruence of null geodesicsr52¹al a ( l a5gab¹aZ) becomes infinite at a caustic. Therefor
to prove our assertions, we will derive a relation betweenr of a congruence contained in the nu
surface and the scalarZ9(xa,f) constructed from the general solutionu5Z(xa,f) to ~17!.

Let l a be the tangent vector to a geodesic with affine parametert, then

l a5
dxa

dt
5gabu0

b5V2u2
a, ~25!

whereu i
b andu j

a are the form basis and its corresponding dual vector basis associated wi
canonical coordinate system~8!.

To this tangent vector we associate a triad$ l a,ma,na% parallely propagated along the geodes
satisfying

mama51, nana50, l ama50, l ana521, nama50.

In this frame the metric tensor and the divergence become

gab5mamb22n(al b) , r5mamb¹al b ,

respectively. Sinceu1
a andu2

a are coordinate vectors they satisfy

u2
a¹au1

b5u1
a¹au2

b. ~26!
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Expresing the geodesic deviation vectoru1
a in terms of the triad

u1
a5jma1a l a, ~27!

in ~26! gives

l a¹aj5jmamb¹al b5jr

or equivalently

r5j21
dj

dt
. ~28!

On the other hand we can easily derive a differential equation for the divergence by consi
the geodesic deviation equation as follows:

mcl
a¹a~u1

b¹bl c!5mcu1
a¹a~ l b¹bl c!1jRabd

cl ambl dmc .

Sincel a is a tangent vector of a null geodesic and the triad is parallely propagated along it,
~27! we obtain

mcl
a¹a~jmb¹bl c!5

dj

dt
r1j

dr

dt
5jF,

with F5Rabd
cl ambl dmc . Finally, from ~28!, we see thatr must satisfy the differential equation

dr

dt
1r25F. ~29!

To prove our claims we start with the general solutionu5Z(xa,f) to ~17!, and we assume
that the cutu5Z(x0

a ,f) has a caustic atf5f0 . As we have seen in Sec. III A, this is equivale
to saying that the functionZ9(x0

a ,f) diverges atf0 . To show that there is a caustic in the nu
surface defined byZ(xa,f0)5Z(x0

a ,f0)5u0 , we must prove that limr→` r5`, with r
5Z9(xa,f0).

From ~25! it follows that

d

dt
5V2

]

]r
52V2s2

]

]s
,

with the coordinates5r 21. As d/dt and ]/]s are regular operators nears50, the factorV2s2

must be a nonzero smooth function ofs. HenceV5O(s21), meaning that the conformal factorV
diverges when we approach a caustic in the cut.

Finally, noting thatg115gabu1
au1

b, we expressj in terms of the conformal factor in the
following manner

g115V225gab~jma1a l a!~jmb1a l b!5j2,

therefore

r5
d

dt
ln V52V2s2

]

]s
ln V,

which yields

r5O~s21!.
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We conclude that whens goes to zero~in a singular point of the cut! r diverges, i.e., we approac
a caustic of the null surface.

It remains now to prove that a caustic in the null surface leads to the same singular be
in the cut. Suppose that the null surface is defined byu05Z(xa,f0), then near a caustic pointx0

a

in the surface the solution of the differential equation~29! in the flat case yields

r5
1

t2t0
,

where the singular pointx0
a corresponds tot5t0 . By means of~28! we find j5V215t2t0 ,

thus the conformal factorV diverges when we approach a caustic in the null surface and s
dt5V22dr, r diverges~for t is the affine parameter of the curve and so dt is bounded! at x0

a .
On the other hand, we know thatu5Z(x0

a ,f) is a solution of~17!, then at the singular poin
x0

a the functionr 5Z9(x0
a ,f0) diverges. Thus, the cutu5Z(x0

a ,f) also has a caustic point atf
5f0 .

Remark 3.3:Note that the spacesE2 and E3, used to describe the cuts and null surfac
respectively, are not related in any way. The only tool that was used to prove the above
relating the cuts with null surfaces is the starting ODE~17!. This is in contrast with similar results
obtained in three and four dimensions where the reciprocity theorem for null congruences a
assumption thatE2 is a hypersurface ofE3 is explicitly used in the proof~Ref. 4!.

C. An example: Caustics in flat space

An arbitrary constant function is clearly a solution of the metricity conditionM̃ @L̃#50, which
yields a polynomial of third degree inp for G. Therefore we chooseL̃521 and~24! yields

G~p,xa!52
p3

3
1

1

2
X1p21X2p1X3.

FIG. 1. Legendre submanifold and the corresponding cut forX15X25X350.
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With this generating function the Legendre submanifold is given parametrically by

u5 2
3 p32 1

2 X1p21X2, ~30!

f5p22X1p2X2, ~31!

p5p. ~32!

The projection of this submanifold ontoE2, (u,f,p)→(u,f), is the cut and possesses
cusp-like caustic whenp5X1/2 ~see Fig. 1!.

Sincef is not an injective function ofp, there are two values ofp for eachf, namely

p~f!5 1
2 X16 1

2A~X1!214f14X2. ~33!

Inserting this expression into Eq.~30! we obtain the corresponding space–time coordinat

u5 1
12~~X1!214f14X2!3/21 1

12~X1!31 1
2X

1 f1 1
2X

1 X21X3,

v5 1
2 X11 1

2 A~X1!214 f14 X2, ~34!

r 5
1

A~X1!214 f14 X2
.

It is clear from ~33! that A(X1)214f14X2 becomes null in the caustic, hencer diverges
while u andv remain bounded at this point.

Figure 2 shows a null surface and null geodesics on it for (u,f)5(0,0), which end tangent to
the caustic curve. The above-mentioned generating function givesL52r 3, which yields a flat
metric for the conformal factorV5r .

FIG. 2. Null surface for (u,f)5(0,0).
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IV. CONCLUSIONS

We have shown in this work how the 3D NSF can be recast in terms of a well-kn
mathematical frame, like Cartan’s geometrical theory of differential equations. In this manne
metricity condition of NSF becomes a simple geometric imposition within Cartan’s framew
namely the vanishing of the torsion of the connection in the spaceE4.

Moreover, both constructions have been extended from their local scopes to the nondi
tiable regions, in order to account for the singular behavior that null surfaces necessarily po
As result of this extension,

~1! generalized version of the metricity condition was obtained, whose solutions yield null
tions of a 211 dimensional manifold with caustics and other singularities that the l
construction of NSF by definition is not capable of describing.

~2! the singularities of cuts and null surfaces were shown to be closely related in the sense t
singular behavior in one of them induces a similar behavior in the other.

At this point, one can think of applying the same ideas of this work to the original 4D ver
of NSF.7,18This would imply a change from ordinary differential equations over partial ones, s
the variableZ now depends on two coordinates (a,b) on S2 and is subject to the following system
of PDEs:

Zaa5L~a,b,Z,Za ,Zb ,Zab!, ~35!

Zbb5G~a,b,Z,Za ,Zb ,Zab!, ~36!

whereZa , Zb are the partial derivatives ofZ with respect to the coordinates. Since the abo
given system of equations is integrable, its solution space can be parametrized by four co
xa, which locally define the 4D solution spaceM . Thus, one would be able in principle t
construct anS2 bundle overM and attach a similar set of geometric structures that have b
presented in this paper.

If this program can be done, the NSF could be described within a well-established cont
differential equations; one would be able to give a geometrical interpretation to the me
conditions~possibly in terms of requirements analogous to the vanishing of the torsion!.
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Solution of a second order difference equation
using the bilinear relations of Riemann

Stéphane R. Legault
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Thomas B. A. Senior
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The University of Michigan, Ann Arbor, Michigan 48109-2122

~Received 11 October 2000; accepted for publication 3 December 2001!

A recently proposed technique to solve a class of second order functional difference
equations arising in electromagnetic diffraction theory is further investigated by
applying it to a case of intermediate complexity. The proposed approach is concep-
tually simple and relies on first obtaining well-defined branched solutions to a pair
of associated first order difference equations. The construction of these branched
expressions leads to an equation system whose solution requires relationships akin
to Riemann’s bilinear relations for differentials of the first and third kinds; their
derivation necessitates the application of Cauchy’s theorem on Riemann surfaces
of, in this particular instance, genera one and three. Branch-free solutions of the
second order difference equation are then obtained by taking appropriate linear
combinations of the branched solutions of the first order equations. Analysis and
computation demonstrate that the resulting expressions have the desired analytical
properties and recover known solutions in the appropriate limit. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1445287#

I. INTRODUCTION

The Sommerfeld–Maliuzhinets technique1,2 remains today the most general approach to so
electromagnetic scattering problems involving wedge-shaped structures with faces charac
by impedance boundary conditions3 under plane wave illumination. Within its framework sol
tions are sought by expressing components of the total electric and magnetic fields in te
unknown plane wave angular spectra, defined here in the complexa plane, which, besides bein
meromorphic, must satisfy a number of analyticity requirements. In particular, since poles
spectral functions give rise to plane wave contributions, the spectra are required to be ana
save for a pole necessary to reproduce the illuminating incident field—in a strip of the com
plane corresponding to the angular opening of the wedge. Additionally, besides the bou
conditions characterizing the surfaces of the wedge, obtaining a unique solution of the
equation also requires knowledge of the behavior of the fields at the tip of the wedge and en
ment of the resulting edge condition4 specifies the asymptotic behavior2,3 of the spectral functions
for large imaginary values ofa. The imposition of the boundary conditions on the spectral rep
sentation of the fields together with a theorem put forward by Maliuzhinets5 leads to a pair of first
order difference equations for the spectra and their periods are related to the open angle
wedge. The problem is thus reduced to obtaining spectra that satisfy both the difference eq
as well as the analyticity requirements outlined above.

In the special case of normal incidence, where the illuminating plane wave is inciden
pendicularly to the edge of the structure, the technique leads to uncoupled first order diffe
equations whose coefficients are rational trigonometric functions and solutions subject
required constraints are readily obtained in terms of Maliuzhinets functions.1 At skew ~non-
normal! incidence, the equation pair is generally coupled and solutions are obtainable for
particular wedge/angle combinations for which uncoupled first order equations for linear c
15980022-2488/2002/43(3)/1598/24/$19.00 © 2002 American Institute of Physics
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nations of the spectra can be found. Recent examples of this include the polarization indep
wedge studied by Bernard6 and the right-angled anisotropic impedance wedge with one perfe
conducting face examined by Manara and Nepa.7 In general the equation pair cannot be uncoup
and we are faced with solving a second order functional difference equation whose coefficie
rational functions of trigonometric polynomials. Its solutions are linear combinations of the
sired spectral functions, a consequence of the decoupling procedure, and must therefore
analyticity requirements analogous to those of the spectral functions. A pair of associate
order difference equations can be obtained from the second order one, but these, as we s
below, typically involve branched functions and Maliuzhinets’s technique does not apply.

There have been few attempts published in the literature to solve second order diffe
equations due to the complicated nature of the problem. A successful example is provid
Gaudin8 who considers the second order difference equation that arises in the study of the
tum mechanical problem of two electrons interacting with a localized magnetic moment
particular equation studied is of a high order of complexity and the ensuing analysis is pr
tively complicated. In electromagnetic theory, the second order functional difference equat
form

t~a13p!22H 122
cos2 h2cos2 u

cos2 a2cos2 uJ t~a1p!1t~a2p!50 ~1!

was recently solved by Senior and Legault.9 It is a generalization of the one considered
Demetrescuet al.10 in their study of the penetrable composite right-angled wedge consistin
abutted resistive and perfectly conducting semi-infinite half-planes. In this particular instanc
parametersh andu are both related to the resistivity of the wedge. As noted above, the fun
t(a) represents a combination of the unknown spectral functions and it therefore satisfies re
ments related to those imposed on the spectral functions. Accordingly, the solutionst(a) obtained
in Ref. 9 are (i ) meromorphic, (i i ) free of poles and zeros in the strip of analyticityS2p

5$a:uReau<p% ~the inclusion of zeros here is a consequence of reciprocal symmetry bet
solution pairs in certain limits!, and, in accordance with the edge condition, (i i i ) O(1) as
uIm au→`. Two linearly independent solutions satisfying the above analyticity requirements
constructed by successively eliminating the undesired singularities in the stripS2p . The concep-
tual simplicity of the technique hinges on recognizing that expressions recovered during the
of the analysis are of the same nature as those occurring in Riemann’s bilinear relatio
differentials of the first and third kinds.11,12 In contrast, the solution based on a Fourier transfo
approach proposed in Ref. 10 fails to satisfy requirement (i ) above since it is free of branch poin
only in the strip of analyticityS2p as opposed to the entirea plane.

Equation ~1! may be qualified as being of moderate complexity due to the relatively
number of singularities~poles and branch points! which must be eliminated to successfully com
plete the analysis. In comparison, geometries of contemporary interest such as the right-
wedge characterized by isotropic impedance boundary conditions on both faces or the anis
impedance half-plane~see Ref. 13 for an approximate solution! lead to substantially more com
plicated equations. To gain insight into the applicability of the technique in such cases an
provide some details on the procedure, as opposed to focusing on a particular physical pr
we examine here a case of intermediate complexity by considering an equation of the sam
as ~1! but with the period doubled to 4p, viz.

t~a15p!22H 122
cos2 h2cos2 u

cos2 a2cos2 uJ t~a1p!1t~a23p!50, ~2!

and, consistent with the requirement for~1!, a solution is sought which is (i ) meromorphic, (i i )
free of poles and zeros in the strip of analyticityS4p5$a:uReau<2p%, and (i i i ) O(1) asuIm au
→`. The increase in complexity arises from the doubling of the strip of analyticity as
effectively doubles the number of singularities, both poles and branch points, that must b
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sidered in the course of the analysis. Consequently, whereas the solution for~1! required analysis
on a Riemann surface corresponding to a torus~handlebody of genus one!, in the case of~2! it will
be seen that we are required to work on Riemann surfaces whose corresponding handlebo
of genera one and three.

In what follows, Sec. II gives the solution procedure for the branched first order equa
associated with~2! and provides the derivation of a system of four equations in four unknown
be satisfied in order for their solutions to be well-defined. The unknowns consist of two mu
cative constants associated with elliptic integrals of the first kind with periods 2p and 4p, and the
location of the logarithmic singularities associated with two elliptic integrals of the third kind
of periods 2p and 4p. Section III shows how to solve for the quantities associated with thep
periodic elliptic integrals. The analysis, which is carried out on a torus, is of the same nat
that required in Ref. 9 but it is examined here in greater detail. Section IV gives the solutio
the quantities associated with the elliptic integrals of period 4p and it is now required to carry ou
the analysis on a Riemann surface which is the topological equivalent of a handlebody of
three. The branched solutions to the first order equations are used in Sec. V to construct b
free solutions to the second order equation. A fully analytic solution that satisfies all o
prescribed requirements is provided. The only shortcoming of the solution is that it vanishe
certain limit and, in an effort to address this shortcoming, an alternative approach that rel
numerically locating zeros is also examined.

II. FIRST ORDER EQUATIONS AND SOLUTIONS

Since there is no available technique to directly attack the type of second order diffe
equation with which we are concerned, it must first be recast as an associated pair of more
handled first order difference equations. Unfortunately the latter generally involve branch p
the price paid for this reduction in order is that the established solution technique for first
equations by Maliuzhinets1 fails to apply. However, solutions to the first order difference equati
can, in principle at least, be obtained by applying a logarithmic derivative and this is the app
taken here. This yields a solution expressed in terms of an initially ill-defined path integra
multiplicative terms of period 4p, corresponding to the period of the difference equation, mus
added to rectify this. This ultimately leads to the derivation of a system of four equations in
unknowns which can be partially decoupled into two systems in two unknowns, one involvinp
periodic quantities and the other 4p periodic ones.

A. Reduction to first order equations

The second order functional difference equation~2! can be rewritten in terms of first orde
difference equations quite straightforwardly by exploiting the periodicity of the functional co
cient. To see this consider the second order difference equation

t~a15p!1p~a!t~a1p!1
1

p~a!
$t~a1p!1p~a!t~a23p!%50 ~3!

whose solutionst(a), provided p(a) is 4p periodic, must also explicitly satisfy first orde
difference equations. Enforcing equality between~3! and ~2! then yields the equation pair

t~a12p!

t~a22p!
5g~a,1u~a!!5

u~a!2u~u!

u~a!1u~u!
, ~4!

t~a12p!

t~a22p!
5g~a,2u~a!!5

u~a!1u~u!

u~a!2u~u!
, ~5!

where

u~a!5Acos2 a2cos2 h. ~6!
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Alternatively, one could also proceed by factoring the associated second order difference o
in ~2! into a pair of first order difference operators and recover the same result as above. Th
order equations obtained are generally branched owing to the presence of the rootu(a) which has
branch points ata56h,6(h2p),6(h1p),6(2h12p) in the strip of analyticityS4p and is
made well defined in the complexa plane by introducing the cuts shown in Fig. 1. These are s
that u(a) has the same symmetry as cosa so that

u~a!5u~2a!52u~a6p!. ~7!

Note that the functiont(a) is used here to generally denote solutions of the second order equ
and each of the first order equations above identifies one such solution. Ift(a)5w(a,u(a)) is a
solution of~4!, thent(a)5w(a,2u(a)) is a solution of~5!, and this follows from the symmetry
of the right-hand sides of~4! and~5! with respect to the sign~the branch! of u(a). It is therefore
sufficient to considerw(a,u)—writing w(a,u) instead ofw(a,u(a)) for convenience—and
sinceg(2a,u)5g(a,u), we can constructw(a,u) such that

w~2a,u!5
1

w~a,u!
5w~a,2u!. ~8!

In terms of the solutions of the first order difference equations, solutions to~2! are

t~a!5C1~a!w~a,u!1C2~a!w~a,2u!, ~9!

where C1,2(a) are 4p periodic functions. This generally conflicts with the requirement fo
branch-free solution but there are particular cases of~9! that overcome this difficulty and the
simplest two such linearly independent expressions free of branch points are

t~a!5w~a,u!1w~a,2u!, and t~a!5
1

u~a!
$w~a,u!2w~a,2u!%. ~10!

While the branch-free property of these two symmetric forms can be ascertained rigorou
means of Taylor expansions in the neighborhood of branch points ofu(a), it can also be appre
ciated from the fact that both are invariant under a change of the branch ofu(a). This crucial
feature makes the constructs~10! the fundamental building blocks from which branch-free so
tions to the second order difference equation can be assembled once branched solution
associated first order equations have been obtained. As we shall soon see, the presence o
points makes this task quite challenging and the brunt of the subsequent analysis focu
deriving solutions to the first order equations.

FIG. 1. The strip of analyticityS4p5$a:uReau<2p%. The thick lines indicate the branch cuts ofu(a), the positive and
negative signs indicate relative changes in sign ofu(a) across the different cuts. The clockwise cyclesa, b, c andd used
to define the cyclic periods are as indicated. Note that the cyclesa andc cross from the upper Riemann sheet~solid line!
to the lower Riemann sheet~dashed line! whereasb andd are confined to the upper sheet.
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B. Special cases of interest

It is worthwhile to first consider the special casesh50 andh5p/2 as the branch points the
vanish and known solutions, which are useful when characterizing the behavior of the g
solution obtained below, can be obtained in terms of Maliuzhinets functions. The first one
h5p/2 proves to be especially interesting since the branch cuts ofu(a), as illustrated in Fig. 1
and chosen so that~7! holds, vanish ash→p/2. In this instance~4! becomes

w~a12p,u!

w~a22p,u!
5

cosa2cosu

cosa1cosu
,

and, despite the fact that the right-hand side is now meromorphic, the dependence ofw(a,u) on
u(a) is maintained to distinguish it fromw(a,2u), the solution to Eq.~5! in the same limit. A
solution free of poles and zeros inS4p and O(1) as uIm au→` follows directly from
Maliuzhinets.1 It may be written as

w~a,u!5C1~a!

5
cp~a1p/22u!

cp~a2p/21u!

5expE
0

a 2 ~a8/2p!cosu sina81g11g2 cos~a8/2! 1g3 cosa81g4 cos~3a8/2!

cos2 a82cos2 u
da8,

~11!

where

g152 1
4 sinu cosu,

g25
1

4 S 2cos
u

2
1sin

u

2D1
1

2
cos

u

2 S cos
u

2
1sin

u

2D ,

~12!

g35S u

2p
2

1

4D sinu,

g45
1

4 S 2cos
u

2
1sin

u

2D ,

and cp(a) is the Maliuzhinets function.1 Since C1(2a)51/C1(a), consistent with~8!, two
linearly independent solutions of~2! are

t1~a!5C1~a!, t2~a!5C1~2a!,

and these are bothO(1) as uIm au→`. The other case of interest where the branch points
vanish ish50 and in that instance two linearly independent solutions, alsoO(1) asuIm au→`,
are provided by

t1~a!5C2~a!5cos
a

4

cp
2 ~p/22u!

cp~a1p/22u!cp~a2p/21u!
, t2~a!5

1

t1~a!
, ~13!

and we must now contend with poles or zeros ata562p.
                                                                                                                



known
es,

the
tials

r
e at

d

y
of the

mit

f the
on of

e
to the

1603J. Math. Phys., Vol. 43, No. 3, March 2002 Solution of a second order difference equation

                    
C. General case

We now proceed to solve~4! in the general case wherehÞ0, p/2 and Maliuzhinets’s tech-
nique does not apply. The solutions sought should preferably reduce to one or both of the
limiting functions whenh goes to the appropriate limit and, consistent with the limiting cas
they must also beO(1) asuIm a u→` for all h. As we shall see, while the solutionC1(a) @and
1/C1(a)# are easily recovered ash→p/2, the recovery ofC2(a) @and 1/C2(a)# ash→0 proves
to be much more difficult. Taking the logarithmic derivative of~4!, we obtain

d

da
ln w~a12p,u!2

d

da
ln w~a22p,u!5

d

da
ln g~a,u!52

u~u!

u~a!

2 sina cosa

cos2 a2cos2 u
, ~14!

and if v0(a,u)5d/da ln w(a,u), then

v0~a12p,u!2v0~a22p,u!52
u~u!

u~a!

2 sinacosa

cos2 a2cos2 u

and a solution to~4! can tentatively be written as

w~a,u!5expE
a0

a

v0~a8,u!da8, ~15!

with

v0~a,u!52
a

2p

u~u!

u~a!

sinacosa

cos2 a2cos2 u
.

The form proposed in~15! is, however, ill-defined owing to the presence of the polar and
cyclic periods~we borrow here the terminology used in Ref. 11 when characterizing differen
of the third kind! due to, respectively, the poles and the branch points ofv0(a,u). In order to
obtain a single-valued integral expression, we must consider instead

w~a,u!5expE
a0

a

$v0~a8,u!1vS~a8,u!%da8, ~16!

where the added termvS(a,u) represents a sum of 4p periodic terms, of even parity like
v0(a,u), specifically selected to remove the offending periods. Not all classes of 4p periodic
functions are acceptable: it turns out thatvS(a,u) must fulfill certain order requirements in orde
for exp*vS(a)da to be a 4p periodic function and a simple analysis shows that, for the cas
hand, it is sufficient to consider expressions such thatvS(a,u)→0 asuIm au→`. It will be shown
below that vS(a,u) will consist of five terms:v1(a,u) to eliminate the polar periods an
v2p

1 (a,u), v2p
3 (a,u), v4p

1 (a,u), v4p
3 (a,u) to eliminate the cyclic periods.

It is worthwhile to discuss the nature of the lower limita0 at this juncture as its selection ma
appear at first glance to be somewhat arbitrary. This is not the case as consideration
symmetric forms in~10! together with the requirement for continuity reveals that the lower li
a0 must be a branch point inS4p so thata0P$6h,6(h2p),6(h1p),6(2p2h)%. Further-
more, oncevS(a,u) has been properly defined, the solution is independent of the choice o
particular branch point and this will become more obvious when we consider the eliminati
the cyclic periods. We first examine the elimination of the polar periods.

1. Elimination of polar periods

The presence of poles will generally make a path integral such as the one in~16! multivalued.
A pole of residue Res will give rise to a polar period equal to 2p iRes and, depending on th
orientation of the integration path and its winding number around the pole, the contribution
integral will be 2p iZRes. In the case of~15!, polar periods arise at the poles ofv0(a,u) at a
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56u, 6(u2p), 6(u1p), 6(2p2u). Elimination of these poles serves two purposes as it
only eliminates their associated polar periods but goes toward fulfilling the requirement
solution that is pole-free inS4p . We eliminate them by introducing the 4p periodic

v1~a,u!5
u~u!

u~a!

cos~a!

cos~u!

g11g2 cos~a/2! 1g3 cosa1g4 cos~3a/2!

cos2 a2cos2 u
,

which is even, vanishes asuIm au→`, and has poles coinciding with those ofv0(a,u). The
constantsgn are chosen to eliminate the residues and straightforward algebra yields the c
cients in~12!. It then follows from~11! that

v0~a,u!1v1~a,u!5
u~u!

u~a!

cosa

cosu

d

da
ln C1~a!,

which correctly reduces tod/da ln C1(a) when h5p/2. We therefore recognize that, in th
simpler case where the right-hand side of~14! is meromorphic so that~15! is free of cyclic
periods, the known solutions expressed in terms of Maliuzhinets can be recovered by foll
the above procedure of pole elimination. We also note in passing that poles with integer resZ
do not compromise path independence. Indeed, their capture leads to an additive 2p iZ contribu-
tion in the exponent of~16! which has no effect on the final value ofw(a,u).

2. Elimination of cyclic periods

In a fashion similar to polar periods, a cyclic period arises from the nonzero contrib
incurred when integrating along a loop encircling a branch cut inS4p , thereby making the path
integral multivalued. For example, such a period is obtained when integratingv01v1 along the
cycle b, shown in Fig. 1, which encircles the branch cut joining the branch pointsh and 2h
1p. As in the case of the polar periods, it is strictly speaking not required for the cyclic pe
to vanish identically to avoid jeopardizing single-valuedness since periods equal to 2p iZ do not
change the value of~16!. However, ash→p/2 the branch points of 1/u(a) in v0,1 coalesce into
poles at6p/2 and63p/2 and their associated cyclic periods then become polar periods.
sequently, the cyclic periods associated with the cyclesb and d in Fig. 1 must be annulled, a
opposed to setting them equal to some nonzero integer multiple of 2p i , to eliminate poles that
would otherwise arise ash→p/2. We observe that this requirement is equivalent to annulling
integral ofv01vS along the cuts betweenh andp2h as well asp1h and 2p2h. There is also
a similar requirement, which is not obvious when solely considering integration on either o
Riemann sheets, on the cyclic periods associated with the cyclesa and c which loop from one
Riemann sheet to the other. Its necessity is revealed by examining either of the symmetric
in ~10! together with the requirement for continuity. In short, the above implies, taking advan
of the even parity, the need to annul the cyclic periods ofv0(a,u)1vS(a,u) on the clockwise
cyclesa, b, c and d shown in Fig. 1. Alternatively, this can be thought of as requiring that
branch point to branch point integrals vanish inS4p and, under this condition, the lower limita0

can be arbitrarily chosen among any of the branch points located within the strip. This also e
that the resulting expressions will remain free of poles despite coalescing branch points
limits h→0 andh→p/2.

Four degrees of freedom are required to annul the cyclic periods ofv01v1 on the cyclesa,
b, c and d. We introduce the following four even 4p periodic terms which, likev0(a,u) and
v1(a,u), vanish asuIm au→`:

v2p
1 ~a,u!5

1

u~a!
, v2p

3 ~a,u!5
u~z2p!

u~a!

cosa

cosz2p

sinz2p

cosa2cosz2p
, ~17!

and
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v4p
1 ~a,u!5

cos~a/2!

u~a!
, v4p

3 ~a,u!5
u~z4p!

u~a!

cosa

cosz4p

1
2 sin~z4p/2!

cos~a/2! 2cos~z4p/2!
. ~18!

These all give rise to elliptic integrals with the first pair being 2p periodic and the second 4p
periodic. The subscript identifies the periodicity of the term while the superscript identifie
type of elliptic integral to which it gives rise. Hencev2p

1 (a,u) is 2p periodic and gives rise to an
elliptic integral of the first kind whilev2p

3 (a,u), also 2p periodic, gives rise to an elliptic integra
of the third kind with logarithmic singularities withinS4p at 6z2p ,6(z2p12p). Likewise,
v4p

3 (a,u) is 4p periodic and gives rise to an elliptic integral of the third kind with logarithm
singularities at6z4p . The use of expressions associated with integrals of the third kind~with
poles having nonvanishing residues! results from the impossibility of introducing the require
number of degrees of freedom without violating the order requirement. It must be emphasize
the poles of bothv2p

3 (a,u) andv4p
3 (a,u) have residues61 and their polar periods therefore d

not disrupt the single-valuedness of the path integral. Their elimination from the strip of an
icity is the objective of the last step in the construction of the solution and this is carried o
Sec. V. For future reference we define the cyclic periods

A2p,4p
1,3 5E

a
v2p,4p

1,3 ~a,u!da, B2p,4p
1,3 5E

b
v2p,4p

1,3 ~a,u!da,

~19!

C2p,4p
1,3 5E

c
v2p,4p

1,3 ~a,u!da, D2p,4p
1,3 5E

d
v2p,4p

1,3 ~a,u!da,

and use similar definitions forv0,1(a,u) @i.e., A05*av0(a,u)da#. Inspection of~17! and ~18!
reveals that the periods associated with the integrals of the third kind are functions of the polz2p

and z4p , providing two of the four degrees of freedoms required to annul the period
v0(a,u)1vS(a,u). In contrast, the periods associated with the integrals of the first kind
constant and two multiplicative constants,k2p andk4p , must be introduced to produce the tw
additional degrees of freedom. The solution to~4! then takes the form

w~a,u!5expE
a0

a

$v0~a8,u!1v1~a8,u!1k2pv2p
1 ~a8,u!1s2pv2p

3 ~a8,u!

1k4pv4p
1 ~a8,u!1s4pv4p

3 ~a8,u!%da8, ~20!

where the four unknowns to be determined arek2p , z2p and k4p , z4p . The quantitiess2p

561 ands4p561 have been introduced to avoid loss of generality in the definition of the te
associated with the integrals of the third kind. They account for the eventuality where the s
the logarithmic residues ofv2p

3 (a,u) or v4p
3 (a,u) must be changed, thereby swapping poles a

zeros ofw(a,u) between the two Riemann sheets. Their proper definition will be determine
the course of the analysis and, to reduce clutter, they will be omitted in what follows pending
reintroduction when appropriate.

An equation system consisting of four equations in the four unknowns is obtained by en
ing vanishing cyclic periods on the cyclesa, b, c andd. Doing so for the cycled, for example,
leads to

E
h1p2

2h12p2

~v01v11k2pv2p
1 1v2p

3 1k4pv4p
1 1v4p

3 !da50 ~21!

with the superscript negative sign in the limits indicating the corresponding side of the bran
~see Fig. 1! along which to integrate. Upon use of~19! this becomes

D01D11k2pD2p
1 1D2p

3 1k4pD4p
1 1D4p

3 50,
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which is further simplified by exploiting the symmetriesD2p
1 52B2p

1 , D2p
3 52B2p

3 and D4p
1

5B4p
1 . Introducing the notationD0115D01D1 , we finally obtain

D0112k2pB2p
1 2B2p

3 1k4pB4p
1 1D4p

3 50,

a relationship equivalent to~21!. Repeating the same process for thea, b andc cycles yields

A0111k2pA2p
1 1A2p

3 1k4pA4p
1 1A4p

3 50, ~22a!

B0111k2pB2p
1 1B2p

3 1k4pB4p
1 1B4p

3 50, ~22b!

C0112k2pA2p
1 2A2p

3 1C4p
3 50, ~22c!

D0112k2pB2p
1 2B2p

3 1k4pB4p
1 1D4p

3 50, ~22d!

with the explicit unknownsk2p andk4p and the unknownsz2p andz4p implied by the presence
of cyclic periods associated with the integrals of the third kind. Note thatC4p

1 vanishes since
v4p

1 (a,u), which is odd symmetric with respect top @see~18!#, does not contribute when inte
grated on cyclec ~see Fig. 1!. This seemingly intractable system can be fully solved analytica
The quantities associated with the 4p periodic elliptic integrals can be decoupled by adding E
~22a! to ~22c! and ~22b! to ~22d! to obtain

k4pA4p
1 1A4p

3 1C4p
3 52~A0111C011!, ~23a!

2k4pB4p
1 1B4p

3 1D4p
3 52~B0111D011!, ~23b!

and the elimination ofk4p produces

A4p
1 ~B4p

3 1D4p
3 !22B4p

1 ~A4p
3 1C4p

3 !52A4p
1 ~B0111D011!12B4p

1 ~A0111C011! ~24!

in which the only ~implicit! unknown z4p determines the periodsA4p
3 , B4p

3 , C4p
3 and D4p

3 .
Despite appearances, the above equation can be inverted to obtainz4p and the technique for doing
so is described in Sec. IV. Oncez4p has been obtained, the value ofk4p immediately follows
either from Eq.~23a! or ~23b!. One can then proceed to solve forz2p by subtracting Eq.~22c!
from ~22a! and ~22d! from ~22b! to obtain, respectively,

2k2pA2p
1 12A2p

3 52k4pA4p
1 2A4p

3 1C4p
3 2A0111C011 , ~25a!

2k2pB2p
1 12B2p

3 52B4p
3 1D4p

3 2B0111D011 , ~25b!

and the elimination ofk2p gives

A2p
1 B2p

3 2B2p
1 A2p

3 5 1
2 $A2p

1 ~2B4p
3 1D4p

3 2B0111D011!

2B2p
1 ~2k4pA4p

1 2A4p
3 1C4p

3 2A0111C011!%, ~26!

where the only unknown is nowz2p , the value of which determines the periodsA2p
3 andB2p

3 .
This equation is of the same form as the one obtained in Ref. 9 and the solution follows the
approach. To set the stage for the comparatively more complicated inversion required forz4p , we
first reexamine the analysis required forz2p in more detail.

III. DETERMINATION OF z2p AND k2p

The key to inverting forz2p in ~26! lies in the application of Cauchy’s theorem on th
Riemann surface delimited by the contourC1 shown in Fig. 2. Indeed, by judiciously choosing th
integrand it is possible to obtain an alternative expression for the left-hand side of~26! in which
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the unknownz2p appears more explicitly as the argument of an elliptic integral of the first k
paving the way for its inversion by means of the Jacobian elliptic sine function. This follows
recognizing that the relationship between cyclic periods on the left-hand side of~26! is of the same
form as the expressions found in Riemann’s bilinear relationships for differentials of the firs
third kinds;11,12 these equate expressions involving cyclic periods such as the one on the lef
side of ~26! to sums of residues. To achieve this, we seek to evaluate

E
C1

V2p
1 ~a,u!dV2p

3 ~a,u!52p i( Res, ~27!

where the elliptic integralV2p
1 (a,u) of the first kind andV2p

3 (a,u) of the third kind are defined
as

V2p
n ~a,u!5E

(h,0)

(a,u)

v2p
n ~a8,u!da8, nP$1,3%.

The path of integrationC1 , shown in Fig. 2, delimits a strip of width 2p centered at the origin o
both Riemann sheets and encloses the dissections and branch cuts contained therein.p
periodic functions the enclosed surface is topologically equivalent to a torus~a handlebody of
genus 1! as shown in Fig. 3. The canonical dissectionsa andb are introduced to make the surfac

FIG. 2. The contourC15CaøbøC6pøC6` on the upper~solid line! and lower~dashed line! sheets of the Riemann surface
The thicker inner lines are the dissectionsa andb introduced to make the Riemann surface simply connected. The
Caøb denotes the portion of the contour enclosing the dissecting cyclesa andb.

FIG. 3. The torus, handlebody of genus 1, is topologically equivalent to the Riemann surface in Fig. 2. It has bee
simply connected by introducing the dissectionsa andb.
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simply connected, a key requirement in order for Cauchy’s theorem to apply, and this is
easily appreciated on the dissected torus in Fig. 3. Examination of the integral in~27! shows that
only Caøb , the portion of the path enclosing the branch cuts and dissections, provides a con
tion. The rest of the integral vanishes either by symmetry, as for the parts along Rea56p on
C6p , or identically, as in the case whereuIm au56` on C6` . Evaluation of the integral along
Caøb produces11,12

E
Caøb

V2p
1 ~a,u!dV2p

3 ~a,u!5A2p
1 B2p

3 2B2p
1 A2p

3 ,

where, extending our notation, capitalized letters denote cyclic periods on cycles identified
correspond lower case letters so that, for example,A2p

1 5*av2p
1 da. The cycles defined by the

dissectionsa and b in Fig. 2 are the same as the cyclesa and b shown in Fig. 1 so thatA2p
n

5A2p
n andB2p

n 5B2p
n . We therefore obtain, in light of~26!, the remarkable result

E
C1

V2p
1 ~a,u!dV2p

3 ~a,u!5A2p
1 B2p

3 2B2p
1 A2p

3 5A2p
1 B2p

3 2B2p
1 A2p

3 , ~28!

which, by virtue of~27!, can be expressed as a sum of residues. On the Riemann surfac
residues of the integrand in~27! are given by

2
u~z2p!

u~a!

cosa

cosz2p

sinz2p

sina E
(h,0)

(a,u)

v2p
1 ~a8!da8U

a5(6z2p ,6u)

55 7E
(h,0)

(a,u)

v2p
1 ~a8!da8, a5~z2p ,6u!,

6E
(h,0)

(a,u)

v2p
1 ~a8!da8, a5~2z2p ,6u!,

and these, after carrying out the integration on the dissected Riemann surface, can be expr
terms of the elliptic integralV2p

1 (a) defined on the upper Riemann sheet. Being mindful of
dissections and exploiting the numerous symmetries involved, we obtain

( Res52A2p
1 62B2p

1 24V2p
1 ~z2p!, V2p

1 ~z2p!PH 2t8
A2p

1

4
6t

B2p
1

2
:0<t8,t<1J . ~29!

It would of course be impossible to obtain a unique expression for the above if the Rie
surface had not previously been made simply connected. Substitution of~28! and ~29! in ~27!
yields

V2p
1 ~z2p!52

A2p
1

4
6

B2p
1

2
2

s2p

8p i
~A2p

1 B2p
3 2B2p

1 A2p
3 !52

A2p
1

4
6

B2p
1

2
1s2piL2p , ~30!

where the only unknown isz2p and we have reintroduceds2p from Eq.~20!. The quantityL2p is,
from ~26!, defined as

L2p5
1

16p
$A2p

1 ~2B4p
3 1D4p

3 2B0111D011!2B2p
1 ~2k4pA4p

1 2A4p
3 1C4p

3 2A0111C011!%.

~31!

This is a known quantity provided equation system~23! has been solved, a procedure carried
in the next section.
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A closed-form expression forz2p can be found by using the Jacobian elliptic sine function
to invert the elliptic integral of the first kind in~30!. Legendre’s standard form for the integral

F~x,k!5E
0

x dt

A~12t2!~12k2t2!
,

wherek is the modulus of the integral and the elliptic sine function is such that

sn@F~x,k!,k#5x

with x located in the fundamental period parallelogram of dimensions 4K and 2iK 8 centered at
the origin of the complex plane. The periodsK and K8 are the standard quantities define
respectively, by the complete elliptic integrals of the first kind with modulusk and complementary
modulusk8. The transformationx5cosa/cosh then shows that

V2p
1 ~a!5E

h

a da8

Acos2 a82cos2 h
5 i H FS cosa

cosh
,cosh D1 i

B2p
1

4 J ~32!

and we note the following useful relationships:

k5cosh, A2p
1 54K8, B2p

1 54iK . ~33!

Finally, taking into account the definition of(Res in terms of the range ofV2p
1 (z2p) given in ~29!

and inserting~32! in ~30!, we obtain after some algebraic manipulations

z2p5H arccos@ksn~ iK 813K1s2pL2p ,k!#, L2pPP 1
s2p,

arccos@ksn~ iK 82K1s2pL2p ,k!#, L2pPP 2
s2p,

~34!

which is an explicit expression forz2p . The correct expression to use in~34! as well as the correc
definition fors2p561 follow from locatingL2p in the appropriateP parallelogram in Fig. 4. For
instance, ifL2pPP 2

2 , thens2p521 andz2p5arccos@ksn(iK 82K2L2p ,k)#. The multiplica-
tive constantk2p follows immediately from~25a! or ~25b!. The period parallelograms in Fig.
were obtained by using~30! and~29! to specify the range ofL2p in terms of that ofV2p

1 (z2p). For

FIG. 4. The regionsP 1
6 and P 2

6 in terms of the complete integrals of the first kindK and K8 with k5cosh. The
parallelogramsP indicate the various ranges in whichL2p must lie when carrying out the inversion forz2p with Eq. ~34!.
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example, if we consider the case of12B2p
1 , then it follows that s2pL2pP@22K,0#

3@2 iK 8,0# and, sinces2p561, this corresponds to the requirement thatL2p lies in either of the
parallelogramsP 1

s2p shown in Fig. 4. One proceeds similarly for the case where we have22B2p
1

to obtain theP 2
s2p parallelograms in the figure. Taking into account the periodicity of the elli

sine function,~34! becomes

z2p5arccos@ksn~ iK 813K1s2pL2p ,k!#, L2pPP 1
s2pøP 2

s2p , ~35!

whereL2p is given in ~31! and the standard periodsK and iK 8 ~as well as the parameterk) are
given in ~33!.

IV. DETERMINATION OF z4p AND k4p

A similar procedure to the one given in the previous section is required to successfully
for z4p in ~24!. However, the cyclic periods appearing on the left-hand side of~24! are now related
to 4p periodic expressions and the application of Cauchy’s theorem must now be carried o
the Riemann surface delimited by the contourC2 of width 4p shown in Fig. 5. Proceeding as i
Sec. III we consider

E
C2

V4p
1 ~a,u!dV4p

3 ~a,u!52p i( Res, ~36!

with the elliptic integrals defined as in the previous section but using the 4p periodic terms
v4p

1,3(a,u). For 4p periodic functions, the enclosed surface is now the topological equivalent
handlebody of genus three~a sphere with three handles! as shown in Fig. 6 and it can be appr
ciated that making it simply connected involves a larger number of dissections than the to
the previous section. To make it so, three pairs of canonical dissectionsa,b; c,d ande,f are required
as well as the two auxiliary dissectionsg1 and g2 . They are shown in both Figs. 5 and 6; th
simple connectedness is once again better appreciated by examining the handlebody repres
of the Riemann surface. To keep the analysis relatively straightforward it is beneficial to dra
dissections such that only members of dissection pairs,a and b, for example, intersect. This

FIG. 5. The contourC25CaøbøCcødøCeøføCg1,2
øC62pøC6` on the upper~solid line! and lower~dashed line! Riemann

sheets. The thicker inner lines are the dissectionsa, b, c, d, e, f andg1,2 introduced to make the Riemann surface simp
connected. The pathCaøb denotes, for example, the portion of the contour enclosing the dissecting cyclesa andb.
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while simplifying the evaluation of the path integral around the dissections, entails the r
intricate set of dissections shown in Fig. 5. Carrying out the integration it is seen that
CaøbøCcødøCeøf , the portion of the path enclosing the dissection pairs, contributes. The re
the integral vanishes either by symmetry, as for the parts along Rea562p on C62p , or identi-
cally, as in the case whereuIm au56` on C6` . The contributions from the path enclosing th
three dissection pairs, following our previous work, are

E
Caøb

V4p
1 ~a,u!dV4p

3 ~a,u!5A4p
1 B4p

3 2B4p
1 A4p

3 , ~37!

E
Ccød

V4p
1 ~a,u!dV4p

3 ~a,u!5C4p
1 D4p

3 2D4p
1 C4p

3 , ~38!

E
Ceøf

V4p
1 ~a,u!dV4p

3 ~a,u!5E4p
1 F4p

3 2F4p
1 E4p

3 . ~39!

Comparing the canonical cycles defined by the dissections with those defined in Fig. 1, to
with symmetry, it is possible to rewrite the above canonical periods in terms of the cyclic pe
defined in~19!. The cyclic periods are defined on intervals between adjacent branch point
extending these definitions to the negative real axis, by means of the even parity of the e
sions, the contributions from the branch point to branch point integrals inS4p can then be
identified as shown in Fig. 7~a!. The canonical cyclesa, b, c, d, e and f from Fig. 5 are then
partitioned into branch point to branch point contributions, as shown in Figs. 7~b!–7~d!. By
comparing with Fig. 7~a!, they are easily expressed in terms of the cyclic periods and it can
be shown that

A5C, B52B,

C5A1B1C1D, D5B,

E5A1B12C, F5D.

This yields the following equalities for the right-hand sides of the above equations:

A4p
1 B4p

3 2B4p
1 A4p

3 5B4p
1 C4p

3 2C4p
1 B2p

3 ,

C4p
1 D4p

3 2C4p
1 D4p

3 5A4p
1 B4p

3 2B4p
1 A4p

3 1C4p
1 B4p

3 2B4p
1 C4p

3 1D4p
1 B4p

3 2B4p
1 D4p

3 ,

E4p
1 F4p

3 2E4p
1 F4p

3 5A4p
1 D4p

3 2D4p
1 A4p

3 1B4p
1 D4p

3 2D4p
1 B4p

3 12~C4p
1 D4p

3 2D4p
1 C4p

3 !.

FIG. 6. Handlebody of genus 3, the topological equivalent of the Riemann surface in Fig. 5. It has been made
connected by introducing the dissectionsa, b, c, d, e, f andg1,2.
                                                                                                                



t
with

1612 J. Math. Phys., Vol. 43, No. 3, March 2002 S. R. Legault and T. B. A. Senior

                    
Summing up these contributions,

E
C2

V4p
1 ~a,u!dV4p

3 ~a,u!5S ECaøb

1E
Ccød

1E
Ceøf

DV4p
1 ~a,u!dV4p

3 ~a,u!

5A4p
1 B4p

3 2B4p
1 A4p

3 1A4p
1 D4p

3 2D4p
1 A4p

3 12~C4p
1 D4p

3 2D4p
1 C4p

3 !

5A4p
1 ~B4p

3 1D4p
3 !22B4p

1 ~A4p
3 1C4p

3 !, ~40!

where on the last line we have made use ofD4p
1 5B4p

1 andC4p
1 50. This is remarkable in that i

reproduces the left-hand side of~24! and can be expressed in terms of residues in accordance
~36!. The integrand in~36! has residues

FIG. 7. Figures used to express the canonical periods in Fig. 5 in terms of the basic cyclic periods in Fig. 1~e.g.,A in terms
of A, B, C, D!. The canonical cycles on the~solid lines! upper and~dashed lines! lower sheets in~b!, ~c! and ~d! are
written as chains of branch point to branch point segments—e into a sequence ofen , for example—which are easily
expressed in terms of the basic cyclic periods given in~a!.
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2
u~z4p!

u~a!

cosa

cosz4p

sin~z4p/2!

sin~a/2!
E

(h,0)

(a,u)

v4p
1 ~a8!da8U

a5(6z4p ,6u)

55 7E
(h,0)

(a,u)

v4p
1 ~a8!da8, a5~z4p ,6u!,

6E
(h,0)

(a,u)

v4p
1 ~a8!da8, a5~2z4p ,6u!,

which are expressed in terms ofV4p
1 (z4p) andV4p

1 (2p2z4p)—both taken on the top Rieman
sheet—after carrying out the path integrals on the dissected Riemann surface. Taking advan
the numerous symmetries and avoiding the crossing of any dissection leads to

( Res55 2A4p
1 64B4p

1 24V4p
1 ~z4p!, V4p

1 ~z4p!PH 2t8
A4p

1

4
6t

B4p
1

2
:0<t8,t<1J ,

2A4p
1 24V4p

1 ~2p2z4p!, V4p
1 ~2p2z4p!PH 2t8

A4p
1

4
6t

B4p
1

2
:0<t8,t<1J .

~41!

In the short analysis that follows, we restrict for now our attention to the first case given a
with the 14B4p

1 term for the sake of brevity. Using~40! and ~41! in ~36! then produces

V4p
1 ~z4p!52

A4p
1

4
1B4p

1 2
s4p

8p i
$A4p

1 ~B4p
3 1D4p

3 !22B4p
1 ~A4p

3 1C4p
3 !%

52
A4p

1

4
1B4p

1 1
s4p

cos~h/2!
L4p , ~42!

where the only unknown isz4p and the signs4p from Eq.~20! has been reintroduced. The cosh/2
term is used for future convenience and, in agreement with~24!, we have

L4p5
cos~h/2!

8p i
$A4p

1 ~B0111D011!22B4p
1 ~A0111C011!%. ~43!

In order to use the Jacobian elliptic sine function sn to invert the elliptic integral of the first
we recast V4p

1 (a) in terms of Legendre’s standard form. The transformationx
5(sina/2)/(sinh/2), together with the alternative expression to~6!,

u~a!52AS cos2
a

2
2cos2

h

2 D S cos2
a

2
2sin2

h

2 D ,

enables us to write

V4p
1 ~a!5E

h

a cos~a8/2!

u~a8!
da85

1

cos~h/2! H FS sin~a/2!

sin~h/2!
,tan

h

2 D2
cos~h/2!

4
A4p

1 J , ~44!

and we have the following relationships for the parameterk and the cyclic periods:

k5tan
h

2
, A4p

1 5
4K

cos~h/2!
, B4p

1 5
2iK 8

cos~h/2!
. ~45!

Inserting~44! in ~42!, solving for z4p then produces, after some algebraic manipulations,
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z4p52 arcsinFsin
h

2
sn~2iK 81s4pL4p ,k!G .

It follows from ~42! and ~41! that this holds ifs4pL4p lies in the period parallelogram@0,K#
3@2 iK 8,22iK 8#. As s4p561, the acceptable range forL4p is therefore6@0,K#36@2 iK 8,
22iK 8# with the plus sign corresponding tos4p51. These regions are identified in Fig. 8 by th
period parallelogramsQ 1

s4p. Repeating this process for the other cases in~41!, it can be shown
that

z4p55
2p22 arcsinFsin

h

2
sn~s4pL4p ,k!G , L4pPQ 0

s4p,

2 arcsinFsin
h

2
sn~2iK 81s4pL4p ,k!G , L4pPQ 1

s4p,

2 arcsinFsin
h

2
sn~22iK 81s4pL4p ,k!G , L4pPQ 2

s4p ,

~46!

which is an explicit expression forz4p . The proper expression and the sign ofs4p561 are
selected by using Fig. 8 in order to determine in which period parallelogramQ lies the quantity
L4p . The multiplicative constantk4p immediately follows from~23a! or ~23b!. Note that~46! can
be simplified by exploiting the periodicity of the sn function to obtain

z4p5H 2p22 arcsinFsin
h

2
sn~s4pL4p ,k!G , L4pPQ 0

s4p ,

2 arcsinFsin
h

2
sn~s4pL4p ,k!G , L4pPQ 1

s4pøQ 2
s4p ,

~47!

whereL4p is given in ~43! andk, iK 8 are given in~45!.

FIG. 8. The regionsQ 0
6 , Q 1

6 andQ 2
6 in terms of the complete integrals of the first kindK andK8 with k5tanh/2. The

parallelogramsQ indicate the various ranges in whichL4p must lie when carrying out the inversion forz4p with Eq. ~46!.
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V. BRANCH-FREE SOLUTIONS

The determination of the unknownsz2p,4p andk2p,4p completes the definition of the solutio
to the first order difference equationsw(a,u) as given in~20!. It still has branch points and is
therefore multivalued owing to the arbitrariness of the branch ofu(a) but its integrand is now
such that the path integral is single-valued on either of the Riemann sheets. Meromorphic
tions to the second order difference equation can now be obtained through the use of expr
~10!. We recall, however, that solutions free of poles and zeros in the stripS4p are required and
therefore seek to use specific linear combinations of~10! to finalize the construction of the
solutions. Knowledge of the poles and zeros ofw(a,u) is required to successfully complete th
endeavor and, since they arise solely due tov2p

3 (a,u) andv4p
3 (a,u), it is straightforward to show

that in S4p

w~a,6u!;H a1z2p

a2z2p

a1~z2p22p!

a2~z2p22p!

a1z4p

a2z4p
J 61

, ~48!

wheres2p5s4p51 is assumed for simplicity. With this information in hand, the poles of a
linear combinations involving~10! are easily determined. Zeros are by nature more elusive an
rely on knowledge of the limiting functions in order to determine their number as well as ge
location. The cancellation of the poles and zeros is also complicated by the order requirem
the solutions which must beO(1) asuIm au→`.

We first present an entirely analytic approach from which two independent solution
obtained. They satisfy the analyticity requirements, recover the known solutionsC1(a) and
1/C1(a) whenh→p/2, and their only shortcoming is that they vanish ash→0, though knowl-
edge of~13! circumvents this difficulty. In an effort to obtain expressions that also recover
known solutionC2(a) whenh→0, a number of approaches relying on numerically locating ze
were explored but, despite producing more desirable behaviors, they fail ash→0 due to inadmis-
sible poles that arise in the strip of analyticity in that limit. An example of such an approa
provided here which nearly succeeds in recovering both limiting functionsC1(a) andC2(a).

In the following, we use the primed functionstn8(a) to denote intermediate branch-free sol
tions of the second order difference equation~2! which still have undesired poles and zeros in t
strip S4p whereas the unprimed functionstn(a) denote the appropriate branch-free and pole/ze
free solutions.

A. Analytical solution

We proceed by constructing two meromorphic solutions of~2!, t18(a) and t28(a), sharing a
common pole atz4p but having distinct unknown zerosa1 anda2 , and then use a linear comb
nation to obtain an expression with a known pole/zero pair. Proceeding in a manner similar
technique presented in Ref. 9, we write

t18~a!5
T2p~a!

2 H S 11
f 1~a!

u~a! Dw~a,u!1S 12
f 1~a!

u~a! Dw~a,2u!J , ~49!

a linear combination of the branch-free forms~10!. The functionsf 1(a) and T2p(a) are 4p
periodic; f 1(a) is a trigonometric polynomial used to introduce zeros at appropriate locatio
the a plane while the external multiplicative functionT2p(a) is a rational trigonometric function
used to annul poles and zeros. We observe that the introduction of double zeros coincident w
poles of eitherw(a,u) or w(a,2u) produces, by~48!, a simple zero in the term in curly brace
above. Thus, if we require

12
f 1~a!

u~a!
;~a1z2p!2~a1~z2p22p!!2~a1z4p!, ~50!
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then the second term in braces in~49! has simple zeros coinciding with those ofw(a,u) at a
52z2p ,2p2z2p and is finite ata52z4p . This implies

S 11
f 1~a!

u~a! Dw~a,u!1S 12
f 1~a!

u~a! Dw~a,2u!;
a1z2p

a2z2p

a1~z2p22p!

a2~z2p22p!

a2a1

a2z4p
,

wherea1 is the unknown location of a zero in theS4p strip. While the exact location ofa1 is not
easily determined, its general location is known whenh is in the neighborhood ofp/2. Indeed, as
h→p/2 we havef 1(a)/u(a)→1 and

1

2 H S 11
f 1~a!

u~a! Dw~a,u!1S 12
f 1~a!

u~a! Dw~a,2u!J →
h→p/2

w~a,u!,

and we conclude, see~48!, that whenh is in the neighborhood ofp/2, a1 is in the neighborhood
of 2z4p . ChoosingT2p(a) to eliminate the poles and zeros associated withz2p gives

T2p~a!5
tan~z2p/2! 2tan~a/2!

tan~z2p/2! 1tan~a/2!

so that

t18~a!;
a2a1

a2z4p
.

The 4p periodic f 1(a) is obtained by letting

f 1~a!5n11n2 cosa1n3 sina1n4 cos
a

2
1n5 sin

a

2

and enforcement of~50! produces

n15
1

12cos~z2p2z4p! H u~z2p!2
1

u~z4p!
~sin2 h cosz2p cosz4p2cos2 h sinz2p sinz4p!J ,

n25cosz2pS 2n11
sin2 h

u~z2p! D ,

n35sinz2pS n11
cos2 h

u~z2p! D ,

with n45n550. We note that, in agreement with the analyticity requirements, the func
T2p(a) and the ratiof 1(a)/u(a) areO(1) asuIm a u→`. A related meromorphic solution to th
second order difference equation sharing the same pole but having a different zero is

t28~a!5
T2p~a!

2 H S 12
f 2~a!

u~a! Dw~a,u!1S 11
f 2~a!

u~a! Dw~a,2u!J , ~51!

where f 2(a) is now chosen, following the same kind of procedure as forf 1(a), such that

12
f 2~a!

u~a!
;~a2z2p!2~a2~z2p22p!!2,

11
f 2~a!

u~a!
;~a1z4p!,
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and hence

t28~a!;
a2a2

a2z4p
.

By the same reasoning as above, the zeroa2 is also in the neighborhood ofa52z4p whenh is
in the neighborhood ofp/2. The meromorphic solutionst18(a) andt28(a) then share the same po
and a linear combination can now be used to introduce a zero ata52z4p such that

t18~a!1jt28~a!;
a1z4p

a2z4p
~52!

and this requires

j52
t18~2z4p!

t28~2z4p!
52T2p

2 ~2z4p!
sinz4p cosz4p2u~z4p!~n2 sinz4p1n3 cosz4p!

sinz4p cosz4p1u~z4p!~n2 sinz4p1n3 cosz4p!
.

An acceptable solution of the second order difference equation~2!, free of poles and zeros inS4p

andO(1) asuIm au→`, is then

t1~a!5
tan~z4p/4! 2tan~a/4!

tan~z4p/4! 1tan~a/4!
$t18~a!1jt28~a!%, ~53!

and

t1~a! →
h→p/2

C1~a!, t1~a! →
h→0

0.

The first limit stems from the fact that, ash→p/2, 12 f 1(a)/u(a)→0, j→0 and, since in that
limit k2p,4p→0,

w~a,u! →
h→p/2 tan~z2p/2! 1tan~a/2!

tan~z2p/2! 2tan~a/2!

tan~z4p/4! 1tan~a/4!

tan~z4p/4! 2tan~a/4!
C1~a!,

where we are still assuming thats2p5s4p51. For the second limit, it is can be shown thatt18
→t28 and j→21 ash→0, andt1(a) therefore vanishes in that limit. Following the same p
scription as above, a second independent solutiont2(a) can be derived by seeking instead
common pole at2z4p and it can easily be shown that

t2~a!5t1~2a!, ~54!

but we now have, using the same arguments as above,

t2~a! →
h→p/2 1

C1~a!
, t2~a! →

h→0

0.

The pair of solutionst1(a) andt2(a) satisfy the prescribed analyticity requirements listed in S
I and recover the known solutionsC1(a) and 1/C1(a) ash→p/2. However, both vanish ash
→0 and they therefore fall short of the preferred behavior obtained in Ref. 9 where the sol
are seen to vary smoothly as a function ofh between the two known limiting functions whenh
5p/2 andh50. Although undesirable, this is not a serious shortcoming since a pair of line
independent solutions are known whenh50 and are given in~13!. This vanishing oft1,2(a) when
h→0 can be attributed to the use of linear combinations@see~52!# in order to create known zeros
a procedure which was not required in Ref. 9. Experience suggests that a purely multipli
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method for eliminating the poles and zeros would likely reproduce the desired behavior, but
far remains elusive. The continuation oft1(a) and t2(a) outside the stripuReau<2p is provided
by the first order difference equations~4! and~5!, and the results confirm the fact that the solutio
are free of branch points everywhere. Indeed, the expressions so obtained are linear comb
of the branch-free forms~10!. The technique has been implemented and sample curves forut1(a)u
are provided in Fig. 9 for various values ofh when u50.25(11 i ). We observe thatt1(a)
→C1(a) ash→p/2, andt1(a)→0 ash→0.

We close this section by summarizing the procedure for computing the solutionst1(a) and
t2(a). The fundamental building block isw(a,u), given in ~20!, the solution to the first orde
equation~4! and its computation requires the quantitiesk2p,4p , z2p,4p ands2p,4p . The prelimi-
nary step in obtaining those quantities is to first compute the cyclic periods~19! using numerical
integration. The quantitiesz2p ands2p then follow from~35! andk2p from ~25!. The quantities
z4p , s4p and k4p are likewise obtained from~47! and ~23!. The functionw(a,u) can then be
computed by carrying out numerically the path integral in~20!; the functionst18(a), t28(a) and
t1(a), t2(a) then respectively follow from~49!, ~51! and ~53!, ~54!.

B. Numerical solution

By foregoing an entirely analytical approach, it is possible to construct solutions that, u
t1,2(a), do not vanish ash→0 but we must however resort to the numerical identification
zeros, a somewhat unattractive prospect. The main motivation behind this approach is to p
with the pole/zero cancellation in a multiplicative fashion and avoid the use of linear combina
of the type ~52!. Interestingly, it is possible to reproduce in this manner the more desir
behavior obtained in Ref. 9 where Eq.~1! is solved. Therein, the solutions obtained are obser
to smoothly vary between two known limiting functions corresponding to, in the case at h
C1(a) ash→p/2 andC2(a) ash→0. This can be achieved here but at the price of having
numerically locate four zeros though, as discussed below, a pole that arises ath→0 proves to be
problematic. Turning once again to the by now familiar form, we write

t38~a!5
T4p~a!

2 H S 11
f 3~a!

u~a! Dw~a,u!1S 12
f 3~a!

u~a! Dw~a,2u!J , ~55!

and examination of the behavior of the solution in Ref. 9 now suggests using

FIG. 9. Magnitude of the branch-free solutiont1(a) given in~53! whenu50.25(11 i ) for various values ofh. The thicker
line corresponds to the known limiting functionC1(a), per ~11!, for h5p/2. The case forh51.57 is indistinguishable
from C1(a).
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f 3~a!5
cosz4p sin2 h cosa1sinz4p cos2 h sina

u~z4p!
,

so that

12
f 3~a!

u~a!
;~a1z4p!2~a1~z4p22p!!2.

The term in braces in~55! is then such that

$ %;
a1z4p

a2z4p

~a2a1!~a2a2!~a2a3!~a2a3!

~a1z2p!~a2z2p!~a1~z2p22p!!~a1~z2p12p!!

and the pole and zero associated withz4p are eliminated by choosing

T4p~a!5
tan~z4p/4! 2tan~a/4!

tan~z4p/4! 1tan~a/4!
.

In the limit ash→p/2 we have

t38~a!;
a1z2p

a2z2p

a1~z2p22p!

a2~z2p22p!
,

which implies that, whenh is in the neighborhood ofp/2, the poles ata52z2p anda52z2p

12p will each have a closely located pair of zerosan . Once the location of these zeros has be
obtained numerically by evaluatingt38(a) in ~55!, the desired solution may be written as

t3~a!5
cosa2cosz2p

12cosz2p S )
n51

4
sin~an/4!

sin
1

4
~an2a!D t38~a! ~56!

so thatt3(a) is free of poles and zeros inS4p . It is easily shown that

t3~a! →
h→p/2

C1~a!,

and sincef 3(a)/u(a)→61 ash→0, albeit in a branched fashion, it can also be shown~numeri-
cally! that

t3~a! →
h→0

C2~a!.

Figure 10 provides sample curves forut3(a)u for various values ofh whenu50.25(11 i ). The
behavior obtained is reminiscent of the one in Ref. 9 since the solution now varies smo
between the two limiting functionsC1,2(a) as a function ofh. Once again, a second solution
provided byt3(2a) and this recovers 1/C1(a) ash→p/2 andC2(a) ash→0. Despite this, the
approach is, however, flawed since one of the numerical zeros strays slightly outsideS4p when
h.0.001. This leads to failure of the solution in that limit since the corresponding zero canc
term in~56! gives rise to a pole within the strip of analyticity. It is unclear at this time if this is d
to numerical inaccuracies or a fundamental limitation of the approach. It does, however, s
that the construction procedure based on branch-free combinations of the functionw(a,u) has the
potential to recover solutions that vary smoothly between the two known limiting functions
vided a proper method can be devised for constructing the branch-free solutions.
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VI. CONCLUSION

A recently proposed solution technique for a class of second order functional diffe
equations was applied to a case of intermediate complexity in order to assess its potential
solving certain electromagnetic scattering problems. The essence of this conceptually sim
proach lies in the construction of branched solutions to first order difference equations and
achieved by systematically eliminating singular contributions to produce single-valued ex
sions. This requirement leads to an equation system whose analytical solution is made pos
obtaining, through the application of Cauchy’s theorem on Riemann surfaces, specialized ve
of relationships arising in the bilinear relations of Riemann. While the portion of the ana
carried out on a Riemann surface of genus one has the same order of complexity as the on
in Ref. 9, we were also now required to carry out a similar but more intricate analysis
Riemann surface of genus three in order to obtain well-defined branched solutions to the
first order equations. The final solutions, expressed in terms of branch-free linear combinat
the branched solutions to the first order equations, have all the desired analyticity properti
also recover the known solutionC1(a) as h→p/2. The fully analytical approach presente
satisfies all of the solution requirements and the fact that it vanishes ash→0 is not a critical
shortcoming since known exact solutions are available in that particular limit. The other var
provided, which requires the numerical identification of zeros in the complexa plane, represents
an attempt at resolving this shortcoming and, although it fails whenh;0, it otherwise recovers a
solution which varies smoothly between the two known limiting functionsC1(a) and C2(a).
This is encouraging since it suggests that the proposed approach has the potential to pro
solution that smoothly recovers the two known limiting functions provided a proper metho
constructing branch-free solutions can be found.

The results obtained demonstrate the promise of the proposed technique but there ar
large number of interesting issues to be addressed. Indeed, while the procedure for cons
branch-free solutions is fairly well understood, the construction of such meromorphic solu
free of poles and zeros in particular regions of the complexa plane, the stripS4p in this instance,
remains challenging. Consequently, a fully analytical solution displaying the more desirab
havior obtained for the numerical approach, where the solutions recoversC1(a) andC2(a) in the
appropriate limits, is still sought. The success of this endeavor is apparently dependent on g
more insight into the behavior of the zeros of the meromorphic functions constructed. Add
ally, a better understanding of the dependency of the quantitiesL2p,4p on the problem parameter
h andu is required. Ideally, this would take the form of specific requirements on, for instance

FIG. 10. Magnitude of the branch-free solutiont3(a) given in ~56! when u50.25(11 i ) for various values ofh. The
thicker lines corresponds to the known limiting functionC1(a), per ~11!, for h5p/2 andC2(a), per ~13!, for h50.
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impedances characterizing the structure and would provide a range over which the proced
determining the valuesz2p,4p can be carried out. Indeed, it is not inconceivable that under ce
circumstancesL2p,4p might lie outside theP and Q parallelograms, leading to a failure of th
technique. Another highly interesting item is the application of the approach when solutio
different orders~i.e., notO(1) as uIm au→`) are required since in such cases the integrand
w(a,u) is required not to vanish asuIm au→`. It is, however, apparent that, unless benefic
symmetries can be found in cases of higher complexity, a sufficiently large number of singul
in the strip of analyticity, while not precluding a solution in principle, may well make such
approach impractical. Despite this and some of the currently unresolved issues mentioned
the technique proposed in Ref. 9, as demonstrated herein, can be applied relatively stra
wardly to cases of intermediate complexity. Current efforts focus on its application to cas
higher complexity such as the diffraction from an anisotropic impedance half-plane illumina
skew incidence.
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In this paper we provide a complete classification of the Darboux invariants, of the
irreducible Darboux polynomials, of the rational first integrals and of the algebraic
integrability for the classical Lorenz systemẋ5s(y2x), ẏ5rx2y2xz, ż52bz
1xy. In the proofs, we use the weight homogeneous polynomials and the method
of characteristic curves for solving linear partial differential equations. ©2002
American Institute of Physics.@DOI: 10.1063/1.1435078#

I. INTRODUCTION AND DEFINITIONS

The Lorenz system:

ẋ5s~y2x!5P~x,y,z!,

ẏ5rx2y2xz5Q~x,y,z!, ~1!

ż52bz1xy5R~x,y,z!,

is a famous dynamical model~see, e.g., Lorenz, 1963!, wherex, y, andz are real variables; and
s, r , and b are real parameters. This system has been thoroughly investigated as a dyn
system~see, e.g., Sparrow, 1982!. From the point of view of integrability it was also intensive
studied using different integrability theories~see, e.g., Cairo´ and Hua, 1993; Giacomini, Repetto
and Zandron, 1991; Goriely, 1996; Gupta, 1993; Ku´s, 1983; Schwarz, 1985; Segur, 1982; Ste
1982; and Strelcyn and Wojciechowski, 1988!.

The problem involving the algebraic integrability and the Darboux polynomials is clas
and difficult. It mainly received contributions from Darboux~1878!, and Poincare´ ~1981, 1987!.
The former gave a link between algebraic geometry and the search of first integrals, and s
how to construct the first integrals of a planar polynomial vector field having sufficient numb
invariant algebraic curves. The latter was mainly interested in rational first integrals and n
the difficulty for obtaining an algorithm to compute Darboux polynomials. For three-dimens
systems, Labrunie~1996! and Moulin Ollagnier~1997! characterized all polynomial first integra
of the (a,b,c) Lotka–Volterra system. Moulin Ollagnier~1999! studied its homogeneous ration
first integrals. Giacomini, Repetto, and Zandron~1991! investigated the integrals of motion fo
three-dimensional non-Hamiltonian dynamical systems. Llibre and Zhang~2000! characterized all
the invariant algebraic surfaces, the polynomial first integrals, the rational first integrals
invariants, and the algebraic integrability for the Rikitake system.

For the Lorenz system only six independent Darboux invariants had been found:

a!Electronic mail: jllibre@mat.uab.es
b!Electronic mail: m_x_zhang@263.net
16220022-2488/2002/43(3)/1622/24/$19.00 © 2002 American Institute of Physics
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Darboux invariant Parameters

(x222sz)e2st b52s

(2rx21 1
3 y21 2

3 xy1x2z2 3
4 x4)e4t/3 b50, s5 1

3

(y21z2)e2t b51, r 50

(4(12r )z1rx21y222xy1x2z2 1
4 x4)e4t b54, s51

(2rx21y21z2)e2t b51, s51

S1s~2s21!2x21sy22~4s22!xy1x2z2
1

4s
x4De4st

b56s22, r 52s21.

The first three invariants were found by Segur~1982! using the Painleve´ method~see also Steeb
1982; Tabor and Weiss, 1981!. The last three invariants were found by Ku´s ~1983! using the
method of Carlemann embedding. Furthermore, it is easy to prove that the functionH5(y2

1z2)/(x22z)2 is a rational first integral under the conditionsb51, s51/2, andr 50.
Using these invariants, Giacomini and Neukirch~1997! constructed families of two-

dimensional surfaces transverse to the flow of the Lorenz system, in which everyone separa
phase spaceR3 and hence can be used to describe the location of the global attractor of the

In this paper, by using the weight homogeneous polynomials and the method of chara
tics, we obtain the classification of all the irreducible invariant algebraic surfaces, of the in
ants, of the rational first integrals and of the algebraic integrability for the Lorenz system. B
presenting our main results, we first recall some definitions.

A real polynomialf (x,y,z) is called aDarboux polynomialfor the Lorenz system if

] f

]x
P1

] f

]y
Q1

] f

]z
R5k f ~2!

for some real polynomialk(x,y,z), which is called acofactor of f . It is easy to prove that the
degree ofk is less than or equal to 1. Therefore, we can assume that the cofactor is of the

k~x,y,z!5k1x1k2y1k3z1c. ~3!

If f (x,y,z) is a Darboux polynomial of the Lorenz system, then the algebraic surfacef 50 in R3

is called aninvariant algebraic surface. The name is due to the fact that if a solution of~1! has a
point on the invariant algebraic surface, then the whole solution is contained in it.

We say that a nonconstant real functionH(x,y,z,t):R33R→R, is aninvariant of the Lorenz
system, if it is constant on all solution curves (x(t),y(t),z(t)) of the Lorenz system, i.e.
H(x(t),y(t),z(t),t)[constant for all values oft for which the solution (x(t),y(t),z(t)) is defined
on R3. Obviously, ifH is differentiable onR33R, thenH is an invariant of the Lorenz system
and only if along every solution of the Lorenz system we have

]H

]t
1

]H

]x
P1

]H

]y
Q1

]H

]z
R[0. ~4!

If the invariantH is independent on the time, then it is called afirst integral. If the first integral
H is a polynomial~respectively, a rational function!, then it is called apolynomial first integral
~respectively, arational first integral!. If the invariantH is of the form f (x,y,z)exp(st) with f a
polynomial inx,y andz, ands a real constant, thenH is called aDarboux invariant. We remark
that a Darboux invariant is also called anintegral of motionby some physicists. Moreover, it i
easy to prove thatH5 f (x,y,z)exp(st) is a Darboux invariant if and only iff is a Darboux
polynomial with the cofactor2s. If H is a Darboux invariant, thens is called anexponentof H.

Let S be the set of all Darboux polynomials~or Darboux invariants! for the Lorenz system. If
J is a minimum subset ofS such that every element ofS is obtained by doing finitely many
product of the elements ofJ and the addition of finitely many these new elements having the s
cofactor~or having the same exponent!, then we say that every element ofJ is a generatorof S.
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Two first integralsH1(x,y,z) andH2(x,y,z) are said to beindependent, if their gradients are
linearly independent vectors for all points (x,y,z)PR3 except perhaps for a set of zero Lebesg
measure. If the Lorenz system has two independent first integrals, then we say that it iscompletely
integrable. We note that in this case the orbits of the Lorenz system are contained in the c
$H1(x,y,z)5h1%ù$H2(x,y,z)5h2% whenh1 andh2 vary in R.

An algebraic function H(x,y,z)5C is a solution of the algebraic equation

f 01 f 1C1 f 2C21¯1 f n21Cn211Cn50,

where f i(x,y,z) are rational functions, andn is the smallest positive integer for which such
relation holds. Obviously, any rational function is algebraic. The Lorenz system is said
algebraically integrableif it has two independent algebraic first integrals.

This paper is organized as follows. In Sec. II, we state our main results and recall some
we will need later on. In Sec. III, we prove Theorem 1. The proof of Corollary 2 is given in
IV.

II. STATEMENT OF THE MAIN RESULTS AND SOME PRELIMINARY TOOLS

Our main results are the following.
Theorem 1: When sÞ0, a set of generators for the set of all Darboux polynomials of

Lorenz system consists of the following six ones:
Darboux polynomial Cofactor Parameters

x222sz 22s b52s

x42 4
3 x2z2 4

9 y22 8
9 xy1 4

3 rx2 2 4
3 b50, s5 1

3

y21z2 22 b51, r 50
x424x2z24y218xy24rx2216(12r )z 24 b54, s51
y21z22rx2 22 b51, s51
x424sx2z24s2y214s(4s22)xy2(4s22)2x2 24s b56s22, r 52s21

Corollary 2: For the Lorenz system, if sÞ0 then the following statements hold:
(a) The cofactor corresponding to every Darboux polynomial of the Lorenz system is a

stant.
(b) The generators of Darboux invariants for the Lorenz system are the known six ones

previous list.
(c) The Lorenz system has no polynomial first integrals.
(d) The Lorenz system has a rational first integral if and only if b51, s51/2, and r50. The

rational first integrals are of the form

(
i 12 j 5K

ai j ~x22z! i~y21z2! j

(
i 112 j 15K

bi 1 j 1
~x22z! i 1~y21z2! j 1

,

where ai j ,bi 1 j 1
PR and i, j ,i 1 , j 1 ,KPN.

(e) The Lorenz system is not algebraically integrable.
We remark that whens50, the Lorenz system has the first integralH(x,y,z)5x, and then on

each planex5constant the system becomes linear.
In the proof of Theorem 1 we will use the following notions and tools.
A polynomial g(x) with xPRn is said to be weight homogeneousif there exist s

5(s1 ,...,sn)PNn andmPN such that for allaPR\$0%,

g~asx!5g~as1x1 ,as2x2 ,...,asnxn!5amg~x!,
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whereR denotes the set of real numbers, andN the set of positive integers. We shall refers to the
weightof g, m the weight degree, andx→asx the weight change of the variables.

Now we recall the method of characteristic curves for solving linear partial differential e
tions @for instance, see Bleecker and Csordas~1992!, Chap. 2#.

Consider the following first-order linear partial differential equation:

a~x,y,z!Ax1b~x,y,z!Ay1c~x,y,z!Az1d~x,y,z!A5 f ~x,y,z!, ~5!

whereA5A(x,y,z), a, b, c, d, and f areC1 maps.
A curve (x(t),y(t),z(t)) in the xyz space is acharacteristic curvefor the partial differential

equation ~5!, if at each point (x0 ,y0 ,z0) on the curve, the vector (a(x0 ,y0 ,z0),
b(x0 ,y0 ,z0),c(x0 ,y0 ,z0)) is tangent to the curve. So, a characteristic curve is a solution o
system

dx

dt
5a~x~ t !,y~ t !,z~ t !!,

dy

dt
5b~x~ t !,y~ t !,z~ t !!,

dz

dt
5c~x~ t !,y~ t !,z~ t !!.

In practice, for convenience we treatz as the independent variable instead oft, then the above
system is reduced to the system@assumingc(x,y,z)Þ0#

dx

dz
5

a~x,y,z!

c~x,y,z!
,

dy

dz
5

b~x,y,z!

c~x,y,z!
. ~6!

This ordinary differential equation is known as thecharacteristic equationof ~5!.
Suppose that~6! has a solution in the implicit formg(x,y,z)5c1 , h(x,y,z)5c2 , wherec1

andc2 are arbitrary constants. We consider the change of the variables

u5g~x,y,z!, v5h~x,y,z!, w5z, ~7!

and write its inverse transformation asx5p(u,v,w), y5q(u,v,w), andz5r (u,v,w) ~of course,
sometimes the explicit inverse transformation cannot be obtained, or it is not well defined!. Then
the linear partial differential equation~5! becomes the following ordinary differential equation
w ~for fixed u andv!:

c̄~u,v,w!Āw1d̄~u,v,w!Ā5 f̄ ~u,v,w!, ~8!

wherec̄, d̄, Ā, and f̄ arec, d, A, and f , are written in terms ofu, v, andw.
If Ā5Ā(u,v,w) is a solution of~8!, then by transformation~7! we get that

A~x,y,z!5Ā~g~x,y,z!,h~x,y,z!,z!

is a solution of the linear partial differential equation~5!. Moreover, the general solution of~8! is
also the general solution of~5! when, using~7!, we writeu, v, andw in function ofx, y, andz.

III. PROOF OF THEOREM I

In order that readers can follow our proof easily, and use our method to other system
state the global strategy of the proof for a general system. Consider the polynomial system

ẋ5g~x!, xPRn. ~9!

Step 1. We select a suitable weight change of the variables, denoted byX5asx
5(as1x1 ,...,asnxn), and rescale the time byT5a2s0t, wheresiPN for i 50,1,...,n, such that
system~9! is transformed to
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X85(
j 50

r

a jgm2 j~X!, r<m, ~10!

where the prime denotes the derivative with respect toT, gm2 j is a polynomial vector, such tha
every component is a weight homogeneous polynomial. Obviously, system~10! with a50 is
invariant by the selected transformation.

Step 2. Suppose thatf (x) is a Darboux polynomial of~9! with a cofactork(x). Set

F~X!5a l f ~a2sX!5(
i 50

p

a iFi~X!,

K~X!5ahk~a2sX!5(
j 50

q

a jK j~X!,

where a2sX5(a2s1X1 ,...,a2snXn), p,qPN, l and h are the highest weight degrees of th
weight homogeneous components forf and k, respectively, andFi and K j are weight homoge-
neous polynomials. ThenF(X) is a Darboux polynomial of system~10! with the cofactor
as02hK(X). From

K (
j 50

r

a jgm2 j ,
]F

]XL 5as02hKF, ~11!

and by equating the terms witha j in ~11!, i.e., the weight homogeneous components with
same weight degree, we get

L@Fi #5Gi~Fi !1Hi~F0 ,...,Fi 21!, ~12!

with i 50,1,...,max$r1p,s02h1q1p%, where Gi is a linear function inFi , Hi is known by
induction, andL a linear partial differential operator of the form

L5 K gm ,
]

]XL .

Step 3. Solving ~12! we obtain the weight homogeneous polynomial solutionFi . The main
tool is the method of characteristic curves for solving linear partial differential equations.

First we transfer Eq.~12! with i 50 to an ordinary differential equation. By solving th
ordinary differential equation we get a general solutionF0* of ~12! with i 50. Generally,F0* is not
a weight homogeneous polynomial with the given degree. So we must let the component
nonweight homogeneous polynomials of the given degree be equal to zero. Then we getF0 and
the corresponding conditions.

Second, introducingF0 into ~12! with i 51 and working in a similar way to solveF0 , we can
obtainF1 and some conditions which must be satisfied. Then introducingF0 andF1 into ~12! with
i 52, we obtainF2 . According to this process we obtain all the weight homogeneous polyno
solutionsFi for ~12! and the conditions on the coefficients of system~12!.

Step 4. From f (x)5F(X)ua515( i 51
p Fi , we get all the Darboux polynomials for system~9!.

We remark that there is a double aim using the weight change of the variables. Firs
general solution of the characteristic equations forL@Fi #5Gi1Hi is easy to obtain, because th
reduction process from the linear partial differential equation to the ordinary differential equa
becomes simpler. Second, the computation for solvingFi becomes easier.

Proof of Theorem 1:We make the change of the variables

x5a21X, y5a22Y, z5a22Z, t5aT, ~13!
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then the Lorenz system~1! becomes

X85s~Y2aX!,

Y852XZ2aY1ra2X, ~14!

Z85XY2baZ,

where the prime denotes the derivative with respect toT. We note that this transformation i
almost equivalent to the one introduced by Robbins~1979!, but the aim for introducing the
changes is different. In Robbins~1979!, by rescaling the variables the author changes the Lor
model with a high valued parameterR to a system with a small parametere. Then, he uses the firs
integrals of the new system fore50 to construct a solution in power series ofe for the new
system. In this way the author investigated the behavior of the orbits for the Lorenz model.
change of the variables, we introduce the auxiliary parametera and the weight homogeneou
polynomials in order that the computations for searching the Darboux polynomials bec
easier.

Suppose thatf (x,y,z) is a Darboux polynomial of the Lorenz system~1! with a cofactor
k(x,y,z). Using transformation~13!, and settingF(X,Y,Z)5a l f (a21X,a22Y,a22Z), and
K(X,Y,Z)5a2k(a21X,a22Y,a22Z), wherel is the highest weight degree in the weight hom
geneous components off in x, y, andz with weight ~1,2,2!.

We claim thatF is a Darboux polynomial of system~14! with the cofactora21K. Indeed,
along the flow of system~14! we have

dF

dT
5

]F

]X

dX

dT
1

]F

]Y

dY

dT
1

]F

]Z

dZ

dT
5a l 11S ] f

]x

dx

dt
1

] f

]y

dy

dt
1

] f

]z

dz

dt D5a l 11
df

dt
5a l 11k f5a21KF.

Assume thatF5F01aF11a2F21¯1amFm , whereFi is a weight homogeneous polyno
mial in X, Y, and Z with the weight degreel 2 i for i 50,1,...,m, and l>m. Obviously, f
5Fua51 . From the definition of a Darboux polynomial, we have

s~y2ax!(
i 50

m

a i
]Fi

]x
1~2xz2ay1ra2x!(

i 50

m

a i
]Fi

]y
1~xy2baz!(

i 50

m

a i
]Fi

]z

5~k1x1k2a21y1k3a21z1ca!(
i 50

m

a iFi ,

where we still usex,y andz instead ofX, Y, andZ. Equating the terms witha21 we can prove
that k25k350. Equating the terms witha i for i 50,1,...,m12, we get

L@F0#5k1xF0 ,

L@F1#5k1xF11cF01sx
]F0

]x
1y

]F0

]y
1bz

]F0

]z
, ~15!

L@F j #5k1xFj1cFj 211sx
]F j 21

]x
1y

]F j 21

]y
1bz

]F j 21

]z
2rx

]F j 22

]y

for j 52, 3,...,m12, whereF j50 for j .m andL is the linear partial differential operator of th
form

L5sy
]

]x
2xz

]

]y
1xy

]

]z
.
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The characteristic equations associated with the first linear partial differential equati
system~15! are

dx

dz
5

sy

xy
,

dy

dz
52

xz

xy
.

This system of equations has the general solution

x222sz5d1 , y21z25d2 ,

whered1 andd2 are constants of integration.
According with the method of characteristics, we make the change of the variables

u5x222sz, v5y21z2, w5z. ~16!

Its inverse transformation is

x56Au12sw, y56Av2w2, z5w. ~17!

In the following, for simplicity we only consider the casex5Au12sw, y5Av2w2, andz5w.
Under changes~16! and~17!, the first equation of~15! becomes the following ordinary differentia
equation~for fixed u,v!:

Av2w2
dF̄0

dw
5k1F̄0 ,

whereF̄0 is F0 , written in u, v, andw. In what follows, we always useū to denote a function
u(x,y,z) written in terms ofu, v, andw. The above equation has the general solution

F̄05Ḡ0~u,v !expS k1 arcsin
w

Av
D ,

whereḠ0 is an arbitrary smooth function inu andv. So,

F0~x,y,z!5F̄0~u,v,w!5Ḡ0~x222sz,y21z2!expS k1 arcsin
z

Ax21y2D .

In order thatF0 be a weight homogeneous polynomial, we must havek150 andḠ0 a polynomial
in u andv. Consequently, the cofactor of every Darboux polynomial for the Lorenz system
constant. Sinceu andv are weight homogeneous polynomials inx, y, andz of weight degrees 2
and 4, respectively,F0 should be weight degree eitherl 54n, or l 54n22 for some convenien
nPN. So,F0 has the form( i 50

n aiu
2ivn2 i , or ( i 51

n aiu
2i 21vn2 i . Therefore, we have

F05(
i 50

n

ai~x222sz!2i~y21z2!n2 i , ~18!

with the weight degree 4n, or

F05(
i 51

n

ai~x222sz!2i 21~y21z2!n2 i , ~19!

with the weight degree 4n22.
Accordingly, with these two different cases, we divide the proof into two subsections.
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A. F0 has the form „19…

SubstitutingF0 into the second equation of~15! and doing some computations, we obtain th

L@F1#5(
i 51

n

@c12~2i 21!s12~n2 i !#ai~x222sz!2i 21~y21z2!n2 i

1(
i 51

n

~4s222sb!~2i 21!ai~x222sz!2i 22~y21z2!n2 iz

1(
i 51

n

2~n2 i !~b21!ai~x222sz!2i 21~y21z2!n2 i 21z2.

Using transformations~16! and ~17! and working in a similar way to solveF̄0 , we get the
following ordinary differential equation~for fixed u andv!:

Au12swAv2w2
dF̄1

dw
5(

i 51

n

@c12~2i 21!s12~n2 i !#aiu
2i 21vn2 i

1(
i 51

n

~4s222sb!~2i 21!aiu
2i 22vn2 iw

1(
i 51

n

2~n2 i !~b21!aiu
2i 21vn2 i 21w2.

Integrating this equation with respect tow and using formula~A1! from Appendix A, we get

F̄15(
i 51

n
1

s
@c12~2i 21!s12~n2 i !#aiu

2i 21vn2 i 21Au12swAv2w2

1(
i 50

n H ~4s222sb!~2i 11!ai 111
1

s
@c12~2i 21!s12~n2 i !#ai J

•u2ivn2 i 21E w dw

Au12swAv2w2
1(

i 51

n

@3c16~2i 21!s1~2b14!

3~n2 i !#aiu
2i 21vn2 i 21E w2 dw

Au12swAv2w2
1Ḡ1~u,v !,

whereḠ1(u,v) is an arbitrary smooth function inu andv.
Since G1(x,y,z)5Ḡ1(u,v)5Ḡ1(x222sz,y21z2), in order thatF1 be a weight homoge-

neous polynomial of weight degree 4n23, from ~A2! and ~A3! we haveḠ1(u,v)50, and

~4s222sb!~2i 11!ai 111
1

s
@c12~2i 21!s12~n2 i !#ai50, i 50,1,...,n

~20!
@3c16~2i 21!s1~n2 i !~2b14!#ai50, i 51,2,...,n

wherea05an1150. We claim that conditions~20! are equivalent to one of the following cond
tions:

~i! b51, s51/2, c52(2n21) and there exists ani 0P$1,...,n21% such thatai 0
Þ0,

~ii ! b52s, c522(2n21)s, andF05an(x222sz)2n21,
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~iii ! bÞ2s andF050.

Indeed, we first assume thatb52s. Then, conditions~20! can be reduced to

~b21!~n2 i !ai50, @c12~2i 21!s12~n2 i !#ai50, i 51,...,n.

If there exists ani 0P$1,...,n21% such thatai 0
Þ0, then b51. So, we haves51/2 and c

52(2n21). If ai50 for i 51,...,n21, then anÞ0 ~otherwise,F050!. Thus, we havec
522(2n21)s. Next, we assume thatbÞ2s. Then, by induction, from the first equation of~20!
we get thatai50 for i 51,...,n. This proves the claim.

Case (i): b51, s51/2, c52(2n21) and there exists ani 0P$1,...,n21% such thatai 0
Þ0.

ThenF150. From~15! with j 52 we get

L@F2#52(
i 51

n

2r ~n2 i !aixy~x222sz!2i 21~y21z2!n212 i .

Using transformations~16! and ~17!, we get the following ordinary differential equation:

dF̄2

dw
52 (

i 51

n21

2r ~n2 i !aiu
2i 21vn212 i .

Integrating this equation with respect tow, we have

F̄252 (
i 51

n21

2r ~n2 i !aiu
2i 21vn212 iw1Ḡ2~u,v !,

whereḠ2(u,v) is an arbitrary smooth function. In order thatF2(x,y,z)5F̄2(u,v,w) be a weight
homogeneous polynomial of weight degree 4n24, it must have the form

F252 (
i 51

n21

2r ~n2 i !ai~x222sz!2i 21~y21z2!n212 iz1 (
i 50

n21

ai
(2)~x222sz!2i~y21z2!n212 i ,

whereai
(2) are real constants fori 50,1,...,n21.

SubstitutingF1 andF2 into ~15! with j 53 and working in a similar way to solveF1 andF2 ,
we can obtain that

F3~x,y,z!5F̄3~u,v,w!

52 (
i 50

n21

ai
(2)u2ivn212 iE dw

Au12swAv2w2

1 (
i 51

n21

2r ~n2 i !aiu
2i 21vn212 iE w dw

Au12swAv2w2
1Ḡ3~u,v !.

SinceF3 is a weight homogeneous polynomial of weight degree 4n25, we get thatḠ350, and

ai
(2)50 for i 50,1,...,n21; r ~n2 i !ai50 for i 51,2,...,n21.

This means thatr 50 ~because there exists ani 0P$1,...,n21% such thatai 0
Þ0!. Furthermore, we

haveF25F350. By recursive calculations, we can prove thatFi50 for i 54,....,m. Hence, the
Darboux polynomial is
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(
i 51

n

ai~x22z!2i 21~y21z2!n2 i .

Its generators arex22z andy21z2, which are two Darboux polynomials of the Lorenz system
Case (ii): b52s, c522(2n21)s, and F05(x222sz)2n21. Here, we setan51, because

anÞ0 otherwiseF050 and consequentlyF50. So,F150. From ~15! with j 52, we can easily
prove that

F25 (
i 50

n21

ai
(2)~x222sz!2i~y21z2!n212 i ,

whereai
(2) are real constants fori 50,1,...,n21.

Working in a similar way to solveF1 andF3 as in case~i!, we get from~15! with j 53 that

F3~x,y,z!5F̄3~u,v,w!

5 (
i 50

n21

@22~2n21!s14si12~n212 i !#

3ai
(2)u2ivn212 iE dw

Au12swAv2w2
1 (

i 50

n21

~n212 i !~4s22!

3ai
(2)u2ivn222 iE w2 dw

Au12swAv2w2
1Ḡ3~u,v !.

SinceF3 is a weight homogeneous polynomial of weight degree 4n25, we should haveḠ350
and

@2~2n21!s12si1~n212 i !#ai
(2)50, ~n212 i !~4s22!ai

(2)50, i 50,1,...,n21.

This implies that F350. The above-mentioned conditions are equivalent toai
(2)50 for i

50,1,...,n21, that is, F250. By recursive calculations, we can prove thatFi50 for i
54,...,m. Hence, the Darboux polynomial is (x222sz)2n21 with the cofactor22(2n21)s.

Case (iii): bÞ2s andF050. Obviously, the Lorenz system has no Darboux polynomials
the given form.

B. F0 has the form „18…

SubstitutingF0 into the second equation in~15!, we get that

L@F1#5(
i 50

n

@c14si12~n2 i !#ai~x222sz!2i~y21z2!n2 i

1(
i 50

n

4s~2s2b!iaiz~x222sz!2i 21~y21z2!n2 i

1(
i 50

n

2~b21!~n2 i !aiz
2~x222sz!2i~y21z2!n2 i 21.

Working in a similar way as in Sec. III A we obtain that
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F̄15(
i 50

n
1

s
@c14si12~n2 i !#aiu

2ivn2 i 21Au12swAv2w2

1 (
i 50

n21 H 1

s
@c14si12~n2 i !#ai14s~2s2b!~ i 11!ai 11J

•u2i 11vn2 i 21E w dw

Au12swAv2w2
1

1

s
~c14sn!anu2n11v21

1 (
i 50

n21

@3c112si12~b12!~n2 i !#aiu
2ivn2 i 21E w2 dw

Au12swAv2w2
1Ḡ1~u,v !.

In order thatF1(x,y,z)5F̄1(u,v,w) be a weight homogeneous polynomial of weight deg
4n21, we should haveḠ1(u,v)50 and

~c14sn!an50,

~c14si12~n2 i !!ai14s2~2s2b!~ i 11!ai 1150, ~21!

~3c112si12~b12!~n2 i !!ai50,

with i 50,1,...,n21. We claim that conditions~21! are equivalent to one of the following cond
tions:

~i! b52s, c524sn, anÞ0, andai50 for i 50,1,...,n21,
~ii ! b51, s51/2, c522n, andaiÞ0 for somei P$0,1,...,n21%,
~iii ! b51, c522n, sÞ1/2, a0Þ0, andai50 for i 51,2,...,n,
~iv! b56s22, c524sn, sÞ1/2, an2 i5(24s2) i( i

n)an , andanÞ0.

Indeed, we first assume thatb52s. Then conditions~21! are reduced to

~c14sn!an50, ~c14si12~n2 i !!ai50, ~3c112si14~s11!~n2 i !!ai50,

with i 50,1,...,n21. If ai50 for i 50,1,...,n21, thenanÞ0. Otherwise,F050. So,c524sn.
This is condition ~i!. If there exists ani 0P$0,1,...,n21% such thatai 0

Þ0, then we havec
14si012(n2 i 0)50 and 3c112si014(s11)(n2 i 0)50. This means thats51/2 and c5
22n. Hence, we get condition~ii !.

Now we assume thatbÞ2s. From the second equality of~21!, we get thata0Þ0. Otherwise,
ai50 for i 50,1...,n. Hence, from the third equality of~21! we have

3c12~b12s!n50. ~22!

If c12n50, thenb51 andc522n. SincebÞ2s, we havesÞ1/2. So, from the first and third
equalities of~21! we get thatai50 for i 51,...,n. This is condition~iii !. If c12nÞ0, sincea0

Þ0, we obtain from the second equality of~21! that a1Þ0. So, we have 3c112s12(b12)(n
21)50, by the third equality of~21!. From equality~22! we haveb56s22 andc524sn. So,
sÞ1/2. Moreover, from the second equality of~21! we get thatan2 i5(24s2) i( i

n)an . This proves
the claim.

In what follows we study the four cases.
Case (i): b52s, c524sn, anÞ0, andai50 for i 50,1,...,n21. Then we haveF05an(x2

22sz)2n andF150. SubstitutingF0 andF1 into ~15! with j 52, we get thatL@F2#50. It is easy
to prove that
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F25(
i 51

n

ai
(2)~x222sz!2i 21~y21z2!n2 i ,

whereai
(2) for i 51,2,...,n, are real constants.

From ~15! with j 53 and doing some computations as in Sec. III A we obtain that

F̄35(
i 51

n
1

s
@24sn12s~2i 21!12~n2 i !#ai

(2)u2i 21vn2 i 21Au12swAv2w2

1(
i 51

n
1

s
@24sn12s~2i 21!12~n2 i !#ai

(2)u2ivn2 i 21E wdw

Au12swAv2w2

1(
i 51

n

@212sn16s~2i 21!16~n2 i !1~4s22!~n2 i !#

•ai
(2)u2i 21vn2 i 21E w2dw

Au12swAv2w2
1Ḡ3~u,v !,

whereḠ3 is an arbitrary smooth function inu andv. In order thatF3(x,y,z)5F̄3(u,v,w) be a
weight homogeneous polynomial of weight degree 4n23, we would haveḠ350 and

@24sn12s~2i 21!12~n2 i !#ai
(2)50, ~4s22!~n2 i !ai

(2)50, i 51,2,...,n.

This implies thatF350. The above conditions are equivalent toai
(2)50 for i 51,2,...,n. This

means thatF250.
By induction we can prove thatFi50 for i 54,...,m. Therefore, the Darboux polynomial i

F5F05an(x222sz)2n with the cofactor24sn. The corresponding irreducible Darboux polyn
mial is f 5x222sz with the cofactor22s.

Case (ii): b51, s51/2, andc522n. ThenF150. From~15! with j 52, we can prove that
the weight homogeneous polynomialF2 with the weight degree 4n22 has the form

F252 (
i 50

n21

2r ~n2 i !ai~x22z!2i~y21z2!n2 i 21z1(
i 51

n

ai
(2)~x22z!2i 21~y21z2!n2 i .

Similarly, from ~15! with j 53 we get

F̄35 (
i 50

n21

2r ~n2 i !aiu
2ivn2 i 21E w dw

Au12swAv2w2

2(
i 51

n

ai
(2)u2i 21vn2 iE w dw

Au12swAv2w2
1Ḡ3~u,v !.

In order thatF3(x,y,z)5F̄3(u,v,w) be a weight homogeneous polynomial of weight degreen

23, we should haveḠ3(u,v)50, r (n2 i )ai50 for i 50,1,...,n21 andai
(2)50 for i 51,...,n.

This means thatr 50, F250, andF350.
By induction, we obtain that the Darboux polynomial is

F5F05(
i 50

n

ai~x22z!2i~y21z2!n2 i ,
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with the cofactor22n. The corresponding generators are two Darboux polynomialsf 15x22z
with the cofactor21 and f 25y21z2 with the cofactor22.

Case (iii): b51, c522n, sÞ1/2, andF05a0(y21z2)n. SinceF150, solving ~15! with j
52 we get

F2522rna0~y21z2!n21z1(
i 51

n

ai
(2)~x222sz!2i 21~y21z2!n2 i .

SubstitutingF1 andF2 into ~15! with j 53 we can prove that

F̄352rna0vn21E w dw

Au12swAv2w2
1(

i 51

n

@2i ~2s21!22s#ai
(2)u2i 21vn2 iE dw

Au12swAv2w2

1(
i 51

n

~4s222s!~2i 21!ai
(2)u2i 22vn2 iE w dw

Au12swAv2w2
1Ḡ3~u,v !.

In order thatF3(x,y,z)5F̄3(u,v,w) be a weight homogeneous polynomial of weight degreen

23 in x,y, andz, we should haveḠ3(u,v)50 and

@2i ~2s21!22s#ai
(2)50, i 51,2,...,n,

2rna01~4s222s!a1
(2)50, ~4s222s!~2i 21!ai

(2)50, i 52,...,n.

This means thatF350. These last conditions are equivalent to

~1! r 50 andai
(2)50 for i 51,2,...,n, i.e., F250.

~2! rÞ0, s51, a1
(2)52rna0Þ0 andai

(2)50 for i 52,̄ ,n.

Subcase (1): r50 andF250. By induction, we can prove thatFi50 for i 54,...,m. Hence,
the Darboux polynomial isf 5a0(y21z2)n with the cofactor22n. The irreducible Darboux
polynomial isy21z2 with the cofactor22.

Subcase (2): rÞ0 ands51. Then we have

F2522rna0~y21z2!n21z2rna0~x222z!~y21z2!n21

52rna0~y21z2!n21x2

5a0S n
1D ~y21z2!n21~2rx2!.

SubstitutingF2 andF3 into ~15! with j 54, we get that

F452r 2n~n21!a0~x22z!~y21z2!n22z1 (
i 50

n21

ai
(4)~x222z!2i~y21z2!n2 i 21,

whereai
(4) for i 50,1,...,n21, are arbitrary real constants.

From ~15! with j 55 we obtain that

F̄55F (
i 50

n21

4iai
(4)u2i 21vn2 i 2122r 2n~n21!a0uvn22G E w dw

Au12swAv2w2

1 (
i 50

n21

2~ i 21!ai
(4)u2ivn2 i 21E dw

Au12swAv2w2
1Ḡ5~u,v !,
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whereḠ5(u,v) is an arbitrary smooth function. In order thatF5(x,y,z)5F̄5(u,v,w) be a weight
homogeneous polynomial with the weight degree 4n25 in x,y, andz, we must haveḠ5(u,v)
50 and

~ i 21!ai
(4)50, i 50,1,...,n21,

(
i 50

n21

4iai
(4)u2i 21vn2 i 2122r 2n~n21!a0uvn2250.

This reduces to

a1
45

n~n21!

2
r 2a0 , ai

(4)50, j 50,2,...,n21.

Therefore, we have

F45S n
2Da0~y21z2!n22~2rx2!2, F550.

By recursive calculations, we can prove that

F2i5S n
i Da0~y21z2!n2 i~2rx2! i , F2i 1150, i>5, 2i<m.

Hence, the Darboux polynomial of the Lorenz system is

f 5(
i 50

n S n
i Da0~y21z2!n2 i~2rx2! i5a0~y21z22rx2!n

with the cofactor22n. Moreover, the irreducible Darboux polynomial isy21z22rx2 with the
cofactor22.

Case (iv): b56s22, c524sn, andsÞ1/2. Sincean2 i5(24s2) i( i
n)an for i 51,2,...,n and

anÞ0, without loss of generality, we setan51, then we have

F05@~x222sz!224s2~y21z2!#n.

Moreover, we have

F15 (
i 50

n21
1

s
@24sn14si12~n2 i !#ai~x222sz!2i~y21z2!n2 i 21xy

52
4s22

s (
j 51

n

j ~24s2! j S n
j D ~x222sz!2(n2 j )~y21z2! j 21xy

54s~4s22! (
j 50

n21

~24s2! jnS n21
j D ~x222sz!2(n212 j )~y21z2! j xy

5S n
1D @~x222sz!224s2~y21z2!#n214s~4s22!xy.

SubstitutingF0 andF1 into the second equation of~15!, we get that
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F25@~4s22!~4s212s2!18rs2#n@~x222sz!224s2~y21z2!#n21z

116s3~4s22!2n~n21!~y21z2!@~x222sz!224s2~y21z2!#n22z28s2~4s22!2n~n21!

3x2@~x222sz!224s2~y21z2!#n22z21(
i 51

n

ai
(2)~x222sz!2i 21~y21z2!n2 i ,

whereai
(2) are real constants fori 51,2,...,n.

From ~15! with j 53 and working in a similar way to solveF1 , we can prove that

F̄352(
i 51

n

@~4s22!~n2 i !12s#ai
(2)u2i 21vn2 iE dw

Au12swAv2w2

2(
i 51

n

2s~4s22!~2i 21!ai
(2)u2i 22vn2 iE w dw

Au12swAv2w2

1(
i 51

n

3~4s22!~n2 i !ai
(2)u2i 21vn212 iE w2 dw

Au12swAv2w2

24s~4s22!rnu~u224s2v !n21E dw

Au12swAv2w2

132s3~4s22!rn~n21!uv~u224s2v !n22E dw

Au12swAv2w2

116s@~s21!~2s21!~123s!2s2r #n~u224s2v !n21E w dw

Au12swAv2w2

116s3@~4s22!2~125s!16s~4s22!r #n~n21!v•~u224s2v !n22E w dw

Au12swAv2w2

164s5~4s22!3n~n21!~n22!v2~u224s2v !n23E w dw

Au12swAv2w2

116s2@~4s22!224s~4s22!r #n~n21!u•~u224s2v !n22E w2 dw

Au12swAv2w2

296s4~4s22!3n~n21!~n22!uv~u224s2v !n23E w2 dw

Au12swAv2w2

116s3~4s22!n~n21!@2~4s22!2~n22!15~3s21!~4s22!210sr#~u224s2v !n22

3E w3 dw

Au12swAv2w2
2128s5~4s22!3n~n21!~n22!v~u224s2v !n23

3E w3 dw

Au12swAv2w2
1160s4~4s22!3n~n21!~n22!u~u224s2v !)n23

3E w4 dw

Au12swAv2w2
1192s5~4s22!3n~n21!~n22!~u224s2v !n23

3E w5 dw

Au12swAv2w2
1Ḡ3~u,v !.
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Using formulas~A4!–~A6!, F̄3 can be simplified to

F̄35 H8s~4s22!@22~4s22!r ~u12sw!1~6s22!~4sr22s~4s22!!w#S n
2D •~u224s2v !n22

164s3~4s22!3S n
3D ~u12sw!~v2w2!~u224s2v !n23J •Au12swAv2w2116s~3s21!

3~s21!@r 2~2s21!#nS n21
i D ~24s2!n2 i 2 i

•u2ivn212 iE w dw

Au12swAv2w2

26s(
i 51

n Hai
(2)12~4s22!nF r S n21

i 21 D1~4s22!~n21!•S n22
i 21 D G~24s2!n2 i J u2i 21vn212 i

3E w2dw

Au12swAv2w2
1Ḡ3~u,v !.

For details, see Appendix B.
SinceF3(x,y,z)5F̄3(u,v,w) is a weight homogeneous polynomial with weight degreen

23 in x,y andz, we should haveḠ3(u,v)50 and

~3s21!~s21!@r 2~2s21!#50,

ai
(2)522~4s22!nF r S n21

i 21 D1~4s22!~n21!S n22
i 21 D G~24s2!n2 i ,

for i 51,2,...,n. Furthermore, we have

F25@~4s22!~4s212s2!18rs2#n@~x222sz!224s2~y21z2!#n21z116s3~4s22!2n~n21!~y2

1z2!@~x222sz!224s2~y21z2!#n22z28s2~4s22!2n~n21!x2@~x222sz!224s2~y2

1z2!#n22z222~4s22!rn~x222sz!@~x222sz!224s2~y21z2!#n2118s2~4s22!2n~n21!

3~x222sz!~y21z2!@~x222sz!224s2~y21z2!#n22

5S n
2D @~x222sz!224s2~y21z2!#n22@4s~4s22!xy#21S n

1D @~x222sz!2

24s2~y21z2!#n21
•$22~4s22!rx21@~4s22!~4s212s2!14s~6s22!r #z%,

F35S n
3D @~x222sz!224s2~y21z2!#n23@4s~4s22!xy#3

1S n
2D @~x222sz!224s2~y21z2!#n222@4s~4s22!xy#

•$22~4s22!rx21@~4s22!~4s212s2!14s~6s22!r #z%.

If s51/3, thenb50, c524n/3. It is known that the polynomial

f 25x42 4
3 x2z2 4

9 y22 8
9 xy1 4

3 rx2,

is a Darboux polynomial with the cofactor24/3. It is easy to prove thatF0 , F1 , F2 , andF3 are
the terms of
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~x42 4
3 x2z2 4

9 y22 8
9 xy1 4

3 rx2!n5@~x22 2
3 z!22 4

9 ~y21z2!2 8
9 xy1 4

3 rx2#n,

with weight degrees 4n, 4n21, 4n22 and 4n23 associated with the weights5(1,2,2), respec-
tively. This last function, denoted byf * , is also a Darboux polynomial with the cofactor24n/3.
We claim thatf 5Fua51 is equal tof * . Indeed, if not, thenf 2 f * (Þ0) is a Darboux polynomial
of the Lorenz system with the cofactor24n/3, and the highest weight degree less than 4n23 in
the weight homogeneous components off 2 f * . It is in contradiction with the fact that under th
conditionbÞ2s, the highest weight degree of the weight homogeneous components of a Da
polynomial for the Lorenz system is 4h for some positive integerh, and that the Darboux
polynomial has the cofactor24hs. This proves the claim. Therefore, the irreducible Darbo
polynomial is the known one, i.e.,f 2 .

If s51, thenb54 andc524n. Working in a similar way as in the proof of the previou
paragraph, we get that the Darboux polynomial is

~x424x2z24y218xy24x2216~12r !z!n,

with the cofactor24n.
If r 52s21, sincec524sn and b56s22 with sÞ1/2, we can prove that the Darbou

polynomial is

~x424sx2z24s2y214s~4s22!xy24~2s21!2x2!n,

with the cofactor24sn. This completes the proof of the theorem. j

IV. THE PROOF OF COROLLARY 2

Proof of statement (a):It is made inside the proof of Theorem 1. j

Proof of statement (b):The proof of this statement follows from the following result, who
proof is easy.

Lemma 3: LetX be an n-dimensional polynomial vector field. Then fPR@x# with xPRn is a
Darboux polynomial ofX with a constant cofactor k if and only if the function H(x,t)
5 f (x)e2kt is an invariant. j

Proof of statement (c):Since every polynomial first integral is a Darboux polynomial with t
cofactork50, statement~c! follows from Theorem 1 and its proof. j

Proof of statement (d):In order to prove this statement, we need the following results.
Lemma 4: LetX be a polynomial vector field inRn. Then the following statements hold.
(1) Assume that fi for i 51,...,m, is the Darboux polynomial ofX with a cofactor ki . If there

existl iPR not all equal to zero such that( i 51
m l iki[0, then H5) i 51

m f i
ki is a first integral of the

field X.
(2) Assume that f(x) is a polynomial function. Let f5 f 1

n1...f m
nm be the factorization of f in

irreducible factors overR@x#. Then f is a Darboux polynomial with a cofactor kf of X if and only
if each fi is a Darboux polynomial with a cofactor kf i

for i 51,...,m. Moreover, kf5n1kf 1
1¯

1nmkf m
.

The first statement was proved by Darboux~1878!. We call such a first integral aDarboux first
integral. The second statement was proved in Christopher and Llibre~2000!.

From Theorem 1 it is easy to check that the values of the parameters in the Lorenz sys
order to have two different generators for the Darboux polynomials ares51/2, b51, andr 50.
Then, the generators of the Darboux polynomials arex22z with the cofactor21, andy21z2 with
the cofactor22. From statement~1! of Lemma 4, it follows easily that (x22z)2/((y21z2) is a
rational first integral. Moreover, from statement~2! of Lemma 4 we obtain that any Darbou
polynomial has the form
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(
i 12 j 5K

ai j ~x22z! i~y21z2! j ,

with the cofactor2K, wherei , j ,KPN. This proves statement~d! using again Lemma~1!. j

Proof of statement (e):We first recall the following result.
Lemma 5: A vector fieldX in Rn has l (1< l ,n) independent algebraic first integrals if an

only if it has l independent rational first integrals.
It was obtained by Bruns in 1887@for a proof, see Forsyth~1900! or Goriely ~1996!#. This

lemma means that the vector fieldX is algebraically integrable if and only if it hasn21 inde-
pendent rational first integrals. Therefore, from statement~d! and taking into account that any tw
rational first integrals given in~d! are dependent we obtain that statement~e! holds. j

This completes the proof of the corollary.
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APPENDIX A: SOME ELLIPTIC INTEGRALS

The following formulas are used in the proof of Theorem 1:

E dw

Au12swAv2w2
5

1

sv
Au12swAv2w21

u

sv E w dw

Au12swAv2w2

1
3

v E w2 dw

Au12swAv2w2
. ~A1!

The following two integrating formulas are obtained by using the changew5Av sinu for u
P@2p/2,p/2) and formulas 2.571.2 and 2.571.3 of Gradshteyn and Ryzhik~1980!.

E w dw

Au12swAv2w2

5E Av sinu

Au12sAv sinu
du

55
u

sAu12sAv
W~d,g!2

Au12sAv
s

E~d,g!, for u.2sAv.0, 2
p

2
<u,

p

2
,

AvA 1

sAv
FWS b,

1

g D22ES b,
1

g D G , for 0,uuu,2sAv, 2arcsin
u

2sAv
,u,

p

2
,

~A2!
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E w2 dw

Au12swAv2w2

5vE sin2 u

Au12sAv sinu
du

5

¦

uAu12sAv
3s2 E~d,g!2

u212s2v

3s2Au12sAv
W~d,g!2

1

3s
Av2w2Au12sw,

for u.2sAv.0, 2
p

2
<u,

p

2
,

A 1

sAv
F2uAv

3s
ES b,

1

g D2
Av~u1sAv !

3s
WS b,

1

g D G2
1

3s
Av2w2 Au12sw,

for 0,uuu,2sAv, 2arcsin
u

2sAv
,u,

p

2
,

~A3!

where

b5arcsinA2sAv~12sinu!

u12sAv
5arcsinA2s~Av2w!

u12sAv
,

g5A 4sAv

u12sAv
, d5arcsinA12sinu

2
5arcsinAAv2w

2Av
,

and

W~f,k!5E
0

f dz

A12k2 sin2 z
5E

0

sin f dx

A~12x2!~12k2x2!
,

E~f,k!5E
0

f
A12k2 sin2 z dz5E

0

sin f A12k2x2

A12x2
dx,

are elliptic integrals of the first and second kind in the Legendre normal form@see, for instance
formulas 8.111.2 and 8.111.3 of Gradshteyn and Ryzhik~1980!#:

E w3 dw

Au12swAv2w2
5S u

5s2 2
w

5sDAu12swAv2w21S u2

5s2 1
3

5
v D E w dw

Au12swAv2w2

1
u

5s E w2 dw

Au12swAv2w2
, ~A4!
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E w4 dw

Au12swAv2w2
5S 2

3u2

35s3 1
3uw

35s2 2
w2

7sDAu12swAv2w2

1S uv
35s

2
3u3

35s3D E w dw

Au12swAv2w2

1S 5

7
v2

3u2

35s2D E w2 dw

Au12swAv2w2
, ~A5!

E w5 dw

Au12swAv2w2
5S 7uv

45s2 2
7vw

45s
1

4u3

105s4 2
4u2w

105s3 1
4uw2

63s2 2
w3

9sDAu12swAv2w2

1S u2v
7s2 1

21

45
v21

4u4

105s4D E w dw

Au12swAv2w2

1S 6uv
35s

1
4u3

105s3D E w2 dw

Au12swAv2w2
. ~A6!

APPENDIX B: THE COEFFICIENTS C1, C2, AND C3

In this appendix we compute the coefficients, denoted byC1 , C2 , andC3 , of

Au12swAv2w2E w dw

Au12swAv2w2
, E w2 dw

Au12swAv2w2
,

in the expression ofF̄3 for case~iv! of Sec. III B.
From the formulas of Appendix A and the expression ofF̄3 , we have

C352(
i 51

n

3@~4s22!~n2 i !12s#ai
(2)u2i 21vn212 i1(

i 51

n

3~4s22!~n2 i !ai
(2)u2i 21vn212 i

212s~4s22!rnuv21~u224s2v !n21196s3~4s22!rn~n21!u~u224s2v !n22

116s2@~4s22!224s~4s22!r #n~n21!u~u224s2v !n22296s4~4s22!3

3n~n21!~n22!uv~u224s2v !n231
16

5
s2~4s22!n~n21!@2~4s22!2~n22!15~3s21!

3~4s22!210sr#u~u224s2v !n222
128

5
s4~4s22!3n~n21!~n22!uv~u224s2v !n23

1160s4~4s22!3n~n21!~n22!uS 5

7
v2

3u2

35s2D ~u224s2v !n23

1192s5~4s22!3n~n21!~n22!S 6uv
35s

1
4u3

105s3D ~u224s2v !n23

52(
i 51

n

6sai
(2)u2i 21vn212 i212s~4s22!rnuv21~u224s2v !n21

148s3~4s22!2n~n21!u~u224s2v !n22
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526sF(
i 51

n

ai
(2)u2i 21vn2 i12~4s22!rnu(

i 50

n21 S n21
i D ~24s2!n212 iu2ivn212 i

12~4s22!2n~n21!u(
i 50

n22 S n22
i D ~24s2!n212 iu2ivn212 i Gv21

526sH (
i 51

n

ai
(2)u2i 21vn2 i1(

i 51

n

2~4s22!nF r S n21
i 21 D1~4s22!~n21!S n22

i 21 D G
3~24s2!n2 iu2i 21vn2 iJ v21,

C252(
i 51

n
1

s
@~4s22!~n2 i !12s#ai

(2)u2ivn212 i2(
i 51

n

2s~4s22!~2i 21!ai
(2)u2i 22vn2 i

24~4s22!rnu2v21~u224s2v !n21132s2~4s22!rn~n21!u2~u224s2v !n22

116s@~s21!~2s21!~123s!2rs2#n~u224s2v !n21116s3@~4s22!2~125s!

16s~4s22!r #n~n21!v~u224s2v !n22164s5~4s22!3n~n21!~n22!v2~u224s2v !n23

116s3~4s22!n~n21!@2~4s22!2~n22!15~3s21!~4s22!210sr#~u224s2v !n22

3S u2

5s2 1
3

5
v D2128s5~4s22!3n~n21!~n22!v~u224s2v !n23S u2

5s2 1
3

5
v D

1160s4~4s22!3n~n21!~n22!u~u224s2v !n23S uv
35s

2
3u3

35s3D
1192s5~4s22!3n~n21!~n22!~u224s2v !n23S u2v

7s2 1
21

45
v21

4u4

105s4D
52(

i 50

n H 1

s
@~4s22!~n2 i !12s#ai

(2)12s~4s22!~2i 11!ai 11
(2) J u2ivn212 i24~4s22!

3rnu2v21~u224s2v !n21116s@~s21!~2s21!~123s!2rs2#n~u224s2v !n21

1
16

5
s~4s22!2n~n21!@2~4s22!~n22!15~3s21!#u2~u224s2v !n22116s3~4s

22!3n~n21!F6

5
~n22!11Gv~u224s2v !n221

384

5
s5~4s22!3n~n21!~n22!

3v2~u224s2v !n231
32

5
s3~4s22!3n~n21!~n22!u2v~u224s2v !n23

2
32

5
s~4s22!3n~n21!~n22!u4~u224s2v !n23

52(
i 50

n H 1

s
@~4s22!~n2 i !12s#ai

(2)12s~4s22!~2i 11!ai 11
(2) J u2ivn212 i24~4s

22!rnu2v21~u224s2v !n21116s@~s21!~2s21!~123s!2rs2#n~u224s2v !n21116s~3s

21!~4s22!2n~n21!~u224s2v !n21116s3~4s22!2~16s26!n~n21!v~u224s2v !n22
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52 (
i 50

n21 F1

s
~4s22!~n2 i !ai

(2)12s~4s22!~2i 11!ai 11
(2) Gu2ivn212 i216s2~4s22!2n~n

21!u2~u224s2v !n22116s@~s21!~2s21!~123s!2rs2#n~u224s2v !n21116s~3s21!

3~4s22!2n~n21!~u224s2v !n21116s3~4s22!2~16s26!n~n21!v~u224s2v !n22

52 (
i 50

n21 F1

s
~4s22!~n2 i !ai

(2)12s~4s22!~2i 11!ai 11
(2) Gu2ivn212 i18s~4s22!3n~n21!

3~u224s2v !n21116s@~s21!~2s21!~123s!2rs2#n~u224s2v !n21

148s3~4s22!3n~n21!v~u224s2v !n22

52 (
i 50

n21

4s~4s22!2F2rnS n21
i D12~4s22!inS n21

i D2~4s22!n~n21!S n22
i D G

3~24s2!n212 iu2ivn212 i1 (
i 50

n21 H8s~4s22!3n~n21!S n21
i D116s@~s21!~2s21!

3~123s!2s2r #nS n21
i D212s~4s22!3n~n21!S n22

i D J ~24s2!n212 iu2ivn212 i

5 (
i 50

n21

16s~3s21!~s21!@r 2~2s21!#nS n21
i D ~24s2!n212 iu2ivn212 i ,

where we useC350, that is, the following formulas

24~4s22!rnu2v21~u224s2v !n21

52(
i 51

n

ai
(2)u2ivn212 i216s2~4s22!2n~n21!u2~u224s2v !n22,

ai
(2)52F2~4s22!rnS n21

i 21 D12~4s22!2n~n21!S n22
i 21 D G~24s2!n2 i ,

and

C152(
i 51

n
1

s
@~4s22!~n2 i !12s#ai

(2)u2i 21vn212 i24~4s22!rnuv21~u224s2v !n21

132s2~4s22!rn~n21!u~u224s2v !n22116s3~4s22!n~n21!@2~4s22!2~n22!

15~3s21!~4s22!210sr#•S u

5s2 2
w

5sD ~u224s2v !n222128s5~4s22!3n~n21!~n22!

3vS u

5s2 2
w

5sD ~u224s2v !n231160s4~4s22!3n~n21!~n22!uS 2
3u2

35s3 1
3uw

35s2 2
w2

7sD
3~u224s2v !n231192s5~4s22!3n~n21!~n22!

3S 7uv
45s2 2

7vw

45s
1

4u3

105s4 2
4u2w

105s3 1
4uw2

63s2 2
w3

9sD ~u224s2v !n23

52(
i 51

n
1

s
~4s22!~n2 i !ai

(2)u2i 21vn212 i18s~4s22!3n~n21!u~u224s2v !n22
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216s2~4s22!@~3s21!~4s22!22sr#n~n21!w~u224s2v !n22

2
64

3
s3~4s22!3n~n21!~n22!uv~u224s2v !n231

64

3
s4~4s22!3n~n21!

3~n22!vw~u224s2v !n232
32

3
s3~4s22!3n~n21!~n22!uw2~u224s2v !n23

2
64

3
s4~4s22!3n~n21!~n22!w3~u224s2v !n23

528s~4s22!2rn~n21!u~u224s2v !n22216s2~3s21!~4s22!2n~n21!w~u224s2v !n22

132s3~4s22!rn~n21!w~u224s2v !n22164s3~4s22!3S n
3Duv~u224s2v !n23

1128s4~4s22!3S n
3Dvw~u224s2v !n23264s3~4s22!3S n

3Duw2~u224s2v !n23

2128s4~4s22!3S n
3Dw3~u224s2v !n23

528s~4s22!@2~4s22!r ~u12sw!1~4s22!~12s224s!w24s~6s22!rw#

3S n
2D ~u224s2v !n22164s3~4s22!3S n

3D ~u12sw!~v2w2!~u224s2v !n23,

where we use the formula

2(
i 51

n
1

s
~4s22!~n2 i !ai

(2)u2i 21vn212 i

528s~4s22!2(
i 51

n21

~n2 i !F rnS n21
i 21 D1~4s22!n~n21!S n22

i 21 D Gu2i 21~24s2v !n212 i

528s~4s22!2r (
i 50

n22

n~n21!S n22
i Du2i 11~24s2v !n222 i28s~4s22!3(

i 50

n22

n~n21!2

3S n22
i Du2i 11~24s2v !n222 i18s~4s22!3(

i 52

n21

n~n21!~n22!

3S n23
i 22 Du2i 21~24s2v !n212 i

528s~4s22!2rn~n21!u~u224s2v !n2228s~4s22!3n~n21!2u~u224s2v !n22

18s~4s22!3n~n21!~n22!u~u224s2v !n22132s3~4s22!3n~n21!~n22!

3uv~u224s2v !n23.
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As an alternative to Chevalley generators, we introduce Jacobson generators for the
quantum superalgebraUq@sl(n11um)#. The expressions of all Cartan–Weyl ele-
ments of Uq@sl(n11um)# in terms of these Jacobson generators become very
simple. We determine and prove certain triple relations between the Jacobson gen-
erators, necessary for a complete set of supercommutation relations between the
Cartan–Weyl elements. Fock representations are defined, and a substantial part of
this paper is devoted to the computation of the action of Jacobson generators on
basis vectors of these Fock spaces. It is also determined when these Fock repre-
sentations are unitary. Finally, Dyson and Holstein–Primakoff realizations are
given, not only for the Jacobson generators, but for all Cartan–Weyl elements of
Uq@sl(n11um)#. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1445500#

I. INTRODUCTION

The quantization of simple Lie algebras1,2 or Lie superalgebras3–7 as quasitriangular Hop
~super!algebras has been carried out more than a decade ago. Since then, these structu
received much attention both in the mathematical and physical literature. In a physical co
one is mostly dealing with representations or realizations of these quantized algebras. Th
fact the main topic of the present paper: Certain special representations~Fock representations! and
related realizations~Dyson and Holstein–Primakoff! of the quantum superalgebraUq@sl(n
11um)# are presented.

The Lie superalgebrasl(n11um) is one of the basic classical simple Lie superalgebras
Kac’s classification.8 It can be considered as the superanalogue of the special linear Lie al
sl(n11). The quantum superalgebraUq@sl(n11um)# is a Hopf superalgebra deformation of th
associative superalgebraU@sl(n11um)#, the universal enveloping superalgebra ofsl(n11um).
At this point, it is already worth observing that the more familiar case ofsl(n11) and
Uq@sl(n11)# just follows by puttingm50. The readers who are interested in this case only
still use all formulas presented in this paper, simply takingm equal to 0.

For a definition of the quantum superalgebraUq@sl(n11um)#, we refer to Refs. 3–7. Usually
Uq@sl(n11um)# is defined by its Chevalley generators~often denoted byei , f i , and hi , with

a!Electronic mail: tpalev@inrne.bas.bg
b!Permanent address: Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chaussee 72, 17

Bulgaria; electronic mail: ptns@pt.tu-clausthal.de
c!Author to whom correspondence should be addressed. Telephone:1132 9 2644812; fax:1132 9 2644995; electronic
mail: joris.vanderjeugt@rug.ac.be
16460022-2488/2002/43(3)/1646/18/$19.00 © 2002 American Institute of Physics
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i 51,...,n1m!, subject to the Cartan–Kac relations and the Serre relations.5–7 Besides these
defining relations, also the other Hopf superalgebra maps~comultiplication, co-unit, and antipode!
are part of the definition. In this paper, however, we do not use these other Hopf supera
maps; so we shall concentrate onUq@sl(n11um)# as an associative superalgebra.

The definition in terms of Chevalley generators has the advantage that the comultiplic
co-unit and antipode are easy to give. Furthermore, certain representations can be con
explicitly ~e.g., for the essentially typical representations a Gelfand–Zetlin basis exist for w
the action of the Chevalley generators is known9!. Having certain physical applications in mind
however, it is sometimes more useful to work with a different set of generators forUq@sl(n
11um)#.

The different set of generators forUq@sl(n11um)# given here are the Jacobson generat
~denoted byai

1 , ai
2 andHi , with i 51,...,n1m!. For the case ofsl(n11), such generators wer

originally introduced by Jacobson.10,11 The use of Jacobson generators has a number of ad
tages.

First of all, in certain applications it is necessary to have a complete basis ofUq@sl(n
11um)# ~following from the Poincare´–Birkhoff–Witt theorem!. Such a basis is given in terms o
the Cartan–Weyl elements. Although it is possible to express all Cartan–Weyl elements in
of the Chevalley generators, such expressions soon become rather unmanageable. In term
Jacobson generators, the description of all Cartan–Weyl elements is very easy.

Secondly, the Jacobson generators allow for the construction of a class of irred
Uq@sl(n11um)# modulesWp , pPC, called Fock representations. The Fock representations
responding to differentp are inequivalent. Forp a positive integer they provide an explic
construction~basis and transformation of the basis under the action of the generators! of ~defor-
mations of! atypical representations ofUq@sl(n11um)#. This is an interesting mathematical re
sult, since even in the nondeformed case all atypical representations ofsl(n11um) were not
explicitly constructed so far~e.g., even a dimension formula is unknown!.

A disadvantage of the Jacobson generators compared to the Chevalley generators is
explicit expressions for the other Hopf~super!algebra maps~comultiplication, co-unit and anti-
pode! become very lengthy and complicated.

The results of the present paper provide a mathematical background for further stud
noncanonical quantum statistics initiated in Ref. 12~see also Refs. 11 and 13 for further refe
ences!. The approach is based on the concept of creation and annihilation operators~CAO’s! of a
simple Lie~super!algebraA and its Fock representations.14 The CAO’s ofA provide a description
of A in terms of generators and relations, which are different from the Chevalley generato
this terminology anyn pairs of para-Fermi operators15 are CAO’s of so(2n11)16 and anyn pairs
of para-Bose operators15 are CAO’s of the orthosymplectic Lie superalgebra osp(1u2n).17 The
CAO’s of sl(n11)12 and ofsl(1un)14 lead to new quantum statistics. Generalizing the result
Jacobson on Lie triple systems,10 Okubo has reformulated all above statistics in terms of
supertriple systems.18 In this setting the CAO’s of the Lie~super!algebras mentioned above a
generators of the related~super!triple systems. This is another reason to call them Jacob
generators~JG’s!. The link between the JG’s and the simple Lie superalgebras provides a n
background for theirq-deformations~we refer to Ref. 19 for more discussion in this respect!.

The representations of~quantum! superalgebras have certainly wider applications. These
gebras~and in particularUq@gl(n11um)#20! play a role for finding new solutions of the quantu
Yang–Baxter equations and for the construction of solvable models. As examples we ment
supersymmetric solvablet2J models of correlated electrons21 and their quantum analogue.22

Some other potential physical applications are mentioned in the last section.
In Sec. II we define the Jacobson generators ofUq@sl(n11um)#, as a special subset of th

Cartan-Weyl elements. The description of all Cartan–Weyl elements in terms of the Jac
generators becomes very simple~Theorem 1!. However, in order to apply these results~e.g., in
representations! one must have a list of all~super!commutation relations between these Carta
Weyl elements; in terms of Jacobson generators, this means one has to determine certa
relations. These are also given in Theorem 1, together with their proof.
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In Sec. III we define Fock representations forUq@sl(n11um)#, related to the earlier define
Jacobson generators. The main part of this section is devoted to the proof of Theorem 2, d
ing the action of the Jacobson generators on a basis of the Fock representation. This proof i
technical and lengthy, and has been divided in a number of lemmas. The essential result
these Fock representations are labeled by a numberp; whenp is a nonnegative integer, the Foc
representation is finite-dimensional.

The Fock representations determined in Sec. III are further analyzed in Sec. IV. In part
following conditions required in a physical context, it is determined when these Fock repre
tions are unitary~or unitarizable, or Hermitian!, see Theorem 6. In that case, an orthonormal b
of the Fock space is given, together with the action of the Jacobson generators on thes
elements.

Inspired by the Fock representations, we can give new expressions for the Dyso
Holstein–Primakoff realizations ofUq@sl(n11um)# ~Sec. V!. In Ref. 23, the Dyson and
Holstein–Primakoff realizations for the Chevalley generators ofUq@gl(num)# was already given.
Here, we give Dyson and Holstein–Primakoff realizations for the Jacobson generato
Uq@sl(n11um)# ~Theorems 7 and 8!; from these, the corresponding realization for all Carta
Weyl elements are deduced. All these realizations are in terms ofn pairs of Bose andm pairs of
Fermi creation and annihilation operators. The Holstein–Primakoff realization becomes pa
larly simple when expressed in terms ofq-deformed Bose and Fermi creation and annihilat
operators.

Unless otherwise stated, we consider in this paperUq@sl(n11um)# as a module over the
algebraC @@h## ~with q5eh! of formal power series over an indeterminateh. It is important to
note, however, that all considerations remain true if one replacesh by a complex number such tha
q5eh is not a root of unity. In fact, most of our results hold also forq being a root of 1, including
the unitary Fock representations and the Dyson and Holstein–Primakoff realizations.

Throughout the paper we use the notation: JGs for Jacobson generators;Z ~resp.Z1! for the
set of all integers~resp. of all nonnegative integers!; Z25$0̄,1̄% for the ring of all integers modulo
2; C for all complex numbers. Furthermore

@x#5
qx2q2x

q2q21 , when xPC, ~1.1!

@r ;s#5$r ,r 11,r 12,...,s21,s%, for r<sPZ; ~1.2!

u i5H 0̄ if i P@0;n#

1̄ if i P@n11;n1m#
; u i j 5u i1u j ; ~1.3!

@a,b#5ab2ba, $a,b%5ab1ba, va,bb5ab2~21! deg(a)deg(b)ba; ~1.4!

@a,b#x5ab2xba, $a,b%x5ab1xba, va,bbx5ab2~21! deg(a)deg(b)xba, ~1.5!

where deg(a)PZ2 refers to the degree~or grading! of a whena is a homogeneous element of
superalgebra.

II. JACOBSON GENERATORS OF Uq†sl „n¿1zm …‡

Although the quantization~q-deformation! of simple Lie algebras and basic Lie superalgeb
is usually carried out in terms of their Chevalley generators, there exist alternative descripti
terms of so-called deformed creation and annihilation operators for theq-deformation of
osp(1u2n),24 so(2n11),25 osp(2n11um),19 sl(n11),26 and sl(n11um).27 These alternative
generators have the advantage that in some natural interpretation they have a direct p
significance; furthermore, they allow the definition and construction of a mathematically inte
ing and physically important class of irreducible representations, the Fock representations
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The Hopf superalgebraUq@sl(n11um)# is defined in the sense of Drinfeld,1 as a topologi-
cally freeC @@h## module. As a superalgebra,Uq@sl(n11um)# is usually defined by means of it
Chevalley generators, subject to the Cartan–Kac relations and the Serre relations.5–7 Unlike the
Lie algebra case, there is an ‘‘extra Serre relation’’ involving the generator associated with a
simple root.5–7,28 This property was investigated further by Yamane.29,30 Indeed, for the basic
classical Lie superalgebras there exist many nonisomorphic simple root systems;8 one of these,
having only one odd simple root, is known as the distinguished simple root system.8 The classical
description ofUq@sl(n11um)# is in terms of relations and generators associated with this dis
guished simple root system. Yamane29,30 studied Hopf superalgebras in terms of relations a
generators associated with other simple root systems. Apparently, this gives rise to more in
extra Serre relations. Moreover, the structure of the Hopf superalgebra seems to depend
choice of simple root system.29,30 In this paper,Uq@sl(n11um)# stands for the usual Hopf supe
algebra associated with the distinguished simple root system. But we shall be dealing w
alternative set of generators~and relations! for Uq@sl(n11um)#.

In this Sec. we shall recall the definition of deformed creation and annihilation operato
Uq@sl(n11um)#, and refer to them as Jacobson generators~JGs! since they are closely related t
generators in the sense of a Lie supertriple system18 ~and for Lie triple systems, such generato
were originally introduced by Jacobson10,11!. The definition of JGs can be best presented in
framework of a set of Cartan–Weyl elements ofUq@sl(n11um)#. Furthermore, in order to con
struct the Fock representations explicitly, it is necessary to have a complete list of so-called
relations between the JGs. Such relations can be deduced from the supercommutation r
between all Cartan–Weyl elements. So we begin this section by recalling some proper
Cartan–Weyl elements ofUq@gl(n11um)#, deduced in Ref. 31, which are then easily restricted
the case ofUq@sl(n11um)#.

Although a set of generators, such as the Chevalley generators, is sufficient for the defi
of Uq@gl(n11um# as an associative algebra, it is not sufficient for describing a basi
Uq@gl(n11um#. For this purpose, the construction of a set of Cartan–Weyl elements is nece
For Uq@gl(n11um#, a set of Cartan–Weyl elements is given by elementsei j , with i , j P@0;n
1m#; for an explicit expression of these elementsei j in terms of the standard Chevalley gener
tors, see Ref. 31. Finding a set of Cartan–Weyl elements, and their~super!commutation relations,
is necessary for the construction of a Poincare´–Birkhoff–Witt basis of Uq@gl(n11um#. The
elementsei j are theq-analogues of the defining basis ofgl(n11um); their grading is given by
deg(ei j )5u i j . We shall refer toei j as a positive root vector~resp. negative root vector! if i , j
~resp.i . j !. For the formulation of the Poincare´–Birkhoff–Witt theorem, it is necessary to fix
total order for the set of elementsei j . Among the positive root vectors, this order is given by

ei j ,ekl , if i ,k or i 5k, and j , l , ~2.1!

for the negative root vectorsei j one takes the same rule~2.1!, and total order is fixed by choosin

positive root vectors,negative root vectors,eii .

The order among the elementseii is of no real importance since they commute. A complete se
relations between the Cartan–Weyl elementsei j is given by~2.2!–~2.7! @see Eqs.~3.10!–~3.15! of
Ref. 31#

@eii ,ej j #50, ~2.2!

@eii ,ejk#5~d i j 2d ik!ejk , ~2.3!

~ei j !
250 if u i j 51, ~2.4!

for two positive root vectorsei j ,ekl :

vei j ,eklbq(21)u jd j l 2(21)u jd jk1(21)u id ik5d jkeil 1~q2q21!~21!uku~ l . j .k. i !ek jeil , ~2.5!
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for two negative root vectorsei j .ekl

vei j ,eklbq2(21)u jd j l 1(21)u jd jk2(21)u id ik5d jkeil 2~q2q21!~21!uku~ i .k. j . l !ek jeil , ~2.6!

and finally for a positive root vectorei j and a negative root vectorekl

vei j ,eklb5
d i l d jk

q2q21 ~qeii 2(21)u i j ej j 2q2eii 1(21)u i j ej j !1~~q2q21!u~ j .k. i . l !~21!ukek jeil

2d i l u~ j .k!~21!uklekj1djku~i.l!eil !q
(21)ukekk2(21)uieii1q(21)ulell2(21)ujejj

3~2~q2q21!u~k.j.l.i!~21!ujeilekj2dilu~k.j!~21!uijekj1djku~l.i!eil !. ~2.7!

Herein,

u~ i 1. i 2.¯. i r !5H 1, if i 1. i 2.¯. i r ,

0, otherwise.
~2.8!

The difference betweenUq@sl(n11um)# and Uq@gl(n11um)# lies in the elements of the
Cartan subalgebra. ForUq@gl(n11um)# the Cartan subalgebra is generated byeii ( i P@0;n
1m#). For Uq@sl(n11um)# the Cartan subalgebra is generated by the elementsHi , with

Hi5e002~21!u ieii , i P@1;n1m#. ~2.9!

Sometimes, it will be useful to work with the elementsLi and L̄ i , where

Li5qHi, L̄ i5q2Hi, i P@1;n1m#. ~2.10!

The Cartan–Weyl elements ofUq@sl(n11um)# are now given by$Hi ; i P@1;n1m#%ø$ei j ; i
Þ j P@0;n1m#%. The complete set of supercommutation relations between these Cartan–
elements is given by

@Hi ,H j #50, ~2.11!

@Hi ,ejk#5~d0 j2d0k2~21!u i~d i j 2d ik!!ejk , ~2.12!

~2.4!–~2.6! and finally the relation between a positive root vectorei j and a negative root vecto
ekl :

vei j ,eklb5
d i l d jk

q2q21 ~L j
(21)u i L̄ i

(21)u i
2L̄ j

(21)u iL i
(21)u i

!1~~q2q21!u~ j .k. i . l !~21!ukek jeil

2d i l u~ j .k!~21!uklek j1d jku~ i . l !eil !Li L̄k1L j L̄ l~2~q2q21!u~k. j . l . i !

3~21!u jeil ek j2d i l u~k. j !~21!u i j ek j1d jku~ l . i !eil !. ~2.13!

The Jacobson generators ofUq@sl(n11um)# are now defined as the Cartan elementsHi ( i
P@1;n1m#) together with the elements

ai
25e0i , ai

15ei0 , i P@1;n1m#. ~2.14!

From ~2.13! it is easy to deduce that

vai
2 ,aj

1b52~21!u iL ieji , ~ i , j !; vai
2 ,aj

1b52~21!u jej i L̄ j , ~ i . j !. ~2.15!

However, these relations are not complete in order to reshuffle all Cartan–Weyl elements
arbitrary expression in the right order. For this purpose, we have the following result:
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Theorem 1: A set of Cartan–Weyl elements of Uq@sl(n11um)# is given by Hi , ai
6 ,

vai
1 ,aj

2b ( iÞ j P@1;n1m#). A complete set of supercommutation relations between these
ments is given by

@Hi ,H j #50; @Hi ,aj
6#57~11~21!u id i j !aj

6 , ~2.16!

vai
2 ,ai

1b5
Li2L̄ i

q2q21 , ~2.17!

vai
h ,aj

hbq50 ~ i , j !; ~ai
6!250 ~ i P@n11;n1m# !, ~2.18!

v vai
h ,aj

2hb ,ak
hbqj(11(21)u id ik)5hu jd jkLk

2jhai
h1~21!uke~ j ,k,i !~q2q̄!vak

h ,aj
2hbai

h

5hu jd jkLk
2jhai

h1~21!uku je~ j ,k,i !qj~q2q̄!ai
hvak

h ,aj
2hb ,

~2.19!

where( j 2 i )j.0, j, h56

and e~ j ,k,i !5H 1, if j .k. i ;

21, if j ,k, i ;

0, otherwise,

and we have used the notation q5̄q21.
Proof: The first part of the statement is obvious. Relation~2.16! follows from ~2.11! and

~2.12!; ~2.17! follows from ~2.13! with l 5 i , j 5k; the first relation in~2.18! follows from ~2.5!
with i 5k, j , l and from~2.6! with l 5 j ,k, i , whereas the second relation in~2.18! comes from
~2.4!. Finally, it remains to prove~2.19!. There are four similar cases to consider, according
h56 andj56. For h52 andj51, we use the first relation in~2.15! and find

v vai
2 ,aj

1b ,ak
2bq11(21)u id ik52~21!u ivLieji ,ak

2bq11(21)u id ik52~21!u iL i veji ,ak
2b

52~21!u iL i veji ,e0kb5~21!u i1u i j ukLi ve0k ,eji b .

Herein, we have used the last equation of~2.16! to change the order ofLi andak
2 . For the last

supercommutator, we use~2.13!

v vai
2 ,aj

1b ,ak
2bq11(21)u id ik5~21!u i1u i j ukLiLkL̄ i~2~q2q̄!u~ j .k. i !~21!uke0iejk1dk je0i !.

Using trivial properties of theu i-symbols, the second term in the right-hand side~rhs! of this
expression becomes (21)u jd jkLkai

2 ; for the first term we use similar properties and repla
according to~2.15! ejk by 2(21)ukL̄kvak

2 ,aj
1b , so there comes

~21!ukq~q2q̄!u~ j .k. i !ai
2vak

2 ,aj
1b .

This coincides with the second expression in~2.19!. Exchanging indicesi andk, and using the
relation just obtained, one shows that also the first expression in~2.19! is valid.

For the remaining choices ofh andj, the proof is similar. h

Finally, we wish to remark that in order to constructUq@sl(n11um)# by means of the JGs
subject to a set of relations, not all relations of Theorem 1 are needed. Such a minimal
relations was determined in Ref. 27.
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III. FOCK REPRESENTATIONS

In this section we shall construct so-called Fock representations ofUq@sl(n11um)#. The
representations considered here are diagonal with respect to the Cartan elementsHi . So it will be
convenient to fixq ~or h! as a complex number in this and in the following section.

The Fock representations, or modules, can be defined by means of an induced modu
struction. First observe thatG5Uq@sl(n11um)#, with Cartan–Weyl elementsHi , ai

6 and
vai

1 ,aj
2b ( iÞ j P@1;n1m#), has a subalgebraH5Uq@gl(num)# with Cartan–Weyl elementsHi

and vai
1 ,aj

2b ( iÞ j P@1;n1m#). A trivial one-dimensionalH module is defined as follows:

vai
2 ,aj

1bu0&50, ~ iÞ j P@1;n1m# !, ~3.1!

Hi u0&5pu0&, ~3.2!

wherep is any complex number. LetP be the~associative! subalgebra ofG5Uq@sl(n11um)#
generated by the elements ofH and $ai

2 ; i P@1;n1m#%. The one-dimensional moduleCu0& can
be extended to a one-dimensional module ofP by requiring

ai
2u0&50, i P@1;n1m#. ~3.3!

Now theG moduleW̄p is defined as

W̄p5IndP
G Cu0&.

By construction, this means thatW̄p is freely generated by the generatorsai
1 ( i P@1;n1m#)

acting onu0&. In other words, a basis forW̄p is given by

up;r 1 ,r 2 ,...,r n1m&[~a1
1!r 1~a2

1!r 2
¯~an

1!r n~an11
1 !r n11~an12

1 !r n12
¯~an1m

1 !r n1mu0&, ~3.4!

where

r iPZ1 for i P@1;n# and r iP$0,1% for i P@n11;n1m#.

So W̄p is an infinite-dimensionalG module. The main part of this section is devoted to t
computation of the action of the JGs on the basis vectors~3.4! of W̄p . This, of course, completely
determines the action ofUq@sl(n11um)# on W̄p .

Theorem 2: The transformation of the basis (3.4) of W¯
p under the action of the JGs reads

Hi up;r 1 ,r 2 ,...,r n1m&5S p2~21!u i r i2 (
j 51

n1m

r j D up;r 1 ,r 2 ,...,r n1m&, ~3.5!

ai
2up;r 1 ,r 2 ,...,r n1m&5~21!u1r 11u2r 21¯1u i 21r i 21qr 11¯1r i 21@r i #Fp2 (

j 51

n1m

r j11G
3up;r 1 ,r 2 ,...,r i 21 ,r i21,r i 11 ,...,r n1m&, ~3.6!

ai
1up;r 1 ,r 2 ,...,r n1m&5~21!u1r 11u2r 21¯1u i 21r i 21q̄r 11¯1r i 21~12u i r i !up;r 1 ,r 2 ,...,r i 21 ,r i

11,r i 11 ,...,r n1m&, ~3.7!

where iP@1;n1m#.
                                                                                                                



ll

1653J. Math. Phys., Vol. 43, No. 3, March 2002 Jacobson generators of Uq@sl(n11um)#

                    
Proof: Equation ~3.5! is an immediate consequence of@Hi ,aj
1#52(11(21)u id i j )aj

1 ,
which is one of the last relations in~2.16!. Also the action ofai

1 on the basis vectors is easy:~3.7!
follows directly from ~2.18!. The hard work lies in the proof of~3.6!. For this purpose, we sha
use a number of technical lemmas.

Lemma 3: The following relations hold:

~ i! vA,B1B2¯Bi 21BiBi 11¯Bj bqb11b21...1bj

5(
i 51

j

qb11b21¯1bi 21~21!a(b11¯1b i 21)B1B2¯Bi 21vA,Bi bqbiBi 11¯Bj ,

where a5deg~A! and b i5deg~Bi !, ~3.8!

~ii ! vai
2 ,~aj

1!r b5H q̄2r21

q̄221
~aj

1!r 21vai
2 ,aj

1b when i, j

q2r21

q221
~aj

1!r 21vai
2 ,aj

1b when i. j

, ~3.9!

~ iii ! vai
2 ,~ai

1!r b5
~ai

1!r 21

q2q̄ S q̄2r21

q̄221
Li2

q2r21

q221
L̄ i D , ~3.10!

~ iv! v vai
2 ,aj

1b ,~ai
1!r bqr52~21!u j

q̄2r21

q̄221
L̄ iaj

1~ai
1!r 21, i . j , ~3.11!

~v! v vai
2 ,aj

1b ,~ak
1!r bqr5~21!u j~q2r21!aj

1~ak
1!r 21vai

2 ,ak
1b , i .k. j . ~3.12!

Proof: Equation~3.8! follows by direct calculation. We need to prove Eq.~3.9! only when
r .1, i.e., only whenu j50̄. Then one writes, using~3.8!

vai
2 ,~aj

1!r b5vai
2 ,~aj

1!r 21aj
1b5vai

2 ,~aj
1!r 21baj

11~aj
1!r 21vai

2 ,aj
1b .

Now the result follows using induction onr and using the triple relation~2.19! with k5 j and
h52. The proof of~3.10! is similar, using~3.8!, induction onr , and ~2.17!. Also the proof of
~3.11! goes along the same line: First one writes (ai

1) r asai
1(ai

1) r 21 ~for r .1!; using~3.8! this
yields two terms: On the first term one applies~2.19!, and on the second term one applies~3.11!
by induction; then the result follows. The proof of~3.12! is essentially the same. h

Lemma 4: For i.1 the following relation holds:

vai
2 ,a1

1b~a2
1!r 2

¯~an1m
1 !r n1mu0&

52~21!u11u2r 21u3r 31¯1u i 21r i 21q2r 21¯12r i 211r i1¯1r n1m2p@r i #

3a1
1~a2

1!r 2
¯~ai 21

1 !r i 21~ai
1!r i21~ai 11

1 !r i 11
¯~an1m

1 !r n1mu0&. ~3.13!

Proof: Consider firsti 52. Using~3.8!, one finds

va2
2 ,a1

1b~a2
1!r 2

¯~an1m
1 !r n1mu0&5v va2

2 ,a1
1b ,~a2

1!r 2
¯~an1m

1 !r n1mbqr 21¯1r n1mu0&

5v va2
2 ,a1

1b ,~a2
1!r 2bqr 2~a3

1!r 3
¯~an1m

1 !r n1mu0&

1~21!(u11u2)r 2u2qr 2~a2
1!r 2

3v va2
2 ,a1

1b ,~a3
1!r 3

¯~an1m
1 !r n1mbqr 31¯1r n1mu0&. ~3.14!
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From ~3.8! and~2.19! it follows that the second term in the rhs of~3.14! is zero. For the first term
apply ~3.11! and use the action ofL̄2 as given by~3.5! and ~2.10!. Then the result follows.

Next we shall use induction oni to prove~3.13! in general. So suppose~3.13! holds for all
j 52,3,...,i 21, i.e.,

vaj
2 ,a1

1b~a2
1!r 2

¯~an1m
1 !r n1mu0&

52~21!u11u2r 21u3r 31¯1u j 21r j 21q2r 21¯12r j 211r j 1¯1r n1m2p@r j #

3a1
1~a2

1!r 2
¯~aj 21

1 !r j 21~aj
1!r j 21~aj 11

1 !r j 11
¯~an1m

1 !r n1mu0&. ~3.15!

Making a shift of indices in~3.15! ~thereby putting the lastr k-values equal to zero!, leads to the
following equivalent equation:

vai
2 ,aj

1b~aj 11
1 !r j 11

¯~an1m
1 !r n1mu0&

52~21!u j 1u j 11r j 111u j 12r j 121¯1u i 21r i 21q2r j 111¯12r i 211r i1¯1r n1m2p@r i #

3aj
1~aj 11

1 !r j 11
¯~ai 21

1 !r i 21~ai
1!r i21~ai 11

1 !r i 11
¯~an1m

1 !r n1mu0&, ~ j , i !.

~3.16!

Now consider the left-hand side~lhs! of ~3.13! and apply~3.8!

vai
2 ,a1

1b~a2
1!r 2

¯~an1m
1 !r n1mu0&5v vai

2 ,a1
1b ,~a2

1!r 2
¯~an1m

1 !r n1mbqr 21¯1r n1mu0&

5 (
k52

n1m

qr 21¯1r k21~21!(u i1u1)(u2r 21u3r 31¯1uk21r k21)

3~a2
1!r 2

¯~ak21
1 !r k21v vai

2 ,a1
1b ,~ak

1!r kbqr k

3~ak11
1 !r k11

¯~an1m
1 !r n1mu0&. ~3.17!

In this last sum, all terms withk. i are easily seen to vanish. For the terms withk, i , we apply
~3.12!, and for the term withk5 i , we apply~3.11!. Then there comes

(
k52

i 21

~21!u11u2r 21u3r 31¯1uk21r k21~q2r k21!a1
1~a2

1!r 2
¯~ak21

1 !r k21~ak
1!r k21vai

2 ,ak
1b

3~ak11
1 !r k11

¯~an1m
1 !r n1mu0&2~21!u11u2r 21u3r 31¯1u i 21r i 21q2p1S l 5 i

n1mr l@r i #

3a1
1~a2

1!r 2
¯~ai 21

1 !r i 21~ai
1!r i21~ai 11

1 !r i 11
¯~an1m

1 !r n1mu0&. ~3.18!

For the terms in~3.18! with k, i , we can apply~3.16!. Then it is a matter of appropriatel
summing all contributions, which leads finally to the rhs of~3.13!. h

Proof of Theorem 2:There remains to prove Eq.~3.6!. First, assume thati 51 in ~3.6!; then
we have according to~3.8!

a1
2up;r 1 ,r 2 ,...,...,r n1m&5va1

2 ,~a1
1!r 1~a2

1!r 2
¯~an1m

1 !r n1mbu0&

5va1
2 ,~a1

1!r 1b~a2
1!r 2

¯~an1m
1 !r n1mu0&

1 (
j 52

n1m

~21!u1(u1r 11u2r 21¯1u j 21r j 21)

3~a1
1!r 1

¯~aj 21
1 !r j 21va1

2 ,~aj
1!r j b~aj 11

1 !r j 11
¯~an1m

1 !r n1mu0&.

~3.19!
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The terms withj >2 in the rhs of~3.19! are found to be zero using~3.9! and~2.19!. So only the
first term in the rhs of~3.19! gives a contribution; using~3.10! this is

@r 1#Fp2 (
j 51

n1m

r j11G up;r 121,r 2 ,...,r n1m&,

so the casei 51 is proved. Now we use again induction oni . So the following equation holds fo
j , i :

aj
2~a1

1!r 1
¯~an1m

1 !r n1mu0&5~21!u1r 11u2r 21¯1u j 21r j 21qr 11¯1r j 21@r j #

3Fp2 (
l 51

n1m

r l11G up;r 1 ,r 2 ,...,r j 21 ,r j21,r j 11 ,...,r n1m&.

~3.20!

In this equation, putr n1m50 and raise all indices by 1. Then the following~equivalent! equation
holds:

ai
2~a2

1!r 2
¯~an1m

1 !r n1mu0&5~21!u2r 21u3r 31¯1u i 21r i 21qr 21¯1r i 21@r i #

3Fp2 (
l 52

n1m

r l11G
3~a2

1!r 2
¯~ai 21

1 !r i 21~ai
1!r i21~ai 11

1 !r i 11
¯~an1m

1 !r n1mu0&.

~3.21!

Now consider

ai
2up;r 1 ,r 2 ,...,r n1m&5vai

2 ,~a1
1!r 1

¯~an1m
1 !r n1mbu0&

5vai
2 ,~a1

1!r 1b~a2
1!r 2

¯~an1m
1 !r n1mbu0&

1~21!u iu1r 1~a1
1!r 1vai

2 ,~a2
1!r 2

¯~an1m
1 !r n1mbu0&

5
q2r 121

q221
~a1

1!r 121vai
2 ,a1

1b~a2
1!r 2

¯~an1m
1 !r n1mbu0&

1~21!u iu1r 1~a1
1!r 1vai

2 ,~a2
1!r 2

¯~an1m
1 !r n1mbu0&. ~3.22!

This was obtained by applying~3.9! on the first term. The rhs of~3.22! can now be determined a
follows: For the first term we use~3.13!, and for the second term, we use~3.21! in which both
sides have been multiplied~on the left! by (a1

1) r 1. Adding both contributions leads to the desir
result. h

The action of the elementsHi andai
6 ( i P@1;n1m#) on the basis vectors ofW̄p , determined

in Theorem 2, clearly imply thatW̄p has an invariant submodule whenp is a nonnegative integer
From now on we shall assume thatpPZ1 . Then we have

Corollary 5: The Uq@sl(n11um)# module W̄p has an invariant submodule Vp with basis
vectors

up;r 1 ,r 2 ,...,r n1m&, with (
i 51

n1m

r i.p.

The quotient module Wp5W̄p /Vp is an irreducible representation for Uq@sl(n11um)#. The basis
vectors of Wp are given by~the representatives of!
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up;r 1 ,r 2 ,...,r n1m&, with (
i 51

n1m

r i<p. ~3.23!

These finite-dimensional irreducibleUq@sl(n11um)# modulesWp are referred to as the Foc
modules or Fock representations ofUq@sl(n11um)#. Also in the Fock modules, the action of th
elementsHi andai

6 ( i P@1;n1m#) on the basis vectors~3.23! is essentially given by the equa
tions of Theorem 2.

One can verify that the irreducible Fock representationsWp are so-called atypical represen
tations ofUq@sl(n11um)#. Atypicality is usually defined for highest weight representations
simple Lie superalgebras,32 but it can be extended to highest weight representations of the c
sponding Hopf superalgebras.33 In the standard basis, the Dynkin labels ofWp ~or of its highest
weight! are given by (p,0,...,0). This means that in general the representationWp is multiply
atypical.32,34 More precisely, if n>m, then Wp is m-fold atypical; if n,m, then Wp is
(n11)-fold atypical forp,m2n andn-fold atypical forp>m2n. Observe that in this way we
have obtained the action of a set of generators ofUq@sl(n11um)# on a class of atypical irreduc
ible representations, i.e., the Fock modules. In general, an explicit basis for atypical repre
tions is not known, not even in the case ofsl(n11um). For typical representations ofUq@sl(n
11um)#, it is easier to construct a basis. For a subclass of these, the so-called essentially
representations, a~Gelfand–Zetlin! basis has been constructed together with the action of
Chevalley generators.9

IV. UNITARY FOCK REPRESENTATIONS

In this section we select a class of Fock modules important for physical applications.
are the ones for which the standard Fock metric is positive definite, and for which the rep
tatives ofai

6 andHi ( i P@1;n1m#) satisfy the Hermiticity conditions

~ai
1!†5ai

2 , ~ai
2!†5ai

1 , ~Hi !
†5Hi . ~4.1!

In quantum mechanics, including its generalization to the noncommutative case~see, for instance
Refs. 35 and 36!, ~4.1! follows from the relationsak

65const(xk7ipk) and the requirement that th
position operatorsxk and the momentum operatorspk should be self-adjoint operators. By defi
nition, representations for which~4.1! holds are said to be unitary~with respect to the anti-
involution in Uq@sl(n11um)# defined by~4.1!, and the Fock space scalar product!.

For the Fock representationWp , we can define a Hermitian form~,! by requiring

~ u0& , u0&)5^0u0&51, ~4.2!

and by postulating that the Hermiticity conditions~4.1! should be satisfied, i.e.,

~ai
6v,w!5~v,ai

7w!, ;v,wPWp . ~4.3!

It is now easy to determine that any two vectorsup;r 1 ,r 2 ,...,r n1m& and up;r 18 ,r 28 ,...,r n1m8 & with
(r 1 ,r 2 ,...,r n1m)Þ(r 18 ,r 28 ,...,r n1m8 ) are orthogonal. Furthermore, one can compute

~ up;r 1 ,r 2 ,...,r n1m&,up;r 1 ,r 2 ,...,r n1m&)5
@p#!

@p2R#! )
i 51

n1m

@r i #! 5
@p#!

@p2R#! )i 51

n

@r i #!, ~4.4!

whereR5r 11r 21¯1r n1m . Clearly, it holds forR50; then use induction onR together with
~3.6! and ~3.7!.

Assume now that 1< i , j <n1m. According to~4.4! we have

~ai
1aj

1u0&,ai
1aj

1u0&)5@p#@p21#. ~4.5!
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From ~2.18! we haveai
1aj

15(21)u iu jqaj
1ai

15(21)u iqaj
1ai

1 @since (21)u iu j5(21)u i for i
, j #; thus we find

~aj
1ai

1u0& , ai
1aj

1u0&)5~~21!u i q̄ai
1aj

1u0& , ai
1aj

1u0&)5~21!u i q̄* @p#@p21#, ~4.6!

whereq̄* is the complex conjugate ofq̄5q21. On the other hand, using~3.6!,

~aj
1ai

1u0& , ai
1aj

1u0&)5~ai
1u0& , aj

2up;0,...,0,1i ,0,...,0,1j ,0,...,0&)

5~ai
1u0& , ~21!u iq@p21#up;0,...,0,1i ,0,...,0&)

5~21!u iq@p21#~ai
1u0& , ai

1u0&)5~21!u iq@p#@p21#. ~4.7!

Herein, 1i stands for a number 1 at the positioni . Whenp>2, the comparison of~4.6! and~4.7!
yields uqu251. Hence a necessary condition for the Fock space to be unitary is thatq must be a
phase, i.e.,

q5eif, ~2p,f,p!. ~4.8!

Let us now further investigate when the Fock module is unitary, i.e., when the Hermitian
~,! is an inner product. This means that for every (r 1 ,...,r n1m) with 0<R<p, the value in~4.4!
should be positive. In particular, this implies that all the numbers

@p#, @p21#, @p22#,...,@2#, @1#,

should be positive. However, sinceq5eif is a phase, we have

@k#5
qk2q2k

q2q21 5
sin~kf!

sin~f!
.

So we are left with the following question: letp.1, find the values off (2p,f,p) where all
of the following functions:

sin~2f!

sin~f!
,
sin~3f!

sin~f!
,...,

sin~pf!

sin~f!
,

are positive. For each of these functions sin(kf)/sin(f), the zeros and hence the signs are eas
determine. So the common domain where all of these functions are positive is given by

2p

p
,f,

p

p
.

Thus we have
Theorem 6: The irreducible Fock module Wp (p>2) is unitary if and only if q is a phase

i.e., q5eif, with 2p/p,f,p/p.
Observe that whetherq is a root of unity or not does not have any effect on the irreducibi

or unitarity of the Fock moduleWp , as long as the conditions of Theorem 6 are satisfied. Ind
suppose thatq5eif is a root of unity withf a rational multiple ofp and2p/p,f,p/p. Then
the smallest integerN for which qN521 is greater thanp. As a consequence, the rhs in~4.4! is
never zero. This implies that there are no singular vectors among the weight ve
up;r 1 ,...,r n1m&, and thus irreducibility holds.

Under the conditions of Theorem 6, we can define an orthonormal basis ofWp

up;r 1 ,r 2 ,...,r n1m)5A @p2( l 51
n1mr l #!

@p#! @r 1#!...@r n1m#!
up;r 1 ,r 2 ,...,r n1m&, ~4.9!
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where 0<( i 51
n1mr i<p. In the new basis~4.9! the transformation formulas~3.5!–~3.7! read (i

P@1;n1m#)

Hi up;r 1 ,r 2 ,...,r n1m)5S p2~21!u i r i2 (
j 51

n1m

r j D up;r 1 ,r 2 ,...,r n1m), ~4.10!

ai
2up;r 1 ,...,r n1m)5~21!u1r 11¯1u i 21r i 21

3qr 11¯1r i 21A@r i #Fp2 (
l 51

n1m

r l11G up;r 1 ,...r i 21 ,r i21,r i 11 ,...,r n1m),

~4.11!

ai
1up;r 1 ,...,r n1m)5~21!u1r 11¯1u i 21r i 21q̄r 11¯1r i 21~12u i r i !

3A@r i11#Fp2 (
l 51

n1m

r l G up;r 1 ,...r i 21 ,r i11,r i 11 ,...,r n1m).

~4.12!

From~2.15! it is now easy to determine the action of the remaining Cartan–Weyl generatorseji on
the basis elements ofWp

eji up;r 1 ,...,r n1m)5~21!u i (r i11)1u i 11r i 111¯1u j 21r j 21q̄r i 111¯1r j 2122u i (12r i )~12u j r j !

3A@r i #@r j11# up;r 1 ,...r i 21 ,r i21,r i 11 ,...,r j 21 ,r j

11,r j 11 ,...,r n1m), ~ i , j !, ~4.13!

eji up;r 1 ,...,r n1m)5~21!u j r j 1¯1u i 21r i 21q2u j r j 1r j 111¯1r i 21~12u j r j !

3A@r i #@r j11# up;r 1 ,...r j 21 ,r j11,r j 11 ,...,r i 21 ,r i

21,r i 11 ,...,r n1m), ~ i . j !. ~4.14!

In particular, it is possible to extendWp to aUq@gl(n11um)# module, the actions being given b
~4.11!–~4.14! and

e00up;r 1 ,...,r n1m)5S p2 (
l 51

n1m

r l D up;r 1 ,...,r n1m), ~4.15!

eii up;r 1 ,...,r n1m)5r i up;r 1 ,...,r n1m), i P@1;n1m#. ~4.16!

V. DYSON AND HOLSTEIN–PRIMAKOFF REALIZATIONS OF Uq†sl „n¿1zm …‡

Consider (n1m) Z2-graded indeterminatesci
6 ( i P@1;n1m#) with

deg~ci
6!5u i . ~5.1!

Denote byW(num) the freeC @@h## module~completed in theh-adic topology! generated by the
elementsci

6 subject to the relations

vci
2 ,cj

1b5d i j , vci
1 ,cj

1b5vci
2 ,cj

2b50. ~5.2!

As usual, let
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Ni5ci
1ci

2 , N5 (
j 51

n1m

Nj . ~5.3!

The algebraW(num) of n pairs of Bose andm pairs of Fermi CAO’s has a natural action in th
Fock spaceF(num), defined as follows. LetF(num) be the freeW(num) module generated by a
vector u0& subject to the relations

ci
2u0&50, for all i P@1;n1m#.

Then it follows easily that a basis ofF(num) is given by

~c1
1! l 1~c2

1! l 2
¯~cn1m

1 ! l n1mu0&[u l 1 ,l 2 ,...,l n1m&, ~5.4!

where

l iPZ1 for i P@1;n# and l iP$0,1% for i P@n11;n1m#.

The Dyson37 and Holstein–Primakoff38 realizations ofUq@sl(n11um)# are two different
algebra homomorphisms ofUq@sl(n11um)# into W(num).23 SinceW(num) has the natural Fock
representationF(num), these realizations will provide representations ofUq@sl(n11um)# in
F(num).

Theorem 7 „Dyson realization…: Let p be any complex number. The linear mapr:Uq@sl(n
11um)#→W(num), defined on the Jacobson generators by

r~Hi !5p2~21!u ici
1ci

22 (
j 51

n1m

cj
1cj

25p2~21!u iNi2N,

r~ai
2!5qN11¯1Ni 21

@Ni11#

Ni11
@p2N#ci

2 , ~5.5!

r~ai
1!5q̄N11¯1Ni 21ci

1 ,

is a (associative algebra) homomorphism of Uq@sl(n11um)# into W(num).
The inspiration of this mapping comes from Theorem 2. The actual proof of Theorem

straightforward but tedious: one has to verify that all relations in Theorem 1 are satisfied und
substitution ofHi andai

6 by r(Hi) andr(ai
6). These computations are lengthy and based u

easy relations such as

f ~Ni !cj
65cj

6 f ~Ni6d i j !, i , j P@1;n1m#; qNi512Ni1qNi for i .n,

or simpleq-identities such as@x11#@y#2@x#@y11#5@y2x#.
The Dyson realization of the JGs ofUq@sl(n11um)# leads to an explicit realization of al

Cartan–Weyl elements ofUq@sl(n11um)# in terms of the Bose and Fermi CAO’s. Indeed, usi
~2.15! and ~5.5! one obtains

r~eji !5q2u j (Nj 21)1Nj 111Nj 121¯1Ni 21
@Ni11#

Ni11
cj

1ci
2 , ~ j , i ! ~5.6!

r~eji !5q̄2u iNi1Ni 111Ni 121¯1Nj 21
@Ni11#

Ni11
cj

1ci
2 , ~ j . i !. ~5.7!

In ~5.6!, the convention is that the summation~in the power ofq! is 0 whenj 5 i 21 @and similarly
for ~5.7!#. SinceF(num) is aW(num) module, the Dyson realization provides a representation
                                                                                                                



.

–

us

1660 J. Math. Phys., Vol. 43, No. 3, March 2002 Palev, Stoilova, and Van der Jeugt

                    
Uq@sl(n11um)# into F(num). It is easy to see that the action of everyr(Hi) andr(ai
6) upon

u l 1 ,...,l n1m& is the same as the action ofHi andai
6 in the representation onW̄p given by Theorem

2, under the identification

u l 1 ,...,l n1m&[up; l 1 ,...,l n1m&.

Therefore, it follows that the representationr of Uq@sl(n11um)# into F(num) ~under the Dyson
realization! is irreducible whenp¹Z1 . When pPZ1 , the representationr is indecomposable
The subspaceF1(num), spanned on the vectors

u l 1 ,...,l n1m& with l 11¯1 l n1m.p

is clearly invariant under the action ofUq@sl(n11um)#. We denote the~finite dimensional!
quotient module byF0(num)5F(num)/F1(num), and ~by abuse of notation! its vectors are de-
noted by

u l 1 ,...,l n1m& with l 11¯1 l n1m<p.

For h an indeterminate (q5eh), the representation ofUq@sl(n11um)# into F0(num) is irreduc-
ible. It is obvious how to identifyF0(num) with Wp .

In order to turnF0(num) into a unitaryUq@sl(n11um)# module, we introduce the Holstein
Primakoff realization.

Theorem 8 „Holstein–Primakoff realization …: Let pPC. The linear map%:Uq@sl(n
11um)#→W(num), defined on the Jacobson generators by

%~Hi !5p2~21!u ici
1ci

22 (
j 51

n1m

cj
1cj

25p2~21!u iNi2N,

%~ai
2!5qN11¯1Ni 21A@Ni11#

Ni11
@p2N#ci

2 , ~5.8!

%~ai
1!5q̄N11¯1Ni 21A@Ni #

Ni
@p2N11#ci

1 ,

is a homomorphism of Uq@sl(n11um)# into W(num).
Let us now also consider the special case thatp is a positive integer. Just as in the previo

case, the subspaceF1(num) is invariant for the action ofUq@sl(n11um)# under % when p
PZ1 . It is clearly invariant under the action ofUq@sl(n11um)#. Let us consider the following
basis of the~finite dimensional! quotient moduleF0(num):

~c1
1! l 1~c2

1! l 2
¯~cn1m

1 ! l n1m

Al 1! l 2!¯ l n1m!
u0&[u l 1 ,l 2 ,...,l n1m), l 11¯1 l n1m<p. ~5.9!

It is easy to verify that the action of every%(Hi) and%(ai
6) uponu l 1 ,...,l n1m) is the same as the

action ofHi andai
6 in the representation onWp given by ~4.11!-~4.12!, under the identification

u l 1 ,...,l n1m)[up; l 1 ,...,l n1m).

Therefore, it follows that the representation% of Uq@sl(n11um)# into F0(num) ~under the
Holstein–Primakoff realization withpPZ1) is an irreducible unitary module when

q5eif with 2
p

p
,f,

p

p
.
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From ~2.15! and ~5.8!, one obtains the Holstein–Primakoff realization of the remain
Cartan–Weyl elements ofUq@sl(n11um)#

%~eji !5q2u j (Nj 21)1Nj 111Nj 121¯1Ni 21A@Nj #@Ni11#

Nj~Ni11!
cj

1ci
2 , ~ j , i !,

%~eji !5q̄2u iNi1Ni 111Ni 121¯1Nj 21A@Nj #@Ni11#

Nj~Ni11!
cj

1ci
2 , ~ j . i !. ~5.10!

Observe that there is an alternative description of the Holstein–Primakoff realization, in
of deformed Bose39–42 and Fermi43 CAO’s c̃i

6 defined as

c̃i
25A@Ni11#

Ni11
ci

2 , c̃i
15A@Ni #

Ni
ci

1 , Ñi5Ni , i P@1;n1m#. ~5.11!

These elements ofW(num) satisfy the relations

v c̃i
2 ,c̃ j

1bqd i j 5d i j q̄
(21)u i Ñi, @Ñi ,c̃ j

6#56d i j c̃ j
6 , v c̃i

6 ,c̃ j
6b5@Ñi ,Ñj #50. ~5.12!

The Holstein–Primakoff realization can be rewritten in terms of these deformed Bose and
operatorsc̃i

6 . We give it here for all Cartan–Weyl elements

%~Hi !5p2~21!u i Ñi2Ñ,

%~ai
2!5qÑ11¯1Ñi 21A@p2Ñ# c̃i

2 ,

%~ai
1!5q̄Ñ11¯1Ñi 21A@p2Ñ11# c̃i

1 , ~5.13!

%~eji !5q2u j (Ñj 21)1Ñj 111Ñj 121¯1Ñi 21c̃ j
1c̃i

2 , ~ j , i !,

%~eji !5q̄2u i Ñi1Ñi 111Ñi 121¯1Ñj 21c̃ j
1c̃i

2 , ~ j . i !.

Furthermore, this is easy to extend to a Holstein–Primakoff realization ofUq@gl(n11um)# by

%~e00!5p2Ñ, %~eii !5Ñi . ~5.14!

The Holstein–Primakoff realization has given us a realization in terms of oscillators@in ~5.8! and
~5.10!# or q-oscillators@in ~5.13!#. Observe that this oscillator realization is different from the o
given by Floreaniniet al.:43 In Ref. 43 only the Chevalley generators are realized in terms
oscillators orq-oscillators. Furthermore all generators are bilinear expressions in the oscill
whereas here the JGs are linear expressions in the oscillators.

VI. CONCLUSIONS

We have constructed a class of representations of the quantum superalgebraUq@sl(n
11um)#, which was also extended toUq@gl(n11um)#. Our approach is entirely along the line
of Fock representations of parastatistics of orderp, for which the defining relations are given b
~3.1!–~3.3!. The analogy with parastatistics goes further: Within the Fock representations, th
ai

6 can be interpreted as operators creating or annihilating~quasi!particles, or excitations of a new
kind of quantum statistics.

In order to be more concrete consider a HamiltonianH5( i 51
n1m « ieii . Then, see~4.16!,

Hup;r 1 ,...,r n1m)5 (
i 51

n1m

« i r i up;r 1 ,...,r n1m).

Therefore the vectorup;r 1 ,...,r n1m) can be interpreted as a state consisting ofr 1 particles with
energy«1 , r 2 particles with energy«2 , and so on,r n1m particles with energy«n1m . Moreover,
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according to~4.11! and~4.12! any operatorai
1 ~resp.ai

2! creates~resp. annihilates! a particle on
the orbitali . Sincer iPZ1 for i P@1;n# andr iP$0,1% for i P@n11;m# the particles on the firstn
orbitals behave like bosons, and the particles on the next orbitals like fermions. This is, how
not quite the case ifp,n1m, since( i 51

n1mr i<p. In other words the system cannot accommod
more thanp particles. Therefore, the statistics falls in the group of exclusion statistics in the b
sense:44 The number of particles to be accommodated on a certain orbital depends on the n
of particles already accommodated in the system. What are the properties of the und
statistics is a question still to be answered.

Another property worthy of study is to analyze what happens ifp→` andq→1. Having in
mind the results from Ref. 11 we expect that in this limit the operatorsA(p,q) i

65ai
6/Ap become

genuine Bose CAO’s fori P@1;n# and genuine Fermi CAO’s fori P@n11;n1m#. If so, then for
large p and values ofq close to 1 the operatorsA(p,q) i

6 describe small deviations from th
canonical quantum statistics. Moreover these CAO’s are defined in a state space with p
definite scalar product. Among the various noncanonical statistics~Gentile intermediate
statistics,45 parastatistics,15 infinite statistics,46 parons,47 quons48! only the quons have the sam
property. Therefore, parallel to quons theA(p,q) i

6 operators may appear as another candidat
describe eventual small violations of canonical quantum statistics~see Ref. 47 where also exper
ments for detecting small violations of statistics are discussed!.

We believe also~having in mind again the results in Ref. 11! that the CAO’s ofUq@sl(n
11um)# and their Fock representations will be natural ‘‘building blocks’’ for any multicompon
t2J supersymmetric lattice model. To this end we note that at each sitei the Hubbard operators
X0k andXk0,49 ~we suppress the site index! are nothing but nondeformed Jacobson generatorsak

2

andak
1 , respectively. Then the representations withp51 satisfy the hard-core condition forbid

ding configurations with two or more particles to be accommodated simultaneously on each
site.

Some of the results related to this quantum statistics were already published in an
paper.50 Let us underline the new contributions in the present paper. Theorem 1~Sec. II! was
already stated without proof in Ref. 50, since it is the main ingredient to describe the qua
statistics; here we have given its relevant background and a complete proof. Sections III a
contain our key results; all of them are original. We have constructed a class of representat
Uq@sl(n11um)# labeled by an arbitrary numberp. Whenp is a positive integer, this represent
tion is indecomposable and the corresponding quotient module is finite dimensional. The d
tion of the action of the JGs on basis elements of these representations is highly nontrivial. I
IV we have selected the unitary representations, with respect to the~in physics! natural Hermitic-
ity condition ~4.1! considered as an anti-involution, and the requirement that the usual Fock
metric should be positive definite. It is interesting to note that the selected representations
irreducible whenq is a root of unity.

The Dyson and Holstein–Primakoff realizations ofUq@sl(n11um)# were given in an earlier
paper by one of us,23 but only for the Chevalley generators. Here, in Sec. V, we give the realiza
for all Cartan–Weyl elements ofUq@sl(n11um)#. Such realizations are relevant since also in
classical case (q51) the realization of all Cartan–Weyl generators~Bargmann–Schwinger real
izations, ladder representations! are of physical importance. Observe that it is far from trivial
deduce the realization for all Cartan–Weyl elements from those of the realization for the Ch
ley generators. This would be rather hard because the expressions of all Cartan–Weyl elem
terms of the Chevalley generators are very involved and difficult to manage, see e.g., Ref.
the present case, the problem was overcome because we were able to give the Dys
Holstein–Primakoff realizations of the Jacobson generators ofUq@sl(n11um)#. Since the expres-
sions of the remaining Cartan–Weyl elements in terms of the Jacobson generators is simp
Dyson and Holstein–Primakoff realizations of all Cartan–Weyl elements followed without
much trouble.
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Analytic Coulomb matrix elements in the lowest Landau
level in disk geometry

E. V. Tsipera)
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Using Darling’s theorem on products of generalized hypergeometric series, an ana-
lytic expression is obtained for the Coulomb matrix elements in the lowest Landau
level in the representation of angular momentum. The result is important in the
studies of fractional quantum Hall effect~FQHE! in disk geometry. Matrix ele-
ments are expressed as simple finite sums of positive terms, eliminating the need to
approximate these quantities with slowly convergent series. As a by-product, an
analytic representation for certain integrals of products of Laguerre polynomials is
obtained. ©2002 American Institute of Physics.@DOI: 10.1063/1.1446244#

I. INTRODUCTION

The following integrals,

Mmn
l 5~m1 l ,nur 12

21um,n1 l !5E E d2r 1d2r 2cm1 l* ~r1!cn* ~r2!
1

ur12r2u
cm~r1!cn1 l~r2!, ~1!

represent the Coulomb interaction matrix elements in the lowest Landau level. These are th
quantities for studies of correlated two-dimensional systems in quantizing magnetic fields.1–7 The
single-particle wave functions in the angular momentum representation are given by

cm~r !5~2p2mm! !21/2r meimf2r 2/4, ~2!

wherer andf are polar coordinates in the plane, and the magnetic lengthA\c/eH is taken as a
unit of length. The axial gauge for the vector potentialA5 1

2@H,r # is chosen.
Full Coulomb interaction has been shown to play a crucial role in edge effects in fract

quantum Hall systems, not captured by Laughlin’s wave function.1,2 The results of Refs. 1 and 2
would have been difficult to obtain without an analytic formula forMmn

l , the derivation of which
is the subject of this work. Use of well-known expressions by Girvin and Jach3 is prohibitive at
moderately largem andn because of large cancellations. The problem was addressed in R
where slowly convergent series to approximateMmn

l have been derived.
Here we present analytic formulas forMmn

l that contain simple finite sums of positive term
which can be easily evaluated for anym, n, and l . Moreover, the symmetry with respect t
interchangingm andn is explicitly preserved.

II. FORMULA FOR MATRIX ELEMENTS

We start with the result, which reads

Mmn
l 5A~m1 l !! ~n1 l !!

m!n!

G~ l 1m1n1 3
2!

p2l 1m1n12 @Amn
l Bnm

l 1Bmn
l Anm

l #, ~3!

where

a!Electronic mail: etsiper@princeton.edu
16640022-2488/2002/43(3)/1664/4/$19.00 © 2002 American Institute of Physics
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Amn
l 5(

i 50

m S m
i D G~ 1

21 i !G~ 1
21 l 1 i !

~ l 1 i !!G~ 3
21 l 1n1 i !

, ~4a!

and

Bmn
l 5(

i 50

m S m
i D G~ 1

21 i !G~ 1
21 l 1 i !

~ l 1 i !!G~ 3
21 l 1n1 i !

~ 1
21 l 12i !. ~4b!

The rest of the article presents the derivation of Eqs.~3! and ~4!. First, we substitute

1

ur12r2u
5E d2q

2pq
exp@ iq~r12r2!# ~5!

into Eq. ~1!. The two separate integrals overr1 and r2 can be evaluated in terms of Laguer
polynomialsLm

l (q2/2).9 Substitutingq2/25x we obtain

Mmn
l 5A m!n!

2~m1 l !! ~n1 l !! E dxxl 21/2e22xLm
l ~x!Ln

l ~x!. ~6!

The above integral can be expressed10 using generalized hypergeometric function11,12

Mmn
l 5A ~ l 1m!!

2pm!n! ~ l 1n!!

G~n1 1
2!G~ l 1 1

2!

l !
FS 1/2, l 1 1

2, l 1m11

2n1 1
2, l 11

U zD ~7!

in the limit z→21, approached from the right. The functionF is defined as

FS a, b, c

d, e
UzD 5(

i 50

`
zi~a! i~b! i~c! i

i ! ~d! i~e! i
, ~8!

where (z) i5z(z11)¯ (z1 i 21)5G(z1 i )/G(z). Taking the limit avoids problems atz521,
which is at the radius of convergence of the power series~8!. For uzu,1 the right-hand side of Eq
~7! gives a more general integral ofxl 21/2e(z21)xLm

l (2zx)Ln
l (x), which is analytic inz.

When one of the upper parameters is a negative integer, the series~8! terminate yielding a
finite sum. Atz521 we have

FS 2k, b, c

d, e
U21D 5(

i 50

k S k
i D ~b! i~c! i

~d! i~e! i
. ~9!

Since none of the upper parameters ofF in Eq. ~7! are negative integers, the series is infini
However, it appears possible to transform Eq.~7! in such a way that the result contains on
terminating hypergeometric series. Using Darling’s theorem on products,13 the infinite series~7!
are brought into a sum of products of generalized hypergeometric series that each have at le
negative integer upper argument, therefore, representing a finite sum. Darling’s theorem
function F reads
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~12z!a1b1c2d2eFS a, b, c

d, e
UzD

5
e21

e2d
FS d2a, d2b, d2c

d, d112e
UzDFS e2a, e2b, e2c

e21, e112d
UzD

1
d21

d2e
FS e2a, e2b, e2c

e, e112d
UzDFS d2a, d2b, d2c

d21, d112e
UzD . ~10!

Using Eq.~10! and settingz521 in the end we obtain

Mmn
l 5A ~ l 1m!!

pm!n! ~ l 1n!!

G~n1 1
2!G~ l 1 1

2!

2l 1m1n11~ l 1n1 1
2!l !

3H ~n1 1
2!FS 2m, 1

2, l 1 1
2

l 11, l 1n1 3
2

U21D FS 2n, 2n2 l , 2n2 l 2m2 1
2

2n2 1
2, 2n2 l 1 1

2

U21D
1 lF S 2m, 1

2, l 1 1
2

l , l 1n1 3
2

U21D FS 2n, 2n2 l , 2n2 l 2m2 1
2

2n1 1
2, 2n2 l 1 1

2

U21D J . ~11!

Further, we prove the following hypergeometric identity, valid for any positive integerk:

FS 2k, 2k2a, 2k2b

2k2c, 2k2d
U21D 5

~11a!k~11b!k

~11c!k~11d!k
FS 2k, 11c, 11d

11a, 11b
U21D . ~12!

The proof is obtained by reversing the order of summation in the~finite! sum,i→k2 i , using
the symmetry of the binomial coefficients with respect to this substitution, and noticing
(2k2a)k2 i5(21)k2 i(11a)k /(11a) i . Using identity~12! to transform the second hyperge
metric function in each of the two terms in Eq.~11!, we get

Mmn
l 5A~ l 1m!! ~ l 1n!!

m!n!

G~ l 1m1n1 3
2!

p2l 1m1n11~ l 1n1 1
2!

3H (
i 50

m S m
i D G~ 1

21 i !G~ 1
21 l 1 i !

~ l 1 i 21!!G~ 3
21 l 1n1 i !

(
j 50

n S n
j D G~ 1

21 j !G~ 1
21 l 1 j !

~ l 1 j !!G~ 3
21 l 1m1 j !

1(
i 50

m S m
i D G~ 1

21 i !G~ 1
21 l 1 i !

~ l 1 i !!G~ 3
21 l 1n1 i !

(
j 50

n S n
j D G~ 3

21 j !G~ 1
21 l 1 j !

~ l 1 j !!G~ 3
21 l 1m1 j !

J . ~13!

The two terms in Eq.~13! can be brought together, restoring the symmetry with respect tm
andn:

Mmn
l 5A~ l 1m!! ~ l 1n!!

m!n!

G~ l 1m1n1 3
2!

p2l 1m1n11~ l 1n1 1
2!

(
i 50

m

(
j 50

n

~ l 1 i 1 j 1 1
2!

3S m
i D G~ 1

21 i !G~ 1
21 l 1 i !

~ l 1 i !!G~ 3
21 l 1n1 i !

S n
j D G~ 1

21 j !G~ 1
21 l 1 j !

~ l 1 j !!G~ 3
21 l 1m1 j !

. ~14!
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Finally, regrouping the terms to split the double sum back into a product of single sums
preserving them↔n symmetry we arrive at Eqs.~3! and ~4!.

We note that Eqs.~3! and~4! also represent a useful analytic representation for the integra
products of Laguerre polynomials~6!.
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A generalized oscillator algebra is proposed and the braided Hopf algebra structure
for this generalized oscillator is investigated. Using the solutions for the braided
Hopf algebra structure, two types of braided Fibonacci oscillators are introduced.
This leads to two types of braided Biedenharn–Macfarlane oscillators as special
cases of the Fibonacci oscillators. We also find the braided Hopf algebra solutions
for the three dimensional braided space. One of these, as a special case, gives the
Hopf algebra given in the literature. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1436304#

I. INTRODUCTION

The harmonic oscillator has a wide variety of applications from quantum optics to the
izations of the angular momentum algebra and hence the deformations of the oscillator a
play an important role inq-deformed theories. The realization of theq-deformed angular momen
tum algebra by Biedenharn–Macfarlane oscillators1 and the realization of the Hermitian braide
matrices by a pair ofq-oscillators2 are some of the examples. The two parameter deformations
some of their applications can be found in Ref. 3. Braided group theory~a self-contained review
can be found in Ref. 4! deforms the notion of tensor product~called braided tensor product! and
hence deforms the independence of the objects. Although braided groups arise in the form
of quantum group covariant structures, the idea of braiding can be used without any refere
quantum groups to generalize the statistics.5

The permutation mapp (p:A^ B→B^ A) in the tensor product algebra of boson algebra

~a^ b!~c^ d!5ap~b^ c!d5ac^ bd

is replaced by a generalized map called braidingc (c:A^ B→B^ A) such that

~a^ b!~c^ d!5ac~b^ c!d.

This generalization leads to the generalization of the Hopf algebra called braided
algebra6 whose axioms in algebraic~not diagrammatic! form read as

m+~ id ^ m!5m+~m^ id !,

m+~ id ^ h!5m+~h ^ id !5 id,

~ id ^ D!+D5~D ^ id !+D,

~e ^ id !+D5~ id ^ e!+D5 id,

m+~ id ^ S!+D5m+~S^ id !+D5h+e,

c+~m^ id !5~ id ^ m!+~c ^ id !+~ id ^ c!,

c+~ id ^ m!5~m^ id !+~ id ^ c!+~c ^ id !, ~1!
16680022-2488/2002/43(3)/1668/7/$19.00 © 2002 American Institute of Physics
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~ id ^ D!+c5~c ^ id !+~ id ^ c!+~D ^ id !,

~D ^ id !+c5~ id ^ c!~c ^ id !+~ id ^ D!,

D+m5~m^ m!~ id ^ c ^ id !+~D ^ D!,

S+m5m+c+~S^ S!,

D+S5~S^ S!+c+D,

e+m5e ^ e,

~c ^ id !+~ id ^ c!+~c ^ id !5~ id ^ c!+~c ^ id !+~ id ^ c!,

where m:A^ A→A is the multiplication map,D:A→A^ A is the comultiplication map,h:K
→A is the unit map,e:A→K is the counit map,S:A→A is the antipode map andc:A^ A→A
^ A is the braiding map. The consistency of the relations~1! requires that

D~1A!51A^ 1A , c~1A^ a!5a^ 1A , c~a^ 1A!51A^ a ;aPA, ~2!

where 1A is the identity of the algebra A. From now on we will drop the subscript and write 1
the identity of the algebra. All these maps are linear. Note that in the limitc→p the braided Hopf
algebra axioms reduce to the ordinary Hopf algebra axioms. The braided Hopf algebra a7

reduce to the axioms given above when the counit map (e) is an algebra homomorphism. Th
* -structure for a braided algebraB is different8 from the nonbraided one such that

D+* 5p+~* ^ * !+D,

S+* 5* +S, ~3!

~a^ b!* 5b* ^ a* , ;a,bPB.

II. GENERALIZED OSCILLATOR

We propose a generalized oscillator algebra generated bya, a* , qN and 1 satisfying

aqN5qqNa,

qNa* 5qa* qN, ~4!

aa* 2Q1a* a5Q2q2N1Q3qN1Q4 ,

whereq,Q1 ,Q2 ,Q3 ,Q4 are real constants whose values determine the type of the oscillato
example, ifQ1 is a free parameter, then theQ251, Q35Q450 case and theQ351, Q25Q4

50 case define two different Fibonacci oscillators. For the* -structure we impose (qN)* 5qN,
(a* )* 5a. The actions of the generators on the Hilbert space are given by

aun&5anun21&,

a* un&5an11* un11&, ~5!

qNun&5qnun&.

Using the fact that for a given algebra the Hopf algebra structure is not unique, we wri
general forms of the coproducts
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D~qN!5A1qN
^ qN1A2a^ a* 1A3a* ^ a1A41^ qN1A5qN

^ 11A61^ 1,

D~a!5B1qN
^ a1B2a^ qN1B31^ a1B4a^ 1, ~6!

D~a* !5B1a* ^ qN1B2qN
^ a* 1B3a* ^ 11B41^ a* ,

the counits

e~qN!5e1 , e~a!5e~a* !5e2 , ~7!

the antipodes

S~qN!5k1qN1k2a1k3a* 1k4 ,

S~a!5m1qN1m2a1m3a* 1m4 , ~8!

S~a* !5m1qN1m2a* 1m3a1m4,

and the braidings

c~qN
^ qN!5g1qN

^ qN1g2a^ a* 1g3a* ^ a1g41^ qN1g5qN1g61^ 1,

c~qN
^ a!5d1a^ qN1d2qN

^ a1d31^ a1d4a^ 1,

c~a* ^ qN!5d1qN
^ a* 1d2a* ^ qN1d3a* ^ 11d41^ a* ,

c~qN
^ a* !5 f 1a* ^ qN1 f 2qN

^ a* 1 f 31^ a* 1 f 4a* ^ 1,

c~a^ qN!5 f 1qN
^ a1 f 2a^ qN1 f 3a^ 11 f 41^ a, ~9!

c~a^ a!5z1a^ a,

c~a* ^ a* !5z1a* ^ a* ,

c~a^ a* !5b1qN
^ qN1b2a^ a* 1b3a* ^ a1b41^ qN1b5qN

^ 11b61^ 1,

c~a* ^ a!5c1qN
^ qN1c2a^ a* 1c3a* ^ a1c41^ qN1c5qN

^ 11c61^ 1,

where symbols with a subscript are the constants to be determined.

III. BRAIDED HOPF ALGEBRA STRUCTURE OF THE GENERALIZED OSCILLATOR

To find the general braided Hopf algebra structure for the oscillator algebra given by~4! we
substitute these general forms into the braided Hopf algebra axioms~1! and find the solutions
using the computer programming Maple V. The constants which are the same for all solution
as

Q45A15A65B15B250, A45A55B35B451, ~10!

k25k35k45m15m35m45e15e250, m2521, ~11!

b45b55b65c45c55c65g45g55g65d35d45 f 35 f 450. ~12!

The solutions for the other parameters are given in the tables. The constants given by~10!–~12!
show that the antipodes and the counits of all generators and the coproducts of raising/lo
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operators are uniquely determined. We also found that for a free deformation parameterQ1 at most
one of the other deformation parameters, namelyQ2 or Q3 , is nonzero. ForQ2Þ0, we have

aa* 2Q1a* a5Q2q2N. ~13!

Without loss of generality we can takeQ251 or by rescalinga anda* the oscillator relation~13!
can be reduced to

aa* 2Q1a* a5q2N. ~14!

We found that there are only six possible braided Hopf algebra solutions for this two-para
oscillator which are given in Table I. Defining the free deformation parameterQ1[p22 the
algebra~14! can be rewritten as

aa* 2p22a* a5q2N, ~15!

TABLE I. Braided Fibonacci oscillator of the first type.

aa* 2Q1a* a5q2N, aqN5qqNa, qNa* 5qa* qN

sol1 sol2 sol3 sol4 sol5 sol6

k15 21 21 21 21 21 21

b15 1 12
q

AQ1

11
q

AQ1

Q1

q2 0 0

b25
q22Q1

Q1

~q22Q1!~AQ11q!

qQ1

~Q12q2!~AQ12q!

qQ1

0 0 0

b35 Q1 Q1 Q1
Q1

2

q2 Q1 Q1

z5
q2

Q1

q2

Q1

q2

Q1

Q1

q2
Q1

q2

Q1

q2

c15 2
q2

Q1
2 0 0

21

Q1
2

q1AQ1

qQ1

AQ12q

qQ1

c25
q2

Q1
2

1

Q1

1

Q1

1

Q1

1

Q1

1

Q1

c35 0 0 0
Q12q2

q2
~q22Q1!~q2AQ1!

q2AQ1

~Q12q2!~q1AQ1!

q2AQ1

d15
q

Q1

q

Q1

q

Q1
q21

q21 q21

d25 0 0 0
Q12q2

q2
Q12q2

q2

Q12q2

q2

f 15 q q q
Q1

q
Q1

q

Q1

q

f 25
q22Q1

Q1

q22Q1

Q1

q22Q1

Q1
0 0 0

g15
q2

Q1
2

q

AQ1

q

AQ1

Q1

q2

AQ1

q
2

AQ1

q

g25 0
~q22Q1!~AQ11q!

qQ1

~Q12q2!~AQ12q!

qQ1

0 0 0

g35 0 0 0 0 2
Q1~Q12q2!2

q2~Q11qAQ1!

Q1~Q12q2!2

q2~qAQ12Q1!

A25A350 for all solutions
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which is the more familiar form of theq, p oscillator algebra~Fibonacci oscillator! which we call
the first-type Fibonacci oscillator. Using the actions~5! the eigenvalue of the operatora* a on the
stateun& is found to be

an* an5
p22n2q2n

p222q2 . ~16!

SubstitutingQ15q22 into ~14! we obtain the Biedenharn–Macfarlane oscillator algebra which
call the first-type Biedenharn–Macfarlane oscillator defined by

aa* 2q22a* a5q2N. ~17!

The eigenvalue of the operatora* a on the stateun& is found to be

an* an5
q2n2q22n

q22q22 . ~18!

There are only six braided Hopf algebra solutions for the first-type Biedenharn–Macfarlan
cillator ~17! which can be obtained by substitutingQ15q22 into the solutions given in Table I
Similarly, for Q3Þ0 the oscillator relation

aa* 2Q1a* a5Q3qN ~19!

can again be reduced to

aa* 2Q1a* a5qN, ~20!

which we call the second-type Fibonacci oscillator. Setting the free deformationQ1[p21 the
eigenvalue of the operatora* a on the stateun& is found to be

an* an5
p2n2qn

p212q
. ~21!

The second-type Fibonacci oscillator~20! has only two braided Hopf algebra solutions which a
given in Table II. The second-type Biedenharn–Macfarlane oscillator can be obtained sim
substitutingQ15q21 into ~20! and the same substitution into Table II gives braided Hopf alge
solutions.

A wide variety of one-parameter oscillators can be obtained by assigningQ15 f (q) in the
algebras~14! and~20!. The braided Hopf algebra solutions for these oscillators can be obtaine
substitutingQ15 f (q) into the Tables I and II. However, there are extra solutions for some va
Q1 which are given in Table III.

The braided Hopf algebra structure of the quantum space~called braided space! defined by

xixj5qxjxi , i . j , ~22!

determines the structure of the braided integration, derivation and Fourier transform defin
that space.9 For Q15q, Q250, Q350, Q450 the algebra~4! reduces to the three dimension
quantum space with the identifications

x1[a* , x2[qN, x3[a. ~23!

The braided Hopf algebra solutions for the three dimensional braided space are given in Ta
Setting the free parameterg15q2 in the sol5 of Table IV gives the braided Hopf algebra given
Ref. 10 and references therein! as a special case.
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IV. CONCLUSION

The braidings imply the relations between independent copies of algebras. For examp
implication of the braidingc(a^ a) can be found by using the identificationsa1[a^ 1 anda2

[1^ a such that

a2a15~1^ a!~a^ 1!5c~a^ a!5za^ a5za1a2 .

TABLE II. Braided Fibonacci oscillator of the second type.

aa* 2Q1a* a5qN, aqN5qqNa, qNa* 5qa* qN

sol1 sol2

A25
q2Q1

q

Q12q

Q1

A35
Q1~Q12q!

q
q2Q1

k15 2
Q1

q
2

q

Q1

b25 0
Q1

22q2

qQ1

b35 q q

z5
q

Q1

Q1

q
c25 q21 q21

c35
q22Q1

2

qQ1

0

d15
1

Q1

Q1

q2

f 15
q2

Q1
Q1

g15
q2

Q1
2

Q1
2

q2

b15c15d25 f 25g25g350
for both solutions

TABLE III. Other braided oscillator solutions

aa* 2Q1a* a5Q2q2N1Q3qN, aqN5qqNa, qNa* 5qa* qN

sol1 sol2 sol3 sol4 sol5

Q15 q2 2q2 2q2 q2 2q
Q25 1 1 1 1 0
Q35 0 0 0 0 1
k15 21 21 21 21 21
b15 0 0 22q2c1 21q2c1 0
b35 q2 2q2 2q2 q2 2q
z5 1 21 21 1 21
c15 0 0 c1 c1 0
c25 q22 2q22 2q22 q22 2q21

d15 q21 q21 q21 q21 q21

f 15 q q q q q
g15 21 21 1 1 1

A25A35b25c35d25 f 25g25g350
for all solutions
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Thus the braiding relations imply a two-body system of oscillators which can be extend
n-body oscillators using then-fold braided tensor product as done by Baskerville and Majid in
context of the braided version of theq-Heisenberg algebra.11 The Fock space representations
the n-fold braided tensor product of oscillators can also be found. This requires the braidin
the generators of the algebra with the states. All these constructions depend on the b
relations of the generators of the algebra. Since each solution for the braiding gives a di
system of oscillators, the solutions we found may provide a general framework for the inter
oscillators and hence for the statistical mechanical quantities calculated by using these osc

Because of the connection between symmetry and statistics it is interesting to investig
underlying symmetry transformations of the braided oscillators which gives rise to the bra
relations given in the tables. It may also be interesting to find the unbraiding transformation12 or
the decoupling of the braided oscillators. The generalization of supersymmetry to fraction
persymmetry requires the deformation parameter to be a root of unity13 and this case deserves
be discussed on a seperate study.

The braided Hopf algebra solutions we present for the oscillators and for the three d
sional braided space may provide a general frame on which other structures can be define

1L. C. Biedenharn, J. Phys. A22, L873 ~1989!; A. J. Macfarlane,ibid. 22, 4581~1989!.
2M. Arik and A. Yildiz, J. Phys. A30, L255 ~1997!.
3M. Arik, E. Demircan, T. Turgut, L. Ekinci, and M. Mungan, Z. Phys. C: Part. Fields55, 89 ~1992!; R. Chakrabarti and
R. Jagannathan, J. Phys. A24, L711 ~1991!; M. Daoud and M. Kibler, Phys. Lett. A206, 13 ~1995!.

4S. Majid, ‘‘Beyond supersymmetry and quantum symmetry~an introduction to braided groups and braided matrices!,’’ in
Quantum Groups, Integrable Statistical Models and Knot Theory, edited by M. L. Ge and H. J. Vega~World Scientific,
Singapore, 1993!, pp. 231–282.

5R. S. Dunne, A. J. Macfarlane, J. A. Azcarraga, and J. C. Bueno, Phys. Lett. B387, 294 ~1996!.
6S. Majid, ‘‘Algebras and Hopf algebras in braided categories,’’ inLecture Notes in Pure and Applied Mathematic,
~Marcel Dekker, New York, 1994!, pp. 55–105.

7M. Durdevich, Isr. J. Math.98, 329 ~1997!.
8S. Majid, Foundations of Quantum Group Theory~Cambridge University Press, Cambridge, 1995!.
9A. Kempf and S. Majid, J. Math. Phys.35, 6802~1994!.

10G. Carnovale, J. Math. Phys.40, 5972~1999!.
11W. K. Baskerville and S. Majid, J. Math. Phys.34, 3588~1993!.
12G. Fiore, H. Steinacker, and J. Wess, Mod. Phys. Lett. A16, 261 ~2001!.
13R. S. Dunne, J. Math. Phys.40, 1180 ~1999!; H. Ahmedov and O. F. Dayi, Mod. Phys. Lett. A15, 1801 ~2000!; H.

Ahmedov, A. Yildiz, and Y. Ucan, J. Phys. A34, 6413~2001!.

TABLE IV. Three dimensional braided space.

aa* 5qa* a, aqN5qqNa, qNa* 5qa* qN

sol1 sol2 sol3 sol4 sol5 sol6 sol7

A25 A2 A2 0 0 0 0 0
A35 2qA2 qA2 0 0 0 0 0
k15 21 1 21 21 21 21 21
b25 0 0 0 0 211g1 211qc2 0
b35 q q qg1 q q q qz
z5 1 1 g1 z g1 qc2 z
c25 q21 q21 q21 q21 q21g1 c2 q21

c35 0 0 g121 0 0 0 z21
d15 q21 q21 q21 q21 q21g1 q21 q21

d25 0 0 g121 0 0 0 0
f 15 q q qg1 q q q q
f 25 0 0 0 0 211g1 0 0
g15 1 1 g1 g1 g1 g1 g1

b15c15g25g350 for all solutions
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Centers of mass and rotational kinematics for the
relativistic N-body problem in the rest-frame instant form
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A relativistic kinematics for theN-body problem which solves all the problems
raised until now on this topic is constructed by exploting the Wigner-covariant
rest-frame instant form of dynamicsin the context ofparametrized Minkowski
theories. The Wigner hyperplanes, orthogonal to the total timelike four-momentum
of any N-body configuration, define the intrinsic rest frame and realize the separa-
tion of the center-of-mass motion. The point chosen as origin in each Wigner
hyperplane can be made to coincide with the covariant noncanonical Fokker–Pryce
center of inertia. As is well known, the latter is distinct from thecanonicalpseudo-
four-vector describing the decoupled motion of the center of mass~which possess
the same Euclidean covariance as the quantum Newton–Wigner three-position op-
erator! and from the noncanonical pseudo-four-vector known as Møller’scenter of
energy. Our approach leads to the splitting of the notion of center of mass into an
externalone, defined in terms of an external Poincare´ group realization, and an
internal one defined in terms of an internal unfaithful realization of the group inside
the Wigner hyperplane. Because of the first class constraints defining the rest frame
~vanishing of theinternal three-momentum!, the latter threeinternal concepts of
center of mass weaklycoincide. The resulting uniqueinternal center of mass is
thereby a gauge variable which, by a suitable gauge fixing, can be localized at the
origin of the Wigner hyperplane. An adapted canonical basis of relative variables is
constructed by means of the classical counterpart of the Gartenhaus–Schwartz
transformation. The invariant mass of theN-body configuration is the Hamiltonian
for the relative motions. Within this general framework, the rotational kinematics
can be developed in terms of the samedynamical body frames, orientation-shape
variables,spin frame, andcanonical spin basesalready introduced in the case of
the nonrelativisticN-body problem. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1435424#

I. INTRODUCTION

The separation of theabsolute translational motionof the center of mass from the relativ
motions for the nonrelativisticN-body problem can be easily carried out due to the Abel
character of the translation symmetry group. This character implies that the associated N
constants of motion~the conserved total three-momentum! are in involution, so that the cente

a!Electronic mail: alba@fi.infn.it
b!Electronic mail: lusanna@fi.infn.it
c!Electronic mail: pauri@pr.infn.it
16770022-2488/2002/43(4)/1677/51/$19.00 © 2002 American Institute of Physics
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of-mass degrees of freedom decouple. Moreover, the fact that the nonrelativistic kinetic ene
the relative motions is a quadratic form in the relative velocities allows for the introductio
special sets of relative coordinates, theJacobi normal relative coordinates, that diagonalize the
quadratic form and correspond to different patterns of clustering of the centers of mass
particles. Each set of Jacobi coordinates arrange theN particles into ahierarchy of clusters, in
which each cluster of two or more particles has a mass given by an eigenvalue~reduced mass! of
the quadratic form; the Jacobi normal coordinates join the centers of mass of cluster pairs

On the other hand, the non-Abelian nature of the rotational symmetry, whose asso
Noether constants of motion~the conserved total angular momentum! are not in involution, pre-
vents the possibility of a global separation ofabsolute rotationsfrom the relative motions, so tha
there is no global definition ofabsolute vibrations. This has the consequence that anisolated
deformable body can undergo rotations by changing its own shape~as shown by thefalling catand
thediver!. It was just to deal with these problems that the theory of theorientation-shape SO(3)
principal bundle1 has been developed in the context of molecular physics, emphasizing thegauge
nature of astatic ~i.e., velocity-independent! definition ofbody framefor a deformable body. Both
the laboratory and body frame angular velocities as well as the orientational variables of the
body frame thereby becomeunobservable gaugevariables. This approach is associated with a
of point canonical transformations, which allow one to define the body frame componen
relative motions in a velocity-independent way.

In a previous paper2 we showed that a more general class of nonpoint canonical transfo
tions exists forN>3, which allows one to identify a family ofcanonical spin basesconnected to
the patterns of the possibleclusterings of the spinsassociated with relative motions~namely the
components of the center-of-mass angular momenta!. The definition of thesespin basesis inde-
pendent of the use of Jacobi normal relative coordinates, just as the patterns of spin cluste
independent of the patterns of center-of-mass Jacobi clustering.

Two basic frames associated with each spin basis exist: thespin frameand thedynamical body
frame. Their construction is guaranteed by the fact that, besides the existence of a Hamil
symmetry left action of SO~3!3 on the relative phase space, it is possible to define as m
Hamiltonian non-symmetryright actions of SO~3! as the possible patterns of spin clusterin
While the generators of the left action are the components of the center-of-mass angular m
tum ~Noether constants of motion!, the generators of the right actions are not constants of mo
For N53 the unique canonicalspin basiscoincides with a special class of global cross sections
the trivial orientation-shape SO~3! principal bundle. On the other hand, forN>4 the existingspin
basesanddynamical body framesturn out to be unrelated to the local cross sections of thestatic
nontrivial orientation-shape SO~3! principal bundle, andevolvein a dynamical way dictated by th
equations of motion. Both the orientation variables and the angular velocities becomemeasurable
quantities in each canonical spin basis.

For eachN, we get a finite number of physically well-defined separations betweenrotational
andvibrational degrees of freedom. The uniquebody frameof rigid bodies is replaced here by
discrete number ofevolving dynamical body framesand ofspin canonical bases. Both of them are
grounded on patterns of spin couplings which are the direct analogues of the coupling of qu
angular momenta. Let us note that these results might be useful in nonrelativistic nucle
molecular physics.

Besides translations and rotations, every isolated nonrelativistic system admits the in
energy, the total mass, and the~time-dependent! Galilei boosts~which amounts essentially to th
inertial motion of the center of mass! as constants of the motion. All together, there are
constants of motion~the total mass being a central charge! which generate a realization of th
kinematical extended Galilei algebra.4,5

We want to see what happens when we replace Galilean space–time with Minkowski s
time. More precisely, to see what can be said in this case about the separation of the center
from the relative motions and about the rotations, already for the simple model-system ofN free
scalar positive-energy particles.

First of all we have to describe a relativistic scalar particle. Among the various possib
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~see Ref. 6 for a review of the various options! we will choose the manifestly Lorentz covaria
approach based on Dirac’s first class constraints7

pi
22emi

2'0. ~1.1!

The associated Lagrangian description is based on the four-vector positionsxi
m(t) and the action

S5* dt(2e( imiAe ẋi
2(t)), where t is a Lorentz scalarmathematicaltime parameter, i.e., an

affine parameter for the particle timelike worldlines. Then Lorentz covariance implies sin
Lagrangians and the associated Dirac’s theory of constraints for the Hamiltonian descriptio
individual time variablesxi

0(t) are thegauge variablesassociated with the mass-shell constrain
which have the two topologically disjoint solutionspi

0'6Ami
21pW i

2. As discussed in Refs. 8 an
9 this implies that:

~i! a combination of the time variables may be identified to the clock of one arbitrary obs
labeling the evolution of the isolated system;

~ii ! the N21 relative times are related to the observer’s freedom of looking at theN particles
either at the same time or with any prescribed relative delay.

These two gauge arbitrariness describe thegeneralized inertial effectsarising from the con-
ventions adopted to quantify the temporal evolution of the particles.

Introducing interactions in this picture without destroying the first class nature of
constraints10 is a well-known difficult problem. It originated, in the two-particle case,
DrozVincent–Komar–Todorov model.11 On the other hand,its extension to N particles has neve
been given in closed form.

When the particle is charged and interacts with a dynamical electromagnetic field aproblem of
covariancereappears. The standard description is based on the action

S52emE dtAe ẋ2~t!2eE dtE d4zd4~z2x~t!!ẋm~t!Am~z!2
1

4 E d4 zFmn~z!Fmn~z!.

~1.2!

By evaluating the canonical momenta of the isolated system,charged particle plus electromag
netic field, we find two primary constraints:

x~t!5~p2eA~x~t!!!22em2'0, p0~z0,zW !'0. ~1.3!

It is immediately seen that, since there is no concept ofequal time, it is impossible to evaluate
the Poisson bracket of these constraints. Also, due to the same reason, the Dirac Ham
which would beHD5Hc1l(t)x(t)1*d3 zl0(z0,zW)p0(z0,zW) with Hc the canonical Hamiltonian
and withl(t), l0(z0,zW) Dirac’s multipliers, does not make sense. This problem is present ev
the level of the Euler–Lagrange equations: how to formulate aCauchy problemfor a system of
coupled equations some of which are ordinary differential equations in the affine paramt
along the particle worldline, while the others are partial differential equations dependin
Minkowski coordinateszm? Since the problem is due to the lack of a covariant concept ofequal
time between field and particle variables, a new formulation of the problem is needed. In R
after a discussion of the many time formalism, a solution of the problem was found with
context suited to incorporate the gravitational field. The starting point is an arbitrary 311 splitting
of Minkowski space–time with spacelike hypersurfaces, which is equivalent to a congruen
timelike accelerated observers. This is essentially Dirac’s reformulation12 of classical field theory
~suitably extended to particles! on arbitrary spacelike hypersurfaces~equal timeor simultaneity
Cauchy surfaces!. Note incidentally that it is also the classical basis of the Tomonaga–Schw
formulation of quantum field theory. Given any isolated system~containing any combination o
particles, strings, and fields! one is lead to a reformulation of it as aparametrized Minkowsk
theory,9 with the extra bonus that the theory is already prepared for the coupling to gravity
ADM formulation. The price to be paid is that the functionszm(t,sW ) describing the embedding o
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the spacelike hypersurface in Minkowski space–time becomeadditional configuration variables
of the action principle. Since the action is invariant under separatet-reparametrizations and
space-diffeomorphisms, first class constraints appear to ensure the independence of the de
from the choice of the 311 splitting. The embedding configuration variableszm(t,sW ) are the
gaugevariables associated with this kind of general covariance and describe all the po
inertial effectscompatible with special relativity.

Let us come back to the discussion of the free case within the parametrized Minkowski t
approach. Since the intersection of a timelike worldline with a spacelike hypersurface corres
ing to a valuet of the time parameter is identified by three numberssW 5hW (t) andnot by four,
each particle must have a well-defined sign of the energy. Therefore, we cannot describe t
topologically disjoint branches of the mass hyperboloid simultaneously as in the standard
festly Lorentz-covariant approach. Then, there are no more mass-shell constraints. Each
with a definite sign of the energy is described by the canonical coordinateshW i(t), kW i(t) with the
derived four-position of the particles given byxi

m(t)5zm(t,hW i(t)). The derived four-momenta
pi

m(t) arekW i-dependent solutions ofpi
22emi

250 with the given sign of the energy.
Because of the independence from the 311 splitting of Minkowski space–time in param

etrized theories, the foliation can be restricted to spacelike hyperplanes. In particular, fo
configuration of the isolated system with timelike four-momentum, the leaves are best cho
the hyperplanes orthogonal to the conserved total four-momentum~Wigner hyperplanes!. Note
that this special foliation is intrinsically determined by the configuration of the isolated sy
alone. This leads to the definition of theWigner-covariant rest-frame instant form of dynamic,9

for every isolated system whose configurations have well-defined and finite Poincare´ generators
with timelike total four-momentum.13,14

Such formulation allows one to clarify the roles of the various relativistic centers of m
This is a long-standing problem which arose just after the foundation of special relativity i
first decade of the last century. In the next 90 years it became clear that the problem
relativistic center of mass is highly nontrivial: no definition can enjoy all the properties of
ordinary nonrelativistic center of mass. See Refs. 15–20 for a partial bibliography of a
existing attempts and Ref. 21 for reviews.

Let us now summarize some relevant points of the rest-frame instant form on Wigner h
planes~see Appendix A!. Only four first class constraints survive in this case so that the orig
configurational variableszm(t,sW ), hW i(t) and their conjugate momentarm(t,sW ), kW i(t) are re-
duced to the following.

~i! A decoupled pointx̃s
m(t), ps

m ~the only remnant of the spacelike hypersurface! with a
positive masses5Aeps

2 determined by the first class constraintes2M sys'0 ~M sys is the invariant
mass of the isolated system!. Its rest-frame Lorentz scalar timeTs5( x̃s•ps)/es is put equal to the
mathematical time by the gauge fixingTs2t'0 for the previous constraint. Here,x̃s

m(t) is a
noncovariant canonical variable for the four-center of mass. After the elimination ofTs and es

with the previous pair of second class constraints, we are left with a decoupled free point~point

particle clock! of mass M sys and canonical three-coordinateszWs5es( x̃W s2 (pW s /ps
0) x̃0), kW s

5pW s /es . The positionqW s5zWs /es is the classical analog of the Newton–Wigner three-posit
operator16 and shares the reduced covariance under the Euclidean subgroup of the Poincare´ group.
The unit timelike four-vectorum(ps)5ps

m/es is orthogonal to the Wigner hyperplanes and d
scribes their orientation in the chosen inertial frame. Note that the noncovariant canonicalx̃s

m(t)
should not be confused with the four-vectorxs

m(t)5zm(t,sW 50) identifying the origin of the
three-coordinatessW inside the Wigner hyperplanes. The worldlinexs

m(t) is arbitrary since it
depends onxs

m(0), while its four-velocityẋs
m(t) depends on the Dirac multipliers associated w

the four first class constraints~see the following!. This worldline may be considered as an arbitra
centroid for the isolated system.

~ii ! The particle canonical variableshW i(t), kW i(t) inside the Wigner hyperplanes. They ar
restricted by the three first class constraints~the rest-frame conditions! kW 15( i 51

N kW i'0. They are
Wigner spin-one three-vectors, like the coordinatessW .

Let us stress thatour approach leads to a doubling of the usual concepts.
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~1! The concepts defined according to theexternalviewpoint of an arbitrary inertial Lorentz
observer, describing the Wigner hyperplanes as leaves of a foliation of Minkowski space–tim
determined by the timelike configurations of the isolated system. A Lorentz transformation r
the Wigner hyperplanes and induces a Wigner rotation of the three-vectors inside each W
hyperplane. Each such hyperplane inherits an inducedinternal Euclidean structurewhile the
external realization of the Poincare´ group induces aninternal unfaithful Euclidean action~the
internal translations are generated by the first class constraintskW 1'0, so that they are eliminable
gauge variables!.

As stated previously, an arbitrary worldline, thecentroid xs
m(t), is chosen as origin of the

internal three-coordinates on the Wigner hyperplanes; its velocityẋs
m(t) is determined only after

the introduction of four gauge fixings for the four first class constraints~one of them isTs2t
'0!.

Then, threeexternalconcepts of four-center of mass can be defined~each having aninternal
three-location inside the Wigner hyperplanes! starting from the kinematics of the Wigner hype
planes and from known concepts of three-centers of mass.15

~a! The externalnoncovariant canonicalfour-center of mass x˜s
m ~with three-locations̃W !, ex-

tension of thecanonical three-position vector qW s ~also namedcenter of spin19!. qW s is the classical
analog of the Newton–Wigner position operator16 ~Foldy–Wouthuysen mean position operato22

for Dirac equation!. x̃s
m is not a four-vector~qW s does not satisfy theworld line condition15!, but it

is canonical:$x̃s
m ,x̃s

n%50.
~b! Theexternalnoncovariant and noncanonical Møllerfour-center of energy Rs

m ~with three-
locationsW R!, extension of the Møller three-center of massRW s ,17 which corresponds to the standa
nonrelativistic definition of center of mass of a system of particles with masses replac
energies.RW s does not satisfy the world line condition, so thatRs

m is not a four-vector and moreove
it satisfies$Rs

m ,Rs
n%Þ0.

~c! The external noncanonical but covariant Fokker–Prycefour-center of inertia Ys
m ~with

three-locationsW Y!, extension of the Fokker–Pryce three-center of inertia.18,19 Ys
m is a four-vector

by construction: it is the Lorentz transform of the rest-frame pseudo-worldlineRs
(rest)m of the

Møller center of energy to an arbitrary frame. It holds$Ys
m ,Ys

n%Þ0.
Note that while the Fokker–PryceYs

m is the only four-vector by construction, onlyx̃s
m(t) can

be an adapted coordinate in a Hamiltonian treatment with Dirac constraints,
~2! The concepts defined according to theinternal viewpoint associated with the Wigne

hyperplanes, corresponding to an unfaithfulinternal realization of the Poincare´ algebra: theinter-
nal three-momentumkW 1 vanishes due to the rest-frame conditions. Theinternal energy and
angular momentum are given by the invariant massM sysand by the spin@angular momentum with
respect tox̃s

m(t)# of the isolated system, respectively.
In analogy with the external viewpoint, we can define threeinternal three-centers of mass: th

internal canonical three-center of massqW 1 , the internal Møller three-center of energyRW 1 , and
the internal Fokker–Pryce three-center of inertiayW 1 . However, due to the rest-frame condition
they coincide(qW 1'RW 1'yW 1) and become essentially a uniquegaugevariable conjugate tokW 1 .
As a natural gauge fixing for the rest-frame conditionskW 1'0, we can add the vanishing of th
internal Lorentz boosts: this is equivalent to locating the internal canonical three-center of
qW 1 in sW 50, i.e., in the external centroidxs

m(t)5zm(t,0W ) origin of the internal three-coordinate
in each Wigner hyperplane. With these gauge fixings and withTs2t'0, the world-linexs

m(t) of
the centroid becomes uniquely determined except for the arbitrariness in the choice ofxs

m(0)
@ um(ps)5ps

m/es ,#

xs
m~t!5xs

m~0!1um~ps!Ts , ~1.4!

and coincides with theexternal covariant noncanonical Fokker–Pryce four-center of iner
xs

m(t)5xs
m(0)1Ys

m .
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This doubling of conceptsreplacesthe separation of the nonrelativistic three-center of m
due to the Abelian translation symmetry. The nonrelativistic conserved three-momentum

placed by theexternal pW s5eskW s , while the internal three-momentum vanishes,kW 1'0, as a defi-
nition of the rest frame.

In the final gauge we havees[M sys, Ts[t, and the canonical basiszWs , kW s , hW i , kW i restricted
by the three pairs of second class constraintskW 15( i 51

N kW i'0, qW 1'0. Therefore theN particles

are described by 6N canonical variables like in the nonrelativistic case: 6~zWs , kW s! for the external
decoupled center of mass and 6(N21) for the relative motions. We still need a canonical tran
formation hW i , kW i°qW 1@'0#, kW 1@'0#, rW a , pW a (a51,...,N21) in order to identify a set of

relative canonical variables. The final 6N-dimensional canonical basis iszWs , kW s , rW a , pW a . In order
to get this result we exploit ahighly nonlinear canonical transformation obtained from th
Gartenhaus–Schwartz singular transformation.23

In the end, we obtain the Hamiltonian for relative motions asa sum of N square roots, each
one containing a squared mass and a quadratic form in the relative momenta. Such Ham
goes over its nonrelativistic counterpart in the limitc→`. This result has the following implica
tions.

~a! If one tries to make the inverse Legendre transformation to find the associated Lagra
it turns out that, due to the presence of square roots, the Lagrangian is a hyperelliptic fu

of rẆ a already in the free case. A closed form exists only forN52, m15m25m: L

52emA42rẆ 2. This exceptional case already shows that the existence of the limiting velocc
forbids the traditional linear relation between the spin and the angular velocity. Moreover, deter-
mining the allowed range of the relative velocities is a difficult task~for N52, m15m25m, we

get urẆ u<2c!.
~b! The N quadratic forms in the relative momenta which appear in the relative Hamilto

cannotbe diagonalized simultaneously. In any case, the Hamiltonian is a sum of square ro
that concepts likereduced masses, Jacobi normal relative coordinates, andtensor of inertiacannot
be extended to special relativity. This entails that the orientation-shape SO~3! principal bundle of
Ref. 1 we would like to exploit can be defined only by using unspecified relative coordin
Therefore:

~c! The best way of studying rotational kinematics is based on thecanonical spin basesof Ref.
2 with their spin framesanddynamical body frames. The important point is thatsuch frames can
be constructed in the same way as in the nonrelativistic case starting from the canonical basrW a ,
pW a .

Finally, once this program has been fulfilled in the free case, the introduction of m
action-at-a-distance interactions among the particles can be done without extra complicati

The paper is organized as follows. In Sec. II we review the rest-frame instant form o
Wigner hyperplane ofN positive energy free scalar particles. In Sec. III we discuss theinternal
realization of the Poincare´ algebra and define theinternal center-of-massconcepts. In Sec. IV we
discuss theexternal realization of the Poincare´ algebra and define theexternal center-of-mass
concepts. In Sec. V we construct the relative canonical variables associated with the can
internal center of mass. In Sec. VI we analyze the relativistic rotational kinematics of rel
motions inside the Wigner hyperplane using the Hamiltonian methods for the construction
spin bases introduced in Ref. 2. Some final comments on open problems are given in Sec

Appendix A contains a review of parametrized Minkowski theories. The results of Sec. V
extended to spinning particles in Appendix B.

Glossary of symbols:zm(t,sW )5xs
m(t)1e r

m(u(ps)) s r—embedding of a Wigner hyperplane i
M4 (um(ps)5ps

m/Ae ps
2); xs

m(t)—arbitrary four-vector~centroid!, chosen as origin of theinternal
three-coordinatessW ; xi

m(t)5xs
m(t)1e r

m(u(ps)) h i
r(t)—world line of particle i , with internal

three-position hW i(t) and three-momentum kW i(t); x̃s
m(t)5( x̃s

0 ;qW s1 x̃s
0 pW s /ps

0)5xs
m(t)

1e r
m(u(ps)) s̃ r—external canonical noncovariant four- and three-center of mass;Rs

m(t)

5( x̃s
0 ;RW s)5xs

m(t)1e r
m(u(ps)) sR

r —externalnoncanonical noncovariant Møller four- and thre
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center of energy;Ys
m(t)5( x̃s

0 ;YW s)5xs
m(t)1e r

m(u(ps)) sY
r —external noncanonical covarian

Fokker–Pryce four- and three-center of inertia;Ts5u(ps))•xs5u(ps)• x̃s5u(ps)•Ys5u(ps)
•Rs—rest frame time;kW 15( i kW i'0—rest frame conditions;qW 1 , RW 1 , yW 1—internal canonical
three-center of mass, Møller three-center of energy, Fokker–Pryce three-center of inertqW 1

'RW 1'yW 1 due tokW 1'0; andqW 1'0 impliesxs
m(t)5xs

m(0)1Ys
m(t).

II. THE REST-FRAME INSTANT FORM OF N FREE SCALAR RELATIVISTIC PARTICLES

Let us consider a system ofN free scalar positive-energy particles in the framework
parametrized Minkowski theory~see Appendix A!.

The configuration variables are a three-vectorhW i(t) for each particle
@xi

m(t)5zm(t,hW i(t))#.9,24 The sign of the energy must be chosen for each particle, because
is no mass-shell constraint~like epi

22mi
2'0! at our disposal~there are only three degrees

freedom for particle, determined by the intersection of a timelike trajectory and of the spa
hypersurfaceSt!. For each choice of the sign of the energy of theN particles, we describe only
one of the 2N branches of the mass spectrum of the manifestly covariant approach based
coordinatesxi

m(t), pi
m(t), i 51,...,N, and on the constraintsepi

22mi
2'0 ~in the free case!. In this

way, we get a description of relativistic particles with a given sign of the energy with consi
couplings to fields.25–27

The system ofN free scalar and positive energy particles is described by the action9,24,26

S5E dt d3s L~t,sW !5E dt L~t!,

L~t,sW !52(
i 51

N

d3~sW 2hW i~t!!miAgtt~t,sW !12gt ř~t,sW !ḣ i
ř~t!1gř š~t,sW !ḣ i

ř~t!ḣ i
š~t!,

~2.1!

L~t!52(
i 51

N

miAgtt~t,hW i~t!!12gt ř~t,hW i~t!!ḣ i
ř~t!1gř š~t,hW i~t!!ḣ i

ř~t!ḣ i
š~t!,

where the configuration variables arezm(t,sW ) andhW i(t), i 51,...,N. The action is invariant unde
separatet- andsW -reparametrizations.

The canonical momenta are

rm~t,sW !52
]L~t,sW !

]zt
m~t,sW !

5(
i 51

N

d3~sW 2hW i~t!!mi

3
ztm~t,sW !1zřm~t,sW !ḣ i

ř~t!

Agtt~t,sW !12gt ř~t,sW !ḣ i
ř~t!1gř š~t,sW !ḣ i

ř~t!ḣ i
š~t!

5@~rnl n!l m1~rnzř
n!g ř šzšm#~t,sW !,

k i ř ~t!52
]L~t!

]ḣ i
ř~t!

5mi

gt ř~t,hW i~t!!1gř š~t,hW i~t!!ḣ i
š~t!

Agtt~t,hW i~t!!12gt ř~t,hW i~t!!ḣ i
ř~t!1gř š~t,hW i~t!!ḣ i

ř~t!ḣ i
š~t!

,

$zm~t,sW !,rn~t,sW 8%52hn
md3~sW 2sW 8!, ~2.2!

$h i
ř~t!,k j š~t!%52d i j d š

ř .
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The canonical HamiltonianHc is zero, the Dirac Hamiltonian is given by Eq.~A9! @there are
no other system-dependent primary constraints# and Eq.~A8! becomes

Hm~t,sW !5rm~t,sW !2 l m~t,sW !(
i 51

N

d3~sW 2hW i~t!!Ami
22g ř š~t,sW !k i ř ~t!k i š~t!

2zřm~t,sW !g ř š~t,sW !(
i 51

N

d3~sW 2hW i~t!!k i š'0. ~2.3!

The conserved Poincare´ generators are

ps
m5E d3 srm~t,sW !,

~2.4!

Js
mn5E d3 s@zm~t,sW !rn~t,sW !2zn~t,sW !rm~t,sW !#.

After the restriction to spacelike hyperplanes, the Dirac Hamiltonian is reduced to Eq.~A13!
with the surviving ten constraints given by

H̃m~t!5E d3 sH m~t,sW !5ps
m2 l m(

i 51

N

Ami
21kW i

2~t!1bř
m~t!(

i 51

N

k i ř ~t!'0,

~2.5!

H̃mn~t!5bř
m~t!E d3 ss ř H n~t,sW !2bř

n~t!E d3ss ř H m~t,sW !5Ss
mn~t!2@bř

m~t!bt
n

2bř
n~t!bt

m#(
i 51

N

h i
ř~t!Ami

21kW i
2~t!2@bř

m~t!bš
n~t!2bř

n~t!bš
m~t!#(

i 51

N

h i
ř~t!k i

š~t!'0.

HereSs
mn is the spin part of the Lorentz generators

Js
mn5xs

mps
n2xs

nps
m1Ss

mn ,
~2.6!

Ss
mn5bř

m~t!E d3 s s řrn~t,sW !2bř
n~t!E d3 s s řrm~t,sW !.

On the Wigner hyperplane, we obtain the following constraints and Dirac Hamiltonian:9,26

H̃m~t!5ps
m2um~ps!(

i 51

N

Ami
21kW i

21e r
m~u~ps!!(

i 51

N

k ir

5um~ps!F es2(
i 51

N

Ami
21kW i

2G1e r
m~u~ps!!(

i 51

N

k ir '0,

or

es2M sys'0, M sys5(
i 51

N

Ami
21kW i

2,

pW sys5kW 15(
i 51

N

kW i'0,
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HD5lm~t!H̃m~t!5l~t!@es2M sys#2lW ~t!(
i 51

N

kW i ,

l~t!'2 ẋsm~t!um~ps!,

l r~t!'2 ẋsm~t!e r
m~u~ps!!, x8 s

m~t!52l~t!um~ps!,

ẋs
m~t!'2l̃m~t!52l~t!um~ps!1e r

m~u~ps!!l r~t!. ~2.7!

While the Dirac multiplierl(t) is determined by the gauge fixingTs2t'0, the three Dirac’s
multiplierslW (t) describe theclassical zitterbewegungof the centroidxs

m(t) which is the origin of
the three-coordinates on the Wigner hyperplane: each gauge-fixingxW (t)'0 to the three first class
constraintskW 1'0 ~defining theinternal rest-frame! gives a different determination of the mult
plierslW (t) and therefore identifies a different world-linexs

(xW )m(t) for the covariant non-canonica
centroid.

The embedding describing Wigner hyperplanes iszm(t,sW )5xs
m(t)1e r

m(u(ps))s
r , with the

e r
m(u(ps)) defined in Eqs.~A24!.

The various spin tensors and vectors are9

Js
mn5xs

mps
n2xs

nps
m1Ss

mn5 x̃s
mps

n2 x̃s
nps

m1S̃s
mn ,

Ss
mn5@um~ps!e

n~u~ps!!2un~ps!e
m~u~ps!!#S̄s

tr1em~u~ps!!en~u~ps!!S̄s
rs

[@e r
m~u~ps!!un~ps!2en~u~ps!!um~ps!#(

i 51

N

h i
rAmi

2c21kW i
2

1@e r
m~u~ps!!es

n~u~ps!!2e r
n~u~ps!!e r

m~u~ps!!#(
i 51

N

h i
rk i

s ,

S̄s
AB5em

A~u~ps!!en
B~u~ps!!Ss

mn , ~2.8!

S̄s
rs[(

i 51

N

~h i
rk i

s2h i
sk i

r !, S̄s
tr[2(

i 51

N

h i
rAmi

2c21kW i
2,

S̃s
mn5Ss

mn1
1

Aeps
2~ps

01Aeps
2!

@psb~Ss
bmps

n2Ss
bnps

m!1Aps
2~Ss

0mps
n2Ss

0nps
m!#,

S̃s
i j 5d ir d jsS̄s

rs , S̃s
0i52

d ir S̄s
rs ps

s

ps
01Aeps

2
,

S̄W [S̄W 5(
i 11

N

hW i3kW i'(
i 51

N

hW i3kW i2hW 13kW 15 (
a51

N21

rW a3pW a .

Note that whileLs
mn5xs

mps
n2xs

nps
m andSs

mn are not constants of the motion due to theclas-

sical zitterbewegung, both L̃s
mn5 x̃s

mps
n2 x̃s

nps
m and S̃s

mn are conserved.
The only remaining canonical variables describing the Wigner hyperplane in the final

brackets are the noncovariant canonical coordinatesx̃s
m(t) and ps

m . The point with coordinates
x̃s

m(t) is the decoupled canonicalexternal four-center of mass, playing the role of a kinematica
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external four-center of mass and of a decoupled observer with his parametrized clock~point
particle clock!. Its velocityx8 s

m(t) is parallel tops
m , so that it has noclassical zitterbewegung. The

connection between the centroidxs
m(t) and x̃s

m(t) is given in Eq.~4.1!.
After the separation of the relativistic canonical noncovariantexternal four-center of mass

x̃s
m(t), on the Wigner hyperplane theN particles are described by the 6N Wigner spin-one-three-

vectorshW i(t), kW i(t) restricted by the rest-frame conditionkW 15( i 51
N kW i'0.

The canonical variablesx̃s
m , ps

m for the externalfour-center of mass may be replaced by t
canonical pairs28

Ts5
ps• x̃s

es
5

ps•xs

es
, es56Aeps

2,

~2.9!

zWs5esS x̃W s2
pW s

ps
0 x̃s

0D , kW s5
pW s

es
,

with the inverse transformation

x̃s
05A11kW s

2S Ts1
kW s•zWs

es
D , ps

05esA11kW s
2,

~2.10!

x̃W s5
zWs

es
1S Ts1

kW s•zWs

es
D kW s , pW s5eskW s .

This nonpoint canonical transformation in the rest-frame instant form can be summariz
@es2M sys'0, kW 15( i 51

N kW i'0]

~2.11!

The invariant massM sys of the system, which is also itsinternal energy, replaces the nonre
ativistic HamiltonianH rel for the relative degrees of freedom, after the addition of the gauge-fi
Ts2t'0.29 This recalls the frozen Hamilton–Jacobi theory, in which the time evolution ca
reintroduced by using the energy generator of the Poincare´ group as Hamiltonian~see Refs. 30 for
a different derivation of this result!.

After the gauge fixingsTs2t'0, the final Hamiltonian and the embedding of the Wign
hyperplane into Minkowski space–time become

HD5M sys2lW ~t!•kW 1 ,

zm~t,sW !5xs
m~t!1e r

m~u~ps!!s r5xs
m~0!1um~ps!t1e r

m~u~ps!!s r ,

with

ẋs
m~t! 5

+ dxs
m~t!

dt
1$xs

m~t!,HD%5um~ps!1e r
m~u~ps!!l r~t!, ~2.12!

wherexs
m(0) is an arbitrary point ande r

m(u(ps))5Lm
r(ps ,p̊s). This equation visualizes the role o

the Dirac multipliers as sources of theclassical zitterbewegungand consequently thegauge nature
of the latter. Let us remark that the constantxs

m(0) @and x̃s
m(0)# is arbitrary, reflecting the arbi-

trariness in the absolute location of the origin of theinternal coordinates on each hyperplane
Minkowski space–time.

The particles’ world lines in Minkowski space–time and the associated momenta are th
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i
m

~t!5zm~t,hW i ~t!!5x
s
m~t!1e

r
m~u~ps!!h i

r ~t!,

~2.13!
pi

m~t!5Ami
21kW i

2~t!um~ps!1e r
m~u~ps!!k ir ~t!⇒epi

25mi
2 .

Inside the Wigner hyperplane three degrees of freedom of the isolated system, describ
internal center-of-mass three-variablesW com conjugate tokW 1 ~when thesW com are canonical vari-
ables they are denotedqW 1!, aregaugevariables. The natural gauge fixing in order to eliminate
three first class constraintskW 1'0 is xW 5qW 1'0, which impliesl r(t)50: in this way theinternal
three-center of mass gets located in the centroidxs

m(t)5zm(t,sW 50) of the Wigner hyperplane
The determination ofqW 1 for theN particle system will be carried through by the group theoreti
methods of Ref. 31 in the next section.32–34

It turns out that the Wigner hyperplane is the natural setting for the study of the D
multipoles of extended relativistic systems35 ~Dixon’s multipoles for theN-body problem are
studied in Ref. 36! and the definition of their canonical relative variables with respect to the ce
of mass. Note, incidentally, that the Euclidean metric structure of the Wigner hyperplane of
natural solution to the problem of boost for lattice gauge theories and explicitly realize
Machian view of dynamics according to which only relative motions are relevant.

The external rest-frame instant form realization of the Poincare´ generators37 with nonfixed

invariantseps
25es

2'M sys
2 andW252eps

2S̄W s
2'2eM sys

2 S̄W 2, is obtained from Eq.~2.8!:

ps
m , Js

mn5 x̃s
mps

n2 x̃s
nps

m1S̃s
mn ,

ps
05Aes

21pW s
25esA11kW s

2'AM sys
2 1pW s

25M sysA11kW s
2,

pW s5eskW s'M syskW s , ~2.14!

Js
i j 5 x̃s

i ps
j 2 x̃s

j ps
i 1d ir d js(

i 51

N

~h i
rk i

s2h i
sk i

r !5zs
i ks

j 2zs
j ks

i 1d ir d jse rsuS̄s
u ,

Ks
i 5Js

0i5 x̃s
0ps

i 2 x̃s
i Aes

21pW s
22

1

es1Aes
21pW s

2
d ir ps

s(
i 51

N

~h i
rk i

s2h i
sk i

r !52A11kW s
2zs

i 2
d ir ks

se rsuS̄s
u

11A11kW s
2

' x̃s
0ps

i 2 x̃s
i AM sys

2 1pW s
22

d ir ps
se rsuS̄s

u

M sys1AM sys
2 1pW s

2
.

On the other hand, theinternal realization of the Poincare´ algebra is built inside the Wigne
hyperplane by using the expression ofS̄s

AB given by Eq.~2.8!

M sys5HM5(
i 51

N

Ami
21kW i

2,

kW 15(
i 51

N

kW i~'0!,

JW5(
i 51

N

hW i3kW i , Jr5S̄r5
1

2
e ruvS̄uv[S̄s

r ,

KW 52(
i 51

N

Ami
21kW i

2 hW i , Kr5J0r5S̄s
tr ,
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P5M sys
2 2kW 1

2 'M sys
2 .0, W252e~M sys

2 2kW 1
2 !S̄W s

2'2eM sys
2 S̄W s

2 . ~2.15!

The meaning of the constraintses2M sys'0, kW 1'0 is the following.

~i! The constraintes2M sys'0 is the bridge connecting theexternaland internal realizations.
The external spin coincides with the internal angular momentum due to Eq.~A16!.

~ii ! The constraintskW 1'0, together withKW '0, leads to an unfaithfulinternal realization in
which the only non-null generators are the conserved energy and the spin of the is
system. As we shall see in the next section,KW '0 is implied by the natural gauge fixin
qW 1'0: this makes the internal realization even more unfaithful.

For isolated systems the constraint manifold38 is a stratified manifold with each stratum
corresponding to a type of Poincare´ orbit. The main stratum~dense in the constraint manifold!
corresponds to all configurations of the isolated system belonging to timelike Poincare´ orbits with
eps

2'eM sys
2 .0. As said in Ref. 39, this implies that the center-of-mass coordinates have

adapted to the co-adjoint orbits of the Poincare´ group. But, since the second Poincare´ invariant
~the Pauli–Lubanski invariantWW s

252ps
2SW s

2) does not appear among the canonical variables,
canonical basis is not adapted, as yet, to a typical form of canonical action of the Poincare´ group31

on the phase space of the isolated system. As shown in Ref. 39, it possible to construct a ca
basis including both Poincare´ invariants in such a way that all of the coordinates are adapted to
co-adjoint action of the group and the new relative variables are thereby adapted to the~3!
group.

Let us now make here a first simplified attempt to construct the relative variables: the
plete solution is in Sec. V. In Ref. 9 a naiveinternal center-of-mass variablehW 151/N ( i 51

N hW i has
been introduced together with the definition of relative variablesrW a , pW a based on the following
point canonical transformation:

hW i5hW 11
1

AN
(
a51

N21

gairW a , kW i5
1

N
kW 11AN (

a51

N21

gaipW a ,

hW 15
1

N (
i 51

N

hW i , kW 15(
i 51

N

kW i'0,

rW a5AN(
i 51

N

gaihW i , pW a5
1

AN
(
i 51

N

gaikW i ,

$h i
r ,k j

s%5d i j d
rs, $h1

r ,k1
s %5d rs, $ra

r ,pb
s%5dabd

rs,

(
i 51

N

gai50, (
a51

N21

gaiga j5d i j 2
1

N
, (

i 51

N

gaigbi5dab . ~2.16!

This is a family of canonical transformations depending on1
2 (N21)(N22) free parameters

~the independent parameters in thegai of Ref. 6!.
In the gauge

Ts2t'0, ~2.17!
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@which entails 0'Ṫs215 ẋs•u(ps)2152l(t)21; after going to Dirac brackets we getTs

[t andes[6M sys#, the Hamiltonian and the rest-frame constraints become

HD5M sys2lW ~t!•kW 1 , kW 1'0, ~2.18!

with the invariant mass given by

M sys5HM5(
i 51

N

Ami
21kW i

25(
i 51

N Ami
21F 1

N
kW 11AN (

a51

N21

gaipW aG 2

'(
i 51

N Ami
21N (

a,b

1..N21

gaigbipW a•pW b. ~2.19!

The centroid, origin of the three-coordinates, results

xs
m~Ts!5xs

m~0!1um~ps!Ts1e r
m~u~ps!!E

0

Ts
dt l r~t!. ~2.20!

It can be checked that, if we add the gauge fixingshW 1'0 and use Hamilton’s equations, the
time constancy does not implylW (t)50. ThereforesW sys5hW 1 is not the searched natural gaug
fixing qW 1'0 for the separation of the center-of-mass motion.

In Sec. III we construct the natural canonicalinternal three-center-of-mass variableqW 1 ~re-
placing the naivehW 1!: its vanishing implieslW (t)50. It will be seen that, unlike in the nonrela
tivistic theory, qW 1 is not a linear combination of thehW i ’s with coefficients depending on th
masses, but is connected to the Møllerinternal three-center of energy, with the masses replaced
the particle energies.

III. THE INTERNAL RELATIVISTIC CENTER-OF-MASS VARIABLES ON THE WIGNER
HYPERPLANE

As we have seen, in the relativistic case ofN free scalar particles with positive energy, th
Hamiltonian kinetic energy is not a quadratic form in the momenta and the Lagrangian fo
unknown. The first problem is to separate the global translations: this is the old problem
definition of a relativistic center of mass. As already said, the rest-frame instant form of dyn
allows one to clarify the problem by splitting the concept of relativistic center of mass int
externalone ~a pseudo-four-vector! and aninternal one ~a Wigner spin-one-three-vector!.

The determination of theinternal three-center of mass can be achieved using the gr
theoretical methods of Ref. 31~see also Ref. 15!. Given a canonical realization of the ten Poinca´
generators, only three three-position variables are definable in terms of them alone, name

~i! a canonicalinternal center of mass~or center of spin! qW 1 ; it is the classical analog19,20 of
the Newton–Wigner position operator;16

~ii ! a noncanonicalinternal Møller center of energy RW
1 ;17

~iii ! a noncanonicalinternal Fokker–Prycecenter of inertia yW 1 .18,19

We shall see that on Wigner hyperplanes, due tokW 1'0, all of them coincide:qW 1'RW 1

'yW 1 .
Following Ref. 31 we shall determineRW 1 , qW 1 , yW 1 starting from theinternal realization

~2.15! of the Poincare´ algebra. We get the following Wigner spin-one three-vectors:
~i! The internal Møller three-center of energy and the associated spin vector
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RW 152
1

M sys

KW 5
( i 51

N Ami
21kW i

2 hW i

(k51
N Amk

21kW k
2

,

SW R5JW2RW 13kW 1 ,
~3.1!

$R1
r ,k1

s %5d rs, $R1
r ,M sys%5

k1
r

M sys
, $R1

r ,R1
s %52

1

M sys
2 e rsuSR

u ,

$SR
r ,SR

s %5e rsuS SR
u2

1

M sys
2 SW R•kW 1 k1

u D , $SR
r ,M sys%50.

Note that the gauge fixingRW 1'0 gives

RW 1'0⇒RẆ 15
+

$RW 1 ,HD%5
kW 1

(k51
N Amk

21kW k
2

2lW ~t!
( i 51

N Ami
21kW i

2

(k51
N Amk

21kW k
2
'2lW ~t!'0. ~3.2!

Furthermore, theinternal boost generator of Eq.~2.15! may be rewritten asKW 52M sysRW 1 , so
that RW 1'0 impliesKW '0.

~ii ! The canonicalinternal three-center of mass41 and the associated spin vector

qW 15RW 12
JW3VW

AM sys
2 2kW 1

2 ~M sys1AM sys
2 2kW 1

2 !
52

KW

AM sys
2 2kW 1

2
1

JW3kW 1

AM sys
2 2kW 1

2 ~M sys1AM sys
2 2kW 1

2 !

1
KW •kW 1 kW 1

M sysAM sys
2 2kW 1

2 ~M sys1AM sys
2 2kW 1

2 !
'RW 1 for kW 1'0, $qW 1 ,M sys%5

kW 1

M sys

,

SW q5JW2qW 13kW 15
M sysJW

AM sys
2 2kW 1

2
1

KW 3kW 1

AM sys
2 2kW 1

2
2

JW•kW 1 kW 1

AM sys
2 2kW 1

2 ~M sys1AM sys
2 2kW 1

2 !
'S̄W 5JW ,

$SW q ,kW 1%5$SW q ,qW 1%50, $Sq
r ,Sq

s%5e rsuSq
u . ~3.3!

Let us recall that thescheme Afor the internal realization of the Poincare´ group31 contains the
canonical pairs kW 1 , qW 1 , Sq

3 , arctg (Sq
2/Sq

1), and the two Casimirs invariantsuSW qu
5A2W2/M sys

2 , M sys5( i 51
N Ami

21kW i
2 @see Eq.~3.4!#.

~iii ! The internal noncanonical Fokker–Pryce center of inertiayW 1 ,

yW 15qW 11
SW q3kW 1

AM sys
2 2kW 1

2 ~M sys1AM sys
2 2kW 1

2 !
5RW 11

SW q3kW 1

M sysAM sys
2 2kW 1

2
,

qW 15RW 11
SW q3kW 1

M sys~M sys1AM sys
2 2kW 1

2 !
5

M sysRW 11AM sys
2 2kW 1

2 yW 1

M sys1AM sys
2 2kW 1

2
,

~3.4!

$y1
r ,y1

s %5
1

M sysAM sys
2 2kW 1

2
e rsuFSq

u1
SW q•kW 1k1

u

AM sys
2 2kW 1

2 ~M sys1AM sys
2 2kW 1

2 !
G ,

kW 1'0⇒qW 1'RW 1'yW 1 .
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We see that the gauge fixingsqW 1'RW 1'yW 1'0 imply lW (t)'0 and force the threeinternal
collective variables to coincide with the centroid, origin of the three-coordinates, which
becomes

xs
(qW 1)m

~Ts!5xs
m~0!1um~ps!Ts . ~3.5!

It can also be shown that thecentroid xs
m(t) coincides with theDixon center of massof an

extended object42 as well as with thePirani43 and theTulczyjew44 centroids~the Dixon multipoles
for the N-body problem on the Wigner hyperplane are studied in Ref. 36!.

We are left with the construction of a canonical transformation bringing from the basishW i , kW i ,
to a new canonical basisqW 1 , kW 1('0), rW q,a , pW q,a , in which SW q5(a51

N21 rW q,a3pW q,a :

~3.6!

Let us stress that this cannot be a point transformation, because of the momentum depe
of the relativistic internal center of massqW 1 , realizing the effective separation of the center
mass from the relative motions in the kinetic energy.

The canonical transformation~3.6! will be constructed in Sec. V by using the method
Gartenhaus–Schwartz23 as delineated in Ref. 45~see Refs. 31, 45, and 23 for theN52 case!.

In Ref. 46 there is the nonrelativistic limit of the rest-frame Lagrangian. This allows to de
the rest-frame nonrelativistic Hamiltonian. These quantities have been used in Ref. 2@see Eq.~2.1!
of Ref. 2# to describe the relative motions in the nonrelativistic rest frame. Note that in
nonrelativistic limitqW 1 tends to the nonrelativistic center of mass

qW nr5
( i 51

N mihW i

( i 51
N mi

.

In conclusion, the nonrelativistic Abelian translation symmetry generating the nonrelati
Noether constantsPW 5const is split at the relativistic level into the two following symmetries:~i!
the external Abelian translation symmetry whose Noether constants of motion arepW s5eskW s

'M syskW s5const~its conjugate variable being theexternalthree-center of masszWs!; ~ii ! the inter-
nal Abelian gauge symmetry generating the three first class constraintskW 1'0 ~rest-frame condi-
tions! inside the Wigner hyperplane~the conjugategaugevariable being theinternal three-center
of massqW 1'RW 1'yW 1!. Of course, its nonrelativistic counterpart is the nonrelativistic rest-fra
conditionPW '0.

IV. THE EXTERNAL CENTER-OF-MASS VARIABLES ON THE WIGNER HYPERPLANE

We turn now to the localization of theexternalcenter-of-mass variables on the Wigner h
perplane. Recall first of all9 that theexternalcanonical noncovariant point of coordinates

x̃s
m~t!5~ x̃s

0~t!; x̃W s~t!!5zm~t,sW̃ !5xs
m~t!2

1

es~ps
01es!

FpsnSs
nm1esS Ss

0m2Ss
0n

psnps
m

es
2 D G ,

~4.1!

lies on the Wigner hyperplanezm(t,sW )5xs
m(t)1e r

m(u(ps))s
r at some three-positions̃ r , just like

the centroid, origin of the three-coordinates,xs
m(t)5zm(t,0W ), becauseps• x̃s5ps•xs , see Ref. 9.

As in Eqs.~3.1!, ~3.3!, and~3.4! one can build31 threeexternalthree-variables, the canonica
qW s , the MøllerRW s , and the Fokker–PryceYW s by using the rest-frame realization of the Poinca´
algebra given in Eq.~2.14!,
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RW s52
1

ps
0 KW s5S x̃W s2

pW s

ps
0 x̃s

0D 2
S̄W s3pW s

ps
0~ps

01es!
,

qW s5 x̃W s2
pW s

ps
0 x̃s

05
zWs

es
5RW s1

S̄W s3pW s

ps
0~ps

01es!
5

ps
0RW s1esYW s

ps
01es

,

YW s5qW s1
S̄W s3pW s

es~ps
01es!

5RW s1
S̄W s3pW s

ps
0es

,

$Rs
r ,Rs

s%52
1

~ps
0!2 e rsuVs

u , VW s5JW s2RW s3pW s , ~4.2!

$qs
r ,qs

s%50, $Ys
r ,Ys

s%5
1

esps
0 e rsuF S̄s

u1
S̄W s•pW s ps

u

es~ps
01es!

G ,

pW s•qW s5pW s•RW s5pW s•YW s5kW s•zWs ,

pW s50⇒qW s5YW s5RW s .

All of these have the same velocity and coincide in the Lorentz rest frame wherep̊s
m5es(1;0W ).

We can now construct the followingexternalfour-vectors on the Wigner hyperplane:

~i! the externalcanonical noncovariant four-center of massx̃s
m ;

~ii ! the externalnoncanonical and noncovariant Møller four-center of energyRs
m ;

~iii ! the external covariant noncanonical Fokker–Pryce four-center of inertiaYs
m . It will be

shown that the gauge fixingsqW 1'0 force them to coincide with the centroidxs
m .

In Ref. 31, within a one-time framework without constraints and at a fixed time, it is sh
that the three-vectorYW s ~but not qW s and RW s! satisfies the world-line condition$Ks

r ,Ys
s%

5 (1/c2) Ys
r $Ys

s ,ps
0% and is therefore the space part of a four-vectorYs

m . On the other hand, within
the enlarged canonical approach including time variables, it is not clear which are the
components to be added toqW s , RW s , YW s , in order to rebuild four-dimensional quantitiesx̃s

m , Rs
m ,

Ys
m , in an arbitrary Lorentz frameG having the origin of the Wigner hyperplane coincident w

the centroid four-vectorxs
m5(xs

0 ;xW s). From Eq.~2.10!, we obtain the following expressions of th
noncovariant~frame-dependent! canonical four-center of mass and its conjugate momentum:

x̃s
m~t!5~ x̃s

0~t!; x̃W s~t!!5xs
m2

1

es~ps
01es!

FpsnSs
nm1esS Ss

0m2Ss
0n

psnps
m

es
2 D G , ps

m ,

x̃s
05A11kW s

2S Ts1
kW s•zWs

es
D 5A11kW s

2~Ts1kW s•qW s!Þxs
0 , ps

05esA11kW s
2, ~4.3!

x̃W s5
zWs

es
1S Ts1

kW s•zWs

es
D kW s5qW s1~Ts1kW s•qW s!kW s , pW s5eskW s .

Each Wigner hyperplane intersects the world line of the arbitrary centroid four-vectorxs
m(t)

5zm(t,0W ) in sW 50, the pseudo-world-line ofx̃s
m(t)5zm(t,sW̃ ) in somes̃W and the world line of the

Fokker–Pryce four-vectorYs
m(t)5zm(t,sW Y) in somesW Y ; one also hasRs

m5zm(t,sW R). Since we
haveTs5u(ps)•xs5u(ps)• x̃s[t on the Wigner hyperplane labeled byt, we will also require
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Ys
m , Rs

m to have time components such thatu(ps)•Ys5u(ps)•Rs5Ts[t. It is reasonable there
fore to assume that, consistently with Eqs.~4.2! and~4.3!, x̃s

m , Ys
m , andRs

m satisfy the following
equations:

x̃s
m5~ x̃s

0 ; x̃W s!5S x̃s
0 ;qW s1

pW s

ps
0 x̃s

0D 5S x̃s
0 ;

zWs

es
1S Ts1

kW s•zWs

es
D kW sD 5xs

m1eu
m~u~ps!!s̃u,

Ys
m5~ x̃s

0 ;YW s!5S x̃s
0 ;

1

es
F zWs1

S̄W s3pW s

es@11u0~ps!#
G1S Ts1

kW s•zWs

es
D kW sD

5 x̃s
m1h r

m ~S̄W s3pW s!
r

es@11u0~ps!#
5xs

m1eu
m~u~ps!!sY

u ,

Rs
m5~ x̃s

0 ;RW s!5S x̃s
0 ;

1

es
F zWs2

S̄W s3pW s

esu
0~ps!@11u0~ps!#

G1S Ts1
kW s•zWs

es
D kW sD

5 x̃s
m2h r

m ~S̄W s3pW s!
r

esu
0~ps!@11u0~ps!#

5xs
m1eu

m~u~ps!!sR
u ,

Ts5u~ps!•xs5u~ps!• x̃s5u~ps!•Ys5u~ps!•Rs ,

s̃ r5e rm~u~ps!!@xs
m2 x̃s

m#5
e rm~u~ps!!@un~ps!Ss

nm1Ss
0m#

@11u0~ps!#
52S̄s

tr1
S̄s

rsps
s

es@11u0~ps!#
~4.4!

5esR1
r 1

S̄s
rsus~ps!

11u0~ps!
'

qW 1'0

esq1
r 1

S̄s
rsus~ps!

11u0~ps!
'

S̄s
rsus~ps!

11u0~ps!
,

sY
r 5e rm~u~ps!!@xs

m2Ys
m#5s̃ r2e ru~u~ps!!

~S̄W s3pW s!
u

es@11u0~ps!#
5s̃ r1

S̄s
rsus~ps!

11u0~ps!

5esR1
r 'esq1

r '

qW 1'0

0,

⇒xs
(qW 1)m

~t!5xs
m~0!1Ys

m , when qW 1'0,

sR
r 5e rm~u~ps!!@xs

m2Rs
m#5s̃ r1e ru~u~ps!!

~S̄W s3pW s!
u

esu
0~ps!@11u0~ps!#

5s̃ r2
S̄s

rsus~ps!

u0~ps!@11u0~ps!#

5esR1
r 1

@12u0~ps!#S̄s
rsus~ps!

u0~ps!@11u0~ps!#
'

qW 1'0 @12u0~ps!#S̄s
rsus~ps!

u0~ps!@11u0~ps!#
.

It is seen thatthe external Fokker–Pryce noncanonical center of inertia coincides with the ce

troid xs
(qW 1)m(t) carrying the internal three-center of mass. Let us recall that the centroidxs

m(t)
corresponds to theuniquespecial-relativistic center-of-mass-like world line of Ref. 47.

In each Lorentz frame one has different pseudo-world-lines describingRs
m and x̃s

m : the ca-
nonical four-center of massx̃s

m lies in betweenYs
m andRs

m in every~nonrest!-frame. In an arbitrary
Lorentz frame, the pseudo-world-lines associated withx̃s

m andRs
m fill a world tube17 around the

world line Ys
m of the covariant noncanonical Fokker–Pryce four-center of inertiaYs

m . The invari-

ant radiusof the tube isr5A2eW2/p25uSW u/Aep2 where~W252ep2SW 2 is the Pauli–Lubanski
invariant whenep2.0!. This classical intrinsic radius delimits the noncovariance effects~the
pseudo-world lines! of the canonical four-center of massx̃s

m . See Ref. 38 for a discussion of th
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properties of theMøller radius. At the quantum levelr becomes the Compton wavelength of t
isolated system times its spin eigenvalueAs(s11), r° r̂5As(s11)\/M5As(s11)lM with
M5Aep2 the invariant mass andlM5\/M its Compton wavelength. The criticism to classic
relativistic physics argued from quantum pair production concerns testing of distances whe
to the Lorentz signature of space–time, intrinsic classical covariance problems emerge:
nonical four-center of massx̃s

m adapted to the first class constraints of the system canno
localized in a frame-independent way.

Finally, recall9 thatr is likewise a remnant of the energy conditions of general relativity in
Minkowski space–time: since the Møller noncanonical, noncovariant four-center of energyRm has
noncovariance properties localized inside the same world tube with radiusr,17 it turns out that for
an extended relativistic system with a material radius smaller than its intrinsic radiusr one has:~i!
its peripheral rotation velocity can exceed the velocity of light;~ii ! its classical energy densit
cannot be positive definite everywhere in every frame.

V. GETTING THE INTERNAL RELATIVE VARIABLES
FROM A GARTENHAUS–SCHWARTZ TRANSFORMATION

Given hW i , kW i , we must find the canonical basisqW 1 , kW 1 , rW qa , pW qa of Eq. ~3.6!.
We shall exploit the classical analog of the Gartenhaus–Schwartz singular transforma23

following the scheme used in Ref. 45 in order to find the center-of-mass subspace of phase
defined bykW 150 ~see Ref. 48!

U~a!5ea$.,qW 1•kW 1%,

qW 1•kW 152
ukW 1u

(k51
N Amk

21kW k
2

nW 1•KW , nW 15
kW 1

ukW 1u
, KW 52(

i 51

N

Ami
21kW i

2hW i ,

kW 1~a!5U~a!kW 15e2akW 1→a→`0, ~5.1!

qW 1~a!5U~a!qW 15eaqW 1→a→``, U~2a!qW 15e2aqW 1→a→`0,

⇒kW 1~a!•qW 1~a!5kW 1•qW 1 , nW 1~a!5nW 1 .

Therefore, lima→` U(a) can only be applied to the set of functions on phase space w
have vanishing Poisson bracket withkW 1 , namely to

kW i For pW a5
1

AN
(
i 51

N

gaikW i G and to rW a5AN (
i 51

N

gaihW i

of Eq. ~2.16!. Such a canonical transformation does not identify a good internal center of ma
nevertheless provides a canonical set of relative variables suitable for the application
Gartenhaus–Schwartz transformation.

Since, for finitea, U(a) is a canonical transformation, the Poisson brackets are prese
even in the limita→`:@$ f (a),g(a)%5U(a)$ f ,g%#.

Let f 5 f (hW i ,kW i) have zero Poisson bracket withkW 1 , $ f ,kW 1%50, and let bef (a)5U(a) f .
Then, it follows

$kW 1 , f ~a!%5ea$kW 1~a!, f ~a!%5ea~U~a!$kW 1 , f %!50. ~5.2!

Since the Jacobi identity $kW 1 ,$qW 1 , f %%1$ f ,$kW 1 ,qW 1%%1$qW 1 ,$ f ,kW 1%%[0 implies
$kW 1 ,$qW 1 , f %%[0 @namely also$qW 1 , f % has zero Poisson bracket withkW 1 if $ f ,kW 1%50, so that
U(a)$qW 1 , f % has a well-defined limit fora→`# one also has

$qW 1 , f ~a!%5e2a$qW 1~a!, f ~a!%5e2a~U~a!$qW 1 , f %!→a→`0. ~5.3!
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Moreover it holds

df ~a!

da
5$ f ~a!,kW 1•qW 1%5$ f ~a!,kW 1~a!•qW 1~a!%. ~5.4!

Therefore, the relative variablespW a5(1/AN) ( i 51
N gaikW i andrW a5AN ( i 51

N gaihW i , which com-
mute withkW 1 @see Eq.~2.16!#, satisfy

pW a~a!5U~a!pW a →a→` pW a~`! 5
def

pW qa ,
~5.5!

rW a~a!5U~a!rW a →a→` rW a~`! 5
def

rW qa ,

whererW qa , pW qa , is a pair of canonical vectors having zero Poisson bracket withqW 1 , kW 1 . The
searched canonical transformation~3.6! is thereby obtained.

First evaluatepW qa following the scheme of Ref. 45. From Eq.~5.4! we get

dkW i~a!

da
5$kW i~a!,kW 1~a!•qW 1~a!%52

kW 1~a!

HM~a!
Hi~a!, ~5.6!

with the notations

M sys5(
i 51

N

Hi , HM~a!5(
i 51

N

Hi~a! →a→` HM~`! 5
def

H (rel) ,

Hi5Ami
21kW i

2, Hi~a!5Ami
21kW i

2~a!→a→`Hi~`!5
def

H (rel)i , ~5.7!

P5M sys
2 2kW 1

2 'M sys
2 .

From mi
25Hi

2(a)2kW i
2(a), it follows

dHi~a!

da
Hi~a!5

dkW i~a!

da
•kW i~a!,

⇒ dHi~a!

da
52kW i~a!•

kW i~a!

HM~a!
,

⇒ dHM~a!

da
5(

i 51

N
dHi~a!

da
52

kW 1
2 ~a!

HM~a!
,

⇒P5HM
2 2kW 1

2 5HM
2 ~a!2kW 1

2 ~a!→a→` M sys
2 ~`!5H (rel)

2 ,

or
dP

da
50. ~5.8!

Let us now introduceu(a) such that@ch2 u(a)2sh2 u(a)51 also fora→`#
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shu~a!5
ukW 1uHM~a!2ukW 1~a!uM sys

P
→a→`

ukW 1u

AP
,

chu~a!5
M sysHM~a!2ukW 1uukW 1~a!u

P
→a→`

M sys

AP
, ~5.9!

u~a!5tanh21
ukW 1u
M sys

2tanh21
ukW 1~a!u
HM~a!

→a→0 0, →a→` tanh21
ukW 1u
M sys

.

Since we have

du~a!

da
5

ukW 1~a!u
HM~a!

,
dnW 1~a!

da
50⇒nW 1~a!5nW 1 , ~5.10!

we obtain the coupled equations

dkW i~a!

du
52Hi~a!nW 1 ,

dHi~a!

du
52kW i~a!•nW 1 , ~5.11!

whose integration gives

kW i~a!5kW i1~@chu~a!21#nW 1•kW i2shu~a!Hi !nW 1→a→`kW i~`!

5kW i1F S M sys

AP
21D nW 1•kW i2

ukW 1u

AP
Hi GnW 1'kW i ,

Hi~a!5Ami
21kW i

2~a!5chu~a!Hi2shu~a!nW 1•kW i→a→`Hi~`!

5Ami
21kW i

2~`!5
1

AP
~M sysHi2kW 1•kW i !'Hi ,

⇒Hi5Ami
21kW i

25Hi~a!chu~a!1nW 1•kW i~a!shu~a!

5
1

AP
@Hi~`! M sys1nW 1•kW i~`!ukW 1u'Hi~`!,

with (
i 51

N

Hi~`!5HM~`!5AP 5
def

H (rel) ,

kW i5kW i~a!1@chu~a!21#nW 1•kW i~a!nW 11shu~a!Hi~a!. ~5.12!

Therefore, we get
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pW a~a!5
1

AN
(
i 51

N

gaikW i~a!,

pW qa5

def

pW a~`!5
1

AN
(
i 51

N

kW i~`!5pW a1
nW 1

AP
@~M sys2AP!nW 1•pW a2ukW 1uHa#

5pW a2
kW 1

AM sys
2 2kW 1

2
FHa2

M sys2AM sys
2 2kW 1

2

kW 1
2 kW 1•pW aG'pW a ,

Ha5
1

AN
(
i 51

N

gaiHi ,

kW i~`!5AN (
a51

N21

gaipW qa ,

H (rel)i5Hi~`!5Ami
21N (

ab

1..N21

gaigbipW qa•pW qb,

M sys5(
i 51

N

Hi5AP1kW 1
2 'H (rel)5HM~`!5AP5(

i 51

N

Hi~`!

5(
i 51

N Ami
21N (

ab

1..N21

gaigbipW qa•pW qb. ~5.13!

Let us turn torW qa . Let us remark first of all that the following two quantities are invaria
under the canonical transformationU(a):

I i
(1)5M sysHi2kW 1•kW i5HM~a! Hi~a!2kW 1~a!•kW i~a!, ⇒ dI i

(1)

da
50,

~5.14!

I (2)5
kW 1•KW

M sys
52(

i 51

N

ukW 1uS nW 1•
hW iHi

M sys
D5

kW 1~a!•KW ~a!

HM~a!
, ⇒ dI (2)

da
50,

and that we have

1

HM~a!ukW 1~a!u
5

dJ(1)~a!

da
, with J(1)~a!5

shu~a!

ukW 1~a!uukW 1u
,

kW i~a!

Hi
2~a!

5
dJW i

(2)~a!

du~a!

with

JW i
(2)~a!5

kW i~a!shu~a!

Hi Hi~a!
1~chu~a!21!

nW 1

Hi
. ~5.15!

Since we also have
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n1
r ]

]k i
r n1

s 5
n1

r

ukW 1u ~d rs2n1
r n1

s !50, ~5.16!

we get preliminarly, fornW 1•hW i(a),

d

da
nW 1•hW i~a!5$nW 1•hW i~a!,kW 1~a!•qW 1~a!%

52n1
r ]

]k i
r~a!

nW 1•KW ~a!ukW 1~a!u
HM~a!

52n1
r n1

s ]

]k i
r~a!

ukW 1~a!uKs~a!

HM~a!
. ~5.17!

Then, since

n1
r ]

]k i
r~a!

ukW 1~a!u
HM~a!

5
I i

(1)

HM
2 ~a!Hi~a!

,
]

]k i
r~a!

Ks~a!52
k i

r~a!h i
s~a!

Hi~a!
, ~5.18!

we get

d

da
nW 1•hW i~a!52

I (2)I i
(1)

HM~a!Hi~a!ukW 1~a!u
1

nW 1•hW i~a!nW 1•kW i~a!

Hi~a!

ukW 1~a!u
HM~a!

52
nW 1•hW i~a!

Hi~a!

dHi~a!

da
2

I i
(1)I (2)

Hi~a!

dJ(1)~a!

da
. ~5.19!

These equations have the solution

nW 1•hW i~a!5
Hi

Hi~a!
nW 1•hW i2

I i
(1)I (2)

Hi~a!

shu~a!

ukW 1~a!uukW 1u
5

Hi

Hi~a!
nW 1•hW i2

I (2)

ukW 1u S ea2
Hi

Hi~a! D .

~5.20!

For hW i(a) we have

dh i
r~a!

da
5$h i

r~a!,kW 1~a!•qW 1~a!%52n1
s ]

]k i
r~a!

ukW 1~a!uKs~a!

HM~a!
5nW 1•hW i~a!

ukW 1~a!uk i
r~a!

Hi~a!HM~a!

1
( j 51

N H j~a!nW 1•hW j~a!

HM~a!
F ukW 1~a!uk i

r~a!

Hi~a!HM~a!
2n1

r G . ~5.21!

By putting Eq.~5.20! in Eq. ~5.21! we get the equations determininghW i(a).
Instead of integrating these equations, let us study the equations forrW a(a)

5AN ( i 51
N gaihW i(a), since for interactions depending onhW i2hW j we have hW i(a)2hW j (a)

5 (1/AN) (a51
N21(gai2ga j)rW a(a). Equations~5.21! and ~5.20! imply

drW a~a!

da
52 (

i , j 51

N

(
b51

N21

nW 1•rW b

HiH j

M sys
ga j~gbi2gb j!

kW j~a!ukW 1~a!u
H j

2~a!HM~a!
,

⇓

drW a~a!

du~a!
52 (

i , j 51

N

(
b51

N21

nW 1•rW b

HiH j

M sys
ga j~gbi2gb j!

dJW j
(2)~a!

du~a!
, ~5.22!
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whose solution is

rW a~a!5rW a2 (
i , j 51

N

(
b51

N21

nW 1•rW b

HiH j

M sys
ga j~gbi2gb j!JW j

(2)~a!. ~5.23!

For a→` we get

rW qa5
def

rW a~`!5rW a2 (
i , j 51

N

(
b51

N21

ga j~gbi2gb j!
Hi

M sys
F ukW 1ukW j~`!

H j~`!AP
1S M sys

AP
21D nW 1GnW 1•rW b

5rW a2 (
i , j 51

N

(
b51

N21

ga j~gbi2gb j!
Hi

M sys

kW j~`!

H j~`!AP
kW 1•rW b 'rW a . ~5.24!

One can check that forN52 andg152g251/& the results of Ref. 45 are reobtained.

Let us now consider the spin vectorSW q5S̄W s2qW 13kW 15@hW 12qW 1#3kW 11(a51
N21 rW a3pW a . For

arbitrary a we have SW q(a)5(a51
N21 rW a(a)3pW a(a)1@hW 1(a)2qW 1(a)#3kW 1(a) and, since

qW 1(a)•kW 1(a) is a scalar,$SW q(a),qW 1(a)•kW 1(a)%50. Since lima→` kW 1(a)50, we get

SW q~a! →a→` SW q5 (
a51

N21

rW qa3pW qa , ~5.25!

if we can show thathW 1(a)2qW 1(a) →a→` finite value. Now, since the boost generator may
written as

KW ~a!52(
i 51

N

hW i~a!Hi~a!52hW 1~a!HM~a!1 (
a51

N21

rW a~a!Ha~a!,

~5.26!

Ha~a!5
1

AN
(
i 51

N

gaiHi~a!,

we get

hW 1~a!2qW 1~a!5
(a51

N rW a~a!Ha~a!

HM~a!
1

kW 1~a!3~(a51
N21rW a~a!3pW a~a!!

AP~AP1M sys!

1
kW 1~a!3~kW 1~a!3(a51

N21rW a~a!Ha~a!!

HM~a!AP~AP1M sys!
→a→`

1

AP
(
a51

N

rW a~`!Ha~`!

5
1

AP
(
a51

N21

rW qa

1

AN
(
i 51

N

gaiAmi
21N (

ab

1,...,N21

gaigbipW qa•pW qb,

⇓

qW 15hW 12
1

AN

(a51
N21rW a

A~( i 51
N Ami

21kW i
2!22kW 1

2
(
i 51

N

gaiAmi
21kW i

21~ terms→a→` 0,i .e.,

'0 due to kW 1'0!, ~5.27!

to be compared with Eq.~2.14!.
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In this way, although it is not known how to get the inverse transformation, we have suc
fully achieved the searched canonical transformation~3.6!

~5.28!

Adding the gauge fixingsqW 1'0 for kW 1'0 and going to Dirac brackets, we finally obtain

rW qa[rW a , pW qa[pW a , SW q5 (
a51

N21

rW qa3pW qa 5
def

(
a51

N21

rW a3pW a ,

H (rel)5HM~`!5(
i 51

N Ami
21N (

ab

1,...,N21

gaigbipW qa•pW qb[AP[M sys. ~5.29!

H (rel) replaces the nonrelativistic oneH rel,nr5
1
2 (a,b51

N21 kab
21@mi ,gai#pW qa•pW qb of Eq. ~2.9! of Ref. 2

for c→`.
See Appendix B for the case of spinning particles.

VI. RELATIVISTIC ROTATIONAL KINEMATICS

Each square root in the Hamiltonian equation~5.29! for the relative motions in the rest fram
instant form contains a (N21)3(N21) matrixK ( i )ab

21 5Ngaigbi5K ( i )ba
21 .49 The existence of rela-

tivistic normal Jacobi coordinates would require the simultaneous diagonalization of theN
matrices. This is impossible, however, because

@K ( i )
21 ,K ( j )

21#ab5G( i j )ab52G( i j )ba52G( j i )ab52N@gaigb j2ga jgbi#. ~6.1!

There are1
2 N(N21) matricesGi j , each one with1

2 (N21)(N22) independent elements. Whil
the conditionsG( i j )ab50 are1

4 N(N21)2(N22), the free parameters at our disposal in thegai are
only 1

2 (N21)(N22). For N53, there are three conditions and only one parameter; forN54,
eighteen conditions and three parameters.

In conclusion, it is impossible to diagonalize theN quadratic forms under the square roo
simultaneously:there are no relativistic normal Jacobi coordinates, and no definition of redu
masses and inertia tensor is allowed.

In order to find the analog ofLrel,nr5
1
2(a,b51

N21 kab@mi ,gai#rẆ a•rẆ b @Eq. ~2.9! of Ref. 2#, we
should perform an inverse Legendre transformation. The first half of Hamilton equations g

ṙqa
r 5

+

$rqa
r ,H (rel)%5(

i 51

N Ngai(b51
N21gbipqb

r

Ami
21N(ab

1..N21gaigbipW qa•pW qb

,

⇓

rẆ qa•rẆ qb5 (
i , j

1,...,N Ngai(e51
N21geipW qe

Ami
21N(a1b1

1..N21ga1igb1ipW qa1
•pW qb1

•

Ngb j( f 51
N21g f jpW q f

Amj
21N(a2b2

1..N21ga2 jgb2 jpW qa2
•pW qb2

. ~6.2!

However, in order to getpW qa•pW qb in terms ofrẆ qa•rẆ qb we should solve higher order algebra
equations. As already pointed out, this implies thatL rel(rW qa ,rẆ qa)5(a51

N21pW qa•rẆ qa2H is a hyper-
elliptic function already in the free case. This in turn means that, unlike the nonrelativistic ca
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is not even possible to define either an Euclidean or a Riemannian metric on the space of ve
from the kinetic energy~see Ref. 2!. A Lagrangian dynamics cannot be made explicit as in
nonrelativistic case. The form of the canonical momenta

pqa
r 5

]L rel

]ṙqa
r 5 (

b51

N21

f ab~rẆ qc•rẆ qd!ṙqb
r , ~6.3!

can only be given in implicit form. Also the restrictions upon the relative velocitiesrẆ qa(t)
resulting from the existence of the limiting light velocityc cannot be evaluated.

We could tentatively try to follow the nonrelativistic pattern of thestatic orientation-shape
bundle approach~see Ref. 2!. We would get50

rqa
r 5Rrs~ua!řqa

s ~q!,

ṙqa
r 5

def

Rrs~ua!v̌qa
s , vW qa5vW 3rW qa1

]rW qa

]qm q̇m,

ṙqa
r 5

+

$rqa
r ,H rel%,

pqa
r 5 (

b51

N21

f ab~rẆ qc•rẆ qd!ṙqb
r 5Rrs~ua!p̌qa

s , p̌qa
r 5 (

b51

N21

f ab~vW̌ qc•vW̌ qd!v̌qb
r ,

Sq
r 5Rrs~ua!Šq

s5 (
a51

N21

@rW qa3pW qa#
r ,

~6.4!

SW q5 (
ab

1, . . . ,N21

f abF S vW 3rW qc1
]rW qc

]qm q̇mD •S vW 3rW qd1
]rW qd

]qm q̇mD GrW qa3S vW 3rW qb1
]rW qb

]qm q̇mD ,

Šq
r 5 (

ab

1, . . . ,N21

f ab@ Ǐ (cd)
uv ~q!~v̌u1Ǎ(cd)m

u ~q!q̇m!~v̌v1Ǎ(cd)n
v ~q!q̇n!# Ǐ (ab)

rs ~q!~v̌s1Ǎ(ab)m
s ~q!q̇m!,

Ǐrs~vW̌ ,q,m!5 (
ab

1,...,N21

f ab~vW qc•vW qd! Ǐ (ab)
rs ~q!,

Ǐ (ab)
rs ~q!5rW qa•rW qbd

rs2
1

2
~ řqa

r řb
s1 řqb

r řqa
s !,

ǎ(ab)m
u ~q!5

1

2 FrW qa3
]rW qb

]qm 1rW qb3
]rW qa

]qm Gu

5
def

Ǐ (ab)
uv ~q!Ǎ(ab)m

v ~q!.

It is seen, however, thatthere is no more a linear relationbetween the body frame spin an
angular velocity. By expandingf ab(x) in a power series aroundx50, we see thatŠq

r is an infinite
series containing all the powers of the body frame angular velocity. The lowest term isŠq(0)

r

5(a,b
N21 f ab(0)Ǐ (ab)

rs (q)(v̌s1Ǎ(ab)m
s (q)q̇m) with f ab(0) playing the role of the nonrelativistickab .

Therefore, the tensor of inertia loses a clear identification: onlyits building blocks Iˇ
(ab)
rs ,

which appear at the nonrelativistic level, survive within the relativistic construction.
The relative Lagrangian can be worked out in the special case ofN52 with equal masses

m15m25m. It results in
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L rel~rW ,rẆ !52mA42rẆ 2. ~6.5!

so that the relative velocity is bounded byurẆ u<2.
Let us writerW 5rr̂ with r5urW u and r̂5rW /urW u. With a single relative variable the three Eul

anglesua are redundant: there are only two independent angles, identifying the position of th
three-vectorr̂ on S2. We shall use the parametrization~Euler anglesu15f, u25u, u350!

r̂ r5Rrs~u,f! r̂0
s5~Rz~u!Ry~f!!rs r̂0

s , r̂05~0,0,1!. ~6.6!

By continuing the attempt to follow thestatic orientation-shape bundle approach, we get
following body frame velocity and angular velocity~r is the only shape variable forN52!:

v̌ r5RT rsṙs5r~RTṘ!rsr̂0
s1 ṙ r̂0

r 5re ru3v̌u1 ṙ r̂0
r 5r~vW 3 r̂0!r1 ṙ r̂0

r ,

vW 5~ 1
2 eurs ~RTṘ!rs!5~v̌152sinuḟ,v̌25 u̇,0!, ~6.7!

vW 25 Ǐ ~r!vW 21 ṙ2, Ǐ ~r!5r2.

The nonrelativistic inertia tensor of the dipoleǏ nr5mr2 ~m5 m1m2 /m11m2 is the reduced
mass! is replaced byǏ 5 Ǐ nr /m5r2. The Lagrangian in anholonomic variables becomes

L̃~vW ,r,ṙ !52mA42 Ǐ ~r!vW 22 ṙ2. ~6.8!

It is clear that the boundurẆ u<2 puts upper limitations upon the kinetic energy of both t
rotational and vibrational motions.

The canonical momenta are

SW 5
]L̃

]vW
5

mǏ~r!vW

A42 Ǐ ~r!vW 22 ṙ2
,

~6.9!

p5
]L̃

]ṙ
5

mṙ

A42 Ǐ ~r!vW 22 ṙ2
.

WhenurẆ u varies between 0 and 2 the momenta vary between 0 and`, so that in phase spac
there is no bound from the limiting light velocity. This shows once more that in special rela
it is convenient to work in the Hamiltonian framework avoiding relative and angular velocit

Since we have

A42 Ǐ ~r!vW 22 ṙ25
2m

Am21 Ǐ 21~r!SW 21p2
,

the inversion formulas become

vW 5
SW

mǏ~r!
A42 Ǐ ~r!vW 22 ṙ25

2Ǐ 21~r!SW

Am21 Ǐ 21~r!SW 21p2
,

~6.10!

ṙ5
p

m
A42 Ǐ ~r!vW 22 ṙ25

2p

Am21 Ǐ 21~r!SW 21p2
.
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On the other hand, the Hamiltonian results

H̃5pṙ1SW •vW 2L̃52Am21 Ǐ 21~r!SW 21p2. ~6.11!

It is seen that the special case we are discussing leads to a point-canonical transfor
followed by a transformation to an anholonomic basis, as in the nonrelativistic treatment

r r5rRrs~u,f!r̂0
s5r~sinucosf,sinusinf,cosu!,

pq
r 5Rrs~u,f!p̌q

s5Rrs~u,f!
mv̌s

A42vW 2

5Rrs~u,f!
m@rvW 3 r̂o1 ṙ r̂o#s

A42 Ǐ ~r!vW 22 ṙ2
5Rrs~u,f!@r Ǐ 21~r!SW 3 r̂o1pr̂o#s. ~6.12!

In conclusion, because of the lack of a workable Lagrangian approach, we are forced to
define everything at the Hamiltonian level. Correspondingly, in order to get an extensio
arbitraryN, abandoning thestaticorientation-shape bundle approach, we shall exploit thecanoni-
cal spin basestechnique utilized in the nonrelativistic case of Ref. 2. We will have to gues
some way a set of nonpoint canonical transformations getting from the canonical variablerW qa ,
pW qa to a basis in which the results of the special caseN52 and equal masses can be explici
generalized.

The nonrelativistic non-Abelian rotational symmetry generating the Noether constants o
tion SW 5constant will be replaced by theinternal non-Abelian rotational symmetry generating th
constants of motionSW q inside the Wigner hyperplane, with the rest-frame conditionskW 1'0.

VII. CANONICAL SPIN BASES

Because of the group-theoretical nature of our technique, the relativistic construction
canonical spin baseswith the associatedspin frameandevolving dynamical body frames, starting
from the relative canonical variablesrW qa , pW qa , a51,..,N21, is identical to that proposed in Re
2 for the nonrelativistic case. More precisely, this occurs since the total conserved rest-fram
maintains its nonrelativistic formSW q5(a51

N21 rW qa3pW qa5(a51
N21 SW qa and the construction is essen

tially based on thespin clusteringsbuilt from the individual SW qa . Only the Hamiltonian for
relative motions turns out to be different.

We shall report here the main results forN52, N53, andN>4 by referring to Ref. 2 for the
relevant calculations.

A. Two-body systems

Consider the initial transformation for the caseN52, i 51,2,

~7.1!

After the elimination of the internal center-of-mass degrees of freedom by means of the
fixings qW 1'0, the rest-frame dynamics of the relative motions is ruled by the Hamiltonian
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H (rel)5Am1
21pW q

21Am2
21pW q

2[M sys. ~7.2!

The spin isSW q5rW q3pW q @Sq5ASW q
2#. Define the following decomposition~the notationR̂ for

the unit vectorr̂q is used for comparison with Ref. 39!

rW q5rqR̂, rq5ArW q
2, R̂5

rW q

rq
5 r̂q , R̂251, ~7.3!

pW q5p̃qR̂2
Sq

rq
R̂3Ŝq5p̃qr̂q2

Sq

rq
r̂q3Ŝq , p̃q5pW q•R̂5pW q• r̂q , Ŝq5

SW q

Sq
, Ŝq•R̂50.

The spin frame of R3 is defined byŜq , R̂, R̂3Ŝq with $Sq
i ,Sq

j %5e i jkSq
k , $R̂i ,R̂j%50,

$R̂i ,Sq
j %5e i jk R̂k. The vectorsSW q andR̂ are the generators of an E~3! group containing SO~3! as a

subgroup.
Consider the canonical transformation adapted to thespin

~7.4!

where

a5tg21
1

Sq
S rW q•pW q2

~rq!2

rq
3 pq

3D , b5tg21
Sq

2

Sq
1 . ~7.5!

It holds

Sq
15A~Sq!22~Sq

3!2 cosb, Sq
25A~Sq!22~Sq

3!2 sinb, Sq
3 , ~7.6!

R̂15 r̂q
15sinu cosw5sinb sina2

Sq
3

Sq
cosb cosa,

R̂25 r̂q
25sinu sinw52cosb sina2

Sq
3

Sq
sinb cosa,

R̂35 r̂q
35cosu5

1

Sq
A~Sq!22~Sq

3!2 cosa,

~Ŝq3R̂!15Ŝq
2R̂32Ŝq

3R̂25sinb cosa1
Sq

3

Sq
cosb sina,

~Ŝq3R̂!25Ŝq
3R̂12Ŝq

1R̂352cosb cosa1
Sq

3

Sq
sinb sina, ~7.7!

~Ŝq3R̂!352Ŝq
1R̂22Ŝq

2R̂15
1

Sq
A~Sq!22~Sq

3!2 sina,

with the inverse canonical transformation
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rW q5rqR̂~a,b,Sq ,Sq
3!,

pW q5p̃qR̂~a,b,Sq ,Sq
3!2

Sq

rq
R̂~a,b,Sq ,Sq

3!3Ŝq~b,Sq ,Sq
3!,

⇒pW q
25p̃q

21
Sq

2

rq
2 , Ŝq3R̂~a!5

]R̂~a!

]a
5R̂S a1

p

2 D ,

⇒a52tg21
~Ŝq3R̂!3

@Ŝq3~Ŝq3R̂!#3
. ~7.8!

From the last line of this equation it is seen that the anglea can be expressed in terms ofŜq

and R̂.
The conjugate variablesrq , p̃q will be calleddynamical shape variables: they describe the

vibration of the dipole.
The rest-frame Hamiltonian for the relative motion becomes

H (rel)5HM~`!5Am1
21pW q

21Am2
21pW q

25Am1
21

1

Ǐ
~Sq!21p̃q

21Am2
21

1

Ǐ
~Sq!21p̃q

2,

⇒v̌ 5
+ ]H (rel)

]Sq
5

Sq

Ǐ S 1

Am1
21

1

Ǐ
~Sq!21p̃q

2

1
1

Am2
21

1

Ǐ
~Sq!21p̃q

2D ,

ṙq 5
+ ]H (rel)

]p̃q
5p̃qS 1

Am1
21

1

Ǐ
~Sq!21p̃q

2

1
1

Am2
21

1

Ǐ
~Sq!21p̃q

2D ,

p̃qu ṙq5050,

H (rel)
(S) 5H (rel)u ṙq505Am1

21
1

Ǐ
~Sq!21Am2

21
1

Ǐ
~Sq!2, ~7.9!

H (rel)
(S50)5H (rel)uSq505Am1

21p̃q
21Am2

21p̃q
2,

whereǏ 5rq
25 Ǐ nr /m is the nonrelativistic baricentric inertia tensorǏ nr of the dipole divided by the

reduced massm5 m1m2 /(m11m2). The quantitiesH (rel)
(S) andH (rel)

(S50) are the purely rotational and
purely vibrational Hamiltonians, respectively.

For equal masses, by making the identificationsp5p̃q , r5rq , andR̂r5Rrs(u,f) r̂0
s , we get

formally the same results of the previous section but in a different canonical basis. Only a
nonpoint transformationa, Sq , b, Sq

3°u, pu , f, pf @i.e. from Eqs.~7.7! to ~7.4!#, Eq. ~7.11!
becomes Eq.~6.12!.
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B. Three-body systems

For N53 the range of the indices isi 51,2,3, a51,2. The spin isSW q5(a51
2 rW qa3pW qa

5(a51
2 SW qa after the canonical transformation which separates the internal center of mass

~7.10!

Upon the gauge fixingsqW 1'0, the relative motions in the rest-frame instant form are ruled
the Hamiltonian

H (rel)5HM~`!5(
i 51

3 Ami
213 (

a,b51

2

gaigbipW qa•pW qb[M sys. ~7.11!

We shall assumeSW qÞ0, because the exceptional SO~3! orbit Sq50 has to be studied
separately.2

For each value ofa51, 2 consider the canonical transformation~7.7!

~7.12!

where

aa5tg21
1

Sqa
S rW qa•pW qa2

~rqa!
2

rqa
3 pqa

3 D ,

ba5tg21
Sqa

2

Sqa
1 , sinba5

Sqa
2

A~Sqa!
22~Sqa

3 !2
, cosba5

Sqa
1

A~Sqa!
22~Sqa

3 !2
, ~7.13!

rW qa5rqaR̂a , rqa5ArW qa
2 , R̂a5

rW qa

rqa
5 r̂qa , R̂a

251,

pW qa5p̃qaR̂a2
Sqa

rqa
R̂a3Ŝqa , p̃qa5pW qa•R̂a . ~7.14!

We now havetwo unit vectorsR̂a and two E~3! realizations generated bySW qa , R̂a , respec-
tively, with fixed invariantsR̂a

251, SW qa•R̂a50 ~nonirreducible, type 239!.
Now, we want to implement a SO~3! Hamiltonian right actionin analogy with the rigid body

theory. To this aim, we must construct an orthonormal triad orbody frame Nˆ , x̂, N̂3x̂. The
decompositionSW 5Š1x̂1Š2N̂3x̂1Š3N̂[Šr êr , identifies the SO~3! scalar generatorsŠr of the
right action provided they satisfy$Šr ,Šs%52e rsuŠu. This latter condition together with the obv
ous requirement thatN̂, x̂, N̂3x̂ be SO~3! vectors @$N̂r ,Ss%5e rsuN̂u, $x̂ r ,Ss%5e rsux̂u,

$N̂3x̂ r ,Ss%5e rsuN̂3x̂u# entails the equations$N̂r ,N̂s%5$N̂r ,x̂s%5$x̂ r ,x̂s%50.
To each solution of these equations is associated a couple of canonical realizations of th~3!

group ~nonirreducible, type 2!: one with generatorsSW , NW and nonfixed invariantsŠ35SW •N̂ and
uNW u; another with generatorsSW , xW and nonfixed invariantsŠ15SW •x̂ and uxW u. These realizations
contain the relevant information for constructing the anglea and the new canonical pairŠ3, g

5tg21 Š2/Š1 of SO~3! scalars. Since$a,Š3%5$a,g%50 must hold, it follows that the vectorNW

necessarily belongs to theSW –R̂ plane. The three canonical pairsS, a, S3, b, Š3, g will describe
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the orientational variables of our Darboux basis, whileuNW u and uxW u will belong to theshape
variables. Alternatively, an anholonomic basis can be constructed by replacing the a
mentioned six variables byŠr and three uniquely determined Euler anglesã, b̃, g̃.

In the N53 case it turns out that a solution of the previous equation exists correspond
a body framedetermined by the three-body system configuration only, as in therigid body case.
This solution is completely identified once two orthonormal vectorsNW and xW , functions of the
relative coordinates and independent of the momenta, are found such thatNW lies in the SW –R̂
plane.51

Thesimplest choicefor the orthonormal vectorsNW andxW , functions of the coordinates alone
is

NW 5
1

2
~R̂11R̂2!5

1

2
~ r̂q11 r̂q2!, N̂5

NW

uNW u
, uNW u5A11 r̂q1• r̂q2

2
,

xW 5
1

2
~R̂12R̂2!5

1

2
~ r̂q12 r̂q2!, x̂5

xW

uxW u
, uxW u5A12 r̂q1• r̂q2

2
5A12NW 2,

NW 3xW 52
1

2
r̂q13 r̂q2 , uNW 3xW u5uNW uuxW u5

1

2
A12~ r̂q1• r̂q2!2, ~7.15!

NW •xW 50, $Nr ,Ns%5$x r ,xs%5$Nr ,xs%50,

R̂15 r̂q15NW 1xW , R̂25 r̂q25NW 2xW , R̂1•RW 25 r̂q1• r̂q25NW 22xW 2.

Likewise, we have for the spins

SW q5SW q11SW q2 , WW q5SW q12SW q2 , $Wq
r ,Wq

s%5e rsuSq
u ,

~7.16!

SW q15 1
2 ~SW q1WW q!, SW q25 1

2 ~SW q2WW q!.

In this way, we succeeded in constructing an orthonormal triad~the dynamical body frame!

and two E~3! realizations: one with generatorsSW q , NW and nonfixed invariantsuNW u andSW •N̂, the
other with generatorsSW q and xW and nonfixed invariantsuxW u and SW q•x̂. As said in Ref. 2 this is
equivalent to the determination of the nonconserved generatorsŠq

r of a Hamiltonianright actionof
SO~3!: Šq

15SW q•x̂5SW q•ê1 , Šq
25SW q•N̂3x̂5SW q•ê2 , Šq

35SW q•N̂5SW q•ê3 .
The realization of the E~3! group with generatorsSW q , NW and nonfixed invariantsI15NW 2,

I25SW q•NW leads to the final canonical transformation

~7.17!

where
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uNW u5A11 r̂q1• r̂q2

2
,

Šq
35SW q•N̂5

1

A2
(
a51

2

rW qa3pW qa•
r̂q11 r̂q2

A11 r̂q1• r̂q2

[Sq cosc,

cosc5Ŝq•N̂5
Šq

3

Sq
, sinc5

1

Sq

A~Sq!22~Šq
3!2,

Sq5Šq5U(
a51

2

rW qa3pW qaU, Sq
35 (

a51

2

~rW qa3pW qa!
3,

a52tg21
~Ŝq3N̂!3

@Ŝq3~Ŝq3N̂!#3
52tg21

@Ŝq3~ r̂q11 r̂q2!#3

@Ŝq3~Ŝq3@ r̂q11 r̂q2# !#3
,

b5tg21
Sq

2

Sq
1 ,

g5tg21
SW q•~N̂3x̂ !

SW q•x̂
5tg21

Šq
2

Šq
1

,

j5
WW q•~N̂3x̂ !

uxW u
5

A2(a51
2 ~2 !a11rW qa3pW qa•~ r̂q23 r̂q1!

@12 r̂q1• r̂q2#A11 r̂q1• r̂q2

. ~7.18!

For N53 thedynamical shape variables, functions of the relative coordinates alonerW qa , are
uNW u, r̂qa , while the conjugate shape momenta arej, p̃qa .

The final array~7.17! is nothing else than ascheme B40 of a realization of an E~3! group with
generatorsSW q , NW ~nonirreducible, type 3!. In particular, the two canonical pairsSq

3 , b, Sq , a,
constitute the irreducible kernel of the E~3! scheme A, whose invariants areŠq

3 , uNW u; g andj are
the so-calledsupplementary variablesconjugated to the invariants; finally, the two pairsrqa , p̃qa

are so-calledinessential variables. Let us remark thatSq
3 , b, Sq , a, g, j, are a local coordinati-

zation of every E~3! coadjoint orbit withŠq
35const,uNW u5const and fixed values of the inessent

variables, present in the three-body phase space.
By using Eqs.~7.6!, ~7.7! and adopting the prescription of Eq.~7.10!, we can reconstructSW q

and define anewunit vectorR̂ orthogonal toSW q and satisfying$R̂r ,R̂s%50.
The vectorsŜq , R̂, Ŝq3R̂ build up thespin framefor N53. The anglea conjugate toSq is

explicitly given by52

a52tg21
~Ŝq3N̂!3

@Ŝq3~Ŝq3N̂!#3
52tg21

~Ŝq3R̂!3

@Ŝq3~Ŝq3R̂!#3
. ~7.19!

As a consequence of this definition of Rˆ , we get the following expressions for thedynamical

body frame Nˆ , x̂, N̂3x̂ in terms of the final canonical variables~see Ref. 2 for the explicit
expressions and a geometric visualization!
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N̂5coscŜq1sincR̂5N̂@Sq ,a;Sq
3 ,b;Šq

3 ,g#,

x̂5sinc cosgŜq2cosc cosgR̂1singŜq3R̂5x̂@Sq ,a;Sq
3 ,b;Šq

3 ,g#,

N̂3x̂5sinc singŜq2 cosc singR̂2cosgŜq3R̂5~N̂3x̂ !@Sq ,a;Sq
3 ,b;Šq

3 ,g#,

⇓

Ŝq5sinc cosgx̂1sinc singN̂3x̂1coscN̂5
def 1

Sq
@Šq

1x̂1Šq
2N̂3x̂1Šq

3N̂#,

R̂52cosc cosgx̂2cosc singN̂3x̂1sincN̂,

R̂3Ŝq52singx̂1cosgN̂3x̂. ~7.20!

While c is the angle betweenŜq andN̂, g is the angle between the planeN̂– x̂ and the plane
Ŝq–N̂. As in the caseN52, a is the angle between the planeŜq– f̂ 3 and the planeŜq–R̂, while
b is the angle between the planeŜq– f̂ 3 and the planef̂ 32 f̂ 1 .

Owing to the results of Appendix C of Ref. 2, which allow one to reexpress

Sqa5uSW qau, Sqa
3 , ba5tg21

Sqa
2

Sqa
1

, and aa52tg21
~Ŝqa3R̂a!3

~Ŝqa3~Ŝqa3R̂a!!3

in terms of the final variables, we can reconstruct the inverse canonical transformation.
The existence of thespin frameand of thedynamical body frameallows one to define two

decompositions of the relative variables, which make the inverse canonical transformatio
plicit. For the relative coordinates, from Eq.~7.15! and Appendix C of I, we obtain

rW qa5rqaR̂a5rqa@NW 1~2 !a11xW #5rqa@ uNW uN̂1~2 !a11A12NW 2x̂ #

5@rW qa•Ŝq#Ŝq1@rW qa•R̂#R̂1@rW qa•Ŝq3R̂#Ŝq3R̂

5
rqa

Sq
F ~ uNW uŠq

31~2 !a11A12NW 2 Šq
1!Ŝq1S uNW uA~Sq!22~Šq

3!2

2~2 !a11A12NW 2
Šq

1Šq
3

A~Sq!22~Šq
3!2

D R̂

2~2 !a11A12NW 2
Šq

2

A~Sq!22~Šq
3!2

Ŝq3R̂G
5rW qa@Sq ,a;Sq

3 ,b;Šq
3 ,g;rqa ,uNW u#. ~7.21!

The results of Appendix C of Ref. 2 give the analogous formulas for the relative mome
As shown in Ref. 2, it is possible to perform a sequence of a canonical transformation to

anglesã, b̃, g̃ with their conjugate momenta, followed by a transition to the anholonomic b
used in the orientation-shape bundle approach1
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Sq5Šq5A~Šq
1!21~Šq

2!21~Šq
3!2,

Sq
352sinb̃ cosg̃Šq

11sinb̃ sing̃Šq
21cosb̃Šq

3 ,
~7.22!

a5arctg
pb̃tg b̃

Šq2
pãpg̃

Šq cosb̃

, b5ã1arctg

ctgb̃pã2
pg̃

sinb̃

pb̃

2
p

2
,

g5
p

2
2g̃2arctg

ctgb̃pg̃2
pã

sinb̃

pb̃

,

with thedynamical orientation variablesã, b̃, g̃ determined in terms ofrW qa , pW qa . Let us stress
that, while in the orientation-shape bundle approach the orientation variablesua are gauge vari-
ables, the Euler anglesã, b̃, g̃ we are using here areuniquely determinedin terms of the original
variables.

In conclusion, the complete transition to the anholonomic basis used in thestatic theory of the
orientation-shape bundle is

~7.23!

with the three pairs of conjugate canonical dynamical shape variables:rqa , p̃qa , uNW u, j and with

rqa
r 5R r

s~ ã,b̃,g̃ !řqa
s ~q!,

with

řqa
1 ~q!5~2 !a11rqaA12NW 2, řqa

2 ~q!50, řqa
3 ~q!5rqauNW u,

~7.24!
Sq

r 5R r
s~ ã,b̃,g̃ !Šq

s .

The final visualization of our sequence of transformations is

~7.25!

Note incidentally that we haveřqa
2 5rW qa•N̂3x̂50 by construction, and this entails that usin

our dynamical body frameis equivalent to a convention~xxzz gauge! about the body frame of the
type of xxzand similar gauges quoted in Ref. 1.
                                                                                                                



ing
basis

ion-

e
nian

r-

ative

e

1711J. Math. Phys., Vol. 43, No. 4, April 2002 Relativistic N-body problem in rest-frame form

                    
The kinematical calculations of Appendix E of Ref. 46 allow one to obtain the follow
expression of the Hamiltonian for the relative motions in terms of the anholonomic Darboux
~7.22!:

H (rel)[M sys5HM~`!5(
i 51

3 Ami
213 (

a,b51

2

gaigbipW qa•pW qb5(
i 51

3 S mi
21

3

NW 2 F ~g1i !
2

2rq1
2 1

~g2i !
2

2rq2
2

1
g1ig2i

rq1rq2
G ~Šq

1!213F ~g1i !
2

2rq1
2 1

~g2i !
2

2rq2
2 1

g1ig2i~2NW 221!

rq1rq2
G ~Šq

2!21
3

12NW 2 F ~g1i !
2

2rq1
2 1

~g2i !
2

2rq2
2

2
g1ig2i

rq1rq2
G ~Šq

3!213A12NW 2F jS ~g1i !
2

2rq1
2 2

~g2i !
2

2rq2
2 D 14g1ig2i uNW uA12NW 2S p̃q1

rq2

2
p̃q2

rq1
D G Šq

2

2
3

uNW uA12NW 2
S ~g1i !

2

rq1
2 2

~g2i !
2

rq2
2 D Šq

1Šq
316~g1i !

2F p̃q1
2 1

j2~12NW 2!

4rq1
2 G16~g2i !

2F p̃q2
2

1
j2~12NW 2!

4rq2
2 G112g1ig2iF ~2NW 221!p̃q1p̃q22uNW u~12NW 2!jS p̃q1

rq2

1
p̃q2

rq1
D

1
j2~12NW 2!~2NW 221!

4rq1rq2
G D 1/2

5 (
i 51

3

H (rel)i , ~7.26!

whereqm5(rq1 ,rq2 ,uNW u), pm5(p̃q1 ,p̃q2 ,j) are the dynamical shape variables.
In Ref. 46, this Hamiltonian is put in a form reminiscent of the nonrelativistic orientat

shape bundle approach. It is also shown how to recover the nonrelativistic Hamiltonian~with its
splitting in rotational and vibrational parts! and the tensor of inertia in the nonrelativistic limit. W
could also define rotational and vibrational relativistic Hamiltonians, but the total Hamilto
would not result to be their sum.

C. N-body systems

Finally, we shall discuss the general case withN>4. Unlike the method of the Jacobi coo
dinates, based on coupling thecenter-of-mass clusters, our method of thecanonical spin basesis
based on coupling the spins of the two-body subsystems~relative particles! rW qa , pW qa , a
51,..,N21, defined in Eq.~3.6!, in all possible ways~spin clustersfrom the addition of angular
momenta!. Let us stress that we can build aspin basiswith a pattern ofspin clusterswhich is
completely unrelated to a possible pre-existingcenter-of-mass clustering.

Consider the caseN54 as a prototype of the general construction. We have now three rel
variablesrW q1 , rW q2 , rW q3 and related momentapW q1 , pW q2 , pW q3 . In the following formulas we use
the convention that the subscriptsa, b, c mean any permutation of 1,2,3.

As in Ref. 2, we define a sequence of canonical transformations corresponding to thspin
clusteringpatternabc°(ab)c°((ab)c): first build the spin cluster (ab), then the spin cluster
((ab)c), ~assumeSqÞ50; SqAÞ50, A5a, b, c!:
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~7.27!

See Appendix F of Ref. 2 for the explicit construction of the canonical transformations.
The first nonpoint canonical transformation is based on the existence of the three unit v

R̂A , A5a, b, c, and of three E~3! groups with fixed values~R̂A
251, SW A•R̂A50! of their invari-

ants. Use Eqs.~7.13! and ~7.14!.
In the next canonical transformation the spins of therelative particles aandb are coupled to

form the spin cluster (ab), leaving therelative particle cas a spectator. As said in Ref. 2 th
cluster (ab) has a unit vectorR̂(ab) with SW (ab)•R̂(ab)50, $R̂(ab)

r ,R̂(ab)
s %50. This unit vector iden-

tifies the spin cluster(ab) in the same way as the unit vectorsR̂A5rŴ qA identify the relative
particles A.

The next step is the coupling of thespin cluster(ab) with unit vectorR̂(ab) with the relative

particle c with unit vectorR̂c and described byac , Sqc , bc , Sqc
3 : this builds thespin cluster

((ab)c). As shown in Ref. 2 it is possible to define the vectorsNW ((ab)c) , xW ((ab)c) , SW q5SW q((ab)c)

5SW q(ab)1SW qc , WW q((ab)c)5SW q(ab)2SW qc . Since NW ((ab)c)•xW ((ab)c)50 and $N((ab)c)
r ,N((ab)c)

s %
5$N((ab)c)

r ,x ((ab)c)
s %5$x ((ab)c)

r ,x ((ab)c)
s %50 because of$R̂(ab)

r ,R̂c
s%50, a new E~3! group gener-

ated bySW q and NW ((ab)c) with nonfixed invariantsuNW ((ab)c)u, SW q•NW ((ab)c)5Šq
3uNW ((ab)c)u emerges.

Again it is possible to definea ((ab)c) andb ((ab)c) , and then to identify a final unit vectorR̂((ab)c)

with SW q•R̂((ab)c)50 and$R̂((ab)c)
r ,R̂((ab)c)

s %50.
In conclusion, whenSqÞ0, we construct both adynamical body framex̂ ((ab)c) , N̂((ab)c)

3x̂ ((ab)c) , N̂((ab)c) , and aspin frame Sˆ q , R̂((ab)c) , R̂((ab)c)3Ŝq as in the three-body case. The
is an important difference, however:the orthonormal vectors NW

((ab)c) andxW ((ab)c) depend on the

momenta of the relative particles a and b through Rˆ
(ab) , so that our results do not share an

relation with the N54 nontrivial SO(3) principal bundle of the orientation-shape bundle a
proach.

The final six dynamical shape variablesare qm5$uNW ((ab)c)u,g (ab) ,uNW (ab)u,rqa ,rqb ,rqc%.
While the last four depend only on the original relative coordinatesrW qA , A5a, b, c, the first two
also depend on the original momentapW qA : therefore they aregeneralized shape variables. It
follows

rqA
r 5R rs~ ã,b̃,g̃ ! řqA

s ~qm,pm ,Šq
r !, A5a,b,c. ~7.28!

It is seen that forN54 the dynamical body frame componentsřqA
r also depend on the dynamica

shape momenta and on the dynamical body frame components of the spin. It is clear that thi
stands completely outside the orientation-shape bundle approach.
                                                                                                                



e.
erings

nta.
e

ds to

nal

s-
vial
the

e the

terac-

1713J. Math. Phys., Vol. 43, No. 4, April 2002 Relativistic N-body problem in rest-frame form

                    
The price to be paid for the existence of three globaldynamical body framesfor N54 is a
more complicated form of the Hamiltonian kinetic energy. On the other hand,dynamical vibra-
tions anddynamical angular velocityare measurable quantities in each dynamical body fram

For N55 we can repeat the previous construction with either the sequence of spin clust
abcd°(ab)cd°((ab)c)d)°(((ab)c)d) or with the sequenceabcd°(ab)(cd)°((ab)
3(cd)) @a,b,c,d any permutation of 1,2,3,4#. Eachspin cluster( . . . ) is identified by the unit
vectorR̂( . . . ) , axis of thespin frameof the cluster. All the finaldynamical body framesbuilt with
this construction have their axes depending on both the original configurations and mome

This construction is trivially generalized to anyN: we have only to classify all the possibl
spin clustering patterns.

In conclusion, forN>4 our sequence of canonical and noncanonical transformations lea
the following result@compare with Eq.~7.22! of the three-body case#:

~7.29!

This state of affairs tells us that forN>4 and withSqÞ0, SqAÞ0, A5a, b, c, viz. when the
standard ~3N-3!-dimensional orientation-shape bundle is not trivial, the origi
~6N-6!-dimensional relative phase space admits the definition of as manydynamical body frames
as spin canonical bases,53 which are globally defined~apart isolated coordinate singularities! for
the nonsingularN-body configurations withSW qÞ0 ~and with nonzero spin for each spin subclu
ter!. Suchdynamical body framesdo not correspond to local cross sections of the static nontri
orientation-shape SO~3! principal bundle and the spin canonical bases do not coincide with
canonical bases associated with the static theory.

VIII. THE CASE OF INTERACTING PARTICLES

As shown in Ref. 26 and its bibliography, the action-at-a-distance interactions insid
Wigner hyperplane may be introduced either under the square roots~scalar and vector potentials!
or outside~scalar potential like the Coulomb one! appearing in the free Hamiltonian~2.19!.

In the rest-frame instant form the most general Hamiltonian with action-at-a-distance in
tions is

H5(
i 51

N

Ami
21Ui1@kW i2VW i #

21V, ~8.1!

whereU5U(kW k ,hW h2hW k), VW i5VW i(kW j Þ i ,hW i2hW j Þ i), V5Vo(uhW i2hW j u)1V8(kW i ,hW i2hW j ).
The rest frame Hamiltonian for the relative motion becomes

H (rel)5(
i 51

N Ami
21Ũ i1FAn (

a51

N21

gaipW qa2VW̃ i G2

1Ṽ, ~8.2!

where

Ũ i5US An (
a51

N21

gakpW qa ,
1

AN
(
a51

N21

~gah2gak!rW qaD ,

VW̃ i5VW iS An (
a51

N21

ga jÞ ipW qa ,
1

AN
(
a51

N21

~gai2ga jÞ i !rW qaD , ~8.3!

Ṽ5VoS U 1

AN
(
a51

N21

~gai2ga j!rW qaU D 1V8S An (
a51

N21

gaipW qa ,
1

AN
(
a51

N21

~gai2ga j!rW qaD .
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The price to be paid for the existence of three globaldynamical body framesfor N54 is:

~i! a more complicated form of the Hamiltonian kinetic energy~it allows, however, for a
definition of measurabledynamical vibrationsanddynamical angular velocityin each dynamical
body frame!;

~ii ! the fact that a potentialV(hW i j •hW hk) with hW i j 5hW i2hW j becomes shape-momenta depe
dent, since

V~hW i j •hW hk!5VF 1

N (
a,b

1,..,N21

~Gai2Ga j!~Gbh2Gbk!rW qa•rW qbG . ~8.4!

For N54, in the pattern ((ab)c), it follows

V5Ṽ((ab)c)@rqa ,rqb ,rqc ,uNW ((ab)c)u,g (ab) ,uNW (ab)u; j ((ab)c) ,V (ab) ; Šq
r #. ~8.5!

For more general potentialsV(hW i j •hW hk ,kW i•hW hk ,kW i•kW j ), such as that appearing in the nonre
ativistic limit of the relativistic Darwin potential of Ref. 26, more complicated expressi
emerge.

IX. CONCLUSIONS

In this paper we have explored the relativistic kinematics of a system ofN scalar positive-
energy particles. In the framework of the rest-frame instant form of dynamics it is possible t
the relativistic extension of the Abelian translational and non-Abelian rotational symmetries w
associated Noether constants of motion are fundamental for the study of isolated systems
relativistic case the rest-frame description on the Wigner hyperplanes allows one to clarify
problems by virtue of a doubling of all the concepts: they can be eitherexternal~namely observed
by an arbitrary inertial Lorentz frame! or internal ~namely observed by an inertial observer at r
inside the Wigner hyperplane!. Correspondingly, two realizations of the Poincare´ algebra are
naturally defined.

After a clarification of the possibleexternaland internal definitions of relativistic center of
mass, we have shown that it is possible to define a family of canonical transformations lead
the construction of relative canonical variables. The rest-frame Hamiltonian can be expres
terms of these variables. It turns out that, due to the presence of multiple square roots
Hamiltonian, the nonrelativistic concepts ofJacobi normal relative coordinates, reduced masses,
andbarycentric tensor of inertiacannot be extended to the relativistic formulation.

On the other hand, the rest-frame description~Wigner hyperplanes! allows one to exploit the
nonrelativistic formalism developed in Ref. 2 for the analysis of the rotational kinematics, b
independent of Jacobi coordinates. It is possible, therefore, to extend the concepts ofcanonical
spin bases, spin frames, anddynamical body framesto the relativistic level. It follows again that
because of the non-Abelian nature of rotations, a global separation of rotations from vibrati
not possible.

In a future paper36 we will conclude the discussion of relativistic kinematics by defini
Dixon’s multipoles35 for the relativisticN-body problem in the rest-frame instant form of dynam
ics. It will be shown that concepts like thetensor of inertiacan be recovered by using th
quadrupole moment.

The final task should be the extension of all these results to relativistic extended~continua!
isolated systems.

APPENDIX A: PARAMETRIZED MINKOWSKI THEORIES

We review here the main features ofparametrized Minkowski theoriesand of the canonica
reduction of gauge systems, following Refs. 9, 26, and 38, where a complete treatmentN
scalar charged positive energy particles plus the electromagnetic field is given.
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The starting point is Dirac’s12 reformulation of classical field theory on spacelike hypers
faces foliating Minkowski space–timeM4. The foliation is defined by an embeddingR3S
→M4, (t,sW )°zm(t,sW ), with S an abstract three-surface diffeomorphic toR3.

Let $St% be the resulting one-parameter family of spacelike hypersurfaces. We use the

tions s Ǎ5(st5t;sW 5$s ř%)54 and] Ǎ5]/]s Ǎ. Define the cotetrads

z
Ǎ

m
~t,sW !5] Ǎzm~t,sW !, ] B̌z

Ǎ

m
2] Ǎz

B̌

m
50, ~A1!

so that the metric onSt is

gǍB̌~t,sW !5z
Ǎ

m
~t,sW !hmnz

B̌

n
~t,sW !, egtt~t,sW !.0,

g~t,sW !52deti gǍB̌~t,sW ! i5~deti z
Ǎ

m
~t,sW ! i !2, ~A2!

g~t,sW !52detigř š~t,sW !i5deti3gř š~t,sW !i ,

wheregř š52e 3gř š , with 3gř š having positive signature (111).
If g ř š(t,sW )52e3gř š is the inverse of the three-metricgř š(t,sW ) @g ř ǔ(t,sW )gǔš(t,sW )5d š

ř#, the

inversegǍB̌(t,sW ) of gǍB̌(t,sW ) @gǍČ(t,sW )gčb̌(t,sW )5d
B̌

Ǎ
# is given by

gtt~t,sW !5
g~t,sW !

g~t,sW !
,

gt ř~t,sW !52Fgg gtǔg ǔř G~t,sW !5eFgg gtǔ
3gǔř G~t,sW !, ~A3!

gř š~t,sW !5g ř š~t,sW !1Fgg gtǔgt v̌g ǔřg v̌ šG~t,sW !52e 3gř š~t,sW !1Fgg gtǔgt v̌
3gǔř 3gv̌ šG~t,sW !,

so that 15gtČ(t,sW )gČt(t,sW ) is equivalent to

g~t,sW !

g~t,sW !
5gtt~t,sW !2g ř š~t,sW !gt ř~t,sW !gt š~t,sW !. ~A4!

We have

zt
m~t,sW !5SAg

g
l m1gt řg

ř šzš
mD ~t,sW !, ~A5!

and

hmn5z
Ǎ

m
~t,sW !gǍB̌~t,sW !z

B̌

n
~t,sW !5~ l ml n1zř

mg ř šzš
n!~t,sW !, ~A6!

where

l m~t,sW !5S 1

Ag
em

abgz
1̌

a
z

2̌

b
z

3̌

gD ~t,sW !, l 2~t,sW !51, l m~t,sW !zř
m~t,sW !50, ~A7!

is the unit~future pointing! normal toSt at zm(t,sW ).
The price to be paid for carrying out this approach is the necessity ofaddingthe embeddings

zm(t,sW ) identifying the points of the spacelike hypersurfaceSt as new configuration variables, a
a matter of fact the only ones carrying Lorentz indices. A scalar parametert labels the leaves o
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the foliation andsW are curvilinear coordinates onSt . It is then possible to redefine the fields o
St so that theyknow the whole hypersurfaceSt of t-simultaneity. For a Klein–Gordon field
f(x), this new field isf̃(t,sW )5f(z(t,sW )): it contains the nonlocal information about the em
bedding and the associated notion ofequal time. This is a parametrized field theory with
covariant 311 splitting of flat space–time which is set in a form already suited for the trans
to general relativity in its ADM canonical formulation.

The Lagrangian of a isolated system can be rewritten in the form required by the coupl
an external gravitational field, the 311 splitting of Minkowski space–time can be introduced a
all the fields of the system can replaced by new fields onSt , which are Lorentz scalars, carryin
only surface indices. Instead of considering the four-metric as describing a gravitational fiel
replaces the four-metric by the induced metricgǍB̌@z#5zǍ

mhmnzB̌
n on St ~a functional ofzm), and

considers the embedding coordinateszm(t,sW ) as independent fields. We use the notations Ǎ

5(t,s ř) of Refs. 9 and 26. ThezǍ
m(s)5]zm(s)/]s Ǎ are flat cotetrad fields on Minkowsk

space–time with thezř
m’s tangent toSt @note that in metric gravity thezǍ

m
Þ]zm/]s Ǎ are not

cotetrad fields since no holonomic coordinateszm(s) exist#.
From the rewritten Lagrangian@see Eq.~2.3! for the case ofN free scalar particles#, it follows

that: ~i! the possible constraints of the system are Lorentz scalars;~ii ! four primary first class
constraints are added to assure the independence of the description from the choice of the f
with spacelike hypersufaces:

Hm~t,sW !5rm~t,sW !2 l m~t,sW !Tsystem
tt ~t,sW !2zřm~t,sW !Tsystem

t ř ~t,sW !'0. ~A8!

Here Tsystem
tt (t,sW ), Tsystem

t ř (t,sW ), are the components of the energy–momentum tensor in
holonomic coordinate system onSt corresponding to the energy– and momentum–density of
isolated system. These four constraints satisfy an Abelian Poisson algebra since they are s
the four-momenta rm(t,sW ) conjugate to the embedding variableszm(t,sW ):
$Hm(t,sW ),Hn(t,sW 8)%50. This shows that the embedding fieldszm(t,sW ) are thegaugevariables
associated with this kind of general covariance.

The Dirac Hamiltonian is

HD5H (c)1E d3 slm~t,sW !Hm~t,sW !1~system-dependent primary constraints!, ~A9!

with lm(t,sW ) arbitrary Dirac multipliers and withH (c) the canonical Hamiltonian~it is either zero
or weakly vanishing due to system-dependent secondary constraints!. By using Eq.~A6! we can
write

lm~t,sW !H m~t,sW !5@~lml m!~ l nH n!2~lmzř
m!~3gř šzšnH n!#~t,sW !

5
def

N(flat)~t,sW !~ l mH m!~t,sW !2N(flat)ř~t,sW !~3gř šzšnH n!~t,sW !, ~A10!

with the ~nonholonomic form of the! constraints H̃(t,sW )5( l mH m)(t,sW )'0, H̃ř(t,sW )
5(zřmH m)(t,sW )'0, satisfying the universal Dirac algebra like the ADM super-Hamiltonian
supermomentum constraints.

We have thereby defined new flat lapse and shift functions

N(flat)~t,sW !5lm~t,sW !l m~t,sW !,
~A11!

N(flat)ř~t,sW !5lm~t,sW !zř
m~t,sW !.
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which have the same content of the arbitrary Dirac multiplierslm(t,sW ): they multiply primary
first class constraints satisfying the Dirac algebra. In Minkowski spacetime they are quite d
from the lapse and shift functionsN[z](flat)(t,sW )5Ag(t,sW )/g(t,sW ), N[z](flat) ř(t,sW )54gt ř(t,sW ),
defined by starting from the metric~they are functionals of the embeddings!. Only by using the

Hamilton equations zt
m(t,sW ) 5

+

$zm(t,sW ),HD%5lm(t,sW ) it follows that N[z](flat)(t,sW )

5
+

N(flat)(t,sW ), N[z](flat) ř(t,sW ) 5
+

N(flat)ř(t,sW ).
Therefore, when we consider arbitrary 311 splittings of space–time with arbitrary spacelik

hypersurfaces, the descriptions of metric gravity plus matter and the parametrized Mink
description of the same matter do not seem to follow the same pattern. The situation ch
however, if the allowed 311 splittings of space–time in ADM metric gravity are restricted
have the leaves approaching Minkowski spacelike hyperplanes at spatial infinity and if p
etrized Minkowski theories are restricted to spacelike hyperplanes.

The restriction of parametrized Minkowski theories to flat hyperplanes in Minkowski spa
time is done by adding the gauge-fixings9

zm~t,sW !2xs
m~t!2bř

m~t!s ř'0. ~A12!

Here xs
m(t) denotes a point on the hyperplaneSt chosen as an arbitrary origin for the thre

coordinates; thebř
m(t)’s form an orthonormal triad atxs

m(t), and thet-independent normal to the

family of spacelike hyperplanes isl m5bt
m5em

abgb
1̌

a
(t)b

2̌

b
(t)b

3̌

g
(t). Each hyperplane is de

scribed by ten configuration variables,xs
m(t) and the six independent degrees of freedom c

tained in the triadbř
m(t), and by the ten conjugate momenta:ps

m and six variables hidden in a spi
tensorSs

mn .9 With these twenty canonical variables it is possible to build ten Poincare´ generators
p̄s

m5ps
m , J̄s

mn5xs
mps

n2xs
nps

m1Ss
mn .

After the restriction to spacelike hyperplanes, the part*d3 slm(t,sW )Hm(t,sW ) of the Dirac
Hamiltonian is reduced to

l̃m~t!H̃m~t!2 1
2l̃

mn~t!H̃mn~t!, ~A13!

because the time constancy of the gauge-fixingszm(t,sW )2xs
m(t)2bř

m(t)s ř'0 implies~the over-
dot meansd/dt!

lm~t,sW !5l̃m~t!1l̃mn~t!bř
ns ř , ~A14!

with

l̃m~t!52 ẋs
m~t!, l̃mn~t!52l̃nm~t!5

1

2 (
ř

@ ḃř
mbř

n2bř
mḃř

n#~t!.

Since at this stage we havezř
m(t,sW )'bř

m(t), we get

zt
m~t,sW !'N[z](flat)~t,sW !l m~t,sW !1N[z](flat)

ř ~t,sW !bř
m~t,sW !

' ẋs
m~t!1ḃř

m~t!s ř52l̃m~t!2l̃mn~t!břn~t!s ř . ~A15!

Note that the coincidence of the two definitions of flat lapse and shift functions, independen
the equations of motion, is recovered at this stage only; actually

N[z](flat)~t,sW !'N(flat)~t,sW !, N[z](flat) ř~t,sW !'N(flat)ř~t,sW !. ~A16!

The independence of our description on arbitrary foliations with spacelike hyperplanes,
the choice of the particular foliation, is assured by the remaining ten first class constraints
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H̃m~t!5E d3 sH m~t,sW !5ps
m2psys

m 5ps
m

2@ total momentum of the system inside the hyperplane#m'0,
~A17!

H̃mn~t!5bř
m~t!E d3s s řH n~t,sW !2bř

n~t!E d3s s řH m~t,sW !5Ss
mn2Ssys

mn 5Ss
mn

2@ intrinsic angular momentum of the system inside the hyperplane#mn,

so that it follows

N(flat)~t,sW !5lm~t,sW !l m~t,sW !°N(flat)~t,sW !5N[z](flat)~t,sW !52l̃m~t!l m2 l ml̃mn~t!bš
n~t!s š

52l~t!2 1
2 lt š~t!s š,

N(flat)ř~t,sW !5lm~t,sW !zř
m~t,sW !°N(flat)~t,sW !5N[z](flat) ř~t,sW !52l̃m~t!bř

m~t!

2bř
m~t!l̃ (m)(n)~t!bš

n~t!s š52l ř~t!2 1
2 l ř š~t!s š,

lA~t!5l̃m~t!bA
m~t!, l̃m~t!5bm

A~t!lA~t!, ~A18!

lAB~t!5l̃mn~t!@bA
mbB

n 2bA
n bB

m#~t!52@ l̃mnbA
mbB

n #~t!,

l̃mn~t!5 1
4 @bm

Abn
B2bm

Bbn
A#~t!lAB~t!5 1

2 @bm
Abn

BlAB#~t!.

This is the main difference of the present approach with respect to the treatment of p
etrized Minkowski theories given in standard references: there, no configuration action is d
but only a phase space action, in which people use, wrongly,N[z](flat) , N[z](flat) ř instead ofN(flat) ,
N(flat)ř not only on spacelike hyperplanes but also on arbitrary spacelike hypersurfaces.

The embedding canonical variableszm(t,sW ), rm(t,sW ) are reduced to:

~i! xs
m(t),ps

m with $xs
m ,ps

n%524hmn, parametrizing the arbitrary origin of the coordinates
the family of spacelike hyperplanes. The four constraintsH m(t)'ps

m2psys
m '0 mean that

ps
m is determined by the four-momentum of the isolated system.

~ii ! bA
m(t) @momentarily we do not identify thet-dependentbt

m(t) with the normall m# and
Ss

mn52Ss
nm , with the orthonormality constraintsbA

m 4hmnbB
n 54hAB . The nonvanishing

Dirac brackets enforcing the orthonormality constraints55,9 for the bA
m’s are

$bA
r ,Ss

mn%54hrmbA
n 24hrnbA

m ,
~A19!

$Ss
mn ,Ss

ab%5Cgd
mnabSs

gd ,

with Cgd
mnab the structure constants of the Lorentz algebra.

Thenps
m , Js

mn5xs
mps

n2xs
nps

m1Ss
mn , satisfy the algebra of the Poincare´ group, withSs

mn play-
ing the role of the spin tensor. The other six constraintsH mn(t)'Ss

mn2Ssys
mn'0 entail thatSs

mn

coincides with the spin tensor of the isolated system.
The velocity of the originxs

m(t) is
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ẋs
m~t!5

+

$xs
m~t!,HD%5l̃n~t!$xs

m~t!,H m~t!%52l̃m~t!5@um~ps!u
n~ps!

2e r
m~u~ps!!e r

n~u~ps!!#ẋsn~t!52um~ps!l~t!1e r
m~u~ps!!l r~t!,

ẋs
2~t!5l2~t!2lW 2~t!.0, ẋs•u~ps!52l~t!,

~A20!

Us
m~t!5

ẋs
m~t!

Ae ẋs
2~t!

5
2l~t!um~ps!1l r~t!e r

m~u~ps!!

Al2~t!2lW 2~t!
,

⇒xs
m~t!5xs

m~0!2um~ps!E
0

t

dt1 l~t1!1e r
m~u~ps!!E

0

t

dt1 l r~t1!.

For each configuration of an isolated system with timelike total four-momentum there
privileged family of Wigner hyperplanes orthogonal tops

m (eps
2.0), namely that correspondin

to the intrinsic rest-frameof the isolated system. If we choose these hyperplanes by mea
suitable gauge fixings for the constraintsH̃mn(t)'0,9 we are left with the four constraint
H m(t)'0, which can be rewritten as

es5Aeps
2'@ invariant mass of the isolated system under investigation#5M sys,

pW sys5@32momentum of the isolated system inside the Wigner hyperplane#'0, ~A21!

HD5H (c)1l̃m~t!H̃m~t!1~system-dependent primary constraints!5H (c)1l~t!@es2M sys#

2lW ~t!•pW sys1~system-dependent primary constraints!.

There is no other restriction onps
m , becauseus

m(ps)5ps
m/Aeps

2 gives the orientation of the
Wigner hyperplanes containing the isolated system, with respect to an arbitrarily given ex
inertial observer.

In this special gauge, after the projection to Dirac brackets, we havebA
m[Lm

A(ps ,p̊s) ~the
standard Wigner boost for timelike Poincare´ orbits! andSs

mn[Ssys
mn , l̃mn(t)[0. The originxs

m(t)
does not belong to the canonical basis for these Dirac brackets anymore and is replaced
noncovariant canonical variable9

x̃s
m~t!5xs

m~t!2
1

es~ps
01es!

FpsnSs
nm1esS Ss

0m2Ss
0n

psnps
m

es
2 D G .

In general, we have the problem that in the gauges wherel̃mn(t) or l̃AB(t) are different from
zero, the foliations with leavesSt associated with arbitrary 311 splittings of Minkowski space–
time are geometricallyill-definedat spatial infinity. Therefore, the variational principle describi
the isolated system can make sense only for those 311 splittings having these parts of Dirac
multipliers vanishing. The problem is that, since on hyperplanesl̇ m50 and l m břm(t)50 imply
l mḃr m̌(t)50, Eq.~A15! implies lt ř(t)50 @i.e., only threel̃mn(t) are independent# on spacelike
hyperplane, because otherwise Lorentz boosts could generate crossing of the foliation leav
suggests that, to avoid inconsistencies, the reduction be done from arbitrary spacelike hy
faces either directly to the Wigner hyperplanes or to spacelike hypersurfaces approaching
hyperplanes asymptotically.56 Therefore, the 311 splittings of Minkowski space–time whos
leaves are Wigner hyperplanes are the only ones for which the foliation is well defined at s
infinity: both the induced proper time interval and shift functions are finite there.

In this way we have obtained a new kind of instant form of the dynamics, theWigner-
covariant one-time rest-frame instant form.9,38 For any isolated system, all the variables beco
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Wigner covariant except for theexternal canonical center of massx̃s
m , which loses Lorentz

covariance. This does not matter, however, being a completely decoupled variable. Our ap
realizes the special relativistic generalization of the nonrelativistic separation of the center o
from the relative motion@H5 PW 2/2M 1H rel#. The role of the center of mass is taken by t
Wigner hyperplane, identified by a pointx̃m(t) and its normalps

m .
Let us close the Appendix quoting some notions concerning thestandard Wigner boosts fo

timelike Poincare´ orbits.
The rest frame form of a timelike four-vectorpm is p̊m5hAep2(1;0W )5hm0hAep2, p̊2

5p2, whereh5signp0. The standard Wigner boost transformingp̊m into pm is

Lm
n~p,p̊!5en

m~u~p!!

5hn
m12

pmp̊n

ep2 2
~pm1 p̊m!~pn1 p̊n!

p• p̊1ep2

5hn
m12um~p!un~ p̊!2

~um~p!1um~ p̊!!~un~p!1un~ p̊!!

11uo~p!
,

n50, e0
m~u~p!!5um~p!5pm/hAep2, ~A22!

n5r , e r
m~u~p!!5S 2ur~p!;d r

i 2
ui~p!ur~p!

11uo~p! D .

The inverse ofLm
n(p,p̊) is Lm

n( p̊,p), the standard boost to the rest frame, defined by

Lm
n~ p̊,p!5Ln

m~p,p̊!5Lm
n~p,p̊!upW→2pW . ~A23!

Therefore, we can define the following cotetrads and tetrads:57

eA
m~u~p!!5Lm

A~p,p̊!,

em
A~u~p!!5LA

m~ p̊,p!5hABhmneB
n ~u~p!!,

em
ō ~u~p!!5hmneo

n~u~p!!5um~p!, eo
A~u~p!!5uA~p!,

~A24!

em
r ~u~p!!52d rshmne r

n~u~p!!5S d rsus~p!;d j
r2d rsd jh

uh~p!us~p!

11uo~p! D ,

em
A~u~p!!eA

n ~u~p!!5hn
m , em

A~u~p!!eB
m~u~p!!5hB

A ,

hmn5eA
m~u~p!!hABeB

n ~u~p!!5um~p!un~p!2(
r 51

3

e r
m~u~p!!e r

n~u~p!!.

The Wigner rotationcorresponding to the Lorentz transformationL is

Rm
n~L,p!5@L~ p̊,p!L21L~Lp,p̊!#m

n5S 1 0

0 Ri
j~L,p!

D ,

Ri
j~L,p!5~L21! i

j2
~L21! i

opb~L21!b
j

pr~L21!r
o1hAep2

2
pi

po1hAep2F ~L21!o
j2

~~L21!o
o21!pb~L21!b

j

pr~L21!r
o1hAep2 G .

~A25!

The polarization vectors transform under the Poincare´ transformations (a,L) as
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e r
m~u~Lp!!5~R21!r

sLm
nes

n~u~p!!. ~A26!

APPENDIX B: THE GARTENHAUS–SCHWARTZ TRANSFORMATION FOR SPINNING
PARTICLES

Reference 58 contains the rest-frame instant form description of a system ofN spinning
positive-energy particles with the intrinsic spin described by Grassmann variables.

TheN spinning particles are described on the Wigner hyperplane by a canonical basis i
ing the center-of-mass variablesx̃s

m , ps
m , the pairshW i , kW i , i 51,..,N, of Eq. ~2.16! and three

Grassmann variablesj i
r[em

r (u(ps))j i
m58 satisfying$j i

r ,j j
s%552 id rsd i j for each spin, and having

vanishing Poisson bracket with all of the other variables.
The rest-frameexternalrealization of the Poincare´ algebra is built in analogy to Eq.~2.14! but

with a modified spin tensorS̃s
mn ,

S̄W s5(
i 51

N

~hW i3kW i1S̄W i j!,

~B1!

S̄i j
r 52

i

2
e ruvj i

uj i
v , $S̄i j

r ,S̄j j
s %5d i j e

rsuS̄i j
u .

In the absence of interactions Eqs.~2.7!, ~2.8!, and~2.16! remain valid.
By using the expression ofS̄s

mn on the Wigner hyperplane given in Ref. 58 and the meth
ology of Ref. 31, theinternal realization~2.15! of the Poincare´ algebra becomes

M sys5(
i 51

N

Ami
21kW i

25(
i 51

N

Hi , Hi5Ami
21kW i

2,

kW 15(
i 51

N

kW i ~'0!,

~B2!

JW5S̄W s5(
i 51

N

~hW i3kW i1S̄W i j!5JWB1JWS , JWS5(
i 51

N

S̄W i j ,

KW 52(
i 51

N

hW iHi1(
i 51

N
S̄W i j3kW i

mi1Hi
5KW B1KW s , KW B52(

i 51

N

hW iHi .

If, following Ref. 31, we put

KW 52M sysqW 11
SW q3kW 1

AP1M sys

, P5HM
2 2kW 1

2 ,

~B3!

SW q5JW2qW 13kW 1 ,

we get consistently the expression of theinternal canonical center of massqW 1 given in Eq.~4.4!,
with SW q as the associated spin vector.

As in Sec. VI, we apply the Gartenhaus–Schwartz transformation leading from the in
canonical basishW i , kW i , jW i ~with kW 1'0! to the center-of-mass basisqW 1 , kW 1 , rW qa , pW qa , jWqi

~being againkW 1'0) with S̄W i j°SW qij . Using Eqs.~5.1! and~5.4! with KW 5KW B1KW S of Eq. ~B2!, it
is possible to find the differential equations for thea-dependence of the various quantities.
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Since $pW a ,KW S%50, pW qa5 lima→` pW a(a) is the same as in the spinless case; thepW qa’s are
given in Eq.~5.13!. Here tooP is an invariant and it holdsAP5HM(`)5H (rel)5( i 51

N Hi(`)
with Hi(`)5(M sysHi2kW 1•kW i)/AP. Moreover,nW 15kW 1 /ukW 1u is invariant.

For the spin variablesS̄W i j we obtain

dS̄i j
r ~a!

da
5$S̄i j

r ~a!,qW 1~a!•kW 1~a!%5H KW ~a!•kW 1~a!

HM~a!
,S̄i j

r J 5
k1

s ~a!

HM~a!
$KS

s~a!,S̄i j
r ~a!%

5
@~kW 1~a!3kW i~a!!3S̄W i j~a!# r

HM~a!~mi1Hi~a!!
,

~B4!

⇒ dS̄W i j~a!

du~a!
5

~nW 13kW i~a!!3S̄W i j~a!

mi1Hi~a!
.

This equation coincides with Eq.~3.10! of Ref. 45. By using Eq.~3.11! of Ref. 45, its

integration provides theThomas precessionof the spin variableS̄W i j about an axiskW i3nW 1 in the
instantaneous center-of-mass frame:59

S̄W i j~a!5cosg~a!S̄W i j1@12cosg~a!#~vW i•S̄W i j!vW i2sing~a!vW i3S̄W i j ,

vW i5
kW i3nW 1

ukW i3nW 1u
,

tg
g~a!

2
5

12cosg~a!

sing~a!
5

ukW i3nW 1u

~mi1Hi !ctgh
u~a!

2
2kW i•nW 1

→a→`

ukW i3kW 1u

~mi1Hi !~M sys1AP!2kW i•kW 1

'0, F tg
g~`!

2
5

M sys1AP

ukW 1u G , ~B5!

sing~a!52

~mi1Hi !ctgh
u~a!

2
2kW i•nW 1

ukW i3nW 1u21F ~mi1Hi !ctgh
u~a!

2
2kW i•nW 1G2 ukW i3nW 1u,

cosg~a!5122
ukW i3nW 1u2

ukW i3nW 1u21F ~mi1Hi !ctgh
u~a!

2
2kW i•nW 1G2 .

Therefore, we obtain

SW qij5 lima→` S̄W i j~a!5F12
ukW i3kW 1u2

~mi1Hi !~mi1Hi~`!!~M sys1AP!AP
G S̄W i j

1
kW i3kW 1•S̄W i jkW i3kW 1

~mi1Hi !~mi1Hi~`!!~M sys1AP!AP
2

~mi1Hi !~M sys1AP!2kW i•kW 1

~mi1Hi !~mi1Hi~`!!~M sys1AP!AP
~kW i

3kW 1!3S̄W i j'S̄W i j . ~B6!
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For the Grassmann variablesjW i , we get the same differential equation

dj i
r~a!

da
5$j i

r~a!,qW 1~a!•kW 1~a!%5
@~kW 1~a!3kW i~a!!3jW i #

r

HM~a!~mi1Hi~a!!
,

⇒ djW i~a!

du~a!
5

~nW 13kW i~a!!3jW i~a!

mi1Hi~a!
,

~B7!

⇓

jWqi5 lima→` jW i~a!5F12
ukW i3kW 1u2

~mi1Hi !~mi1Hi~`!!~M sys1AP!AP
GjW i

1
kW i3kW 1•jW ikW i3kW 1

~mi1Hi !~mi1Hi~`!!~M sys1AP!AP

2
~mi1Hi !~M sys1AP!2kW i•kW 1

~mi1Hi !~mi1Hi~`!!~M sys1AP!AP
~kW i3kW 1!3jW i'jW i .

Let us remark that now, besides the invariantsI i
(1) andI (2) of Eqs.~5.14! of the spinless case

~we haveI (2)5I B
(2)1I S

(2) sinceKW 5KW B1KW S), we have the additional invariants

I i
(3)5~kW i3nW 1!•S̄W i j ,

~B8!

I (2)5I B
(2)1I S

(2) , I S
(2)5

ukW 1u
HM

(
i 51

N I i
(3)

mi1Hi
.

Consider now the position vectors. As in the spinless case, the preliminary calculations f
~5.19! now give

d

da
nW 1•hW i~a!52

nW 1•hW i~a!

Hi~a!

dHi~a!

da
2

I i
(1)I (2)

Hi~a!

dJ(1)~a!

da
2

1

Hi~a!

dHi~a!

da

I i
(3)

~mi1Hi~a!!2 .

~B9!

These equations have the solution

nW 1•hW i~a!5
Hi

Hi~a!
nW 1•hW i2

I (2)

ukW 1u S ea2
Hi

Hi~a! D1
I i

(3)

Hi~a! S 1

mi1Hi~a!
2

1

mi1Hi
D . ~B10!

For hW i(a) it follows
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dhW i~a!

da
5$hW i~a!,kW 1~a!•qW 1~a!%52n1

s ]

]kW i~a!

ukW 1~a!uKs~a!

HM~a!
5nW 1•hW i~a!

ukW 1~a!ukW i~a!

Hi~a!HM~a!

1
( j 51

N H j~a!nW 1•hW j~a!

HM~a!
F ukW 1~a!ukW i~a!

Hi~a!HM~a!
2nW 1G1

nW 1•~S̄W i j~a!3kW i~a!!ukW 1~a!ukW i~a!

HM~a!Hi~a!~mi1Hi~a!!2

2
ukW 1~a!unW 13S̄W i j~a!

HM~a!~mi1Hi~a!!
5

Hi ukW 1~a!ukW i~a!

Hi
2~a!HM~a!

FnW 1•hW i1
I (2)

ukW 1uG2
nW 1•KW ~a!nW 1

HM~a!

1
kW i~a!ukW 1~a!u
Hi~a!HM~a!

nW 1•~S̄W i j~a!3kW i~a!!

~mi1Hi~a!!2 1
I i

(3)

Hi~a! F 1

mi1Hi~a!
2

1

mi1Hi
G

2
ukW 1~a!unW 13S̄W i j~a!

HM~a!~mi1Hi~a!!
. ~B11!

The equations forrW a(a)5AN( i 51
N gaihW i(a) are @see Eq.~3.21! of Ref. 45#

drW a~a!

da
5AN(

i 51

N

gai

dhW i~a!

da
5AN(

i 51

N

gai

Hi ukW 1~a!ukW i~a!

Hi
2~a!

S nW 1•hW i1
I (2)

ukW 1u D
1AN(

i 51

N

gai

kW i~a!

Hi~a!
F ukW 1~a!u

HM~a!

nW 1•~S̄W i j3kW i~a!!

~mi1Hi~a!!2 1
I i

(3)ukW 1~a!u
HiHM~a! S 1

mi1Hi~a!

2
1

mi1Hi
D G1AN(

i 51

N

gai

ukW 1~a!unW 13S̄W i j~a!

HM~a!~mi1Hi~a!!
. ~B12!

By using the results contained in Ref. 45 this equation can be integrated and the final re

rW a~a!5rW a2 (
i , j 51

N

(
b51

N21

ga j~gbi2gb j!
HiH j

M sys
JW j

(2)~a!nW 1•rW b

1AN(
i 51

N I i
(3)

M sys~mi1Hi !
(
j 51

N

ga j

kW j~a!

H j~a!
shu~a!

1AN(
i 51

N
gai

~mi1Hi~a!!~mi1Hi !
F I i

(3)~kW i2unW 1•kW i unW 1shu~a!

Hi~a!
1

I i
(3)@Hi2Hi~a!#nW 1

Hi~a!

1@chu~a!21#nW 1•S̄W i jkW i3nW 12shu~a!
~mi1Hi !@chu~a!11#2nW 1•kW ishu~a!

chu~a!11
G .

~B13!

Finally we get
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rW qa5 lima→` rW a~a!5rW a2 (
i , j 51

N

(
b51

N21

ga j~gbi2gb j!
Hi

M sys
F ukW 1ukW j~`!

H j~`!AP
1S M sys

AP
21D nW 1GnW 1•rW b

1AN(
i 51

N I i
(3)

M sys~mi1Hi !
(
j 51

N

ga j

ukW 1ukW j~`!

H j~`!AP
1AN(

i 51

N
gai

~mi1Hi !~mi1Hi~`!!
F ukW 1uI i

(3)

Hi~`!AP
~kW i

2nW 1•kW inW 1!1
I i

(3)~Hi2Hi~`!!

Hi~`!
1

~M sys2AP!nW 1•S̄W i j

AP
kW i3nW 1

2
ukW 1u

AP

~mi1Hi !~M sys1AP!2ukW 1unW 1•kW i

M sys2AP
nW 13S̄W i jG'rW a . ~B14!

In the same way we obtain, as in the spinless case:

JWS~a!5(
i 51

N

@hW i~a!3kW i~a!1S̄W i j~a!#

→a→` SW q5 (
a51

N21

rW qa3pW qa1(
i 51

N

SW qij . ~B15!
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Path integrals for boundaries and topological constraints:
A white noise functional approach
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Using the Streit–Hida formulation where the Feynman path integral is realized in
the framework of white noise analysis, we evaluate the quantum propagator for
systems with boundaries and topological constraints. In particular, the Feynman
integrand is given as generalized white noise functionals for systems with flat wall
boundaries and periodic constraints. Under a suitable Gauss–Fourier transform of
these functionals the quantum propagator is obtained for:~a! the infinite wall po-
tential; ~b! a particle in a box;~c! a particle constrained to move in a circle; and~d!
the Aharonov–Bohm system. The energy spectrum and eigenfunctions are obtained
in all four cases. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1456254#

I. INTRODUCTION

In 1983, Streit and Hida1 used white noise analysis2–4 to provide a more rigorous basis for th
Feynman path integral.5 This approach, where the Feynman integrand is identified as a genera
white noise functional, was subsequently developed6 and applied to various quantum mechanic
systems including time-dependent potentials.7–12 In this paper, we shall employ the same wh
noise functional approach1 to evaluate the Feynman path integral for systems with constra
brought about by specified boundary and topological conditions. We begin with a brief revie
the white noise functional approach in Sec. II. The free particle propagator is then evaluated
example and basic tool in the treatment of the constrained systems. Section III presen
evaluation of the propagator for flat wall boundaries such as a quantum particle in a r
bounded by an infinite wall. Then the Feynman integral for a particle in a one-dimensional bo13,14

is examined, where we employ the Poisson sum formula to evaluate the propagator. Sec
considers systems with periodic constraints exemplified by the quantum particle constrai
move in a circle.15 Here we again utilize the Poisson sum formula instead of introducing sme
wave packets as done in Ref. 16, where a white noise approach was also used. In the Aha
Bohm setup, a charged particle is constrained to move in a circle around a solenoid conta
magnetic fluxF situated at the center. We obtain the propagator for this system which re
yields the Aharonov–Bohm energy spectrum and eigenfunctions. In the limit where the flF
vanishes, one obtains the expected result for a quantum particle in a circle.15,16

II. BRIEF REVIEW

A. The Feynman path integral

The quantum mechanical propagator,^x1uexp(2iHt)ux0&5K(x1,tux0,0), in nonrelativistic quan-
tum mechanics can be calculated using Feynman’s prescription of summing over all possible
or ‘‘histories’’ of the particle which start atx0 and end atx1 . This prescription is symbolically
written as

a!Electronic mail: cbernido@mozcom.com
17280022-2488/2002/43(4)/1728/9/$19.00 © 2002 American Institute of Physics
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K~x1 ,tux0,0!5E expS i

\
SDD@x#, ~2.1!

whereS is the classical action for a particle of massm subjected to a potentialV(x) given by

S5E
0

tF1

2
m ẋ22V~x!Gdt. ~2.2!

A useful procedure in the explicit calculation of the path integral equation~2.1! is to slice the time
interval N times, i.e.,t/N5t j2t j 215e j ( j 51, . . . ,N), to obtain the time-sliced form,5

K~x1 ,tux0,0!5 lim
N→`

E )
j 51

N

Aj expS i

\
Sj D )

j 51

N21

d@xj #, ~2.3!

where,xj5x(t j ), Sj is the short-time action, andAj5Am/2p i\e j is the normalization. Although
numerous quantum mechanical problems are solved using this prescription of Feynman,17 there is
still continuing effort to investigate the mathematical meaning of the Feynman path inte
Specifically, the integral, Eq.~2.1! or Eq. ~2.3!, with its infinite-dimensional flat ‘‘measure’’D@x#
or )d@xj # is not mathematically well defined. There are several approaches for providin
Feynman integral with a more solid mathematical foundation,18 but what we shall follow in this
paper is the approach of Streit and Hida,1 which utilizes the infinite-dimensional white nois
calculus.

B. White noise analysis and the Feynman integral

What is referred to as white noisev(t) is a random process defined as the time derivative
the Brownian motionB(t), i.e.,

v~ t !5dB~ t !/dt. ~2.4!

Therefore, the white noisev(t) may be viewed as the ‘‘velocity’’ of a Brownian motion. Alter
natively, Wiener’s Brownian motionB(t) is represented by

B~ t !5E
0

t

v~t!dt. ~2.5!

White noise calculus was introduced by Hida in 197519 as a novel approach to infinite dimen
sional analysis. The basic idea was to take the collection of infinitely many independent ra
variables,$v(t);tPR%, and treat them as the coordinate system of an infinite dimensional s
One then proceeds to investigate generalized white noise functionals,F(v(t);tPR), instead of
functionals of Brownian motion,f (B(t);tPR).

In the framework of white noise analysis, the Feynman integral is treated as the ‘‘averag
all paths’’ with a well-defined generalized white noise functional, or Hida distribution, as
weight.2,6 The pathsx(t) which start atx0 are parametrized as

x~ t !5x01S \

m D 1/2E
0

t

v~t!dt, ~2.6!

in terms of the white noise random variablev(t). Here,m is the mass of the particle. With this
the velocity of the particle becomes (dx/dt)5A\/mv, enabling us to write the exponential o
( i /\)S0 , whereS0 is the action for the free particle, as

expS i

\
S0D5expF i

\ E
0

tS 1

2
m ẋ2DdtG5expF i

2 E0

t

v~t!2 dtG . ~2.7!

The next step is to interpret the Feynman integration over all paths, limN→` Pd@xj # or d`x, in
terms of integration over the Gaussian white noise measure dm(v):2,6
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dm~v!5Nv expS 2
1

2 E v~t!2 dt Dd`v. ~2.8!

We observe that, in the framework of white noise analysis, Feynman’s flat ‘‘measure’’Nd`x
would correspond toNvd`v5exp@(1/2)*v(t)2 dt#dm(v). With this, we also get the correspon
dence (\51),

exp~ iS0!D@x#→N expF S i 11

2 D E
0

t

v~t!2 dtGdm~v!, ~2.9!

whereN is a suitable normalization factor.
The paths in the Feynman integral begin atx0 and end atx1 . However, the parametrization o

the pathsx(t) in Eq. ~2.6! shows that only the initial pointx0 is fixed from where the random
Brownian motion begins. We, therefore, fix the end point of the trajectories by means o
Donsker delta function,2,16 d(x(t)2x1), wherex(t) is given by Eq.~2.6!, such that at timet the
particle is at the final pointx1 . The Feynman integrand can now be represented by

I ~x1 ,tux0,0!5N expF S i 11

2 D E
0

t

v~t!2 dtGdS x01~\/m!1/2E
0

t

v~t!dt2x1D , ~2.10!

in terms of the Gauss kernel,

I 05N expF S i 11

2 D E
0

t

v~t!2 dtG . ~2.11!

Equipped with the Feynman integrand as a generalized white noise functional, and the
sure in white noise space, the path integral is obtained by performing a ‘‘T-transform’’ of the
Feynman integrand. Explicitly, this is defined as2–4

~TF!~j!5E expS i E v~t!j~t!dt DF~v!dm~v!, ~2.12!

with jPS, FPS* , for the tripleS,L2(m),S* , the S* being the white noise measure spac
Here dm(v) is the Gaussian white noise measure2–4 characterized by its Fourier transform,

E exp~ i ^v,j&!dm~v!5expS 2
1

2 E j2 dt D5C~j!, ~2.13!

whereC(j) is the characteristic functional. For example, theT-transform ofI 0 , Eq. ~2.11!, is2,6

~TI0!~j!5expS 2
i

2 E j2 dt D . ~2.14!

Similarly, theT-transform of the functionalI (x1 ,tux0,0), Eq.~2.10!, is given by (\5m51)2

~TI !~j!5
1

~2p i t !1/2expF2
i

2 E0

t

j2~t!dtG3expF i

~2t ! S E0

t

j~t!dt1x12x0D 2G . ~2.15!

The I (x1 ,tux0,0), identified as the Feynman integrand, exists as a Hida distribution.2,6 For j50,
this yields the free particle propagator,

K~x1 ,tux0,0!5~TI !~0!5
1

~2p i t !1/2expF i

~2t !
~x12x0!2G . ~2.16!

We shall now employ this white noise approach to problems with boundaries and systems i
ing topologically inequivalent paths.
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III. FLAT WALL BOUNDARIES

A. Infinite wall

We first consider a quantum particle of massm in a potential which describes an infinite wa
at the origin, i.e.,

V~x!5` for x<0

50 for x.0. ~3.1!

Classically, for a particle which goes fromx0 to x1 there are two possible paths: the first is a pa
that goes directly from the initial to the final point, and the second describes a path fromx0 that
is reflected by the wall before arriving atx1 . Quantum mechanically, the particle propaga
should satisfy the boundary condition,

K~x1 ,x0!50

at x150 or x050, ~3.2!

together with

lim
t→0

K~x1 ,x0 ;t !5d~x12x0!. ~3.3!

To obtain the propagator for the infinite wall problem we use the path parametrization o
~2.6! and write the linear combination of white noise functionals,

I W~x1 ,tux0,0!5I 0dS x01~1/m!1/2E
0

t

v~t!dt2x1D 2I 0dS 2x01~1/m!1/2E
0

t

v~t!dt2x1D ,

~3.4!

whereI 0 is the Gauss kernel given by Eq.~2.11!. For a propagator which satisfies the bounda
condition, Eq.~3.2!, the combination of the type given by Eq.~3.4! has been discussed in th
literature,15,20,21where the second term arises from particle trajectories originating from an im
point, 2x0 , and arriving atx1 .

Writing the delta function in terms of its Fourier representation we express the function
Eq. ~3.4! as (\51)

I W~x1 ,tux0,0!5
1

2p E
2`

1`

$exp@ ik~x02x1!#2exp@2 ik~x01x1!#%

3I 0 expF ~ ik/Am!E
0

t

v~t!dtGdk. ~3.5!

We then perform theT-transform of Eq.~3.5! following the definition in Eq.~2.12!,

~TIW!~j!5
1

2p E
2`

1`

$exp@ ik~x02x1!#2exp@2 ik~x01x1!#%TS I 0S j1
k

Am
D D dk

5
1

2p E
2`

1`

$exp@ ik~x02x1!#2exp@2 ik~x01x1!#%expS 2
i

2 E0

t

@j1~k/Am!#2 dt D dk.

~3.6!

With j50, the usual quantum propagator (TIW)(0)5KW(x1 ,tux0,0) can be obtained:
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KW~x1 ,tux0,0!5E
2`

1`

Ck~x0!Ck~x1!exp~2 iEkt !dk, ~3.7!

where the energy is,Ek5(k2/2m), and the eigenfunction is given byCk(x)5(1/Ap)sin(kx).

B. Particle in a box

We next consider the Feynman integral for a particle of massm confined to move in a
one-dimensional box of lengthL, with sides located atx50 andx5L. Classically, the paths o
the particle in a box can be categorized into four classes.15 The first goes directly fromx0 to x1

without hitting the walls; the second type of path hits the wall atx50 before arriving atx1 ; the
third leavesx0 and is reflected from the wall atx5L before reachingx1 ; and the fourth class
describes a path which bounces once from the boundary atx50 and also once from the wall a
x5L before reachingx1 . The other paths belonging to any of the four classes describe a pa
bouncing back and forth inside the box of lengthL and, therefore, traveling an additional distan
of 2Ln(n50,1,2,. . . ).

Quantum mechanically, the particle propagatorK(x1 ,x0 ;t) has to satisfy the boundary con
ditions

K~x1,0;t !5K~x1 ,L;t !5K~0,x0 ;t !5K~L,x0 ;t !50, ~3.8!

aside from the requirement

lim
t→0

K~x1 , x0 ;t !5d~x12x0!. ~3.9!

Using the form of the Feynman functional for a free particle, Eq.~2.10!, the white noise functiona
for a particle in a box can be written as

I B~x1 , tux0,0!5 (
n52`

1`

I 0Cn~x1 , tux0,0!, ~3.10!

where14

2Cn~x1 , tux0,0!5d~x~ t !2x112Ln!1d~2x~ t !1x112Ln!2d~x~ t !1x112Ln!

2d~2x~ t !2x112Ln! ~3.11!

with x(t) given by Eq.~2.6!. The (2Ln) in the delta function describes the fact that the parti
leaving x0 can bounce back and forth inside the box of lengthL before arriving atx1 . In Eq.
~3.11! we observe that the first two terms, as well as the last two terms can be comb
respectively, so that Eq~3.10! can be written as

I B~x1 , tux0,0!5 (
n52`

1`

I 0H dS x01~1/m!1/2E
0

t

v~t! dt2x112LnD
2dS x01~1/m!1/2E

0

t

v~t! dt1x112LnD J . ~3.12!

We now writed(x(t)2x112Ln)5(p/L) d((p/L)@x(t)2x1#12pn), wherex(t) is given by Eq.
~2.6!. We can then apply the Poisson sum formula,22

(
n52`

`

d~f12pn!5~1/2p! (
m52`

`

exp~ imf!, ~3.13!
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and write Eq.~3.12! as

I B~x1 , tux0,0!5~1/2L ! (
m52`

1`

I 0 expF ~ imp/LAm!E
0

t

v~t! dtG
3$exp@~ imp/L !~x02x1!#2exp@~ imp/L !~x01x1!#%. ~3.14!

Taking theT-transform of the functional in Eq.~3.14! we get

~TIB!~j!5~1/2L ! (
m52`

1`

~TI0!~j1~mp/LAm!!

3$exp@~ imp/L !~x02x1!#2exp@~ imp/L !~x01x1!#%

5~1/2L ! (
m52`

1`

expF2
i

2 E0

tS j1
mp

LAm
D 2

dtG
3$exp@~ imp/L !~x02x1!#2exp@~ imp/L !~x01x1!#%. ~3.15!

Taking j50, we obtain the propagator,

KB~x1 , tux0,0!5~TIB!~0!5~1/2L ! (
m52`

1`

exp@2~ i /2!~mp/LAm!2t#

3$exp@~ imp/L !~x02x1!#2exp@~ imp/L !~x01x1!#%

5~1/2L ! (
m52`

1`

exp@2~ i /2!~mp/LAm!2t#

3F cosS mp

L
~x02x1! D2cosS mp

L
~x01x1! D G , ~3.16!

with the sum over terms such as sin((mp/L) (x02x1)) giving a zero contribution. Equation~3.16!
can be written in the symmetrized form,

KB~x1 , tux0,0!5 (
m52`

1`

fm~x0! fm~x1!exp~2 iEmt !, ~3.17!

where Em5m2p2/2mL2 and fm(x)5(1/AL)sin(mpx/L) are the energy eigenvalues and eige
functions for a quantum particle in a one-dimensional box.

IV. SYSTEMS WITH TOPOLOGICAL CONSTRAINTS

A. Quantum particle in a circle

In this section, we consider white noise functionals for a quantum system in a space wh
multiply connected.15,23–25In particular, we treat the case of a particle constrained to move
circle. This has been examined in the context of white noise analysis using smeared wave
in Ref. 16. In contrast to this earlier work, we shall employ the Poisson sum formula, Eq.~3.13!,
to facilitate the evaluation of the propagator.

Let us begin by expressing the paths of the particle in a circle as (\51; t050),

q~ t !5q01
1

AI
E

0

t

v~t! dt, ~4.1!
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whereI 5mR2, for a particle of massm and a circle of radiusR. We then note that the particl
starting at a pointq0 can move clockwise, or counterclockwise, before reaching a final pointq1 .
The particle may even wind around the circlen times counterclockwise~for n positive!, or un
11u times clockwise~for n negative! before stopping atq1 . In contrast to Eq.~2.10! for the free
particle, we must sum over all possible paths with different winding numbers and utilize
winding number decomposition of the propagator15,23,24to write

I C~q1 , tuq0,0!5 (
n52`

1`

I 0 dS q01
1

AI
E

0

t

v~t! dt2q112pnD , ~4.2!

wheren is the winding number, and the kinetic partI 0 is given by Eq.~2.11!.
Use of the Poisson sum formula, Eq.~3.13!, in the functional Eq.~4.2! gives

I C~q1 , tuq0,0!5~1/2p! (
m52`

1`

I 0 expF imS q01
1

AI
E

0

t

v~t! dt2q1D G . ~4.3!

Taking theT-transform we get

~TIC!~j!5~1/2p! (
m52`

1`

exp@ im~q02q1!#S TF I 0 expS ~ im/AI !E
0

t

v~t! dt D G D ~j!

5~1/2p! (
m52`

1`

exp@ im~q02q1!# @~TI0!~j1~m/AI !!#

5~1/2p!expS 2 i

2 E j2 dt D (
m52`

1`

exp@ im~q02q1!#expF2 im2t

2I
2

im

AI
E

0

t

j~t!dtG .

~4.4!

For j50, this yields the propagator for a charged particle constrained to move in a circle,

K~q1 , tuq0,0!5~TIC!~0!5~1/2p! (
m52`

1`

exp@ im~q02q1!2 iEmt#, ~4.5!

where the energy isEm5m2/2mR2 in terms of the angular quantum number,m.

B. The Aharonov–Bohm set up

The Aharonov–Bohm setup26–28 can be described by a charged particle which moves
space with an impenetrable solenoid of radiusR0 that carries a fluxF. For a solenoid oriented
along thez axis, we can make use of the symmetry of the problem and look at the cross se
or the (x–y) plane, where the Lagrangian for the particle is given by

L5
1

2
mrẆ21

e

c
AW •rẆ. ~4.6!

Here,m is the mass of the particle,rẆ5(drW/dt), and the vector potential is given by

AW 5
F

2p

~2y î1x ĵ !

x21y2 , x21y2.R0 , ~4.7!

such that the magnetic field is,BW 5¹W 3AW 50, outside the solenoid. In polar coordinates,rW
5(r ,q), the potential in the Lagrangian has the form
                                                                                                                



ted at

the

umber
an,

etic

move

d

1735J. Math. Phys., Vol. 43, No. 4, April 2002 Path integrals for boundaries

                    
e

c
AW •rẆ5

eF

2pc
q̇. ~4.8!

By constraining the particle to move in a circle with the solenoid at the center and loca
the origin, the Lagrangian, Eq.~4.6!, acquires the following form:

L5
1

2
I q̇21

eF

2pc
q̇, ~4.9!

where,I 5mR2. The problem can now be cast in the language of white noise by modeling
paths of the particle using Eq.~4.1!, such that Eq.~4.9! can be written as

L5
1

2
v21

eF

2pcAI
v. ~4.10!

As in the case of a particle in a circle discussed previously, we can again use the winding n
decomposition of the propagator,15,23,24with n being the winding number, and use the Lagrangi
Eq. ~4.10!, for the Aharonov–Bohm setup to write

I AB~q1 , tuq0,0!5 (
n52`

1`

I 0 dS q01
1

AI
E

0

t

v~t! dt2q112pnD expF i ~a/AI !E
0

t

v~t! dtG ,
~4.11!

whereI 0 is given by Eq.~2.11! and the last factor contains the potential term with the magn
flux, a5eF/2pc. Using the Poisson sum formula, Eq.~3.13!, the functional, Eq.~4.11!, becomes

I AB~q1 , tuq0,0!5~1/2p! (
m52`

1`

I 0 exp@ im~q02q1!#expF i @~m1a!/AI # E
0

t

v~t!dtG ,
~4.12!

whoseT-transform gives us

~TIAB!~j!5~1/2p! (
m52`

1`

exp@ im~q02q1!#S TF I 0 expS i ~m1a!

AI
E

0

t

v~t! dt D G D ~j!

5~1/2p! (
m52`

1`

exp@ im~q02q1!# F ~TI0!S j1
~m1a!

AI
D G

5~1/2p!expS 2 i

2 E j2 dt D (
m52`

1`

exp@ im~q02q1!#

3expF2 i ~m1a!2t

2I
2

i ~m1a!

AI
E

0

t

j~t!dtG . ~4.13!

For j50, this yields the Aharonov–Bohm propagator for a charged particle constrained to
in a circle,

KAB~q1 , tuq0,0!5~TIAB!~0!5~1/2p! (
m52`

1`

exp@ im~q02q1!2 iEmt#, ~4.14!

where the energy isEm5@m1(eF/2pc)#2/2mR2, with m the angular quantum number modifie
by the magnetic fluxeF/2pc. For the case where the magnetic fluxF50, the Aharonov–Bohm
propagator reduces to that of the particle in a circle discussed in the previous section.
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V. CONCLUSION

In this paper, Feynman integrals for some systems with boundaries or constraints hav
explicitly evaluated using the white noise functional approach. This approach was first intro
by Streit and Hida in Ref. 1, where they constructed the Feynman integral in the framewo
white noise analysis. This infinite dimensional calculus provides a natural setting for the
over all trajectories’’ while quantum analysis is done in real time without resort to time slic5

Several quantum systems have been treated explicitly using this method,7–12 and this paper adds
topologically constrained systems to the list. These solvable examples should shed more l
the true mathematical meaning of the Feynman integral, as well as pave the way for the tre
of more complicated systems with boundaries and nontrivial non-Gaussian systems.
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We analyze the expansion of the fuzzy sphere noncommutative product in powers
of the noncommutativity parameter. To analyze this expansion we develop a graphi-
cal technique that uses spin networks. This technique is potentially interesting in its
own right as introducing spin networks of Penrose into noncommutative geometry.
Our analysis leads to a clarification of the link between the fuzzy sphere noncom-
mutative product and the usual deformation quantization of the sphere in terms of
the!-product. © 2002 American Institute of Physics.@DOI: 10.1063/1.1456255#

I. INTRODUCTION

This paper originated from an observation that manipulating with functions on the f
sphere is equivalent to manipulating with certain SU~2! spin networks. Although this observatio
is nothing more than a reinterpretation of the construction1 of noncommutative sphere spheric
harmonics, it does bring spin networks of Penrose2 into the subject of noncommutative geomet
and is thus interesting as providing an unusual perspective on noncommutative manifolds.

In this paper we would like to illustrate the usage of spin networks by deriving some
about the noncommutative product on the fuzzy sphere. The fuzzy sphere of Ref. 3 gives
the simplest examples of noncommutative spaces. In this reference the fuzzy sphere is con
by replacing the algebra of polynomials on the sphere by the noncommutative algebra gen
by Pauli matrices taken in a fixed irreducible representation of SU~2!. More precisely, the algebra
of functions fromL2(S2) is thought of as the algebra of polynomials inxiPR3 modulo the relation
ixi251. We set the radius of the sphere to be 1. One then quantizes the coordinatesxi via

xi→X̂i
ª

Ĵi

AN

2 S N

2
11D , ~1.1!

whereĴi are the generators ofsu~2!, satisfying@ Ĵi ,Ĵ j #5 i e i jk Ĵk, taken in the (N11)-dimensional
irreducible representation of SU~2!. The factor in~1.1! is adjusted precisely in such a way that t
‘‘quantized’’ coordinatesX̂i square to one. The rule~1.1! gives quantization of the monomials o
order one in coordinates. Monomials of order up toN are quantized by replacing the products
the coordinatesxi by the symmetrized products of matricesX̂i ~see more on this map in Sec. III!.
Monomials of order (N11) and higher become linearly dependent of lower order monomials
that the algebra of functions on the fuzzy sphere is finite dimensional. The integral overS2 is
replaced by the trace:

a!Electronic mail: freidel@ens-lyon.fr
b!UMR 5672 du CNRS
c!Electronic mail: krasnov@cosmic.physics.ucsb.edu
17370022-2488/2002/43(4)/1737/18/$19.00 © 2002 American Institute of Physics
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E
S2

→ 1

~N11!
Tr. ~1.2!

When 1/N, which plays the role of the parameter of noncommutativity, is taken to zero,
commutator ofX̂i vanishes, and the algebra of functions on the noncommutative sphere redu
the commutative algebra. The trace~1.2! then reduces to the usual integral. It is in this sense
the fuzzy sphere reduces to the usualS2 when the noncommutativity parameter is sent to zero.
more details on this construction see, e.g., Ref. 3.

In practice one would like to have a more explicit description of the above-noted quantiz
map. In particular, any function on the sphere can be decomposed into the basis of sp
harmonics, and one would like to know the matrices into which the spherical harmonics ar
under the quantization map. This was described in Ref. 1, where it was realized that the c
nents of these matrices are given by certain Clebsch–Gordan coefficients. Interestingly,
appeared before the introduction of the notion of fuzzy sphere in Ref. 3, and contained esse
all the ingredients of the construction.

Let us now explain why one should expect the appearance of Clebsch–Gordan coefficie
3 j -symbols, as the result of the quantization map. Consider the following simple chain of iso
phisms:

End~VN/2!;VN/23~VN/2!* ; % l 51
N Vl . ~1.3!

Here Vl is the space of the irreducible representation of SU~2! of the dimension (2l 11). The
Clebsch–Gordan coefficients relate a basis on the right-hand side of~1.3! to a basis on the
left-hand side. A particular basis inVl is given by the usual spherical harmonicsYlm(u,f). Thus,
the isomorphism in~1.3! implies that everyYlm , l<N must be representable as an element
End(VN/2), that is, as an (N11)3(N11) matrix. The components of this matrix are given by t
corresponding Clebsch–Gordan coefficients. We shall write down the corresponding formu
Sec. II.

The appearance of the Clebsch–Gordan coefficients, or 3j -symbols, as components of th
matrices representing the spherical harmonics indicates that spin networks must play som
Indeed, spin networks are exactly the quantities constructed from 3j -symbols, corresponding to
their vertices, with their indices contracted in some way, the contraction being represented
spin network edges. As we shall see, the problem of calculation of the noncommutative ana
the integral of a product of a number of spherical harmonics always reduces to the evalua
a particular spin network. One of the goals of the present paper is to develop the corresp
techniques. We do this by studying in some detail the!-product on the fuzzy sphere.

Our paper partially overlaps with Ref. 4. In particular, the formula for the!-product on the
fuzzy sphere in terms of the 6j -symbol is also contained in Ref. 4. What is new in this paper is
expression for the expansion of this!-product in powers of the noncommutativity parameter. O
approach also allows us to clarify the link between the fuzzy sphere product and the deform
quantization!-product. Finally, we would like to mention Ref. 5, which also studies the qua
zation of the space of functions onS2.

A large part of the paper deals with the expansion of the!-product in powers of the noncom
mutativity parameter. As we have already mentioned, the role of noncommutativity parame
played by 1/N: the commutative limit corresponds toN→`. The limit of large size matrices als
plays a key role6 in the at first seemingly unrelated subject of SU(N) Yang–Mills theories. It is
tempting to speculate that this is not a coincidence and that there are some relations betw
two subjects. Glimpses of such a relation have started appearing in work on noncomm
geometry in string theory, see, e.g., Ref. 7. Unfortunately, we do not have more to say abo
in the present paper.
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II. SETUP

Under the quantization map the spherical harmonicsYlm(x), xPS2 are mapped into certain
(N11)3(N11) matrices, and, as explained in Sec. I, components of these matrices are giv
the Clebsch–Gordan coefficients. Before we spell out what these matrices are, let us
conventions as to what basis of spherical harmonics is used. Let us introduce, for integerl,

Q̄m
l ~x!ª i 2m^ l ,muTguv&, ~2.1!

where the bar denotes the complex conjugation,ul,m& form a highest weight normalized basis
the irreducible representation of the dimension (2l 11), and uv& is the vector~unique up to a
phase! that is invariant under the action of some fixed SO~2! subgroup of SO~3!. It is given by
uv&5u l ,0&. Then~2.1! is a function on the homogeneous space SO(3)/SO(2);S2. Using formula
~A1! for the integral of a product of two matrix elements, one gets the orthogonality relatio
Q:

E
S2

dx Q̄m
l Qm8

l 8 5
d l l 8dmm8

diml
, ~2.2!

where dx is the normalized measure on the sphere. The presence of the factor of diml5(2l 11) in
this formula~and also the usage of the normalized measure dx! is what makes ourQm

l different
from the usual spherical harmonicsYlm . The basis~2.1! satisfies

Q̄m
l 5~21!mQ2m

l . ~2.3!

Note that the same relation is satisfied by the usualYlm , so our basis is indeed only different b
a normalization.

Along with the orthogonality relation~2.2!, we will need the value of the integral of a produ
of three spherical harmonics. It is easily computed using formula~A2! for the integral of a product
of three matrix elements and definition~2.1! of the spherical harmonics. We have

E
S2

dx Qm3

l 3 ~x!Qm1

l 1 ~x!Qm2

l 2 ~x!5Ĉ0 0 0
l 3l 1l 2Ĉm3m1m2

l 3l 1l 2 . ~2.4!

Here Ĉ are Clebsch–Gordan coefficients, and we have used the fact that the right-hand
only nonzero whenm11m25m3 . Our choice of normalization for Clebsch–Gordan’s is such t
the so-called theta-symbol is always equal to one, see~2.12!. For reference, let us mention that o
coefficientsĈl are given by 1/Adiml times the Clebsch–Gordan coefficients used by Vilenkin a
Klimyk.8 The caret over the symbol of the coefficient is used precisely to indicate this differ
in normalizations. It is now not hard to see that~2.4!, together with~2.2!, implies that

Qm1

l 1 ~x!Qm2

l 2 ~x!5 (
l 35u l 12 l 2u

l 11 l 2

(
m3

diml 3
Q̂m3

l 3 ~x!Ĉ0 0 0
l 3l 1l 2Ĉm3m1m2

l 3l 1l 2 . ~2.5!

Note that, in this formula, the commutativity of the product comes from the symmetry relation
the Clebsch–Gordan, namely:

Ĉm3m2m1

l 3l 2l 1 5~21! l 32 l 12 l 2Ĉm3m1m2

l 3l 1l 2 . ~2.6!

The group SO~3! acts on functions onS2 by left shiftsTgf (x)5 f (g21x), and the functions
Qm

l (x) for fixed l span the vector spaceVl , in which the representation by shifts is irreducible.
view of the isomorphisms~1.3!, functions Qm

l (x), l<N can be mapped to (N11)3(N11)
matrices, whose components must be given by Clebsch–Gordan coefficients. These matri
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@ Q̂m
l # i j 5AN11Ĉmi j

l ~N/2!~N* /2! , ~2.7!

whereĈmi j
l (N/2)(N* /2) are Clebsch–Gordan coefficients with properties:

(
mi j

Ĉmi j
l ~N/2!~N* /2!Ĉmi j

~N/2!~N* /2!51, ~2.8!

Ĉm ji
l ~N/2!~N* /2!5~21!mĈ2mi j

l ~N/2!~N* /2! . ~2.9!

Here (N/2)* is the conjugate representation toN/2. The first of these properties is a normalizati
condition that will be explained in the following, while the second is a ‘‘quantum’’ analog:

~ Q̂m
l !†5 Qm

l̂̄ ~2.10!

of the classical property~2.3!.
We are now in the position to introduce the graphic notations that will lead us to spin netw

and somewhat explain the normalization choices made previously. We shall denote Cle
Gordan’s by a tri-valent vertex, with its three edges representing the three pairs of indices ofĈ, so
that

~2.11!

Each edge corresponds to a pair of indices: an irreducible representation~spin! and a basis vecto
in this representation. If no spin is indicated, as for the bottom edges in~2.11!, then N/2 is
assumed. Edges are oriented. The operation of complex conjugation is represented by ch
the orientation of all the edges. The origin of the graphic notation~2.11! is evident: the Clebsch–
Gordan coefficients it represents are just the matrix elements of the intertwiner between the
product ofVN/23(VN/2)* and the representationVl ; this intertwiner is represented by a trivale
vertex.

Using the graphical notation introduced, the normalization condition~2.8! is a statement abou
the value of the so-called theta graph:

~2.12!

This graph is constructed taking the product of two 3j -symbols and summing over the ‘‘internal
indices, as in~2.8!. The theta graph is the simplest spin network, and the 3j symbols we use are
normalized in precisely such a way that the value of this graph is always one.

As we mentioned in Sec. I, for the noncommutative sphere, the integral overS2 goes into the
trace. Let us now find the quantum analog of the orthogonality relation~2.2!. The corresponding
quantity is graphically represented as

~2.13!

Here † denotes the operation of taking the Hermitian conjugation, and its effect is exactly
that all ‘‘internal’’ indices are contracted as in the above-given diagram. Now using an eleme
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fact that

~2.14!

where a straight line represents the matrix element of the intertwiner between representationl and

l 8, that is, a product of Kronecker deltas, we see that the ‘‘quantum’’ spherical harmonicsQ̂ satisfy
exactly the same orthogonality relation~2.2! as the classical ones. The factor ofAN11 in ~2.7!
was adjusted precisely in such a way that this property holds.

We hope that the reader has already started appreciating the convenience of our gr
notations. Using these notations, complicated expressions are calculated by using elementa
from representation theory. Thus, the property~2.14! is proved by noticing that the left-hand sid
of this equation is an intertwiner between representationsl andl 8. Such an intertwiner only exists
when l 5 l 8, which means that the result must be proportional to the straight line. The propo
ality coefficient can be calculated by taking the trace of the whole expression, which is graph
represented by ‘‘closing’’ the open ends of the diagram. Performing this operation on the left
side, one gets the theta graph. The right-hand side gives a loop, whose value is just the dim
of the corresponding representation. We shall see other examples of such proofs in the se

Let us now, before we go to our discussion of the!-product on the fuzzy sphere, prove th
the quantization rule~2.7! does give the correct quantization of the sphere, that is, the one g
by ~1.1!. To this end, we must calculate the commutator of the noncommuting coordinateX̂i .
Recall that classically the coordinatesxi are just the spherical harmonics corresponding tol 51:

x15
1

&
~Q1

12Q21
1 !, x25

1

i&
~Q1

11Q21
1 !, x35Q0

1. ~2.15!

In the quantum case we replace the harmonicsQ1 by the corresponding matrices~2.7!. We then
must have

@X̂i ,X̂j #5 i e i jk X̂k
1

AN

2 S N

2
11D . ~2.16!

Let us show that this property indeed holds. We have

~2.17!

where the spin 1 is assumed on the vertical lines, and

~2.18!

To get the last equality we used the fact that each of the two terms is an intertwiner from a
representation of spin 1 to the tensor product of two such representations. Such an inte
must be proportional to the unique intertwiner that is given by the tri-valent vertex on the r
hand side of~2.18!. The proportionality coefficient is easily determined by closing all the o
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edges, and is given by the 6j -symbol on the right-hand side. The second term equals minus
first one, see~2.5!, which explains the factor of 2. The 3j -symbol is given by

~2.19!

and the 6j -symbol can be calculated using formula~A3!. The result is

~2.20!

Combining all this together, we see that~2.16! indeed holds.
We thus learn that the quantization rule~2.7! coincides with the standard quantization m

~1.1!, at least for the spherical harmonics of the first order. Interestingly, the result of the co
tator in the quantum case turns out to be expressed through the 6j -symbol. In the case considere
when all the spins were taken to bel 51, the commutator coincides with the classical res
However, for higher modesl one expects a deviation from the classical expressions. Th
summarized in the notion of the!-product. We shall now illustrate the described spin netw
techniques by deriving some facts about this!-product.

III. THE !N-PRODUCT

As we have stated in Sec. I, our aim is to illustrate the spin network construction by der
some facts about the fuzzy sphere noncommutative product. However, before we introdu
study this product, let us review the usual!-product that arises in the deformation quantization
R3 equipped with Poisson structure invariant under the rotation group. We will then disc
relation between this, and the fuzzy sphere product.

Let us start by recalling some general facts about!-products. A!-product gives a noncom
mutative deformation of the usual~pointwise! multiplication of functions. LetA5C`(M ) be the
space of smooth functions on a manifoldM, and suppose thatM is equipped with a Poisson
bracket$•,•%. Let us denote byA@@\## the space of formal power series with coefficients inA. A
star product onA is an associative,R@@\##-linear product onA@@\##. The product of two func-
tions onM is given by

f!c5(
n

\nBn~ f ,g!, ~3.1!

Bn(•,•) being bidifferential operators. The first term in the expansion is the usual commu
product B0( f ,g)5 f g, while the first term in the commutator is the Poisson bracketB1( f ,g)
2B1(g, f )5$ f ,g%. The Poisson bracket therefore gives the germ of deformation of the com
tative product towards the!-product. There is a notion of gauge transformation that can be de
on the set of!-products and Poisson brackets. The group of these gauge transformations c
of linear automorphisms ofA@@\## of the following form:

f→U~ f !5 f 1\U1~ f !1¯\nUn~ f !, ~3.2!

whereUi( f ) are differential operators. It acts on the set of star product as

f!Uc5U21~U~f!!U~c!!. ~3.3!

Products related by such a transformation are called equivalent.
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As is well known, whenM is the dual of a Lie algebraM5g* , there is the so-called
Kirillov–Lie Poisson structure on it, whose symplectic leaves are coadjoint orbits. The brac

$f,c%~x!5xkCk
i j ] if~x!] jc~x!, ~3.4!

wherexi are the components ofxPg* . Using the natural identification between linear functio
on g* andg one can equivalently viewxi as a basisei in g. ThenCk

i j are the structure constan
with respect to this basis. This identification extends to a natural isomorphism between the
Pol(g* ) of polynomials inxi and symmetric algebra Sym(g* ). There are several equivalent way
to introduce a deformation quantization of the Kirillov bracket. We shall refer to the ari
!-product as Kirillov!-product.

A. Universal enveloping algebra

The standard way to introduce a!-product ing* is by using the universal enveloping algeb
U~g!. Recall that the universal enveloping algebraU~g! of the Lie algebrag with generatorsei

satisfying

@ei ,ej #5\Ck
i j ek, ~3.5!

whereCk
i j are the structure constants, is the algebra generated by all polynomials in the gen

ei modulo the relationXY–YX5@X,Y# for all X, YPg. The Poincare–Birkhoff–Witt theorem
states thatU is isomorphic to the algebra Sym(g);Pol(g* ) generated by all completely symme
trized polynomials in the generators:U(g);Sym(g). Since the algebra Sym~g! is naturally iso-
morphic to the algebra Pol(g* ) of polynomial functions on the dual spaceg* , we have the
one-to-one map

s:Pol~g* !→U~g!,

xk1
¯xkn→ 1

n! (s
eks~1!

¯eks~n!,

where the sum is taken over all permutationss of n integers,xi are linear functionals ong* , and
ei are the corresponding elements ing. Using the maps, one can define the following noncom
mutative product on Pol(g* ):

~f!c!~x!5s21@s~f!s~c!#. ~3.6!

Note that this!-product explicitly depends on the deformation parameter\ because the latte
enters the commutator~3.5!. What is not so straightforward to see is that this product can
expanded in terms of differential operators. For example, one can prove the following form

~eX!Y!~x!5eX~x!F adX

12e2adX •YG~x!. ~3.7!

B. Baker–Campbell–Haussdorf formula

The Baker–Campbell–Haussdorf formula states that, given two Lie algebra elementsX,Y, the
product of the corresponding group elements can be expressed as

eX
•eY5eX1Y1C~X,Y!, ~3.8!

whereX,Y, C(X,Y)Pg and
                                                                                                                



nts

so of

f the
two

m

h

this

.
n one-
f the

ia-
eo
is

1744 J. Math. Phys., Vol. 43, No. 4, April 2002 L. Freidel and K. Krasnov

                    
X1Y1C~X,Y!5 (
m51

`
~21!~m21!

m (
ki1 l i>1

ki>0,l i>0

@Xk1Yl 1
¯XkmYl m#

k1! l 1!¯km! l m!
, ~3.9!

and @X1¯Xn#, XiPg denotes (1/n)@¯@@X1 ,X2#,X3#,...,Xn#. This is the so-called Campbell–
Hausdorff formula in the Dynkin form, see, e.g., Ref. 9. Representing the commutator as@X,Y#
5XY2YX, one can think ofC(X,Y) as a complicated sum of polynomials in the compone
Xi , Yi :

C i~X,Y!5(
i nW j mW

Ai
i nW j mW Xi 1

¯Xi n
Yj 1

¯Yj m
. ~3.10!

One then defines a!-product on the space of functions onR35g* by

~f!c!~x!5fe~1/\!~xuC~\],\]!!c, ~3.11!

where we have replaced the argumentXi of C(X,Y) by \ times the derivative]/]xi acting on the
left on f, and the argumentYi by the derivative acting on the right onc. The quantity (xuC) in
the exponential stands for the contractionxiC i . One can prove that the product~3.11! is, in fact,
the same as~3.6!. A good exposition of the relation between these two quantizations, and al
the relation of both to the Kontsevich deformation quantization, is given in Ref. 10.

C. Path integral

The third way to define the Kirillov!-product uses a version of the Cattaneo–Felder11 path
integral. For the case in question, the functiona i j (x) that determines the Poisson structure:

$f,c%5(
i j

a i j ~x!] if~x!] jc~x!, ~3.12!

is linear in x, and the action used in Ref. 11 can be given a simple form of the action o
so-called BF theory. Thus, let us consider the following theory on the unit disk. It has
dynamical fields: the fieldBi , which isg* valued, this field is the analog of the fieldXi of Ref. 11,
and theG-connectionAi , with curvatureFi(A). This connection is the analog of the one-for
field h of Ref. 11. The action is then given by

S@B,A#5E
U

BiF
i~A!, ~3.13!

where the integral is taken over the unit diskU. The!-product is then given by the following pat
integral:

~f!c!~x!5^f~B~0!!c~B~1!!&x[E
B~`!5x

DBDAf~B~0!!c~B~1!!expS 1

\ E BFD .

~3.14!

Thus, the!-product is obtained by computing the correlation function of two operators in
theory. The operators are given by functionsf, c on the values of theB field at two boundary
points 0, 1P]U. The value ofB at the third boundary point̀ is kept fixed in the path integral
One also has the boundary conditions for the connection: it is required that the connectio
form vanishes on]U on vectors tangent to the boundary. Then the perturbative expansion o
path integral~3.14! gives a noncommutative product inR3, which can be checked to be assoc
tive, and, thus, is a!-product. Since the BF action~3.13! is essentially the one used by Cattan
and Felder11 product~3.14! is the Kontsevich product.12 It can then be shown, see Ref. 10, that th
product is equivalent to the one defined using the Campbell–Hausdorff formula.
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D. !N-product

Having reviewed the usual!-product, let us introduce the noncommutative product tha
relevant in the context of the fuzzy sphere. The square integrable functions onS2 can be decom-
posed into the basis of spherical harmonics:

f~x!5(
lm

fm
l Qm

l ~x!. ~3.15!

We have a quantization map, which sends spherical harmonicsQm
l , l<N to matrices~2.11!.

Under this map, functions are sent to matrices:

f~x!→f̂5(
l 50

N

(
m

fm
l Q̂m

l ~3.16!

Note that this map is insensitive to the ‘‘high frequency’’ behavior of the function, for it cuts
all the harmonics withl .N.

Let us also construct the inverse map. To this end, we introduce a noncommutative ana
the d function:

d̂x5(
l 50

N

(
m

diml~Q̂m
l !†Qm

l ~x!. ~3.17!

Thus, the ‘‘quantum’’d-function is a matrix that in addition depends on a pointxPS2. Note that
thed-function is ‘‘real’’: d̂†5 d̂. Given an arbitrary operator~matrix! f̂ one can construct from i
a square integrable function:

f̂→f~x!5
1

N11
Tr~ d̂xf̂ !. ~3.18!

The resulting functions, of course, contain only the modes withl<N. Using thed-function ~3.17!
one can give another expression for the quantization rule~3.16!. Indeed, we have

f̂5E
S2

dx d̂xf~x!. ~3.19!

One can easily check that the composition of the quantization map~3.16! and its inverse~3.18!
give, back the function one started from with all its modesl .N cut off. Let us formalize this
introducing the notion of the projectorPN :

f→f̂→ 1

N11
Tr~ d̂xf̂ !5PNf. ~3.20!

Thus, the maps~3.16! and~3.18! are one-to-one on the space of functions that only contain mo
up toN. Let us denote this space byAN. Note thatAN5A`/KerPN , whereA` is the algebra of
all L2 functions onS2.

Having defined the quantization map, we can use it to define a noncommutative product
spaceAN via

f!Nĉ5f̂ĉ. ~3.21!

Let us emphasize that this is well defined only inAN sincef̂5PNf̂ and the product!N does not
coincide with the usual!-product reviewed previously, because they are defined on diffe
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spaces. While!N is the product on the space of functionsAN, the ‘‘real’’ !-product acts on the
space of all square integrable functionsA`. However, we are going to show that the!N-product
is related to the usual!-product via

f!Nc5PN@f!\c#u\52/~N11! . ~3.22!

Let us note that the interplay between the noncommutative product and deformation quant
was studied before, see, e.g., Ref. 13. What is new in this paper is the justification for fo
~3.22! coming from an explicit expression for the asymptotic expansion of the!N-product in
powers of the noncommutativity parameter. To find this expansion we consider the!N-product of

the modes. The product of two matricesQ̂ can be decomposed into a sum ofQ̂. A simple
calculation, similar to the one performed in~2.17!, ~2.18!, gives

~3.23!

Let us notice that the right-hand side depends onN only through the 6j -symbol ~and the square
root!, and the cutoff in the sum. Therefore, the nontrivial information about the 1/N expansion of
the !N-product is all contained in the 6j -symbol. Thus, the fuzzy sphere gives us an interes
example of a noncommutative manifold for which the!-product is not only known in terms of its
1/N derivative expansion, but also in closed form, in terms of the 6j -symbol in ~3.23!.

Let us note that~3.23! can also be written as

Qm1

l 1 !NQm2

l 2 5 (
l 350

N

P~ l 3!~Qm1

l 1
•Qm2

l 2 !C~N!~ l 1 ,l 2 ,l 3!, ~3.24!

whereP( l ) is the projector on thel th representation

PN5 (
l<N

P~ l !, ~3.25!

and

~3.26!

As we show below

~3.27!

This implies that the expansion of the functionC (N)( l 1 ,l 2 ,l 3) in powers of 1/N starts from unity.
This fact, together with relation~2.5! means that the zeroth-order term in the 1/N expansion of the
!N-product of two modesQ is given by the usual product, which is what one expects.

Before we look more closely into the details of the asymptotic expansion, let us show th
noncommutative product defined by~3.23! is indeed an associative product. Interestingly,
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associativity follows from the so-called Biedenharn–Elliott~or pentagon! identity, which reads

~3.28!

Note that although one has to sum over alll in this formula, only the terms withl<N survive. We
are also going to use the following recoupling identity:

~3.29!

Here the sum is taken over alll 6 . A proof of the associativity is then as follows:

~3.30!

Here we used the recoupling identity~3.29! to get the third line, and the pentagon identity~3.28!
to get the last line. Note that, although in the third line the sum is taken over alll 39 , in the last line,
after we used the pentagon identity, only the terms withl 39<N are nonzero. Thus, the associativi
of the product!N is intimately related to the associativity in the category of irreducible repre
tations of SU~2!, of which the Biedenharn–Elliot identity is a manifestation.

Let us now study the asymptotic expansion of the!N-product more closely. To this end, let u
rewrite formula~A3! for the 6j -symbol in a form that is convenient for taking the largeN-limit.
It is convenient to introduce, forN1a>0:

g~a;N!5
~N1a!!

N! ~N11!a . ~3.31!

@It is not hard to recognize this function as related to the one appearing in the infinite limit
definition of the G function. Indeed, g(z;n)5G(z21)/F(z21,n11), where F(z,n)
5nzn!/(z(z11)¯(z1n))5nz*0

1(12u)nuz21du, and limn→` F(z,n)5G(z)#. Since, fora.0
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g~a;N!5)
k51

a S 11
k21

N11D , ~3.32!

this function is analytic in 1/(N11), and, for positivea, is a polynomial of degreea21. We have

g~a;N!511
1

N11

a~a21!

2
1¯1S 1

N11D a21

~a21!! ~3.33!

One can similarly rewrite the functiong(2a;N), a.0 as one over a polynomial of degreea:

g~a;N!5
1

)k51
a S 12

k

N11D . ~3.34!

Using this function, the 6j -symbol can be rewritten as

~3.35!

The sum here is restricted to thosek for which the quantities inside the factorials are non-negat
Using the representations~3.32!, ~3.34! for the g function, it is not hard to deduce the analytici
properties of the 6j -symbol as a function of 1/(N11). We will need these properties in th
following, when we discuss the relation between!N and the usual!-product. Functiong(a
11;N), a.0, viewed as a function of 1/(N11), has simple zeros on the negative axes, with
closest to origin zero located at 1/(N11)521/a. Functiong(2a;N), a has simple poles on the
positive axes, with the closest to the origin pole located at 1/(N11)51/a. Then, the expression
under the square root in~3.35! can be shown to have at most simple poles and zeros on
positive axes and at most second-order zeros on the negative axes. The function inside the
~3.35! has simple poles both on the positive and negative axes. The proves that the 6j -symbol
times AN11 ~3.35! is an analytic function of 1/(N11) in the open disk of radius
min(1/l 1,1/l 2,1/l 3) around zero. Moreover, all singularities are located on the positive and neg
axes. This means that the functionC (N)( l 1 ,l 2 ,l 3) introduced in~3.26! can be analytically contin-
ued, as a function of 1/(N11), to the whole complex plane. Introducing\52/(N11) we shall
denote the analytic continuation ofC (N)( l 1 ,l 2 ,l 3) by C( l 1 ,l 2 ,l 3 :\).

It is not hard to find first terms of the expansion of 6j in powers of 1/(N11). We get

~3.36!

where we have introduced a notationCl5 l ( l 11) and we have used expression~A4! for C0 0 0
l 3l 1l 2.

This proves that the zeroth-order term is given by the usual commutative product.
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Let us introduce a notation for the prefactor in front of the sum in~3.36!:

r~ l 3 ,l 1 ,l 2!5~21! l 2l 3! F ~ l 11 l 22 l 3!!

~ l 12 l 21 l 3!! ~ l 22 l 11 l 3!! ~ l 11 l 21 l 311!! G
1/2

. ~3.37!

It can be noted that the sum in~3.36! is related to a certain Clebsch–Gordan coefficient. Nam

Ĉ1 1 0
l 3l 1l 25

1

l 3
S C3

C1
D 1/2

r~ l 3 ,l 1 ,l 2!(
k

~21!k

k!

~ l 11k!! ~ l 21 l 32k!!

~ l 12k!! ~ l 22 l 31k!!

k

~ l 32k!!
. ~3.38!

Therefore, the first-order term in the expansion, that is, the coefficient of 1/(N11) term in~3.36!
can be written as

1
2~C12C21C3!Ĉ0 0 0

l 3l 1l 22~C1C3!1/2Ĉ1 1 0
l 3l 1l 2. ~3.39!

It is now possible to prove the following two identities on Clebsch–Gordan coefficients.

~C12C21C3!Ĉ0 0 0
l 3l 1l 25~C1C3!1/2~Ĉ1 1 0

l 3l 1l 21Ĉ
21 21 0
l 3l 1l 2 !. ~3.40!

Ĉ1 1 0
l 3l 1l 25~21! l 11 l 21 l 3Ĉ

21 21 0
l 3l 1l 2 .

The first equality is just the expression of the intertwining property of the Clebsch–Go
coefficient, and the second is a symmetry relation.

These two identities imply that~3.39! is equal to zero ifl 11 l 21 l 3 is even. It is also clear tha
for odd l 11 l 21 l 3 it equals

2~C1C3!1/2Ĉ1 1 0
l 3l 1l 2. ~3.41!

However, as is shown in the Appendix, this quantity is justP( l 1 ,l 2 ,l 3), which is the coefficient
that appears in the decomposition of the Poisson bracket of two spherical harmonics. This
that the first-order term is given by the Poisson bracket.

We can summarize all of the above-mentioned results in a form of the following theore
Theorem 1: There exists a functionC( l 1 ,l 2 ,l 3 ;\), given by the analytic continuation of th

function C (N)( l 1 ,l 2 ,l 3) introduced in (3.26), which is analytic in\ in the open disk of radius
min(1/l 1,1/l 2,1/l 3) around zero, and

C~ l 1 ,l 2 ,l 3 ;\!511\C1~ l 1 ,l 2 ,l 3!1~\!2C2~ l 1 ,l 2 ,l 3!1¯ . ~3.42!

For N> l 1 ,l 2 ,l 3 ,

C~ l 1 ,l 2 ,l 3 ;\!u\52~N11!5C~N!~ l 1 ,l 2 ,l 3!. ~3.43!

The product defined via

Qm1

l 1 !\Qm2

l 2 5 (
l 350

N

P~ l 3!~Qm1

l 1
•Qm2

l 2 !C~ l 1 ,l 2 ,l 3 ;\!, ~3.44!

is an associative product. Moreover,

f!\c2c!\f5\$f,c%1o~\!,
~3.45!

PN@f#!NPN@c#5PN@f!\c#u\52/~N11! .
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The associativity follows from an analytic continuation of the Biedenharn–Elliot identity,
~3.28!. What we did not prove is that the noncommutative product~3.44! is indeed a!-product,
that is given by an expansion in terms of derivatives. This is, in principle, possible with
techniques by considering the higher terms in the expansion of the 6j -symbol. Thus, modulo this
caveat, the!\-product gives a deformation quantization of Kirillov bracket, and must thus
equivalent to the usual Kirillov!-product. Formula~3.45! then establishes a relation between t
fuzzy sphere product and Kirillov product.

We conclude by observing that expressions~3.23!, ~3.24! for the !N-product can be used to
define a noncommutative product on the so-calledq-deformed fuzzy sphere. While the usual fuz
sphere is defined as the structure covariant under the action of the group SU~2!, its q-deformed
analog is covariant under the action of the quantum groupUq(su(2)). For adefinition of the
q-deformed fuzzy sphere see, e.g., Ref. 14. Expression~3.23! can then be used to get a product
theq-deformed sphere. To this end, one should replace all objects appearing on the right-ha
of ~3.23!—the dimension, the 3j and 6j -symbols—by the correspondingq-deformed quantities.
One gets aq-deformed product. This product is still associative, for the proof~3.30! of associa-
tivity based on the pentagon identity holds for the quantum group as well. Thisq-deformed
product was discussed in Ref. 4, where the usual fuzzy sphere version~3.23! is also mentioned. It
would be quite interesting to obtain an analog of our asymptotic formula for theq-deformed
product.

ACKNOWLEDGMENTS

K.K. was supported by NSF Grant No. PHY95-07065, L.F. was supported by CNRS a
ACI-Blanche grant.

APPENDIX A: SOME FORMULAS

In the main text we use values of the integrals of a product of two and three matrix elem
These are given by

E
G

dg^ l 1 ,m1uTgu l 1 ,m18&^ l 2 ,m2uTgu l 2 ,m28&5
d l 1l 2dm1m2

dm
18m

28

diml 1

, ~A1!

and

E
G

dg^ l 3 ,m3uTgu l 3 ,m38&^ l 1 ,m1uTgu l 1 ,m18&^ l 2 ,m2uTgu l 2 ,m28&5Ĉ
m

38m
18m

28

l 3l 1l 2 Ĉm3m1m2

l 3l 1l 2 . ~A2!

Let us now give some explicit formulas for the 3j - and 6j -symbols. All these formulas are
from Ref. 8, with normalizations properly adjusted to match our conventions. We have

~A3!

Here the sum is taken over allk such that the factorials are taken of non-negative integers. U
this formula it is not hard to get the value~2.20! of the 6j -symbol for all spins being equal to 1
In this case the sum in~A3! is taken only over two valuesk50, 1 and the calculation leading t
~2.20! is straightforward.
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Let us also give an expression for the 3j -symbolC0 0 0
l 3l 1l 2. It can be obtained from the gener

expression for the 3j -symbol ~in terms of a finite sum! given in Ref. 8. Taking into account th
difference in normalizations, we get

Ĉ0 0 0
l 3l 1l 25r~ l 3 ,l 1 ,l 2!(

k

~21!k

k!

~ l 11k!! ~ l 21 l 32k!!

~ l 12k!! ~ l 22 l 31k!! ~ l 32k!!
, ~A4!

where

r~ l 3 ,l 1 ,l 2!5~21! l 1l 3! F ~ l 11 l 22 l 3!!

~ l 12 l 21 l 3!! ~ l 22 l 11 l 3!! ~ l 11 l 21 l 311!! G
1/2

. ~A5!

We should also note the formula:

Ĉ0 0 0
l l 1l 25

~21!g21g!D~ l 1 ,l 2 ,l !

~g2 l 1!! ~g2 l 2!! ~g2 l !!
, ~A6!

wherel 11 l 21 l 52g, gPZ, andD( l 1 ,l 2 ,l ) is given by

D~ l 1 ,l 2 ,l !5F ~ l 11 l 22 l !! ~ l 12 l 21 l !! ~ l 22 l 11 l !!

~ l 11 l 21 l 11!! G1/2

. ~A7!

APPENDIX B: POISSON BRACKET OF SPHERICAL HARMONICS

In this section we calculate the Poisson bracket of two spherical harmonics. The res
obtain here is compared in Sec. III with the first-order term in the expansion of the 6j -symbol in
powers of 1/N. We were not able to find a result for this Poisson bracket in the literature, s
sketch the calculation here.

We begin with some notations. LetJi be generators of the Lie algebra of SU~2!: @Ji ,Jj #
5 i e i jkJk . These generators can be realized as vector fields inR3. Denoting byxi the usual
Cartesian coordinates inR3, we get

Ji5
1

i
e i

jkxj]k . ~B1!

To calculate the Poisson bracket, it is convenient to introduce a set of complex coordina
R3. We definez5(x11 ix2)/&, x5x3 andJ65(J16 iJ2)/&, J5J3 . These new generators ca
be expressed in terms of the complex vector fields]z , ] z̄ , ]x . We have

J15x] z̄2z]x , J25 z̄]x1x]z , J5z]z2 z̄] z̄ . ~B2!

These vector fields satisfy

@J1 ,J2#5J, @J,J6#56J6 , ~B3!

and

J152J2 , J̄52J. ~B4!

The spherical harmonicsQm
l are given by

Qm
l 5am

l J2
l 2mv, ~B5!

where v is the highest weight vectorv5zl . To calculate the normalization factoram
l let us

consider the normiJ2
l 2mvi2. Using
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@J1 ,J2
n #v5

n

2
~2l 2n11!J2

n21v, ~B6!

we get

iJ2
l 2mvi25~21! l 2m^vuJ1

l 2mJ2
l 2muv&5~21! l 2m

1

2l 2m

~ l 2m!!

~ l 1m!!
~2l !! ivi2. ~B7!

An explicit calculation, using the normalized measure onS3, gives

ivi25izl i25E sin2l u5
1

~2l 11!

l !

~2l 21!!!
. ~B8!

Combining these two facts, and taking into account the normalization ofQm
l ~2.2!, we see thatam

l

is, up to a phase, given by

1

l ! S ~ l 1m!!

2m~ l 2m!! D
1/2

. ~B9!

We choose the phase factor in such a way thatQm
l coincide with the ones given by~2.1!. This

gives

am
l 5

~21! l 2m

l ! S ~ l 1m!!

2m~ l 2m!! D
1/2

. ~B10!

It is now straightforward to work out the action of vector fields]z , ] z̄ , ]x on Qm
l . We get

]zQm
l 5A1

2
~ l 1m!~ l 1m21!Qm21

l 21 ,

] z̄Qm
l 52A1

2
~ l 2m!~ l 2m21!Qm11

l 21 , ~B11!

]xQm
l 5A~ l 1m!~ l 2m!Qm

l 21.

We will also need the action of SU~2! generators onQm
l :

J1Qm
l 52A1

2
~ l 2m!~ l 1m11!Qm11

l ,

J2Qm
l 52A1

2
~ l 1m!~ l 2m11!Qm21

l , ~B12!

JQm
l 5mQm

l .

The Poisson bracket is given by

$ f ,g%5
i

sinu S ] f

]u

]g

]w
2

]g

]u

] f

]w D . ~B13!

It is normalized so that$x1 ,x2%5 ix3 . It can be expressed in terms of vector fields and genera
as

$ f ,g%5]zf J1g1] z̄f J2g1]xf Jg. ~B14!
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Using expressions~B11! and~B12! it is now straightforward to compute the Poisson brac
of two spherical harmonics. We have

$Qm1

l 1 ,Qm2

l 2 %52
1

2
~A~ l 11m1!~ l 11m121!~ l 22m2!~ l 21m211!Qm121

l 121
Qm211

l 2

2A~ l 12m1!~ l 12m121!~ l 21m2!~ l 22m211!Qm111
l 121

Qm221
l 2

22A~ l 11m1!~ l 12m1!m2Qm1

l 121
Qm2

l 2 !. ~B15!

Thus, using~2.4! we have

E $Qm1

l 1 ,Qm2

l 2 %Qm
l 52

1

2
Ĉ0 0 0

l l 121l 2 ~A~ l 11m1!~ l 11m121!~ l 22m2!~ l 21m211!Ĉm m121 m211
l l 121l 2

2A~ l 12m1!~ l 12m121!~ l 21m2!~ l 22m211!Ĉm m111 m221
l l 121 l 2

22A~ l 11m1!~ l 12m1!m2Ĉm m1m2

l l 121 l 2!. ~B16!

The requirement of gauge invariance implies that the quantity in brackets is proportional
Clebsch–Gordan coefficientĈm m1m2

l l 1l 2 , with the proportionality coefficient depending only onl 1 ,

l 2 , l. In other words, we must have

E $Qm1

l 1 ,Qm2

l 2 %Qm
l 5P~ l 1 ,l 2 ,l !Ĉm m1m2

l l 1l 2 . ~B17!

The coefficientP( l 1 ,l 2 ,l ) is proportional toĈ0 0 0
l l 121l 2 and thus is nonzero only whenl 11 l 21 l

52g21, gPZ. Since

Ĉm m2m1

l l 2l 1 5~21! l 2 l 12 l 2Ĉm m1m2

l l 1l 2 , ~B18!

for values ofl 1 , l 2 , l summing up to an odd integer the Clebsch–Gordan coefficient changes
under the exchange ofl 1 with l 2 . Because the Poisson bracket must be antisymmetric, the c
ficient P( l 1 ,l 2 ,l ) must be symmetric under the exchange ofl 1 with l 2 . Let us now determine this
coefficient. It can be determined, for example, by choosingl 5m and using

Ĉl j l 2 j
l l 1l 2 5~21! l 12 j

~ l 11 l 22 l !!

~ l 11 l 21 l 11!!D~ l 1 ,l 2 ,l ! F ~ l 11 j !! ~ l 21 l 2 j !!

~ l 12 j !! ~ l 22 l 1 j !! G
1/2

, ~B19!

where

D~ l 1 ,l 2 ,l !5F ~ l 11 l 22 l !! ~ l 12 l 21 l !! ~ l 22 l 11 l !!

~ l 11 l 21 l 11!! G1/2

. ~B20!

After some algebraic manipulations this gives

P~ l 1 ,l 2 ,l !5~21!~ l 11 l 22 l 11/2!~2g12!
g!D~ l 1 ,l 2 ,l !

~g2 l 1!! ~g2 l 2!! ~g2 l !!
. ~B21!

Here 2g115 l 11 l 21 l and we have used formula~A6! for Ĉ0 0 0
l l 1 21l 2. Expression~B17! together

with ~B21! is our final result for the Poisson bracket of two spherical harmonics. Let us also
that P( l 1 ,l 2 ,l ) can be written as a certain Clebsch-Gordan coefficient:
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P~ l 1 ,l 2 ,l !52Al 1~ l 111!l ~ l 11!Ĉ1 1 0
l l 1l 2. ~B22!

This equality is analogous to formula~A6!.
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Observable effects and parametrized scaling limits
of a model in nonrelativistic quantum electrodynamics

Fumio Hiroshimaa)

Department of Mathematics and Physics, Setsunan University,
Ikeda-naka-machi 17-8, 572-8508, Osaka, Japan

~Received 2 July 2001; accepted for publication 12 December 2001!

Scaling limits of the HamiltonianH of a system ofN charged particles coupled to
a quantized radiation field are considered. Ultraviolet cutoffs,l̂1 , . . . ,l̂N , are im-
posed on the radiation field and the Coulomb gauge is taken. It is the so-called
Pauli–Fierz model in nonrelativistic quantum electrodynamics. We mainly consider
two cases:~i! all the ultraviolet cutoffs are identical,l̂15¯5l̂N , ~ii ! supports of
ultraviolet cutoffs have no intersection, suppl̂ iùsuppl̂ j5B, iÞ j . The Hamil-
tonian acts onL2(RdN) ^ F, whereF is a symmetric Fock space, and has the form
H5Hel^ 11B11^ Hquad. HereHel denotes a particle Hamiltonian,Hquad a qua-
dratic field operator, andB an interaction term. The scaling is introduced as
H(k)5Hel^ 11k lB1k21^ Hquad, where k is a scaling parameter andl<2 a
parameter of the scaling. Performing a mass renormalization we consider the scal-
ing limit of H(k) ask→` in the strong resolvent sense. Then effective Hamilto-
nians Heff in L2(RdN) infected with reaction of effect of the radiation field is
derived. In particular~1! effective Hamiltonians with an effective potential forl
52, and ~2! effective Hamiltonians with an observed mass forl 51, are
obtained. ©2002 American Institute of Physics.@DOI: 10.1063/1.1447590#

I. PRELIMINARIES

A. Observable effects and scaling limits

In this paper we consider the HamiltonianH of a system ofN nonrelativistic charged particle
interacting with a quantized radiation field. Ultraviolet cutoffs are imposed on the radiation
and recoil of the particles and the radiation field~photons! are excluded, i.e., the dipole approx
mation is made. Taking scaling limits of the Hamiltonian, we derive effective Hamiltonians.
main idea is to diagonalizeH by a canonical transformation derived from a symplectic struct

The Schro¨dinger Hamiltonian of one charged particle with external potentialV is of the form

1

2m
p21V, ~1.1!

wherep denotes the momentum operator andm the bare mass of the particle. To interpret t
Lamb shift1 intuitively, Welton2 formally derived an effective Schro¨dinger Hamiltonian taking into
account effects of a radiation field. He expected that a position fluctuation of a particle
radiation field will effectively modify the external potentialV. A fluctuation was thought of as a
Gaussian random variableDx, then a effective potential is formally given by the mean value
V(x1Dx),

Veff~x!ª^V~x1Dx!&AVE5~2p!23/2E
R3

V̂~k!eikx^eikDx&AVE5~2pC!23/2E
R3

V~y!e2ux2yu2/2C dy,

a!Electronic mail: hiroshima@mpg.setsunan.ac.jp
17550022-2488/2002/43(4)/1755/41/$19.00 © 2002 American Institute of Physics
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with a certain positive constantC. Then~1.1! effectively turns out to be the effective Hamiltonia
Welton’s Hamiltonian, given by

1

2m
p21Veff . ~1.2!

He gave an interpretation of the Lamb shift as the difference of the spectrum between the o
Hamiltonian and the effective one.

On the other hand it was found in Ref. 3 that photons enhance the bare massm. Then m
amounts to an observed massm1dm, dm.0, through a coupling to a radiation field. Then~1.1!
formally turns out to be

1

2~m1dm!
p21V. ~1.3!

In this paper performing a mass renormalization to eliminate a divergence contributio
present a rigorous derivation of~1.2! and ~1.3! by parametrized scaling limits of Hamiltonian
describing an interaction between particles and radiation fields. Thus we interpolate~1.2! and
~1.3!. We suppose thatN particles move in thed-dimensional space and a radiation field has
helicity d21. Throughout this paper we assume

d>3.

F denotes the Boson Fock space overWª%
d21L2(Rd), which is defined by

Fª %
n50

`

@ ^ s
nW#,

where^ s
nW denotes then-fold symmetric tensor product ofW, and ^ s

0WªC. The bare vacuum
V is defined by

Vª$1,0,0,...%.

Hamiltonians under consideration are of the form

HªHel^ 11B11^ Hquad

acting on the Hilbert space

HªL2~RdN! ^ F.

HereHel describes the particle Hamiltonian of the form

Helª(
j 51

N
1

2mj
pj

21V.

Herepjª2 i\¹Wj denotes the momentum operator of thej th particle canonically conjugate to th
position operatorxj , V:RdN→R an external potential,\ the Planck constant divided by 2p, mj

the mass of thej th particle.Hquad a quadratic field operator inF, andB an interaction term. We
scaleH as follows:

H~k!ªHel^ 11k lB1k21^ Hquad.

Davies4,5 considered the scaling limitk→` of the case of

l 51
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for certain simple models to deriveN-body Schro¨dinger Hamiltonians. He called this scaling lim
the weak coupling limit. See also Refs. 6 and 7. On the other hand Arai8 considered the case o

l 52

for the one particle Pauli–Fierz model in the dipole approximation without the self-intera
term A2. Then he derived effective Hamiltonians with an effective potential. In this pape
consider scaling limits of

l<2

for theN-particle Pauli–Fierz model in the dipole approximation. In particular, performing a m
renormalization, subtracting fromH(k) some energy reset, and takingk→` in the resolvent
sense, we derive, forl 52, Welton’s Hamiltonians, and forl 51, Hamiltonians with an observe
mass.

B. Nonrelativistic models

Let a†( f ) anda( f ), f PW, denote the smeared creation and annihilation operators actin
F, respectively.a] stands fora or a†. We set

They satisfy the canonical commutation relations,

@ar~g!,a†s~ f !#5d rsE
Rd

f ~k!g~k!dk,

@a†r~ f !,a†s~g!#5@ar~ f !,as~g!#50

on the finite particle subspace ofF. We take the Coulomb gauge. The radiation field with t
ultraviolet cutoff l̂ jPL2(Rd) is defined by

Aj m~xj !ªAm~xj ,l̂ j !ª
1

&
(
r 51

d21

$a†r~em
r e2 ikxj l̃̂ j !1ar~em

r eikxj l̂ j !%,

where er(k)5(e1
r (k), . . . ,ed

r (k)) denotes polarization vectors satisyinger(k)•es(k)5d rs and
er(k)•k50,

l̃̂ j~k!ªl̂ j~2k!,

and f̂ denotes the Fourier transform off . We assume

l̂ j~k!5l̂ j~2k!, j 51,...,N,

to ensure thatAj m(xj ) is symmetric for eachxjPRd. The physically reasonable choice of th
ultraviolet cutoff is

l̂ j~k!5
Ac\r̂ j~k!

A~2p!dv~k!
,

                                                                                                                



place

ing

1758 J. Math. Phys., Vol. 43, No. 4, April 2002 Fumio Hiroshima

                    
where r̂ j denotes the Fourier transform of the charge distributionr j of the j th particle andc
denotes the speed of the light. The dispersion relationv(k) is given by

v~k!ªuku.

The free HamiltonianH f in F is defined by

H fª\c(
r 51

d21 E v~k!a†r~k!ar~k!dk,

wherea†r(k) andar(k) denote the kernels ofa†r( f ) andar( f ), respectively. The total Hamil-
tonian is given by

H totalª(
j 51

N
1

2mj
S pj ^ 12

a j

c
Aj~xj ! D 2

11^ H f1V^ 1,

wherea j ’s are nonzero coupling constants. We take the dipole approximation, i.e., we re
Aj (xj ) with

AjªAj~0!.

Then the Hamiltonian in the dipole approximation is given by

Hª(
j 51

N
1

2mj
S pj ^ 12

a j

c
1^ Aj D 2

11^ H f1V^ 1.

We work with the unitc5\51 in what follows. Since

@pj m, Aj n#50,

we have

H5Hel^ 12(
j 51

N
a j

mj
pj ^ Aj11^ S (

j 51

N a j
2

2mj
Aj

21H f D .

It is of mathematical interest to seeAj
2-corrections in scaling limits. Then we define, fore>0,

HeªHel^ 12(
j 51

N
a j

mj
pj ^ Aj11^ S (

j 51

N ea j
2

2mj
Aj

21H f D
with the domain

D~He!5D~Hel^ 1!ùD~1^ H f !ùDS 1^ (
j 51

N ea j
2

2mj
Aj

2D .

Actually, for e,1, He turns out to be an unphysical Hamiltonian for sufficiently large coupl
constants, since in this caseHe is unbounded from below. See Remark 3.10 for details. Let

k.1

be a scaling parameter. We introduce the scaled HamiltonianHe(k) as follows:

He~k!ªHel^ 12k l (
j 51

N
a j

mj
pj ^ Aj1k21^ S (

j 51

N ea j
2

2mj
Aj

21H f D ,
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where

l<2.

In particular we set

H~k!ªH1~k!.

Unless confusion arises we omit^ 1 and 1̂ for simplicity in what follows. Throughout this pape
we suppose thatV satisfies HypothesisV:

HypothesisV: V is infinitesimally small with respect to( j 51
N (pj

2/2mj ).
First of all we have to establish self-adjointness ofHe(k). Note that if we assume tha
l̂ j /Av,l̂ j ,vl̂ jPL2(Rd), then

I S 2(
j 51

N
a j

mj
pjAj1(

j 51

N ea j
2

2mj
Aj

2DCI<a8I S (
j 51

N pj
2

2mj
1H f DCI1b8iCi

for CPD(H f) with somea8 andb8. Let

DªDS (
j 51

N pj
2

2mj
^ 1D ùD~1^ H f !.

Proposition 1.1: Lete51. We suppose thatl̂ j /Av,l̂ j ,vl̂ jPL2(Rd). (1) Htotal and H are
self-adjoint onD and bounded from below. (2) Let l51. Then H(k) is self-adjoint onD and
bounded from below for allk.

Proof: See Refs. 9 and 10 for~1!. In the case ofl 51, H(k) is derived from the scalinga j

→ka j andv→kv in H. Thus the self-adjointness follows from~1! h

Proposition 1.2: LeteÞ1 and V50. Supposel̂ j /Av,l̂ j ,vl̂ jPL2(Rd). Then He(k) is es-
sentially self-adjoint on any core of( j 51

N pj
2/(2mj )1H f .

Proof: The proof is due to Arai~Ref. 11 Theorem 2.2!. Let Lª( j 51
N pj

2/(2mj )1H f11. Then
we see that

iHe~k!Ci<ciLCi ,

and

u~He~k!C,LC!2~LC,He~k!C!u<c8iL1/2CiiL1/2Ci

with some constantsc andc8. Thus, by the Nelson commutator theorem~Ref. 12, Theorem X.36!,
He(k) is essentially self-adjoint on any core ofL. Thus the proposition follows. h

Self-adjointness ofHe(k) for e,1 or lÞ1 is discussed later~Theorem 3.11! in this paper.
SinceHe andHe(k) are essentially self-adjoint, we take their self-adjoint extensions and de
them by the same symbols.

C. Problems

For the case ofN>2 we have to take care of the choice of ultraviolet cutoffs. For simplic
we mainly consider two cases: identical case,l̂15¯5l̂Nªl̂, and independent case
suppl̂ jùsuppl̂ i5B for iÞ j .

Arai8 considered the scaling limit of the case ofl 52, e50, andN51. Moreover in Refs. 13
and 14 distinct scaling limits were studied, but unfortunatelyA2-corrections did not appear in
scaling limits. In this paper we want to improve it and to see the relationship between D
scaling limit and Arai’s one. As was seen in Sec. I A, Davies’ scaling limits correspond tol 51.
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We set

He
0
ªHedV50 .

SinceHe
0 commutes withpj m , He is decomposable with respect to the spectrum of the par

momentum operators,

He
05E

RdN

%

He
0~q!dq.

He
0(q) acts onF. The ground state energy for eachqPRdN is denoted by

E~q!ª inf s~He
0~q!!.

Then we call

m* ~m,n, j !ªS ]2

]qj m]qj n
E~q!d

q50
D 21

anobserved mass. In this paper we explicitly give the ground state energy ofHe
0 and its observed

mass.
Thus the list of problems considered in this paper is epitomized as follows.

~1! Explicit ground state energy, infs(He
0).

~2! Observed mass,m* (m,n, j ).
~3! Deriving effective HamiltoniansHeff through scaling limits ofHe(k) subtracting a divergen

contribution Eren(k): s2 limk→`(He(k)2Eren(k)2z)215(Heff2z)21
^Pe for zPC\R,

where Pe denotes a projection to the subspace spanned by ground state
( j 51

N ea j
2Aj

2/(2mj )1H f .
~4! What is a reasonable choice ofEren(k)?
~5! l -dependence ofHeff .
~6! Aj

2-dependence~i.e., e-dependence! of Heff .
~7! Ultraviolet cutoff dependence ofHeff .

We give answers for~1! in Lemma 3.3,~2! in Corollary 3.7,~3! in Theorems 4.9–4.12,~4! in
~4.5!, ~5!, ~6!, and~7! in ~4.7!.

This paper is organized as follows. In Sec. II we discuss symplectic group structures oHe
0 .

In Sec. III we construct a canonical transformation and diagonalizeHe
0 . In Sec. IV we derive

effective Hamiltonians by scaling limits. In Sec. V we give a remark ong-factor shift. Sections VI
and VII are appendices.

II. SYMPLECTIC GROUP STRUCTURES

A. Unitary representations

B(W) denotes the set of bounded operators onW. We define forKPB(W),

K̄ fªK f̄ .

We introduce a notation. ForA,B,C,DPB(W) we define

S A B

C DD S a~ f !

a†~g! DªS a~A f !1a†~Bg!

a~C f !1a†~Dg! D .

Set
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TS A B

C DDªS A C

B DD .

Definition 2.1: Let S,TPB(W) and set

jªS S T̄

T S̄
D :W% W→W% W.

(1) We say thatj is of symplectic groupS if

j* Jj5jJj* 5J, ~2.1!

where

j* 5S S* T*

T̄* S̄*
D , JªS I 0

0 2I D .

(2) We say thatj is of SB if (i) jPS and (ii) T is a Hilbert–Schmidt operator.

SB is a subgroup ofS. We define

HmªL2~Rm! ^ F>E
Rm

%

Fdq.

Suppose that

j5S S T̄

T S̄
D PSB ,

and

L5~L1 , . . . ,Lm!P %
mW.

For f PW we let

S b~ f !

b†~ f ! DªTS S T̄

T S̄
D S a~ f !

a†~ f ! D
and

B~ f !ª1^ b~ f !1(
l 51

m

~Ll , f !pl ^ 1,

B†~ f !ª1^ b†~ f !1(
l 51

m

~Ll̄ , f !pl ^ 1,

wherepl , l 51, . . . ,m, denote the momentum operators inL2(Rm). It follows that

@b~ f !,b†~g!#5~ f̄ ,g!,

@b~ f !,b~g!#5@b†~ f !,b†~g!#50.

Moreover since
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j215Jj* J5S S* 2T*

2T̄* S̄*
D ,

we have

S a~ f !

a†~ f ! D5
TS S* 2T*

2T̄* S̄*
D S b~ f !

b†~ f ! D ~2.2!

and

S 1^ a~ f !

1^ a†~ f ! D5
TS S* 2T*

2T̄* S̄*
D S B~ f !

B†~ f ! D2(
l 51

m S ~SLl2TLl , f !pl ^ 1

~SLl2TLl , f !pl ^ 1D . ~2.3!

Define

RlªTLl2SLl ,

and

u~q,j,L !ªexpH (
l 51

m

ql$a
†~Rl !2a~R̄l !%J , q5~q1 ,...,qm!PRm.

Furthermore set

u~j,L !ªE
Rm

%

u~q,j,L !dq5expH (
l 51

m

pl ^ $a†~Rl !2a~R̄l !%J ,

wherepl , l 51,...m, denote the momentum operators.

Proposition 2.2: Supposej5(T
S

S̄

T̄
)PSB . Then there exists a unitary operator U(j) of F such

that for all fPW

~1! U(j)21b]( f )U(j)5a]( f ),
~2! U(j)21u(j,L)21B]( f )u(j,L)U(j)5a]( f ).

Proof: See Refs. 15–17 for details.@We easily see that forj1ª(T
S

S̄

T̄
)PSB and

j2ª(V
U

Ū

V̄
)PSB : U(j2)U(j1)a( f )U(j1)21U(j2)215a((US1V̄T) f )1a†((VS1ŪT) f );

U(j2)U(j1)a†( f )U(j1)21U(j2)215a((UT̄1VS) f )1a†((VT̄1US) f ); and j2•j1

5(
VS1ŪT

US1V̄T

VT̄1US

UT̄1VS
). ThenU(j2)U(j1)5v(j2j1)U(j2j1), wherev(j2j1) is a constant. Hence th

mapSB{j°U(j) defines a projective unitary representation ofSB .] h

We set

U~q,j,L !ªu~q,j,L !U~j!:F→F,

and

U~j,L !ªu~j,L !U~j!:Hm→Hm .

We call U(j,L) the canonical transformation associated with$j,L%PSB3 %
mW.
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B. Average of fluctuations

Define

p~ f !ª i $a†~ f̄ !2a~ f !%, f PW.

We want to obtain the average of fluctuationFjL of a functionF:Rm→C;

FjLªU~j,L !21FU~j,L !5U~j!21F~x11p~R1!,...,xm1p~Rm!!U~j!,

with respect to the bare vacuum. LetG be them3m symmetric matrix defined by

Gª~~Lm ,Ln!W!1<m,n<m ,

and ^a,b& denote the scalar product onCm. Suppose

RankG5n<m

andT is a unitary matrix such that

TGT215diag$m1 ,...,mn,0,...,0%, mªm1¯mnÞ0.

Let

FT21~x!ªF~T21x!, xPRm.

We define

Feff~x!ª~2pm!2m/2E
Rn

FT21~y1 ,...,yn ,~Tx!n11 ,...,~Tx!m!

3expS 2(
j 51

n

u(Tx) j2yj u2/(2m) D dy.

In particular if RankG5n, then

Feff~x!5~2p detG!2m/2E
Rm

F~y!e2ux2yu2/(2 detG)dy.

Lemma 2.3: Letj5(T
S

S̄

T̄
)PSB and (L1 ,...,Lm)P %

mW. Suppose that F is such that

E
Rn

uFT21u~y1 ,...,yn ,~Tx!n11 ,...,~Tx!m!expS 2(
j 51

n

u(Tx) j2yj u2/(2m) D dyPL loc
1 ~Rm,dx!.

Then for fPL2(Rm), and gPL2(Rm) such thatU(j,L)g^ VPD(F), we see that gPD(Feff) and

~ f ^ V,FjLg^ V!Hm
5~ f ,Feff g!L2(Rm) . ~2.4!

Proof: We see that by~2.2!

a~Rl !5b~S* Rl !2b†~ T̄* Rl !,

a†~Rl !52b~T* Rl !1b†~S̄* Rl !.

Thus we have
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a†~Rl !2a~Rl !5b†~S̄* Rl1T̄* Rl !2b~T* Rl1S* Rl !ªb†~Rl8!2b~Rl8!.

It follows from j* Jj5jJj* that

Rl85S̄* ~TLl2SLl !1T̄* ~TLl2SLl !5~S̄* T2T̄* S!Ll1~ T̄* T̄2S̄* S̄!Ll52Ll .

Hence

p~Rl !5 i $a†~Rl !2a~Rl̄ !%5 i $b~Ll !2b†~Ll !%.

Then we have

U~j!21p~Rl !U~j!5 i $a~Ll !2a†~ L̄ l !%52p~Ll !. ~2.5!

Let

FN~x!ªH F~x!, uxu,N,

0, uxu>N.

Moreover

FNeªre* FN , e.0,

wherere(x)ªr(x/e)/em, r(x)>0, suppr,$xPRmuuxu<1%, and*Rm r(x)dx51. ~2.5! leads to

~ f ^ V,~FNe!jLg^ V!5~2p!2m/2E
Rm

dk eikxF̌Ne~k!~ f ^ V,U~j!21ei ^k,x1p(R)&U~j!g^ V!

5~2p!2m/2E
Rd

dk eikxF̌Ne~k!~ f ^ V,ei ^k,x2p(L̄)&g^ V!

5~2p!2m/2E
Rm

dk eikxF̌Ne~k! f ~x!g~x!e2^k,Gk&/25~ f ,~FNe!eff g!.

Taking e→0, we have (FNe)eff (x)→(FN)eff (x), and (FNe)jL→(FN)jL strongly. Then the lemma
follows for FN . Let f PC0

`(Rm). Then takingN→`, we also have (f ,(FN)jLg)→( f ,FjLg) and
( f ,(FN)eff g)→(f,Feff g) by the dominated convergence theorem. Hence the lemma follows.h

Remark 2.4: Feff is independent ofj.

C. Physical vacuum

Let j5(T
S

S̄

T̄
)PSB andLP %

dNW. We define

V~q,j,L !ªU~q,j,L !V.

Let K be a Hilbert–Schmidt operator. Then there exist complete orthonormal systems~CONS!
$c i%, $f i%, and a positive sequence$m i% such that

K f 5(
i 51

`

m i~c i , f !f i , f PHm ,

with

(
i 51

`

m i
25iKiHS

2 ,
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wherei•iHS denotes the Hilbert–Schmidt norm. We define for a finite particle vectorC,

^a†uKua†&Cªs2 lim
n→`

(
i 51

n

m ia
†~ c̄ i !a

†~f i !C.

The above-presented strong limit actually exists. It is well known that if

~1!K is a Hilbert–Schmidt operator, ~2!K̄* 5K, ~3!iKi,1,

then

U0~K !ªs2 lim
N→`

(
n51

N
1

n! S 2
1

2
^a†uKua†& D n

C

exists for a finite particle vectorC. See Ref. 18.
Lemma 2.5: We have

V~q,j,L !5det~12~TS21!* TS21!1/4u~q,j,L !U0~TS21!V.

Proof: See Ref. 13 for details. h

III. CANONICAL TRANSFORM OF THE HAMILTONIANS

A. Fixed particle-momentum Hamiltonians

We define the fixed particle-momentum Hamiltonian by

He
0~q!ª(

j 51

N
1

2mj
qj

22(
j 51

N
a j

mj
qj•Aj1(

j 51

N ea j
2

2mj
Aj

21H f .

Hereq is a fixed particle-momentum:

q5~q1 ,...,qN!PRdN.

By a canonical transformationU(q), we will diagonalizeHe
0(q) as

U~q!21He
0~q!U~q!5E~q!1H f ~3.1!

with some constantE(q). In Ref. 13,~3.1! was established forN51, in Ref. 14 forN>1 but
sufficiently smallua j u ’s. In this section we improve it as follows:

~1! we extend~3.1! to N>1 and arbitrarya j ’s,
~2! we derive an explicit form ofE(q),
~3! we show analytic properties ofE(q) in eacha j ’s.

Proposition 3.1: Suppose thatl̂ j /Av,l̂ j ,vl̂ jPL2(Rd) for j 51, . . . ,N. Then for all
$a1 ,...,aN% and all qPRdN, He

0(q) is self-adjoint on D(H f) and bounded from below.
Proof: The proof is similar to Proposition 1.2. LetLªH f11. Then we easily have

iHe
0~q!Ci<ciLCi ,

and

u~He
0~q!C,LF!2~LC,He

0~q!F!u<c8iL1/2CiiL1/2Fi
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with some constantsc and c8 for C, FPD(H f). HenceHe
0(q) is essentially self-adjoint on

D(H f) by the Nelson commutator theorem. Moreover it is seen that

c9S iH fCi21I(
j 51

N S qj
2

2mj
2

a j

mj
qj•Aj1

ea j

2mj
Aj

2DCI 2D<iHe
0~q!Ci21c-iCi2

with some constantsc9 andc-. ThenHe
0(q) is closed onD(H f). ThusHe

0(q) is self-adjoint on
D(H f). h

B. Assumptions on ultraviolet cutoffs and coupling constants

In this section we introduce assumptions onl̂ j and a j . We suppose the following assump
tions onl̂ j ’s.

~A.1! l̂ j is rotation invariant, i.e., there exists a functionw j :@0,̀ )→R such thatl̂ j (k)
5w j (uku),

~A.2! l̂ j /v,vl̂ jPL2(Rd),
~A.3! w i j (s)ªw i(As)w j (As)s(d21)/2PLd(@0,̀ ),ds) for some 0,d,1, and there exists 0

,Ci j ,1 such that, for arbitrarys,t>0, uw i j (s)2w i j (t)u<Ci j us2tu,
~A.4! i l̂ jv

(d22)/2i`,` and i l̂ jv
d/2i`,`, whereigi`ªsupxPRdug(x)u.

The above-mentioned assumptions are sufficient conditions to construct a canonical trans
tion. Let

mabªH mj , a5b5 j

0, aÞb
.

Define

Di j ~k!ªmi j 2ea ia jK lim
h↓0

E
Rd

v~k8!l̂ i~k8!l̂ j~k8!

v~k!22v~k8!21 ih
dk8

5mi j 2ea ia j

K

2
Sd21S lim

h↓0
E

uv~k!22xu.h,x.0

w i j ~x!

v~k!22x
dx22p iw i j ~v~k!2!D , ~3.2!

whereSd21 denotes the volume of the (d21)-dimensional unit sphere and

Kª

d21

d
.

We define

DªD~k!5~Di j ~k!!1< i , j <N : %

N

L2~Rd!→ %

N

L2~Rd!.

We introduce two assumptions of ultraviolet cutoffs, Il and IIl , as follows:
Hypothesis Il : l̂15¯5l̂Nªl̂ andIl̂(k)Þ0 for all kPRd.
Hypothesis IIl : Eachl̂ j has a compact support such that suppl̂ jùsuppl̂ i5B for iÞ j , and

u l̂ j (k)/D j j (k) u→0 ask converges to the boundary of suppl̂ j .
In what follows we mainly study above two cases. The next assumptions are needed to s
boundedness of the Hamiltonians from below.

Hypothesis Il
a(e): Ultraviolet cutoffs satisfy Il , and$a1 ,¯,aN% satisfy that

H (
j 51

N a j
2

mj

,
1

i l̂/Avi2

1

12e
, 0<e,1,

$a1 ,...,aN%PRN, e>1.
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Hypothesis IIl
a(e): Ultraviolet cutoffs satisfy IIl , and$a1 ,...,aN% satisfy that

H a j
2

mj

<
1

i l̂ j /Avi2

1

12e
, j 51, . . . ,N, 0<e,1,

$a1 ,...,aN%PRN, e>1.

C. Diagonalization of He
0
„q …

Since

Di j ~0!5mi j 1ea ia j

K

2
Sd21E

0

` w i j ~x!

x
dx,

we easily see thatD(0)21 exists as anN3N matrix for Il and IIl . Set

S R1

A
RN

DªAvD~0!21S l̂1

A
l̂N

D .

We define

u~q!ªexpS (
j 51

N

(
r 51

d21

(
m51

d
a jqj m

&
H ar S em

r Rj

v3/2 D 2a†r S em
r Rj

v3/2 D J D .

Proposition 3.2: SupposeIl or IIl .
~1! There existWPSB and Qj , j 51, . . . ,N, such that

u~q,W,L !5u~q!,

where L5(L1
1 , . . . ,L1

d , . . . ,LN
1 , . . . ,LN

d )P %
dNW with

L j
m
ª

a j

&
% r 51

d21
em

r Qj

v3/2 .

~2! Let

U~q!ªu~q!U~W!.

ThenU(q) maps D(H f) onto itself, and

U~q!21He
0~q!U~q!5E~q!1H f

with some E(q).
~3! E(q) can be analytically continued to a neighborhoodO of R in eacha j ’ s.
Proof: See Sec. VI. h

D. Ground state energy

In this section we show an explicit form ofE(q) for both cases Il and IIl . In the case of
N51 it is shown in Ref. 19. For the case ofN>2 one needs a slight modification of Ref. 19. W
do not, however, need to go into the minor details for the moment. So a proof of the follo
lemma is taken up in Sec. VII.

Lemma 3.3: (1) SupposeIl . Then we have
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E~q!5
1

2 (
j 51

N qj
2

mj
2

1

2
EIU(

j 51

N
a j

mj
qjU2

1gI~m! ,

where

EIª
Ki l̂/Avi2

11eri l̂/Avi2
,

gI~m!ª
d

2p E
2`

` ers2iAvl̂/~s21v2!i2

11eriAvl̂/As21v2i2
ds,

rªK(
j 51

N a j
2

mj
.

(2) SupposeIIl . Then we have

E~q!5
1

2 (
j 51

N qj
2

mj
2

1

2 (
j 51

N qj
2

mj
EII

j 1gII~m!,

where

EII
j
ª

r j i l̂ j /Avi2

11er j i l̂ j /Avi2
,

gII~m!ª(
j 51

N
d

2p
E

2`

` er j s
2iAvl̂ j /~s21v2!i2

11er j iAvl̂ j /As21v2i2
ds,

r jªK
a j

2

mj
.

Proof: See Sec. VII. h

It is an interesting case wheree51.
Corollary 3.4: (1) SupposeIIl and e51. Then

E~q!5(
j 51

N
1

2mj
eff

qj
21(

j 51

N
d

2p
E

2`

` r j s
2iAvl̂ j /~s21v2!i2

11r j iAvl̂ j /As21v2i2
ds,

where

mj
eff
ªmj1a j

2Ki l̂ j /Avi2.

(2) Suppose N51 and e51. Then

E~q!5
1

2meff
q21

d

2p
E

2`

` Ka1
2s2iAvl̂1 /~s21v2!i2

m1Ka1
2iAvl̂1 /~s21v2!i2

ds,

where

meff
ªm11a1

2Ki l̂1 /Avi2.
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Lemma 3.5: (1) SupposeIl
a(e). Then for all qPRdN,

(
j 51

N qj
2

2mj
2

1

2
EIU(

j 51

N
a j

mj
qjU2

.0.

(2) SupposeIIl
a(e). Then for all qPRdN,

(
j 51

N qj
2

2mj
2

1

2 (
j 51

N qj
2

mj
EII

j .0.

Proof: By the Schwartz inequality we have

1

2
EIU(

j 51

N
a j

mj

qjU2

<
ri l̂/Avi2

11eri l̂/Avi2
(
j 51

N qj
2

2mj

.

Hence

(
j 51

N qj
2

2mj

2
1

2
EIU(

j 51

N
a j

mj

qjU2

>
1

2
S 12

ri l̂/Avi2

11eri l̂/Avi2
D (

j 51

N qj
2

2mj

.

Since Hypothesis Il
a(e) implies that

12
ri l̂/Avi2

11eri l̂/Avi2
.0,

~1! follows. ~2! is similarly proven. h

E. Observed mass

We define the observed mass by

m* ~m,n, j !ªS ]2

]qj m]qj n
E~q!d

q50
D 21

.

Put

m* ~m,m, j !ªm* ~m, j !.

By Lemma 3.3 we have the following corollaries.
Corollary 3.6: (1) SupposeIl . Then

m* ~m,n, j !5dmnmjS 11KS e( i 51
N

a i
2

mi

2
a j

2

mj
D i l̂/Avi2

11eK( j 51
N

a j
2

mj

i l̂/Avi2 D 21

.

In particular for the case ofe51,
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m* ~m,n, j !5dmnmjS 11K( iÞ j

a i
2

mi
i l̂/Avi2

11K( j 51
N

a j
2

mj
i l̂/Avi2

D 21

.

(2) SupposeIIl . Then

m* ~m,n, j !5dmn

mj1eKa j
2i l̂ j /Avi2

11~e21!K
a j

2

mj

i l̂ j /Avi2

.

In particular for the case ofe51,

m* ~m,n, j !5dmn~mj1Ka j
2i l̂ j /Avi2!.

Proof: It is a direct calculation. h

It is interesting to compare the sizes of observed masses for Il and IIl .
Corollary 3.7: Supposee51. Let mI* (m, j ) be the observed mass forIl and mII* (m, j ) for IIl .

Suppose thati l̂/Avi<i l̂ j /Avi for a certain j. Then

mI* ~m, j !,mII* ~m, j !.

Proof: Note that

f ~x!5
x

a1x
, a>0,

is a monotonously increasing function ofx. Directly we have

1

mI* ~m, j !
5

1

mj S 11K( iÞ j

a i
2

mi

i l̂/Avi2

11K( j 51
N

a j
2

mj

i l̂/Avi2D .
1

mj S 1

11K
a j

2

mj

i l̂/Avi2D
>

1

mj S 1

11K
a j

2

mj

i l̂ j /Avi2D 5
1

mII* ~m, j !
.

Hence the corollary follows. h

F. Diagonalization of He
0 and its self-adjointness

We define

uªexpS (
j 51

N

(
r 51

d21

(
m51

d
a j

&
pj m ^ H ar S em

r Rj

v3/2 D 2a†r S em
r Rj

v3/2 D J D
and

UªuU~W!.
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Note thatU mapsD onto itself:

U:D→D.

Moreover we defineE(p) by the pseudodifferential operator with the kernelE(q) in L2(RdN).
Lemma 3.8: SupposeIl or IIl . Then forFPC0

`(RdN) ^̂ D(H f),

U 21He
0UF5~E~p! ^ 111^ H f !F. ~3.3!

Proof: Let F5g^ c and C5 f ^ f, g, f PC0
`(RdN), c,fPD(H f). We note thatUFPD.

Then the left-hand side of~3.3! is well defined. We have by Proposition 3.2

~C,U 21He
0UF!H5E

RdN
~ _UĈ~q!,He

0ÛF~q!!F dq

5E
RdN

~U~q! Ĉ~q!,He
0~q!U~q! F̂~q!!F dq

5E
RdN

f̄̂ ~q!ĝ~q!~U~q!c,He
0~q!U~q!f!F dq

5E
RdN

fˆ ~q!ĝ~q!~c,~E~q!1H f !f!F dq5~C,~E~q! ^ 111^ H f !F!H .

Thus the lemma follows. h

Lemma 3.9: SupposeIl
a(e) or IIl

a(e). Then

U 21He
0U5E~p! ^ 111^ H f ~3.4!

holds onD. In particular He is self-adjoint onD and bounded from below.
Proof: By the assumption on$a1 ,...,aN%, E(p) is non-negative. ThenE(p)1H f is self-

adjoint on D and bounded from below. ForFPD, we can take a sequenceFnPC0
`(RdN)

^̂ D(H f) such thatFn→F and (E(p) ^ 111^ H f)Fn→(E(p) ^ 111^ H f)F strongly asn
→`. SinceHe is closed,He

0 U Fn→He
0 U F as n→`. Thus ~3.4! holds. SinceU mapsD onto

itself, He
0 is self-adjoint onD and bounded from below. h

Remark 3.10: Lete,1. Then E(p) is unbounded from below for sufficiently large couplin
constants. Actually in the case of N51, for

a1
2>m1~ i l̂1 /Avi2~12e!!21,

E(p) is unbounded from below. Hence He
0 is unbounded from below for sufficiently large couplin

constants. We should not overlook that the approximation of neglecting the self-interaction2 in
H is not reasonable for sufficiently large coupling constants.

Theorem 3.11: SupposeIl
a(e) or IIl

a(e). Then He is self-adjoint onD and bounded from
below.

Proof: By Lemma 3.9 and the closed graph theorem there exists a constantc such that

I S (
j 51

N pj
2

2mj
1H f DCI<c~ iHe

0Ci1iCi !, CPD.

Thus

iVCi<ac~ iHe
0Ci1iCi !1biCi

with some sufficiently smalla, and someb, the Kato–Rellich theorem leads to the lemma.h
Corollary 3.12: SupposeIl . Then
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inf s~He
0!5gI~m!5

d

2p
E

2`

`
eK( j 51

N
a j

2

mj

s2iAvl̂/~s21v2!i2

11eK( j 51
N

a j
2

mj

iAvl̂/As21v2i2

ds.

SupposeIIl . Then

inf s~He
0!5gII~m!5(

j 51

N
d

2p
E

2`

`
eK

a j
2

mj

s2iAvl̂ j /~s21v2!i2

11eK
a j

2

mj

iAvl̂ j /As21v2i2

ds.

Proof: It follows from Lemmas 3.3 and 3.8. h

IV. EFFECTIVE HAMILTONIAN

A. Scaled Hamiltonians

Here we recall the scaled HamiltonianHe(k),

He~k!ªHel^ 12k l (
j 51

N
a j

mj
pj ^ Aj1k21^ S (

j 51

N ea j
2

2mj
Aj

21H f D .

He(k) is derived fromHe scaled as

v→k2v, ~4.1!

a j→k la j , ~4.2!

e→k222le. ~4.3!

Replacingv,a j ,e as in ~4.1!–~4.3!, we see that

u→ expS k l 22(
j 51

N

(
r 51

d21

(
m51

d
a j

&
pj m ^ H ar S em

r Rj

v3/2 D 2a†r S em
r Rj

v3/2 D J D , ~4.4!

2
1

2
EIU(

j 51

N
a j

mj
qjU2

→2k2l 22
1

2
EIU(

j 51

N
a j

mj
qjU2

,

2
1

2 (
j 51

N qj
2

mj
EII

j →2k2l 22
1

2 (
j 51

N qj
2

mj
EII

j ,

gI~m!→gI~m/k2!,

gII~m!→gII~m/k2!.

Lemma 4.1: U(W) leaves invariant under the scaling~4.1!, ~4.2!, and ~4.3!.
Proof: See Lemma 6.5. h

Let
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Eren~p!ª5 2
1

2
EIU(

j 51

N
a j

mj
pjU2

for Il

2
1

2 (
j 51

N pj
2

mj
EII

j for IIl .

~4.5!

Moreover we set

g~m!ªH gI~m! for Il

gII~m! for IIl .

We defineUk by U with v, a j , ande replaced as in~4.1!,~4.2!, and~4.3!, respectively.
Lemma 4.2: SupposeIl

a(k2l 22e) or IIl
a(k2l 22e). Then

U k
21He~k!Uk5

1

2 (
j 51

N pj
2

mj
1k2l 22Eren~p!1k2H f1g~m/k2!1U k

21VUk .

In particular He(k) is self-adjoint onD and bounded from below.
Proof: It follows from Lemma 3.9. h

Lemma 4.3: SupposeIl or IIl . Then there exists the unique ground stateVe of
( j 51

N ea j
2Aj

2/(2mj )1H f . Moreover

PeªU~W!PVU~W!21 ~4.6!

is the projection to the eigenspace spanned byVe .
Proof: Setq50 in Lemma 3.2~2!. Then

U~0!21S e(
j 51

N a j
2

2mj
Aj

21H f DU~0!5H f1g~m!.

The right-hand side has the unique ground stateV. Thus U(0)V5U(W)V5Ve is the unique
ground state of( j 51

N ea j
2Aj

2/(2mj )1H f . Hence the lemma follows. h

Lemma 4.4: (1) Suppose l52. Then Uk is independent ofk. ~2! Suppose l,2. Then s
2 limk→` Uk5U(W).

Proof: It follows from ~4.1! and ~4.4!. h

We write as

U`ªHU, l 52,

U~W!, l ,2 .

B. Effective potentials

DefineVeff acting onL2(RdN) by

~ f ,Veff g!L2(RdN) ª~ f ^ V,~U `
21VU`!g^ V!H .

Note

D~Veff!.DS (
j 51

N pj
2

2mj
D .

We define theN3N correlation matrixD5(D i j )1< i , j <N by
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D i jª
1

2
a ia jKS Qi

v3/2,
Qj

v3/2D .

Note that

~Li
m ,L j

n!5
a ia j

2
KdmnS Qi

v3/2,
Qj

v3/2D5dmnD i j .

Suppose that RankD5M andT5TD is anN3N unitary matrix such that

TDT215diag$m1 ,...,mM,0,...,0%, m5m1¯mMÞ0.

Let

T̃ªS T111d ¯ T1N1d

A A

TN11d ¯ TNN1d

D .

Here 1d denotes thed3d identity matrix.
Lemma 4.5: Let l52. Suppose

E
RdM

uVT̃21u~y1 ,...,yM ,~ T̃x!M11 ,...,~ T̃x!N!expS 2(
j 51

K

u(T̃x) j2yj u2/(2m) D dyPL loc
1 ~RdN!.

(1) Suppose thatRankD5N. Then we have

Veff~x!5~2p!2dN/2~detD!2d/2E
RdN

e2ux2yu2/(2 detD)V~y!dy.

~2! Suppose thatRankD5M,N. Then we have

Veff~x!5~2p!2dN/2m2d/2E
RdM

VT̃21~y1 ,...,yM ,~ T̃x!M11 ,...,~ T̃x!N!

3expS 2(
j 51

K

u(T̃x) j2yj u2/(2m) D dy.

Proof: It follows from Lemma 2.3. h

Lemma 4.6: Let l,2. Then Veff5V.
Proof: SinceU` andV is commutative, the lemma follows. h

C. Scaling limits

Let

VkªU k
21VUk .

We define

He
ren~k!ªH He~k!2k2l 22Eren~p!2g~m/k2!, 1, l<2,

He~k!2g~m/k2!, l<1,

and
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Heffª

¦

(
j 51

N pj
2

2mj
1Veff , l 52,

(
j 51

N pj
2

2mj
1V, 1, l ,2,

(
j 51

N pj
2

2mj
1Eren~p!1V, l 51,

(
j 51

N pj
2

2mj
1V, l ,1.

~4.7!

Lemma 4.7: Letk be sufficiently large. Define

Heff~k!ª5 (
j 51

N pj
2

2mj
1k2H f1V, 1, l<2,

(
j 51

N pj
2

2mj
1k2l 22Eren~p!1k2H f1V, l<1.

(1) SupposeIl and IIl , and lÞ1. Then

UkHe
ren~k!Uk5Heff~k!. ~4.8!

In particular, for all $a1 ,...,aN%, He
ren(k) is self-adjoint onD and bounded from below. (2

SupposeIl
a(e) or IIl

a(e), and l51. Then~4.8! holds. In particular He
ren(k) is self-adjoint onD

and bounded from below.
Proof: By HypothesisV we see that forCPD,

iVkCi<aI(
j 51

N pj
2

2mj
CI1biCi .

Thus by the Kato–Rellich theoremHeff(k) for 1, l<2 is self-adjoint onD and bounded from
below. Forl ,1, sincek is sufficiently large, we have( j 51

N (pj
2/2mj ) 1k2l 22Eren(p) is positive

and

I S (
j 51

N pj
2

2mj
1k2l 22Eren~p!D f I>e~a1 ,...,aN!I(

j 51

N pj
2

2mj
f I

with somee(a1 ,...,aN).0 independent of largek. Then

iVkCi<
a

e~a1 ,...,aN! I S (j 51

N pj
2

2mj
1k2l 22Eren~p!DCI1biCi . ~4.9!

HenceHeff(k) for lÞ1 is self-adjoint onD and bounded from below. By~3.8!, ~4.8! holds on
C0

`(RdN) ^̂ D(H f), andUk mapsD onto itself. Then~4.8! holds onD by a limiting argument. Thus
~1! follows. Forl 51, ( j 51

N pj
2/(2mj )1Eren(p) is a nonnegative self-adjoint operator. ThusHeff(k)

is self-adjoint onD and bounded from below. Thus~2! follows. h

Lemma 4.8: (1) SupposeIl
a(e) or IIl

a(e), and l51. Then Heff is self-adjoint on
D(( j 51

N pj
2/(2mj )) and bounded from below. (2) Let lÞ1. Then Heff is self-adjoint on

D(( j 51
N pj

2/(2mj )) and bounded from below.
Proof: It is clear. We omit it. h
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Let Pe denote the projection to the subspace spanned by the unique ground st
( j 51

N ea j
2/2mj Aj

21H f . Note P0ªPV is the projection toV.
Theorem 4.9:Let l52. SupposeIl or IIl . Moreover supposeuVeffuPLloc

1 (RdN). Then for all
$a1 ,...,aN% and zPC\R,

s2 lim
k→`

~He
ren~k!2z!215u$~Heff2z!21

^ Pe%u
21.

Theorem 4.10:Let 1, l ,2. SupposeIl or IIl . Then for all$a1 ,...,aN% and zPC\R,

s2 lim
k→`

~He
ren~k!2z!215~Heff2z!21

^ Pe . ~4.10!

Theorem 4.11:Let l51. SupposeIl
a(e) or IIl

a(e). Then~4.10! holds.
Theorem 4.12:Let l,1. SupposeIl or IIl . Then for all $a1 ,...,aN% and zPC\R, ~4.10!

holds. (See Table I).
Before proving Theorems 4.9–4.12 we show a lemma.

Lemma 4.13: Suppose zPC\R.
~1! Let l52. SupposeuVueffPLloc

1 (RdN), and Il or IIl . Then for all$a1 ,...,aN%,

s2 lim
k→`

~Heff~k!2z!215~Heff2z!21
^ PV . ~4.11!

~2! Let 1, l ,2. SupposeIl or IIl . Then for all$a1 ,...,aN%, ~4.11! holds.
~3! Let l51. SupposeIl

a(e) or IIl
a(e). Then~4.11! holds.

~4! Let l,1. SupposeIl or IIl . Then for all$a1 ,...,aN%, ~4.11! holds.
Proof: By an abstract theorem in@Ref. 8 p. 2654,~i!,~ii !,~iii !# it is enough to prove that

~1! D(Vk).D(Heff) and Vk(Heff2z)21 is a bounded operator for sufficiently large2z with
limz→2`iVk(Heff2z)21i50 uniformly in k,

~2! Vk(Heff2z)21 is strongly continuous ink ands2 limk→` Vk(Heff2z)215Veff(Heff2z)21.

By the definition ofVeff and HypothesisV, we have

iVefff i<a8I(
j 51

N pj
2

2mj
f I1b8i f i

TABLE I. Effective Hamiltonians.

He
ren(k)1g(m/k2) Heff

l52, Il He~k!1
k2

2
EIU( j 51

N
a j

mj
pjU2 1

2m
p21Veff

l52, IIl He~k!1
k2

2
( j 51

N
pj

2

mj
EII

j 1

2m
p21Veff

1,l,2, Il He~k!1
k2l 22

2
EIU( j 51

N
a j

mj
pjU2 1

2m
p21V

1, l ,2, IIl He~k!1
k2l 22

2
( j 51

N
pj

2

mj
EII

j 1

2m
p21V

l 51, Il He~k! ( j 51
N

pj
2

2mj
2

1

2
EIU( j 51

N
a j

mj
pjU2

1V

l 51, IIl He~k! ( j 51
N

pj
2

2mj
2

1

2
( j 51

N
pj

2

mj
EII

j 1V

l ,1 He~k!

1

2m
p21V
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with some positivea8 andb8. Together with~4.9! we get

iVk f i<a9iHefff i1b9i f i

with some positivea9 andb9. Moreover

iVk~Heff2z!21f i<a9iHeff~Heff2z!21f i1b9i~Heff2z!21f i .

Hence Vk(Heff2z)21f→0 as z→2`. Then ~1! follows. SinceUk is continuous ink and s
2 limk→` Uk5U` , we have

i~Vk2Vk8! f i<iU k
21VUkf 2U k

21VUk8 f i1iU k
21VUk8 f 2Uk8

21VUk8 f i

<iV~Uk2Uk8! f i1i~U k
212Uk8

21
!VUk8 f i

<aI ~Uk2Uk8!(
j 51

N pj
2

2mj
f I1bi~Uk2Uk8! f i1i~U k

212Uk8
21

!VUk8 f i .

Here in the third inequality we use thatUk and pj , j 51,...,N are commutative. Then the firs
statement of~2! follows. The second statement is also proven similarly. h

Proof of Theorems 4.9–4.12: Supposel 52. ThenUk5U is independent ofk. We have by
~4.8!

~He
ren~k!2z!215U~Heff~k!2z!21U 21.

Taking k→`, we have

lim
k→`

~He
ren~k!2z!215U$~Heff2z!21

^ PV%U 215u$~Heff2z!21
^ U~W!PVU~W!21%u21.

SinceU(W)PVU(W)215Pe , Theorem 4.9 follows. Next supposel 51,

~He
ren~k!2z!215Uk~Heff~k!2z!21U k

21 .

Since

s2 lim
k→`

Uk5U~W!,

taking k→`, we have

lim
k→`

~He
ren~k!2z!215U~W!$~Heff2z!21

^ PV%U~W!21.

Hence Theorem 4.11 follows. Theorems 4.10 and 4.12 are proven similarly. h

D. Examples

In this section we assume thatuVeffuPLloc
1 (RdN). A typical example is forN51 ande51. Put

A15A, m15m, p15p, a15a.
Corollary 4.14: Let N51 and e51. SupposeIl or IIl . Then for allaPR and zPC\R:

( l 52)

s2 lim
k→`

S H~k!1k2
1

2~m1dm!

dm

m
p22g~m/k2!2zD 21

5uH S 1

2m
p21Veff2zD 21

^ P1J u21;
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(1, l ,2)

s2 lim
k→`

S H~k!1k2l 22
1

2~m1dm!

dm

m
p22g~m/k2!2zD 21

5S 1

2m
p21V2zD 21

^ P1 ;

( l 51)

s2 lim
k→`

~H~k!2g~m/k2!2z!215S 1

2~m1dm!
p21V2zD 21

^ P1 ;

( l ,1)

s2 lim
k→`

~H~k!2g~m/k2!2z!215S 1

2m
p21V2zD ^ P1 .

By virtue of Corollary 4.14 we see that in the case ofl 52 the Welton Hamiltonian does appea
and in the case ofl 51 the Hamiltonian with observed mass does.~See Table II.!

Corollary 4.15: SupposeIl and l52. Moreover we assume thata15¯5aNªa and m1

5¯5mNªm. Then

Veff5~2pC!2d/2E
Rd

VT̃21~y,~ T̃x!2 ,...,~ T̃x!N!)e2u(T̃x)12yu2/2Cdy,

where

Cª

Na2

2

d21

d I Q

v3/2I 2

,

Proof: Since the correlation matrix is given by

D5
a2

2 I Q

v3/2I 2

KS 1 ¯ 1

A � A

1 ¯ 1
D ,

where

Q5AvD21S l̂
A
l̂
D ,

we have RankD51. Thus the corollary follows. h

Corollary 4.16: SupposeIIl and l52. Then

Veff5~2pC!2d/2E
RdN

V~y!e2ux2yu2/2Cdy,

where

CªP j 51
N S d21

2d

a j
2

mj
E

Rd

ul̂ j~k!u2

v~k!2~mj2edCj !
dkD ,
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Proof: Since the correlation matrix is given by

D5diagH 1

2
a1

2K I Q1

v3/2I 2

,...,
1

2
aN

2 K I QN

v3/2I 2J ,

where

Qj5
Avl̂ j

D j j
,

the corollary follows. h

V. CONCLUDING REMARKS „g -FACTOR SHIFT…

For simplicity we sete51, N51, andd53. PutA15A, m15m, p15p, a15a. We suppose
that spin 1/2 is included in the particle and an external vector potentiala(x) is imposed. Thus the
Hamiltonian is read

Hspinª
1

2m
$s•~p2a~x!2aA!%21V1H f

acting on the Hilbert space

C2
^ L2~R3! ^ F.

Heres5(s1 ,s2 ,s3) denotes the Pauli matrices:

s1ªS 0 1

1 0D , s2ª S 0 2 i

i 0 D , s3ªS 1 0

0 21D .

We have

Hspin5
1

2m
~p2aA!21H f1V2

g

4m
s• curla1H I ,

where

g52

and

TABLE II. Effective Hamiltonians forN51 ande51.

H ren(k)1g(m/k2) Heff

l 52 H~k!1k2
1

2~m1dm!

dm

m
p2

1

2m
p21Veff

1, l ,2 H~k!1k2l22
1

2~m1dm!

dm

m
p2

1

2m
p21V

l 51 H~k!
1

2~m1dm!
p21V

l ,1 H~k!

1

2m
p21V
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H Iª2
1

2m
$~p2aA!•a2a•~p2aA!%1

1

2m
a22

a

2m
s•curlA,

and

curlAª
2 i

&
(
r 51

2

$a†r~~k3er ! l̂
˜

!1ar~~2k3er !l̂ !%.

For simplicity we neglectH I . Then our Hamiltonian is defined by

H5
1

2m
~p2aA!21H f1V2

g

4m
s•curla.

Let l 51. Then the scaled Hamiltonian is given by

H~k!ª
1

2m
~p2kaA!21k2H f1V2

g

4m
s•curla.

Corollary 5.1: Suppose that a is sufficiently smooth and that a is infinitesimally small
respect to p2. Then H(k) is self-adjoint onD and bounded from below. Furthermore for
PC\R,

s2 lim
k→`

~H~k!2g~m/k2!2z!215~Heff2z!21
^ P1 .

Here

Heff5
1

2~m1dm!
p22

geff

4~m1dm!
s•curla1V,

and

geffª
m1dm

m
g.2.

Proof: The self-adjointness follows from Proposition 1.1. Sinces j andUk are commutative,
by Theorem 4.11, we have

s2 lim
k→`

~H~k!2g~m/k2!2z!215S 1

2~m1dm!
p22

g

4m
s•curla1V2zD 21

^ P1 .

Hence the corollary follows. h

VI. PROOF OF PROPOSITION 3.2

A. Construction of canonical transformations

We recall

Di jªmi j 2ea ia j

K

2
Sd21S lim

h↓0
E

uv(k)22xu.h,x.0

w i j ~x!

v~k!22x
dx22p iw i j ~v~k!2!D .

Lemma 6.1: SupposeIl or IIl . TheniDi j i`,`.
Proof: Set
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w̃ i j ~s!ª lim
h↓0

E
us2xu.h,x.0

w i j ~x!

s2x
dx.

Then by~A.3! and Ref. 20 we see that fors,t>0,

uw̃ i j ~s!2w̃ i j ~ t !u<Ci j us2tu.

Hencew̃ i j is continuous. Since

lim
usu→`

w̃ i j ~s!50,

it follows that iDi j i`,`. h

Lemma 6.2: SupposeIl . Then there exists

Q5S Q1

A
QN

D P %
NL2~Rd!

such that

~1! DQ5AvS A
l̂N

l̂1D , ~2! iv (d21)/2Qj i`,`, and iv (d23)/2Qj i`,`, ~3! Qj /v3/2PL2~Rd!.

Proof: We set

D~k!ªM2eKg~k!A~a1 ,...,aN!,

where

Mªdiag$m1 ,...,mN%,

A~a1 ,...,aN!ªS a1a1 ... a1aN

A � A

aNa1 ... aNaN

D ,

and

g~k!ª lim
h↓0

E
Rd

v~k8!ul̂~k8!u2

v~k!22v~k8!21 ih
dk8.

A is a positive definite matrix and we denote its eigenvalues by

$a1 ,...,aM,0,...,0%, aj.0, j 51, ...,M , ~6.1!

with someM<N. AM denotes theM -dimensional space spanned by eigenvectors with eigen
ues a1 ,...,aM , and its orthogonal complement byAM

' . Set m5min$m1,...,mN%, a
5min$a1,...,aM%. For zPAM

' we have

~z,D~k!z!5~z,Mz!>muzu2.

For zPAM , we have

u~z,D~k!z!u>eKuIg~k!uu~z,Az!u>eaKuIg~k!uuzu2.
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Hence fore0,uku,e1 with 0,e0 and 0,e1 there existsd85d8(e0 ,e1).0 such that

u~z,D~k!z!u>d8uzu2.

For k50 it follows that

~z,D~0!z!5~z,Mz!2eKg~0!~z,Az!>muzu2, ~6.2!

and asuku→`,

~z,D~k!z!→~z,Mz!>muzu2. ~6.3!

Combining~6.2! with ~6.3! we see that foruku<e0 or uku>e1 with some sufficiently smalle0 and
sufficiently largee1 there existsd9 such that

u~z,D~k!z!u.d9uzu2.

Hence for allkPRd,

u~z,D~k!z!u.min$d8,d9%uzu2.

In particular the inverseD21 of D exists as a bounded operator of%
NL2(Rd). Putting

QªAvD21S l̂1

]

l̂N

D ,

we see thatQ satisfies~1!. It is seen that

ivnQj i`<iD21iivn1(1/2)l̂ j i` .

From i l̂ jv
(d22)/2i`,` and i l̂ jv

d/2i`,` @see~A.4!#, ~2! follows. Moreover from

ivnQj iL2(Rd)<iD21iivn1(1/2)l̂ j iL2(Rd) ,

~3! follows, sincel̂/vPL2(Rd) @see~A.2!#. Thus the lemma follows. h

Lemma 6.3: SupposeIIl . Then there exists Q such that (1)–(3) in Lemma 6.2 are satisfied.
Proof: Note that

D j j ~k!Þ0, for kP$kPRdul̂ j~k!Þ0%.

Hence we can defineQ5(Q1 ,...,QN) by

Qj~k!ªH Av~k!l̂ j~k!

D j j ~k!
, kP$kPRdul̂ j~k!Þ0%

0, k¹suppl̂ j .

Sinceu l̂ j (k)/D j j (k) u→0 ask converges to the boundary of suppl̂ j , Q(k) is well defined for all
kPRd, and we can easily check thatQ satisfies~1!–~3!. Thus the lemma follows. h

Let

RjªAvD~0!21S l̂1

]

l̂N

D .
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Define

G f~k!ª lim
h↓0

E
Rd

f ~k8!

~v~k!22v~k8!21 ih!~v~k!v~k8!!(d22)/2dk8.

G is a skew symmetric bounded operator ofL2(RdN). Let

Tmn fªdmn f 1e(
j 51

N

a j
2Qjv

(d22)/2Gv (d22)/2dmnAvl̂ j f .

Lemma 6.4: SupposeIl or IIl . Then the following algebraic relations hold:

~1! (b51
d Tmb* dbn(1/v2)Qj5dmnRj /v3/2.

~2! @v2,Tmn* # f 52( j 51
N a j

2(Qj , f )L2(Rd)dmnAvl̂ j .
~3! TmnAvl̂ j5dmnmjQj .
~4! Tmn* dnbTbg5dmg .
~5! em

r TmndnbTbgeg
s5d rs .

Proof: By ~1! of Lemmas 6.2 and 6.3, it is proven. See~Ref. 13, Lemma 2.6! for details.h
We define the bounded operatorW65(W6

rs)1<r ,s<d21 :W→W by

W1
rsfª 1

2 em
r ~v21/2Tmn* v1/21v1/2Tmn* v21/2!en

s f ,

W2
rsfª 1

2 em
r ~v21/2Tmn* v1/22v1/2Tmn* v21/2!en

s f̃ .

It is checked by~A.4!, Lemmas 6.2 and 6.3 that

iW6
rsf i<ci f i ,

where

c511 1
2 (

j 51

d

~ iv (d23)/2Qj i`ivd/2l̂ j i`1iv (d21)/2Qj i`iv (d22)/2l̂ j i`!iGi .

We define

WªS W1 W2

W2 W1
D .

Lemma 6.5: SupposeIl or IIl . ThenWPSB . MoreoverW is invariant under the scalingv
→k2v, a j→k la j , ande→k2l 22e.

Proof: It follows from Lemmas 6.4~4! and ~5!. h

We define

S b~ f !

b†~ f ! DªTWS a~ f !

a†~ f ! D .

Let

L~q!ª(
j 51

N

(
m51

d

qj mL j
mPW

with
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L j
m
ª

a j

&
%

r 51

d21 em
r Qj

v3/2 .

L j
m is well defined by Lemmas 6.2 and 6.3. We define

S Bq~ f !

Bq
†~ f ! DªS b~ f !

b†~ f ! D1S ~L~q!, f !W

~L~q!̄, f !W
D .

By ~2.2! we have

S a~ f !

a†~ f ! D5T~W21!S Bq~ f !

Bq
†~ f ! D2S ~W1L~q!2W2̄L~q!̄, f !W

~W1L~q!2W2̄L~q!̄, f !W

D .

By Proposition 2.2 there exists a unitary operatorU(W) such that

U~W!21b]~ f !U~W!5a]~ f !.

Recall

u~q!ªexpS (
j 51

N

(
r 51

d21

(
m51

d
a jqj m

&
H ar S em

r Rj

v3/2 D 2a†r S em
r Rj

v3/2 D J D
and

U~q!ªu~q!U~W!.

A proof of Proposition 3.2 (1):By Lemma 6.4~1!, we have

W2L~q!2W1L~q!52(
j 51

N

(
m51

d

qj m

a j

&
% r 51

d21
em

r Rj

v3/2 .

Henceu(q,W,L)5u(q) follows. h

A proof of Proposition 3.2 (2):It is seen that by Lemmas 6.4~2! and ~3!, for f PW,

@He
0~q!,Bq~ f !#52Bq~~ %

d21

v! f !,

@He
0~q!,Bq

†~ f !#5Bq
†~~ %

d21

v! f !

on some dense domain. Using these commutation relations we can prove that

eitH e
0(q)B†~ f !e2 i tH e

0(q)5B†~eit %
d21v f !, ~6.4!

eitH e
0(q)B~ f !e2 i tH e

0(q)52B~eit %
d21v f !. ~6.5!

Then we have

B~ f !eitH e
0(q)U~q!V50,

for all f PW. It implies thateitH e
0(q)U(q)V5constant3U(q)V. SinceeitH e

0(q) is one parameter
unitary group,
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eitH e
0(q)U~q!V5eitE(q)U~q!V ~6.6!

with some constantE(q). Hence by~6.4!,~6.5!, and~6.6! we obtain that

U~q!21eitH e
0(q)U~q!a†~ f 1!¯a†~ f n!V5eit (H f2E(q))a†~ f 1!¯a†~ f n!V.

Then

U~q!21eitH e
0(q)U~q!5eit (H f2E(q)).

Since He
0(q) is self-adjoint on D(H f), we see thatU(q) maps D(H f) onto itself and

U(q)21He
0(q)U(q)5H f2E(q) holds by Stone’s theorem. h

B. Analytic continuation

Lemma 6.6: SupposeIl . Let fPL2(Rd). Then Qj f can be strongly analytically continued t
a neighborhoodO of R in eacha i ’s.

Proof: We fix j . We can find a neighborhoodO of R such that, forzjPO,

D~zj !5D~zj ,k!ªM2eKg~k!A~a1 ,...,zj ,...,aN!

is a strongly analytic bounded operator on%
NL2(Rd), and

inf
kPRd

u~w,D~zj ,k!w!u.duwu2, for wPCN,

with some positive constantd. HenceD(zj )
21 exists as a bounded operator forzjPO and

iD~zj !
21i<

1

d
.

We can take a sufficiently small neighborhoodO(zj ),O of zj such that

inf
zj PO(zj )

iD~zj !
21i,`. ~6.7!

Since

D~zj !
212D~zj8!21

zj2zj8
5D~zj !

21S D~zj8!2D~zj !

zj2zj8
DD~zj8!21,

by ~6.7! we conclude thatD(zj )
21 is strongly differentiable inO. Thus D(zj )

21 is a strongly
analytic bounded operator. Hence the lemma follows. h

Lemma 6.7: SupposeIIl . Let fPL2(Rd). Then Qj f can be strongly analytically continued t
a neighborhoodO of R in eacha i ’s.

Proof: Note

Qj~k!5
1

eKa j
2

1

mj

eKa j
2 2gj~k!

.

Here

gj~k!ª lim
h↓0

E
Rd

v~k8!ul̂ j~k8!u2

v~k!22v~k8!21 ih
dk8.
                                                                                                                



ture,

tice
ate

1786 J. Math. Phys., Vol. 43, No. 4, April 2002 Fumio Hiroshima

                    
It is seen that

~1! gj~0!,0, ~2! Igj~k!,0 for kPsuppl̂ j , ~3! gj~k!50 for k¹suppl̂ j ,

~4! gj is continuous.

Hence, for arbitraryd.0,

dist~Rangj ,@d,`!!.M

with some positive constantM . ThusQj f can be analytically continued to

O8ª$a1 ib,aPR,bPRuuau.d,ubu,M %

in zjªmj /(eKa j
2). ThusQj f can be strongly analytically continued in a neighborhoodO of R in

eacha j . h

A proof of Lemma 3.2 (3):Note that

E~q!5
~V,He~q!U~q!V!

~V,U~q!V!
. ~6.8!

It is proven in Refs. 11 and 13 that by Lemma 2.5E(q) can be expressed as

E~q!5(
j 51

N
1

2mj
~qj1q̃ j !

21D,

where

q̃ j nª(
i 51

N

(
r 51

d21

(
s51

d21

(
m51

d
1

2
qm ia ia j~em

r Rj /v3/2,~11W2W1
21!rsen

sl̂ i !,

D5(
j 51

N

(
r 51

d21

(
m51

d a j
2

4mj
~em

r l̂ j ,~12W2W1
21!rsem

s l̂ j !.

By Lemmas 6.6 and 6.7 we see thatTmn can be strongly analytically continued to someO,R in
eacha j ’s. MoreoverW6 also can be done. By the identities derived from the symplectic struc

W1* W12W2* W25I ,

W1W1* 2W2W2* 5I ,

taking a sufficiently small neighborhoodO8,O, we see thatW1
21 can be extended toa jPO8 as

a bounded operatorW1
21(a j ). Moreover it is seen that supa j PO(a j )

iW1
21(a j )i,` for sufficiently

small neighborhoodO(a j ) of a j . Thus W1
21(a j ) is strongly differentiable ina j , and hence

strongly analytic onO8. h

VII. PROOF OF LEMMA 3.3

A proof of Lemma 3.3 (1):We take a momentum lattice approximation. The momentum lat
approximated Hamiltonian~7.1! can be identified with a harmonic oscillator. Then its ground st
energy can be explicitly obtained. By a limiting argument we getE(q). First we assume thatua j u ’s
are sufficiently small and replacev(k) with

vd~k!ªv~k!1d, d.0.
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Let 1/a.0 be the width of the momentum lattice, and someL.0 be fixed. For

l 5~ l 1,...,l d!P~2pZ/a!d

we define

G~ l !ªF l 1,l 11
2p

a D3¯3F l d,l d1
2p

a D .

Let u l uªmaxrulru. Suppose

u l u<2pL.

Set

Dª~2@aL#11!d,

where@z# denotes the integer part ofz. We named the lattice points of the rectangle with wid
2@aL# centered at the origin as

l 1 ,l 2 ,...,l D .

We set

qWª
1

&

1

Avd~ l !
$a†r~xG( l )!1ar~xG( l )!%1<r<d21,u l u<2pL ,

pWª
i

&
Avd~ l !$a†r~xG( l )!2ar~xG( l )!%1<r<d21,u l u<2pL ,

wherex I denotes the characteristic function ofI ,Rd. Define

He~q,d,a,L !ª(
j 51

N H 1

2mj
qj

22
a j

mj
(
m51

d

~qj mvm
j ,qW !1e (

m51

d a j
2

2mj
~qW ,vm

j !~vm
j ,qW !J

1
1

2
$~pW ,pW !1~qW ,A0qW !%2

1

2
trAA0. ~7.1!

HereA0 is the (d21)D3(d21)D symmetric matrix defined by

A0ª~1(d21)d l l 8vd~ l !2! u l u,u l 8u<2pL5S vd~ l 1!1(d21)

vd~ l 2!1(d21)

] ¯ � ]

vd~ l D!1(d21)

D ,

~7.2!

and
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vmªS Avd~ l 1!l̂~ l 1!em
1 ~ l 1!

]

Avd~ l 1!l̂~ l 1!em
(d21)~ l 1!

]

]

Avd~ l D!l̂~ l D!em
1 ~ l D!

]

Avd~ l D!l̂~ l D!em
(d21)~ l D!

D PR(d21)D.

Here 1(d21) denotes the (d21)3(d21) identity matrix. It is seen that

~He~q,d,a,L !2z!21→~He~q,d!2z!21 ~7.3!

uniformly asa→` and thenL→`. HereHe(q,d) denotesHe
0(q)1dN. We define the projection

P by

Pªe(
j 51

N

(
m51

d a j
2

mj
uvm&^vmu.

Then

He~q,d,a,L !5(
j 51

N H 1

2mj
qj

22
a j

mj
(
m51

d

~qj mvm ,qW !J 1
1

2
~qW ,PqW !1

1

2
~pW ,pW !1

1

2
~qW ,A0qW !2

1

2
trAA0.

Set

AªA01P.

Sincevd(k)>d.0, the inverse ofA0 exists, and henceA also has the inverse, and it is symmetr
Then we have

5(
j 51

N
1

2mj
qj

22(
j 51

N

(
m51

d
a j

mj
~AA21qj mvm ,qW !1

1

2
~qW ,AqW !1

1

2
~pW ,pW !2

1

2
trAA0

5(
j 51

N
1

2mj
qj

21
1

2
~~qW 2 fW !,A~qW 2 fW !!2

1

2
~ fW ,A fW !1

1

2
~pW ,pW !2

1

2
trAA0.

Here we put

fª(
j 51

N

(
m51

d
a j

mj
A21qj mvm .

By the commutation relation oneispW andeitqW :

eispW rl neitqW r 8l n85eitsdrr 8d l nl n8eitqW r 8 l n8eispW rl n,

and the von Neumann uniqueness theorem, we can identifypW and qW with the momentum and
position operators, respectively,

pW t,l n
>2 i

]

]xr ,n
, qW r ,l n

>xr ,n ,
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for r 51, . . . ,d21 andn51, . . . ,D. Hence we identifyHe(q,d,a,L) as a harmonic oscillator in
L2(R(d21)D). Generally for the harmonic oscillator

HTª
1
2 ~pW ,pW !1 1

2 ~qW ,TqW !

with non-negative symmetric matrixT, we have

inf s~HT!5trAT.

Then it follows that

E~q!5 inf s~He~q,d,a,L !!

5 inf sS 1

2
~pW ,pW !1

1

2
~~qW 2 fW !,A~qW 2 fW !! D1(

j 51

N
1

2mj
qj

22
1

2
~ fW ,A fW !2

1

2
trAA0

5(
j 51

N
1

2mj
qj

22
1

2
~ f ,A f !1

1

2
tr~AA2AA0!.

Separately we calculate

~1! ( j 51
N (1/2mj ) qj

221/2(f ,A f ),

~2! 1
2 tr(AA2AA0).

First we calculate~1!. We give a remark. Let

dmn~k!ª(
r 51

d21

em
r ~k!en

r ~k!5S 12
k

uku
^

k

uku D
mn

5dmn2
kmkn

uku2
.

For rotation invariant functionsf andg it follows that

~dmn f ,g!5dmnK~ f ,g!.

We have

~ f ,A f !5 (
i , j 51

N

(
m,n51

d
a i

mi

a j

mj
qimqj n~A21vm ,vn!.

Note that we assume thatua j u2 are sufficiently small. Then

A215 (
n51

`

~21!n21A0
21~PA0

21!n21.

Hence

~A21vm ,vn!5 (
n51

`

~21!n21~A0
21~PA0

21!n21vm ,vn!

5 (
n51

`

~21!n21 (
j 1 , . . . ,j n2151

N

(
m1 , . . . ,mn2151

d

en21
a j 1

2

mj 1

¯

a j n21

2

mj n21

~vmA0
21vm1

!

3~vm1
,A0

21vm2
!~vm2

,A0
21vm3

!¯~vmn22
,A0

21vmn21
!~vmn21

,A0
21vn!
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5dmn (
n51

`

~21!n21 (
j 1 , . . . ,j n2151

N

(
m1 , . . . ,mn2151

d

en21Kn
a j 1

2

mj 1

¯

a j n21

2

mj n21

jn,

where

jª (
u l u<2pL

ul̂~ l !u2

vd~ l !
.

Then it follows that

~A21vm ,vn!5dmn (
n51

`

~21!n21KjH eKj(
j 51

N a j
2

mj
J n21

5dmn

Kj

11eKj( j 51
N

a j
2

mj

.

We have

~ f ,A f !5 (
i , j 51

N

(
m,n51

d

dmn

a i

mi

a j

mj
qinqj m

Kj

11eKj( j 51
N

a j
2

mj

5
Kj

11eKj( j 51
N

a j
2

mj

U(
j 51

N
a j

mj
qjU2

.

Hence we have

~1!5
1

2 (
j 51

N qj
2

mj
2

1

2

Kj

11eKj( j 51
N

a j
2

mj

U(
j 51

N
a j

mj
qjU2

.

Next we calculate~2!. Using the formula for non-negative self-adjoint operatorB,

AB5
1

p E
2`

`

B~s21B!21 ds,

we see that

~2!5
1

2p E
2`

`

tr$A~s21A!212A0~s21A0!21%ds.

Since

~s21A!215~s21A0!21(
n51

`

~21!n21$P~s21A0!21%n21,

we have

A~s21A!212A0~s21A0!215~ I!1~ II !.

Here we put
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~ I!ªA0~s21A0!21(
n51

`

~21!n$P~s21A0!21%n, ~7.4!

~ II !ªP~s21A!21. ~7.5!

It follows that

tr~ I!5 (
n51

`

~21!n (
w:CONS

~w,A0~s21A0!21$P~s21A0!21%nw!,

where(w:CONS means to sum up vectors in a complete orthonormal system. Then

5 (
n51

`

~21!n (
w:CONS

(
j 1 , . . . ,j n51

N

(
m1 , . . . ,mn51

d

en
a j 1

2

mj 1

¯

a j n

2

mj n

~w,A0~s21A0!21vm1
!

3~vm1
,~s21A0!21vm2

!3¯3~vmn21
,~s21A0!21vmn

!~vmn
,~s21A0!21w!.

We take as a CONS

H w1ª

~s21A0!21vmn

i~s21A0!21vmn
i ,w2 ,w3 , . . . ,J .

Then

tr~ I!5 (
n51

`

~21!n (
j 1 , . . . ,j n51

N

(
m1 , . . . ,mn51

d

en
a j 1

2

mj 1

¯

a j n

2

mj n

~vmn
,A0~s21A0!22vm1

!

3~vm1
,~s21A0!21vm2

!3¯3~vmn21
,~s21A0!21vmn

!
~vmn

,~s21A0!22vmn
!

i~s21A0!21vmn
i2

5d(
n51

`

~21!nS (
j 51

N a j
2

mj
D n

enKnj~s!n21h~s!,

where

j~s!ª (
u l u<2pL

vd~ l !ul̂~ l !u2

s21vd~ l !2 ,

and

h~s!ª (
u l u<2pL

vd~ l !3ul̂~ l !u2

~s21vd~ l !2!2 .

Hence

tr~ I!5d (
n51

`

~21!nS eKj~s!(
j 51

N a j
2

mj
D n

h~s!

j~s!
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5d

2eKj~s!( j 51
N

a j
2

mj

11eKj~s!( j 51
N

a j
2

mj

h~s!

j~s!
5d

2erh~s!

11erj~s!
.

Next we see that

tr~ II !5 (
w:CONS

~w,P~s21A!21w!5 (
n51

`

~21!n21 (
w:CONS

~w,P~s21A0!21~P~s21A0!21!n21w!

5 (
n51

`

~21!n21 (
w:CONS

(
j 1 , . . . ,j n51

N

(
m1 , . . . ,mn51

d a j 1

2

mj 1

¯

a j n

2

mj n

en

3~w,vm1
!~vm1

,~s21A0!21vm2
!¯~vmn21

,~s21A0!21vmn
!~vmn

,~s21A0!21w!.

Take as a CONS

H w1ª

~s21A0!21vmn

i~s21A0!21vmn
i ,w2 ,w3 , . . . ,J .

Then we have

tr~ II !5 (
n51

`

~21!n21 (
j 1 , . . . ,j n51

N

(
m1 , . . . ,mn51

d a j 1

2

mj 1

¯

a j n

2

mj n

en3~vmn
,~s21A0!21vm1

!

3~vm1
,~s21A0!21vm2

!3¯3~vmn21
,~s21A0!21vmn

!
~vmn

,~s21A0!22vmn
!

i~s21A0!21vmn
i2

5 (
n51

`

~21!n21 (
j 1 , . . . ,j n51

N

(
m1 , . . . ,mn51

d a j 1

2

mj 1

¯

a j n

2

mj n

enKn dj~s!n

5d(
n51

`

~21!n21S eKj~s!(
j 51

N a j
2

mj
D n

5d
erj~s!

11erj~s!
.

Hence

tr~~ I!1~ II !!5
der

11erj~s!
~j~s!2h~s!!.

From

j~s!2h~s!5 (
u l u<2pL

H ul̂~ l !u2vd~ l !

s21vd~ l !2 2
vd~ l !3ul̂~ l !u2

~s21vd~ l !2!2J 5 (
u l u<2pL

s2ul̂~ l !u2vd~ l !

~s21vd~ l !2!2 ªh8~s!,

it follows that

~2!5
e

2p E
2`

` erh8~s!

11erj~s!
ds.

As was mentioned in~7.3!, as a→` and thenL→`, He(q,d,a,L) uniformly converges to
He

0(q)1dN in the resolvent sense. Thus asa→` and thenL→`, it follows that
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E~q,d,a,L !→ inf s~He~q!1dN!ªE~q,d!.

SinceN>0, we have

lim inf
d→0

E~q,d!>E~q!

and the strong resolvent convergence ofHe
0(q)1dN to He(q) asd→0 implies that

E~q!> lim sup
d→0

E~q,d!.

Thus

E~q,d!→E~q!

as d→0. Thus the lemma follows for sufficiently smallua j u ’s. By Proposition 3.2~3!,
inf s(He

0(q)) can be analytically continued in eacha j ’s to O, and clearlyE(q) also can be done
Hence the lemma follows for alla j ’s in R. h

A proof of Lemma 3.3(2): The proof is similar to Lemma 3.3. Define the projection opera

Pªe(
j 51

N

(
m51

d a j
2

mj
uvm

j &^vm
j u,

and

AªA01P,

whereA0 is defined in~7.2!. Here

vm
j
ªS Avd~ l 1!l̂ j~ l 1!em

1 ~ l 1!

]

Avd~ l 1!l̂ j~ l 1!em
(d21)~ l 1!

]

]

Avd~ l D!l̂ j~ l D!em
1 ~ l D!

]

Avd~ l D!l̂ j~ l D!em
(d21)~ l D!

D PR(d21)D.

Let

fª(
j 51

N

(
m51

d
a j

mj
A21qj mvm

j .

Similarly to Lemma 3.3 it is enough to calculate

~1! ( j 51
N (1/2)mj qj

221/2(A f , f ),

~2! 1
2 tr(AA2AA0).

First we calculate~1!. We have

~A21vm
i ,vn

j !5dmnd i j (
n51

`

~21!n21Knen21S a j
2

mj
D n21

j j
n5dmnd i j

Kj j

11eKj j

a j
2

mj

,

where
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j jª (
u l u<2pL

ul̂ j~ l !u2

vd~ l !
.

Note that, for functiong,

~ l̂ j ,gl̂ i !5d i j ~ l̂ j ,gl̂ j !.

Then

~A f , f !5 (
i , j 51

N

(
m,n51

d

~A21vm
i ,vn

j !

5 (
i , j 51

N

(
m,n51

d

dmnd i j

a i

mi

a j

mj
qinqj m

Kj j

11eKj j

a j
2

mj

5(
j 51

N S a j

mj
D 2

qj
2 Kj j

11eKj j

a j
2

mj

.

Then

1

2 (
j 51

N qj
2

mj
2

1

2
~A f , f !5

1

2 (
j 51

N qj
2

mj
S mj2~12e!Ka j

2j j

mj1eKa j
2j j

D .

Next we calculate~2!. Let ~I! and ~II ! be as in~7.4! and ~7.5!, respectively. We define

j j~s!ª (
u l u<2pL

vd~ l !ul̂ j~ l !u2

s21vd~ l !2 ,

h j~s!ª (
u l u<2pL

vd~ l !3ul̂ j~ l !u2

~s21vd~ l !2!2 ,

and

h j8~s!ª (
u l u<2pL

s2ul̂ j~ l !u2vd~ l !

~s21vd~ l !2!2 .

We have

tr~ I!5d(
j 51

N

(
n51

`

~21!nS a j
2

mj
D n

enKnj j~s!n21h j~s!

52d(
j 51

N

h j~s!e
a j

2

mj
K

1

11ej j~s!K
a j

2

mj

52d(
j 51

N
er jh j~s!

11er jj j~s!
.

Moreover
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tr~ II !5(
j 51

N

(
n51

`

~21!n21
a j

2

mj
enKnj j~s!n5d(

j 51

N
er jj j~s!

11er jj j~s!
.

Hence

~ I!1~ II !5d(
j 51

N
er j

11er jj j~s!
~j j~s!2h j~s!!5d(

j 51

N
er j

11er jj j~s!
h j8~s!.

Then

1

2
tr~AA2AA0!5

1

2
tr~~ I!1~ II !!5(

j 51

N
d

2p E
2`

` er jh j8~s!

11er jj j~s!
ds.

The same limiting argument ona,L,d as in Lemma 3.3 leads to the desired results. h
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The local Gauss law of quantum chromodynamics~QCD! on a finite lattice is
investigated. It is shown that it implies a gauge invariant, additive law giving rise to
a gauge invariantZ3-valued global charge in QCD. The total charge contained in a
region of the lattice is equal to the flux through its boundary of a certainZ3-valued,
additive quantity. Implications for continuum QCD are discussed. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1447310#

I. INTRODUCTION

Quantum chromodynamics~QCD! is one of the basic building blocks of the standard mo
for describing elementary particle interactions. During the last decades QCD was quite succ
e.g., in describing deep inelastic scattering processes within the framework of perturbation
on the one hand and ‘‘measuring’’ certain types of observables using~nonperturbative! lattice
approximation techniques on the other hand. Nonetheless, we are still facing the basic cha
which consists in constructing an effective microscopic theory of interacting hadrons out o
gauge theory. For this purpose, nonperturbative methods for describing the low energy r
should be developed. In particular, the observable algebra and the superselection structure
theory should be investigated. The present paper is a step in this direction.

We stress that standard methods from algebraic quantum field theory for models which
contain massless particles, see Ref. 1, do not apply here. Some progress toward an implem
of similar ideas for theories with massless particles has been made; for the case of qu
electrodynamics~QED! see Refs. 2 and 3 and further references therein. In particular, Buch
developed the concept of so-called charge classes and found a criterion for distinguishing b
the electric charge~carried by massive particles! and additional superselection sectors correspo
ing to inequivalent asymptotic infrared clouds of photons. For some attempts to deal wit
non-Abelian case we refer to papers by Strocchi and Wightman, see Refs. 4 and 5.

In QED, the notion ofglobal ~electric! charge is easy to understand. This is due to the fact
in this theory we have alocal Gauss law, which is built from gauge invariant operators and wh
is linear. Thus, one can ‘‘sum up’’ the local Gauss laws over all points of a given~spacelike!
hyperplane in space–time yielding the following gauge invariant conservation law: The g
electric charge is equal to the electric flux through a two-sphere at infinity. On the contra
QCD the local Gauss law is neither built from gauge invariant operators nor is it linear. The
point of the present paper is to show that it is possible to extract from the local Gauss equa
QCD a gauge invariant, additive law for operators with eigenvalues inZ3 @which is canonically
identified with the dual of the center of SU~3!#. This implies—as in QED—a gauge invarian
conservation law: The globalZ3-valued charge is equal to aZ3-valued gauge invariant quantit
obtained from the color electric flux at infinity.

a!Electronic mail: kijowski@cft.edu.pl
17960022-2488/2002/43(4)/1796/13/$19.00 © 2002 American Institute of Physics
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This color charge, often calledtriality , was invented a long time ago. On the level of latti
gauge theories, this notion is already implicitly contained in a paper by Kogut and Susskin
Ref. 6. In particular, Mack7 used it to propose a certain~heuristic! scheme of color screening an
quark confinement, based upon a dynamical Higgs mechanism with Higgs fields built from g
For similar ideas we also refer to papers by ‘tHooft, see Ref. 8, and references therein
concept was also used in a paper by Borgs and Seiler,9 where the confinement problem fo
Yang–Mills theories with static quark sources at nonzero temperature was discussed.
context, also the Gauss law for color charge was analyzed. Finally, we mention a pap
Fredenhagen and Marcu, see Ref. 10, dealing with aZ2-gauge theory~with Z2-valued matter
fields! on the lattice. These authors were able to construct the ground state and charged s
this model. For some regions in the space of coupling constants, the thermodynamic li
charged states was controlled.

In this paper, we consider QCD~with fermions! in the Hamiltonian approach. To be rigorou
we restrict ourselves to its approximation on a finite~regular cubic! lattice. For basic notions
concerning lattice gauge theories~including fermions! we refer to Ref. 11. The Hamiltonian
formulation of lattice gauge theories was first proposed in Refs. 12 and 6. The paper is org
as follows: In Sec. II, we define the algebra of field operators. Since, to our knowledge, th
never been published, we discuss it in some detail. Next, by imposing the local Gauss la
gauge invariance, we obtain the observable algebraO(L) for lattice QCD, see Sec. III. In Sec. IV
we analyze the local Gauss law and invent the gauge invariant notion of the local charge de
We prove that there exists an operator function, built from the Casimir invariants of the th
under consideration, which—applied to the Gauss law—yields the additive, gauge invariant
law for color charge. Using this notion, in Sec. V the global charge is defined and the flux la
QCD is discussed. Finally, we discuss some perspectives of this approach, including he
remarks concerning the continuum case.

For an analogous investigation of QED on the lattice, including its charge supersele
structure, we refer to Refs. 13 and 14.

II. THE FIELD ALGEBRA FOR LATTICE QCD

We consider QCD in the Hamiltonian framework on a finite, regular three-dimensional la
L. We denote the set of oriented,i -dimensional elements ofL by L i , i 50,1,2,3. Such element
are ~in increasing order ofi ! called sites, links, plaquettes, and cubes. The set of nonorie
i -dimensional elements will be denoted byuLu i . If, for instance, (x,y)PL1 is an oriented link,
then by u(x,y)uPuLu1 we mean the corresponding nonoriented link. Instead of using a con
Hilbert space representation~e.g., the Schro¨dinger representation!, we give an abstract definition
of the field algebra in terms of generators and defining relations.

The basic fields of lattice QCD are quarks living at lattice sites and gluons living on links.
field algebra is thus, by definition, the tensor product of local fermionic and bosonic algebr

F~L!ª ^
xPuLu0

Fx ^
u(x,y)uPuLu1

Fu(x,y)u . ~2.1!

We impose locality of the lattice quantum fields by postulating that the local algebras corres
ing to different elements ofL commute with each other.

The fermionic field algebraFx associated with a lattice sitex is generated from the algebraLx

of canonical anticommutation relations of quarks. In terms of coordinates, the quark field is
by

uLu0{x→~caA~x!!PLx , ~2.2!

wherea stands for bispinorial and~possibly! flavor degrees of freedom andA51,2,3 is the color
index corresponding to the fundamental representation of SU~3!. The conjugate quark field is
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denoted byc* a
A(x), where we raise and lower indices by the help of the canonical Herm

metric tensorgAB in C3. Finally, the~nontrivial! canonical anticommutation relations for elemen
of Lx read

@c* a
A~x!,cbB~x!#15dB

Adab. ~2.3!

Passing to self-adjoint generators~real and imaginary parts ofc!, we observe thatFx is a Clifford
algebra.

The bosonic field algebraFu(x,y)u associated with the nonoriented linku(x,y)u will be con-
structed in terms of its equivalent copiesF(x,y) andF(y,x) , corresponding to the two orientation
of the link (x,y). We will see that there is a natural identification of these two algebras, ind
from the vector character of both the gluonic potentialA and the color electric fieldE of the
underlying continuum theory: under the change of orientation of thekth axis bothAk and Ek

change their signs.
The bosonic field algebraF(x,y) is, by definition, the tensor product

F(x,y)ª Ẽ(x,y) ^ A(x,y) , ~2.4!

where Ẽ(x,y) is the enveloping algebra of the~real! Lie algebra E(x,y)>su(3) and A(x,y)

>C`(SU(3)) is thecommutative*-algebra of smooth functions on the Lie group SU~3!. We note
that the above-mentioned tensor product is naturally endowed with the structure of a c
product of Hopf algebras, given by the action of generators ofẼ(x,y) on functions, see Ref. 15. W
identify the tensor product of elements ofẼ(x,y) and functions with their product as differentia
operators on SU~3!. This way,F(x,y) gets identified with the algebra of differential operators on
group manifold. For our purposes, we endowF(x,y) with a Lie algebra structure. Thus, we have
define the commutator between a generatorePE(x,y) of Ẽ(x,y) and a functionf PA(x,y) ,

@e, f #ªeR~ f !, ~2.5!

whereeR( f ) denotes the derivative off with respect to the right-invariant vector fieldeR gener-
ated bye,

eR~ f !~g!ª
d

dsU
s50

f ~exp~se!•g!, gPSU~3!. ~2.6!

Now we give an explicit description ofF(x,y) in terms of generators and defining relation
The algebraA(x,y) is generated by matrix elements of the gluonic gauge potential on the
(x,y),

L1{~x,y!→UA
B~x,y!PA(x,y) , ~2.7!

whereA,B51,2,3 are color indices. Being functions on SU~3!, these generators fulfill the follow
ing relations:

~UA
B~x,y!!* UA

C~x,y!5dC
B1, ~2.8!

eABCUA
D~x,y!UB

E~x,y!UC
F~x,y!5eDEF1. ~2.9!

The algebraẼ(x,y) is generated by color electric fields, spanning the Lie algebraE(x,y) . Choos-
ing a basis$t i%, i 51, . . . ,8, of su~3! we denote by$Ei(x,y)% the corresponding basis ofE(x,y) ,

L1{~x,y!→Ei~x,y!ªt iPE(x,y) . ~2.10!
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These generators are self-adjoint~real!, Ei* 5Ei . In the sequel we take as the basis the Hermite
traceless Gell–Mann matricest i

A
B , normalized as follows:

(
i

t i
A

Bt i
C

D5dD
AdB

C2
1

3
dB

AdD
C , ~2.11!

or, equivalently,t i
A

B t j
B

A5d i j . We will also use the following traceless matrix built from the
fields:

EA
B~x,y!5(

i
Ei~x,y!t i

A
B . ~2.12!

Since the coefficientst i
A

B are complex, these fields are no longer self-adjoint:

~EA
B~x,y!!* 5EB

A~x,y!. ~2.13!

The commutation relations between elements of su~3! translated to the language of these fiel
read

@EA
B~x,y!,EC

D~x,y!#5dC
BEA

D~x,y!2dA
DEC

B~x,y!, ~2.14!

whereas the commutation relations~2.5! between Lie algebra elements and functions, rewritten
terms of generators, take the following form:

@EA
B~x,y!,UC

D~x,y!#5dC
BUA

D~x,y!2 1
3 dA

BUC
D~x,y!. ~2.15!

Observe that, for every link (x,y), we have a model of quantum mechanics with configurat
space being the group manifold SU~3!. The matrix elements of the gluonic potential play the ro
of functions of position variables, whereas the color electric fields play the role of~noncommut-
ing! canonically conjugate momenta. Formula~2.15! is the analog of the canonical commutatio
relation @p,q#52 i .

Now, we describe the transformation law of these objects under the change of the link
tation. The vector character of the continuum gauge potential implies that the~classical! SU~3!-
valued parallel transporterg(x,y) on (x,y) transforms tog21(x,y) under the change of orienta
tion. Thus, the change of orientation on (x,y) induces the transformation

SU~3!{g→ i ~g!5g21PSU~3! ~2.16!

on configuration space. This transformation lifts naturally to a mapping

I(x,y) :F(x,y)→F(y,x) ~2.17!

of field algebras, defined by

I(x,y)~e, f !ª~2 i * ~e!,i * ~ f !!. ~2.18!

We havei * ( f )(g)[ f̆ (g)ª f (g21) and2 i * (e)5eL, whereeL is the left invariant vector field on
SU~3! generated by2e. It acts on functions in the following way:

eL~ f !~g!5
d

dsU
s50

f ~g•exp~2se!!. ~2.19!

Observe thateL is not an element ofE(y,x) , but it can be expanded with respect to right-invaria
vector fields with coefficients being functions on the group. Actually, the following formul
easily proved:
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eL52(
i 51

8

Tr~geg21t i !t i
R , ~2.20!

wheret i is any orthonormal basis of su~3!.
Lemma 1: The mappingI(x,y) is an isomorphism of algebras.
Proof: We observe thatI(x,y) is obviously a bijective mapping between generators. It exte

to an isomorphism of field algebras if we prove that it preserves the commutator. This is ob
for elements, which either belong both toA(x,y) or to E(x,y) . Thus, it is sufficient to consider th
commutator of a Lie algebra elemente with a function f . Using the identity

eR~ f !~g!5
d

dsU
s50

f ~exp~se!•g!5
d

dsU
s50

f̆ ~g21
•exp~2se!!5eL~ f̆ !~g21!, ~2.21!

and applyingI(x,y) to the functions on both sides, we obtain due to~2.5! and ~2.18!

I(x,y)~@e, f # !5I(x,y)~eR~ f !!5eL~ f̆ !5@I(x,y)~e!,I(x,y)~ f !#. ~2.22!

This ends the proof. h

Field configurations, which are related underI(x,y) will be identified as different representa
tions of the same object. Thus, the bosonic field algebraFu(x,y)u , associated with the nonoriente
link u(x,y)u, is defined as the subalgebra ofF(x,y)3F(y,x) , obtained by this identification:

Fu(x,y)uª$~ l (x,y) ,k(y,x)!PF(x,y)3F(y,x) :k(y,x)5I(x,y)~ l (x,y)!%. ~2.23!

Projection onto the first~respectively, second! component gives us an isomorphism ofFu(x,y)u with
F(x,y) ~respectively,F(y,x)).

The above-mentioned transformation law yields relations between generators of the t
gebras. For functions on SU~3!, formula ~2.8! enables us to rewrite~2.18! as follows:

UA
B~y,x!5~UB

A~x,y!!* . ~2.24!

For Lie algebra elements, formula~2.20! applied toe5t i reads

Ej~y,x!52(
i 51

8

UA
B~x,y!t j

B
CUC

D~y,x!t i
D

A Ei~x,y!, ~2.25!

or, in terms of generatorsEA
B(x,y),

EA
B~y,x!52UA

D~y,x!UC
B~x,y!ED

C~x,y!. ~2.26!

To summarize, the field algebraF(L) is the*-algebra, generated by elements

$caA~x!,UA
B~x,y!,EA

B~x,y!%,

fulfilling relations ~2.8!, ~2.9!, ~2.13!, ~2.24!, and~2.26!, together with canonical~anti! commuta-
tion relations

@c* a
A~x!,cbB~y!#15d~x2y!dB

Adab,

@EA
B~x,y!,EC

D~u,z!#5d~x2u!d~y2z!~dC
BEA

D~x,y!2dA
DEC

B~x,y!!,

@EA
B~x,y!,UC

D~u,z!#51d~x2u!d~y2z!~dC
BUA

D~x,y!2 1
3 dA

BUC
D~x,y!!2d~x2z!d~y2u!

3~dA
DUC

B~y,x!2 1
3 dA

BUC
D~y,x!!.
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III. THE OBSERVABLE ALGEBRA

The observable algebraO(L) is defined by imposing the local Gauss law and gauge inv
ance.

The group of local gauge transformations acts onF(L) by automorphismsx→gA
B(x) as

follows:

caA~x!→gA
B~x!caB~x!, ~3.1!

UA
B~x,y!→gA

C~x!UC
D~x,y!~g21!D

B~y!, ~3.2!

EA
B~x,y!→gA

C~x!EC
D~x,y!~g21!D

B~x!. ~3.3!

It is easy to check that these transformations are generated by

G A
B~x!ªrA

B~x!2(
y

EA
B~x,y!, ~3.4!

where

rA
B~x!5(

a
S c* aA~x!ca

B~x!2
1

3
dB

Ac* aC~x!ca
C~x! D ~3.5!

is the local matter charge density. Observe thatrA
A(x)50.

To implement gauge invariance we have to take those elements ofF(L), which commute
with all generatorsG A

B(x). Thus, the subalgebra of gauge invariant fields is, by definition,
commutantA(G)8 of the algebraA(G), generated by the set$G A

B(x)%.
The local Gauss law atxPL0 has the form

(
y

EA
B~x,y!5rA

B~x!, ~3.6!

with the sum taken over all pointsy adjacent tox. Imposing it on the subalgebraA(G)8 of gauge
invariant fields means factorizing the latter with respect toI(L)ùA(G)8, whereI(L) is the ideal
generated by~3.6!. Thus, the observable algebra is defined as follows:

O~L!ªA~G!8/$I~L!ùA~G!8%. ~3.7!

Obviously, every element ofO(L) is represented by a gauge invariant element ofF(L) and
O(L) can be viewed as a* -subalgebra ofF(L) generated by gauge invariant bosonic combin
tions ofU andE and by gauge invariant combinations ofc andc* of mesonic and baryonic type
with the Gauss law inducing some identities between those generators.

It will be shown in Sec. IV that there is a~gauge invariant!, additive law, obtained by
combining these two equations, which characterizes the local color charge density carried
lattice quantum fields. Additivity will allow us to obtain the global color charge by adding up
local Gauss laws. In a subsequent paper we will show that the irreducible representations oO(L)
are labeled by this global charge. This way, we get the physical Hilbert spaceH physas a direct sum
of color charge superselection sectors. The similar problem for QED on the lattice was sol
Ref. 13.

IV. THE LOCAL CHARGE DENSITY

In this section we are going to analyze the local Gauss law~3.6!. Suppose, for that purpose
that we are given a collection of operatorsFA

B in a Hilbert spaceH, fulfilling FA
A50 and

(FA
B)* 5FB

A , realizing the canonical commutation relations for the Lie algebra su~3!:
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@FA
B ,FC

D#5dC
BFA

D2dA
DFC

B . ~4.1!

The field algebraF(L) provides us with two basic examples of this type: the electric fi
EA

B(x,y) on each lattice link, see~2.14!, and the charge operatorrA
B(x) at each lattice site, given

by formula~3.5!. Indeed, due to canonical anticommutation relation~2.3!, the latter fulfills~4.1!.
Thus, the operators occurring on both sides of the local Gauss law fulfill~4.1!.

Throughout this paper, we assume integrability of the Lie algebra representations unde
sideration. This means that for eachF there exists a unitary representation of the group SU~3!,

SU~3!{g→F̄~g!PB~H!, ~4.2!

associated withF.
It is easy to check that ifF andG are two commuting representations of su~3! then so isF

1G. Indeed, ifF̄(g) and Ḡ(g) are representations of SU~3! corresponding toF andG, thenF

1G may be obtained by differentiating the representation SU(3){g→F̄(g)Ḡ(g)PB(H), where
B(H) denotes theC* -algebra of bounded operators onH. Moreover,2F* is also a representatio
of su~3!, corresponding to the following representation of SU~3!: SU(3){g→(F̄(g21))*
PB(H).

Such a collection of operators is anoperator domainin the sense of Woronowicz~see Ref.
16!. We are going to construct an operator function on this domain, i.e., a mappingF→w(F)
which satisfiesw(UFU21)5Uw(F)U21 for an arbitrary isometryU. This function will be built
from the two gauge-invariant, self-adjoint and commuting~Casimir! operatorsK2 andK3 of F:

K25FA
BFB

A , ~4.3!

K35 1
2 ~FA

BFB
CFC

A1FA
BFC

AFB
C!. ~4.4!

The Hilbert spaceH splits into the direct sum of subspacesHa on whichF acts irreducibly.
Each of these subspaces is a common eigenspace ofK2 and K3 . Denoting the highest weigh
characterizing a given irreducible representation by (m,n), with m and n being non-negative
integers, the eigenvaluesk2 andk3 of K2 andK3 are given by

k25 2
3 ~m21mn1n213m13n!, ~4.5!

k35 1
9 ~m2n!~312m1n!~31m12n!. ~4.6!

It is easy to check that the above-given formulas may be uniquely solved with respect tom andn
yielding

m5M ~k2 ,k3!

ªA2

3
~k212!S cosS 1

3
arccos

A6k3

A~k212!3
1

2

3
p D

12 cosS 1

3
arccos

A6k3

A~k212!3D D 21, ~4.7!
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n5N~k2 ,k3!

ª2A2

3
~k212!S 2 cosS 1

3
arccos

A6k3

A~k212!3
1

2

3
p D

1cosS 1

3
arccos

A6k3

A~k212!3D D 21. ~4.8!

Using these functions we may define a function with values inZ3 , which will be identified with
the dual to the centerC of the gauge group SU~3!:

f ~k2 ,k3!ª~M ~k2 ,k3!2N~k2 ,k3!! mod 3. ~4.9!

For our purposes it is convenient to use the parametrizationZ35(21,0,1). Obviously, we have

f ~k2 ,2k3!52 f ~k2 ,k3!. ~4.10!

SinceK2 andK3 are commuting and self-adjoint, there exists an operator-valued function:

w~F !5 f ~K2~F !,K3~F !!. ~4.11!

This means thatw(F) may take eigenvalues21,0,1 and that every irreducible subspaceHa is an
eigenspace ofw(F) with eigenvaluem2n mod 3.

Theorem 1: The operator functionw has the following properties:

w~2F* !52w~F !, ~4.12!

w~F1G!5w~F !1w~G!, ~4.13!

for F and G commuting.
Proof: To show property ~4.12! observe thatK2(2F* )5K2(F), whereas K3(2F* )

52K3(F). Consequently, due to~4.5! and ~4.6!, we haveM (k2 ,2k3)5N(k2 ,k3) and N(k2 ,
2k3)5M (k2 ,k3) which implies~4.12!. It remains to prove property~4.13!. Let there be given
two commuting representations,F andG, of su~3! in H. Denote the irreducible components ofF
by $H a

F% and of G by $H b
G%. The irreducible spaces may be chosen in such a way thaH

decomposes as follows:

H5 %
a,b

H a
FùH b

G . ~4.14!

Take 0ÞxPH a
FùH b

G and consider the spaceH x
F1G,H generated by vectors$F̄(g)Ḡ(g)x%, g

PSU(3), where F̄ and Ḡ are the corresponding~‘‘integrated’’! representations of SU~3!. By
construction,H x

F1G carries an irreducible representation ofF̄Ḡ. There exists a canonical embe
ding

H x
F1G{y→T~y!PH a

F
^ H b

G , ~4.15!

given by

T~ F̄~g!Ḡ~g!x!ªF̄~g!x^ Ḡ~g!x, ~4.16!

intertwining the representationF̄Ḡ with F̄ ^ Ḡ. This means thatF̄Ḡ, acting onH x
F1G , is equiva-

lent to one of the irreducible components ofF̄ ^ Ḡ. Passing again to representations of the L
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algebra su~3!, we conclude thatF1G, acting onH x
F1G , is equivalent to one of the irreducibl

components ofF ^ 111^ G, acting onH a
F

^ H b
G . Now, property~4.13! follows from the follow-

ing
Lemma 2: Let there be given two irreducible representations(m,n) and (m8,n8) of su(3),

together with the decomposition of their tensor product into irreducible components,

~m,n! ^ ~m8,n8!5~m1 ,n1! % ¯ % ~mp ,np!. ~4.17!

Then we have

~m2n! mod 31~m82n8! mod 35~mi2ni ! mod 3, ~4.18!

for every i51, . . . ,p.
Proof: We use the classification of irreducible representations in terms of Young-tableau

su~3!, the following two equations hold:

~1! The number of boxes constituting the Young-tableau of (mi ,ni) equals the sum of boxes o
the tableaux corresponding to (m,n) and (m8,n8) minus 3p, where p is a non-negative
integer.

~2! The number of boxes of an arbitrary irreducible representation of su~3! is equal tom12n
[m2n13n.

Taking the first equation modulo three and using the second equation yields the thesis. Th
the proof of the Lemma and of the Theorem. h

Applying the operator functionw to the local Gauss law~3.6! and using additivity~4.13! of w
we obtain

(
y

w~E~x,y!!5w~r~x!!. ~4.19!

This is a gauge invariant equation for operators with eigenvalues inZ3 , valid at every lattice site
x. The quantity on the right-hand side is the~gauge invariant! local color charge density carried b
the quark field.

We complete this section by giving another definition17 of the functionw. Consider the cente
C5$r"13 ;r351,rPC% of SU~3!, where13 is the unit matrix. IfF̄ is a representation of SU~3!,
then the centerC acts as a multiple of the identity on each irreducible subspaceHa : C{c

→F̄(c)uHa
5 f (c)"1Ha

. Obviously, f is a character and, therefore, (f (c))351. The formula
f (r"13)5rk, k521,0,1, gives an identification of the group of characters onC with Z3 . Hence,
there exists an operator functionw, whose values on everyHa belong toZ3 , defined by

f ~r"13!5..rw(F)uHa
. ~4.20!

To prove that this definition coincides with the previous one we use the equivalence o
irreducible representation (n,m) of SU~3! with the tensor representation in the spaceTn

m(C3) of
m-contravariant,n-covariant, completely symmetric and traceless tensors overC3. The center acts
here as a multiple of the unit matrix and it is obvious that

f ~r"13!5rm2n. ~4.21!

The advantage of this formulation is that the above-mentioned properties ofw follow directly from
the group properties of the characters. On the other hand, expression~4.11! for w in terms of the
fields F is explicit and gives deeper insight into the relation between the global charge an
invariants~Casimirs! of the theory.
                                                                                                                



dary.

point

re of

t

der the
ry
ely,

1805J. Math. Phys., Vol. 43, No. 4, April 2002 On the Gauss law and global charge for QCD

                    
V. THE GLOBAL CHARGE AND THE FLUX LAW

Using the commutation relation betweenE andU, transformation law~2.26! for E(x,y) may
be rewritten in three equivalent ways:

EA
B~y,x!5UA

D~y,x!ED
C~x,y!UC

B~x,y!1 8
3 dB

A ~5.1!

52UC
B~x,y!ED

C~x,y!UA
D~y,x!2 8

3 dB
A ~5.2!

52ED
C~x,y!UA

D~y,x!UC
B~x,y!. ~5.3!

These equations imply that

K2~E~x,y!!5K2~E~y,x!!, K3~E~x,y!!52K3~E~y,x!!. ~5.4!

Hence, due to~4.10!, we have

w~E~x,y!!1w~E~y,x!!50, ~5.5!

for every lattice bond (x,y).
Now we take the sum of Eq.~4.19! over all lattice sitesxPL. Due to the above-given

identity, all terms on the left-hand side cancel, except for contributions coming from the boun
This way we obtain the total flux through the boundary]L of L:

F]Lª (
xP]L

w~E~x,`!!, ~5.6!

where byE(x,`) we denote the color electric charge along the external link, connecting the
x on the boundary ofL with the ‘‘rest of the world.’’ On the right-hand side we get the~gauge
invariant! global color charge, carried by the matter field

QL5 (
xPL

w~r~x!!. ~5.7!

Both quantities appearing in the global Gauss law

F]L5QL , ~5.8!

take values in the centerZ3 of SU~3!. The ‘‘sum modulo three’’ is the composition law inZ3 .
In the above-presented discussion we have admitted nonzero values ofE(x,`) at boundary

pointsxP]L. In the remainder of this section we make some heuristic remarks on the natu
these objects.

~1! One may treatL as a piece of a bigger latticeL̃. Then the boundary flux operatorsE(x,`)
belong toF(L̃) and commute withF(L) @and also withO(L)#. They are external from the poin
of view of F(L) and measure the ‘‘violation of the local Gauss law’’ on the boundary]L:

E~x,`!ªr~x!2(
y

E~y,x!. ~5.9!

Nonvanishing of this element is equivalent to gauge dependence of quantum states un
action of boundary gaugesg(x)PSU(3), xP]L. Let us discuss this point in more detail. Eve
irreducible representation of SU~3! is equivalent to some tensor representation. More precis
denote byTn

m(C3) the space ofm-contravariant,n-covariant tensors overC3, endowed with the
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natural scalar product induced by the scalar product onC3. Let Tn
m(C3),Tn

m(C3) be the subspace
of irreducible, i.e., completely symmetric and traceless tensors. These tensors form a Hilbert
T(C3) defined as the direct sum

T~C3!ª%
m,n

Tn
m~C3!. ~5.10!

Under gauge transformations atxP]L, physical states of QCD onL behave like elements o
T(C3), whereas the subspacesTn

m(C3) correspond to eigenspaces of the invariant opera
N(E(x,`)) and M (E(x,`)), constructed from external fluxes~5.9!. If one wants to include all
these gauge invariant operators into an axiomatic formulation, as given in Sec. II, one has di
options. The remarks at the beginning of this point suggest to postulate that these op
commute with all elements of the observable algebraO(L). This corresponds to treating extern
fluxes as purelyclassical objects, describing extra superselection rules~cf. Refs. 3–5!.

~2! Our results concerning the charge superselection structure of QED on a finite la13

suggest, however, a second option. In Ref. 13 all irreducible representations of the obse
algebra were classified in terms of the global electric chargeQL contained inL. Representations
differing only by the local electric flux distribution over the boundary]L, but having the same
value of the global fluxF]L were proved to be equivalent. The redistribution of fluxes is obtai
by the action of certain unitary operators, see Ref. 13, acting on the quantum state under
eration. Such aredistribution operatorhas the following~heuristic! counterpart in continuum
QED:

U~n!ªexpS i

\ E
S
n~x!•A~x!d3xD , ~5.11!

wheren5(nk) is a divergence-free~i.e., fulfilling ]kn
k[0) vector-density onS,R3. Formally,

we have

Ẽk~x!ª~U* ~n!E~x!U~n!!k5Ek~x!1nk~x!. ~5.12!

It is obvious that replacing the fieldE by Ẽ and leaving all other observables unchanged gives
equivalent representation of the observable algebra. Nevertheless, the flux field on the bo
]S of the domainS is changed byn'(x), where ‘‘' ’’ denotes the component orthogonal to]S.

In a subsequent paper we are going to present a similar result for lattice QCD. We shall
that all irreducible representations of the observable algebraO(L) of QCD on a finite lattice are
classified by the value of the global color chargeQL , yielding three different superselectio
sectors labeled by elements ofZ3 . However, the local distribution of the~gauge invariant! gluon
and antigluon fluxesM (E(x,`)) and N(E(x,`)) over the boundary]L may be arbitrarily
changed within one sector. The redistribution of fluxes is obtained by the following proce
Take an arbitrary pair of pointsj,hP]L at the boundary and a path~collection of lattice links!
g5$(j,x1),(x1 ,x2), . . . ,(xk ,h)%, connecting them. Define the following operator-valued ma
U(g)5(UA

B(g)), where

UA
B~g!ª

1

)
UA

C1
~j,x1!UC1

C2
~x1 ,x2! . . . UCk

B~xk ,h!. ~5.13!

The action ofU(g) on a quantum statec is, by definition, a collection (UA
B(g)c) with an extra

contravariant indexA at j and an extra covariant indexB at h. In general, the new state does n
belong to any irreducible representation of SU~3! at j andh, even ifc did. This means thatU(g)c
is notan eigenstate of operatorsM (E(j,`)), N(E(j,`)), M (E(h,`)), andN(E(h,`)), even if
c was. Decomposing it into irreducible representations, we observe, however, that the va
w(E(j,`)) has been changed by plus one and the value ofw(E(h,`)) has been changed b
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minus one by this procedure. This suggests that these objects could also be treated asquantumand
not as classical quantities. Then, only their sum, the global fluxF]L , would be a classical objec
proportional to the identity on every superselection sector. This point of view was strongly
cated by Staruszkiewicz already a decade ago~see Ref. 18!. We also refer to Ref. 19, wher
decoherence phenomena in QED in terms ofquantumfluxes at infinity were discussed. We un
derline, however, that at the moment it is unclear, whether and if, then in which sense, intertw
operators of the type~5.13! survive in the thermodynamic limit.

~3! Finally, we stress that it does not make sense to attribute any physical meaning
external gluon or antigluon fluxesM andN themselves. It is only the quantity (M2N) ‘‘modulo
three’’ which makes sense. This would hold also for the continuum theory, provided such a t
would be constructed in the future. Assume, for a moment, that a rigorous continuum QC
been obtained as a limit of lattice theories, with surface fluxesEA

B(S)ª*SEA
B defined via the

projective limit of finite sums corresponding to appropriate lattice approximations. Then it w
not make sense to calculate quantitiesN(E(S)) or M (E(S)), because of the nonadditivity o
functions~4.7! and ~4.8!. Indeed, ifS has been divided into small portions,S5øaSa , we have

E
S
E5(

a
E

Sa

E, ~5.14!

but the functionsM , N @or even (M2N)# give, in general, different results when applied to bo
sides of Eq.~5.14!. On the other hand, the functionw is additive and gives the same result wh
applied to both sides. This suggests that, in principle, theZ3-valued flux throughS ~equal to the
sum of fluxes corresponding to its small portionsSa! could possibly survive in the continuum
limit. The same argument applies to the color charge densityw~r!. We would then expect that th
global Z3-valued Gauss law~5.8! could possibly survive in this ‘‘would be’’ continuum theory.

VI. DISCUSSION

We add some remarks concerning the perspectives of our approach, in which the notion
observable algebra plays a central role. Often, one defines the observable algebra as the al
gauge invariant operators and imposes the Gauss law as a constraint to be fulfilled by p
states. If one discusses, for instance, the quark confinement problem in the somewhat sim
setting of QCD with infinitely heavy external charges, then this seems to be the appro
choice. However, in our approach, we start with dynamical quarks and our final goal is a qu
theory of interacting hadrons, built from gluons and quarks. Within this strategy, all rela
between~composite! physical fields, including the Gauss constraint, should be implemented o
level of the observable algebra. This point of view is strongly supported by our results for l
QED, see Refs. 13, 14, and 20. The same strategy, applied there, yields exactly the
superselection sectors of the theory. In these papers, we found that the observable alg
generated by a certain Lie algebra,u(2N) for spinorial QED andu(N,N) for scalar QED. QCD
seems to be generated by a certain Lie superalgebra—a conjecture we are actually work
The characterization of the observable algebra in terms of a Lie~super!algebra is extremely
helpful for the classification of its irreducible representations. It should be also helpful for
structing the thermodynamic limit, because for taking the limitN→` in the generating Lie
~super!algebras there seems to exist appropriate mathematical tools for studying the re
representations, see Ref. 21.

Finally, we stress that this work is part of a larger program, which includes both the stu
gauge theoretical models in terms of gauge invariants within the functional integral approac
Ref. 22, and the investigation of the structure of the full gauge orbit space, including sin
strata, see Ref. 23. In the future, a rigorous study of singular strata within the lattice qua
theory discussed previously is also planned.
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Renormalization of Poincare ´ transformations
in Hamiltonian semiclassical field theory

O. Yu. Shvedova)
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Moscow State University, Vorobievy gory, Moscow 119899, Russia
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Semiclassical Hamiltonian field theory is investigated from the axiomatic point of
view. A notion of a semiclassical state is introduced. An ‘‘elementary’’ semiclassi-
cal state is specified by a set of classical field configurations and quantum states in
this external field. ‘‘Composed’’ semiclassical states viewed as formal superposi-
tions of ‘‘elementary’’ states are nontrivial only if the Maslov isotropic condition is
satisfied; the inner product of ‘‘composed’’ semiclassical states is degenerate. The
mathematical proof of Poincare´ invariance of semiclassical field theory is obtained
for ‘‘elementary’’ and ‘‘composed’’ semiclassical states. The notion of semiclassical
field is introduced; its Poincare´ invariance is also mathematically proved. ©2002
American Institute of Physics.@DOI: 10.1063/1.1453497#

I. INTRODUCTION

Different approaches to semiclassical field theory have been developed. Most of them
based on the functional integral technique: physical quantities were expressed via fun
integrals which were evaluated with the help of saddle-point or stationary-phase technique
energy spectrum andS-matrix elements can be found from the functional integral,1,2 this approach
appeared to be useful for the soliton quantization theory.1–5

Another important partial case of the semiclassical field theory is the theory of quantizat
a strong external background classical field6 or in curved space–time:7 one decomposes the fiel
as a sum of a classicalc-number component and a quantum component. Then the theo
quantized.

The one-loop approximation,8–11 the time-dependent Hartree–Fock approximation,8,9,12,13and
the Gaussian approximation developed in Refs. 14–17 may also be viewed as examples o
cations of semiclassical conceptions.

On the other hand, the axiomatic field theory18–20 tells us that the main objects of quantu
field theory ~QFT! are states and observables. The Poincare´ group is represented in the Hilbe
state space, so that evolution, boosts, and other Poincare´ transformations are viewed as unita
operators.

The purpose of this paper is to introduce the semiclassical analogs of such QFT noti
states, fields, and Poincare´ transformations. The analogs of Wightman Poincare´ invariance and
field axioms for the semiclassical field theory are to be formulated and checked.

Unfortunately, ‘‘exact’’ QFT is mathematically constructed for a restricted class of mo
only ~see, e.g., Refs. 21–24!. Therefore, formal approximate methods such as perturbation th
seem to be ways to quantize the field theory rather than to construct approximations for the
solutions of QFT equations. The conception of field quantization within the perturbation fr
work is popular.25,26One can expect that the semiclassical approximation plays an analogou

To construct the semiclassical formalism based on the notion of a state, one should u
equation-of-motion formulation of QFT rather than the usualS-matrix formulation. It is well-
known that additional difficulties such as Stueckelberg divergences27 and problems associate
with the Haag theorem28,19,20arise in the equation-of-motion approach. There are some way

a!Electronic mail: shvedov@qs.phys.msu.su
18090022-2488/2002/43(4)/1809/35/$19.00 © 2002 American Institute of Physics
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overcome them. The vacuum divergences can be eliminated in the perturbation theory w
help of the Faddeev transformation.29 Stueckelberg divergences can be treated analogously30 ~ex-
actly solvable models with Stueckelberg divergences have been suggested recently31,32!. These
investigations are important for the semiclassical Hamiltonian field theory.33

The semiclassical approaches are formally applicable to the quantum field theory mo
the Lagrangian depends on the fieldsw and the small parameterl as follows~see, for example,
Ref. 4!:

L5
1

2
]mw]mw2

m2

2
w22

1

l
V~Alw!, ~1.1!

where V is an interaction potential. To illustrate theformal semiclassical ansatz for the sta
vector, use the functional Schro¨dinger representation~see, e.g., Refs. 12, 13, 16, and 17!. States at
fixed moment of time are represented as functionalsc@w(•)# depending on fieldsw(x), xPRd,
the field operatorŵ(x) is the operator of multiplication byw(x), while the canonically conjugated
momentump̂(x) is represented as a differentiation operator2 id/dw(x). The functional Schro¨-
dinger equation reads

i
dc t

dt
5Hc t, ~1.2!

where

H5E dxF2
1

2

d2

dw~x!dw~x!
1

1

2
~¹w!2~x!1

m2

2
w2~x!1

1

l
V~Alw~x!!G .

The simplest semiclassical state corresponds to the Maslov theory of complex germ
point.34–36 It depends on the small parameterl as

c t@w~• !#5expS i

l
StDexpS i

l E dx P t~x!@w~x!Al2F t~x!# D f tS w~• !2
F t~• !

Al
D

[~KSt,P t,F t f t!@w~• !#, ~1.3!

whereSt, P t(x), F t(x), tPR, xPRd are smooth real functions which rapidly damp with all the
derivatives asx→`, f t@f(•)# is a t-dependent functional.

As l→0, the substitution~1.3! satisfies Eq.~1.2! in the leading order inl if the following
relations are obeyed. First, for the ‘‘action’’St one finds

dSt

dt
5E dxFP t~x!Ḟ t~x!2

1

2
~P t~x!!22

1

2
~¹F t~x!!22

m2

2
~F t~x!!22V~F t~x!!G . ~1.4!

Second,P t, F t obeys the classical Hamiltonian system

Ḟ t5P t,2Ṗ t5~2D1m2!F t1V8~F t!. ~1.5!

Finally, the functionalf t satisfies the functional Schro¨dinger equation with the quadratic Hami
tonian

i ḟ t@f~• !#5E dxF2
1

2

d2

df~x!df~x!
1

1

2
~¹f~x!!21

m2

2
f2~x!1

1

2
V9~F t~x!!f2~x!G f t@f~• !#.

~1.6!
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There are more complicated semiclassical states that also approximately satisfy the fun
Schrödinger equation~1.2!. These ansatzes correspond to the Maslov theory of Lagrangian m
folds with complex germs.34–36They are discussed in Sec. V.

However, the QFT divergences lead to the following difficulties.
It is not evident how one should specify the class of possible functionalsf and introduce the

inner product on such a space via functional integral. This class was constructed in Ref.
particular, it was found when the Gaussian functional

f @f~• !#5const expS i

2 E dx dyf~x!f~y!R~x,y! D ~1.7!

belongs to this class. The condition on the quadratic formR which was obtained in Ref. 33
depends onF, P and differs from the analogous condition in the free theory. This is in agreem
with the statement of Refs. 37 and 38 that nonequivalent representations of the canonica
mutation relations at different moments of time should be considered if QFT in the strong ex
field is investigated in the leading order inl. However, this does not lead to nonunitarity of th
exact theory: the simple example has been presented in Ref. 32.

Another problem is to formulate the semiclassical theory in terms of the axiomatic
theory. Section II deals with formulation of axioms of relativistic invariance and field for
semiclassical theory. Section III is devoted to construction of Poincare´ transformations. In Sec. IV
the notion of semiclassical field is investigated. More complicated semiclassical states ar
structed in Sec. V. Section VI contains concluding remarks.

II. AXIOMS OF SEMICLASSICAL FIELD THEORY

In the Wightman axiomatic approach the main object of QFT is a notion of a state space18–20

Formula~1.3! shows us that in the semiclassical field theory a state at fixed moment of time s
be viewed as a set (S,P(•),F(•), f @f(•)#) of a real numberS, real functionsP(x), F(x), x
PRd, and a functionalf @f(•)# from some class. This class depends onP andF. Superposition
of semiclassical states (S1 ,P1 ,F1 , f 1) and (S2 ,P2 ,F2 , f 2) is of the semiclassical type~1.3! if
and only if S15S2 , F15F2 , P15P2 .

Thus, one introduces39,40 the structure of a vector bundle~called a ‘‘semiclassical bundle’’ in
Ref. 40! on the set of semiclassical states of the type~1.3!. The base of the bundle being a spa
of sets (S,P,F) ~‘‘extended phase space’’39! will be denoted asX. The fibers are classes o
functionals which depend onF and P. Making use of the result concerning the class
functionals,33 one makes the bundle trivial as follows. Consider theF, P-dependent mappingV,
which defines a correspondence between functionalsf and elements of the Fock spaceF:

V:C° f , CPF, f 5 f @f~• !#,

as follows~see, e.g., Ref. 41!. Let R̃(x,y) be anF, P-dependent symmetric function such that
imaginary part is a kernel of a positively definite operator and the condition of Ref. 33@see Eq.

~3.41! in Sec. III F# is satisfied. ByR̂ we denote the operator with kernelR̃, while Ĝ has a kernel
i 21(R̃2R̃* ). The vacuum vector of the Fock space corresponds to the Gaussian functiona~1.7!.
The operatorV is uniquely defined from the relations

V21f~x!V5 i ~ Ĝ21/2~A12A2!!~x!,
~2.1!

V21
1

i

d

df~x!
V5 i ~R̂Ĝ21/2A12R̂* Ĝ21/2A2!~x!.

HereA6(x) are creation and annihilation operators in the Fock space.
Definition 2.1: A semiclassical state is a point on the trivial bundleX3F→X.
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An important postulate of QFT is Poincare´ invariance. This means that a representation of
Poincare´ group in the state space should be specified. For each Poincare´ transformation of the
form

x8m5Ln
mxn1am, m,n50,d, ~2.2!

which is denoted as (a,L), the unitary operatorUa,L should be specified. The group property

U~a1 ,L1!U~a2 ,L2!5U~a1 ,L1!~a2 ,L2!

with

~a1 ,L1!~a2 ,L2!5~a11L1a2 ,L1L2!

should be satisfied.
Formulate an analog of the Poincare´ invariance axiom for the semiclassical theory. Suppo

that the Poincare´ transformationUa,L takes any semiclassical state~X,f! to a semiclassical stat
(X̃, f̃ ) in the leading order inl1/2. DenoteX̃5ua,LX, f̃ 5U(ua,LX←X) f .

Axiom 1 (Poincare´ invariance):
~a! The mappings ua,L : X→X are specified, the group properties for them ua1 ,L1

ua2 ,L2

5u(a1 ,L1)(a2 ,L2) are satisfied;
~b! for all XPX the unitary operators Ua,L(ua,LX←X): F→F, obeying the group property

Ua1 ,L1
~u~a1 ,L1!~a2 ,L2!X←u~a2 ,L2!X!Ua2 ,L2

~u~a2 ,L2!X←X!

5U ~a1 ,L1!~a2 ,L2!~u~a1 ,L1!~a2 ,L2!X←X! ~2.3!

are specified.
An important feature of QFT is the notion of a field: it is assumed that an operator distrib

ŵ(x,t) is specified. Investigate it in the semiclassical theory. Applying the operatorw(x) to the
semiclassical state~1.3!, we obtain an analogous state:

expS i

l
StDexpS i

l E dxP t~x!@w~x!Al2F t~x!# D f̃ tS w~• !2
F t~• !

Al
D ,

where

f̃ t@f~• !#5~l21/2F t~x!1f~x!! f t@f~• !#.

As l→0, one has

ŵ~x,t !5l21/2F t~x!1f̂~x,t:X!,

wheref̂(x,t:X) is a P, F-dependent operator inF, F t(x)[F(x:X) is a solution to the Cauchy
problem for Eq.~1.5!. The field axiom can be reformulated as follows.

Axiom 2: For each XPX the operator distributionf(x,t;X): F→F is specified.
An important feature of the relativistic quantum field theory is the property of Poin´

invariance of fields. The operator distributionŵ(x,t) should obey the following property:

Ua,Lŵ~x!5ŵ~Lx1a!Ua,L .

Apply this identity to a semiclassical state~X,f!. In leading orders inl1/2, one obtains
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l21/2F~x:X!~ua,LX,Ua,L~ua,LX←X! f !1~ua,LX,Ua,L~ua,LX←X!f̂~x:X! f !

5l21/2F~Lx1a:ua,LX!~ua,LX,Ua,L~ua,LX←X! f !

1~ua,LX,f̂~Lx1a:ua,LX!Ua,L~ua,LX←X! f !.

Therefore, we formulate the following axiom.
Axiom 3 (Poincare´ invariance of fields): The following properties are satisfied:

F~x:X!5F~Lx1a:ua,LX!, ~2.4!

f̂~Lx1a:ua,LX!Ua,L~ua,LX←X!5Ua,L~ua,LX←X!f̂~x:X!. ~2.5!

III. SEMICLASSICAL POINCARÉ TRANSFORMATIONS

A. Construction of Poincare ´ transformations in the functional representation

~1! Let us construct the mappingsua,L and unitary operatorsUa,L(ua,LX←X). Since any
Poincare´ transformation is a composition of time and space translations, boost and spatia
tions,

~a,L!5~a0,1!~a,1!~0,exp~akl 0k!!~0,exp~ 1
2usml sm!!

with usm52ums,

~ l lm!b
a52gladb

m1gmadb
l ,

it is sufficient to specify operatorsUa,L for these special cases and then apply a group prope
In the ‘‘exact’’ theory, the operatorUa,L has the form

Ua,L5exp@ iP0a0#exp@2 iPjaj #exp@ iakM0k#expF i

2
Mlmu lmG . ~3.1!

The momentum and angular momentum operators entering to formula~3.1! have the well-known
form ~see, e.g., Ref. 25!

Pm5E dx Tm0~x!, Mml5E dx@xmTl0~x!2xlTm0~x!#, ~3.2!

where formally

T005
1

2
p̂21

1

2
] i ŵ] i ŵ1

m2

2
ŵ21

1

l
V~Alŵ!, Tk052]kŵp̂.

We are going to apply the operator~3.1! to the semiclassical state~1.3!. Note that the operatorsPm

andMmn ~3.2! depend on fieldŵ and momentump̂ semiclassically,

Pm5
1

l
Pm~Alp̂~• !,Alŵ~• !!, Mmn5

1

l
Mmn~Alp̂~• !,Alŵ~• !!,

It is convenient to consider the more general problem~cf. Ref. 35!. Let us find asl→0 the state

exp~2 iA!KS0,P0,F0f 0, ~3.3!

whereKS,P,F has the form~1.3!,
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A5
1

l
A~Alp̂~• !,Alŵ~• !!.

Note that the state functional~3.3! may be viewed as a solution to the Cauchy problem of the fo

i
]Ct

]t
5

1

l
ASAl

i

d

dw~• !
,Alw~• ! DCt,

~3.4!
C0@w~• !#5~KS0,P0,F0f 0!@w~• !#

at t51. Let us look for the asymptotic solution to Eq.~3.4! in the following form:

Ct@w~• !#5~KSt,Pt,Ft f t!@w~• !#. ~3.5!

Substitution of functional~3.5! to Eq. ~3.4! gives us the following relation:

F2
1

l
S Ṡt2E dx Pt~x!Ḟt~x! D2

1

Al
E dxS Ṗt~x!f~x!1Ḟt~x!i

d

df~x! D1 i
]

]tG f t@f~• !#

5
1

l
AS Pt~• !2 iAl

d

df~• !
,Ft~• !1Alf~• ! D f t@f~• !#. ~3.6!

Considering the terms of the ordersO(l21), O(l21/2) andO(1) in Eq. ~3.6!, we obtain

Ṡt5E dx~Pt~x!Ḟt~x!2A~Pt~• !,Ft~• !!, ~3.7!

Ḟt~x!5
dA~Pt~• !,Ft~• !!

dP~x!
, Ṗt~x!52

dA~Pt~• !,Ft~• !!

dF~x!
, ~3.8!

i
] f t@F~• !#

]t
5S E dx dyF1

2

1

i

d

df~x!

d2A

dP~x!dP~y!

1

i

d

df~y!
1f~x!

d2A

dF~x!dP~y!

1

i

d

df~y!

1
1

2
f~x!

d2A

dF~x!dF~y!
f~y!G1A1D f t@f~• !#. ~3.9!

HereA1 is a c-number quantity which depends on the ordering of the operatorsŵ and p̂ and is
relevant to the renormalization problem.

We see that for the casesA52P0a0, A5Pjaj , A52akM0k, A5(1/2)usmMsm the map-
ping ua,L takes the initial condition for the system~3.7!, ~3.8! to the solution of the Cauchy
problem for this system att51. The operatorsŨa,L transform the initial condition for Eq.~3.9! to
the solution att51.

~2! The classical mappingsua,L for our partial cases are presented in Table I.
One can write down the following general formula. Let (a,L) be an arbitrary Poincare´

transformation. It happens that the mappingua,L :(S,P,F)°(S̃,P̃,F̃) has the following form.
Let F(x,t)[F(x) be a solution of the Cauchy problem

]m]mF~x!1m2F~x!1V8~F~x!!50,
~3.10!

F~x,0!5F~x!,
]

]t
F~x,t !u t505P~x!.

Denote
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TABLE I. Poincarétransformations in classical theory.

Element of Poincare´
group (at ,Lt)

Classical Poincare´ transformation
uat ,Lt

:(S0,P0,F0)°(St,PtFt)

Classical Lie derivative

dF~S,P,F!5
d

dtU
t50

F~St,Pt,Ft!

at50 Ft~x!5F0S expS2t

2
lsmusmDxD 1

2u lmdM
lm5

1
2u lm*dxS ~xl]m2xm] l !F~x!

d

dF~x!

1~xl]m2xm] l !P~x!
d

dP~x! D
Lt5expSt2 lsmusmD Pt~x!5P0S expS2t

2
lsmusmDxD

Spatial rotaion St5S0

at
050, Lt51

at5bt

Spatial translation

Ft(x)5F0(x2bt)

Pt(x)5P0(x2bt)

St5S0

2bkdP
k52bkEdxS ]kF~x!

d

dF~x!
1]kP~x!

d

dP~x! D

a052t a50

Resolving operator for the Cauchy
problem

Ḟt5Pt 2dH5EdxFP~x!
d

dF~x!
2~2DF~x!

1m2F~x!1V8~F~x!!!
d

dP~x!G2 idxF 1
2P2~x!

2
1
2~¹F~x!!22

m2

2
F2~x!2V~F~x!!G ]

]S
.

L51 2Ṗt5(2D1m2)Ft1V8(Ft)

Evolution Ṡt5EdxFPtḞt2
1
2~Pt!22

1
2~¹Ft!

2

2
m2

2
~Ft!22V~Ft!G .

at50

Resolving operator for the Cauchy
problem

Ḟt5nkxkPt 2nmdB
m5nm*dxFxmP~x!

d

dF~x!
2~2] ix

m] iF~x!

1xmm2F~x!1xmV8~F~x!!!
d

dP~x! G
1nmE dx xmF 1

2P2~x!2
1
2~¹F~x!!2

2
m2

2
F2~x!2V~F~x!!G ]

]S
.

Lt5exp@2tnklk0# 2Ṗt52¹xknk¹Ft

1xknk~m2Ft1V8~Ft!!

Boost Ṡt5EdxFPtḞt2xknk 1
2~Pt!2

1
1
2~¹Ft!21

m2

2
~Ft!21V~Ft!G
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F̆~x!5F~L21~x2a!!.

It appears that

F̃~x!5F̆~x,0!, P̃~x!5
]

]t
F̆~x,t !u t50 ,

S̃5S1E dx@u~x0!u~2~Lx1a!0!2u~2x0!u~~Lx1a!0!#

3F1

2
]mF~x!]mF~x!2

m2

2
F2~x!2V~F~x!!. ~3.11!

For spatial translations, rotations, and evolution, agreement between~3.11! and Table I is evident.
Consider thex1-boost case,nk5(1,0,...,0). One has

F̃t~x!5F~x1 cosht1x0 sinht,x2,...,xd,x0 cosht1x1 sinht!ux050 ,

P̃t~x!5
]

]x0 F~x1 cosht1x0 sinht,x2,...,xd,x0 cosht1x1 sinht!ux050 .

The functionsFt , Pt obey the system presented in Table I. For the integral forS̃, consider the
substitutionx05y1 sinht̃, x15y1 cosht̃, x25y2,...,xd5yd. One finds

S̃t5S1E
0

t

dt̃y1 dyF1

2
~P̃t~y!!22

1

2
~¹F̃t~y!!22

m2

2
F̃t

2~y!2V~F̃t~y!!G ,
which agrees with Table I.

One can also notice that the group property for Eq.~3.11! is satisfied.
Let us make more precise the definition of the spacex.
Definition 3.1:x is a space of sets(S,P,F) of a number S and functionsP, FPS(Rd) such

that there exists a unique solution of the Cauchy problem (3.10) such that the functionsF(Lx
1a)ux050 and ]mF(Lx1a)ux050 are of the class S(Rd) for all a.L.

We see that the transformationua,L :x→x is defined.
~3! The operatorsŨa,L(ua,LX←X) are presented in Table II.
However, it is not easy to check the group property~2.3!. It is much more convenient to

investigate the infinitesimal Poincare´ transformations and check the algebraic analog of~2.3!.
It happens that operatorsŨa,L(ua,LX←X) induce a Poincare´ group representation in a spe

cific space. It is a space of sectionsf (x;f(•)) of the semiclassical bundle. The operatorsŬ̃a,L act
as

~ Ŭ̃a,L f !~X!5Ũa,L~X←ua,L
21 X! f ~ua,L

21 X!. ~3.12!

The group property for the operatorsŬ̃ is equivalent to relation~2.3!. Let (atau,Lt) be a one-
parametric subgroup of the Poincare´ group with the tangent vectorA being an element of the
Poincare´ algebra. Since the operatorŨat

,Lt(uat,Lt
X←X) takes the initial condition for the

Cauchy problem for

i ḟ t5H̃~A:uatLt
X! f t

to the solution of this equation, therefore, the generator of representation~3.12! is
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~ H̆̃~A! f !~X!5 i
d

dt
ut50~uĬ̃ at,Lt

f ~X!5@H̃~A:X!2 id@A## f ~X!,

where

d@A#5
d

dt
ut50f ~uat,Lt

X!

is a Lie derivative presented in Table I. Therefore, the infinitesimal analog of the group pro
~2.3! is

@H̃~A1 :X!2 id@A1#;H̃~A2 :X!2 id@A2##5 i ~H̃~@A1 ;A2#:X!2 id@A1 ;A2##). ~3.13!

It follows from the notations of Tables I and II that relation~3.13! can be rewritten for the Poincar´
algebra as

@ P̆̃l, P̆̃m#50, @ M̆̃lm
, P̆̃s#5 i ~gms P̆̃l2gls P̆̃m!

~3.14!
@ M̆̃lm,M̆̃ rs#52 i ~glrM̆̃ms2gmrM̆̃ls1gmsM̆̃lr2glsM̆̃mr!

for operators

M̆̃ms5M̃ms1 idM
ms, P̆̃m5 P̃m1 idP

m , P̆̃05H̆1 idH , M̆ k05B̃k1 idB
k .

It is checked by direct calculations that Eq.~3.14! is formally satisfied. However, there is
problem of divergences and renormalization which requires more careful investigations.

TABLE II. Semiclassical Poincare´ transformations in functional representation.

Element of Poincare´
group (at ,Lt)

Semiclassical operatorUat ,Lt
(uat ,Lt

X←X): f 0° f t

in the functional representation takes the initial
condition for the Cauchy problem to the solution

of the Cauchy problem for the equation:

at50 i ḟ t@f~•!#52
1
2usmM̃sm~Xt!ft@f~•!#

Lt5expSt2 lsmusmD; M̃sm52*dx@~xs]m2xm]s!f~x!#
1

i

d

df~x!
Spatial rotation

at
050 Lt51 i ḟ t@f~•!#5bkP̃k~Xt!ft@f~•!#

at5bt P̃k52*dx ]kf~x!
1

i

d

df~x!
Spatial translation

a052t a50 i ḟ t@f~•!#5H̃~Xt!ft@f~•!#

L51 H̃5EdxF2
1
2

d2

df~x!df~x!
1

1
2~¹f!2~x!1

m2

2
f2~x!1

1
2V9~F~x!!f2~x!G

Evolution

at50 i ḟ t@f~•!#5nmB̃m~Xt!ft@f~•!#

Lt5exp@2t nklk0#; B̃m5Edx xmF2
1
2

d2

df~x!df~x!
1

1
2~¹f!2~x!1

m2

2
f2~x!1

1
2V9~F~x!!f2~x!G

Boost
                                                                                                                



te

tional

1818 J. Math. Phys., Vol. 43, No. 4, April 2002 O. Yu. Shvedov

                    
B. Semiclassical Poincare ´ transformations in Fock space

For renormalization, let us construct the semiclassical Poincare´ transformations in the Fock
space. They are related with the constructed operatorsŨa,L(ua,LX←X) by

Ũa,L~ua,LX←X!5Vua,LXUa,L~ua,LX←X!VX
21. ~3.15!

The operatorV taking the Fock space vectorCPF to the functionalf @f(•)# is defined from the
relation

V:u0&°c expF i

2 E dx dyR̃~x,y!f~x!f~y!G ~3.16!

and from formula~2.1!, which can be rewritten as

VA1~x!V215A1~x![S Ĝ21/2R̂* f2Ĝ21/2
1

i

d

df D ~x!,

~3.17!

VA2~x!V215A2~x![S Ĝ21/2R̂f2Ĝ21/2
1

i

d

df D ~x!.

ucu can be formally found from the normalization condition

ucu2E DfuexpF i

2 E dx dyf~x!R̃~x,y!f~y!G u251. ~3.18!

The argument can be chosen to be arbitrary, for example,

Arg c50. ~3.19!

Notice that the operatorV is defined from the relations~3.16!–~3.19! uniquely.
Namely, any element of the Fock space can be presented42 via its components, vacuum sta

and creation operators as

C5 (
n50

`
1

An!
E dx1¯dxn Cn~x1 ,...,xn!A1~x1!¯A1~xn!u0&

Specify

VC5 (
n50

`
1

An!
E dx1¯dxnCn~x1 ,...,xn!A1~x1!¯A1~xn!Vu0&.

The problem of divergence of the series is related with the problem of correctness of the func
Schrödinger representation. It is not investigated here.

Since the operatorsA6(x) satisfy usual canonical commutation relations andA2(x)u0&50,
we obtainVA6(x)5A6(x)V.

The operatorV depends onR. It is useful to find an explicit form of the operatorV21dV.
It happens that the following property is satisfied:

V21dV52
i

2
A1Ĝ21/2dR̂Ĝ21/2A12

i

2
A2Ĝ21/2dR̂* Ĝ21/2A2

1A1@Ĝ1/2dĜ21/21 i Ĝ21/2dR̂* Ĝ21/2#A21
i

4
Tr@d~R̂1R̂* !Ĝ21#. ~3.20!
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The notations of the typeA1B̂A2 are used for the operators like*dx dyA1(x)B̃(x,y)A2(y),
whereB̃(x,y) is a kernel of the operatorB̂.

To check formula~3.20!, consider the variation of the formula~2.1! if R is varied:

@A6~x!;V21dV#5~ Ĝ1/2dĜ21/2A6!~x!2 i ~ Ĝ21/2dR̂Ĝ21/2A1!~x!1 i ~ Ĝ21/2dR̂* Ĝ21/2A2!~x!.

Therefore, formula~3.20! is correct up to an additive constant. To find it, note that

dVu0&5F i

2 E dx dy f~x!dR̃~x,y!f~y!1d ln cGVu0&.

This relation and formula~2.1! imply

^0uV21dVu0&5
i

2
Tr~dR̂Ĝ21!1d ln c.

It follows from the normalization conditions~3.18! and ~3.19! that c5(detĜ)1/4. Therefore,

d ln c51
4Tr dĜĜ21. Thus,^0uV21dVu0&5( i /4)Trd(R̂1R̂* )G21. Formula~3.20! is checked.

It follows from formula ~3.15! that the generatorsH(A:X) in the Fock representation ar
related withH̃(A:X) by the following relation:

H̆~A:X!5H~A:X!2 id@A#5Vx
21~H̃@A:X#2 id@A# !Vx .

We see that commutation relations~3.13! are invariant under change of representation.
An explicit form of operatorsH(A:X) will be simplified if we consider the case when th

quadratic formR is invariant under spatial translations and rotations:

R̃~x,y:u~a,L !X!5R̃~L21~x2a!,L21~y2a!:X!. ~3.21!

This property implies that

@]k ;R̂#5dP
k R̂, @]k ;Ĝ1/2#5dP

k Ĝ1/2,
~3.22!

@~xk] l2xl]k!;R̂#5dM
klR̂, @~xk] l2xl]k!;Ĝ

1/2#5dM
kl Ĝ1/2.

The generatorsH(A:X) are presented in Table III.
We see that renormalization is necessary since the evolution and boost generators

divergent terms1
4Tr Ĝ and 1

4Tr xkĜ which are to be changed by finite renormalizaed terms1
4TrRĜ

and 1
4TrRxkĜ.
Let us check the commutation relations betweenH̆(A:X). Since the divergences arise in term

Bk andH̄ only, we suppose them to be arbitrary and then find the conditions that provide Po´
invariance.

Let

H̆k5 1
2A

1Hk
11A11A1H12A21 1

2A
2H22A21Hk̄1 idk

be arbitrary quadratic Hamiltonians. Then the property@H̆1 ,H̆2#5 iH̆ 3 under condition
@ id1 ,id2#5 i 2d3 means that

H3
1152 i @H1

12H2
111H2

11~H1
12!* 2H1

11~H2
12!* 2H2

12H1
11#1d1H2

112d2H1
11 ,

~3.23!
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H3
1252 i $H2

11~H1
11!* 2H1

11~H2
11!* 1@H1

12 ;~H2
12!#%1d1H2

122d2H1
12 , ~3.24!

H352
i

2
Tr@H2

11~H1
11!* 2H1

11~H2
11!* #1d1H22d2H1. ~3.25!

Relations~3.23!–~3.25! are treated in sense of bilinear forms onD(T).
Consider now the commutation relations.
~1! The relations

TABLE III. Semiclassical Poincare´ transformations in Fock representation.

Element of Poincare´
group (at ,Lt)

Semiclassical operatorUat ,Lt
(uat ,Lt

X←X):C0°Ct

in the Fock representation takes the initial condition
for the Cauchy problem to the solution
of the Cauchy problem for the equation:

at50 iĊt52
1
2usmMsmCt

Lt5expSt2 lsmusmD Mkl52 iA1(xk] l2xl]k)A
2

Spatial rotation

at
050 Lt51

at5bt
Spatial translation

iCt5bkPkCt

Pk52 iA1]kA
2

a052 ṫ, a50 i Ċt5H(Xt)Ct

L51 H~X!5
1
2A

2H22~X!A21A1~v̂1H~X!!A21
1
2A1H11~X!A11H̄

H11(X)5Ĝ21/2@dHR̂2R̂R̂2(2D1m21V9(F(x))#Ĝ21/2

H22(X)5(H11)1

H~X!5Ĝ21/2~R̂R̂* 1~2D1m21V9!F~x!!2
1
2dH~R̂1R̂x!

1
i

2
@dHĜ1/2;Ĝ1/2;Ĝ1/2#)Ĝ21/22v̂

v̂5A2D1m2

Formally H̄5H̄ reg1
1
4TrĜ

H̄ reg52
1
4Tr@H111H22#

i Ċt5nmBm(Xt)Ct

Evolution

at50

Lt5exp@2tnklk0#;

Bk~X!5
1
2A

2Bk22~X!A21A1~Lk1Bk~X!!A21
1
2A1Bk11~X!A11Bk

Bk11~X!5Ĝ21/2@dk
BR̂2R̂xkR̂2~2] ix

k] i1xkm21xkV9~F~x!!!#Ĝ21/2

Bk225(B11)1

Bk5Ĝ21/2FR̂xkR̂* 1~2] ix
k] i1xkm21xkV9~F~x!!!

2
1
2dB

k ~R̂1R̂* !1
i

2
@dk

BĜ1/2,Ĝ1/2#G Ĝ21/22Lk

Lk5
1
2v̂21/2@v̂xkv̂1(2] ix

k] i1xkm2)#v̂21/2

Formally Bk5Breg
k 1

1
4 Tr xkĜ

Breg
k 52

1
4 Tr@Bk111Bk22#

Boost
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@ P̆k,P̆l #50, @M̆ lm,P̆s#5 i ~gmsP̆l2glsP̆m!

are satisfied automatically since

@]k ,] l #50, 2@xl]m2xm] l ,]s#5gms] l2gls]m .

~2! The relation

@M̆ lm,M̆ rs#52 i ~glr M̆ms2gmrM̆ ls1gmsM̆ lr 2glsM̆mr!

is also satisfied.
~3! For the relation

@ P̆k,P̆0#50

Eqs.~3.23!–~3.25! take the form

dP
k H112@]k ;H11#50, dP

k H122@]k ;H12#50, ~3.26!

dP
k H̄50. ~3.27!

~4! For the relation

@M̆kl,P̆0#50,

Eqs.~3.23!–~3.25! are written as

dM
klH112@xk] l2xl]k ;H11#50, dM

klH122@xk] l2xl]k ;H12#50, ~3.28!

dM
kl H̄50. ~3.29!

~5! Consider the relation

@M̆k0,P̆s#52 igksP̆0.

We write Eqs.~3.23!–~3.25! as follows:

@]s ,Bk11#2dP
s Bk1152gksH11, @]s ,Bk12#2dP

s Bk1252gksH12, ~3.30!

dP
s Bk5gksH̄. ~3.31!

~6! The commutation relation

@M̆ lm,M̆k0#52 i ~glkM̆m02gmkM̆ l0!

is equivalent to

@xl]m2xm] l ;Bk11#2dM
lmBk115glkBm112gmkBl 11,

~3.32!
@xl]m2xm] l ;Bk12#2dM

lmBk125glkBm122gmkBl 12,

2dM
klBk5glkBm2gmkBl . ~3.33!

~7! The most nontrivial commutation relations are
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@M̆ k0; P̆0#5 i P̆k, @M̆ k0;M̆ l0#52 iM̆ kl.

They can be rewritten as follows:

052 i $Bk12H111H11~Bk12!* 2Bk11~H12!* 2H12~Bk11!%1dB
k H112dHBk11,

~3.34!
2 i ]k52 i $H11Bk112Bk11~H11!* 1@Bk12;H12#%1dB

k H122dHBk12,

052
i

2
Tr@H11~Bk11!* 2Bk11~H11!* #1dB

k H̄2dHBk, ~3.35!

and

052 i $Bk12Bl 111Bl 11~Bk12!* 2Bk11~Bl 12!* 2Bl 12~Bk11!%1dB
k Bl 112dB

l Bk11,
~3.36!

i ~xk] l2xl]k!52 i $Bl 11Bk112Bk11~Bl 11!* 1@Bk12;Bl 12#%1dB
k Bl 122dB

l Bk12,

052
i

2
Tr@Bl 11~Bk11!* 2Bk11~Bl 11!* #1dB

k Bl2dB
l Bk. ~3.37!

~3! Properties~3.26!, ~3.28!, ~3.30!, and ~3.32! are obvious corollaries of relation~3.22!.
Properties~3.34! and ~3.36! are checked by nontrivial but also direct computations.

Properties~3.27!, ~3.29!, ~3.31!, ~3.33!, ~3.35!, ~3.37! will be satisfied if the renormalized trac
satisfies the following properties:

dk
P TrRĜ50, dkl

M TrRĜ50,

d l
P TrRxkĜ52dkl TrRĜ, dkl

M TrRxkĜ5dkl TrRxmĜ2dmk TrRxl Ĝ,
~3.38!

Tr@xl~dk
BĜ2ÂxkĜ2xkÂ!2xk~d l

BĜ2Âxl Ĝ2ĜxlÂ!#1d l
B TrRxkĜ2dk

B TrRxl Ĝ50,

Tr@xl~dHĜ2ÂĜ2ĜÂ!2~d l
BĜ2Âxl Ĝ2ĜxlÂ!#1d l

B TrRĜ2dHTrRxl Ĝ50,

whereÂ5 1
2(R̂1R̂* ).

Thus, algebraic commutation relations are checked.

C. Conditions of integrability

The problem of reconstructing a representation of a local Lie group from a representat
a Lie algebra~‘‘integrability problem’’! is mathematically nontrivial. Different conditions of inte
grability were presented in Refs. 43–47.

The problem of reconstructing the operatorsUg(ugX←X) and checking the group propert
was discussed in detail in Ref. 48. It has been shown that the operatorsUg(ugX←X) are correctly
defined under the following sufficient conditions.

Let h(a) be an arbitrary smooth curve on the Poincare´ group.
P1.For self-adjoint operators

Ak5Lk , Ad1k52 i ]k , A2d1kd1 l52 i ~xk] l2xl]k!, A2d1d2115v̂

there exists such a positively definite operator T that
~1! iT21/2AjT

21/2i,`, iAjT
21i,`,

~2! for all t 1 there exists such a constant C thatiT1/2eiA j tT21/2i<C, iTe2 iA j tT21i<C, t
P@2t1 ,t1#.
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P2.Thea-dependent operator functions TBk11(uh(a)X) and TH11(uh(a)X) are continuous
in the Hilbert–Schmidt topologyi•i2 .

P3. The a-dependent operator functionsBk11(uh(a)X) and H11(uh(a)X) are continuously
differentiable with respect toa in the Hilbert–Schmidt topology.

P4. The a-dependent operator functionsBk(uh(a)X), H(uh(a)X), TBk(uh(a)X)T21,
T1/2Bk(uh(a)X)T21/2, TH(uh(a)X)T21, T1/2H(uh(a)X)T21/2 are strongly continuous.

P5. The a-dependent operator functions T21/2H(uh(a)X)T21/2, T21/2Bk(uh(a)X)T21/2,
H(uh(a)X)T21, Bk(uh(a)X)T21 are continuously differentiable with respect toa in the operator
norm i•i topology.

P6.The functions H̄(uh(a)X) and Bk(uh(a)X) are continuous.
The property P6 can be substituted by the following property.
P68. ~a! The operatorsBk11 and H11 are of the trace class andTr Bk11(uh(a)X) and

TrH11(uh(a)X) are continuous functions ofa.
~b! The functionsTrRG(uh(a)X) and TrRxkG(uh(a)X) are continuous.

Let us first justify property P1.
Let

K̂5v̂21/4~x211!21v̂21/4.

This is a bounded self-adjoint positively definite operator without zero eigenvalues. Ther
K̂21[T1/2 is a ~nonbounded! self-adjoint operator and

T5v̂1/4~x211!v̂1/2~x211!v̂1/4;

T>c.0 for somec.
The first part of property P1 is justified as follows. One should check that the following n

are finite:

iv̂21/4~x211!21v̂21/4v̂v̂21/4~x211!21v̂21/4i ,

iv̂21/4~x211!21v̂21/4v̂xsv̂21/4~x211!21v̂21/4i ,

iv̂21/4~x211!21v̂21/4~ k̂ jxs2 k̂sxj !v̂21/4~x211!21v̂21/4i ,

iv̂21/4~x211!21v̂21/4k̂ j v̂21/4~x211!21v̂21/4i ,

iv̂v̂21/4~x211!21v̂21/4v̂21/4~x211!21v̂21/4i ,

iv̂xsv̂21/4~x211!21v̂21/4v̂21/4~x211!21v̂21/4i ,

i~ k̂ jxs2 k̂sxj !v̂21/4~x211!21v̂21/4v̂21/4~x211!21v̂21/4i ,

i k̂ j v̂21/4~x211!21v̂21/4v̂21/4~x211!21v̂21/4i ,

wherek̂ j52 i ]/]xj .
To check this statement, it is sufficient to notice that lemma A6 implies that the operato

@v̂a;~x211!21#, @v̂a;xs~x211!21#, @v̂a;xlxs~x211!21# ~3.39!

are bounded ifa<1.
To prove the second part of P1, represent it in the following form:

ieiA j 1T1/2e2 iA j tT21/2i[iTj
1/2~ t !T21/2i<C, iTj~ t !T21i<C. ~3.40!
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It is necessary to investigate the Poincare´ transformation properties of the operatorsx̂ j and k̂ j .
Notice that the following relations are satisfied:

ei v̂tx̂le2 i ṽt5 x̂l1 k̂lv̂21t, ei ṽtk̂le2 i ṽt5 k̂l ,

eik̂sas
x̂le2 i k̂sas

5 x̂l1al , eik̂sas
k̂le2 i k̂sas

5 k̂l ,

expS i t

2
ums~ x̂mk̂s2 x̂sk̂m! D x̂l expS 2

i t

2
ums~ x̂mk̂s2 x̂sk̂m! D5~e2tux̂! l ,

expS i t

2
ums~ x̂mk̂s2 x̂sk̂m! D k̂l expS 2

i t

2
ums~ x̂mk̂s2 x̂sk̂m! D5~e2tuk̂! l ;

eiL 1tk̂le2 iL 1t5 k̂l , l>2; eiL 1tk̂1e2 iL lt5 k̂l cosht2v̂ sinht.

The operatorsX̂l(t)5eiL 1tx̂le2 iL 1t have the following Weyl symbols:

X15
vk

vk cosht2k1 sinht
x1, Xa5xa1

ka sinhtx1

vk cosht2k1 sinht
.

To check the properties, it is sufficient to show that they are satisfied att50 and show that
the derivatives of the left-hand and right-hand sides of these relations coincide.

Making use of commutation relations@xs, f ( k̂)#5 i (] f /]ks)( k̂) and boundedness of the op
erators~3.39!, we find that operators~3.40! are bounded uniformly with respect totP@0,t1#.
Property P1 is checked.

D. Choice of the operator R
Let us choose operatorR in order to satisfy properties P1–P5, P7. We will use the notion

Appendix A. First, we construct such an asymptotic expansion of a Weyl symbolRI N that for RI
5RI N ,

deg@dB
l RI 2RI * xl* RI 2xl~vk

21V9~F~x!!!#&max$d/2,d21%,
~3.41!

deg@dHRI 2RI * RI 2~vk
21V9~F~x!!!#&max$d/2,d21%.

Next, we will construct another asymptotic expansion of a Weyl symbolR which obeys the
condition ImRI .0 and approximately equals toRI N at large,uku so that Eqs.~3.41! are satisfied.

This will imply that properties P2–P5, P68 are satisfied.
Let us define the expansionsRI N with the help of the following recursive relations. Set

RI 05 ivk ,

SI n52dHRI n1RI n* RI n1vk
21V9~F~x!!, ~3.42!

RI n115RI n1
i

2vk
SI n .

Lemma 3.1: The following relation is satisfied:

degSI n5n.

Proof: For n50, SI 05V9(F(x)), so that statement of lemma is satisfied. Suppose that s
ment of lemma is justified forn,N. Check it forn5N. One has
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SI N5SI N211RI N* S i

2vk
SI N21D1S i

2vk
SI N21D * RI N1S i

2vk
SI N21D * S i

2vk
SI N21D2

i

2vk
dHSI N21 .

Since

degF S i

2vk
SI N21D * S i

2vk
SI N21D2

i

2vk
dHSI N21G>degSI N21115N

and

SI N5SI N211RI N* S i

2vk
SI N21D1S i

2vk
SI N21D * RI N

'SI N211RI N S i

2vk
SI N21D1S i

2vk
SI N21DRI N50

up to terms of the degreeN, one finds

degSI N5N.

Lemma 3.1 is proved.
Denote

XI n
l 52dB

l RI n1RI n* xl* RI n1xl~vk
21V9~F~x!!!.

Lemma 3.2: The following property is obeyed:

dB
l SI n2dHXI n

l 52XI n
l
* RI n2RI n* XI n

l 1SI n* xl* RI n1RI n* xl* SI n . ~3.43!

Proof: Denote

FI n
l 5dB

l SI n2dHXI n
l 1XI n

l
* RI n1RI n* XI n

l 2SI n* xl* RI n2RI n* xl* SI n .

One has

FI n
l 5~dB

l 2xldH!V9~F~x!!1@dH ;dB
l #RI n2@xl~vk

21V9~F~x!!2~vk
21V9~F~x!!* xl #* RI n

1RI n* @xl~vk
21V9~F~x!!2xl* ~vk

21V9~F~x!!#.

It follows from the definition of the Weyl symbol that

xl* f ~x,k!5S xl1
i

2

]

]kl D f ~x,k!.

One also has

~dB
l 2xldH!V9~F~x!!50.

Thus,

FI n
l 5@dH ;dB

l #RI n1 ik l* RI n2RI n* ik l5
]RI n

]xl 2dP
l RI n .

However, the property
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]RI n

]xl 5dP
l RI n ,

which means that Eq.~3.21! is satisfied as checked by induction. Lemma 3.2 is proved.
Lemma 3.3: The following properties are satisfied:

~1! degXI n
l 5n.

~2! deg (XI n
l 2xlSI n)>n11.

Proof: It follows from the results of the Appendix thatXn
l is an asymptotic expansion of

Weyl symbol. Let degXI n
l 5a.

Suppose thata,n. Then the left-hand side of Eq.~3.43! is of the degreea, the degree of the
right-hand side of Eq.~3.43! is greater than or equal toa21. In the leading order in 1/uku the
right-hand side has the form one has (22ivkXI n

l ) and its degree should be greater than or equa
a. Therefore, degXI n

l >a11. We obtain a contradiction.
Supposea.n. Then the left-hand side of Eq.~3.43! is of the degreen, the right-hand side in

the leading order in 1/uku has the form 2ivkx
lSI n . So that degSI n should obey the inequality

degSI n>n11. We also obtain a contradiction.
Thus,a5n. In the leading order in 1/uku one has

0'22ivk~XI n
l 2xlSI n!

up to terms of the degreen, so that deg(XI n
l 2xlSI n)>n11. Lemma 3.3 is proved.

We see that forN>max$d/2,d21% the properties~3.41! are satisfied.
Lemma 3.4: LetRI (1) and RI (2) be asymptotic expansions of Weyl symbols, degRI (1)

5degRI (2)521 and deg(RI (1)2RI (2))5N11. Then

deg~XI ~1!l2XI ~2!l !5N

and

deg~SI ~1!2SI ~2!!5N.

Proof: DenoteRI 2RI (2)5DI . Then

XI ~1!l2XI ~2!l52dB
l DI 1RI ~1!* xl* DI 1DI * xl* RI ~1!1DI * DI * xl* DI .

We see that deg (XI (1)l2XI (2)l)5N. The second statement is checked analogously. Lemma 3
proved.

Let us construct such an asymptotic expansionRI that deg(RI 2RI N)5N11 and ImRI .0. We
will look for RI as follows~cf. Ref. 36!,

RI 5AI 1 ivk
1/4

* expBI * vk
1/4

* expBI * vk
1/4,

whereAI andBI are real asymptotic expansions. Then

G1/25vk
1/4

* expBI * vk
1/4,

G21/25vk
21/4

* exp~2BI !* vk
21/4,

are also asymptotic expansions of Weyl symbols. ChooseAI andBI to be polynomials,

AI 5(
s51

S1 As~x,k/vk!

vk
2s , BI 5(

s51

S2 Bs~x,k/vk!

vk
2s ,
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whereS15@N/2#, S25@(N11)/2#.
Lemma 3.5: There exists unique functions A1 ,...,AS1

,B1 ,...,BS2
such thatdeg(RI 2RI N)5N

11.
Proof: It follows from recursive relations~3.42! that

ReRI N5(
s51

`
AN,s~x,k/vk!

vk
2s ,

Im RI N5vk1(
s51

`
CN,s~x,k/vk!

vk
2s .

Therefore,As5AN,s , so thatAI is uniquely defined. Denote

Bs5
Bs~x,k/vk!

vk
2s .

Show thatBs is uniquely defined. In the leading order in 1/uku, one has

Im RI 'vk12B1vk ,

so thatB15CN,1/2. Suppose that one can chooseB1,...,Bs21 in such a way that the degree of th
asymptotic expansion of a Weyl symbol

FI N,s5Im RI N2vk
1/4

* exp~B11¯1Bs21!* vk
1/2

* exp~B11...1Bs21!* vk
1/4

satisfies the inequality

degFI N,s>2s21.

ChooseBs in such a way that degFI N,s>2s21. One has

FI N,s115Im RI N2vk
1/4

* (
l 150

` ~B11¯1Bs211Bs!
l /1

l 1! * vk
1/2

* (
l 250

` ~B11¯1Bs211Bs!
1/2

l 2! * vk
1/4.

Up to terms of the degree 2s11, one has

FI N,s11'Im RI N

2vk
1/4

* S (
l 150

`
~B11¯1Bs21! l /1

l 1!
1BsD * vk

1/2
* S (

l 250

`
~B11¯1Bs21! l /2

l 2!
1BsD * vk

1/4

'FI N,s22Bsvk .

Since

FI N,s5
1

vk
2s21 (

l 50

`
FN,s,l~x,k/vk!

vk
l ,

one finds that

Bs5
1

2vk
2s FN,s,0~x,k/vk!

is uniquely defined. Lemma 3.5 is proved.
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Thus, we have constructed the operatorR such that properties~3.41! are satisfied. We obtain
the following theorem.

Theorem 3.6:Properties~3.21!, P2 –P5, P68(a) are satisfied.
This theorem is a direct corollary of the results of the Appendix. Property P1 is sat

because of construction of the operatorR. PropertiesP2 –P5, P68(a) are corollaries of Theorem
A8, A9, A10, properties~3.41! and theorem A2.

E. Regularization and renormalization of a trace

The purpose of this section is to specify functionals TrRG and TrRxkG of argumentsF, P in
order to satisfy propertiesP68(b), ~3.38!. We want the renormalized trace to satisfy propert
like these:

~i! TrRÂ5Tr Â if Â is of the trace class,
~ii ! TrR(Â1lB̂)5TrRÂ1l TrRB̂,
~iii ! TrR@Â;B̂#50,
~iv! TrRÂn→0 if An→0

for such class of operators that is as wide as possible. Under these conditions, propertiesP68(b)
and ~3.38! are satisfied. However, one cannot specify such a renormalized trace. Namel
should have

TrRF x̂ j ;WS kj

vk
l f ~x! D G50, ~3.44!

where f PS(Rd). W(A) is a Weyl quantization of the functionA ~see the appendix!. Property
~3.44! means that

TrRWS i
]

]ki

kj

vk
l f ~x! D 50.

Therefore,

d i j TrRWS f ~x!

vk
l D 2 l TrRWS kikj

vk
l 12 f ~x! D 50. ~3.45!

Choosel 5d. Consideri 5 j in Eq. ~3.45! and perform the summation overi. Making use of the
relationvk

22kiki5m2, we find

TrRW~m2vk
2d22f ~x!!50.

However, the operator with Weyl symbolm2f (x)vk
2d22 is of the trace class. Its trace is nonzer

provided that*dx f (x)Þ0.
However, we can introduce a notion of a trace forasymptotic expansions of Weyl symbols. The

trace will be specified not only by operator but also by its asymptotic expansion which i
unique~see the remark after definition A6!.

Let AI 5(A,Ǎ) be asymptotic expansion of a Weyl symbol. Suppose that the coefficientsAl of
the formal asymptotic expansion

Ǎ[(
l 50

`

vk
2a2 lAl~x,k/vk!

are polynomial ink/vk . One formally has
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TrRAI 5(
l 50

l 0 E dk dx

~2p!d

1

vk
a1 l Al~x,k/vk!1E dk dx

~2p!d S A~x,k!2(
l 50

l 0 1

vk
a1 l Al~x,k/vk!D .

~3.46!

For a1 l 011.d, the last integral on the right-hand side of Eq.~3.46! converges. To specify trace
it is sufficient then to specify values of integrals

I i 1 ...i n
s,n 5E dk

vk
s

ki 1

vk
¯

ki n

vk
~3.47!

for s<d which are divergent. We will define the quantities~3.47!, making use of the following
argumentation.

~1! We are going to specify trace in such a way that

TrR

]

]ki
AI 50. ~3.48!

Let

AI 5
1

vk
s21

kj 1

vk
¯

kj n11

vk
,

property~3.48! implies the following recursive relations:

(
s51

n11

d i j s
I j 1 ...j s21 j s11 ...j n11

s,n 5~s1n!I i j 1 ...j n11

s,n12 . ~3.49!

Therefore,I s,n50 for odd n, while for evenn Is,n is defined from Eq.~3.49!, for example,I i j
s,2

5(1/s)d i j I
s,0. Therefore, it is sufficient to define integrals

I s,05E dk vk
2s . ~3.50!

Let us use the approach based on the dimensional regularization.49,50 It is based on consider
ing integrals~3.50! at arbitrary dimensionality of space–time. Expression~3.50! appears to be a
meromorphic function ofd. Subtracting the poles corresponding to sufficiently small posi
integer values ofd, we obtain a finite expression.

Formally, one has

I s,05
1

G~s/2!
E

0

`

da as/221E dk e2a~k21m2!5
pd/2

G~s/2!

GS s2d

2 D
ms2d .

If ( s2d)/252N is a nonpositive integer number, one should modify the definition ofI s,0.
Changed→d22«. One finds

I s,05
pd/2

G~s/2!ms2d

G~11«!~pm2!2«

~2N1«!¯~211«!«

'
pd/2~21!N

G~s/2!ms2dN!«
~11«~2 ln~pm2!1G8~1!111¯1N21!!1O~«!.
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In the MS renormalization scheme,50 one should omit the termO(«21). There is also anMS
renormalization scheme in which one omits also a fixed term of orderO(1). Let usomit the term
2 ln(pm2)1G8(1). We obtain the following renormalized value of the integral:

I ren
s,05

pd/2

G~s/2!ms2d

~21!N

N!
~11¯11/N!,

provided thatN5(d2s)/2 is a non-negative integer number.
Therefore, we have defined the renormalized trace of an asymptotic expansion of a

symbol by formula~3.46!, provided that the coefficient functions are polynomials ink/vk .
Let us investigate properties of the renormalized trace. Some properties are direct coro

of definition ~3.46!.
Lemma 3.7: The following properties are satisfied:

~i! TrR(AI 1lBI )50.
~ii ! TrR(]AI /]ki)50, TrR(]AI /]xi)50.
~iii ! Let E2 limn→` AI n5AI . Thenlimn→` TrRAI n5TrRAI .
~iv! Let degAI .d. ThenTrRAI 5TrA.

Corollary: The property P9 is satisfied.
Let us check that TrR(AI * BI 2BI * AI )50. First of all, prove the following statement.
Lemma 3.8:TrRAI * BI 5TrRAB.
Proof: Making use of Eq.~A2!, we find

~A* B!~x,k!2~AB!~x,k!

5E dP1dp2dy1dy2

~2p!2d E
0

1

da
]

]a FAS x1y1 ;k1a
p2

2 DBS x1y2 ,k22a
p1

2 D Ge2 ip1y12 ip2y2

52
i

2 E dp1dP2dy1dy2

~2p!2d E
0

1

daF ]

]ki AS x1y1 ;k1a
p2

2 D ]

]xi BS x1y2 ,k22a
p1

2 D
2

]

]xi AS x1y1 ;k1a
p2

2 D ]

]ki BS x1y2 ,k22a
p1

2 D Ge2 ip1y12 ip2y2

52
i

2

]Ci~x,k!

]ki

with

Ci~x,k!5 f
dp1dp2dy1dy2

~2p!2d E
0

1

daFAS x1y1 ;k1a
p2

2 D ]

]xi BS x1y2 ,k22a
p1

2 D
2BS x1y2 ,k22a

]

]xi AS x1y1 ;k1a
p2

2 D p1

2 D Ge2 ip1y12 ip2y2.

One also has

Ǎ* B̌2ǍB̌52
i

2

]Čj

]kj

with
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Čj~x,k!5(
s50

`

(
l 1l 2>0;l 11 l 25s

~2 i ! l 1

2l 1l 1!

i l 2

2l /2l 2!

1

l 11 l 211

3F ] l 11 l 2Ǎ

]ki1...]kil 1]xj 1...]xjl 2

]

]xi

] l 11 l 2B̌

]kj1...]kjl 2]xi 1...]xi l 1

2
] l 1

1 l 2B̌

]kj 1...]kj i 2]xi 1...]xi l 1

]

]xi

] l 11 l 2Ǎ

]ki 1...]ki l 1]xj 1...]xjl 2
G .

Analogously to the Appendix, one finds that (Cj ,Čj )[Čj is an asymptotic expansion of a We
symbol. It follows from lemma 3.7 that TrR(]CI j /]kj )50. We obtain statement of lemma 3.8.

Lemma 3.9: FordegBI >2, TrRxkvk* BI 5TrRxkvkBI and TrRvk* BI 5TrRvkBI . The proof is
analogous.

Corollary 1: The following relations are satisfied:

~1! TrR(AI * BI 2BI * AI )50,
~2! TrR(xkvk* BI 2BI xkvk)50,
~3! TrR(vk* BI 2BI * vk)50.

Corollary 2: Property~3.38! is satisfied.

Thus, we have constructed functionals TrRxkĜ[TrRxkGI and TrRĜ[TrRGI such that properties
~3.38! and P68~b! are satisfied.

Note that the ‘‘finite renormalization’’25 can also be made. One can add quantitiesD TrRxkĜ

andD TrRĜ to renormalized traces in such a way that

dk
PD TrRĜ50, dkl

MD TrRĜ50,

dP
l D TrRxkĜ52dklD TrRĜ, dkl

MD TrRxkĜ5dkl D TrRxmĜ2dmkD TrRxl Ĝ,

d l
BD TrRxkĜ2dk

BD TrRxl Ĝ50,

d l
BD TrRĜ2dHD TrRxl Ĝ50.

This corresponds to the possibility of adding the finite one-loop counterterm to the Lagran

IV. SEMICLASSICAL FIELD

An important feature of QFT is a notion of field. In this section we introduce the notion
semiclassical field and check its Poincare´ invariance.

A. Definition of semiclassical field

First of all, introduce the notion of a semiclassical fieldf̃(x,t:X) in the functional Schro¨-
dinger representation. Att50, this is the operator of multiplication byf(x). For arbitraryt, one
has

f̃~x,t:X!5Ũ2t~X←utX!f~x!Ũt~utX←X!,

whereŨt(utX←X) is the operator transforming the initial condition for the Cauchy problem
Eq. ~1.6! to the solution to the Cauchy problem.

The field operator in the Fock representation is related tof̃ by the transformation~2.1!,

f̃~x,t:X!5VX
21f̃~x,t:X!VX .
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Making use of Eq.~3.15!, one finds

f̂~x,t:X!5~UH
t ~X!!21f̃~x,utX!UH

t ~X!. ~4.1!

Here f̂(x:X)5 i (G21/2(A12A2))(x), while

UH
t ~X![Ua,L~ua,LX←X!, L51, a50, a052t.

Let us definef̂ mathematically as an operator distribution.
Let S(Rd) be a space of complex smooth functionsu:Rd→C such that

iui l ,m5 max
a11¯1ad< l

sup
xPRd

~11uxu!mU ]a11¯1ad

]xa l
¯]xad

u~x!U→k→`0.

We say that the sequence$uk%PS(Rn), k51,̀ tends to zero ifiuki l ,m→k→`0 for all l,m.
DenoteD5$CPFiuA1TA2Ci,`% ~cf. Ref. 48!.
Definition 4.1 (cf. Ref. 20): (1) An operator distributionf defined onDPF is a linear

mapping taking functions fPS(Rd) to the linear operatorf@ f #:D→F,

f: f PS~Rd!°f@ f #:D→F,

such thatif@ f n#Fi→n→`0 if f n→n→`0.
(2) L sequence of operator distributionsfn is called convergent to the operator distributionf if

ifn@ f #F2f@ f #Fi→n→`0

for all FPD, f PS(Rd).
We will write

f@ f #[E dxf~x! f ~x!, xPRd.

Consider the mappingf °f t$ f %, f PS(Rd) of the form

f t$ f :X%5E dx f̂~x,t:X! f ~x!.

It follows from the results of Ref. 48 thatf t is an operator distribution being continuous wi
respect tot.

Consider the mappingf °f@ f #, f PS(Rd11) of the form

f@ f :X#5E dt f t$ f ~•,t !:X%.

Analogously, note also thatf is an operator distribution.

B. Poincaré invariance of the semiclassical field

1. Algebraic properties

To check the property of Poincare´ invariance, notice that it is sufficient to check it for parti
cases: spatial translations, rotations, evolution, boost, since any Poincare´ transformation can be
presented as a composition of these transformations. LetgB(t)5(a(t),L(t)) be a one-parametric
subgroup of Poincare´ group corresponding to the elementB of the Poincare´ algebra. The Poincare´
invariance property can be rewritten as
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f̂@ f :X#5~UB
t ~X!!1f@vgB~t! f :UgB~t!X#UB

t @X#, ~4.2!

where

~vgB~t! f !~x!5 f ~L21~t!~x2a~t!!!.

Obviously,vg1
vg2

5vg1g2
.

Let us check relation~4.2!. It is convenient to reduce the group property to an algeb
property. The formal derivative with respect tot of the right-hand side of Eq.~4.2! is

~UB
t ~X!!1H i @H~B:ugB~t!X!;f@vgB~t! f :ugB~t!X##1

]

]t
f@vgB~t! f :ugB~t!X#J UB

t ~X!. ~4.3!

If the quantity~4.3! vanishes, the property~4.2! will be satisfied since it is obeyed att50. Making
use of the group propertygB(t1dt)5gB(dt)gB(t), we find that vanishing of expression~4.3! is
equivalent to the property:

]

]tU
t50

f@vgB~t! f :ugB~t!X#2 i @f@ f :X#;H~B:X!#50. ~4.4!

We obtain the following lemma.
Lemma 4.1: Let the bilinear form (4.4) vanish onD. Then the property (4.2) is satisfied onD.
Proof: Consider the matrix element

xt5~UB
t ~X!C1 ,f@vgB~t! f :ugB~t!X#UB

t ~X!C2!2~C1 ,f̂@ f :X#C2!,

whereC1 , C2PD. Show it to be differentiable with respect tot. Let us check that forCPD, the
vectorf@vgB(t) f :ugB(t)X#C is strongly continuously differentiable with respect tot.

One has

f@vgB~t1dt! f :ugB~t1dt!X#2f@vgB~t! f :ugB~t!X#

dt
C

5fFvgB~dt!21

dt
vgB~t! f :ugB~t1dt!XGC1

f@vgB~t! f :ugB~dt!gB~t!X#2f@vgB~t! f :ugB~t!X#

dt
C.

It follows from Ref. 48 that the first term tends tof@(]/]t)u t50vgB(t)vgB(t) f :ugB(t)X#C, while the
second term tends tod@B#f@vgB(t) f :ugB(t)X#C.

Notice that

xt1dt2xt

dt
5S f@vgB~t1dt! f :ugB~t1dt!X#UB

t1dt~X!C1 ;
UB

t1dt~X!2UB
t

dt
C2D

1~UB
t1dt~X!C1 ;~f@vgB~t1dt! f :ugB~t1dt!X#2f@vgB~t! f :ugB~t!X# !UB

t ~X!C2!

1~~UB
t1dt~X!2UB

t ~X!!C1 ;f@vgB~t! f :ugB~t!X#UB
t ~X!C2!.

This quantity tends asdt→0 to the matrix element of the bilinear form~4.3! and vanishes unde
condition ~4.4!. Lemma 4.1 is proved.

2. Check of invariance

One should check property~4.2! for spatial translations and rotations, evolution, and bo
transformations.
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For spatial translations and rotations, property~4.2! reads

f̂~x,t:X!5U0,a,L
21 f̂~Lx1a,t:u0,a,LX!U0,a,L . ~4.5!

It follows from commutativity ofU0,a,L andUt and Table III that property~4.5! is satisfied.
For evolution operator, property~4.2! is rewritten as

f̂~x,t:X!5~UH
t ~X!!21f̂~x,t2t:utX!UH

t ~X!. ~4.6!

Relation~4.6! is a direct corollary of definition~4.1! and group property for evolution operator
Consider now then-boost transformation. Check property~4.4!. It can be presented as

@B̆k;f̂~x,t;X!#52 i S xk
]

]t
1t

]

]xkD f̂~x,t:X!

or

@Bk~X!;~UH
t ~X!!21f~x:utX!UH

t ~X!#1 idB
k $~UH

t ~X!!21f~x:utX!UH
t ~X!%

52 i S xk
]

]t
1t

]

]xkD ~UH
t ~X!!21f~x:utX!UH

t ~X!. ~4.7!

Let us make use of the property

UH
t ~X!BK~X!5 i ~dB

k UH
t !~X!1@Bk~utX!2tPk~utX!#UH

t ~X!, ~4.8!

which can be checked by multiplication by (UH
t (X))21 and differentiation with respect tot in a

weak sense~cf. Ref. 48!. We take relation~4.7! to the form

@B̆k~Y!2 P̆k~Y!t;f~x:Y!#5xk@H̆~Y!;f~x:Y!#2 i t
]f~x:Y!

]xk ,

whereY5utX. The property

i
]f~x:Y!

]xk 5@ P̆k~Y!;f~x:Y!#

is a corollary of relation~3.22!. The relation

@B̆k~Y!2xkH̆~Y!;f~x:Y!#50

is also checked by direct calculation.
Thus, we have obtained that the invariance property~2.5! is satisfied.

V. REMARKS ON COMPOSED SEMICLASSICAL STATES

In the soliton quantization theory and in gauge field theories, the zero-mode problem a2

To resolve it, one can consider the superposition of the ‘‘elementary’’ quantum field semicla
states~1.3! of the form ~cf. Ref. 36!

c@w~• !#5E da

lk/4 expS i

l
S~a! DexpS i

l
P~a;x!@w~x!Al2F~a,x!# DgS a,w~• !2

F~a,• !

Al
D ,

~5.1!

whereaPRk, S(a), P(a;x), F(a;x) are smooth functions. Calculate~formally! the functional
integral for ~c, c!:
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~c,c!5E da dg

lk/2 E Dw expS 2
i

l
S~a! DexpS 2

i

l
P~a;x!@w~x!Al2F~a,x!# Dg* S a,w~• !

2
F~a,• !

Al
D expS i

l
S~g! DexpS i

l
P~g;x!@w~x!Al2F~g,x!# DgS g,w~• !2

F~g,• !

Al
D .

After substitutiong5a1Alb, w(•)5F(a,•)/Al1f(•) we obtain asl→0:

~c,c!.E dadbe~ i /Al!bs~]S/]gas2*dxP~a,x!]F~a,x!/]as!e~ i /2!bs~]/]as!~]S/]a l2*dxP~a,x!]F~a,x!/]a l !b l

3E Dfg* ~a,f~• !!eib l*dx~~]P~a,x!/]a l !f~x!2~]F~a,x!/]a l !1/i ~d/df~x!!g~a,f~• !!. ~5.2!

The condition

]S

]as
5E dx P~a,x!

]F~a,x!

]as
~5.3!

should be satisfied. Otherwise, the integral~5.2! will be exponentially small asl→0, so that state
~5.1! will be trivial. Under condition~5.3!, one has

~c,c!→l→0E da dbE Dfg* ~a,f~• !!

3expS ib lE dxS ]P~a,x!

]a l
f~x!2

]F~a,x!

]a l

1

i

d

df~x! D Dg~a,f~• !!. ~5.4!

To specify the composed semiclassical state in the functional representation, one should:

~i! specify the smooth functions (S(a),P(a,x),F(a,x))[X(a) obeying Eq.~5.3! ~determine
the k-dimensional isotropic manifold in the extended phase spaceX!;

~ii ! specify thea-dependent functionalg(a,f(•)).

The inner product of composed semiclassical states is given by expression~5.4!.
Since the inner product~5.4! may vanish for nonzerog, one should factorize the space

composed semiclassical states. Such functionalg that obey the property

E daS g* ~a,• !)
l

dF E dxS ]P~a,x!

]a l
f~x!2

]F~a,x!

]a l

1

i

d

df~x! D Gg~a,• !50 ~5.5!

should be set to be equal to zero,g;0.
One can define the Poincare´ transformation of the composed semiclassical state as follo

The transformation of (S(a),P(a,•),F(a,•)) is ua,L(S(a),P(a,•),F(a,•)). The transforma-
tion of g(a,f(•)) is

Ũa,L~ua,L~S,P,F!←~S,P,F!!g~a,f~• !!.

One should check that the inner product entering to Eq.~5.5! is invariant under Poincare´ trans-
formations. This will also imply that equivalent states are taken to equivalent.

Since the functional Schro¨dinger representation is not well-defined, let us consider the F
representation. One should then specify thea-dependent Fock vectorY(a)5V21g(a,•) instead
of the a-dependent functionalg(a,f(•). Making use of formulas~2.1!, we find that the inner
product~5.4! takes the form
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S S Lk

Y~• ! D ,S Lk

Y~• ! D D5E da dbS Y~a!,expS bsE dx~Bs~a,x!A1~x!2Bs* ~a,x!As
2~x!! DY~a! D ,

~5.6!

where

Bs~a,• !5Ĝ21/2S R̂ ]F~a,• !

]as
2

]P~a,I !

]as
D , ~5.7!

Ĝ5Ĝ(F(a,•),P(a,•)), R̂5R̂(F(a,•),P(a,•)). If the isotropic manifold (F(a,•),P(a,•))
is nondegenerate, the functionsBs(a,x) are linearly independent.

The Poincare´ transformation of the composed semiclassical state

S $X~a!%
Y~a! D

is

S $ua,LX~a!%
Ua,L~ua,LX~a!←X~a!!Y~a!D .

Consider the quantity

~Bs ,Bl !2~Bl ,Bs!5S ]F

]as
,~R̂* 2R̂!Ĝ21

]P

]a l
D2S ]F

]a l
,~R̂* 2R̂!Ĝ21

]P

]as
D

5 i E dxS ]F~a,x!

]a l

]P~a,x!

]as
2

]F~a,x!

]as

]P~a,x!

]a l
D . ~5.8!

Differentiating ~5.3! with respect toa l , we obtain that quantity~5.8! vanishes. Thus, operator
bs*dx(Bs(a,x)A1(x)2Bs* (a,x)As

2(x)) commute each other.
It follows from the results of Ref. 48 that the inner product~5.7! is correctly defined, while

Poincare´ transformations of composed semiclassical states satisfy the group property and co
the inner product~5.7!.

VI. CONCLUSIONS

In this paper a notion of a semiclassical state is introduced. ‘‘Elementary’’ semiclassical
are specified by a set (X,C) of classical field configurationX ~point on the infinite-dimensiona
manifold X, see Sec. II and III B and elementC of the spaceF. The set of all ‘‘elementary’’
semiclassical states may be viewed as a semiclassical bundle.

The physical meaning of classical fieldX is evident. Discuss the role ofC. In the soliton
quantization language1,2 C specifies whether the quantum soliton is in the ground or excited s
For the Gaussian approach,14–17C specifies the form of the Gaussian functional, while for QFT
the strong external classical field6,7 C is a state of a quantum field in the classical backgroun

The ‘‘composed’’ semiclassical states have also been introduced~Sec. V!. They can be viewed
as superpositions of ‘‘elementary’’ semiclassical states and are specified by the fun
(X(t),C(t)) defined on some domain ofRk with values on the semiclassical bundle.

Not arbitrary superposition of elementary semiclassical states is nontrivial. The iso
condition~5.3! should be satisfied. Moreover, the inner product of the ‘‘composed’’ semiclas
states@Eq. ~5.6!# is degenerate, so that there is a ‘‘gauge freedom’’~5.5! in specifying composed
semiclassical states.

The composed semiclassical states are used36 in soliton quantization, since there are trans
tion zero modes and solitons can be shifted. They are useful if there are conserved integ
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motion like charges. The correspondence between composed and elementary semiclassic
in QFT resembles the relationship between WKB and wave packet approximations in qu
mechanics.

An important feature of QFT is the property of Poincare´ invariance. In this paper an explic
check of this property is presented for semiclassical QFT. The Poincare´ transformations of el-
ementary and composed semiclassical states have been constructed as follows. First, the
Poincare´ transformations like spatial translations and rotations, evolution and boost are co
ered. The infinitesimal transformations are investigated, the Lie algebraic commutation rel
have been checked and the group properties have been justified.

For the ‘‘composed’’ states, conservation of the degenerate inner product and isotropi
dition under Poincare´ transformation have been checked.

An important feature of QFT is a notion of field. In this paper this notion is introduced
semiclassical QFT. The property of Poincare´ invariance of semiclassical field is checked.
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APPENDIX: WEYL CALCULUS

The purpose of this appendix is to formulate some properties of Weyl symbols of ope
which are useful in justification of properties P1–P6. The detailed proofs can be found in Re

1. Definition and some properties of Weyl symbols

First of all, recall the definition of the Weyl symbol of operator~Refs. 52–54, for reviews se
e.g., Refs. 34 and 55!. Let A(x,k), x,kPRd be a classical observable depending on coordina
x5(x1 ,...,xd) and momentak5(k1 ,...,kd). To specify the corresponding quantum observableÂ
~to ‘‘quantize’’ the observableA!, one should present it as a superposition of exponents,

A~x,k!5E da dbÃ~a,b!eiak1 ibx

and set

Â5E da dbÃ~a,b!eia k̂1 ib x̂.

Applying the formula for the inverse Fourier transformation, we find

~Âf !~x!5E da dp

~2p!d AS x1
a

2
;pDe2 iapf ~x1a!. ~A1!

We denote the operatorÂ of the form ~A1! as Â5W(A). We will also write A5W̄(Â) if Â
5W(A).

Definition A1: The operatorW(A) is called a Weyl quantization of the function A. Th

functionW̄(Â) is called a Weyl symbol of the operator Aˆ .
For investigations of QFT ultraviolet divergences, we are interested in the behavior of

symbols of operators at large values of momenta. Let us introduce some important spac
vk5Ak21m2 for somem.

Definition A2: (1) We say that a smooth function A(x,k) is of the classBN if and only if the
functionsvk

N1s(]sA/]ki 1
¯]ki s) are bounded for all s,i 1 ,...,i s .

(2) Let AnPBN , n51,̀ , APBN . We say that BN2 limn→` An5A if and only if
limn→` maxk,x vk

N1s(]s(An2A)/]ki1...]kis)50 for all s,i 1 ,...,i s .
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(3) We say that a function APBN is of the class AN if and only if
xj 1

...xj R
(]/]xs1

)...(]/]xsP
)APBN for all R, P, j 1 ,...,j R , s1 ,...,sP .

(4) Let AnPAN , APAN . We say that AN2 limn→` An5A if and only if BN

2 limn→` xj 1
¯xj R

(]/]xs1
)¯(]/]xsP

) (An2A)50 for all R, P, j 1 ,...,j R , s1 ,...,sP .
The introduced classesAN andBN obey the following properties.
Lemma A1: (1)AN1R#A, BN1R#B for R>0.
(2) Let AN1R2 limn→` An5A andR>0. ThenAN2 limn→` An5A.
(3) Let BN1R2 limn→` An5A and R>0. ThenBN2 limn→` An5A.
(4) Let APBN . Then(]/]ki)APBN11 .
(5) Let APAN . Then xiAPAN , (]A/]xi)PAN , (]/]ki)APAN11 , f (x)APAN for smooth

bounded function f(x).
(6) Let BN2 limn→` An5A. ThenBN112 limn→`(]/]ki)An5(]/]ki)A.
(7) Let AN2 limn→` An5A. Then AN2 limn→` xiAn5xiA, AN2 limn→`(]An /]xi)

5]A/]xi , AN112 limn→`(]/]ki)An5(]/]ki)A, AN2 limn→` f (x)An5 f (x)A for smooth
bounded function f(x).

(8) Let A1PBN1
, A2PBN2

. Then A1A2PBN1N2
.

(9) The following properties are satisfied: kiPB21 ,vk
aPB2a .

(10) Let APBN . Then kiAPBN21 ,vk
2aAPBN1a , (]A/]ki)PBN11 .

(11) Let APAN . Then kiAPAN21 , vk
2aAPAN1a , ]A/]kiPAN11 .

(12) Let BN2 limn→` An5A. Then BN212 limn→` kiAn5kiA, BN1a2 limn→` vk
2aAn

5vk
2aA, BN112 limn→`(]An /]ki)5]A/]ki .
(13) Let AN2 limn→` An5A. Then AN212 limn→` kiAn5kiA, AN1a2 limn→` vk

2aAn

5vk
2aA, AN112 limn→`(]An /]ki)5]A/]ki .
(14) Let A1PAN1

, A2PAN2
. Then A1A2PAN11N2

.
(15) Let AN1

2 limn→` A1,n5A1 , AN2
2 limn→` A2,n5A2 . Then AN11N2

2 limn→` A1,nA2,n

5A1A2 .
Theorem A.2: (1) Let APA0 . Then the operatorW(A) ~A1! is bounded.
(2) Let A02 limn→` An50. Thenlimn→` iW(An)i50.
(3) Let APAN , N.d/2. ThenW(A) is a Hilbert–Schmidt operator.
(4) Let AN2 limn→` An50, N.d/2. Thenlimn→` iW(An)i250.
(5) Let APAN , N.d. ThenW(A) is of the trace class.
(6) Let AN2 limn→` An50, N.d. Thenlimn→` Tr W(An)50.
Recall that the Weyl symbol of the product of operators

A* B5W̄~W~A!W~B!!

can be presented as34,55

~A* B!~x,k!5E db1 db2 dj1 dj2

~2p!2d AS x1j1 ,k1
b2

2 DBS x1j2 ,k2
b1

2 De2b1j12 ib2j2. ~A2!

Formula~A2! can be obtained from definition~A1!.
Let us investigate some properties of formula~A2!. Let us find an expansion of formula~A2!

as uku→`. Formally, one has

AS x1j1 ,k1
b2

2 D5 (
n250

`
1

2n2n2!

]n2A~x1j1 ,k!

]ki 1
¯]ki n2

b2
i 1
¯b

2

i n2 ;

BS x1j2 ,k2
b1

2 D5 (
n150

`
~21!n1

2n1n1!

]n1B~x1j2 ,k!

]kj 1
¯]kj n1

b1
j 1
¯b

1

j n1 .

Therefore,
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~A* B!~x,k!5 (
n1n250

`
~21!n1

2n11n2n1!n2! E db1 db2 dj1 dj2

~2p!2d e2 ib1j12 ib2j2
]n2A~x1j1 ,k!

]ki 1
¯]ki n2

b2
i 1
¯b

2

i n2

3
]n1B~x1j2 ,k!

]kj 1
¯]kj n1

b1
j 1
¯b

1

j n1

5 (
n1n250

`
i n12n2

2n11n2n1!n2!

]n11n2A~x,k!

]ki 1
¯]ki n2]xj 1

¯]xj n1

]n11n2B~x,k!

]xi 1
¯]xi n2]kj 1

¯]kj n1
. ~A3!

Denote

~A*
K

B!~x,k!5 (
n1n2>0,n11n2<K

i n12n2

2n11n2n1!n2!

]n11n2A~x,k!

]ki 1
¯]ki n2]xj 1

¯]xi n1

]n11n2B~x,k!

]xi 1
¯]xi n2]kj 1

¯]kj n1
.

This is an asymptotic expansion in 1/uku as uku→`. One can estimate an accuracy of t
asymptotic series.

Definition A3: We say that the function f(x), xPRd is of the classC if f is a smooth function
such that for each set( i 1 ,...,i l) there exists m.0 such that the function (x2

11)2m(] l /]xi 1...]xi l) f is bounded.

Theorem A3: (1) Let fPC, BPAN . Then f* B5 f *
K

B1RK with RKPAN1K11 .

(2) Let fPC, AN2 limn→` Bn50. ThenAN1K112 limn→`( f * Bn2 f *
K

Bn)50.

(3) Let A5A(k), APBM1
, BPAM2

. Then A* B5A*
K

B1RK with RKPAM11M21K11 .
(4) Let A5A(k), APBM1

, AM2
2 limn→` Bn5B. Then AM11M21K112 limn→`(A* Bn

2A*
K

Bn)50.

(5) Let APAM1
, BPAM2

. Then A* B5A*
K

B1RK with RKPAM11M21K11 .

(6) Let AnPAM1
, BnPAM2

. ThenAM11M21K112 limn→`(An* Bn2An*
K

Bn)5A* B2A*
K

B.
Let us now investigate the properties of the exponent of the operator expW(A)

[W(* expA). It is convenient to consider the Fourier transformations of Weyl symbols,

Ã~g,k!5E dx

~2p!d e2 igxA~x,k!.

Introduce the following norms for Weyl symbols,

iAi I ,K5 max
J1M1N<K

max
g,K

Uvk
I 1J ]J

]kj 1
¯]kj j

gm1
¯gmM

]NÃ

]gn1
¯]gnN

U . ~A4!

Lemma A4: (1) APA1 if and only if iAi1,K,` for all k50,̀ .
(2) For arbitrary integer numbers K, L.d/2 there exists such a constant bK that iA* Bi0,K

<bKiAi0,K12LiBi0,K .
Consider the Weyl symbol of the exponent

* expAt215 (
n51

`
A* ntn

n!
~A5!

with A* n5A*¯* A.
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Lemma A5: (1) Let APAM , M.0. Then the expansion~A5! is convergent in thei•i0,K-norm.
The estimationi* expAt21i0,K<CK is satisfied for tP@0,T#.

(2) Let APAM , M.0. Then(m5N
` (A* m/m!) PAMN .

(3) Let AnPAM , M.0 and AM2 limn→` An5A. Then AMN2 limn→` (m5N
` (An*

m/m!)
5(m5N

` (A* m/m!).
Let Â5 f ( x̂), B̂5g( k̂). Investigate the properties of the commutatorK̂5@Â;B̂#.
Lemma A6: Let]nf /]xi 1

¯]xi n, ]ng/]ki n...]ki n be bounded functions, m,n51,L, while

]L11f

]xi 1
¯]xi L11

PL2,
]L11g

]ki 1
¯]ki L11

PL2.

Then@ f ( x̂),g( k̂)# is a bounded operator.

2. Asymptotic expansions of Weyl symbol

To check the property of Poincare´ invariance, it is important to investigate the large-k expan-
sion of the Weyl symbols. Introduce the corresponding definitions.

Definition A4: (1) We say that a smooth function A(x,n), x, nPRd, unu,1, is of the classL
if the functions

] I

]ni 1
¯]ni I

xj 1
¯xj J

]M

]xm1
¯]xmM

A ~A6!

are bounded.
~2! Let AsPL, s51,̀ . We say thatL2 lims→` As50 if

sup
unu<1

lim
s→`

U ] I

]ni 1
¯]ni I

xj 1
¯xj J

]M

]xm1
¯]xmM

AU50.

Definitions A2 and A4 imply the following statement.
Lemma A.7: (1) Let APL. Then the function B(x,k)5A(x,k/vk) is of the classB0 .
~2! Let L2 lims→` As50. ThenB02 lims→` As(x,k/vk)50.
Making use of definition A2 and lemma A5, we obtain the following corollary.
Corollary: (1) Let APL. Then the functionvk

2aA(x,k/vk) is of the classAa .
~2! Let L2 lims→` As50. ThenAa2 lims→` vk

2aAs(x,k/vk)50.
Definition A5: (1) A formal asymptotic expansion is a set Aˇ aPR and functions A0 ,A1 ,...

PL. We say that the formal asymptotic expansions Aˇ 5(a,A0 ,A1 ,...) and B̌5(b,B0 ,B1 ,...) are
equivalent ifa2b is an integer number and Al 2a1b5Bl for all l 52`,1` ~we assume Al
50 and Bl50 for l ,0. We denote formal asymptotic expansions of Weyl symbols as

Ǎ[ (
n50

`

vk
2n2aAn~x,k/vk!.

If A050,...,Al 2150, AlÞ0, the quantitydegǍ[a1n is called a degree of a formal asymptot

expansion Aˇ .
~2! Let Ǎs , s51,̀ and Ǎ be formal asymptotic expansions of Weyl symbols. We say

F.E2 lims→` Ǎs5A if as5a and L2 lims→`(As,n2As)50.
The summation and multiplication by numbers are obviously defined:

Ǎ1lB̌5 (
n50

`

vk
2n2a~An~x,kvk!1lBn~x,k/vk!!.
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The product of formal asymptotic expansions of Weyl symbols

Ǎ[ (
n50

`

vk
2n2aAn~x,k/vk!, B̌[ (

n50

`

vk
2n2bBn~x,k/vk!

is defined as

ǍB̌[ (
n50

`

vk
2n2a2b (

s,l>0;s1 l 5n
As~x,k/vk!Bl~x,k/vk!.

Let f 5 f (x), f PC. Then

f ~x!Ǎ[ (
n50

`

vk
2n2a f ~x!An~x,k/vk!.

One also defines

vk
2bǍ[ (

n50

`

vk
2n2a2bAn~x,k/vk!

and

]Ǎ

]ks
5(

l 50

`

vk
2 l 2a21F2~ l 1a!Al~x,n!1

]Al

]np
~x,n!~dps2npns!G

un5k/vk

.

The *-product of formal asymptotic expansions is introduced as

Ǎ* B̌[ (
K50

`

(
n1n2>0,n11n25K

i n12n2

n1!n2!2n11n2

]n11n2

]xi 1
¯]xi n2]kj 1

¯]kj n1
(

l 150

`

vk
2 l 12a1Al 1

~x,k/vk!

3
]n11n2

]xj 1
¯]xj n1]ki 1

¯]ki n2
(

l 250

`

vk
2 l 22a2Al 2

~x,k/vk!.

The formal asymptotic expansionsǍ* vk
a , Ǎ* f (x) are defined analogously. The*-exponent of a

formal asymptotic expansionǍ is defined as

* expǍ215 (
n51

`
Ǎ* n

n!

provided that degA is a positive integer number.
Definition A6: (1) An asymptotic expansion of the Weyl symbol is a set AI [(A,Ǎ) of the Weyl

symbol A and a formal asymptotic expansion Aˇ such that

A~x,k!2 (
l 50

n21
Al~x,k/vk!

vk
l 1a PAn1a

for all n50,̀ .
(2) We say that E2 lims→` As5AI if F .E2 lims→` Ǎs5Ǎ and

An1a2 lim
s→`

S As~x,k!2 (
l 50

n21
As,l~x,k/vk!

vk
l 1a D 5A~x,k!2 (

l 50

n21
Al~x,k/vk!

vk
l 1a
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for all n50,̀ .
Remark:For given Weyl symbolA, the asymptotic expansion is not unique. For example,

A~x,k!5m2f ~x!/vk .

One can choosea52, A0(x,n)5m2f (x) and findA(x,k)5vk
22A0(x,k/vk). On the other hand

one can seta50, A0(x,n)5 f (x)(12nini) and obtainA(x,k)5A0(x,k/vk) since vk
22kiki

5m2. We see that a degree is a characteristic feature of an expansion rather than of a sy
Let AI 5(A,Ǎ), BI 5(B,B̌). DenoteAI * BI [(A* B,Ǎ* B̌),

vk
a
* AI [(vk

a
* A,vk

a
* Ǎ), f (x)* AI [( f (x)* A, f (x)* Ǎ), * expAI 21[(* expA21,* expǍ21).

Theorem A3 and lemma A5 imply the following statements.
Theorem A8: (1) Let AI be an asymptotic expansion of a Weyl symbol. Thenvk

a
* AI and

f (x)* AI are asymptotic expansions of Weyl symbols under conditions of theorem A3,

* expAI 21 is an asymptotic expansion of a Weyl symbol, provided thatdegǍ is a positive integer
number.

(2) Let AI and BI be asymptotic expansions of Weyl symbols. Then AI * BI is an asymptotic
expansion of a Weyl symbol.

Theorem A9: (1) Let E2 limn→` AI n5AI . Then:

~a! E2 limn→` vk
a
* AI nvk

a
* AI ,

~b! E2 limn→` f (x)* AI nf (x)* AI under conditions of theorem A3,
~c! E2 lim n→`(* expAn21)5* expAI 21 if degǍn , degǍ are positive integer numbers.

(2) Let E2 limn→` AI n5AI and E2 limn→` BI n5BI . Then E2 limn→` AI n* BI n5AI * BI .
The time derivative of the asymptotic expansionAI (t) with respect tot is defined in a standard

way

E2 lim
dt→0

AI ~ t1dt !2AI ~ t !

dt
5

dAI ~ t !

dt
.

The integral* t1

t2AI (t)dt is also defined in a standard way.

Theorem A9 implies the following statement.
Theorem A10: ~1! Let AI (t) be a continuously differentiable asymptotic expansion of a W

symbol. Then

~a! (d/dt)(vk
a
* AI )5vk

a
* (dA/dt),

~b! (d/dt)( f (x)* AI )5 f (x)* (dA/dt) under conditions of theorem A3.
~c! (d/dt)(* expAI 21)5*0

1 dteAI (t2t)* dAI /dt* eAI t,
~d! (d/dt)(AI * BI )5(d/dt)AI * BI 1AI * (d/dt)BI .

The only nontrivial statement is~c!. It is proved by using the identity55

* expAI 12* expAI 25E
0

1

dt* exp~AI 1~12t!!* ~AI 12AI 2!* exp~AI 2t!.
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We consider quantum systems with variable but finite number of particles. For such
systems we develop geometric and commutator techniques. We use these tech-
niques to find the location of the spectrum, to prove absence of singular continuous
spectrum, and identify accumulation points of the discrete spectrum. The fact that
the total number of particles is bounded allows us to give relatively elementary
proofs of these basic results for an important class of many-body systems with
nonconserved number of particles. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1452302#

I. INTRODUCTION

This paper is a contribution toward a geometrical theory of quantum systems with va
number of particles. Such systems occur naturally in quantum field theory, condensed
physics, and the theory of chemical reactions. Though often, as in cases involving photon~see,
e.g., Ref. 1!, the number of particles can take arbitrary large values, in other cases su
scattering of spin waves on defects, scattering of massive particles and chemical reaction
are only a few participants at any given time, though their number can change. It is the situ
of the second kind that are addressed in this paper. Having the limitation on the total num
particles involved allows us to apply more sophisticated geometrical and positive commu
techniques than is usually the case~see, e.g., Ref. 1!, while keeping the proof rather simple an
obtaining stronger results. In this paper we obtain some basic results for the above-de
systems by developing for them the method of conjugate operators.

The conjugate operator method consists in obtaining diverse spectral properties of
adjoint operatorH in the HilbertH assuming the existence of a self-adjoint operatorA such that
the commutator@iH, A# has a definite sign when localized in a small spectral interval ofH. More
precisely, ift is a closed subset ofR thenA is called locally conjugate forH on R\t if and only
if for every lPR\t there isc.0 and a compact operatorK such that the Mourre estimate

E@l2c,l1c#~H !@ iH ,A#E@l2c,l1c#~H !>cE@l2c,l1c#~H !1K ~1.1!

holds, whereEZ(H) denotes the spectral projector ofH on a Borel setZ,R and the intersection
of domainsD(H)ùD(A) is assumed dense inH allowing one to understand the left-hand side
a quadratic form.

The method has appeared to be a remarkably fruitful tool in many recent investigatio
spectral and scattering theory of many-body Hamiltonians, cf. Refs. 2–4, see also Refs. 5

a!Electronic mail: soffer@math.rutgers.edu
18440022-2488/2002/43(4)/1844/12/$19.00 © 2002 American Institute of Physics
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If X is a finite-dimensional Euclidean space andHX is the Schro¨dinger operator inL2(X) of the
form

HX52DX1VX , ~1.2!

whereDX is the Beltrami–Laplace operator onX andVX has a many-body structure with inte
action potentials satisfying some regularity and decay hypotheses, then there exists a
countable sett(HX),R @called the threshold set ofHX# such that the dilation generator

AX5x•Dx1Dx•x ~1.3!

is locally conjugate forHX in R\t(HX). Moreover the eigenvalues ofHX may accumulate~with
multiplicities! only att(HX) and the singular continuous spectrum ofHX is empty. It is also useful
to adopt the convention thatHX50 in L2(X)5C in the caseX5$0%.

The aim of this paper is to obtain similar results for a class of Hamiltonians acting in
Hilbert space

H5 %
1<n<N

L2~X~n!!, ~1.4!

whereX5$X(n)%1<n<N is a family of configuration spaces which are finite dimensional Euc
ean spaces. The Hamiltonians we consider,

HX5HX
diag1WX , ~1.5!

are perturbations of the diagonal operator formed by many-body Schro¨dinger operators in
L2(X(n)),

HX
diag5 %

1<n<N

HX~n!5 %
1<n<N

~2DX~n!1VX~n!!. ~1.6!

Such Hamiltonians describe a quantum system of at mostN particles and the interaction terms ca
change the number of particles between 1 andN. HenceHX acts on the Fock subspaceH. In the
second-quantized formulation the above-given interaction can contain any power of creatio
annihilation operators leaving the above-mentioned Fock subspace invariant:

WX5PNWXPN ,

where PN is the projection of the Fock subspace of at mostN particles. The locally conjugate
operator forHX is the diagonal operator

AX5 %
1<n<N

AX~n! , ~1.7!

whereAX(n) are dilation generators inX(n) @defined in~1.3!#.
The model is motivated by field theoretical and solid state systems, where the particle n

is not conserved. This type of problem has recently attracted much attention, see, e.g., Re
8, 9, and 10. In Ref. 9 the two state atom coupled to a massive free field was studied, spec
scattering theory was developed using conjugate operators and otherN-body techniques. Previ
ously the authors of Ref. 7 considered a truncated model of the two state atom where, like
work, the total number of particles is at mostN,`. The work of Ref. 9 was then generalized
a general molecule in a bound state, replacing the two-state atom in Ref. 8.

References 1 and 10 deal with the massless photon/boson field interacting with a bound
References 1, 8, and 9 use the dilation as conjugate operator; Refs. 7 and 10 use dilations m
by terms depending on the interaction.
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In this work we generalize some of the above-mentioned models in that we allow the ‘‘bo
system to be interacting. We also allow the interaction between the atomic and boson field to
general nature.~In all of the above-mentioned models the interaction is linear in the boson fie!

Our construction of the conjugate operator is different from the above-noted works as
more geometric in spirit. Our construction uses the geometry ofN-body systems as the guidin
principle; in particular we can modify the dilation generator using Graf’s construction to a
local singularities in the interactions.11,12 Furthermore our interactions are of a more gene
nature, and so we can cover the case of pair annihilation in some cases, e.g., the posi
system, when a bound electron and positron pair are annihilated when coupled to a field.

If X, X8 are Euclidean spaces thenX8#X denotes the inclusion together with the fact that t
Euclidean structure ofX8 is inherited from the structure ofX and X8,X denotes the strict
inclusion, i.e.,X8,X⇔(X8#X andX8ÞX).

Further on we assume that Euclidean spacesX(n) satisfy13

X~N!,¯,X~2!,X~1!. ~1.8!

The configuration space of the system,X(1), is assumed to be Euclidean space, and co
sponds toN particles, of various types or masses, e.g.,

X~1!5$x5$x1 ,...,xN%uxiPRm,i 51,...,N%,

endowed with the metric

x,yPX~1!,x•y5(
i 51

N

mixiyi , mi.0.

X8#X(1) then denotes a subspace ofX(1) endowed with the induced metric ofX(1).
Then we takeX( j ) to denote the subspace ofX(1) with the j 21 particlesxN to xn2 j 11

removed~namely, the corresponding coordinates are set to zero!

X~ j !5$x5~x1 ,...,xN2 j 11!%.

We then have subspacesX( j ) such that

X~N!,X~N21!,¯X~2!,X~1!.

This notation, while nonstandard, will allow us to do the inductive proofs in a standard
and also emphasizes the generality of theN-body type systems involved: the subspacesX( j ) can
be chosen more generally forX, so we can cover the generalizedN-body systems of Agmon.14

To describe the many-body structure of the considered operators we assume thatY0 is a finite
subset of Euclidean spaces contained inX(1) ~with inherited Euclidean structures! and for every
YPY0 the associated interaction potentialvYPL loc

2 (Y) is real-valued and satisfies some regular
and decay hypotheses~to be described later!. For everyX#X(1) we defineVX :H2(X)→L2(X) as
the operator of multiplication by

VX~x!5 (
YPY0 ,Y#X

vY~pYx!, ~1.9!

wherexPX, pY is the orthogonal projection ontoY andHs(X) denotes the Sobolev space onX.
To describe the perturbationWX we also consider operatorsW:H2(X8)→L2(X) with X8,X,

saying thatW is the operator of multiplication bywPL loc
2 (X) if

~Ww!~x!5w~x!w~pX8x!. ~1.10!
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Such interaction terms allow quite general nonparticle number conserving terms. The
assumptions onw(x) imply that the created particle by the interaction have localized wave fu
tion. This is natural as local field theories of massive particles satisfy this condition. It ma
violated by massless theories with~strong! infrared interactions.

The simplest case is when the interaction creates ‘‘one particle’’~linear in the creation/
annihilation term!:

w~x!5 f ~xa!,xaPR3, f PL2~R3!ùL`~R3!,

X85R3
%¯R3,n2t imes,

X5X8% R3.

In this case,

~Ww!~x!5 f ~xa!w~PX8x!

is the operator that creates a particle with wave functionf (xa), acting on the space ofn particles
into the space ofn11 particles.

The construction~1.10! allows much more general type of interactions, e.g., creating pair
particles in some subspaces of other particles, this can be achieved by choosing

w~x!5 f ~xa ,xb!,xa ,xbPR3,

which corresponds to a~sum of! products of two creation operators.
We defineX̃5$X̃(n)%2<n<N by

X~n21!5X~n! % X̃~n! for 2<n<N. ~1.11!

We assume that for 2<n<N and YPY0 such thatY#X(n) we havewn21,YPL loc
2 (Y% X̃(n))

satisfying some regularity and decay hypotheses@to be described later# and Wn21 :H2(X(n))
→L2(X(n21)) is the operator of multiplication bywn21PL loc

2 (X(n21)) of the form

wn21~x~n!,x̃~n!!5 (
YPY0 ,$0%,Y#X~n!

wn21,Y~pYx~n!,x̃~n!!, ~1.12!

where (x(n),x̃(n))PX(n) % X̃(n)5X(n21). We assume thatWX is the self-adjoint operator in
H defined by the quadratic form

WX@w,w#5~WX
1w,w!1~w,WX

1w!, ~1.13!

whereWX
1(w)5(W1w2 ,...,WN21wN,0) for w5(w1 ,...,wN)PH.

We shall prove:
Theorem I.1: Let HX be defined as previously, letm.0 and m(n).dim X̃(n)/2 for 2<n

<N. We assume that for all

YPY0 ,

^y&m1uau]y
avY~y!~ I 2DY!21 ~1.14!

are compact operators on L2(Y) for uau<1 and

^x̃~n!&m~n!1uãu^y&m1uau]y
a] x̃~n!

ã vn21,Y~y,x̃~n!!~ I 2DY% X̃~n!!
21 ~1.15!
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are compact operators on L2(Y% X̃(n)) for uau1uãu<1, where we denotêx&5(11uxu2)1/2.
Then there exists a closed, countable sett(HX),R such thatAX is locally conjugate forHX in
R\t(HX) and the eigenvalues ofHX may accumulate (with multiplicities) only att(HX).

Theorem I.2: We make the same hypotheses as in Theorem I.1 and assume moreover t
operators given by (1.14) are compact foruau<2 and the operators given by (1.15) are compa
for uau1uãu<2. Then the singular continuous spectrum ofHX is empty. Moreover, the poin
spectrum outside the threshold set consists of discrete eigenvalues of finite multiplicitie
operatorHX satisfies the limiting absorption principle with respect to either the operatorAX or
the operator̂ x&.

II. DESCRIPTION OF THE LATTICE AND ASSOCIATED SUB-HAMILTONIANS

For Banach spacesX1 , X2 we denote byB(X1 ,X2) andB`(X1 ,X2) the set of bounded and
compact operatorsX1→X2 , respectively, andB(X1)5B(X1 ,X1), B`(X1)5B`(X1 ,X1).

For everyX#X(1) we denote byX' the orthogonal complement ofX in X(1), i.e.,

X~1!5X% X'. ~2.1!

Without any loss of generality we may replaceY0 by Y being a larger finite family of subspace
of X(1) ~it suffices to setvY50, wn21,Y50 identically forYPY\Y0). Setting

Y15$Y11¯1Yn :nPN and Y1 ,...,YnPY0øXøX̃ø$0%%,
~2.2!

Y5$pX~1!Y11¯1pX~N!YN :Y1 , ¯ ,YnPY1%,

we have the following properties:

X~n!PY for 1<n<N, X̃~n!PY for 2<n<N, ~2.3i!

Y1 ,Y2PY⇒Y11Y2PY, ~2.3ii!

YPY⇒pX~n!YPY for 1<n<N. ~2.3iii!

If Y#X#X(1), YPY, then we denote

]XY5max$nPN:Y#Y1,Y2,¯,Yn#X for some Y1 ,...,YnPY%. ~2.4!

We denote byShg
m (X) the set of smooth functions which are homogeneous of degreem outside a

bounded region, i.e.,

Shg
m ~X!5$ f PC`~X!:there is R.0 such that

f ~lx!5lmf ~x! hold for l.1 and uxu.R%. ~2.5!

For r .0, r̃ .0, X8PY, X8,X, we define

UX
X8 ~r , r̃ !5$xPX:upX8xu,r uxu and

upYxu. r̃ uxu for all YPY satisfying Y,X,YúX8% ~2.6!

if X8Þ$0% andUX
$0%(r , r̃ )5UX

$0%( r̃ ) with

UX
$0%~ r̃ !5$xPX:uxu,1%ø$xPX:upYxu. r̃ uxu for all YPY satisfying Y,X%. ~2.7!

If X8PY, X8#X then we may define the following self-adjoint operators inL2(X):
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VX
X8~x!5 (

YPY,Y#X8
vY~pYx!, ~2.8!

HX
X852DX1VX

X8 , ~2.88!

where in the caseX85$0% we adopt the convention thatVX
X850 andHX

X852DX .

Let JX
X8PShg

0 (X) be such that suppJX
X8,UX

X8(r , r̃ ) for certainr .0, r̃ .0. Then

~VX
X2VX

X8!JX
X8PB`~H2~X!,L2~X!!. ~2.9!

For X8PY, X8#X(n), 2<n<N, we defineWn21
X8 :H2(X(n))→L2(X(n21)) as the opera-

tors of multiplication by

wn21
X8 ~x~n!,x̃~n!!5 (

YPY,Y#X8
wn21,Y~pYx~n!,x̃~n!! ~2.10!

and we adopt the convention thatWn21
X8 50 if X85$0%.

Let JX(n)
X8 PShg

0 (X(n)) be such that suppJX(n)
X8 ,UX(n)

X8 (r , r̃ ) for certainr .0, r̃ .0. Then

~Wn212Wn21
X8 !JX~n!

X8 PB`~H2~X~n!!,L2~X~n21!!!. ~2.11!

For X8PY, X8#X(N) we denoteX(X8)5$X8(n)%1<n<N taking X8(N)5X8 and defining suc-
cessivelyX8(N21), X8(N22),...,X8(1)PY by

X8~n21!5X8~n! % X̃~n! for 2<n<N. ~2.12!

Assume moreoverX8Þ$0% and introduce

HX
X8diag5 %

1<n<N

HX~n!
X8~n! . ~2.13!

Still assumingX8Þ$0% we defineWX
X8 as the self-adjoint operator inH given by the quadratic

form

WX
X8@w,w#5~WX

X81w,w!1~w,WX
X81w!, ~2.14!

where forw5(w1 ,...,wN)PH we have

WX
X81~w1 ,...,wN!5~W1

X8~2!w2 ,...,WN21
X8~N!wN,0!

and set

HX
X85HX

X8diag1WX
X8 . ~2.15!

In the caseX8Þ$0% we defineHX
$0% according to~2.15!, where we set

HX
$0%diag5 S %

1<n<N21

HX~n!D % ~2DX~N!! ~2.138!

andWX
$0% defined by~2.14!, where forw5(w1 ,...,wN)PH we take

WX
$0%1~w1 ,...,wN!5~W1

X8~2!w2 ,...,WN22
X8~N21!wN21,0,0!.
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The next aim is to construct a suitable partition of unity described in

Proposition II.1: There exists a family$JX
X8%X8PY,X8,X(N) of operators of the form

JX
X85 %

1<n<N

Jn
X8 , ~2.16!

where every Jn
X8 is an operator of multiplication by real-valued Jn

X8PShg
0 (X(n)), satisfying

(
X8PY,X8,X~N!

~JX
X8!25I ~2.17!

and such that for every X8, X9PY, X8, X9,X(N), the following operators

~ i 1HX!21@JX
X8 ,HX

X9#, ~2.18i!

~ i 1HX!21~HX2HX
X8!JX

X8 , ~2.18ii!

~ i 1HX!21@JX
X8 ,@HX

X9 ,AX##~ i 1HX!21, ~2.18iii!

~ i 1HX!21@HX2HX
X8 ,AX#JX

X8~ i 1HX!21 ~2.18iv!

are compact.

III. PROOF OF PROPOSITION II.1

If r .0, thenF(•<r ) denotes a smoothed characteristic function of ]2`,r ], i.e., l→F(l
<r ) is a non-negative, smooth function onR which equals 1 on ]2`,r /2] and equals 0 on@r ,`@ .

Lemma III.1: Let X8PY, $0%,X8,X(N) and JN
X8PShg

0 (X(N)). If r .0 then the relation

Jn21
X8 ~x~n!,x̃~n!!5Jn

X8~x~n!!FS ux̃~n!u
ux~n21!u

<r D ~3.1!

allows one to define successively JN21
X8 PShg

0 (X(N21)), JN22
X8 PShg

0 (X(N22)),...,J1
X8

PShg
0 (X(1)). If moreoversuppJN

X8,UX(N)
X8 (r X8 , r̃ X8) and rX8.0, r .0 are small enough, then

suppJn
X8,UX~N!

X8~n!~r X81~N2n!r , r̃ X8 /~11N2n!! ~3.2n!

holds for every1<n<N.
Proof: We assume~3.2n! for a certain 2<n<N and we show~3.2n21!. Due to ~3.2n!, for

(x(n),x̃(n))PsuppJn21
X8 we have

ux̃~n!u<r ux~n!u and upX8~n!x~n!u,~r X81~N2n!r ux~n!u, ~3.3!

which implies

upX8~n21!x~n21!u<upX8~n!x~n!u1ux̃~n!u

,~r X81~N2n!r 1r !ux~n!u<~r X81~N2n11!r !ux~n21!u. ~3.4!

Now we fix YPY satisfyingY,X(n21), Y£X8(n21), and it remains to show that

upYx~n21!u.
r̃ X8

21N2n
ux~n21!u. ~3.5!
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We defineY1PY, Y1#X(n) by

Y15pX~n!Y1X8~n! ~3.6!

andY2#X(n) by

X~n!5Y1% Y2 . ~3.7!

We note that xPX(n)ùY'⇔(05(x,y)5(x,pX(n)y) for all yPY)⇔xPX(n)ù(pX(n)Y)'.
Therefore

Y25Y1
'ùX~n!5~pX~n!Y!'ùX8~n!'ùX~n!5Y'ùX9~n! ~3.8!

with X9(n)5X8(n)'ùX(n), i.e., with X9(n) satisfying

X~n!5X8~n! % X9~n!. ~3.9!

Clearly Y2#X9(n) and we are going to check that the inclusion is strict. Inde

Y2 5 X9(n) ⇒ Y15X8(n) ⇒ pX(n)Y#X8(n) ⇒ Y5pX(n)Y1p X̃(n)Y#X8(n)1X̃(n)#X8(n21),
which is in contradiction with the assumption made onY.

Thus we haveY2,X9(n), which impliesX8(n),Y1 , henceY1£X8(n) and due to~3.2n!,

upY1x~n!u2.S r̃ X8
11N2nD 2

ux~n!u2 ~3.10!

and sinceupY1x(n)u21upY2x(n)u25ux(n)u2, ~3.10! is equivalent to

upY2~n!u2,S 12S r̃ X8
11N2nD 2D ux~n!u2. ~3.11!

Therefore using~3.8!, ~3.11!, and~3.3! we obtain

upY'
x~n21!u<upY'ùX9~n!x~n21!u1upY'ùX8~n!x~n21!u1upY'ùX̃~n!x~n21!u

<upY2x~n!u1upX8~n!x~n!u1ux̃~n!uS S 12S r̃ X8
11N2nD 2D 1/2

1r X81~N2n11!r D ux~n!u ~3.12!

and takingr X8.0, r .0 small enough, we have

S 12S r̃ X8
11N2nD 2D 1/2

1r X81~N2n11!r<S 12S r̃ X8
21N2nD 2D 1/2

. ~3.13!

Now it is clear that~3.12! and ~3.13! give

upY'
x~n21!u2,S 12S r̃ X8

21N2nD 2D ux~n21!u2, ~3.14!

which gives~3.5! due toupYx(n21)u21upY'
x(n21)u25ux(n21)u2. h

Lemma III.2: Let X8PY, $0%,X8,X(N) and assume that$Jn
X8%1<n<N are as in Lemma 3.1

and (3.2n) holds for1<n<N. If JX
X8 is given by~2.16!, then the operators (2.18i,ii,iii,iv) are

compact.
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Proof: ~i! Clearly it suffices to considerHX instead ofHX
X9 in ~2.18i!. Since the commutators

@Jn
X8 ,DX(n)# are first-order differential operators with coefficients inShg

21(X(n)), i.e.,
DX(n)-compact operators, it is clear that

@JX
X8 ,HX

diag#5 %
1<n<N

@Jn
X8 ,2DX~n!# ~3.15!

is HX-compact. In order to prove that@JX
X8 ,WX# is HX-compact, it suffices to show that for

<n<N one has

Jn21
X8 Wn212Wn21Jn

X8PB`~H2~X~n!!,L2~X~n21!!!. ~3.16!

HoweverJn21
X8 Wn212Wn21Jn

X8 is the operator of multiplication by

g~x~n!,x̃~n!!5S FS ux̃~n!u
ux~n21!u

<r D21Dwn21~x~n!,x̃~n!!Jn
X8~x~n!! ~3.17!

and we may writeg5g3g2g1 with

g1~x~n!,x̃~n!!5^x̃~n!&2m~n!1eJn
X8~x~n!!, ~3.18i!

g2~x~n!,x̃~n!!5^x~n!&2e^ x̃~n!&m~n!wn21~x~n!,x̃~n!!, ~3.18ii!

g3~x~n!,x̃~n!!5S FS ux̃~n!u
ux~n21!u

<r D21D ^x~n!&e^x̃~n!&2e, ~3.18iii!

wheree.0 is chosen such thatm(n)2e.dim X̃(n)/2, which implies that the multiplication byg1

is a bounded operatorH2(X(n))→H2(X(n21)). Next the compactness hypotheses concern
the operators~1.15! guarantee that the multiplication byg2 is a compact operatorH2(X(n21))
→L2(X(n21)) and we complete the proof noting that the multiplication byg3 is a bounded
operator inL2(X(n21)) due to the definition ofF.

~ii ! Clearly ~2.9! implies that (HX
diag2HX

X8 diag)JX
X8 is HX-compact. For 1<n<N let J̃n

X8

PShg
0 (X(n)) be such thatJ̃n

X851 on suppJn
X8 and suppJ̃n

X8,UX(n)
X8(n)(r (n)

X8 , r̃ n
X8) for certain r n

X8

.0, r̃ n
X8.0. Setting

J̃X
X85 %

1<n<N

J̃n
X8 , ~3.19!

it is clear that~2.11! implies the fact thatJ̃X
X8(WX2WX

X8)JX
X8 is HX-compact. Since (I 2 J̃X

X8)JX
X8

50, it suffices to note that the operator

~ I 2 J̃X
X8!~WX2WX

X8!JX
X85~ I 2 J̃X

X8!@WX2WX
X8 ,JX

X8# ~3.20!

is HX-compact due to~i!.

~iii ! and ~iv! We may defineṼX
X8 , H̃X

X8 , W̃n21
X8 according to~2.8!, ~2.10!, wherevY , wn2n,Y

are replaced by

ṽY~y!52y•DyvY~y!, ~3.21!

w̃n21,Y~y,x̃~n!!52S y•Dy1 x̃~n!•D x̃~n!1
dim X̃~n!

2
Dwn21,Y~y,x̃~n!!. ~3.218!
                                                                                                                



1853J. Math. Phys., Vol. 43, No. 4, April 2002 Hamiltonian not conserving the particle number

                    
It is clear we still have

~ṼX
X2ṼX

X8!JX
X8PB`~H2~X!,L2~X!!, ~3.22!

~W̃n212W̃n21
X8 !JX~n!

X8 PB`~H2~X!~n!!,L2~X~n21!!, ~3.23!

whereṼX5ṼX
X , W̃n215W̃n21

X .

Thus it suffices to follow the proof of~i! and ~ii ! noting that

i

2
@HX

X8 ,AX#5H̃X
X85H̃X

X8 diag1W̃X
X8 , ~3.24!

whereH̃X
X8 diag andW̃X

X8 are defined according to~2.13!, ~2.14! with HX(n)
X8(n) , Wn21

X8(n) replaced by

H̃X(n)
X8(n) , W̃n21

X8(n) . h

Proof of Proposition II.1:Fix 0, r̃ 2,1, setr̃ X85 r̃ 2 for everyX8 such that]X(N)X852 and
chooser 25r 2( r̃ 2).0 small enough to guarantee~3.2n! for 1<n<N with r X85r 2 . Assuming that
we have chosenr X85r ]X(N)X8.0, r̃ X85 r̃ ]X(N)X8.0 for every X8 such that]X(N)X8<k, we
choose sufficiently smallr̃ k115 r̃ k11( r̃ 2 ,r 2 ,...,r̃ k ,r k).0 andr k115r k11( r̃ 2 ,r 2 ,...,r̃ k ,r k , r̃ k11)
.0 small enough to guarantee~3.2n! for 1<n<N with r̃ X85 r̃ k11 , r X85r k11 for everyX8 such
that ]X(N)X85k11. A simple geometric reasoning based on the fact that forX8,X and r .0
small, $xPX:upX8xu,r uxu% is a small conical neighborhood ofX8'ù(X\$0%) in X\$0%, allows

one to findr̃ $0%5r $0%.0 such that$UX(N)
X8 (r X8 , r̃ X8)%X8PY,X8,X(N) is a covering ofX(N). There-

fore there exists a partition of unity

(
X8PY,X8,X~N!

J̃N
X851 ~3.25!

composed ofJ̃N
X8PShg

0 (X(N)) such that suppJ̃N
X8,UX(N)

X8 (r X8 , r̃ X8) and J̃N
X8>0.

For X8Þ$0% we define successivelyJ̃N21
X8 PShg

0 (X(N21)), J̃N22
X8 PShg

0 (X(N22)),...,J̃1
X8

PShg
0 (X(1)), using relation~3.1! with J̃n

X8 instead ofJn
X8 and letJ̃X

X8 be defined as in~3.19!. Due

to the assertion of Lemma 2.1 we may assume that~3.2n! holds for 1<n<N with J̃n
X8 instead of

Jn
X8 and due to Lemma 3.2 the commutator@ J̃X

X8 ,HX# is HX-compact.
Defining J̃X

$0% by

(
X8PY$0%,X8,X~N!

J̃X
X8512 J̃X

$0% , ~3.26!

it is clear that@ J̃X
$0% ,HX# is still HX-compact and

J̃X
$0%5 %

1<n<N

J̃n
$0% , ~3.27!

with J̃n
$0%PShg

0 (X(n)) for 1<n<N and suppJ̃N
$0%,UX(N)

$0% ( r̃ $0%), hence the operators~2.18ii!,
~2.18iv! are compact forX85$0% as well.

It is clear that~3.26! implies existence of a constantc0.0 such that

SX5 (
X8PY,X8,X~N!

~ J̃X
X8!2>c0I ~3.28!

and then clearly@SX ,HX# is HX-compact. Hence
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@ f ~SX!,HX#~ i 1HX!21PB`~H! ~3.29!

if f (l)5(l6 i )21 and Stone–Weierstrass theorem~see, e.g., Ref. 4! allows one to affirm that
~3.26! still holds for every f PC(R) such thatf (l)→0 when l→`. We complete the proof

noting that all assertions of Proposition 2.1 are satisfied if we setJX
X85 J̃X

X8SX
21/2. h

IV. PROOFS OF THEOREMS 1.1 AND 1.2

Let X5$X(n)%1<n<N be as before a finite family of Euclidean spaces satisfying~1.8! and let
X85$X8(n)%1<n<N8 be another finite family of Euclidean spaces satisfying

X8~N8!,¯,X8~2!,X8~1!. ~4.1!

We shall writeX8<X if and only if the following three conditions hold:

~ i! N8<N,

~ ii ! X8~1!#X~1!,

~ iii ! X̃8~n!5X̃~n! for 2<n<N8,

whereX̃(n) is given by~1.11! and X̃8(n) by

X8~n21!5X8~n! % X̃8~n! for 2<n<N8. ~4.2!

Moreover we shall writeX8,X⇔(X8<X andX8ÞX).
The idea of the proof of Theorem 1.1 is to show the assertion forHX with

t~HX!5 ø
X8,X

spp~HX8! ~4.3!

@wherespp(H) denotes the set of eigenvalues ofH#, assuming that the analogical statement ho
for everyHX8 with X8,X. We note first that Proposition 2.1 has the following

Corollary IV.1: Assume thatJX
X8 satisfies the assertions of Proposition 2.1. Iff PC0

`(R) then
for everyX8, X9PY, X8, X9,X(N), the operators

~ i 1HX!@JX
X8 , f ~HX

X9!#, ~4.4!

~ i 1HX!~ f ~HX!2 f ~HX
X8!!JX

X8 , ~4.48!

are compact. Moreover there exist compact operatorsK1 , K2 , such that

f ~HX!5 (
X8PY,X8,X~N!

JX
X8 f ~HX

X8!JX
X81K1 , ~4.5!

f ~HX!@ iHX ,AX# f ~HX!5 (
X8PY,X8,X~N!

JX
X8 f ~HX

X8!@ iHX
X8 ,AX# f ~HX

X8!JX
X81K2 . ~4.6!

Indeed, Proposition 2.1 allows one to get the compactness of operators~4.4!–~4.48! for f (l)
5(l6 i )21 and the general case follows as before via Stone–Weierstrass theorem~cf. Ref. 4!.
Using ~2.18! and ~4.4!–~4.48! we get ~4.5–6! as in Ref. 4. We note first that the assertion
Theorem 1.1 holds in the caseN51 corresponding to the case of a standard scalar many-b
operator treated in Ref. 3 or 4, where
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t~HX!5ø
X8,X

spp~HX8!. ~4.7!

Consider now the caseN>2 and assume that the assertion of Theorem 1.1 with~4.3! holds for
all X8 such thatX8,X. Clearly we may exclude the caseX(N)5$0%, because the correspondin
operator may be replaced byHX(N21) with

X~N21!5$X~n!%1<n<N21,X ~4.8!

for which the assertion of Theorem 1.1 holds due to our induction hypothesis. It remai
consider the caseX(N)Þ$0% applying Corollary 4.1 similarly as in Ref. 4. Then for everyX8
PY, $0%,X8,X(N), we use the direct decomposition

HX
X85E

jPX9

%

HX~X8!~j !dj, ~4.9!

whereX9 is such thatX(N)5X8% X9 and

HX~X8!~j !5j21HX~X8! , ~4.98!

whereHX(X8) is the Hamiltonian associated with the family of Euclidean subspacesX(X8) defined
by ~2.12! with X8(N)5X8. Thus forX8PY, $0%,X8,X(N) we haveX(X8),X and the asser-
tion of Theorem 1.1 holds forHX(X8) due to our induction hypothesis. It remains to note that in
caseX85$0%,

HX
$0%5HX~N21! % ~2DX~N!!, ~4.10!

with X(N21) given by ~4.8!, hence satisfies the assertion of Theorem 1.1. Therefore we
complete the proof similarly as in the reasoning described in Ref. 4. Here we point ou
compactness is~in general! used in the Fock space with differing number of particles. So co
pactness of the relevant contribution from theW terms is between two spaces. Smallness of
remainder terms, after fibration, follows as in the usual case. The assertion of Theorem 1.2 f
from Theorem 1 and from the boundedness of@@HX ,AX#,AX#( i 1HX)21 ~cf. Refs. 2 and 13!.
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SU„N… skyrmions from harmonic maps S2\Gr„2,N…

H. J. Wospakrika) and W. J. Zakrzewskib)

Department of Mathematical Sciences, University of Durham,
Durham DH1 3LE, United Kingdom

~Received 18 June 2001; accepted for publication 3 January 2002!

We construct multiskyrmion fields of the SU(N) Skyrme models by using har-
monic maps ofS2 to the Grassmannian Gr(2,N), which we express in terms of
rank-2 projectors. Within this construction we derive some approximate spherically
symmetric solutions of SU(N) Skyrme models and show that their energies are
marginally higher than those for the rank-one cases. We also discuss the possibility
of generating exact spherically symmetric solutions using this construction. In par-
ticular, we present arguments which suggest that the only solutions obtained in this
way are embeddings. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1452303#

I. INTRODUCTION

The SU(N) Skyrme models are minimal generalizations of the SU(N) chiral models in (3
11)-dimensional space–time which possess static finite energy solutions called multiskyrm
They are examples of topological solitons in three spatial dimensions. Recently, they ha
ceived a great deal of attention, especially for theN52 case, since, it has been argued1,2 that they
describe, at a classical level, low energy states of nuclei.

The SU(N) Skyrme models are described by SU(N) group valued functionsU of space–time
coordinatesxm5(xW ,t). Their dynamics is determined by the Lagrangian density

L52
F2

16
Tr~LmLm!1

1

32a2 Tr~@Lm ,Ln#@Lm,Ln#!1
F2

16
Mp

2 Tr~U211U22I !, ~1!

where

Lm5U21]mU ~2!

are the SU(N) algebra valued currents,F>189 MeV is the pion decay constant, anda is a
dimensional constant. The last term in~1! describes the mass term whereMp is the pion mass.

Multiskyrmions are stationary points~minima or saddle points! of the corresponding static
energy functional. The requirement of the finiteness of the multiskyrmions energy impose
condition that the fieldU(xW ,t) goes to a constant matrixU0 at spatial infinity. As by a global
SU(N) transformation, thisU0 can be brought to the identity matrixI, so without the loss of
generality we can impose the following boundary condition onU:U→I as uxW u→`.

As this boundary condition is effectively a mapping fromS3→SU(N) we see that each
multiskyrmion configuration can be classified by an integer valued winding number

B5
1

24p2 E
R3

e i jkTr~LiL jLk!d
3xW . ~3!

a!Electronic mail: H.J.Wospakrik@durham.ac.uk
b!Electronic mail: W.J.Zakrzewski@durham.ac.uk
18560022-2488/2002/43(4)/1856/19/$19.00 © 2002 American Institute of Physics
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This number is a topological invariant, i.e., an element of the third homotopy g
p3(SU(N))[Z, which classifies the solitonic sectors of the model. Following Skyrme1 and
Witten,2,3 B is identified with the baryon number of the multiskyrmion configuration.

In what follows we express the energy in the same units as the baryon numberB. This is
achieved by rescaling the spatial coordinates4,5 xW→2xW /aF and by takingF/4a51/12p2. In these
units the energy functional is given by

E5
1

12p2 E
R3

F2
1

2
Tr~Li

2!2
1

16
Tr~@Li ,L j #

2!2
mp

2

2
Tr~U211U22I !Gd3xW , ~4!

wheremp52Mp /aF. From ~4! we find the equation for the stationary points:

] i S Li2
1

4
@L j ,@Li ,L j ## D2

mp
2

2
~U2U21!50. ~5!

The first exact solution of~5!, in the SU~2! case, was found by Skyrme.1 This solution, also
known as a hedgehog solution, describes a spherically symmetric energy lump and has the
numberB51. Since Witten’s suggestion that the Skyrme model arises in the largeNc limit of
QCD,2 most of the studies involving SU(N) for N.2 considered configurations which we
embeddings of the SU~2! fields.

The first nonembedding solution, forN53, was presented by Balachandranet al.,6 who found
an SO~3! subgroup soliton which has baryon numberB52. Another configuration, which has
large strangeness content was then found by Kopeliovichet al.7

A more systematic study, using the harmonic map ansatz method, for anyN, was then carried
out by Ioannidouet al.8,9 This method enabled the construction of new static spherically sym
ric solutions. The method was, in fact, a generalization of the rational map approach of Hou
et al.10 In their seminal work,10 Houghtonet al. have shown how to use rational maps ofS2

→S2 to construct field configurations for the SU~2! Skyrme model which have arbitrary baryo
numberB and, for low values ofB, are close to the exact solutions of the model. In Ref.
Ioannidouet al. took the SU~2! ansatz of Houghtonet al. and rewrote it in terms of a projector o
S2→CP1 and then generalized it to more general projectors ofS2→CPN21 of rank-one.

In this paper we generalize the method of Ioannidouet al. further by considering projectors o
S2 into the Grassmannian Gr(2,N), i.e., using projectors of higher rank~we concentrate our
attention on the rank-2 projectors!. We find that, in contradistinction to the rank-1 case, in wh
exact spherically symmetric solutions can be found~numerically! by using the Veronese sequen
of N mutually orthogonal vector fields inCPN21, such a construction is now more involved.

In Sec. II, we discuss the harmonic maps ofR2 into the Grassmannian Gr(n,N) in terms of the
(N3N) projectors of rank-n, with 1,n,N and then present our generalization of the harmo
map ansatz. In Sec. III we rewrite various quantities of the SU(N) Skyrme models in spherica
polar coordinates and then, using the harmonic map ansatz, reexpress them in terms ofn
projectors. Next, in Sec. IV, we derive the stationary equations of the approximate energy
tional which we then use to study various field configurations for theN53, 4, and 5 cases usin
one and two rank-2 projectors in Secs. V and VI, respectively. Then, in Sec. VII, we formu
condition on the sequence ofN mutually orthogonal (N3n) matrix fields in Gr(n,N) which
would give exact spherically symmetric solutions of the SU(N) Skyrme models. In Secs. VIII and
IX, we analyze this condition further, consider some special configurations, and present argu
suggesting that its only solutions are embeddings.

II. HARMONIC MAPS INTO GRASSMANN MANIFOLDS

Let jPC be a complex variable andMk5Mk(j,j̄), k50,1,...,l wherel<(N21), be a set
of (l11) mutually orthogonal (N3n) matrices (n,N), i.e.,

Mk
†Ml5uMku2dkl , ~6!
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wheredkl is the Kronecker’s delta, and where

uMku25Mk
†Mk ~7!

are (n3n) nonsingular matrices. Then the corresponding projectorPk(n) onto each matrixMk is
given by

Pk~n!5MkuMku22Mk
† . ~8!

Clearly, TrPk(n)5Tr I n5n, whereI n is an (n3n) unit matrix which means that each project
Pk(n) has rank-n. From ~8!, we see that the projectorsPk(n) are mutually orthogonal, i.e.
Pk(n)Pl(n)5dklPl(n), and are Hermitian, i.e.,Pk(n)†5Pk(n), as by definitionMk are mutually
orthogonal and, by construction~7!, uMku2 are Hermitian.

In the following we want to present a generalized harmonic map ansatz. To do this we
sequence of mutually orthogonal matrices (M0 ,M1 ,...,Ml) obtained from a sequence of holo
morphic~analytic! matrices (M ,]jM ,...,]j

lM ),]j̄M50, via the Gram–Schmidt orthogonalizatio
process.

We can do this using the operatorP1 ~Ref. 11! defined by its action on any matrixM
PCN3n as

P1M5]jM2M uM u22~M†]jM !. ~9!

Then we have

M05M , M15P1M , ..., Mk5P1
k M5P1~P1

k21M !, ..., Ml5P1
l M . ~10!

With this construction the following properties of the matricesMk hold when M0 is
holomorphic:11

]j̄Mk52Mk21uMk21u22uMku2, ~11!

]j~MkuMku22!5Mk11uMku22. ~12!

Geometrically, the matricesMk define harmonic mapsR2→Gr(n,N), i.e., in terms of the
projectorsPk(n), where Gr(n,N) is the Grassmann manifold ofn-dimensional planes inCN.11

For rank-2 projectors which we are considering in this paper, the matrixMk is given by

Mk5~Mk1 ,Mk2!, ~13!

whereMk1 andMk2 are twoN-component column vector fields anduMku2 is a (232) matrix.
Using this column vector notation the entries of the projectorPk(2) are given by

~Pk~2!!ab5
1

Dk
@ uMku22

2 ~Mk1!a~M̄ k1!b1uMku11
2 ~Mk2!a~M̄ k2!b2uMku12

2 ~Mk1!a~M̄ k2!b

2uMku21
2 ~Mk2!a~M̄ k1!b#, ~14!

wherea,b51,2,...,N, (M̄k j)a , j 51,2 is the complex conjugate of (Mk j)a , and where

Dk5DetuMku2. ~15!

Clearly, TrPk(2)52. Furthermore, if we let

Pk j~1!5Mk juMk ju22Mk j
† , ~16!

then from~14! it follows that
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Pk~2!5Pk1~1!1 P̃k2~1!, ~17!

where

P̃k2~1!5M̃k2uM̃ k2u22M̃ k2
† , ~18!

with

M̃k25@ I 2Pk1~1!#Mk2 , ~19!

which is orthogonal toMk1 , i.e., Mk1
† M̃ k250. Thus, we see from~17! that each projector of

Gr(2,N) is really a sum of two mutually orthogonal rank-1 projectors.
Note that for some cases this construction does not work. To see this take the case wh

initial (N32) matrix M0 is chosen to be given by

M05~M01,]jM01!, ~20!

i.e., M02 is a derivative ofM01. Then it follows from~10! that

M15~0,M12!. ~21!

Thus, in this special case,uM1u2 is singular, and so the projectorP1(2) does not exist.
Let j now be related to theu, w, which locally parameterizeS2, via j5tan(u/2)eiw. Then the

matricesMk define harmonic mapsS2→Gr(n,N). Taking our sequence of projectorsPk(n)
5Pk in ~8! we can now formulate our generalized harmonic map ansatz for the SU~N! Skyrme
fields in three dimensions. Namely, we take the matrixUPSU(N) of the form

U5expF i (
k50

l21

gkS Pk2
nI

N D G5expS 2ni (
k50

l21

gk /ND S I 1 (
l 50

l21

Al Pl D , ~22!

wheregk5gk(r ) for k50,...,l21 are the profile functions and

Ak5~eigk21!. ~23!

The profile functionsgk(r ) are required to satisfy the boundary conditions:gk(`)50 and
gk(0)52ap, wherea50 or 61.

III. SU„N… MODEL-FOR THE GENERALIZED HARMONIC MAP ANSATZ

In this section, we first rewrite the energy~4! and the topological charge~3! in the spherical
polar coordinates (r ,u,w). Later we introduce the harmonic map ansatz—so it is convenien
replace the angular coordinates by the complex~or holomorphic! coordinates (j,j̄).

A. Energy

The energy~4!, when written in the spherical~holomorphic! coordinates (r ,j,j̄), takes the
form

E52
i

12p2 E dj dj̄ dr r 2 TrF 1

~11uju2!2 Lr
21

1

r 2 LjL j̄1
1

4r 2 @Lr ,Lj#@Lr ,Lj#

2
~11uju2!2

16r 4 @Lj ,L j̄#
2G , ~24!

where, for simplicity, we have put the pion~meson! massmp50.
                                                                                                                



in

1860 J. Math. Phys., Vol. 43, No. 4, April 2002 H. J. Wospakrik and W. J. Zakrzewski

                    
With the matrixUPSU(N) given by the harmonic map ansatz~22!, the currentsLa8’s in ~2!
take the following form:

Lr5 i (
k50

l21

ġkS Pk2
nI

N D , ~25!

whereġk5dgk /dr and

Lj5F I 1 (
k50

l21

~e2 igk21!PkGF (
l 50

l21

~eigl21!Pl jG5 (
k50

l21

@ei ~gk2gk11!21#~Mk11uMku22Mk
†!,

~26!

where by definitiongl50, and thatL j̄52(Lj)
†.

Using the expressions forLr andLj in ~25! and ~26!, respectively, we find that the traces
the energy functional~24! become

Tr~Lr
2!5

n2

N S (
k50

l21

ġkD 2

2n(
k50

l21

ġk
2, ~27!

Tr~LjL j̄ !522(
k50

l21

Sk Tr~ uMk11u2uMku22!, ~28!

Tr~@Lr ,Lj#@Lr ,L j̄# !522(
k50

l21

~ ġk2ġk11!2Sk Tr~ uMk11u2uMku22!, ~29!

Tr~@Lj ,L j̄#
2!58(

k50

l21

@Sk
2 Tr~@ uMk11u2uMku22#2!2SkSk21 Tr~ uMk11u2uMk21u22!#, ~30!

where by definitionS2150 and fork50,...,l21:

Sk5@12cos~gk2gk11!#. ~31!

B. Topological charge

The topological charge~3! in the spherical~holomorphic! coordinate system takes the form

B5
1

8p2 E dr dj dj̄ Tr~Lr@Lj ,L j̄# !. ~32!

Using the expression forLj in ~26! we find that

@Lj ,L j̄#52(
k50

l21

Sk~MkuMku22uMk11u2uMku22Mk
†2Mk11uMku22Mk11

† !, ~33!

and so, using this commutator andLr as given in~25!, the topological charge~32! becomes

B52
1

2p E dr (
k50

l21

~ ġk2ġk11!~12cos~gk2gk11!!Nk , ~34!

where
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Nk5
i

2p E dj dj̄ Tr~ uMk11u2uMku22!. ~35!

As gk(`)50, we finally obtain

B5
1

2p (
k50

l21

Nk~gk~0!2gk11~0!!, ~36!

and so we see that the only contributions to the topological charge comes fromgk(0).
In Appendix A we show that ifDk5DetuMku2 is nonsingular in the whole complexj plane,

thenNk obey the recurrence relations

Nk2Nk215vk , ~37!

wherevk is the highest degree ofuju2 in Dk , i.e.,

limuju→`Dk→~ uju2!vk, ~38!

and where by definitionN2150.
Thus, if we knowvk then we can determineNk . In fact, if

H05M01∧M02∧¯∧M0n ~39!

is the exterior product of the column vectors ofM0 which form then-dimensional subspace ofCN,
then

v05deg~H0!, ~40!

i.e., is the highest degree ofj in H0 .

IV. APPROXIMATE FORMULATIONS

In this section, we derive field equations for the profile functionsgk from the energy~24! into
which we have inserted the expressions of the generalized harmonic map ansatz.

To do this we, first of all, take a holomorphic matrixM05M (j) and then evaluate the
sequence (M1 ,M2 ,...,Ml) using the formulation of Sec. II. Then we compute the angular in
gralsNk in ~35!,

Ik5
i

2p E dj dj̄~11uju2!2 Tr~@ uMk11u2uMku22#2!, ~41!

and

Hk5
i

2p E dj dj̄~11uju2!2 Tr~ uMk11u2uMk21u22! ~42!

for k50,...,l21, where by definitionH050.
In terms ofNk , Ik , andHk , the energy~24!, for our ansatz~22!, reduces to

E5
1

6p E dr S r 2F2
n2

N S (
k50

l21

ġkD 2

1n(
k50

l21

ġk
2G12(

k50

l21

NkF11
1

4
~ ġk2ġk11!2GSk

1
1

2r 2 (
k50

l21

@IkSk
22HkSkSk21# D . ~43!
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Introducing

Fk5gk2gk11 , ~44!

with gl50 we find that, in terms ofFk , the energy integral~43! becomes

E5
1

6p E dr S r 2F2
n2

N S (
k50

l21

~k11!ḞkD 2

1n(
k50

l21 S (
l 5k

l21

Ḟ l D 2G1
1

2 (
k50

l21

Nk~41Ḟk
2!~12cosFk!

1
1

2r 2 (
k50

l21

@Ik~12cosFk!
22Hk~12cosFk!~12cosFk21!# D , ~45!

and the topological charge~36! becomes

B5
1

2p (
k50

l21

NkFk~0!. ~46!

To derive the equations for the profile functionsgk from ~45! we note that

]E
]Ḟ l

5r 2F2
2n2~ l 11!

N
(
i 50

l21

~ i 11!Ḟ i12n(
i 50

l S (
j 5 i

l21

Ḟ j D G1Nl Ḟ l~12cosFl !, ~47!

whereE denotes the integrand ofE.
Thus our field equations for the functionsFi and so also forgi are given by

F2
2n2~ l 11!

N (
i 50

l21

~ i 11!F̈ i12n(
i 50

l

(
j 5 i

l21

F̈ j G1
1

r 2 Nl F̈ l~12cosFl !

1
2

r F2
2n2~ l 11!

N (
i 50

l21

~ i 11!Ḟ i12n(
i 50

l

(
j 5 i

l21

Ḟ j G1
sinFl

2r 2 FNl~ Ḟ l
224!2

2Il~12cosFl !

r 2

1
Hl~12cosFl 21!

r 2 1
Hl 11~12cosFl 11!

r 2 G
50. ~48!

Now a question arises: what is the best choice of the initial matrixM0 that would yield low
energy field configurations which, hopefully, are close to the exact solutions of the full equa
of the model, i.e., Eq.~5!? To answer this question we note that eachNk is, in fact, the energy of
the Grassmannian Gr(n,N) models. Thus in order to have minimalNk , and so also energy to b
close to the exact multiskyrmion energy, the entries of the matrixM0 must bepolynomialsin
j.11,12

In the following sections we make this choice forM0 and consider various fields for th
SU~3!, SU~4!, and SU~5! cases with one and two rank-2 projector approximations. Our choice
dictated by simplicity and they lead to energy density distributions which are spherically sym
ric. Moreover, looking at the general case we see that they also correspond to setting sgi

functions in~22! equal to zero.

V. ONE PROJECTOR APPROXIMATIONS

In this case, we take only one profile functiong05F05F, i.e.,l51, and so the approximat
energy~45! with the mass term reduces to
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E5
1

6p E dr S 1

2
Ḟ2@AN~n!r 21N0~12cosF !#12N0~12cosF !1

I0~12cosF !2

2r 2

1mp
2 F ~N2n!S 12cosFnF

N G D1nS 12cosF ~N2n!F

N G D G D , ~49!

where

AN~n!5
2n~N2n!

N
, ~50!

and the field equation for the approximate functionF becomes

F̈FAN~n!1
N0~12cosF !

r 2 G1
2AN~n!

r
Ḟ1

sinF

2r 2 FN0~ Ḟ224!2
2I0~12cosF !

r 2 G
2mp

2 AN~n!FsinS nF

N D1sinS ~N2n!F

N D G50. ~51!

In the following we restrict our attention to the rank-2 case only, i.e.,n52. To solve~51! we
impose the boundary conditions:F(0)52p and F(`)50. Thus, the baryon number of thes
configurations isB5N0 . Finally, we compare the approximate energies of each subcase wit
corresponding energies of the one rank-1 projector approximations.8

As a first attempt to solve~51!, let us take the initial matrixM05(M01,M02), where both
column vectors are given by the following Veronese type form:

M015~1,AC1
N21j,...,ACk

N21jk,...,jN21!T, M025]jM01, ~52!

whereCk
N21 denotes the binomial coefficients, and the superscriptT denotes transposition.

This special form ofM0 enables us to express the determinantD0 of uM0u2 in the following
closed form:

D05~N21!~11uju2!2~N22!. ~53!

Then from~38! we conclude thatN052(N22), which is consistent with~40!. This result can be
verified explicitly using definition~35! with the help of the recurrence relations~A4!, which yields

Tr~ uM1u2uM0u22!5
2~N22!

~11uju2!2 . ~54!

For this case, according to~21!, D150, and so according to formula~B3!, I05N0
254(N22)2.

In the SU~3! case, we find thatA3(2)5 4
3, N052, and soI054, which all coincide with the

values of the corresponding quantities in the rank-1 projector approximation.8 Thus, we conclude
that their energies also coincide, i.e.,E52.444 04 (mp50). This equality holds formpÞ0 as
well. This is to be expected as in this case our rank-2 projector is really a sum of two r
projectors constructed from the first two vectors of the Veronese sequence.

It is clear that, for SU(N) with N.3 we have:AN(2).AN(1), N0.(N21), andI0.(N
21)2. Thus, this Veronese type configuration forN.3 will lead to energies higher in compariso
with those for the rank-1 projector approximations.8

So, in the following, we look only atM0 with N05(N21) andI0,(N21)2 in order to
compensateAN(2).AN(1) in the energy integral~49!. More specifically, we look at the following
two subcases for which the determinant ofuM0u2 is of the form,

D05c~11uju2!N21, ~55!
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or

D05c~11suju2!N23~11uju2!2, ~56!

wherec ands are some constants. For the subcase~56! we choose the column vectorM01 to have
the Veronese type form~52! while M025]j

N22M01.

A. SU„3…

As here we haveN53, so subcase~56! is the same with the Veronese type subcase that
have discussed previously. Thus in this section we consider only subcase~55!.

In this subcase, we can choose the initial matrixM0 to be given by

M05F1 Aaj Abj2

0 1 Acj
GT

. ~57!

If we now require thatD05(11uju2)2, thenc52 while there is an infinite number of solution
for a and b as here we have only one equation fora and b. In the following we restrict our
attention to the solution:a50 andb51.

Starting from the corresponding initial matrixM0 we find that

M15
&

D0
F&j~2 j̄22& j̄ 1!

2 j̄22& j̄ 1
GT

, ~58!

which is orthogonal toM0 , i.e., M0
†M150. Note thatuM1u2 is singular, i.e.,D150.

Using these two basis matrices,M0 and M1 , we find from ~35! that N052, and from~41!
I054. These results coincide with the corresponding numbers in the one rank-1 projector ap
mation of the SU~3! case described by the initial vector field8

f 05~1,&j,j2!T. ~59!

As A3(2)5 2
35A3(1) both rank-1 and rank-2 projector approximations have equal energy,

E52.444 04 (mp50). This equality holds formpÞ0 as well.
The resultD150 that we have encountered previously is in fact a general property for S~3!

case with rank-2 projectors ansatz, which can be seen as follows. Using the splitting relatio~17!
we see that

M15~@ I 2P01~1!2 P̃02~1!#]jM01,@ I 2P01~1!2 P̃02~1!#]jM02!. ~60!

As the case]jM0250 is trivial so we will only consider the nonzero case. We observe t

V05M01,

V15@ I 2P01~1!#M02, ~61!

V25@ I 2P01~1!2 P̃02~1!#]jM02

are mutually orthogonal and so they spanC3. Thus,

]jM015aV01bV11gV2 , ~62!

wherea, b, andg are expansion coefficients which depend onj and j̄. As

@ I 2P01~1!2 P̃02~1!#@aV01bV11gV2#5gV2 , ~63!
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so

M15~gV2 ,V2!, ~64!

and it clearly follows thatuM1u2 has a vanishing determinant.

B. SU„4…

1. D0Äc „1¿zjz2
…

3

In this subcase we can choose the initial matrixM0 to be given by

M05F1 0 Aaj Abj2

0 1 Acj Adj2GT

. ~65!

If we requireD05(11uju2)3, then there is an infinite number of solutions fora, b, c andd as here
we have only three equations for the four parametersa, b, c, andd. In the following we consider
the solution:a52, b51, c51, d52.

Then, starting fromM0 in ~65! we have computed the corresponding mutually orthogo
matrix M1 and by using these two basis matrices,M0 andM1 , we have computed explicitly the
integralsN0 andI0 in expressions~35! and~41!, respectively and we have found thatN053 and
I05 23

3 . We note that, in the one projector rank-1 case with initial vector field

f 05~1,)j,)j2,j3!T, ~66!

I059 which is larger than the above-given result. However, asA4(2)52 while A4(1)5 3
4 it is not

clear which energy is larger. To assess this we have solved numerically Eq.~51! for F. In Table I
we present our results for the energiesE(2) and compare them with the results using one ran
projector,E(1),8 for different values of the massmp .

From Table I we see that for all the masses~at least tomp530.0! we always haveE(2)
.E(1). When wehave solved~51! for the approximate profile functionF5g0 , we found that it
is very close to that found in Ref. 8 using rank-1 projector ansatz.

2. D0Äc „1¿szjz2
…„1¿zjz2

…

2

In this subcase, we choose the initial matrixM0 to be given by the following Veronese typ
form:

M05F1 )j )j2 j3

0 0 2) 6j
GT

, ~67!

which hasD0512(114uju2)(11uju2)2. For this configuration, we have found that it hasN0

53 but I057.143 57 and its energy isE53.769 29 (mp50), which is a little lower than the
energy of Sec. V B 1, but it is still higher than the energy of the one rank-1 projector approx
tion, i.e.,E53.644 10.

TABLE I.

mp E(1) E(2)

0.0 3.644 10 3.813 87
0.2 3.682 91 3.861 58
1.0 4.172 41 4.420 30
2.23 5.001 86 5.334 05
7.0 7.471 87 8.023 36

30.0 14.339 3 15.428 7
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C. SU„5…

1. D0Äc „1¿zjz2
…

4

In this subcase we can choose the initial matrixM0 to be

M05F1 Aaj Abj2 Acj3 Adj4

0 0 0 1 Aej
GT

. ~68!

If we requireD05(11uju2)4, then there is an infinite number of solutions fora, b, c, d, ande as
here we have only four equations for these five parameters. Here we consider only the so
a5b5c5e5& andd51.

For this configuration, we have found thatN054 butI0512.2667, which is much lower tha
16. However, asA5(2)5 12

5 , we see that its energy isE55.105 80 (mp50), which is still higher
thanE54.837 92 in the rank-1 projector approximation.13 When we have solved the equations f
the approximate profile functionF5g0 for each rank~1 and 2!, we found that their difference is
very small.

2. D0Äc „1¿szjz2
…

2
„1¿zjz2

…

2

In this subcase we choose the initial matrixM0 to have the following Veronese type form:

M05F1 2j A6j2 2j3 j4

0 0 0 12 24j
GT

, ~69!

which hasD05144(113uju2)2(11uju2)2.
We have found that this configuration hasN054 but I0512.4444 and its energy isE

55.118 75 (mp50) which is higher than the energy of the case in Sec. V C 1.

VI. TWO PROJECTOR APPROXIMATIONS

Now we consider the case of two projectors. Here we have two profile functions:F0 andF1 ,
i.e., l52, and so the energy integral~45! becomes

E5
1

12p E dr S r 2@AN~n!Ḟ0
21AN~2n!Ḟ0Ḟ11AN~2n!Ḟ1

2#1N0~41Ḟ0
2!~12cosF0!1N1~41Ḟ1

2!

3~12cosF1!1
1

r 2 @I0~12cosF0!22H1~12cosF0!~12cosF1!1I1~12cosF1!2# D , ~70!

where now, for simplicity, we have setmp50.
The field equations forF0 andF1 are

F̈0FAN~n!1
N0~12cosF0!

r 2 G1
1

2
AN~2n!F̈11

2

r FAN~n!Ḟ01
1

2
AN~2n!Ḟ1G

1
sinF0

2r 2 FN0~ Ḟ0
224!2

2I0~12cosF0!

r 2 1
H1~12cosF1!

r 2 G50, ~71!

1

2
AN~2n!F̈01F̈1FAN~2n!1

N1~12cosF1!

r 2 G1
2

r F1

2
AN~2n!Ḟ01AN~2n!Ḟ1G

1
sinF1

2r 2 FN1~ Ḟ1
224!2

2I1~12cosF1!

r 2 1
H1~12cosF0!

r 2 G50. ~72!
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In the following, we taken52 and solve these equations~numerically! by imposing the
boundary conditions:F0(0)52p, F1(0)50, andF0(`)5F1(`)50. Thus, the baryon number o
these configurations isB5N0 . We then compare the approximate energies of each of these
with the corresponding energies of the one rank-1 projector approximations.8

For the SU~3! configurations, we have shown thatuM1u2 is singular. Thus for this case th
projectorP1 does not exist. As for the SU~4! and SU~5! cases that we have considered previous
uM1u2 is nonsingular, so in this section we consider these two cases only.

A. SU„4…

Starting from the initial matrixM0 in ~65!, we find that

M250, ~73!

so from ~35!, ~41!, and ~42! we haveN150, I150, andH150. As for this case,N54 andn
52, the energy integral~70! reduces to the energy integral~49! for the corresponding one projec
tor of rank-2 projector approximation.

We note thatM 250 is in fact a general property for SU~4! with rank-2 projectors ansatz. T
prove this it is convenient to note thatMk5P1

k M0 is given by

Mk5@ I 2P02P12¯2Pk21#]j
kM0 . ~74!

Then using the splitting relation~17! in ~74! for M2 gives

M25@ I 2P0~2!2P1~2!#]j
2M0 ,

5@ I 2~P01~1!1 P̃02~1!!2~P11~1!1 P̃12~1!!#]j
2M0 . ~75!

Now, M250 follows from the completeness relation for the rank-1 projectors inC4, i.e.,

P01~1!1 P̃02~1!1P11~1!1 P̃12~1!5I . ~76!

B. SU„5…

As Sec. V C 1 in the one projector approximation has lower energy, we restrict our attent
this subcase. Starting from the matrixM0 in ~69!, we have computed the corresponding matric
M1 andM2 , and we have found thatN152.0, I154.289 89, andH153.573 57.

Solving Eq.~72! with the correct values forNk , Ik , andHk , k50 and 1, we have found tha
asA5(2)5 12

5 andA5(4)5 8
5, this configuration has energy:E55.024 69. This is higher than th

energy of the one rank-1 projector approximation case, i.e.,E54.837 92; however, they ar
marginally higher than the exact energy of the SU~2! case withB54, i.e.,E54.464.5

VII. CONDITION FOR AN EXACT SPHERICALLY SYMMETRIC SOLUTION

In this section we consider whether one could also construct exact spherically symm
solutions of the SU(N) Skyrme field equations~5! usingl rank-2 projectors. When written in th
spherical~holomorphic! coordinates, Eq.~5! without the mass term becomes

] rF r 2Lr1
~11uju2!2

8
~@L j̄ ,@Lr ,Lj##1@Lj ,@Lr ,L j̄# # !G1

~11uju2!2

2
~]j̄Lj1]jL j̄ !

1
~11uju2!2

8
~]j~@Lr ,@L j̄ ,Lr ## !1]j̄~@Lr ,@Lj ,Lr ## !!1

~11uju2!2

16r 2 @]j̄~~1

1uju2!2@Lj ,@Lj ,L j̄# # !2]j~~11uju2!2@L j̄ ,@Lj ,L j̄# # !#50. ~77!
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Now, let us look in detail at all the terms in these equations in our generalized harmonic
ansatz~22! case. We find that

]j̄Lj1]jL j̄52i (
l 50

l21

sinFl@Ml 11uMl u22Ml 11
† 2Ml uMl u22uMl 11u2uMl u22Ml

†#, ~78!

@L j̄ ,@Lr ,Lj##522i (
l 50

l21

SlḞ l@Ml 11uMl u22Ml 11
† 2Ml uMl u22uMl 11u2uMl u22Ml

†#, ~79!

@Lr ,@Lj ,Lr ##5 (
l 50

l21

Ḟ l
2blM l 11uMl u22Ml

† , ~80!

@Lj ,@Lj ,L j̄# #52(
l 50

l21

@2SlblM l 11uMl u22uMl 11u2uMl u22uMl
†2Slbl 11Ml 12uMl u22Ml 11

†

2Sl 11blM l 11uMl 11u22uMl 12u2uMl u22Ml
†#, ~81!

whereSl is given by~31! and where

bl5~eiF l21!. ~82!

We have checked that none of the configurations that we have considered so far in this
is an exact solution of~77!. This can be seen as follows. First, we multiply~77! by Ml from the
right, which results in a set of equations forMl . As the terms] r(r

2Lr)Ml are proportional toMl

while the others are not, the contracted equations have the following general structure:

alM l1 (
k50

l21

MkAkl50, ~83!

whereal depend only onN, n, ġi , g̈i , andr while the (n3n) matricesAkl depend ongi , j, and
j̄ as well. Clearly, these equations are inconsistent, unless each matrixAkl is proportional to the
(n3n) unit matrix I n , i.e., Akl5bklI n , where eachbkl is independent ofj and j̄.

Armed with this observation we can now ask the following question: for which forms of
matricesMk do the SU(N) Skyrme field equations~77! have exact solutions? In Appendix C, w
have looked at the SU(N) chiral models and we found that, if we are able to find the matricesMk

which satisfy the condition

uMk11u2uMku225Kk~11uju2!22I n , ~84!

whereKk are some constants which depend onN, n, andk, then this configuration could possibl
give exact solutions for the profile functionsgk .

To see how this may work in our case we have put the condition~84! into ~78!–~81!, which
has turned the field equations~77! into the following reduced set

(
k50

l21 F S Pk2
nI

N Dak1~Pk112Pk!bk1~Pk122Pk11!gkG50, ~85!

whereak , bk , andgk are some functions of the profile functionsgi and their derivatives,r and
Kk . In the appendix of Ref. 13 we have analyzed this type of equation for the case of the r
projectors@for the alternative SU(N) Skyrme model in Ref. 13,gk50# and we have found tha
these equations do, indeed, yield consistent and compatible equations for the corresponding
functionsgl .
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To show whether this is also true for the case of rank-n projectors, we put the condition~84!
into ~35!, ~41!, and~42!, which yields the following relations:

Nk5nKk , ~86!

Ik5nKk
2, ~87!

Hk5nKkKk21 . ~88!

Using these relations in~85! and following the procedure of the appendix of Ref. 13, we ha
found that the resulting equations for the profile functionsgk do, indeed, coincide with~48!. This
also means that the energy integral~24!, in this case, is exact~i.e., not an approximation!.

VIII. FURTHER ANALYSIS OF THE CONDITION „84…

As the matricesMk for kÞ0 are generated from the initial matrixM0 , so in this section, we
derive the conditions thatM0 should satisfy in order for condition~84! to hold. To do so, we put
~84! into ~A3! and ~A4! with k50, and obtain

]j@~]j̄uM0u2!uM0u22#5K0~11uju2!22I n , ~89!

and

]j]j̄@ logD0#5nK0~11uju2!22, ~90!

respectively.
The general solution of Eq.~89! is

uM0u25~11uju2!K0G~ j̄,j!, ~91!

whereG( j̄,j) is an (n3n) Hermitian matrix satisfying

]j@~]j̄G!G21#50. ~92!

Equation~92! has the general solution14

G~ j̄,j!5H̄~ j̄ !H~j!, ~93!

whereH and H̄5H† are arbitrary (n3n) matrices of one variable.
Thus, withG( j̄,j) given by ~93!, solution~91! becomes

uM0u25~11uju2!K0H̄~ j̄ !H~j!, ~94!

and from condition~84! it follows that ~for l>1!

uMl u25K0K1¯Kl 21~11uju2!K022l H̄~ j̄ !H~j!. ~95!

Furthermore, from~91! it follows that

D05~11uju2!nK0Det@H̄~ j̄ !#Det@H~j!# ~96!

is a solution of~90!. By puttingD0 into ~A6! we have found thatN05nK0 , as we have assume
that Det@H(j)# is holomorphic~and Det@H̄( j̄)# is antiholomorphic! with the only singularity at
uju→`, which is consistent with~86!. Thus, we can choose Det@G( j̄,j)#51, and so from~95! it
follows that
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Dl5~K0K1¯Kl 21!n~11uju2!n~K022l !, ~97!

from which, according to~38!,

v l5n~K022l !. ~98!

Using the recurrence relations~37!, with v l given by ~98!, we derive

Nl5~ l 11!~N02nl !. ~99!

Now, with uM0u2 given by ~94!, the projectorP0(n)5M0uM0u22M0
† becomes

P0~n!5~11uju2!2K0M̃0M̃0
† , ~100!

whereM̃05M0H21. Using ~94! then it follows that the matrixM̃0 satisfies

uM̃0u25H̄21uM0u2H215~11uju2!K0I n . ~101!

Equation~101! implies that the column vectors of the matrixM̃05(M̃01,M̃02,...,M̃0n) are
mutually orthogonal. Thus, using the SU(N) global symmetry, we can bring the column vecto
M̃0 j , ( j 51,2,...,n) to live in n-disjoint subspaces. In this case, the projectorP0(n) has a block
diagonal form. For example, in the rank-2 projector ansatz, i.e.,n52, for N5even, we have

P0~2!5FP01~1! 0

0 P02~1!
G , ~102!

where

P0s~1!5
M̃0M̃0

†

uM̃0u2
, ~103!

s50, 1, are rank-1 projectors. ForN5odd, still in the rank-2 projector ansatz, Eq.~101! requires
that one of the entries ofM̃0 j should be zero, so if we choose (M̃0 j )N50, then the ((N21)
3(N21)) submatrix ofP0(2) has the block form~102! while P0(2)NN50.

Thus, as far as condition~84! is concerned, it seems that the only exact spherically symme
solutions of the SU(N) Skyrme models using projectors of rank-2 are embeddings of a pa
SU(@N#/2) solutions of rank-1 projector ansatz, where@N#5N, or (N21) for N even or odd,
respectively.

IX. SOME SPECIFIC CONFIGURATIONS

In this final section we consider only the rank-2 projector ansatz, i.e.,n52. Thus, here, the
SU~3! case should be excluded, as from our analysis in Sec. V A,uM1u2 is singular so it is
automatically not proportional to the nonsingular matrixuM0u2 as required by~84!. For the same
reason, we also exclude the caseM025]jM01, i.e., Eq. ~21!. Next, we have a look at som
specific forms of the initial matrixM0 , for theN54 and 6 cases.

A. SU„4…

In this case, we can choose the initial matrixM0 to be given by

M05F1 j f ~j! j f ~j!

0 0 1 j
GT

, ~104!

where f (j) is an arbitrary polynomial function of onlyj. Then
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uM0u25~11uju2!F1 f̄ ~ j̄ !

0 1
G F 1 0

f ~j! 1G , ~105!

which is of the form~94!.
For the corresponding projectorP0(2), we have found by direct evaluation that it has th

block form ~102! with

P0s~1!5
1

~11uju2! F1 j̄

j uju2G , ~106!

s50, 1, which clearly are the rank-1 projectors of a one skyrmion SU~2! solution. AsD05(1
1uju2)2, this configuration hasN052, orK051, and so according to~87!, I052. Then from~99!
we obtainedN150 or K150 @according to~86!# so from ~95! we conclude thatMl50, for l
>2, which is consistent with our general result in Sec. VI A. Thus, this configuration has only
projector, i.e.,P0(2).

SubstitutingN05I05A4(2)52 in the 1-projector energy integral~49! we found that it has
energy:E52ESU(2) , whereESU(2) is the energy of the SU~2! Skyrme model,9 as we would have
been expected.

B. SU„6…

In this case, we can choose the initial matrixM0 to be given by

M05F1 &j j2 f ~j! &j f ~j! j2f ~j!

0 0 0 1 &j j2 GT

, ~107!

from which it follows thatuM0u2 is of the form~94! as well withK052.
We have also found that the corresponding projector,P0(2), has theblock form ~102! with

P0s(1), s50, 1, are the rank-1 projectors of the SU~3! solution.9 As D05(11uju2)4, this con-
figuration hasN054, from which we derived thatI058, N154, I158, H158, but N250 or
K250 and soMl50 for l>3. Thus, this configuration has only two projectors, i.e.,P0(2) and
P1(2).

Substituting the correct values forNk , Ik , and Hk , k50, 1, into the 2 projectors energ
integral ~70! we have found that, asA6(2)5A6(4)5 8

3, this configuration has energy:E
52ESU(3) , whereESU(3) is the energy of the SU~3! Skyrme model.9

X. CONCLUSIONS

In this paper we have studied the SU(N) Skyrme models by constructing SU(N) multiskyr-
mions fields using the harmonic mappings method where we have generalized the met
Ioannidouet al.9 by considering projectors ofS2 into the Grassmannian Gr(n,N), i.e., using
projectors of rankn.1. In this approach a rank-n projectorPk(n) is constructed from a membe
of a set of mutually orthogonal (N3n) matrix fieldsMk . In particular, here we have concentrat
our attention only on the rank-2 projectors.

Using our construction we have studied some approximate spherically symmetric confi
tions of SU(N) Skyrme models. When we have solved the equations for the profile function
configurations with baryon numberB5(N21) we found that they are very close to those for t
rank-1 cases and that they have marginally higher energies. These results indicate that the
projector ansatz8 is the best way to approximate energy minima of the SU(N) Skyrme models.

We have also discussed the possibility of generating exact spherically symmetric sol
using this construction. However, we have found that, in contradistinction to the rank-1 pro
ansatz in which exact spherically symmetric solutions can be found~numerically! by using the
Veronese sequence ofN mutually orthogonal vector fields inCPN21, such a construction is mor
involved in our case. In particular, we have found that if the sequence of the (N3n) matrix fields
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Mk satisfy condition~84! then it seems that the only possible exact solutions are embeddings
example, for the rank-2 projector ansatz these are embeddings of a pair of SU(@N#/2) solutions of
rank-1 projector ansatz, where@N#5N, or (N21) for N even or odd, respectively.

It is not clear whether there exist other conditions than~84! for the (N3n) matrix fieldsMk

that might lead to nonembedding solutions.

ACKNOWLEDGMENTS

The authors thank B. Piette and P. M. Sutcliffe for their interest. H.J.W. wants to than
QUE Project at the Department of Physics, Institute of Technology Bandung, Indonesia, f
grant.

APPENDIX A: RECURRENCE RELATIONS FOR Tr „zMk z2zMkÀ1zÀ2
… AND Nk

In this appendix, we derive recurrence relations for Tr(uMku2uMk21u22) appearing in the
integralNk of ~35!. To do this we rewrite the definition ofMk11 in ~10! as follows:

]jMk5Mk111MkuMku22~Mk
†]jMk!. ~A1!

As ]j̄Mk is given by~11! so from the integrability condition

]j]j̄Mk5]j̄]jMk , ~A2!

we derive the recurrence relations

]j@~]j̄uMku2!uMku22#5uMk11u2uMku222uMku2uMk21u22. ~A3!

We note that for then51 case, i.e., whenMk are a sequence ofN-component vector fields, Eq
~A3! gives the celebratedToda equation.15 Thus, fornÞ1 our Eq.~A3! could be considered as it
generalization to thenon-Abeliancase.16

Furthermore, taking the trace of Eq.~A3! we obtain

]j]j̄@ log DetuMku2#5Tr~ uMk11u2uMku22!2Tr~ uMku2uMk21u22!, ~A4!

i.e., our recurrence relations for Tr(uMku2uMk21u22).
Next, if Dk5DetuMku2Þ0 in the whole complex planeC then by applying Stokes’ theorem i

the plane to~A4!, i.e.,

E dj dj̄~c!j̄j5
1

2 R
uju→`

@dj̄ cj̄2dj cj#, ~A5!

we obtain

i

4p R
uju→`

Fdj̄
] j̄Dk

Dk
2dj

]jDk

Dk
G5Nk2Nk21 . ~A6!

Thus, ifvk is the highest degree ofuju2 in Dk , i.e., limuju→` Dk→uju2vk, then~A6! reduces to the
following simple recurrence relations forNk , i.e.:

vk5Nk2Nk21 . ~A7!

However, ifDk50 at some points, these recurrence relations cease to hold.

APPENDIX B: REDUCED FORMULA FOR EVALUATING Tr „†zMk¿1z2zMk zÀ2
‡

2
…

In this appendix, we derive a formula for simplifying the calculation of the trace inI for the
casen52. Using the formula,
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Tr~H2!5~TrH !222 DetH, ~B1!

which is true for any (232) matrix H we note that forDk5DetuMku2Þ0, we have

Tr~@ uMk11u2uMku22#2!5~Tr@ uMk11u2uMku22# !222
Dk11

Dk
. ~B2!

Thus, if Dk1150, then from~B2! we have

Tr~@ uMk11u2uMku22#2!5~Tr@ uMk11u2uMku22# !2. ~B3!

APPENDIX C: CONDITION „84… FROM THE SU„N… CHIRAL MODELS

To simplify our search for finding a condition for exact solution of the SU(N) Skyrme model
Eqs.~77!, in this appendix, we look at the corresponding SU(N) chiral model equations,

] r~r 2Lr !1
~11uju2!2

2
~]j̄Lj1]jL j̄ !50, ~C1!

i.e., ~77! without the Skyrme terms. In terms of the rank-n projectorsPk , Eq. ~C1!, after we have
put in ~25! and ~78!, becomes

(
k50

l21 F S Pk2
nI

N D ] r~r 2ġk!1~11uju2!2 sinFk~Ml 11uMl u22Mkl 11
† 2Ml uMl u22uMl 11u2uMl u22Ml

†!G
50, ~C2!

whereFk5gk2gk11 , gl50.
Next we multiply Eq.~C2! from the right byMs , and noting thatMs are independent matrix

fields, we obtain

] rF r 2S ġs2
n

N (
k50

l21

ġkD G I n1~11uju2!2~ uMs21u22uMsu2 sinFs212uMsu22uMs11u2 sinFs!50.

~C3!

Finally, summing overs from 0 to l, and noting thatM 2150 ~by definition!, we find that~C3!
gives us

] rF r 2S (
p50

l

(
q5p

l21

Ḟq2
n~ l 11!

N (
p50

l21

~p11!ḞpD G I n2~11uju2!2uMl u22uMl 11u2 sinFl50.

~C4!

Thus, in order to have a compatible and a consistent set of equations for the functionsFl in
~C4!, the matricesMl must satisfy

uMl u22uMl 11u25Kl~11uju2!22I n , ~C5!

i.e., condition~84!.
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A parabolic approximation method with application
to global wave propagation

David R. Palmera)

NOAA/Atlantic Oceanographic and Meteorological Laboratory,
4301 Rickenbacker Causeway, Miami, Florida 33149

~Received 18 July 2001; accepted for publication 17 January 2002!

Motivated by the difficulty in using the splitting matrix method to obtain parabolic
approximations to complicated wave equations, we have developed an alternative
method. It is three dimensional, does nota priori assume a preferred direction or
path of propagation in the horizontal, determines spreading factors, and results in
equations that are energy conserving. It is an extension of previous work by several
authors relating parabolic equations to the horizontal ray acoustics approximation.
Unlike previous work it applies the horizontal ray acoustics approximation to the
propagator rather than to the Green’s function or the homogenous field. The propa-
gator is related to the Green’s function by an integral over the famous ‘‘fifth pa-
rameter’’ of Fock and Feynman. Methods for evaluating this integral are equivalent
to narrow-angle approximations and their wide-angle improvements. When this
new method is applied to simple problems it gives the standard results. In this paper
it is described by applying it to a problem of current interest—the development of
a parabolic approximation for modeling global underwater and atmospheric acous-
tic propagation. The oceanic or atmospheric waveguide is on an Earth that is
modeled as an arbitrary convex solid of revolution. The method results in a para-
bolic equation that is energy conserving and has a spreading factor that describes
field intensification for antipodal propagation. Significantly, it does not have the
singularities in its range-sliced version possessed by many parabolic equations
developed for global propagation. We then discuss two extensions of the method;
first to propagation along refracted geodesics and second to a description involving
discrete, local, normal modes.@DOI: 10.1063/1.1458060#

I. INTRODUCTION

In the years following the introduction of the parabolic equation method and the split
Fourier algorithm to wave propagation@Tappert and Hardin~1973!; Hardin and Tappert~1973!#, a
great deal of work was done not only in applying it to propagation problems in the ocean
atmosphere but also in developing improvements on the method. Approximations and com
tional schemes were developed that more realistically account for the characteristics of the
gation medium and its boundaries and reduce the restriction to narrow-angle propagation.
nately several excellent early@Tappert~1977!# and recent@Brekhovskikh and Godin~1999!; Lee
and Pierce~1995!# reviews are available since the literature is too large to provide citations t
the relevant work.

A common technique for deriving the standard parabolic equation and improvements to
been the splitting matrix method where a wave equation is factored into two contributions
senting forward and backward propagating waves. This method was first developed by Bre
~1951! for the one-dimensional problem and the latter generalized to three dimensions by Co
~1975! and Tappert~1977!. In this approach it is assumed a particular direction in the oc

a!Electronic mail: david.r.palmer@noaa.gov
18750022-2488/2002/43(4)/1875/31/$19.00
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medium is singled out by the nature of the source excitation and the dominant portion
acoustic energy propagates in this direction without significant backscatter. For a discussion
point of view, see Corones, DeFacio, and Krueger~1982!. The square-root differential operator i
the forward-propagating one is then approximated in some fashion to obtain a useful par
equation. Many times this approximation is done so as to reduce the dependence of the solu
the reference wave speed thus relaxing the narrow-angle approximation. The appropriate
ematical formalism for analysis of the one-way equation is in terms of pseudodifferentia
Fourier integral operators. For a review, see Fishman~1992!, where this mathematical formalism
is applied to various equations having an index of refraction quadratic in a subset of the coor
variables.

Most of these early studies applied the parabolic approximation to the Helmholtz equa

@¹21k0
2n2~xW !# p~xW !50 ~1!

in Cartesian coordinates. Here a source radiates at angular frequencyv, wherek05v/c0 with c0

some reference wave speed,n(xW )5c0 /c(xW ) is the index of refraction, andc(xW ) is the wave speed
at the pointxW5(x,y,z) in the medium. Sometimes the Laplacian was modified to account f
variable density field,¹2→r(xW )¹W •((1/r(xW ))¹W ), and sometimes currents were included by int
ducing an effective wave speed equal to the actual speed shifted by the component of the
in the direction of propagation.

When one considers more complicated wave equations, however, progress has been
developing useful parabolic approximations using the splitting matrix method. We illustrate
with three examples. First is the problem of obtaining parabolic approximations to the elastic
equation@Corones, DeFacio, and Krueger~1982!; Hudson~1980!; Landers and Claerbout~1972!;
Wales and McCoy~1983!; Greene~1985!; Wetton and Brooke~1990!; Collins ~1991!; Collins
~1993a!#. Although considerable effort has been devoted to this problem, parabolic equations
only been developed under limiting conditions that include consideration of a two-dimens
rather than a three-dimensional medium, Lame´ parameters that are range independent or have
small spatial gradients, or very special types of propagation.

Second is the problem of obtaining parabolic equations for propagation in a moving inh
geneous fluid. As a result of the work by Brekhovskikh and Godin~1999! and Godin~1987!, it is
now known that many of the earlier approximations, including the use of an effective wave s
cannot adequately account for the effects of the motion in many important and practical situ
The appropriate wave equation, correct to first order in the Mach number, is complicate
considerable ingenuity has been devoted developing parabolic approximations that are wide
conserve energy, obey the flow reversal theorem and boundary conditions consistent w
parabolic approximation~a requirement ignored in most studies! @Godin ~1991!; Godin and
Mokhov ~1992!; Godin ~1998a!; ~1998b!; ~1999!#. Most progress on this problem was obtain
using the multiple-scales approach~see the following! rather than with the splitting matrix metho
because of the problems associated with the splitting matrix method discussed here~Godin, private
conversation!.

A final example is the problem of developing parabolic approximations for wave equatio
curvilinear coordinates with the purpose of modeling global wave propagation@Collins ~1993b!;
McDonald et al. ~1994!; Collins et al. ~1995a!; ~1995b!; ~1996!#. It is common to reduce the
problem to a two-dimensional one by introducing local normal modes and by ignoring, to
degree, mode coupling. The matrix splitting method is then applied to the resulting equation
horizontal coordinates to obtain a forward-propagating parabolic equation. The range-slice
sion of this equation, needed to obtain a marching algorithm, has singularities@Collins et al.
~1996!#. These singularities result from the fact that the commutators in the Baker–Camp
Hausdorff formula used to develop the range-sliced expression cannot be dropped for sma
intervals. They actually become more singular with order, regardless of the size of the
interval. The range-sliced marching algorithm, as well as the closely-related range-sliced
integral representation, are only valid in Cartesian coordinates. This point has been discu
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detail by Kleinert~1995!, who refers to this type of singularity as ‘‘path collapse’’ and who h
developed techniques for dealing with it by scaling variables. These scaling techniques ar
now being applied to wave propagation problems. This problem of singularities would exist
if the three-dimensional wave equation had been considered rather than the reduce
dimensional one.

For these complicated wave equations, the splitting matrix method is not very easy to
It is not always obvious how the factorization should be done nor is it obvious how the res
differential operators should be approximated to obtain wide-angle equations. Normalization
spreading factors are not easy to obtain.@The quantity 1/Ar in Eq. ~2! in the following is a
spreading factor.# With few exceptions, e.g., Tappert, Spiesberger, and Boden~1995!, studies that
use the splitting matrix method ignore the determination of the spreading factor.

It seems worthwhile then to consider new approaches to developing parabolic approxim
that might have application to complicated wave equations. In developing them we are guid
four principles~prejudices actually!.

~A! One should start with equations that are three dimensional. By starting with
dimensional equations one has already made an assumption about the nature of the prop
One has assumed there is no significant scattering of the wave field out of the surface defi
the two coordinates. If this is a valid assumption, it should be a consequence of the proc
making the parabolic approximation and not something imposed on the problem from the
and considered as a separate, unjustified approximation. One should also not approach th
dimensional problem by patching together solutions to the two-dimensional one. One sho
able to start with the three-dimensional problem and show that its solution can be written
appropriate approximations, in terms of solutions to the two-dimensional problem if this pat
process is valid.

~B! One should not assume any preferred horizontal direction or path for the propagati
Corones, DeFacio and Krueger~1982!, one reads, ‘‘...the parabolic approximation is used when
particular direction is singled out in the medium by the nature of the excitation . . . . . The direction
is distinguished by the excitation, not by the medium.’’ While this statement may be valid for lase
propagation through the atmosphere where the radiation is emitted in a narrow beam, it can
valid in general. In particular, it cannot be valid for low-frequency sound propagation in the o
because low-frequency sources~excitations! are essentially omnidirectional. It is possible f
either the source or the medium to determine a preferred direction. In this paper we consid
class of problems for which the preferred direction or path, if it exists, is determined by
characteristics of the medium and defined in the process of making the parabolic approxim

When one writes a wave equation in terms of cylindrical coordinates (r ,w,z) and discards
derivatives with respect tow, one has already assumed a preferred direction. It is the directio
the straight line along the radial connecting the source to the receiver. When one writes

p~r ,w,z!5
eik0r

Ar
c~r ,w,z! ~2!

for the pressure field and assumesc varies slowly with r , one has also defined a preferre
direction. This is an important point because more complicated wave equations may not
preferred direction along the radial but in some other direction in the horizontal plane. If hor
tal multipaths are present the preferred direction is not unique or it is undefined.

~C! The approach should provide a way for determining spreading factors. While for
applications spreading factors are not important, it is difficult to imagine a systematic, ge
method for developing parabolic equations that only determines part of the field.

~D! A general parabolic approximation method should consist of two distinct types of app
mations: those related to horizontal variation; a preferred direction of propagation along a
zontal multipath, no backscattering, no out-of-plane propagation, etc., and those related to v
variation; narrow-angle and wide-angle approximations. When one considers the application
parabolic method to simple problems these two types of approximations are distinct. For ex
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only the first type is needed to develop a parabolic equation for the propagation of a
adiabatic mode in a range-dependent waveguide while only the second type is needed for
gation of a field in a range-independent waveguide described by a modal sum. One might
that a method applicable to more complicated problems as well as these simple ones wo
mix the two types of approximations.

In developing an alternative to the splitting matrix method based on the above-ment
considerations we are motivated by three observations. First, by working order-by-order i
turbation theory in the range-dependent part of the index of refraction, it was found many
ago @Palmer~1976!# that the solution to the Helmhotz equation can be written in terms of
solution to the standard parabolic equation by making a horizontal eikonal approximation foll
by the stationary-phase approximation of an integral over the ‘‘fifth parameter’’ of Fock~1937!
and Feynman~1951!. The stationary-phase approximation was shown to be equivalent to
narrow-angle approximation. A completely different approach, based on the use of path int
rather than perturbation theory, gave the same result@Palmer~1979!#. ~In this case, horizontal ray
theory was assumed rather than the closely related horizontal eikonal approximation.! Second, an
alternative to the splitting matrix method is the method of multiple scales in which the horiz
variables are scaled differently from the depth variable@Tappert~1977!; Siegmann, Kreigsmann
and Lee~1985!; Kreigsmann~1985!; Orchard, Siegmann, and Jacobson~1992!#. This method
leads to the factorization of the field into a function that obeys the parabolic equation~e.g.,c! and
a kinematic factor that is dependent on only the horizontal coordinates@e.g., exp(ik0r)/Ar ]. The
multiple scales method is closely related to the method used by Brekhovskikh and Godin~1999,
Sec. 7.2! to develop horizontal ray theory for a weakly range-dependent, three-dimensiona
dium. Finally, it is well known that there is a close relationship between ray theory~geometric
optics! and parabolic equations@Myers and McAninch~1978!; McAninch ~1986!; Babic̆ and
Buldyrev ~1991!, Chap. 6#.

The method we propose then amounts to a horizontal ray theory approximation follow
the approximation of the integral over the Fock–Feynman parameter. It satisfies the four prin
we discussed previously. Its validity is based on the fact that horizontal scales of variability
ocean and atmosphere are much greater than vertical ones. The only aspect of this metho
different from what others have done is that we apply the horizontal ray theory approximatio
to the wave equation but to the equation satisfied by the propagator. The two are related
integral over the Fock–Feynman parameter. This is the key aspect of the method becau
propagator obeys~exactly! a four-coordinate parabolic equation. Approximations such as
horizontal ray theory approximation essentially reduce its dimensionality.

Our procedure then for developing parabolic approximations is to express the solution
wave equation as a one-dimensional integral transform and to apply the horizontal ray ac
approximation to the transform function. It is worth noting that the work by Klauder~1987!, and
earlier, Maslov and Fedoriuk~1981! demonstrates that this procedure also has great advanta
avoiding the caustic singularities associated with the ray acoustics approximation, which
quantum mechanic context is referred to as the semiclassical approximation.

In this paper we apply this method to the problem of developing a parabolic approximatio
the wave equation in curvilinear coordinates appropriate for modeling global wave propag
Our primary interest is acoustic propagation in the ocean although the analysis has applica
ultrasonic propagation in the atmosphere. We do not assume the Earth is spherical or eve
soidal but only that it is a convex solid of revolution.

This paper is organized as follows. In Sec. II we characterize the waveguide on an
modeled as a solid of revolution. In Sec. III the propagator for the Helmholtz equation~modified
to include a depth-dependent density variation! and the Fock–Feynman parameter are introduc
In Sec. IV we factor the propagator and apply the horizontal ray theory approximation.
eikonal and transport equations are derived and solved. We provide a detailed solution
transport equation that determines the spreading factor for this problem. Section V trea
vertical equation and the stationary phase approximation. When applied to the simple He
equation in Cartesian coordinates it produces the standard narrow-angle parabolic equa
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many situations one wants to do better. One extension would be to include the possibi
horizontal refraction and horizontal multipaths. Another extension would be the description
depth dependence of the pressure field by use of normal modes. Section VI contains a dis
of these possibilities. Finally, in Sec. VII we summarize the approach used in the paper.

II. THE EARTH AS A SOLID OF REVOLUTION

The Earth is assumed to be a solid of revolution with, when viewed from space, a co
surface everywhere. The origin of the Cartesian coordinate system is centered in the Earth w
axis of rotation thez axis. The position vector from the origin of this coordinate system to a p
on the Earth’s surface is

xWS5xSx̂1ySŷ1zSẑ, ~3!

where x̂, ŷ, and ẑ are unit vectors along the coordinate axes. Since the axis of rotation isz
axis, one can write

xS5rS~wg!cosl,

yS5rS~wg!sinl

wherewg is thegeocentric latitude

wg[arctanS zS

AxS
21yS

2D
andl is the longitude.

Consider the directed line segment from the point on the surface with coordinates (wg ,l) to
the nearby point (wg1dwg ,l1dl),

dxWS5dxSx̂1dySŷ1dzSẑ, ~4!

wheredxS5xS(wg1dwg ,l1dl)2xS(wg ,l), etc. To second order in the quantitiesdwg anddl
we have

dxS5rS8 cosl dwg2rS sinldl

1 1
2 rS9 cosl~dwg!22 1

2 rS cosl~dl!22rS8 sinldwgdl,

dyS5rS8 sinldwg1rS cosldl

1 1
2 rS9 sinl~dwg!22 1

2 rS sinl~dl!21rS8 cosldwgdl,

dzS5zS8dwg1 1
2 zS9~dwg!2,

where a prime indicates differentiation with respect towg . The terms linear in the infinitesimal
are used to derive expressions for unit vectors and the quadratic terms are used to derive
sions for radii of curvature.

The unit vector tangent to the surface and in the direction of increasingl is

l̂5
]xWS

]l Y U]xWS

]l U52sinl x̂1cosl ŷ. ~5!

It is convenient to define a second unit vector in thex–y plane orthogonal tol̂,
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r̂S5cosl x̂1sinl ŷ. ~6!

The unit vector tangent to the surface in the direction of increasingwg is

ŵg5
]xWS

]wg
Y U ]xWS

]wg
U5 rS8r̂S1zS8ẑ

j
~7!

with

j[A~rS8!21~zS8!2. ~8!

Finally, the unit vector normal to the surface is

n̂5l̂3ŵg5
zS8r̂S2rS8ẑ

j
. ~9!

In terms of these unit vectors we have

xWS5rS~wg!r̂S1zS~wg!ẑ, ~10!

x̂S5
xWS

uxWSu
5coswgr̂S1sinwgẑ, ~11!

and

dxWS5jdwgŵg1~rS1rS8dwg!dll̂

1
1

2j
@~rS8rS91zS8zS9!~dwg!22rSrS8~dl!2#ŵg

1
1

2j
@~zS8rS92rS8zS9!~dwg!22rSzS8~dl!2#n̂. ~12!

The differential line segment tangent to the surface is

dxWS5jdwg ŵg1rS dl l̂ ~13!

and the differential arc length is

ds[udxWSu5Aj2~dwg!21rS
2~dl!2. ~14!

At a point on the surface (wg ,l), there are two principal radii of curvature; themeridional,
describing curvature in theŵg– n̂ plane and theprime vertical, describing curvature in thel̂ – n̂
plane. We discuss first the meridional. Consider two points in the meridional plane at (wg ,l) and
at (wg1dwg ,l). The directed line segment from the first point to the second can be written

dxWS5dxwŵg1dxnn̂. ~15!

The meridional radius of curvaturem is given by

m52
1

2
Limdwg→0

~dxw!2

dxn
~16!
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provided the limit exists. Ifm.0 the surface is convex at the point (wg ,l) with respect to the
origin ~like a sphere’s outer surface! and if m,0 the surface is concave. By settingdl50 in Eq.
~12! we find

dxw5jdwg1
1

2j
~rS8rS91zS8zS9!~dwg!2

and

dxn5
1

2j
~zS8rS92rS8zS9!~dwg!2.

Substituting into Eq.~16! gives

m5
j3

rS8zS92zS8rS9
. ~17!

The prime vertical radius of curvature is determined in a similar fashion to be

n5
rSj

zS8
. ~18!

The differential line segment, Eq.~13!, can now be written

dxWS5
m

j2 ~rS8zS92zS8rS9!dwg ŵg1
nzS8

j
dl l̂. ~19!

The geocentric latitude is the angle between the position vector and the equatorial pla

wg5arcsin~ x̂S• ẑ!. ~20!

Thegeodetic latitudew is defined to be the angle the normal to the surface makes with respe
the equatorial plane

w5arcsin~ n̂• ẑ!. ~21!

Clearly

sinw52
rS8

j
, cosw5

zS8

j
. ~22!

The geocentric and geodetic latitudes are equal only if the Earth is modeled as a sphere. I
of the geodetic latitude,

ŵg52sinwr̂S1cosw ẑ

and

n̂5coswr̂S1sinw ẑ.

From Eq.~13!,

dxWS

dw
5

j

w8
ŵg ,

so
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ŵ56ŵg , ~23!

where the sign is determined by the sign ofw85dw/dwg since j.0. This derivative can be
expressed in terms of the derivatives ofrS and zS by differentiating both sides of the equatio
tanw52rS8/zS8 with respect towg . That is

w852
sinwzS91coswrS9

j
5

rS8zS92rS9zS8

j2

or

mw85j. ~24!

We are assuming the Earth has a convex surface everywhere,m.0. Thereforew8.0, ŵ5ŵg , and
there is a one-to-one relationship between the two latitudes enabling us to replacewg with w as the
independent variable. This is an advantage since geophysical data are referenced to the
rather than the geocentric latitude.

The basic coordinate transformation equations can be rewritten as

xS5n cosw cosl, ~25!

yS5n cosw sinl, ~26!

zS5x sinw. ~27!

The differential line segment is

dxWS5m dw ŵ1n cosw dl l̂. ~28!

Observing from this relation that

m25UdxWS

dw U2

we obtain

m25S d

dw
~n cosw! D 2

1S d

dw
~x sinw! D 2

. ~29!

Since

zS8 sinw1rS8 cosw50

we have

sinw
d~x sinw!

dw
1cosw

d~n cosw!

dw
50.

These equations yield

m5nU12
cotw

n

dn

dwU ~30!

and the useful relations
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d

dw
~n cosw!52m sinw,

d

dw
~x sinw!51m cosw. ~31!

The arclength is

ds5Am2~dw!21n2 cos2 w~dl!2. ~32!

The unit vector directed from the point with coordinates~w, l! to the one with coordinates (w
1dw,l1dl) is

ŝ5
dxWS

ds
5m

dw

ds
ŵ1n cosw

dl

ds
l̂. ~33!

The unit vectorŝ can also be written in terms of the anglea the differential line segment make
with respect toŵ, i.e., the angle between dxWS and ‘‘north’’

ŝ5cosaŵ1sinal̂, ~34!

where cosa5m(dw/ds) and sina5n cosw(dl/ds).
We define

R~w![Am~w!n~w!. ~35!

The lengthR(w) will play an important role in the development of the parabolic approximat
Since the Earth is almost spherical, it is possible to write

1

R~w!
5

1

R̄
~11hg~w!!, ~36!

whereR̄ is the mean radius of the Earth andg is a function of order unity. The small parameterh
is a measure of the deviation of the solid from a sphere. If the Earth is taken to be an ellipsh
would be the eccentricity squared,h'1/150 @see, e.g., Dworski and Mercer~1990!#.

We summarize here the unit vectors that have been introduced with their differential
have

ŵ52sinwr̂S1cosw ẑ, ~37!

l̂52sinl x̂1cosl ŷ, ~38!

n̂5coswr̂S1sinw ẑ, ~39!

r̂S5cosl x̂1sinl ŷ,

5coswn̂2sinwŵ. ~40!

For the differentials we have

dŵ52sinw l̂ dl2n̂ dw, ~41!

dl̂52 r̂S dl, ~42!

dn̂5coswl̂ dl1ŵ dw, ~43!

and
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dr̂S5l̂ dl. ~44!

The position vector to a general point in the ocean, below the surface, is

xW5xWS2zn̂,

where xWS is the position vector of the point on the surface directly over the point of inte
z ~>0! is the depth at that point. Propagation in the atmosphere can be considered by
changing the sign ofz. The differential line element is

dxW5dxWS2dz n̂2z dn̂5~m2z!dw ŵ1~n2z!cosw dll̂2dz n̂,

where we have used Eq.~43!. The differential volume element is

d3xW5~m2z!~n2z!cosw dw dldz.

Also

¹25
1

~m2z!~n2z!cosw

]

]w S n2z

m2z
cosw

]

]w D
1

1

~m2z!2 cos2 w

]2

]l2 1
1

~m2z!~n2z!

]

]z S ~m2z!~n2z!
]

]z D ~45!

and

d (3)~xW2xW0!5
1

~m2z!~n2z!
d~sinw2sinw0!d~l2l0!d~z2z0!.

In writing these relations we have used the fact thatn andm are functions ofw but not ofl and
z. For many problems it is not¹2 which is of concern but ratherr¹•(r21¹), wherer is the
density of the medium. Because of stratificationr is usually assumed to depend only on the de
variablez. If this is the case, the last term in Eq.~45! is replaced with

r~z!

~m2z!~n2z!

]

]z S ~m2z!~n2z!

r~z!

]

]z D .

In most work on global propagation, a ‘‘thin-medium’’ approximation is made. That is, s
the thickness or depth of the medium is much less than the radii of curvature,z!n andz!m, it
is valid to replacen2z with n andm2z with m everywhere in the above-mentioned expressio
even before differentiation with respect toz or w. With this approximation, we have

dxW5mdwŵ1n cosw dl l̂2dz n̂ ~46!

and

d3xW5J~w!dw dl dz, ~47!

where

J~w![mn cosw. ~48!

Moreover

r¹•~r21¹!5¹S
21r

]

]z S 1

r

]

]z D , ~49!
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where

¹S
25

1

J~w! F ]

]w S n cosw

m

]

]w D1
m

n cosw

]2

]l2G ~50!

and

d (3)~xW2xW0!5
1

J~w!
d~w2w0!d~l2l0!d~z2z0!. ~51!

The thin-medium approximation can be relaxed by scaling and redefining the index of refra
see, e.g., Tappert~1977! or Collins ~1993b!. If we had done this scaling the analysis would
unchanged; we would have simply ended up with expressions involving the redefined ind
refraction.

III. GREEN’S FUNCTION AND THE PROPAGATOR

The equation forG the Green’s function or impulse response function for the tim
independent problem is

Fr~xW !¹W •S 1

r~xW !
¹W D1k0

2n2~xW !GG~xW uxW0!52d (3)~xW2xW0! ~52!

for a point source located atxW05(x0 ,y0 ,z0). The Green’s function will also satisfy appropria
boundary conditions at the top and bottom of the ocean or atmosphere. In developing pa
approximations, many authors begin with the wave equation appropriate for a source-free
of space@e.g., Eq.~1!#. We prefer to begin with Eq.~52! so that a separate analysis is not need
to account for a source. This analysis involves solving for the field on a surface close to the
and then matching boundary conditions on that surface. It should be noted in this regar
general, linear equations for wave propagation were derived in Brekhovskikh and Godin~1999!
@Eqs.~4.1.9!–~4.1.11!# by including source terms from the outset.

It is not Green’s functions, however, that obey parabolic equations and marching algor
but propagators. The two are related by an integral overt, the Fock–Feynman parameter@Fock
~1937!; Feynman~1951!#

G~xW uxW0!5
i

2k0
E

0

`

dt ei tk0/2F~t;xW !. ~53!

The propagator functionF is defined by

F2ik0

]

]t
1r¹W •S 1

r
¹W D22k0

2V~xW !GF~t;xW !50, t.0, ~54!

and

Limt→0F~t;xW !5d (3)~xW2xW0!, ~55!

where the wave speed variation is

V~xW ![2 1
2 @n2~xW !21#.

In terms of the curvilinear coordinates introducted in Sec. II, Eqs.~54! and ~55! become

F2ik0

]

]t
1¹S

21r
]

]z S 1

r

]

]z D22k0
2V~w,l,z!GF~t;w,l,z!50 ~56!
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and

Limt→0F~t;w,l,z!5
1

J~w!
d~w2w0!d~l2l0!d~z2z0! ~57!

with ¹S
2 given by Eq.~50!.

IV. HORIZONTAL RAY THEORY

We write F as the product of two factors,

F5HC, ~58!

and require thatH be independent of the depth coordinate and obey a parabolic equation
horizontal coordinates

F2ik0

]

]t
1¹S

2GH~t,w,l!50, ~59!

Limt→0H~t,w,l!5
1

J~w0!
d~w2w0!d~l2l0!. ~60!

As we shall see, the fieldH will determine spreading factors and the path along which
field C propagates. The fieldC, on the other hand, will reflect the dynamic effects associated w
a variable wave speed. The factorization in Eq.~58! of the solution to a wave equation int
functions having different coordinate dependencies has been used by many authors in the
opment of parabolic approximations@Myers and McAninch~1978!; McAninch ~1986!; Babic̆and
Buldyrev ~1991!#. It is analogous to the factorization of the solution to the Helmholtz equa
@Eq. ~2!# that is often the starting point in the development of the standard parabolic approxim
for the two-dimensional propagation problem in range and depth. In the path integral app
@Palmer~1978!; ~1979!# where it is as easy to develop ray theory approximations in one or tw
the three coordinates as in all three, the factorization is not anansätz but rather a consequence o
making the horizontal ray theory approximation.

We assume horizontal spatial scales are large enough compared to the wavelength that
theory approximation is valid when considering horizontal wave motion. We do not make
assumption about the vertical scales of variability. Following Weinberg’s~1962! matrix approach,
we write Eq.~59! as a system of first-order equations,

F 2ik0J]/]t ]/]w ]/]l

]/]w 2m/~n cosw! 0

]/]l 0 2~n cosw!/m
G F H

Hw

Hl

G50, ~61!

and assume a common exponential factor

F H
Hw

Hl

G5F Ĥ

Ĥw

Ĥl

G exp~ ik0A!, ~62!

so that

F 2ik0J~ ik0]A/]t1]/]t! ik0]A/]w1]/]w ik0]A/]l1]/]l

ik0]A/]w1]/]w 2m/~n cosw! 0

ik0]A/]l1]/]l 0 2n cosw/m
G3F Ĥ

Ĥw

Ĥl

G50. ~63!
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Consider one element in the above-presented square array, say the element in the top r
middle column,ik0]A/]w1]/]w. This element will contribute to the differential equation t
expression

ĤS ik0

]A

]w
1

] ln Ĥ

]w
D .

In this matrix approach, the rule for developing the lowest-order ray theory approximation
ignore in the matrix elements gradients ofĤ ~or Ĥw andĤl) in comparison to terms involvingk0

times the corresponding gradients ofA. This rule is justified by using the traditional approach, i.
writing the matrix equation as a single equation, expanding theĤ in a series in 1/k0 , separating
real and imaginary parts, and equating like powers ofk0 . It cannot be justified by considerin
individual matrix elements such as the one above because the terms involvingA and Ĥ are in
general complex. In the present case the advantage of using the matrix approach over th
tional approach is that it is very easy to apply the ray theory approximation to individual co
nates.

Applying this rule to Eq.~63!, we obtain, in lowest order,

F 22k0
2J]A/]t ik0]A/]w ik0]A/]l

ik0]A/]w 2m/~n cosw! 0

ik0]A/]l 0 2n cosw/m
GF Ĥ

Ĥw

Ĥl

G50 ~64!

and

@Ĥ Ĥw Ĥl#F 2ik0J]/]t ]/]w ]/]l

]/]w 0 0

]/]l 0 0
GF Ĥ

Ĥw

Ĥl

G50. ~65!

Equation~64! gives theeikonal equation

]A

]t
1

1

2m2 S ]A

]w D 2

1
1

2n2 cos2 w S ]A

]l D 2

50, ~66!

which determinesA. The factorĤ is determined by thetransport equation

S ]

]t
1

1

m2

]A

]w

]

]w
1

1

n2 cos2 w

]A

]l

]

]l D ln Ĥ21¹S
2A50, ~67!

which follows from Eq.~65! after Eq.~64! is used to expressĤw and Ĥl in terms ofĤ,

Ĥw5 ik0

n cosw

m

]A

]w
Ĥ, Ĥl5 ik0

m

n cosw

]A

]l
Ĥ. ~68!

The eikonal equation, Eq.~66!, is solved in the usual way by introducing ray path coordina
i.e., auxilliary functionsqt(s), qw(s), ql(s) and their conjugate momentapt(s), pw(s), pl(s)
of a variables defined on an interval,s0<s<s1 , that satisfy the end-point conditions

qt~s0!50, qt~s1!5t, ~69!

qw~s0!5w0 , qw~s1!5w, ~70!

ql~s0!5l0 , ql~s1!5l, ~71!
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pt~s1!5
]A

]t
, ~72!

pw~s1!5
]A

]w
, ~73!

pl~s1!5
]A

]l
. ~74!

The initial values for the momenta are picked so thatE(s0)50 where

E~s![pt~s!1
1

2

1

hw
2~s!

~pw~s!!21
1

2

1

hl
2~s!

~pl~s!!2 ~75!

is the Hamiltonian function. Here we introduce the notation

hw~s![m~qw~s!!, hl~s![n~qw~s!!cos~qw~s!!. ~76!

The eikonal equation is equivalent toE(s1)50 and will be satisfied provided

dE~s!

ds
50.

This condition, in turn, is assured if the path variables satisfy Hamilton’s equations

dqt

ds
51, ~77!

dqw

ds
5

1

hw
2 pw , ~78!

dql

ds
5

1

hl
2 pl ~79!

and

dpt

ds
50, ~80!

dpw

ds
52

1

2 F ]

]qw
S 1

hw
2 D pw

21
]

]qw
S 1

hl
2D pl

2G , ~81!

dpl

ds
50. ~82!

From Eqs.~69! and ~77! we have

qt~s!5s2s0 , s12s05t. ~83!

In general, the eikonalA is given by the integral

A5E
s0

s1
dsFpt

dqt

ds
1pw

dqw

ds
1pl

dql

ds G . ~84!
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According to Eqs.~77!–~80!, this integral can be rewritten as

A5tpt1E
s0

s1
v2 ds, ~85!

where

v5
ds

ds
5A 1

hw
2 pw

21
1

hl
2 pl

2. ~86!

BecauseE50,

22pt5v25constant.

Therefore

A52tpt . ~87!

Consider now the path length

s~s!5E
s0

s

ds5E
s0

s

v~s8!ds85~s2s0!A22pt . ~88!

Equation~87! becomes

A5
S2

2t
. ~89!

Here S5s(s1) is the total path length along the ray path. This expression gives the funct
dependence ofA on t sinceS is independent oft.

Consider a functionf 5 f (qt ,qw ,ql ,z) of the depth variablez and the path variables. Th
derivative of f along the path is

df

ds
5

dqt

ds

] f

]qt
1

dqw

ds

] f

]qw
1

dql

ds

] f

]ql
5

] f

]qt
1

1

hw
2 pw

] f

]qw
1

1

hl
2 pl

] f

]ql
.

If this expression is evaluated at the end points5s1 , we have

df

ds
us5s1

5
] f ~t,w,l,z!

]t
1

1

m2

]A

]w

] f ~t,w,l,z!

]w
1

1

n2 cos2 w

]A

]l

] f ~t,w,l,z!

]l
. ~90!

One can change the independent variable in the ray paths froms to the path lengths since
v(s)5ds/ds does not change sign. It is, in fact, a constant equal toS/t. Equation~88! is first
solved fors in terms ofs,

s~s!5s01E
0

s 1

v
ds85s01s

t

S
~91!

and new ray path coordinates are introduced

t ray~s![qt~s~s!!,

w ray~s![qw~s~s!!,

l ray~s![ql~s~s!!
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defined on the interval, 0<s<S, that satisfies the same end-point conditions satisfied byqt , qw ,
andql . In terms of these new path variables, a functionf (s,z)5 f (t ray(s),w ray(s),l ray(s),z) has
a derivative with respect to path length given by

v
] f

]s
5Fdqt

ds

] f

]t ray
1

dqw

ds

] f

]w ray
1

dql

ds

] f

]l ray
G ,

where the derivatives with respect tos are evaluated ats(s). At the end point of the path this
expression becomes

S

t F] f

]sG
s5S

5
] f ~t,w,l,z!

]t
1

1

m2

]A

]w

] f ~t,w,l,z!

]w
1

1

n2 cos2 w

]A

]l

] f ~t,w,l,z!

]l
. ~92!

We have reverted to using a partial derivative on the left-hand side of this equation to re
ourselves thatf can be a function of depth as well as of the path variables. By making this ch
in the independent variable, we will end up with equations that, unlike Eqs~59! and~67!, involve
t as a parameter rather than as an independent variable, thus simplifying the evaluation
~53!.

The unit vector along the ray path can be constructed from Eq.~33!,

ŝ~s!5S hw~s!
dqw~s!

ds
ŵ1hl~s!

dql~s!

ds
l̂ D Y ds

ds
, ~93!

which at the end point of the path becomes

S

t
ŝ~s1!5

1

m2

]A

]w
ŵ1

1

n2 cos2 w

]A

]l
l̂. ~94!

If we make the identification in Eq.~90!

f ~s1!5 f ~t,w,l!5 ln Ĥ2,

Eq. ~67! becomes

df

ds
us5s1

1¹S
2A50. ~95!

For this expression to be useful, we must write¹S
2A in terms of path variables evaluated at the e

point s5s1 . To this end we define

Aw~s![
hl~s!

hw~s!
pw~s!

and

Al~s![
hw~s!

hl~s!
pl~s!,

so that

¹S
2A5

1

J~w! F]Aw~s1!

]w
1

]Al~s1!

]l G .
Because¹S

2A involves derivatives with respect tow andl, the end-point values of the pat
coordinatesqw andql , it is clear it cannot be written as a function of the path~evaluated at the
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end point!. What is needed, in addition, is a perturbed path whose coordinates differ at th
point fromw andl by infinitesimal amountsdw anddl. The perturbationsdAw anddAl evaluated
at the end points will involve derivatives ofAw andAl with respect tow andl. These derivatives
can be used to construct¹S

2A. In addition, since¹S
2A does not involve a derivative with respect

t, it can be held fixed.
There is some freedom in the choice of how the path is perturbed. The perturbation c

induced by changes in any set of parameters that, together withw0 andl0 , characterize the ray
Here we will use a set that exploits the fact thatpt andpl are constant along the ray path

W[A22pt, P5
pl

W
. ~96!

The derivatives of the paths can be written in terms ofW andP as follows:

dqw

ds
5

Aw

J
5

W

J
Ahl

22P2,
dql

ds
5

Al

J
5

WP

hl
2 . ~97!

Now Aw(s1) and Al(s1) depend onw and l ~as well ast! so we can write the matrix
equation

F ]Aw~s1!/]W ]Aw~s1!/]P

]Al~s1!/]W ]Al~s1!/]PG5F ]Aw~s1!/]w ]Aw~s1!/]l

]Al~s1!/]w ]Al~s1!/]l
GQ~s1!, ~98!

where

Q~s![F ]qw~s!/]W ]qw~s!/]P

]ql~s!/]W ]ql~s!/]PG . ~99!

Equation~98! can be inverted provided that the determinant ofQ,

det~Q~s!!5
]qw~s!

]W

]ql~s!

]P
2

]qw~s!

]P

]ql~s!

]W
, ~100!

does not vanish ats5s1 . ~Caustics are located where detQ50.! By taking the trace after invert
ing Eq ~98! we obtain

¹S
2A5

1

J~w!
traceH F ]Aw~s1!/]w ]Aw~s1!/]l

]Al~s1!/]w ]Al~s1!/]l
G J 5

d lnD~s!

ds
us5s1

, ~101!

where

D~s![J~qw~s!!det~Q~s!!. ~102!

This result was arrived at by using the relation

dD

ds
5

]Aw

]W

]ql

]P
2

]Al

]W

]qw

]P
2~W↔P!, ~103!

which follows from the equations of motion. Except for the presence of the functionJ(qw), the
derivation of Eq.~101! is identical to the usual derivation for the Cartesian problem using Lio
ville’s formula @see, e.g., Brekhovskikh and Godin~1999!, Sec. 5.1#.

Combining Eq.~101! with Eq. ~95! gives
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df

ds Us5s1
1

d

ds
ln D~s!U

s5s1

50.

This equation can be solved by solving the more general one

df ~s!

ds
1

d

ds
ln D~s!50

and evaluating the result ats5s1 ,

Ĥ5CA 1

D~s1!
,

whereC is an integration constant. It can be determined by considering the solution to the
bolic equation at a point (w8,l8,t8) wherew8 andl8 are located in a neighborhood of the sour
at w0 andl0 taken small enough so thatm andn cosw can be considered constant within it. Th
solution to the horizontal parabolic equation at (w8,l8,t8) that satisfies Eq.~60! is simply

H~t8;w8,l8!5S k0

2p i t8DexpH ik0

2t8
@m0

2~w82w0!21n0
2 cos2 w0~l82l0!2#J ,

wherem05m(w0) andn05n(w0). We take the point (w8,l8,t8) to be along the ray path from
(w0 ,l0,0) to (w,l,t),

w85qw~s8!, l85ql~s8!, t85s82s0 .

The variables82s0&t8 is necessarily small enough so that the ray paths can be approximat
straight lines,

qw~s8!2w05~s82s0!
dqw

ds
~s0!5~s82s0!

W

J~w0!
An0

2 cos2 w02P2,

ql~s8!2l05~s82s0!
dql

ds
~s0!5~s82s0!

WP

n0
2 cos2 w0

.

It is clear from these expressions thatD(s8) can be written in the form

D~s8!5
1

2
~s82s0!2

d2D

ds2 ~s0!. ~104!

@The second derivative in this expression is, in fact, equal to 2W2/Aw(s0).# Since

Ĥ~s8!5
k0

2p i ~s82s0!,

we have

C5Ĥ~s8!AD~s8!5
k0

2p i
A1

2

d2D

ds2 ~s0!.

The amplitude factor is, therefore,

Ĥ5
k0

2p i
A 1

2D~s1!

d2D

ds2 ~s0!.
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If both sides of Eq.~97! are differentiated with respect toW andP, we obtain

]Aw

]W
5

Aw

W
1JV

]qw

]W
, ~105!

]Aw

]P
52

W2P

Aw
1JV

]qw

]P
, ~106!

]Al

]W
5

Al

W
1

]Al

]qw

]qw

]W
, ~107!

]Al

]P
5

Al

P
1

]Al

]qw

]qw

]P
, ~108!

with

V5
1

J

]Aw

]qw
5

W2

2Aw

]hl
2

]qw
~109!

and

]Al

]qw
5Al

]

]qw
ln S J

hl
2D . ~110!

Substituting these expressions into Eq.~103! yields

d

ds S D

Aw
D5

D1

Aw
1

D2

Aw
, ~111!

where

D15
1

W S W2~hl
22P2!

Aw

]ql

]P
2Al

]qw

]P D ~112!

and

D25
1

P S W2P2

Aw

]ql

]W
1Al

]qw

]WD . ~113!

The derivatives ofD1 andD2 with respect tos can be calculated by again using Eqs.~97! and
~105!–~108! with the result

d

ds S D1

Aw
D5

W2

Aw
2 ~114!

and

d

ds
~AwD2!5W. ~115!

Equation~115! can be solved forD2 :

D25~s2s0!
W2

Aw
. ~116!
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Using Eqs.~114! and~116! one sees that (s2s0)D1 obeys the same equation obeyed byD @Eq.
~111!#. SinceD and (s2s0)D1 satisfy the same initial conditions, we have

D~s!5~s2s0!D1~s!. ~117!

Differentiating both sides of Eq.~114! gives

d2 D1

ds2 2S dV

ds
1V2DD150. ~118!

The term in parentheses can be written in a particularly convenient form by differentiatingV using
the relations dAw /ds52W2 sin(qw) and]hl

2/]qw522J sin(qw), which follow from Eqs.~97! and
~31!. One finds

2S dV

ds
1V2D5

W2

mn
.0. ~119!

Referring to Eq.~35!, we can write Eq.~118! as

d2 D1

ds2 1
W2

R2 D150. ~120!

If the Earth is modeled as a sphere, bothm and n would be equal to its radius,R̄, and the
solution forD1 is immediately found without approximation to be

D1~s!5
1

2

d2 D

ds2
~s0!

R̄

W
sinFW

R̄
~s2s0!G .

At the end of the path the argument of the sine function becomesS/R̄, which is easily seen to be
the angle at the center of the Earth subtended by the arc that ends at source and receiver p

cosS S

R̄
D 5cosw cosw0 cos~l2l0!1sinw sinw0 .

Equation~120! cannot be solved exactly for an arbitrary volume of revolution. However,

1

WUdR

dsU!1, ~121!

we can approximateD1 with its WKB solution

D1~s!'D1
WKB~s!5

1

2W

d2 D

ds2 ~s0!AR~s!R~s0! sinS WE
s0

s ds8

R~s8! D . ~122!

The overall normalization has been determined using Eq.~104!.
To explore the validity of condition~121!, we use the parametrization equation~36! to find

dR

ds
52

R̄h

2~11hg~qw!!3/2

]g~qw!

]qw

dqw

ds
.

Since
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Udqw

ds
U< W

hw

'
W

R̄
,

we have

1

WUdR

dsU& 1

2
hU]g~qw!

]qw
U. ~123!

Condition ~121! will be satisfied if the smallest scale of variability in latitude of the surface
larger than the deviation of the Earth’s shape from that of a sphere. If we~arbitrarily! require that
the right-hand side of Eq.~123! be less than 1/10, the condition is satisfied provided one
consider the Earth spherical on horizontal scales of order 10(R̄h/2)'210 km. Clearly Eq.~121! is
valid since over distances of a few hundred kilometers it is safe to assume the Earth is fla
does not need to even assume it is spherical.

Collecting expressions gives

Ĥ5
k0AW

2p i ~R~s1!R~s0!!1/4F ~s12s0!sinS WE
s0

s1 ds8

R~s8! D G21/2

.

Changing the independent variable froms to s and introducing the path-averaged quantity

1

Rave
5

1

SE0

S ds8

R~s8!
5

1

SE0

S ds8

Am~w ray~s8!!n~w ray~s8!!
~124!

results in

Ĥ5
k0

2p i t S Rave

R~S!

Rave

R~0! D
1/4F S/Rave

sin~S/Rave!
G1/2

. ~125!

The ray theory approximation to Eq.~59! is therefore

H.H ray5
k0

2p i t S Rave

R~S!

Rave

R~0! D
1/4F S/Rave

sin~S/Rave!
G1/2

expS ik0

2t
S2D . ~126!

V. THE VERTICAL EQUATION AND STATIONARY PHASE

The horizontal ray theory approximation forF is slightly more involved than forH because
no assumptions are made about the magnitude of the scales of variability of the depth coor
For Eqs.~56! and ~59! to be satisfied,C must satisfy the matrix equation

F 2ik0J~ ik0V1]/]t! 2ik0]A/]w1]/]w 2ik0]A/]l1]/]l Jr]/]z

]/]w 2m/~n cosw! 0 0

]/]l 0 2~n cosw!/m 0

Jr]/]z 0 0 2Jr2

G3F C
Cw

Cl

Cz

G50

~127!

and the initial condition

Limt→0C~t;w,l,z!5d~z2z0!. ~128!

Just as before we drop the horizontal gradients of the amplitude factors in comparison
corresponding gradients ofA, multiplied byk0 . While the derivative]/]t can be dropped in the
matrix in Eq.~63! we are not justified in dropping it in Eq.~127!. The result is
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F 2ik0J~ ik0V1]/]t! 2ik0]A/]w 2ik0]A/]l Jr]/]z

]/]w 2m/~n cosw! 0 0

]/]l 0 2~n cosw!/m 0

Jr]/]z 0 0 2Jr2

G
3F C

Cw

Cl

Cz

G50,

which is equivalent to the single second-order equation

F2ik0S ]

]t
1

1

m2

]A

]w

]

]w
1

1

n2 cos2 w

]A

]l

]

]l D1r
]

]z S 1

r

]

]z D22k0
2VGC50. ~129!

Comparison of Eqs.~129! and ~92! gives

2ik0

S

t F]C~t;w ray~s!,l ray~s!,z!

]s G
s5S

1Fr ]

]z S 1

r

]

]z D22k0
2V~w ray~S!,l ray~S!,z!GC~t;w ray~S!,l ray~S!,z!50.

This equation can be solved by solving the more general one

F2ik0

S

t

]

]s
1r

]

]z S 1

r

]

]z D22k0
2V~w ray~s!,l ray~s!,z!GC~t;w ray~s!,l ray~s!,z!50 ~130!

and evaluating the result ats5S.
If we require that

Lims→0C~t;w ray~s!,l ray~s!,z!5d~z2z0!, ~131!

then the initial condition, Eq.~128!, will be satisfied because of relation~91!. In fact, independent
of the ray theory approximation, it is not difficult to see thatC has support only in a smal
neighborhood ofz aboutz0 andt about 0 ass→0.

Collecting expressions and substituting into Eq.~53! give

G~xW uxW0!'
1

4p S Rave

R~S!

Rave

R~0! D
1/4F S/Rave

sin~S/Rave!
G1/2

3E
0

` dt

t
exp

ik0

2 S t1
S2

t DC~t;w,l,z!. ~132!

One can evaluate the integral over the Fock–Feynman parameter in Eq.~132! using the method of
stationary phase. The single stationary phase point is att5S. If C(t;w,l,z) has a phase which
is a slowly varying function oft at t5S, justifying the stationary phase approximation, then
wave number spectrum ofC(S;w,l,z) in path length—the horizontal wave number spectrum
will be dominated by values near the reference wave numberk0 . That is, the stationary-phas
approximation is equivalent to the narrow-angle approximation@Palmer~1976!#.

The stationary phase approximation yields
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G~xW uxW0!'
1

4p S Rave

R~S!

Rave

R~0! D
1/4F 2p i

k0Ravesin~S/Rave!
G1/2

eik0Sc~S,z!, ~133!

where

c~s,z![C~S;w ray~s!,l ray~s!,z!

satisifies the two-dimensional parabolic equation

F2ik0

]

]s
1r

]

]z S 1

r

]

]z D22k0
2V~s,z!GC~s,z!50 ~134!

and the initial condition

Lims→0c~s,z!5d~z2z0!. ~135!

It being understood thats is measured along the ray path and that

V~s,z!5V~w ray~s!,l ray~s!,z!. ~136!

If the Earth is modeled as a sphere with radiusR̄, Eq. ~133! reduces to

G~xW uxW0!'
1

4p F 2p i

k0R̄ sin~S/R̄!
G 1/2

eik0Sc~S,z! ~sphere!.

It is worth noting that c(s,z) does not depend on the total path lengthS because
C(t;w ray(s),l ray(s),z) depends onS andt only through the ratioS/t. Equation~134! is clearly
energy conserving and can be solved numerically using a standard range-sliced marchin
rithm. Moreover, it does not possess any kinematic singularities of the type experienced by C
et al. ~1996!. Caustics in the horizontal are located atS'pRave and correspond to the focusin
that occurs for near antipodal propagation.

VI. REFRACTED GEODESICS AND NORMAL MODES

In this section we consider two extensions of the method we have presented.

A. Refracted geodesics

The factorization ofF, Eq. ~58!, into a termH that depends on the horizontal coordinates a
a remainder is not unique. One can always defineH by

F2ik0

]

]t
1¹'

2 22k0
2U~w,l!GH~t;w,l!50, ~137!

where

U~w,l!52 1
2 @nrefr

2 ~w,l!21# ~138!

is a function ofw and l but not of the depth coordinatez. In Eq. ~127! and all subsequen
equationsV(w,l,z) would be replaced withṼ(w,l,z) where

Ṽ~w,l,z!5V~w,l,z!2U~w,l!. ~139!

We want to indicate how the above-presented analysis is modified by the presence of the fu
U.
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The horizontal ray-theory approximation forH now involves a ray path that is a refracte
geodesic. The eikonal equation and the expression for the Hamiltonian function become, r
tively,

]A

]t
1

1

2m2 S ]A

]w D 2

1
1

2n2 cos2 w S ]A

]l D 2

1U50 ~140!

and

E5pt1 1
2 v21U50, ~141!

wherev is now no longer a constant. The equations forpw andpl become

dpw

ds
52

1

2 F ]

]qw
S 1

hw
2 D pw

21
]

]qw
S 1

hl
2D pl

2G2
]U

]qw

and

dpl

ds
52

]U

]ql
.

The equations for all the other ray-path variables are unchanged. The eikonal is now

A5tpt1Ã, ~142!

whereÃ is the horizontal eikonal function

Ã5E
s0

s1
v2 ds5E

0

S

v ds. ~143!

Since Eq.~142! can be written as

A2t
]A

]t
5Ã ~144!

it defines a Legendre transform which can be used to change the independent variable
(w,l,t) to (w,l,pt). The variablet is then given by

t52
]Ã

]pt
5E

0

S ds

A~22!~pt1U~s!!
.

The exponent in Eq.~132! is now

ik0S t

2
1AD

instead ofik0(t1S2/t)/2. At the stationary-phase pointt5tsp we have

]A

]t
5pt52

1

2
~145!

so

vut5tsp
5A122U5nrefr
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and

tsp5E
0

S ds

nrefr
.

We then have

ik0S t

2
1AD

t5tsp

5 ik0Ãt5tsp
5 ik0E

0

S

nrefr ds.

The stationary-phase approximation then gives

G~xW uxW0!}E
0

`

Ĥ expF ik0S t

2
1AD GC~t;w,l,z!

}F ĤS ]2A

]t2 D 21/2G
t5tsp

expF ik0E
0

S

nrefr dsGC~tsp;w,l,z!. ~146!

In calculatingĤ it is no longer useful to use the setW andP to characterize ray-path variation
Instead we use

vw[pw~s0!52
]A

]w0
, ~147!

vl[pl~s0!52
]A

]l0
. ~148!

The relationship between these initial values for the momenta and the derivatives of the e
with respect to the coordinates of the source position follow easily from the defining equatio
~84!. We still have

Ĥ}A 1

D~s1!
,

but now

D~s![J~qw~s!!detF ]qw~s!/]vw ]qw~s!/]vl

]ql~s!/]vw ]ql~s!/]vl
G .

We next consider the variation in the ray path due to a change in receiver position

F ]qw~s!/]w ]qw~s!/]l

]ql~s!/dw ]ql~s!/]l
G52O3F ]qw~s!/]vw ]qw~s!/]vl

]ql~s!/]vw ]ql~s!/]vl
G ,

where

O5F ]2A/]w0]w ]2A/]w0]l

]2A/]l0]w ]2A/]l0]l
G . ~149!

~We have used]vw /]w52]2A/]w0]w, etc.! At s5s1 the left-hand side of this equation be
comes equal to the identity matrix and we have
                                                                                                                



ceiver

hat

fracted

1900 J. Math. Phys., Vol. 43, No. 4, April 2002 David R. Palmer

                    
D~s1!5
J~w!

detO
.

We now turn to consideration of]2A/]t2 in Eq. ~146!. At s5s0 , Eq. ~141! becomes

pt1
1

2hw
2~w0!

vw
21

1

2hl
2~w0!

vl
21U~w0 ,l0!50.

Differentiating with respect tot gives

]2A

]t2 1
]vw

]t

dqw

ds
~w0!1

]vl

]t

dql

ds
~w0!50.

The change in the eikonal equation due to a change in source location, keeping the re
location fixed, is given by

]2A

]w0]w

dqw

ds
~w!1

]2A

]w0]l

dql

ds
~w!5

]vw

]t

and

]2A

]l0]w

dqw

ds
~w!1

]2A

]l0]l

dql

ds
~w!5

]vl

]t
.

Combining these last three equations gives

]2A

]t2 5e~s0!T
•O•e~s1!, ~150!

where

e~s!5Fdqw~s!/ds
dql~s!/ds G .

Therefore

F ĤS ]2A

]t2 D 21/2G
t5tsp

5S 1

J~w!

detO

e~s0!•O•e~s1! D
t5tsp

1/2

. ~151!

@For an alternative way of writing this amplitude factor see Gutzwiller~1990!, Eq. ~2.10!.#
The evaluation of the derivatives ofA with respect to source and receiver coordinates t

make up the components ofO are done at the stationary-phase point

At5tsp
5

1

2 E0

SF2nrefr
2 21

nrefr
Gds ~152!

The derivatives can be performed once Hamilton’s equations have been solved for the re
geodesic and the variation ofnrefr along the path is determined. Collecting expressions gives

G~xW uxW0!}S 1

J~w!

detO

e~s0!•O•e~s1! D
t5tsp

1/2

expF ik0E
0

S

nrefrdsGC~s,z!, ~153!

where
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F2ik0nrefr

]

]s
1r

]

]z S 1

r

]

]z D22k0
2Ṽ~s,z!GC~s,z!50. ~154!

This parabolic equation differs from Eq.~134! in two respects—thes-dependent scale factornrefr

and the replacement ofV with Ṽ.

B. Modal analysis

Much of the work done to model global propagation has assumed a description invo
discrete, local, normal modes propagating without coupling@see, e.g., Munk, Worcester, an
Wunsch ~1995!#. In this section we discuss how this description can be incorporated into
formalism presented in the previous sections.

We begin with some preliminaries. The local modes satisfy

Fr~z!
]

]z S 1

r~z!

]

]z D1k0
2n2~w,l,z!GZm~w,l,z!5k0

2¸m
2 ~w,l!Zm~w,l,z!, ~155!

where¸m is the~dimensionless! normal-mode wave number. As a result of the self-adjoint na
of Eq. ~155!, we have the orthogonal relation

E dz

r~z!
Zn~w,l,z!Zm~w,l,z!5dnm ~156!

and the completeness relation

(
m

Zm~w,l,z!Zm~w,l,z0!5r~z0!d~z2z0!.

We expandF in Eq. ~56! in terms of these modes

F~t;w,l,z!5
1

r~z0! (m Cm~t;w,l!Zm~w,l,z!Zm~w,l,z0!

so that

Limt→0Cm~t;w,l!5
1

J~w!
d~w2w0!d~l2l0!

independent of the indexm. We have for the Green’s function

G~xW u xW0!5
1

r~z0! (m Zm~w,l,z!Zm~w,l,z0!Gm~w,l u w0 ,l0!, ~157!

where

Gm5
i

2k0
E

0

`

dt ei tk0/2Cm~t;w,l!. ~158!

The equation satisfied by the model coefficients is

F2ik0

]Cm

]t
1¹S

2Cm22k0
2WmCmGZm~w,l,z0!1(

l
@BmlCl12FW ml•¹SCl #50, ~159!

where
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Wm~w,l!52 1
2 @¸m

2 ~w,l!21#,

Bml5E dz

r
Zm¹S

2~Zl~w,l,z!Zl~w,l,z0!!,

and

FW ml5E dz

r
Zm¹S~Zl~w,l,z!Zl~w,l,z0!!.

Generally speaking, a modal analysis for the types of wave propagation problems we are c
ering is useful only if mode coupling can be ignored. If this is the case, thenBml50 andFW ml

50 and Eq.~159! reduces to

F2ik0

]

]t
1¹S

222k0
2WmGCm50. ~160!

With preliminaries out of the way, we develop a method for solving Eq.~160! based on the idea
introduced earlier. We write

Cm~t;w,l!5Cm~t;w,l!H~t;w,l!, ~161!

whereH obeys

F2ik0

]

]t
1¹S

2GH50

and

Limt→0H~t;w,l!5
1

J~w!
d~w2w0!d~l2l0!.

The ray theory solution forH is given by Eq.~126!. The equation satisfied byCm is

2ik0

]Cm

]t
1¹S

2Cm12
¹SH

H
•¹SCm22k0

2WmCm50 ~162!

and

Limt→0Cm~t;w,l!51.

We know

2

H
¹SH5

2ik0S

t Fm dqw

ds
~s1!ŵ1n cosw

dql

ds
~s1!l̂G5

2ik0S

t
ŝ~s1! ~163!

and

S

t

]

]s
5

]

]t
1

S

t
ŝ~s1!•¹' , ~164!

so that

2ik0

S

t

]Cm

]s
1¹S

2Cm22k0
2WmCm50. ~165!
                                                                                                                



ting of

ans-
meter.

ion of
nvelope

proxi-

h the

od of

ins the
derive
tion into
nd the
xed in

1903J. Math. Phys., Vol. 43, No. 4, April 2002 Parabolic approximation method

                    
Consistently apply the horizontal ray approximation and replace Eq.~165! with

2ik0

S

t

]Cm

]s
22k0

2WmCm50 ~166!

giving

Cm5expF2 ik0

t

SE0

S

ds WmD . ~167!

Combining terms

Gm5
1

4p S Rave

R~S!

Rave

R~0! D
1/4F S/Rave

sin~S/Rave!
G1/2E

0

` dt

t
expF ik0

2 S S2

t
1t^¸m

2 & D G ,
where^¸m

2 & is the mean-square-average of¸m over the horizontal ray path

^¸m
2 &5

1

SE0

S

ds ¸m
2 . ~168!

For k0S@1 the integral overt is approximately equal to

S 2p i

k0S2D 1/2S ^¸m
2 &

S2 D 1/4

exp@ ik0SA^¸m
2 &#,

so that

Gm5
1

4p S Rave

R~S!

Rave

R~0!

^¸m
2 &

S2 D 1/4F 2p i

k0SRavesin~S/Rave!
G1/2

exp@ ik0SA^¸m
2 &#. ~169!

Alternative approaches to the modal problem are discussed in Burridge and Weinberg~1977!;
Collins ~1993b!; McDonaldet al. ~1994!; and Collinset al. ~1995a!; ~1995b!; ~1996!.

VII. SUMMARY

In this paper we have proposed a method for obtaining parabolic approximations consis
the following steps

~1! The Green’s function for the problem of interest is written as a Laplace or Mellon tr
form over the corresponding propagator. The transform variable is the Fock–Feynman para

~2! The propagator is factored into a term that is assumed to be a rapidly varying funct
the horizontal coordinates and obeys a parabolic equation in those coordinates, and an e
function that is assumed to be a slowly varying function of the horizontal coordinates.

~3! The dependence on the horizontal coordinates is determined using the ray theory ap
mation.

~4! The equation for the envelop function is cast into the form of a parabolic equation wit
horizontal direction of propagation along the ray path determined in step~3!.

~5! The integral over the Fock–Feynman parameter is approximated using the meth
stationary phase.

If one applies this method to the Helmhotz equation in Cartesian coordinates, one obta
standard narrow-angle parabolic equation in two coordinate variables. One can easily
improved approximations because the proposed method separates the parabolic approxima
two separate approximations: one involving the characteristics of the field in the horizontal a
other its characteristics in the vertical. The horizontal ray-theory approximation can be rela
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any number of ways. One possibility is to use the Rytov approximation instead of the ray-t
one @Palmer~1976!#. This results in replacing the index of refraction by an effective one tha
constructed by integration over the Fresnel ray tube surrounding the ray path. Another pos
is to allow for horizontal refraction and horizontal multipaths. In Sec. VI we indicate how
might be done.

There are many ways of relaxing the narrow-angle approximation by improving on
stationary-phase approximation. One possibility is to evalute the integral numerically in the
way that the integral over frequency is evaluated in the Fourier representation of the solution
parabolic equation for a broadband source. One obtains the solution to Eq.~92! for a range of
values oft using a marching algorithm. The integral in Eq.~92! is then evaluated using a fas
Fourier transform. Other than those relating to the numerical evaluation, the only approxim
made in the development of the global problem considered here are the horizontal ray
approximation and, of less importance, the WKB approximation for the amplitude.
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The generalized He´non–Heiles Hamiltonian H51/2(PX
21PY

21c1X21c2Y2)
1aXY22bX3/3 with an additional nonpolynomial termmY22 is known to be
Liouville integrable for three sets of values of (b/a,c1 ,c2). It has been previously
integrated by genus two theta functions only in one of these cases. Defining the
separating variables of the Hamilton–Jacobi equations, we succeed here, in the two
other cases, to integrate the equations of motion with hyperelliptic
functions. © 2002 American Institute of Physics.@DOI: 10.1063/1.1456948#

I. INTRODUCTION

The generalization of the He´non–Heiles Hamiltonian defined by

H[
1

2
~PX

21PY
21c1X21c2Y2!1aXY22

b

3
X31

1

32a2

m

Y2 , aÞ0, ~1!

X85PX , Y85PY , ~2!

X952aY21bX22c1X, ~3!

Y9522aXY2c2Y1
1

16a2

m

Y3 , m arbitrary, ~4!

is integrable in the sense of Liouville in three cases,1–3 namely,

b

a
521, c15c2 , ~5!

b

a
526, c1 ,c2 arbitrary, ~6!

b

a
5216, c1516c2 , ~7!

and is equivalent to the reductionj5x2ct of three fifth order soliton equations,4 respectively the
Sawada–Kotera~SK!, KdV5 and Kaup–Kupershmidt~KK ! equations, by applying the translatio

a!Electronic mail: cverhoev@vub.ac.be
b!Electronic mail: mmusette@vub.ac.be
c!Electronic mail: Conte@drecam.saclay.cea.fr
19060022-2488/2002/43(4)/1906/10/$19.00 © 2002 American Institute of Physics
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SK: u5X1
c2

2a
, c5c1c2 , ~8!

KdV5: u5X1
c114c2

20a
, c5

1

10
~23c1

2216c1c2148c2
2!, ~9!

KK: u5X1
c2

2a
, c5c1c2 . ~10!

The reduced partial differential equations~PDEs! are respectively

SK: u(4)110auu91
20

3
a2u32cu14aE2

c1c2
2

3a
50, ~11!

KdV5: u(4)120auu9140a2u3110au822cu14aE1
1

100a
~c114c2!~c1

2212c1c2116c2
2!50,

~12!

KK: u(4)140auu91
320

3
a2u3130au822cu14aE2

c1c2
2

3a
50, ~13!

in which E is the constant value of the HamiltonianH. Therefore we will further use these nam
for referring to the respective integrable cases of the Hamiltonian.

The problem which we address is to find the separating variables and to explicitly inte
The general solution for the KdV5 case has been obtained in terms of hyperellip

functions5–7 by separation of the variables of the Hamilton–Jacobi equation in parabolic co
nates.

For m50, the equations of motion for the SK and KK cases have been integrated8–10 in terms
of elliptic functions.

In this article we give the general solution of the equations of motion for the SK and KK c
in terms of hyperelliptic functions. This is achieved by separation of the variables of
Hamilton–Jacobi equation, where the canonical transformation between SK and KK11 plays an
important role.

In Sec. II, we consider the SK case withm50 as a starting point to treat the general case~m
arbitrary!. In Sec. III, we recover the canonical transformation between SK and KK, starting
the factorization of the scattering operator associated with these equations and using the lin
the Fordy–Gibbons equation.12 In Sec. IV, we give the general solution for KK, using the cano
cal transformation previously obtained. In Sec. V, we use the fact that the canonical transform
is invertible for obtaining the general solution of the SK case. In both cases, in the limitm→0, we
recover the previous results.9,10 In Sec. VI, we compare the present method of integration, star
from the Hamiltonian system, with the method used by Cosgrove13 for integrating the fourth order
ODEs ~11! and ~13!.

II. PARTICULAR CASE: SAWADA–KOTERA FOR mÄ0

This is the simplest case and it will be our starting point to define the separation of var
of the Hamilton–Jacobi equation for KK.

Consider the Hamiltonian in the SK case derived from~1! by settinga5 1
2 and defining

U5X1c2 , V5Y, c5c1c2 ,

H[K1,05
1

2
~PU

2 1PV
2 !1

1

2
UV21

1

6
U32

c

2
U, ~14!
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which is a constant of motion of the equations

U952
1

2
~V21U2!1

c

2
,

~15!
V952UV,

where U,V and the derivativesU85PU , V85PV are functions of the independent variab
j (8[ d/dj).

This system possesses a second constant of motion9

K2,0522PUPV2U2V2
V3

3
1cV, ~16!

which is in involution with the Hamiltonian, i.e.,$K1,0,K2,0%50.
The separation of variables is defined as

Q15U1V, Q25U2V,
~17!

P15 1
2 ~PU1PV!, P25 1

2 ~PU2PV!,

and in those new variables the expressions ofK1,0 andK2,0 are

K1,05P1
21P2

21
1

12
~Q1

31Q2
3!2

c

4
~Q11Q2!, ~18!

K2,052~P2
22P1

2!1
1

6
~Q2

32Q1
3!2

c

2
~Q22Q1!, ~19!

such that the equations of motion become

Q18
252 1

3 Q1
31cQ12K2,012K1,0,

~20!

Q28
252 1

3 Q2
31cQ21K2,012K1,0.

They possess the general solution

Q15212̀ S j2j1 ,
c

12
,2

1

144
~2K1,02K2,0! D[212̀ 1~j!,

~21!

Q25212̀ S j2j2 ,
c

12
,2

1

144
~2K1,01K2,0! D[212̀ 2~j!,

in terms of the Weierstrass elliptic functioǹ(x2x0 ,g2 ,g3), solution of the first order differentia
equation

`8254`32g2`2g3 , ~22!

such that the solutions become

U526~`1~j!1`2~j!!,
~23!

V526~`1~j!2`2~j!!.
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III. CANONICAL TRANSFORMATION BETWEEN SK AND KK

Let us consider, form arbitrary, the equations and the constants of motion associated wit
SK and KK Hamiltonians14,15

SK: U85PU , V85PV , ~24!

U952
1

2
~V21U2!1

c

2
, V952UV1

m

4V3 , ~25!

K15
1

2
~PU

2 1PV
2 !1

1

2
UV21

1

6
U32

c

2
U1

m

8V2 , ~26!

K2
25K2,0

2 1
2

3
mU1m

PU
2

V2 , ~27!

KK: a5 1
4 , c1516c2 , c5c1c2 , u5X12c2 , v5Y, ~28!

u85pu , v85pv , ~29!

u952
1

4
v224u21c, v952

1

2
uv1

m

v3 , ~30!

k15
1

2
~pu

21pv
2!1

1

4
uv21

4

3
u32cu1

1

2

m

v2 , ~31!

k2,0
2 5pv

42
1

72
v62

1

12
u2v41upv

2v22
1

3
pupvv31

c

12
v4, ~32!

k2
25k2,0

2 1
m

3
u12m

pv
2

v2 1
m2

v4 . ~33!

The reason why the expressionsk2,0 andk2 are defined by their square will appear soon.
The two nonlinear partial differential equations SK and KK,

SK: Ut1~Uxxxx15UUxx1
5
3 U3!x50, ~34!

KK: ut1~uxxxx110uuxx1
20
3 u31 15

2 ux
2!x50, ~35!

whose reductionsj5x2ct are ~11! and ~13!, respectively obtained from the systems~25!–~26!
and ~30!–~31! by elimination of the variablesV and v, possess a Lax pair with a third orde
scattering problem (Lc5lc).16,17 The scattering operators can be factorized in the follow
way,

SK: L[]x
31U]x5~]x2w!~]x1w!]x , ~36!

KK: L[]x
312u]x1ux5~]x1w!~]x!~]x2w!, ~37!

such that the solutions of the PDEs are related through a Ba¨cklund transformation

SK: U5wx2w2, ~38!

KK: u52wx2 1
2 w2 ~39!
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with the solutionw of the Fordy–Gibbons equation12

wt1~wxxxx25wxwxx25w2wxx25wwx
21w5!x50. ~40!

The reductionj5x2ct of this equation can be solved forw(j), either by eliminatingU and
w8 between~38! and the equations of motion~25!,

w5
1

2

A2m

V2 2
V8

V
, ~41!

or by eliminatingu andw8 between~39! and the equations of motion~30!,

w52
A2m

v2 12
v8

v
, ~42!

such that, definingl252m and

G56~VK2,01lPU!, ~43!

V548~3v4k2,0
2 16luv5pv112lpv

3v32lv6pu13l2uv4118l2v2pv
2112l3vpv13l4!,

~44!

the canonical transformation is given by11,18

u52
3

2 S 2
PV

V
1

l

2V2D 2

2U, v25
G

V2 , ~45!

pu5
1

V3 ~3PV
313UV2PV2PUV3!2

3l

2V6 S UV413V2PV
22

3

2
lVPV1

l2

4 D ,

pv5
1

4V2 S 22PV1
l

VDAG2l
V

AG
, ~46!

U526S pv

v
1

l

v2D 2

2u, V25
V

4v8 , ~47!

PU5
1

v3 ~12pv
316uv2pv2v3pu!1

3l

v6 ~2uv4112v2pv
2112lvpv14l2!,

PV52
1

v5 S pv1
l

v DAV1l
v4

AV
. ~48!

IV. GENERAL SOLUTION OF THE KAUP–KUPERSHMIDT CASE

Starting from the separation of variables~17! and the canonical transformation~47! and~48!
in the casem50, we consider the transformation defined by Ref. 10 on the basis of Pain´
analysis
                                                                                                                



ear
stem

is

1911J. Math. Phys., Vol. 43, No. 4, April 2002 Integration of a generalized Hénon–Heiles Hamiltonian

                    
q1526
pv

22k2,0

v2 2u,

q2526
pv

21k2,0

v2 2u,

~49!

p15
1

2v3 ~12pv
316uv2pv2v3pu212pvk2,0!,

p25
1

2v3 ~12pv
316uv2pv2v3pu112pvk2,0!.

This inverts to

u526S p22p1

q22q1
D 2

2
1

2
~q11q2!,

v25
12k2,0

q12q2
,

~50!

pu524S p12p2

q12q2
D 3

12~p12p2!
q11q2

q12q2
12

p1q22p2q1

q12q2
,

pv
2512k2,0

~p22p1!2

~q12q2!3 .

Taking account thatk2,0 is no longer a constant of motion, this change of variables will app
to be useful to find the general solution for KK. In those new variables, the Hamiltonian sy
~31! becomes

H[k15p1
21p2

21
1

12
~q1

31q2
3!2

c

4
~q11q2!1

m

24

q12q2

k2,0
, ~51!

k2,052~p2
22p1

2!1
1

6
~q2

32q1
3!2

c

2
~q22q1!, ~52!

q1852p11
m

6

~q12q2!p1

k2,0
2 , ~53!

q2852p22
m

6

~q12q2!p2

k2,0
2 . ~54!

Therefore, definingf (qi ,pi)[pi
21 1

12qi
32 (c/4) qi ( i 51,2), the Hamilton–Jacobi equation

separated

k1~ f ~q1 ,p1!2 f ~q2 ,p2!!5 f 2~q1 ,p1!2 f 2~q2 ,p2!1
m

48
~q12q2!, ~55!

pi5
]S

]qi
. ~56!

We can express the second constant of motionk2
2 in two equivalent ways
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k2
252

m

3
q11S k2,01

m

12

q12q2

k2,0
D 2

, ~57!

or

k2
252

m

3
q21S k2,02

m

12

q12q2

k2,0
D 2

, ~58!

so that the elimination ofm(q12q2)/k2,0 between~51!, ~57! and ~51!, ~58! yields

k2
252

m

3
q11S 24p1

22
q1

3

3
1cq112k1D 2

, ~59!

or

k2
252

m

3
q21S 4p2

21
q2

3

3
2cq222k1D 2

. ~60!

The elimination ofp1 between~59! and ~53!, and ofp2 between~60! and ~54!, yields

q185A2k12
q1

3

3
1cq12Ak2

21
m

3
q1S 11

m

3

q12q2

~Ak2
21 ~m/3! q21Ak2

21 ~m/3! q1!2D ,

~61!

q285A2k12
q2

3

3
1cq21Ak2

21
m

3
q2S 12

m

3

q12q2

~Ak2
21 ~m/3! q21Ak2

21 ~m/3! q1!2D .

~62!

In the casem50, the differential equations forq1 and q2 are separated and their solution
expressed in terms of the Weierstrass elliptic function

q1,05212̀ S j2j1 ,
c

12
,2

1

144
~2k1,02k2,0! D[212̀ 1~j!, ~63!

q2,05212̀ S j2j2 ,
c

12
,2

1

144
~2k1,01k2,0! D[212̀ 2~j!, ~64!

so that the solution for~30! in the casem50 is10

u52
3

2 S `18~j!2`28~j!

`1~j!2`2~j!
D 2

16~`1~j!1`2~j!!, ~65!

v25
k2,0

`2~j!2`1~j!
. ~66!

In the casemÞ0, let us introduce the new variables

s15A3
k2

2

m
1q1, s252A3

k2
2

m
1q2, ~67!

which transform Eqs.~61! and ~62! into
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s185A2k12
1

3 S s1
223

k2
2

m D 3

1cS s1
223

k2
2

m D 2Am

3
s1S 1

s12s2
D , ~68!

s2852A2k12
1

3 S s2
223

k2
2

m D 3

1cS s2
223

k2
2

m D 2Am

3
s2S 1

s12s2
D . ~69!

Defining

P~s!52k12
1

3 S s223
k2

2

m D 3

1cS s223
k2

2

m D 2Am

3
s, ~70!

the system~68! and ~69! can be solved by inversion of the hyperelliptic integrals

Ès1 ds

AP~s!
1 Ès2 ds

AP~s!
5k3 , ~71!

Ès1 sds

AP~s!
1 Ès2 sds

AP~s!
5j1k4 , ~72!

which defines1 ands2 as multivalued functions ofj.19,20

The general solution of the equations of motion~30! in the casemÞ0 is

u52
1

2
~s1

21s2
2!1

3

m
k2

22
3

2 S s181s28

s11s2
D 2

, ~73!

v25
2A3m

s11s2
. ~74!

As they are rational symmetric combinations ofs1 and s2 and their derivatives,u and v2 are
single-valued functions ofj.

In the variablesq1 ,q2 this solution is expressed as

u52
3

2
SA2k12 ~q1

3/3! 1cq12Ak2
21~m/3! q12A2k12 ~q2

3/3! 1cq21Ak2
21 ~m/3! q2

q12q2

D 2

2
1

2
~q11q2!, ~75!

v256
Ak2

21 ~m/3! q11Ak2
21 ~m/3! q2

q12q2
, ~76!

which clearly goes to~65! and ~66! in the limit m→0.

V. GENERAL SOLUTION OF THE SAWADA–KOTERA CASE

We start from the general solution~73! and~74! for KK and apply the canonical transforma
tion ~47! to obtain the general solution for the SK Hamiltonian system

U5A23~s181s28!1s1
21s1s21s2

22
3

m
K2

2 , ~77!
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V2522A23~s11s2!~s1s181s2s28!12~s11s2!2S s1
21s2

22
9K2

2

2m D . ~78!

Let us check that the limit of this solution whenm→0 is ~23!. The expression~77! for U can
also be written as

U5
1

2
~s1

21s2
2!2

3

m
K2

21
3

2 S s181s28

s11s2
D 2

2
3

2 S s181s28

s11s2
1A2

1

3
~s11s2! D 2

. ~79!

Since in the limitm→0

s11s25O~Am!,

s181s28

s11s2
→

`18~j!2`28~j!

`1~j!2`2~j!
,

one has

lim
m→0

U5 1
2 ~Q11Q2!. ~80!

Next, for V2, the expansions

2~s11s2!2S s1
21s2

22
9K2

2

2m D 5
1

4
~Q12Q2!21O~m!, m→0,

~s11s2!~s1s181s2s28!5O~Am!, m→0,

provide the limit ofV2 in ~78!. Therefore,

lim
m→0

V25 1
4 ~Q12Q2!2. ~81!

VI. COMPARISON WITH THE RESULTS OF COSGROVE

Cosgrove13 recently integrated the ODEs~11! and~13! with hyperelliptic functions, using the
postmultiplier method.

To compare the two different ways of integration, let us recall the vocabulary introduc
Painlevéanalysis of nonlinear differential equations, making the distinction between fixed
movable constants. A constant is calledfixed if it appears explicitly in the differential equation
while it is movableif it is a constant of integration and therefore depends on the initial data

In the Hamiltonian formalism, described by the system~28!–~33! and~24!–~27!, k1 ~resp.K1!
andk2 ~resp.K2! are movable constants, whilem is fixed ~it appears in the equations of motion!.

In Cosgrove’s paper, the first integrals of the fourth order equation he obtained in form
~4.3!–~4.4! and~5.6!–~5.7!, which are therefore movable constants, correspond in the Hamilto
formalism tok2 ~resp.K2! andm, respectively introduced as movable and fixed constants. In o
to integrate the resulting second order sixth degree differential equation and transform
coupled system of first order equations for applying the postmultiplier method, Cosgrove d
‘‘suitable’’ auxiliary variables chosen in a ‘‘subjective’’ way. Here the link between the canon
variables and its expressions~4.5!–~4.6! and~5.3!–~5.4! can be clearly established. Those expr
sions, which are ‘‘hidden’’ variables for the fourth order differential equation, are nothing else
the canonical variablesv2 ~resp. V2! and pv

2 ~resp. PV
2! explicitly defined in the Hamiltonian

formalism.
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VII. CONCLUSION

We proved that the three integrable cases~SK, KdV5, and KK! of the Hénon–Heiles Hamil-
tonian can be integrated in terms of hyperelliptic functions.

We will take advantage of the method developed here to integrate other Hamiltonian sy
with two degrees of freedom and additional nonpolynomial terms.
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Generalized sine-Gordon Õmassive Thirring models
and soliton Õparticle correspondences
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01405-900-Sa˜o Paulo, S.P., Brazil
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We consider a real Lagrangian off-critical submodel describing the soliton sector of
the so-called conformal affinesl(3)(1) Toda model coupled to matter fields. The
theory is treated as a constrained system in the context of Faddeev–Jackiw and the
symplectic schemes. We exhibit the parent Lagrangian nature of the model from
which generalizations of the sine-Gordon~GSG! or the massive Thirring~GMT!
models are derivable. The dual description of the model is further emphasized by
providing the relationships between bilinears of GMT spinors and relevant expres-
sions of the GSG fields. In this way we exhibit the strong/weak coupling phases
and the~generalized! soliton/particle correspondences of the model. Thesl(n)(1)

case is also outlined. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1454186#

I. INTRODUCTION

Integrable theories in two dimensions have been an extraordinary laboratory for the u
standing of basic nonperturbative aspects of physical theories and various aspects, rele
more realistic four-dimensional models, have been tested.1 In particular the conformal affine Tod
models coupled to~Dirac! matter fields~CATM!2 for thesl(2)(1) andsl(3)(1) cases are discusse
in Refs. 3, 4, and 5, respectively. The interest in such models comes from their integrabilit
duality properties,2,4 which can be used as toy models to understand some phenomena; suc
confinement mechanism in quantum chromodynamics~QCD!3,5 and the electric–magnetic dualit
in four-dimensional gauge theories, conjectured in Ref. 6 and developed in Ref. 7. The affine
model coupled to matter field~ATM ! type systems may also describe some low dimensio
condensed matter phenomena, such as self-trapping of electrons into solitons, see, e.g.,
tunneling in the integer quantum Hall effect,9 and, in particular, polyacteline molecule systems
connection with fermion number fractionization.10

Off-critical submodels, such as thesl(2) ATM, can be obtained at the classical or quantu
mechanical level through some convenient reduction processes starting from CATM.4,11 In the
sl(2) case, using bosonization techniques, it has been shown that the classical equivale
tween theU(1) vector and topological currents holds true at the quantum level, and then lea
a bag model like mechanism for the confinement of the spinor fields inside the soliton
addition, it has been shown that thesl(2) ATM theory decouples into a sine-Gordon model~SG!
and a free scalar.3,12 These facts indicate the existence of a sort of duality in these mo
involving solitons and particles.6 The symplectic structure of thesl(2) ATM model has recently
been studied11 in the context of Faddeev–Jackiw~FJ!13 and~constrained! symplectic methods.14,15

Imposing the equivalence between theU(1) vector and topological currents as a constraint th
have been obtained the SG or the massive Thirring~MT! model.

One of the difficulties with generalizations of complex affine Toda field theories, bey
su(2) and its associated SG model, has to do with unitarity. Whereas for practical applic

a!Electronic mail: blas@ift.unesp.br
19160022-2488/2002/43(4)/1916/22/$19.00 © 2002 American Institute of Physics
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such as low dimensional condensed matter systems~see Ref. 16 and references therein! and
N-body problems in nuclear physics,17 the properties of interest are usually integrability a
nonperturbative results of multifield Lagrangians. Therefore, integrable quantum field the
with several fields~bosons and/or fermions! are of some importance.

In this paper we construct many field generalizations of SG/MT models based on so
particle duality and unitarity. Beyond the well-knownsl(2) case the relatedsl(n)(1) CATM model
does not possess a local Lagrangian, therefore we resort to an off-critical submodel Lagr
with well behaved classical solutions making use of the results of Ref. 5. In Ref. 5 the au
studied thesl(3)(1) CATM soliton solutions and some of their properties up to general t
soliton. Using the FJ and symplectic methods we show the parent Lagrangian18 nature of thesl(3)
ATM model from which the generalized sine-Gordon~GSG! or the massive Thirring~GMT!
models are derivable. We thus show that there are~at least classically! two equivalent descriptions
of the model, by means of either the Dirac or the Toda type fields. The duality exchange
coupling regimesg→1/g and the generalized soliton/particle correspondences in eachsl(2) ATM
submodel will also be clear, which we uncover by providing explicit relationships betwee
GSG and GMT fields. We also outline the steps toward thesl(n) affine Lie algebra generaliza
tions. In this way we give a precise field content of both sectors; namely, the correct GMT
duality, first undertaken in Ref. 19.

The paper is organized as follows. In Sec. II we define thesl(3) ATM model. Section III deals
with the model in the FJ framework, the outcome is the GMT model. In Sec. IV, we attac
same problem from the point of view of symplectic quantization14,15 giving the Poisson bracket
of the GMT and GSG models. Section V deals with the soliton/particle and strong/weak cou
correspondences. Section VI outlines the relevant steps toward the generalization tosl(n) ATM.
In the appendix we present the construction ofsl(3)(1) CATM model and its relationship to the
~two-loop! Wess–Zumino–Novikov–Witten~WZNW! model.

II. DESCRIPTION OF THE MODEL

In affine Toda type theories the question of whether all mathematical solutions are phys
acceptable deserves a careful analysis, especially if any consistent quantization of the mo
discussed. The requirement of real energy density leads to certain reality conditions on th
tions of the model. In general, a few soliton solutions survive the reality constraint, if in add
one also demands positivity. These kind of issues are discussed in Refs. 20. Here we foll
prescription to restrict the model to a subspace of classical solutions which satisfy the ph
principles of reality of energy density and soliton/particle correspondence.

In CATM models associated with the principal gradation of an affine Lie algebra we ha
one-soliton solution~real Toda field! for each pair of Dirac fieldsc i and c̃ i .2 This fact allows us
to make the identificationsc̃ i;(c i)* , and take real Toda fields. In the case ofsl(2)(1) CATM
theory, this procedure does not spoil the particle–soliton correspondence.3,4

We consider thesl(3)(1) CATM theory ~see the Appendix! with the conformal symmetry
gauge fixed21 by settingh50 and the reality conditions

c̃ j52~c j !* , ~ j 51,2,3!, wa* 5wa ~a51,2!, ~2.1!

or

c̃ j5~c j !* , j 51,2, c̃352~c3!* ,

w1,2→w1,22p ~ the new wa’s being real fields!, ~2.2!

where an asterisk means complex conjugation. The condition~2.2! must be supplied withxm

→2xm. Moreover, for consistency of the equations of motion~A15!–~A23! under the reality
conditions ~2.1! and ~2.2!, from Eqs. ~A16! to ~A18!, ~A20!, ~A21!, and ~A23!, we get the
relationships
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c̃L
j cR

32c̃R
j cL

3e23iw j50, j 51,2, cL
1cR

2e23iw12cL
2cR

1e23iw250. ~2.3!

Then, the above-given reality conditions and constraints allow us to define a suitable ph
Lagrangian. Equations~A13!, ~A15!–~A23!, supplied with~2.1! @or ~2.2!# and~2.3!, follow from
the Lagrangian

1

k
L5(

j 51

3 F 1

24
]mf j]

mf j1 i c̄ jgm]mc j2mc
j c̄ jeif jg5c j G , ~2.4!

wherec̄ j[(c j )† g0 , f1[2w12w2 , f2[2w22w1 , f3[f11f2 , mc
35mc

11mc
2 , k is an over-

all coupling constant and thew j are real fields.
Equation~2.4! defines thesl(3) affine Toda theory coupled to matter fields~ATM !. Notice

that the space of solutions ofsl(3)(1) CATM model satisfying conditions~2.1!–~2.3! must be
solutions of thesl(3) ATM theory ~2.4!. Indeed, it is easy to verify that the three species
one-soliton solutions@S[1-soliton(S̄[1-antisoliton)#:5 $(w1 , c1)S/S̄ , w250,c250,c350%,
$(w2 , c2)S/S̄ , w150,c150,c350%, and $(w11w2 , c3)S/S̄ , w15w2 , c150,c250% satisfy the
equations of motion, i.e., each positive root ofsl(3) reproduces thesl(2) ATM case.3,4 Moreover,
these solutions satisfy the above-given reality conditions and constriants~2.1!–~2.3! @with ~2.1!
and~2.2! for S andS̄, respectively#, and the equivalence between theU(1) vector and topologica
currents~A29!. Then, the soliton/particle correspondences survive the above-given reductio
cesses performed to define thesl(3) ATM theory.

The class of two-soliton solutions ofsl(3)(1) CATM5 behave as follows:~i! they are given by
six species associated with the pair (a i ,a j ), i< j ; i , j 51,2,3; where thea’s are the positive roots
of sl(3) Lie algebra. Each species (a i ,a i) solves thesl(2) CATM submodel;22 ~ii ! satisfy the
U(1) vector and topological currents equivalence~A29!.

III. THE GENERALIZED MASSIVE THIRRING MODEL „GMT…

Let us consider the following Lagrangian:

1

k
L5(

j 51

3 F 1

24
]mf j]

mf j1 i c̄ jgm]mc j2mc
j c̄ jeif jg5c j1lm

j ~mj c̄ jgmc j2emn]n~qjf j !!G ,
~3.1!

where the ATM Lagrangian~2.4! is supplied with the constraints, (ml c̄ lgmc l1 (m3/2)c̄3gmc3

2emn]nf l), (l 51,2), with the help of the Lagrange multiplierslm
j ~lm

3 [ (lm
1 1lm

2 )/2, q1[q2

[1, q3[0!. Their total sum bears an intriguing resemblance to theU(1) vector and topologica
currents equivalence~A29!; however, themj ’s here are some arbitrary parameters. The sa
procedure has been used, for example, to incorporate the left-moving condition in the stu
chiral bosons in two dimensions.23 The constraints in~3.1! will break the left–right local symme-
tries ~A25!–~A28! of sl(3) ATM ~2.4!. In order to apply the FJ method we should write~3.1! in
the first-order form in time derivative, so let us define the conjugated momenta

p1[pf1
5 1

12 ~2ḟ11ḟ2!1l1
1 , p2[pf2

5 1
12 ~2ḟ21ḟ1!1l1

2 ,

~3.2!
pl

m
1 50, pl

m
2 50, pR

j [pcR

j 52 i c̃R
j , pL

j [pcL

j 52 i c̃L
j .

We are assuming that Dirac fields are anticommuting Grasmannian variables and the
menta variables defined throughleft derivatives. Then, as usual, the Hamiltonian is defined
~sum over repeated indices is assumed!

Hc5p1ḟ11p2ḟ21ċR
j pR

j 1ċL
j pL

j 2L. ~3.3!
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Explicitly the Hamiltonian density becomes

Hc52~p j !
214~l1

1!214~l1
2!22l1

1J12l1
2J224~l1

1l1
2!1 1

24 ~f j ,x!
22pR

j cR,x
j 1pL

j cL,x
j

1 imc
j ~e2f jc̃R

j cL
j 2ef jc̃L

j cR
j !1l0

1@J1
02f1,x#1l0

2@J2
02f2,x#, ~3.4!

wherep3[p12p2 , J1[J1
114(2p12p2), J2[J2

114(2p22p1), and

J1
m 5 m1 j l

m1
m3

2
j 3
m , J2

m5m2 j 2
m1

m3

2
j 3
m , j l

m[c̄ lgmc l , l 51,2,3. ~3.5!

Let us observe that eachU(1) Noether current of thesl(3) ATM theory defined in~2.4! is
conserved separately, i.e.,]m j l

m50, l 51,2,3.
Next, the same Legendre transform~3.3! is used to write the first-order Lagrangian

L5p1ḟ11p2ḟ21ċR
j pR

j 1ċL
j pL

j 2Hc . ~3.6!

Our starting point for the FJ analysis will be this first-order Lagrangian. Then the Eu
Lagrange equations for the Lagrange multipliers allow one to solve two of them

l1
15

2J11J2

12
, l1

25
2J21J1

12
~3.7!

and the remaining equations lead to two constraints,

V1[J1
02f1,x50, V2[J2

02f2,x50. ~3.8!

The Lagrange multipliersl1
1 andl1

2 must be replaced back in~3.6! and the constraints~3.8!
solved. First, let us replace thel1

1 andl1
2 multipliers intoHc , then one gets

H c852~p j !
22 1

12 $~J1!21~J2!21~J1J2!%1 1
24 ~f j ,x!

21 i c̃R
j cR,x

j 2 i c̃L
j cL,x

j

1 imc
j ~e2 if jc̃R

j cL
j 2eif jc̃L

j cR
j !. ~3.9!

The new Lagrangian becomes

L 85p1ḟ11p2ḟ21ċR
j pR

j 1ċL
j pL

j 2H c8 . ~3.10!

We implement the constraints~3.8! by replacing in~3.10! the fieldsf1 , f2 in terms of the
space integral of the current componentsJ1

0 , J2
0. Then we get the Lagrangian

L 95p1] tEx

J1
01p2] tEx

J2
01ċR

j pR
j 1ċL

j pL
j 2 i c̃R

j cR,x
j 1 i c̃L

j cL,x
j 2 imc

j ~e2 i *xJj
0
c̃R

j cL
j

2ei *xJj
0
c̃L

j cR
j !2 1

12~~J1!21~J2!21J1 .J2!1p1J1
11p2J2

1 , ~3.11!

whereJ3
0[J1

01J2
0. Observe that the terms containig thepa’s in Eq. ~3.11! cancel to each other i

one uses the current conservation laws. Notice the appearances of various types of current–
interactions. The following Darboux transformation:

cR
j →expS 2

i

2 E
x

Jj
0DcR

j , cL
j →expS i

2 E
x

Jj
0DcL

j , j 51,2,3 ~3.12!
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is used to diagonalize the canonical one-form. Then, the kinetic terms will give additional cur
current interactions,2 1

2@J1•( j 11 j 3)1J2•( j 21 j 3)#. We are, thus, after definingk[1/g, and
rescaling the fieldsc j→1/Ak c j , left with the Lagrangian

L@c,c̄#5(
j 51

3

$ i c̄ jgm]mc j1mc
j c̄ jc j%2 (

k,l 51
k< l

3

@ ākl j k • j l #, ~3.13!

whereākl5g akl , with

a335
1

2 S ~m3!2

8
1m3D , a125

1

12
m1m2, aii 5

1

2 S ~mi !2

6
1mi D ,

ai35
1

2 S mim3

4
1mi1

m3

2 D , i 51,2.

This defines thegeneralized massive Thirring model~GMT!. The canonical pairs are
(2 i c̃R

j ,cR
j ) and (2 i c̃L

j ,cL
j ).

IV. THE SYMPLECTIC FORMALISM AND THE ATM MODEL

A. The „constrained … symplectic formalism

We give a brief overview of the basic notations of symplectic approach.24 The geometric
structure is defined by the closed~pre!symplectic two-form

f (0)5 1
2 f i j

(0)~j (0)!dj (0)i∧dj (0) j , ~4.1!

where

f i j
(0)~j (0)!5

]

]j (0)i aj
(0)~j (0)!2

]

]j (0) j ai
(0)~j (0)! ~4.2!

with a(0)(j (0))5aj
(0)(j (0))dj (0) j being the canonical one-form defined from the original first-or

Lagrangian

L (0)dt5a(0)~j (0)!2V(0)~j (0)!dt. ~4.3!

The superscript~0! refers to the original Lagrangian, and is indicative of the iterative natur
the computations. The constraints are imposed through Lagrange multipliers which are velo
and in such case one has to extend the configuration space.14,15The corresponding Lagrangian ge
modified and consequently the superscript also changes. The algorithm terminates once th
plectic matrix turns out to be nonsingular.

B. The generalized massive Thirring model „GMT…

Next, we will consider our model in the framework of the symplectic formalism. LetL 8, Eq.
~3.10!, be the zeroth-iterated LagrangianL (0). Then the first iterated Lagrangian will be

L (1)5p1ḟ11p2ḟ21ċR
j pR

j 1ċL
j pL

j 1ḣ1V11ḣ2V22V (1), ~4.4!

where the once-iterated symplectic potential is defined by

V (1)5H c8uV15V250 , ~4.5!
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and the stability conditions of the symplectic constraints,V1 andV2 , under time evolution have
been implemented by makingl0

1→ḣ1 andl0
2→ḣ2. Consider the once-iterated set of symplec

variables in the following order

j (1)5~h1,h2,f1 ,f2 ,cR
1 ,cL

1 ,cR
2 ,cL

2 ,cR
3 ,cL

3 ,p1 ,p2 ,pR
1 ,pL

1 ,pR
2 ,pL

2 ,pR
3 ,pL

3!, ~4.6!

and the components of the canonical one-form

a(1)5~V1 ,V2 ,p1 ,p2 ,2pR
1 ,2pL

1 ,2pR
2 ,2pL

2 ,2pR
3 ,2pL

3 ,0,0,0,0,0,0,0,0!. ~4.7!

These result in the singular symplectic two-form 18318 matrix

f AB
(1)~x,y!5S a11 a12

a21 a22
D d~x2y!, ~4.8!

where the 939 martices are

a115

¨

0 0 ]x 0 im1c̃R
1 im1c̃L

1 0 0
im3

2
c̃R

3

0 0 0 ]x 0 0 im2c̃R
2 im2c̃L

2 im3

2
c̃R

3

]x 0 0 0 0 0 0 0 0

0 ]x 0 0 0 0 0 0 0

im1c̃R
1 0 0 0 0 0 0 0 0

im1c̃L
1 0 0 0 0 0 0 0 0

0 im2c̃R
2 0 0 0 0 0 0 0

0 im2c̃L
2 0 0 0 0 0 0 0

im3

2
c̃R

3 im3

2
c̃R

3 0 0 0 0 0 0 0

©
,

a125S im3

2
c̃L

3 0 0 m1cR
1 m1cL

1 0 0
m3

2
cR

3 m3

2
cL

3

im3

2
c̃L

3 0 0 0 0 m2cR
2 m2cL

2 m3

2
cR

3 m3

2
cL

3

0 21 0 0 0 0 0 0 0

A 0 � A A A A A A

0 0 0 0 0 0 0 21 0

D ,
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a215

¨

im3

2
c̃L

3 im3

2
c̃L

3 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

m1cR
1 0 0 0 21 0 0 0 0

m1cL
1 0 0 0 0 21 0 0 0

0 m2cR
2 0 0 0 0 21 0 0

0 m2cL
2 0 0 0 0 0 21 0

m3

2
cR

3 m3

2
cR

3 0 0 0 0 0 0 21

m3

2
cL

3 m3

2
cL

3 0 0 0 0 0 0 0

©
,

a225S 0 0 ¯ 0 21

0 0 0 0 0

..........................

0 0 0 0 0

21 0 ¯ 0 0

D .

This matrix has the zero modes

v(1)T~x!5S 2u

m1 ,
2y

m2 ,0,0,ucR
1 ,ucL

1 ,ycR
2 ,ycL

2 ,
m3

2 S u

m1 1
y

m2DcR
3 ,

m3

2 S u

m1 1
y

m2DcL
3 ,2

u8

m1 ,

2
y8

m2 ,iuc̃R
1 ,iuc̃L

1 ,i yc̃R
2 ,i yc̃L

2 ,i
m3

2 S u

m1 1
y

m2D c̃R
3 ,

im3

2 S u

m1 1
y

m2D c̃L
3D , ~4.9!

whereu andy are arbitrary functions. The zero-mode condition gives

E dxv(1)T~x!
d

dj (1)~x!
E dyV (1)[0. ~4.10!

Thus, the gradient of the symplectic potential happens to be orthogonal to the zero-modv(1).
Since the equations of motion are automatically validated no symplectic constraints appea
happens due to the presence of the symmetries of the action

djA
(1)5vA

(1)~x!, A51,2,. . . ,18. ~4.11!

So, in order to deform the symplectic matrix into an invertible one, we have to add s
gauge fixing terms to the symplectic potential. One can choose any consistent set of gauge
conditions.15 In our case we have two symmetry generators associated with the parametersu and
v, so there must be two gauge conditions. Let us choose

V3[f150, V4[f250. ~4.12!

These conditions gauge away the fieldsf1 andf2 , so only the remaining field variables wi
describe the dynamics of the system. Other gauge conditions, which eventually gauge aw
spinor fieldsc i , will be considered in Sec. IV C.
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Implementing the consistency conditions by means of Lagrange multipliersh3 andh4 we get
the twice-iterated Lagrangian

L (2)5p1ḟ11p2ḟ21ċRpR
j 1ċLpL

j 1ḣ1V11ḣ2V21ḣ3V31ḣ4V42V (2), ~4.13!

where

V (2)5V (1)uV35V450 .

Assuming now that the new set of symplectic variables is given in the following order,

j (2)5~h1,h2,h3,h4,f1 ,f2 ,cR
1 ,cL

1 ,cR
2 ,cL

2 ,cR
3 ,cL

3 ,p1 ,p2 ,pR
1 ,pL

1 ,pR
2 ,pL

2 ,pR
3 ,pL

3!,
~4.14!

and the nonvanishing components of the canonical one-form

a(2)5~V1 ,V2 ,V3 ,V4 ,p1 ,p2 ,2pR
1 ,2pL

1 ,2pR
2 ,2pL

2 ,2pR
3 ,2pL

3 ,0,0,0,0,0,0,0,0!,
~4.15!

one obtains the singular twice-iterated symplectic 20320 matrix

f AB
(2)~x,y!5S a11 a12

a21 a22
D d~x2y!, ~4.16!

where the 10310 matrices are

a1151
0 0 0 0 ]x 0 im1c̃R

1 im1c̃L
1 0 0

0 0 0 0 0 ]x 0 0 im2c̃R
2 im2c̃L

2

0 0 0 0 21 0 0 0 0 0

0 0 0 0 0 21 0 0 0 0

]x 0 1 0 0 0 0 0 0 0

0 ]x 0 1 0 0 0 0 0 0

im1c̃R
1 0 0 0 0 0 0 0 0 0

im1c̃L
1 0 0 0 0 0 0 0 0 0

0 im2c̃R
2 0 0 0 0 0 0 0 0

0 im2c̃L
2 0 0 0 0 0 0 0 0

2 ,
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a125

¨

im3

2
c̃R

3 im3

2
c̃L

3 0 0 m1cR
1 m1cL

1 0 0
m3

2
cR

3 m3

2
cL

3

im3

2
c̃R

3 im3

2
c̃L

3 0 0 0 0 m2cR
2 m2cL

2 m3

2
cR

3 m3

2
cL

3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 21 0 0 0 0 0 0 0

0 0 0 21 0 0 0 0 0 0

0 0 0 0 21 0 0 0 0 0

0 0 0 0 0 21 0 0 0 0

0 0 0 0 0 0 21 0 0 0

0 0 0 0 0 0 0 21 0 0

©
,

a215

¨

im3

2
c̃R

3 im3

2
c̃R

3 0 0 0 0 0 0 0 0

im3

2
c̃L

3 im3

2
c̃L

3 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

m1cR
1 0 0 0 0 0 21 0 0 0

m1cL
1 0 0 0 0 0 0 21 0 0

0 m2cR
2 0 0 0 0 0 0 21 0

0 m2cL
2 0 0 0 0 0 0 0 21

m3

2
cR

3 m3

2
cR

3 0 0 0 0 0 0 0 0

m3

2
cL

3 m3

2
cL

3 0 0 0 0 0 0 0 0

©
,

a225S 0 0 0 ¯ 0 21 0

0 0 0 ¯ 0 0 21

0 0 0 ¯ 0 0 0

...................................

0 0 0 ¯ 0 0 0

21 0 0 ¯ 0 0 0

0 21 0 ¯ 0 0 0

D .

The zero-modes are
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v(2)T~x!5S u, y, v, x, 0, 0, m1ucR
1 , m1ucL

1 , m2ycR
2 , m2ycL

2 ,
m3

2
~u1y!cR

3 ,

m3

2
~u1y!cL

3 , u81v, y81x, im1c̃R
1u, im1c̃L

1u, im2c̃R
2y,im2c̃L

2y,

im3

2
c̃R

3~u1y!, i
m3

2
c̃L

3~u1y! D . ~4.17!

The zero-mode condition gives no constraints, implying the symmetries of the action

djA
(2)5vA

(2)~x!, A51,2,. . . ,20. ~4.18!

Now, let us choose the gauge conditions

V5[p1J1
11 1

2 J1•~ j 11 j 3!50, V6[p2J2
11 1

2 J2•~ j 21 j 3!50, ~4.19!

and impose the consistency conditions with the Lagrange multipliersh5,h6, then

L (3)5p1ḟ11p2ḟ21ċRpR
j 1ċLpL

j 1ḣ1V11ḣ2V21ḣ3V31ḣ4V41ḣ5V51ḣ6V62V (3),
~4.20!

where

V (3)5V (2)uV55V650 , ~4.21!

or explicitly

V (3)5 1
12 ~~J1!21~J2!21J1•J2!1 1

2 @J1•~ j 11 j 3!1J2•~ j 21 j 3!#1 i c̃R
j cR,x

j 2 i c̃L
j cL,x

j 1 imc
j c̄ jc j .
~4.22!

The symplectic two-form for this Lagrangian is a nonsingular matrix, then our algorithm
come to an end. Collecting the canonical part and the symplectic potentialV (3) one has

L@c,c̄#5(
j 51

3

$ i c̄ jgm]mc j1mc
j c̄ jc j%2 (

k,l 51
k< l

3

@ ākl j k . j l #1(
l 51

3

mln l j l
0 , ~4.23!

where n3[ (n11n2)/2. We have made the same choice,k51/g, and the field rescalingsc j

→1/Ak c j as in the last section. This is the same GMT Lagrangian as~3.13!. As a bonus, we ge
the chemical potentialsm l[mln l (ḣ1,2→n1,2) times the charge densities. These terms are rela
to the chargesQF

l 51/2p *2`
1`dx j l

0(t,x), and their presence is a consequence of the symple
method.11

C. The generalized sine-Gordon model „GSG…

One can choose other gauge fixings, instead of~4.12!, to construct the twice-iterated Lagrang
ian. Let us make the choice

V3[J1
050, V4[J2

050, ~4.24!

which satisfies the nongauge invariance condition as can be verified by computing the br
$Va,Jb

0%50; a,b51,2. The twice-iterated Lagrangian is obtained by bringing back these
straints into the canonical part ofL (1), then

L (2)5p1ḟ11p2ḟ21ċRpR
j 1ċLpL

j 1ḣ1V11ḣ2V21ḣ3V31ḣ4V42V (2), ~4.25!
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where the twice-iterated symplectic potential becomes

V (2)5V (1)uV35V450 . ~4.26!

Considering the set of symplectic variables in the following order:

jA
(2)5~h1,h2,h3,h4,f1 ,f2 ,cR

1 ,cL
1 ,cR

2 ,cL
2 ,cR

3 ,cL
3 ,p1 ,p2 ,pR

1 ,pL
1 ,pR

2 ,pL
2 ,pR

3 ,pL
3!

~4.27!

and the components of the canonical one-form

aA
(2)5~V1 ,V2 ,V3 ,V4 ,p1 ,p2 ,2pR

1 ,2pL
1 ,2pR

2 ,2pL
2 ,2pR

3 ,2pL
3 ,0,0,0,0,0,0,0,0!,

~4.28!

the ~degenerated! 20320 symplectic matrix is found to be

f AB
(2)~x,y!5S a11 a12

a21 a22
D d~x2y!, ~4.29!

where

a1151
0 0 0 0 ]x 0 im1c̃R

1 im1c̃L
1 0 0

0 0 0 0 0 ]x 0 0 im2c̃R
2 im2c̃L

2

0 0 0 0 0 0 im1c̃R
1 im1c̃L

1 0 0

0 0 0 0 0 0 0 0 im2c̃R
2 im2c̃L

2

]x 0 0 0 0 0 0 0 0 0

0 ]x 0 0 0 0 0 0 0 0

im1c̃R
1 0 im1c̃R

1 0 0 0 0 0 0 0

im1c̃L
1 0 im1c̃L

1 0 0 0 0 0 0 0

0 im2c̃R
2 0 im2c̃R

2 0 0 0 0 0 0

0 im2c̃L
2 0 im2c̃L

2 0 0 0 0 0 0

2 ,

a125

¨

im3

2
c̃R

3 im3

2
c̃L

3 0 0 m1cR
1 m1cL

1 0 0
m3

2
cR

3 m3

2
cL

3

im3

2
c̃R

3 im3

2
c̃L

3 0 0 0 0 m2cR
2 m2cL

2 m3

2
cR

3 m3

2
cL

3

im3

2
c̃R

3 im3

2
c̃L

3 0 0 m1cR
1 m1cL

1 0 0
m3

2
cR

3 m3

2
cL

3

im3

2
c̃R

3 im3

2
c̃L

3 0 0 0 0 m2cR
2 m2cL

2 m3

2
cR

3 m3

2
cL

3

0 0 21 0 0 0 0 0 0 0

0 0 0 21 0 0 0 0 0 0

0 0 0 0 21 0 0 0 0 0

0 0 0 0 0 21 0 0 0 0

0 0 0 0 0 0 21 0 0 0

0 0 0 0 0 0 0 21 0 0

©
,
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a215

¨

im3

2
c̃R

3 im3

2
c̃R

3 im3

2
c̃R

3 im3

2
c̃R

3 0 0 0 0 0 0

im3

2
c̃L

3 im3

2
c̃L

3 im3

2
c̃L

3 im3

2
c̃L

3 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

m1cR
1 0 m1cR

1 0 0 0 21 0 0 0

m1cL
1 0 m1cL

1 0 0 0 0 21 0 0

0 m2cR
2 0 m2cR

2 0 0 0 0 21 0

0 m2cL
2 0 m2cL

2 0 0 0 0 0 21

m3

2
cR

3 m3

2
cR

3 m3

2
cR

3 m3

2
cR

3 0 0 0 0 0 0

m3

2
cL

3 m3

2
cL

3 m3

2
cL

3 m3

2
cL

3 0 0 0 0 0 0

©
,

a225S 0 0 0 ¯ 0 21 0

0 0 0 ¯ 0 0 21

0 0 0 ¯ 0 0 0

...................................

0 0 0 ¯ 0 0 0

21 0 0 ¯ 0 0 0

0 21 0 ¯ 0 0 0

D .

Its zero modes are

v(2)T~x!5S u, y, v, x, 0, 0, m1~u1v!cR
1 , m1~u1v!cL

1 , m2~y1x!cR
2 , m2~y1x!cL

2 ,

m3

2
~u1y1v1x!cR

3 ,
m3

2
~u1y1v1x!cL

3 , u8, y8, im1c̃R
1~u1v!,

im1c̃L
1~u1v!, im2c̃R

2~y1x!, im2c̃L
2~y1x!,

im3

2
c̃R

3~u1y1v1x!,

im3

2
c̃L

3~u1y1v1x! D , ~4.30!

whereu, y, v, andx are arbitrary functions. The zero-mode condition becomes

E dx v(2)T~x!
d

dj (2) E dy8V (2)5E dx Ja
1 ]xf a[0, f a[~v,x!, a51,2.

Since the functionsf a are arbitrary we end up with the following constraints:

V5[J1
150, V6[J2

150. ~4.31!

Notice that by solving the constraints,V35V45V55V650, Eqs.~4.24! and~4.31!, we may
obtain
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c̃R
j 5cR

j , c̃L
j 5cL

j . ~4.32!

So, at this stage, we have Majorana spinors, the scalarsf1 andf2 , and the auxiliary fields.
Next, introduce a third set of Lagrange multipliers intoL (2), then

L (3)5p1ḟ11p2ḟ21ċRpR
j 1ċLpL

j 1ḣ1V11ḣ2V21ḣ3V31ḣ4V41ḣ5V51ḣ6V62V (3),
~4.33!

where

V (3)5V (2)uV55V650 ~4.34!

or

V (3)5 1
24 f j ,x

2 1 icR
j cR,x

j 2 icL
j cL,x

j 1 imc
j cR

j cL
j ~e2 if j1eif j !. ~4.35!

The new set of symplectic variables is assumed to be ordered as

jA
(3)5~h1,h2,h3,h4,h5,h6,f1 ,f2 ,cR

1 ,cL
1 ,cR

2 ,cL
2 ,cR

3 ,cL
3 ,p1 ,p2 ,pR

1 ,pL
1 ,pR

2 ,pL
2 ,pR

3 ,pL
3!.

The components of the canonical one-form are

aA
(3)5~V1 ,V2 ,V3 ,V4 ,V5 ,V6 ,p1 ,p2 ,2pR

1 ,2pL
1 ,2pR

2 ,2pL
2 ,2pR

3 ,2pL
3 ,0,0,0,0,0,0,0,0!.

After some algebraic manipulations we get the third-iterated 22322 symplectic two-form

f AB
(3)~x,y!5S a11 a12

a21 a22
D d~x2y!, ~4.36!

where

a115

¨

0 0 0 0 0 0 ]x 0 im1c̃R
1 im1c̃L

1 0

0 0 0 0 0 0 0 ]x 0 0 im2c̃R
2

0 0 0 0 0 0 0 0 im1c̃R
1 im1c̃L

1 0

0 0 0 0 0 0 0 0 0 0 im2c̃R
2

0 0 0 0 0 0 0 0 2 im1c̃R
1 im1c̃L

1 0

0 0 0 0 0 0 0 0 0 0 2 im2c̃R
2

]x 0 0 0 0 0 0 0 0 0 0

0 ]x 0 0 0 0 0 0 0 0 0

im1c̃R
1 0 im1c̃R

1 0 2 im1c̃R
1 0 0 0 0 0 0

im1c̃L
1 0 im1c̃L

1 0 im1c̃L
1 0 0 0 0 0 0

0 im2c̃R
2 0 im2c̃R

2 0 2 im2c̃R
2 0 0 0 0 0

©
,
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a125

¨

0
im3

2
c̃R

3
im3

2
c̃L

3 0 0 m1cR
1 m1cL

1 0 0
m3

2
cR

3
m3

2
cL

3

im2c̃L
2 im3

2
c̃R

3
im3

2
c̃L

3 0 0 0 0 m2cR
2 m2cL

2 m3

2
cR

3
m3

2
cL

3

0
im3

2
c̃R

3
im3

2
c̃L

3 0 0 m1cR
1 m1cL

1 0 0
m3

2
cR

3
m3

2
cL

3

im2c̃L
2 im3

2
c̃R

3
im3

2
c̃L

3 0 0 0 0 m2cR
2 m2cL

2 m3

2
cR

3
m3

2
cL

3

0 2
im3

2
c̃R

3
im3

2
c̃L

3 0 0 2m1cR
1 m1cL

1 0 0 2
m2

2
cR

3
m3

2
cL

3

im2c̃L
2 2

im3

2
c̃R

3
im3

2
c̃L

3 0 0 0 0 2m2cR
2 m2cL

2
2

m3

2
cR

3
m3

2
cL

3

0 0 0 21 0 0 0 0 0 0 0

0 0 0 0 21 0 0 0 0 0 0

0 0 0 0 0 21 0 0 0 0 0

0 0 0 0 0 0 21 0 0 0 0

0 0 0 0 0 0 0 21 0 0 0

©
,

a215

¨

0 im2c̃L
2 0 im2c̃L

2 0 im2c̃L
2 0 0 0 0 0

im3

2
c̃R

3
im3

2
c̃R

3
im3

2
c̃R

3
im3

2
c̃R

3 2
im3

2
c̃R

3 2
im3

2
c̃R

3 0 0 0 0 0

im3

2
c̃L

3
im3

2
c̃L

3
im3

2
c̃L

3
im3

2
c̃L

3
im3

2
c̃L

3
im3

2
c̃L

3 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

m1cR
1 0 m1cR

1 0 2m1cR
1 0 0 0 21 0 0

m1cL
1 0 m1cL

1 0 m1cL
1 0 0 0 0 21 0

0 m2cR
2 0 m2cR

2 0 2m2cR
2 0 0 0 0 21

0 m2cL
2 0 m2cL

2 0 m2cL
2 0 0 0 0 0

m3

2
cR

3
m3

2
cR

3
m3

2
cR

3
m3

2
cR

3 2
m3

2
cR

3 2
m3

2
cR

3 0 0 0 0 0

m3

2
cL

3
m3

2
cL

3
m3

2
cL

3
m3

2
cL

3
m3

2
cL

3
m3

2
cL

3 0 0 0 0 0

©
,

a2251
0 0 0 0 ¯ 0 21 0 0

0 0 0 0 ¯ 0 0 21 0

0 0 0 0 ¯ 0 0 0 21

0 0 0 0 ¯ 0 0 0 0

...............................................

0 0 0 0 ¯ 0 0 0 0

21 0 0 0 ¯ 0 0 0 0

0 21 0 0 ¯ 0 0 0 0

0 0 21 0 ¯ 0 0 0 0

2 .

It can be checked that this matrix has the zero modes
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v(3)~x!5S u, y, v, x, y, z, 0, 0, m1a1
2cR

1 , m1a1
1cL

1 , m2a2
2cR

2 , m2a2
1cL

2 ,
m3

2
a3

2cR
3 ,

m3

2
a3

1cL
3 , u8, y8, im1a1

2c̃R
1 , im1a1

1c̃L
1 , im2a2

2c̃R
2 , im2a2

1c̃L
2 ,

i
m3

2
a3

2c̃R
3 , i

m3

2
a3

1c̃L
3D , ~4.37!

where a1
1[u1v1y, a2

1[y1x1z, a3
1[u1v1y1y1x1z, a1

2[u1v2y, a2
2[y1x2z,

a3
1[u1v1y1y2x2z, andu, y, v, x, y, andz are arbitrary functions. The relevant zero-mo

condition gives no constraints. Then the action has the following symmetries:

djA
(3)5vA

(3)~x!, A51,2, . . ., 22. ~4.38!

These symmetries allow us to fix the bilinearsicR
j cL

j to be constants. By takingcR
j

52 iC j ū j and cL
j 5u j ( j 51,2,3) with Cj being real numbers, we find thaticR

j cL
j indeed be-

comes a constant. Note thatu j and ū j are Grassmannian variables, whileū ju j is an ordinary
commuting number.

The two form f AB
(3)(x,y), Eq. ~4.36!, in the subspace (f1 ,f2 ,pf1

,pf2
) defines a canonica

symplectic structure modulo canonical transformations. The coordinatesfa andpfa
(a51,2) are

not unique. Consider a canonical transformation from (fa ,pfa
) to (f̂a ,p̂f̂a

) such thatfa

5]F/]pfa
andf̂a5 ]F/]p̂f̂a

. Then, in particular iffa5f̂a one can, in principle, solve for the
function F such that a manifestly covariant kinetic term appears in the new Lagrangian.

Then choosingk51/g as the overall coupling constant, we are left with

L 95(
j 51

3 F 1

24g
]mf j]

mf j1
M j

g
cosf j G1m1]xf11m2]xf2 , ~4.39!

whereM j5mc
j Cj . This defines thegeneralized sine-Gordon model~GSG!. In addition we get the

terms multiplied by chemical potentialsm1 andm2 (ḣ1, 2→2m1, 2). These are just the topologica
charge densities, and are related to the conservation of the number of kinks minus an
Qtopol

a 51/p *2`
1`dx ]xfa .

In the above-mentioned gauge fixing procedures the possibility of Gribov-type ambig
deserves a careful analysis. See Ref. 11 for a discussion in thesl(2) ATM case. However, in Sec
V, we provide indirect evidence of the absence of such ambiguities, at least for the soliton
of the model.

V. THE SOLITONÕPARTICLE CORRESPONDENCES

Thesl(2) ATM theory contains the sine-Gordon~SG! and the massive Thirring~MT! models
describing the soliton/particle correspondence of its spectrum.3,11,12 The ATM one-~anti!soliton
solution satisfies the remarkable SG and MT classical correspondence in which, apart fro
Noether and topological currents equivalence, MT spinor bilinears are related to the expone
the SG field.25 The last relationship was exploited in Ref. 4 to decouple thesl(2) ATM equations
of motion into the SG and MT ones. Here we provide a generalization of that corresponde
the sl(3) ATM case. In fact, consider the relationships

cR
1 c̃L

1

i
52

1

4D
@~mc

1p12mc
3p42mc

2p5!ei (w222w1)1mc
2p5e3i (w22w1)1mc

3p4e23iw12mc
1p1#,

~5.1!
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cR
2 c̃L

252
1

4D
@~mc

2p22mc
1p52mc

3p6!ei (w122w2)1mc
1p5e3i (w12w2)2mc

3p6e23iw22mc
2p2#,

~5.2!

c̃R
3cL

3

i
52

1

4D
@~mc

3p32mc
1p41mc

2p6!ei (w11w2)1mc
1p4e3iw12mc

2p6e3iw22mc
3p3#, ~5.3!

where D[ā11ā22ā3312ā12ā23ā132ā11(ā23)
22(ā12)

2ā332(ā13)
2ā22; p1[(ā23)

22ā22ā33; p2

[(ā13)
22ā11ā33; p3[(ā12)

22ā11ā22; p4[ā12ā232ā22ā13; p5[ā13ā232ā12ā33; p6[ā11ā23

2ā12ā13 and theāi j ’s being the current–current coupling constants of the GMT model~3.13!.
Relationships~5.1!–~5.3! supplied with the conditions~2.1!–~2.3! and conveniently substitute
into Eqs.~A13! and~A15!–~A23! decouple thesl(3)(1) CATM equations into the GSG~4.39! and
GMT ~3.13! equations of motion, respectively.

Moreover, one can show that the GSG~4.39! M j parameters and the GMT~3.13! couplings
āi j are related by

2DM1

g~mc
1 !2 5ā22S 2

mc
3

mc
1 ā131ā33D 1ā23S 2ā231

mc
3

mc
1 ā12D , ~5.4!

2DM2

g~mc
2 !2 5ā11S 2

mc
3

mc
2 ā231ā33D 1ā13S 2ā131

mc
3

mc
2 ā12D , ~5.5!

2DM3

g~mc
3 !2 52

mc
1mc

2

~mc
3 !2 ~ ā12ā332ā13ā23!2ā11ā221~ ā12!

2. ~5.6!

Various limiting cases of the relationships~5.1!–~5.3! and~5.4!–~5.6! are possible. First, let us
consider

ājk→H ` j 5kÞ l ~ for a given l !

finite other cases
~5.7!

then one has

cR
l c̃L

l

i
5

mc
l

4
~e2 if l21!, cR

j c̃L
j 50, j Þ l ~5.8!

for āl l 5d lg (d1,251,d3521). The three species of one-soliton solutions of thesl(3) ATM
theory ~2.4!, found in Ref. 5 and described in Sec. II, satisfy the relationship~5.8!.4 Moreover,
from Eqs.~5.4! to ~5.6! taking the same limits as in~5.7! one has

Ml5
~mc

l !2

2
, M j50, j Þ l . ~5.9!

Therefore, relationships~5.1!–~5.3! incorporate eachsl(2) ATM submodel~particle/soliton!
weak/strong coupling phases, i.e., the MT/SG correspondence.4,11

Then, the currents equivalence~A29!, relationships~5.1!–~5.3!, and conditions~2.1!–~2.3!
satisfied by the one-soliton sector of CATM theory allowed us to establish the correspon
between the GSG and GMT models, thus extending the MT/SG result.25 It could be interesting to
obtain the counterpart of Eqs.~5.1!–~5.3! for the NS>2 solitons, e.g., along the lines of Ref. 2
For NS52, Eq. ~A29! still holds;5 and Eqs.~2.1!–~2.3! are satisfied for the species (a i ,a i).

Second, consider the limit
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āik→H ` i 5k5 j ~ for a chosen j ; j 51,2!

finite other cases
, ~5.10!

one getsM j50 and

4D̄
cR

l c̃L
l

i
5~mc

3 āl32mc
l ā33!e

2 if l2mc
3 āl3e23iw l1mc

l ā33, lÞ j ,

~5.11!

4D̄
cR

3 c̃L
3

i
5~mc

3 āl l 2mc
l āl3!e2 if31mc

l āl3e23iw l1mc
3 āl l ,

cR
j c̃L

j 50, ~5.12!

where D̄[4(āl l ā332(āl3)2). The parameters are related by (mc
3)2āl l M l5mc

l (mc
3 āl3

2mc
l ā33)M3 . In the caseMl5M35M and redefining the fields asf l5A12g(A1B), f j

52A12gB in the GSG sector, one gets the Lagrangian

LBL5
1

2
~]mA!21

1

2
~]mB!212

M

g
cosA24gA cosA72gB, ~5.13!

which is a particular case of the Bukhvostov–Lipatov model~BL!.26 It corresponds to a GMT-type
theory with two Dirac spinors. The BL model is not classically integrable,27 and some discussion
have appeared in the literature about its quantum integrability.28

Alternatively, if one allows the limitā33→` one getscR
3 c̃L

350, and additional relations fo
the c1,c2 spinors and thewa scalars. The parameters are related by

M1

~mc
1 !2ā22

5
M2

~mc
2 !2ā11

52
M3

mc
1mc

2 ā12
.

Then we left with two Dirac spinors in the GMT sector and all the terms of the GSG model.
later resembles the 2-cosine model studied in Ref. 29 in some submanifold of its renorm
parameter space.

VI. GENERALIZATION TO HIGHER RANK LIE ALGEBRA

The procedures presented so far can directly be extended to the CATM model for the
Lie algebrasl(n)(1) furnished with the principal gradation. According to the construction of R
2, these models have soliton solutions for an off-critical submodel, possess aU(1) vector current
proportional to a topological current, apart from the conformal symmetry they exhib
(U(1)R)n21

^ (U(1)L)n21 left–right local gauge symmetry, and the equations of motion desc
the dynamics of the scalar fieldswa , h, ñ (a51, . . .,n21) and the Dirac spinorsca j , c̃a j ~j
51, . . .,N; N[ (n/2) (n21)5number of positive rootsa j of the simple Lie algebrasl(n)! with
one-~anti!soliton solution associated with the fielda j •wW ~wW 5(a51

n21waaa , aa5simple roots of
sl(n)! for each pair of Dirac fields~ca j , c̃a j!.2 Therefore, it is possible to define the off-critica
real Lagrangiansl(n) ATM model for the solitonic sector of the theory. The reality conditio
would generalize Eqs.~2.1!–~2.3!, i.e., the neww’s real and the identificationsc̃a j;(ca j)* ~up to
6 signs!. To apply the symplectic analysis ofsl(n) ATM one must impose (n21) constraints in
the Lagrangian, analogous to~3.1!, due to the above-given local symmetries. The outcome wil
a parent Lagrangian of a generalized massive Thirring model~GMT! with N Dirac fields and a
generalized sine-Gordon model~GSG! with (n21) fields. The decoupling of the Toda fields an
Dirac fields in the equations of motion ofsl(n)(1) CATM, analogous to~A13! and~A15!–~A23!,
could be performed by an extension of the relationships~5.1!–~5.3! and ~2.1!–~2.3!.
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VII. DISCUSSIONS AND OUTLOOK

We have shown, in the context of FJ and symplectic methods, that thesl(3) ATM ~2.4! theory
is a parent Lagrangian18 from which both the GMT~3.13! and the GSG~4.39! models are deriv-
able. From~3.13! and ~4.39!, it is also clear the duality exchange of the couplings:g→1/g. The
various soliton/particle species correspondences are uncovered. The soliton sector sati
U(1) vector and topological currents equivalence~A29! and decouples the equations of motio
into both dual sectors, through the relationships~5.1!–~5.3! @supplied with~2.1!–~2.3!#. Relation-
ships ~5.1!–~5.3! contain eachsl(2) ATM submodel soliton solution. In connection to the
points, recently a parent Lagrangian method was used to give a generalization of the dual t
concept for non-p-form fields.30 In Ref. 30, the parent Lagrangian contained both types of fie
from which each dual theory was obtained by eliminating the other fields through the equati
motion.

On the other hand, in non-Abelian bosonization of massless fermions,31 the fermion bilinears
are identified with bosonic operators. Whereas, in Abelian bosonization32 there exists an identifi-
cation between the massive fermion operator~charge nonzero sector! and a nonperturbative
bosonic soliton operator.33 Recently, it has been shown that symmetric space sine-Gordon m
bosonize the massive non-Abelian~free! fermions providing the relationships between the ferm
ons and the relevant solitons of the bosonic model.34 The ATM model allowed us to establish thes
types of relationships for interacting massive spinors in the spirit of particle/soliton corres
dence. We hope that the quantization of the ATM theories and the related WZNW models,
particular relationships~A34!, would provide the bosonization of the nonzero charge sectors o
GMT fermions in terms of their associated Toda and WZNW fields. In addition, the above-g
approach to the GMT/GSG duality may be useful to construct the conserved currents a
algebra of their associated charges in the context of the CATM→ ATM reduction. These currents
in the MT/SG case were constructed treating each model as a perturbation on a conform
theory ~see Ref. 35 and references therein!.

Moreover, two-dimensional models with four-fermion interactions have played an impo
role in the understanding of QCD~see, e.g., Ref. 36 and references therein!. Besides, the GMT
model contains explicit mass terms: most integrable models such as the Gross–Neveu, SU~2!, and
U~1! Thirring models all present spontaneous mass generation, the exception being the m
Thirring model. A GMT submodel withaii 50, ai j 51 (i . j ) and equalmc

j ’s defines the so-called
extended Bukhvostov–Lipatov model~BL! and has recently been studied by means of a boson
tion technique.37 Finally, BL type models were applied toN-body problems in nuclear physics.17
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APPENDIX: THE sl „3…„1… CATM MODEL

We summarize the construction and some properties of the CATM model relevant t
discussions.38 More details can also be found in Ref. 5. Consider the zero curvature cond
]1A22]2A11@A1 ,A2#50. The potentials take the form

A152BF1B21, A252]2BB211F2, ~A1!

with

F15E31F1
11F2

1 , F25E231F1
21F2

2 , ~A2!
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where E63[m•H65 1
6@(2mc

11mc
2)H1

611(2mc
21mc

1)H2
61# and theFi

6’s and B contain the
spinor fields and scalars of the model, respectively,

F1
15Aimc

1cR
1Ea1

0 1Aimc
2cR

2Ea2

0 1Aimc
3 c̃R

3E2a3

1 , ~A3!

F2
15Aimc

3cR
3Ea3

0 1Aimc
1 c̃R

1E2a1

1 1Aimc
2 c̃R

2E2a2

1 , ~A4!

F1
25Aimc

3cL
3Ea3

212Aimc
1 c̃L

1E2a1

0 2Aimc
2 c̃L

2E2a2

0 , ~A5!

F2
25Aimc

1cL
1Ea1

211Aimc
2cL

2Ea2

212Aimc
3 c̃L

3E2a3

0 , ~A6!

B5eiw1H1
0
1 iw2H2

0
eñC ehQppal, ~A7!

whereEa i

n , H1
n , H2

n , andC ( i 51,2,3;n50,61) are some generators ofsl(3)(1); Qppal being the

principal gradation operator. The commutation relations for an affine Lie algebra in the Che
basis are

@Ha
m ,Hb

n#5mC
2

aa
2 Kabdm1n,0 , ~A8!

@Ha
m ,E6a

n #56KaaE6a
m1n , ~A9!

@Ea
m ,E2a

n #5 (
a51

r

l a
aHa

m1n1
2

a2 mCdm1n,0 , ~A10!

@Ea
m ,Eb

n #5«~a,b!Ea1b
m1n ; if a1b is a roo, ~A11!

@D,Ea
n #5nEa

n , @D,Ha
n#5nHa

n , ~A12!

whereKaa52a.aa /aa
25nb

aKba , with na
a and l a

a being the integers in the expansionsa5na
aaa

anda/a25 l a
aaa /aa

2 , and«(a,b) the relevant structure constants.
TakeK115K2252 andK125K21521 as the Cartan matrix elements of the simple Lie al

brasl(3). Denoting bya1 anda2 the simple roots and the highest one byc(5a11a2), one has
l a
c51(a51,2), and Kc15Kc251. Take «(a,b)52«(2a,2b), «1,2[«(a1 ,a2)51,«21,3

[«(2a1 ,c)51 and«22,3[«(2a2 ,c)521.
One hasQppal[(a51

2 sala
v .H13D, wherela

v are the fundamental co-weights ofsl(3), and
the principal gradation vector iss5(1,1,1).39

The zero curvature condition gives the following equations of motion

]2wa

4i eh 5mc
1@eh2 ifac̃R

l cL
l 1eifac̃L

l cR
l #1mc

3@e2 if3c̃R
3cL

31eh1 if3c̃L
3cR

3 #, a51,2, ~A13!

2
]2ñ

4
5 imc

1e2h2f1c̃R
1cL

11 imc
2e2h2f2c̃R

2cL
21 imc

3eh2f3c̃R
3cL

31m2e3h, ~A14!

22]1cL
15mc

1eh1 if1cR
1 , 22]1cL

25mc
2eh1 if2cR

2 , ~A15!

2]2cR
15mc

1e2h2 if1cL
112i S mc

2mc
3

imc
1 D 1/2

eh~2cR
3 c̃L

2eif22c̃R
2cL

3e2 if3!, ~A16!
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2]2cR
25mc

2e2h2 if2cL
212i S mc

1mc
3

imc
2 D 1/2

eh~cR
3 c̃L

1eif11c̃R
1cL

3e2 if3!, ~A17!

22]1cL
35mc

3e2h1 if3cR
312i S mc

1mc
2

imc
3 D 1/2

eh~2cL
1cR

2eif21cL
2cR

1eif1!, ~A18!

2]2cR
35mc

3eh2 if3cL
3 , 2]2c̃R

15mc
1eh1 if1c̃L

1 , ~A19!

22]1c̃L
15mc

1e2h2 if1c̃R
112i S mc

2mc
3

imc
1 D 1/2

eh~2cL
2c̃R

3e2 if32c̃L
3cR

2eif2!, ~A20!

22]1c̃L
25mc

2e2h2 if2c̃R
212i S mc

1mc
3

imc
2 D 1/2

eh~cL
1c̃R

3e2 if31c̃L
3cR

1eif1!, ~A21!

2]2c̃R
25mc

2eh1 if2c̃L
2 , 22]1c̃L

35mc
3eh2 if3c̃R

3 , ~A22!

2]2c̃R
35mc

3e2h1 if3c̃L
312i S mc

1mc
2

imc
3 D 1/2

eh~c̃R
1 c̃L

2eif22c̃R
2 c̃L

1eif1!, ~A23!

]2h50, ~A24!

wheref1[2w12w2 , f2[2w22w1 , f3[w11w2 .
Apart from theconformal invariancethe above-presented equations exhibit the (U(1)L)2

^ (U(1)R)2 left–right local gauge symmetry

wa→wa1u1
a ~x1!1u2

a ~x2!, a51,2, ~A25!

ñ→ ñ, h→h, ~A26!

c i→ei (11g5)Q1
i (x1)1 i (12g5)Q2

i (x2) c i , ~A27!

c̃ i→e2 i (11g5)(Q1
i )(x1)2 i (12g5)(Q2

i )(x2) c̃ i , i 51,2,3, ~A28!

Q6
1 [6u6

2 72u6
1 , Q6

2 [6u6
1 72u6

2 , Q6
3 [Q6

1 1Q6
2 .

One can get global symmetries foru6
a 57u7

a 5 constants. For a model defined by a Lagran
ian these would imply the presence of two vector and two chiral conserved currents. Howe
was found only half of such currents.5 This is a consequence of the lack of a Lagrangian desc
tion for thesl(3)(1) CATM; however see the following.

The gauge fixing of the conformal symmetry, by setting the fieldh to a constant, is used to
stablish theU(1) vector,Jm5( j 51

3 mc
j c̄ jgmc j , and topological currents equivalence.2,11 More-

over, it has been shown that the soliton solutions are in the orbit of the solutionh50. The
remarkable equivalence is

(
j 51

3

mc
j c̄ jgmc j[emn]n~mc

1w11mc
2w2!, mc

35mc
11mc

2 , mc
i .0. ~A29!

The CATM theory has a local Lagrangian in terms of theB and the~two-loop! WZNW fields.2

The relations between their fields can be obtained from

F25B]2MM 21B21, F15B21N21]1NB, ~A30!
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where

M5expS (
s.0

zsD , N5expS (
s.0

j2sD , ~A31!

provided that the following constraints are imposed:

~]2MM 21!235B21~m•H21!B, ~]2MM 21!,2350. ~A32!

and

~N21]1N!35B ~m•H1!B21, ~N21]1N!.350. ~A33!

In ~A31! and~A32! and~A33! s and the subscripts denote the principal gradation structur
the relevant group elements.

The relationships are

Aimc
3cL

35e2h1 if3]2j21
3 , 2Aimc

1 c̃L
15e2h2 if1]2j21

1 ,

2Aimc
2 c̃L

25e2h2 if2]2j21
2 , Aimc

3cR
15eh2 if1]1z1

1 ,

Aimc
2cR

25eh2 if2]1z1
2 , Aimc

3 c̃R
35eh1 if3]1z1

3 ,

Aimc
1cL

1e2h5eif1]2j22
1 1 1

2 ~j21
3 ]2j21

2 e3,221j21
2 ]2j21

3 e22,3!e
if1,

Aimc
2cL

2e2h5eif2]2j22
2 1 1

2 ~j21
3 ]2j21

1 e3,211j21
1 ]2j21

3 e21,2!e
if2, ~A34!

2Aimc
3 c̃L

3e2h5e2 if3]2j22
3 1 1

2 ~j21
1 ]2j21

2 e21,221j21
2 ]2j21

1 e22,21!e2 if3,

Aimc
3cR

3e22h5e2 if3]1z2
32 1

2 ~z1
1]1z1

2e1,21z1
2]1z1

1e2,1!e
2 if3,

Aimc
1 c̃R

1e22h5eif1]1 z2
12 1

2 ~z1
3]1z1

2e23,21z1
2]1z1

3e2,23!eif1,

Aimc
2 c̃R

2e22h5eif2]1z2
22 1

2 ~z1
3]1z1

1e23,11z1
1]1z1

3e1,23!eif2.

We observe that the WZNW fieldsj21
i , j22

i , z1
i , z2

i ( i 51,2,3) are nonlocal in terms of th
spinors and scalars$c i , c̃ i , w1 , w2 , ñ, and h%. Then the CATM model Lagrangian must b
nonlocal when written in terms of its fields.
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The Lund–Regge surface and its motion’s evolution
equation

Chunli Chen
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The system of evolution equations for general motion of surfaces in orthogonal
coordinates is analyzed to reduce the number of variables as well as equations. The
explicit expression of the Lund–Regge surface is obtained. When the surface cor-
responds to the Lund–Regge equation, we prove that some components of velocity
satisfy the linearizations of the Lund–Regge equation. The soliton solution is de-
rived and one special case of the Lund–Regge surface is studied.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1452776#

I. INTRODUCTION

Dynamics of surfaces, interfaces, and front is an important ingredient of numerous non
phenomena in classical physics.1–4 In some cases, many dynamics can be modeled by the no
ear partial differential equations which describe an evolution of surfaces in time.3–5 Moreover, a
local evolution law may be established in terms of a velocity field on the surface.4 In addition,
interesting papers by Nakayamaet al.,5,6 Mclachlan and Segur,7 Konopelchenko,8,9 and
Szwabowicz10 concerned the motion of surfaces and linked it to solitonic equations. Among t
Nakayama and Wadati5 discussed the motion of surfaces. They calculated time evolutions
sphere, surface of revolution, and developable surface in details. In the appendix, they deriv
Lund–Regge~LR! equation, but because of over-restrictions on the metric and the curv
tensor, they did not solve the time evolution of this system by using their theory. It is known
the LR equation is one soliton equation.11–13 Sym et al.14–16 developed the theory of the solito
surface which provided a geometrical interpretation for many integrable physical systems
very useful to explicitly construct large classes of surfaces. Bobenko17 reformulated it in a form
familiar to the soliton theory which made it easier to apply the analytical method of this theo
integrable cases. Fokaset al.18 show that the problem of the immersion of a two-dimensio
surface into a three-dimensional Euclidean space is related to the problem of studying surf
Lie groups and Lie algebras, and proposed a more general formula for surface immerse in
algebra. Cieslinskiet al.19 generalized it and proved that many results concerning immersio
Lie algebra can be reduced to or interpreted within the soliton surfaces approach. We find t
above-mentioned method can be used to study the motion of surfaces and integrable syst
we identifyR3 with su~2! and use the soliton theory to discuss the surfaces associated with th
equation. Making use of one coordinate’s transformation and spin transformation, we calc
the explicit expression of the surface.

In Ref. 20, Li suggested one approach to consider the motion of surfaces with co
negative curvature in asymptotic coordinates. Then in Refs. 21 and 22 we generalized th
proach to discuss the evolution of surfaces in geodesic coordinates. In this paper, we will u
method to consider the system of evolution equation for general motion of surfaces in ortho

a!Electronic mail: ysli@ustc.edu.cn
19380022-2488/2002/43(4)/1938/18/$19.00 © 2002 American Institute of Physics
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coordinates, especially for the surfaces associated with the LR equation. We shall prove tha
the surface corresponds to the LR equation, some components of velocity satisfy the lineari
of the LR equation. The evolution equation associated with the motion of this surface is deriv
211 dimensional integrable equations.

In Sec. II, we describe the correspondence betweenR3 and su~2!. The explicit expression of
the surface corresponding to the LR equation is obtained. In Sec. III, we analyze the sys
evolution equations for general motion of surfaces in orthogonal coordinates and obtai
system with eight functions and twelve equations. So, under suitable conditions, we pr
fundamental theorem: this system can be reduced to an equivalent system with eight functio
eight equations. In Sec. IV, we prove that some velocity components of the motion of th
surface should satisfy the linearization equation of the LR equation. Its corresponding m
equation is also derived. In Sec. V, given special velocity, 211 dimensional integrable equation
are obtained, which recovers the relations between the motion of surfaces and the soliton
tions, the soliton solution is derived too. In Sec. VI, we study one special case of the LR su
We conclude and give some remarks in Sec. VII.

II. THE SURFACES IN ORTHOGONAL COORDINATES AND THE LR EQUATION

Let F(x,y) be a smooth surface in a three-dimensional Euclidean space, which is given
vector-valued function

F5~F1 ,F2 ,F3!:R2→R3.

To construct and investigate the surface inR3 by analytical methods, we use 232 matrices instead
of 333 matrices. More explicitly, we characterize the surface in terms of su~2!. Let $e1 ,e2 ,e3% be
the orthonormal bases ofR3 and$ f 1 , f 2 , f 3% be the orthonormal bases of su~2!,

f 15
1

2 S 0 i

i 0D , f 25
1

2 S 0 21

1 0 D , f 35
1

2 S i 0

0 2 i D .

Thens j522i f j ( j 51,2,3) are Pauli matrices. Map the vector spaceR3 with su~2!,

F5(
j 51

3

F jej°(
j 51

3

F j f j

~the inner product̂ F,G&522 tr F•G defines a Euclidean scalar product inR3 and the Lie
bracket corresponds to the vector product inR3!. So we identify three-dimensional Euclidea
space with su~2!. In the sequel we will follow the notation of Ref. 18.

Similarly to the method which Fokas and Gelfand mentioned in Ref. 18, in orthogonal
dinates, the first fundamental form of surfaces can be expressed by

Ih2 dx21g2 dy2,

where

Fx5c21h f1c, Fy5c21g f2c, b f N5c21f 3c ~1!

andcPSU(2) satisfies

cx5Uc, cy5Vc, ~2!

U5(
j 51

3

uj f j , V5(
j 51

3

v j f j , ~3!
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whereuj , v j , ( j 51, 2, 3) are functions of (x,y). Then the second fundamental form of surfa
can be obtained

II 5L dx212M dx dy1Ndy2,

L52^Fx ,Nx&5hu2 , N52^Fy ,Ny&52gv1 ,

M52^Fx ,Ny&52^Fy ,Nx&5hv2 .

From the compatibility conditionFxy5Fyx , it yields

u35
hy

g
, v352

gx

h
, hv252gu1 ~4!

and from the compatibility conditioncxy5cyx , we can derive that

u1y2v1x2
gx

h
u21

hy

h
u150, ~5!

u2y1S g

h
u1D

x

1
hy

g
v11

gx

h
u150, ~6!

S hy

g D
y

1S gx

h D
x

2
g

h
u1

22u2v150. ~7!

It is the Gauss–Codazzi equation. Same as the appendix of Ref. 5, let

h5cosu, g5sinu ~8!

and

L5px cotu1cosu sinu,

M5py cotu, ~9!

N5px cotu2cosu sinu,

then from~4!,

u352uy , v352ux , v252u1 tanu.

Meanwhile, we have

u152py

cotu

sinu
, v152px

cotu

sinu
1cosu,

u25px

1

sinu
1sinu, v25py

1

sinu
.

Then from the Gauss–Codazzi equation, it can be derived thatu and p satisfy the LR
equation5,12,13
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uxx2uyy1
cosu

sin3 u
~px

22py
2!5cosu sinu,

~10!
]

]x
~px cot2 u!5

]

]y
~py cot2 u!.

Gauss curvature and mean curvature are

K52
uxx2uyy

sinu cosu
,

H5
px

sin3 u cosu
22 cot~2u!,

respectively.
We call the surface associated with the LR equation the LR surface. It is known that th

equation is a one soliton equation. To prove the LR surface is a one soliton surface14,15 and
calculate the explicit expression of the surfaces, we need to introduce one spectral parame
proveF can be expressed byc. So, we do the coordinate transformation

x̄5
1

2l
~x2y!, ȳ5

l

2
~x1y! ~11!

at that time, the LR equation~10! is changed to

u x̄ȳ1
cosu

sin3 u
px̄pȳ5cosu sinu,

~12!
]

] x̄
~pȳ cot2 u!1

]

] ȳ
~px̄ cot2 u!50.

It is another form of the LR equation.11 Its Gauss curvature and mean curvature are

K52
u x̄ȳ

sinu cosu
,

H5
px̄1l2pȳ

2l sin3 u cosu
22 cot~2u!,

respectively. Meanwhile Eqs.~2! and ~3! can be rewritten as

c x̄5M̄c5
1

2S iu x̄ 2 ile2 iu1 ipx̄

cosu

sin2 u
2

px̄

sinu

2 ile2 iu1 ipx̄

cosu

sin2 u
1

px̄

sinu
2 iu x̄

D c,

~13!

c ȳ5N̄c5
1

2S 2 iu ȳ i
eiu

l
2 ip ȳ

cosu

sin2u
2

pȳ

sinu

i
e2 iu

l
2 ip ȳ

cosu

sin2u
1

pȳ

sinu
iu ȳ

D c,

and the tangent vectors Eq.~1! are
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Fx̄5
il

2
c21S 0 e2 iu

eiu 0 Dc, Fȳ5
i

2l
c21S 0 eiu

e2 iu 0 Dc. ~14!

Let l5eL, then we have
Proposition 1: Let

F52c21cL . ~15!

If c satisfies Eq. (13), then F satisfies Eq. (14).
Proof: It is easy to calculate that

Fx̄52c21M̄Lc, Fȳ52c21N̄Lc

So, Eq.~14! can be obtained. h

So, if u andp is a solution of the LR equation~12!, the spectral problem of Eq.~13! can be
solved, i.e., we can get the solutionc in explicit form. Furthermore, the exact expression of t
motion of the LR surface can be calculated from expression~15!.

Similar to Ref. 20, using the spin transformation

T:c→w5Tc, T5
1

&
S e2 i /2 u e2 i /2 u

2ei /2 u ei /2 u D , ~16!

we map the spectral problem~13! to the Ablowitz–Kaup–Newell–Seger~AKNS! system

w x̄5
1

2S i S l2px̄

cos~2u!

sin2 u D 2iu x̄22px̄ cotu

2iu x̄12px̄ cotu 2 i S l2px̄

cos~2u!

sin2 u D D w,

~17!

w ȳ5
1

2S 2 i S cos 2u

l
2

pȳ

sin2 u D 2
sin 2u

l

sin2u

l
i S cos 2u

l
2

pȳ

sin2 u D D w.

Given one soliton solution of the LR equation~12!,11,13

u5arcsin@d sech~da!#, p5arctanF d

A
tanh~da!G ,

a5cx̄1
ȳ

c
, d21A251,

the basic solution of the spectral problem~17! can be calculated that

w5S w1 2w2
!

w2 w1
! D ,

w15@l2cA1 icd tanh~da!#expF i

2
~p12b!G ,

w252 icd sech~da!expF i

2
~2b2p!G , b5

l2cA

2
x̄1S A

2c
2

1

2l D ȳ.
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So making use of Eqs.~15! and ~16!, it can be derived thatF( x̄,ȳ) is

F~ x̄,ȳ!5
1

2 S iF 3~ x̄,ȳ! iF 1~ x̄,ȳ!2F2~ x̄,ȳ!

iF 1~ x̄,ȳ!1F2~ x̄,ȳ! 2 iF 3~ x̄,ȳ!
D ,

F1~ x̄,ȳ!52
2cdl

l222cA1c2 sech~da!cos~2b!,

~18!

F2~ x̄,ȳ!5
2cdl

l222cA1c2 sech~da!sin~2b!,

F3~ x̄,ȳ!5
2cdl tanh~da!

l222cA1c2 2S l

2
x̄1

ȳ

2l D .

Substituting~11! into ~18!, the surface corresponding to the first and second fundamental qu
ties ~8! and ~9! can be obtained. It is displayed in Figs. 1–5.

FIG. 1. c5l5
1
2; A5&/2 ; xP@23,3#; yP@210,10#.
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III. THE MOTION OF SURFACE IN ORTHOGONAL COORDINATES

To discuss the motion of surfaces, we assume the velocity of the motion as

Ft5c21Cc5uFx1vFy1wN

andc satisfies

c t5Wc, W5(
j 51

3

wj f j , ~19!

whereu, v, w are functions of (x,y,t) and are projections ofFx , Fy , N, respectively. Then from
the compatibility conditions ofFx , Fy , Ft , cx , cy , andc t , it can be calculated thatw1 , w2 , w3

satisfy

w152
wy

g
1u1u1v1v,

FIG. 2. c52l5
1
2; A5&/2 ; xP@23,3#; yP@210,10#.
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FIG. 3. c5
1
2; l5

3
4; A5&/2 ; xP@210,10#, yP@215,15#.

FIG. 4. c5l51; A5
1
4; xP@23,3#, yP@215,15#.
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w25
1

h
~wx1uu2h2u1vg!,

~20!

w352
1

h F ~vg!x2u
hhy

g
1wu1G ,

5
1

g F ~uh!y2v
ggx

h
1wu1

g

hG
and besides the Gauss–Codazzi equation~5!–~7!, the eight functionsu, v, w, h, g, u1 , u2 , v1

should satisfy the following equations:

FIG. 5. c5
1
2; l521; A5&/2 ; xP@23,3#, yP@25,5#.
                                                                                                                



d the

1947J. Math. Phys., Vol. 43, No. 4, April 2002 Lund–Regge surface and its motion

                    
ht5~uh!x1vhy2wu2 , ~21!

h2uy52g2vx22gwu1 , ~22!

gt5~vg!y1ugx1wv1 , ~23!

u1t2w1x1u2w32
hy

h
w250, ~24!

u2t2w2x1
hy

g
w12u1w350, ~25!

S g

h
u1D

t

1w2y1
gx

h
w11v1w350, ~26!

S gx

h D
t

1w3y2v1w22
g

h
u1w150, ~27!

S hy

g D
t

2w3x1u1w22u2w150, ~28!

v1t2w1y2
h

g
u1w31

gx

h
w250. ~29!

Among them, Eq.~22! is deduced from the two expressions ofw3 Eq. ~20!. In the following, we
will discuss the reduction of this problem and clarify the relation between the velocities an
surfaces.

Theorem 1: If u2Þ0, and w1 , w2 , w3 are defined by Eq. (20), then Eqs. (26)–(29) can be
derived from the Gauss–Codazzi equation (5)–(7) and Eqs. (21)–(25), i.e., in orthogonal coordi-
nates, the motion of surfaces depends on eight functions u, v, w, h, g, u1 , u2 , and v1 , which
satisfy the eight fundamental equations (5)–(7), (21)–(25).

Lemma 1: Equation (26) can be derived from Eqs. (21) to~24!.
Proof: By direct calculation, it can be deduced from Eqs.~23! and ~24! that

S gu1

h D
t

5
u1

h
@~vg!y1ugx1wv1#1

gu2

h2 @wu11vxg1vgx#

1
g

h S u1xu1u1ux1v1xv2v1vx2
wxy

g
1

wygx

g2 D
1

hy

h2 ~wx2vgu1!2
gu1

h2 @~uh!x1vhy2wu2#. ~30!

Meanwhile, from Eq.~20!, it yields that

2wxy52hw2y2hyw21uyu2yh1uu2yh1uu2hy2u1~vg!y2u1yvg.

So, by using Eqs.~5!, ~6!, and~22!, it can be rewritten as
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2wxy52hw2y1
u2

h
~2g2vx22gwu1!1uhF2u1

gx

h
2S gu1

h D
x

2
hy

g
v1G

2vgS v1x1u2

gx

h
2

hy

h
u1D2u1~vg!y2hyw21uu2hy .

Substituting it into Eq.~30!, it yields that

S gu1

h D
t

52w2y1
gx

h S wy

g
2uu12v1v D1

v1

h S wu11gvx1gxv2uh
hy

g D .

So, Eq.~26! is obtained and this lemma is proved. h

Lemma 2: Equation (27) can be derived from Eqs. (5), (7), (21)–(23).
Proof: From Eqs.~21! and~23!, gt andht can be expressed. So, from Eqs.~7! and~22!, it can

be calculated that

hF S gx

h D
t

1w3y2v1w22
g

h
u1w1G5ugxx1~wv1!x1v1~wx1uhu2!1guu1

21wu1y

1
1

h
~wu1hy1gvxhy!1

gx

h
wu21

hhyuy

g
1huS hy

g D
y

5wFv1x2u1y1u1

hy

h
1u1

gx

h
2wu1

hy

h G .
Substituting Eq.~5! into it, the right-hand side of the above-given expression is zero, so Eq.~27!
is obtained. This lemma is proved. h

Lemma 3: Equation (28) can be derived from Eqs. (6), (7) and (21)–(25).
Proof: By using Eqs.~6!, ~21!, and~23!, the left-hand side of Eq.~28! can be rewritten as

S hy

g D
t

2w3x1u1w22u2w1

5
1

g Fvhyy2wu2y1S gv
h

gx2wu1

g

hD
x
G2

hy

g
~vgy1ugx1wv1!1

u1

h
~wx2vgu1!

1
gx

g S uhy1uyh2vg
gx

h
1wu1

g

hD1
hy

g2 ~gyv1gxu!

5
1

g S vhyy1wu1

gx

h
1gxw3D1

~vgx!x

h
2

vu1
2g

h
2

vgxhx

h2 1
vgx

2

gh
. ~31!

Then from Eq.~27!, it yields that

hyy

g
5

hxgx

h2 1
gu1

2

h
2

gxx

h
1u2v1 .

Substituting it into Eq.~31!, the left-hand side of Eq.~28! is equal to zero, so this lemma i
proved. h

Lemma 4: If u2Þ0, Eq. (29) can be derived from Eqs. (5)–(7) and (21)–(23).
Proof: From Lemmas 1–3, Eqs.~26!–~28! yield. So they can be used to prove this lemm

From Eqs.~24! to ~28!, Eq. ~7! can be rewritten as
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~u2w12u1w2!y1S v1w21
g

h
u1w1D

x

2S g

hD
t

u1
22u2v1t12u1

g

h S u2w32w1x2
hy

g
w2D

1v1S hy

g
w12w2x2u1w3D50.

Substitutinght , gt into it and using Eqs.~5! and ~6!, we have

u1Fg

h
~u2w32w1x!2

gx

h
w12w2y2

gt

h
u11

ght

h2 2v1w3G3u2S w1y1
g

h
u1w21

gx

h
u2w22v1tD50.

Then using~24! and ~26!, it can be directly calculated that ifu2Þ0, ~29! yields. This lemma is
proved. h

From Lemmas 1–4, the theorem is proved.
Remark 1:Note that, among the eight equations, Eqs.~21!–~23! are derived from the com

patibility conditions ofFx , Fy , Ft , Gauss–Codazzi equations are fromcxy5cyx and the remain-
ing two are from the compatibility conditionscxt5c tx .

IV. THE MOTION OF THE LUND–REGGE SURFACE

To decide the equations of the surface evolution, we should clarify the relation betwee
velocity and the surface. First of all, from Eq.~20!, we know

w152
wy

sinu
2pyu

cotu

sinu
1S cosu2px

cotu

sinu D v,

w25
wx

cosu
1px

u

sinu
1sinuu1py

v
sinu

,

~32!

w352vx tanu2vux2uuy1py

w

sin2 u
,

5uy cotu2vux2uuy2py

w

sin2 u
.

Proposition 2: If the surface satisfies Eqs. (8) and (9), then besides the LR equation,u and p
should satisfy

u t52ux cotu1uux1vuy1wS 11
px

sin2 u D ,

5vy tanu1uux1vuy1wS 12
px

sin2 u D , ~33!

S py

cotu

sinu D
t

1w1x2u2w32uyw250. ~34!

In fact Eq.~34! is just Eq.~24!, and from Eq.~21! or ~23!, it is easy to know thatu t satisfies
Eq. ~33!.

Proposition 3: The velocity u, v, and w should satisfy

cos2 uuy1sin2 uvx52pyw
cosu

sinu
, ~35!
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cos2 uux1sin2 uvy52wpx cotu, ~36!

wxx2wyy2w~px
22py

2!S csc2u13
cos2 u

sin4 u D12
cosu

sin3 u
~pxux2pyuy!5w cos 2u. ~37!

Proof: Equation~35! follows from Eq.~32! or ~22!. And from Eq.~33!, Eq. ~36! yields. In the
following, we should prove that Eq.~37! is satisfied. From Eqs.~32! and ~33!, Eq. ~25! can be
rewritten as

pxt cotu2wxx2wxux tanu2pxxu cotu22pyvx cotu1uywy cotu1w~py
22px

2!
cos2 u

sin4 u
1w cos2 u

1pxux cotu
cos 2u

sin2 u
2ux cotu50. ~38!

Similarly, by direct calculation, Eq.~29! can be rewritten as

2pxt cotu1wyy1wxux tanu2uywy cotu1pyyu cotu12pyuy cotu1pxyv cotu2wpy
2 1

sin2 u

2px
2w

1

sin2 u
~112 cotu!2wsin2 u22pyuyu

1

sin2 u
2vy tanu1pxvy~ tanu13 cotu!

12wpx

1

sin2 u
12pxuxu

1

sin2 u
50. ~39!

Then from Eqs.~38! and ~39! and noting thatu, p satisfy the LR equation, it follows that

wyy2wxx1w cos 2u2w~px
22py

2!
31cos2 u

sin2 u
12~ tanu1cotu!~pxvy2pyvx!50. ~40!

On the other hand, by using Eqs.~35! and ~36!, it follows that

pxvy2pyvx52w
cosu

sin3 u
~px

22py
2!2cot2 u~uxpx2uypy!.

Substituting it into Eq.~40!, it yields Eq.~37!. h

Then from Eqs.~35! and ~36!, vy andvx can be expressed byu, w, u, andp. The compat-
ibility condition of vxy5vyx can be written as

]

]y S 2wpx

cosu

sin3 u
2ux cot2 u D5

]

]x S 2wpy

cosu

sin3 u
2uy cot2 u D . ~41!

Proposition 4: u, w satisfy the linearization of the LR equation.
Proof: Replacingu and p with u1«w, p1«u in the LR equation and then keep theO(«)

terms. It is just Eqs.~37! and ~41!, that is,u w satisfy the linearization of the LR equation.h
So, if u, p are a solution of LR equation, thenux , px are the solution of Eqs.~37! and ~41!,

anduy , py are too.

V. EVOLUTION EQUATION OF THE LR SURFACE UNDER SPECIAL VELOCITY

Based on the previous text, forp not a constant, we can take the normal velocity compon
w and the tangent velocity componentu as follows:

w5a1ux1a2uy , u5a1px1a2py , ~42!
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wherea1 anda2 are constants. From Eqs.~35! and ~36! we find that

v52~a1py1a2px!cot2 u. ~43!

Substitutingu, v andw into Eqs.~33! and ~34!, the evolution equation of surface related to t
time can be derived that

Proposition 5: The evolution equation of the LR equation for the velocity equations (42
(43) is

u t5a1@ux~px11!2~px cotu!x2pyuy cot2 u#1a2@uy~px11!1uxpy2pxy cotu#, ~44!

pyt5a1Fuxxy tanu1uyuxx tan2 u2uxuxy1pxy14py
2uy

cosu

sin3 u
1pxpxy~22cot2 u!23pypyy cot2 uG

1a2Fuxyy tanu1uyuxy tan2 u2uxuyy1pyy14pypxuy

cosu

sin3 u

1~122cot2 u!~pxpyy1pypxy!G . ~45!

It is 211 dimensional nonlinear integrable equations.
Proposition 6:

u5arcsin@d sech~dh!#, p5arctanF d

A
tanh~dh!G ,

h5c1x1c2y1c3t, c15
c

2l
1

l

2c
, c252

c

2l
1

l

2c
, ~46!

c35
l

2c2 ~c2Al!~a11a2!2
c

2l2 ~Ac2l!~a12a2!

is one soliton solution of the LR equations (10), (44), and (45).
Proof: From the relation among Eqs.~10!, ~11!, and ~12!, it is easy to know that Eq.~46!

satisfies the LR equation~10!. So we only need to prove that Eq.~46! satisfies~44! and ~45!,

ux52
d2c1 sech~dh!tanh~dh!

A12d2 sech2~dh!
, px5

d2c1 sech2~dh!

AF11
d2

A2 tanh2~dh!G ,

cosu5A12d2 sech2~dh!, sinu5d sech~dh!,

pxy52
4Ad3c1c2 sinh~2dh!

@2A2211cosh~2dh!#2 .

So,

uxpx2~px cotu!x2pyuy cot2 u1ux5
&d2~Ac1

21Ac2
22c1!sech~dh!tanh~dh!

A~2A2211cosh~2dh!sech2~dh!
,

uxpy1uypx2pxy cotu1uy5
&d2~2Ac121!c2 sech~dh!tanh~dh!

A@2A2211cosh~2dh!#sech2~dh!
.
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Meanwhile,

@2A2211cosh~2dh!#sech2~dh!52@12d2 sech2~dh!#.

So, by calculation, it can be proved that Eq.~46! satisfies Eq.~44!. Moreover,

pyt52
4Ad3c2c3 sinh~2dh!

@2A2211cosh~2dh!#2 ,

uxxy tanu1uyuxx tan2 u2uxuxy5
16A2d5c1

2c2 sinh~2dh!

@2A2211cosh~2dh!#3 ,

pxy23pypyy cot2 u5
4Ad3c2~3Ac2

22c1!sinh~2dh!

@2A2211cosh~2dh!#2 ,

4py
2uy

cosu

sin3 u
1pxpxy~22cot2 u!

52
4A2d3c2@~526A2!c1

212~2A221!c2
22~c1

222c2
2!cosh~2dh!#sinh~2dh!

@2A2211cosh~2dh!#3 ,

uxyy tanu1uyuxy tan2 u2uxuyy5
16A2d5c1c2

2 sinh~2dh!

@2A2211cosh~2dh!#3 ,

pyy14pypxuy

cosu

sin3 u
52

4Ad3~112Ac1!c2
2 sinh~2dh!

@2A2211cosh~2dh!#2 ,

~122 cot2 u!~pxpyy1pypxy!5
16A2d3c1c2

2@2213A2 cosh~2dh!#sinh~2dh!

@2A2211cosh~2dh!#3 .

Then substituting them into Eq.~45!, this proposition is proved. h

VI. SPECIAL CASE OF p BEING CONSTANT

For the LR equation~10!, if p is constant, it is just Sine–Gorden~SG! equation

uxx2uyy5cosu sinu ~47!

and Gauss curvatureK521, mean curvatureH5tanu2cotu. It is the surface with constan
negative curvature. At that time, the equations that velocityu, v, andw satisfy should change an
we can not take the velocity at that case. So in the following, we clarify the relation betwee
velocity and the surface, and give an other set of velocity. From Eq.~37!, it yields

wxx2wyy5w cos 2u,

it is just the linearization of the SG equation. So we can take the normal velocity componenw as

w5b1ux1b2uy .

To find the tangent velocity, we should clarify the relation betweenu, v andw further. From
Eqs.~35! and ~36!, it is easy to know thatu, v satisfy

cos2 uuy1sin2 uvx50,

cos2 uux1sin2 uvy50.
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And from Eq.~38!, it is easy to know thatux andw satisfy

wxx1wxux tanu2wyuy cotu1ux cotu5w cos2 u.

From Eq.~39!, it can be derived thatvy andw satisfy

wyy1wxux tanu2wyuy cotu2vy tanu5w sin2 u.

So we find the tangent velocityu, v,

u5b1S ux
2

2
1

uy
2

2
2

cos 2u

4
2uxx tanu D 1b2~uxuy2uxy tanu!,

v5b2S ux
2

2
1

uy
2

2
1

cos 2u

4
1uyy cotu D 1b1~uxuy1uxy cotu!.

From Eq.~33!, the time evolution ofu reads

u t5b1F3

4
uxxx1

1

4
uxyy1sin2 uux1

ux

2
~ux

213uy
2!G

1b2F5

4
uxxy2

1

4
uyyy1sin2 uuy1

uy

2
~3ux

21uy
2!G . ~48!

It is one 211 dimensional integrable equation.
Proposition 7:

u52 arctan~expd!,
~49!

d5
x

sina
1

cosa

sina
y1

t csc3a

4
@b1~31cos2 a!1b2 cosa~41sin2 a!#

is one soliton solution of Eqs. (47) and (48), where a is constant.
Proof: Note that

cosu5
12exp 2d

11exp 2d
, sinu5

2 exp 2d

11exp 2d
,

ux5
2 csca expd

11exp 2d
, uy5

2 cota expd

11exp 2d
,

uxx5
2 csc2 a expd

11exp 2d S 12
2 exp 2d

11exp 2d D ,

uyy5
2 cot2 a expd

11exp 2d S 12
2 exp 2d

11exp 2d D ,

so
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uxx2uyy52 expd
exp 2d21

~11exp 2d!2 5cosu sinu.

Equation~49! is one soliton solution of Eq.~47!. Continuously, by direct calculation,

w5b1ux1b2uy5
2 expd

11exp 2d
~b1 csca1b2 cota!

u52
b1

4
, v5

b1 cosa

sin2 a
1b2 cot2 a1

b2

4
.

Substituting them into Eq.~33!, it yields that

u t5
expd csc3 a

2~11exp~2d!!
@b1~31cos2 a!1b2 cosa~41sin2 a!#.

So, Eq.~48! is satisfied. This proposition is proved. h

VII. CONCLUSION AND REMARKS

In this paper, we discussed the LR surface and its evolution equation. We calculate
explicit expression of the LR surface whenu and p are chosen as solition solution of the L
equation. We obtained the motion equation from the compatibility conditions of some l
equations. Because there are many compatibility equations among them, we reduced the
of equations in orthogonal coordinates and proved Theorem 1. Based on this theorem, it is
that some velocity components satisfy the linearization of the LR equation. But because th
formulation fails in thet term, it is difficult to calculate the explicit expression for the evoluti
equations of the LR surface. As the special case of the LR surface, we mentioned the surfa
K521, which is the case of the LR equation withp being constant. Comparing this case wi
Ref. 20, it can be found that we studied a different form of the SG equation with diffe
coordinates. Moreover, whenh51, this coordinate is geodesic and this reduction related to Th
rem 1 includes the reduction of that Theorem 1 in Ref. 21 in some degree. However, the
many questions deserving further investigation, for instance, solving the spectral problem~19!,
~32! and obtaining the explicit expression of the motion of LR surface.
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k-constraint for the modified Kadomtsev–Petviashvili
system
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By imposing constraint (Lk)25q]21r ] on the pseudo-differential operatorLk, the
k constrained modified Kadomtsev–Petviashvili~KP! hierarchy and their corre-
sponding Lax pair are obtained from the linear problem and its adjoint of the
modified KP system. Especially, the modified KdV system, the GNS system with
derivative coupling, the Burgers system, and a new 333 integrable system are
presented as examples. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1446665#

I. INTRODUCTION

Many integrable equations important in physics can be generated from the Kadom
Petviashvili~KP! hierarchy by imposing some restrictions on the pseudo-differential operato1–3

L5]1u2]211u3]221¯1uj]
2 j 111¯ . ~1.1!

Thek constraint (Lk)25q]21r is a typical example, which leads the KP hierarchy to the so-ca
k constrained KP equations.4 Such a reduced approach has an advantage that from this redu
one can obtain directly the spectral problems of constrained systems with the help of the
problem of the KP hierarchy. Consequently, the correspondent recursion operator, th
Hamiltonian structure, and other some features characteristic of the integrability of soliton
tions are also derived.

In this letter, we would like to consider one kind of constraint on a general pseudo-differe
operator,

L5]1u11u2]211¯1uj]
2 j 111¯ , ~1.2!

which is analogous to the above ‘‘k-constraint.’’ If we redefine (Ln)2 @or (Ln)1# as the residual
part with the functional term~or pure differential part! of operatorLn @see~2.1! in Sec. II#, such
a constraint can be expressed as (Lk)25q]21r ] and it makes the modified KP isospectral hie
archy thek constrained modified KP equations. These equations include a lot of interesting s
hierarchies, such as the modified KdV hierarchy, the generalized nonlinear Schro¨dinger ~GNS!
hierarchy with derivative coupling, the Burgers hierarchy for one-constraint, and a new33
integrable hierarchy for two-constraints. Moreover, the associated spectral problems and re
operators for constrained systems are also obtained from the reduced theory.

II. SATO THEORY OF THE MODIFIED KP SYSTEM

Let x,y,t j ( j 51,2,...)PR, and S(R`) denote the Schwartz space composed of all rap
decreasing functionsu5u(x,y,t) with infinitely many variables (x,y,t)5(x,y,t1 ,t2 ,...). Foruj

PS(R`)( j 51,2,...), wetake the pseudo-differential operator~1.2!. Write

a!Electronic mail: dychen@mail.shu.edu.cn
19560022-2488/2002/43(4)/1956/10/$19.00 © 2002 American Institute of Physics
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Ln5(
j <n

pn j~u!] j , ~2.1a!

An5~Ln!15(
j 51

n

pn j~u!] j , ~2.1b!

~Ln!25Ln2~Ln!1 , ~2.1c!

namely, (Ln)1 is the pure differential part ofLn and (Ln)2 is the residual part with the functiona
term.5 The coefficientspn j(u) in ~2.1a! are uniquely determined by the coordinatesuj ,( j
51,2,...) andtheir derivatives. The first few explicit forms of the operatorsAn are listed below,

A15], ~2.2!

A25]212u1], ~2.3!

A35]313u1]213~u21u1,x1u1
2!], ~2.4!

A45]414u1]31~4u216u1,x16u1
2!]21~4u316u2,x14u1,xx112u1u2112u1u1,x14u1

3!].
~2.5!

Consider the linear problem,

Lf5hf, ~2.6a!

f tm
5Amf, ~2.6b!

where f is an eigenfunction andh is a spectral parameter. Ifh tm
50, then the compatibility

condition of ~2.6! gives rise to the Lax equation forAm ,

Ltm
5@Am ,L#, ~2.7!

or equivalent zero-curvature equation

Am,tn
2An,tm

5@An ,Am#. ~2.8!

The modified KP hierarchy is obtained from~2.7! or from ~2.8!. For example, from~2.7! with
m52, 3, we have

u1,t2
52u2,x1u1,xx12u1u1,x , ~2.9a!

u2,t2
52u3,x1u2,xx12~u1u2!x , ~2.9b!

u3,t2
52u4,x1u3,xx12u1u3,x14u1,xu322u1,xxu2 , ~2.9c!

...,

u1,t3
53u3,x13u2,xx1u1,xxx16~u1u2!x13~u1u1,x!x13u1

2u1,x , ~2.10a!

u2,t3
53u4,x13u3,xx1u2,xxx16~u1u3!x13~u1u2,x!x16u2u2,x13~u1

2u2!x , ~2.10b!

....
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Eliminating u2 ,u3 from ~2.9a!, ~2.9b!, and ~2.10a!, we obtain the modified KP equation (u1

5u),6

ut3
5 1

4 uxxx2
3
2 u2ux1 3

2 ux]
21ut2

1 3
4 ]21ut2t2

. ~2.11!

Equation~2.11! can also be obtained from~2.8! with n52, m53.

III. NOTION OF THE K-CONSTRAINT

Let L be the pseudo-differential operator~1.2! andAm be the differential operator~2.1b!. Set
c5]21f* , then it satisfies

L̄c5hc, ~3.1a!

c tm
52Āmc, ~3.1b!

where

L̄5]21L* ], ~3.2a!

Ām5]21Am* ], ~3.2b!

in which operatorsL* andAm* denote the adjoint ofL andAm , respectively. The linear problem
~3.1! is called the generalized adjoint of~2.6!. Its compatibility condition is

L̄ tm
5@Ām ,L̄#, ~3.3!

or equivalently

Ām,tn
2Ān,tm

5@Ām ,Ān#. ~3.4!

After introducing the adjoint of~2.6!, we can turn to two kinds ofk reductions for the
modified KP system. The starting point of our method is to consider the more general
problem,

Lkf5lf, ~3.5a!

fm5Amf, ~3.5b!

for a fixed positive integerk andl5hk. If we impose the conditionLk5Ak or (Lk)250 upon
operatorLk, then the linear problem~3.5! becomes

Akf5lf, ~3.6a!

f tm
5Amf, mÞ0 ~modk!, ~3.6b!

and the modified KP hierarchy is reduced to the integrable system which is the compat
condition of ~3.6!. Whenk52, one obtains the modified KdV system.

In order to introduce the concept of another reduction, let us recall the linear problem
modified KP equation,7

f t2
5fxx12ufx , ~3.7a!

f t3
5fxxx13ufxx1

3
2 ~ux1u22]21ut2

!fx , ~3.7b!
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and its adjoint

c t2
52cxx12ucx , ~3.8a!

c t3
5cxxx23ucxx2

3
2 ~ux2u22]21ut2

!cx . ~3.8b!

If the potentialu is subject to the symmetry,

u5fc5qr, ~3.9!

wheref5q, c5r , for convenience, then~3.7a! and ~3.8a! become

qt2
5qxx12qrqx , ~3.10a!

r t2
52r xx12qrr x , ~3.10b!

which is the GNS equation with derivative coupling given by Chenet al. in Ref. 8. Also~3.7b! and
~3.8b! become

qt3
5qxxx13qrqxx13~qxr 1q2r 2!qx , ~3.11a!

r t3
5r xxx23qrr xx23~qrx2q2r 2!r x , ~3.11b!

which is the higher order equation of~3.10!. As a result, one can obtain the special solutions of
modified KP equation by solving both~3.10! and ~3.11!.

Substituting constraint~3.9! (u15u) into ~2.9!, and by using~3.10! and~3.11!, we can easily
obtain

u252qrx , u35qrxx , .... ~3.12!

In this way, the pseudo-differential operator~1.2! becomes

L5]1q]21r ], ~3.13!

and here the following formula

]21u5(
j 50

`

~21! j~] ju!]2( j 11) ~3.14!

is used. Conversely, withL given by ~3.13!, we construct the family of equations as

qtm
5Amq5~]1q]21r ]!1

mq, ~3.15a!

r tm
52Āmr 52~2]1r ]21q]!1

mr . ~3.15b!

It can be verified that form52,3, ~3.15! is just ~3.10! and ~3.11!. In Sec. IV we will prove the
coincidence of~3.15! with the whole GNS hierarchy with derivative coupling.

Expression~3.13! ~or L25q]21r ]! is named as the one constraint of the pseudo-differen
operatorL. The above idea can be extended to the operatorLk, which leads to the notion of thek
constraint.

Now we impose a general restraint onLk by

Lk5Ak1q]21r ] or ~Lk!25q]21r ], ~3.16!
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such that the coordinatesuk11 ,uk12 ,... in L can be expressed by the coordinat
u1 ,u2 ,...,uk ,q,r and their derivatives. Then we take the coupled linear problem,

Lkf5Akf1qc5lf, ~3.17a!

cx5rfx , ~3.17b!

and

f tm
5Amf, ~3.18a!

c tm
5Cmf, ~3.18b!

with a finite number of coordinatesu1 ,u2 ,...,uk , q, andr . Herel5hk andCm is the polynomial
in ] satisfying

]Cm5r ]Am2Āmr ]. ~3.19!

The compatibility conditions of~3.17a! and ~3.18a!, also ~3.17b! and ~3.18b! with ~3.19!, yield,
respectively,

Ltm
k 5@Am ,Lk# ~3.20a!

and

r tm
52Āmr . ~3.20b!

Substituting~3.16! into ~3.20a!, and comparing the coefficient of the functional term we have

qtm
5Amq, ~3.20c!

where formulas~3.14! and ~3.20b! are used. For the different time variables, the compatibi
conditions of~3.18a!, or ~3.18b!, are just Eq.~2.8!.

Expression~3.16! is called thek constraint of the pseudo-differential operatorL defined by
~1.2!. Whenq5r 50, ~3.16! is reduced toLk5Ak .

IV. ONE-CONSTRAINT AND RELATED EVOLUTION EQUATIONS

In this case, the pseudo-differential operatorL is in the form of ~3.13!, and the spectra
problem~3.17! can be written as

fx2lqc52l2f, ~4.1a!

2lcx5rfx , ~4.1b!

or equivalently

fx52l2f1lqc, ~4.2a!

cx5lrf2qrc. ~4.2b!

By letting

f5e2 1/2(l2x1]21qr)f1 , ~4.3a!

c5e2 1/2(l2x1]21qr)c1 , ~4.3b!
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~4.2! becomes

f1,x52 1
2 ~l22qr !f11lqc1 , ~4.4a!

c1,x5lrf11 1
2 ~l22qr !c1 . ~4.4b!

After replacing derivatives with respect tox by using~4.4! repeatedly, we can suppose the tim
evolution forf1 andc1 in ~3.18! with ~4.3! as follows:

f1,tn
5Af11Bc1 , ~4.5a!

c1,tn
5Cf12Ac1 , ~4.5b!

whereA, B, andC are polynomials inl. From the compatibility conditions of~4.4! and~4.5!, we
can obtain the evolution equations,

S q
r D

tn

5FnS q
2r D . ~4.6a!

Here,

F5S ]1qr1qx]
21r 2q]21r x qx]

21q1q]21qx

r x]
21r 1r ]21r x 2]1qr1r x]

21q2r ]21qx
D , ~4.6b!

and~4.6! is just the GNS hierarchy with the derivative coupling, while~4.4! is its standard spectra
problem. Whenn52,3, ~4.6! becomes~3.10! and ~3.11!.

In what follows, we shall verify that Eq.~3.15! obtained by one constraint coincides with th
hierarchy~4.6! indeed. To this end, we require two auxiliary formulas.

Lemma 1:Let the differential operatorAm be defined by~2.1b!, andĀm5]21Am* ], then

~q]21rAm!15q]21rAm1q]21Ām~]21r !]. ~4.7!

Proof: By use of~3.14!, we obtain easily

~q]21rAm!25S q(
j 51

m

]21rpm j~u!] j D
2

5q(
j 51

m

(
i 5 j

`

~21! i 21~] i 21rpm j~u!!] j 2 i

52q(
l 50

`

~21! l@] l~Ām]21r !#]2 l

52q]21Ām~]21r !]. ~4.8!

Therefore,~4.7! holds.
Lemma 2:Let q and r satisfy Eq.~3.20b! and ~3.20c!, then the functional termpm0(u) of

(Lm)2 in ~2.1c! can be expressed as

pm0~u!5]21~2qĀmr 1rAmq!. ~4.9!

Proof: In Eq. ~3.20a! with k51,
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Ltm
5@Am ,L#52@~Lm!2 ,L#, ~4.10!

by equating the functional term yields

u1tm
5~qr ! tm

5pm0,x~u!. ~4.11!

Inserting~3.20b! and ~3.20c! into ~4.11!, one can easily know that~4.9! holds.
Let us now return to verify the coincidence of~3.15! and ~4.6!.
For m51, the conclusion obviously holds. If it is also true for generalm, then form11 we

have

Am115@~]1q]21r ]!~Am1pm0~u!!#15]Am1qrAm1pm0~u!]2~q]21r xAm!1 . ~4.12!

By use of~4.7! and ~4.9! yields

Am11q5~]1qr1qx]
21r 2q]21r x!Amq2~qx]

21q1q]21qx!Āmr . ~4.13!

Similarly,

Ām11r 52~r x]
21r 1r ]21r x!Amq1~2]1qr1r x]

21q2r ]21qx!Āmr . ~4.14!

The above two equalities are just the desired coincidence form11.
We make the following remarks:

~1! If we chooser 51, then the one constraint is reduced to
L5]1q, ~4.15!

and the constrained Eq.~3.15! are reduced to

qtn
5~]1q!1

n q, ~4.16!

which is the Burgers hierarchy. In fact, its spectral problem is
fx1qf5lf, ~4.17!

so, ~4.16! can also be written as the following explicit formula:
qtn

5~]1q1qx]
21!nqx . ~4.18!

~2! Setting

f15e1/2]21qrf2 , c15e21/2]21qrc2 , ~4.19!

~4.4! becomes the Kaup–Newell~KN! spectral problem, so we can prove that two kinds
evolution equations@GNS hierarchy~4.6! and KN hierarchy9# associated with these spectral pro
lems are equivalent.

V. TWO-CONSTRAINT AND RELATION EVOLUTION EQUATIONS

In this case, the pseudo-differential operatorL2 takes the form,

L25]212u1]1q]21r ], ~5.1!

from which we find that the coordinatesu2 ,u3 ,... in L can be determined by the coordinatesu1 ,
q, r and theirx derivatives as

u252 1
2 ~u1,x1u1

22qr !, ~5.2a!

u35 1
4 ~u1,xx14u1u1,x12u1

322qru12qxr 23qrx!, ~5.2b!

....
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Consider the spectral problems given by

fxx12ufx1qc5lf, ~5.3a!

cx5rfx , ~5.3b!

whereu5u1 and l5h2. If we replace thex derivatives which are higher than one by~5.3a!
repeatedly, then the time evolution forf andc in ~3.18! can be written as

f tn
5Afx1Bf1Cc, ~5.4a!

c tn
5Dfx1Ef1Fc, ~5.4b!

whereA, B, C, D, E, andF are certain undetermined polynomials inl. The compatibility of
~5.3! and ~5.4! requires thatA,B,...,F satisfy (t5tn),

2ut1Axx22uAx2~2ux1qr !A12Bx12rCx1r xC1qD50, ~5.5a!

qt22qAx2qxA2qB1Cxx12uCx2qrC2lC1qF50, ~5.5b!

r t1rAx22ruA1rB1r 2C2Dx12uD2E2rF 50, ~5.5c!

and

2lAx1Bxx12uBx1lrC1qE50, ~5.6a!

lrA1rBx2lD2Ex50, ~5.6b!

qrA2rCx2qD1Fx50. ~5.6c!

From these equations one finds that allA,B,...,F can be taken as thenth-order polynomials. Let
aj ,bj ,...,f j be their coefficients ofln2 j , respectively, then by equating the same powers ofl in
~5.5! and ~5.6!, we obtain forbn5en50,

gt5uS an

cn

dn

D , ~5.7a!

S aj 11

cj 11

dj 11

D 5JuS aj

cj

dj

D ~ j 50,1,2,...,n21!, ~5.7b!

and

~a0 ,c0 ,d0!5~1,0,r !, ~5.7c!

where

g5~2u,q,r !T, ~5.8a!

u5S 2]212u]12ux1qr 22r ]2r x 2q

2q]1qx1q]21qr 2]222u]1q]21r x 2q]21q

2r ]12ur2r ]21qr 2r ]21r x ]22u1r ]21q
D , ~5.8b!
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J5
1

4 S 2~112]21u! 2]21r 2]21q

22q]21 24 0

2~r 12r x]
2112r ]21u! 2r ]21r 2r ]21q14]

D . ~5.8c!

The coefficientsbj ,ej ( j 50,1,...,n21) andf j ( j 50,1,...,n) can be determined byaj , cj , anddj

according to~5.5! and ~5.6!. From ~5.7!, the evolution equations with odd time variables can
given by

gt2n11
5Fngx , ~5.9!

where

F5uJ5~v i j !333 , ~5.10!

with

v115
1
4 ]21]qr]212]u]21u, v125

3
2 r ]1 1

2 r x1]u]21r ,

v1352 3
2 q]2 1

2 qx1]u]21q, v215
3
4 qx1 1

2 qxx]
212 1

2 qx]
21u1uqx]

21,

v225]212u]1qr2q]21r x1 1
2 qx]

21r , v235
1
2 qx]

21q1q]21qx ,

v3152 3
4 r x2 1

2 r xx]
212 1

2 r x]
21u1urx]

21, v325
1
2 r x]

21r 1r ]21r x ,

v335]222u]1qr2r ]21qx1 1
2 r x]

21q. ~5.11!

Especially, whenn50,1 we have

ut1
5ux , qt1

5qx , r t1
5r x , ~5.12!

and

ut3
5 1

4 uxxx2
3
2 u2ux1 3

2 ~uqr!x1 3
4 ~qxr 2qrx!x , ~5.13a!

qt3
5qxxx13uqxx1

3
2 ~ux1u21qr !qx , ~5.13b!

r t3
5r xxx23urxx2

3
2 ~ux2u22qr !r x . ~5.13c!

If one takes thatA, C, andD are thenth-order polynomials, whileB, E, andF, are then
11th-order polynomials inl, then the evolution equations with the even time variables can
deduced by comparing the coefficient’s method from~5.5! and ~5.6!,

gt2n
5Fnug0 , g052~0,q,r x!

T, ~5.14!

whereF andu are defined by~5.10! and ~5.8b!, respectively. Whenn50, Eq. ~5.14! becomes

ut2
5~qr !x , ~5.15a!

qt2
5qxx12uqx , ~5.15b!

r t2
52r xx12urx . ~5.15c!
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Similar to that in the one constraint, Eqs.~5.9! and ~5.14! obtained by linear problems~5.3!
and ~5.4! coincide with the equations defined by formula~3.20! for k52.

To our knowledge, the constrained Eqs.~5.9! and ~5.14! have not been reported in an
literature.
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Shear-free relativistic fluids and the absence of movable
branch points

R. G. Halburda)
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The problem of determining the metric for a nonstatic shear-free spherically sym-
metric fluid ~either charged or neutral! reduces to the problem of determining a
one-parameter family of solutions to a second-order ordinary differential equation
~ODE! containing two arbitrary functionsf andg. Choices forf andg are deter-
mined such that this ODE admits a one-parameter family of solutions that have
poles as their only movable singularities. This property is strictly weaker than the
Painlevéproperty and it is used to identify classes of solvable models. It is shown
that this procedure systematically generates many exact solutions including the
Vaidya metric, which does not arise from the standard Painleve´ analysis of the
second-order ODE. Interior solutions are matched to exterior Reissner–Nordstrøm
metrics. Some solutions given in terms of second Painleve´ transcendents are
described. ©2002 American Institute of Physics.@DOI: 10.1063/1.1455688#

I. INTRODUCTION

Several authors have shown that the problem of finding a nonstatic solution of the Eins
Maxwell equations for a shear-free spherically symmetric charged fluid is equivalent to the
lem of finding at-dependent solution to the equation

]2y~x,t !

]x2 5 f ~x!y2~x,t !1g~x!y3~x,t !, ~1!

where f and g are arbitrary functions ofx only1,2 ~see also Ref. 3 and the references there!.
Given a solutiony of Eq. ~1!, definer 5Ax, Y(r ,t)51/y(x,t), and

T~r ,t !5h~ t !
]

]t
ln y~r 2,t !, ~2!

whereh is an arbitrary nonvanishing function oft. In terms of these variables, the metric for th
fluid is given by

ds25T2~r ,t !dt22Y2~r ,t !$dr21r 2dV2%, ~3!

wheredV25du21sin2udf2 is the standard metric on the two-sphere. The densityr and pressure
p are given by

8pr53h22212xyx
2112yyx18x f y316xgy4, ~4!

8pp54y~y22xyx!
yxt

yt
112xyx

228yyx12xgy422h23ht

y

yt
23h22. ~5!

a!Electronic mail: r.g.halburd@lboro.ac.uk
19660022-2488/2002/43(4)/1966/14/$19.00 © 2002 American Institute of Physics
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The only nonvanishing components of the electromagnetic field are

F0152F1052h~ t !E~r !
]y

]t
,

whereE2(r )52xg(x).
Although y is a function of two variablesx and t, Eq. ~1! is essentially an ODE fory as a

function of x. As an ODE, the general solution of Eq.~1! contains two arbitrary constants. Th
general solution of Eq.~1! viewed as a partial differential equation~PDE! is obtained by replacing
these arbitrary constants with arbitrary functions oft. SinceT is a metric coefficient, it cannot be
identically zero, so from Eq.~2! we see thaty must have a nonconstantt-dependence. This lead
us to the problem of finding families of solutions to Eq.~1! viewed as an ODE which depend o
~at least! one parameter.

The connection between integrable systems~equations that are solvable, either explicitly
via a related linear problem! was first used by Kowlevskaya in her work on spinning tops.4,5 She
considered the equations of motion for a spinning top which depend on six parameters~the center
of mass and the moments of inertia!. Kowalevskaya noticed that in the known cases for which
equations could be integrated, the general solution was a meromorphic function of time
extended to the complex plane. She used local series analysis to determine all choices
parameters for which the general solution was a meromorphic function of time and found
set of values for the parameters for which she was then able to solve the equations in te
ratios of hyper-elliptic functions.

The requirement that all solutions are meromorphic throughout the complex plane m
replaced with the requirement that all solutions be meromorphic on the covering space ofC with
a discrete set of points removed. In this way, branching of solutions is allowed at fixed sing
ties ~singularities of the solutions that cannot occur at arbitrary locations in the complex plan
only at locations at which the equation itself is in some sense singular!. An ODE is said to posses
the Painleve´ property if all movable singularities of all solutions are poles. This property is clo
connected with the integrability~solvability! of the ODE. All ODEs that are known to possess t
Painlevéproperty are integrable, either explicitly in terms of classically known functions, or vi
associated linear problem. In particular, Painleve´, Gambier, and Fuchs classified all equations
the form

d2y

dx2 5FS x;y,
dy

dxD , ~6!

where F is rational in y and dy/dx and analytic inx, that have the Painleve´ property. They
showed that each such equation could be transformed via a change of independent variable
x-dependent Mo¨bius transformation ofy to 1 of 50 canonical equations. With the exception of
equations~the Painleve´ equationsPI –PVI! each of these canonical equations were solved in te
of classically known functions~see, e.g., Refs. 6 and 7!. The first two Painleve´ equations are

d2h

dz2 56h21z, ~7!

d2h

dz2 52h31zh1a, ~8!

wherea is an arbitrary complex constant. It was later shown that each Painleve´ equation is the
compatibility condition for a~linear! spectral problem. The Painleve´ equations are considered t
be integrable because of the underlying structure that emerges from these isomono
problems.7,8
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It is important to note that the transformation of one the equations of the form~6! that
possesses the Painleve´ property to one of the canonical forms is itself determined by the solut
of a system of differential equations. A weaker definition of the Painleve´ property is that all
solutions are single-valued about all movable singularities. However, for equations of the for~6!
this definition yields the same class of equations.

Shah and Vaidya,1 Wyman,9,10 Chatterjee,11 Maharaj, Leach, and Maartens12 and Srivastava13

have studied Eq.~1! to determine choices off and g for which the general solution has n
movable critical points. In particular, Wyman9 determined all choices off in the uncharged (g
50) case. In Ref. 14 the author found all choices off and g such that Eq.~1! possesses the
Painlevéproperty. In particular, we have the following.

Proposition 1.1: Equation (1) possesses the Painleve´ property (as an ODE in x ) if and only
if either

(1)

f ~x!56w5~z!, g~x!50, ~9!

where wÞ0 and v are any solutions of

d2v
dz2 56v21az1b/2, ~10!

d2w

dz2 512vw, ~11!

where a, b are constants and z is given by

x5E w22~z!dz, ~12!

or
(2)

f ~x!56v~z!w5~z!, g~x!52w6~z!, ~13!

where wÞ0 and v are any solutions of

d2v
dz2 52v31~az1b!v1c/2, ~14!

d2w

dz2 5~6v21az1b!w, ~15!

where a, b, c are constants and z is given by Eq. (12).
Furthermore, in both the above cases, the general solution of Eq. (1) is given by

y~x,t !5
u~z,t !2v~z!

w~z!
, ~16!

where u (in which t is treated as a parameter) is the general solution of the same second
equation asv [i.e., in case 1, u(z,t0), where t0 is a constant, solves Eq. (10) and in case 2
solves Eq. (14)].

Note that Eq.~11! @resp. ~15!# is the linearization of Eq.~10! @resp. ~14!#. So if v(z)
5V(z;e) is a one-parameter family of solutions to Eq.~10! @resp.~14!#, thenw(z)ªVe(z;e) is a
solution to Eq.~11! @resp. ~15!#. A second independent solution to Eq.~11! @resp. ~15!# then
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follows by reduction of order. Equation~12! shows thatx5ŵ(z)/w(z), where ŵ is a second
solution of Eq.~11! @resp.~15!# satisfying the Wronskian conditionW(w,ŵ)5wŵz2ŵwz51.

If a50, then the general solution to Eq.~10! @resp.~14!# can be given explicitly in terms o
elliptic functions. In particular, the case in whicha50 and the fixed solutionv of Eq. ~14! is a
constant corresponds to the large class of solutions found by Sussman.15 In fact, most of the
solutions that have appeared in the literature to date are special cases of Sussman’s solutio
case in whichv is not constant is solved explicitly in Ref. 14. IfaÞ0, then Eq.~10! @resp.~14!#
can be mapped to Eq.~7! @resp.~8!#. A class of solutions to Eq.~1! corresponding to the Airy
function solutions to Eq.~8! is also described in Ref. 14.

Recall that we wish to find one-parameter families of solutions to Eq.~1!. When f andg are
chosen so that Eq.~1! possesses the Painleve´ property then the equation is integrable and we c
find a two-parameter family of solutions. In the present article a property, weaker than the
levé property but still complex-analytic in nature, is considered. Namely, we wish to find
one-parameter families of solutionsF to Eq.~1! such that all movable singularities of all solution
in F are poles. In Sec. II we will find all solutions to Eq.~1! that are simultaneously solutions o
a Riccati equation. This class of solutions contains the well-known solutions due to Sha
Vaidya,16 which does not arise in a regular Painleve´ analysis of Eq.~1!. A class of solutions that
generalizes that due to Shah and Vaidya which is given in terms of solutions to linear equat
also derived.

Sections III and IV address the question of whether the solutions found in Sec. II exhau
set of all one-parameter families of solutionsF described above. In Sec. V, boundary conditio
are determined such that the Riccati solutions can be matched to the Reissner–Nordstrøm
solution. In Sec. VI we find solutions to Eq.~1! corresponding toaÞ0 but v[0 in Eq. ~14!. In
this case the general solution to Eq.~15! is given in terms of Airy functions. From this solution
families of solutions are obtained using the Ba¨cklund transformation of the second Painle´
equation.

II. RICCATI SOLUTIONS

One way of finding a one-parameter family of solutions to Eq.~1! such that the only movable
singularities are poles is to find a family of solutions that are also solutions of a first-o
equation of Painleve´ type. In this section, solutions to Eq.~1! are found that are also solutions
a first-order differential equation of the form

dy

dx
5R~x,y!, ~17!

whereR is rational iny and locally analytic inx. Fuchs17 showed that the only equation of th
form ~17! with the Painleve´ property is the Riccati equation,

dy

dx
5a~x!y21b~x!y1g~x!, ~18!

wherea, b, andg are~locally! analytic functions ofx. The general solution of Eq.~18! is given
by

y~x!52
1

a~x!

d

dx
ln F~x!,

whereF is the general solution of the linear equation

d2F

dx2 2S b1
ax

a D dF

dx
1ag F50. ~19!
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Differentiating Eq.~18! with respect tox and again using Eq.~18! to eliminatedy/dx in the
resulting expression gives

d2y

dx2 52a2y31~ax13ab!y21~bx1b212ag!y1~gx1bg!. ~20!

It follows that every solution of Eq.~18! is a solution of Eq.~1! if and only if the equations

gx1bg50, ~21!

bx1b212ag50, ~22!

ax13ab5 f , ~23!

2a25g, ~24!

are satisfied.
Solving Eqs.~21!–~24! gives three classes of Riccati equations.
Case 1:b[0, g[0. The Riccati equation~18! becomes

dy

dx
5ay2,

which has the general solution

y~x,t !5
1

H~x!1G~ t !
, ~25!

whereH8(x)52a(x) andG is an arbitrary function oft.
Case 2:bÓ0, g[0. The Riccati equation~18! becomes

dy

dx
5ay21

1

x1C
y,

whereC is an arbitrary constant, which has the general solution

y~x,t !5H x

H~x!1G~ t !
, H8~x!52xa~x!, if C50,

11kx/4

H~x!1G~ t !
, H8~x!52~11kx/4!a~x!, if C54/kÞ0,

~26!

whereG is an arbitrary function oft.
Case 3:gÓ0. The Riccati equation~18! becomes

dy

dx
1

1

2
~g21!xxy

21
g8

g
y2g50. ~27!

In Sec. V, these Riccati solutions will be matched to an external Reissner–Nordstrøm met
Note that Eq.~25! corresponds to settingk50 in Eq. ~26b!. Under the transformation

r̃ 5
r

11kr2/4

~recall x5r 2! the solutions corresponding to Eq.~26b! give rise to the metric
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ds25@F~ r̃ !1G~ t !#22dt22@F~ r̃ !1G~ t !#2F dr̃2

12kr̃2 1 r̃ 2dV2G , ~28!

whereF( r̃ )5H(r 2) and we have seth(t)51/Ġ(t). The metric~28! was obtained by Shah an
Vaidya.16 This metric does not arise from the standard Painleve´ analysis of Eq.~1!.

Solutions found in this section will be referred to as Riccati solutions.

III. LOCAL SERIES ANALYSIS

In this section we will analyze Eq.~1! as an ODE in the complex domain. In particular, w
will determine necessary conditions that Eq.~1! possesses a one-parameter family of Laur
series solutions. We begin by considering the case in whichg50. Under the transformation~16!
in which w is given by Eq.~9!, v is given by Eq.~11!, andz is given implicitly by Eq.~12!, Eq.
~1! becomes

d2u

dz2 56u21A~z!, ~29!

where

A~z!5
d2v
dz2 26v2.

We will only consider a one-parameter family of solutionsG such that there exists an ope
connected bounded setVPC such that at each pointz0PV there is a functionuPG with a pole
at z5z0 . We will now find a necessary condition on the functionA such that Eq.~29! admits a
formal Laurent series solution with a pole at a pointz0PV, whereA is analytic. Substituting the
Laurent series

u~z!5 (
n50

`

an~z2z0!n2p, ~30!

wherep is a positive integer anda0Þ0, into Eq.~29! gives, to leading order,

p~p11!a0~z2z0!2(p12)1...56a0
2~z2z0!22p1... .

Equating the powers and coefficients of these leading-order terms gives

p52, a051. ~31!

Using Eqs.~30! and ~31! in Eq. ~29! and equating coefficients of like powers ofz2z0 gives

~n11!~n26!an5Pn~a0 ,a1 ,...,an21!, ~32!

where

Pn~a0 ,a1 ,...,an21!56 (
m51

n21

aman2m1an~z0!,

and

an~z0!5H 0, n,4,

A(n24)~z0!

~n24!!
, n>4,
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is polynomial in its arguments and we have expandedA as a power series aboutz5z0 . The
recurrence relation~32! shows thatan is uniquely determined in terms of$a0 ,...,an21%, except in
the case whenn56. In this case, the left side of Eq.~32! vanishes while the right side is a know
function of (a0 ,...,a5). If the right side does not vanish, then there is no solution to Eq.~29! with
a pole of any order atz5z0 . If the right side of Eq.~32! does vanish, then a formal Laurent seri
solution exists in whichz0 anda6 are arbitrary constants. A direct calculation shows that the r
side of Eq.~32! vanishes if and only if

A9~z0!50. ~33!

Now since Eq.~33! must be satisfied for allz0 in the open setV, this implies thatA(z)5az
1b/2, for some constantsa andb. So, we reproduce precisely those solutions given in case
Proposition 1.1.

Now we consider the local series analysis of Eq.~1! when g is not identically zero. In
particular,g does not vanish identically onV. From Sec. 2 we see that the requirement that th
is a one-parameter family of solutions such that all movable singularities are poles yields
solutions than requiring that Eq.~1! possesses the Painleve´ property.

Let v and w be defined by Eq.~13! wherez is given by Eq.~12!. @Note that we are not
assuming that Eqs.~14! and ~15! hold.# The transformation~16! gives

d2u

dz2 52u31B~z!u1C~z!, ~34!

where

B~z!5
wzz

w
26v2, C~z!5vzz2vB~z!22v3.

We now look for a local Laurent series solution to Eq.~34! with a pole atz5z0PV. Leading
order analysis shows that any such solutionu must have a simple pole atz5z0 with residue61.
Hence we substitute the series

u~z!5 (
n50

`

an~z2z0!n21, a05«561,

into Eq. ~34! and equate coefficients of like powers ofz2z0 to obtain the recurrence relation

~n11!~n24!an5Qn~a0 ,...,an21!, ~35!

where

Qn~a0 ,...,an21!52F (
m50

n

(
m850

n2m

amam8an2m2m823anG1bn~z0!1gn~z0!,

and

bn~z0!5H 0, n,2,

(
m50

n22
B(n2m22)~z0!

~n2m22!!
am , n>2,

g~z0!5H 0, n,3,

C(n23)~z0!

~n23!!
, n>3.

Note that Q is polynomial in its arguments. The left side of Eq.~35! shows that a necessary an
sufficient condition for the existence of a formal Laurent series solution with a pole atz5z0 is
Q4(a0 ,a1 ,a2 ,a3)50, which is equivalent toB9(z0)522«C8(z0), where«5615a0 .
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Now the general solution of Eq.~34! will have movable singularities with leading orde
behaviors that include both11 and21 residue poles~although, in general, these solutions w
not be meromorphic and the Laurent series will have to be augmented by logarithm terms!. So if
we demand that all movable singularities of all solutions are poles@i.e., if we demand that Eq.~34!
possess the Painleve´ property#, then B9(z0)528C(z0) and B9(z0)522C8(z0), for all z0PV,
leading toB(z)5az1b, andC(z)5c/2, wherea, b, andc are arbitrary constants. Sou satisfies
Eq. ~14!.

Rather than demand that all movable singularities of all solutions of Eq.~34! are poles, we
restrict our consideration to a subset of solutionsG such that given anyz0PV, there is a solution
in G with a pole atz5z0 . The above analysis shows that either we are left with Eq.~14! or we
must consider the class of solutions where all movable singularities are poles and all but a
number of these poles inv have the same residue«561. A necessary condition in this case is th
differential equationB9(z)522«C8(z). In terms ofq(z)ªB(z)/2, we now restrict ourselves to
the study of the subset of solutions to the equation

d2u

dz2 52u312qu1~k2«qz!, «561, ~36!

wherek is an arbitrary constant, that admit only poles with residue« in V.

IV. THE UNIQUENESS OF THE RICCATI SOLUTIONS

The only Riccati equation for which all solutionsu are also solutions of Eq.~36! is

du

dz
1«~u21q!50, k50. ~37!

The general solution of equation~37! is given by

u5«
d

dz
ln F, ~38!

whereF is the general solution of the linear equation

d2 F

dz2 1q F50. ~39!

We will show that these Riccati type solutions are identical to those found in Sec. II. All mov
singularities of any solution to Eq.~37! are simple poles with residue«. So the general solution to
Eq. ~37! is a one-parameter family of solutions to Eq.~36! of the kind considered at the end of th
previous section. The perturbation argument described below suggests that this is the on
one-parameter family. We will then provide a proof based on Wiman–Valiron theory for the
in which q is a polynomial. Wiman–Valiron theory is particularly useful for finding entire so
tions of analytic differential equations.18

We will now show how the Riccati equations derived in Sec. II are related to the solutio
Eq. ~36! described at the end of Sec. III. It may be verified that the identity

w~uz1«@u21q# !5yx1«w3y21w~wz12«vw!y1w~vz1«@v21q# ! ~40!

follows from Eqs.~12! and ~16!. Furthermore, given Eqs.~12! and ~13!, wherev andw satisfy

vzz52v312qv2«qz ~41!

and
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wzz5~6v212q!w, ~42!

respectively, it can be shown that Eqs.~21!–~24! are equivalent to

a52«w3, ~43!

b52w~wz12«vw!, ~44!

g52w~vz1«@v21q# !. ~45!

Equations~40! and~43!-~45! show that the Riccati solutions found in Sec. II are the same as t
constructed using~16! whereu is the general solution of Eq.~37! andv, w satisfy Eqs.~41! and
~42!, respectively. It is interesting to note that the solution by Shah and Vaidya discussed i
II corresponds to the case in whichv also satisfies the Ricatti equation~37!. ThegÞ0 case~case
3 in Sec. II! corresponds to a non-Ricatti solutionv of Eq. ~41! ~althoughu still satisfies a Riccati
equation!.

Next we address the question of whether the classG consists only of Riccati solutions
Consider Eq.~36! with q(z)5q01hQ(z), where q0 is a complex constant andh is a small
complex parameter. To leading order inh, Eq. ~36! is

d2u

dz2 52u312q0u1k.

If u is not constant, then

S du

dzD
2

5u412q0u212ku1C, ~46!

whereC is an integration constant. The nonconstant solutions of Eq.~46! are elliptic functions
with simple poles of residue61. The only solutions with poles of residue«561 but no poles of
residue2«571 correspond to the case in whichk50 andC5q0

2 in which case Eq.~46! factors
into two Riccati equations andu satisfies

du

dz
1«~u21q0!50.

The arguments given above assume that the one-parameter family of solutionsG have poles in
an open setV. In the following we show rigorously that we have found all one-parameter fam
of solutions that have only poles as their movable singularities under the assumption thatq is a
polynomial.

Consider the system of first-order equations

du

dz
5ũ2«u22«q, ~47!

dũ

dz
5k12«uũ. ~48!

Differentiating Eq.~47! with respect toz and using Eq.~48! to eliminatedũ/dz gives Eq.~36!. We
wish to show that if there is a one-parameter family of solutionsu having only movable poles with
residue«, thenũ is identically zero. Note that ifũ is identically zero, then Eq.~47! becomes Eq.
~37! and Eq.~48! implies thatk50. If ũ does not vanish identically, then we can solve Eq.~48!
for u and substitute it into Eq.~47! to give
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2ũ
d2ũ

dz2 5S dũ

dzD
2

14ũ2~«ũ2q!2k2. ~49!

We will prove the following.
Proposition 4.1: If q is a polynomial, then either any entire solution of Eq. (49) is a cons

or

q5q01q1z1q2z2,

where

q1
224q0q25k2 ~50!

and

ũ5«q. ~51!

Note that ifũ is one of the solutions given in Proposition 4.1 butũÓ0, then sinceũ contains
no free parameters~i.e., no parameters other than those in the equation itself! u is given by Eq.
~48! and so does not represent a one-parameter family of solutions to Eq.~36!.

Proof: We will begin by showing that any polynomial solution of Eq.~49! is either a constan
or the solution~51!. We will then use the central index from Wiman–Valiron theory to show t
there are no transcendental~i.e., nonpolynomial! solutions.

Let q andũ be polynomials of degreeM andN, respectively. Furthermore, we assume thaũ
is not constant~i.e., N>1 andãNÞ0!. Thenq and ũ have expansions of the form

q~z!5 (
m50

M

qmzm, ũ~z!5 (
n50

N

ãnzn. ~52!

Substituting the expansions~52! into Eq. ~49! and balancing the dominant terms for largez gives
M5N. Equation~49! then becomes

(
i , j 50

N

i ~2i 2 j 22!ãi ã jz
i 1 j 221k25 (

i , j ,k50

N

4ãi ã j~«ãk2qk!z
i 1 j 1k. ~53!

Now the polynomial on the left side of Eq.~53! is of degree at most 2N22 while the degree of
the polynomial on the right side is of degree at most 3N. SinceãNÞ0, then the coefficient ofz3N

in Eq. ~49! gives ãN5«qN . Arguing by induction, equating the coefficients
z3M21,z3M22,...,z2N11 to zero givesãN2n5«qN2n , n51,...,N. Henceũ5«q and the right side
of Eq. ~53! vanishes identically. On equating all coefficients of powers ofz to zero on the left side
of Eq. ~49! we find thatN52 andq0 , q1 , andq2 satisfy Eq.~50!.

Now we will use Wiman–Valiron theory to show that all entire solutions to Eq.~49! are
polynomials. Sinceũ is entire it has an expansion of the form

ũ~z!5 (
n50

`

ãnzn.

The central indexn(r ,ũ) is the greatest non-negative integerm such that

uãmur m5max
n>0

uãnur n.

If ũ is nonpolynomial, thenn(r ,ũ) is increasing, piecewise constant, right-continuous, and te
to 1` as r→1`.
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In terms of the central index we have the following lemma~see, e.g., Ref. 19!.
Lemma 4.2: Let u˜ be a nonpolynomial entire function, andn5n(r ,ũ) be its central index. Let

0,d,1/4 and z be such thatuzu5r and

uũ~z!u.n~r ,ũ!2 ~1/4! 1dmax
uzu5r

uũ~z!u ~54!

holds. Then there exists a set F,R of finite logarithmic measure, i.e., *Fdt/t,1` such that

ũ(m)~z!5S n~r ,ũ!

z D m

~11o~1!!ũ~z! ~55!

holds for all m>0 and r¹F.
Lemma 4.2 says that for all positiver outside of the setF ~which has finite logarithmic

measure!, the estimate~55! holds near the maximum ofuũu on the circleuzu5r @where ‘‘near the
maximum’’ means the set ofz satisfying Eq.~54!#.

Assume that there is a nonpolynomial solutionũ of Eq. ~49!. Applying the estimate~55! to Eq.
~49! gives

S n~r ,ũ!

z D 2

ũ2;4«ũ3. ~56!

Sincen(r ,ũ) grows much slower thanũ,20 it follows that Eq.~56! cannot be balanced. Thus th
only entire solutions to Eq.~49! are polynomials. j

V. BOUNDARY CONDITIONS FOR THE RICCATI SOLUTIONS

In this section we will match the Riccati solutions introduced in Sec. II to an exte
Reissner–Nordstrøm metric

ds25Ĝd t̂22Ĝ21dr̂22 r̂ 2dV2, ~57!

wheredV2 is the standard metric on the two-sphere and

Ĝ512
2m

r̂
1

4pe2

r̂ 2 ,

and m and e are constants. LetS0 be the interfacer 5r 0 between the two solutions. The tw
metrics~3! and ~57! can be matched acrossS0 provided

p~r 0 ,t !50, ~58!

g~r 0
2!52pS e

r 0
3D 2

, ~59!

2m5F4pe2

r
y1

r 3

h2y3 12
r 2

y2 yr2
r 3

y3 yr
2G

r 5r 0

, ~60!

for all t.2

Equation~59! is equivalent to

a2~r 0
2!5pS e

r 0
3D 2

. ~61!

Using Eq.~18! to eliminateyx andyxt5(2ay1b)yt from Eq. ~5! gives
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8pp54$~b212ag!x2b!y212g~2bx21!y13xg2%23h2222h23ht

y

yt
. ~62!

Using Eq.~18! to eliminateyr52ryx from Eq. ~60! and using Eq.~62! in Eq. ~58!, we see that
Eqs.~58! and ~60! are equivalent to

h22~ t !54F r 2g1g~2r 2b21!y1$~b212ag!r 22b%y21S m

2r 3 12r 2ab2a D y3G
r 5r 0

. ~63!

A. Dust solutions

Settingp identically zero in Eq.~62! and solving forh22 gives

h2254@xg1g~2xb21!y1$~b212ag!x2b%y21dy3#, ~64!

whered is a function ofx only. Recall thath is a function oft only. Differentiating Eq.~64! with
respect tox and using Eqs.~21! and ~22! gives

3ady21$dx13bd12a@~b212ag!x2b#%y1g$2xax13@a1d#%50, ~65!

for all t. Sincey must have nonconstantt-dependence, the coefficients of different powers ofy in
Eq. ~65! must vanish identically. Ifa50, theng50 and there are no Riccati solutions. Therefo
the coefficient ofy2 in Eq. ~65! shows thatd is identically zero. The constant term in Eq.~65!
shows that eitherg[0 or a(x)5kx23/2, wherek is a constant.

If g50, then the coefficient ofy in Eq. ~65! shows that eitherb50 or b51/x. These
solutions correspond to the solutions~25! and ~26!, respectively. Finally, ifgÓ0 andaÓ0, then
recall from Sec. II~case 3! that for any Riccati solution we must havea52(g21)xx and b
52gx /g. It follows that the coefficient ofy and the constant term in Eq.~65! cannot both vanish
identically.

VI. BÄCKLUND TRANSFORMATIONS AND SPECIAL SOLUTIONS

In this section we will construct what is perhaps the simplest solution of Eq.~1! involving a
genuine transcendent of the second Painleve´ equation. It is simple in the sense that we have
explicit formula for the dependence ofx on z. We will then use the well-known Ba¨cklund
transformation of the second Painleve´ equation to construct a countable family of equations of
form ~1! together with their general solutions in terms of second Painleve´ transcendents.

If aÞ0, then, after rescalingz andv, Eqs.~14! and ~15! become

d2v
dz2 52v31zv1a, ~66!

d2w

dz2 5~6v21z!w, ~67!

where a is an arbitrary constant. Equation~66! is the standard form of the second Painle´
equation. We will denote the general solution of Eq.~66! by v(z)5PII (z;a;c1 ,c2), wherec1 and
c2 are independent parameters~e.g.,c15v(0) andc25v8(0)).

Recall that, apart from the solution due to Shah and Vaidya@~Eq. ~28!#, many of the solutions
that appear in the literature are special cases of the solutions of Sussman,15 which correspond to
the special case of Proposition 1.1 in whicha50 andv is a constant. Note that ifaÞ0, then Eq.
~66! @which is a rescaled version of Eq.~14!# admits a constant solution if and only ifa50. In this
case the constant solution isv[0, which is equivalent to the casef [0.

If v[0, then Eq.~67! has the general solution
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w~z!5mAi ~z!1nBi~z!,

where Ai and Bi are the Airy functions andm andn are arbitrary constants which are not both ze
From Eq.~12! we have

x5p
rAi ~z!1sBi~z!

mAi ~z!1nBi~z!
,

where r and s are arbitrary constants satisfyingms2nr51. @Note the identity Ai(z)Bi8(z)
2Bi(z)Ai 8(z)5p21.# In particular, choosingm5s51 and n5r50, we see that the genera
solution ofyxx5Bi6(z)y3 is

y~x!5
PII ~z;0;c1 ,c2!

Bi~z!
,

wherec1 andc2 are arbitrary constants~or functions oft, viewing the equation as a PDE! andz
is given by

Bi~z!

Ai ~z!
5

x

p
.

Now we will see how to generate other solutions from thev50 case just described. Letv be
a solution of Eq.~66! whereaÞ2 1

2. Then it is well known21 that

ṽª2v2
112a

2vz12v21z
~68!

satisfies Eq.~66! with a replaced bya11. Equation~68! is the standard Ba¨cklund transformation
of Eq. ~66!. Let V(z;e) be a one-parameter~i.e., e! family of solutions to Eq.~66!. Since Eq.~67!
is the linearization of Eq.~66!, it follows thatW(z;e)ªVe(z;e) is a solution to Eq.~67!. Substi-
tuting v5V(z;e) into Eq. ~68! and differentiating with respect toe shows that

w̃ª2w12~112a!
wz12vw

~2vz12v21z!2 ~69!

satisfies Eq.~67! with v replaced byṽ, wheneverw satisfies Eq.~67!.
Applying the Bäcklund transformations~68! and ~69! to v(z)50, w(z)5Ai( z), described

above, yieldsṽ(z)52z21 and w̃(z)52z22Ai 8(z)2Ai( z). It follows that

y~x!5
z2PII ~z;1;c1 ,c2!1z

2Ai8~z!2z2Ai ~z!

is the general solution of Eq.~1! with f (x)56ṽ(z)w̃5(z) andg(x)52w̃6(z), where

2Bi8~z!2z2Bi~z!

2Ai8~z!2z2Ai ~z!
5

x

p
.

Repeated application of the Ba¨cklund transformations~68! and ~69! will generate a countable
family of equations of the form~1! and solutions in whichv is a rational function ofz andw is
a rational function ofz, the Airy functions Ai and Bi and their first derivatives.

VII. DISCUSSION

The search for metrics modeling nonstatic shear-free spherically symmetric charged
naturally leads to the problem of finding one-parameter families of solutions to Eq.~1!. The
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Painlevéproperty is a very powerful detector of the integrability of ODEs. Indeed, most of
solutions to Eq.~1! that have appeared in the literature to date arise naturally from the Pai´
analysis of Eq.~1! ~see Ref. 14!. However, since Eq.~1! is second-order while we only require
one-parameter family of solutions, it is not necessary for us to describe the general solution
this point of view, requiring the Painleve´ property is too restrictive.

In this article we have considered the problem of determining one-parameter famili
solutions to Eq.~1! whose only movable singularities are poles. Besides the solutions cover
Proposition 1.1@which corresponds to the cases in which Eq.~1! possesses the full Painlev´
property# we found one-parameter families of solutions that satisfy Riccati equations. In parti
this class of solutions contains those of Shah and Vaidya, which do not arise in the sta
Painlevéanalysis of Eq.~1!. The procedure for matching the Riccati solutions to an exte
Reissner–Nordstrøm metric was also described.

Finally, a special subclass of solutions that arise in Proposition 1.1 were described. In ge
when aÞ0, the transformation betweenx and z involves derivatives of a second Painleve´ tran-
scendent. In the class of solutions described in Sec. VI,v, w, andx are given explicitly in terms
of Airy functions and there first derivatives—onlyu is a genuine Painleve´ transcendent. Presum
ably this is the simplest class of solutions characterized by Proposition 2 that contains a g
Painlevétranscendent.
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Associated Lame´ and various other new classes of elliptic
potentials from sl „2,R… and related orthogonal
polynomials

Asish Gangulya)

Department of Applied Mathematics, University of Calcutta,
92 Acharya Prafulla Chandra Road, Kolkata-700009, India
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Using representations of sl~2,R! generators which yield associated Lame´ Hamilto-
nians we obtain new classes of elliptic potentials. We explicitly calculate eigen-
states and spectra for these potentials and construct the associated orthogonal poly-
nomials. We show that in the proper limit these potentials reduce to well-known
exactly solvable potentials. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1455687#

I. INTRODUCTION

The study of band-edge energies and wave functions for the class of periodic potentials
an important role in quantum mechanics.1–6 Recently, it was shown1 within the framework of
supersymmetric quantum mechanics2 that the bosonic and fermionic sectors for a periodic sup
potentialW(x) possess an identical spectra~including the zero mode! provided*periodW(x) dx
50. A wide class of solvable periodic potentials was obtained3 by applying supersymmetry trans
formations on Lame´ and associated Lame´ equation,7,8 and it turned out that the superpartners
Lamépotentials are not physically identical except for some particular cases. On the other
periodic potentials belonging to the quasi-exactly solvable~QES! class have also been well studie
in the literature.9–19 It is useful to note that an early treatment on the noncompact sl~2,R! Lie-
algebraic scheme is due to Turbiner who formulated the basics of this formalism, gave th
classification of one-dimensional QES, and proposed multidimensional generalizations. Ind
Ref. 12 the connection between one-dimensional QES problems and the sl~2,R! algebra was
discovered~see also the review by Shifman13!. Later in this formalism Lame´ equation was
algebraized14,15for integer as well as half-integer values of the potential parameter. Here it ma
mentioned that a connection of periodic QES Hamiltonian within a compact Lie-algebrai
proach was made by Alhassidet al.16 by expressing the Hamiltonian as a quadratic in su~2!
generators.

Recently we have proposed17 an algebraization of the associated Lame´ equation, namely

2c9~x!1@m~m11!sn2x1 l ~ l 11!cn2x/dn2x#k2c~x!5Ec~x! ~1.1!

for m, l PR and ~m,l! lying in at least one algebraic line~AL ! in the m-l plane. Heresnx
[sn(x,k), cnx[cn(x,k), dnx[dn(x,k) are three Jacobian elliptic functions of real modul
k(0,k2,1) andk82512k2 is the complementary modulus. An associated Lame´ equation pro-
vides a more general class of periodic potentials due to the presence of two parametersm,l and
reduces to an ordinary Lame´ equation when either ofl andm takes the value 0 or21. The explicit
solutions were obtained by us for two cases:~i! m, l are both non-negative integers and~ii ! m is a
half-integer andl is an integer or half-integer. One of the aims of the present work is to extend
method of algebraization to the third new case whenm is an integer butl is a half-integer. To the

a!Electronic mail: asish@cucc.ernet.in, gangulyasish@rediffmail.com
19800022-2488/2002/43(4)/1980/20/$19.00 © 2002 American Institute of Physics
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best of our knowledge, our solutions of associated Lame´ equation for integer and half-intege
combinations of the parametersm and l are new. We also generate two new classes of elli
potentials and discuss their implications to the exactly solvable class. We also calculate ban
eigenstates and energies for these new potentials.

The organization of the article is as follows. In Sec. II we discuss the basic metho
generating a wide range of families of elliptic potentials within sl~2,R!, thereby obtaining three
new classes of potentials. In Sec. III we algebraize the associated Lame´ equation as a special cas
of one of them and make a systematic analysis to find the effective combination of two param
m andl. Section IV is devoted to the construction of associated orthogonal polynomials. In S
the solutions of associated Lame´ equations are obtained for various values ofm andl. Several new
solutions are obtained here. In Sec. VI we calculate band-edge eigenstates and spectra for
new classes of potentials obtained in Sec. II and show their connection to the known e
solvable potentials. Finally, our conclusions are presented in Sec. VII.

II. VARIOUS FAMILIES OF ELLIPTIC POTENTIALS GENERATED BY sl „2,R… ALGEBRA

QES models have been studied mainly from the point of view of two approaches.
approach is to find out a suitable Lie-algebraic representation of a QES Hamiltonian12,13 and then
to compute a finite part of the spectrum by diagonalizing a matrix having finite block structu
slight variation of this approach has been proposed in Ref. 19 where a class of QES r
potentials with normalizable zero energy state is generated from standard so~2,1! representation of
an exactly solvable model through a suitable coordinate transformation. Another approac
suggested by Bender and Dunne,20,21 is to generate an orthogonal family of polynomials$Pj (E)%
in the energy variableE and then to find the roots of a critical polynomialPn(E) ~wheren is some
positive integer! giving the energy eigenvalues of the QES Hamiltonian. In fact, the existenc
such a critical polynomial is evidence for a Hamiltonian to be QES.

Let us briefly recall the basic setup within an sl~2,R! Lie algebra to generate the Schro¨dinger
potential. The sl~2,R! algebra is governed by the commutation relations

@T1, T#522T0, @T0, T6#56T6, ~2.1!

where the three generatorsT6, T0 may be realized as

T15j2]j2nj, T05j]j2 1
2n, T25]j , ~2.2!

n being a non-negative integer. These generators act on polynomials in real variablej of degree
<n.

The gauged Hamiltonian is taken as general quadratic combination of the generators
form

HG52 (
a,b50,6

CabT
aTb2 (

a50,6
CaTa2d, ~2.3!

which, using~2.2!, can be expressed as

HG~j!52(
j 52

4

Bj~j!]j
j 22. ~2.4!

Bj (j) are thej th degree polynomials inj given by
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B4~j!5C11j412C10j31C00j
212C02j1C22 ,

B3~j!52~12n!C11j31$3~12n!C101C1%j21$~12n!C001C0%j1~12n!C021C2 ,
~2.5!

B2~j!5n~n21!C11j21n$~n21!C102C1%j1
n2

4
C002

1

2
nC01d.

Here the numerical parametersCi j ( i , j 50,6) are symmetric withC125C2150 and d is a
suitably chosen constant.

Let us now convertHG to the form

HG~x!52]x
21

B8422B3

2AB4
U

j5j~x!

]x2B2uj5j~x! , ~2.6!

through a coordinate transformation

x~j!5E j dt

AB4~t!
, ~2.7!

where the prime denotes derivative with respect toj.
Now the Schro¨dinger Hamiltonian with potentialV(x),

H~x!c~x![@2]x
21V~x!#c~x!5Ec~x!, ~2.8!

can be gauge transformed to the form

HG~x!x~x![F2]x
212A]x1

dA
dx

2A21VGx~x!5Ex~x!, ~2.9!

through an imaginary phase transformation

c~x!5e2*A~x! dxx~x!. ~2.10!

Comparing Eqs.~2.6! and ~2.9!, the potentialV(x) is obtained as

V~x!5A22
dA
dx

2B2U
j5j~x!

, ~2.11!

where the gauge functionA(x) is

A~x!5
B4822B3

4AB4
U

j5j~x!

. ~2.12!

The Schro¨dinger potentialV(x) can be written in terms ofBj (j) in the following form:

V~x!5F ~B4822B3!~3B4822B3!

16B4
2

1

4
~B4922B3814B2!GU

j5j~x!

. ~2.13!

It is clear that the polynomialB4(j) determines the functional relation betweenj and x
through Eq.~2.7!. Table I contains all 12 forms ofB4(j) which relatej to x through the elliptic
functions.22,23 Since our goal is to generate elliptic potentials these forms will facilitate
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purpose. Note that onceB4 is chosen, Eq.~2.13! gives various families of elliptic potential
containing four parametersC1 , C2 , C0 , andn. In particular, for the transformation 1 of Table
we get a new class of periodic potentials

V~x!5Psn2x1Qsnxcnx1R
snx cnx

dn2x
1S

cn2x

dn2x
, ~2.14!

where

P5
k2

4
n~n12!2

C0

2
~n11!1

1

4k2 @C0
22~C12C2!2#,

Q5
1

2k2 ~C12C2!@k2~n11!2C0#,

~2.15!

R5
1

2k2 ~C12k82C2!@k2~n11!1C0#,

S5
k2

4
n~n12!1

C0

2
~n11!1

1

4k2 FC0
22

1

k82 ~C12k82C2!2G .
Here the constantd is chosen as

d5
1

4k2 FC2
22~C0

212C1C2!1S C1

k8 D 2G2
n~n12!

2
. ~2.16!

Again, for the second and third choices ofB4(j) from Table I, we are led to

V~x!5H k82F 2

cn2x
2

~n13!~n12!

dn2x G , ~2.17!

2

sn2x
2

k82~n13!~n12!

dn2x
, ~2.18!

where we have taken

TABLE I. Different coordinate transformations based on the choice ofB4(j) and path of integration givingj5j(x) in
terms of three Jacobi elliptic functionssnx[sn(x,k), cnx[cn(x,k) and dnx[dn(x,k) of real modulusk(0,k2

,1,k82512k2) are given.

Transformation
no. B4(j) Zeros ofB4(j) j0

x(j)5*j0

j B4
21/2(t) dt

givesj5j(x) B4„j(x)…

1 (11j2)(11k82j2) 6 i ,6 i /k8 0 snx/cnx dn2x/cn4x
2 (12j2)(12k2j2) 61,61/k 0 snx cn2xdn2x
3 (12j2)(k821k2j2) 61,6 ik8/k 1 2cnx sn2xdn2x
4 (12j2)(j22k82) 61,6k8 1 2dnx k4sn2xcn2x
5 (11k2j2)(12k82j2) 6 i /k,61/k8 0 snx/dnx cn2x/dn4x
6 (j221)(j22k2) 61,6k 2` 21/snx cn2xdn2x/sn4x
7 (j221)(k82j21k2) 61,6 ik/k8 1 1/cnx sn2xdn2x/cn4x
8 (j221)(12k82j2) 61,61/k8 1 1/dnx k4sn2xcn2x/dn4x
9 (11j2)(k821j2) 6 i ,6 ik8 2` 2cnx/snx dn2x/sn4x

10 (j21k2)(j22k82) 6 ik,6k8 2` 2dnx/snx cn2x/sn4x
11 (12j2)(12k2j2) 61,61/k 21 2cnx/dnx k84sn2x/dn4x
12 (j221)(j22k2) 61,6k 21 dnx/cnx k84sn2x/cn4x
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C15C250, C05 H 2k82~n14!

2~n14!
, d5H 1

4
@3n2112n182k2~n218n18!#, ~2.19!

1

4
~3n2112n18!2

k2

2
n~n12!. ~2.20!

Other choices ofB4(j) can be similarly used. Later we will show that the families of ellip
potentials~2.14!, ~2.17!, and~2.18! coincide with certain known potentials in the proper limit.

We now discuss the boundary conditions in the corresponding spectral problem. We s
the Schro¨dinger equation~2.8! for the potential~2.14! can be defined over the entirex axis. It
follows from the oscillation theorem8 that for a periodic potential of period 2K ~where K
5*o

p/2da/A12k2 sin2 a! there exists a sequence$Ej% j >0 such thatEo,E1<E2,E3<E4 ...,
which are called the characteristic values of the energy parameterE and the periodic solutions o
period 2K ~or 4K! exist for E5Ej . The intervals of stability of the solutions are (E2 j ,E2 j 11).
For the 2K-periodic potentials~2.17! and ~2.18! which are singular atx56K and x50, 2K,
respectively, the domains of corresponding equations may be taken as (2K,K) and (0,2K). Our
choice of parameters guarantees that the wave functions vanish at boundary points.

III. ALGEBRAIZATION OF ASSOCIATED LAME´ EQUATION

Associated Lame´ potential ~1.1! is a special case of the family of elliptic potentials~2.14!
where

P5k2m~m11!, Q5R50, S5k2l ~ l 11!. ~3.1!

Equation~3.1! gives the system of constraints determining the four parametersC1 , C2 , C0 , and
n. Table II contains the exhaustive list of 12 sets of solutions for them. Since the spin para
n is restricted to be a non-negative integer, the sixth column of Table II gives the correspo
restrictions onm,l for validity of the solutions. Now 12 solutions forn represent four systems o
parallel lines~see Fig. 1! in the m2 l plane: in the following these lines will be referred to
algebraic lines~ALs!. Each point~m,l! on ani th AL gives (h i11) algebraic eigenstates, whereh i

is a non-negative integer given by the numerical value of the spin parametern associated withi th
AL. Clearly, if a point lies in the intersection ofr ALS, we get( i 51

r (h i11) eigenstates, all of
which are not necessarily distinct.@It should be mentioned that the oblique ALs are discontinu
at half-integer points that is, they do not meet axis-parallel ALs for the reason explained in S
~see Table IV!.#

TABLE II. The solutions of a system of four nonlinear equations for four parametersn, C6 and C0 given by ~3.1! are
provided. Proper restrictions onm, l are essential to restrict the spin parametern to a non-negative integer. It is interestin
to note that the solutions 7–12 can be obtained from 1–6 under the translationsm→m852m21, l→ l 852 l 21.

Solution no. n C1 C2 C0 Restrictions onm,l

1 l 1m 0 0 k2( l 2m) l 1mPN21
2 m2 l 21 0 0 2k2( l 1m11) m2 l PN
3 m21/2 ik8(2l 11) ik8(2l 11) 2k2(m11/2) mPN21/2,l PR
4 m21/2 2 ik8(2l 11) 2 ik8(2l 11) 2k2(m11/2) mPN21/2,l PR
5 l 21/2 ik82(2m11) i (2m11) k2( l 11/2) l PN21/2,mPR
6 l 21/2 2 ik82(2m11) 2 i (2m11) k2( l 11/2) l PN21/2,mPR
7 2( l 1m12) 0 0 2k2( l 2m) 2( l 1m)PN11
8 l 2m21 0 0 k2( l 1m11) l 2mPN
9 2(m13/2) ik8(2l 11) ik8(2l 11) k2(m11/2) 2mPN11/2,l PR

10 2(m13/2) 2 ik8(2l 11) 2 ik8(2l 11) k2(m11/2) 2mPN11/2,l PR
11 2( l 13/2) ik82(2m11) i (2m11) 2k2( l 11/2) 2 l PN11/2,mPR
12 2( l 13/2) 2 ik82(2m11) 2 i (2m11) 2k2( l 11/2) 2 l PN11/2,mPR
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We now determine the effective region in them2 l plane. Denotingp[m(m11) and q
[ l ( l 11), we see thatp,q are invariant under the translationm, l→m8, l 8 wherem852m21,
l 852 l 21. Thus it is sufficient to takel, m>2 1

2. In Fig. 1 these two inequations give a squa
infinite region. Further, due to the relationssn(x12K)52snx, sn(x1K)5cnx/dnx ~K
5*0

p/2da/A12k2 sin2 a is called complete elliptic integral of first kind!, we can consider only
p>q without loss of generality. The restrictionp>q in turn implies thatm> l . In Fig. 1 this
inequation gives a triangular infinite region in them2 l plane. For any point outside this triangula
region there exists a point in the region giving the same associated Lame´ potential. We call this
region ~shaded area in Fig. 1! as an effective region. Clearly the ALs lying entirely outside t
effective region are not required for our purpose. It is easy to verify that those ALs correspo
solutions 7–12 of Table II. It turns out that we need to consider the first six solutions of Tab
indeed the solutions 7–12 can be generated from the solutions 1–6 by the translationl, m→ l 8, m8
wherel 852 l 21, m852m21.

The analysis discussed so far reveals that the three-parameter family of associated´
potentialsV(x;m,l ,k)5m(m11)k2sn2x1 l ( l 11)k2cd2x ~we use the customary notationcdx
[cnx/dnx! are generated from sl~2, R! algebra for 0,k2,1 and~m,l! lying in at least one AL in
the effective region of them2 l plane. We call the points in the effective region not lying in a

FIG. 1. Algebraic lines~ALs! for the associated Lame´ equation are drawn in them– l plane for some non-negative intege
values ofn. Three dashed lines determine a triangular infinite region as effective region~shaded area!. Oblique ALs are
discontinuous at half-integer points.
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AL as critical points. For instance, though the point~21
2, 21

2! lies in the effective region, we
cannot algebraize the corresponding associated Lame´ equation 2c9(x)2(sn2x
1cd2x)k2c(x)/45Ec(x) in this scheme, as no ALs pass through this point. In the follow
sections we consider four cases namely when~i! m andl are both integers,~ii ! m is an integer and
l is a half-integer,~iii ! m andl are both half integers, and~iv! m is a half-integer andl is an integer.

The gauge Hamiltonian can be written in terms of sl~2, R! generators in the form

HG5Hquadratic1H linear, ~3.2!

where

Hquadratic52k82T12
2~11k82!T02

2T22
, ~3.3!

and for each of six solutions 1–6 of Table II,H linear is given in Table III. It is to be noted that th
generatorsT6, T0 are computed from~2.2! for the correspondingn in Table III.

Before concluding the section, we wish to remark that the associated Lame´ potential has two
interesting limits:

V~x! ——→
k→0

0 ~ free particle!,

V~x! ——→
k→1

2m~m11!sech2 x1 l ~ l 11!1m~m11! ~Pöschl–Teller potential!.

In above we have used the following limiting results:

sn~x,k! ——→
k→0

k→1 H tanhx
sinx , cn~x,k! ——→

k→0

k→1 H sechx
cosx, dn~x,k! ——→

k→0

k→1 H sechx
1 . ~3.4!

It may be mentioned that the present results are related to the ones obtained recently by S
and Turbiner.24 Indeed the Hamiltonians 1 and 2 of Table III possess the so-called en
reflection symmetry.

TABLE III. Lie-algebraic representations of the linear partH linear of associated Lame´ Hamiltonian HG are given for
different solutions ofn, in terms of the three sl~2,R! generatorsT6,T0. The quadratic part is given byHquadratic

52k82T122(11k82)T022T22.

Solution no. n H linear

1 m1 l 2k2~l2m!T01
k2

4
~l2m!21

n~n12!

2

2 m2 l 21 k2~l1m11!T01
k2

4
~l1m11!21

n~n12!2

2

3 m2
1
2 2ik8~2l11!~T11T2!1k2Sm1

1

2DT01
~2l11!2

4
1

k2

4 Sm1
1

2D
2

1
n~n12!

2

4 m2
1
2 ik8~2l11!~T11T2!1k2Sm1

1

2DT01
~2l11!2

4
1

k2

4 Sm1
1

2D
2

1
n~n12!

2

5 l 2
1
2 2i~2m11!~k82T11T2!2k2Sl1 1

2DT01
~2m11!2

4
1

k2

4 Sl1 1

2D
2

1
n~n12!

2

6 l 2
1
2

i~2m11!~k82T11T2!2k2Sl1 1

2DT01
~2m11!2

4
1

k2

4 Sl1 1

2D
2

1
n~n12!

2
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IV. ORTHOGONAL POLYNOMIALS IN ENERGY VARIABLE GENERATED
BY EIGENSTATES OF A QES POTENTIAL

It is well known15,20,21that eigenfunctions of almost every one-dimensional QES Hamilton
generate a family of orthogonal polynomials$Pj (E)% in the energy variableE satisfying a three-
term recursion relation of the form

Pj 11~E!5~a jE1b j !Pj1g j Pj 21 , j >0, ~4.1!

where a j , b j , g j are independent ofE, and a jÞ0, andg050, andgn50 for some positive
integer n, provided we expand the algebraic eigenfunction~2.10! as power series in terms o
suitable variabley5y(j). Simple observation of Eq.~2.5! shows that we can separate the nume
cal parametersCi j andCi in B3(j) andB2(j) by rewriting them as

B3~j!5
12n

2
B48~j!1A2~j!, B2~j!5

n~n21!

12
B49~j!2

n

2
A28~j!1

n~n12!

12
C001d,

~4.2!

whereA2(j) is a second degree polynomial inj given by

A2~j!5C1j21C0j1C2 . ~4.3!

Now, due to the GL~2! symmetry, the form ofHG(j) in ~2.4! remains invariant under the coo
dinate transformation

j5
ey1 f

gy1h
, S e f

g hD PGL~2,C!, ~4.4!

accompanied by the gauge transformation

x̂~y!5m̂~y!xS ey1 f

gy1hD , m̂~y!5~gy1h!n. ~4.5!

The transformed HamiltonianĤG(y) can be written as

2ĤG~y!5B̂4~y!]y
21F12n

2
B̂48~y!1Â2~y!G]y1

n~n21!

12
B̂49~y!2

n

2
Â28~y!1

n~n12!

12
Ĉ001d1 ,

~4.6!

where the prime now denotes derivative wrty. The transformed polynomialsB̂4(y) andÂ2(y) are
respectively of fourth and second degree and may be written as

B̂4~y!5Ĉ11y412Ĉ10y31Ĉ00y
212Ĉ02y1Ĉ22 ,

~4.7!
Â2~y!5Ĉ1y21Ĉ0y1Ĉ2 .

In ~4.7! the transformed numerical parametersĈi j , Ĉi are determined from the relations

B̂4~y!5
~gy1h!4

~eh2 f g!2 B4S ey1 f

gy1hD , Â2~y!5
~gy1h!2

eh2 f g
A2S ey1 f

gy1hD , ~4.8!

while the constantd1 in ~4.6! is given by

d15d1
n~n12!

12
~C002Ĉ00!. ~4.9!
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Let us now consider the eigenvalue equation

ĤG~y!x̂~y!5Ex̂~y!, ~4.10!

which is the transformed version of original gauged eigenvalue equation

HG~j!x~j!5Ex~j!, ~4.11!

Here we have identifiedx„j(x)…[x(x) in ~2.10!. The transformed eigenfunctionx̂(y) may be
taken as power series iny, namely

x̂~y!5(
j 50

`

Pj~E!
yj

j !
. ~4.12!

It is straightforward to check that the coefficients$Pj (E)%, in general, satisfy a five-term recursio
relation and to reduce this to a useful three-term recursion relation of the form~4.1!, we require
Ĉ115Ĉ2250. This means thatB̂4(y) must vanish at 0 and̀. It is clear from Eq.~4.8! that our
problem remains to choosee,f,g,hin ~4.4! in such a manner that the two distinct rootsj1 , j2 of
B4(j) are mapped to 0,̀ of B̂4(y). Our choice corresponds to the sete5j2 , f 52j1 , g51,
h521 so thateh2 f g5j12j2Þ0. We are then led to a three-term recursion relation satisfie
$Pj (E)%,

2@~2 j 2n11!Ĉ021Ĉ2#Pj 11

5FE1d11Ĉ0S j 2
n

2D1Ĉ00S j 2
n

2D 2GPj1 j ~ j 212n!@~2 j 2n21!Ĉ101Ĉ1#Pj 21 , j >0,

~4.13!

whereP21[0, P0[1. Note that the relation~4.13! is of the form~4.1! provided that

~2 j 2n11!Ĉ021Ĉ2Þ0, ; j >0. ~4.14!

We now examine whether~4.14! trivially holds or some additional restrictions need to
imposed on the spin parametern. Clearly three cases are relevant which we discuss below.

A. Case 1. Associated Lame ´ potential „1.1…

This case corresponds to transformation 1 of Table I whereB4(j) has four distinct complex
roots6i, 6 i /k8. Once the pair of the rootsj1 , j2 is chosen, the transformed numerical para
etersĈi j , Ĉi can be computed from~4.7! and~4.8! corresponding to each of the six solutions 1–
of Table II as follows:

Solutions 1 and 2: For the choicej152 i , j25 i ,

Ĉ1150, Ĉ105k2/2, Ĉ0052~k222!, Ĉ025k2/2, Ĉ2250,

Ĉ15 H k2~m2 l !/2,
k2~ l 1m11!/2, C050, Ĉ25 H k2~ l 2m!/2,

2k2~ l 1m11!/2.

Then Eq.~4.14! gives

1
2k

2~2m22 j 21!Þ0, ; j >0.

We thus impose an additional restrictions onm as

mÞ 1
2,

3
2,... . ~4.15!
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Solutions 3 and 4: For the choicej156 i /k8, j257 i /k8,

Ĉ1150, Ĉ1052k2/2, Ĉ0052~k222!, Ĉ0252k2/2, Ĉ2250

Ĉ15k2~m22l 2 1
2!/2, Ĉ05~2l 11!~k222!, Ĉ252k2~2l 1m1 3

2!/2.

Then Eq.~4.14! gives

k2~2 j 12l 13!/2Þ0, ; j >0

This is always true in our effective region in them2 l plane~see Fig. 1!.
Solutions 5 and 6: For the choicej156 i , j257 i ,

Ĉ1150, Ĉ105k2/2, Ĉ0052~k222!, Ĉ025k2/2, Ĉ2250,

Ĉ15k2~2m2 l 1 1
2!/2, Ĉ05~2m11!~k222!, Ĉ25k2~2m1 l 1 3

2!/2.

Then Eq.~4.14! gives

2k2~2 j 12m13!/2Þ0, ; j >0.

This is also true in our effective region.

B. Case 2. Potential „2.17…

This case corresponds to transformation 2 of Table I and the solution~2.19!. HereB4(j) has
four distinct real roots61, 61/k. For the choicej151, j2521,

Ĉ1150, Ĉ1052k82/2, Ĉ0052~11k2!, Ĉ0252k82/2, Ĉ2250,

Ĉ15
k82

2
~n14!, Ĉ050, Ĉ252

k82

2
~n14!.

Then Eq.~4.14! gives

2
k82

2
~2 j 15!Þ0, ; j >0. ~4.16!

C. Case 3. Potential „2.18…

This case corresponds to transformation 3 of Table I and solution~2.10!. The polynomial
B4(j) has two real and two complex roots61, 6 ik8/k. For the choicej151, j2521,

Ĉ1150, Ĉ1052 1
2, Ĉ0052~122k2!, Ĉ0252 1

2, Ĉ2250,

Ĉ15 1
2~n14!, Ĉ050, Ĉ252 1

2~n14!.

Then Eq.~4.14! gives

2 1
2~2 j 15!Þ0, ; j>0. ~4.17!

Hence we have proved that in every case the eigenfunction generates a family of orth
polynomials, provided an additional restriction~4.15! is imposed on potential parameters for ca
1 and the rootsj1 , j2 of the polynomialB4(j) are suitably chosen. The family$Pj (E)% can be
expressed in terms of monic polynomials$P̃j (E)% satisfying a recurrence relation of the type
                                                                                                                



TABLE IV. The coeffic choice of rootsj1 , j2 and the restrictions onm,l are also provided for each
case.

Solution
no. n v j (j1 ,j2)

Restrictions on
m,l

1 m1 l ~k2/2! jP i 50
m21~2m22i 21!

P i 50
m212 j~2m22 j 22i 21!

(2 i ,i ) m¹N2
1
2,l PR

m1 l PN21

2 m2 l 21 9 (2 i ,i ) m¹N2
1
2,l PR

m2 l PN
3 m2

1
2 ~k2/2! jP i 51

m13/2~2l 12i 11!

P i 51
m13/22 j~2l 12 j 12i 11!

S i

k8
,

2 i

k8 D mPN2
1
2,l PR

4 m2
1
2

9 S2i

k8
,

i

k8D mPN2
1
2,l PR

5 l 2
1
2 ~2k2/2! jP i 51

l 13/2~2m12i 11!

P i 51
l 13/22 j~2m12 j 12i 11!

( i ,2 i ) l PN2
1
2mPR

6 l 21/2 9 (2 i ,i ) l PN2
1
2mPR

7 ~k82/2! jP i 50
j 11~2 j 1322i !

3

~1,21! nPN21

8
~

1
2!jPi50

j11~2j1322i!

3

~1,21! nPN21
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ientsr j , l j , andv j of the recurrence relation~4.17! and~4.18! are given for different cases. The

r j l j

(
1
2k2)2 j ( l 1m112 j )(2 j 22l 21)

3(2m22 j 11)

1
2k2$ l ( l 11)1m(m11)%1

1
2(22k2)( l 1m22 j )2

(
1
2k2)2 j (m2 l 2 j )(2m22 j 11)

3(2 j 12l 11)

1
2k2$ l ( l 11)1m(m11)%1

1
2(22k2)(m2 l 2122 j )2

(
1
2k2)2 j ( j 2m2

1
2)(2 j 22m12l )

3(2 j 12l 11)
k2

4 S2m212m2
1

2D1 ~2l11!2

4
1

1

2
~22k2!S2j2m1

1

2D
3S2j2m12l1

3

2D
9 9

(
1
2k2)2 j ( j 2 l 2

1
2)(2 j 22l 12m)

3(2 j 12m11)
k2

4 S2l212l2
1

2D1 ~2m11!2

4
1

1

2
~22k2!S2j2l1

1

2D
3S2j2l12m1

3

2D
9 9

(
1
2k82)2 j ( j 2n21)(2j 22n25)

3(2 j 13) 2
k82

2
~n11!~n14!2

1

2
~11k2!~n22j!2

1
4 j ( j 2n21)(2j 22n25)(2j 13)

2
1

2
~n11!~n14!2

1

2
~122k2!~n22j!2
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P̃j 115~E2l j !P̃j2r j P̃ j 21 , ~4.18!

P̃j5v j Pj , j >0. ~4.19!

The explicit expressions ofr j , l j , v j together with the choice of roots (j1 ,j2) and overall
restrictions on potential parameters for all cases are contained in Table IV. Note that the la
rows correspond to the potential~2.17! and~2.18!. Further restriction~4.15! is reflected in Fig. 1
showing discontinuities of oblique ALs at half-integer points. We see thatr050 andrn1150, so
that the critical polynomial isP̃n11 and the energy eigenvalues of a QES Hamiltonian are
cisely the zeros ofP̃n11 , provided all the zeros are real and simple.

Let us now turn to the construction of wave functions. From~2.10! and~4.5!, the Schro¨dinger
wave functionc(x) reads

c~x!5m~x!
1

m̂~y!
x̂~y!uy5y~j~x!! , ~4.20!

where

m~x!5e2*A~x! dx. ~4.21!

The gauge functionA~x! can be computed from~2.12! and by using~4.2!

m~x!5B4
2n/4~j!expF E j A2~t!

2B4~t!
dtGU

j5j~x!

. ~4.22!

Finally, the (n11) eigenfunctions can be computed from~4.4!, ~4.5!, ~4.12!, and ~4.20! at the
rootsE5Ei ( i 50,1,...,n) of P̃n11 giving the final form

cEi
~x!5m~x!~j~x!2j2!n (

j 50

n
Pj~Ei !

j ! S j~x!2j1

j~x!2j2
D j

~ i 50,1,...,n!. ~4.23!

It should be mentioned that the infinite power series expansion in~4.12! terminates after (n11)
terms since the coefficientsPj (Ei) vanishes forj .n.

V. ALGEBRAIC EIGENFUNCTIONS AND ENERGY SPECTRA OF ASSOCIATED LAME´

POTENTIAL

Let us recall that hereB4„j(x)…5dn2x/cn4x wherej5snx/cnx ~transformation 1 of Table I!.
We have already obtained the explicit expression@cf. Eq. ~4.23!# of the eigenfunctions. It remain
to calculate the gauge factorm(x) for each of the six solutions 1–6 of Table II. From~4.22! and
~4.3!, m(x) is given by

m~x!55
cnm1 lx dn2 lx, n5m1 l , ~5.1!

cnm2 l 21x dnl 11x, n5m2 l 21, ~5.2!

cnm21/2x dn2 lx~cnx1 ik8snx! l 11/2

cnm21/2x dn2 lx~cnx2 ik8snx! l 11/2J , n5m2 1
2,

~5.3a!
~5.3b!

cnl 21/2x dn2 lx~cnx1 isnx!m11/2

cnl 21/2x dn2 lx~cnx2 isnx!m11/2J , n5 l 2 1
2.

~5.4a!
~5.4b!

Besides the elliptic modulus parameterk(0,k2,1), the associated Lame´ potential depends on
two other real parametersm, l. In Sec. III we have shown that it is sufficient to consider the poi
~m, l! in effective region~see Fig. 1!. The associated Lame´ equation for any point~m, l! lying in
at least one AL in the effective region thus gives an algebraic QES potential. In the followin
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shall confine ourselves to the case wherem,l P(N21)ø(N2 1
2). This can be decomposed into th

following four categories. It is to be noted that all points in them axis give Lame´ potential.

A. Case 1: m and l are both non-negative integers

For mÞ l , the point~m, l! lies in two ALs belonging to two different systems given bym
1 l 5n and m2 l 215n and for m5 l , the point lies in one AL belonging to the systemm1 l
52m5n, for n50,1,2,... . Each AL gives (h i11) algebraic eigenstates, whereh i is the numeri-
cal value of the spin parametern associated with the particular AL. Hence in either case, ass
ated Lame´ Hamiltonian possesses (2m11) band-edge eigenstates corresponding to (2m11)
band-edge energies. This emphasizes the fact that the associated Lame´ potential is a periodic QES
and whenm, l are both non-negative integers there arem bound bands followed by a continuum
band. The eigenstates formÞ l generate two distinct families of orthogonal polynomials of t
form ~4.18! wherer j , l j , v j are given by the entries 1 and 2 of Table IV. The solutions form
51,2 wherel is restricted to take (m11) values 0,1,...,m, have been obtained by us elsewher17

and it has been shown that the so-called Lame´ potential is contained in the scheme as a particu
case forl 50.

B. Case 2: m and l are both half an odd positive integer

The point~m, l! lies in the intersection of two ALs belonging to two different systems giv
by m2 1

25n andl 2 1
25n. Since these two systems correspond to two pairs of algebraizations@see

solutions 3–6 of Table II#, Eqs.~4.23!, ~5.3!, and~5.4! imply that each of the two algebraization
for each system gives (m1 1

2) and (l 1 1
2) complex eigenstates, respectively, which are conjugat

one another. Further, the expressions ofr j , l j , v j @see entries 3–6 of Table IV# imply that the
complex eigenstates arising from two algebraizations of each system generate the same fam
orthogonal polynomials in the energy variableE. It turns out that there are (m1 1

2) and (l 1 1
2)

characteristic values ofE for each of which we get two linearly independent solutions given
real and imaginary parts of the complex eigenstates. But we see that the solutions obtaine
the systeml 2 1

25n are included in the solutions obtained from the systemm2 1
25n ~note that

m> l in the effective region!. Hence whenm and l are both half-integers, there are (m1 1
2)

characteristics values ofE which are doubly degenerate. It may be mentioned that the point~m, l!
in this case does not lie in the ALs belonging to the systemsm1 l 5n andm2 l 215n due to the
discontinuities of oblique ALs at half-integer points~see Fig. 1!. The solutions for~ 1

2,
1
2!, ~3

2,
1
2!, and

~3
2,

3
2! have already been reported.17 However, for some half-integer combinations ofm, l, for

instance,~ 3
2,

1
2!, we notice that only highest energy is doubly degenerate.

C. Case 3: m is half an odd positive integer and l is a non-negative integer

The point~m, l! lies in one AL belonging to the systemm2 1
25n. Thus, as before, there ar

(m1 1
2) characteristics values ofE which are doubly degenerate. The solutions for~1

2, 0!, ~3
2, 0!,

and ~3
2, 1! are explicitly obtained by us in Ref. 17 and the first two give Lame´ potentials.

D. Case 4: m is a non-negative integer and l is half an odd positive integer

This case is new and corresponds to the systeml 2 1
25n. Two algebraizations given by entire

5 and 6 of Table IV yield (l 1 1
2) characteristics values ofE for each of which there are two linearl

independent solutions. Herel takes values1
2,

3
2,... and for each of themm is allowed to take an

infinite set of valuesl 1 1
2, l 1 3

2,... in the effective region.
From the above discussions it is clear that in the effective region whenmPNøN2 1

2, l is

restricted to take (2m11) values 0,12,1,32,...,m2 1
2,m. In the following examplesf r(x) and er

denote the ordered levels of eigenstates and energy spectra. Note that in the half-integer ca
parenthesized superscript in the eigenstate indicates the degeneracy of the eigenvalues.

We now consider the following examples.
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~a! m51. l is allowed to take three values 0,1
2, 1. Solutions forl 50, 1 were reported in Ref

17. The new case correspondsm51, l 5 1
2 and gives the associated Lame´ potential as

V~x!52k2sn2x1 3
4k

2cd2x. ~5.5!

The wave functions and energy are

f0
~1!~x!5

A11cnx

Adnx
~2cnx21!, f0

~2!~x!5
sgn~snx!A12cnx

Adnx
~2cnx11!, e05

1

4
~k219!.

~b! m52. l is allowed to take five values 0,1
2, 1, 3

2, 2. The integer values ofl have already been
given in Ref. 17.

~i! l 5 1
2: Associated Lame´ potential

V~x!56k2sn2x1 3
4k

2cd2x,

f0
~1!~x!5

A11cnx

Adnx
~4cn2x22cnx21!, f0

~2!~x!5
sgn~snx!A12cnx

Adnx
~4cn2x12cnx21!,

~5.6!

e05~k2125!/4.

~ii ! l 5 3
2: Associated Lame´ potential

V~x!56k2sn2x1
15

4
k2cd2x,

e0,15
1
4@4925k212 f 7~k!#, f 6~k!55~k222!6Ak4125k82,

~5.7!

f0,1
~1!~x!5

A11cnx

dn3/2x
@8 f 6~k!cn3x24 f 6~k!cn2x22$2 f 6~k!17k2%cnx1$ f 6~k!17k2%#,

f0,1
~2!~x!5

sgn~snx!A12cnx

dn3/2x
@8 f 6~k!cn2x14 f 6~k!cn2x22$2 f 6~k!17k2%cnx

2$ f 6~k!17k2%#.

~c! m53. l is allowed to take seven values 0,1
2, 1, 3

2, 2, 5
2, 3.

~i! l 50: Lamépotential

V~x!512k2sn2x,

f0,4~x!5dnx@5k2sn2x2 f 6~k!#, e0,452 f 7~k!1k2,

f1,5~x!5cnx@5k2sn2x2g6~k!#, e1,552g7~k!11, ~5.8!

f2,6~x!5snx@5k2sn2x2h6~k!#, e2,65h7~k!13~11k2!,

f3~x!5snx cnx dnx, e354~11k2!,

where f 6(k)52k2116A4k41k82, g6(k)5k2126A42k2k82, and h6(k)52(k211)

6A4k427k214.
~ii ! l 5 1

2: Associated Lame´ potential
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V~x!512k2sn2x1 3
4k

2cd2x,

f0
~1!~x!5

A11cnx

Adnx
@8cn3x24cn2x24cnx11#, e05

1

4
~k2149!, ~5.9!

f0
~2!~x!5

sgn~snx!A12cnx

Adnx
@8cn3x14cn3x24cnx21#.

~iii ! l 51: Associated Lame´ potential

V~x!512k2sn2x12k2cd2x,

f0~x!5cnx dn2x, e05114k2,
~5.10!

f1~x!5snx dn2x, e15119k2,

f2,3~x!5
snx cnx

dnx Fsn2x2
1

5k2 ~k2136Ak419k82!G , e2,351012k272Ak419k82.

The remaining three eigenstates can be expressed as

f i~x!5
1

dnxFsn4x2
1

10k2 ~9k21162ei !sn2x

1
1

15k4 $ei
222~5k2118!ei1~9k41156k21320!%G ,

where the eigenvaluesei ( i 54,5,6) are the roots of the cubic

e32~11k2120!e21~19k41216k2164!e2~9k61388k41448k2!50.

~iv! l 5 3
2: Associated Lame´ potential

V~x!512k2sn2x1 15
4 k2cd2x,

e0,15
1
4@8129k212h7~k!#, h6~k!57~k222!62Ak4149k82

~5.11!

f0,1
~1!5

A11cnx

dn3/2x
@16h6~k!cn4x28h6~k!cn3x212$h6~k!13k2%cn2x

12$2h6~k!19k2%cnx1$h6~k!19k2%#,

f0,1
~2!~x!5

sgn~snx!A12cnx

dn3/2x
@16h6~k!cn4x18h6~k!cn3x212$h6~k!13k2%cn2x

22$2h6~k!19k2%cnx1$h6~k!19k2%#.

~v! l 52: Associated Lame´ potential

V~x!512k2sn2x16k2cd2x,
~5.12!

f0~x!5dn3x, e059k2.

The three eigenstates can be expressed as
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f i~x!5
cnx

dn2x Fsn4x2
1

10k2 ~4k21252ei !sn2x

1
1

120k4 H ei
222~2k2117!ei2

75

2
k41156k21225J G ,

where the three energiesei are the roots of the cubic

2e322~8k2135!e22~43k42640k22518!e1~525k621365k423312k22450!50.

The remaining three energieser are the roots of the cubic

2e322~11k2135!e22~37k42844k22518!e1732k621851k424662k2245050,

and the three eigenstates are given by

f r~x!5
snx

dn2x Fsn4x2
1

10k2 ~9k21252er !sn2x

1
1

120k4 H er
222~5k2117!er2

57

2
k41306k21225J G .

~vi! l 5 5
2: Associated Lame´ potential

V~x!512k2sn2x1 35
4 k2cd2x. ~5.13!

Three eigenvaluesei are the roots of the cubic

64e3216~35k21179!e214~39k417398k217459!e1~7915k6266871k42229507k2253361!

50,

and two linearly independent solutions for eachei are

f i
~1!~x!5

A11cnx

dn5/2x
@32b icn5x216b icn4x216~g i12b i !cn3x14~2g i13b i !cn2x

12~4g i13b i1792k4!cnx2~2g i1b i1792k4!#,

f i
~2!~x!5

sgn~snx!A12cnx

dn5/2x
@32b icn5x116b icn4x216~g i12b i !cn3x24~2g i13b i !cn2x

12~4g i13b i1792k4!cnx1~2g i1b i1792k4!#,

where

g i~k!522k2~37k21924ei !,

b i~k!516ei
228~27k2129!ei1845k411966k21441.

~vii ! l 53: Associated Lame´ potential

V~x!512k2sn2x112k2cd2x. ~5.14!

Three band-edge eigenstates are given by
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f i~x!5
snx cnx

dn3x Fsn4x2
1

10k2 ~4k21362ei !sn2x

1
1

120k4 $ei
224~k2113!ei124~11k2124!%G ~ i 50,1,2!

where the three eigenvaluesei are the roots of the cubic

e328~k217!e2116~k4135k2149!e2192~7k4131k2112!50.

In particular, fork25 2
3, the energies and eigenvalues can be obtained in exact form:

f0~x!5
snx cnx

dn3x Fsn4x24sn2x1
9

2G , e0512,

f1~x!5
snx cnx

dn3x Fsn4x23sn2x1
3

2G , e15 56
3 ,

f2~x!5
snx cnx

dn3x Fsn4x2
6

5
sn2x1

3

10G , e25 92
3 .

The remaining four energieser are the roots of the biquadratic

e424~5k2114!e312~59k41616k21392!e2212~15k61698k411280k21192!e

19k2~9k611824k418320k213072!50,

and the corresponding four eigenstates can be expressed as

f r~x!5
1

dn3x Fsn6x2
1

10k2 ~9k21362er !sn4x1
1

120k4

3$er
222~5k2126!er19k41480k21576%sn2x1

1

720k6

3$er
32~11k2156!er

21~19k41716k21784!er23~3k61604k412560k21768!%G .
Higher values ofm and l can be similarly considered, in principle. But, in practice, asm,l
increases, calculations become very complicated due to the fact that the analytical solut
higher degree critical polynomials are quite lengthy. However, it may be mentioned tha
algebraization scheme discovers several new families of associated Lame´ potentials for integer
and half-integer combinations ofm,l, e.g., the potentials~5.5!–~5.7!, ~5.9!, ~511!, and ~5.13!,
whose solutions can be written analytically.

VI. ELLIPTIC GENERALIZATIONS OF GENDENSHTEIN AND OTHER EXACTLY
SOLVABLE PERIODIC POTENTIALS

In Sec. II we have obtained two new families of potentials~2.17! and ~2.18! for the second
and third choices~transformations 2 and 3 of Table I! of B4(j). For the choiceB4(j)5(12j2)
3(12k2j2), we get

V~x!5k82F 2

cn2x
2

~n13!~n12!

dn2x G . ~6.1!
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Here V(x) depends on two parametersk (0,k2,1,k82512k2) and n (PN21). Further, we
choose the domain (2K,K) where 2K is the period of the potential and given byK
5*0

p/2da/A12k2 sin2 a. We may note that ask→1, 0 the domain reduces to~2`, `! and~2p/2,
p/2!. It is interesting to observe following two limits:

V~x! ——→
k→1

0, xP~2`,`! ~ free particle!, ~6.2!

V~x! ——→
k→0

2 tan2 x2~n11!~n14!, xP~2p/2,p/2!, ~6.3!

which is an exactly solvable periodic potential.25

Again, for the choiceB4(j)5(12j2)(k821k2j2) ~transformation 3 of Table I!, we obtain

V~x!5
2

sn2x
2

k82~n13!~n12!

dn2x
, xP~0,2K !, ~6.4!

wheren (eN21) andk (0,k2,1) are two parameters. The following two limits of~6.4! are
noted:

V~x! ——→
k→1

2 cosech2 x12, xP~0,̀ !, ~6.5!

which is singular Gendenshtein potential26 and

V~x! ——→
k→0

2 cot2 x2~n11!~n14!, xP~0,p!, ~6.6!

which also belongs to the exactly solvable class. Note that in the above we have used the l
results~3.4!.

The elliptic potentials~6.1! and~6.4! are thus new families of periodic potentials belonging
QES class and can be considered as generalized versions of exactly solvable tan2 x, cot2 x, and
cosech2 x potentials. These potentials are generated from a standard homogeneous quadra
bination of sl~2,R! generators plus a linear operator. The gauged Hamiltonian can be w
explicitly in terms of sl~2,R! generators as

Potential ~6.1!: HG52k2T12
1~11k2!T02

2T22
1k82~n14!T0

2 1
4@3n2112n182k2~n218n18!#, ~6.7!

Potential ~6.4!: HG5k2T12
1~122k2!T02

2k82T22
1~n14!T0

2 1
4@3n2112n1822k2n~n12!#, ~6.8!

where the generatorsT6, T0 are computed from~2.2! for nPN21. The gauge factorm(x) is
obtained from~4.22!, ~2.19!, and~2.20! for the corresponding choice ofB4(j) ~transformation 2
and 3 of Table I! as

Potential ~6.1!: m~x!5cn2x/dnn12x, ~6.9!

Potential ~6:4!: m~x!5sn2x/dnn12x. ~6.10!

The (n11) band-edge eigenstates and spectra can now be easily computed by construc
thogonal polynomials using entries 7 and 8 of Table IV.

We now consider the following examples.
~a! The class of potentials given by Eq.~6.1!
~i! n50:
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V~x!52k82S 1

cn2x
2

3

dn2xD ,

~6.11!

f0~x!5
cn2x

dn2x
, e0522k82.

~ii ! n51:

V~x!52k82S 1

cn2x
2

6

dn2xD ,

f0~x!5
cn2x

dn3x
, e057k228, ~6.12!

f1~x!5
snxcn2x

dn3x
, e152k223.

~b! The class of potentials given by Eq.~6.4!
~i! n50:

V~x!5
2

sn2x
2

6k82

dn2x
,

~6.13!

f0~x!5
sn2x

dn2x
, e0522.

~ii ! n51:

V~x!5
2

sn2x
2

12k82

dn2x
,

f0~x!5
sn2x

dn3x
, e05k228, ~6.14!

f1~x!5
sn2xcnx

dn3x
, e15k223.

Higher values ofm can be similarly considered. We have thus found two new families of Q
periodic potentials, which in the proper limit reduce to well-known exactly, solvable class.

VII. CONCLUSION

In this article we have systematically studied the basic method of generating various clas
elliptic potentials within an sl~2,R! Lie-algebraic formulation. We have given a wide range
choice of coordinate transformation in Table I. Using transformations 1–3 of Table I we
obtained three new classes of QES periodic potentials, which, in the limitsk→0,1, reduce to
Pöschl–Teller, singular Gendenshtein and other known exactly solvable classes. Other c
from Table I can be similarly used to generate various new classes of elliptic potentials. Fu
we have shown that the associated Lame´ potential can be derived as a special case. This certa
adds an important member in the list of algebraic QES. We have explicitly obtained the eigen
and spectra for these potentials. In fact, our algebraic approach discovers a new class of as
Lamépotential when either of the two parametersm and l are integers and other half-integers.
is shown that the eigenfunctions of our QES Hamiltonians generate a family of orthogonal
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nomials$P j(E)% satisfying a three-term recurrence relation of the form~4.18!. It is to be men-
tioned that the coefficientsr j are not strictly positive for 1< j <n, in contrast to the case
discussed in Ref. 15. However, the (n11) roots of the critical polynomial are all real and simpl
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Irreducible modules of finite dimensional quantum
algebras of type A at roots of unity

Toshiki Nakashimaa)

Department of Mathematics, Sophia University, Tokyo 102-8554, Japan
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Properly specializing the parameters contained in the maximal cyclic representation
of the nonrestrictedA-type quantum algebra at roots of unity, we find the unique
primitive vector in it. In this case, the representation is no longer irreducible. We
show that the submodule generated by the primitive vector is the unique irreducible
submodule and can be identified with an irreducible highest weight module of the
finite dimensionalA-type quantum algebra, which is defined as the subalgebra of
the restricted quantum algebra at roots of unity. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1453498#

I. INTRODUCTION

The quantum groupUq(g) associated with a simple Lie algebrag is an associative algebr
over the rational function fieldC(q) ~q is an indeterminate! and we can define its ‘‘integral’’ form
over the Laurant polynomial ringC@q,q21#, which enables us to specializeq to any nonzero
complex number«. We are going to see two types of such integral forms and accordingly
obtain two types of specializations; one is called the ‘‘restricted specialization,’’ denoted byU«

res,
and the other is called the ‘‘nonrestricted specialization,’’ denoted byU« . Both coincide if« is
transcendental. But we are interested in the case where« is the l th primitive root of unity,l being
an odd integer greater than 1. In this case, they do not. The former is initiated by Lusztig1,2 and the
latter is introduced in Ref. 3 by DeConcini and Kac. Their representation theories are
different: IrreducibleU«

res-modules are highest weight modules in some sense and the classific
of the irreducible modules is same as for simple Lie algebras or ordinary quantum algebra~see
Theorem 3.5!. Furthermore, irreducible modules possess the remarkable property ‘‘tensor pr
theorem’’ ~see Theorem 3.6!, which claims that the arbitrary irreducible highest weight mod
V(l) with the highest weightl is divided into the tensor product of two irreducible module
V(l (0)) and V( ll)(1), wherel (0) and l (1) are as in Theorem 3.6. Here the moduleV(l (0)) is
identified with the irreducibleU«

fin-module, whereU«
fin is some finite dimensional subalgebra

U«
res ~see Sec. II B! and the moduleV( ll (1)) can be identified with the irreducible highest weig

U(g)-moduleV(l (1)), whose structure is known very well. Thus, if the structure ofV(l (0)) is
clarified, we can analyze the detailed feature ofV(l). Indeed, the character ofV(l) is given by
the famous Kazhdan–Lusztig formula. But structures as a module, e.g., explicit descriptio
basis vectors or actions of the generators on them, are still unclear.

On the other hand, irreducibleU«-modules are not necessarily highest or lowest wei
modules. They are characterized by many continuous parameters and if they are ‘‘generic
dimensions are all same~see Refs. 3 and 4!. But if we specialize the parameters properly, t
modules become reducible. In Ref. 5, Dateet al., explicitly constructed suchU«-modules for
An-type, which is called the ‘‘maximal cyclic representations’’ that are realized in the vector s
Vª(Cl)(1/2)n(n11). They contains the continuous parameters and it is shown that if those pa
eters are generic, they are irreducible. Here we consider certain nongeneric specialization
parameters so thatV becomes a reducibleU«-module. Moreover, we shall observe that such
module includes the unique primitive vector~see Proposition 4.9!. The submodule generated b

a!Electronic mail: toshiki@mm.sophia.ac.jp
20000022-2488/2002/43(4)/2000/15/$19.00 © 2002 American Institute of Physics
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this primitive vector can be seen as an irreducibleU«
fin-module and isomorphic toV(l (0)) for some

l ~Theorem 5.5!.
From the physical point of view, the cyclic representations at roots of 1 are deeply rela

certain physical models, e.g., chiral Potts models,6,7 via R-matrices obtained as intertwining op
erators of tensor product.8–10 On the other hand, the algebraU«

fin has the corresponding univers
R-matrix.11 So, we can consider its image onV or the irreducible submodule. The explicit form o
the universalR-matrix for U«

fin cannot be directly deduced from the usual formula of the unive
R-matrix for Uq(g). So, it might be interesting to see whether the image of the universalR-matrix
of U«

fin can be obtained by specializing the parameters of theR-matrix related to the chiral Pott
type models.

The organization of the paper is as follows. In Sec. II we review the quantum algebras a
of unity. In Sec. III, we see the maximal cyclic representations of theA-type following Ref. 5 and
review the representation theory ofU«

res. In Sec. IV, we specialize the parameters properly a
show that under the specialization, there exists a unique primitive vector in the module. Fina
Sec. V, it is shown that the representation space becomes the module of the finite dime
algebraU«

fin and the submodule generated by the primitive vector is irreducible.

II. ALGEBRAS AT ROOTS OF UNITY

In the following, we review the algebras treated in this article.

A. Restricted integral forms and specializations

Let C(q) be the rational function field in an indeterminateq and denote the ringC@q,q21# by
A. We use the following notations:

@a#qª
qa2q2a

q2q21 , @a#q!ª@a#q@a21#q¯@2#q@1#q , Fmk G
q

ª

@m#q!

@k#q! @m2k#q!
.

Let Iª$1,2,...,n% be the index set and (ai j ) i , j PI be the Cartan matrix of typeAn , i.e., aii 52 (1
< i<n), aii 115ai 11i521 (1< i<n21), andai j 50 otherwise. Let us denote the set of roo
~respectively, positive roots! by D ~respectively,D1!. Let $hi% i PI be the set of simple co-roots an
$a i% i PI the set of simple roots. Define the weight latticePª$lu^hi ,l&PZ% ~respectively, the se
of dominant integral weightsP1ª$lu^hi ,l&PZ>0%!. Let $L i% i PI be the fundamental weight
which satisfy^hi ,L j&5d i j and thenP5 % iZL i . Let W be the Weyl group of typeAn , which is
generated by the simple reflectionssi ( i PI ). The quantum algebra Uq(g) is the associative
algebra generated byei , f i , t i

61 ( i PI ) and the following relations:

t i t i
215t i

21t i51, t i t j5t j t i , ~2.1!

t iej t i
215qai j ej , ~2.2!

t i f j t i
215q2ai j f j , ~2.3!

ei f j2 f jei5d i j

t i2t i
21

q2q21 ~2.4!

(
k50

12ai j

~21!kei
~k!ejei

~12ai j 2k!
5 (

k50

12aj

~21!kf i
~k! f j f i

~12ai j 2k!
50~ iÞ j !, ~2.5!

whereei
(k)
ªei

k/@k#q! and f i
(k)
ª f i

k/@k#q!.
Here we set
                                                                                                                



2002 J. Math. Phys., Vol. 43, No. 4, April 2002 Toshiki Nakashima

                    
F t i ,p
r G

q

ª)
s51

r t iq
p112s2t i

21qs2p21

qs2q2s .

The algebraUA
res is theA-subalgebra ofUq(g) generated byei

(k) , f i
(k) , t i

61 , and @k
ti ,p# ~i PI , p,

kPZ, andk>0!, which is called the restricted integral form.
Here we can define therestricted specializationsfor any «PC3;

U«
res
ªUA

res
^ AC« , ~2.6!

whereA acts onC«ªC by f (q)cª f («)c (cPC).

B. Finite dimensional quantum algebra

For «PC3 we use

@a#ª
«a2«2a

«2«21 , @a#!ª@a#@a21#¯@2#@1#, Fmk GªFmk G
q5«

.

Since@k
m#q PC@q,q21#, the definition of@k

m# is valid.
As for the specializations ofq, we shall be interested in the case where« is a root of unity. So

in what follows, suppose thatl is the odd integer greater than 1 and« is the primitivel th root of
unity.

Under this setting, we can find an interesting finite dimensional subalgebraU«
fin of U«

res. U«
fin

is defined as the subalgebra ofU«
resgenerated byei , f i , andt i

61 ( i PI ). We know that this algebra
is finite dimensional overC with the dimension 2nl n212n ~see Proposition 2.2!.

This U«
fin is also defined by ‘‘generators and relations’’ as follows:

Proposition 2.1 (Refs. 1 and 4): The algebra U«
fin is isomorphic to the associativeC-algebra

with generators ea , f a (aPD1), and ti
61 (1< i<n) satisfying the following relations;

t i t i
215t i

21t i51, t i t j5t j t i , ~2.7!

t iej t i
215«ai j ej , ~2.8!

t i f j t i
215«2ai j f j , ~2.9!

ei f j2 f jei5d i j

t i2t i
21

«2«21 . ~2.10!

If (a i ,a)50 and i,g(a),

eiea5eaei , ~2.11!

f i f a5 f a f i . ~2.12!

If (a i ,a)521 and i,g(a),

ea1a i
5«21eiea2eaei , ~2.13!

«eiea1a i
5ea1a i

ei , ~2.14!

«ea1a i
ea5eaea1a i

, ~2.15!

f a1a i
5« f a f i2 f i f a , ~2.16!
                                                                                                                



2003J. Math. Phys., Vol. 43, No. 4, April 2002 Finite dimensional quantum algebras of type A

                    
« f i f a1a i
5 f a1a i

f i , ~2.17!

« f a1a i
f a5 f a f a1a i

. ~2.18!

ea
l 5 f a

l 50 f or any aPD1 , ~2.19!

t i
2l51 f or any iPI , ~2.20!

where we define g(a) (aPD1) to be the largest index satisfying ciÞ0 if we writea5S i cia i and
set eiªea i

and fiª f a i
.

Define (U«
fin)1 @respectively (U«

fin)2, (U«
fin)0# to be the subalgebra ofU«

fin generated byei

~respectively,f i , t i
61!. Fix a reduced expressionw05si 1

si 2
¯si N

of the longest element of the
Weyl groupW and setbkªsi 1

si 2
¯si k21

(a i k
) for kP$1,...,N% whereNª

1
2n(n11) is the number

of positive roots. Here we have the following Poincare´–Birkhoff–Witt type theorem:
Proposition 2.2 (Refs. 1 and 4):~i! The algebra(U«

fin)1 is a finite dimensionalC-vector space
with the basis

$ebN

r N ebN21

r N21
¯eb1

r 1 %0<r 1 ,...,r N, l . ~2.21!

~ii ! The algebra(U«
fin)2 is a finite dimensionalC-vector space with the basis

$ f bN

r N f bN21

r N21
¯ f b1

r 1 %0<r 1 ,...,r N, l . ~2.22!

~iii ! The algebra(U«
fin)0 is a finite dimensionalC-vector space with the basis

$tn
r ntn21

r n21
¯t1

r 1%0<r l ,...,r n,2l . ~2.23!

~iv! Multiplication defines an isomorphism ofC-vector space,

~U«
fin!2

^ ~U«
fin!0

^ ~U«
fin!1→

;

U«
fin . ~2.24!

C. Nonrestricted specializations

Here we see another type of specialization ofq to a root of unity.
Introduce the elements

@ t i ;m#ª
t iq

m2t i
21q2m

q2q21 PUq~g!.

The algebraUA is theA-subalgebra ofUq(g) generated by the elementsei , f i , t i
61 , and@ t i ;0#

(1< i<n).
Remark:The defining relations forUA are as in Sec. II A, but replacing~2.4! by

ei f j2 f jei5d i j @ t i ;0# ~2.25!

and adding the relation (q2q21)@ t i ;0#5t i2t i
21.

Now for the l th root of unity« we define theC-algebra

U«ªUA^ AC« ,

whereA acts onC«5C by f (q)c5 f («)c (cPC). This U« is called thenonrestricted specializa-
tion.
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III. REPRESENTATIONS

A. Maximal cyclic representations of U«

The representation theory ofU« is discussed in Ref. 3 in which the maximal dimension
irreducible representations forAn-type is given byl (1/2)n(n11) in the case where« is thel th root of
unity, and in Ref. 5 it is constructed explicitly and called the ‘‘maximal cyclic representatio
Here we subtly modify the presentations in Ref. 5 in order to simplify the arguments in Se

Let H be the group generated by$xi j ,zi j %1< i< j <n and the center« with the relationszi j xi j

5«xi j zi j and all others commute each other, and setWªC@H# the group ring ofH. For
rª(r 1 ,...,r n), sª(s1 ,...,sn)P(C3)n, we define the mapw r ,s : U«→W by ~see Ref. 5!

w r ,s~ei !ª(
k5 i

n

xikxik11¯xin$r izikzik21zi 21 k21
21 zi 11 k

21 %, ~3.1!

w r ,s~ f i !ª(
k51

i

xi 112k n112k
21 xi 122k n122k

21
¯xin

21

3$sizi 112k n2kzi 112k n112k
21 zi 2k n112kzi 2k n2k

21 %, ~3.2!

w r ,s~ t i !ª
r i

si
zin

2 zi 21 n
21 zi 11 n

21 , ~3.3!

where we use the notation$z%5(z2z21)/(«2«21) and setxi j
615zi j

6151 unless 1< i< j <n.
Let * :W→W be theC-linear involution defined by

xjk* ªxk112 j k
21 , zjk* ªzk112 j k

21 ,

and set

Aikªxikxik11¯xin , Bikªzikzik21zi 21 k21
21 zi 11 k

21 .

Then,~3.1! and ~3.2! can be written in the following forms:

w r ,s~ei !5(
k5 i

n

Aik$r iBik%, w r ,s~ f i !5 (
k51

i

An112 i n112k* $siBn112 i n112k* %. ~3.4!

Proposition 3.1: The mapw r ,s defines aC-linear algebra homomorphism from U« to W.
Lemma 3.2: The following commutation relations hold [see Ref. 5, (2.5)]:

Ai j Bik5«22BikAi j if j ,k

5«21BikAi j if j 5k

5BikAi j if j .k.

Proof of Proposition 3.1:We haveAikBik5«21BikAik and then

w r ,s~ei !5(
k5 i

n

$r i«
21Bik%Aik , w r ,s~ f i !5 (

k51

i

$si«
21Bn112 i n112k* %An112 i n112k* .

This implies w r ,s5r«21r ,«21s ~r r ,s is given in Ref. 5!. Thus, by Theorem 2.2 in Ref. 5, w
obtained the desired result. h
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Proposition 3.3: For any mPZ.0 , we have

w r ,s~ei
m!5@m#! (

p51

m

(
i<kp,¯,k1<n
1<np,¯,n15m

)
r 51

p

Aikr

nr2nr 11)
r 51

p H r iBikr
;n r21

n r2n r 11
J , ~3.5!

w r ,s~ f i
m!5@m#! (

p51

m

(
i<kp,¯,k1<n
1<np,¯,n15m

)
r 51

p

An112 i n112kr
* nr2nr 11 )

r 51

p H siBn112 i n112kr
* ;n r21

n r2n r 11
J ,

~3.6!

wherenp1150 and we set

Ha;b
c Jª$a«b%$a«b21%¯$a«b2c11%

@c#!
.

Remark:The definition of$c
a;b% is invalid for « such that@c#! 50. But on the right-hand side

of ~3.5! and ~3.6! we see that the term

@m#!

P r 51
p @n r2n r 11#!

~1<np,¯,n15m!

is valid since@m#q!/P r 51
p @n r2n r 11#q! PZ@q,q21#.

Proof: In Ref. 5, the following formula is given:

r r ,s~ei
m!5@m#! (

p51

m

(
i<kp,¯,k1<n
1<np,¯,n15m

)
r 51

p H r iBikr
;2n r 11

n r2n r 11
J )

r 51

p

Aikr

nr2nr 11, ~3.7!

wherenp1150. Sincew r ,s5r«21r ,«21s , it follows from ~3.7!

w r ,s~ei
m!5r«21r ,«21s~ei

m!5@m#! (
p51

m

(
i<kp,¯,k1<n
1<np,¯,n15m

)
r 51

p H «21r iBikr
;2n r 11

n r2n r 11
J )

r 51

p

Aikr

nr2nr 11.

~3.8!

Here by Lemma 3.2 we obtain fori<kp,¯,k1<n and 1<r<p,

H «21r iBikr
;2n r 11

n r2n r 11
J S )

r 51

p

Aikr

nr2nr 11D 5S )
r 51

p

Aikr

nr2nr 11D H «211nr1nr 1122np11r iBikr
;2n r 11

n r2n r 11
J

5S )
r 51

p

Aikr

nr2nr 11D H r iBikr
;n r21

n r2n r 11
J ,

where we usenp1150. Thus, we obtain~3.5!. Similarly we also get~3.6!. h

Let Vi j (1< i< j <n) be a copy of the vector spaceCl and setVª^ 1< i< j <nVi j . Let
u0 ,...,ul 21 be the standard basis ofCl . Now we define the representation (ca,b ,V) of W as
follows: Let Zjk , XjkPEnd(V) be the matrices defined as

Zjkui5« iui , Xjkui5ui 11

on the componentVjk and as the identity on the other component. For nonzero parametea
ª(ai j )1< i< j <n andbª(bi j )1< i< j <nP(C3)n(n11)/2, defineca,b(xi j ), ca,b(zi j )PEnd(V) to be

ca,b~xi j !5ai j Xi j , ca,b~zi j !5bi j Zi j . ~3.9!

We can easily check that these define the representation ofW:
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ca,b ;W→End~V!. ~3.10!

Composingw r ,s andca,b ,

F r ,s,a,bªca,b+w r ,s :U« →
wr ,s

W→
ca,b

End~V!,

we obtain the representation ofU« denoted by (F r ,s,a,b ,V). The representation introduced in Re
5 is just as (F«r ,«s,a,b ,V) in our notation since we havew r ,s5r«21r ,«21s in the proof of Propo-
sition 3.1.

It is shown in Ref. 5 that the representation (F r ,s,a,b ,V) is irreducible for generic parameter
r, s, a, b. We are interested in specializations of these parameters so that the represe
(F r ,s,a,b,V) is not necessarily irreducible.

B. Representations of U«
res and U«

fin

We review the representation theory ofU«
res. The classification of the irreducible represen

tions of U«
res is given by Lusztig.2 Before seeing it, let us recall the notions of highest wei

modules. AU«
res or U«

fin-moduleM is said to be of type1, if t i
l51 (i PI ) on M.

Definition 3.4: Let V be a U«
res-module of type1.

~i! The weight spaces Vl (l5( i miL iPP) of V are defined by

VlªH vPVUt iv5«mi
~0!

v, F t i ;0
l Gv5Fmi

~1!

l GvJ , ~3.11!

where mi5mi
(0)1 lmi

(1) and 0<mi
(0), l .

~ii ! V is a highest weight module if V is generated by a primitive vector, i.e., a vectv
PVl for somelPP, such that eiv5ei

( l )v50 for any iPI . In that case, l is called the highest
weight andv is called the highest weight vector of V.

Let V(l) be the irreducible highest weightUq(g)-module given byV(l)5Uq(g)/I where
lPP1 andI is the left ideal generated byei , f i

11^hi ,l& , andt i2q^hi ,l& (1< i<n). Here denote
the generator ofV(l) by vl . Let VA

res(l) be theUA
res-submodule ofV(l) generated byvl . Set

W«
res(l)ªVA

res(l) ^ AC« , which is naturallyU«
res-module. Note thatW«

res(l) is not necessarily
irreducible. So, letY be its maximal proper submodule and defineV«

res(l)ªW«
res(l)/Y to be the

irreducible quotient, which is type1 highest weight module with the highest weightl.
Theorem 3.5 „Ref. 2…: Arbitrary finite-dimensional irreducible U«

res-module V of type1 is
isomorphic to V«

res(l) for a uniquelPP1 .
Note that arbitrary finite-dimensional irreducibleU«

res-moduleV of type 1 is a direct sum of its
weight spaces.

Here we call a weightlPP1 satisfying 0<^hi ,l&, l for i PI an l-restricted weight.
Theorem 3.6 „Refs. 2 and 4, Proposition 11.2.10…: ~i! For l5( i miL iPP1 , definel (0)

ª( i mi
(0)l i and l (1)

ª( i mi
(1)l i where mi5mi

(0)1 lmi
(1) with 0<mi

(0), l ~and thenl5l (0)

1 ll (1)!. The U«
res-module V«

res(l) is isomorphic to V«
res(l (0)) ^ V«

res( ll (1)).
~ii ! By restricting to U«

fin , we obtain the one-to-one correspondence between the family o
finite-dimensional irreducible U«

res-modules of type1 with l-restricted highest weight and th
family of irreducible U«

fin-modules of type1.
As we have stated in Sec. I, the moduleV«

res(l (0)) is an irreducibleU«
fin-module and

V«
res( ll (1)) is identified with the irreducible highest weightsln11-moduleV(l (1)). Since we know

the structure of the irreduciblesln11-module well, this theorem implies that the structure of t
moduleV«

res(l) can be clarified if we shall make clear the one forV«
res(l (0)).
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IV. PRIMITIVE VECTORS

Let l and« be same as in Sec. III.

A. Specializations of parameters

Let Mª$m5(mjk)1< j <k<nu0<mjk< l 21% be the index set of the standard basis ofV. We
can consider the additive structure onM via the natural identificationM>(Z/ lZ)(1/2)n(n11). For
mPM we write umª^ 1< j <k<numjk

(umjk
PVjk).

We consider the following specialization of parametersr, s, a, b:

aikaik11¯ain51, ~4.1!

r ibikbik21bi 21k21
21 bi 11k

21 51 ~1< i<k<n!, ~4.2!

r i

si
bin

2 bi 21n
21 bi 11n

21 5 «̇l i, ~4.3!

where integers$l i%1< i<n satisfy 0<l i, l . Here we setaik5bik51 unless 1< i<k<n.
Remark:Note that the set of parameters satisfying~4.1!–~4.3! is never empty. Indeed, if we

setajk5bjk51 for any~ j, k! andr i51 andsi5«2l i for any i, it is trivial to see that these satisf
~4.1!–~4.3!. @By ~4.1!, we haveajk51 for all 1< j <k<n#.

Lemma 4.1: Under the specialization (4.2) and (4.3), we have

sibi 112k n2kbi 112k n112k
21 bi 2k n112kbi 2k n2k

21 5«2l i~1<k< i<n!. ~4.4!

Proof: Using ~4.2!, we haver ibikbik21bi 21k21
21 bi 11k

21 515r ibik21bik22bi 21k22
21 bi 11k21

21 and
thenbi 11k21bi 11k

21 5bik22bik
21bi 21k21bi 21k22

21 . Changingi→ i 2k andk→n2k11, we get

bi 112k n2kbi 112k n112k
21 5bi 2k n2k21bi 2k n112k

21 bi 2k21 n2kbi 2k21 n2k21
21 . ~4.5!

By ~4.2! with k5n and~4.3!, we havesibin21bin
21bi 21nbi 21n21

21 5«2l i which is ~4.4! in the case
k51. Suppose that~4.4! holds and substitute~4.5! into ~4.4!. Then we obtain

sibi 2k n2k21bi 2k n2k
21 bi 2k21 n2kbi 2k21 n2k21

21 5«2l i.

Thus, the induction onk proceeds and then we prove~4.4! for any kP$1,2,...,i %.
h

Under conditions~4.1!–~4.3!, by this lemma we have

F r ,s,a,b~ei !ª(
k5 i

n

XikXik11¯Xin$ZikZik21Zi 21k21
21 Zi 11k

21 %, ~4.6!

F r ,s,a,b~ f i !ª(
k51

i

Xi 112k n112k
21 Xi 122k n122k

21
¯Xin

21

3$«2l iZi 112k n2kZi 112k n112k
21 Zi 2k n112kZi 2k n2k

21 %, ~4.7!

F r ,s,a,b~ t i !ª«l iZin
2 Zi 21n

21 Zi 11n
21 , ~4.8!

B. Primitive vectors in V
Under the specialization in Sec. IV A, we get the following:
Proposition 4.2: Under the specialization (4.1) and (4.2), vPV satisfies the condition

eiv50 for any i 51,...,n, ~4.9!
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if and only if v5cu0W(cPC) where0W 5(0,0,...,0)PM .
Proof: By ~4.1! and ~4.2!, the action ofei on umPV (m5(mgh)PM ) is given by

eium5 (
i<k<n

@mik1mik212mi 21k212mi 11k#um1e ik1¯e in
, ~4.10!

where e jkPM satisfies that the~j, k!-entry is 1 and all others are 0. If m50W , we havemik

1mik212mi 21k212mi 11k50 for all i<k<n, which implies thateiu0W50 for any i.
Conversely, assume thatv5(mPM cmum (cmPC) satisfies~4.9!. First, we have

05env5Xnn$Zn21n21
21 Znn%v5 (

mPM
cm@mnn2mn21n21#um1enn

~4.11!

This implies that

mn21n21Þmnn⇒cm50, ~4.12!

and then we havev5(mPM ,mn21n215mnn
cmvm.

Next, byen21v50 we have

05en21v5~Xn21n21Xn21n$Zn21n21Zn22n22
21 %1Xn21n$Zn21nZn21n21Zn22n21

21 Znn
21%!v

5 (
mPM .

mn21n215mnn

cm@mn21n212mn22n22#um1en21n211en21n

1cm@mn21n1mn21n212mn22n212mnn#um1en21n
.

This implies that

cm@mn21n212mn22n22#5cm@mn21n1mn21n212mn22n212mnn#50 ~4.13!

for any mPM satisfyingmn21n215mnn since all vectors appearing in the summation are linea
independent under the conditionmn21n215mnn , that is, the indices m1en21n211en21n and
m81«n21n never coincide for arbitrary m, m8 under the conditionsmn21n215mnn and
mn21n218 5mnn8 . Thus, by~4.12! and ~4.13! we havecm50 unless

mn22n225mn21n215mnn ,

mn22n215mn21n .

Here we assume thatcm50 in v unless

mii 5mi 11i 115¯5mnn ,

mii 115mi 11i 125¯5mn21n ,
~4.14!

]

min215mi 11n .

By eiv50 we get
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05(
k5 i

n

XikXik11¯Xin$ZikZik21Zi 21k21
21 Zi 11k

21 %v

5 (
mPM .

m satisfies~4.14!

(
k5 i

n

cm@mik1mik212mi 21k212mi 11k#um1e ik1¯1e in

5 (
mPM ,

m satisfies~4.14!

~cm@mii 2mi 21i 21#um1e i i 1¯1e in

1cm@mii 111mii 2mi 21i2mi 11i 11#um1e i 111¯1e in

1•••1cm@min1min212mi 21n212mi 11n#um1e in
!. ~4.15!

It follows from ~4.14! that all vectors appearing in the summation~4.15! are linearly independent
Therefore, we obtain thatcm50, unless

mii 2mi 21i 2150,

mii 111mii 2mi 21i2mi 11i 1150,

]

min1min212mi 21n212mi 11n50.

Thus, from this and~4.14! we getcm50 unless

mi 21i 215mii 5mi 11i 115¯5mnn ,

mi 21i5mii 115mi 11i 125¯5mn21n ,

] ~4.16!

mi 21,n225min215mi 11n ,

mi 21n215min .

Thus, usinge2v5e3v5¯5en21v5env50 we havecm50 unless

m115m225m335¯5mnn ,

m125m235m345¯5mn21n ,

] ~4.17!

m1,n225m2n215m3n ,

m1n215m2n .

Finally, usinge1v50, we have
                                                                                                                



th the

n

2010 J. Math. Phys., Vol. 43, No. 4, April 2002 Toshiki Nakashima

                    
05 (
k51

n

X1kX1k11¯X1n$Z1kZ1k21Z2k
21%v

5 (
mPM ,

m satisfies~4.17!

(
k51

n

cm@m1k1m1k212m2k#um1e1k1¯1e1n

5 (
mPM ,

m satisfies~4.17!

~cm@m11#um1e111¯1e1n
1cm@m121m112m22#um1e121¯1e1n

1¯1cm@m1n1m1n212m2n#um1e1n
!. ~4.18!

Under the condition~4.17!, we get thatcm50, unless

05m115m125¯5m1n . ~4.19!

Therefore, it follows from~4.17! and ~4.19! that cm50 unless

05m115m225m335¯5mnn ,

05m125m235m345¯5mn21n ,

] ~4.20!

05m1,n225m2n215m3n ,

05m1n215m2n ,

05m1n,

which implies thatv5cu0W(cPC).
Remark:In the proof of the proposition, we easily see that we do not need~4.1! essentially. It

is required for simplification of the proof or the presentations. So it is possible to proceed wi
same argument for genericajk’s.

The primitive vectoru0W possesses the following property:
Proposition 4.3: Under the conditions~4.1!, ~4.2! and ~4.3!, we have tiu0W5«l iu0W and

f i
l i11u0W50.

Proof: The first formula is the immediate consequence of~4.8!. We obtain the explicit form of
f i

l i11 on V by ~3.6! in Proposition 3.3 takingm5l i11. By Lemma 4.1, under the specializatio
~4.1!, ~4.2!, and ~4.3!, we havesibi 112kn2kbi 112kn112k

21 bi 2kn112kbi 2kn2k
21 5«2l i. Thus, onu0W

we have

f i
l i11u0W5@l i11#! (

p51

l i11

(
i<kp,¯,k1<n

1<np,¯,n15l i11

)
r 51

p

An112 i n112kr
* nr2nr11 )

r 51

p H «2l i;n r21
n r2n r 11

J u0W .

For any pP$1,2,...,l i11% and anynp ,...,n1 satisfying 1<np,¯,n15l i11, there existsr
P$1,2,...,p% such thatn r 11<l i,n r . Therefore, for suchr we have

H «2l i;n r21
n r2n r 11

J 5
$«2l i1nr21%$«2l i1nr22%¯$«2l i1nr 11%

@n r2n r 11#!
50.

Thus, we obtainf i
l i11u0W50. h

Here for lª(l1 ,...,ln) (0<l i, l ) we define theU«-submoduleL(l) of V by L(l)
ªU«u0W .
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Let V(l) be the irreducible highest weightUq(g)-module as in Sec. III B. LetVA(l) be the
UA-submodule ofV(l) generated byvl . SetV«(l) be theU«-submodule ofVA(l) ^ AC« gen-
erated byvl . Note thatV«(l) is not necessarily irreducible. By Proposition 4.3,t iu0W5«l iu0W and
f i

^hi ,l&11u0W50 (i PI ), so we hope to have the surjectiveU«-linear mapp:V«(l)→L(l) given by
p:vl°u0W . It seems that the moduleL(l) is in the similar stream of the theory ofU«

res-modules.
Here we expect thatL(l) is an irreducible highest weightU«-module. Surprisingly, in Sec. IV C
we will obtain the more interesting results thatL(l) can be seen as an irreducibleU«

fin-module. By
Theorem 3.6 this means that we get irreducibleU«

res ~or U«
fin!-modules directly fromU«-modules.

C. Shifts of parameters

Let r (0)5(r j
(0)), s(0)5(sj

(0))P(C3)n anda(0)5(ajk
(0)), b(0)5(bjk

(0))P(Cx)N be the parameters
satisfying~4.1!–~4.3!.

Fix a basis vectorujPV(j5(j jk)PM ) arbitrarily and set b(j)5(bjk
(j))ª(«2j jkbjk

(0))
P(C3)N. In this setting we obtain the following:

Proposition 4.4: For anym5(m jk)PM and any XPU« , set

F r ~0!s~0!,a~0!,b~0!~X!um5 (
mPM

Cmum. ~4.21!

Then we have

F r ~0!,s~0!,a~0!,b~j!~X!um1j5 (
mPM

Cmum1j . ~4.22!

Proof: It is shown easily from the formula

ca~0!,b~0!~xjk!um5ajk
~0!um1« jk

ca~0!,b~0!~zjk!um5bjk
~0!«m jkum ,

ca~0!,b~j!~xjk!um1j5ajk
~0!um1j1« jk

,

ca~0!,b~j!~zjk!um1j5bjk
~j!«m jk1j jkum1j5bjk

~0!«m jkum1j .
h

By Proposition 4.2, Proposition 4.3, and Proposition 4.4, we have the following result.
Proposition 4.5: We consider the representation(F r (0),s(0),a(0),b(«),V).
~i! A vectorvPV satisfies the condition

eiv50 for any i 51,...,n, ~4.23!

if and only if v5cuj (cPC) where ujPV is the fixed basis vector as above.
~ii ! We have tiuj5«l iuj and fi

l i11uj50 (i PI ).
By this proposition, if we take the parameters properly, any basis vectorujPV can be the

unique~up to constant! primitive vector inV.

V. IRREDUCIBLE U «
fin -MODULE

Suppose that parameterr, s, a, bsatisfy conditions~4.1!–~4.3!. In this caseu0W is the unique
~up to constant! primitive vector in V. As we defined in Sec. IV, setL(l)ªU«u0W(l
5(l1 ,l2 ,...,ln),0<l i< l 21), which is aU«-submodule ofV. In this section we shall see
several properties of this module and it amounts to an irreducibleU«

fin-module.
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A. Root vectors

First, we see higher root vectors inU« . There are several definitions for them. We sh
introduce two of them here and discuss their relations.

The first one is defined by using~2.13! and~2.16! inductively. We also denote them byea and
f a (aPD1).

Lemma 5.1: The root vectors ea and faPU« (aPD1) defined by~2.13! and~2.16! satisfy the
relations ~2.11!, ~2.12!, ~2.14!, ~2.15!, ~2.17!, and ~2.18! in U« .

Proof: This lemma is easily obtained by using the results in, e.g., Refs. 12, 13, Sec. 3. In
as for the elementEa (aPD1) in Ref. 12, Chap. 4, we have the simple relation

ea5~qheight~a!21Ea!uq5«21. ~5.1!

Thus, the relations~2.11!, ~2.14!, and ~2.15! are immediate from Ref. 12, Proposition 3.2. T
remaining relations are also derived similarly.

We introduce the alternative definition of root vectors:5 For rootsa5a i1a i 111¯a j and
b5a j 111a j 121¯1ak ( i , j ,k), we define

ēa1b5ēaēb2«ēbēa , ~5.2!

f̄ a1b5 f̄ aF̄b2«21 f̄ b f̄ a , ~5.3!

where we setēa i
ªei and f̄ a i

ª f i . Note that these definitions are well-defined, that is, these do
depend on the choice ofj.

Those two types of the root vectors possess the following simple relations:
Lemma 5.2: For anyaPD1 , we have

ēa5«height~a!21ea , f̄ a5«2height~a!11f a , ~5.4!

ēa
l 5ea

l , f̄ a
l 5 f a

l . ~5.5!

Proof: The proof of~5.4! is done by using induction on the height of roots and~5.5! is an
immediate consequence of~5.4! since« l51. h

B. U «
fin -module structure on V

For aPD1 we define the actions ofea and f a recursively by using the formulas~2.13! and
~2.16! as in Sec. V A.

Proposition 5.3: For anyaPD1 and iPI , we have

ea
l 5 f a

l 50 and t i
l51 on V. ~5.6!

Proof: SinceF r ,s,a,b(t i)5«l iZin
2 Zi 21n

21 Zi 11n
21 on V andZi j

l 51, it is trivial that t i
l51.

To show the nilpotency ofea and f a , we need the following lemma:
Lemma 5.4 (Ref. 5, Proposition 3.4): Fora5a i1a i 111¯1a j , the actions of ēa

l and f̄a
l on

V are given by

ēa
l 5

1

~«2«21! l S (
k1> i ,...,kj 2 i 11> j

(
p51

j 2 i 11

~21!p21u~k1>¯>kp,¯,kj 2 i 11!

3Cik1...kp21
~Ci 1p21kp

2Ci 1p21kp

21 !Ci 1pkp11 ...kj 2 i 11

21 Diki ...kj 2 i 11D • id,
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f̄ a
l 5

21

~«2«21! l S (
k1>n112 j ,...,kj 2111>n112 i

(
p51

j 2 i 11

~21!p21u~k1>¯>kp,¯,kj 2 i 11!

3C̄n112 j k1¯kp21
~C̄n2 j 1p kp

2C̄n2 j 1p kp

21 !C̄n2 j 1p11kp11¯kj 2 i 11

21 D̄n2 j 11k1¯kj 2 i 11D • id,

whereu(X)51 if X is true andu(X)50 otherwise, and we set

Ci kª~«21r ibikbik21bi 21k21
21 bi 11k

21 ! l , ~5.7!

C̄ikª~«21sn2 i 11bk112 i kbk2 i k21bk112 i k21
21 bk2 i k

21 ! l , ~5.8!

Dikª)
p5k

n

~aip! l ,D̄ ikª)
p5k

n

~ap112 ip
21 ! l , ~5.9!

and f ik1¯kp
ªf ik1

¯f ikp
for f5C, C̄, D, D̄.

~Note that in the definition ofh̄ ik
5, si must be changed tosn112 i .!.

Applying the specializations of the parameters~4.2! and ~4.4! to Cik and C̄ik we haveCik

5C̄ik51 for all 1< i<k<n, which implies thatCi 1p21kp
2Ci 1p21kp

21 5C̄n2 j 1p kp
2C̄n2 j 1p kp

21

50 and thenēa
l 5 f̄ a

l 50. Since we haveea
l 5ēa

l and f a
l 5 f̄ a

l by Lemma 5.2, we obtain thatea
l

5 f a
l 50 on V. h

Theorem 5.5: (i) If we define the actions of ea and fa (aPD1) by using~2.13! and ~2.16!,
the vector spaceV becomes U«

fin-module of type 1.
~ii ! The subspace L(l) (l5(l1 ,...,ln), l iP$0,1,...,l 21%) is the unique irreducible

U«
fin-submodule ofV.

Proof: To show~i!, it suffices to check the relations~2.7!–~2.20! in Proposition 2.1. Relations
~2.7!–~2.10! are satisfied sinceV is originally U«-module. Relations~2.11!–~2.18! are obtained
from Lemma 5.1. We have~2.19!, t i

l51 on V and then~2.20! from Proposition 5.3. Thus,V
becomes aU«

fin-module of type1.

C. Proof of irreducibility

In order to show the irreducibility ofL(l), we need the following:
Proposition 5.6: Any finite dimensional U«

fin-module contains a primitive vector.
To prove this proposition, we shall show the following lemma
Lemma 5.7: Let L.0 be a sufficiently large integer. For any i1 ,i 2 ,...,i LPI we have in U«

fin ,

ei L
¯ei 2

ei 1
50. ~5.10!

Proof: We define aZ-gradation on (U«
fin)1 by the following way: As we have seen in Prop

sition 2.2, (U«
fin)1 has the basis

$ebN

r N ebN21

r N21
¯eb1

r 1 %0<r 1 ,...r N, l .

Using this, we define

~U«
fin!d

1
ª %

r 1 ht~b1!1¯1r N ht~bN!5d

CebN

r N ebN21

r N21
¯eb1

r 1 , ~5.11!

whereht(b) is the height of a rootbPD1 . We have

~U«
fin!15 %

d
~U«

fin!d
1 .
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Since all the relations in (U«
fin)1, that is, ~2.11!, ~2.13!, ~2.14!, ~2.15!, and ~2.19! are homoge-

neous, this gradation is well-defined. We call an element in (U«
fin)d

1 a homogeneous element o
degree d. We have (U«

fin)d
1(U«

fin)e
1,(U«

fin)d1e
1 for d, ePZ>0 and thenei L

¯ei 2
ei 1

is a homoge-
neous element of degreeL. It immediately follows from Proposition 2.2 that the maximum deg
is (l 21) ( i 51

N ht(b i)ªJ, which implies that ifL.J, (U«
fin)L

150. Thus, ifL is sufficiently large,
a homogeneous elementei L

...ei 2
ei 1

must vanish. h

Proof of Proposition 5.6:Suppose that a finite dimensionalU«
fin-moduleV does not have any

primitive vector. So for any nonzerovPV there exists an infinite sequencei 1 ,i 2 ,...,i k ,...(i j

PI ) such that all vectorsv, ei 1
v, ei 2

ei 1
v,...,ei k

¯ei 2
ei 1

v,... never vanish. But this contradicts t
Lemma 5.7. Therefore,V contains a primitive vector. h

Proof of Theorem 5.5 (ii):Let W be a nonzero submodule ofL(l). By Proposition 5.6,W
contains a primitive vector. By the uniqueness of the primitive vector inV ~Proposition 4.2!, W has
to containu0W . Therefore,W5L(l) and thenL(l) is the unique irreducible submodule inV. Here
we completed the proof of Theorem 5.5~ii !. h

By Theorem 3.6~ii !, for ‘‘ l-restricted weight’’lPP1 , the U«
res-module V«

res(l) ~see Sec.
III B ! is identified with the irreducibleU«

fin-module, which is isomorphic toL(l). Accordingly, by
Theorem 5.5 we realize the irreducible highest weightU«

res-moduleV«
res(l) with the l-restricted

highest weightl in the vector spaceV.
In Ref. 14, for theBn , Cn , andDn cases the analogous presentations of the maximal cy

representations are given explicitly. Thus, we can apply the procedure adopted here to the
might hope to obtain the irreducibleU«

fin(Bn) (U«
fin(Cn),U«

fin(Dn))-modules, which will be dis-
cussed elsewhere.
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The real geometry of holomorphic four-metrics
D. C. Robinson
Mathematics Department, King’s College London,
Strand, London WC2R 2LS, United Kingdom
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The real geometry of holomorphic four-metrics is investigated. The almost product
and complex structures, associated with the real eight-metrics corresponding to the
real and imaginary parts of the holomorphic metrics, are studied. It is shown that
half-flat holomorphic metrics, and the corresponding real eight-metrics, are associ-
ated with integrable almost product, complex and hyper-Ka¨hler structures. Real and
complex local coordinate descriptions are presented. ©2002 American Institute
of Physics.@DOI: 10.1063/1.1456947#

I. INTRODUCTION

In the approximately 25 years since the original work by Newman, Penrose and Pleba´nski on
holomorphic half-flat four-metrics,1–3 there have been many developments of their results4–6

There have also been numerous applications of this and related work to real four-metr
Riemannian and neutral~Kleinian or ultrahyperbolic! signature.7–9 However, the extension of the
original ideas to real four-metrics of Lorentzian signature and Ricci-flat Lorentzian four-me
remains to be fully realized, although some interesting results have been obtained. Ther
been promising developments in both the twistorial approach to this problem,10,11 and in the
approach of Newman and his collaborators.12,13 There have also been some isolated results
combining self-dual and anti-self-dual solutions to obtain Ricci flat and real metrics by u
Plebánski’s formalism.14–18 More references to aspects of these various lines of research c
found in a recent review.19 This article aims to provide further background for research into
construction of real metrics from holomorphic ones by exploring, in greater detail than previo
certain aspects of the real geometry associated with holomorphic four-metrics on complex
manifolds.

The focus in this article is on the geometry of the underlying eight dimensional real man
and the two real eight-metrics defined by the real and imaginary parts of holomorphic
metrics. Most research on such four-metrics focuses on their holomorphic properties. While
clearly the natural thing to do, different and interesting insights can be obtained from the stu
the geometry on the real eight-manifold. Investigations of this type were initiated in the 197
Rozga and Woodhouse.20,21This article includes an extension of that line of work, with particu
attention being paid to half-flat holomorphic four-metrics and the important real structure
geometry which are related to them.

The content of the article is as follows. The Sec. II is devoted to a discussion of the com
and almost complex structures associated with a holomorphic four-metric,g, on a complex four-
manifold M. All the real metrics discussed explicitly in this article will have indefinite signat
but in the interests of simplicity the term ‘‘pseudo-’’ as in, for example ‘‘pseudo-Ka¨hler’’ will be
avoided. Here, where complex four dimensional~eight real dimensional! manifolds and holomor-
phic four-metricsg are considered, the real metrics,h5Reg andk5Im g, have neutral signature
~4,4! and this simplification in terminology is unambiguous. Some previously obtained results21–23

are included in this section for the sake of completeness. Examples are the exhibition
anti-Kähler structure of the real metrics,h andk, and the fact that these real metrics may inhe
the Einstein property of a holomorphic Einstein metricg. In the particular case of four comple
dimensions being considered here, additional structures occur naturally. The real metrics,h andk,
obtained from a holomorphic metricg are almost hyper-Ka¨hler, in two distinct ways. That is, ther
20150022-2488/2002/43(4)/2015/14/$19.00 © 2002 American Institute of Physics
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are two sets of three almost complex structures, which are compatible with the real metr
they are, in fact, almost Hermitian structures with respect toh and k, and which also satisfy
quaternionic relations. These structures are determined from the holomorphic metric, certain
of self-dual ~respectively anti self-dual! holomorphic two-forms, and their complex conjugate
Together with the complex structure of the complex four-manifold these almost complex
tures also determine two sets of almost product structures satisfying related, but different
braic relations. These almost hyper-Ka¨hler and almost product structures, together with the r
metrics, encode certain of the information contained in the holomorphic metric. Further aspe
the latter are exposed when differential, in addition to algebraic, relations are considered.
third section half-flat holomorphic four-metrics are investigated. Since these are necessarily
flat the corresponding real metricsh and k are also Ricci flat. In addition, each self-dual
anti-self-dual holomorphic metric determines bases~respectively anti-self-dual and self-dual! of
three holomorphic two-forms with zero covariant exterior derivative. Hence, in the half-flat
there are triples of~covariantly constant! complex structures satisfying quaternionic relations a
h andk are in fact hyper-Ka¨hler. Furthermore, there are now triples of almost product struct
which are integrable. Unified real descriptions of these structures are presented. The pa
case that is dealt with focuses on anti-self-dual metrics and their real parts. However, ana
constructions apply to the imaginary parts of anti-self-dual metrics and the real or imaginary
of self-dual four-metrics.

In Sec. IV local coordinates, adapted to an integrable almost product metric structure, (P,h),
of the type discussed in Sec. III, are introduced. This coordinate formulation is like a real ve
of the standard local coordinate description of a Ka¨hler metric. Next an integrable and compatib
almost complex structureI is added, the system (P,h,I ) is described in adapted complex coord
nates, and a holomorphic metricg is naturally defined. When the condition of Ricci flatness
imposed onh, the description ofg is seen to coincide with a description of half-flat holomorph
four-metrics introduced by Pleba´nski.3 Hence an alternative approach to holomorphic fo
metrics, via the structure (P,h,I ). is provided here.

An appendix contains a brief outline of the relationship between the construction of tw
spaces for the real hyper-Kahler eight-metrics on M,24,25 and holomorphic half-flat four-metrics.

Lower case, Latin indicesa, b, c,...,i , j , k... range and sum from 1 to 4; barred indicesā,b̄,
c̄, . . . from 411 to 414; bold lower case Latin indices,i, j , k from 1 to 3; Greek indices from
1 to 8; upper-case Latin indices A,B,... from 1 to 2 and barred upper case Latin indicesĀ,B̄, . . .
from 211 to 212. Complex conjugates~c.c.! are denoted with a bar over the kernel lett
Geometrical considerations are essentially local.

II. HOLOMORPHIC FOUR-METRICS

Let M be a complex manifold with dimCM equal to four, and letg be a holomorphic metric
on M, with line element given in complex coordinateszi by

ds25gi j dzi
^ dzj , ~1!

with ]gi j /] z̄k50.
Let I denote the~real! complex structure tensor satisfyingI 2521 andIdzi5 idzi . Then

g~ IX,IY!52g~X,Y! ~2!

for all vector fieldsX andY tangent to M.26,27 Sinceg(X,Y) is zero wheneverX or Y is a ~0,1!
vector field, the metricg is degenerate. Nevertheless, when the holomorphic category on
considered, it determines in the usual way, a unique torsion free metric connection, the ho
phic Levi-Civita connection with holomorphic curvature. It is convenient here to present
metric geometry in terms of the holomorphic Cartan structure equations, using conventions
will be used later when real Lorentzn metrics are considered. These conventions are na
adapted to two component spinor and anti-self-dual formulations.28
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Let xa be a basis of holomorphic one-forms, a Cartan co-frame forg, so that the line elemen
for g is given by

ds25habx
a

^ xb, ~3!

where

hab5F 0 eAB

2eAB 0 G ,
~4!

eAB5F 0 1

21 0G .
The complex volume element is given by

V5 ix1`x2`x3`x4. ~5!

The first and second Cartan structure equations are given by

dxa2xb`Ab
a50,

~6!
Aab1Aba50,

and

dAb
a1Ac

a`Ab
c52 1

2 Fbcd
a xc`xd. ~7!

HereAb
a denotes the holomorphic Levi-Civita connection one-form~with covariant derivative¹!,

andFbcd
a are the components of its curvature two-formFb

a . The structure group is SO~4,C! and the
connection and curvature forms, which take values in the Lies algebra so~4,C!, can be written as
the sum of their self-dual and anti-self-dual parts,1Ab

a ,2Ab
a ,1Fb

a ,2Fb
a , respectively. Here,

* 1Fb
a5 i 1Fb

a , * 2Fb
a52 i 2Fb

a . In 434 matrix form

1Ab
a5FÃ08

081 Ã18
081

Ã08
181 2Ã08

081
G , ~8!

where here 1 is the unit 232 matrix andÃ08
08 , Ã18

08 , Ã08
18 denote the independent components

1Ab
a . Similarly,

2Ab
a5FvB

A 0

0 vB
AG , ~9!

where the trace of the 232 matrix (vB
A) is zero. Other self-dual and anti-self-dual objects can

written similarly, for instance,

2Fb
a5FVB

A 0

0 VB
AG , ~10!

where

VB
A5dvB

A1vC
A`vB

C . ~11!
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The structure group SO~4,C! is isomorphic to$SL~2,C!L3SL~2,C!R%/Z2 . The self-dual con-
nection and curvature take values in the Lie algebra sl(2,C)R and the anti-self-dual connection an
curvature take values in the Lie algebra sl~2,C!L .

The basis of self-dual holomorphic two-forms, given by

1S15x2`x11x4`x3,

1S25 i ~x1`x41x3`x2!, ~12!

1S35 i ~x1`x21x4`x3!,

defines three holomorphic tensor fields1Ji by

g~X,1Ji~Y!!51S i~X,Y! ~13!

for any holomorphic vector fieldsX andY. It is a straightforward matter to show that

~1J1!25~1J2!25~1J3!252I, ~14!

whereI is the unit operator, and

1J11J251J3, 1J21J351J1, 1J31J151J2, ~15!

g~1J1X,1J1Y!5g~1J2X,1J2Y!5g~1J3X,1J3Y!5g~X,Y!, ~16!

for all holomorphic vector fieldsX and Y. The basis of anti-self-dual holomorphic two-form
given by

2S15x3`x11x4`x2,

2S25 i ~x4`x11x3`x2!, ~17!

2S35 i ~x2`x41x3`x1!,

define, as above, three holomorphic tensor fields,2Ji, by

g~X,2Ji~Y!!52S i~X,Y!, ~18!

and these satisfy equations of the same form as Eqs.~14!–~16!.
The real and imaginary parts,h and k, of the holomorphic metricg5h1 ik are two real

metrics on the real eight dimensional manifold M. In terms of the complex co-frame of
one-forms (xa,x̄a) on M, the line element ofh is given by

hds25 1
2 hab~xa

^ xb1x̄a
^ x̄b!, ~19!

and the line element ofk is given by

kds25
i

2
hab~2xa

^ xb1x̄a
^ x̄b!. ~20!

The two real metrics have Kleinian~neutral or ultrahyperbolic! signatures~4,4!. The covariant
derivatives corresponding to the Levi-Civita connections ofh andk, h¹ andk¹, respectively, are
each determined by the same connection one-forms21

FAb
a 0

0 Āb
aG . ~21!
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Wheng is Einstein, that is, when

Fbad
a 5 1

4 Fhbd , ~22!

thenh is Einstein if and only if ImF is zero andk is Einstein if and only if ReF is zero, cf. Refs.
22 and 23.

Both real metrics are anti-Hermitian with respect to the complex structureI , that is, for all real
vector fieldsX andY on M,

h~ IX,IY!52h~X,Y!;k~ IX,IY!52k~X,Y!. ~23!

Moreover, since

h¹I 5k¹I 50, ~24!

the two real metrics are, in fact, anti-Ka¨hler21–23with respect to the complex structureI . They are,
of course, related, with the metrick in the anti-Kähler case replacing the two-form of the Ka¨hler
case; for any two real vector fieldsX andY

k~X,Y!52h~ IX,Y!. ~25!

The holomorphic tensor fields1Ji and 2Ji defined above can be naturally extended to r
tensor fields which satisfy relations like those in Eqs.~14!–~16! above. Define the real tensor field
1Ji by

h~X,1Ji~Y!!5 1
2 ~1S i11S̄ i!~X,Y! ~26!

for X and Y any vector fields tangent to M. Here, and in the following,1S̄ i denotes the complex
conjugate of1S i. Then, ifa andX are, respectively, a real one-form and vector field on M, w
~1,0! parts denoted respectively bya (1,0) andX(1,0) , so thata5a (1,0)1c.c. andX5X(1,0)1c.c.,

1Ji~a,X!51Ji~a (1,0) ,X(1,0)!1c.c. ~27!

Whenh is replaced byk in the left hand side of Eq.~25! the result is the following equation:

k~X,1Ji~Y!!5
i

2
~21S i11S̄ i!~X,Y!. ~28!

The holomorphic tensor fields2Ji can be extended to the real tensor fields2Ji in a similar
way.

Both 1Ji and 2Ji are triplets of almost complex structures and bothh and k are Hermitian
with respect to each of these almost complex structures. Furthermore, the almost complex
tures satisfy a quaternionic algebra; that is, each of the triplets1Ji and2Ji separately satisfies th
set of equations

~J1!25~J2!25~J3!2521,

J1J25J3, J2J35J1, J3J15J2,
~29!

h~J1X,J1Y!5h~J2X,J2Y!5h~J3X,J3Y!5h~X,Y!,

k~J1X,J1Y!5k~J2X,J2Y!5k~J3X,J3Y!5k~X,Y!.

In other words, the eight dimensional real manifold M is almost quaternion and each of (M ,h,Ji)
and (M ,k,Ji) are almost quaternionic metric structures.27,29
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By interchangingh andk in Eqs.~26! and~28! a second set of real tensor fields,1Pi and2Pi

which are almost product, almost anti-Hermitian structures, rather than almost complex, a
Hermitian structures, can be defined. Let1Pi be defined by

k~X,1Pi~Y!!5 1
2 ~1S i11S̄ i!~X,Y! ~30!

or, equivalently,

1Pi~a,X!5 i 1Ji~a (1,0) ,X(1,0)!1c.c. ~31!

with the notation as above. It then follows, analogously to Eq.~28!, that

h~X,1Pi~Y!!5
i

2
~1S i21S̄ i!~X,Y!. ~32!

Here 2Pi can be defined in a similar way and satisfies equations parallel to Eqs.~30!–~32!. In
terms of their components with respect to the co-frame (xa,x ā) and its dual basis of vector fields
these operators are given by

I 5 i Fdb
a 0

0 2db
aG , 1Ji5F 1Ji 0

0 1J̄iG , 1Pi5 i F 1Ji 0

0 21J̄iG , ~33!

and similarly for2Ji and2Pi. The algebraic relationships between these real tensors, for shI ,
Ji andPi, can be summarized in the following equations,

IJ i5JiI 5Pi,

IP i52Ji, ~34!

JiPj5PiJj52Id ij 1« ijk Pk,

where in each equationJi and Pi are both self-dual or both anti-self-dual. The self-dual a
anti-self-dual operators commute. Both1Pi and2Pi are almost product rather than almost co
plex structures,27 and satisfy algebraic equations which are generalizations of the quatern
equations. They also satisfy almost anti-Hermitian rather than almost-Hermitian relations w
real metrics; altogether

~P1!25~P2!25~P3!251,

P1P25IP3, P2P35IP1, P3P15IP2,
~35!

h~P1X,P1Y!5h~P2X,P2Y!5h~P3X,P3Y!52h~X,Y!,

k~P1X,P1Y!5k~P2X,P2Y!5k~P3X,P3Y!52k~X,Y!.

Sinceg is a four-metric, it always follows that

¹1J1521Ai
11Ji, ¹1J2521Ai

21Ji, ¹1J3521Ai
31Ji, ~36!

where the so~3,C! -valued one-form1Aj
i , is the so~3,C!-valued representation of the self-dual pa

of the Levi-Civita spin connection. Similar equations holds for the anti-self-dual objects. F
these equations it follows that, fori51,2,3 separately,

h¹g~1Jb
ia!5k¹g~1Jb

ia!5F21Ajg
i 1Jb

ja 0

0 c.c.
G ~37!
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@in components with respect to the complex bases and where c.c. denotes the complex co
of 2(1Ajg

i 1Jb
ja)#. Similar results hold in the anti-self-dual case. Hence when a gauge ca

found in which the components of1Aj
i are real~and hence constant! so that1Aj

i takes values in
so~3,R!, the triples~M, h, 1Ji! and ~M, k, 1Ji! constitute a quaternion Ka¨hler structure and the
metrics are Einstein metrics.29,30 Similar results hold, of course, when the anti-self-dual cas
considered.

III. HALF-FLAT ANTI-SELF-DUAL FOUR-METRICS

In this section half-flat, anti-self-dual four-metrics,g, on M will be considered.~In both the
self-dual and the anti-self-dual case, the Levi-Civita connection of the corresponding real m
h andk is determined by the real so~1,3! connection given by twice the real part of the holomo
phic Levi-Civita connection ofg. There is only one real connection.! Since the self-dual part o
the curvature of a holomorphic half-flat anti-self-dual metric is zero,1Fb

a50, a co-frame can be
chosen in which1Ab

a50. In this gauged1S i50, and the tensors, defined by Eq.~13!, are cova-
riantly constant,

¹1Ji50. ~38!

It then follows from Eqs.~36! and ~37!, and then~24! and ~34!, that the real tensors, defined b
Eqs.~26! and~30!, are covariantly constant with respect to the Levi-Civita covariant derivative
the Ricci flat eight-metricsh andk. Relationships between the various structures discussed in
section can be summarized in three propositions which it is a straightforward matter to prov
first is due to Woodhouse.21–23

Proposition 1: Let h be a real eight-metric of signature~4,4! on a real eight dimensiona
manifold M. Let h be anti-Hermitian with respect to an almost complex structureI . Then I is a
complex structure and the tensorg given by the equation

g~X,Y!5h~X,Y!2 ih~ IX,Y!

is holomorphic~a holomorphic metric! with respect to the complex structureI if and only if

h¹I 50.
Proposition 2:If the conditions and conclusions of Lemma 1 hold, and in addition there

hyper-Kähler structure~M, h, Ji! with IJ i5JiI , then

~a! Ji5Jk
i j]/]zj

^ dzk1c.c., for some complexJk
i j , whereI ]/]zj5 i ]/]zj .

~b! For eachi51,2,3,g¹Ji50, andg(Ji]/]zj ,Ji]/]zk)5g(]/]zj ,]/]zk).
~c! The holomorphic metricg is half-flat.
~d! ~M, k5Im g,Ji! is also hyper-Ka¨hler, ¹kJ

i50.
~e! The hyper-Ka¨hler structures are Ricci flat.

The results of Proposition 2 can be reformulated in terms of three almost product stru
Pi.

Proposition 3:If the conditions and conclusions of Lemma 1 hold, and in addition there
three almost product structuresPi which satisfy the conditionsPiPj5e ijk IPk, h(PiX,PiY)
52h(X,Y),¹hPi50 andIP i5PiI , then the tensorsJi52IP i satisfy the conditions of Lemma 2
and hence determine a holomorphic half-flat metricg and Ricci-flat hyper-Ka¨hler structures~M,
h, Ji! and ~M, k, Ji! on the eight dimensional real manifold M.

Results from this and the previous section will be used later and it is useful to summ
them in a convenient form, which starts here with the almost product structures. For the s
explicitness structures arising from anti-self-dual half-flat holomorphic metrics,g5h1 ik, will be
given, but there are similar equations for self-dual holomorphic metrics.

First consider the almost product structures1Pi, with components given in Eq.~33!,
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1Pi5 i F 1Ji 0

0 21J̄iG . ~39!

Let P denote the almost product structure~strictly the two complex parameter family o
almost product structures!

P5 i Fai
1Ji 0

0 2āi
1J̄iG ~40!

for any complexnumbersai satisfying the equation

~a1!
21~a2!

21~a3!
251. ~41!

Then the results given in the propositions above for almost product structures1Pi, and complex
structureI , associated with an anti-self-dual holomorphic half-flat metricg, can be summarized
by the equations

~P!251, ~42!

h~PX,PY!52h~X,Y!, k~PX,PY!52k~X,Y!, ~43!

h¹P50, k¹P50, ~44!

~ I !2521, PI5IP, ~45!

h~ IX,IY!52h~X,Y!, k~ IX,IY!52k~X,Y!, ~46!

h¹I 50, k¹I 50, ~47!

whereX andY are any vectors tangent to M. Furthermore,h andk are Ricci flat. Conversely, Eqs
~42!–~47! imply that the complex metricg5h1 ik is a holomorphic four-metric and half-flat, an
the eight-metricsh andk are Ricci flat. A local coordinate description of the geometry determi
by a single triple consisting of an almost product structureP, an almost complex structureI and
a metrich, satisfying Eqs.~42!–~47!, will be given in Sec. IV.

It follows from Eqs.~42!–~47! that the almost complex structureJ ~here strictly a two com-
plex parameter family! defined by

J52IP, ~48!

satisfies the equations

J2521,

JP5PJ, JI5IJ,
~49!

h~JX,JY!5h~X,Y!, k~JX,JY!5k~X,Y!,

h¹J50, k¹J50.

A two complex parameter family of Ka¨hler structures, (J,h), so defined, determines th
hyper-Kähler structures mentioned above. These results, with the parametersai real, are used in
the twistor construction reviewed in the Appendix.

Finally, it is interesting to note that all Eqs.~42!–~49! can be rewritten in terms of a four rea
parameter family of tensorsT(a i ,b j). Define this family of real tensors by
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T[~a i1b iI !Ji, ~50!

wherea i andb i are real parameters satisfying the conditions

a ib jd
ij 50,

«[a ia jd
ij 2b ib jd

ij ,

for fixed «, or, equivalently, the conditions

if ai5a i1 ib i , then~a1!
21~a2!

21~a3!
25«. ~51!

Equations~41!–~49! imply, for all vector fieldsX andY, that

T252«,

h~TX,TY!5«h~X,Y!,
~52!

k~TX,TY!5«k~X,Y!,

h¹T50, k¹T50.

It follows from these equations that, when« is nonzero, that

I 52«21T~a i ,b j !T~2b i ,a j !,
~53!

for each i: Ji5T~a i51,b i50!52IT~a i50,b i51!.

Structures of similar types have been considered by Dunajski.31,32

IV. LOCAL COORDINATE DESCRIPTION OF A STRUCTURE „P,h ,I…

In this section local coordinate descriptions are given of the geometry represented by asingle
triple (P,h,I ) which satisfies Eqs.~42!–~47! of Sec. III. It is shown that when the Ricci tensor
h is zero, such a geometry defines a holomorphic half-flat metric. The aim here is to show,
local coordinates, the effect of a sequential introduction of these structures and the impleme
of the equations. Equations~42!–~44! are used first to introduce coordinates adapted to the alm
product structureP, and to derive a description of the integrable almost product structureP, and
the eight-metrich, in these coordinates. Equations~45!–~47! are then used to introduce comple
coordinates adapted to bothP and I , and then the triple (P,h,I ) is expressed in terms of thes
coordinates.~Similar calculations could be carried out using the metrick and/or the parallel results
associated with self-dual holomorphic metrics.! Finally, a holomorphic half-flat metric is identi
fied.

Equation~44!, the vanishing of the covariant derivative of the almost product structureP,
implies that the Nijenhuis tensor ofP is also zero.27,33HenceP is integrable. Standard argument
analogous to those which can be used for Ka¨hler metrics, can now be applied to construct a lo
coordinate system adapted to the geometrical structure determined by Eqs.~42!–~44!. First, it
follows from Eqs.~42! that the eigenvalues ofP are 1 or21. At each point of M the eigenvector
corresponding respectively to the eigenvalues 1 and21 span complementary distributions, D1 and
D2, of dimensionsd1 andd2 say, whered11d25dim M. The dimensions of the two distribution
can be different but here it suffices to consider the case where they are equal. The ideas the
to even dimensional manifolds but here of course dim M equal eight. Let (ea)5(ea ,eā) be a basis
of real tangent vectors to M, adapted to the almost product structure so that (ea) span D1 and (eā)
span D2; lower case barred Latin indices range and sum over 411 to 414. It follows from Eqs.
~42! and ~43! that a real two-form,P, is defined by the equations
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P~X,Y!5h~X,PY!, ~54!

for all vector fieldsX and Y, and that the components ofh, with respect to the basis of vecto
fields ~ea ,eā!, are given by

h5F 0 hab̄

hāb 0 G ~55!

wherehāb5hbā . The vanishing of the Nijenhuis tensor ofP is equivalent to integrability of the
two complementary distributions,27,33 D1 and D2 . Hence adapted local coordinatesua5(ua,uā)
can be introduced on M and the adapted bases chosen to be coordinate bases so thatea5]/]ua

and eā5]/]uā. The vanishing of the covariant derivative ofP implies thatP is closed and
therefore a local potential function,H, exists such that

hab̄5]2H/]ua]ub̄[H ,ab̄ . ~56!

Consequently, the line element ofh is given, in these coordinates, by

hds25habdua
^ dub5H,ab̄~dua

^ dub̄1dub̄
^ dua!. ~57!

Neither the coordinates nor the potential are unique. In these coordinates

P522H,ab̄dua`dub̄, ~58!

and

Pb
a5F db

a 0

0 2d
b̄

āG . ~59!

It is a straightforward matter to compute the curvature tensor of the metric given by Eq.~57!. Here
it is convenient to employ the first and second sets of Cartan structure equations using the a
coordinate basis of one-formsdua5(dua,duā). The first set of Cartan structure equations,

Gbg
a dug5Ggb

a dug,
~60!

dhab5hasGb
s1hsbGa

s ,

reduces to the equation

dhab̄5hcb̄Ga
c1hac̄G b̄

c̄
, ~61!

and the only nonzero Levi-Civita connection one-forms are

Gb
a5Gbc

a duc5had̄H,bcd̄duc,
~62!

G
b̄

ā
5G

b̄c̄

ā
duc̄5hdāH,db̄c̄duc̄.

Herehad̄5hd̄a, andhad̄hd̄b5db
a , hdāhb̄d5d

b̄

ā
.

The second set of Cartan structure equations,

dGb
a1Gs

a`Gb
s52 1

2 Rbgd
a dug`dud, ~63!

reduces to
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dGb
a1Gc

a`Gb
c52R

bcd̄

a
duc`dud̄,

~64!

dG
b̄

ā
1G c̄

ā`G
b̄

c̄
52R

b̄c̄d

ā
duc̄`dud.

The nonzero components of the curvature tensor in this basis are given by

R
bcd̄

a
52R

bd̄c

a
5G

bc,d̄

a
,

~65!

R
b̄c̄d

ā
52R

b̄dc̄

ā
5G

b̄c̄,d

ā
.

The only components of the Ricci tensor,Rbd5Rbad
a , of this curvature tensor which are no

identically zero are

Rbd̄5R
bad̄

a
5@hac̄~H,ac̄b!#,d̄5@ lnudet~H,ac̄!u#,bd̄ ,

~66!

Rb̄d5R
b̄ād

ā
5@hād~H,ādb̄!#,d5@ lnudet~H,ac̄!u#,db̄ .

In the Ricci flat case the functionH must satisfy a Monge–Ampe`re equation, det(H,ab̄)
5exp@B(uā)1C(ua)#, where B and C are arbitrary functions of their arguments. By choice
coordinates the right hand side can be set equal to a constant so that the condition of Ricci
of the metrich becomes

det~H,ab̄!5const. ~67!

It should be noted that the condition that the covariant derivative ofP be zero is now also
satisfied.

@It is also interesting to note, as an aside, the following. Let N be a four dimensiona
submanifold of M, given locally by the level setsua2uā50. It follows from Eqs.~60! that the

connection one-formsGb
a and G

b̄

ā
both pull back to define symmetric affine connections on

When the holonomy group of the pulled-back connections is contained in SO(p,q), the connec-
tions are the Levi-Civita connections of four-metrics on N of signature~p,q!.34 Furthermore, Eqs.
~64!–~66!, and the appropriate pullbacks to N, imply that these connections are Ricci flat whh
is Ricci flat. In the special cases whereH is a function only of the four real variablesua1uā, that
is, h has four Killing vector fields,]/]ua2]/]uā, andh is also Ricci flat, the eight-metrich pulls
back to four-metrics on N given, in local coordinatesua on N, by hdsN

2 5(]2H/]ua]ub) (dua

^ dub1dub
^ dua), where det (]2H/]ua]ub) is a constant which can be chosen to be one. S

four-metrics belong to a class first considered by Calabi,35,36and are formally similar to a class o
metrics which are of interest in stochastic geometry.37 In general, they will not be Ricci flat.#

So far only Eqs.~42!–~44! have been used in the main discussion in this section. N
consider the implementation of Eqs.~45!–~47!. It follows from Eq. ~45! that, in adapted loca
coordinates, the almost complex structureI must have components of the form

I b
a5F I b

a 0

0 I
b̄

āG , ~68!

whereI b
aI c

b52dc
a and I

b̄

ā
I c̄

b̄52d c̄
ā . It follows from Eq. ~46! that hagI b

g5I ab5I ba , where

I ab5F 0 I a
chcb̄

I ā
c̄hc̄b 0 G . ~69!
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Equations~47! now imply that the four dimensional integral manifolds of D1 and D2 each admit

integrable complex structuresI 1 andI 2 with components given respectively byI b
a andI

b̄

ā
. In fact,

Eqs.~47! take the form

]cI b
a2I s

aGbc
s 1I b

sGsc
a 50, ] c̄I b

a50,
~70!

] c̄I b̄

ā
2I s̄

āG
b̄c̄

s̄
1I

b̄

s̄
Gsc

b̄
50, ]cI b̄

ā
50.

Hence the four coordinates on each of D1 and D2 can respectively be chosen to be pairs

complex coordinates, (zA,z̄A8) and (zĀ,z̄A8), whereI 1]/]zA5 i ]/]zA and I 2]/]zĀ5 i ]/]zĀ, and

z̄A8 and z̄A8 denote the complex conjugate ofzA andzĀ respectively. In order to fully satisfy Eqs
~42!–~47!, Eqs. ~69! and ~70! must now be completely implemented. Equation~69! and the
requirement that the matrix (I ab) be symmetric imply that

H,AB85H,A8B̄50. ~71!

It follows that, without loss of generality in this context, the functionH can be taken to be of the
form

H5H1c.c., ~72!

whereH is a holomorphic function ofzA andzĀ only. In these adapted complex coordinates,
metric h can now be written

hds25H,AB̄~dzA
^ dzB̄1dzB̄

^ dzA!1c.c., ~73!

and the components of the complex structureI take the form

I b
a5F idB

A 0 0 0

0 2 idB8
A8 0 0

0 0 id
B̄

Ā 0

0 0 0 2 id
B̄8

Ā8

G . ~74!

It follows from Eq. ~70! that, in these complex coordinates, the only nonzero components o

Christoffel symbolsGbc
a andGbc

ā are the respective pairs of components~GBC
A , GB8C8

A8 ! and~G Ā
BC ,

G
B8C8
A8 !, where

GB
A5hAD̄H,BD̄CdzC,

GBC
Ā

5hĀDH,B̄DC̄dzC̄, ~75!

hAD̄H,BD̄5dB
A , hĀDH,DB̄5d

B̄

Ā
,

and similarly for the complex conjugatesḠB8C8
A8 and Ḡ

B8C8
A8 . The curvature of the connection ca

be simply computed from these expressions as in Eqs.~64!–~66!.
Since, by Eq.~25!, the components of the metrick, kab , are equal to2I ab , the metrick is

given by
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kds252 iH,AB̄~dzA
^ dzB̄1dzB̄

^ dzA!1c.c., ~76!

andg5h1 ik is a holomorphic metric with line element

ds252H,AB̄~dzA
^ dzB̄1dzB̄

^ dzA!. ~77!

When the condition of Ricci flatness, Eq.~67!, is imposed on the metrich, it follows that

det~H,AB̄!5const. ~78!

Hence, as expected,g is also Ricci flat. In fact, the last two equations correspond to a descrip
of holomorphic half-flat four-metrics given by Plebanski.3 Therefore, it follows that a triple
(P,h,I ) which satisfies Eqs.~42!–~47! and the condition of Ricci flatness ofh imply that the
metric g5h1 ik is a holomorphic half-flat four-metric.

Finally, here, note the description of the Ka¨hler structure (J52IP,h), implied by the struc-
ture (P,h,I ), in these complex coordinates. It follows from Eqs.~59! and~74! that the components
of J are given by

Jb
a5F 2 idB

A 0 0 0

0 idB8
A8 0 0

0 0 id
B̄

Ā 0

0 0 0 2 id
B̄8

Ā8

G . ~79!

Consequently, the Ka¨hler two-form is given by@ i (H,AB̄dzA`dzB̄)1c.c.#; the metrich is given by
Eq. ~73!.
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APPENDIX: TWISTOR SPACES

In this appendix the relation between twistor spaces for hyper-Ka¨hler metrics eight-metrics on
M and half-flat holomorphic metrics on M is outlined.

Salamon’s generalization of Penrose’s nonlinear graviton construction24 ~see also Ref. 25! to
hyper-Kähler structures can be used to encode the hyper-Ka¨hler structures presented in Sec. III
the complex structure of a twistor space,Z, where dimCZ is five. As a real manifoldZ is M
3S2. In the case of the real or imaginary parts of the anti-self-dual half-flat metrics on
considered above, the complex structure on the corresponding twistor spaceZASD is given by

I ASD5~ai~
1Ji!, I 0!,

~a1!
21~a2!

21~a3!
251,

and, following Refs. 24 and 25,$ai%PR here.
Here the tangent space at the point (m,§) in ZASD has been expressed as the direct sumTm

% T§ , andI 0 is the operation of multiplication byi on the tangent spaceT§ of §PS2. Furthermore,
S2 is identified with CP1, with local complex coordinatez, so that at (a1 ,a2 ,a3)PS2,
(a1 ,a2 ,a3)5((12§§̄)/(11§§̄) , (§1 §̄)/(11§§̄) , i (§2 §̄)/(11§§̄)). It is shown in detail in
Refs. 24 and 25 that the integrability conditions for the tensorI ASD to define a complex structur
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on M3S2 are indeed satisfied, and furthermore, that the hyper-Ka¨hler structure on M can be
recovered from the holomorphic properties ofZASD. The twistor spaceZASD can also be identified
with the primed projective spin bundle over M.

In a similar way, now using2Ji, the hyper-Kahler structures associated with any half-
self-dual holomorphic metric on M can be encoded in, and extracted from, a complex stru
I SD say on M3S2 ~this time the unprimed projective spin bundle over M!, and the holomorphic
properties of the resulting twistor space,ZSD . As before, the latter can be extracted from t
former.

Although the results contained in Refs. 24 and 25 enable real hyper-Ka¨hler metrics to be
derived from the structure of a twistor spaceZ, this is not quite the same as deriving a holom
phic half-flat metricg from the properties of a twistor space of the above type. An additio
complex structure on M satisfying certain properties is also required, as was noted in Propo
1 and 2 of Sec. III. In summary, the holomorphic structure on the five complex dimens
twistor spaceZ @which determines a hyper-Ka¨hler structure, say, (M ,Ji,h)#, and a complex struc-
ture I , on the four complex dimensional manifold M, which together satisfy the compatib
relationsh(IX,IY)52h(X,Y), h¹I 50 andIJi5JiI , determine a half-flat holomorphic metricg.
Hence they also determine the real metrick and the hyper-Ka¨hler structure (M ,Ji,k).

By using results from Sec. III these statements can be reexpressed in terms of~integrable!
almost product structures.
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Quantum enveloping superalgebras and link invariants
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Corresponding to each finite dimensional simple basic classical Lie superalgebra, a
new quantum enveloping superalgebra is introduced, which has the structure of a
braided quasi-Hopf superalgebra. In the case ofosp(1u2n), this quantum envelop-
ing superalgebra is shown to be isomorphic to the standard Drinfeld–Jimbo quan-
tum superalgebra Uq(osp(1u2n)) as braided quasi Hopf superalgebras. The new
quantum enveloping superalgebras are applied to construct link invariants, from
which Vassiliev invariants can be readily extracted. This, in particular, provides a
useful construction for the Vassiliev invariants associated with
Uq(osp(1u2n)). © 2002 American Institute of Physics.
@DOI: 10.1063/1.1436564#

I. INTRODUCTION

The Drinfeld–Jimbo quantum superalgebras1–3 were introduced in the early 1990s to descri
supersymmetries exhibited by statistical mechanics models such as the Perk–Schultz mod
now a considerable body of theory for the quantum superalgebras2,4 and the associated quantu
supergroups5,6 exists, and their applications to integrable models1,7 and low dimensional
topology8–10 have been extensively explored. It has also long been known11 that there is a deep
connection between quantum supergroups and noncommutative geometry. This has been
explored lately and applied to the study of the representation theory,5 leading to Borel–Weil type
theorems for induced representations of quantum SL(mun) and OSP(1u2n).

A Drinfel–Jimbo quantum superalgebra is a quasi-triangular Hopf superalgebra, whic
deformation~in the sense of Gerstenhaber12! of the corresponding enveloping superalgebra13

Deformation theory thus lies at the foundation of the theory of quantum superalgebras and
tum supergroups. The broad aim of the article is to develop the deformation theory of enve
superalgebras following the general strategy of Ref. 14, and to explore its applications i
dimensional topology.

As we have already alluded to, low dimensional topology is one of the areas where qu
superalgebras have major applications. There exists a supersymmetric version8 of the
Reshetikhin–Turaev theory,15,16 which provides a powerful machinery for generating topologi
invariants of links and three-manifolds using the representation theory4 of quantum
superalgebras.1–3 Due to the vast difference between the representations of Lie algebras an
superalgebras in the quantum setting,4 invariants arising from the supersymmetric Reshetikhi
Turaev theory exhibit very different features from those constructed from ordinary quantum
bras.

We may formally regard a quantum superalgebra invariantnq of links at genericq5exp(h) as
a power series inh: nq5( i 50

` hin ( i ). Following the strategy of Birman and Lin,17 one can show
that each coefficientn (k) is a Vassiliev invariant18,19 of degree less than or equal to k. However,
it is very difficult to gain any understanding of such Vassiliev invariants within the framewor
the Drinfeld–Jimbo superalgebras. Also, there exists no satisfactory quantum Chern–S
theory formulation20 for the quantum superalgebra invariants of links and three-manifolds,

a!Electronic mail: rzhang@maths.usyd.edu.au
20290022-2488/2002/43(4)/2029/20/$19.00 © 2002 American Institute of Physics
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perturbative techniques of quantum field theory are not useful for studying the Vassiliev inva
arising from quantum superalgebras. As we shall see later, deformation theory provides a
the problem at hand.

Let us now briefly describe the main results of this article. Corresponding to each
dimensional simple basic classical Lie superalgebra,13 we introduce a new quantum envelopin
superalgebra with braiding~i.e., with a universalR-matrix!, which is a quasi-Hopf superalgebr
with a nontrivial associator. The underlying algebraic structure of the new quantum envel
superalgebra is identical to that of the corresponding enveloping superalgebra over the
series ringC@@h##. Its universalR-matrix takes a particularly simple form and is explicitly give
The associator, however, is a highly complicated object, which is constructed by us
Knizhnik–Zamolodchikov equation following the work of Drinfeld.14 In the case of the Lie
superalgebraosp(1u2n), we prove, using results of Ref. 21 that the new quantum envelo
superalgebra is isomorphic to the Drinfeld–Jimbo superalgebra as braided quasi-Hopf sup
bras.

The Reshetikhin–Turaev functor15,16 from the categoryH of colored ribbon graphs to the
module category of a ribbon Hopf superalgebra is generalized to a functor fromH to the module
category of a ribbon quasi-Hopf superalgebra. It is then applied to the new quantum enve
superalgebras to construct topological invariants of~framed! links. The advantage of the resultin
invariants is that the associated Vassiliev invariants~i.e., the coefficients in their power serie
expansions! can, in principle, be extracted, as the universalR-matrix and the associator are know
This enables us to construct large classes of Vassiliev invariants. This in particular provid
with a practical construction of the Vassiliev invariants associated with Uq(osp(1u2n)).

The organization of the article is as follows. In Sec. II we discuss general properti
quasi-Hopf superalgebras. In Sec. III we introduce the new class of quantum enveloping al
with braiding. In Sec. IV we prove the isomorphism~as quasi-Hopf superalgebras with braidin!
between the new quantum enveloping algebra and the standard Drinfeld–Jimbo quantum
algebra in the special case ofosp(1u2n). Section V studies link invariants.

This article makes extensive use of results in Refs. 14 and 22 and Kassel’s book.23

Before closing this Introduction, we mention that there is no systematic study of deforma
~e.g., within the category of braided quasi-Hopf superalgebras! of enveloping superalgebras exce
in the caseosp(1u2n). Even the relationship among the different Drinfeld–Jimbo quantum s
ralgebras associated with Weyl group inequivalent simple root systems of a given simple
classical Lie superalgebra~see Subsec. III A 2! has not been studied in any depth. We hope to g
a thorough treatment of the deformation theory of enveloping superalgebras in a future pu
tion.

II. QUASI-HOPF SUPERALGEBRAS

A. Quasi-Hopf superalgebras

We explain the notion of quasi Hopf superalgebras here. In the fundamental paper24 by Milnor
and Moore, a version of graded quasi-Hopf algebras was introduced. Such algebras are si
graded Hopf algebras but with the coassociativity requirement on the comultiplications rem
altogether. In the earlier 1990s, Drinfeld14 reignited the subject quite independently of Ref.
aiming at applications to quantum groups. He arrived at a notion of quasi-Hopf algebras wh
more restrictive than that of Ref. 24, but structurally more interesting in that the comultiplica
are quasi-coassociative. We shall considerZ2-graded generalizations of Drinfeld quasi-Hopf alg
bras here.

Let A be aZ2-graded associative algebra, i.e., an associative superalgebra, over a comm
ring K, which admits two algebra homomorphisms,D:A→A^ A ande:A→K. These homomor-
phisms will be called the comultiplication and counit, respectively. The algebraA will be called a
Z2-graded quasi-bi-algebra, or a quasi-bi-superalgebra, if there exists an invertible even e
FPA^ A^ A, called the associator, satisfying the following relations:
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~ id^ D!D~x!5F~D ^ id!D~x!F21,

~e ^ id!D~x!5x,

~ id^ e!D~x!5x, ;xPA, ~2.1!

~ id^ id^ D!~F!~D ^ id^ id!~F!5F234~ id^ D ^ id!~F!F123,

~ id^ e ^ id!F51.

Here the second to last equation is usually referred to as the pentagon relation.
We use the following notation forD(x),

D~x!5(
(x)

x(1)^ x(2) , xPA,

which will not lead to confusion, even though the standard Sweedler notation becomes amb
for (D ^ id)D and (id̂ D)D. A quasi-bi-superalgebraA will be called aZ2-graded quasi-Hopf
algebra, or a quasi-Hopf superalgebra, if there exist invertible even elementsa,bPA, and an
algebra anti-automorphismS satisfying the following relations:

(
(x)

S~x(1)!ax(2)5e~x!a, (
(x)

x(1)bS~x(2)!5e~x!b, ;xPA,

~2.2!

(
t

XtbS~Yt!aZt515(
t

S~X̄t!aȲtbS~ Z̄t!,

where

F5(
t

Xt ^ Yt ^ Zt , F215(
t

X̄t ^ Ȳt ^ Z̄t .

Similar to the case of Hopf superalgebras, (S,a,b) will be called the antipode. It immediatel
follows from the definition that

e~a!e~b!51, eS5e.

Note the following freedom in the definition of the antipode: Let (S,a,b) be an antipode of
A. Then for any invertible elementgPA, the conditions~2.2! are also satisfied by (S̃,ã,b̃), where

S̃~a!5gS~a!g21, ã5ga, b̃5bg21. ~2.3!

Lemma 2.1: If(S,a,b) and (S̃,ã,b̃) are antipodes of the quasi-Hopf superalgebra A, then there

exists a unique invertible gPA transforming(S,a,b) to (S̃,ã,b̃) through (2.3).
The antipode enables one to turn the dualV* 5HomK(V,K) of a left A-moduleV into a left

A-module, with the action

A^ V* →V* , x^ v* °xv* ,

defined for homogeneous elements by

xv* ~w!5v* ~~21! [x][ v* ]S~x!w!, ;wPV,
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and extending to inhomogeneous elements by linearity. Here@x#50 if x is even, and@x#51 if
odd, and@v* # is similarly defined. However, it should be observed that while the following lin
map defines a module homomorphism,

V* ^ V→K, v* ^ w°v* ~aw!,

even though the natural dual space pairingv* ^ w°v* (w) is no longer a module map ifaÞ1.
A quasi-Hopf superalgebraA is called braided if there exists an even and invertible elemenRP

^ A, called the universalR-matrix, which satisfies the following relations

RD~x!5D8~x!R, ;xPA,

~ id^ D!R5~F231!
21R13F213R12~F123!

21, ~2.4!

~D ^ id!R5F312R13~F132!
21R23F123.

HereD85tD, with t:A^ A→A^ A being the flipx^ y°(21)[x][ y]y^ x. It immediately follows
from the defining relations of the universalR-matrix that we have the following generalize
Yang–Baxter equation

R12F312R13~F132!
21R23F1235F321R23~F231!

21R13F213R12. ~2.5!

Write R5( rar ^ br , and let

u5(
r ,t

~21! [ X̄t]S~brȲtbS~ Z̄t!!aarX̄t .

Thenu is invertible and for allxPA,

S2~x!5uxu21.

Furthermore,uS(u)5S(u)u belongs to the center ofA. We shall callA a ribbon quasi-Hopf
superalgebra if there exists an evenv belonging to the center ofA such that

v25uS~u!. ~2.6!

In studying deformation quantizations of enveloping superalgebras, we will work on
power series ringC@@h##. The quasi Hopf superalgebras encountered are topological in the
that the underlyingC@@h##-modules are completed with respect to theh-adic topology, and the
structure maps are continuous.

B. Gauge transformations

Let (A,m,D,e,F,S,R,a,b) be a braided quasi-Hopf superalgebra, wherem denotes the mul-
tiplication of A. Let FPA^ A be an invertible even elementFPA^ A satisfying

~e ^ id!F5~ id^ e!F51. ~2.7!

Write F5( f i ^ gi , F215( f̄ i ^ ḡi , and set

DF5F•D•F21:A→A^ A, x°FD~x!F21;

FF5F23~ id^ D!~F !F~D ^ id!~F21!F12
21

RF5F21RF21, ~2.8!
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aF5(
i

S~ f̄ i !aḡi ,

bF5(
i

f ibS~gi !.

Lemma 2.2:(A,m,DF ,e,FF ,S,RF ,aF ,bF) is a braided quasi-Hopf superalgebra.
Equation~2.8! is called a gauge transformation byF on the braided quasi-Hopf superalgeb

(A,m,D,e,F,S,R,a,b).
Let

A5~A,m(A),D (A),e (A),F (A),S(A),R(A),a (A),b (A)!,

B5~B,m(B),D (B),e (B),F (B),S(B),R(B),a (B),b (B)!

be braided quasi Hopf superalgebras. A homomorphism (f ,F):A→B between them consists of a
algebra homomorphismf :(A,m(A))→(B,m(B)) and a gauge transformationFPB^ B such that

~ f ^ f !D (A)5F•~D (B) f !•F21,

$F23~ id^ D (B)!~F !%~ f ^ f ^ f !~F (A)!5F (B)F12~D (B)
^ id!F,

~ f ^ f !R(A)5F21R
(B)F21.

If f is an algebra isomorphism, then (f ,F) is called an isomorphism between the braided qua
Hopf superalgebrasA andB. An isomorphism of braided quasi-Hopf superalgebras strictly p
serves the algebraic structure, but only preserves the coalgebraic structure, the associator
braiding up to a gauge transformation. If (f ,F):A→B is an isomorphism, then it follows from
Lemma 2.1 that there exists a unique invertiblegPB such that

f +S(A)+ f 215g+S(B)+g21,

f ~a (A)!5gaF
(B) ,

f ~b (A)!5bF
(B)g21.

We mention that the category of left A-modules has the structure of a braided tensor cat
whereF provides the associativity constraint, and the universalR-matrix gives the braiding. If
two braided quasi-Hopf superalgebras are isomorphic, then their module categories are equ
as braided tensor categories

C. Associative tensor product

Let (A,m,D,e,F,S,R,a,b) be a quasi-Hopf superalgebra. Tensor products ofA-modules are
not strictly associative, but for anyA-modulesU, V, andW, there exists the module isomorphis

~U ^ V! ^ W→U ^ ~V^ W!,
~2.9!

~u^ v ! ^ w°F~~u^ v ! ^ w!5u^ ~v ^ w!,

whereF is the associator ofA. The nonassociativity of tensor products is a cause of incon
nience in applications of quasi-Hopf superalgebras, but there is a way to get around the p
~See Remark XI.1.4, p. 496 of Ref. 16 and Section XI.5 of Ref. 23!.

Let V5$V1 ,V2 , . . . ,Vm% be a sequence ofA-modules. We denote
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~V!5~ . . . ~~V1^ V2! ^ V3! ^ . . . ^ Vn21! ^ Vn .

All the tensor products of theVi ’s in this order but with parentheses positioned in different wa
are isomorphic to (V). Let us introduce the subsequences

Vr
(k)5$V1 ,V2 , . . . ,Vk%,

V l
(k)5$Vk ,Vk21 , . . . ,Vm%.

If W5$W1 ,W2 , . . . ,Wn% is also a sequence ofA-modules, by joiningV with W we obtain
another sequence$V1 ,V2 , . . . ,Vm ,W1 ,W2 , . . . ,Wn%. We denote by (V,W) the tensor product
($V1 ,V2 , . . . ,Vm ,W1 ,W2 , . . . ,Wn%).

Now we introduce a new tensor product( for A-modules defined by

~V!(~W!5~V,W!. ~2.10!

This is clearly associative. The problem is to find an associative tensor product of maps con
with this tensor product ofA-modules. Consider linear maps

f :~V!→~S!, g:~W!→~T!.

Let J(V),(W) :(V)((W)→(V) ^ (W) be the naturalA-module isomorphism

J(V),(W)5~F (V),(W
r
(1)),W2

21
^ idW3

^ . . . ^ idWn
!~F (V),(W

r
(2)),W3

21
^ idW4

^ . . . ^ idWn
!

. . . F (V),(W
r
(n21)),Wn

21
.

Similarly we have theA-module isomorphismJ(S),(T) :(S)((T)→(S) ^ (T). An associative ten-
sor product, also denoted by(, of the maps consistent with the associative tensor produc
A-modules is then given by the composition

~V!(~W! ——→
J(V),(W)

~V! ^ ~W! ——→
f ^ g

~S! ^ ~T! ——→
J(S),(T)

21

~S!(~T!.

Explicitly, we have

f (g5J(S),(T)
21 ~ f ^ g!J(V),(W) .

More formally, one can always turn the tensor category Mod(A) of A-modules into a strict
tensor category Mods(A) with objects being the~V! for all finite sequences ofA-modules, and the
morphisms (V)→(V8) being Hom((V),(V8)). The strictly associative tensor product is the(

just defined above.

D. Gauge transformations on modules

Let (A,m,D,e,F,S,a,b) be a quasi-Hopf superalgebra. LetV1 , . . . ,Vn be A-modules. De-
note by~V! the ordered tensor product of the modules. For convenience we shall only con
gauge transformations on ordered tensor product of modules and their homomorphisms. B
of the isomorphism~2.9!, the discussions below also apply to the nonassociative tensor pro

Let D (k) be defined inductively by

D (k)5~D ^ id((n21)!D.

Under a gauge transformationF5( f i ^ gi as defined by~2.8!, D is transformed toDF

5FDF21, andD (k) to DF
(k) , which is defined in exactly the same way asD (k) but with D replaced

by DF .
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Let (VF) be theA-module with the same underlyingK-module as theA-module~V!, but with
the A-action defined by

x^ vF°DF
(n)~x!vF , xPA, vFP~VF!.

There exists anA-module isomorphism (V)→(VF) defined by

v°F (n)v, vP~V!,

where

F (n)5 (
i 2 , . . . ,i n

~¯~~FD~ f i 2
! ^ gi 2

!D (2)~ f i 3
! ^ gi 3

!¯ !D (n21)~ f i n
! ^ gi n

.

This is indeed anA-module isomorphism as confirmed by the following relation:

DF
(n)~x!~F (n)v!5F (n)D (n)~x!v, vP~V!.

Let W1 , . . . ,Wm be another set ofA-modules. Assume we have the linear mapc:(V)
→(W). ThenF transformsc to cF :(VF)→(WF), which is defined by the following commuta
tive diagram

~V!→~W!

↓ ↓ ~2.11!

~VF!→~WF!.

Consider also the transformation~2.3! on the antipode. It affects only the definition of du
modules. LetV be anA-module, and denote byVS* andV

S̃
* the dualA-modules defined by using

S and S̃, respectively. Then we have the followingA-module isomorphism

S21~g!:V
S̃
* →VS* .

For e iP$1,21%, let Vi
e i be Vi if e i51 andVi

e i5Vi* if e i521. Let (Ve)5($V1
e1 , . . . ,Vn

en%). The

isomorphismG:(V
S̃

e
)→(VS

e) then is given by

G5~ . . . ~~S21~g~12e1!/2! ^ S21~g~12e2/2!!! ^ S21~g~12e3/2!!! ^ . . . ! ^ S21~g~12en/2!!.

Let (W
S̃

e8) be anotherA-module and assume we have the linear mapc:(VS
e)→(WS

e8). Then the

antipode transformation changesc to c̃:(V
S̃

e
)→(W

S̃

e8), which is defined by the following com
mutative diagram:

~VS
e ! → ~WS

e8!

↓ ↓
~V

S̃

e
! → ~W

S̃

e8
!

. ~2.12!

To summarize, tensor product functors(:Mods(A)3Mods(A)→Mods(A) defined with re-
spect to gauge equivalent comultiplications ofA are naturally isomorphic, and so are also t
duality functors of Mods(A) defined with respect to gauge equivalent antipodes ofA.
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III. QUANTUM ENVELOPING SUPERALGEBRAS

In this section we shall work over the power series ringC@@h## exclusively. All superalgebras
and quasi-Hopf superalgebras should be understood as topological. The main result is conta
Sec. III B, where a new type of quantum enveloping superalgebras with braiding are constr
For the purpose of studying the relationship amongst different deformations of enveloping
ralgebras, we also discuss the standard Drinfeld–Jimbo quantum superalgebras.1–3 In the next
section, we shall show that the new quantum enveloping superalgebra is isomorphic
Drinfeld–Jimbo quantum superalgebra in the case ofosp(1u2n).

A. Drinfeld–Jimbo quantum superalgebras

1. Drinfeld-Jimbo quantum superalgebras

The Drinfeld–Jimbo quantum superalgebras1–3 were studied quite extensively in the la
decade. Here we shall summarize some of their main properties.

Let g be a simple basic classical Lie superalgebra13 ~all such Lie superalgebras are assumed
be finite dimensional.!. Denote byH* the dual of its Cartan subalgebra with the nondegene
symmetric bilinear form ( , ). Letf5$a i u i 51,2,. . . ,r % be a chosen simple root system. Deno
the set of the even simple roots byf0 and that of the odd simple roots byf1 . Set

@a i #5H 0, a iPf0 ,

1, a iPf1 .

If ( a i , a i)Þ0, we defineai j 52(a i , a j )/(a i , a i) for all j . If ( a i , a i)50, and this can only
happen ifa iPf1 , we set

ai j 5H 21, ~a i ,a j !Þ0,

0, ~a i ,a j !50.

Corresponding to the given data, a Drinfeld–Jimbo quantum superalgebra Uq(g) has been intro-
duced. We shall work in the Drinfeld setting, where Uq(g,f) is a Hopf superalgebra over th
power series ringC@@h## completed with respect to theh-adic topology. As is well known,
Uq(g,f) is a deformation of the enveloping superalgebra U(g)@@h##.

Now we describe Uq(g,f) in terms of generators and relations. Recall that Uq(g) is generated
by the identity and the elementsei , f i ,hi , i 51,2,. . . ,r , subject to the relations

@hi ,hj #50,

@hi ,ej #5~a i ,a j !ej ,

@hi , f j #52~a i ,a j ! f j ,

@ei , f j #5d i j ~qhi2q2hi !/~qi2qi
21!,

~es!
25~ f i !

250, ~as ,as!50,

adei

12ai j ~ej !50, iÞ j ,

adf i

12ai j ~ f j !50, iÞ j ,

plus higher order Serre-relations.
The higher order Serre relations can be found in Ref. 2 and thus will not be spelle

explicitly here. It suffices to mention that they depend very much on the Lie superalgebrag itself
and also on the chosen simple root systemf.

Some explanations are now in order. Hereq is the power seriesq5exp(h), and
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qi5H q(a i ,a i )/2, ~a i ,a i !Þ0,

q, ~a i ,a i !50.

The Z2-gradation of the superalgebra is defined in such a way that allhi and ej , f j with @a j #
50 are even, while alles , f s with @as#51 are odd. For a homogeneous elementxPUq(g,f), we
set @x#50 if x is even and@x#51 if x is odd. Then the graded bracket is defined by@x,y#5xy
2(21)[x][ y]yx. The notationadei

(x) andadf i
(x) are defined by

adei
~x!5eix2~21! [ei ][ x]qhixq2hiei ,

adf i
~x!5 f ix2~21! [ f i ][ x]q2hixqhi f i .

Finally, we note that if (as ,as)50 and as jÞ0, then the relations (ades
)12as j(ej )

5(adf s
)12as j( f j )50 are implied byes

25 f s
250.

The Uq(g,f) has the structures of a Hopf superalgebra, with the coassociative comulti
tion

Dq~hi !5hi ^ 111^ hi ,

Dq~ei !5ei ^ qhi11^ ei ,

Dq~ f i !5 f i ^ 11q2hi ^ f i ,

counit

eq~hi !5eq~ei !5eq~ f i !50,

and antipode

Sq~hi !52hi ,

S~ei !52eiq
2hi,

S~ f i !52qhi f i .

Let 2r be the sum of the even positive roots minus the sum of the odd positive roots ofg. Let
2hr denote the linear combination of thehi such that@hr ,ei #5(r,a i)ei for all i . Set

K5q2hr.

Then it can be immediately shown that

S2~x!5KxK21, ;xPUq~g,f!.

We shall regard Uq(g,f) as a quasi-Hopf superalgebra with

F51^ 1^ 1, a5b51.

One of the most important properties of Uq(g,f) is its braiding, that is, the existence of
universalR-matrix Rq .3 The explicit form of Rq in terms of the generators of Uq(g,f) is, in
principle, known. However, for the purpose of studying the Vassiliev invariants arising
quantum superalgebras, we are interested in the expansion ofRq into a power series inh. The
coefficients of this expansion are in U(g) as Uq(g,f) is a deformation of U(g). It is easy to see
that
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Rq51^ 11hrc1o~h2!, ~3.1!

wherer c is the classicalr -matrix discussed in Ref. 25. However, there exists no method, eve
principle, for computing the higher order terms.

2. The choice of simple root systems

We consider very briefly the dependence of the quantum superalgebra Uq(g,f) on the chosen
simple root systemf. Recall that a Lie superalgebra in general admits Weyl group inequiva
simple root systems. The quantum superalgebra Uq(g,f) is defined in terms of simple and Carta
generators subject to some defining relations. The simple roots thus play a special role
expects Uq(g,f) to depend onf nontrivially. This is indeed true, even in the simplest case
sl(2u1).

The two simple root systems forsl(2u1) are, in terms of Dynkin diagrams,

f:s222 ^ , f8: ^ 222 ^ .

It is known that the definitions of Uq(sl(2u1),f) and Uq(sl(2u1),f8) do not involve higher
order Serre relations. Now it is a simple matter to check that the square of the antipo
Uq(sl(2u1),f) is nontrivial, while that of Uq(sl(2u1),f8) is the identity map. This immediately
shows that the two Hopf superalgebras are not isomorphic,26 although it is known that the under
lying algebraic structures of Uq(sl(2u1),f) and Uq(sl(2u1),f8) are the same.21

B. Braided structure for enveloping superalgebras

Let U(g) be the enveloping superalgebra of the Lie superalgebrag defined over the complex
field. Let U(g)@@h## be theC@@h##-module consisting of formal power series inh with coefficients
in U(g). By C@@h##-linearly extending the structure maps of the complex Hopf superalgebrag)
to U(g)@@h##, one obtains a natural Hopf superalgebra structure on U(g)@@h##. We denote the
multiplication bym, the comultiplication byD, the counit bye, and the antipode byS. Then

D~X!5X^ 111^ X,

e~X!50, ~3.2!

S~X!52X, ;XPg.

Let C denote the quadratic Casimir operator ofg, that is, the central element of U(g) which
takes the eigenvalue (l12r,l) in any irreducible U(g)-module with highest weightl. Set

t5 1
2 ~D~C!2C^ 121^ C!.

The following results are straightforward to prove, but will be of crucial importance for
remainder of this section.

Lemma 3.1:

~ id^ D!t5t121t13,

~D ^ id!t5t131t23,

@ t12, t131t23#50.

The last equation will be referred to as the ‘‘four-term relation.’’
Now we introduce a braided structure on U(g)@@h##. We shall take as the universalR-matrix

the following power series

R5exp~ht/2!. ~3.3!
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As U(g)@@h## is cocommutative andt belongs to the commutant ofD(U(g)@@h##), we immedi-
ately see that

RD~x!5D8~x!R, ;xPU~g!@@h##.

However, R requires a nontrivial associatorF to satisfy the defining relations of a univers
R-matrix.

Because of Lemma 3.1, Cartier’s work22 on infinitesimal symmetric categories applies to t
problem at hand. This in particular tells us that Drinfeld’s construction~second paper of Ref. 14!
of associators for enveloping algebras of semi-simple Lie algebras can be generalized
present context to construct the desired associator. Consider the following differential equa
C\$0,1%,

dG~z!

dz
5

h

2p i S t12

z
1

t23

z21D ~3.4!

for the analytic functionG:C\$0,1%→U(g) ^ 3@@h##. This is a special case of the celebrat
Knizhnik–Zamolodchikov equations, which first arose in the context of Wess–Zumino–W
models of two dimensional conformal quantum field theory. The classical theory of Fuc
differential equations guarantees the existence and uniqueness of solutionsG0 and G1 of the
Knizhnik–Zamolodchikov equation with the asymptotics

G0~z!>zht12/2p i , z→0,

G1~z!>~12z!ht23/2p i , z→1.

Furthermore, the two solutions can only differ by az independent factor

FKZª~G0~z!!21G1~z!. ~3.5!

FKZ can be expressed as a power series inh with coefficients being linear combinations of Li
words in t12 and t23, where the coefficients involve Chen’s iterated integrals. We refer to Re
by Le and Murakami for details.

It follows from Lemma 3.1 and Cartier’s work22

Theorem 3.1:FKZ satisfies the relations (2.1) and (2.4), and thus yields the desired ass
tor.

Furthermore, we can also show that for the given comultiplicationD and universalR-matrix
R5exp(ht/2), FKZ is the unique associator.

The complete quasi-Hopf superalgebra structure of U(g)@@h## includesa andb. The relation-
ship betweena andb with the antipodeS requires both of them be central, while the relationsh
with the associatorF involvesab only. Therefore, we have the freedom to choosea51. Then

b215m~m^ id!~ id^ S^ id!FKZ ,

wherem is the multiplication of U(g)@@h##.
Remark:A natural question is how the Drinfeld–Jimbo superalgebras are related to the

quantum enveloping superalgebras. More generally, we want to classify all quantisations
enveloping superalgebras. We will address the problem for the superalgebraosp(1u2n) in the next
section, and results are used in the study of the Vassiliev invariants associated
Uq(osp(1u2n)).

IV. THE CASE OF osp„1z2n …

We now consider the Lie superalgebraosp(1u2n). We shall set

g5osp~1u2n!
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in this section.
Recall that all simple root systems ofosp(1u2n) are equivalent under the Weyl group, thus w

can dropf from the notation of the quantum superalgebra ofosp(1u2n).28 Uq(osp(1u2n)) is the
best studied28 among all the quantum superalgebras. Its finite dimensional representatio
genericq are thoroughly understood. This quantum superalgebra also has an unexpected b
interesting application29 to the study of a Duflo theorem for U(osp(1u2n)) at the classical level.

For U(g)@@h##, the structure mapsm,D,e,S are the standard ones of the universal envelop
superalgebra; the associatorFKZ is that constructed from the KZ equation;R5exp(ht/2), anda
51, b215m(m^ id)(id^ S^ id)FKZ .

One of the main results of this section is the following theorem.
Theorem 4.1: (Uq(g),mq ,Dq ,eq ,Sq ,Rq) and (U(g)@@h##,m,D,e,FKZ ,S,a,b,R) are iso-

morphic as braided quasi-Hopf superalgebras onC@@h## in the caseg5osp(1u2n).
We break the proof of Theorem 4.1 into a series of lemmas and propositions. Reca

osp(1u2n) has many remarkable properties not shared by the other Lie superalgebras. We m
in particular that an analog of Whitehead’s lemma holds,21 i.e., for any finite dimensiona
osp(1u2n)-moduleV, the Lie superalgebra cohomology groupsH1(g,V) andH2(g,V) are trivial.
The vanishing ofH1(g,V) for all finite dimensionalg-modules implies that all such modules a
completely reducible.

The universal enveloping algebra U(g) forms anosp(1u2n)-module under the adjoint action
Furthermore, it can be decomposed into a direct sum of finite dimensionalosp(1u2n)-modules.
Similarly, U(g) ^ U(g) as anosp(1u2n)-module can also be decomposed into a direct sum of fi
dimensional modules. Therefore,21

H1~g,U~g! ^ U~g!!50, H2~g,U~g!!50. ~4.1!

Let M be a two-sided U(g)-module. ThenM forms a leftg-module under the action

X^ v°Xv2~21! [X][ v]vX. ~4.2!

Denote byHH
k (U(g),M ) thekth Hochschild cohomology group of U(g) with coefficients inM . It

can be shown that there exist vector space embeddings

HH
k ~U~g!,M !→Hk~g,M !, k51,2.

Combining these results we have the following.
Lemma 4.1:

HH
1 ~U~g!,U~g! ^ U~g!!50,

HH
2 ~U~g!,U~g!!50.

Observe that Uq(g) in the Drinfeld setting is a deformation of U(g) in the sense of
Gerstenhaber.12 The deformations of U(g) as an associative superalgebra are classified, u
obstructions, by the even part of the Hochschild cohomology groupH2(U(g),U(g)). The vanish-
ing of HH

2 (U(g),U(g)) thus implies the following.
Proposition 4.1: The algebraic structure ofU(g) is rigid, that is, all Gerstenhaber type

deformations ofU(g) are isomorphic toU(g)@@h## as associative superalgebras overC@@h##.
In particular, as associative superalgebras Uq(g) and U(g)@@h## are isomorphic. We denote b

Hh :Uq(g)→U(g)@@h## the isomorphism. Define

D̃q5~Hh^ Hh!+Dq+Hh
21 ,

S̃q5Hh+Sq+Hh
21 ,
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ẽq5eq+Hh
21 ,

R̃q5~Hh^ Hh!Rq .

Consider the Drinfeld operatorvqPUq(g). Its image underHq gives rise to a central elementṽ of
U(g)@@h##, which can be expanded into a power series

ṽ511hṽ11h2ṽ21¯ ,

where eachṽ i belongs to the center of U(g). If V is an irreducible highest weight U(g)-module,
we denote byxV(C) the eigenvalue ofC on V. Thenṽ takes the eigenvalue exp(hxV(C)) on the
U(g)@@h##-moduleV@@ t##. By using Harish–Chandra’s homomorphism for the Lie superalge
g, one obtainsṽn5Cn/n!, i.e., the following lemma.

Lemma 4.2:ṽ5exp(hC).
Also by usingDq(vq

21)5R21R(vq
21

^ vq
21), one obtains

~R̃q!21R̃q5~ ṽ ^ ṽ !D̃q~ ṽ !.

For any w51^ n1hw11h2w21h3w31¯ in U(g) ^ n@@h##, we definew1/2 to be the power
seriesx51^ n1hx11h2x21¯ such thatx25w. Thenw1/2 is uniquely defined. From the abov
equation, we obtain

~~R̃q!21R̃q!1/25~ ṽ1/2
^ ṽ1/2!D̃q~ ṽ21/2!. ~4.3!

Now

Ãq5~U~g!@@h##,m,D̃q ,ẽq ,S̃q ,R̃q!

forms a braided Hopf superalgebra isomorphic toAq .
Proposition 4.2: There exists a gauge transformation F51^ 11o(h) such that

D5FD̃qF21,

R5F21R̃qF21,

FKZ5F23~ id^ D̃q!~F !~D̃q^ id!~F21!F12
21,

whereD is the standard comultiplication for enveloping superalgebras, R5exp(ht/2) and FKZ is
given by (3.5).

Proof: The deformations of the coalgebraic structure of U(g) within the category of quasi-
Hopf superalgebras are determined byHH

1 (U(g),U(g) ^ U(g)). Since for g5osp(1u2n),
HH

1 (U(g),U(g) ^ U(g))50, one can always find anf 51^ 11o(h)P(U(g) ^ U(g))@@h## with
(e ^ id) f 5(id^ e) f 51 such that

f D̃qf 215D.

ThenR( f )5 f 21R̃qf 21 commutes withD(U(g)@@h##). Let

f 85~R( f )~R21
( f )R( f )!21/2!1/2.

It is easy to show that (f 218 )2( f 8)251. Thus it follows from the uniqueness of the square root t
f 218 5( f 8)21. Set

F5 f 8 f .
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We claim thatF provides the desired gauge transformation.
Consider the effect of the further gauge transformationf 8 after f . The comultiplicationD

remains unchanged. The transformedR-matrix reads

R(F )5 f 218 R( f )~ f 8!21.

One can show that

R21
(F)5R(F)5 f 8~R21

( f )R( f )!1/2~ f 8!21.

ThusR(F) is symmetric, and

~R(F)!25R21
(F)R(F)5 f 8R21

( f )R( f )~ f 8!215D~ ṽ21!~ ṽ ^ ṽ !.

Upon taking the square root, we obtainR(F)5R. Obviously

F5F23~ id^ D̃q!~F !~D̃q^ id!~F21!F12
21

provides the associator for the braided quasi-Hopf superalgebra U(g)@@h## with the comultiplica-
tion D and universalR-matrix exp(ht/2). But with D andR5exp(ht/2) given,FKZ is the unique
associator, hence we must haveF5FKZ .

Finally we consider the antipode. Let

aF5m~S̃q^ id !F21,

bF5m~ id ^ S̃q!F,

Ah85~U~g!@@h##,D,e,R,FKZ ,S̃q ,aF ,bF!.

Needless to say, (S̃q ,aF ,bF) defines an antipode forAh8 . Applying Lemma 2.1 withg5aF
21 , we

arrive at the antipode (S,a51,b) with b215m(m^ id)(id^ S^ id)FKZ .

V. FRAMED LINK INVARIANTS

A. Colored ribbon graphs

We briefly discuss colored ribbon graphs here. Standard references on the subject are R
and 16. Note that each~0,0! ribbon graph gives rise to a framed oriented link and vice versa

By a ribbon we mean the square@0,1#3@0,1# smoothly embedded inR3. The images of
@0,1#30 and@0,1#31 are the bases, and that of1

23@0,1# is called the core of the ribbon. Similarl
an annulus is the cylinderS13@0,1# embedded inR3, and the image ofS13 1

2 under the embed-
ding is called the core of the annulus. Ribbons and annuli are oriented as surfaces and the
are directed.

Givenk, l PZ1 . A (k,l ) ribbon graph is an oriented surface consisting of ribbons and an
such that ribbons and annuli never meet, and this surface intersects (R230)ø(R231) in the
bases of the ribbons, where the collection of these bases are the collection of segments

$@ i 2 1
4 ,i 1 1

4#3030u i 51,2,. . . ,k%ø$@ j 2 1
4 , j 1 1

4#3031u j 51,2,. . . ,l %.

For simplicity, we will represent a ribbon or an annulus by its directed core.
Remark:Our notion of ribbon graphs is more restrictive than that of Refs. 15 and 16 in

coupons are not allowed.
We introduce two operations, composition and juxtaposition, to manufacture new ri

graphs from given ones. Given (k,l ) graph G1 , (l , m) graph G2 , and ~k8, l 8! graph G3 , the
composition ofG1+G2 is defined in the following way: shiftG2 by the vector~0,0,1! into
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R23@1,2#, glue the bottom end ofG2 to the top end ofG1 in such a way that the core of th
ribbons glued together should have the same direction as the core of the resultant ribbon~if this is
not possible, then the composition is not defined!, then reduce the size of the resultant picture
a factor of 2, leading to a (k, m) graph. The juxtapositionG1^ G3 is to positionG3 on the right of
G1 , leading to a (k1k8, l 1 l 8) graph.

By repeatedly applying these two operations to the set of ribbon graphs depicted in Fig.
can generate all the ribbon graphs.

We associate to each (k,l ) graph G two sequencese* (G)5(e1 ,e2 , . . . ,ek) and e* (G)
5(e1,e2, . . . ,e l), e i , e jP$1,21%, in the following way. For a ribbon ofG with a base@ i 2 1

4,i
1 1

4#3030 ~resp.@ j 2 1
4, j 1

1
4#3031!, if its core is directed towards this base, thene i51 ~resp.

e j521!, ande i521 ~resp.e j51! otherwise.
Let I 5$1,2,. . . ,N% be a finite index set. We introduce the setN consisting of finite sequence

of the form ((i 1 , e1), (i 2 , e2), . . . ,(i k ,ek)), i kPI , kPZ1 , e tP$1,21%. A coloring of a ribbon
graphG is a map associating with each ribbon or annulus ofG an indexi PI . The categoryH of
ribbon graphs is defined to have as objects the elements ofN, and as morphisms the ribbo
graphs, where we require that if the ribbon graphG is a morphismh→h8, h,h8PN, then the
sequences of colors and directions of cores of the bottom and top ribbons must be equal toh and
h8, respectively.H is provided with a tensor product structurê:H3H→H, such that the tenso
product of objectsh andh8 is to position the latter on the right ofh to form one sequence, and th
tensor product of morphism is simply the juxtaposition of ribbon graphs defined earlier.

B. Generalized Reshetikhin–Turaev functor

In Ref. 30, Altschuler and Coste extended the construction of Reshetikhin and Turaev15,16 to
braided quasi-Hopf algebras, obtaining a covariant functor from the category of colored r
graphs to the module category~with the strictly associative tensor product! of any ribbon quasi-
Hopf algebra. Their result can be directly extended to the supersymmetric setting, leading
following generalization of Theorem 1 of Ref. 8.

Theorem 5.1: Let A be a ribbon quasi-Hopf superalgebra. Let$Vi u i PI % be a set of
A-modules, which are freeK-modules of finite ranks. There exists a unique covariant functo
from the categoryH of colored ribbon graphs to the module category of A with the stric
associative tensor product such that

~1! F transforms any objecth5(( i 1 , e1),(i 2 , e2), . . . ,(i k , ek)) of H into the A-module
(V(h))5(¯ (Vi 1

e1^ Vi 2

e2) ^¯ ) ^ Vi k

ek, where Vi
115Vi , Vi

215Vi* , and if k50, then V(h) is

defined as the trivial A module.
~2! For any two colored ribbon graphsG and G8,

F~G ^ G8!5F~G!(F~G8!, ~5.1!

that is, F preserves the tensor product(.
~3! Color the bottom left ribbons of X1 and X2 by i and the bottom right ones by j, and

denote the resultant colored ribbon graphs by Xi j
1 and Xi j

2 respectively. Then

FIG. 1. Generators of ribbon graphs.
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F~Xi j
1!5tR: Vi(Vj→Vj(Vi ,

~5.2!
F~Xi j

2!5R21t: Vi(Vj→Vj(Vi ,

where R is the universal R matrix of A, and t is the flipping map. Similarly, we have

F~ I i
1!5 id:Vi→Vi ,

F~ I i
2!5 id:Vi* →Vi* ,

F~V i
1!:Vi* (Vi→K,

x* ^ y°x* ~ay!,

F~V i
2!:Vi(Vi* →K,

~5.3!
x^ y* °~21! [x]y* ~S~a!uv21x!,

F~Ui
1!:K→Vi(Vi* ,

c°c(
t

bbt ^ bt* ,

F~Ui
2!:K→Vi* (Vi ,

c°c(
t

~21! [bt]bt* ^ u21vS~b!bt ,

where$bt% is a basis for Vi , and $bt* % a basis for Vi* , which are dual to each other in the sens
that bs* (bt)5dst .

Let h5(( i 1 , e1),(i 2 , e2), . . . ,(i k , ek)). Consider the (k,k) colored ribbon graphGc :h
→h. We joint the top and bottom right-most ends to get the following (k21, k21) colored
ribbon graph

~ I e1^¯ ^ I ek21^ Uek!~Gc^ I 2ek!~ I e1^¯ ^ I ek21^ V2ek!.

Iterating this process we will arrive at the~0,0! colored ribbon graphĜc , which we call the closure
of Gc . Now F(Gc) is a module map from (V(h))5Vi 1

e1(¯(Vi k

ek to itself, and

F~ Ĝc!5str@bS~a!uv21F~Gc!#,

where the supertrace is taken over (V(h)). In particular, for a~1,1! graphGc with the open strand
colored by anA-moduleV, there exists a central elementg of A such that

F~Gc!5g:V→V.

If we assume that theA-moduleV admits central characters, i.e., all central elements ofA act by
scalars, then

F~Gc!5xV~g! idV :V→V,

F~ Ĝc!5xV~g!SDq~V!,
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wherexV(g) is the eigenvalue ofg in V, andSDq(V)5strV(bS(a)uv21) is the quantum super
dimension ofV. It follows that for any~0,0! graph, if any of its components is colored with a
A-module ~on which central elements ofA act on as scalars!, which has a vanishing quantum
superdimension, then the Reshetikhin–Turaev functor yields zero when applied to the
graph.

For any colored ribbon graphGc , consider theA-module homomorphismF(Gc). Under a
gauge transformation as defined by~2.8!, F(Gc) transforms according to~2.11!. Under a transfor-
mation ~2.3! on the antipode,F(Gc) transforms as~2.12!. In particular, if Gc is a ~0,0! colored
ribbon graph,F(Gc) is anA-module mapK→K. In this case,~2.11! and~2.12! dictate thatF(Gc)
is not changed. We state this observation as follows.

Lemma 5.1: For any~0,0! colored ribbon graphGc , F(Gc) remains intact under gauge
transformations and antipode transformations.

C. Drinfeld–Jimbo quantum superalgebras versus braided enveloping superalgebras

For convenience, we set

Aq5~Uq~g!,mq ,Dq ,e,Sq ,Rq ,vq!,

A@@h##5~U~g!@@h##,m,D,e,S,F5FKZ ,R,a,b,v !,

wherev is the Drinfeld operator defined by~2.6!. For A@@h##, a51 andv5u.
Equipped with Theorem 5.1, we can easily construct link invariants from the new bra

enveloping superalgebrasA@@h##. Such link invariants should be closely related to the link
variants obtained by using the standard Drinfeld–Jimbo quantum superalgebrasAq . We shall
formulate a conjecture on their relationship and prove it in the case ofosp(1u2n).

Consider a set of non-isomorphic Uq(g,f)-modules,$Vi@@h##5Vi ^ CC@@h##u i PI %, which
satisfies the following conditions:

~1! all Vi@@h## are freeC@@h##-modules of finite ranks;
~2! as Uq(g,f)-modules, theVi@@h## are indecomposable and
~3! admit central characters, i.e., the central elements of Uq(g,f) act on eachVi@@h## by scalar

multiplications; and
~4! for eachi PI , there exists a uniquei * PI such thatVi* @@h##5(Vi@@h##)* .

Now we can use$Vi@@h##u i PI % to color ribbon graphs, and to construct the RT functor followi
the general procedure of subsection V.B, but withF51^ 1^ 1 anda5b51. This reproduces the
result of Theorem 1 of Ref. 8.

Let G be a ribbon graph withm components labeled by the integers 1,2,. . . ,m. For eachk,
we color thekth component of the ribbon graph with the Uq(g,f)-moduleVi k

@@h##, and denote
the resultant colored ribbon graph byGc . Applying the generalized RT functor to the colore
ribbon graph leads to a Uq(g,f)-module homomorphism

FAq ,$Vi [[ h]] u i PI %~Gc!:C@@h##→C@@h##.

Each Uq(g)-moduleVi@@h## gives rise to a finite dimensional U(g)-module

Vi5Vi@@h##/hVi@@h##

overC. We assume that as U(g)-modules, theVi , i PI , are non-isomorphic and have the followin
properties:~a! the Vi are indecomposable and~b! admit central characters; and~c! for each i
PI , there exists a uniquei * PI such thatVi* 5Vi* .

Remark:There always exist Uq(g)-modulesVi@@h##, i PI , satisfying the conditions~1!–~4!,
such that the associated U(g)-modulesVi , i PI , meet the conditions~a!–~c!.
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Now Vi ^ CC@@h## admits a U(g)@@h##-module structure in the obvious way. AsVi@@h## is
free overC@@h##, we haveVi@@h##5Vi ^ CC@@h##. We shall apply the construction of Sec. V B
the braided quasi-Hopf superalgebraA@@h## with the set$Vi@@h##u i PI % of U(g)@@h##-modules.
Because of the special forms ofa andv in the present context, Eq.~5.3! is considerably simpli-
fied.

For a~0,0! ribbon graphG with m components labeled by the integers 1,2,. . . ,m, we color its
kth component by the U(g)@@h##-moduleVi k

@@h## for eachk, and denote byGc the resultant
colored ribbon graph. Applying the generalized RT functor to the colored ribbon graph lead
U(g)@@h##-module homomorphism

FA[[ h]], $Vi [[ h]] u i PI %~Gc!:C@@h##→C@@h##.

It is important for the purpose of studying link invariants to understand the relation
betweenFAq ,$Vi [[ h]] u i PI %(Gc) andFA[[ h]], $Vi [[ h]] u i PI %(Gc). We conjecture that

FAq ,$Vi [[ h]] u i PI %~Gc!5FA[[ h]], $Vi [[ h]] u i PI %~Gc! ~5.4!

for all the simple basic classical Lie superalgebras but a few exceptions. We do not have a
at hand~A proof probably requires a thorough understanding of the Drinfeld–Jimbo quan
superalgebras from a deformation theoretical point of view.! However, we can show the following

Theorem 5.2:Equation (5.4) holds wheng5osp(1u2n).
Proof: Let g5osp(1u2n) in the proof. Consider theAq-moduleVi@@h##. The inverse of the

Hopf superalgebra isomorphismHh induces a naturalÃq-module structure onVi@@h##, defined by

Ãq^ Vi@@h##→Vi@@h##,

x̃^ v°Hh
21~ x̃!v.

Clearly,FAq ,$Vi [[ h]] u i PI %(Gc)5FÃq ,$Vi [[ h]] u i PI %(Gc).
As we have shown in the last section, a gauge transformation turns the ribbon Hopf su

gebra Ãq into a ribbon quasi-Hopf superalgebraAh8 . Under this gauge transformation
FÃq ,$Vi [[ h]] u i PI %(Gc) transforms toFA

h8 ,$Vi [[ h]] u i PI %(Gc). BecauseGc is a ~0,0! colored ribbon

graph, it follows Lemma 5.1 that

FÃq ,$Vi [[ h]] u i PI %~Gc!5FA
h8 ,$Vi [[ h]] u i PI %~Gc!.

Finally we consider the transformationg5aF
21 on the antipode (S̃q ,aF ,bF) of Ah8 . This

transformation also turnsFA
h8 ,$Vi [[ h]] u i PI %(Gc) to FA[[ h]], $Vi [[ h]] u i PI %(Gc). Using Lemma 5.1 again

we have

FA
h8 ,$Vi [[ h]] u i PI %~Gc!5FA[[ h]], $Vi [[ h]] u i PI %~Gc!.

This proves the theorem.

D. Vassiliev invariants

Each framed link can be represented as a~0,0!-ribbon graphG. Let us color all the compo-
nents of G by the same finite dimensional indecomposableAq-module V@@h##. Then
FAq ,$Vi [[ h]] u i PI % gives rise to a framed link invariant, which we denote bynq . We may formally
regardnq as a power series inh,

nq5 (
k50

`

hkn (k), ~5.5!
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wheren (k):$framed links%→C are framed link invariants themselves. As we have already m
tioned, eachn (k) is a Vassiliev invariant of degree<k. We now explain this point following
Birman and Lin.17 A framed link invariantn can be extended to an invariant of singular fram
links in the following way. IfL is a singular framed link, we may replace any one of its dou
point by an over crossing to getL1 , or by an under crossing to getL2 . Thenn(L) is defined
inductively by

n~L !5n~L1!2n~L2!.

It is easy to see that the definition is independent of the order in which the singular poin
resolved. A~framed! link invariant is a Vassiliev invariant of degree<k if it vanishes on all
singular~framed! links with more thank double points.

Considernq applied to a singular framed linkL with (k11) double points. Because of~3.1!,

nq~L !Phk11C@@h##.

Therefore,n ( i )(Lc)50, ; i<k.
Remark:Equation~5.5! is of little use for computing the Vassiliev invariantsn (k), as there is

no known way to expand the universalR-matrix Rq into a power series inh.
On the other hand, we may use theA@@h##-moduleV@@h## to color all the components ofG

to obtain a framed link invariant fromFA[[ h]], $Vi [[ h]] u i PI % , which we will denote bym@@h##.
Clearly,m@@h## is a powers series inh,

m@@h##5 (
k50

`

hkm (k),

and eachm (k) is a Vassiliev invariant of framed links. Now both the associator andR-matrix of
A@@h## are known as power series inh, thus them (k) are computable.

Thus we have the following from Theorem 5.4 that
Corollary 5.1. In the case ofosp(1u2n), n (k)5m (k), for all k.
This provides us with a more accessible construction of the Vassiliev invariantsn (k) associated

with the Drinfeld–Jimbo quantum superalgebra Uq(osp(1u2n)).
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Controllability of quantum mechanical systems by root
space decomposition of su„N…
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The controllability property of the unitary propagator of anN-level quantum me-
chanical system subject to a single control field is described using the structure
theory of semisimple Lie algebras. Sufficient conditions are provided for the vector
fields in a generic configuration as well as in a few degenerate cases. ©2002
American Institute of Physics.@DOI: 10.1063/1.1467611#

I. INTRODUCTION

The question of controllability for a finite level quantum system, see Dahlenet al. ~1996!,
Schirmeret al. ~2001a!, Turinici and Rabitz~2001! is studied in this paper by analyzing th
structure of the semisimple Lie algebra of its time evolution operator. The system dynam
determined by its internal Hamiltonian and by an external Hamiltonian describing the intera
with a control field. Of the several different aspects of controllability that can be defined
closed system of such type@overviewed in Albertini and D’Alessandro~2001!; Schirmeret al.
~2001b!# we consider here the more direct and important in practical applications, namel
controllability of its unitary propagator which, in control terms, is governed by a bilinear sys
with drift and a single control input and evolves on SU(N). For a compact semisimple Lie grou
like SU(N), the testing of global controllability is the simplest of all noncommutative Lie grou
In fact, compactness implies that the accessibility property collapses into~global! controllability
and semisimplicity implies that almost all pairs of vector fields span the corresponding Lie
bra. The first property means that purely algebraic tools, like theLie algebra rank condition
normally used in control theory provides necessary andsufficientconditions for controllability,
while the second property affirms that controllability is generically verified even in the si
control case. The main scope of this paper is to give the interpretation of these properties in
of structure theory of semisimple Lie algebras, see Cornwell~1997!, Gilmore ~1974!, Sattinger
~1986!, and to provide alternative tests to the exhaustive computation of commutators that t
algebra rank condition requires. So genericity is interpreted in terms of regularity of the ro
the Lie algebrasu(N) and another property, regularity along the control vector field, immedia
follows. Replacing the Lie algebra rank condition means seeking alternative conditions that
antee the maximal nonintegrability of the pair of vector fields. The main tool we use, togethe
the regularity of the roots, is the connectivity of the graph of the control vector field. B
properties were classically used to analyze controllability of vector fields on semisimple
algebras~especially the noncompact ones, see Jurdjevic and Kupka~1981!, Gauthier and Bonnard
~1982!, El Assoudiet al. ~1995!, Silva Leite and Crouch~1988!. For the same type of problem a
ours, the properties of the graph were recently used also in Turiniciet al. ~2001!. The conditions
we obtain, based only on thea priori knowledge of the two vector fields, are only sufficient b
they allow us to avoid any computation of Lie brackets. From the generic case, physically
senting a quantum system with all different transition values between its~nondegenerate! energy
levels, these tools carry on to the singular case, where some of these levels might be equi

The paper is organized as follows: the structure theory of semisimple Lie algebras is re

a!Electronic mail: altafini@sissa.it
20510022-2488/2002/43(5)/2051/12/$19.00 © 2002 American Institute of Physics
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in Sec. II and it is applied to the quantum system in Sec. III, where all the needed control co
are given. The sufficient conditions for a generic pair of vector fields are given in Sec. IV, w
in Sec. V the simplest among the singular cases are analyzed.

II. ROOT SPACE DECOMPOSITION FOR su„N…

Consider the classical Lie algebraAN21 , complexification ofsu(N) according to Cartan’s
notation. The subindexN21 is the rank of theCartan subalgebrah of AN21 , i.e., of the maximal
Abelian subalgebra such that the endomorphism adH of AN21 is semisimple for allHPh.

Definition 1: An element HPAN21 is said to be regular if the multiplicity of the zero eige
value ofadH is equal to the rank of AN21 , i.e., dim(ker adH)5rank AN215N21.

The set of regular elementsH is open and dense inAN21 . Choose one suchH and consider
the corresponding Cartan subalgebrah5g0(H)5$BPAN21uadHB50%.

The roots of AN21 are the functionalsa on h such that, forHPh, adHB5a(H)B, B
PAN21 , i.e.,a give the eigenvalues of adH for each choice ofH. Denote byD the set of nonzero
roots of AN21 with respect toh, by D1 the subset of positive roots with respect to the lexic
graphic order on the dual ofh, and byF the set offundamental roots, i.e., the set of positive roots
that cannot be written as sums of two other positive roots.

We need a stronger version of the regularity property, see Jurdjevic~1996!—p. 187.
Definition 2: A regular HPAN21 is said to be strongly regular if all nonzero eigenvalu

a(H) are distinct and have multiplicity 1.
Also the set of strongly regular elements is open and dense inAN21 . For all strongly regular

H, the decomposition induced by the roots has the same structure:AN21 can be written as a direc
sum of root spacesga5$BPAN21uadHB5a(H)B%:

AN215h1 %
aPD

ga .

Eachga is invariant for adH and satisfies@ga , gb#5ga1b wherega1b50 if a1b¹D. Further-
more, calling K the Killing form, i.e., the bilinear form K : AN213AN21→R,
X, Y°trace(adXadY), the restriction ofK to h is nondegenerate and for each rootaPD there
exists a uniqueHaPh such thata(H)5K(H, Ha), so thata(Ha)5K(Ha , Ha)Þ0. If aPD, so
does2a and for XPga and YPg2a @X, Y#5K(X, Y)Ha . Therefore, by normalizing, we ca
chooseroot vectors EaPga such that

@H,Ea#5a~H !Ea for HPh,

@Ea ,E2a#5Ha ,

@Ea ,Eb#5H 0 if a1b¹D

NabEa1b if a1bPD,
~1!

where Nab are real constants andNab52N(2a)(2b) From ~1!, one obtains aWeyl basisfor
AN21 :

$Ha ,aPF%ø$Ea ,aPD%. ~2!

Since$adH u HPh% is a commuting family of semisimple operators, there is a basis ofAN21

in which these operators are simultaneously diagonalizable. FixH̄Ph to be one suchN3N

diagonal traceless matrices,H̄5diag(l1 , . . . ,lN) such that( i 51
N l i50 where thel i are assumed

to be ordered:l1. . . . .lN . Let Ei j be the matrix with 1 in the (i j ) slot and 0 elsewhere. Sinc
adH̄Ei j 5(l i2l j )Ei j , the Ei j are the root vectors and the roots are the functionalsa i j such that
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a i j (H̄)5l i2l j . The suma i j 1akl is a root if and only ifj 5k or i 5 l ~if both, then it is the zero
root!. In fact, from Ei j Ekl5d jkEil whered i j is the Kroneker delta,@Ei j , Ekl#5d jkEil 2d l i Ek j ,
i.e.,

@Ei j , Ekl#55
0 if j Þk and iÞ l

Eil if j 5k

2Ek j if i 5 l

Eii 2Ej j if j 5k and i 5 l .

~3!

The rootsa i j are real and such that ifa i j is a root so is2a i j . H̄ is a strongly regular element i
a i j Þakl , for indexesi , j , k, l such that (i , j )Þ(k,l ), iÞ j andkÞ l . ThusH̄ is strongly regular
if and only if l i2l jÞlk2l l . The fundamental roots area12, a23,...,aN21,N and a basis of
AN21 corresponding to~2! is given by

$Hi5Eii 2Ei 11,i 11 ,i 51,...,N21%ø$Ei j ,i , j 51,...,N,iÞ j % ~4!

su(N) is thecompact real formof AN21 since it corresponds to a negative definite Killing form
The basis ofsu(N) corresponding to~2! is

$ iH a ,aPF%ø$Xa5Ea2E2a ,aPD1%ø$Ya5 i ~Ea1E2a!,aPD1% ~5!

or, after diagonalization of the Cartan subalgebra

$ iH i ,i 51,...,N21%ø$Xi j 5Ei j 2Eji , 1< i , j <N%ø$Yi j 5 i ~Ei j 1Eji !, 1< i , j <N%. ~6!

Indeed, this skew-Hermitian basis forms a real Lie algebra as all the structure constants a

@Xi j ,Xkl#5d jkXil 1d i l Xjk1d j l Xki1d ikXl j ,

@Yi j ,Ykl#5d jkXli 1d i l Xk j1d j l Xki1d ikXl j ,

@Xi j ,Ykl#5d jkYil 2d i l Yk j1d j l Yik2d ikYl j , ~7!

@ iH i ,Xjk#5d i j Yik2d ikYji 2d i 11,jYi 11,k1dk,i 11Yj ,i 11 ,

@ iH i ,Yjk#5d i j Xki1d ikXji 1d i 11,jXi 11,k1dk,i 11Xi 11,j .

The basis~5! corresponds to the direct sum, orthogonal with respect to the Killing form:

su~N!5 %
aPF

iRHa %
aPD1

RXa %
aPD1

RYa . ~8!

If A is in the Cartan subalgebra ofsu(N), thenA5 iH with HPh. Since the values of the roots a
H, a(H), are real,a(A) will be imaginary and, from~7!,

adAXa5a~H !Ya ,
~9!

adAYa52a~H !Xa ,

thus the vector spacefa5RXa1RYa is invariant for adA . Furthermore, the vector spaces corr
sponding to the fundamental roots are enough to generate all thea-strings and therefore

Lemma 1:$ % aPFfa%L.A.5su(N)
Proof: Similar to ~3!, in the basis~6! we obtain@using ~7!#:
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@fi j ,fkl#55
B if j Þk and iÞ l

fi l if j 5k

fk j if i 5 l

Ph if j 5k and i 5 l .

~10!

Thus from $ % aPFfa% it is possible to generate$ % aPD1fa%. Moreover,@Xi ,i 11 ,Yi ,i 11#52iH i ,
i 51,...,N21, therefore alsoih is generated. j

On the other hand, a proper subset of fundamental roots cannot generatesu(N).
Lemma 2: IfF8 F then$ % aPF8fa%L.A. su(N).
Proof: Trivial since by its very definition a fundamental root cannot be written as a sum

other positive roots, therefore ifā is a missing fundamental root,'” a,bPF such that
@Ea ,Eb#5Na,bEā . ThusXā andYā are not spanned by any bracket. j

III. QUANTUM CONTROL SYSTEM

Consider a finite level quantum system described by a stateuc& evolving according to the
time-dependent Schro¨dinger equation

i\uċ~ t !&5~Ĥ01u~ t !Ĥ1!uc~ t !&, ~11!

where the traceless Hermitian matricesĤ0 andĤ1 are, respectively, the internal~or free! Hamil-
tonian and the external Hamiltonian, the latter representing the interaction of the system
single control fieldu(t). In theN-level approximation, the stateuc& is expanded with respect to
basis ofN orthonormal eigenstatesuw i&: uc&5( i 51

N ci uw i& where theci are complex coefficients
that satisfy the normalization condition( i 51

N uci u251. If we write the initial condition of~11! as
uc0&5( i 51

N c0i uw i&, then also the vectorc5@c1¯cN#T satisfies a differential equation similar t
~11!:

i\ ċ~ t !5~H̃01u~ t !H̃1!c~ t !,
~12!

c~0!5c0 ,

where now the traceless Hermitian matrixH̃0 is diagonal. The real coefficientsEi , E1<¯

<EN , appearing along the diagonal ofH̃0 are eigenvalues,H̃0uw i&5Ei uw i&, and represent the
energy levels of the system. IfEi5Ej for someiÞ j , then the system is said to bedegenerate. If,
instead, some of the levels are equispaced,Ei2Ej5Ek2El for ( i , j )Þ(k,l ), iÞ j , kÞ l , then the
system is said to havedegenerate transitions~or resonances!. The solution of ~12! is c(t)
5X(t)c(0) with the unitary matrixX(t) representing the time evolution operator. If we u
atomic units (\51), then instead of~12! we can study the right invariant bilinear control syste
evolving on the Lie group SU(N) and characterized by the skew-Hermitian vector fieldsA

52 iH̃ 0 andB52 iH̃ 1 :

Ẋ~ t !5~A1u~ t !B!X~ t !, X~ t !PSU~N!, A,BPsu~N!,
~13!

X~0!5I .

The system~13! is said to be~globally! controllable if the reachable set

R$A,B%5$X̄PSU~N!u there exists an admissible inputu~• ! such that the integral

curve of ~13! satisfiesX~0!5I , X~ t !5X̄ for some t>0%
                                                                                                                



tum

ps of

p

d
the
e

bility

com-

r 1,

cted
ve

2055J. Math. Phys., Vol. 43, No. 5, May 2002 Controllability of quantum mechanical systems

                    
is all of the Lie group:R$A,B%5SU(N). Given ~any! A,BPsu(N), call $A,B%L.A. the Lie algebra
generated byA and B with respect to the Lie bracket. The literature on the subject of quan
control, see D’Alessandro~2001!, Ramakrishnaet al. ~1995!, Albertini and D’Alessandro~2001!,
has relied essentially on the condition of the following Theorem@originally due to Jurdjevic and
Sussmann~1972!#:

Theorem 1: The system (13) is controllable if and only if$A,B%L.A.5su(N).
Theorem 1 is a consequence of the following Lemma, which affirms that subsemigrou

compact groups are always subgroups:
Lemma 3:@Lemma 1, Chap. 6 of Jurdjevic~1996!#: For the compact semisimple Lie grou

SU(N),

cl~exp~ tA,t,0!!,cl~exp~ tA,t>0!!, ;APsu~N!,

whereexp:su(N)→SU(N) is the Lie group exponential map (andcl means closure!.
Consequently, the drift vector fieldA of ~13! is not hampering controllability on the large an

thus Theorem 1 follows. Since the controllability in this case is obtained for ‘‘large times’’
situation would be different if ‘‘small time local controllability’’ were of interest, se
D’Alessandro~2001!. Furthermore, the semisimple character ofsu(N) implies the following:

Lemma 4:@Theorem 12, Chap. 6 of Jurdjevic~1996!#: The set of pairs A,BPsu(N) such that
$A,B%L.A.5su(N) is open and dense insu(N).
Putting together Theorem 1 and Lemma 4 then we have:

Corollary 1: The system (13) is controllable for almost all pairs A,BPsu(N).
In spite of the above mentioned generic result, there is still some interest in the controlla
problem, especially

~1! characterizing the algebraic set in which controllability may fail,
~2! determining alternative procedures for testing controllability, other than exhaustive

putation of Lie brackets,
~3! finding sufficient conditions for controllability based on thea priori knowledge of the

vector fieldsA andB.
This paper is dedicated to the last two items of the list.

Roots and graphs. B is expressed in terms of the components of thesu(N) basis~5! as

B5B01 (
aPG1#D1

~ba
RXa1ba

IYa!, ~14!

whereB0P ih, ba
R andba

I are real andG1#D1 is the subset of roots ‘‘touched’’ byB.
In this case, it is possible to use the connectivity properties of the graph ofB to draw

conclusions about controllability in the same spirit as is done in Gauthier and Bonnard~1982!,
Silva Leite and Crouch~1988! for normal ~or split! real formsand, more recently, in Turinici and
Rabitz ~2001! for the same quantum control problem. Consider thegraph GB associated with a
square matrixB5@bi j #, i.e., the pairGB5(NB ,CB) whereNB represents a set ofN ordered nodes
NB5$1,...,n% andCB the set of oriented arcs joining the nodes:CB5$( i , j )ubi j Þ0%. The graphGB

is said to bestrongly connectedif for all pairs of nodes inNB there exists an oriented path inCB

connecting them. A matrixP is said to be a permutation matrix if it has elements that are 0 o
see Varga ~1962!. GB is strongly connected if and only ifB is permutation-irreducible
~P-irreducible!, i.e., there exists no permutation matrixP such that

P21BP5FB1 *
0 B2

G .
A square matrix isP-irreducible if and only if its graph does not contain any strongly disconne
subgraph. As long as we consider matricesB that are Hermitian or skew-Hermitian, the adjecti
‘‘strong’’ ~referring to the path being oriented! is irrelevant sincebi j Þ0 if and only if bji Þ0.

Remark 1: For B Hermitian or skew-Hermitian, GB connected⇔GB strongly connected.
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This is not anymore true ifB belongs to a noncompact real form. Working with the comple
fication AN21 and considering the graphs associated with the elementsEa , aPD1, of the Weyl
basis ~4!, a uniqueGEa

is associated with each positive root.GEa
are calledelementary root

graphs. If ba5ba
R1 iba

I , rewriting B as

B5B01B15B01 (
aPG1

~baEa2ba* E2a!, ~15!

where the asterisk is complex conjugate, then the~positive! root graphof B is G B
15øaPG1GEa

andGB2B0
is ‘‘twice’’ G B

1 .
For the quantum system onsu(N), the roots admit the interpretation of transitions betwe

energy levels of the system. According to our definitions,l i52Ei and the roots area i j 5Ej

2Ei ( i , j ⇒a i j >0).
The concepts of regular and strongly regular roots correspond to those of degenerate

and of system with degenerate transitions in the following way:

~i! if a system is degenerate then it has nonregular roots;
~ii ! if a system is nondegenerate but has degenerate transitions then it has regular but

strongly regular roots;
~iii ! if a system is nondegenerate and has no degenerate transitions then it has only s

regular roots.

In the basis~6!, ba5bi j , 1< i , j <N andB0 is simply the diagonal

B05 (
k51

N

bkkEkk5 (
k51

N21 S (
j 51

k

ib j j D ~ iH K! ~16!

sinceB0Psu(N) has to be traceless. Thebj j ~which must be purely imaginary! correspond to
loops onGB , i.e., to arcs beginning and ending on the same node. Thus they are irrelevant
connectivity property. In the basis~6!, A andB are

A5 (
k51

N21 S (
j 51

k

Ej D ~ iH k!, ~17!

B5B01 (
( i , j )PC B

1
~bi j

RXi j 1bi j
I Yi j !. ~18!

The following lemma is the adaptation to our situation of Theorem 2 and Corollary 2 of S
Leite and Crouch~1988!.

Lemma 5: B is P-irreducible⇔ $fa ,aPG1%L.A.5su(N)
Proof: If B is P-irreducible, thenB2B0 is P-irreducible andG B

1 is connected. Therefore
every pair of nodes (i , j ), iÞ j , can be joined by a path made up of elementary root gra
belonging toG B

1 , or, in terms of roots, each positive root ofAN21 , a i j PD1, can be written as a
sum of the roots ofG1: a i j 5( (k,l )PC

B
1lk,lak,l for positive rationalslkl . The situation is specula

for negative roots. From the commutation relations~10!, for some vector spacesfki ,l i
of indexes

(ki ,l i)PC B
1 we have

@fk1 ,l 1
,@fk2 ,l 2

,...@fkm21 ,l m21
,fkm ,l m

#...#5fi , j . ~19!

Then also the Cartan subalgebra can be generated, see~7!, and the result follows. On the othe
direction,$fa ,aPG1%L.A.5su(N) means that repeated brackets like~19! span all the subspace
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fi j , 1< i , j <N, and therefore touch all the rootsa i j PD. But this is equivalent toGB con-
nected. j

Lemma 1 and Lemma 2 tell us that the condition of Lemma 5 is ‘‘minimally’’ satisfied by a
of fundamental roots, although due to the nonuniqueness of the selection of the fundamenta
not all theaPF have to be inG1 for GB to be connected.

Corollary 2: If F#G1 then B is P-irreducible.

IV. SUFFICIENT CONDITIONS FOR CONTROLLABILITY IN THE GENERIC CASE

Considerations similar to those used in the controllability analysis of normal real form
classical Lie algebras@see Jurdjevic and Kupka~1981!, Gauthier and Bonnard~1982!, El Assoudi
et al. ~1995!, Silva Leite and Crouch~1988!# can be employed for our compact real form as we
In the case of free Hamiltonian of diagonal type, the connectivity property of the graph o
forced termB can replace the Lie algebraic rank condition, see Gauthier~1982!.

Lemma 6: If A is diagonal, a necessary condition for controllability is thatGB connected.
Proof: If B is P-reducible, then there exist nontrivial invariant subspaces ofsu(N) that are

simultaneouslyA-invariant andB-invariant. Thus the system cannot be controllable. j

In the case ofGB disconnected, the quantum system is decomposable into nonintera
subsystems. In Turiniciet al. ~2001! it is required thatH̃1 is off-diagonal. The interpretation in
terms of root decomposition offered here shows that this assumption is irrelevant for contro
ity: the diagonal terms ofH̃1 belong to the Cartan subalgebra and as such they commute wi

The equivalence between$A,B%L.A.5su(N) and GB connected is not exact: whileGB con-
nected is a necessary condition for controllability, alone it is not a sufficient condition, but req
extra assumptions to be made on the diagonal matrixA. The simplest case corresponds to the d
term A being strongly regular and corresponds to all nondegenerate transitions.

Theorem 2: Given A and B as in (17) and (18), assume thatGB is connected. If A is strongly
regular, then the system (13) is controllable.

Proof: Since adA is invariant on each fa , aPD1, the level one bracketC
5adA(aPG1(ba

RXa1ba
IYa) allows one to reach% aPG1fa as ba5ba

R1 iba
IÞ0 for all aPG1.

Using an argument similar to the proof of Theorem 3 in Silva Leite and Crouch~1988!, we
compute as many ‘‘A-brackets’’~like @A,B#, @A,@A,B##, etc.! as the number of roots inG1, say
2m ~with m>N21). For simplicity of bookkeeping, it is convenient to number rootsa and
coefficientsba cardinally from 1 to 2m: $a1 ,...,a2m%5G1, ba5bi , i 51,...,2m and Ea5Ei ,
i 51,...,2m,

F adAB
adA

2B
]

adA
2mB

G53
a1b1 a2b2 ¯ ambm a1b1* ¯ ambm*

a1
2b1 a2

2b2 ¯ am
2 bm 2a1

2b1* ¯ 2am
2 bm*

a1
3b1 a2

3b2 ¯ am
3 bm a1

3b1* ¯ am
3 bm*

]

]

a1
2mb1 a2

2mb2 ¯ am
2mbm 2a1

2mb1* ¯ 2am
2mbm*

4 3
E1

E2

]

Em

E21

]

E2m

4
5M 3

E1

E2

]

Em

E21

]

E2m

4 . ~20!
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M can be written as

Straightforward computations give the determinant ofM :

detM5~21!m112m)
i 51

m

a i
m )

1< i , j <m
~a j

22a i
2!2)

i 51

m

ubi u2Þ0.

Therefore $A,B%L.A.$$fa ,aPG1%L.A. , and controllability follows fromP-irreducibility of B
~Lemma 5!. j

A weaker property than strong regularity isB-strong regularity, introduced in Silva Leite an
Crouch~1988!.

Definition 3: Given B as in~14!, A is said to be B-strongly regularif the elementsa(H̃0),
aPG1, are nonzero and distinct.

Unlike strong regularity, which requires all roots ofD to be non-null and distinct when
computed inA, B-strong regularity requires the root decomposition determined byA to be
strongly regular only along the rootsG1 entering into the decomposition ofB: a i j (H̃0)5Ej2Ei

Þ0 if bi j Þ0. Obviously,A strongly regular meansA is B-strongly regular for allB.
Theorem 2 is a particular case of the following:
Theorem 3: Given A and B as in (17) and (18), assume thatGB is connected. If A is

B-strongly regular, then the system (13) is controllable.
Proof: The only difference with Theorem 2 is that adA is invariant only onfa , aPG1 ~rather

than D1!. However, Lemma 5 is true regardless of this assumption~as it is concerned withB
alone! and, using the same construction of the proof of Theorem 2, detMÞ0 still holds true. j

An alternative extension of Theorem 2 is mentioned in Turinici and Rabitz~2001!. If PA
1 is

the set of positive rootsa(H̃0) that are strongly regular forA, call QA
15G1ùPA

1 the subset of
positive strongly regular roots ofG1 when computed inA and VA

1 the corresponding comple
mentary set inG1 ~i.e., the set of nonstrongly regular roots ofG1!: VA

15G1\QA
1 . SoB splits into

B5Br1Bs with Br5B01(aPQ
A
1(ba

RXa1ba
IYa), the intersection ofB with the strongly regular

roots, andBs5(aPV
A
1(ba

RXa1ba
IYa).
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Theorem 4: Given A and B as in~17! and ~18!, assume thatGB is connected. IfGBr
is

connected, then the system~13! is controllable.
Proof: The pairA, Br is such thatA is Br-strongly regular. IfGBr

is connected, Theorem 3
applies to the pair (A,Br). We can use an argument similar to the proof of Theorem 2. Ifmr

>N are the strongly regular roots andms the degenerate ones, instead of the ordering of the
vector used in~20! E5@E1¯EmE21¯E2m#T we can use a splitting corresponding to strong
regular and degenerate rootsE5@ErtEsT#T5@E1

r
¯Emr

r E21
r

¯E2mr

r E1
s
¯Ems

s E21
s

¯E2ms

s #T. Then

F adAB
adA

2B
]

adA
2mrB

G5F adABr

adA
2Br

]

adA
2mrBr

G1F adABs

adA
2Bs

]

adA
2mrBs

G5@Mr 0#E1@0 Ms#E5MrE
r1MsE

s,

where the 2mr32mr matrix Mr is nonsingular andMs is a rectangular matrix of dimension
2mr32ms . Since detMrÞ0, we have

Er5Mr
21S F adAB

]

adA
2mrB

G2MsE
sD ,

i.e., the Lie algebra generated byA and B contains a complete set of generators. Thus
statement again follows from Lemma 5 and theBs part of B is not influencing the controllability
property. j

For controllability, it is sufficient thatQA
1 contains the fundamental roots, as in this caseGBr

is connected by Corollary 2.
Corollary 3: If F#QA

1 , then the system (13) is controllable.
Notice that the condition of Theorem 2 is the one traditionally used in the literature to s

that a generic pair of vector fields on compact semisimple Lie algebras are generating, s
ranishi~1951!, Boothby~1975!, Bonnardet al. ~1980!. For this purpose, givenA strongly regular,
B is constructed such that adA is cyclic on % aPD1fa , for example by havingbaÞ0 ;aPD1.
This means that% aPD1fa can be spanned by ‘‘A-brackets’’ and thus allsu(N) is generated by
adding the elements of the Cartan subalgebra@bracketing according to the last row of~10!#.
However, here the method is not directly applicable because some of thebi j elements ofB are
allowed to be zero. In this case, from% aPG1fa , the missing subspaces must be reached by me
of ‘‘ B-brackets’’@C,B#, @@C,B#,B#, etc., and then their span completed by single ‘‘A-brackets’’
@A,@C,B##, @A,@@C,B#,B##, etc.

V. SUFFICIENT CONDITIONS FOR CONTROLLABILITY IN A FEW SINGULAR CASES

The use of ‘‘B-brackets’’ is theleitmotif of all other sufficient conditions which are based
properties weaker than the strong regularity andB-strong regularity of the diagonal vector fieldA.
These conditions belong to the first two cases of the classification of Sec. III and, from Cor
3, they correspond to at least a pair of fundamental roots being equal. If new diagonal term
be provided to compensate for the degenerate transitions, then controllability can be reco
From ~15!, writing C asC5(G1 a(A)(baEa1ba* E2a), the level two bracket@C,B# is
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D5@C,B#5@C,B0#1@C,B1#

5F(
G1

a~A!baEa ,B0G1F(
G1

a~A!ba* E2a ,B0G1F(
G1

a~A!baEa ,(
G1

baEaG
1F(

G1
a~A!ba* E2a ,(

G1
baEaG2F(

G1
a~A!baEa ,(

G1
ba* E2aG

2F(
G1

a~A!ba* E2a ,(
G1

ba* E2aG . ~21!

If B0 is non-null and linearly independent fromA, it constitutes the simplest candidate to provi
the missing fundamental roots. From~16!, the fundamental roots atB0 , a(B0), are equal to
b i ,i 115bii 2bi 11,i 11 when expressed in the basis~6!. Restricting to the case~ii ! of Sec. III A, i.e.,
assuming that the system is nondegenerate but with possibly degenerate transitions, eq
versions of Theorems 2 and 3 hold forB0 andC instead ofA andB.

Theorem 5: If A is regular andGB connected, then either of the following conditions
sufficient for controllability of (13):
(1) B0 is strongly regular,
(2) B0 is C-strongly regular.

Proof: A regular meansEiÞEj for iÞ j , i.e., a i j Þ0 ;1< i , j <N. Then in case ofGB

connected alsoGC is connected. Therefore,B0 strongly regular orC-strongly regular satisfy,
respectively, Theorems 2 and 3 for the pair (B0 ,C). SinceB5B01B1 ~not B0! is the available
vector field, in order to complete the proof one has to verify that the (B1 ,C) pair is not spoiling
the maximal nonintegrability property of (B0 ,C), i.e., A% $B0 ,C%L.A.5A% $B,C%L.A.5su(N)
~neglecting the trivial case ofA andB0 linearly dependent!. But this follows from Eq.~21!: while

@B0 ,C#P$fa ,aPG1%, whenever G1 D1, @B1 ,C#P$fa ,aPG̃1$G1% because component
alongE6a6b , a, bPG1 are produced by the last four terms of~21! @see~1!#. If G̃1 G1, then

@B0 ,C# and@B1 ,C# are automatically linearly independent. If, instead,G̃15G1, then from~21!
it has to bea1bPG1 for all roots a, bPG1 such thata1b is a root andaba* E2abbEb

2bbbEbba* E2a50 for all a, bPG1 such thata2bPD, a2b¹G. But the only case of roots
a, bPG1 with a2bPD and satisfying (a2b)ba* bb@E2a ,Eb#50 is the case of all equal~and
non-null sinceA regular! roots. Linear independence of@B0 ,C# and@B1 ,C# then follows from the
fact that@B1 ,C# has terms on the diagonal which are certainly non-null for the case of all e
roots @they are computed in detail in the following, see Eqs.~22! and ~23!#, while @B0 ,C# is
off-diagonal. Thus, in both cases, the basis elements obtained from@B0 ,C#, @B0 ,@B0 ,C##, etc.,
are not canceled by the remaining parts of the brackets@B1 ,C#, @B0 ,@B1 ,C##1@B1 ,@B0 ,C##
1@B1 ,@B1 ,C##, etc. j

One can think of weakening further the hypothesis of Theorem 5 by combining tog
strongly regular pieces from bothA andB0 . To this end, analogously to what was done for t
diagonal matrixA, call QB

1 the set of positive strongly regular rootsa(B0) of G1 and Cr the
corresponding part ofC: Cr5(Q

B
1 a(A)(baEa1ba* E2a).

Theorem 6: Assume A regular andGB connected. IfGBr
øGCr

is connected then the syste

(13) is controllable.
Proof: In this case it is necessary to use both ‘‘A-brackets’’ for the pair@A,B# and

‘‘ B-brackets’’ for @B0 ,C#. Since ‘‘A-brackets’’ and ‘‘B-brackets’’ yield independent new gener
tors, the proof follows by combining the arguments used in proving Theorem 4 and Theoremj

As last, we treat the case of Cartan subalgebras from level two brackets ofA andB. SinceC
is off-diagonal, the only useful bracket in this respect is@C,B#. By looking at the commutators fo
the Weyl basis~1!, new diagonal terms appear only on the fourth and fifth terms of the expre
~21! for D. By isolating them
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D0522(
G1

a~A!ubau2@Ea ,E2a#522(
G1

a~A!ubau2Ha

or, in terms of the basis~6!

D0522 (
( i , j )PC B

1
a i j ~A!ubi j u2~Hi1Hi 111¯1H j 21!.

ThusD5@C,B#5D01D1 with D0 diagonal andD1 off-diagonal. It is convenient to sum overD1

rather thanG1 ~if ( i , j )¹C B
1 thenbi j 50):

D0522 (
i 51

N21

(
j 5 i 11

N

a i j ~A!ubi j u2~Eii 2Ej j !

52(
k51

N S (
i 51

k21

a ikubiku22 (
i 5k11

N

akiubkiu2DEkk

5 (
k51

N

dkEkk , ~22!

where it is intended that( i 51
k21 a ikubiku250 if k51 and( i 5k11

N akiubkiu250 if k5N. The diago-
nal elementsdk of D0 can be expressed in terms of the energy levelsEk of the quantum system
~11! as

dk52Ek~ ub1,ku21¯1ubk21,ku21ubk,k11u21¯1ubk,Nu2!

22~E1ub1,ku21¯1Ek21ubk21,ku21Ek11ubk,k11u21¯1ENubk,Nu2! ~23!

from which it is straightforward to check that(k51
N dk50 ~thus thatD0Psu(N)).

Now we can reformulated Theorem 5 withD0 replacingB0 .
Theorem 7: If A is regular andGB connected, then any of the following conditions is suffici

for controllability of (13):
(1) D0 is strongly regular,
(2) D0 is B-strongly regular,
(3) D0 is C-strongly regular.

Proof: The proof is completely analogous to that of Theorem 5, with the extra simplifica
that nowD1 , whenÞ0, is linearly independent from bothB andC regardless of the regularity o
the roots computed inA andB, respectively. j

The practical situations in which Theorems 5–7 apply are when the system has re
modes@which, again, corresponds to the case~ii ! in the classification of Sec. III#. The extreme
case is whenEi 112Ei5const; i 51, . . . ,n21 ~nondegenerate system with all equally spac
energy levels!.

Often a case-by-case analysis provides less strict sufficient conditions than those discu
this paper. As an example, consider the completely harmonic system mentioned previou
bi , j50 for j Þ i 61 ~dipole approximation! and bi ,i 615bi ,i 61

I , we are exactly in the situation
described in Fuet al. ~2001!—Sec. 2.3~sinceG15F1, such pair of vector fieldsA and B is
minimal among the generating pairs, in the sense of Lemma 2, which implies that method
Theorem 4 are inapplicable!. In this case, all the fundamental roots are equal,a i , i 115m,i
51, . . . ,N21, B5( i 51

N21 bi ,i 11Yi ,i 11 (B050) and C5m( i 51
N21 bi ,i 11Xi ,i 11 . Thus D

522m( i 51
N21bi ,i 11

2 ( iH i) and the ‘‘new fundamental roots’’ are22m(bi , i 11
2 2bi 11, i 12

2 ), which
are not necessarily distinct fori 51, . . . ,N21. Thus Theorem 7 needs not be verified. For
same system, Theorem 3 of Fuet al. ~2001! provides an alternative sufficient condition that
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weaker than any of the items of Theorem 7, obtained by making use of the special structure
system to compute a full set of generating brackets explicitly. The drawback of this method
whenever the structure ofB or the values of the fundamental roots are modified, the algori
needs to be redesigned.

ACKNOWLEDGMENT

This work was supported by a grant from the Foundation Blanceflor Boncompagni-Lud

Albertini, F., and D’Alessandro, D., ‘‘Notions of controllability for quantum mechanical systems,’’ prep
quant-ph/0106128, 2001.

Bonnard, B., Jurdjevic, V., Kupka, I., and Sallet, G., ‘‘Syste`mes des champs de vecteurs transitifs sur les groups de
semisimple et leurs espaces homoge`nes,’’ Astérisque75–76, 19–45~1980!.
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Generalized coherent and squeezed states based
on the h „1…Šsu „2… algebra
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Universitéde Montréal, C.P. 6128, Succ. Centre-ville, Montre´al,
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States which minimize the Schro¨dinger–Robertson uncertainty relation are con-
structed as eigenstates of an operator which is an element of theh(1)% su(2)
algebra. The relations with supercoherent and supersqueezed states of the super-
symmetric harmonic oscillator are given. Moreover, we are able to compute general
Hamiltonians which behave like the harmonic oscillator Hamiltonian or are related
to the Jaynes–Cummings Hamiltonian. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1462858#

I. INTRODUCTION

Minimum uncertainty states~MUSs! are usually understood through the minimization of t
Heisenberg uncertainty relation~HUR!. These states are well-known1 since they are long assoc
ated with the so-called coherent states~CSs!2 and squeezed states~SSs!3. But, it has been
observed4–6 that a more accurate uncertainty relation may be used to construct generalize
and SSs. Indeed, this relation known as the Schro¨dinger–Robertson uncertainty relation~SRUR!7

can be minimized and gives rise to new classes of CSs and SSs which have received d
names in the literature, such as correlated states4 or intelligent states.5 There are two main reason
to consider such last states. First, when the two Hermitian operators entering in the SRU
noncanonical operators, i.e., their commutator is not a multiple of the identity, the HUR cou
redundant while the SRUR not. Second, the MUSs that minimize the SRUR are shown
eigenstates of a linear combination of the two Hermitian operators entering in the SRUR.

Recently8 a connection has been made with the CS and SS based on group the
approaches9 and the concept of algebra eigenstates~AESs!. In particular, AESs have been con
structed for the algebras su~2! and su(1,1). This concept constitutes a unification of differ
definitions of CS and SS.

In this article, we give a general construction of AESs based on the direct sumh(1)
% su(2). TheHeisenberg algebrah(1) being relevant for the problem of the harmonic oscilla
and the algebra su~2! for particles with spin, we have a procedure to find general CSs and SS
supersymmetric systems, for example. These are clearly MUSs for which the dispersio
corresponding operators may be calculated easily. We show finally how to use these state
construction of particularly relevant Hamiltonians and in the calculation of their dispersions

In Sec. II, we put the emphasis on the SRUR and its relevancy with respect to the de
nation of MUSs. The application to the position and momentum operators MUS leads t
well-known CS and SS of the harmonic oscillator while when the angular momentum ope
MUS are considered we have in mind the su~2! CS and SS. These particular applications are giv
to bring a new light on these states and also to facilitate the treatement of theh(1)% su(2) CS and
SS. In Sec. III, we construct the AES based on theh(1)% su(2) algebra and show how this give
CSs and SSs which generalize the supercoherent and supersqueezed states obtained
approaches.10,11 Finally, in Sec. IV, we construct general Hamiltonians similar to the one of

a!Electronic mail: hussin@dms.umontreal.ca
20630022-2488/2002/43(5)/2063/34/$19.00 © 2002 American Institute of Physics
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harmonic oscillator but where the so-called annihilation operator is now an element of the a
h(1)% su(2).This permits us to use our CS and SS to compute the mean value and the dispe
of the corresponding energies. We show also how the well-known Jaynes–Cummings Hami
enters in this scheme.

II. COHERENT AND SQUEEZED STATES AS MINIMUM UNCERTAINTY STATES

This section will be concerned by the general definition and properties of MUS~Sec. II A!.
They are explicitly constructed when the usual position and momentum operators are cons
~Sec. II B! as well as when the angular momentum operators are taken~Sec. II C!. The connection
is made with already known results.

A. Minimum uncertainty relation

It is well-known7 that, for two Hermitian operatorsA andB such that the commutator is

@A,B#5 iC, CÞ0, ~2.1!

the HUR

~DA!2~DB!2>
^C&2

4
~2.2!

is satisfied. The mean value and dispersion of a given operatorX are defined, as usual, by

^X&5^cuXuc&, ~DX!25^X2&2^X&2, ~2.3!

for a normalized stateuc& describing the evolution of a quantum system. As observed by Puri,6 for
noncanonical operators, i.e., such thatC is not a multiple of the identityI , we can havêC&50
and the relation~2.2! is then redundant. The SRUR1,7 is never redundant and writes

~DA!2~DB!2> 1
4 ~^C&21^F&2!, ~2.4!

where ^F& is a measure of the correlation betweenA and B. The operatorF is Hermitian and
given by

F5$A2^A&I ,B2^B&I %, ~2.5!

where$ , % denotes the anticommutator. If there is no correlation between the operatorsA andB,
i.e., if ^F&50, the SRUR reduces to the usual HUR.

We are interested here in the description of states which minimize the SRUR~2.4!. A neces-
sary and sufficient condition to get them is to solve the eigenvalues equation:

@A1 ilB#uc&5buc&, ~2.6!

where

b5@^A&1 il^B&#, lPC, lÞ0. ~2.7!

Note that, if RelÞ0, once we know the value ofb, this last relation may be inverted to give th
mean values

^A&5Reb1
Im l

Rel
Im b, ^B&5

Im b

Rel
~2.8!

and, if Rel50, we get

^A&5Reb1Im l^B&. ~2.9!
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As a consequence of~2.6!, one has

~DA!25uluD, ~DB!25
1

ulu
D, ~2.10!

with

D5 1
2A^C&21^F&2. ~2.11!

So the statesuc& satisfying~2.6! with ulu51 will be calledcoherent because they satisfy

~DA!25~DB!25D, ~2.12!

i.e., the dispersions inA andB are the same and minimized in the sense of SRUR. The stateuc&
satisfying ~2.6! with uluÞ1 will be called squeezedbecause ifulu,1, we have (DA)2,D
,(DB)2 and if ulu.1, we have (DB)2,D,(DA)2.

Some other relations are also useful for our considerations. The direct computation of (DA)2

and (DB)2 is usually complicated but in the MUSs that satisfy~2.6!, we can write

~DA!25 1
2 uRel^C&1Im l^F&u, ~2.13!

~DB!25
1

2ulu2 uRel^C&1Im l^F&u, ~2.14!

with

Im l^C&5Rel^F&. ~2.15!

For Rel50, we havê C&50, which corresponds to the case where the HUR is redundant.
MUSs satisfy the minimum SRUR~MSRUR!

~DA!2~DB!25D2, ~2.16!

with

~DA!25
1

2
uIm l^F&u, ~DB!25

1

2 U ^F&
Im lU ~2.17!

and

D5 1
2 u^F&u. ~2.18!

For RelÞ0, from ~2.15!, we have

^F&5
Im l

Rel
^C&. ~2.19!

Moreover, from~2.13! and ~2.14!, we get

~DA!25U ulu2

2 Rel
^C&U, ~DB!25U 1

2 Rel
^C&U, ~2.20!

and, then,
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D5U ulu
2 Rel

^C&U. ~2.21!

In this case, it is sufficient to compute the mean value ofC to deduce that ofF and the dispersions
The particular case where Iml50 corresponds to the fact that the MSUR coı¨ncides with the
minimum HUR ~MHUR!.

B. Position and momentum coherent and squeezed states

Let us apply the preceding considerations to the special case of the usual positionx and
momentump operators of a given quantum system. The canonical commutation relation~if \
51! being

@x,p#5 i I , ~2.22!

the SRUR writes

~Dx!2~Dp!2> 1
4 ~11^F&2!. ~2.23!

The MUSsuc,l,b& satisfy the eigenvalues equation:

@x1 ilp#uc,l,b&5buc,l,b&. ~2.24!

If we introduce the usual creationa† and annihilationa operators,

a†5
x2 ip

&
, a5

x1 ip

&
, ~2.25!

such that@a,a†#5I , the equation~2.24! becomes

1

&
@~12l!a†1~11l!a#uc,l,b&5buc,l,b&. ~2.26!

The general resolution of Eq.~2.26! is obtained by expressing the stateuc,l,b& as a super-
position of the energy eigenstates$un&,n50,1,2, . . .% of the usual harmonic oscillator Hamiltonia

H05w~a†a1 1
2!. ~2.27!

Let us recall that these eigenstates satisfy

aun&5Anun21&, a†un&5An11un11& ~2.28!

and we can write them as

un&5
a†n

An!
u0&, n50,1,2, . . . . ~2.29!

So, if we insert

uc,l,b&5 (
n50

`

Cl,b,nun&, Cl,b,nPC, ~2.30!

in Eq. ~2.26!, using the expressions~2.28!, we get the recurrence system
                                                                                                                



the
tors

,1)
e

t

2067J. Math. Phys., Vol. 43, No. 5, May 2002 h(1) % su(2) coherent and squeezed states

                    
1

&
@An~12l!Cl,b,n211An11~11l!Cl,b,n11#5bCl,b,n , n51,2,3,. . . ,

~2.31!
~11l!

&
Cl,b,15bCl,b,0 .

The casel521 does not give any solution and must be eliminated. If we set

S 12l

11l D5deif, dPR1 ,fPF2
p

2
,
3p

2 F , ~2.32!

the resolution of the recurrence system~2.31! leads to the general solution of Eq.~2.26!:

uc,l,b&5Cl,b,0 expS 2deif
a†2

2
D expS b

&
~11deif!a†D u0&. ~2.33!

The special casel51 corresponds tod50 and gives rise to the usual expression of the CS of
harmonic oscillator. These states~2.33! can also be obtained as the action of two unitary opera
on the fundamental state. The first one9 is the usual displacement operatorD associated with an
irreducible representation of the Heisenberg–Weyl groupH(1) with algebrah(1)5$a,a†,I %. The
second one is the squeezed operatorS associated with an irreducible representation of SU(1
with algebra su(1,1)5$a2,(a†)2,aa†1a†a%. This is a known fact12 when squeezed states of th
harmonic oscillator are studied. We have explicitly

uc,l,b&5S~x~d,f!!D~h!u0&, ~2.34!

where

D~h!5exp~ha†2h̄a! and S~x!5expS x
a†2

2
2x̄

a2

2
D ~2.35!

with

h5
b

&

~11deif!

A12d2
and x~d,f!52tanh21~d!eif. ~2.36!

The condition for having normalizable states is that 0<d,1. Let us insist here on the fact tha
these SSs already obtained in the literature as eigenstates of a linear combination ofa anda† are
also MUSs such that (Dx)2(Dp)25D25(11^F&2)/4. From Eq.~2.19! and the fact that̂ C&
51, we get

^F&5
Im l

Rel
5

22d sinf

~12d2!
~2.37!

and the factorD is

D~d,f!5A1

4
~11^F&2!5A1

4
1

d2 sin2 f

~12d2!2 . ~2.38!

Moreover, from~2.13! and ~2.14!, the dispersions are

~Dx!25
ulu2

2uRelu
5

~122d cosf1d2!

2~12d2!
~2.39!
                                                                                                                



e

ior
are

l

2068 J. Math. Phys., Vol. 43, No. 5, May 2002 N. Alvarez M. and V. Hussin

                    
and

~Dp!25
1

2uRelu
5

~112d cosf1d2!

2~12d2!
. ~2.40!

Let us recall now that the CSs are not only the one forl51 but also all the states wher
ulu51. From the relation~2.32!, we deduce that

l5
12deif

11deif 5
~12d2!22id sinf

~112d cosf1d2!
~2.41!

and then

ulu25
122d cosf1d2

112d cosf1d2 . ~2.42!

This means that CSs occur also forf52p/2 or f5p/2 anddÞ0. The other values ofl describe
x-squeezed states whenfP] 2p/2,p/2@ and p-squeezed states whenfP]p/2,3p/2@ . On the
other hand, for fixed values off the expression~2.38! attains its minimum value12 whend50 and
whenf50 andf5p for fixed values ofd. In the first of these cases, we havel51 and we are
in the standard CSs of the harmonic oscillator, i.e., eigenstates of thea operator. In the second
case,l is a positive real quantity equal to (12d)/(11d)<1 if f50 and to (11d)/(12d)>1 if
f5p. We are in the special SSs that are eigenstates of the (a1da†) and (a2da†) operators,
respectively.

Figure 1 shows the behavior of (Dx)2, (Dp)2 and D as functions ofd for f5p/6. In this
region (Dx)2@(Dp)2# is always less~greater! than D, as expected. Ford50, the three curves
coı̈ncide, and the intersection point corresponds to the CSuc,1,b&. The value ofD5(2.38) when
d50 is also the minimum value12 which corresponds to the MHUR. Figure 2 shows the behav
of the same quantities as functions off for d50.5. The points where the three curves intersect
the CS.

C. Angular momentum coherent and squeezed states

Let us now take the angular momentum operatorsJk for k51,2,3, which satisfy the usua
su~2! commutations relations

@Jk ,Jl #5 i«klmJm , k,l ,m51,2,3. ~2.43!

FIG. 1. Graphs of the dispersions (Dx)2, (Dp)2 and theD factor as functions ofd for f5p/6.
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Here we want to solve the eigenvalues equation

~J11 ilJ2!uc,l,b&5buc,l,b&, ~2.44!

whereb5@^J1&1 il^J2&#. On the contrary of the preceding example where the HUR is ne
redundant~becausex andp are canonical!, here the commutator ofJ1 andJ2 is not a multiple of
the identity and then̂J3& may be equal to zero for some special cases. Some of these case
been discussed elsewhere.6,13–15Here we give the general solution of the equation~2.44!, for all
possible values ofl andb.

It would be better to work with the operatorsJ65J16 iJ2 instead ofJ1 andJ2 , so that the
equation~2.44! becomes

1
2 @~11l!J11~12l!J2#uc,l,b&5buc,l,b&. ~2.45!

Using the usual complete set of angular momentum states$u j ,r &%, j integer or half-odd integer and
r P$2 j ,2( j 21), . . . ,j 21,j %, we know that

J2u j ,r &5~J1
21J2

21J3
2!u j ,r &5 j ~ j 11!u j ,r &, ~2.46!

J3u j ,r &5r u j ,r & ~2.47!

and

J6u j ,r &5A~ j 7r !~ j 6r 11!u j ,r 61&. ~2.48!

This means that for eachj fixed, the eigenstatesuc,l,b& j of Eq. ~2.45! may be written as

uc,l,b& j5 (
r 52 j

j

Cl,b,r
j u j ,r &, Cl,b,r

j PC, ~2.49!

where the coefficientsCl,b,r
j satisfy a recurrence system of the form

~11l!A~ j 1r !~ j 2r 11!Cl,b,r 21
j 1~12l!A~ j 2r !~ j 1r 11!Cl,b,r 11

j 52bCl,b,r
j ,

~2.50!

for r 52 j , . . . ,j andCl,b, j 11
j 5Cl,b,2( j 11)

j 50.
For l561, the unique eigenstates areuc,61,0& j5u j ,6 j &. For lÞ61 andb50, the recur-

rence relation~2.50! is solved to give

FIG. 2. Graphs of the dispersions (Dx)2, (Dp)2 and theD factor as functions off for d50.5.
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uc,l,0& j5Cl,0,j
j ei ( j f/2)(

k50

j

~21!k

S j
kD

AS 2 j
2kD

dke2 i ( j 22k)f/2u j , j 22k&, j integer, ~2.51!

where we have used the formula~2.32! to expressl in terms of thed andf. It is again possible
to express such a state from the action of unitary operators associated with an irreducible
sentation of a group which is here SU~2!. Indeed, we have

uc,l,0& j5Cl,0
j exp@2 1

2 ln~d!J3#Uu j ,0&, ~2.52!

where

U5expS 2
p

4
~e2 if/2J12eif/2J2! D . ~2.53!

For the general caselÞ61, the analysis of the system~2.50! shows that for eachj , there
exist (2j 11) possible values for the eigenvalueb, which are

bm
j 5mA12l2, m52 j , . . . ,j . ~2.54!

If we use the relation

@J11 ilJ2#@exp~2 1
2 ln~d!J3!U#5@exp~2 1

2 ln~d!J3!U#@A12l2J3#, ~2.55!

we see immediately that the corresponding eigenstateuc,l,bm
j & j is

uc,l,bm
j & j[uc,l,m& j5Cl,m

j exp@2 1
2 ln~d!J3#Uu j ,m&, m52 j , . . . ,j , ~2.56!

whereU[(2.53). They can be written in terms of the Jacobi polynomials as

uc,l,m& j5Cl,m
j

3expS 2
1

2
ln~d!J3Deimf/2e2 i (f/2)J3

3 (
r 52 j

j

2rA ~ j 1r !! ~ j 2r !!

~ j 2m!! ~ j 1m!!
Pj 1r

2r 1m,2r 2m~0!u j ,r &. ~2.57!

In these last states, we want to compute now the mean values and dispersions o
operators in order to exhibit their behavior in the CS and SS.

If RelÞ0, the mean values ofJ1 and J2 in the states~2.57! are obtained using~2.8! and
~2.54!. In terms ofd andf as defined by~2.32!, we get

^J1&m
j 52m

d1/2

~d11!
cosS f

2 D , ^J2&m
j 52m

d1/2

~d11!
sinS f

2 D . ~2.58!

The relations~2.19!–~2.21! applied to our case tell us that (DJ1)2, (DJ2)2, D and ^F& are all
obtained from the mean value ofJ3 , i.e.,
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~~DJ1!2!m
j 5

ulu2

2 Rel
^J3&m

j , ~~DJ2!2!m
j 5

1

2 Rel
^J3&m

j ,

~2.59!

Dm
j 5

ulu
2 Rel

^J3&m
j , ^F&m

j 5
Im l

Rel
^J3&m

j .

The mean values ofJ3 in the states~2.57! or equivalently in the states~2.56! are given by

^J3&m
j 52

]

]q
ln~^ j ,muU†e2qJ3Uu j ,m&!, ~2.60!

whereq5 ln d. After some computations, we get

^J3&m
j 52umutanhS q

2D2
1

2
sinh~q!~ j 1umu11!

Pj 2umu21
1,112umu~coshq!

Pj 2umu
0,2umu~coshq!

. ~2.61!

Inserting~2.61! into the expression~2.59!, we get

~~DJ1!2!m
j 5~122d cosf1d2!Lm

j ~d!, ~~DJ2!2!m
j 5~112d cosf1d2!Lm

j ~d!,
~2.62a!

~D!m
j 5A122d2 cos~2f!1d4Lm

j ~d!, ^F&m
j 524d sinfLm

j ~d!, ~2.62b!

where

Lm
j ~d!5F umu

2~11d!2 1
~ j 1umu11!

8d

Pj 2umu21
1,112umu~~11d2!/2d!

Pj 2umu
0,2umu~~11d2!/2d! G . ~2.63!

The case Rel50 may be obtained as the limit case of the preceding one by takingd51
in the expressions~2.62a!, ~2.62b! and ~2.63!. Let us recall that it corresponds to^J3&50 and
l52 i tanf/2. We get

~~DJ1!2!m
j 5

1

2
@ j ~ j 11!2m2#sin2S f

2 D , ~~DJ2!2!m
j 5

1

2
@ j ~ j 11!2m2#cos2S f

2 D ,

~2.64a!

~D!m
j 5

1

4
@ j ~ j 11!2m2#usinfu and ^F&m

j 52
1

2
@ j ~ j 11!2m2#sinf, ~2.64b!

using the fact that

Pn
a,b~1!5

~a11!~a12!¯~a1n!

n!
. ~2.65!

These are exactly the results given by Puri.6

To illustrate these considerations by a concrete example, let us take the ‘‘spin–1
2’’ case, i.e.,

j 5 1
2. The expressions~2.62a! and ~2.62b! thus reduce to

~~DJ1!2!65
~122d cosf1d2!

4~11d!2 , ~~DJ2!2!65
~112d cosf1d2!

4~11d!2 ~2.66!

and
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D6~d,f!5
1

4
A114S d2 sin2 f2d~11d!2

~11d!4 D , ~2.67!

where we have used the6 sign for the values ofm56 1
2. The MSRUR thus writes

~~DJ1!2!6~~DJ2!2!65~D6!2~d,f!5
1

16F114S d2 sin2 f2d~11d!2

~11d!4 D G . ~2.68!

For fixed values offÞ0 andp, the expression~2.67! attains its minimum valueusinfu/8
when d51. On the other hand, for fixed values ofd such thatdP@0,1@ø#1,̀ #, the minimum

of ~2.67! is ( 1
4)A@12(4d)/(11d)2# when f50 or f5p. In the first case we havel

52 i (sinf)/(11cosf), which means that we have some special classes of SSs from whic
recognize CSs withl52 i ~eigenstates of theJ11J2 operator! and withl5 i ~eigenstates of the
J12J2 operator!. In the second case, we havel5(12d)/(11d)<1 if f50 and l5(1
1d)/(12d)>1 if f5p, i.e., the minimumD6(d,0)5D6(d,p) values occur for the specia
states which are eigenstates of the operators (J11dJ2) and (J12dJ2), respectively. Let us
recall that the CSs withl51 occur whend50 and those withl521 when d °`. They
correspond to the eigenstates ofJ1 andJ2 operators, respectively. For such states, accordin
Eq. ~2.68!, we have ((DJ1)2)65((DJ2)2)65(D6(0,f))25 limd°`(D6(d,f))25 1

4.
Figure 3 shows the behavior of the dispersions ((DJ1)2), ((DJ2)2) andD as functions ofd for

f5p/6 and j 5 1
2. The minimum value ofD6 is here 0,0625. In Fig. 4, we see that the graphs

a function off are very similar to ones for the preceding example ofx andp.

III. ALGEBRA EIGENSTATES ASSOCIATED TO h „1…Šsu „2…

This section begins~Sec. III A! with a review of the SUSY harmonic oscillator and its sup
coherent states~SCSs! studied by Aragone and Zypman.10 We follow ~Sec. III B! by the general
construction of AES based on the algebrah(1)% su(2).These states are defined as eigenstate
an arbitrary linear combination of the generators of the considered algebra.8 Then we consider
special solutions to CSs and SSs for the so-called super-position and super-momentum op
~Sec. III C!.

A. The SUSY harmonic oscillator and its super-coherent states

Let us recall that the quantum SUSY harmonic oscillator is defined as a combination
bosonic and a fermionic oscillators. Its Hamiltonian is given by

HSUSY5w~a†a2 f †f !, ~3.1!

FIG. 3. Graphs of the dispersions ((DJ1)2)6 , ((DJ2)2)6 and theD6 factor as functions ofd for f5p/6 and j 5
1
2.
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where the bosonic creation and annihilation operatorsa† anda are defined as in~2.25! and the
corresponding fermionic operatorsf † and f are defined as

f †5s15 1
2 ~s11 is2!, f 5s25 1

2 ~s12 is2!, ~3.2!

~the s i , i 51,2, being the usual Pauli matrices! for the spin1
2 fermion. We can thus write

HSUSY5wS a†a2
1

2D2
w

2
s3 . ~3.3!

The representation space we are working with in this context is nothing else than the
product

F5Fb^ Ff5$un&,n50,1,2, . . .% ^ H U12 ,
1

2L 5u1&,U12 ,
21

2 L 5u2&J
5$un,1&,un,2&,n50,1,2, . . .%. ~3.4!

Following Aragone and Zypman,10 SCSs may be constructed as eigenstates of a SUSY ann
tion operator@&(a1s1)#. They are shown to be given as a linear combination of the follow
normalized pure states:

uc&15DS z

&
D u0,1& ~3.5!

and

uc&25DS z

&
D @a†u0,1&2u0,2&]

&
, ~3.6!

in terms of the displacement operatorD given in ~2.35! and where we recognize in~3.5! the usual
CS of the harmonic oscillator. A discussion10,11 of the properties of such states has led to
observation that, except for the stateuc1&[ ~3.5!, no other linear combination of~3.5! and~3.6!
will minimize the usual HUR. This means that these states satisfy (Dx)2(Dp)2> 1

4, the equality
between the positionx and the momentump being realized only foruc1&[(3.5).

Such a fact can be clarified from our discussion of Sec. II A. The SCSs~3.5! and~3.6! are in
fact MUS for the SRUR~2.4! with

FIG. 4. Graphs of the dispersions ((DJ1)2)6 , ((DJ2)2)6 and theD6 factor as functions off for d50.5 andj 5
1
2.
                                                                                                                



tisfy

ation
li

S and
ed.

to a

2074 J. Math. Phys., Vol. 43, No. 5, May 2002 N. Alvarez M. and V. Hussin

                    
A5
1

&
@~a†1a!1s1#5Fx1

s1

&
G and B5

1

&
@ i ~a†2a!1s2#5F p1

s2

&
G , ~3.7!

these operators being different fromx andp. The SCSs are coherent in the sense that they sa
Eq. ~2.6! with l51.

Clearly, in such a context, through the group theory level, we are combining the inform
coming from both the Heisenberg–Weylh(1) and the su~2! algebras realized in terms of the Pau
matrices in the spin12 case. It is then natural to ask the questions of determining the general C
SS for the direct sumh(1)% su(2) which will indeed include the special SCS we just discuss

B. Algebra eigenstates

We are working with theh(1)% su(2) algebra generated by$a,a†,I ;J1 ,J2 ,J3% as defined in
the preceding sections. The AESs8 for this algebra are defined as eigenstates corresponding
complex combination of the associated generators. A general Hermitian operatorA constructed
from a combination of these generators is

A5A1a1Ā1a†1A2I 1A3J11Ā3J21A4J3 , A2 ,A4PR, A1 ,A3PC. ~3.8!

Two such operators, calledA andB, satisfy the commutation relation~2.1! with

C5@ i ~Ā1B12A1B̄1!I 12i ~B3Ā32B̄3A3!J31 i ~A3B42A4B3!J11 i ~A4B̄32Ā3B4!J2#.
~3.9!

Once we search for states satisfying~2.6!, i.e., for eigenstates ofA1 ilB (lPC,lÞ0), we
are in fact considering AESs and we know from Sec. II A that they minimize the SRUR~2.4!. Let
us then study the solutions of such a general eigenstate equation~2.6! for A andB on the form
~3.8!.

It is convenient to rewrite this equation as

@a2a1a1a†1a3I 1b2J11b1J21b3J3#uc&5zuc&, ~3.10!

where

a25A11 ilB1 , a15Ā11 ilB̄1 , a35A21 ilB2 ,
~3.11!

b25A31 ilB3 , b15Ā31 ilB̄3 , b35A41 ilB4 .

To solve ~3.10!, we expressuc& as a superposition of fundamental statesun; j ,m& which
constitute a generalization of the Fock space~3.4! for spin j . We write

uc& j5 (
m52 j

j

(
n50

`

Cn,m
j un; j ,m&, ~3.12!

for fixed j , integer or half-odd integer. Let us recall that we have

aun; j ,m&5Anun21; j ,m&,

a†un; j ,m&5An11un11; j ,m&, ~3.13!

J6un; j ,m&5A~ j 7m!~ j 6m11!un; j ,m61&,

with

^n; j ,mu l ; j ,r &5dnldmr . ~3.14!
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Inserting~3.12! into ~3.10! and taking into account the relations~3.13! and ~3.14!, we get a
recurrence system which becomes more and more complicated asj increases. We also notice tha
the case wherea250 with a1Þ0 does not give any solution and must be eliminated. Here
ways of solving it completely are presented. The first one uses the results obtained in Sec. I
Appendix A where AESs of su(2) are explicitly constructed. It is described explicitly in
section using operators acting on a fundamental state. The second one is based on the m
resolution of a first order system of linear differential equations and is described in Append

With respect to the discussion in Appendix A, we have mainly two types of eigenvaluesz.
The first type is given by

z5rm
j 1a31mb, rm

j PC, ~3.15!

for fixed j and wherem52 j , . . . ,j and

b5A4b1b21b3
2Þ0. ~3.16!

If we compare equations~2.26! and~A5! and their respective solutions~2.33! and~A15!, we find
the set of solutions

uc&m
j 5~Cm

j !21/2expF2
a1

2a2
a†2

1
rm

j

a2
a†GTeffu0; j ,m&, ~3.17!

when a2Þ0. HereTeff is given by~A14! when $b1Þ0,b2Þ0%, ~A18! when $b150,b3Þ0%,
~A20! when$b250,b3Þ0% and finally the identity when$b25b150,b3Þ0%.

The second type corresponds to the so-called degenerate case (b50) wherez5r1a3 . The
sets of independent solutions are now given by

uc&m
j 5~Cm

j !21/2expF2
a1

2a2
a†2

1
r

a2
a†G

3 (
k50

j 2m

~21!kS j 2m
k D ~2 j 2k!!

~2 j !!
~a†! j 2m2kS a2J2

b2
D k

u0; j , j & ~3.18!

whenb15b350,

uc&m
j 5~Cm

j !21/2expF2
a1

2a2
a†2

1
r

a2
a†G

3 (
k50

j 2m

~21!kS j 2m
k D ~2 j 2k!!

~2 j !!
~a†! j 2m2kS a2J1

b1
D k

u0; j ,2 j & ~3.19!

whenb25b350, and

uc&m
j 5~Cm

j !21/2expF2
a1

2a2
a†2

1
r

a2
a†G

3F (
k50

j 2m

~21!kS j 2m
k D ~2 j 2k!!

~2 j !!
~a†! j 2m2kS a2

b1
D k dkeqJ1

dqk G u0; j ,2 j & ~3.20!

whenb1 ,b2 andb3 are different from zero and forq5b3 /(2b1)522b2 /b3 .
                                                                                                                



of

2076 J. Math. Phys., Vol. 43, No. 5, May 2002 N. Alvarez M. and V. Hussin

                    
C. Coherent and squeezed states for the super-position and super-momentum
operators

Let us consider the eigenstates of Eq.~3.10! corresponding to the following special values
the parameters

A45B45A25B250, A15 iB15
m

&
, ~mÞ0!, A35 iB35

t

&
, ~3.21!

so thatA will be called the super-position operator denoted byX and B the super-momentum
operator denoted byP. We have

X5
1

&
@~ma1m̄a†!1~tJ11 t̄J2!#, P5

i

&
@~m̄a†2ma!1~ t̄J22tJ1!#. ~3.22!

We see that the operators~3.7! associated to the SCS are then a special case wherem5m̄5t
5 t̄51 in the spin-12 case.

The eigenstate equation~3.10! now writes

@X1 ilP#uc&5zuc& ~3.23!

and the operatorC in ~3.9! is diagonal and takes the form

C5umu2I 12utu2J3 . ~3.24!

Since we have

a25
m~11l!

&
, a15

m̄~12l!

&
, a350,

~3.25!

b25
t~11l!

&
, b15

t̄~12l!

&
, b350,

and finally

b5&utuA12l2, ~3.26!

we can use the preceding solutions to give all the solutions of Eq.~3.23!.
For l51, we havea15b15b50 and the eigenstate equation is

@ma1tJ1#uc&5
z

&
uc&. ~3.27!

The normalized solutions are obtained from~3.18! and take the form

uc&m
j 5~Cm

j ~m,t!!21/2DS z

m&
D F (

k50

j 2m

~21!kS j 2m
k D ~2 j 2k!!

~2 j !!
~a†! j 2m2kS mJ2

t D kG u0; j , j &,

~3.28!

where the normalization constant is given by

Cm
j ~m,t!5~ j 2m!! F (

k50

j 2m S j 2m
k D ~2 j 2k!!

~2 j !! S umu2

utu2 D kG . ~3.29!
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Let us recall that in this case we have CSs for which

~DX!5~DP!5D5 1
2 ^C&. ~3.30!

The mean value ofC is easy to compute and we have

^C&m
j 5umu212utu2F j 1utu2

]

]utu2
ln~Cm

j ~m,t!!G . ~3.31!

In the special casej 5 1
2, we find the normalized and orthogonal states

uc&15DS z

m&
D u0;1&, uc&25DS z

m&
D utu

Aumu21utu2
Fa†u0;1&2

m

t
u0;2&G , ~3.32!

whereD is again given by~2.35!. In those states, we have

^C&15umu21utu2, ^C&25F ~ umu21utu2!2
2umu2utu2

~ umu21utu2!G . ~3.33!

This is clearly a generalization of SCSs considered by Aragone and Zypman10 and recalled in~3.5!
and ~3.6!.

From ~3.33!, we see that the dispersions ofDX andDP given by~3.30! computed in the CS
uc&2 are smaller than in the statesuc&1. The statesuc&2 thus are the closest to classical states
the SUSY harmonic oscillators~this means with respect to the super-position and the su
momentum! while uc&1 are indeed the ones closest to classical states of the standard har
oscillator~i.e., they minimize the HUR forX andP). Let us mention that if we takem51, we see
that ^C&1 has its minimum value equal to 1 fort °0 and in this caseX5x andP5p. For the
same value ofm, we see that̂C&2 takes the form

^C&25
11utu4

11utu2
, ~3.34!

which has a minimum valuêC&min
2 52(&21),1 for utu25&21.

For lÞ61, from Eq.~3.17! andTeff[ ~A13!, using also~2.35! and~2.36!, we get the states

uc&m
j 5~Cm

j !21/2S~x~d,f22fu!!D~hm~z,d,f,m,t!!

3expS 2td21/2e2 if/2

utu
J1DexpS t̄d1/2eif/2

2utu
J2D u0; j ,m&, ~3.35!

where

hm~z,d,f,m,t!5
1

m H z~11deif!

&
22mutud1/2eif/2J , m5umueifu ~3.36!

and where we have used instead ofl the parametersd andf as given in~2.32!. Let us mention
that this general expression~3.35! clearly shows the presence of the unitary operatorsD and S
associated withh(1) and su(1,1), respectively, which is the contribution of the bosonic part of
SUSY model. Moreover, the fermionic contribution appears through the action of a unitar
erator associated with su(2).

Now these states satisfy the MUR

~DX!m
j ~DP!m

j 5Dm
j 5

1

2
A11

4d2sin2f

~12d2!2 u^C&m
j u. ~3.37!
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The mean value ofC is

^C&m
j 5umu212utu2

~12d!

~11d! S j 2
4~ j 1umu!d

~11d!2 V D , ~3.38!

whereV is expressed in terms of Jacobi polynomials~see Appendix A!,

V5
Pj 2umu21

(22 j ,1) ~12~8d/~11d!2!!

Pj 2umu
(22 j 21,0)~12~8d/~11d!2!!

, ~3.39!

for m52 j 11, . . . ,j 21 andV50 for m56 j . In fact, we see that in these last cases, we h

^C&6 j
j 5umu212 j utu2

~12d!

~11d!
. ~3.40!

It is now interesting to examine the behavior of the dispersionsDX andDP in these states for
the spin1

2 case. Using~2.20! with ~3.40! for j 5 1
2, we get

~~DX!2!65
~122d cosf1d2!

2~12d2! F umu21utu2
~12d!

~11d!G ,
~3.41!

~~DP!2!65
~112dcosf1d2!

2~12d2! F umu21utu2
~12d!

~11d!G ,
with

D65
A~12d2!214d2sin2f

2~12d2! F umu21utu2
~12d!

~11d!G . ~3.42!

If we taked50 ~i.e., l51) in these last expressions, we find only the values of the dis
sions ofX andP in the usual coherent statesuc&1 as given by~3.32! and not the ones in the CS
uc&2, which is the reason why that case has been treated separately.

Figures 5 and 6 show the behavior of ((DX)2)6 and ((DP)2)6 andD6 as functions ofd for
f5p/6 and as functions off for d50.5, respectively. We notice a similar behavior as for t
position and momentum operators.

FIG. 5. Graphs of the dispersions (DX)2, (DP)2 and the factorD as functions ofx[d for f5p/6. utu5umu51, j 5
1
2.
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IV. CONSTRUCTION OF h „1…Šsu „2… HAMILTONIANS

An application of our CS and SS based on the algebrah(1)% su(2) will be the study of
possible Hamiltonians which can be written asH5wA †A, whereA is a linear combination of the
generators ofh(1)% su(2). It isclear that the usual harmonic oscillator Hamiltonian will enter
the scheme as a special case~Sec. IV A! but also the Jaynes–Cummings16 one in the strong
coupling limit ~Sec. IV B and C!.

Moreover, since the CSs and SSs already constructed in the preceding section are
eigenstates of the operatorA, we would be able to find easily some properties of the mean v
and the dispersion of the associated energies in those states.

A. Isospectral h „1…Šsu „2… harmonic oscillator Hamiltonians

We are interested in systems for which the Hamiltonian is expressed in the form

H5wA †A, ~4.1!

where

A5a2a1a1a†1a3I 1b2J11b1J21b3J3 , a2Þ0, ~4.2!

is an element of theh(1)% su(2) algebra. The commutator of the operatorsA andA † is

@A,A †#5~ ua2u22ua1u2!I 1~ ub2u22ub1u2!J31~b3b̄12b̄3b2!J11~ b̄3b12b3b̄2!J2 .
~4.3!

If uZ& is an eigenstate of the operatorA with eigenvaluez, i.e.,

AuZ&5zuZ&, ~4.4!

then the mean value of the energy in this state will always be given by

^ZuHuZ&5wuzu2 ~4.5!

and the dispersion by

~DH!25w2uzu2^Zu@A,A †#uZ&. ~4.6!

First, let us consider the special case where

FIG. 6. Graphs of the dispersions (DX)2, (DP)2 and the factorD as functions ofx[f, d50.5, utu5umu51, j 5
1
2.
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@A,A †#5I . ~4.7!

This imposes the following conditions on the parameters:

ua2u22ua1u251, ub2u5ub1u and b3b̄12b̄3b250, ~4.8!

i.e.,

a25coshaeiu2, a15sinhaeiu1, b65beiw6, ~4.9!

and

b35H rei (w11w2)/2,r PR1ø$0%, if bÞ0,

reiw3,r PR1ø$0%, if b50.
~4.10!

WhenbÞ0, the operatorA then takes the form

A5coshaeiu2a1sinhaeiu1a†1a3I 1b~eiw2J11eiw1J2!1rei (w11w2)/2J3 . ~4.11!

The parameterb given in ~3.16! becomesb5A4b21r 2ei (w11w2)/2 and is different from zero.
Therefore in this case, according to the equation~3.17!, the normalized solutions of the eigensta
equation~4.4! are given by

uZ&m
j 5S~L!D~zm~a3,1!!TD~ze2 iu2!u0; j ,m&, ~4.12!

where

L52aei (u12u2), zm~a3 ,e!52@a31emA4b21r 2ei (w11w2)/2#e2 iu2, ~4.13!

and

T5expS 2
ũ

2
@e2 i (w12w2)/2J12ei (w12w2)/2J2# D , ~4.14!

with

ũ

2
5tan21SA12

r

2b2 ~A4b21r 22r ! D . ~4.15!

This means thatT is a unitary operator.
We remark that, if we define the new operator

A05D†~2a3e2 iu2!S†~L!AS~L!D~2a3e2 iu2!

5eiu2a1b~eiw2J11eiw1J2!1rei (w11w2)/2J3 , ~4.16!

which is simpler than the originalA, then the new HamiltonianH05wA 0
†A0 is isospectral to the

HamiltonianH[ ~4.1!.
The dispersion ofH calculated on the states~4.12! is, from ~4.6! and ~4.7!, given by

(DH)25w2uzu2 and is the same as the one ofH0 calculated on the statesD(zm

(2z,1))Tu0; j ,m&. This value is exactly the dispersion of the harmonic oscillator in the usual
On the other hand, due to~4.7! we have@H,A#52wA, so we have a complete analogy wi

the harmonic oscillator. The CSs associated to the HamiltonianH, called generalized harmoni
oscillator, are those given by the equation~4.12! and, thus, one can write them in the form
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uZ&m
j 5D~z!u0̃&m

j , where D~z!5exp~zA †2 z̄A! ~4.17!

andu0̃&m
j , m52 j , . . . ,j , are the fundamental states of the systemH, that is, the eigenstates ofH

corresponding to the (2j 11) degenerate eigenvalue 0. They are also eigenstates ofA correspond-
ing to the eigenvalue 0. So, they can be written

u0̃&m
j 5S~L!D~zm~a3,1!!Tu0; j ,m&. ~4.18!

Furthermore, the SSs associated withH are given by

uc̃&m
j 5S~x!D~z!u0̃&m

j , ~4.19!

where the super-squeezed operatorS(x) is given by exp(xA †2
/22x̄A 2/2) and the super-

displacement operatorD(z) is given in ~4.17!. If we define X5(A1A †)/& and P5 i (A †

2A)/&, these states~4.19! minimize the SRUR (DX)2(DP)25(11^F&2)/4, i.e., they are solu-
tions of the eigenstate equation@(12l)A †1(11l)A#uc&5&uc&.

The eigenstates ofH corresponding to the (2j 11) degenerate energy eigenvalueEn5nw are
now given by

uñ&m
j 5

A †n

An!
u0̃&m

j . ~4.20!

These states may be obtained as the action of a unitary operator on the statesun; j ,m&. Indeed, if
we introduce the unitary operator

Un
m5e2 inu2S~L!D~zm~a3,1!!T, ~4.21!

we see that, from~4.20!, we have

uñ&m
j 5

einu2

An!
~A †!nUn

mu0; j ,m&,

5
einu2

An!
Un

m~~Un
m!†A †Un

m!nu0; j ,m&, ~4.22!

5
einu2

An!
Un

m~e2 iu2a†1A4b21r 2e2 i (w11w2)/2~J32m!!nu0; j ,m&.

Since we have (J32m)u0; j ,m&50, we finally find

uñ&m
j 5Un

mun; j ,m&. ~4.23!

In the caseb50, the operatorA is given by

A5coshaeiu2a1sinhaeiu1a†1a3I 1reiw3J3 . ~4.24!

Then, if rÞ0, one has the same results as above, except that it is necessary to replaceT by I and
b by b35reiw3. If r 50, A is an element of the algebrah(1) and then the results are the on
obtained in Sec. II A for the standard harmonic oscillator after applying the unitary transform
S(L)D(2a3e2 iu2).
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B. Strong-coupling limit of the Jaynes–Cummings Hamiltonian as limit of h „1…Šsu „2…
Hamiltonians

We are going to consider now the case where

@A,A †#5I 12xJ3 , xPR. ~4.25!

This imposes the following conditions on the parameters:

ua2u22ua1u251, ub2u22ub1u25x and b3b̄12b̄3b250. ~4.26!

We already know the results whenx50. WhenxÞ0, the conditions~4.26! imply

a25coshaeiu2, a15sinhaeiu1, b350, ~4.27!

and

b25H x1/2coshbeiw2, if x.0,

uxu1/2sinhbeiw2, if x,0,
~4.28!

b15H x1/2sinhbeiw1, if x.0,

uxu1/2coshbeiw1, if x,0.
~4.29!

The parameterb[ ~3.16! becomesb5uxu1/2A2 sinh(2b)ei(w11w2)/2. This means thatb50 if and
only if b50.

In the casebÞ0, according to the equations~3.17!, ~A7!, ~A11!, and~A12!, the normalized
eigenstates of the operatorA are given by

uZ~x!&m
j 5~Cm

j ~x!!21/2S~L!D~2a3e2 iu2!D~hm~z,x!!expF2
x

2uxu
ln~ tanhb!J3GUu0; j ,m&,

~4.30!

where

hm~z,x!5@z2muxu1/2A2 sinh~2b!ei (w11w2)/2#e2 iu2, ~4.31!

U5expF2
p

4
~e2 i (w12w2)/2J12ei (w12w2)/2J2!G ~4.32!

and

Cm
j ~x!5^ j ,muU† expF2

x

uxu
ln~ tanhb!J3GUu j ,m&

5S 11tanhb

2Atanhb
D 72m

Pj 6m
0;72mS 11tanh2 b

2 tanhb D . ~4.33!

From ~4.6! and ~4.25!, the dispersion of theH[ ~4.1! in the states~4.30! can be calculated
explicitly. We get

~DH!2)m
j 5w2uzu2~112xm

j ^Z~x!uJ3uZ~x!&m
j !. ~4.34!

In the last expression, the mean value ofJ3 is obtained in a similar way then to get~2.61!. The
result is
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m
j ^Z~x!uJ3uZ~x!&m

j 5
x

uxu H umue22b1
~ j 1umu11!

2 sinh~2b!

Pj 2umu21
1;2umu ~coth~2b!!

Pj 2umu
0;2umu~coth~2b!! J . ~4.35!

If we takem56 j , the dispersion ofH is

~~DH!2!6 j
j 5w2uzu2~112 j uxue22b!, ~4.36!

and, in particular, whenj 5 1
2, we get

~~DH!2!65w2uzu2~11uxue22b!. ~4.37!

Figure 7 shows the graphs of ((DH)2)6 as functions ofb for different values ofuxu whenw2uzu2

is taken equal to 1.
Let us compute the new operatorA0 defined as~4.16!. We get

A05H eiu2a1x1/2coshbeiw2J11x1/2sinhbeiw1J2 , if x.0,

eiu2a1uxu1/2sinhbeiw2J11uxu1/2coshbeiw1J2 , if x,0,
~4.38!

and a new HamiltonianH05wA 0
†A0 isospectral to the HamiltonianH which takes the form

H05w$a†a1uxu@sinh2~b!J2J11cosh2~b!J1J2#1uxu1/2 coshb@ei (w12u2)a†J2

1e2 i (w12u2)aJ1#1uxu1/2 sinhb@ei (w22u2)a†J11e2 i (w22u2)aJ2#

1uxusinhb coshb@ei (w12w2)J2
2 1e2 i (w12w2)J1

2 #%, ~4.39!

if x,0. If x.0, we get a similar expression except that we must make the change sinhb↔ coshb.
In the spin-12 representation, we have

J2
2 5J1

2 50, J1J25
I

2
1J3 and J2J15

I

2
2J3 , ~4.40!

hence~4.39! becomes

FIG. 7. Graphs of the dispersions ((DH)2)6[ ~4.37! as functions ofb.0 for uxu50,1,2,4.
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H05wH S a†a1
I

2D2xJ31uxu1/2 coshb@ei (w12u2)a†J21e2 i (w12u2)aJ1#

1uxu1/2 sinhb@ei (w22u2)a†J11e2 i (w22u2)aJ2#1~ uxucosh~2b!21!
I

2 J ~4.41!

and a similar expression whenx.0, making the literal change sinhb↔ coshb. If we take x
52w0 /w, w15u2 and the limitb°0, thenH0[ ~4.41! becomes

H05wS a†a1
1

2D1w0J31Aww0~a†J21aJ1!1
w2w0

2
I , ~4.42!

which is the Jaynes–Cummings Hamiltonian16 up to a constant term and for a coupling consta
given byk5Aww0. Let us recall that this Hamiltonian describes the interaction of a cavity m
~with frequencyw! with a two level-system~w0 being the atomic frequency!. Whenx521, i.e.,
for w5w0 , ~4.42! becomes the strong-coupling limit of the Jaynes–Cummings Hamiltonian

In the caseb50, the new operatorA0[ ~4.16! reduces now to

A0~x!5H eiu2a1uxu1/2eiw1J2 , if x,0,

eiu2a1uxu1/2eiw2J1 , if x.0.
~4.43!

As we have hereb50, according to the expressions~3.18! and~3.19!, the orthonormalized eigen
states ofA0 are given by

uZ~x!&m
j 5~C̃m

j ~x!!1/2D~ze2 iu2!

3 (
k50

j 2m

~21!kS j 2m
k D ~2 j 2k!!

~2 j !!
~e2 iu2a†! j 2m2kS J7

e2 iw7

Auxu
D kU0; j ,

x

uxu
j L ,

~4.44!

where the2 sign refers tox.0 and the sign1 to x,0 and

C̃m
j ~x!5~ j 2m!! (

k50

j 2m S j 2m
k D ~2 j 2k!!

~2 j !! S 1

uxu D
k

. ~4.45!

Since, in this case, we have

m
j ^Z~x!uJ3uZ~x!&m

j 5
x

uxu F j 1uxu
]

]uxu
ln~C̃m

j ~x!!G , ~4.46!

the dispersion ofH05wA 0
†A0 in the states~4.44! is given by

~~DH0!2!m
j 5w2uzu2F112uxu j 12uxu2

]

]uxu
ln~C̃m

j ~x!!G . ~4.47!

Whenm5 j , we haveC̃m
j (x)51, so that we get

~~DH0!2! j
j5w2uzu2~112uxu j !. ~4.48!

For example, whenj 5 1
2, the dispersion corresponding tom5 1

2 is given by

~~DH0!2!15w2uzu2~11uxu! ~4.49!
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and one obtains the same result as in the preceding case when we take the limitb°0. On the
other hand, form521/2, we get

~~DH0!2!25w2uzu2F11uxu
~ uxu21!

~ uxu11!G ~4.50!

and it is always smaller than ((DH0)2)1 . In this last case, we see that ifuxu.1, the dispersion is
bigger thanw2uzu2, while if uxu,1 it is smaller thanw2uzu2, and if uxu51, it is equal tow2uzu2.
Furthermore, the dispersion reaches its minimum 0.83w2uzu2 whenuxu5(&21). Figure 8 shows
the behavior of dispersions ((DH0)2)6 as function ofuxu.

Let us finally mention that the HamiltonianH0 in this case and forj 5 1
2 corresponds to~4.41!

whenb50. A special case is again the Jaynes–Cummings Hamiltonian~4.42! so we get eigen-
states ofA0[ ~4.43! such that the dispersion of this Hamiltonian is minimized and lower t
w2uzu2.

C. Generalized h „1…Šsu „2… noncanonical commutation relation

In the case where we have

@A,A †#5I 1gJ11ḡJ2 , gPC, gÞ0. ~4.51!

According to~4.3!, the necessary conditions on the original parameters are

ua2u22uau1
251, ub2u5b1 , b3b̄12b̄3b25g5rein, ~4.52!

whererPR1 . A suitable choice of the parameters is

a25coshaeiu2, a15sinhaeiu1, b65beiw6, b35reiw3, bÞ0, rÞ0, ~4.53!

such that

rb@ei (w32w1)2e2 i (w32w1)#5rein. ~4.54!

Equation~4.54! implies that

r52rbUsinS w32
~w11w2! D U ~4.55!

FIG. 8. Graphs of the dispersions ((DH0)2)6 as given by~4.49! and ~4.50! as functions ofuxu.
2
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and the following conditions on the phases:w3Þ(w11w2)/2, w3Þ(w11w2)/21p and w1

2w25p22n,nP@0,3p/2# or w12w253p22n, nP@p/2,2p#. Thus, the operatorA compat-
ible with all the previous conditions is

A5coshaeiu2a1sinhaeiu1a†1a3I 1ei (w22n)Fb~einJ12e2 inJ2!1
r

2bucosuu
eiuJ3G ,

~4.56!

where

u5w32~w22n!, 2
p

2
,u,3

p

2
. ~4.57!

The new operatorA0 defined in~4.16! is then given by

A05eiu2a1ei (w22n)F2b~einJ12e2 inJ2!1
r

2bucosuu
eiuJ3G . ~4.58!

The parameterb[ ~3.16! is now b5 iA16b2 cos2(u)2r2e2iuei(w22n)/(2bucosuu), i.e., b50 if and
only if b5Ar/2 andu5p.

Here we can proceed as before, that is, whenb50, find, by means of the equation~3.20! the
eigenstates ofA0 and, whenbÞ0, find the solutions by means of the equation~3.17! and then
calculate the dispersions ofH0 .

But, we will follow another treatment which teaches us about the similarities betwee
canonical and the noncanonical cases. Indeed, seen in another perspective, the commutat
tion ~4.51! can be expressed in the form

@A0 ,A 0
†#5I 12rJ3 , ~4.59!

where we have set

J35
~einJ11e2 inJ2!

2
. ~4.60!

Thus, whenb50, A0 becomes

A05eiu2a1Arei (w22n)J1 , ~4.61!

with

J656
~einJ12e2 inJ2!

2
2J3 . ~4.62!

The operatorsJ3 , J6 satisfy the su~2! algebra and let us denote byuJ,M & the eigenstates o
both J2 andJ3 . We have again

J3uJ,M &5M uJ,M &, J6uJ,M &5A~J7M !~J6M11!uJ,M &. ~4.63!

Now, it is clear that the resolution of the problem to find the eigenstates ofA0 is similar to the
canonical case. Indeed, the normalized eigenstates ofA0 are given by
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uZ~r!&M
J 5~C̃M

J ~r!!1/2D~ze2 iu2!

3 (
k50

J2M

~21!kS J2M
k D ~2J2k!!

~2J!!
~e2 iu2a†!J2M2kS J2e2 i (w22n)

Ar
D k

u0;J,J&,

~4.64!

whereC̃M
J (r) is given as in~4.45!.

As before, the dispersion ofH0 in the states~4.64! is given by

~~DH0!2!M
J 5w2uzu2F112Jr12r2

]

]r
ln~C̃M

J ~r!!G . ~4.65!

For example, whenJ5 1
2, we have

~~DH0!2!15w2uzu2~11r!, ~~DH0!2!25w2uzu2F11r
~r21!

~r11!G . ~4.66!

Evidently, the behavior of these dispersions as functions ofr is identical to that described in th
last paragraph of the previous section.

In the general case wherebÞ0, A0 can be expressed in the form

A05eiu2a1ei (w22n)H F4b2ucosuu2reiu

4bucosuu GJ12F4b2ucosuu1reiu

4bucosuu GJ2J . ~4.67!

From ~3.17!, we see that the eigenstates ofA0 are

uZ&M
J 5~Cm

j !21/2D~ze2 iu2!Teffu0;J,M &, ~4.68!

where

Teff5eF2J1eF1J2, ~4.69!

with

F25 i
@4b2ucosuu2reiu#

R1/2ei w̃/2 , F15 i
@4b2ucosuu1reiu#

2R1/2ei w̃/2
. ~4.70!

The dispersion ofH0 in these states is

~~DH0!2!M
J 5w2uzu2@112rM

J ^ZuJ3uZ&M
J #, ~4.71!

where17

M
J ^ZuJ3uZ&M

J 5M S 12uF2u2

11uF2u2D1
~J2M11!

2

PJ1M21
1,22M11~L!

PJ1M
0,22M~L!

L̃, ~4.72!

with

L5112uF21F̄1~11uF2u2!u2 ~4.73!

and

L̃52@ uF2u2~11F2F11F̄2F̄1!1uF1u2~ uF2u421!#. ~4.74!
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Thus, in the spin-12 representation, we get

6^ZuJ3uZ&65
1

2 S uF2u221

11uF2u2D . ~4.75!

Finally, by direct computation, we find

~~DH0!2!65w2uzu2F11r
@16b4cos2~u!1r228rb2cosuucosuu#2R

@16b4cos2~u!1r228rb2cosuucosuu#1RG , ~4.76!

where

R5A@16b4cos2~u!2r2cos~2u!#21r4sin2~2u!. ~4.77!

We see that, for fixed value ofr, Eq. ~4.76! as a function ofb is symmetric aroundu5p.
Figure 9 shows the behavior of the dispersions~4.76! as functions ofb.0 whenu5p and for

different values of parameterr. Let us notice the similarity between these curves starting fro
certain value ofb and the curves for the canonical case showed in Fig. 7.

Figure 10 shows the behavior of the same functions as functions ofb.0, for different values

FIG. 9. Graphs of the dispersions ((DH0)2)6[ ~4.76! as functions ofb.0, u5p andr51,2,4.

FIG. 10. Graphs of the dispersions ((DH0)2)6[ ~4.76! as functions ofb.0 for r51. u55p/8, 3p/4, 7p/8 andp.
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of u whenr51. We observe that when the angleu is different fromp the curves have a continu
ous derivative with respect tob but, when the angleu5p, the derivative of the curve at the poin
b50.55Ar/2 is not continuous.
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APPENDIX A: ALGEBRA EIGENSTATES ASSOCIATED TO su „2…

In this appendix we want to solve the eigenvalue equation

@bW •JW #uc&5@b1J11b2J21b3J3#uc&5Guc&, b1 ,b2 ,b3PC, ~A1!

whereJ1 , J2 and J3 are the su(2) generators which have already been given in Sec. II C
eigenvalue equation~A1! can also be written as

@b2J11b1J21b3J3#uc&5Guc&, ~A2!

whereJ1 andJ2 have been expressed in terms of the usual operatorsJ6 and

b65
b16 ib2

2
. ~A3!

We see that Eq.~2.45! is just a particular case of Eq.~A2!. The eigenvalue equation~A2! has
already been solved by Brif8 by expanding the stateuc& in the standard coherent-state basi9,
introducing in this way analytic functions and asking for solving a first order differential equa
Here, we consider a different method based on the operator algebra technique.

For j fixed, we can show that~A2! admits the eigenvalues

Gm
j 5mb, ~A4!

with m52 j , . . . ,j andb5Ab1
21b02

21b3
25A4b1b21b3

2. We then solve

@b2J11b1J21b3J3#uc&m
j 5Gm

j uc&m
j , ~A5!

by using

uc&m
j 5~Nm

j !21/2Tu j ,m&, ~A6!

where theNm
j are normalization constants andT is an operator that has to be determined. We ta

it as

T5expS 2
ũ

2
@e2 i f̃J12ei f̃J2# D , f̃,ũPC. ~A7!

Inserting~A6! with ~A7! into ~A5! leads to

@bW •JW #Tu j ,m&5mbTu j ,m&. ~A8!

Using the usual decomposition

T5expS 2e2 i f̃tanS ũ

2
D J1D expS ln sec2S ũ

2
D J3D expS ei f̃tanS ũ

2
D J2D ~A9!
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and the relations

ehJ3J6e2hJ35e6hJ6 , ehJ6J3e2hJ65J37hJ6 , ehJ6J7e2hJ65J762hJ32h2J6 ,

~A10!

we can show that, forb1Þ0, b2Þ0 andbÞ0, we have

ei f̃5Ab1

b2
, ~A11!

and

ũ

2
5arctanSAb2b3

b1b3
D . ~A12!

Inserting the results~A11! and ~A12! in ~A9!, we obtain

T5expS 2
2b2

b1b3
J1DexpS lnS 2b

b1b3
D J3DexpS 2b1

b1b3
J2D . ~A13!

The original form~A7! of theT operator allows us to look easily for the special cases stud
in Refs. 6, and 9 and in the preceding sections while the form~A13! allows us to calculate directly
the explicit form of the eigenstates~A6!. Indeed, the first relation~A10! allows us to pass the
exponential term exp(ln(2b/(b1b3))J3) to the right in~A13! and this without changing essential
the operator action on the pure statesu j ,m& becauseu j ,m& is an eigenstate of the operatorJ3 .
Thus, in Eq.~A6!, we can replace the operatorT by the operator

Teff5S b

b1
D j 1mA~ j 1m!! ~ j 2m!!

~2 j !!
expS 2

2b2

b1b3
J1DexpS b1

b
J2D , ~A14!

such that

uc&m
j 5~Ñm

j !21/2Teffu j ,m&, ~A15!

whereÑm
j are new normalization constants. Redefining the summation indices, we get

uc&m
j 5~Ñm

j !21/2 (
u52 j

j A~ j 1u!! ~ j 2u!!

~2 j !! S b

b1
D j 1u~ j 1m!!

~ j 2u!!

3 (
n50

j 1u

~21!n
~ j 2u1n!!

n! ~m2u1n!! ~ j 1u2n!! S ~12b3 /b!

2 D n

u j ,u&. ~A16!

We also have an expression in terms of the Jacobi polynomials~see Ref. 18!:

uc&m
j 5~Ñm

j !21/2 (
u52 j

j A~ j 1u!! ~ j 2u!!

~2 j !! S b

b1
D j 1u

Pj 1u
2u1m,2u2mS b3

b D u j ,u&, ~A17!

which is the result obtained by Brif.8

For the special case whereb150, b3Þ0 so that, in connection with~A4!, we haveb
5b3 , we find the operator

Teff5expS 2
b2

b3
J1D . ~A18!
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The eigenstates are

uc&m
j 5~Cm

j !21/2(
u5m

j A~ j 1u!!

~ j 2u!!

1

~u2m!! S 2
b2

b3
D u2m

u j ,u&, ~A19!

and become the standard CS of SU(2)~Ref. 9! whenm52 j .
For the special case whereb250, b3Þ0, we have similar results. Indeed, the new opera

Teff is

Teff5expS b1

b3
J2D ~A20!

and the eigenstates write

uc&m
j 5~Cm

j !21/2 (
u52 j

m A~ j 2u!!

~ j 1u!!

1

~m2u!! S b1

b3
D u2m

u j ,u&, ~A21!

which become the standard CS of SU(2)~Ref. 9! whenm5 j .
Now, for the caseb150 andb350 (b250 andb350), the only normalizable solution is

u j ,2 j & (u j , j &). For b15b250 andb3Þ0, the AES are evidently the pure statesu j ,m&.
Finally, the degenerate caseb50 leads to the solutionuc&2 j

j 5(C2 j
j )21/2Teffuj,2j& with Teff

5exp(22(b2 /b3)J1), that is the standard CS of SU(2).
The mean value ofJ3 in the states~A17! has already been calculated by Brif.8 We have

^J3&m
j 5

jY1m~S12S2!

S1S2
2

~ j 1umu!Yt

S1
2 S2

2 V, ~A22!

where

S6511U 2b2

b37bU
2

, t5U b

b1
U2

, Y5S1S22S12S2 ~A23!

and

V5
Pj 2umu21

(22 j ,1) ~12~2t/S1S2!!

Pj 2umu
(22 j 21,0)~12~2t/S1S2!!

, if umu, j ; V50, if umu5 j . ~A24!

APPENDIX B: RESOLUTION OF A FIRST ORDER SYSTEM OF DIFFERENTIAL
EQUATIONS

Let us recall that a realization9 of the Fock spaceFb5$un&,n50,1,2, . . .% of energy eigen-
states of the harmonic oscillator as a spaceH of analytic functionsf (z) is obtained by expanding
this function in the basis of analytic functions$wn(z)5zn/An!,n50,1,2, . . .%, that is,

f ~z!5 (
n50

`

cnwn~z!5 (
n50

`

cn

zn

An!
, zPC. ~B1!

The scalar product is

~ f 1 , f 2!5E
C

f̄ 1~z! f 2~z!e2uzu2 dz dz̄

2p i
, ; f 1 , f 2PH, ~B2!
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the integral being extended to the complex plane. The action of the creationa† and annihilationa
operators on theH space is then given by

a†[z, a[
d

dz
. ~B3!

The eigenvalue equation~2.26! thus becomes a first order differential equation

1

&
S ~11l!

d

dz
1~12l!z D f ~z!5b f ~z!, ~B4!

for which normalized solutions are obtained forlÞ21. The general solution of~B4! is

f ~z!5 f ~0!expS 2&bz2~12l!z2

2~11l! D . ~B5!

With respect to the scalar product~B2!, the normalization constantf (0) is computed by imposing

E
C
u f ~z!u2e2uzu2 dz dz̄

2p i
51, ~B6!

and we find the normalized solution of~B4! as

f (z)5~12uh1u2!1/4expS 2
1

2 F uh2u22Re~ h̄1h2
2!

12uh1u2 G DexpS h2z2
h1

2
z2D , ~B7!

with

h15
~12l!

~11l!
5deif and h25

&b

~11l!
5

b

&
~11deif!. ~B8!

This corresponds to the states~2.33! after normalization.
Now we are concerned with the algebra eigenstates satisfying the equation~3.10! in the Fock

spaceF[ ~3.4!. A realization ofF can be easily given from the preceding considerations and
expression~3.12! of a stateuc& for a fixed j . Indeed, we have

cm
j ~z!5^z; j ,muc& ~B9!

and the eigenvalue equation~3.10! then becomes a system of first order differential equations

S a2

d

dz
1a1z1a3Dcm

j ~z!1@b2A~ j 2m11!~ j 1m!cm21
j ~z!

1b1A~ j 1m11!~ j 2m!cm11
j ~z!1b3mcm

j ~z!#5bcm
j ~z!, ~B10!

where j is fixed butm takes the values2 j , . . . ,j . Let us now solve this system by first introdu
ing the differential operator

L5a2

d

dz
1a1z1a32b ~B11!

and, second, defining the vector
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C5S c2 j
j

c2 j 11
j

]

c j 21
j

c j
j

D . ~B12!

The system~B10! thus becomes a matrix differential system

LC52AC, ~B13!

with A a (2j 11)3(2 j 11) matrix given by

A51
2 j b3 A2 j b1 0 0 ¯ 0

A2 j b2 ~2 j 11!b3 A~2 j 21!2b1 0 ¯ 0

0 A~2 j 21!2b2 ~2 j 12!b3 A~2 j 22!3b1 ¯ 0

] ] ] � ¯ ]

0 0 A~2 j 22!3b2 ~ j 22!b3 A~2 j 21!2b1 0

0 0 0 A~2 j 21!2b2 ~ j 21!b3 A2 j b1

0 0 0 0 A2 j b2 j b3

2 .

~B14!

If we can find a nonsingular matrixS that diagonalizesA on the formD5S21AS where

D5diag~l2 j
j ,l2 j 11

j ,¯ ,l j
j !, ~B15!

the system~B13! will reduce to

LC̃52DC̃, C̃5S21C. ~B16!

Thus, fora2Þ0, the direct integration of~B16! will lead to

c̃m
j 5c̃m

j ~0!expS b2a32lm
j

a2
z2

a1

2a2
z2D ~B17!

and the general solutionC will be obtained as

S c2 j
j

c2 j 11
j

]

c j 21
j

c j
j

D 5SS c̃2 j
j

c̃2 j 11
j

]

c̃ j 21
j

c̃ j
j

D 5 (
m52 j

j

c̃m
j ~0!expS b2a32lm

j

a2
z2

a1

2a2
z2D S S2 j ,m

S2 j 11,m

]

Sj 21,m

Sj ,m

D ,

~B18!

whereS is assumed to be of the form
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S5S S2 j ,2 j S2 j ,2 j 11 ¯ S2 j , j 21 S2 j , j

S2 j 11,2 j S2 j 11,2 j 11 ¯ S2 j 11,j 21 S2 j 11,j

] ] ¯ ] ]

Sj 21,2 j Sj 21,2 j 11 ¯ Sj 21,j 21 Sj 21,j

Sj ,2 j Sj ,2 j 11 ¯ Sj , j 21 Sj , j

D . ~B19!

Computing the eigenvalues ofA, we find that we have to distinguish two cases, i.e., the one w
b5A4b1b21b3

2Þ0 and the one withb50. For the first casebÞ0, all eigenvalues are differen
and given by

lm
j 5mb, m52 j ,¯ , j . ~B20!

The system is diagonalizable and the general solution is given by~B18! with

Su,m5A~ j 1u!! ~ j 2u!!

~2 j !! S b

b1
D j 1u

Pj 1u
2u1m,2u2mS b3

b D , u52 j ,¯ , j , ~B21!

whenb2Þ0, b1Þ0 andb3Þ0,

Su,m5A~ j 2u!!

~ j 1u!!

1

~m2u!! S b1

b3
D u2m

, 2 j <u<m, Su,m50, m,u< j , ~B22!

whenb250, b1Þ0 andb3Þ0 and

Su,m5A~ j 1u!!

~ j 2u!!

1

~u2m!! S 2
b2

b3
D u2m

, m<u< j , Su,m50, 2 j <u,m, ~B23!

whenb2Þ0, b150 andb3Þ0.
In the Fock space representation, the solutions~B18! with ~B21!, ~B22! and~B23! correspond,

apart from a superfluous change of notation, exactly to the states~3.17! with Teff given by~A14!,
~A18!, and~A20!, respectively.

For the second caseb50, the matrixA can not be diagonalized. We could use the Jordan fo
or start from the differential equation system again and include this condition. Taking the s
way, we can express thecm

j (z) components in the form

cm
j ~z!5expF2

a1

2a2
z21

~b2a32mb3!

a2
zG c̃m

j ~z!, ~B24!

and insert these in Eq.~B10!. We get to the following system:

a2

d

dz
c̃m

j ~z!1b2A~ j 2m11!~ j 1m!eb3z/a2c̃m21
j ~z!

1b1A~ j 1m11!~ j 2m!e2b3z/a2c̃m11
j ~z!50, ~B25!

whenm52 j ,...,j . By handling these equations suitably we can, for example, obtain an ord
differential equation of the 2j 11 order forc̃2 j

j (z), namely

F)
2 j

j S d

dz
2mm

j D G c̃2 j
j ~z!50, ~B26!

where
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mm
j 52 j

b3

a2
1m

b

a2
. ~B27!

Whenb50, we have 2j 11 equal roots. This means that the solutions forc̃2 j
j (z) take the form:

c̃2 j
j ~z!5expS 2 j b3z

a2
D (

q50

2 j

Aqzq. ~B28!

Then, we can insert~B28! in ~B25! and thus obtain, in an iterative way, all solutionsc̃m
j (z) and,

thereafter, using~B24!, all solutionscm
j (z).

For example, in the caseb15b350 andb2Þ0, we have

c̃2 j
j ~z!5c2 j

j ~0!, ~B29!

i.e., a constant and, consequently, by integrating one by one the equations of the system~B25!, we
obtain

c̃m
j ~z!5 (

k50

j 1m S 2
b2

a2
D k zk

k!
A~ j 1m!! ~ j 2m1k!!

~ j 2m!! ~ j 1m2k!!
cm2k

j ~0!, ~B30!

whenm52 j ,...,j . The general solution~B12! is then given by

C5expF2
a1

2a2
z21

~b2a3!

a2
zG (

m52 j

j

cm
j ~0!

33 (
k50

j 2m
~21!k

k!
A~ j 2m!! ~ j 1m1k!!

~ j 2m2k!! S b2

a2
D k

zkS 0
]

0
1
0
]

0

D 4 , ~B31!

where, in each sum, the 1 in the vector column is placed in the (j 1m1k11) row. We thus obtain
the (2j 11) independent solutions of the system of differential equations.

In the Fock space representation, we can show that the independent solutions given
~B31! correspond, apart from a superfluous change of notation, to the states~3.18!. In the case
b25b350 with b1Þ0, following a similar procedure, one finds the expression~3.19!.

Finally, whenb1 , b2 , b3Þ0, by inserting~B28! in ~B25! and ordering the independen
solutions with respect to the arbitrary constantsAq , one finds

C~z!5expF2
a1

2a2
z21

~b2a3!

a2
z G (

q50

2 j

Aq

3F (
k50

q

~21!kS q
kD ~2 j 2k!!

~2 j !!
zq2kS a2

b1
D kF dk

dqk (
r 50

2 j A ~2 j !!

~2 j 2r !! r !
q r GS 0

A

1

A

0

D G ,

~B32!
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whereq5b3/2b1522b2 /b3 and, in each sum, the 1 in the vector column is placed in thr
11 row. In the Fock space representation, these solutions, with a slight change of no
correspond to Eq.~3.20!.
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Reversing quantum dynamics with near-optimal quantum
and classical fidelity

H. Barnuma) and E. Knillb)

Los Alamos National Laboratories, Los Alamos, New Mexico 87545

~Received 23 May 2001; accepted for publication 24 January 2002!

We consider the problem of reversing quantum dynamics, with the goal of preserv-
ing an initial state’s quantum entanglement or classical correlation with a reference
system. We exhibit an approximate reversal operation, adapted to the initial density
operator and the ‘‘noise’’ dynamics to be reversed. We show that its error in pre-
serving either quantum or classical information is no more than twice that of the
optimal reversal operation. Applications to quantum algorithms and information
transmission are discussed. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1459754#

I. INTRODUCTION

Counteracting the effects on quantum systems of noise generated by interaction w
environment is a central problem for the emerging field of quantum information processin
solution can be expected to have applications in quantum computation, precision measur
and information transmission. In this paper we exhibit a reversal operation which takes acco
both the noise and the initial density operator, to achieve near-optimal preservation of the
density operator’s quantum entanglement or classical correlation with a reference syste
work throughout with finite-dimensional systems although we expect that the results genera
infinite-dimensional ones, at least those with separable Hilbert spaces.

Section II reviews some of the theory of completely positive~CP! linear maps on spaces o
operators on finite-dimensional Hilbert spaces. When these are trace-nonincreasing, they a
known in the quantum information/computation community as ‘‘quantum operations.’’ Rea
familiar with these matters may wish to skip Sec. II, or skim it for notation.@The only notation not
standard in quantum information theory is our writingA;$Ai% to indicate that a CP-map acts a
A(r)5( i AirAi

† .# Section III reviews measures of fidelity commonly used in quantum infor
tion theory to quantify the effect of noise and information-processing operations on a sys
state, or an ensemble of system states. In addition, it motivates the particular measures we
indicates their connection to fidelity measures used in classical information-transmission the
also explains why, although our measures of quantum fidelity concentrate on preservin
correlation or entanglement of a mixed state, subjected to noise, with a reference system
relevant to the preservation of an ensemble of pure states as well. This section includes
formal definitions required in the rest of the paper. Sections IV and VI are the core of the p
containing the two main results. In Sec. IV the near-optimal reversal operation is defined, a
prove one of our main results: that its error is no worse than twice that of the optimal rev
operation, for either quantum or classical information. Section V discusses the relationship
reversal operation to a known near-optimal method of recovering classical information enco
an ensemble of density operators, the ‘‘pretty good measurement.’’ When the noise can be
as encoding classical information in a completely decohered ensemble of density operato
reversal operation can be viewed as performing the pretty-good measurement to distinguis
density operators. But when the noise operation may be viewed as encoding classical infor

a!Electronic mail: barnum@lanl.gov
b!Electronic mail: knill@lanl.gov
20970022-2488/2002/43(5)/2097/10/$19.00 © 2002 American Institute of Physics
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into these density operators in a way which leaves some coherence between them, our
operation writes a nearly optimal estimate of the density operator into a set of orthogonal
without decohering these states as a measurement would. Section VI proves the other mai
of the paper: a useful lower bound on the fidelity with which the reversal operation rec
classical information. This bound can be more tractable than the reversal operation’s fidelity
and has proven useful, for example, in discovering upper bounds on quantum query comp
This and other applications are touched on in the concluding section.

II. QUANTUM NOISE OPERATIONS

We model quantum noise in a systemQ by the most general dynamics that can arise vi
unitary interactionUQE with an environmentE initially independent of the system, in the sen
that the initial joint density matrix of system and environment is a productrQ

^ sE. We also model
operations performed on a system in an attempt to counteract noise by such dynamics. F
purposes, where we ultimately care about the effect of operations on the system, and perh
its entanglement with systems other than the environment, we may model these with the e
ment starting in a pure state because the effecton the systemof interaction with a mixed states
of E via UQE can be replicated by an interactionUQE1^ I E2 with a pure stateu0& of an environ-
mentE5E1^ E2 , whose partial trace ontoE1 is equal tos.

The dynamics thus obtained are trace-preserving completely positive mapsA:r°( i AirAi
† ,

on the space of linear operators onQ. They are also trace-preserving; equivalently,( i Ai
†Ai 5I .

Here

Aiª^ i EuUQEu0E& ~1!

are the ‘‘operator matrix elements’’ of the unitary interaction, between the environment initial
and statesu i E& forming an orthonormal basis for the environment. It should be clear what
means, but to be explicit, we define the operator matrix element^xAuOABucAB& of an operatorOAB

on the tensor product spaceA^ B. Let the matrix elements ofO in some tensor product bas
u i A&u j B& beOi j ,i 8 j 8 , and letx i andc i be the components ofux& anduc& in the basisu i A&. Then the
operator matrix element just mentioned is the operatorX on B whose matrix elements in the bas
u j B& are given by

^ j uXu j 8&5(
i ,i 8

x i* c i 8Oi j ,i 8 j 8 . ~2!

Ai uc& is what is often called the~unnormalized! ‘‘relative state’’ of the systemQ—relative, that is,
to the environment basis stateu i E&. The overall evolution of system and environment
ucQ&u0E&→UQEucQ&u0E&5( i Ai

QucQ&u i E&. The fact that the overall state remains normalized~so
that the density matrix’s trace is preserved! results in the requirement( i Ai

†Ai5I on a trace-
preserving quantum operation.

If the environment were considered as a measuring apparatus, and the states of the bau i E&
the ‘‘pointer variable’’ of that apparatus, so that each value ofu i & corresponded to a differen
measurement result, thenAi uc& would be the state of the system conditional on the measurem
outcomesi , and their squared norms, the probabilities of the measurement outcomes. The
operationA represents the dynamics of the measurement, averaged over measurement res
course, a trace-preserving operation need not arise from a measurement in this manner, bu
always be viewed this way, in terms of averaging over a notional readout of the environm
some ‘‘pointer basis,’’ if desired.

TheAi are said to form adecompositionof A, for which we use the notationA;$Ai%. Using
a different orthonormal ‘‘pointer basis’’1 for the environment in~1! results in a different decom
position of the same operation. Two such pointer bases are related by a unitary transformatio
corresponding decompositions of the operation are related by the complex conjugate o
unitary ~taken in either of the bases!:
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Bi5(
j

~Ui j !* Aj , ~3!

whereU takes the pointer basis used to define theAj to that used to define theBi .

III. QUANTIFYING THE EFFECTS OF NOISE

Let us consider how to quantify the effects of a ‘‘noise’’ operation on information which
consider to be contained in a quantum system, using the classical Shannon theory of infor
transmission as a guide. The information we have about a set of classical alternatives inde
i of a local systemT is usually measured by the entropy of the probabilities we ascribe to
alternatives:H(p)ª2( i pi log pi . Suppose we want to be able to transmit or store the statei ,
which will be presented to us with the probabilitiespi . We encode them on a systemT, while
keeping a reference copy with us, on a systemR. T is then affected by noise. We might defin
perfect success as the preservation of the initial perfect correlation betweenR andT. In terms of
the probability measures, we want the initial and final jointmixedstates of referenceR and system
T both to bep( i R, j T)5pid i Rj T. If our actual, noise-affected transmission results in the s
q( i R, j T), we could measure how well we have succeeded by looking at the distance be
p( i R, j T) andq( i R, j T) using some standard measure of distance between probability distribu
To give examples of such distances, letr5@r 1 , . . . ,r n#, s5@s1 , . . . ,sn# be probabilities on a
common set of classical alternatives labeled 1,. . . ,n. We might, for example, measure the di
tance betweenr and s by the Bhattacharyya distanceB(r ,s)ª12((k r k

1/2sk
1/2)2. The L1-norm

distance~also called total variation or Kolmogorov distance! would be another reasonable choic
We will assumeq( i , j )5pit( j u i ), where t( j u i ) is a stochastic matrix of transition probabilitie
describing the noise. Using the Bhattacharyya distance to measure how well the original c
tion has been preserved in the above-given example

12S (
i , j

d i j pi
1/2q~ i , j !1/2D 2

512S (
i

pi
1/2q~ i ,i !1/2D 2

512S (
i

pi t~ i u i !1/2D 2

. ~4!

Using theL1-norm distance gives

~1/2!(
i j

ud i j pi2d i j pi t~ j u i !u5~1/2!(
i

pi u12t~ i u i !u5(
i

p~R5 i& TÞ i !. ~5!

This is the familiar ‘‘error probability’’ criterion for channel transmission: the average, o
messagesi , of the probability thati is sent but a different message is received. This is an ave
pure-state fidelity, but we have shown that it can be rewritten as the fidelity for amixedstate
representing perfect initial correlation. The measure defined using the Bhattacharyya dis
while not identical to error probability, is equivalent to it as an error criterion for use in Shan
type block coding theorems.~It goes to zero with the error probability, and with similar speed a
dimensional dependence.!

We have gone through this analysis to indicate that there is a classical analog of the ap
we here take to quantum as well as classical fidelity: investigating the effects of noise
channel, which we may want to use to transmitpure states, by looking at its effect on a sta
whose marginal distribution on the noise-affected system is amixedstate corresponding to th
ensemble of possible pure-state messages. Thus an approach which might if incompletely
stood be viewed as perversely concerned with the fidelity of mixed states, provides a good
criterion for the problem of transmitting pure states which are supplied to the channel
probabilitiespi , in terms of the idea of preservation of correlation with a~possibly notional!
reference system. And this is not a bit of peculiarly quantum weirdness: the approach can b
in the classical case, too.

We now present our similar approach to the problem of transmittingquantuminformation, or
more generally of evaluating the fidelity with which a given operation preserves quantum
                                                                                                                



ion
,
m, we
tely

rence
ey are
ay

ith

proach
fidelity
,

there
Thus
e, one
ted in
ility to
ase
erage

put
tor
unt

of the

rence

2100 J. Math. Phys., Vol. 43, No. 5, May 2002 H. Barnum and E. Knill

                    
mation. We resume consideration of the trace-preserving completely positive ‘‘noise’’ operatA
which is the analog of the classical stochastic channel matrixt( i u j ) presented earlier. But now
rather than preservation of the noise-affected system’s correlation with a reference syste
require preservation of itsentanglement. Just as the classical reference system could be comple
notional, introduced because high-fidelity preservation of correlation with a notional refe
system implies high-fidelity preservation of states on the noise-affected system when th
supplied to the channel with the marginal distributionpi , so the quantum reference system m
also be taken to be completely notional. WhenA acts on Q, an entangled stateuc0

RQ&
ª( i Api u i R&u i Q& of Q with a reference systemR evolves as

uC0&ª(
i

Api u i R&u i Q&u0E&→uC f&ª(
i j

Api u i R&Aj u i Q&u j E&. ~6!

The entanglement fidelityFe(r,A) is defined asuuP0uC f&uu2, whereP0ªuc0
RQ&^c0

RQu ^ I E.2 Thus
Fe is the squared norm of the projection of the final state in~6! onto the subspace associated w
the initial entangled stateuc0

RQ&. It depends only onrª( i pi u i Q&^ i Qu, and is given by( i utr Airu2.
Whenr5uc&^cu, it is equal to the input–output fidelitŷcuA(uc&^cu)uc&, that is, the fidelity of
the final state ofQ to its inital state.

As in the classical case for correlation, so in the quantum case we argue that this ap
does not reflect a perverse fixation on entanglement, but also provides an appropriate
criterion even when it is preservation of pure states on the systemQ that we are concerned with
and no entangled systemR in fact exists. For the entanglement fidelityFe(r

Q,A) is a lower bound
on the average input–output fidelity( i qi^c i uA(uc i&^c i u)uc& for any pure-state ensemble onQ
having density operatorrQ.

While this is a good lower bound to the input–output fidelities of pure-state ensembles,
is not a tight lower bound on the input–output fidelity in terms of the entanglement fidelity.
if one is really interested only in the effect of a quantum channel on a particular ensembl
might get fidelities much higher than the entanglement fidelity suggests. We will be interes
one such case, the input–output fidelity for an orthonormal set of states, related to the ab
preserve essentiallyclassicalinformation coded in a quantum channel. In order to treat this c
simultaneously with entanglement fidelity, we introduce a notion which generalizes both: av
entanglement fidelity.

For an ensembleE5$pi ,r i% ~where stater i occurs with probabilitypi!, we define theaverage

entanglement fidelityby F̄e(E,A)ª( i piFe(r i ,A). A special case is

Fcl~r,A!ª(
i

pi^ i uA~ u i &^ i u!u i &5F̄e~$pi ,u i &^ i u%,A!, ~7!

where theu i & form an eigenbasis ofr and r5( i pi u i &^ i u. This is theclassical fidelityfor the
classical information@quantified byS(r)# of the ensemble of orthogonal eigenstates of the in
density operatorr. Another special case is an ensemble consisting of a single density operar.
In this caseF̄e is just Fe(r,A) and may be viewed as the fidelity for transmission of the amo
S(r) of quantuminformation.

The average entanglement fidelity can equivalently be defined as the norm squared
projection of the overall final state onto the subspace in which entangled statesuc i

RQ& representing
the initial ensemble are correctly correlated with orthogonal states of an additional refe
systemS:

F̄e5uuPc^ I EuC f&uu2

5tr Pc~I RS
^ A!uc0

RQS&^c0
RQSu, ~8!
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wherePcª( i u i S&^ i Su ^ uc i
RQ&^c i

RQu. The initial state ofRQSmay beuc0
RQS&ª( iApi u l S&uc i

RQ&,
with the ensemble of entangled states inRQ produced by entanglement withS. Alternatively, the
initial state ofRQS may be mixed, with perfect classical correlation rather than entanglem
between the states of a basis ofS and the different entangled states ofRQ. In this case
uc0

RQS&^c0
RQSu is given by( i pi u i S&^ i Su ^ uc i

RQ&^c i
RQu. The average entanglement measure~8! is

insensitive to whether entanglement, or merely classical correlation, exists betweenS andRQ.
For example, consider the special case ofFcl . Here the reference systemR plays no role as

the r i are pure. After suppressingR, Pc5( i u i S&u i Q&^ i Qu^ i Su. S contains a record of the classic
information sent.S andQ may be supposed to be either entangled or classically correlated,
r0

SQ5( i , jApipj u i S&^ j Su ^ u i Q&^ j Qu or r0
SQ5( i pi u i S&^ i Su ^ u i Q&^ i Qu, for orthonormal system and

reference basesu i &, where the system basis is the eigenbasis ofr. In either case, computing th
probability tr(Pcr f

SQ) that the final system-reference state falls into the subspace in which sy
and reference exhibit perfect classical correlation in the desired bases, gives the classical
Fcl(r,A).

IV. THE REVERSAL OPERATION

We motivate the definition of the near-optimal reversal operationRA,r by considering opera-
tions A that are perfectly reversible on a ‘‘code’’ subspaceC. Let PC be the projector ontoC.
Perfectly reversible operations have a decompositionAi for which Ai PC5ApiWi , where theWi

are isometries fromC into orthogonal subspaces, which means thatWi
†Wj5d i j PC .3,4 ~Intuitively,

this means that as far as its action on the code subspace is concerned, the operation just m
state isometrically~‘‘unitarily’’ ! into one of a set of mutually orthogonal subspaces.! Without loss
of generality, assume that the ranges of theWi span the state space. The reversal operation h
decomposition consisting of the operatorsWi

†5PCAi
†/Api . ~Intuitively, it may be thought of as

measurement of which of the subspaces the state was mapped isometrically to, followed
inverse of that isometry to put it correctly back into the code space.! This resembles the adjoin
@defined using the Hilbert–Schmidt inner product (A,B)ªtr A†B on operators# A C

† of the restric-
tion AC of A to C, which is given byA C

† ;$PCAi
†%5$ApiWi

†%. To get the reversal operation, th
Api need to be removed, which also makes the operation trace preserving. The general de
of RA,r is also based on the adjoint, suitably corrected to ensure that it is trace preservin@and
continuous in the density operator when, as we assume,A(r)’s support is the entire Hilber
space#:

RA,r;$r1/2Ai
†A~r!21/2%. ~9!

If we apply this definition to an operationA perfectly reversible on a code, using as our inpur
any state supported precisely on the code, it is a simple but useful exercise to verify that we
reversal operation for codes described previously.

The notationRA,r is justified by:
Lemma 1:The definition of the reversal operationRA,r is independent of the decompositio

$Ai% of A.
Proof: Let A;$Bi% be another decomposition. By adding null operators to one of the

decompositions, we can ensure that both have the same number of operators. Note that add
operators to$Ai% does not change the action ofRA,r . Then there existui j such thatBi

5( j ui j Aj , where the matrixu defined byui j is unitary. The decomposition ofRA,r given in ~9!
transforms via the coefficients ofu† into a decomposition given in terms of theBi

† . As u† is also
unitary, the result is another decomposition of the same operation. j

A simple but important property ofRA,r is easily verified directly from the definition:
Proposition 1:RA,r(r)5r.
The operationRA,r is near-optimal in the sense given by the following theorem.
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Theorem 2: Let E5$pi ,r i% be an ensemble of commuting density matrices, and ler

ª( i pir i . Then for any trace-preserving completely positive mapR, F̄e(E,RA,rA)
>F̄e(E,RA)2.

As a corollary, ifF̄e(E,RA)512h, thenF̄e(E,RA,rA)>(12h)2>122h. That is,RA,r’s
error ~defined as one minus the entanglement fidelity! is never greater than twice that of the be
reversal operation.

Proof: Without loss of generality, assume thatR;$Ri% ’s domain is the algebra of operators o
supp(A(r)) and its range is supp(r). Allowing more general reversal operations cannot incre
entanglement fidelity. Then there exist operatorsBi such that

Ri5r1/2Bi
†A~r!21/2, ~10!

namely those defined byBi
†
ªr21/2RiA(r)1/2. ~Generalized inverses are to be understood he!

Let B;$Bi%. We have

F̄e~E,RA!5(
l

pl(
i j

utr r1/2Bi
†A~r!21/2Ajr l u2. ~11!

DefineXi j
l
ªtr r1/2Bi

†A(r)21/2Aj
†r l . By proper (l -dependent! choice of operator decomposition

B;$Bi
l% andA;$Ai

l% ~corresponding to singular value decompositions—cf. Ref. 5, Sec. 7.3
the matricesXl!, we may obtain the same expression, but with the inner sum having just
index. Then applying the cyclicity of the trace, the fact that@r,r l #50, and definingXli

ªpl
1/4A(r)21/4Ai

lr1/4r l
1/2, Yliªpl

1/4A(r)21/4Bi
lr1/4r l

1/2, gives

F̄e~E,RA!5(
l

pl(
i

utr r1/2Bi
l†A~r!21/2Ai

lr l u2

5(
i l

utr Yli
†Xli u2<(

i l
tr Xli

†Xli tr Yli
†Yli

<S (i l utr Xli
†Xli u2(

i 8 l 8
utr Yl 8 i 8

† Yl 8 i 8u
2D 1/2

<S (
i l

utr Xli
†Xli u2D 1/2

<S (
i j l

utr Xli
†Xl j u2D 1/2

5S (
l

pl(
i j

utr r1/2Ai
l†A~r!21/2Aj

l r l u2D 1/2

5F̄e~E,RA,rA!1/2. ~12!

Here the first two inequalities are Schwarz inequalities, the third uses the fact that

(
i

utr r1/2Bi
†A~r!21/2Bir l u2<Fe~r,RB!<1, ~13!

the fourth just adds positive terms inside the square root. The last identity depends on Lem
SinceB is not necessarily trace-preserving,~13! is not immediate, but from~11! and the trace-
preserving condition onR,

(
i

Ri
†Ri5(

i
A~r!21/2BirBi

†A~r!21/25I . ~14!
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It follows thatB(r)5A(r), a normalized density operator. Letuc0
RQ& be a purification ofr. Then

the states (I R
^ B Q)(uc0

RQ&^c0
RQu) and (I R

^ R QB Q)(uc0
RQ&^c0

RQu) are also normalized densit
matrices, whenceFe(r,RB)5tr P0(I R

^ R QB Q)(uc0
RQ&^c0

RQu)<1. j

Important special cases of Theorem 2 are noted in:
Corollary 2: For any trace-preserving completely positiveR, Fcl(r,RA)<AFcl(r,RA,rA)

andFe(r,RA)<AFe(r,RA,rA).
When the members of the input ensembler i do not commute, we do not know whetherRA,r ,

for rª( i pir i , is still near-optimal.

V. RELATIONSHIP TO THE ‘‘PRETTY GOOD MEASUREMENT’’

The above-presented analysis of the fidelity of reversal makes it clear thatRA,r provides a
method for distinguishing, with close to optimal average error, density matrices from the ens
$pj ,r̂ j%, wherer̂ jªA(u j &^ j u), andr5( j pj u j &^ j u. This provides a near-optimal method for di
tinguishing density matrices in an arbitrary ensemble, for any ensemble$pj ,r̂ j% may be con-
structed by an operation

A;$Al i j uv i j &^ j u%, ~15!

where r̂ j5( i l i j uv i j &^v i j u are the spectral decompositions of the density matrices to be di
guished. The operationA may be thought of as measuring in the orthogonal basisu j &, and then
producing the correspondingr̂ j , for example by randomly applying, with probabilitiesl i j , uni-
tary rotations takingu j & to uv i j &. With A as defined previously,

RA,r;$Ri j %5$ApjAl i j u j &^v i j urout
21/2%. ~16!

The ‘‘pretty good measurement’’~PGM! was introduced by Holevo6 ~the term ‘‘pretty good mea-
surement’’ is from Ref. 7! for the case of linearly independent pure states, in which case the P
is a measurement of orthogonal projectors, and as Holevo showed, the optimal such measu
For an ensemble of unnormalized density matricesr jªpj r̂ j , whereroutª( j r j is a normalized
density operator, the PGM is defined by the set of operators consisting of the

Xjªrout
21/2r jrout

21/2. ~17!

For pure r j}u j &^ j u, these are just the operators corresponding to the ‘‘r-distorted’’8 states
rout

21/2u j &. Note that for a doubly indexed ensemble of unnormalized statesr i j , ( i Xi j 5Xj , where
the Xj are the PGM for ther jª( ir i j . The operation~16! may be viewed, via the given repre
sentation, as performing the PGM for the ensemble of unnormalized statesApjAl i j uv i j &, and
returning u j & when the measurement resulti j is obtained. Indeed, for that ensembleRi j

† Ri j

5Xi j , and therefore( i Ri j
† Ri j 5Xj . Thus the operation may also be viewed as doing the PGM

the r j , and returningu j &^ j u when the measurement result isj . ~Sinceu j & are orthogonal, this is
‘‘classical information:’’ the value ofj is viewed as the estimate of whichj was input.! However,
a given ensembler j may in general arise from orthogonal statesu j & by actions of channels
different from the ‘‘classicizing’’ one~15!, which completely decoheres the orthogonal statesu j &
before producingr̂ j . For example, if ther̂ j are orthogonal and pure they may be produced eit
by measurement in the basisu j & followed by an appropriate unitary operatorU, or by applyingU
without prior measurement. In the first case quantum coherence is completely destroyed, w
the second case it is perfectly preserved. When the channel producing ther̂ j is not of the form
~15!, the reversal operationRA,r will be different from~16!. Although~16! still gives near-optimal
classical fidelity, it will not necessarily give good entanglement fidelity, since in some sen
decoheres the statesr̂ j . RA,r , however, will have near-optimal entanglement fidelity while
taining near-optimal classical fidelity.RA,r thus takes advantage of whatever coherence rem
between ther̂ j ; it avoids decohering ther̂ j if the channel has not decohered them already.
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VI. A BOUND ON THE CLASSICAL FIDELITY OF REVERSAL

To bound a fidelity of reversal it is sufficient to bound the fidelity for the near optimal reve
operation and apply Theorem 2. Here we have a look at such bounds for classical fideli
reversal forA of the form ~15!. In this case, the classical fidelities are average probabilitie
success for measurements that attempt to infer which of the eigenprojectorsu j &^ j u of the input
stater5( j pj u j &^ j u was actually transmitted. The expression for the PGM gives the follow
bound on the optimal probability of successFcl ~with the definitions of Sec. V!:

Fcl
2>Fcl~r,RA,rA!

5(
j

tr ~rout
21/2r jrout

21/2r j !

512 (
i , j : iÞ j

tr~rout
21/2r irout

21/2r j !, ~18!

where we used the identity( i , j tr(rout
21/2r irout

21/2r j )51. Thus the probability of errorEcl is bounded
above by 2( i , j : iÞ j tr(rout

21/2r irout
21/2r j ), which is a multiple of the sum of the Hilbert–Schmidt inn

products of the differentrout
21/4r jrout

21/4. Whenrout is uniform ~proportional to a projection!, this
sum can be easy to estimate. An often used measure of overlap between density matrice
Bures–Uhlmann fidelity.9,10 This measure depends only on the pair of density matrices, an
defined byFBU(s1 ,s2)ªtrAs1

1/2s2s1
1/2. The expression for the optimal reversal given in~16! can

be used to derive a bound on the probability of error in terms of the Bures–Uhlmann fidel
Theorem 3:

Fcl
2>12 (

i , j : iÞ j
ApipjFBU~ r̂ i ,r̂ j !. ~19!

Proof: Let Aj be the matrix whosei th column isApjAl i j uv i j &, andA the matrix obtained by
placing theAj in a row. ThenAA†5rout. Let Rj be the matrix whosei th row isApjAl i j ^v i j urout

21/2

andR the matrix obtained by placing theRj in a column.R is simply an explicit matrix form of
RA,r . SinceR5A†(AA†)21/2, R is a matrix with the property thatRA is positive semidefinite.~In
fact, this gives an alternative approach to definingRA,r). The matrixRA has a natural block
structure that mirrors that used to defineR andA. It is readily verified thatFcl for RA,r is given
by the sum of the squared Frobenius normsu(RA) j j u2

2
ªtr(RA) j j

† (RA) j j of the diagonal blocks.
Since uRAu2

2 is one, it suffices to estimate the sum of the squared Frobenius norms of th
diagonal blocks to bound the optimalFcl . To do so, observe that (RA)25A†A. The block at block
position l ,k in BªA†A is given byBlk5Al

†Ak . SinceAlAl
†5r l ,

Blk
†Blk5Ak

†r lAk

5Urk
1/2r lrk

1/2U†

~by polar decomposition ofAk! for some unitary operatorU. Consequently, theL1-norm of Blk ,
defined byuBlku1ªtrABlk

†Blk is given byAplpkFBU( r̂ l ,r̂k). It therefore suffices to relate th
Frobenius norms of the off-diagonal blocks of a positive semidefinite matrix to theL1 norms of
the off-diagonal blocks of its square, via the following lemma.

Lemma 4:Let

M5S a b†

b c D
be positive semidefinite, witha,b,c matrices. Write
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M1/25S x y†

y z D
with the same block structure. Thenuyu2

2<ubu1 .
Proof of Lemma 4:Without loss of generality, assume thaty is non-negative diagonal. Oth

erwise, with a block-diagonal unitary

U5S u 0

0 v D
with u andv chosen to implement the singular value decomposition ofy, we may transformM
andM1/2 so thaty is a diagonal matrix with non-negative diagonal entries~for rectangulary, the
upper or left-hand square portion is diagonalized!. This does not affect the norms, sinceU trans-
forms blocks independently and theL1 and Frobenius norms are both unitarily invariant. Letyi be
the diagonal entries ofy. Note thatb5yx1zy and ubu1>tr b ~cf. Ref. 5, p. 432!. Now tr (yx
1zy)5( i yi(xii 1zii ). By the positivity of M1/2, yi

2<xii zii , so yi is less than at least one o
xii ,zii . Thusuyu2

25( i yi
2<trb<ubu1 , as desired. j

To complete the proof of Theorem 3, consider first the block decomposition ofRA and B
determined byB11. By Lemma 4, the squared Frobenius norm of the first block row and col
excluding (RA)11 is bounded by the sum of theL1 norms of the corresponding block row an
column inB11. By subadditivity of the norm, this is at most( i .1(uB1i u11uBi1u1). After a suitable
permutation, the same argument applies to the row and column determined byBii , for eachi . The
proof of the theorem then follows by summing over the resulting inequalities and noting that
off-diagonal block occurs twice on both sides. j

VII. EXAMPLES AND APPLICATIONS

By a slight extension of an example already given,RA,r is optimal forA perfectly reversible
on some code subspace, whenr is a state with no support outside the code. Applications
reversing other simple quantum operations may be instructive. For instance, for a depola
channelA;$(12p)1/2I ,(p/3)1/2s i% i 51,2,3 acting onr5I /d, RA,r is another application of the
depolarizing channel, whereas the optimal reversal is to do nothing.~This case saturates th
inequality of Theorem 3.!

Due to its near optimality, the reversal operationRA,r can be used in any situation whe
classical or quantum information has been corrupted by noise with known behavior.RA,r has a
simple definition, but whether it or a good approximation can be implemented efficiently dep
on the details of the situation. Whether or not it can be efficiently implemented, because its
is at most twice the optimum, it can be used as a theoretical tool to obtain upper bounds
achievable fidelities in a given situation. The upper bounds can then be compared to the
achieved by simpler algorithms. An example of this occurs in the use of stabilizer code
quantum error-correction. When the noise model is independent and depolarizing, classical
theory immediately suggests a combinatorially straightforward error-correction algorithm b
on maximum likelihood error syndrome decoding. Comparing this method toRA,r suggests itself
as a fruitful path of investigation with applications to asymptotic bounds in quantum co
theory.11,12More generally, for any encoding scheme capable of transmitting quantum inform
through a given channel at a given rate when appropriate decoding is used,RA,r may be used to
provide such a decoding~with A taken to be the concatenation of encoding and noise!.

Another application is to query complexity for quantum oracles. Here we are given a qua
black box implementing an unknown quantum operation from some set. A simple metho
attempting to determine which operation we are given is to apply it to copies of some input
and attempt to distinguish the output state. A bound on the probability of success can th
obtained by using bounds such as the one of Theorem 3. This was how the fact that the
subgroup problem has low query complexity was first realized.13
                                                                                                                



2106 J. Math. Phys., Vol. 43, No. 5, May 2002 H. Barnum and E. Knill

                    
ACKNOWLEDGMENTS

The authors thank the following for support: The ONR~N00014-93-1-0116, H.B.!, the NSF
~PHY-9722614, H.B.!, the ISI Foundation~Turin, Italy, H.B.!, Elsag-Bailey~H.B.!, the ITP at UC
Santa Barbara~NSF PHY94-07194, H.B. and E.K.!, the NSA~E.K.! and the DOE~W-7405-ENG-
36, E.K.!.

1W. H. Zurek, Phys. Rev. D24, 1516~1981!.
2B. Schumacher, Phys. Rev. A54, 2614~1996!.
3E. Knill and R. Laflamme, Phys. Rev. A55, 900 ~1997!.
4M. A. Nielsen, C. M. Caves, B. W. Schumacher, and H. Barnum, Proc. R. Soc. London, Ser. A454, 277 ~1998!.
5R. A. Horn and C. R. Johnson,Matrix Analysis~Cambridge University Press, Cambridge, 1985!.
6A. S. Holevo, Theor. Probab. Appl.23, 411 ~1978!.
7P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and W. K. Wootters, Phys. Rev. A54, 1869~1996!.
8L. P. Hughston, R. Jozsa, and W. K. Wootters, Phys. Lett. A183, 14 ~1993!.
9D. Bures, Trans. Am. Math. Soc.135, 199 ~1969!.

10A. Uhlmann, Rep. Math. Phys.9, 273 ~1976!.
11A. Ashikhmin, A. Barg, E. Knill, and S. Litsyn, IEEE Trans. Inf. Theory46, 778 ~2000!.
12A. Ashikhmin, A. Barg, E. Knill, and S. Litsyn, IEEE Trans. Inf. Theory46, 789 ~2000!.
13J. M. Ettinger, P. Hoyer, and E. Knill,~ 1999!, Los Alamos arXiv.org Preprint Archive quant-ph/9901034.
                                                                                                                



a
es for

tions of
is a

rol
. Since
assage
imple

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 5 MAY 2002

                    
Optimal control in laser-induced population transfer
for two- and three-level quantum systems

Ugo Boscaina)
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We apply the techniques of control theory and of sub-Riemannian geometry to
laser-induced population transfer in two- and three-level quantum systems. The aim
is to induce complete population transfer by one or two laser pulses minimizing the
pulse fluences. Sub-Riemannian geometry and singular-Riemannian geometry pro-
vide a natural framework for this minimization, where the optimal control is ex-
pressed in terms of geodesics. We first show that in two-level systems the well-
known technique of ‘‘p-pulse transfer’’ in the rotating wave approximation
emerges naturally from this minimization. In three-level systems driven by two
resonant fields, we also find the counterpart of the ‘‘p-pulse transfer.’’ This geo-
metrical picture also allows one to analyze the population transfer by adiabatic
passage. ©2002 American Institute of Physics.@DOI: 10.1063/1.1465516#

I. INTRODUCTION: PHYSICAL CONTEXT

A. Generalities

Design of external laser fields~amplitudes and frequencies! to reach a selected state of
quantum system is of primary importance for the control of quantum dynamics. The techniqu
this state-selectivity that have been developed are essentially based on~i! adiabatic passage~see,
e.g., the recent works1–4!, ~ii ! multiphoton quasiresonant pumping5 by ‘‘generalizedp-pulses,’’6

and ~iii ! optimal control theory~see, e.g., Refs. 7 and 8!.
Adiabatic passage has the advantage of robustness in the sense that significant devia

the fields do not significantly modify the final result. On the other hand, optimal control
systematic framework to design the field parameters~or control variables! to reach selectivity in
maximizing or minimizing a quantity~the cost! depending functionally on the state and cont
variables. This design is in general not robust, in contrast with standard adiabatic passage
the robustness is difficult to quantify as a cost, we do not expect in general the adiabatic p
to emerge from an optimal control solution. This has been discussed for specific s
systems.9,10 However optimality for adiabatic passages has been characterized in Ref. 11.

a!Electronic mail: uboscain@u-bourgogne.fr
b!Electronic mail: charlot@math.univ-montp2.fr
c!Electronic mail: gauthier@u-bourgogne.fr
d!Electronic mail: Stephane.Guerin@u-bourgogne.fr
e!Electronic mail: jauslin@u-bourgogne.fr
21070022-2488/2002/43(5)/2107/26/$19.00 © 2002 American Institute of Physics
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The success of these coherent laser-induced processes requires, in general, use of as
possible external pulses, to minimize incoherent effects of relaxation~through spontaneous emis
sion, collisions, etc.!. It is essential that the total time of the pulse is shorter than the characte
times of the incoherent losses. Coherent transfers also need as low as possible pulse inten
order to~i! minimize incoherent phenomena induced by strong fields such as ionization for a
or molecules, and~ii ! avoid involving other energy levels, that are not included in the mod
Otherwise the population is spread among these levels and the transfer becomes inefficie

Depending on the concrete physical setting there are several possible choices of th
functional. One choice, which has been studied in Ref. 12, is to minimize the total time o
control process. However, the total time minimization presented in Ref. 12 assumes that arb
large laser intensities can be used. The relations between our results and the results of Ref.
be made clear in Sec. II C.

In this paper we address the two- and three-level problem from the geometric control t
point of view. We consider several functionals to be minimized, which are geometrically
natural, and that physically reflect the practical constraints mentioned previously@fluence, see
formula ~5! for the two-level case and formula~7! for the three-level case, or transfer time wi
bounded controls, etc.#. The choice of these costs will be discussed in Sec. II C. We will also
the classical tracking technique, often used in in geometric control theory~see Ref. 13!, that will
allow in particular achievement of adiabatic transfer.

Remark 1:In the choice of the cost to be minimized, it is useful to consider optimal probl
that are independent of time reparametrization. Indeed, in that case, very slowly varying sol
comparable with the ones used in experiments, can be obtained just by time reparametr
This point will be taken into account in the following, in particular see Sec. II C. But we will a
consider problems that do not have this feature.

B. Content of the paper

In this work we apply geometric control theory in two- and three-level systems, which
briefly describe in the following. Moreover we make the connection with the adiabatic pass

1. The two-level case

We first study the population transfer in a two-level quantum system~of energiesE1 andE2!
driven by an external field of arbitrary time-dependent shape, starting att0 and ending att1 . The
dynamics is governed by the time-dependent Schro¨dinger equation~in a system of units such tha
\51!:

i
dc~ t !

dt
5Hc~ t !, ~1!

c(.):R→Cn, n52, where

H5S E1 V~ t !

V* ~ t ! E2
D . ~2!

is the Hamiltonian of the system~we have assumed no diagonal coupling!. We choose the mos
general situation where the off-diagonal element is complex:V(t):R→C.

In the two-level system~2!, complete controllability~on spheres! is obvious~see the following
for the precise definition of controllability!. We show that the natural optimal control problem
minimizing the integral of the laser amplitude:

l 5E
t0

t1
uVu dt ~3!

has the following features.
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~a! After some transformations the problem can be formulated as a problem of
Riemannian geometry~see Remark 3!.

~b! The optimal control solution has the expected resonance property, i.e.,V can be written as

V~ t !5b~ t !ei [(E22E1)t1a] , ~4!

wherea is an arbitrary constant,b(.):R→R1 is a real function with compact support@ t0 ,t1#.
~c! The optimal amplitudeb(t) satisfies

E
t0

t1
b~ t !5p/2.

Remark 2:We thus recover the well-known strategy of ‘‘p-pulse transfer’’ of a resonant puls
in the rotating wave approximation,14 which gives complete transfer withV(t)5mF(t)eif(t)/2,
ḟ(t)5E22E1 , and l 5umu* t0

t1F(t)dt/25p/2. Herem is the intrinsic coupling between the tw

levels andF(t) the external pulsed field. This shows in particular that an additional controll
time-dependent frequency~‘‘chirping,’’ see, e.g., Ref. 15! does not improve the minimization with
respect to this cost. We thus show that in the model of the rotating wave approximatio
‘‘ p-pulse transfer’’ corresponding to the minimum pulse area to achieve the complete transf
consequence of purely geometric considerations.

~d! The solution is independent of time reparametrization, i.e., derivatives of controls c
made as small as required simply by choosing an appropriate time parametrization. Mor
with an adequate choice of the parametrization it minimizes thefluencefor fixed transfer time
t12t0 :

E5E
t0

t1
uVu2~ t !dt5E

t0

t1
b2~ t !dt, ~5!

or equivalently the transfer time, with the constraint on the amplitudeub(t)u<1. More details
about the relations between these costs are given in Sec. II C.

Remark 3:A control problem is calleddistributional if the set of admissible velocities is
distribution, i.e., a nonintegrable field of planes. It is calledcontactif the distribution is acontact
distribution, i.e., if the field of planes is defined as the kernel of the one-formv, then dv is
nondegenerate when restricted to Ker~v!. A control problem is said to besub-Riemannianif
additionally one gives a Riemannian metric on the distribution, and one minimizes the Riema
length. For sub-Riemannian geometry we refer to Refs. 16–18.

In fact, as we shall see, the two-level problem reduces to a three-dimensional contac
Riemannian problem, with a special feature: it has a symmetry, transverse to the distributio
a standard fact that such a sub-Riemannian problem is in fact an isoperimetric problem~in the
sense of the calculus of variations! on the quotient by the symmetry. Such isoperimetric con
three-dimensional sub-Riemannian problems have been studied in detail at the local level
19, for instance. In fact, the above-given statement is nothing but the~trivial! solution of the
classical isoperimetric problem~or Dido problem! on the Riemannian sphere.

The study of this two-level case is described in Sec. III.

2. The three-level case

For three-level systems, labeled 1, 2, and 3, of respective energiesE1 , E2 , andE3 , driven by
two resonant monochromatic fields of respective envelopesFj (t), j 51,2 and of frequenciesv1

andv2 , the Hamiltonian, in the rotating wave approximation~RWA!, reads
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H5S E1 u1~ t !eiv1t 0

u1~ t !e2 iv1t E2 u2~ t !eiv2t

0 u2~ t !e2 iv2t E3

D , ~6!

where

v1ªE22E1 , u1~ .!:R→R,

v2ªE32E2 , u2~ .!:R→R.

The controlsuj (t), j 51,2 are connected to the physical parameters byuj (t)5m jFj (t)/2, with the
couplingsm j , intrinsic to the quantum system, that we have restricted to couple only levelsj and
j 11 by pairs. We allow the control variables, starting att0 and ending att1 , to have any shape

Controllability. For a control system, theaccessibility setof a point x0 in the configuration
space is the set of points that can be joined fromx0 by a trajectory of the system. A control syste
is said to becontrollable if the accessible set of everyx0 is the whole configuration space. For a
analytic distributional system, it is known that the configuration space is foliated by acce
sets, calledorbits in that case. These orbits are exactly the Hermann–Nagano orbits~see the
Hermann–Nagano Theorem in the following and Ref. 22 for details!.

In the following we first prove that this three-level system reduces to a distributional pro
which is not controllable, since the orbits under consideration are two-dimensional spheres
we show that on each of these spheres the control problem reduces to a singular-Riem
problem. The ‘‘relevant locus,’’ which is the union of all the orbits~spheres! passing through state
number 1, has an interesting nontrivial geometric description. It is the only nonorientable sp
bundle overS1 ~see Sec. IV A!.

Optimal solutions. In this case we first consider the problem of minimizing the fluence
fixed transfer timet12t0 ~which is a parametrization-dependent cost!:

E5E
t0

t1
~u1

21u2
2!dt. ~7!

Again let us notice that minimization of the functional:

l 5E
t0

t1Au1
21u2

2dt, ~8!

leads to the same motion in the space state, parametrized in any way. Moreover, minimizi
functionalE is equivalent to minimizing the transfer-time for controls bounded in the follow
way:

u1
21u2

2<1. ~9!

This will be explained in detail in Sec. II C.
For the three-level system~6!, the main known ways to completely populate state 3 from

initial condition in state 1 are the following:

~i! application of two successivep-pulses~without overlap!, giving l 5p in the system~6!;
~ii ! interaction with two completely overlapping control variables:u1(t)5u2(t) ~with two

different pulses assuming that the couplings between 1 and 2 and between 2 and
different!, giving alsol 5p;20

~iii ! adiabatic passage by delayed pulses~of the same shape! such thatu2(t) starts beforeu1(t)
~known as ‘‘counterintuitive’’ pulse sequence!.1 This way of transferring the population i
energetically expensive since it requiresl @p.
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For this three-level system, we show that the costl can be significantly reduced, finding it
minimum value

l 5
)

2
p'0.866p,

corresponding to the singular-Riemannian geodesic. This is also the minimum transfer time
the constraint~9!.

The minimum value for the functionalE is

E5
3

4
p2

1

t12t0

@where (t12t0) is the fixed interaction time#. These results are described by Theorem 4 of Sec
We show that the associated pulse sequence is such thatu1(t) starts beforeu2(t) ~‘‘intuitive’’

sequence! and we construct symmetric smooth pulses of the same shape giving this minimum
compute the geodesic joining the initial state to the final state, and we give some examples
reparametrized optimal controls. The results thus show very natural control strategies that
look like the standard strategy in this type of problem. This study is the content of Sec. IV.

Tracking. In Sec. V we construct for the three-level problem a geometric representatio
adiabatic passage and compare it with the strategies of optimal control. This allows one to
mulate the adiabatic passage as explicitly fixing the trajectory leading from state 1 to state
in controlling the rate of transient population in the intermediate state 2. This procedure imp
on the standard adiabatic passage in that it exactly reaches the target state. This tracking te
is standard in control theory. A solution of this type is generated by a counterintuitive seque
controls, in the adiabatic approximation.1

II. PRELIMINARIES, ELIMINATION OF THE DRIFT, AND CHOICE OF THE COST

A. Preliminaries

We start with a quantum system with finite number of~distinct! levels in interaction with a
time-dependent external field such that the Hamiltonian reads:

H5S E1 V1~ t ! 0 ¯ 0

V1* ~ t ! E2 V2~ t ! � ]

0 V2* ~ t ! � � 0

] � � En21 Vn21~ t !

0 ¯ 0 Vn21* ~ t ! En

D
5D1S 0 V1~ t ! 0 ¯ 0

V1* ~ t ! 0 V2~ t ! � ]

0 V2* ~ t ! � � 0

] � � 0 Vn21~ t !

0 ¯ 0 Vn21* ~ t ! 0

D , ~10!

with Dªdiag(E1, . . . ,En) and the energies of the system states appearing on the diagonal.
dependent elementsV j (.):R→C, j 51, . . . ,n21 are different from zero only between timest0

and t1 . They couple the states by pairs. The termD is calleddrift. Section II B is devoted to the
elimination ofD via a unitary transformation.
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The state-vectorc(t), solution of the time-dependent Schro¨dinger equation~1!, can be ex-
panded in the canonical basis ofCn, formed by elements w15(1,0,. . . ,0), w2

5(0,1,. . . ,0), . . . wn5(0,,0,. . . ,1): c(t)5c1(t)w11c2(t)w21 ¯ 1cn(t)wn , with uc1(t)u2

1uc2(t)u21 ¯ 1ucn(t)u251. Fort,t0 andt.t1 , uci(t)u2 is the probability of measuring energ
Ei . Notice that

d

dt
uci~ t !u250 for t,t0 and t.t1 .

Our problem can be stated in the following way: Assuminguc1(t)u251 for t,t0 , we want to
determine suitable interaction functionsV i(.), i 51, . . . ,n21, such thatucj (t)u251 for time t
.t1 and some chosenj P$2, . . . ,n%, requiring that they minimize the cost~8!.

Remark 4:This problem is a control problem on the real 2n-1 dimensional sphere inR2n ~or
on the complex sphere inCn!. Standard considerations from control theory allow one to concl
on the controllability on the sphere@even with arbitrarily small bounds on the controlsV i(.)#, i.e.,
it is possible to drive the system from any initial condition to any terminal condition on the sp
Also, control problems of this type have finite dimensional Lie-algebra: the reductive Lie alg
su(n)3R. They can be lifted to left-invariant control problems on the compact Lie gr
SU(n)3S1 (S1, the circle!, and the controllability of the lifted control system also holds.

We will also consider the ‘‘real resonant case’’ in which the controlsV i correspond to lasers
that are in resonance:

V i~ t !5ui~ t !eiv i t, v i5Ei 112Ei ,

i 51, . . . ,n21, ui~ .!:R→R. ~11!

Notice that in this case we consider real controls which always leads to lack of controllabi
In the following we treat then52 and n53 cases. Then52 case is treated in the mos

general setting, in the sense that we control both the amplitude and the phase of the laser
We obtain that the optimal strategy is realized with an external pulse in resonance in the ro
wave form. Then53 case is treated directly with pulses in resonance in the rotating w
approximation.

In the n53 case, it is an open question if it is possible to reduce the value of the cos~8!,
when controlling both amplitude and phase of the lasers.

In the following, to compute the orbits of the control systems under consideration, we
make use of the standard Hermann–Nagano theorem. Moreover to compute optimal traje
we will use the well-known Pontryagin Maximum Principle.21 For convenience we recall thes
two theorems in the following. Proofs can be found for instance in Ref. 22.

Theorem „Hermann–Nagano…: Let M be an analytic manifold andF a family of analytic
vector fields on M. Then:

(1) each orbit ofF is an analytic submanifold of M,
(2) if O(x0) is an orbit containing the pointx0 , then the tangent space ofO(x0) at x is given by

Liex(F). In particular the dimension ofLiex(F) is constant asx varies overO(x0).

Theorem „Pontryagin Maximum Principle …: Consider a control system of the forṁ
5 f (x,u) with a cost of the form*0

Tf 0(x,u)dt, where x belongs to a manifold M and
PU,Rm. Assume moreover that M, f , f 0 are smooth. If the couple(u(.),x(.)):@0,T#,R→U
3M is optimal, then there exists a never vanishing field of covectors along x(.), that is an
absolutely continuous function(p(.),p0):tP@0,T#°p(t)PTx(t)* M3R (where p0<0 is a con-
stant) such that:

(i) ẋ(t)5 ]H/]p (x(t),p(t),u(t)),
(ii) ṗ (t)52 ]H/]x (x(t),p(t),u(t)),
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where by definition

H~x,p,u!ª,p, f ~x,u!.1p0f 0~x,u!. ~12!

Moreover:
(iii) H(x(t),p(t),u(t))5HM(x(t),p(t)), for a.e. tP@0,T#,
whereHM(x(t),p(t))ªmaxvPUH(x(t),p(t),v).
The real-valued map onT* M3U, defined in ~12!, is called Hamiltonian. The couple

(u(.),x(.)) satisfying conditions~i!–~iii ! with p050 are calledabnormal extremals.

B. Elimination of the drift term

In both cases~2! and ~6! we show how to eliminate the drift term@i.e., diag(E1,E2) and
diag(E1,E2,E3) respectively# from the Hamiltonian. In case~6! this elimination will be made just
by a unitary change of coordinates that at the same time eliminates the explicit dependence
time. In case~2! it will moreover require a unitary change of controls. This difference is simp
consequence of the fact that in the three-level case we start with ‘‘real controls in reson
while in the two-level case we use general complex controls.

Assume thatc(t) satisfies the Schro¨dinger equation~1!. Let U(t) be a unitary time-dependen
matrix and setc(t)5U(t)c8(t) ~interaction representation!. Thenc8(t) satisfies the Schro¨dinger
equation:

i
dc8~ t !

dt
5H8~ t !c8~ t !,

with the new Hamiltonian:

H85U21HU2 iU 21
dU

dt
. ~13!

Here we consider the Hamiltonian~10!, and we choose

U5diag~e2 iE1t,e2 iE2t,...,e2 iEnt!.

We get:

H85S 0 V1~ t !e2 i (E22E1)t 0 ¯ 0

V1* ~ t !ei (E22E1)t 0 V2~ t !e2 i (E32E2)t
� ]

0 V2* ~ t !ei (E32E2)t
� � 0

] � � 0 Vn21~ t !e2 i (En2En21)t

0 ¯ 0 Vn21* ~ t !ei (En2En21)t 0

D .

~14!

As a consequence, if we writec(t)5c1(t)w11c2(t)w21 ¯ 1cn(t)wn , and c8(t)5c18(t)w1

1c28(t)w21 ¯ 1cn8(t)wn , thenuci(t)u25uci8(t)u
2, i 51,2,. . . ,n, that isH andH8 have the same

population distribution.
For the three-level system~6!, this leads to~dropping the prime!

H5S 0 u1~ t ! 0

u1~ t ! 0 u2~ t !

0 u2~ t ! 0
D . ~15!

For the two-level system~2!, redefining

u~ t !ªe2 i (E22E1)t V~ t !, ~16!
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we get~dropping the prime!

H5S 0 u~ t !

u* ~ t ! 0 D , ~17!

In the following we setu(t)5u1(t)1 iu2(t), whereu1(.) andu2(.) are two real functions.
Remark 5:Notice that the unitary transformations on the states and on the controls pre

the cost and the probabilities. As a consequence they preserve the initial and final con
uc1(t0)u251, ucj (t1)u251.

Remark 6:This reduction procedure can be easily extended to the case where the drift te
~10! is time-dependent:

D5diag~E1~ t !, . . . ,En~ t !!. ~18!

The key point is that the couplings have to be only between successive levels. For the tw
case, this requirement is obviously met. The elimination of the drift~18! in ~10! requires the
matrix

U5diagS expS 2 i E
t0

t

E1(s)dsD ,expS 2 i E
t0

t

E2(s)dsD ,...,expS 2 i E
t0

t

En(s)dsD D .

In this case the new Hamiltonian has the form~14! with i (Ei 112Ei)t replaced byi * t0
t (Ei 11(s)

2Ei(s))ds and the resonance condition~11! becomes

V i~ t !5ui~ t !expS i E
t0

t

(Ei 11(s)2Ei(s))dsD , i 51, . . . ,n21, ui~ .!:R→R.

C. Choice of different costs and relation between them

1. Minimizing length and energy

As we will show, both then52 andn53 problems can be stated as control problems that
linear with respect to the controls~i.e., ‘‘distributional control problems’’!:

ẋ5u1F11u2F2 , ~19!

wherexPS3 for n52 andxPS5 for n53, with F1 andF2 two vector fields on thed-dimensional
sphereSd. It is thus natural to treat this problem as a sub-Riemannian problem~in the three-level
case it is in fact singular-Riemannian problem onS2, see Sec. IV!, to which is associated the
length

l 5E
t0

t1Au1
21u2

2dt. ~20!

This length represents the cost, i.e., the quantity that has to be minimized in our problem. Th
is time-reparametrization invariant. Thus, with such a cost one can always reparametrize th
of the optimal solution in order to obtain controls with slow variation~i.e., with u̇1 andu̇2 small!,
that are closer to realistic pulses in practice.

Standard considerations show that it is equivalent to minimize the fluence for fixed tra
time t12t0 :

E5E
t0

t1
~u1

21u2
2!dt, ~21!
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instead of the lengthl ~20!. Indeed a curve minimizes the costE among all curves joining the
pointsq0 andq1 in time t12t0 if:

~a! it minimizes the lengthl among all curves joiningq0 to q1 , and
~b! it is a curve parametrized by a multiple of the arclength.

Once we have a curve minimizingE, we can then change the parametrization to have der
tives of controls as small as required.

Remark 7:Notice that, if we do not fix the time, the minimum of the costE is zero and it is
not attained.

2. Minimizing the time

Reparametrizing the geodesics of the control system~19!, ~20! by the arclength, i.e., setting

ds5Au1
21u2

2dt,

we get the control problem:

ẋ5u1F11u2F2 , u1
21u2

251, ~22!

and the question is to minimize the transfer time, from the initial to the terminal condition.
Taking into account the homogeneity of the problem~22!, it is clear that it is the same as t

minimize the transfer time for the systemẋ5u1F11u2F2 , with the constraint

u1
21u2

2<1.

It follows that, for the control system~19!, the problem of minimizing the cost~20!, using a
parametrization with arclength@that is using the cost~21!, with t12t0 equal to the total length#, is
equivalent to minimizing the time under the constraint on the controlsu1

21u2
2<1.

Remark 8:Notice that the transformation on the controls necessary to eliminate the drift
not affect the conditionsu1

21u2
2<1, u1

21u2
251.

Remark 9:The problem of minimizing the transfer time for the system~19! under the con-
straint u1

21u2
2<1, makes sense by itself. However, notice that if we drop the conditionu1

21u2
2

<1, then by the Hermann–Nagano theorem, the minimizing time between any two initia
terminal conditions is zero.

In a recent article12 some related questions in the control of spin systems were discussed
problem is, however, distinctly different from the ones considered here. The authors also co
a quantum system with a drift:

ẋ5X0~x!1(
i 51

p

uiXi~x!,

left invariant on some compact groupG. But, in their case, all vector fieldsXi(x) belong tok, a
Lie subalgebra of the Lie algebrag of G. They consider a Cartan decompositiong5k % p, with
the standard Cartan’s commutation relations, and hence, the Lie algebra generated by thXi ’s,
i .1, is not equal tog ~it is only k!. Therefore in their case, to move from a point in a coseK
•x0 to another point in a cosetK•x1 requires the use of the driftX0 and hence requires a bounde
speed.

This implies that, in their case, even for unbounded controls there is a minimum
which is strictly larger than zero~and not attained in general!. As mentioned previously, if we
relax the constraintu1

21u2
2<1, in our case, the minimum time is zero~also not attained in

general!.
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3. Conclusions on the choice of the costs

There are three costs under consideration:

~a! The length~20!. In the two–level case it is the sub-Riemannian length and coincides with
integral of the absolute value of the amplitude. In the three-level case it is a sing
Riemannian length.

~b! The fluence~21!, for fixed transfer timet12t0 .
~c! The time under the constraintu1

21u2
2<1.

Only the first of these costs is parametrization invariant, but all cases~a!, ~b!, ~c! lead to the same
trajectories in the phase space.

III. THE TWO-LEVEL SYSTEM

In this section, we study a two-level quantum system in interaction with a laser for whic
control both the amplitude and the phase. The Hamiltonian becomes after elimination of th

H5S 0 u~ t !

u* ~ t ! 0 D . ~23!

Our aim is to transfer all the population from levelE1 to level E2 minimizing ~here we sett0

50!

E
0

t1
uV~ t !udt5E

0

t1
uu~ t !udt. ~24!

Writing c(t)5c1(t)w11c2(t)w2 , wherew15(1,0), w25(0,1), we start from any point satisfy
ing uc1(0)u251, and our target is defined byuc2(t1)u251.

Remark 10:This new Hamiltonian clearly gives rise to a driftless~or ‘‘distributional’’ ! control
system, while the original Hamiltonian~2! had a drift term. Notice that since we have assum
VPC, this simplification works without any additional hypothesis onV. The fact that the optima
strategy has the laser in resonance@i.e., V(t)5b(t)ei [vt1a] , v5E22E1 , aPR, b(.) real func-
tion# will be obtained as a consequence.

The Schro¨dinger equation corresponding to the Hamiltonian given by formula~23! is equiva-
lent to the system of ordinary differential equations~ODE! for the ci ’s:

H ċ152 iu~ t !c2 ,
ċ252 iu* ~ t !c1 . ~25!

Settingc15x11 ix2 , c25x31 ix4 , u5u11 iu2 , Eq. ~25! becomes

ẋ5u1F11u2F2 ,

where

x5S x1

x2

x3

x4

D , F15S x4

2x3

x2

2x1

D , F25S x3

x4

2x1

2x2

D . ~26!

and the functional~24! to be minimized is now

E
0

t1Au1
21u2

2dt. ~27!
                                                                                                                



ting

y

e

t the

the

it is
s, it

ry
e

desic

2117J. Math. Phys., Vol. 43, No. 5, May 2002 Optimal control in laser-induced population

                    
In these new variables the conditionuc1(t)u21uc2(t)u251 is ( i 51
4 xi

2(t)51, so in factxPS3. The
initial condition is now one point on the circleSin

1
ª$xPS3: x1

21x2
251% and the target is the

circle Sfin
1
ª$xPS3: x3

21x4
251%. These targets are preserved by the transformations elimina

the drift. The problem of minimizing~27! is a classical sub-Riemannian problem onS3, which is
contact, as we shall see immediately.

The Lie algebra of the distribution. Let us compute the Lie algebra of the distribution. B
settingF35@F1 ,F2#, we have

F352S x2

2x1

2x4

x3

D and H @F1 ,F2#5F3 ,
@F2 ,F3#54F1 ,
@F3 ,F1#54F2 ,

so Lie~F!5su~2!;so~3!. ~28!

A. Controllability and minimizers

Let Fª$F1 ,F2%. SinceF is an analytic family of vector fields on an analytic manifold, w
can use the Hermann–Nagano theorem~see Sec. I!. In this case, Liex0

(F) is the vector space
having F1(x), F2(x), andF3(x) as base vectors. The Hermann–Nagano theorem says tha
orbit is an analytic submanifold ofS3 of dimension given by Liex(F), wherex is any point of the
orbit. Let n(x),xPS3 be the rank of the distribution. We have:

n~x!ªrankx~F1 ,F2 ,F3!5rankxS x4 x3 2x2

2x3 x4 22x1

x2 2x1 22x4

2x1 2x2 2x3

D 53.

It follows:
Proposition 1: The control system (26) is completely controllable.
Remark 11:This controllability property, using only the first bracket, is equivalent, in

three-dimensional case, to the fact that the distribution is contact.
Remark 12:The sub-Riemannian problem is not generic at all: first as we shall see,

isoperimetric~it has a symmetry!. Second, even among isoperimetric sub-Riemannian problem
is non generic in the sense that the main basic sub-Riemannian invariant vanishes~see Refs. 19,
23, and 24!.

Remark 13:The control system~26! is invariant under the following transformation:

S x1

x2

x3

x4

D →S cos~a! sin~a! 0 0

2sin~a! cos~a! 0 0

0 0 cos~a! sin~a!

0 0 2sin~a! cos~a!

D S x1

x2

x3

x4

D . ~29!

This means that all the initial conditionsx0PSin are equivalent. Notice that transformation~29! is
generated by the Lie bracket@F1 ,F2#5F3 .

Minimizing geodesics. We will be able to find optimal trajectories joining our bounda
conditions without making any computation. In factF1 andF2 are two orthogonal vectors for th
standard metric ofS3:

F1•F25(
i 51

4

~F1! i~F2! i50.

Hence, the length of an admissible curve is just its standard Riemannian length onS3. Therefore,
if we find an admissible trajectory going from state 1 to state 2, which is a minimizing geo
                                                                                                                



m.

are:

2118 J. Math. Phys., Vol. 43, No. 5, May 2002 Boscain et al.

                    
for the Riemannian metric onS3, then it is also a minimizer for our sub-Riemannian proble
Now, each integral curve of the vector fieldb(cos(a)F11sin(a)F2) (bPR,aP@0,2p#) are such
admissible trajectories. It follows that:

Theorem 1: Every constant control of the form:

Hu15b cos~a!

u25b sin~a!
, bPR, aP@0,2p# ~30!

is optimal and the target is reached at time t15(p/2)(1/b). Moreover if x0PSin is defined by
x15cos(b), x25sin(b), then the equations of the geodesics corresponding to the controls (30)

H x15cos~b!cos~bt!,
x25sin~b!cos~bt!,
x352sin~a2b!sin~bt!,
x452cos~a2b!sin~bt!.

~31!

The second part of Theorem 1 is easily checked.
Now since the functional~27! is invariant under time reparametrizations, one can takeb to be

a function of the time so that every optimal control has the form given by

V~ t !5b~ t !ei [(E22E1)t1a] ,

wherea is an arbitrary constant,b(.):R→R1 is a real function with compact support@0,t1# and
satisfying*0

t1 b(t)5p/2. In Fig. 1 are shown the geodesics issued from the pointx151 in the
spacex250.

B. Another interpretation: The Hopf fibration and the Isoarea problem

The Hopf fibration~see, e.g., Ref. 18!, p:S3→S2 is defined by the following map. LetS3 be
described by the variables (x1 ,x2 ,x3 ,x4), ( xi

251 and S2 by the variables (z1 ,z2 ,z3), (zi
2

51/4. We have:

~z1 ,z2 ,z3!5p~x1 ,x2 ,x3 ,x4!ª~ 1
2 ~x1

21x2
22x3

22x4
2!,x1x32x2x4 ,x2x31x1x4!. ~32!

FIG. 1. The sphereS3 and the geodesics fromx151 in the spacex250.
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The Hopf fibration gives toS3 the structure of a principal bundle with baseS2 and fiberS1

;U(1). The following proposition ~that one easily checks! shows why the Hopf fibration is
connected to our problem:

Proposition 2: Let F3ª@F1 ,F2# [see formula (28)], andp the Hopf fibration defined above
Then F3PKer(dp).

Notice thatF3 is the generator of the symmetry that ‘‘transports’’ alongSin and Sfin ~cf.
Remark 13! that means the following. Ifx0PSin ~respectively,x0PSfin! then the orbitO(x0) of F3

coincides withSin ~respectively,Sfin!. From Proposition 2 it follows thatSin andSfin shrink into
two points throughp. In particular these points are, respectively, the opposite points (z1 ,z2 ,z3)
5(6 1

2,0,0). The situation is illustrated by Fig. 2. Notice that we have a one parameter fam
geodesics connectingSin andSfin , since their images underp are opposite points onS2.

In fact, the sub-Riemannian problem we have, is as follows: The distribution~transversal to
the fibers of the Hopf fibration! defines a connection over this~circle! principal bundle. It is easily
seen that the curvature form of this connection is just the pull back~by the bundle projection! of
the volume form of the Euclidean metric onS2.

As a consequence~see Ref. 19!, our sub-Riemannian problem corresponds to the ‘‘isoa
problem’’ on the Riemannian sphereS2: given two points~antipodal onS2 in our case!, and any
fixed curvex(.) joining these two points, find another curvey(.), joining also the two points, such
that the length ofy(.) is minimal, and the area encircled by the curvesx(.),y(.) has a given value

Corollary: There is no other minimizing curve@than the circle~31!# joining Sin andSfin .
Proof: Assume thatg:@0,t1#→S3 is such a minimizing curve. Then it has lengthp/2, and its

projection onS2 is one of the circles in Fig. 2. Now each of these circles is lifted in a unique w
via the connection, in one of the curves~31!, once the initial point is chosen inSin . Henceg is one
of the circles~31!. j

Our ~very special! solutions exhibited previously are in fact geodesics of the Euclidean m
on S2: they correspond to the choice of geodesics for the curvex(.), and to thezero value of the
area.

IV. THE THREE-LEVEL RESONANT PROBLEM

Statement of the Problem. In this section, we study a three-level quantum system, with o
neighboring levels coupled, controlled by two laser pulses in resonance, i.e., with frequ
v15E22E1 , v25E32E2 ; E1 ,E2 ,E3 being the three energy levels.

FIG. 2. Schematic representation of the Hopf fibrationp:S3→S2. The geodesics given by Theorem 1 are also draw
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The aim is to transfer all the population from the state with energyE1 to the state with energy
E3 minimizing ~again we sett050)

E
0

t1Au1
21u2

2dt. ~33!

Writing c(t)5c1(t)w11c2(t)w21c3(t)w3 , wherew15(1,0,0), w25(0,1,0), w35(0,0,1), we
start from one point satisfyinguc1(0)u251, and our target is defined byuc3(t1)u251.

Remark 14:As in Sec. III, this new Hamiltonian gives rise to a driftless autonomous con
system, while the control system corresponding to the old Hamiltonian~6! was time dependen
and with drift. But in this case~i.e., with real controls!, to obtain this strong simplification it is
essential to use lasers in resonance.

The Control System. The Schro¨dinger equation corresponding to the Hamiltonian given
formula ~15! is equivalent to the system of ODE for theci :

H ċ152 iu1~ t !c2 ,
ċ252 i ~u1~ t !c11u2~ t !c3!,
ċ352 iu2~ t !c2 .

~34!

Settingc15x11 ix2 , c25x42 ix3 , c35x51 ix6 , Eq. ~34! becomes

ẋ5u1F11u2F2

where

x5S x1

x2

x3

x4

x5

x6

D , F15S 2x3

2x4

x1

x2

0
0

D , F25S 0
0
x5

x6

2x3

2x4

D . ~35!

Here, the notations are such that the real parts~respectively, imaginary parts! of c1 ,c2 ,c3 are
x1 ,x4 ,x5 ~respectivelyx2 ,2x3 ,x6!. This convention will be very convenient later on.

In these new variables the conditionuc1(t)u21uc2(t)u21uc3(t)u251 is ( i 51
6 xi

2(t)51, so in
fact xPS5. The initial condition is now one point on the circleSin

1
ª$xPS5:x1

21x2
251% and the

target isSfin
1
ª$xPS5:x5

21x6
251%. With the choice~33! of the functional to be minimized, ou

problem looks like a classical sub-Riemannian problem onS5, but, as we shall see, it is ver
degenerate.

The Lie algebra of the distribution. Let us compute the Lie algebra of the distribution. B
settingF35@F1 ,F2#, we have

F35S x5

x6

0
0

2x1

2x2

D , H @F1 ,F2#5F3 ,
@F2 ,F3#5F1 ,
@F3 ,F1#5F2 ,

so Lie(F)5su(2);so(3).
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A. General properties of the orbit

Let n(x), xPS5 be the rank of the distribution. We have

n~x!ªrankx~F1 ,F2 ,F3!5rankxS 2x3 0 x5

2x4 0 x6

x1 x5 0

x2 x6 0

0 2x3 2x1

0 2x4 2x2

D 5H 2 if xPQ

3 if xPS5\Q,
~36!

whereQ is the subset ofS5 defined by

x3x62x4x550, ~37!

x1x62x2x550, ~38!

x3x22x4x150. ~39!

Notice that ifx1 ,x3 ,x5 are all different from zero, Eqs.~37!, ~38!, and~39! are equivalent to

x2

x1
5

x4

x3
5

x6

x5
. ~40!

Now since every initial condition lies inQ ~i.e., Sin
1 PQ!, from the Hermann–Nagano theorem

follows:
Proposition 3: For eachx0PSin

1 , the orbitO(x0) is an analytic two-dimensional submanifo
of S5.

More precisely definingx0(a) as the initial condition corresponding to

H x1~0!5cos~a!,
x2~0!5sin~a!, ~41!

whereaP@0,2p@ , we get the following:
Theorem 2: The orbit O(x0(a)), aP@0,2p@ is the two-dimensional sphere of equation x8

1
2

1x8
3
21x8

5
251 where

S x18

x28

x38

x48

x58

x68

D 5S cos~a! sin~a! 0 0 0 0

2sin~a! cos~a! 0 0 0 0

0 0 cos~a! sin~a! 0 0

0 0 2sin~a! cos~a! 0 0

0 0 0 0 cos~a! sin~a!

0 0 0 0 2sin~a! cos~a!

D S x1

x2

x3

x4

x5

x6

D . ~42!

Proof: Assume firsta50. This means that the initial condition is defined byx1(0)51 and the
variables with the prime coincide with those without the prime.

In Eq. ~35! the variablesx1 ,x3 ,x5 are decoupled from the other~in fact, we have a produc
system, of two subsystems onR3!. It follows O(x0(a)),$xPS5:x1

21x3
21x5

251%. But all the
points of this sphere belong to the orbit since they can be reached by using a control of the

~u1~ t !,u2~ t !!5 H ~1,0! for tP@0,ta#

~0,1! for tP@ ta ,tb#
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for someta ,tb.0. In fact, in the (x1 ,x3 ,x5) space, each integral curve ofF1 ~respectively,F2! is
a circle that lies in the planex55const~respectively,x15const! and the center of which belong
to thex5 ~respectively,x1! axis, see Fig. 3. At timeta one reaches the point:

H x1~ ta!5cos~ ta!,
x3~ ta!5sin~ ta!,
x5~ ta!50.

.

At time tb one reaches the point:

H x1~ tb!5cos~ ta!,
x3~ tb!5sin~ ta!cos~ tb!,
x5~ tb!52sin~ tb!.

So all the points of the spherex1
21x3

21x5
251 can be reached for suitableta andtb . The Theorem

is proved fora50.
Assume now that we start from the pointx0(a) for an arbitrarya. Making the change of

coordinates given by formula~42!, one is back to the situationa50 for the variables with the
prime. This concludes the proof. j

Notice that, for fixedx0(a), one can reach only two points of the final target. For instanc
a50, i.e.,x1(0)51, we can reachSfin

1 only in the two pointsx5561. The situation is illustrated
by Fig. 4.

More precisely as a consequence of the symmetry given by formula~42! we have the
following:

FIG. 3. The vector fieldsF1 andF2 on the sphere.
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Corollary of Theorem 2: FixaP@0,2p#, let x5(x1 , . . . ,x6)PO(x0(a)), and definea12(x),
a34(x), a56(x) to be the angles (illustrated in Fig. 5) such that

H x15Ax1
21x2

2 cos~a12~x!!,

x25Ax1
21x2

2 sin~a12~x!!,

H x35Ax3
21x4

2 cos~a34~x!!,

x45Ax3
21x4

2 sin~a34~x!!,

H x55Ax5
21x6

2 cos~a56~x!!,

x65Ax5
21x6

2sin~a56~x!!.

Then, for each suchx, there exist n12(x),n34(x),n56(x)P$0,61% such that

a12~x!5a6n12p i f a12 is defined~ i .e., x1 ,x2 not both vanishing!, ~43!

a34~x!5a6n34p i f a34 is defined~ i .e., x3 ,x4 not both vanishing!, ~44!

a56~x!5a6n56p i f a56 is defined~ i .e., x5 ,x6 not both vanishing!. ~45!

Moreover at least one of the three anglesa12,a34,a56 is defined.
The Structure of Q. Let us now study the structure ofQ. From the Hermann–Nagano theore

we have

Q$ ø
x0PSin

1

Ox0

but in fact this equation holds with equality as a consequence of the fact that relations~37!, ~38!,
and~39! definingQ are equivalent to Eqs.~43!, ~44!, ~45!, that hold on the orbit. More precisel
let x̄5( x̄1 , . . . ,x̄6) be a point ofQ and ā the angle betweenx̄1 and x̄2 measured counterclock
wise, if defined. If notā will be the angle between the variablesx̄3 and x̄4 , or between the

FIG. 4. The foliation ofQ.

FIG. 5. The definition of the anglesa12(x), a34(x), a56(x).
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variablesx̄5 and x̄6 ~in the spirit of the Corollary of Theorem 2!. Because of~40!, ā can be
actually defined in this way. One clearly hasx̄PO(x0(ā)). Hence we have proved the following

Proposition 4: We have Q5øx0PS
in
1 Ox0

.

Let s be the antipodal involution ofS13S2, that is,s(a,p)5(a1p,2p). The involutions
has no fixed point, and is orientation reversing. Also, clearly, by Theorem 2, our orbits as
stable. Hence:Q5(S13S2)/; wherex;x8 if s(x)5s(x8). Therefore, it is not hard to see tha

Theorem 3: Q is the (only) nonorientable sphere-bundle over S1.

B. Geodesic equations on the sphere

Due to the invariance under the transformation~42! all the points ofSin can be considered
equivalently. In the following we will study the optimal control problem on the orbitO(x0), where
x0 is defined byx151. ThenO(x0) is the sphere of equationx1

21x3
21x5

251. In what follows, we
will keep the notationF1 andF2 for the restrictions ofF1 andF2 to this sphere.

In order to get labels for coordinates corresponding to quantum states, and in order to hF2

pointing in the positive direction from the pointx351, we definey15x1 , y25x3 , y352x5 . The
control system under consideration is then

S ẏ1

ẏ2

ẏ3

D 5u1F11u2F2 ,

where

F15S 2y2

y1

0
D , F25S 0

2y3

y2

D .

The vector fields are plotted in Fig. 3. The initial condition is the pointy151. The state numbe
1 ~respectively, 2, 3! correspond to the pointsy1561 ~respectively,y2561, y3561!. State 2
can be reached from state 1 using onlyF1 and state 3 can be reached from state 2 using onlyF2

~dotted lines!. However, state 3 cannot be reached from state 1 using a trajectory contained
circle of equation:

y250 ~ i.e., y1
21y3

251!, ~46!

since no piece of this circle is an admissible trajectory. This is due to the fact thatF1 is collinear
to F2 on the circle~46!, and not tangent to this circle.

A new orthogonal frame. Let us describe the orbit in spherical coordinates~see Fig. 6!:

FIG. 6. The anglesu andf.
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H y15cos~u!cos~f!,
y25sin~u!,
y35cos~u!sin~f!.

~47!

We have

S F1

F2
D5RS G1

G2
D ,

where

RªS cos~f! sin~f!

2sin~f! cos~f!
D , HG15]u

G25tan~u!]f .

SinceRPSO(2), thecouple (G1 ,G2) is a new orthonormal frame for the singular-Riemann
length. For this new frame the control system is then

S u̇

ḟ
D 5v1G11v2G2 , ~48!

and the functional to be minimized is*0
t1Av1

21v2
2dt. The relation betweenu1 ,u2 and v1 ,v2 is

obtained fromu1F11u2F2[v1G11v2G2 :

S u1

u2
D5RS v1

v2
D . ~49!

The metric defined by the frame (G1 ,G2) is a singular metric. Indeed whenu50 we haveG2

50, that is exactly on the circle~46!. Notice that the singularity of the metric foru5p/2 is only
due to the choice of the coordinates system.

The Hamiltonian. Let us compute the geodesics using the Maximum Principle. Here
standard reasons, we use as cost the fluence~21!. The final time is fixed by requiring the param
etrization by arclength that isv1

21v2
251 ~this means to normalizeHM51/2, see the Pontryagin

Maximum Principle in Sec. I for the definition ofHM!. Notice that from formula~49! we have

v1
21v2

25u1
21u2

2 .

As explained in Sec. II C 2 this corresponds to minimizing the time under the constraiu1
2

1u2
2<1. Let P5(Pu ,Pf)PTu,f* M . By definition the Hamiltonian is

H~u,f,Pu ,Pf ,v1 ,v2!5^P,v1G11v2G2&1p0~v1
21v2

2!

5v1Pu1v2Pf tan~u!1p0~v1
21v2

2!. ~50!

It is easily checked that, as for the Riemannian case, we can always assumep0Þ0 ~there are
no abnormal extremals! and we can normalizep052 1

2. Extremal controls are computed from th
maximum condition:

]H
]v1

50,
]H
]v2

50, ⇒v15Pu , v25Pf tan~u!. ~51!

Hence, we obtain that the extremals are projections on the~u,f! space of integral curves of th
Hamiltonian vector field corresponding to the following Hamiltonian:

HM5 1
2 ~Pu

21~ tan~u!Pf!2!. ~52!

The Hamiltonian equations are
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u̇5
]HM

]Pu
5Pu ,

ḟ5
]HM

]Pf
5Pf tan2~u!,

Ṗu52
]HM

]u
52Pf

2 tan~u!~11tan2~u!!,

Ṗf52
]HM

]f
50.

SettingaªPf finally we have

u̇5Pu , ḟ5a tan2~u!, Ṗu52a2 tan~u!~11tan2~u!!. ~53!

This Hamiltonian system is Liouville integrable since we have two independent and comm
constants of the motionHM andPf5a.

1. Minimizing the length
Let us find the geodesic without the parametrization, i.e., a relation betweenu andf. We have

df

du
5

ḟ

u̇
5

ḟ

Pu

56
a tan2~u!

A12a2 tan2~u!
, ~54!

where we have expressedPu using relation~52! and normalizedHM51/2. So we have the two
families of solutions parametrized by the value ofa:

fa
6~u!56E

0

u a tan2~s!

A12a2 tan2~s!
ds

56FarctanS a

J~u,a!
sin~u! D2

a

A11a2
arctanS A11a2

J~u,a!
sin~u! D G , ~55!

whereJ(u,a)ªA 1
2(12a21(11a2)cos(2u)).

To fix the ideas, let us consider only the familyfa
1 with a.0 and supposeu>0, the other

cases being symmetric. Let us call this familyfa(u). Expression~55! definesfa(u) in the
interval @0,ūa@ whereūa is the value ofu at which the denominator of formula~54! vanishes:

ūaªarctanS 1

aD . ~56!

Notice that limu→ ūa
J@u,a#50 so

lim
u→ ūa

fa~u!5
p

2 S 12
a

A11a2D . ~57!

In the following we considerfa(u) defined in@0,ūa# where by definitionfa( ūa) is the value
given by formula~57!. Indeed, from the symmetries of the system, we have to consider
branches~illustred in Fig. 7! to describe the whole relation betweenu andf:

fa
1~u!5fa~u!,
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fa
2~u!52fa~ ūa!2fa~u!.

The geodesic reaching the target is the one satisfyingfa( ūa)5p/4. From Eq. ~57! we get
aª1/).

Remark 15:By considering both signs in formula~55! ~or equivalentlya positive and nega-
tive! anduP@2p,p# one gets four equivalent optimal trajectories reaching the state 3~see Fig. 8!.
Moreover the set of geodesics parametrized bya allows one to easily compute an optimal sy
thesis for the problem.

A smooth parametrization of the geodesic. To get an explicit expression of the controls~as
function of the time! reaching the final pointu50, f5p/2, one should first fix a parametrizatio
u(t) in such a way that:

~1! u(0)5u(t1)50,
~2! for some t̄ P]0,t1@ it holds:

H u~ t̄ !5 ū1/)5p/3,

u~ t ! is increasing fortP@0,t̄ #,

u~ t ! is decreasing fortP@ t̄ ,t1#.

FIG. 7. The geodesic curve as a relation betweenu andf.

FIG. 8. The four geodesics reaching the state 3. Two are on the other side and reach the pointy3521.
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The best choice is of course a sufficiently regular symmetric function. In this case we ht̄
5t1/2 and

f~ t !5 Hf1/)~u~ t !! if tP@0,t1/2@ ,
2f1/)~u~ t1/2!!2f1/)~u~ t12t !! if tP@ t1/2,t1#. ~58!

The controlsv1(t) and v2(t) can be obtained from the relationu̇(t)]u1ḟ(t)]f5v1(t)]u

1v2(t)tan(u(t))]f from which we have

v1~ t !5 u̇~ t !, v2~ t !5
ḟ~ t !

tan~u~ t !!
. ~59!

Remark 16:Notice that relations~59! coincide with relations~51! only in the case in which
the curve (u(t),f(t)) is parametrized with constant velocity.

Finally the amplitudes of the lasers are obtained with formula~49!.
Example 1:Consider theC ` function:

u~ t !5H 0 if t,0 or t.t1

p

3
e1/(t12t)(2t) otherwise.

~60!

The corresponding laser amplitudesu1(t) andu2(t) ~for t154! are shown in Fig. 9.
Example 2:Consider the function:

u~ t !5H 0 if t,0 or t.t1

~211e236t(t2t1)/t1
2
!p

3~211e9!
otherwise.

~61!

The corresponding laser amplitudesu1(t) andu2(t) ~for t154! are shown in Fig. 10.

2. Minimizing either the fluence or the time for constrained controls

To minimize the fluence, one should also get the parametrization from the Hamiltonian
tions. From the equation~after fixing a51/)):

u̇5Pu5A12a2 tan2~u!,

we have

FIG. 9. Example 1:C` optimal controls.
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t~u!5

arctanS 2 sin~u!

A112 cos~2 u!
DA112 cos~2 u!sec~u!

2 A12tan~u!2/3
.

Using the inverse function theorem, this formula permits one to describeu(t) in the interval@0,t̄ #
where

t̄ª lim
u→ ūa

t~u!5
)

4
p.

By symmetry this is exactly half of the final time. Finallyḟ(t) can be obtained integrating th
equationḟ(t)5a tan2(u(t)). Controlsu1(t) andu2(t) can be obtained with formulas~59! and~49!
and they are shown in Fig. 11.

Remark 17:Notice that these controls are not smooth att50 and at the final time 2t̄
5 ()/2) p.
From this analysis we get the values of the costs for the optimal trajectory:

Theorem 4: For the three costs described in Sec. II C, the following relations hold.
(a) Length:

MinS E
0

t1Au1
21u2

2 dt D 5
)

2
p.

FIG. 10. Example 2: a possible choice of optimal controls.

FIG. 11. Optimal controls minimizing fluence or time.
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(b) Fluence, with fixed transfer time T:

MinS E
0

T

~u1
21u2

2! dt D 5
3

4
p2

1

T
. ~62!

(c) Time under the constraint u1
21u2

2<1,

Tmin5
)

2
p. ~63!

V. THE TRACKING COUNTERINTUITIVE SOLUTIONS

For practical applications, trajectories joining state 1 to state 3, that take as small as pos
the population of state 2@i.e., with u(t) closed to zero#, are also interesting. We recall that the
nonadmissible trajectory is contained in the circle~46!. In this section we study a trajectory in
which f(t) is monotonously increasing between 0 andp/2, and

u~ t !<«, for every tP@0,t1#, ~64!

for some small«.0 fixed. This means that the population in state 2@0,t1# is always small, less or
equal than sin2(«)5«21O(«4) @see formula~47!#.

It is well known1,25 that the nonadmissible trajectory can be approximated using contro
u1(t) andu2(t) in the so-called ‘‘counterintuitive’’ sequence:~see Fig. 12 for such a sequence!. In
the following we show how to build a trajectory satisfying condition~64! and connecting exactly
the pointsP1 defined by~f,u!5~0,0! andP2 defined by~f,u!5~p/2,0!.

The idea is to track a trajectory connecting these two points taking care of the constraints
we have on the derivatives atP1 andP2 . More precisely we should find a functionu~f! such that
the following holds. Letf1(u) ~respectively,f2(u)) be the inverse function ofu(f) in a neigh-
borhood ofP1 ~respectively,P2!. SinceF1 andF2 vanish, respectively, at pointsP1 andP2 , we
must have

df1

du U
u50

50, ~65!

FIG. 12. Usual-adiabatic and tracking solutions.
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df2

du U
u50

50. ~66!

A possible choice is the symmetric function is

u~f!5«
4

p
AfS p

2
2f D , ~67!

which reaches the value« only at the pointf5 p/4, as shown in Fig. 12.
Now we have to choose a parametrization (u(t),f(t)). To have continuous controls satisfyin

u1(0)50, u2(0)50, u1(t1)50, u2(t1)50 we must have

u̇1~ t !u050,

u̇2~ t !u t1
50.

From Eqs.~65!, ~66! we get

f̈1~ t !u050,

f̈2~ t !u t1
50.

To get controls having zero derivative at the initial and final points, we can use the follo
function:

f~ t !5
6006p

t1
13 S t13

13
2

t12t1

2
1

15t11t1
2

11
22 t10t1

31
5t9t1

4

3
2

3t8t1
5

4
1

t7t1
6

7 D . ~68!

Notice that this function satisfiesf1( t̄ )5f2( t̄ )5f3( t̄ )5f4( t̄ )5f5( t̄ )5f6( t̄ )50 for t̄
50,t1 . The corresponding controls are computed with relations~59! and ~49!.

Remark 18:Let us use a parametrizationf(t) with f ( i )(t)u t5050, f ( i )(t)u t5t1
50), i

51, . . . ,n, n>2, then the following holds:
~1! if n52 thenu1(0)5u2(0)50, limt→t1

u̇1(t)52`, limt→0 u̇2(t)5`,
~2! if n53 thenu1(0)5u2(0)50, 0.u̇1(t1).2`, 0,u̇2(0),`,
~3! if n>4 thenu1(0)5u2(0)50,
u1

( i )(0)5u2
( i )50 for i 51, . . . ,n23. So if f is C n, in ]2d,t11d@ (d.0, f(t)50 in

] 2d,0]ø@ t1 ,t11d@) thenu1 andu2 areC n23 in ] 2d,t11d@ .

Notice that for very small values of« one gets very big values of the controls. We would like
stress the fact that the trajectory obtained with this tracking reaches exactly the final target f
fixed value of«. While in the ‘‘counterintuitive’’ strategies used in literature, if«c is the maximum
value reached byu, then the final target is reached with an error smaller than«c but different from
zero.

In the last picture the tracking solution corresponding to the expression of~68!, for «
52/19, andt154 and a typical strategy used in literature:

5 u1~ t !5
25

e16 1
13

e(2411.5 t)2 ,

u2~ t !5
25

e9 1
13

e(22.711.5 t)2

~69!
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are compared. Notice that the pulses have similar area. Moreover, notice that the trajecto
responding to the controls~69! ~obtained integrating numerically the Schro¨dinger equation!
reaches negative values ofu.

VI. CONCLUSION

In summary, we have shown how optimal controls for two- and three-level models ca
constructed on the basis of geometric arguments. For the two-level modes we recover th
known ‘‘p-pulse’’ strategy, and obtain the corresponding generalization for the resonant
level model. The optimal trajectories appear as geodesics~Riemannian or singular-Riemannian! on
two-dimensional spheres. Furthermore, besides the optimal control strategies, the standar
ing technique from geometric control theory allows us to analyze a method of adiabatic c
used in recent experiments. It leads to an improvement that allows one to reach the targ
precisely. The extension of these results to the treatment of more generalN-level systems will be
presented in forthcoming work.
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Two families of superintegrable and isospectral potentials
in two dimensions
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As an extension of the intertwining operator idea, an algebraic method which
provides a link between supersymmetric quantum mechanics and quantum
~super!integrability is introduced. By realization of the method in two dimensions,
two infinite families of superintegrable and isospectral stationary potentials are
generated. The method makes it possible to perform Darboux transformations in
such a way that, in addition to the isospectral property, they acquire the superinte-
grability preserving property. Symmetry generators are second and fourth order in
derivatives and all potentials are isospectral with one of the Smorodinsky–
Winternitz potentials. Explicit expressions of the potentials, their dynamical sym-
metry generators, and the algebra they obey as well as their degenerate spectra and
corresponding normalizable states are presented. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1463217#

I. INTRODUCTION

A Hamiltonian system ofN degrees of freedom is said to be completely integrable, in
Liouville–Arnold sense, if it possesses functionally independent globally defined and s
valuedN integrals of motion in involution.1,2 It is called superintegrable if it admits more thanN
integrals of motion. Not all the integrals of the superintegrable system can be in involution
they must be functionally independent otherwise the extra invariants are trivial. In analogy
classical mechanics, a quantum mechanical system described inN-dimensional (ND) Euclidean
space by a stationary Hamiltonian operatorH is called completely integrable if there exists a s
of N21 ~together withH,N! algebraically independent linear operatorsXi ,i 51,2,. . . ,N21
commuting with H and among each other.3–11 If there exist k additional operatorsYj , j
51,2,. . . ,k where 0,k<N21, commuting withH it is said to be superintegrable. The super
tegrability is said to be minimal ifk51 and maximal ifk5N21.

Classical and quantum mechanical examples of the maximally superintegrable syste
any finite N are the Kepler-Coulomb problem, the harmonic oscillator with rational freque
ratio, the Calogero–Moser system in a harmonic well, and the Winternitz~or, Smorodinsky–
Winternitz! system. The first two are known, forN53, since the time of Laplace and the supe
integrability of the last two systems were established for the first time, respectively
Wojciechowski5 and by Evans.6 The first systematic search for other possible superintegr

a!Electronic mail: demircio@science.ankara.edu.tr
b!Electronic mail: kuru@science.ankara.edu.tr
c!Electronic mail: onder@hacettepe.edu.tr
d!Electronic mail: vercin@science.ankara.edu.tr
21330022-2488/2002/43(5)/2133/18/$19.00 © 2002 American Institute of Physics
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systems was begun by Winternitz and co-workers. They first found four independent
dimensional~2D! potentials that are separable in more than one coordinate system,3 and then they
extended this toN53.4 This approach is based on two assumptions;~1! Hamiltonians are of
potential form;~2! integrals of motion are at most quadratic in momenta~or, in derivatives!. The
Winternitz program has been completed in Ref. 7 where a complete list consisting of, up
equivalence of linear transformations, thirteen different three-dimensional potentials with fo
five independent integrals of motion is given. Winternitz potentials have also been conside
different formulations such as path integral formulation,8 Lagrangian formalism,9 and evolutionary
vector fields formalism.10

In this paper we report an infinite family of 2D potentials which are not only superintegr
but at the same time isospectral. We shall give explicit expressions of the potentials, their dy
cal symmetry generators and the algebra they obey, as well as their degenerate spectr
corresponding normalizable states. We achieve this goal by following an algebraic method
is based on and, in fact, is an extension of intertwining operator idea. This is closely conn
with the supersymmetric~SUSY! methods such as the Darboux transformation, and Schro¨dinger
factorization which deal with pairs of Hamiltonians having the same energy spectra but dif
eigenstates.12–15 It turns out that each member of this infinite family is a triplet of potentials o
of which is the same for entire family and the other two change from member to member. H
we have, in fact, two different infinite families of superintegrable and isospectral potentials
fixed potential turns out to be one of 2D Winternitz potentials and determines the spectra o
families and the other two are intertwined to it by Darboux-type transformations. The gene
of these transformations depend on eigenfunctions of two associated solvable one-dime
problems that result from the separation of the Winternitz potential in different coordinates
should emphasize that our approach makes it possible to apply Darboux transformations s
neously to potential and to its symmetry generators in such a way that superintegrability pr
is preserved.

Formal aspects of our method together with a brief review of the main points of the i
twining operator idea will be given in Sec. II. Sections III–V are devoted to explicit realizatio
our method. In Sec. IV we present the most general form of 2D integrable and isospectral
tials in the plane polar coordinates. Two subfamilies of superintegrable and isospectral pot
and then their general forms are presented in Secs. VI and VII. Section VIII contains a revi
bound states of the associated one-dimensional~1D! problems and the above-mentioned Winte
nitz potential. After investigating the symmetry generators and their algebra in Sec. IX, the
malizable states of the generated superintegrable and isospectral potentials are given in S

II. MULTIPLE INTERTWINING METHOD

The object of the intertwining method is to construct a linear differential operatorL which
intertwines two Hamiltonian operatorsH0 andH1 such thatLH05H1L. Two important facts that
immediately follow from this relation are as follows.~i! If c0 is an eigenfunction ofH0 with
eigenvalue ofE0 thenc15Lc0 is an ~unnormalized! eigenfunction ofH1 with the same eigen-
valueE0. ~ii ! WhenH0 andH1 are self-adjoint~on some common function space! L † intertwines
in the other directionH0L †5L †H1 and this in turn implies that@H0 ,L †L#505@LL †,H1#,
where the dagger~†! and@, # stand for Hermitian conjugation and commutator. The first prope
shows thatL transforms one solvable problem into another, and the second one means th
hidden dynamical symmetries ofH0 andH1 are immediately constructed in terms ofL. These are
dimension and form independent general properties of this method.16,17 In the context of 1D
systems whereL is taken to be the first-order differential operator and Hamiltonians are of
potential forms two additional properties arise:~i! every eigenfunction ofH0 ~without regard to
boundary conditions or normalizability! can be used to generate a transformation to a new solv
problem;~ii ! a direct connection to a SUSY algebra can be established.18 The first property is a
manifestation of the celebrated Darboux transformation and its generalization~Crum transforma-
tion!. The second property enables us to express in a compact algebraic form of the s
equivalence of the intertwined systems.
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Now suppose that there are three self-adjoint Hamiltonian operatorsH0 ,H1 ,H2 which are
intertwined as

L10H05H1L10, L21H15H2L21. ~1!

The subscripts of the intertwining operators are used to distinguish them and to denote the
twined Hamiltonians. Equation~1! immediately implies thatL20[L21L10 will intertwine H0 and
H2 as follows:

L20H05H2L20. ~2!

Equations~1! and ~2! can be unified into the following diagram:

H0→H1

↘ ↓
H2

, ~3!

which must be understood in the sense described by~1! and ~2!.
Adjoints of ~1! and ~2! yield

L 21
† H25H1L 21

† , L 10
† H15H0L 10

† , L 20
† H25H0L 20

† . ~4!

That is, the adjoints of the intertwining operators will intertwine in the reverse directions and
can be represented by a diagram the same as~3! with reversed directions of arrows. Making us
of ~1!–~4! it is easy to show that each ofH0 ,H1 ,H2 has two dynamical symmetry generato
respectively given by

X05L 10
† L10, Y05L 20

† L20,

X15L10L 10
† , Y15L 21

† L21, ~5!

X25L21L 21
† , Y25L20L 20

† .

The subscripts ofXj ,Yj indicate the Hamiltonians they belong to. Throughout this paper
assume that the domains of definition of Hamiltonians and intertwining operators are some
subspaces of a common Hilbert spaceH5L2(V) with the standard sesquilinear inner produ
L2(V) is the space of all square-integrable functions~and distributions! defined on a subspaceV
of ND Euclidean spaceRN.19–21

For all N>2, diagram~3! implies a triplet of isospectral Hamiltonians such that each has
dynamical symmetries. By construction, all the symmetry operators obtained in this manne
be factorized, and have even orders depending on the order of intertwining operators. They
of the same order only forH1 . According to the von Neumann theorem~see Ref. 19, p. 141 and
Ref. 20, p. 275! Li j L i j

† ~andL i j
† Li j ! are self-adjoint and non-negative ifLi j are closed with dense

domains of definition. Otherwise there may exist states in which they have negative expe
values~see Sec. X!. If L10 andL21 are taken to be algebraically independent, the independenc
Xi ,Yi pairs will be guaranteed from the outset. Extensions of these ideas to higher dimensio
be, generically, called multiple intertwining method. A simple observation that this work initi
from is that, in the particular case ofN52, diagram~3! guarantees the superintegrability of th
three Hamiltonians. In the case ofN53 such a diagram will imply, provided that symmet
generators are commutative, the integrability of the potentials.

The rest of the paper is devoted to explicit realization of these formal observations fo
systems. First we will determine the most general form of the potentials and the first-
intertwining operator for two Hamiltonians. We then construct the intertwiningsH0→H1 and
H1→H2 by special forms of the intertwining operator. We end this section by explaining ou
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of the adjective ‘‘isospectral.’’ Two Hamiltonians are said to be isospectral if they have the
eigenvalue spectrum.18,22,23 In this sense two linearly intertwined Hamiltonians are always f
mally isospectral except for the eigenvalues corresponding to the kernel of the intertwinin
erator. Even for these exceptional cases one can construct eigenfunctions corresponding
eigenvalues at least for 1D and 2D systems by appealing to the Liouville formula and it
version.14 However, due to physical requirements, in the case of the bound states mainly d
normalizability conditions, some eigenvalues of one of the partner potentials are to be disc
For higher dimensional systems also the degree of degeneracy of a common eigenvalue
different ~see Sec. X!. These will just mean that a finite number of eigenvalues are to be d
garded for they are not physically admissible.

III. INTERTWINING IN TWO DIMENSIONS

We start by considering a pair of 2D one-particle systems characterized by the Hamilt
operators of potential form

Hi52¹21Vi , H f52¹21Vf , ~6!

where the potentialsVi ,Vf ~and eigenvalues ofHi ,H f! are expressed in terms of 2m/\2 and

¹25] r
21

1

r
] r1

1

r 2 ]u
2

is the Laplace operator in the plane polar coordinates (r ,u). m is the mass of the particle and\
denotes the Planck constant. Here and in the following we use the notation]x for partial derivative
]/]x and the subindexes ‘‘i , ’’ ‘‘ f ’’ as the shorthands for the ‘‘initial’’ and ‘‘final.’’ We suppose tha
the Hamiltonians are intertwined by

Lf iHi5H fLf i ~7!

and propose the ansatz thatLf i is the most general first-order linear operator

Lf i5L01Ld5L01L1] r1L2]u , ~8!

where Ld5L1] r1L2]u will be referred to as the differential part ofLf i . The potentials and
L0 ,L1 ,L2 are some real functions of (r ,u) which are to be determined from consistency equati
of the intertwining relation~7!.

In view of ~6! and ~8! the relation~7! explicitly reads as

@¹2,Ld#52@¹2,L0#1@Vi ,Ld#1PLf i , ~9!

whereP5Vf2Vi . The second-order derivatives come, together with some first-order deriva
only from

@¹2,Ld#5S ¹2L11
1

r 2 L1D ] r1~¹2L2!]u

12S 1

r 2 ]uL11] rL2D ]u] r12~] rL1!] r
21

2

r 3 ~L11r ]uL2!]u
2 , ~10!

and by setting their coefficients to zero we obtain

]uL11r 2] rL250, ] rL150, L11r ]uL250.

It is straightforward to show that the general solutions of these equations are
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L15A sin~u1f!, L25B1
A

r
cos~u1f!, ~11!

whereA,B, andf are integration constants. Since¹2L152L1 /r 2, and¹2L250, we have from
~10! @¹2,Ld#50. As a result of this the relation~9! simplifies to

@¹2,L0#52L1] rVi2L2]uVi1P~L01Ld!. ~12!

By substituting

@¹2,L0#5¹2L012~] rL0!] r1
2

r 2 ~]uL0!]u ,

into ~12!, and then by equating the coefficients of the first and zeroth powers of derivative
obtain

2] rL05PL1 , ~13!

2]uL05r 2PL2 , ~14!

~2¹21P!L05L1] rVi1L2]uVi . ~15!

These three partial differential equations, the first two of which are linear and the third is no
ear, constitute a reduced form of the consistency conditions for three unknown functionsL0 ,Vi ,
andVf .

IV. GENERAL FORM OF 2D INTEGRABLE ISOSPECTRAL POTENTIALS IN POLAR
COORDINATES

Equations~11!, ~13!, and~14! and the compatibility condition] r]uL05]u] rL0 imply that

2¹2L05LdP, ZL050, ZP52BrP,

whereZ5L1]u2r 2L2] r . From the second and third of these equations@or, from ~13! and ~14!#
we haveL05 f (w), andP522A2f 8(w)/r 2L1

2, where f is an arbitrary function of

w5B cot~u1f!1
A

r sin~u1f!
.

Prime stands for derivative with respect to the argument and when there is no risk of confus
argument will be suppressed. By combining 2¹2L05LdP with ~15! and using the foundL0 andP
we obtain an inhomogeneous equation from the general solution of which the general fo
potentials are found to be

Vi5h~k!1
V2~w!

k2 , Vf5h~k!1
V1~w!

k2 . ~16!

Hereh is an arbitrary function ofk5@A21B2r 212ABr cos (u1f)#1/2 such thatLdh50 and

V6~w!5 f 2~w!7~w21B2! f 8~w!. ~17!

Equation~16! represents the most general form of the 2D integrable and isospectral potent
polar coordinates.

Let us define the operators
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T15cosu] r2
1

r
sinu]u , T25sinu] r1

1

r
cosu]u , J5]u , ~18!

which close in the defining relations of the Euclidean Lie algebrae(2) in two dimensions

@J,T1#52T2 , @J,T2#5T1 , @T1 ,T2#50. ~19!

Now Ld can be rewritten as

Ld5A sinfT11A cosfT21BJ, ~20!

which shows that the differential part ofLf i is an element ofe(2). In terms of the Cartesian
coordinatesx5r cosu,y5r sinu we haveT15]x ,T25]y ,J5x]y2y]x , andTi

†52Ti ,J†52J.
These relations can also be verified from~18! by noting that (] r)

†52(r 211] r),(]u)†52]u .
Now from ~5! and ~17! the symmetry generators ofHi andH f are

Lf i
† L f i5V22Ld

2 , L f iLf i
† 5V12Ld

2 ,

whereLd
2 is at most quadratic operator in generators ofe(2).

V. CONSTRUCTION OF THE INTERTWINING OPERATORS

We shall construct the legs of the diagram~3! by adopting particular forms of~20! as the
differential parts ofL10 andL21. In doing that we shall make use of the orbit structure ofe(2)
under the adjoint action of the Euclidean groupE(2) in two dimensions.24

Under a unitary similarity transformation, generated by

U5ea0Jea1T11a2T2, U†5U215e2(a1T11a2T2)e2a0J, ~21!

whereai ’s are real parameters andU21 stands for the inverse ofUPE(2), relation~7! transforms
into L̄f i H̄ i5H̄ fL̄f i , whereX̄5UXU†. Since¹25T1

21T2
2 is the Casimir invariant ofe(2), only

Vi ,Vf , andLf i will change under thisE(2) action. Now suppose thatLd is of the form ~20!.
Making use of the well-known operator identity

ebKMe2bK5M1b@K,M #1
b2

2!
@K,@K,M ##1¯ ,

whereb is a constant andK,M are two arbitrary operators, one can easily show that

L̄d5BJ1ea0J@T1~A sinf2a2B!1T2~A cosf1a1B!#e2a0J.

Hence, if BÞ0 we can takeL̄d5BJ by choosinga152A cosf/B,a25Asinf/B. On the other
hand, if B50,AÞ0 we getL̄d5AT1 ~or, L̄d5AT2! for the choicea05f ~or, a052f!. There-
fore, under the adjoint action ofE(2), e(2) has two orbits represented byJ andT2 . SinceLd and
cLd belong to the same orbit forcÞ0, we can chooseLd5J for L10 andLd5T2 for L21. In such
a case the potentials andL0 will be specified up to the adjoint action ofE(2).

For the first legH0→H1 of ~3! we takeA50,B51 in Eq.~11! and redefine the Hamiltonian
asHi5H0 andH f5H1 . HenceL150,L251 and Eqs.~13! and ~14! imply that L05 f (u) and

L105 f ~u!1]u , P5V12V05
2

r 2 f 8~u!, ~22!

where f is an arbitrary differentiable function ofu. Noting that¹2L05 f 9(u)/r 2 we obtain from
~15! and ~22!
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V05h~r !1
V2~u!

r 2 , V15h~r !1
V1~u!

r 2 , ~23!

whereh is an arbitrary differentiable function ofr and

V6~u!5 f 2~u!6 f 8~u!. ~24!

As a result the firstH0→H1 leg of the diagram~3! has been constructed.
For the second leg we takeB50,A51, fix the form ofH1 and denote it asHi5H1 . We then

look for H f5H2 such thatL21H15H2L21 andL215L01sinfT11cosfT2. In that case from Eqs
~13! to ~14! we getL05g(u) and

L215g~u!1sin~u1f!] r1
1

r
cos~u1f!]u , ~25!

P5V22V152g8~u!, ~26!

where g is an arbitrary differentiable function ofu5r sin(u1f). It only remains to solve the
nonlinear equation~15! which now takes the form

]u@g2~u!2g8~u!#5sin~u1f!h8~r !1
1

r 3 @cos~u1f!V18 ~u!22 sin~u1f!V1~u!#, ~27!

where we have made use of¹2L05g9(u) and of the second equation of~23!. Note that we could
have chosenf50, but since it costs almost nothing we keepf in our formulas in order to see tha
action ofE(2).

Since it further restricts the three arbitrary functions specifying the potentials, Eq.~27! is the
main equation which determines the final form of the potentials. As a consistency conditio
right-hand side of Eq.~27! must be only a function ofu. Nevertheless this requirement provid
us with many possibilities forf , g, andh, which are investigated in Secs. VI and VII. Note th
for any solutions of Eq.~27! the potentials will be connected to each other as follows:

V05V12
2

r 2 f 8~u!, V25V112g8~u!, V05V222Fg8~u!1
f 8~u!

r 2 G . ~28!

VI. TWO SUBFAMILIES OF POTENTIALS

We construct the simplest family of potentials by taking, in~24! and ~27!, h5(l1 /r 2)
1a,V152l1 . These lead us to

f 21 f 852l1 , g22g852l2 , ~29!

wherea,l1 ,l2 are some arbitrary constants. Then, by Eqs.~23! and ~24! and ~26!, we obtain

V05
2

r 2 ~ f 21l1!1a, V15a, V252~g21l2!1a. ~30!

The general solution ofg22g852l2 is

g55
l2

1/2 tan~l2
1/2u1a1! for l2.0,

2
1

u1a1
for l250,

~2l2!1/2tanh@~2l2!1/2u1a1# for l2,0,
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wherea1 is a constant. The solution off 21 f 852l1 can be directly read from the above-give
relation after the replacement (g,u,l2)→( f ,2u,l1).

An important point is that, by the usual linearization of the Riccati equation, if we subst

f ~u!5
c8~u!

c~u!
, g~u!52

C8~u!

C~u!
, ~31!

into ~29! we arrive at two 1D Schro¨dinger equations,

2c9~u!5l1c~u!, 2C9~u!5l2C~u!. ~32!

While the second one can be considered as a free motion, this is not the case for the firs
0<u,2p. An appealing case is to consider one or both of them as infinite square-well pro
Normalized eigenfunctions subjected to boundary conditions, say,c(0)505c(2p) and corre-
sponding eigenvalues are

ck~u!5p21/2sinS 1

2
ku D , l1,k5

k2

4
, k51,2, . . . . ~33!

Hencef k5(k/2)cot(ku/2) and by virtue of Eqs.~22! and ~24! we have

V0
(k)5

k2

2r 2 sin2 1
2 ku

1a, L 10
(k)5

k

2
cotS 1

2
ku D1]u . ~34!

To distinguish the resulting potentials, corresponding intertwining operators and the paramel1

we have labeled them by the quantum numberk. Theu-problem can be treated in a similar wa
In any case, the potentials and transformations among them are generated by solutions o
two auxiliary 1D problems. The existence ofV15a explicitly shows that the member potentia
are isospectral to a 2D free motion. As a result we have found a five-parameter (a,a1 ,l1 ,l2 ,f)
family of 2D potentials that are generated, in a nontrivial way, by two 1D problems.

We specify a second subfamily of potentials by taking, in~23!–~24! and ~27!,

h5
l1

r 2 1
1

2
ar 21a, ~35!

andV152l1 . These lead us to the same equation as in~29! for f and to the Riccati’s equation

g22g82 1
2 au21l250 ~36!

for g. By Eqs.~23!–~24! and ~26! the member potentials are found to be

V05
1

2
ar 21

2~ f 21l1!

r 2 1a,

V15 1
2 ar 21a, ~37!

V25 1
2 ar 2 cos 2~u1f!12g2~u!1~a12l2!,

whereg is any solution of~36! and f is any solution off 21 f 852l1 .
Now the ansatz~31! for g transforms~36! into

2C9~u!1 1
2 au2C~u!5l2C~u!, ~38!
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which is the well-known Schro¨dinger equation for the 1D harmonic oscillator. In that case
entire family will have 2D isotropic harmonic oscillator spectrum given by the eigenvalues

El
(1)5\v~ l 11!, l 50,1,2,. . . , ~39!

which arel 11 times degenerate for a givenl . For concrete examples we recall the normaliz
eigenfunctions and corresponding eigenvalues of the 1D harmonic oscillator:

Cn~u!5Nne2b2u2/2Hn~bu!, En5
\2

2m
l2,n5\vS n1

1

2D , n50,1,2,. . . , ~40!

whereNn is the normalization constant,Hn denote the Hermite polynomials, and

b5S mv

\ D 1/2

5S a

2 D 1/4

, Nn5S b

p1/22nn! D
1/2

. ~41!

In writing Eqs.~39!–~41! we have restored 2m/\2 in our notation in which the dimension ofb is
(length)21. Like l2 , alsoV2 ,L21 and the functiong must be labeled by the quantum numbern:

gn~u!52
Cn8~u!

Cn~u!
5b2u2]u ln@Hn~bu!#,

V2
(n)5b4r 2 cos 2~u1f!12gn

2~u!1a14b2~n1 1
2!, ~42!

L 21
(n)5gn~u!1sin~u1f!] r1

1

r
cos~u1f!]u .

For the first three Hermite polynomialsH0(x)51,H1(x)52x,H2(x)54x222, we have

g05b2u, g15b2u2
1

u
, g25b2

2b2u225

2b2u221
u.

Considering thef -problem as noted previously,L 10
(k) is given by~34! andV0 is

V0
(k)5

1

2
ar 21

k2

2r 2 sin2~ 1
2 ku!

1a. ~43!

VII. GENERAL FORM OF THE POTENTIALS

Returning the general discussion of Sec. V, the most general potentials are obtained by
ing, in Eq. ~27!, h as in ~35! and by postulating the equation

cos~u1f!V18 ~u!22 sin~u1f!V1~u!52l1 sin~u1f!2
2c

sin3~u1f!
~44!

for V1 . It is not hard to check that~35! and ~44! are the most general relations which make t
right-hand side of Eq.~27! only a function of theu variable. The general solution of Eq.~44! is

V15 f 2~u!1 f 8~u!5
b

cos2~u1f!
1

c

sin2~u1f!
2l1 , ~45!

wherel1 , b, andc are some constants. When~35! and~44! are inserted into~27! we obtain a new
Riccati’s equation forg(u),
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g22g85
1

2
au21

c

u2 2l2 . ~46!

By virtue of ~23!, ~28!, ~35!, ~45!, and~46! the corresponding potentials can be written as

V05
1

2
ar 22

1

r 2 F b

cos2~u1f!
1

c

sin2~u1f!G1
2~ f 21l1!

r 2 1a,

V15
1

2
ar 21

1

r 2 F b

cos2~u1f!
1

c

sin2~u1f!G1a, ~47!

V25
1

2
ar 2 cos2~u1f!1

1

r 2 F b

cos2~u1f!
2

c

sin2~u1f!G12S g21l21
a

2D .

V1 is immediately recognized as one of 2D Smorodinsky–Winternitz potentials which ac
separation of variables in the Cartesian, polar, and elliptic coordinates. Being fixed in the
family it determines the structure of spectrum of all potentials. WhileV0 is separable in the plan
polar coordinatesV2 is separable only in the Cartesian coordinates.V0 and V2 represent two
families of the superintegrable and isospectral potentials generated by the functionsf andg which
are subjected to Eqs.~45! and ~46!. The normalized eigenfunctions, corresponding eigenval
and the symmetry generators will be the subject of Secs. VII, IX, and X.

Having specified the most general forms of the potentials we now show how to deve
hierarchy of the potentials.

On substituting~31! into ~45! and ~46! we arrive at the following two 1D problems:

HPTck~u!5l1,kck~u!, HSOCn~u!5l2,nCn~u!, ~48!

wherek andn are possible quantum numbers and

HPT52
d2

du2 1VPT, VPT5
b

cos2~u1f!
1

c

sin2~u1f!
, ~49!

HSO52
d2

du2 1VSO, VSO5
1

2
au21

c

u2 . ~50!

These are the well-known generalized Po¨schl–Teller~PT! and singular oscillator~hence the sub-
script SO!, or the radial oscillator potentials. By virtue of~28! and ~31! the potentials can be
rewritten as

V0
(k)5V12

2

r 2 ]u
2 ln ck~u!, V2

(n)5V122]u
2 ln Cn~u!. ~51!

Here and in the following we label the potentials by the quantum numbers of the associat
problems that generate them. Equation~51! explicitly shows thatV0

(k) andV2
(n) are generated from

V1 by the Darboux-type transformations. The functions that generate these transformations
eigenfunctions of the associated 1D problems. This constitutes an extension of Darboux tr
mations for 2D problems. Another point worth emphasizing is that any solution of thes
problems can be used in generating the potentials. But, as easily accessible results fr
literature, only normalizable solutions of these problems will be presented in the following.
now on we takef50 and in Secs. VIII and X we include 2m/\2 into our notation.
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VIII. BOUND STATES OF THE ASSOCIATED PROBLEMS AND V1

Provided thatc>21/4, the bound states ofHSO belonging to the Hilbert spaceL2(0,̀ ) are
given as follows:3,25–27

Cn
«~u!5Nn

SOu1/21«ne2b2u2/2Ln
«n~b2u2!,

En
«5

\2

2m
l2,n

« 5\v~2n1«n11!, n50,1,2,. . . , ~52!

Nn
SO5F n!2b2(11«n)

G~n1«n11!G
1/2

, n5
1

2
~114c!1/2,

whereNn
SO is the normalization constant,Ln

«n(z) are the generalized Laguerre polynomials,b is
defined by Eq.~41!, G stands for the gamma function, and«56. Cn

«(u)’s satisfy the orthogo-
nality relation28

E
0

`

Cn
«~u!Cn8

«
~u!du5dnn8 , ~53!

which is valid for «n.21. This implies that forcPI 5@21/4,3/4) ~that is for 21/4<c,3/4!
both values of«56, and forc>3/4 only «51 can be used for eachn. Although the generated
potentials do not depend on the normalization constants of the associated 1D problems w
them for completeness.

From the most general point of view and in accordance with the fact thatHSO is parity
invariant, defined parity states ofHSO belonging to the Hilbert spaceL2(2`,`) can be given as
follows:26

Cn
«~u!5

1

21/2Nn
SOH uuu1/21«ne2b2u2/2Ln

«n~b2u2! for u>0,

2«uuu1/21«ne2b2u2/2Ln
«n~b2u2! for u,0.

~54!

These obey the following orthogonality relation:

E
2`

`

Cn
«~u!Cn8

«̄
~u!du5dnn8d««̄ , ~55!

where«,«̄ may equal6. For «5 «̄ ~55! follows from the orthogonality of the generalized La
guerre polynomials28 and for«Þ«̄ from the parity reasons as can be verified directly from~54!.
The corresponding energy eigenvalues are given by~52!. For c,21/4 the energy spectrum is no
bounded from below which implies ‘‘falling of the particle to the center’’ and physical interp
tation is lost.26,27As c→0, n→1/2, andCn

«(u)’s go over, for«51 to odd parity and for«52 to
even parity harmonic oscillator wave functions. This follows from the relations between
Hermite and Laguerre polynomials.26,28 The corresponding limits of the energy eigenvalues
obvious from~52!.

The normalized eigenfunctions and corresponding eigenvalues ofV1 can now be written as

C l
(1)«̄«~x,y!5Cn1

«̄ ~x!Cn2

« ~y!,

El
«̄«5En1

«̄ 1En2

« 5\v~2l 1 «̄ n̄1«n11!, ~56!

l 5n11n2 , l ,n1 ,n250,1,2,. . . ,
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wheren̄5(114b)1/2/2. Cn1

«̄ (x), Cn2

« (y), andEn1

«̄ , En2

« are given by~52! @or ~54!# with suitable

replacements of the parameters and variables. It follows that bound states ofV1 exist for b,c
>21/4. For b,cPI there are four different states for each value ofl . In the case ofbPI ,c
>3/4, orcPI ,b>3/4 there are two different states for each value ofl , and one state in the cas
of b,c>3/4. In each case, for a given value ofl the state with energyEl

«̄« is (l 11)-fold
degenerate. We should also note that if we require the wave functions to be separately
uous at the origin the intervalI 5@21/4,3/4) and the conditionsb,c>3/4 must be replaced a
I 5@21/4,0# and asb,c>0.

The singular oscillator problem has the spectrum generating algebrasu(1,1)
5$J0 ,J6 :@J0 ,J6#56J6 ,@J1 ,J2#522J0% realized as25,29

J05
HSO

4b2 , J652
1

4 Fb2~u7b22]u!22
c

b2u2G , ~57!

with the Casimir invariantC252J1J21J0
22J05(4c23)/16. Therefore, as will be shown i

Sec IX, the symmetry algebra of theH1-problem is closely connected with this kind two com
muting copies ofsu(1,1) algebra.

For later use it will be convenient to consider theHPT-problem in relation with the solution o
the H1-problem in the polar coordinates. In this case the eigenvalue equation ofH1 separates, by
takingC (1)(r ,u)5Rk1

(r )ck(u), into the Po¨schl–Teller problem given by~48! and into the radial
equation

F2S d2

dr2 1
1

r

d

dr D1r21
l1,k

r2 GRk1
~r!5lRk1

~r!, ~58!

where r5br and l5E/b2. In terms of v5sin2 u, and ck(u)5v (1/2)(1/21«n)(1
2v)(1/2)(1/21 «̄ n̄)F(v), the eigenvalue equation ofHPT leads us to the hypergeometric equation
F(v):

v~12v !
d2F

dv2 1@z2v~g1h11!#
dF

dv
2ghF50.

The general solution of this equation is

F~v !5A2F1~g,h;z;v !1Bv12z
2F1~g2z11,h2z11;22z;v !,

whereA andB are arbitrary constants,2F1 denotes the hypergeometric function and

g5 1
2 ~11«n1 «̄ n̄1Al1,k!, h5 1

2 ~11«n1 «̄ n̄2Al1,k!, z511«n.

For normalizable solutionsB must be zero andg ~or h! must be a negative integer, say,2k. In
that case the hypergeometric function goes over to Jacobi polynomialsPk

(«n,«̄ n̄)(122v) and the
resulting eigenfunctions and eigenvalues can be written as follows:7,30

ck~u!5Nk
PTsin1/21«n ucos1/21 «̄ n̄ uPk

(«n,«̄ n̄)~cos 2u!,

Ek5
\2

2m
l1,k5

\2

2m
~2k1«n1 «̄ n̄11!2, k50,1,2,. . . , ~59!

Nk
PT5F2~2k1«n1 «̄ n̄11!G~k11!G~k1«n1 «̄ n̄11!

G~k1«n11!G~k1 «̄ n̄11! G1/2

.
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Substituting l1,k5(2k1«n1 «̄ n̄11)2 into Eq. ~58! and trying the solutionRk1
(r)

5rme2r2/2Gk1
(r) we end up, form5Al1,k5(2k1«n1 «̄ n̄11), with

z
d2Gk1

dz2 1~m112z!
dGk1

dz
2

1

4
@2~m11!2l#Gk1

50, ~60!

wherez5r2. Provided that2@2(m11)2l#/4 is an integer, sayk150,1,2,. . . , thesolutions of
~60! are the generalized Laguerre polynomials. Hence, the radial solutions are

Rk1
~r!5Nk1

rme2r2/2Lk1

m ~r2!, Nk1
5F 2G~k111!

G~k11m11!G
1/2

. ~61!

One can easily verify thatck(u)’s andRk1
(r)’s obey the following orthogonality relations:

E
0

`

Rk1
~r!Rk

18
~r!r dr 5dk1k

18
, E

0

p/2

ck~u!ck8~u!du5dkk8 . ~62!

As a result the eigenfunctions ofH1 can be written in polar coordinates as follows:

C l
(1)«̄«~r ,u!5Nk1

Nk2

PT~br !me2b2r 2/2 sin1/21«n u cos1/21 «̄ n̄ uLk1

m ~b2r 2!Pk2

(«n,«̄ n̄)~cos 2u!, ~63!

with l 5k11k2 ;l ,k1 ,k250,1,2,. . . , andm5(2k21«n1 «̄ n̄11). Sinceck(u) given by ~59!
will be used in generatingV0

(k) potentials, in writing~63! we have changed the quantum numbek
ask2 . Observe that a similar change (n→n2) has been made in writing~56!. Note also that the
condition 2@2(m11)2l#/45k1 gives the eigenvalue~56! for the V1-problem, with l 5k1

1k2 . We should also note that, as has been done in Eq.~54!, the solutions~63! may be extended
to all xy plane such that they have definite parity under 2D parity transformation: (r ,u)→(r ,u
1p).

Insertingck andCn into ~51! explicit expressions of the potentials labeled by the quan
numbersk andn become available. Besides that presented in Sec. VI several more specia
families can be identified. In doing that one should take care of the range of the parameters
domain of definition for potentials. The bound states ofV0

(k) andV2
(n) will be taken up in Sec. X

after considering the symmetry generators in Sec. IX.

IX. SYMMETRY GENERATORS AND THEIR ALGEBRAS

As is apparent from Secs. VII and VIII, the intertwining operators, symmetry generators
the HamiltoniansH0 , H2 must be labeled by the quantum numbers (k,n) of the associated
potentials. In terms ofe(2) generators the labeled intertwining operators are

L 10
(k)5 f k~u!1J, L 10

(k)†5 f k~u!2J,
~64!

L 21
(n)5gn~u!1T2 , L 21

(n)†5gn~u!2T2 .

It is easy to verify that they obey the following commutators:

@L 10
(k) ,L 10

(k)†#52 f k8~u!, @L 21
(n) ,L 21

(n)†#52gn8~u!,

@L 10
(k) ,L 21

(n)#5K2
(k,n)1T1 , @L 10

(k)† ,L 21
(n)†#52K2

(k,n)1T1 , ~65!

@L 10
(k) ,L 21

(n)†#5K1
(k,n)2T1 , @L 10

(k)† ,L 21
(n)#52K1

(k,n)2T1 ,

where
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K6
(k,n)5r cosuFgn8~u!6

1

r 2 f k8~u!G .
By virtue of ~28! we have

K1
(k,n)5 1

2 r cosu@H2
(k)2H0

(n)#, K2
(k,n)5 1

2 r cosu@H0
(k)1H2

(n)22H1#. ~66!

It will be convenient to start with the symmetry generators ofH1 ,

X1
(k)5L 10

(k)L 10
(k)†5HPT2l1,k , ~67!

Y1
(n)5L 21

(n)†L 21
(n)5HSO2l2,n , ~68!

where we have made use ofT2gn(u)5gn8(u). HPT andHSO are defined by~49! and~50!. Second-
order symmetry generators ofH0

(k) andH2
(n) can also be written as follows:

X0
(k)5L 10

(k)†L 10
(k)5V2

(k)2J25H̄PT
(k)2l1,k , ~69!

X2
(n)5L 21

(n)L 21
(n)†5gn

21gn82T2
25H̄SO

(n)2l2,n , ~70!

where

H̄PT
(k)52

d2

du2 1VPT22]u
2 ln ck~u!, ~71!

H̄SO
(n)52

d2

du2 1VSO22]u
2 ln Cn~u!. ~72!

These are the so-called super partners ofHPT and HSO. As a result, the Hamiltonians of 1D
auxiliary problems are, up to some constants, the second-order symmetry generators ofH1 and
their super partners are the second-order symmetry generators ofH0

(k) andH2
(n) .

The simplest forms of remaining fourth-order generators seem to be their factorized
given by~5!. Making use of~65! and~67!–~70! these can be expressed in a variety of ways, so
of which are as follows:

Y0
(k,n)5L 10

(k)†Y1
(n)L 10

(k)5L 10
(k)†HSOL 10

(k)2l2,nX0
(k)

5Y1
(n)X0

(k)2@~K2
(k,n)2T1!L 21

(n)1L 21
(n)†~K1

(k,n)1T1!#L 10
(k)

5X0
(k)Y1

(n)2L 10
(k)†@~K1

(k,n)2T1!L 21
(n)1L 21

(n)†~K2
(k,n)1T1!#, ~73!

Y2
(k,n)5L 21

(n)X1
(k)L 21

(n)†5L 21
(n)HPTL 21

(n)†2l1,kX2
(n)

5X1
(k)X2

(n)2@~K2
(k,n)1T1!L 10

(k)†2L 10
(k)~K1

(k,n)1T1!#L 21
(n)†

5X2
(n)X1

(k)2L 21
(n)@L 10

(k)~K2
(k,n)2T1!2~K1

(k,n)2T1!L 10
(k)†#. ~74!

At this point we have to emphasize the following. The existence ofl1,k and l2,n as additive
constants inX1

(k) , Y1
(n) andX0

(k) , X2
(n) seems to be redundant in regard of superintegrability ofH1 .

In particular, our labeling of the fourth-order generators with two indices may seem as if we
more symmetries than is needed for superintegrability. But an inspection of the first lines o
~73! and~74! immediately shows that, for a given, say,k and alln the set$Y0

(k,n) ,X0
(k)% spans only

a 2D vector space. As fourth-order symmetries labeled with one index one may take

Ȳ0
(k)[Y0

(k,n)1l2,nX0
(k)5L 10

(k)†HSOL 10
(k) ,
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Ȳ2
(n)[Y2

(k,n)1l1,kX2
(n)5L 21

(n)HPTL 21
(n)†2l1,kX2

(n) .

However, for overall consistency of the hierarchy such as intertwining ofH1 with H0
(k) , H2

(n) and,
as we will show in Sec. V, in determining the spectra ofH0

(k) andH2
(n) these seemingly redundan

constants and labels play an essential role.
One of the virtues of our approach is that the commutativity of the symmetry generators

the corresponding Hamiltonian is guaranteed by construction from the outset. For justificati
first note that the relations

@H1 ,X1
(k)#505@H1 ,Y1

(k)#, k50,1,. . . , ~75!

immediately follow from the fact thatX1
(k) andY1

(k) emerge from the separation ofH1 in different
coordinate systems. Second at a glimpse of Eqs.~67!–~72! we observe that

X0
(k)5X1

(k)22]u
2 ln ck~u!, X2

(n)5Y1
(n)22]u

2 ln Cn~u!.

That is, the second-order symmetry generators ofH0
(k) andH2

(n) are Darboux transforms of sym
metry generators ofH1 as are, apart from the factorr 22, H0

(k) andH2
(n) Darboux transforms ofH1

along different legs of diagram~3!. In view of this fact the relations

@H0
(k) ,X0

(k)#505@H2
(n) ,X2

(n)#, n,k50,1,. . . , ~76!

follow from, or, in a sense, are Darboux transforms of~75!. Only the explicit check of

@H0
(k) ,Y0

(k,n)#505@H2
(n) ,Y2

(k,n)#, n,k50,1,. . . , ~77!

tediously takes a lot of time. This shows an advantage of our method compared with the co
tional approach in which much effort is devoted to verify the commutativity for specified form
generators. There it is known that for symmetries higher than second order, equations re
from commutativity are almost intractable.

It is not so hard to check that@Xj
( ) ,Yj

( )#Þ0, j 50,1,2, since the highest order derivatives w
constant coefficients will appear on the right-hand side. For example,

@X0
(k) ,Y0

(k,n)#hot5@J2,JT2
2J#54T1T2J312~2T1

222T2
21T1T2!J228T1T2J,

@X2
(n) ,Y2

(k,n)#hot5@T2
2 ,T2J2T2#52T2

426T1
2T2

224T1T2
3J,

where @X0
(k,n) ,Y0

(k,n)#hot represents only the highest order terms resulting from@X0
(k) ,Y0

(k,n)#.
Therefore, the symmetry generators of each potential do not close in a finite dimension
algebra structure. Note that by the Jacobi identityZj5@Xj ,Yj #, j 50,1,2, is also a symmetry
generator, but it is algebraically dependent toXj andYj .

There is an elegant way of expressing the symmetry algebra ofH1 . For this purpose we
introduce the generators

X65
1

4b2 S 2]x
26

1

2
ax21

b

x2D , D15
1

4
~112x]x!, ~78!

Y65
1

4b2 S 2]y
26

1

2
ay21

c

y2D , D25
1

4
~112y]y!, ~79!

which obey the Lie algebras

@X6 ,D1#5X7 , @X1 ,X2#5D1 , ~80!

@Y6 ,D2#5Y7 , @Y1 ,Y2#5D2 , ~81!
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with the Casimir invariants

X1
2 2X2

2 1D1
25

4b23

16
, Y1

2 2Y2
2 1D2

25
4c23

16
. ~82!

It is straightforward to show that in terms of~78! and ~79! we have

H154b2~X11Y1!,

X1
(k)58~X1Y12X2Y21D1D2!1K, ~83!

Y1
(n)54b2Y12l2,n ,

whereK5b1c2l1,k2(1/2). Equations~80!–~82! are defining relations of two commuting cop
ies of asu(1,1) algebra which can be written as a direct sumsu(1,1)% su(1,1). The basis given
by ~78! and ~79! is connected with that mentioned in Sec. VIII by linear transformations,
instance, by comparing~57! and~79! we haveY15J0 , Y26D25J6 . Equation~83! shows that
the symmetries ofH1 are quadratic in the generators of centrally extended~because of the constan
K! su(1,1)% su(1,1) algebra.

By defining

W(k,n)[ 1
8 @X1

(k) ,Y1
(n)#54b2~X2D22Y2D1!, ~84!

one can easily show that

@X1
(k) ,W(k,n)#5$X1

(k) ,Y1
(n)%1X1

(k)~2l2,n2H1!1~2Y1
(n)

12l2,n2H1!~l1,k21!1H1~b2c!, ~85!

@Y1
(n) ,W(k,n)#5~Y1

(n)1l2,n!~H12Y1
(n)2l2,n!22b4~X1

(k)2K !, ~86!

where$,% represents the anticommutator. These explicitly show that the extended symmetry
bra of H1 spanned by$H1 ,X1

(k) ,Y1
(n) ,W(k,n)%, with the inclusion ofW(k,n), closes in a quadratic

associative algebra for all values ofk,n. We also observe that this algebra is a cubic associa
algebra in the enveloping algebra of the centrally extendedsu(1,1)% su(1,1). Recently such
finitely generated associative algebras have attracted a great deal of interest. The structure
obtained coincides, up to some additive constants, with that presented in Ref. 31 for the Win
potential V1 . In Ref. 29 this structure is constructed as a cubic associative algebra in w
counterparts ofX1 , Y1 are taken to be purely quadratic in the generators ofsu(1,1)% su(1,1). We
end this section by emphasizing that exploring similar algebraic structures forH0

(k) andH2
(n) and

connection between them seems to be an important problem which deserves to be take
another study.

X. BOUND STATES OF H0
„k … , H2

„n … AND THEIR DEGENERACIES

RepresentingCn1

«̄ , Cn2

« , andC l
(1)«̄« given by ~52! and ~56!, in the Dirac notation, respec

tively, by the ketsun1«̄&, un2«&, andu1;l «̄«&, we write ~56! as follows:

u1;l «̄«&5un1«̄&un2«&, l 5n11n2 . ~87!

In this notation, the corresponding isospectral states ofH2
(n) are

u2n;l «̄«&5L 21
(n)u1;l «̄«&. ~88!

From ~53! @or, ~55!#, ~56!, ~68!, and~87! one can easily show that
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^2n;l «̄«u2n;l «̄«&5^1;l «̄«uY1
(n)u1;l «̄«&5^n2«uHSOun2«&2l2,n 52\v~n22n!, ~89!

where ^•u•& represents the usual inner product ofH5L2(R2) and in the third line we have
included 2m/\2 into the notation. Sincel 5n11n2 , this implies that as physically acceptab
states only those withl .n will survive in the spectrum ofH2

(n) . Moreover, the degeneracies o
the survived states will be shifted tol 2n since the states corresponding ton2<n cannot be
normalized. As a result, the normalized states ofH2

(n) are as follows:

u2n;l «̄«&5@2\v~n22n!#21/2L 21
(n)u1;l «̄«&, ~90!

provided thatl 5n11n2 andn2.n.
In a similar way, if we representck2

andRk1
’s given by~59! and~61!, respectively, by the kets

uk2«̄«& and uk1«̄«&, the states given by~63! can be expressed as

u1;l «̄«&5uk1«̄«&uk2«̄«&, l 5k11k2 . ~91!

In that case the corresponding isospectral states ofH0
(k) are u0k;l «̄«&5L 10

(k)†u1;l «̄«& and by
virtue of ~62!, ~67!, and~91! we have

^0k;l «̄«u0k;l «̄«&5^1;l «̄«uX1
(k)u1;l «̄«&5^k2«̄«uHPTuk2«̄«&2l1,k

5
2\2

m
~k22k!~k1k21 «̄ n̄1«n11!. ~92!

Hence, the normalized states ofH0
(k) are

u0k;l «̄«&5F2\2

m
~k22k!~k1k21 «̄ n̄1«n11!G21/2

L 10
(k)†u1;l «̄«&, ~93!

provided thatl 5k11k2 andk2.k. In this case the degeneracy of the stateu0k;l «̄«& is l 2k.
Explicit functional realizations of the states~91! and~93! can easily be obtained by applyingL 21

(n) ,
L 10

(k)† to the wave functions given by~56! and ~63!.

XI. CONCLUDING REMARKS

The method of intertwining is a unified approach widely used in various fields of physics
mathematics such as in investigating particle propagation on a curved space,16,24,32in constructing
matrix-Hamiltonian to realize higher dimensional superalgebras,17,33 in solving both ordinary and
partial differential equations,16 in generating exact solutions of nonstationary Schro¨dinger
equation,17,34 and in constructing isospectral potentials in an arbitrary space dimension.35 The
method we have introduced increases the power and enlarges the range of applicability
intertwining operator idea. It allows us to perform Darboux transformations in higher dimen
in such a manner that, in addition to their isospectral deformation property, they acquire in
bility and superintegrability preserving property. In particular, as we have shown the realizat
this method for 2D systems generates two infinite families of isospectral and superinte
quantum systems intertwined to a 2D Winternitz system. Work on 3D realization of the meth
in progress.

The space of purely second-order operators quadratic in the generators ofe(2) has, under the
adjoint action ofE(2), only four orbits whose representatives can be taken to be;T1

2 , J2, J2

1a0T1
2 andT1J1JT1 , wherea0 is a constant. Existence of only four types Winternitz potenti

is closely connected with this orbit structure since each corresponds to a different 2D ortho
coordinate system.3,24 T1

2 , J2 constitute the differential parts of the symmetry generators ofV1 and
account for its separation in the Cartesian and polar~hence in elliptic! coordinates. Therefore, th
appearance of the Winternitz potentialV1 as the common member of two families is of n
surprise; it is a direct result of our orbit prescription in constructing the intertwinings in Sec. V
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also observe that since onlyT1
2 and J2 can be factorized asLL † ~or, asL †L) the other three

Winternitz potentials cannot be utilized asV1 in the context of this paper. In this regard,
combination of our method and the conventional approach may be used for similar pur
Finally we point out that what made it possible to implement Darboux transformations in
approach is that when the eigenvalue equation ofV1 is separated in the Cartesian and po
coordinates, at least one of the separated equation is of the Schro¨dinger type.
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The most general admissible boundary conditions are derived for an idealized
Aharonov–Bohm flux intersecting the plane at the origin on the background
of a homogeneous magnetic field. A standard technique based on self-adjoint
extensions yields a four-parameter family of boundary conditions; the other
two parameters of the model are the Aharonov–Bohm flux and the homo-
geneous magnetic field. The generalized boundary conditions may be regarded
as a combination of the Aharonov–Bohm effect with a point inter-
action. Spectral properties of the derived Hamtonians are studied in detail.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1463712#

I. INTRODUCTION

The purpose of this paper is to determine the most general admissible boundary conditio
the Aharonov–Bohm~AB! effect in the plane on the background of a homogeneous mag
field, and also to investigate the basic properties of Hamiltonians obtained this way. The hist
the effect goes four decades back and starts from the observation of Aharonov and Bohm1 that the
behavior of a charged quantum particle is influenced by a magnetic flux even if the field is z
the region where the particle is localized. A particularly elegant treatment is possible in case
idealized setup in which the AB flux is concentrated along a line perpendicularly intersectin
plane, conventionally at the origin.2

The boundary conditions of the previously mentioned paper are not the most general on
full family of such conditions giving the AB effect in the plane was derived in Ref. 3,
simultaneously also in Ref. 4. These generalized boundary conditions may be interprete
combination of the AB effect with a point interaction supported, too, at the origin, although th
just one possible point of view. In any case they can be described and investigated by th
nique of self-adjoint extensions, which is in principle the same one as that used in Ref. 5 in
two-dimensional point interactions were introduced.

A natural question is what happens if such a system is placed into a background homog
magnetic field. This problem attracted some attention recently, even with a controversy: Ref
consider the ‘‘pure’’AB effect in this setting for the Pauli operator, i.e., a spin 1/2 particle. The
named property leads to specific behavior related to the Aharonov–Casher effect, which w
not discuss here.

Our aim here is different: we are going to consider a spinless particle with a point flux a
homogeneous background, and ask about the most general class of boundary conditions an
to those of Refs. 3 and 4. The basic difference between the situations without and with a
geneous magnetic field is that in the former case the spectrum is absolutely continuous an

a!Electronic mail: stovicek@kmlinux.fjfi.cvut.cz
21510022-2488/2002/43(5)/2151/18/$19.00 © 2002 American Institute of Physics
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to the positive half-line possibly augmented with at most two negative eigenvalues~depending on
the choice of boundary conditions!, while in the latter case the spectrum is pure point and the p
flux and interaction gives rise to eigenvalues in each gap between neighboring Landau leve
goal is to discuss these spectral properties in detail.

II. FORMULATION OF THE PROBLEM: PRELIMINARIES

We consider the symmetric operator

L52~¹2A~¹!!2, Dom~L !5C0
`~R2\$0%!,

where the vector potentialA is a sum of two parts,A5Ahmf1AAB , with the partAhmf correspond-
ing to the homogeneous magnetic field in the circular gauge,

Ahmf52
iB

2
~2x2 dx11x1 dx2!,

and with the partAAB corresponding to the idealized AB effect,

AAB5
iF

2pr 2 ~2x2 dx11x1 dx2!, r 25x1
21x2

2 .

Without loss of generality we may assume thatB.0. Further, we rescale the Aharonov–Boh
flux,

a52
F

2p
,

to have a variable which expresses the number of flux quanta and, as usual, we make us
gauge symmetry allowing us to assume thataP]0,1@ . Hence the caseFP2pZ is excluded since
it is gauge equivalent to the vanishing AB flux. Our goal is to describe all the self-ad
extensions ofL as well as to investigate their basic properties.

It is straightforward to determine the adjoint operatorL* ,

cPDom~L* !⇔cPL2~R2,d2x!ùH loc
2,2~R2\$0%! and ~¹2A~¹!!2cPL2~R2,d2x!.

Next we can employ the rotational symmetry when using the polar coordinates (r ,u) and decom-
posing the Hilbert space into the orthogonal sum of the eigenspaces of the angular mome

L2~R2,d2x!5 (
mPZ

%

L2~R1 ,r dr ! ^ C eimu. ~1!

In the polar coordinates the operatorL ~and correspondinglyL* ! takes the form

L52
1

r
] r r ] r1

1

r 2 S 2i]u1a1
Br2

2 D 2

.

The operatorL* commutes on Dom(L* ) with the projectorsPm onto the eigenspaces of th
angular momentum,

Pmc~r ,u!5
1

2p E
0

2p

c~r ,u8!eim(u2u8) du8,

and thereforeL* decomposes in correspondence with the orthogonal sum~1!,
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L* 5 (
mPZ

%

~L* !m . ~2!

Thus we can reduce the problem and work in the sectors RanPm , mPZ. For a given spectra
parameterlPC we choose two independent solutions~except of particular values ofl! of the
differential equation

S 2
1

r
] r r ] r1

1

r 2 S m1a1
Br2

2 D 2Dg~r !5l g~r !, ~3!

namely

gm
1 ~l;r !5r um1au FS b~m,l!,g~m!,

Br2

2 DexpS 2
Br2

4 D ,

~4!

gm
2 ~l;r !5r um1au GS b~m,l!,g~m!,

Br2

2 DexpS 2
Br2

4 D ,

where

b~m,l!5
1

2 S 11m1a1um1au2
l

BD ,

~5!
g~m!511um1au.

HereF andG are confluent hypergeometric functions~Ref. 9, Chap. 13!,

F~b,g,z!5 (
n50

`
~b!n zn

~g!n n!
,

and

G~b,g,z!5
G~12g!

G~b2g11!
F~b,g,z!1

G~g21!

G~b!
z12gF~b2g11,22g,z!. ~6!

Notice thatF(b,g,z) andG(b,g,z) are linearly dependent if and only ifbP2Z1 . More-
over,F(b,g,z) is an entire function, particularly, it is regular at the origin whileG(b,g,z) has a
singularity there providedg.1 andb¹2Z1 , and in that case it holds true that

lim
z→01

zg21G~b,g,z!5
G~g21!

G~b!
.

Thus in the case when 1,g,2 we have the asymptotic behavior, asz→01 ,

G~b,g,z!5
G~g21!

G~b!
z12g1

G~12g!

G~b2g11!
1O~z22g!. ~7!

We shall also need some information about the asymptotic behavior at infinity. IfbP2Z1

then F(b,g,z) is a polynomial with the leading term (G(g)/G(g2b)) (2z)2b, and if b¹
2Z1 then it holds true that

F~b,g,z!5
G~g!

G~b!
ezzb2g~11O~z21!! for z→1`. ~8!
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Further,

G~b,g,z!5z2b~11O~z21!! for z→1`.

III. THE STANDARD AHARONOV–BOHM HAMILTONIAN

With the above-mentioned preliminaries it is straightforward to solve the spectral proble
the standard AB Hamiltonian as we mentioned in Sec. I. This means to solve the eigen
problem

L* c5lc

with the boundary condition

lim
r→01

c~r ,u!50. ~9!

By virtue of the decomposition~2! the problem is reduced to the countable set of equations

~L* !mf 5l f , mPZ,

and hence to the differential equations~3!.
The solutiongm

2 (l;r ) of ~3! is ruled out because it contradicts the condition~9! and the
solution gm

1 (l;r ) belongs toL2(R1 ,r dr ) if and only if b(m,l)52n, with nPZ1 . Since it
holds

F~2n,11s,z!5
n! G~s11!

G~n1s11!
Ln

s~z!, nPZ1 ,

we get a countable set of eigenvalues,

lm,n5B ~m1a1um1au12n11!, mPZ,nPZ1 ,

with the corresponding eigenfunctions

f m,n~r ,u!5Cm,n r um1au Ln
um1auS Br2

2 D expS 2
Br2

4 Deimu,

whereLn
s(z) is a Laguerre polynomial and

Cm,n5S B

2 D ~1/2!(um1au11)S n!

p G~n1um1au11! D
1/2

are the normalization constants.
As it is well known if we fix mPZ then the functions$ f m,n(r ,u)%n50

` form an orthonormal
basis inL2(R1 ,r dr ) ^ C eimu and so the complete set of eigenfunctions$ f m,n(r ,u)%mPZ ,nPZ1

is
an orthonormal basis inL2(R1 ,r dr ) ^ L2(@0,2p#,du). Since all the eigenvalueslm,n are real we
get in this way a well-defined self-adjoint operator which is an extension ofL. We conventionally
call it the standard AB Hamiltonian and denote it byHAB. Thus the spectrum ofHAB is pure point
and can be written as a union of two parts,

s~HAB!5spp~HAB!5$B~2k11!;kPZ1%ø$B~2a12k11!;kPZ1%.

Notice that the eigenvalues belonging to the first part are nothing but the Landau levels. A
eigenvaluesB(2k11) have infinite multiplicities while the multiplicity of the eigenvalueB(2a
12k11) is finite and equalsk11.
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A final short remark concerning the HamiltonianHAB is devoted to the Green function
Naturally, the Green function is expressible as an infinite series

GAB~z;r 1 ,u1 ,r 2 ,u2!5
1

2p (
m52`

`

Gm
AB~z;r 1 ,r 2! eim(u12u2),

where

Gm
AB~z;r 1 ,r 2!52S B

2 D um1au11

~r 1r 2! um1au expS 2
1

4
B~r 1

21r 2
2! D3 (

n50

`
n!

G~n1um1au11!

3
Ln

um1au~ 1
2 Br1

2! Ln
um1au~ 1

2 Br2
2!

B~m1a1um1au12n11!2z
.

The radial parts can be rewritten with the aid of the standard construction of the Green funct
ordinary differential operators of second order,

Gm
AB~z;r 1 ,r 2!5S B

2 D um1au11

~r 1r 2! um1au expS 2
1

4
B~r 1

21r 2
2! D G~2w~m,z!!

G~ um1au11!
F~2w~m,z!,um

1au11,r ,!3G~2w~m,z!,um1au11,r .!,

where

w~m,z!5
z

2B
2

1

2
~m1a1um1au11!

and r ,5min(r1,r2), r .5max(r1,r2). This amounts to the identity

(
n50

`
n!

G~n1s11!

Ln
s~y1! Ln

s~y2!

n2w
5

G~2w!

G~s11!
F~2w,s11,y,!G~2w,s11,y.!.

We do not expect that a simpler form for the Green function could be derived since the H
tonianHAB enjoys only the rotational symmetry.

IV. SELF-ADJOINT EXTENSIONS OF L

Recalling what has been summarized in Sec. II. it is easy to determine the deficiency in
The solutiongm

1 (6i;r ) diverges exponentially at infinity@cf. ~8!# while gm
2 (6i;r ) behaves well at

infinity but has a singularity at the origin of the orderr 2um1au. Thusgm
2 (6i;r )PL2(R1 ,r dr ) if

and only if m521 or m50. This means that the deficiency indices are~2,2!. For a basis in the
deficiency subspacesN6i we can choose

H f m,6~r ,u!5
1

A2p
Nm gm

2 ~6i;r ! eimu;m521,0J .

Thus

f 21,6~r ,u!5
1

A2p
N21 r 12a GS 1

2
7

i

2B
,22a,

Br2

2 DexpS 2
Br2

4 D e2iu,

f 0,6~r ,u!5
1

A2p
N0 r a GS 1

2
1a7

i

2B
,11a,

Br2

2 D expS 2
Br2

4 D ,
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whereN21 andN0 are normalization constants making the basis orthonormal.
We shall need the explicit values ofN21 andN0 . Using the relation

Wy,t~z!5zt1 1/2e2z/2 G~ 1
2 2y1t,2t11,z!,

whereW is the Whittaker function we get

Nm
225E

0

`

ugm
2 ~6i;r !u2 r dr 5

1

2 S 2

BD um1au11E
0

`

x21W%,s~x! W%̄,s~x!dx,

where

%5
1

2 S 2m2a1
i

BD , s5
1

2
um1au.

Combining the identities~Ref. 10, 2.19.24.6!

E
0

`

x21W%,s~x! Wm,s~x!dx5
p

sin~2ps!
3S 2

1

G~ 1
2 2s2m!G~ 3

2 1s2% !

2F1S 1

2
1s2m,1;

3

2
1s2%;1D1

1

G~ 1
2 1s2m! G~ 3

2 2s2% !

2F1S 1

2
2s2m,1;

3

2
2s2%;1D D

and

2F1~a,b;c;z!5
G~c! G~c2a2b!

G~c2a! G~c2b! 2F1~a,b;a1b2c11;12z!

1
G~c! G~a1b2c!

G~a! G~b!
~12z!c2a2b

2F1~c2a,c2b;c2a2b11;12z!

we arrive at the relation

E
0

`

x21W%,s~x! Wm,s~x!dx5
p

sin~2ps!~m2% !

3S 2
1

G~ 1
2 2m2s!G~ 1

2 2%1s!
1

1

G~ 1
2 2m1s! G~ 1

2 2%2s!
D .

Finally we get

N215S B

2 D ~1/2!(12a)Asin~pa!

2p S Im
1

GS 2
1

2
1a1

i

2BD GS 1

2
2

i

2BD D 21/2

,

N05S B

2 D ~1/2! aAsin~pa!

2p S Im
1

GS 1

2
1

i

2BD GS 1

2
1a2

i

2BD D 21/2

.
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Let us have a look at the asymptotic behavior at the origin of the basis functions i
deficiency subspacesN6i . By ~4! and ~7! we have

g21
2 ~6i;r !5a21,6 r 211a1b21,6 r 12a1O~r 11a!,

~10!
g0

2~6i;r !5a0,6 r 2a1b0,6 r a1O~r 22a!,

where

a21,65
G~12a!

GS 1

2
7

i

2BD S B

2 D 211a

, b21,65
G~211a!

GS 2
1

2
1a7

i

2BD ,

a0,65
G~a!

GS 1

2
1a7

i

2BD S B

2 D 2a

, b0,65
G~2a!

GS 1

2
7

i

2BD .

The coefficientsam,6 , bm,6 are related to the normalization constantsNm for it holds true that

detM 2152
i

12a
~N21!22, detM052

i

a
~N0!22. ~11!

where

Mm5S am,1 bm,1

am,2 bm,2
D .

Particularly, we shall need the fact that the matricesM 21 andM0 are regular.
Let us now describe the closure of the operatorL. In virtue of the decomposition~2! we have

L̄5 (
mPZ

%

L̄m ,

where L̄m5(L* )m* . As is well known, cPDom(L* ) belongs to Dom(L̄) if and only if

^c,L* w&5^L* c,w& for all wPNi1N2i . Thus (L* )m5L̄m for m¹$21,0%, and if m¹$21,0%
thenw(r ) eimuPDom((L* )m) belongs to Dom(L̄m) if and only if

lim
r→01

r W~w~r !,gm
2 ~6i,r !!50,

where W( f ,g)5(] r f )g2 f ] rg is the Wronskian. Using the asymptotic behavior~10! and the
regularity of the matrixMm we arrive at two conditions

lim
r→01

~2um1au r 2um1auw~r !2r 2um1au11] rw~r !!50,

lim
r→01

~ um1au r um1auw~r !2r um1au11] rw~r !!50,

which can be rewritten in the equivalent form,

lim
r→01

r 22um1au11] r~r um1auw~r !!50, lim
r→01

r um1auw~r !50.

But since
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r 2um1auuw~r !u<
1

2um1au
sup

xP]0,r @

ux22um1au11]x~xum1auw~x!!u

we finally get a sufficient and necessary condition forw(r )eimuPDom((L* )m) to belong to
Dom(L̄), namely

lim
r→01

r 211aw~r !50 and lim
r→01

r aw8~r !50 if m521,

~12!
lim

r→01

r 2aw~r !50 and lim
r→01

r 2a11w8~r !50 if m50.

This shows that ifcPDom(L* )5Dom(L̄)1Ni1N2i then

c~r ,u!5~F1
1~c!r 211a1F2

1~c!r 12a!e2iu1F1
2~c!r 2a1F2

2~c!r a1a regular part.

Let us formally introduce the functionalsF j
k on Dom(L* ),

F1
21~c!5 lim

r→01

r 12a
1

2p E
0

2p

c~r ,u! eiu du,

F2
21~c!5 lim

r→01

r 211aS 1

2p E
0

2p

c~r ,u! eiu du2F1
1~c! r 211aD ,

F1
0~c!5 lim

r→01

r a
1

2p E
0

2p

c~r ,u!du,

F2
0~c!5 lim

r→01

r 2aS 1

2p E
0

2p

c~r ,u!du2F1
2~c! r 2aD .

Notice that the upper index refers to the sector of angular momentum while the lower index
to the order of the singularity. IfcPDom(L̄) then according to~12! it actually holdsF j

k(c)50
for j 51,2, k521,0. On the other hand, ifcPNi1N2i and F j

k(c)50 for all indices j 51,2,
k521,0, thenc50 ~this is again guaranteed by the regularity of the matricesM 21 andM0!.

Let us introduce some more notation. It is convenient to arrange the functionalsF j
k into

column vectors as follows:

F j~c!5S F j
21~c!

F j
0~c! D , j 51,2.

Further, applying the functionals to the basis functions inNi1N2i we obtain four 232 diagonal
matrices. More precisely, set

~F j ,6!kl 5A2p F j
k22~ f l 22,6!, j ,k,l 51,2.

Then

F1,65S N21a21,6 0

0 N0 a0,6
D , F2,65S N21b21,6 0

0 N0 b0,6
D .

Now it is straightforward to give a formal definition of a self-adjoint extensionHU of the
symmetric operatorL determined by a unitary operatorU:Ni→N2i . We identify U with a
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unitary 232 matrix via the choice of the orthonormal bases$ f 21,6 , f 0,6% in N6i . The self-adjoint
operatorHU is unambiguously defined by the condition:HU,L* and cPDom(L* ) belongs to
Dom(HU) if and only if

S F1~c!

F2~c! DPRanS F1,11F1,2U
F2,11F2,2U D . ~13!

However condition~13! is rather inconvenient and we shall replace it in Sec. V by another
which is more suitable for practical purposes.

V. BOUNDARY CONDITIONS

To turn~13! into a convenient requirement which would involve boundary conditions we s
need the following proposition. Set

D5S 12a 0

0 a D .

There is a one-to-one correspondence between unitary matrices UPU(2) and couples of
matrices X1 ,X2PMat(2,C) obeying

rankS X1

X2
D52 ~14!

and

X1* DX25X2* DX1 ~15!

modulo the right action of the group of regular matrices GL(2,C). The one-to-one correspondenc
is given by the equality

RanS X1

X2
D5RanS F1,11F1,2U

F2,11F2,2U D .

Let us note that the equivalence class of a couple (X1 ,X2) moduloGL(2,C) corresponds to a
two-dimensional subspace inC4 and hence to a point in the Grassmann manifoldG2(C4). The
complex dimension ofG2(C4) equals 4, i.e., dimR G2(C4)58. The points ofG2(C4) obeying the
~‘‘real’’ ! condition~15! form a real four-dimensional submanifold which is diffeomorphic, acco
ing to the proposition, to the unitary group U(2).

To verify the proposition we first show that to any couple (X1 ,X2) with the properties~14!,
~15! there are related uniqueYPGL(2,C) andUPU(2) such that

S X1

X2
DY5JS I

U D , ~16!

where we have set

J5S F1,1 F1,2

F2,1 F2,2
D 5S N21a21,1 0 N21a21,2 0

0 N0a0,1 0 N0a0,2

N21b21,1 0 N21b21,2 0

0 N0b0,1 0 N0b0,2

D .

Using ~11! one easily finds thatJ is regular and
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J215iS D 0

0 D D S F2,2 2F1,2

2F2,1 F1,1
D .

Let us introduce another couple of matrices,V1 ,V2PMat(2,C), by the relation

S V2

V1
D5J21S X1

X2
D ,

thusV657iD(F2,6X12F1,6X2). It follows that

V6* V65~X1* X2* !S F2,6* D2F2,6 2F2,6* D2F1,6

2F1,6* D2F2,6 F1,6* D2F1,6
D S X1

X2
D

and, consequently,

V2* V22V1* V15~X1* X2* !S 0 2iD

iD 0 D S X1

X2
D5i~X2* DX12X1* DX2!

for F j ,6 andD commute~all of them are diagonal!, F j ,6* 5F j ,7 and

2F1,1F2,21F1,2F2,15iD21

@cf. ~11!#. Owing to the property~15! we have

V2* V25V1* V1 , ~17!

which jointly with the property~14! implies that

KerV25KerV15KerS V2

V1
D5KerS X1

X2
D50.

The only possible choice of the matricesY andU satisfying~16! is

Y5V2
21, U5V1V2

21.

The matrixU is actually unitary because of~17!.
Conversely, we have to show that any couple of matricesX1 , X2 related to a unitary matrixU

according to the rule

S X1

X2
D5JS I

U D
obeys~14! and ~15!. Condition ~14! is obvious sinceJ is regular and condition~15! is again a
matter of a direct computation. In more detail, since it holds

X1* DX22X2* DX15~ IU * !J* S 0 D

2D 0 D JS I
U D

it suffices to verify that

J* S 0 D

2D 0 D J5iS I 0

0 2I D .

This concludes the proof of the above proposition.
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Using this correspondence one can relate to a coupleX1 , X2PMat(2,C) obeying~14! and~15!
a self-adjoint extensionH determined by the condition

cPDom~H !⇔S F1~c!

F2~c! DPRanS X1

X2
D . ~18!

Two couples (X1 ,X2) and (X18 ,X28) determine the same self-adjoint extension if and only if th
exists a regular matrixY such that (X18 ,X28)5(X1Y,X2Y). Moreover, all the self-adjoint exten
sions can be obtained in this way.

We shall restrict ourselves to an open dense subset in the space of all self-adjoint exte
by requiring the matrixX2 to be regular. In that case we can set directlyX25I and renameX1

5L. ThusL is a 232 complex matrix satisfying

DL5L* D. ~19!

The corresponding self-adjoint extension will be denotedHL. The condition~18! simplifies in an
obvious way. We conclude thatHL,L* andcPDom(L* ) belongs to Dom(HL) if and only if

F1~c!5LF2~c!, ~20!

and this is in fact the sought boundary condition.
MatricesL obeying~19! can be parametrized by four real parameters~or two real and one

complex!. We choose the parametrization

L5S u aw̄

~12a!w v D , u,vPR,wPC.

The relation betweenL andU reads

L5~F1,11F1,2U !~F2,11F2,2U !21 ~21!

~provided the right-hand side makes sense!.
The ‘‘most regular’’ among the boundary conditions isF1(c)50, i.e., the one determined b

L50, and the corresponding self-adjoint extension is nothing but the standard Aharonov–
HamiltonianHAB discussed in Sec. III. According to~21! HAB corresponds to the unitary matri

U52F1,2
21F1,15diagH 2

GS 1

2
1

i

2BD
GS 1

2
2

i

2BD ,2

GS 1

2
1a1

i

2BD
GS 1

2
1a2

i

2BD J .

VI. THE SPECTRUM

Let us now proceed to the discussion of spectral properties of the described self-a
extensions. It is clear from what has been explained up to now that everything interest
happening in the two critical sectors of the angular momentum labeled bym521 andm50. To
state it more formally we decompose the Hilbert space into an orthogonal sum of the ‘‘stable
‘‘critical’’ parts,

H5Hs% Hc ,

where

Hs5 (
mPZ\$21,0%

%

L2~R1 ,r dr ! ^ C eimu, Hc5L2~R1 ,r dr ! ^ ~Ce2iu
% C1!.
                                                                                                                



’s
l

ake
a

2162 J. Math. Phys., Vol. 43, No. 5, May 2002 Exner, Št’ovı́ček, and Vytřas

                    
A self-adjoint extensionHL decomposes correspondingly,

HL5HLuHs
% HLuHc

,

and we know that onHs the operatorHL coincides with the standard AB Hamiltonian,

HLuHs
5HABuHs

.

Thus

s~HL!5s~HABuHs
!øs~HLuHc

!

and, as explained in Sec. III,

s~HABuHs
!5$B~2k11!;kPZ1%ø$B~2k12a11!;kPN%,

where the multiplicity of the eigenvalueB(2k11) is infinite while the multiplicity of the eigen-
valueB(2k12a11) equalsk. On the other hand,

s~HABuHc
!5$B~2k11!;kPZ1%ø$B~2k12a11!;kPZ1%,

where all the eigenvalues are simple~the first set is a contribution of the sectorm521 while the
second one comes from the sectorm50!. Since the deficiency indices are finite the Krein
formula11 jointly with Weyl’s theorem ~Ref. 12, Theorem XIII.14! tells us that the essentia
spectrumsess(H

LuHc
) is empty for anyL. Thus the spectrum ofHLuHc

is formed by eigenvalues
which are at most finitely degenerated and have no finite accumulation points.

Let us derive the equation on eigenvalues for the restrictionHLuHc
. Let lPR. In each of the

sectorsm521,0 there exists exactly one~up to a multiplicative constant! solution of the equation
(L* )mf 5l f which isL2-integrable at infinity~with respect to the measurer dr ! and we may take
for it the functiongm

2 (l;r ) eimu @cf. ~4!#. For a second linearly independent solution one may t
gm

1 (l;r ) eimu providedb(m,l)¹2Z1 @cf. ~5!#. If b(m,l)P2Z1 then a possible choice of
second linearly independent solution is

r um1au HS b~m,l!,g~m!,
Br2

2 DexpS 2
Br2

4 D ,

where

H~b,g,z!5z12gF~b2g11,22g,z!

@cf. ~6!#.
Thusl is an eigenvalue ofHLuHc

if and only if there exists a vector (m,n)PC2\$0% such that
the function

cl~r ,u!5m g21
2 ~l;r ! e2iu1n g0

2~l;r !

satisfies the boundary condition~20!. Using again~4! and ~7! one finds that

F1~cl!5S a21 0

0 a0
D S m

n D , F2~cl!5S b21 0

0 b0
D S m

n D ,

where
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a215
G~12a!

GS 1

2
2

l

2BD S B

2 D 211a

, b215
G~211a!

GS 2
1

2
1a2

l

2BD ,

a05
G~a!

GS 1

2
1a2

l

2BD S B

2 D 2a

, b05
G~2a!

GS 1

2
2

l

2BD .

This immediately leads to the desired equation on eigenvalues which takes the form deA50
where

A5S a21 0

0 a0
D 2LS b21 0

0 b0
D .

After the substitution

z5
1

2
2

l

2B
,

i.e., l5B~122z!,

we get

G~12a!G~a!

G~z!G~z1a!

2

B
2

G~a!G~a21!

G~z1a21!G~z1a! S 2

BD a

u2
G~12a!G~2a!

G~z!2 S 2

BD 12a

v

1
G~a21!G~2a!

G~z!G~z1a21!
~uv2a~12a!uwu2!50.

To simplify somewhat the form of the equation it is convenient to rescale the paramete
follows:

j5S B

2 D 12a G~a!

G~22a!
u, h5S B

2 D a G~12a!

G~11a!
v, z5AB

2
uwu. ~22!

Finally we arrive at an equation depending on three real parametersj,h,z, namely

1

G~z! G~z1a!
1

j

G~z1a21! G~z1a!
1

h

G~z!2 1
j h2z2

G~z! G~z1a21!
50. ~23!

There is no chance to solve Eq.~23! explicitly apart from some particular cases. One of the
of course, corresponds to the standard AB Hamiltonian. This case is determined by the va
parametersj5h5z50 and the roots of~23! form the set2Z1ø(2a2Z1). Consider also the
case whenj5h50 andzÞ0 with the set of roots equal to2Z1ø(2a2Z1)ø$12a1z22%.
Comparing the latter case to the former one we see that there is one additional root, nam
2a1z22, which escapes to infinity whenz→0.

In the last particular case one can also consider the limitz→`. More generally, suppose tha
detLÞ0, i.e., jh2z2Þ0, replaceL with t L in ~20! and take the limitt→`. The limiting
boundary condition reads

F2~c!50
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and the corresponding self-adjoint extension which we shall callH` is one of those omitted when
we restricted ourselves to an open dense subset in the space of all self-adjoint extensions~regarded
as a a four-dimensional real manifold!. Equation~23! reduces in this limit to

1

G~z! G~z1a21!
50 ~24!

with the set of roots2Z1ø(12a2Z1).
Another case when Eq.~23! simplifies though it is not solvable explicitly isz50. This is easy

to understand since ifz50 then the matrixL is diagonal and the two critical sectors of angu
momentum do not interfere. This is reflected in the fact that Eq.~23! splits into two independen
equations,

1

G~z!
1

j

G~z1a21!
50,

1

G~z1a!
1

h

G~z!
50.

Let us briefly discuss the dependence of roots of Eq.~23! on the parametersj,h,z. Since the
derivative of the left-hand side of~23! with respect toz and with the values of paramete
(j,h,z)5(0,0,0) equals

~21!mm!

G~2m1a!
Þ0 for z52m, and

~21!mm!

G~2m2a!
Þ0 for z52m2a,

wheremPZ1 , the standard implicit function theorem~analytic case! is sufficient to conclude tha
the roots are analytic functions inj,h,z at least in some neighborhood of the origin~depending in
general on the root!. Let us denote byz1,m(j,h,z) andz2,m(j,h,z) the roots of~23! regarded as
analytic functions inj,h,z and such thatz1,m(0,0,0)52m and z2,m(0,0,0)52a2m, with m
PZ1 . A straightforward computation results in the following power series truncated at degr

Set

hm
0 ~z!5(

j 51

m
1

j
2g2c~z!,

hm
1 ~z!5

p2

6
1(

j 51

m
1

j 2 2c8~z!,

hm
2 ~z!522 z~3!12(

j 51

m
1

j 3 2c9~z!,

where g is the Euler constant,c(z)5G8(z)/G(z) is the digamma function, andz is the zeta
function. Then

z1,m~j,h,z!52m1
~21!m11

m! G~212m1a!
j1

hm
0 ~212m1a!

~m! !2 G~212m1a!2 j2

1
~21!m11~3 hm

0 ~212m1a!21hm
1 ~212m1a!!

2 ~m! !3 G~212m1a!3 j31
~21!m ~11m2a!

m! G~212m1a!
j z2

1
1

6 ~m! !4 G~212m1a!4 ~4 hm
0 ~212m1a!~4 hm

0 ~212m1a!213 hm
2 ~21
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2m1a!!1hm
2 ~212m1a!! j41

322 ~11m2a! hm
0 ~2m1a!

~m! !2 G~212m1a!2 j2z21¯ ,

~25!

z2,m~j,h,z!52a2m1
~21!m11

m! G~2m2a!
h1

hm
0 ~2m2a!

~m! !2 G~2m2a!2 h2

1
~21!m11~3 hm

0 ~2m2a!21hm
1 ~2m2a!!

2 ~m! !3 G~2m2a!3 h31
~21!m ~m11!

m! G~2m2a!
h z2

1
1

6 ~m! !4 G~2m2a!4 ~4 hm
0 ~2m2a!~4 hm

0 ~2m2a!213 hm
2 ~2m2a!!

1hm
2 ~2m2a!! h41

122 ~m11! hm
0 ~2m2a!

~m! !2 G~2m2a!2 h2z21¯ . ~26!

A similar analysis can be carried out to get the asymptotic behavior of roots forj,h,z large. To
this end assume thatjh2z2Þ0 and set

j85
j

jh2z2 , h85
h

jh2z2 , z85
z

jh2z2 .

Notice thatj8h82z825(jh2z2)21. Equation~23! becomes

FIG. 1. The Hamiltonian is determined by the boundary conditions corresponding to the parameters (j,h,z)
5(0.95t,0.25t,0.25t), a50.3, B51.

FIG. 2. The Hamiltonian is determined by the boundary conditions corresponding to the parameters (j,h,z)5(0.95t,
20.25t,0), a50.3, B51.
                                                                                                                



n.
nd to

s-
tions. In

icted

.
l line
the

2166 J. Math. Phys., Vol. 43, No. 5, May 2002 Exner, Št’ovı́ček, and Vytřas

                    
j8h82z82

G~z! G~z1a!
1

j8

G~z1a21! G~z1a!
1

h8

G~z!2 1
1

G~z! G~z1a21!
50. ~27!

Roots of ~27! are analytic functions inj8,h8,z8 at least in some neighborhood of the origi
Again, it would be possible to compute the beginning of the corresponding power series a
derive formulas similar to those of~25! and ~26! but we avoid doing it here explicitly.

Instead we prefer to plot two graphs~Figs. 1 and 2! in order to give the reader some impre
sion about how the eigenvalues may depend on the parameters, i.e., on the boundary condi
each graph we choose a line in the parameter space,$(jt,ht,zt)PR3;tPR%, and we depict the
dependence ont of several first eigenvalues for the corresponding self-adjoint extension restr
to Hc @see~22! for the substitution#. In both graphs we have seta50.3 andB51.

Probably the most complete general information which is available about solutions of Eq~23!
might be a localization of roots of this equation with respect to a suitable splitting of the rea
into intervals. Let us choose the splitting into intervals with boundary points coinciding with
roots of Eq. ~24!. To get the localization let us rewrite Eq.~23!, equivalently providedzÞ
2Z1ø(12a2Z1), as follows:

S G~z211a!

G~z!
1j D S G~z!

G~z1a!
1h D5z2. ~28!

Put

Fa~z!5
G~z211a!

G~z!

so that Eq.~28! can be rewritten as

~Fa~z!1j!~F12a~z1a!1h!5z2. ~29!

It is easy to carry out some basic analysis of the functionFa(z). We have Fa8(z)
5Fa(z) (c(z211a)2c(z)). One observes thatFa(z).0 for zP ]12a,1`@ø(ømPZ1

#2a

TABLE I. Roots in the interval ]12a,1`@ .

Interval ]12a,1`@
Conditions Number of roots

j>0 h>0 z2.jh 1
j>0 h>0 z2<jh 0
j>0 2G(12a),h,0 no condition 1
j>0 h<2G(12a) no condition 0
j,0 h>0 no condition 1
j,0 2G(12a),h,0 z2>jh 1
j,0 2G(12a),h,0 z2,jh 2
j,0 h<2G(12a) z2>jh 0
j,0 h<2G(12a) z2,jh 1

TABLE II. Roots in the interval ]0,12a@ .

Interval ]0,12a@
Conditions Number of roots

j<0 h>2G(12a) 0
j<0 h,2G(12a) 1
j.0 h>2G(12a) 1
j.0 h,2G(12a) 2
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2m,2m@), and Fa(z),0 for zPømPZ1
] 2m,12a2m@ , and in any caseFa8(z),0. In the

former case this follows from the fact thatc(z) is strictly increasing on each of the interva
]0,1`@ and ]2m21,2m@ , with mPZ1 . In the latter case this is a consequence of the iden

c~z211a!2c~z!5
p sin~pa!

sin~pz!sin~p~z1a!!
1E

0

` e2(12z) t~12e2(12a) t!

12e2t dt.

Moreover,

lim
z→1`

Fa~z!50, lim
z→(12a2m)6

Fa~z!56`, Fa~2m!50 for mPZ1 .

This also implies thatF12a(z1a).0 for zP]0,1`@ø (ømPZ1
#212m,2a2m@) and

F12a(z),0 for zPømPZ1
] 2a2m,2m@ , in any caseF12a8(z1a),0, and

lim
z→1`

F12a~z1a!50, lim
z→2m6

F12a~z1a!56`,

and F12a~2a2m!50 for mPZ1 .

With the knowledge of these basic properties of the functionFa(z) it is a matter of an
elementary analysis to determine the number of roots of Eq.~29! in each of the intervals ]1
2a,1`@ , ]2m,12a2m@ and ]2a2m,2m@ , with mPZ1 . The result is summarized in Table
I–IV.

This is to be completed with the simple observation that 12a is a root of~23! if and only if
h52G(12a), and2m, with mPZ1 , is a root if and only ifj50, and finally2a2m, with
mPZ1 , is a root if and only ifh50.

Let us note that this localization is in agreement with a general result according to whichA
andB are two self-adjoint extensions of the same symmetric operator with finite deficiency in
(d,d) then any intervalJ,R not intersecting the spectrum ofA contains at mostd eigenvalues of
the operatorB ~including multiplicities! and no other part of the spectrum ofB ~Ref. 13, Sec. 8.3!.
Thus in our example ifJ is an open interval whose boundary points are either two subseq
eigenvalues ofH` or the lowest eigenvalue ofH` and2` then any self-adjoint extensionHL has
at most two eigenvalues inJ.

TABLE III. Roots in the intervals ]2a2m,2m@ ,mPZ1.

Intervals ]2a2m,2m@ ,mPZ1

Conditions Number of roots

j>0 h<0 0
j>0 h.0 1
j,0 h<0 1
j,0 h.0 2

TABLE IV. Roots in the intervals ]212m,2a2m@ ,mPZ1.

Intervals ]212m,2a2m@ ,mPZ1

Conditions Number of roots

j<0 h>0 0
j<0 h,0 1
j.0 h>0 1
j.0 h,0 2
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VII. CONCLUDING REMARKS

The above-presented discussion does not exhaust all questions related to the system
consideration. One may ask, for instance, how the state of such a particle evolves un
adiabatic change of parameters. In particular, since the model exhibits eigenvalue crossin
may expect that there are parameter loops exhibiting a nontrivial Berry phase. Another qu
concerns the physical meaning of our idealized model. More specifically, one is interes
which sense the model Hamiltonian can be approximated by those with smeared flux and a
interaction. We leave these problems to a future publication.
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A numerically exact phase-amplitude method that has been presented earlier by P.
O. Fröman, Larsson, and Ho¨kback @J. Math. Phys.40, 1764–1779~1999!# is par-
ticularized and modified in order to make it adapted to the solution of the differ-
ential equations of the two-center Coulomb problem. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1465098#

I. INTRODUCTION

We start by quoting some well-known results.
The time-independent Schro¨dinger equation for the motion of an electron of massm and

charge2e(e.0) in the field of two fixed Coulomb centers with chargesZ1e andZ2e takes the
following form:

S 2
\2

2m
D r2

Z1e

r 1
2

Z2e

r 2
Dc~r !5Ec~r !, ~1.1!

wherer 1 andr 2 are the distances of the electron from the two centers,r is the position vector of
the electron, andE is the electronic energy. To obtain the total energy one must add the pot
energy of the two fixed charges, getting

Etotal5Z1Z2e2/r 121E, ~1.2!

wherer 12 is the distance between the two centers. The differential equation~1.1! is separable in
elliptic coordinates. If one introduces the variables

j5
r 11r 2

r 12
, 1<j,1`, ~1.3a!

h5
r 12r 2

r 12
, 21<h<11, ~1.3b!

and puts

c~r !5X~j!Y~h!eimw, ~1.4!

wherem is the magnetic quantum number~integer or zero!, andw is the corresponding angle, th
separation yields, inatomic units(\5e5m51), the two differential equations

d

dj S ~j221!
dX

dj D1S 2p2j21b8j1A2
m2

j221DX50, ~1.5a!
21690022-2488/2002/43(5)/2169/11/$19.00 © 2002 American Institute of Physics
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d

dh S ~12h2!
dY

dh D1S p2h21bh2A2
m2

12h2DY50, ~1.5b!

whereA is the separation constant and

p252 1
2 r 12

2 E, ~1.6a!

b85r 12~Z21Z1!, ~1.6b!

b5r 12~Z22Z1!. ~1.6c!

The differential equations~1.5a! and~1.5b! are to be solved under the boundary conditions that
functions X(j) and Y(h) are regular, and hence finite, forj511, j51` and h521, h5
11.

The differential equations~1.5a! and ~1.5b! or the corresponding differential equations
Rydberg units have been solved in various ways by several authors. In Rydberg units, resul
been given by Bates, Ledsham, and Stewart,1 Bates and Carson,2 Bates and Reid,3 Rosenthal and
Wilson,4 and Murai and Takatsu.5 In atomic units, results have been given by Wallis and Hulbu6

Wind,7 Peek,8,9 Ponomarev and Puzynina,10 Rothstein,11 Murai,12 Murai and Takatsu,13 and Bhat-
tacharjeet al.14 Due to the difficulty of the numerical problem these results are not in comp
agreement with each other. In the present paper we shall treat the two-center Coulomb pro
a new way by means of a numerically exact method that has been fruitful in connection with
problems.

Putting

X~j!5
f ~j!

~j221!1/2, ~1.7a!

Y~h!5
g~h!

~12h2!1/2, ~1.7b!

we can transform the differential equations~1.5a! and ~1.5b! into

S d2

dj2 1R̃~j! D f ~j!50, ~1.8a!

S d2

dh2 1R~h! Dg~h!50, ~1.8b!

where

R̃~j!52p21
b8j1A8

j221
2

m221

~j221!2 , ~1.9a!

R~h!52p21
bh2A8

12h2 2
m221

~12h2!2 , ~1.9b!

with

A85A2p2. ~1.10!

The differential equations~1.8a! and~1.8b! are to be solved under the boundary conditions that
functions f (j) andg(h) are regular and equal to zero forj511, j51` andh521, h511.
The effective potential corresponding to the function2R̃(j) always has the form of a single-we
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potential on the interval 1<j,1`, while the effective potential corresponding to the functi
2R(h) has the character of either a single-well potential or a double-well potential on the int
21<h<11. To solve the differential equations~1.8a! and ~1.8b! we shall particularize and
modify the numerically exact phase-amplitude method described in Appendix B of P. O. Fro¨man,
Larsson, and Ho¨kback.15 For the general background and for the notations we refer to the
summary of that appendix that is presented in our appendix. To start the integrations
q-equations corresponding to the differential equations~1.8a! and~1.8b! we approximateq̂̃(j) and
q̂(h) in the middle of the classically allowed regions by the base functions~see Chap. 1 in Fro¨man
and Fröman16!

Q̃~j!5S 2p21
b8j1A82C̃

j221
2

m2

~j221!2D 1/2

, ~1.11a!

Q~h!5S 2p21
bh2A81C

12h2 2
m2

~12h2!2D 1/2

, ~1.11b!

whereC̃ andC are so far unspecified constants, which are to be chosen conveniently. By so
the q-equations simultaneously one can obtain the energy eigenvalueE and the redefined separa
tion constantA8 as functions of the distancer 12 and the quantum numbers.

II. TREATMENT OF THE j -EQUATION

For the differential equation~1.8a! we haveN51 in our appendix, and theq-equation is

d2

dj2 q̂̃1
21/21R̃~j! q̂̃1

21/25 q̂̃1
3/2, 1<j,1`. ~2.1!

We satisfy the boundary condition atj511 by writing

f ~j!5F̃1q̂̃1
21/2~j!sinS E

1

j

q̂̃1~j!dj D , 1<j,1`, ~2.2!

and then we satisfy the boundary condition atj51` by requiring that

E
1

1`

q̂̃1~j!dj5~ ŝ̃11!p, ŝ̃50,1,2,... . ~2.3!

The numerical calculation of the integral in~2.3! is rather easily performed except whenm50, in
which caseq̂̃1(j) approaches zero so slowly asj→11 that the integral in~2.3! cannot be
calculated numerically with sufficient accuracy by conventional methods. P. O. Fro¨man, Hökback,
and N. Fröman17 have overcome this difficulty with the use of the comparison equation techn
Recalling their approximate formula~8.3.168!, we can replace~2.3! by

arctan
2~j21! q̂̃1~j!

11
j21

q̂̃1~j!

dq̂̃1~j!

dj

1E
j

1`

q̂̃1~j!dj5~ ŝ̃11!p, ŝ̃50,1,2,..., ~2.38!

where we choosej to lie so close to11 that the expression on the left-hand side of~2.38! remains
constant~within the prescribed degree of numerical accuracy! when j decreases further towar
11. One thus evaluates the expression on the left-hand side of~2.38! for various values ofj that
decrease toward11, and one continues until the expression in question remains constant w
the prescribed degree of numerical accuracy.
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III. TREATMENT OF THE h-EQUATION

The h-equation has the character of a Schro¨dinger equation associated with either a sing
well potential or a double-well potential. For our purpose it is natural to consider the case
single-well potential for superbarrier energies and the case of a double-well potential for s
rier energies.

A. The case of a single-well potential

For the differential equation~1.8b! we have in this caseN51 in our appendix, and the
q-equation is

d2

dh2 q̂1
21/21R~h!q̂1

21/25q̂1
3/2 , 21<h<11. ~3.1!

We satisfy the boundary condition ath521 by writing

g~h!5F1q̂1
21/2~h!sinS E

21

h
q̂1~h!dh D , 21<h<11, ~3.2!

and then we satisfy the boundary condition ath511 by requiring that

E
21

11

q̂1~h!dh5~ ŝ11!p, ŝ50,1,2,... . ~3.3!

When m50 one encounters the same difficulty with~3.3! as with ~2.3!, and thus one replace
~3.3! by

arctan
2~11h8!q̂1~h8!

11
11h8

q̂1~h8!

dq̂1~h8!

dh8

1E
h8

h9
q̂1~h!dh1arctan

2~12h9!q̂1~h9!

12
12h9

q̂1~h9!

dq̂1~h9!

dh9

5~ ŝ11!p,

ŝ50,1,2,...,
~3.38!

where one choosesh8 and h9 (.h8) to lie so close to21 and 11, respectively, that the
expression on the left-hand side of~3.38! remains constant~within the prescribed degree of nu
merical accuracy! whenh8 andh9 further approach21 and11, respectively. One thus evaluate
the expression on the left-hand side of~3.38! for various values ofh8 that decrease toward21 and
various values ofh9 that increase toward11, and one continues until the expression in quest
remains constant within the prescribed degree of numerical accuracy.

The case when the single-well potential is symmetric(b50). In this case the wave functio
g(h) is either symmetric or antisymmetric. When it is symmetric, it has an even number of n
and the quantum numberŝ is an even number which we write asŝ52ŝ8. When it is antisymmet-
ric, it has an odd number of nodes, and the quantum numberŝ is an odd number which we write
as ŝ52ŝ811. One starts the integration of~3.1! at h50 by approximating thereq̂1(h) by the
symmetric~with respect to the origin! base functionQ(h), i.e., with initial conditions such tha
q̂1(h) becomes symmetric with respect to the origin. From~3.3! one then obtains

E
21

0

q̂1~h!dh5~ ŝ81D!p, ŝ850,1,2,..., ~3.388!

with D51/2 for the symmetric wave functionsg(h) and D51 for the antisymmetric wave
functionsg(h). Whenm50 the functionq̂1(h) approaches zero so slowly ash→21 that there
appear difficulties in the accurate numerical calculation of the integral in~3.39!, and one therefore
replaces this equation by
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arctan
2~11h8!q̂1~h8!

11
11h8

q̂1~h8!

dq̂1~h8!

dh8

1E
h8

0

q̂1~h!dh5~ ŝ81D!p, ŝ850,1,2,..., ~3.3888!

and proceeds similarly as described below~2.38!.

B. The case of a double-well potential

For the differential equation~1.8b! we have in this caseN52 in our appendix, and the
q-equations are

d2

dh2 q̂n
21/21R~h!q̂n

21/25q̂n
3/2, n51,2, ~3.4!

where21<h<h1 for n51 andh1<h<11 for n52, h1 being a point in the potential barrie
We satisfy the boundary condition ath521 by writing

g~h!5F1q̂1
21/2~h!sinS E

21

h
q̂1~h!dh D , 21<h<h1 . ~3.5!

Writing

g~h!5F2q̂2
21/2~h!sinS E

h1

h
q̂2~h!dh D 1G2q̂2

21/2~h!cosS E
h1

h
q̂2~h!dh D , h1<h<11,

~3.6!

and matching the two expressions~3.5! and ~3.6! for g(h) at h5h1 , we obtain from~A5a! and
~A5b! with N52, n51, andG150,

F2

F1
5q̂1

21/2~h1!q̂2
21/2~h1!S q̂28~h1!

2q̂2~h1!
2

q̂18~h1!

2q̂1~h1!
D sinS E

21

h1
q̂1~h!dh D

1
q̂1

1/2~h1!

q̂2
1/2~h1!

cosS E
21

h1
q̂1~h!dh D , ~3.7a!

G2

F1
5

q̂2
1/2~h1!

q̂1
1/2~h1!

sinS E
21

h1
q̂1~h!dh D . ~3.7b!

According to~3.6! the boundary condition ath511 gives

F2 sinS E
h1

11

q̂2~h!dh D 1G2 cosS E
h1

11

q̂2~h!dh D 50. ~3.8!

Inserting~3.7a! and ~3.7b! into ~3.8!, we obtain

q̂28~h1!/q̂2~h1!2q̂18~h1!/q̂1~h1!

2q̂1~h1!q̂2~h1!
tanS E

21

h1
q̂1~h!dh D tanS E

h1

11

q̂2~h!dh D
1

1

q̂1~h1!
tanS E

21

h1
q̂1~h!dh D 1

1

q̂2~h1!
tanS E

h1

11

q̂2~h!dh D 50. ~3.9!

When m50 one encounters the same difficulty with~3.9! as with ~3.3!, and one masters thi
difficulty analogously as described below~3.3!, i.e., by replacing in~3.9!
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E
21

h1
q̂1~h!dh

by

arctan
2~11h8!q̂1~h8!

11
11h8

q̂1~h8!

dq̂1~h8!

dh8

1E
h8

h1
q̂1~h!dh

and

E
h1

11

q̂2~h!dh

by

E
h1

h9
q̂2~h!dh1arctan

2~12h9!q̂2~h9!

12
12h9

q̂2~h9!

dq̂2~h9!

dh9

.

After having modified~3.9! as described previously, one thus evaluates the expression o
left-hand side for various values ofh8 that decrease toward21 and various values ofh9 that
increase toward11, and one continues until the expression in question remains constant w
the prescribed degree of numerical accuracy.

The case when the double-well potential is symmetric(b50). When the double-well potentia
is symmetric,h1 is chosen to be equal to zero and hence to lie at the symmetry point o
potential. To determineq̂1(h) and q̂2(h) we start the integrations of~3.4! by approximating
q̂1(h) and q̂2(h) in the middle of the classically allowed regions by the symmetric~with respect
to the origin! base functionQ(h), i.e., with such initial conditions thatq̂1(h) andq̂2(h) become
mirror symmetric with respect to the origin. Then we have

q̂1~0!5q̂2~0!.0, ~3.10a!

q̂18~0!52q̂28~0!,0, ~3.10b!

q̂1~2h!5q̂2~h!, ~3.10c!

E
21

0

q̂1~h!dh5E
0

11

q̂2~h!dh.0. ~3.10d!

Using ~3.10a!, ~3.10b!, and~3.10d!, we can write~3.7a!, ~3.7b!, and~3.9! with h150 as

F2

F1
5

q̂28~0!

q̂2
2~0!

sinS E
0

11

q̂2~h!dh D 1cosS E
0

11

q̂2~h!dh D , ~3.11a!

G2

F1
5sinS E

0

11

q̂2~h!dh D , ~3.11b!

and

tanS E
0

11

q̂2~h!dh D F tanS E
0

11

q̂2~h!dh D 1
2q̂2

2~0!

q̂28~0! G50. ~3.12!
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From ~3.12! we obtain the two quantization conditions

E
0

11

q̂2~h!dh5~ ŝ11!p, ~3.13a!

E
0

11

q̂2~h!dh5~ ŝ11!p2arctan
2q̂2

2~0!

q̂28~0!
, ~3.13b!

whereŝ is an integer. Whenm50 one encounters the same difficulty with~3.13a! and~3.13b! as
with ~3.9!, and one masters this difficulty in a similar way as is described below~3.3!.

In the following we shall show that~3.13a! and~3.13b! are the quantization conditions for th
states with antisymmetric and symmetric wave functionsg(h), respectively.

The antisymmetricwave functiong(h) must be equal to zero forh50, and therefore we
obtain from~3.5! with h150 and~3.10d! the quantization condition

E
0

11

q̂2~h!dh5~ ŝ11!p, ŝ50,1,2,..., ~3.14!

which is in agreement with~3.13a!. Recalling~3.5! with h150 and~3.10c!, we realize that for
0<h<11 the antisymmetric wave function is

g~h!5F1q̂2
21/2~h!sinS E

11

h
q̂2~h!dh D

5F1q̂2
21/2~h!sinS E

0

h
q̂2~h!dh2E

0

11

q̂2~h!dh D
5F1 cosS E

0

11

q̂2~h!dh D q̂2
21/2~h!sinS E

0

h
q̂2~h!dh D

2F1 sinS E
0

11

q̂2~h!dh D q̂2
21/2~h!cosS E

0

h
q̂2~h!dh D , 0<h<11. ~3.15!

Comparing~3.6! for h150 with ~3.15!, we see that

F25F1 cosS E
0

11

q̂2~h!dh D , ~3.16a!

G252F1 sinS E
0

11

q̂2~h!dh D . ~3.16b!

With the use of~3.14! one can obtain~3.16a! and ~3.16b! from ~3.11a! and ~3.11b! Recalling
~3.14!, we obtain from~3.16a! and ~3.16b!

F25~21! ŝ11F1 , ~3.17a!

G250. ~3.17b!

Thesymmetricwave functiong(h) fulfills the conditiong8(0)50 which, with the aid of~3.5!
with h150, ~3.10a!, ~3.10b!, and~3.10d!, can be written as

tanS E
0

11

q̂2~h!dh D 52
2q̂2

2~0!

q̂28~0!
. ~3.18!
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It is seen that this quantization condition is in agreement with~3.13b!. Recalling~3.5! with h1

50 and~3.10c!, we realize that for 0<h<11 the symmetric wave function is

g~h!52F1q̂2
21/2~h!sinS E

11

h
q̂2~h!dh D

52F1q̂2
21/2~h!sinS E

0

h
q̂2~h!dh2E

0

11

q̂2~h!dh D
52F1 cosS E

0

11

q̂2~h!dh D q̂2
21/2~h!sinS E

0

h
q̂2~h!dh D

1F1 sinS E
0

11

q̂2~h!dh D q̂2
21/2~h!cosS E

0

h
q̂2~h!dh D , 0<h<11. ~3.19!

Comparing~3.6! for h150 with ~3.19!, we see that

F252F1 cosS E
0

11

q̂2~h!dh D , ~3.20a!

G25F1 sinS E
0

11

q̂2~h!dh D . ~3.20b!

It is seen that~3.20b! agrees with~3.11b!, and with the aid of~3.18! we can obtain~3.20a! from
~3.11a!.

IV. NUMERICAL RESULTS

Before presenting our numerical results, we shall give a brief description of the formula
are to be used in calculations of the energy levels and the separation constants of the two
Coulomb system.

When 2Q2(h) has the character of a single-well potential, which is the case whenr 12 is
sufficiently small, the functionsq̂̃1(j) and q̂1(h) are obtained by means of the differential equ
tions ~2.1! and ~3.1!. For given values of the quantum numbers, the quantitiesp2 andA8, which
according to~1.6a! and ~1.10! are closely related to the energyE and the separation constantA,
are obtained from the appropriate ones of the quantization conditions~2.3!, (2.38), ~3.3!, (3.38),
(3.39), and (3.3-).

When 2Q2(h) has the character of a double-well potential, which is the case whenr 12 is
sufficiently large, the functionsq̂̃1(j) andq̂1(h), q̂2(h) are obtained by means of the differenti
equations~2.1! and ~3.4!. For given values of the quantum numbers, the quantitiesp2 and A8,
which according to~1.6a! and ~1.10! are closely related to the energyE and the separation
constantA, are obtained from the appropriate ones of the quantization conditions~2.3!, ~2.38!,
~3.9!, ~3.13a!, and~3.13b!, of which ~3.9!, ~3.13a!, and~3.13b! are to be modified whenm50 as
described below~3.9!.

We have calculated the energy eigenvalues and the separation constants for some stat
hydrogen molecule ion with different values of the internuclear distance. We shall explain ho
have performed these calculations by describing briefly our calculations for the state 1ss with the
internuclear distance equal to 10 a.u. To start the integration of theq-equations one must in som
way or another have obtained fairly accurate approximate initial values ofp2 andA8. We used the
initial valuesp2530 andA85210, which we obtained by approximating the numerically ex
values obtained by Murai and Takatsu13 and quoted later in this section. Using the approxim
initial valuesp2530 andA85210, we thus started the numerical integration of theq-equations
by approximatingq̂̃(j) andq̂1(h), q̂2(h) by the base functionsQ̃(j) andQ(h), respectively, in
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the middle of the classically allowed regions for thej- and h-equations. A computer iteration
program yielded the valuesp2530.028 936 2 andA8529.895 643 5, but could not produce mo
accurate values. With these values ofp2 andA8 as initial values we used the computer iterati
program again and obtained the valuesp2530.028 936 3 andA8529.895 643 7. When we agai
used the program with these values ofp2 andA8 as initial values, the program was not able
improve the accuracy, and this was the case also for the other states for which we per
calculations. The numerically exact values for the state 1ss with r 12510 are p2

530.028 936 446 8 andA8529.895 643 268 8. Our results for some states and different inte
clear distancesr 12 of the hydrogen molecule ion, obtained as described previously, are pres
in Table I together with numerically exact results obtained by Murai and Takatsu.13

APPENDIX: EXTENSION OF THE PHASE-AMPLITUDE METHOD FOR ACCURATE
NUMERICAL SOLUTION OF THE ONE-DIMENSIONAL SCHRÖ DINGER EQUATION

The phase-amplitude method developed by Milne,18 Wilson,19 Young,20,21and Wheeler22 is an
efficient method for numerically exact solution of the one-dimensional Schro¨dinger equation that
describes the motion of a quantal particle in a single-well potential. It has been extended b
Fröman, Larsson, and Ho¨kback15 to apply to the Schro¨dinger equation describing a quantal pa
ticle confined in a potential withN wells separated byN21 superdense barriers. This extension
like the original phase-amplitude method, in principle numerically exact but may meet
numerical difficulties that limit the accuracy obtainable. It will be described briefly in this ap
dix.

Consider the differential equation

d2c

dz2 1R~z!c50, ~A1!

where, for realz-values,R(z) is positive inN regions that are separated byN21 regions in which
R(z) is negative. The boundary conditions are imposed at the pointsz0 andzN(.z0) which lie in
regions whereR(z) is negative and are separated byN regions whereR(z) is positive andN
21 regions whereR(z) is negative. We introduce in theN21 regions whereR(z) is negative
further pointsz1 ,...,zN21 such thatz0,z1,¯,zN21,zN .

To solve the differential equation~A1! numerically we put

TABLE I. The numerically exact values quoted have been obtained by Murai and Takatsu~Ref. 13!. The number of digits
in our results is chosen such that the error is at most five units in the last decimal.

State
r 12

~a.u.!

Initial values

Values obtained by the

first use of the program

Values obtained by the

second use of the program Numerically exact values

p2 2A8 p2 2A8 p2 2A8 p2 2A8

0.5 0.2 0.13 0.216 873 502 0.143 880 78 0.216 873 500 2 0.143 880 78 0.216 873 500 0 0.143 88

1ss 10 30 10 30.028 936 2 9.895 643 5 30.028 936 3 9.895 643 7 30.028 936 446 8 9.895 643

25 168 25 168.751 812 2 24.959 984 8 168.751 812 9 24.959 983 168.751 812 751 1 24.959 984

0.5 0.06 2.02 0.064 610 682 8 2.025 815 68 0.064 610 683 1 2.025 815 667 0.064 610 683 1 2.025 81

2ps 10 30 10 29.995 06 9.902 955 4 29.995 053 47 9.902 954 5 29.995 053 430 6 9.902 954

25 169 25 168.751 80 24.959 983 168.751 812 8 24.959 984 168.751 812 590 0 24.959 984

0.5 0.03 6.03 0.027 821 268 8 6.015 895 0.027 821 268 5 6.015 894 858 7 0.027 821 268 5 6.015 89

3dp 10 10 11 10.495 848 11.560 302 10.495 843 8 11.560 299 5 10.495 843 726 5 11.560 299

25 51 25 51.489 792 2 26.529 466 28 51.489 791 91 26.529 466 30 51.489 791 921 1 26.529 466

0.5 0.01 12.01 0.010 004 764 12.005 335 0.010 004 763 7 12.005 336 00 0.010 004 763 7 12.005 33

5 fp 10 4.3 14.3 4.319 564 07 14.339 446 4 4.319 564 019 6 14.339 446 548 4.319 564 019 4 14.339 44

25 22 25.5 22.343 044 52 25.820 881 2 22.343 044 471 25.820 881 259 9 22.343 044 470 6 25.820 88
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c5Fnq̂n
2 1/2~z!sinS E

zn21

z

q̂n~z!dzD 1Gnq̂n
2 1/2~z!cosS E

zn21

z

q̂n~z!dzD ,

~A2!
zn21<z<zn , n51,...,N,

whereFn and Gn are constants, andq̂n(z) is to be determined numerically as a nonoscillati
solution of theq-equation

d2

dz2 q̂n
2 1/21R~z!q̂n

2 1/25q̂n
1 3/2, ~A3!

which one obtains by inserting~A2! into ~A1! and requiring that the resulting equation be satisfi
for arbitrary constant values ofFn andGn . In passing we remark that theq-equation appears no
only in the phase-amplitude method15,18–22 but also in connection with the Ermakov–Lew
invariant,23,24 which is discussed in Chap. 1 of Ref. 16; see also Ref. 25. This invarian
however, not needed in the present paper. To determine the functionsq̂n(z) one starts the integra
tion of the differential equation~A3! in the middle of the actual potential well by using forq̂n(z)
a phase-integral expression of convenient order. The boundary condition imposed atz0 determines
the ratio G1 /F1 . If N51 the boundary condition imposed atz1 gives rise to a quantization
condition. If N.1 the continuity ofc(z) and c8(z) at z5zn , where 1<n<N21, implies the
conditions

FnF q̂n
2 1/2~z!sinS E

zn21

z

q̂n~z!dzD G
z5zn

1GnF q̂n
2 1/2~z!cosS E

zn21

z

q̂n~z!dzD G
z5zn

5Fn11F q̂n11
2 1/2~z!sinS E

zn

z

q̂n11~z!dzD G
z5zn

1Gn11F q̂n11
2 1/2~z!cosS E

zn

z

q̂n11~z!dzD G
z5zn

~A4a!

and

FnH d

dz F q̂n
2 1/2~z!sinS E

zn21

z

q̂n~z!dzD G J
z5zn

1GnH d

dz F q̂n
2 1/2~z!cosS E

zn21

z

q̂n~z!dzD G J
z5zn

5Fn11H d

dz F q̂n11
2 1/2~z!sinS E

zn

z

q̂n11~z!dzD G J
z5zn

1Gn11H d

dz F q̂n11
2 1/2~z!cosS E

zn

z

q̂n11~z!dzD G J
z5zn

, ~A4b!

from which we obtain

Fn115
q̂n118 ~zn!/q̂n11~zn!2q̂n8~zn!/q̂n~zn!

2q̂n11
1/2 ~zn!q̂n

1/2~zn! FFn sinS E
zn21

zn
q̂n~z!dzD 1Gn cosS E

zn21

zn
q̂n~z!dzD G

1
q̂n

1/2~zn!

q̂n11
1/2 ~zn! FFn cosS E

zn21

zn
q̂n~z!dzD 2Gn sinS E

zn21

zn
q̂n~z!dzD G , n51,..., N21,

~A5a!

and
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Gn115
q̂n11

1/2 ~zn!

q̂n
1/2~zn! FFn sinS E

zn21

zn
q̂n~z!dzD 1Gn cosS E

zn21

zn
q̂n~z!dzD G , n51,..., N21.

~A5b!

Formula~A5a! is a corrected version of Eq.~B6a! in Ref. 15. The numerator of the factor in fron
of the first bracket on the right-hand side of Eq.~B6a! in Ref. 15 is in fact to be replaced b
q̂n118 (zn)/q̂n11(zn)2q̂n8(zn)/q̂n(zn). The error appeared in a rather late version of the manus
of Ref. 15. All calculations of the results presented there had then been performed with the
the correct formula. Starting from the value ofG1 /F1 one can with the aid of~A5a! and ~A5b!
succesively obtain the values ofGn /Fn up to n5N. With the use of the last one of these valu
and the boundary condition imposed atzN one obtains a quantization condition.
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On gauge transformations of Ba ¨cklund type and higher
order nonlinear Schro ¨ dinger equations

Gerald A. Goldina)
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Piscataway, New Jersey 08854

Vladimir M. Shtelenb)
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~Received 1 January 2002; accepted for publication 22 January 2002!

We introduce a new, more general type of nonlinear gauge transformation in non-
relativistic quantum mechanics that involves derivatives of the wave function and
belongs to the class of Ba¨cklund transformations. These transformations satisfy
certain reasonable, previously proposed requirements for gauge transformations.
Their application to the Schro¨dinger equation results in higher order partial differ-
ential equations. As an example, we derive a general family of sixth-order nonlinear
Schrödinger equations, closed under our nonlinear gauge group. We also introduce
a new gauge invariant currents5r¹D ln r, wherer5c̄c. We derive gauge invari-
ant quantities, and characterize the subclass of the sixth-order equations that is
gauge equivalent to the free Schro¨dinger equation. We relate our development to
nonlinear equations studied by Doebner and Goldin, and by Puszkarz. ©2002
American Institute of Physics.@DOI: 10.1063/1.1465514#

I. INTRODUCTION

The notion of nonlinear gauge transformation, introduced in quantum mechanics by Do
and Goldin, extends the usual group of unitary gauge transformations.1–3 The resulting nonlinear
transformations act on a parametrized family of nonlinear Schro¨dinger equations~NLSEs! that
includes the linear Schro¨dinger equation as a special case. They are called gauge transform
because they leave invariant the outcomes of all physical measurements. In this paper we
the notion of gauge transformation further to include transformations that depend explicit
derivatives of the wave function. The result is a group of transformations of Ba¨cklund type.4

As described in earlier work,3 a ~nonlinear! gauge transformation is implemented by a tran
formationc85N@c#, assumed to satisfy the following conditions.

~1! The principle of gauge-independence of positional measurements:Invariance is required
of all quantities describing outcomes of positional measurements, includingsequencesof mea-
surements performed successively at different times. In particular,r(x,t)5uc(x,t)u2 should be
invariant underN for the single-particle wave functionc.

~2! Strict locality: If c is a single-particle function, the value ofc8 at (x,t) is assumed to
depend only on the value ofx, the value oft, and the value ofc at (x,t).

~3! A separation condition:If c (N) is a wave function describing a set ofN noninteracting
particles~i.e., a product state!, then c (N)8 is well defined as the product of gauge transform
single-particle wave functions. This condition ensures that gauge transformations extend
whole N-particle hierarchy of wave functions in a way that subsystems that are uncorre
remain so in the gauge-transformed theory.

Here we modify the condition of strict locality, allowingc8(x,t) to depend not only on the

a!Electronic mail: gagoldin@dimacs.rutgers.edu
b!Electronic mail: shtelen@math.rutgers.edu
21800022-2488/2002/43(5)/2180/7/$19.00 © 2002 American Institute of Physics
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values ofc(x,t), x, and t, but also on finitely many spatial derivatives ofc evaluated at (x,t).
Thus our transformations are local, in thatc8(x,t) does not depend on space-time points a
distance from (x,t), but they are no longer ‘‘strictly’’ local, since derivative terms are allowed.
shall call this propertyweak locality. One motivation for introducing this generalization is
explore the relation between the resulting nonlinear gauge generalization of the Schro¨dinger equa-
tion and the equations proposed by Puszkarz.5

The condition that our set of transformations forms a group~i.e., that it is closed unde
composition and includes all inverse transformations! while the number of derivatives ofc re-
mains bounded, imposes an additional restriction. Thisgroup propertyis automatically satisfied in
the strictly local theory, but here it requires explicit discussion. Thus, we shall add it to
conditions already mentioned. We then call the transformations that obey the following
conditionsweakly local gauge transformations:~1! the principle of gauge-independence of po
tional measurements; (28) weak locality;~3! the separation condition; and~4! the group property.

In Sec. II of this paper, we first consider a general class of nonlinear, single-particle S¨-
dinger equations that are equivalent to the free Schro¨dinger equation under the assumption th
condition~1! is satisfied. Using the other three conditions, we obtain a particularly simple form
weakly local gauge transformations. Following the method of ‘‘gauge generalization,’’3 we then
derive a general family of sixth-order nonlinear Schro¨dinger equations, closed under our nonline
gauge group, which are not all equivalent to the free second-order Schro¨dinger equation. In Sec
III we construct a complete set of gauge invariant quantities. As particular cases, we use th
characterize the subclass of the sixth-order equations that are gauge equivalent to the Sch¨dinger
equation, and those equivalent to the wider class of nonlinear equations studied by Doebn
Goldin. We further relate our development to the nonlinear equations proposed by Puszkarz
on additional quantum currents that involve higher derivatives ofc.

II. GAUGE TRANSFORMATIONS AND NLSEs

Consider the transformation

c8~x,t !5eiwc~x,t !, ~2.1!

wherew is a real-valued functional that depends onc,x, andt. By this we mean thatw can depend
explicitly on c, c̄, derivatives ofc andc̄ of arbitrary order, integrals or integral transforms ofc

and c̄, etc., as well as directly onx and t. Equation ~2.1! preserves the probability densit
r(x,t)5c̄(x,t)c(x,t), as required by the first condition in Sec. I, but if nonlocal it does
generally respect sequences of positional measurements. The following then describes the
class of NLSEs that are equivalent via~2.1! to the free Schro¨dinger equation: ifc8 satisfies

i
]c8

]t
1

\

2m
Dc85 i

]c8

]t
2n18Dc850, ~2.2!

thenc satisfies the NLSE

i
]c

]t
2n18Dc1 i I @c,x,t#c1R@c,x,t#c50, ~2.3!

where

R@c,x,t#5
]w

]t
22n18S ¹w"¤̂

r
1

1

2
~¹w!2D ~2.4!

and
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I @c,x,t#5n18S Dw1
¹w"¹r

r D5n18F1

r
¹"~r¹w!G , ~2.5!

with

¤̂5
m

\
j5

1

2i
@c̄¹c2~¹c̄!c#. ~2.6!

The verification is by direct substitution of~2.1! into ~2.2!.
As was shown by Doebner and Goldin,1 a general form for strictly local gauge transform

tions ~that satisfy all the initial requirements discussed in Sec. I! corresponds to the choice

w5 1
2 g~ t !ln r1@L~ t !21#S1u~x,t !, LÞ0, ~2.7!

where c5Ar eiS. For simplicity, we considerg and L independent oft, and u(x,t)[0. The
family of NLSEs with arbitrary coefficients that directly generalizes~2.3! and is invariant~as a
family! under gauge transformations~2.1! with w as in ~2.7!, then has the form1

i
]c

]t
5H i (

j 51

2

n jRj1(
j 51

5

m jRj J c, ~2.8!

where, then j andm j are real, and

R15
¹"¤̂

r
, R25

Dr

r
, R35

¤̂

2

r2 , R45
¤̂"¹r

r2 , R55
~¹r!2

r2 . ~2.9!

In obtaining ~2.8!, one uses the identityDc/c5 iR11 1
2R22R32 1

4R5 . Invariance of the family
~2.8! under~2.1! and~2.7! means that ifc satisfies an equation in this family with coefficientsn j

and m j , thenc8 satisfies another equation in the family with coefficientsn j8 and m j8 ; thus our
choice of the primed coefficientn18 in writing Eq. ~2.2!.

Now the class of nonlinear gauge transformations in quantum mechanics can be ess
extended if we replace strict locality by weak locality, thus allowing the gauge functionalw to
depend on derivatives ofc. Under this assumption the gauge transformation is no longer simp
point transformation; it is aBäcklund transformation.4 Here we consider gauge transformations
Bäcklund type that form a group, satisfying the physically motivated requirements discuss
Sec. I, with strict locality replaced by weak locality.

We observe that ifw is permitted to depend on derivatives ofS as well as derivatives ofr,
then the set of gauge transformations in general does not respect the group property. How
the derivatives ofS are excluded fromw, then the transformations do respect this property. O
way to see this is to write nonlinear gauge transformations as they act on logarithmic coord
T andS, with ln c5T1iS ~so thatT5 1

2 ln r!, omitting for simplicity the explicitx and t depen-
dence:

S S8
T8 D5S L G

0 1 D S S
TD , ~2.10!

whereL is a linear or nonlinear functional ofS and its derivatives, andG is a linear or nonlinear
functional of T and its derivatives. In the strictly local case, we haveL@S#5LS and G@T#
5g T. If we perform two transformations~2.10! successively, T95T85T and S95
L2@L1@S#1G1@T# #1G2@T#. Then derivatives present in the form ofG never act successively, s
that their order does not increase; but derivatives in the form ofL do act successively. Thus th
group property, with the condition that the number of derivatives ofc remains bounded, rules ou
derivative terms inL—but not inG.
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Now a simple gauge transformation that is no longer strictly local, but satisfies the
requirements discussed in Sec. I, has the form~2.1! with

w5 1
2 g ln r1~L21!S1hD ln r5 1

2 g ln r1~L21!S1h~R22R5!, ~2.11!

whereh is a real parameter that, likeg andL, can in principle depend ont. This corresponds to
the choiceG@T#5g T1hDT in ~2.10!. Thus we have a group of nonlinear gauge transformati
modeled on three~in general time-dependent! parameters, obeying the group law

N(g2 ,L2 ,h2)+N(g1 ,L1 ,h1)5N(g21L2g1 ,L2L1 ,h21L2h1) . ~2.12!

But we note further thatG@T# need not be linear inT. Indeed, while the linear termD ln r5
R22R5 satisfies the separation condition, its nonlinear partsR2 andR5 do so separately! Consid
ering a two-particle product wave functionc (2)(x1 , x2 , t)5c1(x1 ,t)c2(x2 ,t), and defining
r (2)5c (2)c (2), r15c̄1c1 , andr25c̄2c2 , we have

R2
(2)@c (2)#5

D (2)r (2)

r (2) 5
D (2)~r1r2!

r1r2
5

D1r1

r1
1

D2r2

r2
5R2@c1#1R2@c2#,

whereD (2)5D11D2 . Similarly for R5 :

R5
(2)@c (2)#5

@¹ (2)r (2)#2

~r (2)!2 5
@~¹1 ,¹2!r1r2#2

~r1r2!2 5R5@c1#1R5@c2#.

Thus a further generalization of~2.11! that gives weakly local nonlinear gauge transformations
to allow the derivative terms to enter with different coefficients:

w5 1
2 g ln r1~L21!S1h1R21h2R5 . ~2.13!

Let us next write the gauge generalized family of NLSEs derived from~2.11!. Beginning with
the standard, free Schro¨dinger equation in the form

i
]c8

]t
52

\

2m F iR181S 1

2
R282R382

1

4
R58D Gc8, ~2.14!

whereRj8 meansRj@c8#, we transform by~2.1! with w as in~2.11!, and from~2.3! to ~2.5! we find
the form of the resulting NLSEs forc. We generalize, following Ref. 3, by allowing arbitrar
coefficients for the nonlinear functionals, maintaining the invariance of the family of NLSEs u
the nonlinear gauge group. In this fashion, we obtain

i
]c

]t
5H i (

j 51,2,6
n jRj1(

j 51

12

m jRj J c5$ i Î 1R̂%c, ~2.15!

whereR1 , . . . ,R5 are as in~2.9!, and where the new functionalsR6 , . . . ,R12 are given by

R65
¹"s

r
, R75

¤̂"s

r2 , R85
s"¹r

r2 , ~2.16!

R95
s2

r2 , R105DR1 , R115DR2 , R125DR6 ,

with

s5r¹D ln r5r¹~R22R5!. ~2.17!
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Note that the functionalsR6 , . . . ,R11 involve no higher than fourth derivatives ofc, but the
presence of the termR12 in ~2.15! makes it in general of sixth order. If we use~2.13! in place of
~2.11!, we shall need separately the new currentsr¹R2 andr¹R5 . These give rise to additiona
nonlinear functionals inc.

Equation~2.15! still conserves the quantum probabilityc̄c. It gives rise to the gauge invarian
current

Jgi522~n1¤̂1n2¹r1n6s! ~2.18!

that enters the continuity equation

]r

]t
52¹"Jgi52Îr. ~2.19!

III. GAUGE TRANSFORMATIONS AND INVARIANTS FOR THE FAMILY OF
SIXTH-ORDER NLSEs

Under the gauge transformations~2.1!, with w given by ~2.11!, the coefficientsn j , m j of
~2.15! transform as follows:

n185
n1

L
, n285n22

1

2
g

n1

L
, n685n62

hn1

L
, ~3.1!

m185m12
gn1

L
, m285Lm22

1

2
gm11

g2

2L
n12gn2 , m385

m3

L
,

m485m42
gm3

L
, m585Lm52

1

2
gm41

g2

4L
m3 ,

m685Lm62gn62hm11
hg

L
n1 , m785m72

2hm3

L
, ~3.2!

m885Lm82hm42
1

2
gm71

ghm3

L
, m985Lm92hm71

h2m3

L
, m108 5m102

2hn1

L
,

m118 5Lm1122hn22
1

2
gm101

ghn1

L
, m128 5Lm1222hn62hm101

2h2n1

L
.

Note that as expected,h does not enter the transformation laws forn1 , n2 , or m1 , . . . ,m5 , which
are the same as in Refs. 1–3. Note also that if we begin withm1250, then hÞ0 leads to
m128 Þ0; thus we cannot have an invariant family of fourth-order partial differential equation
these transformations.

We now write functionally independent gauge invariantst j ( j 51,2,. . . ,12) asfollows:

t15n22
m1

2
, t25n1m22m1n2 , t35

m3

n1
, t45m42m1

m3

n1
, t̂55m5m32~1/4!m4

2 ,

t65m6n12m1n6 , t75m722n6

m3

n1
, t85m8n12m4n61m6m32~1/2!m7m1 , ~3.3!

t95m9m32~1/4!m7
2 , t105m1022n6 , t115m11n12m10n2 , t125m12n12n6

22~1/4!m10
2 .
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In this list of gauge invariants, we have included a new quantityt̂5 instead of the original
t55n1m52n2m41n2

2(m3 /n1) that was used in Refs. 1–3, since the expression fort̂5 is simpler.
The relation between these two gauge invariants is, of course, wholly gauge invariant:t̂55
t3t51t1t3(t42t1t3)2(1/4)t4

25t3t52(t1t32 1
2t4)2.

It should be noted that~2.15! is invariant under Galilean transformations

x̃5x2vt, t̃ 5t, c̃~ x̃, t̃ !5c~x,t !expS i

2n1
S x"v1

1

2
v2t D D ~3.4!

when

m3

n1
521, m11m450, m71m1050, ~3.5!

and consequently, the gauge invariantst1 , . . .,t12 must satisfy the conditions

t3521, t450, t71t1050. ~3.6!

Under time reversal, all the coefficientsn j , m j change sign. Thus time reversal invariance requi

t150, t450, t750, t1050. ~3.7!

In particular, when~2.15! is the Schro¨dinger equation, we have

n152
\

2m
, m252

\

4m
, m35

\

2m
, m55

\

8m
, ~3.8!

and all other coefficients are zero. Equations~3.7! then give

t25
\2

8m2 , t3521, t55
\2

16m2 , ~3.9!

with all othert’s equal to zero. For the equations studied by Doebner and Goldin,t1 , . . . ,t5 are
arbitrary, butt6 , . . . ,t12 are zero.

Some of the equations discussed by Puszkarz,5 belong to the class~2.15!, when m1250.
Puszkarz’s modification of the Schro¨dinger equation is the formal extension of the equations
Doebner and Goldin obtained by modifying the current~2.6!, adding to it any or all of the
following terms with higher derivatives:

rDS j

r D , r¹S j "¹r

r2 D , r¹S j2

r2D , r¹R2 , r¹R5 .

Since Puszkarz’s modification directly affects only the imaginary part of the nonlinear funct
for i (]c/]t)/c, namely (21/2r)¹"J where J is the current that appears in the equation
continuity, and does not change the real part, the resulting equation is fouth-order. Our equ
are in general sixth-order because of the term withR12, which is needed in order to maintai
invariance under the nonlinear gauge group. The equations of Puszkarz with the first three c
do not belong to any family that is closed under a group of weakly local nonlinear gauge
formations, since the transformations giving rise to those currents involve derivatives of the
S. His equations with the latter two currents belong to the family obtained from~2.15! through
gauge generalization.

In short, we have obtained a natural family of sixth-order partial differential equations in
ant ~as a family! under nonlinear gauge transformations of Ba¨cklund type, that includes a subclas
gauge equivalent to the linear Schro¨dinger equation, a wider subclass gauge equivalent to
equations that Doebner and Goldin studied, and another subclass that intersects the fa
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equations proposed by Puszkarz. Given a particular equation in our family, we can calculate
gauge-invariant parameters, and from these immediately determine whether the equation is
cally equivalent to the free Schro¨dinger equation or an equation of Doebner–Goldin type,
whether it is Galilean and/or time-reversal invariant.

1H.-D. Doebner and G. A. Goldin, Phys. Rev. A54, 3764~1996!.
2G. A. Goldin, J. Nonl. Math. Phys.4, 6 ~1997!.
3H.-D. Doebner, G. A. Goldin, and P. Nattermann, J. Math. Phys.40, 49 ~1999!.
4R. L. Anderson and N. Kh. Ibragimov,Lie-Bäcklund Transformations in Applications~SIAM, Philadelphia, 1979!.
5W. Puszkarz, ‘‘Higher order modifications of the Schro¨dinger equation,’’ quant-ph/9710007, 2 Oct. 1997.
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Quantum information geometry and standard purification
Anna Jenčováa)

Mathematical Institute, Slovak Academy of Sciences,
Štefánikova 49, 814 73 Bratislava, Slovakia

~Received 30 November 2001; accepted for publication 14 January 2002!

We investigate relations between Uhlmann’s parallelism, monotone Riemannian
metrics and dual affine connections on the space of density matrices. ©2002
American Institute of Physics.@DOI: 10.1063/1.1467966#

I. INTRODUCTION

On the space of density operators, several differential geometrical structures were defi
finite dimensional case, the class of monotone Riemannian metrics was specified by Petz
1, using the set of real symmetric operator monotone functions. These metrics are the qu
generalizations of the classical Fisher metric, which is, together with the class of
a-connections, the basic structure of the classical information geometry.

The quantum counterpart of the classical exponential and mixture connections was defi
Nagaoka in Ref. 2 and this definition was generalized toa-connections foraP@23,3# in Ref. 3.

In Ref. 4, the geometric phase of curves of pure states was extended to mixed states
purifying lifts of curves of density matrices. Among such lifts, the one with the least Hilbert s
length is used to define the phase. As it turns out, this defines a connection formageo in the space
W of Hilbert–Schmidt operators, which is theU(n) –principal bundle over the space of no
normalized density operatorsM, heren is the dimension of the underlying Hilbert spaceH. Later,
in Ref. 5 a class of such connection forms was introduced, containing the above formageo.

It is natural to ask what the relations between the above structures are. In Ref. 6 it was
that the connection forms are naturally linked with some Riemannian or Hermitian metrics o
purifying spaceW. Such metrics can be projected ontoM and all the monotone metrics ar
obtained in this way. Further, in Ref. 7, a parallel transport, respecting the connection formageo

was defined onW, such that, if projected ontoM, it coincides with Nagaoka’s~e!-connection. The
aim of the present paper is to obtain all the affinea-connections and their duals in a similar wa
For the sake of simplicity, we will assume that the underlying Hilbert space is finite dimens
and the density operators are invertible.

Section II below gives a brief description of purification and some formulas to be used
In Sec. III, we define the class of connection forms and Riemannian metrics onW and relate them
to the class of monotone metrics onM as in Ref. 6. In Secs. IV and V, we use the duality of tw
real subspaces in the tangent space toW to define two dual parallel transports, induced from t
trivial affine connection onB5B(H). We show that the projections of such parallel transpo
ontoM coincide with thea-connection and its dual. Finally, we define a natural notion of dua
of Riemannian metrics onM.

II. THE PURIFICATION PROCEDURE

Let H be Hilbert space~not necessarily of finite dimension! and letB5B(H) be the algebra
of bounded operators acting onH. Let K be another Hilbert space, with dim(H)<dim(K) and let

A5B~H^ K!.

a!Electronic mail: jenca@mat.savba.sk
21870022-2488/2002/43(5)/2187/15/$19.00 © 2002 American Institute of Physics
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Let us consider the*-representationf:B→A, given by b°b^ 1K . Let r be a positive linear
functional onB. The vectorjPH^ K is said to be a purification ofr if for eachbPB

r~b!5Trrb5^j,f~b!j&5Trb^ 1Pj ,

here the density operator was also denoted byr and Pj is the orthogonal projector onto th
subspace spanned byj. It is clear thatj is a purification ofr if

r5Tr2Pj ,

where Tr2 is the partial trace overK.
In the sequel, we will use the choiceK5H* . The Hilbert spaceH^ H* can be identified with

the space of Hilbert–Schmidt operators overH, with the Hilbert–Schmidt inner product

^w1 ,w2&5Trw1* w2 .

This identification is easily seen if we use Dirac’s notations, then the product vectors are ide
with

w ^ c* °uw&^cu,

wherec* (w)5^c,w&. The operationw°w* on W corresponds to the anti-unitary operatorJ on
H^ H* , given by

J~w ^ c* !5c ^ w* .

The representationf is equivalent tob°Lb , whereLb(w)5bw is the left multiplication operator
on W. ThenwPW is a purification ofr if

r~b!5Trbr5^w,Lbw&5Trw* bw5Trbp~w!,

for eachbPB, wherep(w)5ww* .
In a similar way, we may represent the algebraB* 5B(H* ) in A by

f8:b°1^ b°Rb* .

Here,bPB* is the linear operator given bybw* 5(bw)* andRb(w)5wb is the right multipli-
cation operator onW. Thenf8(B* ) is the commutant off(B). If s is a positive linear functiona
on B* , the vectorj purifiess if

s5Tr1Pj5Tr2PJj ,

where Tr1 is the partial trace overH. This is equivalent to

s5p8~w!, p8~w!5w* w

wherew is the Hilbert–Schmidt operator corresponding to the vectorj.
Let wPW be invertible,p(w)5r, p8(w)5s and letw5r1/2u5us1/2 be the polar decom-

position ofw. Then

r5(
i

l i uw i&^w i u, s5(
i

l i uc i&^c i u,

l i.0 for all i are the spectral decompositions ofr and s and w5( il i
1/2uw i&^c i u, whereuc i

5w i .
                                                                                                                



-

wed

pital
r to

-

fined
e

t

s

2189J. Math. Phys., Vol. 43, No. 5, May 2002 Quantum information geometry and standard

                    
Following Ref. 6, we will use a certain class of operators fromB(W) to introduce a Riemann
ian structure inW. Let us denoteL5Lr , R5Rr , L̃5Ls and R̃5Rs and letD be the modular
operatorD5LR̃21. Then the spectral decomposition ofD is

D5(
i

l i

l j
~Pw i

^ Pc
j*
!,

so that if f is a smooth function andxPW, we have

f ~D!~x!5(
i

f S l i

l j
D uw i&^w i uxc j&^c j u.

Similar expressions are obtained forf (LR21), f (L̃R̃21), etc.

III. CONNECTION FORMS AND MONOTONE METRICS

Let dim(H)5n. Let W0,W be the open subset of invertible operators, then it can be vie
as a real 2n2-dimensional differentiable manifold. LetTw denote the tangent space atw, thenTw

can be identified withW with the structure of a real linear space. Throughout the text, the ca
lettersX, Y, etc. denote the elements ofTw as differential operators, whereas small letters refe
their representationsx5X(w).

Let M,W0 be the submanifold of~non-normalized! density matrices, i.e., the positive com
plex matrices. ThenW0 can be realized as the principal bundle with base spaceM and structure
groupU(n). The projectionp:W0→M,p(w)5ww* is the canonical projection. LetTr(M) be
the tangent space ofM at r. The canonical projection induces a linear mapTw→Tp(w)(M) ~also
denoted byp!

p~x!5xw* 1wx* .

The vertical subspaceVw,Tw is given by the condition

xPVw⇔p~x!50.

It is easy to see that

Vw5$wa:a1a* 50%.

We will describe the class of connections defined in Refs. 5 and 6. If a connection is de
in W0 , the tangent spaceTw is decomposed as the direct sum ofVw and a horizontal subspac
Hw . For each vectorxPTw there is a unique decompositionx5xh1xv into its horizontal and
vertical part. We introduce a Riemannian structure inW0 as follows. Let (•,•) denote the real par
of the Hilbert–Schmidt inner product, i.e.,

~x,y!5R^x,y&5 1
2Tr~x* y1y* x!.

Let k:R1→R1 be a smooth function such thatk(1)51 and letD be the modular operator. Let u
define

~x,y!w5~x,k~D!21~y!!, x,yPTw .

The horizontal subspaceHw is defined as the orthogonal complement ofVw with respect to
(•,•)w . A tangent vectorx is then horizontal iff it has the form

x5k~D!~gw!5k~L/R!~g!w, g5g* .
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The corresponding connection form is given by

v5r ~ L̃/R̃!~w21dw!2r ~R̃/L̃ !~w21dw!* ~1!

5w21dw2~w21dw!* 1w21~F~L/R!dr!~w21!* , ~2!

wherer is a smooth positive function withr (t)1r (t21)51 andF(t)5r (t)2r (t21). The func-
tions r andk are connected by

r ~ t !5
tk~ t21!

k~ t !1tk~ t21!
.

The above Riemannian structure can be projected onto the base spaceM via the projectionp :
Let p(w)5r and lethPTr(M). Then there exists a unique vectorĥPTw such thatĥ is hori-
zontal andp(ĥ)5h, it is called the horizontal lift ofh to w. We have

ĥ5 1
2 R21~12F~L/R!!~h!w5r ~R/L !~h!~w* !21.

Let us define

^h,k&r54~ ĥ,k̂!w h,kPTr~M!. ~3!

It is easy to see that the right-hand side depends only onww* 5r, so that this defines a Riemann
ian structure onM. We are particularly interested in Riemannian metrics that are monotone
respect to completely positive, trace preserving maps. It was proved by Petz in Ref. 1, tha
metrics are of the form

^h,k&r5TrhJr~k! Jr5R21f ~L/R!21, ~4!

wheref is an operator monotone function which is symmetric, i.e., it satisfiesf (t)5t f (t21). If we
require that this metric coincides with the Fisher information metric on commutative subm
folds, we need an additional conditionf (1)51. The last requirement also gives rise to the m
tiplication factor 4 in~3!.

If the induced Riemannian metric onM is of the form~4! for some smooth positive function
f , then we have

k~ t !5 f ~ t !~12F~ t !!, f ~ t !5 1
2 ~k~ t !1tk~ t21!!. ~5!

It is easy to see that given a monotone Riemannian metric, the connection that induces i
unique. On the other hand, as the connection depends only fromk(t)/k(t21), the induced Rie-
mannian metric is again not unique. To get uniqueness, one more condition is needed. A
requirement is that the inner product (•,•)w in Tw coincides with the real part of the Hilbert
Schmidt inner product, if restricted to horizontal vectors. It was proved in Ref. 6 that for
operator monotone functionf there is a unique positive functionk such that the above conditio
is satisfied. Let us put

p~ t !5
k~ t !

k~ t21!
,

then k(t)5Ap(t)q(t), where the functionq(t)5q(t21) is uniquely given by the condition
(x,k(D)21y)5(x,y) for x,yPHw . Thus we have

Theorem 3.1:For each monotone metriĉ•,•&r on M, there exists a unique smooth functio
p:R1→R1 satisfying p(t21)5(p(t))21, such that
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(i) if

r~t!5
t

p~t!1t
,

then the corresponding connection form induces the given monotone metric;
(ii) if

k~t!5p~t!
p~t!1t

p~t!21t
, ~6!

then p(t)5 k(t)/k(t21) and the corresponding connection is the same as in( i ). Moreover,
(x,y)w5(x,y) for all horizontal vectors x, y;

(iii) the corresponding operator monotone function is of the form

2 f~t!5
~p~t!1t!2

p~t!21t
.

In the sequel, we will always suppose thatk andp are smooth functions related by Eq.~6!.
Example 3.1:Let p(t)51. Then f (t)5 (11t)/2 is the largest symmetric operator monoto

function. It is related to the Bures metric,Jr is the symmetric logarithmic derivative~SLD!. Here,
k(t)51 andr (t)5 t/(11t). The horizontal subspaceHw consists of vectors of formx5gw, g
5g* . See Refs. 8 and 9.

Example 3.2:For the smallest symmetric operator monotone functionf (t)5 2t/(11t), we
have p(t)5t, k(t)5 2t/(11t) and r (t)5 1

2. The vector xPHw if and only if x5 2L/(L
1R) (g)w for g5g* . This is equivalent tox5wh for some h5h* . In this case,Jr(h)
5 1

2(hr211r21h) and the monotone metric is called the metric of the right logarithmic deriva
~RLD!. The connection form given byr is the canonical connection form on the bund
GL(n)/U(n).10

Example 3.3:For p(t)5At, we obtain the operator monotone functionf (t)5 (11At)2/4. The
corresponding monotone metric is the smallest in a special class of monotone metrics, defi
Refs. 11 and 12. This class is important in the context of quantum information geometry, se
13. It contains also the monotone metric from the previous example. Here,k(t)5 (11At)/2 and
r (t)5 At/(11At). The horizontal vectors forw5Aww* u are of the formx5gu, g5g* .

IV. DUAL AFFINE CONNECTIONS

For the Riemannian manifoldM with a monotone metric, Nagaoka in Ref. 2 defined t
quantum version of the exponential and mixture connections of the classical information g
etry. There, the mixture connection~(m)-connection! coincides with the trivial affine structure o
M and the exponential (e)-connection is its dual with respect to the given Riemannian struct
The corresponding parallel transports of a vectorhPTr0

(M) along a curverPM, with r(0)
5r0 , r(1)5r1 , are given by

Pr
(m)~h!5h,

Jr1
~Pr

(e)~h!!5Jr0
~h!.

The aim of this section is to show that this structure onM appears naturally in the context of Se
III.

Let us fix a monotone metric onM and letk be as in theorem 3.1. To define the two du
connections, it is convenient to use a different characterization of the horizontal subspace, g
Ref. 6. Let us consider the space

Tw5$gw : gPB%5$wg : gPB%,
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with the complex Hilbert space structure,^x,y&w5^x,k(D)21(y)&, (^•,•& is the Hilbert–Schmidt
inner product.! Let S andF be the conjugate linear operators of the Tomita–Takesaki theory, g
by S(gw)5g* w, F(wg)5wg* , S5JD1/25D21/2J and F5D1/2J5JD21/2, where J is the
modular conjugation. LetSk be the modification ofS given by

Sk~k~D!~gw!!5k~D!~g* w!.

ThenHw is the fix point set ofSk.
Lemma 4.1:

(i) Sk5Sp(D)215p(D)S;
(ii) The adjoint of Sk with respect tô •,•&w is F;
(iii) The polar decomposition of Sk is Sk5Jk(Dk)1/2, where

Jk5Jp~D!2 1/25p~D!1/2J Dk5p~D!21D,
(iv) let Hw* be the fix point set of the operator F. Then for xPHw , yPHw* we have^x,y&w

PR.

Proof: ~i! Observe first, thatk(D)(gw)5Ap(D)(q(L/R)(g)w) with q(t)5q(t21), so that
Sk5SAp. Obviously

SAp5p~D!1/2Sp~D!2 1/25p~D!S5Sp~D!21.

The statements~ii ! and ~iii ! are easy to prove. To prove~iv!, let xPHw andyPHw* . Then

^x,y&w5^Sk~x!,y&w

5^F~y!,x&w5^y,x&w5^x,y&w
2PR.

h

Let us introduce a linear operatorJ:Hw→Hw* , such that forxPHw , p(x)5p(J(x)). Then
J is well defined and invertible. Indeed, note that the real vector subspaceHw* 5$wg,g5g* %
coincides with the horizontal subspaceHw from Example 3.2, so that bothpuHw

and puH
w*

are

isomorphisms.
Further, letL w

k , Kw be two linear mapsTw→B, given by

L w
k ~x!w5k~D!21~x!, Kw~x!5xw* .

The operatorsL w
k andKw are invertible andL w

k (Hw)5Bh , Kw(Hw* )5Bh , whereBh is the subset
of hermitian operators inB. For x,yPTw , we have

^x,y&w5^L w
k ~x!,Kw~y!&. ~7!

Let hPTr(M). The horizontal lift ofh to w satisfies

L w
k ~ ĥ!5 1

2 Jr~h!, ~8!

y5J~ ĥ!⇔Kw~y!5 1
2 h. ~9!

Proposition 4.1: Let us define the bilinear form(•,•)w
; on Hw by

~x,y!w
;5^x,J~y!&w ,

then we have(x,y)w
;5(x,y)w . Moreover, the operatorJ coincides with the restriction of

1
2 ~11Dk!5 1

2 ~11p~D!21D!,
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to Hw .
Proof: Let x,yPHw and letp(x)5h, p(y)5k. ThenKw(J(y))5 1

2k andL w
k (x)5 1

2Jr(h). It
follows from ~7! that

~x,y!w
;5^x,J~y!&w5 1

4 ^Jr~h!,k&

5 1
4 ^h,k&r5~x,y!w .

Let now xPHw , then

F~11Dk!~x!5F~11F !~x!5~11Dk!~x!,

so that1
2(11Dk)(x)PHw* . From

^x,Dk~y!&w5^x,FSk~y!&w5^Sk~y!,Sk~x!&w5^y,x&w

we have that

^x, 1
2 ~11Dk!~y!&w5~x,y!w5~x,y!w

; .

h

From the above Proposition, we see that we may extendJ to a positive operator onTw . The
inner product (•,•)w

; on Tw , given by

~x,y!w
;5^x,J~y!&w ,

corresponds to the complexification of the real Hilbert spaceHw with the inner product (•,•)w .
Example 4.1:Let k51. Let r(u), uPQ#RN be a smooth parametrization of the manifo

M. Let us denote

hi~u!5
]

]u i
r~u!.

For simplicity, we will omit the indication of the pointu in the sequel.
In Ref. 14, Holevo introduced the symmetric logarithmic derivativeLi

S by

hi5
1
2 ~Li

Sr1rLi
S!,

and the right and left logarithmic derivatives

hi5rLi
R , Li

L5~Li
R!* .

It is easy to see that in our setting, the horizontal subspaceHw is spanned by the vectors

l i
S5Li

Sw52ĥi , i 51, . . . ,N

and

J~ l i
S!5 l i

L5Li
Lw,

so thatHw* is the real linear span of$ l i
L , i 51, . . . ,N%, note that this is true for allk. We also have

l i
R5Li

Rw5D21~ l i
L!.

Further, Holevo defined the sesquilinear forms ina,bPB

^a,b&r5 1
2Tr ~a* rb1a* br!5~aw,bw!;,
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^a,b&r
15Tr a* br5^aw,bw&,

@a,b#r5 iTr ~ra* b2rba* !5^aw,i ~12D!~bw!&.

Another important notion is the commutation operatorDr , given by

^a,Dr~b!&r5@a,b#r .

It is easy to see that the operatoraw°Dr(a)w is equal to

iJ 21~12D!52i
12D

11D
522iF ~D!.

Example 4.2:Let k(t)5 2t/(11t), thenp(t)5t, so thatDk51. The horizontal subspaceHw

coincides withHw* and the operatorJ is the identity. Clearly,ĥi5
1
2l i

L , i 51, . . . ,N. Let us denote
by J S the operator12(11D) from the previous example, thenk(D)5(J S)21D and we get

~ l i
L ,l j

L!w5^ l i
L ,l j

L&w5^ l i
L ,J S~ l j

R!&5~ l i
L ,l j

R!;,

where (x,y);5^x,J S(y)&.
We can also describe the horizontal and vertical part of a vector inTw , using the operatorsF,

Sk, and J as follows. Let P be the orthogonal projector fromTw onto Hw with respect to
(•,•)w , then

P5 1
2J 21~11F !.

Indeed, for eachxPTw , we have1
2(11F)(x)PHw* and p( 1

2(11F)(x))5p(x)5p(xh). It fol-
lows that:

1
2J 21~11F !~x!5xh5Px.

From this, we have

xv5x2xh5 1
2J 21~Dk2F !~x!5 1

2J 21F~Sk21!~x!.

We will now define dual affine connections inW0 . The spaceB is a differentiable manifold
andW0 is an open submanifold inB. Let us consider the trivial affine connection inB. The maps
L w

k :Tw→Tw(B) and Kw :Tw→Tw(B) induce affine connections inW0 . Let P* and P be the
corresponding parallel transports and letg be a smooth curve inW0 , g(0)5w0 , g(1)5w1 . Then
for XPTw ,

Kw1
~Pg~X!!5Kw0

~X!,

L w1

k ~Pg* ~X!!5L w0

k ~X!.

The corresponding covariant derivatives¹ and¹* are given by

Kw~¹XY!5XKw~Y!5Kw~XY!1yx* ,

L w
k ~¹X* Y!5XL w

k ~Y!,

whereX,Y are smooth vector fields onW0 .
It is clear from~7! that ^X,Y&w0

5^Pg(X),Pg* (Y)&w1
so that the connections¹ and¹* are

dual with respect tô•,•&w .
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As we are interested in the projections ontoM, we restrict the parallel transports to horizont
vectors. FromL w

k (Hw)5Bh , we see that the restriction ofP* to the bundleø$(w,Hw), w
PW0% is induced from the trivial parallel transport restricted toø$(b,Bh), bPB%. It means that
the parallel transport of a horizontal vector stays horizontal. This is not necessarily true forP. On
the other hand, the above restriction of the trivial connection onB induces the restriction ofP to
the bundleø$(w,Hw* ), wPW0%. We may therefore define the parallel transportPh for xPHw by

Ph~x!5J 21~P~J~x!!!.

Then the parallel transportsP* andPh are dual with respect to (•,•)w . Indeed, ifx,yPHw ,

~Pg* ~x!,Pg
h~y!!w1

5^Pg* ~x!,Pg~J~y!!&w1

5^x,J~y!&w0
5~x,y!w0

.

Note also thatPh coincides with the horizontal part ofP.
Proposition 4.2: Letg be a smooth curve inW0 , g(0)5w0 , g(1)5w1 , where w0 and w1 are

any elements ofW0 , satisfyingp(w0)5r0 and p(w1)5r1 . Let hPTr0
(M) and let ĥ be the

horizontal lift to w0 . Then

Pp(g)
(m) ~h!5p~Pg~ ĥ!!5p~Pg

h~ ĥ!!,

Pp(g)
(e) ~h!5p~Pg* ~ ĥ!!.

Proof: Follows easily from~8! and ~9!. h

Let H,K be vector fields onM and letĤ,K̂ be horizontal lifts. From the above Propositio
it also follows thatp(¹

Ĥ
* K̂)5¹H

(e)K, so that¹
Ĥ
* K̂ is a horizontal lift of¹H

(e)K. Similarly, ¹
Ĥ

h
K̂ is

the horizontal lift of¹H
(m)K.

V. THE a - CONNECTIONS

In Ref. 3, the a-connections onM were defined as generalizations of the (e) and
(m)-connections foraP@23,3#. There, thea-connection was given by the trivial affine structu
on ga(M), where

ga~ t !5H 2

12a
t ~12a!/2 aÞ1

log t a51

.

The connection was determined using the differentiation operatorsLa@r#:Tr(M)→Tga(r)(M),
given by

La@r#~H !5
d

dt
ga~r1tH !u t50 .

The correspondinga-parallel transport fromr0 to r1 along a curver is

La@r1#~Pr
(a)~X!!5La@r0#~X!, XPTr0

~M!.

The parallel transportPr
(a)* , dual with respect to the given monotone metric is given by

La
21@r1#Jr1

~Pr
(a)* ~X!!5La

21@r0#Jr0
~X!.
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Again, we will show that the above affine connections are closely related to the cla
connection forms from Sec. III. To this end, we define the projectionpa from W0 to M by

pa~w!5ga~ww* !.

Let r5ww* . The induced linear mappa:Tw→Tpa(w)(M) is

pa~x!5La@r#~xw* 1wx* !.

The operatorLa@r# is invertible, therefore,

pa~x!50⇔p~x!50,

so that we have the same vertical subspaceVw . Hence we have the horizontal subspaceHw and
the dual spaceHw* as in the previous section. LetkPTga(r)(M) and let us denotek̂a the hori-

zontal lift of k with respect topa, i.e. a horizontal vector such thatpa( k̂a)5k. Let h
PTr(M). The horizontal lifts with respect top andpa are connected by

ĥ5 k̂a⇔k5La@r#~h!. ~10!

In the sequel, we extend the differential operatorLa@r# to all of B. We define the two maps
L w

a ,K w
a :Tw→B by

L w
a~X!5La

21@r#~Lw~X!!,

K w
a~X!5La@r#~Kw~X!!.

The operatorsK w
a andL w

a have similar properties asKw andLw . We also have

^x,y&w5^Lw~X!,Kw~Y!&5^L w
a~X!,K w

a~Y!&. ~11!

The horizontal liftĥa of a vectorhPTpa(w)(M) satisfies the conditions

L w
a~ ĥa!5 1

2 La
21@r#JrLa

21@r#~h!5 .. 1
2 Ka~h!, ~12!

y5J~ ĥa!⇔K w
a~y!5 1

2 h. ~13!

The induced inner product inTpa(w)(M) is then

4~ ĥa,k̂a!w54^ĥa,J~ k̂a!&w

54^L w
a~ ĥa!,K w

a~J~ k̂a!!&5^Ka~h!,k&.

This coincides with the inner product, induced from^•,•&r in the a-representation of the cotan
gent space, see Ref. 3.

As in the previous section, we use the trivial affine connection onB and the mapsK w
a andL w

a

to obtain the parallel transportsPa and Pa* on W0 . From Eq.~11! it follows that the parallel
transports are dual. The parallel transportsPa and Pa* can again be restricted to the bundl
ø$(w,Hw* ), wPW0% andø$(w,Hw), wPW0%, respectively. We put

Pah~x!5J 21Pa~J~x!!,

for xPHw . As before, this corresponds to the horizontal part ofPa and the parallel transport
Pa* andPah are dual with respect to (•,•)w .

In the next Proposition, we show how these connections are projected ontoM.
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Proposition 5.1: Letg be a smooth curve inW0 , g(0)5w0 , g(1)5w1 , where w0 and w1 are
any elements ofW0 , satisfyingp(w0)5r0 and p(w1)5r1 . Let hPTr0

(M). Then

Pp(g)
(a) ~h!5p~Pg

a~ ĥ!!5p~Pg
ah~ ĥ!!,

Pp(g)
(a* )~h!5p~Pg

a* ~ ĥ!!.

Proof: The proof follows from~10!, ~12!, ~13! and the definition of the~a!- and (a* )-parallel
transports. h

From the above Proposition, it also follows that¹
Ĥ

ah
K̂ and¹

Ĥ

a* K̂ are thep-horizontal lifts of
¹H

(a)K and¹H
(a* )K, respectively.

Let us now compute the Riemannian curvature of thea-connections.
Proposition 5.2: Let Ra and Ra* be the Riemannian curvature tensor of¹a and ¹a* . Then

Ra5Ra* 50.

Proof: We have for smooth vector fieldsX,Y,Z on W

L a~Ra* ~X,Y!Z!5L a~¹X
a¹Y

aZ2¹Y
a¹X

aZ2¹ [X,Y]
a Z!

5XL a~¹Y
aZ!2YL a~¹X

aZ!2@X,Y#L a~Z!

5~XY2YX2@X,Y# !L a~Z!50.

The statement forRa can be proved similarly. It follows also from duality of the correspond
parallel transports.

h

VI. THE CURVATURE FORM

In this section, we compute the curvature form of the connectionv and show the relation
between the curvature form and the torsion of thea-connections.

Let us choose a connection formv from Sec. III 1. We will compute its curvature form. From
the structure equation

dv52 1
2 @v,v#1V,

it follows that:

v@X,Y#522V~X,Y!, ~14!

for horizontal vector fieldsX,Y, see Ref. 10, pp. 81.
Let wPW0 and letp(w)5r. Let us define the operatorCr :B→B, given by

Cr~a!5R21r ~R/L !~a!

Proposition 6.1: Let H,K be smooth vector fields onM, such that@H,K#50. Then

Vw~Ĥ,K̂ !52 1
2 w21~HCr~k!

2KCr~h!2@Cr~h!,Cr~k!#B!w,

where@a,b#B5ab2ba is the usual commutator on matrices.
Proof: From p(@Ĥ,K̂#)5@H,K#50 and Eq.~14!, it follows that:

@Ĥ,K̂#5@Ĥ,K̂#v5wv~@Ĥ,K̂# !522wV~Ĥ,K̂ !.
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Further, the horizontal lift ofH is given by the condition

Ĥ~w!5r ~R/L !~H~r!!~w* !215Cr~H~r!!w,

so that

ĤK̂~w!5Ĥ@Cr~k!#w1Cr~k!Ĥ~w!5~HCr~k!1Cr~k!Cr~h!!w

It is now easy to finish the proof.
h

Example 6.1:Let k51. Thenr (t)5t/(11t) andCr5 1
2Jr . Let H,K be vector fields onM,

such that@H,K#50. Let us denoteLH
S5Jr(h). Then

22wV~Ĥ,K̂ !w215 1
2 ~HLK

S2KLH
S !2 1

4 @LH
S ,LK

S#B .

Let T* be the torsion of the (e)-connection onM, then

T* ~H,K !5Jr
21~HLK

S2KLH
S !5 1

4 @@LH
S ,LK

S#B ,r#B ,

see Refs. 2 and 6. We compute

V~Ĥ,K̂ !5 1
8 w* Jr~@LH

S ,LK
S#B!w.

We see that the curvature formV(H,K)50 if and only if the symmetric logarithmic derivative
commute. In this case also the torsionT* (H,K) vanishes.

Example 6.2:Let v5vcan be the connection form of the canonical connection~Example 3.2!.
Then r 5 1

2 andCr5 1
2R

21. Let us denoteLH
L 5hr2152Cr . The curvature form is

Vcan~H,K !5 1
8 w21@LK

L ,LH
L #Bw

5 1
8 @w21k~w* !21,w21h~w* !21#B .

Again, the curvature form is zero iff the left~or, equivalently, the right! logarithmic derivatives
commute. We haveT* (H,K)5R@LH

L ,LK
L #B , so that the torsion also vanishes.

We see that in both examples, there is a close relation between the curvature form ofv and the
exponential connection onM: Vanishing of the curvature form implies vanishing of the torsion
the (e)-connection. As we shall see next, this is not always true.

Example 6.3:Let v be the connection form from Example 3.3. LetuPU(n) and let us define

s:M→W0 by s(r)5r
1
2u. Thens is a global horizontal section. It follows that the curvatu

form of V vanishes. On the other hand, the torsion of the (e)-connection is not always zero, se
Ref. 13.

Let now Ta andTa* be the torsion of the connection¹ah and¹a* on W0 .
Proposition 6.2: Let H,K be vector fields onM and let T(a* ) be the torsion of the connectio

¹ (a* ) on M. Then the horizontal part of Ta* (Ĥ,K̂) is the horizontal lift of T(a* )(H,K) and

v~Ta* ~Ĥ,K̂ !!52V~Ĥ,K̂ !,

whereV is the curvature form ofv.
Proof: The vector fields¹

Ĥ

a* K̂ and¹
K̂

a* Ĥ are horizontal lifts of¹H
(a* )K and¹K

(a* )H, so that

~Ta* ~Ĥ,K̂ !!h5¹
Ĥ

a* K̂2¹
Ĥ

a* K̂2@Ĥ,K̂#h.

But @Ĥ,K̂#h is the horizontal lift of@H,K#, so that
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p~Ta* ~Ĥ,K̂ !!5T(a* )~H,K !.

It also follows that

v~Ta* ~Ĥ,K̂ !!52v~@Ĥ,K̂# !52V~Ĥ,K̂ !.

h

Proposition 6.3: Let H, K be as above and let T(a) be the torsion of the connection¹ (a) on

M. Then Ta(Ĥ,K̂) is vertical, with

v~Ta~Ĥ,K̂ !!52V~Ĥ,K̂ !.

Proof: The proof is analogical to the previous proof, using the fact that the connection¹ (a) on
M is torsion-free.

h

Proposition 6.4: Let x,yPHw* and let T̄a be the torsion of the connection¹a. Then T̄a(X,Y)
is vertical and

T̄a~X,Y!52wVcan~X,Y!

Proof: Let the horizontal subspace be given by the cannonical connection, thenHw5Hw* and
J is the identity map. It follows that¹a5¹ah. The vectorsX,YPHw* can be extended to vecto
fields on W0 , such thatp(X) and p(Y) are smooth vector fields onM. The statement now
follows from the previous Proposition.

h

Remark 6.1:If a521, i.e.,¹a5¹, it is easy to compute that

Kw~ T̄~X,Y!!5yx* 2xy* ,

and T̄(X,Y) is, therefore, vertical for all smooth vector fieldsX,Y.

VII. DUAL RIEMANNIAN METRICS

It follows from symmetry of the representationB^ 1 and its commutant 1̂B that we may
equally well use the projectionp8:W0→M,

p8:w°w* w,

instead ofp. In this case, the induced linear mapTw→Tw* w(M) is

p8~x!5x* w1w* x.

It is easy to show thatp8(x)50 if xw21 is anti-Hermitian, so that the vertical subspace is giv
by

Vw8 5$aw:a1a* 50%.

Let the horizontal subspaceHw8 be the orthogonal complement ofVw8 with respect to

~x,y!w8 5~x,k~D21!21~y!!,

for a positive functionk. It is quite clear that given a functionk, we obtain the same Riemannia
structure onM from (•,•)w8 and p8 as from (•,•)w and p. Moreover, (•,•)w coincides with
(•,•) on Hw if and only if the same is true for (•,•)w8 andHw8 .

Let Fk be the modification of the Tomita–Takesaki operatorF, given by
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Fk~k~D21!~wg!!5k~D21!~wg* !.

Lemma 7.1:

(i) F k5Fp(D)5p(D)21F;
(ii) The horizontal subspace Hw8 is the fix point space of Fk;
(iii) F k is the adjoint operator of Sk with respect tô •,•&;
(iv) The polar decomposition of Sk with respect tô •,•& is Sk5JD;k1/2, where

D;k5Dp~D!225
p̃~D!

p~D!
5p̃~D!p~D21!,

(v) FAp5SAp̃, where p̃5tp(t21)5t/p(t)

Proof: ~i! is proved similarly as Lemma 4.1~i!, the statements~ii !–~iv! are easy to prove. To
get ~v!, write

FAp5Fp~D!5JD21/2p~D!5JD1/2p̃~D!215SAp̃.

h

Let the functionsf and f̃ be obtained fromp and p̃ as in Theorem 3.1~iii !. Then we will say
that the corresponding Riemannian metrics onM are dual.

From the above Lemma, we see that the horizontal subspaceHw8 , given by the functionp,
coincides with the subspaceHw , obtained fromp̃. It means that a pair of dual Riemannia
structures onM is obtained from the real part of Hilbert–Schmidt inner product on a horizo
subspace~Hw or Hw8 !, using the projectionsp andp8. Another way to do it is to use the sam
projection~p or p8! on two dual subspacesHw andHw8 .

Example 7.1:It is easy to see that ifk51, the dual subspaceHw8 coincides withHw* from Sec.
IV. Moreover,Hw andHw* are the SLD and RLD subspaces from Examples 3.1 and 3.2. It foll
that SLD and RLD are dual Riemannian metrics. The metric from Example 3.3 is the u
self-dual Riemannian metric.

Let Hw andHw8 be two dual horizontal subspaces given by the functionk, i.e.,Hw andHw8 are
the fix point space ofSk andFk, respectively. LetJ k be the operatorHw→Hw8 , satisfying

^x,J k~y!&5~x,y!w , x,yPHw .

Then

J k5 1
2 ~11D;k!uHw

.

Indeed, letx,yPHw , then

~11D;k!~x!5x1Fk~x!PHw8

and

1
2 ^x,~11D;k!~y!&5 1

2 ~^x,y&1^x,FkSk~y!&!5~x,y!5~x,y!w .

Let now h1 ,h2PTr(M) and let ^•,•&r be the inner product, given by the functionf
5 1

2(k(t)1tk(t21)). Then it can be realized onHw* as

^h1 ,h2&r5^ l 1
L ,J 21J kJ 21~ l 2

L!&

5^ l 1
L,2~11 p̃~D!!21@11 p̃~D!p~D21!#

3~11 p̃~D!!21~L2
L!&,
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wherel i
L5hi(w* )21, i 51,2. Note that this corresponds to the decomposition of the functiof

f ~ t !5
1

2

~11 p̃~ t !!2

11 p̃~ t !p~ t21!
,

from Theorem 3.1~iii !.
We conclude with two natural questions:

~1! From Theorem 3.1, we see that there is a one-to-one correspondence between the s
operator monotone functions and a subset of

$p:R1→R1, p is smooth, p~ t21!5p~ t !21%.
How is this subset characterized?

~2! Let the Riemannian metriĉ•,•&r be monotone. Does it follow that the dual Riemanni
metric is monotone?
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Exact evolution equations for SU „2… quasidistribution
functions

A. B. Klimova)

Departamento de Fı´sica, Universidad de Guadalajara, Revolucio´n 1500, 44410,
Guadalajara, Jal., Mexico

~Received 31 October 2001; accepted for publication 4 February 2002!

We derive an exact~differential! evolution equation for a class of SU~2! quasiprob-
ability distribution functions. Linear and quadratic cases are considered as well as
the quasiclassical limit of the large dimension of representation,S@1. © 2002
American Institute of Physics.@DOI: 10.1063/1.1463711#

I. INTRODUCTION

Phase-space representation provides a very useful insight into nonrelativistic quantu
chanics and allows us to treat it as a statistical theory in a classical phase space. Since the
paper of Wigner1 the phase-space methods have been successfully applied in different branc
quantum mechanics~see, e.g., Ref. 2!. Special attention has been paid to Heisenberg–Weyl q
sidistribution functions3 describing a quantum system dynamics in the flatq-p (a –a* ) space.
The dynamics of quasiprobability distributions in phase space is governed by quantum Liou
like equations, which in the limit\→0 turn to the classical Liouville equation,4–6 providing the
most suitable approach to the quasiclassical limit in quantum mechanics.

The phase-space description of spin systems was initiated by Stratonovich,7 Beresin,8 and
Agarwal9 ~see also Refs. 10–15!, where different types of the quasiprobability distribution fun
tion on the sphere (u,f)PS2 have been introduced. These functions, naturally related to
SU~2! dynamical group, are useful to visualize nonclassical properties of a collection of two-
atoms.16,17 In the present article we find the exact differential form of the evolution equation
some special types of SU~2! quasidistribution functions and discuss quasiclassical limit of
large dimension of representation. In particular we will be interested inP- andQ-Beresin symbols
and the Stratonovich–Weyl functionW ~see Ref. 12 for review!. These SU~2! quasidistribution
functions can be unified introducing ans-parametrized family of phase-space functions15,18 de-
fined as follows:

Wr
(s)~u,f!5Tr~rŵs~u,f!!, ~1!

wherer is the system density matrix andŵs(u,f) is the operator

ŵs~u,f!5
2Ap

A2S11
(
L50

2S

(
M52L

L

~CSS,L0
SS !2sYLM* ~u,f!T̂LM

(S) , ~2!

whereYLM(u,f) are the spherical harmonics,T̂LM
(S) are the irreducible tensor operators19 which

form an orthogonal operator basis in the space of (2S11)3(2S11) matrices and are defined a

T̂LM
(S) 5A2L11

2S11 (
m,m852S

S

CSm,LM
Sm8 uS,m8& ^S,mu. ~3!

a!Electronic mail: klimov@cencar.udg.mx
22020022-2488/2002/43(5)/2202/12/$19.00 © 2002 American Institute of Physics
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HereCSm,LM
Sm8 are the Clebsch–Gordan coefficients which couple two representations of spinS and

L (0<L<2S) to a total spinS. The values50 corresponds to the Stratonovich–Weyl functio
meanwhiles561 leads to contravariantP-symbol and covariantQ-symbol correspondingly.
Both self-dualŵs50(u,f) and dualŵs561(u,f) kernels are normalized according to

Tr ŵs~u,f!51,
2S11

4p E
S2

dV ŵs~u,f!5I . ~4!

The quasidistribution functionsWr
(s)(u,f) are covariant under rotations and provide the over

relation

2S11

4p E
S2

dV Wr
(s)~u,f!WA

(2s)~u,f!5Tr~rA!, ~5!

where dV5sinu du df is the invariant measure on the sphere andWA
(s)(u,f) is the ~s-ordered!

Weyl symbol of the operatorÂ,

WA
(s)~u,f!5Tr~Âŵs~u,f!!. ~6!

The density matrix can be reconstructed from any quasidistribution function~1! through the
following relation:

r5
2S11

4p E
S2

dV ŵ2s~u,f!Wr
(s)~u,f!. ~7!

In what follows we will consider onlyintegerspinS, which corresponds to the SO~3! rather than
the SU~2! group.

II. EVOLUTION EQUATIONS

A. General systems

Let us consider the dynamics of quasidistribution functionsWr
(s)(u,f) under the action of a

Hamiltonian from 2S11 dimensional representation of the universal enveloping algebr
su(2). Werepresent the Hamiltonian as a series on the irreducible tensor operatorsT̂lk

(S) ~3!,

H5(
l 50

2S

(
k52 l

l

a lkT̂lk
(S) . ~8!

The degree of nonlinearity@on the generators of thesu(2) algebra# of the Hamiltonian~8!, degH,
is defined by the maximum value ofl , such thata lkÞ0. Substituting the density matrix in term
of the quasidistribution functionWr

(s)(u,f) ~7! to the equation of motion,

i ] tr5@H,r#, ~9!

we obtain

i E
S2

dVŵ2s~u,f!] tWr
(s)~u,f!5E

S2

dV@H,ŵ2s~u,f!#Wr
(s)~u,f!. ~10!

The commutator of two irreducible tensor operators can be represented as a linear fo
irreducible tensor operators,19
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@ T̂lk
(S) ,T̂LM

(S) #5A~2l 11!~2L11! (
L8,M8

@~21!L82~21!L1 l #Clk,LM
L8M8 H l L L 8

S S SJ T̂L8M8
(S) , ~11!

where$S
l

S
L

S
L8% are 6j -symbols. We will use the following representation@which can be obtained by

comparing Eqs. 9.2.1~5! and 8.2.1~4! from Ref. 19# of 6 j -symbols in terms of expansion on th
Clebsch–Gordan coefficients,

H l L L 8

S S SJ 5
~21! l

A~2l 11!
S F~L !F~ l !

F~L8! D 1/2

(
j

ajbjl
L CL j ,L80

l j , ~12!

where

aj5
~21! j

j ! ~2S1 j 11!!
, bjl

L 5F ~L1 j !! ~ l 1 j !!

~L2 j !! ~ l 2 j !! G
1/2

, ~13!

and

F~L !5A~2S1L11!! ~2S2L !!. ~14!

Making use of~11! and ~12! we get

@H,ŵ2s~u,f!#5
2Ap

A2S11
(
l ,k

a lk(
L,M

~CSS,L0
SS !sYLM* ~u,f!

3 (
L8,M8

@12~21!L1 l 1L8#T̂L8M8
(S) CL8M8,l 2k

LM g~L,L8,l !, ~15!

g~L,L8,l !5A~2L811!~2l 11!

2L11

F~L !F~ l !

F~L8! (
j

ajbjl
L CL80,l j

L j , ~16!

where we have used the following transformation properties of the Clebsch-Gordan coeffic

Clk,LM
L8M8 5~21! l 2kA2L811

2L11
CL8M8,l 2k

LM , CL j ,L80
l j

5~21!L8A2l 11

2L11
CL80,l j

L j . ~17!

Using the integral representation19 for a product of two Clebsch–Gordan coefficients in terms
the WignerD-function,

CL80,l j
L j CL8M8,l 2k

LM
5

2L11

8p2 E dVDM80
L8 ~f,u,c!D2k j

l ~f,u,c!DM j
L* ~f,u,c!, ~18!

where dV5df dV, and relations

DM80
L8 ~f,u,c!5A 4p

2L811
YL8M8

* ~u,f!,

D2k j
l ~f,u,c!5~21!kA 4p

2l 11
A~ l 2 j !!

~ l 1 j !!
S1 jYlk~u,f!, ~19!

DM j
L* ~f,u,c!5A 4p

2L11
A~L2 j !!

~L1 j !!
S2 jYLM~u,f!,

where
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S65 ie7 icS 6cotu
]

]c
1 i

]

]u
7

1

sinu

]

]f D , ~20!

S6Dmm8
L

~f,u,c!52AL~L11!CLm,161
Lm861 Dmm861

L
~f,u,c! ~21!

are contravariant components of angular momentum operator in the rotating frame,19 we obtain
from ~15!

@H,ŵ2s~u,f!#5
2

A2S11
(
l ,k

a lk(
L,M

~CSS,L0
SS !sYLM* ~u,f! (

L8,M8
T̂L8M8

(S) (
j

aj f j~L,L8,l !,

~22!

f j~L,L8,l !5
F~L !F~ l !

F~L8!
E dVYL8M8

* ~u,f!@S1 jYlk~u,f!S2 jYLM~u,f!

2S2 jYlk~u,f!S1 jYLM~u,f!#. ~23!

Now we note that the functionF(L) ~14! depends on the combinationL(L11) rather than onL
itself and, thus, we can write

F~L !YLM~u,f!5F̃~L 2!YLM~u,f!, ~24!

whereF̃(L 2) is some function~whose explicit form is not needed for concrete calculations! of the
Casimir operator on the sphereL 2,

L 252F ]2

]u2 1cotu
]

]u
1

1

sin2 u

]2

]f2G , ~25!

such thatL 2YL,M(u,f)5L(L11)YL,M(u,f). Taking into account that

CSS,L0
SS 5

A~2S11!! ~2S!!

F~L !
, ~26!

we obtain after integrating by parts Eq.~23!

~CSS,L0
SS !sf j~L,L8,l !5~21! jE dV YLM~u,f!F̃12s~L 2!

3@S2 j~ F̃21~L 2!YL8M8
* ~u,f!S1 j F̃~L 2!Ylk~u,f!!

2S1 j~ F̃21~L 2!YL8M8
* ~u,f!S2 j F̃~L 2!Ylk~u,f!!#@~2S11!! ~2S!! #s/2.

~27!

Due to the sum

(
L,M

YLM* ~u,f!YLM~u8,f8!5K~V,V8! ~28!

is a reproductive kernel on the sphere,12 i.e.,

E dV Z~V!K~V,V8!5Z~V8! ~29!

for any functionZ(V) defined on the sphere. We get from~22! and ~27!
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@H,ŵ2s~u,f!#5
A2S11

2p (
j

~21! jajE dc F̃12s~L 2!

3@S2 j~ F̃s21~L 2!ŵ2s~u,f!S1 j F̃~L 2!WH
(0)~u,f!!

2S1 j~ F̃s21~L 2!ŵ2s~u,f!S2 j F̃~L 2!WH
(0)~u,f!!#, ~30!

where

WH
(0)~u,f!5

2Ap

A2S11
(
l ,k

a lkYlk~u,f! ~31!

is a symmetrized,s50 ~Stratonovich–Weyl! symbol of the Hamiltonian~8!. Substituting~30! into
~10! and integrating by parts we obtain~after integrating over the anglec!

i ] tWr
(s)~u,f!5A2S11F̃s21~L 2!(

j
aj@S2( j )~ F̃12s~L 2!Wr

(s)~u,f!!S1( j )~ F̃~L 2!WH
(0)~u,f!!

2S1( j )~ F̃12s~L 2!Wr
(s)~u,f!!S2( j )~ F̃~L 2!WH

(0)~u,f!!#, ~32!

where symbolic powerS6( j ) has been introduced according to

S6 j5e7 i j cS6( j ), ~33!

such that

S6( j )5Pk50
j 21S k cotu2

]

]u
7

i

sinu

]

]f D . ~34!

It follows from ~21! and ~33! that

S6( j )WH
(0)~u,f!50, j .degH. ~35!

Equation~32! can be rewritten in the following suitable form:

i ] tWr
(s)~u,f!5~m̂2m̂* !~Wr

(s)~u,f!WH
(0)~u,f!!, ~36!

where

m̂5A2S11F̃s21~L 2!(
j

aj~S2( j )F̃12s~L 2!!r ^ ~S1( j )F̃~L 2!!H , ~37!

m̂* 5A2S11F̃s21~L 2!(
j

aj~S1( j )F̃12s~L 2!!r ^ ~S2( j )F̃~L 2!!H , ~38!

and the operator with subindex ‘‘r’’ acts on Wr
(s)(u,f), the operator with subindex ‘‘H ’’ acts on

WH
(s)(u,f), whereas the external operatorF̃s21(L 2) acts on both terms. The number of terms

the sums~37! and ~38! is defined by the degree of nonlinearity of the Hamiltonian~8!, i.e., j
50,1,. . . ,j max, j max5degH, although formally, because of~35!, these sums can be extended
infinity. Equations~36!–~38! is the main result of this paper. It is worth noting that although
operator functionF̃(L 2) has explicitly entered into~37! and~38!, the property~24! is sufficient to
obtain the evolution equation for any particular Hamiltonian of the form~8!.
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Note that as a consequence of~33! the symbolic powersS6( j )in Eqs. ~37! and ~38! can be
substituted by normal powers of the operators~20!. This allows us formally to rewrite~37! and
~38! in the following form:

m̂5A2S11F̃s21~L 2!s~Sr
2

^ SH
1!F̃12s~L 2!r ^ F̃~L 2!H ,

~39!
m̂* 5A2S11F̃s21~L 2!s~Sr

1
^ SH

2!F̃12s~L 2!r ^ F̃~L 2!H ,

where the functions(z) is defined as

s~z!5(
j

~21! j

j ! ~2S1 j 11!!
zj5

1

zS11/2J2S11~2Az!, ~40!

andJn(x) is the Bessel function.
Let us consider the first nontrivial term (j 51) in ~37! and ~38! in m̂2m̂* ,

A2S11

~2S12!!
F̃s21~L 2!@~S1(1)!r ^ ~S2(1)!H2~S2(1)!r ^ ~S1(1)!H#F̃12s~L 2!r ^ F̃~L 2!H . ~41!

One can observe that

~S1(1)!r ^ ~S2(1)!H2~S2(1)!r ^ ~S1(1)!H5
2i

sinu S ]

]fr
^

]

]uH
2

]

]ur
^

]

]fH
D52i $,%P , ~42!

where$,%P means the Poisson brackets on the sphere. Thus, the first term on the right-hand
~36! acquires the form of the Poisson brackets:

2i
A2S11

~2S12!!
F̃s21~L 2!$F̃12s~L 2!Wr

(s)~u,f!,F̃~L 2!WH
(0)~u,f!%P . ~43!

B. Linear Hamiltonians

In the particular case of linear Hamiltonians,l 51 in ~8! @when only the term withj 51
contributes to~37! and ~38!#,

H5v0Sz1gS11g* S2 , ~44!

the Weyl symbol of the Hamiltonian takes the form

WH
(0)~u,f!5

2Ap

A2S11
(

k521

1

a1kY1k~u,f!,

a105&ASv0 , a11522ASg, a12152ASg* , ~45!

AS5AS~S11!~2S11!

6
.

The above expressions can be represented in a more familiar form12

WH
(0)~u,f!5v0WSz

(0)~u,f!1gWS1

(0)~u,f!1g* WS2

(0)~u,f!, ~46!

where

WSz

(0)~u,f!5AS~S11!cosu, WS6

(0)~u,f!5AS~S11!sinue6 if. ~47!
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In this case due to

$YLM* ~u,f!,Y1k~u,f! %P;YLM2k* ~u,f!, k50,61, ~48!

we obtain

~m̂2m̂* !~Wr
(s)~u,f!WH

(0)~u,f!!5
2iA2S11F~1!

~2S12!!
$Wr

(s)~u,f!,WH
(0)~u,f!%P ,

~49!
F~1!5A~2S12!! ~2S21!!,

which leads to the following evolution equation

] tWr
(s)~u,f!5

1

AS~S11!
$Wr

(s)~u,f!,WH
(0)~u,f!%P . ~50!

Thus, in the case of the linear Hamiltonian the evolution equation fors-ordered quasidistribution
functions~1! coincides with the classical Liouville equation.12

C. Quadratic Hamiltonians

In the nonlinear case quantum corrections to classical evolution equation come from
different sides. First of all, more terms in the sums~37! and ~38! appear. On the other hand, th
relation~48! is not true for higher spherical harmonics~with L>2!, which means that expressio
~43! is not reduced to simple Poisson brackets ofWr

(s)(u,f) and WH
(0)(u,f). Let us write the

evolution equation~36! for the case of quadratic Hamiltonians, degH52. We have

i ] tWr
(s)~u,f!52i

A2S11

~2S12!!
F̃s21~L 2!$F̃12s~L 2!Wr

(s)~u,f!,F̃~L 2!WH
(0)~u,f!%P

1
A2S11

2~2S13!!
F̃s21~L 2!~~S2(2)!r ^ ~S1(2)!H2~S1(2)!r ^ ~S2(2)!H!

3~ F̃12s~L 2!Wr
(s)~u,f!F̃~L 2!WH

(0)~u,f!!. ~51!

We note that the second term in the above equation is not equal to zero only for the part
symbolWH

(0)(u,f) which corresponds to quadratic@on thesu(2) algebra generators# terms of the
Hamiltonian~8! ~the linear part ofWH

(0)(u,f) disappears under the action of the operatorsS6(2)).
After some algebra the second term on the right-hand side of~51! can be rewritten in the following
form

2
i

A~2S13!~S11!S~2S21!
F̃s21~L 2!~Q̂r ^ P̂H2 P̂r ^ Q̂H!~ F̃12s~L 2!Wr

(s)~u,f!WH
(0)~u,f!!,

~52!

where we have introduced

Q̂5
1

sinu

]

]f S ]

]u
2cotu D ,

~53!

P̂5
1

sin2u

]2

]f2 2S ]

]u
2cotu D ]

]u
.
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Here we took into account thatF̃(L 2)Y2k(u,f)5F(2)Y2k(u,f) and, from ~14!, F(2)
5A(2S22)!(2S13)!. Finally, the evolution equation acquires the form

] tWr
(s)~u,f!52

A2S11

~2S12!!
F̃s21~L 2!$F̃12s~L 2!Wr

(s)~u,f!,F̃~L 2!WH
(0)~u,f!%P

1
1

2a
F̃s21~L 2!$F̃12s~L 2!Wr

(s)~u,f!,WH
(0)~u,f!%P1

. ~54!

where

a51/2A~2S13!~2S21!S~S11! ~55!

and we defined

$,%P1
5 P̂r ^ Q̂H2Q̂r ^ P̂H . ~56!

Obviously, the brackets$,%P1
conserve the area on the sphere, i.e.,

E dV$ f ,g%P1
50, ~57!

for any two functions defined on the sphere. Separating the Hamiltonian into linearH1 , and
quadraticH2 parts,H5H11H2 , we get

WH
(0)~u,f!5WH1

(0)~u,f!1WH2

(0)~u,f!, ~58!

and Eq.~54! takes the form

] tWr
(s)~u,f!5

1

AS~S11!
$Wr

(s)~u,f!,WH1

(0)~u,f!%P1
1

2a
F̃s21~L 2!@~2S13!

3$F̃12s~L 2!Wr
(s)~u,f!,WH2

(0)~u,f!%P1$F̃12s~L 2!Wr
(s)~u,f!,WH2

(0)~u,f!%P1
#.

~59!

D. Example

Let us consider, for example, the simplest nonlinear Hamiltonian~for physical applications
see, e.g., Refs. 20–22!

H5xSz
2 . ~60!

The correspondingWH
(0)(u,f) symbol has the form

WH
(0)~u,f!5a

4

3
Ap

5
Y20~u,f!1

S~S11!

3
5aS cos2 u2

1

3D1
S~S11!

3
, ~61!

wherea is defined in~55!. Taking into account that

$Wr
(s)~u,f!,WH

(0)~u,f!%P522a cosu]fWr
(s)~u,f!,

~62!
$F̃12s~L 2!Wr

(s)~u,f!,WH
(0)~u,f!%P522a cosuF̃12s~L 2!]fWr

(s)~u,f!,

and
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Q̂WH
(0)~u,f!50, P̂WH

(0)~u,f!52a sin2 u, ~63!

we obtain from~54!

] tWr
(s)~u,f!52x@2~S11!F̃s21~L 2!cosuF̃12s~L 2!

1F̃s21~L 2!sinu]uF̃12s~L 2!#]fWr
(s)~u,f!. ~64!

One can show~see the Appendix! that Eq. ~64! acquires the following forms according to th
value of the parameters:

] tWr
(1)~u,f!52x@2~S11!cosu1sinu]u#]fWr

(1)~u,f!, ~65!

] tWr
(0)~u,f!52xF S S1

1

2DF~L 2!cosu1«F21~L 2!S 3

2
cosu1sinu]uD G]fWr

(0)~u,f!,

~66!

] tWr
(21)~u,f!52x@2Scosu2sinu]u#]fWr

(21)~u,f!, ~67!

where the functionF(L 2) is defined as

F~L 2!5@22«2~2L 211!12A12«2~2L 211!1«4L 4#1/2, ~68!

and

«5
1

2S11
. ~69!

One can observe that Eq.~65! is just an equation for theP-function @which can be easily obtaine
by using thesu(2) coherent states method#.

E. Large dimensions of representation

Now let us consider the limit of the large dimension of representation,S@1 ~in this case«
!1). In this limit it is useful to represent the functionF̃(L 2) in the following form

F̃~L 2!5
~2S11!!

A2S11
S 11

«

2
L 21O~«2! D . ~70!

Taking into account that

(
j 50

`
~2x! j

j ! ~2S1 j 11!!
5 f S x

]

]xDexp~2«x!, ~71!

where the functionf (z) in the above equation is a series on«,

f ~z!512
«

2
~z21z!1O~«2!, ~72!

we can approximate the evolution equation~36! as follows:
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] tWr
(s)~u,f!'2«$Wr

(s)~u,f!,WH
(0)~u,f!%P12«2F12s

2
$L 2Wr

(s)~u,f!,WH
(0)~u,f!%P

1
1

2
$Wr

(s)~u,f!,L 2WH
(0)~u,f!%P1S s21

2
L 221D $Wr

(s)~u,f!,WH
(0)~u,f!%P

1$Wr
(s)~u,f!,WH

(0)~u,f!%P1G . ~73!

Taking into account the following relation between$,%P and$,%P1
:

$ f ,g%P1
5~ 1

2L 211!$ f ,g%P2 1
2 $L 2f ,g%P2 1

2 $ f ,L 2g%P , ~74!

where f (u,f) andg(u,f) are functions on the sphere, Equation~73! is rewritten in the form

] tWr
(s)~u,f!52«$Wr

(s)~u,f!,WH
(0)~u,f!%P1«2s@L 2$Wr

(s)~u,f!,WH
(0)~u,f!%P

2$L 2Wr
(s)~u,f!,WH

(0)~u,f!%P#1O~«3!. ~75!

The first term on the right-hand side of Eq.~75! is, as expected, a classical evolution equat
@Poisson brackets of thes-ordered quasidistribution functionWr

(s)(u,f) and symmetrized
Stratonovich–Weyl symbol of the system Hamiltonian#. The second term represents a first corre
tion to the classical evolution equation. One can observe that this correction vanishes ws
50, i.e., the first correction to the classical evolution of motion is absent for the Stratonov
Weyl quasidistribution function.

For example, in the case of the Hamiltonian~60! we get for the symmetrized Stratonovich
Weyl symbol the following approximate equation of motion@corresponding to expansion of th
function F(L 2) in ~66! in series on«#

] tWr
(0)~u,f!52x@~2S11!cosu]f1« Ĵ#Wr

(0)~u,f!, ~76!

whereĴ is a diffusion-like operator

Ĵ52 1
2 @~cosu11!L 21sinu]u#]f , ~77!

which describes quantum corrections to the quasiclassical motion in analogy to the quasicl
expansion in the Moyal equation for the Heisenberg–Weyl group. It is worth noting that in ge
only the evolution equation for the Stratonovich–Weyl quasidistribution functionWr

(0)(u,f) ~not
for Q- or for P-Beresin symbols! reduces to the classical equation of motion in the limit«→0
@compare, for example,~62! with ~65! and ~67!#.

III. CONCLUSIONS

In summary, we have found exact evolution equations for thes-parametrized family SU(2)
quasiprobability distribution functions on the sphere. It was shown that for polynomial@on the
generators of thesu(2) algebra# Hamiltonians the equation of motion contains a finite numbe
terms, defined by the degree of nonlinearity of the Hamiltonian. For linear systems the evo
equation reduces to the Liouville equation. We also have given an explicit form of the equat
motion for quadratic systems, which are the most usual in quantum-optical applications~see, e.g.,
Ref. 23 and references therein!. In the limit of the large value of spin (S@1) the first term of the
quasiclassical expansion is just the Poisson brackets~on the sphere! of the s-ordered quasidistri-
bution function with the symmetrized~Stratonovich–Weyl! symbol of the Hamiltonian.

Connection with the star-product of generalized Weyl symbols on the SU(2) group11 and its
contraction to the Heisenberg-Weyl group will be considered elsewhere.
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APPENDIX: DERIVATION OF EQS. „65…–„67…

In this Appendix we obtain Eqs.~65!–~67! starting from Eq.~64!.
To transform Eq.~64! to a more simple form we use the following algebraic relations

F̃s21~L 2!cosuF̃12s~L 2!YLM~u,f!5@ 1
2 ~ f L13gL!cosu1gL sinu]u#YLM~u,f!, ~A1!

F̃s21~L 2!sinu]uF̃12s~L 2!YLM~u,f!

5@~L12!~L21!gL cosu1 1
2 ~ f L23gL!sinu]u#YLM~u,f!, ~A2!

where

f L5aL1aL11
21 , gL5

aL2aL11
21

2L11
, ~A3!

aL5Fs21~L !F12s~L21!5S 2S112L

2S111L D
12s

2
, ~A4!

and the relation betweenF(L) and F̃(L 2) is given by~24!.
One can observe that Eqs.~65! and ~67! are obtained directly by substituting~A3! and ~A4!

and ~A1! and ~A2! into ~64! for valuess561. In the following we deduce Eq.~66!, when the
parameter takes values50. To this end we rewrite Eq.~A4! as follows:

aL5
wL

11«L
, aL11

21 5
wL11

12«~L11!
, ~A5!

where

wL5A11«2L2. ~A6!

Then we obtain from~A1! and ~A2!

F̃s21~L 2!@2~S11!cosu1sinu]u#F̃12s~L 2!YLM~u,f!

5
1

« FwL1wL11

2
cosu1

wL2wL11

2L11 S 3

2
cosu1sinu]uD GYLM~u,f!. ~A7!

Now we take into account

wL2wL11

2L11
5

«2

wL1wL11
, ~A8!

and observe that

~wL1wL11!YLM~u,f!5F~L 2!YLM~u,f!, ~A9!

where the operator functionF(L 2) is defined in~68!. Equations~A7! and~A9! immediately lead
to ~66!.
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An attempt is made to clarify the ballistic nonlinear sigma model formalism re-
cently proposed for quantum chaotic systems, by looking at the spectral determi-
nantZ(s)5Det(12sU) for quantized mapsUPU(N), and studying the correlator
vU(s)5*duuZ(eius)u2. By identifying U(N) as one member of a dual pair acting
in the spinor representation of Spin(4N), the expansion ofvU(s) in powers ofs2

is shown to be a decomposition into irreducible characters of U(N). In close
analogy with the ballistic nonlinear sigma model, a coherent-state integral repre-
sentation ofvU(s) is developed. For genericU this integral has (N

2N) saddle points
and the leading-order saddle-point approximation turns out to reproducevU(s)
exactly, up to a constant factor. This miracle is explained by interpretingvU(s) as
a character of U(2N), and arguing that the leading-order saddle-point result corre-
sponds to theWeyl character formula. Unfortunately, the Weyl decomposition be-
haves nonsmoothly in the semiclassical limitN→`, and to make further progress
some additional averaging needs to be introduced. Several schemes are investi-
gated, including averaging over basis states and an ‘‘isotropic’’ average. The
saddle-point approximation applied in conjunction with these schemes is demon-
strated to give incorrect results in general, one notable exception being a semiclas-
sical averaging scheme, for which all loop corrections vanish identically. As a side
product of the dual pair decomposition with isotropic averaging, the crossover
between the Poisson and CUE limits is obtained. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1462417#

I. INTRODUCTION

One of the striking characteristics of a quantized chaotic Hamiltonian system is found
correlations inherent in its spectrum at small energy differences. Extensive numerical wo
shown that various quantities~such as the nearest-neighbor spacing distribution and the two-
correlation function! of a quantum chaotic system areuniversal: their behavior coincides with tha
of a Wigner–Dyson random matrix ensemble of the appropriate symmetry class.1 This property,
first noticed in billiards, was found to apply to many chaotic systems, including symplecticmaps.
In contrast, if the dynamics is integrable~in the sense that the 2f -dimensional phase space foliate
into f -dimensional submanifolds invariant under the Hamiltonian flow!, the generic behavior o
the eigenvalues is expected2 to be that of independent random variables, so that their correla
are in the Poisson universality class.

The present article will be concerned with quantum maps, i.e., with quantizations of
canonical transformationf:M→M of a compact symplectic manifoldM . We assume that the
problem of quantization itself has been tackled, so the phase space has been prequantize
Hilbert spaceHN of dimensionN;\21, and the quantum map acts on it as a unitary operato3,4

With respect to a basis ofHN this operator is represented by anN3N unitary matrixUf,N . The
latter has a semiclassical limit, in the sense that traces of its powers can be estimated in te
22140022-2488/2002/43(5)/2214/27/$19.00 © 2002 American Institute of Physics
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classical periodic points.4 For a system with one degree of freedom, the Gutzwiller-Tabor tr
formula reads

Tr~Uf,N
n ! ;

N→`

(
p,Fix(fn)

Ndim(p)/2ApeiNFp, ~1!

wherep is one component of the set ofn-periodic points; for an Anosov system, it is an isolat
point @dim(p)50#, whereas if the dynamics conserves energy,p is one-dimensional.Fp andAp

are purely classical quantities related to the dynamics around the setp.
The quantum spectrum consists of theN eigenvalues~pseudo-energies! $eiu j% j 51,...,N of Uf,N .

The first analytical estimates of the two-level correlation function@which is the Fourier transform
of the form factor F(n)5uTr(Uf,N

n )u2# for such spectra were based on the above trace form
combined with some known ergodic properties of long periodic orbits.5 In the present article we
focus attention on another statistic, namely the autocorrelation function of the spectral de
nant:

VU~g!5
def

g2N/2E
0

2p df

2p
Det~12geifU !Det~12e2 ifU†!. ~2!

~The parameterg will be a complex number close to unity, with the scalingug21u;1/N.! This
correlation function has already been considered6,7 for chaotic versus integrable quantum map
and the same universality was observed as for the form factor or the nearest-neighbor distri
A semiclassical analysis of this correlation function was performed using the Gutzwiller
formula in Ref. 7.

The computation of correlation functions from the trace formula~1! always requires some so
of averaging. In the semiclassical theory of the form factorF(n) one wants to use the so-calle
diagonal approximation, neglecting the off-diagonal terms in the double-sum over periodic o5

To justify this step one must average over energy or some family of systems: one needs
variations in the classical actionsFp to make the phase interferences;eiN(Fp2Fp8) average to
zero. The need for averaging was emphasized in Refs. 6 and 8, where it was pointed out t
spectrum of an individual quantum system is too noisy to allow universality to be seen in its
form factor. In addition to the noise problem, there exist some quantum chaotic systems
arithmetic symmetries, which lead to periodic orbit degeneracies and nonuniversal sp
correlations.9,10 ~Such systems are nongeneric, however, in any decent space of smooth m!

Thus universal behavior is expected only in the generic case, and to make a correct
ematical statement about universality of the spectral correlations of a general system one o
define the precise meaning of the word ‘‘generic.’’~In the case of integrable systems, the spec
correlations could sometimes be studied directly, by utilizing the explicit expressions fo
eigenvalues; two-point correlations were shown to be Poisson for a rather subtle s
parameters.!11 We can avoid the issue of genericity by averaging the correlation function
some set of quantum maps. That is, we specify a measure dPN(U) on the unitary group U(N), and
the function to be studied then reads

^VU~g!&5E
U(N)

dPN~U !VU~g!.

We want this measure to be very concentrated~or ‘‘local’’ ! around the quantum mapUf,N ~see
Secs. IV C and VI!. In the course of this article, we will also consider cases for which this mea
has a broader support~Sec. V!, including the case where the measure is the Haar measur
U(N). We are then dealing with the circular unitary ensemble~CUE!, for which the determinant
correlation function has been thoroughly investigated.6,12

The Gutzwiller trace formula has the attractive feature of relating quantum to classical
erties, but its use for estimating the spectral correlation functions still raises questions. The
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lem is that the formula is rigorous in general only for times shorter than the Ehrenfest timn
< logN ~andN→`!. Yet, long-time traces (n;N) are needed to obtain spectral correlation fun
tions at the scale of the mean level spacing where universality emerges. The diagonal appr
tion, which assumes statistical independence of the different periodic orbits, is unsatisfac
large times where the exponential proliferation of periodic orbits clashes with the finiteN)
number of eigenvalues: the classical information is then overcomplete, which implies some
hidden correlation between the contributions from classical orbits. A recipe to overcome
difficulty has been devised by Bogomolny and Keating,13 but so far lacks rigorous justification.

To bypass these problems, a second approach to estimate spectral correlations has
emerged, inspired by the study of disordered metals. It consists in expressing the corr
function as a quantum field theory~or functional integral! of the type of a nonlinear sigma mode
~NLsM!. One then tries to analyze the functional integral by standard field-theoretic methods
as perturbation expansion, saddle-point analysis and the renormalization group. This approa
first applied successfully to systems with disorder, where the dynamics is governed by a dif
operator.14 The formalism was later extended to the ‘‘ballistic case,’’15,16and quantum correlation
functions were put in relation with the spectrum of the Frobenius–Perron operator~i.e., the
evolution operator for classical densities!. Although quite elegant, this approach suffered fro
several drawbacks. Among these are the appearance of unwanted zero modes around t
saddle point, and the problem of ‘‘mode locking.’’17 Besides, the results do not exactly agree w
the correlations calculated numerically for the Riemann zeta function~the prototype of a quantum
chaotic spectral determinant!;13 nor do they explain the nongeneric spectral correlations featu
by systems with arithmetic symmetries. More recent treatments of the ballistic NLsM have also
stressed the need for averaging over a smooth disorder if one wants to avoid the
problems.18,19

In an attempt to resolve these uncertainties, we have adapted the latter approach, wh
originally been conceived for Hamiltonian systems, to the case of quantum mapsUf,N . Our
objective was to prove the universality of the determinant correlation functionVU(g) ~Sec. II B!
upon averaging wrt a suitable measure on U(N). This correlation function is easier to treat tha
the two-level correlation function, as it does not require the use of a supersymm
representation15,16but can be expressed as an ordinary c-number integral over a finite-dimen
manifold MN ~Sec. II D!. We write this integral in the form

VU~g!5E
MN

dQe2S(g,U,Q), ~3!

whereS(g,U,•) is called theeffective action.
For the reasons stated, we will consider averages ofVU with respect to certain probability

measures dPN(U). The averaged correlation function, denoted by^VU(g)&, can still be obtained
by integrating the Boltzmann weight given by an effective action:

^VU~g!&5E
MN

dQe2Sav(g,Q).

To estimate these integrals, we apply the same technique that was used in Ref. 15: we
Sav(g,Q) up to quadratic order around its saddle-pointsQcrit , and perform the Gaussian integra
The result obtained in this way,

^VU~g!& us.p. exp.5(
Qcrit

$Detd2Sav~g,Qcrit!%
21/2e2Sav(g,Qcrit), ~4!

is called the leading-order saddle-point expansion of the integral.
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Owing to the absence of a large parameter in front of the actionSav, the expansion isa priori
not justified mathematically. A more careful treatment should in principle include perturb
corrections around each critical point~we actually compute the expansion up to two loops in
particular case, see Sec. IV D!.

We have succeeded in computing the leading-order term for a few averaging schemes.
individual matrixUN we can actually reproduce the exact value of the correlation function~3! in
this way~Sec. III!. In Sec. IV C we define a ‘‘semiclassical’’ averaging scheme, which we thin
a good candidate to obtain universality of correlations;20 unfortunately, in that case we can on
compute the contributions from the two standard saddle points.

In order to test the leading-order saddle-point approximation, we selected a seque
statistical ensembles@i.e., a sequence of measures dPN(U)# for which the averaged correlatio
function can be computed exactly, and compared the exact result with the saddle-point ap
mation for the corresponding effective action. All these ensembles are U(N)-rotation invariant,
that is, we first average over all bases ofHN ~Sec. V!, then possibly over the spectrum ofUN

~Secs. V C and VI A!. In most cases, the saddle-point expansion of these ensembles yields
neous results. We still hope that the expansion is better behaved in the case of local averag
the semiclassical one.

These disappointing results seem to challenge the use of NLsM methods for the study of
quantum ballistic systems, unless our understanding and control of these methods signi
improves. In Sec. VI, we introduce a U(N)-isotropic local averaging scheme which we treat by
alternative method; unfortunately, this scheme does not discriminate between the different u
sal behaviors that are expected for chaotic versus integrable maps. Nevertheless, we use i
VI A to compute the correlations along a crossover between the Poisson and CUE unive
classes.

II. ALGEBRAIC MANIPULATION OF VU

A. Fourier decomposition of VU

We first remind the reader of some known results concerning the correlation functionVU .6,7

The spectral determinant ofUPU(N) may be expanded as

Det~12sU!5 (
k50

N

skak~U !. ~5!

The unitarity ofU implies a ‘‘self-inversive’’ property for the secular coefficients:21

aN2k~U !5Det~2U !ak~Ū !.

Each coefficientak may be obtained from the traces$t l5TrUl% by

ak52
1

k S tk1 (
l 51

k21

altk2 l D 5
~21!k

k! U t1 t2 t3 ... tk

1 t1 t2 ... tk21

0 2 t1 � tk22

0 0 3 ]

] � ]

0 ... ... k21 t1

U .

Because this dependence is highly nonlinear, the secular coefficients inherit non-Gaussian
butions in the RMT ensembles.6 However, to compute the ensemble averages ofVU(g) one only
needs to know their variances, since
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VU~g!5 (
k50

N

gk2N/2 uaku25 (
k50

N/2

~gk2N/21gN/22k!uaku2. ~6!

For the Poisson and the CUE ensemble of random matrices, these variances were comp
Ref. 6, and have the following large-N asymptotics:

^uaku2&Poisson5S N
k D , ^uaku2&CUE51, ~7!

^VU~eix/N!&Poisson;2N, ^VU~eix/N!&CUE;N
sin~x/2!

x/2
. ~8!

In Ref. 7, a semiclassical estimation of theuaku2 was given for integrable and chaotic quantu
maps. The authors used the explicit expression in terms of the tracest l , and estimated the latter b
the Gutzwiller trace formula~1!. They made a generalized diagonal approximation treating
traces t l as statistically independent variables. To obtain the correlation function, one h
estimate theuaku2 ~and hence thetk! up to timesk&N/2, where the Gutzwiller formula is non
rigorous.

B. Representation-theoretic content of VU

We now introduce a more group-theoretic expression for the correlation function. Inste
performing the expansion~5!, we will expressVU(g) as acharacter in a certain irreducible
representation of U(2N), which is best described using the physical language of fermions.

Let FN be the Fock space forN types of fermionsf i , f i
† . In mathematicsFN is known as the

spinor representation space of the group Spin(2N). Then, for anyN3N unitary matrixU,

Det~12U !5TrFN
~21!(

i
f i
†f i exp(

i , j 51

N

f i
†~ logU ! i j f j .

The exponential on the right-hand side can be shown to be well defined in spite of the
valuedness of logU. To account for both determinants, we use 2N fermions, whose creation
operators are denoted byf 1 j

† and f 2 j
† , j 51,...,N. The integration overf in the integral~2!

projects on the subspaceF5
def

Ker(F12F2), whereF65( i f 6 i
† f 6 i are the number operators fo

the two types of fermions. The correlation function reads

VU~g!5TrFg (F11F22N)/2 exp(
i , j 51

N

~ logU ! i j ~ f 1 i
† f 1 j2 f 2 j

† f 2 i !. ~9!

The operator under the trace belongs to an irreducible representationR of the group U(2N),
realized on the spaceF, which has dimension (N

2N). This representation may be defined through
Lie algebra version: any skew-Hermitian 2N32N matrix X5(c

a
d
b) is represented by the operato

R~X!5 (
i , j 51

N

ai j f 1 i
† f 1 j1bi j f 1 i

† f 2 j
† 1ci j f 2 i f 1 j1di j f 2 i f 2 j

† . ~10!

By exponentiating,R(expX)5expR(X), we obtain a U(2N)-representation, which we still de
note byR. The correlation functionVU(g) for any N3N unitary matrixU may be recast as a
character in this representation:

VU~g!5g2N/2Det~U !21 Tr R~GU! ~11!

where
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U5
defS U 0

0 U D , G5
defS g 0

0 1D PU~2N!.

As it stands, the construction assumesg5eiuPU(1). It canalso be used for other values ofg,
sinceR naturally extends to a representation of GL(2N,C). In the following, matrices in bold print
will always be of size 2N32N.

The assignmentU°U embeds U(N) into U(2N). By this embedding,R restricts to areduc-
ible representation of U(N) on F, which we simply denote byR(U). To express the correlation

function, we may also consider the U(N)-representationR21(U)5
def

det(U)21R(U).
In the next section, we decomposeR(U) @or equivalentlyR21(U)# into irreducible represen

tations ~irreps! of U(N), thus expressing the correlation functionVU(g) as a sum of
U(N)-characters.

C. VU as a sum of U „N…-characters

The crucial mathematical tool to use is thedual pair structure.22 The subalgebra
$XN^ I2 uXNPu(N)% of u(2N) commutes with the subalgebra$IN^ x2 ux2Pu(2)%, and each is the
commutant of the other insideu(2N): they are said to form a dual pair. This means that for
UPU(N), the operatorR(U) commutes with the set

J↑5(
i

f 1 i
† f 2 i

† ,

J↓5(
i

f 2 i f 1 i ,

J05F11F22N.

The operatorsJ0 , J↑ and J↓ generate ansu(2) algebra. The equationJ0R(U)5R(U)J0 im-
plies that R(U) conserves the total number of particles and hence acts inside the subs
F p5FùKer(F11F222p).

The dual pair structure provides us with a prescription22 to decomposeR(U). Inside the
reduced Fock spaceF, we consider the subspace of lowest SU~2! weights,0F5FùKerJ↓ , and

expand it according to its particle content:0F p5
def

0FùF p. Classical results of invariant theory
due mostly to H. Weyl23 and succinctly summarized by R. Howe,22 amount to the following
statements:

~i! The operatorR(U) acts inside each space0F p, through a certain irrepr̃p(U) of U(N).
Equivalently,R21(U) acts on this space throughrp(U)5Det(U)21r̃p(U). Furthermore,
two irrepsrp andrp8 are inequivalent ifpÞp8.

~ii ! The image of0F p under (J↑)k is the spacekF p1k,F p1k which is either trivial ~if k
.N22p) or carries the irreprp ~if k<N22p!. The operatorsJ↑ , J↓ , J0 act on this tower
of spaces according to thesu(2)-irrep of dimensionN22p11.

~iii ! The direct sum of these towers exhaustsF.

We summarize these statements in the following diagram. All entries in a given row are sub
containing the same number of fermions; all entries in a given column~or tower! carry the same
U(N)-irrep. We only show the case whereN is an even integer~the odd-N case being very
similar!:
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F N 5 NF N

↑J↑
F N21 5 N21F N21

%
N22F N21

] ↑J↑ ↑J↑ �

] ] ]

0F N/2

] ↑J↑ ↑J↑ ↑J↑
F 2 5 2F 2

%
1F 2

%
0F 2

↑J↑ ↑J↑
F 1 5 1F 1

%
0F 1

↑J↑
F 0 5 0F 0

U~N!2 irreps: r0 r1 r2 ... rN/2

~12!

The leftmost tower on the right-hand side carries the trivialu(N)-irrep, so all spacespF p

5(J↑)p 0F 0 are one-dimensional.
Each irreprp ~or r̃p! may be described by a Young diagram.rp mixes the action ofU on p

fermionsf 1 with the action ofŪ on p fermionsf 2 . Owing to antisymmetrization, it correspond
to the diagram withp rows of length 2 followed byN22p rows of length one:

r̃p~UN!5Det~UN!rp~UN!5UN
[2p 1N22p] .

In view of the above diagram, the dimensions of the representation spaceskF k1p follow
immediately from those of the spacesF p:

dim~kF k1p!5dim~F p!2dim~F p21!5S N
p D 2

2S N
p21D 2

. ~13!

By doing the sum over eachsu(2)-multiplet we can now express the correlation function~11! in
terms of the irrepsrp :

VU~g!5 (
p50

N/2

Trrp~U !
gp2N/22gN/2112p

12g
, ~14!

or, making the substitutiong5eix/N,

VU~eix/N!5 (
p50

N/2

Trrp~U !
sin$~x/2! @12 ~2p21!/N#%

sin~x/2N!
.

For large values ofN we may replace the denominator sin(x/2N) by x/2N. A quick comparison
shows that this decomposition is actually equivalent to the pedestrian expansion~6! written down
in Sec. II A. The squared coefficientsuaku2 now acquire a representation-theoretic meaning:

;p<N/2: uap~U !u25TrF pR21~U !5 (
k50

p

Trrk~U !, ~15!

or, equivalently,

Trrp~U !5uap~U !u22uap21~U !u2.
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As it stands, the decomposition into irreducibles~14! is not very informative if one takes fo
U the matrix of a quantum map. We have no waya priori to estimate the character Trrp(UN) from
semiclassical information, except by using the relationship, via theuaku2, to the original traces
Tr(UN

k ), as was done in Ref. 7. This decomposition will, however, allow us to obtain rigo
results when adopting a U(N)-isotropic averaging centered aroundUN ~see Sec. VI!.

D. VU as a coherent-state integral

Instead of decomposing the character TrR21(U) into irreducibles, we can rewrite it as a
integral over the symmetric spaceMN5U(2N)/U(N)3U(N). This integral can be interpreted a
a variant of the nonlinear sigma model used in Ref. 15 to study the spectral statistics of qu
chaotic Hamiltonians on infinite-dimensional Hilbert spaces. In our case the integral represe
is exact, and is well defined mathematically.

To write the characterVU(g) as an integral, one uses the coherent statesR(g)u0&, whereu0&
is the vacuum ofF andg is any matrix in U(2N).24 These coherent states provide a resolution
unity on F, i.e., they can be combined to build the orthogonal projector onF, as

PF5
defE

U(2N)
dg R~g!u0&^0uR~g!21,

where the Haar measuredg has to be suitably normalized. LetHN be the block-diagonal subgrou
U(N)3U(N) of U(2N). Then for allhPHN , the statesR(g)u0& andR(gh)u0& only differ by a
phase factor. Therefore, it suffices to integrate over the equivalence classes in U(2N) moduloHN :

PF5E
U(2N)/HN

d@g#HR~g!u0&^0uR~g!21.

It is convenient to represent theHN-equivalence classes~i.e., the points onMN! by 2N32N
matrices. To eachgPU(2N) one associatesQg5gS3g21, whereS35IN^ s3 . The set of all these
matricesQ is isomorphic toMN . It is the set of all Hermitian matrices with two eigenvalues,11
and 21, each with multiplicityN. This nonlinear set of matrices is naturally equipped w
U(2N)-invariant symplectic structure and metric~and therefore an invariant measuredQ).

The matrix elementsQi j are not all independent, and for practical calculations we nee
introduce a bona fide coordinate system onMN . If we denote byQ12, Q22 the twoN3N blocks
in the right half of the matrixQ, the entries of the complex matrixZ5Q12(Q2221)21 are good
coordinates on the open subset ofMN where (Q2221) is invertible. Geometrically, theseN3N
complex coordinates represent a certain stereographic mapping ofMN ontoCN3N. The matrixZ
corresponding to a pointQg can be extracted from the Gaussian decomposition ofg:

g5S 1 Z

0 1D S A 0

C DD . ~16!

These complex coordinates also provide a simple definition of the coherent states. I
R(g)u0& is co-linear with

uZ&5
def

expH (
i , j 51

N

f 1 i
† Zi j f 2 j

† J u0&5expH RS 0 Z

0 0D J u0&5RS 1 Z

0 1D u0&. ~17!

As it stands,uZ& is not normalized, but has the following properties:

~i! The overlap between two coherent states reads^ZuZ8&5Det(11Z†Z8). In particular, the
norm of uZ& is Det(11Z†Z)1/2.
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~ii ! The resolution of unity takes the form

PF5E
CN3N

dmN~Z,Z†!
uZ&^Zu

Det~11Z†Z!
, ~18!

where the measuredmN(Z,Z†)5CN3Det(11Z†Z)22N) i , j 51
N d2Zi j /p is the expression

for dQ in the coordinatesZi j . The value of the normalization factorCN is given at the end
of Appendix B.

~iii ! The group U(2N) acts on these coherent states as follows:

RS A B

C DD uZ&5Det~CZ1D !u~AZ1B!~CZ1D !21&. ~19!

The resolution of unity allows us to write the character~11! as

VU~g!5g2N/2Det~U !21E
MN

d@g#H ^0uR~g!21RS gU 0

0 U DR~g!u0&

5g2N/2E
CN3N

dmN~Z,Z†!
Det~11gZ†UZU21!

Det~11Z†Z!

5E
MN

dQ e2S(g,U,Q). ~20!

This expression is the central result of the current section. It is an exact formula, which pa
the ‘‘ballistic’’ nonlinear sigma model derived in Ref. 15 for Hamiltonian systems with an infin
dimensional Hilbert space. In our finite-dimensional framework, the non local fieldQ(q8,q) of
434 supermatrices on configuration space is replaced by a ‘‘lattice field’’Qia, j b of 232 matrices
~with elements indexed bya,b! depending on two discrete positionsi , j . The ‘‘effective action’’ of
the present model,

S~g,U,Q!52Tr$ log~11gZ†UZU21!2 log~11ZZ†!%1
N

2
logg, ~21!

can be presented17 in the form

S~eix/N,U,Q!52Tr log@cosh~Hx,U!2sinh~Hx,U!Q#,

with

Hx,U5
def ix

4N
S31

1

2
logU.

In Ref. 17, this action was further transformed, using the Wigner representation of wave func
to obtain the same ballistic non-linear sigma model as in Ref. 15. We will not perform these
which require some further approximations, but rather try to estimate the integral with the
~purely quantum! effective action.

III. SADDLE-POINT ANALYSIS OF THE ACTION S„g,U,Q…

To estimate the field integral of their nonlinear sigma model, the authors in Ref. 15 expa
effective action around two critical points~usually referred to as saddle points in this contex!.
Since there is no large parameter in front of this action, a leading-order saddle-point expan
see Eq.~4!—is not justified mathematicallya priori. In the present section we explicitly compu
this expansion for the action~21! and compare it to the results of Ref. 15 and the exact correla
function.
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The saddle points are determined by requiring the variation of the action to be zero.
absence of a large parameter, one first needs to understand exactly which action to vary. Th
is not entirely obvious: one might be tempted to lift~part of! the denominator Det(11ZZ†)22N of
the measuredmN(Z,Z†) into the exponent; this modification of the effective action would yiel
different saddle-point expansion. However, the requirement of coordinate invariance tells
keep the U(2N)-invariant measuredQ as it is, forbidding such manipulations. With this conve
tion the saddle-point expansion ofS(g,U,Q) will turn out to yield the exactg-dependencefor
VU(g). In particular, the problem of ‘‘unphysical zero modes’’ occurring in Refs. 15 and 1
resolved.

We now describe the saddle-point analysis ofS(g,U,Q) in some detail. We first use the fac
that the action is invariant under simultaneous rotations of bothU andQ:

S~g,U,Q!5S~g,VUV21,VQVÀ1!, ~22!

where we used the shorthand notationV5V^ I2 , for VPU(N). Such aV-rotation of Q is an
isometry of the Riemannian manifoldMN and leaves the measuredQ invariant. It therefore
suffices to study the simpler situation whereU is diagonal: U[D5diag(eiu j).

One sees from formula~21! that the pointZ50 ~or equivalently,Q5S3! is a saddle point,
and the quadratic approximation toS for small Z reads

S~g,D,Z!'
1

2
N logg2Tr~gZ†DZD212Z†Z!'

1

2
N logg1 (

i , j 51

N

uZi j u2~12gei(u i2u j )!.

This saddle point is the only one onMN which is located at a finiteZ. It is sometimes called
the ‘‘perturbative’’ saddle point in the physics literature. For a generic matrixU, there areN
directionsZj j that have a coefficient (12g);2 ix/N; these directions are called ‘‘zero modes,’’15

because their coefficient vanishes asx→0. Doing the integral in this quadratic approximatio
aroundZ50 yields

VU~g! uS3
5CN

g2N/2

~12g!N) iÞ j~12gei(u i2u j )!
. ~23!

We chose to separate the zero mode contributions from the others.
The existence of a second saddle point was pointed out~in the context of the diffusive non

linear sigma model! in Ref. 25. It may be exhibited through the change of variableZ851/Z, which
amounts to switching to the stereographic projection ofMN from the antipodal point. In terms o
the new variableZ8, the integrand reads

gN/2
Det~11g21Z8†UZ8U21!

Det~11Z8†Z8!
,

so it has the same structure as the original integrand, but for the replacementg→g21. Quadratic
expansion aroundZ850 ~or, equivalently, aroundQ52S3! yields

VU~g! u2S3
5CN

gN/2

~12g21!N) iÞ j~12g21ei(u i2u j )!
. ~24!

These two saddle pointsQ56S3 ~we call them ‘‘standard’’! are the only ones taken into accou
in the treatment of the ballistic nonlinear sigma model in Refs. 15 and 17. The problem wit
approximation is that, in the limitg→1, the sum of the two contributions Eq.~23! and ~24!
diverges at least as strongly as 1/(12g)N21, whereas the exact correlation function is bound
This phenomenon was attributed to theN21 ‘‘unphysical’’ zero modes appearing at each sad
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point ~as opposed to the single ‘‘ergodic’’ zero mode( jZj j !. More generally, these contribution
become singular each timeU andgU happen to have common eigenvalues.

We will argue below that this problem with zero modes is actually resolved by taking
accountfurther saddle points of the effective action.

A. Weyl character formula

To identify all saddle points, we return to the expression~20! of the integrand. We still study
the case whereU5D is diagonal, and we writeGD[diag(gD,D).

Let z be a complexN3N matrix. The pointQg of MN is a saddle point of the integrand if
the Taylor expansion of̂zuR(g21GDg)uz& aroundz50 contains no term linear inz andz†. ~Note
that this statement is independent of the choice of representativeg for Qg .! Moreover, we do not
want the integrand to vanish atz50. If we decompose the unitary matrix asg21GDg5(c

a
d
b), these

conditions read

b5c50, Det~d!Þ0. ~25!

This means that the matrixg21GDg @for g5eix/NPU(1)# belongs to the subgroupHN of U(2N),
which in turn allowsg to be written as the product of apermutation matrixgs with some element
hPHN . By gs we mean the unitary matrix (gs) i j 5d i ,s( j ) , where s is a permutation of
$1,...,2N%. To each permutations there corresponds a single pointQs5gsS3gs

21. Moreover,
two permutationss, s8 lead to the same point ifs5s8t wheret permutes indices separate
inside$1,...,N% and$N11,...,2N%; this property defines a partition of the symmetric groupS2N

into (N
2N) equivalence classes, each one corresponding to a saddle point of the integrand.

These classes are in one-to-one correspondence with the setsS5s($1,...,N%), so we can
write Qs5QS . QS is then the diagonal matrix with entries11 at the positionsj PS, and21 at
the positions j PS̄ ~the complement ofS in $1,...,2N%). We partition the setS into S1

5Sù$1,...,N% and S̃25Sù$N11,...,2N%. In the following we will also use the setS25$ j

2Nu j PS̃2%, and the setsS̄1 andS̄2 which are the complements in$1,...,N% of S1, resp.S2 . The
point QS corresponds to the following~coherent! state inF:

uS&5
def

R~gs!u0&56 )
i PS̄1

f 1 i
† )

j PS2

f 2 j
† u0&. ~26!

The matrix gs admits a Gaussian decomposition~16! iff s is in the trivial class, i.e.,S
5$1,...,N%, which explains why only the perturbative saddle pointQ5S3 could be exhibited
from theZ-coordinates.

We now compute the leading-order contribution from each saddle pointQS . In the vicinity of
QS the integrand in~20! takes the values

^zuR~gs
21GDgs!uz&/^zuz&,

where the entries of the matrixz are ‘‘small’’ ~z defines a local coordinate system nearQS!. We
partition the diagonal matrixgs

21GDgs into two halves:gs
21GDgs5diag(D1,D2). The above inte-

grand then reads

Det~D !3
Det~11z†D1zD2

21!

Det~11z†z!
.

Expanding to quadratic order and integrating overz,z†, we obtain from the saddle pointQS a
contribution similar to~23!:
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VD~g! uQS
5CNg2N/2 )

i PS̄1
j PS2

gei(u i2u j ) )
i PS1

j PS̄2

~12gei(u i2u j )!21 )
i PS̄1
j PS2

~12g21e2 i(u i2u j )!21

3 )
i PS1

j PS̄1

~12ei(u i2u j )!21 )
i PS̄2
j PS2

~12e2 i(u i2u j )!21. ~27!

Note that the product contains a factor, (12g)2N12r , with r 5](S1ùS2). The most singular case
r 50 arises forS25S̄1 , i.e., saddle points of the type) i PS̄1

f 1 i
† f 2 i

† u0&.
In the general caseU5VDV21, the saddle points are the pointsQV,S5VQSVÀ1, and they

lead to the same contributions~cf. the covariance of the action and the measuredQ!. The two
standard saddle pointsQ56S3 are the only ones unaffected by theseV-rotations.

It is illuminating to present the result of the approximation~27! in an alternative fashion. Fo
that purpose, we denote the nonzero elements of the diagonal matrixGD by eifn (n51,...,2N).
The sum of contributions~27! can then be rewritten in the form

VD~g!5CNg2N/2(
S

)mPS̄1
)nPS̃2

ei(fm2fn)

)mPS)nPS̄~12ei(fm2fn)!
. ~28!

Save for the prefactorCN , the expression~28! agrees with the result that follows from theWeyl
character formula26 for the trace ofR(GD) over F. In general, this formula expresses the ch
acter of an element of U(2N) @more generally, GL(2N,C)# in some representationR as a sum over
all permutationssPS2N @this being the so-called Weyl group of U(2N)#. In our case, the terms
from the (2N)! elements ofS2N may be grouped into (N

2N) classes, according to the equivalen
relation described above. Since Weyl’s formula is an exact result, the expression~28! remains
finite in the limit g→1, which means that the singularities 1/(12g)N22r of the various terms
cancel each other. The complete sum over saddle-point contributions thus solves the prob
‘‘unphysical zero modes,’’ i.e., the divergence problem of the two standard saddle points.

The mathematical reason behind the ‘‘almost exactness’’ of the leading-order saddle
expansion is as follows. The action ofR(g) on coherent statesuZ& may be interpreted as th
equivariant action ofg on the space of holomorphic sections of a certain complex line bundleLR

overMN .27 This equivariant action can be extended to the~infinite-dimensional! space of square
integrable differential forms of degree (0,p) on the bundle. On the enlarged space, the chara
becomes a~super!trace, which can still be written as an integral overMN . Owing to anN52
supersymmetry, the integrand may be continuously deformed without changing the value
integral. In one limit of the deformation, one gets TrR(g); in the other, the integrandlocalizesat
the fixed points ofg on MN , yielding Gaussian integrals around these points.

It turns out that these fixed points coincide with ourQV,S , and their~Gaussian! contributions
are equal to~27!, save for the prefactorCN . As a result, the leading-order saddle-point appro
mation ~for our nonlocalized integrand! delivers the correct answer~omitting the prefactor!. In
Sec. IV D, we investigate the higher-order terms of the expansion atQ5S3 up to two loops: we
find that these terms only renormalize the prefactorCN , without affecting the U- or
g-dependence. We speculate that the~adequately resummed! full series yields the exact answe
including the correct normalization.

To achieve agreement with the Weyl character formula, it was crucial to regard the de
nator Det(11Z†Z)22N as part of the measure~as opposed to lifting it into the action!. Indeed, in
order for the mechanism of equivariant localization to take effect, the integration measure m
U(2N)-invariant—a property not enjoyed by the flat measure) i , jd

2Zi j without the factor
Det(11Z†Z)22N.
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IV. WHY DO WE NEED AVERAGING?

While the Weyl character formula forVU(g) constitutes an exact result, it is of no use—
least not as it stands—towards our goal of proving universality of the correlation function.
formula relies on the knowledge of the eigenphases eiu i of U, which are not givena priori. It does
not exhibit the semiclassical features of the quantum map at all. On the contrary, it is a ‘‘p
quantum’’ decomposition of the correlation function, a complicated reordering of the Fo
decomposition~6!.

As was explained in the Introduction, it is not conceivable in general that a universal resu
VU can be obtained without doing some kind of averaging over the matrixU. Given the results of
the previous section, one might try to perform the averaging term by term in the Weyl deco
sition, hoping that most of the terms might average to zero. Such a hope is quickly discoura
a look at the expression~23!: aside from having anNth-order singularity atg51, whose degree
increases each time somegei(u i2u j ) crosses unity, this contribution toVU(g) is strictly positivefor
real g,1. We know that the singularities are artifacts of the Weyl decomposition, as the co
tion function VU(g) itself is uniformly bounded wrtU and g. Unfortunately, because of th
positivity of ~23! the singularities can only be removed by reorganizing the entire sum of co
butions, not by averaging individual terms.

For this reason, we will adopt a different strategy: we first perform the dPN(U) average on the
integrandof the coherent-state integral, obtaining a new effective action

e2Sav(g,Q)5
def

^e2S(g,U,Q)&PN
. ~29!

We then estimate the resultingQ-integral by performing a saddle-point approximation on t
actionSav(Q).20

A priori, this approximation is no more justified than the one in the previous section, asSav is
preceded by no large parameter either. The absence of a large parameter also implies that
ing and making the saddle-point approximation are noncommuting operations. Therefor
saddle-point expansion ofSav will yield qualitatively different results from the direct expansion f
S(g,U,Q). We explained above that averaging the Weyl character formula is hopeless fo
aims. The other way around~i.e., performing the expansion after averaging the action! will prove
more interesting.

A. Where are the critical points of Sav?

For any averaging measure dPN , the two pointsQ56S3 remain saddle points ofSav(g,Q).
In the vicinity of S3 , the integrand expands as

K Det~11gZ†UZU21!

Det~11Z†Z! L ' exp Tr~^gZ†AdU•Z&2Z†Z!5e2Tr Z†(I2g^AdU&)Z,

where AdU•Z5
def

UZU21 is the adjoint action ofU on Z. The approximation is valid forZ small.
For larger values ofZ, one should add higher cumulants to the right-hand side. However, fo
time being we stick to the purely quadratic approximation, and carry out the Gaussian integ
obtain

^VU~g!& uS3
5CNg2N/2Det~I2g^AdU&!21. ~30!

When the averaging is absent~that is, dPN is a Diracd-measure atU!, we recover the contribution
~23!. The saddle pointQ52S3 yields the same result, withg→g21. On settingg5eix/N, the
sum of contributions becomes

^VU~eix/N!& uS3ø2S3
52CNRS e2 ix/2

Det~I2eix/N^AdU&! D . ~31!
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In the next section, we examine the possible occurrence of further saddle points ofSav.

1. Searching for other saddle points

In Sec. III A we located the saddle points of the functionQ°^Z(Q)uR(GU)uZ(Q)&, using the
action of the group U(2N) on the coherent statesuZ&. This function may be interpreted as th
Husimi function ~or Q-symbol! of the operatorR(GU) acting on F, and we denote it by
HR(GU)(Q). By the same procedure we can obtain the saddle points ofHR(g)(Q) for any nonde-
generate matrixgPU(2N); in that case, the saddle pointsQcrit are given in general by finite
matricesZcrit andZcrit

† , which are solutions of the saddle-point equations

]

]Zi j
HR(g)~Z,Z†!505

]

]Z̄i j

HR(g)~Z,Z†! ~ i , j 51,...,N!. ~32!

It is useful to extendHR(g) to a function of two independent complex matricesZ,Z* ~that makes
2N2 complex variables!. The saddle-point equations pose 2N2 constraints on the degrees o
freedomZ and Z* , which yields isolated solutions (Zi ,Zi* ), provided that the constraints ar
independent of each other.

The reality of these solutions~i.e., Zi* 5(Zi)
†! is due to a symmetry of the operatorR(g),

which is not conserved if we replaceR(g) by any operatorR on F. For instance, if the represen
tation R is extended to matricesGPGL(2N,C), one can show that the saddle points
HR(G)(Z,Z* ) are real iff G is a normal matrix~i.e., GG†5G†G). We are presently unable t
determine the conditions for the saddle points to be real for the most generalR. In any case, the
saddle points will be real ifR is a Hermitian operator. The Husimi function is then real, and Mo
theory applies to it. By Morse’s theorem,28 the number of saddle points~which we assume to be
isolated! is at least the sum of all Betti numbers ofMN , which is (N

2N).29 This is exactly the
number of saddle points we found forHR(X)(Q) whenX is a 2N32N Hermitian matrix, so this
function is called aperfect Morse functionfor MN . X can be joined togPU(2N) by a continuous
path inside the set of nondegenerate normal matrices: this explains whyHR(GU) , although a
complex function, still has (N

2N) real saddle points.
Unlike reality, the property that the solutions of~32! are isolated points is robust; (Zi ,Zi* ) are

the common zeros of 2N2 polynomials inZ andZ* , so they arestablewrt perturbations of the
coefficients, as long as the equations do not become degenerate. In Sec. III A the saddle p
HR(GU)(Q) were calledQV,S . We now switch to such complex coordinatesz that a saddle point
QV,S is situated atz505z†, and perturbR(GU) in GL(F) to R5R(GU)1e dR. Then for e
small,HR(z,z†) will have an isolated saddle point at (ze ,ze* ), where bothze andze* are of order
e. Even if it is not real, this saddle point will contribute to the integral overMN : starting from real
coordinatesRz i j ,Iz i j , we can locally deform the contour so as to reach the point

~Rz i j !
crit5~ze,i j 1ze, j i* !/2, ~Iz i j !

crit5~ze,i j 2ze, j i* !/2i,

and we can compute the saddle-point expansion of*HR(Rz,Iz) around it.
The averaged integrands we want to consider are all of the typeHR(Q), where

R5E
U(N)

dPN~V!
1

DetV
R~GV!,

and dPN(V) is a normalized measure on U(N). If this measure is very strongly peaked nea
matrix UN , the resulting operator will be a perturbation ofR(GUN)/DetUN , so the above stability
arguments apply: the saddle points are then isolated points near the unperturbed ones, and
‘‘almost real’’ and hence will lie on the integration contour after a slight contour deformatio

For less concentrated measures dPN(V), the structure of the saddle points can change. In S
V we exhibit an averaging scheme for which the saddle points are real but not isolated: the
submanifolds ofMN ; this is also the case forHR(g) if g is degenerate. We do not have a go
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estimate of the typical ‘‘width’’ of the measure dPN(V) above which saddle points can coalesc
spread over higher-dimensional sets, or cease to contribute to the integral~for instance, when they
depart too far away from reality!.

In general, we are unable to explicitly locate these extra saddle points, even for the rela
narrow averages described in Secs. IV C and IV F; consequently, we cannot do better than
the approximation~31! to describe the correlation function. The remaining task then is to in
tigate the spectrum of the operator^AdU&, which depends onU and on dPN .

B. Common spectral features of ŠAdU‹

The spectrum of̂ AdU& has a few features that are independent of the averaging sch
Before averaging, the eigenvalue unity occurs in AdU with multiplicity N, corresponding to the
N-dimensional space spanned by theU-eigenstate projectorsuc j&^c j u ( j 51,...,N), and the re-
maining N22N eigenvalues lie on the unit circle. After averaging, only the uniform modeIN

5( j uc j&^c j u is left with eigenvalue at unity, while all other eigenvalues have moved inside
unit disk. As a result, the sum of the contributions~31! stays finite in the limitg→1. Averaging
thus removes the ‘‘unphysical zero mode’’ problem associated with the two standard saddle
in Sec. III.

More precisely, the large-N behavior of^VU(eix/N)& u6S3
for finite x mostly depends on the

positions of the eigenvalues of^AdU& closest to unity. Within the approximation~31!, these
eigenvalues arethe relevant dynamical dataof the correlation function.

C. Semiclassical averaging

In Ref. 20, a semiclassical averaging scheme around a quantized mapUf,N was proposed as
a promising candidate to obtain universal spectral statistics, differentiating between integr
versus chaotic behavior of the classical mapf. One chooses a finite set of Hamiltonian functio
H j , corresponding to Hamiltonian vector fieldsJH j

( j 51,...,r ), on the classical phase spac
These Hamiltonians are quantized on each of the quantum Hilbert spacesHN , yielding operators

$Ĥ j%, which are represented by HermitianN3N matrices wrt an orthonormal basis ofHN . An
ensemble average is then introduced by

~1! composingUf,N with the operator exp(2i( j t j Ĥ j /\), where the ‘‘times’’t j are real numbers
~2! averaging over the parameterst j in a window around the origin of widthe using, for instance,

the Gaussian weight (e2p)2r /2e2( j t j
2/e2

.

The widthe is taken to be\-dependent:e;\a;N2a for some 1.a.0, so that the probability
measure for the classical maps exp((jtjJHj

)+f shrinks to a single point,f, in the classical limit
N→`. The set of Hamiltonians$H j% is chosen once and for all, and is independent ofN and
the mapf. The only constraint on this set is that the second-order differential operator2D
5( jJH j

2 must beelliptic.20

As explained in the Introduction, this averaging procedure is introduced in order to sup
the nongeneric spectral statistics of quantum chaotic systems with arithmetic symmetries.
respect we must mention the results obtained in Ref. 10, where the authors show how no
perturbations of quantum cat maps exhibit generic spectral statistics, as long as one pert
both directions of the two-dimensional phase space; in contradistinction, perturbation in a
direction may leave one arithmetric symmetry intact, leading to nongeneric quantum sp
statistics. This need for ‘‘phase-space-isotropy’’ of the perturbations is very similar to our
ticity requirement:D is elliptic only if the vector fieldsJH j

span the whole tangent space at eve
point of phase space.

Some recent articles30,31 have dealt with the spectral analysis of the operator^AdU&semiclas,
and obtained interesting results concerning its largest eigenvalues. For a classically chaot
these were shown to converge~asN→`! to theRuelle–Pollicott resonancesof the corresponding
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Frobenius-Perron operator.32 These resonances are inside the unit circle, which means
^AdUN&semiclas has afinite gap between unity and the rest of the spectrum, forN→`. The
huge majority of eigenvalues tend to accumulate on the origin~see the discussion at the end
Sec. V A!.

These properties allow us to estimate the contribution from the two standard saddle poi
the case of a quantum chaotic map. To lowest order in 1/N,

^VUN
~g5eix/N!&semiclasu6S3

'
N→` NCN

Det'~I2^AdU&semiclas!

sin~x/2!

x/2
, ~33!

where Det' means that the determinant is computed after restriction to the traceless matrice
to the subspace orthogonal to the uniform modeIN . Apart from the non-universal prefactor, th
x-dependence agrees with the CUE result~8! in the limit of large matrices.

In the case of an integrable map, the eigenvalues of^AdUN&semiclasbehave differently: some o
them populate more and more densely a few curves which connect the origin to some point
unit circle ~including unity!. For this reason, one cannot separate unity in DeI
2eix/N^AdU&semiclas) from the rest of the spectrum. All we can say is that the approximation~31!
does not yield the CUE formula in that case~in general it does not yield the Poisson answ
either!.

1. Warning

One might be tempted to present formula~33! as a ‘‘physicist’s proof’’ of a weak universality
conjecture for quantum chaotic maps. The reason why it is not a proof is clear:

~i! As was explained in Sec. IV A 1, there certainly exist other saddle points of~29!. The
calculation of their contributions is a difficult task, which we have not yet performed.
far from obvious why these saddle points should be less important thanQ56S3 in the
semiclassical averaging scheme.

~ii ! As was emphasized before, there is no large parameter in front of the effective a
Without such a parameter, the correction terms of the asymptotic expansion around
saddle point are not small, and their neglect in the formula~33! seems to be unjustified.

The second worry is addressed in the next subsection.

D. Loop expansion

We are now going to investigate those corrections to the formula~33! that result from sys-
tematically expanding around the saddle pointQ5S3 . The computations will be done up to wha
is called two-loop order in field-theoretic language.

As a first step, we approximate the integrand by taking the ensemble average insi
determinant:

^Det~11gZ†AdU•Z!&semiclas'Det~11gZ†^AdU&semiclas•Z!. ~34!

Although e, the ‘‘width’’ of the perturbation, decreases like\a, its effect is strong enough to
completely modify the spectrum of AdU, even in the semiclassical limit. This shows that t
above approximation is not necessarily valid if we just suppose that the matricesZ are bounded
~uniformly wrt N! in the operator norm onHN . Using the expansion

Det~11A!511TrA1(
j 52

N

Tr~` jA!,
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Eq. ~34! will hold as long as the terms forj >2 are small compared to TrA. A sufficient condition

for that is Tr(uAu)!1, whereuAu5
def

AA†A. Upon the replacementA5gZ†AdU•Z, this condition
will be met if

Tr~Z†Z!5 (
i , j 51

N

uZi j u2!1, ~35!

uniformly wrt N. It would be desirable to better control the error in~34! for the larger set of
matricesZ satisfying~N-uniformly! iZiL(HN)<const.

Taking ~34! for granted, we proceed to the computation of higher loops. To simplify

notation we abbreviateT5
def

g^AdU&semiclas. Next we formally introduce a parameterM ~which will
be reset to unity at the end of the calculation! by making in the integrand the replacement

Det~11Z†TZ!

Det~11Z†Z!
→S Det~11Z†TZ!

Det~11Z†Z! D M

.

A contribution to the perturbative saddle-point expansion is said to be ofn-loop order if it varies
asM 2n relative to the leading-order term. On rescaling the integration variables toz5ZAM and
z†5Z†AM , the 1/M expansion of the integrand looks as follows:

dmN~Z,Z†!
DetM~11Z†TZ!

DetM~11Z†Z!
5CN )

i , j 51

N
d2z i j

pM
e2Trz†(12T)z~11M 21f 11M 22f 21¯ !

where f 1 and f 2 are the one- and two-loop terms, respectively, and are given by

f 15
1

2
Tr~z†z!22

1

2
Tr~z†Tz!222NTrz†z,

f 252
1

3
Tr~z†z!31

1

3
Tr~z†Tz!31

1

8
@Tr~z†z!22Tr~z†Tz!2#2

12N2~Trz†z!21NTr~z†z!22NTr~z†z!~Tr~z†z!22Tr~z†Tz!2!.

The Gaussian integral at leading order just yields the result~30!. Using standard diagrammati
techniques to do the one-loop integral we find the following expression:

1

2
CNM 2N3NDet~12T!21H 24N(

i j
S 1

12TD
i j ,i j

1(
i jkl

S 1

12TD
i j ,k j

S 1

12TD
kl,i l

2(
i jkl

S T

12TD
i j ,k j

S T

12TD
kl,i l

1(
i jkl

S 1

12TD
i j ,i l

S 1

12TD
kl,k j

2(
i jkl

S T

12TD
i j ,i l

S T

12TD
kl,k j

J .

By the relation (12T)21511T(12T)21 these terms combine to yield the simple answer

CNE
CN3N )

i , j 51

N
d2z i j

pM
e2Trz†(12T)z f 1~z,z†!5CNM 2N3NDet~12T!21~2N3!.

We see that the dependence of the one-loop contribution onT cancels completely, leaving only
constant,2N3. This cancellation is not accidental but continues to higher loop order. By a len
but straightforward calculation, the complete perturbative result up to two-loop order ca
shown to be
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E
CN3N

dmN~Z,Z†!
DetM~11Z†TZ!

DetM~11Z†Z!

5CNM 2N3NDet~12T!21S 12M 21N31M 22S 1

2
N61

7

12
N42

1

12
N2D1O~M 23! D .

Again, all theT-dependence has disappeared from the loop correction terms. This is true forM
including the case of interest,M51.

The cancellation does not come as a total surprise. The above perturbation expansion
low-order terms we have computed, is formally identical to the same expansionbeforeaveraging.
The latter is obtained from the former by simply substitutinggAdU for T5g^AdU&semiclas. In the
case before averaging we know from Ref. 27 that an index-theoretic mechanism~sometime called
localization! causes the perturbation expansion to be deformable~by an underlyingN52 super-
symmetry! to a harmonic oscillator problem~or, equivalently, a Gaussian integral! at Z50. The
process of deformation to the Gaussian limit explains why the dependence ongAdU is exhausted
by the leading-order term. It leads to the Weyl character formula, which implies that the c
bution to the character fromZ50 ~or Q5S3! is exactlygiven by

E
CN3N

dmN~Z,Z†!
Det~11Z†gAdU•Z!

Det~11Z†Z!
uZ50,all orders5Det~I2gAdU !21,

where the normalization constantCN has now been replaced by unity. The last fact provides
raison d’être for theN-dependent terms produced by the loop expansion: their role is to ca
after proper resummation, the prefactorCN . This property does not depend on the unitarity
gAdU, so it holds as well after replacing it by its average. Thus, after summing all orders o
perturbation expansion, we expect that the saddle pointZ50 contributes to the correlation func
tion as

^VU~g!& uS3 ,all orders5g2N/2 Det~I2g^AdU&!21.

This perturbative result should be used with some care. Although the functionf (Z,Z†;T)
5Det(11Z†TZ)/Det(11Z†Z) is locally well defined, it does not extend to a global smoo
function on the manifoldMN ~in particular, this function is NOT the Husimi function of a
operator onF!. Indeed, settingZ5zG with any invertible matrixG and sendingz→` always
leads to the same pointQ52S3 on MN , regardless of which matrixG we choose, whereas th
limit of f (zG,z̄G†;T) asz→` does depend on the choice ofG. Thus, the functionf (Z,Z†;T) is
not smooth atQ52S3 .

This singularity reflects the fact that the cumulants neglected by our basic approximatio~34!
are small~compared to the terms kept! only for small matricesZ @cf. the discussion following Eq
~34!#. If Z,Z† ~or some matrix elements thereof! are allowed to go to infinity, the approximatio
clearly loses its validity. To control the error incurred near the saddle pointQ52S3 , one needs
to switch to another scheme, by first changing coordinatesZ→1/Z andZ†→1/Z† and only after-
wards repeating the above steps. The contribution fromQ52S3 can then be calculated in th
same way as the one forQ5S3 . The treatment of further saddle points remains an open prob

What makes this procedure unsatisfactory is that we are simultaneously working with s
approximation schemes, each of which is only locally controlled. To localize the integral a
saddle points in a mathematically rigorous manner, we would need an approximation t
globally well definedand well controlled. It is not clear whether such an approximation ex
given the stringent requirement that the integrand should also have the index-theoretic fe
that allow localization techniques to be used.
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V. AVERAGING U OVER EIGENBASES

By its definition ~2! as a correlation function of spectral determinants,VU(g) is invariant
under any change of basisU°VUV21, with V an arbitary unitary matrix. In theQ-matrix
formulation, this invariance is reflected by the relationS(g,U,Q)5S(g,VUV21,VQV21). Since
the transformationQ°VQV21 has unit Jacobian, we may absorbV into the integration variable
Q and computeVU(g) by first averaging e2S(g,U,Q) over all rotationsU°VUV21:

e2SVav(g,U,Q)5
def 1

Vol U~N!
E

U(N)
dV exp$2S~g,VUV21,Q!%, ~36!

and then integrating e2SVav overQ. We saw in Sec. III A that if the matrixD5V21UV is diagonal,
then the saddle points ofS(g,U,Q) are situated on the pointsQV,S5VQSV21. Because the
locations of these points explicitlydependon V, we expect that a smoothing mechanism tak
place and the divergences of the individual terms in the Weyl character formula disappe
averaging overV. In fact, as we will see, the expansion obtained by saddle-point analysis o
effective actionSVav(g,U,Q) is qualitatively quite different from Weyl’s formula.

A. Analysis around ÁS3

We first describeSVav(g,U,Q) near the two saddle pointsQ56S3 ~cf. Sec. IV A!. The
V-averaged adjoint operator^Ad&V has a rather simple spectrum: unity is a simple eigenva
~associated withIN!, and on the remaining (N221)-dimensional space the operator is proportio
to the identity:

^AdU&V5PI1~12PI!
uTrUu221

N221
. ~37!

~PI is the orthogonal projector onIN .! We see that̂AdU&V has a large gap between unity and t
second eigenvalue, and this gap has the maximal degeneracy. Assuming that this deg
eigenvalue is small (uTrUu!N), we get the following leading-order contribution:

^VU~eix/N!&VuS3ø2S3
;

2NCN

~12a/N!N2

sin$x~1/22a!%

x
, ~38!

with a5
def

~ uTrUu221!/N. ~39!

Within this approximation, the correlation function depends onU5Uf,N only through the simple
quantity uTrUu2, which can be estimated semiclassically by the Gutzwiller–Tabor trace form
~1!: typically, a is of orderO(1/N) for a chaotic map, and of orderO(1) for an integrable one.

Notice that, due to the high degeneracy of the second eigenvalue, we do not get in gene
CUE result~8!, although this eigenvalue is far inside the unit circle. This shows that, to obtai
CUE result ~33!, we not only need a finite gap in the spectrum of^AdU&, but also a fast
accumulation of the eigenvalues to the origin. The precise condition on the eigenvalu

( j 52
N2

@l j /(12l j )# !N. In the present averaging scheme, this meansa!1.

B. Critical submanifolds

We need to investigate the possible influence of other saddle points ofSVav(g,U,Q); for the
present averaging scheme, we will explicitly describe a critical set, which we believe t
exhaustive. The effective action possesses the symmetrySVav(Q)5SVav(WQW21) for all W
PU(N). Therefore, the saddle points are grouped into stationarysubmanifolds, each of them
invariant under U(N).
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1. Description of the manifolds

In Appendix A we prove the following statement: for any initial matrixU and anyg, the
action ~36! is stationary at the pointsQ5WQsW21, for all rotationsWPU(N) and any permu-
tation s ~see Sec. III A for the notationss, S5S1øS2 , etc!. Since U(N) is connected, the points

MS5
def

$WQSW21 uWPU(N)% form a connected submanifold ofMN .
Let t be any permutation amongN indices. The setS85(t(S1),t(S2)) is in general different

from S, and we haveQSÞQS8 ; however, QS8PMS , or equivalentlyMS5MS8 . Putting
p5]S2 and r 5](S1ùS2), we find thatMS contains (p

N)( r
p)( r

N2p) different pointsQS8 . The
manifoldsMS are in one-to-one correspondence with the integers (p,r ), and their total number is
(N/211)2 for N even, and (N11)(N13)/4 for N odd ~including the isolated points6S3 in the
count!.

For genericU andgÞ1 @genericity means here that the matrix diag(gU,U) is not degener-
ate#, we conjecture that the submanifoldsM(p,r ) exhaust all the critical points of the actio
SVav(g,U,Q).

2. Contributions of the manifolds

The leading-order contribution of each submanifoldMS to the Q-integral is calculated by
separating the tangent space atQS into two parts, one parallel and one transverse toMS . The
integrand in the vicinity ofQS then reads~to quadratic order!

e2SVav(QS)e2HessT(XT)1O(uXTu3),

where HessT is the Hessian ofSVav aroundMS , viewed as a nondegenerate quadratic form on
transverse part of tangent space~coordinatized byXT!. The exact integral overMS and the
Gaussian integral over the transverse directions yield the contribution

^VU~g!& uMS
5CNg2N/21p

VolMS

ADet~HessT!
e2SVav(g,QS). ~40!

In Appendix B, we explicitly compute the volumes of the submanifoldsMS5M(p,r ) :

VolM(p,r )5
~G~1!¯G~r !!2G~1!¯G~p2r !G~1!¯G~N2p2r !

G~1!¯G~N!
.

For all submanifoldsMSÞ$6S3% ~i.e., 0,p,N), these volumes areN-exponentially small. The
quantities HessT and SVav(QS) depend onU and g; we are unable to compute them in gener
What we know for sure is thatue2SVavu<1, since e2S(g,U,Q) has this property.

For a nondegenerateU andg5eix/N, the Hessian aroundMS will possess a single eigenvalu
that vanishes withx, while all other eigenvalues stay at least of orderO(1). This means that the
contribution fromMS goes like 1/x as x→0. However, the ‘‘particle-hole duality’’ between th
submanifoldsM(p,r ) andM(N2p,r ) cancels this divergence in the sum of their two contributio
~as it does for6S3!.

As a result, we conjecture that each contribution^VU(g)& uMSøMS̄
is x-uniformly,

N-exponentially small compared to that from6S3 for large N, owing to the small volumes o
M(p,r ) . Since the number of critical submanifolds grows likeN2, we deduce that the leading
order saddle-point expansion for the actionSVav(U,g,Q) can be truncated to~38! for largeN.

C. Averaging over random matrix ensembles

We may go further and average e2S not only over the conjugates of a fixed matrixU, but also
over the spectrum$eiu j%. For instance, we can averageU over all matrices in U(N), with a weight
corresponding to one of the standard random matrix ensembles~Poisson, CUE!. The averaged
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action will be U(N)-rotation invariant, and its saddle points will still lie on the submanifoldsMS .
As a result, the leading-order saddle-point~l.o.s.p.! expansion for such ensemble-averaged acti
can again be truncated to the contribution~38!, upon replacing the coefficienta by its average
^a&ensembleover the ensemble considered.

D. Conclusion: No l.o.s.p. expansion for the V-averaged actions

The contribution~38! depends in a very simple manner on the matrixU, namely only on its
first trace. This is in contradiction with the fact thata priori, all traces up to Tr(UN/2) enter into
VU(g) @cf. Eq. ~14!#. By selecting some particular cases, it becomes obvious that the l.o
expansion~38! deviates strongly from the exact correlation function. The most immediate c
terexample is the Poisson ensemble, whose correlation function is given in Eq.~8!. For this
ensemble,̂ a&Poisson51, which yields the CUE result~!! when inserted into the formula~38!. We
are hence forced to abandon the l.o.s.p. expansion for theV-averaged actions.

Nevertheless, we hope that this expansion is still meaningful when the averaging oveU is
local in U(N), which is the case for the semiclassical average in Sec. IV C~but not for the
V-average!. Hopefully, a local average will still conserve some memory of the ‘‘localizatio
property, which entailed the ‘‘almost exactness’’ of the l.o.s.p. expansion forS(g,U,Q).

In the next section, we will consider a local averaging scheme different from the s
classical one. It possesses group-theoretic properties, which will allow us to analyze it fro
character decomposition~14! instead of the coherent-state integral.

VI. ISOTROPIC AVERAGING

Starting from a fixed matrixU, one may define anisotropic averaging aroundU, by com-
posingU with theN3N unitary matrices e2 iH, weighted by exp(2TrH2/4e)dH with small e ~so
that the weight is concentrated at the identity!. Isotropy here means that the measuredH is
U(N)-invariant. Note that this in sharp contrast with the semiclassical averaging of Sec.
whereH was a linear combination ofr matricesĤ j , with r independent ofN. In the semiclassica
case, the perturbation spanned only ar -dimensional submanifold, whereas in the present case
perturbation completely fills theN2-dimensionale-ball centered atH50.

One can replace the Gaussian weight by any positive normalized U(N)-invariant function of
H. For our purposes, it is convenient to use theheat kernelon U(N), i.e., the kernel of the
regularizing operator exp~2eD!, whereD is the ~positive! Laplace–Beltrami operator on U(N).
The heat kernel centered onU is defined as follows:

;e.0:2DVKe~V,U !5
]

]e
Ke~V,U !

lim
e→10

Ke~V,U !5dU~V!.

Owing to the compactness of U(N), the densityKe(•,U) for any matrix U converges to the
uniform density on U(N) ase→`. Switchinge from 0 to` therefore realizes a crossover from th
Dirac delta measuredU(•) to the Haar~or CUE! measure. For small values ofe, the kernel
Ke(V,U)5ke(VU21) is concentrated around e2 iH5VU21'1 and is approximately given by th
Gaussian weight introduced above:ke(e

2 iH);exp(2TrH2/4e).
Schur’s lemma ensures thatD is proportional to the identity on each U(N)-irreducible sub-

space ofL2(U(N)). As a consequence, its action on each representation matrixrp(U) of Eq. ~14!
is simply a multiplication by a positive factor, called the quadratic Casimir invariant, which
denote byrp(D). In formulas,

E
U(N)

dVrp~V!Ke~V,U !5
def

e2eDUrp~U !5e2erp(D)rp~U !.
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The factorrp(D) may be computed from the Young diagram ofrp ; a more direct way is to
expressD in terms of fermionic operators acting on the Fock spaceF:

DuF5 (
i , j 51

N

~ f 1 i
† f 1 j2 f 2 j

† f 2 i !~ f 1 j
† f 1 i2 f 2 i

† f 2 j !5~N11!~F11F2!2~F1
2 1F2

2 !22J↑J↓ .

Applying this to any element of the subspace0F p ~which carriesrp) we find

rp~D!52p~N112p!. ~41!

On employing the decomposition~14!, the heat-kernel averaged correlation function
g5eix/N takes the form

^VU~g!&e5
def

e2eDUVU~g!5 (
p50

N/2

e22ep(N112p)Trrp~U !
sin@x/2~12 ~2p21!/N!#

sin~x/2N!
. ~42!

The effect of the averaging procedure is to damp the large-p traces, which are difficult to estimat
from the Gutzwiller trace formula. In the above equation thee→` behavior is obvious: all trace
except the trivial one Trr0(U)51 are killed by the exponential, no matter what the matrixU is.
It is actually not necessary to sete to ` to get the CUE correlation. Since the irrepsrp are unitary,
their traces are bounded by

uTrrp~U !u<dimrp5Trrp~I!.

The dimensions of therp’s are given in Eq.~13!; for finite p, they are bounded by dimrp

<N2p. In the limit N,p→` with y5p/N fixed, Stirling’s formula yields

dim~rp5Ny!;~pN!21
f 8~y!

y~12y!
e2N f(y),

where the functionf (y)52y logy2(12y)log(12y) increases monotonically fromf (0)50 to
f (1/2)5 log 2.

For any sequence$UN%NPN , if we tunee ~possibly varying withN! such that

«5
def

Ne@1,

all the terms making a significant contribution to~42! satisfyp!N. Thex-dependence of all thes
terms is the same@being given by the CUE correlationx21 sin(x/2)], so the averaged correlatio
will also have this dependence. Only the prefactor will depend on the matricesUN explicitly. If e
is increased further to«@ logN, the prefactor itself becomes universal.

These statements hold even in the most general case, when the sequence$UN% is completely
arbitrary. Therefore, to be able to differentiate between integrable and chaotic quantum ma
must tune the ‘‘disorder strength’’« to smaller values, so that contributions from the ‘‘high’’ trac
Trrp(UN) start to contribute. To recover the Poisson behavior for integrable maps, one ac
needs contributions to~42! coming from the whole regionp&N/2.

This puts us in a no-win situation. On the one hand, we should tune« to small enough values
so that the high tracesp;Ny (y.0) survive and Poisson behavior stands a chance to emerge
the other hand, for a chaotic map we have no control over these high traces~we don’t for an
integrable map either!.

For our purposes, the present averaging scheme is probably ‘‘too algebraic,’’ as opposed
semiclassical average presented in Sec. IV C. To motivate this statement in the spirit of Sec
let us compare the spectra of the operators^AdU& for the two schemes:
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~i! The spectrum of̂AdU&semiclasqualitativelydepends on the nature of the classical dynam
~see Sec. IV C!. It has a finite gap for a chaotic map, whereas eigenvalues accumulate
the unit circle for an integrable one.

~ii ! In the isotropic scheme,^AdU&e is decomposed into the irrepsr0(U) % r1(U). Therefore,
apart from the single eigenvalue unity,^AdU&« has the eigenvalues$e22«ei(u i2u j )%, where
$eiu j% are the eigenvalues ofU; the eigenvalue e22« is (N21)-fold degenerate. This spec
trum is qualitatively the same for chaotic versus integrable systems.

A. Crossover Poisson-CUE

We now present an application of the above scheme in the area of random matrices
precisely, we use the isotropic averaging to build a crossover between the Poisson an
ensembles, and we derive the transitional determinant correlation function that interpolat
tween the formulas~8!. This crossover, as well as the method used to compute^VU&, can be
compared to the GOE→GUE crossover studied in Ref. 7.

Our crossover is defined as follows. We start from the Poisson ensemble, then convo
with the isotropic~heat kernel! measure of widthe:

^VU~g!&Poisson,e5
defE

U(N)
dPPoisson~U !E

U(N)
dV Ke~V,U !VV~g!.

For e50, this is the Poisson ensemble. In the large-e limit, the second integral converge
U-uniformly to the CUE correlation function, so the output^VU(g)&Poisson,e does, too.

To calculate the correlation function along the crossover, we will use the decomposition~42!
as in the previous section: averaging being a linear operation, we only need to replace th
acters Trrp(U) by their Poisson averages@see Eqs.~7! and ~15!#:

^Trrp~U !&Poisson5S N
p D2S N

p21D .

The asymptotics of these traces in the regimep,N→` with y5p/N fixed, again follows easily
from Stirling’s formula:

^Trrp~U !&Poisson;~2pN!21/2
f 8~y!

Ay~12y!
eN f(y). ~43!

The sum over characters therefore approaches the following integral~asN→`):

^VU~eix/N!&Poisson,e;
2N2

A2pN
E

0

1/2

dy
f 8~y!

Ay~12y!

sin~ 1
2 x2yx!

x
eN( f (y)22«y(12y)). ~44!

In the limit N→`, this integral is determined by the saddle points~rather, the maximum! of

f «(y)5
def

f (y)22«y(12y) on @0,1
2 #. Three cases have to be distinguished:

~i!If «,1, the boundary pointy5 1
2 is a maximum off « and is the only critical point on@0,1

2#.
Because of the vanishing of the integrand aty5 1

2, the saddle-point analysis requires some ca
For x of orderO(N0) the result turns out to be independent ofx:

^VU~eix/N!&Poisson,«;2Ne2N«/2~12«!23/2,

which shows that the Poisson result 2N is retrieved in the limit«→0. The correlation functions
starts depending onx on scales of orderx;O(N1/2).
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~ii ! If «.1, the maximum off « is situated at the pointy«P(0,1
2) which solves the transcen

dental equationf «8(y)50. The correlation function depends onx;O(N0) as

^VU~eix/N!&Poisson,« }
sin@x~ 1

22y«!#

x
. ~45!

The flat correlation function has been replaced by an oscillatory function, with the perio
oscillation being controlled by the ‘‘frequency shift’’y« . When« becomes large, the shift vanishe
asy«;e22«, so the CUE correlation function is retrieved.

~iii ! If «51, the correlation function is ‘‘critical’’~in the sense of a phase transition!, as the two
pointsy5 1

2 andy« coalesce for«→1 to form a degenerate critical point. In this case the corre
tion function varies on scalesx;O(N1/4).

VII. CONCLUSIONS

In this article we have adapted the NLsM approach introduced in Refs. 15 and 16 to t
framework of quantized maps on a Hilbert space of dimensionN;\21. We focused on the
spectral determinant correlation functionVU(g) instead of the pair correlation function, thereb
obviating the need to introduce supersymmetry; we obtained anexactexpression for the correla
tion function as an ordinary integral over aN2-dimensional complex manifold. Because the ma
fold is compact and the integrand uniformly bounded, no regularization needs to be intro
~unlike in Ref. 15!.

To estimate this integral we expand the integrand around its saddle points, first rest
ourselves to the leading-order perturbative expansion around each point. Owing to the abs
a large parameter in front of the effective action, this approximation is uncontrolled, an
connection between its output and the exact value of the integral seems fortuitous at best

Yet, for any matrixUPU(N), we find that the result from lowest-order saddle-point exp
sion of the effective actionS(g,U,Q) coincides with the exact correlation function, up to a glob
prefactor:

VU~g! u l.o.s.p. exp.5CN VU~g!exact. ~46!

This remarkable coincidence is linked to a cancellation property of the higher-order terms
perturbation expansion, which modify only the prefactor, and is explained by the group-the
structure of the integrand and the Weyl character formula. Unfortunately, the expansion is
use for estimating the correlation function of quantized maps in the semiclassical limit.

We argue that a decent semiclassical estimate of the correlation functionVU(g) can only be
reached if one takes an average over a set of unitary matrices in the vicinity ofU. To estimate this
averaged correlation, we first average the integrand e2S(g,U,Q) over U, and then perform the
saddle-point expansion of the output. Because averaging and saddle-point expansion are
tions that do not commute, this procedure yields an expansion different from that of the ‘
vidual’’ action. At the same time, averaginga priori breaks the group-theoretic structure, and w
it the exactness~modulo prefactor! of the leading-order saddle-point expansion. Moreover,
explicit computation of saddle points and their contributions is, in general, a nontrivial task
general averaging scheme.

We have been able to locate the complete set of critical points only for a certain ty
average, namely averaging over all bases of Hilbert space. This produces a U(N)-invariant effec-
tive action, the critical points of which are grouped into submanifolds, and are independent
matrix U we started from~as long as its spectrum is nondegenerate!. Two of these submanifolds
are isolated points; we conjectured that the contributions from these two ‘‘standard’’ saddle p
which can be computed explicitly, always dominate the leading-order saddle-point expansi

The contributions from these two points are unfortunately ‘‘too simple’’ to constitute a g
approximation of the correlation function, except in some exceptional cases, which we do no
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understand. If we average overUPU(N) with the Poisson measure, the saddle-point res
strongly differs from the exact one. We are thus led to conclude that the leading-order saddle
expansion of rotation-averaged effective actions does not yield a good estimate of the full in

What happens in the case of alocal average, i.e., when the weight of the probability meas
is concentrated near the quantized mapUN , is unclear. For one thing, we are only able to exhi
the two standard saddle points of the averaged action, but there surely exist many more.

In the case of the ‘‘semiclassical’’ averaging scheme, expansion around these saddle
yields results similar to those obtained in Ref. 15, except that the ‘‘resonances’’ we identif
eigenvalues of a quantum operator. Yet, these resonances for largeN seem related to the~classical!
Ruelle–Pollicott resonances,30,31 in particular they indicate whether the classical dynamics
chaotic or integrable.

To connect these resonances with the determinant correlation function on a rigorous fo
we need two nontrivial assumptions to be fulfilled. First, we must assume that the leading
saddle-point expansion of the~local average! Ssemiclas(g,UN ,Q) makes sense, i.e., gives a goo
approximation of the exact result; the two-loop calculation around6S3 in Sec. IV D seems to
support this assumption. Second, hindered by our inability to compute the contributions
further saddle points, we are forced to assume that the full expansion can be truncated to
standard saddle points, or at least that this truncation provides a reasonable approximati
presently see no way to prove these assumptions.

APPENDIX A: PROOF OF CRITICALITY OF THE SUBMANIFOLDS MS

To prove that theV-averaged integrand e2SVav(g,U,Q) is stationary on the submanifold
MS,MN , we employ the coherent-state formulation of theQ-integral. The pointQS corresponds
to the stateuS&5R(gs)u0&, and the points in a neighborhood ofQS may be parametrized a
R(gs)uz&, wherez runs through theN3N matrices~with small coefficients! and uz& is the corre-
sponding coherent state. The permutationsPS2N is chosen in such a way as to interchange

setsS̄1 and S̃25S21N, and to keepS1 and S̃̄25S̄21N fixed.
We write the 2N32N matrix gs

21GUgs in the block form (C
A

D
B), and first compute the value

of the integrand in the vicinity ofQS before averaging:

^zuR~gs
21GUgs!uz&

^zuz&
5Det~D !~11Tr~D21Cz1BD21z†!1O~ uzu2!!.

Then we perform theV-average onU ~recall thatVPU(N) acts onUPU(N) by conjugation:
U°VUV21!, and study its output on the right-hand side of the above equation. To first ord
z andz†, we need the averages^Det(D)&V , ^D21C Det(D)&V and^BD21Det(D)&V . By decom-

posing the sets$1,...,N%5S1øS̄1 and$N11,...,2N%5S̃2ø S̄̃2 , theN3N matricesB,C,D may be
written in block form:

B5S gUS1S̄1 0

0 US2S̄2

D , C5S gUS̄1S1 0

0 US̄2S2

D , D5S gUS̄1S̄1 0

0 US̄2S̄2

D ,

where each entryUss8 is a matrix of size]s3]s8, whose indices take values in the setss,s8.
Thus theV-averaged coefficients of the term linear inz are the following matrix elements:

^Det~US̄1S̄1
!Det~US̄2S̄2

!~U
S̄1S̄1

21
US̄1S1

! ik&V , ^Det~US̄1S̄1
!Det~US̄2S̄2

!~U
S̄2S̄2

21
US̄2S2

! lm&V ,

where we have displayed only the dependence onU ~and omitted theg-dependence!. We now use
the invariance of the Haar measuredV under~left! multiplication by any unitary matrix and an
diagonal unitary matrixd5diag(d1,...,dN) in particular. Under such a left translation, the abo
matrix elements acquire extra factorsd i /dk ~resp.d l /dm!. Hence
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^Det~D !~D21C! ik&V5^Det~D !~D21C! ik&Vd i /dk for any d i ,dk .

Sincei PS̄1 andkPS1 ~resp.l PS̄2 andmPS2! are never equal and the ratiod i /dk may take any
value in U(1), weconclude

^Det~D !~D21C! ik&V50.

By the same reasoning, the terms linear inz† vanish afterV-averaging.
We have thus shown that the pointQS on MN is a critical point of theV-averaged action

SVav, Eq. ~36!. By the U(N)-invariance ofSVav, it follows that the whole submanifoldMS is
critical for theV-averaged action, no matter whatU is.

APPENDIX B: VOLUMES OF THE CRITICAL SUBMANIFOLDS

We treat the general case with]S15]S̄25N2p, ]S̄15]S25p, ](S1ùS2)5](S̄1ùS̄2)
5r , and to buildQS we use the same permutations as in the previous appendix.

The manifoldMS is given by the set of states$R(Vgs)u0&uVPU(N)%. These states may b
written ~up to normalization! in the formR(gs)uzV& where the coherent stateuzV& is determined by
the matrix

zV5S VS1S̄1
V

S̄1S̄1

21
0

0 VS2S̄2
V

S̄2S̄2

21 D 5
defS z (1) 0

0 z (2)D ~B1!

according to Eqs.~16! and~17!. The block structure of this matrix derives from the sets (S1 ,S2)
vertically, and (S̄1 ,S̄2) horizontally.

WhenV runs through U(N), the upper-left matrixz (1) takes all possible values inC(N2p)3p.
The matrixz (2) is not independent ofz (1). For a fixedz (1), we need to identify the remaining
degrees of freedom inz (2), which is quite easy to do ifz (1)50, i.e., if V has the structureV
5diag(VS1S1

,VS̄1S̄1
!. The matricesVS2S̄2

andVS̄2S̄2
in this case block decompose as

VS2S̄2
5S V12,12̄ 0

0 V1̄2,1̄2̄
D , VS̄2S̄2

5S V12̄,12̄ 0

0 V1̄2̄,1̄2̄
D

where the index 12 refers to the setS1ùS2 , etc. The degrees of freedom of the lower-right part

zV are thus two matrices,z (11)5
def

V12,12̄V12̄,12̄

21
PCr 3(N2p2r ), and z (1̄1̄)5

def

V1̄2,1̄2̄V
1̄2̄,1̄2̄

21
PC(p2r )3r .

They are independent of each other, and take all possible values in their respective vector
Since the subgroup U(N2p)3U(p) of U(N) acts transitively on the submanifoldz (1)50 of
MS , there exists a natural choice of invariant measure on that submanifold. It has the fact
form

Det~11z (11)†z (11)!N2p)
i , j

d2z i j
(11)/p3Det~11z (1̄1̄)†z (1̄1̄)!p)

i , j
d2z i j

(1̄1̄)/p.

The matrixz (1) parametrizes a coset space U(N)/U(N2p)3U(p), with the corresponding in-
variant measure being Det(11z (1)†z (1))N) i , jd

2z i j
(1)/p. By group invariance arguments, the vo

ume element ofMS ~normalized so that it agrees with the Riemannian measure inherited from

Riemannian manifoldMN! is the product of the measures forz (1), z (11), andz (1̄1̄) above. Using
this fact and the result33

I ~m,n!5
defE

Cm3n)i 51

m

)
j 51

n
d2Zi j

p
Det~11Z†Z!2n2m5

G~1!¯G~n! G~1!¯G~m!

G~1!¯G~n1m!
,
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we obtain the volume ofMS :

VolMS5I ~p,N2p!I ~r ,p2r !I ~r ,N2p2r !.

A similar integral yields the normalization factorCN of the measuredmN(Z,Z†) on the full
manifold MN :

1

CN
5E

CN3N )
i , j 51

N
d2Zi j

p
Det~11Z†Z!22N215

G~2!¯G~N11!

G~N12!¯G~2N11!
.
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Coherent states and annihilation–creation operators
associated with the irreducible unitary representations
of su„1,1…
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We construct a kind of annihilation–creation operators related to the affine coherent
states. Next, we re-interpret them as annihilation–creation operators associated
with the irreducible unitary representation of the algebrasu~1,1!, by adding another
generator to the two generators of the unitary representation of the one-dimensional
affine group. ©2002 American Institute of Physics.@DOI: 10.1063/1.1470707#

I. INTRODUCTION

In quantum mechanical systems, the canonical commutation relation

@X,Y#52 i I ~1!

is important, and the annihilation and creation operators, coherent states, number states,
number operator are derived from this commutation relation. Here, we will treat the commu
relation

@X,Y#52 iX ~2!

similar to ~1!. The Lie group associated with this algebra is called the~one-dimensional! affine
group~ax1b group!, and it is well known that it has only two irreducible unitary representati
in the sense of unitary equivalence~see Gel’fand and Naimark,1 or Aslaksen and Klauder2!. For
the commutation relation~2!, in a similar manner to the case of the canonical commuta
relation ~1!, the corresponding coherent states~affine coherent states! have been known.3,4 The
affine coherent states are the minimum uncertainty states between an operator and the in
the other operator of the canonical commutation pair. In signal processing, the wave p
corresponding to the affine coherent states are called Cauchy wavelets and they are impo
the theory of the continuous wavelet transformation.5

In this paper, in this context, we will derive not only the coherent states but also the an
of the annihilation and creation operators, the number operator, and the number states wh
associated to the commutation relation~2!. Moreover, we will interpret them more naturally b
starting from the irreducible unitary representation of the algebrasu~1,1!, because the irreducible
unitary representation of the affine group is closely related to the irreducible unitary represen
of the algebrasu~1,1! associated with the Lie group SU~1,1!.

a!Electronic mail: saka@dignet.fuee.fukui-u.ac.jp
b!Electronic mail: masahito@brain.riken.go.jp
22410022-2488/2002/43(5)/2241/8/$19.00 © 2002 American Institute of Physics
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II. ANNIHILATION–CREATION RELATION RELATED TO IRREDUCIBLE UNITARY
REPRESENTATION OF AFFINE GROUP: A HEURISTIC APPROACH

It has been known2 that the irreducible unitary representation of the affine group can
reduced to

Y5
PQ1QP

2
, X5Q on L2~R1!,

Y5
PQ1QP

2
, X5Q on L2~R2!,

whereQ denotes the position coordinate operator andP denotes the momentum operator. In t
following discussions, we will treat only the former representation, because the latter repre
tion can be discussed in almost the same way only with minor changes of the signs.

It has been known that the wave function of the coherent stateuh&k associated with the affine
group is

Q^xuh&k
ªA~2 Imh!2k11

G~2k11!
xk eihx, hPH,

whereH denotes the upper half plane andk is a real parameter (k.2 1
2). In particular, in the cases

of the representations withk.0, the system of the coherent states constitutes the resolutio
identity

1

2k EH
uh&k k^hu

d2h

4p~ Im h!2 5I ,

while this does not exist in the cases of the representations with21/2,k,0 because of the
divergence of the integration.

Next, we will introduce the operator which hasuh&k as its eigenvector associated with th
eigenvalueh for ;hPH. Define

AkªP1 ikQ21,

formally. Since this operator is unbounded, precisely, we should give its precise definition t
its domain into consideration. The precise definition and its justification will be done fro
viewpoint of group representation in Sec. IV. For this operator defined formally and the a
mentioned coherent states, it is easily shown that

Akuh&k5huh&k, ;hPH.

The operatorAk has a similar property to the boson annihilation operator in the sense that
the coherent states as its eigenvectors. However, the operatorAk does not have the property of th
annihilation operator which decreases the number of states.

We can find heuristically an operator having both of the above-mentioned properties
function of Ak , as follows. Define

akª~Ak2 i I !~Ak1 i I !21. ~3!

Then

akuh&k5
h2 i

h1 i
uh&k, ;hPH.
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By letting zª(h2 i )/(h1 i ) and uz&a
k
ªuh&k, we have

akuz&a
k5zuz&a

k , ;zPD,

whereD denotes the inside of the unit disk. Moreover, by regardingu0&a
k as the vacuum, define

un&N
k
ª

1

uu~ak* !nu0&a
kuu

~ak* !nu0&a
k .

Then we have a kind of annihilation–creation relations

akun&N
k 5A n

n12k
un21&N

k ,

ak* un&N
k 5A n11

n12k11
un11&N

k .

Moreover, by defining

Nkª
1
2 ~PQP1k2Q211Q2~2k11!I !,

we have

Nkun&N
k 5nun&N

k ,

whereNk can be regarded as the number operator. The wave function of the number state

Q^xun&N
k 5A 22k11n!

G~n12k11!
e2xxkSn

2k~2x!,

whereSn
l (x) is the Sonine polynomial~or the associated Laguerre polynomial! defined by

Sn
l ~x!ª (

m50

n
~21!m

~n2m!!

G~n1 l 11!xm

G~m1 l 11!m!
.

~Sometimes another definition withn1 l instead ofl is used.!
Among the operatorsak , ak* , andNk , the following relations hold;

ak* ak5~Nk12kI !21Nk ,

akak* 5~Nk1~2k11!I !21~Nk1I !,

@ak ,ak* #52k~Nk12kI !21~Nk1~2k11!I !21,

@ak ,Nk#5ak , ~4!

@Nk ,ak* #5ak* , ~5!

where relations~4! and ~5! have the same forms as usual boson cases.

III. INTERPRETATION OF ANNIHILATION–CREATION RELATIONS RELATED TO AFFINE
GROUP IN TERMS OF ALGEBRA su„1,1…

The linear fractional transform~Möbius transform! used in~3! was found only heuristically.
However, in this section, we will give a natural derivation of this structure from the context o
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irreducible unitary representation of the algebrasu~1,1! which satisfies some conditions. In th
context, we will re-interpret the annihilation–creation relations introduced in Sec. II more cl
in this section and Sec. IV.

The irreducible unitary representation of the algebrasu~1,1! is given by the triple of skew-
adjoint operators (E0 ,E1 ,E2) satisfying the commutation relations

@E0 ,E6#562E6 , @E1 ,E2#5E0 . ~6!

~Note that the unitary representation of the affine group is given here if we pay attention o
2 iE0 and2 iE1 .! Here, be careful about the fact that the representation of the Lie group SU~1,1!
cannot always be constructed from the representation of the algebrasu~1,1!, because SU~1,1! is
not a universal covering group. Since the operatorsE0 , E1 , and E2 have continuous spectr
usually under each unitary representation, it is difficult to analyze the forms of the represen
In order to avoid this difficulty, instead of the triple (E0 ,E1 ,E2), we will use the triple
(L0 ,L1 ,L2) defined by

L0ª i ~E22E1!,

L6ª~E06 i ~E11E2!!/2,

where the triple (L0 ,L1 ,L2) satisfies the same commutation relations

@L0 ,L6#562L6 , @L1 ,L2#5L0 . ~7!

The operatorsL0 , L1 , andL2 are not skew-adjoint, but they satisfy

L0* 5L0 , L1* 5L2 . ~8!

It has been known that giving the triple of skew-adjoint operators which satisfy~6! is equivalent
to giving the triple which satisfies~7! and~8!.6 The commutation relation@L0 ,L6#562L6 shows
that the operatorL6 is a kind of up/down-ladder of the eigenvector system ofL0 . From this fact,
and from the irreducibility and the unitarity, it is shown that only the following three cases
possible;

Case 1: dim KerL150, dim KerL251,

Case 2: dim KerL151, dim KerL250,

Case 3: dim KerL150, dim KerL250.

Case 2 can be reduced to case 1 by some changes of the signs. In this paper, we will not tr
3, and we will discuss only case 1 in the following. In this case, the minimum eigenvalueL0

exists.
Let l be the minimum eigenvalue ofL0 . From the unitarity of the representation,l should be

positive.6 Let v0 be the eigenvector ofL0 associated with the eigenvaluel. Then, we have

L0vn5~l12n!vn~n>0!, L1vn5vn11~n>0!,

L2vn52n~l1n21!vn21~n>1!, L2v050

for

vnª~L1!nv0 .

Here, from the irreducibility of the representation, we can show that$vnun50,1,2,3, . . .% consti-
tutes a CONS.
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These facts show that the minimum eigenvaluel of L0 specifies the irreducible unitar
representation uniquely in case 1. Especially, in case 1, the irreducible unitary representa
the Lie group SU~1,1!, which is not a universal covering group, can be constructed if and on
l is a positive integer.

For the normalization ofvn , we define

un&NªA G~l!

n!G~l1n!
vn , Nª

1

2
~L02l!.

Then we have

Nun&N5nun&N ,

henceN and un&N are regarded as the number operator and the number state, respectively.
Next, we defineaªL1

21N5 1
2L1

21(L02l), where the well-definedness is guaranteed beca
RanL1 is included in RanN. Then, we have

aun&N5A n

n1l21
un21&N ,

and similarly we have

a* un&N5An11

n1l
un11&N .

Moreover, we have the following relations;

a* a5~N1~l21!I !21N,

aa* 5~N1lI !21~N1I !,

@a,a* #5~l21!~N1~l21!I !21~N1lI !21,

@a,N#5a,

@N,a* #5a* .

Thus, with the correspondencel52k11, we have made a systematic derivation of the same
of the relations as the relations introduced at the end of Sec. II, in terms of the irreducible u
representation of the algebrasu~1,1!.

Next we will introduce the coherent states. According to Perelomov,7 define the coherent stat
associated with SU~1,1! by

uz&aªUS 1

2
ei argz ln

11uzu
12uzu D u0&N

5exp~zL1!expS 1

2
ln~12uzu2!L0Dexp~z* L2!u0&N

5~12uzu2!l/2 exp~zL1!u0&N

with

U~j!ªexp~jL12j* L1* !.
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Then, from the commutation relation@a,exp(zL1)#5z exp(zL1) which is derived from@a,L1#

5I , and by using the relation exp(1
2ln(12uzu2)L0)exp(z*L2)u0&N5(12uzu2)l/2u0&N , we have

auz&a5exp~zL1!au0&N1z exp~zL1!u0&N5zuz&a .

This shows that the operatora has the other property of the annihilation operator—the prop
that it has the coherent states as its eigenvectors.

Thus, the annihilation–creation relations and their relation to the coherent states hav
defined naturally from the context of the irreducible unitary representation of the algebrasu~1,1!.
In our framework, we have not usedL2 as the annihilation operator but we have useda
5L1

21N, becauseL2 does not have the coherent states as the eigenvectors.
Note that the above-mentioned operatora approaches the boson annihilation operator al

tends to infinity, in the following sense. LetUl :H→L2(R) be the unitary map such tha
Ul(un&N)5un&boson. Then, we can show thatUlaUl* converges to the boson annihilation opera
in the sense of the weak convergence asl tends to infinity.

IV. CONCRETE REPRESENTATION OF su„1,1… CORRESPONDING TO DISCUSSIONS
FOR AFFINE GROUP GIVEN IN SEC. II

In this section, we will discuss what concrete representation explains the correspon
between the framework given in Sec. III in terms of the irreducible unitary representation an
heuristic discussions for the affine group given in Sec. III.

On L2(R1), we choose two generators ofsu~1,1! from two generators of affine group as:

E05 i ~PQ1QP!, E15 iQ.

Adding the other generator,

E2ª2 i ~PQP1k2Q21!

formally, we construct a representation ofsu~1,1! from a representation of affine group.@Con-
versely, choosing two generatorsE0 and E1 , we can construct a representation of affine gro
from a representation ofsu~1,1!.#

In the following, the discussion for the affine group given in Sec. II is directly derived f
the general framework given in Sec. III. However, especially in the cases where21/2,k,1/2,
we should be careful about the domain of the operatorE2 , as will be shown.

First, define the operator

Ẽ2,kª2 i ~PQP1k2Q21! ~k.21/2!

on the dense subspaceD0(Ẽ2,k) of L2(R1) defined by

D0~Ẽ2,k!ª5 f ~x!5xkf 0~x!

PL2~R1!ùC1~R1!U ~2k11!xkf 08~x!1xk11f 09~x!

PL2~R1!,
lim sup

s→0
f 0~s!,`,

xkf 0~x!→0 as x→`
6 .

Then, it is confirmed that the operatoriẼ2,k5PQP1k2Q21 is a symmetric operator onD0(Ẽ2,k)
from the fact that the difference
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E
s

t

~~PQP1k2Q21! f !* ~x!g~x! dx2E
s

t

~ f ~x!!* ~~PQP1k2Q21!g!~x! dx

5@x~ f 8~x!!* g~x!2xg8~x!~ f ~x!!* #s
t

5t~ f 8~ t !!* g~ t !2tg8~ t !~ f ~ t !!* 2S sg~s!S ~ f 8~s!!* 2
k

s
~ f ~s!!* D

2s~ f ~s!!* S g8~s!2
k

s
g~s! D D

5t~ f 8~ t !!* g~ t !2tg8~ t !~ f ~ t !!* 2~sg~s!sk~ f 08~s!!* 2s~ f ~s!!* skg08~s!!

tends to zero ass→0,t→`. Moreover, we can show thatD0(Ẽ2,k* )ùC2(R1)5D0(Ẽ2,k). There-

fore, Ẽ2,k is a closable operator andiE2,kª i Ẽ2,k is a self-adjoint operator. Hence, we can sho

that Ẽ2,k is a closable operator and the operatoriE2,kª i Ẽ2,k is a self-adjoint operator. Note tha
the operatorE2,k is quite different fromE2,2k .

By letting L1,k ,L2,k ,L0,k ,Ãk ,Nk be L1 ,L2 ,L0 ,Ã,N, un&N , respectively, withÃª2 i (a
1I )(a2I )21 defined on the vector space whose elements are finite linear sums of$un&N%n50

` , we
have

L1,k5 1
2 ~ i ~PQ1QP!2Q1PQP1k2Q21!,

L2,k5 1
2 ~ i ~PQ1QP!1Q2PQP2k2Q21!,

L0,k5~PQP1k2Q211Q!, Ak5P1 ikQ21,

Nk5 1
2 ~PQP1k2Q211Q2122k!.

In this representation, the minimum eigenvalue ofL0,k is l52k11. Moreover, the number stat
un&N

k is shown to be thesu~1,1!-number stateun&N .
The domain of the adjoint operatorÃk is given by

D0~Ãk* !ùC1~R1!5 H x2kf ~x!PL2~R1!ùC1~R1!Ux2kf 8~x!PL2~R1!

f ~s!→0 as s→0,J , ~9!

which implies thatD0(Ãk* ) is dense inL2(R1). ThusÃk is shown to be a closable operator. Sin

Ak5Ãk, the relation

D0~Ak!ùC1~R1!5 H xkf ~x!PL2~R1!ùC1~R1!U xkf 8~x!PL2~R1!,
lim sups→0 f ~s!,`J . ~10!

is confirmed. Note thatX̄5X** andX* 5X̄* hold for a densely defined linear operatorX, and
that lim supx→` f 0(x)50 for k.2 1

2 whenxkf 0(x)PL2(R1). From ~10!, we can show thatuz&k

belongs toD0(Ak) and coincides with thesu~1,1!-coherent stateu2 i (z11)/(z21) &a . Thus, the
whole discussion given in Sec. II has been justified and reinterpreted in terms of the irred
unitary representations of the algebrasu~1,1!.

In the following, we discuss the properties ofAk and Ak* , more deeply. The subspace
D0(Ak* )ùC1(R1) and D0(Ak)ùC1(R1) are the cores ofAk* and Ak .8 When 2 1

2,k, 1
2, the

domain ofAk is larger than the domain ofA2k* , thoughAk andA2k* are the same formally, i.e.
A2k* ,

Þ
Ak . In the special case wherel51 ~i.e., wherek50!, A0* is symmetric. SinceA0

5A0** has no spectrum in the lower half plane,A0* ’s deficiency indices are~1,0!. ~For the
definition of deficiency indices, see p. 138 of Reed and Simon9 or p. 360 of Rudin.10! Therefore,
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the operatorA0* is a maximal symmetric operator. These relationsD0(Ak* ),D0(Ak) and

D0(Ak* ),D0(E1
21) are shown in the cases wherel,1(k.0), only the relation

D0(Ak* ),D0(Ak) is shown whenl51(k50), and these relationsD0(Ak),D0(Ak* ) and
D0(Ak),D0(E1

21) are shown when 0,l,1(2 1
2,k,0).

As another representation ofsu(1,1) on L2(R), the Holstein–Primakoff representation
known as11,12

L0ªQ21P212k22,

L1ª
1

&
~Q2 iP !A1

2
~Q21P2!12k2

3

2
,

L1ª
1

&
A1

2
~Q21P2!12k2

3

2
~Q1 iP !.

This representation is algebraicly equivalent with our representation. However, it has a com
different form from our representation.

V. CONCLUSION

We have derived a kind of annihilation/creation relation similar to the boson annihila
creation relation, from the irreducible unitary representation of the algebrasu(1,1). The proposed
framework contains an annihilation/creation relation related to the affine coherent state
special case. In signal processing, in a similar manner to the boson-annihilation/creation r
which is applied to the operator method in Wiener–Hermite expansion of Gaussian stoc
processes, our results may be applied to an analogous operator method for the stochastic p
related to thex2-distribution and the wavelets, because the affine coherent states are c
related to them. This discussion can be treated from another viewpoint13,14

1I. M. Gel’fand and M. A. Naimark, Dokl. Akad. Nauk SSSR55, 570 ~1947!.
2E. Aslaksen and J. R. Klauder, J. Math. Phys.9, 206 ~1968!.
3I. Daubechies and T. Paul,Proceedings of the Eighth International Congress on Mathematical Physics, Marseilles, 1986,
p. 675.

4T. Paul and K. Seip, inWavelets and Its Applications, edited by M. B. Ruskai~Jones and Bartlett, 1992!, p. 303.
5I. Daubechies,Ten Lectures on Wavelets~SIAM, 1992!.
6R. Howe and E. C. Tan,Non-Abelian Harmonic Analysis~Springer, New York, 1992!.
7A. Perelomov,Generalized Coherent States and Their Applications~Springer, New York, 1986!.
8A subspace of the domainD0(X) of a closed operatorX is called a core ofX if it is dense inD0(X) with respect to the
graph norm of the operatorX.

9M. Reed and B. Simon,Method of Modern Mathematical Physics II. Fourier Analysis, Self-Adjointness~Academic, New
York, 1975!.

10W. Rudin,Functional Analysis, 2nd ed.~McGraw-Hill, New York, 1991!.
11L. D. Holstein and H. Primakoff, Phys. Rev.58, 1098~1940!.
12C. C. Gerry, J. Phys. A16, L1 ~1983!.
13F. Sakaguchi and M. Hayashi, ‘‘A relationship between the continuous wavelet transformation and the algebra s~1,1!,’’

Proceedings of the 22nd Symposium on Information Theory and its Applications, Echigoyuzawa, Japan, 1999
Proceedings of the IASTED International Conference on Signal Processing and Communications, Marbella, Spai
p. 390.

14M. Hayashi and F. Sakaguchi, e-print quant-ph/0003079 2000; J. Phys. A33, 7793~2000!.
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The Bargmann transform and canonical transformations a…

Carlos Villegas-Blasb)

Universidad Nacional Auto´noma de Me´xico, Instituto de Matema´ticas,
Unidad Cuernavaca, A.P. 273-3, Admon. 3, Cuernavaca Morelos 62251, Mexico

~Received 2 May 2001; accepted for publication 24 January 2002!

This paper concerns a relationship between the kernel of the Bargmann transform
and the corresponding canonical transformation. We study this fact for a Bargmann
transform introduced by Thomas and Wassell@J. Math. Phys.36, 5480–5505
~1995!#—when the configuration space is the two-sphereS2 and for a Bargmann
transform that we introduce for the three-sphereS3. It is shown that the kernel of
the Bargmann transform is a power series in a function which is a generating
function of the corresponding canonical transformation~a classical analog of the
Bargmann transform!. We show in each case that our canonical transformation is a
composition of two other canonical transformations involving the complex null
quadric inC3 or C4. We also describe quantizations of those two other canonical
transformations by dealing with spaces of holomorphic functions on the aforemen-
tioned null quadrics. Some of these quantizations have been studied by Bargmann
and Todorov@J. Math. Phys.18, 1141–1148~1977!# and the other quantizations are
related to the work of Guillemin@Integ. Eq. Operator Theory7, 145–205~1984!#.
Since suitable infinite linear combinations of powers of the generating functions are
coherent states forL2(S2) or L2(S3), we show finally that the studied Bargmann
transforms are actually coherent states transforms. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1468254#

I. INTRODUCTION

Bargmann1 introduced the so-called Bargmann transform as a unitary transformation
L2(Rn) onto a spaceBn of analytic functions~of n complex variables! which are square integrabl
with respect to a Gaussian measure. The Bargmann transform is defined as the integral o

BRnC~z![
1

pn/4 E
Rn

expS 2
1

2
~z21x2!1&z"xDC~x!dx ~1.1!

~see Sec. I for notation!. The Bargmann transform is also called the ‘‘Segal–Bargmann tr
form.’’ ~See Ref. 2 for a historical remark about Bargmann and Segal’s work on this trans
Segal3 studied the infinite dimensional casen5`.!

The Bargmann spaceBn provides a very adequate framework to represent and study
n-dimensional quantum harmonic oscillator~i.e., the addition ofn one-dimensional harmonic
oscillators with the same frequency!. It is known4 that the Hamiltonian of such an oscillator can
written as

Ĥ5(
j 51

n

aj
†aj , ~1.2!

whereaj
† andaj , j 51,2,...,n are creation and annihilation operators given by

a!Dedicated to O. Pela´ez ~in memoriam!, R. Winckelmann, and F. Izunza.
b!Electronic mail: villegas@matcuer.unam.mx
22490022-2488/2002/43(5)/2249/35/$19.00 © 2002 American Institute of Physics
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aj
†5

1

&
~ q̂ j2i p̂ j !5

1

&
S qj2

]

]qj
D ,

~1.3!

aj5
1

&
~ q̂ j1i p̂ j !5

1

&
S qj1

]

]qj
D ,

with qĵ the operator of multiplication by the coordinateqj and p̂ j52i (]/]qj ).
The operators corresponding toaj

† , aj , andĤ in the Bargmann spaceBn are multiplication by
the complex variablezj , partial derivative with respect tozj and( j 51

n zj (]/]zj ), respectively. In
particular, the spectrum of then-dimensional quantum harmonic oscillator is easy to comp
because in the Bargmann representation the monomialsz1

a1z2
a2
¯zn

an ~with aj , j 51,2,...,n, non-
negative integers! are the eigenfunctions of the operator( j 51

n zj ]/]zj ).
From the viewpoint of classical mechanics, the problem of ann-dimensional harmonic oscil

lator can be studied in the phase spaceR2n5$(q,p)uq,pPRn% with symplectic form vn

5( j 51
n dqj∧dpj and Hamiltonian

H5
1

2 (
j 51

n

pj
21qj

2. ~1.4!

It is known4 that this problem can also be described by introducing complex variablezj

5(1/&) (qj2ipj ), j 51,2,...,n. In these complex variables, the HamiltonianH is given by
( j 51

n zj z̄j . This is the classical analog of Eq.~1.2!.
A remarkable and fundamental idea for this paper is the following: as in Ref. 5, let us con

the exponent of the kernel of the Bargmann transform in Eq.~1.1!,

Fn~q,z![2i~2 1
2 ~z21q2!1&z•q!. ~1.5!

It turns out that the functionFn(q,z) is a generating function of a canonical transformatio
(symplectomorphism) from the phase space(R2n,vn) onto the phase space(Cn,mn), wheremn is
the symplectic formmn52i( j 51

n dzj∧dz̄j ~see Sec. III for details!. Thus we shall say thatCn is the
classical analog of the Bargmann transform~or thatBRn is the quantization ofCn) in the sense tha
BRn is a unitary transformation between the Hilbert spacesL2(Rn) and Bn , andCn is a diffeo-
morphism between the phase spaces (R2n,vn) and (Cn,mn).

This paper concerns the same relationship between the Bargmann transform and a corr
ing canonical transformation when the configuration spaceRn is replaced by the two-sphereS2 or
the three sphereS3 ~here we mean bySn the set of unit vectors inRn11). For theS2 case, Thomas
and Wassell6 introduced a Bargmann transform fromL2(S2) onto a proper subspace ofB2 . For the
S3 case, a Bargmann transform was introduced by Villegas-Blas.7 This last transform goes from
L2(S3) onto a proper subspace ofB4 determined by the kernel of an operator which carries
restriction in quantum mechanics of the classical fact that the angular momentum and R
Lenz vectors should be orthogonal for the Kepler problem. We show in both cases—S2 and
S3—that the kernel of the Bargmann transform is a power series in a function which plays th
of a generating function of a canonical transformation which in turn is the classical analog
Bargmann transform.

In Sec. II, we describe the Bargmann transform for the three casesRn, S2, and S3. The
mentioned relationship between the Bargmann transform and corresponding canonical trans
tions is established in Sec. III. For theS2 andS3 cases we do this by using spherical coordina
~a local chart!. In order to define and extend our canonical transformations to the whole s
T* S22$0% andT* S32$0% ~we need to remove the zero section in both cases to avoid singu
ties! we use a key property of the generating functions, namely that these functions can be
as the inner product of the position vectorx ~in S2 or S3) and a complex vector in the null quadr
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Q2 ~for the S2 case! andQ3 ~for the S3 case!. Here, forn a positive integer, the null quadricQn

is the set of vectors inCn11 such that the addition of the square of their components is zero.
that a vector inCn11 belongs toQn if and only if the norm of its real and imaginary parts is th
same and these two vectors are orthogonal to one another. ThusQ22$0% and Q32$0% can be
identified withT* S22$0% andT* S32$0%, respectively.

Thus we are able to extend our canonical transformation as the inverse of a composi

two maps. For theS2 case, one mapr2(z) goes fromC̃22$0% @that isC2 minus the origin and
(z1 ,z2) identified with (2z1 ,2z2)] ontoQ22$0% and the other one,s2 , goes fromQ22$0% onto
T* S22$0%. These maps are symplectomorphisms withT* S2 endowed with the restriction of the
canonical symplectic form of the ambientT* R3, andQ22$0% endowed with the symplectic form
given by the pull-back of the symplectic form onT* S2 under the maps2 . We remark here that the
symplectic form onQ22$0% is not the restriction of the canonical symplectic form for the ambi

C3. For theS3 case, we have a similar extension, but instead ofC̃22$0%, we have a six real-

dimensional phase spaceC̃42$0% which is a quotient of a submanifold ofC4 and determined by
reduction. Thus in this second case we extend our canonical transformation by consider

inverse of the composition of two mapsr3 ~from C̃42$0% onto Q32$0%) and s3 ~from Q3

2$0% onto T* S32$0%!.
Once we have, for each caseS2 or S3, the symplectomorphisms between the three ph

spaces, a natural question is to ask for a description of their corresponding quantizations.
the goal of Section IV. Bargmann and Todorov8 have already considered the quantizations ofr2

andr3 by introducing Hilbert spaces of holomorphic functions on the null quadricsQ2 andQ3,
respectively. However, we include a brief description of such quantizations for completene
to introduce some notation. Our procedure differs from the one followed by Bargmann
Todorov in the way the measure on the null quadric is introduced. We also include in Sec
discussion on the relation between our quantizations ofs2 ands3 and work of Guillemin.9

The fact that our generating functions for theS2 andS3 cases are inner products of positio
vectors and vectors in the null quadric has another important implication. The Bargmann
forms described in Sec. II forS2 andS3 arecoherent states transforms. That is, they can be written
as inner products with coherent states. This is in analogy with the Bargmann transformBRn, which
acting on a function is the inner product of the function and a coherent state of then-dimensional
harmonic oscillator. The coherent states appearing here are infinite linear combinations of
powers of our generating functions. The latter functions are known in the literature~see Ref. 10!
and sometimes they are called coherent states as well. We prefer to call them great-circle
because they concentrate on great circles ofS2 or S3 in the semiclassical regime. The great-circ
states give a resolution of the identity for each eigenspace of the spherical Laplacian onS2 or S3,
respectively@these eigenspaces are irreducible representations of the groups SO~3! or SO~4!#. As
a consequence, we also obtain a resolution of the identity forL2(S2) and L2(S3) through our
coherent states.

Section V is devoted to the describing the Bargmann transforms as coherent states tran
In this Section we also show how the great-circle states help us to obtain reproducing kern
the range of our Bargmann transforms for both theS2 andS3 cases. We also show reproducin
kernels for spaces of holomorphic functions on the null quadricsQ2 andQ3 related with the range
and domain of the quantizations described in Sec. IV.

There are other Bargmann-type transforms introduced by Rawnsley11 ~for the n-sphere!, Ii12

and Wada13 ~for the n-sphere!, Hall2,14,15 ~for compact Lie groups!, Stenzel16 ~for symmetric
spaces of compact type!, Kowalski and Rembielin´ski17,18 ~for the two-sphere!, and Hall and
Mitchell19 ~for the n-sphere!; but they are different from the transformations introduced in t
paper. We devote Sec. VI to briefly describe these Bargmann-type transformations.

We also include two appendices to prove that the kernel of the Bargmann transforms fo
spheresS2 andS3 is a power series in a certain function.

We finally remark that the case of the three-sphere is physically relevant in both quantu
classical mechanics. The symmetries of the bound states of the hydrogen atom are given
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Lie algebra of the group SO~4! ~see Refs. 7 and 20!. In this way we can explain the degeneracy
the negative energies for the hydrogen atom. In classical mechanics, Moser21 showed that the
Hamiltonian flow for the Kepler problem~with negative energy! is equivalent, after a time rep
arametrization, to the geodesic flow onS3. In this way, Moser is able to regularize the motion
the Kepler problem.

II. BARGMANN TRANSFORM FOR L 2
„S2

… AND L 2
„S3

…

The purpose of this section is to describe both the Bargmann transform forL2(S2) ~introduced
by Thomas and Wassell6! andL2(S3) ~introduced by Villegas-Blas7!. In both cases we need th
usual Bargmann spaces introduced by Bargmann1 in his transform forL2(Rn). To that end, and as
a reference for the following sections, we begin by reviewing these spaces and their Bar
transforms.

A. Bargmann transform for L 2
„Rn

…

In this section we review important properties of the Bargmann transform that are need
later sections of this paper. For a detailed explanation and proofs see Refs. 1 and 2.

The Bargmann spaceBn is the space of analytic functions ofn complex variablesz
5(z1 ,z2 ,...,zn) which are square integrable with respect to the Gaussian measure

dnn~z!5
1

pn exp~2uzu2!)
j 51

n

dxj dyj , ~2.1!

whereuzu25uz1u21uz2u21¯1uznu2 andzj5xj1iyj , xj , yjPR, with j 51,2,...,n.
The spaceBn is a Hilbert space with inner product

^F,G&Bn
5E

Cn
F~z!Ḡ~z!dnn~z!. ~2.2!

The set of all monomials (z1
a1z2

a2
¯zn

an)/(Aa1!a2!¯an!), with a1 ,a2 ,...,an non-negative
integers, is an orthonormal basis ofBn .

The coherent states inBn,

Ca~z!5exp~ āz! with aPCn, ~2.3!

provide a reproducing kernel for the spaceBn . That is, forFPBn ,

F~z!5^F,Cz&Bn
5E

Cn
exp~zw̄!F~w!dnn~w!. ~2.4!

The Bargmann transform forL2(Rn) is defined as the operatorBRn:L2(Rn)°Bn given by

BRnC~z!5
1

pn/4 E
Rn

A~x,z!C~x!dx, CPL2~Rn!, ~2.5!

where dx is the usual Lebesgue measure onRn and

A~x,z!5exp~2 1
2 ~z21x2!1&z"x!, ~2.6!

with z25z1
21z2

21¯1zn
2 , x5(x1 ,x2 ,...,xn), x25x1

21x2
21¯1xn

2, and z"x5z1x11z2x21¯

1znxn . The Bargmann transformBRn is a unitary operator@with L2(Rn) endowed with the usua
inner product#.

The inverseBRn
21 is given by
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BRn
21f ~x!5 lim

M°`
E

uzu<M
A~x,z! f ~z!dnn~z!. ~2.7!

Here we need to take the limit because the integral over all the spaceCn might not exist@note that,
for fixed x, A(x,z)¹Bn#.

B. Bargmann transform for L 2
„S2

…

Let us first define the spaceL2(Sn) for a given integern. Let dsn be the usual normalized
Lebesgue surface measure onSn. Let us defineL2(Sn) as the space of Lebesgue measura
functions onSn which are square integrable with respect to the measure dsn .

The spaceL2(Sn) is a Hilbert space with inner product

^F,G&Sn5E
Sn

F~x!Ḡ~x!dsn~x!. ~2.8!

In order to define the Bargmann transform forL2(S2), we first remind the reader of som
well-known facts about two different representations of the SO~3! group of rotations of the spac
R3.

Let us consider the Laplacian operator on the two-sphereS2 denoted byDS2. We will actually
consider the normalized Laplacian operator with spectrum the set$(l 11/2)2ul 50,1,2...%.

Let 0,u,p, 0<f<2p be spherical coordinates onS2:

x15sin~u!cos~f!, x25sin~u!sin~f!, x35cos~u!. ~2.9!

The expression for the Laplacian onS2 in spherical coordinates is

DS252
1

sin~u!

]

]u
sin~u!

]

]u
2

1

sin2~u!

]2

]f2 1
1

4
. ~2.10!

The LaplacianDS2 is in turn related to the addition of the square of the generatorsL j of
rotations inR3 around the plane perpendicular to the axisxj for j 51,2,3:

DS25L1
21L2

21L3
211/4, ~2.11!

where

L15i sin~f!
]

]u
1i cot~u!cos~f!

]

]f
,

L252i cos~f!
]

]u
1i cot~u!sin~f!

]

]f
, ~2.12!

L352i
]

]f
.

The operatorsL j act on a dense subspace ofL2(S2) and provide a representation for the L
algebraso(3) of SO~3!. They also satisfy the commutation relations

@Li ,L j #5ie i jkLk , i , j ,k51,2,3, ~2.13!

where $ i , j ,k% is a permutation of$1,2,3%. If this permutation is even~odd! then e i jk51 (e i jk

521).
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It is known that the eigenfunctions of the LaplacianDS2 provide a basis forL2(S2). Moreover,
L2(S2) is the direct sum of the eigenspaces of the Laplacian. For eachl 50,1,2..., we shall denote
by Vl the eigenspace of the LaplacianDS2 associated with the eigenvalue (l 11/2)2.

The group SO~3! acts on L2(S2) as follows. Given RPSO(3), we define
TR :L2(S2)°L2(S2) by

TRC~x!5C~R21x!, xPS2. ~2.14!

A particular and important basis ofL2(S2) is obtained by taking common normalized eige
functions of both operatorsDS2 andL3 ~these two operators commute!. These functions are known
as ‘‘spherical harmonics’’ and we shall denote them by

Yl m with l 50,1,2... andm52l ,2l 11,...,l . ~2.15!

Moreover, if, for eachl 50,1,2,..., we let thegroup$TRuRPSO(3)% act on the space

Vl 5span$Yl mum52l ,2l 11,...,l %, ~2.16!

then we obtain all the irreducible representations of SO~3!.
On the other hand, we can obtain irreducible representations for SO~3! on the basis of the

knowledge of irreducible representations of SU~2! ~the group of two by two unitary matrices wit
complex entries and determinant one!. An important representation of the SU~2! group is obtained
by letting this group act on the Bargmann spaceB2 of analytic functions in two complex variable
z5(z1 ,z2) in a similar way as we made the SO(3) group act onL2(S2).

Let us denote byS the set of all numbers of the formp/2 with p a non-negative integer. Fo
sPS, let us also denote byWs the subspace ofB2 of homogeneous polynomials in two comple
variables (z1 ,z2) of degree 2s. An orthonormal basis forWs is given by the monomials

ysm5
z1

s1mz2
s2m

A~s1m!! ~s2m!!
~2.17!

with m52s,2s11,...,s21,s.
When we restrict the action of SU~2! to the spacesWs , we get all of the irreducible repre

sentations of SU~2!. In particular, when we takes5l a non-negative integer, we obtain all of th
irreducible representations of SO~3!.

In order to define a Bargmann transform forL2(S2), the above-given description of two type
of irreducible representations of SO~3! suggests defining the following assignment:

Yl m°yl m for all l 50,1,2,... andm52l ,2l 11,...,l . ~2.18!

Thus we define the Bargmann transformBS2 for L2(S2) as the linear extension of this assignme
Notice thatBS2 is a unitary operator fromL2(S2) onto the closed subspaceB S2 of B2 generated by
the monomials with even degree, that isB S25 % Wl ~where the direct sum is taken over a
non-negative integers!.

The Bargmann transformBS2 can be written as an integral operator

BS2C~z!5E
xPS2

KS2~x,z!C~x!ds2~x!, ~2.19!

with kernel

KS2~x,z!5 (
l 50

`

(
m52l

m5l

Ȳl m~x!yl m~z!. ~2.20!

This kernel has the property of being a power series in the function
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FS2~x,z!5 (
m521

m51

Ȳ1m~x!y1m~z! ~2.21!

in the following way:

KS2~x,z!5 (
l 50

` A2l 11

l ! S 1

)
D l

~FS2~x,z!! l , ~2.22!

with the following explicit expression forFS2(x,z):

FS2~x,z!5 ~)/2! ~2sin~u!exp~2if!z1
212 cos~u!z1z21sin~u!exp~if!z2

2!. ~2.23!

We give a proof of this fact in Appendix A.
The Bargmann transformBS2 intertwinesL1 ,L2 ,L3 ,DS

2 with the following operators:

L185
1

2 S z1

]

]z2
1z2

]

]z1
D ,

L285
1

2i S z1

]

]z2
2z2

]

]z1
D ,

~2.24!

L385
1

2 S z1

]

]z1
2z2

]

]z2
D ,

DS28 5S 1

2 S z1

]

]z1
1z2

]

]z2
D1

1

2D 2

,

respectively.
Notice that the operatorL05z1 (]/]z1) 1z2 (]/]z2) is the sum of Hamiltonians of two inde

pendent harmonic oscillatorszj (]/]zj ), j 51,2, with the same frequency.

C. Bargmann transform for L 2
„S3

…

In analogy with the caseL2(S2), let us consider the spherical normalized Laplacian onS3. In
spherical coordinates:

x15sin~l!sin~u!cos~f!, x25sin~l!sin~u!sin~f!,
~2.25!

x35sin~l!cos~u!, x45cos~l!,

where 0,u,l,p and 0<f<2p.
The expression forDS3 is

DS352
]2

]l2 22 cot~l!
]

]l
1

D2

sin2~l!
11, ~2.26!

where

D25
21

sin~u!

]

]u
sin~u!

]

]u
1

21

sin2~u!

]2

]f2 . ~2.27!

Note that we are takingDS3 such that its spectrum is the set$n2un is a positive integer%.
Let us also consider generators for rotations on the (m,n) plane withm,n51,2,3,4, given by

restrictions toS3 of the following operators:
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Emn5
1

i S xm

]

]xn
2xn

]

]xm
D , m,n51,2,3,4. ~2.28!

There are six linearly independent operators among the operatorsEmn . These operators pro
vide a representation of the Lie algebraso(4). It is well known that this Lie algebra describes th
symmetries of the hydrogen atom problem7,20 for a fixed negative energy. This can be shown
considering restrictions of the angular momentum operatorL5(L1 ,L2 ,L3) and the Runge–Lenz
A5(A1 ,A2 ,A3) operator to eigenspaces of the Hamiltonian of the hydrogen atom problem
order to keep track of this fact, we rename the operatorsL15E23, L25E31, L35E12, Aj5E4 j

j 51,2,3.
The expressions for the operatorsL andA in spherical coordinates are

L15iS sin~f!
]

]u
1cot~u!cos~f!

]

]f D ,

L252iS cos~f!
]

]u
2cot~u!sin~f!

]

]f D ,

L352i
]

]f
,

~2.29!

A152i cot~l!S cos~u!cos~f!
]

]u
2

sin~f!

sin~u!

]

]f D2i sin~u!cos~f!
]

]l
,

A252i cot~l!S cos~u!sin~f!
]

]u
1

cos~f!

sin~u!

]

]f D2i sin~u!sin~f!
]

]l
,

A352iS cos~u!
]

]l
2sin~u!cot~l!

]

]u D .

Note that if we denoteL25L1
21L2

21L3
2 andA25A1

21A2
21A3

2, then we have

DS35L21A211. ~2.30!

SinceDS3, L2, and L3 commute, we can find common normalized eigenfunctions of th
operators. We shall call these functions hyperspherical harmonics22 and denote them byYnl m with
n51,2,3...,l 50,1,...,n21, m52l ,2l 11,...,l . For eachn, we haven2 linearly independent
hyperspherical harmonics, which is exactly the multiplicity of the corresponding eigenvalu
DS3 and the Hamiltonian of the hydrogen atom7,20. Then2-dimensional vector spaces generated
Ynl m ~one space for eachn) provide irreducible representations of the group SO~4!.

In order to find a Hilbert space of analytic functions related toL2(S3), we notice that the
commutation relations satisfied byL andA are

@Li ,L j #5ie i jkLk ,

@Li ,Aj #5ie i jkAk , ~2.31!

@Ai ,Aj #5ie i jkLk .

Now let us define the operators

C5
L1A

2
, D5

L2A

2
. ~2.32!
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The commutation relation for these operators are

@Ci ,Cj #5ie i jkCk ,

@Di ,D j #5ie i jkDk , ~2.33!

@Ci ,D j #50.

Thus we obtainso(4)5su(2)3su(2).
Notice that the operatorsL andA satisfy the relation

L "AC5~L1A11L2A21L3A3!C50. ~2.34!

This relation implies

C2C5D2C5S L21A2

4 DC. ~2.35!

Since the eigenvalues of the operatorsC2 and D2 are of the formu(u11) andv(v11) ~with
u,vPS), respectively, then we must haveu(u11)5v(v11). This equation impliesu5v.

SinceDS35L21A211 and the eigenvalues ofDS3 aren2, then we haven254u(u11)11,
which in turn impliesu5v5 (n21)/2. Sincen is a positive integer,S is the set of permitted
values ofu andv ~including 1

2,
3
2, ...!.

From the previous discussion, we want to consider two copies of the representation o~2!
on the Bargmann spaceB2 of analytical functions of two complex variables described previou

Let us consider the Bargmann spaceB45B2^ B2 of analytical functions of four complex
variables (z1 ,z2 ,z3 ,z4). For each positive integern, let us also consider then2-dimensional
subspacesMn of B4 given by

Mn5W~n21!/2^ W~n21!/2 , ~2.36!

with W(n21)/2 the vector space of homogeneous polynomials of degreen21 in two complex
variables.

The functions

ynm1m2
5

z1
~n21!/2 1m1z2

~n21!/2 2m1z3
~n21!/2 1m2z4

~n21!/2 2m2

AS n21

2
1m1D ! S n21

2
2m1D ! S n21

2
1m2D ! S n21

2
2m2D !

, ~2.37!

with 2 (n21)/2<m1 ,m2< (n21)/2 provide a basis for the spaceMn .
Since we want to assign an analytic function~of four complex variables! to the hyperspherica

harmonicsYnl m and these functions are in turn common eigenfunctions ofDS3, L2, andL3 , we
must assign to eachYnl m a function which is an eigenfunction of the representations of
operatorsDS3, L2, and L3 in the Bargmann spaceB4 . SinceL5C1D and by the theory of
addition of angular momenta,23 the function to be assigned to eachYnl m is

ynl m~z1 ,z2 ,z3 ,z4!5 (
m11m25m

CS n21

2
,m1 ,

n21

2
,m2 ;l ,mD ynm1m2

, ~2.38!

whereC((n21)/2 ,m1 , (n21)/2 ,m2 ;l ,m) are Clebsh–Gordon coefficients.23

Let us define the Bargmann transform forL2(S3) as the linear extension of the previou
assignment. Thus

BS3:L2~S3!°F4 , ~2.39!
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whereF4 is the closed subspace ofB4 generated by the spacesMn : that isF45 % n51
` Mn .

The Bargmann transformBS3 is a unitary operator and intertwines the operatorsL1 , L2 , L3 ,
A1 , A2 , A3 with the following operators:

L185
1

2 S z1

]

]z2
1z3

]

]z4
1z2

]

]z1
1z4

]

]z3
D ,

L285
1

2i S z1

]

]z2
1z3

]

]z4
2z2

]

]z1
2z4

]

]z3
D ,

L385
1

2 S z1

]

]z1
1z3

]

]z3
2z2

]

]z2
2z4

]

]z4
D ,

~2.40!

A185
1

2 S z1

]

]z2
1z2

]

]z1
2z3

]

]z4
2z4

]

]z3
D ,

A285
1

2i S z1

]

]z2
1z4

]

]z3
2z2

]

]z1
2z3

]

]z4
D ,

A385
1

2 S z1

]

]z1
1z4

]

]z4
2z2

]

]z2
2z3

]

]z3
D ,

respectively.
The Laplacian onS3 is intertwined with the operator

DS38 5S 1

2 S z1

]

]z1
1z2

]

]z2
1z3

]

]z3
1z4

]

]z4
D11D 2

. ~2.41!

Thus the LaplacianDS38 is essentially the square of the sum of four harmonic oscillators having
same frequency.

The expression forL "A in the spaceF4 is given by the following operator:

L[z1

]

]z1
1z2

]

]z2
2z3

]

]z3
2z4

]

]z4
. ~2.42!

The restriction (L "A)C50 is already included in the spaceF4 , as the following proposition
establishes it:

Proposition 2.1: The range of the Bargmann transformBS3 is equal to the kernel of the
operatorL, that is

F45$ f PB4uLf 50%[KerL. ~2.43!

Proof: Let f in F4 . Then

f 5 (
n50

`

(
m1 ,m2

Anm1m2

z1
~n21!/2 1m1z2

~n21!/2 2m1z3
~n21!/2 1m2z4

~n21!/2 2m2

AS n21

2
1m1D ! S n21

2
2m1D ! S n21

2
1m2D ! S n21

2
2m2D !

~2.44!

where the convergence is with respect to the norm ofB4 .
Since norm-convergence inB4 implies pointwise convergence~this is becauseB4 has a re-

producing kernel and the Schwartz inequality! then f is an analytic function which can be differ
entiated termwise.

Since
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L~z1
~n21!/2 1m1z2

~n21!/2 2m1z3
~n21!/2 1m2z4

~n21!/2 2m2!50

for all permitted values ofn,m1 ,m2 , we concludef PKerL.
Conversely, supposef PKerL. Since

H z1
a1z2

a2z3
a3z4

a4

Aa1!a2!a3!a4!
Uaj is a non-negative integerj 51,2,3,4J

is an orthonormal basis ofB4 , f can be written as

f 5(
a

Aa

z1
a1z2

a2z3
a3z4

a4

Aa1!a2!a3!a4!
~2.45!

with a5(a1 ,a2 ,a3 ,a4). Thus we have

05Lf 5(
a

Aa~a11a22a32a4!
z1

a1z2
a2z3

a3z4
a4

Aa1!a2!a3!a4!
. ~2.46!

Now consider the case whenb5(b1 ,b2 ,b3 ,b4) is such thatb11b22b32b4Þ0. By taking the
inner product ofLf with z1

b1z2
b2z3

b3z4
b4 we obtainAb50. Thus f must be a linear combination o

monomialsz1
b1z2

b2z3
b3z4

b4 whereb11b22b32b450. But each one of these monomials belongs
some spaceMn , thereforef PF4 . h

The Bargmann transformBS3 is an integral operator

BS3C~z!5E
xPS3

KS3~x,z!C~x!ds3~x! ~2.47!

with kernel

KS3~x,z!5 (
n51

`

(
l 50

n21

(
m52l

l

Ȳnl m~x!ynl m~z!. ~2.48!

As in the case of the two-sphere,KS3 can be written as a power series in the function

FS35 (
l 50

1

(
m52l

m5l

Ȳ2l m~x!y2l m~z! ~2.49!

in the following way:

KS35 (
n51

` A2n

~n21!!

1

2n/2 ~FS3!n21 ~2.50!

with the following explicit expression forFS3(x,z):

FS3~x,z!5&@z1z4~cos~l!2i cos~u!sin~l!!2z2z3~cos~l!1i cos~u!sin~l!!

1iz1z3 sin~u!sin~l!exp~2if!2iz2z4 sin~u!sin~l!exp~if!#. ~2.51!

The proof of this last fact is given in Appendix B.
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III. THE KERNEL OF THE BARGMANN TRANSFORM AND CANONICAL
TRANSFORMATIONS

In this section we describe a beautiful relationship between the Bargmann transform
corresponding canonical transformation which plays the role of its classical analog. Thi
occurs in the three cases described in Sec. II. Namely, we have shown that the kernel
Bargmann transform is a power series in a certain function. This function is in turn a gene
function of the above mentioned canonical transformation. This will give us symplectomorph
mapping the phase space of a particle moving inRn, S2, or S3 onto a phase space described
complex variables.

We start by describing this relationship in the case of the Bargmann transform forL2(Rn) and
then for the casesL2(S2) andL2(S3).

A. Canonical transformation for a particle moving in R n

In this case the relationship between the kernel of the Bargmann transform and a corre
ing canonical transformation is well known~see Refs. 5 and 24!.

Following Graffi and Parmeggiani,5 let us consider the function

Fn~q,z!52i~2 1
2 ~z21q2!1&z"q!, ~3.1!

which appears in the argument of the exponential function giving the kernelA(q,z) of BRn.
Let us consider now a particle moving inRn. The phase space in this case isT* Rn with

coordinates (q,p) and symplectic formvn5( j 51
n dqj∧dpj .

Now consider the functionFn as a generating function of a canonical transformation mapp
the variables (q,p) to the variables (z,w)PT* (Cn) via the following:

pj52
]Fn

]qj
, j 51,2,...,n,

~3.2!

wj5i
]Fn

]zj
, j 51,2,...,n.

Note that by considering these equations we guarantee that

(
j 51

n

dqj∧dpj52i(
j 51

n

dzj∧dwj . ~3.3!

The expressions for (z,w) in terms of (q,p) are

zj5
1

&
~qj2ipj !,

~3.4!

wj5
1

&
~qj1ipj !.

In this way we see thatwj must be the complex conjugate ofzj . This fact suggests that we defin
the following submanifold ofT* (Cn):

Dn5$~z,w!PC2nuw5 z̄%. ~3.5!

Since the spaceT* (Cn) is a symplectic manifold with symplectic formkn52i( j 51
n dzj∧dwj ,

we may considerDn as a symplectic manifold with symplectic formtn given by the restriction of
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kn to Dn . Notice that we may regard the symplectic manifold (Dn ,tn) as the symplectic manifold
(Cn ,mn), wheremn52i( j 51

n dzj∧dz̄j and (z,z̄)°(z) being the symplectomorphism betwee
(Dn ,tn) and (Cn ,mn).

Thus we obtain the following
Theorem 3.1:The functionFn is a generating function of a linear canonical transformatio

which is a symplectomorphismCn from (T* Rn,vn) onto (Cn ,mn) given by the equations zj

5(1/&) (qj2ipj ), j 51,2,...,n. The transformationCn maps the Hamiltonian H5 1
2( j 51

n qj
2

1pj
2 to the Hamiltonian H85( j 51

n zj z̄j .
This theorem gives the classical analog of the Bargmann transformBRn in the sense thatBRn

is a unitary operator fromL2(Rn) onto the Bargmann spaceBn and intertwines the quantum
Hamiltonian of the harmonic oscillatorĤ5 1

2( j 51
n (2]2/]qj

21qj
2)2n/2 with the operatorĤ8

5( j 51
n zj (]/]zj ).

B. Canonical transformation for a particle moving on S2

The above-noted description for a particle moving inRn suggests considering the functio
(2i/)) FS2(x,z) ~the factor 1/) is just to scale variables in a convenient way! as a generating
function of a canonical transformationC S2 which maps the phase spaceT* S22$0% ~i.e., T* S2

minus the zero section! onto a submanifold ofT* C2.
Thus let us consider

pu52
]

]u

2i

)
FS2, pf52

]

]f

2i

)
FS2

wj5i
]

]zj

2i

)
FS2, j 51,2. ~3.6!

From Eq.~2.23!, the equations above take the following explicit form:

pu52
i

2
~cos~u!exp~2if!z1

212 sin~u!z1z22cos~u!exp~if!z2
2!,

pf5
21

2
~sin~u!exp~2if!z1

21sin~u!exp~if!z2
2!,

~3.7!
w152sin~u!exp~2if!z11cos~u!z2 ,

w25cos~u!z11sin~u!exp~if!z2 .

Note that by working with spherical coordinates forS2, we are dealing with a specific loca
chart ofS2 and hence with a local chart forT* S22$0%. Later on we shall define the canonic
transformationC S2 by extending the relationship between (u,f,pu ,pf) and (z1 ,z2 ,w1 ,w2) @de-
termined by Eq.~3.7!# to the whole spaceT* S22$0%.

In order to identify the submanifold ofT* C2 which is the image ofT* S22$0%, we need to
find how the variables (w1 ,w2) are related to (z1 ,z2). To do this, we shall make use of the fa
that the variablesu,f,pu ,pf are real variables. Thus from the first two equations of~3.7! and the
reality conditionu5 ū, f5f̄, pu5 p̄u , pf5 p̄f , we obtain

sin~u!5
uz̄1

22z2
2u

uz1u21uz2u2 ,
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cos~u!56
z̄1z̄21z1z2

uz1u21uz2u2 ,

~3.8!

exp~if!56
z̄2

22z1
2

uz̄2
22z1

2u
.

If we substitute Eq.~3.8! into the last two equations of~3.7!, we obtain

w156 z̄1 , w256 z̄2 . ~3.9!

We shall restrict ourselves to considering the plus sign in Eqs.~3.8! and~3.9! in such a way that
(w1 ,w2)5( z̄1 ,z̄2). It can be shown, by expressing (z1 ,z2) in terms of (u,f,pu ,pf), that given
(u,f,pu ,pf), there are four solutions for (z1 ,z2) @note that, if (z1 ,z2) is a solution then (2z1 ,
2z2), (z̄2 ,2 z̄1) and (2 z̄2 ,z̄1) are solutions too#. Two of these solutions correspond to cons
ering the plus sign in Eqs.~3.8! and~3.9! and the other two correspond to the minus sign. The
solutions corresponding to the plus sign are related to each other by a minus sign@i.e., if (z1 ,z2)
is a solution of Eq.~3.7!, with (u,f,pu ,pf) given, then (2z1 ,2z2) is a solution too#. Thus we
need to identify (z1 ,z2) with 2(z1 ,z2) in order to make our canonical transformationC S2 a
function. In this way, we see thatC S2 takes values in the following submanifold ofT* C2:

D25$~z1 ,z2 ,w1 ,w2!PC4uw15 z̄1 , w25 z̄2%/$1,21%. ~3.10!

Note that the symplectic manifold (D2 ,t2) can be regarded asC2/$1,21% with symplectic form
m252i(dz1∧dz̄11dz2∧dz̄2).

Once we have chosen the plus sign in Eqs.~3.8! and~3.9!, we find the following expressions
for pu ,pf in terms of (z1 ,z2 ,z̄1 ,z̄2):

pu5S z1z22 z̄1z̄2

2i D S uz1u21uz2u2

z1
22 z̄2

2 D , pf5
1

2
~ uz1u22uz2u2!,

~3.11!

H5pu
21

1

sin2~u!
pf

2 5S uz1u21uz2u2

2 D 2

.

Note that we have a singularity in Eq.~3.8! when the energy H is zero. Thus we need to remo
the zero section ofT* S2 ~which we shall denote by$0%) and the origin of the manifoldC2 /$1,
21%. ~denoted by$0%, too!. The other singularity in the expression forpu corresponds to the poin
z1

25 z̄2
2, which in turn is equivalent to the equation sin(u)50 ~north and south poles!. We actually

do not have such a singularity since we are taking 0,u,p, and~as we shall see later on! it will
not appear in the extension of our canonical transformation.

Canonical transformation for S2 and the null quadricQ2. In the following we identify the
equations giving (u,f,pu ,pf) as functions of (z1 ,z2 ,z̄1 ,z̄2) with the composition of two maps
involving the null quadric inC3, defined by

Q2[$~a1 ,a2 ,a3!PC3/a1
21a2

21a3
250%. ~3.12!

One of the maps takesC2/$1,21%2$0% onto Q22$0% and the other one takesQ22$0% onto
T* S22$0%. In this manner, we shall extend our canonical transformationC S2 to be the inverse of
such a composition. The map that goes fromC2/$1,21%2$0% onto Q22$0% has also been con
sidered by Bargmann and Todorov.8 We will refer to their work in Sec. IV when we describe th
quantization of the above mentioned maps.

The generating function (2i/)) FS2 of our canonical transformationC S2 can be written as
an inner product:
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2i

)
FS252i~a~z!"x!, ~3.13!

where

x5~sin~u!cos~f!,sin~u!sin~f!,cos~u!!,
~3.14!

a~z!5 1
2 ~2z1

21z2
2 ,iz1

21iz2
2,2z1z2!.

Here we are taking the usual inner product of two vectorsa5(a1 ,a2 ,a3) andb5(b1 ,b2 ,b3) in
C3:

a"b[a1b̄11a2b̄21a3b̄3 . ~3.15!

Notice the relevant fact thata(z) is in the null quadricQ2. This suggests thatQ2 might have
an important role to play related to our canonical transformationC S2. Thus let us define the
following map:

r2 :C̃2°Q2,
~3.16!

r2~z1 ,z2!5 1
2 ~2z1

21z2
2 ,iz1

21iz2
2,2z1z2!,

where we defineC̃2 as the set of equivalence classes ofC2 identifying (z1 ,z2) with (2z1 ,
2z2).

Now being in the null quadricQ22$0%, we can go toT* S22$0% through the following map:

s2 :Q22$0%°T* S22$0%,
~3.17!

s2~a1 ,a2 ,a3!5S R~a!

uR~a!u
,2I~a! D .

HereR(a) andI(a) are the real and imaginary parts ofa5(a1 ,a2 ,a3), respectively.
Thus the composition map is

s2 + r2 :C̃22$0%°T* S22$0%,
~3.18!

s2+r2~z1 ,z2!5S R~2z1
21z2

2!

uz1u21uz2u2 ,
R~iz1

21iz2
2!

uz1u21uz2u2
,

R~2z1z2!

uz1u21uz2u2 ,

2
1

2
I~z2

22z1
2!,2

1

2
I~iz1

21iz2
2!,2

1

2
I~2z1z2! D .

On the other hand, since a point inT* S2 can be described in spherical coordinates by

S sin~u!cos~f!,sin~u!sin~f!,cos~u!,cos~u!cos~f!pu2
sin~f!

sin~u!
pf ,cos~u!sin~f!pu

1
cos~f!

sin~u!
pf ,2sin~u!puD ~3.19!

then, we find after some computation@by using Eqs.~3.7! and ~3.8!# that this point inT* S2

expressed in terms of (z1 ,z2 ,z̄1 ,z̄2) is exactly the same point that the compositions2+r2 assigns
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to (z1, z2, z̄1, z̄2). This conclusion allows us to extend our canonical transformationC S2 ~with-
out referring to spherical coordinates! as the map (s2+r2)21. Let us state our conclusions in th
following theorem:

Theorem 3.2:The function(2i/)) FS2 is a generating function of a transformation that ca
be extended as a canonical transformationC S2 which makes the following triangle of canonic
transformations commute:

where (a) the symplectic formn2 on T* S2 is given by the restriction to T* S2 of the canonical
symplectic formv3 on T* R3,
(b) the symplectic formm2 on C̃22$0% is given by

m252i~dz1∧dz̄11dz2∧dz̄2!, ~3.20!

(c) the symplectic form q3 on Q22$0% is given by

q35
1

2iuRau (j 51

3

da j∧dā j2
1

8iuRau3 (
j ,k51

3

~a j1ā j !~ak1āk!da j∧dāk , ~3.21!

which is not the restriction toQ22$0% of the symplectic form( j 51
3 da j∧dā j defined on the

ambientC3.
The transformationC S2 maps the components(L1 ,L2 ,L3) of the angular momentum and th

energy H as follows:

L152sin~f!pu2
cos~u!cos~f!

sin~u!
pf5

1

2
~z1z̄21 z̄1z2!,

L25cos~f!pu2
cos~u!sin~f!

sin~u!
pf5

2i

2
~z1z̄22 z̄1z2!,

~3.22!
L35pf5 1

2 ~ uz1u22uz2u2!,

H5
1

2 S pu
21

1

sin2~u!
pf

2 D5
1

2 S uz1u21uz2u2

2 D 2

,

which is the classical analog of what the Bargmann transformBS2 does in quantum mechanic
[see eq. (2.24)].

C. Canonical transformation for a particle moving on S3

In analogy with the cases where the configuration space isRn or S2, we want to consider the
function (2i/&) FS3 as a generating function of a canonical transformationC S3 which maps
T* S32$0% onto a space involving four complex variables and their conjugates@we used four
complex variables when we defined the Bargmann transform forL2(S3)#. Notice that T* S3

2$0% is a six~real! dimensional manifold, whereas to determine four complex variables we
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eight real parameters. Thus we expect to have some restrictions among the four complex va
The first restriction we expect is the following@in analogy with Eq.~2.34! in quantum mechanics#:

uz1u21uz2u25uz3u21uz4u2. ~3.23!

This equation is actually contained in the equations determined by the generating fu
(2i/&) FS3 as we show it in the following. The second restriction comes from anS1 invariance
of those equations.

Thus let us consider the canonical transformation generated by (2i/&) FS3 through the
following equations:

pu52
]

]u

2i

&
FS3, pf52

]

]f

2i

&
FS3, pl52

]

]l

2i

&
FS3,

~3.24!

wj5i
]

]zj

2i

&
FS3, j 51,2,3,4.

From Eq.~2.51! we obtain

pu52z1z4 sin~u!sin~l!2z2z3 sin~u!sin~l!2z1z3 cos~u!sin~l!exp~2if!

1z2z4 cos~u!sin~l!exp~if!,

pf5i sin~u!sin~l!@z1z3 exp~2if!1z2z4 exp~if!#,

pl52iz1z4~sin~l!1i cos~u!cos~l!!2iz2z3~2sin~l!1i cos~u!cos~l!!

2z1z3 sin~u!cos~l!exp~2if!1z2z4 sin~u!cos~l!exp~if!,

w15z4~cos~l!2i cos~u!sin~l!!1iz3 sin~u!sin~l!exp~2if!, ~3.25!

w252z3~cos~l!1i cos~u!sin~l!!2iz4 sin~u!sin~l!exp~if!,

w352z2~cos~l!1i cos~u!sin~l!!1iz1 sin~u!sin~l!exp~2if!,

w45z1~cos~l!2i cos~u!sin~l!!2iz2 sin~u!sin~l!exp~if!.

As in the case forS2, let us state the reality condition:

u5 ū, f5f̄, l5l̄,
~3.26!

pu5 p̄u , pf5 p̄f , pl5 p̄l .

This condition implies

sin~u!5
uz1z31 z̄2z̄4u

A~ uz1u21uz2u2!~ uz3u21uz4u2!2~R~z1z42z2z3!!2
,

cos~u!5
6I~z1z41z3z2!

A~ uz1u21uz2u2!~ uz3u21uz4u2!2~R~z1z42z2z3!!2
,

exp~if!56
iuz2z41 z̄1z̄3u
z2z41 z̄1z̄3

,
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sin~l!5
A~ uz1u21uz2u2!~ uz3u21uz4u2!2~R~z1z42z2z3!!2

A~ uz1u21uz2u2!~ uz3u21uz4u2!
, ~3.27!

cos~l!56
R~z1z42z2z3!

A~ uz1u21uz2u2!~ uz3u21uz4u2!
.

These equations in turn imply

~w1 ,w2 ,w3 ,w4!56~ z̄1 ,z̄2 ,z̄3 ,z̄4!. ~3.28!

We shall choose the plus sign wherever we have a choice of either a plus or minus sign
above-given equations. Thus we have the relation (w1 ,w2 ,w3 ,w4)5( z̄1 ,z̄2 ,z̄3 ,z̄4). Using this
relation in the last four equations we obtain the expected restriction

uz1u21uz2u25uz3u21uz4u2. ~3.29!

This restriction will appear as part of the definition of the manifold where our canonical tran
mationC S3 should take values in.

On the other hand, the expressions forpu , pf , pl in terms of (z1 ,z2 ,z3 ,z4) are

pu52
R~z1z4!~ uz3u21uz2u2!1R~z2z3!~ uz1u21uz4u2!

uz1z31 z̄2z̄4u
,

pf5 1
2 ~ uz1u22uz2u21uz3u22uz4u2!, ~3.30!

pl5
~ uz3u21uz4u2!I~z1z41 z̄2z̄3!

A~ uz3u21uz4u2!22~R~z1z42z2z3!!2
.

Now notice the following relevant property of Eq.~3.25!: Suppose (u,f,l,pu ,pf ,pl) is
given. If (z1 ,z2 ,z3 ,z4) is a solution of Eq. ~3.25!, then, for any real numberc,
(z1 exp(ic),z2 exp(ic),z3 exp(2ic),z4 exp(2ic)) is a solution, as well. Thus we define the follow
ing equivalence relation; in C4 in order to consider the invariance of Eq.~3.25!:

~z1 ,z2 ,z3 ,z4!;~z18 ,z28 ,z38 ,z48! iff 'cPR such that

~z18 ,z28 ,z38 ,z48!5~z1 exp~ic!,z2 exp~ic!,z3 exp~2ic!,z4 exp~2ic!!. ~3.31!

We shall denote by@(z1 ,z2 ,z3 ,z4)# the equivalence class of (z1 ,z2 ,z3 ,z4).
Thus our canonical transformationC S3 should take values in the following six~real! dimen-

sional set:

C̃4[$~z1 ,z2 ,z3 ,z4!PC4uuz1u21uz2u25uz3u21uz4u2%/;. ~3.32!

We shall regard the manifoldC̃42$0% as a symplectic manifold endowed with the followin
symplectic form:

m352i~dz1∧dz̄11dz2∧dz̄21dz3∧dz̄31dz4∧dz̄4!. ~3.33!

Canonical transformation for S3 and the null quadricQ3. Now we want to extend the
assignment (u,f,l,pu ,pf)°@(z1 ,z2 ,z3 ,z4)# given by Eq. ~3.25! to the whole spaceT* S3

2$0% in a similar way as we did for the case ofS2. Here again the null quadric

Q35$~a1 ,a2 ,a3 ,a4!PC4/a1
21a2

21a3
21a4

250% ~3.34!
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will play an important role and we will extend the mentioned assignment as the inverse
composition of two maps, one going fromC̃42$0% onto Q32$0% and the other one fromQ3

2$0% onto T* S32$0%. A similar map to the first one appears in the work of Bargmann
Todorov,8 we will be back to this point in Sec. IV.

Let us write the generating function (2i/&FS3 as an inner product:

2i

&
FS352i~a~z!"x!, ~3.35!

where

a~z!5~iz1z32iz2z4 ,z1z31z2z4 ,2iz1z42iz2z3 ,z1z42z2z3!,
~3.36!

x5~sin~l!sin~u!cos~f!,sin~l!sin~u!sin~f!,sin~l!cos~u!,cos~l!!.

Now notice that for all (z1 ,z2 ,z3 ,z4)PC4, the vectora(z) belongs to the null quadricQ3. This
suggests defining the following map:

r3 :C̃4°Q3,
~3.37!

r3~@z# !5~iz1z32iz2z4 ,z1z31z2z4 ,2iz1z42iz2z3 ,z1z42z2z3!

with (z1 ,z2 ,z3 ,z4) a representative of the equivalent class@z1 ,z2 ,z3 ,z4#. From now on we shall
denoter3(@z1 ,z2 ,z3 ,z4#) just by r3(z1 ,z2 ,z3 ,z4).

Let us also define the map

s3 :Q32$0%°T* S32$0%,
~3.38!

s3~a!5S Ra

uRau
,2Ia D .

As in the case forS2, we shall extend our assignment (u,f,l,pu ,pf)°@(z1 ,z2 ,z3 ,z4)# deter-
mined by Eq.~3.25! to the whole spaceT* S32$0%. For this purpose, we first check that if w
consider a point inT* S32$0% given in spherical coordinates by

~sin~l!sin~u!cos~f!,sin~l!sin~u!sin~f!,sin~l!cos~u!,cos~l!,

cos~l!sin~u!cos~f!pl1cos~u!cos~f!pu /sin~l!2
sin~f!pf

sin~l!sin~u!
,

cos~l!sin~u!sin~f!pl1cos~u!sin~f!pu /sin~l!2
cos~f!pf

sin~l!sin~u!
,

cos~l!cos~u!pl2sin~u!pu /sin~l!,2sin~l!pl) ~3.39!

and we use Eq.~3.27!, then we obtain a map which assigns to the point (z1 ,z2 ,z3 ,z4) the same
element inT* S3 as the evaluation of the functions3+r3 in (z1 ,z2 ,z3 ,z4). This allows us to
extend our canonical transformationC S3 as the map (s3+r3)21.

Let us state our conclusions in the following
Theorem 3.3:The function(2i/&) FS3 generates a transformation which can be extend

as a canonical transformationC S3 that makes the following triangle of canonical transformatio
                                                                                                                



y the

2268 J. Math. Phys., Vol. 43, No. 5, May 2002 Carlos Villegas-Blas

                    
commute:

where (a) the symplectic formn3 on T* S3 is given by the restriction to T* S3 of the canonical
symplectic formv4 on T* R4,

(b) the symplectic formm3 on C̃42$0% is given by

m352i~dz1∧dz̄11dz2∧dz̄21dz3∧dz̄31dz4∧dz̄4!, ~3.40!

(c) the symplectic form q4 on Q32$0% is given by

q45
1

2iuRau (j 51

4

da j∧dā j2
1

8iuRau3 (
j ,k51

4

~a j1ā j !~ak1āk!da j∧dāk , ~3.41!

which is not the restriction toQ32$0% of the symplectic form( j 51
4 da j∧dā j defined on the

ambientC4. The components of the angular momentum and Runge–Lenz vectors are

L15 1
2 ~z1z̄21z3z̄41z2z̄11z4z̄3!,

L25
1

2i
~z1z̄21z3z̄42z2z̄12z4z̄3!,

L35 1
2 ~z1z̄11z3z̄32z2z̄22z4z̄4!,

~3.42!
A15 1

2 ~z1z̄21z2z̄12z3z̄42z4z̄3!,

A25
1

2i
~z1z̄21z4z̄32z2z̄11z3z̄4!,

A35 1
2 ~z1z̄11z4z̄42z2z̄21z3z̄3!.

The expressions for L25L1
21L2

21L3
2, A25A1

21A2
21A3

2 and the energy H are

L25 1
4 ~z1z̄11z2z̄2!21 1

4 ~z3z̄31z4z̄4!21 1
2 ~4R~z1z4z̄2z̄3!1~ uz2u22uz1u2!~ uz4u22uz3u2!!,

A25 1
4 ~z1z̄11z2z̄2!21 1

4 ~z3z̄31z4z̄4!22 1
2 ~4R~z1z4z̄2z̄3!1~ uz2u22uz1u2!~ uz4u22uz3u2!!,

~3.43!

H5
1

2 S pl
21

p0
2

sin2~l!
1

pf
2

sin2~l!sin2~u!
D 5

1

2 S ( j 51
4 zj z̄j

2 D 2

.

IV. QUANTIZATIONS OF THE MAPS r2 ,s2 AND r3 ,s3

Once we have the commuting triangles of canonical transformations of Theorems~3.2! and
~3.3!, and the analogy betweenBS2, BS3 and their corresponding canonical transformationsC S2,
C S3, a natural question to ask is about the description of unitary transformations which pla
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role of quantizations of the mapsr2 ,s2 andr3 ,s3 ~for the case ofS2 andS3, respectively!. Such
a description is the goal of this section. The unitary transformations corresponding tos2 , ands3

are related to work of Guillemin.9 The unitary transformations corresponding tor2 , andr3 have
been studied by Bargmann and Todorov.8 For completeness of this paper, we will describe the
last unitary transformations, too.

A. Quantizations of r2 and s2

Let dm2(a) be the measure onQ2 obtained from the Gaussian measure

dn2~z!5
1

p2 exp~2uzu2!)
j 51

2

dxj dyj ~4.1!

through the mapr2 ~here we are actually regarding the mapr2 as a function fromC2 onto Q2!.
Given l >0 an integer, letXl be the complex vector space of homogeneous polynomial

order l in three complex variables (a1 ,a2 ,a3) with the restrictiona1
21a2

21a3
250. The space

Xl has dimension 2l 11 and a particular basis for it can be obtained by considering the m
mials

yl m5
z1

l 1mz2
l 2m

A~ l 1m!! ~ l 2m!!

and the mapr2
21. That is, we shall consider the following functions as a basis forXl :

Y l m~a!5yl m~z~a!!, m52l ,2l 11...l , a5~a1 ,a2 ,a3!, ~4.2!

with z(a) determined by

z1
252a12ia2 , z2

25a12ia2 , z1z25a3 . ~4.3!

Note that the functionsyl m depend onz5(z1 ,z2) through integer powers ofz1
2 , z2

2 andz1z2 , so
Eq. ~4.3! is enough in order to expressyl m in terms ofa1 , a2 , anda3 .

Let E2 be the Hilbert space generated by all of the spacesXl endowed with the inner product

^F,G&5E
aPQ2

F~a!G~a!dm2~a!. ~4.4!

Thus the quantization of the mapr2 is the unitary transformationUr2
:B S2°E2 given by

Ur2
C~a!5C~z~a!!, CPB S2. ~4.5!

wherez(a) is determined by Eq.~4.3!.
Bargmann and Todorov8 have considered the spaceE2 @with the same inner product and

measure very similar todm2(a)# and actually the inverse ofUr2
. They introduce the measur

dm2(a) in a different way than we do. They require that the adjoint of the multiplication opera
by coordinates in the null quadricQ22$0% must have a given expression. Their expression for
mapr2 is very similar to ours. In terms of the Pauli matrices

b15S 0 1

1 0D , b25S 0 2i

i 0 D , b35S 1 0

0 21D , ~4.6!

the expression they consider for the mapr2(z1 ,z2) is (1/2&) (z1 ,z2)eb j (z1 ,z2) t where j
51,2,3; (z1 ,z2) t is the transpose of the vector (z1 ,z2) and the matrixe5(21

0
0
1). Our expression

for r2(z1 ,z2) in the same notation is12(21) j (z1 ,z2)eb j (z1 ,z2) t.
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The quantization ofs2 , Us2
:E 2°L2(S2), can be found by considering the orthonormal ba

$Y l m% and$Yl m% of the Hilbert spacesE3 andL2(S2), respectively:

Us2
C~x!5 lim

M°`
S E

uau<M
(

l 50

` A2l 11

l !
~x"a! l DC~a!dm2~a!, CPE2 . ~4.7!

Let us summarize the conclusions of this section in the following
Theorem 4.1:The following triangle of unitary transformations commutes:

This triangle is the quantum version of the commuting triangle of canonical transformatio
Theorem~3.2!.

Remark 1:Guillemin9 has introduced a transformationp* which is related to our unitary
transformationUs2

:E 2°L2(S2). The transformationp* can be described in our terms as follow
The unit cotangent bundleS* (S2) of S2 can be identified with the following subset of the nu
quadricQ2:

X[$x1iyuixi5iyi51, x"y50%. ~4.8!

Let Vl be the subspace ofL2(S2) generated by the spherical harmonics of orderl as previ-
ously. Let f PVl . Let us denote byF l (x1 ,x2 ,x3) the unique polynomial in three real variable
(x1 ,x2 ,x3)PR3 which is homogeneous of degreel , harmonic (DR3F l [(k51

3 (]2/]xk
2) F l 50)

and whose restriction toS2 is equal tof . Let F̃ l (w1 ,w2 ,w3) be the polynomial in three comple
variables (w1 ,w2 ,w3)PC3 obtained fromF l by replacing (x1 ,x2 ,x3) by (w1 ,w2 ,w3). Let us
denote byS1 the assignmentf °F̃ l . Now letS2 be the operator which assigns toF̃ l its restriction
F̃ l uX to the spaceX. Then finally let us introduce the transformationp* which applied toF̃ l uX
gives us a function in the spaceVl :

p* F̃ l uX~x![E
yPCx

F̃ l uX~x,y!dm~y!, ~4.9!

where, for fixedx, the integration is on the unit circleCx in the cotangent space ofxPS2 and dm
is the usual normalized measure on that circle.

It can be shown that the operatorp* S2S1 commutes with all the rotation operators in th
representation of SO~3! acting on the spaceL2(S2). Thus, by Schur’s lemma, there exist a co
stantl l such that

p* S2S1f 5l l f , f PVl . ~4.10!

The constantl l can be evaluated by considering the polynomial (x11ix2) l and the pointx
5(1,0,0) ~see Ref. 9!. In this way we havel l 5(2l 21)!!/ l !.

Since the elements ofXl are homogeneous polynomials of degreel in the null quadricQ2,
the exposition above for the operatorp* S2S1 suggests considering the following operator.
                                                                                                                



s

t

r

g

ordi-

iven

2271J. Math. Phys., Vol. 43, No. 5, May 2002 Bargmann transform and canonical transformations

                    
Let f PVl and consider the functionUs2

21f defined onQ2. Let Gl be the unique homogeneou

polynomial of order l in three complex variables (z1 ,z2 ,z3) which is harmonic (DC3F l

[(k51
3 (]2/]zk

2) F l 50) and whose restriction toQ2 is equal toUs2

21f ~denote the assignmen

Us2

21f °Gl by T!. Let us now consider the operatorp* S2TUs2

21. It can be shown that the operato

p* S2TUs2

21 also commutes with all the rotation operators in the representation of SO~3! acting on

L2(S2). Thus, by Schur’s lemma, there exist a constantm l such that

p* S2TUs2

21f 5m l f , f PVl . ~4.11!

To evaluate the constantm l , we also consider the polynomial (x11ix2) l in Vl and the point
x5(1,0,0), to obtainm l 51/l !A2l 11.

Thus we finally have, forFPXl :

p* S2TF5
1

l !A2l 11
Us2

F. ~4.12!

Therefore, we can think of the operatorUs2
as the unitarization of the operatorp* S2T.

B. Quantizations of r3 and s3

As in Sec. IV A, let dm3(a) be the measure onQ3 obtained from the measure dn4(z)
5 (1/p4) exp(2uzu2)) j 51

4 dxj dyj by push forward along the mapr3 ~again, here we are regardin
the mapr3 as a function fromC4 onto Q3!.

Now, givenn>1, let Zn be the space of homogeneous polynomials of degreen21 in four
complex variablesa1 ,a2 ,a3 ,a4 with the restrictiona1

21a2
21a3

21a4
250. We shall consider the

following inner product inZn ,

^F,G&5E
aPQ3

F~a!G~a!dm3~a!. ~4.13!

The spaceZn has dimensionn2 and the following particular orthonormal basis:

Ynl m5ynl m~z~a!!, ~4.14!

where sinceynl m depend onz through the variablesz1z3 , z1z4 , z2z3 , z2z4 , we mean byz(a),

z1z35
2ia11a2

2
, z1z45

ia31a4

2
, z2z35

ia32a4

2
, z2z45

ia11a2

2
. ~4.15!

Let E3 be the Hilbert space generated by the spacesZn with the inner product~4.13!.
The quantization ofr3 is the unitary operatorUr3

:F4°E3 given by

Ur3
C~~a!!5C~z~a!!. ~4.16!

Bargmann and Todorov8 have studied the inverse ofUr3
and considered the spaceE3 of

holomorphic functions on the null quadricQ3. As in Sec. IV A, they find the measure dm3(a) by
requiring that certain given operators are adjoints of the multiplicative operators by the co
nates in Q3. The expression they consider for the mapr3 has components
(1/&) (w̄1 ,w̄2)qj (z1 ,z2) t where j 51,2,3,4, (w̄1 ,w̄2)PC2 and the 232 matricesqj5ib j for j
51,2,3 andq4 is the 232 identity matrix. The expression that we consider in the above-g
notation is (21) j 11(z3 ,z4)eqj (z1 ,z2) t.

From Bargmann and Todorov’s work we have that the spaceF4 is the same subspace ofB4

given by$ f PB4uM f 5 f %, whereM f is the mean value off :
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M f ~z![E
0

p

f ~z1 exp~ic!,z2 exp~ic!,z3 exp~2ic!,z4 exp~2ic!!
dc

2p
. ~4.17!

One can prove this fact by following the proof of proposition~2.1!.
The quantization ofs3 is the unitary mapUs3

:E 3°L2(S3) given by the linear extension o
the assignmentYnl m°Ynl m :

Us3
C~x!5 lim

M°`
E

uau<M
S (

n51

` An

~n21!!
~x"a!n21DC~a!dm3~a!, CPE3 . ~4.18!

Theorem 4.2:The following triangle of unitary transformations commutes:

This triangle is the quantum version of the commuting triangle of canonical transformatio
Theorem~3.3!.

Remark 2:We can also relate our transformationUs3
:E 4°L (2)(S3) with the transformation

p* of Guillemin:9 For FPZn ,

p* S2TF5
1

n!An
Us3

F, ~4.19!

where the operatorsS2 and T are defined in a similar way as previously. The proof of this l
equation follows the same steps as the one to prove Eq.~4.12!. Thus we can think of the operato
Us3

as the unitarization ofp* S2T.

V. THE BARGMANN TRANSFORM AS A COHERENT STATE TRANSFORM

It is known that the Bargmann transformBRn can be identified as a coherent state transfo
That is, for anyFPL2(Rn), the functionBRnF(z) can be expressed as the inner product ofF with
a canonical coherent state, labeled byzPCn, of then-dimensional harmonic oscillator.

In this section we show that both Bargmann transformsBS2 and BS3 can also be written as
coherent states transforms. Here sets of coherent states inL2(S2) @L2(S3)# appear as linear
combinations of states~which we will call great-circle states! for each irreducible representation o
SO~3! @SO~4!# that we considered when we defined the Bargmann transformBS2 @BS3#.

A. BRn as a coherent state transform

Let us note that the kernel ofBRn can be expressed in the following way: let us takez5(q
2ip)/& with q,pPRn, then

A~x,z!5expS 2
~x2q!2

2
1

ip"q

2
2ip"x1

q21p2

4 D . ~5.1!

Now let us denote
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F (z)~x!5
1

pn/4 A~x,z!. ~5.2!

The functionsF (z)PL2(Rn), labeled byzPCn, are the canonical coherent states of t
n-dimensional harmonic oscillator.

Since

1

pn/2 E
xPRn

A~x,w!A~x,z!dx5exp~ z̄w!, z,wPCn, ~5.3!

then we have that the Bargmann transform sends the coherent states of then-dimensional har-
monic oscillator into the coherent states defined in Sec. II:

BRnF (z)~w!5Cz~w!, ~5.4!

thus the Bargmann transformBRn acting on a functionFPL2(Rn) can be expressed as a cohere
state transform:

BRnF~z!5^F,F (z)&5E
xPRn

F~x!F (z)~x!dx. ~5.5!

It is also known that the set of coherent statesF (z) gives a resolution of the identity in th
sense that every functionFPL2(Rn) can be written as

F~x!5 lim
M°`

E
uzu<M

^F,F (z)&RnF (z)~x!dnn~z!, ~5.6!

where dnn(z) is the measure given in Eq.~2.1!.

B. BS2 as a coherent state transform

In Sec. III we showed that the generating functionFS2 can be written as the inner product o
the vectorsr2(z)PQ2 andxPS2 @see Eq.~3.13!#. Thus we are able to establish the following

Theorem 5.1:The Bargmann transformBS2 is a coherent state transform in the sense thatBS2

acting on a functionCPL2(S2) can be written in the following way:

BS2C~z!5^C,Fr2(z)&S2 ~5.7!

where, for eachaPQ2, we define the coherent states

Fa~x!5 (
l 50

` A2l 11

l !
Fa,l ~x! ~5.8!

with the statesFa,l given by

Fa,l ~x!5~x"a! l . ~5.9!

The statesFa,l have the following properties.
~a! For each integerl >1, the statesFa,l , belong to the eigenspaceVl of the LaplacianDS2

~see Ref. 10!.
~b! For large l , and aÞ0, the stateFa,l is concentrated around the great circle inS2

~classical orbit! generated by the vectorsR(a)/iR(a)i in S2 and 2I(a) in T* S2 at the point
R(a)/iR(a)i . The concentration is in the sense that most of theL2(S2)-norm of Fa,l comes
from a small neighborhood of the great circle~see Ref. 7!. This is the reason why we call the stat
$Fa,l % great-circle states.
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~c! The states$Fa,l % give a resolution of the identity in the spaceVl . Namely, for each
function CPVl , the following equation holds

C~x!5r ~ l !E
Q2

^C,Fa,l &S2Fa,l ~x!dm2~a! ~5.10!

for some constantr (l ) which will be evaluated in the following.
This equation is a consequence of the following three facts:~i! the operator on the right-han

side of Eq.~5.10! commutes with all the rotations in SO(3) acting as operators onVl , ~ii ! the
irreducibility of the representation of SO(3) acting onVl , and~iii ! the invariance of the measur
dm2(a) under rotations in SO(3), which we state as follows:

Proposition 5.2: Let RPSO(3), then for anydm2-integrable function f(a) we have

E
Q2

f ~Ra!dm2~a!5E
Q2

f ~a!dm2~a!. ~5.11!

Here, Ra means RR(a)1iRI(a).
We are calling the statesFa coherent states because, foraÞ0, they are labeled by elements o

T* (S2)2$0% ~through the maps2! and they give a resolution of the identity for the spaceL2(S2):

C~x!5E
Q2

^C,Fa&S2Fa~x!dm2~a!, CPL2~S2!. ~5.12!

This last equation is a consequence of Eq.~5.10! and the fact that homogeneous polynomials inE2

of different order are orthogonal.
For eachl , the images of the great-circle statesFa,l under the transformationUs2

215BS2

+Ur2
provides a reproducing kernel for the spaceXl . The proof of this fact is based on th

following two propositions:
Proposition 5.3: The inner product of two great-circle statesFb,l and Fa,k in L2(S2)

(a,bPQ2! is

^Fb,l ,Fa,k&S25
g l

2l 11 ~a"b! l d l ,k , ~5.13!

with g l [*0
p sin2l 11(u)du52@(2l )!!/(2 l 11)!! # [here the notation(2l )!! means the produc

of all positive even integers less than or equal to2l , the notation for(2l 11)!! is similar].
Proof: Given bPQ220, there existsl.0 and a rotationRPSO(3) such thatb5lR(e1

2ie2) ~with $ej , j 51,2,3% the canonical orthonormal basis ofR3!. Thus

^Fb,l ,Fa,l &S25l l E
xPS2

~x"R~e12ie2!! l ~x"a! l ds2~x!. ~5.14!

By making the change of variabley5R21x, using spherical coordinates for the variabley and
the orthogonality of the matrixR, the result follows by a straightforward computation. h

Proposition 5.4: The Bargmann transformBS2 of the great-circle stateFb,l (bPQ2) is

BS2Fb,l ~z!5
A2l 11

l !

g l

2l 11 ~r2~z!"b! l . ~5.15!

Thus the image of the coherent stateFb,l under the transformationUs2

21 is

Us2

21Fb,l ~a!5
A2l 11

l !

g l

2l 11 ~a"b! l . ~5.16!
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The factor (a"b) l appearing in Eq.~5.16! provides us with a reproducing kernel for the spa
Xl , as the following theorem establishes it:

Theorem 5.5:For each integerl >1, the function KQ2,l :Q2ÃQ2°C given by

KQ2,l ~a,b!5
2l

~2l !!
~b"a! l ~5.17!

is a reproducing kernel for the spaceXl , that is,

E
Q2

f ~a!KQ2,l ~a,b!dm2~a!5 f ~b!, f PXl . ~5.18!

Proof: It is enough to prove Eq.~5.18! when f 5Y l ,m . From the definition of dm2 we have

E
Q2

Y l ,m~a!K~a,b!dm2~a!5E
zPC2

yl ,m~z!
2l

~2l !!
~r2„z…"b! l dn2~z!. ~5.19!

Now let us define the function

Fr2
~z,a![y1,1~z!Y1,1~a!1y1,0~z!Y1,0~a!1y1,21~z!Y1,21~a!5a"r2~z!. ~5.20!

Since

~Fr2
~z,b!! l 5

~2l !!

2l (
m52l

l

yl ,m~z!Y l ,m~b!, ~5.21!

the result follows. h

We can use this theorem, in particular, to evaluate the constantr (l ) appearing in Eq.~5.10!
in the following manner: Let us apply Eq.~5.10! to the stateFb,l :

Fb,l ~x!5r ~ l !E
aPQ2

^Fb,l Fa,l &S2Fa,l ~x!dm2~a!

5r ~ l !
g l

2l 11 E
aPQ2

~a"b! l Fa,l ~x!dm2~a!

5r ~ l !
g l ~2l !!

22l 11 E
aPQ2

~a"x! l KQ2,l ~a,b!dm2~a!. ~5.22!

Thus from Eq.~5.18! we must have

r ~ l !5
22l 11

g l ~2l !!
. ~5.23!

From Theorem~5.5! we also obtain a reproducing kernel for the spaceE3 :
Theorem 5.6:The function

KQ2~a,b![ (
l 50

`
2l

~2l !!
~b"a! l 5

1

2
~exp~A2b"a!1exp~2A2b"a!! ~5.24!

is an analytic function in the spaceE3 (for a fixed) and provides a reproducing kernel for th
space:
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E
Q2

f ~a!KQ2~a,b!dm2~a!5 f ~b!, f PE3 . ~5.25!

Note that Eq.~5.24! is independent of the branch of the square root function we have chose
Proof: The series( l 50

` @2l /(2l )! # zl is absolutely convergent for all values ofzPC, so
KQ2(a,b) is an analytic function in the variableb ~a fixed!.

Moreover, each function 2l (b"a) l /(2l )! belongs to the spaceXl and its norm al
2

[i2l (b"a) l /(2l )! i2 is equal to 23l 11/(2l 11)g l (l !/(2l )!) 2uau2l . Since( l 50
` al

2 is finite,
we conclude that the kernelKQ2 is in E3 ~a fixed!. The equality in Eq.~5.24! can be checked
directly by using the Taylor series of the exponential function. h

The kernelKQ2 and the functionr2 give an expected reproducing kernel for the spaceB S2:
Theorem 5.7:The following function1

2(exp(z"w)1exp(2z"w)) is a reproducing kernel of the
spaceB S2. This function is in the spaceB S2 for w fixed.

C. B S3 as a coherent state transform

This section is the analog of Sec. IV B concerning the Bargmann TransformBS3. Namely, we
will show that this transform can also be written as a coherent state transform~with the coherent
states defined in a similar way as before!, and we also have a reproducing kernel for the spa
Zn , E4 , andF4 .

From the definition ofBS3, Eq. ~2.47!, we obtain:
Theorem 5.8:

BS3C~z!5^C,Fr3(z)&S3, CPL2~S3!, ~5.26!

where the coherent states in L2(S3) are defined by

Fa~x!5 (
n51

` An

~n21!!
Fa,n21~x!, aPQ3 ~5.27!

and the great-circle statesFa,n21 are defined by

Fa,n21~x!5~x"a!n21, aPQ3, n>1. ~5.28!

The great-circle statesFa,n21 have properties analogous to those of the states defined in
IV B and in particular they provide a resolution of the identity:

For CPMn , the following equation holds:

C~x!5
n

~~n21!! !2 E
Q32$0%

^C,Fa,n21&S3Fa,n21~x!dm4~a!, ~5.29!

and therefore the coherent statesFa , aPQ3, give a resolution of the identity forL2(S3):

C~x!5E
Q32$0%

^C,Fa&S3Fa~x!dm4~a!, CPL2~S3!. ~5.30!

Note that the coherent statesFa are labeled by elements ofT* S32$0% through the maps3 .
Equation~5.29! is a consequence of the following four facts:
Proposition 5.9: The inner product of two coherent states in L2(S3) is

^Fb,k ,Fa,l &S35
1

~k11!2k ~a"b!kd l ,k , k>0. ~5.31!

The invariance of the measure dm4 under rotationsRPSO(4):
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Proposition 5.10: Let RPSO(4).for anydm4-integrable function f(a) the following equation
holds:

E
Q3

f ~Ra!dm4~a!5E
Q3

f ~a!dm4~a!. ~5.32!

Proposition 5.11: The Bargmann transformBS3 maps the great-circle statesFb,k as follows:

BS3Fb,k~z!5
Ak11

~k11!!2k ~r3„z…"b!k, k>0 ~5.33!

and then the image of the coherent statesFb,k under the unitary transformationUs3

21 is

Us3

21Fb,k~a!5
Ak11

~k11!!2k ~a"b!k, k>0. ~5.34!

Theorem 5.12:For each integer n>1, the function KQ3,n :Q3ÃQ3°C given by

KQ3,n21~a,b![
1

~~n21!! !22n21 ~b"a!n21 ~5.35!

is a reproducing kernel for the spaceZn .
The proofs of these facts are similar to those given in Sec. IV B.
Theorem 5.12 provides us with a reproducing kernel for the spaceE4 :
Theorem 5.12:The function

KQ3~a,b![ (
n51

`
1

~~n21!! !22n21 ~b"a!n21 ~5.36!

belongs to the spaceE4 (for a fixed) and it is a reproducing kernel of this space.
From this last theorem and the mapr3 we obtain the following
Theorem 5.13:The function

K̃Q3~z,w![ (
n51

`
1

~~n21!! !2 ~~w1z11w2z2!~w3z31w4z4!!n21 ~5.37!

belongs to the spaceF4 (for w fixed) and it is a reproducing kernel of this space.
As noted by Bargmann and Todorov,8 the functionK̃Q3 can be expressed in terms of th

modified Bessel function of the first kindI 0(z)[(m50
` @1/(m!) 2# (z/2)2m:

K̃Q3~z,w!5I 0~2A~w1z11w2z2!~w3z31w4z4!!. ~5.38!

VI. DISCUSSION

The transformationsUs2
andUs3

can be generalized to a unitary transformationUsn
for the

case of then-sphereSn ~with n>2! on the basis of the work of Bargmann and Todorov.8 Namely,
these two authors describe a Hilbert spaceEn of holomorphic functions on the null quadricQn

endowed with an inner product which in turn is determined by an SO(n11) invariant measure on
Qn. Thus, by taking the hyperspherical harmonics as a basis ofL2(Sn) and assigning to them
corresponding elements of a basis ofEn , we can defineUsn

as the linear extension of suc
assignment. The detailed description of this transform will appear in a further work.
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There are other Bargmann-type transforms likeUs2
, Us3

, andUsn
that have been introduce

by several authors. They all are different from our transforms. Here we briefly discuss
transforms and compare them with ours.

Rawnsley,11 in analogy with the case of the Bargmann transform forL2(Rn), considered real
and complex polarizations of the phase spaceT* Sn2$0% and the half-form pairing between them
~which turns out to be nonunitary!.

Ii 12 considered an integral operator betweenL2(Sn), with n>2 even, and a Hilbert space o
holomorphic functions on the null quadricQn. This operator is defined through an integral kern
given by the exponential ofa"x ~aPQn, andxPSn!, whereas we consider a different power ser
in this function. Ii makes his integral operator unitary by endowingQn with a different measure
than the one considered by ourselves and Bargmann and Todorov. Note that our transformUsn

is
defined first by setting the measure onQn and then by adjusting the coefficients of the pow
series ina"x in order to makeUsn

unitary. Wada13 was able to remove the condition thatn must
be even and then she obtained a unitary transformation for alln>2 that coincides with the
transformation of Ii forn even.

Hall14,15 and Stenzel16 have considered a Bargmann-type transform when the configura
space is either a compact Lie group or a symmetric space of compact type. They bas
approach on the heat kernel for the corresponding manifold. Thus they define their Barg
transform and coherent states. One of the main differences with our approach is that they c
the quadric$aPC(n11)ua1

21¯an11
2 51% whereas we consider the null quadricQn.

Kowalski and Rembielin´ski17 have considered coherent states for the two-sphere as eige
tors of suitable operators. On the basis of a suggestion by Hall, the states of Kowalsk
Rembieliński can be related with the coherent states appearing in the work of Hall14,15 and
Stenzel.16 This suggestion allowed Kowalski and Rembielin´ski18 to solve an equation through
heat kernel and then to be able to set up a Bargmann-type transform forL2(S2). They also deal
with the quadric$aPC(n11)ua1

21¯an11
2 51%.

Inspired in part by the work of Kowalski and Rembielin´ski,18 Hall and Mitchell19 have written
a recent paper describing in detail coherent states and a Bargmann-type transform forL2(Sn)
related to the work of Hall14,15 and Stenzel.16
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APPENDIX A: THE KERNEL OF THE BARGMANN TRANSFORM FOR S2

The purpose of this appendix is to prove Eqs.~2.22! and ~2.23!. We want to do this by
showing that the following equation holds for allk>0:

Kk~x,z!5
A2k11

k! S 1

)
D k

~FS2!k~x,z!,

with Kk(x,z)5(m52k
k Ykm* (x)ykm(z).

The main idea of the proof is based on the fact that the following functionGk(x,z)
[Kk(x,z)/c(k)(FS2(x,z))k @with c(k) some constant# satisfies an homogeneous system of fir
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order differential equations with initial conditionGk(x0 ,z0)51. Then we show that the gradient o
Gk must be zero, which implies that the solution of the system must beGk(x,z)[1, i.e.,
Kk(x,z)5c(k)(FS2(x,z))k. Next, we evaluate the constantc(k).

We know that the Bargmann transformBS2 intertwines the operatorsLi and Li8 , i 51,2,3.
Thus for any smooth functionC(x),

Li8BS2C5BS2LiC.

Now we want to show that for anyk>0,

~Li1Li8!Kk~x,z!50, i 51,2,3.

Let Pk be the projector on the span of$ykm(z)/m52k,...,k%. Pk acts on the Bargmann spac
B2 . Thus we have for any smooth functionC~x!,

PkBS2C~z!5E
xPS2

Kk~x,z!C~x!dV~x!,

which implies

PkBS2LiC~z!52E
xPS2

~LiKk~x,z!!C~x!dV~x!,

where we have used the self-adjointness ofLi .
On the other hand, if we applyPk to both sides of the equationLi8BS2C5BS2LiC and use the

fact thatPk commutes withLi8 , i 51,2,3, we get

PkBS2LiC~z!5E
xPS2

Li8Kk~x,z!C~x!dV~x!.

Since the last two equations hold for a dense set inL2(S2), we conclude that (Li

1Li8)Kk(x,z)50, i 51,2,3.
The functionKk satisfies another differential equation which is a consequence thatKk is an

homogeneous polynomial of degree 2k in the variables (z1 ,z2). Thus we must have for allk
>0:

~H022k!Kk50 with H05z1 ]1 1z2 ]2.

The above-given analysis must hold, in particular, fork51. Thus we have

~Li1Li8!FS2~x,z!50, i 51,2,3 and~H022!FS250.

SinceLi , Li8 , andH0 are first-order linear differential operators, we have for allk>0,

~Li81Li !FS2
k

50, ~H022k!FS2
k

50.

Now consider a particular point (x0 ,z0) whereFS2(x0 ,z0)Þ0. Let

c~k!5Kk~x0 ,z0!/FS2
k

~x0 ,z0!.

Define the function

Gk~x,z!5
Kk~x,z!

c~k!FS2
k

~x,z!
.
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This function satisfies the following system of homogeneous first-order differential equation

~Li81Li !Gk~x,z!50, i 51,2,3 andH0Gk~x,z!50

with initial condition Gk(x0 ,z0)51.
The system of equations can also be written as

M¹Gk50

with ¹5(]/]u ,]/]f , ]/]z1 ,]/]z2) andM a 434 matrix given by

M53
ı sin~f! ı cot~u!cos~f!

1

2
z2

1

2
z1

2ı cos~f! ı cot~u!sin~f! 2
1

2ı
z2

1

2ı
z1

0 2ı
1

2
z1

21

2
z2

0 0 z1 z2

4 .

The determinant of the matrixM is

detM5
21

) sin~u!
FS2~x,z!.

SinceFS2(x0 ,z0)Þ0, M is then invertible on a neighborhoodV of the point (x0 ,z0). There-
fore, we must have

Gk~x,z!51 for all ~x,z!PV

and then

Kk5c~k!FS2
k

~x,z! for all ~x,z!PV.

SinceKk andFS2
k are analytic functions of~x, z!, the last equation must actually hold for a

~x, z!.
Finally, we want to evaluate the constantc(k) appearing in the last equation. By using

Y11~x!52A3

2
sin~u!exp~ ıf!, Y121~x!5A3

2
sin~u!exp~2ıf!,

Y10~x!5) cos~u!, y11~z!5
z1

2

&
, y10~z!5z1z2 , y121~z!5

z2
2

&
,

we obtain Eq.~2.23!.
Now consider the relation

Ykm~x!5A~2k11!~k2m!!

~k1m!!
Pk

m~cos~u!!exp~ ımf!,

with Pk
m the associated Legendre polynomials. By takingu50 and sincePk

m(1)51dm0 ,
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A~2k11!
z1

kz2
k

k!
5c~k!~)z1z2!k,

which in turn impliesc(k)5 @A2k11/k! # (1/))k, and then Eq.~2.22!.

APPENDIX B: THE KERNEL OF THE BARGMANN TRANSFORM FOR S3

The purpose of this appendix is to demonstrate Eqs.~2.50! and ~2.51!.
We want to do it by showing that for alln>1:

K̃n~x,z!5
A2n

~n21!!

1

2n/2 ~FS3!n21~x,z!

with

K̃n~x,z!5 (
l 50

n21

(
m52l

m5l

Ynl m* ~x!ynl m~z!.

The idea of the proof is exactly the same as the one we used in Appendix A. Thus for
n>1, let us define the function

Fn~x,z!5K̃n~x,z!/~c~n!~FS3!n21~x,z!!

@in a neighborhoodV of a point (x0 ,z0) where (FS3)(x0 ,z0)Þ0# such thatFn is a solution of the
system of differential equations:

M¹Fn50

with ¹5(]/]u ,]/]f , ]/]l ,]/]z1 , ]/]z2 ,]/]z3 , ]/]z4) andM the 737 matrix

l

ı sin~f! ı cot~u!cos~f! 0
z2

2

z1

2

z4

2

z3

2

2ı cos~f! ı cot~u!sin~f! 0 2
z2

2ı

z1

2ı
2

z4

2ı

z3

2ı

0 2ı 0
z1

2
2

z2

2

z3

2
2

z4

2

f ~f,l!
2cot~l!sin~f!

ı sin~u!
2ı sin~u!cos~f!

z2

2

z1

2
2

z4

2
2

z3

2

g~f,l!
cot~l!cos~f!

ı sin~u!
2ı sin~u!sin~f! 2

z2

2ı

z1

2ı

z4

2ı
2

z3

2ı

sin~u!cot~l!

2ı
0 2ı cos~u!

z1

2
2

z2

2
2

z3

2

z4

2

0 0 0 z1 z2 z3 z4

m

with f (f,l)52ı cot(l)cos(u)cos(f) and g(f,l)52ı cot(l)cos(u)sin(f). The functionFn also
satisfies the initial conditionFn(x0 ,z0)51.

The determinant ofM is

detM5
21

4 sin2~l!sin~u!
~FS3~x,z!!2.
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SinceFS3(x0 ,z0)Þ0, we proceed as in Appendix A to conclude that

K̃n~x,z!5c~n!~FS3!n21~x,z!.

It is just left to evaluate the constantc(n). Since,

Y10051, Y20052 cos~l!, Y21152ı& sin~u!sin~l!eıf,

Y21052ı cos~u!sin~l!, Y21215ı& sin~u!sin~l!e2ıf,

y10051, y2005
1

&
@z1z42z2z3#, y2115z1z3 ,

y2105
1

&
@z1z41z2z3#, y21215z2z4

we obtain Eq.~2.51!
Now considerl50. SinceYnl m(u,f,l50)5nd l 0 we get

nyn00~z!5c~n!~&~z1z42z2z3!!n21.

By taking the norm in both sides of the last equation, we have

n5c~n!2(n21)/2An~n21!!,

where we usedi(z1z42z2z3)n21i5An(n21)!.
Thus we concludec(n)5 @A2n/(n21)!#(1/2n/2) and prove Eq.~2.50!.
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New solutions of relativistic wave equations in magnetic
fields and longitudinal fields

V. G. Bagrov,a) M. C. Baldiotti,b) D. M. Gitman,c) and I. V. Shirokovd)

Instituto de Fı´sica, Universidade de Sa˜o Paulo,
C.P. 66318, 05315-970 Sa˜o Paulo, SP, Brazil

~Received 10 July 2001; accepted for publication 28 January 2002!

We demonstrate how one can describe explicitly the present arbitrariness in solu-
tions of relativistic wave equations in external electromagnetic fields of special
form. This arbitrariness is connected to the existence of a transformation, which
effectively reduces the number of variables in the initial equations. Then we use the
corresponding representations to construct new sets of exact solutions, which may
have a physical interest. Namely, we present new sets of stationary and nonstation-
ary solutions in magnetic field and in some superpositions of electric and magnetic
fields. © 2002 American Institute of Physics.@DOI: 10.1063/1.1461428#

I. INTRODUCTION

Relativistic wave equations~Dirac and Klein–Gordon! provide a basis for relativistic quantum
mechanics and quantum electrodynamics of spinor and scalar particles.1 In relativistic quantum
mechanics, solutions of relativistic wave equations are referred to as one-particle wave fun
of fermions and bosons in external electromagnetic fields. In quantum electrodynamics
solutions allow the development of the perturbation expansion known as the Furry picture,
incorporates the interaction with the external field exactly, while treating the interaction wit
quantized electromagnetic field perturbatively.2 The physically most important exact solutions
the Klein–Gordon and the Dirac equations are: an electron in a Coulomb field, a uniform ma
field, the field of a plane wave, the field of a magnetic monopole, the field of a plane
combined with a uniform magnetic and electric fields parallel to the direction of wave prop
tion, crossed fields, and some simple one-dimensional electric fields~for a complete review of
solutions of relativistic wave equations see Ref. 3!.

Considering, for example, stationary solutions of relativistic wave equations, we can se
in the general case, there exist different sets of stationary solutions for one and the same
tonian. The possibility to get different sets of stationary states reflects the existence of an
trariness in the solutions of the eigenvalue problem for a Hamiltonian. Considering nonstat
solutions, we also encounter the possibility of constructing different complete sets of such
tions. There is no regular method of describing such an arbitrariness explicitly. Especially
presence of an external field the problem appears to be nontrivial.

In the present article we demonstrate how one can describe explicitly the present arbitra
in solutions of the relativistic wave equations for some types of external electromagnetic
namely, for uniform magnetic fields and combination of these fields with some electric fields
arbitrariness is connected to the existence of a transformation, which effectively reduc
number of variables in the initial equations. Then we use the corresponding representat
construct new sets of exact solutions, which may have a physical interest. In Sec. II we co
relativistic wave equations in pure uniform magnetic fields. Here we derive a representati
the exact solutions, in which the above-mentioned arbitrariness is described explicitly

a!On leave from Tomsk State University and Tomsk Institute of High Current Electronics, Russia.
b!Electronic mail: baldiott@fma.if.usp.br
c!Electronic mail: gitman@fma.if.usp.br
d!Also at: Omsk State University, Russia; electronic mail: shirokov@univer.omsk.su
22840022-2488/2002/43(5)/2284/22/$19.00 © 2002 American Institute of Physics
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arbitrary function. From a suitable choice of this function, we get both the well-known s
solutions and new ones. Section II contains the most complete~at present! description of the
problem of a uniform magnetic field in relativistic quantum mechanics. Among new se
solutions there are both stationary, generalized coherent solutions and nonstationary so
Then, in Sec. III, we consider more complicated configurations of external electromagnetic
namely, longitudinal electromagnetic fields. Here we describe all the arbitrariness in the solu
and on this basis present various sets of new exact solutions. In Sec. IV we interpret the
mentioned results from the point of view of the general theory of differential equations.

II. UNIFORM MAGNETIC FIELD

A. Arbitrariness in solutions of relativistic wave equations

Consider a uniform magnetic fieldH5(0,0,H) directed along thex3 axis (H.0). The elec-
tromagnetic potentials are chosen in the symmetric gauge

A05A350, A15 1
2 Hx2, A252 1

2 Hx1. ~2.1!

We write the Klein–Gordon and the Dirac equations in the form

KC50, \2K5P 22m0
2c2, Pm5 i\]m2

e

c
Am ,

~2.2!
DQ50, \D5gmPm2m0c.

Heree52ueu andg-matrices are chosen in the standard representation.3

In the field under consideration, the operatorsP0 andP3 are mutually commuting integrals o
motion, @K,P0#5@K,P3#5@D,P0#5@D,P3#5@P0 ,P3#50.

In the case of the Klein–Gordon equation, the operatorLz ,

Lz5 i\~x2]12x1]2!, @Lz ,P0#5@Lz ,P3#5@K,Lz#50, ~2.3!

can be included~together withP0 andP3! in the complete set of integrals of motion, whereas
the Dirac equation case, the operatorJz ,

Jz5Lz1
\

2 ( 3, @Jz ,P0#5@Jz ,P3#5@D,Jz#50, ~2.4!

can be included~together withP0 andP3! in the complete set of integrals of motion. HereS3

5diag(s3,s3).
We are going to use dimensionless coordinates2`,x,`, 2`,y,` or 0<r,`, 0

<w,2p defined by

Ag

2
x15x5Ar cosw, Ag

2
x25y5Ar sinw, g5

ueuH
c\

.0,

~2.5!

dx1 dx25
2

g
dx dy5

1

g
dr dw, x1 iy5Ar expiw.

It is useful to introduce the operatorsa1 , a2 , a1
† , a2

† ,
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a25
1

A2g\
@P22 iP11\g~x11 ix2!#5

1

2
~x1 iy1]x1 i ]y!5

eiw

2Ar
~r1 i ]w12r]r!,

a2
†5

1

A2g\
@P21 iP11\g~x12 ix2!#5

1

2
~x2 iy2]x1 i ]y! 5

e2 iw

2Ar
~r1 i ]w22r]r!.

~2.6!

a152
1

A2g\
~ iP11P2!5

1

2
~x2 iy1]x2 i ]y!5

e2 iw

2Ar
~r2 i ]w12r]r!,

a1
†5

1

A2g\
~ iP12P2!5

1

2
~x1 iy2]x2 i ]y!5

eiw

2Ar
~r2 i ]w22r]r!.

They obey the commutation relations

@ak ,as
†#5dk,s , @ak ,as#5@ak

† ,as
†#50, k,s51,2. ~2.7!

Thus, we can interpret these operators as creation and annihilation ones. One can also
following relations:

P 1
21P 2

25\2g~a1a1
†1a1

†a1!52\2gN1\2g,
~2.8!

Lz5\~N2a2
†a2!, N5a1

†a1 .

Then the Klein–Gordon and the Dirac operators can be written as

K5\22~P 0
22P 3

2!22gN2g2m2, m5
m0c

\
,

~2.9!

D5\21~g0P01g3P3!2Ag

2
@~g22 ig1!a11~g21 ig1!a1

†#2m.

The operatorN commutes withP0 ,P3 , Lz , plus it is an integral of motion in the case of th
Klein–Gordon equation. Its generalization for the Dirac equation has the formND5N1 1

2S3 .
One ought to remark that the operatorsK andD do not contain the operatorsa2

† , a2 . Thus,
the latter operators are integrals of motion, which commute withN, ND , P0 , P3 , but do not
commute withLz andJz .

The operators of creation and annihilation with different numbers commute. One can
representation in which these operators are acting on different variables. To this end, we p
the wave functions from~2.2! in the following form~we make a Fourier transform in the variab
y only, and call such a representation the semi-momentum representation!:

C~x,y!5
1

A2p
E

2`

`

eikyC̃~x,k!dk. ~2.10!

Of course the functionsC andC̃ depend on the variablesx2 andx3 as well, but we do not indicate

this dependence explicitly. In terms ofC̃ the multiplication and differentiation have the formy
→ i ]k , i ]y→2k. Then, the expressions for the creation and annihilation operators in the
momentum representation take the form
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2a15x1k1]x1]k , 2a1
†5x1k2]x2]k ,

~2.11!
2a25x2k1]x2]k , 2a2

†5x2k2]x1]k .

Now we pass fromx, k to new variablesj, h,

&j5x1k, &h5x2k, &x5j1h, &k5j2h. ~2.12!

Then the creation and annihilation operators can be written as

&a15j1]j , &a1
†5j2]j , &a25h1]h , &a2

†5h2]h . ~2.13!

In the new variables,

2N5j22]j
221, ~2.14!

and the Klein–Gordon and the Dirac operators read

K5\22~P 0
22P 3

2!1g~]j
22j2!2m2,

~2.15!
D5\21~g0P01g3P3!2Ag~g2j2 ig1]j!2m.

One can see that the latter operators do not contain the variableh. Notice that both operatorsLz

andJz contain variablesj,h. For example,

2Lz5j22]j
22h21]h

2 . ~2.16!

The integration overk in ~2.10! can be replaced by an integration overh,

C~x,y!5
eixy

Ap
E

2`

`

e2 i&yhC̃~j,h!dh, j5&x2h. ~2.17!

Besides, one can write

~C,F!5E
2`

`

dx E
2`

`

dy C* ~x,y!F~x,y!5~C̃ ,F̃ !5E
2`

`

djE
2`

`

dh C̃* ~j,h!F̃~j,h!.

~2.18!

The independence of the operators~2.15! on the variableh will allow us to separate explicitly
the functional arbitrariness in the solutions~2.17!, as will be seen in the following.

B. Stationary states

1. Arbitrariness in stationary states

Known sets of stationary solutions in a uniform magnetic field~that were found in the first
works4–8! are eigenfunctions of the operatorsP0 ,P3 ,N in the scalar case and of the operatorsP0 ,
P3 , ND in the spinor case. Thus for scalar wave functionsC we have the conditions

P0C5\k0C, P3C5\k3C, NC5nC, n50,1,2,... , ~2.19!

and for Dirac wave functionsQ the conditions

P0Q5\k0Q, P3Q5\k3Q, NDQ5~n2 1
2!Q, n50,1,2,... . ~2.20!

Consider first the scalar case. It follows from~2.15! that
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k0
25m21g1k3

212gn5m* 21k3
212gn, m* 25m21g, ~2.21!

and

Cn,k3
~xm!5N exp~2 ik0x02 ik3x3!Cn~x,y!. ~2.22!

Here N is a normalization factor. In the semi-momentum representation~2.10! the function
Cn(x,y) has the following image:

C̃n~j,h!5Un~j!F~h!, j5&x2h. ~2.23!

Here Eqs.~2.19! and ~2.14! were used.Un(j) are Hermite functions; they are related to t

corresponding polynomialsHn(j) as Un(x)5(2nn!Ap)2
1
2 exp(2x2/2)Hn(x).9 The function

F(h) is arbitrary. The functionsCn(x,y) from ~2.22! obey the relations

a1Cn5AnCn21 , a1
†Cn5An11Cn11 , Cn~x,y!5

~a1
†!n

AG~n11!
C0~x,y!, ~2.24!

C0~x,y!5p2 3/4exp~2x21 ixy!E
2`

`

dh expF2
h2

2
1&h~x2 iy !GF~h!. ~2.25!

Dirac wave functions are of the formQn,k3
(xm)5N exp(2ik0x

02ik3x
3)Qk3 ,n(x,y) with bis-

pinorsQk3 ,n(x,y) having the structure

Qn,k3

T ~x,y!5~c1Cn21~x,y!, ic2Cn~x,y!, c3Cn21~x,y!, ic4Cn~x,y!!. ~2.26!

The functionsCn(x,y) are defined by relations~2.17!, ~2.23!, whereas the constant bispinorC
~with the elementsck! obeys an algebraic system of equations

AC50, A5g0k01g3k32A2gng12m. ~2.27!

The condition detA5(k0
22k3

222gn2m2)250 results in an equation which is an analog of~2.21!,

k0
25k3

212gn1m2. ~2.28!

Since the rank of the matrixA is equal to 2, a general solution of~2.27! has the form

C5S ~k01m!v
~A2gns12k3s3!v D , C1C52k0~k01m!v1v, ~2.29!

wherev is an arbitrary constant bispinor ands are Pauli matrices. We can specifyv selecting a
spin integral of motion~see Ref. 3!. The staten50 is a special case. Here we must setc15c3

50, which corresponds to the choicevT5(0, c2), c2Þ0. The latter means thatS3QD

52QD . Thus, forn50, the electron spin can only point to the direction opposite to the magn
field.

Expressions forCn(x,y) in the semi-momentum representation explicitly contain a functio
arbitrariness, which means that every energy level is infinitely degenerated. Let us demand
scalar and spinor wave functions be eigenvectors of the operatorsLz and Jz , respectively. Ac-
cording to ~2.4! and ~2.8! that means that the functionsCn(x,y) have to obey an additiona
condition
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a2
†a2Cn~x,y!5sCn~x,y!, s50,1,2,...,

~2.30!
Lz5\~n2s!5\ l , l 5n2s, n> l .2`, Jz5\~ l 2 1

2!.

This condition defines the functionF(h) according to~2.13!, a2
†a2Fs(h)5sFs(h), therefore

Fs(h)5Us(h). Substituting this result into~2.23! and into~2.17!, and doing the integral overh,
we find in the coordinate representation,

Cn,s~x,y!5
~21!n

A2p
eil wI s,n~r!5

~21!n

A2p
S x1 iy

x2 iy D ~n2s!/2

I s,n~x21y2!. ~2.31!

HereI m,n(x) are Laguerre functions, which are connected to the corresponding polynomialsLn
a(x)

by the relations~see Ref. 9! I m,n(x)5(G(n11)/G(m11))1/2e2 x/2xa/2Ln
a(x), a5m2n. The

states~2.31! were first obtained in Refs. 4–8. Besides~2.24! and~2.25!, the functions~2.31! obey
the following relations as well:

a2Cn,s5AsCn,s21 , a2
†Cn,s5As11Cn,s11 ,

~2.32!

Cn,s5
~a1

†!n~a2
†!s

AG~n11!G~s11!
C0,0, C0,0~x,y!5

1

Ap
expF2

1

2
~x21y2!G5

e2 r/2

Ap
.

In the following we are going to find new sets of solutions imposing complementary co
tions different from~2.30!. This results in a different form for the functionF(h).

2. Generalized squeezed coherent states

Taking into account that the operatorsa2
† , a2 are integrals of motion, we may constru

stationary states, which are eigenvectors of a linear combinationA2
a,b of these operators,

A2
a,b5aa21ba2

† . ~2.33!

Herea, b are arbitrary complex numbers. Here one has to distinguish three nonequivalent
~1! If uau2,ubu2, then there do not exist any normalizable eigenvectors of the operator~2.33!.

We are not going to consider such case.
~2! If uau25ubu2, thenA2

a,b is, in fact, reduced to a Hermitian operator

A2
m5ma21m* a2

† , A2
1m5A2

m , mÞ0, ~2.34!

wherem is an arbitrary complex number.
~3! If uau2.ubu2, then without loss of generality we can assume that operatorsA2

a,b have the
form

A2
a,b5aa21ba2

† , uau22ubu251, @A2
a,b , A2

1a,b#51. ~2.35!

Then A2
1a,b , A2

a,b are creation and annihilation operators, which are related toa2
† , a2 by a

canonical transformation,

a25a* A2
a,b2bA2

1a,b , a2
†5aA2

1a,b2b* A2
a,b . ~2.36!

Consider eigenvectors of the operator~2.34!, i.e., A2
mCn,z

m (x,y)5zCn,z
m (x,y), z5z* . This

equation results in the equationA2
mFz

m(h)5zFz
m(h) for the functionF(h). Taking into account

~2.13!, one can find that solutions of the latter equation are
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Fz
m~h!5F m

&pumu~m2m* !
G 1/2

expQ1 ,

~2.37!
4~m2m* !Q1522~m1m* !h214&zh2z2~m1m* !umu22.

These solutions obey the orthonormality and completeness relations,

E
2`

`

Fz8
* m

~h!Fz
m~h!dh5d~z2z8!, E

2`

`

Fz*
m~h8!Fz

m~h!dz5d~h2h8!. ~2.38!

Their overlapping has the form

Rm8,m~z8,z!5E
2`

`

Fz8
* m8~h!Fz*

m~h!dh5N1 expF Q2

4~m8m* 2mm8* !G ,
N1

25
m8* m

2p2um8uumu~mm8* 2m8m* !
, ~2.39!

Q25S zAm8

m
2z8A m

m8
D 2

1S zAm8*

m*
2z8A m*

m8* D 2

.

It defines the mutual decomposition

Fz
m~h!5E

2`

`

Fz8
m8~h!Rm8,m~z8,z!dz8. ~2.40!

The coordinate representation~2.17! for the solutions under consideration has the form

Cn,z
m ~x,y!5~&pumu!2 1/2S m*

m D n/2

Un~p1!expiQ3 ,

4umu2Q35@ i ~m* 2m!x1~m1m* !y#@~m1m* !x1 i ~m2m* !y22z#, ~2.41!

&umup15~m1m* !x1 i ~m2m* !y2z.

Their scalar product~2.18! reads (Cn8,z8
m ,Cn,z

m )5dn,n8d(z2z8). Relation ~2.40! results in the
following decomposition in the coordinate representation:

Cn,z
m ~x,y!5E

2`

`

Cn,z8
m8 ~x,y!Rm8,m~z8,z!dz8. ~2.42!

In particular, in the cases of real or pure imaginarym, such wave functions were known before3

Consider eigenvectors of the operator~2.35!, i.e., A2
a,bCn,z

a,b(x,y)5zCn,z
a,b(x,y), wherez is a

complex number. In fact, we get coherent~squeezed! stationary states. They are labeled byz and
by two complex parametersa, b, which are related by the condition~2.35!. In the semi-
momentum representation the above-given equation is reduced to

A2
a,bFz

a,b~h!5zFz
a,b~h!. ~2.43!

It is well known that such solutions form a complete~overcomplete! set at any fixeda, b.
Solutions within each set are not orthogonal. One can use these functions to construct an o
nal set of solutions.
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Since the operatorsA2
1a,b , A2

a,b are integrals of motion~both for the Klein–Gordon equa
tion and for the Dirac equation!, they are symmetry operators for the equations. The actio
these operators on a solution again provides a solution. For example, applying the op
(G(11s))21/2(A2

1a,b2z* )s, s50,1,2,... to normalized solutions of Eq.~2.43!, we get normal-
ized solutions labeled by the indexs. These new solutions are orthogonal with respect tos,

Fs,z
a,b~h!5

~A2
1a,b2z* !s

AG~11s!
Fz

a,b~h!, F0,z
a,b~h!5Fz

a,b~h!,

~2.44!

E
2`

`

Fs8,z
* a,b

~h!Fs,z
a,b~h!dh5ds,s8E

2`

`

uFz
a,b~h!u2 dh.

We call such states generalized squeezed coherent states. It is possible to get an explicit f
these states,

Fs,z
a,b~h!5F a

uau~a2b!G
1/2S a* 2b*

a2b D s/2

eQ4Us~p2!,4ua2bu2Q4

52~ab* 2a* b!h212&h@z~a* 2b* !2z* ~a2b!#1z* 2~a2b!2

2z2~a* 2b* !2,2ua2bup252h2&z~a* 2b* !2&z* ~a2b!. ~2.45!

The functions~2.45! form a complete set for each fixedz,

(
s50

`

Fs,z* a,b~h8!Fs,z
a,b~h!5d~h82h!, ~2.46!

and for each fixeds,

E d2z

p
Fs,z* a,b~h8!Fs,z

a,b~h!5d~h2h8!, d2z5d Rez d Imz. ~2.47!

The overlapping

Rs8,s
a8,b8;a,b

~z8,z!5E
2`

`

Fs8,z8
* a8,b8~h!Fs,z

a,b~h!dh, ~2.48!

allows us to find mutual decompositions

Fs,z
a,b~h!5 (

s850

`

Rs8,s
a8,b8;a,b

~z8,z!Fs8,z8
a8,b8~h!, Fs,z

a,b~h!5E d2z8Rs8,s
a8,b8;a,b

~z8,z!Fs8,z8
a8,b8~h!.

~2.49!

Unfortunately, the overlapping~2.48! has a complicated form via a finite sum of Hermite fun
tions. In some particular cases this sum can be simplified. For example, ifa85a, b85b, then
the overlapping does not depend ona,b and has the form

Rs8,s
a,b;a,b

~z8,z!5Rs8,s~z8,z!5S z2z8

z* 2z8* D ~s82s!/2

expF1

2
~zz8* 2z* z8!G I s8,s~ uz2z8u2!.

~2.50!

For s5s850 we get
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R0,0
a8,b8;a,b~z8,z!5Aaa8*

uaa8u
~aa8* 2bb8* !2 1/2expQ5 ,

~2.51!

2Q55
z2~a8* b* 2a* b8* !1~z8* !2~ab82a8b!12zz8*

aa8* 2bb8*
2z8z* 2zz8* 2uz2z8* u2.

The wave functionCn,s,z
a,b (x,y) also has a very complicated form in the general case. Howeve

some particular cases it can be simplified. For example,

Cn,s,z
1,0 ~x,y!5

~21!n

Ap
S x1 iy2z

x2 iy2z* D ~n2s!/2

eMI s,n~ ux1 iy2zu2!,

~2.52!
M5z~x2 iy !2z* ~x1 iy !.

For z50 we arrive at the set~2.31!.
For s50 we get a compact form for a set of stationary squeezed coherent states,

Cn,0,z
a,b ~x,y!5Cn,z

a,b~x,y!5~21!n
p1/4

Auau
S b

a D n/2

UnS p3

A2ab
D expQ6 ,

p35z2a~x1 iy !2b~x2 iy !, ~2.53!

4abQ65~112ubu2!z222abuzu21~z1p3!@b~x2 iy !2a~x1 iy !#.

Additional simplifications are available fora51,b50,

Cn,z
1,0~x,y!5Cn,z~x,y!5wn,z~x,y!exp~2 1

2 uzu2!,

~2.54!

wn,z~x,y!5
~x1 iy2z!n

ApG~n11!
expFz~x2 iy !2

1

2
~x21y2!G .

Namely, these states were found in Ref. 10. However, the meaning of the parameterz was not
clarified.

For arbitrarya, b, the functionsCn,s,z
a,b (x,y) obey, besides~2.24!, the following:

A2
a,bCn,s,z

a,b 5zCn,s,z
a,b 1AsCn,s21,z

a,b , A2
1a,bCn,s,z

a,b 5z* Cn,s,z
a,b 1As11Cn,s11,z

a,b . ~2.55!

Taking into account thata2
†wn,z5]wn,z /]z, we can construct a new set of stationary states

successive differentiations,

C̄n,s,z~x,y!5
~21!nN

Ap
expF i ~n2s!w1

r2q

2 G S q

r D ~n2s!/2

I s,n~q!

5
~21!nN

Ap
expF z

2
~x1 iy !G S x1 iy2z

x2 iy D ~n2s!/2

I s,n~q!,

~2.56!
q5r2zAre2 iw5~x2 iy !~x1 iy2z!.

For N51 the above-mentioned set obeys@besides~2.24!#

a2C̄n,s,z5zC̄n,s,z1AsC̄n,s21,z , a2
†C̄n,s,z5

]

]z
C̄n,s,z5As11C̄n,s11,z . ~2.57!
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The set~2.31! is a particular case of~2.56!, it corresponds toz50. The set~2.56! is not orthogo-
nal,

~C̄n8,s8,z8 ,C̄n,s,z!5N8* Ndn,n8Js,s8~z,z8!,

Js,s8~z,z8!5A G~s11!

G~s811!
zs82sezz8* Ls

s82s~2zz8* !, s<s8, ~2.58!

Js,s8~z,z8!5AG~s811!

G~s11!
~z8* !s2s8ezz8* Ls8

s2s8~2zz8* !, s8<s.

The functions from the set~2.56! are normalized to unity forN5Ns(z)5exp(2uzu2/2)@Ls

(2uzu2)#21/2. For N51, the following mutual decompositions take place:

C̄n,s1k,z8~x,y!5A G~k11!

G~s1k11!
E d2z

p
z* se(z8z* 2uzu2)C̄n,k,z~x,y!,

~2.59!

C̄n,s,z8~x,y!5 (
k50

` AG~k1s11!

G~s11!

~z82z!k

k!
C̄n,s1k,z~x,y!.

That means, in particular, that~2.56! is a complete set since the set~2.31! is complete.
Selecting different forms for the functionF(h), we can get other sets of stationary states

a charge in a uniform magnetic field.

C. Nonstationary states

1. Generalized coherent states

The most interesting nonstationary solutions of relativistic wave equations for a charg
uniform magnetic field are coherent states; such solutions were presented for the first time i
11–14, see also Ref. 3. In the following we present a new family of nonstationary solutions,
includes the above-mentioned coherent states as a particular case.

Here we are going to use light-cone variablesu05x02x3, u35x01x3, and the correspond
ing momentum operators

P̃05 i\]̃05 1
2 ~P02P3!, P̃35 i\]̃35 1

2 ~P01P3!, ~2.60!

where]̃05]/]u0, ]̃35]/]u3. Then the Klein–Gordon operator can be presented in the for

K54\22P̃3P̃022gN2m* 2, ~2.61!

whereas the Dirac equation reads~Q is a Dirac bispinor!

4\22P̃3P̃0Q (2)5~2gND1m* 2!Q (2) , 2P̃3Q (1)5@~aP'!1\r3m#Q (2) ,
~2.62!

P'52~P1 ,P2,0!, Q5Q (1)1Q (2) , Q (6)5p6Q, 2p6516a3 .

Herea andr3 are Dirac matrices,3 andp6 projection operators.
In the case of the uniform magnetic field under consideration, the operatorsP̃3 , P̃0 are

integrals of motion. Thus, we will consider solutions that are eigenvectors ofP̃3 ,

P̃3C5\
l

2
C. ~2.63!
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The scalar wave function obeys~2.63! and can be written as

C~xm!5N expS 2 i
l

2
u32 i

m* 2

2l
u0Dc~u0,x,y!. ~2.64!

It is easy to see thatc(u0,x,y) obeys a first-order equation, which can be treated as a Schro¨dinger
equation,

i ]0c~u0,x,y!5va1
†a1c~u0,x,y!, v5

g

l
. ~2.65!

Suppose Eq.~2.63! holds, thenQ (2) can be presented in the form:

Q (2)~xm!5N expS 2 i
l

2
u32 i

m* 2

2l
u0DW~12a3!Cc~u0,x,y!. ~2.66!

HereC is an arbitrary constant bispinor, andW is a unitary matrix~w0 is a constant phase!,

W5cosk2 iS3 sink, 2k5vu01w0 , W1W5I , ~2.67!

andc(u0,x,y) is a scalar function. The latter function obeys Eq.~2.65!. Then, theQ (1) projection
can be found from~2.62!, Q (1)5(\l)21@(aP')1\mr3#Q (2) .

Thus, both in the scalar and spinor cases we have to solve the same Eq.~2.65!.
In the semi-momentum representation, the corresponding functionc̃(u0,j,h) obeys the same

Eq. ~2.65!, where, however, one has to use expression~2.14! for the operatorN5a1
†a1 . The

relation between the functionsc̃(u0,j,h) andc(u0,x,y) still has the form~2.17!.
Let us introduce the operators

A1
f ,g5 f a11ga1

† , A1
1 f ,g5 f * a1

†1g* a1 , ~2.68!

where the complex quantitiesf andg can depend onu0. These operators are integrals of motio
wheneverf , g obey ~derivatives with respect tou0 are denoted by dots!

i ḟ 1v f 50, i ġ2vg50. ~2.69!

It is easy to find

f 5 f 0 exp~ ivu0!, g5g0 exp~2 ivu0!, ~2.70!

where f 0 , g0 are some complex constants. Bearing in mind considerations related to ope
~2.33!, we are going to consider two nonequivalent cases only. The first one correspondsu f u2

5ugu2 or equivalently tou f 0u25ug0u2. In this case we can, in fact, only consider the Hermit
operator

A1
n5na11n* a1

† , n5n0eivu0
, n05const. ~2.71!

The second case corresponds tou f u2.ugu2, and here we can suppose that

u f u22ugu25u f 0u22ug0u251, ~2.72!

without the loss of generality. In both cases the operators~2.68! are, within constant complex
factors, creation and annihilation operators.

Let us include operators~2.71! and~2.34! ~they are integrals of motion! into the complete se
of operators. Then
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A1
ncz1 ,z2

n,m 5z1cz1 ,z2

n,m , A2
mcz1 ,z2

n,m 5z2cz1 ,z2

n,m , zk* 5zk , k51,2. ~2.73!

In the semi-momentum representation we find

c̃~u0,j,h!5Fz1

n ~j!Fz2

m ~h!, ~2.74!

where functionsFz1

n are defined in~2.37!. The corresponding coordinate representation reads

cz1 ,z2

n,m ~u0,x,y!5F mn

2p2umuunu~mn2m* n* !G
1/2

expF Q6

4~m* n* 2mn!G ,
~2.75!

Q652~m1m* !~n1n* !x212~m2m* !~n2n* !y214i ~mn* 2m* n!xy

24x@z1~m1m* !1z2~n1n* !#24iy@z1~m2m* !2z2~n2n* !#

1S z1Am*

n
1z2A n

m* D 2

1S z1A m

n*
1z2An*

m D 2

.

These solutions are orthogonal at any fixedu0, (cz
18 ,z

28
n,m

,cz1 ,z2

n,m )5d(z12z18)d(z22z28), and obey

the completeness relation

E
2`

`

dz1E
2`

`

dz2 cz1 ,z2
* n,m~u0,x8,y8!cz1 ,z2

n,m ~u0,x,y!5d~x2x8!d~y2y8!. ~2.76!

Consider now generalized squeezed coherent states, which can be constructed by analo
~2.44! in the semi-momentum representation. Here we use the operators~2.68! supposing that
relations~2.69!, ~2.70!, ~2.72!, and~2.35! hold,

c̃n,s;z1 ,z2

f ,g;a,b ~u0,j,h!5Fn,z1

f ,g ~j!Fs,z2

a,b~h!. ~2.77!

The functionsFn,z
a,b(x) are defined in~2.45!. Thus,

cn,s;z1 ,z2

f ,g;a,b ~u0,x,y!5
~A1

1 f ,g2z1* !n~A2
1a,b2z2* !s

AG~n11!G~s11!
cz1 ,z2

f ,g;a,b~u0,x,y!,cz1 ,z2

f ,g;a,b5c0,0;z1 ,z2

f ,g;a,b .

~2.78!

The solutions~2.78! obey the relations

~A1
f ,g2z1!cn,s;z1 ,z2

f ,g;a,b 5Ancn21,s;z1 ,z2

f ,g;a,b ,~A1
1 f ,g2z1* !cn,s;z1 ,z2

f ,g;a,b 5An11cn11,s;z1 ,z2

f ,g;a,b ,

~2.79!
~A2

a,b2z2!cn,s;z1 ,z2

f ,g;a,b 5Ascn,s21;z1 ,z2

f ,g;a,b ,~A2
1a,b2z2* !cn,s;z1 ,z2

f ,g;a,b 5As11cn,s11;z1 ,z2

f ,g;a,b .

Equation ~2.78! describes the most general form of relativistic wave equation solutions
constant uniform magnetic field. All the formerly known solutions can be obtained from
equation by a particular choice of parameters. For instance, by selectingf 05a51, g5b50, z1

50, z25z with z50 we get the states~2.31!, on the other hand, if one putss50, zÞ0, then one
gets the states~2.54!. For n5s50, f 05a51, g5b50, we get coherent states.11–14

In the general case, an explicit coordinate representation for solutions~2.78! looks compli-
cated enough. However, some particular cases admit essential simplifications. For examp
posef 05a51, g5b50, then
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Cn,s;z1 ,z2

1,0;1,0 ~u0,x,y!5
~21!n

Ap
S x1 iy2 z̄1* 2z2

x2 iy2 z̄12z2*
D ~n2s!/2

eM1I s,n~p4!,

2M15~ z̄12z2* !~x1 iy !2~ z̄1* 2z2!~x2 iy !1 z̄1* z22 z̄1z2* 22invu0, ~2.80!

p45ux1 iy2 z̄1* 2z2u2, z̄15z1 exp~2 ivu0!.

For n5s50, we get the coordinate representation for the squeezed coherent states in the

Cz1 ,z2

f ;g;a,b~u0,x,y!5F a f

~a f 2bg!puauu f uG
1/2

expQ7 ,

Q752
1

2
~ uz1u21uz2u2!1

q

2~a f 2bg!
, ~2.81!

q52~a1b!~ f 1g!x22~a2b!~ f 2g!y212i ~b f 2ag!xy12x@~a1b!z11~ f 1g!z2#

12iy@~a2b!z12~ f 2g!z2#1~ag* 2b f * !z1
21~b* f 2a* g!z2

222z1z2 .

Solutions from Refs. 11 to 14 are particular cases of~2.81! for f 05a51, g5b50.
Calculating mean values in the states~2.78!, we get~one can obtain the same results usi

spinor wave functions for the calculations!

P̄15 i\Ag

2
@~ f * 1g* !z12~ f 1g!z1* #, P̄252\Ag

2
@~ f * 2g* !z11~ f 2g!z1* #. ~2.82!

Here we have taken into account the relations~2.6!, ~2.36!, ~2.79!, and the orthogonality of the
states with respect to the indicesn,s. Remember now that in classical theory the correspond
momentaP 1

cl , P 2
cl have the following parametric representation@with u0 being the evolution

parameter,R radius of the classical orbit, andk is given by~2.67!#:

P 1
cl5\gR sin 2k, P 2

cl52\gR cos 2k. ~2.83!

It is easy to see that~2.82! coincides with~2.83! for z15(g/2)1/2R( f 0e2 iw01g0eiw0). Calculating
mean values of the coordinatesx1, x2, we find that they evolve as the corresponding class
quantitiesx1cl, x2cl ~x(0)

1 , x(0)
2 are coordinates of the orbit center!,

x1cl5R cosk1x(0)
1 , x2cl5R sink1x(0)

2 , ~2.84!

for z25(g/2)1/2@(a1b)x(0)
1 1 i (a2b)x(0)

2 #.
Thus, mean-value trajectories in the planex1, x2 do not depend on quantum numbersn,s.

These trajectories have classical forms under a proper choice ofz1 , z2 .
Calculating quadratic fluctuations in the states~2.78!, we get

2~DP1!25\2gu f 1gu2~2n11!, 2~DP2!25\2gu f 2gu2~2n11!,

2g~Dx1!25u f 2gu2~2n11!1ua2bu2~2s11!,

2g~Dx2!25u f 1gu2~2n11!1ua1bu2~2s11!, ~2.85!

s152s25 i ~ f g* 2g f* !~2n11!,

sk5~Dxk!~DPk!1~DPk!~Dxk!, k51,2.
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They do not depend onz1 , z2 , but do depend on quantum numbersn,s and on parametersf 0 , g0 ,
a, b. The relations~2.85! imply the generalized Heisenberg inequalities

4J15\2~2n11!@~2n11!1~2s11!u~a2b!~ f 1g!u2#>\2,

4J25\2~2n11!@~2n11!1~2s11!u~a1b!~ f 2g!u2#>\2, ~2.86!

Jk5~Dxk!2~DPk!
22

1

4
sk

2 , k51,2.

One can fix any given(Dxk)2 or (DPk)
2 in a given ‘‘instant’’ u0 by means of a choice o

parametersf 0 , g0 , a, b. Then they evolve with ‘‘time’’u0 according Eq.~2.85!.

2. Eigenfunctions of the L z operator

In the following we present another type of nonstationary states, which are quite diff
from the above-mentioned generalized coherent states. Recall that the problem was red
solving Eq.~2.65! under the condition~2.63!. All the integrals of motion for such an equation ca
be constructed as functional combination of the operators

f a1 , ga1
† , a2 , a2

† , ~2.87!

wheneverf , g obey relations~2.69! and ~2.70!. Constructing integrals of motion that are line
combinations of these operators, we get coherent states. Any linear combinations of the op
~2.87! do not commute with the operatorLz ~2.8! or Jz ~2.4!. Thus, coherent states with defini
values of these quantities cannot be constructed. The generalized squeezed coherent stat~2.44!
and ~2.77! are eigenvectors of the operatorsN1 , N2 @that follows from~2.79!#. The latter opera-
tors are integrals of motion and are quadratic in creation and annihilation operators,

N15~A1
1 f ,g2z1* !~A1

f ,g2z1!, N25~A2
1a,b2z2* !~A2

a,b2z2!. ~2.88!

The operatorsA1
f ,g are defined in~2.68!, andA2

a,b are defined in~2.35!. The operators~2.88! do
not commute withLz , Jz as well.

One can see that besides the operatorsa1a2 , a1
†a2

† , the only one quadratic combination th
commutes withLz , Jz is

Ā5 f a1a21ga1
†a2

† . ~2.89!

It is known15 that eigenvectors for such an operator can be normalized only foru f u.ugu, or for
u f u5ugu. In the first case the eigenvectors have a finite norm, and in the second case they
normalized to ad function. Let us consider the caseu f u>ugu only. Here the operator~2.89! differs
from

Ap5eik~a1a22 p̄2a1
†a2

†!, p̄5pe2 ik, 21<p<1, k5vu01k0 , k05const ~2.90!

by a complex factor only. Thus, it is enough to consider the latter operator only. Let us de
that functionsc(u0,r,w) be solutions of Eq.~2.65!, and, at the same time, eigenvectors of t
operatorsAp, Lz ,

Apcq,l
p 52qcq,l

p , Lzcq,l
p 5\ lcq,l

p , l 50,61,62,... . ~2.91!

Such solutions can be constructed in terms of the Laguerre functionsI n,m(x) with noninteger
indices,
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cq,l
p ~u0,r,w!5N exp~ i l w2G!~11 p̄!2a~12 p̄!2bI u l u1s,s~x!,

G5 i
lvu0

2
1

11 p̄2

2~12 p̄2!
r, a5

p2q

2p
, b5

p1q

2p
,

~2.92!

s5
q

2p
2

u l u11

2
, x5

2p̄r

12 p̄2 ,

I n,m~x!5AG~11n!

G~11m!

expS 2
x

2D
G~11n2m!

x~n2m!/2F~2m,n2m11;x!.

Here F(a,b;x) is the degenerate hypergeometric function~see Ref. 9, 9.210!. For p251, the
operator~2.90! is anti-Hermitian andq is imaginary, Req50. For p50, solutions have a very
simple form

cq,l
0 ~u0,r,w!5N0 exp~ i l w1q̄2G0!Ju l u~2Aq̄r!, G05

i

2
lvu01

r

2
, q̄e2 ik, ~2.93!

whereJn(x) is the Bessel function~see Ref. 9, 8.402!. The functions~2.93! can be obtained from
~2.92! as a limitp→0, as can be seen with the help of the property

lim
r→`

I r 1a,r 1bS x2

4r D5Ja2b~x!. ~2.94!

The functions~2.92! and ~2.93! are orthogonal only with respect to quantum numbersl ,

~cq8,l 8
p ,cq,l

p !5d l ,l 8QF~2s,2s8* ;11u l u;y!, y5S 2p

11p2D 2

,

Q5FG~11u l u1s!G~11u l u1s8* !

p2G~11s!G~11s8* ! G1/2 pNN8*

G~11u l u!
y~11u l u!/2~12y!2 ~q1q* !/4p,

~cq8,l 8
0 ,cq,l

0 !5d l ,l 82pN0N08* I u l u~2Aqq8* !. ~2.95!

Here F(a,b;g;x) is the hypergeometric function~see Ref. 9, 9.100!, and I a(x) is the Bessel
function of imaginary argument~see Ref. 9, 8.404!. Calculating~2.95!, we have used the integra
table ~see Ref. 9, 6.633.2; 7.622.1!.

The states~2.92! are not coherent states, however, they are, in a sense, close to such
Indeed, let us consider the equations~2.6! on classical trajectories. Then we get a classical rela

r5r~u0!5ALz
2\2214ua1a2u22a1a22a1

†a2
† . ~2.96!

For p50, it follows from ~2.91! thata1a252q̄, Lz5\ l . Thus, we can rewrite~2.96! in the form

r~u0!5r0
cl1q̄1q̄* , r0

cl5Al 214uqu2. ~2.97!

Calculating the mean valuer̄ by means of the functions~2.93!, we find

r̄5r01q̄1q̄* , r05u l u2122uqu
I u l u21~2uqu!
I u l u~2uqu!

. ~2.98!
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Thus, the time dependence ofr̄ is classical. The only constant which can differ from its classi
value isr0 .

III. EXACT SOLUTIONS OF RELATIVISTIC WAVE EQUATIONS IN LONGITUDINAL
FIELDS

A. Definition of fields

Consider here longitudinal electromagnetic fields, which have the form

E5nE, H5nH. ~3.1!

Heren is a unit vector,n251. Supposen is directed alongx3 axis. Then, the fields~3.1! obey the
free Maxwell equations whenever

E5E~x0,x3!, H5H~x1,x2!,

where E(x0,x3), H(x1,x2) are arbitrary functions of the indicated arguments. Thus, the fi
under consideration can be represented by potentials of the form

A05A0~x0,x3!, A15A1~x1,x2!, A35A3~x0,x3!, A25A2~x1,x2!,
~3.2!

E5]0A32]3A0 , H5]2A12]1A2 .

Thus, the operators~2.6! do not depend on the electric field~on A0 , A3!. Therefore, imposing
restrictions only on the magnetic field, we can maintain relations~2.6!–~2.11!. For a uniform
magnetic field ~2.1!, the commutation relations~2.7! are still valid and we use the sem
momentum representation, where these operators act on different variables@see ~2.10!–~2.12!,
~2.17!#.

Lorentz equations have the following form

mẍ01Eẋ350, mẍ31Eẋ050,
~3.3!

mẍ11Hẋ250, mẍ21Hẋ150, ẋmẋm51,

which implies the following first integrals of motion:

m2~~ ẋ1!21~ ẋ2!2!5k1
2 , m2~~ ẋ0!22~ ẋ3!2!5m21~k1!2, ~3.4!

wherek1 is an integration constant.

B. Klein–Gordon equation

Consider the Klein–Gordon equation in the fields under consideration. Representing the
function as

C5w~x0,x3!c~x1,x2!, ~3.5!

we find

~P 1
21P 2

22k1
2!c~x1,x2!50, ~P 0

22P 3
22m22k1

2!w~x0,x3!50. ~3.6!

Using the variablesx, y, h, j defined in~2.5! and~2.12!, we can rewrite the equation forc(x1,x2)
in the following form:

~j22]j
22k18

2!c~x1,x2!50, k18
25

k1
2

\2g
. ~3.7!
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The operator (j22]j
22k18

2) does not depend onh. Thus, it is convenient to go over to th
semi-momentum representation,

c~x,y!5
1

A2p
E

2`

`

eikyc̃~x,k!dk.

Substituting the integration overk by an integration overh, we obtain

c~x,y!5
eixy

Ap
E

2`

`

e2 iA2yhc̃~j,h!dh, j5A2x2h. ~3.8!

The functionc is an eigenvector of the operatorN ~2.14!. The latter operator commutes with th
operators from Eq.~3.6!. In the semi-momentum representation we can write

Nc̃n5nc̃n⇒c̃n~j,h!5Un~j!F~h!, ~3.9!

whereF~h! is an arbitrary function ofh. It follows from ~2.8! and the first equation in~3.6! that

P 1
21P 2

252\2gN1\2g, k1
252\2gn1\2g.

Solution of the last equation in~3.6! can be found for fields that admit separation of the variab
x0, x3. For example, let us choose the potentials in the form:ueuA05A(x3), A350, ueuE
52]3A. In this case, stationary solutions of Eq.~3.6! read

w~x0,x3!5e2 ik0x0
x~x3!, x91Rx50, R~x3!5~k01A!22m22k1

2 . ~3.10!

Thus, the functions~3.5! being written in the semi-momentum representation take the form

Cn5e2 ik0x0
x~x3!Un~j!F~h!. ~3.11!

Equation~3.10! for x can be solved exactly for the following choices of the functionA(x3):

A~x3!5ax, A~x3!5a exp~bx3!, A~x3!5
a

x3 ,

A~x3!5a tanh~bx3!, A~x3!5a tan~bx3!, A~x3!5b coth~bx3!.

The corresponding exact solutions are presented in Ref. 3. Demanding that the Klein–G
function be an eigenvector of the operatorLz ~2.16!, we get an equation for the functionF~h!
from ~3.11!,

a2
†a2F~h!5sF~h!. ~3.12!

Thus, F(h)5Us(h), and LZCns5\(n2s)Cns . Keeping this in mind and doing the integr
~3.8!, we obtain

Cn,s5e2 ik0x0
x~x3!

~21!n

A2p
S x1 iy

x2 iy D ~n2s!/2

I n,s~x21y2!,

whereI n,s are the Laguerre functions. Solutions of Eq.~3.12! have been analyzed above.
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C. Dirac equation

Let us present the Dirac wave function in the form

Q5M S c1

c21
Dw~x0,x3!v,

M5S k1~m1P01P32 ik1s2! ~P12 iP2!~m1P01P32 ik1s2!

~P11 iP2!@~m2P02P3!s32k1s1# k1@~m2P02P3!s32k1s1#
D ,

wheren is an arbitrary spinor, which can be fixed by supplementary conditions. Then the fo
ing equations take place:

~P 0
22P 3

22m22k8!w~x0,x3!50, k85k1
21 ieE, ~3.13!

~P11 iP2!c1~x1,x2!5\k1c21~x1,x2!, ~3.14!

~P12 iP2!c21~x1,x2!5\k1c1~x1,x2!. ~3.15!

As a consequence of Eqs.~3.14! and ~3.15!, we get

a1c2152 iAnc1 , a1
†c15 iAnc21 , k1

252gn.

Thus, we see thatc15cn21 , c2152 icn , and the problem is reduced to solving Eq.~3.13!. The
latter coincides with the second equation in~3.6!.

Considering, for example, the constant and uniform magnetic field~2.1! together with the
electric field described by potentialsueuA05A(x3), A350⇒ueuE52]3A, we get

w~x0,x3!5exp~2 ik0x0!x~x3!, x91~ i ]31k01A!x50.

All possible solutions of the latter equation for the functionx are presented in Ref. 3.

IV. PECULIARITIES OF INTEGRATION OF LINEAR DIFFERENTIAL EQUATIONS
WITH NONCOMMUTATIVE SYMMETRIES

Here we are going to return to the above-mentioned results from a point of view of ge
theory of differential equation. Recall that we succeeded to explicitly find the transform
~2.10!–~2.13! which has effectively reduced the number of the variables in the initial equation
fact, that was the main starting point for all further constructions. However, one can see th
‘‘reduction’’ of variables is a particular example of a general situation, which is described b
in the following.

Consider first the case of an integrable classical 2N-dimensional Hamiltonian system with th
HamiltonianH. Suppose this system hasN independent integrals of motion that are in involutio
It is well known that in such a case the variables of the type action-angle~J, w! are available, and
the Hamiltonian depends on the action variables only,H5H(J). Let us suppose that for such
system exists one more independent integral of motionY. Since Y is independent, it canno
commute with the former integrals, and, therefore,Y must depend on the angle variables. One c
demonstrate that in such a case the Hamiltonian system is degenerate, deti]H(J)/]Ji]Jji50, and,
therefore, the Hamiltonian does not depend on some combinations of the action variable
example, suppose the integralY does not commute with the integralJN only. Then the Hamil-
tonian can depend on the variablesJ1 , . . . ,JN21 only, otherwiseH cannot commute withY. Thus,
we see that the noncommutative algebra of integrals of motion allows one to find can
variables such that part of the corresponding action variables disappears from the Hamil
This phenomenon is closely related to the topological properties of orbits for the Hamilto
system. Namely, trajectories of the integrable Hamiltonian system withN-dimensional commuta-
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tive set of integrals of motion form~in the compact case! a winding ofN-torus in 2N-dimensional
phase space. If the set of the integrals is noncommutative then the dimension of the corresp
torus isr ,N ~see Ref. 16!.

The phenomenon of variable ‘‘reduction’’ takes place in the quantum integrable Hamilto
system as well. As will be demonstrated in the following, by constructing a special isomorp
of linear functional spaces, we can transform the initial differential operator of an equation
another one with a reduced number of variables. The method which we are going to use fo
a demonstration, is, in fact, the harmonic analysis on the noncommutative functional algeb

Consider a differential equation

H~x,]x!c~x!50, ~4.1!

for functionsc(x)PL of N independent variablesxPRN. The spaceL,C`(RN) and depends on
the problem under consideration. Some suppositions aboutL will be introduced below. Suppos
that Eq.~4.1! admits a noncommutative algebra of functionally independent symmetry oper
F5$Xa(x,]x)%. The corresponding commutation relations are in the general case nonlinea

i

\
@Xa ,Xb#5Vab~X!, a,b51, . . . ,n[dimF. ~4.2!

Here Vab(X) are symmetric operator functions. The linear case, whenVab(X)5Cab
c Xc , corre-

sponds to a Lie algebra, the quadratic symmetric functionsVab(X) correspond to a quadrati
algebra, and so on. The algebraF corresponds to the algebraF 85$Ya(x,]x)% of the invariant
operators onL:

@Xa ,Ya#50,
i

\
@Ya ,Yb#5vab~Y!, a,b51, . . . ,n8[dimF 8. ~4.3!

We denote viaE(F) and E(F 8) enveloping fields for the algebrasF and F 8, respectively.
Elements ofE(F) andE(F 8) are symmetrized operator functions of the generating operatorXa

Ya . It is clear that the centers of the enveloping fields coincide, i.e.,Z(E(F))5Z(E(F 8)). The
elements of the centerZ5Z(E(F)) are called Casimir operators. The number of the indepen
Casimir operators, which generate the centerZ, is called the index of the algebraF:r[ indF
5 indF 8. If we replace the operatorsX andY in the operator functionsvab(Y) andVab(X) by
arbitrary complex numbersj and f , then the index of the algebrasF andF 8 can be calculated
according to

r 5 sup
jPC

corankVab~j!5 sup
f PC

corankvab~ f !. ~4.4!

One can show that the following relation takes place:

n1n852N. ~4.5!

Let us introduce the notion of thel-representation of the algebraF.17 In fact, the
l-representation is the result of the quantization of the classical Poisson bracket and
understood as a realization of the algebraF by an irreducible set of differential operatorsX̃

5X̃(q,]q , j ), dependent onr parametersj 5( j 1 , . . . ,j r), and acting in a space of functions o
@q#5(n2r )/2 independent variables~via @q# we denote the number of the variablesq, similar
notations are used in the following! qPQ,

i

\
@X̃a ,X̃b#52Vab~X̃!, Km~X̃~q,]q , j !!5km~ j !, detI ]km~ j !

] j n
IÞ0. ~4.6!

Here Km are all the independent Casimir operators ofF. In a similar manner, we construct th
l-representation$Ỹ% of F 8 in a space of functions of@q8#5(n82r )/2 independent variablesq8
PQ8,
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i

\
@Ỹa ,Ỹb#5vab~Ỹ!, Km8 ~Ỹ~q8,]q8 , j !!5Km~X̃~q,]q , j !!5km~ j !. ~4.7!

Suppose that in the spaces of functions ofx, of q, and ofq8 are defined scalar products

~w,c!5E
RN

w~x!c~x!dm~x!, ~ w̃,c̃ !5E
Q

w̃~q!c̃~q!dm~q!,

~4.8!

~ w̃,c̃ !85E
Q8

w̃~q8!c̃~q8!dm~q8!,

where dm(x), dm(q), and dm(q8) are some measures onRN, Q, and Q8, respectively. And
suppose that the operatorsXa(x,]x), Ya(x,]x) and the operatorsX̃a(q,]q , j ),Ỹ(q8,]q8 , j ) are
self-conjugate with respect to the corresponding scalar products~this supposition is not necessa
and is introduced to simplify the consideration!. Now we define the set of distributionsDqq8

j (x) as
a solution of the overdetermined system of the equations:

@Xa~x,]x!2X̃a~q,]q , j !#Dqq8
j

~x!50; @Ya~x,]x!2Ỹa~q8,]q8 , j !#Dqq8
j

~x!50. ~4.9!

The distributionsDqq8
j (x) obey the completeness and orthogonality relations:

E Dqq8
j

~x!Dq̃q̃8
̃

~x! dm~x!5d~ j ,̃ !d~q,q̃!d~q8,q̃8!, ~4.10!

E Dqq8
j

~x!Dqq8
j

~ x̃!dm~ j !dm~q!dm~q8!5d~x,x̃!. ~4.11!

Here dm( j ) is the spectral measure of the Casimir operatorsK(X)(5K8(Y)). Due to Eqs.~4.6!,
~4.7! and ~4.9! the distributionsDqq8

j (x) are eigenfunctions of all the Casimir operators,

Km~X~x,]x!!Dqq8
j

~x!5km~ j !Dqq8
j

~x!, m51, . . . ,r . ~4.12!

Usually one can findDqq8
j (x) by an integration, at least in the case whenF is a Lie algebra. As a

consequence of~4.11! and ~4.10! we can define the direct and the inverse Fourier transforms

c̃~q,q8, j !5E Dqq8
j

~x!c~x! dm~x!, ~4.13!

c~x!5E Dqq8
j

~x!c̃~q,q8, j !dm~ j !dm~q!dm~q8!. ~4.14!

Equations~4.13! and~4.14! establish an isomorphism of the spacesL andL̃5$c̃%. It is important
to stress that under such an isomorphism the operatorsX, Y are transformed into the differentia
operatorsX̃,Ỹ that act in the spaces of functions, which depend on a smaller number of varia

X~x,]x!c~x!↔X̃~q,]q , j !c̃~q,q8, j !, Y~x,]x!c~x!↔Ỹ~q8,]q8 , j !c̃~q,q8, j !. ~4.15!

Let us return to Eq.~4.1!. Here we can conclude thatHPE(F 8) since the operatorH
commutes with all the operators of the algebraF5$Xa%. In turn, that means that there exists
operator functionH(Y) such thatH(x,]x)5H(Y(x,]x)). Let us look for solutions of Eq.~4.1! in
the form ~4.14!. Using the isomorphism~4.15!, we get

H~Ỹ~q8,]q8 , j !!c̃~q,q8, j !50. ~4.16!
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Thus, departing from Eq.~4.1! without loss of any information, we have arrived at a different
equation withÑ5@q8#5(n82r )/2 independent variables. Taking into account~4.5!, one can
obtain

Ñ5N2 1
2 ~dimF1 indF!. ~4.17!

Thus, the existence of a noncommutative symmetry algebra results in the phenome
variable reduction. Indeed, we started withN5@q8#1@q#1r variables.@q# variables have disap
peared completely, andr 5@ j # variables remain in the equations as some parameters. The so
of Eq. ~4.16! contains as a factor an arbitrary function of the variablesq, j . The number of
variables q is equal to @q#5(n2r )/25(dimF2 indF)/2. In the commutative case: indF
5dimF, and@q#50. In the noncommutative case: dimF. indF, and@q#.0. Thus, the reduction
of variables always takes place when there exists a noncommutative algebra of the integ
motion.

Let us apply the above-mentioned consideration to the Klein–Gordon equation~2.2! in a
uniform magnetic field. In this case we have four (N54) variables and five (n55) independent
symmetry operators:F5$P0 ,P3 ,a2 ,a2

† ,Lz5\L%,

P05 i\]0 , P35 i\]3 , L5u]u2ū] ū , a25] ū1u/2, a2
†52]u1ū/2, u[x1 iy .

The nonzero commutation relations are@a2 ,a2
†#51, @L,a2#5a2 , @L,a2

†#52a2
† . It follows

from ~4.4! that r 5 indF53. Ñ5@q8#50 KPZ according to~4.17!. Thus, Eq.~4.16! presents
algebraic relations on the parametersj ~and on the parameters of the equation itself!. Besides,
dimF 8535r , due to~4.5!. Thus, the algebra of the invariant operators is placed complete
the center. Or more simply, there are no operatorsY,Ỹ and variablesq8 in the case under consid
eration. The centerZ is generated by three Casimir operators, those areK15P0 , K2

5P3 , K35N5L1a2
†a25L1 1

2(a2
†a21a2a2

†21).
Let us construct thel-representation of the algebraF:

P̃05 j 15\k0 , P̃35 j 25\k3 , ã25q, ã2
15]q , L̃52q]q1n, n5 j 350,1, . . . .

The operatorsã2 andã2
1 are mutually conjugate with respect to the scalar product~4.8! with the

measure dm(q)5exp(2qq̄)d2q/p,(d2q[dq1dq2 , q5q11 iq2). The operator L̃ is self-
conjugate, and the spaceL̃ is built up from analytic functions dependent on the variableq and on
the parametersj 5(k0 ,k3 ,n). Here the Casimir operatorÑ has the following formÑ5L̃
1 1

2(ã2
1ã21ã2ã2

121)5n.
From Eq. ~4.9! we can find the setDq

j (x) that obeys the completeness and orthogona
relations. Such a set has the form

Dq
j ~x!5ei (k0x01k3x3)eqū2uū/2~u2q!n/~2pApn! !, ~4.18!

E Dq
j ~x!Dq̃

̃ ~x!dx5d~k02 k̃0!d~k32 k̃3!d~ q̃,q!dnñ , ~4.19!

(
n50

` E Dq
j ~x!Dq

j ~ x̃! dk0dk3dm~q!5d~x02 x̃0!d~x32 x̃3!d~x2 x̃!d~y2 ỹ!. ~4.20!

In Eq. ~4.19! d(q̃,q)5exp(q̄q̃) is a d-function with respect to the measure dm(q). To justify the
validity of ~4.19! and ~4.20! one can use the following relations.18

E vn~q!vm~q! dm~q!5dnm , (
n50

`

vn~q!vn~ q̃!5d~ q̃,q!5exp~ q̄q̃!, vn~q![qn/An!.
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As was previously mentioned, the Klein–Gordon operatorK belongs to the centerZ, and, there-
fore, can be presented in a polynomial form of the Casimir operatorsP0 ,P3 ,N, which generate
this center. Such a representation is given by Eq.~2.9!. The Klein–Gordon equation in the spac
L̃, i.e., Eq.~4.16!, is, in fact, relation~2.21! for the parametersj 5(k0 ,k3 ,n). Thus, the functions
~4.18! form a basis of the Klein–Gordon equation~2.2! @with allowance made for~2.21!#.
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We discuss in this article the canonical structure of classical field theory in finite
dimensions within thepataplecticHamiltonian formulation, where we put forward
the role of Legendre correspondence. We define the generalized Poissonp-brackets
which are the analogs of the Poisson bracket on forms. We formulate the equations
of motion of forms in terms ofp-brackets. As illustration of our formalism we
present three examples: the interacting scalar fields, conformal string theory and the
electromagnetic field. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1467710#

I. INTRODUCTION

In the standard Hamiltonian formulation of classical point particle mechanics, the phase
of a system withN degrees of freedom is a 2N dimensional manifold, which represents the spa
of possible positions and momenta of the system. In field theories the dynamical objects ty
have an infinite number of degrees of freedom. Thus we need to employ infinite dimen
manifolds to model their evolution. This requires a generalization of the familiar theory of fi
dimensional manifolds, and so we are motivated to stipulate that an infinite dimensional ma
is a manifold modeled for example on an infinite dimensional Banach space.

Infinite dimensional manifolds do, of course, differ in many significant ways from their fi
dimensional counterparts. No infinite dimensional manifold is locally compact, for instanc
though every finite dimensional one is. Furthermore, the fact that the tangent spaces are
dimensional leads to some complications which are not present in the finite dimensional cas
are worth mentioning here:

~1! In the finite dimensional case, a linear mapT:V→V is one to one iff it is onto; in the infinite
dimensional case a linear operator onV can be one to one but not onto.

~2! Similarly, in the finite dimensional case, all linear operators are continuous maps fromV to V;
in the infinite dimensional case, the continuous linear operators, i.e., the bounded ope
often have as their domain of definition a dense~proper! subset ofV.

A crucial step in the formulation of Hamiltonian mechanics is the construction of the Po
bracket of a pair of physical observables. This is obtained from the natural symplectic struct
T!M ~whereM is the configuration space of the physical system!. In this phase space approach
classical mechanics, the dynamical evolution from an initial pointxOPT!M is the solution to
Hamilton’s first order differential equations. Geometrically, dynamical trajectories in phase
can be identified with the flow lines of a special vector fieldjH on T!M associated with the
Hamiltonian functionH. Those dynamical equations imply the time rate of change of any phy
observablef PC`(T!M ,R), precisely through the Poisson bracket off with H which is defined
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thanks to Hamiltonian vector fieldsj f on T!M associated to eachf . There are a couple o
potential difficulties here. IfT!M is infinite dimensional, then some perfectly good functions m
not have a Hamiltonian vector field~this problem does not arise in the finite dimensional cas!.
Even whenj f exists, its integral curves may be incomplete~i.e., the vector field is only locally
defined!.

Further, in this viewpoint space and time are treated asymmetrically, therefore we do no
a covariant scheme.

In order to avoid these difficulties, an alternative approach is to construct covariant can
formulations of~finite dimensional! field theories which treat the space and time on equal foo
~symmetrically!. Remark that there is a whole variety of such theories and interestingly en
they offer a generalization of the Hamilton canonical equations of motion to field theory~see, for
instance Refs. 1–4, 11, 12, and 24!. Further details can be found in Refs. 5–15, 19, 22, and
One point there is that the observable quantities are not represented by~generalized! functions on
a phase space, but rather by (n21)-forms, whose integrals on Cauchy hypersurfaces give back
usual observables. But many of those approaches share a characteristic, which is an obstac
development of a field quantization: the lack of an appropriate generalization of the Po
bracket. And even if a Poisson bracket was proposed, the related construction was too res
and not appropriate for representing the generalized Hamiltonian field equations in P
bracket formulation.

More recently, a definition of the Poisson brackets on a subclass of forms and the equat
motion of forms from De Donder–Weyl point of view was given~see Refs. 16, 17, 20, and 21!. @In
this approach we associate to the generalized coordinates~the field variables! ui a set of n
momentumlike variables~which are defined from the Lagrangian as the conjugate momenta
sociated with each space–time—herea51, . . . ,n is the space–time index—derivative of th
field!, pi

a
ª]L/](]aui), and we have the Legendre transform:]aui→pi

a , L(ui ,]aui ,xa)
→H(ui ,pi

a ,xa)ªpi
a]aui2L. So, the phase space is replaced by a finite dimensional space.# The

main point is to derive the Hamiltonian fields equations from the Poincare´–Cartann-form and its
differential, called therepolysymplectic formusing ‘‘vertical multivector fields’’~which generalize
the Hamiltonian vector fields in mechanics!. Constructions of brackets can be done using also
polysymplectic form, but a correct expression of the dynamics of these forms requires a d
position of forms and multivectors along ‘‘vertical’’ and ‘‘horizontal’’ components. This deco
position, however, essentially implies a triviality of the ‘‘extended polymomentum phase sp
as a bundle over the space–time manifold. Moreover, we notice that in those works altho
natural link between Poisson brackets and dynamics exists forn21-forms, in the case of forms o
arbitrary degrees the link is not clear.@This generalization of the Poisson bracket formulation
the equations of motion to forms of arbitrary degree requires a certain extension, name
adding horizontal forms of degreen and the vertical-vector valued horizontal one-forms~objects
of formal degree zero! associated withn-forms. This extension calls for a generalization of L
Schouten–Nijenhuis and Fro¨licher–Nijenhuis brackets.# This affect the possibility of a precis
formulation, for example~of the dynamics!, of Maxwell’s electrodynamics. In addition, we do no
have a representation of the energy-momentum tensor.

In this article we exhibit a general construction of auniversalHamiltonian formalism~which
contains all previously known formalisms, which explains the appelationuniversal! and define the
generalized Poissonp-brackets, the analogs of the Poisson bracket on forms, as defined in Re
and 17. We formulate the equations of motion of forms in terms of thosep-brackets. The main
focus in this construction is on the role of Legendre correspondence and the hypothesis con
the generalized Legendre condition. We want to emphasize here that in our formalism ther
need of the decomposition into ‘‘vertical’’ and ‘‘horizontal’’ parts thanks to the use of Eq.~17!,
which is much more enlightened than Eq.~15!. This implies Theorems 2 and 3. On the other ha
the energy-momentum tensor is clearly represented and the Hamiltonian formulation of Max
electrodynamics, for instance, is properly given.

In Sec. II we establish the Hamiltonian formalism: the Euler–Lagrange equations, Lege
correspondence~and the generalized Legendre condition! and Hamilton’s equations. In fact, w
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recover the Hamilton’s equations using three different approaches:~a! as necessary and sufficien
conditions for the existence of a critical pointu:X→Y, ~b! by contracting thepataplecticform V
with any n-vectorXPLnT(q,p)M whereM5LnT!(X3Y) and for any (q,p)PM and, finally,
~c! by variational formulation, i.e., as the Euler–Lagrange equations of some simple function
Sec. III we review the usual approach to quantum field theory from the standard canonical
point andpataplecticgeometry point of view where we express the various brackets usin
analog of the Poisson brackets, the Poissonp-brackets, defined on (n21)-forms. In Sec. III D we
give a dynamical formulation for the (n21)-forms in terms ofp-brackets with then-form Hv.

In Sec. IV, and after introducing the internal and externalp-brackets, we generalize th
definition ofp-bracket on (n21)-forms to a class of forms of an arbitrary degrees 0<p<n using
anticommuting~Grassmann! variablest1 , . . . ,tn , which behave under change of coordinates l
]/]x1 , . . . ,]/]xn. Notice also that the generalized Poisson bracket obtained here differs fro
one proposed in Refs. 16 and 17 for forms of degree lower thann21. In particular, one of our
results is that thesep-forms are composed basically of ‘‘position’’ observables unless we h
some gauge symmetry and constraints. Then we can represent some ‘‘momentum’’ observ
a p-form with p<n ~in Sec. V C we study the electromagnetic field which is an instance of s
a situation!. Finally, in Sec. V we present three examples: the interacting scalar fields, confo
string theory and the electromagnetic field.

II. CONSTRUCTION OF THE HAMILTONIAN FORMALISM

In this section we show how to build a universal Hamiltonian formalism for variatio
problems involving a Lagrangian functional depending on first derivatives, and that for the c
maps between two manifolds. We derive it through a universal Legendre correspondence.

A. Notations

Let X andY be two differentiable manifolds.X plays the role of the space–time manifold a
Y is the target manifold. We fix some volume formv on X. This volume form may be chose
according to the variational problem that we want to study~for instance, if we look at the
Klein–Gordon functional on some pseudo-Riemannian manifold, we choosev to be the Riemann-
ian volume!, but in more general situation with less symmetries we just choose some arb
volume form. We setn5dimX andk5dimY. We denote$x1, . . . ,xn% local coordinates onX and
$y1, . . . ,yk% local coordinates onY. For simplicity we shall assume that the coordinatesxa are
always chosen such thatdx1∧ ¯ ∧dxn5v, though it is not essential. Then on the productX
3Y we denote$q1, . . . ,qn1k% local coordinates in such a way that

qm5xa if 1<m5a<n,

qm5yi if n11<m<n1k and i 5m2n.

Generally we shall denote the indices running from 1 ton by a, b, . . . , theindices between 1 and
k by i , j , . . . , and theindices between 1 andn1k by m, n, . . . . To any mapu:X→Y we may
associate the map

U:X→X3Y,

x°~x,u~x!!,

whose image is the graph ofu, $(x,u(x))/xPX%. We also associate tou the bundleu!TY
^ XT!X over X. This bundle is naturally equipped with the coordinates (xa)1<a<n ~for X! and
(va

i )1< i<k;1<a<n , such that a point (x,v)Pu!TY^ XT!X is represented by

v5 (
a51

n

(
i 51

k

va
i ]

]yi ^ dxa.
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We can think u!TY^ XT!X as a subset ofTY^ X3YT!Xª$(x,y,v)/(x,y)PX3Y,vPTyY
^ Tx

!X% by the inclusion map (x,v)°(x,u(x),v).
The differential ofu, du is a section of the bundleu!TY^ XT!X over X. Hence the coordi-

nates fordu are simplyva
i 5]ui /]xa. Notice thatu!TY^ XT!X is an analog of the tangent bund

TY to a configuration spaceY in classical particle mechanics.
It turns out to be more convenient to considerLnT(X3Y) the analog ofT(R3Y), the tangent

bundle to a space–time, or ratherSLnT(X3Y), the submanifold ofLnT(X3Y), as the analog of
the subsetST(R3Y)ª$(t,x;j0,jW )PT(R3Y)/dt(j0,jW )51%, which is diffeomorphic toR3TY
by the map (t,x,j)°(t,x,jW ), and where

SLnT~X3Y!ª$~q,z!PLnT~X3Y!/z5z1∧¯ ∧zn ,z1 , . . . ,znPTq~X3Y!,v~z1 , . . . ,zn!51%.

For any (x,y)PX3Y, the fiberSLnT(x,y)(X3Y) can be identified withTyY^ Tx
!X by the

diffeomorphism

TyY^ Tx
!X→SLnT(x,y)~X3Y!,

~1!

v5 (
a51

n

(
i 51

k

va
i ]

]yi ^ dxa°z5z1∧¯ ∧zn ,

where for all 1<b<n, zb5]/]xa 1( i 51
k va

i ]/]yi . We denote by (za
m)1<m<n1k;1<a<n the coor-

dinates ofza , so thatzb5(m51
n1k za

m ]/]qm ~or za
b5da

b for 1<b<n and za
n1 i5va

i for 1< i<k!.
This induces an identificationTY^ X3YT!X.SLnT(X3Y).

Thus coordinates (xa,yi ,va
i ) @or equivalentely (xa,yi ,za

m)# can be thought as coordinate o
TY^ X3YT!X or SLnT(X3Y).

Given a Lagrangian functionL:TY^ X3YT!X°R, we define the functional

L@u#ªE
X
L~x,u~x!,du~x!!dx.

B. The Euler–Lagrange equations

The critical points of the action are the mapsu:X→Y which are solutions of the system o
Euler–Lagrange equations

]

]xa S ]L

]va
i ~x,u~x!,du~x!! D 5

]L

]yi ~x,u~x!,du~x!!. ~2!

This equation implies also other equations involving thestress-energytensor associated to
u:X→Y:

Sb
a~x!ªdb

aL~x,u~x!,du~x!!2
]L

]va
i ~x,u~x!,du~x!!

]ui

]xb ~x!.

Indeed, for anyu,
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]Sb
a

]xa ~x!5db
aS ]L

]xa ~x,u,du!1
]L

]yi ~x,u,du!
]ui

]xa ~x!1
]L

]vg
i ~x,u,du!

]2ui

]xa]xg ~x! D
2

]

]xa S ]L

]va
i ~x,u,du! D ]ui

]xb ~x!2
]L

]va
i ~x,u,du!

]2ui

]xa]xb ~x!

5
]L

]xb ~x,u,du!2F ]

]xa S ]L

]va
i ~x,u~x!,du~x!! D 2

]L

]yi ~x,u~x!,du~x!!G ]ui

]xb ~x!.

Thus we conclude that ifu is a solution of~2!, then

]Sb
a

]xa ~x!5
]L

]xb ~x,u,du!. ~3!

It follows that if L does not depend onx, thenSb
a is divergence-free for all solutions of~2!, a

property which can be predicted by Noether’s theorem.

C. The Legendre correspondence

Let MªLnT!(X3Y). Every point (q,p)PM has coordinatesqm and pm1 . . . mn
such that

pm1 . . . mn
is completely antisymmetric in (m1 , . . . ,mn) and

p5 (
m1, . . . ,mn

pm1 . . . mn
dqm1∧¯ ∧dqmn.

We shall define a Legendre correspondence

SLnT~X3Y!3R↔M5LnT!~X3Y!,

~q,v,w!↔~q,p!,

wherewPR is some extra parameter~its significance is not clear for the moment,w is related to
the possibility of fixing arbitrarily the value of some Hamiltonian!. Notice that we do not name i
a transform, like in the classical theory, but a correspondence, since generally there will be
possible values of (q,p) corresponding to a single value of (q,v,w). But we expect that, in
generic situations, there corresponds a unique (q,v,w) to some (q,p). This correspondence i
generated by the function

W:SLnT~X3Y!3M→R, ~q,v,p!°^p,v&2L~q,v !,

where

^p,v&.^p,z&ª^p,z1∧¯ ∧zn&5 (
m1 , . . . ,mn

pm1 . . . mn
z1

m1
¯ zn

mn .

Definition 1: We write that (q,v,w)↔(q,p) if and only if

L~q,v !1w5^p,v& or W~q,v,p!5w ~4!

and

]L

]va
i ~q,v !5

]^p,v&
]va

i 5 K p,z1∧¯ ∧za21∧
]

]yi ∧za11∧¯ ∧znL or
]W

]va
i ~q,v,p!50. ~5!
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Notice that for any (q,v,w)PSLnT(X3Y)3R there exist (q,p)PM such that
(q,v,w)↔(q,p). This will be proven in Sec. II F. But (q,p) is not unique in general. In the
following we shall need to suppose that the inverse correspondence is well-defined.

Hypothesis: Generalized Legendre condition: There exists an open subsetO,M which is
nonempty such that for any(q,p)PO there exists a uniquevPTxY^ Ty

!X @or equivalentely a
unique zPSLnTq(X3Y)# which is a critical point ofv°W(q,v,p). We denotev5V(q,p) this
unique solution (or z5Z(q,p)). We assume further thatV is a smooth function onO (or the same
for Z!.

We now suppose that this hypothesis is true. Then we can define onO the following Hamil-
tonian function:

H:O→R,

~q,p!°^p,V~q,p!&2L~q,V~q,p!!5W~q,V~q,p!,p!.

We then remark that~4! is equivalent tow5H(q,p).
We now compute the differential ofH. The main point is to exploit the condition

]W

]va
i ~q,V~q,p!,p!50 ~6!

~which definesV!:

dH5(
m

]W

]qm ~q,V~q,p!,p!dqm1(
m,n

(
a

]W

]va
n ~q,V~q,p!,p!

]V a
n

]qm dqm

1(
n,a

(
m1, . . . ,mn

]W

]va
n ~q,V~q,p!,p!

]V a
n

]pm1 . . . mn

dpm1 . . . mn

1 (
m1, . . . ,mn

]W

]pm1 . . . mn

~q,V~q,p!,p!dpm1 . . . mn

5(
m

]W

]qm ~q,V~q,p!,p!dqm1 (
m1, . . . ,mn

]W

]pm1 . . . mn

~q,V~q,p!,p!dpm1 . . . mn
.

Now since

]W

]qm ~q,v,p!52
]L

]qm ~q,v !

and

]W

]pm1 . . . mn

~q,v,p!5U z1
m1 . . . zn

m1

A A

z1
mn . . . zn

mn
U ,

we get

dH52(
m

]L

]qm ~q,V~q,p!!dqm1 (
m1, . . . ,mn

Z 1 . . .n
m1 . . . mn~q,p!dpm1 . . . mn

, ~7!

where
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Z 1 . . .n
m1 . . . mn~q,p!ªUZ 1

m1~q,p! . . . Z n
m1~q,p!

A A

Z 1
mn~q,p! . . . Z n

mn~q,p!
U

are the components of then-vector

Z1~q,p!∧¯ ∧Zn~q,p!5 (
m1, . . . ,mn

Z 1 . . .n
m1 . . . mn~q,p!

]

]qm1
∧¯ ∧

]

]qmn
.

To conclude let us see how the stress-energy tensor appears in this Hamiltonian setting. We
the Hamiltonian tensor onO to beH(q,p)5(a,bHb

a(q,p)]/]xa
^ dxb, with

Hb
a~q,p!ª

]L

]va
i ~q,V~q,p!!V b

i ~q,p!2db
aL~q,V~q,p!!.

It is clear that if (x,u(x),du(x),w)↔(q,p), then

Hb
a~q,p!52Sb

a~x!.

Let us now computeHb
a(q,p). We first use~5!:

(
i

]L

]va
i ~q,V~q,p!!V b

i ~q,p!

5(
i

]^p,v&
]va

i uv5V(q,p)V b
i ~q,p!

5(
i

K p,Z1~q,p!∧¯ ∧Za21~q,p!∧
]

]yi ∧Za11~q,p!∧¯ ∧Zn~q,p!L V b
i ~q,p!

5(
m

K p,Z1~q,p!∧¯ ∧Za21~q,p!∧
]

]qm ∧Za11~q,p!∧¯ ∧Zn~q,p!LZ b
m~q,p!

2 K p,Z1~q,p!∧¯ ∧Za21~q,p!∧
]

]xb ∧Za11~q,p!∧¯ ∧Zn~q,p!L
5^p,Z1~q,p!∧¯ ∧Za21~q,p!∧Zb~q,p!∧Za11~q,p!∧¯ ∧Zn~q,p!&

2 K p,Z1~q,p!∧¯ ∧Za21~q,p!∧
]

]xb ∧Za11~q,p!∧¯ ∧Zn~q,p!L
5db

a^p,Z1~q,p!∧¯ ∧Zn~q,p!&

3 K p,Z1~q,p!∧¯ ∧Za21~q,p!∧
]

]xb ∧Za11~q,p!∧¯ ∧Zn~q,p!L .

Hence since
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^p,Z1~q,p!∧ . . . ∧Zn~q,p!&5H~q,p!1L~q,V~q,p!!,

Hb
a~q,p!5db

aH~q,p!2 K p,Z1~q,p!∧¯ Za21~q,p!∧
]

]xb ∧Za11~q,p!¯ ∧Zn~q,p!L
5db

aH~q,p!2
]^p,z&

]za
b uz5Z(q,p) . ~8!

D. Hamilton equations

Let x°(q(x),p(x)) be some map fromX to O. To insure that this map is related to a critic
point u:X→Y, we find that the necessary and sufficient conditions split in two parts:

~1! What are the conditions on x°(q(x),p(x)) for the existence of a map x°u(x) such that
(x,u(x),du(x))↔(q(x),p(x))?

The first obvious condition isq(x)5(x,u(x))5U(x). The second condition is that inTY
^ T!X, (x,y,va

i )5(x,y, ]ui /]xa) coincides with (q(x),V a
i (q(x),p(x))). If we translate that us-

ing ~1!, we obtain that inSLnT(X3Y),

]q

]x1 ∧ ¯∧
]q

]xn 5
]U

]x1 ∧ ¯∧
]U

]xn 5Z1~q~x!,p~x!!∧ ¯∧Zn~q~x!,p~x!!.

But we found in~7! that the components in the basis (]/]qm1 ∧ ¯∧ ]/]qmn) of the right-hand side
areZ 1 . . .n

m1 . . . mn(q(x),p(x))5]H/]pm1 . . . mn
(q(x),p(x)). Hence denoting

]~qm1, . . . ,qmn!

]~x1, . . . ,xn!
ªU ]qm1

]x1 . . .
]qm1

]xn

] ]

]qmn

]x1 . . .
]qmn

]xn

U ,

so that

]q

]x1 ∧ ¯∧
]q

]xn 5 (
m1, . . . ,mn

]~qm1, . . . ,qmn!

]~x1, . . . ,xn!

]

]qm1
∧ ¯∧

]

]qmn
,

we obtain the condition

]~qm1, . . . ,qmn!

]~x1, . . . ,xn!
~x!5

]H
]pm1 . . . mn

~q~x!,p~x!!. ~9!

~2! Now what are the conditions on x°(q(x),p(x)) for u to be a solution of the Euler–
Lagrange equations?

It amounts to eliminatingu in ~2! in function of (q,p). For that purpose we use~5! to derive
                                                                                                                



2314 J. Math. Phys., Vol. 43, No. 5, May 2002 F. Hélein and J. Kouneiher

                    
(
a

]

]xa S ]L

]va
i ~x,u~x!,du~x!! D

5(
a

]

]xa K p,
]U

]x1 ∧¯ ∧
]U

]xa21 ∧
]

]yi ∧
]U

]xa11 ∧¯ ∧
]U

]xnL
5(

a
K ]p

]xa ,
]U

]x1 ∧¯ ∧
]U

]xa21 ∧
]

]yi ∧
]U

]xa11 ∧¯ ∧
]U

]xnL
1 (

aÞb
K p,

]U

]x1 ∧¯ ∧
]2U

]xa]xb ∧¯ ∧
]U

]xa21 ∧
]

]yi ∧
]U

]xa11 ∧¯ ∧
]U

]xnL
5(

a
K ]p

]xa ,
]U

]x1 ∧¯ ∧
]U

]xa21 ∧
]

]yi ∧
]U

]xa11 ∧¯ ∧
]U

]xnL .

On the other hand, we know from~7! that (]H/]qi) (q,p)52 (]L/]qi) (q,V(q,p)). Thus we
obtain

(
a

K ]p

]xa ,
]q

]x1 ∧¯ ∧
]q

]xa21 ∧
]

]yi ∧
]q

]xa11 ∧¯ ∧
]q

]xnL 52
]H
]qi ~q~x!,p~x!!. ~10!

The latter equation may be transformed using the relation

(
a

K ]p

]xa ,
]q

]x1 ∧¯ ∧
]q

]xa21 ∧
]

]yi ∧
]q

]xa11 ∧¯ ∧
]q

]xn L

5(
a

(
m1,¯ ,mn

ma5n1 i *
]qm1

]x1 . . .
]qm1

]xn

] ]

]qma21

]x1 . . .
]qma21

]xn

]pm1 . . . mn

]x1
. . .

]pm1 . . . mn

]xn

]qma11

]x1 . . .
]qma11

]xn

] ]

]qmn

]x1 . . .
]qmn

]xn

*
5(

a
(

m1,¯ ,mn
ma5n1 i

]~qm1, . . . ,qma21,pm1 . . . mn
,qma11, . . . ,qmn!

]~x1, . . . ,xn!
.

We summarize: the necessary and sufficient conditions we were looking for are
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]~qm1, . . . ,qmn!

]~x1, . . . ,xn!
5

]H
]pm1 . . . mn

~q,p!,

~11!

(
a

(
m1,¯ ,mn

ma5n1 i

]~qm1, . . . ,qma21,pm1 . . . mn
,qma11, . . . ,qmn!

]~x1, . . . ,xn!
52

]H
]yi ~q,p!.

Some further relations:Besides these equations, we have to remark also that Eq.~3! on the
stress-energy tensor has a counterpart in this formalism. For that purpose we use Eq.~8!. Assum-
ing that (x,u(x),du(x))↔(q(x),p(x)), we have

2
]Sb

a

]xa ~x!5
]Hb

a~q~x!,p~x!!

]xa

5
]H~q~x!,p~x!!

]xb 2
]

]xa K p~x!,
]q~x!

]x1 ∧¯ ∧
]q~x!

]xa21 ∧
]

]xb ∧
]q~x!

]xa11 ∧¯ ∧
]q~x!

]xn L
5

]H~q~x!,p~x!!

]xb 2 K ]p~x!

]xa ,
]q~x!

]x1 ∧¯ ∧
]q~x!

]xa21 ∧
]

]xb ∧
]q~x!

]xa11 ∧¯ ∧
]q~x!

]xn L .

Now assume thatu is a critical point. Then, because of~3! and ~7!,

]Sb
a

]xa ~x!5
]L

]xb ~x,u~x!,du~x!!52
]H
]xb ~q~x!,p~x!!,

and we obtain

K ]p

]xa ,
]q

]x1 ∧¯ ∧
]q

]xa21 ∧
]

]xb ∧
]q

]xa11 ∧¯ ∧
]q

]xnL 2
]

]xb ~H~q,p!!52
]H
]xb ~q,p!

or equivalently

(
a

(
m1, . . . ,mn

ma5b

]~qm1, . . . ,qma21,pm1 . . . mn
,qma11, . . . ,qmn!

]~x1, . . . ,xn!
2

]

]xb ~H~q,p!!52
]H
]xb ~q,p!.

~12!

Conclusion:The Hamilton equations~11! can be completed by adding~12! @which are actu-
ally a consequence of~11!#. We thus obtain

]~qm1, . . . ,qmn!

]~x1, . . . ,xn!
5

]H
]pm1 . . . mn

~q,p!,

~13!

(
a

(
m1,¯ ,mn

ma5n

]~qm1, . . . ,qma21,pm1 . . . mn
,qma11, . . . ,qmn!

]~x1, . . . ,xn!
2(

a
dn

a ]

]xa ~H~q,p!!

52
]H
]qn ~q,p!.

E. The Cartan–Poincare´ and pataplectic forms on MÄLnT!
„XÃY…

Motivated by the previous contruction, we define the Cartan–Poincare´ form on LnT!(X
3Y) to be
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uª (
m1, . . . ,mn

pm1 . . . mn
dqm1∧ . . . ∧dqmn.

Its differential is

Vª (
m1, . . . ,mn

dpm1 . . . mn
∧dqm1∧ . . . ∧dqmn,

which we will call thepataplectic form, a straightforward generalization of the symplectic for
A first property is that we can express the system of Hamilton’s equations~13! in an elegant

way usingV. For any (q,p)PM and anyn-vectorXPLnT(q,p)M we defineXcVPT(q,p)
! M as

follows. If X is decomposable, i.e., if there existn vectorsX1 , . . . ,XnPT(q,p)M such thatX
5X1∧ . . . ∧Xn , we let

XcV~V!ªV~X1 , . . . ,Xn ,V!, ;VPT(q,p)M.

We extend this definition to non-decomposableX by linearity. Let us analyzeXcV using coordi-
nates. WritingX as

(
m1, . . . ,mn

Xm1 . . . mn]m1
∧ . . . ∧]mn

1 (
m1, . . . ,ma21,ma11, . . . ,mn

n1, . . . ,nn

Xm1 . . . ma21
$n1 . . . nn%

ma11 . . . mn]m1

∧¯ ∧]ma21
∧]n1 . . . nn∧]ma11

∧¯ ∧]mn
1 etc.,

with the notations]mª]/]qm , ]n1 . . . nn
ª]/]pn1 . . . nn

, we have

XcV5~21!nF (
m1, . . . ,mn

Xm1 . . . mndpm1 . . . mn

2(
n

(
a

(
m1, . . . ,mn

ma5n

Xm1 . . . ma21
$m1 . . . mn%

ma11 . . . mndqnG .

Algebraic similarities with ~13! are evident if we replaceX by ](q,p)/](x1, . . . ,xn)
ª](q,p)/]x1 ∧¯ ∧ ](q,p)/]xn. In particular we can see easily that the coefficients ofdyi and
dpm1 . . . mn

in (21)n ](q,p)/](x1, . . . ,xn) cV anddH coincide if and only if the Hamilton system
~11! holds. Thus we are led to defineI to be the algebraic ideal inL!M spanned by
$dx1, . . . ,dxn% and hence~11! is equivalent to

~21!n
]~q,p!

]~x1, . . . ,xn!
cV5dH mod I. ~14!

Definition 2: An n-vector XPLnT(q,p)M is H-Hamiltonian if and only if

~21!nXcV5dH mod I. ~15!

For such anX, it is possible to precise the relation between the left- and right-hand sid
~15! in the case whereX is decomposable, i.e.,X5X1∧¯ ∧Xn . Notice that~15! implies in
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particular X1 . . .n5]H/]e 51 @where eªp1 . . .n , see ~13!#, which is equivalent to
v(X1 , . . . ,Xn)51. Hence we may always assume without loss of generality that theXa are
chosen so thatdxb(Xa)5da

b . Such vectors are unique.
Lemma 1: Let X5X1∧¯ ∧XnPLnT(q,p)M such that dxb(Xa)5da

b . Then X is
H-Hamiltonian if and only if one of the two following relations is satisfied:

~21!nXcV5dH2(
a

dH~Xa!dxa ~16!

or

Xc~V2d~Hv!!50. ~17!

Proof: Let us prove first that~15! implies ~16!. Since for anya, b, dxb(Xa2 ]/]xa)50, Eq.
~15! implies that for alla,

~21!nXcVS Xa2
]

]xaD5dHS Xa2
]

]xaD⇔~21!nVS X1 , . . . ,Xn ,Xa2
]

]xaD
5dH~Xa!2

]H
]xa ⇔~21!nXcVS ]

]xaD5
]H
]xa 2dH~Xa!.

This implies

~21!n(
a

XcVS ]

]xaDdxa5(
a

]H
]xa dxa2(

a
dH~Xa!dxa. ~18!

Now if we rewrite ~15! as

~21!nS (
i

XcVS ]

]yi Ddyi1 (
m1, . . . ,mn

XcVS ]

]pm1 . . . mn
D dpm1 . . . mnD

5(
i

]H
]yi dyi1 (

m1, . . . ,mn

]H
]pm1 . . . mn

dpm1 . . . mn
,

and sum with~18!, we obtain exactly~16!.
Now relation~17! is equivalent to~16! because of the following calculation. For all vectorV

and for any decomposablen-vector X5X1∧¯∧XnPLnT(q,p)M such thatdxb(Xa)5da
b ~not

necessarilyH-Hamiltonian!, we have

Xcd~Hv!~V!5dH∧v~X1 , . . . ,Xn ,V!

5(
a

~21!a21dH~Xa!v~X1 , . . . ,Xa21 ,Xa11 , . . . ,Xn ,V!

1~21!ndH~V!v~X1 , . . . ,Xn ,V!

5(
a

~21!n21dH~Xa!dxa~V!1~21!ndH~V!,

thus

Xcd~Hv!5~21!nS dH2(
a

dH~Xa!dxaD
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and ~16! ⇔ ~17!. Conversely, it is obvious that~16! and ~17! implies ~15!. j

As a Corollary of this result we deduce that a reformulation of~14! is

]~q,p!

]~x1, . . . ,xn!
cV5

]~q,p!

]~x1, . . . ,xn!
c~dH∧v!. ~19!

It is an exercise to check that actually this relation is a direct translation of~13!.

F. A variational formulation of „13…

We shall now prove that Eqs.~13! are the Euler–Lagrange equations of some simple fu
tional. For that purpose, letG be an oriented submanifold of dimensionn in LnT!(X3Y) such
that v uG.0 everywhere. Then we define the functional

A@G#ªE
G
u2lH~q,p!v.

Herel is a ~real! scalar function defined overG which plays the role of a Lagrange multiplier. W
now characterize submanifoldsG which are critical points ofA.

1. Variations with respect to p

Let dp be some infinitesimal variation ofG with compact support. We compute

dAG~dp!5E
G
dpm1 . . . mnS dqm1∧¯∧dqmn2l

]H
]pm1 . . . mn

v D .

Assuming that this vanishes for alldp, we obtain

~dqm1∧¯∧dqmn! uG5l
]H

]pm1 . . . mn

v uG .

This relation means that for any orientation preserving parametrization (t1, . . . ,tn)°(q,p)
3(t1, . . . ,tn) of G,

]~qm1, . . . ,qmn!

]~ t1, . . . ,tn!
5l

]H
]pm1 . . . mn

vS ]qm1

]t1 , . . . ,
]qmn

]tn D .

But we remark that because]H/]p1 . . .n 51, the above relation for (m1 , . . . ,mn)5(1, . . . ,n)
forcesl51. Hence

A@G#5E
G
u2H~q,p!v.

Moreover, the equation obtained here can be written using the natural parametri
(x1, . . . ,xn)°(x,u(x),p(x)) @for which v(]/]x1 , . . . ,]/]xn)51] and then we obtain

]q

]x1 ∧¯∧
]q

]xn 5
]H
]p

~q,p!,

i.e., exactly Eq.~9!. @Note that this relation actually impliesA@G#5*XL(x,q,dq)v. Hence, as in
the one-dimensional Hamilton formalism,u2Hv plays the role of the Lagrangian density.#
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2. Variations with respect to q

Now dq is some infinitesimal variation ofG with compact support. And we have

dAG~dq!5E
G

(
m1, . . . ,mn

(
a

pm1 . . . mn
dqm1∧¯∧d~dqma!∧¯∧dqmn

2(
m

]H
]qm dqmv2H~q,p!dv.

We pay special attention todv:

dv5d~dx1!∧¯∧dxn1¯1dx1∧•••∧d~dxn!.

Hence

E
G
H~q,p!dv52E

G
dx1~d~H~q,p!!∧¯∧dxn!1¯1dxn~dx1∧¯∧d~H~q,p!!!

52(
a

dxa
]

]xa ~H~q,p!!v.

Thus after integrations by parts, we obtain

dAG~dq!5E
G

2 (
m1, . . . ,mn

(
a

dqmadqm1∧¯∧dqma21∧dpm1 . . . mn
∧dqma11∧¯∧dqmn

2(
m

]H
]qm dqmv1(

a
dxa

]

]xa ~H~q,p!!v.

And this vanishes if and only if

(
a

(
m1,¯,mn

ma5n

dqm1∧¯∧dqma21∧dpm1 . . . mn
∧dqma11∧¯∧dqmn2(

a
dn

a ]

]xa ~H~q,p!!v

52
]H
]qn v.

Again by choosing the parametrization (x1, . . . ,xn)°(x,u(x),p(x)), this relation is easily seen to
be equivalent to~10! and ~12!.

By the same token we have proven that if we look to critical points of the functional*Gu with
the constraintH(q,p)5h, for some constanth, then the Lagrange multiplier is 1 and they satis
the same equations.

Theorem 1: Let G be an oriented submanifold of dimension n inLnT!(X3Y) such that
V uG.0 everywhere. Then the three following assertions are equivalent

(i) G is the graph of a solution of the generalized Hamilton equations (13).
(ii) G is a critical point of the functional*Gu2H(q,p)v.
(iii) G is a critical point of the functional*Gu under the constraint thatH(q,p) is constant.

G. Some particular cases

By restricting the variables (q,p) to lie in some submanifold ofM5LnT!(X3Y), the
Legendre correspondence becomes in some situations a true map.

~a! We assume that all componentspm1 , . . . mn
vanished except for
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p1 . . .n5:e and p1 . . . (a21)(n1 i )(a11) . . . n5:pi
a

and all obvious permutations in the indices. This defines a submanifoldMWeyl of M. It means that

u uMWeyl
5edx1∧¯∧dxn1(

a
(

i
pi

adx1∧¯∧dxa21∧dyi∧dxa11∧¯∧dxn.

Then for any (q,p)PMWeyl , ^p,z1∧¯∧zn&5e1(a( i pi
ava

i , W(q,v,p)5e1(a( i pi
ava

i

2L(q,v). Hence the relation~5! (]W/]va
i ) (q,v)50 is equivalent to

pi
a5

]L

]va
i ~q,v !⇔va

i 5V a
i ~q,p!.

The relation~4! W(q,v,p)5w gives

e5w1L~q,v !2(
a

(
i

]L

]va
i ~q,v !va

i .

Last we have thatH(q,p)5e1(a( i pi
aV a

i (q,p)2L(q,V(q,p)).
This example shows that for any (q,v,w)PSLnT(X3Y)3R, there exist (q,p)PM such

that (q,v,w)↔(q,p) and this (q,p) is unique if it is chosen inMWeyl.
To summarize, we recover the Weyl theory~see Refs. 4 and 10!. As an exercise, the reader ca

check that in this situation, Eqs.~11! are equivalent to

]yi

]xa 5
]H
]pi

a , (
a

]pi
a

]xa 52
]H
]yi . ~20!

~b! We assume that (q,p) are such that there exist coefficients (pm
a)a,m with

pm1 . . . mn
5Upm1

1
¯ pmn

1

] ]

pm1

n
¯ pmn

n
U .

This constraint defines a submanifoldMCarathe´odory of M. Then

u uMCarathe´odory
5S (

m1

pm1

1 dqm1D ∧¯∧S (
mn

pmn

1 dqmnD .

Then it is an exercise to see that, by choosingw50, it leads to the formalism developed in Ref
4 and 10 associated to the Carathe´odory theory of equivalent integrals. However, it is not clear
general whether it is possible to perform the Legendre transform in this setting by being able
arbitrarily the value ofw. It is so if we do not impose a condition onw ~see Ref. 10!.

III. COMPARISON WITH THE USUAL HAMILTONIAN FORMALISM FOR QUANTUM
FIELDS THEORY

A. Reminder of the usual approach to quantum field theory

Here we compare the preceeding construction with the classical approach to quantum
theory by so-called canonical quantization. We shall first explore it in the case whereX is the
Minkowski spaceR3Rn21 andy5f is a real scalar field. HenceY5R. Our functional is

L@f#ªE
R3Rn21

L~x,f,df!dx.
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For simplicity, we may keep in mind the following example of a Lagrangian:

E
R3Rn21

L~x,f,df!dx5E
R3Rn21S 1

2 S ]f

]x0D 2

2
1

2 (
a51

n21 S ]f

]xaD 2

2V~f!D dx0dxW ,

where we denotexW5(xa)1<a<n21 . We shall also denotet5x0.
The usual approach consists in selecting a global time coordinatet as we already implicitly

assumed here. Then for each time the instantaneous state of the field is seen as a poin
infinite dimensional ‘‘manifold’’Fª$F:Rn21→R%. Hence we view the fieldf rather as a path:

R→F,

t°@xW°f~ t,xW !5FxW~ t !#.

We thus recover the problem of studying the dynamics of a point moving in a configuration
F. The prices to pay are~1! F is infinite dimensional and~2! we lose relativistic invariance.

In this viewpoint, L@f#5*RL@ t,F(t), (dF/dt) (t)#dt, where F(t)5@xW°f(t,xW )#PF,
(dF/dt) (t)5@xW° ]f/]t (t,xW )#PTF(t)F and L@ t,F(t), (dF/dt) (t)#5*Rn21L(x,f(x),
df(x))dxW .

Then we consider the ‘‘symplectic’’ manifold which is formallyT!F, i.e., we introduce the
dual variable

Pª

]L

]~dF/dt!
,

or equivalentlyP(t)5@xW°p(t,xW )5PxW(t)# with

PxW~ t !5
]L

]dFxW/dt
@ t,F~ t !, ~dF/dt! ~ t !#⇔p~ t,xW !

5
dL

d ~]f~ t,xW !/]t !
@ t,F~ t !, ~dF/dt! ~ t !#5

]L

]v0
~x,f~x!,df~x!!.

Hered/df(xW ) is the Fréchet derivative. In our example

PxW~ t !5
]f

]t
~ t,xW !.

We define the Hamiltonian functional to be

H@F,P#ªE
Rn21

PxWḞ
xWdxW2L@ t,F, ~dF/dt!#5E

Rn21
S 1

2
p~xW !21

1

2
u¹f~xW !u21V~f~xW !! DdxW .

Now we can write the equations of motion as

]p

]t
~ t,xW !5

dPxW

dt
52

]H

]FxW ~F,P!5Df2V8~f!,

]f

]t
~ t,xW !5

dFxW

dt
5

]H

]PxW ~F,P!5p~ t,xW !.

A Poisson bracket can be defined on the set of functionals$A:T!F°R% by
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$A,B%ªE
Rn21

S dA

dp~xW !

dB

df~xW !
2

dA

df~xW !

dB

dp~xW ! DdxW ,

wheredA/df(xW ) is the Fréchet derivative with respect tof(xW ), i.e., the distribution such that fo
any smooth compactly supported deformationdf of f,

dAf@df#5E
Rn21

df~xW !
dA

df~xW !
dxW .

And we may formulate the dynamical equations using the Poisson bracket as

dPxW

dt
5$H,PxW%,

dFxW

dt
5$H,FxW%,

with

$FxW,FxW8%5$PxW ,PxW8%50, $PxW ,FxW8%5dxW
xW85dn21~xW2xW8!.

This singular Poisson bracket means that for any test functionsf , gPC c
`(Rn21,R),

H E
Rn21

g~xW !PxWdxW ,E
Rn21

f ~xW8!FxW8dxW8J 5E
Rn21

f ~xW !g~xW !dxW .

This implies in particular

H E
Rn21

g~xW !PxWdxW ,E
Rn21

f ~xW8!V~FxW8!dxW8J 5E
Rn21

V8~FxW ! f ~xW !g~xW !dxW ,

because of the derivation property of the Poisson bracket.

B. Translation in pataplectic geometry

We first adapt and modify our notations: the coordinates onM5LnT!(R3Rn213R) are
now written (qm,pm1 . . . mn

)5(xa,y,e,pa) where 0<a<n21, q05x05t, (xa)1<a<n215xW ,
qn5y and

eªp0 . . . (n21) , pa
ªp0 . . . (a21)n(a11) . . . (n21) .

Hence

u5edx0∧ ¯ ∧dxn211 (
a50

n21

padx0∧¯ ∧dxa21∧dy∧dxa11∧¯ ∧dxn21,

or letting vªdx0∧¯ ∧dxn21 and vaª(21)adx0∧¯ ∧dxa21∧dxa11∧¯ ∧dxn21

5
]

]xa cv,

u5ev1 (
a50

n21

pady∧va and V5de∧v1 (
a50

n21

dpa∧dy∧va .
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Thus we see that in the present case the pataplectic formalism reduces essentially to th
formalism, because the fields are one dimensional.

Let us consider some fieldf and a mapx°p(x) such that (x,f(x),df(x))↔(x,f(x),p(x))
@meaning that for somew: R3Rn-1→R, we have (x,f(x),df(x),w(x))↔(x,f(x),p(x))#. This
implies the following relations:

pa5
]L

]va
~x,f~x!,df~x!! and e5w1L~x,f~x!,df~x!!2 (

a50

n21

pa
]f

]xa ~x!.

We let Gª$(x,f(x),p(x))/xPR3Rn21%,M and we consider the instantaneous slicesSt

ªGù$x05t%. These slices are oriented by the condition]/]t cv uSt
.0. Then we can express th

observables

F f~ t !ªE
Rn21

f ~xW !FxW~ t !dxW , Pg~ t !ªE
Rn21

g~xW !PxW~ t !dxW

and

H@F~ t !,P~ t !#5E
Rn21

S p~ t,xW !
]f

]t
~ t,xW !2L~ t,xW ,f~x!,df~x!! DdxW5E

Rn21
H0

0~ t,xW ,f!v0

as integrals of (n21)-forms onSt . First

F f~ t !5E
St

f ~xW !f~ t,xW !dx1∧¯ ∧dxn215E
St

Qf , with Qf
ª f ~xW !yv0,

Pg~ t !5E
St

g~xW !p~ t,xW !dx1∧¯ ∧dxn215E
St

Pg , with Pgªg~xW ! (
a50

n21

pava ,

becausep(t,xW )5 ]L/]v0 (x,f(x),df(x))5p0 andvauSt
50 if a>1.

And, finally,

H@F~ t !,P~ t !#5E
Rn21

H~q,p!v02E
Rn21

ev01 (
a51

n21

pady∧S ]

]xa cv0D5E
St

h0 ,

where

h0ªH~q,p!v02S ev01 (
a51

n21

padx1∧¯ ∧dxa21∧dy∧dxa11∧¯ ∧dxn21D ,

becauseH0
0(x,f)5H(q,p)2^p, ]/]t ∧z1∧¯ ∧zn21&5H(q,p)2(e1(a51

n21pa ]f/]xa).
We remark that

h052
]

]t
c~u2H~q,p!v!.

@We observe also thatPg5g(xW )]/]ycu5g(xW )]/]yc(u2H(q,p)v).#

C. Recovering the usual Poisson brackets as a local expression

Our aim is now to express the various Poisson brackets involving the quantitiesF f(t) and
Pg(t) alongG using some analog of the Poisson bracket defined on (n21)-forms. We generalize
slightly the definition ofQf to be
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Qf5 (
a50

n21

f a~x!yva , ~21!

where fª(a50
n21 f a(x) ]/]xa is some vector field. Hence our observables become

F f~ t !5E
St

Qf and Pg~ t !5E
St

Pg , ~22!

wherePgªg(x)(a50
n21pava as before.@Notice that actually*St

Qf5*St
f 0(x)yv0 .# We shall see

here that we can define a bracket operation$.,.% betweenQf , Pg andh0 such that the usual Poisso
bracket of fields actually derives from$.,.% by

E
St

$Pg ,Qf%5H E
St

Pg ,E
St

Qf J , etc. ~23!

First we remark that

dQf5 (
a50

n21

f ady∧va1 (
a50

n21

y
] f a

]xa v5 (
a50

n21

f a
]

]pa cV1 (
a50

n21

y
] f a

]xa

]

]e
cV52jQf cV

and

dPg5 (
a50

n21

pa
]g

]xa v1 (
a50

n21

gdpa∧va5 (
a50

n21

pa
]g

]xa

]

]e
cV2g

]

]y
cV52jPg

cV,

where

jQfª2 (
a50

n21

f a
]

]pa 2y (
a50

n21
] f a

]xa

]

]e
~24!

and

jPg
ªg

]

]y
2 (

a50

n21

pa
]g

]xa

]

]e
. ~25!

Also notice that

dh05~dH2de!∧v02 (
a51

n21

dpa∧dy∧S ]

]xa cv0D .

Definition 3: We define the Poissonp-brackets of these(n21)-forms to be

$h0 ,Qf%ª2jQf cdh0 , $h0 ,Pg%ª2jPg
cdh0 ,

$Pg ,Qf%ª2jQf cdPg5jPg
cdQf5jQf c~jPg

cV!,

and

$Qf ,Qf 8%ªjQf 8c~jQf cV!, $Pg ,Pg8%ªjPg8
c~jPg

cV!.

Let us now compute thesep-brackets. We use in particular the fact that]H/]e 51:
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$h0 ,Qf%5S (
a50

n21

f a
]

]pa 1y (
a50

n21
] f a

]xa

]

]e D cS ~dH2de!∧v02 (
a51

n21

dpa∧dy∧S ]

]xa cv0D D
5 (

a50

n21

f a
]H
]pa v02 (

a51

n21

f ady∧S ]

]xa cv0D ,

$h0 ,Pg%5S (
a50

n21

pa
]g

]xa

]

]e
2g

]

]yD cS ~dH2de!∧v02 (
a51

n21

dpa∧dy∧S ]

]xa cv0D D
52g

]H
]y

v02g (
a51

n21

dpa∧S ]

]xa cv0D ,

$Pg ,Qf%5S (
a50

n21

f a
]

]pa
1y (

a50

n21
] f a

]xa

]

]e D cS (
a50

n21

pa
]g

]xa v2g
]

]y
cV D 5g (

a50

n21

f ava ,

and$Qf ,Qf 8%5$Pg ,Pg8%50. We now integrate thep-brackets on a constant time sliceSt,G. We
immediately see that

E
St

$Pg ,Qf%5E
St

g f0v05$pg~ t !,F f~ t !%5H E
St

Pg ,E
St

Qf J
and we recover~23!. Second,

E
St

$h0 ,Qf%5E
St

(
a50

n21

f a
]H
]pa v02 (

a51

n21

f a
]f

]xa v0 .

Third,

E
St

$h0 ,Pg%5E
St

2g
]H
]y

v02 (
a51

n21

g
]pa

]xa v0 .

Now let us assume thatG is the graph of a solution of the Hamilton equations~11! or ~20!. Since
then]f/]xa 5 ]H/]pa alongG,

E
St

$h0 ,Qf%5E
St

f 0
]f

]t
v0 ,

and because of2 ]H/]y 2(a51
n21 ]pa/]xa 5]p0/]t,

E
St

$h0 ,Pg%5E
St

g
]p0

]t
v0 .

We conclude that

d

dt ESt

Qf5
d

dt
F f~ t !5E

St

f 0
]f

]t
v01

] f 0

]t
fv05E

St

$h0 ,Qf%1F] f /]t~ t !

and

d

dt ESt

Pg5
d

dt
Pg~ t !5E

St

g
]p0

]t
v01

]g

]t
p0v05E

St

$h0 ,Pg%1P]g/]t~ t !.
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This has to be compared with the usual canonical equations for fields:

d

dt ESt

Qf5H E
St

h0 ,E
St

Qf J 1F] f /]t~ t ! and
d

dt ESt

Pg5H E
St

h0 ,E
St

PgJ 1P]g/]t~ t !.

D. An alternative dynamical formulation using p-brackets

We can also define thep-bracket of ann-form with formsQf or Pg as given by~21! and~22!.
If c is such ann-form,

$c,Qf%ª2jQf cdc and $c,Pg%ª2jPg
cdc,

where~24! and ~25! have been used. An important instance is forc5Hv:

$Hv,Qf%5 (
a50

n21

f a
]H
]pa v1 (

a50

n21

y
] f a

]xa v.

We shall integrate thisp-bracket onG t1

t2
ª$(q,p)PG/t1,t,t2%, where we still assume thatG is

the graph of a solution of the Hamilton equations~19!. An integration by parts gives

E
G

t1

t2
$Hv,Qf%5E

]G
t1

t2
f (

a50

n21

f ava1E
G

t1

t2
(
a50

n21

f aS ]H
]pa 2

]f

]xaDv5E
]G

t1

t2
Qf5E

St2

Qf2E
St1

Qf .

Similarly we find that

$Hv,Pg%5 (
a50

n21

pa
]g

]xa v2g
]H
]y

v,

and thus

E
G

t1

t2
$Hv,Pg%5E

]G
t1

t2
(
a50

n21

gpava2E
G

t1

t2
gS ]H

]y
1 (

a50

n21
]pa

]xa Dv5E
]G

t1

t2
Pg5E

St2

Pg2E
St1

Pg .

We are tempted to conclude that

dQf5$Hv,Qf% and dPg5$Hv,P%,

whered is the differential along a graphG of a solution of the Hamilton equations~11!. This is
precisely what will be proven in the next section.

IV. POISSON p-BRACKETS FOR „pÀ1…-FORMS ONM
We have seen on some examples that the Poisson bracket algebra of the classical field

can actually be derived from brackets on (n21)-forms which are integrated on constant tim
slices. Actually these constructions can be generalized in several ways.

A. p-brackets on „nÀ1…-forms

We turn back toM5LnT!(X3Y) and to the notation of the previous section. L
G(M,Ln21T!M) be the set of smooth (n21)-forms onM. We consider the subsetPn21M of
G(M,Ln21T!M) of forms a such that there exists a vector fieldja5J(a) which satisfies the
property

da52jacV.
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ObviouslyJ(a) depends only ona modulo exact forms and the mapa°J(a) from Pn21M to
the set of vector fields induces a map on the quotientPn21M/Cn21(M), whereCn21(M) is the
set of closed (n21)-forms. A property of vector fieldsJ(a) is that there are infinitesimal sym
metries ofV, for

LJ(a)V5d~J~a!cV!1J~a!cdV52d+da50.

We shall denoteppM the set of pataplectic vector fields, i.e., vector fieldsX such thatXcV is
exact. ClearlyJ:Pn21M/Cn21(M)→ppM is a vector space isomorphism.

Then we define theinternal p-bracketon Pn21M by

$a,b%ªJ~b!cJ~a!cV.

Lemma 2: For any a,bPPn21M,

d$a,b%52@J~a!,J~b!# cV. ~26!

Proof: Let ja5J(a) andjb5J(b). Then denotingLja
the Lie derivative with respect toja ,

@ja ,jb# cV5Lja
~jb!cV5Lja

~jbcV!2jbcLja
~V!

5d~jacjbcV!1jacd~jbcV!2jbc~d~jacV!1jacdV!.

But sincedV5d(jacV)5d(jbcV)50, we find that@ja ,jb# cV5d(jacjbcV)52d$a,b%. j

Lemma 3:J:Pn21M/Cn21(M)→ppM is a Lie algebra isomorphism. More precisely w
have

J~$a,b%!5@J~a!,J~b!#. ~27!

This implies the Jacobi identity modulo exact terms inPn21M:

$$a,b%,c%1$$b,c%,a%1$$c,a%,b%5d~jccjbcjacV!. ~28!

Proof: Relation~27! is a direct consequence of~26! in Lemma 2. The Jacobi identity follows
from

$$a,b%,c%5jcc@ja ,jb# cV5jccd~jacjbcV!

5Ljc
~jacjbcV!2d~jccjacjbcV!

5@jc ,ja# cjbcV1jac@jc ,jb# cV1jacjbcLjc
~V!1d~jccjbcjacV!

52$$c,a%,b%2$$b,c%,a%1d~jccjbcjacV!,

where we have used~27!. j

We can extend the definition of thep-bracket: for any 0<p<n the externalp-bracket of a
p-form aPG(M,LpT!M) with a form bPPn21M is

$a,b%52$b,a%ª2J~b!cda.

Of course this definition coincides with the previous one whenaPPn21M.

1. Examples of external p-brackets

For anyaPPn21M,

$u,a%52J~a!cdu52J~a!cV5da.
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We can add that it is worthwhile to write in the externalp-brackets of observable forms likeqm,
qmdqn, etc.:

$Pi ,g ,qm%5J~Pi ,g!cdqm5gd i
m ,

$Qi , f ,qm%5J~Qi , f !cdqm50,

$Pi ,g ,qmdqn%5J~Pi ,g!cdqm∧dqn5g~d i
mdqn2d i

ndqm!.

Theorem 2: Let G be the graph inM of a solution of the Hamilton equations (11) and wri
U:x°U(x)5(x,u(x),p(x)) the natural parametrization ofG. Then for any form aPPn21M,

da5$Hv,a%,

whered is the differential alongG ~meaning that dauG5$Hv,a% uG!.
Proof: We choose an arbitrary open subsetD,G and, denotingja5J(a), we compute

E
D
$Hv,a%52E

D
jac~dH∧v!

52E
U 21(D)

dH∧vS ja ,
]U
]x1 , . . . ,

]U
]xnDv

52E
U 21(D)

~21!n
]U

]x1 . . . ]xn c~dH∧v!~ja!v.

We use Eq.~19! and obtain

E
D
$Hv,a%52E

U 21(D)
~21!n

]U
]x1 . . . ]xn cV~ja!v

52E
U 21(D)

VS ja ,
]U
]x1 , . . . ,

]U
]xnDv

52E
D

jacV5E
D

da.

And Theorem 2 follows. j

Another way to state this result is that

E
D
$Hv,a%5E

]D
a ~29!

along any solution of~11!.

B. Expression of the standard observable „nÀ1…-forms

These quantities are integrals of (n21)-forms on hypersurfaces which are thought of
‘‘constant time slices,’’ the transversal dimension being then considered as a local time. The
coordinates observables are weighted integrals of the value of the field and are induced
‘‘ position’’ p-forms

Qi , f
ªyi(

a
f a~x!va5yi f cv,
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where f 5(a f a(x) ]/]xa is a tangent vector field onX andva5]/]xa cv. ~Comparing with the
one-dimensional Hamiltonian formalism, we can see these target coordinates as generaliza
the position observables.! The ‘‘momentum’’ and ‘‘energy’’ observables are obtained from t
momentum form

Pm,g
!

ªg~x!
]

]qm c~u2H~q,p!v!,

whereg is a smooth function onX. Alternatively we may sometimes prefer to use thep-forms

Pm,gªg~x!
]

]qm cu.

For 1<m5a<n, Pm,g
! 5 .. Ha,g generates the components of the Hamiltonian tensor butPa,g

~which is different fromPa,g
! ) does not in general. However, the restrictions ofPm,g

! andPm,g on
the hypersurfaceH50 coincide so that if we work on this hypersurface both forms can be u
For n11<m5n1 i<n1k, Pm,g

! 5Pm,g5 .. Pi ,g generates the momentum components.~The ad-
vantage ofPm,g with respect toPm,g

! is thatPm,g belongs toPn21M for all values ofm.!
To check that, we consider a parametrizationU:x°(x,u(x),p(x)) of some graphG and look

at the pull-back of these forms byU. We write U !Pm,g
! 5(bsbvb , which implies sbv

5dxb∧U !Pm,g
! and we compute

sb5g~x!K p,
]q

]x1 ∧¯∧
]q

]xb21 ∧
]

]qm ∧
]q

]xb11 ∧¯∧
]q

]xnL
uz5 ]U/]x

2g~x!dm
bH

5g~x!
]^p,z&

]zb
m uz5 ]U/]x2g~x!dm

bH.

Hence we find that

U !Ha,g52g~x!(
b

Ha
b~q~x!,p~x!!vb5g~x!(

b
Sa

b~x,u~x!,du~x!!vb ,

U !Pi ,g5g~x!(
b

]^p,z&
]zb

i uz5 ]U/]xvb5g~x!(
b

]L

]vb
i ~x,u~x!,du~x!!vb .

We shall prove below thatPm,g ~and hencePi ,g! andQi , f belong toPn21M.

1. Larger classes of observables

These forms, which are enough to translate most of the observables studied in the usu
theory, are embedded in two more general classes of observables, the definition of which fo

(a) Generalized positions. They are formsQz in Ln21T!(X3Y), i.e.,

Qz
ª (

m1, . . . ,mn21

zm1 . . . mn21
~q!dqm1∧¯∧dqmn21.

An example isQi , f5yi f (x)]acv. We denotePQ
n21M5Ln21T!(X3Y).

(b) Generalized momenta. For each section ofT(X3Y), i.e., a vector field

jª(
m

jm~q!
]

]qm ,

we define the (n21)-form
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Pjªj cu5(
m

jm
]

]qm cu.

An example is that forj5g(x) ]/]qm, then we obtainPg(x) ]/]qm5Pm,g . We denotePP
n21M the

set of such (n21)-forms.
Lemma 4:PQ

n21M ansPP
n21M are subsets ofPn21M, precisely

J~Qz!5 (
m1, . . . ,mn

(
a

~21!a
]zm1 . . . ma21ma11 . . . mn

]qma

]

]pm1 . . . mn

,

J~Pj!5j2(
m

(
n

]jm

]qn Pm
n ,

where

Pm
n
ª (

m1, . . . ,mn
(
a

pm1 . . . ma21mma11 . . . mn
dma

n
]

]pm1 . . . mn

so that

dqn∧
]

]qm cu5Pm
n cV.

Proof: We have

dQz5(
n

(
m1, . . . ,mn21

]zm1 . . . mn21

]qn dqn∧dqm1∧¯∧dqmn21

5(
a

(
m1, . . . ,mn

]zm1 . . . ma21ma11 . . . mn

]qma
dqma∧dqm1∧¯∧dqma21∧dqma11∧¯∧dqmn

5(
a

~21!a21 (
m1, . . . ,mn

]zm1 . . . ma21ma11 . . . mn

]qma

]

]pm1 . . . mn

cV.

And the expression forJ(Qz) follows.
Next we write

dPj5(
m

(
n

]jm

]qn dqn∧
]

]qm cu2(
m

jm
]

]qm cV

and we conclude by computingdqn∧ ]/]qm cu, indeed

dqn∧
]

]qm cu5 (
m1, . . . ,mn

(
a

pm1 . . . mn
dm

madqm1∧¯∧dqma21∧dqn∧dqma11∧¯∧dqmn

5 (
m1, . . . ,mn

(
a

pm1 . . . ma21mma11 . . . mn
dma

n dqm1∧¯∧dqmn

5 (
m1, . . . ,mn

(
a

pm1 . . . ma21mma11 . . . mn
dma

n
]

]pm1 . . . mn

cV.

Hence we deduce the result onPj . j
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(c) Poissonp-brackets. We are now in position to compute thep-brackets of these forms. Th
results are summarized in the following proposition.

Proposition 1: Thep-brackets of forms inPQ
n21M and PP

n21M are the following:

$Qz,Qz̃%50,

$Pj ,Pj̃%5P[ j,j̃]1d~ j̃ cj cu!,

$Pj ,Qz%5 (
m1, . . . ,mn

(
a

(
m

~21!a11jm
]zm1 . . . ma21ma21 . . . mn

]qma

]

]qm cdqm1∧¯∧dqmn.

Proof: These results are all straighforward except for$Pj ,Pj̃%. We remark thatJ(Pj) cu
5j cu5Pj and

LJ(Pj)~u!5J~Pj!cdu1d~J~Pj!cu!5J~Pj!cV1dPj50, ~30!

so thatJ(Pj) may be viewed as the extension ofj to a vector field leavingu invariant. Now we
deduce that

@j,j̃ # cu5@J~Pj!,J~Pj̃ !# cu5LJ(Pj)~J~Pj̃ ! !cu5LJ(Pj)~J~Pj̃ !cu!2J~Pj̃ !cLJ(Pj)u

5J~Pj!cd~J~Pj̃ !cu!1d~J~Pj!cJ~Pj̃ !cu!2J~Pj̃ !c05J~Pj!cdPj̃1d~j c j̃ cu!

52J~Pj!cJ~Pj̃ !cV1d~j c j̃ cu!5$Pj ,Pj̃%2d~ j̃ cj cu!,

and the result follows. j

2. Back to the standard observables

As an application of the previous results we can express the pataplectic vector fields a
ated to Qi , f and Pm,g and their p-brackets. For that purpose, it is useful to introduce ot
notations:

eªp1 . . .n ,

pi
a
ªp1 . . . (a21)(n1 i )(a11) . . . n ,

pi 1i 2

a1a2
ªp1 . . . (a121)(n1 i 1)(a111) . . . (a221)(n1 i 2)(a211) . . . n , etc.,

and

va
i
ªdyi∧S ]

]xa cv D5 .. ~dyi∧]a!cv,

va1a2

i 1i 2
ª~dyi 1∧]a1

!c~dyi 2∧]a2
!cv, etc.,

in such a way that

u5ev1 (
p51

n
1

p!2 (
i 1 , . . . ,i p ;a1 , . . . ,ap

pi 1 . . . i p

a1 . . . apva1 . . . ap

i 1 . . . i p .
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~Notice that the Weyl theory corresponds to the assumption thatpi 1 . . . 1p

a1 . . . ap50, ;p>2.! We have

dQi , f5(
a

f a
]

]pi
a cV1yi(

a

] f a

]xa

]

]e
cV,

dPm,g5(
a

]g

]xa Pm
a cV2g

]

]qm cV,

where

Pb
a5db

ae
]

]e
1 (

p51

n
1

p!2 (
i 1 , . . . ,i p ;a1 , . . . ,ap

S pi 1 . . . i p

a1 . . . apdb
a

2(
j 51

p

pi 1 . . . i j 21 i j i j 11 . . . i n

a1 . . . a j 21 aa j 11 . . . andb
a j D ]

]pi 1 . . . i p

a1 . . . ap
,

Pn1 i
a 5 (

p50

n21
1

p!2 (
i 1 , . . . ,i p ;a1 , . . . ,ap

pii 1 . . . i p

aa1 . . . ap
]

]pi 1 . . . i p

a1 . . . ap
.

The pataplectic vector fields are

J~Qi , f !52(
a

f a
]

]pi
a 2yi(

a

] f a

]xa

]

]e
,

J~Pm,g!5g
]

]qm 2(
a

]g

]xa Pm
a .

Finally, by using Proposition 1, the Poissonp-brackets will be

$Qi , f ,Qj , f̃%50,

$Pi ,g ,Pj ,g̃%5dS gg̃
]

]yj c
]

]yi cu D ,

$Pi ,g ,Qj , f%5d i
j(

a
f agva .

Hence ifg and g̃ have compact support, we obtain that on any submanifoldS of dimension
n21 without boundary,

E
S
$Qi , f ,Qj , f̃%5E

S
$Pi ,g ,Pj ,g̃%50 and E

S
$Pi ,g ,Qj , f%5d i

jE
S
(
a

f agva .

C. Extension of the p-bracket to forms of degree less than nÀ1

The p-brackets defined above allow us to express the dynamics of an observable whic
Pn21M. We shall extend this bracket to some forms inG(M,LpT!M), where 0<p<n21.
Like in the casep5n21, not everyp-form is admissible and, as we shall see, the class of s
p-forms is quite restricted and is basically composed of ‘‘position’’ observables. However, w
the Hamiltonian system is degenerate, due to some gauge symmetry and constraints, som
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mentum’’ observable can be represented byp-forms withp,n21. An instance of such a situatio
is the electromagnetic field studied in Sec. V C. Our aim now is to find a generalizatio
Theorem 2, using the following construction:

For 1<p<n, we definePp21M to be the set of sectionsa of G(M,Lp21T!M) such that,
for all 1<a1,¯,an2p<n,

dxa1∧¯∧dxan2p∧aPPn21M.

We introduce anticommuting~Grassmann! variables t1 , . . . ,tn , which behave under a
change of coordinates like]/]x1 , . . . ,]/]xn. We shall consider functions and forms depending
the variables (ta ,xa,yi ,pm1 , . . . ,mn

). Alternatively they can be seen as functions on the bun
PTX^ XM, wherePTX is a copy ofTX in which the parity of vectors in the fibersTxX has been
reversed. We considersG(M,Ln21T!M) to be the set of (n21)-forms onM whose coefficients
are in the algebraR@t1 , . . . ,tn#. More intrinsically, sG(M,Ln21T!M) can be identified with
C `(PTX) ^ C `(X)G(M,Ln21T!M), meaning that any formAPsG(M,Ln21T!M) is a finite
sum of terms of the formf(x,t)u, wherefPC `(PTX) and uPG(M,Ln21T!M). Through
this identification we can definesPn21M to be the subset ofsG(M,Ln21T!M) linearly spanned
by f(x,t)u, wherefPC `(PTX) anduPPn21M.

Obviously for anyAPsPn21M, there exists some vector fieldJ(A) on M with coefficients
in R@t1 , . . . ,tn# such thatdA52J(A) cV. A more geometrical description ofJ(A) is that it is
a section of the bundlePTX^ XTM over M.

We embed eachPp21M in sPn21M by

Pp21M→sPn21M,

a°sa,

where the ‘‘s-form’’ sa is defined by

saª (
a1, . . . ,an2p

ta1
¯tan2p

dxa1∧¯∧dxan2p∧a.

Then

J~sa!5 (
a1, . . . ,an2p

ta1
¯tan2p

J~dxa1∧¯∧dxan2p∧a!.

We endowsPn21M with the Poissonp-sbracket defined by

$A,B%sª~J~A!∧J~B!!cV,

where assuming thatA andB are homogeneous inta and are given by

A5 (
a1, . . . ,an2p

ta1
¯tan2p

Aa1 . . . an2p,

B5 (
b1, . . . ,bn2q

tb1
¯tbn2q

Bb1 . . . bn2q,

$A,B%s5 (
a1, . . . ,an2p

(
b1, . . . ,bn2q

ta1
¯tan2p

tb1
¯tbn2q

J~Bb1 . . . bn2q!cJ~Aa1 . . . an2p!cV.

Lemma 2 implies immediately that
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d$A,B%s52@jA ,jB#scV,

wherejA5J(A), jB5J(B) and thes-Lie bracket@ .,.#s is defined for homogeneous formsA and
B by @jA ,jB#sf 5jAcd(jBcd f )1(21)uAuuBu11jBcd(jAcd f ) ~hereuAu anduBu are the homogeneity
degrees in the variablesta!. Furthermore, one can deduce easily from Lemma 3 the follow
relations for all homogeneous formsA, B andC in sPn21M:

$A,B%s5~21! uAuuBu11$B,A%s ,

~21! uAuuCu$$A,B%s ,C%s1~21! uBuuAu$$B,C%s ,A%s1~21! uCuuBu$$C,A%s ,B%s

5~21! uAuuCud~~jA∧jB∧jC!cV!.

HencesPn21M has the structure of a graded Lie algebra modulo exact terms.
Now suppose that we can prove that for some formsaPPp21M andbPPq21M, $sa, sb%s

is equal to somesc wherecPPp1q2n21M. Then we could define theinternal p-bracket between
a and b by $a,b%ªc. This turns out actually to be true for a simple reason: all these brac
vanish by Proposition 2 which follows~except of course the case wherep5n or q5n!. However,
this fact is no longer true in general in the interesting case where we have constraints as sh
Sec. V C.

Lemma 5: For1<p,n, Pp21M coincides withLp21T!(X3Y).
Proof: First step: let 1<p,n and aPPp21M and choose any 1<a1,¯,an2p<n, so

that dxa1∧¯∧dxan2p∧aPPn21M. Let us denotejªJ(dxa1∧¯∧dxan2p∧a). Decomposej:

j5(
m

jm
]

]qm 1 (
m1, . . . ,mn

jm1 . . . mn

]

]pm1 . . . mn

.

Then

2j cV52 (
m1, . . . ,mn

jm1 . . . mn
dqm1∧¯∧dqmn2(

n
jn

3 (
a51

n

~21!a (
m1,¯,mn

ma5n

dpm1 . . . mn
∧dqm1∧ . . . ∧dqma21∧dqma11∧ . . . ∧dqmn.

This expression should be equal to (21)n2p21dxa1∧¯∧dxan2p∧da. Note that for any 1<n
<n1k, there existn integersm1,¯,mn such thatnP$m1 , . . . ,mn% but a1¹$m1 , . . . ,mn%.
This forcesjn50. Hence we are left with

~21!n2p21dxa1∧¯∧dxan2p∧da52 (
m1, . . . ,mn

jm1 . . . mn
dqm1∧¯∧dqmn,

which implies thata does not depend on the variablespm1 . . . mn
. HenceaPLp21T!(X3Y).

Second step:Conversely letaPLp21T!(X3Y). Then, for each 1<a1,¯,an2p<n,
dxa1∧¯∧dxan2p∧a belongs toLn21T!(X3Y), which is a subset ofPPn21M by Lemma 4. So
aPPp21M. j

Proposition 2:~a! For 1<p,q,n, aPPp21M and bPPq21M thep-s bracket ofsa with sb
vanishes:$sa, sb%s50 and hence the internalp-bracket$a,b% exists and is equal to 0.

~b! For 1<p,n, aPPn21M and bPPp21M,

$sa, sb%s52s~db!J~a!~t!1s$a,b%, ~31!

where$a,b%5J(a) cdb is the externalp-bracket and
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J~a!~t!ª(
a

dxa~J~a!!ta .

~It is actually a superfunction onPTX.! As a consequence, if dxa(J(a))50, ;a, the internal
p-bracket$a,b% exists and coincides with the externalp-bracket.

Remark:We think that the first term on the right-hand side of~31! does not play an essentia
role in our construction, which may be the case in other contexts. We believe that in a much
elaborate construction this term will not appear.

Proof: Case~a!: By Lemma 5a andb are inLp21T!(X3Y) and Lq21T!(X3Y), respec-
tively, so sa and sb are inC `(PTX) ^ C `(X)L

n21T!(X3Y). Hence theirp-sbracket vanishes by
Proposition 1.

Let us consider the caseb. Let us denoteja5J(a) and write

ja5(
m

ja
m ]

]qm 1 (
m1, . . . ,mn

ja,m1 . . . mn

]

]pm1 . . . mn

,

then

$a, sb%s5 (
a1, . . . ,an2p

~21!n2pta1
. . . tan2p

jac~dxa1∧ ¯ ∧dxan2p∧db!

5~21!n2p(
a

(
a1, . . . ,an2p

(
l 51

n2p

da
a lja

ata l
ta1

¯ ta l 21
ta l 11

¯ tan2p
dxa1∧ ¯ ∧dxa l 21∧dxa l 11∧ ¯ ∧dxan2p∧db

1 (
a1, . . . ,an2p

ta1
¯ tan2p

dxa1∧ ¯ ∧dxan2p∧~jacdb!

5~21!n2p(
a

ja
ata (

a1, . . . ,an2p21

ta1
. . . tan2p21

dxa1∧ ¯ ∧dxan2p21∧db1s~jacdb!

5~21!n2p(
a

ja
ata

s~db!1 s$a,b%.

And the claim is proved. j

One simple example is the zero-formyj . The associateds-form is

syj5(
a

yj~21!a21t1 ¯ ta21ta11 ¯ tn

]

]xa cv.

Since

d syj5(
a

~21!a21t1 ¯ ta21ta11 ¯ tnva
j ,

we have

J~syj !5(
a

~21!at1 ¯ ta21ta11 ¯ tn

]

]pj
a .

Let us compute thep-sbracket withPi5]/]yi cu:
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$Pi , syj%s5(
a

~21!at1 ¯ ta21ta11 ¯ tn

]

]pj
a c ]

]yi cV

5(
a

~21!a21t1 ¯ ta21ta11 ¯ tnd i
j ]

]xa
cv5sd i

j .

Thus

$Pi ,yj%5d i
j .

D. Integral of an observable in PpÀ1M and dynamical equations

Let G be a submanifold of dimensionn on M and letD be be some oriented submanifo
with boundary of dimensionp (1<p<n) included inG. We considerDG , the fiber bundle over
D whose fiber at the pointmPD is the oriented tangent space toG at m.

Definition 4: Let aPPp21M and cPG(M,LnT!M). We define thep-bracket

$c, sa%sª2J~sa!cdc52 (
a1, ¯ ,an2p

ta1
¯ tan2p

J~dxa1∧ . . . ∧dxan2p∧a!cdc. ~32!

We define the integral of$c, sa%s over DG to be

E
DG

$c, sa%sª2E
D

(
a1, . . . ,an2p

~Xa1
∧ ¯ ∧Xan2p

∧J~dxa1∧ ¯ ∧dxan2p∧a!!cdc, ~33!

where X5X1∧ ¯ ∧Xn is the n-vector tangent toG at m such that dxa(Xb)5db
a . Notice that this

definition does not depend on the parametrization which is used.
Theorem 3: Assume thatG is the graph of some solution of the Hamilton equations (19). T

for any aPPp21M,

E
D

da5E
DG

$Hv, sa%s . ~34!

Proof: We can always assume thatD is the image of some parametrization

D→D,

t°U~x~ t !!5~x~ t !,u~ t !,p~ t !!,

whereD is an open subset ofRp. Then

E
DG

$Hv, sa%s

5E
D

2 (
a1, . . . ,an2p

~Xa1
∧ ¯ ∧Xan2p

∧J~dxa1∧ ¯ ∧dxan2p∧a!!cdH

∧vS ]U+x

]t1 , . . . ,
]U+x

]tp Ddt1∧ ¯ ∧dtp

5E
D

2 (
a1, . . . ,an2p

(
b1, . . . ,bp

dH∧v~Xa1
, . . . ,Xan2p

,J~dxa1∧ . . . ∧dxan2p∧a!,

3Xb1
, . . . ,Xbp

!detS ]xb1

]t1 , . . . ,
]xbp

]tp Ddt1∧ ¯ ∧dtp.
                                                                                                                



form

orms
b-

2337J. Math. Phys., Vol. 43, No. 5, May 2002 Finite dimensional Hamiltonian formalism

                    
Now by using~19!,

E
DG

$Hv, sa%s

5E
D
~21!n2p11 (

a1, . . . ,an2p
(

b1, . . . ,bp

V~J~dxa1

∧ . . . ∧dxan2p∧a!,Xa1
, . . . ,Xan2p

,Xb1
, . . . ,Xbp

!detS ]xb1

]t1 , . . . ,
]xbp

]tp Ddt1∧ ¯ ∧dtp

5E
D

(
a1, . . . ,an2p

(
b1, . . . ,bp

dxa1∧ ¯ ∧dxan2p∧da~Xa1
, . . . ,Xan2p

,Xb1
, . . . ,Xbp

!

3detS ]xb1

]t1 , . . . ,
]xbp

]tp Ddt1∧ ¯ ∧dtp

5E
D

(
b1, . . . ,bp

da~Xb1
, . . . ,Xbp

!detS ]xb1

]t1 , . . . ,
]xbp

]tp Ddt1∧ ¯ ∧dtp5E
D

da.

j

There exists, however, a much simpler concept of a bracket betweenHv and observables in
Pp21M which is also suitable for the dynamical equation in most cases. Namely we call a
a in Pp21M an admissibleform if ;a1, ¯ ,an2p ,

dxa~J~dxa1∧ ¯ ∧dxan2p∧a!!50, ;a
~35!

or equivalently dxa~J~sa!!50, ;a.

The reader may wonder about the meaning of this definition since, in view of Lemma 5, all f
in Pp21M are admissible forp,n. Again the point is that we may encounter variational pro
lems with gauge symmetry and constraints for which nonadmissible forms exist inPp21M.

Definition 5: Assume that aPPp21M satisfies (35) and letcPG(M,LnT!M). Then we
define thep-bracket

$c,a%ª2 (
a1, . . . ,an2p

]

]xa1
∧ ¯ ∧

]

]xan2p
∧J~dxa1∧ ¯ ∧dxan2p∧a!cdc.

Lemma 6: Let aPPp21M be an admissible form [i.e., such that (35) holds] and letG be an
n-dimensional submanifold ofM which is a graph overX. Then for any oriented submanifold D
of dimension p included inG,

E
DG

$Hv, sa%s5E
D
$Hv,a%. ~36!

Proof: We use the same notations as in the proof of Theorem 3. Because of the condition~35!,
                                                                                                                



f

2338 J. Math. Phys., Vol. 43, No. 5, May 2002 F. Hélein and J. Kouneiher

                    
(
a1, . . . ,an2p

dH∧v~Xa1
, . . . ,Xan2p

,J~dxa1∧ ¯ ∧dxan2p∧a!,Xb1
, . . . ,Xbn2p

!

5 (
a1, . . . ,an2p

~21!n2pdH~J~dxa1∧ ¯ ∧dxan2p∧a!!v~Xa1
, . . . ,Xan2p

,Xb1
, . . . ,Xbn2p

!

5 (
a1, . . . ,an2p

~21!n2pdH~J~dxa1∧ ¯ ∧dxan2p∧a!!v

3S ]

]xa1
, . . . ,

]

]xan2p
,Xb1

, . . . ,Xbn2pD
5 (

a1, . . . ,an2p

dH∧vS ]

]xa1
, . . . ,

]

]xan2p
,J~dxa1∧ ¯ ∧dxan2p∧a!,Xb1

, . . . ,Xbn2pD
52 (

a1, . . . ,an2p

$Hv,a%~Xb1
, . . . ,Xbn2p

!.

This implies the result by summation overb1, ¯ ,bn2p and integration overD. j

Corollary 1: Let aPPp21M be an admissible form and letG be an n-dimensional submani-
fold of M which is a graph overX of a solution of the Hamilton equations (19). Then for any
oriented submanifold D of dimension p included inG,

E
D
$Hv,a%5E

D
da. ~37!

Examples:The zero-formyi and the one-formyidyj are admissible and

$Hv,yi%5(
a

]H
]pi

a dxa,

$Hv,yidyj%5 (
a,b

]H
]pi j

ab dxa∧dxb.

E. Noether theorem

It is natural to relate the Noether theorem to the pataplectic structure.
Let j be a tangent vector field onX3Y. The j will be an infinitesimal symmetry of the

variational problem if

LJ(Pj)~u2Hv!50,

since then the integral*Gu2Hv is invariant under the action of the flow ofj. Then for any
solution x°(U(x),p(x)), of the Hamilton equations, the formPj

! is closed along the graph o
this solution. This means that ifG is the graph of (U,p),

dPjuG
! 5d~j c~u2Hv!! uG50.

This is a direct consequence of Theorem 2 and of the following calculation.
Lemma 7: For any sectionj of G(X3Y,T(X3Y)), we have the relation

$Hv,Pj%5LJ(Pj)~u2Hv!1d~j cHv!. ~38!

Proof: Using the definition of$Hv,Pj%, we have
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LJ(Pj)~u2Hv!5J~Pj!c~du2dH∧v!1d~J~Pj!c~u2Hv!!5J~Pj!cV2J~Pj!cdH∧v

1d~j cu2j cHv!52dPj1$Hv,Pj%1d~Pj2j cHv!,

and the result follows. j

Remark 1: It appears that it will be interesting to study solutions of the Hamilton equa
with the constraintH50. This is possible, because of the freedom left in the Legendre corres
dence, thanks to the parametere. The advantage is that then the energy-momentum observa
are described by Pa,g which belongs toPn21M.

Remark 2: As a consequence of these observations it is clear that on the submanifH
50, the set of Noether currents can be identified withPP

n21M. So we can interpret the results o
Proposition 1 concerningPP

n21M by saying that the set of Noether currents equipped with
p-bracket is a representation modulo exact terms of the Lie algebra of vector fields onX3Y with
the Lie bracket. We recover thus various constructions of brackets on Noether currents (s
instance, Ref. 18).

V. EXAMPLES

We present here some examples from mathematical physics in order to illustrate our fo
ism. We shall see that, by allowing variants of the above theory, one can find formalisms whi
more adapted to some special situations.

A. Interacting scalar fields

As the simplest example, consider a system of interacting scalar fields$f1, . . . ,fk% on an
oriented ~pseudo-!Riemannian manifold (X,g). One should keep in mind thatX is a four-
dimensional space–time andgab is a Minkowski metric. These fields can be seen as a mapf from
X to Rk with its standard Euclidian structure. The metricg on X induces a volume form which
reads in local coordinates

vªgdx1∧¯ ∧dxn, where gªAudetgab~x!u.

Let V:X→Rk be the interaction potential of the fields. Then the Lagrangian density is

L~x,f,df!ª
1

2
gab~x!

]f i

]xa

]f i

]xb 2V~f~x!!.

Heref i5f i and we assume that we sum over all repeated indices. Alternatively one could
with the volume form beingdx1∧¯ ∧dxn and the Lagrangian density beinggL, in order to
apply directly the theory constructed in the previous sections. But we shall not choose th
proach here and use a variant which makes clear the covariance of the problem.

We restrict ourselves to the Weyl theory, i.e., we work on the the submanifoldMWeyl , as in
Sec. II G. So we introduce the momentum variablese andpi

a and we start from the Cartan form

u5ev1pi
adf i∧va ,

wherevaª]acv. But hereva is not closed in general~becauseg is not constant!, so

V5du5de∧v1dpi
a∧df i∧va2pi

a 1

g

]g

]xa df i∧v.

The Legendre transform is given by

pi
a5

]L

]~]af i !
5gab

]f i

]xb ⇔ ]f i

]xa 5gabpi
b ,
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and the Hamiltonian is

H~x,f,p!5e1 1
2 gabpi

api
b1V~f!.

We use as conjugate variables the zero-formsf j and the (n21)-forms

Pi , fª f ~x!pi
ava5 f ~x!

]

]f i cuPPn21MWeyl .

Taking account of the fact thatva is not closed, one finds

J~Pi , f !5 f
]

]f i2
] f

]xa pi
a ]

]e

and

$Pi , f ,f j%5J~Pi , f !cdf j5 f d i
j .

Also the observablesf j are admissible:J(sf j )5(a (21)a/g t1 . . . ta21ta11 . . . tn ]/]pj
a ,

and, according to Definition 5,

$Hv,f j%5
]H
]pj

a dxa5gabpj
bdxa.

Moreover,

$Hv,Pi , f%52J~Pi , f !cd~Hv!5S 2 f
]V

]f i 1
] f

]xa pi
aDv.

The dynamical equations are those along the graph of a solution,

df i5$Hv,f i%5gabpi
bdxa,

d~ f pi
ava!5$Hv,Pi , f%5S 2 f

]V

]f i 1
] f

]xa pi
aDv.

The second equation gives

f

g S ]g

]xa pi
a1g

]pi
a

]xa 1g
]V

]f i D 50, ~39!

while the first relation gives]f i /]xa 5gabpi
b . By substitution in~39! we find

1

g

]

]xa S g gab
]f i

]xbD1
]V

]f i 50,

the Euler–Lagrange equations of the problem.

B. Conformal string theory

We consider mapsu from a two-dimensional~pseudo-!Riemannian manifold (X,g) with
values in another~pseudo-!Riemannian manifold (Y,h) of arbitrary dimension. The most gener
bosonic action for such maps isL@u#ª*XL(x,u,du)v with vªg(x)dx1∧dx2 and g(x)
ªAudetgab(x)u as before, and
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L~x,u,du!ª
1

2 S hi j ~u~x!!gab~x!1bi j ~u~x!!
eab

g~x! D ]ui

]xa

]uj

]xb ,

wherebª( i , jbi j (y)dyi∧dyj is a given two-form onY ande1252e2151, e115e2250. Hence

L@u#5E
X

1

2
hi j ~u!gab~x!

]ui

]xa

]uj

]xb v1u!b.

Setting

Gi j
ab~x,y!ªhi j ~y!gab~x!1bi j ~y!

eab

g~x!
5Gji

ba~x,y!,

we see thatL(x,u,du)5 1/2Gi j
ab(x,u)(]ui /]xa)(]uj /]xb) and the Euler–Lagrange equation f

this functional is

1

g

]

]xa S g Gi j
ab~x,u~x!!

]uj

]xbD5
]Gjk

bg

]yi

]uj

]xb

]uk

]xg . ~40!

More covariant formulations exists for the caseb50, which correspond to the harmonic ma
equation or when the metric onX is Riemannian using conformal coordinates and comp
variables~see Ref. 10!. The Cartan–Poincare´ form on M is

uªev1(
a,i

pi
ava

i 1(
i , j

pi j v12
i j

~wherev1
i 5g dyi∧dx2, v2

i 5g dx1∧dyi andv12
i j 5g dyi∧dyj !. The pataplectic form is

V5du5de∧v1(
a,i

dpi
a∧va

i 1(
i , j

dpi j ∧v12
i j 2(

a,i

pi
a

g

]g

]xa dyi∧v

1(
i , j

(
a

pi j

]g

]xa dxa∧dyi∧dyj .

The Legendre correspondence is generated by the function

W~x,u,v,p!ªe1pi
ava

i 1pi j v1
i v2

j 2L~x,u,v !5e1pi
ava

i 2 1
2 Mi j

ab~x,y,p!va
i vb

j ,

where we have denoted

Mi j
ab~x,y,p!ªhi j ~y!gab~x!1S bi j ~y!

g~x!
2pi j D eab5Gi j

ab~x,y!2pi j e
ab.

This correspondence is given by the relation]W/]va
i 50 which gives

Mi j
ab~x,y,p!vb

j 5pi
a . ~41!

Thus, given (x,y,p), finding (x,y,v,w) such that (x,u,v,w)↔(x,y,p) amounts to solving first
the linear system~41! for v and thenw is justW(x,y,v,p). This system has a solution in gener
in the open subsetO of M on which the matrix
                                                                                                                



2342 J. Math. Phys., Vol. 43, No. 5, May 2002 F. Hélein and J. Kouneiher

                    
M5S hi j ~y!g11~x! hi j ~y!g12~x!1
bi j ~y!

g~x!
2pi j

hi j ~y!g21~x!2
bi j ~y!

g~x!
1pi j hi j ~y!g22~x!

D
is invertible. We remark thatO contains actually the submanifoldRª$(x,y,p)PM/g(x)pi j

5bi j (y)%, so that the Legendre correspondence induces a diffeomorphism betweenTY^ T!X and
R.

We shall need to define onO the inverse ofM , i.e., Kab
i j (x,y,p) such that

Kab
i j ~x,y,p!M jk

bg~x,y,p!5dk
i da

g . ~42!

Now we can express the solution of~41! by

va
i 5Kab

i j ~x,y,p!pj
b , ~43!

and the Hamiltonian function is

H~x,y,p!ªe1 1
2 Kab

i j ~x,y,p!pi
apj

b .

We use as conjugate variables the position functionsyi and the momentum one-forms

Piª
]

]yi cu5pi
ava1gpi j dyj .

The Poisson brackets are obtained as follows. First, concerning$Hv,yi%, we compute
J(syi)5 (1/g) (t1 ]/]pi

22t2 ]/]pi
1). Sincedxa(J(syi))50, ;a,

$Hv,yi%52
1

g S ]

]x1 ∧
]

]pi
22

]

]x2 ∧
]

]pi
1D cdH∧v5

]H
]pi

a dxa5Kab
i j pj

bdxa.

Next we computedPi :

dPi5dpi
a∧va1gdpi j ∧dyj1pi

a ]g

]xa

v

g
1pi j

]g

]xa dxa∧dyj52
]

]yi cV.

Hence

J~Pi !5
]

]yi .

Because ofdxa(J(Pi))50, ;a, and of Proposition 2 we deduce that

$Pi ,yj%5J~Pi !cdyj5d i
j ,

$Hv,Pi%52J~Pi !cd~Hv!52
]Kab

jk

]yi pj
apk

bv.

Notice that, because of~42!,

]Kab
jk

]yi 52Kag
j l

]Mlm
gd

]yi Kdb
mk ,

and thus
                                                                                                                



uce

2343J. Math. Phys., Vol. 43, No. 5, May 2002 Finite dimensional Hamiltonian formalism

                    
$Hv,Pi%5
]Mlm

gd

]yi Kag
j l Kdb

mkpj
apk

bv.

The equations of motion are

dyi5$Hv,yi%5Kab
i j pj

bdxa,
~44!

dPi5$Hv,Pi%5
]Mlm

gd

]yi Kag
j l Kdb

mkpj
apk

bv,

along the graphG of any solution of the Hamilton equations. From the first equation we ded
that

]yi

]xa 5Kab
i j pj

b⇔pi
a5Mi j

ab ]yj

]xb . ~45!

Now using~45! we see that alongG,

Pi uG5~pi
ava1gpi j dyj ! uG5S Mi j

ab ]yj

]xb 1pi j e
ab

]yj

]xbDva

5Gi j
ab ]yj

]xb va5S hi j g
ab1

bi j

g
eabD ]yj

]xb va ,

and so the left-hand side of the second equation of~44! is

dPi uG5
1

g

]

]xa FgGi j
ab ]yj

]xbGv.

And still using ~45! the right-hand side of the second equation of~44! alongG is

]M jk
ab

]yi

]yj

]xa

]yk

]xb v.

Hence we recover the Euler–Lagrange equation~40!.

C. The electromagnetic field

Here the field is a one-formA5Aadxa defined on the~pseudo-!Riemannian manifoldX
@which can also be thought of as a connection one-form on a U~1!-bundle#. Its differential dA
ªF is the electromagnetic field. We still denotegab the metric onX andv5gdx1∧ ¯∧dxn the
volume form. We are given some vector fieldW5 j a]a on X ~the electric current field! and we
define the Lagrangian density by

L~x,A,dA!ª2 1
4 FabFab2 j aAa ,

whereFabª]aAb2]bAa andFab
ªgaggbdFgd .

The Euler–Lagrange equation could be written

1

g

]

]xa ~gFab!vb5 j bvb , ~46!

or using the notations
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!Fª (
a,b

Fab
]

]xa c ]

]xb cv and jª j ava ,

~47!
d~!F !5 j .

We remark that in order to have solutions it is necessary to suppose thatd j50, which is the
electric charge conservation law.@Note also that by writing the electromagnetic function
*1/2F∧!F2A∧ j , one sees immediately that the conditiond j50 ensures that this functional i
invariant by gauge transformationsA°A1d f up to the addition of*d( f j ).#

In our framework the fact that the field is a one-form means that we replace the configu
spaceX3Y by T!X. Thus the pataplectic manifold isMªLnT!(T!X). We shall here restrict to
the ‘‘Weyl’’ submanifold of M ~see Sec. II G! which is described by

MWeylª$~x,A,p!/xPX,APTx
!X,pPLnT(x,A)

! ~T!X!,]Aa
∧]Ab

cp50,;a,b%.

The latter condition onp means that in local coordinates,p5ev1(a,bpAabdAa∧vb . The
Cartan form is

uªev1(
a,b

pAabdAa∧vb ,

with still vbª]bcv, and the pataplectic form is

Vªdu5de∧v1(
a,b

dpAab∧dAa∧vb2(
a,b

pAab
1

g

]g

]xb dAa∧v.

Computing the Legendre transform inMWeyl , using W(x,A,dA,p)5e1(a,bpAab]bAa

2L(x,A,dA), gives the momenta

pAab
ª

]L

]~]bAa!
5Fab.

We see that the Legendre transform works only provided the compatibility condition

pAab1pAba50 ~48!

is satisfied. It is an example of a Dirac primary constraint. Henceforth we shall be restricted
submanifold

MMaxwellª$~x,A,p!PMWeyl /p
Aab1pAba50%,

along which we are able to obtain an expression for the Hamiltonian

H~x,A,p!5e2 1
4 gaggbdpAabpAgd1 j aAa .

A naive use of this Hamiltonian function leads to incorrect dynamical equations. Another p
bility, which was already proposed in Ref. 16, is to use the one-form onMMaxwell as dynamical
variable

AªAadxa.

Note that hereAa is not a local function ofx but fiber coordinate. Then, as it will be proved belo
the momentum variable canonically conjugate toA may be chosen to be the (n22)-form
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pª

1

2 (
a,b

pAab
]

]xa c ]

]xb cv.

Its associateds-form is

sp5
1

2 (
a,b

pAabS ta

]

]xb 2tb

]

]xaD cv5(
a,b

pAabta

]

]xb cv.

Hence, using~48!,

d sp5(
a,b

tadpAab∧S ]

]xb cv D1(
a,b

pAab

g
ta

]g

]xb v52(
a

ta

]

]Aa
cV

and

J~sp!5(
a

ta

]

]Aa
.

We also have ~denoting vbª]/]xb cv and t 1 . . . . . . . . .n
. . . a . . . b . . .

ªt1¯ta21ta11¯tb21tb11

¯tn)

sA5 (
a,b

~21!n1a1b
Aa

g
t1 . . . . . . . .n

. . . a . . . b . . . vb2 (
b,a

~21!n1a1b
Aa

g
t1 . . . . . . . . .n

. . . b . . . a . . . vb

and

J~sA!5 (
a,b

~21!n1a1b11
Aa

g
t1 . . . . . . . . .n

. . . a . . . b . . . ]

]pAab

2 (
b,a

~21!n1a1b11
Aa

g
t1 . . . . . . . . .n

. . . b . . . a . . . ]

]pAab .

A computation using~48! gives

$sp, sA%s5 (
a,b,g

~21!n1a1b11tgS (
a,b

Aa

g
t1 . . . . . . . . .n

. . . a . . . b . . .

2 (
b,a

Aa

g
t1 . . . . . . . . .n

. . . b . . . a . . . D ]

]pAab c ]

]Ag
cV

52~21!n~n21!(
a

t1¯ ta21ta11¯ tn

]

]xa cdx1∧ ¯ ∧dxn

5s~2~21!n~n21!!.

Thus

$p,A%52~21!n~n21!.

As it may be anticipated by Corollary 1, the dynamical equations are described by th
lowing identities to be true along the graph of a solution of the Hamilton equations:
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dA5$Hv,A%

5~21!n1a1bF (
a,b

1

g

]

]x1 ∧ ¯

]

]xa21 ∧
]

]xa11 ∧ ¯

]

]xb21 ∧
]

]xb11 ∧ ¯

]

]xn ∧
]

]pAab

2 (
b,a

1

g

]

]x1 ∧ ¯

]

]xb21 ∧
]

]xb11 ∧ ¯

]

]xa21 ∧
]

]xa11 ∧ ¯

]

]xn ∧
]

]pAabG cdH∧v

5(
a,b

]H
]pAab dxb∧dxa5 (

a,b
gaggbdpAgddxa∧dxb,

dp5$Hv,p%52(
a

]

]xa ∧
]

]Aa
cdH∧v5

]H
]Aa

va5 j ava5 j .

The first equation leads to]Ab /]xa 2 ]Aa /]xb 5gaggbdpAgd which implies Fab

5gaggbdpAgd or equivalentlypAab5Fab. This can be translated into the relation

p5!F, along G.

By substitution in the second equation,dp5 j , it gives immediately~47!.
A last observation is that infinitesimal gauge transformationsdA5d f @for f PC `(X)] are

generated by the Poisson bracket withd f∧p. We have indeed

d~d f∧p!52d f∧dp52(
a

] f

]xa

]

]Aa
cV,

so thatd f∧pPPn21M andJ(d f∧p)5(a ] f /]xa]/]Aa . We deduce that

$d f∧p,p%5J~d f∧p!cdp50,

$d f∧p,A%5J~d f∧p!cdA5d f .

Notice that we could replaced f∧p by 2 f dp or f ( j 2dp) without changing the brackets withp
andA.

VI. CONCLUSION

We obtained a Hamiltonian formulation for variational problems with an arbitrary numbe
variables. This could be the starting point for building a covariant quantum field theory wi
requiring the space–time to be Minkowskian. Notice also that we may enlarge the conc
pataplectic manifolds as manifolds equipped with a closed (n11)-form, and extend to this contex
notions like thep-bracket. Some of these questions will be treated in a forthcoming paper.
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Quantizing Yang–Mills theory on a two-point space
Helmuth Hüffela)

Institut für Theoretische Physik, Universita¨t Wien,
Boltzmanngasse 5, A-1090 Vienna, Austria
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We perform the Batalin–Vilkovisky quantization of Yang–Mills theory on a two-
point space, discussing the formulation of Connes–Lott as well as Connes’ real
spectral triple approach. Despite the model’s apparent simplicity the gauge struc-
ture reveals infinite reducibility and the gauge fixing is afflicted with the Gribov
problem. © 2002 American Institute of Physics.@DOI: 10.1063/1.1467096#

I. INTRODUCTION

Noncommutative geometry constitutes one of the fascinating new concepts in current
retical physics research with many promising impacts and applications in a diverse set of fie1–5

Specifically we mention the construction of the classical action of the standard model,6,7 unifying
the Einstein–Hilbert action, the Yang–Mills action, the Dirac action, and the Klein–Gordon a
with the Higgs potential and spontaneous symmetry breaking.

The basic idea of noncommutative geometry is to replace the notion of differential man
and functions by specific noncommutative algebras of functions; the geometric setting of
theories as fiber bundles finds a noncommutative generalization in terms of finitely gen
projective modules over noncommutative algebras.

It seems, however, that within this noncommutative algebraic framework the concep
quantizinggauge theories, specifically the issues of gauge fixing and the proper definition of a
integral measure for the standard model, are not yet fully understood.8 Our intention for this paper
is not to present new results in these rather fundamental issues. Instead we quantize on
simplest toy models for noncommutative gauge theories, which is Yang–Mills theory on a
point space, by applying the standard Batalin–Vilkovisky method.9–12 Somewhat surprisingly we
find that despite the model’s original simplicity the gauge structure reveals infinite reducibility
the gauge fixing is afflicted with the Gribov13 problem.

In Sec. II we work out the formulation of the model following the approach of Connes–Lo14

In Sec. III the infinite reducibility of the gauge symmetry is explained; the Batalin–Vilkovi
quantization of the model is performed in Sec. IV. We discuss the Gribov problem in Sec. V
finally, in Sec. VI, recast our results within Connes’ real spectral triple approach.6,15

II. THE FORMULATION OF CONNES–LOTT

Following Ref. 14 we define the Yang–Mills Theory on a two-point space in terms of
algebraA5C% C, which is represented by diagonal complex valued 232 matrices; the Dirac
operatorD is given byD5(m

0
0
m), wheremPR is an arbitrary parameter. The differentialp-forms

vp are constant, diagonal or off-diagonal 232 matrices, depending on whetherp is even or odd,
respectively. One has aZ2 grading of matrices~to be diagonal or off-diagonal! and obtains a
matrix derivative d. Acting on 232 matrices it is a nilpotent graded derivation,da
5 im(a112a22

a211a12
a211a12

a222a11) wherea5(a21

a11
a22

a12), ai j PC, with respect to the matrix product and the mat

Z2 grading.
Specifically the one-forms are given byv15a db, wherea,bP A, which are odd~i.e., off-

diagonal! matrices. The subset of anti-Hermitean one-formsA can be parametrized by

a!Electronic mail: helmuth.hueffel@univie.ac.at
23480022-2488/2002/43(5)/2348/7/$19.00 © 2002 American Institute of Physics
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A5S 0 imf

imf̄ 0 D ~2.1!

and constitute the gauge fields of the model; herefPC denotes a~constant! scalar field. The
~rigid! gauge transformations ofA are defined by

A U5U21AU1U21dU ~2.2!

with U being a unitary element of the algebraA. It is a constant, even and unitary matrix whic
we define to have only Abelian entries; it can exponentially be parametrized by the even mae,

U5S eia 0

0 eibD 5ei e, e5S a 0

0 b D , a,bPR. ~2.3!

We point out that the Yang–Mills theory on the two-point space is an ideal play ground to
quantization techniques: Due to the non-Abelian form of the gauge transformations~2.2! the
model shares many interesting features with the standard Yang–Mills theory, yet it has no ph
space–time dependence and allows extremely simple calculations. We even restrict ourse
just Abelian entries along the diagonal ofU, thus studying aU(1)3U(1) gauge model with
non-Abelian features.

We define a scalar product for 232 matricesa,b by ^aub&5tr a† b where † denotes taking
the Hermitian conjugate. The curvatureF is defined as usual byF5dA1A A and transforms
under gauge transformations asF U5U21FU; for an action which is automatically invarian
under the gauge transformations~2.2! one takes

Sinv5
1
2 ^FuF&. ~2.4!

Written out in components the scalars’ contribution is given by

Sinv5m4~~f1f̄ !1ff̄!2. ~2.5!

It was pointed out in Refs. 16 and 17 that the most general form of the gauge invariant actio
allows a term proportional to trF,

Ŝinv5
1
2 ~^FuF&1g tr F! ~2.6!

wheregPR is an arbitrary parameter. We note, however, that one requires the scalarsf to be
vanishing at the minimum of the action so that in the case of~2.6! the scalars have to be shifte
appropriately. Explicitly we have

Ŝinv5m4~2u1u21v2!S 2u1u21v22
g

m2D , ~2.7!

where we introducedf5u1 iv. Whereas the local maximum is at

umax521, vmax50, ~2.8!

the circle of local minima is given by

~u11!21v2511
g

2m2 , where g>22m2. ~2.9!

We choose
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umin5A11
g

2m221, vmin50 ~2.10!

and define shifted scalarsf̃5f2umin which by construction are vanishing at the minimum of t
action. From

Ŝinv5m4S ~f̃1 f̃̄ !A11
g

2m21f̃f̃̄ D 2

2
g2

2
. ~2.11!

we omit the irrelevant constant2 g2/2, rescalef̃5f̂A11 g/2m2 andmA11 g/2m25m̂ so that
finally

Ŝinv5m̂4~~f̂1 f̂̄ !1f̂f̂̄ !2. ~2.12!

We see that the inclusion of the action term linear inF can be compensated by shifting an
rescaling of the scalar fieldf, as well as by rescaling of the parameterm. As the scalar fields and
the parameter are arbitrary from the outset the inclusion of the action term linear inF appears to
be unnecessary. In the following we will setm51 for simplicity and stick to the action term~2.4!
quadratic inF.

III. GAUGE TRANSFORMATIONS AND INFINITE REDUCIBILITY

The ~zero-stage! gauge transformations~2.2! explicitly are given by

A U5S 0 iei (b2a)~f11!2 i

ie2 i (b2a)~f̄11!2 i 0 D , ~3.1!

so that the usual Abelian gauge transformations are implied for the Higgs fieldsH5f11 and
H̄5f̄11. To discuss infinitesimal~zero-stage! gauge transformations we introduce an even,
finitesimal~zero-stage! gauge parameter matrixee

0 in terms of whichU.11ee
0 . The infinitesimal

~zero-stage! gauge variation ofA derives as

de
e
0A5 iR0 ee

0,

where R05D. ~3.2!

Here the~zero-stage! gauge generatorR0 is defined in terms of the covariant matrix derivativeD,
which acting onee

0 is given byDee
05dee

01@A,ee
0#.

A gauge symmetry is called irreducible if the~zero-stage! gauge generatorR0 does not
possess any zero mode.9–12

It is amusing to note that the Yang–Mills theory on the two-point space reveals an infin
reducible gauge symmetry: We observe thatD d is vanishing on arbitrary odd matrices. Thus the
exists a zero modeee

1 for the ~zero-stage! gauge generatorR0, such that

R0ee
150

where ee
15R1eo

1 with R15d. ~3.3!

Hereeo
1 denotes an odd, infinitesimal~first-stage! gauge parameter matrix andR1 the correspond-

ing ~first-stage! gauge generator. As a matter of fact an infinite tower of~higher-stage! gauge
generatorsRs, s51,2,3,... with never ending gauge invariances for gauge invariances is ar
We defineRs5d for s51,2,3,... so that for each gauge generator there exists an additiona
mode
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R1eo
250 ~eo

25R2ee
2!,

R2ee
350 ~ee

35R3eo
3!,

¯ ¯ ~3.4!

due to the nilpotencyd250.

IV. GAUGE FIXING AND BV-QUANTIZATION

In this section we straightforwardly apply the usual field theoryBV-path integral quantization
scheme10–12to the Connes–Lott two-point model: In addition to the original gauge fieldA, which
for notational convenience we temporarily denote byA[C 21

21, we introduce ghost fieldsC s
k ,

`>s>21, s>k>21 with k odd, as well as auxiliary ghost fieldsC̄s
k , `>s>0, s>k>0 with k

even~see Fig. 1!.
Furthermore we add Lagrange multiplier fieldsps

k , `>s>1,s>k>1 with k odd andp̄s
k ,

`>s>0, s>k>0 with k even. Finally we introduce antifieldsC s
k* , C̄s

k* . All the ghostsC s
k , C̄s

k ,
multiplier fieldsps

k , p̄s
k , and antifieldsC s

k* , C̄s
k * are matrices which are even fors even and odd

for s odd, respectively. We define all the ghost fieldsC s
k , C̄s

k to be anti-Hermitean, all the multiplie
fields ps

k , p̄s
k to be Hermitean. Whens is taken to be odd the ghosts are bosonic whereas

multiplier fields are fermionic; fors even the ghosts are fermionic and the multiplier fields
bosonic, respectively.

An important quantity for the construction of theBV-action is the commutator of~zero-stage!
infinitesimal gauge transformations@de1

,de2
#A, wheredek

A5 iR0 ek with even matricesek , k

51,2. It is easy to see that this commutator is vanishing. TheBV-action therefore obtains as

SBV5Sinv1Saux2^C21
21* uD C 0

21&2 (
s51,3,5,...

`

^C s
21* ud Cs11

21 &2 i (
s50,2,4,...

`

^C s
21* ud Cs11

21 &,

~4.1!

FIG. 1. The infinite tower of ghost fields
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where we denote bySaux the auxiliary field action

Saux5 (
k50,2,4,...

`

(
s5k

`

^p̄s
kuC̄s

k * &1 (
k51,3,5,...

`

(
s5k

`

^Cs
k* ups

k &. ~4.2!

By d we denote a nilpotent matrix coderivative operator,d a5 i (
2a112a22

a122a21
2a121a21

2a112a22) where a

5(a21

a11
a22

a12), ai j PC, which is defined bŷ daoube&5^aoudbe& and ^daeubo&5^aeudbo&. It allows

one to define gauge fixing conditions

dCs
k50, `>s>21, s>k>21 with k odd,

~4.3!

dC̄s
k50, `>s>0, s>k>0 with k even,

which are similar to the Feynman gauge in standard Yang–Mills theory. In theBV-approach we
implement these gauge fixing conditions by defining the gauge fixing fermionC5Cd1Cp by

Cd5 (
s50,2,4,...

`

(
k50,2,4,...k<s

~2^C̄s
k u dCs21

k21&1^dC̄s11
k u Cs12

k11&1 i ^C̄s11
k u dCs

k21&1 i ^dC̄s
k u Cs11

k11&!,

Cp5
1

2 (
s50,2,4,...

`

(
k50,2,4,...k,s

~^C̄s
k u ps

k11&1^p̄s
k u Cs

k11&1 i ^C̄s11
k u ps11

k11&

1 i ^p̄s11
k u Cs11

k11&!1
1

2 (
k50,2,4,...

`

^C̄k
k u p̄k

k&. ~4.4!

We eliminate the antifields by using the gauge fixing fermionC via

^C s
k* u5

]C

]uC s
k&

, uC̄s
k * &5

]C

]^C̄s
ku

, ~4.5!

so that the gauge fixed actionSC reads

SC5Sinv2 i ^C̄0
0 u dD C0

21&2 i (
s51,3,5,...

`

^C̄s11
0 u dd Cs11

21 &1 (
s50,2,4,...

`

^C̄s11
0 u dd Cs11

21 &

1 (
k50,2,4,...

`

(
s5k11, odd

`

~ i ^p̄s
k u ps

k11&1^p̄s
k u ~ i dCs21

k211dCs11
k11!&1^~ i dC̄s21

k 2dC̄s11
k12!u ps

k11&!

1 (
k50,2,4,...

`

(
s5k12, even

`

~^p̄s
k u ps

k11&1^p̄s
k u ~2dCs21

k211 idCs11
k11!&1^~dC̄s21

k

1 idC̄s11
k12!u ps

k11&!1 (
k50,2,4,...

` K p̄k
k U S 2dCk21

k21 1 idCk11
k11 1

1

2
p̄k

kD L . ~4.6!

We can now eliminate the Lagrange multiplier fieldsps
k and p̄s

k and arrive at
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SC→Sinv1
1
2 ^A u dd A&2 i ^C̄0

0 u ~dD1dd! C0
21&2 i (

s51,3,5,...

`

^C̄s11
0 u ~dd1dd! Cs11

21 &

1 (
s50,2,4,...

`

^C̄s11
0 u ~dd1dd! Cs11

21 &2 i (
k50,2,4,...

`

(
s5k11, odd

`

^C̄s11
k12 u ~dd1dd! Cs11

k11&

1 (
k50,2,4,...

`

(
s5k12, even

`

^C̄s11
k12 u ~dd1dd! Cs11

k11&1
1

2 (
k50,2,4,...

`

^Ck11
k11 u ~dd1dd! Ck11

k11&.

~4.7!

All the higher-stage ghost contributions can be integrated away without any effect asdd 1dd
54•1 and we simply obtain

SC→Sinv1
1
2 ^A u dd A&2 i ^C̄0

0 u ~dD1dd! C0
21& ~4.8!

We see that the gauge fixed action contains the invertible quadratic part 2^A u A& for the gauge
field, as well as24i ^C̄0

0 u C0
21& for the C̄0

0, C0
21 ghost fields.

V. THE GRIBOV PROBLEM

The Yang–Mills theory on the two-point space suffers from a Gribov problem13 even for the
Abelian U(1)3U(1) case. This can be demonstrated easily by recasting the ghost part
gauge fixed action~4.8! into the form

^C̄0
0 u ~dD1dd! C0

21&5~ c̄1 c̄2!S 41f1f̄ 2f2f̄

2f2f̄ 41f1f̄
D S c1

c2
D , ~5.1!

where we introduced the component ghosts fieldsc̄1 , c̄2 and c1 , c2 which are the diagonal ele
ments ofC̄0

0 andC0
21, respectively. The Faddeev–Popov matrixMFP

MFP5S 41f1f̄ 2f2f̄

2f2f̄ 41f1f̄
D ~5.2!

has a vanishing determinant for 21f1f̄50 which forcesf5u1 iv to lie on the lineu521.
We note the distinguished valuef521, which we discussed previously by demanding the ac
to be maximal, see~2.8!. Now this value arises by inserting the gauge fixing conditiond A50 into
the Faddeev–Popov determinant detMFP.

We observe that the classical actionSinv not only has an invariance under the~rigid! gauge
transformations~2.2!, but also under the discrete charge conjugation operation~conveniently ex-
pressed in terms of the Higgs fieldsH, H̄)

H→2H̄, H̄→2H. ~5.3!

After the spontaneous symmetry breakdown this discrete symmetry guarantees that the min
the action are degenerated. In the quantum case, however, due to the Gribov problem
discrete jumps no longer are allowed and the quantum corrections to the action will lif
classical degeneracy of the minima.

VI. CONNES’ REAL SPECTRAL TRIPLE FORMULATION

The formulation of the Yang–Mills theory model on the two-point space in terms of Conn
real spectral triple approach proceeds by specifying the spectral triple (A,H,D) together with the
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antilinear isometryJ, fulfilling a set of specific properties.6,15 We represent the elementsa
5(a1 ,a2 ,a3) of the algebraA5C% C% C, as well asD andJ, by specific 434 matrices; the
Hilbert spaceH simply is C4. Specifically we have

a5S a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a3

D , D5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D , J5S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D + c.c., ~6.1!

where c.c. denotes complex conjugation. As an example one sees that fora, bPA the differential
one-formv15a @ i D ,b# is given by

v15 i S 0 a1~b22b1! 0 0

a2~b12b2! 0 0 0

0 0 0 0

0 0 0 0

D . ~6.2!

We recognize that apart from irrelevant zeros in the upper right, lower left and lower right m
corners of the differential forms our previous discussion of the gauge symmetries, the gauge
and the ghost structure proves right as well.

We conclude that the quantization of the Yang–Mills theory model on the two-point s
within the Connes–Lott scheme and within Connes’ real spectral triple approach are equiv
the model reveals infinite reducibility and is afflicted with the Gribov problem.

Note added in proof:After finishing our paper a related article18 appeared. One of its main
purposes is to analyze in depth the counting argument of Feynman diagrams in the pres
spontaneous symmetry breaking. Concerning the gauge fixing procedure and the introduc
ghost fields, however, the investigation appears to be incomplete.
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Self-dual Chern–Simons vortices on Riemann surfaces
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We study self-dual multivortex solutions of Chern–Simons Higgs theory in a back-
ground curved space–time. The existence and decaying property of a solution are
demonstrated. ©2002 American Institute of Physics.@DOI: 10.1063/1.1471365#

I. INTRODUCTION

Chern–Simons gauge theories have provided intriguing questions and answers to v
subjects of both physics and mathematics. One of the interdisciplinary topics that has at
attention is the so-called self-dual Chern–Simons solitons.1–3 A natural extension is to include
gravity which can be background4,5 or dynamical.6,7 Once the Bogomolnyi-type bound is obtaine
and detailed mathematical properties of those self-dual vortices are studied in the Chern–S
Higgs model in the presence of background gravity, it would be helpful to address related ph
wise problems involving condensed matter systems, e.g., quantum Hall effects, superg
Lorentz-symmetry breaking due to parity-violating term, existence of time-like closed c
around gravitating spinning strings, cosmological implication of cosmic strings, and even co
logical constant problem.

Because it is applicable to diverse fields, mathematical study of self-dual Chern–S
solitons is going on. The existence of a topological multivortex solution of relativistic Che
Simons–Higgs theory in flatR2 is shown by Wang.8 In the same setting, rotationally symmetr
nontopological solitons and vortices were proven to exist by Spruck and Yang.9 Yang also proved
the existence of a topological self-dual multivortex solution when the gauge symmetry is ext
to non-Abelian.10 When the topological vortices or nontopological solitons are generated in
densed matter systems or in the early universe, they are likely to form a lattice structur
network. In such sense important works have been done on torus11–14 or on standard sphere.4,15

Condensed matter experiments are usually performed by turning on constant external ele
magnetic field. In relation to this, Chaeet al.demonstrated the existence of soliton solutions of
self-dual Chern–Simons Higgs model coupled to an external background charge density.16 An-
other study to have cosmological implications was done by Kurata and Choe with nontopol
soliton solutions under decaying metric.17,18

Now let us take into account the curved space–time geometry of a straight string in the
universe. Then, an extremely small core region of the string is curved by matter fields, an
intermediate region is slightly curved or locally flat because of no graviton to the trans
directions. However, the asymptote of the global universe is known to be flat. All of such g
etry should be dynamically determined by examining Einstein equations in the exact sense
is practically too difficult to do with mathematical rigor. A meaningful starting point is to ass
a physically allowable set of background metrics and to study possible string configuratio
this paper, we study Chern–Simons Higgs theory on a uniformly Euclidean metric, which
necessarily radial. A spatial metricg i j 5b(x,y)d i j is called uniformly Euclidean metric if there

a!Electronic mail: stkim@skku.ac.kr
b!Electronic mail: yoonbai@skku.ac.kr
23550022-2488/2002/43(5)/2355/8/$19.00 © 2002 American Institute of Physics
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exist positive constantsa1 and a2 with a1<b(x,y)<a2 . We show the existence of a self-du
topological multivortex solution and the fast decay property of a solution at infinity. The m
ematical conditions we bring up are relevant to the physical situation discussed previously
the gravity is not far from that of the flat case at the end of universe.

A brief outline of the paper is in order. In Sec. II, under the most general static metric, we
derive the Bogomolnyi-type bound of the Chern–Simons Higgs theory in background grav
Sec. III, we present the existence and asymptotic behavior of a solution of the self-dual C
Simons vortices. Conclusions with some discussions about our results are presented in Se

II. BOGOMOLNYI BOUND OF CHERN–SIMONS HIGGS THEORY IN BACKGROUND
GRAVITY

In this section we recapitulate derivation of the so-called Bogomolnyi bound of the Ch
Simons Higgs theory coupled to background gravity by assuming the general static metric

ds25N2~xk!dt22g i j ~xk!dxi dxj ~ i , j ,k, . . .51,2!, ~2.1!

where the metric of the two-dimensional spatial hypersurface can always be diagonalize
conformal gaugeg i j 5d i j b(xk). Later we shall show that the Bogomolnyi bound is attained o
when the lapse functionN(xi) is constant, i.e.,N(xk)51 after a rescaling of time coordinatet.

The Chern–Simons Higgs theory is described by the action

S5E d3xAg Fk

2

emnr

Ag
Am]nAr1

1

2
gmnDmfDnf2V~ ufu!G , ~2.2!

wheref5eiQufu is a complex scalar field,Am a U~1! gauge field, andDm5]m2 ieAm is gauge-
covariant but not covariant under general coordinate transformation. Since the Bogomolnyi l
our interest, the form of the scalar potentialV(ufu) is taken to be

V~ ufu!5
e4

8k2 ufu2~ ufu22v2!2. ~2.3!

From here on all the metric components and fields are assumed to be static because the s
solitons of our interest are static objects.

Symmetric energy–momentum tensor is

Tmn5 1
2 ~DmfDnf1DnfDmf!2gmn@ 1

2 grsDrfDsf2V~ ufu!#. ~2.4!

A physically meaningful derivation of the Bogomolnyi bound is to investigate vanishing of s
components of the energy–momentum tensor. Since the lapse functionN(xi) disappears in every
stress component by the help of Gauss’ lawkNB5e2A0ufu2, an appropriate rearrangement
them gives

Ti j 5
1

2
g i j F k2

2e2

B2

ufu2
2V~ ufu!G2

1

2
~g i j gkl2g ikg j l 2g i l g jk!DkfDlf ~2.5!
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5
k2

2e2

g i j

ufu2 FB2
e3

2k2 UfU2~ ufu22v2!GFB1
e3

2k2 UfU2~ ufu22v2!G
1

1

8 H F S Dif7 i
e ik

Ag
gklD

lf D S D jf6 i
e jm

Ag
gmnD

nf D
1S D jf6 i

e jk

Ag
gklD

lf D S Dif7 i
e im

Ag
gmnD

nf D G
1F S Dif6 i

e ik

Ag
gklD

lf D S D jf7 i
e jm

Ag
gmnD

nf D
1S D jf7 i

e jk

Ag
gklD

lf D S Dif6 i
e im

Ag
gmnD

nf D G J , ~2.6!

where g i j is inverse of theg i j , Ag5Adetgij , and the magnetic field is defined byB
52 (e i j /Ag) ] iAj .

We read the first-order Bogomolnyi equations from Eq.~2.6!,

B57
e3

2k2 ufu2~ ufu22v2!, ~2.7!

Dif7 iAge i j g
jkDkf50. ~2.8!

The second equation~2.8! expresses the spatial components of the gauge fieldAi in terms of the
scalar field, i.e.,eAi5] iQ7Age i j g

jk]k lnufu. Substituting it into the first Bogomolnyi equatio
~2.7! together with the conformal gauge, we have

]2 lnufu5
e4

2k2 bufu2~ ufu22v2!7e i j ] i] jQ, ~2.9!

where the Dirac-delta function like contribution of the scalar phaseQ comes from multivalued
function such asQ5(k51

n tan21 (x22xk
2)/(x12xk

1).
Let us check a consistency condition to determine whether or not the Bogomolnyi equ

~2.7! and ~2.8! reproduce second-order Euler–Lagrange equations. Since we used Gauss’ l
us consider the scalar field equation

1

Ag
Dm~AggmnDnf!52

f

ufu
dV

dufu
. ~2.10!

For a static configuration, insertion of the Bogomolnyi equations~2.7!, ~2.8!, and ~2.8! into the
scalar equation~2.10! leads to

1

N
g i j ] iN] j ufu50. ~2.11!

As is well known, for every configuration of the self-dual solitons, derivative of the scalar am
tude vanishes nowhere, and both derivatives,] iN and] j ufu, are not perpendicular to each othe
Then, the lapse functionN should be a constant which we set to be one by a rescaling of
variable, i.e., dt→dt/N. Note that the spatial components of the gauge-field equation are
matically reproduced forN51 without giving any additional constraint.
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Now that we have the conditionN51, the derivation of the Bogomolnyi bound reduces to
original one by Schiff.4 The energy is exactly proportional to the magnetic fluxF5*d2xAgB as
follows

E5E d2xAgF k2

2e2

B2

ufu2
1

1

2
g i j DifD jf1V~ ufu!G

5E d2xAgH k2

2e2

1

ufu2 FB6
e3

2k2 ufu2~ ufu22v2!G2

1
1

4
g i j ~Dif7 iAge ikgklDlf!~D jf6 iAge jmgmnDnf!

6
ev2

2
B6

i

4

1

Ag
] i@e i j ~f̄D jf2D jff!#J ~2.12!

>Uev2

2
FU. ~2.13!

The first and second lines of Eq.~2.12! vanish by substituting the Bogomolnyi equations~2.7! and
~2.8!, and the last total-divergence term in the third line of Eq.~2.12! does not contribute to the
energy since U~1! current decays rapidly at spatial asymptote.

We read possible boundary conditions of the scalar amplitude at spatial infinity from the
potential~2.3!, that is, limuxu→`ufu→0 or v. The former is a nontopological soliton or vortex, an
the latter a topological vortex. All of them carry the magnetic fluxF @or equivalently U~1! charge
Q5e* d2xAgA0ufu2 related by the Gauss’ law#, and spin

J[E d2xAgAge i j x
iT0

j ~2.14!

5E d2xAg
1

2
Age i j x

i~D jfD0f1D0fD jf! ~2.15!

5
e2

8k E d2xAgxi] i~ ufu22v2!2, ~2.16!

which distinguishes the Chern–Simons solitons from the solitons in Abelian Higgs model.

III. EXISTENCE OF A SOLUTION

Throughout this section, we denote that (R2,g) is a two-dimensional complete Rieman
surface which is diffeomorphic toR2 with the metricg i j 5b(x,y)d i j . We assume that there exis
positive constantsa1 anda2 with a1<b(x,y)<a2 for all z5(x,y)PR2 ~x15x andx25y from
here on!. Let D5 @1/Adet(gij)# (]2/]x21 ]2/]y2) (D05 ]2/]x2 1 ]2/]y2), u¹uu(u¹uuE) andd (dE)
is the Laplacian, the norm of the gradient and Dirac-delta function with respect to the metrg i j

~Euclidean metric!. We denote dz5dx dy, dVg5b(x,y)dz andH1
2 is the Sobolev space, which i

the completion ofCc
`(R2) with respect to the normuuwuu5(*R2u¹wu21w2 dVg)1/2.

In this section, we show the following Theorem.
Theorem 1:There exists a solution for the following self-dual Chern–Simons vortex equa

on (R2,g);

Dw5ew~ew21!14p(
k51

n

d~z2zk! ~3.1!
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with the boundary condition limuzu→`w50. Moreover,w satisfies2ae2buxu<w(x),0 at infinity
for some positive constantsa andb.

Equation~3.1! comes from Eq.~2.9! by rescaling the scalar fieldufu5vew and the spatial
coordinatesxi→ (k/e2v2) xi .

When there is no vortex, there is no nontrivialH1
2 solution for

Dw5ew~ew21! ~3.2!

because

E
V

ew~ew21!w dVg52E
V

u¹wu2 dVg1E
]V

w
]w

]h
dS ~3.3!

for a sufficiently large smooth bounded domainV ~see Ref. 4!. Note that the second term of~3.3!
goes to zero for suitably largeV becausewPH1

2. Applying the maximum principle forH1
2

solution ~cf. Theorem 8.1 of Ref. 19!, we see that anyH1
2 solution w of Eq. ~3.1! satisfiesw

<0. For this, takeV85$pPR2uw(p).0%. Note thatzk¹V8. If V8 is bounded,w(p)<0 by
takingV5V8 in Eq. ~3.3!. WhenV8 is not bounded, take a sequence of smooth bounded dom
K(r ), and]K(r ), the boundary ofK(r ), for r 51,2..., satisfyingK(r ),K(r 11),R25øK(r ),
and*]K(r )w(]w/]h) dS→0, asr→`. Then,

E
V8ùK(r )

ew~ew21!w dVg52E
V8ùK(r )

u¹wu2 dVg1E
]V8

w
]w

]h
dS1E

V8ù]K(r )
w

]w

]h
dS,

~3.4!

where the second term vanishes and third term goes to zero asr→`. ThereforeV8 is the empty
set andw<0 on R2.

Proof of Theorem 1:To show the existence of a solution, we follow Ref. 8. Takeu0 to be

u052 (
k51

n

ln~11muz2zku22!, ~3.5!

then

D0u0524(
k51

n
m

~m1uz2zku2!2 14p(
k51

n

dE~z2zk!. ~3.6!

Defineh0 , h, andB as

h054(
k51

n
m

~m1uz2zku2!2 , h5h0 /b,

and

B5eu05)
k51

n uz2zku2

m1uz2zku2
. ~3.7!

Takew5u01u, then Eq.~3.1! turns out to be

Du5Beu~Beu21!1h. ~3.8!

A critical point of functionalE defined onH1
2 is a solution of Eq.~3.8! where
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E~u!5E
R2

u¹uu21~Beu21!212hu dVg . ~3.9!

By the basic inequality,

~eu21!2>
uuu2

~11uuu!2 , ~3.10!

and

E
R2

2hu dVg5E
R2

2h0 u dz<2S E
R2

h0
2 dzD 1/2S E

R2
u2 dzD 1/2

. ~3.11!

Note that there exist constantsc1 andc2 such that

2S E
R2

h0
2 dzD 1/2

<
c1

Am
~3.12!

and

E
R2

~B21!2 dVg<c2 . ~3.13!

Note that Eq.~3.13! holds when dVg,cr32e dr for any positive constantc and any positive smal
constante. The second term of Eq.~3.9! can be estimated as

E
R2

~Beu21!2 dVg>
1

2 ER2
B2~eu21!22~B21!2 dVg . ~3.14!

Let us defineV15$xPR2uB2(x)<1/2% and uV1u be the area ofV1 . The finiteness ofuV1u
implies

E
V1

S B22
1

2D uuu2

~11uuu!2 dVg>E
V1

2
1

2

uuu2

~11uuu!2 dVg>2
1

2
uV1u. ~3.15!

From Eqs.~3.10! and ~3.15!, there is a constantc3 that

E
R2

B2~eu21!2 dVg>E
R2

B2uuu2

~11uuu!2 dVg

5E
R22V1

B2uuu2

~11uuu!2 dVg1E
V1

B2uuu2

~11uuu!2 dVg

>
1

2 ER2

uuu2

~11uuu!2 dVg2c3 . ~3.16!

For f PH1
1(R2), *R2 f 2dz< 1/4 (*R2u¹ f udz)2. Set f 5u2 and we have

E
R2

u4 dz<S E
R2

uu¹uu dVgD 2

<E
R2

u2 dzE
R2

u¹uu2 dz, ~3.17!

and
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S E
R2

u2 dzD 2

<F E
R2

S uuu
11uuu D ~11uuu!uuu dzG2

<E
R2

S uuu
11uuu D

2

dzE
R2

u2~11uuu!2 dz

<2E
R2

S uuu
11uuu D

2

dzE
R2

u21u4 dz. ~3.18!

Using Eqs.~3.17! and ~3.18!, we obtain

E
R2

u2 dz<2E
R2

S uuu
11uuu D

2

dzS 11E
R2

u¹uu2 dzD . ~3.19!

By the Hölder inequality and Eq.~3.19!, uPH1
2(R2) satisfies

S E
R2

u2 dzD 1/2

<E
R2

uuu2

~11uuu!2 dz12E
R2

u¹uuE
2 dz12. ~3.20!

From the above, there exists a constantc4 such that

E~u!>E
R2

u¹uu2 dVg1
1

2 ER2

uuu2

~11uuu!2 dVg

2
c1

Am
F E

R2

uuu2

~11uuu!2 dz12E
R2

u¹uuE
2 dz12G2c32c2 ~3.21!

>S 12
2c1

Am
D E

R2
u¹uu2 dVg1S 1

2
2

c1

a1Am
D E

R2

uuu2

~11uuu!2 dVg2c4 , ~3.22!

where we used*R2u¹uu2 dVg5*R2u¹uuE
2 dz. From Eq.~3.20! and by taking largem, there exist

constantsc5 andc6 such that

E~u!>c5S E
R2

u¹uu21u2 dVgD 1/2

2c6 . ~3.23!

ThereforeE(u) is coercive onH1
2 and infuPH

1
2E(u) is finite. Moreover,E(u) is weakly lower

semicontinuous functional onH1
2. We take a minimizing sequence$un% for infuPH

1
2E(u). Then

$un% is bounded onH1
2, which has a subsequence$unk

% converging touPH1
2, a minimizer for

infuPH
1
2E(u). By the elliptic regularity,u is smooth. Finally,u satisfies Eq.~3.8!.

Next we study the behavior of solution of Eq.~3.1!. From aboveu is smooth, thereforew
5u01u is smooth onR22$z1 ,...,zn%. By the argument below Eq.~3.3!, w<0, which implies
Dw5ew(ew21)<0 on R22$z1 ,...,zn%. Following Ref. 8, takeb512ew. On R22$z1 ,...,zn%,
b is smooth and satisfies

Db52ew~ u¹wu21ew~ew21!!<~b21!2b. ~3.24!

Applying the strong maximum principle forb, we haveb.0 onR2. Thereforew,0 onR2.
Sincew is superharmonic on the ballB(x,1) whose radius is one and centerx lies in the outside
of a large compact set, we have2cuuwuuL2(B(x,1))<w(x),0 for some positive constantc ~see Ref.
19!. Thereforew decays to zero uniformly at infinity becausewPL2(R2). For a sufficiently small
positive constantd, 2d,w,0 implies
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wD0w5bew~ew21!w>
w2

2
. ~3.25!

By Jaffe and Taubes20 methods~p. 83!, 2ae2buxu<w(x),0 for some positive constantsa andb
at infinity.

Remarks:Sincea2 does not appear in Eq.~3.22!, we can generalize Theorem 1 if the integr
value of Eq. ~3.13! is bounded. For example, Theorem 1 holds ifc8 dr<dVg5b(x,y)dz
<cr32e dr at infinity for any positive constantsc8, c and any small positive constante.

IV. CONCLUDING REMARKS

We extend the existence and decay property of topological multivortex solutions of Ch
Simons Higgs theory in a general background curved space–time, which have been studied
space or on special background metric. Finding the borderline of growth or decaying condit
the given metric, which gives Theorem 1, is an interesting question. Related issues, e.
existence of nontopological solitons and vortices, self-dual topological vortices in a suitab
caying metric and Chern–Simons solitons under a dynamical gravity, need further study.
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Local existence proofs for the boundary value problem
for static spherically symmetric Einstein–Yang–Mills
fields with compact gauge groups

Todd A. Oliynyka) and H. P. Künzleb)

Department of Mathematical Sciences, University of Alberta, Edmonton T6G 2G1, Canada

~Received 25 August 2000; accepted for publication 1 February 2002!

We prove local existence and uniqueness of static spherically symmetric solutions
of the Einstein–Yang–Mills~EYM! equations for an arbitrary compact semisimple
gauge group in the so-called regular case. By this we mean the equations obtained
when the rotation group acts on the principal bundle on which the Yang–Mills
connection takes its values in a particularly simple way~the only one ever consid-
ered in the literature!. The boundary value problem that results for possible asymp-
totically flat soliton or black hole solutions is very singular and just establishing
that local power series solutions exist at the center and asymptotic solutions at
infinity amounts to a nontrivial algebraic problem. We discuss the possible field
equations obtained for different group actions and solve the algebraic problem on
how the local solutions depend on initial data at the center and at infinity. ©2002
American Institute of Physics.@DOI: 10.1063/1.1463216#

I. INTRODUCTION

Over the last dozen years much has been learned about the classical interaction of Yang
fields with the gravitational field of Einstein’s general relativity. Most investigations have con
trated on Yang–Mills fields with the gauge group SU~2! starting with Bartnik and Mckinnon’s1

discovery of globally regular and asymptotically flat numerical solutions. Their global exist
was analytically proved2,3 and many further properties like stability of these particlelike or soli
solutions and the corresponding black hole solutions were investigated numerically as w
analytically. Moreover, many different matter fields can be minimally coupled to the gravitat
and Yang–Mills fields, and corresponding spherically symmetric solutions have been, m
numerically, but sometimes also analytically studied. We refer for the~hundreds of! references to
the review article.4

Some similar phenomena were found for special models with gauge groups SU(n) for
n.2,5–8 and the general static spherically symmetric equations for general compact gauge
were derived already quite early.9,10

For larger gauge groups than SU~2! the notion of spherical symmetry is no longer straig
forward enough for a simple ansatz to work. Instead one needs to consider the possible ac
the symmetry group SO~3! or SU~2! by automorphisms of principal bundles over space–tim
whose structure groupG is the gauge group of the Yang–Mills field. A conjugacy class of s
automorphisms is characterized by a generatorL0 which is an element of a Cartan subalgebrah of
the complexified Lie algebrag of G.9,10 Mostly one restricts consideration to fields which a
regular at the center or, for black hole fields, to those for which the Yang–Mills-curvature fal
sufficiently fast at infinity. In Ref. 11 these are called regular models. They also correspond
‘‘no magnetic charge’’ case in Ref. 12. For these group actions the elementL0 of h must be an
A1-vector or defining vectorof an sl~2!-subalgebra ofg. That there is a remarkable variety o
possible actions was shown by Bartnik11 for the case whereG is any group with Lie algebra

a!Electronic mail: toliynyk@ualberta.ca
b!Electronic mail: hp.kunzle@ualberta.ca
23630022-2488/2002/43(5)/2363/31/$19.00 © 2002 American Institute of Physics
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su(n). More generally, for arbitrary semisimple Lie algebras theseA1-vectors were classified by
Mal’cev13 and Dynkin14 and can now also be obtained more conveniently from the theor
nilpotent orbits.15

One of these classes of actions of the symmetry group is somewhat distinguished. It
sponds to a principalA1-vector in Dynkin’s terminology and we will call it aprincipal action. To
our knowledge almost all work for larger gauge groups has been done for this case.8,16–18For a
slightly bigger class of actions, the ‘‘generic’’ class in Ref. 12 which we will callregular, the
A1-vector lies in the interior of a fundamental Weyl chamber. Brodbeck and Straumann12,19proved
that all regular static asymptotically flat solutions are unstable against time dependent pe
tions. They were able to do this without establishing existence or any properties of these sol

While it is easy to show that, at least for the regular case, some global solutions exist, n
those which arise by scaling from some imbedded SU~2! solutions, only isolated, mostly numer
cal, results have been obtained about more general global solutions for the principal SU(n) actions
for n53, 4, 5.8,16–18,20

The purpose of this paper is to discuss the classification of all the regular actions of SU~2! by
automorphisms ofG-principal bundles over spherically symmetric static space–times and to
lyze the resulting Einstein–Yang–Mills field equations to the extent of establishing that the
gular boundary value problem obtained for the globally regular and asymptotically flat solutio
well defined ‘‘at both ends,’’ namely at the center or the black hole horizon and at infinity.
local solutions that we obtain near these points are actually analytic. Consequently, there
convergent powerseries representations for these solutions at least for small distances fr
center, the black hole horizon and infinity. Essentially we generalize the results of Ref. 16 fro
principal action on SU(n)-bundles to regular actions on bundles with~simply connected! semi-
simple compact structure groups. Although this represents only a first step in an analy
possible~nonscaled! global solutions establishing these local existence theorems is already
complicated. It is worthwhile to note, that if any of the local solutions can be extended to a g
one, then the results of Brodbeck and Straumann19 apply and show that the solution must b
unstable.

For all these regular models it turns out that the Yang–Mills potential can be chosen~i.e.,
suitably gauged! to depend only onl real-valued functions of a radial coordinater wherel is the
rank of the Lie algebra of the gauge group. In addition, the metric will be given by two m
functions ofr . These (l 12) functions satisfy a nonlinear system of ordinary differential eq
tions which has singularities atr 50, whenr→`, and at the horizon wherer 5r H , say. We need
to analyze these singularities to determine the ‘‘initial conditions’’ for these functions and
number of free parameters that can be chosen when solving the equations numerically,
ample, by the method of shooting to a meeting point. In this paper we will only establish
these parameters are, we will not solve the equations numerically.

There are many models for which theA1-vectorL0 is on the boundary of a Weyl chamber. T
our knowledge almost no results have been obtained for them, but we have reason to belie
some of our methods may also be useful for these irregular models.

In Sec. II we review the description of the class of static spherically symmetric models a
Sec. III we show, starting from the field equations, that the special class of models we call r
can be reduced to the principal case for imbedded semisimple groups. We discuss the initia
problems somewhat informally in Sec. IV where we derive the relatively complicated wa
which a solution depends on parameters chosen at the endpoints of ther -interval. In Sec. V we
extend some elementary facts that are well known for SU~2!-solutions to general compactG.
Finally, the major part of this paper consists of the proofs, divided into Sec. VI conta
algebraic lemmas and the proof of the local existence theorems for the differential equation s
in Sec. VII.

II. CLASSES OF SPHERICALLY SYMMETRIC YANG–MILLS CONNECTIONS

Since there is no natural action of the symmetry group on the principal bundle we ne
consider all possibilities, i.e., all conjugacy classes of actions of SO~3!, or for simplicity, SU~2! by
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automorphisms on principalG-bundlesP over space–timeM which project onto isometries ofM
with orbits diffeomorphic to two-spheres. We assume throughout thatG is a compact semisimple
connected and simply connected Lie group.

Then these conjugacy classes are in one-to-one correspondence with integral elementL0 of
the closed fundamental Weyl chamberW(S) belonging to some basisS of the roots ofg for some
chosen Cartan subalgebrah.9–11 Hereg5(g0)C stands for the complexification of the Lie algeb
g0 of the structure groupG of P. If $t i% is a standard basis of the Lie algebrasu~2! such that
@t i ,t j #5e i j

k tk thenL0 may be chosen such that

L052il~t3!,

wherel is the ~induced Lie algebra! homomorphism from the isotropy groupI x0
of the SU~2!-

action onM at x0PM determined byk•u05u0•l(k);kPI x0
if u0Pp21(x0).

Wang’s theorem21,22 on connections that are invariant under actions transitive on the
manifold has been adapted to spherically symmetric space–time manifolds by Brodbec
Straumann.10 They show that in a Schwarzschild type coordinate system (t,r ,u,f) and the metric

g52NS2dt21N21dr21r 2~du21sin2 udf2!, ~2.1!

a gauge can always be chosen such that the Yang–Mills-connection form is locally given b

A5Ã1Â,

whereÃ is a one-form on the quotient space parametrized by ther and t coordinates and

Â5L1du1~L2 sinu1L3 cosu!df, ~2.2!

whereL352 ( i /2) L0 is the constant isotropy generator andL1 andL2 are functions ofr and t
that satisfy

@L2 ,L3#5L1 and @L3 ,L1#5L2 . ~2.3!

Since we only consider static fields we can assume thatL1 andL2 depend only onr . Moreover,
we will also concentrate on the ‘‘magnetic’’ case and assume that the partÃ of the gauge potentia
which contributes ‘‘electric’’ or ‘‘Coulomb’’ terms vanishes, i.e., we put

Ã50.

This condition is not as restrictive as it seems. For, as proved in Ref. 12, it also follows i
regular case~defined below! if the field is smooth at the centerr 50 and falls off sufficiently fast
at infinity.

So far we still have infinitely many possible actions of SU~2! on the principal bundle, namely
one for each element in the intersectionW(S)ùI of the fundamental Weyl chamber and th
integral latticeIªker(expuh). However, since we want the Yang–Mills-connection to be regu
also at a center~r 50, defined as a connected set of fixed points of the SU~2!-action onM ! and/or
the Yang–Mills-field to fall off in an asymptotic region~have no magnetic charge according
Ref. 12! we must have

@V1
0 ,V2

0#5L3 and/or @V1
` ,V2

`#5L3 , ~2.4!

where

V i
0,̀

ª lim
r→0,̀

L i~r !, ~ i 51,2!.
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In other words, in these limits there must exist a Lie algebra homomorphism ofsu~2! into g0 . This
is shown most easily by observing that the Einstein equations would otherwise lead to in
pressure or density at a center.

SinceL3 is constant, however, Eqs.~2.4! represent not only conditions onL1(r ) andL2(r ),
but also onL3 and hence onL0 which must now be the generating~or defining! vector of ansl~2!
~i.e., A1) subalgebra ofg. ~If both limits exist it then also follows that there must be an autom
phism ofg taking V i

0 into V i
` .! The set of these so-calledA1-vectors, however, is finite@and in

one-to-one correspondence with conjugacy classes ofsl~2! subalgebras#. It has been studied an
tabulated by Mal’cev13 and Dynkin14 and is described by so-called weighted Dynkin diagra
~calledcharacteristicsin Ref. 14!, where to each simple root in the diagram is associated a num
from the set$0,1,2%. ~See Ref. 15 for a more recent exposition!. These numbers represent th
values of the simple roots on the generating vectorL0 chosen such that it lies inW(S).

Thus these tables serve as a classification of all the spherically symmetric magnetic Ein
Yang–Mills models which are regular at the center and/or obey the standard fall-off conditio
infinity for any given compact gauge group.

III. FIELD EQUATIONS AND REDUCTION OF THE REGULAR MODELS

The field equations are well known. We state them here in a form following Ref. 10 fo
static regular case only, whereL0 is anA1-vector. Let the space–time metricg be given by~2.1!
and the Yang–Mills-potentialA5Â by ~2.2!. Define, in addition toL0

L6ª7L12 iL2 ,

so that the Wang Eqs.~2.3! become

@L0 ,L6#562L6 . ~3.1!

ThenL1(r ) andL2(r )% areg-valued functions,L0 a ~constant! vector in the fundamental Wey
chamber ofh and$L0 ,L1 ,L2% is a standard triple in the limitr→0 or r→` for the Lie algebra
g. Now h is the Cartan subalgebra of the complexified Lie algebrag, i.e.,h5h0% ih0 , whereh0 is
the real Cartan subalgebra of a compact real formg0 of g, and we choose conventions such that t
conjugation operatorc:g→g satisfiesc(X1 iY)5X2 iY;X,YPg0 . Then

L252c~L1!, ~3.2!

so that the dependent variables consist only ofN, S, and the components ofL1 .
The field equations now reduce to

m85~NG1r 22P!, ~3.3!

S21S852r 21G, ~3.4!

r 2NL19 12~m2r 21P!L18 1F50, ~3.5!

@L1 ,L28 #2@L18 ,L2#50, ~3.6!

where8ªd/dr and

N5 .. 12
2m

r
, Gª

1

2
~L18 ,L28 !, Pª2

1

2
~ F̂,F̂ !,

F̂ª
i

2
~L02@L1 ,L2# !, ~3.7!
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Fª2 i @ F̂,L1#. ~3.8!

Here ~,! is an invariant inner product ong. It is determined up to a factor on each simp
component of a semisimpleg and induces a normu•u on ~the Euclidean! h and therefore its dual
We choose these factors so that~,! is a positive multiple of the Killing form on each simpl
component. If they are chosen such that the length of the long simple roots are all 1 th
equations will agree with those in Ref. 16 for the principal SU(n) case.

Note thatG>0 and alsoP>0. This follows from~3.2!, c(F̂)5F̂, and the fact that̂XuY&
ª2@c(X),Y# is a Hermitian inner product ong @cf. ~6.1!#. Energy density, radial and tangenti
pressure are then given by

4pe5r 22~NG1r 22P!, 4ppr5r 22~NG2r 22P!,

4ppu5r 24P. ~3.9!

We now choose a Chevalley–Weyl basis ofg using mostly the notation of Ref. 23. LetR be the
set of roots inh* , S5$a1 ,...,a l % a base ofR ~l being the rank ofg!, define

^a,b&ª
2~a,b!

ubu2
,

~ ta ,X!ªa~X!;XPh,

and

haª
2ta

uau2 .

Then$hiªha i
,ea ,e2au i 51,...,l ,aPR% is a basis ofg corresponding to the decomposition

g5h% %
aPR1

~ga % g2a!,

~R1 being the set of positive roots with respect to the baseS! for which we choose the conven
tions

@ea ,e2a#5ha , @e2a ,e2b#52@ea ,eb#,

~ea ,e2a!5
2

uau2
. ~3.10!

Now it follows directly14 from the defining relations

@e0 ,e6#562e6 , @e1 ,e2#5e0 ,

of an sl(2)-subalgebra span$e0 ,e6% of g, with the help of

@h,ea#5a~h!ea ,

that e0 can only be anA1-vector provided

a~e0!52 for some aPR.

Thus, if we let
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L05(
i 51

l

l ihiPh. ~3.11!

then Eqs.~3.1! imply that

L1~r !5 (
aPSl

wa~r !ea ,

where

Slª$aPR u a~L0!52%, ~3.12!

is a set of roots depending only on the homomorphisml or, equivalently, on the coefficientsl i in
~3.11!.

Similarly we have

L2~r !5 (
aPSl

va~r !e2a , ~3.13!

but by ~3.2! and the fact that complex conjugation maps

c:hi°2hi , ea°2e2a ,

it follows that

va~r !5w̄a~r !.

Our system is thus determined once the two real functionsm(r ) and S(r ) and the complex
functionswa(r ) for all aPSl are known.

If we now substitute~3.13! into Eqs.~3.3!–~3.8! we need to calculate the Lie brackets b
tween the variousea for aPSl . In general, this may produce many more equations than de
dent variables. On the other hand the Yang–Mills-potentialÂ determined byL1 still contains
some gauge freedom. It is not known, at present, whether there is any systematic method t
this system of equations.

However, as Brodbeck and Straumann12 have observed, there are special symmetry actions
which this system of equations is much simpler, in fact, very similar to the principal SU(n) case.
This happens whenL0 is a vector in theopenfundamental Weyl chamber ofh. They call these
models generic, but since, as we will see, they are really a small minority of all possible on
will call them regular.

In the following L0 is not required to be anA1-vector.
Theorem 1„Brodbeck–Straumann12

…: If L0 is in the open Weyl chamber W(S) then the set
Sl is a P-system, i.e., satisfies

( i ) if a,bPSl thena2b¹R,
( i i ) Sl is linearly independent,

and is therefore the base of a root system Rl which generates a Lie subalgebragl of g spanned
by $ha ,ea ,e2auaPRl%.
Moreover, ifhlªspan$hauaPSl% and hl

'
ªùaPSl

kera then

h5hl9 % hl
' and L05L091L0

' with L095 (
aPRl

1
ha .

If L0 is an A1-vector thenL0
'50 (but hl

' need not be trivial).
In particular,L09 is twice the lowest weight vector ofhl and we have by the definitions ofSl

andhl
'
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a~L09!52 and a~L0
'!50 ; aPSl .

We will from now on only consider the regular case.
First, L1 can be treated as agl-valued function

L1~r !5(
j 51

l l

wj~r !ẽj ,

where now$ã1 ,...,ã l l
% is the base ofSl and ẽjªeã j

. Moreover,L095( j
l ll j9h̃j with h̃jªhã j

.

Then, by~3.7! noting also thatã j (L0
')50,

F̂5
i

2 S (
j 51

l l

l j9h̃j1L0
'2F (

j 51

l l

wj ẽj ,(
k51

l l

w̄kẽkG D
5

i

2 S (
j 51

l l

~l j92uwj u2!h̃j1L0
'D , ~3.14!

where~3.10! was used and the fact that differences of two simple roots are not roots which im
that

@ea ,e2b#50 ; a,bPSl , aÞb. ~3.15!

Substituting this expression into~3.8! gives

F5
1

2 (
j ,k51

l l

wj^ã j ,ãk&~lk92uwku2!ẽj

1
1

2 (
j 51

l l

wj@L0
' ,ẽj #. ~3.16!

But since@L0
' ,ẽk#5ãk(L0

')ẽk50, in view of the definition ofSl
' , the last term vanishes. Equa

tion ~3.5!, therefore, becomes

r 2Nwj912~m2r 21P!wj81
1

2 (
k51

l l

wjcjk~lk92uwku2!50,

where we have introduced

cjkª^ã j ,ãk&,

for the Cartan matrix ofgl and where now

P5
1

8 (
j ,k51

l l

~l j92uwj u2!hjk~lk92uwku2!1uL0
'u2

with hjkª
2^ã j ,ãk&

uã j u2
, ~3.17!

G5(
j 51

l l uwj8u
2

uã j u2 . ~3.18!

Finally, ~3.6! simply becomes in view of~3.10!
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(
j ,k51

l l

~wjw̄k82wj8w̄k!@eã j
,e2ãk

#5(
j 51

l l

~wjw̄j82wj8w̄j !h̃j50, ~3.19!

so that the phase ofwj is constant and may be chosen to be zero by a gauge transformation
can thus assume that thewj (r ) are real-valued functions.

It remains to determine the subalgebragl for a givenA1-vectorL0 in the open fundamenta
Weyl chamber.

First, we note that for a semisimple group for which the Cartan subalgebrah splits into an
orthogonal sumh5 % hk the decomposition in Theorem 1 splits into corresponding decomposi
of each of thehk . So we need only investigate the regular actions of simple Lie groups.

Now theA1-vector in the Cartan subalgebrah of a semisimple Lie algebrag is uniquely given
by the numbers

x5~x1 ,...,x l !ª~a1~L0!,...,a l ~L0!!, ~3.20!

called thecharacteristicin Ref. 14. It is known14,15 that if L0 is in the closed fundamental Wey
chamber thenxkP$0,1,2%, and all possible such characteristic have been found and tabulat
is clear from the definition ofSl in ~3.12! thatxk52 ; k for hl . SuchA1-vectors defineprincipal
A1-subalgebras and thusprincipal actionsof SU~2! on the bundle. We now have

Theorem 2:

~i! The possible regular A1-subalgebras of simple Lie algebras consist of the principal s
algebras of all Lie algebras Al , Bl , Cl , D l , El , F4 and G2 and of those subalgebra
of Al 5sl(l 11) with evenl corresponding to partitions@ l 112k,k# for any integer
k51,...,l /2 or, equivalently, characteristic(22..211..112..22)~2k ‘1’ s in the middle,
‘2’ s in all other positions!;

~ii ! the Lie algebragl is equal tog in the principal case, and for Al with evenl equal to
Al 21 for k51 and to Al 2k% Ak21 for k52,...,l /2;

(iii ! in the principal casehl95h. For all A1-subalgebras of Al with evenl the orthogonal
spacehl

' is one-dimensional.

Proof: Part~i! follows quite easily from the discussion and the tables in Ref. 15~Secs. 5.3 and
4.4!.

For part~ii ! thathl5h in the principal case is obvious. To computeSl for a givenl 52m and
given k.0 note that all positive roots ofAl are of the form(p5 j

k ap for 1< j <k<2m so that
using thata i(L0)52 for i 51,...,m2k and i 5m1k11,...,2m and a i(L0)51 otherwise one
sees that

Sl5 ø
i 51

m2k

a iø ø
j 51

2k21

~am2k1 j1am2k1 j 11! ø ø
i 5m1k11

2m

a i . ~3.21!

Recalling that forAl

^a i ,a j&5H 2 if i 5 j

21 if u i 2 j u51

0 otherwise

,

it is seen immediately that the Cartan matrix forSl is the one forAl 21 if k51 while it takes a
simple reordering of the roots to verify the statement in~ii ! for k52,...,l /2.

~iii ! Thathl95h in the principal case is obvious from the definition and that dimSl
'51 follows

from the observation thata(X)50 ; aPSl amounts to 2m21 linearly independent equation
according to~3.21!. h
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In summary, we have shown that all regular models can be reduced to those with the pr
action for semisimple gauge groups. Also the termL0

' occuring in~3.14!, ~3.16!, and~3.17! can
now be dropped.

IV. CONSTRUCTING LOCAL SOLUTIONS REGULAR AT THE CENTER, HORIZON
OR AT INFINITY

So far we have shown that the static spherically symmetric and magnetic EYM equatio
the regular action reduce to those for the principal action for semisimple gauge groups.~We now
drop the indexl from g, h, etc.! They consist of~3.4!, which can be integrated easily once th
other equations are solved, and

m85~NG1r 22P!, ~4.1!

r 2Nwj912~m2r 21P!wj81
1

2 (
k51

l

wjcjk~lk2wk
2!50, ~4.2!

where thewk are real-valued functions ofr , (ci j )ª(^a j ,ak&) is the Cartan matrix of the reduce
structure group, and

P5
1

8 (
j ,k51

l

~l j2wj
2!hjk~lk2wk

2!, ~4.3!

G5(
j 51

l wj8
2

ua j u2
, ~4.4!

hjk5
2cjk

ua j u2
, ~4.5!

l j52(
k51

l

~c21! jk . ~4.6!

The expressions for componentslk of the A1-vectorL0 follow from ~3.20! and the fact that for
the principal actionxk52;k.

In this section we will discuss the general problem of finding solutions that are regular
center or at the horizon and have an appropriate fall off asr→`. Proofs will be given later in
Secs. VI and VII.

Equations~4.1! and ~4.2! are very similar to the corresponding ones in the principal SUn)
case analyzed in detail in Ref. 16. So we can expect most of those results to generalize. Firs
when the dependent variablesm and wk are expanded in power series in terms ofr at r 50, in
terms of r 2r H at r 5r H , and in terms ofr 21 at infinity ~under the assumption that all th
quantities are finite in these limits! then~4.1! and~4.2! yield a system of algebraic equations. F
example, atr 50 with f (r )5(k50

` f kr
k we find

mk115
1

k11 S Gk1Pk1222(
h52

k22

mk2hGhD , ~4.7!

(
j 51

l

~Ai j 2k~k11!d i j !wj ,k115bi ,k , ~4.8!

for k50,1,2,... where
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Ai jªwi ,0ci j wj ,0 , ~4.9!

and thebi ,k are complicated expressions involving lower order terms. For the lowest order
we find

m05m15m250, wi ,0
2 5l i , wi ,150. ~4.10!

That r 50 is a singular point for the system~4.1!,~4.2! manifests itself in the fact that the initia
data atr 50 for regular solutions are not simply the values of the functionsm, wi , andwi8 but that
some of these values are restricted like in~4.10! and some higher order coefficients in the pow
series for thewi remain arbitrary, namely for those ordersk for which the matrixA5(Ai j ) has
eigenvaluek(k11). It now turns out that the eigenvalues ofA are precisely of this form for
certain integer values ofk. In fact, for the simple Lie algebras we can calculate the spect
directly from the Cartan matrix and find the values given in Table I. The proof for the classica
algebras of arbitrary rank follows from the properties of the root system and results at the
Sec. 6.

The eigenspaces for the simple Lie algebras are all onedimensional except forD l where
certain ‘‘middle’’ eigenvalues occur twice. For semisimple Lie algebras the matrixA will be a
direct sum of those for the simple components and thus may have multiple eigenvalues.

It is now clear that a formal power series solution of Eqs.~4.1! and~4.2! is well defined and
contains l free parameters provided Eq.~4.8! can be solved, i.e., provided the vectorbk

ª(b1,k ,...,bl ,k) lies in the left kernel of (A2k(k11)I). Sincebk is a very complicated expres
sion this is cumbersome to prove in general. In Ref. 16 the proof forG5SU(n) was achieved
using properties of a class of orthogonal polynomials, an approach that does not easily gen
to other groups. In Secs. VI and VII we present a proof that depends directly on the root str
of the Lie algebrag treated as ansl(2,C)-module.

The structure of the recursion relations for the power series of regular solutions inr 21 at
infinity is very similar to the one atr 50. At the remaining singular point of~4.2!, namely at a
regular horizon (N(r H)50,N8(r H).0), however, the only conditions on initial values turn out
be some inequalities.

Calculating the formal power series is indeed necessary to start off numerical integration
searching for global regular solutions. For an existence and uniqueness proof, however, it i
convenient to recast the equations in a form to which the following~slight generalization of a!
theorem by Breitenlohner, Forga´cs, and Maison3 applies.

Theorem 3: The system of differential equations

TABLE I. The eigenvalues of the coefficient matrixA for the simple Lie
algebras are given by the set spec(A)5$k(k11)ukPE%. For the classical
Lie algebras the table entry giveskj for j 51,2,...5l 5rank(g). Note that
k51 belongs toE for all Lie algebras.

Lie algebra E
Al j
Bl 2 j 21
Cl 2 j 21
D l H2j21 if j ,~ l 12!/2

l 21 if j 5~ l 12!/2

2 j 23 if j .~ l 12!/2
E6 1,4,5,7,8,11
E7 1,5,7,9,11,13,17
E8 1,7,11,13,17,19,23,29
F4 1,5,7,11
G2 1,5
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t
dui

dt
5tm i f i~ t,u,v !, i 51,...,m, ~4.11!

t
dv j

dt
52hj~u!v j1tn jgj~ t,u,v !, j 51,...,n, ~4.12!

where m i , n j are integers greater than 1, f i and gj analytic functions in a neighborhood o
(0,c0,0)PR11m1n, and hj :Rm→R functions, positive in a neighborhood of c0PRm, has a unique
analytic solution t°(ui(t),v j (t)) such that

ui~ t !5ci1O~ tm i ! and v j~ t !5O~ tn j !, ~4.13!

for utu,R for some R.0 if uc2c0u is small enough. Moreover, the solution depends analytic
on the parameters ci .

Proof: By the standard method solving the differential equation with initial data is replace
finding a fixed point for the mapT:(u,v)°(ũ,ṽ) with

ũi~ t !5ci1E
0

t

tm i21f i@t,u~t!,v~t!# dt, ~4.14!

ṽ j~ t !5t2k jE
0

t

tk jn j 21ĝi@t,u~t!,v~t!# dt, ~4.15!

wherek jªhj (c) and ĝ( j )(t,u,v)ªgj (t,u,v)2t2n j@hj (u)2hj (c)#v j . To show thatT is a con-
tracting map on a suitable Banach space one can use a method very similar to the one in Reh

To bring systems~4.1! and ~4.2! into a form that satisfies the hypotheses of theorem 3
necessary to make a suitable transformation of the variablesm andwj . The proofs that this can be
done are basically equivalent to showing that the formal power series exist and are given
VII. We then have

Theorem 4: Systems~4.1! and ~4.2! has an analytic solution for small r of the form

wi~r !5wi ,01(
j 51

l

Ci j r
kj 11uj~r !, i 51,...,l ~4.16!

where C5(Ci j ) is a nonsingular matrix whose jth column is an eigenvector to eigenv
kj (kj11) of the matrixA. The solution is uniquely determined by the initial values uj (0)5b j for
arbitrary b j . The function m(r ) is then determined and satisfies m(r )5O(r 3) for small r.

Note that thewi ,0 are determined up to the sign by~4.10!. From ~7.18!, we see that solutions
from theorem 4 satisfyP5O(r 4) andG5O(r 2). It follows that for these solutions all physica
quantities such as the pressure and mass density are finite atr 50.

The situation is rather similar for solutions analytic inr 21 near infinity. We have, with the
same matrixC.

Theorem 5: The systems (4.1) and (4.2) has an analytic solution for small z5r 21 of the form

wi~r !5wi ,`1(
j 51

l

Ci j r
2kjuj~r 21!, i 51,...,l , ~4.17!

m~r !5m`1O~r 21!. ~4.18!

The solution is uniquely determined by the initial values uj (0)5a j and m̀ for arbitrary a j and
m` .
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Again wi ,` is determined up to the sign bywi ,`
2 5l i . An overall sign inwi(r ) does not affect

the Yang–Mills field nor the geometry and physics. Butwi ,0 and wi ,` may have the same o
different signs for global solutions.

Finally we have the corresponding theorem for local solutions near a regular horizon.
Theorem 6: The systems (4.1) and (4.2) has a solution analytic in t5r 2r H for small t at a

regular horizon, i.e., where N(r H)50 and N8(rH ).0. The solution is uniquely determined by th
values of wj (r H) which must be chosen such that

N8~r H!5
1

r H
2

2

r H
3 P~r H!.0, ~4.19!

or, equivalently,

2P~r H!5
1

4 (
i , j 51

l

~l i2wi~r H!!hi j ~l j2wj~r H!!,r H
2 . ~4.20!

V. ELEMENTARY PROPERTIES AND SCALED SOLUTIONS

The observation already made in Ref. 1 for SU~2! and generalized to SU(n) that global
solutions, if they exist, must be bounded by their values at infinity~or zero! is easily extended to
the regular case for arbitraryG.

Theorem 7: If a solution (m,w1 ,...,wl ) is defined and C2 in the connected outer domai
Dª$r u0<r H<r ,`% ~where N(r ).0! and if

m~r !5m`1O~1/r ! and wj~r !5wj ,`1O~1/r ! as r→`

then

wj~r !2<wj ,`
2 5l j ;r PD

+

.

Moreover, if G is a simple group and wj (r 1)5wj ,` for some j and for some r1PD̊ then wj (r )
5wj ,`;r PD, m5const,the Yang–Mills field vanishes, and the metric is the Schwarzschild o.

If G is semisimple and wj (r 1)5wj ,` for some j and for some r1PD̊ then the field equations
reduce to those of the subgroup of G obtained by deleting from the Cartan subalgebrah of g the
simple component in whichhj lies.

Proof: Let v jªwj
2 . Thenv j (r )>0;r and ~4.2! gives

2r 2Nv jv j92r 2Nv j8
214~m2r 21P!v jv j812v j

2(
k51

l

cjk~lk2vk!50. ~5.1!

Let Vjªsupr PDv j (r ). ThenVj.0 because the asymptotic value ofv j (r ) is l j.0. Now assume
that v j (r j )5Vj for some r jPD̊. Then v j (r j ) is an absolute maximum so thatv j8(r j )50 and
v j9(r j )<0. It follows from ~5.1! that ( j 51

l ci j (l j2v j (r j ))>0 which in view of~4.6! is equivalent
to

(
j 51

l

ci j v j~r j !<2; i ,

or

v i~r i !<11
1

2 (
j Þ i

~2ci j !v j~r i !<11
1

2 (
j Þ i

~2ci j !supr PDv j~r !,
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whenceVi<11 1
2( j Þ i(2ci j )Vj or

(
j 51

l

ci j Vj<2; i .

~Note that for all Cartan matricescii 52 andci j <0 if iÞ j .!
This last set of inequalities, however, can be multiplied with the inverse Cartan matrix sinc
latter has only positive entries. Using~4.6! again then gives 0<Vj<l j; j , thusVj5l j sincel j is
the asymptotic value.

Suppose now thatv i(r * )5l i for somei and somer * PD̊. Then we find from~5.1!

r * N~r * !v i9~r * !5l i(
j Þ i

~2ci j !~l j2v j~r * !!>0,

which contradicts thatv i(r ) has a maximum atr * unlessv j9(r * )50 and, in the case of a simpl
Lie algebra, the neighboringv j also assume their maximal values.~For a simple Lie algebra ther
is a ci j ,0 for somej Þ i for any i .! It follows that all v j (r * )5l j for all j for which the roota j

is in the same simple component ofh* .
However, if all v j (r * )5l j and thusv j8(r * )50 ; j then the initial conditions for the differ-

ential equations~5.1! are all trivial and sincer * is not a singular point it follows by the uniquene
of the solution that it must by the one for whichv j (r )[l j . It then also follows from~4.1! that
m5const so that the Yang–Mills field vanishes and the geometry is the one of the Schwarz
solution. h

Theorem 7 shows among other things that for a given semisimple gauge groupG and a given
group action~characterized byL0! there may be special solutions that reduce the YM-connec
to a subgroup ofG that is a product of some of the simple factors ofG. Somewhat similarly, since
the group SU~2! can be isomorphically imbedded in every compact~simply connected! semi-
simple or simple Lie group the Bartnik–McKinnon solution1 can be obtained as a special soluti
for all the models considered here. The following special BM-solution for arbitrary compaG
was already obtained in Ref. 24.

Consider the gauge groupG and the symmetry group action~characterized byL0! fixed and
such thatL0 is regular so that the field equations are given by~3.4!, ~4.1!, and~4.2!. Select any
V1 such that the set$L0 ,V1 ,V2% is a standard triple withc(V1)52V2 and let L1(r )
5u(r )V1 or, equivalently,wi(r )5wi ,`u(r ). Then the field equations become

m85g0~Nu821 1
2 r 22~12u2!2!, ~5.2!

r 2Nu91~2m2g0r 21~12u2!2!u81u~12u2!50, ~5.3!

S21S852g0r 21u82. ~5.4!

whereg05 1
4( i , jl ihi j l j . By introducing a new radial variablexªrg0

21/2 one sees easily tha
~5.2!–~5.4! reduce to the well studied equations for the SU~2!-Einstein–Yang–Mills fields.

Since L0 fixes the conjugacy class of the symmetry group action on the bundle diffe
choices ofV1 will lead to isomorphic gauge connections, namely reductions of theG-connection
to an SU~2!-connection on the principal bundle for the particular space–time. They are
physically equivalent.

In view of the existence theorems for theG5SU(2) case2,3,25 it now follows that the systems
~4.1! and ~4.2! always admits some global solutions

Theorem 8: There exists a countably infinite family of globally regular solutions of
Einstein–Yang–Mills–equations for any simply connected compact semisimple gauge group
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a static spherically symmetric asymptotically flat space–time diffeomorphic toR4. Similarly, for
any rH.0 there exists an infinite family of asymptotically flat black hole solutions with black
radius rH .

VI. THE LIE ALGEBRA g AS AN sl„2,C… SUBMODULE

In this section we collect all of the algebraic results needed to prove theorems 4 a
Introduce a nondegenerate Hermitian inner product^ u &:g3g→C by

^XuY&ª2~c~X!,Y! ;X,YPg, ~6.1!

recalling thatc:g→g is the conjugation operator determined by the compact real formg0 . Then
^ u & restricts to a real positive definite inner product ong0 . From the invariance properties of ( ,
it follows that ^ u & satisfies

^XuY&5^YuX&,

^c~X!uc~Y!&5^XuY&,

^@X,c~Y!#uZ&5^Xu@Y,Z#&

for all X,Y,ZPg. Treatingg as aR-linear space by restricting scalar multiplication to multiplic
tion by reals, we can introduce a positive definite inner product^^ u &&: g3g→R on g defined by

^^XuY&&ªRê XuY& ;X,YPg.

Let i i denote the norm induced ong by ^^ u &&, i.e.,

iXi5A^^XuX&& ; XPg. ~6.2!

From the above properties satisfied by^ u &, it straighforward to verify that̂^ u && satisfies

^^XuY&&5^^YuX&&,

^^c~X!uc~Y!&&5^^XuY&&, ~6.3!

^^@X,c~Y!#uZ&&5^^Xu@Y,Z#&&

for all X,Y,ZPg.
Let V1 ,V2Pg be two vectors such that

@L0 ,V6#562V6 , @V1 ,V2#5L0 , and c~V1!52V2 .

Then spanC$L0 ,V1 ,V2%.sl(2,C). The dot notation will often be used to denote the adjo
action of spanC$L0 ,V1 ,V2% on g, i.e.,

X.Yªad~X!~Y! ; XPspanC$L0 ,V1 ,V2%, YPg.

Because L0 is a semisimple element, ad(L0) is diagonalizable and it follows from
sl(2)-representation theory23 that the eigenvalues are integers. LetVn denote the eigenspaces
ad(L0), i.e.,

Vnª$XPguL0 .X5nX%, nPZ.

It also follows fromsl(2,C)-representation theory that ifXPg is a highest weight vector of the
adjoint representation of spanC$L0 ,V1 ,V2% with weight n, and we defineX2150, X05X and
Xj5(1/j !)V2

j .X0( j >0), then
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L0 .Xj5~n22 j !Xj ,

V2 .Xj5~ j 11!Xj 11 , ~6.4!

V1 .Xj5~n2 j 11!Xj 21 ~ j >0!.

Proposition 1: There exists M highest weight vectorsj1,j2,...,jM for the adjoint representa-
tion of spanC$L0 ,V1 ,V2% on g that satisfy

( i ) the j j have weights2kj where j51,2,...,M and 15k1<k2<¯<kM ,
( i i ) if V(j j ) denotes the irreducible submodule ofg generated byj j , then the sum( j 51

M V(j j )
is direct,

( i i i ) if j l
j5(1/l !)V2

l .j j then

c~j l
j !5~21! lj2kj 2 l

j , ~6.5!

( iv) M5uSlu and the set$jkj 21
j u j 51,2,...M % forms a basis for V2 over C.

Proof: ( i ) and (i i ): The conjugation operatorc satisfies

c~@X,Y# !5@c~X!,c~Y!# ;X,YPg. ~6.6!

BecauseL0P ih0

c~L0!52L0 . ~6.7!

Using ~3.2!, ~6.6!, and~6.7!, it is easy to see that

c+ad~V6!n5~21!nad~V6!n+c for every nPZ>0

and c+ad~L0!52ad~L0!+c. ~6.8!

As usual, define the Casimir operatorC by

C5 1
2ad~L0!21ad~V1!ad~V2!1ad~V2!ad~V1!.

Theng can be decomposed as follows:26

g5 %
p

V~sp ,vp!, ~6.9!

whereV(sp ,vp) is a highest weight module generated by the highest weight vectorvp of weight
sp , and it has the property

CuV(sp ,vp)5~ 1
2 sp

21sp!idV(sp ,vp) ; p. ~6.10!

From ~6.8! it follows that C+c5c+C. Using this result and~6.10!, we see that

c~V~sp ,vp!!,V~sp ,vp! ;p. ~6.11!

Let $sp1
,sp2

,...,spM
% be the set of weights from the decomposition~6.9! that are even and greate

than zero. We will assume that they are ordered so thatsp1
<sp2

<¯<spM
. Define kj5spj

/2.
Then thekj are positive integers that satisfyk1<k2<¯<kM . Note thatk151 becauseV1 is a
highest weight vector with weight 2. To simplify notation, setv j

ªvpj . As before with highest
weight vectors@see~6.4!#, we letv l

j5(1/l !)V2
l .v j . Define
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j j5H iv j1c~ iv2kj

j ! if c~v2kj

j !52c~v j !

v j1c~v2kj

j ! otherwise
, ~6.12!

for j 51,2,...M . Then straightforward calculation using~6.8! and ~6.4! shows thatL0 .j j52kjj
j

andV1 .j j50 for j 51,2,...M . This implies that thej j are all highest weight vectors of weigh
2kj . Let V(j j ) denote the irreducible submodule generated byj j . From ~6.11! and ~6.12! it is
clear thatj j,V(2kj ,v j ) and henceV(j j )5V(2kj ,v j ). Thus the decomposition~6.9! shows that
the sum( j 51

M V(j j ) is direct.
( i i i ): The relationship~6.5! follows from ~6.8!, ~6.12!, and~6.4!.
( iv): Because the numbers 2k1 ,2k2 ,...,2kM exhaust all the positive even weights and the s
( j 51

M V(j j ) is direct, it follows fromsl(2,C)-representation theory that$j j u j 51,2,...M % is a basis
over C for V2 . But $eauaPSl% is also a basis overC for V2 . Therefore we must haveM
5uSlu. h

Define anR-linear operatorA:g→g by

A5 1
2ad~V1!+~ ad~V2!1ad~V1!+c!. ~6.13!

Proposition 2: TheR-linear operator A is symmetric with respect to the inner product^^ u &&,
i.e., ^^A(X)uY&&5^^XuA(Y)&&; X,YPg.

Proof: From ~3.2! and the properties~6.3! of the inner product̂ ^ u &&, it is not hard to show
that ^^@V1 ,@V2 ,X##uY&&5^^Xu@V1 ,@V2 ,Y##&& and ^^@V1 ,@V1 ,c(X)##uY&&
5^^Xu@V1 ,@V1 ,
c(Y)##&& for every X,YPg. From the definition ofA, it is then obvious that̂ ^A(X)uY&&
5^^XuA(Y)&& for everyX,YPg. h

Lemma 1:

A~V2!,V2 . ~6.14!

Proof: It follows from sl(2,C)-representation theory thatV6 .Vn,Vn62 . From~6.8! it is clear
that c(Vn),Vn . Thus V1 .V2 .V2,V2 and V1 .V1 .c(V2),V2 which implies that
A(V2),V2 . h

This proposition shows thatA restricts to an operator onV2 . We denote this operator by

A2ªAuV2
. ~6.15!

Label the integerskj from proposition 1 as follows

15kJ1
5kJ1115¯5kJ11m121,kJ2

5kJ2115¯5kJ21m221

,¯,kJI
5kJI115¯5kJI1mI21 ,

whereJ151, Jl1ml5Jl 11 for l 51,2,...,I andJI 115M21. Define

klªkJl
l 51,2,...,I . ~6.16!

The set$jkj 21
j u j 51,2,...M % forms a basis overC of V2 by proposition 1~iv!. Therefore, the set o

vectors$Xs
l ,Ys

l u l 51,2,...,I ;s50,1,...,ml21% where

Xs
l
ªH jkl21

Jl1s
if kl is odd

i jkl21
Jl1s

if kl is even
and Ys

l
ª iXs

l , ~6.17!
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forms a basis ofV2 over R. By proposition 2, we know thatA is symmetric and therefore
diagonalizable. This forcesA2 to also be diagonalizable. The next lemma shows that$Xs

l ,Ys
l u l

51,2,...,Is50,1,...,ml21% is in fact an eigenbasis ofA2 .
Lemma 2:

A2~Xs
l !5kl~kl11!Xs

l and A2~Ys
l !50 f or l 51,2,...,I ~6.18!

and s50,1,...,ml21.
Proof: Using the formulas~6.4! and proposition 1~iii ! it is easy to show thatA(jkj 21

j )

5 1
2kj (kj11)(11(21)kj 21)jkj 21

j and A( i jkj 21
j )5 1

2kj (kj11)(11(21)kj) i jkj 21
j for j

51,2,...M . The proposition then follows from~6.16! and 6.17. h

An immediate consequence of this lemma is that spec(A2)5$0%ø$kj (kj11)u j 51,2,...I % and
mj is the dimension of the eigenspace corresponding to the eigenvaluekj (kj11). Note thatI is
the number of distinct positive eigenvalues ofA2 .
Define

E0
l 5spanR$Ys

l us50,1,...,ml21%,

E1
l 5spanR$Xs

l us50,1,...,ml21% ~6.19!

and

E05 %
l 51

I

E0
l , E15 %

l 51

I

E1
l . ~6.20!

Then E05ker(A2) and E1
l is the eigenspace ofA2 corresponding to the eigenvaluekl(kl11).

Moreover, using proposition 1~iv!, we see that

V25E0% E1 . ~6.21!

Lemma 3: Suppose XPV2 . Then XP % q51
l E0

q
% E1

q if and only if V
1

kl .X50.
Proof: From the formulas~6.4!, we get

V1
q21 .jkl21

l 5H 0 if q.kl

d~q,kl !jkl2q
l

if q<kl
,

whered(q,r )5(q1r )!/( r 11)!. This implies that

V1
l 21 .Xp

q5H 0 if l .kq

bqd~ l ,kq!jkq2 l
Jq1p

if l<kq
~6.22!

and

V1
l 21 .Yp

q5H 0 if l .kq

b̄q d~ l ,kq!i jkq2 l
Jq1p

if l<kq
, ~6.23!

where

bq5H 1 if kq is odd

i if kq is even
.

SupposeXPV25 % q51
I E0

q
% E1

q . Then there exists real constantsaqp andbqp such that
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X5 (
q51

I

(
p50

mq21

~aqp Yp
q1bqp Xp

q!. ~6.24!

SupposeV
1

kl .X50. Then~6.22!–~6.24! imply that

(
q5 l 11

I

(
p50

mq21

~aqp b̄q d~kl11,kq!i jkq2kl21
Jq1p

1bqp bq d~kl11,kq!jkq2kl21
Jq1p

!50.

But the set of vectors

$b̄qi jkq2kl21
Jq1p ,bq jkq2kl21

Jq1p uq5 l 11,l 12,...I ,p50,1,...,mq21%,

is linearly independent overR. Therefore,X5(q51
l (p50

mq11(aqpYp
q1bqpXp

q) which implies that
XP % q51

l E0
q

% E1
q .

Conversely, supposeXP % q51
l E0

q
% E1

q . TheX can be written in the form~6.24! and it is easy
using ~6.22! and ~6.23! to verify thatV

1

kl .X50. h

Lemma 4: Suppose XPV2 . Then XP % q51
l E0

q
% E1

q if and only if V
1

kl12 .c(X)50.
Proof: Proved in a similar fashion as lemma 3. h

Lemma 5: Let̃ :Z>21→$1,2,...,I % be the map defined by

21̃50̃51 and s̃5max$ l ukl<s% i f s.0.

Then
( i ) ks̃<s for every sPZ>0 .
( i i ) ks̃<s,ks̃11 for every sP$0,1,...kI21%.
Proof: ( i ) This is obvious from the definition of̃.

( i i ) From part~i!, ks̃<s. So supposeks̃11<s. Then from the definition of̃ it is clear ks̃11

<ks̃ . But becausek1,k2,¯,kI , it follows that s̃11<s which is a contradiction. Thusks̃11

.s and we are done. h

Lemma 6: If XPV2 , kp̃1s,kp̃11 (s>0), and V
1

kp̃1s .X50, thenV
1

kp̃ .X50.

Proof: Assume s.0, otherwise we are done. BecauseXPV2 , we have V
1

kp̃1s21 .X

PV2(kp̃1s) . By assumptionV
1

kp̃1s .X50, so

V
1

kp̃1s21 .XPV2(kp̃1s)ùker~ad~V1!!.

But, if nPZ.0 , then

V2nùker~ad~V1!!Þ$0%⇔nP$k1 ,k2 ,...,kI%,

because otherwiseg would contain an irreducible spanC$L0 ,V1 ,V2%-submodule with weight
2nPZ.0\$2k1,2k2 ,...,2kI%. This is impossible as the set$2k1 ,2k2 ,...,2kI% exhausts all the posi
tive even weights of the irreducible spanC$L0 ,V1 ,V2%-submodules in g. Therefore
V

1

kp̃1s21 .X50 as kp̃,kp̃1s,kp̃11 implies that (kp̃1s) is not in $k1 ,k2 ,...,kI%. Repeat the

above argument withs85s21 to arrive atV
1

kp̃1s821 .X5V
1

kp̃1s22 .X50. Continuing in this

manner, we findV
1

kp̃ .X50. h

The next theorem is the key result needed to prove that the EYM equations can be put
form where theorem 3 applies in a neighborhood of the originr 50.

Theorem 9: Suppose pP$1,2,...,kI21% and Z0 ,Z1 ,...,Zp11PV2 is a sequence of vector
that satisfy Z0PE0

1
% E1

1 and Zn11P % q51
ñ E0

q
% E1

q for n50,1,...p. Then for every
j P$1,2,...,p11%, sP$0,1,2,...,j %

( i ) @@c(Zj 2s),Zs#,Zp122 j #P % q51
p̃ E0

q
% E1

q ,
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( i i ) @@c(Zp122 j ),Zj 2s#,Zs#P % q51
p̃ E0

q
% E1

q .

Proof: ( i ) SupposeZ0 ,Z1 ,...,Zp11PV2 is a sequence satisfyingZ0PE0
1

% E1
1 and Zn11P

% q51
ñ E0

q
% E1

q for n50,1,...p. Then

V
1

k(n21); .Zn5V
1

k(n21);12 .c~Zn!50, ~6.25!

for n50,1,2,...,p11 by lemmas 3 and 4. Now, ifj P$1,2,...,p11% andsP$0,1,...,j %, then

V1
p .@@c~Zj 2s!,Zs#,Zp122 j #5(

l 50

p

(
m50

l S p
l D S l

mDaps jlm ,

where

aps jlm5@@V1
m .c~Zj 2s!,V1

l 2m .Zs#,V1
p2 l .Zp122 j #.

Applying ~6.25! yieldsaps jlm50 if m22>k( j 2s21); or l 2m>k(s21); or p2 l>k(p112 j ); . But
because of lemma 5~i!, this implies thataps jlm50 if m22> j 2s21 or l 2m>s21 or p2 l
>p112 j . It follows that aps jlm50 unlessl and m satisfy j 21, l ,m1s21, j which is
impossible. Therefore,aps jlm50 for all l andm. ThusV1

p .@@c(Zj 2s),Zs#,Zp122 j #50. But then
it follows from lemmas 5 ~ii ! and 6 that V1

p̃ .@@c(Zj 2s),Zs#,Zp122 j #50 and hence
@@c(Zj 2s),Zs#,Zp122 j #P % q51

p̃ E0
q

% E1
q by lemma 3.

( i i ) It follows from similar arguments that@@c(Zp122 j ),Zj 2s#,Zs#P % q51
p̃ E0

q
% E1

q . h

It is worthwhile to note that all the the above results did not depend onL0 being regular.
However, for what follows we will needL0 to be regular.

Proposition 3: SupposeL0 is regular. Then spanC$j
1,j2,...,jM% is an Abelian subalgebra o

gl and hence also an Abelian subalgebra ofg.
Proof: From the definition ofgl , it follows that spanC$L0 ,V1 ,V2%,gl andV2,gl . But by

proposition 1V25spanC$jk121
1 ,jk221

2 ,jkM21
M %, and hence

~kl11!!

~2kl !!
V

1

kl21 .jkl21
l 5j lPgl ,

for i 51,2,...,M . Therefore spanC$j
1,j2,...,jM%,gl . The j j are highest weight vectors, cons

quently

spanC$j
1,j2,...,jM%,gl

V1 ~6.26!

wheregl
V15$XPglu@V1 ,X#50%. DefineVl,nª$XPgluL0 .X5nX%. By theorem 1,Sl is a base

a system of roots ofgl anda(L0)52 for everyaPSl and hence it follows thatVl,25V2 . Using
sl(2,C)-representation theory, it is not hard to show that dimCgl

V15dimCVl,2 . But dimCV2

5uSlu, and therefore dimCgl
V15uSlu. By proposition 1,uSlu5M and hence we get from~6.26!

that

spanC$j
1,j2,...,jM%5gl

V1. ~6.27!

Theorem 1 proved thatuSlu5dimChl which in turn gives, via the above result, dimCgl
V1

5dimChl . Applying lemma 2.1.15 of Ref. 15 then shows that

dimCgl
V15min$dimCgl

XuXPgl%. ~6.28!

We can identifygl with the dualgl* using the form ( , ), i.e.,
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i:gl,0→gl,0* ; i~X!~• !5~X,• !.

So if f Pgl* and we definegl
f 5$XPgluadX* ( f )50%, then it can be shown that

gl
i(X)5gl

X ;XPg. ~6.29!

Let Gl be a connected complex semisimple Lie group with Lie algebragl . Then for f Pgl* , gl
f

is the Lie algebra of coadjoint isotropy groupGl, f5$aPGluAda* ( f )5 f %. But then~6.27!, ~6.28!,
~6.29! and a straightforward generalization of theorem 9.3.10 in Ref. 27 to complex Lie gr
imply that spanC$j

1,j2,...,jM% is an Abelian subalgebra. h

The next theorem is the key result needed to prove that the EYM equations can be put
form where theorem 3 applies in a neighborhoodr 5`. Although this theorem looks very simila
to theorem 9, it is more difficult to prove. Similar arguments as in theorem 9 are employed
these only go part of the way. Proposition 3 is needed to complete the proof.

Theorem 10: Assume thatL0 is regular. Suppose pP$0,1,2,...,kI% and Z0 ,Z1 ,...,ZpPV2 is
a sequence of vectors that satisfy ZnP % q51

ñ E0
q

% E1
q for n50,1,2...p. Then for every

j P$1,2,...,p%, sP$0,1,...,j %
( i ) @@c(Zj 2s),Zs#,Zp112 j #P % q51

p̃ E0
q

% E1
q ,

( i i ) @@c(Zp112 j ),Zj 2s#,Zs#P % q51
p̃ E0

q
% E1

q .
Proof: ( i ) SupposeZ0 ,Z1 ,...,ZpPV2 is a sequence satisfyingZnP % q51

ñ E0
q

% E1
q for n

50,1,...p. Then

V
1

kñ .Zn5V
1

kñ12 .c~Zn!50, ~6.30!

for n50,1,2,...,p by lemmas 3 and 4. Supposej P$1,2,...,p% andsP$0,1,...,j %. Then

V1
p .@@c~Zj 2s!,Zs#,Zp112 j #5(

l 50

p

(
m50

l S p
l D S l

mDaps jlm , ~6.31!

where

aps jlm5@@V1
m .c~Zj 2s!,V1

l 2m .Zs#,V1
p2 l .Zp112 j #.

Applying ~6.30! yieldsaps jlm50 if m22>k( j 2s); or l 2m>ks̃ or p2 l>k(p112 j ); . But because
of lemma 5 ~i!, this implies thataps jlm50 if m22> j 2s or l 2m>s or p2 l>p112 j . It
follows thataps jlm50 unlessl andm satisfy j 21, l ,m1s, j 12 which implies thatl 5 j and
m1s5 j 11. Thus the sum~6.31! reduces to

V1
p .@@c~Zj 2s!,Zs#,Zp112 j #5S p

j D S j
j 112sD @@X1 ,X2#,X3#,

where X15V1
j 2s11 .c(Zj 2s), X25V1

s21 .Zs , and X35V1
p2 j .Zp112 j . Applying ~6.30! then

shows thatV1 .Xa50 for a51,2,3. Because theXa have even weights,

X1 ,X2 ,X3PspanC$j
1,j2,...,jM%.

But spanC$j
1,j2,...,jM% is an Abelian subalgebra by proposition 3, so@@X1 ,X2#,X3#50 which

implies that V1
p .@@c(Zj 2s),Zs#,Zp112 j #50. We then get via lemma 6 tha

V
1

kp̃ .@@c(Zj 2s),Zs#,Zp112 j #50 and hence@@c(Zj 2s),Zs#,Zp112 j #P % q51
p̃ E0

q
% E1

q by lemma 3.

( i i ) The proof that@@c(Zp112 j ),Zj 2s#,Zs#P % q51
p̃ E0

q
% E1

q is similar to part (i ). h

Proposition 4: IfV1P(aPSl
Rea and L0 is regular, then E15(aPSl

Rea .
Proof: Introduce a basis$Zj u1< j <M % over R for E1 by defining
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Zj5H jkj 21
j if kj is odd

i jkj 21
j if kj is even

1< j <M .

Equations~6.4! and proposition 1~iii ! can be used to show that

V1 .c~Zj !5V2 .Zj 1< j <M . ~6.32!

By assumptionV15(aPSl
waea for some set of constantswaPR. Becausec(V1)52V2 and

c(ea)52e2a , V25(aPSl
wae2a . SinceZjPV2 , Zj5(aPSl

aj aea for some set of constant
aj aPC. So thenc(Zj )52(aPSl

ā j ae2a . Now, sinceL0 is regular, Eq.~3.15! holds. Therefore,

V2 .Zj5 (
aPSl

waaj a@e2a ,ea#5 (
aPSl

2waaj aha , ~6.33!

while

V1 .c~Zj !5 (
aPSl

2waā j a@ea ,e2a#5 (
aPSl

2waā j aha . ~6.34!

The three results~6.32!–~6.34! then yield

(
aPSl

wa~aj a2ā j a!ha50.

Since L0 is regular, it follows thatwaÞ0 for all aPSl and the set$hauaPSl% is linearly
independent.12 Thus aj a2ā j a50 for all aPSl and j 51,2,...,M . So ZjP(aPSl

Rea for j

51,2,...,M which implies thatE1,(aPSl
Rea . However, dimRE15dimR((aPSl

Rea)5uSlu
and, therefore,E15(aPSl

Rea . h

SupposeL0 is regular andV15(aPSl
waea where waPR for every aPSl . Then using

~3.10!, ~3.15!, and the fact thatc(ea)52e2a , it is not difficult to show that

A2~ea!5 (
bPSl

wb^b,a&waeb .

This result along with~6.21! and proposition 4 shows that$eauaPSl% can be completed to a bas
over R of V2 so that the matrix ofA2 with respect to this basis takes the form

@A2#5S 0 0

0 @Aab#
D , ~6.35!

with

Aab5wa^a,b&wb . ~6.36!

VII. LOCAL UNIQUENESS AND EXISTENCE PROOFS

In this section we present the proofs of theorems 4–6. The proof of theorem 6 is the e
and does not depend on the results of the Sec. 6.
Define

Eª$kj u j 51,2,...I %,

with the kj defined in~6.16! and let
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pr1
q :E1→E1

q q51,2,...I ,

denote the projection operators between the spaces defined in~6.19! and~6.20!. If aPR, we will
useI e(a) to denote an interval of radiuse abouta, i.e.,

I e~a!5~a2e,a1e!.

From proposition 4 and~3.19!, we know that the the solutionL1(r ) to Eq.~3.6! is, up to a gauge
transformation, completely characterized by the condition

L1~r !PE1 ;r . ~7.1!

As discussed previously, if we can solve the two EYM equations~3.3! and~3.5! for the variables
$L1(r ),m(r )% the remaining equation~3.4! can be integrated to yieldS. Consequently, we are
only interested in Eqs.~3.3! and ~3.5!.

Proof of theorem 4:The proof of this theorem involves finding a change of variables to put
system of differential equations~3.3! and ~3.5! into a form where theorem 3 applies in a neig
borhood ofr 50.

SinceL1 satisfies~7.1!, we can introduce new variables$us11(r )usPE% that satisfy

L1~r !5V11(
sPE

us11~r !r s11, ~7.2!

whereV15L1(0) andus11(r )PE1
s̃ for all r andsPE. BecauseE15 % q51

I E1
q , it is obvious

that this transformation is invertible. Define

xs115H 1 if sPE
0 otherwise

.

Then we can writeL1(r )5V11(k50
` xkuk(r )r k. Substituting this in~3.8! shows that there exist

an integerN1 such that

F52(
kPE

A2~uk11!r k111 (
k52

N1

f kr
k,

where

f k5
1

2 (
j 52

k22 H @@V1 ,c~x juj !#1@V2 ,x juj #,xk2 juk2 j #1@@x juj ,c~xk2 juk2 j !#,V1#

1(
s52

j 22

@@xsus ,c~x j 2suj 2s!#,xk2 juk2 j #J .

But A2(uk11)5k(k11)uk11 for everykPE by lemma 2 and hence

F52(
kPE

k~k11!uk11 r k111 (
k52

N1

f kr
k. ~7.3!

Define

vs115us118 ;sPE. ~7.4!

Using ~7.2!, ~7.3! and ~7.4!, the EYM equation~3.5! can be written as
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r (
kPE

vk118 r k11522(
kPE

~k11!vk11 r k111(
kPE

k~k11!

r S 1

N
21Duk11 r k11

2
2

rN S m2
1

r
PD (

kPE
~vk11 r k111~k11!uk11r k!2

1

N (
k54

N1

f k r k21. ~7.5!

Applying the projections pr1
k̃ for everykPE to Eq. ~7.5! yields

rvk118 522~k11!vk112
2

rN S m2
1

r
PD vk11

1
k~k11!

r S 1

N
21Duk112

2

r 2N S m2
1

r
PD

3~k11!uk11r k2
1

r k11N (
s52

N122

pr1
k̃ ~ f s12!r s11 ;kPE. ~7.6!

The last term in~7.6! is the main obstruction to putting the equation into a form where theore
applies. It seems to contain terms of orderr 2s(s.0). However, as we shall now see, the resu
of Sec. VI can be used to show that

1

r k11N (
s50

N122

pr1
k̃ ~ f s12!r s115

1

N (
s5k

N122

pr1
k̃ ~ f s12!r s2k. ~7.7!

Namely, by using proposition 4, we can show thatf kPE1 for all k. From the definition of the
us11 it is clear thatxs11us11P % q51

s̃ E1
q for 0<s<kI , and so it follows from theorem 9 by

letting Z05V1 andZk115xk11uk11 for k>0 that f s12P % q51
s̃ E1

q . Consequently, for everyk
PE

pr1
k̃ ~ f s12!50 if s,k,

becausekPE implies thatk5kk̃ and hence it follows fors,k5kk̃ that s̃, k̃. This proves~7.7!.
Therefore, we can rewrite~7.6! as

rvk118 522~k11!vk112
2

rN S m2
1

r
PD vk111

k~k11!

r S 1

N
21Duk112

2

r 2N S m2
1

r
PD

3~k11!uk112
r

N (
s5k

N121

pr1
k̃ ~ f s13!r s2k1S 12

1

NDpr1
k̃ ~ f k12!2pr1

k̃ ~ f k12! ;kPE.

~7.8!

Using the properties~6.3! of ^^ u && and the fact thatA2(u2)52u2 , it can be shown that there
exists analytic functions

P̂:E13R→R and Ĝ:E13E13R→R,

such that

P5r 4iu2i21r 5P̂~u,r ! and G5r 22iu2i21r 3Ĝ~u,v,r !, ~7.9!

whereu5(sPEus11 , v5(sPEvs11 , andi i is defined by~6.2!. Introduce a new ‘‘mass’’ variable
m by
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m5
1

r 3 ~m2r 3iu2i2!. ~7.10!

Recall thatk151, so 1 is always inE and henceu2 is always defined. We can then write the EY
equation~3.3! as

rm8523m1r $P̂~u,r !1Ĝ~u,v,r !22^^ u2uv2 &&22r ~m1iu2i2!~2iu2i21rĜ~u,v,r !!%.

~7.11!

Introduce one last change of variables via

v̂k115vk111
1

2~k11!
pr1

k̃ ~ f k12!. ~7.12!

Fix XPE1 and definev̂5(sPEv̂s11 . Then using~7.8!, ~7.10!, and ~7.12!, it can be shown that
there exists a neighborhood ofNX of X in E1 , an e.0, and a sequence of analytic maps

Gk :NX3E13I e~0!3I e~0!→E0
k̃;kPE,

such that

r v̂k118 522~k11!v̂k111rGk~u,v̂,m,r !;kPE. ~7.13!

Also from ~7.4!, ~7.11!, and~7.12!, it is not difficult to show that there exists analytic maps

Hk :E13E1→E1
k̃ ;kPE and K:E13E13R3R→R,

such that

ruk118 5rHk~u,v̂ ! ;kPE, ~7.14!

rm8523m1rK~u,v̂,m,r !. ~7.15!

The system of differential equations~7.13!–~7.15! are in the form for which theorem 3 applie
Applying this theorem shows that for fixedXPE1 there exist a unique solution
$uk11(r ,Y),v̂k11(r ,Y),m(r ,Y)% to this system of differential equations that is analytic in a nei
borhood of (r ,Y)5(0,X) and that satisfies

us11~r ,Y!5Ys1O~r ! ;sPE, ~7.16!

v̂s11~r ,Y!5O~r ! ;sPE, ~7.17!

m~r ,Y!5O~r !,

whereYs5pr1
s̃ (Y). From Eq.~7.10!, it is then clear that massm satisfies

m~r !5O~r 3!.

Also from ~7.9!, ~7.12!, ~7.16!, and~7.17! it is not difficult to see that

P5O~r 4! and G5O~r 2!. ~7.18!

From the results of the previous section there exists an orthonormal basis$f j u j 51,2,...M % for E1

consisting of eigenvectors forA2 , i.e, A2(f j )5kj (kj11)f j . Thus we can introduce new variable
$û j (r )u j 51,2,...M % via
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(
sPE

us11~r !r s115(
j 51

M

ûj~r !r kj 11f j . ~7.19!

From proposition 1 we know thatM5uSlu. So we can writeSl5$a j u j 51,2,...M % and we get
from proposition 4 that$ea j

u j 51,2,...M % is also a basis forE1 . Therefore there exists a rea
nonsingular matrixCi j such that

f j5 (
k51

M

Ck jeak
. ~7.20!

ExpandV1 andL1 in the basis$ea j
u j 51,2,...M % as follows:

V15(
j 51

M

wj ,0ea j
and L1~r !5(

j 51

M

wj~r !ea j
. ~7.21!

Then results~7.2!, ~7.19!–~7.21! imply that

wi~r !5wi ,01(
j 51

M

Ci j û j~r !r kj 11 i 51,2,...M ,

while from ~7.16! and ~7.19! it is clear that

û j~r ,Y!5b j~Y!1O~r ! j 51,2...,M ,

whereb j (Y)5^^f j uY&&. h

Proof of theorem 5:The proof of this theorem involves finding a change of variables to put
system of differential equations~3.3! and ~3.5! into a form where theorem 3 applies in a neig
borhood ofz50 wherez5 1/r . This proof is similar to the proof of theorem 4 with the excepti
that theorem 10 is needed instead of theorem 9.

SinceL1 satisfies~7.1!, we can introduce new variables$us(z)usPE% that satisfy

L1~z!5V11(
sPE

us~z!zs, ~7.22!

whereV15L1uz50 andus(z)PE1
s̃ for all z andsPE. BecauseE15 % q51

I E1
q , it is obvious that

this transformation is invertible. Define

xs5H 1 if sPE
0 otherwise

.

Then we can writeL1(z)5V11(k50
` xkuk(z)zk. Substituting this in~3.8! shows that there exist

an integerN1 such that

F52(
kPE

A2~uk!z
k1 (

k51

N1

f kz
k,

where
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f k5
1

2 (
j 51

k21 H @@V1 ,c~x juj !#1@V2 ,x juj #,xk2 juk2 j #1@@x juj ,c~xk2 juk2 j !#,V1#

1(
s51

j 21

@@xsus ,c~x j 2suj 2s!#,xk2 juk2 j #J .

But A2(uk)5k(k11)uk for everykPE by lemma 2 and hence

F52(
kPE

k~k11!uk zk1 (
k51

N1

f kz
k. ~7.23!

Define

vs5ůs ;sPE. ~7.24!

where (•)
+

5 d/dz(•). Using ~7.22!–~7.24!, the EYM equation~3.5! can be written as

(
kPE

v̊k zk115(
kPE

22~k11!vkz
k1(

kPE H 2

z S 12
1

ND vk1
1

z2 S 1

N
2122mzD k~k21!uk

1
4m

z S 1

N
21D kuk1

2

N
~2m2z2P!vk2

zP

N
kukJ zk11

1(
kPE

2mk~k11!ukz
k2

1

N (
k51

N1

f k zk21. ~7.25!

Applying the projections pr1
k̃ for everykPE to Eq. ~7.25! yields

zv̊k522~k11!vk1zH 2

z S 12
1

ND vk1
1

z2 S 1

N
2122mzD k~k21!uk

1
4m

z S 1

N
21D kuk1

2

N
~2m2z2P!vk2

zP

N
kukJ

12mk~k11!uk2
1

zkN (
s50

N121

pr1
k̃ ~ f s11!zs ;kPE. ~7.26!

The last term in~7.26! is the main obstruction to putting this equation into a form where theo
3 applies. It seems to contain terms of orderz2s(s.0). But this is not the case as the results
Sec. VI can be used to show that

1

zkN (
s50

N121

pr1
k̃ ~ f s11!zs5

1

N (
s5k

N121

pr1
k̃ ~ f s11!zs2k.

Namely, using proposition 4, it can be shown thatf kPE1 for all k. From the definition of theus

it is obvious thatxsusP % q51
s̃ E1

q for 1<s<kI , and therefore, by lettingZ05V1 andZk5xkuk

for k>1 we getf s11P % q51
s̃ E1

q via theorem 10. Consequently, for everykPE

pr1
k̃ ~ f s11!50 if s,k,

becausekPE implies thatk5kk̃ and hence it follows fors,k5kk̃ that s̃, k̃. Therefore we can
rewrite ~7.26! as
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zv̊k522~k11!vk1zH 2

z S 12
1

ND vk1
1

z2 S 1

N
2123mzD k~k21!uk

1
4m

z S 1

N
21D kuk1

2

N
~2m2z2P!vk2

zP

N
kuk2

z

N (
s5k11

N121

pr1
k̃ ~ f s11!zs2k21

1S 12
1

NDpr1
k̃ ~ f k11!J 12mk~k11!uk2pr1

k̃ ~ f k11! ;kPE. ~7.27!

It is clear that there exists analytic functions

P̂:E13R→R and Ĝ:E13E13R→R,

such that

P5 P̂~u,z! and G5z4Ĝ~u,v,z!,

whereu5(sPEus andv5(sPEvs . The EYM equation~3.3! can then be written as

zm̊5z@~2mz21!z2Ĝ~u,v,z!2P~u,z!#. ~7.28!

Introduce one last change of variables via

v̂k5vk1
1

2~k11!
pr1

k̃ ~ f k11!2kmuk . ~7.29!

Fix a.0 and definev̂5(sPEv̂s . Then using~7.27!, and~7.29!, it can be shown that there exis
ande.0, and a sequence of analytic maps

Gk :E13E13I e~a!3I e~0!→E0
k̃ ;kPE,

such that

zv̊̂k522~k11!v̂k1zGk~u,v̂,m,z! ;kPE. ~7.30!

Also from ~7.24!, ~7.28!, and~7.29!, it is not hard to show that there exists analytic maps

Hk :E13E13R→E1
k̃ ;kPE

and K:E13E13R3R→R, ~7.31!

such that

zůk5zHk~u,v̂,m! ;kPE, ~7.32!

zm̊5zK~u,v̂,m,z!. ~7.33!

The system of differential equations~7.30!, ~7.32!, and~7.33! are in the form for which theorem
3 applies. Applying this theorem shows that for fixed (X,a)PE13(0,̀ ) there exist a unique
solution $uk(z,Y,m`),v̂k(z,Y,m`),m(z,Y,m`)% to this system of differential equations that
analytic in a neighborhood of (z,Y,m`)5(0,X,a) and satisfies
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us~z,Y,m`!5Ys1O~z! ;sPE,

v̂s~z,Y,m`!5O~z! ;sPE, ~7.34!

m~z,Y,m`!5m`1O~z!,

where Ys5pr1
s̃ (Y). Let $f j u j 51,2,...M % and $ea j

u j 51,2,...M % be the same basis forE1 as
introduced in the proof of theorem 4. Then we can introduce new variables$û j (z)u j 51,2,...M %
via

(
sPE

us~z!zs5(
j 51

M

ûj~z!zkj f j . ~7.35!

ExpandV1 andL1 in the basis$ea j
u j 51,2,...M % as follows:

V15(
j 51

M

wj ,`ea j
and L1~z!5(

j 51

M

wj~z!ea j
. ~7.36!

Results~7.22!, ~7.35!, ~7.20!, and~7.36! then imply that

wi~z!5wi ,`1(
j 51

M

Ci j û j~z!zkj i 51,2,...M ,

while from ~7.34! and ~7.35! it is clear that

ûj~z,Y,m`!5a j~Y!1O~z! j 51,2...,M ,

wherea j (Y)5^^f j uY&&. h

Proof of theorem 6:The proof of this theorem involves finding a change of variables to put
system of differential equations~3.3! and ~3.5! into a form where theorem 3 applies in a neig
borhood ofr 5r H .

Note that although we use the spaceE1 which was defined in Sec. VI, this proof does n
depend on the results of Sec. VI. Indeed,E1 can be replaced by(aPSl

Rea everywhere in the
proof below and one does not have to know thatE15(aPSl

Rea , which is the content of propo
sition 4. The notationE1 is used for convenience.
Introduce new variablest, m, andv via

t5r 2r H, N5t~m1n!, v5~m1n!L18 . ~7.37!

wheren is a constant. Then

t
dL1

dt
5tS v

m1n D , ~7.38!

and it is clear that there exists analytic maps

F̂:E1→E1 and P̂:E1→R,

such that

F̂~L1!5F and P̂~L1!5P.

Assumeunu.0. Define a analytic map
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Ĝ:E13I unu~0!→R,

by

Ĝ~X,a!5
1

2~a1n!2 iXi2.

Then

G5Ĝ~v,m!.

Using these new variables, we can write the EYM equations~3.3! and ~3.5! as

t
dm

dt
52~m1n!1

1

r H
2

2

r H
3 P̂~L1!1tF1

t S 1

t1r H
2

1

r H
D2

2

t S 1

~ t1r H!3 2
1

r H
3 D P̂~L1!

1S m1n

t1r H
D ~112Ĝ~v,m!!G ~7.39!

and

t
dv
dt

52v2
1

~ t1r H!2 F̂~L1!2tS 2Ĝ~v,m!

t1r H
D v, ~7.40!

respectively. Introduce two new variablesm and v̂ via

m̂5m1n2
1

r H
1

2

r H
3 P̂~L1!, ~7.41!

v̂5v1
1

r H
2 F̂~L1!. ~7.42!

Define an analytic map

g:E13R→R,

by

g~X,a!5a2n1
1

r H
2

2

r H
3 P̂~X!.

Fix a vectorZPE1 that satisfiesi 1/r H 2 2/r H
3 P̂(Z)i.0. Then if we set

n5
1

r H
2

2

r H
3 P̂~Z!,

we getg(Y,0)50. So we can define an open neighborhoodD of (Z,0)PE13R by

D5$~X,a!uig~X,a!i,ini%.

Then from~7.38!–~7.42!, it is not hard to show that there exists ane.0 and analytic maps
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G:E13D→R,

H:E13D3I e~0!→R,

K:E13D3I e~0!→R,

such that

t
dL1

dt
5tG~ v̂,L1 ,m̂ !, ~7.43!

t
dv̂
dt

52 v̂1tH~ v̂,L1 ,m̂,t !, ~7.44!

t
dm̂

dt
52m̂1tK~ v̂,L1 ,m̂,tü. ~7.45!

The system of differential equations~7.43!–~7.45! is in the form for which theorem 3 applies
Applying this theorem shows that exists a unique solution$L1(t,Y),v̂(t,Y),m̂(t,Y)% to this
system of differential equations that is analytic in a neighborhood of (t,Y)5(0,Z) and that satis-
fies

L1~ t,Y!5Z1O~ t !, ~7.46!

v̂~ t,Y!5O~ t !,

m̂~ t,Y!5O~ t !. ~7.47!

ExpandZ andL1 in the basis$eauaPSl% as follows:

Z5 (
aPSl

wa,r H
ea and L1~ t !5 (

aPSl

wa~ t !ea .

Then Eq.~7.46! shows that

wa~ t,Z!5wa,r H
1O~ t ! ;aPSl .

It also not difficult to show that Eqs.~7.37!, ~7.41!, and~7.47! imply that

N~ t,Z!5nt1O~ t2!.

From this it follows immediately that

N~r H!50 and N8~r H!5n.

h
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Lax–Phillips scattering theory of a relativistic quantum
field theoretical Lee–Friedrichs model and
Lee–Oehme–Yang–Wu phenomenology

Y. Strauss and L. P. Horwitza)

School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Ramat Aviv 69978, Israel

~Received 13 August 2001; accepted for publication 28 January 2002!

The scattering theory of Lax and Phillips, originally developed for classical wave
equations, has recently been extended to the description of the evolution of reso-
nant states in the framework of quantum theory. The resulting evolution law of the
unstable system is that of a semigroup, and the resonant state is a well-defined
function in the Lax–Phillips Hilbert space. In this paper we apply this theory to a
relativistically covariant quantum field theoretical form of the two~or more! chan-
nel relativistic quantum field theoretical form of the Lee model. We show that this
theory provides a rigorous underlying basis for the Lee–Oehme–Yang–Wu
construction. ©2002 American Institute of Physics.@DOI: 10.1063/1.1461426#

I. INTRODUCTION

The theory of Lax and Phillips~1967!,1 originally developed for the description of resonanc
in electromagnetic or acoustic scattering phenomena, has been used as a framework
construction of a description of irreversible resonant phenomena in the quantum theory2–5 ~which
we will refer to as the quantum Lax–Phillips theory!. This leads to a time evolution of resona
states which is of semigroup type, i.e., essentially exponential decay. Semigroup evolu
necessarily a property of irreversible processes.6 It appears experimentally that elementary parti
decay, to a high degree of accuracy, follows a semigroup law, and hence such processes
be irreversible.

The theory of Weisskopf and Wigner,7 which is based on the definition of the survival amp
tude of the initial statef ~associated with the unstable system! as the scalar product of that sta
with the unitarily evolved state,

~f,e2 iHtf!, ~1.1!

cannot have exact exponential behavior.8 One can easily generalize this construction to the pr
lem of more than one resonance.9,10 If P is the projection operator into the subspace of init
states~N-dimensional forN resonances!, the reduced evolution operator is given by

Pe2 iHt P. ~1.18!

Since the Laplace transform of this operator has a cut and not just poles, this operator
be an element of an exact semigroup.8

Experiments on the decay of the neutralK-meson system11 show clearly that the phenomeno
logical description of Lee, Oehme, and Yang,12 and Wu and Yang,13 by means of a 232 effective
Hamiltonian which corresponds to an exact semigroup evolution of the unstable system, pr
a very accurate description of the data. It can be proved that the Wigner–Weisskopf theory
provide a semigroup evolution law8 and, thus, the effective 232 Hamiltonian cannot emerge i
the framework of this theory. Furthermore, it has been shown, using estimates based

a!Also at: Department of Physics, Bar Ilan University, Ramat Gan 52900, Israel; electronic mail: larry@ccsg.tau.a
23940022-2488/2002/43(5)/2394/29/$19.00 © 2002 American Institute of Physics
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quantum mechanical Lee–Friedrichs model,14 that the experimental results appear to rule out
application of the Wigner–Weisskopf theory to the decay of the neutralK-meson system. While
the exponential decay law can be exhibited explicitly in terms of a Gel’fand triple15 ~rigged
Hilbert space!, the representation of the resonant state in this framework is in a space which
not coincide with the quantum mechanical Hilbert space, and does not have the propertie
Hilbert space, such as scalar products and the possibility of calculating physical properties
ciated with expectation values.

The seminal work of Lax and Phillips1 has provided us with the basic ideas necessary for
construction of a fundamental theoretical description, in the framework of the quantum theo2–5

of a resonant system which has exact semigroup evolution, and represents the resonance astate
in a Hilbert space. In the following, we briefly describe the structure of this theory, a rat
straightforward generalization of standard quantum scattering theory, and give some ph
interpretation for the states of the Lax–Phillips Hilbert space.

The Lax–Phillips theory is defined in a Hilbert spaceH̄ of states which contains two distin
guished subspaces,D6 , called ‘‘outgoing’’ and ‘‘incoming.’’ There is a unitary evolution law
which we denote byU(t), for which these subspaces are invariant in the following sense:

U~t!D1,D1 , t>0,
~1.2!

U~t!D2,D2 , t<0.

The translates ofD6 underU(t) are dense, i.e.,

ø
t

U~t!D65H̄ ~1.3!

and the asymptotic property

ù
t

U~t!D65B ~1.4!

is assumed. It follows from these properties that

Z~t!5P1U~t!P2 , ~1.5!

where P6 are projections into the subspaces orthogonal toD6 , is a strongly contractive
semigroup,1 i.e.,

Z~t1!Z~t2!5Z~t11t2! ~1.6!

for t1 , t2 positive, andiZ(t)i→0 for t→0. It follows from ~1.2! thatZ(t) takes the subspaceK,
the orthogonal complement ofD6 in H̄ ~associated with the resonances in the Lax–Phill
theory!, into itself,1 i.e.,

Z~t!5PKU~t!PK . ~1.7!

The relation~1.7! is of the same structure as~1.18!; there is, as we shall see in the following, a
essential difference in the way that the subspaces associated with resonances are defin
argument that~1.1’! cannot form a semigroup is not valid3 for ~1.7!; the generator ofU(t)
restricted toK is not self-adjoint.
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A Hilbert space with the properties that there are distinguished subspaces satisfying,
given law of evolutionU(t), the properties~1.2!, ~1.3!, and ~1.4! has a foliation16 into a one-
parameter~which we shall denote ass! family of isomorphic Hilbert spaces, which are calle
auxiliary Hilbert spaces,$Hs%, for which

H̄5E
%

Hs . ~1.8!

Representing these spaces in terms of square-integrable functions, we define the norm in th
integral space as

i f i25E
2`

`

dsi f siH
2 , ~1.9!

wheref PH̄ represents a vector in theL2 function spaceH̄5L2(2`,`,H); f s is an element ofH,
the L2 function space~the auxiliary space! corresponding toHs for any s ~we shall not add in
what follows a subscript to the norm or scalar product symbols for scalar products of eleme
the auxiliary Hilbert space associated with a points on the foliation axis since these spaces are
isomorphic!.

There are representations for which the action of the full evolution groupU(t) on
L2(2`,`;H) is translation byt units. GivenD6 there is such a representation, called t
incoming representation,1 for which the set of all functions inD2 have support in (2`,0) and
constitute the subspaceL2(2`,0;H) of L2(2`,`;H); there is another representation, called t
outgoing representation, for which functions inD1 have support in (0,̀) and constitute the
subspaceL2(0,̀ ;H) of L2(2`,`;H). The fact thatZ(t) in Eq. ~1.7! is a semigroup is a con
sequence of the definition of the subspacesD6 in terms of support properties on intervals alo
the foliation axis in theoutgoingand incomingtranslation representations, respectively. The n
self-adjoint character of the generator of the semigroupZ(t) is a consequence of this structure3

Lax and Phillips1 show that there are unitary operatorsW6 , called wave operators, whic
map elements inH̄ to these representations. They define anS matrix,

S5W1W2
21 ~1.10!

which connects the incoming to the outgoing representations; it is unitary, commutes with
lations, and mapsL2(2`,0;H) into itself. SinceS commutes with translations, it is diagonal
Fourier~spectral! representation. As pointed out by Lax and Phillips,1 according to a special cas
of a theorem of Foure`s and Segal,17 an operator with these properties can be represented
multiplicative operator-valued functionS(s) which mapsH into itself, and satisfies the following
conditions:

~a! S(s) is the boundary value of an operator-valued function S(z) analytic for Im z.0,
~b! iS(z)i<1 for all z with Im z.0,
~c! S(s) is unitary for almost all reals.

An operator with these properties is known as an inner function;18 such operators arise in the stud
of shift invariant subspaces, the essential mathematical content of the Lax–Phillips theor
singularities of thisS matrix, in what is calledspectral representation~defined in terms of the
Fourier transform on the foliation variables), correspond to the spectrum of the generator of
semigroup characterizing the evolution of the unstable system.

In the framework of quantum theory, one may identify the Hilbert spaceH with a space of
physical states, and the variablet with the laboratory time~the semigroup evolution is observed
the laboratory according to this time!. The representation of this space in terms of the foliatedL2

spaceH̄ provides a natural probabilistic interpretation for the auxiliary spaces associated with
value of the foliation variables, i.e., the quantityi f si2 corresponds to the probability density fo
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the system to be found in the neighborhood ofs. For example, consider an operatorA defined on
H̄ which acts pointwise, i.e., contains no shift along the foliation. Such an operator ca
represented as a direct integral

A5E
%

As . ~1.11!

It produces a map of the auxiliary spaceH into H for each value ofs, and thus, if it is self-adjoint,
As may act as an observable in a quantum theory associated with the points;4 The expectation
value ofAs in a state in this Hilbert space defined by the vectorcs , the component ofcPH̄ in the
auxiliary space ats, is

^As&s5
~cs ,Ascs!

icsi2 . ~1.12!

Taking into account thea priori probability densityicsi2 that the system is found at this poin
on the foliation axis, we see that the expectation value ofA in H̄ is

^A&5E ds^As&sicsi25E ds~cs ,Ascs!, ~1.13!

the direct integral representation of (c,Ac).
As we have remarked previously, in the translation representations forU(t) the foliation

variables is shifted~this shift, for sufficiently largeutu, induces the transition of the state into th
subspacesD6!. It follows thats may be identified as an intrinsic time associated with the evo
tion of the state; since it is a variable of the measure space of the Hilbert spaceH̄, this quantity
itself has the meaning of a quantum variable.

We are presented here with the notion of a virtual history. To understand this idea, su
that at a given timet0 , the function which represents the state has some distributionics

t0i2. This
distribution provides ana priori probability that the system would be found at times ~greater or
less thant0!, if the experiment were to be performed at times corresponding tot5s on the
laboratory clock. The state of the system therefore contains information on the structure
history of the system as it is inferred att0 .

We shall assume the existence of a unitary evolution on the Hilbert spaceH̄, and that for

U~t!5e2 iK t, ~1.14!

the generatorK can be decomposed as

K5K01V ~1.15!

in terms of an unperturbed operatorK0 with spectrum (2`,`) and a perturbationV, under which
this spectrum is stable. We shall, furthermore, assume that wave operators exist, defined o
dense set, as

V65 lim
t→6`

eiK te2 iK 0t. ~1.16!

In the soluble model that we shall treat as an example in this paper, the existence of the
operators is assured.

With the help of the wave operators, we can define translation representations forU(t). The
translation representation forK0 is defined by the property

0^s,aue2 iK 0t f !50^s2t,au f !, ~1.17!
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wherea corresponds to a label for the basis of the auxiliary space. Noting that

KV65V6K0 ~1.18!

we see that

in
out̂ s,aue2 iK t f !5

in
out̂ s2t,au f !, ~1.19!

where

in
out̂ s,au f !50^s,auV6

† f !. ~1.20!

It will be convenient to work in terms of the Fourier transform of the in and out transla
representations; we shall call these the in and out spectral representations, i.e.,

in
out̂ s,au f !5E

2`

`

e2 iss
in
out̂ s,au f !. ~1.21!

In these representations,~1.20! is

in
out̂ s,au f !50^s,auV6

† f ! ~1.22!

and ~1.19! becomes

in
out̂ s,aue2 iK tu f !5e2 ist

in
out̂ s,au f !. ~1.23!

Equation~1.17! becomes, under Fourier transform,

0^s,aue2 iK 0t f !5e2 ist
0^s,au f !. ~1.24!

For f in the domain ofK0 , ~1.24! implies that

0^s,auK0f !5s 0^s,au f !. ~1.25!

With the solution of~1.25!, and the wave operators, the in and out spectral representatio
a vectorf can be constructed from~1.24!.

We are now in a position to construct the subspacesD6 , which are not givena priori ~as they
are in the classical theory1! in the Lax–Phillips quantum theory. We shall defineD1 as the set of
functions with support in (0,̀) in the outgoing translation representation. Similarly, we sha
defineD2 as the set of functions with support in (2`,0) in the incomingtranslation representa
tion. The corresponding elements ofH̄ constitute the subspacesD6 . By construction,D6 have
the required invariance properties under the action ofU(t).

The outgoing spectral representationof a vectorgPH is

out̂ saug!50^sauV1
21g!5E ds8(

a8
0^sauSus8a8&0 0^s8a8uV2

21g!

5E ds8(
a8

0^sauSus8a8&0 in^s8a8ug!, ~1.26!

where we call

S5V1
21V2 ~1.27!
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the quantum Lax–PhillipsS operator. We see that the kernel0^sauSus8a8&0 maps the incoming
to outgoing spectral representations. SinceS commutes withK0 , it follows that

0^sauSus8a8&05d~s2s8!Saa8
•~s!. ~1.28!

It follows from ~1.16! and ~1.22!, in the standard way,19 that

0^sauSus8a8&05 lim
e→0

d~s2s8!$daa822p i 0^sauT~s1 i e!us8a8&0%, ~1.29!

where

T~z!5V1VG~z!V5V1VG0~z!T~z!. ~1.30!

We remark that, by this construction,Saa8(s) is analytic in the upper half planein s. The
Lax–PhillipsS matrix1 is given by the inverse Fourier transform,

S5$0^sauSus8a8&0%; ~1.31!

this operator clearly commutes with translations.
From ~1.29! it follows that the inner function property (a) of S(s) above is true. Property

(c), unitarity for reals, is equivalent to asymptotic completeness, a property which is stro
than the existence of wave operators. For the relativistic Lee model, which we shall treat
paper, this condition is satisfied. In the model that we shall study here, we shall see that the
wide class of potentialsV for which the operatorS(s) satisfies the property (b).

In Sec. II, we briefly review the structure of the relativistic Lee model,19 and explicitly
construct the Lax–Phillips spectral representations andS matrix. Introducing auxiliary space
variables, we then characterize the properties of the finite rank Lee model potential which
that theS matrix is an inner function, i.e., that property (b) listed above is satisfied.

II. THE MULTICHANNEL RELATIVISTIC LEE–FRIEDRICHS MODEL

The multichannel relativistic Lee–Friedrichs model is defined in terms of bosonic qua
fields on space–time. These fields, which emerge from the second quantization of the Stuec
covariant quantum theory,20 evolve with an invariant evolution parameter5 t ~which we identify
here with the evolution parameter of the Lax–Phillips theory discussed previously!; at equalt,
they satisfy the commutation relations~with c i

† as the canonical conjugate field toc i ; the fields
c i , which satisfy first-order evolution equations as for nonrelativistic Schro¨dinger fields, are just
annihilation operators!

@c i t~x!,c j t
† ~x8!#5d4~x2x8!d i j . ~2.1!

Transforming to momentum space, in which we have

c i t~p!5
1

~2p!2 E d4x e2 ipmxm
c i t~x!, ~2.2!

relation ~2.1! becomes

@c i t~p!,c j t
† ~p8!#5d4~p2p8!d i j . ~2.3!

The manifestly covariant space–time structure of these fields is admissible whenE,p are nota
priori constrained by a sharp mass–shell relation. In the mass–shell limit~for which the variation
in m2 defined byE22p2 is small!, multiplying both sides of~2.3! by DE5Dm2/2E, one obtains
the usual commutation relations for on shell fields,
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@c̃ i t~p!,c̃ j t
† ~p!#52Ed3~p2p8!d i j , ~2.4!

wherec̃ i t(p)5ADm2c i t(p). In this limit, t andt coincide. The generator of evolution

K5K01V ~2.5!

for which the Heisenberg picture fields are

c i t~p!5eiK tc i0~p!e2 iK t ~2.6!

is given, in this model, as~we write p25pmpm,k25kmkm in the following!

K05 (
i 51,2

H E d4p
p2

2MVi

bi
†~p!bi~p!1E d4p

p2

2MNi

aNi

† ~p!aNi
~p!J

1 (
i 51,2

E d4p
p2

2M u i

au i

† ~p!au i
~p! ~2.7!

and

V5 (
i , j 51,2

E d4pE d4k~ f i j ~k!bi
†~p!aNj

~p2k!au j
~k!1 f i j* ~k!bi~p!aNj

† ~p2k!au j

† ~k!!. ~2.8!

~We remark that Antoniouet al.21 have constructed a relativistic Lee model of a somew
different type; their field equation is second order in derivative with respect to the var
conjugate to the mass.! This model describes the processVi→Nj1u j . We assume that the field
associated with different particles commute. The fieldsbi(p), aNi

(p) and au i
are annihilation

operators for theVi , Ni , andu i particles, respectively. We takeMVi
, MNi

, andM u i
to be the mass

parameters for the fields.19,22We restrict our development to the two channel case in the follow
The generalization to any number of channels is straightforward.

The following operators are conserved:

Q15 (
i 51,2

E d4p~bi
†~p!bi~p!1aNi

† ~p!aNi
~p!!,

Q25E d4p ~aN1

† ~p!aN1
~p!2au1

† ~p!au1
~p!!, ~2.9!

Q35E d4p~aN2

† ~p!aN2
~p!2au2

† ~p!au2
~p!!.

This fact enables us to decompose the Fock space to sectors. We study the sector wQ1

51,Q250,Q350. This is identified as a sector containing either oneVi particleor oneNj together
with oneu j particle. It follows from the commutativity of the fields that the statesuV1&,uV2&, as
well as uN1u1&,uN2 ,u2&, which exist in this sector, are orthogonal. In this sector the generato
evolutionK can be rewritten in the form

K5E d4pKp5E d4p~K0
p1Vp!,

where
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K0
p5 (

i 51,2
H p2

2MVi

bi
†~p!bi~p!1E d4kS ~p2k!2

2MNi

1
k2

2M u i
D aNi

† ~p2k!au i

† ~k!au i
~k!aNi

~p2k!J
and

Vp5 (
i , j 51,2

n E d4k~ f i j ~k!bi
†~p!aNj

~p2k!au j
~k!1 f i j* ~k!bi~p!aNj

† ~p2k!au j

† ~k!!.

In this form it is clear that bothK andK0 have a direct integral structure. This implies a simi
structure for the wave operatorV6 and the possibility of defining restricted wave operatorsV6

p

for each value ofp. We see from the expression forK0
p that uVi(p)&5bi

†(p)u0& can be regarded
as a set of discrete eigenstates ofK0

p ~for eachp! which span a subspace which is, therefo
annihilated by the restricted wave operatorsV6

p . This implies immediately thatV6uV(p)&50 for
everyp ~an explicit demonstration of this fact is given in Appendix A!.

In order to construct the Lax–Phillips incoming and outgoing spectral representations f
model presented here it is necessary, according to the discussion following Eq.~1.25!, to obtain
appropriate expressions for the wave operatorsV6

† and the spectral representation for the gene
tor K0 of free evolution, i.e, the solution of Eq.~1.25!.

We begin our discussion with a derivation of the appropriate expressions, for the m
considered here, of the wave operatorsV6 . We first calculate the following matrix elements o
V1 :

^Vm~q!uV1uNn~p!,un~k!&, ^Nm~p8!,um~k8!uV1uNn~p!,un~k!&.

Equation~1.16! can be rewritten, following the standard procedure,23 in the integral form

V1511 i lim
e→0

E
0

1`

U†~t!VU0~t!e2et dt, ~2.10!

whereU(t)5e2 iK t, U0(t)5e2 iK 0t. Using ~2.7!, we have

V1uNn~p1!,un~p2!&

5uNn~p1!,un~p2!&1 i lim
e→0

E
0

1`

dt e2etU†~t!VU0~t!aNn

† ~p!aun

† ~k!u0&

5uNn~p1!,un~p2!&1 i lim
e→0

E
0

1`

dt e2 i (vNn
(p1)1vun

(p2)2 i e)tU†~t!VaNn

† ~p!aun

† ~k!u0&,

~2.11!

wherevNn
(p)5p2/2MNn

, vun
(p)5p2/2M un

. Using ~2.8! we find

VaNn

† ~p1!aun

† ~p2!u0&5 (
k51,2

f kn~p2!bk
†~p11p2!u0&. ~2.12!

Inserting~2.12! into ~2.11! and changing the integration variable fromt to 2t it follows that

V1uNn~p1!,un~p2!&

5uNn~p1!,un~p2!&2 i lim
e→0

(
k51,2

E
0

2`

dt ei (vNn
(p1)1vun

(p2)2 i e)tU~t! f kn~p2!bk
†~p11p2!u0&.

~2.13!
                                                                                                                



g

ed

2402 J. Math. Phys., Vol. 43, No. 5, May 2002 Y. Strauss and L. P. Horwitz

                    
In order to continue with the evaluation of the integral in~2.13! we find the time evolution of some
arbitray statex under the action ofU(t),

c~t!5U~t!x5e2 iK tx. ~2.14!

In the sector of the Fock space that we are considering, the statec(t) at any timet can be
expanded as

c~t!5 (
i 51,2

E d4qAi~q,t!bi
†~q!u0&1 (

i 51,2
E d4pE d4kBi~p,k,t!aNi

† ~p!au i

† ~k!u0&.

~2.15!

In particular, we see that the initial conditions for the evolution in~2.13!, where the statex is taken
to bec05(k f kn(p2)bk

†(p11p2)u0&, are

Ai~q,0!5 f in~p2!d4~q2p12p2!, Bi~p,k,0!50. ~2.16!

The equations of evolution for the coefficientsA(q,t) andB(p,k,t) are then obtained from
~2.14! and ~2.15!, i.e.,

i
]Bi~p2k,k,t!

]t
5Bi~p2k,k,t!S ~p2k!2

2MNi

1
k2

2M u i
D 1 (

j 51,2
f j i* ~k!Aj~p,t!,

~2.17!

i
]Ai~p,t!

]t
5

p2

2MVi

Ai~p,t!1 (
j 51,2

E d4k f i j ~k!Bj~p2k,k,t!.

These equations can be solved algebraically10,19 by performing Laplace transforms and definin

B̃i~p,k,z!5E
2`

0

dt eiztBi~p,k,t!, Im z,0,

~2.18!

Ãi~p,z!5E
2`

0

dt eiztAi~p,t!, Im z,0.

Equation~2.17! is transformed into

B̃i~p2k,k,z!S z2
~p2k!2

2MNi

2
k2

2M u i
D 5 iBi~p2k,k,0!1 (

j 51,2
f j i* ~k!Ãj~p,z!,

~2.19!

Ãi~p,z!S z2
p2

2MVi
D 5 iAi~p,0!1 (

j 51,2
E d4k f i j ~k!B̃j~p2k,k,z!.

Using the initial conditions~2.16! we obtain the following expressions for the Laplace transform
coefficients:

Ãk~p,z!5 i(
i 51

n

Wki
21~z,p!Ai~p,0!,

~2.20!

B̃j~p2k,k,z!5 i S z2~p2k!2

2MNj

2
k2

2M u j
D 21F (

k,i 51,2

n

f k j* ~k!Wki
21~z,p!Ai~p,0!G ,

where
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Wik~z,p!5d ikS z2
p2

2MVi
D 2 (

j 51,2

n E d4k
f i j ~k! f k j* ~k!

z2
~p2k!2

2MNj

2
k2

2M u j

. ~2.21!

The Laplace transform ofc(t) is then

c~z!5 i (
i ,k51,2

E d4qWik
21~z,q!Ak~q,0!bi

†~q!u0&

1 i (
i , j ,k51,2

E d4pE d4k
f ki* ~k!Wk j

21~z,p1k!Aj~p1k,0!

S z2
p2

2MNi

2
k2

2M u i
D aNi

† ~p!au i

† ~k!u0&. ~2.22!

From ~2.13!, ~2.22! and the initial conditions—Eq.~2.16!—we get

V1uNn~p1!,un~p2!&

5uNn~p1!,un~p2!&1 i (
i ,k51,2

Wik
21~vn2 i e,p11p2! f kn~p2!bi

†~p11p2!u0&

1 i (
i , j ,k51,2

E d4k
f ki* ~k!Wk j

21~vn2 i e,p11p2! f jn~p2!

vn2 i e2
~p11p22k!2

2MNi

2
k2

2M u i

aNi

† ~p11p22k!au i

† ~k!u0&,

~2.23!

where we denotevn[vNn
(p1)1vun

(p2). We can now evaluate the desired matrix elements
the wave operatorV1 . From ~2.23! one fimds

^Vm~p!uV1uNn~p1!,un~p2!&5 (
k51,2

Wmk
21~vn2 i e,p11p2! f kn~p2!d4~p2p12p2! ~2.24!

and

^Nm~ p̃1!,um~ p̃2!uV1uNn~p1!,un~p2!&

5dmnd
4~ p̃12p1!d4~ p̃22p2!

1 (
k, j 51,2

f km* ~ p̃2!Wk j
21~vn2 i e,p11p2! f jn~p2!

vn2 i e2
p̃1

2

2MNm

2
p̃2

2

2M um

d4~p11p22 p̃12 p̃2!. ~2.25!

In a similar fashion one can find the corresponding matrix elements of the wave operatorV2 :

^Vm~p!uV2uNn~p1!,un~p2!&5 (
k51,2

Wmk
21~vn1 i e,p11p2! f kn~p2!d4~p2p12p2! ~2.26!

and
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^Nm~ p̃1!,um~ p̃2!uV2uNn~p1!,un~p2!&

5dmnd
4~ p̃12p1!d4~ p̃22p2!

1 (
k, j 51,2

f km* ~ p̃2!Wk j
21~vn1 i e,p11p2! f jn~p2!

vn1 i e2
p̃1

2

2MNm

2
p̃2

2

2M um

d4~p11p22 p̃12 p̃2!. ~2.27!

According to Eqs.~1.22! and~1.25! the complete transformation to theincomingor outgoing
representations requires us to solve for the~improper! eigenvectors with spectrum$s% on (2`,
1`) of K0 . The complete set of these states is decomposed into two subsets correspondin
quantum numbers for states containingN andu particles and states containing aV particle. These
quantum numbers are denoteds, a ~for theN1u states!ands, b ~V states!, respectively. For the
projections into these two subspaces, we have

us,a&05 (
n51,2

E d4pE d4kuNl~p!,u l~k!&^Nl~p!,u l~k!us,a&0 ,

~2.28!

us,b&05 (
m51

E d4puVm~p!&^Vm~p!us,b&0 .

It is convenient to define

On,p,k
s,a [^Nn~p!,Qn~k!us,a&0 ,

~2.29!
Om,p

s,b[^Vm~p!us,b&0 .

With the help of these definitions we can rewrite~2.28! as

us,a&05 (
n51,2

E d4pE d4kOn,p,k
s,a uNl~p!,u l~k!&,

~2.30!

us,b&05 (
m51,2

E d4pOm,p
s,buVm~p!&.

It follows from Eqs.~1.25! and ~2.30! that

K0us,a&05 (
n51,2

E d4pE d4k~vNn
~p!1vun

~k!!On,p,k
s,a uNn~p!,Qn~k!&5sus,a&0 ,

~2.31!

K0us,b&05 (
m51,2

E d4pvVm
~p!Om,p

s,buVm~p!&5sus,b&0 .

From the orthogonality of the final state channels, it follows that we must have

On,p,k
s,a 5d~s2vNn

~p!2vun
~k!!Õn,p,k

s,a ,

~2.32!
Om,p

s,b5d~s2vVm
~p!!Õm,p

s,b

to satisfy the kinematic conditions imposed by Eq.~2.31!. A more detailed analysis of the structu
of the matrix elements~2.32! requires further knowledge regarding the nature of the variablea,
b. We will postpone the discussion of this point to later and remark here only that orthogo
and completeness requires that
                                                                                                                



te,

2405J. Math. Phys., Vol. 43, No. 5, May 2002 Lax–Phillips scattering theory

                    
(
a

E ds~On,p,k
s,a !* On8,p8,k8

s,a
5d4~p2p8!d4~k2k8!dnn8 ,

~2.33!

(
n51,2

E d4pE d4k~On,p,k
s,a !* On,p,k

s8,a85d~s2s8!da,a8 ,

(
b

E ds~Om,p
s,b!* Om8,p8

s,b
5d4~p2p8!dmm8 ,

~2.34!

(
m51,2

E d4p~Om,p
s,b!* Om,p

s8,b85d~s2s8!db,b8 .

To complete the transformation to theoutgoing spectral representation we have to calcula
according to Eq.~1.22!, the following quantities:

^Vm~p!uV1us,b&0 , ^Nn~p!,un~k!uV1us,b&0

and

^Vm~p!uV1us,a&0 , ^Nn~p!,Qn~k!uV1us,a&0 .

From the second equation of~2.31!, the discussion following Eq.~2.9! and the results of Appendix
A, it is clear that the first two transformation matrix elements are identically zero~since
V1uV(p)P50!. We obtain expressions for the second pair with the help of~2.24!, ~2.25!, and
~2.32!. For the first matrix element in the second pair above we have

^Vm~p!uV1us,a&0

5 (
n51,2

E d4p1E d4p2^Vm~p!uV1uNn~p1!,un~p2!&^Nn~p1!,un~p2!us,a&0

5 (
n51,2

E d4p1E d4p2 (
k51,2

Wmk
21~vn2 i e,p11p2! f kn~p2!d4~p2p12p2!On,p1 ,p2

s,a

5 (
k51,2

Wmk
21~s2 i e,p! (

n51,2
E d4p2f kn~p2!On,p2p2 ,p2

s,a

5 (
k51,2

Wmk
21~s2 i e,p!Fk

a~s,p!, ~2.35!

where we have used~2.30! and the defininition

Fk
a~s,p![ (

n51,2
E d4p8 f kn~p8!On,p2p8,p8

s,a . ~2.36!

For the second matrix element we get in a similar way
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^Nm~p1!,um~p2!uV1us,a&0

5 (
n51,2

E d4p18E d4p28^Nm~p1!,um~p2!uV1uNn~p18!,un~p28!&^Nn~p18!,un~p28!us,a&0

5Om,p1 ,p̃2

s,a 1 (
k, j 51,2

f km* ~ p̃2!Wk j
21~s2 i e,p11p2!F j

a~s,p11p2!

s2 i e2
p1

2

2MNm

2
p2

2

2M um

. ~2.37!

Following the same steps we obtain for the matrix elements of the wave operatorV2 ,

^Vm~p!uV2us,a&05 (
k51,2

Wmk
21~s1 i e,p!Fk

a~s,p! ~2.38!

and

^Nm~p1!,um~p2!uV2us,a&05Om,p1 ,p2

s,a 1S s1 i e2
p1

2

2MNm

2
p2

2

2M um
D 21

3 (
k, j 51,2

f km* ~p2!Wk j
21~s1 i e,p11p2!F j

a~s,p11p2!.

~2.39!

This completes the calculation of the Lax–Phillips wave operators providing the transformat
the incomingandoutgoing~spectral! representations. Given these transformations it is possib
principle to construct the subspacesD6 according to the method described in Sec. I. We can n
calculate the Lax–PhillipsS matrix mapping the incoming representation into the outgoing r
resentation. If thisS matrix satisfies the conditions (a), (b), (c) given in Sec. I then there exis
incoming and outgoing subspacesD6 orthogonal to each other and the Lax–Phillips structure
complete.

From Eq.~1.26! we see that the Lax–PhillipsS matrix is given by0^s8,a8uSus,a&0 . We can
calculate explicitly the Lax–PhillipsS matrix for the model presented here with the help of t
following useful expression~valid in the sector of the Fock space in which we are working!:

0^s8,a8uSus,a&05 (
m51,2

E d4p 0^s8,a8uV1
† uVm~p!&^Vm~p!uV2us,a&0

1 (
m51,2

E d4p̃1E d4p̃2 0^s8,a8uV1
† uNm~ p̃1!,um~ p̃2!&

3^Nm~ p̃1!,um~ p̃2!uV2us,a&0 . ~2.40!

Using the expressions obtained for the wave operator equations~2.35!, ~2.37!, ~2.38!, ~2.39! and
the definition~2.36! we get

0^s8,a8uSus,a&05 (
m51,2

E d4p (
k,k851,2

Wmk
21* ~s81 i e,p!Fk

a8* ~s8,p!Wmk8
21

~s1 i e,p!Fk8
a

~s,p!

1d~s82s!daa81
1

s2s81 i e

3E d4p1 (
k8, j 8

Fk8
a8* ~s8,p1!Wk8 j 8

21
~s1 i e,p1!F j 8

a
~s,p1!1

1

s82s1 i e
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3E d4p1(
k, j

Fk
a~s,p1!Wk j

21* ~s81 i e,p1!F j
a8* ~s8,p1!

1 (
m51,2

E d4p1E d4p2

3F (
k, j ,k8, j 851,2

f km~p2!Wk j
21* ~s81 i e,p11p2!F j

a8* ~s8,p11p2!

s81 i e2
p1

2

2MNm

2
p2

2

2M um

3
f k8m
* ~p2!Wk8 j 8

21
~s1 i e,p11p2!F j 8

a
~s,p11p2!

s1 i e2
p1

2

2MNm

2
p2

2

2M um

G . ~2.41!

The last term in Eq.~2.41! can be put into a simpler form by the following manipulation:

(
m51,2

E d4p1E d4p2F (
k, j ,k8, j 851,2

f km~p2!Wk j
21* ~s81 i e,p11p2!F j

a8* ~s8,p11p2!

s81 i e2
p1

2

2MNm

2
p2

2

2M um

3
f k8m
* ~p2!Wk8 j 8

21
~s1 i e,p11p2!F j 8

a
~s,p11p2!

s1 i e2
p1

2

2MNm

2
p2

2

2M um

G
5E d4p1 (

k, j ,k8, j 851,2

1

s2s8
@dkk8~s82s!2Wkk8~s81 i e,p1!1Wkk8~s1 i e,p1!#

3Wk j
21* ~s81 i e,p1!F j

a8* ~s8,p1!Wk8 j 8
21

~s1 i e,p1!F j 8
a

~s,p1!

52E d4p1 (
k, j , j 851,2

Wk j
21* ~s81 i e,p1!F j

a8* ~s8,p1!Wk j8
21

~s1 i e,p1!F j 8
a

~s,p1!

1P
1

s2s8
E d4p1 (

j , j 851,2

F j 8
a

~s,p1!Wj 8 j
21* ~s81 i e,p1!F j

a8* ~s8,p1!

2P
1

s2s8
E d4p1 (

j , j 851,2

F j
a8* ~s8,p1!Wj j 8

21
~s1 i e,p1!F j 8

a
~s,p1!, ~2.42!

whereP stands for the principle part and we have performed a partial fraction decomposit
the second step in~2.41! and used the definition Eq.~2.21! of Wik(z,p). Combining~2.42! and
~2.41! we find for the Lax–PhillipsS matrix

0^s8,a8uSus,a&05d~s2s8!Fdaa822p i E d4p(
k, j

Fk
a~s,p!Wk j

21* ~s81 i e,p!F j
a8* ~s8,p1!G

5d~s2s8!Fdaa822p i E d4p(
k, j

F j
a8* ~s,p!Wjk

21~s1 i e,p!Fk
a~s,p!G .

~2.43!

@In ~2.42! we use a partial fraction decomposition of the denominators of the form (s1 i e1

2A)213(s81 i e22A)215(s2s81 i (e22e1))213((s81 i e12A)212(s1 i e22A)21)
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5(P(s2s8)216ipd(s2s8))3((s81ie12A)212(s1ie22A)21)5P(s2s8)213((s81ie12A)21

2(s1ie22A)21).] We observe that in Eq.~2.43! the quantityF j
a* (s,p) can be considered, fo

each fixed value ofp̃18 , as a vector-valued function on the independent variables, taking its
values in an auxiliary Hilbert space defined by the variablesa. We write it as@see Eqs.~2.29! and
~2.36!#

F j
a* ~s,p![~ unj&s,p)a, ~2.44!

where~for a fixed value ofp! (unj&s,p)a is thea component of the vector valued functionunj&s,p .
With this notation we have~we supress the auxiliary Hilbert space variablesa!

S~s!5122p i E d4p(
k, j

unj&s,pWjk
21~s1 i e,p!s,p^nku. ~2.45!

Further simplification of the expression given here for theS matrix can be achieved by
identifying the auxiliary Hilbert space variablesa. This results in an observation of the dire
integral structure of theS matrix on the center of momentumP and the definition of the reduce
S matrix SP(s) for each value ofP. Another important result is the fact that the requirement t
the Lax–PhillipsS matrix is an inner function implies that an analysis of its action involve
consideration of only a two-dimensional subspace of the auxiliary Hilbert space. These sim
cations in the structure of the Lax–PhillipsS matrix is the subject of Sec III.

III. THE AUXILIARY HILBERT SPACE AND CHARACTERIZATION OF THE LAX–PHILLIPS
S MATRIX

The auxiliary Hilbert space of the Lax–Phillips representation of the relativistic L
Friedrichs model acquires a complete characterization when an exact specification of the va
a in the transformation matrixOn,p.k

s,a of Eq. ~2.29! is given. To achieve this goal we proceed
two steps. The first one is to define a new set of independent variables$n,p,k%→$n,P,prel% by the
following linear combination ofp andk:

a. P5p1k, b. prel5
M un

p2MNn
k

M un
1MNn

. ~3.1!

These momentum space variables correspond to the following configuration space var

a. Xc.m.5
MNn

x11M un
x2

MNn
1M un

, b. xrel5x12x2 .

From Eq.~2.32! we know that

On,p,k
s,a 5d~s2vNn

~p!2vQn
~k!!Õn,p,k

s,a .

This implies that

s5
p2

2MNn

1
k2

2M un

5
P2

2Mn
1

prel
2

2mn
, ~3.2!

where Mn5MNn
1M un

and m5MNn
M un

/(MNn
1M un

). We takes and P to be independen

variables. In this caseprel
2 is a dependent variable with a value given by

prel
2 52mnS s2

P2

2Mn
D .
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To complete the set of independent quantum numbers we have to find a complete
commuting operators that commute withprel

2 andP. Sinceprel
2 is a Casimir of the Poincare´ group

on the relative coordinates, we may take for the set of commuting operators on therelative motion,
the second Casimir of the Lorentz group andL2,L3 . We denote byg the full set of quantum
numbers corresponding to the latter three operators. We then have$s,a%[$s,n,P,g%. It follows
from Eqs.~2.32! and ~3.1a.! that

On,p,k
s,a [On,p,k

s,P,g,i5d~s2p2/2MNn
2k2/2M un

!dnid
4~P2p2k!Ôn,prel

n,prel
2 ,gu

prel5~Mun
p2MNn

k!/Mn

prel
2

52mn(s2P2/2Mn)

~3.3!

Inserting this into the definition ofFk
a(s,p)([Fk

P,g,i(s,p)), Eq. ~2.36! we get

Fk
P,g,i~s,p!

[d4~P2p! (
n51,2

E d4p8 f kn~p8!dnidS s2
~p2p8!2

2MNn

2
p82

2M un
D Ô

n,prel

n,prel
2 ,gu

prel5Mun
P/Mn2p8

prel
2

52mn(s2P2/2Mn)

5d4~P2p! (
n51,2

E d4prelf kn~M un
P/Mn2prel!dnidS s2

P2

2Mn
2

prel
2

2mn
D Ô

n,prel

n,prel
2 ,g

. ~3.4!

We define the followingP-dependent vector valued function:

~ unk&s,P)g,i[ (
n51,2

E d4prelf kn* ~M un
P/Mn2prel!dnidS s2

P2

2Mn
2

prel
2

2mn
D ~Ô

n,prel

n,prel
2 ,g

!* ~3.5!

so thatFk
P,g,i(p,s)* 5d4(P2p)(unk&s,P

g,i . When this form ofFk
a(p,s) is used in Eq.~2.43! we

get

0^s8,a8uSus,a&050^s8,P8,g8,i 8uSus,P,g,i &05d~s82s!d~P82P!SP
g8,i 8,g,i~s!, ~3.6!

where we define the reducedS matrix, for a specified value of the center of momentum four-vec
P, to be

SP
g8,i 8,g,i(s)5F122p i (

k, j 51,2
unj&s,PWjk

21(s1 i e,P)s,P^nkuGg8,i 8,g,i

. ~3.7!

The form ofSP(s) allows for a further simplification. For each value ofs the two vectors
unk&s,P , k51,2 span a two-dimensional subspace of the auxiliary Hilbert space. These vecto
in general, not orthogonal. We find the orthogonal projection onto the two-dimensional sub
using these nonorthogonal vectors by finding linear combinations, denoteds,P^Fi u such that

s,P^Fi unj&s,P5d i j . ~3.8!

Denoting the projection operator on the subspace spanned byunk&s,P , k51,2 by P2(s,P) we
have

P2~s,P!5 (
i 51,2

uni&s,P s,P^Fi u. ~3.9!

With this projection we construct the unit operator 1s,P on the auxiliary Hilbert space and write

1s,P5~1s,P2P2~s,P!!1P2~s,P!.
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Multiplying SP(s) of Eq. ~3.7! by this unit operator from the right we obtain~here, and in the
sequel, we suppress reference to the auxiliary Hilbert space variablesg8,i ,g,i )

SP(s)512P2(s,P)

1(
i

F uni&s,P s,P^Fi u22p i(
k, j

unj&s,PWjk
21(s1 i e,P)s,P^nkuni&s,P s,P^Fi uG

512P2~s,P!1(
i , j

unj&s,PFd j i 22p i(
k

Wjk
21~s1 i e,P!s,P^nkuni&s,PG

s,P

^Fi u. ~3.10!

We now write the Kronecker deltad i j in the formd j i 5(k Wjk
21(s1 i e,P)Wki(s1 i e,P) and get

SP~s!512P2~s,P!1(
i , j ,k

unj&s,PWjk
21~s1 i e,P!@Wki~s1 i e,P!22p i s,p^nkuni&s,P#s,P^Fi u.

~3.11!

In order to proceed at this point it is necessary to evaluate explicitly the expressions,P^nkuni&s,P .
Using the definition~3.5! we obtain

s,P^nkuni&s,P5(
j
E d4prelE d4prel8 f k j* ~M u j

P/M j2prel! f i j ~M u j
P/M j2prel8 !

3dS s2
P2

2M j
2

prel
2

2m j
D dS prel

2

2m j
2

prel82

2m j
D(

g
~Ô

j ,prel

j ,prel
2 ,g

!* Ô
j ,p

rel8

j ,prel
2 ,g

5(
j
E d4preldS s2

P2

2M j
2

prel
2

2m j
D f k j* ~M u j

P/M j2prel! f i j ~M u j
P/M j2prel!

5(
j
E d4kdS s2

~P2k!2

2MNj

2
k2

2M u j
D f k j* ~k! f i j ~k!. ~3.12!

We compare this result with the jump across the cut on the real axis of the complexs plane of
Wki(s,P). With the help of the definition~2.21! we find

Wki~s1 i e,P!2Wki~s2 i e,P!52p i(
j
E d4kdS s2

~P2k!2

2MNj

2
k2

2M u j
D f k j* ~k! f i j ~k!.

~3.13!

Using Eqs.~3.12! and ~3.13! we can write Eq.~3.11! as

SP~s!512P2~s,P!1(
i , j ,k

unj&s,PWjk
21~s1 i e,P!Wki~s2 i e,P!s,P^Fi u. ~3.14!

The operator valued functionP2(s,P) defined in Eq.~3.9! is a projection operator for eac
value ofs,

P2~s,P!P2~s,P!5P2~s,P!.

It is, therefore, a bounded positive operator on the reals axis. In order to characterizeP2(s,P)
we need several definitions and results from operator theory on positive operator valued fun
We give these in the appendix, where we prove thatP2(s,P) is anouter function18 and that it is
actually independent ofs, that is

P2~s,P!5P2,P , ~3.15!
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where P2,P is a projection operator on some fixed two-dimensional subspace of the aux
space. This proof rests on the properties ofSP(s) as aninner function.18 We shall assume that th
functions f i j (k) are such that the operator valued function defined by Eq.~3.14! has the appro-
priate analytic properties in the upper half plane.

In Eqs.~3.8! and~3.9! the vectorsuni&s,P ands,P^Fi u may depend ons, but this dependence
is such that the projection operatorP2(s,P) projects on a fixed two-dimensional subspace of
auxiliary space for each and every value ofs. Equation~3.14! can then be written in the form

SP~s!512P2,P1(
i , j ,k

unj&s,PWjk
21~s1 i e,P!Wki~s2 i e,P! s,P^Fi u ~3.16!

and we see that theS matrix SP(s) acts in a non trivial way only on a two-dimensional subspa
of the auxiliary space.

We now complete the characterization of the Lax–PhillipsS matrix SP(s). Equation~3.15!
implies that the projection valued functionP2(s,P) projects the Hilbert spaceL2(2`,1`;H) on
the subspaceL2(2`,1`;H2) of vector valued functions taking their values in some fixed tw
dimensional subspaceH2 of the auxiliary Hilbert space. We again use the notationP2,P to denote
the projectionP2(s,P) as an operator valued function projecting onL2(2`,1`;H2), that is

P2,P :L2~2`,1`;H !→L2~2`,1`;H2!. ~3.17!

We denote byPI 22,P the operator projecting on the subspace of functions with a range inH*H2 .
We have

PI 22,P :L2~2`,1`;H !→L2~2`,1`;H*H2!. ~3.18!

It is obvious from Eqs.~3.17! and ~3.18! that

L2~2`,1`;H !5P2,PL2~2`,1`;H ! % PI 22,PL2~2`,1`;H !. ~3.19!

In particular, if U(t) is the operator of right translation byt units then any left translation
invariant subspaceI H

2,HH
2 (P) can be written as

I H
25P2,PI H

2
% PI 22,PI H

2 . ~3.20!

The translationU(t) commutes with the projectionsP2,P , PI 22,P and, sinceI H
2 is a left translation

invariant subspace, we haveU(t)I H
2,I H

2 . DenotingI H2

2 5P2,PI H
2 we find

U~t!I H2

2 5U~t!P2,PI H
25P2,PU~t!I H

2,P2,PI H
25I H2

2 . ~3.21!

We see that ifI H
2 is a left translation invariant subspace thenI H2

2 5P2,PI H
2 is a two-dimensional

invariant subspace under left translations.
In the Lax–Phillips theory the Lax–PhillipsS matrix is an inner function that generates a le

translation invariant subspace from the Hardy classHH
2 (P) ~this corresponds to the stabilit

property ofD2). In this case we can write

I H
25SLPHH

2 ~P!, ~3.22!

whereSLP is the Lax–PhillipsS matrix. From Eq.~3.16! we see that in the case of the two chann
relativistic Lee-model we have@SP(s) is the realization ofSLP in terms of an operator value
function#

@SLP,P2,P#50. ~3.23!

From Eqs.~3.22! and ~3.23! and the definition ofI H2

2 we find that
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I H2

2 5P2,PI H
25P2,PSLPHH

2 ~P!5SLPP2,PHH
2 ~P!5SLPHH2

2 ~P!,

whereHH2

2 (P)[P2,PHH
2 (P). We can write this result in the form

I H2

2 5P2,PSLPP2,PHH2

2 ~P!. ~3.24!

From this we see thatP2,PSLPP2,P , when it acts on the Hardy spaceHH2

2 (P), generates a two-

dimensional left translation invariant subspace. From Eq.~3.16! we get@if A is an operator on a
Hardy classHH

2 (P) or HH2

2 (P) then T(A) is its realization in terms of an operator value

function#

T~P2,PSLPP2,P!5d~s2s8!(
i , j ,k

unj&s,PWjk
21~s1 i e,P!Wki~s2 i e,P! s,P^Fi u. ~3.25!

According to Eq.~3.24! this immediately implies that the right-hand side of Eq.~3.25! is aninner
function acting on the Hardy spaceHH2

2 (P) consisting of vector valued functions taking the

values in some fixed two-dimensional subspace of the auxiliary Hilbert space. This obser
allows for a complete characterization of the Lax–PhillipsS matrix, Eq. ~3.16!. Such an inner
function can be represented as a product of arational inner function containing the poles and zer
of SP(s) and a factor which is an inner function with nonvanishing determinant.24 If the latter
factor is bounded exponentially, it corresponds to a trivial inner factor1 and does not change th
spectrum of the semigroup. In the following, we consider the case of a purely rationalS matrix.

IV. THE RESONANT STATES FOR A RATIONAL S MATRIX

In this section we shall identify the resonant states of the relativistic two channel Lee m
in the Lax–Phillipsoutgoingtranslation representation for the case of a rationalS matrix of the
form

S~s!511S ResS~z1!

s2z1
1

ResS~z2!

s2z2
D , Im z1 ,Im z2,0. ~4.1!

We also have

S†~s!511S ResS†~ z̄1!

s2 z̄1
1

ResS†~ z̄2!

s2 z̄2
D , Im z̄1 ,Im z̄2.0. ~4.2!

A rationalS matrix of this form implies the property, as assumed in the remarks following
~3.15!, thatS(s) is an inner factor. There are simple conditions, which we shall discuss elsew
for which the converse is true, i.e., that an inner function is rational.

In order to identify the resonant states we obtain, in theoutgoingtranslation representation, a
expression for the generator of the Lax–Phillips semigroup. We then find the eigenfunctio
this generator. Lax and Phillips then assert that these are the resonant states associated
poles of the Lax–PhillipsS matrix.

The Lax–Phillips semigroup is defined asZ(t)5P1U(t)P2 ,t.0. The generator of the
semigroup is given by

B5 i lim
t→01

Z~t!2Z~0!

t
. ~4.3!

In the outgoing translation representation we have
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out̂ s,buBus8,b8&out5 i lim
t→01

1

t (
g,g8

E dhE dh8

3@out̂ s,buP1uh,g&out out̂ h,guU~t!uh8,g8&out out̂ h8,g8uP2us8,b8&out

2out̂ s,buP1uh,g&out out̂ h,guU~0!uh8,g8&out out̂ h8,g8uP2us8,b8&out#.

~4.4!

In this representation the subspaceD1 is given byL2(2`,1`;H), i.e., it is defined in a simple
way by its support properties. Therefore, the operatorP1 , the projection into the subspaceK
% D2 is given simply by

out̂ s,buP1uh,g&out5Q~2s!d~s2h!dg,g8 .

Furthermore, in the outgoing translation representation the evolution is just translation

out̂ h,guU~t!uh8,g8&out5d~h2t2h8!dg,g8 .

Then ~4.4! becomes

out̂ s,buBus8,b8&out5 i lim
t→01

1

t
@Q~2s! out̂ s2t,buP2us8,b8&out2Q~2s! out̂ s,buP2us8,b8&out#.

~4.5!

We use the fact that the subspaceD2 is given in the incoming translation representation
terms of its support properties. This allows us to write

P25(
g
E dhuh,g& inQ~h!^h,gu in5(

g
E dh V2uh,g& fQ~h!^h,gu fV2

† . ~4.6!

In the outgoing translation representation we have

out̂ s,buP2us8,b8&out5(
g
E dh out̂ s,buV2uh,g& fQ~h!^h,gu fV2

† us8,b8&out

5(
g
E dh f ^s,buV1

† V2uh,g& fQ~h!^h,gu fV2
† V1us8,b8& f

5(
g
E dh f ^s,buSuh,g& fQ~h!^h,gu fS

†us8,b8& f .

In this expression we would like to represent the scattering operatorS and its adjointS† in the
spectral representation. Performing the appropriate Fourier transforms we get

out̂ s,buP2us8,b8&out5E dsE ds8(
a

E dheissSb,a~s!e2 ihsQ~h!eihs8S†~s8!a,be2 is8s8

5
2 i

4p2 E dsE ds8(
a

eiss
Sb,a~s!S†~s8!a,b8

s2~s81 i e!
e2 is8s8. ~4.7!

The operator valued functionS(s) is analytic in the upper half of the complexs plane. Its adjoint
S†(s) is analytic in the lower half plane. We assume thatS(s) has the form~4.1! and has two
poles in the lower half plane, located atz1 andz2 . The poles ofS†(s) are thus atz̄1 andz̄2 . The
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form of S(s) and of S†(s) allows the integrals in~4.7! to performed by contour integration
according to the various possible signs ofs ands8. The result is~through the rest of this sectio
we suppress in our notation the auxiliary Hilbert space variables!

out̂ suP2us8&out5Q~s!d~s2s8!1
1

2p
Q~2s!Feiz1sResS~z1!E ds8

S†~s8!

z12~s81 i e!
e2 is8s8

1eiz2sResS~z2!E ds8
S†~s8!

z22~s81 i e!
e2 is8s8G

5Q~s!d~s2s8!2 iQ~2s!Q~s8!@eiz1sResS~z1!S†~z1!e2 iz1s8

1eiz2sResS~z2!S†~z2!e2 iz2s8#1 iQ~2s!Q~2s8!

3Feiz1sResS~z1!S ResS†~ z̄1!

z12 z̄1
e2 i z̄1s81

ResS†~ z̄2!

z12 z̄2
e2 i z̄2s8D

1eiz2sResS~z2!S ResS†~ z̄1!

z22 z̄1
e2 i z̄1s81

ResS†~ z̄2!

z22 z̄2
e2 i z̄2s8D G . ~4.8!

The Lax–PhillipsS matrix is analytic in the upper half-plane. Its analytic continuation into
lower half-plane is given byS(s)[(S†(s̄))21, Im s,0. Similarily, S†(s) is analytic in the lower
half-plane and its analytic continuation to the upper half-plane is given byS†(s)[(S(s))21,
Im s.0. At any point in the complex plane we have

S~s!S†~s!5S†~s!S~s!51. ~4.9!

This relation is obtained by analytic continuation and does not imply unitarity of theS matrix off
the real axis. From~4.2! and ~4.9! we have

S~s!F11S ResS†~ z̄1!

s2 z̄1
1

ResS†~ z̄2!

s2 z̄2
D G51.

In the limit ass goes toz̄1 or to z̄2 we then get

S~s!ResS†~ z̄1!.A1~s2 z̄1!, s→ z̄1 ,

S~s!ResS†~ z̄2!.A2~s2 z̄2!, s→ z̄2 ,
~4.10!

ResS†~ z̄1!S~s!.Â1~s2 z̄1!, s→ z̄1 ,

ResS†~ z̄2!S~s!.Â2~s2 z̄2!, s→ z̄2

for some fixed~i.e., independent ofs! operatorsA1 , A2 , Â1 , Â2 . From ~4.1! and ~4.9! we have

S†~s!F12S ResS~z1!

s2z1
1

ResS~z2!

s2z2
D G51

and in the limit ass approachesz1 or z2 we get

S†~s!ResS~z1!.2B1~s2z1!, s→z1 ,

S†~s!ResS~z2!.2B2~s2z2!, s→z2 ,
~4.11!

ResS~z1!S†~s!.2B̂1~s2z1!, s→z1 ,
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ResS~z2!S†~s!.2B̂2~s2z2!, s→z2 .

With the help of Eq.~4.11! we find that the second term of Eq.~4.8! vanishes and the represe
tation of P2 in the outgoing translation representation to be

out̂ s,buP2us8,b8&out5Q~s!d~s2s8!2
1

2p
Q~2s!Feiz1sResS~z1!E ds8

S†~s8!

z12~s81 i e!
e2 is8s8

1eiz2sResS~z2!E ds8
S†~s8!

z22~s81 i e!
e2 is8s8G

5Q~s!d~s2s8!1 iQ~2s!Q~2s8!

3Feiz1sResS~z1!S ResS†~ z̄1!

z12 z̄1
e2 i z̄1s81

ResS†~ z̄2!

z12 z̄2
e2 i z̄2s8D

1eiz2sResS~z2!S ResS†~ z̄1!

z22 z̄1
e2 i z̄1s81

ResS†~ z̄2!

z22 z̄2
e2 i z̄2s8D G . ~4.12!

Inserting~4.12! in ~4.5! we get for the generator of the semigroup

out̂ s,buBus8,b8&out5 i lim
t→01

1

t
@Q~2s!out̂ s2t,buP2us8,b8&out2Q~2s!out̂ s,buP2us8,b8&out#

5 i lim
t→01

1

t
$Q~2s!~Q~s2t!d~s2t2s8!1 iQ~2s1t!Q~2s8!

3@eiz1(s2t)ResS~z1!K1~s8!1eiz2(s2t)ResS~z2!K2~s8!# !2Q~2s!

3~Q~s!d~s2s8!1 iQ~2s!Q~2s8!@eiz1sResS~z1!K1~s8!

1eiz2sResS~z2!K2~s8!# !%

5 iQ~2s!Q~2s8! lim
t→01

1

t
@~eiz1(s2t)2eiz1s!

3ResS~z1!K1~s8!1~eiz2(s2t)2eiz2s!ResS~z2!K2~s8!#

5Q~2s!Q~2s8!@z1 eiz1sResS~z1!K1~s8!1z2 eiz2sResS~z2!K2~s8!#,

~4.13!

where we have denoted

K1~s8!5
ResS†~ z̄1!

z12 z̄1
e2 i z̄1s81

ResS†~ z̄2!

z12 z̄2
e2 i z̄2s8,

~4.14!

K2~s8!5
ResS†~ z̄1!

z22 z̄1
e2 i z̄1s81

ResS†~ z̄2!

z22 z̄2
e2 i z̄2s8.

We show that, in the outgoing translation representation, the eigenvectors of the generB
of the Lax–Phillips semigroup are

c1~s!5Q~2s!ResS~z1!eiz1s, c2~s!5Q~2s!ResS~z2!eiz2s ~4.15!
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in the sense that a vector inH̄ given by cb(s)5Q(2s)eiz1s(ResS(z1))bb8fb8 or by cb(s)
5Q(2s)eiz2s(ResS(z2))bb8fb8 wherefPH, is an eigenvector of the generator of the sem
group. This is achieved by demostrating that these vectors satisfy the eigenvalue equation

E ds8out̂ s,buBus8,b8&outc1,2
b8~s8!5z1,2c1,2

b ~s8!. ~4.16!

We verify Eq.~4.16! for c1(s). Inserting~4.13! into ~4.16! and performing the integration we fin
for the second term, containing the factorz2 ,

ResS~z2!E
2`

0 S ResS†~ z̄1!

z22 z̄1
e2 i z̄1s81

ResS†~ z̄2!

z22 z̄2
e2 i z̄2s8Deiz1s8ResS~z1!

5
i

z22z1
ResS~z2!S ResS†~ z̄1!

z22 z̄1
1

ResS†~ z̄1!

z̄12z1
1

ResS†~ z̄2!

z22 z̄2
1

ResS†~ z̄2!

z̄22z1
DResS~z1!

5ResS~z2!~S†~z2!2S†~z1!!ResS~z1!50 ~4.17!

and for the first term containing the factorz1 ,

ResS~z1!E
2`

0 S ResS†~ z̄1!

z12 z̄1
e2 i z̄1s81

ResS†~ z̄2!

z12 z̄2
e2 i z̄2s8Deiz1s8ResS~z1!

52 iResS~z1!S ResS†~ z̄1!

~z12 z̄1!2 1
ResS†~ z̄2!

~z12 z̄2!2 DResS~z1!

5 iResS~z1!
dS†~s!

ds U
s5z1

ResS~z1!. ~4.18!

In order to simplify this last expression we need two identities, the first of which is obtaine
exploiting the unitarity ofS(s) for real s. Taking the derivative d/ds(S†(s)S(s)) we can write

dS†~s!

ds
52S†~s!

dS~s!

ds
S†~s!. ~4.19!

The second identity is obtained with the help of Eq.~4.1!

ResS~z1!5S~s!S†~s!ResS~z1!5S 12
ResS~z1!

s2z1
2

ResS~z2!

s2z2
DS†~s!ResS~z1!.

From this identity and Eq.~4.10! we get, for small values ofus2z1u,

ResS~z1!S†~s!ResS~z1!.2ResS~z1!~s2z1!. ~4.20!

When Eqs.~4.19! and ~4.20! are used in~4.18! we get

i ResS~z1!
dS†~s!

ds U
s5z1

ResS~z1!

5~2 i ! lim
s→z1

ResS~z1!S†~s!
dS~s!

ds
S†~s!ResS~z1!

52 i lim
s→z1

ResS~z1!S†~s!S ResS~z1!

~s2z1!2 1
ResS~z2!

~s2z2!2 DS†~s!ResS~z1!
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s→z1

~4.21!

Making use of the results~4.21!, ~4.17! it is easy to verify Eq.~4.16! for c1(s). A similar
calculation shows thatc2(s) also satisfies Eq.~4.16!.

A rational Lax–PhillipsS matrix is a rational, operator valued inner function. Such an op
tor can be written as25

S~s!5
s2 z̄1P1

s2z1P1

s2 z̄2P2

s2z2P2
, ~4.22!

whereP15un1&^n1u andP25un2&^n2u are projectors on one-dimensional subspaces of the a
iary Hilbert space~we takeun1& andun2& to be normalized and that, in general,P1P2Þ0!. This S
matrix can be rewritten in a form corresponding to Eq.~4.1! as

S~s!511
1

s2z1
F ~z12 z̄1!P1

z12 z̄2P2

z12z2P2
G1

1

s2z2
Fz22 z̄1P1

z22z1P1
~z22 z̄2!P2G . ~4.23!

From Eq.~4.23! we identify the two residues

ResS~z1!5~z12 z̄1!P1S 11
z22 z̄2

z12z2
P2D ,

~4.24!

ResS~z2!5S 11
z12 z̄1

z22z1
P1D ~z22 z̄2!P2 .

Inserting in~4.24! the expressions forP1 andP2 in terms ofun1& and un2& we find

ResS~z1!5~z12 z̄1!un1&S ^n1u1
z22 z̄2

z12z2
^n1un2&^n2u D ,

~4.25!

ResS~z2!5S un2&1
z12 z̄1

z22z1
un1&^n1un2& D ~z22 z̄2!^n2u.

The eigenvectors of the generatorB of the semigroup, which we denote byux1& andux2&, can now
be immediately identified, in light of the remarks following Eq.~4.15!, from Eq. ~4.25!,

ux1&5Q~2s!~z12 z̄1!un1&e
iz1s,

~4.26!

ux2&5Q~2s!S un2&1
z12 z̄1

z22z1
un1&^n1un2& Deiz2s.

Once the residues of theS matrix and the eigenvectorsux1&, ux2& are given explicitly in Eqs.
~4.25! and~4.26! we can insert these expressions into Eq.~4.13! to achieve an explicit expressio
for the generatorB of the semigroup. We find that

B5z1ux1&^x̃1u1z2ux2&^x̃2u, ~4.27!

where^x i ux j&5d i j and
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^x̃1u5a1^x1u1b1^x2u,
~4.28!

^x̃2u5a2^x1u1b2^x2u

with the coefficientsa1 ,b1 ,a2 ,b2 given by

a15u^n1un2&u2
~z12 z̄2!~ z̄22z2!

z12z2
11,

b15
z̄22z2

z12z2
^n1un2&,

~4.29!

a25
z22 z̄2

z̄22 z̄1
^n2un1&,

b25 z̄22z2 .

Equation~4.27! has the diagonalized form of the Lee–Oehme–Yang–Wu phenomenolo
Hamiltonian in the subspace of the two resonance channel containing, in this case, theK0 andK̄0

~or KS , KL! states. One sees from Eqs.~3.12! and ~3.13! that the jump function containing th
essential parameters of theS matrix in this subspace contain the matrix elements$ f i j % of the
perturbation. These transition matrix elements coincide in form with the quantities calcula
quantum field theoretical models for the vertex for neutralK meson decay. The theory that w
have given here explains how the neutralK meson corresponds to astate in the quantum me-
chanical Hilbert space~even though it is relatively short-lived! with an exact semigroup decay law
as seen to high accuracy in experiment.11

V. DISCUSSION AND CONCLUSIONS

We have shown that the quantum mechanical formulation of Lax–Phillips theory fo
description of resonances and decay5 can be generalized to a system with a finite discrete se
resonances. If this set of resonances spans the unstable system subspace, the most gener
the S matrix is that of a rational inner function,25 treated in detail in Sec. IV for the two
dimensional case.

The eigenstates corresponding to the poles of theS matrix are well-defined vectors in the fu
Hilbert spaceH̄, and the left and right eigenvectors are orthogonal with respect to the s
product ofH̄. They span a two-dimensional subspace ofH̄; the S matrix acts nontrivially on a
two-dimensional subspace of the auxiliary spaceH for each value of the foliation parameters
~independently ofs!. This corresponds to an ideal form of ‘‘resonance dominance.’’

The relation between the eigenvectors of the generator of the semigroup in the spaceH̄ and
the vectors spanning the two-dimensional subspace ofH is very simple@see Eq.~4.15!#. We are
therefore able to construct a model completely within the two-dimensional subspace, cont
an effective non-Hermitian generator of the semigroup, and a set of vectors in a two-dimen
space with scalar products taking the same value as the corresponding vectors in the full
This two-dimensional~in general,N-dimensional! space and the generator of the semigroup ac
on it coincides with the Lee–Oehme–Yang–Wu model. Moreover, as we have seen in the
Lee model which we have studied here, the matrix elements of the model Hamiltonian are r
to the perturbation formally in the same way as in the framework of the Wigner–Weisskopf m

APPENDIX A

We show thatV6uVi( p̃)&50 applying the methods used in Sec. II. The procedure is explic
performed forV1uVi( p̃)&50. The result forV2uVi( p̃)&50 is obtained in a similar way.

We start with the integral representation of the wave operator@see Eq.~2.10!#
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V1511 i lim
e→0

E
0

1`

U†~t!VU0~t!e2etdt; ~A1!

applying this operator touVi( p̃)& we get

V1uVi~ p̃!&5uV~ p̃!&1 i lim
e→0

E
0

1`

dt U†~t!VU0~t!e2etbi
†~ p̃!u0&

5uVi~ p̃!&2 i lim
e→0

E
0

2`

dt U~t!Vei (vVi
( p̃)2 i e)tbi

†~ p̃!u0&, ~A2!

wherevVi
(p)5p2/2MVi

. As in Sec. II, we want to evaluate the time evolution in the integral
perform a Laplace transform. The result of the action of the potential operator, given in Eq.~2.8!
to uVi(p)&, is

VuVi~ p̃!&5Vbi
†~ p̃!u0&5 (

j 51,2
E d4k f i j* ~k!aNj

† ~ p̃2k!au j

† ~k!u0&. ~A3!

A general form of a state in the sector of the Fock space withQ151, Q250 is given in Eq.~2.20!.
From Eq.~A3! we find, at timet50,

Aj~q,0!50, Bj~p,k,0!5 f i j* ~k!d4~ p̃2p2k!. ~A4!

Defining the Laplace transformed coefficientsÃj (q,z) andB̃j (p,k,z) as in Eq.~2.18!, we use Eq.
~2.19! and the fact that in Eq.~A4! Aj (q,0)50 to obtain

Ãl~p,z!S z2
p2

2MVl
D 5 (

j 51,2
E d4k f l j ~k!B̃j~p2k,k,z!,

~A5!

B̃l~p2k,k,z!S z2
~p2k!2

2MNl

2
k2

2M u l
D 5 iBl~p2k,k,0!1 (

j 51,2
f j l* ~k!Ãj~p,z!.

Solving for Ãl(p,z) we get

Ãl~p,z!5 i (
i 51,2

Wlk
21~z,p! (

j 51,2
E d4k

f i j Bj~p2k,k,0!

z2
~p2k!2

2MNl

2
k2

2M u l

,

~A6!

B̃l~p2k,k,z!5S z2
~p2k!2

2MNl

2
k2

2M u l
D 21F iBl~p2k,k,0!1 (

j 51,2
f j l* ~k!Ãj~p,z!G .

Inserting the initial condition forBl(p2k,k,0) from Eq.~A4! in Eq. ~A6! we have

Ãl~p,z!5 i FWli
21~p,z!S z2

p2

2MVi
D 2d l i Gd4~p2 p̃!,

~A7!

B̃l~p2k,k,z!5S z2
~p2k!2

2MNl

2
k2

2M u l
D 21

(
j 51,2

i f j l* ~k!Wji
21~p,z!S z2

p2

2MVi
D d4~p2 p̃!.
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Performing the Laplace transform of Eq.~2.15! implied by Eq.~A2!, we use the coefficients
from Eq. ~A7! and evaluate the resulting expression at the pointz5vVi

( p̃)2 i e5 p̃2/2MVi
2 i e.

This procedure gives the simple answer

lim
e→0

E
0

2`

dt U~t!Vei (vVi
( p̃)2 i e)bi

†~ p̃!u0&52 ibi
†~ p̃!u0&52 i uVi~ p̃!& ~A8!

and this implies the desired result.

APPENDIX B

We prove here that the value taken by the projection valued functionP2,P(s) is actually a
projection operator, for all values ofs, on a fixed two-dimensional subspace of the auxilia
Hilbert space of the Lax–Phillips representation of the relativistic Lee–Friedrichs model
projection operator is denotedP2,P , i.e., we prove that

P2,P~s!5P2,P .

We start with the observation made at the begining of Sec. IV@see Eq.~4.1! and the discussion
following it# that the operator valued functionP2,P(s), defined in Eq.~3.14! is a projection
operator for each value ofs,

Pn,P~s!Pn,P~s!5Pn,P~s!. ~B1!

It is, therefore, a bounded positive operator on the reals axis.
In order to proceed we need several definitions and results from the theory of operator

functions. We denote the upper half plane of the complexs plane byP. If b is some separable
Hilbert space, we denote byB(b) the set of bounded linear operators onb. We define the
following sets ofB(b) valued functions.18

Definition A:

~i! A holomorphicB(b) valued functionf (s) on P is of bounded type onP if log1uf(s)uB(b)

has a harmonic majorant onP. The class of all such functions is denotedNB(b)(P).
~ii ! If f is any strongly convex function, then byHf,B(b)(P) we mean the class of all holo

morphic B(b) valued functionsf (s) on P such thatf(log1uf(z)uB(b)) has a harmonic
majorant onP.

~iii ! We defineNB(b)
1 (P)5øHf,B(b)(P), where the union is over all strongly convex functio

f.
~iv! By HB(b)

` (P) we mean the set of all bounded holomorphicB(b) valued functions onP.

Here log1 t5max(logt,0) for t.0 and log 052`. The setsNB(b) and NB(b)
1 are called Ne-

vanlinna classes andHf,B(b)(P) is a Hardy–Orlicz class.
We will need the following theorems and definitions:
Theorem A: The following

HB(b)
` ~P!#Hf,B(b)~P!#NB(b)

1 ~P!#NB(b)(P)

is a valid sequence.
Definition B: Let u,v be nonzero scalar valued functions inN1(R) @N1(R) is the boundary

function for a scalar Nevanlinna class function#. A B(b)-valued functionF on R is of class
M(ui ,v i) if uF,vF* PNB(b)

1 (R).
Definition C: If APHB(b)

` (P) then:
~i! A is an inner functionif the operator

T~A!:f→Af, fPHb
2~P!

is a partial isometryon Hb
2(P);
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~ii ! A is anouter functionif

ø$Af:fPHb
2~P!%5HM

2 ~P!

for some subspaceM of b.
The main theorem which we will apply here is the following:
Theorem B: Let v be any nonzero scalar function inN1(R). If F is any nonnegative

B(b)-valued function of classM(v,v) on R then

F5G* G

on R, whereG is an outer function of classM(1,v) on R. The factorization ofF is essentially
unique.

As we have remarked previously, we have assumed that the functionsf i j (k) of the Lee model
are such thatSP(s) is an inner function. SincePn,P(s) is a bounded operator then, from defin
tion A~iv!, the relation~3.14!, and Theorem A, we see that

Pn,P~s!PNB(H)
1 ~P!,

whereH is the auxiliary Hilbert space of the Lax–Phillips representation of the relativistic L
Friedrichs model, defined by the variablesg in Eq. ~3.3! @or eqs.~3.5! and~3.6!#. Furthermore, the
projection operatorP2,P(s) satisfies (P2,P(s))* 5P2,P(s) and, from definition B we immediately
have

P2,P~s!PM~1,1!.

We can apply theorem B with the result that there is a unique decomposition ofP2,P(s),

P2,P~s!5G* G5~P2,P~s!!* P2,P~s!5P2,P~s!P2,P~s!

and thatG5P2,P(s) is anouter function. We denote byP the operator onHH
2 (P) for which the

realization is the operator valued functionP2,P(s). From definition C~ii ! we therefore have

$øP f : f PHH
2 ~P!%5HM

2 ~P! ~B2!

whereM is a subspace of the auxiliary Hilbert spaceH.
Now P2,P(s) is a projection operator for each value ofs. We have that the range ofP2,P(s)

is a two-dimensional subspace of the auxiliary Hilbert spaceH for eachs. We denoteM (s)
5Im P2,P(s). Define

M̂5(
s

M ~s!.

For each vector valued functionf PHH
2 (P) we have

P2,P~s! f ~s!PM̂ . ~B3!

Furthermore, there is no subspace ofM̂ that has the property~B3!. Since (P f)(s)
5P2,P(s) f (s)PM̂ for f PHH

2 (P) we must have

$øP f : f PHH
2 ~P!%5HM̂

2
~P!. ~B4!

We conclude thatM̂ must be a two-dimensional subspace of the auxiliary Hilbert spaceH. If it
has a higher dimension we consider two different values ofs, says5s0 ands5s1Þs0 , such
that P2,P(s1)ÞP2,P(s0). We then take a vectorv0PP2,P(s0)H,v0P(P2,P(s1)H)', a scalar
valued Hardy class functiong(s)PH2(P) and construct the vector valued functionj (s)
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5g(s)v0. Clearly, j PHM̂
2 (P) @where we denote byj the vector valued function taking the valu

j (s) at the point s# but j ¹$øP f : f PHH
2 (P)%, since for any f PHH

2 (P) we have j (s1)
5g(s1)v0'(P f)(s1)5P2,P(s1) f (s1). Therefore we have

$P f : f PHH
2 ~P!%,H

M̂

2
~P! ~B5!

and we have a contradiction with Eq.~B3!.
Since DimM̂52 we must haveP2,P(s)5P2,P(s8) for arbitrarys ands8 and we may write

P2,P~s!5P2,P ,

whereP2,P is a projection operator on some fixed~independent ofs! two-dimensional subspace o
H, which is the desired result.

1P. D. Lax and R. S. Phillips,Scattering Theory~Academic, New York, 1967!.
2C. Flesia and C. Piron, Helv. Phys. Acta57, 697 ~1984!.
3L. P. Horwitz and C. Piron, Helv. Phys. Acta66, 694 ~1993!.
4E. Eisenberg and L. P. Horwitz, inAdvances in Chemical Physics, edited by I. Prigogine and S. Rice~Wiley, New York,
1997!, Vol. XCIX, p. 245.

5Y. Strauss, L. P. Horwitz, and E. Eisenberg, hep-th/9709036, J. Math. Phys.~in press!.
6C. Piron,Foundations of Quantum Physics~Benjamin/Cummings, Reading, 1976!.
7V. F. Weisskopf and E. P. Wigner, Z. Phys.63, 54 ~1930!; 65, 18 ~1930!.
8L. P. Horwitz, J. P. Marchand, and J. LaVita, J. Math. Phys.12, 2537~1971!; D. Williams, Commun. Math. Phys.21, 314
~1971!.

9L. P. Horwitz and J.-P. Marchand, Helv. Phys. Acta42, 1039~1969!.
10L. P. Horwitz and J.-P. Marchand, Rocky Mt. J. Math.1, 225 ~1971!.
11B. Winstein et al., Results from the Neutral Kaon Program at Fermilab’s Meson Center Beamline, 1985-1,

FERMILAB-Pub-97/087-E, published on behalf of the E731, E773 and E799 Collaborations, Fermi National Acce
Laboratory, P.O. Box 500, Batavia, IL 60510.

12T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev.106, 340 ~1957!.
13T. T. Wu and C. N. Yang, Phys. Rev. Lett.13, 380 ~1964!.
14L. P. Horwitz and L. Mizrachi, Nuovo Cimento21A, 625 ~1974!; E. Cohen and L. P. Horwitz, hep-th/9808030

hep-ph/9811332, Hadronic J.24, 593 ~2001!.
15W. Baumgartel, Math. Nachr.69, 107 ~1975!; L. P. Horwitz and I. M. Sigal, Helv. Phys. Acta51, 685 ~1978!; G.

Parravicini, V. Gorini, and E. C. G. Sudarshan, J. Math. Phys.21, 2208 ~1980!; A. Bohm, Quantum Mechanics:
Foundations and Applications, ~Springer, Berlin, 1986!; A. Bohm, M. Gadella, and G. B. Mainland, Am. J. Phys.57,
1105 ~1989!; T. Bailey and W. C. Schieve, Nuovo Cimento47A, 231 ~1978!.

16I. P. Cornfield, S. V. Formin, and Ya. G. Sinai,Ergodic Theory~Springer, Berlin, 1982!.
17Y. Fourès and I. E. Segal, Trans. Am. Math. Soc.78, 385 ~1955!.
18M. Rosenblum and J. Rovnyak,Hardy Classes and Operator Theory~Oxford University Press, New York, 1985!.
19L. P. Horwitz, Found. Phys.25, 39 ~1995!. See also D. Cocolicchio, Phys. Rev. D57, 7251~1998!. The nonrelativistic

Lee model was defined T. D. Lee,ibid. 95, 1329~1954!; see also K. O. Friedrichs, Commun. Pure Appl. Math.1, 361
~1950!.

20E. C. G. Stueckelberg, Helv. Phys. Acta14, 322, 588~1941!; J. Schwinger, Phys. Rev.82, 664 ~1951!; R. P. Feynman,
Rev. Mod. Phys.20, 367~1948!; Phys. Rev.80, 440~1950!; L. P. Horwitz and C. Piron, Helv. Phys. Acta46, 316~1973!;
R. Fanchi, Phys. Rev. D20, 3108~1979!; A. Kyprianides, Phys. Rep.155, 1 ~1986! ~and references therein!.

21I. Antoniou, M. Gadella, I. Prigogine, and P. P. Pronko, J. Math. Phys.39, 2995~1998!.
22N. Shnerb and L. P. Horwitz, Phys. Rev. A48, 4068~1993!; L. P. Horwitz and N. Shnerb, Found. Phys.28, 1509~1998!.
23For example, J. R. Taylor,Scattering Theory~Wiley, New York, 1972!; R. J. Newton,Scattering Theory of Particles and

Waves~McGraw–Hill, New York, 1976!.
24B. Sz.-Nagy and C. Foias¸, Harmonic Analysis of Operators on Hilbert Space~North-Holland, Amsterdam, 1970!.
25P. D. Lax and R. S. Phillips,Scattering Theory for Automorphic Functions~Princeton University Press, Princeton, 1976!.
                                                                                                                



igate

t of the
ory,
ergy–
c
udies in

article
strings
ill

a

hen

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 5 MAY 2002

                    
On higher-dimensional dynamics
Paul S. Wessona)

Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

~Received 2 October 2001; accepted for publication 30 January 2002!

Technical results are presented on motion inN(.4)D manifolds to clarify the
physics of brane theory, Kaluza–Klein theory, induced-matter theory, and string
theory. The so-called canonical or warp metric in five dimensions~5D! effectively
converts the manifold from a coordinate space to a momentum space, resulting in a
new force~per unit mass! parallel to the four-dimensional~4D! velocity. The form
of this extra force is actually independent of the form of the metric, but for an
unbound particle is tiny because it is set by the energy density of the vacuum or
cosmological constant. It can be related to a small change in the rest mass of a
particle, and can be evaluated in two convenient gauges relevant to gravitational
and quantum systems. In the quantum gauge, the extra force leads to Heisenberg’s
relation between increments in the position and momenta. If the 4D action is
quantized then so is the higher-dimensional part, implying that particle mass is
quantized, though only at a level of 10265 g or less, which is unobservably small.
It is noted that massive particles which move on timeline paths in 4D can move on
null paths in 5D. This agrees with the view from inflationary quantum field theory,
that particles acquire mass dynamically in 4D but are intrinsically massless. A
general prescription for dynamics is outlined, wherein particles move on null paths
in an N(.4)D manifold which may be flat, but have masses set by an embedded
4D manifold which is curved. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1462418#

I. INTRODUCTION

The motion of a test particle in a higher-dimensional manifold is a prime way to invest
extensions of four-dimensional~4D! Einstein theory. In five-dimensional~5D! Kaluza-Klein
theory, older studies concentrated on the case where the 4D space-time was independen
extra coordinate.1–6 This condition was relaxed in newer work on 5D induced-matter the
where the 5D field equations for apparent vacuum are broken down into 4D ones with an en
momentum tensor derived from the extra dimension.7–15Dynamical effects in 4D, when the metri
is allowed to depend on one or more extra coordinates, have also become the subject of st
string and membrane theory.16–19 The main result is the appearance in 4D of extra forces.16,20,21

These are expected to be small in gravitational problems, but could be significant in p
physics, where a unification of the interactions could be achieved via ten-dimensional super
or eleven-dimensional supergravity.22,23In view of current interest in the subject, some results w
be given aimed at clarifying higher-dimensional dynamics.

II. GEODESICS IN N DIMENSIONS AND 4D

Consider anN-dimensional Riemannian manifold with a metric tensorgAB that depends on
coordinatesxC, with a line element dS25gABdxAdxB, through which a particle moves along
path described by an affine parameterl. It contains a 4D submanifold with line element ds2

5gab dxadxb. Here and in the following it is instructive to concentrate on the 5D case, w
Latin indices run from 0 to 4 and Greek indices run from 0 to 3.

a!Electronic mail: wesson@astro.uwaterloo.ca
24230022-2488/2002/43(5)/2423/16/$19.00 © 2002 American Institute of Physics
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In general relativity, the particle moves along a geodesic which minimizess via d@* ds#
50. For a particle with massm, l5s is normally chosen, the geodesic is non-null, and
four-momentum is defined bypa[mua, where the four-velocity isua[dxa/ds. For a massless
particle~photon!, l is often unspecified because the geodesic is null and can be obtained d
from the metric. The four-velocities are conventionally normalized for non-null and null path
uaua51, 0, respectively. However,S containss, and the former defines geodesics viad@* dS#
50.

A question which arises in the literature is whether the particle should follow a geode
ND or in 4D ~in brane theory, this is connected with whether the particle is constrained to m
on the brane or can wander through the bulk!. The answer is that it is most natural to assume t
the motion is geodesic inS, provided that the extra terms which then appear in the geodesics
are compatible with observation~see the following!. In this regard, it should be recalled that ev
in 4D the acceleration of the particle d2xa/ds2 is not a covariantly defined vector. The appropria
quantity is the absolute or covariant derivative, which defines the path viaDua/ds[dua/ds
1Gbg

a ubug50, whereGbg
a are the Christoffel symbols. It is the latter which yield the forces

the particle, which are thereby recognized as being inertial in origin, meaning that they arise
the motion of the reference frame. InND, the same philosophy should hold. We can u
d@* dS#50, and the absolute derivative or the Lagrange equations to obtain the dynamics, b
latter will in general contain terms which arise from the motion with respect to the larger refe
frame.

The only comment which needs to be added to this concerns the case of null geodesic
dS50. This has been considered by several workers.1,14,24,25It should be recalled that 4D causilit
is defined by ds2>0, and does not constrain dS2.5 There is no impediment to assuming th
particles withmÞ0 move along paths with dS250, when their motions can be described cons
tently by choosingl5s.

There is, however, another issue which relates to geodesics and requires notice. Geod
general relativity really describe accelerations, not forces or changes in momentum. The d
tion is often unnecessary, because the mass is constant. But even in Newtonian mech
rocket changes mass as its fuel burns, feeling a force along the direction of its motion. A
inflationary quantum field theory, particles are intrinsically massless, gaining mass by a dyna
mechanism involving the Higgs field.26 As noted occasionally in the literature,27 the correct dy-
namics in situations where the mass changes, follows not fromd@* ds#50 but from d@* m ds#
50. That is, dynamics is a theory not of four-velocities but of four-momenta. In this rega
should be noted that there is nocontradictionbetween the normalization condition used in re
tivity for the four-velocitiesuaua51, and the condition used in particle physics for the fo
momentapapa5m2. ~The latter is often writtenE22p25m2 and effectively uses the energy an
three-momentum to define the rest mass of a particle.! It is just that the conventional geodesic do
not give any information about the origin or variability of mass, a problem which is of ce
importance in cosmology.

The subjects of the preceding paragraphs, while perhaps familiar, underlie much of the
work which has been done on higher-dimensional dynamics.1–27While it is not exclusive, we wish
to concentrate in the following on an approach which resolves most of the issues
previously.7–16Specifically, we wish to present new results on metrics of the so-called canonic
warp type in 5D~the extension toN.5 is straightforward!. This has line element

dS25
l 2

L2 gab~xg,l !dxa dxb2dl 2, ~2.1!

wherex45l is the extra coordinate andL is a constant length. Certain things are already kno
about this metric, and certain others may be deduced from the comments made previous
convenient to list these here.~a! Mathematically~2.1! is general, insofar as the five availab
coordinate degrees of freedom have been used to setg4a50, g44521. Physically, this removes
the potentials of electromagnetic type and flattens the potential of scalar type.~b! The metric~2.1!
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has been extensively used in the field equations, which in terms of the Ricci tensor areRAB50,
and many solutions are known.14 These include solutions for the one-body problem28 and
cosmology29 which have acceptable dynamics, and solutions with the opposite sign forg44 which
describe waves.30 ~c! When ]gab /]l 50 in ~2.1!, the 15 field equationsRAB50 contain as a
subset the 10 field equations of general relativity, which in terms of the Einstein tensor areGab

53gab /L2. The scaleL is thereby identified, in cosmology, in terms of the cosmological cons
via L53/L2 and in other situations as the characteristic size of the four-space.12 ~d! This kind of
local embedding of a 4D Riemann space in a 5D Ricci-flat space can be applied to anyN, and is
guaranteed by Campbell’s theorem.31–35 ~e! The factorization in~2.1! says in effect that the 4D
part of the 5D interval is (l /L)ds, which defines amomentumspace rather than acoordinate
space ifl is related tom.8 This resolves the issue of forces versus accelerations noted previo
~f! Partial confirmation of this comes from a study of the 5D geodesic and a comparison
constants of the motion in 5D and 4D.14,36,37 In the Minkowski limit, the energy of a particle
moving with velocityv is E5l (12v2)21/2 in 5D, which agrees with the expression in 4D
l 5m. ~g! The five components of the geodesic equation for~2.1! split naturally into four space–
time components and an extra component. For]gab /]l Þ0, the former contain terms parallel t
the four-velocityua as noted previously for the case of a rocket.12,37For ]gab /]l 50, the motion
is not only geodesic in 5D but geodesic in 4D.

III. THE NATURE OF THE CANONICAL METRIC

The metric~2.1! is not mathematically unique but is physically rich, which prompts a dee
examination of its nature.

Consider a 4D space with ds25gabdxadxb embedded in a 5D space with line element

dS25ds22dl 2. ~3.1!

Then the transformation

s→l sinh ~s/L !,
~3.2!

l →l cosh ~s/L !,

causes~2.1! to become

dS25
l 2

L2 ds22dl 2. ~3.3!

This is of the canonical form, which is therefore recognized to be a spherical form of a two-
~the opposite sign forg44 may be obtained by replacing the hyperbolic functions by their tri
nometric counterparts!. Physically, there is an analogy with the angular momentum~per unit mass!
of a particlerv moving with velocityv at distancer from the center of a circle. Recalling from th
previous discussion thatl plays the role ofm in the canonical metric, we see thatmua is the
product of the velocity in 4D with the distance in the orthogonal fifth direction. In other wordspa

is a true 5D moment.
The above suggests that physically significant 4D structure may even be present in a

manifold. The latter in spherical polars has line element

dS25dt22dr 22r 2 dV22dl 2, ~3.4!

where dV2[(du21sin2 u df2). Introducing a dimensionless parametera, consider the transfor-
mation
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t→S a

2 D t1/al 1/(12a)S 11
r 2

a2D2
a

2~122a!
@ t21l a/(12a)# (122a)/a,

r→rt 1/a l 1/(12a), ~3.5!

l →S a

2 D t1/al 1/(12a)S 12
r 2

a2D1
a

2~122a!
@ t21l a/(12a)# (122a)/a

with u→u, f→f. Then some algebra shows that~3.4! becomes

dS25l 2 dt22t2/al 2/(12a)~dr 21r 2 dV2!2a2~12a!22t2 dl 2. ~3.6!

This is the metric of a class of cosmological models first found as solutions of the field equ
RAB50 by Ponce de Leon.38 They are separable inl , t and reduce to the 4D Friedmann
Robertson–Walker models with flat three-dimensional sections on the hypersurfacl

5constant.~The dust or Einstein–de Sitter solution hasa53/2 while the radiation solution ha
a52.! For this reason they are often regarded as the standard 5D cosmologies, but~3.5! shows
that they are actually canonical forms of 5D Minkowski space.

The same cannot be said of the standard one-body solution ofRAB50.28 This has the line
element

dS25
Ll 2

3 H F12
2M

r
2

Lr 2

3 Gdt22F12
2M

r
2

Lr 2

3 G21

dr 22r 2 dV2J 2dl 2, ~3.7!

whereM is a constant usually identified with the mass at the center of the three-geometry. M
~3.7! is pure canonical in the sense that it has the form~2.1! with L53/L2 and ]gab /]l 50.
However, it is not 5D flat like~3.6!, as may be verified by computer. This agrees with
well-known fact that the 4D Schwarzschild–de Sitter solution@given by the part inside the larg
brackets in Eq.~3.7!# can only be embedded in a flat space with dimensionN>6. However, since
any 4D solution can be embedded inN>10, the use of the canonical form obviously has releva
to superstring theory.

The field equationsRAB50 mentioned previously clearly contain physical information wh
is relevant to why the canonical metric~2.1! is so effective. These fifteen relations can in gene
be broken down into one wave equation, four conservation equations, and ten Einstein eq
Gab58pTab with an effective or induced energy–momentum tensor.39 However, only the last
quantity containsua, and via the 4D covariant derivativeTab

;b50 is usually interpreted as
describing the dynamics of a fluid consisting of particles. We will return to the field equa
later, but let us here take a look at particle dynamics.

This subject has been studied using both the geodesic equation7,8 and the Lagrange
equations.12,15These approaches are compatible, of course, but the latter is the more instruct
investigating the special status of~2.1!. Thus consider a Lagrangian which generalizes~2.1! and
has the form

L5H l 2

L2 gab~xg,l !
dxa

dl

dxb

dl
2F2~xg,l !S dl

dl D 2J 1/2

. ~3.8!

This is dimensionless, and contains a scalar fieldg4452F2 which is the classical analog of th
Higgs potential that is responsible for particle masses in quantum field theory.14,26The Lagrangian
~3.8! defines an actionI 5* L (xA,ẋA) dl, wherel is an affine parameter along the path of t
particle andẋA[dxA/dl is its five-velocity. The action is an extremum if

d

dl S ]L
] ẋAD2

]L
]xA 50. ~3.9!
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The space–time and extra components of this can be worked out explicitly oncel is chosen. A
natural choice might appear to bel5S,8 in which case~3.9! is equivalent to

dUA

dS
1GBC

A UBUC50, ~3.10!

the 5D geodesic equation inUA[dxA/dS with appropriately defined Christoffel symbols~see Sec.
II !. However, this is undefined for 5D null geodesics, and if another affine parameterl is used
instead then~3.10! acquires an extra term on the right-hand side equivalent toUAL 21dL/dl.40

Also, the object of the exercise is to understand 4D dynamics inua[dxa/ds rather than 5D
dynamics inUA[dxA/dS. For these reasons, we choosel5s.7,12,15We also chooseuaua51 for
a massive particle following a timelike 4D path. Then the substitution of~3.8! into ~3.9! results in
two rather complicated expressions for thea, four components of the motion, of which the seco
is the more enlightening:

l

F2 S F2l̇

l
D •

2
L2FḞ l̇ 3

l 2 2
1

LF
S 12

L2F2l̇ 2

l 2 D S 11
l uaub

2

]gab

]l
2

L2FḞ l̇ 2

l
D 50. ~3.11!

Remarkably, this is satisfied with no constraint on the last parentheses by (LF l̇ /l )251, which by
~3.8! impliesL50. That is, the particle is traveling along a timelike path in 4D but a null pat
5D.

We end this section by stating explicitly the equations of motion which follow from~3.9! or
~3.10!. The space–time components can be written as a part which is geodesic ins and an extra
part:

dum

ds
1Gbg

m ubug5Fm, ~3.12!

Fm[S 2gma1
umua

2 Dub
]gab

]l

dl

ds
. ~3.13!

HereFm is a force per unit~inertial! mass, or acceleration. It can be written as a sum of com
nents normal and parallel toum, soFm5Nm1Pm where

Nm5~2gma1umua!ub
]gab

]l

dl

ds
, ~3.14!

Pm5
2um

2 S uaub
]gab

]l
D dl

ds
. ~3.15!

The normal component obeysNmum50 ~by construction!, which is the behavior typical of Ein-
stein gravity and Maxwell electromagnetism.12,14 The parallel component obeys

Pmum5
2uaub

2

]gab

]l

dl

ds
[b. ~3.16!

Here the four-velocities are still normalized viauaua51 ~see above and Sec. IV!. But the scalar
quantityb is finite if ]gab /]l Þ0 in the canonical metric~2.1!, and there is motion in the extr
dimension as measured with the particle’s proper 4D times. The quantityb is a kind of power per
unit ~inertial! mass.It has no analog in standard 4D field theory. The magnitude ofb depends on
dl /ds, which is given by the extra component of the equation of motion:
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d2l

ds2 2
2

l
S dl

ds D 2

1
l

L2 52
1

2 F l 2

L22S dl

ds D 2Guaub
]gab

]l
. ~3.17!

This implies that there is no intrinsic state of rest for the particle in the extra dimension.@Formally,
Eq. ~3.17! is satisfied withl 5l 0 , u12350, u051, andgab5L2/l 0

2, but then dl 50 and the
metric reverts to a 4D one.# This is basically because the 4D proper time has been used
parameter for the 5D motion. Thus in general, dl /dsÞ0 in ~3.17!, ]gab /]l Þ0 in ~2.1!, andb
Þ0 in ~3.16!. The existence of finite scalar quantities likeb is expected to be typical of the
dynamics of anyN(.4)-dimensional theory.

IV. EXTRA FORCES IN N„Ì4…D THEORY

In Sec. II, it was noted that the word ‘‘force’’ has to be treated with some caution, bec
theories like general relativity describe accelerations while theories of particle physics de
momenta, and the two concepts can only be consistently joined via a suitable definition of
The canonical metric~2.1! opens a route to this, as well as providing a number of other interes
results. In Sec. III, it was seen that the effectiveness of the canonical metric can be traced
to the fact that it is an algebraically convenient way to parametize a 5D manifold, but main
the fact that it is a natural basis for 5D dynamics. In the present section we wish to go beyo
canonical metric and note some general results on forces.

It is straightforward to see that anyN(.4)D theory will yield extra accelerations as viewe
in 4D, which modulo an appropriate definition of mass will be interpreted as extra forces.16,20,21

Given anND line element dS25gABdxAdxB, the N velocitiesuA[dxA/dS are normalized for a
non-null path viaUAUA51, and the path is extremized in terms of anND covariant derivative via
UBUA

;B50. This when contracted givesUAFA50, where theFA are forces per unit~inertial!
mass. However, this impliesUaFa52U (N2a)F

(N2a)Þ0 when viewed from 4D.
To relate this to what was done in Sec. III, consider one extra coordinate and the norm

tion condition

gab~xg,l !uaub51. ~4.1!

Differentiating this with respect to an affine parameterl gives

gab,g uguaub1
]gab

]l

dl

dl
uaub12gam

dum

dl
ua50, ~4.2!

whereua[dxa/dl and gab,g[]gab /]l . Introducing the Christoffel symbols and noting sym
metries under the exchange ofa andb, the first term on the left-hand side of~4.2! can be rewritten
using

~gab,g1gag,b2gbg,a!uguaub52gamGbg
m uguaub. ~4.3!

Then ~4.2! reads

2gamuaS dum

dl
1Gbg

m ubugD1
]gab

]l

dl

dl
uaub50. ~4.4!

With Fm[(dum/dl1Gbg
m ubug) as in ~3.12! this says

umFm52
uaub

2

]gab

]l

dl

dl
. ~4.5!

There is clearly a force per unit~inertial! mass parallel toum given by
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Pm52
um

2 S uaub
]gab

]l
D dl

dl
. ~4.6!

Whenl5s this is identical to~3.15!, which was derived starting from the canonical metric~2.1!.
But here, we started from the normalization condition~4.1! for a massive particle following a 4D
timelike path. This means that the existence of~4.6! does not depend on the form of the metric.
is a consequence of defining and normalizing four-velocities in the conventional way when s
time is part of a bigger manifold.

Given the manner in which 4D dynamics is conventionally set up, it is difficult to conceiv
any way in which a force parallel to the four-velocity could be interpreted other than by rel
it to the mass of the particle which feels it. For a particle moving under the influence of sta
gravity and the extra force, the equation of motion in space–time is

dum

ds
1Gab

m uaub5Pm ~4.7!

with Pm given by~4.6! with l5s. In the following, we will consider some significant applicatio
of ~4.7!. Here, as an illustration, we can take a canonical metric withgab5(l 2/L2)hab where
hab5diagonal (1,21,21,21). Then ]gab /]l 5(2/l )gab and uaub]gab /]l 52/l in ~4.6!.
The equation of motion~4.7! reads

dum

ds
52

um

l

dl

ds
, ~4.8!

which yields l um5l 0 where l 0 is a constant of the~4D! motion. The latter is clearly the
momentummum, confirming that in canonical coordinates the extra coordinate plays the ro
particle mass.@See Sec. II and Refs. 8, 12, 14 and 15. Equation~4.8! is the analog of what is
sometimes called the rocket equation in Newtonian mechanics, which just says that d(mv)/dt
50 or dv/dt52(v/m)dm/dt.# However, whilepm5mum is a constant of the 4D motion, i
should be noted thatm5m(s) in general.

This cannot be fixed in the conventional approach to 4D dynamics, except by appeal to
external condition. But in 5D dynamics it can, notably by the extra component of the geo
~3.17!. This in general requires a solution of the field equations, but as noted in Sec. III a n
parametrization of 5D geodesics is via dS50. Then for the canonical metric~2.1! we have

dS2505
l 2

L2 ds22dl 2, ~4.9!

which yields

l 5l 0e6s/L. ~4.10!

The rate of variation ofl depends on the characteristic dimension of the four-spaceL. As noted
in Sec. II, for pure-canonical metrics with]gab /]l 50, L5(3/L)1/2, whereL is the cosmological
constant.12,14Thus from~4.10!, with the identificationl 5m, the rate of variation of the rest mas
is given by

1

mUdm

dsU. 1

mUdm

dt U5S L

3 D 1/2

. ~4.11!

The value ofL is severely constrained by astrophysical data.41–43 These indicateuṁu/m&2
310218 s21 by ~4.11!, which is observationally acceptable. There are also other constrain
extra forces like~4.6!, but these are relatively weak.44 However, it should be noted thatL mea-
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sures the energy density of the vacuum in general relativity,14 and this could be larger on sma
scales,26 so in principle mass variation and extra forces could be measured.

To do this in practice, though, requires solutions of the field equations. These in turn re
the specification of a system of coordinates or gauge. In this context, it should be noted th
extra forcePm of ~4.6! for the 5D case is a four-vector. As such, it is covariant under the u
group of 4D coordinate transformationsxm→xm(xn), but will in general change under the grou
of 5D coordinate transformationsxA→xA(xB). This is inevitable given that the field equation
RAB50 are covariant in 5D, but may represent a problem regarding the interpretation of o
vations made in 4D. This problem will be greater in the~algebraically straightforward! extension
of the results of this section toN(.5)D. There is a considerable relevant literature
gauges.14,22,23,45,46Fortunately, if attention is restricted to dynamics there are only two nat
gauges, to which we now turn our attention.

V. THE EINSTEIN AND PLANCK GAUGES

It has been seen that the pure canonical gauge, namely~2.1! with a factorl 2 attached to an
l -independent space–time, is remarkably successful as a basis for conventional 4D dyn
This is because the use ofl 5m effectively converts the 4D part of the 5D manifold from
coordinate space to a momentum space. However, that success concerns the classical co
momentum as the product of mass and velocity. In modern quantum field theory the mas
particle is not defineda priori,26 and even in old quantum theory the momentum is described
a de Broglie wave and derived from a wave function. A superior formulation of dynamics oug
address both the classical and quantum nature of momentum. In this section, we will assum
the differences in description are due to differences in gauge choices for a higher-dimen
metric, and narrow the choices for the gauges using field equations.

The latter are still the subject of discussion inND field theory, but in 5D there is a consens
that they are given by the Ricci tensor as

RAB50 ~A,B50,1,2,3,4!. ~5.1!

Let us consider these for a generalized form of the pure canonical metric~2.1! with line element

dS25S L

l
D 2a

ḡab~xg!dxadxb2S L

l
D 4b

dl 2. ~5.2!

Herea, b are constants which it is desired to constrain using~5.1!. These fifteen, 5D relations ca
be decomposed into 4D ones under only the four coordinate conditionsga450.39 For ~5.2! it is
convenient to take the components in the orderAB544, 4a, ab. The result is

a222ab1a50, ~5.3!

Va;b
b 50,

~5.4!

Va
b[

1

2ug44u1/2S gbs
]gsa

]l
2da

bgmn
]gmn

]l
D5

3ada
b

l
S l

L D 2b

,

Gab5
~2a212ab2a!

l 2 S L

l
D 2a24b

ḡab . ~5.5!

Here a semicolon denotes the usual 4D covariant derivative,gab5(L/l )2aḡab , g445
2(L/l )4b and indices have been raised and lowered usinggab in order to get the 4D Einstein
tensor. This in mixed form isGa

b5(2a212ab2a)l 22(l /L)4bda
b , and as usualGa

b[Ra
b

2Rda
b/2 in terms of the 4D Ricci tensor and Ricci scalar. The latter may be found by d

calculation, and is
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R5
212a2

l 2 S l

L D 4b

. ~5.6!

This determines the curvature of the 4D part of the manifold, which by~5.5! has the form of a
vacuum space with an effective cosmological constantL5(2a212ab2a)l 22(L/l )2a24b. This
is zero for a5b50, in which case~5.2! describes general relativity embedded in a flat a
physically innocuous extra dimension. Fora521, b50 we haveL53/L2, and~5.2! is the pure
canonical metric already discussed. Interestingly, the same value ofL results fora511, b5
11, which implies that~5.5! would give the same 4D physics even though the metric~5.2! does
not have the canonical form. We will return to this later. Here we note that the 4D phys
contained in the ten Einstein equations~5.5!, while the four conservation equations~5.4! are
satisfied, and the one scalar relation~5.3! provides a constraint between the constantsa, b. In this
regard it should be noted that the relationG52R ~which follows from the definition of the
Einstein tensor!, when combined with~5.6! reproduces~5.3!, which is the only meaningful con
straint.

The comments of the preceding paragraph imply that~5.2! as constrained by~5.3! contains
interesting physics in~5.5!. For example, the fact that the 4D cosmological constant depend
general on 5D parameters opens the way to a resolution of the conflict in its size as inferre
cosmology and particle physics.47–49 However, it is apparent that for dynamics there are t
natural gauges, namely those witha521, b50 and a511, b511. For these~5.2! has the
forms

dS25
l 2

L2 ḡab~xg!dxadxb2dl 2, ~5.7!

dS25
L2

l 2 ḡab~xg!dxadxb2
L4

l 4 dl 2. ~5.8!

Mathematically, these are equivalent since (5.7)→(5.8) under the simple coordinate transform
tion

l →L2/l . ~5.9!

Physically, this corresponds to changing the way the rest mass of a particle is described. W
previously that for the pure canonical metric the dynamics implies the identificationl 5m. Let us
restore physical units for the speed of lightc, the gravitational constantG, and Planck’s constan
h. Then~5.7! corresponds to the shift from gravitational ‘‘units,’’ to quantum ‘‘units,’’ where t
extra coordinate in~5.7!, ~5.8! is given, respectively, by

l 5
Gm

c2 , l 5
h

mc
. ~5.10!

There is nothing really fundamental about the presence of the dimensional constants here.
sional analysis is an elementary group-theoretic technique based on the Pi theorem.50–52 The
purpose ofc, G, andh in ~5.10! is merely to transpose the dimensions of mass to length so
it can be geometrized. And since the dimensions of these quantities areLT21, M 21L3T22, and
ML2T21 and are not degenerate,51 they can all be set to unity as is the common practice. T
said, it is convenient to rename the pure canonical metric~5.7! the Einstein gauge and its othe
form ~5.8! the Planck gauge.

The dynamics in these gauges can be studied for~5.7! by using~3.12!–~3.17!, and for both
~5.7! and~5.8! by using~4.6! and~4.7!. As an illustration, let us revisit the short calculation whi
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led to ~4.8! but now in both gauges. That is, we takegab5(L/l )2ahab so ]gab /]l 5
2(2a/l )gab anduaub]gab /]l 522a/l , which causes the 4D equation of motion~4.7! with
the parallel force~4.6! to read

dum

ds
5Pm52

um

2 S uaub
]gab

]l
D dl

ds
5

aum

l

dl

ds
. ~5.11!

This yieldsum5(l /l 0)a, wherel 0 is a constant of the 4D motion. Alternatively, Eq.~5.11! can
be written as

d~ l 2aum!50. ~5.12!

This says that in the Einstein gauge (a521) l um is conserved, while in the Planck gaugea
511)um/l is conserved. That is, by~5.10!, the conserved quantities are the classical momen
(G/c2)mum and the quantum momentum or inverse de Broglie wavelength (c/h)mum. These are
as expected, but as before in both quantitiesm5m(s) in general. If as in~4.9! we take a null 5D
geodesic,~5.2! gives

dS2505S L

l
D 2a

ds22S L

l
D 4b

dl 2. ~5.13!

This yields forboth gauges

l 5l 0e6s/L5l 0 exp@6~L/3!1/2s#, ~5.14!

which is the same as~4.10! and has similar implications for mass variation.
This process is intrinsic to 5D dynamics and warrants a closer examination, because it

the way to understanding the Heisenberg uncertainty relation. The latter is not a part of cla
4D dynamics, and neither is the parallel 4D accelerationPm derived previously. This was calcu
lated from the canonical metric~2.1! in ~3.15! and has an associated scalar power per unit~inertial!
mass~3.16!, but was also calculated from the normalization condition~4.1! in ~4.6! where it was
found to be of general form. This agrees with the Hamiltonian approach to Kaluza–Klein th
where a (411) split can always be performed in order to recover Einstein theory.53–55 In the
Einstein and Planck gauges,Pm has the form ~5.11!, whose associated scalar isPmum

5(a/l )dl /ds wherea561. This quantity has no analog in conventional classical dynam
whose forces as noted before obeyFmum50. However, an observer could interpretPm as causing
an anomalous change in momentum dp̄m, such that by~5.11!

1

m

dp̄m

ds
5Pm5

aum

l

dl

ds
. ~5.15!

This implies the associated scalar quantity

dxmdp̄m5
am

l
dl ds. ~5.16!

For both the Einstein gauge and the Planck gauge, this reads

dxmdp̄m52dm ds. ~5.17!

That is, there is a Heinsenberg-type relation in 4D which depends on the mass change ass
with 5D. The relation~5.17! is general, insofar as no use has been made of~5.14! for m5m(s)
which follows from ~5.13! for a null 5D geodesic. The generality of~5.17! may also be appreci
ated by recalling from previous work that the momentum is really conserved along a 5D pa
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d(mum)50 or m dum1um dm50, where the second term represents an anomalous chan
momentum dp̄m52um dm, so there is a scalar dxmdp̄m52dxm(dxm/ds)dm52dm ds.

Let us now ask how a 5D null path with dS250 relates to the motion of a particle of massm
moving along a 4D timelike path with ds2.0. We work in the Planck gauge with convention
units. Then~5.14! gives dm56L21m ds, and~5.17! may be written

dxmdp̄m5
~mcds!2

h S l

L D . ~5.18!

The first term in parentheses here is the 4D action, which as usual is defined and quanti
integersn via

I[E mcds, dI 5nh. ~5.19!

The second term in parentheses in~5.18! is the ratio of the Compton wavelength of the partic
l 5h/mc and the characteristic dimension of the four-space it inhabitsL5(3/L)1/2. Now the 5D
null condition~5.13! in the Planck gauge (a51, b51) shows that if the 4D action is quantized v
~5.19! then so is the extra part of the 5D line element. We therefore putL/l 5n, which says that
the Compton wavelength is an excitation of the fundamental mode. The result is that~5.18! reads

dxmdp̄m5nh, ~5.20!

which is Heisenberg’s relation. The above-mentioned approach can clearly be generalized t
box sizes. But if free particles have masses set by the energy density of the vacuum,26 constraints
on the cosmological constant41–43 show that mass is quantized in units of

m5
h

cL
5

h

c S L

3 D 1/2

&10265g. ~5.21!

This is too small to detect with current methods, and miniscule compared to the so-called P
mass (hc/G)1/2'1025 g, which is seen to be an artifact produced by a mixture of the Einstein
Planck gauges discussed in this section.

VI. WAVES IN N„Ì4…D THEORY

Section V showed that Heisenberg’s relation follows as a consequence of the extra
which results when a causal 4D manifold is extended to a null 5D one. It is therefore natural
if other aspects of particles, including their wave nature, can be understood as manifestation
N(.4)-dimensional space. That quantum field theory and general relativity are in principle
patible has been shown by work on the Hartle-Hawking and Vilenkin wave functions.56–58And
exact solutions of Einstein’s equations are known which can describe nongravita
waves.30,46,59–64There is of course the potential problem that the metric may be complex,65–70but
this can be avoided if the view is taken that only the physically relevant quantities calculated
it need to be real.30,46,64In this section we will therefore proceed to see if it is possible to se
a consistent framework for 4D wave mechanics inN(.4)D theory, concentrating as before on th
5D case.

The 4D Klein–Gordon equation for a relativistic particle with zero spin and finite mass sh
be derivable, based on what has been shown previously, from the 5D equation for a null ge
However, since the Klein–Gordon equation is a second-order relation in a complex wave fun
we take the line element to have signature (12221). Then
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dS2505S L

l
D 2a

ds21S L

l
D 4b

dl 2, ~6.1!

wheregab5(L/l )2aḡabdxadxb and a5(21,11) with b5(0,11) for the Einstein and Planck
gauges as before. The last relation is satisfied by

l 5l 0e6 is/L, ~6.2!

which is the complex analog of~4.10!. The mass~squared! involvesl l * 5l 0
2 and is constant and

real. Without loss of generality we can take the upper sign in~6.2! and define a dimensionles
wave function

c5eis/L. ~6.3!

This satisfies a hierachy of wave equations

dnc

dsn 5S i

L D n

c, ~6.4!

where we are interested primarily in the casesn51, 2. @Then in ~6.4! should not be confused with
that in ~5.19!.# The first-order equation of~6.4! implies ic/L5dx/ds5(]c/]xa)(dxa/ds)
5(]c/]xa)ua or 15(L/ ic)(]c/]xa)ua. But 15uaua , so

ua5
L

ic

]c

]xa . ~6.5!

This for the fundamental mode of the Planck gauge withL5h/mc just says pa

5(h/ icc)]c/]xa, which is the usual prescription for obtaining the momenta from the w
function. The second-order equation of~6.4! can be treated similarly, and with~6.5! yields

uaub

c

]2c

]xa]xb 1
1

L2 1
iua

L

dua

ds
50. ~6.6!

The imaginary part of this isuadua/ds50 or the usual orthogonality relation. The parallel acc
eration~4.6! or ~5.11! which follows from the metric in form~5.2! does not appear, which agree
with the fact that the effective mass is a constant for the metric in form~6.1!. In this regard, it is
instructive to consider the geodesic equation dUm/dl1Gbg

m UbUg50 with Ua[dxa/dl, dl
5e7 is/Lds and Gbg

m constructed fromgab5(L/l )61ḡab , as implied by~6.1!. This geodesic, it
may be verified, splits naturally into real and imaginary parts:

dum

ds
1Ḡbg

m ubug50, ~6.7!

um5ḡmaS ḡag

]s

]xb 1ḡab

]s

]xg2ḡgb

]s

]xaDubug. ~6.8!

Hereum[dxm/ds andḠbg
m is constructed fromḡab . We see from~6.7! that the motion is geodesi

in the embedded four-space. And~6.8! is identically satisfied ifs5*uadxa so ]s/]xa5ua as
usual for the four-interval. In other words, the 4D dynamics is standard. Returning now to~6.6!,
its real part may be rewritten by noting thatuaub]2c/]xa]xb5ḡab]2c/]xa]xb, which can be
shown using~6.5! anduaua51. Then for the fundamental mode of the Planck gauge, the real
of ~6.6! reads
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ḡab
]2c

]xa]xb 1
m2c2c

L2 50. ~6.9!

This is the standard 4D Klein–Gordon equation.
The preceding paragraph started with the complex metric~6.1! and ended with the relativistic

wave equation~6.9!. Both are statements about dynamics, and neither uses the field equa
Solutions of the latter of relevant type were mentioned previously.30,46,59–64It would be inappro-
priately long to discuss these here; but to show that there is a match between the dynamics
field equations, let us take the metric~6.1! in the Planck gauge (a51, b51) and consider the 5D
field equationsRAB50(A,B50,1,2,3,4). The latter may be shown to be satisfied, either tar
using algebra39 or quickly using a computer package,71 by

dS25S L

l
D 2

~dt22ei (vt1kxx)dx22ei (vt1kyy)dy22ei (vt1kzz)dz2!1S L

l
D 4

dl 2. ~6.10!

Herekxyz are arbitrary wave numbers along the Cartesian axes andv is a frequency fixed by the
field equations asv562/L. This solution may be regarded as the canonical one in 5D, since
only does the Ricci tensorRAB vanish but the Riemann tensorRABCD does also. That is,~6.10!
describes a wave propogating in the 4D part of aflat 5D manifold. However, the 4D part of~6.10!
is curved. In the induced-matter picture,14 it is curved by a cosmological constantL5
23l 2/L4. If the latter is modeled as in general relativity by a classical pressure and densit
wave in 4D is supported by a medium with the equation of state 8pp528pr52L53l 2/L4

typical of the classical vacuum. Another way of appreciating what is involved here is by co
ering the extra coordinatel , or equivalently the inertial rest mass of the particlem. By ~6.2!, l

oscillates in and out of the 4D space–time hypersurface defined bys. The average value ofl is
zero, agreeing with the fact thatRABCD describes a flat 5D manifold; but the average value of
square is finite, agreeing with the fact that the 4D manifold is curved. By~6.10! directly, or by
~5.6! modulo a sign due to the change in signature from~5.2! to ~6.1!, the 4D Ricci scalar is

R5
12l 2

L4 5
12m2c2

h2 . ~6.11!

Here we have putl 5L5h/mc for the fundamental mode in the Planck gauge. The last rela
just says that the scalar curvature of the 4D space is set by the Compton wavelength or mas
particle which inhabits it. This agrees with Mach’s principle,14 and with the idea from inflationary
quantum field theory that particles are intrinsically massless.26 There is no contradiction, as lon
as the view is taken that particles with finite rest mass are 4D objects in a 5D vacuum.

The generalization of the above is expected to be straightforward, both for spin-1/2 pa
described by the Dirac equation in 5D72,73and spin-0 particles described by scalar wave equat
in ND.14,74 In the latter context, it is clear that the defining equation for classical dynamic
terms of theN velocities should beUAUA50. The corresponding quantum wave function can
derived from the metric as fixed by solutions ofRAB50(A,B50,1,2,3, . . .,N). Probabilities
should be defined from the metric using the element of proper volume (ugu)1/2dxN, so ugu will be
a nontrivial factor.@This is already evident in 5D from metrics like~6.10!, where the 4D wave
function may be augmented byg44 to yield a 5D one whose extra component will be related to
spectrum of particle masses.# It is expected that these issues will be reported on in the future

VII. CONCLUSION

In Sec. II, we noted that the canonical 5D metric~2.1! justifies its name by providing a bas
for N(.4)D geodesics and leading to many useful results. The utility of the canonical~or warp!
metric can be understood as a result of embeddings, which on 4D hypersurfaces reduce to
cally acceptable solutions for cosmology~3.6! and the one-body problem~3.7!. However, as
shown elsewhere in Sec. III, its efficacy is mainly due to the fact that it converts acoordinate
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space to amomentumspace,with the extra coordinate playing the role of rest mass even for n
5D geodesics. In general, the velocity in the extra dimension results in a new inertial force~per
unit mass! given by~3.15!. This and its associated power~per unit mass! given by~3.16! have no
analog in conventional 4D dynamics. The same is true of any nontrivialND manifold. In Sec. IV,
it was seen that the normalization condition~4.1! results in an extra acceleration parallel to t
four-velocity which has the form~4.6! independent of the coordinate system. This can m
logically be handled by connecting it to the change in the~inertial! rest mass of the particle whic
feels it, which means that the 4D motion is technically nongeodesic in the four-velocity~4.7!, even
though it agrees with the conventional law for the conservation of the four-momentum as a
~say! to the motion of a rocket~4.8!. However, the rate of variation of mass in the Minkowski lim
is set by the cosmological constant as in~4.11! and is tiny, so for apparently free particles there
no conflict with observed dynamics. In Sec. V, the field equations~5.1! were used to constrain th
form of a generalized canonical metric~5.2!, leading to the recognition of two natural choices f
the extra coordinate in~5.7! and~5.8!. These are related by an elementary coordinate transfo
tion ~5.9!, whose physical meaning is however significant: classical physics uses the gravita
constant of Newton or Einstein to geometrize the mass, while quantum physics uses P
constant to geometrize the mass, as in~5.10!. That is, classical and quantum dynamics in 4D a
descriptions of 5D dynamics in what can be termed the Einstein and Planck gauges. I
gauges, the extra or parallel force~per unit mass! of ~5.15! leads to a relation between th
increments in the coordinates and momenta~5.17! which is reminiscent of Heisenberg’s relatio
Further study confirms that the extra force—which is inertial is the Einstein sense of coming
the motion in the~extra part of the! coordinate frame—results in Heisenberg’s uncertainty rela
~5.20!. A corollary of this is that the inertial rest mass of a particle is quantized, though the u
set by the cosmological constant and is less than 10265 g by ~5.21! and so too small to be observe
using current methods. These results prompted the brief study in Sec. VI of waves inN(.4)D. In
5D, what is in effect a Wick rotation of the extra part of the null metric~6.1! was found to lead to
a wave function~6.3! which satisfies a hierachy of wave equations~6.4!. The first of these,~6.5!,
is a restatement of the standard prescription for the derivation of four-momenta from a
function. The second,~6.6!, splits naturally into two parts, of which one is a restatement of
geodesic equation of classical theory~6.7!, while the other is equivalent to the Klein–Gordo
equation of relativistic quantum theory~6.9!. It should be noted that the latter was derived witho
the use of operators, and of course contains the Schro¨dinger equation in the nonrelativistic limit
More importantly, it should be noted that solutions of the 5D field equations exist which
complex metrics but which result~because of the structure of the field equations! in measurable
quantities which are real. An example is~6.10!, which is the canonical solution for a wave in a 5
manifold. It describes an oscillation of the extra coordinate in and out of the hypersurface
space–time. The mass of the particle associated with the wave also oscillates, with a mea
which is zero, in accordance with inflationary quantum field theory and the flatness of th
manifold. However, the square of the mass is finite and in fact set by~6.11!, which says that the
square of the inverse Compton wavelength of the particle is proportional to the Ricci scalar
embedded and curved 4D manifold. This last property is manifestly Machian, and is expec
be generic toN(.4)D manifolds which contain submanifolds that proscribe the 4D ‘‘box
which particles inhabit. The general prescription for dynamics inN-dimensional spaces woul
appear to be a null product ofN-vectors~specifying the coordinate velocities in the classical ca
or the wave numbers in the quantum case!. This means that particles are in causal contact inND
even though they appear to be out of contact in 4D, so there are obvious implications f
Aharanov–Bohm effect and the double-slit experiment. These phenomena, and other
quences for membranes and strings especially, will surely repay further investigation.
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Global prescribed mean curvature foliations
in cosmological space–times. I

Oliver Henkela)
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This work investigates some global questions about cosmological space–times with
two-dimensional spherical, plane, and hyperbolic symmetry containing ‘‘well-
behaved’’ matter. The result is that these space–times admit a global foliation by
prescribed mean curvature surfaces, which extends at least toward a crushing sin-
gularity. The time function of the foliation is geometrically defined and unique up
to the choice of an initial Cauchy surface. This work generalizes a similar analysis
on constant mean curvature foliations and avoids the topological obstructions aris-
ing from the existence problem. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1466882#

I. INTRODUCTION

The flavor of General Relativity viewed as an initial value problem for the field equation
based on the geometrical nature of the equations, which implies the diffeomorphism inva
and the absence of a metric background structure. This has consequences for spacelike fo
in that the time function of a foliation is not canonical, but arbitrary unless it is tied to s
geometrical quantity. The latter would turn the analysis of the global structure of space–time
an investigation of the asymptotic behavior of such a foliation.

In space–times with certain symmetries some global foliations, defined by time coord
tied to the symmetries, are known, e.g., Rein~1996!, Andréasson~1999!.

A geometrically defined foliation which does not depend on the symmetries are the
known constant mean curvature~CMC! foliations, where the time coordinate is given by the me
curvature of the leaves, which varies continuously from leaf to leaf, see Rendall~1996! for a
survey of this topic and Rendall~1995b!, Rendall ~1997c! for foliations of space–times with
symmetries.

Unfortunately the CMC constructions suffer from the existence problem, which is unsolv
general. To overcome this difficulty, a foliation with leaves of prescribed mean curvature~PMC!
has been constructed at least locally in time in~Henkel, 2001b! for cosmological space–times. Th
prescription is given implicitly, letting the mean curvature vary continuously along the no
vector field of the foliation relative to a given Cauchy surface. The time function of the folia
is geometrically defined and turns out to be intrinsic, in that coupled to Einstein’s field equa
adapted to the leaves, one obtains Cauchy data for space–times foliated by PMC leaves.

The aim of the present paper is to globalize this result for certain space–times. Motivat
the method in Rendall~1995a!, where satisfying results about cosmic censorship have been
tained for spatially homogeneous models, I consider here cosmological space–times wit
dimensional spherical, plane, and hyperbolic symmetry. This choice is the first step of succe
lowering the degree of symmetry to obtain more and more general results. I focus on the foll
questions: How large is the maximal interval for the time function and does this maximal foli
cover the whole space–time?

One guideline taken from Rendall~1995a! is that the foliation may be extendible as long

a!Present address: Heinrich-Hertz-Institut fu¨r Nachrichtentechnik Berlin GmbH, Einsteinufer 37, 10587 Berlin, Germa
electronic mail: henkel@hhi.de
24390022-2488/2002/43(5)/2439/27/$19.00 © 2002 American Institute of Physics
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the mean curvature of the leaves remains finite. We will see that this principle stays true with
modifications.

Another important aspect for the construction of global foliations is the choice of an ap
priate matter model. The key requirements for the matter fields are their regularity in a re
geometric background as well as some energy conditions. These requirements are not
satisfied, since the former rules out matter such as the perfect fluid, which is known to de
singularities~shocks! in a regular geometric background. For dust it has been shown in Re
~1997b! and Isenberg~1998! that there is no way to construct a global CMC foliation which cov
the whole dust-filled cosmological space–time. These counterexamples dramatically emp
the importance of choosing appropriate matter models. Furthermore demanding energy con
seems natural and obvious, but we will see, that the non-negative pressures condition p
special role in the improvements in Sec. III E.

Section II fixes notation and states some basic definitions. We attack the main questi
Sec. III, following closely the treatment in Rendall~1995b!. The results will be discussed in Se
IV.

II. BASIC DEFINITIONS AND FORMULAS

A. Space–times and foliations

A space–time is a pair~M,g!, whereM denotes a four-dimensional smooth and orienta
Lorentz manifold with metricg and signature~2 1 11!. The metric induces the Levi-Civita
connection4¹ on M. If $Xa% denotes a local basis of vector fields onM, we define the connection
coefficients4Cab

g relative to this basis by4¹Xa
Xb54Cab

g Xg and we get the Christoffel symbols4G

and Ricci rotation coefficients4g by specializing to a coordinate basis or an orthonormal fra
respectively. The sign convention for the curvature is fixed by the definition4R(X,Y)Z
ª

4¹X
4¹YZ24¹Y

4¹XZ24¹@X,Y#Z, where X, Y Z are vector fields. The curvature tensor is th
defined as4R(W,Z,X,Y)ªg(W,4R(X,Y)Z) with Ricci tensor4Rab54Ramb

m and scalar curvature
4R54Rm

m , written in abstract index notation of the Ricci calculus.
Then the Einstein tensor readsGab54Rab2 1

2
4Rgab and the field equations areGab

58pTab or equivalently4Rab58p(Tab2 1
2(tr T)gab), whereTab denotes the energy momen

tum tensor of the matter fields. The matter quantities are the energy densityrªTmnnmnn, the
momentum densityj bª2Tmnnmhb

n and the stress tensorSabªTmnha
mhb

n with respect to an ob-
server, represented by a unit timelike vectorn, wherehabªgab1nanb denotes the orthogona
projector on$n%' in covariant notation.

Einstein’s field equations in vacuum (Tab50) have a well-posed Cauchy problem in ha
monic coordinates, thus one obtains space–times as solutions of Einstein’s field equation
matter, whenever the equations describing the matter fields and the energy momentum
couple to the field equations in harmonic coordinates, such that the Cauchy problem remain
posed. We will see examples in Sec. II B~compare Wald, 1984 and Friedrich and Rendall, 20!
for an introduction/analysis of the Cauchy problem for Einstein’s equations.

In this work we confine ourselves tocosmologicalsolutions~M,g! of Einstein’s field equa-
tions. Due to Bartnik~1988! these are globally hyperbolic and spatially compact space–tim
where the Ricci tensor contracted twice with any timelike vector is non-negative~timelike con-
vergence condition!. This last condition can be reexpressed in terms of the matter variablesr
1tr S>0 for any observer, which is the strong energy condition.

Now let us pay attention to an additional structure. A foliation$St%, tPI ,R ~I interval
containing zero! of ~a part of! ~M,g! by spacelike hypersurfaces induces on each leaf the
normal vector fieldn, the metrichab5gab1nanb , which also serves as orthogonal projecti
and the second fundamental formkabª2ha

mhb
n 4¹mnn ~the definition ofkab fixes the sign con-

ventions used in this work!. The second fundamental form is a symmetric tensor, intrinsic to
leaves of the foliation, and can also be written as the Lie derivative of the three-metrich with
respect to the normal vector field,kab52 1

2Lnhab . The three-metric determines further geomet
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cal objects on the leaves, such as the Levi-Civita connection¹, the Christoffel symbolsG, the
Ricci rotation coefficientsg, and the curvature tensorR(•). Tensors intrinsic to the leaves of th
foliation will carry Latin indices in the abstract index notation.

The parametert of the foliation has timelike gradient and thus can be regarded as~coordinate!
time. Given local coordinates (xi) on S0 , we can Lie-transport them to neighboring leaves alo
an arbitrary family of transversal curves, parametrized byx. We will express equations containin
coordinate components with respect to the adapted coordinates~t,x!.

The lapse functionN and the shift vectorn'n on the leaves are defined by] t5Nn1n, thus
N52g(] t ,n) andn5] t2Nn. Then we have 15dt(] t)5N dt(n). Further, dt is ~co-!orthogonal
to the leaves and if we denote the conormal of the leaves bys we see that dt52N21s or s5
2N dt, thusN21 measures the length of dt.

The most common example involving the lapse function is the event horizon in Schwarz
space–time, where the coordinate time explodes along the worldline of infalling observersn, thus
N21 explodes orN→0. In this work we will be faced with a complementary scenario, where
have to ensure that the lapse function does not explode, corresponding to the phenom
recollapse, where coordinate time freezes as dt→0. If this occurs, one could try to reparametriz
the foliation by settingt̃ 5 f (t) for some monotone functionf and one gets dt̃ 5 f 8(t)dt,

Ñ5
1

f 8~ t !
N5

dt

dt
N,

and the same relation holds for shift.
The 311 split of the space–time geometry by means of lapse and shift ends up in

11 form of the field equations. The constraint equations are

R1H22uKu2516pr ~Hamiltonian constraint!, ~1a!

¹ j ki j 2¹iH58p j i ~momentum constraint!, ~1b!

with uku25kabkab andH5tr k denotes the mean curvature of the leaves. The Arnowitt–Des
Misner ~ADM ! equations read

] thi j 522Nki j 1¹in j1¹jn i , ~2a!

] tki j 52¹i¹jN1N~Ri j 1Hki j 22ki
rkr j 28p~Si j 1

1
2~r2tr S!hi j !!

1n r¹rki j 1kr j ¹in
r1kir ¹jn

r . ~2b!

Taking the trace of the second equation and eliminating the scalar curvatureR by the Hamiltonian
constraint we obtain the lapse equation

DN1N~ uku214p~r1tr S!!5~] t2n!H, ~3!

which serves as a constraint of the foliation. Note that in cosmological space–times the te
brackets is always non-negative. If it turns out to be nonvanishing, then the left-hand side~3!
can be shown to be an isomorphic mapping ofN, considered as an element of some Sobolev sp
Hs into Hs22. This observation motivates the following
Definition 2.1:A prescribed mean curvature (PMC) foliationis defined to be a foliation$St%
satisfying~3!, with

~] t2n!H5Nn~H !ª1, ~4!

thus the mean curvature of the leaves is forced to vary uniformly along the normals of the l
In Henkel ~2001b! I proved the following local in time result:

Theorem 2.2: Let (M,g) be a smooth, globally hyperbolic space–time, obeying the strong
energy condition, with compact Cauchy surfaceS and
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l5uku214p~r1tr S! ~5!

does not vanish identically onS. Then there exists a T.0 and a unique smooth PMC foliation
$St%, tP@2T,T# in ~M,g!, with S5S0 .

Note that the setting here is quite general, no symmetry assumptions have to be mad
essentially the strong energy condition turns out to be sufficient for the local in time existen
a unique PMC foliation up to the choice of an initial Cauchy surface.

The aim of the present paper is to globalize the result. Here are two problems involved
large is the interval of values taken by the time coordinate and does the global foliation then
the whole space–time? To answer these questions in general there seem to be no tec
available up to now. One strategy to obtain global results is to study first space–times with
spatial symmetry, taking advantage of the simplifications of the equations. Then the hope
the techniques developed in these cases give insight into the nature of more general cla
space–times, by successively lowering the degree of symmetry. Here we will focus on s
times with two-dimensional spacelike orbits of symmetry and three~local! Killing vector fields. In
the second part of this paper we will consider space–times with two commuting~local! Killing
vector fields. These cases are indeed the first steps of this program, since the initial analy
locally spatially homogeneous space–times has already been done and leads to very stron
~see Rendall, 1995a! for the exact analysis or Henkel~2001a! for an overview about the results i
the present context.

B. Matter models

Before getting deeper into the analysis just motivated I introduce some matter mode
their coupling to the Einstein equations, with special emphasis on the Cauchy problem.
energy conditions will play an important role in the estimates we perform later on, I assemb
relevant ones for the present work first.

~1! The dominant energy condition. Its statement is that for all orthonormal frames$4ea% with
4e0 timelike

T~4e0 , 4e0!>uT~4ea , 4eb!u.

Another formulation of this condition is, that for any observer, the local energy densityr is
non-negative and the momentum densityj is nonspacelike, thus ‘‘matter cannot travel faster th
light,’’ a statement that can be proved rigorously~see, e.g., Sec. 4.3 of Hawking~1973!!, leading
to the result that if the energy momentum tensor obeys the dominant energy condition an
ishes on a setS, then it vanishes on the whole Cauchy developmentD(S) of the set, thusD(S) is
a vacuum space–time.

~2! The strong energy condition states that for all timelike vectorsv the inequality

T~v,v !> 1
2~ tr T!g~v,v !

holds, or equivalently for any observerr1tr S>0, thus the stresses do not become too negat
Another formulation is4R(v,v)>0, also known as the timelike convergence condition, wh
contributes to the expansion of timelike geodesic congruences a negative term, thus shift
balance toward contraction to a final singularity of the congruence. Hawking’s famous singu
theorems then guarantee geodesic incompleteness in the past provided further the existe
Cauchy surface with uniform negative mean curvature.

We already used the strong energy condition as an integral part in the definition of co
logical space–times and its meaning for foliations.

~3! The non-negative pressures condition demands the stress tensorS to be positive definite.
This condition ensures in some sense that the pressures contribute more to attraction
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repulsion, leading to a finite lifetime of the space–time under certain circumstances. This
what unexpected behavior is a true relativistic effect, which does not have a Newtonian co
part.

1. The Maxwell equations

The Maxwell field is described by a two-formF, subject to the Maxwell equations

dF50⇔4¹@kFmn]50, ~6a!

d!F54p!J⇔4¹mFam54pJa, ~6b!

whereJ denotes the electromagnetic charge current density. Alternatively the covariant deriv
can be replaced by ordinary derivatives.

It is well known that the Maxwell equations admit~locally! a reformulation in terms of the
vector potentialA, a one-form with dA5F. Then the remaining inhomogeneous equation re
4¹m4¹aAm24¹m4¹mAa54pJa . Fixing the gauge invariance of the equation by the Lore
gauge, we obtain the system

4¹mAm50 ~Lorentz-gauge!, ~7a!

hAa54pJa2RamAm, ~7b!

with h524¹m4¹m and the curvature term arises as a consequence of some commutatio
derivative operators. In this formulation the second equation is a wave equation, and hence
brought into first-order symmetric hyperbolic form, if the source term is appropriate. Thus w
local existence and uniqueness for this equation in a given space–time. One can further sho
that the Lorentz gauge propagates and we indeed get a unique local solution of the M
equations. Spatially global solution can be obtained by the usual patching argument, arisin
localizing the equation with respect to an appropriate partition of unity of the initial data on s
Cauchy surface.

Given an electromagnetic fieldF we can form the associated energy momentum tensoE,
defined as

Eab5
1

4p
~FamFb

m2 1
4uFu2gab!, ~8!

whereuFu25FmnFmn .
E is trace-free, satisfies the relation4¹mEam52Fa

mJm and the dominant and strong energ
conditions hold.

Since the Maxwell equations turn out to be symmetric hyperbolic at least locally, we
couple them to the Einstein equation to get a symmetric hyperbolic system of equations i
monic coordinates. Thus we end up with a well-posed Cauchy problem for the Einstein–Ma
system, as long as the electromagnetic charge current density is in appropriate form.

2. The Vlasov equation

The Vlasov equation is a model for a collisionless gas. It describes the motion of a
number of structureless particles in space–time. We need only the case where the particl
unit mass, where the equation is composed of a non-negative functionf, defined on the mass she
of particles of mass onePª$vPTMug(v,v)521, future pointing%, representing the particle
distribution, and a geodesic sprayX on P. The equation reads

X~ f !50 ~9a!

with
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X5pm]m24Gmn
k pmpn

]

]pk 5va 4ea24gmn
k vmvn

]

]vk , ~9b!

where pm denotes the components of the momentum of the particles with respect to the
coordinates andva are the components of the momentum with respect to an orthonormal fr
They are related bypm5(4ea)mva and on the mass shellp0 is determined by the componentspi

andv05A11d i j v
iv j .

Inserting the definition4ea5(4ea)m]m and doing a 311 decomposition~with the exception
that we do not write down the explicit expression for4g0 j

k ! we can reformulate the Vlaso
equation as

05] t f 1S N
v j

v0 ~ej !
i2n i D ] i f

2S ei~N!v01N~2krs~ei !
r~ej !

s1d ik
4g0 j

k !v j1Nd ikg rs
k v rvs

v0 D ]

]v i f . ~98!

The Cauchy problem for the Vlasov equation in a given space–time is easy, since it is a
scalar equation with characteristic vector field~Y,Q! satisfying

Ẏa5Qa,

Q̇a524Gkl
a QkQl,

and sinceX( f )50, f is constant along the characteristics.
From the particle distributionf one can construct other physically meaningful quantities s

as the energy–momentum tensor by integration over the tangent spaces. We denote the pa
mass shell in the fiber overxPM by PxªPùTxM . Then we define the energy–momentum ten
T by

Tab~x!ª2E
Px

f papbAugu/p0dp1dp2dp3. ~10!

T is divergence free and satisfies the dominant and strong energy condition and the non-n
pressures condition.

To obtain the matter quantitiesr, j, andSone has to calculate the components of the ener
momentum tensor with respect to an orthonormal frame. These components have the fol
representation:

T~4ea , 4eb!~x!5E
Px

f vavb /v0dv1dv2dv3. ~108!

Now let us consider the Einstein–Vlasov system. The energy–momentum tensor automa
satisfies divT50 as mentioned previously, thus there arise no additional equations from th
anchi identities. But unfortunately the coupled system of equations is not symmetric hyperb
any sense, due to the fact that it is a system of integro-differential equations. Neverthele
local existence proof applies similar techniques as in the case of quasilinear symmetric hyp
systems where the peculiarity in the construction for the Einstein–Vlasov system cons
bounding the support off in the tangent space: There is noa priori bound on the velocities of the
particles, and no localization argument available as for the space–time coordinates. In o
estimate the matter quantities appearing in the coupled system, one has to control the m
velocity uniformly during the construction. This has been done, for example, in Rendall~1997a!,
establishing a well-posed Cauchy problem for the Einstein–Vlasov system.
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With this result at hand, it is easy to extend this result to the Einstein–Vlasov–Max
system, since the Einstein–Maxwell equations are symmetric hyperbolic and when coupli
Vlasov equation to them nothing new appears.

C. Further conventions

I adopt the convention of denoting any generic constant byC. For the convenience of the
reader I cite the well-known Gronwall estimate, which is central to the analysis of partial d
ential equations and will be used here in this work.

Proposition 2.3 (Gronwall’s inequality): Let I,R be an interval, t0PI and a, b, u
PC(I ,R1), with

u~ t !<a~ t !1U E
t0

t

b~s!u~s!dsU
for all t PI .

Then

u~ t !<a~ t !1U E
t0

t

a~s!b~s!expE
s

t

b~r !dr udsuU
holds for all tPI .

The proof of Gronwall’s inequality in this particular form can be found in Amann~1995!.

III. SPACE–TIMES WITH TWO-DIMENSIONAL SPHERICAL, PLANE, AND HYPERBOLIC
SYMMETRY

A. The geometry of surface symmetric space–times

Let ~M,g! be a smooth, globally hyperbolic space–time which is topologically of the f
R3S13F, with F a compact, orientable surface. The submanifolds$t%3S13F are assumed to be
Cauchy surfaces ofM. The universal coveringF̂ of F induces a space–time (M̂ ,ĝ) by M̂5R
3S13F̂ and ĝ5p* g, p:M̂→M the canonical projection. Moreover, there is a groupG of isom-
etries acting on (M̂ ,ĝ).

Then ~M,g!

~1! is calledspherically symmetric, if F5S2 andG5SO~3! acts isometrically and without fixed
points onS13S2,

~2! is plane symmetric, if F5T2 andG5E2 ~Euclidian group! acts isometrically onF̂5R2,
~3! hashyperbolic symmetry, if F has genus greater than one and the connected component

symmetry groupG of the hyperbolic plane,H2, acts isometrically onF̂5H2 ~thus F
5H2/G, with G a discrete group of isometries ofH2!

and the matter quantities remain invariant under the isometries.
To collect these cases, each such space–time is calledsurface symmetric, the diffeomorphic

images ofF in the product decomposition ofM surfaces of symmetryand each surface inM
diffeomorphic toS13F will be calledsymmetric.

In expressions involving indices, lower case Greek indices range from 0 to 3, lower case
indices~preferably taken from the middle of the alphabet! range from 1 to 3, and upper case Lat
indices~from the beginning of the alphabet! take the values 2 or 3.

The isometric action forces the curvature of the surfaces of symmetry up to rescaling
e51, 0, 21 in the spherical, plane, and hyperbolic cases, respectively. Therefore they
coordinates~q,w! which cast the metricg̃ of the surfaces of symmetry~considered for a momen
as abstract manifolds! into the form
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g̃5dq21eq
2 dw2, eqªH sinq, e51

1, e50

sinhq, e521.

~11!

Define the area radius functionr on a surface of symmetryF ~embedded inM! to be

r 5A 1

4p
Vol~F !, ~12!

then r is independent of~q, w! and the metric ofF reads

ḡ5r 2g̃. ~13!

With respect to any symmetric Cauchy surfaceSwe have the timelike unit normal vectorn of
S in M. Regardingn as a normal vector toF in M, we can define a second unit normalm of F by
the conditions thatm is tangent toSand the system (n,m,ē2 ,ē3) is positively oriented, where we
set ēAªr 21ẽA , ẽ2ª]2 , ẽ3ªeq

21]3 . We denote the associated second fundamental form
(F,ḡ) in ~M,g! by k andl, with

lAB52
1

2
m~ ḡAB!52

1

2
m~r 2!g̃AB5

1

2
~ tr l!ḡAB , tr l52

2

r
m~r !, ~14a!

kAB52
1

2
n(ḡAB)52

1

2
n~r 2!g̃AB5

1

2
~ tr k!ḡAB , tr k52

2

r
n~r !. ~14b!

Consider now a Gaussian coordinate neighborhood (x8,q,w) of a surface of symmetryF, cover-
ing ~a part of! a symmetric Cauchy surfaceS. The metrich of S then takes the formh5dx82

1Auhug̃. The projection of geodesics starting in (M̂ ,ĝ) orthogonal atF remain orthogonal to all
surfaces of symmetry. Following them until their projection meetsF again, the symmetry allows
only two possibilities: The point of return is the same as the starting point or an antipodal
in which case we force the geodesic to turn a second time around the circle. LetL denote the
length of the geodesic. Settinga52p(*0

Luh(z)u21/4dz)21, we define a new coordinatex(x8) by

a*0
x8uh(z)u21/4dz. In the coordinates (xi)5(x,q,w) the metric has the representation

h5A2~dx21a2g̃!5A2dx21ḡ ~15!

with A(x)5a21uh(x)u1/4 defined onS1. Comparing this with Eq.~13! showsr 5Aa. The corre-
sponding LaplacianD acting on a functionc on S can now be calculated to

Dc52hi j ¹i¹jc52h11¹1¹1c2hAB¹A¹Bc

52h11¹1¹1c1hABGAB
1 c81D̄c

52A22~c91A21A8c8!1D̄c,

whereD̄ denotes the Laplacian ofḡ, and the prime differentiation with respect tox, a convention,
which we adopt for the rest of this work.

Furthermore, the symmetry and the given coordinate representations permit the secon
damental formk to have the form

k5A2K dx21 1
2~ tr k!ḡ, ~16!

where the coefficients are functions onS1. Taking the trace yields the mean curvatureH5tr k and
we get the relation
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H2K5tr k. ~17!

So far we know the intrinsic and extrinsic geometry for a symmetric Cauchy surfaceS in M.
Let us turn now to the 311-geometry. Theorem 2.2 states the conditions to guarantee local in
existence for a PMC foliation$St% of a neighborhood ofS. We need thatl defined by Eq.~5! is
non-negative and does not vanish identically onS. Again n is the unit normal onS and T the
energy–momentum tensor of the space–time. Therefore we get a sufficient condition b
assumption thatM satisfies the strong energy condition@hence the matter term in~5! is non-
negative# and that there exists at least one point inS, with l.0. The strictness of the inequalit
is not a restriction, since one always can perform a slight deformation ofS, such that the second
fundamental form is not identically zero, which does the job. The same reasoning work
course, if M satisfies the dominant energy condition and the non-negative-pressures con
@then both parts of the matter term in~5! are non-negative#. Thus, in surface symmetric space
times, some energy conditions are sufficient for the existence of a local in time PMC foliat

Having constructed a local in time PMC foliation, one can ask if the leaves of the foliatio
symmetric, whenS has been chosen to be symmetric@note that due to symmetryl5l(x) is a
function onS1 only#. As described in Henkel~2001b! the PMC foliation is given as a limit~w,N!
of functions (wj ,Nj ) on S in some Sobolev space. Herewj describes a family of spacelik
hypersurfaces inM and Nj converges toward the lapse function ofw. (wj ,Nj ) are defined as
solutions of the sequence of symmetric-hyperbolic elliptic systems

] tw
j1Ai~wj 21,Nj 21!] iw

j1B~wj 21,Nj 21,DNj 21!50,

D~wj 21!Nj1l~wj 21,Dwj 21!Nj51

with w0 representingS and N051, hence respecting the symmetries. The underlying me
structure of the system is the sequence of first fundamental formshj 21 of the surfaceswj 21. If all
the (wj ,Nj ) respect the symmetries, then the PMC foliation also, hence it suffices to show
(wj ,Nj ) respects the symmetries, ifwj 21,Nj 21 does so. This is clear forwj , because the
symmetric-hyperbolic equation can be localized, and the pullback toM̂ is invariant under the
action of the isometry group.

Suppressing the indexj 21 from some quantities determined by the metrichj 21 , the Laplac-
ian reads

D~wj 21!Nj52A22~~Nj !91A21A8~Nj !8!1D̄~wj 21!Nj .

The elliptic equation then becomes

2A22~~Nj !91A21A~Nj !8!1l~wj 21,Dwj 21!Nj1D̄~wj 21!Nj51.

If V̄5Auḡu5r 2eq denotes the volume form of the surfaces of symmetryF in M, one finds
Vol(F)5*@0,p#3@0,2p#V̄54pr 2, as desired. Setting

Lª2A22S d2

dx2 1A21A8
d

dxD and Ñj~x!ª
1

Vol~F !
E

@0,p#3@0,2p#
NjV̄5

1

4p E
@0,p#3@0,2p#

Njeq ,

then integration of the elliptic equation,*@0,p#3@0,2p#eq(L1l1D̄)Nj5*@0,p#3@0,2p#eq54p,
yields

~L1l1D̄ !Ñj51,
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since on the one hand*@0,p#3@0,2p#(L1l)Njeq54p(L1l)Ñj and on the other hand
*@0,p#3@0,2p#(D̄Nj )eq5r 22*@0,p#3@0,2p#(D̄Nj )V̄5r 22*FD̄Nj vanishes as well asD̄Ñj . ThusÑj is
a solution of the elliptic equation. Uniqueness then gives usNj5Ñj , thus Nj5Nj (x), which
expresses the symmetry ofNj , as desired.

Thus we have shown, given a symmetric Cauchy surfaceS in M admitting a local in time
PMC foliation, that all leaves of the foliation are symmetric, too, and coordinatizing them in
above-described way yields:

Proposition 3.1: Let (M, g) be a surface symmetric space–time obeying the strong energ
condition. Then there are coordinates(xm)5(t,x,q,w) adapted to a local in time PMC foliation
$St% of a neighborhood U5] t1 ,t2@3S of S5S0 in M, which cast the metric into the form

g52N2dt21A2~~dx1n dt !21a2g̃!. ~18!

All coefficients except a are functions on] t1 ,t2@3S1, whereas a depends only on the tim
function t. A and a are everywhere positive, N denotes the lapse function of the foliation, andn the
nonvanishing component of the shift vector, uniquely fixed by the conditionn(t,0)50.

Supplementary to the notation already introduced, let an overdot denote differentiation
respect tot, while keeping the prime as a marker for differentiation with respect to the coord
x.

Finally we find for the orthonormal frame$4em% and its dual$4sm% canonically induced by the
311-split:

4e05n5N21~]02n]1!, 4s05N dt,

4e15m5A21]1 , 4s15A~n dt1dx1!,

4e25~Aa!21]2 , 4s25Aa dx2,

4e35~Aaeq!21]3 , 4s35Aaeq dx3.

B. The field equations

1. 3¿1 decomposition of the filled squared lines

Given the PMC foliation, we can write down the field equations in the 311-representation.
The symmetries suggest representing the matter quantities completely with respect to an
normal frame, thus we definejª2T(n,m)5A21 j 1 andSi j 5T(4ei , 4ej ).
Then one calculates the constraint equations~1! to be

~A1/2!95 1
8A

5/2~H22 1
2~H2K !22K2216pr!1 1

4A
1/2a22e, ~19!

K8523A21A8K1A21A8H1H818pA j . ~20!

The foliation is fixed by the lapse equation~3! and the PMC condition~4!

N952A21A8N81A2N~ 1
2~H2K !21K214p~r1tr S!!2A2, ~21!

Ḣ511nH8, ~22!

and the evolution equations~2! read

Ȧ52NAK1An81A8n, ~23!

ȧ52 1
2Na~H23K !2an8, ~24!
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K̇5nK82A22~N92A21A8N8!1N~24A25/2~A1/2!91~A22A8!2

1HK28p~A22S111
1
2~r2tr S!!!. ~25!

Integrating the equation fora over the circle yieldsȧ5ma, with m521/2*S1N(H23K), since
*S1n8 vanishes. Inserting this back gives an equation for shift:

n852
1

2
N~H23K !1

1

2 ES1
N~H23K !. ~26!

Differentiation of the equation forH with respect tox yields an equation forH8:

~] t2n]x!H85n8H8. ~27!

In summary we have equations for space and time derivatives of the fundamental formsh andk.
Moreover there are equations for the spacelike derivatives of lapse and shift, but unfortu
there is no information about their time derivatives.

So far we started with a given surface symmetric space–time, admitting a local in time
foliation, to which we adapted the field equations. This raises the opposite question: Give
~19!–~27! and appropriate data, does there exist a solution, and how unique is it? To answ
question we first need to state more precisely the term ‘‘appropriate data:’’

Definition 3.2:A symmetric initial data setis a smooth collection~S, h, k! consisting of a
three-manifoldS diffeomorphic toS13F with metric h and a symmetric tensor fieldk on S,
whereS admits coordinates, such thath andk could be written in the form shown in Sec. III A

If there are matter fields present, then it is assumed that there is also smooth symmetric
data and equations, leading to a well-posed Cauchy problem of the reduced field equat
harmonic coordinates.

The smoothness of the quantities appearing in the definition is required, since the trans
tion to harmonic coordinates involves derivatives.

Proposition 3.3: Let~S, h, k! be a symmetric initial data set, with matter obeying the stro
energy condition and [compare Eq. (5) for definition]l.0 somewhere onS. Further, let t0
denote an arbitrary real number.

Then there exists ad.0 and a PMC foliated surface symmetric space–time (M̄ ,ḡ) diffeo-

morphic to] t02d,t01d@3S with an embeddingi:S→M̄ , satisfyingi(S)5St0
andi* h, i* k are

the first and second fundamental form of St0
in (M̄ ,ḡ). (M̄ ,ḡ) obeys the strong energy conditio

and ḡ can be written in the form described in Proposition 3.1. This construction is unique u
the choice of t0 and d.

Proof: On the induced manifoldŜ diffeomorphic toS13F̂ the induced data are invarian
under the group action, hence the Cauchy developments also and we get a surface sym
Cauchy development of the data, admitting a symmetric local in time PMC foliation nearS on
some time interval ]t02d,t01d@ and allowing a set of coordinates stated in Proposition 3.1.
uniqueness property stated previously follows from the geometric uniqueness of solutio
Einstein’s equations associated with the uniqueness of the PMC foliation, once the rem
degree of freedom has been fixed by the requirementi(S)5St0

. Note that lapse is fixed by the
ellipticity of the respective PMC equation and shift is fixed by Eq.~26! and the condition
n(t,0)50. j

In surface symmetric space–times, there is another way to express the constraint eq
~19! and ~20! in terms of ‘‘optical scalars,’’ see Guven~1995! for an enlightening presentation.

The geodesic null congruences determined byk65m6n give rise to the null expansions

q6ª2~ tr l6tr k!5
2

r
~m~r !6n~r !!5

2

r
k6~r !52A22A87~H2K !, ~28!
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where~14! with ~17! has been used, together with the relationr 5Aa for the area radius define
in ~12!. The formula illustrates the definition ofr as a volume measure, whose variation alongk6

is described by the~negative of the! trace of the second fundamental form associated with
direction.

Now we can write the constraint equations for an arbitrary symmetric Cauchy surfaS
symmetrically as

8p~r1 j !52m~q2!2 3
4q2

2 1q2H1r 22e,

8p~r2 j !52m~q1!2 3
4q1

2 2q1H1r 22e

and takingv6ªrq6 as the fundamental variable we get@compare Guven~1995!#

m~v6!528pr ~r7 j !7v6H1
1

4r
~v1v222v6

2 14e!. ~29!

Furthermore, the area radius serves as a warping function in the warped productM5B3 rF of the
two-dimensional space–time (B,gI ) with (F,ḡ), whereB5R3S1 is the quotientM /G and gI
5guB . We adopt the convention that lower case Latin letters from the beginning of the alp
range from 0 to 1, and objects intrinsic or orthogonally projected to (B,gI ) will be marked by an
underbar. Einsteins equations in this framework can be considered as equations in (B,gI ) for the
field r :B→R:

¹Ia¹Ibr 5
M

r 2 gI ab24pr ~TI ab2tr TI gI ab!, ~30!

whereTI denotes the projected energy–momentum tensor into the space–time (B,gI ) and the mass
function M is defined as

Mª

1
2r ~e2¹I ar¹Iar !5 1

2r ~e24¹ar 4¹ar !5 1
2r ~e2 1

4rq1rq2!, ~31!

sinceq1q254/r 24¹ar 4¹ar . M turns out to be the Hawking massmH(F) ~up to a factor2 1
2x for

genus (F)>3!:

mH~F !ª
Vol~F !1/2

~4p!3/2 S px~F !21/8E
F
q1q2D ~32!

and differentiation of~31! yields the mass flux equation

¹IaM54pr 2~TI ab2tr TI gI ab!¹I
br . ~33!

2. Expanding and recollapsing models
Let us first consider the definition of mass in~31!. In the spherically symmetric case we se

that gradr is spacelike as long as 2M,r holds, a condition we are familiar with in connection wi
the Schwarzschild space–time.

In the plane and hyperbolic case the picture is quite different, since gradr turns out to be
timelike, as long as 2M /r .e. In fact, Lemmas 2.3, 2.4, and 2.5 in Rendall~1995b! prove for
space–times with hyperbolic symmetry and in nonflat plane symmetric space–times grr is
timelike, provided the dominant energy condition is fulfilled. Thus we cannot think aboutr as
some radial, spacelike coordinate any longer and this fact will play a central role in our fu
analysis.

We can choose the time orientation in those space–times to findr past pointing,throughout
the whole space–time. Then we define the time orientation on the cotangent bundle by m
transport from the tangent bundle, such that dr turns out to be future pointing. Thereforer
increases with time, which means that the area of the surfaces of symmetry increases wit
and the space–time expands in this sense. Thus we will call these space–times expanding
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an equivalent characterization by the relation between gradr and the null expansions:q1 andq2

have fixed and opposite signs~in particular q1.0, q2,0!, since q65(2/r )k6(r )
5(2/r )dr(k6) is the contraction of a timelike with a null vector.

Therefore we can decide, given a symmetric initial data set~S,h,k! with nonflat plane or
hyperbolic symmetry, with matter obeying the dominant energy condition, which directio
expanding or contracting. This is important, since we expect some singularity toward the co
ing direction and therefore we will pay attention to the past developmentD2(S), which repre-
sents the contracting direction with respect to our conventions.

Note that we obtained this information without referring to the mean curvatureH5tr k. But it
turns out that the mean curvature of an arbitrary Cauchy surfaceS in expanding space–times i
also restricted in some way.

First, remember thatH5tr k52div n measures the convergence of the geodesic congrue
future pointing and orthogonal toS. Thus,H,0 everywhere onS corresponds to the notion o
expansion and Hawking’s theorem proves the existence of a singularity in the past. In an e
ing space–time in our sense,H is not necessarily confined to be negative everywhere. But we
see that it is impossible forH to become non-negative everywhere onS: The explicit formula~28!
for q6 shows, in connection with our sign conventions, thatH,K. If H were non-negative, then
uHu,uKu, thus H22K2,0 and integration of the Hamiltonian constraint~19! over S1 yields a
contradiction.

With the dominant energy condition we can show more. Writing the Hamiltionian const
asR1H22uku2516pr we getR1H2>0. AssumingH[0 on S, we would getR>0. But sym-
metric surfacesS in space–times with plane and hyperbolic symmetry obey, respectively
topological conditions~i! and ~ii ! of theorem 5.2 in Schoen and Yau~1979!, which imply thatS
cannot have positive scalar curvature and must be flat in the case of non-negative scalar cu
ThusS must be flat and the scalar curvature vanishes. This in turn forcesr50 andk50 by the
Hamiltonian constraint. In the plane symmetric case then the space–time is flat byk50, r50 and
the dominant energy condition, contradiction. In the hyperbolic symmetric case integration o
~19! yields a contradiction, too. Putting all this together we conclude without loss of gener
that surface symmetric space–times, obeying the dominant energy condition, which are
symmetric and not flat or have hyperbolic symmetry, are everywhere expanding, with dr timelike
future pointing,q1.0, q2,0, and any symmetric Cauchy surfaceS is not maximal with mean
curvature not everywhere positive onS.

Of course, these arguments do not work in the spherically symmetric case, where grr is
spacelike in$2M,r % and no fixed sign of the expansionsq6 can be expected, fitting into th
general belief in the closed universe recollapse conjecture, which precludes expansion
whole space–time. In particular we expect the existence of a maximal hypersurface inM.

C. A priori estimates for the field equations

Our aim now is to get sufficient estimates that allow the construction of a global P
foliation. The ‘‘size’’ of the foliation is measured by the mean curvatureH, thuswe are looking for
uniform estimates of the geometric and matter quantities in terms of H.

So let ~M, g! be a surface symmetric space–time, satisfying the dominant and strong e
condition. Let us assume that there is a Cauchy surfaceS in M with mean curvatureH,0. In
particular we get a local in time PMC foliation$St%, tP] t1 ,t2@ with S5S0 by Theorem 2.2. If the
space–time possesses plane or hyperbolic symmetry, we choose the time orientation in cor
dence to the conventions introduced in Sec. III B, thusH decreases with decreasing PMC time.
~M, g! is spherically symmetric we choose the time orientation thatH decreases with PMC time
too. Then in either case we expect to find a singularity at least in the pastD2(S) of S.

In D2(S) the mean curvature is bounded from above byH<H̄,0 andH5H̄ only on S.
Thus uHu is bounded from below and we find the following estimates for the field equation
D2(S) as long asH remains finite:

~1! At first we consider the constraint equation~29! on a fixed leaf. At the critical points ofv6
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we find together with the dominant energy condition the important inequality

urq6u<2~ uHr u1A~Hr !21e! ~34!

as shown in Rendall~1995b!.
For plane and hyperbolic symmetry this inequality~34! can be strengthened to

uq6u<4uHu<C⇒uA22A8u<C and uKu<C

by the definition~28! of the null expansions.
In the spherically symmetric case the argument is more complicated: First, the wo

Burnett~1991! shows that under the additional assumption of the non-negative-pressures con
we haver<C and 0,C<M . Using the upper bound forr on the right-hand side of~34! we get
with ~31!

urq6u<C⇒ M

r
<C.

Thus we getr 21<CM21<C; hencer is bounded above and below away from zero. Inserting
in the estimate~34! leads touq6u<Cr21<C and we are in the same situation as in the pla
hyperbolic case, henceuA22A8u<C and uKu<C.

~2! Now consider the lapse equation~21! on a fixed leaf. At the point whereN attains its
maximumN̄, we have

N̄<~ 1
2~H2K !21K214p~r1tr S!!21<C/H2<C

due to the strong energy condition. Hence we have a bound foruNu.
~3! Next, there is a bound for shift. Examination of formula~26! shows that all quantities on

the right-hand side are bounded, so we getun8u<C, and therefore, usingn(t,0)50:un(t,xu
<un(t,0)u1*S18 un8u<C.

~4! By the way, Eq.~27! for H8 provides a bound foruH8u, since the coefficient on the
right-hand side is bounded and applying Gronwall gives the desired estimate.

~5! With the information aboutn8 examination of~24!, ȧ5a(2 1
2N(H23K)2n8) shows that

the factor in brackets is already bounded and we get an inequality of the formu] t lnuai<C, which
leads to a bound foruau and ua21u.

~6! The same line of argumentation works forA. Equation~23! can be written asȦ2nA8
5A(2NK1n8), with the factor on the right-hand side bounded. So we get bounds foruAu and
uA21u, too.

Since we have already bounded the null expansionsq652A22A86(H2K), one sees easily
that evenuA8u<C.

~7! Integration of Eq.~19! over the circle yields an inequality

1

8 ES1
A5/216pr5

1

8 ES1
A5/2S H22K22

1

2
~H2K !2D1

1

4 ES1
A1/2a22e

<
1

8 ES1
A5/2H21

1

4 ES1
A1/2a22.

From this one concludes the boundedness of*S1r, and by the dominant energy condition th
boundedness of*S1u j u and*S1uSu. Now integrating Eq.~21! starting at a point whereN850, we
get

N852E A21A8N81E A2NS 1

2
~H2K !21K214p~r1tr S! D2E A2,
                                                                                                                



d
condi-

iations
ities and

ta set

d the
l

ction,

st, the
gularity
gative

rs m

2453J. Math. Phys., Vol. 43, No. 5, May 2002 Global prescribed mean curvature foliations. I

                    
uN8u<C1E uA21A8N8u.

The bound foruN8u then follows from Gronwall’s inequality.
~8! Furthermore, the bounds forA, A21 together with the basic estimate forq1 and the

boundedness of*S1r are enough to apply the proof of the lemma in Rendall~1997b!, which ends
up with uN21u<C.

Collecting all these estimates we get the
Proposition 3.4: Let~M,g! be a surface symmetric space–time, obeying the dominant an

strong energy condition and in the spherically symmetric case the non-negative-pressures
tion, too. Assume the existence of a symmetric Cauchy surfaceS with strictly negative mean
curvature. In particular we get from Proposition 3.1 a PMC time coordinate t, ranging in ] t1 ,t2@
with S5$t50% and H decreases with decreasing t.

Then we have uniformly on] t1,0],

uAu,uA21u,uA8u,uau,ua21u,uHu,uH8u,uKu,uNu,uN21u,uN8u,unu,un8u<C.

To put this result into some framework, we establish some formalism to have useful abbrev
at hand as well as to make clear the dependence between estimates of geometric quant
matter variables.

Definition 3.5:

Fª~A,a,N,n,H,K !

collects the quantities describing the geometry of the foliation and

Fª~r, j ,S!

abbreviates the matter quantities.
We have already estimated the quantitiesF, A21, a21, N21, as well asA8, N8, n8, H8 and

Ȧ, ȧ, Ḣ ~by inspection of the field equations!. The idea is now to bound all quantitiesF, F
together with all of their derivatives uniformly on the time interval ]t1,0]. Then there exists a
smooth extension to the closure of the interval, which serves as a new symmetric initial da
for the field equations in the sense described in Definition 3.2. Note that the bounds forA21, a21,
N, N21 ensure that the geometry remains regular at the boundary of the time interval an
C`-bounds for lapse and shift turn out to be necessary to obtainC`-bounds for the fundamenta
forms.

Proposition 3.3 then sets us in the position to extend the foliation at least in the past dire
whereH,0 holds: Construct the solution stated in Proposition 3.3 and embedM into the maximal
Cauchy development of the data.

To carry out this program, we need some knowledge about the matter quantities. Fir
matter has to obey the dominant and strong energy conditions. Second, assume that the re
of the geometry guarantees the regularity of the matter in a certain way. For all non-ne
integersm andn we have

u] t
m]x

nFu<C⇒u] t
m]x

nFu<C

~35!

u] t
m]x

n11Fu<C⇒u] t
m11]x

nFu<C,

then the following lemmas hold.
Lemma 3.6: Assume that the matter fulfills (35). Then for arbitrary non-negative intege,

n,
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;k,m; l u] t
k]x

l Fu<C

; l ,nu] t
m]x

l Fu<C
⇒u] t

m]x
n11Fu<C

holds.
Lemma 3.7: Assume that the matter fulfills (35). Then for arbitrary non-negative intege,

n,

;k,m; l u] t
k]x

l Fu<C

; l ,n11u] t
m]x

l Fu<C
⇒u] t

m11]x
nFu<C

holds.
Together with Proposition 3.4 the lemmas accomplish the task of bounding all nece

derivatives of the geometric quantities, by first bounding all spatial derivatives]x
nF ~Proposition

3.4 and Lemma 3.6! and then successively all derivatives] t
k]x

l F, with k1 l 5n by alternative
applications of the lemmas. Therefore, in view of Proposition 3.4 the validity of property~35! will
be enough to extend the foliation. We will prove~35! for some matter models in the next sectio
But first, of course, we have to prove the lemmas.

Proof of Lemma 3.6:
A: Applying ] t

m]x
n on Eq. ~19! and integrating alongS1 yields a bound for the difference

u(] t
m]x

nA1/2)8(y)2(] t
m]x

nA1/2)8(x)u and using *S1(] t
m]x

nA1/2)850 ~hence is bounded! gives a
bound for] t

m]x
n11A1/2, hence for] t

m]x
n11A.

a: Trivial.
n: Apply ] t

m]x
n on ~26!, then the right-hand side of~26! is bounded by assumption, from whic

the claim follows immediately.
N: Again applying] t

m]x
n on the lapse equation~21! yields an equation of the form~21! for

] t
m]x

nN9 plus some already bounded term~by assumption and the already proven bound
] t

m]x
nA8!. The boundedness of] t

m]x
nN8 follows then from Gronwall’s estimate after integrating th

equation for] t
m]x

nN9 alongS1 starting at a point with] t
m]x

nN850.
H: Differentiation of Eq. ~27! gives an expression of the form (] t2n]x)] t

m]x
nH8

5B1] t
m]x

nH81B2 , with B1 , B2 bounded, where the assumptions and the already obtained b
for ] t

m]x
n11n have been used. Thus applying Gronwall’s inequality yields a bound for] t

k]x
n11H.

K: Apply ] t
m]x

n on Eq. ~20!, then the right-hand side is bounded by the previous estima
hence bounding] t

m]x
n11K. j

Proof of Lemma 3.7:

A: Applying ] t
m]x

n on ~23! yields immediately a bound for] t
m]x

nȦ, since the right-hand side i
already bounded.

a: The same argument with] t
m instead of] t

m]x
n applied to Eq.~24! works in this case to bound

] t
m]x

nȧ.
H: And again,] t

m]x
n on Eq.~22! yields an estimate for] t

m]x
nḢ.

K: Apply ] t
m]x

n on Eq.~25!, then the only terms on the right-hand side not already know
be bounded are] t

m]x
nN9 and] t

m]x
nA9. But inserting Eqs.~21! and~19! for N9 andA9, respectively,

one sees easily that] t
m]x

nN9 and ] t
m]x

nA9 indeed are bounded by the right-hand sides of th
equations, hence] t

m11]x
nK is bounded.

N: Unfortunately there is no explicit equation forṄ. So we have to apply the derivativ
operator] t

m11]x
n to Eq. ~21!, therefore producing already estimated terms involving] t

m11]x
n ap-

plied on the quantities treated previously, as well as onF @bounded by property~35!#, but also a
term involving] t

m11]x
n11A on the right-hand side. If this term turns out to be bounded, then

equation for] t
m11]x

nN9 has the form

] t
m11]x

nN95B2A21A8] t
m11]x

nN81A2] t
m11]x

nN~~ 1
2 H2K !21K214p~r1tr S!!2A2

with uBu bounded. OnS1, ] t
m11]x

nN attains its maximum, from which we can infer
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] t
m11]x

nN<$~12B/A2!~ 1
2~H2K !21K214p~r1tr S!!21%max

hence it is bounded from above. Similarly for the minimum,

] t
m11]x

nN>$~12B/A2!~ 1
2~H2K !21K214p~r1tr S!!21%min ,

which is bounded from below and we getu] t
m11]x

nNu<C.
It remains to show the boundedness of] t

m11]x
n11A5] t

m]x
n11Ȧ. Inserting Eq.~23! for Ȧ, we

see on the right-hand side beside a bounded term the quantities] t
m]x

nA9 and] t
m]x

n11n8. Inserting
Eq. ~19! for A9 and Eq.~26! for n8, we finally obtain bounds for] t

m]x
nA9 and ] t

m]x
n11n8, and

hence for] t
m]x

n11Ȧ, as desired.
n: The final estimate is straightforward: Apply the operator] t

m11]x
n21 to Eq. ~26!, which

immediately yields a bound for] t
m11]x

nn since the right-hand side of the equation is alrea
bounded by the above-given arguments. j

D. Higher order estimates

Here we prove the matter regularity condition~35! for Einstein–Vlasov, Einstein–Maxwell
and the Einstein–Vlasov–Maxwell systems, achieving the goal of this work.

1. Collisionless matter

The 311-split of the Vlasov equation~9! with respect to the symmetries reads

05] t f 1S NA21
v1

v02n D ]xf 1S 2A21N8v01NKv11NA22A8
~v2!21~v3!3

v0 D ]

]v1 f

2NS A22A8
v1

v02
1

2
~H2K ! D vB

]

]vB f , ~36!

wherev0
ªA11d i j v

iv j and 05]x2f 5]x3f 5v3(]/]v2) f 2v2(]/]v3) f ~by symmetry! has been
used.

The energy–momentum tensor~10! associated with the Vlasov equation leads to the ma
quantities

r5E f v0 dv,

j 5E f v1 dv,

Sab5E f vavb /v0 dv.

Now we investigate the matter regularity property~35!. Sincef is constant along the charac
teristics of the Vlasov equation, given an initial particle distributionf 0 on the mass shell overS,
we get the matter distribution for each timet as a functionf (t,y,w) on the mass shell over the lea
St by f (t,y,w)5 f 0(Y(t,y,w),V(t,y,w)), where (Y,V) denotes the characteristic curve of th
Vlasov equation through the point (0,y,w)PP(0,y) , (0,y)PS.

Thus the matter quantitiesr,j,S are bounded, provided the support off remains bounded
Define now

P̄f~ t !ª$supuvuuvPsuppf ~ t,y,w!; ~0,y,w!PP~0,y!
%,
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then the matter quantities are bounded byC(11 P̄f(t))
4, hence it is sufficient to controlP̄f(t) on

] t1,0].
Since the characteristic curves (Y,V) are integral curves ofX and all coefficients in the

components ofX are already bounded by Proposition 3.4, the characteristics themselve
bounded,P̄f(t)<C as desired.

Now we need to iterate this procedure. Assume, that all] t
k]x

l F and] t
k]x

l F for k1 l 5m1n are
bounded. To bound the derivatives of the matter quantities of orderm1n11, differentiate the
Vlasov equationm1n11 times ~with respect tot and x only!. This yields linear equations fo

] t
k̄]x

l̄ f , for all non-negative integersk̄1 l̄ 5m1n11 of the form

X~] t
k̄]x

l̄ f !5B,

whereB vanishes outside the support off, which bounds the support ofB. Moreover,B involves
derivatives of orderm1n11 of the quantitiesF andA8, N8. For derivatives of order at mostm
in t, we see the boundedness ofuBu by applying similar arguments as used in the proof of Lem

3.6. Thus in this case] t
k̄]x

l̄ f is bounded andP̄]
t
k̄]

x
l̄ f , since they have the same characteristics. He

the derivatives of the matter quantities of orderm1n11, involving derivatives of order at mostm
in t, are bounded. Moreover, due to the simple dependence of the characteristics on the
variablesv, all derivatives off with respect tov are bounded, too.

In view of this fact, we are able to bound all derivatives of orderm1n11 of the matter
quantities by considering the Vlasov equation as an equation for] t

m11]x
n11f , for which the

right-hand side is known to be bounded.
Therefore the first part of property~35! holds. For the second part we must show that

spacelike derivatives ofF can be redistributed to timelike derivatives ofF. But this has already
been done in the proof of the first part of~35!, and we get the

Theorem 3.8: Let ~M,g,f! be a surface symmetric solution of the Einstein–Vlasov system,

which possesses a symmetric Cauchy surfaceS with strictly negative mean curvature H<H̄,0
and H5H̄ somewhere onS.

Then all of the past ofS admits a PMC foliation$St%, where t takes all values in the interva

#2`,0# and H takes all values in] 2`,H̄].

2. Maxwell field

Let F denote the electromagnetic field. The symmetry simplifiesF: Due to the symmetriesF
can be written relative to the orthonormal coframe$4sm% introduced in Sec. III A as

F52ê~ t,x! 4s0∧ 4s11b̂~ t,x! 4s2∧ 4s3,

since all other components are forced to vanish andF and4s0∧ 4s1, 4s2∧ 4s3 remain invariant
under the action of the symmetry group.

To obtain an explicit form of the Maxwell equations,F and* F are represented in the give
coordinates by

Fab;S 0 2e 0 0

e 0 0 0

0 0 0 b

0 0 2b 0

D , e~ t,x!5NAê,

, b~ t,x,q!5~Aa!2eqb̂,
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* Fab;S 0 kb 0 0

2kb 0 0 0

0 0 0 k21e

0 0 2k21e 0

D , Augu5NA3a2uequ,

, kªNA21a22ueq
21u.

The Maxwell equations~6! in vacuum are given by settingJa50. We get for the magnetic field

F238 50 b850

⇔
Ḟ2350 ḃ50 .

Sinceeq does not depend on~t,x!, we find ]a((Aa)2b̂)50 for a50,1, hence

b̂5C~Aa!22,

b5Ceq .

For the electric field we find

* F238 50 ~k21e!850

⇔
* Ḟ2350 ~k21e!•50 .

~Note, that* F01,2vanishes, sincekb contains noeq.! Again, sinceeq does not depend on~t,x!, we
get ]a((Aa)2ê)50, for a50, 1, hence

ê5C~Aa!22,

e5CNA21a22.

SinceN, A21, a21 are already bounded, the same is true for the electromagnetic fieldse andb.
The energy–momentum tensor~8! takes the simple form

E~4ea , 4eb!5
1

8p
~ ê21b̂2!S 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 1

D ,

and we get the matter quantities as

r5E~4e0 , 4e0!52S115tr S5
1

8p
~ ê21b̂2!5

1

8p
~C~Aa!241C~Aa!24!,

j 50.

The property~35! posed in Sec. III C is obviously fulfilled, hence we get
Theorem 3.9: Let ~M,g,F! be a surface symmetric solution of the Einstein–Maxwell system

with plane or hyperbolic symmetry, which possesses a symmetric Cauchy surfaceS with strictly

negative mean curvature H<H̄,0 and H5H̄ somewhere onS. Then all of the past ofS admits
a PMC foliation $St%, where t takes all values in the interval#2`,0# and H takes all values in

] 2`,H̄].
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Note that the restriction to plane and hyperbolic symmetry is necessary, since the electr
netic energy–momentum tensor does not obey the non-negative pressures condition, and t
fails to satisfy the assumptions of Proposition 3.4 in the case of spherical symmetry.

3. Charged particles

Now consider the Vlasov–Maxwell system in~M,g!. We obtain the coupled equations b
modifying the uncharged Vlasov equation~36! by adding the term

eS A211A22A82N21n~11A21A8!
v1

v0D ] f

]v1

on the right-hand side. The matter currentJ according to the energy–momentum tensor

Q5T1E,
r5Q~4e0 , 4e0!

j 52Q~4e0 , 4e1!,

is of the form

J5r4e01 j 4e15N21r]01~A21 j 2N21nr!]1 .

The homogeneous Maxwell equations remain unchanged, which yields as before

b̂5C~Aa!22,

b5Ceq .

Since* Jabg5AuguemabgJm, and again fora50, 1,]a(k21e)5uequ]a((Aa)2ê) the inhomo-
geneous equations read

(k21e)854pAuguJ0 ê8522A21A8ê14pAr

⇔
(k21e)•524pAuguJ1 ė̂522(Aa)21(Aa)•ê14n~Anr-N j).

To get a bound forê, note that the inhomogeneous Maxwell equations are of the form

]aê5waê1ca•S r
j D , a50,1

with wa ,ca bounded by Proposition 3.4. Integrating the second equation gives

U E
S1

ė̂U5U E
S1

w0ê1E
S1

c0•S r
j DU<CU E

S1
êU1C,

since*S1r, *S1u j u<C by integrating Eq.~19!, as shown in the proof of Proposition 3.4. The
using the inequality

U E
S1

êU~ t !<U E
S1

êU~0!1E
0

tU E
S1

ė̂U
and applying Gronwall’s inequality onu*S1êu we obtain

U E 1
êU<C.
S

                                                                                                                



surface

ature
sume

such as
ve
t this
y them

es of
c case

ses from

nt
vature

ve

2459J. Math. Phys., Vol. 43, No. 5, May 2002 Global prescribed mean curvature foliations. I

                    
Now using the first equation, we get analogously

uê~ t,y!2ê~ t,x!u5U E
x

y

ê8U5U E
S1

w1ê1E
S1

c1•S r
j DU<CU E

S1
êU1C<C,

whereu*S1êu<C has been used.
Thus we have

uê~ t,y!2ê~ t,x!u<C

U E
S1

êU<C J ⇒ uêu<C

as desired.
Now property ~35! is obtained by bounding appropriate derivatives ofê: Application of

] t
m]x

n21 on the equation forê8 shows the first part of property~35! and application of] t
m]x

n on the
equation forė̂ establishes the second part. This proves:

Theorem 3.10: Let ~M,g,f,F! be a surface symmetric solution of the Einstein–Vlasov–
Maxwell system with plane or hyperbolic symmetry, which possesses a symmetric Cauchy

S with strictly negative mean curvature H<H̄,0 and H5H̄ somewhere onS. Then all of the
past ofS admits a PMC foliation$St%, where t takes all values in the interval#2`,0# and H takes

all values in] 2`,H̄].

E. Improving the results

The purpose of this section is to get rid of the requirement of strictly negative mean curv
on the Cauchy surfaces, which seems to be a rather technical restriction. Let us instead asS
to be a symmetric Cauchy surface in the surface symmetric space–time~M,g! with matter obeying
the dominant and strong energy condition as well as the non-negative pressures condition,
the surface symmetric Einstein–Vlasov system~M,g,f!. Note that we assume the non-negati
pressures condition not only for the spherically symmetric case. Indeed we will see tha
energy condition is necessary for the arguments given in this section, thus we cannot appl
to matter involving electromagnetic fields.

As pointed out in Sec. III B 2 there is an important difference between the possible typ
surface symmetry and it turns out to be a good idea to analyze the spherically symmetri
separately.

1. Spherically symmetric space –times

There are some results already obtained elsewhere, so we can exclude some special ca
our analysis. Namely for the Einstein–Vlasov system~as well as for the massless scalar field! it
has been proven in Rendall~1995b! and Burnett~1996! that given an arbitrary symmetric consta
mean curvature Cauchy surface, there exists a global CMC foliation with the mean cur
taking all real values. So we may assume that the mean curvatureH on S is not constant, and we
immediately get from Theorem 2.2 the existence of a local in time PMC foliation ]t1 ,t2@3S of a
neighborhood ofS in M.

There are somea priori estimates:
~1! It is shown in Burnett~1991! that r andM21 are bounded. Theorem 2.1 in Burnett~1991!

then shows that all timelike curves have finite length.
~2! Inserting the bound forr on the right-hand side of the estimate~34!, we get from~31!

bounds forr 21 andM on any finite time interval.
~3! Section III in Burnett~1996! shows that in light of the fact that all timelike curves ha

finite lengths, the volumes of two arbitrary Cauchy surfacesS1 andS2 are related by
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Vol~S2!<Vol~S1!S 11C sup
S1

uHu D 3.

This implies that the volumes of all Cauchy surfacesS in M are bounded above by the volume
S and, sinceH is bounded on each finite time interval, interchanging the roles ofS andS shows
that the volumes are bounded from below, too, on each finite time interval.

If we denote the volume form of a PMC leafSt by V and the volume ofSt by V(t) we have
V5Auhu andV(t)5*V dxdqdw54pa21*S1r 3.

With the bounds ofV, V21, r, r 21 we now geta, a21<C, and again using the bounds for th
radius function we getA, A21<C, thus the first fundamental form of the leaves is bounded fr
above and below on each finite time interval.

Moreover, as shown in Sec. III C, the estimate~34! boundsuA22A8u and uKu, so that the
second fundamental form is also bounded~from above! on each finite time interval as well a
uA8u5uA2uuA22A8u.

Consider now the lapse equation~21!, written in the form

~AN8!85A3N~ 1
2~H2K !21K214p~r1tr S!!2A3,

where the term in brackets is non-negative. Therefore, setting this term to zero, we get the e
(AN8)8>2C, hence, for arbitraryp, qPSt : (AN8)(p)2(AN8)(q)>2C. Now choosingq to be
a critical point ofN yields N8(p)>2C, and similarily choosingp as a critical point ofN gives
N8(q)<C. From this we see thatuN8u is bounded, sincep, respectively,q is arbitrary onSt .

The difference from the situation considered in Sec. III C is that we are no longer confin
a mean curvature, having everywhere fixed sign. The difficulty with the estimates done th
that they provide no information about the behavior of the lapse function, whenH becomes zero.
The estimates done here so far do not rely on this fact and the uniform bound ofN8 shows that
either lapse remains finite or diverges uniformly to infinity.

In order to prove the global existence of a symmetric PMC foliation assume that ]t1 ,t2@ is the
maximal time interval of existence. Without loss of generality let us consider only a pos
extension toward the past, whereH decreases with decreasingt. Thus, we are looking for regula
symmetric initial data fort5t1 in the sense of Definition 3.2.

Then there are two cases: First,H(t) is everywhere positive or everywhere negative neart1 ,
the arguments in Sec. III C apply~the fixed sign ofH is enough to perform the estimates, wheth
H is positive or negative!, extending the foliation and we get a contradiction to the maximality
the time interval, hencet152`.

Second, limt→t1
H(t) possesses no unique sign neart1 . Then we have to prove Proposition 3

and the two subsequent Lemmas 3.6 and 3.7. The discussion at the beginning of this sec
shown that some of these quantities are already bounded. The crucial step is to find a bo
lapse and its derivatives.

The idea is to reparametrize the foliation as has been done for a CMC foliation in Bu
~1996!. The effect of the reparametrization on lapse and shift was outlined in Sec. II A. L
introduce a functiont by

tªt1E
t1

t

N~u,x0!du,

where* t1
t means lims→t1

*s
t . It is well defined, since*N(g(u))du along the integral curves of th

normals of the leaves measures the length ofg, which we already know to be finite, anduN8u
<C ensures the integrability ofN(t,x0)<N(g(t))1C. This construction works in either cas
whetherN is bounded or diverges uniformly to infinity. The functiont°t(t) is monotone since
dt/dt511N(t,x0) and turns out to be an orientation preserving diffeomorphism ]t1 ,t2@→#t1

5t1 ,t2@ , thust can be used as a new time function for the foliation, which squeezes the
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differences of neighboring leaves compared with the normal vector by adding tot the normal
component of the length of the piece of thex05const line connecting (t1 ,x0) with (t,x0). This
produces a new lapse function and a new shift vector:

Ñ5S dt

dt D
21

N5
N

11N~ t,x0!
,

ñ5S dt

dt D
21

n5
n

11N~ t,x0!
.

Conversely,t stretches time differences of adjacent leaves, such that we get the inverse tra
mation by t5t2*t1

t Ñ(u,x0)du, which subtracts fromt the former added ‘‘length’’ of thex0

5const line now expressed in terms of the new time coordinate. By the inverse transformati
see that dt/dt512Ñ(t,x0), and therefore get the relation 12Ñ(t,x0)5(11N(t,x0))21 in
points with spatial coordinatex0 .

The benefit of this reparametrization is, that due touN8u<C, Ñ anduÑ8u remain bounded, and
we could try to analyze the field equations according to the reparametrized foliation. Inspec
these equations shows that we get the field equations in the new coordinates from Eqs.~19! to ~27!

by replacing everywhere] t by ]t , N by Ñ, n by ñ ~since reformulating of the constraint an
evolution equations preserves their form! while the lapse equation~21! and the PMC condition
~22! depend on the parametrization, and hence have to be modified: The subtraction ofA2 on the
right-hand side stems from the termA2Nn(H), where the PMC condition setsNn(H) equal to
one. ReplacingN by Ñ yields (Nn(H))(11N(t,x0))215(11N(t,x0))21512Ñ(t,x0). The
PMC condition~22!, which holds in the old parametrization, can be formulated in the new c
dinates by expressingn in terms ofñ, which produces an additional summand 12Ñ(t,x0) on the
right-hand side, besides the replacement ofn by ñ.

Now we start to analyze the new field equations, trying to retain the same line of thoug
Sec. III C: The analysis already done here boundsA, A21, uA8u, a, a21, uHu, uKu as well as, of
course,Ñ anduÑ8u. The arguments carried out in Sec. III C now bounduñu, uñ8u anduH8u. Finally
we need a bound forÑ21. Since it is not clear, in the case whereN diverges neart1 , whetherN
grows monotonically or not, we divide the time interval ]t1 ,t2@ into two subsets. First consider a
points, whereN(t,x0)>M , with some suitable chosen real numberM, which will be specified
later. Then we get the estimate

u12Ñ~t,x!u5U12
N~ t,x!

11N~ t,x0!
U5U11N~ t,x0!2N~ t,x!

11N~ t,x0!
U< 11C

11M
,

whereC is an upper bound foruN(t,x0)2N(t,x)u, whose existence is guaranteed by the bou
for uN8u and the volume of the leaves of the foliation. Choose nowM52C and we get

u12Ñu<
11C

112C
,1,

thus Ñ is bounded away from zero for all points whereN(t,x0)>M . Consider now the points
whereN(t,x0)<M . Then we have

u12Ñ~t,x0!u5U12
N~ t,x0!

11N~ t,x0!
U5U11N~ t,x0!2N~ t,x0!

11N~ t,x0!
U> 1

11M
.

Now we can apply the arguments in Rendall~1997b! to the modified lapse equation, as has be
done in Sec. III C@whereupon the factor 12Ñ(t,x0) causes no trouble, since it is bounded fro
above and below# and we get a bound forÑ21 for all points, whereN(t,x0)<M , and we are done
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Therefore we have estimated all quantities appearing in Proposition 3.4. Lemma 3.6 i
true for the new field equations without the need to modify the proof, while the proof of Lem
3.7 has to be modified, since the argument boundingu] t

m11]x
nÑu does not carry over. The laps

equation and the equation for its time derivatives are

~AÑ8!85A3Ñ~ 1
2~H2K !21K214p~r1tr S!!2A3~12Ñ~t,x0!!

~A] t
mÑ8!85A3] t

mÑ~ 1
2~H2K !21K214p~r1tr S!!2A3~12] t

mÑ~t,x0!!1B,

whereB denotes an already bounded quantity at the corresponding stage in the inductive arg
in Lemma 3.7. In this situation Lemma 1 in Burnett~1996! applies literally, bounding the time
derivatives of the lapse function, therefore completing the proof of Lemma 3.7.

Putting all arguments together we are able to extend the foliation beyondt1 , contradicting the
assumed maximality of the interval of existence, thus arriving at the following:

Theorem 3.11: Let ~M,g,f! be a surface symmetric solution of the Einstein–Vlasov system
with spherical symmetry. Then we can foliate the whole space–time by a PMC foliation, where the
time function takes on all real values and the mean curvature of the leaves tends uniformly6`
for t→6`, thus producing crushing singularities.

This theorem provides barrier surfaces@see Gerhardt~1983!#, establishing now the existenc
of CMC hypersurfaces for each value of the mean curvature, therefore proving the closed un
recollapse conjecture in this case:

Corollary 3.12: In the situation of Theorem 3.11, the space–time possesses a global CM
foliation and the mean curvature takes on all real values. In particular, the space–time admits a
maximal Cauchy surface.

2. Space –times with plane and hyperbolic symmetry

We will see that most of the arguments performed in the spherically symmetric case carr
to the past domain of dependenceD2(S) in the expanding models~compare Sec. III B 2 for a
precise definition of this terminology!. Due to this fact we perform the following analysis only o
the half-open time interval ]t1,0@ and assume further,~M,g! to be nonflat in the plane symmetri
case and the mass function~31! to be positive onS in the hyperbolic case.

Again we can exclude some cases already investigated~although this does not matter, sinc
the arguments here apply to these cases!. It has been proven in Rendall~1995b! and Burnett
~1996! that given a symmetric Cauchy surface with negative constant mean curvatureH0 ~remem-
ber the restrictions on the mean curvature in the expanding models, compare Sec. III B 2!, there
exists a global CMC foliation with the mean curvature taking all values in the inte
] 2`,H0@ . So we can assume without loss of generality that the mean curvatureH on S is not
constant and not everywhere positive. Again, this assumption ensures the existence of a
time PMC foliation ]t1 ,t2@3S of a neighborhood ofS in M.

Now we find similara priori bounds.
~1! In D2(S) r is bounded, since dr is future pointing timelike everywhere andS is compact.

M21 is bounded onS by assumption in the hyperbolic case and in the plane symmetric cas
follows from Lemma 2.4 in Rendall~1995b!. By the mass flux equation~33! together with the
non-negative pressures condition,M grows along past pointing timelike curves, thusM21 is
bounded in all ofD2(S). Theorem 2.1 in Burnett~1991! then shows that all timelike curves i
D2(S) have finite length.

~2! Applying the arguments in the corresponding place of Sec. III E 1 we get bounds for 21

andM for any finite time interval of the form ]t1,0].
~3! Again, the corresponding argument performed in the spherically symmetric case hold

we get upper and lower bounds for the volumes of arbitrary Cauchy surfaces inM.
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Finally, the volume of the leavesSt is given byV(t)5Ca21*S1r 3, establishing bounds for the
first fundamental form and its inverse~in D2(S)! as has been shown in Sec. III E 1, therefore
of the remaining arguments performed there apply and we get the

Theorem 3.13:Let (M ,g, f ) be a surface symmetric solution of the Einstein–Vlasov system
with plane or hyperbolic symmetry andS a symmetric Cauchy surface in M. If ~M,g! is nonflat in
the plane symmetric case and the mass function is positive onS in the hyperbolic case, then w
can foliate all of the past ofS by PMC hypersurfaces, where the time function takes on all va
in the interval#2`,0# and the mean curvature of the leaves tends uniformly to2` for t→2`.

Again using the PMC leaves as barrier surfaces we get the
Corollary 3.14: In the situation of Theorem 3.13 D2(S) possesses a CMC Cauchy surface

each value of the mean curvature in] 2`,minS H@.

3. Comparing the results

To close Sec. III, there are some remarks concerning Theorems 3.11 and 3.13 and the
to the work done in the preceding sections.

At first, it is obvious that Theorem 3.11 generalizes Theorem 3.8 in the spherically symm
case. In the plane and hyperbolic case Theorem 3.13 does not generalize Theorems 3.8,
3.10. The latter ones only establish a global PMC foliation unless the mean curvature of the
becomes zero somewhere~and again the leaves provide barrier surfaces for CMC Cauchy
faces, establishing Corollary 3.14 in the situation of those theorems!. Theorem 3.13 is not re
stricted to this condition, but it needs the extra non-negative pressures condition, which ex
electromagnetic fields.

Apart from the non-negative pressures condition the assumption of positive mass onS is a
nontrivial constraint in the hyperbolic case, while automatically fulfilled in the nonflat p
symmetric case by Lemma 2.4 in Rendall~1995b!. As shown previously, the positivity of mass
needed to obtain a bound for the length of timelike curves inM, by applying the arguments in
Burnett ~1991!, and thus necessary to the construction done here.

IV. CONCLUSION AND OUTLOOK

First I list the main results achieved in this work.
~1! For the space–times considered so far the existence of a global PMC foliation has

shown, where several matter models have been taken into account.
~2! For the model, which is not expanding or contracting everywhere, the closed uni

recollapse conjecture has been proved. In particular the foliation covers the whole Cauchy
opment of the initial hypersurface, with a crushing singularity both in the distant past and fu
Moreover the space–time possesses a maximal hypersurface.

~3! In the expanding models the foliation covers at least the whole past of the initial h
surface toward a crushing singularity.

The choice of matter turned out to be important only insofar as some energy condition
satisfied and the matter fields do not become singular in a regular geometric background.

The necessary energy conditions are the dominant and strong energy conditions. Furth
to obtain stronger results, which do not rely on a fixed sign condition for the mean curvatur
non-negative pressures condition is required to ensure that the Hawking mass does not
zero, contributing enough attraction that the lifetime of timelike curves becomes finite.

The rather strong results about locally spatially homogeneous space–times in Rendall~1995a!
likewise rely on this condition, which appears in the slightly relaxed form, that only the sum o
pressures has to be non-negative, due to the high degree of symmetry in those mode
relaxed condition even permits electromagnetic fields, a type of matter which does not satis
non-negative pressures condition, thus not leading to the stronger results in the context of
times with less symmetry.

The close analogy of the proofs for the global existence of CMC and PMC foliations indi
that all results obtained for CMC foliations may also be proved for PMC foliations. If
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conjecture turns out to be true~the second part of this paper will give another positive example
this conjecture!, then we are no longer concerned with the topological restrictions imposed o
existence of CMC hypersurfaces, having a much more flexible tool at hand. Moreover, the
results on PMC foliations can be used to provide barrier surfaces, which guarantee the ex
of a CMC foliation, where the mean curvature ranges between these barriers~compare Corollaries
3.12 and 3.14!.

The results demonstrate that in the cases considered in this work a satisfying answer h
given to the global existence problem for PMC foliations. Then the related question ari
whether the foliation covers the whole space–time. The present work gives only a partial a
to this question. Denoting the initial Cauchy surface byS, we saw that we have covered the who
past D2(S) in the expanding space–times and the whole Cauchy developmentD(S) in the
recollapsing models. These positive results have two limits.

~1! In the expanding models there remains an open question about the future ofS in M. Either
the mean curvature becomes zero somewhere or there is no control on the radius function
the expanding direction. In each case the present techniques do not apply. In addition th
topological obstructions in the expanding direction, preventing the mean curvature from bec
positive, a foliation of the future ofS must stop before this happens. But this does not imply t
the whole ofD1(S) can be covered by such a foliation, since the leaves of the foliation
become null or noncompact where the general notion of singularity avoidance comes up. N
compared with the strong results obtained in Rendall~1995a! in the locally spatially homogeneou
models, we require more information about the asymptotic behavior of the foliation to o
results on geodesic completeness.

~2! In the contracting direction and in the recollapsing models things look different. In
contracting direction the theorems ensure the existence of crushing singularities, and all
Cauchy development ofS is covered by the foliation. This is a consequence of Hawking’s fam
incompleteness theorem for globally hyperbolic space–times, satisfying the timelike conver
condition, where the maximal time of existence is estimated by 3/uHu andH→2`. But there is
no information about the boundary ofD(S), which might be either a curvature singularity o
merely a Cauchy horizon.

The work in Rendall~1995a! indicates roughly what remains to be done. Relating the par
current density to the energy density and investigating the asymptotic behavior of the forme
give rise to unbounded curvature and produce a curvature singularity.

For the space–times considered here, the work is Rein~1996! is important. He succeeded i
finding satisfying answers to the above questions by using a time function intimately tied
symmetry. Unfortunately it is not clear how to generalize his approach to other space–
Although the estimates done here also exploit the high symmetry of the models, the const
itself does not depend on it, motivating this work. A generalization to space–times with
commuting local Killing vector fields will be the content of the second part.
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Global prescribed mean curvature foliations
in cosmological space–times. II

Oliver Henkela)

Max Planck Institute for Gravitational Physics, Am Mu¨hlenberg 1, 14476 Golm, Germany

~Received 1 December 2001; accepted for publication 28 January 2002!

This paper is devoted to the investigation of global properties of prescribed mean
curvature~PMC! foliations in cosmological space–times with localU(1)3U(1)
symmetry and matter described by the Vlasov equation. It turns out that these
space–times admit a global foliation by PMC surfaces as well, but the techniques
to achieve this goal are more complex than in the cases considered in Paper I
@Henkel ~2002!#. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1466883#

I. INTRODUCTION

For the main motivation see the introduction in Paper I@Henkel~2002!#. Only some remarks
special to the present situation remain.

The structure of this paper~Paper II! is as close as possible to the structure of Pape
Although the preliminary section~Sec. II! of Paper I has been omitted, the formulas here refe
it as well.

The space–times considered here are cosmological space–times with two commutin
Killing vector fields. This symmetry will be referred to as~local! U(1)3U(1) symmetry. In
comparison with Paper I, there are now only two~local! Killing fields instead of three, general
izing the plane symmetric case of Paper I. The absence of a third Killing field requires a
detailed description of the geometry and a deeper analysis to control the momenta of the
particles. Thus the estimates in this work rely on the simple structure of the Vlasov equ
Despite this there seems to exist no crucial obstructions for other types of ‘‘well-behaved’’ m

II. SPACE–TIMES WITH LOCAL U„1…ÃU„1… SYMMETRY

A. The geometry of space–times with local U„1…ÃU„1… symmetry

Following the analysis in Rendall~1997!, we consider now the globally hyperbolic space
time ~M,g! with topologyR3S, whereS denotes a bundle with baseS1 and compact orientable
fiber F. As usual it is assumed that the submanifolds$t%3S are Cauchy hypersurfaces inM. The
coordinates ofS are denoted by (x,y2,y3)5(x,yA), A52, 3, where (yA) denote coordinates onF.
As usual, Greek indices range in the interval 0,...,3, lower case Latin indices from the mid
the alphabet take values in 1,...,3, while those from the beginning of the alphabet take the
0,1 and upper case ones are confined to the values 2, 3.

The covering mapR→S1 defines a pullback of the bundleS with baseR, hence we get a

trivial bundle. If F̂ denotes the universal covering space ofF, we get a natural coveringŜ5R
3F̂ of S with canonical projectionp. Now we can associate a space–time (M̂ ,ĝ), where M̂

5R3Ŝ and ĝ is the pullback ofg under the projection id3p.
The fibersF̂ in the trivial bundleM̂ are assumed to be the orbits of a two-dimensio

translation groupG of isometries ofĝ. HenceF̂ is the Euclidean space formE2 andF5E2 /G, for
a discrete subgroupG of G. The compactness and orientability ofF then impliesF5T2, soG can

a!Present address: Heinrich-Hertz-Institut fu¨r Nachrichtentechnik Berlin GmbH, Einsteinufer 37, 10587 Berlin, Germa
electronic mail: henkel@hhi.de
24660022-2488/2002/43(5)/2466/20/$19.00 © 2002 American Institute of Physics
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be represented by a two-parameter lattice,S turns out to be a torus bundle over the circle, and
induced action ofG on ~M,g! is given by the quotient actionG/G5U(1)3U(1) with orbitsF. As
in Paper I we will call the orbits surfaces of symmetry, hypersurfaces inM diffeomorphic to$t%
3S, which consist of a union of surfaces of symmetry called symmetric surfaces and w
~M,g! a space–time with localU(1)3U(1) symmetry.

The induced action ofU(1)3U(1) on ~M,g! is local, if the bundle is nontrivial. In that cas
we have to deal with nontrivial transformations for the transitionx°x12p in S1 by lattice
preserving translations and automorphisms GL~2,Z! of G. To represent the metricḡ of the orbits in
M at first locally for xP@0,2p@ , define the area radius byrªA(4p)21 Vol(F), and write the
metric as

ḡ5r 2g̃, ~1!

with a metricg̃ of unit determinant. Due to symmetry, both quantities~r andg̃! do not depend on
the points ofF, and one easily verifies that the curvature ofḡ vanishes, as required. Forg̃ there are
two remaining degrees of freedom,V andW, and we can use them to parametrize the metric

g̃5S eW cosV sinV

sinhV e2W coshVD . ~2!

If the bundle is trivial, then this representation of the metric is global, but if the bundle is
trivial, then the translation of 2p in S1 induces a transformation ofḡ by an elementZ of GL~2,Z!,

ḡ~x12p!5ZTḡ~x!Z, ~3!

which fixes the geometry of the space–time.
Given a globally acting symmetry we can specialize to some well known geometries:V

5W50 then we get the plane symmetric casee50 of Paper I. Setting onlyV50 we get a
symmetry called polarized, corresponding to the reflection symmetriesy2°2y2 or y3°2y3,
respectively. If the composition of these reflections is an isometry~regardless whether the ind
vidual reflections act isometrically!, we call this symmetryGowdy-type, since the Gowdy space–
times are defined by this symmetry and the additional requirement that the space–time is v
Thus, in generalVÞ0 in a space–time with Gowdy-type symmetry, but ifV vanishes also we cal
the Gowdy-type symmetry polarized.

We construct the coordinate system$xm% mentioned in the beginning of this section locally b
the following procedure. Consider first an arbitrary symmetric Cauchy surfaceS in M. Then we
extend the coordinates (yA) of F to a Gaussian neighborhood ofF in S. Later on we will do some
rescaling alongS1, such that we choose the coordinates, such that the metrich of S takes the
general formh5A2 dx1ḡ. Now we embed this structure into the space–time. In general the
coordinatet defines lapseN and shift n5n i] i , thus the space–time metricg is not in block
diagonal form. The componentsg0A which preventg being block diagonal can be represented
n̄AªḡABnB.

1. The 2¿2-geometry

Now we want to investigate the geometry of (F,ḡ) in ~M,g! more closely. As before letS
denote a symmetric Cauchy surface inM, foliated by its symmetric surfaces. The unit normal
F in S,M will be denoted bym andn is the unit normal ofS in M, as usual. Then there are som
canonical geometrical objects induced:

~a! the two second fundamental forms

l~v,w!5g~4¹vw,m!, ~4a!

k~v,w!5g~4¹vw,n! ~4b!
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for v,wPTF with arbitrary extensions to vector fields, in order to make the expressions
defined. In the sequel it turns out to be convenient to deal with the trace free partsl̃ andk̃ instead,
defined byl5l̃1 1

2tr lḡ andk5k̃1 1
2tr kḡ, respectively.

In the given coordinates we have explicit formulas:

lAB52 1
2m~ ḡAB!52 1

2A
21~ ḡAB!8,

tr l52 1
2ḡ

ABm~ ḡAB!52 1
2

m~detḡ!

detḡ
52

2

r
m~r !522A22A8,

kAB52 1
2n~ ḡAB!52 1

2N
21~ ḡAB!•2N21An1lAB ,

tr k52
2

r
n~r !,

reflecting the definition of the area radiusr as a volume measure and the second fundame
forms as its rate of change. In the above-mentioned formulasḡ is considered as intrinsic toF ~and
we maintain this from now on! and ḡAB5r 22g̃AB denotes the inverse ofḡAB . Differentiating g̃
directly one gets from its relation toḡ and the above-mentioned formulas the following repres
tations of the trace free parts of the second fundamental forms:

l̃AB52 1
2r

2m~ g̃AB!, l̃AB5 1
2r

22m~ g̃AB!,

k̃AB52 1
2r

2n~ g̃AB!, k̃AB5 1
2r

22n~ g̃AB!.

~b! The connection in the normal bundleT'F. This can be represented by a single one-fo
h, defined as

h~v !5g~4¹vn,m!52g~4¹vm,n!

52 1
2 g~@n,m#,v !, vPTF. ~5!

From this formula one can see thath50 is equivalent to@n,m#PT'F, thus@T'F,T'F#,T'F
and the theorem of Frobenius tells us thatT'F is an integrable distribution of two planes inTM.
If T'F is integrable, then we can decompose the space–time into a direct sum (M ,g)5(F',gI )
1(F,ḡ), with g5gI % ḡ. Sufficient for the existence of an integral manifoldF' of the distribution
T'F is the Gowdy-type symmetryyA°2yA, A52,3, since then it followsh50 immediately,
becausev°h(v) is an antisymmetric map.

Whether or notT'F is integrable, we can orthogonally split the tensor bundle overM,
following Kundu ~1978!. To perform this task we start with the two-dimensional Riemann
manifold (F,ḡ). With our choice of space–time coordinates we have Killing fieldsYA5]A . Their
space–time components define projection operators

pA
m
ªYA

m, pA5]A ,

pA
mªḡABgmnpB

n, pA5 n̄Adt1dyA,

wheren̄A
ªḡABn̄B5nA, and the metric componentsg1B are zero by our definition of the coord

nates.
The projection operators intoT'F can now be defined as follows: Let the unit normal vect

n andm serve as projection operatorsqa
m and define their duals by the relationsqa

mqb
m5da

b and
pA

mqb
m50. The result is

q05n5N21~] t2n i] i !, q15m5A21]1 ,
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q05N dt, q15An1dt1A dx.

Now we are ready to define the transversal metricgI in T'F by

gI ab5gmnqa
mqb

n, ~6!

thus in the given framegI and its inverse are represented by the two-dimensional Minkow
metric and from now on we considergI as an intrinsic object in the tensor bundle overT'F. In
summary we have constructed a complete set of projection operators, projecting orthog
tensors over~TM,g! into (TF,ḡ) and (T'F,gI ), characterized by the relations

pA
mpA

n1qa
mqa

n5dn
m ~completeness!,

pA
mpB

m5dA
B , pA

mqb
m50,

qa
mpB

m50, qa
mqb

m5da
b ~orthogonality!,

with pA5]A andq0'q1 ~these two relations fix the component representations shown previou!.
Now we define the convention already used in some expressions previously mentione

wherever confusion might arise, we attach a bar to quantities, which will be considered as in
to the associated bundle, and a tensor index furnished with such a bar denotes projected
nents, which also can be considered as intrinsic. For exampleTI ab denotes a tensor in the bund
(T'F,gI ), but Tab5qa

mqb
nTmn , too, althoughT might be a space–time tensor. The philosop

lying beyond this notation is that quantities with a bar attached to them or to their indices c
manipulated by the associated metric, while indices without a bar always denote comp
indices corresponding to the bundle the tensor is intrinsic to. If we apply this notational conve
to the metric itself we get the definitions forgI and ḡ back, e.g., we get the identitiesgab

5qa
mqa

ngmn5gI ab andgĀB̄5pA
mpB

ngmn5ḡAB. In particular we have

¹Ia5qa
m 4¹m ,

¹̄A5pA
m 4¹m ,

defining the Levi-Civita connection in the projected bundles, and the algebraic identity

Tm
m5TaI

aI 1T
Ā

Ā
.

For later use we need the projected components of the Ricci tensor. First note that the
connectionh on (F,ḡ) reads in our new notation

h̄A52 1
2@q0 ,q1# Ā52 1

2p
A

m@q0 ,q1#m5 1
2dpA~q0 ,q1!,

or equivalentlyeabh̄
A51/2dpA(qa ,qb), making use of the relation 05¹(pA

mqa
m), which gives

¹qa
m52qa

npB
m¹pB

n . Theeab here has its standard meaning as the totally antisymmetric s
bol ~independent of the frame used, so it is not necessary here to attach a bar to it!. On T'F we
find dpA5d(ḡABpB)5ḡAB dpB, so that index manipulations withḡ can be applied, as desired.

After some calculations we arrive at formulas for the projected components of the
tensor:

4Rab5RI ab22r 21¹Ia¹Ibr 12r 22~¹Iar !~¹Ibr !1 1
4~¹IaḡAB!~¹IbḡAB!12gI abuhu2, ~7a!

4RĀbI 5r 22ec
b¹Ic~r 2h̄A!, ~7b!
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4RĀB̄52 1
2 ḡAD¹I c~ ḡCD¹IcḡBC!2r 21~¹I cr !~¹IcḡAB!22h̄Ah̄B . ~7c!

Contraction of the last equation yields a formula for the Laplacian ofr ~note that the Laplacian is
really a wave operator in the present situation!:

DI r 5 1
2

4R
Ā

Ā
1r 21~¹Icr !~¹I cr !1r uh̄u2, ~8!

Finally we consider other frames of reference and their relation to the frames already in use
projected spaces. At first we concentrate on (TF,ḡ), which is canonically endowed with th
coordinate vector fields]A . Alternatively we can introduce the orthonormal frame$ēA%, defined
by ēAªr 21ẽA , with

ẽ25e2W/2 coshV/2]22eW/2 sinhV/2]3 ,

ẽ352e2W/2 sinhV/2]21eW/2 coshV/2]3 .

The dual frame$s̄A% is defined bys̄A
ªr s̃A, with (s̃A)m(ẽB)m5dB

A , thus

s̃25eW/2 coshV/2dy21e2W/2 sinhV/2dy3,

s̃35eW/2 sinhV/2dy21e2W/2 coshV/2dy3.

Finally we introduce the two-dimensional quotient manifoldBªM /(U(1)3U(1)). Then we
have isomorphismsTB.TM/TF.T'F and we can consider the metricgI as acting onTB, so
having constructed the two-dimensional~quotient! space–time (B,gI ). If we take~t,x! as coordi-
nates of B, then the metric gI has coordinate componentsgI ab52(q0)21(q1)25(2N2

1(An1)2)dt212A2n1dt dx1A2dx2, giving an alternative way to describe tensor component
(T'F,gI ), even if this bundle is not integrable. The dual base$eI a% to $sI a5qa% in (B,gI ) has the
coordinate componentseI 05N21(] t2n1]x), eI 15A21]x . The component notation just introduce
conflicts with the conventions described previously, and in the following sections we are forc
make clear which conventions we will follow.

2. The 3¿1-geometry

To describe the three-geometry of an arbitrary symmetric Cauchy surfaceS, we construct the
coordinate system (x8,yA) explicitly. On the surface of symmetryF,S we already have coordi
nates, such that the scaled metricg̃ takes the form~2!. In a Gaussian neighborhood ofF the metric
h of S then has the formh5dx821Auhug̃(x8). Now we introduce a scale factora
52p(*0

Luh(z)u21/4dz)21, whereL denotes the length of a~projected! geodesic along all ofS1

orthogonal to the orbitsF. Define a new coordinatex by x(x8)5a*0
x8uh(z)u21/4dz, then we get a

convenient representation ofh as

h~x!5A~x!2~dx21a2g̃~x!! ~9!

with A(x)5a21uh(x)u1/4 defined onS1, andg̃ transforms under some element of GL~2, Z! like ḡ
in ~3!. By the way, from this explicit formula and the definition ofḡ in ~1! it follows easily that the
relation r 5Aa holds.

The Laplacian ofS acting on functionsc then has the form

Dc52h11¹1¹1c1hABGAB
1 c81D̄c

52A22~c91A21A8c8!1D̄c

with D̄c52hAB]A]Bc sinceḠAB
C 50.
                                                                                                                



rong
g
e the

orre-

e

et-
e

2471J. Math. Phys., Vol. 43, No. 5, May 2002 Global prescribed mean curvature foliations. II

                    
Finally we cast the second fundamental formk of S into a convenient form. SetK
ªk(m,m)5A22k11 and observek1B524¹Bn152AhB we get

k~x!5A2K dx22AhB dx dyB1kABdyA dyB, ~10!

where all quantities on the right-hand side depend onx. Taking the trace yields the relation

H2K5tr k.

3. The four-geometry

We will describe the four-geometry~locally! in terms of a PMC foliation by symmetric
Cauchy surfaces (S,h). It turns out that there is not much left to do. Of course, we need the st
energy condition inM, and we can chooseS without loss of generality to have nonvanishin
second fundamental form. In view of Theorem 2.2 of Paper I this is enough to guarante
existence of a local in time PMC foliation of a neighborhood ofS in M. The remaining question
is if the leaves of the foliation turn out to be symmetric. But the arguments given in the c
sponding place in Paper I do apply to the present situation, since the Laplacian ofS splits into the
Laplacian of F and a part depending only onx, which coincides with the one in the plan
symmetric case and we end up with

Proposition 2.1: Let~M,g! be a globally hyperbolic, spatially compact space–time with local
U(1)3U(1) symmetry, obeying the strong energy condition.

Then there exists a local in time PMC foliation$St% in M, covering a neighborhood] t1 ,t2@
3S of S5S0 , in M. Moreover, ifS is symmetric, then all the leaves of the foliation are symm
ric, too, and there are coordinates(xm)5(t,x,y2,y3) adapted to the foliation, which cast th
metric into the form

g5S 2N21~An1!21un̄u2 A2n1 n̄2 n̄3

A2n1 A2 0 0

n̄2 0 ḡ22 ḡ23

n̄3 0 ḡ32 ḡ33

D , ~11!

where N,A, n1, nA5 n̄A, n̄A5ḡABn̄B, ḡ5r 2g̃ are functions on] t1 ,t2@3S1, with r5Aa and a
5a(t) only. The quantities with an overbar transform under some representation ofGL~2,Z! after
each transition x°x12p in S1. The shift functions are fixed by the conditionsn1(t,0)
5n1(t,2p)50 and nA(t,0)50.

The orthonormal frames$4em% and$4sm% associated with the 311-split read explicitly

4e05n5N21~] t2n i] i !,

4e15m5A21]1 ,

4e25e25~Aa!21~1e2W/2 coshV/2]22eW/2 sinhV/2]3!,

4e35e35~Aa!21~2e2W/2 sinhV/2]21eW/2 coshV/2]3!,

4s05N dt,

4s15A~n1dt1dx!,

4s25~Aa!~eW/2 coshV/2~ n̄2 dt1dy2!1e2W/2 sinhV/2~ n̄3dt1dy3!!,

4s35~Aa!~eW/2 sinhV/2~ n̄2dt1dy2!1e2W/2 coshV/2~ n̄3dt1dy3!!.
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Finally, the Ricci rotation coefficients will be calculated. Some expressions are not exp
given, since they turn out to be too complicated. Instead, the dependence on the geometri
tities involved will be specified in square brackets:

4g01
0 54g00

1 5A21N21N8,

4g0B
0 54g00

B 50,

4g11
0 54g01

1 52K,

4g1B
0 54g10

B 5~Aa!21ēB
ChC ,

4gAB
0 54gA0

B 52ēA
CēB

DkCD ,

4g01
1 50,

4g0B
1 54g0B

1 @N21,n̄,n̄8,A,A21,A8,a,a21,V,W,V8,W8,V̇,Ẇ#524g01
B ,

4g0B
C 54g0B

C @N21,n1,A,A21,A8,a,a21,V,W,V8,W8,V̇,Ẇ#,

4g i j
k 5g i j

k @A21,A8,V,W,V8,W8#.

where the dependence on the derivatives ofV andW is linear.

B. The field equations

Again we represent the matter quantities byr5T(n,n), j 52T(n,m)5A21 j 1 and Si j

5T(4ei , 4ej ).

1. 2¿1-decomposition of the constraints

First consider the Hamiltonian constraint

R1H22uku2516pr.

DecomposingR by the Gauss–Codazzi formula andk by ~10! we get

m~ trl!58pr2H tr k1uhu21 1
2~

3
2~ tr l!21ul̃u2!1 1

2~
3
2~ tr k!21uk̃u2!. ~12!

The first component of the momentum constraint

¹ iki12¹1H58p j 1

can be decomposed into

m~ tr k!528p j 12H tr l1 3
2tr k tr l1l̃ABk̃AB ~13!

~where the symmetry forced divh50!. The other components of the momentum constraints
calculated analogously to~again some terms cancel out due to symmetry!

m~hB!528p j B1~ tr l!hB . ~14!

As in Paper I a convenient form of the equation is achieved by introducing the null expansi

q6ª2~ tr l6tr k!5
2

r
k6~r ! ~15!
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~compare the formulas forl andk in Sec. II A 1!, which yields an easy formula for the Hawkin
mass

M ªmH~F !52 1
8r ~rq1!~rq2!52 1

2r ~4¹ar !~4¹ar !, ~16!

by q1q254/r 2(4¹ar )(4¹ar ).
Adding and subtracting the constraint equations now yield

m~q6!528p~r7 j 1!2uhu22 1
2ul̃6k̃u27Hq62 3

4q6
2 ~17!

and the transition to the variablesv6ªrq6 casts this equation into

m~v6!5m~r !q61rm~q6!

528pr ~r7 j 1!2r uhu22
1

2
r ul̃6k̃u27Hv61

1

4p
~v1v222v6

2 !, ~18!

where the identitym(r )q65(1/4p)((v11v2)v6) has been used.

2. 2¿2-decomposition of the field equations

With the 212-geometry in mind, where we denote tensor components with respect t
frame of projection operators$qa ,pA%, we write Eq.~7a! for 4Rab in terms ofg̃,

4Rab5RI ab22r 21¹Ia¹Ibr 1 1
4~¹Iag̃AB!~¹Ibg̃AB!12gI abuhu2,

as a field equation in the quotient space–time (B,gI ) for the radius functionr. We still have to
eliminate the unknownRI ab52KI gI ab , whereKI ªRI 0101 denotes the Gaussian curvature of (B,gI )
in ~M,g!. Contracting the equation forRI ab and replacingDI r by ~8! yields an equation forKI :

KI 5 1
2~24RcI

cI14RAI
AI !1r 22~¹I cr !~¹cIr !1 1

8~¹I cg̃AB!~¹Icg̃
AB!13uhu2.

Inserting this into the equation for4Rab results in

¹Ia¹Ibr 52 1
2r

21~¹I cr !~¹Icr !gI ab2 1
2r ~4Rab2 1

2~
4ReI

cI24R
Ā

Ā
!gI ab!

1 1
8 r ~~¹Iag̃AB!~¹Ibg̃AB!2 1

2 ~¹I cg̃AB!~¹Icg̃
AB!gI ab!2 1

2 r uhu2gI ab .

Now we are going to interpret the first three terms appearing on the right-hand side of the
equation: Recalling the definition of the mass functionM in ~16! we can write the first term as
(M /r 2)gI ab . The curvature expression in the second term can be rewritten using Einstein’s
tions in terms of the projected energy momentum tensorTI in the form 8p(TI ab2trTI gI ab).

To simplify the third term, there is more structure involved than already presented. The
of two-dimensional metrics Bil~2, R! is a three-dimensional real vector space, whose element
denote byf̃5f̃ iEi , where the basis$Ei% has been chosen asE15(0

1
1
0), E25(0

1
21
0 ), E35(1

0
0
1). In

this picture the determinant is a quadratic form on Bil~2, R!, and the matrix representation wit
respect to the given basis turns out to be2h i j , whereh i j 5diag(211) denotes the standar
Minkowski metric in three-dimensional Minkowski space. The restriction of this space to
hypersurfaceh(f̃,f̃)521⇔detf̃51 is the well-known hyperbolic planeH2, and we have es-
tablished a correspondence between the two-dimensional unit-determinant metricsg̃ and the ele-
ments of the hyperbolic plane. Consideringf̃ as a function on the quotient manifoldB, introduced
in Sec. II A 1, we have a mapf̃:(B,gI )→(H2,R2,1,h i j ), (t,x)°f̃ i(g̃(t,x))Ei . Now let us in-

terpret f̃ for a moment as a wave map fromB to H2, then the energy–momentum tensorfTI

associated withf̃ reads
                                                                                                                



onents

r the

ap

2474 J. Math. Phys., Vol. 43, No. 5, May 2002 Oliver Henkel

                    
fTI ab5¹Iaf̃ i¹Ibf̃ i2
1
2 ~¹I cf̃ i¹Icf̃ i !gI ab ~19!

and with the correspondencesf̃ i5h i j f̃
j52g̃AB and f̃ if̃

i52 1
2g̃ABg̃AB, we see that the third

term in the field equation forr can be rewritten as2 1
4r

fTI ab .
Collecting all these things together we get the field equation forr in a convenient form:

¹Ia¹Ibr 5
M

r 2 gI ab24pr ~TI ab2tr TI gI ab!2
1

4
r fTI ab2

1

2
r uhu2gI ab . ~20!

Differentiating the mass function we find for the mass flux equation the formula

¹IaM5~4pr 2~TI ab2tr TI gI ab!1 1
4r

fTI ab!~¹I br !1 1
2r

2uhu2¹Iar . ~21!

The contribution offTI to the right-hand sides of these equations is known insofar thatfTI obeys
the dominant and strong energy conditions. Furthermore, we can again rewrite its comp
using the formulas for the trace free parts ofl andk in Sec. II A 1 ~remember that¹0 , ¹1 act as
n, respectively,m, on g̃, in the formula forfTI ab!. The result is

fr5fp5ul̃u21uk̃u2, ~22a!

f j 1I 522l̃ABk̃AB. ~22b!

Now we want to analyze the underlying wave map. To make things more explicit, conside
parametersV, W of g̃ as coordinates ofH2 in view of the correspondencef̃ iEi . The pullback
under this parametrization yields a representationĥ of the metric (h i j ) uH2, with the explicit form

ĥIJ5dV21(coshV)2dW2, leading to Ĝ23
3 5tanhV and Ĝ33

2 52sinhVcoshV as nonvanishing
Christoffel symbols. The pullback of the mapf̃ under this parametrization induces a m
f:(B,gI )→(H2,ĥ), f(t,x)5(V(t,x),W(t,x)). The wave mapf is then defined to obey

¹I c¹Icf
K1Ĝ IJ

K ¹I cf I¹I fJ50. ~23!

Let us turn back to the field equations. Writing Eq.~7c! in the form

4RĀB̄12h̄Ah̄B52 1
2r

22ḡAD¹I c~r 2ḡCD¹IcḡBC!52 1
2g̃AD¹I c~ g̃CD¹Icr

2g̃BC!

we arrive after some calculation at

¹I c~r 2¹Icg̃AB!5r 2g̃CD~¹I cg̃AD!~¹Icg̃BC!216p~ T̄AB2 1
2tr T̄ḡAB!24~ h̄Ah̄B2 1

2uhu2ḡAB!,

whereT̄ denotes the orthogonal projection of the energy momentum tensorT into (F,ḡ). More
explicitly we get

¹I c~r 2¹IcV!5r 2 sinhV coshV~¹I cW!~¹IcW!22r 2~coshV!21~~T232
1
2g̃

ABTABg̃23!

2 1
2~h2h32 1

2g̃
ABhAhBg̃23!!, ~24a!

¹I c~r 2¹IcW!52r 2 tanhV~¹I cW!~¹IcV!2r 2~coshV!21~~e2WT222eWT33!

2 1
2~e2W~h2!22eW~h3!2!!, ~24b!

or

¹I c¹IcV2sinhV coshV~¹I cW!~¹IcW!522/r ~¹I cr !~¹IcV!22~coshV!21~~T232
1
2g̃

ABTABg̃23!

2 1
2~h2h32 1

2g̃
ABhAhBg̃23!!, ~25a!
                                                                                                                



the
etry in

m-

mely

2475J. Math. Phys., Vol. 43, No. 5, May 2002 Global prescribed mean curvature foliations. II

                    
¹I c¹IcW1tanhV~¹I cW!~¹IcV!522/r ~¹I cr !~¹IcW!2~coshV!21~~e2WT222eWT33!

2 1
2~e2W~h2!22eW~h3!2!!. ~25b!

The left-hand sides of Eq.~25! coincide with the left-hand side of~23! and we conclude thatV and
W solve an inhomogeneous wave map.

3. 3¿1-decomposition of the field equations

Now we want to calculate the ADM equations and bring them into a form most similar to
equations in the plane symmetric case of Paper I. The formulas concerning the three-geom
Sec. III A 2 are of particular importance for the calculations here, as well as the definitions ofl, k,
andh in Sec. II A 1. A straightforward calculation then yields the following set of equations.

The constraint equations,

~A1/2!95 1
8A

5/2~H22 1
2~H2K !22K22uk̃u22ul̃u222uhu2216pr!, ~26!

K8523A21A8K1A21A8H1H82Ak̃ABl̃AB18pA j , ~27!

hB8522A21A8hB28pA jB . ~28!

The equations fixing the foliation,

N952A21A8N81A2N~ 1
2~H2K !21K21uk̃u212uhu214p~r1tr S!!2A2, ~29!

Ḣ511n1H8, ~30!

~] t2n1]x!H85n18H8. ~31!

The evolution equations,

Ȧ52NAK1An181A8n1, ~32!

ȧ52 1
2Na~H23K !2an18, ~33!

K̇5n1K82A22~N92A21A8N8!1N~24A25/2~A1/2!91~A22A8!2

1HK2ul̃u212uhu228p~A22S111
1
2~r2tr S!!!, ~34!

ḣB5~ 1
2N~H1K !22A21A8n1!hB22Nk̃BChC1 1

2A
22A8~H2K !nB

2~ k̃B
Dl̃DC1 1

2~H2K !l̃BC2A22A8k̃BC!nC28pAn1 j B . ~35!

As in Paper I integration of~33! over the circle yields the analogous equation for the first co
ponent of the shift vector,

n1852
1

2
N~H23K !1

1

2 ES1
N~H23K ! ~36!

and the definition of the second fundamental form provides some additional equations, na

nB8522NAhB ~37!
                                                                                                                



rem for

me
auchy

e
just

n

p to

la

dition

uchy
t

e-

by

s

2476 J. Math. Phys., Vol. 43, No. 5, May 2002 Oliver Henkel

                    
and the coordinate representations ofl andk in Sec. II A 1. The remaining equations forV andW
are still missing. To this end we supplement the system~26!–~37! by the field equations~24! or
~25!, and end up with the full system of equations.

As in the plane symmetric case, we can formulate an existence and uniqueness theo
solutions of Eqs.~26!–~37!, ~25!. First we define asymmetric initial data setfor a space–time
with local U(1)3U(1) symmetry by the smooth collection (S,h,k), whereS denotes a~possibly
nontrivial! torus bundle over the circle and the fundamental formsh and k are represented in a
suitable coordinate system as~9! and~10!, respectively. If there are matter fields, then we assu
the matter data and equations to be smooth and symmetric, leading to a well-posed C
problem coupled to the reduced field equations in harmonic coordinates.

On the universal coverŜ of S the induced data then is invariant under the action ofG, hence
G acts isometrically on the whole Cauchy development, which induces a localU(1)3U(1)
symmetry on the Cauchy development of (S,h,k). Assuminglªuku214p(r1tr S).0 some-
where onS, we get fort0PR a unique symmetric local in time PMC foliation, defined on som
time interval containingt0 , with S5St0

, and coordinates described in Proposition 2.1 and we
have proved:

Proposition 2.2: Let(S,h,k) be a symmetric initial data set for a space–time with local
U(1)3U(1) symmetry, with matter obeying the strong energy condition andl.0 somewhere on
S. Further, let t0 denote an arbitrary real number.

Then there exists ad.0 and a PMC foliated surface symmetric space–time (M̄ ,g̃) diffeo-

morphic to] t02d,t01d@3S with an embeddingi:S→M̄ , satisfyingi(S)5St0
andi* h, i* k are

the first and second fundamental form of St0
in (M̄ ,ḡ). (M̄ ,ḡ) obeys the strong energy conditio

and ḡ can be written in the form described in Proposition 2.1. This construction is unique u
the choice of t0 and d.

4. The expanding model

Now we can proceed in close analogy to the corresponding analysis in Paper I. Formu~16!
for the Hawking mass shows that gradr is timelike as long asM.0. Indeed, Proposition 3.1 in
Rendall~1997! proves this, provided the space–time is not flat and the dominant energy con
holds.

Therefore, under these conditions gradr is timelike andq1 , q2 have fixed and opposite
signs. Without loss of generality we choose the time orientation, such thatr is past pointing and
dr is future pointing~by the induced time orientation of the cotangent bundle!. Thenq1.0 and
q2,0 which classifies the space–time as expanding in the sense described in Paper I.

Again we expect the singularity in the distant past from our symmetric initial data Ca
surfaceS and any symmetric Cauchy surfaceS in M is not maximal with mean curvature no
everywhere positive onS.

C. A priori estimates for the field equations

Assume the dominant and strong energy condition to be fulfilled in~M,g!. Let S be a sym-
metric Cauchy surface inM with strictly negative mean curvatureH and denote by$St%, t
P] t1 ,t2@ the local in time PMC foliation withS5S0 and the time orientation chosen in corr
spondence with Sec. II B D, such thatH decreases with decreasing PMC time.

We consider the pastD2(S) of S. In D2(S) the mean curvature is bounded from above
someH̄,0, andH5H̄ only on S. Thus uHu is bounded from below and as long asH remains
finite, we find the following estimates.

Consider first the constraint equation in the form~18!. The dominant energy condition give
the inequality

m~v6!<7Hv61
1

4p
~v1v222v6

2 !,
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from which we infer the basic estimate

uq6u<4uHu⇒uA22A8u<C, uKu<C. ~38!

Now we can perform nearly the same estimates, as we have done in the corresponding p
Paper I. The additional terms appearing here in the more general equations~26!–~27!, ~29!–~33!,
and ~36! do not cause any problems. There is only one additional estimate, which will be
important in our further analysis, resulting from the integration of Eq.~26! alongS1, bounding not
only *S1r, but also*S1(ul̃u21uk̃u21uhu2)5*S1(fr1uhu2), and we can state the analogous

Proposition 2.3: Let~M,g! be a globally hyperbolic, spatially compact space–time with local
U(1)3U(1) symmetry, obeying the dominant and strong energy condition. Assume the exi
of a symmetric Cauchy surfaceS with strictly negative mean curvature. In particular we get fro
proposition 2.1 a PMC time coordinate t, ranging in ] t1 ,t2@ with S5$t50% and H decreases with
decreasing t.

Then we have uniformly on] t1,0]

uAu,uA21u,uA8u,uau,ua21u,uHu,uH8u,uKu,uNu,uN21u,uN8u,un1u,un18u<C.

Until now the control over the coefficients of the fundamental formsh andk is not complete.
We still need bounds for the metric coefficientsV, W, the componentsh and k of k and the
remaining componentsnB of the shift vector. We will get bounds for most of these quantities h
in this section, using the bound for*S1(r1fr1uhu2).

Proposition 2.4: Under the hypotheses of Proposition 2.3 we get uniform bounds for

uVu,uWu,uhBu,unBu,unB8u

on ] t1,0].
Proof: The bounds forhB , nB andnB8 are simple consequences of the bounds forV andW,

since having bounded them, we can conclude as follows: The bounds forV andW allow coordi-
nate components to be bounded in terms of components according to the orthonormal
vectorsē2 , ē3 in (F,ḡ) defined in Sec. II A 1. We adopt the convention, that a caret above ind
denotes components with respect to an orthonormal frame. Having this in mind we see, tha*S1r
bounds*S1 j B<C*S1 j B by the dominant energy condition, so integration of the constraint~28!
yields a bound for the differenceA2hBux1

x2, which is independent oft. Using hB<Ch B̂<C(1

1uhu2) we can bound integral*S1uA2hBu by C*S1(11uhu2), which together with the estimate
difference yields the desired estimate forhB . Now we get immediately a bound fornB8 by
inspection of Eq.~37!, and the conditionnB(t,0)50 boundsnB.

Let us now investigate the field equations~24! for V andW, considered as equations on (B,gI )
endowed with the coordinates~t,x!, as described in the end of Sec. II A 1. Then we calcul
explicitly in these coordinates

ul̃u21uk̃u25 1
4~m~ g̃AB!m~ g̃AB!1n~ g̃AB!n~ g̃AB!!

5 1
2A

22~V821~coshV!2W82!1 1
2N

22~~V̇2n1V8!2

1~coshV!2~Ẇ2n1W8!2!,

and we see that the first term on the right-hand side of Eq.~24! can be bounded in terms of thi
expression.

For the second term on the right-hand side of~24! we exploit the special structure appearin
there. The first aim is to express the tensor components with respect to an orthonormal
Looking at the definitions of the coframe$s̄B% defined in Sec. II A 1 we recognize the relation

eW/2dy25r 21~1coshV/2s̄22sinhV/2s̄3!,
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e2W/2dy35r 21~2sinhV/2s̄21coshV/2s̄3!.

If we mark tensor components expressed in this basis by a tilde, we see that the terms in b
in both equations~24! are easily rewritten with respect to this basis, by simply putting a t
above each tensor component and deleting the factorse6W/2. But we have schematicallyh
5hB dyB5h̃Be6W/2 dyB5 f B(coshV/2)h̃B s̄B, with f B(coshV/2)h̃B 5h B̂ is the component ac
cording to the orthonormal frame. A similar relation holds forTAB . Since we haveh B̂<1
1uhu2 and TÂB̂<r we conclude that the terms in brackets in~24! are bounded byC coshV(1
1r1uhu2), which leads together with our result about the first term on the right-hand side of~24!
to

u¹I c~r 2¹Icf!u<C~11r1ul̃u21uk̃u21uhu2!,

and since the integration of the right-hand side alongS1 is already bounded we get

E
S8

u¹I c~r 2¹Icf!u<C

uniformly for eachtP] t1,0]. Note that we use the wave mapf5(V,W) defined in Sec. II B 2 in
order to abbreviate some formulas only.

On the other hand, we can interpret the integrated quantity as a divergence, a fact we w
advantage of to get rid of the integral sign. To this end consider a point~t,x! in the quotient
manifoldB, with tP] t1,0@ . We need estimates uniformly int for t approachingt1 . We define the
~upside down! characteristics triangleT in B, by its counterclockwise oriented boundary]T
5g11g01g2 , whereg6 denote the characteristic curves of~24!, with ġ65k65m6n con-
necting~t,x! with (0,x6) andg0 is the curve in the hypersurface$t50% from (0,x1), to (0,x2)
with ġ052m. Define vPT'F by va5r 2¹I af, then the corresponding one-formv readsv
5i(v)VI , whereVI denotes the volume form with respect togI . Expressing tensor componen

with respect to the project orthonormal frame$sI a5qa% ~see Sec. II A 1! we haveva5r 2(¹I1f
2¹I0f),

and v52r 2(m(f)sI 01n(f)sI 1). The pullback of v along ]T has the three partsg6* v
57r 2k6(f+g6(u))du, g0* v5r 2n(f(x))A dx. Thus, settingtª&t,

E
]T

v5E
t

0

2r 2k1~f~g1~u!!!du1E
x1

x2

n~f~x!!A dx1E
0

t

1r 2k2~f~g2~u!!!du

52E
t

0

r 2k1~f~g1~u!!!du2E
t

0

r 2k2~f~g2~u!!!du1E
x1

x2

n~f~x!!A dx

52r 2fug1~r !

g1~0!
2r 2fug2~r !

g2~0!
1E

t

0

k1~r 2!f1E
t

0

k2~r 2!f1E
x1

x2

n~f~x!!A dx,

where integration by parts has been carried out in the last step. Note, that the last term is bo
since that integration takes place on the linet50 in B, wheref is smooth. In additionk6(r 2) is
bounded everywhere by Proposition 2.3. Further, the first terms can be evaluated to2r 2fug1(t)

g1(0)

2r 2fug2(t)
g2(0)

52(r 2f)(t,x)2(r 2f)(0,x1)2(r 2f)(0,x2), where the last two terms live on the lin

t50, and therefore are bounded.
Stokes’ theorem now applies to the present situation,*]Tv5*Tdw5*T(div v)VI . Putting all

this together we get an estimate

ir 2f~ t !iL`<CS 11E
t

0
ir 2f~s!iL` ds1E

t

0E
S8

u¹I c~r 2¹Icf!udsD ,
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where the last term is already known to be bounded uniformly int by our previous analysis. Henc
we can apply Gronwall’s inequality and the bounds forr, r 21 obtained in Proposition 2.3 complet
our argument, arriving finally atuVu, uWu<C uniformly on ]t1,0@ . j

Unfortunately, there is still a lack of control over the componentsk of k @respectively, its
traceless part, since (trk)gI 5(H2K)gI <C#. It turns out, that the necessary bounds for the fi
derivatives off depend on a bound for the matter quantities and vice versa. The analysis o
dependence will be performed in Sec. II D, where we have to take a specific matter mod
account.

D. Higher order estimates

1. First-order estimates

We start with the derivation of first-order estimates for the metric coefficientsf5(V,W). To
keep things simple, we consider collisionless matter, as described by the Einstein–Vlasov s

The particle densityf on the mass shell is governed by the geodesic sprayX with X
5va 4ea24gmn

k vmvn(]/]vk), and the killing vector fields]A define two conserved quantitie
g(X,]A),which boundvA. To boundv1 we consider the characteristics of the Vlasov equat
~compare the explicit formulas in Paper I!:

dv1

ds
52~e1~N!v01N~2krse1

rej
s14g0 j

1 !v j1Ng jk
1 v jvk/v0!<C~11Q1~s!1v1~s!!,

whereQ1ªiDI fiD`, DI ª(] t ,]x) and we used the fact, that in view of the boundedness ofvA, the
vanishing of4g01

1 and the special form of the nonvanishing rotation coefficients no term invol
the productQ1v1 occurs. Thus we find for the quantityP̄f(s)5$supuvuuvPsuppf % ~which mea-
sures the matter quantities, compare Paper I the Gronwall-like estimate

11 P̄f~ t !<CS 11 P̄f~0!1E
t

0

~ P̄f~s!1Q1~s!!dsD .

This inequality shows that we indeed have to estimate the matter quantities together w
second fundamental formk. The next step consists in finding a complementary inequality forQ1 ,
which yields in combination with the inequality just obtained a true Gronwall estimate f
1 P̄f1Q1 .

We again need the field equations forV andW, but now it is more convenient to analyze th
equations in the ‘‘wave map form’’~25!. First consider the left-hand side of the field equation. W
want to express this derivative operator in terms of the characteristic vector fieldsk65m6n
tangent to the characteristic curvesg6 introduced in the previous section~in the proof of Propo-
sition 2.4!. In the quotient manifold (B,gI ) one calculates the nonvanishing Ricci rotation coe
cients to

gI 01
0 5gI 00

1 5~AN!21N8,

gI 11
0 5gI 01

1 5~AN!21~Ȧ2~An1!8!,

thus¹IeI a
eI b is bounded. The characteristicsk6 expressed in the coordinates ofB are simple linear

combinations of theeI a , hence¹Ik6
k6 is also bounded inB. We will use this fact to estimate

commutators such as@m,n# or @k1 ,k2#. Transforming from the orthonormal frame$eI a% in (B,gI )
to the frame$k6%, we can write the left-hand side of~25! as

¹I c¹Icf
K1Ĝ IJ

K ¹I cf I¹I fJ5¹Ik1
~k2~fK!!1Ĝ IJ

K k1~f I !k2~fJ!1@k1 ,k2#~fK!

and there is an analogous equation fork1 andk2 interchanged.
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Let us turn now to the right-hand side of~25!. The terms not known to be bounded are of t
form k6(f) andTAB . Fortunately we have control over the matter term, since the bounds oV,
W, andvA justify the inequalityTAB<CP̄f and we obtain

¹Ik1
~k2~fK!!1Ĝ IJ

K k1~f I !k2~fJ!<C~11k6~f!1 P̄f !.

The left-hand side is still nonlinear in the first derivatives off, so this inequality is not in the
appropriate form to apply some kind of Gronwall estimate. But we can overcome this difficul
adapting an observation of Gu~1980!, see also Rendall~1997! for explanation, who considere
wave maps defined on two-dimensional Minkowski space. We already performed the firs
consisting of a transformation to characteristic coordinates. Now we define the vector fiek̂6

over the mapf,

k̂6ªf* ~k6!5k6~f!5k6~fK!
]

]fK 5k6~V!
]

]V
1k6~W!

]

]W
,

thus bounding the length ofk̂6 accomplishes the estimate ofQ1 . The vector fieldk̂6 overf is a

section in the bundlef* (TH2) overB and the covariant derivative operatorf* ¹̂ overf acts like

~f* ¹̂ !vX̂5v~ŵK!
]

]fK
1ŵK¹̂f* v

]

]fK

for every vectorvPTB and everyX̂5ŵK(]/dfK) with wK:B→H2.
Evaluating this expression withv5k1 and X̂5 k̂2 gives

~f* ¹̂ !k1
k̂25k1~k2~fK!!

]

]fK
1Ĝ IJ

K k1~f I !k2~fJ!
]

]fK

~and analogously fork6 interchanged!. The components in this equation are similar to the le
hand side of the inequality already obtained for the field equations. The remaining term inv
k6(f) times the connection coefficients inB with respect to the frame$k6%, which we know to
be bounded. Thus we get for the field equations the inequality

u~f* ¹̂ !k1
k̂2u<C~11k6~f!1 P̄f !,

expressing an estimate about the growth ofk̂6 during the transport along the characteristic cur
g7 . This inequality is in the appropriate form for a Gronwall-like estimate: Taking the maxim
for each fixedt allows us to combine the inequalities foruk̂1u and uk̂2u, replaced collectively in
terms ofQ1 . Hence

Q1~ t !<CS 11Q1~0!1E
t

0

~ P̄f~s!1Q1~s!!dsD ,

whereg6 has been reparametrized in terms oft. Combining this with the inequality forP̄f we
arrive at

11 P̄f~ t !1Q1~ t !<CS 11 P̄f~0!1Q1~0!1E
t

0

~11 P̄f~s!1Q1~s!!dsD .

Performing a Gronwall argument we have proven
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Proposition 2.5: Let (M,g,f ) be a globally hyperbolic, spatially compact solution of
Einstein–Vlasov system with local U(1)3U(1) symmetry, which possesses a symmetric Cau
surfaceS with strictly negative mean curvature. The PMC time coordinate t ranges in] t1 ,t2@ with
S5$t50% and H decreases with decreasing t.

Then we get uniform bounds for

uV̇u,uẆu,uV8u,uW8u,r

on ] t1,0].

2. Second-order estimates

We still have to do one further step before it will be possible to apply some iteration sch
We need to establish bounds for the second derivatives off5(V,W) together with bounds for the
first derivatives of the matter variables. Again it turns out that it is not possible to get sep
estimates for these quantities.

First we differentiate the field equation~25! and obtain an equation of the form

k6~k7~]xf
K!!12Ĝ IJ

K k6~f I !k7~]xf
J!5@ ...#]xTAB1 lower order terms,

where@...# is an abbreviation for some term involving already bounded quantities, in particula
see by a quick look at the 311-field equations, whose right-hand sides are now bounded, tha
the Ricci rotation coefficients]xgI <C holds. Note that the differentiation kills the nonlinearity
the equation, but we have to deal with first-order derivatives of the matter variables instead.
quantities cause serious trouble, because if we differentiate the Vlasov equation, terms inv
the second derivatives off times first derivatives off come up, thus there is no direct Gronwa
argument possible. To attack this difficulty we have to combine the equations, using an id
Glassey~1990!.

First we integrate the equation along the characteristicsg6 to get an integral inequality. In
order to apply a Gronwall argument all that remains to do is to bound the term*g6

]xTAB . Then
we expressTAB in terms of its components with respect to the orthonormal frame, merely
ducing some already bounded quantities and the frame components of the energy–mom
tensor for Vlasov-type matter look like*g6

(*vAvB /v0]xf dv). Finally we represent]x by a linear
combination ofk6 andXI ª] t1(NA21v1/v02n1)]x , which is the part of the characteristic vect
field for the Vlasov equation, lying inB. The transformation to this basis is obviously bounded a
we can proceed as follows. The part involvingk6 permits a direct application of the integration b
parts rule, which contributes something bounded by Proposition 2.5. The remaining part c
treated in a similar fashion, after inserting the Vlasov equation intoXI ( f ). This yields terms
involving only first-order derivations off ~arising from the4g ’s! times] f /]v, and again we can
perform an integration by parts with respect to the velocity integral. The result consists in
already bounded and we are through. Now applying Gronwall’s inequality we arrive at a bou
i]xDI fiL` and inserting this result into the field equation~25! we getQ2ªiD2fiL` bounded.

An immediate consequence is that we also have established a bound for the first derivat
f. Differentiating the Vlasov equation with respect tox or v yields an equation for]xf or ]v f ,
respectively, with bounded characteristics and an inhomogeneous term, consisting of (4em)a, 4gmn

k

and their derivatives with respect tox. These terms are either bounded by what has been
previously or by inspection of the field equations~26!–~37!. Having bounded the spatial an
velocity derivatives off, the structure of the Vlasov equation bounds immediately] t f and we have
proven

Proposition 2.6: Under the hypotheses of Proposition 2.5 we get uniform bounds for

uV̈u,uV̇8u,uV9u,uẄu,uẆ8u,uW9u and uṙu,ur8u

on ] t1,0].
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3. The iteration scheme

Following the analysis of Paper I we need some additional framework.
Definition 2.7:

Fª~A,a,V,W,N,n1,nB,H,K,hB!,

Fª~r, fr!.

It turns out that what we have done in the previous subsections are the first steps toward the
regularity property of Paper I. Here we will define this property adapted to the present situ
with the notational conventions introduced as follows:a denotes a multi-index for derivatives i
(B,gI ) andDI ª(] t ,]x). Then the matter regularity property reads

uDI aFu<C⇒uDI aFu<C ~39!

and we state
Proposition 2.8: Under the hypotheses of Proposition 2.5, ~39! holds for all a uniformly on

] t1,0].
Proof: We prove the statement by induction with respect touau. The induction hypotheses fo

a50 are contained in the statements of Propositions 2.5 and 2.6. To proceed further let us
uDI aFu<C for somea with uauªp>1. Then we can assumeuDI p21Fu<C by induction. We have
to show uDI pFu<C, or extending our previous notation,PpªiDI pf iL`<C and Qp11

ªiDI p11fiL`<C.
Following the analysis of Sec. II D 2 we setqªp21 and differentiate the field equations~25!

with ]xDI
q, which yields schematically

k6~k7~]xDI
qf!!5@]xDI

qgI ,]xDI
pr ,]xDI

qf#~k7]xDI
qf!1@DI qf#]xDI

qTAB

1@]xDI
qf,]xDI

qh,DI qTAB#,

where quantities in square brackets abbreviate some expressions formed by them, whose
structure is not important for our analysis here. We want to perform the same kind of argum
we have done in the proof of the second-order estimates. In order to do this we must bou
quantities in the square brackets:

~1! The terms in the second and third set of square brackets are bounded by the ind
hypotheses.

~2! For the first square bracket we can proceed as follows.]xDI
qf is already bounded. Fo

]xDI
pr we have to estimate]xDI

pA5]x
2DI qA. This can be done by applyingDI q to ~26! in a strictly

analogous manner as in the first item in the proof of Lemma 3.6 in Paper I, applied to Eq.~26!.
The definition ofgI in Sec. II D 1 shows that the terms in]xDI

qgI not already bounded are]x
2DI qn1,

]x
2DI qN, and]x] tDI

qA. Applying DI p to ~36! gives a bound for the first quantity. UsingDI q on ~29!,
then the argument in the fourth step in the proof of Lemma 3.6 in Paper I, applied to~29! bounds
the second quantity. Now all quantities appearing on the right-hand side of~]xDI

q applied to! ~32!
are bounded, and this bounds] t]xDI

qA.
Turning now to the Vlasov equation and applying]xDI

q yields an inhomogeneous equation f
]xDI

qf with the same characteristics. Thus we can apply the same trick as in Sec. II D 2, s
tuting ]x by k6 andXI . Then again we are concerned with integration by parts, which yields
bounded terms, and the inhomogeneous term of the differentiated Vlasov equation, which
bounded by induction hypotheses. All together we can apply Gronwall’s inequality to
i]xDI

pfiL`<C, and immediatelyQp11<C by inserting the spatial bounds into the field equatio
The Vlasov equation for]xDI

qf now bounds]xDI
qf and analogously for]vDI qf , which automati-

cally bounds] tDI
qf by inserting the spatial and velocity bounds into the differentiated Vla

equation. Thus we have also boundedPp , which completes the proof of the proposition. j
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To extend the local in time PMC foliation, our aim is to find uniformC` bounds of all
geometric and matter quantities, when the PMC timet approachest1 . Property~39! shows that it
is enough to bound the geometric quantitiesDI aF for all a as long ast or, respectively, the mean
curvature remains finite. Therefore all we need is the analog of Lemmas 3.6 and 3.7 in P
starting with Propositions 2.3, 2.4, 2.5, and 2.6.

The first part is straightforward, given an arbitrary multi-indexa and uDI aFu<C we find
u]xDI

aFu<C by inspection of the relevant~differentiated! field equations~26!–~37! ~compare the
arguments given in the proof of Lemma 3.6 in Paper I where necessary!, with the terms on the
right-hand sides bounded by property~39!. Moreover, Proposition 2.8 provides not only boun
for the spatial derivatives, but also for the time derivatives off by the definition offr. This
allows us to proceed as follows: First we bound, starting fromDI aF all spatial derivatives]x

kDI aF,
k51,2,... . Then we bound, starting successively from]x

kDI aF, k51,2,..., the quantitiesDI bF for
all multi-indicesb with ubu5uau1k, redistributing the spatial derivatives into time derivative
This procedure will successively bound all derivatives ofF, taking advantage of the fact that i
each step all lower order derivatives with the same order of time derivatives have been boun
well as at least one more spatial order derivative in the step with one order less in time deriv
In a more compact formulation, we have to show the boundedness of] tDI

aF, having already
bounds for]xDI

aF andDI aF.
We accomplish this step for each member ofF, by again considering some of the~differen-

tiated byDI a! 311-field equations. We see immediately from~32! and~33! that we have bounds
for ] tDI

aA, ] tDI
aa. The bounds for] tDI

a applied onH, K, and h are straightforward, too. O
course,] tDI

af is already bounded by property~39!. Moreover we can strengthen the regulari
Since we have already a bound for]xDI

aF Proposition 2.8 provides us with bounds for]xDI
a

applied tor andDI f. Applying ]xDI
a to the field equation~25! we first get a bound for]xDI

af and
then for] t

2DI af by inserting the first result into the field equation. This in turn used together
the bounds for the differentiated matter variable in the differentiated Vlasov equation, bo
] tDI

ar.
Now we turn to the analysis of the differentiated lapse equation. First we see that the

for ] tDI
an follows from the bound of] tDI

aN. For the latter one, we follow the argument given
the corresponding place in the proof of Lemma 3.7 in Paper I, where all that is needed has a
been bounded by the arguments just given here and we are done.

Therefore we end up with
Theorem 2.9: Let (M,g,f ) be a globally hyperbolic, spatially compact solution of t

Einstein–Vlasov system with local U(1)3U(1) symmetry, which possesses a symmetric Cau

surfaceS with strictly negative mean curvature H<H̄,0 and H5H̄ somewhere onS. Then all
of the past ofS admits a PMC foliation$St%, where t takes all values in the interval# 2`, 0# and

H takes all values in] 2`,H̄].

4. Improving the result

Here we will try to do the same construction as in the corresponding place in Paper I,
rid of the restriction concerning the fixed sign of the mean curvatureH on the Cauchy surfaces. S
we assumeM to be nonflat and denote byS an arbitrary symmetric Cauchy surface inM. In order
to follow the steps performed in the plane symmetric case in Paper I, remember first from
II B 4, that the space–time is expanding. Note further that the Einstein–Vlasov system fulfil
dominant and strong energy condition as well as the non-negative pressures condition.

Then we find for the past domain of dependenceD2(S)
~1! Since the space–time is expanding, dr is future pointing, thusr is bounded inD2(S). By

assumption,M21 is bounded on the compact surfaceS. Unfortunately, unlike in the plane sym
metric case we cannot conclude from the non-negative pressures condition and the fact thr is
future pointing, that dM is past pointing, since in Eq.~21! for the mass flux the term involvingh
contributes with the wrong sign@luckily, the contribution of the energy momentum tensorfT ~19!
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for the wave mapf does not cause any trouble, due to the energy conditions automat
fulfilled by fT#.

To overcome this difficulty we impose the Gowdy-type symmetry condition, thush vanishes
identically in the space–time@and by the gauge conditionnB(t,0)50 this is also true forn̄ in view
of ~37!#. Then we conclude thatM21 is bounded inD2(S) as desired.

Now we want to apply theorem 2.1 in Burnett~1999! to establish a bound for the length of a
timelike curves inD2(S). For this we have to adapt the proof a little bit. Inspection of the pr
shows that the argument relies on the inequalityr̈<2M /r 2 satisfied by the area radius alon
timelike geodesics, where the dot denotes differentiation along the curve. But looking at th
equation~20! for the area radius easily establishes this relation~sinceh vanishes! and we are
through.

~2! The basic estimate~38! together with~16! shows thatr 21 andM are bounded.
~3! Lemma 2 in Burnett~1996! applies and we get bounds for the volume and its inverse

any Cauchy surface inD2(S).
The volumeV(t) for the leafSt of the PMC foliation is given byV(t)5(4p)2a21*S1r 3 and

a closer look at the estimates given in the corresponding place in Paper I shows that the arg
apply literally. This relies on the facts that on the one hand the additional equations~25! are
unaffected by the reparametrization of the foliation, thus the estimates forf and its derivatives
done in the previous subsections hold. On the other hand the construction in Paper I is
mainly on the structures introduced by the matter regularity property and Lemmas 3.6 and
program we adapted successfully to the more general situation here.

So we finally arrive at
Theorem 2.10: Let (M,g,f ) be a globally hyperbolic, spatially compact solution of t

Einstein–Vlasov system with Gowdy-type local U(1)3U(1) symmetry andS be a symmetric
Cauchy surface. If (M,g) is non-flat then we can foliate all of the past ofS by PMC hypersurfaces
where the time function takes on all values in the interval#2`, 0# and the mean curvature of th
leaves tends uniformly to2` for t→2`.

Using the PMC leaves as barrier surfaces we get the
Corollary 2.11: In the situation of Theorem2.10D2(S) possesses a CMC Cauchy surface

each value of the mean curvature in] 2`,minSH@.

III. CONCLUSION AND OUTLOOK

We have seen in this paper that the program initiated in Paper I has been successfu
tended to the more general case of localU(1)3U(1) symmetric space–times in close analogy
the plane symmetric space–times. Therefore all that has been mentioned in the corresp
place in Paper I applies.

A corresponding analysis for space–times with localU(1)3U(1) symmetry has been inde
pendently performed in Andre´asson~1999!. His construction leads to stronger results~as well as
@Rein ~1996!# in the surface symmetric case of Paper I!, but the time functions used are defined
terms of the symmetry. Thus it is not clear how to generalize them. In view of Andre´asson’s work,
the present analysis can be seen as a suggestion pointing in a slightly different direction.

In comparison with the space–times considered in Paper I the control of the momenta
Vlasov particles turned out to be more complicated, in particular the coupling to gravitat
waves required second-order estimates before the iteration procedure could be performed
process we took advantage from the wave-map structure of the dynamical part of the ge
driven by the simple form of the Vlasov equation. Nevertheless one can hope that the ap
may be generalized to other matter models and geometries, since the obstructions seem
technical nature only.
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In this article we construct and analyze new classes of wormhole and flux tubelike
solutions for the 5D vacuum Einstein equations. These 5D solutions possess ge-
neric local anisotropy which gives rise to a gravitational running or scaling of the
Kaluza–Klein ‘‘electric’’ and ‘‘magnetic’’ charges of these solutions. It is also
shown that it is possible to self-consistently construct these anisotropic solutions
with various rotational 3D hypersurface geometries~i.e., ellipsoidal, cylindrical,
bipolar and toroidal!. The local anisotropy of these solutions is handled using the
technique of anholonomic frames with their associated nonlinear connection struc-
tures@S. Vacaru, Ann. Phys.~N.Y.! 256, 39 ~1997!; Nucl. Phys. B434, 590~1997!;
J. Math. Phys.37, 508 ~1996!; J. High Energy Phys.09: 011 ~1998!; Phys. Lett. B
498, 74 ~2001!#. Through the use of the anholonomic frames the metrics are diago-
nalized, in contrast to holonomic coordinate frames where the metrics would have
off-diagonal components. In the local isotropic limit these solutions are shown to
be equivalent to spherically symmetric 5D wormhole and flux tube
solutions. © 2002 American Institute of Physics.@DOI: 10.1063/1.1467967#

I. INTRODUCTION

The first solutions describing black holes and wormholes in 4D and higher dimens
gravity were spherical symmetric solutions with diagonal metrics.1 Later Salam, Strathee an
Perracci2 showed that including off-diagonal components in higher dimensional metrics is eq
lent to including gauge fields. They concluded that geometrical gauge fields could act as s
of exotic matter necessary for the construction of a wormhole. References 3 and 4 exa
locally isotropic solutions with off-diagonal metric components for 5D vacuum Einstein equat
These solutions were similar to spherically symmetric 4D wormhole or flux tube metrics
‘‘electric’’ and/or ‘‘magnetic’’ fields running along the throat of the wormhole. These ‘‘elect
magnetic’’ fields arose as a consequence of the off-diagonal elements of the metric. By v
certain free parameters of the off-diagonal elements of the 5D metrics it was possible to c
the relative strengths of the fields in the wormhole’s throat, and to change the longitudina
transverse size of the wormhole’s throat. In Ref. 5 we constructedanisotropicwormhole and flux
tube solutions, which reduced to the solutions of Refs. 3 and 4 in the isotropic limit. The a
ropy of these metrics was handled using the method of anholonomic frames with asso
nonlinear connections, which has been developed by one of the authors~SV! in Refs. 6 and 7. It
was shown that these anisotropic solutions exhibited a variation or running of the ‘‘electro
netic’’ parameters as a result of the angular anisotropies and/or through variations of the
spatial dimension.

In this article we extend the investigation of Ref. 5 by applying the anholonomic fra
method to construct anisotropic wormhole and flux tube solutions to 5D Kaluza-Klein th
which possess a range of different symmetries~elliptic, cylindrical, bipolar, toroidal!. We will
discuss the physical consequences of these solutions, in particular the variation of the ‘‘e
24860022-2488/2002/43(5)/2486/19/$19.00 © 2002 American Institute of Physics
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magnetic’’ parameters~e.g., the ‘‘electric’’ and ‘‘magnetic’’ charges associated with the solution!.
This variation of the ‘‘electromagnetic’’ charges, which here occurs in the context of a h
dimensional gravity theory, can be likened to the variation or running of electric charge that o
when a real electric charge is placed into some dielectric medium or in a quantum vacuum
quantum fluctuations produce a scale dependent electric charge. We will sometimes loose
to this gravitational variation of the ‘‘electromagnetic’’ parameters of the solutions as the gra
tional running, scaling or renormalization of the charges of the solutions.

II. ANHOLONOMIC FRAMES AND 5D VACUUM EINSTEIN EQUATIONS

In this section we outline the basic formulas for 5D Einstein gravity, and introduce the me
of anholonomic frames. We construct locally anisotropic metrics which are generalizatio
those considered in Ref. 5. These 5D metrics have a mixture of holonomic and anholo
variables, and are most naturally dealt with using anholonomic frames. Finally we analyz
physical and mathematical properties of these 5D, locally anisotropic vacuum solutions.

A. Metric ansatz

Let us consider a 5D pseudo-Riemannian space–time of signature (1,2,2,2,2) and de-
note the local coordinatesua5(xi ,ya)5(x1,x2,x3,y45s,y55p), or more compactlyu5(x,y),
where the Greek indices are split into two subsetsxi ~holonomic coordinates! and ya ~anholo-
nomic coordinates! labeled respectively by Latin indicesi , j ,k, . . .51,2,3 anda,b, . . .54,5. The
local coordinate bases,]a5(] i ,]a), and their duals,da5(di ,da), are written respectively as

]a[
]

dua 5S ] i5
]

dxi ,]a5
]

dyaD ~1!

and

da[dua5~di5dxi ,da5dya!. ~2!

We can treat an arbitrary coordinate,xi or ya, as spacelike (x,y,z), timelike (t) or as the fifth
spatial coordinate~x!. The aim is then to study anisotropies and anholonomic constraints
various coordinates.

With respect to the coordinate frame base~2! the 5D pseudo-Riemannian metric

dS25gabduadub ~3!

with its metric coefficientsgab parametrized as

F g11w1
2h41n1

2h5 w1w2h41n1n2h5 w1w3h41n1n3h5 w1h4 n1h5

w1w2h41n1n2h5 g21w2
2h41n2

2h5 w2w3h41n2n3h5 w2h4 n2h5

w1w3h41n1n3h5 w3w2h41n2n3h5 g31w3
2h41n3

2h5 w3h4 n3h5

w1h4 w2h4 w3h4 h4 0

n1h5 n2h5 n3h5 0 h5

G . ~4!

The ansatz functions of this metric are smooth function of the form

g151, g2,35g2,3~x2,x3!5e2,3 exp@2b2,3~x2,x3!#, ~5!

h4,55h4,5~x2,x3,s!5exp@2 f 4,5~x2,x3,s!#, ~6!

w15w1~x2!, w2,35w2,3~x2,x3,s!,

n15n1~x2!, n2,35n2,3~x2,x3,s!;
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The ansatz functions of the metric are taken to depend on two isotropic variables (x2,x3) and on
one anisotropic variable,y45s.

Metric ~3! can be greatly simplified into the form

dS25gi j ~x!dxidxi1hab~x,s!dyadyb, ~7!

with diagonal coefficients

gi j 5F 1 0 0

0 g2 0

0 0 g3

G and hab5Fh4 0

0 h5
G ~8!

if instead of coordinate bases~1! and ~2! one used anholonomic frames~anisotropic bases!

da[
d

dua 5S d i5] i2Ni
b~u!]b ,]a5

]

dyaD ~9!

and

da[dua5~d i5dxi ,da5dya1Nk
a~u!dxk!, ~10!

where theN-coefficients are parametrized as

N1
45w1 , N2,3

4 5w2,3 and N1
55n1 , N2,3

5 5n2,3.

They define an associated nonlinear connection~N-connection! structure~see Refs. 6 and 7!. Here,
we shall not emphasize the N-connection formalism. The anisotropic frames~9! and ~10! are
anholonomic because, in general, they satisfy some anholonomic relations,

dadb2dbda5Wab
g dg ,

with nontrivial anholonomy coefficients

Wi j
k 50, Wai

k 50, Wab
k 5Wab

c 50,
~11!

Wi j
a 52V i j

a , Wb j
a 52]bNj

a , Wia
b 5]aNj

b ,

where

V i j
a 5d jNi

a2d iNj
a .

Conventionally, the N-coefficients decompose space–time objects~e.g., tensors, spinors and co
nections! into objects with mixed holonomic-anholonomic characteristics. The holonomic par
an object are indicated with indices of typei , j ,k, . . . , while the anholonomic parts have indice
of typea,b,c, . . . . Tensors, metrics and linear connections with coefficients defined with res
to anholonomic frames~9! and ~10! are distinguished~d! by N-coefficients into holonomic and
anholonomic subsets and are called d-tensors, d-metrics and d-connections.

B. Einstein equations in holonomic-anholonomic variables

The main ‘‘trick’’ of the anholonomic frames method for integrating Einstein’s equation
general relativity and various~super!string and higher/lower dimension gravitational theories is
find the coefficientsNj

a such that the block matricesgi j andhab are diagonalized.6,7 This greatly
simplifies computations. With respect to such anholonomic frames the partial derivative
N-elongated~locally anisotropic!.
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Metric ~3! with coefficients~4! @or equivalently, the d-metric~7! with coefficients~8!# is
assumed to solve the 5D Einstein equations

Rab2 1
2 gabR5kYab , ~12!

wherek and Yab are respectively the coupling constant and the energy-momentum tenso
most of the article we will consider vacuum solutions,Yab50. The nontrivial components of th
Ricci tensor~details of the computations are given in Refs. 5 and 7!, for the ansatz, are

R2
25R3

352
1

2g2g3
Fg3

••2
g2

• g3
•

2g2
2

~g3
• !2

2g3
1g292

g28g38

2g3
2

~g28!2

2g2
G , ~13!

R4
45R5

552
b

2h4h5
, ~14!

R4252w2

b

2h5
2

a2

2h5
, R4352w3

b

2h5
2

a3

2h5
, ~15!

R5252
h5

2h4
@n2** 1gn2* #, R5352

h5

2h4
@n3** 1gn3* #, ~16!

where

a25h5*
•2

h5*

2 S h4
•

h4
1

h5
•

h5
D 5h5* ~ lnu f 5* u1 f 52 f 4!•, h5* Þ0; ~17!

a35h5* 82
h5*

2 S h48

h4
1

h58

h5
D 5h5* ~ lnu f 5* u1 f 52 f 4!8, h5* Þ0; ~18!

b5h5** 2
h5*

2 S h5*

h5
1

h4*

h4
D 5h5* ~ lnu f 5* u1 f 52 f 4!* , h5* Þ0; ~19!

g5
3

2

h5

h5

*
2

h4

h4

*
5@3 f 522 f 4#* . ~20!

The partial derivatives are denoted ash•5]h/]x2, f 85] f /]x3 and f * 5] f /]s. We have given the
formulas both in terms ofh4,5 and f 4,5 since we will need this later.

Formulas~13!–~16! were obtained with respect to anholonomic frames for a fixed lin
connection adapted to the N-connection structure, called the canonical distinguished conne8

@Miron and Anastasiei introduced this connection on vector bundles, but it can be used in a s
fashion on~pseudo! Riemannian spaces if the N-connection is considered.# The coefficients of a
distinguished connectionGbg

a 5(L jk
i ,Lbk

a ,Cjc
i ,Cbc

a ) are computed from the formulas

L jk
i 5 1

2 gin~dkgn j1d jgnk2dngjk!,

Lbk
a 5]bNk

a1 1
2 hac~dkhbc2hdc]bNk

d2hdb]cNk
d!, ~21!

Cjc
i 5 1

2 gik]cgjk , Cbc
a 5 1

2 had~]chdb1]bhdc2]dhbc!.

The coefficients in~21! reduce to the Christoffel symbols if the metric componentsgi j depend
only on x-variables, thehab depend only ony-variables, and the N-connection vanishes. W
emphasize that if the anholonomic frames are introduced into consideration, there is a certa
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of linear connections which satisfy the metricity condition for a given metric, or inversely, the
a certain class of metrics which satisfy the metricity conditions for a given linear connection.~This
result was originally obtained by A. Kawaguchi9 in 1937. Details can be found in Ref. 8; se
Theorems 5.4 and 5.5 in Chapter. III.! So, we need to state explicitly what type of linear conne
tion is used for the definition of the curvature and Ricci tensor if the space-time is provided
an anholonomic frame structure. In this work and in Refs. 5 and 7 the linear connecti
considered to be of the form~21!. The off-diagonal metrics studied in this article will be compa
ible with the canonical linear connection, but may not have a trivial limit to a diagonal holon
metric.

The scalar curvature is

R52~R2
21R4

4!.

Using this along with the components of the Ricci tensor in Eqs.~13!–~16! one can show that for
the metric ansatz~4! the coefficients of the energy-momentum d-tensor satisfy

Y1
15Y2

21Y4
4 , Y2

25Y3
35Y2 , Y4

45Y5
55Y4 ,

with respect to anholonomic bases~9! and ~10!. Thus the Einstein equations can be written as

R2
252kY4 , R4

452kY2 , R4 ı̂5kY4 ı̂ , R5 ı̂5kY5 ı̂ , ~22!

where ı̂52,3.
With this setup it is possible to construct very general classes of solutions to these equa5,7

which describe locally anisotropic solitons, black holes, black tori and wormhole solutions.

C. General properties of the anisotropic vacuum solutions

In the vacuum case Eqs.~22! reduce to

g3
••2

g2
• g3

•

2g2
2

~g3
• !2

2g3
1g292

g28g38

2g3
2

~g28!2

2g2
50, ~23!

h5** 2
h5*

2 S h5*

h5
1

h4*

h4
D 50, ~24!

bw2,31a2,350, ~25!

n2,3** 1gn2,3* 50. ~26!

We now discuss general features for the d-metric coefficients, (g2 ,g3),(h4 ,h5), and the
N-connection coefficientsw2,3 andn2,3 which solve this system of equations:

~1! Equation~23! relates two functionsg2(x2,x3) andg3(x2,x3) and their partial derivatives
in the isotropic coordinatesx2 and x3. If one of the functions is fixed, by some symmetry a
boundary conditions the second function is found by solving a second order partial differ
equation. For example, by redefinition of the coordinates or a conformal transformation on
transformg3 , ~or conversely,g2! into a constant. Using this technique one of the authors~SV! was
able to construct various 2D soliton-dilaton and black-hole-like configurations7

~2! Equation~24! contains partial derivatives of only the anisotropic coordinates, and relates
the two functionsh4(x2,x3,s) andh5(x2,x3,s). By fixing one of these functions the second one
found by solving a second or first order differential equation ins ~thex-variables being treated a
parameters!. These equations reduce to the Bernoulli equations,10 and are satisfied by two arbitrar
functionsh4,5(x

2,x3) for which h4,5* 50. Thus there are three classes of solutions:

~a! class A, for whichh4* 50, h5* Þ0;
~b! class B, for whichh5* 50, h4* Þ0; and
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~c! class C, bothh4,5* Þ0.

If the conditionh5* Þ0 is satisfied, we can write~24!, in f -variables@see~19!#, as

~ lnu f 5* u1 f 52 f 4!* 50,

which is solved by arbitrary functionsf 5(x2,x3,s) and

f 4~x1,x2,s!5 f 4[0]~x1,x2!1 lnu f 5* u1 f 5 . ~27!

Bracketed subscripts indicate ‘‘constants’’ of integration with respect to thes variable. The genera
solution of ~24! expressingh5 via h4 is

h5~x2,x3,s!5Fh5[1]~x2,x3!1h5[2]~x2,x3!E Ah4~x2,x3,s!ds,G2

5h5[0]~x2,x3!@11Ã~x2,x3!s#2, h4* 50. ~28!

The integration ‘‘constants,’’f 5[0,1,2](x
2,x3) and Ã(x2,x3), are determined by boundary cond

tions and locally anisotropic limits as well as from the requirement that Eqs.~25! and ~26! are
compatible. Conversely, for a givenh5 , the general solution of~24! is ~27! which can be rewritten
with respect to variablesh4,5, as

h4~x2,x3,s!5h4[0]~x2,x3!@~Auh5~x2,x3,s!u!* #2. ~29!

~3! If the functionsh4(x2,x3,s) andh5(x2,x3,s) are known, then Eqs.~25! become linearly
independent algebraic equations forw2,3:

w2,3b1a2,350.

If in the case of vacuum Einstein equationsh5* 50; we havea ı̂5b50 and, as a consequence, E
~25! becomes trivial, allowing arbitrary values of the functionsw2,3(x

2,x3,s). Forh5* Þ0 we must
impose the conditiona2,350, or identify these values with the corresponding nondiagonal c
ponents of the energy-momentum tensor. We also note that ansatz~4! admits an arbitrary function
w1(x2) which is not contained in the vacuum Einstein equations. This function can be fixe
requiring that it be compatible with some locally isotropic solutions.

~4! Equations~26! can be solved in general form if the functionsh4(x2,x3,s) andh5(x2,x3,s)
@and therefore the coefficientg from ~20!# are known:

n2,3~x2,x3,s!5n2,3[0]~x2,x3!1n2,3[1]~x2,x3!E h4~x2,x3,s!

h5
3/2~x2,x3,s!

ds, gÞ0;

~30!
n2,3~x2,x3,s!5n2,3[0]~x2,x3!1n2,3[1]~x2,x3!s, g50,

where the functionsn2,3[0](x
2,x3) andn2,3[1](x

2,x3) are defined from some boundary condition
Again the ansatz~4! admits another arbitrary functionn1(x2) which is not contained in the
vacuum Einstein equations. This function can be fixed by requiring compatibility with s
locally isotropic solutions.

If the metric coefficientsh4 and h5 are solutions to Eq.~24!, then one can define two new

@ ĥ45h4h4 , ĥ55h5h5# solutions. We call the functionsh4,55h4,5(x
2,x3,s) gravitational polar-

izations since they modify the behavior of the metric coefficientsh4 andh5 in a manner similar to
how a material modifies the behavior of electric and magnetic fields in media.

The ‘‘renormalization’’ of h4,5 into ĥ4,5 results in the ‘‘renormalization’’ ofn2,3:n2,3→n̂2,3

from formula ~30! with h4,5→ĥ4,5 andg→ĝ.
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III. LOCALLY ISOTROPIC WORMHOLES, FLUX TUBES, AND ANISOTROPIC RUNNING
OF CONSTANTS

We give a brief review of the locally isotropic wormhole and flux tube solutions~DS-
solutions! constructed in Refs. 4 and 11, and their anisotropic generalization proposed in R
The isotropic DS-solutions represent 5D gravitational field configurations which carry ‘‘elec
and/or ‘‘magnetic’’ charges. Various authors have studied related 5D solutions: Liu and W
investigated 5D solitonic solutions;12 they also considered 5D charged black holes;13 5D worm-
hole configurations with electromagnetic charges were studied in Ref. 14; Ref. 15 looks
solutions with magnetic charge; and a general reference for 5D Kaluza-Klein theory and sol
is Ref. 16. The anisotropic constructions considered in this article are slightly different from
5. Here we use a fixed conformal factor, in order to construct anisotropic solutions with
ground geometries more general than spherical. The study of these more general back
geometries will be carried out in Sec. V.

A. 5D locally isotropic wormholes and flux tubes

Reference 11 considered the following spherically symmetric 5D metric, with off-diag
terms

ds(DS)
2 5e2n(r )dt22dr22a~r !~du21sin2udw2!

2r 0
2e2c(r )22n(r )@dx (DS)1v~r !dt1ncosudw#2, ~31!

where x (DS) is the fifth coordinate;r , u,w are 3D spherical coordinates;n is an integer;r P
$2R0 ,1R0% (R0<`) andr 0 is a constant. All functionsn(r ),c(r ) anda(r ) were considered to
be even functions ofr satisfyingn8(0)5c8(0)5a8(0)50. Here we shall study a particular clas
of this metric, withn(r )50. We also introduce a new fifth coordinate

x5x (DS)2m~u,w!21E dj~u,w!

for which

dx (DS)1n cosudw5dx1n cosudu

and

]j

]w
5mn cosu,

]j

]u
52mn cosu,

if the factorm~u,w! is taken, for instance,

m~u,w!5exp~u2w!ucosuu21.

This redefinition of the fifth coordinatex (DS)→x, with dx elongated by N-coefficients propor
tional to t,r ,u ~isotropic coordinates!, allows us to consider anisotropies on coordinates~w,x!. The
metric ~31!, in coordinates (t,r ,u,w,x) and forn(r )50, is equivalently rewritten as

ds(DS)
2 5dt22dr22a~r !~du21sin2udw2!2r 0

2e2c(r )@dx1v~r !dt1n cosudu#2. ~32!

This form of the metric will be used to find new, anisotropic solutions of Einstein’s equations
coefficientv(r ) in ~32! is treated as thet-component of the electromagnetic potential andn cosu
as theu-component. These electromagnetic potentials lead to the metric having radial Ka
Klein ‘‘electrical’’ and ‘‘magnetic’’ fields. The 5D Kaluza–Klein ‘‘electric’’ field is

EKK5r 0v8e3c5q0 /a~r !. ~33!
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The ‘‘electric’’ chargeq05r 0v8(0) can be parametrized as

q052Aa~0!sina0 .

The corresponding dual, ‘‘magnetic’’ field is

HKK5Q0 /a~r ! ~34!

with ‘‘magnetic’’ chargeQ05nr0 parametrized as

Q052Aa~0! cosa0 .

The following ‘‘circle’’ relation,

~q0
21Q0

2!

4a~0!
51, ~35!

relates the ‘‘electric’’ and ‘‘magnetic’’ charges. As the free parameters of the metric are v
there are five classes of solutions with the properties:

~1! Q050 or HKK50, a wormholelike ‘‘electric’’ object;
~2! q050 or EKK50, a finite ‘‘magnetic’’ flux tube;
~3! q05Q0 or HKK5EKK , an infinite ‘‘electromagnetic’’ flux tube;
~4! Q0,q0 or HKK,EKK , a wormholelike ‘‘electromagnetic’’ object; and
~5! Q0.q0 or HKK.EKK , a finite, ‘‘magnetic-electric’’ flux tube.

Metric ~32! is a particular example of a d-metric of type~7!, with the ansatz functions given
by ~4!, or equivalently~8!. For the coordinatesx15t,x25r ,x35u,y45s5x,y55p5w the set of
ansatz functions

g151, g2521, g352a~r !,

h452a~r !sin2 u, h552r 0
2e2c(r ), ~36!

wi50, n15v~r !, n250, n35n cosu

define a trivial, locally isotropic solution of the vacuum Einstein equations~23!–~26! which
satisfies the conditionsh4,5* 50. We next deal with anisotropic deformations of this solution.

B. Anisotropic generalizations of DS-solution

The simplest way to obtain anisotropic wormhole/flux tube solutions5 is to taker 0
2 from ~32!

or ~36!! not as a constant, but as ‘‘renormalized’’ viar 0
2→ r̂ 0

25 r̂ 0
2(r ,u,s).

1. DS-solutions with anisotropy via s Äx

From the isotropic solution~36! we generate an anisotropic solution of class A by taking

ĥ4~r ,u!5h4~r ,u!52a~r !sin2u,

with h451 so thatĥ4* 5h4* 50, but ĥ5* 5h5* (r ,u,x)h5(r )Þ0. Using Eq.~28! we parametrize

r̂ 0
2~x!.r 0(0)

2 @11Ã~r ,u!x#2 ~37!

so that
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h5~r ,u,x!5h5~r ,u,x!h5~r !,

h5[0]~r ,u!5h5~r !52r 0
2e2c(r ), h5~r ,u,x!5@11Ã~r ,u!x#2.

Under the conditions in this subsectionb anda2,3 from Eqs.~17!–~19! ~and thereforew2,3! can be
arbitrary functions. Here we will requirew2,3→0 in the locally isotropic limit,Ãx→0. From Eq.
~30! n2,3 depends on the anisotropic variables5x in the following way:

n3~r ,u,x!5n3[0]~r ,u!1n3[1]~r ,u!@11Ã0x#22

with Ã(r ,u)5Ã05const. We obtain the locally isotropic limit of~36!, for Ãx→0, if we fix the
boundary conditions withn2[0,1]50,n3[0]50, n3[1](r ,u)5n cosu andn15v(r ).

The 5D gravitational vacuum polarization induced by variation of ‘‘constant’’r̂ 0(x) renor-
malizes the electromagnetic charge asq(x)5 r̂ 0(x)v8(r 50). In terms of the angular parametr
zation the ‘‘electric’’ charge becomes

q~x!52Aa~0! sina~x!.

The ‘‘electric’’ field from ~33! becomes

EKK5
q~x!

a~r !
.

The renormalization of the magnetic charge,Q0→Q(x), can be obtained using the renormaliz
‘‘electric’’ charge in relationship~35! and solving forQ(x). The form of ~35! implies that the
running ofQ(x) will be the opposite that ofq(x). For example, ifq(x) increases withx, then
Q(x) will decrease. The locally anisotropic polarizationsa~x! are either defined from experimen
tal data or computed from a quantum model of 5D gravity. With the coordinates takenx1

5t,x25r ,x35u,y45s5x,y55p5w, one can construct a locally anisotropic solution of t
vacuum Einstein equations~23!-~26! by making the following identifications for the ansatz fun
tions from ~32!:

g151, g2521, g352a~r !,

ĥ45h452a~r !sin2u, h451,
~38!

ĥ55h5h5 , h5~r !52r 0
2e2c(r ), h55@11Ã0x#2 ,

wi50, n15v~r !, n250, n35n cosu@11Ã0x#22 .

This generalizes the DS-solution~32! by allowing the Kaluza-Klein electric and magnetic charg
to be dependent on~i.e., scale with! the fifth coordinates5x. We will call these thex-solutions!.

2. DS-solutions with anisotropy via w

In a similar fashion we can consider anisotropic dependencies with respect tos5w. These
will be called w-solutions. The simplest option is to takeh5* 50 but h4* Þ0, i.e., to define a
solution with

ĥ4~r ,u,w!5h4h4~r !, h4~r !52r 0
2e2c(r ),

ĥ5~r ,u!5h5~r ,u!52a~r !sin2u,

h45exp@Ã~r ,u,w!#, h551.
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This allows w2,3 to take arbitrary values sinceb and a2,3 from Eqs. ~25! vanish. For small
polarizations we can approximate

ĥ4~r ,u,w!5h4[0]~r ,u!@11Ãw#.

The general solution of~26! for ĝ52(lnuĥ4u)* is

n2,3~r ,u,w!5n2,3[0]~r ,u!1n2,3[1]~r ,u!E exp Ã~r ,u,w!dw;

we take w15v(r ),w250,w35n cosu, n2[0](r ,u)50 and n3[0](r ,u)5n cosu, n,3[1](r ,u)51
which are compatible with the local isotropic limit@i.e. Ã(r ,u,w)→0 and*Ã(r ,u,w)dw→0].
Taking the coordinates asx15t,x25r ,x35u,y45s5w,y55p5x the following form for the an-
satz functions,

g151, g2521, g352a~r !,

ĥ45h4h4 , h452r 0
2e2c(r ), h45exp@Ã~r ,u,w!#,

ĥ55h5 , h552a~r !sin2u, h551, ~39!

w15v~r !, w250, w35n cosu,

n150, n2,35n2,3[1]~r ,u!E expÃ~r ,u,w!dw,

gives a locally anisotropic generalization of the DS-metric~32! for anisotropic dependencies o
the anglew.

We have constructed two classes of locally anisotropic generalizations of the DS-soluts
5w ~i.e., anisotropic angular polarizations! or s5x ~i.e., dependence of the Kaluza-Klein charg
on the fifth coordinate!. If the metric~32!, describing these two classes of solutions, were gi
with respect to a coordinate frame~1! nondiagonal terms would occur, and the study of th
solutions would be more difficult.

IV. GRAVITATIONAL u-POLARIZATION OF KALUZA–KLEIN CHARGES

We can further generalize the forms~38! and~39! to generate new solutions of the 5D vacuu
Einstein equations with deformations of the constantsr 0

2 and n with respect to theu variable.
Theseu deformations take the form of the equation for an ellipsoid in polar coordinates.
again leads to varying electric,q, and magnetic,Q, charges.

A. Gravitational renormalization of Kaluza–Klein charges via variable r 0

In this subsection we give a solution for which the Kaluza–Klein charges are gravitatio
renormalized by the radius becoming dependent onu @i.e., in Eq.~35! a(0)→a(u)].

1. u-renormalization of charges for x-solutions

The easiest way to obtain suchu-polarizations for thex-solutions of ~28! and ~37! is to
consider the coordinates asx15t,x25r ,x35u,y45s5x,y55p5w, and let the ansatz function
take the form

g151, g2521, g352a~r !,

ĥ45h452a~r !sin2u, h451,
~40!

ĥ55h5h5~r !, h5~r !52r 0
2e2c(r ), h55@11« r cosu#22@11Ã0x#2,

wi50, n15v~r !, n250, n35n cosu@11Ã0x#22,
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whereh5 is the polarizaton and

r̂ 0
2~r ,u,x!.r 0(0)

2 @11« r cosu#22@11Ã0x#2,

where« r is the eccentricity. The ‘‘constant,’’r̂ 0 , has both an elliptic variation inu ~i.e., r 0(0)@1
1« r cosu#21) and a linear variation on the fifth coordinate~i.e., @11Ã(r ,u)x#).

For thesex-solutions with elliptic variations as given above the 5D Kaluza–Klein charges
renormalized through the elliptic variation ofr̂ 0(r ,u,« r ,x). This renormalizes the ‘‘electric’’
charge as

q~u,x!5r 0Ah5~u,« r ,x!v8~0!5Ah5~u,« r ,x!q0

or in terms of the angular parametrization

q~u,x!52Aa~0!Ah5~u,« r ,x!sina0 .

The ‘‘electric’’ field ~33! transforms into

EKK5
q~u,x!

a~r !
5

q0

~Ah5!21a~r !
.

Here (Ah5)21 can be treated as an anisotropic, gravitationally induced permittivity. The re
malization of the magnetic charge,Q0→Q(u,x), can be obtained from Eq.~35! using q(u,x)
from above. In this case the corresponding dual ‘‘magnetic’’ field isHKK5Q(u,x)/a(r ) with the
‘‘magnetic’’ chargeQ05nr0 given by

Q52Aa~0!Ah5~u,« r ,x!cosa0 .

These gravitationally polarized charges satisfy the circumference equation~35! with variable
radius 2Aa(0)Ah5(u,« r ,x):

~q0
21Q0

2!

4a~0!h5~u,« r ,x!
51. ~41!

2. Elliptic renormalization of charges for w-solutions

Thew-solutions can also be modified to have an elliptic variation with respect tou. As in the
case of thex-solutions this gives an effective gravitational renormalization of the charges.
the coordinates defined asx15t,x25r ,x35u,y45s5w,y55p5x the form of this variation of
the w-solutions is

g151, g2521, g352a~r !,

ĥ45h4h4 , h452r 0
2e2c(r ), h45@11« r cosu#22exp@Ã~r ,u,w!#,

ĥ55h552a~r !sin2u, h551, ĥ5* 5h5* 50, ~42!

w15v~r !, w250, w35n cosu,

n150, n2,35n2,3[1]~r ,u!E exp Ã~r ,u,w!dw.

The renormalized charges arise as in the previous example viar 0
2→ r̂ 0

2(r ,u,w). The ‘‘electric’’
charge becomes
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q~u,w!5r 0Ah4~u,« r ,w!v8~0!5Ah4~u,« r ,w!q0 .

In terms of the angular parametrization this becomes

q~u,w!52Aa~0!Ah4~u,« r ,w!sina.

The ‘‘electric’’ field ~33! transforms into

EKK5
q~u,w!

a~r !
5

q0

~Ah4!21a~r !
.

Here (Ah4)21 can be treated as an anisotropic gravitationally induced permittivity dependin
the angular variables. The renormalized magnetic charge,Q0→Q(u,w), can be determined usin
Eq. ~35! andq(u,w) giving

Q~u,w!52Aa~0!Ah4~u,« r ,w!cosa0 .

The ‘‘magnetic’’ field is thenHKK5Q(u,w)/a(r ). The gravitationally polarized charges satisfi
Eq. ~35! with a variable radius of 2Aa(0)Ah4(u,« r ,4):

~q0
21Q0

2!

4a~0!h4~u,« r ,w!
51. ~43!

There is again an elliptical variation inu, and also an anisotropic dependence inw.
Comparing formulas~41! and~43! we find that there are two types of anisotropic gravitatio

polarizations of the charges: in the first case the running with respect to the fifth coordin
emphasized; in the second case the anisotropy comes just from the angular variables. In bo
there is an elliptical dependence onu.

B. Gravitational renormalization of Kaluza–Klein charges via r 0 and n

A different class of solutions from those given in Eqs.~38!, ~39!, ~40!, and ~42! can be
constructed if, in addition tor 0 , we allow then in the n cosu term in Eq.~32! to vary. For the
x-solutions this variablen will affect n3 , while for thew-solutions it will affectw3 . The vari-
ability of r 0 and n is parametrized using the gravitational vacuum polarizationsk r(r ,u,s) and
kn(r ,u,s) as

r 0→ r̂ 05r 0 /k r~r ,u,s! and n→n̂5n/kn~r ,u,s!,

wherek r(r ,u,s)5@Ah4(r ,u,s)#21 or 5@Ah5(r ,u,s)#21. The polarized charges are

q5q0 /k r52Aa~0!sina0 /k r

and

Q5Q0 /kn52Aa~0! cosa0 /kn .

Using these charges in Eq.~35! gives the formula for an ellipse in the charge space coordin
(q0 ,Q0),

q0
2

4a~0!k r
2 1

Q0
2

4a~0!kn
2 51, ~44!

where the axes of the ellipse are 2Aa(0)k r and 2Aa(0)kn . Formula~44! contains formulas~41!
and ~43! as special cases.
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The form of thex- andw-solutions from the previous two subsections gets modified by
‘‘elliptic’’ renormalization of the Kaluza–Klein charges.

~a! With the coordinates defined asx15t,x25r ,x35u,y45s5x,y55p5w the x-solutions
with k r5@Ah5(r ,u,x)#21 take the form

g151, g2521, g352a~r !,

ĥ45h452a~r !sin2u, ĥ4* 50, h4* 50, h451,
~45!

ĥ55h5h5 , h552r 0
2e2c(r ), h551/k r

2~r ,u,x!,

wi50, n15v~r !, n250, n35n cosu/kn~r ,u,x!.

~b! With the coordinates defined asx15t,x25r ,x35u,y45s5w,y55p5x the w-solutions
with k r5@Ah4(r ,u,x)#21 take the form

g151, g2521, g352a~r !,

ĥ45h4h4 , h452r 0
2e2c(r ), h451/k r

2~r ,u,w!,

ĥ55h552a~r !sin2u, h551, h5* 50, ~46!

w15v~r !, w250, w35n cosu/kn~r ,u,w!,

n150, n2,35n2,3[1]~r ,u!E lnuk r~r ,u,w!udw.

V. WORMHOLES IN ELLIPSOIDAL, CYLINDRICAL, BIPOLAR AND TOROIDAL
BACKGROUNDS

The locally anisotropic wormhole/flux tube solutions presented in the previous section
anisotropic deformations from a spherical 3D hypersurface background. These solutions
generalized to other rotational hypersurface geometry backgrounds. In this section we will gi
explicit forms for these generalized solutions and analyze their basic properties. The notatio
metric relations for the 3D Euclidean rotational hypersurfaces that we use will be those of R

A. Elongated rotation ellipsoid hypersurfaces

An elongated rotation ellipsoid hypersurface~a 3D e-ellipsoid! is given by the formula

x21y2

s221
1

z2

s2 5ã2~r !, ~47!

wheres>1, andx,y,z here are the usual Cartesian coordinates.ã(r ) is similar to the radius in the
spherical symmetric case. The 3D, ellipsoidal coordinate system is defined

x5ã sinhu sinv coss, y5ã sinhu sinv sins, z5ã coshu cosv, ~48!

wheres5coshu and 0<u,`, 0<v<p, 0<s,2p. The hypersurface metric is

guu5gvv5ã2~sinh2u1sin2v !, gss5ã2sinh2usin2v. ~49!

It will be more useful to consider a conformally transformed metric, where the components i
~49! are multiplied by the conformal factorã22(sinh2u1sin2v)21, giving
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ds(3e)
2 5du21dv21gss~u,v !ds2,

~50!
gss~u,v !5sinh2usin2v/~sinh2u1sin2v !.

B. Flattened rotation ellipsoid hypersurfaces

In a similar fashion we consider the hypersurface equation for a flattened rotation ellips~a
3D f-ellipsoid!,

x21y2

11s2 1
z2

s2 5ã2~r !, ~51!

Heres>0 ands5sinhu. In this case the 3D coordinate system is defined as

x5ã coshu sinv coss, y5ã coshu sinv sins, z5ã sinhu cosv, ~52!

where 0<u,`, 0<v<p, 0<s,2p. The hypersurface metric is

guu5gvv5ã2~sinh2u1cos2v !, gww5ã2sinh2ucos2v. ~53!

Again for later convenience we consider a conformally transformed version of this metric:

ds(3 f )
3 5du21dv21gss~u,v !ds2,

~54!
gss~u,v !5sinh2 u cos2v/~sinh2u1cos2v !.

C. Ellipsoidal cylindrical hypersurfaces

The formula for an ellipsoidal cylindrical hypersurface is

x2

s2 1
y2

s221
5r2, z5s, ~55!

where s>1. The 3D radial coordinate is given asã25r21s2. The 3D coordinate system i
defined

x5r coshu cosv, y5r sinhu sinv, z5s,

wheres5coshu and 0<u,`, 0<v<p. Using the expressions forx,y and Eq.~55! we can
make the changer(x,y)→r(u,v). The hypersurface metric is

guu5gvv5r2~u,v !~sinh2u1sin2v !, gss51;

we will again consider a conformally transformed version of this metric:

ds(3c)
2 5du21dv21gss~u,v,r~u,v !!ds2,

~56!
gss~u,v !51/r2~u,v !~sinh2u1sin2v !.

D. Bipolar coordinates

Now we consider a bipolar hypersurface given by the formula

SAx21y22
ã~r !

tanj D 2

1z25
ã2~r !

sin2j
, ~57!

which describes a hypersurface obtained by rotating the circles
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S y2
ã~r !

tanj D 2

1z25
ã2~r !

sin2j

around thez axis; becauseutanju21,usinju21, the circles intersect thez axis. The relationship
between the Cartesian coordinates and the bipolar coordinates is

x5
ã~r !sinj coss

cosht2cosj
, y5

ã~r !sinj sins

cosht2cosj
, z5

ã~r !sinht

cosht2cosj
,

where2`,t,`,0<j,p,0<s,2p. The hypersurface metric is

gtt5gjj5
ã2~r !

~cosht2cosj!2 , gss5
ã2~r !sin2j

~cosht2cosj!2 ,

which, after multiplication by the conformal factor (cosht2coss)2/r2, becomes

ds(3b)
2 5dt21dj21gss~j!ds2, gss~j!5sin2j. ~58!

E. Toroidal coordinates

Now we consider a toroidal hypersurface with nontrivial topology given by the formula

~Ax21y22ã~r !~cothj!!21z25
ã2~r !

sinh2j
. ~59!

The relationship to the Cartesian coordinates is given by

x5
ã~r !sinht coss

cosht2cosj
, y5

ã~r !sinj sins

cosht2cosj
, z5

ã~r !sinhj

cosht2cosj
,

where2p,j,p,0<t,`,0<s,2p. The hypersurface metric is

gss5gtt5
ã2~r !

~cosht2cosj!2 , gss5
ã2~r !sin2j

~cosht2cosj!2 .

After multiplication by the conformal factor (cosht2coss)2/ã2(r) this takes the same form as~58!

ds(3t)
3 5dt21dj21gss~j!ds2, gss~j!5sin2j. ~60!

Although this looks identical to the metric in~58!, the coordinates (t,j,s) have different meanings
in each case. This can be seen by the different ranges for the two cases.

F. Anisotropic wormholes in rotation deformed hypersurface backgrounds

In order to construct wormholes which exhibit the various 3D geometries cataloged abov
will associate one of the ansatz functions of the wormhole solutions withgss(x

2,x3). For the
x-solutions this is accomplished by lettingh45gss(x

2,x3); for the w-solutions this is accom-
plished letting byh55gss(x

2,x3).
The construction of such solutions is based on the assumption thatgss(x

2,x3) for the five
nonspherical geometries listed above is to be taken ash45gss(x

2,x3) ~for x-solutions!, or ash5

5gss(x
2,x3) @for w(z)-solutions#. In each caseh4,5 is multiplied by corresponding gravitationa

polarizations,h4,5, so as to give wormhole/flux tube configurations of the form~38!, ~40!, and
~45! ~for x-solutions! or configurations of the form~39!, ~42!, and~46! @for w(z)-solutions#.
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1. The x-solutions

For the five 3D geometries given above, the d-metrics~8! for the x-solutions from Eqs.~38!,
~40!, and~45! have the coordinates defined as

xk55
~ t,u,v !,0<u,`,0<v<p,coshu>1, ellipsoid ~47!;
~ t,u,v !,0<u,`,0<v<p,sinhu>0, ellipsoid ~51!;
~ t,u,v !,0<u,`,0<v<p,coshu>1, cylinder ~55!;

~ t,t,j!,2`,t,`,0<j,p, bipolar ~57!;
~ t,t,j!,0<t,`,2p,j,p, torus ~59!;

y45s5x, y55p5 HwP@0,2p!, ellipsoids; bipolar; torus;
zP~2`,`!, cylinder;

and the ansatz functions given as

g151, g2521, g3521, ~61!

ĥ45h4h4 , h45gss~x2,x3!55
sinh2u sin2v

sinh2u1sin2v
, ellipsoid ~50!;

sinh2u cos2v
sinh2u1cos2v

, ellipsoid ~54!;

r22~u,v !

sinh2u1sin2v
, cylinder ~55!;

sin2 j, bipolar ~57!; torus ~59!;

h45@~Aĥ5~x2,x3,x!!* #2, see ~27!; ~62!

h55H @11Ã0x#2, see ~38!;
@11« r cosx3#22@11Ã0x#2, see ~40!;
1/k r

2~x2,x3,x!, see ~45!;

ĥ55h5h5 , h5~x2,x3,x!52r 0
2 exp$2c@r ~x2,x3,x!#%; wi50;

r 5ã(invers)~x2,x3,x! from ~47!,~51!,~55!,~57!,~59!;

n15v~x2!, n250, n35n cosx23H @11Ã0x#22, see ~38!;
@11Ã0x#22, see ~40!;

1/kn~x2,x3,x!, see ~45! .

The formulas~61! describe wormhole/flux tube configurations which are defined self-consist
in the various rotational hypersurface backgrounds listed above. As in the case of the sp
background, these solutions have an anisotropic deformation with respect to the given hy
face backgrounds.

2. The w-solutions

Now we give the form of the d-metric~8! for the w-solutions embedded in the five 3D
rotational hypersurfaces. The coordinates are taken as
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xk55
~ t,u,v !,0<u,`, 0<v<p,coshu>1, ellipsoid ~47!;
~ t,u,v !,0<u,`, 0<v<p,sinhu>0, ellipsoid ~51!;
~ t,u,v !,0<u,`, 0<v<p,coshu>1, cylinder ~55!;
~ t,t,j!,2`,t,`, 0<j,p, bipolar ~57!;
~ t,t,j!,0<t,`,2p,j,p, torus ~59!;

y45s5 HwP@0,2p!, ellipsoid; bipolar; torus;
zP~2`,`!, cylinder; y55p5x,

and the ansatz functions given as

g151, g2521, g3521, ~63!

ĥ45h4h4 , h45gss~x2,x3!55
sinh2 u sin2v

sinh2u1sin2v
, ellipsoid ~50!;

sinh2u cos2v
sinh2u1cos2v

, ellipsoid ~54!;

r22~u,v !

sinh2u1sin2v
, cylinder ~55!;

sin2j, bipolar ~57!; torus ~59!;

h45H exp@Ã~x2,x3,s#, see ~39!;
@11« r cosx3#22exp@Ã~x2,x3,s!#, see ~42!;

1/k r
2~x2,x3,s!, see ~46!;

~64!

h55H h5[0]~x2,x3!1h5[1]~x2,x3!E h4~x2,x3,s!ds, for ĥ4* Þ0,

h5[0]~x2,x3!1h5[1]~x2,x3!s; for ĥ4* 50;

ĥ55h5h5 , h5~x2,x3,s!52r 0
2exp$2c@r ~x2,x3,s!#%;

r 5ã( invers)~x2,x3,s! from ~47!,~51!,~55!,~57!,~59!;

w15v~x2!, w250, w35n cosx23H 1, see ~39!;
1, see ~42!;
1/kn~x2,x3,s!, see ~46!;

n150, n2,35n2,3[0]~x2,x3!35
E exp Ã0~x2,x3,s!ds, see ~39!;

E exp Ã0~x2,x3,s!ds, see ~42!;

E u ln kn~x2,x3,s!uds, see ~46!.

Formulas~63! describe a large class of wormhole/flux tube configurations which are de
self-consistently in the various 3D rotation hypersurface backgrounds. The deformations
case come from the angular coordinates5w ~for the ellipsoid, bipolar and toroidal cases! or from
the axial coordinates5z ~for the cylindrical case!. These ‘‘deformation’’ or anisotropic coordi
nates,w or z, are also third coordinates about which the rotation of the hypersurfaces occu
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VI. CONCLUSIONS

The construction of wormhole and/or flux tube solutions in modern string theory, extr
mensional gravity and quantum chromodynamics is of fundamental importance in understa
these theories~especially their nonperturbative aspects!. Such solutions are difficult to find, an
the solutions which are known usually have a high degree of symmetry. In this article we
applied the method of anholonomic frames to construct the general form of wormholes an
tubes in 5D Kaluza–Klein theory. These solutions have local anisotropy which would make
study using holonomic frames difficult. This helps to demonstrate the usefulness of the a
nomic frames method in studying anisotropic solutions. Most physical situations do not pos
high degree of symmetry, and so the anholonomic frame method provides a useful mathe
framework for studying these less symmetric configurations.

The key result of this article is the demonstration that off-diagonal metrics in 5D Kalu
Klein theory can be parametrized into forms that define new, interesting classes of soluti
Einstein’s vacuum equations. These solutions represent wormhole and flux tube configu
which are locally anisotropic. These anisotropic solutions reduce to previously known sphe
symmetric wormhole metrics3,4,11 in the local isotropic limit. These anisotropic solutions al
extend the idea of Salam, Strathee and Perracci3 that including off-diagonal components in high
dimensional metrics gives rise to gauge fields and charges. Not only do we find ‘‘electric
‘‘magnetic’’ charges for our solutions, but the anisotropies in the fifth coordinate~x! and/or in the
angular coordinate~w! give a gravitational scaling or running of these Kaluza-Klein charges. S
a gravitational scaling of charges could provide an experimental signature for the presence o
dimensions~i.e., if some charge were observed to exhibit a running which was not in agree
with that given by 4D quantum field theory, this could be evidence for a gravitational runnin
the charge!.

In the first part of this article these anisotropic solutions were constructed as deform
from a spherical background. In the final section of this article we showed that it is possib
construct a large variety of such anisotropic solutions as deformations from various backg
geometries: elliptic~elongated and flattened!, cylindrical, toroidal and bipolar.
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Bi-quasi-Hamiltonian systems
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A general notion of bi-quasi-Hamiltonian systems is introduced and is related to
previous work on various special cases of such systems. ©2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1462856#

I. INTRODUCTION

In a previous paper@Crampin and Sarlet~2001!#, we have generalized work by Lundmar
~2001a,b! on a class of integrable systems, from Euclidean spaces to~pseudo! Riemannian mani-
folds. In doing so, we came across an interesting class of conformal Killing tensors, c
‘‘special conformal Killing tensors,’’ and the integrable systems of interest live on spaces w
metric allows the coexistence of two such tensors. Physically speaking, the integrable syst
question represent Lagrangian systems with nonconservative forces, but whose force form
kind of double ‘‘generalized potential’’ representation. Whereas most classical~finite dimensional!
integrable systems are known to have a bi-Hamiltonian formulation, the ones referred to her
a double quasi-Hamiltonian representation and thus could be called bi-quasi-Hamiltonian sy
But they do lead to a bi-Hamiltonian system on an extended space.

In the present paper, we will introduce a general concept of bi-quasi-Hamiltonian system
explore under what circumstances they can have the property of complete integrability. Bi-
Hamiltonian systems should not be confused with quasi-bi-Hamiltonian systems, as introdu
Brouzetet al. ~1996! and developed by Morosi and Tondo~1997, 1998!. The similarity of the two
terms is unfortunate, but the name ‘‘bi-quasi-Hamiltonian system’’ describes what we ha
mind so well that after some reflection we decided to use it even so. The two concepts are
related, but the relation is not entirely straightforward: we discuss it in Sec. VII.

Following the description of the general concept in Secs. II and III, we specialize in Se
to the case where the two Poisson structures involved in the bi-quasi-Hamiltonian represe
each come from a Poisson–Nijenhuis structure. Most of the discussion in such a case is tran
from the Poisson structures involved to the type (1,1) tensor fields which generate them. W
make a further specialization, to the case where the manifold is a cotangent bundle and th
tensors are the complete lifts of tensor fields on the base manifold. This brings us back to th
of system studied in Crampin and Sarlet~2001!, and we take this opportunity to complement o
previous work with some results about the possible generation of families of such bi-q
Hamiltonian systems. The final section contains an explicit example which illustrates the th

We carry out coordinate calculations at various points in the paper; where we do so, w
the Einstein summation convention.

a!Electronic mail: m.crampin@open.ac.uk
25050022-2488/2002/43(5)/2505/13/$19.00 © 2002 American Institute of Physics
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II. QUASI-HAMILTONIAN SYSTEMS

We begin by recalling some generalities about Poisson structures.
A Poisson structure on a manifoldM is a bivector fieldP which satisfies@P,P#50, where

@•,•# is the Schouten bracket. The associated Poisson bracket of functionsf, g is given by
$ f ,g%5P(d f ,dg); the vanishing of the Schouten bracket entails the Jacobi identity for the P
son bracket. Also associated with such a bivector field is a mapP of one-forms to vector fields on
M, given by ^P(a),b&5P(a,b) for any pair of one-formsa, b. The Poisson bracket can b
extended to one-forms with the aid ofP, as follows~Magri, 1985!: for any one-formsa, b,

$a,b%5LP(a)b2LP(b)a2d~P~a,b!!;

then$d f ,dg%5d$ f ,g%. The Schouten bracket condition onP can be stated equivalently in term
of the Poisson map and the bracket of one-forms:

@P~a!,P~b!#5P~$a,b%!.

The Poisson structure is nonsingular if its Poisson map is.
The vector fieldP(dH) is the Hamiltonian vector field corresponding to the Hamilton

functionH. If Z is a Hamiltonian vector field thenLZP50, or equivalentlyLZP50. Conversely,
whenP is nonsingular, ifLZP50 thenZ is locally Hamiltonian, in the sense that in a neighbo
hood of any point one can find a functionH such thatZ5P(dH) on that neighborhood. In fact th
conditionLZP50 states thatZ is a cocycle in the Lichnerowicz–Poisson complex correspond
to P, and Z is Hamiltonian if and only if it is a coboundary. The Poisson mapP, when it is
nonsingular, induces an isomorphism of the Lichnerowicz–Poisson and the de Rham cohom
groups@Vaisman~1994!# , and so the vanishing of the first de Rham cohomology group ofM is a
sufficient condition for a vector field which satisfiesLZP50 to be Hamiltonian. We shall dea
mostly with nonsingular Poisson structures, and we shall generally assume thatLZP50 is suffi-
cient as well as necessary forZ to be Hamiltonian.

A vector fieldZ on a Poisson manifold is said to be quasi-Hamiltonian if there is a nowh
vanishing functionF such thatFZ is Hamiltonian. ThusFZ5P(dH) for some functionH. Note
that if M is connectedF must be everywhere positive or everywhere negative; we can assum
former without loss of generality by absorbing a negative sign inH if necessary. We assum
henceforth thatM is connected andF is positive. Now letV5F21P(dF)5P(d logF); then
LZP5Z`V, and of courseLVP50. Conversely, ifLZP5Z`V andV5P(dF) say then

L eFZP5eFLZP2Z`P~d~eF!!50.

Thus if LZP5Z`V whereLVP50, andP is nonsingular, thenZ is quasi-Hamiltonian, at leas
locally.

The functionH is a first integral ofZ.
Let Z be a vector field on a manifoldM which is quasi-Hamiltonian with respect to a Poiss

bivectorP, so thatFZ5P(dH). Then, as shown in Crampin and Sarlet~2001!, the bivectorP̂ on
M3R given by

P̂5P1~Z1zV!`
]

]z
,

wherez is the coordinate onR andV5F21P(dF), is a Poisson bivector which projects ontoP.
HereP is extended toM3R simply by ignoringz. The Hamiltonian vector field with respect t

P̂ corresponding to2z is Z1zV; its restriction to the zero section isZ. Furthermore,H1zF is a

Casimir ofP̂. In fact the conditions forP̂ to be Poisson are again

LZP5Z`V, LVP50,

given thatP is Poisson.
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III. BI-QUASI-HAMILTONIAN SYSTEMS

We now set up a general framework for the study of systems with a dual quasi-Hamilt
representation, within which a notion of complete integrability occurs naturally, and which co
as a special case the class of cofactor pair systems studied in Lundmark~2001a, b! and Crampin
and Sarlet~2001!.

Definition: A vector fieldZ on M is said to be bi-quasi- Hamiltonian if

~i! M is equipped with two compatible Poisson structuresPa , a51,2;
~ii ! Z is quasi-Hamiltonian with respect to both Poisson structures, i.e.,FaZ5Pa(dHa) for

some functionsHa and ~nowhere vanishing! Fa ;
~iii ! LV1

P21LV2
P150, whereVa5(Fa)21Pa(dFa).

Condition ~iii !, which is a form of compatibility condition~and will be referred to as such in th
following!, can be motivated as follows.

Suppose thatZ is quasi-Hamiltonian with respect to two Poisson structuresP1 andP2, with
FaZ5Pa(dHa), a51,2. Then we can form the two extended Poisson structures

P̂a5Pa1~Z1zVa!`
]

]z
.

We now ask for the conditions for these Poisson structures to be compatible, that i

@P̂1 ,P̂2#50. Now

FP11~Z1zV1!`
]

]z
,P21~Z1zV2!`

]

]zG
5@P1 ,P2#1~LZP11zLV2

P1!`
]

]z
1~LZP21zLV1

P2!`
]

]z
1~V11V2!`Z`

]

]z

5@P1 ,P2#1z~LV1
P21LV2

P1!`
]

]z

since LZPa5Z`Va by assumption. ThusLV1
P21LV2

P150 is the necessary and sufficie

condition for the Poisson structuresP̂1 and P̂2 to be compatible, assuming thatP1 andP2 are
compatible.

We now establish the existence of involutive first integrals of a bi-quasi-Hamiltonian sys
It follows from the compatibility conditionLV1

P21LV2
P150, together with the conditions

LVa
Pa50, that LV12tV2

(P12tP2)50 for all t. Now if P1 is nonsingular so isP12tP2

for t sufficiently close to zero. Thus there is some functionF(t) such that V12tV2

5(P12tP2)(dF(t)). Since furtherLZ(P12tP2)5Z`(V12tV2), there is some functionH(t)
such thatF(t)Z5(P12tP2)(dH(t)), whereF(t)5eF(t); moreoverH(t) is a first integral ofZ for
all t. On settingt50 we see thatF(0)Z5P1(dH(0)).

Now for k50,1,2, . . . set

H (k)5
1

k!

]kH

]tk
u t50 ,

and defineF (k) similarly. Then eachH (k) is a first integral ofZ, and

F (k11)Z5P1~dH(k11)!2P2~dH(k)!.

It follows that for everyj 50,1,2, . . . ,
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$H ( j ) ,H (k11)%15$H ( j ) ,H (k)%2 ,

where$•,•%a is the Poisson bracket of functions defined byPa . Thus

$H ( j ) ,H (k11)%15$H ( j 11) ,H (k)%1 .

It follows that if l andm differ by an even integer then$H ( l ) ,H (m)%150, since

$H ( l ) ,H ( l 12n)%15$H ( l 1n) ,H ( l 1n)%1 .

If l andm differ by an odd integer, on the other hand,

$H ( l ) ,H (m)%15$H ( l ) ,H (m21)%2 ;

since l and m21 differ by an even integer,$H ( l ) ,H (m21)%250 by the same argument. Thu
$H ( l ) ,H (m)%150 for all l, m, and $H ( l ) ,H (m)%250 likewise. We summarize the results in th
following statement.

Theorem: Let Z be bi-quasi-Hamiltonian. Then there exist functionsH (k) (k50,1,2, . . . ),
such that

F (0)Z5P1~dH(0)!,

F (k11)Z5P1~dH(k11)!2P2~dH(k)!, k50,1,2, . . .

for some functionsF (k) . The H (k) are in involution with respect to both Poisson brackets.
particular, if the manifoldM is 2n-dimensional and the functionsH (k) , k50,1, . . . ,n21, are
functionally independent thenZ is completely integrable in the sense of Liouville.

IV. POISSON-NIJENHUIS PENCILS

We now specialize the results of Sec. III to the case where each of the two Poisson stru
giving rise to a bi-quasi-Hamiltonian system actually comes from a Poisson–Nijenhuis stru

A Poisson–Nijenhuis structure (P,J) on a manifoldM consists of a Poisson structureP and
a type (1,1) tensor fieldJ such thatPJ* 5JP, the Magri–Morosi concomitantmP,J of P andJ is
zero, and the torsion, or Nijenhuis tensor,NJ of J is zero.~HereJ* denotes the adjoint ofJ.!

The Magri–Morosi concomitant is defined as follows@Magri and Movosi~1984!; Nunes da
Costa and Marle~1996!#: for any one-forma and vector fieldX on M,

mP,J~a,X!5~LP(a)J!~X!2P~LX~J* a!!1P~LJ(X)a!.

WhenPJ* 5JP, mJ,P is a type (1,2) tensor field onM.
These conditions are sufficient forJP to define a second Poisson structure onM @Magri and

co-workers~1984, 1985!; Kosmann–Schwarzbach and Magri~1990!#. We denote the Poisso
bivector byPJ and the associated Poisson map byPJ5JP5PJ* .

Note that whenNJ50 we have available the differentialdJ of Frölicher–Nijenhuis theory
@Frölicher and Nijenhuis~1956!#, which satisfiesddJ1dJd50, dJ

250; it is determined essen
tially by these properties and by its action on functions, which is given bydJf 5J* (d f).

We shall be interested in vector fieldsZ that are quasi-Hamiltonian with respect toPJ , with
FZ5PJ(dH). Of particular interest are those for whichdJdF50, whereF5eF. Alternatively,
we then haveddJF50, so dJF5df for some functionf ~at least locally!, whencedJF
5Fdf. One important case covered by this occurs whenF5 log detJ, so thatF5detJ ~assum-
ing, without essential loss of generality, that detJ.0).

Proposition:For anyJ such thatNJ50, we havedJ(detJ)5(detJ)d(tr J).
Proof: This follows from the formula

d~detJ!5Jj uk
i Ci

jdxk,
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where C is the cofactor tensor ofJ, and the calculation is carried out using any symme
connection~or indeed partial differentiation!. Thus

dJ~detJ!5Jj uk
i Jl

kCi
jdxl

5~Jl uk
i Jj

k1Jj u l
k Jk

i 2Jl u j
k Jk

i !Ci
jdxl

5~Jl uk
i d i

k1Jj u l
k dk

j 2Jl u j
k dk

j !~det J!dxl

5Jku l
k ~det J!dxl

as asserted. h

It follows that dJF5d(tr J), and sodJdF50. Slightly more generally, ifF5(detJ) r for
some powerr thendJF5d(r tr J) anddJdF50 also.

Definition: A quasi-Hamiltonian vector fieldZ such that (detJ) rZ5PJ(dH) will be called a
Pfaffian quasi-Hamiltonian vector field.

This is a slight extension of the terminology used in Morosi and Tondo~1997!. All of our
examples of bi-quasi-Hamiltonian systems, later in the paper, will actually be of the Pfaffian

Now suppose that we have two Poisson–Nijenhuis structures with the same initial Po
bivectorP, and type (1,1) tensorsJ andK, which both commute withP, have zero Magri–Morosi
concomitants with respect toP, and satisfyNJ5NK50. Let the corresponding bivectors bePJ ,
PK .

Definition: The Poisson–Nijenhuis structures (P,J) and (P,K) are said to be compatible i
the Poisson bivectorsPJ andPK are compatible with each other~each is compatible withP by
construction!.

Proposition: For PJ and PK to be compatible, it is sufficient that the Nijenhuis brack
@J,K#50. If P, J, andK are invertible, the condition is also necessary.

Proof: When @J,K#50, we haveN(J1K)50. Obviously, J1K commutes withP and
mP,J1K5mP,J1mP,K50. Hence,

@P (J1K) ,P (J1K)#5@PJ1PK ,PJ1PK#52@PJ ,PK#50.

Conversely, ifP, J, andK are invertible, the compatibility ofPJ andPK implies that@J,K#50.
Indeed, the condition for the compatibility of two Poisson structures, expressed in terms o
Poisson mapsQ, R, say, is

@Q~a!,R~b!#1@R~a!,Q~b!#5Q~$a,b%R!1R~$a,b%Q!.

If we takeQ5PJ , R5PK , and seta5P21(X), b5P21(Y) for vector fieldsX, Y, we obtain

@J~X!,K~Y!#1@K~X!,J~Y!#5JK21~@K~X!,K~Y!# !1KJ21~@J~X!,J~Y!# !.

When the facts thatNJ5NK50 are used to substitute for the terms on the right-hand side,
becomes@J,K#(X,Y)50. h

We consider, therefore, two Poisson–Nijenhuis structures (P,J), (P,K) such that@J,K#
50. Then (P,J2tK) is a Poisson–Nijenhuis structure for every constantt. We then have a penci
of Poisson bivectorsPJ2tK5PJ2tPK , so we call (P,J2tK) a Poisson–Nijenhuis pencil. W
shall be mostly interested in the case in whichP, J, andK are all invertible.

We next discuss the compatibility condition for a system to be bi-quasi-Hamiltonian
respect to a Poisson–Nijenhuis pencil.

Suppose given a Poisson–Nijenhuis pencil, and a vector fieldZ such that

LZPJ5Z`V, LVPJ50,

LZPK5Z`W, LWPK50;
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thus~still assuming thatPJ andPK are nonsingular! Z is quasi-Hamiltonian with respect to bot
PJ and PK and we can putV5PJ(dF)5P(dJF), W5PK(dC)5P(dKC) for someF,C. In
order forZ to be bi-quasi-Hamiltonian the compatibility condition

LWPJ1LVPK50,

or equivalently

LWPJ1LVPK50,

must hold. When we expressPJ andPK in terms ofP we find that

LWPJ1LVPK5~LWJ1LVK !P1JLWP1KLVP.

So a particular case of interest occurs whenLWP5LVP50, that is, whenV and W are Hamil-
tonian with respect to the standard Poisson structureP as well as the derived onesPJ , PK . In such
a case there will be functionsf, c such that

V5P~df! ⇒ df5dJF ⇒ ddJf52dJdf50;

W5P~dc! ⇒ dc5dKC ⇒ ddKc52dKdc50.

Note that these conditions hold in the Pfaffian case, withf5r tr J, F5r log detJ, etc.
Under these assumptions, the compatibility condition reduces to

LWJ1LVK50.

Now from the vanishing of the Magri–Morosi concomitant,

~LWJ!~X!5~LP(dc)J!~X!5P~LX~dJc!2LJXdc!

for all X, whence the compatibility condition becomes

LX~dJc1dKf!2LJXdc2LKXdf50.

When the homotopy formula is used to express the Lie derivatives, this reduces simply to

Xc~ddJc1ddKf!50.

Thus the compatibility condition can be written

dJb1dKa50, a5df, b5dc,

wheredJa5dJdf50, dKb5dKdc50.
In particular, it follows easily from the coordinate representation of the Nijenhuis bracke

if @J,K#50 then dJ(tr K)1dK(tr J)5d(tr JK); so the requisite conditions are satisfied in t
Pfaffian case, and we have the following result.

Proposition:Suppose thatZ is Pfaffian quasi-Hamiltonian with respect to bothPJ andPK , so
that (detJ) rZ5PJ(dG) and (detK) rZ5PK(dH) ~same power!: then the necessary and sufficie
condition forZ to be bi-quasi-Hamiltonian is that@J,K#50.

When this condition holds, or more generally for any system that is bi-quasi-Hamiltonian
respect to a Poisson–Nijenhuis pencil, the results of Sec. III concerning the existence o
integrals in involution apply.
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V. BI-DIFFERENTIAL CALCULI

We now investigate the conditions for a bi-quasi-Hamiltonian system whose Poisson
tures form a Poisson–Nijenhuis pencil, to give rise to a scalar gauged bi-differential cal
according to the definition given by Dimakis and Mu¨ller-Hoissen~2000a!, and discussed further in
Crampinet al. ~2000!.

We consider two Poisson–Nijenhuis structures (P,J), (P,K) such that@J,K#50. Then the
operatorsdJ , dK satisfy

dJ
25dK

25dJdK1dKdJ50,

and therefore form a simple bi-differential calculus@Dimakis and Mu¨ller-Hoissen~2000a!# or
bicomplex@Dimakis and Mu¨ller-Hoissen~2000b!#.

Let a be a one-form, and denote byDJ the operator on forms given by

DJu5dJu1a`u,

or DJ5dJ1a for short. Two such operatorsDJ5dJ1a, DK5dK1b form a scalar gauged
bi-differential calculus if

DJ
25DK

25DJDK1DKDJ50;

these conditions hold if and only if

dJa5dKb5dJb1dKa50.

But as we showed in Sec. IV, the compatibility condition for a system which is quasi-Hamilto
with respect to a Poisson–Nijenhuis pencil and is such thatLVP5LWP50 is thatdJb1dKa
50, where the one-formsa andb satisfydJa5dKb50. Thus any bi-quasi-Hamiltonian syste
of this type, and in particular any Pfaffian bi-quasi-Hamiltonian system, has associated wi
scalar gauged bi-differential calculus.

Furthermore, there are functionsf and F such thata5df5dJF, and functionsc and C
such thatb5dc5dKC. We can expressDJ in the form

DJu5dJu1df`u5e2FdJ~eFu!,

and similarly forDK .
Now consider the dynamicsZ. We can write

Z5e2FPJ~dG!5P~e2FdJG!5P~DJ~e2FG!!

5e2CPK~dH!5P~e2CdKH !5P~DK~e2CH !!

for Hamiltonian functionsG, H. These Hamiltonians are related byDJ(e
2FG)5DK(e2CH); thus

the functionsU5e2FG andU5e2CH both satisfy the equationDJDKU50, a generalization of
what was called the fundamental equation in Rauch-Wojciechowskiet al. ~1999! and Lundmark
~2001b!. If we take the view that the vector fieldsV and W, or the functionsF and C, are the
givens, then this equation provides a way of generating dynamical vector fieldsZ which fit the
corresponding bi-quasi-Hamiltonian structure; in particular, we can take the Pfaffian set-up
F5r log detJ, C5r log detK.

In the Poisson–Nijenhuis case the recurrence relation

PJ~dH(k11)!2PK~dH(k)!5F (k11)Z5
F (k11)

F (0)
PJ~dH(0)!

can be expressed in terms of differential operators as follows:
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dJH (k11)5dKH (k)1
F (k11)

F (0)
dJH (0) .

Furthermore, the general formulaV12tV25(P12tP2)(dF(t)) from Sec. III here becomes
V2tW5PJ2tK(dF(t)), from which it follows thatdJF2tdKC5dJ2tKF(t). For F(t)5eF(t),
there results:dJ2tKF(t)5F(t)(dJF2tdKC)5F(t)(df2tdc). Hence, theF (k) satisfy the recur-
rence relation

dJF (k11)2dKF (k)5F (k11)df2F (k)dc.

That is to say, we have

dJF (k11)2~df!F (k11)5dKF (k)2~dc!F (k) ,

dJH (k11)2qF (k11)5dKH (k) ,

where

q5
1

F (0)
dJH (0) .

Note thatP(q)5Z, whenceq5e2FdJG5e2CdKH; it follows that dJq5q`df and dKq5
q`dc.

Define the 232 matrix differential operators

DJ5dJ1F2df 0

2q 0G , DK5dK1F2dc 0

0 0G .
It follows from the formulas for dJq and dKq just obtained thatDJ

25DK
250 and

DJDK1DKDJ50. ThusDJ andDK are the differential operators of a gauged bi-differential c
culus operating on two-component column vectors, and

DJF F (k11)

H (k11)
G5DKF F (k)

H (k)
G .

A special case of this construction was discussed in Crampinet al. ~2000!.

VI. COFACTOR AND COFACTOR PAIR SYSTEMS

In Secs. IV and V, the discussion centered on a general Poisson manifold (M ,P), with
additional structure coming from some type (1,1) tensor fields onM. An interesting particular case
occurs whenM is a cotangent bundleT* Q say, equipped with its standard Poisson structureP,
and the type (1,1) tensors onM are complete lifts of torsionless tensorsL on the base manifoldQ.
For the complete liftL̃ of L, we have detL̃5(detL)2. Moreover, for any two such tensorsL1 , L2,

@ L̃1 ,L̃2#5@L1 ,L2
˜ #;

so a vector fieldZ on T* Q which is Pfaffian quasi-Hamiltonian with respect toL̃1 andL̃2 will be
bi-quasi-Hamiltonian if and only if@L1 ,L2#50. This result, which we have deduced from t
more general analysis of Sec. IV, can also be proved easily by an explicit computation.

The following class of quasi-Hamiltonian systems has been studied in Marciniak and R
Wojciechowski~1998!, Rauch-Wojciechowskiet al. ~1999!, Lundmark~2001a, b!, and Crampin
and Sarlet~2001!. Let g be a ~pseudo! Riemannian metric onQ and L a symmetric type (0,2)
tensor field such that
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~¹XL !~Y,Z!5 1
2 ~g~X,Y!^Z,a&1g~X,Z!^Y,a&!.

Such a tensor is a conformal Killing tensor ofg, and the type (1,1) tensor obtained by raising
index onL with g automatically has vanishing torsion. The one-forma is given byd(tr L). Such
a tensorL is called a special conformal Killing tensor. We shall generally be concerned
special conformal Killing tensors which are nonsingular. We shall denote such a tensor b
same letter whatever the position of its indices. LetA be the cofactor tensor of a special conform
Killing tensor, so thatAL5(detL)I , and letm be a one-form onQ which satisfiesDLm5dLm
1d(tr L)`m50. Let H be the function onT* Q given by

H~qi ,pi !5 1
2 Ai j pipj1V~q!,

whereV is a function such thatDL((detL)21V)5m. Then the quasi-Hamiltonian vector fieldZ
where (detL)Z5PL̃(dH) is called a cofactor system. Since detL̃5(detL)2 it is Pfaffian, with
r 5 1

2. The vector fieldG on TQ obtained via the diffeomorphism (qi ,pi)°(qi ,gi j pj ) takes the
form

G5G02MV,

whereG0 is the geodesic field of the metric andM is the vector field obtained by raising the inde
on m. It is an example of a nonconservative Lagrangian system, andm represents a generalize
force.

If L1 andL2 are two special conformal Killing tensors then clearlyL11L2 is also a special
conformal Killing tensor. The torsion ofL11L2 therefore vanishes; it follows that@L1 ,L2#50,
and so the corresponding Poisson–Nijenhuis structures are compatible. IfZ is a cofactor system
with respect to both special conformal Killing tensors then it is Pfaffian quasi-Hamiltonian
respect to each Poisson–Nijenhuis structure and is therefore bi-quasi-Hamiltonian. The forc
m must satisfyDL1

m5DL2
m50.

The functionsH(t) andF(t) in this case are polynomials int, and the system is completel
integrable;H(t) takes the form

H~ t !5 1
2 A~ t ! i j pipj1V~ t !,

whereA(t) is the cofactor tensor ofL12tL2, andV(t) is a polynomial of degreen21 such that

D (L12tL2)~det~L12tL2!21V~ t !!5m.

For giveng, m there are functionsV1 , V2 such that

DL1
~~detL1!21V1!5DL2

~~detL2!21V2!5m;

these are the ‘‘generalized potentials’’ ofm with respect toL1 andL2 referred to in Sec. I.
Now considern5DL2

((detL1)21V1). We have

DL1
n52DL2

DL1
~~detL1!21V1!52DL2

m50,

and of courseDL2
n50: so n defines a new bi-cofactor system, with the same metric bu

different force form. The quadratic part of the new first integral function is unchanged
‘‘potential’’ part W(t) satisfies

D (L12tL2)~det~L12tL2!21W~ t !!5n.

In fact W(t) is given in terms ofV(t) by
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tW~ t !5V~ t !2
det~L12tL2!

detL1
V~0!.

Note thatV(0)5V1. The right-hand side is a polynomial of degreen in t, which takes the value
0 whent50; soW(t) is a polynomial of degreen21. Moreover

D (L12tL2)S det~L12tL2!21S V~ t !2
det~L12tL2!

detL1
V~0! D D

5m2DL1
~det~L1!21V1!1tDL2

~~detL1!21V1!5tn

as required. With these considerations, we have supplemented the analysis in Crampin an
~2001! with the appropriate generalization of Lundmark’s construction~Lundmark, 2001b! of a
hierarchy of cofactor pair systems.

VII. QUASI-BI-HAMILTONIAN SYSTEMS

The theory we have described previously covers, of course, the special case in whi
vector fieldZ is Hamiltonian, not just quasi-Hamiltonian, with respect to one of the two Pois
structures, so that~say! F151 in the notation of Sec. III. This case corresponds roughly to tha
a quasi-bi-Hamiltonian system as defined and discussed in Brouzetet al. ~1996!, Morosi and
Tondo ~1997, 1998!; however, the compatibility condition for a bi-quasi-Hamiltonian syste
which reduces toLV2

P150, is not required to hold in the definition of a quasi-bi-Hamiltoni
system given in those papers. But to the best of our knowledge, all of the examples of qu
Hamiltonian systems in the literature do fall within our framework: in fact they all appear t
cases of cofactor systems, for which the compatibility condition holds automatically anywa
therefore feel justified in discussing briefly some of the results in the literature on qua
Hamiltonian systems in the light of our approach.

We wish first to compare our main integrability result with the following proposition, du
Tondo @Tondo ~1995!; Morosi and Tondo~1997!#. ~The statement of the proposition has be
edited to fit in with the notation and terminology of the present paper.!

Proposition:Let M be a 2n-dimensional manifold equipped with an invertible Poisson ten
P1, and let Z be a Hamiltonian vector field with HamiltonianH: Z5P1(dH). Let a tensor
J:TM→TM exist such that the tensorP2 :T* M→TM defined byP25JP1 is skew-symmetric.
Denote bya (k)5(J* )kdH (k50,1,2, . . . ) theone-forms obtained by the iterated action ofJ* . If
there existn21 independent functionsH ( l ) ( l 51,2, . . . ,n) and 1

2n(n11) functions r (kl) (k
50,1, . . . ,n21; 0< l<k) with r (00)51 andr (kk)Þ0 (kÞ0), such that the one-formsa (k) can be
written asa (k)5( l 50

k r (kl)dH( l ) (k50,1, . . . ,n21), then the functionsH (k) are in involution with
respect to the Poisson bracket defined byP1 and are first integrals ofZ. The Hamiltonian system
is Liouville integrable. Moreover, ifP2 is a Poisson tensor then the functionsH (k) are in involu-
tion also with respect to the Poisson bracket defined byP2.

In our analysis, we have assumed the existence of two nonsingular Poisson tensors fr
first; we may defineJ asP2P1

21. On the other hand, we assume only thatZ is quasi-Hamiltonian.
To relate our results to Tondo’s proposition we must show that the functionsH (k) defined in Sec.
III are related to the one-formsa (k)5(J* )kdH(0) in the manner specified in the proposition. No
we can write

F (k11)Z5P1~dH(k11)!2P1~J* dH(k)!,

andF (0)Z5P1(dH(0)). Thus

dH(k11)5J* dH(k)1F̂ (k11)dH(0) ,

whereF̂ (k)5F (k) /F (0) , from which it follows that
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dH(k)5(
l 50

k

F̂ (k2 l )a ( l ) .

Note that the matrix of coefficients on the right-hand side is lower triangular with 1s on the
diagonal. When this system of equations is solved for thea (k) we obtain a relation of the require
form. In fact we haver (kk)51 for all k, not just fork50; and moreoverr (kl)5r ( i j ) whenk2 l
5 i 2 j . In Morosi and Tondo~1997!, Tondo’s proposition is applied to a couple of examples
quasi-bi-Hamiltonian systems. It is a feature of these examples, not remarked on let alo
plained in this paper, that ther ( i j ) follow the pattern identified previously. While Tondo’s prop
sition is rather more general than our result, so far as we know it has been applied o
quasi-bi-Hamiltonian systems, and indeed only to systems of cofactor type~as we have already
remarked!; so this greater generality is in practice somewhat illusory.

When one considers the examples in Morosi and Tondo~1997! more carefully, one realizes
that it is not at all clear what role the fact that the systems in question are quasi-bi-Hamilt
plays, since the expressions for theH (k) andr (kl) are merely quoted and no indication is given
to how they were derived. To clarify what is going on, we shall consider one of these exam
and analyze it using our techniques. We have chosen the first example from the paper f
purpose. It is the Hamiltonian systemZ5P0(dH) whereP0 is the standard Poisson structure
T* R3 and

H5 1
2 ~2p1p21p3

2!2 5
8 q1

41 5
2 q1

2q21 1
2 q1q3

22 1
2 q2

2 .

It is stated thatZ is also quasi-Hamiltonian with respect to the Poisson tensorP1 given by

P15F 0 A

2AT BG , whereA52F q1 21 0

2q2 q1 q3

q3 0 0
G , B52F 0 2p2 2p3

p2 p3 0

0 0 0
G ;

in fact q3
2Z5P1(dH(2)) where

H (2)5
1
2 q3

2p2
21~ 1

2 q1
21q2!p3

22q3p1p32q1q3p2p31 1
2 q1

3q3
22q1q2q3

22 1
8 q3

4 .

Note first that the terms quadratic in momenta inH are derived from the flat metric whose matr
representation is

F 0 1 0

1 0 0

0 0 1
G ,

which is of normal hyperbolic type. When this metric is used to lower an index onA we obtain the
symmetric matrix

2F 21 q1 0

q1 2q2 q3

0 q3 0
G ,

which is easily seen to be a special conformal Killing tensor. The tensorP1 is, apart from sign, the
Poisson–Nijenhuis tensor associated with the complete lift of the type (1,1) tensorA. The deter-
minant ofA is 2q3

2, and its cofactor tensor, in type (2,0) form, is
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2F 0 0 2q3

0 q3
2 2q1q3

2q3 2q1q3 q1
212q2

G ;

it is clear that this determines the terms inH (2) quadratic in momenta. Moreover, it is easy
check that if V represents the potential ofH5H (0) and W the potential ofH (2) then dAW
5(det A)dV. This is therefore an example of a cofactor system, and the preceding theory ap
explaining for example why the relevant functionsr ( i j ) satisfyr (11)5r (22)51, r (21)5r (32) .

VIII. AN EXAMPLE

We finish with an example of a true bi-quasi-Hamiltonian system. It is a cofactor pair sy
on the sphere and as such illustrates our generalization@Crampin and Sarlet~2001!# of the work on
Euclidean spaces of Lundmark@Lundmark ~2001a, b!#. Starting from a known example of
kinetic energy Lagrangian with two further quadratic integrals, we will use a constructive
proach to find all force forms which determine a nonconservative system of cofactor pair t

Take the kinetic energy to be

T5 1
2 gi j ~q!q̇i q̇ j5

1
2 ~ q̇1

21sin2 q1q̇2
2!.

It is straightforward to verify that the symmetric type~0,2! tensors with matrix representation

L15F sin 2q1 cosq2 2sin2 q1 sinq2

2sin2 q1sinq2 0 G , L25Fsin 2q1 sinq2 sin2 q1 cosq2

sin2 q1 cosq2 0 G ,
are special conformal Killing tensors with respect to the given metric. The corresponding
~1,1! tensors which one needs to set up the differential operatorsDLa

5dLa
1aa read

L15sin 2q1 cosq2

]

]q1
^ dq12sinq2S ]

]q1
^ dq21sin2 q1

]

]q2
^ dq1D ,

L25sin 2q1 sinq2

]

]q1
^ dq11cosq2S ]

]q1
^ dq21sin2 q1

]

]q2
^ dq1D .

We further haveaa5d(tr La), where trL15sin 2q1 cosq2, tr L25sin 2q1 sinq2. All we need now
to identify a dynamical system which has a bi-quasi-Hamiltonian representation with respect
two compatible Poisson–Nijenhuis structuresPL̃a

, obtained from the standard Poisson structureP

on the cotangent bundle of the sphere, is an admissible force formm5M1dq11M2dq2, that is to
say, a solution of the simultaneous equationsDLa

m50. In coordinates, each of these conditio
gives rise to a single, linear first-order partial differential equation for theMa . Taking suitable
linear combinations with sinq2 and cosq2, the set of conditions is equivalent to

]M1

]q1
5sin2 q1

]M2

]q2
,

]M2

]q1
5S 3

2
tan q12cotq1D M2 .

These equations are readily solved and give

m5
2r8~q2!

cos1/2q1

dq11
r~q2!

cos3/2q1sinq1

dq2 ,
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wherer is an arbitrary function ofq2. The ‘‘potentials’’Va for which m5DLa
((detLa)21Va) are

most easily obtained by computingdVa5Aam, whereAa is the cofactor matrix ofLa . We find

V15
2r~q2!sinq2

cos1/2q1

,V252
2r~q2!cosq2

cos1/2q1

.

Since we have actually obtained the most general form ofm, we should not expect here to fin
new cofactor pair systems by applying the procedure explained in Sec. VI. In fact, we hav

n5DL2
~~detL1!21V1!5~detL2!21dL2S detL2

detL1
V1D ,

and since the ratio of the two determinants depends onq2 only, it can be absorbed into th
arbitrary functionr; thusn is indistinguishable fromm.
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Let S:@0,1#→@0,1# be a nonsingular chaotic map that preserves an integrable den-
sity f * that describes the statistics of the orbits. In this article we use the maximum
entropy approach to approximate the densityf * and the corresponding Lyapunov
exponent. ©2002 American Institute of Physics.@DOI: 10.1063/1.1465100#

I. INTRODUCTION

In physical sciences, such as statistical physics, mathematical biology, and fluid dyna
exploration of statistical properties of an underlying dynamical systemS defined on@0,1# is the
only effective and practical means for understanding the asymptotic behavior of the orbits in
space.1 Such an investigation often leads to a study of the existence and computation
integrable fixed density of the dynamics.2 Since such fixed densities describe the chaotic dynam
for almost all initial points, they are usually referred to as physical measures. For the dete
tion of these physical measures, one must calculate a fixed density,f * , of the so-called
Frobenius–Perron operator associated withS. In addition, the Lyapunov exponentl, closely
related to the sensitivity of the orbits on the initial conditions, can also be determined in ter
the fixed density as1

l5E
0

1

f * ~x!lnuS8~x!udx. ~1!

The exponent describes the average expansion rate: a positive Lyapunov exponent me
small uncertainties in the initial conditions expand on average, while a negative Lyapunov
nent means that the interval of uncertainty shrinks on average. The important issues, there
physical applications of chaotic dynamics are how to numerically determine the density
physical measure and the associated Lyapunov exponent.

To numerically predict the densities and the associated exponents, we will use the ma
entropy method~maxent!. Maxent is widely used in the context of the moment problem wh
appears naturally in many branches of physics and engineering; it is used to numerically r
the density with ‘‘least bias’’ from finitely many known moments.3 High precision numerical
integration techniques permit the sought after density to be determined with up to 20 mome
input. Averages over the approximate distribution are known to be rapidly convergent in
cases of interest.4,5 The idea of solving operator equations using maxent was first propose
Mead6 and has been used by Ding in forming a new numerical method for solving the
density problem for the Frobenius–Perron operator.7 Even with onlyN54 moments the maxen
algorithm performs better than the usual Ulam method.8,9 In this article, we will sufficiently extend

a!Author to whom correspondence should be addressed. Electronic mail: lawrence.mead@usm.edu
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the numerical accuracy of the algorithm used by Ding to allow the numerical maxent predict
the Lyapunov exponent associated with the distribution~physical measure!.

The article continues as follows. In the next section, we present some background math
cal preliminaries on which the work is based. In Sec. III, we present the results of num
calculations for the fixed densities and the exponents. We conclude briefly in Sec. IV.

II. PRELIMINARIES

Let S:@0,1#→@0,1# be a nonlinear map such that the Lebesgue measurem(A)50 implies
m(S21(A))50 for every measurable setA,@0,1#. The operatorP:L1(0,1)→L1(0,1) defined by

P f~x!5
d

dx ES21([0,x])
f ~ t !dt ~2!

is called theFrobenius–Perron operatorassociated withS.
A density f is any functionf >0 such that itsL1-norm *0

1f (t) dt51. It is obvious that the
Frobenius–Perron operatorP is a Markov operator which by definition is any linear operator t
maps densities to densities. For any densityf , the absolutely continuous probability measure

m~A!5E
A

f dm ; measurable setsA,@0,1#

is invariant underS: that is,m(S21(A))5m(A) for all measurable setsA,@0,1#, if and only if f
is a fixed point ofP.

A basis of the maximum entropy method for computing a fixed density of the Froben
Perron operatorP:L1(0,1)→L1(0,1) associated withS:@0,1#→@0,1# is the following result which
has been proved in Ref. 7. LetD be the set of all densities.

Proposition 2.1: f* PD is a fixed point of P if and only if

E
0

1

@xn2S~x!n# f * ~x! dx50, 51,2,.... ~3!

The Boltzmann~information! entropy of f PL1(0,1) is defined as

H~ f !52E
0

1

f ~x!log f ~x!dx. ~4!

Then the maximum entropy method for solving the homogeneous system~3! with infinitely many
equations is the following:

Algorithm: ChooseN and solve the maximum entropy problem

maxH H~ f !: f PD, E
0

1

@xn2S~x!n# f ~x! dx50, i 51,...,NJ ~5!

to obtain an approximate solutionf N of the operator equationP f5 f .
It was shown in Ref. 7 that the above algorithm is well-posed under the mild assumptio

the set ofN functions

x2S~x!, x22S~x!2,...,xN2S~x!N

are linearly independent. The optimization problem~5! will then have a unique solutionf N given
by
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f N~x!5
exp(n51

N an@xn2S~x!n#

*0
1 exp(n51

N an@xn2S~x!n#dx
, ~6!

wherea1 ,...,aN satisfy theN constraints

E
0

1

@xi2S~x! i #exp(
n51

N

an@xn2S~x!n# dx50, i 51,...,N. ~7!

Lastly, the Lyapunov exponent associated with the map can be calculated approximately fro
~1! where f * is replaced by the maxent approximationf N .

III. NUMERICAL EXPERIMENTS

In this section we present some numerical results from our maximum entropy algorithm
a high precision Gaussian quadrature. The test maps are

S1~x!5H 2x

12x2 , 0<x<&21

12x2

2x
, &21<x<1

,

S2~x!5H 2x

12x
, 0<x<

1

3
,

12x

2x
,

1

3
<x<1

,

S3~x!54x~12x! ~ logistic map!,

S4~x!5&x2sgn~x! ~sigma-delta modulator!.

In the last entry, sgn(x) denotes the sign ofx. The third of these maps,S3(x), is the well-known
logistic map. This map played a historical role in the development of the theory of chaos,1 and
appears in ecological population dynamics. The last example,S4(x), describes chaos in variou
electronic signal analyzers,10 and is a direct example taken from practical physics.

The unique fixed densities ofSi are known exactly:

f 1* ~x!5
4

p~11x2!
,

f 2* ~x!5
2

~11x!2 ,

f 3* ~x!5
1

pAx~12x!
,

f 4* ~x!55
11&

2&
, &21,u2x21u,1,

0, u2x21u5&21,

11&

2
, u2x21u,&21.
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The numerical computations were performed on the Cray C90 supercomputer at the Miss
Center for Super-computing Research. Double precision was used throughout all calculati
the maxent algorithm, Newton’s method is used to solve the nonlinear system of equations~7! to
a high precision~up to 15 significant digits!. To evaluate the derivative matrix required in th
algorithm, we used the 50-node Gaussian quadrature for the numerical integrations. For t
three of these, we compared the quantity

aN[E
0

1

f N~x!
Ax

2
dx

with the exact average

a* [E
0

1

f * ~x!
Ax

2
dx

to estimate the error. In problems not involving chaos, averages such asaN are known to be
rapidly convergent as the number of input moments increases.3

In Table I, we list the quantitiesaN versusN for the first three examples with the exa
averagesa* for f 1* , f 2* , f 3* listed in the last row. For each of these maps, we have computed
Lyapunov exponent according to Eq.~1!. The results are shown in Table II.

IV. CONCLUSIONS

In this article, we are able to compute fixed densities of the Frobenius–Perron op
equation for various chaotic maps with the help of the maximum entropy approach. In add
we calculated the associated Lyapunov exponents. The exponent was calculated from~1!
which is an average over the fixed density. Normally, one expects such averages to co
rapidly with increasing numbers of input moments; for example, achieving several decimal p
of accuracy with from 5 to 10 moments, even if the point-wise convergence of the distribut
poor. Looking at Table I for the three test averages,a, we see that for even as many as t

TABLE I. Averages of the computed fixed densities.

N S1 S2 S3

2 0.314 926 0.298 290 0.358 972
3 0.314 709 0.296 827 0.358 821
4 0.314 178 0.295 487 0.353 476
5 0.314 022 0.294 904 0.353 752
6 0.314 016 0.293 889 0.353 705
7 0.314 018 0.293 881 0.353 391
8 0.314 018 0.293 999 0.348 839
9 0.313 765 0.348 915
10 0.311 964 0.348 916

a* 0.310 349 0.285 398 0.318 310

TABLE II. Computed Lyapunov exponents and exact values.

Map N lexact lmaxent

S1 10 0.664 24 0.692 90
S2 8 ln 250.693 147 0 0.689 70
S3 10 ln 250.693 147 0 0.684 25
S4 12 1

2 ln 250.346 573 0.346 573
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moments of input we obtain averages only at the few percent level, that forS1 being the most
accurate at only about 0.3%. This level of accuracy is also reflected in Table II for the corres
ing exponents where the level of accuracy is likewise just a few percent. However, fo
modulator map,S4 , the exponent turned out to be accurate to a remarkable nine digits of acc
~only six are given in the table! with 12 moments of input.

In some cases, therefore, our method may be able to generate Lyapunov exponents of
maps to good accuracy. In others, accuracy may be achieved only at the 1% level with the
number of input moments. Clearly, the moment problem Eqs.~3!–~5! for chaotic maps is an
especially challenging numerical problem.11 In general, it is unclear how much the accuracy ol
may be improved with higher numbers of input moments.

1C. Beck and F. Schlo¨gl, Thermodynamics of Chaotic Systems~Cambridge University Press, Cambridge, MA, 1993!.
2A. Lasota and M. Mackey,Chaos, Fractals, and Noises, 2nd ed.~Springer-Verlag, New York, 1994!.
3L. R. Mead and N. Papanicolaou, J. Math. Phys.25, 2404~1984!.
4M. Leaseburg and L. R. Mead, J. Math. Phys.34, 6009~1993!.
5N. Wu, The Maximum Entropy Method~Springer, New York, 1997!, Chap. 5.
6L. R. Mead, J. Math. Phys.27, 2903~1986!.
7J. Ding, Appl. Math. Comput.93, 155 ~1998!.
8S. Ulam,A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Math., Vol. 8~Interscience,
New York, 1960!.

9T. Y. Li, J. Approx. Theory17, 177 ~1976!.
10M. A. van Wyk and W.-H. Steeb,Chaos in Electronics–Mathematical Modeling~Kluwer, Dordrecht, 1997!, Vol. 2,

Chap. 3.
11In some cases, even the extended arithmetic capability of symbolic programs such as MapleV is insufficient to g

higher moment solutions. For an example of the difficulties which can arise~truly enormous numbers must be dea
with!, see C. M. Bender, L. R. Mead, and N. Papanicolaou, J. Math. Phys.28, 1016~1987!.
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Solitons in parametrically driven discrete nonlinear
Schrö dinger systems with the exploding range
of intersite interactions

Oleksiy O. Vakhnenkoa)

Bogolyubov Institute for Theoretical Physics, 14b Metrologichna Str., Kyı¨v 03143, Ukraine
and Institute of Geophysics, 63b Bohdan Khmel’nyts’kyy str., Kyı¨v 01054, Ukraine

~Received 28 May 2001; accepted for publication 17 January 2002!

We present the sequence of parametrically driven discrete nonlinear Schro¨dinger
systems with the progressively extending range of intersite couplings. In the case of
time-independent coupling parameters the sequence is reduced to the Ablowitz–
Ladik hierarchy, which is known to be integrable by the inverse scattering trans-
form. However the models with the time-dependent intersite interactions are shown
to be integrable too irrespective of a particular form of time dependencies of cou-
pling parameters. Any of such parametrically driven systems might exhibit rather
complex soliton dynamics and is described by the unconserved Hamiltonian func-
tion. We reveal an important subclass of parametrically driven systems demonstrat-
ing the parametrical localization of soliton dynamics on a confined domain of
space. Meanwhile an appropriate choice of time dependencies in intersite interac-
tions allow us to transform the original parametrically driven system into another
one but subjected to the linear external potential. As a result the latter system can be
readily integrated as well. In particular the peculiarities of Bloch oscillations in the
systems with time-independent long range intersite interactions and linear external
potential of constant strength are analyzed. In general, regulating the range of
intersite couplings, the strengths and time dependencies of coupling parameters, we
are able to model a number of physically important quasi-one-dimensional systems.
We develop an alternative approach to solve the Marchenko equations permitting
one to obtain the multisoliton solutions in the most simple and natural way. Finally,
we point out how to reformulate any model in row in terms of corrected amplitudes
with the standard Poisson brackets. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1458059#

I. INTRODUCTION

Inspecting recent publications dealing with the integrable nonlinear evolution models on
dimensional or quasi-one-dimensional lattices, one could readily see that, apart from
exceptions,1,2 they treat the couplings between the molecules in longitudinal direction to b
nearest-neighboring type.3–10 Meanwhile the intermolecular interactions in real physical syste
are either the long-range11,12or at least moderate-range13 ones. For example, in unharmonic chai
the impact of long-range intermolecular interactions was shown to be so crucial that it is a
affect the whole structure of soliton-like modes.11,12 In this respect developing physically mot
vated integrable nonlinear models with moderate-range and long-range intermolecular cou
appear to be reasonable.

In the present paper we will try to fill this gap by extending the range of intersite couplin
discrete nonlinear Schro¨dinger systems and to inspire, at least indirectly, interest in the effec
moderate-range and long-range couplings feasible, e.g., in arrays of tunnel-coupled no

a!Electronic mail: vakhnenko@bitp.kiev.ua
25870022-2488/2002/43(5)/2587/19/$19.00 © 2002 American Institute of Physics
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optical fibers14 or nonlinear transmission lines15 as well as in discrete geophysical media.16

Starting from the Ablowitz–Ladik auxiliary spectral problem17–19 but relaxing the basic con
straint on the form of the auxiliary evolution operator, it is possible both to extend the ran
intersite interactions and to postulate an arbitrary time dependence of coupling paramete
latter fact generates a substantially richer class of dynamical systems as compared w
adopted by the usual definition of integrable hierarchy where the coupling parameters ar
posed to be time independent.20,21 Here we may observe a direct analogy with the dynamics
parametrically driven oscillators~e.g., the Mathieu oscillator22 or Kapytsya pendulum,23,24! which
are now developed into a special theory.25,26

II. THE SEQUENCE OF INTEGRABLE MODELS

One way to obtain an integrable nonlinear model on the one-dimensional3–5,17–19 or
quasi-one-dimensional7,10 lattice consists in starting with the set of auxiliary linear problems

u~n11uz!5L~nuz!u~nuz!, ~1!

u̇~nuz!5A~nuz!u~nuz!, ~2!

restricted by the compatibility condition~Lax equation!

L̇~nuz!5A~n11uz!L~nuz!2L~nuz!A~nuz!. ~3!

HereL(nuz) andA(nuz) are the spectral and evolution matrix operators, respectively, while
overdot stands for the derivative with respect to dimensionless timet. The numerical longitudinal
coordinaten is supposed to run from minus to plus infinity whereas the spectral parametez is
supposed to be time independent. According to the general rule17–19 the Lax equation~3! is
nothing but a direct consequence of the so-called cross-differentiation condition

@du~muz!/dt#m5n115du~n11uz!/dt ~4!

imposed on the column vectoru(nuz) as the most natural demand.
The next step is to postulate the form of the spectral operator and to specify the genera

of evolution operator by some reasonable constraint. Then with good luck the Lax equati~3!
becomes sufficient both to restore the explicit form of evolution operator and to isolate
nontrivial integrable nonlinear evolution equation by collecting the terms proportional to the
powers inz. The phrase ‘‘good luck’’ implies that in practice it is more common to gain either
mathematical contradiction or rather trivial result of minor physical interest.

Nevertheless, there always exists a safe opportunity to use the well-recommended s
operator but in combination with the evolution operator specified by a new constraint. We
follow this opportunity and takeL(nuz) in the form17–19

L~nuz!5S z iq~n!

ir ~n! 1/z D , ~5!

where the quantitiesq(n) andr (n) are pretending to become the on-site amplitudes of any m
under future consideration.

In this paper we will be interested in the sequence of integrable models built-up unde
constraint that the evolution operator of theM th model in order must contain the spectral para
eterz in the same powers as the multiplicative operatorL2M(nuz), with L(nuz) given by expres-
sion ~5!. HereM is an arbitrary positive integer.

Relying upon the above-described guiding scheme it may be concluded that anyM th model in
row can be written as

1 i q̇~n!5@11q~n!r ~n!#]H/]r ~n!, ~6!
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2 i ṙ ~n!5@11q~n!r ~n!#]H/]q~n! ~7!

with H given by

H522v0I 02 (
a51

M

@v
2

a I
2

a1v
1

a I
1

a#. ~8!

Here I
2

a , I
1

a , andI 0 are, respectively,2ath, 1ath, and zeroth conserved quantities genera

by the spectral operator~5!, while v
2

a , v
1

a andv0 are arbitrary coordinate independent para
eters. The first seven conserved quantities are

I
2

35 (
m52`

`

q~m!r ~m23!@11q~m22!r ~m22!#@11q~m21!r ~m21!#

1 (
m52`

`

q~m!q~m21!r 2~m22!@11q~m21!r ~m21!#

1 (
m52`

`

q2~m!r ~m21!r ~m22!@11q~m21!r ~m21!#

1 (
m52`

`
1

3
q3~m!r 3~m21!, ~9!

I
2

25 (
m52`

`

q~m!r ~m22!@11q~m21!r ~m21!#1 (
m52`

`
1

2
q2~m!r 2~m21!, ~10!

I
2

15 (
m52`

`

q~m!r ~m21!, ~11!

I 05 (
m52`

`

ln@11q~m!r ~m!#, ~12!

I
1

15 (
m52`

`

q~m!r ~m11!, ~13!

I
1

25 (
m52`

`

q~m!r ~m12!@11q~m11!r ~m11!#1 (
m52`

`
1

2
q2~m!r 2~m11!, ~14!

I
1

35 (
m52`

`

q~m!r ~m13!@11q~m12!r ~m12!#@11q~m11!r ~m11!#

1 (
m52`

`

q~m!q~m11!r 2~m12!@11q~m11!r ~m11!#

1 (
m52`

`

q2~m!r ~m11!r ~m12!@11q~m11!r ~m11!#
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1 (
m52`

`
1

3
q3~m!r 3~m11!. ~15!

The higher ones are obtainable within the framework of the recurrence method propos
Wadati’s team.3

In general the parametersv
2

a , v
1

a , and v0 are proved to be arbitrary functions of time
which is usually either overlooked or deliberately neglected in standard theories of integ
hierarchies.20,21 As a consequence the Hamiltonian functionH ~8! is not bound to be conserve
and can describe some parametrically driven system with sophisticated dynamics.

For physical applications and in particular for the understanding of low amplitude spectr
is convenient to write down the linear part of the nonlinear model~6!–~8! explicitly. To do so we
observe that up to the bilinear terms the recurrence technique3 yields

I
2

a; (
m52`

`

q~m!r ~m2a!, ~16!

I
1

a; (
m52`

`

q~m!r ~m1a!. ~17!

Hence for the linear part of theM th model~6!–~8! we obtain

1 i q̇~n!;22v0q~n!2 (
a51

M

@v
2

aq~n1a!1v
1

aq~n2a!#, ~18!

2 i ṙ ~n!;22v0r ~n!2 (
a51

M

@v
1

ar ~n1a!1v
2

ar ~n2a!#. ~19!

Thus the parametersv
2

a and v
1

a are seen to characterize the coupling strength between
ath-neighboring sites. The terms proportional tov0 correspond to the regular energy shift and c
be easily eliminated by the standard gauge transformation.

Regulating the strength of coupling parametersv
2

a andv
1

a and the range of intersite interac
tion M we gain a remarkable opportunity to model a variety of different physical situations

example, assuming allv
2

a and v
1

a exceptv
2

1 , v
2

M and v
1

1 , v
1

M are equal to zero, we are in
position to describe the dynamics of some nonlinear intramolecular excitations on a spir
chain with M molecules per one wind. Moreover, provided the excitations are charged,
possible to take into account in this case even an impact of longitudinal spatially homoge

magnetic field via the complex phases of coupling parametersv
2

1 andv
1

1 in a way similar to that
used in Ref. 10. At last, the freedom in choosing particular time modulations of coupling pa

etersv
2

a , v
1

a appears to provide a practically inexhaustible source of parametrically driven p
cal systems integrable by the inverse scattering transform.

We complete this section by presenting the asymptotic part

A~z![ lim
unu→`

A~nuz! ~20!

of the evolution operatorA(nuz) in assumption of rapidly decreasing boundary conditio
q(n)→0 and r (n)→0 as unu→`, since its full expression already for the third model in ro
(M53) occupies a lot of place. Specifically for the matrix elementsAjk(z) of A(z) we have
                                                                                                                



to the
i-
f the

2591J. Math. Phys., Vol. 43, No. 5, May 2002 Parametrically driven discrete Schrödinger systems

                    
A11~z!51 iv01 i (
a51

M

v
2

az2a, ~21!

A12~z!5A21~z!50, ~22!

A22~z!52 iv02 i (
a51

M

v
1

az22a. ~23!

Fortunately it is precisely the operatorA(z) which is of true practical value.

III. SCATTERING PROBLEM AND MARCHENKO EQUATIONS

Although the basic results on the scattering problem and Marchenko equations related
spectral operator~5! are already well known,17–19 here we give a brief sketch of them in term
nology more convenient for the compact analytical presentation of any multisoliton solution o
nonlinear model under study~6!–~8!.

Thus, restricting ourselves to the case of amplitudesq(n) andr (n) rapidly decreasing at both
infinities we define the left$wj (nuz)% and the right$cj (nuz)% Jost bases (j 51,2) as the two
component vector sets satisfying the auxiliary spectral problem~1!, ~5! and fixed by the
asymptotic conditions

wj~nuz!;J1d1 j z
n1J2d2 j z

2n as n→2` ~24!

and

cj~nuz!;J1d1 j z
n1J2d2 j z

2n as n→1`, ~25!

respectively. HereJk is the two-component column vector with thei th componentJik equal tod ik .
The transition matrixa(z)[@ajk(z)# is that transforming one Jost basis into another,

wk~nuz!5(
j 51

2

cj~nuz!ajk~z! ~k51,2!. ~26!

Formally resolving this equation with respect to matrix elementsai j (z) we have

ai j ~z!5
W
2

k51$~12d ik!ck~nuz!1d ikwj~nuz!%

W
2

k51$ck~nuz!%
. ~27!

Here

W
2

k51$vk~nuz!%[det@v ik~nuz!# ~28!

stands for the Wronskian of any two solutionsv1(nuz) andv2(nuz) of the spectral problem~1!, ~5!
with v ik(nuz) denoting thei th component of vectorvk(nuz). Further, taking the Wronskian from
both parts of~26! we come to the normalizing condition

det@ai j ~z!#5
W
2

k51$wk~nuz!%

W
2

k51$ck~nuz!%

5 )
m52`

`

@11q~m!r ~m!#, ~29!

where the following readily checked relations,
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W
2

k51$wk~nuz!%5 )
m52`

n21

@11q~m!r ~m!#, ~30!

W
2

k51$ck~nuz!%5 )
m5n

`

@11q~m!r ~m!#21, ~31!

have been used.
Another important statement says that two sets of vectors$w1(nuz)z2n,c2(nuz)zn% and

$c1(nuz)z2n,w2(nuz)zn% must be analytic outsideuzu.1 and insideuzu,1 the unit circle, respec-
tively. On the one hand, it enables us to conclude that the diagonal elementsa11(z) anda22(z) of
the transition matrix are analytic outsideuzu.1 and insideuzu,1 the unit circle, respectively@see
~27!#. On the other hand, we might seek the vectors of right Jost basis in the form

cj~nuz!5(
l 5n

`

K j~nu l !@d j 1zl1d j 2z2 l # ~ j 51,2!. ~32!

Direct substitution of these expansions into the spectral equation~1! with L(nuz) given by ~5!
yields

q~n!5 iK 12~nun11!/K22~nun!, ~33!

r ~n!5 iK 21~nun11!/K11~nun!, ~34!

whereKi j (num) is the i th component ofK j (num). These relations resolve the nonlinear proble
~6!–~8! provided the quantitiesK12(nun11), K22(nun) andK21(nun11), K11(nun) are found.

In contrast to the original nonlinear evolution model~6!–~8! the vectorsK j (num) obey the
linear summation equations~Marchenko equations! with the time t inserted parametrically
through the evolution of scattering data. To derive the Marchenko equations one must rely o
the auxiliary spectral problem~1!, ~5! ~more precisely, on the analytical properties of transit
matrix @ajk(z)# and Jost bases$wj (nuz)%, $cj (nuz)%). In so doing we may follow the main
arguments of Ablowitz and Ladik17–19 or simply adapt formulas derived for the multicompone
auxiliary linear problem10 for the needs of the two-component one—~1!, ~5!. The result is

K k~num!1(
l 5n

`

(
j 51

2

K j~nu l !F jk~ l 1m!5Jkdnm ~m>n; k51,2!. ~35!

Here the matrix elementsF jk(n) of the kernel operator are given by

F11~n!5F22~n!50, ~36!

F21~n!5
1

2p i R
uzu51

dz z2n21
a21~z!

a11~z!
1(

r 51

Next

@z11~r !#2n21
a21~z11~r !!

a118 ~z11~r !!
, ~37!

F12~n!5
1

2p i R
uzu51

dz zn21
a12~z!

a22~z!
2(

r 51

Nint

@z22~r !#n21
a12~z22~r !!

a228 ~z22~r !!
, ~38!

wherezkk(r ) stands for ther th root of equationakk(z)50, akk8 (zkk(r )) refers to the derivative
@dakk(z)/dz#z5zkk(r ) , while Next andNint mark the total number of roots of equationsa11(z)50
anda22(z)50, respectively. The equalities~37! and~38! have been found with the understandin
of simple rootszkk(r ). The case of multiple roots can be covered by obtaining limiting exp
sions in the final results.
                                                                                                                



by

ct

m the

2593J. Math. Phys., Vol. 43, No. 5, May 2002 Parametrically driven discrete Schrödinger systems

                    
IV. TIME EVOLUTION OF SCATTERING DATA

According to expressions~36!–~38! the time evolution of a kernel operator is determined
that of scattering dataa21(z)/a11(z), z11(r ), a21(z11(r ))/a118 (z11(r )) and a12(z)/a22(z), z22(r ),
a12(z22(r ))/a228 (z22(r )). The time evolution of scattering data in turn follows from

ȧ jk~z!5(
i 51

2

@Aji ~z!aik~z!2aji ~z!Aik~z!# ~ j 51,2; k51,2!. ~39!

These equations can be derived thanks to the standard observation20 that at everyj 51,2 the
combinationẇj (nuz)2A(nuz)wj (nuz) satisfies the spectral problem~1!, ~5! and consequently is
presentable by some linear superposition of the left Jost vectors( i 51

2 wi(nuz)di j (z). The key steps
of such derivation are based upon the direct use of limiting expressions limn→2` ẇj (nuz)
5col(0,0) and limn→1` ċj (nuz)5col(0,0) evident from the asymptotic conditions~24! and~25!,
respectively.

Substituting formulas~21!–~23! for Ajk(z) into the evolution equation~39! and using~where
necessary! the time independence of rootsżkk(r )50 @the latter statement is nothing but a dire
consequence ofakk(zkk(r ))[0, akk8 (zkk(r ))Þ0 andȧkk(z)50# we formally integrate to obtain

a21~zut!5a21~zu0!expH 22ih0~t!2 i (
a51

M

@h
2

a~t!z2a1h
1

a~t!z22a#J , ~40!

a12~zut!5a12~zu0!expH 12ih0~t!1 i (
a51

M

@h
2

a~t!z2a1h
1

a~t!z22a#J , ~41!

akk~zut!5akk~zu0! ~k51,2!, ~42!

ajk~zkk~r !ut!5@ajk~zut!#z5zkk(r ) ~ j Þk!, ~43!

akk8 ~zkk~r !ut!5akk8 ~zkk~r !u0! ~k51,2!. ~44!

Here

h0~t!5E
0

t

dt v0~ t !, ~45!

h
2

a~t!5E
0

t

dt v
2

a~ t !, ~46!

h
1

a~t!5E
0

t

dt v
1

a~ t !, ~47!

and an explicit indication on time variablet has been restored:ajk(z)[ajk(zut), ajk(zkk(r ))

[ajk(zkk(r )ut), v0[v0(t), v
2

a[v
2

a(t), v
1

a[v
1

a(t).

Only in the simplest case, when the coupling parametersv0 , v
2

a , v
1

a are assumed to be
time independent, does the scattering data come to evolve in a way typical for systems fro
standard Ablowitz–Ladik hierarchy.

V. MULTISOLITON SOLUTIONS: AN ALTERNATIVE APPROACH

We begin this section with the standard reshaping of the Marchenko equations~35! into the
form where the equations forK1(num) andK2(num) are completely splitted
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K1~num!2(
l 5n

`

(
p5n

`

K1~nu l !F12~ l 1p!F21~p1m!5J1dnm2J2F21~n1m! ~m>n!, ~48!

K2~num!2(
l 5n

`

(
p5n

`

K2~nu l !F21~ l 1p!F12~p1m!5J2dnm2J1F12~n1m! ~m>n!. ~49!

However unlike in the usually adopted scheme,4,17–19 we will treat Eqs.~48! and ~49! in an
absolutely different way, omitting the parts for the componentsK21(num) andK12(num) as quite
unnecessary. Instead we will consider the equations for the componentsK11(num) andK22(num),

K11~num!2(
l 5n

`

(
p5n

`

K11~nu l !F12~ l 1p!F21~p1m!5dnm ~m>n!, ~50!

K22~num!2(
l 5n

`

(
p5n

`

K22~nu l !F21~ l 1p!F12~p1m!5dnm ~m>n!, ~51!

to be the basic ones.
Indeed, knowing the solutionsK11(num) andK22(num) reduces two of the four componen

of the original Marchenko equations~35! taken at m5n11 to the sheer definitions o
K21(nun11) andK12(nun11). Namely, we have

K21~nun11!52(
l 5n

`

K22~nu l !F21~ l 1n11!, ~52!

K12~nun11!52(
l 5n

`

K11~nu l !F12~ l 1n11!, ~53!

which in combination withK11(num), K22(num) and~33!, and~34! formally resolves the nonlin-
ear problem of interest—~6!–~8!.

Now let us analyze Eqs.~50! and ~51! and expressions~52! and ~53! using the parity prop-
erties of transition matrix@ajk(z)#. These properties are as follows:a11(2z)5a11(z), a22(2z)
5a22(z), a12(2z)52a12(z), a21(2z)52a12(z), and can easily be proved for rapidly abatin
amplitudesq(n) and r (n) close to those on the compact support. When applied to the m
elements~37! and ~38! of the kernel operator they allow us to conclude thatF21(n) andF12(n)
must be equal to zero identically at every evenn. As a result the equations forK11(nun12m)
become separated from those forK11(nun12m11) while the equations forK22(nun12m) be-
come separated from those forK22(nun12m11) @see~50! and ~51!#. Moreover the right-hand
sides of expressions~52! and ~53! must contain only the terms withK22(nun12m) and
K11(nun12m), respectively.

Hence all information of interest can be obtained from

K11~nun12m!2(
l 50

`

(
p50

`

K11~nun12l !F12~2l 12n1112p!F21~2p1112n12m!

5d0m ~m>0!, ~54!

K22~nun12m!2(
l 50

`

(
p50

`

K22~nun12l !F21~2l 12n1112p!F12~2p1112n12m!

5d0m ~m>0!, ~55!

supplemented by the relations
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K21~nun11!52 (
m50

`

K22~nun12m!F21~2m1112n!, ~56!

K12~nun11!52 (
m50

`

K11~nun12m!F12~2m1112n!. ~57!

In order to proceed with the multisolitonic solutions we must equalize the scattering da
continuous spectruma21(z)/a11(z) anda12(z)/a22(z) to zero atuzu51. Then, on the one hand, th
matrix elements of the kernel operator appeared in Eqs.~54! and~55! become degenerate@see~37!
and~38!# and, on the other, the form of the diagonal matrix elementsakk(z) can be reconstructed
explicitly

a11~z!5)
s51

N
z22exp@m11~s!1 ik11~s!#

z22exp@2m22~s!1 ik22~s!#
~ uzu>1!, ~58!

a22~z!5)
s51

N
z222exp@m22~s!2 ik22~s!#

z222exp@2m11~s!2 ik11~s!#
~ uzu<1!. ~59!

Herek11(s) andk22(s) are real constants, whereasm11(s) andm22(s) are positive real constants
Except for the restrictions imposed by the assumed simplicity of rootszkk(r ), the constants
m11(s), k11(s) and m22(s), k22(s) are supposed to be arbitrary in all other respects. FinallyN
represents an arbitrary but fixed positive integer, being the number of solitons in a par
multisoliton solution. EvidentlyNext5Nint52N.

Despite being valid only for the reflectionless case, expressions~58! and ~59! are consistent
with the analyticity conditions@a11(z) is analytical atuzu.1 anda22(z) is analytical atuzu,1# and
parity conditionsakk(2z)5akk(z) as well as with the normalizing condition~29! and limiting
conditions limuzu→` a11(z)51 and limuzu→0 a22(z)51. Although not mentioned earlier, the limit
ing conditions forakk(z) are a direct consequence of those for the scattering vectorsSkk(nuz),
defined bySkk(nuz)akk(z)[wk(nuz).

Adopting the rootszkk(r ) in ~37! and ~38! to be enumerated in accordance with

zkk~2s!52zkk~2s21! ~s51,2,3,...,N! ~60!

and using~58! and ~59! to find them, we can writeF21(2n11) andF12(2n11) for the reflec-
tionless case as follows:

F21~2n11!5(
s51

N

b21~s!exp@2s11~s!n#, ~61!

F12~2n11!5(
s51

N

b12~s!exp@2s22~s!n#. ~62!

Here

b21~s![
2a21~z11~2s!!

@z11~2s!#2a118 ~z11~2s!!
, ~63!

b12~s![2
2a12~z22~2s!!

a228 ~z22~2s!!
, ~64!

s11~s![m11~s!1 ik11~s!, ~65!
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s22~s![m22~s!2 ik22~s!. ~66!

Combining the reduced Marchenko equations~54! and ~55! with the explicit expressions fo
matrix elements of kernel operator~61! and ~62! we introduce two auxiliary functions,

X11~nus![ (
m50

`

K11~nun12m!exp@2s22~s!m#, ~67!

X22~nus![ (
m50

`

K22~nun12m!exp@2s11~s!m#, ~68!

which are proved to be governed by two sets of linear algebraic equations,

X11~nus!2 (
s851

N

X11~nus8!^s8uB̂12~n!B̂21~n!us&51 ~s51,2,3,...,N!, ~69!

X22~nus!2 (
s851

N

X22~nus8!^s8uB̂21~n!B̂12~n!us&51 ~s51,2,3,...,N!. ~70!

Here

^s8uB̂12~n!B̂21~n!us&[ (
s951

N

^s8uB̂12~n!us9&^s9uB̂21~n!us&, ~71!

^s8uB̂21~n!B̂12~n!us&[ (
s951

N

^s8uB̂21~n!us9&^s9uB̂12~n!us& ~72!

with ^s8uB̂12(n)us9& and ^s9uB̂21(n)us8& defined by

^s8uB̂12~n!us9&5
b12~s8!exp@2s22~s8!n#

12exp@2s22~s8!2s11~s9!#
, ~73!

^s9uB̂21~n!us8&5
b21~s9!exp@2s11~s9!n#

12exp@2s11~s9!2s22~s8!#
. ~74!

Then all quantities of interest are seen to be presented in terms ofX11(nus) andX22(nus) exclu-
sively. Indeed, the direct use of definitions~67! and ~68! in formulas~54!–~57! gives rise to

K11~nun!511 (
s851

N

(
s951

N

X11~nus8!^s8uB̂12~n!us9&b21~s9!exp@2s11~s9!n#, ~75!

K22~nun!511 (
s851

N

(
s951

N

X22~nus8!^s8uB̂21~n!us9&b12~s9!exp@2s22~s9!n#, ~76!

K21~nun11!52(
s51

N

X22~nus!b21~s!exp@2s11~s!n#, ~77!

K12~nun11!52(
s51

N

X11~nus!b12~s!exp@2s22~s!n#. ~78!
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Thus the only question yet to be handled is to write down the solutions of~69! and ~70!

explicitly. To do so we defineN3N matrixes Ĉ11(n)[@^s8uĈ11(n)us9&# and Ĉ22(n)
[@^s8uĈ22(n)us9&# by their matrix elements

^s8uĈ11~n!us9&5ds8s92^s8uB̂12~n!B̂21~n!us9& ~79!

and

^s8uĈ22~n!us9&5ds8s92^s8uB̂21~n!B̂12~n!us9&, ~80!

respectively, and obtain

X11~nus!5 (
s851

N
] ln detĈ11~n!

]^suĈ11~n!us8&
, ~81!

X22~nus!5 (
s851

N
] ln detĈ22~n!

]^suĈ22~n!us8&
. ~82!

Hence according to formulas~33!, ~34! and ~75!–~78! any multisoliton solution of the non
linear problem~6!–~8! looks as follows:

q~n!5 iK 12~nun11!/K22~nun!

5

2 i (
s51

N

X11~nus!b12~s!exp@2s22~s!n#

11 (
s851

N

(
s951

N

X22~nus8!^s8uB̂21~n!us9&b12~s9!exp@2s22~s9!n#

, ~83!

r ~n!5 iK 21~nun11!/K11~nun!

5

2 i (
s51

N

X22~nus!b21~s!exp@2s11~s!n#

11 (
s851

N

(
s951

N

X11~nus8!^s8uB̂12~n!us9&b21~s9!exp@2s11~s9!n#

, ~84!

whereX11(nus) andX22(nus) are given by~81! and~82!, respectively. Here, of course, we shou
understand the scattering datab12(s) andb21(s) to be the time dependent ones:

b12~s![b12~sut!

5b12~su0!expH 12ih0~t!1 i (
a51

M

@h
2

a~t!exp~2as22~s!!1h
1

a~t!exp~1as22~s!!#J
~85!

b21~s![b21~sut!

5b21~su0!expH 22ih0~t!2 i (
a51

M

@h
2

a~t!exp~1as11~s!!1h
1

a~t!exp~2as11~s!!#J .

~86!
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We complete this section by adapting the obtained time dependencies~85! and ~86! for the
needs of reductionr (n)5q* (n).

Then the dynamical equations~6! and ~7! will be mutually consistent under the constrai

H* 5H. As a consequence the parameterv0 must be purely real, whilev
2

a and v
1

a can be
parametrized by two real parameters,va andwa . In particular,

v
2

a5va exp~2 iwa!, ~87!

v
1

a5va exp~1 iwa!, ~88!

where in generalva[va(t) andwa[wa(t) are supposed to be time dependent.
Moreover, calculating the matrix elements ofa1(1/z* )a(z) and combining them with the

normalizing condition~29! we can obtain

a11* ~1/z* !5a22~z!, ~89!

a21* ~1/z* !52a12~z!. ~90!

These relations yield

z11~r !51/z22* ~r !, ~91!

Fa12~z22~r !!

a228 ~z22~r !!G* 5
a21~z11~r !!

@z11~r !#2a118 ~z11~r !!
. ~92!

Hence seeking the multisoliton solutions we have to set

m11~s!5m22~s![m~s!, ~93!

k11~s!5k22~s![k~s!, ~94!

b12* ~s!52b21~s!. ~95!

As a result the expressions~85! and ~86! for b12(sut) andb21(sut) can be reduced to

b12~sut!52ishm~s!exp@m~s!x~s!1 iu~s!#

•expH 12i E
0

t

dt v0~ t !12i (
a51

M E
0

t

dt va~ t !ch@am~s!2 iak~s!1 iwa~ t !#J , ~96!

b21~sut!52ishm~s!exp@m~s!x~s!2 iu~s!#

•expH 22i E
0

t

dt v0~ t !22i (
a51

M E
0

t

dt va~ t !ch@am~s!1 iak~s!2 iwa~ t !#J , ~97!

where the parametrization

b12~su0!52ishm~s!exp@m~s!x~s!1 iu~s!#, ~98!

b21~su0!52ishm~s!exp@m~s!x~s!2 iu~s!# ~99!

has been adopted.
Depending on a particularly chosen swing in amplitudesva(t) and phaseswa(t) of coupling

parameters the nonlinear dynamical system~6!–~8! might exhibit a variety of absolutely differen
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regimes of soliton dynamics from the uniform infinite motion to the dynamical localization.
will consider some such regimes in Sec. VII although, in principle, their number appears
inexhaustible. Of course a variety of effects in soliton dynamics may be caused also b
interplay between the different coupling parameters, which as we know couple the molecu
different spatial distances.

VI. TRANSFORMATION TO THE PHYSICALLY CORRECTED AMPLITUDES

Although the Poisson brackets related to models~6!–~8! are proved to be nonstandard they a
unable to cause any discrepancy in physical applications. Indeed, introducing the cor
amplitudes27

Q~n!5A@q~n!/r ~n!# ln@11q~n!r ~n!#, ~100!

R~n!5A@r ~n!/q~n!# ln@11q~n!r ~n!#, ~101!

we might always transform any original model~6!–~8! into the standard form

1 iQ̇~n!5]H/]R~n![1 i $H,Q~n!%, ~102!

2 iṘ~n!5]H/]Q~n![2 i $H,R~n!% ~103!

with the Poisson brackets given by

$Q~n!,R~m!%51 idnm , $R~n!,Q~m!%52 idnm , ~104!

$Q~n!,Q~m!%50, $R~n!,R~m!%50. ~105!

Here, in order to writeH in terms ofQ(n) andR(n) we simply must substitute

q~n!5A@exp~Q~n!R~n!!21#Q~n!/R~n!, ~106!

r ~n!5A@exp~Q~n!R~n!!21#R~n!/Q~n! ~107!

into formula ~8!.
Remarkably, the corrected model~102!, ~103! possesses the same linear part~18! and~19! as

the original one~6!–~8! and hence exhibits the same low amplitude spectrum.
The precise meaning of amplitudesQ(n) andR(n) depends on a particular adopted reductio

For example, in the case whenr (n)5q* (n) @and henceR(n)5Q* (n)# the amplitudesQ(n) and
R(n) are nothing but the probability amplitudes since according to expression~12! the total
number of excitations,

I 05 (
m52`

`

Q~m!R~m!, ~108!

has to be conserved.
The use of probability amplitudes allows us to calculate the mean value^F(n)& of any

physical quantityF(n) in the most natural way

^F~n!&5
(m52`

` F~m!Q~m!R~m!

(m52`
` Q~m!R~m!

. ~109!

In Sec. VII we apply this definition to the analysis of one soliton dynamics.
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VII. ONE SOLITON DYNAMICS: PARAMETRICAL LOCALIZATION

Assuming the reductionr (n)5q* (n) let us discuss the dynamics of the model~6!–~8! in one
soliton caseN51.

According to general expressions~83!, ~84! and~96!, ~97! the one soliton solution itself looks
as follows:

q~nut!5
shm exp@1 ikn1 iu2 i *0

tdt V~kutum!#

ch$m@n2x2*0
tdt v~kutum!#%

, ~110!

r ~nut!5
shm exp@2 ikn2 iu1 i *0

tdt V~kutum!#

ch$m@n2x2*0
tdt v~kutum!#%

, ~111!

where

V~kutum!522v0~t!22 (
a51

M

va~t!ch~am!cos@ak2wa~t!#, ~112!

v~kutum!5
2

m (
a51

M

va~t!sh~am!sin@ak2wa~t!# ~113!

and we have denotedm(1)[m, k(1)[k, x(1)[x, u(1)[u.
To analyze this solution we rely on the explicit formula for the coordinate of soliton cen

x~kutum![^n&s5x1E
0

t

dt v~kutum! . ~114!

We also estimate the typical soliton widthd(^n&s) defined by

d~^n&s!52A^~n2^n&s!
2&s. ~115!

Here the bracketŝ &s stand for the average operation~109! taken on the corrected@according to
~100! and~101!# one-soliton amplitudes~110! and~111!. The result written on the right-hand sid
of expression~114! is an exact one and has been calculated via the well-known Poisson su
tion formula @see, e.g., formula~A2! in the Appendix#.

From expression~114! we clearly see thatx marks the coordinate of soliton center in an initi
momentt50 whereasv(kutum) describe the velocity of the soliton center in an arbitrary mome
According to formula~113! this velocity consists of superposition of partial velocities emana
from the different coupling parameters. Theath partial velocity is determined by the amplitud
va(t) and phasewa(t) modulations of theath coupling parameter as well as by the productak.
The amplitude of theath partial velocity in turn is enhanced by the factor (2/m)sh(am).

In a particular case of uniform motion, when the nonlinear system~6!–~8! is parametrically
undrivenva(t)[va(0) andwa(t)[wa(0), theparameterk may be identified with the momen
tum of a soliton as a whole. However in general this meaning may be completely devalua

Indeed assuming thatva(t)[va(0) andwa(t)[wa(0)2Ea(0)t we come to the case o
parametrically localized soliton dynamics with the coordinate of soliton center oscillating b
law

x~kutum!5x2
2

m (
a51

M
va~0!

Ea~0!
sh~am!$cos@Ea~0!t1ak2wa~0!#2cos@ak2wa~0!#%

~116!
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on a confined domain of space. Thus we have obtained the superposition of incommen
oscillations where the productak simply merges with the initial phasewa(0) of the respective
coupling parameter. When the partial frequenciesuEa(0)u/2p are decreased the amplitudes
oscillations are increased so that in the limit of zero frequenciesuEa(0)u/2p→0 we come back to
the case of uniform soliton motion on an unconfined spatial domain,

x~kutum!5x1
2t

m (
a51

M

va~0!sh~am!sin@ak2wa~0!#. ~117!

Of course in the general case of an arbitrary parametrical swing the soliton center might e
rather complex dynamics, e.g., the regular drift and oscillations combined.

Calculating the soliton widthd(^n&s) ~see the Appendix for some details! we have observed
that it has to breathe between its two extreme valuesdmin[d(0) anddmax[d(61/2), although the
peculiarities of such oscillations should undoubtedly be governed by a particular dynam
soliton center. Atm!1 the amplitude of this breathing mode is exponentially suppressed and
extreme soliton widthsd(0) andd(61/2) become practically indistinguishible:d(0).d(61/2)
.p/mA3. However atm.1 the breathing effect is strictly pronounced and the soliton width
determined not only by the parameter 1/m but also by the position of soliton center-of-mass^n&s

with the easily checked propertiesd(y)5d(y2@y#) andd(2y)5d(y) bearing in mind. Specifi-
cally for d(0) andd(61/2) at largem ~i.e., atm@1) we haved(0).A(4/m)ln 2 andd(61/2)
.1. These results have nothing to do with those for continuous integrable models whe
soliton width d could not breathe and is determined by the single parameter 1/m via unique
formula d5p/mA3 at all positivem.

It is interesting to note that the one soliton solution~110!, ~111! is also characterized by th
time-dependent cyclic frequencyV(kutum) ~112! which is formally analogous to the energ
spectrum of the low amplitude mode withk playing the role of wave number. This analog
becomes especially clear in the limit of wide solitonsm→0 when the identity

v~kutu0!5]V~kutu0!/]k, ~118!

similar to the definition of group velocity of planar wave holds. The frequencyV(kutum) ~112!
consists of partial frequencies and might exhibit the nonmonotonic dependence on paramk.
The latter facts extend the general rule established for the low amplitude excitations in sp
regular structures with the long-range interaction28 to the case of soliton-like excitations.

VIII. DISCRETE NONLINEAR SCHRÖDINGER SYSTEMS IN LINEAR POTENTIAL: BLOCH
OSCILLATIONS

Let us consider the dynamical system

1 i q̇~n!5@11q~n!r ~n!#]H/]r ~n!, ~119!

2 i ṙ ~n!5@11q~n!r ~n!#]H/]q~n! ~120!

with the Hamiltonian

H522v0I 02 (
m52`

`

Em ln@11q~m!r ~m!#2 (
a51

M

va@exp~2 ica! I
2

a1exp~1 ica! I
1

a#,

~121!

wherev0[v0(t), va[va(t), ca[ca(t), andE[E(t) are supposed to be time-dependent r
parameters, whereasr (n)[q* (n). At E50 andca5wa this system coincides literally with tha
given by~6!–~8! provided the reductionr (n)5q* (n) is adopted and the parametrization~87! and
~88! is used. AtEÞ0 the system~119!–~121! can be treated as the parametrically driven system
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nonlinear Schro¨dinger type subjected to linear potential with strengthE. The latter statemen
becomes especially clear when we reformulate the model~119!–~121! in terms of corrected
amplitudes~100! and ~101!.

The question arises whether it is possible to convert the system~119!–~121! into the form

1 i q̇~n!5@11q~n!r ~n!#]H/]r ~n!, ~122!

2 i ṙ ~n!5@11q~n!r ~n!#]H/]q~n!, ~123!

H522v0I 02 (
a51

M

va@exp~2 iwa! I
2

a1exp~1 iwa! I
1

a#, ~124!

and hence to integrate it by the inverse scattering transform.
In a particular case of nearest-neighboring couplingM51 with v1(t)51 andc1(t)50 the

answer is known to be positive,29 which actually had been preordained earlier in Refs. 30 and
In the general case of a parametrically driven system with the exploding range of int

couplings in the presence of linear potential~119!–~121!, the reply happens to be positive to
Indeed, replacingq(n) and r (n) in ~119!–~121! by the rule

q~n!→q~n!expF1 inE
0

t

dt E~ t !G , ~125!

r ~n!→r ~n!expF2 inE
0

t

dt E~ t !G , ~126!

we readily come to the system~122!–~124! with wa(t) given by

wa~t!5ca~t!2aE
0

t

dt E~ t !. ~127!

Thus in order to obtain the solutionsq(n) and r (n) of the system in linear potential~119!–
~121! we have to multiply the solutions of the system without linear potential~122!–~124! on
exp@1in*0

tdt E(t)# and exp@2in*0
tdt E(t)#, respectively, substituting simultaneously express

~127! for wa(t).
We demonstrate this recipe for system~119!–~121! with the constant parametersv0

[v0(0), va5va(0), ca[ca(0), andE[E(0) on an example of one soliton solution and obta

q~nut!5
shm exp@1 i ~k1E~0!t!n1 iu2 i *0

tdt V~kutum!#

ch$m@n2x~kutum!#%
, ~128!

r ~nut!5
shm exp@2 i ~k1E~0!t!n2 iu1 i *0

tdt V~kutum!#

ch$m@n2x~kutum!#%
. ~129!

Here

E
0

t

dt V~kutum!522v0~0!t

22 (
a51

M
va~0!

aE~0!
ch~am!$sin@aE~0!t1ak2ca~0!#2sin@ak2ca~0!#%,

~130!

x~kutum!5x2
2

m (
a51

M
va~0!

aE~0!
sh~am!$cos@aE~0!t1ak2ca~0!#2cos@ak2ca~0!#%.

~131!
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Thus the linear potential of constant strengthE(0) gives rise to the dynamically localized solito
motion in a parametrically undriven system resembling the parametrically localized solito
namics described in Sec. VII. However here the frequencies of oscillationsauE(0)u/2p are bound
to be commensurate and are determined by the single parameterE(0), i.e., by the strength of
external field.

In condensed matter physics the oscillations caused by the interplay between the line
tential and the spatial discreteness of the lattice are known as the Bloch oscillations.32,33 Such
effects are experimentally observable only in spatially discrete systems~e.g., on semiconducto
superlattices34! and are principally forbidden in continuous ones. When related to the bent a
of optical waveguides, the effects, generally analogous to those of Bloch oscillations and dy
cal localization, have also recently been described.35

IX. CONCLUSION

Summarizing, we have shown how to extend step by step the range of intersite interact
discrete nonlinear Schro¨dinger systems generated by the Ablowitz–Ladik auxiliary spectral p
lem. As a result it is possible to obtain the sequence of nonlinear models with the Hamilto
given by some special type of linear superpositions of conserved quantities. However unlike
standard Ablowitz–Ladik hierarchy, where the superposing coefficients are assumed to b
stant, we have observed that they may be either constants or arbitrary functions of time.
superposing coefficients play the role of intersite coupling parameters and hence in gene
beget the parametrically driven systems with rather rich soliton dynamics. The Hamiltonian o
such parametrically driven system is not bound to be conserved, however the system its
remains to be integrable by the inverse scattering transform.

We have revealed an important subclass of parametrically driven systems demonstrat
effects of parametric localization of solitons on a confined domain of space and have analyz
corresponding one soliton dynamics.

In some particular cases it is possible to establish the formal equivalence between the o
parametrically driven system and another parametrically driven system but subjected to the
tional linear potential. When the strength of the potential field is constant the total Hamiltoni
the new dynamical system becomes conserved, provided its coupling parameters are tim
pendent. Nevertheless the infinite soliton trajectories in the latter system are forbidden due
so-called dynamical localization accompanied by the Bloch–Zener oscillations of soliton cen
mass.

We point out once again that the alternative method of solving the Marchenko equa
developed here appears to be more straightforward than the early known ones.4,17–19 The final
formulas for the multisoliton solutions~83! and~84! are also the original ones. Moreover, unlik
in the usual approaches, they were derived for the most general case relinquishing any pa
reduction for the amplitudesq(n) and r (n). The detailed analysis of such unreduced solutio
goes beyond the scope of present report, however, the interested reader could look throu
one soliton prototype recently obtained for the undriven nonlinear Schro¨dinger system on a ladde
lattice with nearest-neighboring intermolecular couplings@see formulas~86! and ~87! in Ref. 7#.

Finally we have reformulated the models of interest in terms of corrected amplitudes wi
standard Poisson brackets, which sometimes seems to be a necessary step useful for
applications. So we have presented the explicit formulas of respective transformations.

We believe that the wide possibilities in extending the range of intersite interactions as w
in appropriate choice of coupling parameters~i.e., their strengths and time dependencies! could
stimulate the described class of parametrically driven integrable models to be applied to the
of different physically motivated discrete quasi-one-dimensional systems.14–16,34,35
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APPENDIX: CALCULATIONS OF SQUARED SOLITON WIDTH

According to definition~115! the squared typical soliton widthd2(y) as a function of mean
coordinate of soliton patternx(kutum)[y can be presented in the form

d2~y!5
4(m52`

` ~m2y!2 ln@11sh2m sech2 m~m2y!#

(m52`
` ln@11sh2m sech2m~m2y!#

. ~A1!

Applying the Poisson summation formula36

(
m52`

`

V~m!5 (
f 52`

` E
2`

`

dh exp~2p i f h!V~h! ~A2!

to the denominator of~A1! we obtain

(
m52`

`

ln@11sh2m sech2 m~m2y!#52m ~A3!

and hence

d2~y!5
2

m (
m52`

`

~m2y!2 ln@11sh2m sech2 m~m2y!#. ~A4!

From this expression we see clearly that bothd2(2y) and d2(y61) coincide withd2(y), i.e.,
d2(y) is an even periodic function of its argument with the period equal to unity or the same t
lattice constant. Another confirmation of this statement follows from an alternative express

d2~y!5
2

3 F11
1

2
~p/m!2G2

4

m (
f 51

`
cos~2p f y!

f sh~p2f /m!
~A5!

obtainable within the framework of Poisson summation formula~A2!.
Formula ~A5! allows us to detect at least two sets of extremums, namely aty5...,22,

21,0,11,12,... and aty5...,23/2,21/2,11/2,13/2,... corresponding to the location of th
soliton center on a lattice site and precisely between two neighboring lattice sites, respective
of the extremums in a particular set are physically equivalent due to periodicity ofd2(y). Hence
we can restrict ourselves to the interval21/2<y<11/2. Evidentlyd2(0),d2(61/2) and more-
overd2(0) is seen to be the smallest possible value ofd2(y). As to the valued2(61/2) we claim
it to be an absolute maximum ofd2(y) relying on the direct computer simulations with th
formula ~A4! as well as on the analytical estimations by formula~A4! at m@1 and by formula
~A5! at m!1.

For the sake of convenience we will write down here one more result of summation

(
m52`

`

m ln@11sh2m sech2 m~m2y!#52my, ~A6!

which along with formula~A3! becomes useful in calculating the mean coordinate of sol
pattern~114!.
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Piezoelectricity and Piezomagnetism: Duality
in two-dimensional checkerboards

Leonid G. Fela)

School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact
Sciences, Tel Aviv University, Tel Aviv 69978, Israel
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The duality approach in two-dimensional two-component regular checkerboards is
extended to piezoelectricity and piezomagnetism. The relation between the effec-
tive piezoelectric and piezomagnetic moduli is found for a checkerboard with the
p68mm8-plane symmetry group~dichromatic triangle!. © 2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1466881#

I. INTRODUCTION

A duality transformation for two-dimensional~2D! heterogeneous composites was discove
by Keller1 and Dykhne.2 It is based upon the simple observation that any 2D divergence
vector field, when rotated locally at each point by 90° becomes curl free and vice versa. This
to duality relations for the effective physical properties of 2D two-component composites
electrical conductivityŝef , thermal conductivityk̂ef , and other second rank symmetric tenso
ŷef . All these physical problems can be described by the same set of equations

Y5 ŷ"X, ¹•Y5¹ÃX50, ŷ i j 5 ŷ j i . ~1!

The duality relations are universal3 and do not depend on composite’s microstructure. For non
tropic structures they become2,4

detŷef5Adetŷa•detŷb, ~2!

where subscripts ‘‘a’’ and ‘‘ b’’ correspond to thea andb components of composite, respective
while ‘‘ ef’’ denotes an effective medium.

The further attempts5 to extend the dual symmetry onto 2D elasticity

ui j 5K̂kl
i j
•tkl , (

j
] jt i j 50, ~3!

]yy
2 uxx1]xx

2 uyy52 ]xy
2 uxy ~4!

had shown no duality transformation for the strainui j and the stresst̂kl tensor fields. Therefore
one cannot write a duality relation for the fourth rank compliance tensorK̂kl

i j .
In this paper we consider physical phenomena which one can describe using the thir

tensors when a high symmetry of 2D two-component checkerboard makes it possible to exp
duality transformation. The best known phenomena are the piezoelectricity and the piez
netism.

a!Electronic mail: lfel@post.tau.ac.il
26060022-2488/2002/43(5)/2606/4/$19.00 © 2002 American Institute of Physics
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II. DUALITY RELATIONS

Let us consider a homogeneous 2D medium under mechanical stresst̂, which produces a
dielectric displacementD and a magnetic inductionB,

Di5êjk
i
•t jk , Bi5m̂jk

i
•t jk , t jk5tk j ,

~5!

¹•D5¹•B50, (
j

] jt i j 50.

The piezoelectricêjk
i and the piezomagneticm̂jk

i coefficients are polar and axial tensors of the ra
three, respectively,

êjk
i 5êk j

i , m̂jk
i 5m̂k j

i .

In order to represent this problem in a form similar to~1! we define the following vectors:

t15~txx ,txy!, t25~tyx ,tyy!, ¹•tk50, ~6!

that simplifies~5!

D5ĝ11"t11ĝ12"t2 , B5ĝ21"t11ĝ22"t2 . ~7!

It is convenient to represent each of the tensorsêjk
i , m̂jk

i by two nonsymmetric tensors of th
second rank

ĝ115S exx
x exy

x

exx
y exy

y D , ĝ125S eyx
x eyy

x

eyx
y eyy

y D ,

~8!

ĝ215S mxx
x mxy

x

mxx
y mxy

y D , ĝ225S mxy
x myy

x

mxy
y myy

y D .

The general case of the inner symmetry allows only six independent piezomoduli of each
êjk

i andm̂jk
i .

Our approach is based on the validity of the matrix identities for a special kind of i
symmetry groupG of the transport tensorsĝkl(G):

ĝ11~G!5M̂•ĝ21~G!, ĝ12~G!5M̂•ĝ22~G!, ~9!

where M̂ is a nondegenerated 232 transform matrix. This point symmetry groupG will be
specified later.

The relation

D5M̂•ĝ21~G!"t11M̂•ĝ22~G!"t25M̂ "B ~10!

makes our problem similar to~1! if we link a divergence-free fieldD and a curl-free fieldR̂B,

D5L̂•R̂B, L̂5M̂•R̂21,
~11!

¹"D5¹ÃR̂B50, R̂5S 0 21

1 0 D .

HereR̂ is a 90° rotation operator. Applying the duality transformation to~11! and making use of
the relation~2! results in
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detM̂ef5AdetM̂a•detM̂b. ~12!

III. SYMMETRY CONSIDERATIONS

Let us look for such symmetry groupG that makes valid two relations~9!, which can be
reduced

ĝ115ĝ12•ĝ22
21

•ĝ21. ~13!

This should be satisfied not accidentally.
Following Ref. 6 we recall some basic facts about a coexistence of piezoelectric and

magnetic properties in anisotropic media. In three-dimensional media there exist 45 Shu
point groups permitting both piezoelectricity and piezomagnetism. In general case the formsêjk

i

and m̂jk
i coincide6 only in 20 point groups~9 ferromagnetic and 11 antiferromagnetic!. In 2D

media these numbers diminish: there are only 4 ferromagnetic point groups 1,m8, 3, 3m8. Let us
consider the point groupG53 which leaves only two independent piezomoduli of each tensorêjk

i

andm̂jk
i ,7

ĝ11~3!5S e1 e2

e2 2e1
D , ĝ12~3!5S e2 2e1

2e1 2e2
D ,

~14!

ĝ21~3!5S m1 m2

m2 2m1
D , ĝ22~3!5S m2 2m1

2m1 2m2
D ,

whereek ,mk are real numbers. It is easy to see that matrices~14! satisfy the requirement~13! and
M̂ is an antisymmetric positive definite matrix

M̂5
1

m1
21m2

2 S m1e11m2e2 m2e12m1e2

m1e22m2e1 m1e11m2e2
D . ~15!

Up to this moment we have not specified a crystallographic type of two-component tessella
the plane since according to Ref. 3 a duality relation is universal there. Due to Curie principl8 the
point symmetry groupGef of a physical phenomenon in composed medium is a maximal com
subgroup of the microstructure groupGst and inner symmetry groupsGa , Gb of this phenomenon
in both components ‘‘a, ’’ ‘‘ b’’

Gef5GstùGaùGb . ~16!

We will look for 2D checkerboards with regulardichromatic tessellation by polygons that ar
compatible with point symmetry groupG53. From 46dichromatic plane mosaics9 the only
compatible isdichromatic trianglewhich possesses ap68mm8-plane group~Fig. 1!. The choice of
the three-symmetry is not accidental but is concerned with the special properties of the tra
tensorsĝkl in ~14!, namely,

3568mm8ù3ù3.

Making use of~12! and ~15! after simple algebra we obtain finally

e1ef
2 1e2ef

2

m1ef
2 1m2e

2 5A e1a
2 1e2a

2

m1a
2 1m2a

2 •

e1b
2 1e2b

2

m1b
2 1m2b

2 . ~17!

If the inner symmetryGa , Gb will be upgraded up toG53m8 we have in~14!: e25m250, and
the duality relation~17! looks more simple
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e1ef
2

m1ef
2 5U e1a

m1a
•

e1b

m1b
U. ~18!

Note that Eq.~7! does not permit one to write the duality relations for the piezoelectricêjk
i and

piezomagneticm̂jk
i tensors separately.

IV. CONCLUSION

In the present paper we have considered the coexistence of the piezoelectric and the
magnetic phenomena in 2D two-component composites with triangular tessellation of the
(p68mm8-plane symmetry group!. The duality approach for 2D two-component regular comp
ites was extended onto physical problem dealt with third rank tensors.

In the conclusion we will mention some compounds which have a trigonal symmetry an
piezoelectricity and the piezomagnetism coexist.10 These are the rare-earth maganites having
overall formula RMnO3, where R5Y, Ho, Er, Tm, Yb, Lu, or Sc. The Mn atoms lie inside th
bipyramidial bonds, while the rare-earth atoms lie inside the bipyramids.
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FIG. 1. Dichromatic plane mosaicGst p68mm8. The principal axes of inner medium symmetryGa5Gb53 are pointed out
within the triangles.
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A new approach to static force-free electromagnetic fields
Barton L. Willisa)
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In the early 1950s, Lundquist showed the significance of electromagnetic fields
with a vanishing Lorentz force density to magnetohydrostatic fluids. Today, these
fields are known as force-free electromagnetic fields. Later that decade, Lu¨st and
Schlüter demonstrated that cosmic magnetic fields are force-free and Chan-
drasekhar and Kendall then constructed a large class of force-free fields whose
electric charge density field is also vanishing. In this article, we constructed force-
free fields without assuming that the electric charge density vanishes, and in some
cases we established a connection between force-free fields and nonlinear Schro¨-
dinger equations. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1465099#

I. INTRODUCTION

In his study of magnetohydrostatic fluids in the early 1950s, Lundquist1 showed the signifi-
cance of electromagnetic fields with a vanishing Lorentz force density. Such fields are now k
as force-free fields. Later, in the mid-1950s Lu¨st and Schlu¨ter2 noted that cosmic magnetic field
are force-free. A few years later, Chandrasekhar and Kendall,3,4 working from the assumption tha
the electric charge density vanishes, characterized a large class of force-free fields by resolv
magnetic field into its poloidal and toroidal components, and they called these fieldsforce-free
magneticfields. In this case, the electric and magnetic terms in the force density are sepa
equal to zero. For recent work on such fields, the reader should consult Marsh,5,6 Neukirch and
Rastätter,7 Démoulin, Cuperman, and Semel,8 and Cuperman, Li, and Semel.9 Additionally, recent
work by MacLeod10 has characterized force-free magnetic fields by making use of the wo
Moses11 on the eigenfunctions of the curl.

Force-free magnetic fields have many applications to cosmic magnetic fields, ma
clouds, and magnetohydrodynamics in general.12–14 Two recent review articles15,16 discuss the
astrophysical significance of force-free magnetic fields; additionally, there is an older re
article by Michel.17 In comparison to force-free magnetic fields, the more general concept
force-free field has received less attention. Some work on general force-free fields has bee
by Chu and Ohkawa,18,19 who have investigated fields withE andB parallel. The investigations
most closely related to this article are the articles by Osherovich20,21and Osherovich and Gliner.22

The first two of these articles investigates oscillations of cylindrically symmetric force-free fi
the third presents an example of a force-free electromagnetic wave in one space and on
dimension. Central to these three papers is the use of the Poisson bracket to demon
functional dependence. We make extensive use of functional dependency between fiel
potentials as well.

The theory of force-free magnetic fields is well developed, but a theory of more ge
force-free fields is lacking. In this article, we partially fill this gap by introducing techniques
constructing force-free fields with nonvanishing electric charge density and with planar and
tional symmetry. Assuming Gaussian units, the static Maxwell equations are

¹"B50, ¹"E54pr,

a!Electronic mail: willisb@unk.edu
26100022-2488/2002/43(5)/2610/6/$19.00 © 2002 American Institute of Physics
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¹3B5
4p

c
J, ¹3E50.

Specifically, we construct fields for which

05J"E, 05rE1
1

c
JÃB.

We begin with the observations that when the charge densityr is nonzero, the second conditio
implies the first, and further, again whenr is nonzero, these conditions also imply thatE andB are
perpendicular.

We cover planar symmetry in Sec. II and rotational symmetry in Sec. III. Finally, in Sec
a general result on force-free null fields is given.

II. PLANAR SYMMETRY

In this section, we construct two types of force-free fields with planar symmetry. For the
field, we assume that the magnetic field is parallel to thez axis, and for the second we assume th
the electric and magnetic fields are coplanar.

For the first case, we setE52¹F andB5gk, where the functionsF andg arez indepen-
dent andk is the standard Cartesian unit vector. The Maxwell equations divB50 and curlE50
are satisfied whileJ"E50 implies

05gyFx2gxFy ,

where the subscripts indicate partial derivatives. From this we conclude that¹F and ¹g are
parallel; therefore,F and g are functionally dependent. Thus we introduce a functionU:R1

→R1 for which g5U(F). @Here, and throughout this paper, byU(F) we mean the composition
of U with F.# Using this relation to eliminateg in the expression for the Lorentz force density, w
obtain a nonlinear Schro¨dinger equation for the potential

2DF1~UU8!~F!50. ~1!

The functionU is arbitrary; however, ifU(x)5kAx21c2, wherek andc are real constants, Eq
~1! reduces to a Helmholtz equation. In this case, the charge density is proportional to the e
potential.

AssumingF is a function of the cylindrical coordinater only, the solutions to Eq.~1! have a
simple representation. ProvidedE vanishes toward infinity, the fields are given by

E~r !56S g2~r !1~2/r 2!E
r

`

sg2~s!dsD 1/2

er ,

B~r !5g~r !ez ,

whereg is any integrable function that vanishes sufficiently rapidly toward infinity ander andez

are the usual cylindrical coordinate unit vectors. The electric field diverges like 1/r toward the
origin. As an example, let

g~r !52
s exp~2r /m!

&pm
,

wherem ands are real positive constants. Then
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E~r !56
sA2 r 212 mr 1m2 exp~2r /m!

2 pmr
er ,

B~r !52
s exp~2r /m!

&pm
ez .

The charge per unit length is7s.
For the second case, we assume thatE and B are coplanar. To proceed, we introduce

analytic functionu1 iv and we setE andB equal to

E5¹H~u!5H8~u!¹u, B5g~u,v !¹v,

whereH:R1→R1. Sinceu1 iv is analytic,¹u•¹v50; consequently,E"B50. Using the fact that
the Laplacian ofv vanishes, the Maxwell equation divB50 implies that the functiong depends
on u only. Substitutingg(u,v)5U(u), whereU is an arbitrary function, in the force-free cond
tion yields

rH8~u!¹u1U~u!U8~u!~¹u3¹v !3¹v50. ~2!

After expanding the vector products and verifying thatr5H9(u)i¹ui2, we find that Eq.~2!
reduces to a scalar differential equation

H8H92UU850.

ThusU andH are related byU25H821k, wherek is an integration constant. To generate radia
symmetric fields, letu1 iv5 log(x1iy). Then

E~r !5h~r !er , B~r !56Ah2~r !1k/r 2eu ,

where h is an arbitrary smooth function andk is a constant. Finally, ifk50 and assuming
integrability, the field satisfiesE"B50 andE25B2; in the terminology of Barut,23 such a field is
known as a null field or a pure radiation field. For additional background on the significan
null fields, the reader may also consult Parrott.24

Section III examines rotational symmetry.

III. ROTATIONAL SYMMETRY

We now construct two types of force-free fields that have rotational symmetry. First
assume the magnetic field is purely azimuthal; and second, we assume that the azimuthal
nents of the electric and magnetic fields vanish.

For the first case we use circular cylindrical coordinates and we set

E52¹F52F rer2Fzez , B5geu ,

whereF and g are u independent. The Maxwell equations curlE50 and divB50 are satisfied
while the Lorentz force density is zero provided that

F r~~rF r !r1rFzz!5g~rg !r , ~3!

Fz~~rF r !r1rFzz!5g~rg !z . ~4!

Eliminating Fzz from these equations, we find that

~rg !zF r5~rg !rFz .
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Thus there is a functionU:R1→R1 for which rg5U(F). Eliminating g from ~3! and ~4!, we
derive a single equation for the potential

2DF1~U8U !~F!/r 250. ~5!

In general, this is a nonlinear Schro¨dinger equation with potential 1/r 2; however, assuming tha
U(x)5kx, wherek is a real constant, Eq.~5! reduces to the linear equation

F rr 1F r /r 1Fzz5k2F/r 2.

A general solution of this equation is

F~r ,z!5r kE
21

1

~12s2!k21/2~A~ iz1rs!1B~2 iz1rs!!ds,

where A and B are arbitrary functions andi is the imaginary unit. Choosingk51/2, A(x)
5 i /x3, andB(x)50, we find

F~r ,z!52
2Arz

~z21r 2!2 .

For the second case, we assume that the azimuthal components of the electric and m
fields vanish. In spherical coordinates the fields are given by

E52¹F52F rer2Fueu /r ,

B5g~Fuer /r 2F reu!/r sinu,

whereF and g depend only onr and u and are independent of the azimuthal variablew. The
Maxwell equation¹"B50 implies F and g are functionally dependent; thus we defineg by g
5U(F). We can show that the field is force-free provided that

05¹"S U22r 2 sin2 u

r 2 sin2 u
¹F D2UU8i¹Fi2/2 r 2 sin2 u. ~6!

Given the singularities in Eq.~6!, it is not clear that there are solutions that have a well-beha
charge density. Using numerical integration, we will give evidence that suggests that such
tions do exist. A Lagrangian densityL for this equation is

FIG. 1. Angular dependence of the potential (n52) as a function of normalized angle (u/p) for three initial values of
Q(p/2).
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L~F,¹F,r !5~U22r 2 sin2 u!i¹Fi2/2 r 2 sin2 u.

If U is a power functionU(x)5ax21/n, wheren anda are nonzero real constants, then Eq.~6!
has separated variable solutions of the formF(r ,u)5Q(u)/r n. For n51, a solution is

F5&a/r sinu.

For n52, a series expansion reveals there is a solution that behaves like

Q5u4 ~q022q0u2/31q0 u4/51¯ !, u→0,

whereq0PR is arbitrary. Using numerical integration and initial conditionsQ(p/2)50.1, 0.2, and
0.3 andQ8(0)50, we get the results shown in Fig. 1. As the series solution suggests,
solution approaches zero toward the poles sufficiently rapidly to make the charge densit
behaved there. A graph of the charge density for the caseQ(0)50.1 is shown in Fig. 2.

IV. NULL FIELDS

In this section, we give a rule for transforming one force-free null field into another field
the same properties.

Let E52¹F andB be force-free and null. ThusE"B50 andiEi5iBi . Define a new field
~the field with a caret! by Ê 5s(F)E and B̂ 5m(F)B. The field with a caret satisfies curlE
50 and divB50; further, its Lorentz force density is

r̂ Ê 1 Ĵ Ã B̂ 5~~m22s2!¹"E1~mm82ss8!iEi2!E.

If m56s, the field with a caret is force-free and null.

V. CONCLUSION

We have introduced techniques for constructing force-free electromagnetic fields. In
cases, we established a relation between force-free fields and nonlinear Schro¨dinger equations.
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FIG. 2. Charge density (n52) as a function of normalized angle (u/p) for Q(p/2)50.1.
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Enstrophy is an averaged measure of fluid vorticity. This quantity is particularly
important inrotating geophysical flows. We investigate the dynamical evolution of
enstrophy for large-scale quasi-geostrophic flows under random wind forcing. We
obtain upper bounds on the enstrophy, as well as results establishing its Ho¨lder
continuity and describing the small-time asymptotics. ©2002 American Institute
of Physics.@DOI: 10.1063/1.1459755#

I. INTRODUCTION

Randomness is ubiquitous in fluid systems. Macroscopic partial differential equation m
for fluid flows contain such randomness as stochastic forcing, uncertain parameters, r
sources, and random boundary conditions.

There has been active recent research on stochastic approaches to geophysical flow1–5 and
numerical simulations of stochastically forced geophysical flows.6–10 It is generally understood
that random fluctuations can have delicate impact on geophysical fluid dynamics.1,3,6,7,11

A class of large-scale geophysical flows under random forcing are modeled by the
geostrophic equation:1

Dc t1J~c,Dc!1bcx5nD2c2rDc1Ẇ, ~1!

wherec(x,y,t) is the stream function (cxª]xc), b>0 is the meridional gradient of the Corioli
parameter,n.0 is the viscous dissipation constant,r .0 is the Ekman dissipation constant, an
W(x,y,t) is a space–time Wiener process to be defined below on a probability space~V,A,P!.
Moreover,J( f ,g)5 f xgy2 f ygx denotes the Jacobian operator. The generalized time derivativẆ
models the noisy wind forcing.

Introducingv(x,y,t)5Dc(x,y,t), Eq. ~1! can be rewritten in the form

v t1J~c,v!1bcx5nDv2rv1Ẇ, ~2!

where (x,y)PD andD,R2 denotes a bounded domain with sufficiently smooth boundary.
boundary conditions are no normal flow~c50 on ]D! and free-slip~v50 on ]D! as in Pedlosky
~Ref. 12, p. 34! or in Dymnikov and Kazantsev:13

c5v50 on ]D. ~3!

An appropriate initial conditionv~0! is also imposed.
The mean enstrophy for a fluid flow is half the squared mean-square norm of the vorticit14,15

i.e., we have

a!Present address: Institut fu¨r Mathematik, RWTH Aachen, D-52056 Aachen, Germany.
26160022-2488/2002/43(5)/2616/11/$19.00 © 2002 American Institute of Physics
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Ens~ t !5
1

2
•EE

D
uv~x,y,t !u2d~x,y!.

The enstrophy Ens(t) is an averaged measure of fluid vorticityv(t). In this article, we discuss the
time evolution of the enstrophy. We present results which establish upper bounds on the ens
as well as results on Ho¨lder continuity and small-time asymptotics for Ens(t). These results are
contained in Secs. III, IV, and V, respectively. The mathematical framework for our discuss
described in Sec. II.

II. MATHEMATICAL FRAMEWORK

As it stands, the stochastic quasi-geostrophic equation~2! still has to be given a mathemat
cally precise meaning. This can be accomplished using the framework of stochastic partial
ential equations, as described, for example, in Ref. 16. In our situation, we formally rewrite~2! in
the Ito formulation

dv5~nDv2rv2bcx2J~c,v!!dt1dW. ~4!

In the following we use the abbreviationsL25L2(D), L`5L`(D), H0
k5H0

k(D), Hk5Hk(D),
0,k,`, for the standard Sobolev spaces. Let^•,•& and i•i denote the standard scalar produ
and norm inL2, respectively. Moreover, the norms forH0

k and L` are denoted byi•iHk and
i•i` , respectively. Due to the Poincare´ inequality ~Ref. 17 p. 164!, the expressioniD•i is an
equivalent norm forH0

2. It is well-known that the operatorA5nD:L2→L2 with domainD(A)
5H2ùH0

1 is self-adjoint. Note thatA generates an analytic semigroupS(t) on L2.18 The spectrum
of A consists of eigenvalues 0.l1.l2>l3>¯ with corresponding normalized eigenfunction
w1 , w2 ,... . The set ofthese eigenfunctions is complete inL2. For example, for the square doma
D5(0,1)3(0,1) the eigenvalues are given by2n(m21n2)p2 for m,nPN, and the associated
eigenfunctions are suitable multiples of sin(mpx)sin(npy).

Now we can define an appropriate class of Wiener processesW. Let bk , kPN, denote a
family of independent real-valued standard Brownian motions. Furthermore, choose positiv
stantsmk , kPN, such that

(
k51

` mk
2

ulku12u ,` ~5!

for some 0,u,1. Then we consider the Wiener processW defined by

W~ t !ª(
k51

`

mk•bk~ t !•wk , t>0. ~6!

Note that we explicitly allow Wiener processesW whose covariance operator is not of trace cla
i.e., for which(k51

` mk
25`.

For the domainD we basically assume that the eigenfunctionswk of A satisfy

wkPC0~D̄ !, uwk~x,y!u<C,
~7!

u¹wk~x,y!u<CAulku,

for all (x,y)PD andkPN, whereC.0 denotes a constant which depends only onD. Domains
D which satisfy these conditions include rectangular domains, as well as equilateral tria
Unfortunately, there are many domains for which they are violated. See, for example, Re
However, in this paper it is conjectured that in~7! one generally should expect an upper bou
which is logarithmic inulku. Even though our results remain valid in this situation, we will assu
the above stronger condition.
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Under the above assumptions, Theorem 5.2.9 in Ref. 20 guarantees that the stochas
volution

WA~ t !5E
0

t

S~ t2s!dW~s!, t.0, ~8!

has a continuous version with values inC0(D), the Banach space of continuous functions sa
fying zero Dirichlet boundary conditions onD. To be more precise,WA has a version which is
even Hölder continuous with some small exponent, which depends on the asymptotic behav
the coefficientsmk .

If we define the nonlinear operatorF by F(v)52rv2bcx2J(c,v), then ~4! can be re-
written as the abstract evolution equation together with initial condition

dv5~Av1F~v!!dt1dW,
~9!

v~0!5v0 .

For technical reasons we translate the operatorA by a suitable multiple of the identity. Consider
constanta>0 which will be chosen later on, usually sufficiently large. DefiningAaªA2aI , we
get the initial value problem

dv5~Aav1F~v!1av!dt1dW,

v~0!5v0

or in mild ~integral! form

v~ t !5Sa~ t !v01E
0

t

Sa~ t2s!~F~v~s!!1av~s!!ds1WAa
~ t !, ~10!

where the analytic semigroupSa is given bySa(t)5e2ta
•S(t) for t.0 and the stochastic con

volution WAa
(t) is defined as in~8! with the semigroupS replaced bySa . Finally, let Uªv

2WAa
. ThenU is the weak solution of

] tU5AU1F~U1V!1aV,

U~0!5v0 ,

where we use the abbreviationVªWAa
. Notice that bothU andV depend ona.

III. ENSTROPHY ESTIMATE: UPPER BOUNDS

We begin by establishing upper bounds on the time evolution of the enstrophy Et)
5Eiv(t)i2/2. Improving thea priori estimate of Ref. 5 Sec. 3, we obtain

1

2
•

d

dt
iU~ t !i2<i¹U~ t !i2

•~«2n!

1iU~ t !i2
•~~«2r 1c1b!1C•iVi`•~11C«•iVi`!!

1C«•~r 1b1a2!•iVi`
2 1C•iVi`

3 1C«•iVi`
4 , ~11!

whereC denotes a generic constant which depends only onD, and whose specific value ma
change from line to line. Similarly,C« denotes a generic constant which depends only onD and
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«, where«.0 is some arbitrarily small number. The constantc1 denotes the optimal constant i
the Poincare inequalityiUi<c1i¹Ui for mean zero functionsU. For «,n the improveda priori
estimate immediately yields the following lemma.

Lemma 1: For anyg.2n•c1
222r 1c1•b there exist constants depending only ong, D, b,

and r which are all denoted by C such that

d

dt
iU~ t !i2<A~ t !iU~ t !i21B~ t !, t>0, ~12!

with

A~ t !52g1C•~ iVi`1iVi`
2 !,

~13!
B~ t !5C•~~11a2!•iVi`

2 1iVi`
4 !.0.

Together with Theorem I.6.1 in Ref. 21 this yields

iU~ t !i2<iv0i2
•e*0

t A(s)ds1E
0

t

B~s!e*s
t A(t)dtds, t>0. ~14!

Suppose for simplicity thatv0 andW are stochastically independent. It is possible to drop
assumption in this section, but in this case we additionally needEiv0i21d,` for some small
d.0.

The critical term for taking the expectation in~14! is the squaredL`-norm of V5WAa
in the

exponent, which is in general not finite. To complicate matters further, theL`-norm in the expo-
nent cannot easily be dealt with, since we do not have a Hilbert space structure.

For our situation we will improve on some ideas of Ref. 22. Using Fernique’s Theorem~Ref.

16, Theorem 2.6! we get thatP(tiV(t)i`
2 .r 2)<1/(11e1132lr 2

) implies E(eltiV(t)i`
2
)<e16lr 2

1e2/(e221) for any t,t,r ,l.0. Hence, by Jensen’s inequality

E~el*0
t iV(t)i`

2 dt!<
1

t
•E

0

t

E~eltiV(t)i`
2
!dt<Cl ,

providedP(tiV(t)i`
2 .1)<1/(11e1132l) for anyt<t. The latter inequality follows immediately

from Chebychev’s inequality, provided we have

t•EiV~t!i`
2 <

1

11e1132l ~15!

for any t<t. The following lemma is proven similarly as Ref. 16, Theorem 5.20.
Lemma 2: For any p>1 and any sufficiently smallu.0 there exists a constant C whic

depends only on p,u, and D such that for anyt>0

~16!

We remark that the assumption~7! on the eigenfunctions is essential for the proof of th
lemma. Notice also that the series in~16! is finite according to~5!. Lemma 2 implies that~15! is
satisfied for anyt<C/w(a). It is now straightforward to verify that

Eem*s
t A(t)dt<C•em(t2s)2g
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for any s<t<C/w(a) and m51,2, whereg and A(t) were defined in Lemma 1. Moreove
Lemma 2 implies forB(t) in ~13!

~EB~ t !2!1/2<C•~~11a2!•w~a!1w~a!2!

for any t.0. We finally obtain from~14! that

EiU~ t !i2<ES iv0i2
•e*0

t A(s)ds1E
0

t

B~s!e*s
t A(t)dtdsD

<Eiv0i2
•Ee*0

t A(s)ds1E
0

t

~EB~s!2!1/2~Ee2*s
t A(t)dt!1/2ds

<C•Eiv0i2
•e2gt1C•~~11a2!•w~a!1w~a!2!•E

0

t

e2gtdt ~17!

for any t<C/w(a). Using Eivi2<2EiUi212EiVi2, this immediately implies the following
theorem on upper bounds for the enstrophy.

Theorem 1 „upper bound…: Suppose thatv0 and W are stochastically independent and th
Eiv0i2,`. Moreover, letg.2n•c1

222r 1c1•b. Then EnsPL`(@0,T#) for any T.0. More
precisely,

Ens~ t !<C•Eiv0i2
•e2gt1C•w~a!

1C•~~11a2!•w~a!1w~a!2!•E
0

t

e2gtdt

for any t<C/w(a), with constants C independent of t, a, and v0 .
Remark 1: It can be shown that for any choice of p>1 similar bounds hold for

EsuptP[0,t] iU(t)i2p, provided bothEiv0i2p,` and t<C/w(a).
Moreover, all bounds onEiU(t)i2p or EsuptP[0,t] iU(t)i2p immediately imply analogous

bounds on Ens(t) or EsuptP[0,t] iv(t)i2p. For this one has to employ estimates f
EsuptP[0,t] iWAa

(t)i2p which can be obtained for example as in Ref. 23, Corollary 2.3.
In order to obtain a bound fort→`, we note that fora→` one obviously hasw~a!→0.

However, the rate of convergence is essential. To this end, we distinguish two cases. If we s
that (k51

` mk
2
•ulkuu,` for someu.0, then the estimatew(a)<(k51

` mk
2
•ulkuu/a is immediate—

and choosinga proportional tot in Theorem 1 furnishes

Ens~ t !<C•S Eiv0i2
•e2gt1t•E

0

t

e2gtdt11D for all t>0.

If, on the other hand,(k51
` mk

2
•ulkuu5`, we additionally assumemk

2<Ck2m for somemP~u,1#,
with arbitrarily smallu defined in Lemma 2.~For m.1 we can always find some smallu such that
the first case applies.! Using the fact thatulku;Ck for k→` ~cf. Ref. 24! we obtain

w~a!<C•(
k51

`
k2m

ck1a
•ku<C•E

0

` ku2m

ck1a
dk

5C•au2m
•E

0

` tu2m

ct11
dt.

Choosingam2u proportional tot in Theorem 1, we derive

Ens~ t !<C•S Eiv0i2
•e2gt1t2/(m2u)21

•E
0

t

e2gtdt11D for all t>0.
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Notice that 2/(m2u)21.1. We have proved the following result.
Theorem 2 „global upper bound…: Assume again thatv0 and W are stochastically indepen

dent, thatEiv0i2,`, and letg.2n•c1
222r 1c1•b. Then the following holds.

(a) If mk
2<Ck2m for somemP~0,1#, we can find am̃P(0,m) such that

Ens~ t !<C•S Eiv0i2
•e2gt1t (22m̃)/m̃

•E
0

t

e2gtdt11D for all t>0.

(b) If (k51
` mk

2
•ulkuu,` for someu.0, then

Ens~ t !<C•S Eiv0i2
•e2gt1t•E

0

t

e2gtdt11D for all t>0.

The constants C are independent of t andv0 , but they can depend onu, g, m, m̃, the domain
D, or the coefficients in (1).

Remark 2: If2n•c1
222r 1c1•b>0, then necessarilyg.0. In this case we obtain an expo

nentially growing upper bound forEns(t) with growth rate slightly larger than2n•c1
222r 1c1

•b.
If, on the other hand, 2n•c1

222r 1c1•b,0, then we can chooseg,0. This furnishes a
polynomial upper bound which grows at least linearly in time. The precise growth expone
determined by the regularity of the noise.

Remark 3: As we already stated in the beginning of this section, one can remove the co
of stochastic independence ofv0 and W in the previous theorem, if one additionally assum
Eiv0i21d,` for some smalld.

Our above results hold for a large class of noise processes, in particular also for more irr
Wiener processesW whose covariance operator is not of trace class. If, however, one assume
the Wiener process is of trace class, i.e., if Tr(Q)5(k51

` mk
2,`, then the results can be improve

significantly by employing Ito’s formula. One advantage of this approach is that it avoids
conditions on the eigenfunction in~7!. Therefore, we will briefly outline the main ideas.

By applying Ito’s formula~Ref. 16, Sec. 4.5! to the squaredL2-norm of the vorticityv(t), it
can easily be verified that

Eiv~ t !i252EE
0

t

^Av~t!1F~v~t!!,v~t!&dt1Tr~Q!•t,

where Tr(Q)5(k51
` mk

2 denotes the trace of the covariance operatorQ of W. Using calculations
analogous to the ones leading to thea priori estimate in Lemma 1, we formally obtain

] tEiv~ t !i252E^Av~t!1F~v~t!!,v~t!&1Tr~Q!

<2g•Eiv~ t !i21Tr~Q!,

whereg.2n•c1
222r 1c1•b as in Lemma 1. Hence, for anyt>0 we have

Ens~ t !<Ens~0!•e2g•t1Tr~Q!•
e2g•t21

4g
. ~18!

Especially if one can choose a growth exponentg,0, this significantly improves the estimates
Theorem 2, since in this case the right-hand side of~18! approaches2Tr(Q)/(4g) for t→`.

IV. ENSTROPHY ESTIMATE: HÖLDER CONTINUITY

In this section we establish regularity properties of the enstrophy as a function of time.
precisely, we will prove that Ens(t)5Eiv(t)i2/2 is Hölder continuous. To this end, we need th
following lemma from Ref. 5
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Lemma 3: Define a nonlinear mappingF:C(@0,T#;H0
1)→C(@0,T#;L2) by

~F~v!!~ t !ªE
0

t

S~ t2s!F~v~s!!ds, for tP@0,T#,

wherevPC(@0,T#;H0
1), and A and F are as in~9!. ThenF is continuous, and it can be extende

to a continuous mapping from the space C(@0,T#;L2) to C(@0,T#;L2). Furthermore, the image o
the extended mappingF is contained in C(@0,T#,Ha(D)) for 0<a, 1

2.

In fact, it is shown in Ref. 5 that for arbitrary positive constantsaP@0,1
4) and rP(0,1

4)
satisfying 0,r1a, 1

4 the estimate

I ~2A!aE
0

t

S~ t2s!F~v~s!!dsI
<

rc1bc

12a
•t12a

• sup
0<s<t

iv~s!i

1S 8c

124r24a
•t1/42r2a1

4c

122r22a
•t1/22r2aD • sup

0<s<t
iv~s!i2

holds. Especially fora50 we obtain

iF~v!~ t !i5 I E
0

t

S~ t2s!F~v~s!!dsI<~rc1bc!•t• sup
0<s<t

iv~s!i

1S 8c

124r
•t1/42r1

4c

122r
•t1/22rD • sup

0<s<t
iv~s!i2,

for every 0,r,1
4. Together with Theorem 1 and Remark 1 these bounds immediately furnis

following result.
Lemma 4: Suppose thatv0 and W are stochastically independent and that for some p>1 we

haveEiv0i2p,`. Moreover, let T.0 be arbitrary, and let aP@0,1
4) and rP(0,1

4) be such that
0,r1a, 1

4. Then there exists a constant C such that

Ei~2A!aF~v!~ t !ip<C•tp•(1/42r2a) for all t P@0,T#.

The following theorem states our main result on the regularity of the enstrophy. It wi
proved in the remainder of this section.

Theorem 3 „Hölder continuity …: Suppose thatv0 and W are stochastically independent an
that Eiv0i4,`. Then the enstrophyEns(•) defined byEns(t)5Eiv(t)i2/2 is Hölder continuous
with arbitrary exponent less than14 on every compact interval in(0,̀ ).

Remark 4: Note that in general we cannot expect the solutionv to be Hölder continuous with
arbitrary exponent less than14, since WA is in general less regular. As one can see from (10) w
a50, one cannot expectv to be more regular than WA .

To prove the above theorem establishing the Ho¨lder continuity of the enstrophy, we first defin

G~v!~ t !ªS~ t !v01F~v!~ t !. ~19!

According to~10! for a50, we therefore havev(t)5G(v)(t)1WA(t). Consider a fixed interva
J5@«,T#,(0,̀ ). For tPJ andh with t1hPJ the identity~10! then implies
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Eiv~ t1h!i22Eiv~ t !i25EiG~v!~ t1h!1WA~ t1h!i22EiG~v!~ t !1WA~ t !i2

5EiG~v!~ t1h!i22EiG~v!~ t !i212E^G~v!~ t1h!,WA~ t1h!&

22E^G~v!~ t !,WA~ t !&1EiWA~ t1h!i22EiWA~ t !i2

5 .. D112D21D3.

For simplicity we assumeh.0 in the following. The caseh,0 can be treated analogously.
We begin by estimatingD3 . Due to Ref. 25 one hasEiWA(•)i2PC`(0,̀ ). Hence,uD3u

<C•h for some constantC.0.
In order to estimateD2 , we define the shift-operatort t by t tv5v(t1•) for t.0. Then the

definitions ofG andF in ~19! and Lemma 3, respectively, furnish

G~v!~ t1h!5S~h!G~v!~ t !1F~t tv!~h!. ~20!

Since$v(s)%sP[0,t] is stochastically independent of$W(s)%sP[ t,t1h] we get

E^G~v!~ t1h!,WA~ t1h!&5EK S~h!G~v!~ t !,E
0

t

S~ t1h2s!dW~s!L 1E^F~t tv!~h!,WA~ t1h!&

5E^S~h!G~v!~ t !,S~h!WA~ t !&1E^F~t tv!~h!,WA~ t1h!&

and together with the self-adjointness ofS(h) we finally arrive at

D25E^~S~2h!2I !G~v!~ t !,WA~ t !&1E^F~t tv!~h!,WA~ t1h!&. ~21!

The boundedness ofEiWA(t)i2 on J and Lemma 4 now yield

uE^F~t tv!~h!,WA~ t1h!&u<~EiF~t tv!~h!i2!1/2
•~EiWA~ t1h!i2!1/2<C•h1/42r.

As for the first term in~21!, notice that

i~S~h!2I !vi<E
0

h

i~2A!S~s!vids<C•ha
•i~2A!avi ~22!

for any vPD((2A)a), with a constantC which depends onaP@0,1). Thus,

uE^~S~2h!2I !G~v!~ t !,WA~ t !&u

<C•h1/42r
•~Ei~2A!1/42rF~v!~ t !i21Ei~2A!1/42rS~ t !v0i2!1/2

for anyrP(0,1
4). Together withi(2A)1/42rS(t)v0i<C•«r21/4

•iv0i and Lemma 4 we eventu
ally obtain

uD2u<C•h1/42r. ~23!

Finally we turn our attention toD1 . Its definition and~20! imply

As in the discussion leading to~23!, we obtain for anyãP@0,1
4)
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uE^~S~h!2I !G~v!~ t !,DG&u<C•h2ã
•E~ i~2A! ãG~v!~ t !i•i~2A! ãDGi ! <C•h2ã. ~24!

Using again Lemma 4 we further derive

uE^F~t tv!~h!,DG&u<C•~EiF~t tv!~h!i2!1/2
•~EiiDGi2!1/2<C•h1/42r. ~25!

Combining~24! for fixed ã near 1
4 with ~25! furnishesuD1u<C•h1/42r, and we finally obtain

uEns~ t1h!2Ens~ t !u<C•h1/42r

for arbitraryrP(0,1
4). This completes the proof of Theorem 3.

V. ENSTROPHY ESTIMATE: ASYMPTOTICS

In Sec. III we established upper bounds on the growth of the enstrophy Et)
5Eiv(t)i2/2. Unfortunately, these bounds fail to accurately describe the dynamics of Enst) as
t→0. For example, the bound derived in Theorem 1 will generally not even converge to Ens
t→0. Therefore, this section is devoted to investigating the small-time asymptotics of the e
phy. Similar to Ref. 25 and 26 this will be accomplished by relating Ens(t) to the stochastic
convolution.

In order to bound the growth ofEiWA(t)i2, we assume that the coefficientsmk in ~6! are
bounded bymk

2<cm•k2d for somedP(0,1) and some positive constantcm.0. In this situation
we obtain similar to Ref. 25, Theorem 5.4, the estimate

EiWA~ t !i2<C0•td ~26!

for arbitrarytP@0,T#, whereC0 denotes a positive constant which depends onT. Using the mild
integral form~10! we further get

iv~ t !2v02WA~ t !i<i~S~ t !2I !v0i1iF~v!~ t !i .

If we now assume thatEiv0i4,`, then an application of Lemma 4 furnishes

Eiv~ t !2v02WA~ t !i2<2Ei~S~ t !2I !v0i212EiF~v!~ t !i2

<2Ei~S~ t !2I !v0i21C•t1/222r

<C•t2g
•Ei~2A!gv0i21C•t1/222r ~27!

for fixed rP~0,1
4! andgP@0,1!. Thus, the additional assumptionEi(2A)gv0i2,` for some small

gP@0,1! implies

Eiv~ t !2v02WA~ t !i2<C•t2g.

Hence,

~Eiv~ t !i2!1/2<~Eiv0i2!1/21~EiWA~ t !i2!1/21~Eiv~ t !2v02WA~ t !i2!1/2

5~Eiv0i2!1/21O~ tg1td/2!.

Similarly one obtains

~Eiv~ t !i2!1/2>~Eiv0i2!1/22~EiWA~ t !i2!1/22~Eiv~ t !2v02WA~ t !i2!1/2

5~Eiv0i2!1/21O~ tg1td/2!,

and together these estimates show thatEiv(t)i25Eiv0i21O(tg1td/2). If, on the other hand, we
havev050, then~27! implies
                                                                                                                



han

wind

sota,
arch in
nt

s in

l,’’ in
nch-
ersity)

e,

e,

2625J. Math. Phys., Vol. 43, No. 5, May 2002 Enstrophy dynamics of geophysical flows

                    
Eiv~ t !2WA~ t !i2<t1/222r,

which analogously results inEiv(t)i25EiWA(t)i21O(t
1
42r1d/2). Using the definition of Ens,

this furnishes the following result on the small-time asymptotics of the enstrophy.
Theorem 4„asymptotics…: Assume thatEi(2A)gv0i2,` for some small constantg.0 and

that Eiv0i4,`. Furthermore, suppose that (26) holds for some smalld.0. Then

Ens~ t !5 1
2 •Eiv0i21O~ tg1td/2!.

If in addition we havev050 and letrP(0,1
4) be arbitrary, then

Ens~ t !5 1
2 •EiWA~ t !i21O~ t ~112d!/4 2r!.

Notice that in the casev050 the second term on the right-hand side is of higher order t
EiWA(t)i2/2 only under additional assumptions. For this we needd,1

222r, as well as a suitable
lower bound on the growth of the first termEiWA(t)i2/2 for small values oft. The latter can be
achieved by imposing a lower bound on the growth of the coefficientsmk . For details we refer the
reader to Refs. 25 and 27.

VI. SUMMARY

The enstrophy Ens(t)5Eiv(t)i2/2 is an averaged measure of fluid vorticityv(t). We have
investigated the enstrophy evolution of large-scale quasi-geostrophic flows under random
forcing. Thereby we have obtained results on upper bounds~Theorems 1 and 2!, Hölder continuity
~Theorem 3!, as well as small-time asymptotics~Theorem 4! for the enstrophy.
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Annihilation-diffusion processes: An exactly solvable
model
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A family of diffusion-annihilation processes is introduced, which is exactly solv-
able. This family contains parameters that control the diffusion and annihilation
rates. The solution is based on the Bethe ansatz and using special boundary condi-
tions to represent the reaction. The processes are investigated, both on the lattice
and on the continuum. Special cases of this family of processes are the simple
exclusion process and the drop-push model. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1466532#

I. INTRODUCTION

In recent years, the asymmetric exclusion process and the problems related to it, includi
example, the biopolymerization,1 dynamical models of interface growth,2 traffic models,3 the
noisy Burgers equation,4 and the study of shocks,5,6 have been extensively studied. The dynami
properties of this model have been studied in Refs. 6–8. As the results obtained by approac
mean field are not reliable in one dimension, it is useful to introduce solvable models and an
methods to extract exact physical results. Among these methods is the coordinate Bethe
which was used in Ref. 9 to solve the asymmetric simple exclusion process on a one-dime
lattice. In Ref. 10, a similar technique was used to solve the drop-push model,11 and a generalized
one-parameter model interpolating between the asymmetric simple exclusion model and th
push model. In Ref. 12, this family was further generalized to a family of processes with arb
left- and right-diffusion rates. All of these models were lattice models. Finally, the behavior o
latter model on continuum was investigated in Ref. 13. The continuum models of this kind ar
investigated in Refs. 14 and 15.

In the generalized model interpolating between the asymmetric simple exclusion mod
the drop-push model,10,12,13 there are two parametersl and m, which control the pushing rate
Normalizing the diffusion rate to one, it is seen that the sum of these two parameters should
to ensure the conservation of probability. These two parameters appear in the boundary co
used instead of the reaction. The question arises of what happens if this conservation of pro
is violated. This is what is investigated in the present paper. The main point of the paper is th
Bethe-ansatz approach, which is normally used for exactly solvable systems with constant n
of particles, can also be used for some exactly solvable systems in them the number of p
decreases.

The scheme of the paper is the following. In Sec. II, the allowed boundary condition
investigated. It is shown that ifl1m,1, then the number of the particles will be decreasing, t
is, there is an annihilation process as well. It is shown that one can in fact write a two-parti
one-particle annihilation process which results in such a boundary condition.

In Sec. III, the Bethe-ansatz solution for theN-particle probability of this process is obtaine
and its large-time behavior is investigated. This is done for the process on the lattice as wel
the continuum. Finally, in Sec. IV the special case of the two-particle initial condition is f

a!Electronic mail: roshani@iasbs.ac.ir
b!Electronic mail: mamwad@iasbs.ac.ir
26270022-2488/2002/43(5)/2627/9/$19.00 © 2002 American Institute of Physics
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investigated, and it is explicitly shown that at large times, there remains only one particle.
special value of the annihilation rate, an explicit form for the one-particle density is also obta

II. BOUNDARY CONDITIONS

Consider the following master equation for an asymmetric exclusion process:

]

]t
P~x1 ,x2 ,...,xN ;t !5P~x121,x2 ,...,xN ;t !1P~x1 ,x221,...,xN ;t !1¯

1P~x1 ,x2 ,...,xN21;t !2NP~x1 ,x2 ,...,xN ;t !. ~1!

This equation describes a collection ofN particles drifting to the right with unit rate. If the
particles are to exclude each other, that is if no two particles are to occupy the same site, t~1!
is valid only for

xi,xi 1121. ~2!

One can, however, assume that~1! is correct for all of the physical regionxi,xi 11 , and impose
certain boundary conditions forxi5xi 11 . Note that if xi5xi 1121 for some i , then on the
right-hand side of~1! there will be terms withxi5xi 11 , which is out of the physical region. Th
boundary condition determines the nature of the interaction between particles. But what a
allowed boundary conditions? Let us rewrite~1! for the case of two particles and use the cons
vation of probability. We arrive at

]

]t (
x2

(
x1,x2

P~x1 ,x2 ;t !5(
x2

(
x1,x2

P~x1 ,x2 ;t !2(
x

P~x,x11;t !

1(
x2

(
x1,x2

P~x1 ,x2 ;t !1(
x

P~x,x;t !22 (
x2

(
x1,x2

P~x1 ,x2 ;t !,

52(
x

P~x,x11;t !1(
x

P~x,x;t !. ~3!

If the right-hand side of~3! is to be identical to zero, thenP(x,x) should be a linear combinatio
of P(x211 i ,x1 i )’s. This may work for the two-particle process, but in many-particle proce
it may introduce terms withxi.xi 11 , which need additional boundary conditions. The on
exception is whenP(x,x) is a linear combination of onlyP(x,x11) andP(x21,x). So one can
write

P~x,x!5lP~x,x11!1mP~x21,x!. ~4!

Inserting this in~3!, one arrives at

]

]t (
x2

(
x1,x2

P~x1 ,x2 ;t !5~l1m21! (
x

P~x,x11;t !. ~5!

In order that the right-hand side of~5! be zero, one must impose

l1m51. ~6!

This is the boundary condition used in Refs. 10, 12, and 13.
This kind of boundary condition ensures the conservation of particle number. But in a pr

where annihilation exists as well, the number of the particles is not conserved; it is decreas
is seen that if
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l1m,1, ~7!

then the probability of finding two particles is decreasing. Suppose one begins with two par
They drift to right with unit rate. If they meet each other, either the left particle is stopped, o
of them is annihilated. That is, we have the following processes:

AB→BA, with rate 1,

AA→BA, with rate a, ~8!

AA→AB, with rate b.

In this case, still the more-than-two particle densities are zero, since no particles are gen
during the process. But the two-particle density does not determine the one-particle densit
the summation of the former need not be a constant~one!. It is seen that the master equation f
the two-particle probability is

]

]t
P~x1 ,x2 ;t !5P~x121,x2 ;t !1P~x1 ,x221;t !22P~x1 ,x2 ;t !, x1,x221, ~9!

and

]

]t
P~x,x11;t !5P~x21,x11;t !2~11a1b!P~x,x11;t !. ~10!

But ~10! is the same as~9!, provided one uses the boundary condition

P~x,x!5lP~x,x11!, ~11!

with

l512~a1b!. ~12!

So the difference 12l is in fact related to the annihilation rate, as expected. There is one o
thing to be noted. As the number of particles is not conserved, one cannot calculate th
particle probability by a simple summation of the two-particle probability. That is,

P~x!Þ(
y.x

P~x,y!1(
y,x

P~y,x!. ~13!

In fact, for the process described, the particles interact and annihilate each other, unti
remains only one particle. This means that att→`, there will be only one particle. So th
more-than-one-particle probabilities will tend to zero, whereas the summation of the one-p
probability tends to one. However, if the initial condition is that there areN particles, one can
write differential equations forn-particle probabilities in whichn-particle probabilities andn
11-particle probabilities occur~if n,N!. For n.N, then-particle probability is identically zero
and the equation for theN-particle probability is closed. So, in principle, one can find t
N-particle probability first and use this to find less-than-N-particle probabilities. To be specific, th
evolution equation for the one-particle probability is

]

]t
P~x;t !5@P~x21;t !2P~x21,x;t !#2@P~x;t !2P~x,x11;t !#

2aP~x,x11;t !2bP~x21,x;t !. ~14!
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III. BETHE-ANSATZ SOLUTION FOR THE N-PARTICLE PROBABILITY

Consider the master equation~1!, with the boundary condition

P~ ...,x,x,...!5lP~ ...,x,x11,...!, ~15!

wherel,1. Following Refs. 9, 10, 12, and 13, one can obtain the conditional probability usin
Bethe ansatz. Writing

P~x;t !5eEtC~x!, ~16!

and

C~x!5(
s

Aseis(p)•x, ~17!

where the summation runs over the elements of the permutation group, one arrives at

E52N1(
j

e2 ip j , ~18!

and

Ass i
5S@s~pi !,s~pi 11!#As , ~19!

wheres is that permutation which only interchangespi andpi 11 . One also finds that

SjkªS~pj ,pk!52
12leipk

12leip j
. ~20!

This is the same as what found in Refs. 10 and 12 withm50, and if one putsl51, the result of
Ref. 9 is obtained. The conditional probability is thus written as

P~x;tuy;0!5E dNp

~2p!N Cp~x!eE(p)t2 ip•y, ~21!

whereC is defined as~17! with Aidentity51. This looks like similar to what obtained in Refs. 9, 1
and 12. There is, however, a difference. Asl,1, there is no pole inS, and hence inA. So for large
times, when the probability distribution becomes smooth and its Fourier transform for
frequencies tends to vanish, one can putpj50 in S as an approximation to arrive at

S'21, ~22!

and

As'~21!s. ~23!

One can also approximateE(p) as

E~p!'(
j

S 2 ip j2
pj

2

2 D . ~24!

So, for large times,

P~x;tuy;0!'
1

~2pt !N/2 (
s

~21!s expS 2(
j

[xj2s(yj )2t] 2/(2t) D . ~25!
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It is clearly seen that the integral of this distribution over the physical region tends to ze
t→`. This should be the case, since the number of the particles does not remain consta
decreases.

Using the boundary condition~4! with ~7!, does not change the results drastically. In factE
does not change at all, whileS is changed to

Sjk52
12leipk2me2 ip j

12leip j2me2 ipk
. ~26!

The approximate result for large times does not depend onl or m, so long as their sum is less tha
1.

One can also investigate the continuous-space form of the evolution. Following Ref. 1
master equation is changed to

]

]t
P~x;t !52(

j
] j P~x;t !1

1

2 (
j

] j
2P~x;t !, ~27!

and the boundary condition to

~12l2m2l] j 111m] j !Puxj 115xj
50. ~28!

Using the Galilean transformationxi→xi1vt and t→t, the master equation~27! is simplified to

]

]t
P~x;t !5

1

2
¹2P~x;t !. ~29!

Using a Bethe-ansatz solution like~16! and ~17!, one arrives at

E52
1

2 (
j

pj
2 , ~30!

and

Sjk52
12l2m2 ilpk1 impj

12l2m2 ilpj1 impk
. ~31!

For large times, one can approximateS to 21, and arrive at a result similar to~25!. The difference
is that in the exponent the termxj2t2s(yj ) is replaced byxj2s(yj ), as the Galilean transfor
mation used has canceled the drift from the master equation.

IV. TWO-PARTICLE SYSTEMS AND THE EXACT SOLUTION

As was seen in Sec. III, the conditional probability for the two-particle system describe
~9! and ~11! is

P~x;tuy;0!5E d2p

4p2 eEt2 ip•y3Fei (p1x11p2x2)2
12leip2

12leip1
ei (p1x21p2x1)G , ~32!

whereE is obtained from~18!. This integration is easily done and the result is
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P~x;tuy;0!5e22t
tx12y1

~x12y1!!

tx22y2

~x22y2!!

1e22t(
l 50

`
t l 1x22y1

~ l 1x22y1!!

tx12y2

~x12y2!!
l l S 211

lt

x12y211D . ~33!

Another interesting quantity is the average number of the particles. This is equal t
summation of the one-particle probability:

N~ t !ª(
x

P~x;t !. ~34!

Using ~14!, one arrives at

Ṅ52~a1b!(
x

P~x21,x;t !

52
12l

l (
x

P~x,x;t !. ~35!

The right-hand side can be calculated using the Bethe-ansatz solution directly. Using~32!, one has

(
x

P~x,x;t !5E d2p

2p
d~p11p2!@11S~p1 ,p2!#eEt2 i (p1y11p2y2)

5lE dp

2p
e2t(cosp21)1 ip(y22y1)

e2 ip2eip

12leip

5lE dp

2p
e2t(cosp21)1 ip(y22y1)3 (

m50

`

lm@ei (m21)p2ei (m11)p#

5l (
m50

`

e22tlm@ Iy22y11m21~2t !2Iy22y11m11~2t !#

5l (
m50

`

e22tlm
y22y11m

t
Iy22y11m~2t !, ~36!

where I denotes the modified Bessel function. This can be inserted in~35! to obtain

N~ t !5N~0!2
12l

l E
0

t

dt8(
x

P~x,x;t8!

5N~0!2~12l! (
m50

` E
0

t

dt8 e22t8lm
y22y11m

t8
Iy22y11m~2t8!. ~37!

This is simplified fort→`. Using

E
0

`

ds
e2s

s
In~s!5

1

n
, ~38!

one arrives at
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N~`!5N~0!2~12l! (
m50

`

lm5N~0!21. ~39!

But note that

N~0!52, ~40!

since at the beginning there were two particles aty1 andy2 . That is,

P~x;0!5d~x2y1!1d~x2y2!. ~41!

So, att→`, there remains only one particle, as one of the two particles has been annihila
The continuous-space analog of this model can also be solved easily. Using~29! as the master

equation, and~30! and ~31! ~with m50!, one is led to

P~x;tuy;0!5E d2p

4p2 eEt2 ip•y

3Fei (p1x11p2x2)2
12l2 ilp2

12l2 ilp1
ei (p1x21p2x1)G . ~42!

Using the change of variablepªp11 i (12l)/l in the second integral,~42! is written as

P~x;tuy;0!5
1

2pt
e2[(x12y1)21(x22y2)2]/(2t)1

1

A8pt

3FA1
x12y2

t Ge2(x12y2)2/(2t)e[2A(x22y1)1tA2]/23H 211erfF 1

A2t
~x22y11tA!G J ,

~43!

where

Aª
12l

l
. ~44!

One notes that att→`, the conditional probability is simplified. We have

12erf~x!'
e2x2

xAp
, for large x. ~45!

From this, it is seen that att→`,

P~x;tuy;0!'
1

2pt
$e2[(x12y1)21(x22y2)2]/(2t)2e2[(x12y2)21(x22y1)2]/(2t)%. ~46!

This is a special case of what was obtained in Sec. III.
Another quantity to be considered is the one-point probability. In the continuum limit,

after performing the Galilean transformation,~14! becomes

]

]t
P~x;t !5

1

2

]2

]x2 P~x;t !1~]11]2!P~x,x;t !2@a~11]2!1b~12]1!#P~x,x;t !. ~47!

From this, using the boundary condition~28!, with m50, one arrives at
                                                                                                                



ct that

ihi-

or

2634 J. Math. Phys., Vol. 43, No. 5, May 2002 F. Roshani and M. Khorrami

                    
Ṅ~ t !52
12l

l E dx P~x,x;t !, ~48!

where

N~ t !ªE dx P~x;t !. ~49!

Using ~42!, the integral at the right-hand side is calculated to be

E dx P~x,x;t !5E dp

2p

22ilp

12l2 ilp
e2tp21 ip(y22y1). ~50!

To obtainN(`), one integrates~50! from 0 to `. This results in

E
0

`

dtE dx P~x,x;t !5
l

p
PE dp

ip

eip(y22y1)

12l2 ilp
5

l

12l
. ~51!

The symbol P denotes the Cauchy’s principle value, and use has been made of the fa
y2.y1 . From this, it is found that

N~`!5N~0!2151. ~52!

This is the same result obtained for the lattice, as expected.
The special casel50. l50, or a1b51, means that the diffusion rate is equal to the ann

lation rate. This criterion simplifies the boundary condition to

P~x,x;t !50. ~53!

Using this, it is easily seen that the two-point function on the continuum is

P~x;tuy;0!5
1

2pt
$e2[(x12y1)21(x22y2)2]/(2t)2e2[(x12y2)21(x22y1)2]/(2t)%. ~54!

One notes that this means that the approximate result~46! for large times is here an exact result f
all times.

For the one-point function on the continuum, using~47! and ~53!, one arrives at

Ṗ~x;t !5
1

2

]2

]x2 P~x;t !2]2P~x,x;t !. ~55!

This is a diffusion equation with a sink term. The solution to it is

P~x;t !5
1

A2pt
E dx8 e2(x2x8)2/(2t)P~x8;0!

1E
0

t

dt8E dx8
1

A2p~ t2t8!
e2(x2x8)2/[2(t2t8)]3@2]2P~x8,x8;t8!#, ~56!

which can be simplified as
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P~x;t !5
1

A2pt
@e2(x2y1)2/(2t)1e2(x2y2)2/(2t)#

2E
0

t

dt8
y22y1

A4p2t83~2t2t8!
e2(y22y1)2/(4t8)e2(x2Y)2/(2t2t8), ~57!

where use has been made of the initial condition

P~x;0!5d~x2y1!1d~x2y2!, ~58!

with y2.y1 , and we have defined

Yª
y11y2

2
. ~59!

From ~57!, one can also obtain the explicit time dependence ofN, the particle number. This is th
integral of the one-point function, and we have

N~ t !522E
0

t

dt8
y22y1

2Apt83
e2(y22y1)/(4t8), ~60!

which can be simplified as

N~ t !511erfS y22y1

2At
D . ~61!

It is clearly seen that this quantity tends to 1 ast→`, as is expected. One also notes that the ti
scale for annihilation is the square of the initial distance between the particles. This is
expected, as after a time of this order the particles reach each other.
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The dilute A 4 model, the E 7 mass spectrum
and the tricritical Ising model a…
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The exact perturbation approach is used to derive the~seven! elementary correla-
tion lengths and related mass gaps of the two-dimensional dilute A4 lattice model in
regime 22 from the Bethe Ansatz solution. This model provides a realization of the
integrablef (1,2) perturbation of thec5 7

10 conformal field theory, which is known
to describe the off-critical thermal behavior of the tricritical Ising model. The
E7 masses predicted from purely elastic scattering theory follow in the approach
to criticality. Universal amplitudes for the tricritical Ising model are
calculated. ©2002 American Institute of Physics.@DOI: 10.1063/1.1465515#

I. INTRODUCTION

The deep relationship between conformal field theory and criticality has provided a wea
detailed information on phase transitions and critical phenomena. Moreover,perturbedconformal
field theory provides a description of theapproachto criticality in certain models.1 One of the
most striking examples is thef (1,2) perturbation of the minimal unitary conformal field theo
M3,4 which is known to describe the scaling limit of the two-dimensional Ising model atT5Tc in
a magnetic field. In particular, Zamolodchikov’s construction of nontrivial local integrals of
tion and thus an integrable quantum field theory led to the remarkable prediction of eight f
mental mass ratios for the magnetic Ising model.2 The masses coincide with the components of
Perron–Frobenius vector of the Cartan matrix of the Lie algebra E8 .

In another development, the exactly solvable dilute A3 lattice model was discovered3 and~in
regime 2 of its four regimes! seen to be in the same universality class as the magnetic Ising m
Most importantly the dilute AL model3,4 admits an off-critical extension in which the Boltzman
weights are parametrized in terms of elliptic theta functions.3 In the dilute A3 model the elliptic
nome plays the role of magnetic field. Its hidden E8 structure has been revealed by a number
studies.5–13The masses, obtained from the eigenspectrum, may be summarized by the form11,13

mj;(
a

sinS ap

g D , ~1!

where indexj labels the eight particles,g530 is the Coxeter number for E8 and the set of allowed
a values is given in Table I.

In addition to the correspondence between the dilute A3 model and E8 , there are similar
correspondences between the dilute A4 model and E7 , and the dilute A6 model and E6 . In regime
2 these models are lattice realizations of thef (1,2) perturbation of theM4,5 and M6,7 minimal

a!Expanded version of a talk presented at the International Workshop on Exactly Solvable Models of Statistical Me
and Mathematical Physics, Asia-Pacific Center for Theoretical Physics, Seoul, Korea, 26–29 June 2000.

b!Permanent address: School of Mathematical and Statistical Sciences, La Trobe University, Victoria 3086, Au
Electronic mail: k.seaton@latrobe.edu.au
26360022-2488/2002/43(5)/2636/18/$19.00 © 2002 American Institute of Physics
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unitary conformal field theories, respectively, known to have connection to the other excep
Lie algebras.14 Some E-type structures have been observed for these dilute A models.15,16

Based on the results for the eigenspectrum of the dilute A3 model13 and general inversion
relations, we proposed17,18that, in the thermodynamic limit and in the appropriate regime, the
transfer matrix eigenvalue excitations

r j~w!5 lim
N→`

L j~w!

L0~w!
~2!

of the dilute A3 , A4 and A6 models are given by the following general expression.
Proposition: The excitation spectrum of the dilute A3 , A4 and A6 models in regime 2 is given

by

r j~w!5)
a

w
E~2x6sa/g/w,x12s!E~2x6s(g2a)/g/w,x12s!

E~2x6sa/gw,x12s!E~2x6s(g2a)/gw,x12s!
. ~3!

Here the elliptic nome isp5e2e, w5e22pu/e, andx5e2p2/r e. Regime 2 is specified by the
range of the spectral parameter: 0,u,3l, and the value of the crossing parameter:l5ps/r
wheres5L12 andr 54(L11). For the dilute A4 model the E7 Coxeter number isg518, while
for the A6 model the E6 Coxeter number isg512. The standard~conjugate modulus! elliptic
function is defined by

E~z,q!5 )
n51

`

~12qn21z!~12qn/z!~12qn!.

The numbersa appearing in~3! are given in Tables I–III. The integers in these tables h
appeared in other contexts in relation to the E-algebras.19,20

In this article we explicitly derive the elementary excitation spectrum of the dilute A4 model,
thereby confirming our Proposition in this case. The result~3! leads to the inverse correlatio
lengths and mass gaps. Our input to these calculations are the string solutions to the
equations found by Grimm and Nienhuis.9,10,21 As discussed later in Sec. IV, our results a

TABLE I. The integers appearing in~1! and ~3! for L53.

j a

1 1, 11
2 7, 13
3 2, 10, 12
4 6, 10, 14
5 3, 9, 11, 13
6 6, 8, 12, 14
7 4, 8, 10, 12, 14
8 5, 7, 9, 11, 13, 15

TABLE II. The integers appearing in~3! for L54.

j a

1 6
2 1, 7
3 4, 8
4 5, 7
5 2, 6, 8
6 4, 6, 8
7 3, 5, 7, 9
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applicable to the tricritical Ising model which is in the same universality class. In particular
elliptic nome appearing in the dilute A4 weights in regime 2 corresponds to the leading therm
off-critical perturbation in the tricritical Ising model. This perturbation is identified withf (1,2)

22

and has been shown to exhibit E7 structures.14,23 We are able to obtain exact results for som
universal amplitudes of the tricritical Ising model. These results are in agreement with those
recently by other means.24,25

The outline of the article is as follows. The dilute AL lattice model is defined along with th
corresponding Bethe equations in Sec. II. The bulk free energy and the eigenvalue express
regime 2 forL54 associated with the seven E7 masses are derived via the exact perturbat
approach in Sec. III~continued in the Appendix!. The article concludes in Sec. IV with a discu
sion of the results and their relevance to universal behavior in the tricritical Ising model.

II. THE DILUTE A4 MODEL

We here give a short summary of facts about the dilute AL models26,13 which are pertinent to
our calculations.

The dilute AL model is an exactly solvable,L-state restricted solid-on-solid model defined
the square lattice. Its adjacency diagram is the Dynkin diagram of AL with the additional possi-
bility that a state may be adjacent to itself on the lattice. The model is solvable in four off-cr
regimes, with the elliptic nomep of its Boltzmann weights taking the model off-critical. A
criticality, the dilute AL model can be constructed3,4 from the dilute O(n) loop model.27,28 In
regime 2 of the model the central charge is

c512
6

L~L11!
.

In the majority of exactly solved models the elliptic nome plays the role of temperature29 In
the dilute AL model the interpretation of the elliptic nome differs according to whetherL is even
or odd. ForL odd the elliptic nome plays the role of a magnetic field,3 and p.0 andp,0 are
related by simple label reversal of the heights. ForL even the nome plays a thermal role, and t
behavior of the model depends on whetherp.0 ~regime 21! or p,0 ~regime 22!. More spe-
cifically, it was shown26 that in regime 2 the nome corresponds to perturbation of theML,L11

minimal unitary conformal field theories by the operatorf (1,2) .
Using the conjugate variables introduced after~3!, and settingwj5e22puj /e, the eigenvalues

of the row transfer matrix of the dilute A models~for a periodic strip of widthN where for
convenienceN has been taken as even! can be written5

L~w!5vFE~x4s/w,x2r !E~x6s/w,x2r !

E~x4s,x2r !E~x6s,x2r ! GN

)
j 51

N

wj
122s/r E~x2sw/wj ,x2r !

E~x2swj /w,x2r !

1Fx2s

w

E~w,x2r !E~x6s/w,x2r !

E~x4s,x2r !E~x6s,x2r ! GN

)
j 51

N

wj

E~w/wj ,x2r !E~x6swj /w,x2r !

E~x2swj /w,x2r !E~x4swj /w,x2r !

1v21Fx2s
E~w,x2r !E~x2s/w,x2r !

E~x4s,x2r !E~x6s,x2r ! GN

)
j 51

N

wj
2s/r E~x8swj /w,x2r !

E~x4swj /w,x2r !
, ~4!

TABLE III. The integers appearing in~3! for L56.

j a

1, 1̄ 4
2 1, 5

3, 3̄ 3, 5
4 2, 4, 6
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where v5exp(ipl /(L11)) for l 51,...,L, and s5L12 and r 54(L11) in regime 2. The
Bethe equations which give theN rootsuj have the form

vFwj

E~x2s/wj ,x2r !

E~x2swj ,x2r ! GN

52)
k51

N

wk
2s/r E~x2swj /wk ,x2r !E~x4swk /wj ,x2r !

E~x2swk /wj ,x2r !E~x4swj /wk ,x2r !
. ~5!

In the limit upu→1 with u/e fixed, or equivalentlyx→0, the excitations in the eigenspectru
r j (w), defined in~2!, break up into a number of distinct bands labeled by integer powers ow.
Numerical investigations of the eigenspectrum5,9,10,21,17have revealed eight and seven thermod
namically significant excitations forL53 andL54, respectively, and provided the data in Tab
IV.

We previously12,13 applied the exact perturbation approach initiated by Baxter30 to calculate
the excitations in the eigenspectrum forL53. This involved perturbing away from the stron
magnetic field limit atp→1; for L54 this limit corresponds to moving far away from the critic
temperature. The calculations follow.

III. MASS SPECTRUM

A. Preliminaries

To apply the perturbation technique30 to find the form of the excitations~4!, the string struc-
ture of the Bethe ansatz roots~5! is required input. The groundstate roots all haveuj pure
imaginary, so thatwj5e22puj /e5aj for j 51,...,N with uaj u51; in this sense they all live on a
unit circle. For each excitationi , certain roots acquire a real partmp/20, as shown in Table IV.~If
there areni such roots, one says there is anni-string associated with the excitation.! For these
rootswj5bjx

2m, so that the string entries can be thought of as living on circles of radiusx2m with
phasebj , while the otherN2ni roots again lie on the unit circle.

The process of finding the excitations involves using the Bethe equations~5! to set up recur-
rence relations for auxiliary functions of the unknown rootsaj . As the roots only enter the
eigenvalue expression~4! through the auxiliary functions, it just remains to solve the recurre
relations by iteration and to simplify the resulting expressions. The largest eigenvalueL0 , relative
to which excitations are measured, was calculated previously in this way13 for all L.

The relationship between the excitations~2!, the correlation lengthsj j and the mass spectrum
mj of the associated field theory is

j j
2152 log r j5mj , ~6!

where we take the isotropic valueu53l/2.
It is convenient to use the notation for products:

TABLE IV. String positionsuj and corresponding eigenvalue bands for the
seven elementary mass excitationsmi of the dilute A4 model in regime
22.21 The strings are in units ofp/20.

i String positions Band

1 62,10 w
2 67 w2

3 66,10 w2

4 63,69 w2

5 66,68 w3

6 64,68,10 w3

7 65,67,69 w4
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~z;p1 ,...,pk!`5 )
n1 ,...nk50

`

~12p1
n1
¯pk

nkz!,

~z1 ,...zm ;p1 ,...,pk!`5)
j 51

m

~zj ;p1 ,...,pk!` ,

which satisfy many identities, the ones used repeatedly in what follows being

~z;p!`

~zp;p!`
5~12z!,

~z;p,q!`

~zp;p,q!`
5~z;q!` ,

~zq/p;p,q!`

~z;p,q!`
5

~zq/p;q!`

~z;p!`
.

The standard elliptic function is thus rewritten as

E~z,q!5 )
n51

`

~12qn21z!~12qn/z!~12qn!5~z,q/z,q;q!` . ~7!

It also proves convenient to use the shorthand notation) j 51
m aj5Am .

For eachmi , if the associated string of excited roots has lengthni , we define the required
auxiliary functions of the as-yet-unknown roots to be

Fi~w!5 )
j 51

N2ni

~w/aj ;x2r !` ,

Gi~1/w!5 )
j 51

N2ni

~x2raj /w;x2r !` . ~8!

In fact, we actually solve for combinations of these:

Fi~w!5Fi~w!/Fi~x16w!5Fi~w!/Fi~x2r 24sw!,

Gi~1/w!5Gi~1/w!/Gi~1/x16w!5Gi~1/w!/Gi~1/x2r 24sw!, ~9!

for i 52,4,5,6,7 ~but for i 51,3 slightly different definitions are convenient and are given
required!.

So far as possible, we write factors and powers which are common to all eigenvalu~or
indeed to all the eigenvalues for other AL models! in terms of the genericr ands to distinguish
them from the particular integers which arise from the input strings. Of course,r 520 ands56
throughout. Once the particular string form for the roots has been applied, the calculatio
straightforward for all masses exceptm1 andm3 . For this reason, we sketch below the details
the first three masses. The other cases follow similar paths tom2 or indeed to most of the masse
for the dilute A3 model,13 so we relegate them to the appendix. We make some comments
cerningm1 , m3 andm6 later on.
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B. Mass m 1

We begin the perturbation argument with the structurewj5aj for j 51,...,N23 with wN21

5b1x24, wN225b2x4 andwN5b3x20, so that the string length isn153. From the Bethe equa
tions~5! for j 5N22, j 5N21 andj 5N in the limit x→0 we can show thatb15b25b35b. The
Bethe equation for the other rootsak5a is then

2vFa
E~x2s/a!

E~x2sa! GN

5~AN23b3!3/5
a2

b2

3
E~x4b/a!E~x24b/a!E~x28b/a!

E~x4a/b!E~x24a/b!E~x28a/b! )
j 51

N23
E~x2sa/aj !E~x4saj /a!

E~x2saj /a!E~x4sa/aj !
. ~10!

In the x→0 limit this gives the equation

aN221
1

v
~AN23b3!3/5/b250, ~11!

which is an equation of order (N22), so that there is a missing root on the unit circle, a ‘‘hol
which we callaN22 . Since this is an equation for the roots, its left hand side must be equiv
to ) j 51

N22(a2aj ), and equating the constant terms from these two expressions we obtain

1

v
~AN23b3!3/55AN22b25AN23aN22b2 ~12!

~which we later apply to prefactors inL1!. The Bethe equations forb, taken together in this limit
and combined with~12!, give

F 1

v
~AN23b3!3/5G3

52b6~AN23!2⇒AN23~aN22!3521.

We use this, together with the fact that each rootaj , including the hole, must satisfy~11!, to show

~aN22!N2252AN23aN22⇒~aN22!N51. ~13!

We define the following auxiliary functions of the roots@see~8!#:

F1~w!5
F1~w!

F1~x16w!

~x4w/b;x2r !`

~x12w/b;x2r !`
,

G1~1/w!5
G1~1/w!

G1~1/x16w!

~x36b/w;x2r !`

~x24b/w;x2r !`
.

They must satisfy recurrence relations arising from~10!:

F1~a!5F ~x2sa;x2r !`

~x2r 22sa;x2r !`
GN ~x24a/aN22 ,x28a/aN22 ;x2r !`

~x12a/aN22 ,x16a/aN22 ;x2r !`

F1~x2sa!

F1~x4sa!
,

~14!

G1~1/a!5F ~x2r 12s/a;x2r !`

~x6s/a;x2r !`
GN ~x36aN22 /a,x40aN22 /a;x2r !`

~x48aN22 /a,x52aN22 /a;x2r !`

G1~x2s/a!

G1~x4s/a!
.

Solving these we obtain
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F1~a!5F0~a!
~x40a/aN22 ;x2r !`

~x16a/aN22 ;x2r !`

~x36a/aN22 ,x48a/aN22 ;x12s!`

~x12a/aN22 ,x72a/aN22 ;x12s!`
,

~15!

G1~1/a!5G0~1/a!
~x40aN22 /a;x2r !`

~x64aN22 /a;x2r !`

~x36aN22 /a,x96aN22 /a;x12s!`

~x60aN22 /a,x72aN22 /a;x12s!`
.

Here F0 and G0 arise from the square bracketed factors in~14! and give rise to the squar
bracketed factor in~16!. They are related to the groundstate eigenvalueL0 , they are common to
the calculation of each mass and we will suppress these factors form2 ,...,m7 . We now write the
eigenvalue expression in terms of the auxiliary functions, the first term being

L1

3
52

w

aN22
F ~x2r 26sw,x2r 24sw,x4s/w,x6s/w;x2r !`

~x2r 26s,x2r 24s,x4s,x6s;x2r !`
GN

3
~x28w/aN22 ,x12aN22 /w;x2r !`

~x12w/aN22 ,x28aN22 /w;x2r !`
F1~x2sw!G1~1/x2sw!. ~16!

Substituting the solutions~15! gives an expression for the excitationr 1(w) which may be written
in elliptic functions~7! as

L1

L0
5w

E~2x12/w,x12s!E~2x48w,x12s!

E~2x12w,x12s!E~2x48/w,x12s!
, ~17!

where we have setaN22521. ~The other two terms in the eigenvalue always give identi
elliptic function expressions to the first, upon simplification.!

The Bethe equations involvingb and the ‘‘hole’’ equation, which is~10! with a5aN22 , can
also be expressed in terms of the auxiliary functions. Application of identities and simplific
gives

E~x12b/aN22 ,x2r 24s!5E~x12aN22 /b,x2r 24s!,

FE~x12aN22 ,x12s!E~x48/aN22 ,x12s!

E~x12/aN22 ,x12s!E~x48aN22 ,x12s!G
N

5~aN22!N.

Clearly aN225b521 ~identified initially from numerical studies! satisfy these conditions; th
second reduces to~13! in the x→0 limit, and note the similarities with~17!.

C. Mass m 2

We begin the perturbation argument with the structurewj5aj for j 51,...,N22 with wN21

5b1x214 andwN5b2x14, so thatn252. From the Bethe equations forj 5N21 andj 5N we can
show thatb15b25b. The Bethe equation for the other rootsak5a is then

2vFa
E~x2s/a!

E~x2sa! GN

5~AN22b2!3/5
a2

b2

E~x10b/a!E~x14b/a!

E~x10a/b!E~x14a/b! )
j 51

N22
E~x2sa/aj !E~x4saj /a!

E~x2saj /a!E~x4sa/aj !
.

~18!

In the x→0 limit this gives the equation

aN221
1

v
~AN22b2!3/5/b250,

which has the same order as the number of unknown roots (N22) so that there is no hole
Equating this with) j 51

N22(a2aj ) we obtain
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1

v
~AN22b2!3/55AN22b2

~which we later apply to prefactors inL2!. From the other Bethe equations in this limit,

F 1

v
~AN22b2!3/5G2

5
~AN22b2!2

b2N ⇒b2N51. ~19!

Treating the Bethe equation~18! as before gives, in terms of the functions defined in~8! and
~9!, the recurrences

F2~a!5
~x26a/b,x30a/b;x2r !`

~x10a/b,x14a/b;x2r !`

F2~x2sa!

F2~x4sa!
,

G2~1/a!5
~x38b/a,x34b/a;x2r !`

~x50b/a,x54b/a;x2r !`

G2~x2s/a!

G2~x4s/a!
.

Solving these we obtain

F2~a!5
~x30a/b,x42a/b;x2r !`

~x14a/b,x26a/b;x2r !`

~x26a/b,x38a/b,x46a/b,x58a/b;x12s!`

~x10a/b,x22a/b,x62a/b,x74a/b;x12s!`
,

G2~1/a!5
~x38b/a,x50b/a;x2r !`

~x54b/a,x66b/a;x2r !`

~x34b/a,x46b/a,x86b/a,x98b/a;x12s!`

~x50b/a,x62b/a,x70b/a,x82b/a;x12s!`
.

We now substitute these into the eigenvalue expression, the first term of which is

L2

3
5

w2

b2

~x26w/b,x38w/b,x2b/w,x14b/w;x2r !`

~x2w/b,x14w/b,x26b/w,x38b/w;x2r !`
F2~x2sw!G2~1/x2sw!.

This gives an expression for the excitation in elliptic functions~settingb521!:

L2

L0
5w2

E~2x2/w,x12s!E~2x14/w,x12s!E~2x38w,x12s!E~2x50w,x12s!

E~2x2 w,x12s!E~2x14w,x12s!E~2x38/w,x12s!E~2x50/w,x12s!
. ~20!

If the product of the six Bethe equations involvingb is expressed in terms of the auxiliar
functions, the equation forb @generalizingb2N51 seen in thex→0 limit in ~19!# is clearly
satisfied byb521:

FE~x2b,x12s!E~x14b,x12s!E~x38/b,x12s!E~x50/b,x12s!

E~x2/b,x12s!E~x14/b,x12s!E~x38b,x12s!E~x50b,x12s!G
N

5b2N.

Compare the pattern of powers ofx in this equation with those in~20!; this equation has a precis
analog for each massm4 ,...,m7 , which will not be given.

D. Mass m 3

We begin the perturbation argument with the string structurewj5aj for j 51,...,N23 with
wN225b1x212, wN215b2x12 andwN5b3x20. From the Bethe equations forj 5N22 and j 5N
21 we can show thatb15b25a, but the Bethe equation forj 5N does not linkb35b to a in the
x→0 limit. ~This feature was observed also in theL53 case, for a string of odd length.13! The
Bethe equation for the other rootsak5a is then
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2vFa
E~x2s/a!

E~x2sa! GN

5~AN23a2b!3/5
a3

ab2

E~x4b/a!E~x8b/a!

E~x4a/b!E~x8a/b!

3
E~x12a/a!E~x16a/a!E~x36a/a!

E~x12a/a!E~x16a/a!E~x36a/a! )
j 51

N23
E~x2sa/aj !E~x4saj /a!

E~x2saj /a!E~x4sa/aj !
. ~21!

In the x→0 limit this gives the equation

aN232
1

v
~AN23a2b!3/5/ab250.

Equating this as usual with) j 51
N23(a2aj ), we obtain

1

v
~AN23a2b!3/55AN23ab2

~which we later apply to prefactors inL3!. From the other Bethe equations in this limit,

F 1

v
~AN23a2b!3/5G3

5
~AN23ab2!3

b2N ⇒b2N51.

In this case it is convenient to define

F3~w!5
F3~w!

F3~x16w!

~x12w/a;x2r !

~x4w/a;x2r !
,

~22!

G3~1/w!5
G3~1/w!

G3~1/x16w!

~x28a/w;x2r !

~x36a/w;x2r !
,

because this choice will make it clear thata is a spectator in the solution to the recurrence relati
it does not appear in the eigenvalue expression.

Treating the Bethe equation~21! as before gives the recurrences

F3~a!5
~x32a/b,x36a/b;x2r !`

~x4a/b,x8a/b;x2r !`

F3~x2sa!

F3~x4sa!
,

G3~1/a!5
~x56b/a,x60b/a;x2r !`

~x28b/a,x32b/a;x2r !`

G3~x2s/a!

G3~x4s/a!
.

Solving these we obtain

F3~a!5
~x36a/b;x2r !`

~x20a/b;x2r !`

~x32a/b,x40a/b,x44a/b,x52a/b;x12s!`

~x4a/b,x8a/b,x16a/b,x68a/b;x12s!`
,

G3~1/a!5
~x44b/a;x2r !`

~x60b/a;x2r !`

~x28b/a,x32b/a,x40b/a,x92b/a;x12s!`

~x56b/a,x64b/a,x68b/a,x76b/a;x12s!`
.

We now substitute these into the eigenvalue expression, the first term of which is, in terms
functions~22!,

L3

3
5

w2

b2

~x32w/b,x8b/w;x2r !`

~x8w/b,x32b/w;x2r !`
F3~x2sw!G3~1/x2sw!.

With b521 this gives the expression in elliptic functions
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L3

L0
5w2

E~2x8/w,x12s!E~2x16/w,x12s!E~2x44w,x12s!E~2x52,w,x12s!

E~2x8 w,x12s!E~2x16w,x12s!E~2x44/w,x12s!E~2x52/w,x12s!
. ~23!

The Bethe equations involvinga andb, also expressed in terms of the auxiliary functions, gi

E~x12b/a,x2r 24s!5E~x12a/b,x2r 24s!,

FE~x8b,x12s!E~x16b,x12s!E~x44/b,x12s!E~x52/b,x12s!

E~x8/b,x12s!E~x16/b,x12s!E~x44b,x12s!E~x52b,x12s!G
N

5b2N.

Notice thatb521 satisfies this second equation, and the~so far missing! link betweena andb is
provided by the first.

E. Comments on the ‘‘odd’’ strings

To close this rather technical section of the article, we wish to briefly comment on the s
of odd length~see Table IV!.

For this model strings of odd length appear for the first, third and sixth masses. In th
case, the odd string of excited roots is accompanied by a ‘‘hole’’ among the roots on the
circle; it is only this holeaN22 which appears in the eigenvalue expression. In the case of the
mass, the phaseb of the string entrym510 appears alone in the eigenvalue expression, and
other entries of the string seem to have a spectator role.~For the sixth mass, there was nothin
special about the calculation.! In the calculations for dilute A3 ~Ref. 13! odd strings were involved
for masses 4 and 6, where again the calculation of the associated excitation was less stra
ward than for even strings. In one case, both the coefficient of the ‘‘odd’’ entryand a hole
appeared in the eigenvalue, while the other calculation resembles that ofm3 in this article. In
general the string entries come in pairs6m, except form5r /2, which stands alone if it occurs
due to the period of the original elliptic functions inuj . This is the only source of strings of od
length; we can only conclude that when such an entry occurs, it in some sense dominates
lations following the exact perturbation technique. For strings of even length, all the excited
seem to contribute in a more equal fashion to the calculation and to the resulting eigen
expression.

IV. DISCUSSION

In this article we have made use of the Bethe Ansatz string solutions found by Grimm
Nienhuis to derive the excitation spectrum of the dilute A4 model via the exact perturbatio
approach. Our expressions for the seven thermodynamically significant excitations for the
A4 eigenspectrum in regime 22 are given in~17!, ~20!, ~23!, ~A2!, ~A4!, ~A6! and ~A7!. In this
way we have verified for a second case the Proposition given by~3!.

It is perhaps unsatisfying that an elegant closed form expression such as~3! has been con-
firmed in the A4 case by relying on numerical data for the strings~Table IV!. Indeed, as describe
for the A3 case in Ref. 13, and in the detailed study of Ref. 10, tracing the strings fromp50
~criticality! to the position they take in the scaling~massive! limit reveals complicated structur
~reported with one difference by two groups of authors5,10!. Fortunately,~3! was conjectured17,18

on the basis of general properties of the dilute A models and of the E-type algebras, known
linked by their common connection to thef (1,2) perturbation of the minimal unitary series; th
~scaling limit! string data used here has not contradicted it, and~admittedly limited! numerical
studies agreed with the lower eigenvalues.17 A forthcoming paper31 should shed some new ligh
from the perspective of Coxeter geometry, on the excitations~3! and, hence, among other thing
on the string conjectures to which they are related as demonstrated here in theL54 case.

Recall that the central charge for dilute A4 in regime 2 isc5 7
10. There are several other know

manifestations of thec5 7
10 theory. The Blume–Capel model32 is related to the Blume–Emery–

Griffiths model,33 a classical spin-1 Ising model with lattice Hamiltonian
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HBEG52J(
^ i , j &

SiSj2D(
i

~12Si
2!2H(

i
Si2H3(

^ i , j &
SiSj~Si1Sj !, ~24!

whereJ is the nearest-neighbor interaction,D is a crystal field,H a magnetic field term, andH3

is a staggered magnetic field. The phase diagrams of these models exhibit a tricritical point,
been observed in physical systems.34 The critical exponents, known from renormalization gro
studies, are related to the Kac table of thec5 7

10 conformal field theory.1

After the Ising critical point, the universality class of the tricritical Ising model correspond
the second simplest unitary conformal field theory in two dimensions. It is also the first o
super-conformal minimal models. It can be perturbed by its four relevant scaling fields, sho
Table V ordered according to the associated conformal weight. The leading magnetic pertu
is believed to be nonintegrable,22 and each of the other three perturbations give integrable q
tum field theories. In the scaling limit these can each be associated with a solvable inter
round a face~IRF! model@or to the terms in~24!#. The ABF A4 model in regime III35,36 realizes
the subleading thermal perturbation. A lattice realization of the subleading magnetic pertur
is given by the dilute A3 model in regime 1,37 and the scaling limit of the leading therma
perturbation corresponds to the dilute A4 model as considered in this article.

The leading thermal perturbation is known to be integrable and massive, the masses
described by E7 Toda field theory.14,23 Numerical results from a finite-size analysis in the sp
chain formulation,38 and from field theory via the truncated conformal space approach22 demon-
strated the first few masses.

These are

m151 odd,

m252 cos
5p

18
51.285 575... even,

m352 cos
p

9
51.879 385... odd,

m452 cos
p

18
51.969 615... even, ~25!

m554 cos
p

18
cos

5p

18
52.532 088... even,

m654 cos
p

9
cos

2p

9
52.879 385... odd,

m754 cos
p

18
cos

p

9
53.701 666... even.

TABLE V. The four perturbations of the tricritical Ising model, and the objects from statistical mechanics to which th
related in the scaling limit.

Perturbation Field Weight IRF model HBEG

Leading magnetic f (2,2)
3

80
Not integrable H

Leading thermal f (1,2)
1

10
Dilute A4 , regime 2 1/J

Subleading magnetic f (2,1)
7

16
Dilute A3 , regime 1 H3

Subleading thermal f (1,3)
3
5

ABF A4 , regime III D
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The mass spectrum can be classified22 into even and odd states@as indicated in~25!# corre-
sponding to theZ2 symmetry of the affine E7 Dynkin diagram. Each of the above seven mas
appears in the high-temperature phase of the tricritical Ising model. However, only the even
appears in the low-temperature phase. This is consistent with the numerical observations
eigenspectrum of the dilute A4 model.21,17For regime 21, in a study of the low-lying excitations
the first and third were absent. As we have demonstrated, all seven excitations are pre
regime 22 which ~through a quirk in labelling! corresponds toT.Tc .

Our expression~3! gives the correlation lengths and related masses~6!, expressed in terms o
standard elliptic functions and the original nomep, as

mj5j j
2152(

a
log

q4~ap/361 p/4 ,p5/9!

q4~ap/362 p/4 ,p5/9!
. ~26!

In the critical limit p→0 the leading order behavior is

mj;8p5/9(
a

sin
ap

18
. ~27!

Substituting the integers of Table II, applying trigonometric identities and taking mass ratios
demonstrated17 that the E7 mass spectrum~25! is recovered.

The ground states of the tricritical Ising model~in zero magnetic field! have been
identified.32,22 For T,Tc , the system is in a two-phase region of spontaneously broken
reversal symmetry, with two degenerate ground states in the thermodynamic limit. ForT.Tc

there is one ground state. This ground state picture is also consistent with that of the dilu4

model39 as upu→1. In regime 21 there are two possible ferromagnetic ground states, while
regime 22 there is a single disordered ground state.~It is the presence of such disordered states
L even which complicates the calculation of order parameters for this half of the diluteL

hierarchy.!
Very recently, an array of universal ratios for the critical amplitudes of the tricritical Is

model have been calculated24,25by field theoretic methods. Not all of these quantities appear to
accessible via the dilute A4 model. However, one such ratio involves the correlation length p
actors j0

6 , above and below the critical temperature. Our results and observations o
eigenspectrum of dilute A4 give this same value:

j0
1

j0
2 5

j1

j2
52 cos

5p

18
.

We previously17 derived the amplitude

f sj1
25

1

8) cos~2p/9!
50.094 20..., ~28!

wheref s is the singular part of the free energy. This agrees with the determination of this qu
for thef (1,2) perturbation of thec5 7

10 field theory.40 A related universal quantity is the amplitud
ratio associated with the correlation length41

Rj
65A1/2j0

6 ,

where A/a is the amplitude of the specific heat anda is the related critical exponent. Ou
expressions for these quantities are

Rj
15F 10

93) cos~2p/9!
G 1/2

50.101 678...,
                                                                                                                



the

ished
thank
joyed
een

2648 J. Math. Phys., Vol. 43, No. 5, May 2002 K. A. Seaton and M. T. Batchelor

                    
Rj
25F 5

2392) cos~5p/18!sin~5p/9!
G 1/2

50.083 889...,

which agree with the numerical values of Ref. 25~allowing for a difference in definition by a
factor a1/2). As remarked,24,25 such values may be observed in experimental systems within
tricritical Ising universality class.
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APPENDIX: FURTHER MASS CALCULATIONS

1. Mass m 4

We begin the perturbation argument with the structurewj5aj for j 51,...,N24 with wN23

5b1x218, wN225b2x18, wN215b3x26 and wN5b4x6. From the Bethe equations forj 5N
23,...,N we can show thatb15b25b35b45b. The Bethe equation for the other roots is

2vFa
E~x2s/a!

E~x2sa! GN

5~AN24b4!3/5
a4

b4

E~x2b/a!E~x6b/a!

E~x2a/b!E~x6a/b! )
j 51

N24
E~x2sa/aj !E~x4saj /a!

E~x2saj /a!E~x4sa/aj !
.

~A1!

In the x→0 limit this gives the equation

aN241
1

v
~AN24b4!3/5/b450,

so that as usual we find an expression involving the prefactors

1

v
~AN24b4!3/55AN24b4.

Using this with the other Bethe equations in thex→0 limit we obtain

F 1

v
~AN24b4!3/5G4

5
~AN24b4!4

b4N ⇒b4N51.

From ~A1! come the recurrences

F4~a!5
~x34a/b,x38a/b;x2r !`

~x2a/b,x6a/b;x2r !`

F4~x2sa!

F4~x4sa!
,

G4~1/a!5
~x30b/a,x26b/a;x2r !`

~x58b/a,x62b/a;x2r !`

G4~x2s/a!

G4~x4s/a!
.

The solutions are

F4~a!5
~x38a/b,x42a/b,x50a/b,x54a/b;x2r !`

~x2a/b,x6a/b,x14a/b,x18a/b;x2r !`

~x34a/b,x38a/b,x46a/b,x50a/b;x12s!`

~x70a/b,x74a/b,x82a/b,x86a/b;x12s!`
,
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G4~1/a!5
~x26b/a,x30b/a,x38b/a,x42b/a;x2r !`

~x62b/a,x66b/a,x74b/a,x78b/a;x2r !`

~x94b/a,x98b/a,x106b/a,x110b/a;x12s!`

~x58b/a,x62b/a,x70b/a,x74b/a;x12s!`
.

In terms of these functions the eigenvalue may be represented as

L4

3
5

w2

b2

~x18w/b,x30w/b,x10b/w,x22b/w;x2r !`

~x10w/b,x22w/b,x30b/w,x18b/w;x2r !`
F4~x2sw!G4~1/x2sw!.

Thus, application of the perturbation argument yields the excitation to be

L4

L0
5w2

E~2x10/w,x12s!E~2x14/w,x12s!E~2x46w,x12s!E~2x50w,x12s!

E~2x10w,x12s!E~2x14w,x12s!E~2x46/w,x12s!E~2x50/w,x12s!
, ~A2!

where we have putb521.

2. Mass m 5

We begin the perturbation argument withwj5aj for j 51,...,N24 and wN235b1x216,
wN225b2x16, wN215b3x212, wN5b4x12. We can show that thebi are equal, and we call themb.
The Bethe equation for the other roots is

2vFa
E~x2s/a!

E~x2sa! GN

5~AN24b4!3/5
a4

b4

E~x8b/a!E2~x12b/a!

E~x8a/b!E2~x12a/b!

3
E~x16b/a!

E~x16a/b! )
j 51

N24
E~x2sa/aj !E~x4saj /a!

E~x2saj /a!E~x4sa/aj !
. ~A3!

In the x→0 limit this gives the equation

aN241
1

v
~AN24b4!3/5/b450,

which leads in the usual way to a prefactor expression

1

v
~AN24b4!3/55AN24b4.

From this and the other Bethe equations

F 1

v
~AN24b4!3/5G4

5
~AN24b4!4

b5N ⇒b5N51.

Rearranging~A3!, the auxiliary functions obey the recurrences

F5~a!5
~x24a/b,x28a/b,x28a/b,x32a/b;x2r !`

~x8a/b,x12a/b,x12a/b,x16a/b;x2r !`

F5~x2sa!

F5~x4sa!
,

G5~1/a!5
~x32b/a,x36b/a,x36b/a,x40b/a;x2r !`

~x48b/a,x52b/a,x52b/a,x56b/a;x2r !`

G5~x2s/a!

G5~x4s/a!
.

The solutions are

F5~a!5
~x32a/b,x40a/b,x44a/b;x2r !`

~x12a/b,x16a/b,x24a/b;x2r !`

~x28a/b,x36a/b,x40a/b,x44a/b,x48a/b,x56a/b;x12s!`

~x8a/b,x12a/b,x20a/b,x64a/b,x72a/b,x76a/b;x12s!`
,
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G5~1/a!5
~x40b/a,x36b/a,x48b/a;x2r !`

~x56b/a,x64b/a,x68b/a;x2r !`

~x32b/a,x36b/a,x44b/a,x88b/a,x96b/a,x100b/a;x12s!`

~x52b/a,x60b/a,x64b/a,x68b/a,x72b/a,x80b/a;x12s!`
,

which we next substitute into the eigenvalue expression

L5

3
52

w3

b3

~x24w/b,x28w/b,x36w/b,x4b/w,x12b/w,x16b/w;x2r !`

~x4w/b,x12w/b,x16w/b,x24b/w,x28b/w,x36b/w;x2r !`
F5~x2sw!G5~1/x2sw!,

to obtain~with b521! an expression in elliptic functions of nomex12s,

L5

L0
5w3

E~2x4/w!E~2x12/w!E~2x16/w!E~2x40w!E~2x48w!E~2x52w!

E~2x4w!E~2x12w!E~2x16w!E~2x40/w!E~2x48/w!E~2x52/w!
. ~A4!

3. Mass m 6

We begin the perturbation argument withwj5aj for j 51,...,N25 and wN245b1x20,

wN235b2x216, wN225b3x16, wN215b4x28, wN5b5x8. We can show that thebi are equal, and
we call themb. The Bethe equation for the other roots is

vFa
E~x2s/a!

E~x2sa! GN

5~AN25b5!3/5
a5

b5

E~x4b/a!E~x8b/a!

E~x4a/b!E2~x8a/b!

3
E~x12b/a!E~x16b/a!

E~x12a/b!E~x16a/b! )
j 51

N25
E~x2sa/aj !E~x4saj /a!

E~x2saj /a!E~x4sa/aj !
. ~A5!

In the x→0 limit this gives the equation

aN252
1

v
~AN25b5!3/5/b550,

which leads in the usual way to the expression

1

v
~AN25b5!3/55AN25b5.

From this and the other Bethe equations

F 1

v
~AN25b5!3/5G5

5
~AN25b5!5

b5N ⇒b5N51.

After rearranging~A5!, the auxiliary functions obey the recurrences

F6~a!5
~x24a/b,x28a/b,x32a/b,x36a/b;x2r !`

~x4a/b,x8a/b,x12a/b,x16a/b;x2r !`

F6~x2sa!

F6~x4sa!
,

G6~1/a!5
~x28b/a,x32b/a,x36b/a,x40b/a;x2r !`

~x48b/a,x52b/a,x56b/a,x60b/a;x2r !`

G6~x2s/a!

G6~x4s/a!
.

The solutions are

F6~a!5
~x36a/b,x40a/b;x2r !`

~x16a/b,x20a/b;x2r !`

~x32a/b,x36a/b,x40a/b,x44a/b,x48a/b,x52a/b;x12s!`

~x4a/b,x8a/b,x12a/b,x16a/b,x68a/b,x72b/a;x12s!`
,
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G6~1/a!5
~x40b/a,x44b/a;x2r !`

~x60b/a,x64b/a;x2r !`

~x28b/a,x32b/a,x36b/a,x40b/a,x92b/a,x96b/a;x12s!`

~x56b/a,x60b/a,x64b/a,x68b/a,x72b/a,x76b/a;x12s!`
,

which we next substitute into the eigenvalue expression

L6

3
52

w3

b3

~x28w/b,x32w/b,x8b/w,x12b/w;x2r !`

~x8w/b,x12w/b,x28b/w,x32b/w;x2r !`
F6~x2sw!G6~1/x2sw!,

to obtain~with b521! an expression in elliptic functions of nomex12s,

L6

L0
5w3

E~2x8/w!E~2x12/w!E~2x16/w!E~2x44w!E~2x48w!E~2x52w!

E~2x8w!E~2x12w!E~2x16w!E~2x44/w!E~2x48/w!E~2x52/w!
. ~A6!

4. Mass m 7

We begin with wj5aj for j 51,...,N26 and wN255b1x218, wN245b2x18, wN23

5b3x214, wN225b4x14, wN215b5x210, wN5b6x10. Once again thebi(5b) are all equal. The
Bethe equation for the other roots is

2vFa
E~x2s/a!

E~x2sa! GN

5~AN26b6!3/5
a6

b6

E~x6b/a!E2~x10b/a!

E~x6a/b!E2~x10a/b!

3
E2~x14b/a!E~x18b/a!

E2~x14a/b!E~x18a/b! )
j 51

N26
E~x2sa/aj !E~x4saj /a!

E~x2saj /a!E~x4sa/aj !
.

In the x→0 limit this gives

aN261
1

v
~AN26b6!3/5/b650,

which leads to the expression in the various coefficients

1

v
~AN26b6!3/55AN26b6,

and from the six Bethe equations involvingb,

F 1

v
~AN26b6!3/5G6

5
~AN26b6!6

b4N ⇒b4N51.

The recurrences to be solved for the auxiliary functions are

F7~a!5
~x22a/b ,x26a/b ,x26a/b ,x30a/b ,x30a/b ,x34a/b ;x2r !`

~x6 a/b ,x10a/b ,x10a/b ,x14a/b ,x14a/b ,x18a/b ;x2r !`

F7~x2sa!

F7~x4sa!
,

G7~1/a!5
~x30b/a ,x34b/a ,x34b/a ,x38b/a ,x38b/a ,x42b/a ;x2r !`

~x46b/a ,x50b/a ,x50b/a ,x54b/a ,x54b/a ,x58b/a ;x2r !`

G7~x2s/a!

G7~x4s/a!
,

which have solution
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F7~a!5
~x34a/b ,x38a/b ,x42a/b ,x46a/b ;x2r !`

~x10a/b ,x14a/b ,x18a/b ,x22a/b ;x2r !`

3
~x30a/b ,x34a/b ,x38a/b ,x42a/b ,x42a/b ,x46a/b ,x50a/b ,x54a/b ;x12s!`

~x6 a/b ,x10a/b ,x14a/b ,x18a/b ,x66a/b ,x70a/b ,x74a/b ,x78a/b ;x12s!`
,

G7~1/a!5
~x34b/a ,x38b/a ,x42b/a ,x46b/a ;x2r !`

~x58b/a ,x62b/a ,x66b/a ,x70b/a ;x2r !`

3
~x30b/a ,x34b/a ,x38b/a ,x42b/a ,x90b/a ,x94b/a ,x98b/a ,x102b/a ;x12s!`

~x54b/a ,x58b/a ,x62b/a ,x66b/a ,x66b/a ,x70b/a ,x74b/a ,x78b/a ;x12s!`
.

Substitution into

L7

3
5

w4

b4

~x22w/b,x26w/b,x30w/b,x34w/b,x6b/w,x10b/w,x14b/w,x18b/w;x2r !`

~x6w/b,x10w/b,x14w/b,x18w/b,x22b/w,x26b/w,x30b/w,x34b/w;x2r !`

3F7~x2sw!G7~1/x2sw!

yields the result~with b521 and elliptic nomex12s!

L7

L0
5w4

E~2x6/w!E~2x10/w!E~2x14/w!E~2x18/w!

E~2x6w!E~2x10w!E~2x14w!E~2x18w!

3
E~2x42w!E~2x46w!E~2x50w!E~2x54w!

E~2x42/w!E~2x46/w!E~2x50/w!E~2x54/w!
. ~A7!
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Nonlinear Fokker–Planck equation exhibiting bifurcation
phenomena and generalized thermostatistics

Masatoshi Shiinoa)
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2-12-1 Ohokayama Meguro-ku, Tokyo, Japan
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A nonlinear Fokker–Planck equation exhibiting bifurcation phenomena is proposed
within the framework of generalized thermostatistics. The nonlinearity responsible
for the occurrence of bifurcation of solutions is assumed to be of the form appear-
ing in the standard mean field model. A Liapunov function is defined that takes the
form of free energy involving generalized entropies of Tsallis and an H-theorem is
proved to show that the free energy, which is bounded below, continues to decrease
until the system approaches one of the equilibrium distributions. The H-theorem
ensures, instead of uniqueness of the equilibrium distribution, global stability of the
system in that either one of multisolutions must be approached for large times.
Local stability analysis is conducted and the second-order variation of the Liapunov
function is computed to find its relevant part whose sign governs stability of the
equilibrium distribution of the system. The case with a bistable potential is inves-
tigated, as an example of confirming the theory, to give the bifurcation diagram
displaying the order parameter as a function of the coefficient of the nonlinear
diffusion term. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1467965#

I. INTRODUCTION

Tsallis developed generalized thermostatistics1–3 using generalized nonextensive entropies4–10

which are obtained by extending the well-known Boltzmann entropy. Equilibrium properties o
novel thermostatistics have extensively been studied by a number of researchers to und
similarity as well as dissimilarity between the standard Boltzmann statistics and the gener
one.11 A characteristic feature of the generalized thermostatistics is a power-law type equilib
probability distribution that is derived from the maximum entropy principle with a certain c
straint of internal energy.1–3

One may, however, expect that an equilibrium distribution should be derived, as a fixed
type solution, from a certain dynamical evolution equation of a time-dependent probability d
bution such as a master equation of a Markovian dynamics. Several authors have studied no
Fokker–Planck equations that are related to generalized thermostatistics.12–20 Plastino and
Plastino12 proposed a nonlinear Fokker–Planck equation with a nonlinear diffusion term ch
terized by a real parameterq,

]p

]t
52

]

]x S 2
]f

]x
pD1D

]2

]x2 pq ~1!

and showed that it exhibits an equilibrium solution taking the form of Tsallis equilibrium di
bution of the so-called first choice1

Peq~x!5@~Dqb!21~12b~q21!f~x!!#1/~q21!, ~2!

a!Electronic mail: mshiino@ap.titech.ac.jp
26540022-2488/2002/43(5)/2654/16/$19.00 © 2002 American Institute of Physics
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whereb is determined by the normalization condition. In the absence of the drift term in Eq~1!
with f(x)5const there exists no equilibrium distribution and one has nonlinear diffusion, w
was studied by several authors in connection with diffusion in porous media.21–25

In the case where the potentialf(x) is quadratic, the nonlinear Fokker–Planck equat
~NFPE! was shown to be solved for its temporal solution in a rigorous way.12,15,16A phenomeno-
logical derivation of the NFPE itself was given in Refs. 13 and 14, where the author conside
stochastic differential equation with a self-reference type feedback representing the non
diffusion term.

While the Tsallis equilibrium distribution was shown to satisfy the NFPE, its stability
uniqueness has been another problem. The relationship between the NFPE and the gen
entropy is also of interest and worth studying.

In the case of linear Fokker–Planck equations, which appear as master equations for s
tic systems with Markovian dynamics, stability and uniqueness of their equilibrium solutio
known to be ensured by the so-called H-theorems.26–30Liapunov functions as the H-functions ca
be chosen as closely related to the free energy of a system31 and also to the conventiona
Kullback–Leibler divergence26–30,32or generalized Kullback–Leibler divergences.31,33–39

Recently I have tackled the above-mentioned kind of problems with the NFPE to prov
dynamics-level linkage of the generalized entropy to the NFPE together with knowledge
asymptotic approach of temporal solutions of the NFPE to its equilibrium solution.18 Constructing
a Lyapunov functional that takes the form of a free energy based on the generalized entro18

F5E
2`

`

fp dx2
D

q21 F12E
2`

`

pq dxG , ~3!

I showed that an H-theorem holds for the NFPE~1!:18

dF

dt
<0, ~4!

which ensures stability and uniqueness of its equilibrium solution. Such convergence pr
with an H-theorem is not specific to the system described by the above-mentioned NFPE~1!. A
NFPE with a nonlocal time-dependent nonlinear diffusion coefficient,18

]p

]t
52

]

]x
~A~x!p!1

1

b S E
2`

`

pQ dxD 2~Q11!/Q ]2

]x2 pQ, ~5!

which allows for an equilibrium solution corresponding to another type of equilibrium distribu
of Tsallis thermostatistics~the escort probability distribution of the so-called third version3!,

Peq~x!5C̃0~Q!2Q/~Q21!F12
b~Q21!

C̃0~Q!Q
~f~x!2^f&!G 1/~Q21!

, ~6!

also exhibits similar convergence properties based on an H-theorem, when the modified g
ized entropy

S̃[
1

1

Q
21

F12S E
2`

`

pQ dxD 21/QG ~7!

is considered.18 The above-mentioned entropy is a special case of the Sharma and Mittal ent6

H-theorems for a little more general types of NFPEs related to generalized thermostatist
cluding Eq.~1! have recently been studied by Frank and Daffertshofer.19
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The above-mentioned results indicate that although the time evolution equations~1! and ~5!
are nonlinear, there occurs no bifurcation of solutions with change in parameters characteriz
system. This situation is in sharp contrast to the case of NFPE for a mean field model, whe
deals with another type of NFPE that is derived, in the thermodynamic limit, for a cou
Langevin equation system.40–42 The simplest NFPE exhibiting bifurcation phenomena reads40–42

]p

]t
52

]

]x F S x2x31«E
2`

`

xp dxD pG1D
]2

]x2 p ~8!

Such mean field type of NFPE has attracted much attention from researchers in a num
areas of physical science, since it is quite convenient to observe the effect of noise on a va
cooperative phenomena of coupled systems and to systematically study equilibrium as w
nonequilibrium phase transitions. The NFPE~8! with a double well potentialf(x)52(x2/2)
1(x4/4) can describe ferro–para magnetic phase transitions of mean field type.40–43 NFPEs cor-
responding to mean field coupled limit cycle44 or phase oscillator systems45–48have been studied
by several authors from the viewpoint of synchronization–desynchronization transitions d
noise and of neural network theory. An NFPE for chaotic systems has been recently studied
light of control of chaos with noise.49

The problem of phase transitions within the framework of Tsallis thermostatistics will b
interest, but it has been far less studied.50

The purpose of this paper is to study the occurrence of bifurcations for NFPEs that are r
to Tsallis thermostatistics. To this end I propose a double nonlinear Fokker–Planck equatio
is obtained by introducing such a mean field type nonlinear term as considered in Eq.~8! into the
NFPE ~1! and investigate the issue of convergence to equilibrium solutions together with
global and local stability.

After describing the model in Sec. II, I show in Sec. III that a Liapunov function for
double NFPE can be defined so that it takes the form of free energy involving gener
entropies of Tsallis. I prove an H-theorem to show that the free energy, which is bounded b
continues to decrease until the system approaches one of the equilibrium distribution
H-theorem ensures, instead of uniqueness of the equilibrium distribution, global stability o
system in that either one of multisolutions must be approached for large times. In Sec. IV
stability analysis is conducted and the second-order variation of the Liapunov function is
puted to find its relevant part whose sign governs stability of the equilibrium distribution o
system. As an example of confirming the theory, I investigate the case with a bistable poten
give the bifurcation diagram displaying the order parameter as a function of the coefficient
nonlinear diffusion term. In Sec. V I present a summary and discussion.

II. MODEL

We consider a double nonlinear Fokker–Planck equation of the following form:

]p

]t
52

]

]x F S A~x!1«E
I
xp dxD pG1D

]2

]x2 pq, ~9!

which is obtained by introducing, into the drift coefficient of the NFPE~1!, a term representing
nonlocal feedback from the entire system in terms of the average of the state variablex. Here« ~a
real number! controls the magnitude of the feedback, andq is a real number,D a positive constant,
andA(x) in the drift coefficient an arbitrary function with potentialf(x):

f~x!52Ex

A~x!dx. ~10!
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The symbolI in the integral denotes the region where non-negative valuedp(t,x) is defined.
Since the equation with«50 itself is already a nonlinear one, we will refer to the abov
mentioned nonlinear Fokker Planck equation as double nonlinear Fokker–Planck eq
~DNFPE!.

Since introducing the probability currentj,

j 5S A~x!1«E
I
xp dxD p2D

]

]x
pq, ~11!

one can rewrite our DNFPE in the form of the continuity equation. The conservation la
probability holds:

d

dt EI
p dx50

under the boundary condition that the probability currentj vanishes at the boundary ofI. For the
sake of simplicity, in this article we consider the case ofI 5R1[(2`,`) to choose the natura
boundary condition:

p~ t,6`!50,
]pq

]x
~ t,6`!50. ~12!

Since]p/]t50 implies j 50, one has

Peq
q215

2~q21!f̃~x!

Dq
1~Dqb!21, ~13!

where

f̃~x!5f~x!2«xE
I
xPeqdx

and the integration constant is set to be (Dqb)21.
Accordingly, the equilibrium distribution for the DNFPE~9! can be formally obtained as

Peq~x!5@~Dqb!21~12b~q21!f̃~x!!#1/~q21!, ~14!

whereb will be determined by normalization ofPeq(x).
For the purpose of studying phenomena of spontaneous symmetry breaking, it will suffi

suppose the potentialf to take the form of double well type such asf5ax21bx4 (a,0,b
.0). Whenf(x)→` asuxu→`, Eq. ~14! implies 0,q,1 and hencePeq→0(uxu→`). Assum-
ing that 0,q,1 andf(x)'uxum with m.0 (uxu→`), one also has

]Peq
q

]x
'uxumq/~q21!21→0~ uxu→`!.

In what follows we deal with the case with 0,q,1, where the natural boundary condition~12!
makes sense, and assume the existence of the integrals*fp dx and*pq dx, where the integrals are
meant to be performed over the real lineI 5R1[(2`,`) and hereafter theI will be omitted. For
p5Peq andf(x)'uxum ~for large uxu!, the condition of such integrability becomes 1/(m11),q
,1.

Since the expression for the equilibrium distributionPeq containsPeq itself, the problem of
approach to the equilibrium distribution is not trivial. This issue can be more clearly seen i
study of nonlinear stability analysis of the solutions.
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III. H-THEOREM

We define a Liapunov functional taking the form of a free energy based on Tsallis entro

F~p~• !!5E S f2«xE
R
xp dxD p dx1

«

2 S E
R
xp dxD 2

2
D

q21 F12E pq dxG5U2DS, ~15!

where the energyU represents the first two terms on the right-hand side of the first line:

U5E S f2«xE
R
xp dxD p dx1

«

2 S E
R
xp dxD 2

5E fp dx2
«

2 S E
R
xp dxD 2

~16!

and the entropyS is the nonextensive one given within Tsallis thermostatistics:1–3

S[
1

q21 F12E pq dxG . ~17!

With this Liapunov functional taken as the H-functional we can show an H-theorem fo
DNFPE ~9!.

H-theorem: Let 0,q,1. Let p(t,x) satisfy the DNFPE~9!. Then we have
~1! the free energyF(p(t,•)) is bounded from below:

F~p~ t,• !!.CF~const!; ~18!

~2! F(p(t,•)) is decreasing with time:

dF~p~ t,• !!

dt
<0. ~19!

Proof of (1): In the case with«<0, it immediately follows from Eqs.~15! and ~16! that

F~p~• !!>E fp dx2
D

q21 S 12E pq dxD[F ~«50!~p~• !!. ~20!

Note that as was studied in Ref. 18 the free energyF («50)(p(•)) with 0,q,1 is bounded
from below:

F ~«50!~p~• !!>F ~«50!~Peq~•;«50!!52DE Peq
q~•;«50!dx1

1

q21 S 1

b
2D D , ~21!

wherePeq(•;«50) is given by the equilibrium distribution~2!.
Accordingly one has

F~p~• !!>F ~«50!~Peq~•;«50!! ~22!

to confirm Eq.~18!.
To deal with the case with«.0 putting

^x&p[E
R
xp dx ~23!

we first note that one can define the normalized positive-valued functionRp(t,x) as

f2«x^x&p5
Dqb0Rp

q2121

~12q!b0
,

~24!
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E Rp~ t,x!dx51

with b0 denoting a constant determined uniquely as a function ofD and«^x&p . The existence of
suchb0 can easily be confirmed by noting that the integral of the solutionRp to the first equation
of Eq. ~24! as a function ofb0 would monotonically increase from 0 tò asb0 varies from

b0510 to b05
21

~12q!Min2`,x,`~f~x!2«x^x&p!
.0

where we have assumed, for simplicity, that the minimum off(x) is negative to makeb0 of the
latter positive. Note that in generalb0 in Eq. ~24! may be determined to take a negative value

The Rp turns out to satisfy

2
]

]x
$~2fx~x!1«^x&p!Rp%1D

]2

]x2 Rp
q50. ~25!

To prove inequality~18! with «.0, using~24! we rewriteF(p(t,•)) as

F~p~• !!5
D

q21 E ~pq2qpRp
q211~q21!Rp

q!dx1
1

q21 S 1

b0
2D D1

«

2
@^x&p#22DE Rp

q dx.

~26!

Since for 0,q,1,

pq2qpRp
q211~q21!Rp

q5Rp
q~yq2qy1q21!<0 ~27!

with y[p/Rp and equality being given only byy51, we have

D

q21 E ~pq2qpRp
q211~q21!Rp

q!dx>0 ~28!

and hence

F~p~• !!>L~«^x&p!, ~29!

where we have definedL as a function of«^x&p as

L~«^x&p!5
1

2«
~«^x&p!21

1

q21 S 1

b0
2D D2DE Rp

q dx. ~30!

We will show thatL is bounded from below. To this end, we differentiateL with respect to
«^x&p :

dL~h!

dh
5

h

«
1

]F̃~D,h!

]h
, ~31!

where we have defined

F̃~D,h!5
1

q21 S 1

b0
2D D2DE Rp

q dx ~32!

with h5«^x&p .
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Here we note that the above-definedF̃(D,h) turns out to be the free energy function18

corresponding to the equilibrium distribution~2! with f(x) being replaced byf(x)2hx andb
5b0 , which theRp ~24! with h5«^x&p coincides with.

Then it follows that

]F̃~D,h!

]h
52^x&RD,h

[2E xRD,h~x!dx ~33!

together with

]F̃~D,h!

]D
52S, ~34!

which exhibit the Legendre transform structure of the Tsallis thermostatistics of the first ch
and can be confirmed by straightforward calculations. In Eq.~33! we have writtenRD,h instead of
Rp to emphasize theh-dependence ofR in Eq. ~24! with h5«^x&p .

Furthermore,]F̃/]h has the following properties:

~A!

2
]2F̃

]h2 .0. ~35!

~B! If f(x) increases faster thanf(x)}x2 when uxu→`, then

2
1

h

]F̃

]h
→0 ~h→6`!. ~36!

The proof is given in the appendices.
Applying Eq.~36! to Eq.~31! one has dL(h)/dh.0 ~for largeh! and dL(h)/dh,0 ~for large

2h! when«.0.
This implies thatL(h) can exhibit its minimum at a certainh̄ satisfying dL(h̄)/dh50 to have

a lower bound:L(h)>L(h̄), which together with Eq.~29! shows thatF(p(•)) is bounded from
below.

Proof of (2):To prove the second inequality~19! we differentiateF(p(t,•)) with respect tot.
Using Eq.~9! one obtains

dF~p~ t,• !!

dt
5E ~f2«x^x&p!

]p

]t
dx2

d

dt

D

q21 F12E pq dxG
5E S f2«x^x&p1

Dq

q21
pq21D F2

]

]x
$~2fx~x!1«^x&p!p%1D

]2

]x2 pqGdx

5E F ]

]x S f2«x^x&p1
Dq

q21
pq21D GF ~2fx~x!1«^x&p!p2D

]

]x
pqGdx, ~37!

where integration by parts has been used in the last line.
Substituting~24! into ~37!, we further rewrite dF/dt as

dF~p~ t,• !!

dt
5E FB1S ]p

]x D 2

1B2

]p

]x

]Rp

]x
1B3S ]Rp

]x D 2Gdx, ~38!

where
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B152D2q2p2q23,

B252D2q2pq21Rp
q22, ~39!

B352D2q2pRp
2q24

and we have assumed

E p2q23S ]p

]x D 2

dx,`,

E pRp
2q24S ]Rp

]x D 2

dx,`.

Then it follows that

dF~p~ t,• !!

dt
52D2q2E pS pq22

]p

]x
2Rp

q22
]Rp

]x D 2

dx

52
D2q2

~q21!2 E pF ]

]x
~pq212Rp

q21!G2

dx

<0. ~40!

This concludes the proof.
We see that equality is implied by

pq212Rp
q215c~const!. ~41!

SinceF(p(t,•)) is decreasing with time and is bounded from below, dF/dt50 is attained
when t→`, and thenp must satisfy Eq.~41!:

p5Rp , ~42!

where we have setc50, because theRp is already normalized@see Eq.~24!#.
This means that the distributionp` that is approached for large times takes the form of

equilibrium distribution~14! of the DNFPE~9!:

p`5@~Dqb!21~12b~q21!~f2«x^x&p`
!!#1/~q21!, ~43!

where the value ofb and the order parameter^x&p`
should be determined simultaneously by t

normalization condition and the self-consistent equation

^x&p`
5E xp`dx. ~44!

We note that since conservation of probability holds for the DNFPE~9!, the p`(x) in ~43!
should be normalizable. Although our system allows for the H-theorem, unlike the case w«
50 we can no longer expect uniqueness of the equilibrium distributionp`(x) in the case with
«.0, where the self-consistent equations, in general, admit multisolutions~m,b! with m
5^x&p`

. This arises from the fact thatRp(x) appearing in Eq.~40! is not a fixed function such a
an equilibrium distribution, but does depend on the time-dependent probability distributionp(t,x)
@see Eq.~24!#. Which of those multisolutions are relevant has to be determined by the sta
condition. In other words, there may occur bifurcation phenomena involving stability switche
the control parameterD varies. This situation is reminiscent of the mean field model of ph
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transitions that is described by the NFPE~8!.40–42 It is noted that owing to the expression of th
free energy~15! together with the thermodynamic relation~34! the parameterD can be viewed as
playing the role of temperature of Boltzmann–Gibbs statistics.

IV. LOCAL STABILITY ANALYSIS

To conduct local stability analysis we follow the procedure developed previously by
author40 for the NFPE~8! of mean field models and calculate the second-order variation of
Liapunov functional~15!. DifferentiatingF with respect top one obtains

dF5dU2dDS5E S f2«xE xp dxD dp dx1
D

q21 E qpq21dp dx. ~45!

Substituting Eq.~24! and noting

E dp dx50, ~46!

one obtains

dF5
Dq

q21 E ~pq212Rp
q21!dp dx. ~47!

Let Peq be one of the probability distributions satisfying Eq.~43! for p` . The first-order
variationdF (1)ueq evaluated atp5Peq turns out to vanish because of Eqs.~42! and ~46!. Differ-
entiatingdF again with respect top one has

2dF ~2!5DqE @pq22~dp!22Rp
q22dpdRp#dx. ~48!

Using

«xE xdp dx5DqRp
q22dRp1

1

12q

]S 1

b0
D

]«^x&p
«E xdp dx, ~49!

which follows from Eq.~24!, one obtains

2dF ~2!5DqE pq22~dp!2dx2«S E xdp dxD 2

. ~50!

Puttingp5Peq leads to the second-order variationdF (2)ueq evaluated at the equilibrium point

2dF ~2!ueq5DqE Peq
q22~dp!2dx2«S E xdp dxD 2

, ~51!

which will be used to determine stability of the equilibrium point.
Assumingw(x)PL2 ~class of square integrable functions! we put

dp5Peq
~22q!/2w~x!. ~52!

We further assume that

E x2Peq
22q dx,`. ~53!
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Decomposingw(x) as

w~x!5aPeq
~22q!/21gxPeq

~22q!/21w' , ~54!

wherew' is the subspace ofL2 perpendicular to the subspace spanned by

Peq
~22q!/2 and xPeq

~22q!/2 ,

we compute the second-order variationdF (2)ueq.
Substituting Eq.~52! into Eq. ~51! yields

2dF ~2!ueq5DqE @~aPeq
~22q!/21gxPeq

~22q!/2!21w'
2#dx

2«F E xPeq
~22q!/2~aPeq

~22q!/21gxPeq
~22q!/21w'!dxG2

. ~55!

Put

I 05E Peq
22q dx, I 15E xPeq

22q dx, I 25E x2Peq
22q dx. ~56!

Noting that Eq.~46! gives

05E dp dx5aI 01gI 1 , ~57!

one has from Eq.~55!

2dF ~2!ueq5DqF E w'
2 dx1a2I 01g2I 212agI 12

«

Dq
~aI 11gI 2!2G

5DqE w'
2 dx1Dqg2S I 22

I 1
2

I 0
D F12

«

Dq S I 22
I 1

2

I 0
D G . ~58!

It follows from Schwartz’s inequality that

I 22
I 1

2

I 0
>0. ~59!

Accordingly the stability conditiondF (2)ueq.0 can be reduced to

12
«

Dq S I 22
I 1

2

I 0
D .0 ~60!

and the stability switch occurs at a certain critical valueDc satisfying

12
«

Dcq
S I 22

I 1
2

I 0
D 50. ~61!

This condition can also be derived from another kind of analysis based on the gra
representation40 of the equation determining the order parameter of the system@see Eq.~44!#:

m5E x@~Dqb!21~12b~q21!~f2«xm!!#1/~q21!dx, ~62!
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15E @~Dqb!21~12b~q21!~f2«xm!!#1/~q21!dx, ~63!

where we putm[^x&p`
.

If the potentialf(x) is symmetric, i.e.,f(x)5f(2x), m50 turns out to be a solution of th
above-mentioned equations. The onset of instability of them50 solution is given by the tangenc
condition atm50 for the curve representing the right-hand side of Eq.~62! as a function ofm. In
general, the tangency condition at arbitrarym reads

15
d

dm E x@~Dqb~m!!21~12b~m!~q21!~f2«xm!!#1/~q21!dx, ~64!

which is obtained by differentiating Eq.~62! with respect tom.
Differentiating Eq.~63! with respect tom yields

db

dm
5

«~q21!b2*xp` m
22qdx

*p` m
22qdx

, ~65!

where them dependence ofp` is expressed asp` m . Substituting this into Eq.~64! one immedi-
ately obtains

15
«

Dq F E x2p` m
22qdx2

~*xp` m
22qdx!2

*p` m
22qdx G . ~66!

This is exactly the same as Eq.~61! with Peq5p` m andD5Dc .
We show an example of the occurrence of bifurcations for a bistable system havin

potentialf(x)52x21x4. Figure 1 displays the behavior of the right-hand side of Eq.~62! with
b5b(m), that is, the order parameter^x&p`

, plotted as a function ofm for three typical values of
D and how thosêx&p`

curves intersect the straight line representing the left-hand side of Eq.~62!.
Since the potential has symmetry, one always has the intersection at the origin that gives ris

FIG. 1. Graphical representation of solving Eqs.~62! and ~63! for determining the order parameter of a bistable syst
with f(x)52x21x4. q50.4 and«50.5 are assumed. Plots as a function ofm are shown of the order parameter^x&p`

given by the right-hand side of Eq.~62! with b5b(m) from Eq. ~63! being substituted, for three typical values ofD: ~a!
D,Dc (D50.1), ~b! D5Dc ~'0.346 54!, and~c! D.Dc (D50.6). At the bifurcation pointD5Dc the ^x&p`

curve~b!

touches the straight line~dashed! representing the left-hand side of Eq.~62! at m50.
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trivial solution m50. We see thêx&p`
curve for the critical valueDc touches the straight line a

the origin to satisfy the criticality condition given by Eq.~66!. While for D.Dc the symmetric
probability distribution with the order parameterm50 is stable with

1.
d

dm E x@~Dqb~m!!21~12b~m!~q21!~f2«xm!!#1/~q21!dx, ~67!

it becomes unstable forD,Dc and two symmetrically generated intersection points havingm
Þ0 gain stability, because the stability condition~60! is broken. Note that in this example th
symmetric probability distribution withm50 for D5Dc is stable because of the global stabili
of the system implied by the H-theorem@Eqs.~18! and ~19!#.

We depict in Fig. 2 the bifurcation diagram showing the dependence of the order param
the stable branch on the control parameterD together with stability switches between stable a
unstable branches. We see asD is decreased from high values passing through the critical valueDc

a symmetry breaking phenomenon occurs. When the diffusion constantD is viewed as tempera
ture, such behavior is reminiscent of the ferromagnetic phase transition.

V. SUMMARY AND DISCUSSION

We have proposed a double nonlinear Fokker–Planck equation~DNFPE! ~9! exhibiting bifur-
cation phenomena within the framework of generalized thermostatistics based on nonexte
type generalized entropies. The nonlinearity responsible for the occurrence of bifurcations,
is added to the drift term of the previously known nonlinear Fokker–Planck equation of Pla
type, takes the form appearing in the standard mean field model. Our DNFPE exhibits, in ge
multisolutions unlike the original NFPE~1! and then criteria for choosing relevant solutions a
required.

To tackle this problem we have proven an H-theorem by constructing a Liapunov functio
takes the form of free energy involving generalized entropies of Tsallis. Our H-theorem show
the free energy, which is bounded below, continues to decrease until the system approache
the equilibrium distributions. More precisely, it ensures, instead of uniqueness of the equili
distribution, global stability of the system in that either one of the multisolutions must be
proached for large times.

Stability of each ergodic component is determined by the local stability analysis in whic
second-order variation of the Liapunov function takes positive values. We have compute

FIG. 2. Bifurcation diagram of pitch-fork type for the bistable system of Fig. 1 showing the dependence of the
parameter of the stable branch on the control parameterD together with stability switches atD5Dc between stable~solid
line! and unstable~dashed line! branches.
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second-order variation of the Liapunov function to find its relevant part whose sign go
stability of the equilibrium distribution of the system, and found that the latter can be amena
graphical analysis used in graphically solving the order parameters.

We have given an example of the systems exhibiting bifurcation phenomena to confir
theory. We have dealt with the case with a bistable potential and shown the bifurcation di
displaying the order parameter as a function of the coefficient of the nonlinear diffusion term
resultant bifurcation is similar to the behavior of the standard mean field model of ferromag
phase transitions.

As far as the thermodynamic equilibrium is concerned, the problem of phase transitio
infinite-range Ising ferromagnet was studied in Ref. 50 within generalized thermostatistics.
treatment allows for energy-constant-dependent physical quantities in the thermodynamic
which may come from the use of the so-called second choice2,3 of Tsallis thermostatistics, wher
average of unity is not unity. In our approach the constant term in the potential energyf(x) does
not matter in the equilibrium distribution~35! @see Eq.~33!# to give a standard result.

In this paper we have studied the DNFPE obtained based on the NFPE~1! exhibiting the
equilibrium distribution of the first choice rather than on the NFPE of Eq.~5! that was recently
proposed for the dynamics associated with the third choice of Tsallis thermostatistics. Sinc
choices of thermostatistics are quite similar to each other if viewed from the NFPEs,18 we consider
that it will suffice to deal with the simplest case as given by the present model to explore the
of bifurcation phenomena exhibited by the DNFPEs within the framework of generalized the
statistics.

Although our DNFPE is, to date, not known to have appropriate correspondingN-body
Langevin equations or equivalentlyN-body linear Fokker–Planck equation as considered in
case of the NFPE~8!, this work might help search for possible candidates for models explai
dynamic aspects of mean-field type phase transitions within the framework of Tsallis or ge
ized thermostatistics.

APPENDIX A

Proof of Eq. (35):2(]2F̃/]h2).0.
Noting

f2hx5
DqRD,h

q21

12q
2

1

~12q!b0
, ~A1!

we differentiate it with respect toh to have

2x52DqRD,h
q22 ]RD,h

]h
2

1

12q

]

]h S 1

b0
D . ~A2!

Then using Eq.~33! one has

2
]2F̃

]h2 5
]

]h E xRD,hdx5E x
]

]h
RD,hdx

5DqE RD,h
q22S ]RD,h

]h D 2

dx1
1

12q

]

]h S 1

b0
D ]

]h E RD,hdx

5DqE RD,h
q22S ]RD,h

]h D 2

dx.0. ~A3!
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APPENDIX B

Proof of Eq. (36):2(1/h)(]F̃/]h)→0 (h→6`).
Taking the probability distributionRD,h(x) in the form

RD,h~x!5@~Dqb0!21$12b0~q21!~f~x!2hx!%#1/~q21! ~0,q,1! ~B1!

with

f~x!5 (
k50

n21

akx
n2k ~a0.0, n~ :even!>4! ~B2!

and noting Eq.~33!, we will show that

lim
h→`

h21/~n21!E xRD,hdx5v ~const!. ~B3!

Note that whenD is a given constant,b0 is determined as a function ofD andh and that the
partition functionZ defined below remains constant ash is varied:

Z5E F 1

qb0~D,h!
1

~12q!

q
~f~x!2hx!G21/~12q!

dx5D1/~q21!. ~B4!

Introducing a change of variable as

x5h1/~n21!y ~B5!

one has

^x&5E xRD,hdx5h1/~n21!E yR̃~y,h!dy, ~B6!

where

R̃~y,h!5
1

Z
hag~y,h!21/~12q! ~B7!

with

g~y,h!5
12q

q
c~y,h!1

1

qb0
h2n/~n21!.0 ~;y,h!,

c~y,h!5a0yn2y1 (
k51

n21

akh
2k/~n21!yn2k

a5
n1q21

~n21!~q21!
,0. ~B8!

We note that

lim
h→`

Min2`,y,`c~y,h!5Min2`,y,`~a0yn2y!5
12n

n S 1

na0
D 1/~n21!

[v,0 ~B9!

and the minimum of the right-hand side of Eq.~B9! is attained at
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y5y* 5S 1

na0
D 1/~n21!

. ~B10!

Since*R̃(y,h)dy51, a,0, andZ remains constant, it follows

E g~y,h!21/~12q!dy→` ~h→`!, ~B11!

and hence the minimum ofg(y,h) over 2`,y,`, V(h),

V~h![
12q

q
Min2`,y,`c~y,h!1

1

qb0
h2n/~n21!, ~B12!

which must be positive, tends to 0 ash→`. Accordingly one has

lim
h→`

1

qb0
h2n/~n21!5

2~12q!v

q
.0. ~B13!

Letting «.0 be an arbitrary number, we evaluate the integral

I ~h![E yR̃~y,h!dy2y* 5E ~y2y* !R̃~y,h!dy

5E
uy2y* u,«

~y2y* !R̃~y,h!dy1E
uy2y* u>«

~y2y* !R̃~y,h!dy.

~B14!

One then has

U E
uy2y* u,«

~y2y* !R̃~y,h!dyU<«. ~B15!

Since, using the dominated convergence theorem, one has

lim
h→`

E
uy2y* u>«

uy2y* ug~y,h!21/~12q!dy

5E
uy2y* u>«

uy2y* uF ~12q!

q
~2v1a0yn2y!G21/~12q!

dy, ~B16!

it follows that for sufficiently largeh,

ha

Z E
uy2y* u>«

uy2y* ug~y,h!21~12q!dy,«. ~B17!

Accordingly, from Eqs.~B14!, ~B15!, and~B17! we obtain

lim
h→`

I ~h!50 ~B18!

to have
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lim
h→`

E yR̃~y,h!dy5y* , ~B19!

which together with Eq.~B6! yields Eq.~B3! with v5y* .
Since the case withh→2` can be dealt with in the same way, we have Eq.~36! to conclude

the proof.
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Lévy flights: Exact results and asymptotics beyond
all orders
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A comprehensive study of the symmetric Le´vy stable probability density function is
presented. This is performed for orders both less than 2, and greater than 2. The
latter class of functions are traditionally neglected because of a failure to satisfy
non-negativity. The complete asymptotic expansions of the symmetric Le´vy stable
densities of order greater than 2 are constructed, and shown to exhibit intricate
series of transcendentally small terms—asymptotics beyond all orders. It is dem-
onstrated that the symmetric Le´vy stable densities of any arbitrary rational order
can be written in terms of generalized hypergeometric functions, and a number of
new special cases are given representations in terms ofspecial functions. A link is
shown between the symmetric Le´vy stable density of order 4, and Pearcey’s inte-
gral, which is used widely in problems of optical diffraction and wave propagation.
This suggests the existence of applications for the symmetric Le´vy stable densities
of order greater than 2, despite their failure to define a probability density
function. © 2002 American Institute of Physics.@DOI: 10.1063/1.1467095#

I. INTRODUCTION

It is widely recognized that the Le´vy stable densities have enormously varied applicability
stochastic phenomena in the physical sciences. The characteristic feature of these densitie
divergence of their low order moments. Random walks in which the steps are of random
and distributed according to a Le´vy stable density are referred to as Le´vy flights,1 and are much
discussed in the literature.2 Continuous time random walks~CTRWs! in which the pausing time
distributions follow a Le´vy stable law are also widely studied.2–4

The Gaussian density is an important case of the Le´vy stable densities, as is the Cauch
density which is known to physicists in the context of atomic line shapes. Another early ph
application of the Le´vy stable densities is the Holtsmark distribution of the random fluctuation
the gravitational field of stars.5 Apart from these cases however, physical applications of the L´vy
stable densities were scarce prior to the ‘‘fractal revolution,’’ and their chief applications
traditionally to probability theory itself; notably to limit theorems, and random processes su
branching processes and random determinants.6 A flood of physical applications of Le´vy flights
have arisen in recent years, notable amongst these are models of turbulence, polymer tr
and Hamiltonian chaos. A remarkable feature of turbulent flows is enhanced diffusion w
requires a probability distribution with infinite moments, and recently work has been do
applying Lévy flights and their generalizations to this phenomenon.7,8 A review of the application
of Lévy stable densities to anomalous diffusion can be found in Ref. 9. CTRWs distrib
according to Le´vy stable laws prove important in studies of charge transport in amorp
materials.3,4 Articles discussing these and many more topics appear in Ref. 2.

Biological applications of Le´vy stable densities have become plentiful, and Le´vy flights have
been harnessed in modeling wide ranging phenomena, from the structure of DNA2 to the flight
paths of the wandering albatross.10 Such is the great utility of the stable densities, they ev
pervade less piquant disciplines such as economics. Le´vy stable densities are asymptotically of th
form 1/xa11.11 The economic sociologist Pareto12 first noted that empirical data of the incom

a!Electronic mail: frankel@physics.unimelb.edu.au
26700022-2488/2002/43(5)/2670/20/$19.00 © 2002 American Institute of Physics
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distributions for various countries followed an inverse power law distribution, and it is
believed13 that many economic quantities display this behavior. In the economics literature
sities with such asymptotic behavior are referred to as Pareto densities. Mandelbrot13,14 has at-
tempted to explain this asymptotic behavior by arguing that quantities such as price chan
ruled by Lévy stable distributions. For a more recent discussion on the use of stochastic pro
in finance see Ref. 15.

The Lévy stable densities are stable in the sense that if independent random variablesX and
Y are distributed according to the same type of Le´vy stable density, thenX1Y will again be
distributed according to this density. More precisely, letX1 andX2 be independent random var
ables with the same probability density function~pdf! pa(x). pa(x) is defined to be Le´vy stable
if it is a solution to the following,4,16–19for all positivec1 andc2 ,

c1X11c2X25cX, ~1.1!

whereX has the same pdf asX1 andX2 .
The constantc is determined via

c1
a1c2

a5ca. ~1.2!

We refer toa as the order of the stable density.
The question, ‘‘when is the sum of independent and identically distributed random vari

again distributed in the same way,’’ expressed in modern terminology translates into that par
of fractals, self-similarity: ‘‘when does the whole look like its parts?’’ It is known that the tra
tory of a Lévy flight is self-similar and that the order of the corresponding stable density,a, is
equal to the Hausdorff–Besicovitch dimension of this trajectory.4,13 This self-similarity manifests
itself as a hierarchy of clusters in the trajectory of a Le´vy flight, see, e.g., Refs. 3 and 13. Th
origin of this self-similar scaling behavior lies in the divergence of the moments of the Le´vy stable
density. This divergence of the moments of Le´vy stable pdfs can be understood quite simply fro
their 1/xa11 leading order asymptotic behavior, which implies that all moments^xm& for m>a
diverge.20

The divergence of the moments is also obvious from the structure of the Fourier trans
p̃a(k), of the symmetric Le´vy stable density

p̃a~k!5exp~2ukua!, ~1.3!

which clearly displays leading order nonanalytic behavior. It is well known~e.g., Ref. 16! that the
moments of a pdf, if they exist, are proportional to the coefficients of the power series expa
of the corresponding characteristic function. Thus we see that the moments of the symmetri´vy
stable pdfs will not exist in general, and hence there exists no characteristic scale. It
divergence of moments and the consequent nonexistence of characteristic scales that end
Lévy stable densities with their great utility, and intrinsic interest.

Taking the inverse Fourier transform of~1.3!, it follows that the symmetric Le´vy stable
density,pa(x), has the following form:

pa~x!5
1

pE0

`

cos~kx!exp~2ka!dk. ~1.4!

We note here that the most general form ofp̃a(k) is actually p̃a(k)5exp(2aukua) for some
non-negativea, wherea has the dimension of (length)a. However we can clearly scalea out of
the integral definingpa(x) with no loss of generality, and thus we neglecta in all future discus-
sions. This implies thatx is being scaled bya1/a and is therefore dimensionless.

It will be the analytic and asymptotic behavior of the integral~1.4! that will be the focus of
this work. Equation~1.4! only defines a pdf when 0,a<2, because fora.2 it fails the non-
negativity requirement,21,22 although it is interesting to note that it is still both stable and norm
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izable. We shall not be dissuaded from investigating the interesting properties of~1.4! for a.2
however, and in fact this is one of the principle aims of this work. We shall refer to the integ
~1.4! aspa(x), even when it does not define a pdf. We show that the asymptotic forms ofpa(x)
for a.2 possess highly intricate transcendentally small terms lying beyond all orders o
asymptotic power series. We study these structures in detail and discuss why these resu
likely find interesting physical applications despite the inability of usingpa(x) as a pdf in this
region. This work further demonstrates our continuing interest in the newly emerging fie
asymptotics beyond all orders.23–25

It is easily shown thatp4(x) is related to a special case of Pearcey’s integral,P(y,z),26,27

P~y,z!52ei ~p/8!E
0

`

dk exp~2k42yk2!cos~zk! ~1.5!

via

P~0,z!52pe~ ip/8!p4~z!. ~1.6!

The dominant exponential asymptotics displayed byP(0,z), discussed in Ref. 26, is a perfe
example of the behavior displayed bypa(x) whena is an even integer. As we shall show, in the
cases the asymptotic power series generated by the standard Mellin transform technique v
Pearcey’s integral is important in the theoretical treatment of short wavelength problems
wave propagation and optical diffraction.26 It is the oscillatory nature of the exponential asym
totics that endowsp4(x) with its utility in such problems, and it is behavior that is displayed by
otherpa(x) whena.2. We thus feel it perfectly natural to anticipate that similar applications
exist for pa(x) for other values ofa.

There exists a wealth of knowledge of the analytic properties of the functionpa(x), e.g., Refs.
3 and 6. However, finding an expression forpa(x) for generala in terms of known functions is
traditionally considered impossible, e.g., Ref. 17. We demonstrate that for all rationala, pa(x) can
in fact be expressed as a finite sum of generalized hypergeometric functions,pFq .28 It is also
known,29 albeit perhaps not widely, that the Le´vy stable pdfs can be expressed in terms of the F
H-function.30 The FoxH-function is a generalization of the MeijerG-function, which in turn is a
generalization of the less complicated generalized hypergeometric functionspFq .31 The hypergeo-
metric representation ofpa(x) is more practical since the analytic and asymptotic properties of

pFq , which we employ extensively, have been well studied.31,32

Zolotarev33 provides a small list of values ofa for which pa(x) can be expressed in terms o
special functions, and one of these results is recovered in Ref. 29. We not only recover Zolota
results but add a number of new cases, and display for the first time a detailed exposition
compelling asymptotics beyond all orders fora.2.

II. SERIES REPRESENTATIONS FOR p a„x …

Here we demonstrate a convenient method of deriving the known2–4,16,17convergent series
and asymptotic power series representations ofpa(x), since we shall have need to employ the
expansions in later discussions. One can easily construct the Mellin–Barnes integral repr
tion of pa(x) by simply calculating its Mellin transform and then using the inverse Mellin tra
form formula.

pa~x!5
1

p

1

2p i Es2 i`

s1 i`

ds

cosS ps

2 DG~s!GS 12s

a D
a

x2s, 0,s,1. ~2.1!

Obtaining series expansions ofpa(x) is then merely a case of closing the contour to either
left or the right and calculating the residues. If we close to the left we obtain the smx
expansion,
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pa~x!5
1

apx (
m50

`

~21!mx2m11

GF2m11

a G
G@2m11#

, ; x, a.1,

~2.2!

pa~x!;
1

apx (
m50

`

~21!mx2m11

GF2m11

a G
G@2m11#

,x→0, a,1.

Via application of the ratio test we determine that~2.2! provides a convergent series repr
sentation ofpa(x) for all real x whena.1, and an asymptotic expansion asx→0 for a,1.

Closing the contour to the right we obtain the largex expansion ofpa(x),

pa~x!5
a

px (
m50

`

sinF ~m11!pa

2 G~21!m~x2a!m11
G@~m11!a#

G@m11#
, x.0, 0,a,1,

~2.3!

pa~x!;
a

px (
m50

`

sinF ~m11!pa

2 G~21!m~x2a!m11
G@~m11!a#

G@m11#
, x→`, a.1.

Thus we have a convergent largex expansion ofpa(x) when a,1. Whena.1 ~2.3! pro-
vides an asymptotic expansion, but as we shall discuss later there are certain interesting c
which this expansion is notcomplete.34,35 In particular whena is integral and greater than 2, w
find that ~2.3! provides only the asymptotic power series component of the complete asym
expansion, i.e., there are a series of exponentially small terms that~2.3! neglects. Ifa is an even
integer ~2.3! vanishes identically, which fora52 expresses the fact that in the limit of larg
argument the Gaussian is smaller than any power. For even integrala, with a.2, we see that the
exponentially small terms lying beyond all orders of~2.3! become dominant, and the comple
asymptotic expansion ofpa(x) consists solely of these transcendentally small series. We
return to the delicate problem of calculating the terms that lie beyond all orders of~2.3! when
a.2. We devote an extensive section to the detailed construction of the exponential asym
for pa(x) for the casesa53,4,5,6,7, which will demonstrate the increasing intricacy of
exponentially small asymptotic series asa increases.

III. p p Õq„x … EXPRESSED IN TERMS OF HYPERGEOMETRIC FUNCTIONS

If we let a5 p/q, i.e., let a be rational, thenpp/q(x) can be expressed as a finite sum
generalized hypergeometric functions. The serendipitous process by which we discovered t
originated in the investigation of the exponential asymptotics of a number theoretic series
we refer to as the generalized Euler–Jacobi series, and denote bySp/q(a).24 After a suitable
transformation of the summand ofSp/q(a), it becomes apparent that this summand is very sim
related topp/q(x). Thus the detailed asymptotic and analytic of investigationSp/q(a) that was
undertaken in Ref. 24 can be applied to the investigation ofpp/q(x). It is for this reason that we
now discuss the relationship betweenSp/q(a) andpp/q(x).

We define the generalized Euler–Jacobi series as

Sp/q~a![ (
m50

`

e2amp/q
~3.1!

and upon application of the Euler–Maclaurin summation formula this becomes

Sp/q~a!5

qGS q

pD
paq/p 1

1

2
1 (

n51

`
a

np E
0

`

dt sin~2nptq/p!exp~2at!. ~3.2!
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We refer to~3.2! as the inversion formula forSp/q(a). In order to simplify~3.2! a systematic study
of integrals of the form

I p/q~a,b!5E
0

`

dt exp~2at!sin~btq/p! ~3.3!

was carried out in Ref. 24.
To see the relationship betweenpp/q(x) andI p/q(a,b) we takepp/q(x) and integrate by parts

pp/q~x!5
1

p E
0

`

dk cos~kx!exp~2kp/q!,

~3.4!

pp/q~x!5
1

px E0

`

d~kp/q! exp~2kp/q!sin~kx!,

pp/q~x!5
1

pxp/q 11 E
0

`

dt expS 2t

xp/qD sin~ tq/p!, ~3.5!

pp/q~x!5
1

pxp/q 11 I p/q~x2 p/q,1!. ~3.6!

Hence we identify the summand in the generalized Euler–Jacobi inversion formula
pp/q(x). Specifically we see that

Sp/q~a!5

qGS q

pD
paq/p 1

1

2
1

2p

aq/p(
n51

`

pp/qS 2np

aq/p D . ~3.7!

Thus the number theoretic seriesSp/q(a) can be interpreted as a sum over Le´vy flights of
different arguments.

All analytic and asymptotic results in Ref. 24 forI p/q(a,b) or Sp/q(a) can now be translated
into results forpp/q(x) by application of this simple algorithm. We shall utilize this fact in t
following sections to list a number of significant examples of the analytic behavior ofpp/q(x) for
various values ofp/q, and also to discuss the delicate exponential asymptotic behavior ofpp/q(x)
for p/q.2.

One fundamental result of the analysis ofI p/q(a,b) in Ref. 24 is the representation o
I p/q(a,b) in terms of a sum of hypergeometric functions, which forms the foundation of
asymptotic results discussed therein. The method of construction of such a representat
I p/q(a,b) suggests an obvious method for constructing a corresponding representation ofpa(x) in
terms of hypergeometric functions, which we shall now delineate.

We begin our analysis with~2.2!, letting a5 p/q. This series could also be obtained b
simply expanding sin(tq/p) in ~3.5! into its Maclaurin series and integrating term by term. As no
in Sec. II,~2.2! is convergent;x whenp/q.1, but is divergent whenp/q,1. Despite this we will
still identify ~2.2! with pp/q(x) even for p/q,1, and when necessary the technique of Bo
summation36 can be utilized to recast the original series, for specificp/q, into convergent integrals
which can then be evaluated. This process is discussed in detail in Ref. 24 in the treatm
I p/q(a,b).

The series representation for the generalized hypergeometric equation is

jFkS a1 ,a2 , . . . ,a j

b1 ,b2 , . . . ,bk
UzD5 (

m50

`
zm

m!

Ph51
j ~ah!m

Ph51
k ~bh!m

, ~3.8!
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where (a)m is Pochhammer’s symbol

~a!m5
G~a1m!

G~a!
. ~3.9!

We can see from~3.8! and~3.9! that ~2.2! clearly displays hypergeometric behavior, in that
coefficients are a ratio of gamma functions. To make this identification manifest we ne
massage the gamma functions into the formG(m1stuff). We begin by using the change of inde
m5np1 l ,

pp/q~x!5
q

ppx (
n50

`

(
l 50

p21

eip(np1 l )x2np12l 11

GF2nq1
~2l 11!q

p G
G~2np12l 11!

~3.10!

then we follow this withs52n,

pp/q~x!5
q

ppx (
s50

` F11~21!s

2 G (
l 50

p21

eip(sp/21 l )xsp12l 11

GFsq1
~2l 11!q

p G
G~sp12l 11!

. ~3.11!

Finally we can now transform the ratio of gamma functions into the required form by utili
Gauss’ multiplication formula31 and ~3.9!, which results in

GFsq1
~2l 11!q

p
G

G~sp12l 11!

5
~2p!~p2q!/2qsq1 (2l 11)q/p 2 1/2

psp12l 1 1/2

)
h51

~q21!

GF ~2l 11!

p
1

h

q
G

)
h51

~p21!

GF ~2l 11!

p
1

h

p
G
S 2l 11

p
1

h

q
D

s

S 2l 11

p
1

h

p
D

s

. ~3.12!

Inserting~3.12! into ~3.11!

pp/q~x!5
qq/p 1 1/2

p3/2 ~2p!(p2q22)/2(
l 50

p21

~21! l S qqxp

pp D 2l /p )
h51

~q21!

GF ~2l 11!

p
1

h

qG
)
h51

~p21!

GF ~2l 11!

p
1

h

pG

3(
t50

1

(
s50

` S ~21! tepp i /2
qqxp

pp D s 1

s!

~1!s )
h51

~q21! S 2l 11

p
1

h

qD
s

)
h52

p S 2l 1h

p D
s

. ~3.13!

The following useful notation,f (6z)6[ f (z)6 f (2z) for some functionf , will be used
throughout this work. Using~3.13! and ~3.8! then, we finally obtain
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pp/q~x!5
qq/p 1 1/2

p3/2 ~2p!(p2q22)/2(
l 50

p21

~21! lS qqxp

pp D 2l /p

3

)
h51

~q21!

GF ~2l 11!

p
1

h

q
G

)
h51

~p21!

GF ~2l 11!

p
1

h

p
G

3qFp21S 1,
2l 11

p
1

1

q
,
2l 11

p
1

2

q
, . . . ,

2l 11

p
1

q21

q
2l 12

p
,
2l 13

p
, . . . ,

2l 1p

p

U6 i p
qqxp

pp D 1

. ~3.14!

In order to simply the appearance of this further, we can use the known relationship betwe
Meijer G-function and the generalized hypergeometric function31 to obtain

pp/q~x!5
qq/p 1 1/2

p3/2 ~2p!~p2q22!/2(
l 50

p21

~21! l S qqxp

pp D 2l /p

3Gq,p
1,qS 6 i p

qqxp

pp U0,
1

q
2

2l 11

p
,
2

q
2

2l 11

p
, . . . ,

q21

q
2

2l 11

p

0,
22l

p
,
1

p
2

2l

p
, . . . ,

p22l 22

p

D 1

. ~3.15!

IV. SPECIAL FUNCTION REPRESENTATIONS OF p p Õq„x …

In this section we list a number of new cases of special function representations ofpp/q(x), in
which ~3.15! decomposes into simpler forms. We also recover, and in one instance correct,
results obtained by Zolotarev. We begin by deriving the familiar forms of the the Cauchy
Gaussian densities from~3.15! in order to illustrate how the general expression simplifies in th
more transparent cases. We show that the Holtsmark density can be expressed as a sum o
functions. For details of the derivation of these results the reader should consult Ref. 24, ap
~3.7!.

A. The Cauchy and Gaussian densities

It is easily shown that fora51, ~3.14! decomposes as follows:

p1~x!5
1

2p1F0~1;6 ix !1,

~4.1!

p1~x!5
1

p~11x2!
.

This second expression will be recognized as the well-known Cauchy pdf.
Recovering the Gaussian pdf from~3.14! whena52 is equally straightforward,
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p2~x!5
1

2A4p
(
l 50

1

~21! l S x2

4 D l

1F1S 1;l 11;6
x2

4 D 1

,

~4.2!

p2~x!5
e2 x2/4

A4p
.

Thus our general result~3.14! easily reproduces the standard forms of these two principal sp
cases ofpp/q(x).

B. aÄ 3Õ2: The Holtsmark density

With the exception of the Gaussian and Cauchy densities, the Holtsmark density was th
recognized application of the Le´vy stable densities to the physical sciences. Chandrasekhar5 gives
an elegant derivation of the pdf for the force per unit mass acting on a given star due
gravitational attraction of the neighboring stars, which shows this pdf to bep3/2(x). He did not
give the closed form expression for the pdf however, but instead tabulated various nume
obtained values for it. We now present the special functions representation for the Holt
density, in whichJm(x) is the Bessel function of the first kind of orderm,

p3/2~x!5
22/3

33/2Ap
(
l 50

2 S 4x3

27 D 2l /3

~21! lG2,3
1,2S 6 i

4x3

27 U 0,
1

2
2

2l 11

3

0,
22l

3
,
1

3
2

2l

3

D 1

,

~4.3!

p3/2~x!5
4x2

27)
cosS 2x3

27 D J2 2/3S 2x3

27 D2
4x2

27)
cosS 2x3

27 D J2/3S 2x3

27 D2
4x2

27)
sinS 2x3

27 D J2 1/3S 2x3

27 D
2

4x2

27)
sinS 2x3

27 D J1/3S 2x3

27 D1
x2

6p 2F2S 1,
3

2
;
4

3
,
5

3
;6

i4x3

27 D 1

.

C. Zolotarev’s results: Correcting p 2Õ3„x … and recovering p 1Õ2„x …

Zolotarev33 states a representation ofp2/3(x) in terms of a Whittaker function, but this resul
which is much quoted, e.g. Ref. 3, is incorrect. That the result in Ref. 33 cannot be correct
simply deduced by observing its largex behavior and comparing it to~2.3!. We now list the
correct result in terms of a Tricomi confluent hypergeometric functionC(b,g,z). We also state
the result less elegantly in terms of a Whittaker function,Wa,b(z), which is similar in form to the
incorrect result stated in Ref. 33,

p2/3~x!5
3

4Ap
2F0S 5

6
,
7

6
;2

27x2

4 D ,

p2/3~x!5
x2 5/3

21/333/2Ap
CS 5

6
,
2

3
;

4

27x2D , ~4.4!

p2/3~x!5
1

6x
A3

p
expS 2

27x2DW2 1/2 , 1/6S 4

27x2D .

In Ref. 33 Zolotarev derivesp1/2(x) by a rather complicated procedure. By massaging~3.14!
appropriately we obtain
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p1/2~x!5
1

p 2F0S 1,
3

2
;6 i4xD 1

,

p1/2~x!5
1

8x2 FJ1/2S 1

4xD1J2 1/2S 1

4xD G2
1

2p&x2 FJ1/2S 1

4xD1E1/2S 1

4xD G , ~4.5!

p1/2~x!5
1

A2px3/2F1

2
2CS 1

A2px
D GcosS 1

4xD1
1

A2px3/2F1

2
2SS 1

A2px
D GsinS 1

4xD ,

whereJn(z) andEn(z) are the Anger and Weber functions, respectively, andC(z), S(z) are the
Fresnel integrals. The last form listed in~4.5! in terms of the Fresnel integrals is in agreement w
that stated by Zolotarev.

D. A miscellany of other new results: aÄ 1Õ3,3,4Õ3

By an examination of the integral24 corresponding top1/3(x), it was found that the case o
p1/3(x) has an especially simple representation in terms of a complex conjugate pair of Lo
functions. This is a new and rather attractive result,

p1/3~x!5
27)

~2p!2 GS 4

3DGS 5

3D 3F0S 1,
4

3
,
5

3
;6 i27xD 1

,

~4.6!

p1/3~x!5
1

3)px3/2
e2 ip/4S0,1/3S 2eip/4

3A3x
D 1

1

3)px3/2
eip/4S0,1/3S 2e2 ip/4

3A3x
D .

The case ofa53 is especially interesting and we discuss in detail its asymptotic properti
Sec. V. Here we observe that the integral forp3(x) is exactly solvable and is again given by
complex conjugate pair of Lommel functions,

p3~x!5
1

3)(
l 50

2

~21! l S x2

9 D l

G1,3
1,1S 6 i

x3

27U
0,2 2l /3 , ~122l !/3

0 D 1

,

~4.7!

p3~x!5
1

3p
Ax

3
eip/4S0,1/3F2e3ip/4S x

3D 3/2G1
1

3p
Ax

3
e2 ip/4S0,1/3F2e2 3ip/4S x

3D 3/2G .
Due to the appearance of the Cauchy density,a51, Gaussian density,a52, and Pearcey

integral,a54, in physical applications, and also the elegance of the closed form representa
p3(x), it seems unlikely that nature would choose not to also utilizep3(x) in her description.

It will be noticed that the Lommel function representation ofp3(x), ~4.7!, is very similar in
form to that of the Lommel function representation ofp1/3(x) ~4.6!. There is no direct relationship
betweenp3(x) andp1/3(x) in the sense of a duality transform17,33,6however, since such a trans
form sends symmetric Le´vy stable densities to asymmetric Le´vy stable densities in general, an
both ourp3(x) andp1/3(x) are symmetric. To see the reason for the similarity in structure and
to illuminate the absence of a direct map betweenp3(x) and p1/3(x), we compare the serie
representations discussed in Sec. II for the case ofa.1 and 1/a. Using the simple identity

(
n50

`

~21!nan5 (
m50

`

~21!msinF ~m11!p

2 Gam/2 ~4.8!

we can transform~2.2! into a form very similar to~2.3!. Using ~2.3! with order 1/a we arrive at
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pa~x!5
1

apx (
m50

`

sinF ~m11!p

2 G~21!mxm11

GS m11

a D
G~m11!

, ~4.9!

p1/a~x!5
1

apx (
m50

`

sinF ~m11!p

2a G~21!m~x2 1/a!m11

GS m11

a D
G~m11!

. ~4.10!

The only difference in the structure of~4.9! versus~4.10!, apart fromx→x2 1/a, is the factor of
1/a in the argument of the sine. This difference however prohibits us from producingpa(x) via
any transform of the argument ofp1/a(x), since it is impossible to express

sinF ~m11!p

2 G
as a multiple of

sinF ~m11!p

2a G .
Thus we see that there is good reason for the similar structure of~4.7! and~4.6!, but there exists
no rule whereby we can construct one by knowing the other.

We list for completeness another useful form ofp3(x) in terms of Anger functions, and th
Kelvin functionsbern(z) andbein(z),

p3~x!5
A2x

9
@ber2 1/3~2Ax3/27!2bei2 1/3~2Ax3/27!#1

A2x

9
@bei1/3~2Ax3/27!

2ber1/3~2Ax3/27!#2
Aix

9
@J1/3~2e2 ip/4Ax3/27!2J2 1/3~2e2 ip/4Ax3/27!#

2
1

9
Ax

i
@J1/3~2eip/4Ax3/27!2J2 1/3~2eip/4Ax3/27!#. ~4.11!

We finally list the case ofp/q 5 4/3, in which the sum over the eightG functions decompose
into two 2F2 functions. It would be expected that similar simplifications should exist for o
cases such asp/q 5 5/3 should they be sought,

p4/3~x!5
35/4

8A2p
(
l 50

3

~21! lS 33/2x2

16
D l

G3,4
1,3S 6

33x4

44 U
0,

2 l

2
,
122l

4
,
12 l

2

0,
1

3
2

2l 11

4
,
2

3
2

2l 11

4 D 1

,

~4.12!

p4/3~x!5
35/4

4A2p

G~ 7
12!G~ 11

12!

G~ 1
2!G~ 3

4!
2F2S 7

12
,
11

12
;
1

2
,
3

4
;
33x4

44 D
2

311/4x2

43A2p

G~ 13
12!G~ 17

12!

G~ 3
2!G~ 5

4!
2F2S 13

12
,
17

12
;
3

2
,
5

4
;
33x4

44 D .
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V. COMPLETE ASYMPTOTIC EXPANSIONS AS x\`

It has been shown previously thatpp/q(x) can be represented as a sum of hypergeome
functions, which is convergent whenp/q.1. Hence, whenp/q.1, the complete asymptotic
expansions ofpp/q(x) for largex can be deduced in a straightforward way by making use of
known complete asymptotic expansions of the hypergeometric functionqFp21 .

For the cases ofp/q,1 no such asymptotic largex expansion is required since the converge
expansion,~2.3!, is already a largex expansion. Consequently, since allpp/q(x) with p/q,1
possess a convergent largex power series, their asymptotic behavior in this limit must be pur
algebraic. This fact manifests itself in the special functions representations discussed in S
since p1/2(x), p2/3(x) and p1/3(x) all have special functions representations in which the ar
ments of these special functions contain negative powers ofx. Thus the convergent, small argu
ment series expansions of these special functions provide the largex behavior of thesepp/q(x).
This observation explains why the largex asymptotic expansion ofp1/3(x) is totally algebraic
whereas that ofp3(x) contains both algebraic and transcendental terms, as we shall show, d
the fact that these two functions have very similar representations in terms of the same Lo
function, S0,1/3. That is, becausep3(x) is expressed in terms of Lommel functions whose ar
ment contains positive powers ofx, whereasp1/3(x) is expressed in terms of Lommel function
whose arguments contain negative powers.

Luke ~Ref. 31, Chap. 5!, gives a detailed discussion of the complete asymptotic expansio
the MeijerG function and the generalized hypergeometric function, and the particular nuanc
the complete expansions ofjFk21 are discussed fully in Ref. 24. The complete asymptotic exp
sion of jFk21 , for j <k22, is given by

)h51
j G~ah!

)h51
k21G~rh! jFk21~r1 ,r2 , . . . ,rk21

a1 ,a2 , . . . ,a j u2z!

; (
m50

r 21

Gk
1,j~m!K j ,k21~ze2 ip(2m11)!

1 (
m50

k2 j 2r 21

Ḡk
1,j~m!K j ,k21~zeip(2m11)!1L j ,k21~z!, ~5.1!

K j ,k21~z!5
~2p!~ j 112k!/2

~k2 j !1/2 e(k2 j )z1/(k2 j )
zg (

m50

`

Nmz2 m/(k2 j ), ~5.2!

L j ,k215(
t51

j

z2a t
) t51

j G~a t!G~a j2a t!*

) t51
k21G~rk212a t!

kF j 21S 11a t2a
j*

a t,11a t2r j 21U ~2 !k2 j 21

z D , ~5.3!

where the asterisk signifies thatG(a j2a j ) is excluded, andr is an arbitrary integer such that
<r<k2 j . The values of theGk

1,j (m) and Ḡk
1,j (m) are given in Ref. 31. The argument ofz is

subject to the two constraintsuarg(z)u<2p2d with d,0, andd11(4r 23k13 j 22)p/2<arg(z)
<d21(4r2k1j12)p/2 whered1 andd2 are arbitrarily small. TheNm are found recursively, and
the details of the recursion relation in the general case, as well as the specific recursion re
for the casesa53,4,5,6,7 and there construction, can be found in Ref. 24. We shall not discu
construction of theNm here, since the procedure is straightforward but unenlightening. We
however, that theNm are dependent on the parameters of the given hypergeometric functio

We refer in this work, following the above-given notation used in the complete asymp
expansions of the generalized hypergeometric functions, to the component asymptotic
series of a given hypergeometric function orpa(x) as theL asymptotics of that function, and t
the series of exponentially small terms as theK asymptotics of that function.
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The L asymptotics of the sum of hypergeometric functions composing a givenpp/q(x) must
conspire to reproduce~2.3!, since theK asymptotics contain no algebraic terms. This is verified
occur for the asymptotic expansions of the equivalentI p/q(a,b) in Ref. 24, for all the specia
cases ofpp/q(x) considered in Sec. IV. There is also a formal demonstration in Ref. 24 of how
L asymptotics of theI 2n11(a,b) corresponding top2n11(x) coalesce into~2.3!. Whenp/q is an
even integer theL asymptotics of the complete asymptotic expansion ofpp/q(x) vanish, as dis-
cussed previously. TheL asymptotics forp/q 53,4,5,6,7 are thus easily found and require lit
discussion. We list the nonvanishing series here for completeness,

p3~x!;
3

px (
m50

`
~21!m11

~2m!!

G~6m13!

~x3!2m11 , ~5.4!

p5~x!;
5

px (
m50

`
~21!m

~2m!!

G~10m15!

~x5!2m11 , ~5.5!

p7~x!;
7

px (
m50

`
~21!m11

~2m!!

G~14m17!

~x7!2m11 . ~5.6!

Upon investigation of the special casesp4/3(x) and p3/2(x) discussed in Sec. IV, it is found
that theK asymptotic series exactly cancel in both of these cases, thus producing purely alg
complete asymptotic expansions. The derivations of these results can be deduced from R

It is found however that the asymptotics of thepn(x) for integraln possess intricate series o
exponentially small terms whenn.2, i.e., nonvanishingK asymptotics. In order to determine th
contribution of theK asymptotics to the complete asymptotic expansion ofpn(x), which we
denote bypn

K(x), we simply use our expression forpn(x) in terms of hypergeometric function
and then substitute theK asymptotic series from~5.2!. We sketch the procedure for the case
p3(x), and then simply state the results for the other cases. Details of the construction of
cases listed may be deduced from Ref. 24 using~3.7!.

For convenience we introduce the notationz5 qqxp/pp so that~4.7! reduce to

3)p3~x!5G1,3
1,1~6 izu0,0,1/3

0 !12z2/3G1,3
1,1~6 izu0,22/3,21/3

0 !11z4/3G1,3
1,1~6 izu0,24/3,21

0 !1. ~5.7!

By massaging this expression we find that theG functions reduce to

G1,3
1,1~6 izu0,0,1/3

0 !15GS 2

3D 21

0F1S 2

3
;6 izD 1

, ~5.8!

G1,3
1,1~6 izu0,22/3,21/3

0 !15FGS 4

3DGS 5

3D G21

1F2S 1; 4/3 ,
5

3
;6 izD 1

, ~5.9!

G1,3
1,1~6 izu0,24/3,21

0 !15
1

iz
GS 4

3D 21

0F1~4/3 ;6 iz!2. ~5.10!

We note that the asymptotic expansions of~5.8! and~5.10! contain onlyK asymptotic expan-
sions since the sum in~5.3! is void in these cases. Thus~5.4! is constructed purely from theL
asymptotics of~5.9!.

The complete asymptotic expansion of~5.8! is constructed using~5.1! and ~5.2!. We obtain

G~ 2
3!

21
0F1~ 2

3 ;6 iz!1;K0,1~e6p i /2z!11K0,1~e63p i /2z!1, ~5.11!

where
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K0,1~e6p i /2z!15
z2 1/12

Ap
eA2z (

m50

`

Nmz2 m/2cosSA2z2
p

24
2

mp

4
D , ~5.12!

K0,1~e63p i /2z!15
z2 1/12

Ap
e2A2z (

m50

`

Nmz2 m/2cosSA2z2
3p

24
2

3mp

4
D . ~5.13!

The K asymptotics of~5.9! and ~5.10! are found in a similar way and yield

1F2~1; 4
3 , 5

3 ;6 iz!1

@G~ 4
3!G~ 5

3!#
;

z2 3/4

Ap
eA2z (

m50

`

Nmz2 m/2cosSA2z2
3p

8
2

mp

4
D

1
z2 3/4

Ap
e2A2z (

m50

`

Nmz2 m/2cosSA2z2
9p

8
2

3mp

4
D 1L asymptotics,

~5.14!

GS 4

3
D 21

0F1S 4

3
;6 izD 2

;
z2 5/12

Ap
eA2z (

m50

`

Nmz2 m/2sinSA2z2
5p

24
2

mp

4
D

2
z2 5/12

Ap
e2A2z (

m50

`

Nmz2 m/2sinSA2z2
5p

8
2

3mp

4
D . ~5.15!

An interesting thing to note is the presence in theK asymptotics of all three hypergeometr
contributions, of terms which grow exponentially withz. Since the integral representation
pa(x) does not display such drastic behavior, it must be the case that theNm are the same for al
three contributions so that the exponentially growing terms can cancel. When the recu
relation for theNm , which is dependent on the parameters in the givenG function, is calculated24

it is in fact found to be the same in all three cases. This coincidence of theNm and consequen
cancellation of exponentially growing terms is in fact a general trend in theK asymptotics of
pn(x), and occurs for all of the cases we display in the following.

Investigation of the recurrence relation for theNm of p3(x) results in24

Nm5
G~m11/6!G~m15/6!

22mm!G~1/6!G~5/6!
. ~5.16!

Adding the three separate contributions~5.11!, ~5.14!, and~5.15! we obtain theK asymptotic
contribution to the asymptotic expansion ofp3(x). We note that the exponentially growing term
do in fact cancel as expected. The complete asymptotic expansion is obtained by adding~5.4!,

p3
K~x!;

1

Ap~3x!1/4
expS 2A2x3

27 D (
m50

`

NmSA27

x3D m

cosSA2x3

27
2

p

8
2

3mp

4 D . ~5.17!

Sincep3(x) has such an elegant representation in terms of Lommel functions,~4.7!, one might
be tempted to construct the asymptotic expansion ofp3(x) from the tabulated asymptotic expan
sions of the Lommel functions. We note however that the asymptotic expansions for the Lo
functions that are listed in books, e.g., Refs. 31 and 37, contain only a power series, wher
find using the general theory of the asymptotics ofG functions thatp3(x) contains both a powe
series and series of exponentially small terms that lie beyond all orders of this power series.
the commonly quoted asymptotic expansions of the Lommel functions must be incomplete,
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seems that the complete asymptotic expansions of the Lommel functions are unknown. Th
plete asymptotic expansions of the Lommel functions will form the subject of a future publica

The complete asymptotic expansions ofpn(x) for larger values ofn can be found from the
asymptotic expansions of the hypergeometric function in a similar manner to that used forp3(x).
We list below the expansion forn54,5,6,7. The details of the derivations can be deciphered f
the discussion in Ref. 24. We see that asn increases the complexity of theK asymptotic expan-
sions increases. We list here the first fourNm for each case, but avoid details of the recursi
relation, the details of which can be found in Ref. 24,

p4
K~x!;

21/6

A3px1/3
expS 23x4/3

211/3 D (
m50

`

NmS 4

x
D 4m/3

cosS 3)

211/3x4/32
p

6
2

2mp

3
D . ~5.18!

Due to the intimate relationship betweenp4(x) and Pearcey’s integral we include the values ofNm

for 0<m<20 in Table I. TheNm for m.20 may be obtained from the following recursio
relation, withNm532mcm :

cm5~7/48m211m!cm211~7/48m213/161m2m2/3!cm22 , ~5.19!

p5
K~x!;

1

A2p51/8x3/8 (
m50

`

NmS 5

xD 5m/4

expF4 cosS 5p

8 D S x

5D 5/4GcosF4sinS 5p

8 D S x

5D 5/4

2
3p

16
2

5mp

8 G ,
~5.20!

whereN051, N15 9
160 , N25 441

51 200, N35 202 509
81 920 000,

p6
K~x!;

1

2A15p
(

m50

`

NmS 6

xD ~6/5!(m1 1/3)

~21!mexpF25S x

6D 6/5G1
1

A15p
(

m50

`

NmS 6

xD ~6/5!(m1 1/3)

3expF5 cosS 3p

5 D S x

6D 6/5GcosF5sinS 3p

5 D S x

6D 6/5

2
p

5
2

3mp

5 G , ~5.21!

whereN051, N15 11
180 , N25 517

64 800, N35 222 253
174 960 000,

p7
K~x!;

1

71/12A3px5/12
(

m50

`

NmS 7

x
D ~7/6! m

expF6 cosS 7p

12
D S x

7
D 7/6GcosF6 sinS 7p

12
D S x

7
D 7/6

2
5p

24

2
7mp

12
G1

1

71/12A3px5/12
(

m50

`

NmS 7

x
D ~7/6! m

expF6 cosS 11p

12
D S x

7
D 7/6G

3cosF6sinS 11p

12
D S x

7
D 7/6

2
p

24
2

11mp

12
G , ~5.22!

whereN051, N15 65
1008, N25 219 307

33 592 320, N35 8 304 286 951
995 515 121 664.

Note that forp6(x) andp7(x) there are two exponentially small series not just one. We sho
therefore expect that theK asymptotic expansions ofpn(x) will contain ever more decaying
exponentials asn increases.

VI. MOMENTS

The divergence of the moments ofpa(x) was explained in Sec. I to be a consequence of
1/xa11 asymptotic power law behavior. We have shown in Sec. V however that the larx
asymptotic behavior ofp2n(x) is purely exponential and contains no algebraic terms, which le
one to expect that their moments might exist. One also reaches this conclusion by observi
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in general the nonanalytic behavior of the Fourier transform,p̃a(k)5exp(2ukua), is intimately
involved in the divergence of sufficiently late moments ofpa(x), because ifp̃a(k) were analytic
it would possess an expansion of the following form:

p̃a~k!5 (
m50

`
~ ik !m

m!
^xm&, ~6.1!

TABLE I. Values ofNm for p4(x).

m Nm(exact) Nm(decimal)

0 1 1.000 000 00003100

1
7

144
4.861 111 11131022

2
385

41 472
9.283 371 91331023

3
39 655

17 915 904
2.213 396 54431023

4
665 665

10 319 560 704
6.450 516 83031025

5 2
1 375 739 365

1 486 016 741 376
29.257 899 5031024

6 2
2 053 160 864 755

1 283 918 464 548 864
21.599 136 4831023

7 2
400 804 002 473 875

184 884 258 895 036 416
22.167 864 3931023

8 2
545 523 697 484 891 125

212 986 666 247 081 951 232
22.561 304 4531023

9 2
639 409 620 356 437 805 875

276 030 719 456 218 208 796 672
2.316 443 6931023

10 2
7 400 680 096 069 804 168 625

79 496 847 203 390 844 133 441 536
29.309 400 7531025

11
85 225 571 098 153 435 685 610 875

11 447 545 997 288 281 555 215 581 184
7.444 876 92931023

12
548 115 663 843 414 041 224 022 298 125

19 781 359 483 314 150 527 412 524 285 952
2.770 869 53631022

13
212 014 635 165 656 643 273 521 106 914 375

2 848 515 765 597 237 675 947 403 497 177 088
7.442 986 19331022

14
133 126 972 240 163 358 184 968 745 634 504 375

820 372 540 492 004 450 672 852 207 187 001 344
1.622 762 41131021

15
90 364 081 190 288 921 441 174 372 687 896 958 125

354 400 937 492 545 922 690 672 153 504 784 580 608
2.549 769 81231021

16
9 019 416 081 298 899 889 215 820 334 616 981 356 875

816 539 759 982 825 805 879 308 641 675 023 673 720 832
1.104 589 94431022

17 2
260 021 114 680 943 473 566 117 212 676 037 766 397 671 875

117 581 725 437 526 916 046 620 444 401 203 409 015 799 808
22.211 407 5443100

18 2
3 854 975 958 092 062 993 212 896 945 123 288 990 286 762 353 125

304 771 832 334 069 766 392 840 191 887 919 236 168 953 102 336
21.264 872 7833101

19 2
2 230 702 885 075 796 330 282 978 287 686 945 999 335 191 018 440 625

43 887 143 856 106 046 360 568 987 631 860 370 008 329 246 736 384
25.082 816 2623101

20 2
4 085 674 814 497 803 591 523 660 096 191 996 942 460 008 554 035 146 875

25 278 994 861 117 082 703 687 736 875 951 573 124 797 646 120 157 184
21.616 233 0963102
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where we definêxm& in the usual way as

^xm&5E
2`

`

dx xmpa~x!. ~6.2!

When 0,a,2, so thatpa(x) defines a pdf,̂ xm& is therefore themth moment. Regardless o
whetherpa(x) defines a pdf or not~6.2! is still perfectly well defined, we therefore shall refer
^xm& as themth moment in both cases.

When a52n, p̃a(k) is analytic and hence according to~6.1! the moments ofp2n(x) must
exist. This implies thatp2n(x) will not display the self-similar Le´vy behavior discussed in Sec.
but is a rather different type of mathematical animal.

Since pa(x) is an even function the (2m11)th moment vanishes by symmetry for allm
>0, regardless of the value ofa. The calculation of the 2mth moment is somewhat subtle and
facilitated by considering not~6.2!, but instead the following integral,^x2m&l , which is tempered
by the factore2lx.

^x2m&l5
2

p E
0

`E
0

`

dk dx e2lxx2m cos~kx!exp~2ka!. ~6.3!

By observing the smalll behavior of this well-behaved integral we can determine whether
2mth moment diverges for a givena, and if this moment is finite we can calculate its numeric
value by takingl→0. To ascertain the smalll behavior of ^x2m&l we wish to construct a
Mellin–Barnes contour integral representation of^x2m&l from which we shall be able to derive
small l expansion by simply closing the contour. To this end we insert into~6.3! the contour
integral representation ofe2ka

obtained by expressing it as the inverse Mellin transform of
Mellin transform.

^x2m&l5
1

2p i Ec2 i`

c1 i`

dsS 2

pa DGS s

a D E
0

`

dx x2me2lxE
0

`

dk k2s cos~xk!, c.0. ~6.4!

The integral overk is well known and can be identified withxs21G(12s)sin(sp/2). The integral
over x is then simply a gamma function,

^x2m&l5
1

2p i Ec2 i`

c1 i`

ds S 2

pa DG~12s!l2s22mGS s

a DG~2m1s!sinS sp

2 D , 0,c,1,

~6.5!

^x2m&l5
1

2p i Es2 i`

s1 i`

dsS 22

pa DG~11s!ls22mGS 2s

a DG~2m2s!sinS sp

2 D , 21,s,0.

In the last step we have chosen to lets→2s so that all the relevant poles needed to construct
expansion in ascending powers ofl by closing the contour will lie on the positive real axis.

To obtain the smalll expansion of̂ x2m&l from ~6.5! we close the contour to the right. If w
denote the integrand byR(s), the terms of this smalll expansion then arise from the residues
R(s) at the poles ofG(2s/a)G(2m2s)sin(sp/2). We denote the set of all poles ofR(s) for
R(s).21 by P. When this series in ascending powers ofl is constructed for a given choice o
a and 2m the leading term will behave likelD22m whereD5min(P), i.e., D is the pole closest
to the origin on the positive real line. Hence we see that it isD alone that determines the existen
or nonexistence of the 2mth moment ofpa(x). If D,2m the limit asl→0 will not exist and the
corresponding moment diverges. The sign of the residue at this pole determines if the dive
is to positive or negative infinity. For a class of values ofa.2 the moments in fact diverge to2`
as we will show, which is a consequence of the fact thatpa(x) is then not a pdf. IfD.2m the
limit as l→0 vanishes, and the corresponding moment exists but is zero. The interesting c
whenD52m in which case the limitl→0 exists and is nonzero.
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The setP is the difference of the set of zeros of the sine function, with the union of the p
of the gamma functions.

P5$a,2a,3a, . . . %ø$2m,2m11,2m12, . . .%\$2,4,6, . . .%,
~6.6!

P5$2m11,2m13,2m15, . . .%ø$a,2a,3a, . . . %\$2,4,6,. . . ,2~m21!%.

Note that the even poles ofG(2m2s) have all been cancelled by the zeros of sin(sp/2). The pole
of G(2s/a) and the zero of sin(sp/2) at the origin have been neglected since they cancel
there is then no pole at the origin providedm.0, which we shall assume. The casem50 merely
corresponds to the normalization requirement forpa(x), which is easily shown to result in̂x0&
51.

If a is not an even integer there can be no further cancellation of poles with zeros aP
5$2m11,2m13,2m15, . . .%ø$a,2a,3a, . . . %⇒D5min$2m11,a%. We thus deduce for non
even integrala that if a.2m then^x2m& will exist and vanish, and that ifa,2m then^x2m& will
diverge. Thus ifa is not an even integer we can never obtain a finite nonzero moment of any
for pa(x). To ascertain whether̂x2m& diverges to positive or negative infinity whenD5a
,2m and a is not an even integer we calculate the residue ats5a, which we denote by
Res(R(s)us5a). This is straightforward and yields

Res~R~s!us5a!52F 2

p
G~11a!G~2m2a!GsinS ap

2 D 1

l2m2a . ~6.7!

Closing the contour to the right results in an additional minus sign and hence^x2m&l behaves like

^x2m&l5F 2

p
G~11a!G~2m2a!GsinS ap

2 D 1

l2m2a 1o~la22m!, l→0. ~6.8!

Whena,2m we note that@(2/p) G(11a)G(2m2a)#.0 and thus the sign of the divergence
^x2m& depends only on the sign of sin(ap/2). We conclude then that fora¹$2,4,6, . . .% and a
,2m,

^x2m&→1`, aPøk50
` ~4k,4k12!, ~6.9!

^x2m&→2`, aPøk50
` ~4k12,4k14!. ~6.10!

Note that̂ x2m&→1` when 0,a,2 anda,2m as one would expect since in this regionpa(x)
is the symmetric Le´vy stable pdf.

If a is an even integer we definitely cannot obtain a diverging moment since in order to d
we would requireD52kP$a,2a,3a, . . . % and 2k,2m, but 2k,2m⇒2k<2(m21)⇒2k
P$2,4,6,. . . 2(m21)% in which case this pole ats52k would cancel with the zero ats52k,
which contradicts the assumption thatD52k. Thus all moments are finite whena is an even
integer. When 2m5min(P) the 2mth moment will be nonzero, which implies that we obta
nonzero moments only when 2m5 j a andm/ j P$1,2,3,..%, wherej P$1,2,3, . . .%. In other words,
for a given even integral value ofa only the momentŝxj a&, ; j P$1,2,3, . . .%, will be nonzero.
We now calculate these nonzero moments formP$1,2,3, . . .% andaP$2,4,6, . . .%.

G(2m2s)sin(sp/2) is analytic arounds52m since the simple zero cancels the simple po
Hence the pole ofR(s) at s52m is due toG(2s/a). Multiplying the Laurent expansion o
G(2m2s) with the Taylor expansion of sin(sp/2) arounds52m we obtain

G~2m2s!sinS sp

2 D5
~21!m11p

2
1O~s22m!. ~6.11!

The residue ofR(s) at the poles52m is then given by
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Res~R~s!us52m!5
~21!m

a
~2m!! lim

s→2m
~s22m!GS 2s

a D ,

~6.12!

Res~R~s!us52m!5
~21!m111 j

j !
~2m!!.

Since we closed the contour to the right^xj a&52Res(R(s)us52m). All the other terms in
the smalll expansion vanish upon takingl→0 becauseD52m by assumption. Thus the onl
finite nonzero moments ofpa(x) are

^xj a&5
~21! j a1 j~ j a!!

j !
, ; j P$1,2,3, . . .%, ~6.13!

whereaP$2,4,6, . . .%.
It is easily seen that by inserting this result into~6.1! that the correct analytic power serie

expansion ofp̃2n(k) is recovered.
We can summarize the moments ofpa(x) quite simply then as

^x2m&55
~21!m1 j~2m!!

j !
, a52

m

j
P$2,4,6, . . .%

1`, a,2m and aPøk50
` ~4k,4k12!

2`, a,2m and aPøk50
` ~4k12,4k14!

0, otherwise

. ~6.14!

VII. DISCUSSION

Various properties ofpa(x) have been expounded in the preceding sections, and in this se
we seek to briefly discuss their utility. The utility of the representations ofpa(x) in terms of
hypergeometric functions and special functions when 0,a,2 is obvious, so we shall constrai
the discussion to the cases ofa.2.

The intricate exponential asymptotic behavior ofpa(x) asx→` whena.2 provides another
powerful case study into the exciting new field of asymptotics beyond all orders, and is a pri
reason why we carried out this study. The increasing complexity of theK-asymptotics ofpn(x) as
n increases is an example of the level of information that can be contained in these compon
a complete asymptotic expansion which traditionally have been neglected.

The discussion of the moments has demonstrated to us that$pa(x):0,a,`% is composed of
two classes of functions whose behavior is in one sense quite different. The functionsp2n(x) have
finite moments of all orders and hence do not display the type of scale invariant behavio
makes the Le´vy stable pdfs so ubiquitous in applications. This is a direct consequence of th
that the complete asymptotic expansion ofp2n(x) contains no algebraic terms and is pure
exponential. Despite, or perhaps because of this fact, we know already that the two lowes
members of this class,p2(x) andp4(x), have important applications in the physical sciences, e
thoughp4(x) does not define a pdf. It is quite reasonable to expect then that other members
class, e.g.,p6(x),p8(x), . . . , should also find similar applications. Looking at things in the opp
site light however, the functions in the complement of this class, i.e., all thepa(x) with a not an
even integer, do display the self-similar behavior that makes the Le´vy stable pdfs so utile and thu
for this reason we might expect that they also will find applications in the fullness of time.
such a diversity of interesting and useful properties it would seem quite uncharacteristic of
not to harness some of the functions in$pa(x):2,a,`%.

Standing firmly on the platform of concrete mathematical results that we have delin
herein, we would now like to ascend into a Le´vy flight of fancy. The situation withpa(x) for a
.2 is reminiscent of the role played by the Wigner function in quantum theory. The Wi
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function is in some sense a measure of probability and is highly useful in applications, bu
not satisfy the non-negativity axiom required to define a pdf. In the same way we find applic
of p4(x) to wave phenomena appearing, despite the fact that it does not define a pdf. P
though it may be fruitful to extend the notion of probability to include negative numbers,
hence to considerpa(x) as a pdf for alla.0. There has been a steady flow of articles onnegative
probabilities ever since the advent of quantum mechanics, including notable article
Feynman.38,39 For a reasonably up-to-date review article with a large list of references we d
the reader to Ref. 40. In the literature negative probabilities are investigated in order to s
plethora of problems from the inherent divergences in quantum field theories to issues of
pretation in quantum theory itself such as the Einstein–Podolsky–Rosen paradox. One inte
idea that we would like to mention is the possible connection between classical mechanics
theory of quantum mechanics with negative probabilities discussed by Feynman.38 To quote Feyn-
man,

‘‘ . . . a closer study of the relation of classical and quantum theory might involve us in n
tive probabilities.’’ We find it interesting to table the idea that since the Le´vy stable densities are
so fundamentally useful in classical stochastic processes, that perhaps$pa(x):a.2% might play a
similar role in a stochastic formulation of quantum theory in which negative probabilities
allowed. In general, if it should emerge that extended theories of probability do bear fruit,
$pa(x):a.2% must surely play as fundamental a role in it as the Le´vy stable densities play in
classical probability theory.
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APPENDIX A: ERRATA GENERALIZED EULER–JACOBI INVERSION FORMULA
AND ASYMPTOTICS BEYOND ALL ORDERS

We present here a list of typographical errors that appear in Ref. 24, and which were de
during the preparation of this work. The errors and their corrections are emphasized via bo

In ~5.13!, (n51
` 4/z3/2 should read(n51

` 8/z3/2.
In ~6.29!, cos(()/2)y2 kp/32 p/6) should read cos(()/2)y22(kp/3) 2 p/6).
In ~6.52!, the correct argument of the Lommel functions is (2/Aa)(2np/3)3/2e63p i /4 not

A2/a(2np/3)3/2e63p i /4 as stated.
In ~6.58!, 0F1(4/3 ;6 iz)1 should read0F1(4/3 ;6 iz)2.
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We consider real-valued functionsa(s) and waveletscPL2(R) such that
eia(s)uĉ(s)u is the Fourier transform of a wavelet. Such a functiona(s) is called an
attainable phase for the waveletc. It is known that for all multiresolution analysis
~MRA! wavelets, the phase functiona(s)5 1

2s is attainable, and any real function
a(s) is attainable by any minimally-supported-frequency~MSF! wavelet. Besides
this, very little is known in the literature about attainable phases for wavelets. We
study the problem of determining functions which are attainable phases for some
~non-MSF! wavelets. We prove that there exists a non-MSF wavelet for which there
is no attainable ‘‘set-wise’’ linear phase. This answers a basic question about wave-
let phases. Although we do not know whether for any irrational numbera, as is
attainable by some non-MSF wavelets, we show that there exist certain rational
numbersa such thatas is not attainable by any non-MSF wavelet. We also prove
that there exists a large class of rational numbersa such thatas is attainable by
some non-MSF wavelets. We examine the relationship between different classes of
wavelets admitting linear phases. In particular we present an example of a non-
MSF wavelet which is not an MRA wavelet but admits linear phase1

2s. © 2002
American Institute of Physics.@DOI: 10.1063/1.1462416#

I. INTRODUCTION

Wavelet analysis arises from many branches of science and provides means of repre
functions in a way similar to Fourier series. Recall that adyadic orthonormal (or orthogonal)
waveletis a functioncPL2(R) ~the Hilbert space of square-integrable functions onR! with the
property that the set

$2n/2c~2nt2 l !:n,l PZ%

is an orthonormal basis forL2(R), whereZ is the set of all the integers. LetF be the Fourier–
Plancherel transformation onL2(R), normalized so that it is unitary. Thus forf,g
PL1(R)ùL2(R),

F~ f !~s!ª
1

A2p
E

R
e2 ist f ~ t !dt

and

a!Electronic mail: guqing22181@sina.com
b!Electronic mail: dhan@pegasus.cc.ucf.edu
26900022-2488/2002/43(5)/2690/17/$19.00 © 2002 American Institute of Physics
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F21~ f !~s!ª
1

A2p
E

R
eistf ~ t !dt.

We will write F(h) as ĥ throughout this article. Recall from Ref. 1 that a waveletc is called an
MSF (minimally-supported-frequency) waveletif suppĉ has measure 2p. It is also called an
s-elementary waveletsin Refs. 2 and 3. A wavelet which is not an MSF wavelet will be refer
to as anon-MSF wavelet. It is well known that a waveletc is an MSF wavelet if and only if for
almost anysPR with ĉ(s)Þ0, we haveĉ(s12lp)50 wheneverl PZ\$0%. In this article, we
will use this fact to determine whether any given waveletc is an MSF wavelet. More importantly
the following characterization of wavelets quoted from Ref. 1 will play a central role in
article. If cPL2(R), thenc is a wavelet iff the norm ofc is 1 and

(
l PZ

uĉ~2l s!u25
1

2p
, a.e. sPR, ~1.1!

(
l 50

`

ĉ~2l s!ĉ~2l ~s12kp!!50. a.e. sPR, for each kP2Z11. ~1.2!

In wavelet analysis, one of the most important concepts ismultiresolution analysis, which was
introduced and developed by Mallat4 and Meyer5 as an important tool in constructing orthogon
wavelets. Wavelets obtained through multiresolution analysis are calledMRA wavelets. We refer to
standard books~cf. Refs. 1 and 5–7! for the definition of multiresolution~MRA! wavelets. For the
purpose of this article, we will use the fact~Ref. 1! that a waveletc is an MRA wavelet if and only
if its dimension function Dc(s)5(2p)(n51

` (kPZuĉ(2n(s12kp))u251, a.e.sPR.
For any functionhPL2(R), the phaseof h is the real-valued functiona(s) defined on the

support ofĥ determined uniquely a.e. modulo 2p by the equationĥ(s)5eia(s)uĥ(s)u. Phases carry
useful information contained in signals. For instance, an electrocardiogram or a video imag
be represented in terms of magnitude and phase information. Since wavelets provide b
blocks in reconstructing signals, we are interested in knowing more about phases of wave

The phase of a given wavelet could be quite complicated, even when the wavelet is an
wavelet. However, it was established in Refs. 8 and 9 that for any MRA waveletc, ei (1/2)suĉ(s)u
is always the Fourier transform of some MRA wavelet. This fact was used to study wa
multipliers and the connectivity properties of MRA wavelet~cf. Refs. 8 and 9!. Naturally, it leads
one to the consideration of the case whenc is a wavelet in general. We say that a functiona(s)
is anattainablephase~or simply attainable! for waveletc, or that waveletc admits phase function
a(s), if eia(s)uĉ(s)u is the Fourier transform of a wavelet. Using this terminology, the ab
mentioned result says that function1

2s is attainable for any MRA wavelet.
When c is an MSF wavelet, we see that for almost anysPR, each kP2Z11, and l

PNø$0%, the termĉ(2l s)ĉ(2l (s12kp)) to the left of equation~1.2! in the characterization o
wavelets is 0, thereforeeia(s)uĉu also satisfies all the equations in the characterization of wave
for any real functiona(s). Hence any real function is an attainable phase for any fixed M
wavelet. Therefore, when we talk about attainable phases, we are only interested in those
attainable by non-MSF wavelets.

It is known ~cf. Ref. 6! that admitting linear phasea(s)5as1b can be a useful property fo
a wavelet to have, and it was expected that all the wavelets admit the phase1

2s. Therefore, one
would expect that at least every wavelet admits a linear phase. Unfortunately this is not tru
counterexample constructed in Ref. 8 shows. However, the wavelet in that example ad
piece-wise linear phase. Therefore, it is natural to ask the following question.

Question 1: Does every wavelet admit at least a piece-wise linear phase?
The answer to this question is also negative. In Sec. IV, we construct an example of a w

such that it even does not admit any ‘‘set-wise’’ linear phase function~Example 4.2!. The main
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part of this article is devoted to linear phase functions. First, let us note that the following c
easily checked by using the two equations in the characterization of wavelets.

Lemma 1.1: If functiona(s) is attainable for a waveletc, then2a(s) anda(s)1ks1r are
also attainable for the same waveletc where k is any integer and r is any real number.

Because of the above lemma, we only need to consider linear phase functions of the

a(s)5as for aP@0,1
2#. Hence we are interested in the following question:

Question 2: For which aP@0,1
2# is there a non-MSF wavelet that admits the phase func

a(s)5as?
Although we are not able to completely answer this question, we obtain the following

rems.
Theorem 1.2:Let a be a real number such that either

(i) a5m/2jn with m, nP2Z11 and jPN, or
(ii) a 5m/9n with nP2Z11 and mPZ\$0% such that m is not divisible by3. Then there exists

a non-MSF waveletc which admits the phase functiona(s)5as.

We also prove~Proposition 2.1! that 0, 1
3s, 1

7s, 2
7s, 3

7s are not attainable for any non-MS
wavelets. We do not know whether there exists an irrationala such thatas is a phase for a
non-MSF wavelet. This illustrates the complexity of the problem.

In Sec. III, we will concentrate on the class of wavelets which admits linear phase1
2s. If we

denote byWa the set of all the wavelets that admit phase functionas, then, as we mentioned in th
abstract,W1/2 contains all the MRA wavelets. Example 4.1 in this article shows that there exi
non-MSF wavelet which is not an MRA wavelet and admits phase1

2s. In other words,W1/2 is
larger than the set of all MRA wavelets~modulo the MSF wavelets!. We also study the relation

ship betweenW1/2 and Wa with various aP@0,1
2#. In particular, we give characterizations fo

wavelets inW1/2 andW1/4, and prove the following:
Theorem 1.3: Let a be a real number. Then there exists a non-MSF wavelet admitting

phases as and12s if and only if a5m/2n for some m, nP2Z11. In particular, W1/2ùWa does not
contain any non-MSF wavelets if a is irrational.

II. LINEAR PHASES OF WAVELETS

Before giving proof of Theorem 1.2, we first prove that there exist rational numbea
P@0,1/2# such thata(s)5as is not attainable by any non-MSF wavelet. Note that to determ
whether or not any choice ofaP@0,1/2# yields an attainable phasea(s)5as for a waveletc, we
only need to look at Eq.~1.2! in the characterization of wavelets, since the choices of func
a(s) do not affect any other conditions.

Proposition 2.1: If aP$m/3,m/7:mPZ%, then phase functiona(s)5as is attainable only by
MSF wavelets.

Proof: Let m be an arbitrary fixed number inZ. First we consider the case whena(s)
5(m/3)s is attainable for a waveletc. Applying Eq.~1.2! to the wavelet whose Fourier transfor
is eia(s)uĉ(s)u, after taking complex conjugates to both sides of the resulting equation, we
that

(
j 50

`

ei ~2 j2kmp/3!uĉ~2 j s!uuĉ~2 j~s12kp!!u50 ~2.1!

holds for a.e.sPR and for eachkP2Z11.
Equation~2.1! implies that

(
j 50

`

uĉ~2 j s!uuĉ~2 j~s12kp!!u50 ~2.2!
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holds for a.e.sPR and for eachkP2Z11 with kmP3Z.
Note that for eachj 52l P2(Nø$0%), we can write 2j 11522l 1152(4l 21)12. Likewise,

for each j 52l 11P2(Nø$0%)11, we can write 2j 11522l 1254(4l 21)14. Hence Eq.~2.1!
also implies that

(
j P2~Nø$0%!

ei2p/3uĉ~2 j s!uuĉ~2 j~s12kp!!u1 (
j P2~Nø$0%!11

ei4p/3uĉ~2 j s!uuĉ~2 j~s12kp!!u50

~2.3!

holds for a.e.sPR and for eachkP2Z11 with mkP3Z11.
Similarly, Eq. ~2.1! implies that

(
j P2~Nø$0%!

ei4p/3uĉ~2 j s!uuĉ~2 j~s12kp!!u1 (
j P2~Nø$0%!11

ei2p/3uĉ~2 j s!uuĉ~2 j~s12kp!!u50

~2.4!

holds for a.e.sPR and for eachkP2Z11 with mkP3Z12.
Note that for non-negative real numbersa and b, aei2p/31bei4p/350 implies a50 andb

50. It follows then from Eqs.~2.2!–~2.4! that for almost allsPR, and eachkP2Z11 and each
j PNø$0%, uĉ(2 j s)uuĉ(2 j (s12kp))u50.

When j 50, the above says that for anysPR such thatuĉ(s)uÞ0, we haveuĉ(s12kp)u
50 for eachkP2Z11. When j PN, by using a substitution, we see from above that for ans

PR such thatuĉ(s)uÞ0, we must haveuĉ(s12 j2kp)u50 for eachkP2Z11. Thus we conclude
that for anysPR such thatuĉ(s)uÞ0, we must haveuĉ(s12l p)u50 for eachl l PZ. This
implies thatc is an MSF wavelet.

Next, we consider the case whena(s)5(m/7)s is attainable for a waveletc. Similarly, from
Eq. ~1.2! we have that

(
j 50

`

ei ~2 j2kmp/7!uĉ~2 j s!uuĉ~2 j~s12kp!!u50 ~2.5!

holds for a.e.sPR and for eachkP2Z11.
Just as before, we discuss how Eq.~2.5! turns out for differentkP2Z11. To avoid repetition,

we point out first that Eq.~2.5! implies that for almost allsPR and eachkP2Z11 with mk
P7Z11,

(
j P3~Nø$0%!

ei2p/7uĉ~2 j s!uuĉ~2 j~s12kp!!u1 (
j P3~Nø$0%!11

ei4p/7uĉ~2 j s!uuĉ~2 j~s12kp!!u

1 (
j P3~Nø$0%!12

ei8p/7uĉ~2 j s!uuĉ~2 j~s12kp!!u50.

Other cases~seven cases altogether! turn out to be similar. Equation~2.5! implies that for
almost all sPR and eachkP2Z11 with mkP7Z12 ~respectively,mkP7Z13, or mkP7Z
14, ormkP7Z15, ormkP7Z16!, an equation similar to the above holds with only the numb
2p/7, 4p/7, 8p/7 replaced by 4p/7, 8p/7, 2p/7 ~respectively, 6p/7, 12p/7, 10p/7, or 8p/7, 2p/7,
4p/7, or 10p/7, 6p/7, 12p/7, or 12p/7, 10p/7, 6p/7! in that order.

Lastly, Eq. ~2.5! implies that for almost allsPR and eachkP2Z11 with mkP7Z,
( j 50

` uĉ(2 j s)uuĉ(2 j (s12kp))u50.
Note that for non-negative real numbersa, b andc, aei2p/71bei4p/71cei8p/750 implies that

a, b andc are necessarily 0. Likewise,aei6p/71bei10p/71cei12p/750 also implies thata, b andc
are necessarily 0. Thus we conclude that for almost allsPR, for eachkP2Z11, and eachj
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PNø$0%, uĉ(2 j s)uuĉ(2 j (s12kp))u50. Applying the same argument as in the case whena(s)
5m/3s is attainable, we conclude also thatc is an MSF wavelet. h

From the above proposition we have that foraP$0,1/3,1/7,2/7,3/7%,@0,1/2#, phase function
a(s)5as is attainable only by MSF wavelets. However, Theorem 1.2 tells us that there
‘‘many’’ rationals a such thatas is attainable by non-MSF wavelets.

To prove Theorem 1.2, we need a result of Speegle in Ref. 10 concerning path-connect

of the s-elementary wavelets. Lett̃:R→@22p,2p)ø@p,2p) and d̃:R05(R\$0%)→@22p,

2p)ø@p,2p) be the measurable maps defined byt̃(x)5x12pm(x), d̃(x)52n(x)x, wherem
andn are the unique integers which mapx into @22p,2p)ø@p,2p) under translation by 2pm
and dilation by 2n, respectively. Then a measurable subsetW of R is called asubwavelet setif

both d̃uW and t̃uW are injections modulo null sets. Moreover,W is awavelet setif and only if d̃uW
and t̃uW are bijections~modulo null sets!. Equivalently,W is a wavelet set if and only if both
$W12kmp:mPZ% and $2nW:nPZ% are partitions~modulo null sets! for R. We point out in
passing that wavelet sets are exactly the support set of MSF wavelets. For a subwavelet sA we

define two subsets of@22p,2p)ø@p,2p) by Ad5d̃(A) andAt5 t̃(A).
Lemma 2.2:10 Let A be a subwavelet set. Suppose

(1) there is ane.0 such that At,@22p1e,2p)ø@p,2p2e) and
(2) Sª(@22p,2p)ø@p,2p))\Ad has a nonempty interior.

Then there is a wavelet set W.A.
Proof of Theorem 1.2:
Case (i): a5m/2jn, m, nP2Z11, j PN:
Without loss of generality, we may only consider the case whennP2(Nø$0%)11. For fixed

nP2(Nø$0%)11 and j PN, let A15@2p,2p/2) andA252 jnp1@2p/2,2p/4). Let us first

show thatA5A1øA2 is a subwavelet set, namely that botht̃uA and d̃uA are injective.
To this end, it suffices to show that for somek1 , k2PZ, A112k1p andA212k2p are disjoint

subsets of@22p,2p)ø@p,2p), and also that for somej 1 , j 2PZ, 2j 1A1 and 2j 2A2 are disjoint
subsets of@22p,2p)ø@p,2p).

Indeed,A112p5@p, 3
2p), A222 jnp12p5@ 3

2p, 7
4p).

Observe that whenn51, A252 jp1@2p/2,2p/4)52 j 21@2p2(p/2j ),2p2(p/2j 11)).
Clearly @2p2(p/2j ),2p2(p/2j 11)),@p,2p). WhennP2N11, there existskPN such that 2k

,n,2k11. Thus 2k,(n2(1/2j 11)). Since A252 jnp1@2p/2,2p/4)52 j 1k@(n/2k)p
2(p/2j 1k11),(n/2k)p2(p/2j 1k12)). It follows that A2 is contained in 2j 1k@p,2p). On the

other hand, we always have 2A15@22p,2p). Thus botht̃uA and d̃uA are injective, soA is a
subwavelet set.

Now let us check that conditions in Lemma 2.2 are satisfied. From the last paragraph, w
that thee in the first condition can be taken as large asp/4 and that the interior of setS in the
second condition contains the open interval (2p2(p/2j 11),2p) whenn51 and the open interva
((n/2k)p2(p/2 j 1k12),2p) when nP2N11 ~where kPN and 2k,n,2k11!. According to
Lemma 2.2, there is a wavelet setW.A.

Now let B15@2p/2,2p/4) and B252 j 11np1@2p,2p/2). We see that 2B15A1 , 2A2

5B2 . Also A112 j 11np5B2 and B112 jnp5A2 . Thus B5B1øB2 is also a subwavelet se
Note that setsA andB are disjoint from each other. Also, because the disjoint union of setsW\A
andA is a wavelet set, so for anyj PZ, 2j (W\A) is disjoint fromA; for anykPZ, W\A12kp is
also disjoint fromA. Thus from the relations betweenA1 , A2 and B1 , B2 , we see thatW\A is
disjoint from B and the disjoint union ofW\A and B also forms a wavelet set. Now we ca
construct a non-MSF wavelet which admits phase (m/2jn)s.

We first define a measurable functiong on AøB in the following way: Letg be any measur-
able function onA1 . By using the relations between setsA1 , A2 andB1 , B2 , we defineg so that
g(s)5g(s22 j 11np) whensPB2 , g(s)5g(2s22 j 11np) whensPA2 andg(s)5g(2s) when
sPB1 . Let
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u f ~s!u55
usin~g~s!!u

A2p
, sPA,

ucos~g~s!!u

A2p
, sPB,

1

A2p
, sPW\A,

0, otherwise.

First we compute the norm ofufu. By definition of g and relations between setsA and B,
through change of variables in integration, we see that*Au cos(g(s))u2 ds5*Bu cos(g(s))u2 ds. Also
note that sinceW is a wavelet set, we havem(W)52p, wherem is the Lebesgue measure onR.
Thus

i f i25E
R
u f ~s!u2ds5

1

2p S E
A
usin~g~s!!u2ds1E

B
ucos~g~s!!u2ds1m~W\A! D

5
1

2p
~m~A!1m~W\A!!5

m~W!

2p
51.

Second, we check whether Eq.~1.1! is satisfied by the function whose Fourier transform h
modulusu f u. SinceW is a wavelet set, it follows that$2l W:l PZ% forms a partition ofR ~modulo
a measure zero set!. So it suffices to check~1.1! for sPW. If sPA1 , then 221sPB1 and
g(221s)5g(s) by definition of g. Also, for any l Þ0, 21, since 2l sPR\(WøB), we have
f (2l )50. Thus,

(
l PZ

u f ~2l s!u25u f ~s!u21u f ~221s!u2

5
1

2p
~ using~s!u21ucosg~221s!u2!

5
1

2p
~ using~s!u21ucosg~s!u2!5

1

2p
.

Hence~1.1! holds whensPA1 . Similarly, it holds whensPA2 . WhensPW\A, all the terms in
~1.1! are zero except foru f (s)u2 which is 1/2p. Therefore we conclude that~1.1! holds for alls
PW.

For any fixedmP2Z11, we claim thatĉ(s)5eims/n2 j
u f (s)u is Fourier transform of a wavelet

and hencec is a wavelet admitting the phase (m/2jn)s. ~Obviously we can chooseg such thatc
is not an MSF wavelet.! Taking all the properties enjoyed byu f u into consideration, we see that w
only need to check thatĉ satisfies Eq.~1.2!. By definition ofg and relations between setsA1 , A2 ,
andB1 , B2 , we see that every term to the left of Eq.~1.2! is 0 unless whensP22 j 11B1 , k5n or
when sP22 j 11A2 , k52n. In the first case, we have 2j 21sPB1 , 2j 21(s12npPA2), 2j s
PA1 and 2j (s12np)PB2 . Thus
                                                                                                                



.

,

e last

l

it
is

2696 J. Math. Phys., Vol. 43, No. 5, May 2002 D. Han and Q. Gu

                    
(
l 50

`

ĉ~2l s!ĉ~2l ~s12np!!5ĉ~2 j 21s!ĉ~2 j 21~s12np!!1ĉ~2 j s!ĉ~2 j~s12np!!

5
1

2p
~2ucosg~2 j 21s!ising~2 j 21s12 jnp!u

1using~2 j s!icosg~2 j s12 j 11np!u!

5
1

2p
~2ucosg~2 j 21s!ising~2 j 21s!u

1using~2 j 21s!icosg~2 j 21s!u!50.

We use both translation and dilation periodicity properties ofg on AøB in the above calculation
The second case can be treated similarly.

Case (ii): a5m/9n, nP2Z11, mPZ\$0%, m¹3Z:
The proof of case~ii ! is similar to that of case~i!. So we will be brief at certain places. Again

as in case~i!, it suffices to consider the case whenn is a positive odd integer. Fix ann
P2(Nø$0%)11, let A15@2p,2p/2), A258np1@2p/4,2p/8) and A354np1@2p/16,
2p/32). We first show that the setA5A1øA2øA3 is a subwavelet set.

First note that A112p5@p, 3
2p), A228np12p5@2p2(p/4),2p2(p/8)), A324np

12p5@2p2(p/16),2p2(p/32)). Thereforet̃uA is injective.

Observe also that whenn51, A258p1@2p/4,2p/8)54@ 31
16p, 63

32p), and A354p

1@2p/16,2p/32)52@ 63
32p, 127

64 p). WhennP2N11, there existskPN such that 2k,n,2k11,
thus 2k,(n2 1

32). Note that 2A3 and A2 are disjoint and 2A3øA258np1@2p/4,2p/16)
52k13@(n/2k)p2(1/2k15)p,(n/2k)p2(1/2k17)p). Hence, 2A3øA2 is contained in
2k13@p,2p). On the other hand, 2A15@22p,2p). Thusd̃uA is injective. SoA is a subwavelet
set.

To check that the conditions in Lemma 2.2 are satisfied, we observe that from th
paragraph thee in the first condition can be taken as large asp/32 and that the interior of setS in
the second condition contains the open interval~ 127

64p, 2p! in the casen51 and the open interva
((n/2k)p2(1/2k17)p,2p) in the casenP2N11 ~wherekPN such that 2k,n,2k11). Accord-
ing to Lemma 2.2, there is a wavelet setW.A.

Now let B15@2p/4,2p/8), B252np1@2p/16,2p/32) and B3564np1@2p,2p/2).
Also let C15@2p/16,2p/32), C2532np1@2p,2p/2) andC3516np1@2p/4,2p/8). Note
that A154B1516C1 , C254A2516B2 , and B354C3516A3 . Also A15C2232np5B3

264np, B15A228np5C3216np, and C15B222np5A324np. Thus B5B1øB2øB3 ,
C5C1øC2øC3 are also subwavelet sets. Observe that setsA, B andC are mutually disjoint from
each other. Moreover,W\A is disjoint fromB andC, and the union ofW\A andB also forms a
wavelet set. So does the disjoint union ofW\A andC.

Let us define functionf so that

u f ~s!u55
1

A6p
, sPAøBøC,

1

A2p
, sPW\A,

0, otherwise.

As in case~i!, one can easily check thati f i51 and Eq.~1.1! is satisfied byu f u. To see that for
eachmPZ\$0% such thatm is not divisible by 3,ei (m/9n)su f u is a Fourier transform of a wavelet,
is left to check whether Eq.~1.2! is satisfied by the function whose Fourier transform
ei (m/9n)su f u. By definition of f and relations between setsA1 ,A2 ,A3 , B1 ,B2 ,B3 andC1 ,C2 ,C3 ,
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we see that each term to the left of Eq.~1.2! is 0 unless one of the following is true:~1! s
PC1 , k5n; ~2! sP 1

2C1 , k5n; ~3! sPB2 , k5n; ~4! sPB2 , k52n; ~5! sPA3 , k52n; and~6!
sP 1

2A3 , k52n. In case~1!, when sPC1 , we have that 4sPB1 , 16sPA1 and thats12np
PB2 , 4(s12np)PA2 , 16(s12np)PC2 . Thus whenm59m111 with somem1PZ, we have

(
l 50

`

ĉ~2l s!ĉ~2l ~s12np!!5ĉ~s!ĉ~s12np!1ĉ~4s!ĉ~4~s12np!!

1ĉ~16s!ĉ~16~s12np!!

5
1

6p
~e2 i ~2/9!p1e2 i ~8/9!p1e2 i ~32/9!p!50,

Similarly, when m59m112 ~resp. m59m114! with some m1PZ, we see that

S l 50
` ĉ(2l s)ĉ(2l (s12np)) is (1/6p)(e2 i (4/9)p1e2 i (16/9)p1e2 i (64/9)p)50 @resp. (1/6p)

3(e2 i (8/9)p1e2 i (32/9)p1e2 i (128/9)p)50#. Finally, when m59m121 ~resp. m59m122, or m
59m124! with somem1PZ, the left-hand side of Eq.~2.1! becomes the complex conjugate
what one gets whenm59m111 ~resp.m59m112, or m59m114!. Thus we are done fors
PC1 , k5n.

The other five cases are treated similarly. Thereforeĉ5ei (m/9n)su f (s)u defines a non-MSF
waveletc which admits the phase functiona(s)5(m/9n)s. h

We end this section with the following comments:
Proposition 2.1 is based on a simple fact that vectors with certain specific angles be

them never add up to zero unless each vector is zero in the first place. We can generalize
sition 2.1 to all applicable linear phase functions and get the following Proposition 2.3.

First, for any real numbera, let us defineres(a) such thata2res(a)PZ and 0<res(a)
,1.

Proposition 2.3: Let a be any real number. The phase function as is not attainable fo
non-MSF wavelet, if for any kP2Z11, the difference between the supremum and infimum the
$res(2 j ka): j PNø$0%% is less than1

2.
The proof of Proposition 2.3 is essentially the same as that of Proposition 2.1 and so w

it. Theorem 1.2 suggests the following conjecture.
Conjecture 1: Let a5p/qr be a rational number where p, qPZ\$0%, r P2Z11 and p, q are

relatively prime. If there is a non-MSF wavelet which admits phase function(1/q)s, then there is
a (possibly different) non-MSF wavelet which admits phase functiona(s)5as.

III. WAVELETS WHICH ADMIT PHASE FUNCTION 1
2s

In this section we study the class of wavelets which admit phase function1
2s. We know that all

MRA wavelets admit phase function12s. In a sense, this class holds more attraction than o
classes of wavelets. First of all, let us introduce some notation.

For anyaP@0,1/2#, we denote byWa the set of all wavelets which admit phase functionas.
As pointed out earlier, suchWa is never empty since it contains the set of all MSF wavelets. N
that from the proof of Theorem 1.2 above, we see thatWaùWb contains also non-MSF wavelet
for certaina, b. In fact, for fixednP2(Nø$0%)11 and j PN, in the proof of Theorem 1.2 we
constructed a wavelet which admits phase function (m/2jn)s for any mP2Z11. In general, the
relationship between differentWa can be very complicated. Here we concentrate onW1/2, to
explore its relationship with variousWa . As a byproduct, we also obtain similar results conce
ing W1/4.

First we give a characterization of wavelets inW1/2.
Proposition 3.1: If a51/2, then phase functiona(s)5as is attainable for a waveletc if and

only if the waveletc satisfies the condition that for almost all sPR and each kP2Z11,
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uĉ~s!iĉ~s12kp!u5(
j 51

`

uĉ~2 j s!iĉ~2 j~s12kp!!u. ~3.1!

Proof: Assume thatc is a wavelet. Observe thatei (1/2)suĉ(s)u is a Fourier transform of a
wavelet if and only if for almost allsPR and for eachkP2Z11,

(
j 50

`

ei2 j kpuĉ~2 j s!iĉ~2 j~s12kp!!u50,

due to the fact that for each fixedkP2Z11, ei2 j kp51 for any j PN andei20kp521. The con-
dition above is equivalent to the condition that for almost allsPR and eachkP2Z11,

uĉ~s!iĉ~s12kp!u5(
j 51

`

uĉ~2 j s!iĉ~2 j~s12kp!!u.

h

Observe that with the same argument employed in the proof of Proposition 2.1, we see
phase function1

2s is attainable for a waveletc, and if for almost allsPR and eachkP2Z11,
uĉ(s)iĉ(s12kp)u50, then it follows thatc is an MSF wavelet. So, in particular, Proposition 3
says that if a non-MSF waveletc admits phase12s, then there exists a setA of positive measure
and somekP2Z11 such thatuĉ(s)iĉ(s12kp)uÞ0 for all sPA.

Proposition 3.2: Let a be any real number. If both phase functions s/2 and a(s)5as are
attainable for a non-MSF waveletc, then a must be of the form m/2n for some m, nP2Z11.

Proof: Sincec is a non-MSF wavelet and admits phase function1
2s, according to Proposition

3.1 and the comments after its proof, there exists a setA of positive measure and somekP2Z
11 such thatuĉ(s)uuĉ(s12kp)uÞ0 for all sPA and

uĉ~s!iĉ~s12kp!u5(
j 51

`

uĉ~2 j s!iĉ~2 j~s12kp!!u

holds in particular for the samekP2Z11 and allsPA.
Thus for each fixedsPA, there must be at least one nonzero term to the right of the ab

equation. By passing to a subset ofA, we can assume that theJth term is nonzero for allsPA and
someJPN. Sincec also admits phase functiona(s)5as, Eq. ~1.2! implies in particular that for
that samekP2Z11 and allsPA,

uĉ~s!iĉ~s12kp!u5~21!(
j 51

`

ei2k~122 j !apuĉ~2 j s!iĉ~2 j~s12kp!!u.

This implies that (21)ei2k(121J)ap51. Therefore, 2k(122J)ap5(2l 11)p for some l

PZ. Hencea must be of the formm/2n for somem, nP2Z11. h

Proof of Theorem 1.3:One direction is precisely Proposition 3.2. For the other direction, n
that we only need to consider the case whennP2(Nø$0%)11 andmPZ11. Recall that in the
proof of Theorem 1.2, for each fixednP2(Nø$0%)11, we actually constructed a non-MS
wavelet which is contained inWm/2n for any mPZ11. In particular, this wavelet is inW1/2.
HenceW1/2ùWm/2n contains a non-MSF wavelet for anynP2(Nø$0%)11 andmPZ11. h

For the rest of this section, we consider possibly containment betweenW1/2 and variousWa .
The main result is the following Theorem, which shows the complexity of the situation.
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Theorem 3.3:
(i) W1/2 is not contained in anyWa with aP@0,1

2).
(ii) W1/6 is contained inW1/2.
(iii) W1/10 is not contained inW1/2.

Proof: ~i! The Fourier transform of a wavelet which is inW1/2 but not in Wa for any a
P@0,1/2) is found by lettingn51 andj 51 in the construction presented in the proof of Theor
1.2. Indeed, forn5 j 51, the waveletc constructed in the proof of Theorem 1.2 is inWm/2 for any
mP2Z11. According to Lemma 1.1,Wm/25W1/2 for eachmP2Z11.

Now we prove that the above mentioned waveletc is not in Wa for aP@0,1/2). In fact,
assume thatc admitsa(s)5as as a phase function. Equation~1.2!, when applied to the wavele
whose Fourier transform ise ia(s)uĉu, says that, in particular, forsPB1 andk51, we have

(
l PZ

ĉ~2l s!ĉ~2l ~s12kp!!5
1

2p
~e2 i2apucosg~s!ising~s!u1e2 i4apucosg~s!ising~s!u!50.

It follows that 2a must be 2l 11 for somel PZ. Thusa5(2l 11)/2, which is impossible

sincea is assumed to be in@0, 1/2!. Hencec¹Wa for aP@0,1
2).

~ii ! Let c be a wavelet admitting phase function1
6s. We need to show thatĉ satisfies the

condition ~3.1! in Proposition 3.1. According to Eq.~1.2!, for almost allsPR and for eachk
P2Z11, we must have

(
j 50

`

ei ~2 j2kp/6!
uĉ~2 j s!iĉ~2 j~s12kp!!u50. ~3.2!

WhenkP6Z13, from ~3.2! we have that for almost allsPR,

uĉ~s!iĉ~s12kp!u5(
j 51

`

uĉ~2 j s!iĉ~2 j~s12kp!!u.

WhenkP6Z11, from ~3.2!, we have that for almost allsPR,

ei ~1/3!puĉ~s!iĉ~s12kp!u1ei ~2/3!p (
j P2~Nø$0%!11

uĉ~2 j s!iĉ~2 j~s12kp!!u

1ei ~4/3!p (
j P2N

uĉ~2 j s!iĉ~2 j~s12kp!!u50.

It then follows that the second term to the left side of the above equality must be zero

(
nP2~Nø$0%!11

uĉ~2 j s!iĉ~2 j~s12kp!!u50.

Consequently, for almost allsPR,

ei ~1/3!puĉ~s!iĉ~s12kp!u1 (
j P2N

ei ~4/3!puĉ~2 j s!iĉ~2 j~s12kp!!u50.

Hence,
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uĉ~s!iĉ~s12kp!u5 (
j P2N

uĉ~2 j s!iĉ~2 j~s12kp!!u

5 (
j P2N

uĉ~2 j s!iĉ~2 j~s12kp!!u1 (
j P2~Nø$0%!11

uĉ~2 j s!iĉ~2 j~s12kp!!u

5(
j 51

`

uĉ~2 j s!iĉ~2 j~s12kp!!u,

i.e., ~3.1! holds whenkP6Z11.
Similar discussion yields that~3.1! holds whenkP6Z15. Hence, by Proposition 3.1,c

PW1/2 as claimed.
~iii ! We construct a non-MSF waveletcPW1/10 such thatc does not admit phase12s.
We use similar sets as defined in the proof of Theorem 1.2~ii !. Let A15@2p,2p/2), A2

58p1@2p/2,2p/4) andA354p1@2p/8,2p/16). Let us first show thatA5A1øA2øA3 is a

subwavelet set. In fact, sinceA112p5@p, 3
2p), A228p12p5@2p2p/2,2p2p/4), andA3

24p12p5@2p2p/8,2p2p/16), it follows that t̃uA is injective. Similarly, since 2A1

5@22p,2p), A254@ 15
8 p, 31

16p), andA352@ 31
16p, 63

32p), we have thatd̃uA is injective. Therefore
A is a subwavelet set.

Now to see that conditions in Lemma 2.2 are satisfied, we observe that thee in the first
condition can be taken as large asp/16 and that the interior of setS in the second condition

contains the open interval (63
32p,2p). According to Lemma 2.2, there is a wavelet setW.A.

Now let B15@2p/2,2p/4), B252p1@2p/8,2p/16) andB3532p1@2p,2p/2). Also
let C15@2p/8,2p/16), C2516p1@2p,2p/2) andC3516p1@2p/2,2p/4). Note thatA1

52B158C1 , C252A258B2 , and B352C358A3 . Also A15C2216p5B3232p, B15A2

28p5C3216p, andC15B222p5A324p. ThusB5B1øB2øB3 and C5C1øC2øC3 are
also subwavelet sets. It can be checked that setsA1 , A2 , A3 , B1 , B2 , B3 andC1 , C2 , C3 are
mutually disjoint from each other. Moreover,W\A is disjoint fromB andC, and the union of sets
W\A andB also forms a wavelet set. So does the union ofW\A andC.

We define a functionf in such a way that:

u f ~s!u5

¦

1

A2p
, sPW\A,

1

A212 cos~p/5!A2p
, sPA1øB1øB3øC3 ,

A2 cos~p/5!

A212 cos~p/5!A2p
, sPA2øA3øC1øC2 ,

1

2cos~p/5!A212 cos~p/5!A2p
, sPB2 ,

0, otherwise.

First we check thati f i251. By definition of u f u and relations between setsAi , Bi , Ci for
i P$1,2,3%, through a change of variables in integration, we see that

E
A1

u f ~s!u2ds1E
C2

u f ~s!u2ds1E
B3

u f ~s!u2ds5
1

2p E
A1

112 cos~p/5!11

212 cos~p/5!
ds5

1

2p E
A1

ds.

Likewise, we have
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E
B1

u f ~s!u2ds1E
A2

u f ~s!u2ds1E
C3

u f ~s!u2ds5
1

2p E
A2

112 cos~p/5!11

212 cos~p/5!
ds5E

A2

ds

and

E
C1

u f ~s!u2ds1E
B2

u f ~s!u2ds1E
A3

u f ~s!u2ds

5
1

2p E
A3

2 cos~p/5!1$1/@4 cos2~p/5!#%12 cos~p/5!

212 cos~p/5!
ds5E

A3

ds.

The last equality follows from the identity 8 cos3(p/5)1158 cos2 p/5.
Hence,

i f i25E
R
u f ~s!u2ds5

1

2p S E
A
u f ~s!u2ds1E

B
u f ~s!u2ds1E

C
u f ~s!u2ds1m~W\A! D

5
1

2p
~m~A!1m~W\A!!5

m~W!

2p
51.

Next we check that Eq.~1.1! holds by the function whose Fourier transform has modulusu f u.
As we reasoned before, it suffices to check~1.1! for sPW. If sPA1 , then 221sPB1 and 223s
PC1 . For anyl Þ0,21,23, since 2l sPR\(WøBøC), we haveu f (2l s)u50.

Thus

(
l PZ

u f ~2l s!u25u f ~s!u21u f ~221s!u21u f ~223s!u25
1

2p S 112 cos~p/5!11

212 cos~p/5! D5
1

2p
.

Hence~1.1! holds whensPA1 . Similarly, we can check that~1.1! holds whensPA3 . We point
out that to verify that~1.1! holds for sPA2 , the identity 8 cos3(p/5)1158 cos2(p/5) may be
useful.

Now let ĉ(s)5ei (1/10)su f (s)u. To prove thatc is a wavelet, the only thing left is to check tha
Eq. ~1.2! is satisfied byc. By definition of u f u and relations between setsAi , Bi , Ci for i
P$1,2,3%, every term to the left of Eq.~1.2! is 0 unless one of the following is true:~1! s
PC1 , k51, ~2! sP 1

2C1 , k51, ~3! sPB2 , k51, ~4! sPB2 , k521, ~5! sPA3 , k521, or ~6!
sP 1

2A3 , k521.
In case ~1!, when sPC1 , we have that 4sPB1 and 8sPA1 and thats12pPB2 , 4(s

12p)PA2 , and 8(s12p)PC2 . Thus we have

(
l 50

`

ĉ~2l s!ĉ~2l ~s12p!!5ĉ~s!ĉ~s12p!1ĉ~4s!ĉ~4~s12p!!1ĉ~8s!ĉ~8~s12p!!

5
1

2p

1

212 cosp/5 S e2 i ~2/10!p
1

A2 cosp/5
1e2 i ~8/10!pA2 cos

p

5

1e2 i ~16/10!pA2 cos
p

5 D 50.

The last equality can be verified in many different ways.~The quickest way probably is to
view it as a representation of three vectors which sum to zero and use geometry.! We omit the
details.
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Thus we checked the first case. The cases~3!–~5! turn out to be similar. In cases~2! and~4!,
the final equality looks quite different. For instance, in case~2!, we are required to verify the
following equality:

1

2p

1

212 cos~p/5! S e2 i ~4/10!p2 cos
p

5
1e2 i ~16/10!p1e2 i ~32/10!pD50.

We omit the calculation.
To show thatc¹W1/2, we use characterization ofW1/2 in Proposition 3.1. Again, takes

PC1 and k51. Through similar computation we see that for the function whose Fourier tr
form is ei (1/2)su f u, satisfying Eq.~3.1! would imply 154 cos(p/5), which is untrue.~In fact, 1
54 cos(p/5)cos(2p/5).! The proof is completed. h

As a byproduct of the proof of~ii !, we obtain a characterization ofW1/6.
Proposition 3.4: Waveletc is in W1/6 if and only if for almost all sPR and each kP6Z13,

uĉ~s!iĉ~s12kp!u5(
j 51

`

uĉ~2 j s!iĉ~2 j~s12kp!!u;

and for almost all sPR, each kP6Z11 or kP6Z15, each jP2(Nø$0%)11, uĉ(2 j s)iĉ(2 j (s
12kp))u50 and

uĉ~s!iĉ~s12kp!u5 (
j P2N

uĉ~2 j s!iĉ~2 j~s12kp!!u50.

We point out that parallel investigation ofW1/4 yields some results similar to that ofW1/2. We
only list results with a few comments. The proofs are omitted since technically they are qui
same as their counterpart.

Lemma 3.5: If a51/4, then phase functiona(s)5as is attainable for a waveletc if and only

if c satisfies the condition that for almost all sPR and for each kP2Z11, uĉ(s)iĉ(s12kp)u
50 and

uĉ~s!iĉ~s14kp!u5(
j 51

`

uĉ~2 j s!iĉ~2 j~s14kp!!u.

The only thing new in the proof of Lemma 3.5 is the observation that for real numbers$ak%
with kPN such thata1ei (1/2)p1Sk52

` ak50, a1 must be 0.
We point out some consequences of Lemma 3.5. First, we note that by the same arg

employed in the proof of Proposition 2.3, it follows from Lemma 3.5 that if phase function1
4s is

attainable for a waveletc, and if for almost allsPR and eachkP2Z11, uĉ(s)iĉ(s14kp)u
50, thenc is a MSF wavelet. In other words, if a non-MSF waveletc admits phase14s, then there
exists a setA of positive measure and somekP2Z11 such thatuĉ(s)iĉ(s14kp)uÞ0 for all s
PA.

Second, by using Eq.~1.2!, it follows from Lemma 3.5 that for any waveletc admitting phase

( 1
4)s, for almost everysPR and eachkP2Z11, we have

(
l 50

`

ĉ~2l s!ĉ~2l ~s14kp!!50.

Using these consequences of Lemma 3.5, we obtain a proof of Proposition 3.6 similar
proof of Proposition 3.2. Now a proof of Theorem 3.7 is not much different from that of Theo
1.3.
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Proposition 3.6: Let a be any real number. If both phase functions s/4 and a(s)5as are
attainable for a non-MSF waveletc, then a must be of the form m/4n for some m, nP2Z11.

Theorem 3.7: Let a be a real number. Then there exists a non-MSF wavelet admitting
phases as and14s if and only if a5m/4n for some m, nP2Z11. In particular, W1/4ùWa does not
contain any non-MSF wavelets if a is irrational.

Fourier transform of a wavelet inW1/4 is found by lettingn51 and j 52 in the construction
presented in the proof of Theorem 1.2~i!. The assumption that such a wavelet admits alsoa(s)
5as as a phase function leads to the conclusion that 4a must be 2l 11 for somel PZ. Thus the
wavelet is only inW(2l 11)/4 which, according to Lemma 1.1, is exactly the same asW1/4.
Therefore we have the following.

Proposition 3.8:W1/4 is not contained inWa for any aP@0,1/2#\$ 1
4%.

To finish this section, we point out that a similar method does not produce a characteri
of wavelets inWm/8 for mP$1,3%, nor some counterpart to~ii ! and ~iii ! in Theorem 3.3. Things
apparently get harder as one progresses fromW1/2 to otherWa’s.

IV. TWO EXAMPLES

In this section we provide the two important examples mentioned in the Introduction. The
one shows thatW1/2 is larger~modulo the MSF wavelets! than the set of all MRA wavelets. We
refer to standard books~cf. Refs. 1, 6, and 7! for the definition of multiresolution~MRA! wavelets.
We will use the fact~cf. Ref. 1! that a waveletc is an MRA wavelet if and only if itsdimension

function Dc(s)5(2p)(n51
` (kPZuĉ(2n(s12kp))u251, a.e.sPR.

The second example shows that there exists a non-MSF wavelet which does not even
any piece-wise linear phase function. A functiona(s) on ~2`,`! is called set-wise linearif
~2`,`! can be decomposed into countable disjoint~modulo null sets! union of measurable subse
such thata(s) is linear on each subset.

Example 4.1: There exists a non-MSF waveletc such thatc is not an MRA wavelet andc
admits phase1

2s.

Proof: Let A15@2 8
15p,2 2

5p) and A25@ 176
15 p, 64

5 p). ThenA1øA2 is a subwavelet set con

tained in wavelet setA1øA2øC where C5@2 2
5p,2 4

15p)ø@ 4
5p, 22

15p). Also define B1

5@ 22
15p, 8

5p)5A112p51/8A2 andB25@2 64
15p,2 16

5 p)5A2216p58A1 .
Let us define functionf to be such that

u f ~s!u55
1

A2p
, sPC,

1

2Ap
, sPA1øA1øB1øB2 ,

0, otherwise.

Then i f i25(1/2p)m(C)1(1/4p)m(A1øA1øB1øB2)5 6
151

9
1551. To check that Eq.~1.1! is

satisfied by any function whose Fourier transform has modulusu f u, we note that it suffices to
check~1.1! for s in the wavelet setA1øA2øC. WhensPC, u f (s)u is the only nonzero term to the
left of Eq. ~1.1!. So ( l PZu f (2l s)u25u f (s)u251/2p. If sPA1 , then ( l PZu f (2l s)u25u f (s)u2

1u f (23s)u251/2p. Similarly, when sPA2 , we have ( l PZu f (2l s)u25u f (s)u21u f (223s)u2

51/2p.
To prove thatĉ(s)5ei (1/2)su f (s)u is Fourier transform of a wavelet, it is left to check that E

~1.2! is satisfied byc. We see that each term to the left of Eq.~1.2! is 0 unless whensPA1 , k
51, or whensPB1 , k521. In the first case, the only nonzero terms in~1.2! involve sPA1 , s
12pPB1 , 23sPA2 and 23(s12p)PB2 . Hence
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(
l 50

`

c̄~2l s!ĉ~2l ~s12p!!5ĉ~s!ĉ~~s12p!!1ĉ~23s!ĉ~23~s12p!!5
1

4p
~e2p i1e28p i !50.

The second case is similar.
Finally we show thatc is not an MRA wavelet. For this, we need to note that1

4A116p

5@2 2
15p,2 1

10p)16p5@ 88
15p, 59

10p),@ 88
15p, 32

5 p)5 1
2A2 , and 1

4A122p, 1
2B2 . Let sP 1

4A15

@2 2
15p,2 1

10p). Direct calculation shows then that 22sPA1 , 25sPB2 , 2(s16p)PA2 and 2(s
22p)PB2 . Thus

Dc~s!>~2p!~ uĉ~22s!u21uĉ~25s!u21uĉ~2~s16p!!u21uĉ~2~s22p!!u2!52.

Thereforec is not an MRA wavelet. h

Example 4.2: There exists a non-MSF waveletc such thatc does not admit any set-wis
linear phasea(s)5as.

Proof: Let A1 , A2 , A3 , B1 , B2 , B3 , C1 , C2 , C3 andA, B, C be defined as in the proof o
Theorem 3.3~iii !, andW be the wavelet set containingA. Also recall thatA15@2p,2p/2) and
all these subsets satisfy the following conditions:A152B158C1 , C252A258B2 , B352C3

58A3 , A15C2216p5B3232p, B15A228p5C3216p andC25B222p5A324p.
Let g(x) be defined onC15@2p/8,2p/16) such thatg(2p/8)50, g(2p/16)51/) and

thatg(x) is linear. Then we extend the definition ofg(x) to the union ofAøBøC in such a way
that g(s)5g(s12p) and g(s)5g(2s) holds whenevers, s12p or s, 2s are in the union of
AøBøC. Using the relations among setsAi , Bi , Ci with i P$1,2,3%, we can verify thatg is well
defined.

Now we define functionf as follows:

f ~s!55
1

A2p
, sPW\A,

1

A2p
g~s!, sPBøC,

1

A2p
A122g2~s!, sPA,

0, otherwise.

Note thatf is well defined andf >0 sinceg2(s)< 1
3. Similar to all the other examples, it can b

checked thati f i251 and( l PZu f (2l s)u251/2p, a. e.sPR.
Let a(s) be zero onBøC and 1

2p1arcsing(s)/2A122g2(s) on A and 0 everywhere else. W
claim thatĉ(s)5eia(s) f (s) is the Fourier transform of a wavelet. By the above paragraph we
need to check Eq.~1.2!. Similarly, we only need to check the following six cases:~1! sPC1 , k
51; ~2! sP 1

2C1 , k51; ~3! sPB2 , k51; ~4! sPB2 , k521; ~5! sPA3 , k521; and ~6! s
P 1

2A3 , k521. We treat only the first case, and the other five cases can be dealt similarly. In
~1!, we havesPC1 , 22sPB1 , 23sPA1 , s12pPB2 , 22(s12p)PA2 , and 23(s12p)PC2 .
Thus
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(
j 50

`

uĉ~2 j s!ĉ~2 j~s12p!!5ĉ~s!ĉ~s12p!1ĉ~22s!ĉ~22~s12p!!1ĉ~23s!ĉ~23~s12p!!

5
1

2p
g2~s!1

1

2p
g~s!A122g2~s!FexpS 2

p

2
2arcsin

g~s!

2A122g2~s!
D

1expS p

2
1arcsin

g~s!

2A122g2~s!
D G

5
1

2p
g2~s!2

1

2p
g~s!A122g2~s!

g~s!

A122g2~s!
50.

Now, suppose that the wavelet also admits set-wise linear phaseb(s). It follows that there
exists subsetE of C1 such thatE has positive measure andb(s) is linear onE. By passing to a
subset ofE, we can also assume thatb(s) is linear on each set 22E, 23E, E12p, 22(E
12p), 23(E12p). Considering~1.2!, we see that whensPE there are only three nonzero term
which involve the above six sets. Hence, by the definition off, it follows from Eq. ~1.2! that

ei ~a1s1b1!g~s!1~ei ~a2s1b2!1ei ~a3s1b3!!A122g2~s!50

holds for allsPE, wherea1 , a2 , a3 , b1 , b2 , b3 are real constants. After multiplyinge2 i (a1s1b1)

on both sides, we see that

g~s!1~ei ~as1b!1ei ~cs1d!!A122g2~s!50

holds for allsPE, wherea, b, c, d are real constants. By considering the real and imaginary p
we obtain

~sin~as1b!1sin~cs1d!!A122g2~s!50 ~4.1!

and

g~s!1~cos~as1b!1cos~cs1d!!A122g2~s!50 ~4.2!

for sPE. Since 0,g(s),1) on E, it follows from ~4.1! and ~4.2! that sin(as1b)1sin(cs1d)
50 and cos(as1b)1cos(cs1d)Þ0 for sPE, which implies from~4.2! that

cos~as1b!52
g~s!

2A122g2~s!

and hence

cos2~as1b!5
g2~s!

4~122g2~s!!
~4.3!

holds forsPE.
Note thatg(s)5(16/p))s1(2/)) on E and hence

h~z!ª
~~16/p) !z12/) !2

4~122~~16/p) !z12/) !2!
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is a nonconstant rational function. By~4.3! and a standard complex analysis argument we w
have cos(az1b)5h(z) for all zPC such that 122((16/p))z12/))2Þ0, which is obviously
impossible. Thereforec does not admit any set-wise linear phase. h
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Recursive construction for a class of radial functions.
I. Ordinary space
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A class of spherical functions is studied which can be viewed as the matrix gener-
alization of Bessel functions. We derive a recursive structure for these functions.
We show that they are only special cases of more general radial functions which
also have a properly generalized, recursive structure. Some explicit results
are worked out. For the first time, we identify a subclass of such radial functions
which consist of a finite number of terms only. ©2002 American Institute of
Physics.@DOI: 10.1063/1.1463709#

I. INTRODUCTION

In 1957, Harish-Chandra1 derived a famous formula for a certain class of group integrals.
G be a compact semisimple Lie group and leta andb be elements of its Cartan subalgebraH ,
then

E
UPG

dm~U !exp~ tr U21aUb!5
1

uWu (
wPW

exp~ tr w~a!b!

P~a!P~w~b!!
. ~1.1!

Here, dm(U) is the invariant measure,P(a) is the product of all positive roots ofH , andW is the
Weyl reflection group ofG with uWu elementsw.

This result depends crucially on the condition thata andb are in the Cartan subalgebraH . In
other words,U21aUb has to be in the algebra of the group. If one replacesa andb in the integral
on the left-hand side with more general matricesx andk which are not inH , formula~1.1! is not
valid anymore. Thespherical functionsintroduced by Gelfand2,3 form an important class of suc
integrals which are, in general, not covered by Harish-Chandra’s result~1.1!. In another work,
Harish-Chandra4 studies in great detail the harmonic analysis involving these spherical funct
In a more physics oriented contribution, Olshanetsky and Perelomov5 discussed them in the
framework of quantum integrable systems.

Here, we wish to address spherical functions of the following kind: we takex and k as
diagonal matrices containing the eigenvalues of a Hamiltonian in a matrix representation
Hamiltonian is diagonalized by the integration matrixU. In particular, we assume that the Ham
tonian U21xU or, equivalently,UkU21 is real-symmetric, Hermitian, or Hermitian self-dua
Thus, G is the orthogonal, the unitary or the unitary-symplectic group. We will refer to th
spherical functions asmatrix Bessel functions. We notice that the unitary case is special: since it
happens that the eigenvaluesx andk do lie in the Cartan subalgebraH , the result~1.1! applies
and coincides with the Itzykson–Zuber formula.6 In the orthogonal and the unitary-symplect
cases, however, formula~1.1! is not valid.

a!Electronic mail: thomas@matfys.lth.se
b!Electronic mail: heiner.kohler@uam.es
27070022-2488/2002/43(5)/2707/34/$19.00 © 2002 American Institute of Physics
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We choose the term matrix Bessel function for the spherical functions to be discussed
because they can be viewed as a natural extension of the ordinary vector Bessel functions
ever, due to the rich features of the spherical functions, other extensions relating to ordinary
functions are equally natural. Related functions have been discussed and terms similar to
Bessel functions have already been used by Hertz,7 by Gross and Kunze,8,9 by Holman,10 and by
Okounkov and Olshanski.11 Kontsevich12 introduced the matrix Airy functions.

Duistermaat and Heckman13 developed a stationary phase approach involving localization
a class of spherical functions, see also the treatise by Szabo.14

Remarkably, our matrix Bessel functions are only special cases of more general objects
we call radial functions. Moreover, there is an important connection to the Calogero–Suther
models which we will discuss separately, see the following.

The matrix Bessel functions are of considerable interest for applications in physics.
appear in random matrix theory,15–17which models spectral fluctuations of complex systems, s
as quantum chaotic ones. In particular, they are the kernels of Dyson’s Brownian motio18,19

describing crossover transitions between different symmetry or invariance classes. Unfortu
only the case of broken time-reversal invariance can be treated explicitly with the help o
Itzykson–Zuber formula. In the physically important cases of conserved time-reversal invar
the kernels are not known analytically, as argued previously. Muirhead20 discusses spherical func
tions in the framework of multivariate statistical theory. In his book, an expansion in terms of
polynomials for the orthogonal case can be found. Such an expansion for arbitrary Dyson
was recently worked out by Okounkov and Olshanski.11

The goal of the present paper is to explore the structure of the radial functions which co
the matrix Bessel functions as special cases. In particular, we show how explicit results c
obtained. The paper is organized as follows. In Sec. II, we briefly review some properties
vector Bessel functions. In doing so we wish to help the reader in developing an intuition fo
matrix Bessel functions which we introduce in Sec. III. In Sec. IV, we state and derive a fu
mental recursive structure for matrix Bessel functions. We show in Sec. V that this recursion
iterative solution of general radial functions which contain group integrals defining the m
Bessel functions as special case. Sections IV and V are our main results. In Sec. VI we illu
how the recursion can lead to closed and explicit formulas. Because of its special importan
discuss the connection to Calogero–Sutherland models separately in Sec. VII. In Sec. V
summarize and conclude. Various aspects and calculations are collected in the appendice

II. VECTOR BESSEL FUNCTIONS REVISITED

Before turning to the matrix case, we compile, for the convenience of the reader,
well-known results for the vector case.

In a real, d dimensional space withd52,3,4,..., we consider a position vectorrW
5(x1 ,...,xd) and a wave vectorkW5(k1 ,...,kd). The plane wave exp(ikW•rW) satisfies the wave
equation

D exp~ ikW•rW !52kW2 exp~ ikW•rW !, ~2.1!

where we define the Laplacian as in the physics literature,

D5
]2

]rW2 5(
i 51

d
]2

]xi
2 . ~2.2!

The zeroth-order Bessel function in this space is the angular average of the plane wave,

x (d)~kr !5E dV exp~ ikW•rW !, ~2.3!
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over the solid angleV, defining the orientation of eitherrW or kW . In our context, it is advantageou
to takeV as the solid angle ofkW . Obviously, only the relative angle betweenrW andkW matters and
x (d)(kr) can only depend on the product of the lengthsr 5urWu andk5ukW u of the two vectors. We
normalize the measure dV with the volume 2pd/2/G(d/2) of the unit sphere, i.e., we have

E dV51. ~2.4!

Thus, by construction, we also have

x (d)~0!51. ~2.5!

It is convenient to viewrW as the azimuthal direction of the coordinate system in which we mea
V. Thus, in these spherical coordinates, one findskW•rW5kr cosq whereq is the azimuthal angle
The measure dV contains sind22 q and one has

x (d)~kr !5
G~d/2!

ApG~~d21!/2!
E

0

p

exp~ ikr cosq!sind22 q dq52(d22)/2G~d/2!
J(d22)/2~kr !

~kr !(d22)/2 ,

~2.6!

whereJn(z) is the standard Bessel function21 of ordern. The functions~2.6! are often referred to
as zonal functions.

There is a remarkable difference for the functionsx (d)(kr) if one compares even and od
dimensions. For example, one has ind52 dimensionsx (2)(kr)5J0(kr) and ind53 dimensions
x (3)(kr)5(p/2)1/2J1/2(kr)/(kr)1/25 j 0(kr) with the spherical Bessel functionj 0(z) of zeroth
order.21 In d52 dimensions,J0(z) is a complicated infinite series in the argumentz, in d53
dimensions, however,j 0(z) is the simple ratioj 0(z)5sinz/z. One easily sees how this generalize
Upon introducingj5cosq as integration variable in Eq.~2.6!, one finds the representation

x (d)~kr !5
G~d/2!

ApG~~d21!/2!
E

21

11

exp~ ikr j!~12j2!(d23)/2dj. ~2.7!

In dimensionsd>3, this can be cast into the form

x (d)~kr !5
2G~d/2!

ApG~~d21!/2!
(
m50

` S ~d23!/2
m D ]2m

]~kr !2m

sinkr

kr
. ~2.8!

For even d, the exponent (d23)/2 is a fraction21/2,11/2,13/2,..., and thefunction (1
2j2)(d23)/2 in the integrand in Eq.~2.7! is an infinite power series. This yields, ford
54,6,8,..., thecomplicated power series~2.8! involving an infinite number of inverse powers o
kr. However, if d is odd, the exponent (d23)/2 is an integer 0,1,2,..., and thefunction (1
2j2)(d23)/2 is a finite polynomial of order (d23)/2 in j2. Thus,x (d)(kr) acquires a compara
tively simple structure, because it only contains a finite number of inverse powers ofkr. Formally,
this means that for oddd all binomial coefficients form.(d23)/2 are zero.

The differential equation for the functionsx (d)(kr) is easily obtained by averaging Eq.~2.1!
over the solid angleV of kW , i.e., by integrating both sides,

DE dV exp~ ikW•rW !52kW2E dV exp~ ikW•rW !. ~2.9!

We notice that the LaplacianD commutes with the integral, because the former is in the spac
the position vector, the latter in the space of the wave vector. Moreover, the integral tri
commutes withkW25k2. Hence, one arrives at
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D rx
(d)~kr !52k2x (d)~kr !. ~2.10!

Sincex (d)(kr) depends exclusively on radial variables, we replaced the full LaplacianD with its
radial part

D r5
1

r d21

]

]r
r d21

]

]r
5

]2

]r 2 1
d21

r

]

]r
. ~2.11!

In general, there are two fundamental solutionsx1
(d)(kr) andx2

(d)(kr) of the differential equation
~2.10! which behave as exp(6ikr)/(kr)(d21)/2 for large argumentskr. Thus, to obtain the full
solutions, one can make the Hankel ansatz

x6
(d)~kr !5

exp~6 ikr !

~kr !(d21)/2 w6
(d)~kr !. ~2.12!

Here,w6
(d)(kr) is a function with the propertyw6

(d)(kr)→1 for kr→`. The differential equation
follows easily from Eq.~2.11! and is given by

S ]2

]r 2 6 i2k
]

]r
2

d21

2 S d21

2
21D 1

r 2Dw6
(d)~kr !50. ~2.13!

For d>3, one uses the ansatz as an asymptotic power series

w6
(d)~kr !5 (

m50

`
am

~6kr !m , ~2.14!

which yields a recursion for the coefficients

am115
1

i2~m11! S m~m11!2
d21

2 S d21

2
21D Dam , ~2.15!

with the starting valuea051. A special situation occurs when the integer running indexm reaches
the critical valuemc5(d23)/2. If d is odd, mc is integer and the recursion terminates atm
5mc , i.e., one hasam50, m.mc . Thus, the asymptotic series becomes afinite polynomial in
inverse powers ofkr. However, ifd is even,mc is half-odd integer and the series cannot term
nate, it is alwaysinfinite. This explains the different structure of the Bessel functions in even
odd dimensional spaces from the viewpoint of the differential equation.

In Appendix A we discuss an alternative integral representation which has an intere
analog in the matrix space.

III. MATRIX BESSEL FUNCTIONS

We compile the basics features of the matrix spaces we want to work with in Sec. III A b
we define the matrix Bessel functions as group integrals in Sec. III B.

Two general aspects are shifted into the appendices. First, we present an interesting alte
integral representation in Appendix B. Second, the matrix Bessel functions play a crucial r
harmonic analysis or, equivalently, in Fourier–Bessel analysis in matrix spaces. For the g
theory, we refer the reader to Harish-Chandra’s treatise in Ref. 4 and to Helgason’s book.3 How-
ever, to achieve our goal of being explicit, we collect, for the convenience of the reader,
results for the Fourier–Bessel analysis of invariant functions in matrix spaces in Appendix

A. Basics and notation

We introduceN3N matricesH whose elementsHnm , n,m51,...,N are real, complex, or
quaternion variables. In other words, each elementHnm has b real componentsHnm

(a) , a
50,...,(b21) with b51,2,4, respectively,
                                                                                                                



at
hat

ee
l
s

e’s

ave
era-

le

e

2711J. Math. Phys., Vol. 43, No. 5, May 2002 Recursive construction. I

                    
Hnm5 (
a50

b21

Hnm
(a)t (a). ~3.1!

Here, we use the basist (a), a50,...,(b21). We havet (0)51 for the real case withb51. For
the complex case withb52, we havet (0)51 andt (1)5 i . Finally, we have

t (0)5F1 0

0 1G , t (1)5F 0 11

21 0 G ,
~3.2!

t (2)5F 0 2 i

2 i 0 G , t (3)5F1 i 0

0 2 i G
in the quaternion case forb54 where thet (a), a51,2,3 are the Pauli matrices. We notice th
the totalH is a 2N32N matrix for b54. However, here and in the following, the dimensions t
we use always refer to the number of matrix elements such asHnm . These are scalar forb
51,2 and quaternion forb54. The labelb is often referred to as Dyson index.

We assume that the matrixH is real symmetric, Hermitian, or Hermitian self-dual in the thr
casesb51,2,4. We always writeH†5H to indicate this symmetry. There areN independent rea
variablesHnn5Hnn

(0) , n51,...,N on the diagonal andbN(N21)/2 independent real variable
Hnm

(a) , a50,...,(b21),1<n,m<N outside the diagonal. We write the volume element ofH in
the form

d@H#5 )
n51

N

dHnn
(0) )

n,m
)
a50

b21

dHnm
(a). ~3.3!

The matrixH is diagonalized by the matrixU, with columnsUn , n51,...,N . Depending on the
value ofb, the matrixU is either orthogonal, unitary, or unitary-symplectic. Following Gilmor
notation,22 we write UPU(N;b) with U(N;1)5SO(N), U(N;2)5U(N) and U(N;4)
5USp(2N). The volume of these groups is given by

vol U~N;b!5 )
n51

N
2pbn/2

G~bn/2!
5

2NpbN(N11)/4

)n51
N G~bn/2!

. ~3.4!

We use it to normalize the invariant measure dm(U) of UPU(N;b) to unity,

E dm~U !51. ~3.5!

The N real eigenvaluesxn , n51, . . . ,N of H are ordered in the diagonal matrixx. We havex
5diag(x1,...,xN) for b51 andb52. Forb54, the eigenvalues are doubly degenerate and we h
x5diag(x1,x1,...,xN ,xN). Physically, this doubling of the eigenvalues is due to Kramer’s degen
cies. Thus, the diagonalization reads

H5U†xU, with Hnm5Un
†xUm . ~3.6!

The diagonalizing matrixU has the propertyU215U†. The volume element in eigenvalue–ang
coordinates is given by15,23

d@H#5CN
(b)uDN~x!ubd@x#dm~U ! ~3.7!

where d@x# denotes the product of all differentialsdxn . We have introduced the Vandermond
determinant
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DN~x!5 )
n,m

~xn2xm!. ~3.8!

The normalization constant

CN
(b)5

pbN(N21)/4

N!

GN~b/2!

)n51
N G~bn/2!

~3.9!

obtains from the constants given in Mehta’s book15 and from Eq.~3.4!.
To avoid inconveniences and to ensure a compact notation, we define the trace Tr a

determinant Det with Tr5tr and Det5det for b51,2 and with

Tr K5 1
2trK, DetK5AdetK ~3.10!

in the caseb54 for a matrixK with quaternion entries. Ifk denotes the diagonal matrix of th
eigenvalues of a real-symmetric, Hermitian or Hermitean self-dual matrix, it is also usef
define the associate matrixk̂. In all three casesb, it is theN3N matrix k̂5diag(k1,k2,...,kN), i.e.,
we havek̂5k for b51,2 and no degeneracies forb54.

B. Integral definition and differential equation

As in the case of vector Bessel functions, we start in the matrix case with the plane wav
two matricesH and K with the same symmetriesH†5H and K†5K, we introduce the matrix
plane wave as exp(i Tr HK) where the trace is the proper scalar product in the matrix space.
matrix plane wave has the property

1

~2p!NpbN(N21)/2E d@H#exp~ iTr HK !5d~K !, ~3.11!

whered(K) is the product of thed distributions of all independent variables. We define the ma
gradient]/]H and the Laplacian operator

D5Tr
]2

]H2 5 (
n51

N
]2

]Hnn
(0)2 1

1

2 (
n,m

(
a50

b21
]2

]Hnm
(a)2 , ~3.12!

which acts on the matrix plane wave as

Dexp~ i Tr HK !52Tr K2 exp~ iTr HK !. ~3.13!

We notice that, forb54, inconvenient factors of 2 would occur if we used tr instead of Tr.
Analogously to vector Bessel functions, we define the matrix Bessel functions as the a

average

FN
(b)~x,k!5E dm~U !exp~ i Tr HK !. ~3.14!

The diagonal matrixk contains the eigenvalues ofK, which is diagonalized by a matrixV such
that K5V†kV. Due to the invariance of the measure dm(U), the matrixV is absorbed and the
functionsFN

(b)(x,k) depend on the eigenvaluesx andk only,

FN
(b)~x,k!5E dm~U !exp~ i Tr U†xUk!. ~3.15!

Thus, in the scalar product TrHK, solely the relative angles betweenH andK matter. The matrix
Bessel functions are symmetric in the arguments,
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FN
(b)~x,k!5FN

(b)~k,x! ~3.16!

and normalized to unity,

FN
(b)~x,0!51, FN

(b)~0,k!51 ~3.17!

due to Eq.~3.5!. These are spherical functions in the sense of Ref. 2.
As in the vector case, the differential equation is obtained by averaging Eq.~3.13! over the

relative angles,

DE dm~V!exp~ i Tr HK !52Tr K2 E dm~V!exp~ i Tr HK !. ~3.18!

Again, the LaplacianD commutes with the integral, because the former is in the space o
matrix H, the latter over the diagonalizing matrixV of K. The integral also commutes wit
Tr K25Tr k2. Due to the symmetry betweenH andK, the integral is obviously identical to th
definition ~3.15! and we find

DxFN
(b)~x,k!52Tr k2 FN

(b)~x,k!. ~3.19!

Since the matrix Bessel functionFN
(b)(x,k) depends only on the radial variables, i.e., on t

eigenvalues, we replaced the full Laplacian with its radial partDx . Because of the transformatio
rule ~3.7!, it reads

Dx5 (
n51

N
1

uDN~x!ub
]

]xn
uDN~x!ub

]

]xn

5 (
n51

N
]2

]xn
2 1 (

n,m

b

xn2xm
S ]

]xn
2

]

]xm
D . ~3.20!

We notice that these steps are fully parallel to the corresponding discussion in Sec. II. Impor
due to the symmetry~3.16!, the functionsFN

(b)(x,k) must also solve the differential equation
the kn , n51,...,N, which results from Eq.~3.19! by exchangingx andk. Obviously, this a very
restrictive requirement.

Comparing the radial operator~2.10! in the vector case and the radial operator~3.20!, we see
that it is theb that corresponds to thespatial dimensiond or, more precisely, tod21. The role
played by thematrix dimensionN is a different one. To illustrate this, we study the two simpl
cases. First, we can formally setN51 and find from the definition~3.14! that F1

(b)(x,k)
5exp(ix1k1), whereH115x1 and K115k1 . In this case, the matrixU has dropped out trivially.
This reflects simply that the scalar productkW•rW is linear in the relative solid angleV between the
vectors whereas the scalar product TrHK is quadratic in the relative diagonalizing matrixU. The
corresponding radial LaplacianDx for N51 is identical to the CartesianD. Therefore, the case
N51 is too trivial to give any further insight. Second, we setN52 and find straightforwardly
from the differential equation~3.19!

F2
(b)~x,k!5expS i

~x11x2!~k11k2!

2 D x (b11)S ~x12x2!~k12k2!

2 D , ~3.21!

wherex (d) is the vector Bessel function ind dimensions as defined in Eq.~2.3!. This functions
appears in the solution, because the differencesx12x2 and k12k2 directly correspond to the
lengthsurWu and ukW u. In higher matrix dimensionsN, this simple correspondence is lost. Howev
we will see in great detail that the features of the functionsFN

(b)(x,k), in particular whether or not
explicit solutions can be constructed, are more strongly influenced byb than byN.
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Another point in this context deserves to be underlined. In the vector case, the differ
equation~2.10! and the solution~2.6! were constructed for integer dimensionsd. However, both
equations are also well defined for any real and positived. Similarly, we observe in the matrix
case that the differential equation~3.19! was derived for the casesb51,2,4. However, neither
itself nor its solution~3.21! for N52 are confined to these casesb51,2,4, they are valid for any
real and positiveb. Thus, the casesb51,2,4 which correspond to a matrix model, i.e., to t
defining integral~3.14! of the matrix Bessel functions, are only special cases of a much m
general problem, namely finding the solutions of the differential equation~3.19! for every integer
N and forarbitrary real values ofb. We will return to this in Sec. V.

IV. RECURSION FORMULA

The matrix Bessel functions show a recursive structure which we construct by introd
radial Gelfand–Tzetlin coordinates. The result is stated in Sec. IV A and derived in Sec. IV B
corresponding invariant measure is calculated in Sec. IV C.

A. Statement of the result

The matrix Bessel functions, defined in Eq.~3.15!,

FN
(b)~x,k!5E dm~U !exp~ i Tr U†xUk! ~4.1!

depend on the radial space of the eigenvaluesx andk. As before, we writex5diag(x1,...,xN) and
k5diag(k1,...,kN) for b51,2 and, for b54, we write x5diag(x1,x1,...,xN ,xN) and k
5diag(k1,k1,...,kN ,kN). We emphasize that the radial spaces do not lie in the manifolds covere
the groups U(N;b). However, we will show that the group integral~4.1! can be exactly mapped
onto a recursive structure which acts exclusively in the radial space. This remarkable feature
main result of this section.

Under rather general circumstances, the matrix Bessel functionsFN
(b)(x,k) can be calculated

iteratively by the explicitrecursion formula

FN
(b)~x,k!5E dm~x8,x!exp~ i ~Tr x2Tr x8!kN!FN21

(b) ~x8,k̃!, ~4.2!

whereFN21
(b) (x8,k̃) is the group integral~4.1! over U(N21;b). We have introduced the diagona

matrix k̃5diag(k1,...,kN21) for b51,2 and k̃5diag(k1,k1,...,kN21,kN21) for b54 such thatk
5diag(k̃,kN) for b51,2 andk5diag(k̃,kN ,kN) for b54. Importantly, theN21 integration vari-
ablesxn8 , n51,...,N21, ordered in the diagonal matrixx85diag(x18 ,...,xN218 ) for b51,2 andx8

5diag(x18 ,x18 ,...,xN218 ,xN218 ) for b54 are arguments ofFN21
(b) (x8,k̃). Moreover, we notice that thei

further appearance in the exponential is a simple one due to the trace.
The coordinatesx8 are constructed in the spirit of, but they are different from, the Gelfan

Tzetlin coordinates of Refs. 24 and 25. To clearly distinguish these two sets of coordinates
each other, we refer to the latter asangularGelfand–Tzetlin coordinates and to the variablesx8 as
radial Gelfand–Tzetlin coordinates. The difference is at first sight minor, but of crucial im
tance. In the angular case,x is in the Cartan subalgebra belonging to U(N;b). In the radial case,
however,x is in theradial space of the eigenvalues of the real-symmetric, Hermitian, or Herm
self-dual matrixH, which are the arguments of the functions~4.1!. While the angular Gelfand–
Tzetlin coordinates never leave the group space, the radial ones establish an exact and
relation between the group and the radial space. The radial Gelfand–Tzetlin coordinates re
etrize the sphere that is described by theNth columnUN of the matrixUPU(N;b). The recursion
formula~4.2! can only be constructed in the radial coordinatesx8, but not in the angular ones. Th
radial and the angular Gelfand–Tzetlin coordinates are, in general, different. They happ
coincide for b52, i.e., for the unitary group U(N). This illustrates, in the framework of ou
recursion formula, the special role played by the unitary group.
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The invariant measure dm(x8,x) is, apart from phase angles, the invariant measure dm(UN)
on the sphere in question, expressed in the radial coordinatesx8. It only contains algebraic
functions and reads explicitly

dm~x8,x!5
2N21G~Nb/2!

pN(b22)(b24)/6

DN21~x8!

DN
b21~x! S 2)

n,m
~xn2xm8 ! D (b22)/2

d@x8#. ~4.3!

The normalization constant obtains from results in Gilmore’s book.22 It ensures normalization to
unity according to Eq.~3.5!. The domain of integration is compact and given by

xn<xn8<xn11 , n51,...,~N21!, ~4.4!

reflecting a ‘‘betweenness condition’’ for the radial Gelfand–Tzetlin coordinates. This is wh
absolute value signs appear in the measure~4.3!.

The general recursion formula~4.2! states an iterative way for constructing the matrix Bes
functionFN

(b)(x,k) for arbitraryN from the matrix Bessel functionF2
(b)(x,k) for N52 which can

usually be obtained trivially. We remark that the recursion formula allows one to expres
matrix Bessel functions in the form

FN
(b)~x,k!5E )

n51

N21

dm~x(n),x(n21)!

3exp~ i ~Tr x(n21)2Tr x(n)!kN2n11! exp~ ix1
(N21)k1!, ~4.5!

where we have introduced the radial Gelfand–Tzetlin coordinatesxm
(n) , m51,...,N2n on N21

levelsn51,...,(N21). We definex(0)5x andx(1)5x8.

B. Derivation

We introduce a matrixV5diag(Ṽ,V0) with ṼPU(N21;b) and V0PU(1;b) such thatV
PU(N21;b) ^ U(1;b),U(N;b) and multiply the right-hand side of the definition~4.1! with

15E dm~V!5E dm~V0! E dm~Ṽ!. ~4.6!

The invariance of the Haar measure dm(U) allows us to replaceU with UV† and to write

FN
(b)~x,k!5E dm~V0!E dm~Ṽ!E dm~U ! exp~ i Tr U†xUV†kV!. ~4.7!

We collect the firstN21 columnsUn of U in the N3(N21) rectangular matrixB such thatB
5@U1 U2¯UN21# andU5@B UN#. We notice that

B†B51N21 ,
~4.8!

BB†5 (
n51

N21

UnUn
†51N2UNUN

† .

As already stated in Sec. III A, the elements of a vector or a matrix are scalar forb51,2 and
quaternion forb54. In this sense, we also write 1N as the unit matrix forb54 because its
elements aret (0). By defining the (N21)3(N21) square matricesH̃5B†xB andK̃5Ṽ†k̃Ṽ we
may rewrite the trace in Eq.~4.7! as

Tr U†xUV†kV5Tr H̃K̃1HNNkN ~4.9!
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with HNN5UN
† xUN according to Eq.~3.6!. We notice thatV0 has dropped out. Since the first ter

of the right-hand side of Eq.~4.9! depends only on the firstN21 columnsUn collected inB and
the second term depends only onUN , we use the decomposition

dm~U !5dm~B!dm~UN! ~4.10!

of the measure to cast Eq.~4.7! into the form

FN
(b)~x,k!5E dm~UN!exp~ iH NNkN! E dm~Ṽ! E dm~B!exp~ i Tr H̃K̃ !, ~4.11!

where we have already done the trivial integration overV0 .
The difficulty to overcome lies in the decomposition~4.10!. While dm(UN) is simply the

invariant measure on the sphere described byUN , the measure dm(B) is rather complicated.
Pictorially speaking, the degrees of freedom in dm(B) have always to know that they are local
orthogonal toUN . Thus, dm(B) depends onUN . Luckily, there is one distinct set of coordinate
that is perfectly suited to this situation. It is the system of the radial Gelfand–Tzetlin coordin
We construct it by transferring the methods of Ref. 26 for the angular case to the radial ca

TheN3N matrix (1N2UNUN
† ) is a projector onto the (N21)3(N21) space obtained from

the originalN3N space by slicing off the vectorUN . We project the radial coordinatesx onto this
space and study its spectrum. The defining equation reads

~1N2UNUN
† ! x ~1N2UNUN

† ! En85xn8 En8 , n51,...,N21. ~4.12!

Equation~4.12! determines theN21 radial Gelfand–Tzetlin coordinatesxn8 and the corresponding
vectorsEn8 as eigenvalues and eigenvectors of the matrix (1N2UNUN

† ) x (1N2UNUN
† ) which has

the rankN21. Since we have by constructionUN
† En850, we may as well write

~1N2UNUN
† ! x En85xn8 En8 , n51,...,N21. ~4.13!

The eigenvaluesxn8 ,n51,...,N are obtained from the characteristic equation

05Det~~1N2UNUN
† !x2xn8!

5Det~x2xn8!det~1N2~x2xn8!21UNUN
† x!

5Det~x2xn8! S 12UN
† x

x2xn8
UND

52xn8 Det~x2xn8! TrUN
† 1N

x2xn8
UN . ~4.14!

Together with the normalization TrUN
† UN51, this yields theN equations

15Tr UN
† UN5 (

n51

N

(
a50

b21

UnN
(a)2,

~4.15!

05Tr UN
† 1N

x2xn8
UN5 (

m51

N

(
a50

b21 UmN
(a)2

xm2xn8
, n51,...,N21.

In these formulas, the trace Tr is only needed in the symplectic case. We notice that the eq
for the variablesx8 depend on the variablesx as parameters. We emphasize once more thatx in
these equations is in the radial space and, in general, not in the Cartan subalgebra of U(N;b).
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At this point, it is not clear yet why the introduction of the radial Gelfand–Tzetlin coordin
is at all helpful. The great advantage will reveal itself when we express the matrixH̃ and the
matrix elementHNN in the trace~4.11! in these coordinates. To this end, we first multiply E
~4.12! from the right withEn8

† and sum overn,

~1N2UNUN
† ! x ~1N2UNUN

† !5 (
n51

N21

xn8 En8En8
† , ~4.16!

where we used the completeness relation

(
n51

N21

En8En8
† 1 UNUN

† 51N . ~4.17!

Taking the trace of the spectral expansion~4.16! we find immediately

Tr x2Tr x85Tr UN
† xUN5HNN . ~4.18!

This is a remarkably simple result. An analogous expression exists for theNN matrix element of
the unitary group in the theory of angular Gelfand–Tzetlin coordinates for the unitary group24,25

Here we have shown that Eq.~4.18! is a general feature in every radial space.
We now turn to the (N21)3(N21) matrix H̃. Its N21 eigenvaluesyn , n51,...,N21 are

determined by the characteristic equation

05Det~H̃2yn!5Det~B†xB2yn!

52
1

yn
Det~BB†x2yn!

52
1

yn
Det~~1N2UNUN

† !x2yn!, ~4.19!

where we used Eq.~4.8! and reexpressed an (N21)3(N21) determinant as anN3N determi-
nant. The comparison of Eq.~4.19! with Eq. ~4.14! shows that, most advantageously, we ha
yn[xn8 ,n51,...,N21. Thus we may write

H̃5B†xB5Ũ†x8Ũ ~4.20!

by introducing the (N21)3(N21) squarematrix Ũ which diagonalizesH̃. Obviously,Ũ must
be a complicated function of theN3(N21) rectangularmatrix B, i.e., of the columnsUn ,n
51,...,N21. However, all we need to know is thatŨ must be in the group U(N21;b) because,
by construction,H̃ has the symmetryH̃†5H̃.

Collecting everything, we cast Eq.~4.11! into the form

FN
(b)~x,k!5E dm~x8,x!exp~ i ~Tr x2Trx8!kN!

3E dm~Ṽ!E dm~B!exp~ i Tr Ũ†x8ŨṼ†k̃Ṽ!. ~4.21!

We may now use the invariance of the Haar measure dm(Ṽ) to absorbŨ such that
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FN
(b)~x,k!5E dm~x8,x!exp~ i ~Tr x2Tr x8!kN!

3E dm~Ṽ!exp~ i Tr x8Ṽ†k̃Ṽ!E dm~B!. ~4.22!

Thus, the integration overB is trivial and yields unity due to our normalization. The remaini
integration overṼ gives precisely the matrix Bessel functionFN21

(b) (x8,k̃). This completes the
derivation of the recursion formula in Sec. IV A. The reader experienced with group integr
has realized that the introduction of the matrixV5diag(Ṽ,V0) was not strictly necessary. Alterna
tively, one could have shown that the measure dm(B) can be identified with dm(Ũ) and have done
the corresponding integral. However, we believe that the introduction ofV makes this part of the
derivation more transparent.

C. Invariant measure

The invariant measure dm(UN) has to be expressed in terms of the radial coordinatesx8. To
this end, we first have to solve Eq.~4.15! for the moduli squared of the vectorUN as a function of
the new coordinatesx8. Since Eq.~4.15! for the total moduli square for allb coincides with the
equation for theangularGelfand–Tzetlin coordinates of the unitary group, we can use the re
as derived in Refs. 24 and 25. We have in the three cases

uUnNu25 (
a50

b21

~UnN
(a)!25

)m51
N21~xn2xm8 !

)mÞn~xn2xm!
. ~4.23!

The betweenness condition~4.4! follows from the positive definiteness of this expression. W
parametrize the remaining degrees of freedom ofUnN in the casesb52,4. We setUnN

(0)

5cosgn
(1) andUnN

(1)5singn
(1) in the caseb52 and

UnN5F coscn exp~ ign
(1)! sincn exp~ ign

(2)!

2sincn exp~2 ign
(2)! coscn exp~2 ign

(1)!
G ~4.24!

for b54 in the basis~3.2!. The invariant length element reads

Tr dUN
† dUN5 (

n51

N

(
a50

b21

~dUnN
(a)!2

5 (
n51

N S 1

4uUnNu2 ~duUnNu2!2

1(
i 51

b/2

uUnNu2~dgn
( i )!21db4uUnNu2~d coscn!2D . ~4.25!

To express the differential duUnNu2 in terms of the dxn8 , we again take advantage of the results
Refs. 24 and 25,

(
n51

N
1

4uUnNu2 ~duUnNu2!25 (
n51

N21
)m51

N21~xm8 2xn8!

4)m51
N ~xm2xn8!

~dxn8!2. ~4.26!

From these equations, we can read off the metricg in the basis of the coordinatesxn8 ,gn
( i ) andcn .

Conveniently, it is diagonal. The determinant ofg is given by
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detg5
DN21

2 ~x8!

DN
2b22~x! )n,m

~xn2xm8 !(b22), ~4.27!

which yields the invariant measure dm(UN) in terms of thexn8 and of the additional coordinate
gn

( j ) andcn . These angles can be integrated out trivially. This yields Eq.~4.3!.

V. RADIAL FUNCTIONS FOR ARBITRARY b

Remarkably, the recursion introduced in Sec. IV, is the iterative solution of the radial equ
for arbitrary values ofb. Thus, the matrix Bessel functions are special cases of more ge
functions which we want to refer to as radial functions. We give the precise formulation o
problem in Sec. V A and show in Sec. V B that the recursion is the general iterative solutio
Sec. V C, we discuss a Hankel ansatz for the radial functions.

A. Definition by the differential equation

In Sec. III B, we defined the matrix Bessel function through the group integral~3.14! or,
equivalently, the group integral~3.15!. This definition confines the dimensionb to the valuesb
51,2,4, corresponding to the groups U(N;b). However, discussing the simplest caseN52, we
already saw in Sec. III B thatF2

(b) is well defined forarbitrary values ofb. This was a simple
consequence of the explicit form~3.21! which expressesF2

(b) in terms of the Bessel function
x (b11). The latter is known to be well defined for arbitraryb. Hence, we conclude that the cas
b51,2,4 which relate to matrices and groups are embedded into a space of far more g
functions.

It seems natural that this phenomenon also extends toN.2. The problem has to be posed
follows: We seek the solutionsFN

(b) of the differential equation

DxFN
(b)~x,k!52 (

n51

N

kn
2 FN

(b)~x,k!, ~5.1!

where the operator is given by

Dx5 (
n51

N
]2

]xn
2 1 (

n,m

b

xn2xm
S ]

]xn
2

]

]xm
D . ~5.2!

Here,b is arbitrary. For technical reasons, however, we restrict ourselves for the time being t
and positive values ofb. We make no reference whatsoever to matrices, eigenvalues, and gr
To emphasize this, we viewx andk as sets ofN variablesxn , n51,...,N andkn , n51,...,N for
every positiveb. We do not use traces.

We require that the solutions are symmetric in the argument

FN
(b)~x,k!5FN

(b)~k,x! ~5.3!

and normalized

FN
(b)~0,k!51 or FN

(b)~x,0!51 ~5.4!

at the originx50 and k50. Due to the symmetry, one of the two normalization conditio
suffices.

In the sequel, we want to refer to the functionsFN
(b)(x,k) for arbitraryb as radial functions

while we reserve the termmatrix Bessel functionsto the casesb51,2,4 where the direct connec
tion to matrices and Lie groups exists.
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B. Recursive solution

We claim that the solutions are, for arbitraryb, given as an iteration inN by the recursion
formula

FN
(b)~x,k!5E dm~x8,x!expS i S (

n51

N

x2 (
n51

N21

x8D kND FN21
(b) ~x8,k̃!, ~5.5!

whereFN21
(b) (x8,k̃) is the solution of the differential equation~5.2! for N21. Here,k̃ denotes the

set of variableskn , n51,...,(N21) and x8 the set of integration variablesxn8 , n51,...,(N
21). The integration measure

dm~x8,x!5GN
(b) DN21~x8!

DN
b21~x! S 2)

n,m
~xn2xm8 ! D (b22)/2

d@x8# ~5.6!

is the continuation of Eq.~4.3! to arbitrary positiveb. The normalization constant

GN
(b)52N21

G~Nb/2!

GN~b/2!
~5.7!

is also the continuation of the constant in Eq.~4.3!. We calculate it in Appendix F. As in the case
b51,2,4, the inequalities

xn<xn8<xn11 , n51,...,~N21! ~5.8!

define the domain of integration.
We stress that we derived the recursion formula~5.5! in Sec. IV for the casesb51,2,4. To

prove that it is the iterative solution for arbitrary positiveb, we show that it solves the differentia
equation~5.1!. The keystone for the proof is the identity

DxFN
(b)~x,k!52kN

2 FN
(b)~x,k!1E dm~x8,x!expS i S (

n51

N

xn2 (
n51

N21

xn8D kNDDx8FN21
(b) ~x8,k̃!,

~5.9!

which is derived in Appendix D. Equation~5.9! establishes a not immediately obvious, but ne
ertheless natural connection between, on the one hand, the action of the LaplacianDx in the N
variablesxn on the radial function inN dimensions, i.e., on the recursion integral~5.5!, and, on the
other hand, the recursion integral over the LaplacianDx8 in the N21 variablesxn8 acting on the
radial function inN21 dimensions. There is a compensation term which is just2kN

2 FN
(b)(x,k).

Thus, we can prove the eigenvalue equation~5.1! by induction: assuming that it is correct forN
21, identity ~5.9! implies Eq.~5.1! for N. The induction starts withN52 where the eigenvalue
equation~5.1! is clearly valid for arbitraryb as shown in Sec. III B by deriving the explic
solution ~3.21!.

The symmetry relation~5.3! is nontrivial. In the matrix casesb51,2,4, it is obvious from the
integral definitions~3.14! and~3.15!. For arbitraryb, we cannot use this argument, we only ha
the recursion~5.5!. In Appendix E, we prove the symmetry relation~5.3! by an explicit change of
variables.

The normalizationFN
(b)(x,0)51 in Eq. ~5.4! follows directly from the normalization of the

measure~5.6!. The symmetry relation~5.3! then also yieldsFN
(b)(0,k)51.

Regarding the domain ofb, a comment is in order. We have seen in Sec. III B that forN
52 the matrix Bessel function is well defined for arbitrary complexb. This should also be true fo
our recursion formula~5.5!. However, forb<0 nonintegrable singularities arise at the boundar
in the integral in Eq.~5.5!. At the same time the normalization constant becomes zero forb50,
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22,24,..., compensating the singularities of the integral. This makes the recursion formu
b<0 not ill-defined but it gets more difficult to treat. Therefore, we have restricted ourselv
positive values ofb.

In the work of Okounkov and Olshanski11 an expansion of the radial functions for arbitraryb
in Jack polynomials is derived. The series run over sets of partitions$l%. These authors also
derive a recursion formula for the Jack polynomials depending on one set of continuous va
x, say, and belonging to such partitions$l%. It is related to, but different from ours, whic
involves two sets of continuous varablesx andk. The crucial difference rests in the exponent
function which is present in our formula~5.5!, but not in the formula of Ref. 11. Importantly, it i
this exponential term which makes sure that the symmetry condition~5.3! is fulfilled on all levels
of the recursion. Since the Jack polynomials themselves do not obey such a symmetry con
there is no exponential term in the recursion formula of Ref. 11. However, it must be possi
derive the recursion formula for the radial functions from the one for the Jack polynomials
interesting, although probably not very elegant approach would be the following: If one ins
the recursion formula for the Jack polynomials into the expansion11 of the radial functions in terms
of these Jack polynomials, one ought to see that the series over the partitions can, at leas
be resummedto yield the exponential function present in the recursion formula~5.5!. This is
remarkable and could be very helpful for the application of Jack polynomials, because, in ge
resummations over partitions are known to be difficult and involved. For the connectio
Calogero–Sutherland models, we refer the reader to Sec. VII.

C. Hankel ansatz

In the spirit of Eq.~2.12! for the vector case, we make a Hankel ansatz for our radial funct
for arbitrary positiveb. We also do this in view of the applications in Sec. VI. Since the sum o
the kn

2 on the right-hand side of the eigenvalue equation~5.1! is invariant under all permutation
of thekn or, equivalently, their indicesn, we can label a set of solutionsFN,v

(b) (x,k) by an element
v of the permutation groupSN of N objects. For these solutions, we make the ansatz

FN,v
(b) ~x,k!5

exp~ i (n51
N xnkv(n)!

uDN~x!DN~k!ub/2 WN,v
(b) ~x,k!, ~5.10!

wherev(k) is the diagonal matrix constructed fromk by permuting thekn , or the indicesn. The
full solution FN

(b)(x,k), satisfying the constraints~5.3! and ~5.4!, is then, apart from possible
normalization constants, given as the linear combination

FN
(b)~x,k!5

1

N! (
vPSN

~21!p(v)FN,v
(b) ~x,k! ~5.11!

of the functions~5.10!. Here,p(v) is the parity of the permutation.
We find for the functionWN,v

(b) (x,k) the differential equation

Lx,v(k) WN,v
(b) ~x,k!50, ~5.12!

where the operator is given by

Lx,v(k)5 (
n51

N
]2

]xn
2 1 i2(

n51

N

kv(n)

]

]xn
2bS b

2
21D (

n,m

1

~xn2xm!2 . ~5.13!

This differential equation generalizes Eq.~2.13! to the matrix case forb51,2,4 and, furthermore
the latter to general radial functions for arbitraryb. Due to the symmetry~5.3!, the differential
equation~5.12! must also hold ifx andv(k) are interchanged.

The functionsWN,v
(b) (x,k) are translation invariant, i.e., they depend only on the differen

(xn2xm). We show this in Appendix G. Again, because of the symmetry, this argument ca
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over to k, and WN,v
(b) (x,k) depends only on the differences (kn2km) as well. Moreover, the

symmetry implies that it depends only on the products (kv(n)2kv(m))(xn2xm).
It is the last term of the operatorLx,v(k) that makes the differential equation~5.12! so difficult.

In the sequel, we are only interested in solutionsWN,v
(b) (x,k) which are translation invariant

Moreover, in the caseb52, when the last term of the operatorLx,v(k) vanishes, oscillatory
solutions can be possible. We exclude them because, first, they are, in general, not tran
invariant and, second, they can be absorbed in the oscillatory part of the ansatz~5.10!. Thus, we
simply haveWN,v

(2) (x,k)51. This is the Itzykson–Zuber case6 corresponding to unitary matrice
UPU(N). For arbitraryb, it is obvious from the differential operator thatWN,v

(b) (x,k)→1 if uxn

2xmu→` for all pairsn,m. Once more, this must also be true ifukn2kmu→`. Thus, we expect
that WN,v

(b) (x,k) is some kind of asymptotic series, generalizing Eq.~2.14! in the vector case.
Hence, we rederive a known result by concluding that the leading contribution in

asymptotic expansion of the functions~5.10! is given by

FN,v
(b) ~x,k!;

exp~ i (n51
N xnkv(n)!

uDN~x!DN~k!ub/2 . ~5.14!

According to Eq.~5.11!, this means that

FN
(b)~x,k!;

det@exp~ ixnkm!#n,m51, . . . ,N

uDN~x!DN~k!ub/2 ~5.15!

is the asymptotic behavior of the radial functionsFN
(b)(x,k) if the differencesuxn2xmu and

ukn2kmu are large for all pairsn,m.
Collecting all pieces of information, we make the ansatz

WN,v
(b) ~x,k!5(

$m%

am12m13¯m(N21)N

)n,m~~kv(n)2kv(m)!~xn2xm!!mnm
~5.16!

with coefficientsam12m13¯m(N21)N
that depend onN(N21)/2 integer indicesmnm , as many as

there are differences. The summation is over the set of these indices. The presence of thekn makes
it very difficult to solve Eq.~5.12! with the ansatz~5.16!. In the vector case, one easily sees th
the differential equation~2.13! in r can be transformed into an equation in the dimension
variableskr such thatk does not appear anymore. This leads to the simple recursion~2.15! for the
coefficients. Here, in the matrix case, thekn cannot easily be absorbed and the recursion formu
for the coefficients will depend on thekn in a nontrivial way. However, in some simple cases, it
possible to solve them. These difficulties were an important motivation for us to develo
methods which we introduced in Sec. IV.

VI. APPLICATIONS

Can we obtain an explicit formula for the radial functions by using the recursion form
~5.5!?—At least in some cases, this ought to be possible. Here, we present some results.

For the sake of completeness, we comment once more on the special caseb52, i.e., the
unitary case. Obviously, the measure~5.6! simplifies enormously. This is so because the rad
Gelfand–Tzetlin coordinates coincide with the angular ones. Thus, the caseb52 is identical to
the rederivation of the Itzykson–Zuber integral by Shatashvili.25

We now consider the orthogonal caseb51. The recursion formula reads

FN
(1)~x,k!5GN

(1)E DN21~x8!

A2)n,m~xn2xm8 !
expS i S (

n51

N

xn2 (
n51

N21

x8D kND FN21
(1) ~x8,k̃!d@x8#.

~6.1!
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The square roots appearing in the measure make a further evaluation very difficult. As is o
from the trivial caseN52, given in Eq.~3.21!, the functionFN

(1)(x,k) will be an infinite series for
all values ofN. However, we expect that, due to the different construction, this series is diffe
from the expansion inzonal functionswhich was obtained by Muirhead.20

Obviously, there is a pattern emerging. The integration measure~5.6! is purelyrational for all
even and positive values ofb. This is reminiscent of the situation for vector Bessel functions
odd dimensionsd, which consist of afinite number of terms, as discussed in Sec. II. Hence,
conjecture that the radial functionsFN

(b)(x,k) can also be written as afinite sum, exclusively
containing exponential and rational functions.

For all other values ofb, the measure~5.6! is algebraic, but not rational, and the radi
functionsFN

(b)(x,k) must beinfinite series. Nevertheless, these infinite series contain expone
and rational functions. Thus, they are different from expansions in terms of zonal polynom

To furnish our conjecture about the form of the radial functions for even and positive v
of b with an illustrative example, we turn to the unitary-symplectic caseb54. The results given
here in the sequel were first derived by the present authors in Ref. 27. Later, they were also
by Brézin and Hikami in Ref. 28.

To simplify the notation we avoid the imaginary unit by writing

FN
(4)~2 ix,k!5E

UPUSp(2N)
exp~Tr u21xuk!dm~U !, ~6.2!

wherex5diag(x1,x1, . . . ,xN ,xN) andk5diag(k1,k1, . . . ,kN ,kN) are diagonal matrices with Kramer
degeneracies. The starting point of the recursion is the smallest nontrivial caseN52, i.e., the
group USp~4!. We obtain after an elementary calculation

F2
(4)~2 ix,k!5G2

(4) (
vPS2

S 1

D2
2~x!D2

2~v~k!!
2

2

D2
3~x!D2

3~v~k!! Dexp~Tr xv~k!!. ~6.3!

The sum runs over the elements of the permutation groupSN for N52. Inserting Eq.~6.3! into the
recursion formula, we find for USp~6!, the next step in the recursion,

F3
(4)~2 ix,k!5G3

(4)G2
(4) (

vPS2

E
x1

x2
dx18E

x2

x3
dx28

) i 51
3 ) j 51

2 ~xi2xj8!

D3
3~x!D2

2~v~ k̃!!
exp~~Tr x2Tr x8!k31Tr xv~ k̃!!

3S 1

D2~x8!
2

2

D2
2~x8!D2~v~ k̃!!

D . ~6.4!

Although the integrand is finite everywhere, in particular atx185x285x2 , the denominatorsD2(x8)
andD2

2(x8) raise a technical difficulty. The key to remove them is to use the identity

2

D2
2~x8!

52S ]

]x18
2

]

]x28
D 1

D2~x8!
~6.5!

and to observe that the product) i 51
3 ) j 51

2 (xi2xj8) annihilates all boundary terms. Hence, we c
integrate by parts and arrive at

F3
(4)~2 ix,k!5G3

(4)G2
(4) (

vPS2

1

D3
3~x!D2

3~v~ k̃!!
E

x1

x2
dx18E

x2

x3
dx28(

i 51

3

)
j 51
j Þ i

3

~xj2x18!~xj2x28!

3exp~~Tr x2Tr x8!k31Tr xv~ k̃!!, ~6.6!
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where no denominator is left. Due to the permutation symmetry of the original integral, we
restrict ourselves to the unity elemente of the permutation group in the further evaluation of E
~6.6!. Thus we need only to consider the limitsxi8→xi , i 51,2 while integrating by parts. Afte
collecting orders ink we find

F3,e
(4)~2 ix,k!5G3

(4)G2
(4) 1

D3
3~x!D3

3~k!
S 2D3~x!D3~k!12(

i , j

3 S D3~x!D3~k!

~xi2xj !~ki2kj !
D

24(
i , j

3

~xi2xj !~ki2kj !112D exp~Tr xk!. ~6.7!

By introducing the composite variables

zv( i j )5~xi2xj !~kv( i )2kv( j )!, i , j 51,...,3, vPS3 , ~6.8!

we can expressF3
(4)(2 ix,k) in a compact form as

F3
(4)~2 ix,k!5G3

(4)G2
(4) (

vPS3

1

D3
3~x!D3

3~v~k!!
S 41)

i , j

3

~22zv( i j )!D exp~Tr xv~k!!. ~6.9!

So far, we have not been able to extend this procedure to all values ofN.
However, we succeeded in calculatingF4

(4)(2 ix,k), i.e., the case of the group USp~8!, by an
hybrid method which combines information obtained from the recursion with a Hankel ansa
described previously. We extend the right hand side of Eq.~6.9! for N53 to N54 and use this
expression as an ansatz for the functionWN,v

(4) (x,k). As it turns out, a correction term is neede
and, furthermore a correction to the correction. Fortunately, there is a structure to this. We g
details in Appendix H. We emphasize that the knowledge ofF3

(4)(2 ix,k) is essential for this
hybrid procedure, in particular the fact thatF3

(4)(2 ix,k) contains only linear terms in ever
composite variablezv( i j ) . Up to a normalization,F4

(4)(2 ix,k) is given by

F4
(4)~2 ix,k!5 (

vPS4

1

D4
3~x!D4

3~v~k!! S )
i , j

~22zv( i j )!122 (
l ,m,n

)
i , j
Þ lm
Þ ln
Þmn

~22zv( i j )!

123(
l ,m
k,n

)
i , j ,Þ lk,Þ ln

Þmk,Þmn,Þkn

~22zv( i j )!D exp~Tr xv~k!!. ~6.10!

Comparing this result with Eq.~6.9! we notice that, once more, the composite variableszv( i j ) enter
only linearly in the polynomial part ofF4

(4)(2 ix,k). Similarly, the spherical Bessel functio
j 1(z), which is the counterpart ofFN

(4)(x,k) in the vector case given in Eqs.~2.6! and~3.21!, has
a polynomial part linear inz. We expect that such analogies are also present for higher valu
b and the dimensiond.

Formula ~6.10! indicates a general structure forFN
(4)(x,k). The leading term is always th

generating function of the elementary symmetric functions inz. To this term combinations o
other symmetric functions are added, where certain combinations of indices are cut out.
supersymmetric case, we could apply the present method in even more complicated cases
find explicit results.40
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VII. CONNECTION TO CALOGERO–SUTHERLAND MODELS

The radial functions are related to, but different from, the eigenfunctions which are us
employed in models of the Calogero–Sutherland type. Since this issue is so important for
cations and so often raised in discussions, we briefly collect the main points.

The radial Laplace operator defined in Eq.~5.2! is closely related to the Calogero–Sutherla
Hamiltonians. In general one can always cast a Fokker–Planck operator in a Hamilton oper
adjunction29 with the square root of the stationary probability distribution defined thro
DxPeq(x)50. ChoosingPeq(x)5uDN(x)u2b/2, the operator~5.2! can be associated with th
Hamiltonian

HD52 (
n51

N
]2

]xn
2 1

b~b22!

2 (
n,m

N
1

~xn2xm!2 . ~7.1!

It describes a scattering system with a continuous spectrum, the large time behavior is dete
by the states near the ground state. Apart from a sign, this operatorHD coincides with the operato
Lx,0 in Eq. ~5.13! for k50. We also notice that the interaction vanishes forb52.

To have a well-defined thermodynamic limit one often confines the motion of the particl
a circle. This yields the Calogero–Sutherland Hamiltonian

HCS52 (
n51

N
]2

]xn
2 1

b~b22!

2 (
n,m

N
~p/N!2

sin2~p~xn2xm!/N!
, ~7.2!

which can also be derived directly from Dyson’s circular ensembles.15 Another way of confining
the particles is by a harmonic potential. This leads to the Calogero Hamiltonian30

HC52 (
n51

N
]2

]xn
2 1

b~b22!

2 (
n,m

N
1

~xm2xm!2 1
1

16 (
n51

N

xn
2. ~7.3!

In the thermodynamic limit the particle densityR1(x) of the ground state is described by Wigner
semicircle law. The mean particle level spacingD51/R1(0) scales asD}1/AN. Therefore in the
thermodynamic limit the harmonic confining term in Eq.~7.3! vanishes on the scale of the mea
level spacing. On thisunfolded scalethe correlation functions become independent of the c
finement mechanism. The three HamiltoniansHC , HD , and HCS are known to be integrable
systems for arbitraryb.31 However, the three valuesb51,2,4 are distinguished, since they esta
lish a connection to the random matrix ensembles. Indeed, for these values ofb they belong to a
much wider class of integrable systems, which can be constructed by means of the root s
a simple Lie algebra or—still more generally—of a Kac–Moody algebra.5 This class comprises
Hamiltonians which can be derived by an adjunction procedure from a Laplace–Beltrami op
of a group acting in a symmetric space. This space has positive curvature forHCS and zero
curvature forHD ,HC . In Refs. 32 and 33 it was pointed out that the Dorokhov–Mello–Perey
Kumar equation for scattering matrices with broken time reversal symmetry correspond
Laplace–Beltrami operator in a symmetric space of negative curvature.

EigenfunctionscN,E
(b) (x) of the HamiltoniansHC ,HD ,HCS with eigenenergyE for arbitraryb

are known. Essentially, these solutions are products of the ground state wave function an
metric polynomials in the coordinatesx of the N particles. In case of the Calogero–Sutherla
HamiltonianHCS, these polynomials are the Jack polynomials.34–36 In this approach, the energ
eigenvaluesE are labeled by a partition of lengthN. The crucial difference to the matrix Bess
functions is that the Jack polynomials are symmetric polynomials in one set of variablesx only
whereas the matrix Bessel functionsFN

(b)(x,k) are symmetric in two sets of variablesx and k.
Importantly, they are, in addition, symmetric under interchange of the two sets of varia
FN

(b)(x,k)5FN
(b)(k,x). This is reflected in the fact that the operatorLx,v(k) emerging in the

Hankel ansatz depends onk while HD does not. Due to their symmetry, the matrix Bessel fu
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tionsFN
(b)(x,k) are, at least forHD , the more natural eigenfunctions. This is so, because, to ob

orthogonality conditions, one has to sum thecN,E
(b) (x) over an infinite number of partitions. On th

other hand, orthogonality relations are an inherent feature of theFN
(b)(x,k) due to their meaning

in the Fourier–Bessel analysis, as discussed in Appendix C.
In other words, the functionscN,E

(b) (x) can be viewed as a basis in an expansion of
FN

(b)(x,k). We can consider the variablesk as a set of real numbers corresponding to the ener
E labeling the eigenstates ofHD . The matrix Bessel functions~3.15! are solutions of the Schro¨-
dinger equation with HamiltonianHD for the coupling parametersb51,2,4. The recursion for-
mula~5.5! represents an analytic continuation of these integral solutions to arbitrary positiveb. All
these functionsFN

(b)(x,k) have for arbitraryb additional features: the symmetry inx andk, which
has no analog in the functionscN,E

(b) (x). The merit of our recursion formula lies in the fact that,a
priori , no infinite resummation is required to obtain functions of the typeFN

(b)(x,k). Nevertheless
Forrester35 and Forrester and Nagao37 showed that such resummed expressions can successfu
used in certain cases. They treated the case of Poissonian initial conditions37 for the Calogero–
Sutherland HamiltonianHCS and derived exact expressions for the correlation functions for a
trary b for one or two particles. This is also related to the works of Muirhead20 and Pandey.38

VIII. SUMMARY AND CONCLUSION

We presented a recursive construction for certain spherical functions. We referred to th
matrix Bessel functions because, first, they are a natural extension of vector Bessel function
sense that the integration over a group corresponds to the integration over a solid ang
second, they satisfy a partial differential equation generalizing the Bessel ordinary differ
equation. For matrices, the indexb labeling the groups appears analogous to the dimensiond in
the case of vectors. The introduction of radial Gelfand–Tzetlin coordinates, which are rela
but different from the ordinary angular ones, was crucial for the recursion. The Cayley tra
mation ought to provide a connection between the angular and the radial Gelfand–T
coordinates.39 As evident from its construction, the recursion maps an integral over a group
onto an iteration which exclusively takes place in the radial space.

Remarkably, the recursion turned out to be far more general than was to be expected,
sight, from the proof which involved Lie groups. We showed that our recursion is also the ite
solution of the corresponding partial differential equation for arbitrary values ofb. We introduced
the term radial functions for this generalization of matrix Bessel functions. We expect that on
to employ the theory of quantum groups to give a group theoretical derivation of the recu
formula for arbitrary values ofb.

Using the recursion formula, we discussed the structure of radial Bessel functions. We
jectured that, for evenb, they can be written as finite sums involving only exponential and ratio
functions. We illustrated that by working out, forb54, the cases ofN53 and N54 distinct
eigenvalues. Further evaluation of explicit formulas for arbitraryN and, maybe, for all evenb
does not seem impossible. Work is in progress. The extension of the stationary phase appr
Duistermaat and Heckman13 to higher orders could, for evenb, be an alternative to derive suc
explicit results, because the expansion terminates. In this context, we mention that the
functions for higher values ofb are, to some extent, but not fully, the higher order radial functi
for lower values ofb. This also generalizes the situation for ordinary Bessel functions. Howe
there are many more higher order radial functions; they are not at all exhausted by this m
between values ofb.

In the present contribution, we only focused on ordinary spaces, i.e., spaces which ar
upon commuting numbers. In a second study40 we also address superspaces which involve co
muting and anticommuting variables.
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APPENDIX A: ALTERNATIVE INTEGRAL REPRESENTATION FOR VECTOR BESSEL
FUNCTIONS

The Bessel functionsx (d)(kr) are defined as an integral over angles in Eq.~2.1!, but they can
also be written as integrals over the entire or half real axis.21 To make possible an instructiv
comparison with the matrix case, we quote and rederive the representation

x (d)~kr !5
G~d/2!

i2p S 2

ikr D
(d22)/2E

2`

1`

expS 2 i
kr

2 S t1
1

t D D dt

td/2 . ~A1!

The singularities have to be treated properly.
The position vector in thed dimensional space isrW5reW r , where the vectoreW r parametrizes

the unit sphere. To integrate over its orientation, i.e., over the solid angleV, one can reexpress th
measure as

dV5
G~d/2!

pd/2 d~eW r
221!dder . ~A2!

Here, the vectoreW r is reinterpreted: its components live on the entire real axis and the doma
integration is the fulld dimensional space with the Cartesian measure dder . The d distribution
confines the vector to the unit sphere. Writing this distribution as a Fourier transform, we o
from Eq. ~2.1!

x (d)~kr !5
G~d/2!

pd/2

1

2p E
2`

1`

dtE dder exp~ i t ~eW r
221!!exp~ ikW•reW r !

5
G~d/2!

2p E
2`

1` exp~2 i t !

~ i t !d/2 expS 2 i
~kr !2

4t Ddt, ~A3!

where the integral overeW r gave a Gaussian ind dimensions. The contour for the integration ov
t has to be chosen appropriately. Upon a trivial change of variables, this result yields Eq.~A1!.

APPENDIX B: ALTERNATIVE INTEGRAL REPRESENTATION FOR MATRIX BESSEL
FUNCTIONS

The matrix Bessel functionsFN
(b)(x,k) for b51,2,4 can be be written in an alternative wa

Although we can hardly believe that this representation is completely new, we could not find
the literature. Similar to Eq.~A1! in the vector case, we can write

FN
(b)~x,k!5AN

(b)E d@T#exp~ i Tr T! Det2b/2~x^ k̂2T^ 1N!, ~B1!

where 1N is theN3N unit matrix. The normalization constant is given by

AN
(b)5

i bN2/2pbN(N21)/4

bN1bN(N21)/2 )
n51

N

G~bn/2!. ~B2!
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The matrixT in Eq. ~B1! is real symmetric, Hermitian, or Hermitian self-dual, respectively,
b51,2,4. The measure d@T# is Cartesian and given by Eq.~3.3!. All independent variables inT
are integrated over the entire real axis. To ensure convergence, the diagonal elements ofT have to
be given a proper imaginary increment. We notice thatx andT areN3N matrices forb51,2 and
2N32N for b54 with doubly degenerated eigenvalues. The matrixk̂ is, in all three casesb, just
the N3N matrix k̂5diag(k1,k2,...,kN), as defined following Eq.~3.10!.

The integral representation~B1! leads to an interesting integral equation for the matrix Bes
functions,

FN
(b)~x,k!5BN

(b) Det12b/2x E d@ t#uDN~ t !ub
FN

(b)~x,t !

)n,m~km2tn!b/2 , ~B3!

where the normalization constant reads

BN
(b)5

i bN2/2GN~b/2!

~2p!NN!
. ~B4!

The tn in Eq. ~B3! have a proper imaginary increment and their domain of integration is the
axis. Due to the symmetry relation~3.16!, the variablesx andk can be interchanged in Eqs.~B1!
and ~B3!.

It is not difficult to see from the integral equation~B3! that the product in the denominator o
its right-hand side can, in the caseb52, be written as

BN
(2)

)n,m~km2tn!
5

det@d~xn2tm!#n,m51,...,N

uDN~k!DN~ t !u1/2 . ~B5!

For bÞ2, the term Det12b/2x contributes. Nevertheless, the product still shares features withd
distribution.

To derive this alternative integral representation, we proceed analogously to Eq.~A2! by
rewriting the invariant measure ofUPU(N;b) usingd distributions. The invariance simply mean
that all columnsUn , n51,...,N are orthonormal, TrUn

†Um5dnm . The trace Tr is only needed fo
b54, because the entries ofU are quaternions in this case. Thus, we may write

dm~U !5MN
(b) d@U# )

n51

N

d~Tr Un
†Un21! )

n,m
d~Tr Un

†Um!, ~B6!

where d@U# is the Cartesian measure of all entries ofU and the integration is for all variables ove
the entire real axis. The constantMN

(b) will be determined later. Ullah41,42used such forms for the
measure to work out certain probability density functions. The bilinear forms in thed distributions
haveb components fornÞm,

Un
†Um5 (

a50

b21

@Un
†Um# (a)t (a). ~B7!

We notice that@Un
†Un# (a)50 for a.0 in the casen5m, because the length of every vector

real. Thus, because of Eq.~B7!, thed distributions in the measure~B6! have to be products ofd
distributions for every nonzero component@Un

†Um# (a). We now introduce Fourier representatio

d~@Un
†Um# (a)!5

1

p E
2`

1`

dTnm
(a) exp~2 i2@Un

†Um# (a)Tnm
(a)!,
~B8!
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d~@Un
†Un# (0)21!5

1

2p E
2`

1`

dTnn
(0) exp~2 i ~@Un

†Un# (0)21!Tnm
(0)!

for nÞm andn5m, respectively. The Fourier variables form the elements

Tnm5 (
a50

b21

Tnm
(a) t (a) ~B9!

of a matrixT which is real-symmetric, Hermitian or Hermitian self-dual according tob51,2,4.
We notice that the diagonal elementsTnn5Tnn

(0) are always real,

d~Tr Un
†Um!5

1

pb E dbTnm exp~2 i Tr Un
†~Tnm^ 1N!Um2 i Tr Um

† ~Tnm* ^ 1N!Un!,

~B10!

d~Tr Un
†Un21!5

1

2p E
2`

1`

dTnn exp~ i Tr Tnn2 i Tr Un
†~Tnn^ 1N!Un!

for nÞm andn5m, as previously. Just as for the trace Tr, the direct product is only needed i
caseb54.

We order the columnsUn , n51,...,N of the matrixU in a vectorUW 5(U1 ,U2 ,...,UN)T with
N2 elements. Forb51,2, the elements are scalars; forb54, they are quaternions. Collectin
everything, we can rewrite the measure~B6! in the form

dm~U !5
MN

(b)d@U#

~2p!NpbN(N21)/2E d@T#exp~ i Tr T2 i Tr UW †~T^ 1N!UW !. ~B11!

For the unitary case, a related Fourier integral form for integration measures was used b
dorov and Khoruzhenko43 in the context of quantum chaotic scattering. To use the measure~B11!
in the integral~3.15! for the matrix Bessel functionsFN

(b)(x,k), we also take advantage of th
relation

Tr U21xUk5Tr UW †~x^ k̂!UW , ~B12!

which allows us to write

FN
(b)~x,k!5

MN
(b)

~2p!NpbN(N21)/2E d@U#E d@T#exp~ i Tr T!exp~ i Tr UW †~x^ k̂2T^ 1N!UW !

5
MN

(b)i bN2
pbN/2

~2p!N E d@T#exp~ i Tr T!Det2b/2~x^ k̂2T^ 1N!. ~B13!

Thus, the integration overU could be done as a Gaussian one and gave the result~B1!. Obviously,
the Gaussian integrals overUW only converge, if the diagonal elements ofT have a proper imagi-
nary increment.

Formula ~B13! yields immediately the integral equation~B3!. Upon making the change o
variables

T5x1/2T8x1/2,

implying d@T#5Det11b(N21)/2x d@T8#, ~B14!

we bring x into the exponential function and remove it from the determinant. We diagon
T85V821t8V8 and find
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Det2b/2~x^ k̂2T^ 1N!5Det2bN/2x )
n,m

~km2tn8!2b/2. ~B15!

The integral overV8 is then just the integral definition~3.15! of the matrix Bessel function
FN

(b)(x,t8) and we arrive at Eq.~B3!.
The normalization constants remain to be derived. Conveniently, they nicely relate to a s

form of Selberg’s integral which is given in Eq.~17.5.2! of Mehta’s book,15

JN5E d@ t#uDN~ t !u2g )
n51

N

~a11 i t n!2b1~a22 i t n!2b2

5
~2p!N

~a11a2!(b11b2)N2gN(N21)2N

3 )
n50

N21
G~11~n11!g!G~b11b22~N1n21!g21!

G~11g!G~b12ng!G~b22ng!
. ~B16!

We now putx50 or k50 and haveFN
(b)(0,k)51 or FN

(b)(x,0)51 on the left-hand side of Eq
~B13!. We diagonalizeT5V21tV and use the invariance of the integral. Employing the meas
~3.7! and the constantCN

(b) given in Eq.~3.9!, we find the condition

15
MN

(b)CN
(b)pbN/2

~2p!N E d@ t#uDN~ t !ub )
n51

N
exp~ i t n!

~ i t n!bN/2 . ~B17!

We map this onto Selberg’s integral~B16! by settingg5b/2, b15bN/2, anda25b2 , by using

lim
a2→`

a2
a2

~a22 i t n!a2
5exp~ i t n! ~B18!

and by consideringa2
Na2JN in the limits a1→0 and a2→`. With the help of some standar

asymptotic formulas for theG function, we obtainMN
(b) and, eventually, the constantsAN

(b) and
BN

(b) in Eqs.~B2! and ~B4!.

APPENDIX C: FOURIER–BESSEL ANALYSIS

The Fourier–Bessel analysis involving matrix Bessel functions was discussed
Harish-Chandra4 in a general and formal way. To show the connection to our results, we sum
rize here some essential features of the Fourier–Bessel analysis on an explicit level.

We write the Fourier transform of a functionf (H) as

F~K !5DN
(b)E d@H#exp~ i Tr HK ! f ~H !, ~C1!

where the matricesH andK have the same symmetries. If we choose a symmetric normaliza

DN
(b)5

1

~2p!N/2pbN(N21)/4, ~C2!

we can write the inverse transform as

f ~H !5DN
(b)E d@K#exp~2 iTrKH !F~K !. ~C3!
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We notice that, according to Eq.~3.11!, the Fourier transform of the constantDN
(b) is the d

distributiond(K) and vice versa.
If f is an invariant function such thatf (H)5 f (x), its Fourier transform turns out to b

invariant as well,F(K)5F(k). Introducing eigenvalue-angle coordinates, we easily find

F~k!5DN
(b)CN

(b)E d@x#uDN~x!ubFN
(b)~x,k! f ~x! ~C4!

for the Fourier transform and

f ~x!5DN
(b)CN

(b)E d@k# uDN~k!ubFN
(b)* ~k,x!F~k! ~C5!

for its inverse. We now insert the transform~C4! into the inverse~C5! and conclude that

~DN
(b)CN

(b)!2E d@k#uDN~k!ub FN
(b)~x,k! FN

(b)* ~k,y!5
det@d~xn2ym!#n,m51,...,N

uDN~x!DN~y!ub/2 . ~C6!

This is the analog of Hankel’s expansion of thed distribution. From Eq.~C6!, the formula

E dm~U !d~U†xU2y!5
1

CN
(b)

det@d~xn2ym!#n,m51,...,N

uDN~x!DN~y!ub/2 ~C7!

obtains. To see this, we introduce a matrixG having the same symmetries asH and write

d~H2G!5~DN
(b)!2E d@K#exp~2 i Tr K~H2G!!. ~C8!

Averaging over the diagonalizing matrixU of H yields

E dm~U !d~H2G!5~DN
(b)!2E d@K# FN

(b)* ~x,k!exp~ i Tr KG!, ~C9!

by using the invariance of the measure. We now introduce eigenvalue-angle coordinates forK and
do the integral overV, the diagonalizing matrix ofK,

E dm~U !d~H2G!5~DN
(b)!2CN

(b)E d@k#uDN~k!ub FN
(b)* ~x,k!FN

(b)~k,y!, ~C10!

where we have, once more, employed the invariance of the measure. Since the right-hand
this equation does only depend on the eigenvaluesy of G, we may replaceG on the left-hand side
with y. Together with Eq.~C6!, this gives formula~C7!.

For the convolution in matrix space of two functionsf 1(H) and f 2(H), we straightforwardly
find the generalization of the standard convolution theorem,

f ~H !5E d@G# f 1~G! f 2~H2G!5E d@K#exp~2 i Tr HK !F1~K !F2~K !, ~C11!

whereG has the same symmetries asH. The functionsF1(K) andF2(K) are the Fourier trans
forms of f 1(H) and f 2(H), respectively. If the functions are invariant, the second equation
~C11! acquires the form

f ~x!5CN
(b)E d@k#uDN~k!ub FN

(b)* ~x,k!F1~k!F2~k!. ~C12!
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On the other hand, we find from the first equation of~C11!

f ~x!5CN
(b)E d@y#uDN~y!ub f 1~y! f̂ 2~x,y!, ~C13!

where y are the eigenvalues ofG. This formula is a convolution in the curved space of t
eigenvalues. The second function is given by

f̂ 2~x,y!5E dm~U ! f 2~x2U†yU!. ~C14!

We insert the Fourier integral forF1(k) according to Eq.~C4! into Eq. ~C12!, compare with Eq.
~C13! and obtain the Fourier decomposition

f̂ 2~x,y!5DN
(b)CN

(b)E d@k#uDN~k!ubFN
(b)* ~x,k!F2~k!FN

(b)~k,y!. ~C15!

Formulas~C6! and ~C7! can be viewed as special cases of these results.

APPENDIX D: ACTION OF THE LAPLACIAN ON THE RADIAL FUNCTIONS FOR
ARBITRARY b

We make the notation more compact by defining

m̃~x8,x!d@x8#5dm~x8,x!expS i S (
n51

N

xn2 (
n51

N21

xn8D kND , ~D1!

where the measure is given in Eq.~5.6!. To prove the identity~5.9!, we write the integral usingQ
functions. The left hand side of Eq.~5.9! reads

DxE m̃~x8,x!FN21
(b) ~x8,k̃!)

i . j
Q~xi2xj8!)

j > l
Q~xj82xl !d@x8#, ~D2!

where now the integration domain is the real axis for all variables. Thus, we can directly cal
the action of the operatorDx onto the integral. We find

DxE m̃~x8,x!FN21
(b) ~x8,k̃!)

i . j
Q~xi2xj8!)

j > l
Q~xj82xl !d@x8#

5E FN21
(b) ~x8,k̃!)

i . j
Q~xi2xj8!)

j > l
Q~xj82xl !

3S Dx8
(2)

1b (
nÞm

1

~xn82xm8 !2 2kN
2 D m̃~x8,x!d@x8#

1E FN21
(b) ~x8,k̃!m̃~x8,x!Dx)

i . j
Q~xi2xj8!)

j > l
Q~xj82x!d@x8#

12E F~x8,k̃! (
n51

N
]

]xn
m̃~x8,x!

]

]xn
)
i . j

Q~xi2xj8!)
j > l

Q~xj82xl !d@x8#, ~D3!

where we define the operator

Dx8
(2)

5 (
n51

N
]2

]xn
22 (

n,m

b

xn2xm
S ]

]xn
2

]

]xm
D . ~D4!
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By a series of integrations by parts, the operatorDx8
(2) acting onm̃(x8,x) is transformed toDx8

acting only onF(x8,k̃). At taking the derivative of theQ functions, we notice that only adjacen
levels contribute, because otherwise terms likeQ(xi2xj ) with i , j arise which annihilate the
integral due to the chosen ordering. Therefore, we can write

]

]xn
)
i . j

Q~xi2xj8!)
j > l

Q~xj82xl !5) ~QÞnn8,QÞ(n21)8n!~d~xn2xn8!Q~xn218 2xn!

2d~xn218 2xn!Q~xn2xn8!!, ~D5!

where )(QÞnn8 ,QÞ(n21)8n) is short-hand for the product on the left-hand side of Eq.~D5!
without the two factorsQ(xn218 2xn)Q(xn2xn8). Importantly, this product is symmetric inxn218
andxn8 . The second derivatives yield

]

]xn
)
i . j

Q~xi2xj8!)
j > l

Q~xj82xl !5) ~QÞnn8 ,QÞ(n21)8n!~d8~xn2xn8!Q~xn218 2xn!

1d8~xn218 2xn!Q~xn2xn8!1d~xn218 2xn!d~xn2xn8!!.

~D6!

The last term vanishes upon integration, since it is symmetric inxn218 andxn8 , whereas the rest o
the integrand is antisymmetric due to the Vandermonde determinantDN21(x8) in the measure
~5.6!. Differentiation with respect toxn8 gives

]

]xn8
)
i . j

Q~xi2xj8!)
j > l

Q~xj82xl !5) ~QÞn8(n11) ,QÞnn8!~d~xn82xn11!Q~xn2xn8!

2d~xn2xn8!Q~xn82xn11!!. ~D7!

Integration by parts of the first term of the right hand side of Eq.~D3! yields

DxE m̃~x8,x!FN21
(b) ~x8,k̃!)

i . j
Q~xi2xj8!)

j > l
Q~xj82xl !d@x8#

5E m̃~x8,x!Dx8FN21
(b) ~x8,k̃!d@x8#2kN

2 E m̃~x8,x!FN21
(b) ~x8,k̃!d@x8#

12E FN21
(b) ~x8,k̃! (

n51

N21 S) ~QÞn8(n11) ,QÞnn8!

3~d~xn2xn8!Q~xn82xn11!1d~xn82xn11!Q~xn2xn8!!

3S ]

]xn
1

]

]xn8
1

1

2 (
mÞn

b

xn2xm
12

1

2 (
mÞn

b

xn82xm8
D D m̃~x8,x!d@x8#. ~D8!

Inserting in Eq.~D8! the functionm̃(x8,x) as given in Eq.~D1! and~5.6! we find after a straight-
forward calculation
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DxE m̃~x8,x!FN21
(b) ~x8,k̃!d@x8#

5E m̃~x8,x!Dx8FN21
(b) ~x8,k̃!d@x8#2kN

2 E m̃~x8,x!FN21
(b) ~x8,k̃!d@x8#

12E FN21
(b) ~x8,k̃! (

n51

N21 S) ~QÞn8(n11) ,QÞnn8!~g~xn8 ;yn ;x,x8!2g~xn8 ;xn ;x,x8!!

3~d~xn2xn8!Q~xn82xn11!1d~xn82xn11!Q~xn2xn8!! D m̃~x8,x!d@x8#, ~D9!

with

g~xn ;xn8 ;x,x8!5~b/221!S (
m51

N21
1

xn2xm8
2 (

mÞn

1

xn2xm
D ,

~D10!

g~xn8 ;xn ;x,x8!5~b/221!S (
mÞn

1

xn82xm8
2 (

m51

N
1

xn82xm
D .

We now can perform the integration of thed distributions in Eq.~D9!. We notice that the differ-
ence (g(xn8 ;xn ;x,x8)2g(xn8 ;xn ;x,x8)) vanishes linearly, wheneverxn8 approaches one of th
boundaries of its integration domain. Thus the second integral in Eq.~D9! yields zero as long as
the measure diverges less than (xn2xn8)

21 when xn8 approachesxn . This is always the case fo
b.0. Collecting everything, we arrive at the identity~5.9!.

APPENDIX E: SYMMETRY OF THE RADIAL FUNCTIONS FOR ARBITRARY b

Applying the recursion formula~5.5! to all N21 levels, we can extend Eq.~4.5! to arbitrary
b and write

FN
(b)~x,k!5E )

n51

N21

dm~x(n),x(n21)!expS i S (
m51

N2n11

xm
(n21)2 (

m51

N2n

xm
(n)D kN2n11D exp~ ix1

(N21)k1!,

~E1!

wherex(0)5x. Analogously, we also find

FN
(b)~k,x!5E )

n51

N21

dm~k(n),k(n21)!expS i S (
m51

N2n11

km
(n21)2 (

m51

N2n

km
(n)D xN2n11D exp~ ik1

(N21)x1!

~E2!

with k(0)5k for the solution of the differential equation which results from Eq.~5.1! by inter-
changingx andk. We have to show that these two radial functions~E1! and~E2! are identical. To
this end, we change in Eq.~E1! on thenth level the variablesxm

(n) ,m51,...,(N2n) to km
(n) ,m

51,...,(N2n) by setting

) l 51
N2n21~xm

(n21)2xl
(n)!

) lÞm~xm
(n21)2xl

(n21)!
5r m

(n)5
) l 51

N2n21~km
(n21)2kl

(n)!

) lÞm~km
(n21)2kl

(n21)!
~E3!

for n51,...,(N21). These are, on thenth level, N2n11 equations for making a change ofN
2n variables. However, one has

(
m51

N2n11

r m
(n)51 ~E4!
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on all levels which eliminates one of theN2n11 equations.
Of course, the substitution~E3! is motivated by the radial Gelfand–Tzetlin coordinates wh

we introduced to construct the recursion formula forb51,2,4. In this case, ther m
(n) are the moduli

squared of a column of a matrixUPU(N2n;b). Here, we do not use this connection to matric
and groups. We simply view Eq.~E3! as a standard change of variables in an integral.
underline that Eq.~E3! does not involveb at all. Equation~E4! is just the normalization of a
column ofU for b51,2,4. Since it is independent ofb, it also holds for arbitraryb. One can also
verify Eq. ~E4! by a direct calculation.

The original domains of integration arexm
(n21)<xm

(n)<xm11
(n21) . In these boundaries, ther m

(n) are
positive definite. Hence, to satisfy this when changing the variables, we must havekm

(n21)<km
(n)

<km11
(n21) for the new domains of integration.
To work out the measure in the new variableskm

(n) , we interpret Eq.~E3! as a change to the
integration variablesr m

(n) , too. This yields immediately

DN2n~x(n)!

DN2n11~x(n21)!
d@x(n)#5dm~r (n)!5

DN2n~k(n)!

DN2n11~k(n21)!
d@k(n)#. ~E5!

The first equality sign goes back to the radial Gelfand–Tzetlin coordinates. We may use this
of information, because it is independent ofb. The second equality sign is simply due to Eq.~E3!.
Using this result, we find for the full andb dependent measure

dm~x(n),x(n21)!5GN2n11
(b) S ) l ,m~xm

(n21)2xl
(n)!

DN2n11
2 ~x(n21)!

D (b22)/2 DN2n~x(n)!

DN2n11~x(n21)!
d@x(n)#

5GN2n11
(b) S )

m51

N2n11

r m
(n)D (b22)/2

DN2n~x(n)!

DN2n11~x(n21)!
d@x(n)#

5GN2n11
(b) S P l ,m~km

(n21)2kl
(n)!

DN2n11
2 ~k(n21)!

D (b22)/2

3
DN2n~k(n)!

DN2n11~k(n21)!
d@k(n)#5dm~k(n),k(n21)!. ~E6!

For b51,2,4, this result is a direct consequence of the invariance of the group measure dm(U).
Here, we have derived it for arbitraryb. This, in turn, implies that the invariance of the grou
measure dm(U) is embedded into and reflects much more general features.

We now collect all these intermediate results and plug them into Eq.~E1!. Apart from the
expressions in the exponential functions, we have full agreement with the right-hand side
~E2!. Hence, it remains to be shown that the change of variables~E3! leads to the identity

(
n51

N21 S (
m51

N2n11

xm
(n21)2 (

m51

N2n

xm
(n)D kN2n111x1

(N21)k1

5 (
n51

N21 S (
m51

N2n11

km
(n21)2 (

m51

N2n

km
(n)D xN2n111k1

(N21)x1 . ~E7!

Since the symmetry relation~5.3! holds forb51,2,4, we know that Eq.~E7! must be true in these
cases. However, as Eq.~E7! does not involveb at all, it must also be valid for arbitraryb.
Inserting this into the right-hand side of Eq.~E1!, we recover Eq.~E2!, as desired. We notice tha
this line of arguing cannot be spoiled by any other contribution to the argument of the expon
functions, because all other terms in the integrand are purely algebraic. This completes th
of the symmetry relation~5.3! for arbitraryb.
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APPENDIX F: CALCULATION OF THE NORMALIZATION CONSTANT GN
„b…

In Appendix E, we introduced the coordinatesr n85r n
(1) ,n51,...,N on the first level of the

recursion. They are the moduli squared of the coordinates on the unit sphere in the comN
dimensional space. Thus, it is natural to use the following type of hyper spherical coordina

Ar n85cosqn )
n51

n21

sinqn, n51,...,~N21!,

~F1!

Ar N8 5sinqN21 )
n51

N22

sinqn ,

where the positive semidefiniteness of ther n8 restricts the domain of integration to 0<qn

,p/2, n51,...,(N21). Thus, we integrate over a (2N)th segment of the unit sphere. The me
sure

dm~r 8!5 )
n51

N21

sin2(N2n)21qn cosqn dqn ~F2!

is, apart from the phase angles, the measure on the unit sphere. Collecting everything, we

15E dm~x8,x!5GN
(b) E S )

n51

N

Ar n8D b22

dm~r 8!

5GN
(b) )

n51

N21 E
0

p/2

sin(N2n)b21qn cosb21qn dqn

5GN
(b) )

n51

N21
G~~N2n!b/2!G~b/2!

2G~~N2n11!b/2!
5GN

(b) GN~b/2!

2N21G~Nb/2!
, ~F3!

where the integral overqn is just Euler’s integral of the first kind.

APPENDIX G: TRANSLATION INVARIANCE OF WN,v
„b…

„x ,k …

We shift everyxn in the the recursion formula~5.5! for arbitraryb by a constantx̄ and obtain

FN
(b)~x1 x̄,k!5E dm~x8,x1 x̄! expS i S (

n51

N

x1Nx̄2 (
n51

N21

x8D kNDFN21
(b) ~x8,k̃! ~G1!

with xn1 x̄<xn8<xn111 x̄ as the domains of integration. The change of variablesxn8→xn81 x̄
removesx̄ from the measure given in Eq.~5.6! and the domains of integration, we find

FN
(b)~x1 x̄,k!5exp~ i x̄kN! E dm~x8,x! expS i S (

n51

N

x2 (
n51

N21

x8D kNDFN21
(b) ~x81 x̄,k̃!. ~G2!

We want to employ an induction. We assume that the radial functions for arbitraryb have the
property

FN
(b)~x1 x̄,k!5expS i x̄ (

n51

N

knDFN
(b)~x,k!. ~G3!
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If this is correct forN21, formula~G2! implies that it is also true forN. The induction starts with
N52 where the correctness of Eq.~G3! is immediately obvious from the explicit solution~3.21!
for arbitraryb. Thus, Eq.~G3! is valid for all N.

Since thekn are arbitrary and since the sum over allkn is invariant under the permutation
v(k), the property~G3! must also be true for every functionFN,v

(b) (x,k) with vPSN . We compare
this with

FN,v
(b) ~x1 x̄,k!5expS i x̄ (

n51

N

knD exp~ i (n51
N xnkv(n)!

uDN~x!DN~k!ub/2 WN,v
(b) ~x1 x̄,k!, ~G4!

which results from the Hankel ansatz~5.10!. Hence, we conclude that we necessarily have

WN,v
(b) ~x1 x̄,k!5WN,v

(b) ~x,k!. ~G5!

This is the translation invariance.

APPENDIX H: CALCULATION OF F4
„4…

„x ,k …

We perform the calculation forF4
(4)(2 ix,k) to avoid inconvenient factors ofi . The operator

Lx,v(k) defined in Eq.~5.13! splits into two parts. The first part

D̃x,v(k)5 (
n51

N
]2

]xn
2 24 (

n,m

1

~xn2xm!2 ~H1!

does not change the order ink, while the second one,

Lx,v(k)52(
n51

N

kv(n)

]

]xn
, ~H2!

raises the order ink by one. Since we can restrict ourselves to one element of the permut
group, we discuss only the identity permutation in the sequel. The symmetry ofx andk together
with the result forF3

(4)(x,k) suggests that one try an expansion in the composite variablezi j as
defined in Eq.~6.8!. To this end we define the elementary symmetric functions

en~z!5 (
i 1 j 1, i 2 j 2,¯, i n j n

)
l 51

n

zi l j l
. ~H3!

Here, we assume the following ordering of the composite index$ i l j l%, i l, j l . We say$ i l j l%
,$ i mj m% if i l, i m or i l5 i m and j l, j m . All indices run to N. The highest order elementar
symmetric function is of orderN(N21)/2 and is given byDN(x)DN(k). The asymptotic formula
~5.14! yields the leading term for large arguments. It is the starting point for a recursion in po
of z21,

WN
(4)~z!5 (

n50

N(N21)/2

pn~z21!, ~H4!

wherepn(z) is a symmetric function of ordern in xi andki . We investigate the action of the tw
operators defined in Eqs.~H1! and ~H2! and find

Lx,ken~z21!522 (
n,m

N
1

~xn2xm!2 en21~zÞnm
21 !, ~H5!
                                                                                                                



mixed

es of
truction

be

2738 J. Math. Phys., Vol. 43, No. 5, May 2002 T. Guhr and H. Kohler

                    
D̃x,ken~z21!524 (
n,m

N
1

~xn2xm!2 en~zÞnm
21 !22 (

n,m
kÞn
kÞm

N
1

~xn2xm!2 znk
21zmk

21en22~zÞnm
Þnk
Þmk

21 !. ~H6!

The functionen(zÞnm) is the elementary symmetric functionen(z) with all terms containingznm

omitted. Forn50,1,2 we simply havepn(z21)5(22)nen(z21). For n>3 the last term in Eq.
~H5! causes corrections to the elementary symmetric functions. This arises due to the
derivatives which have to be taken into account in the action ofD̃x,k onto en(z21) for n>3.
Because of this term the Hankel ansatz becomes increasingly cumbersome as higher valuN
are considered. More and more correction terms have to be constructed. So far, the cons
was only possible forN54. To construct the correction terms explicitly for the caseN54, we
define a new set of symmetric functions as follows:

f n~z21!5 (
k, l ,m

N

zkl
21zkm

21zlm
21en23~zÞkl

Þkm
Þ lm

21 !. ~H7!

Again we have to investigate the action ofLx,k and D̃x,k on f n(z21). We find

D̃x,kf 3~z21!524 (
n,m

N
1

~xn2xm!2 f 3~zÞnm
21 ! ~H8!

and

Lx,kf 3~z21!522 (
n,m
kÞn
kÞm

N
1

~xn2xm!2 znk
21zmk

21, ~H9!

thus f 3(z21) is the desired correction term. We have

p3~z21!5223~e3~z21!1 1
2 f 3~z21!!. ~H10!

Fortunately, due to Eq.~H8! in the next step the correction term itself does not have to
corrected and we find

p4~z21!524~e4~z21!1 1
2 f 4~z21!!. ~H11!

Up to now these results are valid for arbitraryN. The action ofD̃x,k onto the symmetric function
f 4(z21) is not as simple as Eq.~H8!. After a series of manipulations we arrive at

D̃x,kf 4~z21!524(
n,m

N
1

~xn2xm!2 f 4~zÞnm
21 ! ~H12!

22 (
n,m
kÞn
kÞm

N
1

~xn2xm!2 znk
21zmk

21f 2~zÞnm
Þnk
Þmk

21 !. ~H13!

The contribution~H6! has to be added to this expression stemming from the action ofD̃x,k onto
e4(z21). On the other hand we calculate
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Lx,kf 5~z21!522(
n,m

N
1

~xn2xm!2 f 4~zÞnm
21 ! ~H14!

22 (
n,m
kÞn
kÞm

N
1

~xn2xm!2 znk
21zmk

21e2~zÞnm
Þnk
Þmk

21 !. ~H15!

Thus, we have to find yet another correction term to compensate the second term in Eq.~H13!. We
define

f 58~z21!5 (
i 1, i 2, i 3, i 4

)
r , j

zi r i j

21(
r , j

zi r i j
5 (

j ,k
l ,m

zjl
21zjm

21zkl
21zkm

21zlm
21 ~H16!

and see thatLx,kf 58(z
21) yields exactly the desired second term of Eq.~H13!. Pushing forward

this procedure becomes more complicated step by step. There seems to be no obvious
constructing the additional terms. Apparently for higher orders the correction terms also invo
increasing amount of indices. Nevertheless forN54 we are already at the end of the procedu
Then the general expression

p5~z21!5225~e5~z21!1 1
2 f 5~z21!1 1

4 f 58~z21!! ~H17!

reduces to

p5~z21!5272e5~z21!. ~H18!

The last step can readily be done, since the action ofD̃x,k onto e5(z21) is already known by Eq.
~H6!. Thus we arrive at

p6~z21!5288e6~z21!. ~H19!

Importantly, we have

D̃x,ke6~z21!5D̃x,k

1

D4~x!D4~k!
50. ~H20!

That means, the sequence finishes after the sixth step. Collecting everything and observin
for N54, f 5(z)52e5(z) and f 6(z)54e6(z), we obtain

W4
(4)~x,k!5 (

n51

6

~22!nen~z21!1 (
n53

6

~22!n21f n~z21!28e5~z21!196e6~z21!. ~H21!

This can be rewritten in a more compact way as

W4
(4)~x,k!5

1

D4~x!D4~k!

3S )
i , j

~22zi j !122 (
l ,m,n

)
i , j
Þ lm
Þ ln
Þmn

~22zi j !123(
l ,m
k,n

)
i , j Þ lk Þ ln

Þmk Þmn Þkn

~22zi j !D ,

~H22!

which yields Eq.~6.10!.
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Recursive construction for a class of radial functions.
II. Superspace
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We extend the recursion formula for matrix Bessel functions, which we obtained
previously, to superspace. It is sufficient to do this for the unitary orthosymplectic
supergroup. By direct computations, we show that fairly explicit results can be
obtained, at least up to dimension 838 for the supermatrices. Since we introduce
a new technique, we discuss various of its aspects in some detail. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1463218#

I. INTRODUCTION

In a previous work, we studied properties of matrix Bessel functions in ordinary space.1 Here,
we generalize these investigations to superspace. For the introductory remarks and the ma
cal and physical background relevant for the ordinary space, and also relevant as the basis
present study, we refer the reader to Ref. 1.

In mathematics, supersymmetry was pioneered by Berezin2 and, in particular group theoretica
aspects, by Kac.3,4 The theory of nonlinears models in spaces of supermatrix fields was dev
oped in physics of disordered systems by Efetov.5,6 Verbaarschot, Weidenmu¨ller, and Zirnbauer7,8

used his approach to study models in random matrix theory. In Ref. 9, the first supersym
generalization of the Itzykson–Zuber integral10 was given. In Ref. 11, Gelfand–Tzetli
coordinates12 were constructed for the unitary supergroup. Extending Shatashvili’s13 method, the
supersymmetric Itzykson–Zuber integral was also rederived in Ref. 11 in its most general
Using the techniques of Ref. 9, such a calculation was also performed in Ref. 14.

From a mathematical viewpoint, Efetov’s work5 is the basis for a harmonic analysis in certa
supersymmetric coset spaces, the Efetov spaces, which are relevant for the nonlinears models. In
the full superspaces, a technique involving convolution integrals and ingredients of the
sponding harmonic analysis was introduced in Ref. 15. In the Efetov spaces, the theory o
monic analysis, in both its mathematical and physical aspects, was developed by Zirnbaue16 and
was applied to disordered systems in Refs. 17 and 18. In the present contribution, we do no
on the Efetov spaces, rather we address the full supergroup spaces. The supersymmetric Itz
Zuber integral9 and its application in Ref. 15 is the simplest example of a supermatrix Be
function appearing in this kind of harmonic analysis.

The matrix Bessel functions in superspace find direct application in random matrix theor
general reviews, see Refs. 19–21. In Ref. 22 it was shown that they are the kernels f
supersymmetric analog of Dyson’s Brownian motion.

The paper is organized as follows: In Sec. II, we introduce the supermatrix Bessel fun
and collect basic definitions and notations. In Sec. III, we extend the recursion formula of R
to superspaces. Since it is one of our goals to demonstrate that explicit results for supe

a!Electronic mail: thomas@matfys.lth.se
b!Electronic mail: heiner.kohler@uam.es
27410022-2488/2002/43(5)/2741/29/$19.00 © 2002 American Institute of Physics
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Bessel functions can indeed be obtained, we present, in some detail, such calculations for
supermatrix Bessel functions in Secs. IV and V, respectively. The asymptotics and the norm
tion are discussed in Sec. VI. We briefly comment on applications in Sec. VII and we summ
and conclude in Sec. VIII. Various calculations are shifted to the appendices.

II. SUPERMATRIX BESSEL FUNCTIONS

Similar to ordinary spaces,1 the superunitary case, i.e., integration over the supergr
U(k1 /k2), is the simplest one. Since this was already discussed in detail in Refs. 9, 11, and
refrain from reconsidering it here. Thus, it turns out that we may restrict ourselves to the s
matrix Bessel function of the unitary orthosymplectic group UOSp(k1/2k2). As discussed by
Kac,3,4 the supergroups U(k1 /k2) and UOSp(k1/2k2) exhaust almost all classical compact sup
groups, apart from some exotic exceptions which are of little relevance for applications. H
the integral we have to deal with is given by

Fk12k2
~s,r !5E

uPUOSp(k1/2k2)
exp~ i trgu21sur!dm~u!, ~2.1!

where dm(u) is the invariant measure. The arguments of the function~2.1! are the diagonal
matricess5diag(Acs1 ,A2cs2! and r 5diag(Acr1 ,A2cr2!. Here, we use Wegner’s notation23

and introduce the labelc561 to distinguish the two possible forms. We will return to this iss
The matricess1 , s2 and r 1 , r 2 are given by

s15diag~s11,s21,...,sk11!, s25diag~s1212 ,...,sk2212!,

~2.2!
r 15diag~r 11,r 21,...,r k11!, r 25diag~r 1212 ,...,r k2212!.

There is a twofold degeneracy ins2 andr 2 , because the matrixu21su or, equivalently,uru21 has
to be areal Hermitiansupermatrix23 of the form

s5FAcs (R) s (A)†

s (A) A2cs (HSd)G , c561. ~2.3!

The matricess (R) and s (HSd) have ordinary commuting entries, i.e., bosons, they are real s
metric and Hermitian self-dual, respectively. The matrixs (A) has anticommuting or Grassman
entries, i.e., fermions, and is of the form

s (A)5@s1
(A) , ...,sk1

(A)#, s i
(A)5F s1i

(A)

s1i
(A)*
]

sk2i
(A)

sk2i
(A)*

G . ~2.4!

We can now appreciate the meaning of the parameterc which enters the definition~2.3! of the real
Hermitian matrices. Forc51, it yields the real symmetric and forc521 the Hermitian self-dual
matrix as boson–boson block, and vice versa for the fermion–fermion block. In the framewo
random matrix theory, we find the supermatrices corresponding to the Gaussian orthogo
semble~GOE! for c511 and those for the Gaussian symplectic ensemble~GSE! for c521.

The infinitesimal volume element is given by

d@s#5)
i 51

k1

)
j 51

k2

ds i j
(A)* ds i j

(A))
i , j

ds i j
(R))

i 51

k1

ds i i
(R))

i , j
d@s i j

(HSd)#)
i 51

k2

ds i i
(HSd) , ~2.5!
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where d@s i j
(HSd)# is the product of the differentials of all independent elements of the quater

s i j
(HSd) .

The supermatrix Bessel functions~2.1! are eigenfunctions of a wave equation in the curv
space of the eigenvaluess or r . As in the ordinary case, a supermatrix gradient]/]s is introduced
and the Laplace operator is defined by

D5trgS ]

]s D 2

. ~2.6!

The plane waves exp(i trgsr) are the eigenfunctions, i.e., we have

D exp~ i trgsr!52trgr2 exp~ i trgsr!. ~2.7!

Here, boths andr are real Hermitian. As in ordinary space, the supermatrix Bessel function
obtained by averaging over the angular coordinates, i.e., over the diagonalizing group. T
placian commutes with the average and we arrive at the differential equation

DsFk12k2
~s,r !52trg r 2Fk12k2

~s,r !, ~2.8!

where the radial part of of the Laplacian~2.6! reads

Ds5
1

B̃k1k2

(c) ~s!
S (

p51

k1 ]

]sp1

B̃k1k2

(c) ~s!
]

]sp1

1
1

2
(
p51

k2 ]

]sp2

B̃k1k2

(c) ~s!
]

]sp2
D . ~2.9!

The Jacobian or Berezinian is given by22

B̃k1k2

(1) ~s!5
uDk1

~s1!uDk2

4 ~ is2!

)p51
k1 )q51

k2 ~sp12 isq2!2 , B̃k1k2

(21)~s!5
uDk1

~ is1!uDk2

4 ~s2!

)p51
k1 )q51

k2 ~ isp12sq2!2 . ~2.10!

One easily convinces oneself thatDs depends onc only through a factorAc. Thus, without loss
of generality, we setc51 and omit the indexc.

At this point, an important comment is in order. The normalization in ordinary space ac
ing to Eq.~3.17! in Ref. 1,FN

(b)(x,0)51 andFN
(b)(0,k)51, does not carry over to the supersym

metric case. This is due to the fact that the volume of some supergroups is zero2 resulting in the
vanishing ofFk12k2

(0,s) for certain values ofk1 andk2 . This collides with the normalization o
the plane waves~2.7! to unity at the origin. The reason for this contradiction is a well-kno
phenomenon in superanalysis. In going from Cartesian to angle eigenvalue coordinates, on
add additional terms to the measure to preserve the symmetries of the original integral. Th
called Efetov–Wegner–Parisi–Sourlas terms in the physics literature. A full-fledged mathem
theory of these boundary terms was given by Rothstein.24

To solve this normalization problem, we use the following strategy. First, we evaluat
supermatrix Bessel functions without taking care of the normalization. We just multiply the
grals with a normalization constantĜk12k2

. Having done the integrals, we determine the norm
ization by comparing the asymptotics of the supermatrix Bessel function for large argument
the Gaussian integral.

III. SUPERSYMMETRIC RECURSION FORMULA

We extend the recursion formula in ordinary space1 to superspace. After stating the result
Sec. III A, we present the derivation and the calculation of the invariant measure in Secs. III
III C, respectively.
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A. Statement of the result

Let Fk12k2
(s,r ) be defined through the group integral in Eq.~2.1!. It has two diagonal

matrices defined as in Eq.~2.2! as arguments. It can be calculated iteratively by therecursion
formula

Fk12k2
~s,r !5Ĝk12k2

E dm~s8,s! exp~ i ~ trgs2trgs8!r 11!F (k121)2k2
~s8, r̃ !, ~3.1!

where F (k121)2k2
(s8, r̃ ) is the group integral~2.1! over UOSp((k121)/2k2)) and Ĝk12k2

is a
normalization constant, see Secs. II and VI. As in the ordinary case,1 the coordinatess8 areradial
Gelfand–Tzetlin coordinates. Again, they are different from theangular Gelfand–Tzetlin coordi-
nates, which will be discussed elsewhere.25 We also introduced the diagonal matrix

r̃ 5diag~r 21,...,r k11 ,ir 2!5diag~ r̃ 1 ,i r̃ 2! ~3.2!

such thatr 5diag(r11, r̃ ) and the diagonal matrix

s85diag~s118 ,...,s(k121)18 ,is28!5diag~s18 ,is28!. ~3.3!

The invariant measure reads

dm~s8,s!52k211mB~s18 ,s1!mF~s28 ,s2!mBF~s8,s!d@j8#d@s18#,

mB~s18 ,s1!5
Dk1

~s18!

A2)p51
k1 )q51

k121
~sp12sq18 !

,

~3.4!

mF~s28 ,s2!5
Dk2

4 ~ is28!

)p51
k2 )q51

k2 ~ isp22 isq28 !2 ,

mBF~s8,s!5
)p51

k1 ) l 51
k2 )q51

k121
~ isl28 2sp1!~ isl22sq18 !

)p51
k121

) l 51
k2 ~ isl28 2sp18 !2 .

Here, we have introduced

d@j8#5 )
p51

k2

djp8* djp8 , d@s18#5 )
p51

k121

dsp18 . ~3.5!

The domain of integration for the bosonic variables is compact and given by

sp1<sp18 <s(p11)1, p51,...,~k121!. ~3.6!

The fermionic eigenvaluesisp28 are related to Grassmann variablesjp8 andjp8* through

ujp8u
25 isp28 2 isp2 . ~3.7!

The Jacobian or Berezinian consists of three parts. One of them,mB(s18 ,s1), depends only on
bosonic eigenvalues and one,mF(s18 ,s1), only on fermionic eigenvalues, i.e., only on Grassma
variables. The third part mixes commuting and anticommuting integration variables. To und
once more the difference between radial and angular Gelfand–Tzetlin coordinates which
present in superspace, we mention that the radial measure~3.4! is quite different from the angula
one.25
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As in ordinary space, the recursion formula is an exact map of the group integration on
iteration exclusively in the radial space. Having done the iteration on the firstk1 levels, we have
treated all Grassmann variables. Thus, in the integrand, we are left with the matrix Bessel fu
Fk2

(4)(2 i2s2
(k121) ,r 2) for USp(2k2) in ordinary space.1 We notice the occurrence of the facto

2 i2 in the argument ofFk2

(4)(2 i2s2
(k121) ,r 2). Collecting everything, we arrive at

Fk12k2
~s,r !5E )

n51

k121

dm~s(n),s(n21)!exp~ i ~ trgs(n21)2trgs(n)!r n1!

3exp~ is11
(k121)r k11!Fk2

(4)~2 i2s2
(k121) ,r 2!. ~3.8!

We have sets5s(0) and s85s(1). It is worthwhile to notice that the radial Gelfand–Tzetl
coordinates have a highly appreciated and valuable property: The Grassmann variables o
pear as moduli squared in the integrand. Thus, the number of integrals over anticomm
variables is onlyhalf the number of the independent Grassmann variables. Moreover, adv
geously, the exponential is a simple function of the integration variables. Thus, we may con
that the radial Gelfand–Tzetlin coordinates are the natural coordinates of the matrix an
supermatrix Bessel functions, because their intrinsic features are reflected.

B. Derivation

All crucial steps needed for the derivation of the supersymmetric recursion formula~3.1! carry
over from the ordinary recursion formula in Ref. 1. We order the columns of the matru
PUOSp(k1/2k2) in the form u5@u1 u2 ¯uk1

uk111¯uk11k2
#. We also introduce a rectangula

matrix b5@u2¯uk1
uk111¯uk11k2

# such thatu5@u1b#. Analogous to the ordinary case, we ha

b†b51(k121)2k2
,

~3.9!

bb†5 (
p52

k1

upup
†1 (

p5k111

k11k2

upup
†51k12k2

2u1u1
† .

We define the square matrixs̃5b†sb and rewrite the trace in the exponent as

trgu†sur5trg s̃ r̃ 1s11r 11, ~3.10!

with s115u1
†su1 . Similar to the ordinary case, the first term on the right-hand side of Eq.~3.10!

depends on the lastk1211k2 columnsup collected inb and the second term depends only onu1 .
Thus, it is useful to decompose the invariant measure,

dm~u!5dm~b!dm~u1!, ~3.11!

and to write Eq.~2.1! in the form

Fk12k2
~s,r !5E dm~u1!exp~ is11r 11!E dm~b!exp~ i trg s̃ r̃ !. ~3.12!

Since the coordinatesb are locally orthogonal tou1 , the measure dm(b) also depends onu1 .
We now generalize the radial Gelfand–Tzetlin coordinates introduced in Ref. 1 for the

nary spaces to the superspace. Naturally, the projector reads (1k12k2
2u1u1

†) and we have the
defining equation

~1k12k2
2u1u1

†!s~1k12k2
2u1u1

†!ep85sp8ep8 , p51,...,k121,k111,...,k11k2 ~3.13!
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for the (k1211k2) radial Gelfand–Tzetlin coordinatessp8 and the corresponding vectorsep8 as
eigenvalues and eigenvectors of the matrix (1k12k2

2u1u1
†)s(1k12k2

2u1u1
†) which has the gener

alized rankk1211k2 . Due tou1
†ep850, we find

~1k12k2
2u1u1

†!sep85sp8ep8 , p51,...,k121,k111,...,k2 . ~3.14!

As in Ref. 11, the eigenvaluessp8 are calculated from the characteristic function

z~sp8!5detg~~1k12k2
2u1u1

†!s2sp8!52sp8 detg~s2sp8!u1
†

1k12k2

s2sp8
u1 , ~3.15!

which has to be discussed in the limits

z~sp8!→H 0 for p51,...,k121

` for p5k111,...,k11k2 .
~3.16!

Thus, together with the normalizationu1
†u151, these arek11k2 equations for the elements ofu1 .

The two parts of the integral~3.12! have to be expressed in terms of the radial Gelfan
Tzetlin coordinatessp8 . In a calculation fully analogous to the ordinary case, we find

s115trgs2trgs8. ~3.17!

The eigenvaluestp , p51,...,k121,k111,...,k11k2 of s̃ obtain from the characteristic functio

w~ tp!5detg~ s̃2tp!52
1

tp
detg~~1k12k2

2u1u1
†!s2tp!. ~3.18!

Comparison with Eq.~3.15! shows that the characteristic functionsw(tp) and z(sp8) are, apart
from the nonzero factor2tp , identical. This impliestp[sp8 , p51,...,k121,k111,...,k11k2 .
Thus, by introducing the square matrixũ which diagonalizess̃, we may write

s̃5b†sb5ũ†s8ũ. ~3.19!

By construction,ũ must be in the group UOSp(k121/2k2), becauses and s̃ share the same
symmetries.

These intermediate results allow us to transform Eq.~3.12! into

Fk12k2
~s,r !5E dm~s8,s!exp~ i ~ trgs2trgs8!r 11!E dm~b!exp~ i trg ũ†s8ũr̃ !, ~3.20!

where dm(s8,s) is, apart from phase angles, the invariant measure dm(u1), expressed in the radia
Gelfand–Tzetlin coordinatess8. To do the integration overb, we view, for the moment, the vecto
u1 as fixed and observe that the measure dm(b) is the invariant measure of the group UOSp(k1

21/2k2) under the constraint thatb is locally orthogonal tou1 . The matrix ũPUOSp(k1

21/2k2) is constructed fromb under the same constraint. Thus, sinceb and ũ cover the same
manifold, the integral overb in Eq. ~3.20! must yield the supermatrix Bessel functio
F (k121)2k2

(s8, r̃ ) and we arrive at the supersymmetric recursion formula~3.1!. In the last step, we
used a line of arguing slightly different from the derivation in ordinary space. In this way
avoided a discussion related to the ill-defined supergroup volume. The invariance of the m
is the crucial property we need for the proof and this holds both in superspace and in or
space.
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C. Invariant measure

In order to evaluate the invariant measure, we have to solve the system of equations~3.15! for
uvp

(1)u25uup1u2, p51,...,k1 anduap
(1)u25uu(k112p)1u21uu(k112p21)1u2, p51,...,k2 in terms of the

bosonic eigenvaluessp85sp18 , p51,...,k121 and the fermionic eigenvaluessk112p8 5sk112p218

5 isp28 , p51,...,k2 ,

15 (
p51

k1

uvp
(1)u21 (

p51

k2

uap
(1)u2, ~3.21!

05 (
q51

k1 uvq
(1)u2

sq12sp18
1 (

q51

k2 uaq
(1)u2

isq22sp18
, p51,...,k121, ~3.22!

zp5 isp28
)q51

k1 ~sq12 isp28 !

)q51
k2 ~ isq22 isp28 !2 S (

q51

k1 uvq
(1)u2

sq12 isp28
1 (

q51

k2 uaq
(1)u2

isq22 isp28
D , zp→`, p51,...,k2 .

~3.23!

In Appendix A, we sketch the solution of this system for small dimensions. Inspired by t
solutions one can conjecture the general solutions and verify them by plugging them direct
Eqs.~3.21!–~3.23!; one finds

uvp
(1)u25

)q51
k121

~sp12sq18 !)q51
k2 ~sp12 isq2!2

)q51
k2 ~sp12 isq28 !2)q51,qÞp

k1 ~sp12sq1!
, p51,...,k1 ,

~3.24!

uap
(1)u252~ isp28 2 isp2!

)q51
k121

~ isp22sq18 !)q51,qÞp
k2 ~ isp22 isq2!2

)q51,qÞp
k2 ~ isp22 isq28 !2)q51

k1 ~ isp22sq1!
, p51,...,k2 .

These expressions are reminiscent of the ones derived in Ref. 11 for unitary matrices. Ho
importantly, all products in~3.24! involving fermionic eigenvalues are squared. This reflects
degeneracy ofs in the fermion–fermion block. We have introduced new anticommuting varia
jp8 ,jp8* with ujp8u

25 isp28 2 isp2 according to definition~3.7!.
From this point on, the invariant measure can be calculated in the same way as for the a

Gelfand–Tzetlin coordinates, see Ref. 11 for details. The result is summarized in Eq.~3.4!.

IV. THE FUNCTION F22„s ,r …

We use the recursion formula~3.1! to calculate the supermatrix Bessel function f
UOSp(2/2). To avoid the imaginary unit in the exponent, we studyF22(2 is,r ). The recursion
formula reads

F22~2 is,r !5Ĝ22E dm~s8,s!exp~~ trgs2trgs8!r 11!F12~2 is8, r̃ !. ~4.1!

The functionF12(2 is8, r̃ ) is easily found to be

F12~2 is8, r̃ !5Ĝ12~122~r 212 ir 12!~s118 2 is128 !!exp~2r 12s12!. ~4.2!

The measure of the coset UOSp(2/2)/UOSp(1/2) is according to formula~3.4! given by

dm~s8,s!5
~ is122s118 !)n51

2 ~ is128 2sn1!

A2)n51
2 ~s118 2sn1!~ is128 2s118 !2

ds118 dj18* dj18 . ~4.3!
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We do the Grassmann integration and find

F22~2 is,r !5Ĝ22exp~r 11~s111s21!22is12ir 12!

3E
s11

s21
mB~s8,s!)

q51

2

~ is122sq1!S 4)
j 51

2

~ ir 122r j 1!22~ ir 122r 11!

3 (
q51

2
1

is122sq1
12M11~s18 ,s1!D exp~s118 ~r 212r 11!!ds118 , ~4.4!

where we have introduced the operator

Mm j~s18 ,s1!5
1

~ ism22sj 18 ! S 1

2 (
n51

k1 1

ism22sn1
2

1

ism22sj 18
2 (

n51
nÞ j

k1 1

sj 18 2sn18
2

]

]sj 18 D . ~4.5!

For later purposes, we introduced general indicesm and j . Obviously, the Grassmann integratio
yielded eigenvalues in the denominator. This is somewhat surprising because of the foll
observation: we can always parametrize the group elementuPUOSp(2/2) in a noncanonical cose
parametrization in the spirit of an Euler parametrization in ordinary space. Inserting this p
etrization into the defining equation of the supermatrix Bessel function~2.1! one can expand the
trace in all Grassmann variables. The expansion coefficients are polynomials in the comm
integration variables and—more important—in the matrix elements ofs and r . The invariant
measure can be expanded in the Grassmann variables as well. It does not depend onr and s.
Although this procedure gets rapidly out of hand even for small groups, it is clear that the ou
of this expansion will be polynomial in the eigenvalues ofs and r . In other words: eigenvalue
can only appear in the denominator by an integration over commuting variables and neve
Grassmann integration. Therefore, before performing any integral over commuting variables
must exist a form ofF22(2 is,r ), which is polynomial in the eigenvalues ofs and r .

To remove the denominators and to obtain such a polynomial expression, we use the fol
result. Let f (s18) be an analytic, symmetric function ins1i8 , i 51,...,k1 . Furthermore, define the
operator

Lm~s!5(
j 51

k1 1

ism22sj 1

]

]sj 1
. ~4.6!

Then the action of the operator on the integral over the bosonic part of the measure is giv

Lm~s!E
s11

s21
¯E

s(k121)1

sk11
mB~s8,s! f ~s18!d@s18#

52E
s11

s21
¯E

s(k121)1

sk11
mB~s8,s! (

j 51

k121

Mm j~s18 ,s1! f ~s18!d@s18#. ~4.7!

This formula is derived in Appendix B.
We now setf (s18)5exp(2s118 (r 212r 11)) and insert Eq.~4.7! into Eq. ~4.4!, we arrive at

F22~2 is,r !5Ĝ22exp~22is12ir 12!S 4)
j 51

2

~ ir 122r j 1!~ is122sj 1!

22(
q51

2

~ is122sq1!S ir 122r 212r 112
]

]sq1
D DF2

(1)~2 is1 ,r 1!, ~4.8!
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whereF2
(1)(s1 ,r 1) is the matrix Bessel function of the orthogonal group O~2! in ordinary space as

defined in Ref. 1. Although this can already be taken as the result, we underline the sym
betweens and r by using the explicit form~3.21! of Ref. 1 forF2(s1 ,r 1),

F22~2 is,r !5Ĝ22expS trg rs2
z

2D
3S 4)

j 51

2

~ ir 122r j 1!~ is122sj 1!2 (
q51

2

~ is122sq1! (
p51

2

~ir122rp1!2z
d

dzD 2pI 0~z/2!,

~4.9!

where we have introducedz5(s112s21)(r 112r 21) and the modified Bessel functionI 0 as defined
in Ref. 26.

The result~4.7! was crucial in the derivation ofF22(2 is,r ). By means of this formula, the
denominator problem was overcome in one step. Because of its importance, we want to gai
insight into this problem: In Appendix C, we rederiveF22(2 is,r ) in two other ways. It is clear
that the methods of Appendix C cannot be used for higher dimensionsk1 and 2k2 , but it will help
to understand the mechanisms needed when working with radial Gelfand–Tzetlin coordina

V. THE SERIES OF FUNCTIONS Fk 14„s ,r …

We calculate iteratively the four supermatrix Bessel functionsFk14(s,r ) for k151,2,3,4. We
do this in Secs. V A–V D, respectively.

A. First level k 1Ä1

According to the recursion formulas~3.1! and ~3.8!, the starting point is the matrix Besse
function for the unitary symplectic groupF2

(4)(s2 ,r 2), which was already calculated in Ref. 1. U
to a normalization, we have

F2
(4)~ i2s2 ,r 2!5 (

vPS2
S 1

D2
2~ is2!D2

2~v~ ir 2!!
2

1

D2
3~ is2!D2

3~v~ ir 2!! Dexp~2tris2v~ ir 2!!.

~5.1!

Since the subgroup O~1! of UOSp(1/4) is trivial, no commuting integral has to be performed
derive F14(2 is,r ). Inserting the measure~3.4! into the recursion formula and performing th
Grassmann integrations yields straightforwardly

F14~2 is,r !5Ĝ14exp~ trg rs!S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2! D ~2~ is212s11!~ ir 212r 11!21!

3~2~ is222s11!~ ir 222r 11!21!2Ĝ14

exp~ trg~rs!!

D2
3~ ir 2!D2

3~ is2!
1~ ir 12↔ ir 22!. ~5.2!

The exchange term (ir 12↔ ir 22) accounts for the permutation groupS2 in Eq. ~5.1!. Anticipating
that the structure ofF14(2 is,r ) will, remarkably, survive on all levels up toF44(2 is,r ), we state
that F14(2 is,r ) essentially consists of two parts. A comparison with Eqs.~4.2!, and~5.1! shows
that the first part ofF14(2 is,r ) is a product of an exponential with three other terms. The fi
one,

S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2! D , ~5.3!

stems from the integral over the USp~4! subgroup. The other two terms can be identified with
supermatrix Bessel functions
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F12~2 is,r ! with s5diag~s11,is12,is12!, r 5diag~r 11,ir 12,ir 12! ~5.4!

and

F12~2 is,r ! with s5diag~s11,is22,is22!, r 5diag~r 11,ir 22,ir 22!. ~5.5!

The second part can be considered as a correction term, which destroys the product stru
F14(2 is,r ). We may identify the different parts of the product with the integrations over
corresponding subsets of the group. Thus,F2

(4)(2 is2 ,r 2) arises from the integration over th
USp~4! subgroup, the O~1! integration yields unity, and the other two factors come from
integration over the coset UOSp(1/4)/(USp(4)̂ O(1)).

B. Second level k 1Ä2

We now have to do one integration over a commuting variable. After the Grassmann in
tion, we are left with a considerable amount of terms. To arrange them in a convenient wa
introduce the following notation for the product of two operatorsD1(s)D2(s) acting on a function
f (s), we define

@D1
→~s!D2~s!# f ~s!5D1~s!D2~s! f ~s!2~D1~s!D2~s!! f ~s!. ~5.6!

This means, an operator with an arrow only acts on the terms outside the squared bracke
this notation we can write

F24~2 is,r !5Ĝ24exp~ tr~r 2s2!1r 21~s111s21!!E
s11

s21
dmB~s18 ,s1!F)

i 51

2

)
j 51

2

~ isi22sj 1!

3S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2! D
3S 4)

i 51

2

~ ir 122r i1!12(
k51

2
r 212 ir 12

is122sk1
12M

11
~s18 ,s1!D

3S 4)
i 51

2

~ ir 222r i1!12(
k51

2
r 212 ir 22

is222sk1
12M21~s18 ,s1!D

1S 1

D2
2~ ir 2!D3

2~ is2!
1

1

D2
3~ ir 2!D2

4~ is2! D
3S 4

is122s118
M21~s18 ,s1!2

2

is222s118
M11~s18 ,s1! D

1
2

D2
3~ ir 2!D2

4~ is2!
S 2 tr r 12tr ir 21(

i 51

2
1

is222si1
D M11~s18 ,s1!

2
2

D2
3~ ir 2!D2

4~ is2!
S 2 tr r 12tr ir 21(

i 51

2
1

is122si1
D M21~s18 ,s1!

2
4

D2
3~ ir 2!D2

3~ is2! (
k51

2

)
j 51

2
r 212 ir j 2

sk12 isj 2
Gexp~s118 ~r 112r 21!!1~ ir 12↔ ir 22!.

~5.7!

As in Sec. IV, a denominator problem occurs. It becomes obvious in the pro
M 11

→ (s18 ,s1)M21(s18 ,s1). Thus, we expect an identity similar to formula~4.7!. This identity should
map a product of operatorsL1(s)L2(s) acting on the integral onto a product of operato
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M11(s18 ,s1)M21(s18 ,s1) acting under the integral. Neither the outer operators,Lm(s), nor the inner
ones,Mm j(s), commute. Hence, the desired identity must be a nontrivial one. It is given by
following result.

We have the same conditions as in formula~4.7!, furthermore we define

@Lm
→~s!Ll~s!#5 (

n51

k1

(
q51

k1 1

~ ism22sn1!~ isl22sq1!

]2

]sn1]sq1
. ~5.8!

Then the following formula holds

@Lm
→~s!Ll~s!#E

s11

s21
¯E

s(k121)1

sk11
mB~s8,s! d@s18# f ~s18!

5E
s11

s21
¯E

s(k121)1

sk11
mB~s8,s!F (
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k121

(
k51

k121

M
m j

~s18 ,s1!Mlk~s18 ,s1!

2
1

isl22 ism2
(
j 51

k121 S 1

ism22sj 18
Ml j ~s18 ,s1!2

1

isl22sj 18
Mm j~s18 ,s1! D

2
1

2 (
kÞ j

k121
1

~ ism22sk18 !~ ism22sj 18 !~ isl22sk18 !~ isl22sj 18 !
G f ~s18! d@s18#. ~5.9!

The derivation is along the same lines as the one for formula~4.7!, it also involves formula~4.7!.
With the identities~5.9! and~4.7! the denominator problem is again solved in one step. After so
further manipulations we arrive at

F24~2 is,r !52pĜ24expS trg rs2
z

2D S 1

D2
2~ ir 2!D2
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1

1

D2
3~ ir 2!D2

3~ is2! D
3F S 4)

i 51

2

~r i12 ir 12!~si12 is12!2(
i 51
j 51

2

~sj 12 is12!~r i12 ir 12!2z
]→

]z D
3S 4)

i 51

2

~r i12 ir 22!~si12 is22!2(
i 51
j 51

2

~sj 12 is22!~r i12 ir 22!2z
]

]zD G I 0~z/2!

22pĜ24expS trg rs2
z

2D 2

D2
3~ ir 2!D2

3~ is2!

3 (
i 51
k51

2

)
j 51

2

~si12 isj 2!~r k12 ir j 2!I 0~z/2!22pĜ24expS trg rs2
z

2D
3

1

D2
3~ ir 2!D2

3~ is2!
~~ trgs!~ trg r !21!z

]

]z
I 0~z/2!1~ ir 12↔ ir 22!. ~5.10!

As in Sec. IV, we used the composite variablez5(s112s12)(r 112r 12). A comparison with Eqs.
~4.8! and~5.2! shows the similarity in the structures ofF24(2 is,r ) andF14(2 is,r ). The former
also decomposes into two parts. The first part is a product, whose factors can be assigne
integrations over the different submanifolds of the group in the same way as in the ca
F14(2 is,r ). The other one can be interpreted as a correction term due to the noncommutati
the operatorsLm in formula ~5.9!.
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C. Third level k 1Ä3

This structure ofFk14(2 is,r ) emerging in the previous calculations is likely to also
present for arbitraryk1 . However, fork1.2, we have so far not been able to treat the general c
Fortunately, in important physics applications, one matrix argument of the supermatrix B
function has an additional twofold degeneracy in the boson–boson block. In this case
possible to carry on the recursion up toF44(2 is,r ) by extending the techniques developed f
k151 andk252. Thus, from now on, we restrict ourselves to this case.

At first sight, one might hope to achieve some simplification by applying the projec
procedure onto the degenerate matrix, because this results in a considerable simplification
invariant measure. However, it turned out that the integrations are easier if one does the re
with the nondegenerate coordinates. Hence, we use the measure as it stands in Eq.~3.4!. We
considerF34(2 is,r ) in the case that

r 15diag~r 11,r 21,r 21!. ~5.11!

Having performed the Grassmann integral, one can arrange the terms in a way similar to Eq~5.7!.
The complete expression and further details are given in Appendix D. We then can use fo
~5.9! and find after some further algebra
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]si1
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3(
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j 51
j Þ i

3

)
l 51
lÞk

3

~sj 12 is12!~sl12 is22!S ]

]si1
2

]

]sk1
D G

3F3
(1)~2 is1 ,r 1!, 1~ ir 12↔ ir 22!, ~5.12!

whereF3
(1)(s1 ,r 1) is the matrix Bessel function of the orthogonal group O~3!. We notice that the

structure ofF14(2 is,r ) andF24(2 is,r ) reappears inF34(2 is,r ).

D. Fourth level k 1Ä4

In the calculation ofF44(2 is,r ), we again consider the case that the matrixr is degenerate,

r 15diag~r 11,r 11,r 21,r 21!. ~5.13!
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The main problem is to find a convenient representation for the matrix Bessel functionF3
(1)

(2 is18 , r̃ 1) appearing on the third level in Eq.~5.12!. It turns out that the representation derived
Appendix B of Ref. 1 is very well suited to our purpose. Due to the degeneracy inr̃ 1 , the original
threefold integral can be reduced to an integral over just one single variable

F3
(1)~2 is18 , r̃ 1!5

exp~r 21 tr s18!

Aur 112r 21u
E

2`

1`

dt
exp~ i ~r 112r 21!t !

) i 51
3 Asi18 2 i t

. ~5.14!

Here, we again neglected the normalization because we want to fix it afterwards as exp
previously. Similarly,F4

(1)(2 is1 ,r 1) can be written as a double integral,

F4
(1)~2 is1 ,r 1!5

exp~r 21 tr s1!

ur 112r 21u
E

2`

1`

dt1E
2`

1`

dt2ut12t2u
exp~ i ~r 112r 21!~ t11t2!!

) i 51
4 )n51

2 Asi12 i t n

. ~5.15!

Singularities have to be taken care of appropriately. After inserting Eq.~5.10! into the recursion
formula and performing the Grassmann integration, one can arrange the terms in a similar
in the case ofF34(2 is,r ). At this point, we notice that formulas~4.7! and ~5.9! need to be
supplemented by further identities. We state the most important one in the following.

The same conditions as for formula~4.7! apply. Moreover, we define the operator

L̃m~s!5 (
q51

k1 1

ism22sq1

]2

]sq1
2 1

1

2 (
qÞn

1

~ ism22sq1!~sq12sn1! S ]

]sq1
2

]

]sn1
D . ~5.16!

Then we have

L̃m~s!E
s11

s11
¯E

s(k121)1

sk11
mB~s8,s!d@s18# f ~s18!

52E
s11

s21
¯E

s(k121)1
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mB~s8,s!F(

j 51
Mm j

→ ~s18 ,s1!
]

]sj 18
G f ~s18! d@s18#. ~5.17!

Again, the proof is along the same lines as the proof of formula~4.7! and the proof of formula
~5.9! in Ref. 1.

Thus, there is a family of rules to transform operators symmetric insi1 Lm(s),L̃m(s) acting
onto an integral into an operator acting under the integral. We need one more such transfor
rule which tells us how the product@Lm(s) L̃ l(s)# transforms into operators acting under t
integral. This formula and further details are given in Appendix E. Collecting everything
finally arrive at
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3~r 111r 21!1 ir 12ir 222
1

2
trg r

]

]si1
D2

8

D2
3~ ir 2!D2

4~ is2! (i 51
j 51

4

)
lÞ i

4

~sl12 is12!

3)
lÞ j

4

~sl12 is22!S ]

]si1
2

]

]sj 1
D GF4

(1)~2 is1 ,r 1!1~ ir 12↔ ir 22!. ~5.18!

We mention that in the derivation of this result we frequently used properties of the matrix B
functionsF3

(1)(s1 ,r 1) and F4
(1)(s1 ,r 1) that only hold for the case that one matrix has an ad

tional degeneracy.

VI. ASYMPTOTICS AND NORMALIZATION

The asymptotic behavior of the supermatrix Bessel functions calculated in the previou
tions is a useful check which also allows us to fix the normalization constants. We find from
expressions in Eqs.~4.1!, ~4.8! and in Eqs.~5.2!, ~5.10!, ~5.12!, and~5.18!,

lim
s→`
r→`

Fk12k2
~2 is,r !52k1k2Ĝk12k2

) l 51
k1 )m51

k2 ~sl12 ism2!~r l12 ir m2!

Dk2

2 ~ is2!Dk2

2 ~ ir 2!

3det@exp~2si2r j 2!# i , j 51¯k2
lim

s1→`
r 1→`

Fk1

(1)~2 is1 ,r 1!. ~6.1!

In the degenerate case, each degenerate eigenvalue contributes according to its multiplic
asymptotics of the matrix Bessel functions of the orthogonal group is given by27,28

lim
t→0

Fk1

(1)~2 is1 /t,r 1!5Ĉ(k1)t (k121)k1/4
det@exp~sn1r m1 /t !#n,m51,...,k1

uDk1
~s1!Dk1

~r 1!u1/2 , ~6.2!

where the constant can be found in Muirhead’s book,28

Ĉ(k1)5
G~k1/2!

k1!
pk1

2/22k1/4. ~6.3!

Thus we find

lim
t→0

Fk12k2
~2 is/t,r !52k1k2t ((k122k2)21(k122k2))/4Ĉ(k1)Ĝk12k2

3
det@exp~sn1r m1 /t !#n,m51,...,k1

det@exp~2si2r j 2 /t !# i , j 51¯k2

AB̃k1k2
~s!B̃k1k2

~r !
~6.4!

for the asymptotic behavior.
On the other hand, the supermatrix Bessel function relates to the kernel of Dyson’s Bro

motion in superspace.22 Due to the normalization of the Gaussian integral,

S p

2t D
2((k122k2)21(k122k2))/4

2k2
2
2k22k1/2E d@s#expS 2

1

t
~s2r! D51, ~6.5!

the kernel
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Gk1k2
~s,r ,t !5S p

2t D
2((k122k2)21(k122k2))/4

2k2
2
2k22k1/2E

uPUOSp(k1/2k2)
dm~u!expS 2

1

t
~s2r! D

~6.6!

is also normalized. Since it is obviously connected with to the supermatrix Bessel function

Gk1k2
~s,r ,t !5S p

2t D
2((k122k2)21(k122k2))/4

2k2
2
2k22k1/2expS 2

1

t
~ trgs21trg r 2! DFk12k2

~2 is/t,r !

~6.7!

we can fix the normalization by using the asymptotic behavior

lim
t→0

Gk1k2
~s,r ,t !5S p

2
D 2((k122k2)21(k122k2))/42k2

2
2k22k1/2

k1! k2!

3
det@d~si12r j 1!# i , j 51¯k1

det@d~si22r j 2!# i , j 51¯k2

AB̃k1k2
~s!B̃k1k2

~r !
~6.8!

of the kernel. Comparing Eq.~6.4! with Eq. ~6.8!, we find

Ĝk12k2
5

23k2(k22k1)1k1
2/425k2/22k1/2

p ((k122k2)212k1
2
22k2)/4k2!G~k1/2!

. ~6.9!

We mention that this calculation also shows that the diffusion kernels of the one-point fun
and of the two-point function of Dyson’s Brownian motion,22 i.e., the functionG (2k)k(s,r ,t) which
was denoted byGk(s,r ,t) in Ref. 22, indeed satisfy the proper initial condition.

VII. APPLICATIONS

Although we focus in this contribution on the mathematical aspects, we now briefly com
on a particular kind of application. As the reader will realize, our results derived in Sec. VI a
some sense, more general than what we need in those applications on which we focus h
take this as an indication that explicit results for even more complex supermatrix Bessel fun
can also be obtained. The results of the previous sections yield the kernels of the supersym
analog of Dyson’s Brownian Motion for the GOE and the GSE in the casesk51 andk52. We do
not present the physics background here. The reader interested in these applications is a
consult Refs. 19–21 for generalities and Ref. 22, in particular Sec. 4.2, for the issue disc
here. In the present contribution, we use the same notations and conventions. We restrict ou
to the transition toward the GOE and suppress the indexc. The corresponding formulas for th
transition toward the GSE are derived accordingly. We treat the one- and two-point functio
Secs. VII A and VII B, respectively.

Forrester and Nagao29 derived expressions for generalized one-point functions of Dys
Brownian motion model with Poissonian initial conditions. They used an expansion of the G
function in terms of Jack polynomials. Datta and Kunz30 employed a supersymmetric technique
address the two-level correlation function of the Poisson GOE transition. They arrive at a
number of ordinary and Grassmannian integrals which are still to be performed. In our app
we also arrive at a representation of the correlation function in terms of a finite numb
integrals. However, since we managed to integrate over almost all angular integrals in the pr
sections, our result contains considerably less integrals, in particular, no Grassmannian one
a clear structure due to the fact that, apart from two integrals, all others are eigenvalue int
i.e., live in the curved eigenvalue space of Dyson’s Brownian motion. Moreover, since ou
mulas for the kernel are valid on all scales, our result is also exact for finite level number.
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A. Level density

We use the result~4.9!, derived in Sec. IV, for the supermatrix Bessel functionF22

(2 is,r ). Using the replacementr→(x1J) and s→s/t and the relation~6.7!, we obtain the
diffusion kernel for the level density

G1~s,x1J,t !5~2p!21/2
J1

2t
expS 2

1

t
~s112x12J1!22

1

t
~s212x12J1!21

2

t
~ is122x11J1!2D

3S 22
J1

t )
j 51

2

~ is122sj 1!1 (
q51

2

~ is122sq1!D . ~7.1!

We take the derivative with respect to the source variableJ1 and arrive at the level density

R̂1~x1 ,t !5
1

~2p!3/2t E expS 2
1

t
~s112x1!22

1

t
~s212x1!21

2

t
~ is122x1!2D

3~~ is122s11!1~ is122s21!!B̃21~s! Z1
(0)~s! d@s#, ~7.2!

where the Berezinian is given by Eq.~2.10! for k152 and k251. This result is exact for an
arbitrary initial condition and for arbitraryN. In the case of a diagonal matrixH (0) as the initial
condition, we have for arbitraryk,

Zk
(0)~s!5E d@H (0)#P~H (0)!)

n51

N
) j 51

k ~ isj 22Hnn
(0)!

) j 51
2k ~sj 11 i«2Hnn

(0)!1/2 ~7.3!

and analogously for the GSE. This has to be used in Eq.~7.2! for k51.
In the limit t→` the stationary distribution of classical Gaussian random matrix theor

recovered. This can be seen by rewriting Eq.~7.1! for the rescaled energyx̃15x1 /t and the
rescaled source variableJ̃15J1 /t, see also Ref. 22. In this limit the initial condition yields uni
and we arrive at an integral representation of the one-point correlation function of the pure

R1~x1!5
1

~2p!3/2IE exp~2~s112x1!22~s212x1!21~ is122x1!2!

3
us112s21u

~ is122s11!~ is122s21!
S 1

is122s11
1

1

is122s21
D ~ is12!

N

~s111 i«!N/2~s211 i«!N/2 d@s#

~7.4!

where the symbolI denotes the imaginary part. Equation.~7.4! is equivalent to the classica
expressions for the one-point functions as in Mehta’s book.19

Finally, we state an integral expression for the one-point function for the case of Poiss
initial conditions, see Eq.~5.1! of Ref. 22. We have

Zk
(0)~s!5S E dzp~z!

) j 51
k ~ isj 22z!

) j 51
2k ~sj 11 i«2z!1/2D N

. ~7.5!

Inserting this initial condition fork51 into Eq. ~7.2! yields the level density of a transitio
ensemble between Poisson regularity and GOE in terms of a fourfold integral. A further an
will be published elsewhere.
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B. Two-point function

The result~5.18!, derived in Sec. V, for the supermatrix Bessel functionF44(2 is,r ) gives,
with the replacementr→(x1J) ands→s/t and according to Eq.~6.7!, the diffusion kernel for the
two-point function

Gk~s,x1J,t !5expS 2
1

t
~ trgs21trg ~x1J!2! DF44~22is/t,x1J!. ~7.6!

The derivative with respect to the source terms leaves us with the two-point correlation fun

R̂2~x1 ,x2 ,t !5
26Ĝ44

t2p2 IE SAB̃42~s!AuD4~s1!uZ2
(0)~s!expS 2

1

t
~ trs1

212x1
212x2

222~ is122x1!2

22~ is222x2!2! D(
k, j

F 1

~ is122sk1!~ is222sj 1! S 2x1

t
2

]

]sj 1
D S 2x2

t
2

]

]sk1
D

1
t

2~x12x2!~ is122 is22!~ is122sk1!~ is222sj 1! S 2x1

t
2

]

]sj 1
D S 2x2

t
2

]

]sk1
D

32
1

4

t

~x12x2!~ is122sk1!~ is222sj 1!~ is122 is22!
2 S ]

]sj 1
2

]

]sk1
D G

3F4
(1)~22is1 /t,x! D d@s#1~x1↔x2!. ~7.7!

The last line indicates that the integral withx1 and x2 interchanged has to be added. Since
terms antisymmetric inx1 andx2 are antisymmetric insi2 ands22 as well this yields just a facto
2 in Eq. ~7.7!. The symbolI denotes a certain linear combination ofR̂2(x1 ,x2 ,t) as explained in
Ref. 22. The normalization constant obtains from Eq.~6.9! and is given byĜ4452(2p)24. This
result is an exact expression for the two-point function of Dyson’s Brownian motion for e
initial condition. Plugging in the initial condition of Eq.~7.5! for k52, we find an integral
representation of the two-point function for the transition toward the GOE. We notice
F4

(1)(22is1 /t,x) is, according to Eq.~5.15!, given as a double integral.
In the previous discussion, we referred to properties of the kernels which can be seen fr

explicit formulas. In Ref. 22, only the explicit form of the kernel forb52 was available. How-
ever, some of the general properties of the kernels forb51 andb54 could be anticipated in Ref
22 from scaling relations of the supersymmetric version of Dyson’s Brownian motion. The ex
formulas derived in the present contribution allow one to derive the integral representations~7.2!
and ~7.7! for the one-point and for the two-point function. Moreover, we emphasize that
kernels for the supersymmetric version of Dyson’s Brownian motion are the same on all e
scales.22 Thus, the integral representation derived here for the two-level correlation functio
apart from the initial condition, the same on the so-called unfolded scale which is releva
physics applications. The initial condition on the unfolded scale is found along the lines giv
Ref. 22.

VIII. SUMMARY AND CONCLUSION

We extended the recursion formula of Ref. 1 to superspace. Due to the group structu
superspace, we could restrict ourselves to the unitary orthosymplectic supergroup. As
ordinary case, the recursion formula is an exact map of a group integration onto an iteration
radial space. We used it to calculate explicit expression for certain supermatrix Bessel fun
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In ordinary space, we saw that the matrix Bessel functions are only special cases of the
functions.1 We have not yet studied this further, but in our opinion a similar generalization is li
to also exist in superspace.

It is a major advantage of the radial Gelfand–Tzetlin coordinates in superspace th
Grassmann variables appear only as moduli squared. Thus, the number of Grassmann inte
a priori reduced by half. As we showed in detail, this is a highly welcome feature for exp
calculations. As a remarkable consequence of this recursive way to proceed, the structure
supermatrix Bessel functions is only very little influenced by the matrix dimension. We also
that the basic structures of the supermatrix Bessel function for smaller matrix dimensions s
during the iteration to higher ones. The matrix Bessel functions in ordinary space show s
features. There, the structure of the matrix Bessel functions is much more influenced by the
parameterb than by the matrix dimension. However, as in ordinary space, it remains a chal
to find the structure of these functions for arbitrary matrix dimension.

An interesting feature occurred which sheds light on the general properties of the recu
Total derivatives showed up in the integral over the commuting variables after having don
Grassmann integration. Since similar terms already occurred in ordinary space, they are li
be an intrinsic property of the recursion formula. Here, we succeeded in constructing a se
operator identities to remove them. This was a crucial step for the application of the rec
formula. A deeper understanding of these identities is highly desired.

It should be emphasized that the total derivatives are no boundary terms in the se
Rothstein. We showed in detail that such terms cannot occur because we always wor
compact space. Thus, according to a theorem due to Berezin,2 the transformation of the invarian
measure to our radial Gelfand–Tzetlin coordinates cannot yield Rothstein boundary terms.
ever, if further integration over the eigenvalues is required, such terms can emerge.

As an application, we worked out some kernels for the supersymmetric analog of Dy
Brownian motion.

The radial Gelfand–Tzetlin coordinates are the natural coordinate system for the m
Bessel functions in superspace. This parametrization represents the appropriate tool for th
sive integration of Grassmann variables. Once the particular features of this parametrizat
better understood, they may allow for the evaluation of higher dimensional group integrals
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APPENDIX A: RADIAL GELFAND–TZETLIN COORDINATES FOR THE UNITARY
ORTHOSYMPLECTIC GROUP UOSp „k 1Õ2k 2…

We wish to express the moduli squared of the elements of an orthogonal (k1/2k2) dimensional
unit supervector in radial Gelfand–Tzetlin coordinates. To illustrate the mechanism, we star
the smallest nontrivial case, the group UOSp(2/4). We notice that there are at first sight min
crucial, differences to the calculation in Ref. 11 where we also started with the smallest non
case. The set of solutions of the Gelfand–Tzetlin equations~3.23! involves one bosonic and two
fermionic eigenvalues. The eigenvalue equations read

15 (
p51

2

~ uvp
(1)u21uap

(1)u2!, ~A1!

05 (
q51

2 S uvq
(1)u2

sq12s1
(1) 1

uaq
(1)u2

isq22s1
(1)D , ~A2!
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z15 is2
(1))

q51

2
~sq12 is2

(1)!

~ isq22 is2
(1)!2 (

q51

2 S uvq
(1)u2

sq12 is2
(1) 1

uaq
(1)u2

isq22 is2
(1)D , ~A3!

where the last equation has to be solved in the limitz1→`. The bosonic equation~A2! has a
unique solutions1

(1)5s118 . Takings118 as new parameter, Eqs.~A1! and ~A2! can be solved,

uvp
(1)u25

sp12s118

sp12sq1
S 12 (

k51

2
isk22sq1

isk22s118
uak

(1)u2D , p51,2. ~A4!

We insert these relations in Eq.~A3! and obtain

z15 is2
(1)~s118 2 is2

(1)!)
q51

2
~sq12 is2

(1)!

~ isq22 is2
(1)!2 S 11 (

k51

2
ck

isk22 is2
(1) uak

(1)u2D ~A5!

with z1→`. Here, we have defined the commuting variables

ck5
)q51

2 ~ isk22sq1!

isk22s118
, k51,2. ~A6!

It remains to determine the set of solutions of the fermionic eigenvalue equation~A5!. To this end,
both sides are inverted

05 )
q51

2

~ isq22 is2
(1)!2S 12 (

k51

2
ck

isk22 is2
(1) uak

(1)u212)
k51

2
ck

isk22 is2
(1) uak

(1)u2D . ~A7!

We can now take the square root on both sides

05 )
q51

2

~ isq22 is2
(1)!S 12

1

2 (
k51

2
ck

isk22 is2
(1) uak

(1)u21
3

4 )
k51

2
ck

isk22 is2
(1) uak

(1)u2D . ~A8!

The most general form of the fermionic eigenvalue is

is2
(1)5a01 (

k51

2

akuak
(1)u21a12)

k51

2

uak
(1)u2. ~A9!

After inserting this ansatz in Eq.~A8!, we obtain two sets of solutions for the coefficientsai0 ,ai12

andai j with i 51,2,j 51,2

is128 5 is121S c11
c1c2

is122 is22
ua2

(1)u2D ua1
(1)u2

2
,

~A10!

is228 5 is221S c21
c1c2

is222 is12
ua1

(1)u2D ua2
(1)u2

2
.

Remarkably, we havea125a2150. This allows us to write the nilpotent part ofisk28 as the
modulus squared of a new anticommuting coordinate,

isk28 5 isk21ujk8u
2. ~A11!

We solve Eq.~A10! for uap
(1)u2, insert the results in Eq.~A4! and arrive at
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uvp
(1)u25

~sp12s118 !)n51
2 ~sp12 isn2!2

~sp12sq1!)n51
2 ~sp12 isn28 !2,

~A12!

uap
(1)u252~ isp28 2 isp2!

~ isp22s118 !~ isp22 isq2!2

~ isp22 isq28 !2)n51
2 ~ isp22sn1!

, p,q51,2 , qÞp.

The structure of Eq.~A12! indicates the form of the solutions for groups of higher order as t
were stated in Eq.~3.24!. They are checked by inserting them directly into the Gelfand–Tze
equations~3.23!. The algebra needed is, although tedious, straightforward and similar to th
here.

APPENDIX B: DERIVATION OF FORMULA „4.7…

The technique we use is an extension of the one developed in Appendix D of Ref. 1. Fir
rewrite the integral in terms ofQ functions. The left hand side reads

Lm~s!E mB~s8,s! f ~s18!d@s18#)
k< l

Q~sk12sl18 !)
l ,n

Q~sl18 2sn1!. ~B1!

The integration domain is now the real axis for all variables. The action ofLm(s) on the integral
yields:

E SmB~s8,s! (
i 51

k1

(
j 51

k121
1

2

21

~ is122si1!~si12sj 18 !
f ~s18!)

k< l
Q~sk12sl18 !)

l ,n
Q~sl18 2sn1!D d@s18#

1E mB~s8,s! (
i 51

k1 1

ism22si1

]

]si1
)
k< l

Q~sk12sl18 !)
l ,n

Q~sl18 2sn1!d@s18#. ~B2!

We decompose the first term in partial fractions and find

E SmB~s8,s! (
i 51

k1

(
j 51

k121 1

2

21

~ is122si1!~ is122sj 18 !
f ~s18!2Dk1

~s18! f ~s18!

3 (
j 51

k121 1

is122sj 18

]

]sj 18

1

A2) i 51
k1 ~si12sj 18 !

)
k< l

Q~sk12sl18 !)
l ,n

Q~sl18 2sn1!d@s18#

1E mB~s8,s! f ~s8!(
i 51

k1 1

ism22si1

]

]si1
)
k< l

Q~sk12sl18 !)
l ,n

Q~sl18 2sn1!d@s18#. ~B3!

An integration by parts yields

E mB~s8,s! (
j 51

k121

~2Mm j~s18 ,s1!!)
k< l

Q~sk12sl18 !)
l ,n

Q~sl18 2sn1!d@s18#1E mB~s8,s! f ~s8!

3S (
i 51

k1 1

ism22si1

]

]si1
1 (

j 51

k121
1

ism22sj 18

]

]sj 18
D)

k< l
Q~sk12sl18 !)

l ,n
Q~sl18 2sn1!d@s18#.

~B4!

The derivatives of theQ functions yieldd distributions. Upon integration of thed distribution the
two terms in the last integral cancel each other. Hence the last term vanishes identically
completes the proof.
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APPENDIX C: ALTERNATIVE DERIVATIONS OF F22„s ,r …

We present two different alternative derivations. We do this in some detail, bec
the calculations give helpful informations on the roˆle played by the radial Gelfand–Tzetli
coordinates.

First, we use an angular parametrization of the coset UOSp(2/2)/UOSp(1/2) by writin
first column ofuPUOSp(2/2) as

u153
A12uau2 cosq

A12uau2 sinq

1

&
a

1

&
a*

4 . ~C1!

This is a canonical way to parametrize the supersphereS1u2 that is isomorphic to the cose
UOSp(2/2)/UOSp(1/2), see Ref. 31. It coincides with a special choice of theangular Gelfand–
Tzetlin coordinates. The invariant measure is in these coordinates simply dm(u1)5da* dadq.
Thus, one directly obtains the the volumeV(S1u2)50, see Ref. 31. In the parametrization of th
measure byradial Gelfand–Tzetlin coordinates~4.3!, one has to perform the Grassmann integ
tion and to apply formula~4.7! to achieve this result.

Although we use a different coordinate system, we still take advantage of the recu
formula ~3.1!. To use it in the parametrization~C1!, one has to solve the Gelfand–Tzetlin equ
tions ~3.21!–~3.23! for the eigenvalues. The unique solution of the bosonic equation~3.22! is

s118 5a01
) i 51

2 ~si12a0!

is122a0
uau2, a05

s111s21

2
2

s112s12

2
cos 2q. ~C2!

The fermionic equation yields

is128 5 is121
) i 51

2 ~si12 is12!

is122a0
uau2. ~C3!

After inserting Eqs.~C2! and ~C3! and the measure dm(u1) into the recursion formula~3.1!, the
Grassmann integration can be performed. Remarkably, we arrive at the denominator–free
sion

F22~s,r !5Ĝ22E
0

2p

dqexpS trg rs2
z

2
1

z

2
cos 2q D

3F S )
i 51

2

~r i12 ir 12!~si12 is12!1
1

2 (
i 51
j 51

2

~sj 12 is12!~r i12 ir 12!D
2

1

2 S ir 122
1

2
~r 111r 21! D ~s112s21!cos 2q2

z

8
~ ir 122r 21!~s112s21!sin2 2qG .

~C4!

To make contact with Eq.~4.9! one has to realize that in Eq.~C4! an additional total derivative
appears in the integrand. This becomes obvious if one adds and subtractsz/4 cos 2q in the square
bracket of Eq.~C4!,
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F22~s,r !5Ĝ22E
0

2p

dq expS trg rs2
z

2
1

z

2
cos 2q D

3S )
i 51

2

~r i12 ir 12!~si12 is12!1
1

2 (
i 51
j 51

2

~sj 12 is12!~r i12 ir 12!2
z

4
cos 2q D

1
ir 122r 21

r 212r 11
E

0

2p

dq
]2

]~2q!2 expS trg rs2
z

2
~12cos 2q! D . ~C5!

While the first integral reproduces Eq.~4.9!, the second one vanishes identically. In general
performing Grassmann integrations, one has to take care of boundary contributions.2,24 These
contributions can appear whenever even coordinates are shifted by nilpotents and the funct
integrates does not have compact support.2 However, in our case the basis space is always gi
by an n dimensional sphere, i.e., by a compact manifoldwithout boundary. Thus in a properly
chosen coordinate system, no boundary terms should appear. With regard to Eq.~C5! this means:
the fact that the last term vanishes is a direct consequence of the compactness of the circle
the analyticity of the function, that we integrate. However, in the radial Gelfand–Tzetlin co
nates, only the moduli squared of the vectoru1 are determined. Therefore, not the whole sphe
but only a (2n11)th segment of it is covered by Eq.~3.24!. In our case, not the circle but only
quarter of it is parametrized. This is allowed since the supermatrix Bessel functions depen
on the moduli squareduui1u2. Nevertheless, one has to ensure that the introduction of t
artificial boundaries does not alter the result. To this end we use the following integration for

Let s11,s118 ,s21 be real and letj8,j8* be anticommuting. Furthermore, define

f ~s118 ,j,j* !5 f 0~s118 !1 f 1~s118 !uju2, ~C6!

with two analytic functionsf 0(s118 ), f 1(s118 ). Then the integral

I 5E
s11

s21
ds118 dj* dj f ~s118 ,j,j* ! ~C7!

transforms under a shift ofs118 by nilpotents

s118 5y1g~y!uju2 ~C8!

in the following way:

I 5E
s11

s21
dy dj* dj

]s118

]y
f ~y~s118 !,j,j* !2@ f 0~s21!g~s21!2 f 0~s11!g~s11!#. ~C9!

The proof is by direct calculation. The second term in Eq.~C9! is often referred to as boundar
term. It can be viewed as the integral of a total derivative, i.e., an exact one-form, that has
added to the integration measure for functions with noncompact support.24 For functions of an
arbitrary number of commuting and anticommuting arguments, a similar integral formula
with additional boundary terms.2 In going from the canonical coordinates (q,a,a* ) to the radial
ones (s118 ,j18 ,j18* ), in principle boundary terms can arise, since the bosonic Gelfand–Tz
eigenvalue~C2! contains nilpotents. However, the crucial quantity isg(y) in formula ~C9! which,
in our case, is given by

g~s118 !5
) i 51

2 ~si12s118 !

is122s118
. ~C10!
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Thus,g(s118 ) causes the boundary term to vanish ats11 ands21. It is the product structure of the
left-hand side of Eq.~3.24! which always guarantees the vanishing of the boundary terms, w
one goes from the Cartesian set of coordinates to the radial Gelfand–Tzetlin coordinates.

Therefore, one may think of the denominators, arising in Eqs.~4.4! and~4.5!, as belonging to
total derivatives of functions, which vanish at the boundaries. Keeping this in mind we deriv
~4.9! in yet another way. We expand the product

)
q51

k1

~ ism22sq1!5 (
n50

k1 1

n!
~ ism22sj 18 !n

]n

]~sj 18 !n )
q51

k1

~sj 18 2sq1!, ~C11!

and insert it into the integral

E
s11

s21
¯E

s(k121)1

sk11
mB~s18 ,s1!Km j~s18 ,s1! f ~s18!d@s18#

5E
s11

s21
¯E

s(k121)1

sk11
mB~s18 ,s1!)

n51

k1

~ ism22sn1!Mm j~s18 ,s1! f ~s18! d@s18#. ~C12!

We can remove the term proportional to (ism22sj 18 )22 in the integrand by an integration by part
Through the expansion~C11!, the vanishing of the boundary terms is assured. We arrive at

Km j~s18 ,s1!52 (
n52

k1 1

n!
~ ism22sj 18 !n22

]n

]~sj 18 !n )
q51

k1

~sj 18 2sq1!

1
)q51

k1 ~ ism22sq1!2)q51
k1 ~sj 18 2sq1!

ism22sj 18

3S 1

2 (
q51

k1 1

ism22sq1
2

1

2 (
q51

k1 1

sj 18 2sq1
2 (

q51
qÞ j

k1 1

sj 18 2sq18
2

]

]sj 18 D . ~C13!

We notice that in the new operatorKm j(s18 ,s1) all denominators of the type (ism22sj 18 )21 have
disappeared. Fork152, we calculate

K1152~ is121s118 2s112s21!
]

]sq18
, ~C14!

which can be inserted into Eq.~4.4! by using the definition~C12!. Finally, the result~4.9! is
reproduced by the substitution

s118 5
s111s21

2
2

s112s12

2
cos 2q, ~C15!

see Eq.~C2!. In other words, we have seen that the result of this procedure is summariz
formula ~4.7!.

Finally, some remarks are in order: First, from this discussion, one might conclude th
radial Gelfand–Tzetlin coordinates are less adapted to the problem than the canonical par
zation ~C1!, because, in the latter, no denominators appear. We stress that this is not true
tainly, the denominators appear due to the shift of the bosonic variable by nilpotents in Eq.~C2!.
However, the difficulty in deriving Eq.~4.9! is the identification of the different parts of th
integrand after the Grassmann integration. Some of them belong to total derivatives an
problem exists in both parametrizations. Second, we emphasize that the appearance of t
rivatives in the integrand is not a peculiarity of supersymmetry. Already in Ref. 1 where the m
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Bessel functions in ordinary space were treated we had to solve a similar problem. The appe
of these total derivatives is an intrinsic property of the recursion formula. A geometrical inte
tation of this phenomenon is highly desired.

APPENDIX D: DETAILS FOR THE DERIVATION OF F34„À is ,r …

We always consider the case that one matrix has an additional degeneracy according
~5.11! and ~5.13!. We introduce the notation

Si j 5~si12 isj 2!, Ri j 5~r i12 ir j 2!. ~D1!

Due to the degeneracy,F24(2 is, r̃ ) simplifies enormously as compared to the general re
~5.10!. We insert it into the recursion formula~3.1! and do the trivial integral over the O~2!
subgroup. After performing the Grassmann integrals we arrive at an expression similar
~5.7!,

F34~2 is,r !54Ĝ34exp~ tr r 2s21r 11~s111s21!!E dmB~s18 ,s1!)
i 51

2

R1i )
j 51

3

Sji

3F S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2! D S 4)
i 51

2

Ri122(
k51

3

R21Sk1
21

12(
j 51

2

M
1 j

~s18 ,s1!D S 4)
i 51

2

Ri222(
k51

3

R22Sk2
2112(

j 51

2

M2 j~s18 ,s1!D
1S 1

D2
2~ ir 2!D2

3~ is2!
1

1

D2
3~ ir 2!D2

4~ is2! D
3(

j 51

2 S 4

is122sj 18
M2 j~s18 ,s1!2

4

is222sj 18
M1 j~s18 ,s1! D

2S 1

D2
2~ ir 2!D2

3~ is2!
1

1

D2
3~ ir 2!D2

3~ is2! D )k51
j 51

2
2

isk22sj 18
1

2

D2
3~ ir 2!D2

4~ is2!

3S trg r 1r 112(
i 51

2

Si2
21D (

j 51

2

M1 j~s18 ,s1!2
2

D2
3~ ir 2!D2

4~ is2!

3S trg r 1r 112(
i 51

2

Si1
21D (

j 51

2

M2 j~s18 ,s1!

2
4

D2
3~ ir 2!D2

3~ is2! (
k51

3

)
j 51

2

R2 jSk j
21Gexp~~s218 1s118 !~r 212r 11!!1~ ir 12↔ ir 22!.

~D2!

Formulas~5.9! and~4.7! are needed to remove the denominators, in a way similar as forF24(s,r ).
A single sum( j 51

2 M1 j (s18 ,s1) transforms according to formula~4.7!. Moreover, we observe tha
parts of Eq.~D2! together with the product( j 51

2 M
1 j

(s18 ,s1)(k51
2 M2k(s18 ,s1) yield exactly the

integrand of formula~5.9!. Thus, it can be transformed accordingly. After rearranging terms,
arrive at the result~5.12!.
                                                                                                                



egen-

ng

uared

ntegral

2765J. Math. Phys., Vol. 43, No. 5, May 2002 Recursive construction. II

                    
APPENDIX E: DETAILS FOR THE DERIVATION OF F44„À is ,r …

For the recursion, we needF34(s,r ) with degenerater̃ 5diag(r11,r 21,r 21) according to Eq.
~5.11!. Using the integral representation~5.14! for F3

(1)(2 is18 , r̃ 1) we find the helpful identity

]

]si18

]

]sj 18
exp~2r 21 tr s18!F3

(1)~2 is18 , r̃ 1!5
1

2

1

si18 2sj 18
S ]

]si18
2

]

]sj 18
Dexp~2r 21trs18!F3

(1)~2 is18 , r̃ 1!.

~E1!

We stress that this relation, which is crucial in the derivation, only holds, because of the d
eracy in the matrixr̃ 1 . Employing Eq.~5.14! and another identity,

(
i 51

3
]

]si18
exp~2r 21tr s18!F3

(1)~2 is18 , r̃ 1!5~r 112r 21!exp~2r 21 tr s18!F3
(1)~2 is18 , r̃ 1!. ~E2!

We insertF34(s8, r̃ ) into the recursion formula~3.1!. We then can arrange the terms emergi
from the Grassmann integration in a way similar to the former cases. We obtain

F44~2 is,r !54Ĝ44exp~ tr r 2s21r 11 tr s1!E dmB~s18 ,s1!)
i 51

2

R2i)
j 51

4

Sji

3F S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2! D
3S 8R21R11

2 24R11R21(
k51

4

Sk1
2114(

j 51

3 S R212
]→

]sj 18
D M1 j

→~s18 ,s1!

3S 8R22R12
2 24R12R22(

k51

4

Sk2
2114(

j 51

3 S R222
]→

]sj 18
D M2 j~s18 ,s1!D

1
16

D2
3~ ir 2!D2

4~ is2! (j 51

3

M1 j
→~s18 ,s1!S 1

2
R11R12S trg r 2(

i 51

4

Si1
21D

1S r 212r 112
]

]sj 18
D S R22R121R11R121R11R211

1

2
~R121R22!(

i 51

4

Si1
21D D

2
16

D2
3~ ir 2!D2

4~ is2! (j 51

3

M2 j
→~s18 ,s1!S 1

2
R11R12S trg r 2(

i 51

4

Si2
21D

1S r 212r 112
]

]sj 18
D S R11R211R11R121R12R221

1

2
~R121R22!(

i 51

4

Si2
21D D

2
16

D2
3~ ir 2!D2

3~ is2! (
k51

4

)
i , j

2

Ri j Sk j
21exp~2r 11 tr s18!F3

(1)~2 is18 , r̃ 1!1C~s,r !

1~ ir 12↔ ir 22!. ~E3!

Again, all operators with an arrow are understood to act only onto the term outside the sq
bracket, i.e., onto exp(2r11 tr s18)F3

(1)(2 is18 , r̃ 1). In the functionC(s,r ), we summarized the
terms that are expected to arise due to noncommutativity of some operators acting on the i
and some operators acting under the integral. The last two lines in formula~5.9! are examples of
such terms
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C~s,r !54Ĝ44exp~ tr r 2s21r 11trs1!E dmB~s18 ,s1!)
i 51

2

R2i)
j 51

4

Sji F S 1

D2
2~ ir 2!D2

3~ is2!

1
1

D2
3~ ir 2!D2

4~ is2!
D (

j 51

3 S R11R121~R111R12!~r 212r 11!2~R111R12!
]→

]sj 18
D

3S 16

is122sj 18
M2 j~s18 ,s1!2

16

is222sj 18
M1 j~s18 ,s1!D

2S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2!
D

3)
k51

2

)
j 51

3 S R11R121~R111R12!~r 212r 11!2~R111R12!
]→

]sj 18
D

3
8

isk22sj 18
2S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2!
D

3(
j ,k

3 S ~r 212r 11!2
]→

]sj 18
D S ~r 212r 11!2

]→

]sk18
D M1 j

→M2k2
8

D2
2~ ir 2!D2

3~ is2!

3(
j 51

3 S ~r 212r 11!2
]→

]sj 18
D S (

k51

4

Sk2
21M j 1

→2 (
k51

4

Sk1
21M j 2D

1
8

D2
2~ ir 2!D2

3~ is2!
S (

iÞ j
M j 1M j 2

→S ]→

]si18
2

]→

]sj 18
D D Gexp~2r 11trs18!F3

(1)~2 is18 , r̃ 1!.

~E4!

In order to evaluate Eqs.~E3! and ~E4! we need some more properties of the matrix Bes
function F4

(1)(2 is1 ,r 1). We investigate the action ofL̃k on F4
(1)(2 is1 ,r 1) using the integral

representation~5.15!.
After a straightforward calculation involving an integration by parts we find

L̃k exp~2r 11tr s1!F4
(1)~2 is1 ,r 1!

5(
i 51

4
1

isk22si1
S ~r 212r 11!

21~r 212r 11!
]

]si1
Dexp~2r 11 tr s1!F4

(1)~2 is1 ,r 1!. ~E5!

Now Eqs.~E3! and ~E4! can be enormously simplified by the observation that

~~r 212r 11!Lk2L̃k!exp~2r 11trs1!F4
(1)~2 is1 ,r 1!50, ~E6!

which follows directly from Eq.~E5!. We find for Eq.~E3!
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F44~2 is,r !54Ĝ44exp~ tr r 2s21r 11trs1!E dmB~s18 ,s1!)
i 51

2

R1i )
k51

4

Ski

3F S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2! D S R12R11S 8R12R2224R22(
k51

4

Sk2
21D

3S 8R11R2124R21(
k51

4

Sk1
2114(

j 51

3

M1 j
→~s18 ,s1!D

1R12R11S 8R11R2124R21(
k51

4

Sk1
21D

3S 8R22R1224R22(
k51

4

Sk2
2114(

j 51

3

M2 j~s18 ,s1!D
1(

j ,i
R11S r 212r 112

]→

]sj 18
D M1i

→~s18 ,s1!M2 j~s18 ,s1!

1(
j ,i

R12S r 212r 112
]→

]si18
D M1i

→~s18 ,s1!M2 j~s18 ,s1!

1(
j ,i

R21R22M1 j
→~s18 ,s1!M2i~s18 ,s1!1

8

D2
3~ ir 2!D2

4~ is2!
R11R12

3S trg r 2(
i 51

4

Si1
21D (

j 51

3

~M1 j~s18 ,s1!2M2 j~s18 ,s1!!

2
16

D2
3~ ir 2!D2

3~ is2! (
k51

4

)
i , j

2

Ri j Sk j
21G

3exp~2r 11tr s18!F3
(1)~2 is18 , r̃ 1!1C~s,r !1~ ir 12↔ ir 22!. ~E7!

The terms contained in Eq.~E4! simplify, too. We arrive at

C~s,r !54Ĝ44exp~ tr r 2s21r 11 tr s1!E dmB~s18 ,s1!)
i 51

2

R1i)
j 51

4

Sji

3F S 1

D2
2~ ir 2!D2

3~ is2!
1

1

D2
3~ ir 2!D2

4~ is2! D
3(

j 51

3 S R11R121~R111R12!~r 212r 11!2~R111R12!
]→

]sj 18
D

3S 16

is122sj 18
M2 j~s18 ,s1!2

16

is222sj 18
M1 j~s18 ,s1! D

2S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2! D
3)

k51
j 51

2 S R11R121~R111R12!~r 212r 11!2~R111R12!
]→

]sj 18
D

3
8

isk22sj 18
1

8

D2
2~ ir 2!D2

3~ is2! S (iÞ j
M j 1

→~s18 ,s1!M j 2~s18 ,s1!S ]→

]si18
2

]→

]sj 18
D D G

3exp~2r 11tr s18!F3
(1)~2 is18 , r̃ 1!. ~E8!
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To further evaluate the expressions, we can now invoke a symmetry argument between the
valuesr 11 and r 21, respectively. Since the productR11R12 appears as a prefactor in front of th
integral~E7!, R21R22 must also appear as a prefactor in the final result. Thus, all terms in Eqs.~E7!
and~E8! which do not containR21R22 as a factor must yield zero. The remaining terms which
proportional toR21R22 can again be treated using formulas~4.7! and~5.9!. However, we want to
show explicitly that this line of arguing is correct and that the other terms indeed vanish. T
end, we need an additional identity to treat the operator product

(
j 51

2
]→

]sj 18
M

1 j
~s18 ,s1!(

k51

2

M2k~s18 ,s1!. ~E9!

The required identity is given by the following formula: The same conditions as for formula~4.7!
apply, furthermore we define

Lm
→~s!L̃n~s!5(

i , j

1

~ ism22si1!~ isn22sj 1!

]3

]si1]sj 1
2 1

1

2 (
i , j

1

~ ism22si1!~ isn22sj 1!

3
]

]si1
(
kÞ j

k1 1

sj 12sk1
S ]

]sj 1
2

]

]sk1
D . ~E10!

Then we have

Lm
→~s!L̃n~s!E

s11

s21
¯E

s(k121)1

sk11
mB~s8,s!d@s18# f ~s18!

5E
s11

s21
¯E

s(k121)1

sk11 F (
j 51

k121

(
i 51

k121

Mmi
→ ~s18 ,s1!

]→

]sj 18
Mn j~s18 ,s1! f ~s18!2

1

isn22 ism2

3 (
i 51

k121 S 1

ism22si18

]→

]si18
Mni~s18 ,s1!2

1

isn22si18

]→

]si18
Mmi~s18 ,s1! D

2
1

2 (
kÞ l

1

~ ism22sk18 !~ isn22sk18 !~sk18 2sl18 !2

]→

]sk1

1
1

2 (
kÞ l

1

~ ism22sk18 !~ isn22sl18 !~sk18 2sl18 !2

]→

]sk1
G f ~s18!mB~s8,s!d@s18#. ~E11!

The proof is similar to the one of formula~4.7!. We notice that the arrow in Eq.~E10! is used
slightly differently than previously. The operatorLm

→(s) acts also on a part ofL̃n(s). This is not
consistent with the definition in Eq.~5.6!. However, since this is obvious where it occurs, we s
use the same arrow. We can now translate the left-hand side of Eq.~E8! into an expression in term
of F4

(1)(2 is,r ). After some further manipulations involving the identities in Eqs.~E6!, ~E1!, and
~E2! we arrive at
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F44~2 is,r !5Ĝ44exp~ tr r 2s21r 11 tr s1!)
i , j

2

Rji )
k51

4

SkiF S 1

D2
2~ ir 2!D2

2~ is2!
1

1

D2
3~ ir 2!D2

3~ is2! D
3S 8R12R2224R22(

k51

4

Sk2
2124L2~s!D S 8R11R2124R21(

k51

4

Sk1
2124L1~s!D

2
8

D2
3~ ir 2!D2

4~ is2!
S trg r 2(

i 51

4

Si1
21D ~L1~s!2L2~s!!

2
16

D2
3~ ir 2!D2

3~ is2! (
k51

4

)
j 51

2

R2 jSk j
21Gexp~2r 11tr s18!F4

(1)~s18 , r̃ 1!~ ir 12↔ ir 22!.

~E12!

After rearranging terms this yields the result~5.18! for F44(2 is,r ).
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A second look at U q„Sl2… at third root of unity a…

Daniel Kastlerb)

Centre de Physique The´orique du C.N.R.S. Marseille, Luminy, France
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We revisit the 27-dimensional quotient ofUq(Sl2) at third roots of unity within a
presentation adapted to a Hopf bar-operation. We describe in detail the regular
representation and display the Hopf automorphisms and the Hopf bar-operations.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1463710#

I. INTRODUCTION

This paper offers a detailed description~regular representation, Hopf automorphisms, a
Hopf bar-operations! of the 27-dimensional quotient~called H1 for brevity! of the archetypical
quantum groupUq(Sl2).1 Our interest in this object stems from the hope that it governs the b
structure of fermions as suggested by Alain Connes2—a fascinating proposal opening cruci
perspectives in basic physics: first-principles construction of the Lagrangian of the sta
model, computation of the fermion masses, improved supersymmetry—see Ref. 3 for a d
comment, and Ref. 4@IIh # for a possible scenario. In this perspective one wishes to gather de
information onH1 ~in the first place on its regular representation—which we computed amo
other features in Ref. 4 independently of Ref. 5. In Ref. 6 we displayed a ‘‘Hopf bar-operatioG
makingH1 the complexification of the real Hopf fixpoint-algebraH1

G ~or real dimension 27!. This
feature is congenial to the fact that the inner space real spectral triple of the standard mode
with algebras over the reals. In the traditional presentation ofH1—by generatorsE,F,K5expG
~E,F,G the quantum coordinates,E andF playing asymmetric roles!—G has the somewhat strang
expressionGk5k, GE52qKF, GF52qK21E ~perhaps responsible for its absence in the
erature~see Ref. 7 where other examples are mentioned!. However there is a presentation~Ref. 8!
of Uq(Sl2) ~or rather of its double-cover! which uses more symmetrical generatorsx, y, k ~spe-

cifically x52 ik21F, y52 iEk, k5k225K5exp 1
2 G! makingG the mere exchange ofx andy.

Our H1 is obtained by ‘‘halving’’ the object of Ref. 8 at sixth root of unity by taking instead
third root ~whilst the whole object would giveH2 of Ref. 4!—we also multiplied the two first
coordinates byi to get the simple form ofG. The present more symmetrical description w
already signaled in Ref. 6 but not exploited there.

In Sec. II we rewrite the whole theory from scratch in this more limpid langage, displayin
underlying real Hopf algebraH1

G and a still smaller~real 15-dimensional! bialgebraH1
GùH1

V

obtained from a ‘‘pseudo-Hopf bar-operation’’V stemming from the fact that the coprodu
involves only real numbers in the ‘‘MNF basis.’’

In Sec. III we display the~scarce! Hopf automorphisms and Hopf bar-operations~unique up to
scale!, a rigidity result showing that the prospective role ofH1 in physics is largely ‘‘frozen.’’ We
bypass in the proofs a considerable amount of routine computations expounded in detail
Marseille preprints9 available on request.

II. THE 27-DIMENSIONAL HOPF ALGEBRA H 1 . REGULAR REPRESENTATION.
NILRADICAL AND SEMI-SIMPLE QUOTIENT. HOPF BAR-OPERATION

1. Definition—proposition:~the Hopf algebraH1 with generatorsx,y,k!.
~i! The complex algebraH1 , coherently defined by generators and relations

a!Dedicated to the memory of Daniel Testard.
b!Electronic mail: kastler.daniel@wanadoo.fr
27700022-2488/2002/43(5)/2770/21/$19.00 © 2002 American Institute of Physics
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5
kk215k21k51,

kx5vxk, i.e., kxk215vx,

ky5v21yk, i.e., kyk215v21y,

xy2yx52
k22k22

v2v21 ,

~1a!

H x350,
y350,
k351,

~1b!

wherev5e2p i /3 ~whencev351, v215v2, and 11v1v250! becomes a Hopf algebra with co
productD, antipodeS, and counite such that

H Dk5k^ k,
Dk215k21

^ k21,
Dx5x^ k1k21

^ x,
Dy5y^ k1k21

^ v

~2a!

H Sk5k21

Sk215k,
Sx52vx,
Sy52v21y,

~2b!

H e~k!51,
e~x!50,
e~y!50,

~2c!

and with central Casimir operator.

C52xy1
vk221v21k2

~v2v21!2 52yx1
v21k221vk2

~q2q21!2 , ~3!

~ii ! The ternary Hopf automorphism

S225adk ~4!

yields aZ/3-grading ofH1 :

H15H1
~0!

% H1
~1!

% H1
~2!,

where

H1
~ i !5$aPH1 ;kak215v ia, i PZ/3% ~5!

for which H1 is a Z/3-graded Hopf algebra: one hasH1
( i )
•H1

i cH1
( i 1 j ) ,i , j PZ/3.

Proof: The coherence of definitions~1a! and ~1b! and ~2a!–~2c! is classical. For the Casimi
operator we refer to3 below. The fact thatS22 is aZ/3-grading ofH1 follows from ~2b! implying
S22k5k, S22k215k21, S22x5vx, S22y5v21y implying ~4! by ~1a!. Commutation with the
coproduct is readily checked on generators.

2. Definitions-lemma:~* -operations, Hopf bar-, and pseudo-Hopf bar-operations.!
~i! Setting
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H k* 5k21,
x* 52y,
y* 52x,

~6a!

H k*I 5k21,
x*I 5y,
y*I 5x

~6b!

specifies respective*-operations* ,*I fulfilling

H D+* 5~* ^ * !+t+D,
S+* 5* +S,
e+* 52+e,

~7a!

H D+*I 5~*I ^ *I !+t+D,
S+*I 5*I +S,
e+*I 52+e.

~7b!

One has*I 5* +j5j+* with jPAutH1 specified by

H jk5k,
jx52x,
jy52y.

~8!

~ii ! Setting

H Gk5k,
Gk215k21,
Gx5y,
Gy5x,

~9a!

H Vk5k21,
Vk215k,
Vx5x,
Vy5y

~9b!

specifies respective bar-operations~antilinear, multiplicative, involutory! G, V, Hopf and pseudo-
Hopf in the sense

H D+G5~G ^ G!+D,
S+G5G+S,
e+G52+e,

~10a!

H D+V5~V ^ V!+D,
S+V5V+S21,
e+V52+e.

~10b!

~iii ! The maps* ,*I , G, V, j all commute.
~iv! Let H1

G , respectively,H1
V , be the sets of fix points ofH1 underG, respectivelyV, and

considerH1 as an algebra over the reals. ThenH1
G andH1

V ~and thusH1
GùH1

V! are real subalgebra
of H1 , all three mapped byD into their tensor squares. Furthermore one has the inclu
SH1

G,H1
G ~howeverSH1

VúH1
V , SH1

GùH1
VúH1

GùH1
V!. ConsequentlyH1

G is a real Hopf algebra
underD, e, andS, andH1

V andH1
GùH1

V are real bialgebras underD ande.
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The real Hopf nature ofH1
G stemming from the existence of the Hopf bar-operationG is a

basic feature ofH1 , thus obtained~as a complex Hopf algebra! by ‘‘complexifying’’ a real Hopf
algebra of the same~now real! dimension. This fact has important consequences, amongst o
a tendency of purely algebraically defined representations to become*-representations on appro
priate Hilbert spaces. The bialgebra nature of bothH1

V andH1
GùH1

V sheds light on the nature o
the coproduct.

Proof: Straightforward verifications.
3 Proposition~generatorsx, y, e0 , e1 , e2!: H1 has the alternative generatorsx, y, e0 , e1 , e2

such that

H 3e0511k1k2,
3e1511vk1v2k2,
3e2511v2k1vk2,

i.e., ei5Sm5Z/3v
imkm, i PZ/3, ~11!

H 15e01e11e2 ,
k5e01v2e11ve2 ,
k25k215e01ve11v2e2

i.e., kj5Sn5Z/3v
2n jen , j PZ/3 ~12!

with the relations:

Heiek5d ikei ,
S i 50,1,2ei51, ~13a!

H xei5ei 21x,
yei5ei 11y,
xy2yx5e22e1 ,

~13b!

H x350,
y350, ~13c!

implying

H yx5xy1e12e2 ,
yx25x2y1~e02e2!x,
y2x5xy21~e12e0!y,
y2x25x2y21~e12e2!xy1e1 ,

~14a!

H e0k5ke05e0 ,
e1k5ke15v2e1

e2k5ke25ve2 .
~14b!

The Casimir operator reads

C5C* 5C*I 5 1
312xy2e15 1

312yx2e2 . ~15!

D, e, S,* , *I , G are specified as follows one0 , e1 , e2 :

H De05e0^ e01e1^ e21e2^ e1,
De15e1^ e01e0^ e11e2^ e2,
De25e2^ e01e0^ e21e1^ e1,

~16a!
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H ee051,
ee150,
ee250,

~16b!

H Se050,
Se15e2,
Se25e1,

~16c!

ei* 5ei , i 50,1,2, ~17a!

ei*I 5ei , i 50,1,2, ~17b!

H Ge05e0,
Ge15e2,
Ge25e1,

~18a!

H Ve05e0,
Ve15e1,
Ve25e2.

~18b!

We now turn to the decomposition of the regular representation ofH1 . The technique is base
on the remark that projectors on different eigenspacesl, m of the central Casimir operator gen
erate principal idealsIl , Im such thatIlIm5ImIl50. The eigenvalues2 2

3 and 1
3 then generate,

respectively, the principal idealM>M3(C) and the radicalN of respective dimensions 9 and 1
Since these eigenvalues ofC do not exhaust the 27 dimensions ofH1 , there is a five-dimensiona
‘‘residual space’’F>M1(C) % M2(C). As a consequence the semisimple quotientH1 is H1 /N
>M1(C) % M2(C) % M3(C).

4 Proposition~ideal M eigenspace ofC to the eigenvalue22
3!:

~i! The elements of the eigenspaceM of C to the eigenvalue22
3 are related to each other a

shown in the following diagram:

0 0 0

↑y• ↑y• ↑y• ~19!

0←
•x

m115e1~11xy1x2y2!e1 �
•x

•y

m105e1~11xy!ye0 �
•x

•y

m125e1y2e2 →
•y

0

x•↓↑y• x•↓↑y• x•↓↑y•

0←
•x

m015e0x~11xy!e1 �
•x

•y

m005e0x~11xy!ye0 �
•y

•x

m025e0xy2e2 →
•y

0

x•↓↑y• x•↓↑y• x•↓↑y•

0←
•x

m215e2x2e1 �
•x

•y

m205e2x2ye0 �
•x

•y

m225e2x2y2e2 →
•y

0

x•↓ x•↓ x•↓
0 0 0

*I -symmetric with respect to its first diagonal~elements and arrows!:

mmn*I 5mnm , m,n50,1,2. ~20!

~ii ! One has inM the matrix unit-relations:
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mmnmpq5dnpmmq , m,n,p,q50,1,2. ~21!

~iii ! M is a principal ideal with central projection

eM5m001m111m22, ~22!

thus with supplementary idealM'.
Proof: Construction of the diagram~19! of the idealM : starting from the upper right elemen

m125e1y2
2 , y350, ande1

25e1 implying Cm1252 2
3m12, deduce the other elements by means

the arrows.
Matrix units relations~21!: mikmjl 50 for j Þk follows from the orthogonality of the projec

tions ei . The other relations follow by applyingx andy.
We notice the following consequence of the relations~21!: the mik , i ,k51,0,2, are either all

zero or linearly independent: indeed from~21! it follows mii 50⇒mik5mki50 for all k⇒mkk

50 for all k⇒mi j 50 for all i andj, with in turn mik50⇒mii 50 with the above vanishing. This
remark goes along toward a direct proof of the PBW-theorem which could be accomplishedH1

in an explicit way without the Diamond Lemma.
5 Proposition~ideal N eigenspace ofC to the eigenvalue13!:
~i! The elements of the eigenspaceN of C to the eigenvalue13 are mutually related as show

in the following diagram:

0↑2y•
0↑2y•

x005e0x2y2e0 #�
•2x

•y

0 r 025e0~12xy!ye2 �
•2x

•y

r 015e0y2e1
→0
•y

*
2x•↓↑y•

0

0
2x•↓↑y•

0
2x•↓↑y•

0↑y•

0←
•2x

r 2052e2x~11xy!e0 0�
•2x

•y

x225e2x~12xy!ye2
�
•2x

•y

x215e2xy2e1
�
•2x

•y

0 s205e2y2e0 →
•y

0

2x•↓↑y• 2x•↓↑y• 2x•↓↑y• 2x•↓↑y•

0←
•2x

r 105e1x2e0 0�
•2x

•y

x125e1x2ye2
�
•2x

•y

x115e1x2y2e1
�
•2x

•y

0 s105e1xy2e0 →
•y

0

2x•↓
0

2x•↓↑y•
0

2x•↓↑y•
0

0
2x•↓↑y•

0←
•2x s025e0x2e2 �

•2x

•y

s015e0x2ye1
0�
•2x

•y

x005e0x2y2e0
#�
•2x

•y

0

x•↓
0

x•↓
0

2x•↓↑y•
0

~23!

This diagram is* -symmetric with respect to its first diagonal~elements and arrows!.
~Note that this diagram lies on a cylinder rather than a plane,x00,* , and # in the left upper and in
the right lower corners being the same!.

~ii ! The nonvanishing products inN are

H r 0i r i05s0isi05x00,
r i0r 0k5si0s0k5xik, i ,k51,2. ~24!

~iii ! N is an ideal ofH1 consisting of nilpotent elements~of vanishing square!. SinceH1 /N is
semisimple~see the following! N is the radical ofH1 .

Proof: ~i! Construction of the diagram~23! of the idealN. Elements20: ~15! yields y2e0C
5 1

3y
2e0 . Elementr 01: ~15! yields Ce0y25 1

3e0y2. One then use the arrows.
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~ii ! Nonvanishing products~24! in N: Since all arrows starting fromx00 point to 0 one has
x00h5hx0050 for any polynomial inx and y. The relationsr 10r 025e1x2y5x12, s20r 0150,
s02r 2050, s02x2250, s02x2150, s02s205x00, r 01x1250, r 10s0250, r 10s0150 are obvious. The
others are then obtained using the arrows.

6 Proposition~residual five-dimensional subspaceF,M'. Modified PWB andMNF basis!:
~i! H1 is linearly spanned by the elements in the diagrams~19! and ~23!, plus the elements
~diagram*-symmetric with respect to first diagonal! spanning the subspaceF and yielding the
central projectioneM

'5f001f111f22,

f005e0~12xy2x2y2!e0 , f225e2~12x2y2!e2 , f215e2~11 1
2xy!ye1,

f1252e1x~11 1
2xy!e2 , f1152e1x~11xy!ye1,

~25!

Table displaying the system$mik ,f00,fmn ,r 0m ,r m0 ,s0m ,sm0 ,xmn% i ,k50,1,2;m,n51,2 spanningH1

@in fact a basis, called the MNF-basis~see the following!#:

m115e1~11xy1x2y2!e1 , m105e1~y1xy2!e0 , m125e1y2e2 ,

x115e1x2y2e1 , s1052e1xy2e0 , x125e1x2ye2 ,

f1152e1~xy1x2y2!e1 , r 105e1x2e0 , f1252e1x~11 1
2xy!e2 .

m015e0~x1x2y!e1 , m005e0~xy1x2y2!e0 , m025e0xy2e2 ,

s015e0x2ye1 , x005e0x2y2e0 , s0252e0x2e2 ,

r 015e0y2e1 , f005e0~12xy2x2y2!, r 025e0~y2xy2!e2 ,

m215e2x2e1 , m205e2x2ye0 , m225e2x2y2e2 ,

x2152e2xy2e1 , s205e2y2e0 , x2252e2~xy2x2y2!e2 ,

f215e2~11 1
2xy!ye1 , r 2052e2~x2x2y!e0 , f225e2~12x2y2!e2 .

~26!

The system$eix
pyq% i ,p,q50,1,2 is given as follows in terms of the system~26!:

H e05m001f00,
e15m111f11,
e25m221f22,

H e0x5m012s01,

e1x52f122
1
2x12,

e2x5m202r 20,
H e0y5m021r 02,

e1y5m101s10,

e2y5f211
1
2x21,

H e0x25s02,
e1x25r 10,
e2x25m21,

H e0xy5m002x00,
e1xy52f112x11,
e2xy5m222x22,

H e0y25r 01,
e1y25m12,
e2y25s20,

~27!

H e0x2y52s01,
e1x2y5x12,
e2x2y5m20,

H e0xy25m02,
e1xy252s01,
e2xy252x21,

H e0x2y25x00,
e1x2y25x11,
e2x2y25m22.
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The tabulation~26! is arranged according to polynomial order: here is an alternative ver
arranged according to indices which reveals the splitting of the coordinate change:

e115m111f11, e1y5m101s10, e1x52f122
1
2x12,

e1xy5f112x11, e1x25r 10, e1y25m12,

e1x2y25x11, e1xy252s10, e1x2y5x12,

e0x5m012s01, e015m001f00, e0y5m021r 02,

e0y25r 01, e0xy5m002x00, e0x25s02,

e0x2y5s01, e0x2y25x00, e0xy25m02,

e2y5f211
1
2x21, e2x5m202r 20, e215m221f22,

e2x25m21, e2y25s20, e2xy5m222x22,

e2xy252x21, e2x2y5m20, e2x2y25m22.

~28!

~ii ! The nonvanishing products inF are as follows:

Hf00f005f00,
fmnfn j5fm j ,

m, j 51,2. ~29!

~iii ! Additional nonvanishing products inM' ~productsMN andNM !:

H f i j r jk5r ik

f i j sjk5sik

f i j xjk5xik

H r i j f jk5r ik

si j f jk5sik

xi j f jk5xik

, i , j ,k51,2,0, whenever these make sense. ~30!

In particularf00, f11, andf22 acting on the right~left! are the respective projections one0M',
e1M', ande2M' ~on M'e0 , M'e1 , andM'e2!; we have

m221m001m111f221f001f115eM1eM'51. ~31!

~iv! In fact both generating systems~25! and ~26! are linearly independent: they thus yie
basis ofH1 , the respectiveMNF-basisand modified PBW-basis~the PBW-basisis the system
$kpxmyn%p,m,n50,1,2!. H1 is thus 27-dimensional.

Proofs (i) and (ii): Construction of the residual five-dimensional subspaceF!: we need addi-
tional 552729213 elements~expected to spanM1% M2! to get a basis ofH1 together with the
above elements ofM and N. The inventory of the latter is given by~26!. Computation of the
additional elementsf00, f22, f21, f12, f11:

Diagonalf i i 5aei1bmii 1gxii .
We want 05eMf i i 5amii 1bmii , whencea1b50: we havef i i 5a(ei2mii )1gxii .
We want 05f i i

22f i i 5a2(ei2mii )12agxii 2a(ei2mii )2gxii 5a(a21)(ei2mii )1(2a
21)gxii . Multiplying by xii shows thata(a21)50, a50 is excluded, thusa51, implying
vanishing of (2a21)g5g: we end up withf i i 5ei2mii : we find

f115e12m1152e1~xy1x2y2!e1 ,

f005e02m005e0~12xy2x2y2!e0 ,

f225e22m225e2~12x2y2!e2 .

Off-diagonalf125le1x1mm121nx12, andf215l8e2y1m8m211n8x21.

We want 05eMf125lm11x1mm12501mm12 : this reads m50,
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05eMf215l8m22y1m8m21501m8m21: this readsm850

where we usedm11x5m22y50 @cf. diagram~19!#.
We have then on the one handf11f125f12f225f12, since, by~19!:

m11f125m11~le1x1nx12!5lm11x50, and f12m225~le1x1nx12!m225lxm2250

and on the other handf22f215f21f115f21, since by~18!:

m22f215m22~l8e2y1n8x21!5l8m22y50, and f21m115~l8e2y1n8x21!m115l8ym1150.

We want in additionf12f215f11, andf12f215f11: now, since, using~13b! and ~23!,

f12f215~le1x1nx12!~l8e2y1n8x21!5ll8e1xy1ln8e1xx211l8ne1x12y

5ll8e1xy2ln8x111l8nx115e1@ll8xy2~ln82l8n!x2y2#.

The first requirement leads toll8521 andln82l8n51; and since, using~14!,

f21f125~l8e2y1n8x21!~le1x1nx12!5ll8e2yx1l8ne2yx121ln8e2x21x

5ll8e2~xy1e12e2!e21~l8n2ln8!x225ll8e2~xy21!e22~l8n2ln8!x22

5ll8e2~xy21!e22~l8n2ln8!e2~x2y22xy!e2 ,

the second leads to to the same relationsll8521, ll85l8n2ln8 and ln82l8n51. The

symmetryf21*I 5f12 is impossible@would requirel l̄521, cf. ~17a! and ~17b!#. We require
* -symmetry,l851, l521 then yields~25!, whence~26!–~28!. ~iii !: f i i bilaterally acts onM' ei

as follows fromf i i 5ei2mii . Furtherf21, respectively,f12 act bilaterally onM like e2ye1 ,
respectively,e1xe2 , cf. ~26!, since by~22! x21N5Nx2150, andx12N5Nx1250: ~28! for iÞ j then

proceeds from the arrows→
y

and←
2x

.

~iv! By the PWB-theorem ordered monomials~we chose the orderkxy! build the PWB-basis,
the relations~11! and~12! yielding themodified PWB-basis. The mutual correspondence~26! and
~27! then yield the MNF basis.

7 Additional features ofH1 . We state for completeness miscellaneous results which are
tablished as in Ref. 4@IIb # to which the reader is referred for proofs.
~i! ~Center ofH1!. The centerZ1 of H1 is

Z15CeM % CeM
'

% Cx00% CW ~W5x221x11!. ~32!

In this context the Casimir operatorC is written as

C52 2
3eM1 1

3eM
'1x001x221x11. ~33!

The cental idempotents ofH1 are 0,eM , eM', andeM1eM'51. Consequently the idealsM
andM' are left stable by all automorphisms ofH1 .

~ii ! ~The linear form Trl and the semipositive scalar product~•,•!.! The trace Trl of the left
regular representationl of H1 on itself: vanishes onN, and passes to the semisimple quotie
H1 /N>M1(C) % M2(C) % M3(C) ~or restricts to the isomorphic sub-algebraA5M % F! as 6trM1

% 6trM2
% 3trM3

, where trMn
denotes the usual trace ofn3n matrices yielding the semi-positiv

scalar product̂•,•,& in conjunction with the*-operation3:

^a,b&5Trl~a3b!, a,bPH1 , ~34!
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H 35*I in restriction to M ,
35* in restriction to M'. ~35!

This scalar product has the nilradicalN as his space of null-vectors and is positive-definite
restriction toA5M % F which thereby acquires a Hilbert space structure. Here the trace of m
ces is the sum of their diagonal elements with the traces of endomorphisms of finite-dimen
vector spaces the trace of their matrices. In spite of the apparently ad hoc definition~35! the
Hilbert space topology ofM is canonical: this topology indeed also stems from the adjo
representation ofH1 , cf. Ref. 4@IId #.

Note the fact that the nilradical consists of the nullvectors of a semipositive scalar produ
phenomenon which we also observed at fourth root of the unit11 and which also shows up with th
longitudinal photons of Lorentz-gauge electrodynamics. We propose this ‘‘synonimy of posi
and semisimplicity as an axiom of the ‘‘medusae’’~5generalized supermanifolds, which it wou
be interesting to define precisely and axiomatize as Alain Connes did for the spin manifold2

8 Proposition~antipode inMNF-basis! ~i! ~Antipode inM!: One has

Sm115m22, Sm1052v21m02, Sm125vm12,

Sm0152vm20, Sm005m00, Sm0252v21m10, ~36!

Sm2152v21m21, Sm2052vm01, Sm225m11.

~ii ! ~antipode inN!. One has

Sx005x00, Sr0252v21s10, Sr015vs20,

Sr2052vs01, Sx225x11, Sx215v21x21, Ss205vr 01,

Sr105v21s02, Sx1252vx12, Sx115x22, Ss105v21r 02,

Ss025v21r 10, Ss0152vr 20, Sx005x00.

~37!

~iii ! ~antipode inF!. One has
Sf005f00

Sf225f11, Sf2152v21f21,
~38!

Sf1252vf12, Sf115f22

~note thatS mapsH1
(0) into itself and exchangesH1

(1) andH1
(2)!.

Proof: Straightforward verifications. Notice that one hasSH1
G,H1

G .
9 Proposition~Hopf bar-operation inMNF -basis!: The Hopf bar-operationG leavesM , N,

andF stable, acting there as follows:
~i! in ~18! G is symmetry with respect to the diagram centrum:

Gm115m22, Gm105m20, Gm125m21,

Gm015m02, Gm005m00, Gm025m01, ~39!

Gm215m12, Gm205m10, Gm225m11.

~ii ! In ~22! G is symmetry with respect to diagram centrum with a sign-change for the p
(r 02,s01), (r 20,s10) and (x21,x12):
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Gx005x00, Gr 0252s01, Gr 015s02,

Gr 2052s10, Gx225x11, Gx2152x12, Gs205r 10,

Gr 105s20, Gx1252x21, Gx115x22, Gs1052r 20,

Gs025r 01, Gs0152r 02, Gx005x00.

~40!

~iii ! In ~25! G is given by
Gf005f00,

Gf225f11, Gf2152f12,
~41!

Gf1252f21, Gf115f22.

Proof: Straightforward verifications.
10 Remark~pseudo-Hopf bar-operation in theMNF -basis!: The pseudo-Hopf bar-operationV

leaves unchanged each of the elements of theMNF basis because these are products of theei by
polynomials inx and y with real coefficients, the multiplicative antilinearV leaving all these
invariant, cf.~9! and ~18b!.

11 Proposition~the real Hopf algebraH1
G!: As an algebra overR H1

G is the direct sumFG

% MG
% NG, where, as real algebras:

~i! MG>M3(R) with the matrix units:

m115
1

2
~m111m222m122m21!, m105

1

i A2
~m102m20!, m125

1

2i
~m112m221m122m21!,

m015
i

A2
~m012m02!, m005m00, m025

1

A2
~m011m02!,

m215
i

2
~m112m222m121m21!, m205

1

A2
~m101m20!, m225

1

2
~m111m221m121m21!,

~42!

such thatm immn j5dmnm i j .

~ia! MGùH1
V is spanned bym11, m00, m02, m20, andm22 @thus isomorphic toR% M3(R) as

a real algebra#.
~ii ! FG>R% H, with R spanned byf00 andH spanned by the

1H5f221f11, I 5
1

i
~f211f12!, J5f212f12, K5

1

i
~f222f11! ~43!

fulfilling the quaternionic relations:

1H1H51H , ~44a!

H 1HI 5I1H5I ,
1HJ5J1H5J,
1HK5K1H5K,

~44b!

H IJ52JI52K,
JK52KJ52I ,
KI 52IK 52J,

~44c!
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H I 2521H ,
J2521H ,
K2521H.

~44d!

~iia! FGùH1
V is spanned byf00, 1H , andJ ~thus isomorphic toR% C as a real algebra!.

~iii ! NG is spanned by the

5
x00,

x85x111x22, x95
1

i
~x112x22!,

y85x212x12, y95
1

i
~x211x12!

~45a!

5
q85r 011s02, q95

1

i
~r 012s02!,

r 85r 022s01, r 95
1

i
~r 021s01!,

s85s102r 20, s95
1

i
~s101r 20!,

t85s201r 10, t95
1

i
~s202r 10!

~45b!

with nonvanishing products:

r 8s852q9t95r 9s9522x00, ~46a!

H t8q85s8r 85t9q952s9r 95x8,
t9q852s9r 852t8q952s8r 52x9,
s8q85t8r 85s9q95t9r 952y8,
s9q85t9r 852s8q95t8q95y9.

~46b!

~iiia! NGùH1
V is spanned byx00, x8, y8, q8, r 8, s8, t8.

~iv! The nonvanishing products between elements ofF andN are

H f00x005x00,

f00q85q8, f00q95q9,

f00r 85r 8, f00r 95r 9,

~47a!

H x00f005x00,

s8f005s8, s9f005s9,

t8f005t8, t9f005t9,

~47b!

H 1Hx85x8,
1Hx95x9,
1Hy85y8,
1Hy95y9,

~47c!
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H 1Hs85s8,
1Hs95s9,
1Ht85t8,
1Ht95t9,

~47d!

H x81H5x8,
x91H5x9,
y81H5y8,
y91H5y9,

~37e!

H q81H5q8,
q91H5q9,
r 81H5r 8,
r 91H5r 9,

~47f!

5
Ix85y9, Iy952x8,

Ix952y8, Iy85x9,

Is85t9, It 952s8,

Is952t8, It 85s9,

~47g!

5
x8I 5y9, y9I 52x8,

x9I 52y8, y8I 5x9,

q8I 5r 9, r 9I 52q8,

r 8I 5q9, q9I 52r 8,

~47h!

5
Jx85y8, Jy852x8,

Jx95y9, Jy952x9,

Js85t8, Jt852s8,

Js95t9, Jt952s9,

~47i!

5
x8J5y8, y8J52x8,

x9J52y9, y9J5x9,

q8J52r 8, r 8J5q8,

q9J52r 9, r 9J5q9,

~47j!

5
Kx852x9, Kx95x8,

Ky85y9, Ky952y8,

Ks852s9, Ks95s8,

Kt85t9, Kt952t8,

~47k!

5
x8K5x9, x9K52x8,

y8K52y9, y9K5y8,

q8K52q9, q9K5q8,

r 8K5r 9, r 9K52r 8.

~47l!

Proof: Straightforward verifications.
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III. HOPF AUTOMORPHISMS, AND HOPF BAR-OPERATIONS

We now investigate the Hopf automorphisms and the Hopf bar-operations. The
automorphism-group is shown to be a complex one-parameter group—in fact the group
~truncated! Z-grading with degree the excess of powers ofx over those ofy in ordered PBW-
monomials~with quotient through 3Z the Z/3-group of powers of the antipode!. The Hopf bar-
operation is unique up to scale. These~relative rigidity! results indicate the kind of freedom on
expects in the prospective use ofH1 for describing the basic structure of fermions.

The main technical problem is the classification of the Hopf automorphisms. Our me
consists in first exploiting the commutation with the antipode, much simpler than commu
with the coproduct which we use only for passing from the commutant ofS in AutH1. Section 12
exhibits the~truncated! Hopf Z-grading. Section 13 computes the commutant ofS in AutH1 .
Section 14 describes the passage from there to AutH1 which turns out to be the group of th
truncatedZ-grading of Sec. 12. This yields the description of the Hopf bar-operations in 15, f
unique up to scale

12 Proposition~the truncatedZ-gradingH15 % nPZH1
@n# of H1!:

~i! Let aPC, aÞ0: setting

H aak5k,
aak215k21,
aax5ax,
aay5a21y,

~48!

specifies on generators a Hopf automorphismaa of H1 in such a way thata→aa is a complex
one-parameter groupG of automorphisms ofH1 . One has

aa~hh8!5~aah!~aah8!, h,h8PH1 , ~49!

aaab5aab , a,bPC, abÞ0, ~50!

a15 idH1
. ~51!

~ii ! Defining

H1
@ i #5$hPH1 ; aah5aih%, ~52!

G is in fact the grading group of a HopfZ-grading H15 % nPZH1
@n# of H1 where the degreen

measures the excess of powers ofx over those ofy in ordered polynomials~x written beforey!. For
hPH1

@ i # : we write ]Z5 i and calli the Z-degree of h.
~iii ! Division of the HopfZ-grading through 3Z yields theZ/3-gradingH15 % nPZH1

(n) of H1

described inI ~cf. ~8! in 1—observe the distinction in notation!.
~iv! The Hopf Z-grading of H1 induces on the subalgebras,M , F, N, and M' respective

Z-gradingsM5 % nPZM
@n#, F5 % nPZF

@n#, N5 % nPZN
@n# and M'5 % nPZM

'@n#: one hasH1
@n#

5M @n#
% F@n#

% N@n#, nPZ, where

5
M @2#5Cm21,

M @1#5Cm011Cm20,

M @0#5Cm111Cm001Cm22, M @ i #5$0% if i .2 or i ,22,

M @21#5Cm101Cm02,

M @22#5Cm12,

~53!
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H F@1#5Cf21,

F@0#5Cf001Cf221Cf11, F@ i #5$0% if i .1 or i ,21,

F@21#5Cf12,

~54!

5
N@2#5Cr 101Cs02,

N@1#5Cr 201Cx121Cs01,

N@0#5Cx001Cx221Cx11, N@ i #5$0% if i .2 or i ,22

M @21#5Cr 021Cx211Cs10,

M @22#5Cr 011Cs20.

. ~55!

Remarks:~i! For simplicity theZ-graded algebra% nPZH1
@n# is denoted byH1 instead ofH1

% $0%, and analogously forM , F, N, andM' ~theZ-grading is ‘‘truncated’’ in that all but a finite
number ofH1

@n# vanish!.
~ii ! Looked at on the diagrams ofM , N, andF in Sec. I~cf. 1, 2, 3! theZ-grading exhibits the

following features: the elements of the same degree are located on lines parallel to th
diagonal, with decreasing grading~from 2 to22 for M andN, from 1 to21 for F! on the second
diagonal oriented SW–NE~see the following!.

~iii ! Replacing in diagramsM and F the index 2 by2152modZ/3 the degree become
]Zmi j 5 j 2 i .

We reproduce those diagrams for the convenience of the reader, and indicate the
vanishing products.

DiagramM DiagramN DiagramF

x00 r 02 r 01
m11 m10 m12 r 20 x22 x21 s20 f00
m01 m00 m02 r 10 x12 x11 s10 f11 f12
m21 m20 m22 s02 s01 x00 f21 f22

Products inM : mi j mpq5d jpmiq , i,j,p, q51, 0, 21.
Products inF: f00f005f00, f00f i j 5f i j f0050, fpq5d jpf iq , i,j,p, q51, 21.
Other nonvanishing products in:M':

f00r 015r 01, f00r 025r 02, f00s015s01, f00s025s02,

f11r 105r 10, f11x125x12, f11x115x11, f11s105s10,

f22r 205r 20, f22x225x22, f22x215x21, f22s205s20,

f12r 205r 10, f12x225x12, f12x215x11, f12s205s10,

f21r 105r 20, f21x125x22, f21x115x21, f21s105s20.

Proof of 12:~i! The relations~48! obviously comply with the definition ofH1 by symbols and
relations~cf. 1!. Linearity and multiplicativity ofaa hold by definition. Properties~49!–~51! need
only be checked on generators where they are obvious.

~ii ! Definition ~52! obviously defines aZ-grading for which the degree is as indicated. Clai
~iii ! and~iv! are obvious. Check of the Hopf property: It suffices to show commutation of theaa

with D, which it is enough to check on generators owing to multiplicativity ofD. Now:

D~aak!5Dk5k^ k whilst ~aa^ aa!Dk5~aa^ aa!k^ k5k^ k,

D~aax!5D~ax!5aDx whilst ~aa^ aa!Dx5~aa^ aa!~x^ k1k21
^ x!5~ax^ k1k21

^ ax!,
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D~aay!5D~a21y!5a21Dy

whilst ~aa^ aa!Dy5~aa^ aa!~y^ k1k21
^ y!5~a21y^ k1k21

^ a21y!.

It is instructive to check theZ-grading properties on the elements of theMNF -basis along the lines
of ~iv!. for this we want to check that for homogeneoush, h8PH1 one hasdZh1dZh85dZhh8.
For hh850 this is trivial because 0PH1

@n# for all nPZ. Hence we need only look at the nonv
nishing products listed previously. For the products inM , by the above remark~iii ! we have
]Z(mi j mjq)5]Zmiq5q2 i whilst ]Zmi j 1]Zmjq5 j 2 i 1q2 j 5q2 i . The same reasoning settle
the nonvanishing products betweenf i j , i, j 51, 21. Remain the other products for which on
checks individually by inspection of the diagramsN andF that, forh in line i andh8 in line j, hh8
lies in line i 1 j .

We now embark upon the characterization of Hopf automorphisms. AnaPAutHopfH1 maps
the idealsM and N into ideals of the same dimension, and thus preservesM and N. Hence
aeM5eM , anda thus preserves alsoM'. Moreovera commuting withS also commutes with
S25adh, and thus leaves stable the subsetsH1

( i ) , i 50,1,2, hence the intersectionsM ( i )

5MùH1
( i ) , N( i )5NùH1

( i ) , M'( i )5M'ùH1
( i ) , which are also stable underS. By exploiting the

multiplicativity of a and its commutativity withS, we first obtain Proposition 13. By the~less
easily exploitable! commutativity ofa with D we pass from 13 to the characterization 14 of t
Hopf automorphisms. This then allows the description 15 of the Hopf bar-operations. We firs
those results, and then sketch the proofs~the details of which are contained in the preprints9!.

13 Proposition:~The groupA of automorphisms of the complex algebraH1 commuting with
S! With a, b, g, A, K, L, M, N complex constants such that

HabAKNÞ0
b~KN2LM !5A, ~56!

we specify theC-linear operatora5aabAKN of H1 by requiring:
~1! on M :

H am115m11,
am005m00,
am225m22,

H am015am01,
am125a22m12,
am205am20,

H am105a21m10,
am215a2m21,
am025a21m02,

~57!

~2! on F:

H af115f11,
af005f00,
af225f22,

Haf125bf121gx12,
af215b21f212b22gx21, ~58!

~3!on N:

H ax115Ax11,
ax005Ax00,
ax225Ax22,

Hax125Abx12,
ax215Ab21x21, ~59!

Har 015Kr 011Ls01,
as015Mr 011Ns01, Har 205Nr202Ms20,

as2052Lr 201Ks20, ~60!

Har 105bNr102bMs10,
as1052bLr 101bKs10, Har 025bKr 021bLs02,

as025bMr 021bNs02.
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The set ofaabAKN is a subgroup of the automorphism group AutH1 of the complex algebraH1 ,
namely the subgroup of elements of AutH1 commuting withS. One has
~1! the productaabAKNaa8b8A8K8N85aa9b9A9K9N9 with

5
a95aa8,

b95bb8,

A95AA8,

K95KK81LM 8, L95KL81LN8,

M 95MK81NM8, N95ML81NN8,

~2! the inverse(abAKN)215ab- A- K- N- with

5
a- 5a21,

b- 5b21,

A- 5A21,

K- 5bA21N, L- 52bA21L,

M- 52bA21M , N- 5bA21K.

Proof: Let CSX be the requirement thata commute withS in restriction toX,H1 . The proof
evolves in six steps~a! through~f!:
~a! CSM (0)⇒a acts onM (0) either as the identity or as the exchange ofm11 andm22.
~b! CSM (1) ~b!⇒~i!: a acts onM (0) as the identity

~ii ! a acts onM (1) as

H am015am01,
am125a22m12,
am205am20,

respectively onM (2) as

H am105a21m10,
am215a2m21,
am025a21m02.

~c! CSF(0)⇒F(0) is stable undera which acts on it as the identity.
~d! CSF(1) andCSF(1)⇒one has

Haf125bf121gx12,
af215b21f212b21gb21x21

.

~e! CSN(0)⇒~i!: one has

H ax115Ax11,
ax005Ex00,
ax225Ax22.

~ii ! One has anticipating on the next paragraph

Hax125Abx12,
ax215Ab8x21.

~f! CSN(1)⇒~i!: one has
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Har 015Kr 011Ls01,
as015Mr 011Ns01, Har 205Nr202Ms20,

as2052Lr 201Ks20,

Har 105bNr102bMs10,
as1052bLr 101bKs10, Har 025bKr 021bLs02,

as025bMr 021bNs02.

~ii ! One has

b~KN2LM !5A5E.

14 Theorem:Let a be a Hopf automorphism ofH1 . We have the following action ofa on the
elements of theMNF -basis:

~1! in M : am115m11, am105a21m10, am125a22m12,

am015am01, am005m00, am025a21m02,

am215a2m21, am205am20, am225m22,

~2! in F: af005f00,

af225f22, af215a21f21,

af125af12, af115f11,

~3! in N: ax005x00, ar 025a21r 02, ar 015a22r 01,

ar 205ar20, ax225x22, ax215a21x21, as205a22s20,

ar 105a2r 10, ax125ax12, ax115x11, as105a21s10,

as025a2s02, as015as01, ax005x00.

Conferring this with 12 Remarks~iii ! this amounts to saying thata coincides with the automor
phismaa defined in~52!. Hence AutHopfH1 is the same as the groupG of automorphisms ofH1

furnished by theZ-grading ofH1 .
Proof: We shall now exploit the ruleD+a5(a ^ a)+D ~commutativity ofa with the coprod-

uct!. Writing that the automorphisma commutes withD is trivial. What is not obvious is which
elements one should adress to obtain the properties ofa in 14.

Our proof relies on the tabulation10 @4a# of the coproduct ofH1 . Although the latter was
computed using the traditional version ofH1 , it works for our present purposes: indeed, as
shall see, we need only to know which elements of theMNF -basis figure in their coproduct: th
precise knowledge of the numerical coefficients is immaterial for the coming proof.
Showing thatb5a.

We read off p. 433 of Ref. 10@4a# that theF^ N-component ofDm11 is of the form:

Dm115lf22^ x221mf21^ r 201nf12^ r 021rf11^ x00 ~61!

with the constantsl, m, n, r all nonvanishing. Writing (a ^ a)Dm115D(am11) and using rela-
tions ~58!–~60! this equals

~a ^ a!Dm115lf22^ Ax221m~b21f212b22gx21! ^ ~Nr202Ms20!

1n~bf121gx12! ^ ~bKr 021bLs02!1rf11^ Ax00. ~62!

Equating coefficients yields after division through nonzero constants:
15A, 15b21N, 15b2K whenceb5N b225K,

b21M5b22gN5b22gM5gbK5b2L5gbL50 whenceM5L5g50.
Corroboration of~56!: we haveA515bKN5bb22b.

We read off p. 440 of Ref. 4@4a# that theM ^ M -component ofDf12 is of the form:
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Df125l8m11^ m011m8m01^ m111n8m20^ m221r8m22^ m20 ~63!

with the constantsg8,m8,n8,r8 all nonvanishing. WritingbD(f12)5(a ^ a)Df12 ~observe that
af125bf12 since we showed thatg50! and furthermore using~57! we get

b@l8m11^ m011m8m01^ m111n8m20^ m221r8m22^ m20#

5l8m11^ am011m8am01^ m111n8am20^ m221r8m221r8m22^ am20.

Equating coefficients yields after division through nonzero constants yieldsb5a. Collecting
results yields our claim:A51, a5b5N, a25K, M5L5g50.

15 Theorem:The Hopf bar-operations ofH1 are of the typeG r5a rG, r PR1, thus specified
as follows on generators:

Gk5k, Gx5rx, Gy5r 21x. ~64!

In other terms the Hopf bar-operation is unique up to a scaling factor.
Proof: We know~cf. Appendix B! that all Hopf bar-operations are of the typewG5Gw21, w

a Hopf automorphism of the typeaa , 0ÞaPC. Now aaG5Gaa
21 iff G is real: indeedaaGk

5Gaa
21k5k, aaGx5aay5a21y whilst Gaa

21x5Ga21x5ā21y, andaaGy5aax5ax whilst,
Gaa

21y5Gay5āx.

APPENDIX A: BAR-OPERATIONS OF COMPLEX ALGEBRAS

[A1] Definitions: With A an algebra overC a bar-operation ofA is a mapG:A→A which is:
~a! antilinear,~b! involutive, ~c! multiplicative ~in other terms the bar-operations of the compl
algebraA are theZ/2 gradings of the real algebraA which anticommute withi!.

We denote by BarA the set of bar-operations ofA. The elements of BarA are so to speak the
‘‘mirror symmetries’’ of A. They leave invariant the unit ofA if A is unital.

[A2] Proposition ~the groupoı¨d BarA3BarA!: With A and BarA as in [A1] , the Cartesian
product BarA3BarA is a bipoint-groupoı¨d ~transitive and unicursal!:

~i! Given G1 , G2PBarA there is a uniquew12PAut A s.t.G25G1w12, namelyw125G1G2

G1 , G2 are groupoı¨d units andw12 is the only morphism:G1→G2 .
~ii ! Given G1 , G2PBarA there is a uniquew21PAut A s.t. G25w21G1 , namely w21

5G2G1 . G1 , G2 are groupoı¨d units andw21 is the only morphism:G2→G1 .
~iii ! w12 and w21 are inverse of each other. GivenGPBarA and wPAut A one hasGw

PBarA iff Gw5w21G ~respectively,wGPBarA iff wG5Gw21!.
~iv! One has the equivalences:w215w12⇔(w12)

25 id⇔(w21)
25 id⇔G1 andG2 commute.

[A3] Proposition ~the real fix-point algebraAG!: Let A be an algebra overC and let G
PBarA. Then:
~i! the setAG5$aPA;Ga5a% is an algebra overR.
~ii ! 1

2(id1G) and 1
2(id2G) are complementary projections ofA. We have

AG5Ker 1
2~ id2G!5Im 1

2~ id1G!, ~A1!

and

iAG5Ker 1
2~ id1G!5Im 1

2~ id2G!, ~A2!

hence

A5AG
% iAG. ~A3!
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~iii ! If A has a finite complex dimensionn, AG has the real dimensionn.
Note that a generalZ/2 gradingG of the algebraA over R does not need to have dimRA1

5dimRA2—but this is the case ifG anticommutes withi, due toA25 iA1.
[A4] Proposition: With A an algebra overC, the following objects are one-to-one:

~i! the bar operationsof A.
~ii ! the subalgebrasAG of the real algebraA such moreover thatA5AG

% iAG as complex alge-
bras: we call those thereal spines ofA.

The bijection is as follows:
~i! → ~ii !:

AG5$aPA;Ga5a% ~A4!

~ii ! → ~i!:

G~a81 ia9!5a82 ia9, a8,a9PAG. ~A5!

[A5] Remarks: ~i! If A is n-dimensional each basis$ai% i 51,...,n of A giving rise to a real
multiplication table yields a real spine ofA ($uaiu

21% i 51,...,n , uPA invertible, another.
~ii !: Given a fixed real spineG0 of A the real spines ofA are one-to-one with thefG0 for the
fPAut A such thatfG0fG05 id, or alternatively such thatfG0f5G0 .

APPENDIX B: HOPF BAR-OPERATIONS AND MODULAR * -OPERATIONS OF HOPF
ALGEBRAS

In what followsH(m,D,e,e,S) is a Hopf algebra overC.
[B1] Definitions: ~i! A Hopf bar-operation ofH is a GPBarH which is Hopf in the sense:

H e~Ga!5e~ ā!,

DGa5~G ^ G!Da, aPH.

GS5SG.

~B1!

We denote by Hopf barH the set of Hopf bar-operations ofH.
~ii ! A modular* -operation ofH is a mapS:H→H, which is
~a! antilinear,
~b! of squareS2,
~c! antimultiplicative,
~d! Hopf in the sense:

H e~Sa!5e~ ā!,

DSa5~S ^ S!DP12a, aPH.

SS5SS.

~B2!

[B2] Proposition: Let H be a Hopf algebra with invertible antipode. The following objects
one-to-one:
~i! the Hopf bar operationsG of H,
~ii ! the modular* -operationsS of H,
with the bijection given byS5GS5SG, G5S21S5SS21.

[B3] Proposition: Let G1 ,G2PHopf barH: w125G1G2 is a Hopf automorphism ofH.
[B4] Proposition: Assume the Hopf algebraH of finite complex dimensionn.

~i!: Let GPHopf barH. The algebraHG5$aPH;Ga5a% of fixpoints of G ~cf. [A3] ! is a real
Hopf algebra of real dimensionn. In particular one has
~a! DHGPHG

^ HG

~a! SHGPHG.
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On quasicrystal Lie algebras
Volodymyr Mazorchuka)

Department of Mathematics, Uppsala University, Box 480, SE-751 06, Uppsala, Sweden

~Received 12 October 2001; accepted for publication 5 February 2002!

We realize the aperiodic Witt and Virasoro algebras as well as other quasicrystal
Lie algebras as factor algebras of some subalgebras of the higher rank Virasoro
algebras. This realization allows us to generalize the notion of quasicrystal Lie
algebras. In the case when the constructed algebra admits a conjugation, we com-
pute the Kac determinant for the Shapovalov form on the corresponding Verma
modules. In the case of the aperiodic Virasoro algebra this proves the conjecture of
R. Twarock. © 2002 American Institute of Physics.@DOI: 10.1063/1.1468255#

I. INTRODUCTION

This article has grown from my attempt to understand the recently introduced notio
quasicrystal Lie algebras and the aperiodic Witt and Virasoro algebras~Pateraet al., 1998;
Twarock, 2000a!. These algebras form a new family of infinite-dimensional Lie algebras, wh
generators are indexed by points of an aperiodic set~which is in fact a one-dimensional cut-and
project quasicrystal, an object, intensively studied by many authors! ~see, e.g., Katz, 1998
Kramer, 1999; Radin, 1999, and references therein!.

Quasicrystal Lie algebras and their representations were studied by several authors,~see, for
example, Patera and Twarock, 1999; Pateraet al., 1998; Twarock, 2000a!, and in Twarock~2000b,
c! some applications of these algebras to the construction of some integrable models in qu
mechanics were given. However, there are many important questions about quasicrystal Li
bras, which are still open. For example, in Twarock~2000a! the author constructs a triangula
decomposition for the aperiodic Virasoro algebra, hence constructing Verma modules, and c
tures a formula for the Kac determinant of the Shapovalov form on these modules. This fo
is important both for the description of simple highest weight modules and for picking up tho
them which can be unitarizable, which is the question of primary interest in physical applica

It was clear from the very first definition of quasicrystal Lie algebras that this notion shou
closely connected with the notion of the higher rank Virasoro algebras, defined in Pater
Zassenhaus~1991!. The major difference between these algebras is that the indexing se
quasicrystal Lie algebras is a discrete subset ofR while for the higher rank Virasoro algebras th
corresponding set is everywhere dense. In the present article we establish this connec
realizing quasicrystal Lie algebras as factor algebras of some subalgebras of the highe
Virasoro algebras. This realization allows us to generalize quasicrystal Lie algebras in s
directions, preserving the property to have a discrete indexing set. Moreover, the notio
construction of a triangular decomposition for these algebras appears naturally in this fram
Further, we discuss the existence of conjugation on the constructed algebras, which pa
components of the positive and negative parts. In the case when such pairing exists, the de
of the Shapovalov form on Verma modules~see Shapovalov, 1972; Moody and Pianzola, 1995! is
straightforward and we compute the Kac determinant~see Shapovalov, 1972; Kac and Kazhda
1979!; Moody and Pianzola, 1995; Kac and Raina, 1987 of this form. In the case of the ape
Virasoro algebras this proves Twarock, 2000a, Conjecture V.7.

The article is organized as follows: in Secs. II and III we recall the definitions of quasicr
Lie algebras and higher rank Virasoro algebras. We give a realization of quasicrystal Lie alg

a!Electronic mail: mazor@math.uu.se, web-page: http://www.math.uu.se/~mazor/
27910022-2488/2002/43(5)/2791/11/$19.00 © 2002 American Institute of Physics
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as factor algebras of certain subalgebras of the higher rank Virasoro algebras in Sec. IV an
to construct parabolic and triangular decompositions of our algebras in Sec. V. In Sec. VI we
the Verma modules and, in particular, calculate the determinant of the Shapovalov form on
We finish with discussing several generalizations of our construction in Secs. VII and VIII.

II. QUASICRYSTAL LIE ALGEBRAS

Denote by (•)# the unique nontrivial automorphism of the fieldQ(A5) and letF be a field of
characteristic 0, containingA5. Let V be a nonempty, connected and bounded real set, whos
of inner points does not contain 0. Sett5 1

2(11A5). Then thecut-and-project quasicrystalS(V)
associated withV is the set of allxPZ@t#, such thatx#PV ~see Duneau and Katz, 1985!. The
quasicrystal Lie algebra L(V), associated withV, is defined as follows~see Pateraet al., 1998!:
it is generated overF by Lx , xPS(V), with the Lie bracket defined via

@Lx ,Ly#5H ~y2x!Lx1y , x1yPS~V!,

0, otherwise.

To define the aperiodic Witt and Virasoro algebras as it is done in Twarock~2000a!, we
introduce the mapw:Z@t#→Z, which sendsx5a1bt to w(x)5b. Then the aperiodic Witt
algebra AW(@0,1#,F) is generated overF by Lx , xPS(@0,1#), with the Lie bracket defined via

@Lx ,Ly#5H ~w~y!2w~x!!Lx1y , x1yPS~@0,1# !,

0, otherwise.

By Twarock~2000a!, Theorem III.4, the algebraAW(@0,1#,F) admits the unique central extensio
AV(@0,1#,F), called the aperiodic Virasoro algebra, which is generated overF by Lx , x
PS(@0,1#), andc, with the Lie bracket defined via

@Lx ,Ly#5H ~w~y!2w~x!!Lx1y1dw(x),2w(y)

w~x!32w~x!

12
c, x1yPS~@0,1# !,

0, otherwise.

III. THE HIGHER RANK VIRASORO ALGEBRAS

Let P denote the free Abelian groupZk of finite rankk andc:P→(F,1) a group monomor-
phism. Therank k VirasoroalgebraV(c,F), associated withc, is generated overF by elements
ex , xPP, and central termc, with the Lie bracket defined via

@ex ,ey#5~c~y!2c~x!!ex1y1dx,2y

c~x!32c~x!

12
c.

The rank k WittalgebraW(c,F) is the quotient ofV(c,F) modulo the central idealFc.
We will need the notion of a triangular decomposition forV(c,F) andW(c,F), introduced

and studied in Mazorchuk~1999!. The standard triangular decompositionof G5W(c,F) @or G
5V(c,F)] is associated with a linear order,,, on the Abelian groupP, satisfying the Archimed
law: for any 0,a,bPT there existskPN such thatb,ka. After fixing such, we defineG1

~resp.G2! as generated byex , x.0 ~resp.x,0!, andG0 as the span ofe0 @and c in case of
V(c,F)#. We getG5G2 % G0% G1 . The disadvantage of this construction is that the Ver
modules U(G) ^ U(G0% G1)Fl , l:G0→F, associated with this decomposition, have infini
dimensional weight spaces. The reason why this is the case is explained by the fact th
injective additive real one-dimensional projection of the set, indexingG2 , is not discrete. The
linear orders onP, satisfying the Archimed law, will be calledadmissible. For an admissible order
,, on P, we denote byP1 the set$xPP:0,x% and byP2 the set$xPP:x,0%. We also set
P1

0 5P1ø$0% andP2
0 5P2ø$0%.
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The notions of the rankk Virasoro and Witt algebras have an immediate generalization if
forgets about the requirement onc to be a monomorphism. From now on we will not require th
but, however, will assume thatc is nonzero. We will then understand the notions of the rank
Virasoro and Witt algebras in this more general sense.

IV. REALIZATION OF QUASICRYSTAL LIE ALGEBRAS

In this section we realize the quasicrystal Lie algebras as quotients of the positive pa
higher rank Virasoro algebra. Since the quasicrystal Lie algebras are defined in terms ofZ@t#,
which is a free Abelian group of rank 2, we naturally reduce our consideration to the case o
2 Virasoro algebras. So, we assume thatP.Z2. If , is an admissible order onP and I is a
non-negative idealof P, i.e., I ,P1

0 and xPI , x,y, implies yPI , then we denote byL(G,
,,I ) the Lie subalgebra ofG, generated by allex , xPI . Our main statement about the realizatio
of quasicrystal algebras is the following.

Theorem 1: Let L be a quasicrystal Lie algebra. Then there exist a rank 2 Witt algebra, G
5W(c,F), an admissible order, ,, on P, and two non-negative ideals I.J of G, such that L is
isomorphic to the quotient algebra L(G,,,I )/L(G,,,J).

Proof: Let c:P→F be the monomorphism sending a fixed basis,$a,b%, of P to $1,t%. For a,
bPP we definea,b provided 0,(c(b)2c(a))# and claim that this is an admissible order o
P. Indeed,, is obviously antisymmetric, antireflexive and transitive. So, it is a partial order.
from the definition it also follows immediately that, is linear. Further, for anya,b in P and
cPP we have (c(a1c)2c(b1c))#5(c(a1c2b2c))#5(c(a2b))#5(c(a)2c(b))#,0
and hencea1c,b1c, thus, is compatible with the addition inP. Finally, if 0,a,b, then
0,(c(a))# and hence there always existskPN such that (c(b)2c(ka))#5(c(b))#

2k(c(a))#,0, which shows that the order is admissible.
Consider the rank 2 Witt algebraG5W(c,F). Without loss of generality we can assume th

V,R>0 , as otherwise we can work with the order opposite to,. As V is a connected bounde
subset ofR, it has one of the following four forms:@a,b#, (a,b#, @a,b), (a,b) for some non-
negative real numbersa,b. We defineI and J as follows: I is generated by allex such that
c(x)#.a @resp.c(x)#>a# if a¹V ~resp.aPV!; andJ is generated by allex such thatc(x)#

.b @resp.c(x)#>b# if bPV ~resp.b¹V!. From the definition it follows immediately that bot
I and J are non-negative ideals ofP with respect to,. Hence, the algebrasL(G,,,I ) and
L(G,,,J) are well-defined subalgebras ofG andL(G,,,J),L(G,,,I ) by definition.

Now we show thatL(G,,,J) is actually an ideal ofL(G,,,I ). Indeed, ifxPI andyPJ, we
get that x1yPJ as J is an ideal ofP and xPP1

0 . Hence @ex ,ey#PL(G,,,J) for any ex

PL(G,,,I ) andeyPL(G,,,J).
Finally, we consider the mapf :L(G,,,I )→L(V) defined by

f ~ex!5H Lx , x#PV,

0, otherwise.

From the definition of the Lie brackets inL(V) ~Sec. II! and inG ~Sec. III! we immediately get
that f is a Lie algebra homomorphism. Moreover, it is also clear that its kernel coincides
L(G,,,J). This completes the proof. h

Theorem 1 motivates the following definition: letG5W(P,c) be a higher rank Witt algebra
~it is important here thatk.1, i.e., thatG is not the classical Witt algebra!, , be an admissible
order onP, andI .J be two non-negative ideals ofP with respect to the order,. Then we define
the Lie algebra A(P,c,,,I ,J) of quasicrystal typeas the quotient algebraL(G,,,I )/L(G,
,,J). In particular, all quasicrystal Lie algebras are Lie algebra of quasicrystal type. Now w
formulate some basic properties of Lie algebras of quasicrystal type and we see that these a
share a lot of properties of classical quasicrystal Lie algebras. We start with the following
observations.

Lemma 1: Let, be an admissible order onZk. Then there exists a homomorphism, s:P
→R, such thats(P6),R6 .
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Proof: Identify P with Zk,Rk. Using the description of admissible orders on an Abel
group from Zaytseva~1953!, we find a hyperplane,H, of Rk, such thatP1 coincides with the set
of points fromZk, which are settled on the same side with respect toH. Thens can be taken, e.g.
as the projection ontoH' with respect toH ~hereRk is considered as an Euclidean space in
natural way!.

For given G5W(P,c) and , we fix somes, which exists by Lemma 1. We definea
5 infxPI(s(x)) andb5 infxPJ(s(x)) and will use this notation in the following statement.

Proposition 1: LetA(P,c,,,I ,J) be a Lie algebra of quasicrystal type.

(1) A(P,c,,,I ,J) is Abelian if and only if2a>b.
(2) A(P,c,,,I ,J) has a nontrivial center if and only if aÞ0.
(3) A(P,c,,,I ,J) is nilpotent if and only if a.0 and JÞB.
(4) The algebraA(P,c,,,I ,J) is perfect if and only if a50 and 0¹I .
(5) If JÞB, then the algebraA(P,c,,,I ,J) is locally finite, that is, any finite set of elemen

from A(P,c,,,I ,J) generates a finite-dimensional Lie subalgebra ofA(P,c,,,I ,J). In par-
ticular, A(P,c,,,I ,J) has finite-dimensional subalgebras of arbitrary non-negative dim
sion.

Proof: All statements are easy corollaries of the fact that the indices of the generating
ments are added under the Lie bracket. Indeed, with this remark the first statement reduce
fact thatx>a and y>a implies x1y>2a>b; the second one reduces to the fact that for a
x>a andy.b2a one hasx1y.b; and the third one reduces to the fact that forka.b we have
kx.b for anyx>a. If aÞ0, the algebraA(P,c,,,I ,J) is nilpotent by statement 3 and hence n
perfect. It is also clear that it is impossible to get 0 in the derived algebra. But ifa50 and 0¹I ,
thenL(G,,,I )5G1 , s(P1) is dense inR1 and hence for anyx.0 there existy, zPP1 such
that y1z5x. This implies thatA(P,c,,,I ,J) is perfect in this case and hence property 4 hol

The first part of the last statement is equivalent to the trivial statement that a finite sub
R1 generates an additive semigroup, whose intersection with any bounded set is finite. To
the second part it is sufficient to consider the span ofeix , i 51, . . . ,n, such thatnx,b and (n
11)x.b. This completes the proof. h

For example, to realize the aperiodic Witt algebraAW(@0,1#), defined in Twarock~2000a!, as
a Lie algebra of quasicrystal type, one should takeP5Z2, c being the projection onto the secon

coordinate;, defined byx,y if and only if the inner product ofy2x with (1,1
2(12A5))

5(1,t#) is greater than zero;I 5P1
0 ; J5$xPP:(1,0),x%.

V. STANDARD AND NONSTANDARD TRIANGULAR DECOMPOSITIONS

The realization of Lie algebras of quasicrystal type, obtained in the previous section, allo
to adopt the technique from Mazorchuk~1999! to construct various triangular and parabo
decompositions of these algebras. The general procedure will look as follows.

Let A5A(P,c,,,I ,J) be a Lie algebra of quasicrystal type. Abusing notation we will den
by ex , xPI \J, the generators ofA. Choose any linear pre-order,d, on the Abelian groupP,
which is different from, and its opposite. DefineA6 as the Lie subalgebras ofA, generated by
all ex , 0d6x, and setA0 to be the Lie subalgebra ofA, generated by allex , 0dx andxd0. We
get the following obvious fact.

Lemma 2:A5A2 % A0% A1 .
Proof: Clearly, A5A21A01A1 . The fact that this is actually a direct sum decomposit

follows easily from the propertyxdy implies x1zdy1z. h

It is natural to call the decompositionA5A2 % A0% A1 the parabolic decompositionof A
associated withd. Given a parabolic decomposition and a simpleA0-module,V, one can extend
V to a A0% A1-module with the trivial action ofA1 and construct the associatedgeneralized
Verma module M(V) as follows:M (V)5U(A) ^ U(A0% A1)V.

If A0 happens to be rather special, it is natural to rename the corresponding parabolic d
position into it triangular decomposition. However, this is a subtle question and the terminolo
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I give here represents only my point of view and is inspired by the corresponding notions f
higher rank Witt algebras~Mazorchuk, 1999!.

We will say that the decompositionA5A2 % A0% A1 is astandard triangular decomposition
provided thatA05Fex for somexPP, which is not maximal inI \J. We callA5A2 % A0% A1 a
nonstandard triangular decompositionprovided thatA0 is a commutative Lie algebra and th
parabolic decomposition fails to be standard triangular. In the case of a triangular decompo
generalized Verma modules become classicalVerma modulesas in this case dim(V)51.

The first case is natural and corresponds to triangular decompositions of the higher ran
algebras~Mazorchuk, 1999!. Actually, here one has to be careful because, depending on wh
d satisfies the Archimed law or not, one can further distinguish two cases of standard tria
decompositions. We will not do this, as we will not study the difference between the corres
ing situations. But the second case has a striking difference from the first one and comes fr
definition of triangular decompositions for the aperiodic Virasoro algebra in Twarock~2000a!.
This means that the triangular decomposition for the aperiodic Virasoro algebra, construc
Twarock ~2000a!, is an example of a nonstandard triangular decomposition. We now will s
analogous situations in more detail.

We retain the notation fors, a,b from the previous section and further assume thata50 and
that there is an element,euPA, such thats(u)5b andc(u)50. Since, is an admissible order
such an element is unique and we retain the notationeu for it.

Lemma 3: Under the above assumptions we consider the vector spaceA85A% Fc. Then the
formula

@ex1ac,ey1bc#5@ex ,ey#1
c~x!32c~x!

12
dx,u2yc

defines onA8 the structure of a Lie algebra, which is a central extension ofA. Furthermore, if
e0PA, the algebraA8 is the unique nontrivial central extension ofA.

Proof: Up to an automorphism we can assume thatu5(1,0). Let a now denote the unique
element ofI \J, which can be writtena5(a1,1). Then it is obvious that for any elementyPI \J
eithery1a1 inI \J or y1a2(1,0)PI \J. Using this description of the minimal distances inI \J,
one can repeat the proof of Twarock~2000a, Theorem III.4! word by word. h

The algebraA, constructed in Lemma 3, is a natural generalization of the aperiodic Vira
algebra from Twarock~2000a!. In particular, the aperiodic Virasoro algebra coincides withA8 for
thoseA constructed at the end of the previous section. However, if, e.g., the rank ofP is bigger
than 2, we get an example ofA8, which differs from the aperiodic Virasoro algebra. We will ca
such algebrasA8 Virasoro-like algebras of quasicrystal type.

By assigning to the elementc the indexu we easily transfer the notions of parabolic and bo
standard and nonstandard triangular decompositions to the algebraA8. If P has rank 2, then, up to
taking the opposite order, the nonstandard triangular decomposition ofA, for which A08 contains
eu , is unique, and in the case of the aperiodic Virasoro algebra this coincides with the trian
decomposition, constructed in Twarock~2000a Sec. V!. For the rank 2 case one can easily co
struct an example ofA8 such that with respect to the unique natural nonstandard triang
decomposition mentioned above, dim(A08) is an arbitrary positive integer. Hence even in the ra
2 case one gets a lot of examples ofA8, which are different from the aperiodic Virasoro algebra
All these algebras will have discrete aperiodic root systems, and, if considered as graded
action ofe0 , all roots will be multiples with multiplicity dim(A08)22. In the case of the aperiodi
Virasoro algebra we have dim(A08)53 and hence all roots~with nonzero action ofe0) are multi-
plicity free. We will discuss this situation in more detail in the next section, when we will de
the Shapovalov form on the Verma modules and compute its determinant.

VI. SHAPOVALOV FORM AND KAC DETERMINANT

In this section we present several results on the structure of Verma modules over L
Virasoro-like algebras of quasicrystal type. As in the case of the Witt and the Virasoro alge
                                                                                                                



ty of
uasi-
form

.
l type,
ways

type,

ond
g

bility
ts

a

st, we
eight

ble

rs,

otation

-

y
sition.

er

2796 J. Math. Phys., Vol. 43, No. 5, May 2002 Volodymyr Mazorchuk

                    
their representation theory is more complicated, which, in particular, gives a bigger varie
simple highest weight modules. Our main tool in the case of the Virasoro-like algebras of q
crystal type and the corresponding Lie algebras of quasicrystal type will be the Shapovalov
on Verma modules, first defined in Shapovalov~1972! for simple finite-dimensional Lie algebras
However, we start with the more elementary general case of Lie algebras of quasicrysta
which happens to be really trivial. Before starting we just note that in this section we al
assume thatF is an algebraically closed field of characteristic zero.

We recall that, given a triangular decomposition,A5A2 % A0% A1 , aA-module,M , is called
a highest weight module, if there exists a generator,vPM , such thatA1v50.

Proposition 2: All simple highest weight modules over Lie algebras of quasicrystal
which correspond to a standard triangular decompositions withA05Fex,” @A,A#, are one-
dimensional. In particular, the corresponding Verma modules are always reducible.

Proof: This is a direct consequence ofA05Fex andex¹@A,A#. h

Proposition 3: All Verma modules over a Lie algebra of quasicrystal type, which corresp
to a standard triangular decompositions withA05Fex,@A,A#, are reducible. The correspondin
unique simple quotients are one-dimensional if and only if the eigenvalue of ex on the primitive
generator of the module is zero. Otherwise they are infinite-dimensional.

Proof: Let v be the canonical generator of the Verma module in question. The reduci
follows from the fact thatx is not maximal inI \J, and hence there are infinitely many elemen
yPP2 satisfyingex¹@ey ,A#, which implies thatU(A)eyv is a proper submodule of the Verm
module.

The second statement follows considering the set of elementsey , yPP2 , satisfying ex

P@ey ,A#, which is obviously infinite. h

So, we can now move on to the case of nonstandard triangular decompositions. Fir
reduce our consideration to the natural case of weight modules with finite-dimensional w
spaces, which corresponds to the situation when the root system ofA is discrete. This is only
possible in the case whenP.Z2. Here our main tool will be the Shapovalov form and to be a
to work with it we will also need the following assumptions from the previous section:e0PA; and
there iseuPA, such thats(u)5b andc(u)50. As it was mentioned above, this situation cove
for example, the case of the aperiodic Witt algebra. Since in the case of the algebraA8 the
arguments will be absolutely the same, we consider both cases simultaneously with all the n
for the algebraA8. The case ofA is then easily obtained by factoringc50 out.

We define conjugation onP via v(x)5u2x and it follows immediately from our assump
tions thatexPA8 implies ev(x)PA8. However, it is easy to see thatv does not extend to an
~anti!involution onA8. We note thats(v(x))5b2s(x).

We recall that the algebraA8 is graded by the adjoint action ofe0 ~or, more generally,A08) and
for C{aÞ0 the dimension ofAa8 is either 0 or dim(A08)22 @(dim(A0)21 in the case of the
algebraA#. We denote byD the set of all~nonzero! roots ofA8 with respect to this action and b
D6 the sets of all positive and negative roots corresponding to our triangular decompo
Obviously,v extends to a linear bijectionAa8→A2a8 for any aPDø$0%.

As A08 is commutative, simpleA08-modules are one-dimensional and have the formVl, where
l is an element from the dual space (A08)* , and the action is defined viag(v)5l(g)v for v
PVl andgPA08 . Let vl denote a canonical generator ofM (Vl).

Let D8 ~resp.D68 ! denote the semigroup, generated byD ~resp.D6!. Then the moduleM (Vl)
is a weight module with respect toA08 with the supportløl2D18 . All weight spaces ofM (Vl)
are finite dimensional. Moreover,M (Vl) is isomorphic toU(A28 )vl as a vector space.

The D6-gradation ofA68 extends to theD68 -gradation ofU(A68 ) and, in the antinvolutive
way, v extends to a linear componentwise isomorphism fromU(A18 ) to U(A28 ) and back, which
matchesU(A18 )a with U(A28 )2a .

For mPsupp(M (Vl)), m5l2n, nPD18 , we define the itShapovalov form Fl,n on M (Vl)m

by setting thatFl,n( f vl ,gvl), f ,gPU(A28 )2n , equals the coefficient ofv( f )gvlPM (Vl)l ,
written in the basis$vl%. The following properties ofFl5 % nPD8Fl,n are standard and the read
can consult Kac and Kazhdan~1979! and Moody and Pianzola~1995! for the arguments.
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Lemma 4: (1.) M(Vl) is simple if and only if Fl is nondegenerate.(2.) The kernel of Fl
coincides with the unique maximal submodule of M(Vl).

Hence in order to study the reducibility ofM (Vl) it is sufficient to compute the determinan
of Fl,n for all l andn. To be able to do this we consider the following monomial generator
U(A28 )2n : G5G(n)5$g(x1 , . . . ,xk)5ex1

. . . exk
: xiPD2 ; ( ixi52n;s(xi)<s(xi 11)%. We de-

fine the linear order! on this set of generators as the lexicographical order with respect to
values ofs(xi). The key property of this construction is the following.

Lemma 5: If g(x1 , . . . ,xk)PG and g(y1 , . . . ,ym)PG are such that g(x1 , . . . ,xk)
!g(y1 , . . . ,ym), then Fl,n(g(x1 , . . . ,xk)vl ,g(y1 , . . . ,ym)vl)50.

Proof: Consider the smallest indexi such thats(xi),s(yi). Thens(v(xi)).b2s(yi) and
henceev(xi )

commutes witheyi
and thus with alleyj

, j > i , since for suchj we haves(yj )

>s(yi) from the definition ofG. For j , i we havexj5uj and thus@ev(xj )
,eyj

#PA08 . We can
write

ev(xi )
~v~ex1

¯exi 21
!ey1

¯eyi 21
!eyi

¯eym
vl5«~v~ex1

¯exi 21
!ey1

¯eyi 21
!ev(xi )

eyi
¯eym

vl

1further terms

for some«PF, where in the further terms of the expansion someev(xj )
, j , i , occur already after

the correspondingeyj
. As ev(xi )

commutes with alleyj
, j > i , we get that the first summand equa

zero.
Now consider one of theother termsand letev(xj )

be the factor occurring most to the right i
the monomial. This means, in particular, that fors, j this monomial contains@ev(xs)

,eys
#, which

are the elements ofA08 and thus, up to a scalar factor, can be moved to the left. In partic
s(v(xs)) is the biggest value among all others occurring in this monomial. If the elemeney ,
standing next toev(xj )

satisfiesyÞxj , this means thatev(xj )
commutes withey and hence the

monomial contributes 0 to the global sum. Otherwise the number of factors, standing to the
from ev(xj )

, which equalxj , is less than the same number before the last commutation. H
induction in this number reduces the problem to the caseyÞxj , thus proving that all monomials
occurring inother termscontribute 0 to the global sum.

From this it follows directly thatFl,n(g(x1 , . . . ,xk)vl ,g(y1 , . . . ,ym)vl)50, which com-
pletes the proof. h

From Lemma 5 we immediately get the following statement, which, in particular, pr
Twarock ~2000a, Conjecture V.7!.

Corollary 1: The determinant of Fl,n coincides with the product of diagonal elemen
Fl,n(g(x1 , . . . ,xk)vl ,g(x1 , . . . ,xk)vl).

Now we can formulate explicit results for the determinant of the Shapovalov form and
corresponding corollaries for the structure ofM (Vl). Denote byP8 the set of all nonzeroxPP
such thatexPA8 is nonzero. Then the decompositionD5D2øD1 induces a decompositionP8
5P28 øP18 . For nPD18 and xPP28 we denote bypn(x) the number of occurrences ofex as
factors in the canonical decomposition of all monomials inG(n).

Theorem 2: Up to a nonzero constant the determinant of Fl,n equals

)
xPP28

S l~eu!2
c~x!221

24
l~c! D pn(x)

.

Proof: According to Lemma 4, the corresponding determinant is the product of

Fl,m~g~x1 , . . . ,xk!vl ,g~x1 , . . . ,xk!vl!
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over all g(x1 , . . . ,xk)PG(n). First, for xPP28 we observe that@eu2x ,eu#5c(2x)eu2@c(x)3

2c(x)/12#c, asc(u)50. Moreover,@eu2x ,eu# is in fact central inA8. Hence, we can move th
nonzero factor 2c(x) out and get that, up to a nonzero constant factor, we have

Fl,m~g~x1 , . . . ,xk!vl ,g~x1 , . . . ,xk!vl!5)
i 51

k S l~eu!2
c~xi !

221

24
l~c! D .

The general formula is now obtained by multiplying these expressions for allg(x1 , . . . ,xk)
PG(n). h

This theorem immediately implies the following structural result forM (Vl).
Corollary 2: M(Vl) is irreducible if and only if24l(eu)Þ(a221)l(c) for all aPD28 .
Proof: Follows from Theorem 2 and the fact that we havec(x)5a provided thatxPAa8 .h
In particular, we see that the reducibility ofM (Vl) depends only onl(eu) andl(c) and does

not depend on the values ofl on other generators ofA08 .
Let F5C. Call a A8-module,M , v-unitarizableprovided that there exists an inner produ

(•,•), on M such that (exv,w)5(v,ev(x)w) @resp. (cv,w)5(v,cw)] for all v,wPM . For the
unique simple quotient of the Verma moduleM (Vl) this is equivalent to the fact that the Shapo
alov form onM (Vl) is non-negative~Of course, the Shapovalov form, being symmetric, can
be considered as an inner product; however, one can consider it on the real part and exten
complexification in the Hermitian way.! Here our determinant formula immediately implies t
following unitarizability result.

Corollary 3: Assume thatc(P),R andc(x)<21 for all xPP28 , l(eu)<0, l(c)>0. Then
the unique simple quotient of M(Vl) is v-unitarizable.

Proof: Under these conditions all factors of the diagonal elements of the matrix of the Sh
alov form are non-negative and hence all leading minors are non-negative as well. This impl
statement. h

Using these results we also get some information about highest weight modules, ass
with standard triangular decompositions.

Corollary 4: The dimensions of the weight spaces of infinite-dimensional highest weight
ules over Lie algebras of quasicrystal type, associated with standard triangular decompos
are not uniformly bounded.

Proof: Let A05Fex be the zero component of the given standard triangular decompos
Then we can factor our an ideal ofA such that the factor algebra is still of quasicrystal type,
the elementx is maximal in the correspondingI \J, and hence the induced triangular decompo
tion is nonstandard. Now we havel(ex)Þ0 and hence the corresponding Verma module over
algebra is simple and the dimensions of its weight spaces are obviously unbounded. B
module naturally embeds~as a vector subspace! into the simple highest weight module which w
started with. h

VII. FURTHER GENERALIZATIONS OF QUASICRYSTAL LIE ALGEBRAS

Geometrical realization of the algebraA, obtained in Sec. IV, motivates the following gene
alization of the class of Lie algebras of quasicrystal type.

We consider an arbitrary rankn Witt algebraG5G(P,c) with P.Zn being realized inRn in
a natural way. LetV be a convex subset ofRn, containing at least one nonzero point ofP, and
satisfying the following it 0-star condition:vPV implieslvPV for all l.1. In this case we will
call V a 0-star set. Denote byL(V) the vector subspace inG, spanned byex , xPV.

Lemma 6: L(V) is a Lie subalgebra ofG.

Proof: If x,yPPùV, thenx1y52( 1
2x1 1

2y). 1
2x1 1

2y belongs toV because of convexity and
thusx1yPV by the 0-star condition. h

Lemma 7: LetV be a0-star set, vPV and l.0. Then, if the setVl,v5lv1V contains at
least one nonzero point of P, it is a 0-star set. Moreover, Vl,v,V.
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Proof: Clearly, Vl,v is convex. Further, ifwPV and g.1, then g(w1lv)5g(l11)
3(@1/(l11)# w1@l/(l11)# v) belongs toV by the same arguments as in Lemma 6. T
completes the proof. h

Lemma 8: LetV be a0-star set, vPV and l.0. Then L(Vl,v) is an ideal of L(V).
Proof: If wPV and w85w91vPVl,v for somew9PV, thenw1w85w1w91vPVl,v .

This implies the statement. h

Hence, for arbitraryG, V and v as above we can form the algebraA(P,c,V,l,v)
5L(V)/L(Vl,v), which we will call a Lie algebra of convex quasicrystal type. To obtain the
usual Lie algebra of quasicrystal type, one should takeV to be a half-space~open or closed!,
which does not contain 0 as an inner point. The basic properties of Lie algebras of c
quasicrystal type are similar to those of Lie algebra of quasicrystal type, however, their for
tion is more complicated because it usually depends on the structure ofV. Here we list only some
most straightforward ones.

Proposition 4: LetA5A(P,c,V,l,v) be a Lie algebra of convex quasicrystal type and le
denote the infimum over the distances of the points inVùP to 0. Assume thatdim(A).1 and that
for any xPV some neighborhood~in Rn) of 2x belongs toV. Then

(1) if a.0, then any element ofA is nilpotent.
(2) A is locally finite.

Proof: If xPS5V\Vl,v , then there always existsy such thatux2yu<uvu and such that
y¹V. Let wPV. If some ball of radiusr about 2w belongs toV, then forl.1 the point 2lw
belongs toV together with the ball of radiuslr around it. Makinglr .uvu we get that 2lw
PVl,v . This implies the first statement.

If the set$w1 , . . . ,wk%,V is finite, then we find somer such that 2wi belongs toV together
with its ball of radiusr about 2wi . Then the same is true for all linear combinations of the
elements with non-negative integer coefficients. By the same arguments as in the previou
graph, there existsNPN such that any linear combination of$Nw1 , . . . ,Nwk% with non-negative
integer coefficients belongs toVl,v . This implies the second statement. h

Let us study an example of such an algebra, which, as we will show, has some inter
properties. TakeP5Z2, c the projection onto the second component,V5$wPR2:(w,(1,1))
>0 and (w,(1,21))>0%, v5(n1e,0), nPN, eP(0,1). The corresponding algebraA
5A(P,c,V,l,v) is graded with respect to thee0 action with graded components correspondi
to all integers and having dimensionn. In particular, one can define and study triangular~para-
bolic! decompositions of this algebra and corresponding~generalized! Verma modules. The se
P85Pù(V\Vl,v) coincides with$(a,b):0<a2ubu<n%. Define the conjugationv on this set via
v(a,b)5(2ubu1n2a,2b). Then we have the natural notions of Verma modules and the Sha
alov form on them. In our situation we haveD15N.

Lemma 9: The Verma module M(Vl) is always reducible. However, the unique simple qu
tient of M(Vl) is infinite dimensional if and only if at least one of the numbersl(e(2,0)), . . . ,
l(e(n,0)) is nonzero. Otherwise it is one-dimensional.

Proof: We note that the intersection of@A, A# with A0 coincides with the linear spanÃ0 of
elements$e(2,0) , . . . ,e(n,0)%. Hence, if the restriction ofl to Ã0 is zero, the Shapovalov form i
identically zero on allM (Vl)l2k , kPN.

Otherwise, assume thatl(e( i ,o))Þ0 and takeexPA1 and eyPA21 such that @ex ,ey#
5e( i ,0) . We getFl,k(ev(y)

k ,ex
k)Þ0 and the statement is proved. h

From Lemma 9 it follows that there exists a large family of infinite-dimensional high
weight modules overA with respect to this triangular decomposition. The study of the prope
of these modules, e.g., their characters, multiplicities and unitarizability seems to be an inte
problem.

VIII. APPLICATION TO THE q-ANALOG OF THE VIRASORO ALGEBRAS

All constructions described above work perfectly also in the case of different quantum an
of the Virasoro algebra@and, actually, in the case of arbitraryZn-graded Lie algebra, in particula
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everything works smoothly for generalized Witt algebras in the sense of Kaplansky~see Ree,
1956!#. As we saw that the most interesting case is that of rank 2, we would like to finish
article with outlining some results related to theq-analog of the Virasoro algebra, defined
Kirkman et al. ~1994!. Let F5C andqPC be such thatqÞ0 andq is not a root of unity. We set
P5Z2 and will write an element,xPP, asx5(x1 ,x2). Then the algebraVq is generated byex ,
xPP\$(0,0)%, with the Lie brackets defined via@ex ,ey#5(qx2y12qx1y2)ex1y . For ,, I andJ as
in Sec. IV, we define the algebraA(Vq ,,,I ,J) in the same way as forA(P,,,I ,J) but using the
algebraVq instead of the rank 2 Virasoro algebra. We extend the algebraA(P,,,I ,J) by a
derivation, d, satisfying @d,ex#5x1ex , and will denote the extended algebra also byA(P,
,,I ,J). The elementd will always belong toA0 in any parabolic decomposition and the notio
of standard triangular and triangular decompositions are transfered modulod. We will also assume
that I 5P1 and thatI \J has the maximal elementu.

Theorem 3:

(1) Any parabolic decomposition ofA(Vq ,<,I ,J) is in fact a triangular decomposition.
(2) All Verma modules overA(Vq ,<,I ,J) associated with a triangular decomposition satisfyi

eu¹A0 are reducible.
(3) The unique simple quotient of a Verma module, M (Vl), is one-dimensional if and only i

l(ex)50 for all exPA0 . Otherwise it is infinite-dimensional.
(4) The Verma module M(Vl) associated with a triangular decomposition satisfying euPA0 is

simple if and only ifl(eu)Þ0.
(5) If q is real and the dimension of the unique simple quotient of M(Vl) is greater that one, this

module is notv-unitarizable and the dimensions of its weight spaces are not bounded.

Proof: The first statement follows from the fact that@ex ,ey#50 in Vq provided thatx5ly.
The second and the third ones are analogous to Proposition 3. For the fourth statement we
the arguments of Lemma 5 and derive that the determinant of the Shapovalov form onM (Vl)m is
the product of factors of the formq2x2x1(qu2x12qu1x2)l(eu). Since xPP28 and u cannot be
proportional, we derive that this factor is nonzero if and only ifl(eu)Þ0, which implies the fourth
statement. The first part of the last statement follows from the observation that for any reaq we
can always findxPP8, arbitrary small with respect to,, such thatqu2x12qu1x2 is positive~resp.
negative! and the second part is analogous to Corollary 4. h

ACKNOWLEDGMENTS

The research was partially supported by The Royal Swedish Academy of Sciences. The
thanks Reidun Twarock for many useful remarks on the article.

Duneau, M., and Katz, A., ‘‘Quasiperiodic patterns,’’ Phys. Rev. Lett.54, 2688–2691~1985!.
Kac, V., and Kazhdan, D., ‘‘Structure of representations with highest weight of infinite-dimensional Lie algebras,’

Math. 34~1!, 97–108~1979!.
Kac, V., and Raina, V., ‘‘Bombay lectures on highest weight representations of infinite-dimensional Lie algebra

Advanced Series in Mathematical Physics, Vol. 2 ~World Scientific, Teaneck, NJ, 1987!.
Katz, A., ‘‘Introduction aux quasicristaux~French! ~Introduction to quasicrystals!,’’ Séminaire Bourbaki. Vol. 1997/98.
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Static Bloch sums for the square array
R. C. McPhedrana) and N. A. Nicorovici
School of Physics, University of Sydney, New South Wales 2006, Australia

~Received 30 January 2002; accepted for publication 11 February 2002!

We consider sums arising in doubly quasiperiodic Green’s functions for the Laplace
equation, over the square array. The sums are represented as Fourier series, and it is
shown that the coefficients in the series can be obtained as polynomials. We give
expressions from which the first six array sums can be evaluated efficiently, and
accurate to better than one part in 107, over most of the Brillouin zone. ©2002
American Institute of Physics.@DOI: 10.1063/1.1467968#

I. INTRODUCTION

Lattice sums for Laplace’s equation have a long history, as discussed by Glasser and Z1

They were introduced into physics by Appell,2 and important contributions to sums for arrays a
lattices were made by Rayleigh in 1892.3 Glasser and Zucker discuss the many investigati
relating to Madelung sums in solid state physics, and numerical methods of summation rela
Ewald’s method.4 They also stress the value of sums which can be evaluated in closed form

Here, we wish to consider a class of sums for the square array, which can be developed
form of rapidly convergent Fourier series, with coefficients which are polynomials in form.
sums in question appear not to have been considered in two dimensions before, but they a
in form to lattice sums studied by Born and Bradburn.5 They differ from the multipole sums o
Rayleigh and subsequent authors by the insertion of a Bloch factor, depending on a wave ve
crystal momentumk0 . Such a factor would arise in a study of electrostatic problems, in
quasistatic limit, involving arrays of inclusions with dielectric constant modulated by a plane
optical beam, for example. We analyze the sums in Fourier series according to the anu0

specifying the direction ofk0 . The Fourier coefficients depend on the magnitudek0 in a way we
show is given by array sums calculated in closed form by Nicoroviciet al.6

We show that these Fourier series converge rapidly, and exhibit formulas for the first s
most slowly convergent of the sums. These formulas can be used to calculate the sums ov
of the Brillouin zone to an accuracy better than one part in 107.

II. BLOCH SUMS AND FOURIER SERIES

We consider the following two-dimensional lattice sums:

s l~k0!5 (
pÞ0

exp~ i l wp!

Rp
l eik0"Rp. ~1!

Here we sum over a two-dimensional array specified by pointsRp5(Rp ,wp), the latter being the
polar representation. The exponential term containingk0 will be recognized as a Bloch factor, wit
k0 being the crystal momentum. We specify in polar formk05(k0 ,u0). We will be interested
primarily in sums of orderl in the range zero to six. The sums for ordersl .6 can be easily
evaluated by direct summation.

We relate the static sums~1! to corresponding dynamic forms arising for the Helmho
equation:

a!Electronic mail: ross@physics.usyd.edu.au
28020022-2488/2002/43(5)/2802/12/$19.00 © 2002 American Institute of Physics
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Sl
Y~k,k0!5 (

pÞ0
Yl~kRp! eil wp eik0"Rp, ~2!

for which we know that7

Sl
Y~k,k0!Jl~kj!52Y0~kj! d l ,02

4i l

A (
h

Jl~Qhj!

Qh
22k2 eil uh. ~3!

Here the sum is carried out over the reciprocal array of vectorsKh , and Qh5Kh1k0

5(Qh ,uh). Also, A denotes the area of the unit cell in the direct lattice.
If we take the limit ask→0 in ~2!, we find for lÞ0,

lim
k→0

F 2p

~ l 21!! S k

2D l

Sl
Y~k,k0!G5 (

pÞ0

exp~ i l wp!

Rp
l eik0"Rp5s l~k0!. ~4!

Then, by substituting~3! in ~4!, we obtain

s l~k0!5
4p l i l

Aj l (
h

Jl~Qhj!

Qh
2 eil uh, ~5!

wherej is an arbitrary length, no longer than the distance from the origin to the nearest po
the unit cell boundary in direct space. This expression can be accelerated by succ
integration,7 and forms one method for evaluating the static Bloch sums.

We write the definition~1! in the form

s l~k0!5 (
pÞ0

exp~ i l wp!

Rp
l eik0Rp cos(u02wp), ~6!

and expand the second exponential factor to give

s l~k0!5 (
pÞ0

exp~ i l wp!

Rp
l (

q
i qJq~k0Rp!eiq(u02wp). ~7!

Hence, if we writes l(k0) in the form of an angular Fourier series

s l~k0!5(
q

cq
l ~k0!eiqu0, ~8!

we can identify the coefficients as

cq
l ~k0!5 i q(

pÞ0

Jq~k0Rp!

Rp
l expi ( l 2q)wp. ~9!

We now specialize to the case of a square array of periodd. Then the array sums in~9! are
nonzero only if the integerl 2q is divisible by four. This is a direct consequence of theC4v
symmetry of the array: the sums~9! remain unchanged under rotations ofp/2.

We compare the array sums with the dimensionless sums studied by Nicoroviciet al.:6

Sl ,4m,n~j/D !5
1

Dn (
hÞ0

Jl~Khj!

Kh
n ei4mch, ~10!

whereKh5(2p/D)(h1 ,h2) runs over the reciprocal array~itself a square array! to a square array
of periodD. Given thatRp5d(p1 ,p2), we see that
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cq
l ~k0!5 i qS 2p

d D l

Sq,l 2q,l S k0d

2p D , ~11!

wherel 2q must be divisible by four for the sum to be nonzero.
Using ~11! in ~8!, we obtain

s l~k0!5S 2p i

d D l

(
m52`

`

Sl 24m,4m,l S k0d

2p Dei ( l 24m)u0. ~12!

III. THE LOWEST SUM AND ITS CONSEQUENCES

s0~k0!5 (
pÞ0

eik0"Rp5(
m

S4m,4m,0S k0d

2p De24imu0, ~13!

for the square array. Now,

(
pÞ0

eik0"Rp5
4p2

A (
h

d~k02Kh!215
4p2

A
d~k0!21, ~14!

for k0 in the Brillouin zone. Evaluating the Fourier coefficients of the delta function, we find

S4m,4m,0~j/D !5F 1

2p

d~j/D !

j/D
21Gdm,0 . ~15!

Hence, the Fourier series fors0 reduces to a single, distributive term:

s0~k0!5
2p

k0d2 d~k0!21, ~16!

for k0 in the first Brillouin zone.
We can use the result~15! to build up analytic formulas for those lattice sumsSl ,m,n for which

the index suml 1m1n is even. We can increase the indicesl andn using the following formula:6

E
0

j

h l 11Sl ,m,n~h!dh5j l 11Sl 11,m,n11~j!, ~17!

working in dimensionless variables~i.e., replacingj/D by j in working!. This gives, used once

S4m11,4m,1~j/D !5F D

2pj
2

j

2DG dm,0 . ~18!

Continuing this process, forl>1, we obtain

S4m1 l ,4m,l~j/D !5
1

~2l !!! F l

p S j

D D l 22

2S j

D D l G dm,0 , ~19!

where (2l )!! 52l (2l 22)(2l 24)...2.
The result~19! is very useful. It guarantees that all negativem terms in the expansion~12! are

zero, and also gives the termm50:

s l~k0!5S 2p i

d D l H 1

~2l !!! F l

p S k0d

2p D l 22

2S k0d

2p D l G1 (
m>1

`

Sl 24m,4m,l S k0d

2p De24imu0J eil u0. ~20!
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We can extend these results, using6

Sl 11,m,n21~j!52j l@j2 lSl ,m,n~j!#8, ~21!

with the prime denoting differentiation. Using this once with~19!, we obtain forl>1,

S4m1 l 11,4m,l 21~j/D !5
2

2p~2l 22!!! S j

D D l 23

dm,0 . ~22!

Thus, the sum form50 is singular atj50 for l 51,2, and regular forl .3. Using~21! a second
time, we have forl>2

S4m1 l 12,4m,l 22~j/D !5
234

2p~2l 22!!! S j

D D l 24

dm,0 . ~23!

Generalizing, we find for an arbitrary positive integerp

S4m1 l 1p,4m,l 2p~j/D !5
~2p!!!

2p~2l 22!!! S j

D D l 2p22

dm,0 . ~24!

Three simple double sums which are particular cases of the above-given results are

(
h

J0~Khj!5 (
h1 ,h252`

`

J0@2p~j/D !Ah1
21h2

2#5
d~j/D !

2pj/D
, ~25!

(
h

J2~Khj!5
1

p S D

j D 2

, ~26!

and

(
h

J4~Khj!5
2

p S D

j D 2

. ~27!

The general form is

(
h

J2l~Khj!5
l

p S D

j D 2

. ~28!

We give numerical confirmation of the results~26! and~27! in Fig. 1. Note that the averages of th
numerical sums over the ranges shown are 1.2737 and 2.5483; the analytic values ap
.1.2732 and 8/p.2.5465, respectively. Thus, even though the raw sums in Fig. 1 osc
rapidly, their average over a large ensemble of regions of summation can be used as
indicator of the correct value.

IV. ANALYTIC FORMS FOR THE FOURIER SERIES

We will now assemble the series for thes l , with l .0. Note that, in this section, we will us
the notationst5j/D andk5k0d/2p to simplify the formulas.

We first consider the casel 51. The sums we require are then of the formS124m,4m,1

52S4m21,4m,1 , and can be evaluated using the following general expression:6

Sl 24m,4m,l~t!5
~21! l~4m2 l !!

p2l~ l 21!! (
s50

l 21
~4m112 l !s~12 l !s

s! ~s14m2 l !!
s2s14m22l 12

(4m) t2s14m2 l2
1

l ! S t

2D l

d l ,2m .

~29!
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Here we have used the Pochhammer symbol: (a)051, (a)s5a(a11)¯(a1s21), and the quan-
tities sn

(m) are lattice sums with no Bloch factor:

sn
(m)2

2p

m
dn,25 (

pÞ0

exp~ imwp!

Rp
n . ~30!

They are nonzero unlessm is a multiple of four, except forn52, when they are conditionally
convergent. Ifn52, we denote the left-hand side of~30! by s̃n

(m) , which has the effect of
combining together the Kronecker delta term in~29! with the terms50 from the sum. The
necessary sums forl 51 require only one term in~29!:

FIG. 1. The sums~26! ~above! and ~27! ~below! as a function of the size of the square summation region. The ana
results are indicated by the arrows.
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S124m,4m,1~t!52
s4m

(4m)

2p
t4m21. ~31!

The result~31! enables us to derive the desired series fors1 :

s1~k0!5
i

d S 1

k
2pk2 (

m51

`

s4m
(4m)k4m21e24imu0D eiu0. ~32!

We have derived this expression in another way, using a result given by Glasser,8 expressing

F5 (
kÞ0

exp~ ik"S!

k2 , ~33!

a two-dimensional sum over a square or rectangular array, in terms of the logarithm of the
theta functionu1 . From Glasser’s result, we may obtains1 by application of the complex gradien
operator]/]k0x1 i ]/]k0y . Figure 2 shows the variation ofs1 in the first quadrant of the Brillouin
zone, with the singularity at the origin orG point the most prominent feature.

We next considerl 52. Here,

S224m,4m,2~t!5S4m22,4m,2~t!, ~34!

and, using~29!,

FIG. 2. Real part~above! and imaginary part~below! of s1 in the Brillouin zone.
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S224m,4m,2~t!5
1

4p
~s4m22

(4m) t4m222s4m
(4m)t4m!2

1

2 S t

2D 2

dm,1 . ~35!

Using ~35! in ~20!, we obtain

s2~k0!5
2p

d2 H 12
p

2
k21 (

m51

` F S s4m22
(4m) 2

p

2
dm,1Dk4m222s4m

(4m)k4mGe24imu0J e2iu0. ~36!

We have attempted to derive this expression from Glasser’s results, but the algebra invo
considerably more involved than in the casel 51. Figure 3 shows the variation ofs2 across the
Brillouin zone; note the nonanalytic nature of the behavior nearG, evident from the form of~36!.

If l>3, special sums occur in~20! which cannot be evaluated using the general form~29!. For
l 53, the only special sum is

S21,4,3~t!52S1,4,3~t!52F 1

~2p!2 s̃2
(4) t

2
2

1

p
s̃2

(4)S t

2D 3

1
2

p
s4

(4)S t

2D 5G , ~37!

wheres̃2
(4)5s2

(4)2p/2. The third order sum is

s3~k0!5S 2p i

d D 3F 1

16p
k2

1

48
k32S1,4,3~k! e24iu02 (

m52

`

S4m23,4m,3~k! e24imu0Ge3iu0. ~38!

FIG. 3. Real part~above! and imaginary part~below! of s2 in the Brillouin zone.
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We show the variation ofs3 across the Brillouin zone in Fig. 4. The sum is now continuous aG.
For l 54, we require

S0,4,4~t!5
1

~2p!4 s4
(4)2

1

~2p!2 s̃2
(4)S t

2D 2

1
1

2p
s̃2

(4)S t

2D 4

2
2

3p
s4

(4)S t

2D 6

. ~39!

The fourth-order sum consequently is

s4~k0!5S 2p i

d D 4F 1

384S 4

p
k31k4D1S0,4,4~k! e24iu01 (

m52

`

S4m24,4m,4~k! e24imu0Ge4iu0.

~40!

We show the variation ofs4 across the Brillouin zone in Fig. 5.
For l 55, the special sums are

S1,4,5~t!5
1

~2p!4 s4
(4) t

2
2

1

8p2 s̃2
(4)S t

2D 3

1
1

6p
s̃2

(4)S t

2D 5

2
1

6p
s4

(4)S t

2D 7

, ~41!

and

S3,8,5~t!5
t3

768p2 @p2 t21p t2 ~24 s2
(8)16 t2 s4

(8)24 t4 s6
(8)1t6 s8

(8)!14 s̃2
(8)#, ~42!

FIG. 4. Real part~above! and imaginary part~below! of s3 in the Brillouin zone.
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wheres̃2
(8)5s2

(8)2p/4. So, the fifth-order sum is

s5~k0!5S 2p i

d D 5F 1

3840S 5

p
k32k5D1S1,4,5~k! e24iu02 (

m52

`

S4m25,4m,5~k! e24imu0Ge5iu0.

~43!

We show the variation ofs5 across the Brillouin zone in Fig. 6.
Lastly, for l 56, we need

S2,4,6~t!5
t2

7680p4 @~602p3 t6! s4
(4)15 p2 t2 ~241p t2! s̃2

(4)#, ~44!

and

S2,8,6~t!5
2t2

15 360p4 @5 p4 t42120s4
(8)12 p3 t4 ~210s2

(8)110t2 s4
(8)25 t4 s6

(8)1t6 s8
(8)!

140p2 t2 s̃2
(8)#. ~45!

So, the sixth-order sum is

FIG. 5. Real part~above! and imaginary part~below! of s4 in the Brillouin zone.
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s6~k0!5S 2p i

d D 6F 1

46 080S 6

p
k41k6D1S2,8,6~k!e24iu01 (

m52

`

S4m26,4m,6~k!e24imu0Ge6iu0.

~46!

We show the variation ofs6 across the Brillouin zone in Fig. 7.
One interesting trend evident in Figs. 1–6 is thats l tends to become increasingly smooth

its angular variation with increasingl . The prefactor exp(ilu0) might suggest the contrary, but i
fact the dominant contribution comes fromm51, not m50, i.e., the angular variation goes a
exp@i(l24)u0# for moderatel .

The figures in this section were calculated with expansions running up tom56. The necessary
static lattice sumssn

(m) are given to ten figures accuracy in Table I; some of these have previo
been tabulated by Movchanet al.,9 Helsing,10 and Berman and Greengard.11 For n>4, they can be
evaluated readily by direct summation. Forn52, they are evaluated by the method described
Nicorovici et al.:6 a rapidly convergent sumS is found in which the relevants occurs, and the
former is evaluated, being used in an equation for the desireds. Of course, direct summation i
not possible for sumss2

4m , since the result obtained depends on the shape chosen for the
mation region. Table II shows thatm56 gives relative precision of better than one part in 107 at
a point halfway across the Brillouin zone; accuracy better than this can be expected at
further inside the Brillouin zone.

For generall , we exhibit the form:

FIG. 6. Real part~above! and imaginary part~below! of s5 in the Brillouin zone.
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s l~k0!5S 2p i

d D lF 1

~2l !!! S l

p
k l 222k l D1 (

m>1,l 24m.0
Sl 24m,4m,l~k! e24imu0

1 (
4m> l

`

~21! lS4m2 l ,4m,l~k! e24imu0Geil u0. ~47!

Here, exceptional sums havel ,2m; all other sums may be evaluated using~29!. This expression

FIG. 7. Real part~above! and imaginary part~below! of s6 in the Brillouin zone.

TABLE I. The lattice sumssn
(4m) (n54m,4m22,...) for the square array.

m

n

4m 4m22 4m24 4m26 4m28 4m210

1 3.151 212 002 2 4.078 451 161 2
2 4.255 773 035 4 4.515 515 435 4 5.030 666 214 7 6.790 313 626 7
3 3.938 849 012 8 3.880 730 845 9 3.774 451 370 1 3.604 335 558 1 3.441 886 923 8 4.358 15
4 4.015 695 033 0 4.031 540 313 8 4.063 717 271 7 4.130 191 080 2 4.272 712 121 1 4.603 23
5 3.996 096 753 2 3.992 198 698 9 3.984 415 731 6 3.968 892 733 6 3.937 971 863 3 3.876 41
6 4.000 976 805 3 4.001 954 100 8 4.003 910 177 5 4.007 828 339 1 4.015 689 074 5 4.031 51
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may be regarded as complementary to expressions~1! and ~5!. As we havek5k0d/2p<1/& in
the Brillouin zone of the square array, the series involved in~47! converge rapidly, but asl
increases they become more and more cumbersome. On the other hand, asl increases, direct
summation of~1! becomes more and more computationally viable. The expressions~5! can be
used for alll , but the occurrence of Bessel functions in the summand means they can be s
compute. Thus, we recommend use of~47! for small l , and~1! for l moderate to large.
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Pseudo-Hermiticity versus PT-symmetry. II. A complete
characterization of non-Hermitian Hamiltonians
with a real spectrum
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We give a necessary and sufficient condition for the reality of the spectrum of a
non-Hermitian Hamiltonian admitting a complete set of biorthonormal
eigenvectors. ©2002 American Institute of Physics.@DOI: 10.1063/1.1461427#

Recently, we have explored in Ref. 1 the basic mathematical structure underlying the sp
properties ofPT-symmetric Hamiltonians.2 In particular, we have shown that these properties
associated with a class of more general~not necessarily Hermitian! HamiltoniansH satisfying

H†5h H h21, ~1!

where a dagger denotes the adjoint of the corresponding operator andh is a Hermitian invertible
linear operator. We have termed such a Hamiltonian ‘‘h-pseudo-Hermitian.’’ Hermitian and the
PT-symmetric Hamiltonians that admit a complete set of biorthonormal eigenvectors cons
subsets of the set of pseudo-Hermitian Hamiltonians. For aPT-symmetric Hamiltonian, the ex
actness ofPT-symmetry ensures the reality of the energy spectrum. The purpose of this art
to provide a complete characterization of the Hamiltonians that have a real spectrum assum
they are endowed with a complete set of biorthonormal eigenvectors.

By definition, aPT-symmetric Hamiltonian has a symmetry given by an antilinear opera
namelyPT. It is well-known that if a Hamiltonian satisfies

@H,A#50, ~2!

for an anti-linear operatorA, then
~.! either the eigenvalues ofH are real or they come in complex conjugate pairs.
Furthermore, an eigenvalue ofH is real provided that a corresponding eigenvector is invar

under the action ofA, i.e., Eq.~2!, together with

HuE&5EuE&, ~3!

and

AuE&5uE& ~4!

imply EPR. Therefore, a Hamiltonian with an antilinear symmetry has a real spectrum i
symmetry is exact.

In Ref. 1, we have shown that every pseudo-Hermitian Hamiltonian has the property~.!.
Furthermore, for Hamiltonians with a complete set of biorthonormal eigenvectors this

erty is the necessary and sufficient condition for pseudo-Hermiticity. This, in particular, mean
pseudo-Hermiticity is a necessary condition for having a real spectrum, but it is not sufficie
the following we give the necessary and sufficient condition for the reality of the spectrum o

a!Electronic mail address: amostafazadeh@ku.edu.tr
28140022-2488/2002/43(5)/2814/3/$19.00 © 2002 American Institute of Physics
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Hamiltonian that admits a complete set of biorthonormal eigenvectors. We shall only consid
case of discrete spectra. The generalization to continuous spectra does not seem to involv
difficulties.

We first recall the defining properties of a Hamiltonian admitting a complete set of biortho
mal eigenvectors.3 If a Hamiltonian H has a complete set of biorthonormal eigenvect
$ucn&,ufn&%, then

Hucn&5Enucn&, H†ufn&5En* ufn&, ~5!

^fmucn&5dmn , ~6!

(
n

ucn&^fnu51, ~7!

where n is the spectral label,dmn denotes the Kronecker delta function, and 1 is the iden
operator.

Theorem: Let H:H→H be a Hamiltonian that acts in a Hilbert spaceH, has a discrete
spectrum, and admits a complete set of biorthonormal eigenvectors$ucn&,ufn&%. Then the spec-
trum of H is real if and only if there is an invertible linear operatorO:H→H such thatH is
OO†-pseudo-Hermitian.

Proof: Let $un&% be a complete orthonormal basis ofH, i.e.,

^mun&5dmn , (
n

un&^nu51, ~8!

andO:H→H andH0 :H→H be defined by

Oª(
n

ucn&^nu, H0ª(
n

Enun&^nu. ~9!

Then, in view of~5!–~9!, O is invertible with the inverse given by

O215(
n

un&^fnu, ~10!

and

O21HO5H0 . ~11!

Now suppose that the spectrum ofH is real. Then,H0 is Hermitian, and taking the adjoint of bot
sides~11!, we have

O21HO5O†H†O21† ~12!

or alternatively

H5~OO†!H†~OO†!21. ~13!

This equation shows thatH is OO†-pseudo-Hermitian. This completes the proof of necessity. N
we suppose thatH is OO†-pseudo-Hermitian. Then~13! and consequently~12! hold. On the other
hand, in view of~6! and ~9!, we have

H05O21HO, H0
†5O†H†O21†.

Therefore,~12! implies thatH0 is Hermitian, and the eigenvaluesEn are all real. h
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It should be emphasized that the characterization of the non-Hermitian Hamiltonians w
real spectrum given by the preceding theorem applies to the Hamiltonians that admit a co
biorthonormal system of eigenvectors. A generalization of this result to the case of arb
Hamiltonians is not known.

The basic idea of the present work was originated from a comment made by Z. Ahmed
his checking the results the author had reported in Ref. 1 for a specific example of a non-Her
Hamiltonian with a real spectrum. This project was supported by the Young Researcher
Program~GEBİP! of the Turkish Academy of Sciences.
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Compatibility and decompositions of effects
Sylvia Pulmannováa)

Mathematical Institute, Slovak Academy of Sciences, Sk-814 73 Bratislava, Slovakia
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Compatibility relations in effect algebras and their connections with refinements of
the orthogonal partitions of unity are studied. Properties of blocks as maximal sets
of compatible elements are discussed. Some special kinds of effect algebras are
characterized using properties of compatibility. Using refinements, an additional
structure on the effect test spaces is introduced and used to a characterization of
different types of effect algebras. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1462857#

I. INTRODUCTION

Effect algebras~Foulis and Bennett, 1994!, alternatively D-posets~Kôpka and Chovanec
1994!, have been introduced as an algebraic generalization of the set of Hilbert space effec
self-adjoint operators between 0 andI on a Hilbert space. These effects play an important role
the theory of unsharp quantum measurements and positive operator valued~POV! measures~Bush
et al., 1991!.

Besides the Hilbert space effects, effect algebras include the most important structures
quantum and classical logic: orthomodular lattices, orthomodular posets, Boolean algebra
also MV-algebras, an algebraic base of multivalued logic~Chang, 1958!. For basic properties o
effect algebras and D-posets, see Dvurecˇenskij and Pulmannova´ ~2000!.

In the present article we study compatibility relations on effect algebras and their conne
with refinements of the orthogonal partitions of unity. We use properties of compatibility
characterization of some types of effect algebras and their blocks.

Using refinements, we introduce additional structures to effect test spaces and characte
spaces of different types of effect algebras.

II. BASIC DEFINITIONS AND PROPERTIES OF EFFECT ALGEBRAS

An effect algebrais a partial algebra (E; % ,0,1) with a binary partial operation% and two
nullary operations 0, 1 satisfying the following conditions.

~E1! If a% b is defined, thenb% a is defined anda% b5b% a.
~E2! If a% b and (a% b) % c are defined, thenb% c and a% (b% c) are defined anda% (b

% c)5(a% b) % c.
~E3! For everyaPE there is a uniquea8PE such thata% a851.
~E4! If a% 1 is defined, thena50.
Effect algebras in this setting have been introduced in Foulis and Bennett~1994!. Essentially

equivalent structures, called D-posets, were introduced in Koˆpka and Chovanec~1994!. Another
equivalent structure, called weak orthoalgebra, was introduced in Giuntini and Greuling~1989!,
and so-called quasilogics were introduced in Belavkin~1987!.

For brevity we denote the effect algebra (E; % ,0,1) byE. We write a<b if there is acPE
with a% c5b. It is easy to check that each effect algebra is cancellative, i.e.,a% b5a% c implies
b5c, and positive, i.e.,a% b50 implies a5b50. We can derive from this that< is a partial
order with 0 as the least and 1 as the greatest element. Moreover, it is possible to introduce

a!Electronic mail: pulmann@mat.savba.sk
28170022-2488/2002/43(5)/2817/14/$19.00 © 2002 American Institute of Physics
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partial operation* such thatb*a is defined iffa<b and thena% (b*a)5b. We can also prove
that a% b is defined iff a<b8, equivalently, iff b<a8. For convenience, we will writea'b if
a% b is defined, and say thata andb areorthogonal.

Let E0 be a subset ofE such thataPE0 implies a8PE0 and a,bPE0 , a'b implies a% b
PE0 . Let a,bPE0 such thata<b. Thenb8PE0 anda'b8 implies thatb*a5(b8% a)8PE0 , so
that E0 is closed under*. ThenE0 is called thesubeffect algebraof E. Another possibility to
construct a substructure ofE is to consider an elementaPE and the interval@0,a# of E, and to
restrict the% operation lettinga act as the unit element. We denote such effect algebra by@0,a#E .
Observe that forx, y in @0,a#E , x'ay iff x% y exists inE andx% y<a.

An effect algebra satisfyinga'a⇒a50 is called anorthoalgebra. An effect algebraE is an
orthomodular poset~OMP, for short! if for a, b, cPE, a'b, b'c, c'a implies thata% b% c
exists~Foulis and Bennett, 1994!. An orthoalgebra is anorthomodular lattice~OML, for short! if
it is lattice ordered. An effect algebraE is said to have theRiesz decomposition property~RDP!
~Ravindran, 1996! if for any a1 , a2 , b1 , b2PE with a1% a25b1% b2 there are elements
(wi j ) i , j 51

2 such thatw11% w12% w21% w22 is defined andai5 % j 51
2 wi j , bj5 % i 51

2 wi j . Alterna-
tively, E has the Riesz decomposition property ifa<b% c impliesa5b1% c1 , b1<b, c1<c. If E
is lattice ordered and has the RDP, thenE can be organized into an MV-algebra~cf., e.g., Dvure-
čenskij and Pulmannova´, 2000!. An interesting weakening of the RDP was recently introduced
Jenča ~2001!: an effect algebraE is calledhomogeneousif a<b% c, anda<(b% c)8 implies a
5b1% c1 , b1<b, c1<c. Finally, an MV-algebra which is an orthoalgebra is a Boolean algeb

III. COMPATIBILITY IN EFFECT ALGEBRAS

Let E be an effect algebra. LetC5(c1 ,...,cn) be a finite sequence of elements ofE. We say
that C is jointly orthogonal ~or simply orthogonal! if the sumc1%¯% cn is defined. We then
write % C5c1%¯% cn . For n50 we define% C50.

Let sª(P1 ,...,Pk) be an ordered partition of the set$1,...,n%. We put isiªk. Then
s(C)5( % i PP1

ci ,...,% i PPk
ci) is an orthogonal sequence and% s(C)5 % l 51

k
% i PPl

ci5 % C. We
will say thatC is a refinementof s(C). To every ordered partitions of $1,...,n% we can define a
function f s :$1,...,n%→$1,...,k% by f s( i )5 j iff i PPj . Conversely, every such surjectionf de-
fines a partition of$1,...,n%. We will call f s the refinement mapping.

Observe that ifC5(c1 ,...,cn) is an orthogonal sequence, then there may exist diffe
partitions of$1,...,n% with different refinement mappings leading to the same orthogonal sequ
D5$d1 ,...,dk% of which C is a refinement. This may happen only if there iscPC such thatc'c.

Let E be an effect algebra. A finite familyM of elements ofE is said to bejointly compatible
~or simply compatible! if there is an orthogonal sequenceC5(c1 ,...,cn) such that for everya
PM there is a setI a,$1,...,n% such thata5 % i PI a

ci . We say thatC covers M, and callC a
coverof M . If M is any subset ofE, we say thatM is compatible if every finite subset ofM is
compatible.

An ordered pair (a,b) of elements ofM is said to beMackey compatibleif there is an
orthogonal sequence (a1 ,b1 ,c) such thata5a1% c, b5b1% c. The sequence (a1 ,b1 ,c) is called
a Mackey decompositionof (a,b). Clearly, if (a,b) is Mackey compatible, then (b,a) is Mackey
compatible with the decomposition (b1 ,a1 ,c). We will write a↔b if ( a,b) are Mackey compat-
ible.

Let F be a subset ofE. We say that eventsA5(a1 ,...,an) are compatible in F if A is
compatible with a coverC,F. A subsetM of E is calledcompatible in Fif any finite subset of
M is compatible with covers inF. We say thatM is internally compatibleif M is compatible in
M . We say that elements (a,b) areMackey compatible in Fif there is a Mackey decompositio
(a1 ,b1 ,c) of (a,b) with a1 , b1 , cPF, and we write a↔Fb

In the following propositions we collect some basic properties of compatibility~Kôpka, 1995;
Dvurečenskij and Pulmannova´, 2000!.

Proposition 1: Let a, b be elements of an effect algebra E.
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(i) a↔a, 0↔a, 1↔a, ;aPE.
(ii) a<b⇒a↔b, a'b⇒a↔b.
(iii) a ↔b⇒a8↔b.
(iv) If elements a1 ,...,an are jointly compatible, they are pairwise Mackey compatible. If

>3, the converse need not hold even in OMP~Pták and Pulmannova´, 1991!.

Proof of the above statement is straightforward.
Proposition 2: Let(a,b) be an ordered pair of elements in E. The following statements ar

equivalent.
~C1! a↔b.
~C2! a,b are jointly compatible.
~C3! a5x% y with x<b, y<b8.
~C4! There are elements u,v such thatu<a, b<v anda*u5v*b.
Proof: (C1)⇒(C2). Let (a1 ,b1 ,c) be a Mackey decomposition of (a,b). The orthogonal

sequence (a1 ,b1 ,c) covers (a,b), soa, b are jointly compatible.
(C2)⇒(C3): Let (c1 ,...,cn) be a cover ofa,b. Thena5 % i PI a

ci , b5 % i PI b
ci , whereI a , I b

are subsets of$1,...,n%. PuttingP15I aùI b , P25I aùI b
c , P35I a

cùI b , P45I a
cùI b

c , whereI a
c , I b

c

are complements ofI a , I b in $1,...,n%, respectively, we obtain a partition of$1,...,n%. Clearly,
I a5P1øP2 , and I b5P1øP3 . Thena15 % i PP2

ci , b15 % i PP3
ci , c5 % i PP1

ci is a Mackey de-

composition of (a,b). Putd5(c1%¯% cn)8. Thenb% b85 % i 51
n ci % d51, and by cancellativity,

b85 % i PI
b
cci % d. Thereforea15 % i PI aùI

b
cci<b8, and c<b. Putting x5c, y5a1 concludes the

proof.
(C3)⇒(C4). Leta5x% y, x<b, y<b8. Thenx<a, x<b anda<b% y, b<b% y. In addi-

tion, a*x5y5(b% y)*b. Puttingu5x, v5b% y yields the desired statement.
(C4)⇒(C1). Let u<a, b<v anda*u5v*b. Thena5u% (a*u), b5u% (b*u), v5b

% (v*b)5u% (b*u) % (a*u), which shows that (a*u,b*u,u) is a Mackey decomposition o
(a,b). h

We will say that elementsa,b in E arestrongly compatibleif there is a Mackey decomposi
tion (a1 ,b1 ,c) of the ordered pair (a,b) such thata1∧b150 ~in the sense thatx<a1 , x<b1

implies x50!. We will write a↔cb. More generally, we say that a finite setA5(a1 ,...,an) of
elements arejointly strongly compatibleif there is a coverC5(c1 ,...,cm) of A such that for every
ai ,aj in A,

% kPI ai
ùI aj

cck∧ % kPI ai
cùI aj

ck50.

We then say thatC strongly covers A~or thatC is a strong cover ofA!.
Lemma 1: Let (a1 ,b1 ,c) be a Mackey decomposition of(a,b). Let c< c̄<a,b. Then

(a* c̄,b* c̄,c̄) is a Mackey decomposition of(a,b).
Proof: We can writea5 c̄% (a* c̄), b5 c̄% (b* c̄). Then a% (b* c̄)<a% (b*c)5a1% b1

% c. It follows that (a* c̄,b* c̄,c̄) is a Mackey decomposition of (a,b). h

Proposition 3: Let a,b be elements of an effect algebra E. Let (a1 ,b1 ,c) be a Mackey
decomposition of(a,b). The following statements are equivalent.

(i) (a1 ,b1 ,c) is a strong Mackey decomposition of(a,b);
(ii) c is a maximal lower bound of a,b;
(iii) dªa1% b1% c is a minimal upper bound of a,b.

Proof: ( i )⇒( ii ): Let (a1 ,b1 ,c) be a strong Mackey decomposition of (a,b). Let c̄PE be
such thatc< c̄<a,b. There is anxPE such thatc̄5c% x. We have

a5 c̄% ~a* c̄!5c% x% ~a* c̄!5c% a1 ,

hencea15x% (a*c), and
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b5 c̄% ~b* c̄!5c% x% ~b* c̄!5c% b1 ,

henceb15x% (b* c̄). It follows thatx<a1 ,b1 , sox50. Thereforec is a maximal lower bound
of a,b.

( ii )⇒( i ): Let c be a maximal lower bound ofa,b and let (a1 ,b1 ,c) be a Mackey decompo
sition of (a,b). Assume thatx<a1 ,b1 . Then a15x% ā1 , b15x% b̄1 , so thata5x% c% ā1 , b

5x% c% b̄1 . Hence c<x% c<a,b. As c is a maximal lower bound ofa,b then x50, and
(a1 ,b1 ,c) is a strong Mackey decomposition of (a,b).

~ii !⇔~iii !: Assume that (a1 ,b1 ,c) is a Mackey decomposition of (a,b). Put dªa1% b1% c.
Thena*c5d*b. Let there be ad̄ with a,b<d̄<d. There isyPE such thatd5d̄% y. So we
obtain a*c5(d̄% y)*b5(d̄*b) % y, and hence (a*c)*y5d̄*b, which implies thata*(c
% y)5d̄*b. Hencec% y<a, and similarly we prove thatc% y<b. So if d is not a minimal upper
bound ofa,b, thenc is not a maximal lower bound ofa,b. By reversing the implications we
obtain the converse. It follows thatc is a maximal lower bound ofa,b iff d is a minimal upper
bound ofa,b. h

Remark 1:Let E be an effect algebra.

~a! E is an orthoalgebra iff every Mackey decomposition is strong. Indeed, (a,a8,0) is a
Mackey decomposition of (a,a8) for every aPE. If it is strong, thena∧a850. The con-
verse is clear.

~b! E is an OMP iff for every Mackey decomposition (a1 ,b1 ,c) of (a,b), a1% b1% c5a∨b.
That is, every Mackey decomposition is strong and unique. The converse need not
there are orthoalgebras with unique Mackey decompositions which are not OMPs.

~c! E is an MV-algebra iffE is lattice ordered anda↔b for every a,b in E ~Chovanec and
Kôpka, 1995; Pulmannova´, 1997a; Dvurecˇenskij and Pulmannova´, 2000!. Indeed, according
to Chovanec and Koˆpka ~1995!, a lattice ordered effect algebra can be organized into
MV-algebra iff a*(a∧b)5(a∨b)*b holds for everya,bPE. It is easy to see tha
(a*(a∧b),b*(a∧b),a∧b) is a Mackey decomposition of (a,b). If E is a lattice and
a↔b, then it can be derived from Lemma 1 and Proposition 3 t
(a*(a∧b),b*(a∧b),a∧b) is a strong Mackey decomposition of (a,b). It follows that
((a*(a∧b)) % b is a minimal upper bound ofa,b, which isa∨b.

Recall that a partially ordered setP satisfies theRiesz interpolation property~RIP! if when-
ever x,y<a,b there is an elementc in P such thatx,y<c<a,b. In partially ordered Abelian
groups the Riesz interpolation property and the Riesz decomposition property are equivalen
effect algebra, the Riesz decomposition property implies the Riesz interpolation property, b
converse need not hold~Ravindran, 1996!.

Proposition 4: Let E be an effect algebra with RIP. If the elements a,b in E are strongly
compatible, there is a unique strong Mackey decomposition(a1 ,b1 ,c) of (a,b) and c5a∧b, d
5a1% b1% c5a∨b.

Proof: Let (a1 ,b1 ,c) be a strong Mackey decomposition of (a,b). Thenc<a,b and letx
PE be any lower bound ofa,b. By RIP, there isyPE such thatx,c<y<a,b. Since c is
maximal, we havey5c. Thereforec5a∧b. Similarly we prove thatd5a∨b. h

Corollary 1: An effect algebra E with RIP is an MV-algebra iff any two elements are strong
compatible.

Proof: If any two elements are strongly compatible, it follows by Proposition 4 thatE is a
lattice. Since any two elements are compatible,E is an MV-algebra. The converse statement
well known ~see, e.g., Pulmannova´, 1997a!. h

Recall that foruPE, @0,u#E denotes the interval 0<x<u in E with the operation% defined
with respectu as the unit element. Two elementsa,bP@0,u#E are said to be compatible in@0,u#E

if there is a Mackey decomposition (a1 ,b1 ,c) of (a,b) such thata1% b1% cP@0,u#E . In Cattaneo
et al. ~2000!, the following characterization of different types of effect algebras has been gi

Theorem 1: Let E be an effect algebra.
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(1) E satisfies RDP if and only if every pair(a,b) of elements of E is compatible in eve
interval @0,x#E which contains a,b.

(2) E is an MV-algebra if and only if for every elements(a,b) there is a Mackey decompositio
(a1 ,b1 ,c) such that a1% b1% cP@0,x#E whenever a,b<x.

The following characterization of effect algebras with the RDP has been proved in Jˇa
~2001!, Theorem 3.5. It shows what we need to add to the joint compatibility of all finite s
families of elements ofE to obtain the RDP.

Proposition 5: Let E be an effect algebra. The following statements are equivalent.

(a) E satisfies the RDP.
(b) Every finite family of elements in E is jointly compatible and the following weakening o

RDP holds for any x,a,bPE: (* ) If x<a% b, and x<(a% b)8, then there are a1<a, b1

<b such that x5a1% b1 .

Proof: (a)⇒(b): Let a1 ,...,an be elements ofE. We will proceed by induction onn. If n
51, there is nothing to prove. Now assume that an orthogonal cover exists forn21, and consider
elements (a1 , . . . ,an). By induction hypothesis, there is an orthogonal cover of (a1 ,...,an21),
say (c1 ,...,ck). Put c5 % i 51

k ci . Then (c,an) have an orthogonal cover-Mackey decompositi
(y1 ,y2 ,z). So an5z% y2 , where z<c, y2<c8. Since z<c5 % i 51

k ci , there are elementsdi

<ci , i 51,...,k, such thatz5 % i 51
k di , and then (d1 ,...,dk ,c1*d1 ,...,ck*dk ,y2) is an orthogo-

nal cover of (a1 ,...,an). It is immediate that (* ) is satisfied.
(b)⇒(a): Let a,b,x be elements ofE such thata,b<x. We wish to prove thata,b are

compatible in the interval@0,x#E . First we prove that for any coverC of (a,x) with a<x there
exists a refinementD such that a cover ofa in D is contained in a cover ofx in D ~see Jencˇa,
2001, Proposition 3.2!. So let C5(c1 ,...,cn) be an orthogonal cover of (a,x). Then there are
subsetsA,$1,...,n%, X,$1,...,n% such thata5 % Aci , x5 % Xci . Without any loss of generality
we may assume thatA\X5$1,...,r %, AùX5$r 11,...,s%, and X\A5$s11,...,n% with r ,s
,n. Definea15 % i 51

r ci , d5 % i 5r 11
s ci , x15 % i 5s11

n ci . Thena5a1% d, x5x1% d. From a<x
and cancellativity we geta1<x1 , and sinceC is an orthogonal family, we also havea1<x18 . Now
for any ci , i 51,...,r , we haveci<x1 and ci<x18 . Using (* ) we obtain thatci5 % j 5s11

t dj
i ,

where dj
i <cj , j 5s11,...,n. It is then easy to check tha

(dj
i ) i 51,...,r ; j 5s11,...,nø(ci) i 5r 11,...,sø(ci* % j 51

r di
j ) i 5s11,...,n) is a refinement ofC with the de-

sired property.
Now we can find a coverW5(w1 ,...,wn) of a,b,x and subsetsA,B,X of $1,...,n% with

A,X, B,X with a5 % Awi , B5 % Bwi , X5 % Xwi . Putting a15 % A\Bwi , b15 % B\Awi , c
5 % AùBwi we obtain a Mackey decomposition ofa,b in @0,x#E . h

The following proposition collects some characterizations of MV-algebras among effect
bras with the RDP.

Proposition 6: Let E be an effect algebra with the RDP. The following statements are eq
lent.

(i) E is an MV-algebra.
(ii) Every two elements in E are strongly compatible.
(iii) E is lattice ordered.
(iv) The partial operation% can be extended uniquely to a total operation1 which is commu-

tative, associative, monotone and such that a85∧$x:a1x51%.

Proof: ~i!⇒~ii !: See Corollary 1.
~ii !⇒~iii !: Follows by Proposition 4.
~iii !⇒~iv!: Recall that the RDP implies that for any elementsa,b,

b<a% a8⇒b5c% b1 , c<a and b1<a8.
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Therefore any two elementsa,b have a Mackey decomposition. SinceE is lattice ordered, by
Lemma 1, (a,b) have also a strong Mackey decomposition (a1 ,b1 ,c) with c5a∧b, a1% b1% c
5a∨b. It follows thata*(a∧b)5(a∨b)*b.

Definea1bªa% (a8∧b). Clearly,1 coincides with% if a'b, and is monotone inb. By the
interplay between% and*, we obtain

~a1b!85a8*~a8∧b!5~a8∨b!*b5~a∧b8% b!85~b1a!8.

Therefore1 is commutative. Further, usinga*(a∧b)5(a∨b)*b, and the fact thata% (b∧c)
5(a% b)∧(a% c) if a'b,a'c, we have

~a1b!1c5~a% a8∧b! % ~~a% a8∧b!!8∧c5~a% a8∧b! % ~a8*a8∧b!∧a8∧c

5~a% ~a8*a8∧b!∧a8∧c! % a8∧b5~a% ~a8*a8∧b!∧~a% a8∧c!! % a8∧b

5~a8*~a8*a8∧b!∨~a8*a8∧c!!8% a8∧b5~a8∧b∨~a8*a8∧c!!8% a8∧b

5~~a8∧b∨~a8*a8∧c!!*a8∧b!85~~a8*a8∧c!*~a8*a8∧c!∧a8∧b!8

5~a% a8∧c! % ~a% a8∧c!8∧b5~a1c!1b.

This proves associativity of1.
If a1x51, then 05(a1x)85(a% a8∧x)85a8*a8∧x, hencea85a8∧x, so thata8<x.

Sincea1a85a% a851, the operation1 has the desired property.
~iv!⇒~i!: Let there exist an operation1 with the desired properties. First we prove that (p8

1q)81q is an upper bound of bothp and q in E. We have 15(p81q)1(p81q)85p81(q
1(p81q)8) assuming commutativity and associativity of1. Hencep<(p81q)81q by the last
property of1. By monotony of1, q<(p81q)81q. Puts5(p81q)81q. We have just proved
thats is an upper bound ofp,q. Suppose that there isx in E with x>p, x>q. We want to prove
that x>s. We may write

x5~x*q! % q ~1!

5~x8% q!8% q5~x81q!81q, ~2!

since1 is an extension of%. From x>p we obtainx8<p8, and by monotony of1, we getx8
1q<p81q. Since8 is order reversing, by repeated application of the monotony of1 we obtain

~p81q!81q<~x81q!81q,

and so

x85~~x81q!81q!8<~~p81q!81q!85s8;

i.e., s<x, as required. This proves thatp∨q5(p81q)81q.
It remains to prove the uniqueness of1. Let E be an effect algebra with the RDP. Assum

that there are two total extensions of% with the desired properties and denote them by11 and
12 . We want to prove that11512 . Assume that there areq,r PE such thatq11rÞq12r .
Puttingp5r 8, we getq11p8Þq12p8 and hence (p811q)8Þ(p12q)8. Putzª(p811q)8. Then
q<q11p85z8. Henceq'z, so q% z5q11z. By the last part of the above proof, we hav
p∨q5(p11q)811q5z11q5z% q. Similarly, lettingyª(p812q)8, we prove thaty'q, and we
obtainp∨q5y% q5y12q. We concludey5z, in contradiction with our suppositions. h

Remark 2:The equivalence (i )⇔( iv) was proved in Mundici and Panti~1993! in relation
with theK0 theory for AFC* -algebras. Our proof was based purely on the algebraic properti
E. Combining it with the result of Effrosset al. ~1980!, which proves that Elliott’s invariant is an
interval in a partially ordered group with the RDP and so it has a RDP itself, the result of Mu
and Panti~1993! follows.
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Remark 3:Let (a1 ,b1 ,c) be a strong Mackey decomposition of (a,b). Then (b1 ,a1 ,d8)
whered5a1% b1% c is a strong Mackey decomposition of (a8,b8). Indeed, by Proposition 3c is
a maximal lower bound ofa,b and d is a minimal upper bound ofa,b. Thend8 is a maximal
lower bound ofa8,b8, and (b1 ,a1 ,d8) is a Mackey decomposition of (a8,b8). By Proposition 3
~i i !, (b1 ,a1 ,d8) is a strong Mackey decomposition of (a8,b8). Strong compatibility of (a,b8),
resp. (a8,b), can be derived iffa1 is a maximal lower bound ofa,b8, resp.b1 is a maximal lower
bound ofa8,b. In particular, ifc is any lower bound ofa,a8, then (a*c,a8*c,c) is a Mackey
decomposition ofa,a8, but a,a8 are strongly compatible iff they have a maximal lower boun

Evidently, strong Mackey decompositions need not exist even for compatible elements,
they exist, they may be not unique. In the following theorem we show that in any Hilbert s
effect algebraE(H), there exist strong Mackey decompositions~not necessarily unique! for any
two compatible elements. This follows from the existence of maximal lower bounds~Moreland
and Gudder, 1999, Theorem 4.5!.

Theorem 2: In E(H), any two Mackey compatible effects have also a strong Mackey de
position.

Proof: If a,bPE(H) are Mackey compatible, there arec,dPE(H) such thatc<a, b<d and
a*c5d*b. Put Sª$xPE(H):c<x<a,b%. Let K,S be a chain.S is partially ordered and
nonempty, sincecPS. K can be considered as an increasing net inE(H) and by Topping~1971!,
Lemma 1, limK^xf,f&5^x0f,f& for somex0PE(H) and everyfPH. It follows thatx0PS and
c<x<x0 for every xPK. By Zorn’s lemma,S has a maximal elementc1 , say, such thatc
<c1 . By Lemma 1, (a*c1 ,b*c1 ,c1) is a Mackey decomposition of (a,b), and by Proposition
3, it is a strong Mackey decomposition. h

IV. BLOCKS IN EFFECT ALGEBRAS

Recall than anobservableon an effect algebraE is a morphisma:B→E from a Boolean
algebraB to E. Let ran(a)5$a(b):bPB% denote the range ofa. An observablea is finite if there
is a finite set$a1 ,...,an% of elements inB such that (a(a1),...,a(an)) is a finite partition of unity
in E, and ran(a) consists of all%-sums of (a(a1),...,a(an)). Conversely, to every finite partition
of unity in E, there corresponds a finite observable.

We say that two observablesa and b are coexistentif there is an observableg such that
ran(a)øran(b)# ran(g). Clearly, ran(a) is a compatible set. A systemA5(a i) i PI will be called
coexistent ~in A! if every two observablesa,b in A are coexistent withgPA, where
ran(a)øran(b)#ran(g). Clearly, the systemA is coexistent iffø i PI ran(a i) is compatible with
covers in itself.

By a block of E we mean a maximal subsystemA of E such that every finite subset o
elements ofA is compatible inA. Alternatively, a block is union of the ranges of a maxim
coexistent system of finite observables onE. Using Zorn lemma, we can prove that every effe
algebraE can be expressed as the union of its blocks. The structure of blocks in effect algeb
not known, in general. In fact, we can only say that the blocks bear a structure of a comp
quasi-effect algebra~see Cattaneoet al., 2000!. A quasi-effect algebrais a structure (A;<,
% ,8,1,0) where (A;<,8,1,0) is a bounded involutive poset, and% is a partially defined binary
operation such that

~1! '(a% b) implies '(b% a) anda% b5b% a.
~2! a% a851.
~3! '(a% 1) impliesa50.
~4! a<b and'(a% c) and'(b% c) implies a% c<b% c.

Let a be an observable onE. ThenA5ran(a) can be organized into a quasi-effect algeb
(A;<A ,% A ,A8 ,1A ,0A) where <A is the restriction of< in E to A, A858, 1A51, 0A50, and
'(a% Ab) iff '(a% b) anda% bPA, and thena% Ab5a% b ~Cattaneoet al., 2000, Lemma 1!.

We say that a system (a i) i PI of observables is directed if to everyi , j PI there iskPI such
that ran(a i)ø ran(a j )# ran(ak). Let (a i) i PI be a directed system of observables. PutA
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5øiPIran(a i). With partial order< and orthosupplementation8 and 0,1 inherited fromE, A is an
involutive, bounded poset. Define% A as follows:a% Ab is defined if there isi PI with a,b,a
% bPran(a i) and then puta% Ab5a% b. Clearly, (A;<A ,% A , A8 ,1,0) is a quasi-effect algebra
We may conclude that, in general, a block of an effect algebra is a compatible quasi effect a

Theorem 3: A block A of an effect algebra E is a subeffect algebra of E if and only if
following condition is satisfied:$a1 ,a2 ...,an% is a compatible set and a1'a2 implies that
$a1 ,a2 ,...,an ,a1% a2% is a compatible set.

Proof: If a block A is a subeffect algebra ofE, thena1 ,a2PA and a1'a2 implies a1% a2

PA. Since every finite subset ofA is compatible, we have, for any finite set$b1 ,...,bn% in A that
$a1 ,a2 ,b1 ,...,bn ,a1% a2% is a compatible set.

Conversely, ifa1 ,a2PA, a1'a2 and for anyb1 ,...,bn in A the seta1 ,a2 ,b1 ,...,bn ,a1% a2 is
compatible, then the maximality ofA implies thata1% a2PA. h

Observe that in the above theorem, the conditiona1 ,a2 ,...,an compatible anda1'a2 implies
a1 ,a2 ,...,an ,a1% a2 compatible can be replaced by the conditiona1 ,a2 ,...,an compatible and
a1<a2 implies a1 ,a2 ,...,an ,a2*a1 compatible.

In analogy with orthomodular posets, we say that an effect algebraE is regular if any pairwise
compatible finite set is jointly compatible. In a regular effect algebra, a block is a maximal sy
of pairwise compatible elements.

The following special cases are known.
Case 1:Let E be an orthoalgebra. It is well known that the range of every observablea is a

subeffect algebra ofE which, endowed with ‘‘local’’ lattice operations∨a ,∧a taken with respect
to ran(a), is a Boolean algebra. Moreover, the mappinga:B→ran(a) is a Boolean algebra
homomorphism. The corresponding ‘‘global’’ suprema and infima inE need not exist, and even i
they exist, they need not belong to ran(a).

Let (a i) i PI be a maximal coexistent system of finite observables, so thatø i PI ran(a i) is a
block. Then (ran(a i)) i PI form a directed system of Boolean algebras. Indeed,
ran(a i)#ran(a j ), then by well known theorems by Sikorski and Varadarajan~Varadarajan, 1985!,
there is a functionf :V j→V i whereV i ,V j are finite sets such thata i(V i)51, a j (V j )51, such
that for everyXP2V i, a i(X)5a j ( f 21(X)). Let a,bPran(a i), a5a i(X), b5a i(Y). Then

a∧ ib5a i~XùY!5a j~ f 21~XùY!!5a j~ f 21~X!ù f 21~Y!!5a j~ f 21~X!!∧ ja~ f 21~Y!!5a∧ jb.

Let A5ø i PIran(a i) be a block. It is clear thatA is a bounded orthocomplemented poset. F
everya,b,cPA there is akPI such thata,b,cPran(ak). It follows thatA is a subeffect algebra
of E and, with suprema and infima taken inA, it is a distributive lattice, hence a Boolean algeb
The lattice operations in a block coincide with those inE iff E is an orthomodular poset.

Case 2:Let E be a lattice ordered effect algebra. It has been proved in Riecˇanová~2000! that
the maximal pairwise compatible subsets are subeffect algebras ofE which are closed under th
lattice operations and form MV-algebras. It follows that lattice ordered effect algebras are re
and blocks are MV-algebras with the lattice operations inherited fromE.

Case 3: Homogeneous effect algebras introduced in Jencˇa ~2001! have blocks that form
subeffect algebras ofE satisfying the Riesz decomposition property. Homogeneous effect alge
include orthoalgebras and lattice ordered effect algebras as special cases. In both these s
blocks form distributive lattices, but the nature of lattice operations may be different.

Case 4:According to Dvurecˇenskij~2002!, if an effect algebra satisfies the Riesz interpolat
property~RIP! and so-called difference meet property~DMP!, that is, ifa,b,cPE, a<b, are such
that a∧c,b∧c exist in E, then (b*a)∧c exists inE, thenE can be covered by MV-algebras
which are maximal sets of pairwise strongly compatible subsets ofE. The lattice operations in the
MV-algebras coincide with the lattice operations inE. Since every lattice ordered effect algeb
satisfies RIP and DMP, and in a lattice ordered effect algebra any two compatible elements a
strongly compatible, this case generalizes the case of lattice ordered effect algebras. It
known whether the maximal strongly compatible sets coincide with the maximal compatible
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Case 5:Let H be a Hilbert space~complex, separable!. Consider a maximal subsetA of the
effect algebraE(H) consisting of pairwise commuting elements. Using well-known results of
Neumann~1955! and Varadarajan~1985!, there is an observable~self-adjoint operator! u and
Borel functions f a :R→@0,1# such that everyaPA is a function ofu, a5 f a(u). Since A is
maximal, the set$ f a :aPA% consists of all measurable functions. The functionsf a :R→@0,1# can
be endowed with a structure of an MV-algebra, if we define~Cattaneoet al., 2000! ( f % g)(x)
5min(1,f (x)1g(x)),xPR.

Using the functional calculus, we can transfer the MV-algebra structure to the operatorsA.
In this way,E(H) can be covered by MV-algebras.

By the functional calculus, we have

a∧Ab5E
0

1

min~ f a~l!, f b~l!!u~dl!

5E
a

b 1

2
~ f a1 f b2u f a2 f bu!u~dl!

5 1
2 ~a1b2ua2bu!5aub.

According to Gudder~1996!, aub>0 and it is a maximal lower bound ofa,b. Since, again by the
functional calculus,a1(b2aub)5 1

2(a1b1ua2bu)5atb<1, a,b are strongly compatible
The infimum ofa,b in A is then equal toaub, which is equal toa∧b iff a∧b exists inE(H). We
note thata∧b need not exist inE(H) even if a andb commute. LetaPE(H) be a regular effect
such that 0,1 do not belong to the point spectrum ofa ~recall thata is regular if a and a8 are
incomparable!. By Ando ~1999!, the infimuma∧a8 in E(H) exists iff

E
01

12

ldu~l! and E
01

12

~12l!du~l!,

wherel→u(l) is the spectral measure ofa, are comparable, and then the infimum is the sma
of both. But if the point spectrum ofa does not contain 0,1, then the above integrals coincide w
a anda8512a, respectively, which are regular, hence incomparable. Therefore,a∧a8 does not
exist.

We conclude that in the MV-algebrasA corresponding to maximal sets of commuting effec
the lattice operations inA need not coincide with the lattice operations inE(H).

It can be shown that there are noncommuting effectsa,b in E(H) such that (a,b) have a
Mackey decomposition (a*aub,b*aub,aub). Let f andc be different unit vectors inH. Put
a5lf, b5mc, 0,l, m,1. We can choosel andm such thata1b<I . Thena∧b505aub in
E(H), and (a,b,0) is a strong Mackey decomposition of (a,b).

We conclude that the above MV-algebras do not correspond to maximal compatible s
E(H).

V. EFFECT TEST SPACES

In Dvurečenskij and Pulmannova´ ~1994, 2000!, Gudder~1997!, and Fouliset al. ~1996! close
relations between effect algebras and so-called D-test spaces, resp. effect test spaces, wer
D-test spaces and effect test spaces are essentially equivalent and they are a generalized
test spaces introduced by Foulis and Randall~1972! and Randall and Foulis~1973!. Let us recall
some basic facts about effect test spaces.

Let X be a nonempty set; elements ofX are calledoutcomes. Let I be a nonempty set. A
function F:I→X is said to be offinite multiplicity if for every xPX, F21(x) is of finite cardi-
nality. Observe that ifI 5B, thenXI5$B%. For arbitrary setsI ,J and functionsFPXI , GPXJ

define F,G if there is an injections:I→J such thatF5G+s, i.e., F( i )5G(s( i )) for all i
PI . If F,G ands:I→J is a bijection, we say thatF andG areequivalent, in symbolsF;G.
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Sometimes we will identify equivalent functions, and writeF5G. Let FPXI , GPXJ. We can
now define unambiguously a functionFø̇G as follows: LetK5I 8øJ8, I 8ùJ85B, and f:I
→I 8, c:J→J8 be bijections. ThenFø̇GPXK, and Fø̇G(k)5F( i ) if k5f( i ),i PI , and
Fø̇G(k)5G( j ) if k5c( j ), j PJ. Evidently,ø̇ is commutative and associative.

For FPXI , let R(F)ª$xPX:x5F( i ) for somei PI %, denote the range ofF.
Definition 1: LetJ be a nonvoid family of index sets, XÞB, and letT#$TPXI :I PJ%. We

say that(X,T ) is an effect test spaceif the following conditions are satisfied:

(i) any TPT is of finite multiplicity,
(ii) for every xPX there is a TPT such that xPR(T),
(iii) if S ,TPT and S,T, then S;T.

An element TPT is said to be atest.
Notice that ifTPT andTPXI , thenIÞB. For otherwise by~iii !, B,T⇒B5T for all tests

T, contradicting~ii !. A function GPXJ is called anevent if there is aTPT such thatG,T.
Denote the set of all events byE5E(X,T ).

Definition 2: Let F,G be events. We say that F and G are

(i) orthogonal ~written F'G! if there is a TPT such that Fø̇G,T,
(ii) local complementsof each other(F locG) if there is a TPT with Fø̇G5T, or
(iii) perspective with axisH (F'HG, or simply F'G! if they share a common complement H.

Observe that ifB'G, thenG;B. Moreover, two arbitrary testsR,S are perspective with
axis B.

Definition 3: An effect test space(X,T ) is algebraic if for F ,G,HPE, F'G and F'H
implies G'H.

Equivalently, (X,T ) is algebraic iffF,G,HPE, F locH andF'G impliesG locH. If ( X,T )
is algebraic, then the relation' becomes an equivalence relation. Denote byP5P(X,T ) the set
of all equivalence classes of events. ForFPE, define P(F)85P(G), where G is any local
complement ofF. Then P(F)8 is well defined. ForF,GPE define P(F) % P(G)ªP(H) iff
F'G and H5Fø̇G. Putting 0ªP(B) and 1ªP(T), for any TPT, it can be proved that
P(X,T ) becomes an effect algebra.

Conversely, let (E,% ,0,1) be an effect algebra. Recall that a finite sequence (a1 ,a2 ,...,an) of
nonzero elements ofE is a finite partition of unity ifa1% a2¯% an is defined inE and equals 1.
Put XªE\$0% and letF be the family of all finite partitions of unity inE. Then (X,F ) is an
algebraic effect test space, where two eventsA5(ai) i<n , B5(bj ) j <m are perspective iff
% i<nai5 % j <mbj . The logic P(X,F ) is isomorphic withE. Such a test space is called th
standard test spacefor the effect algebraE.

In what follows, we consider an algebraic effect test space (X,T ). Let TPT be a test. We
may assume thatTPXI T, whereI T denotes the index set ofT. Let s(I T) be an ordered partition
of I T . Then there is a mappingf s :I T→s(I T), such thatf s( i )5 j iff i PPj wherePjPs(I T). Let
isi denote the cardinality ofs(I T). We may consider$ j :PjPs(I T)% as a new index set an
assume that there exists a tests(T) in T such that

s~T!~ j !'ø̇ i P f
s
21( j )T~ i !5ø̇ i PPj

T~ i !.

We will say thats(T) is a coarseningof T, or thatT is a refinementof s(T).
Consider the index setI s(T) of s(T). Let t be any ordered partition ofI s(T) . We can build a

function t(s(T)) putting

t~s~T!!~ j !'ø̇kP f
t
21( j )ø̇ i P f

s
21(k)T~ i !5ø̇kPQj

~ø̇ i PPk
T~ i !!,

whereQjPt(s(T)).
                                                                                                                



s make

,
pond-

ver two
uotient

obtain
belian

e

n

f

2827J. Math. Phys., Vol. 43, No. 5, May 2002 Compatibility and decomposition of effects

                    
Using the refinement mappingsf s , f t , f k we can show associativity of compositions. Ifs is
an ordered partition ofI T , t is an ordered partition ofI s(T) and k is an ordered partition of
I t(s(T)) , then we have

k•~t•s!~T!5~k•t!•s~T!.

For everynPN let sn denote then-ary partition ofI T , so isni5n. ThenI sn(T)5$1,...,n%, and
we obtain ann-ary test

sn~T!5~sn~T!~1!,...,sn~T!~n!!.

In what follows, we show examples of test spaces, where coarsenings and refinement
sense.

Example 1:Let X52Y\$B% be the set of all nonempty subsets of nonempty setY, and
consider a classical test space (X,T ), i.e., for every testTPT the cardinality ofT21(x), xPX, is
at most 1. For any testTPXI T and any ordered partitions5$Pj : j PJ% of I T , the sets
ø$T( i ): i PPj%, j PJ belong toX. Therefore it makes sense to define a functionF:J→X putting
F( j )5ø$T( i ): i PPj%. Instead of 2Y we can consider a subfamily of it, e.g., as field of sets, and
consider partitions with members in that family.

Example 2:Let (X,1,0) be a positive cone. LetU be a subset ofX such thatvPX, u<v for
someuPU implies v¹U. Put I n5$1,...,n% nPN, and define a functionf :I n→X to be a test if
( i 51

n f ( i ) belongs toU. Let T denote the set of all tests. Then (X\$0%,T ) is an effect test space
and the structure ofX enables us to take into account partitions of index sets and the corres
ing coarsenings, resp. refinements.. Iff is an event, we denote it by( fª( i PI f

f ( i ), whereI f is
the index set off . An eventh is a local complement off if ( i f ( i )1( jh( j )PU. Eventsf andg
are perspective if they share a common complement. The test space is algebraic iff whene
events share one local complement, they share all local complements. In this case, the q
with respect to the perspectivity relation is an effect algebra. For example, ifU5$u% is a one-
element set, then by cancellativity of the positive cone, the test space is algebraic, and we
an interval effect algebra. More generally, a positive cone may be replaced by a partial A
monoid ~cf. Wilce, 1998; Pulmannova´ and Wilce, 1995, Pulmannova´, 1997b!.

Example 3:Let (E\$0%,T ) be a standard effect test space of an effect algebraE. Tests inT
are orthogonal subsets (a1 ,...,an) of nonzero elements such that% i 51

n ai51. If (P1 ,...,Ps) is any
partition of the set$1,...,n%, then (b1 ,...,bs), wherebi5 % $ j PPi %

aj , is also a test. This exampl
is a special case of Example 2.

Example 4: Let (X,T ) be an effect test space, andE be the set of its events. PutZ
ªE\$B%. Consider the setF of functions F̃:I n→Z, whereI n denotes the set$1,...,n%, nPN,
such thatø̇ i 51

n F̃( i )PT. We prove that (Z,F ) is an effect test space. LetEPE2$B%. Then for
any local complementE8 of E, the functionF̃:$1%→Z, F̃(1)5E if E is a test,F̃:$1,2%→Z,
F̃(1)5E, F̃(2)5E8 otherwise, belongs toF. Hence the union of ranges of functions inF covers
Z. Assume thatF̃:I m→Z, G̃:I n→Z belong toF, and F̃,G̃. Then there must be an injectio
s:I m→I n such thatF̃(s( i ))5G̃( j ) whenevers( i )5 j . Then

ø̇ $ j PI n : j 5s( i )%G̃~ j !5ø̇ $ i PI m%F̃~ i !PT

and henceG̃(k)50 for kPI n\s(I m), so thatF̃5G̃. This proves that (Z,F ) is an effect test
space. Denote byẼ the set of events of (Z,F ). For every Ẽ:I n→Z in Ẽ, define w(Ẽ)
ªø̇ i PI n

Ẽ( i ). Clearly w(Ẽ) belongs toE and w: Ẽ→E is a surjective mapping. In addition, i

Ẽ'F̃, thenw(E)'w(F) andw(Ẽø̇F̃)5w(Ẽ)ø̇w(F̃), and alsow(Ẽ)'w(F̃) implies Ẽ'F̃.
                                                                                                                



n

re

hat the

-

2828 J. Math. Phys., Vol. 43, No. 5, May 2002 Sylvia Pulmannová

                    
Assume that (X,T ) is an algebraic effect test space. We show that (Z,F ) is also an algebraic
effect test space. Moreover, the corresponding effect algebrasP(X) andP(Z) are isomorphic. To
prove it, assume thatẼ,F̃,G̃P Ẽ, and Ẽ'G̃F̃. Then w(Ẽ)ø̇w(G̃)PT, w(F̃)ø̇w(G̃)PT, and
hencew((Ẽ)'w(G̃)w(F̃).

Conversely, letw(Ẽ)'w(G̃)w(F̃). Then w(Ẽ)ø̇w(G̃)PT, w(F̃)ø̇w(G̃)PT, so thatẼø̇G̃

PF, F̃ø̇G̃PF, and henceẼ'G̃F̃.
Definen:P(Z)→P(X) by n(P(Ẽ))5P(w(Ẽ)). If Ẽ'F̃, then

n~P~Ẽ! % P~ F̃ !!5n~P~Ẽø̇F̃ !!

5P~w~Ẽø̇F̃ !!

5P~w~Ẽ!ø̇w~ F̃ !!5P~w~Ẽ!! % P~w~ F̃ !!5n~P~Ẽ!! % n~P~ F̃ !!.

Clearly, n(P(0))50, andn(P(T̃))5P(w(T̃)51 wheneverT̃PF. Hencen is a surjective
morphism of effect algebras. Since

n~P~Ẽ!'n~P~ F̃ !!⇒P~w~Ẽ!!'P~w~ F̃ !!⇒w~Ẽ!'w~ F̃ !⇒Ẽ'F̃,

n is an isomorphism.
It is easy to see that ifẼ is any event in (Z,F ), Ẽ:I n→Z, andk(I n)5(P1 ,...,Piki) is any

partition of I n , thenF̃:I iki→Z, F̃( i )5ø̇(Ẽ( j ): j PPi)% is an event in (Z,F ).

VI. TEST SPACES WITH REFINEMENTS

The following definition is inspired by Harding~2001!.
Definition 4: Let(X,T ) be an effect test space. We will say that(X,T ) is a leveled effect test

spaceif for every test T:I T→X in T and every finite partitions(I T)5(P1 ,...,Pn), isi5n, n

PN, of the set IT , there is a tests(T):$1,...,n%→X such thats(T)( i )5ø̇ j PPi
T( j ).

Let (X,T ) be a leveled algebraic effect test space andE be its set of events. We say that a
eventF is a refinementof an eventE if there is a mappingk:I F→I E such that for everyi PI E ,
E( i )'ø̇$F( j ): j Pk21( i )%. Clearly, if F is a refinement ofE, thenF'E. We say that two events
E andG have acommon refinement, if there is an eventF which is a refinement of bothE andG.
Clearly, if E andG have a common refinement, thenE'G.

We say that eventsE1 ,...,Ek can be builtfrom an eventF if there are subeventsF1 ,...,Fk of
F which are refinements ofE1 ,...,Ek , respectively.

Let A,B:$1,2%→X be binary events, and letC:I C→X be their common refinement. Then the
are partitions (I 1 ,I 2) and (J1 ,J2) of the setI C such thatA(1)5ø̇ i PI 1

C( i ), A(2)5ø̇ i PI 2
C( i ),

B(1)5ø̇ j PJ1
C( j ), B(2)5ø̇ j PJ2

C( j ). We can construct a partition ofI C consisting of sets

I 1ùJ1 ,I 1ùJ2 ,I 2ùJ1 ,I 2ùJ2 and define the eventsWi j 5ø̇kPI iùJj
C(k), i , j 51,2. The four-

element event (Wi j ) i , j 51
2 is a common refinement ofA andB. Any two binary eventsA,B which

have a common refinement also have a common refinement of the latter type. We say t
eventsA, B admit astrong common refinementif they have a common refinement (Wi j ) i , j 51

2 such
that W12ùW215B, that is, there is no nonempty eventV underW12 andW21.

Theorem 4: Let (X,T ) be an algebraic leveled effect test space. LetE5P(E) be the corre-
sponding effect algebra. The following statements are equivalent.

(i) Elements a1 ,...,an in E are compatible.
(ii) There are events A1 ,...,An in E, P(Ai)5ai , that can be built from a test T inT.
(iii) There are binary tests Bi with P((Bi)(1))5ai , i 51,...,n, which have a common refine
ment.
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Moreover, elements a,b in E are strongly compatible if and only if there are binary events A,B,
such thatP(A)5a,P(B)5b and A,B admit a strong common refinement.

Proof: ~i!⇒~ii !. By ~i!, there is an orthogonal set (c1 ,...,ck) such that ai5 % j PI i
cj ,

I i,$1,...,k%, i 51,...,n. Hence there are orthogonal eventsC1 ,...,Ck with P(Ci)5ci , i

51,...,k, and a testTPT to which C1 ,...,Ck belong. We then haveai5P(ø̇ j PI i
Cj ), i

51,...,n, andAi5ø̇ j PI i
Cj , i 51,...,n, can be built fromT.

~ii !⇒~iii !. Let ai5P(Ai), i 51,...,n, and A1 ,...,An can be built from a testT. We may
assume, with no loss of generality, thatA1 ,...,An are subevents ofT. Then there are subset

I 1 ,...,I n of the index setI T of T such thatAk5ø̇ j PI k
T( j ), k51,...,n. Taking partitions

(I k ,I T\I k) of I T , we obtain binary testsBk , k51,...,n, with Bk(1)'Ak5ø̇ i PI k
T( j ), which can

be built fromT.
~iii !⇒~i!. Let Bi , i 51,...,n, be binary tests withP(Bi(1))5ai which can be built from a tes

T. Then there are subsetsI i of I T with Bi(1)'ø̇ j PI i
T( i ). Taking a suitable coarsening if nece

sary, we may assume thatI T is finite, I T5$1,...,k%. Thencj5p(T( j )), j 51,...,k, is an orthogo-

nal sequence, andai5P(ø̇ j PI i
T( j ))5 % j PI i

cj .

To prove the remaining part, assume that (a,b) in E have a strong Mackey decompositio
(a1 ,b1 ,c) and putd5a1% b1% c. Let A,B be any events such thatP(A)5a, P(B)5b. Then
there are orthogonal eventsA1 ,B1 ,C,D8 belonging to a testT, such thatP(A1)5a1 ,P(B1)

5b1 ,P(C)5c and P(D8)5d8. We haveP(A1ø̇C)5a, P(B1ø̇C)5b, henceA'A1ø̇C, B

'B1ø̇C, and (A1 ,B1 ,C,D8) is a common refinement of the binary tests (A,A8) and (B,B8).
From a1∧b150, we obtain that there is no eventVÞB lying underA1 andB1 .

The proof of the opposite statement is analogous. h

In the following theorem, we give a characterization of the most important types of e
algebras by properties of leveled effect test spaces. Notice that statements similar to~ii ! and ~iii !
in terms of ordinary effect test spaces have been proved in Di Nola and Dvurecˇenskij ~2001!.

Theorem 5: Let (X,T ) be a leveled algebraic effect test space, E its set of events andE
5P(E) the corresponding effect algebra. The following statements hold.

(i) E is an orthoalgebra if and only if every test is an injective function.
(ii) E is an OMP if and only if every pairwise orthogonal event E,F,G can be built from one

test T.
(iii) E has the RDP if and only if every two perspective binary events have a common refine.
(iv) E is an MV-algebra if and only if every two perspective binary events have a strong com

refinement.

Proof: ~i! is well-known.~ii ! easily follows from the fact that an effect algebraE is an OMP
iff for any a,b,c in E which are pairwise orthogonala% b% c exists.

( i i i ) Let E have the RDP. LetA:$1,2%→X, B:$1,2%→X be perspective binary events. P
p(A(1))5a1 , p(A(2))5a2 , p(B(1))5b1 , p(B(2))5b2 . By assumptionA'B, which im-

plies A(1)ø̇A(2)'B(1)ø̇B(2), andthis in turn impliesa1% a25b1% b2 . By RDP, there are
elementsw11,w12,w21,w22, jointly orthogonal and such thata15w11% w12, a25w21% w22, b1

5w11% w21, b25w12% w22. Then there are eventsWi j , i , j P$1,2%, such thatwi j 5P(Wi j ),
which all belong to one test. The eventW5(W11,W12,W21,W22) is a common refinement ofA
andB.

Conversely, assume that every two perspective binary events have a common refineme
a1% a25b1% b2 , wherea1 ,a2 ,b1 ,b2 are elements inE. Then there are perspective binary eve
A,B such thatA( i )5ai , i 51,2, andB( j )5bj , j 51,2. By supposition, they have a commo

refinementW5(W11,W12,W21,W22), Ai'ø̇ j 51
2 W1 j , i 51,2, Bj5ø̇ i 51

2 Wi j , j 51,2. It follows
that a15 % j 51

2 P(Wi j ), i 51,2, bj5 % i 51
2 P(Wi j ), j 51,2, which yields the RDP.

( iv) Let E be an MV-algebra and letA, B be perspective binary events. PutP(Ai)5ai and
P(Bj )5bj , i , j 51,2. Then we havea1% a25b1% b2 , and sinceE is an MV-algebra, there are
                                                                                                                



the

J.

h.

s.

.

2830 J. Math. Phys., Vol. 43, No. 5, May 2002 Sylvia Pulmannová

                    
jointly orthogonal elementswi j ,i , j 51,2, such thatai5 % j 51
2 wi j , bj5 % i 51

2 wi j and w12∧w21

50 ~Fuchs, 1963!. Then there are orthogonal eventsWi j , i , j 51,2, such thatP(Wi j )5wi j , so
that W12ùW215B. It follows thatA andB have a strong common refinement. By reversing
arguments, the converse statement is proved. h
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Jenča, G., ‘‘Blocks of homogeneous effect algebras,’’ Bull. Austral. Math. Soc.64, 81–98~2001!.
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On the complete solution of the Sturm–Liouville problem
„d2XÕdx 2

…¿l2XÄ0 over a closed interval
Yuriy Sosov and Constantine E. Theodosioua)

Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio 43606-3390

~Received 4 June 2001; accepted for publication 24 January 2002!

We discuss the sets of orthogonal functions that form solutions to the Sturm–
Liouville problem for the equation d2X/dx21l2X50 and for the general unmixed
boundary conditions over a closed interval of the variablex. The conditions for the
presence of the solutions withl2<0 are specifically considered and their necessity
for completeness of a set of eigenfunctions. Their implications are discussed for
three examples from mathematical physics, showing that although for some prob-
lems the solutions, corresponding to the negative values ofl2, may reflect physi-
cally unusual boundary conditions, their presence is necessary in the general solu-
tion for the drift diffusion equation where they may represent stationary or growing
in time solutions. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1459753#

I. INTRODUCTION

Second-order partial differential equations are commonly solved in different domains of
ics. In our case we need to solve the continuity equation of a fluid with specific boun
conditions, as part of our simulation of gaseous discharges in plasmas. In treating such syst
found that a careful study of the ‘‘separation-of-variables’’ constant parameters must be m
assure that we include all the correct physical solutions, analytic or numerical. We have foun
the relevant literature does not always provide complete solutions and the choices of solutio
not carefully justified. In the following we make a careful analysis of the Sturm–Liouville p
lem, point out where problems with the identification of the solutions arise, and provide
characteristic examples.

II. THE STURM–LIOUVILLE PROBLEM

The method of separation-of-variables, when used in second-order partial differential
tions with constant coefficients often lead to ordinary differential equations of the form

d2X

dx2 1l2X50 ~1!

for the space part, in an interval with general unmixed boundary conditions

dX

dx
1h1X50 for x50, ~2a!

dX

dx
1h2X50 for x51. ~2b!

Without loss of generality,x will be assumed to take values on the interval@0,1#.

a!Electronic mail: cet@physics.utoledo.edu
28310022-2488/2002/43(5)/2831/13/$19.00 © 2002 American Institute of Physics
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Usually the partial solutions representing different values of parameterl are then written in
the form

Xl5Al sin~lx!1Bl cos~lx!, l2.0, ~3a!

Xl5Alx1Bl , l250, ~3b!

Xl5Al sinh~lx!1Bl cosh~lx!, l2,0, ~3c!

and the three different cases of the ranges of the values ofl2 are considered together with th
boundary conditions.

The consistency requirement for the system of the two equations obtained after the su
tion of ~3! into ~2! gives the different ranges of the values forl2, the eigenvalues, which dete
mine the different types of functions that should be present in the set of solutions. The
equation determines the interdependence ofAl andBl for a givenl.

A differential equation defined on the intervala<x<b having the form of

d

dx Fk~x!
dX

dx G1@l2r ~x!2q~x!#X50

with the boundary conditions

a1X~a!1a2

dX

dx
~a!50,

b1X~b!1b2

dX

dx
~b!50

is called theSturm–Liouville boundary value problem. In our case,k(x)51, q(x)50, r (x)51,
andh15a1 /a2 , h25b1 /b2 , limited to the real values ofh1 andh2 .

The set of eigenfunctionsXl obtained as nontrivial solutions of the Sturm–Liouville bounda
value problem corresponding to the eigenvaluesl, is used to construct a general solution

X5(
l

Xl ~4!

as well as to decompose some given function~that represents the initial conditions! to determine
the values ofAl andBl , or to build the Green’s function for a differential equation. In this ca
completeness of the set of functions in the set is critical. Orthogonality of the functionsXl in the
set of solutions for Eq.~1! with the boundary conditions~2! andl2

1Þ(l2
2)* , assuming thath1

andh2 are real, can be easily verified:

~l2
12l2

2* !E
0

1

Xl1
Xl2

* dx5E
0

1

@~l2
1Xl1

!Xl2
* 2~l2

2* Xl2
* !Xl1

#dx

5E
0

1Fd2Xl1

dx2 Xl2
* 2

d2Xl2
*

dx2 Xl1
Gdx

5S Xl1

dXl2
*

dx
2

dXl1

dx
Xl2

* D U
0

1

5Xl1
~0!Xl2

* ~0!~h12h1* !2Xl1
~1!Xl2

* ~1!~h22h2* !50. ~5!
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These solutions are not orthogonal ifh1 and/orh2 are complex. It should be noted that in th
procedure of building the general solution,all possible values ofl2 corresponding to an eigen
functionXl should be taken into account. The failure to include even one of the former will
to an incomplete set of eigenfunctions unable to decompose the function representing the
conditions in the general case. The question of completeness is further considered in the Ap

Solutions in the form~4! are routinely used today in computational applications. Examples
the computational procedures used to solve partial differential equations with constant coeffi
As can be seen from commonly used textbooks for mathematical physics,1–4 the long-term teach-
ing practice for treating the method of separation-of-variables is to give the solution of St
Liouville problem for Eq.~1! in an interval for zero boundary conditions, namelyX50 for x
50 and forx51. This leads only to the positive values of the separation parameterl2.1–4 It may
be due to this widespread practice that we can often find examples where only eigenfun
corresponding tol2.0 are taken into account, whereas those forl2<0 are omitted.1,3 For
example, Arfken and Weber5 state in a footnote thatl2 depends on the boundary conditions b
make no further use of that fact. Whether representing physically existing cases~see example IV A
in the following! or physically rare or unusual boundary conditions~see Example IV B in the
following!, the solutions representing negative values ofl2 should be carefully taken into accoun
Furthermore, in the construction of a complete solution or in building a Green’s function~see
example IV C in the following! completeness is absolutely required. The goal of the present p
is to carefully consider the implications of the cases of the solutions for zero and negative
of l2.

III. EFFECT OF THE BOUNDARY CONDITIONS

It is useful then to address the question whether it is possible for certain values ofh1 andh2 ,
involved in the boundary conditions~2!, to find an eigenfunction that corresponds to a cert
value of the parameterl2. In order to answer this question, we will consider the Sturm–Liouv
problem for Eq.~1! satisfying the general unmixed boundary conditions~2!. It is convenient to
write solutions of~1! in the form

Xl~x!5
Al

l
sin~lx!1Bl cos~lx! ~6!

that can represent all possible values of the separation constantl2PR. For l250 it is assumed
that

X0~x!5 lim
l→0

@Xl~x!#5A0x1B0 .

We should also remark thatXl(x)5X2l(x), so that, in this paper, wheneverl2>0 then l
51Al2, and if l2,0 thenl51 iAul2u.

When the solution~6! is substituted into the boundary conditions~2! it gives a homogeneou
system of linear equations forA andB,

Al1Blh150, ~7a!

AlS h2

l
sinl1cosl D1Bl~h2 cosl2l sinl!50, ~7b!

which must have a zero determinant to be consistent. This condition results in the follo
transcendental equation for the eigenvaluesl:

sinl

l
~l21h2h1!5~h22h1!cosl, ~8!
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which should be carefully considered for the different values ofh1 andh2 .
~A! h15h250. This condition represents the case when dX/dx50 for bothx50 andx51. It

giveslP$0,p,2p,3p, . . . %, Al50, and the solution

Xl~x!5Bl cos~lx!.

~B! h1→`, h2→`. This condition represents the situation whenX50 for bothx50 andx
51, giving lP$p,2p,3p,...%, Bl50, and

Xl~x!5
Al

l
sin~lx!5A8l sin~lx!.

~C! h15h25hÞ0. Then l5$ ih%ø$p,2p,3p,...%, i.e., l2 has one negative root,Bl

52Al /h, and

Xl~x!5
Al

h
@sinh~hx!2cosh~hx!#5Ale2hx for lP$ ih%,

and

Xl~x!5AlFsin~lx!

l
2

cos~lx!

h G5Al sin~lx1dl!, dl52tan21~l/h!

for lP$p,2p,3p,...%. It is worth pointing out that the complete set of eigenfunctions in this c
will contain not only sine’s and cosine’s but also an exponent.

~D! h1Þh2 . Then Eq.~8! can be rewritten for convenience as

l cotl5
l21h2h1

h22h1
. ~9!

To further demonstrate the influence of the parametersh1 andh2 on the type of solution~6!,
we rewrite Eq.~9! as

l cotl5al21b ~10a!

for h1Þh2 , with

a5
1

h22h1
, b5

h2h1

h22h1
. ~10b!

For l→0, Eq.~10a! should be understood as its limit 15al21b. Form~10a! becomes amenabl
to a graphical illustration of finding its solutions by drawing its left- and right-hand sides s
rately, as seen in Fig. 1.

The general solution~4! of the Sturm–Liouville problem can be split into two parts, one
l2.0 and one forl2<0:

X5(
l

Xl5(
l

FAl

l
sin~lx!1Bl cos~lx!G5 (

l2<0

Xl1 (
l2.0

Xl ~11!

with the values ofAl andBl restricted by either~7a! or ~7b!. As can be concluded now from Fig
1, and depending on the values ofh1 , h2 , a, andb @cf. Eq. ~10!#, the sum(l2<0Xl can contain
two, one, or zero terms, corresponding to lines III, II, and I respectively, in contrast to the ca
l2.0 when the sum has an infinite number of terms.

To investigate the possibility of appearance zero and negative eigenvalues we look in
values of functionl cot(l) for l2,p2, represented by curveC in Fig. 1. The slope of this curve
                                                                                                                



r

he

2835J. Math. Phys., Vol. 43, No. 5, May 2002 Complete solution of the Sturm–Liouville problem

                    
varies from zero, whenl2→2`, to 2`, whenl2→p2. Whenl2→0, it equals21/3. Therefore,
for any a,0 in ~10a! it is possible to find the appropriate valueb0.0 so that the lineal21b0

becomes tangential to curveC. Let T be the point of contact.
~D1! For l2,0, the tangent of curveC ~Fig. 2! has a slope varying from21/3 to 0. Let us

consider the linesal21b with 21/3,a,0 and the following values ofb:

~1! b.b0 , the region aboveal21b0 ~dashed line I in Fig. 3!, gives no negative or zero roots fo
l2 in ~10a!,

~2! b5b0 , coincides with line I and renders one negative root,
~3! 1,b,b0 , region in between line I andal211 ~dashed line II in Fig. 3!, two negative roots,
~4! b51, line II, one negative and one zero root,
~5! b,1, region below line II, one negative root.

~D2! For 0<l2,p2 the tangent of curveC ~Fig. 3! has a slope varying from2` to 21/3.
Following the same geometrical construction as noted previously, fora<21/3 and different
values ofb we obtain

~1! 1,b, region to the right of line II, no negative or zero roots,
~2! b51, line II, one negative and one zero root,
~3! b,1, region below line II, one negative root.

~D3! For 0<a line al21b can have only one intersection with curveC. So for:

~1! 1,b, the region below the dashed line in Fig. 4, the equation has one negative root,
~2! b51, the dashed line, one negative and one zero root,
~3! b,1, the region above the dashed line, no negative or zero roots.

Using the parametric dependence ofa andb0 on l, i.e.,

a5
cotl2l csc2 l

2l
, b05

l

2
~l csc2 l1cotl!, ~12!

FIG. 1. Graphical solution of the transcendental equationl cotl5al21b. The numbers above the horizontal axis give t
points of intersection of this axis with the displayed graph of the function.
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two useful formulas are easily derivable:

ab052
1

4
~l2 csc4 l2cot2 l!,

db0

da
52l2.

FIG. 2. Same as Fig. 1, highlighting the case of21/3<a<0.

FIG. 3. Same as Fig. 2, highlighting the case ofa<21/3.
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Some other useful expressions arel2 csc4 l2cot2 l.1 for any value of l2 and
liml2→2`(l2 csc4 l2cot2 l)51. These allow us to plotb0(a) for aP(2 1

3,0).
Finally, Fig. 5 summarizes cases D1–D3 mentioned previously. Here the two dashed

correspond toab052 1
4. The solid gray curve illustrates the graph forb0(a). The line b51

corresponds to one zero root. The regions 1,b,0<a and b,1,0,a, together with the curve
b0(a) give the area where there is one negative root. Finally, the open region bordered by
b0(a), b51, and a50, renders two negative roots. The arrows at the ends of correspon
curves denote that the end points are excluded. It is worth mentioning that a pair ofa and b
corresponds to two possible values ofh,

h15
217A114ab

2a
, h25

17A114ab

2a
,

FIG. 4. Same as Fig. 2, highlighting the case of 0<a.

FIG. 5. Summary of the mapping of the zero and negativel2 roots as a function of the parametersa andb. Branches of

theab52
1
4 graph are shown as dotted lines. The values of the parametersa andb between the branches correspond to re

vlaues ofh1 andh2 .
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and only the values ofa andb between two branches ofab052 1
4 correspond to the real values o

h1 andh2 .
Some specific examples are presented in the following that demonstrate the above-me

analysis for different cases of the values ofl2.

IV. EXAMPLES

A. Drift-diffusion equation

In our study of gas discharges in plasma displays we use the drift-diffusion equation

]n

]t
5a2

]2n

]x2 1b
]n

]x
1gn, xP@0,1#, ~13!

to check the behavior of a finite-difference numerical scheme solution against the exact so
derived in the following. This equation can be interpreted as a system of two equation
continuity equation witha source

]n

]t
1

]J

]x
5gn

and the equation determining the density flux

J52a2
]n

]x
2bn.

By making the substitution

n5u exp~kx1ht ! with k52b/2a2, h5g2b2/4a2,

Eq. ~13! takes the familiar form of the heat-flow equation

]u

]t
5a2

]2u

]x2 ,

which can be solved by the separation of variables method. Assuming thatu(x,t)5( i TiXi , we
obtain the equations forTi andXi : dTl /dt52a2l2Tl , with the solutionTl5exp(2a2l2t), and
d2X/dx21l2X50.

We are interested in the case when both fluxes are zero at the boundaries. Recalculatio
flux at the boundaries

J52ekx1htFa2
]u

]x
1~a2k1b!uG50

in terms of u, gives values of constants with the boundary conditionsh15h25h5k1b/a2

5b/2a2. This represents the previously mentioned case~C!, so that Xl(x)5Ale2hx for l
P$ ih%, and

ul~x!5Al sin~lx1dl!, dl52tan21~l/h!, lP$p,2p,3p,...%.

The general solution is then

n~x,t !5ekx1ht(
l

TlXl5(
l

expF S g2
b2

4a22a2l2D t GexpS 2
b

2a2 xDXl .

After substitution ofXl and splitting the sum in parts forl2>0 andl2,0 it becomes
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n~x,t !5Aihegt expS 2
b

a2 xD1 (
l2>0

Al expF S g2
b2

4a2 1a2l2D t GexpS 2
b

2a2 xD sin~lx1dl!.

It is interesting to remark that in the case ofg50, i.e., zero sources and*0
1n(x,t)dx5const, the

term Al exp@2(b/a21h)x# represents the stationary solution which can also be found fro
physical reasoning that the stationary solution makes the fluxJ52a2(]n/]x)2bn zero. A physi-
cal realization of this case would be the diffusion of particles suspended in the air und
influence of the gravitation field.

B. Oscillations of a fixed rod

To give an example where the eigenfunctions withl2,0 represent a physically impossib
situation, let us consider the problem of finding the longitudinal oscillations of the elastically
rod over a space interval. This leads to3

d2u

dt2 5a2
d2u

dx2

with the boundary conditions

du

dx
2hu50 for x50,

du

dx
1hu50 for x51

for all times t. Hereh represents the coefficient of elasticity and should be positive to repres
physically meaningful case. Further separation of variables givesu(x,t)5( i TiXi as the genera
solution. Equation d2X/dx21l2X50 for the space partX is solved with the boundary condition
dX/dx2hX50 for x50 and dX/dx1hX50 for x51. This givesh152h, h25h, so thata
51/(2h) and b52h/2 @cf. case~D!#. The possible values ofa and b are represented byab5
21/4, the dashed curve in Fig. 5.Xl with negative and zero values ofl2 are possible fora<0 or
h,0; however, they represent a physically unusual boundary condition since the negative v
h implies a negative sign of Hook’s constant, i.e., stretching grows continuously with time.

C. Construction of Green’s functions

Smirnov’s Course of Higher Mathematics1 considers the equation d2X/dx21l2X50 with
boundary conditionsX50 for x50 and dX/dx1hX50 for x51 in order to find a complete se
of eigenfunctions. We should point out that a similar problem would appear in Sec. IV B assu
the rigid fixing of the rod’s end atx50 in the previous example, when constructing the gene
solution in the form~4! or when obtaining the Green’s function in the form1 ~see Appendix!

G~x,j!5(
l i

Xl i
~x!Xl i

~j!

l22l2
i

.

Obviously, an incomplete basis will not project the correct solution out of the inhomogen
term.

Although Titchmarsh6 in a similar case gives the example of negativel2, Smirnov1 mentions
the possibility but does not implement such values. For example, Smirnov1 mentions that the
complete set of solutions is~in our notation here! Xl(x)5Al sin(lx), wherel is to be found from
equation tanl1hl50 giving all l2 to be positive. Since he uses this example several ti
throughout his multivolume work, but only mentions once~and that only in the Russian edition7!
that he will limit his consideration toh.0, it makes it hard for the reader to consider th
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limitation. Following the previously mentioned case~D!, with h15` andh25h, it is possible to
see that herea50 andb52h, so that one zero or negative root ofl2 is possible forb>1 or
h<21, giving an additional eigenfunction

Xi ulu~x!5
Bi ulu

i ulu
sin@ i ulux#5

Bi ulu

ulu
sinh@ ulux#

for l2<0.
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APPENDIX: OUTLINE OF THE COMPLETENESS PROOF

Here we want to briefly illustrate the necessity for taking into account all eigenfunc
corresponding to solutions of~1! with ~2! when building a general solution. The argument takes
root in the proof of the expansion theorem. The most straightforward and useful way, fo
purpose, is to use the method of contour integration. The application of this method t
boundary value problem of the ordinary linear differential equations of thenth order has been
discussed in Ref. 8, and specifically to differential equations of the second order with bou
conditions~2! in Refs. 6 and 9 and we will follow their approach.

The resolvent for

d2F

dx2 1l2F5 f ~x! ~A1!

is the function

F~x,l2!5
x~x,l!

v~l!
E

0

x

f~y,l! f ~y!dy1
f~x,l!

v~l!
E

x

1

x~y,l! f ~y!dy, ~A2!

satisfying the boundary conditions~2!. Heref andx are solutions of homogeneous equation~1!
with f satisfying~2a! andx satisfying~2b!, andv(l)5f(dx/dx)2x(df/dx) is the Wronskian
of the functionsf andx. The zeroes of the Wronskian coincide with the roots of~9! confirming
linear dependence off andx at l i wherev(l i)50 so thatx(x,l i)5k(l i)f(x,l i).

Denotingl5s1 i t and considering two segmentss5R,2R<t<R andt5R,2R<s<R, it
is possible to see that they form the closed contourC(R) on thel2 plane. Using the explicit form
for

f~x,l!5
cos~lx!

h1
2

sin~lx!

l
,

x~x,l!5
cos@l~x21!#

h2
1

sin@l~x21!#

l
,

and

v~l!5
sin~l!~h1h21l2!2l cos~l!~h22h1!

h1h2l
,

the integration can be done overC(R) on thel2 plane. Then iff (x)PL1 it is possible to show6,9

that for 0,x,1 andR→`:
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1

2p i EC~R!
F~x,l2!dl2→ 1

2p i EC~R!

dl2

l sin~l! H cos@l~12x!#E
0

x

f ~y!cos~ly!dy

1cos~lx!G E
x

1

f ~y!cos@l~12y!#dy→ 1

2
~ f ~x10!1 f ~x20!!.

~A3!

On the other hand,F(x,l2) has residues atl5l i resulting in

1

2p i EC~R!
F~x,l2!dl25 (

l ibeing insideC~R!

k~l i !

dv~l!/d~l2!ul5l i

f~x,l i !E
0

1

f~y,l i ! f ~y!dy,

~A4!

assuming thatl i are the roots ofv(l i)50 with multiplicity one. WhenR→`, this sum includes
all of the l i .

We should mention that for anyl2
i such thatv(l i)50 it is possible to finda andb so that

also

dv~l!

d~l2!
U

l25l2
i

50,

i.e., l2
i is a root of multiplicity two for v(l2

i). Line al21b50 then becomes tangential t
l cotl at l2

i , so that the values ofa andb in this case will be given parametrically by~12!. For
somel2

i it is possible to satisfy the additional condition

d2v~l!

~d~l2!!2U
l25l2

i

50,

so thatl2
i becomes a root of multiplicity three forv(l2

i). As seen from Fig. 6, there are no roo
of multiplicity higher than 3 and all of them lie in the region on the outside of the two bran
of ab52 1

4 corresponding to the imaginary values ofh1 andh2 .
Comparing these two results~A4! and ~A5! we see that

1

2
~ f ~x10!1 f ~x20!!5 lim

R→`

1

2p i EC~R!
F~x,l2!dl2

5 (
l i :v~l i !50

k~l i !

dv~l!

d~l2!
U

l5l i

f~x,l i !E
0

1

f~x,l i ! f ~y!dy ~A5!

completing the proof. We can see that each root of equationv(l i)50 corresponds to a function
used in the expansion~A5!. Removing any function, e.g.,f(x,l r), from the set will result in the
deficient set of functions on the interval 0,x,1, so that settingf (y)5f(x,l r) and using the
expansion~A5! alwaysgives 1

2@f(x10,l r)1f(x20,l r)#50 for 0,x,1, due to orthogonality
~5!. This contradiction proves the deficiency.

Using the explicit form for

k~l!5
h1

h1 cos~l!1l sin~l!
,

dv~l!

d~l2!
5

l cos~l!2h1 sin~l!

2l3h1
1

h1~h121!1l2

2l2h1@h1 cos~l!1l sin~l!#
,
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and ~A5! for f (x)5f(x,l i), we can find the normalization constant

Ni5E
0

1

f2~x,l i !dy

5
k~l i !

dv~l!

d~l2!
U

l5l i

5
@l cos~l!2h1 sin~l!#@h1 cos~l!1l sin~l!#1l@h1~h121!1l2#

2l3h1
2 .

Now ~A5! takes a well-known form of orthogonal function expansion

f ~x!5(
i

cic i~x! ~A6!

with

c i5f~x,l i !/ANi

and

ci5E
0

1

c i~y! f ~y!dy.

For the boundary value problem~1! with ~2! the resolvent~A2! can be rewritten in the form
of the Green’s function

F~x,l2!5E
0

1

G~x,y,l! f ~y!dy

with

FIG. 6. Higher-multiplicity roots of the Wronskian.ab52
1
4 are shown as dotted lines. Solid curves show parametea

andb for which v~l!50 has roots of multiplicity two. Arrows indicate roots of multiplicity three.
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G~x,y,l!5
1

v~l! H x~x,l!f~y,l!, y<x

f~x,l!x~y,l!, y>x.

Assuming that the resolvent itself can be expanded in the form

F~x,l2!5(
i

ai~l2!c i~x!,

substituting it, together with~A6!, into ~A1!, and using the orthogonality expression~5!, it follows
that

ai~l2!5
ci

l22l i
2 .

This yields another form for the Green’s function,

G~x,y,l!5(
i

c i~x!c i~y!

l22l i
2 .
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A rigorous mathematical formulation of the ‘‘phase space Feynman path integral’’
is given in a general setting. This is then applied to yield a representation of
solutions of the Schro¨dinger equation with potential depending both on the position
and momentum variables. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1470705#

I. INTRODUCTION

Let us consider the Schro¨dinger equation for the time evolution of ad-dimensional quantum
particle:

H ċ52
i

\
Hc,

c~0, x!5c0~x!,

~1!

whereH5 p2/2m1V is the Hamiltonian of the system,m.0 is the mass of the particle,\ is the
~reduced! Planck’ constant, andp is the quantum mechanical momentum operator. Under suit
conditions on the potentialV, in the position representationH is realized as the self-adjoin
operator in the Hilbert spaceH5L2(Rd), obtained by closure of the operator

Hc~x!52
\2

2m
Dc~x!1V~x!c~x!, cPD~2D!ùD~V!,

cPH, E
Rd

uc~x!u2 dx,1`,

whereD(A) denotes the domain of the operatorA in H ~see, e.g. Ref. 1!. Let G(t,x,y) be the
Green function or propagator, namely the kernel of the unitary groupe2 i tH /\,

c~ t,x!5E
Rd

G~ t,x,y!c0~y!dy

~see, e.g., Ref. 1 for a discussion on sufficient conditions for the existence ofG and for the
properties of it!. In 1942 Feynman gave a suggestive representation of the propagator and s
the connection between the classical Lagrangian description of the physical world and the
tum one. In fact the kernel of the unitary group can be heuristically computed by means
infinite dimensional path integral of the following form:

G~ t,x,y!5constE e~ i /\! S(g)dg, ~2!

a!Electronic mail: mazzucch@science.unitn.it
28470022-2488/2002/43(6)/2847/11/$19.00 © 2002 American Institute of Physics
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where the integration is on the set of paths starting iny at time 0 and ending inx at time t and
S(g) is the classical action of the system, evaluated on the pathg:

S~g!5E
0

t

~ ġ~s!2/2m2V~g~s!!ds.

Expression~2! lacks rigor, e.g., neither the constant in front of the integral nor the ‘‘infin
dimensional Lebesgue measure’’ dg are well defined. Nevertheless a rigorous mathematical
mulation of theFeynman functionalcan be given~see Refs. 2 and 3, and references therein;
other approches see also Refs. 4 and 5!. Feynman himself~see Ref. 6! gave other heuristic
representations of the integral, e.g., the heuristic integration over paths in phase space. Fo
cal discussions of this concept see also Ref. 7.

The aim of the present paper is to give a mathematical definition of a ‘‘phase space
integral:’’ a Hamiltonian instead of a Lagrangian representation of the propagator. We want t
mathematical meaning to the Hamiltonian version of formula~2!, namely to

G~ t,x,y!5constE e~ i /\! S(q,p)dq dp, ~3!

whereq(s),p(s), sP@0,t# are paths in the phase space andS is the action in the Hamiltonian
fomulation:S(q,p)5*0

t (q̇(s)p(s)2H(q(s),p(s)))ds.
The Hamiltonian formulation is more convenient for two reasons:

~1! for many classical systems it is better than the Lagrangian one;
~2! the discussion of the approach from quantum mechanics to classical mechanics, i.e., th

of the behavior of physical quantities taking into account that\ is small, is more natural in a
Hamiltonian setting~see, e.g., Refs. 8 and 9 for a discussion of this behavior!.

We note that an approach of phase space Feynman path integrals via analytic continua
‘‘phase space Wiener integrals’’ has been presented by Daubechies and Klauder.10 Analytic con-
tinuation was also used in other ‘‘path space’’ approaches, see Refs. 11 and 4, and refe
therein. Our approach is more direct in the spirit of Ref. 2.

II. LIE–TROTTER PRODUCT FORMULA

We first recall an abstract version of the Lie–Trotter product formula.
Lemma 1: Let A and B be self-adjoint operators in a Hilbert spaceH and let A1B be

essentially self-adjoint on D(A)ùD(B). Then

s2 lim
n→`

~eita/neitB/n!n5ei (A1B)t, tPR. ~4!

Heres2 lim is the strong operator limit. For a proof and a discussion of this lemma see
Refs. 12 and 1.

Let H5L2(Rd) and let us consider a potentialV depending both on the position and on t
momentum in the following way:V5V1(x)1V2(p). V1 is defined as a self-adjoint operator inH,
with its natural domain as a multiplication operator.V2 is the operator inH with domain

D~V2~p!!5$cPHua→V2~a!ĉ~a!PH%,

whereĉ is the Fourier transform ofc. It coincides with the operator defined by functional calcu
asV2(p), with p the self-adjoint operator2 i\¹ in H. V is then the sum, as a self-adjoint operat
in H, of the self-adjoint operatorsV1 andV2 . We assume that the functionsV1 andV2 are such
that the corresponding operators have a common dense domain of essentially self-adjointnD.
This is the case, e.g., whenV1PL2(Rd)1L`(Rd), V2 is bounded measurable, andD5C0

`(Rd) or
D5S(Rd). We assume, in order to apply lemma 1, thatV1 , V2 are such that2 (\2/2m) D1V2

and2 (\2/2m) D1V11V2 are essentially self-adjoint onD. We denote byH the closure of the
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latter operator.H ~which we also write simply as2(\2/2m) D1V11V2) is then the quantum
Hamiltonian.

By lemma 1 we have then

expS 2
i t (p2/2m1V

\ D5s2 lim
n→`

S expS 2
i e(p2/2m1V2)

\ DexpS 2
i e(V1)

\ D D n

, e[
t

n
,

c~ t !5expS 2
i t (p2/2m1V

\ Dc05 lim
n→`

S expS 2
i e(p2/2m1V2)

\ DexpS 2
i eV1

\ D D n

c0 ,

c0PC0
`~Rd!,

~see, e.g., Refs. 12 and 13 for related uses of the Lie–Trotter formula!.
By shifting from the position representation to the momentum representation and vice

and assuming thatV1 andV2 are continuous, we can write in the strongL2(Rd)-sense, for allt
.0:

c~ t,x!5 lim
n→`

E
Rd

expS 2
i e(pn21

2 /2m1V2(pn21))

\ D •S expS 2
i eV1

\ D

3S expS 2
i e~p2/2m1V2!

\ DexpS 2
i e~V1!

\ D D n21

c0D ~p1!

expS i
xpn21

\ D
~2p\!d/2 dpn21

5 lim
n→`

E
R2d

expS 2
i e(pn21

2 /2m1V2(pn21))

\ DexpS 2
i eV1(xn21

\ D

•S S expS 2
i e(p2/2m1V2)

\ DexpS 2
i e(V1)

\ D D n21

c0D ~xn21!

expS i
xpn21

\ D
~2p\!d/2

3

expS 2 i
xn21pn21

\ D
~2p\!d/2 dpn21dxn21

5 lim
n→`

S 1

A2p\
D 2nd

•E
R2nd

expS 2
i e

\ (
j 50

n21 S pj
2

2m
1V1(xj )1V2(pj )

2pj

(xj 112xj )

e D Dc0~x0!)
j 50

n21

dpjdxj , ~5!

wherexn[x.
Remark:The integrals above are to be understood as limits asL↑Rd, n→` in the L2(R2nd)

sense of the corresponding integrals overL2nd, with L bounded~see Ref. 11!. Formula~5! holds
first as a strongL2-limit, but then ~possibly by subsequences! also for Lebesgue a.e.x. It als
follows from this that~5! gives the solution to the Cauchy problem~1!.

The latter expression suggests the following formula for the limit:

c~ t,x!5constE
q(t)5x

e~ i /\! S(q,p)c~0,q~0!!dq dp,

~6!

S~q,p!5E
0

t

p~s!q̇~s!2H~q~s!,p~s!!ds,

which does not yet have a mathematical meaning. It will be rigorously defined in Secs. III an
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III. OSCILLATORY INTEGRALS AND THE CAMERON MARTIN FORMULA

In this section we recall for later use some known results, for more details we refer to Re
3, and 8.

A. Finite dimensional oscillatory integrals

Let us consider the finite dimensional real Hilbert spaceRn, whose elements are denoted b
x,yPRn and the scalar product witĥx,y&. Let T:Rn→Rn be a nondegenerate symmetric operat

Definition 1: A function f:Rn→C is Fresnel integrable with respect to T if and only if for ea
fPS(Rn) such thatf(0)51 the limit

lim
e→0

E ei ^x,Tx& f ~x!f~ex!dx ~7!

exists and is independent off. In this case the limit is called the Fresnel integral of f with respe
to T and denoted by

E ei ^x,Tx& f ~x!dx.

There is an important classF(Rn) of Fresnel integrable functions: those which are Four
transforms of complex bounded variation measures onRn, M(Rn):

f PF~Rn!⇔ f ~x!5E ei ^x,a&m f~da!, m fPM~Rn!, xPRn.

F(Rn) contains in particularS(Rn), hence it is also dense inL2(Rn). In this case the Parseva
equality gives us the following expression for the limit~7!:

~2p i !2n/2E e~ i /2!^x,Tx& f ~x!dx5~detT!21/2E e~2 i /2!^x,T21x&m f~dx!.

Analogously one can define the normalized Fresnel integral by means of the following expre

E˜ E e~ i /2!^x,Tx& f ~x!dxª~detT!1/2~2p!2n/2E e~ i /2!^x,Tx& f ~x!dx5E e~2 i /2!^x,T21x&m f~dx!.

Note that if we substitute into the latter definition the functionf 51 we have*̃e( i /2)^x,Tx& f (x)dx
51.

B. Infinite dimensional oscillatory integrals

Let us consider an infinite dimensional real Hilbert space of pathsH whose elements are
denoted byg,hPH and the scalar product bŷg,h&. Let Pn be a sequence of projectors o
n-dimensional subspaces ofH such thatPn<Pn11 @i.e., Pn115I on Pn(H)] and Pn→I strongly
as n→`; let f :H→C be a function onH and letT:D(T)#H→H be a self-adjoint invertible
operator.

Definition 2: A function f:H→C is Fresnel integrable with respect to T if and only if for ea
n the following finite dimensional integral

E˜
PnH

ei ^Png,TPng& f ~Png!dPng ~8!

is well defined and the limit
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lim
n→`

E˜
PnH

ei ^Png,TPng& f ~Png!dPng ~9!

exists and is independent of the sequence$Pn%.
In this case the limit is called the Fresnel integral of f with respect to T and is denoted

E˜ ei ^g,Tg& f ~g!dg.

Equation (8) is called the normalized finite dimensional approximation of this Fresnel integ.
One can prove that iff PF(H) then f +PnPF(Pn(H)). Moreoverf is Fresnel integrable and

the Cameron–Martin-type formula holds:

E˜ e~ i /2!^g,Tg& f ~g!dg5E
H

e2 ~ i /2!^g,T21g&m f~dg!, ~10!

see Refs. 8 and 3.

IV. PHASE SPACE FEYNMAN FUNCTIONAL

Let us consider again the expression~6! in the particular case of the free particle, name
when the Hamiltonian is just the kinetic energy:H5p2/2m. In this case we have heuristically

c~ t,x!5constE
q(t)5x

expS i

\ E
0

t

(p(s)q̇(s)2p(s)2/2m)dsDc~0,q~0!!dq dp. ~11!

We can give a precise meaning to this expression: under suitable hypothesis on the initia
function c0 , it is an infinite dimensional oscillatory integral.14 In fact, following Ref. 15, let us
introduce the Hilbert spaceHt3Lt , namely the space of paths in thed-dimensional phase spac
(q(s),p(s))sP[0,t] , such that the path (q(s))sP[0,t] belongs to the Cameron–Martin spaceHt ,
namely to the space of the absolutely continuous functionsq from @0,t# to Rd such thatq(t)
50 and q̇PL2(@0,t#,Rd), with inner product̂ q1 ,q2&5*0

t q̇1(s)q̇2(s)ds, while the path in the
momentum space (p(s))sP[0,t] belongs toLt5L2(@0,t#,Rd). Ht3Lt is an Hilbert space with the
natural inner product

^q,p;Q,P&5E
0

t

q̇~s!Q̇~s!ds1E
0

t

p~s!P~s!ds.

Let us introduce the following bilinear form:

@q,p;Q,P#5E
0

t

q̇~s!P~s!ds1E
0

t

p~s!Q̇~s!ds2E
0

t

p~s!P~s!ds5^q,p;A~Q,P!&,

whereA is the following operator inHt3Lt :

A~Q,P!~s!5S E
t

s

P~u!du,Q̇~s!2P~s! D . ~12!

A(Q,P) is densely defined, e.g., onC1(@0,t#;Rd)3C1(@0,t#;Rd). MoreoverA(Q,P) is invertible
with inverse given by

A21~Q,P!~s!5S E
t

s

P~u!du1Q~s!,Q̇~s! D ~13!
                                                                                                                



y

,
e now
n the

of

2852 J. Math. Phys., Vol. 43, No. 6, June 2002 Albeverio, Guatteri, and Mazzucchi

                    
~on the range ofA!.
Now expression~6! can be realized rigorously as

E˜
Ht3Lt

e~ i /2\!^q,p;A(q,p)&c~0,q~0!1x!dq dp,

whereq1x denotes the traslated pathq(s)→q(s)1x, and the normalized integral is defined b
~10!.

In this case the heuristic expression~6! is well defined through Lie–Trotter product formula
namely as the limit of a sequence of finite dimensional integrals, as we saw in Sec. II. We ar
going to show that it is also the limit of a sequence of finite dimensional oscillatory integrals i
sense of definition 2.

Let us consider a sequence of partitionspn of the interval@0,t# into n subintervals of ampli-
tudee[t/n:

t050,t15e, . . . ,t i5 i e, . . . ,tn5ne5t.

To eachpn we associate a projectorPn :Ht3Lt→:Ht3Lt onto a finite dimensional subspace
Ht3Lt , namely the subspace of polygonal paths. In other words each projectorPn acts on a phase
space path (q,p)PHt3Lt in the following way:

Pn~q,p!~s!5S (
i 51

n

x [ t i 21 ,t i ]
~s!S q~ t i 21!1

~q~ t i !2q~ t i 21!

t i2t i 21
~s2t i 21! D ,(

i 51

n

x [ t i 21 ,t i ]
~s!pi D ,

where

pi5
* t i 21

t i p~s!ds

ti2t i 21
5

1

e
* t i 21

t i p~s!ds.

Theorem 1: For each nPN, Pn is a projector inHt3Lt . Moreover for n→` Pn→I as a
bounded operator.

Proof: Pn is symmetric, indeed for all (Q,P)PHt3Lt and all (q,p)PHt3Lt ,

^Q,P;Pn~q,p!&5E
0

t

Q̇~s!(
i 51

n

x [ t i 21 ,t i ]
~s!

~q~ t i !2q~ t i 21!

t i2t i 21
ds1E

0

t

P~s!(
i 51

n

x [ t i 21 ,t i ]
~s!pids

5(
i 51

n
~q~ t i !2q~ t i 21!~Q~ t i !2Q~ t i 21!

t i2t i 21
1(

i 51

n * t i 21

t i p~s!ds* t i 21

t i P~s!ds

ti2t i 21

5^Pn~Q,P!;q,p&.

Pn
25Pn , indeed

Pn
2~q,p!~s!5S (

i 51

n

x [ t i 21 ,t i ]
~s!S q~ t i 21!1

~q~ t i !2q~ t i 21!

t i2t i 21
~s2t i 21! D ,(

i 51

n

x [ t i 21 ,t i ]
~s!pi D

5Pn~q,p!~s!

;(q,p)PHt3Lt , iPn(q,p)2(q,p)i→0 asn→`:
Let us consider the subsetK#Ht3Lt , K5$(q,p)PHt3Lt :iPn(q,p)2(q,p)i→0,n→`%.

It is enough to prove that the closure ofK is Ht3Lt . To prove this it is sufficient to show thatK
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is a closed subspace ofHt3Lt and contains a dense subset ofHt3Lt . This follows from the
density of the piecewise linear paths inHt and the density of the piecewise constant paths inLt

~see, e.g., Ref. 14!.
Theorem 2: Let the function(q,p)→c0(x1q(0)), c0PS(Rd), be Fresnel integrable with

respect to A [with A defined by (12)]. Then the phase space Feynman path integral, name
limit

lim
n→`

E˜
Pn(Ht3Lt)

e( i /2\)^Pn(q,p),APn(q,p)&c0~x1q~0!!dPn~q,p! ~14!

coincides with the limit (5), namely with the solution of the Schro¨dinger equation with a free
Hamiltonian.

Proof: The result follows by direct computation, indeed:

E˜
Pn(Ht3Lt)

e( i /2\)^Pn(q,p),APn(q,p)&c0~x1q~0!!dPn~q,p!

5S 1

A2p\
D 2ndE

R2nd
expS 2

i e

\ (
j 50

n21 S pj
2

2m
2pj

~xj 112xj !

e D Dc0~x0!)
j 50

n21

dpj dxj ,

and the two limits~5! and ~14! coincide. Indeed~14! is a pointwise limit by hypothesis. On th
other hand~5! is a limit in L2 sense, hence, passing if necessary to a subsequence, it is
pointwise limit.

Remark 1:The latter result is equivalent to the ‘‘traditional’’ formulation of the Feynman p
integral in the configuration space. Indeed it can be obtained by means of Fubini theorem2 and an
integration with respect to the momentum variables:

lim
n→`

S 1

A2p\
D 2ndE

R2nd
expS 2

i e

\ (
j 50

n21 S pj
2

2m
2pj

~xj 112xj !

e D Dc0~x0!)
j 50

n21

dpj dxj

5 lim
n→`

S 1

A2p i\
D ndE

Rnd
expS 2

i e

\ (
j 50

n21

m
~xj 112xj !

2

2e2 Dc0~x0!)
j 50

n21

dxj .

The latter expression yields the Feynman functional on the configuration space, i.e., heuris
const*exp(*0

t L(q(s),q̇(s))ds)dq ~L being the classical Lagrangian density!.
Remark 2:The integration with respect to the momentum variables might seem to be s

fluous, but it is very useful when we introduce a potential depending on the momentum.
Theorem 3: Let us consider a semibounded potential V depending explicitly on the mo

tum: V5V(p) and the corresponding quantum mechanical Hamiltonian H52 (\2/2) D1V(p).
Let us suppose H is an essentially self-adjoint operator onL2(Rd). Let the function(q,p)
→exp(2 (i/\) *0

t V(Pn(p(s)))ds)c0(x1q(0)) be Fresnel integrable with respect to the operator,
with A defined by~12!. Then the solution to the Schro¨dinger equation

H ċ52
i

\
Hc,

c~0,x!5c0~x!, c0PS~Rd!

~15!

is given by the phase space path integral
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lim
n→`

E˜
Pn(Ht3Lt)

expS i

2\
^Pn~q,p!,APn~q,p!& DexpS 2

i

\ E
0

t

V~Pn~p~s!!!dsD
3c0~x1q~0!!dPn~q,p!.

Proof: We can proceed in a completely analogous way as in the proof of Theorem 2, the
we shall omit the details. h

V. THE PHASE SPACE FEYNMAN–KAC FORMULA

Let us consider a classical potentialV depending both on the positionQPRd and on the
momentumPPRd, but of the special form:V5V(Q,P)5V1(Q)1V2(P) ~The general case
presents problems due to the noncommutativity of the quantized expression ofQ and P!, for a
different approach with more general Hamiltonians see Ref. 16. Moreover let us suppo
function f :Ht3Lt→C,

f ~q,p!5c0~x1q~0!!expS 2
i

\ E
0

t

V~q~s!1x,p~s!!dsD , c0PS~Rd!

is the Fourier transform of a complex bounded variation measurem f on Ht3Lt :17

f ~q,p!5E
Ht3Lt

ei ^q,p;Q,P&dm f~Q,P!.

Under additional assumptions onV1 andV2 we shall see that the phase space Feynman
integral of the functionf can be computed and is given by

E˜
Ht3Lt

expS i

2\
^q,p;A~q,p!& DexpS 2

i

\ E
0

t

V~q~s!1x,p~s!!dsDc~0,q~0!1x!dq dp

5E
Ht3Lt

expS 2 i\

2
^q,p;A21~q,p!& Ddm f~q,p!. ~16!

This follows from Sec. III together with the following.
Lemma 2: Let us consider a potential V(Q,P)5V1(Q)1V2(P) and an initial wave function

c0 such that V1 , c0PF(Rd) and the function p(s)sP[0,t]→*0
t V2(p(s))dsPF(Lt). Then the

functional

f ~q,p!5c0~x1q~0!!expS 2
i

\ E
0

t

V~q~s!1x,p~s!!dsD
belongs toF(Ht3Lt).

Proof: f(q,p) is the product of two functions: the first, sayf 1 , depends only on the firs
variableq, while the secondf 2 depends only on the variablep, more precisely

f 1~q!5c0~x1q~0!!expS 2
i

\ E
0

t

V1~q~s!1x!dsD , f 2~p!5expS 2
i

\ E
0

t

V2~p~s!!dsD .

Under the given hypothesis onV1 andc0 , f 1 belongs toF(Ht). The proof is given for instance
in Ref. 2. Forf 2 one must pay more attention: indeed the same proof given forf 1 does not work,
as f 2 is defined on a different Hilbert space and we have to require explicitly
*0

t V2(p(s))dsPF(Lt). Under this hypothesis one can easily prove that~see Ref. 2! f 2PF(Lt).
                                                                                                                



wo
s.

n

n

2855J. Math. Phys., Vol. 43, No. 6, June 2002 Phase space Feynman path integrals

                    
Now if f 15m̂ f 1
PF(Ht), f 1 can be extended to a function, denoted again byf 1 , in F(Ht

3Lt): it is the Fourier transform of the product measure onHt3Lt of m f 1
(dq) andd0(dp). The

same holds forf 25m̂ f 2
: f 25(d0(dq)m f 2

(dp)).
Finally, asF(Ht3Lt) is a Banach algebra,2 the product of two elementsf 1f 2 is again an

element ofF(Ht3Lt): more precisely it is the Fourier transform of the convolution of the t
measures inM(Ht3Lt) corresponding tof 1 and f 2 , respectively., and the conclusion follow
The next theorem shows that the above oscillatory integral~16! gives the solution to the Schro¨-
dinger equation.

Theorem 4: Let us consider the following Hamiltonian

H~Q;P!5
P2

2
1V1~Q!1V2~P!

in L2(Rd) and the corresponding Schro¨dinger equation

H ċ52
i

\
Hc,

c~0,x!5c0~x!, xPRd.

~17!

Let us suppose that V1 , c0PF(Rd) and *0
t V2(p(s))dsPF(Lt). Then the solution to the

Cauchy problem (17) is given by the phase space Feynman path integral:

E˜
Ht3Lt

expS i

2\
^q,p;A~q,p!& DexpS 2

i

\ E
0

t

~V1~q~s!1x!1V2~p~s!!!dsDc~0,q~0!1x!dq dp.

Proof: We follow the proof given by Elworthy and Truman in Ref. 3.
For 0<u<t let mu(V1 ,x)[mu ,nu

t (V1 ,x)[nu
t , hu

t (V2)[hu
t , andm0(c) be the measures o

Ht3Lt whose Fourier transforms when evaluated at (q,p)PHt3Lt are

V1~x1q~u!!, expS 2 i E
u

t

V1~x1q~s!!dsD , expS 2 i E
u

t

V2~p~s!!dsD , c0~q~0!1x!.

We set

U~ t !c0~x!5E˜ Ht3Lt
expS i

2\
^q,p;A~q,p!& D

3expS 2
i

\ E
0

t

~V1~q~s!1x!1V2~p~s!!!dsDc~0,q~0!1x!dq dp

and

U0~ t !c0~x!5E˜ Ht3Lt
expS i

2\
^q,p;A~q,p!& D

3expS 2
i

\ E
0

t

V2~p~s!! D dsc~0,q~0!1x!dq dp.

By Sec. III we have

U~ t !c0~x!5E
Ht3Lt

e(2 i\/2)^q,p;A21(q,p)&~h0
t * n0

t * m0~c!!~dq dp!. ~18!

Now, if $mu :a<u<t% is a family in M(Ht3Lt), we shall let*a
b mu du denote the measure o

Ht3Lt given by
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f→E
a

bE
Ht3Lt

f ~q,p!dmu~q,p!du

whenever it exists.
Since for any continuous pathq,

expS 2 i E
0

t

V1~q~s!!dsD 512 i E
0

t

V1~q~u!!expS 2 i E
u

t

V1~q~s!!dsD du,

the following relation holds:

n0
t 5d02 i E

0

t

~mu* nu
t !du, ~19!

whered0 is the Dirac measure at 0PHt .
Applying this relation to~18! we obtain

U~ t !c0~x!5E
Ht3Lt

expS 2 i\

2
^q,p;A21~q,p!& D ~h0

t * m0~c!!~dq dp!

2 i E
0

tE
Ht3Lt

expS 2 i\

2
^q,p;A21~q,p!& D ~h0

t * mu~V1 ,x!* nu
t * m0~c!!~dq dp!du

5U0~ t !c0~x!2 i E
0

tE˜ Ht3Lt
expS i

2\
^q,p;A~q,p!& DexpS 2

i

\ E
u

t

V1~q~s!1x!dsD
3expS 2

i

\ E
0

t

V2~p~s!! D dsV1~q~u!1x!c0~q~0!1x!dq dp du.

Now we have, by Fubini theorem for Fresnel integrals,2

E˜ Ht3Lt
expS i

2\
^q,p;A~q,p!& DexpS 2

i

\ E
u

t

V1~q~s!1x!dsD expS 2
i

\ E
0

t

V2~p~s!! D ds.

V1~q~u!1x!c0~q~0!1x!dq dp

5E˜ Ht2u3Lt2u
expS i

2\
^q,p;A~q,p!&Ht2u3Lt2uD

3expS 2
i

\ E
0

t2u

V1~q~s!1x!dsD S exp2
i

\ E
0

t2u

V2~p~s!! D
3dsV1~q~0!1x!E˜ Hu3Lu

expS i

2\
^q1 ,p1 ;A~q1 ,p1!&Hu3LuD

3expS 2
i

\ E
0

u

V2~p1~s!! D dsc0~q1~0!!dq1dp1dq dpp.

Here qPHt2u and q1PHu are the integration variables, andHs denotes the Cameron–Marti
space of pathsg:@0,s#→Rd.

We have
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U~ t !c0~x!5U0~ t !c0~x!2 i E
0

t

U~ t2u!~V1U0~u!c0!~x!du

5U0~ t !c0~x!2 i E
0

t

U~u!~V1U0~2u!U0~ t !c0!~x!du.

The iterative solution of the latter integral equation is the convergent Dyson perturbation ser
U(t) with respect toU0(t), which proves the theorem. h

Remark:We have stated our results forc0PF(Rd). They can be extended by density
L2(Rd).
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We consider two- and three-dimensional complex Schro¨dinger equations with
Abelian potentials and a fixed energy level. The potential, wave function, and the
spectral Bloch variety are calculated in terms of the Kleinian hyperelliptic functions
associated with a genus two hyperelliptic curve. In the special case in two dimen-
sions when the curve covers two elliptic curves, exactly solvable Schro¨dinger
equations are constructed in terms of the elliptic functions of these curves. The
solutions obtained are illustrated by a number of plots. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1470708#

I. INTRODUCTION

Modern physical technologies have led to the manufacture of new materials—films, sup
tices, two-dimensional~2D! quantum dots arrays, etc., whose mathematical models are bas
the 2D and 3D~three-dimensional! Schrödinger equation with periodic and quasiperiodic pote
tials. The recent discoveries of soliton theory, which involve the theory of Abelian functions, m
it possible to construct exactly solvable Schro¨dinger equations with Abelian potentials. Progress
this area has been made by Novikov and co-workers since the middle of the 1970s~see, e.g., Ref.
1!. In Ref. 2, the multidimensional spectral problem for the Schro¨dinger equation under the actio
of an external magnetic field was considered, and the corresponding Bloch solutions wer
structed at specific values of the energy. The case of a realpure potentialwas solved in Refs. 3 and
4 for some special hyperelliptic curves which permit involution with two stable points, leadin
Prym varieties.

The complex theory of the 2D Schro¨dinger equation with an Abelian potential was develop
by Buchstaber and Enolskii5 by differentiating the addition theorem for the Baker function
genus two; in this approach, the 2D Schro¨dinger equation appeared as a compatibility condit
for the ansatz introduced in Ref. 5. The key ingredient of this technique is the use o
Weierstrass–Klein realization of the hyperelliptic functions, which is treated in the clas
literature6,7 and more recently developed in Ref. 8.

a!Electronic mail: buchstab@mendeleevo.ru
b!Electronic mail: j.c.eilbeck@ma.hw.ac.uk
c!Electronic mail: vze@imag.kiev.ua
d!Electronic mail: dile@imag.kiev.ua
e!Electronic mail: salerno@sa.infn.it
28580022-2488/2002/43(6)/2858/24/$19.00 © 2002 American Institute of Physics
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The aim of the present paper is to develop the theory for 2D and 3D Schro¨dinger equations
with an Abelian potential using, as the basic ingredient, the Baker functionF(x;a) of the hyper-
elliptic curveV of genusg,

FB~x;a!5
s~a2x!

s~a!s~x!
exp~z~a!Tx!,

where the variablex and spectral variablea belong to the Jacobi varieties of the underlyin
hyperelliptic curve, thes-function is a generalization of the Weierstrasss-function to higher
genera, andz i5]/]xi ln s(x), i 51,...,g are hyperellipticz-functions. We emphasize that th
Baker function is defined on the product of Jacobians Jac(V)3Jac(V) in contrast to the Baker–
Akhiezer function, which is defined on the productV3Jac(V).

To explain the results, we first consider then-dimensional Schro¨dinger equation

H (
k51

n
]2

]xk
2 2U~x!J C~x;a!5l~a!C~x;a!, ~1.1!

wherethe potentialU(x) depends on the column vectorx belonging to then-dimensional complex
spaceCn, C(x;a) is the wave functiondepending both onx andthe spectral parameter, which is
a column vectoraPCn, andl(a) is the spectral function. We assume that the functions intro
duced have the following periodicity properties with respect to the 2n n-dimensional vectors,
which are columns of then32n matrix (2v,2v8), wherev,v8 aren3n-matrices given by

U~x12vn12v8m!5U~x!, ~1.2!

C~x12vn12v8m;a!5jn,m~a!C~x;a!, ~1.3!

C~x;a12vn12v8m!5C~x;a!, ~1.4!

wheren, m are arbitrary integer column vectors, and the functionjn,m(a) is the Bloch factor. The
Bloch factor is assumed to be of the form

jn,m~a!5exp$2kT~a!~vn1v8m!%, ~1.5!

and thequasimomentumk(a) is identified with the eigenvalue of the translation operator on
lattice.

Equations~1.3! and~1.5! represent a natural generalization of the usual Bloch theorem to
case of Abelian potentials. Indeed, after expressing the spectral parameter in terms of the
momentum and considering translations in the crystal lattice by a vector of the form 2vn, with
2v5(2v i , j ) i , j 51,...,n being then3n period matrix, we have from~1.3!

C~x12vn;k!5e2kTvnC~x;k!. ~1.6!

Similarly, with respect to points of the reciprocal lattice,~1.4! gives

C~x;k12ṽn!5C~x;k!, ~1.7!

where 2ṽn is a reciprocal period, which is represented as a column of then3n reciprocal period
matrix 2ṽ, which will be shown later to be equal toip(v)21.

These properties mean that the Schro¨dinger equation is considered on the product of torT
3T, T5Cn/2v % 2v8, which we assume to be generated by a hyperelliptic curveV and therefore
T is the Jacobian Jac(V) of the curve. Since the potential has the periodicity property~1.2!, it is
an Abelian function, as is the corresponding spectral function.
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In this case, the periods 2v and 2v8 are generated by the holomorphic integrals over cyc
of the curveV, and it is always possible to fix the parameters of the curve in such a way tha
period matrix 2v is real and the period matrix 2v8 is pure imaginary.

From the physical viewpoint, it is natural to consider the potential and the wave functio
functions of the argumentıx1V, whereV is a real half period. Then the potentialU(ıx1V) is
periodic with respect to the period lattice 2ıv8 and is smooth and real at realx, and the wave
functionC(ıx1V;a1V8), whereV8 is a pure imaginary period, satisfy the periodicity prope
~1.6!

C~ ıx1V12v8n;k~a!!5e2ıkT(a)Im(v8)nC~ ıx1V;k~a!!, ~1.8!

with real quasimomentumk(a).
In this context, we shall call this periodicity property of the wave function theBloch property.

The subvarietyB,Jac(V) for which the spectral problem~1.1! can be solved is called theBloch
variety.

The Bloch variety, when parametrized in terms of the quasimomentumk, and restricted to a
fixed value of theenergyE5l(a)5const, is called aFermi variety, denoted byF. If the Schrö-
dinger equation permits solutionsonly at a fixed energy level, which is independent of the spec
parametera, then the Bloch variety and the Fermi variety are isomorphic, but generally spea
dimB>dimF. The Fermi variety is aFermi surfacein the case dimF52 ~this situation is usually
realized atn53! and aFermi curvein the case when dimF51. In the theory of the electronic
structure of metals, most interest lies in those exactly solvable Schro¨dinger equations which admi
nontrivial Fermi varieties.

In what follows we shall interpret all these quantities for the case of 2D and three-dimens
~3D! Schrödinger equations in terms of Abelian functions of genus two and genus three hyp
liptic curves.

We would like to emphasize that the known methods of derivation of exact solution
multidimensional Schro¨dinger equations suppose the separability of the potential, i.e., in
U(x)5a`(x1)`(x2), where thè (xi) are the Weierstrass elliptic functions, anda5 const. In this
case the lattice structure is necessarily rectangular~cubic! in 2D~3D!. The nonseparable potentia
which we are considering enable us to investigate more general lattice symmetries, with a
range of physical applications.

The paper is organized as follows. In Sec. II we consider the well-known case of the
dimensional~1D! Schrödinger equation with elliptic Lame´ potentials. In Sec. III we introduce
suitable generalization of the Kleinian function to higher genera and present a natural exten
the theory of the one-gap Lame´ potential to higher dimensions. The results of this section will
be restricted to two dimensions but will be valid also in the 3D case. In Sec. IV we appl
general results of Sec. III to the 2D case, by deriving the explicit form of a certain famil
Abelian potentials for which the 2D Schro¨dinger equation is exactly solvable. A set of figures f
the potential profiles, showing that they are periodic, real and nonsingular, and therefore s
for physical applications, is also given. The corresponding eigenvalues and eigenfunctions a
explicitly displayed. Section V is devoted to the case of reduction of the 2D Abelian potentia
associated eigenfunction to elliptic functions. To do this we use the general results of S
together with the explicit formulas for the deformation of the two-gap Lame´ potential under the
action of the Korteweg–de Vries~KdV! flow and the three-particle dynamics over the locus,
derive exactly solvable 2D Schro¨dinger equations with elliptic potentials. Finally, in Sec. VI w
will consider the extension of the theory to the 3D case.

II. THE 1D SCHRÖDINGER EQUATION WITH ELLIPTIC POTENTIALS

One of the main problems in condensed matter physics is the construction of solutions
Schrödinger equation with real and nonsingular periodic or quasiperiodic potentials. Exce
very few cases, this problem is in general not solvable without resorting to approximations
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One of the few cases for which exact solutions are known is provided by the remar
example of the one-dimensionalLaméequationwith an elliptic potential~here and in the follow-
ing we follow the standard notation of the theory of elliptic functions fixed in Ref. 9!,

H d2

dx2 2U~x!J C~x;a!5`~a!C~x;a!, ~2.1!

U~x!52`~x!, C~x;a!5FW~x;a!5
s~a2x!

s~a!s~x!
exp$z~a!x%. ~2.2!

Since in the following sections we will consider the generalization of this classical case to h
dimensions, we shall briefly review it here.

We recall that the Weierstrass functions̀,z are given as logarithmic derivatives of th
s-function,

`~x!52
d2

dx2 ln s~x!, z~x!5
d

dx
ln s~x!.

The s-function, which is the generating function for the whole theory, is constructed from
elliptic curve

w254z32g2z2g3[4~z2e1!~z2e2!~z2e3! ~2.3!

equipped with a canonical basis of cyclesa, b as follows. The holomorphic differential and th
associated meromorphic differential of the second kind are given, respectively, by dz/w and
z dz/w. Their a andb periods

2v5 R
a

dz

w
, 2v85 R

b

dz

w
, ~2.4!

2h52 R
a

zdz

w
, 2h852 R

b

z dz

w
~2.5!

satisfy theLegendre relation

hv82vh85
ıp

2
. ~2.6!

The Weierstrasss-function has the form

s~x!5Ap

v

1

A8 D
expS hx2

2v Dq1S x

2v Ut D , ~2.7!

where q1 is the Jacobianu-function, t5v8/v, and D516(e22e3)2(e32e1)2(e12e2)2. This
s-function can be also be represented as the power series

s~x!5x2
g2x5

24
•3•5

1
g3x7

23
•3•5•7

1¯

with coefficients connected by a recursion relation first found by Weierstrass10 and documented in
Ref. 11~see also Ref. 12!. The Weierstrasss-function has the periodicity property

s~x12nv12mv!5~21!n1m1mn exp$2~nh1mh8!~x1nv1mv8!%s~x!, ~2.8!
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which leads to the following expression for the Bloch factor:

j i~a!5exp~2v iz~a!22ah i !, i 51,2,3. ~2.9!

The functionsj i(a) are elliptic functions with periods 2v,2v8, because of the Legendre relatio
To give the physical interpretation of the above-mentioned formulas we shall fix the pot

and the wave function as follows:

U~x!52`~ ıx1v!, C~x;a!5FW~ ıx1v;a1v8!, x,aPR. ~2.10!

The potential has the real period22ıv8. The associated quasimomentum is given by

k~a!5z~a1v8!2
h8

v8
~a1v8!, aPR. ~2.11!

The wave function, considered as a function ofk instead ofa, has the periodicity property
~1.7! with the reciprocal period

2ṽ5
ıp

v8
.

The Bloch varietyB is the Jacobian of the elliptic curve, which is isomorphic in this case to
elliptic curve itself.

We remark here that the one-dimensional finite-gap potentials appear to be import
applications. For example, Belokolos proved in 198013 that the exact solution of the famou
Peierls problem is a finite-gap potential.

The simplest generalization of~2.1! to then-dimensional case can be obtained if we consi
the separable potential

U~x!52(
k51

n

`~ ıxk1v (k);2v (k),2v (k)8!,

where`(•;2v (k),2v (k)8) are Weierstrass elliptic functions with periods 2v (k) and 2v (k)8. The
energyE and components of the quasimomentak are then

E5 (
k51

n

`~ak1v (k)8;2v (k),2v (k)8!,

kj~a j !5z~a j !2
h ( j )8

v ( j )8
a j , j 51,...,n.

The wave function is given in this case as a product of the functionsFW .
In the casen53 such potentials lead to nontrivial and sometimes very interesting F

surfaces. For example, Baryakhtaret al.14 have used separable potentials to successfully calcu
the electron energy of metals and high-temperature superconductors, and Belokolos and Ko15

have studied the electron–phonon interaction function.
Moreover, a general theory for the Schro¨dinger equations with separable multidimension

Lamépotentials with an arbitrary number of gaps in the spectrum was recently developed in
16. This approach was shown to be effective for the exact computation of the energy ban
Fermi surfaces of 2D lattices with square or rectangular symmetry. The extension of these r
however, to lattices with more general spatial symmetries seems problematic in the con
separable multidimensional Lame´ potentials.
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We shall develop in the following another generalization, which leads to a nonsepa
potential. Namely we shall show that the Lame´ equation~2.1! can be generalized to highe
dimensions within the Weierstrass–Klein generalization of Weierstrass elliptic function theo
higher genera, following Refs. 6 and 7 and also Refs. 17 and 8. This generalization enable
treat more general symmetries than the separable case.

III. MULTIDIMENSIONAL SCHRÖ DINGER EQUATIONS AS GENERALIZED LAMÉ
EQUATIONS OF HIGHER GENERA

To develop the theory of the multidimensional Schro¨dinger equation we need a suitab
generalization of thefundamentals-functionof the hyperelliptic curveV5V(w,z) of genusg,

w254 )
i 51

2g11

~z2ei ![4z2g111(
i 50

2g

l iz
i ~3.1!

by the following formula, which is analogous to that in the elliptic case

s~x!5A pg

det 2v

1

A4 ) iÞ j~ei2ej !
exp$xT¸x%u@«#~~2v!21xut!. ~3.2!

The entries to~3.2! are as followsu@«#(vut) is the standard multidimensional theta function w
characteristic

u@«#~vut!5 (
mPZg

exp$pı~m1«8!Tt~m1«8!12pı~m1«8!T~v1«!%; ~3.3!

@«#5F«8T

«T G5F«18 ... «g8

«1 ... «g
G

is the necessarily half integer characteristic of the vector of Riemann constants whose bas
is chosen as (̀ ,`). The matrix

¸5h~2v!21 ~3.4!

is the symmetric matrix which generalizes the factorh/2v in the exponential~2.7! to the higher

genera. The 2g32g period matrix, (h
v

h8
v8) satisfies the generalized Legendre relation

S v v8

h h8
D S 0 21g

1g 0 D S v v8

h h8
D TS 0 21g

1g 0 D 52
ıp

2
, ~3.5!

where theg3g period matrices 2v,2v8,2h,2h8 are

2v5S R
ai

duj D
i , j 51,...,g

, 2v85S R
bi

duj D
i , j 51,...,g

,

2h5S 2 R
ai

dr j D
i , j 51,...,g

, 2h85S 2 R
bi

dr j D
i , j 51,...,g

.

Here the dui are the holomorphic differentials

duT5~du1 ,...,dug!, duk5
zk21dz

w
, ~3.6!
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and the dr i are the differentials of the second kind with a pole at infinity

drT5~dr 1 ,...,dr g!,
~3.7!

dr j5 (
k5 j

2g112 j

~k112 j !lk111 j

zkdz

4w
, j 51,...,g.

The Kleinians-function has the following periodicity property:

s~x12V~n,m!!5exp$2ET~n,m!~x1V~n,m!!%exp$2ıpnTm22ıp«Tm%s~x!, ~3.8!

whereE(n,m)5hn1h8m, V(n,m)5vn1v8m, n,mPZg and«T is the lower line of the char-
acteristic of the vector of the Riemann constant. The Kleinianz- and`-functions are introduced
through logarithmic derivatives of the Kleinians-function,

z i~x!5
] ln s~x!

]xi
, ` i , j~x!52

]2 ln s~x!

]xi]xj
,

` i , j ,k~x!52
]3 ln s~x!

]xi]xj]xk
, i , j ,k51,...,g, etc.

We will omit commas between indices when the resulting formula is unambiguous.
The Abel mapA:(V)g→Jac(V) of the symmetrized productV3¯3V to the Jacobi variety

Jac(V)5Cg/2v % 2v8 of the curveV is defined by

(
k51

g E
(`,`)

(wk ,zk)

du5x. ~3.9!

The Kummer variety is defined as the factor Kum(V)5Jac(V)/x→2x by the involutionx→
2x.

The principal results of the theory of the hyperelliptic Kleinian can be formulated using
(g12)3(g12)-matrix

H5$hi ,k% i ,k51,...,g12 , hik54` i 21,k2122`k,i 2222` i ,k221 1
2 ~d i ,k~l2i 221l2k22!

1dk,i 11l2i 211d i ,k11l2k21!. ~3.10!

We denote the minors of the matrixH as follows:

H@ j 1 ¯ j m

k1 ¯ kn#$hi k , j l
%k51,...,m; l 51,...,n .

Theorem 3.1„Ref. 7…: The matrix H has the following properties
(1) Let (w1 ,z1),...,(wg ,zg) be a divisor andZ5(1,z,...,zg11)T, then for arbitrary vectors

wrws5Zr
THZs ,

and in particular

ZTHZ5 (
i 50

2g12

l iz
i .

(2) Let (w1 ,z1),...,(wg ,zg) be the divisor, then the vectorsZ5(1,zr ,...,zr
g11)T, r 51,...,g

are orthogonal to the last column of the matrix H or equivalently the zr are the roots of

zg2`gg~x!zg212...2`1g~x!50, ~3.11!
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which yields the solution of the Jacobi inversion problem, where the second coordinate
divisor is defined as follows:

wk52(
j 51

g

` jgg~x!zk
g2 j . ~3.12!

(3) Rank H53 at generic points and

2
1

4
` igg`kgg5detH@ i g11 g12

k g11 g12#, ; i ,k51,...,g. ~3.13!

The intersection of the g(g11)/2 cubics defines the Jacobi variety as an algebraic variety
Cg1(1/2)g(g11).

(4) The intersection of the g(g21)/2 quartics

detH@ i j g 11 g12
k l g11 g12#50, ; iÞ j ,kÞ l 51,...,g ~3.14!

defines the Kummer variety as an algebraic variety inC(1/2)g(g11).
(5) The following equality holds:

RTpj l pik
T S5

1

4
detS H@ j l g 11 g12

i k g11 g12# S

RT 0
D , ~3.15!

whereR, SPC4 are arbitrary vectors and

pik5S 2`ggk

`ggi

`g,i ,k212`g,i 21,k

`g21,i ,k212`g21,k,i 211`g,k,i 222`g,i ,k22

D .

On the basis of the above-mentioned relations, we shall construct the linear differenti
erators for which the spectral variety will be defined in Jac(V). Following Baker~see Ref. 6, p.
421! we define a function on Jac(V)3Jac(V).

Definition 3.1:The standard Baker functionFB of the curveV is the function on the produc
Jac(V)3Jac(V), and is defined as follows:

FB :Jac~V!3JacV→C,

FB~x;a!5
s~a2x!

s~a!s~x!
exp~zT~a!x!,

wherezT(a)5(z1(a),...,zg(a)), and

x5 (
k51

g E
(`,`)

(wk ,zk)

du, a5 (
k51

g E
(`,`)

(nk ,mk)

duPJac~V!,

where ((w1 ,z1),...,(wg ,zg)) and ((n1 ,m1),...,(ng ,mg)) are nonspecial divisors onV. The
FB-function is meromorphic inx and has the periodicity property~1.3! with the Bloch factor

jn,m~a!5exp$2zT~a!V~n,m!22ET~n,m!a%, i 51,...,g, ~3.16!
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where V(n,m)5vn1v8m, E(n,m)5hn1h8m, n,mPZg are arbitrary integer vectors. W
shall call the Baker function any function which is meromorphic on Jac(V)3Jac(V) and has the
periodicity property~1.3! with the Bloch factors~3.16!. Evidently in the case of genus oneFW

[FB .
We remark that the spectral variety of the standard Baker function is the Jacobi variety

curve, in contrast with theBaker–Akhiezer function, whose spectral parameter is evaluated on
curve. In our notation, the Baker–Akhiezer function isFBA(u;(m,n)), which is given by~see Ref.
18!

FBA~x;~m,n!!5
s~* (n0 ,m0)

(n,m) du2x!

s~x!
expS E

(n0 ,m0)

(n,m)

drTxD ,

where (n,m)PV, and xPJac(V). The functionFBA solves the one-dimensional Schro¨dinger
equation with the potential 2̀gg ,

~]g
222`gg!FBA5S z1

l2g

4 DFBA , ~3.17!

with respect toug for all (n,m)PV.
Let us fix as the period lattice the matrix of real periods 2v. In analogy with the case of genu

one, the Bloch factor~3.16! of the standard Baker function can be written as

jn~a!5exp$2kT~a!vn%,
~3.18!

k~a!5z~a1V8!22¸~a1V8!,

whereV8 is an imaginary half period.
To prove the last formula we take into account the definition and the symmetry property

matrix ¸. We have

~hn!Tb5~¸~2v!n!Tb52bT¸vn.

The Bloch factor is an Abelian function, whose periodicity properties are provided by the pe
icity property of thez-function and the generalized Legendre relation~3.5!.

We shall prove the following
Proposition 3.2:Let V be a hyperelliptic curve of genusg,4. Then theg111 1

2g(g11)
Baker functions on Jac(V)3Jac(V) are

F0~x;a!5FB~x;a!,

Fi~x;a!5
]

]xi
FB~x;a!, i 51,...,g, ~3.19!

Fi j ~x;a!5H ]2

]xi]xj
22` i j ~x!J FB~x;a!, i< j 51,...,g,

whereFB(x;a) is the standard Baker function of the curve. These functions, regarded as fun
of x, are linearly dependent, i.e., there exists at least one relation between them of the for

c0~a!F0~x;a!1(
i 51

g

ci~a!Fi~x;a!1 (
i< j 51,...,g

ci j ~a!Fi j ~x;a!50, ~3.20!

where not all functions ina: c0(a),ci(a),ci j (a) are equal to zero.
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Proof: We shall prove the statement forg52 andg53. Let us write the standard additio
theorem of the second-orderu-functions,

uF «8T

«T1gTG~v1uut!uF«8T

«T G~v2uut!5 (
2dP(Z/2Z)g

~21!4«TduF dT

gTG~2vu2t!uF«8T1dT

gT G~2uu2t!.

Now setu50 andg50,

u2F«8T

«T G~vut!5 (
2dP(Z/2Z)g

~21!4«TdT
uFdT

0TG~2vu2t!uF«8T1dT

0T G~0u2t!, ~3.21!

wheredT5(d1 ,...,dg) with 2d i51 or 0,i 51,...,g. We multiply both sides of~3.21! by the factor
exp$2uT¸u%, wherev5(2v)21u and the matrix̧ is given in the definition of the fundamenta
s-function. One can see that the entire functions

cF«8T

«T G~vut!5exp$2uT¸u%u2F«8T

«T G~vut!,

~3.22!

c̃FdT

0TG~2vu2t!5exp$2uT¸u%uFdT

0TG~2vu2t!

have the same periodicity property

cFdT

0TG~2v12V~m,m8!ut!5exp$2ET~m,m8!~x1V~m,m8!!%cFdT

0TG~2vut!, ~3.23!

with E(m,m8)5hm1h8m8 as defined previously. Therefore any 2g11 entire functions which
possess the periodicity property~3.23! are linearly dependent. Moreover this statement can
extended to the case of entire functions which have the periodicity property

c~v12V~m,m8!!5exp$2ET~m,m8!~x1V~m,m8!!1g~m,m8!%c~v!, ~3.24!

whereg(m,m8) is some constant. The proof given is valid for genera satisfying the inequa

2g,g1
g~g11!

2
.

These are the casesg52 andg53. h

We remark that in the case ofg52 the statement of Proposition 3.2 was derived in Ref. 5,
also Ref. 17, as the condition of the validity of the addition theorem for the Baker function

FB~u1v;a!5
YT~u;a!AY~v;a!

XT~u!AX~v!
~3.25!

with the integer 434-matrix A, whereX(u) is a four-component meromorphic vector functio
and the four-component vector functionY(u;a) has the periodicity properties~1.3! and ~1.4!.

The origin of the ansatz~3.25! is explained as follows. In the caseg51, ~3.25! follows from
the Weierstrass addition formula for thes-functions,

s~u1v !s~u2v !

s2~u!s2~v !
5`~v !2`~u!, ~3.26!

which can be written in the equivalent form
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FW~u1v;a!5
FW~u;a!FW8 ~v;a!2FW~v;a!FW8 ~u;a!

`~u!2`~v !
. ~3.27!

This last equality can be rewritten in the form~3.25! with the vectors

Y~u;a!5S F~u;a!

F8~u;a! D , X~u!5S `~u!

1 D , ~3.28!

and the 232-matrix

A5S 0 21

1 0 D . ~3.29!

In the case of genusg52, a solution of~3.25! was found in Ref. 5 with

XT~u!5~`22~u!,`12~u!,`11~u!,1!,

YT~u;a!5C~F0~u;a!,F1~u;a!,F2~u;a!,F12~u;a!!,

where the functionsF0, F1, F2, andF12 are defined in~3.19! and the 434-matricesA andC are
given as follows:

A5S 0 21 0 0

1 0 0 0

0 0 0 1

0 0 21 0

D , C5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 21/̀ 22~a!

D ,

The Schro¨dinger equation~4.11! and the hyperbolic equation~4.16! in this approach are the
compatibility condition of the validity of the ansatz~3.25!.

We shall show in the following how Proposition 3.2 is used to derive 2D and 3D Schro¨dinger
equations with a potential expressible in terms of Kleinian`-functions.

IV. THE TWO-DIMENSIONAL SCHRÖDINGER EQUATION WITH AN ABELIAN
POTENTIAL

Consider the Riemann surface of a curveV(x,y) of genus 2, in the form

w254z51l4z41l3z31l2z21l1z1l054Pk51
5 ~z2ek! ~4.1!

equipped with a homology basis (a1 ,a2 ;b1 ,b2)PH1(V,Z). The canonical holomorphic differen
tials and the associated meromorphic differentials of the second kind have the form

du15
dz

w
, du25

zdz

w
,

dr 15
l3z12l4z2112z3

4w
dz, dr 25

z2

w
dz.

The fundamental Kleinians-function is expanded nearx50 as follows

s~x1 ,x2!5x12 1
3 x2

31 1
24l2x1

31o~x3!. ~4.2!

Denote
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z i~x!5
]

]xi
ln s~x!, i 51,2,

` i j ~x!52
]2

]xi]xj
ln s~x!, i , j 51,2.

The equations of the Jacobi inversion problem

xi5E
(`,`)

(w1 ,z1)

dui1E
(`,`)

(w2 ,z2)

dui , i 51,2

are equivalent to an algebraic equation

P~z,x!5z22`22~x!z2`12~x!50, ~4.3!

i.e., the pair (z1 ,z2) is the pair of roots of~4.3!. So we have

`22~x!5z11z2 , `12~x!52z1z2 . ~4.4!

The correspondingwi is expressed as

wi5`222~x!zi1`122~x!, i 51,2. ~4.5!

The function`11(x) is expressed in terms of symmetric functions of the divisor as

`11~x!5
F~z1 ,z2!22w1w2

4~z12z2!2 , ~4.6!

where the polynomialF is theKleinian polar

F~z1 ,z2!5 (
k50

2

z1
kz2

k~2l2k1l2k11~z11z2!!.

The three functions̀ 11,`12,`22 are known to be algebraically dependent, being the coo
nates of the quartic Kummer surface, which is given by

detS l0
1

2
l1 22`11 22`12

1

2
l1 l214`11

1

2
l312`12 22`22

22`11
1

2
l312`12 l414`22 2

22`12 22`22 2 0

D 50,

where the variables̀ 225X,`125Y,`115Z are regarded as coordinates of the surface inC3.
We are now in a position to formulate the following theorem.
Theorem 4.1:The following equality is valid for the six Baker functions F0(x;a), F1(x;a),

F2(x;a), F11(x;a), F12(x;a), and F22(x;a) in the case of genus two

@aF111bF121a`12~a!F221
1
2 b`22~a!F221~a`1221

1
2 b`222~a!!F2#

5@a~`11~a!2`12~a!`22~a!1 1
4 l2!2 1

2 b`22
2 ~a!#F0 , ~4.7!
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where a,b are arbitrary and thel i parameters of the curve (4.1).
Proof: Consider the six functions,

s~x!2F~x;a!, s~x!2Fi~x;a!, s~x!2Fi j ~x;a!, i , j 51,2. ~4.8!

These are linearly dependent second-order entire functions, satisfying~3.24! with g(m,m8)
5zT(a)V(m,m8)2ET(m,m8)a[k(a). Therefore there exist constantsc0 ,c1 ,c2 ,c11,c12,c22

Þ0, such that

c0F0~x;a!1 (
k51,2

ckFk~x;a!1 (
i , j 51,2

ci j Fi j ~x;a!50. ~4.9!

Using the expansion~4.2! and the identitỳ 1125`222̀ 122`122̀ 22, we arrive at

c150,

c01c11̀ 11~a!1 1
4 c11l22c22̀ 22~a!50,

2c11̀ 12~a!1c12̀ 22~a!22c2250,

22c2`12~a!1c12̀ 122~a!12c22̀ 122~a!50,

2c2`22~a!2c11̀ 112~a!1c22̀ 222~a!50,

2c222c11̀ 122~a!2c12̀ 222~a!50,

whose solution reads

c115a, c125b,

c05a~`11~a!2`12~a!`22~a!1 1
4 l2!2 1

2 b`22
2 ~a!,

~4.10!
c225a`12~a!1 1

2 b`22~a!,

c25a`122~a!1 1
2 b`222~a!,

wherea andb are arbitrary. The equality~4.7! then follows immediately. h

By choosing the parametersa51, b50 and thena50, b51 we get from the equality~4.7!
the following equations on Jac(V)3Jac(V):

H F ]2

]x1
2 22`11~x!G1`12~a!F ]2

]x2
2 22`22~x!G J C1~x;a!

5
1

4`12~a!
~l01l2`12~a!1l4`12

2 ~a!!C1~x;a!,

where

C1~x;a!5F~x;a!expH 1

2

`122~a!

`12~a!
x2J ,

and
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`22~a!H F ]2

]x1
2 22`11~x!G12`12~a!F ]2

]x1]x2
22`12~x!G J C2~x;a!52`22

2 ~a!C2~x;a!,

where

C2~x;a!5F~x;a!exp$2 1
2 `122~a!x1%.

Therefore the following theorems are valid for the case of genus two:
Theorem 4.2: Let V be nonsingular hyperelliptic curve of genus 2 given by Eq. (4.1).

FB(x;a) be the standard Baker function onJac(V)3Jac(V). Let V5(v11,v21)
T, V8

5(v11,v21)
T be the real and imaginary half periods.

Then the following 2D Schro¨dinger equation at a fixed energy level is valid:

H ]2

]x1
2 1

]2

]x2
2 2U1~x!J C1~x;a!5 1

4 ~l01l21l4!C1~x;a!, ~4.11!

where the smooth and real potentialU1(x) and wave functionC1(x;a) have the form

U1~x!52`11~ ıx1V!12`22~ ıx1V!, xPR2, ~4.12!

C1~x;a!5FB~ ıx1V;a1V8!exp$ 1
2 `122~a1V8!~ ıx21v128 !%, x,aPR2, ~4.13!

and are restricted to the complex one-dimensional Bloch varietyB1 given by

B15$~a!u`12~a1V8!51%. ~4.14!

The vector of quasimomentum is real and is given by

k~a!5z~a1V8!22¸~a1V8!1 1
2 `122~a1V8!S 0

1D . ~4.15!

Theorem 4.3: For the conditions of Theorem 4.2, the following hyperbolic equation at
zero energy level is valid:

H ]2

]x1]x2
2U2~x!J C2~x;a!50, ~4.16!

where the smooth and real potentialU2(x) and the wave function have the form

U2~x!52`12~ ıx1V!, xPR2, ~4.17!

C2~x;a!5FB~ ıx1V;a1V8!3exp$ 1
2 `122~a!~ ıx11v218 !%, x,aPR2, ~4.18!

and is restricted to the complex one-dimensional Bloch varietyB2 given by

B2 : $~a!u`22~a1V8!50%. ~4.19!

The vector of quasimomentum is real and given by

k~a!5z~a1V8!22¸~a1V8!1
1

2
`222~a1V8!S 1

0D . ~4.20!

The Bloch varietiesBk,Jac(V), k51,2 are pull-backs of the varietiesB̃k,Kum(V), k

51,2 under the projection Jac(V)→Kum(V), where theB̃k are given by
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B15~X,Z!:detS l0
1

2
l1 22Z 22

1

2
l1 l214Z

1

2
l312 22X

22Z
1

2
l312 l414X 2

22 22X 2 0

D 50

in the case of the 2D Schro¨dinger equation, and

B25~Y,Z!:detS l0
1

2
l1 22Z 22Y

1

2
l1 l214Z

1

2
l312Y 0

22Z
1

2
l312Y l4 2

22Y 0 2 0

D 50

in the case of the hyperbolic equation.
The Bloch varietiesB1,2 are algebraic curves, and it is straightforward to show that th

curves are genus two hyperelliptic curves with a branching point at infinity. But in contrast
the case of genus one, these curves are not equivalent to the initial curve at genericl0 ,...,l4 .

We remark that the explicit description of the varietiesBk , k51,2, which can be realized a
algebraic curve of genus 4 with involution, and its link with the results of Veselov and Noviko4,3

is given in Ref. 19.
As an application of the above-given theory we show in Figs. 1 and 2, the potential profi

derived from~4.12!, for two different sets of the parameter values~in Figs. 3 and 4 the corre
sponding level sets of these potentials are also shown!. We see from these figures that the pote
tials are both real and smooth and have a spatial symmetry which is more general than the
or rectangular one considered in Ref. 16. The full choice of more general crystal symm
which can be found by properly appropriate choices of the parameters$ei%, one can arrange is stil

FIG. 1. Potential profile as function ofx,y for the branching pointse152A3, e253, e350, e452e2 , e552e1 .
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under investigation. These properties make the above-mentioned potentials suitable for p
applications. Similar results can be obtained for the potential~4.17! ~for simplicity details are
omitted!.

V. THE TWO DIMENSIONAL SCHRÖDINGER EQUATION WITH AN ELLIPTIC
POTENTIAL

In this section we shall construct an elliptic 2D Schro¨dinger equation with a potential whic
can be expressed in terms of an elliptic function by using the concept of elliptic solitons fo
KdV equation. We shall show that the real and nonsingular potential in the (x,y) plane is provided

FIG. 2. The same as in Fig. 1 fore152, e251, e350, e4521, e5522.

FIG. 3. Topographic map of the potential in the case:e152A3, e253, e350, e452e2 , e552e1 . The regions between
contours are shaded in such a way that the ones with higher values are lighter.
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by the dynamics over the locus of the Calogero–Moser system. The particle dynamics
system over locus is essentially complex and was traditionally considered as nonphysica
equations for the Kleiniaǹ -functions

`222256`22
2 14`121l4`221

1
2 l3 , ~5.1!

`122256`22̀ 1222`111l4`12, ~5.2!

represent the KdV hierarchy for genus two curves with respect to the function

U52`22~x!1 1
6 l4 . ~5.3!

Equation~5.1! becomes, after differentiation byu2[x, the KdV equation,

Ux1
5 1

2 ~Ux2x2x2
26Ux2

U!, ~5.4!

while the second equation~5.2! represents the second KdV flow which is stationary for
two-gap potential~5.3!.

We further interpret the coordinates (x1 ,x2) as space coordinates~x! and set (x1 ,x2)
5(y,x). Consider the elliptic solution of the KdV equation

U~x,y!52`~x2 f 1~y!!12`~x2 f 2~y!!12`~x2 f 3~y!!, ~5.5!

where`(x) is the standard Weierstrass elliptic function, which represents the isospectral
mation of the two-gap Lame´ potential 6̀ (x) under the action of the KdV flow. The solution of th
form ~5.5! was introduced for the first time by Dubrovin and Novikov;20 the general case wa
investigated by Airaultet al.21 We use this elliptic KdV solution in the following to construct
special solution of the 2D problem.

The ansatz~5.5! implies the following structure of the hyperelliptic, genus two,s-function in
the reduction case:

FIG. 4. The same as in Fig. 2 fore152, e251, e350, e4521, e5522.
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s~x,y!5)
i 51

3

s~x2 f i~y!!, ~5.6!

wheres is the standards-function from the Weierstrass theory of elliptic functions. The asso
ated algebraic curve is known to be of the form

w254~z223g2!~z13e1!~z13e2!~z13e3!. ~5.7!

The remaining Kleiniaǹ -functions,`12(x) and`11(x), are expressible from~5.1! and~5.2!
as differential polynomials of̀ 22, and have the form

`12523 (
i , j 51,2,3

`~x2 f i~y!!`~x2 f j~y!!1
9

4
g2 , ~5.8!

`115227̀ ~x2 f 1~y!!`~x2 f 2~y!!`~x2 f 3~y!!

13 (
i , j 51,2,3

`8~x2 f i~y!!`8~x2 f j~y!!1
21

4 (
i

3

`~x2 f i~y!!, ~5.9!

where` is the standard Weierstrass`-function. This implies that the Abelian elliptic potential fo
the two-dimensional Schro¨dinger equation has the form

U~x,y!5254̀ ~x2 f 1~y!!`~x2 f 2~y!!`~x2 f 3~y!!

16 (
i , j 51,2,3

`8~x2 f i~y!!`8~x2 f j~y!!1
25

4 (
i

3

`~x2 f i~y!!. ~5.10!

For the proof we remark that the compatibility of the ansatz~5.5! with the KdV equation leads to

df 1

dy
526B1226B13,

df 2

dy
526B2126B23,

df 3

dy
526B3126B33,

with

B128 1B138 50, B218 1B238 50, B318 1B338 50. ~5.11!

Here we denoteBi j 5`( f i(y)2 f j (y)). These equations represent the well-known dynamics
the third flow of the integrable Calogero–Moser system, restricted to the stable points
second flow. We remark that the addition theorem for the Weierstrass`-function and the equation
of the locus ~5.11! allow us to rewrite the first group of the equations forf i in the form

df 1

dy
56B23,

df 2

dy
56B13,

df 3

dy
56B12 ~5.12!

and therefore the elliptic KdV solution is given in the form

U~x,y!52 (
i , j 51,2,3

`S ix1v26E
0

y

`~ f i~y!2 f j~y!!dyD ~5.13!
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with v being a constant of integration. We shall find in the following the explicit expression
the functions̀ ( f i(y)2 f j (y)) and show that~5.13! represents an elliptic soliton, i.e., a real a
smooth function which is doubly periodic in bothx andy. With this aim we consider the equation
of the Jacobi inversion problem associated with the curve~5.7!:

E
(`,`)

(w1 ,z1) dz

w
1E

(`,`)

(w2 ,z2) dz

w
5x1[y, ~5.14!

E
(`,`)

(w1 ,z1) z dz

w
1E

(`,`)

(w2 ,z2) z dz

w
5x2[x. ~5.15!

The solution of the problem has the form

z11z252(
i 51

3

`~x2 f i~y!!, ~5.16!

z1z253 (
i , j 51,2,3

`~x2 f i~y!!`~x2 f j~y!!2
9

4
g2 , ~5.17!

where we use~5.1!, ~5.2! and ~5.5! to derive~5.16! and ~5.17!. Let us take the limitx→ f 1(y).
Then it follows from~5.16! and ~5.17!

z2→`, z1→3~P121P13![23P23,

and the equations of the Jacobi inversion problem will take the form

È23B23 dz

2A~z223g2!~z23e1!~z23e2!~z23e3!
5y, ~5.18!

È23B23 z dz

2A~z223g2!~z23e1!~z23e2!~z23e3!
5x. ~5.19!

Two other pairs of equations of the form~5.18! and ~5.19! appear as the result of cyclic permu
tations of the indices 1,2,3. To proceed we shall use the reduction formulas of Hermite,
which the hyperelliptic integrals on the left-hand side of~5.14! and ~5.15! are reduced to elliptic
integrals associated with the elliptic curves:

n254m32g2m2g3 , ñ254m̃32g̃2m̃2g̃3 , ~5.20!

whose moduli are linked by the relation

g̃25
4

g2
2 ~3g2

3127g3!, g̃35
72

g2
3 ~g3g2

323g3
3!. ~5.21!

The equations for the cover are

~m,n!5S w

27

z329g2254g3

z223g2
,

z3127g3

9~z223g2! D , ~5.22!

~ ñ,m̃ !5SA 2

27g2
3w~4z223g2!,

1

3g2
~4z329g2z19g3! D . ~5.23!

The reduction of the holomorphic differentials has the form
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dz

w
5

2

3A3g2

dm̃

ñ
,

zdz

w
5

1

3

dm

n
. ~5.24!

The application of the reduction formulas to Eq.~5.18! results in the following cubic equation
with respect toP23:

4P23
3 2g2P232

1
3 g31 1

9 g2`̃~ 3
2A3g2y!50. ~5.25!

Evidently the remaining two roots are exactlyP12 and P13. Note that Eq.~5.25! displays the
following properties of the functionsPi j on the locus:

P121P131P2350, ~5.26!

P12P131P23P131P13P2352 1
4 g2 . ~5.27!

Let us show that the application of the reduction formulas to Eq.~5.19! leads to the equivalence
Indeed the substitution of the reduction formula~5.22! into ~5.18! implies

`~3 f 1!5
P23

3 2g3

g223P23
2 . ~5.28!

We transform the left-hand side:

`~3 f 1!5`~$ f 12 f 2%1$ f 12 f 3%! ~because of the equality f 11 f 21 f 350!

52P122P131
1

4 FP128 2P138

P122P13
G2

~because of the addition theorem for the Weierstrass elliptic function!

5P231
P238

2

~2P121P23!
2

@because~5.26!and locus equations, which imply

P238
22P128

25~P238 1P218 !~P238 1P128 !50#.

Further, Eq.~5.27! leads to the relation

~2P121P23!
25g223P23

2 .

Collecting all these equalities together we transform~5.28! to the equality

P231
P238

2

g223P23
2 [

P23
3 2g3

g223P23
2 ,

whose validity can be checked directly.
Therefore we have proved the following proposition~a proof in compressed form was give

in Ref. 22, see also Ref. 21, p. 144!.
Proposition 5.1:Let (m,n) and (ñ,m̃) be two elliptic curves in the Weierstrass form with th

moduli g2 ,g3 andg̃2 ,g̃3 given in~5.12!. Denote bỳ and`̃ the corresponding Weierstrass ellipt
functions. Then the formula~5.13! describes the elliptic solution of the KdV equation with th
integrands

`~ f i~y!2 f j~y!!5Pi , j , ~ i , j !5~1,2!,~1,3!,~2,3!
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being the roots of the cubic equation with coefficients depending on the moduli of the e
curveg2 ,g3 and the Weierstrass functioñ̀,

4X32g2X2 1
3 g31 1

9 g2`̃~ 3
2A3g2y!50. ~5.29!

We shall summarize the results as follows:
Theorem 5.2:Let V be the Lame´ curve

w254~z223g2!~z13e1!~z13e2!~z13e3!,

which covers three-sheetedly the two elliptic curves

`8254`32g2`2g3 , `̃8254`̃32g̃2`̃2g̃3 , ~5.30!

whose moduli are linked by the relation

g̃25
4

g2
2 ~3g2

3127g3!, g̃35
72

g2
3 ~g3g2

323g3
3!. ~5.31!

Then the wave function

CE~x;a,b!5)
i 51

3

FW~ ix1v2 f i~y!;a2 f i~b!!, ~5.32!

where the three functions fi are given by

f i~y!526E
0

y

Xi~y!dy,

and Xi are the three roots of the cubic equation

4X32g2X2 1
3 g31 1

9 g2`̃~ 3
2A3g2y!50, ~5.33!

satisfy the2D Schrödinger equation

H ]2

]x2 1
]2

]y2 2U~x,y!J CE5LCE ,

with the elliptic smooth and nonseparable potential given by

U~x,y!5254̀ ~x2 f 1~y!!`~x2 f 2~y!!`~x2 f 3~y!!

16 (
i , j 51

3

`8~x2 f i~y!!`8~x2 f j~y!!1
25

4 (
i

3

`~x2 f i~y!!, ~5.34!

on the fixed energy levelL5236g2g3136g3 . The spectral variety is a one-dimensional varie
given by

3 (
i , j 51,2,3

`~a2 f i~b!!`~a2 f j~b!!2
9

4
g251. ~5.35!

We remark that the Bloch variety~5.35!, which is given as a hyperelliptic curve, is uniformiz
able in this case by elliptic functions with moduli~5.31!.

We note that we could consider other two-gap elliptic potentials in an analogous fashio
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VI. THE 3D SCHRÖDINGER EQUATION

We consider the case of the curve defined by

y254x71(
0

6

l j x
j .

The principal matrixH is given by~3.10! and is a 535 matrix of the form

H51
l0

1

2
l1 22`11 22`12 22`13

1

2
l1 4`111l2 2`121

1

2
l3 4`1322`22 22`23

22`11 2`121
1

2
l3 4`2224`131l4 2`231

1

2
l5 22`33

22`12 4`1322`22 2`231
1

2
l5 4`331l6 2

22`13 22`23 22`33 2 0

2 .

The expansion of thes-function of genus 3 in the vicinity ofu50 ~found for the first time in Ref.
8! has the form

s~u1 ,u2 ,u3!5u1u32u2
22 1

24 ~2l0u1
412l1u1

3u21l2u1
2~3u2

22u1u3!18u2u3
312l3u1u2

312l4u2
4

12l5u2
3u31l6u3

2~3u2
22u1u3!!1higher order terms. ~6.1!

We are in position now to prove the following theorem.
Theorem 6.1:Let Fi , j (x;a) be the functions (3.19). Then the following equalities are valid

all x;aPC3,

4~`113~a!2`122~a!!F33~x;a!24~2 F13~x;a!1F22~x;a!!`133~a!18 F23~x;a! `123~a!

14 F11~x;a! `333~a!5LF0~x;a!, ~6.2!

where

L54~2 `13~a!2`22~a!!`133~a!1l6`122~a!24 `33~a!`113~a!2l2`333~a!

14 `33~a!`122~a!24 `11~a!`333~a!2l6`113~a!,

and

4~2 `123~a!2`222~a!!F33~x;a!18~`223~a!2`133~a!!F23~x;a!24~2 F13~x;a!

1F22~x;a!!`233~a!18 F12~x;a! `3,3,3~a!5LF0~x;a!,

where

L54~2 `132`22!`23322 l6`1231l6`22228 `33̀ 12314 `33̀ 222.

Proof: Let us take~3.20! in the caseg53 and assumec1352c22. Then we have

c0F01(
i 51

3

ciFi1 (
i< j 51,...,3

Ci 1 jFi , j50, ~6.3!
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where we denoteci j 5Ci 1 j . Let us multiply~6.3! by s2(a) and expand the resulting equality i
a power series inu1 ,u2 ,u3 by using~6.1!. We find

c15c25c350, ~6.4!

and six equations to defineC0 ,C2 ,C3 ,C4 ,C5 ,C6 :

22C512C4`3312C2`1312C3`2350,

24C2`121~24`2218`13! C31~l514`23! C41~8`3312l6! C514C650,

~l224`11! C21~2l318`12!C31~4l4112̀ 2228`13! C41~2l518`23! C51~l624`33! C6

14C050,

~l214`11! C21~8`1324`22! C41~l614`33! C614C050,

l1C21~8`1112l2! C31~l314`12! C41~8`1324`22! C524C6`2350,

4l0C212l1C328C5`1228C6`1328C4`1150.

We find from the third equation

C052~`112
1
4 l2!C21~`2222`13!C42~`331

1
4 l26!C6 . ~6.5!

To define the remaining parameters, add the third equation to the fourth and consider the r
ing five equations. They are homogeneous equations with respect to the five var
C2 ,C3 ,C4 ,C5 ,C6 , whose matrix is exactly the matrixH. Because the matrixH has rank three,
the general solution depends on two arbitrary variablesa5C2 and b5C3 . The remaining vari-
ables are computed by applying formula~3.15!.

The matrix of the first equation~6.2! is

M15F `333 0 2`133

0 2`133 `123

2`133 `123 `1132`122

G
and the matrix of the second equation~6.3! is

M25F 0 `333 2`233

`333 2`233 2`1331`223

2`233 2`1331`223 2 `1232`222

G .

It can be checked by direct substitution that in the rational limit

s~a1 ,a2 ,a3!52a2
21a1a32 1

3 a2a3
31 1

45 a3
6

there are regions in (a1 ,a2 ,a3) space where the principal minors are all nonpositive. h
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Geometric quantization of mechanical systems
with time-dependent parameters
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Quantum systems with adiabatic classical parameters are widely studied, e.g., in the
modern holonomic quantum computation. We here provide complete geometric
quantization of a Hamiltonian system with time-dependent parameters, without the
adiabatic assumption. A Hamiltonian of such a system is affine in the temporal
derivative of parameter functions. This leads to the geometric Berry factor
phenomena. ©2002 American Institute of Physics.@DOI: 10.1063/1.1477262#

I. INTRODUCTION

At present, quantum systems with classical parameters attract special attention in con
with holonomic quantum computation.1–3 This approach to quantum computing is based on
generalization of Berry’s adiabatic phase to the non-Abelian case corresponding to adiaba
driving an n-fold degenerate eigenstate of a Hamiltonian over the parameter manifold.4 In the
framework of the holonomic quantum computation scheme, information is encoded in this d
erate state, while the parameter manifold plays the role of a control parameter space. The ke
of this scheme is that the parallel transport along the curves in the parameter space is ass
be adiabatic with respect to a dynamic Hamiltonian.

At the same time, the adiabatic condition of Berry’s phase phenomena can be remo5,6

Moreover, one observes that the Berry factor is a standard ingredient in evolution of qu
systems with classical time-dependent parameters.7,8 Here, we provide complete geometric qua
tization of a mechanical system depending on parameters, without adiabatic assumption.

The configuration space of such a system is a composite fiber bundle

Q→S→R, ~1!

whereR is the time axis andS→R is a fiber bundle whose sections are parameter functions7–9

The configuration space~1! is coordinated by (t,sl,qk), where (t,sl) are bundle coordinates o
S→R and t is a fixed Cartesian coordinate onR. The corresponding momentum phase spac
the vertical cotangent bundleV* Q of Q→S equipped with holonomic coordinates (t,sl,qk,pk).
It is provided with the following canonical Poisson structure. LetT* Q be the cotangent bundle o
Q endowed with the canonical Poisson bracket$,%T . Given the canonical fibration

z:T* Q→V* Q, ~2!

the Poisson bracket$,%V on the spaceC`(V* Q) of smooth real functions onV* Q is defined by
the relation

a!Electronic mail: giovanni.giachetta@unicam.it
b!Electronic mail: luigi.mangiarotti@unicam.it
c!Electronic mail: sard@grav.phys.msu.su
28820022-2488/2002/43(6)/2882/13/$19.00 © 2002 American Institute of Physics
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z* $ f , f 8%V5$z* f ,z* f 8%T , ~3!

$ f , f 8%V5]kf ]kf 82]kf ]kf 8, f , f 8PC`~V* Q!. ~4!

Its characteristic symplectic foliation coincides with the fibrationV* Q→S.
It seems natural to quantize the Poisson manifoldV* Q in accordance with the well-known

geometric quantization procedure.10,11 However, one faces the problem that the mean value
quantum operators are defined via integration over the momentum phase spaceV* Q, including
integration over classical parameters. At the same time, quantization of a system with cla
parameters should necessarily imply its quantization under fixed values of parameters. Its
carrier space is a Hilbert module of sections of a smooth Hilbert bundle over the parameter
S,7,8 i.e., a locally trivial smooth field of Hilbert spaces onS in the terminology of Ref. 12. In
particular, the instantwise quantization of time-dependent mechanics~where S5R! is of this
type.13,14However, geometric quantization of a Poisson manifold need not yield quantization
symplectic leaves.15

To dispose of these problems, we will apply toV* Q→S the technique of leafwise geometr
quantization of symplectic foliations.16 There is one-to-one correspondence between Pois
structures on a smooth manifold and its symplectic foliations. The quantum algebra of a sym
tic foliation is a particular quantum algebra of the associated Poisson manifold such th
restriction to each symplectic leaf is defined and quantized. We choose the canonical rea
ization ofV* Q→S which is the vertical tangent bundleVV* Q of the fiber bundleV* Q→Q. The
corresponding quantum algebraAF consists of functions onV* Q which are affine in momenta
pk . It is represented by Schro¨dinger operators in the pre-HilbertC`(S)-moduleEQ of fiberwise
complex half-forms on the fiber bundleQ→S whose restriction to each fiber is of compa
support.

We show that a Hamiltonian of a quantum system with classical parameters is affine
temporal derivative of parameter functionsxl, namely,

Ĥ52 i ~Ll
k]k1 1

2 ]kLl
k !] tx

l1Ĥ8~x!, ~5!

where Ll
k are components of a connection on the fiber bundleQ→S. The key point is that

integration of the first term of this Hamiltonian over time through a parameter functionx(t)
depends only on a trajectory of this function in a parameters space, but not on parametriza
this trajectory by time~i.e., the adiabatic assumption is not necessary!. As a consequence, this term
is responsible for the geometric Berry factor phenomena. It plays the role of a control opera
holonomic quantum computation.

II. THE LEAFWISE DIFFERENTIAL CALCULUS

Geometric quantization of symplectic foliations is phrased in terms of the leafwise differe
calculus on a foliated manifold. Manifolds throughout are assumed to be smooth, Haus
second-countable~i.e., paracompact!, and connected.

Recall that a~regular! foliation F of a manifoldZ consists of~maximal! integral manifolds of
an involutive distributioni F :TF→TZ on Z. A foliated manifold (Z,F) admits an adapted coor
dinate atlas

$~Uj ;zl;zi !%, l51,...,codim F, i 5codim F11,...,dim Z, ~6!

such that transition functions of coordinateszl are independent of the remaining coordinateszi

and, for each leafFPF, the connected components ofFùUj are given by the equationszl

5const. These connected components coordinated by (zi) make up a coordinate atlas of a leafF.
Let SF(Z) denote the subring of the ringC`(Z) of smooth real functions onZ which consists

of functions constant on leaves ofF. Global sections of the distributionTF constitute the Lie
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algebraT(F) of derivations of the ringC`(Z) regarded as aSF(Z)-ring. Therefore, one can
introduce the leafwise differential calculus17 as the Chevalley–Eilenberg differential calculus ov
the SF(Z)-ring C`(Z). It is the cochain complex

0→SF~Z!→C`~Z!→
d̃

F1~Z!¯→
d̃

Fdim F~Z!→0 ~7!

of global sections of exterior products∧
r

TF* of the dualTF* →Z of TF→Z.8 These sections are
called the leafwise forms on a foliated manifold (Z,F), and read

f5
1

r !
f i 1¯ i r

d̃zi 1∧¯∧d̃zi r,

where$d̃zi% are the duals of the holonomic fiber bases$] i% for TF. Accordingly, the Chevalley–
Eilenberg coboundary operator

d̃f5
1

r !
] jf i 1¯ i r

d̃zj∧d̃zi 1∧¯∧d̃zi r

is the leafwise exterior differential. The complex~7! is said to be the leafwise de Rham compl
~or the tangential de Rham complex in the terminology of Ref. 17!. This is the complex (A 0,* ,df)
in Ref. 18.

Let us consider the exact sequence

0→Ann TF→T* Z→
iF*

TF* →0 ~8!

of vector bundles overZ. The epimorphismi F* yields an epimorphism of the graded algeb
O* (Z) of exterior forms onZ to the algebraF* (Z) of leafwise forms. The relationi F* +d5d̃+ i F*
holds and, thereby, we have the cochain morphism

i F* :~R,O* ~Z!,d!→~SF~Z!,F* ~Z!,d̃!, dzl°0, dzi°d̃zi ~9!

of the de Rham complex ofZ to the leafwise de Rham complex~7! and the corresponding
homomorphism

@ i F* #* :H* ~Z!→HF* ~Z! ~10!

of the de Rham cohomology ofZ to the leafwise de Rham cohomologyHF* (Z) of the complex~7!.
Given a leafi F :F→Z of a foliation F, there is the pull-back homomorphism

~R,O* ~Z!,d!→~R,O* ~F !,d! ~11!

of the de Rham complex ofZ to that ofF and the corresponding homomorphism of their coh
mology groups

H* ~Z!→H* ~F !. ~12!

Proposition 1:The cohomology morphism~12! factorizes through the leafwise cohomolog

H* ~Z! →
[ iF* ]

HF* ~Z! →
[ i F* ]

H* ~F !. ~13!
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Proof: It is readily observed that the pull-back bundlesi F* TF and i F* TF* over F are isomor-
phic to the tangent and the cotangent bundles ofF, respectively. Furthermore, a direct comput
tion shows thati F* (d̃f)5d( i F* f) for any leafwise formf. It follows that the cochain morphism
~11! factorizes through the cochain morphism~9! and the cochain morphism

i F* :~SF~Z!,F* ~Z!,d̃!→~R,O* ~F !,d!, d̃zi°dzi

of the leafwise de Rham complex of (Z,F) to the de Rham complex ofF. Then the cohomology
sequence~13! takes place.

Turn now to~even! symplectic foliationsF. A d̃-closed nondegenerate leafwise two-formVF
on a foliated manifold (Z,F) is called symplectic. Its pull-backi F* VF onto each leafF of F is a
symplectic form onF. A leafwise symplectic formVF yields the bundle isomorphism

VF
[ :TF→TF* , VF

[ :v°2v cVF~z!, vPTzF.

The inverse isomorphismVF
] determines the Poisson bivector field

wV~a,b!5VF~VF
]~ i F* a!,VF

]~ i F* b!!, ;a,bPTz* Z, zPZ, ~14!

on Z subordinate to∧
2

TF. The corresponding Poisson bracket reads

$ f , f 8%F5q f cd̃f 8, q f cVF52d̃f , f , f 8PC`~Z!. ~15!

Its kernel isSF(Z). Conversely, let (Z,w) be a~regular! Poisson manifold andF its characteristic
foliation. Since AnnTF is the kernel of the Poisson bivector fieldw, the bundle homomorphism
w]:T* Z→TZ factorizes in a unique fashion

w]:T* Z→
iF*

TF* →
wF

]

TF→
iF

TZ

through the bundle isomorphism

wF
] :TF* →TF, wF

] :a°2w~z!ba, aPTzF* .

The inverse isomorphismwF
[ yields the symplectic leafwise form

VF~v,v8!5w~wF
[~v !,wF

[~v8!!, ;v,v8PTzF, zPZ. ~16!

Formulas~14! and~16! establish the above-mentioned correspondence between the Poisson
tures on a manifoldZ and its symplectic foliations.

III. PREQUANTIZATION OF SYMPLECTIC FOLIATIONS

Prequantization of a symplectic foliation (F,VF) of a manifoldZ provides a representation

f ° i f̂ , @ f̂ , f̂ 8#52 i $ f , f̂ 8%F ~17!

of the Poisson algebra (C`(Z),$ f , f 8%F) by first-order differential operators on the spaceC(Z) of
sections of the complex line bundlep:C→Z. These operators are given by the Kostant–Sou
formula

f̂ 52 i¹q f

F 1 f , ~18!

whereq f is the Hamiltonian vector field~15! and¹F is the covariant differential with respect t
a leafwise connection onC→Z whose curvature form obeys the prequantization condition
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R̃5 iVF . ~19!

In this section, we provide the cohomology analysis of this condition, and show that preq
zation of a symplectic foliation yields prequantization of its symplectic leaves.

The inverse imagesp21(F) of leavesF of the foliationF of Z make up a~regular! foliation
CF of the complex line bundleC. Given the tangent bundleTCF of this foliation, we have the
exact sequence of vector bundles

0→VC→
C

TCF→
C

C3
Z

TF→0, ~20!

whereVC is the vertical tangent bundle ofC→Z. A linear leafwise connection on the comple
line bundleC→Z is defined as a splitting of the exact sequence~20! which is linear overC.

One can choose an adapted coordinate atlas$(Uj ;zl;zi)% ~6! of a foliated manifold (Z,F)
such thatUj are trivialization domains of the complex line bundleC→Z. Let (zl;zi ;c), cPC be
the corresponding bundle coordinates onC→Z. They are also adapted coordinates on the folia
manifold (C,CF). With respect to these coordinates, a leafwise connection is represented
TCF -valued leafwise one-form

AF5d̃zi
^ ~] i1Aic]c!, ~21!

where Ai are local complex functions onC. The covariant differential of sections of the lin
bundleC→Z with respect to the leafwise connection~21! reads

¹Fs5d̃s2Ais d̃zi . sPC~Z!.

The exact sequence~20! is obviously a subsequence of the exact sequence

0→VC→
C

TC→
C

C3
Z

TZ→0.

Consequently, any connection

G5dzl
^ ~]l1Glc]c!1dzi

^ ~] i1G ic]c! ~22!

on the complex line bundleC→Z yields a leafwise connection

GF5d̃zi
^ ~] i1G ic]c!. ~23!

Conversely, one can show that any leafwise connection on the complex line bundleC→Z comes
from a connection on it.16

The curvature form of the leafwise connectionAF ~21! is

R̃5 1
2 Ri j d̃zi∧d̃zj , Ri j 5] iAj2] jAi . ~24!

If a leafwise connectionAF comes from a connectionA, its curvature formR̃ ~24! is the image
R̃5 i F* R of the curvature formR of A with respect to the morphismi F* ~9!.

Let us return to the prequantization condition~19!.
Lemma 2:Let us assume that there is a leafwise connectionGF on the complex line bundle

C→Z which fulfills the prequantization condition~19!. Then, for any Hermitian metricg on C
→Z, there exists a leafwise connectionAF

g on C→Z which ~i! satisfies the condition~19!, ~ii !
preservesg, and~iii ! comes from aU(1)-principal connection onC→Z.

Proof: For any Hermitian metricg on C→Z, there exists an associated bundle atlasCg

5$(zl;zi ,c)% of C with U(1)-valued transition functions such that
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g~c,c8!5cc̄8. ~25!

Let the leafwise connectionGF come from a linear connectionG ~22! on C→Z written with
respect to the atlasCg. The connectionGF is split into the sumAg1g where

Ag5dzl
^ ~]l1Im~Gl!c]c!1dzi

^ ~] i1Im~G i !c]c! ~26!

is a U(1)-principal connection, preserving the Hermitian metricg. The curvature formsR of G
andRg of Ag obey the relationRg5Im(R). The connectionAg ~26! defines the leafwise connectio

AF
g 5 i F* Ag5d̃zi

^ ~] i1 iAi
gc]c!, iAi

g5Im~G i !, ~27!

preserving the Hermitian metricg ~25!. Its curvature fulfills the desired relation

R̃g5 i F* Rg5Im~ i F* R!5 iVF . ~28!

SinceAg ~26! is a U(1)-principal connection, we haveRg522p ic1 wherec1 is the first
Chern form of integer de Rham cohomology class. If the prequantization condition~19! holds, the
relation ~28! shows that the leafwise cohomology class of the leafwise form (2p)21VF is the
image of an integer de Rham cohomology class with respect to the cohomology morphism@ i F* #
~10!. Conversely, if a leafwise symplectic formVF on a foliated manifold (Z,F) is of this type,
there exists a complex line bundleC→Z and aU(1)-principal connectionA on C→Z such that
the leafwise connectioni F* A fulfils the relation~19!. Thus, we have stated the following.

Proposition 3:A symplectic foliation (F,VF) of a manifoldZ admits prequantization~18! iff
the leafwise cohomology class of (2p)21VF is the image of an integer de Rham cohomolo
class ofZ.

Note that the leafwise connectionAF
g in Lemma 2 by no means is unique. Any connecti

Ag1 icf ^ ]c wheref is a closed leafwise one-form obeys the prequantization condition~24! and
preserves the Hermitian metric~25!.

Let F be a leaf of the symplectic foliation (F,VF) provided with the symplectic formVF

5 i F* VF . In accordance with Proposition 1, the symplectic form (2p)21VF belongs to an intege
de Rham cohomology class if the leafwise symplectic formVF fulfills the condition of Proposi-
tion 3. Thus, if a symplectic foliation admits prequantization, its symplectic leaves do as wel
corresponding prequantization bundle forF is the pull-back complex line bundlei F* C, coordinated
by (zi ,c). Furthermore, letAF

g ~27! be a leafwise connection on the prequantization bundleC
→Z which obeys Lemma 2, i.e., comes from aU(1)-principal connectionAg on C→Z. Then the
pull-back

AF5 i F* Ag5dzi
^ ~] i1 i i F* ~Ai

g!c]c! ~29!

of the connectionAg onto i F* C→F satisfies the prequantization conditionRF5 i F* R5 iVF , and
preserves the pull-back Hermitian metrici F* g on i F* C→F.

IV. QUANTIZATION OF SYMPLECTIC FOLIATIONS

The next step is polarization of the symplectic foliation (F,VF) of a manifoldZ. It is defined
as a maximal involutive distributionT,TF on Z such that

VF~u,v !50, ;u,vPTz , zPZ.

Given the Lie algebraT(Z) of vector fields onZ subordinate toT, the quantum algebra of (F,VF)
is defined as the complexified subalgebraAF,C`(Z) of functions f whose Hamiltonian vector
fields q f ~15! fulfill the condition @q f ,T(Z)#,T(Z). This algebra obviously contains the rin
SF(Z), and is a LieSF(Z)-algebra.
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Let (F,VF) be a symplectic leaf of the symplectic foliation (F,VF). Given a polarization
T→Z of (F,VF), its restrictionTF5 i F* T, i F* TF5TF to F is an involutive distribution onF. It
obeys the condition

i F* VF~u,v !50, ;u,vPTFz , zPF,

i.e., it is a polarization of the symplectic manifold (F,VF). Thus, polarization of a symplecti
foliation induces polarization of each symplectic leaf. Clearly, the quantum algebraAF of a
symplectic leafF with respect to the polarizationTF contains all functionsi F* f of the quantum
algebraAF restricted toF.

Every polarizationT of a symplectic foliation (F,VF) yields polarization of the associate
Poisson manifold. Indeed, letF be the sheaf of germs of local functionsf on Z whose Hamil-
tonian vector fieldsq f ~15! are subordinate toT. The Poisson bracket of elements ofF vanishes.
Consequently,F is polarization the Poisson manifold (Z,$,%F). Furthermore, one can show th
polarizationT of a symplectic foliation (F,VF) and the corresponding polarizationF of the
Poisson manifold (Z,$,%F) define the same quantum algebraAF .16 However, in order to provide
the leafwise quantization ofAF , we modify the standard metaplectic correction technique19,20 as
follows.

Let us consider the exterior bundle∧
m

TF* , m5dimF. Its structure group isGL1(m,R) since
a symplectic foliation is oriented. One can regard this fiber bundle as being associate
GL(m,C)-principal bundleP→Z. Let us assume thatH2(Z;Z2)50. Then the principal bundleP
admits a twofold covering principal bundle with the structure metalinear groupML(m,C).20 As a
consequence, there exists a complex line bundleDF→Z characterized by an atlasCF
5$(Uj ;zl;zi ;c)% with the transition functionsc85SFc such thatSFS̄F5J21 where J is the
Jacobian of the transition functions of coordinateszi . One can think of its sections as bein
leafwise half-forms onZ. The metalinear bundleDF →Z admits the canonical lift of a vector field
t on Z. The corresponding Lie derivative of its sections reads

L t5t i] i1
1
2 ] it

i . ~30!

We define the quantization bundle as the tensor productY5C^ DF . Given a leafwise con-
nectionAF

g ~27! and the Lie derivativeL ~30!, let us associate the first-order differential opera

f̂ 52 i @~¹q f

F 1 i f ! ^ Id1Id ^ Lq f
#52 i @¹q f

F 1 i f 1 1
2 ] iq f

i # ~31!

on sectionsr of Y to each elementf of the quantum algebraAF . A direct computation shows tha
the operators~31! obey the Dirac condition~17! and that, if a sectionr fulfills the relation

~¹q
F

^ Id1Id^ Lq!r5~¹q
F1 1

2 ] iq
i !r50 ~32!

for all Hamiltonian vector fieldq subordinate toT, then f̂ r possesses the same property for a
f PAF .

Let us restrict the representation of the quantum algebraAF by the operators~31! to the
subspaceE,Y(Z) of sectionsr which obey the condition~32! and whose restriction to each lea
of F is of compact support. The last condition is motivated by the following.

Since i F* TF* 5T* F, the pull-backi F* DF of DF onto a leafF is a metalinear bundle o
half-forms onF. Therefore, the pull-backi F* Y of the quantization bundleY→Z onto F is a
quantization bundle for the symplectic manifold (F,i F* VF). Given the pull-back connectionAF

~29! and the polarizationTF5 i F* T, this symplectic manifold is subject to the standard geome
quantization by the first-order differential operators

f̂ 52 i ~ i F* ¹q f

F 1 i f 1 1
2 ] iq f

i !, f PAF , ~33!
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on sectionsrF of i F* Y→F of compact support which obey the condition

~ i F* ¹q
F1 1

2 ] iq
i !rF50

for all Hamiltonian vector fieldsq on F subordinate toTF . These sections constitute a pre-Hilbe
spaceEF with respect to the Hermitian form

^rFurF8 &5S 1

2p D m/2E
F
rFr̄F8

so thatf̂ ~33! are Hermitian operators inEF . It is readily observed thati F* E,EF . Moreover, the
relation

i F* ~ f̂ r!5~ i F* f̂ !~ i F* r!

holds for all elementsf PAF andrPE. This relation enables one to think of the operatorsf̂ ~31!
in E as being the leafwise quantization of theSF(Z)-algebraAF by Hermitian operators in a
pre-HilbertSF(Z)-moduleE.

V. QUANTIZATION OF A MECHANICAL SYSTEM WITH PARAMETERS

Let Q ~1! be the configuration space of a mechanical system with parameters suc
H2(Q;Z2)5H2(V* Q;Z2)50. The characteristic symplectic foliationF of the Poisson structure
~4! on the momentum phase spaceV* Q is the fibrationV* Q→S endowed with the leafwise
symplectic form

VF5d̃pk∧d̃qk.

Since this form is d˜-exact, its leafwise de Rham cohomology class equals zero, and it is the i
of the zero de Rham cohomology class with respect to the morphism@ i F* # ~10!. Then, in accor-
dance with Proposition 3, the symplectic foliation (V* Q→S,VF) admits prequantization.

The prequantization bundleC→V* Q, associated to the zero Chern class, is trivial. Let
trivialization C5V* Q3C hold fixed, and let (t,sl,qk,pk ,c) be the corresponding bundle coo
dinates. UnlessQ is specified, we choose the leafwise connection

AF5d̃pk^ ]k1d̃qk
^ ~]k1 ipkc]c!

on C→V* Q. This connection preserves the Hermitian metricg ~25! on C, and its curvature
fulfills the prequantization conditionR̃5 iVF . The corresponding prequantization operators~18!
read

f̂ 52 iq f1~ f 2pk]
kf !, q f5]kf ]k2]kf ]k, f PC`~V* Q!.

Let us choose the canonical vertical polarization of the symplectic foliation (V* Q→S,VF)
which is the vertical tangent bundleT5VV* Q of the fiber bundlepVQ :V* Q→Q. It is readily
observed that the corresponding quantum algebraAF consists of functions which are affine i
momentapk .

Following the quantization procedure in Sec. IV, one should define a representation ofAF in
the spaceE of sectionsr of the quantization bundleC^ DF which obey the condition~32! and
whose restriction to each fiber ofV* Q→S is of compact support. The condition~32! reads

]kf ]kr50, ; f PC`~Q!,

i.e., elements ofE are constant on fibers ofV* Q→Q andE reduces to$0%.
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Therefore, we modify the quantization procedure as follows. Given a fibrationQ→S, let us
consider the corresponding metalinear bundleDQ→Q and the tensor productYQ5CQ^ DQ ,
where CQ5Q3C is the trivial complex line bundle overQ. It is readily observed that the
Hamiltonian vector fields

q f5ak]k2~pr]ka
r1]kb!]k, f 5ak~ t,sl,qr !pk1b~ t,sl,qr !,

of elementsf PAF are projectable ontoQ. Then one can associate to each elementf of the
quantum algebraAF the first-order differential operator

f̂ 5~2 i¹pVQ(q f )
1 f ! ^ Id1Id^ LpVQ(q f )

52 iak]k2
i

2
]ka

k1b ~34!

in the spaceEQ of sections of the fiber bundleYQ→Q whose restriction to each fiber ofQ→S is
of compact support. Since the pull-back ofDQ onto each fiberQs of Q→S is the metalinear
bundle of half-forms onQs , the restrictionsrs of elements ofrQPEQ to Qs constitute a
pre-Hilbert space with respect to the nondegenerate Hermitian form

^rsurs8 &s5E
Qs

rsrs8 .

The Schro¨dinger operators~34! are Hermitian operators in the pre-HilbertC`(S)-moduleEQ ,
and provide the desired geometric quantization of the symplectic foliation (V* Q→S,VF).

VI. THE CLASSICAL EVOLUTION EQUATION

In order to quantize the evolution equation of a time-dependent mechanical system
configuration spaceQ ~1!, one should bear in mind that this equation is not reduced to the Po
bracket$,%V on V* Q, but is expressed into the Poisson bracket$,%T on the cotangent bundle
T* Q.14,21 Therefore, let us start from the classical evolution equation.

It is convenient to assume for a time that parameters are dynamic variables. The mom
phase space of such a system is the vertical cotangent bundleVR* Q of the configuration bundle
Q→R provided with holonomic coordinates (t,sl,qk,pl ,pk).

8,9 A Hamiltonian on this momen-
tum phase space is defined as a global section

h:VR* Q→T* Q, p+h52H~ t,sl,qk,pl ,pk!, ~35!

of the affine bundle

zR :T* Q→VR* Q ~ t,sl,qk,p,pl ,pk!°~ t,sl,qk,pl ,pk!.

Given the canonical Liouville formJ on T* Q, every Hamiltonianh ~35! yields the pull-back
Hamiltonian form

H5h* J5pldsl1pkdqk2H dt ~36!

on VR* Q. For any Hamiltonian formH ~36!, there exists a unique vector fieldgH on VR* Q such
that

gHcdt51, gHcdH50.

This vector field defines the first-order Hamilton equations onVR* Q.7–9,14,21,22Accordingly,

gHcdf 50, f PC`~VR* Q! ~37!
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is the evolution equation. In order to express it into a Poisson bracket, let us consider the pu
zR* H of the Hamiltonian formH ~36! onto T* Q. It is readily observed that the differenceJ
2zR* h* J is a horizontal one-form onT* Q→R and that

H* 5] tc~J2z* h* J!)5p1H ~38!

is a function onT* Q. Then the evolution equation~37! is brought into the form$H* ,zR* f %T50
adapted for quantization.14,21

Let us return to a system wheresl are parameters. Its HamiltonianH is affine in momenta
pl , namely,

H5plGl1pk~Lk1GlLl
k !1HL~ t,sl,qr ,pr !, ~39!

whereHLPz* C`(V* Q) is the pull-back of a function onV* Q and

L+G5dt ^ ~] t1Gl]l1~Lk1GlLl
k !]k!

is a connection onQ→R which is the composition of a connection

G5dt ^ ~] t1Gl]l! ~40!

on the parameter bundleS→R and a connection

L5dt ^ ~] t1Lk]k!1dsl
^ ~]l1Ll

k]k! ~41!

on Q→S.7–9 Note that the second term of the connection~41! provides the lift

tl]l°tl~]l1Ll
k]k!

onto Q of vertical vector fields on the parameter bundleS→R. It plays the role of a control
operator in holonomic quantum computation. If a parameter functionx:R→S is given, the con-
nectionG ~40! on S→R is determined in such a way that

¹Gx50, Gl~ t,xm~ t !!5] tx
l. ~42!

It is readily observed that, if a HamiltonianH is affine in momentapl and if f is a function
on V* Q, then the bracket$H* ,z* f %T wherez is the fibration~2! is the pull-back of a function on
V* Q. It provides a derivation of theR-ring C`(V* Q). Therefore, one can think of the equalit

$H* ,z* f %T50, f PC`~V* Q!, ~43!

as being a classical evolution equation onC`(V* Q).

VII. THE QUANTUM EVOLUTION EQUATION

In order to quantize the evolution equation~43!, one should quantize the Poisson manifo
(T* Q,$,%T) so that its quantum algebraAT containsz* AF . Let F be polarization of the Poisso
manifold (V* Q,$,%V) which determinesAF . Then, by virtue of the relation~3!, z* F is a polar-
ization of (T* Q,$,%T). Clearly,AF is a subalgebra of the quantum algebraAT of T* Q determined
by this polarization. The quantum algebraAT consists of functions onT* Q which are affine in
momentap,pl ,pk . Let us restrict our consideration to its subalgebraAT8 of functions

f 5a~ t,sm!p1al~ t,sm!pl1ak~ t,sm,qr !pk1b~ t,sm,qr !,

wherea and al are the pull-back ontoT* Q of functions on the parameter spaceS. Of course,
AF,AT8 . Moreover,AT8 admits a representation by the Hermitian operators
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f̂ 52 i ~a] t1al]l1ak]k!2
i

2
]ka

k1b

in the carrier spaceEQ of the representation~34! of AF . Then, ifH* PAT8 , the evolution equation
~43! is quantized as the Heisenberg equation

i @Ĥ* , f̂ #50, f PAF . ~44!

The problem is that the functionH* ~38! fails to belong to the algebraAT8 , unless the
Hamiltonian functionHL ~39! is affine in momentapk . Let us assume thatHL is polynomial in
momenta. This is the case of almost all physically relevant models.

Lemma 4:Any smooth functionf on V* Q which is a polynomial of momentapk is decom-
posed in a finite sum of products of elements of the algebraAF .

The proof follows that of the similar statement in Sec. V of Ref. 14.
By virtue of Lemma 4, one can associate to a polynomial Hamiltonian functionHL an

element of the enveloping algebraĀF of the Lie algebraAF ~though it by no means is unique!.
Accordingly, H* is represented by an element of the enveloping algebraĀT8 of the Lie algebra
AT8 . Then the Schro¨dinger representation ofAT8 andAF is naturally extended to their envelopin
algebrasĀT8 andĀF that provides quantizationĤ* of H* .

Given the operatorĤ* , the bracket

¹ f̂ 5 i @Ĥ* , f̂ # ~45!

defines a derivation of the quantum algebraĀF . Since p̂52 i ] t , the derivation~45! obeys the
Leibniz rule

¹~r f̂ !5] tr f̂ 1r¹ f̂ , r PC`~R!.

Therefore, it is a connection on theC`(R)-algebraĀF , which enables one to treat quantu
evolution ofĀF as a parallel transport along time.7,8,14 In particular, f̂ is parallel with respect to
the connection~45! if it obeys the Heisenberg equation~44!. Given a trivializationQ>R3M and
the corresponding~global! decompositionĤ* 52 i ] t1Ĥ, we can introduce the evolution oper
tor U which obeys the equation

Ĥ* +U52 iU +] t ,

and can be written as the formal time-ordered exponent

U5T expF2 i E
0

t

Ĥ dt8G .
Now let us consider a mechanical system depending on a given parameter functiox:R

→S. Its configuration space is the pull-back bundleQx5x* Q which is a subbundlei x :Qx

→Q of the fiber bundleQ→R. The corresponding momentum phase space is the vertical c
gent bundleV* Qx5 i x* V* Q of Qx→R. The pull-back of the Hamiltonian formH ~36! onto
V* Qx , where the connectionG obeys the relation~42!, reads

Hx5pk dqk2Hx dt,

Hx5pk~Lk~ t,xm~ t !,qr !1Ll
k~ t,xm~ t !,qr !] tx

l!1HL~ t,xm~ t !,qr ,pr !.

It characterizes the dynamics of a mechanical system with a given parameter functionx.7–9
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In order to quantize this system, let us consider the pull-back bundleDx5 i x* DQ overQx and
its pull-back sectionsrx5 i x* rQ , rQPEQ . It is easily justified that these are leafwise half-form
on the fiber bundleQx→R whose restrictions to each fiberi t :Qt→Qx are of compact support
These sections constitute a pre-HilbertC`(R)-moduleEx with respect to the Hermitian forms

^ i t* rxu i t* rx8& t5E
Qt

i t* rxi t* rx8 .

Then the pull-back operators

~x* f̂ !rx5~ f̂ r!x , x* f̂ 52 iak~ t,xl~ t !,qr !]k2
i

2
]ka

k~ t,xm~ t !,qr !1b~ t,xm~ t !,qr !,

in Ex provide the representation of the pull-back functions

i x* f 5ak~ t,xl~ t !,qr !pk1b~ t,xl~ t !,qr !, f PAF

on V* Qx . Accordingly, the quantum operatorĤx* 5 p̂1Ĥx coincides with pull-back operato
x* Ĥ* . Then the Heisenberg equation of a quantum system with a parameter functionx takes the
form

i @Ĥx* ,x* f̂ #50,

and the corresponding evolution operator reads

U5T expF2 i E
0

t

Ĥxdt8G . ~46!

The HamiltonianĤx in the evolution operatorU ~46! takes the form~5!. Its second termĤ8
can be regarded as a dynamic Hamiltonian of a quantum system, while the first term is resp
for the geometric Berry factor phenomena as follows.

Bearing in mind possible applications to holonomic quantum computations, let us simplif
quantum system in question. The above trivializationQ>R3M implies a trivialization of the
parameter bundleS5R3S such that the fibrationQ→S reads

R3M →
Id3pM

R3S,

wherepM :M→S is a fiber bundle. Let us suppose that the componentsLl
k of the connectionL

~41! are independent of time. Then one can regard the second term in this connection
connection on the fiber bundleM→S. It also follows that the first term in the Hamiltonian~5!
depends on time only through parameter functionsxl(t). Furthermore, let the two terms in th
Hamiltonian~5! mutually commute on@0,t#. Then the evolution operatorU ~46! takes the form

U5T expF2E
x~@0,t# !

S Ll
k]k1

1

2
]kLl

k DdslG +T expF2 i E
0

t

Ĥ8dt8G .
One can think of the first factor in this evolution operator as being the parallel displace
operator along the curvex(@0,t#),S with respect to the connection

¹LrQ5~]l1Ll
k]k1 1

2 ]kLl
k !rQ dsl, rQPEQ
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on theC`(S)-moduleEQ . Its peculiarity in comparison with the remaining one lies in the fact t
integration over time through a parameter functionx(t) depends only on a trajectory of thi
function in a parameter space, but not on parametrization of this trajectory by time. Therefor
can think of it as being a geometric factor.
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The independent eigenstates of the total orbital angular momentum operators for a
three-body system in an arbitraryD-dimensional space are presented by the method
of group theory. The Schro¨dinger equation is reduced to the generalized radial
equations satisfied by the generalized radial functions with a given total orbital
angular momentum denoted by a Young diagram@m, n, 0,..., 0# for the SO(D)
group. Only three internal variables are involved in the functions and equations.
The number of both the functions and the equations for the given angular momen-
tum is finite and equal to (m2n11). © 2002 American Institute of Physics.
@DOI: 10.1063/1.1476393#

I. INTRODUCTION

From the very early stage of the progress in quantum mechanics in the real three-dimen
world, it has been pointed out that the essence of these theories would be easily understan
their mathematics were constructed in the nonrelativistic hyperspace worlds.1,2 The mathematical
tools for generalization of the orbital angular momentum in an arbitraryD-dimensional space hav
been presented.3–7 Recently, theD-dimensional Coulombic and the harmonic oscillator proble
in a two-body system have been studied in some detail by many authors.8–22

Exact solutions played very important roles in the development of physics. The exact
tions of the Schro¨dinger equation in the real three-dimensional space for a hydrogen atom an
a harmonic oscillator were important technical achievements in quantum mechanics,23 which
provided strong evidence in favor of the theory being correct, at least as far as atomic phy
concerned. The next simplest atom is the helium atom, for which the Schro¨dinger equation canno
be solved analytically, but only numerically.24–28 In the numerical calculation, one of the ma
difficulties is how to separate the global rotational degrees of freedom.

In our previous paper29 we separated completely the global rotational degrees of freedo
the Schro¨dinger equation for anN-body system in the real three-dimensional space from
internal ones. We have determined a complete set of (2l 11) independent base functions for
given total orbital angular momentuml , which are the homogeneous polynomials in the com
nents of coordinate vectors and do not contain the Euler angles explicitly. Any function wit
given angular momentuml in the system can be expanded with respect to the base funct
where the coefficients are the functions of the internal variables, called the generalized

a!Present address: Institute of High Energy Physics.
b!Electronic mail: guxy@mail.ihep.ac.cn
28950022-2488/2002/43(6)/2895/12/$19.00 © 2002 American Institute of Physics
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functions. The generalized radial equations satisfied by the functions are established expl29

For the typical three-body system in the real three-dimensional space,30,31 such as a helium
atom32,33 and a positronium negative ion,34 the generalized radial equations35 have been solved
numerically with high precision.

With the recent interest in higher dimensional field theory, we attempt to generalize the
of the D-dimensional two-body system to theD-dimensional three-body system. The purpose
this paper is, for a three-body system in an arbitraryD-dimensional space, to find a complete s
of independent base functions with any given total orbital angular momentum and to redu
Schrödinger equation with a spherically symmetric potentialV to the generalized radial equation
where only three internal variables are involved. Any function with the given angular mome
in the system can be expanded with respect to the base functions. It provides a possib
calculate numerically the energy levels of the three-body system inD-dimensions with high
precision.

From the viewpoint of mathematics, the separation of the global rotational degrees of fre
from the internal ones is a typical application of group theory to physics. The properties o
independent base functions for a given total orbital angular momentum would be clearer i
were constructed in arbitraryD-dimensional space rather than in the real three-dimensional sp
The total orbital angular momentum for a three-body system in aD-dimensional space is de
scribed by an irreducible representation denoted by a Young diagram with one or two row
the real three-dimensional space, the rotational symmetry group is SO~3! group, and its only
irreducible representations denoted by the Young diagrams with two rows are@ l ,1#, which are
equivalent to the representations denoted by the one-row Young diagrams@ l ,0#, respectively. This
is the reason why the angular momentum can be described by only one quantum numberl for the
real three-dimensional space.

This paper is organized as follows. After separating the motion of the center of mass b
Jacobi coordinate vectors in Sec. II, we review in Sec. III the generalization of the orbital an
momentum operators and the properties of the spherical harmonics4,6 and the harmonic
polynomials7 for a two-body system inD dimensions. In Sec. IV we will define the generaliz
harmonic polynomials for a three-body system inD dimensions and prove that they constitute
complete set of independent base functions for a given total orbital angular momentum
system. The generalized radial functions are defined and the generalized radial equatio
derived in Sec. V. Some conclusions will be given in Sec. VI.

II. SCHRÖDINGER EQUATION IN D DIMENSIONS

For a quantumN-body system in an arbitraryD-dimensional space, we denote the positi
vectors and the masses ofN particles byr k and bymk , k51,2,...,N, respectively.M5(k mk is
the total mass. The Schro¨dinger equation for theN-body system with a pair potentialV, depending
upon the distance of each pair of particles,ur j2r ku, is

2
1

2 (
k51

N

mk
21¹ rk

2 C1VC5EC, ~1!

where¹ rk

2 is the Laplace operator with respect to the position vectorr k . For simplicity, the natural

units\5c51 are employed throughout this paper. The total orbital angular momentum ope
Lab in D dimensions are defined as4,6

Lab52Lba52 i (
k51

N H r ka

]

]r kb
2r kb

]

]r ka
J , a,b51,2,...,D, ~2!

wherer ka denotes theath component of the position vectorr k .
Now, we replace the position vectorsr k by the Jacobi coordinate vectorsRj :
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R05M 21/2(
k51

N

mkr k , Rj5S mj 11M j

M j 11
D 1/2S r j 112 (

k51

j
mkr k

M j
D ,

~3!

1< j <~N21!, M j5 (
k51

j

mk , MN5M ,

whereR0 describes the position of the center of mass,R1 describes the mass-weighted separat
from the second particle to the first particle.R2 describes the mass-weighted separation from
third particle to the center of mass of the first two particles, and so on. An additional factoAM
is included inRj for convenience. The mass-weighted factors in front of the formulas forRj are
determined by the condition

(
k51

N

mkr k
25 (

j 50

N21

Rj
2 ,

One may determine the factors one by one from the following schemes. In the center-o
frame, if the firstj particles coincide with each other and the last (N2 j 21) particles are located
at the origin, the factor in front ofRj is determined by

r15r25¯5r j52mj 11r j 11 /M j , (
k51

j 11

mkr k
25Rj

2 . ~4!

A straightforward calculation by replacement of variables shows that the Laplace op
in Eq. ~1! and the total orbital angular momentum operatorLab in Eq. ~2! are directly expressed
in Rj :

¹25 (
k51

N

mk
21¹ rk

2 5 (
j 50

N21

¹Rj

2 ,

~5!

Lab52 i (
j 50

N21 H Rja

]

]Rjb
2Rjb

]

]Rja
J .

In the center-of-mass frame,R050. The Laplace operator~5! obviously has the symmetry o
the O(ND2D) group with respect to (N21)D components of (N21) Jacobi coordinate vectors
The O(ND2D) group contains a subgroup SO(D)3O(N21), where SO(D) is the rotation
group in theD-dimensional space. The space inversion and the different definitions for the J
coordinate vectors in the so-called Jacobi tree24 can be obtained by O(N21) transformations. For
the system of identical particles, the permutation group among particles is also a subgroup
O(N21) group.29

It is easy to obtain the inverse transformation of Eq.~3!:

r j5F M j 21

mjM j
G1/2

Rj 212 (
k5 j

N21 F mk11

MkMk11
G1/2

Rk1M 21/2R0 ,

~6!

r j2r k5F M j

mjM j 21
G1/2

Rj 211(
i 5k

j 22 F mi 11

MiMi 11
G1/2

Ri2F Mk21

mkMk
G1/2

Rk21 .

Thus, the potentialV is a function ofRj "Rk and is rotationally invariant.
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III. HARMONIC POLYNOMIALS IN D DIMENSIONS

In the center-of-mass frame,R050. Hence, for a two-body system there is only one Jac
coordinate vectorR1 , which will be denoted byx for simplicity:

x5S m1m2

m11m2
D 1/2

$r22r1%,

~7!

¹25¹x
2 , Lab52 i H xa

]

]xb
2xb

]

]xa
J .

Louck4,6 introduced the hyperspherical coordinates

x15r cosu1 sinu2¯sinuD21 ,

x25r sinu1 sinu2¯sinuD21 ,
~8!

xk5r cosuk21 sinuk¯sinuD21 , 3<k<D21,

xD5r cosuD21 .

The spherical harmonicsYl D22 ,...,l 1
l in D dimensions4,6 are the simultaneous eigenfunctions of t

commutant operatorsL k
2 :

L1
252

]2

]u1
2 , L k

252H 1

sink21 uk

]

]uk
sink21 uk

]

]uk
2

L k21
2

sin2 uk
J , ~9!

L1
2Yl D22 ,...,l 1

l ~u1¯uD21!5 l 1
2Yl D22 ,...,l 1

l ~u1¯uD21!,

L k
2Yl D22 ,...,l 1

l ~u1¯uD21!5 l k~ l k1k21!Yl D22 ,...,l 1
l ~u1¯uD21!, ~10!

l[ l D2150,1,..., l k50,1,...,l k11 , l 152 l 2 ,2 l 211,...,l 221,l 2 ,

whereL2[LD21
2 , 0<r ,`, 2p<u1<p, 0<uk<p, and 2<k<D21. The volume element o

the configuration space is4,14

)
j 51

D

dxj5r D21dr )
j 51

D21

~sinu j !
j 21du j . ~11!

Through a direct calculation by replacement of variables, one obtains4,6

¹x
25

1

r D21

]

]r
r D21

]

]r
2

L2

r 2 , ~12!

Due to the spherical symmetry, the wave function can be expressed as

c l D22 ,...,l 1
l ~x!5f l~r !Yl D22 ,...,l 1

l ~u1¯uD21!, ~13!

and theD-dimensional Schro¨dinger equation~1! for a two-body system in the center-of-ma
frame reduces to the radial equation

1

r D21

]

]r
r D21

]

]r
f l~r !2

l ~ l 1D22!

r 2 f l~r !522@E2V~r !#f l~r !. ~14!
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Bander and Itzykson7 introduced the harmonic polynomials inD dimensions

Y l D22 ,...,l 1
l ~x!5r lYl D22 ,...,l 1

l ~u1¯uD21![r lYl D22 ,...,l 1
l ~ x̂!, ~15!

to avoid the angular functionsYl D22 ,...,l 1
l (u1¯uD21). Y l D22 ,...,l 1

l (x) is a homogeneous polyno

mial of degreel in the components ofx and satisfies the Laplace equation

¹x
2Y l D22 ,...,l 1

l ~x!50. ~16!

The number of linearly independent homogeneous polynomials of degreel in D components ofx
is N( l )5( l 1D21)!/ l !(D21)!. The Laplace equation~16! gives N( l 22)5( l 1D23)!/( l
22)!(D21)! constraints. Hence, the number of the harmonic polynomialsY l D22 ,...,l 1

l (x) of

degreel as well as the number of the spherical harmonicsYl D22 ,...,l 1
l ( x̂) in D dimensions is

N~ l !2N~ l 22!5
~2l 1D22!~ l 1D23!!

l ! ~D22!!
5dD~@ l ,0,...,0# !. ~17!

dD(@ l ,0,...,0#) is the dimension of the irreducible representation of SO(D) denoted by the one
row Young diagram@ l ,0,...,0#. @ l ,0,...,0# describes the symmetric traceless tensor representa
In fact, any polynomial in the components of one vectorx has to belong to a symmetric repre
sentation.

Due to the spherical symmetry, one only needs to write the explicit form of the highest w
state7

Y l ,...,l
l ~x!5Nl~x11 ix2! l , ~18!

whereNl denotes the normalization factor. The partners ofY l ,...,l
l (x) can be simply generated b

rotation. Now, the solution to the Schro¨dinger equation in the center-of-mass frame can be re
pressed as

c l ,...,l
l ~x!5Rl~r !Y l ,...,l

l ~x!, ~19!

and the radial equation is easy to derive:

1

r D21

]

]r
r D21

]

]r
Rl~r !1

2l

r

]

]r
Rl~r !522@E2V~r !#Rl~r !. ~20!

Recall Rl(r )5r 2 lf l(r ). Equation~20! coincides with Eq.~14! but the angle variables do no
appear explicitly in calculation.

The number~17! of the harmonic polynomialsY l D22 ,...,l 1
l (x) of degreel can be understood

from another viewpoint. After removing those homogeneous polynomials in the formr 2f (x),
where f (x) is a homogeneous polynomial of degree (l 22), Eq. ~17! shows the number of the
remaining linearly independent homogeneous polynomials of degreel in the components ofx.
Therefore, the harmonic polynomialsY l D22 ,...,l 1

l (x) construct a complete set of linearly indepe

dent base functions for the homogeneous polynomials of degreel in the components ofx, exclud-
ing those in the form ofr 2f (x).

IV. THREE-BODY SYSTEM IN D-DIMENSIONS

For a three-body system, in the center-of-mass frame there are two Jacobi coordinate
R1 andR2 , which will be denoted byx andy, respectively:
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x5F m1m2

m11m2
G1/2

$r22r1%, y5F ~m11m2!m3

m11m21m3
G1/2H r32

m1r11m2r2

m11m2
J ,

¹25¹x
21¹y

2 , ~21!

Lab5Lab
(x)1Lab

(y)52 i H xa

]

]xb
2xb

]

]xa
J 2 i H ya

]

]yb
2yb

]

]ya
J ,

The Schro¨dinger equation~1! reduces to

$¹x
21¹y

2%C~x,y!522$E2V~j1 ,j2 ,j3!%C~x,y!,
~22!

j15x"x, j25y"y, j35x"y,

wherej j are the internal variables. Since Eq.~22! is rotational invariant, the total orbital angula
momentum is conserved. The wave functionC(x,y) with the given total angular momentum ha
to belong to an irreducible representation of SO(D). In the traditional method, one calculates t
wave function by the Clebsch–Gordan coefficients:

(
l D22 ,...,l 1l D228 ,...,l 18

Y l D22 ,...,l 1
l ~x!Y l

D228 ,...,l
18

l 8 ~y!^ l ,l D22 ,...,l 1 ; l 8,l D228 ,...,l 18uL,M &. ~23!

As usual,Y l D22 ,...,l 1
l (x) and Y l

D228 ,...,l
18

l 8 (y) are called the partial angular momentum states,

their combination is called the total angular momentum state, which is a homogeneous poly
of degreesl and l 8 in the components ofx andy, respectively.

There are three problems. First, what kinds of representations~or total angular momentumL!
appear in the Clebsch–Gordan series for decomposition of the direct product of two repre
tions denoted by one-row Young diagrams@ l ,0,...,0# and @ l 8,0,...,0#? This problem has bee
solved in group theory by the Littlewood–Richardson rule and traceless conditions. A new
acter is that the representations denoted by two-row Young diagrams appear in the Cle
Gordan series for a three-body system whenD.3. Those representations denoted by the You
diagrams with more than two rows could not appear because there are only two Jacobi coo
vectors. For simplicity we denote a one-row or two-row Young diagram by@m,n#
[@m,n,0,...,0#. Hence, we have the Clebsch–Gordan series:

@ l ,0# ^ @ l 8,0#. %
s50

n

%
t50

n2s

@ l 1 l 82s22t,s#, ~24!

wheren is the minimum betweenl and l 8. The representations witht50 are calculated by the
Littlewood–Richardson rule, and the remaining are calculated by the traceless condition
dimension of a representation denoted by a two-row Young diagram is

dD~@m,n#!5~D12m22!~D1m1n23!~D12n24!~m2n11!

3
~D1m24!! ~D1n25!!

~m11!!n! ~D22!! ~D24!!
. ~25!

WhenD54, the representation denoted by a two-row Young diagram reduces to a direct s
a self-dual representation@(S)m,n# and an anti-self-dual one@(A)m,n#. Their dimensions are
equal to half ofd4(@m,n#) given in Eq.~25!. WhenD53, due to the traceless condition, the on
representations with the two-row Young diagrams are representations@m,1#, which are equivalent
to that with the one-row Young diagrams@m,0#, respectively. Equation~25! still holds for D53.
The second problem is how to calculate the Clebsch–Gordan coefficients. The calculation m
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very complicated. We will avoid the difficulty by the method of determining the highest we
states directly. The third problem is determining how many base functions are independen
given total orbital angular momentum such that any wave function with the same angular m
tum can be expanded with respect to the base functions where the coefficients are the func
the internal variables. We are going to solve the last two problems by group theory.

Let us sketch some necessary knowledge of group theory. From the representation th
Lie groups,36–38the Lie algebras of the SO(2n11) group and the SO(2n) group areBn andDn ,
respectively. Their Chevalley bases with the subscriptj , 1< j <n21, are the same:

H j5L (2 j 21)(2j )2L (2 j 11)(2j 12) ,

Ej5~L (2 j )(2 j 11)2 iL (2 j 21)(2j 11)2 iL (2 j )(2 j 12)2L (2 j 21)(2j 12)!/2, ~26a!

F j5~L (2 j )(2 j 11)1 iL (2 j 21)(2j 11)1 iL (2 j )(2 j 12)2L (2 j 21)(2j 12)!/2.

But, the bases with the subscriptn are different:

Hn52L (2n21)(2n) ,

En5L (2n)(2n11)2 iL (2n21)(2n11) , ~26b!

Fn5L (2n)(2n11)1 iL (2n21)(2n11)

for SO(2n11), and

Hn5L (2n23)(2n22)1L (2n21)(2n) ,

En5~L (2n22)(2n21)2 iL (2n23)(2n21)1 iL (2n22)(2n)1L (2n23)(2n)!/2, ~26c!

Fn5~L (2n22)(2n21)1 iL (2n23)(2n21)2 iL (2n22)(2n)1L (2n23)(2n)!/2

for SO(2n). Hk span the Cartan subalgebra, and their eigenvalues are the components of a
vectorm5(m1 ,...,mn):

Hkum&5mkum&, 1<k<n. ~27!

If the eigenstates for a given weightm are degeneracy, this weight is called a multiple weig
otherwise a simple one.Ek are called the raising operators andFk the lowering ones. For an
irreducible representation denoted by a Young diagram@m1 ,m2 ,...# of SO(D), m j>m j 11 , there
is a highest weightM5(M1 ,M2 ,...), which must be simple:

M j5m j2m j 11 , 1< j <n22,

Mn215mn212mn , Mn52mn , for SO~2n11!,

Mn215mn212mn , Mn5mn211mn , for self-dual representation in SO~2n!,

Mn215mn211mn , Mn5mn212mn , for anti-self-dual representation in SO~2n!. ~28!

Here we are not interested in the spinor representations whereMn is odd for SO(2n11) and
Mn211Mn is odd for SO(2n). For a given irreducible representation@m1 ,m2 ,...# of SO(D), we
only need to consider the highest weight stateuM &, which satisfies
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HkuM &5MkuM &, EkuM &50, 1<k<n, ~29!

because its partners can be calculated by the lowering operatorsFk . In this paper the highes
weight state will simply be called the wave functions with the given angular momentum@m,n# for
simplicity.

Now, we return to our problems. Recalling the Clebsch–Gordan series in Eq.~24!, we can
rewrite Eq.~23! for the highest weight stateM :

Y M
l ,l 8,s,t~x,y!5(

m
Y m

l ~x!Y MÀm
l 8 ~y!^ l ,m,l 8,~MÀm!u@~ l 1 l 82s22t !,s#,M &, ~30!

where the subscripts of the harmonic polynomials are changed to the weights for simp

Y M
l ,l 8,s,t(x,y) is the highest weight state of the representation@( l 1 l 82s22t),s#. It is a homoge-

neous polynomial of degreesl and l 8 in the components ofx and y, respectively. Generally

speaking, someY M
l ,l 8,s,t(x,y) may be expressed as a sum where each term is a product

internal variablej j and a homogeneous polynomialf (x,y) of lower degree~see p. 042108-5 in

Ref. 29!. SinceY M
l ,l 8,s,t(x,y) will be used as a base function for the wave function with a giv

angular momentum and the combinative coefficient is the function of the internal variables,
meaning, the base function in the form ofj j f (x,y) is not independent, and we should find out t
independent and complete base functions for any given angular momentum@m,n#. In the following
we are going to proveY M

q,(m1n2q),n,0(x,y) and their partners, wherel 5q, l 85m1n2q, s5n,
t50, andn<q<m, constitute a complete set of independent base functions for the total o

angular momentum@m,n#. In other words, those total angular momentum statesY M
l ,l 8,s,t(x,y) with

t.0 are not independent, where the sum of the partial angular momentum quantum numbel and
l 8 is larger thanm1n for the total angular momentum@m,n#.

The highest weight for the representation@m,n# is M5(m2n,n,0,...,0). Removing the nor
malization factor inY M

q,(m1n2q),n,0(x,y), which is irrelevant here, we can determine the expl
form for Y M

q,(m1n2q),n,0(x,y) according to its orders in the components ofx andy and the property
of the highest weight state~29!, and denote it by the generalized harmonic polynomialQq

mn(x,y):

Qq
mn~x,y!5

X12
q2nY12

m2q

~q2n!! ~m2q!!
~X12Y342Y12X34!

n;Y M
q,(m1n2q),n,0~x,y!, 0<n<q<m,

~31!
X125x11 ix2 , X345x31 ix4 , Y125y11 iy2 , Y345y31 iy4 .

The formula forQq
mn(x,y) holds forD53 (x45y450, n50 or 1!35,29andD.4. WhenD54 we

denote the highest weight states byQq
(S)mn(x,y) andQq

(A)mn(x,y) for the self-dual representation
and the anti-self-dual representations, respectively:

Qq
(S)mn~x,y!5

X12
q2nY12

m2q

~q2n!! ~m2q!!
~X12Y342Y12X34!

n,

Qq
(A)mn~x,y!5

X12
q2nY12

m2q

~q2n!! ~m2q!!
~X12Y348 2Y12X348 !n, ~32!

X348 5x32 ix4 , Y348 5y32 iy4 .

The generalized harmonic polynomialQq
mn(x,y) is a homogeneous polynomial of degreesq and

(m1n2q) in the components ofx andy, respectively. It is a simultaneous eigenfunction of¹x
2 ,

¹y
2 , ¹x•¹y , and the total angular momentum operatorL2 @see Eq.~9!#,
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¹x
2Qq

mn~x,y!5¹y
2Qq

mn~x,y!5¹x•¹yQq
mn~x,y!50,

L2Qq
mn~x,y!5C2~@m,n#!Qq

mn~x,y!, ~33!

C2~@m,n#!5m~m1D22!1n~n1D24!,

whereC2(@m,n#) is the Casimir calculated by a general formula@see~1.131! in Ref. 38#. The
parity of Qq

mn(x,y) is obviously (21)m1n.
It is evident thatQq

mn(x,y) do not contain a function of the internal variables as a factor,
do their partners due to the rotational symmetry. Therefore,Qq

mn(x,y) are independent base func
tions for the given angular momentum described by@m,n#. Now, we are going to prove that (m
2n11) base functionsQq

mn(x,y) wheren<q<m are complete for the angular momentum@m,n#.
That is,Qq

m( l 2m)(x,y) with 0< l 2m<q<m and their partners construct a complete set of linea
independent base functions for the homogeneous polynomials of degreel in the components ofx
andy, excluding those in the forms ofj j f (x,y), where f (x,y) is a homogeneous polynomial o
degree (l 22).

The number of linearly independent homogeneous polynomials of degreel in the components
of x andy is

MD~ l !5S l 12D21
2D21 D .

After removing those polynomials in the formj j f (x,y), the numberM ( l ) reduces toK( l ):

KD~ l !5MD~ l !23MD~ l 22!13MD~ l 24!2MD~ l 26!

54~ l 1D23!@2l ~ l 12D26!1~D22!~2D25!#
~ l 12D27!!

l ! ~2D24!!
, ~34!

when l 12D>7, which only excludes one case ofl 50 andD53, whereK3(0)51.
On the other hand, the number ofQq

m( l 2m)(x,y) with 0< l 2m<q<m and their partners can
be calculated directly from Eq.~25!:

(
l /2<m< l

~2m2 l 11!dD~@m,~ l 2m!#!5KD~ l !. ~35!

Equations~34! and ~35! are checked byMATHEMATICA . Thus, we have proved that (m2n11)
base functionsQq

mn(x,y) where 0<n<q<m are independent and complete for the angular m
mentum@m,n#. Any function with the angular momentum@m,n# in the system can be expande
with respect to the base functionsQq

mn(x,y), where the coefficients are functions of intern
variables.

From Eq.~30!, for a given total orbital angular momentum@m,n# there are infinite number o
wave functionsY M

(q1t),(m1n1t2q),n,t(x,y) combined from different partial angular momentu
states. Now, what we have proved is that only a finite number of partial angular momentum
(t50) are involved in the complete set of independent base functionsQq

mn(x,y) for a given total
orbital angular momentum@m,n#.

V. GENERALIZED RADIAL EQUATIONS

In Sec. IV we proved that any function with angular momentum@m,n# in the quantum three-
body system ofD dimensions can be expanded with respect to the base functionsQq

mn(x,y),

CM
[m,n]~x,y!5 (

q5n

m

cq
mn~j1 ,j2 ,j3!Qq

mn~x,y!, ~36!
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where the coefficientscq
mn(j1 ,j2 ,j3) are called the generalized radial functions. When subst

ing Eq. ~36! into the Schro¨dinger equation~22!, the main calculation in the derivation is to app
the Laplace operator~21! to the functionCM

[m,n] (x,y). The calculation consists of three parts. T
first is to apply the Laplace operator to the generalized radial functionscq

mn(j1 ,j2 ,j3), which can
be calculated by replacement of variables:

¹2cq
mn~j1 ,j2 ,j3!5$4j1]j1

2 14j2]j2

2 12D~]j1
1]j2

!1~j11j2!]j3

2

14j3~]j1
1]j2

!]j3
%cq

mn~j1 ,j2 ,j3!, ~37!

where]j denotes]/]j and so on. The second is to apply it to the generalized harmonic pol
mials Qq

mn(x,y). This part is vanishing becauseQq
mn(x,y) satisfies the Laplace equation. The la

part is the mixed application

2$~]j1
cq

mn!2x1~]j3
cq

mn!y%"¹xQq
mn12$~]j2

cq
mn!2y1~]j3

cq
mn!x%"¹yQq

mn . ~38!

From the definition~31! for Qq
mn(x,y) we have

x"¹xQq
mn5qQq

mn , y"¹yQq
mn5~m1n2q!Qq

mn

~39!
y"¹xQq

mn5~m2q11!Qq21
mn , x"¹yQq

mn5~q2n11!Qq11
mn .

Hence, we obtain the generalized radial equation, satisfied by the (m2n11) functions
cq

mn(j1 ,j2 ,j3):

¹2cq
mn14q]j1

cq
mn14~m1n2q!]j2

cq
mn12~m2q!]j3

cq11
mn 12~q2n!]j3

cq21
mn

522~E2V!cq
mn , ~40!

where¹2cq
mn is given in Eq.~37!. Only three invariant variablesj1 , j2 , andj3 are involved both

in the equations and in the functions. WhenD54, Eq. ~40! holds for the generalized radia
functions either in@(S)m,n# or in @(A)m,n#, because two representations incorporate to
irreducible representation of the O~4! group when the space inversion is considered. WhenD
53, the equations for the functions in@m,0# and in@m,1# are different although two representatio
@m,0# and @m,1# are equivalent, because the functions have different parity.

At last, we discuss rotational variables and the volume element of the configuration spac
fix the body-fixed frame such thatx is parallel with itsDth axis, andy is located in its (D
21)D hyperplane with a non-negative (D21)th component. That is, in the body-fixed frame, t
nonvanishing components of two Jacobi coordinate vectorsx8 andy8 are

xD8 5j1
1/2, yD218 5~j22j3

2/j1!1/2, yD8 5j3j1
21/2. ~41!

Let R5R(1)R(2)PSO(D) rotate the center-of-mass frame to the body-fixed frame:

R(1)5R12~u1!R31~u2!R43~u3!R54~u4!¯RD(D21)~uD21!,

R(2)5R12~w1!R31~w2!R43~w3!R54~w4!¯R(D21)(D22)~wD22!, ~42!

Rx85x, Ry85y,

where, for example,R12(u) is a rotation on the hyperplane with the first and the second a
throughu angle:
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R12~u!5S cosu 2sinu 0

sinu cosu 0

0 0 1D22

D .

(D21)u j and (D22)wk are the rotational variables, called the generalized Euler angles. Thr
a straightforward calculation, we obtain

x11 ix25j1
1/2eiu1 )

a52

D21

sinua , x31 ix45j1
1/2~cosu2 sinu31 i cosu3! )

a54

D21

sinua ,

y11 iy25j3j1
21/2eiu1 )

a52

D21

sinua1~j22j3
2/j1!1/2eiu1H i )

a51

D22

sinwa

1 (
a51

D22

cosua11 coswaS )
b52

a

sinubD S )
c5a11

D22

sinwcD J , ~43!

y31 iy45j3j1
21/2~cosu2 sinu31 i cosu3! )

a54

D21

sinua1~j22j3
2/j1!1/2

3H 2cosw1 sinu2 )
a52

D22

sinwa1~cosu2 cosu32 i sinu3!cosw2 )
a53

D22

sinwa

1~cosu2 sinu31 i cosu3! (
a53

D22

cosua11 coswaS )
b54

a

sinubD S )
c5a11

D22

sinwcD J ,

where)a5b11
b Fa51. The volume element of the configuration space is

)
j 51

D

dxjdyj5
1

4
~j1j22j3

2!(D23)/2dj1dj2dj3 )
j 51

D21

~sinu j !
j 21du j )

k51

D22

~sinwk!
k21dwk . ~44!

VI. CONCLUSIONS

After separating the motion of center of mass, we have defined the homogeneous poly
Qq

mn(x,y) of degreeq and (m1n2q) in the components of the Jacobi coordinate vectorsx andy,
respectively.Qq

mn(x,y) is a solution of the Laplace equation. We have proved that (m2n11)
generalized harmonic polynomialsQq

mn(x,y) constitute a complete set of independent base fu
tions for the total orbital angular momentum@m,n#. Any wave function with the given angula
momentum in the system can be expanded with respect to the base functions, where the
cients are the functions of the internal variables, called the generalized radial functions
three-body Schro¨dinger equation with a spherically symmetric potentialV in D dimensions re-
duces to the generalized radial equations satisfied by the generalized radial functions. Onl
internal variables are involved in the functions and equations. The number of both the fun
and the equations for the given angular momentum@m,n# is finite and equal to (m2n11). Only
a finite number of partial angular momentum states are involved in constructing the gener
harmonic polynomialsQq

mn(x,y), and the contributions from the remaining partial angular m
mentum states have been incorporated into those from the generalized radial functions.

The generalization of this method to a quantumN-body system inD-dimensions is straight-
forward. The difficulty is how to obtain the unified forms for the generalized harmonic pol
mials, because it needsD21 vectors to determine the body-fixed frame and there areN21 Jacobi
coordinate vectors. The cases withN,D are very different from the cases withN>D. We will
study this problem elsewhere.
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The reduction of a quantum system of three identical
particles on a plane

Toshihiro Iwaia) and Toru Hirose
Department of Applied Mathematics and Physics, Kyoto University,
Kyoto 606-8501, Japan

~Received 12 October 2001; accepted for publication 25 February 2002!

Quantum systems of three identical particles on a plane are analyzed from the
viewpoint of symmetry. Upon reduction by rotation, such systems are described in
the space of sections of a line bundle over a three-dimensional shape space whose
origin represents triple collision. It is shown that if the total angular momentum is
nonzero, then the wave section must vanish at the origin, while if it is zero, then the
wave section can be finite at the origin. Since the particles are assumed to be
identical, the quantum system admits the action of the symmetric groupS3 as well,
which stands for the group of particle exchanges and is commutative with rotation.
Hence the reduced system still admits theS3 action, so that Bose and Fermi states
can be discussed in the space of sections of the line bundle. A detailed analysis of
a system of three free particles on a plane is presented in the latter part of the
article. © 2002 American Institute of Physics.@DOI: 10.1063/1.1473872#

I. INTRODUCTION

This article deals with quantum mechanics on the center-of-mass system of three id
particles on a plane, which has manifestly two kinds of symmetries: They are rotation
particles about the origin and particle exchanges. As is well recognized, symmetry is c
associated with the reduction of dynamical systems. One of the authors~T.I.! has already studied
the reduction of quantum planar three-body systems by the use of rotational symmetry.1 As for the
reduction of multiparticle systems with rotational symmetry, a point to make is the fact tha
center-of-mass system is made into a principal fiber bundle with the rotation group as str
group, if the center-of-mass system is restricted to a subspace on which the rotation grou
freely. This fact was first proved by Guichardet.2 On the basis of this bundle picture, a gau
theoretical treatment becomes feasible for multiparticle systems. After Ref. 2, a numb
articles3–8 were published by T.I. for analyzing multiparticle systems in a gauge theoretical
ner. The reduction method for multiparticle systems with rotational symmetry has been ext
in a rather abstract way by the use of the Peter–Weyl theorem on unitary irreducible repre
tions of compact Lie groups.9 From a physical point of view, an original article10 and a review
article11 are of great help for the gauge theoretical treatment of multiparticle systems. The
theoretical treatment has been given to deformable bodies as well.12–14

As is already known,1 if the triple collision of particles is excluded, the center-of-mass sys

for planar three bodies is diffeomorphic with R˙ 4 and made into a principal fiber bundle R˙ 4→Ṙ3

with structure group SO~2!, where SO~2! stands for the rotational symmetry whose action is to
left, and the dot symbol indicates that the origin is removed from the space in question. Furt
all the particles are identical, it will be found that the symmetric groupS3 , which stands for the
symmetry of three-particle exchanges, also acts on the center-of-mass system. This action
right and will be shown to be expressed in terms of matrices representing the groupS3 . Since the

right and left actions commute, the action ofS3 will project to the factor space R˙ 3>Ṙ4/SO(2). In

a!Electronic mail: iwai@amp.i.kyoto-u.ac.jp
29070022-2488/2002/43(6)/2907/20/$19.00 © 2002 American Institute of Physics
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what follows, when the whole center-of-mass system is considered, the triple collision is
into account.

On the basis of the symmetry of rotation and particle exchanges, the space of wave fun
on R4 is broken up into a series of subspaces that are interpreted as eigenspaces associa
both SO~2! andS3 , and the time evolution of the original quantum system on R4 induces respec-
tive time evolutions in the subspaces, accordingly. The reduction to subsystems is thus a
plished. These subsystems will be identified with reduced systems to be defined o˙ 3

>Ṙ4/SO(2) along with boundary conditions at the origin. While the theory should apply
system containing any number of particles, and of course can do in three dimensions, too, w
chosenn53 for the number of particles to present the idea in a simple form.

The organization of this paper is as follows: Section II contains a review of the center-of-
system and of Jacobi vectors. Section III is a review of the principal bundle R˙ 4→Ṙ3 with structure
group SO~2!. A connection form defined on R˙ 4 and a metric defined on R˙ 3 will also be reviewed,
and thereby the distance function with respect to that metric on R˙ 3 will be discussed. In Sec. IV
the action of the symmetric groupS3 on the center-of-mass system is represented explicitly
terms of matrices. Since the action of SO~2! and ofS3 commute, the action ofS3 on the center-
of-mass system R˙ 4 projects to Ṙ3, which is given explicitly in Sec. V. In Sec. VI, theL2 space of
wave functions on the center-of-mass system R4 is decomposed into the sum of spaces of ‘‘eq
variant’’ functions with respect to the SO~2! action on R4. If a quantum system is SO~2! invariant,
the time evolution in theL2 space is reduced to that in the space of equivariant functi
accordingly. In Sec. VII, interest will center on what will actually happen at the origin,
boundary of R˙ 4, if the triple collision is taken into account. Boundary conditions for wave fu
tions at the origin of R4 are to be considered by the use of the equivariance condition. It wi
shown that according to whether the total angular momentum is nonzero or zero, the
function vanishes at the origin or takes a finite value there. In Sec. VIII, the symmetry of pa
exchanges are discussed in the space of wave functions on the center-of-mass system. T
and Fermi states are characterized by the respective representations of the permutation gS3

acting on the center-of-mass system. Since the action of SO~2! and ofS3 commute, both the Bose
and Fermi states can be constructed in the space of equivariant functions. Thus the redu
subsystems is accomplished by the use of the symmetry of rotation and particle exch
Section IX deals with complex line bundles associated with the principal bundle R˙ 4→Ṙ3. It is
shown that the spaces of equivariant functions described in Sec. VI are in one-to-one corr
dence with the spaces of ‘‘sections’’ in those complex line bundles with boundary conditions
origin of R3. Since the action of SO~2! and ofS3 commute, it further turns out that the subsyste
studied in Sec. VIII are indeed equivalent to quantum systems defined in the space of sectio
the boundary condition at the origin along with the restriction to the Bose or Fermi state. In
X, the reduction procedure is applied to a system of free identical particles on a plane. Th
evolution of the system reduces to the time evolution in the space of equivariant functions,
is expressed in the form of integral transform, and further Bose and Fermi states are f
according to the procedure developed in Sec. VIII. Section XI contains a local expression
boundary conditions studied in Sec. VII, and also deals with a local expression of the in
transform obtained in Sec. X, to show explicitly how the reduction is accomplished ind
Section XII contains remarks on applications to electrons on a plane.

II. THE CONFIGURATION SPACE

Suppose there are three particles on a plane, each with position vectorsxj , j 51,2,3, and
massesmj , j 51,2,3, respectively. The set of all possible particle positions,X, is identified with
R233, which consists of ordered triples of position vectors (x1 ,x2 ,x3).

Given the spaceX, one can consider two fundamental motions traced by the particles, o
which is translation and the other rotation. The spaceX is endowed with the inner productK:X
3X→R which is defined by
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K~x,y!5(
j 51

3

mj~xj ,yj !, x5~x1 ,x2 ,x3!, y5~y1 ,y2 ,y3!PX, ~1!

where (x,y) denotes the standard inner product on R2.
Getting rid of translational degrees of freedom, we shall focus on the center-of-mass s

which is defined by

X05H ~x1 ,x2 ,x3!PXU(
j 51

3

mjxj50J . ~2!

From Ref. 1, we find thatX0 has the following orthonormal basis with respect to the metricK:

f 15N1~2m2e1 ,m1e1 ,0!,

f 25N1~2m2e2 ,m1e2 ,0!,
~3!

f 35N2~2m3e1 ,2m3e1 ,~m11m2!e1!,

f 45N2~2m3e2 ,2m3e2 ,~m11m2!e2!,

whereNj are the normalizing factors explicitly given by

N15~m1m2~m11m2!!21/2,
~4!

N25~m3~m11m2!~m11m21m3!!21/2.

With respect tof j , j 51,...,4, anyxPX0 is represented as

x5(
j 51

4

qj f j , qj5K~x, f j !. ~5!

These coefficientsqj serve as the Cartesian coordinates inX0 .
The spaceX0 is isomorphic to R4 and also to R23R2, the set of pair of vectors in R2. We

define the pair of two vectors as follows:

r15q1e11q2e25A m1m2

m11m2
~x22x1!,

~6!

r25q3e11q4e25Am3~m11m2!

m11m21m3
S x32

m1x11m2x2

m11m2
D .

The vectorsr1 andr2 are called the Jacobi vectors, which will be effectively used in dealing w
particle exchanges. Figure 1 illustrates the visual view of the Jacobi vectors, but the arrow l
are not drawn to scale.

Both the orthonormal basis$ f j% j 51,...,4and the Jacobi vectorsr1 andr2 are easily generalized
for a planarn-body system,5 and for a spatialn-body system3,9 as well.

III. THE INTERNAL SPACE

Having removed the translational degrees of freedom in Sec. II, we now consider in
section the symmetry due to the rotation,

x5~x1 ,x2 ,x3!°gx5~gx1 ,gx2 ,gx3!, gPSO~2!, xPX0 . ~7!
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For a while, we forget the case where all particles collide at the origin, and consider the co
ration spaceẊ0ªX02$0%. Then the SO~2! action becomes free. Further, the SO~2! action defines
an equivalence relation onẊ0 , and gives rise to a quotient spaceẊ/SO(2). Wedenote byp the
natural projection fromẊ0 to the quotient space,

p:Ẋ0→MªẊ0 /SO~2!, p~x!5@x#, xPẊ0 , ~8!

where@x# denotes the equivalence class ofx. The spaceM turns out to be a manifold which we
shall call the internal or the shape space. ThusẊ0 is made into a fiber bundle with structure grou
SO~2!.1

To elaborate the discussion, we give the explicit form of the projection~8!. Let q

5(q1 ,q2 ,q3 ,q4) denote points of spaceẊ0 , just as was defined in~5!. We notice thatX0>R4 is
identified with C2 by introducing the complex variablesz1 , z2 through

z15q11 iq2 , z25q31 iq4 , i 5A21. ~9!

On account ofg5(sin t
cost

cost
2sin t), the SO~2! action on C2 turns out to be expressed as

z5~z1 ,z2!°~eitz1 ,eitz2!5eitz. ~10!

With the identificationX0>C2, the natural projectionp is realized as

p:~z1 ,z2!°~j1 ,j2 ,j3!, ~11!

where

j11 i j252z1z̄2 , j35uz1u22uz2u2. ~12!

Note here that

A(
k51

3

jk
25(

j 51

4

qj
2 . ~13!

It can be verified that the shape spaceM is diffeomorphic with Ṙ3
ªR32$0%;1

MªẊ0 /SO~2!>Ṙ3. ~14!

Thus the rotational degree of freedom is removed to provide the shape spaceM .

FIG. 1. Illustrating the Jacobi vectorsr1 andr2 as seen in Eq.~6!. r1 points along the line joining particles 1 and 2, whi
r2 points along the line joining particles 3 and the center-of-mass of particles 1 and 2. Note that the arrow lengthsnot
drawn to scale.
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In the remainder of this section, we make a review of the connection defined on the~2!

bundleẊ0→M and of the metric defined onM . A one-formv defined to be

v5
1

( j 51
4 qj

2 ~2q2dq11q1dq22q4dq31q3dq4! ~15!

is called a connection form on the SO~2! bundle Ẋ0→M . The connection form gives rise to
direct sum decomposition of the tangent spaceTx(Ẋ0) at each pointx of Ẋ0 ,

Tx~Ẋ0!5Vx% Hx , Hxªkervx , VxªTx~Ox!, ~16!

wherevx is considered as a linear map from the tangent spaceTx(Ẋ0) to the Lie algebraso(2)
>R of SO~2!, andTx(Ox) denotes the tangent space atx to the SO~2!-orbit Ox throughxPẊ0 .
Note here that the subspacesHx andVx are orthogonal to each other with respect to the Euclid
metric Kx on Ẋ0 . Since the subspaceHx is isomorphic, as a vector space, to the tangent sp
Tp(x)(M ) to M at p(x)5j through the differentialp* of the projection mapp, and since the
metric on the center-of-mass systemẊ0 is invariant under the SO~2! action, a metricK̃ on M is
defined through

Kx~U1 ,U2!5K̃p(x)~p* U1 ,p* U2!, U1 ,U2PHx . ~17!

A straightforward calculation shows thatK̃ is expressed as

K̃5
1

4r (
k51

3

djk
2 , r 5A(

k51

3

jk
2. ~18!

By using the metricK̃, we are to evaluate the distancedM(j,j8) of two pointsj, j8 of M ,
which will be used in Sec. XI. SincedM(j,j8) is equal to the length of the geodesic joiningj to
j8, we have to find that geodesic. To this end, we first consider horizontal geodesics inẊ0 with
respect to the Euclidean metric, where a curvec(t) in Ẋ0 is, in general, called horizontal if its
tangent vectorċ(t) is horizontal,ċ(t)PHc(t) . We now takezPp21(j) and wPp21(j8). The
horizontal geodesic inẊ0 which projects to the geodesic inM joining j to j8 should be a
horizontal straight line joiningeisz to w for a certain real numbers,

u~ t !5w1t~eisz2w!, 0<t<1, ~19!

where the parameters is to be determined so thatu(t) may be horizontal. By definition, the curv
u(t) is horizontal if and only ifv(u̇(t))50. A straightforward calculation along with~15! shows
that v(u̇(t))50 is equivalent to

(
k51

2 S uk

dūk

dt
2ūk

duk

dt D522iU(
k51

2

zkw̄kUsin~s1u!50, ~20!

whereu is the argument of(k51
2 zkw̄k . Thus,u(t) is horizontal if and only ifs is determined so

as to satisfy sin(s1u)50 or cos(s1u)561. Fors thus determined, the horizontal straight lineu(t)
projects to the geodesicp(u(t)) joining j andj8. From the definition of the metricK̃, the length
of u(t), 0<t<1, with respect toK, is equal to that ofp(u(t)), 0<t<1, with respect toK̃. The
squared length of theu(t), 0<t<1 is now calculated as
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(
k51

2

ueiszk2wku25 (
k51

2

uzku21 (
k51

2

uwku262U(
k51

2

zkw̄kU. ~21!

On account of the minimum property of the distance, we must choose the minus sign in Eq~21!.
The right-hand side of~21! can be expressed in terms ofj andj8, and then provides the square
distance betweenj andj8,

dM~j,j8!25r 1r 82&Arr 81 (
k51

3

jkjk8, ~22!

where

r 5A(
k51

3

jk
2, r 85A(

k51

3

jk8
2. ~23!

IV. EXCHANGES OF PARTICLES

In Sec. III, we made use of the rotational symmetry to obtain the shape spaceM . We now turn
to another symmetry, the symmetry of configurations arising from exchanges of identical par
Thus, in this section, we assume that all particles are identical, and without loss of general
mj51, j 51,2,3. Then the Jacobi vectors defined in Eq.~6! become

r15
1

&
~x22x1!,

~24!

r25A2

3S x32
x11x2

2 D .

Let S3 be a symmetric group, the group of permutations of three symbols. If a configur
undergoes the change

~x1 ,x2 ,x3!°~xs(1) ,xs(2) ,xs(3)!, sPS3 , ~25!

the Jacobi vectors associated with the new configuration are given by

r1
s5

1

&
~xs(2)2xs(1)!,

~26!

r2
s5A2

3 S xs(3)2
xs(1)1xs(2)

2 D .

The graphical representation of particle exchanges is given in Fig. 2, indicating which tra
mation takes the reference Jacobi vectors to which pair of new Jacobi vectors. From~26!, one soon
realizes that any particle exchanges can be represented by a linear transformation of Jacob
r1 and r2 . This will imply that the center-of-mass system of three identical particles admits
action ofS3 to the right.

We have to note here that since we are dealing with the right action of matrices, the
sentation ofS3 , r:S3→GL(2,R), must act onX0 in the following manner:

~r1 ,r2!°~r1
h ,r2

h!5~r1 ,r2!r~h!21, hPS3 . ~27!

A straightforward calculation then provides
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r~e!5S 1 0

0 1D , r~1 2!5S 21 0

0 1D ,

r~1 2 3!5S 21/2 )/2

2)/2 21/2D , r~1 3 2!5S 21/2 2)/2

)/2 21/2 D , ~28!

r~2 3!5S 1/2 )/2

)/2 21/2D , r~1 3!5S 1/2 2)/2

2)/2 21/2 D .

It is an easy matter to verify that the matrices in~28! form a discrete subgroup of O~2! which is
isomorphic to the symmetric groupS3 . It is also well known that the set of the matrices given
~28! forms a unitary irreducible representation ofS3 .15

So far we have not touched upon collision of particles, or excluded collision configura
from the center-of-mass systemX0 . A remarkable point to make on theS3 action onX0 is thatS3

acts on the whole spaceX0 . This means that even if two or three particles collide, where the r
of the 232 matrix (r1 ,r2) is less than two, Eq.~27! is applicable together with~28!.

V. THE ACTION OF S3 ON M

In Sec. IV, we have observed that the exchanges of identical particles give rise to the ac
S3 on X0 . With the identificationẊ0>Ċ2, the action ofS3 on Ẋ0 is expressed, like~27!, as

~z1 ,z2!°~z1 ,z2!r~h!21, hPS3 . ~29!

Since the action of SO~2! and ofS3 on X0 commute, the action ofS3 on M can be defined
through

FIG. 2. This diagram represents the graphical view of all possible particle exchanges. Numbers in brackets
elements of permutations fromS3 . By the action ofsPS3 , the site occupied by the particlek in the reference configu-
ration gets occupied in turn by the particles(k).
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@x#t~h!21
ª@xr~h!21#, xPẊ0>Ċ2, hPS3 , ~30!

wheret is a homomorphism:S3→GL(3,R), and represented as

~j1 ,j2 ,j3!°~j1 ,j2 ,j3!t~h!21, ~j1 ,j2 ,j3!PM , hPS3 . ~31!

Note here that the definition~30! is independent of the choice of representatives. A straightforw
calculation along with~12!, ~28!, and~30! shows thatt(S3) forms a discrete subgroup of SO~3!,
which is expressed as

t~e!5S 1 0 0

0 1 0

0 0 1
D , t~1 2!5S 21 0 0

0 21 0

0 0 1
D ,

t~1 2 3!5S 21/2 0 2)/2

0 1 0

)/2 0 21/2
D , t~1 3 2!5S 21/2 0 )/2

0 1 0

2)/2 0 21/2
D , ~32!

t~2 3!5S 1/2 0 )/2

0 21 0

)/2 0 21/2
D , t~1 3!5S 1/2 0 2)/2

0 21 0

2)/2 0 21/2
D .

At first sight, the dimension of matrices presented in~32! is 333, which is larger than those
presented in~28!, resulting in an increase in the number of dimension by one. This seems n
fit the fact that the dimension ofM is less than that ofẊ0 . However, this is not a contradiction
While we have identifiedX0 with R232, the set of Jacobi vectors, we are allowed alternatively
identify X0 with R4, the set of row vectors of length 4, so that we would have seen a dis
subgroup of GL(4,R) acting on R4, and would have been able to see an immediate reductio
the size of matrices. In fact, the O~2! action given in~27! proves to take the form

~q1 ,q2 ,q3 ,q4!°~q1 ,q2 ,q3 ,q4!S aI2 bI2

cI2 dI2
D 21

for r~h!5S a b

c dD , ~33!

wherehPS3 and I 2 denotes the 232 unit matrix. We also see that the determinant of the 434
matrix (cI2

aI2
dI2

bI2) is equal to the square of the determinant of the 232 matrix (c
a

d
b), so that theS3

action ~33! is represented as a discrete subgroup of SO~4!.

VI. REDUCTION BY ROTATIONAL SYMMETRY

In this section, we present the reduction of a quantum system on the center-of-mass sysX0

by rotational symmetry. The reduction procedure runs irrespectively of whether all particle
identical or not. We first need a decomposition ofL2(C2) with respect to the SO~2! action. For
f PL2(C2) given, we consider a functionf (eisz) with a parameters, which can be expanded int
the Fourier series

f ~eisz!5 (
m52`

`

f m~z!eims, f m~z!5
1

2p E
2p

p

f ~eisz!e2 ims ds. ~34!

In particular, fors50, one has

f ~z!5 (
m52`

`

f m~z!. ~35!
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Note here that the functionf m defined in~34! satisfiesf m(eisz)5eimsf m(z). In general, a function
F on C2 satisfying the condition

F~eisz!5eimsF~z! ~36!

is called rm-equivariant, whererm denotes a unitary irreducible representation of SO
>U(1); rm(eis)5eims with mPZ. As is easily seen, the decomposition~35! has remarkable
properties,

i f i25 (
m52`

`

i f mi2, ^ f n , f m&50 if nÞm. ~37!

ThusL2(C2) is decomposed into the orthogonal direct sum,

L2~C2!5 %
m52`

`

Lm
2 ~C2!, ~38!

where eachLm
2 (C2) is the space of equivariant functions,

Lm
2 ~C2!5$ f PL2~C2!u f ~eisz!5eimsf ~z!%. ~39!

Suppose we are given a quantum dynamical system onL2(C2), of which the time evolution is
expressed as a unitary transformation,

c t~z!5E
C2

Gt~z,w!c t0
~w!dw, ~40!

where Gt(z,w) is a Green’s function. Moreover, we assume that this quantum system is~1!
invariant, so thatGt(z,w) is required to be U~1! invariant,

Gt~eisz,eisw!5Gt~z,w!. ~41!

Our task in the following is to decompose the time evolution~40! in L2(C2) into a series of those
in respective subspacesLm

2 (C2). This process will be called the reduction of the quantum sys
for simplicity. We will see later how the time evolution inLm

2 (C2) is looked upon as the time
evolution of a state on the internal spaceM . Since the Lebesgue measure dw on C2 is invariant
under the U~1! action, and sincec t0

(eisw) can be expanded into a Fourier series(c t0
m(w)eims, the

time evolution~40! can be decomposed into the following series:

c t~z!5
1

2p E
2p

p

dsE
C2

Gt~z,w!c t0
~w!dw

5
1

2p E
2p

p

dsE
C2

Gt~z,e2 isw!c t0
~e2 isw!dw

5 (
m52`

` E
C2

Gt
m~z,w!c t0

m~w!dw, ~42!

where

Gt
m~z,w!ª

1

2p E
2p

p

Gt~eisz,w!e2 ims ds, ~43!

and we have assumed that the order of integration and summation can be interchanged
which is the case forc t0

PS(C2), rapidly decreasingC` functions. At a glance of the definition o

Gt
m(z,w), we can observe that
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Gt
m~eisz,w!5eimsGt

m~z,w!, ~44!

Gt
m~z,eisw!5Gt

m~z,w!e2 ims. ~45!

On account of~44!, the integral transform

c t
m~z!5E

C2
Gt

m~z,w!c t0
m~w!dw ~46!

proves to be inLm
2 (C2), so that the mapc t0

m°c t
m becomes also unitary. Thus we have deco

posed the time evolutionc t of the original system inL2(C2) into a series of thosec t
m in Lm

2 (C2),

c t~z!5 (
m52`

`

c t
m~z!, c t

mPLm
2 ~C2!. ~47!

VII. BOUNDARY CONDITIONS

In treating the shape space in Sec. III, we have started with the restricted center-o
systemẊ0 . In this section, we wish to take the whole spaceX0 into account to consider what wil
happen when the three particles collide at a point. First we note that the quotient space
whole spaceX0 by the SO~2! action becomes homeomorphic to R3,

X0 /SO~2!>Ṙ3ø$0%5R3. ~48!

Let us be reminded of the fact thatM5Ẋ0 /SO(2)>Ṙ3 is made into a Riemannian manifol
with metricK̃. Since the motion of the three free particles is associated with a geodesic inẊ0 , and
since the three particles may collide at a point simultaneously, we may expect that the geo
in Ẋ0 that correspond to collision motion may project to geodesics inM which may get out ofM
within a finite time. This suggests that the Riemannian manifold (M ,K̃) is not geodesically
complete. To prove this, it suffices to show that there is a geodesics which gets to the origin3,
a point out ofM5Ṙ3, within a finite time. One can indeed find such a geodesic as follows:
w, zPĊ25Ẋ0 such thatw5lz with lÞ1 a real constant. Then the straight lineu(t)5w1t(z
2w), a geodesic inẊ0 , proves to be horizontal, since Eq.~20! is satisfied by thisu(t). Now, it is
clear thatu(t) projects to a geodesicp(u(t)) approaching the origin of R3. In fact, one has

2u1~ t !u2~ t !5~l1t~12l!!2~j11 i j2!, uu1~ t !u22uu2~ t !u25~l1t~12l!!2j3 , ~49!

where 2z1z̄25j11 i j2 , uz1u22uz2u25j3 , so thatp(u(t))→0 ast→l/(l21). We have to point
out in addition that Eq.~49! allows of the interpretation that the geodesicp(u(t)) remains to exist
after getting out ofM for an instant. In fact, we may interpret that it traces backward the pa
has printed before having reached the origin. This interpretation of the continuation of the g
sic comes from the mechanical fact that three particles on a plane may collide at a point, b
may continue to move after the collision.

We are to prove that if three particles collide at a point, the total angular momentum of
must vanish. Letu(t)5w1tv be a geodesic in C2, which stands for a motion of free particles. W
assume here thatwÞ0, vÞ0. We are to consider whether or notu(t) passes through the origin o
C2. A necessary and sufficient condition foruu(t)u250 for some real numbert is given by
(Rê v,w&)25uvu2uwu2. But, in general, one hasu^v,w&u<uvuuwu, so that

Im^v,w&50, and lv1mw50 for ~l,m!Þ0,l,mPC. ~50!
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SincevÞ0, wÞ0 by assumption, Eq.~50! implies thatv andw are related byv5kw with k a
nonzero real constant. Thus we have verified that ifuu(t)u50 for somet, v andw are related by
v5kw, kPR2$0%. Moreover, the condition Im̂v,w&50 implies that

ImK u~ t !,
du

dt L 5Im^u~ t !,v&5Im^w,v&50, ~51!

which means that the angular momentum of the orbitu(t) must vanish@see ~20!#. Thus we
conclude that if three free particles collide at a point simultaneously, the total angular mom
of them must vanish. By contraposition, three free particles with nonvanishing total an
momentum do not collide simultaneously at a point.

This observation suggests that we consider what happens in wave functions atz50 according
to whether the total angular momentum vanishes or not. We have to note here that theLm

2 (C2) is
the space of wave functions with the total angular momentumm. In fact, therm-equivariance
condition ~36! for a smooth functionF is differentiated with respect tos at s50 to provide

1

i S 2q2

]

]q1
1q1

]

]q2
2q4

]

]q3
1q3

]

]q4
DF~z!5mF~z!, ~52!

where the operator on the left-hand side stands for the total angular momentum operator.
over, condition~36! implies thatF(0)5eimsF(0) for z50, and hence

F~0!50 for mÞ0, ~53!

which means that if the total angular momentum does not vanish (mÞ0), the three particles do
not collide at the origin. Ifm50, thenF(0) should be a finite value.

If some of the wave functions are analytic atz50, we can describe more of the behavior
them atz50. Let f (z) be a function analytic atz50. Then it may be expanded into a power ser
such asf (z)5(cj 1 j 2k1k2

z1
j 1z2

j 2z̄1
k1z̄2

k2. We can rewrite this series in the form

f ~z!5 (
m50

`

(
n5m

`

(
j 11 j 22k12k25m
j 11 j 21k11k25n

cj 1 j 2k1k2
z1

j 1z2
j 2z̄1

k1z̄2
k21 (

m521

2`

(
n5umu

`

(
j 11 j 22k12k25m
j 11 j 21k11k25n

* . ~54!

This expansion shows thatf (z) is broken up into a series ofrm-equivariant functions, each o
which takes the form of power series starting with a term of orderumu irrespective of whetherm
is non-negative or negative. Further, sincen5m12(k11k2), the power series starting with a term
of orderumu contains only terms of every other higher order. This fact was pointed out for p
two-body systems,16 while Ref. 16 mainly studies the behavior of wave functions at the collin
configurations of spatial three-body systems.

In the rest of this section, we describe analyticrm-equivariant functions in terms of the loca
coordinate system (R,u,f,c) introduced through

z15Rei ~c1f!/2cos
u

2
, z25Rei ~c2f!/2 sin

u

2
, ~55!

R>0, 0<u<p, 0<c<4p, 0<f<2p. ~56!

A rm-equivariant functionF which is assumed to be analytic atz50 is then expanded, on accou
of ~54!, into a power series of the form

F~z!5eimc/2(
l 50

`

Rumu12l Fml ~u,f!, ~57!
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where

Fml ~u,f!5 (
j 11 j 251/2(umu1m)1l

k11k251/2(umu2m)1l

cj 1 j 2k1k2
eif( j 12 j 22k11k2)/2S cos

u

2D j 11k1S sin
u

2D j 21k2

. ~58!

From this, we observe that therm-equivariant functionF is expressed aseimc/2 times a power
series inR which starts with a term of the lowest orderumu and contains only terms of every othe
order. SinceR is a measure to describe how configurations of particles are distant from the
collision, Eq.~57! implies that the more the total angular momentumumu grows, the less closely
the particles get together.

VIII. REDUCTION BY PARTICLE EXCHANGES

This section deals with reduction due to exchanges of identical particles. Accordin
whether particles are all bosons or fermions, the wave function must be symmetric or an
metric with respect to particle exchanges. From a wave functionc on the center-of-mass syste
X0>C2, we can construct such wave functionsc (s) andc (a) by the following procedure;

c (s)~x!ª (
hPS3

c~xr~h!21!, ~59!

c (a)~x!ª (
hPS3

sgn~h!c~xr~h!21!, ~60!

wherer is the representation ofS3 in O(2), which is given in~28!, and sgn(g) denotes the signum
of g; sgn(g) equals 1 or21, depending on whethergPS3 is an even or odd permutation. It is eas
to see that thec (s) andc (a) are symmetric and antisymmetric, respectively, with respect to thS3

action,

c (s)~xr~g!21!5c (s)~x!, c (a)~xr~g!21!5sgn~g!c (a)~x!. ~61!

In comparison with therm-equivariance with respect to the SO(2)>U(1) action, Eq.~61!
shows that bosonic and fermionic states are equivariant with respect to the trivial represe
s°1 and to the signum representations°sgn(s), respectively.

We assume here that our quantum system (L2(C2),c t) is invariant under the particle ex
changes, so thatGt(z,w) is assumed to be invariant under the action ofS3 ,

Gt~zr~h!21,wr~h!21!5Gt~z,w!, hPS3 . ~62!

We note further that the Lebesgue measure dw on X0>R4 is also invariant under the action ofS3 .
This is because theS3 action onX0 is represented as a discrete subgroup of SO(4), as isseen from
~33!. The invariance of the Green’s kernel and of the measure dw under theS3 action are put
together to imply that the time evolution preserves the statistics to which the particles are s
that is, bosonic or fermionic state remains unchanged during the time evolution. This can b
from the change that the time evolution~40! undergoes by theS3 action,

c t~zr~h!21!5E
C2

Gt~z,w!c t0
~wr~h!21!dw. ~63!

Since the action of U(1) and ofS3 commute, the time evolution~63! is decomposed into

c t~zr~h!21!5 (
m52`

`

c t
m~zr~h!21!5 (

m52`

` E
C2

Gt
m~z,w!c t0

m~wr~h!21!dw, ~64!
                                                                                                                



se

pace, by

in

s

from

2919J. Math. Phys., Vol. 43, No. 6, June 2002 Quantum system of three identical particles

                    
where the Green’s functions are invariant under theS3 action,

Gt
m~zr~h!21,wr~h!21!5Gt

m~z,w!, hPS3 . ~65!

Putting~64! together with~59! and~60!, we obtain the time evolution of wave functions for Bo
or Fermi particles, which are decomposed into

c t
(s)~z!5 (

m52`

`

c t
(s)m~z!, c t

(s)m~z!ª (
hPS3

c t
m~zr~h!21!, ~66!

c t
(a)~z!5 (

m52`

`

c t
(a)m~z!, c t

(a)m~z!ª (
hPS3

sgn~h!c t
m~zr~h!21!, ~67!

respectively.
Proposition 1:A planar three-particle quantum system (L2(C2),c t) with symmetry of rotation

and particle exchanges is reduced to subsystems (Lm
2 (C2),c t

(s)m) or (Lm
2 (C2),c t

(a)m) according to
whether the particles are bosons or fermions, wherec t

(s)m andc t
(a)m are given by~66! and ~67!,

respectively, along with~46!.

IX. COMPLEX LINE BUNDLES

So far we have discussed the reduction to subsystems~see Proposition 1!. In this section, we
show that these subsystems indeed give rise to reduced quantum systems on the shape s
introducing complex line bundles associated with the U(1) bundle C˙ 2>Ẋ0→M . To this end, we
first recall that the time evolutionc t in L2(C2) was decomposed into the series of those
Lm

2 (C2),

c t
m~z!ªE

C2
Gt

m~z,w!c t0
m~w!dw, c t0

mPLm
2 ~C2!. ~68!

Since the integrand in~68! is invariant under the U(1) action, the integration with respect tow

over C2 will reduce to that over the shape spaceM , if C2 is restricted to C˙ 2. Hence the time
evolutionc t

m(z) may define the time evolution of a quantum state on the shape spaceM . In what
follows, we make a brief review of complex line bundles associated with C˙ 2>Ẋ0→M5Ṙ3 along
with boundary conditions at the origin of R3.

For a unitary irreducible representationrm , the complex line bundleEm associated with the
U(1) bundleẊ0>Ċ2→M is defined to be the quotient of the product spaceẊ03C by the equiva-
lence relation defined through (z,z);(eisz,eimsz) for (z,z)PĊ23C. By @(z,z)# and bypm we
denote the equivalence class inẊ03C and the projectionEm→M , respectively, so that one ha
pm(@(z,z)#)5p(z). A sections in Em is a mapM→Em such thatpm+s5 idM , where idM is the
identity map ofM . Then anyrm-equivariant functionF on Ẋ0 determines a sections in Em by

s~p~z!!5@~z,F~z!!#. ~69!

Sections inEm andrm-equivariant functions are in one-to-one correspondence. Furthermore,
~53!, rm-equivariant functions should be subject to the boundary condition thatF(z)→0 as z
→0 if mÞ0 and thatF(z) is bounded asz→0 if m50, so that the corresponding sections(j)
should satisfy the corresponding boundary condition asj→0 in M .

For sectionss1 and s2 corresponding torm-equivariant functionsF1 and F2 , respectively,
the inner product̂s1 ,s2& is defined to be

^s1 ,s2&5E
M

~s1 ,s2!dmM5E
C2

F1~z!F2~z!dz, ~70!
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where (s1 ,s2) denotes the inner product in each fiberpm
21(p(z))>C, and dmM is the measure

on M defined for any functionx on M through

E
M

x~p!dmM5E
C2

x~p~z!!dz with p~z!5pPM . ~71!

To put the measure dmM in an explicit form, it is of great help to use the connection formv given
in ~15!. A straightforward calculation then shows that the standard volume form onX0 is put in the
form

dq1∧dq2∧dq3∧dq45
1

8r
v∧dj1∧dj2∧dj3 , r 5Aj1

21j2
21j3

2, ~72!

wherejk ,k51,2,3, are defined in~12!. To be precise,djk on the right-hand side of~72! should be
replaced byp* djk , the pull-back ofdjk throughp, but we have useddjk for simplicity. From
~71! and ~72!, we conclude after the integration over the fiberS1>U(1) that

dmM5
p

4r
dj1∧dj2∧dj3 . ~73!

From ~69! and ~70!, we see that any functionFPLm
2 (Ċ2) determines a square integrab

section inEm . Taking into account the above-mentioned boundary condition forrm-equivariant
functions, we may regardLm

2 (C2) as being in one-to-one correspondence to the space of sq
integrable sections inEm together with the boundary condition.

For the rm-equivariant functionc t
m(z) given in ~68!, one has the time evolution of th

corresponding sections t
m in Em together with the boundary condition,

s t
m~p~z!!5@~z,c t

m~z!!#. ~74!

Since the time evolutionc t
m is unitary, that is,ic t

mi5ic t0
mi , the time evolution of the correspond

ing sections t
m is also unitary, that is,is t

mi5is t0
mi for all time t.

TheS3 action onLm
2 (C2) can be transferred to that on the space of square integrable sec

in Em . From ~66! and ~67!, we obtain corresponding time evolutions of sections inEm , respec-
tively,

s t
(s)m~p~z!!ª (

hPS3

s t
m~p~z!t~h!21!, ~75!

s t
(a)m~p~z!!ª (

hPS3

sgn~h!s t
m~p~z!t~h!21!. ~76!

The reduction is thus completed for the time evolution of a U(1)>SO(2) invariant quantum
system of three identical particles on a plane.

Theorem 2: If a quantum system for three identical particles on a plane admits the symm
of rotation and particle exchanges, the time evolution of the quantum system, which is defi
theL2 space of wave functions on the center-of-mass system, is reduced to that on theL2 space of
sections in the complex line bundleEm over the internal spaceM , where sectionss must satisfy
the boundary condition thats(j)→0 asj→0 if mÞ0 or thats(j) is bounded asj°0 if m
50. According to whether the quantum system is bosonic or fermionic, the time evolution i
in the form of ~75! or ~76!.
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X. APPLICATION TO FREE PARTICLES

Having set up the reduction method, we are to apply it to a system of free particles
Schrödinger equation for three free particles on a plane is expressed, in terms of (qi), as

i\
]c

]t
52

\2

2
¹2c with ¹25(

j 51

4
]2

]qj
2 . ~77!

In fact, since the operator(k51
3 (1/mk)(]/]xk)

2, a constant multiple of the kinetic energy operat
is the Laplacian¹2 with respect to the metric~1! on X, and since this metric is expressed
( j 51

4 dqj
2 if restricted to the linear subspaceX0 of X, the Laplacian takes the form¹2

5( j 51
4 ]2/]qj

2. As is well known, Eq.~77! can be solved by Fourier transform with little diffi
culty, to give a solution of the form

c t~z!5E
C2

Ft~z,w!c t0
~w!dw, ~78!

whereFt is the Green’s function given by

Ft~z,w!5F 1

2p i\~ t2t0!G
2

expS i uz2wu2

2\~ t2t0! D . ~79!

Since the Schro¨dinger equation~77! is invariant under the U(1) action~10!, the free particle
system can be reduced after the procedure in Sec. VI. As is easily seen from~79!, the Green’s
kernel Ft(z,w) satisfies the condition~41!, so that we can compute explicitly Eq.~43! with Ft

replaced forGt to obtain

Ft
m~z,w!5

eim(u(z,w)2 p/2)

~2p i\~ t2t0!!2 expS iB~z,w!

2\~ t2t0! D JmS A~z,w!

\~ t2t0! D , ~80!

whereJm is the Bessel function defined as

Jm~x!5
1

2p E
2p

p

eix sin se2 imsds, xPC, ~81!

and

B~z,w!5(
j 51

2

~ uzj u21uwj u2!, ~82!

A~z,w!5U(
j 51

2

zjw̄jU, ~83!

u~z,w!5arg(
j 51

2

zjw̄j . ~84!

It is of great interest to observe thatA(z,w) and B(z,w) are invariant under the U(1) action
z°eisz and/orw°eisw, and hence can be expressed in the coordinates of the shape spaceM . In
fact, we can verify that

B~z,w!5B̃~j,j8!ªA(
k51

3

jk
21A(

k51

3

jk8
2, ~85!
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A~z,w!5Ã~j,j8!ªF1

2
A(

k51

3

jk
2A(

k51

3

jk8
21

1

2 (
k51

3

jkjk8G 1/2

, ~86!

wherejk8 are given by the formula similar to~12!. We notice further that under the U(1) action th
factor eimu(z,w) is subject to the transformation

exp~ imu~eisz,w!!5eims exp~ imu~z,w!!,
~87!

exp~ imu~z,eisw!!5exp~ imu~z,w!!e2 ims.

Properties~85!–~87! show thatFt
m is subject to the transformations~44! and ~45!. Thus the time

evolution ~78! is reduced to~46! with Gt
m replaced byFt

m .
Furthermore, sinceFt is invariant under theS3 action, as is seen from~79!, so isFt

m . Thus the
free particle system reduces to subsystems according to Proposition 1. Finally, applicat
Theorem 2 provides reduced systems defined on the complex line bundlesEm .

In conclusion, we note that the reduced Hamiltonian operator, which acts on sectionsEm

and is denoted byĤm , is given by

Ĥm52
\2

2
4r (

k51

3

¹k
21

m2

2r
, ~88!

where¹k’s are the covariant differential operators with respect to the vector fields]/]jk . See Ref.
1 for details, in which the reduced Hamiltonian operator was studied for a generic Hamilt
system of planar three particles.

XI. LOCAL EXPRESSION

The purpose of this section is to look into the boundary conditions and the Green’s fun
discussed in previous sections, in terms of local coordinates.

We first consider the boundary condition atz50 for rm-equivariant functions in the coordi
nates (R,u,f,c) introduced in~55!. As is easily seen from~12! and ~55!, one has

j11 i j25reif sinu, j35r cosu, r 5R2, ~89!

which means that (r ,u,f) serve as spherical polar coordinates in the shape spaceM>Ṙ3. We take
a local section,s5(s1 ,s2), in the bundleẊ0>Ċ2→M as follows:

s1~r ,u,f!5Areif/2 cos
u

2
, s2~r ,u,f!5Are2 if/2 sin

u

2
, ~90!

where

r .0, 0,u,p, 0,f,2p. ~91!

Then one hasz5eic/2s(r ,u,f), so that the local section corresponding to arm-equivariant func-
tion F is expressed as@(z,F(z))#5@s(r ,u,f),F+s(r ,u,f)#. This implies thatF+s may be iden-
tified with a local section inEm . If F is given by~57!, we obtain

F+s~r ,u,f!5r umu/2(
l 50

`

r l Fml ~u,f!. ~92!
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This shows that if arm-equivariant functionF(z) is analytic inR at R50, then the corresponding
local section is expressed asr umu/2 times an analytic function inr . In particular, the local section
associated with the kernel functionFt

m , as a function ofz, given in ~80! can be expanded in thi
form.

We turn to expressing the integral transform~68! with Gt
m replaced byFt

m as the integral of a
function on the shape spaceM explicitly. To this end, we use local sectionss1 and s2 in the
bundleẊ0→M , which are defined to be

s1~j!5S Ar 1j3

&
,

j12 i j2

A2~r 1j3!
D for jPD1 , ~93!

s2~j!5S j11 i j2

A2~r 2j3!
,
Ar 2j3

&
D for jPD2 , ~94!

whereD6 are domains inM defined, respectively, to be

D15$jPṘ3uj31rÞ0%, ~95!

D25$jPṘ3uj32rÞ0%. ~96!

The sectionss1 ands2 are subject to the transformation in the intersectionD1ùD2 ,

s2~j!5
j11 i j2

Aj1
21j2

2
s1~j!, jPD1ùD2 . ~97!

By using the sections1 , points ofp21(D1) are expressed asz5eiws1(j) with j5p(z) andw
an angle variable. Thus local coordinates (j,w) are introduced inp21(D1). Local coordinates are
defined inp21(D2) as well. Then, arm-equivariant functionF restricted onp21(D1) is put in
the formF(z)5eimwF(s1(j)). A similar expression ofF is available onp21(D1).

We first divideM into a unionM5M 1øM 2 , whereM 6 are the upper and the lower ha
spaces ofM>Ṙ3; M 15$jPM uj3>0%, M 25$jPM uj3<0%, and hence we have the division o
Ċ2 in the form Ċ25p21(M 1)øp21(M 2). Accordingly, the integral transform~68! with Ft

m

replaced forGt
m is broken up into

c t
m~z!5E

p21(M1)
Ft

m~z,w!c t0
m~w!dw1E

p21(M2)
* . ~98!

We now use the local sectionss1 ands2 restricted onM 1 andM 2 , respectively, to rewrite the
integrals ~98! in terms of the variablew5eiw8s1(j8)Pp21(M 1), etc. In particular, forz
Pp21(D1), Eq. ~98! is put in the form

c t
m~s1~j!!5E

M1

F̃ t
m~j,j8!e11

m ~j,j8!c t0
m~s1~j8!!dmM~j8!

1E
M2

F̃ t
m~j,j8!e12

m ~j,j8!c t0
m~s2~j8!!dmM~j8!, ~99!

where the angle variablesw has been canceled out from the both sides, and the definition~71! of
dmM has been used along with
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F̃ t
m~j,j8!ª

e2 imp/2

~2p i\~ t2t0!!2 expS B̃~j,j8!

2\~ t2t0!
D JmS Ã~j,j8!

\~ t2t0!
D , ~100!

e11
m ~j,j8!ªeimu(s1(j),s1(j8)), ~101!

e12
m ~j,j8!ªeimu(s1(j),s2(j8)). ~102!

A similar expression forc t
m(s2(j)),jPD2 , can be obtained as well with due definition

e21
m (j,j8) and ofe22

m (j,j8). The functionsc t
m(s2(j)) andc t

m(s1(j)) are related onD1ùD2

by

c t
m~s2~j!!5S j11 i j2

Aj1
21j2

2D m

c t
m~s1~j!!, jPD1øD2 , ~103!

which is observed from~97! and from the fact thatc t
m is rm-equivariant.

In the rest of this section, we are to look into the functionF̃ t
m(j,j8) in detail by using

asymptotic expansion of Bessel functions. As is well known, a simple form of the asymp
expansion ofJn(x) for uxu@1 is given by

Jm~x!;A 2

px
cosS x2

1

2
mp2

1

4
p D

5
1

2
A 2

px S expS i S x2
1

2
mp2

1

4
p D D1expS 2 i S x2

1

2
mp2

1

4
p D D D . ~104!

Then one has, for 0,ut2t0u\!Ã(j,j8),

JmS Ã~j,j8!

~ t2t0!\
D ;A ~ t2t0!\

2pÃ~j,j8!
S e2p i /4e2 imp/2 expS i

Ã~j,j8!

~ t2t0!\
D 1ep i /4eimp/2

3expS 2 i
Ã~j,j8!

~ t2t0!\
D D , ~105!

where we have assumed thatÃ(j,j8)Þ0. We note in addition thatÃ(j,j8)50 with jÞ0,j8
Þ0, if and only if there exists a positive constantl.0 such thatjk852ljk ,k51,2,3, as observed
from ~86!. Inserting the asymptotic expansion~105! of Jm(Ã(j,j8)/(t2t0)\) in the right-hand
side of ~100!, one obtains, for 0,ut2t0u\!Ã(j,j8),

F̃ t
m~j,j8!;2

~21!me2p i /4

Ã~j,j8!1/2

1

~2p~ t2t0!\!3/2
expS i

2~ t2t0!\
~r 1r 812Ã~j,j8!!D ~106!

1
1

Ã~j,j8!1/2

1

~2p i ~ t2t0!\!3/2
expS i

2~ t2t0!\
~r 1r 822Ã~j,j8!!D .

~107!

We now consider the quantity appearing in the argument of the exponential function in~106!. To
this end, let

a~j,j8!ªr 1r 812Ã~j,j8!. ~108!
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Then, differentiation ofa with respect toj8 implies that for nonvanishingj8, ]a/]j850 if and
only if

&Arr 81 (
k51

3

jkjk81r 1r 8
jk

jk8
50, k51,2,3, ~109!

so that]a/]jk850 if and only if jk52njk8 , k51,2,3 for a positive constantn.0. Incidentally,
for j and j8 with j52nj8, one obtainsÃ(j,j8)50, which contradicts the assumption th
Ã(j,j8)Þ0. From this it follows that ifÃ(j,j8)Þ0 thena(j,j8) does not attain its stationar
values, i.e.,]a/]jk8Þ0, k51,2,3, so that the function

expS i

2~ t2t0!\
a~j,j8! D

rapidly oscillates throughout thej8-space withjÞ2nj8. Hence, the first term~106! of the
right-hand side of the asymptotic expansion~106! and ~107! would make no contribution in the
integral transform. As for the argument of the exponential function in the second term~107!, we
find that r 1r 822Ã(j,j8) is equal todM(j,j8)2, the squared distance defined in~22!. The
distance function takes a minimum if and only ifj5j8, so that

expS i

2~ t2t0!\
dM~j,j8!2D

makes a definite contribution as part of an integral kernel. Thus, for smallt2t0 , one may con-
clude that the functionF̃ t

m(j,j8) has an asymptotic expansion of the form

F̃ t
m~j,j8!;

1

Ã~j,j8!1/2

1

~2p i ~ t2t0!\!3/2
expS i

2~ t2t0!\
dM~j,j8!2D . ~110!

XII. REMARKS ON ELECTRONS ON A PLANE

A system of electrons on a plane is of fundamental interest from the viewpoint of the qua
Hall effect. In his lecture17 on the quantum Hall effect, Laughlin gives a trial wave function
planar three electrons on a plane, which is expressed as

cn,m~z1 ,z2!5~~z21 iz1!3m2~z22 iz1!3m!~z1
21z2

2!ne2 ~1/4!(uz1u21uz2u2), ~111!

up to a constant factor, wherez1 and z2 are variables given in~9!. It is easy to see that this
function is equivariant under the U(1) action. We can also verify that the functioncn,m satisfies
the Pauli principle. To show this, we have only to see howz21 iz1 andz22 iz2 transform under
theS3 action. Writing out the transformation~29! for every elementhPS3 results in the following
transformation except for the identity:

~z21 iz1!r~12!215z22 iz1 , ~z22 iz1!r~12!215z21 iz1 ,

~z21 iz1!r~13!215~z22 iz1!e2 ~2p/3! i , ~z22 iz1!r~13!215~z21 iz1!e~2p/3! i ,

~z21 iz1!r~23!215~z22 iz1!e~2p/3! i , ~z22 iz1!r~23!215~z21 iz1!e2 ~2p/3! i , ~112!

~z21 iz1!r~123!215~z21 iz1!e~2p/3! i , ~z22 iz1!r~123!215~z22 iz1!e2 ~2p/3! i ,

~z21 iz1!r~132!215~z21 iz1!e2 ~2p/3! i , ~z22 iz1!r~132!215~z22 iz1!e~2p/3! i .
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From these transformations, it follows thatcm,n indeed satisfies the Pauli principle under theS3

action.
According to our procedure~60!, we can form another function which satisfies the Pa

principle. For example, taking an equivariant function (z21 iz1)m as a seed, we can form
function

~z21 iz1!m1~z21 iz1!me~2mp/3! i1~z21 iz1!me2 ~2mp/3! i2~z22 iz1!m

2~z22 iz1!me~2mp/3! i2~z22 iz1!me2 ~2mp/3! i , ~113!

which is subject to the Pauli principle. We can multiply the function~113! by the factor
e2(1/4)(uz1u21uz2u2) to form a plausible wave function.
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Reduction of dynamical systems is closely related with symmetry. The purpose of
this article is to show that Fourier analysis both on compact Lie groups and on
finite groups serves as a reduction procedure for quantum systems with symmetry
on an equal footing. The reduction procedure is applied to systems of many iden-
tical particles lying inR3 which admit the action of a rotation group SO~3! and of
a symmetric or permutation group. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1473873#

I. INTRODUCTION

As is widely recognized, reduction of dynamical systems is closely related with symme
well-known example of reduction in ordinary quantum mechanics inR3 comes from rotational
symmetry.1 It gives rise to the conservation of the angular momentum, and thereby the qua
state of the system can be restricted to that with a fixed angular momentum eigenvalu
restricted state is described by one of the spherical harmonics multiplied by a function of the
variable. The original Schro¨dinger equation then reduces to provide a Schro¨dinger equation for the
radial function. In this manner, the original quantum system reduces to a quantum system o
degree~s! of freedom. This reduction procedure proves to be based upon Fourier analysis
rotation group SO~3!. The reason why Fourier analysis on SO~3! is referred to, instead of that o
S2 with spherical harmonics, is that Fourier analysis on SO~3! reduces to that onS2 through the
bundle structure SO(3)→S2, when SO~3! acts onR3.

As for discrete symmetry, systems of many identical particles admit symmetry by the act
symmetric~or permutation! groups, that is, symmetry of particle exchanges. A point to make h
is that the particles are not assumed to be placed at vertices of regular polyhedrons, but
spread in the space. The center-of-mass system forN identical particles is actually shown to adm
the action of the symmetric groupSN . Fourier analysis on finite groups will work well in reducin
the quantum system of identical particles. However, the reduction by a finite group does not
that of degrees of freedom, but a reduction to ‘‘eigenstates’’ for the symmetric group.

A key idea to reduction procedure is the Peter–Weyl theorem2,3 on unitary irreducible repre-
sentations of compact Lie groups and of finite groups, both of which are stated in the
manner. The Peter–Weyl theorem says that matrix elements of all the inequivalent irred
unitary representations provide a basis of Fourier analysis on the group in question. The p
of this article is to show that Fourier analysis both on compact Lie groups and on finite g
serves as a reduction procedure for quantum systems with symmetry, continuous and disc
an equal footing.

The fact that the Peter–Weyl theorem on compact Lie groups serves as a reduction pro
for quantum systems has been already stated and applied, in a previous paper,4 to many-particle
systems. To understand how the Peter–Weyl theorem comes to be associated with re
procedure for many-particle systems, one has to review geometric method for many-p
systems. For a long period before a bundle picture was introduced in the study of many-p

a!Electronic mail: iwai@amp.i.kyoto-u.ac.jp
29270022-2488/2002/43(6)/2927/21/$19.00 © 2002 American Institute of Physics
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systems, a vain effort had been made to separate rotational and vibrational motions. Howe
separation of them was shown to be impossible by A. Guichardet5 by the use of the connectio
theory or gauge theory applied to the center-of-mass system which is viewed as a principa
bundle with structure group SO~3!, if collinear configurations of particles are gotten rid of. Wi
this constraint taken into account, reduction procedure was described in the bundle picture.6 Since
then, classical and quantum mechanics for many-particle systems have been studied in the
picture.7–14

A question has been kept unsettled as to how the collinear configurations should be tre
the study of reduction procedure. An answer to this question is brought about when the prob
put in a generic setting.4 Since the center-of-mass system admits an SO~3! action, a geometric
setting to start with is simply that a manifoldM is given on which a compact Lie groupG acts.
The action ofG is not assumed to be free, so thatM is not made into a fiber bundle in genera
Though the bundle picture fails to work, the theory of unitary representations of compac
groups works well on the space,L2(M ), of square integrable functions onM . By an effective use
of the Peter–Weyl theorem,L2(M ) is decomposed into a series of subspaces, each of whic
isomorphic with the space of equivariant functions taking values in a representation spac
may be viewed as the space of eigenstates assigned by the parameter, like an angular mo
eigenvalue, characterizing the representation chosen. If a given Hamiltonian isG-invariant, the
original quantum system reduces to a system on the space of equivariant functions, which
called a reduced system actually. The question mentioned above is now solved. In fa
reduction procedure in this sense can be applied to many-particle systems without exc
collinear configurations. In this stage of reduction, we have not taken up a bundle picture,
the action ofG is free furthermore, the reduction procedure can be described in the bundle pi
In fact, M is then made into a principal bundle,M→M /G, and the reduced system is brought in
one-to-one correspondence with a quantum system defined on a complex vector bundle as
with the principal bundleM→M /G.10

A review article by Littlejohn and Reinsch15 is of great help in studying quantum mechani
of many-particle systems in the bundle picture. A lecture note by Ezra16 is a unifying survey of
rotation, reflection and identical particle symmetry in molecules before the introduction o
bundle theory in many-particle systems.

This article is organized as follows: Section II contains a brief review of the reductio
quantum systems by a compact Lie group on the basis of the study in Ref. 4. Section III is de
to the study of the reduction by a finite group. The reduction procedure will run in parallel
that by a compact Lie group. Section IV contains examples. To a better comprehensio
reduction procedure is performed for quantum systems onL2(R3) with SO~3! symmetry. As is
stated in the beginning of this section, Fourier analysis on SO~3! reduces to that onS2 according
to the bundle structure SO(3)→S2, and thereby the quantum system onL2(R3) will reduce to a
series of systems defined on the closed half line$r PRur>0% with r the radial variable. Boundary
conditions for wave functions atr 50 are also analyzed by the use of the group theory. Sectio
centers on the application of the reduction procedure to systems ofN identical particles. The
reduction procedures with both a compact Lie group SO~3! and a symmetric groupSN , a discrete
finite group, are performed simultaneously. Matrix representations ofS3 and S4 will be given
explicitly, which act on the center-of-mass systems for three and four particles, respectivel

II. REDUCTION BY A COMPACT LIE GROUP

We put the problem of reduction of quantum systems with symmetry in a general setting
section is a review from Ref. 4. LetM be a manifold on which a compact Lie groupG acts. Let
mM be aG-invariant measure onM . The spaceL2(M ) of square integrable functions onM is the
Hilbert space that we take as the space of wave functions. The inner product of functions oM is
denoted, as usual, by
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^ f 1 , f 2&L2(M )5E
M

f 1~x! f 2~x!dmM~x!. ~1!

The groupG is represented unitarily inL2(M ) through

~U~g! f !~x!5 f ~g21x!, gPG, xPM . ~2!

By the use of the representationg°U(g), one can decomposeL2(M ) into a direct sum of
subspaces. Before describing the decomposition, we have to make a brief review of the
Weyl theorem on unitary representations of compact Lie groups.

Let mG and L2(G) denote the normalized invariant measure onG and the space of squar
integrable functions onG with respect tomG , respectively. Let (H x,rx) be unitary irreducible
representations ofG, wherex ranges over all the inequivalent unitary irreducible representati
We denote byr i j

x the matrix elements of the representationrx with respect to some orthonorma
basis of the representation spaceH x, where i , j 51,...,dx , and dx5dimH x. The Peter–Weyl
theorem2 states that the set of all the matrix elements$Adxr i j

x %x,i , j form a complete ortho-
normal system inL2(G). Then any functionw in L2(G) is expanded into a Fourier series:

w~h!5(
x

dx(
i , j

r i j
x ~h!E

G
r i j

x ~g!w~g!dmG~g!5(
x

dx(
i
E

G
r i i

x~g!w~g21h!dmG~g!. ~3!

This theorem can be used to find a Fourier series expansion of a function onM . Given a
function f PL2(M ), we may viewf (hx) as a function ofhPG, if xPM is fixed arbitrarily. We
may write this function asf x , so thatf x(h)ª f (hx) for hPG. For w5 f x , Eq. ~3! provides

f ~hx!5(
x

dx(
i
E

G
r i i

x~g! f ~g21hx!dmG~g!. ~4!

In particular, forh5e, this formula gives a Fourier series expansion off :

f ~x!5(
x

dx(
i
E

G
r i i

x~g! f ~g21x!dmG~g!. ~5!

This expansion suggests we define operatorsPi
x on L2(M ) to be

Pi
x
ªdxE

G
r i i

x~g!U~g!dmG~g!. ~6!

Then, a straightforward calculation shows that

~Pi
x!†5Pi

x , Pi
xPj

x85dxx8d i j Pi
x . ~7!

Further, the Fourier series expansion~5! means that

(
x

(
i

Pi
x5 idL2(M ) , ~8!

where idL2(M ) denotes the identity map ofL2(M ). Equations~7! and ~8! implies that the set
$Pi

x%x,i forms a family of orthogonal projection operators and provides a resolution of u
Hence one has the orthogonal decomposition ofL2(M ),

L2~M !5 %
x

%
i 51

dx

Im Pi
x . ~9!
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Moreover, we define the operators

Pi j
x
ªdxE

G
r i j

x ~g!U~g!dmG~g!, ~10!

which prove to satisfy that

~Pi j
x !†5Pji

x , Pi j
x Pk,

x85dxx8d jkPi ,
x . ~11!

In particular, fromPii
x 5Pi

x along with ~11!, one has

Pi j
x Pj

x5Pi
xPi j

x , ~Pi j
x !†Pi

x5Pj
x~Pi j

x !†, ~12!

and further

~Pi j
x !†Pi j

x 5Pj
x , Pi j

x ~Pi j
x !†5Pi

x . ~13!

From ~12! and ~13!, it follows that when restricted to ImPj
x the operatorPi j

x provides a unitary
isomorphism

Pi j
x : Im Pj

x→
;

Im Pi
x , i , j 51,...,dx . ~14!

Furthermore, we can show that the operatorsPi j
x andU(g) are composed to give

Pi j
x U~g!5(

k
r jk

x ~g!Pik
x , U~g!Pi j

x 5(
k

rki
x ~g!Pk j

x . ~15!

We now denote byH x
^ L2(M ) the space ofH x-valued square integrable functions onM . The

inner product inH x
^ L2(M ) is defined by

^c,f&H x ^ L2(M )5E
M

~c~x!,f~x!!dmM~x!, c,fPH x
^ L2~M !, ~16!

where (c(x),f(x)) denotes the inner product ofc(x) andf(x) in H x. The second equation o
~15! then implies that the mapEj

x : L2(M )→H x
^ L2(M ) defined by

Ej
x5

1

Adx

~P1 j
x ,P2 j

x ,...,Pdx j
x !T, ~17!

the superscriptT denoting the transpose, satisfies

U~g21!Ej
x5rx~g!Ej

x , gPG, ~18!

which implies thatH x-valued functionsEj
x f with f PL2(M ) are subject to the transformation

~Ej
x f !~gx!5rx~g!~Ej

x f !~x!, gPG. ~19!

Put another way, theH x-valued functionsEj
x f arerx-equivariant functions. We here define th

space ofH x-valuedrx-equivariant square integrable functions to be

L2~M ;H x!G5$cPH x
^ L2~M !uc~gx!5rx~g!c~x!, gPG, xPM %. ~20!

We then observe from~19! that the operatorEj
x is a mapL2(M )→L2(M ;H x)G. The adjoint

operator (Ej
x)†: L2(M ;H x)G→L2(M ) is defined, of course, through
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^c,Ej
x f &H x ^ L2(M )5^~Ej

x!†c, f &L2(M ) , cPL2~M ;H x!G, f PL2~M !. ~21!

We note here that components ofrx-equivariant functions satisfy

Pi j
x c j5c i for c5~c i !PL2~M ;H x!G. ~22!

Then, from the definition of (Ej
x)†, it follows that

~Ej
x!†c5Adxc j for c5~c i !PL2~M ;H x!G. ~23!

Further, from~22! and ~23!, one can easily show that

~Ej
x!†Ej

x5Pj
x , Ej

x~Ej
x!†5 idL2(M ;H x)G, ~24!

which implies that when restricted to ImPj
x the mapEj

x provides a unitary isomorphism

Ej
x : Im Pj

x→
;

L2~M ;H x!G, j 51,...,dx , ~25!

so that all ImPj
x , j 51,...,dx , are unitarily isomorphic to one another.

Forming the direct sum ofdx copies ofL2(M ;H x)G, we obtain

%
j 51

dx

Im Pj
x>~H x!* ^ L2~M ;H x!G. ~26!

From ~9! and ~26!, L2(M ) is decomposed, in conclusion, into

L2~M !> %
x

~~H x!* ^ L2~M ;H x!G!. ~27!

We are now in a position to describe a method for reducing quantum systems with sym
Let Ĥ be a Hamiltonian operator acting on a dense domain inL2(M ). We assume thatĤ and
U(g) commute for anygPG. Then Ĥ and Pi

x also commute, so that the subspace ImPi
x is

invariant underĤ. This implies that the quantum system (L2(M ),Ĥ) reduces to a series o
subsystems (ImPi

x ,Ĥ) or equivalently to (L2(M ;H x)G, idH x ^ Ĥ), where idH x ^ Ĥ means that
H x-valued functions are operated componentwise withĤ. The assumption we have used so far
that M carries theG-invariant measuremM . To give an example ofĤ explicitly, we now assume
thatM is endowed with a Riemannian metric and thatG acts onM by isometry. We takedmM as
the volume element formed from the metric. As usual, we takeĤ52 1

2DM1v, whereDM is the
Laplacian onM andv is aG-invariant function onM . Since this Hamiltonian isG-invariant, the
quantum system (L2(M ),Ĥ) reduces to (L2(M ;H x)G, idH x ^ Ĥ).

If the action of the compact Lie groupG is free furthermore,M is made into a fiber bundle
M→M /G with structure groupG. Then, as is well known, the space of theH x-valued
rx-equivariant functions is in one-to-one correspondence with the space of sections in the co
vector bundle associated with the principal bundleM→M /G. According to this, the Hamiltonian
operator idH x ^ Ĥ gives rise to a Hamiltonian operatorĤx acting on the space of sections. L
Gx

2(M /G) denote the space of square integrable sections in the complex vector bundle
reduced quantum system (L2(M ;H x)G, idH x ^ Ĥ) now determines a quantum syste
(Gx

2(M /G),Ĥx). To find Ĥx in an explicit manner, we need a further study, which we do not to
upon here~see Ref. 4 for details!.

If the action ofG is not free, the orbit spaceM /G is not a manifold, and hence the bund
picture of reduction procedure stated above fails to work. However, the reductio
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(L2(M ;H x)G, idH x ^ Ĥ) remains to be the case. In some cases, orbit spaces become man
with boundary. For example, forM5R3 andG5SO(3), theorbit spaceM /G is a closed half line
$r PRur>0%. This will be treated in Sec. IV.

III. REDUCTION BY A FINITE GROUP

We wish to show that the reduction procedure will work as well if we take finite group
place of compact Lie groups. We start with a review of the Peter–Weyl theorem for finite gr
Let H be a finite group. Letp i j

x denote the matrix elements of the representation (K x,px) of H,
wherei , j 51,...,dx with dx5dimK x, andx ranges all the inequivalent unitary irreducible repr
sentations. The Peter–Weyl theorem for finite groups3 says that all the matrix elements$p i j

x %x,i , j

form a complete orthogonal set inL2(H). The inner product forw,cPL2(H) is defined, as usual
to be

^w,c&L2(H)5 (
gPH

w~g!c~g!. ~28!

The orthogonality of the matrix elements is expressed as

dx

uHu (
gPH

p i j
x ~g!p i 8 j 8

x8 ~g!5dxx8d i i 8d j j 8 , ~29!

whereuHu5#H, the order ofH. The Fourier inversion formula then holds to provide

w~g!5
1

uHu (x
dx (

1< i , j <dx
p i j

x ~g!^p i j
x ,w&L2(H)5

1

uHu (x
dx(

j 51

dx

(
kPH

p j j
x ~k!w~gk!. ~30!

Let M be a manifold which admits a right action ofH, where the right action means tha
x(gh)5(xg)h for xPM andg,hPH. Let L2(M ) denote the space of square integrable functio
on M , where the measuremM on M is assumed to be invariant underH. The H is unitarily
represented inL2(M ) through

~V~g! f !~x!5 f ~xg!, xPM , gPH. ~31!

Applying the Peter–Weyl formula forf (xg) with xPM arbitrarily fixed, one obtains

f ~xg!5
1

uHu (x
dx (

1< i , j <dx
p i j

x ~g! (
hPH

p i j
x ~h! f ~xh!5(

x
(
j 51

dx

dx

uHu (
kPH

p j j
x ~k! f ~xgk!. ~32!

In particular, forg5e, this formula gives a Fourier series expansion off ,

f ~x!5(
x

(
j 51

dx

dx

uHu (
kPH

p j j
x ~k! f ~xk!. ~33!

This suggests we define operatorsQj
x on L2(M ) by

Qj
x5

dx

uHu (
kPH

p j j
x ~k!V~k!. ~34!

A straightforward calculation shows that

~Qi
x!†5Qi

x , Qi
xQi 8

x85dxx8d i i 8Qi
x , ~35!
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which means thatQj
x’s form a family of mutually orthogonal projection operators. The Four

series expansion~33! is now put in the form

f ~x!5(
x

(
j 51

dx

~Qj
x f !~x!, ~36!

which implies thatL2(M ) is decomposed into

L2~M !5 %
x

%
j 51

dx

Im Qj
x . ~37!

We now define operatorsQi j
x on L2(M ) to be

Qi j
x 5

dx

uHu (
kPH

p i j
x ~k!V~k!. ~38!

A straightforward calculation shows that these operators have the properties

~Qi j
x !†5Qji

x , Qi j
x Qi 8 j 8

x8 5dxx8d j i 8Qi j 8
x . ~39!

In particular, fromQii
x 5Qi

x together with~39!, one verifies that

Qi j
x Qj

x5Qi
xQi j

x 5Qi j
x , ~40!

and further that

~Qi j
x !†Qi j

x 5Qj
x , Qi j

x ~Qi j
x !†5Qi

x . ~41!

From ~40! and ~41!, it turns out that when restricted to ImQj
x the mapQi j

x provides a unitary
isomorphism,

Qi j
x : Im Qj

x→
;

Im Qi
x , i , j 51,...,dx. ~42!

We can also verify thatQi j
x andV(g) are composed to give

Qi j
x V~g!5(

,
p j ,

x ~g!Qi ,
x , V~g!Qi j

x 5(
,

p, i
x ~g!Q, j

x . ~43!

We here denote byK x
^ L2(M ) the space ofK x-valued square integrable functions onM . Then

the second equation of~43! implies that the operatorsF j
x : L2(M )→K x

^ L2(M ) defined to be

F j
x
ª

1

Adx
~Q1 j

x ,...,Qdx j
x

!T ~44!

have the property

V~g!F j
x5px~g!TF j

x , gPH. ~45!

This implies that forf PL2(M ) the K x-valued functionF j
x f is subject to the transformation

~F j
x f !~xg!5px~g!T~F j

x f !~x!, gPH. ~46!
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We may say that theK x-valued functionF j
x f is px-equivariant. We here define the space

K x-valued square integrablepx-equivariant functions to be

L2~M ;K x!H5$cPK x
^ L2~M !uc~xg!5px~g!Tc~x!, gPH, xPM %. ~47!

Then Eq.~46! shows that the operatorF j
x is a mapL2(M )→L2(M ;K x)H. The adjoint operator

(F j
x)†: L2(M ;K x)H→L2(M ) is defined through

^c,F j
x f &K x ^ L2(M )5^~F j

x!†c, f &L2(M ) , cPL2~M ;K x!H, f PL2~M !. ~48!

We notice here that componentsc i of cPL2(M ;K x)H are related byQi j
x :

Qi j
x c j5c i , i , j 51,...,dx. ~49!

Then, writing out the defining equation of (F j
x)†, one obtains

~F j
x!†c5Adxc j for c5~c i !PL2~M ;K x!H. ~50!

Now it is easy to verify that

~F j
x!†F j

x5Qj
x , F j

x~F j
x!†5 idL2(M ;K x)H. ~51!

This implies that when restricted to ImQj
x the operatorF j

x provides a unitary isomorphism

F j
x : Im Qj

x→
;

L2~M ;K x!H, j 51,...,dx, ~52!

so that all ImQj
x , j51,...,dx, are unitarily isomorphic to one another.

Forming the direct sum ofdx copies ofL2(M ;K x)H, we obtain the isomorphism

%
j

Im Qj
x>~K x!* ^ L2~M ;K x!H, ~53!

and further, from~37!,

L2~M !> %
x

~~K x!* ^ L2~M ;K x!H!. ~54!

Reduction procedure for quantum systems with discrete symmetry is quite the same as
those with compact Lie group symmetry. If the HamiltonianĤ is invariant under theH action, the
original system (L2(M ),Ĥ) reduces to a series of subsystems (ImQj

x ,Ĥ) and then equivalently to
(L2(M ;K x)H, idK x ^ Ĥ).

IV. EXAMPLES

In this section, we give examples of the reduction procedure discussed in Secs. II and
the group SO~3! is the most frequently used compact Lie group in ordinary quantum mecha
we first perform the reduction procedure withG5SO(3) andM5R3. In this case, one has matri
elementsDmm8

, for r i j
x , where,50,1,2,..., umu,um8u<,, anddx52,11. Then the Fourier serie

expansion~5! is put in the form

f ~x!5 (
,50

`

(
umu<,

~2,11!E
SO(3)

Dmm
, ~h! f ~hx!dm~h!, xPR3, ~55!

wheredm(h) is the invariant measure on SO~3! and expressed in terms of the Euler anglesh
5efê3euê2ecê3 as
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dm~h!5
1

2p2 sinu dudfdc with E
SO(3)

dm~h!51, ~56!

where ek , k51,2,3, are the standard basis ofR3 and êk denote the 333 matrices defined by
êka5ek3a for aPR3. We wish to show that Eq.~55! provides actually a Fourier series expansi
in terms of the spherical harmonics. To this end, we are to write out the integrals on the righ
side of ~55!. Let uxu5r and setx5rge3 , gPSO(3). Then, introducing new variablek5hg
PSO(3), oneobtains

E
SO(3)

Dmm
, ~h! f ~hx!dm~h!5 (

unu<,
E

SO(3)
Dmn

, ~k!Dnm
, ~g21! f ~rke3!dm~k!. ~57!

We now setk5ef8ê3eu8ê2ec8ê3, and use the fact that theD-functions17 are expressed as

Dmn
, ~k!5e2 imf8dmn

, ~u8!e2 inc8, ~58!

where we do not need to give the explicit expression ofdmn
, (u8), but need only to note that th

D-functions are factorized in accordance with the Euler variables. Then the integration
respect todm(k) in ~57! is put in the form

E
SO(3)

Dmn
, ~k! f ~rke3!dm~k!5

1

8p2 E
0

2p

dc8einc8E
S2

dmn
, ~u8!eimf8 f ~rke3!sinu8du8 df8.

~59!

Since the right-hand side of~59! vanishes ifnÞ0, the Fourier series expansion~55! turns out to
take the form

f ~x!5 (
,50

`

(
umu<,

~2,11!E
SO(3)

Dm0
, ~k!D0m

, ~g21! f ~rke3!dm~k!

5 (
,50

`

(
umu<,

Ȳ,m~u,f!E
S2

Y,m~u8,f8! f ~rke3!sinu8 du8 df8, ~60!

where we have also setg5efê3euê2ecê3 and used the formulas that relateD-functions to spherical
harmonics:16

Dm0
, ~k!5A 4p

2,11
Y,m~u8,f8!, D0m

, ~g21!5Dm0
, ~g!5A 4p

2,11
Ȳ,m~u,f!, ~61!

andY,m(u,f) are given explicitly by

Y,m~u,f!5~21!mA~2,11!~,2m!!

4p~,2m!!
P,

m~cosu!eimf, ~62!

whereP,
m are associated Legendre functions.16 We notice here thatȲ,m(u,f)5Ȳ,m(ge3) may be

considered as functions onS2. If we introduce the notation

^Ȳ,m , f &S25..E
S2

Y,m~u8,f8! f ~rke3!sinu8 du8 df8, ~63!

which is a function ofr , the Fourier series expansion~60! is put in the form
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f ~x!5 (
,50

`

(
umu<,

Ȳ,m~u,f!^Ȳ,m , f &S2, x5refê3euê2e3 . ~64!

Thus we have obtained a Fourier series expansion in terms of spherical harmonics. It is o
interest to view the functionf (rke3) in ~63! as a function onR13S2 which is reduced from a
function onR13SO(3) through the bundle projection SO(3)→S2 realized ask°ke3 .

We proceed to the projection and ‘‘transition’’ operators, which are defined by~6! and ~10!
and denoted byPm

, andPnm
, , respectively, in the case ofG5SO(3).Applied to a functionf (x)

with uxu5r andx5rge3 , the definition~10! gives rise to the function

~Pnm
, f !~x!5~2,11!E

SO(3)
Dnm

, ~h! f ~h21x!dm~h!5Ȳ,n~u,f!^Ȳ,m , f &S2, ~65!

which can be proved in a similar manner to that for bringing~55! into ~60!. Settingm5n in the
above equation results in

~Pm
, f !~x!5Ȳ,m~u,f!^Ȳ,m , f &S2, ~66!

which means that ImPm
, is the space of functions which are expressed asȲ,m times functions of

r . In particular, operatingȲ,m with Pnm
, , one obtains

~Pnm
, Ȳ,m!~u,f!5Ȳ,n~u,f!. ~67!

Then the unitary isomorphismPnm
, : Im Pm

, →Im Pn
, @see~14!# implies that the spaces ImPn

, , unu
<,, are isomorphic to one another as spaces of functions ofr . In the Dirac notation, we may
describePnm

, andPm
, as

Pnm
, 5uȲ,n&^Ȳ,mu, Pm

, 5uȲ,m&^Ȳ,mu, ~68!

respectively. Here, integration must be performed not overR3 but over S2, if one wishes to
evaluatePm

, f , for example.
We now proceed to the mapEj

x defined by~17!. From the definition along with~68!, we see
that Em

, : L2(R3)→H ,
^ L2(R3) is given by

Em
, f 5

1

A2,11 S P,m
, f

P,21 m
, f
]

P2, m
, f

D 5S Ȳ,,

Ȳ, ,21

]

Ȳ, 2,

D ^Ȳ,m , f &S2

A2,11
. ~69!

According to~19!, Em
, f must be aD,-equivariant function, that is, it must satisfy the conditio

~Em
, f !~hx!5D,~h!~Em

, f !~x!, hPSO~3!. ~70!

However, this can also be shown to hold from the transformation rule for the spherical harm

Ȳ,m~hge3!5 (
unu<,

Dmn
, ~h!Ȳ,n~ge3!, hPSO~3!, ~71!

and from the SO~3! invariance of̂ Ȳ,m , f &S2.
We have to note here that ifh is in Gx , the isotropy subgroup of SO~3! at x5rge3 , Eq. ~70!

reduces to

~Em
, f !~x!5D,~h!~Em

, f !~x!, hPGx . ~72!
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Since the left-hand side of the above equation is independent ofh, so is the right-hand side which
looks dependent onh. However, this is not a contradiction, but rather accounts for the fact
Pnm

, f (5Ȳ,n^Ȳ,m , f &S2) is expressed asȲ,n times a function ofr . The proof runs as follows: Le
hPGx with xÞ0. Thenh must be a rotation about thex-axis, and is expressed as

h5et x̂/r5getê3g21, x5rge3 , tPR. ~73!

Put together, Eqs.~72! and ~73! give rise to

~Em
, f !~re3!5D,~etê3!~Em

, f !~re3!. ~74!

SinceDnm
, (etê3)5e2 intdnm , the above equation implies that 2, components of (Em

, f )(re3) van-
ish:

~Pnm
, f !~re3!50 if nÞ0. ~75!

From ~15! and ~75!, it follows that

~Pnm
, f !~x!5 (

uku<,
Dnk

, ~g!~Pkm
, f !~re3!5Dn0

, ~g!~P0m
, f !~re3!. ~76!

We observe from~61! and~76! that (Pnm
, f )(x) takes the form ofȲ,n(ge3) times a function ofr ,

A4p/(2,11)(P0m
, f )(re3).

With Pm
, f 5Ȳ,m^Ȳ,m , f &S2 instead off , the right-hand side of~69! is unchanged:

Em
, Pm

, f 5S Ȳ,,

Ȳ, ,21

]

Ȳ, 2,

D ^Ȳ,m , f &S2

A2,11
. ~77!

This equation must be a realization of the unitary isomorphism~25!, which is denoted byEm
, :

Im Pm
, →L2(R3;H ,)SO(3) in the present case, whereH ,>C2,11. From ~66! and~77!, both ImPm

,

andL2(R3;H ,)SO(3) may be identified with the space of functions of the form^Ȳ,m , f &S2. This
space can be endowed with a suitable norm. We setw,m(r )5^Ȳ,m , f &S2 for simplicity. Then, the
squared norm ofPm

, f 5Ȳ,mw,m is calculated as

E
0

`

drE
S2

w,m~r !w,m~r !Ȳ,mY,m r 2 sinu dudf5E
0

`

uw,m~r !u2r 2dr. ~78!

ThusL2(R3;H ,)SO(3) can be identified with the space of functions ofr which are subject to the
condition

E
0

`

uw~r !u2r 2dr,1`. ~79!

To consider boundary conditions forw(r ) at r 50, we now take into account th
D,-equivariance condition~70! at the origin. Since the isotropy subgroup at the origin is SO~3!
itself, theD,-equivariance condition~70! at the origin is expressed as

Ȳ,n~ge3!w,m~0!5 (
um8u<,

Dnm8
,

~h!Ȳ,m8~ge3!w,~0! for ; hPSO~3!. ~80!
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This implies that the vector (Ȳ,nw,m(0))unu<,PH , is invariant under the action of all the matr
ces D,(h), hPSO(3). Since the representationD, is irreducible, w,m(0) must vanish if
dimH ,>2, i.e.,,>1. If ,50, then dimH 051, so thatw,m(0) does not need to vanish. It shou
be a finite value. Thus the space of square integrable functions on the closed half line$r PRu r
>0%, as a reduced space of quantum states, should be given by

H wU E
0

`

uw~r !u2r 2dr,1`, w~0!50J for ,>1, ~81!

and

H wU E
0

`

uw~r !u2r 2dr,1`, w~r !is bounded asr→0J for ,50. ~82!

The reduction procedure for quantum systems with symmetry proceeds as follows
(L2(R3),Ĥ) be a quantum system with a Hamiltonian operatorĤ. Assume thatĤ is invariant
under the action of SO~3!. According to the procedure stated in Sec. II, one obtains a red
quantum system (ImPm

, ,Ĥ) or (L2(R3;H ,)SO(3), idH
,

^ Ĥ). The spaceL2(R3;H ,)SO(3) may be
identified with theL2-space on the half line which is defined by~81! for ,>1 and by~82! for
,50.

We show that the reduced quantum system (ImPm
, ,Ĥ) gives rise to a quantum system to b

defined on the closed half line$r PRur>0%. For simplicity, we assume that the Hamiltonia
operator has the form

Ĥ52 1
2 D1v~r !, ~83!

where D and v(r ) are the standard Laplacian onR3 and a potential function depending onr
5uxu, respectively. TheD is expressed, in terms of the spherical polar coordinates, as

D5
1

r 2

]

]r S r 2
]

]r D1
1

r 2 L, ~84!

whereL is the spherical Laplacian onS2,

L5
1

sinu

]

]u S sinu
]

]u D1
1

sin2 u

]2

]f2 . ~85!

OperatingPm
, f 5Ȳ,mw,m with Ĥ, one obtains

ĤPm
, f 5Ȳ,mS 2

1

2

1

r 2

]

]r S r 2
]

]r D1
,~,11!

2r 2 1v~r ! Dw,m , ~86!

where we have used the fact that

LȲ,m52,~,11!Ȳ,m . ~87!

Equation~86! shows that the HamitonianĤ restricted to ImPm
, gives rise to the operator

Ĥ,
ª2

1

2

1

r 2

]

]r S r 2
]

]r D1
,~,11!

2r 2 1v~r !, ~88!
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which acts on functions ofr . Here we have denoted the restricted operator byĤ, without referring
to m, since it is independent ofm, actually. Thus we have obtained reduced quantum syst
which are defined on the space given by~81! or ~82! together with the reduced Hamiltonia
operatorĤ, given by ~88!.

In conclusion of this example, we consider what boundary conditions come out on
functions if those wave functions are assumed to be analytic at the origin. Letf be analytic at the
origin. Then f is expressed as

f ~x!5 (
n50

`

(
i 1 j 1k5n

i>0,j >0,k>0

ci jkx1
i x2

j x3
k5 (

n50

`

r nS Yn
(n)1Yn22

(n) 1¯1H Y0
(n) ~ if n is even!

Y1
(n) ~ if n is odd! J D ,

~89!

where Yk
(n) are spherical harmonics of degreek, k50,2,...,n or k51,3,...,n, depending on

whether n is even or odd. Here, use has been made of the fact that the space,Pn(R3), of
homogeneous polynomials of degreen is decomposed into the direct sum18

Pn~R3!5Hn~R3! % r 2Hn22~R3! %¯% H r nH0~R3! ~ if n is even!,

r n21H1~R3! ~ if n is odd!,
~90!

whereHk(R3) denotes the space of solid harmonics of degreek, and each spherical harmonicYk
(n)

in ~89! is expressed as a linear combination of the basis of spherical harmonics,Ykm , umu<k, of
degreek:

Yk
(n)5 (

umu<k
cm

(n)Ykm . ~91!

If we rewrite the Taylor series~89! as a Fourier series with respect to spherical harmonicsY,m ,
and put together the terms containing spherical harmonics of degree,, then we obtain

r ,Y,
(,)1r ,12Y,

(,12)1¯5 (
umu<,

~r ,cm
(,)1r ,12cm

(,12)1¯ !Y,m . ~92!

This implies that if a quantum state with the angular momentum eigenvaluesJ25,(,11) and
J35m is analytic at the origin, it isY,m times an analytic function ofr which has the term of the
lowest order, and those of every other higher order. This fact was pointed out in Ref. 1 with
assumption thatv(r ) is analytic atr 50. Our conclusion holds true ifv(r ) is not analytic atr
50, as long as a wave function analytic at the origin is admitted as a quantum state.

We turn to an example of the reduction by a finite group. Since we shall deal with a nont
application of it in the next section, we give here a quite simple example. LetM5Rn and H
5Z25$61%. The groupZ2 acts onRn in the manner

x°«x, xPRn, «PZ2 . ~93!

All the inequivalent unitary irreducible representations are the trivial representation,«°1, and the
tautological representation,«°«. Then the Fourier series expansion~36! becomes simply

f ~x!5 1
2 ~ f ~x!1 f ~2x!!1 1

2 ~ f ~x!2 f ~2x!!. ~94!

V. APPLICATION TO MANY-PARTICLE SYSTEMS

We consider a system of many particles lying inR3. Let x1 ,...,xN be position vectors of
particles andm1 ,...,mN their masses. LetM be the center-of-mass system, which is defined to
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M5H x5~x1 ,...,xN!U(
i 51

N

mixi50J , ~95!

and isomorphic toR3(N21) as a vector space. The rotation group SO~3! acts onM in such a
manner that

~x1 ,...,xN!°~gx1 ,...,gxN!, gPSO~3!. ~96!

The configurations of particles are characterized by the linear subspaces

Fxªspan$x1 ,x2 ,...,xN%, xPM . ~97!

According to dimFx50,1,2,3, the configurationsx are pointlike, collinear, planar, and spatia
respectively. LetMk , k50,1,2,3, denote the space of respective configurations of particles.
M is broken up into

M5 ø
k50

3

Mk , Mkª$xPM udimFx5k%. ~98!

One can show that SO~3! acts on ṀªM2øM3 freely, that is, if gx5x for some x
PM2øM3 , theng5I ~the 333 identity matrix!. This means that the isotropy subgroup is triv
at every point ofṀ , that is,Gx5$e% for xPṀ . However, the isotropy subgroupsGx at xPM1

and atxPM0 are isomorphic with SO~2! and with SO~3!, respectively. On restrictingM to Ṁ , we
can makeṀ into a principal fiber bundleṀ→Ṁ /SO(3). However, the total spaceM cannot be
made into a fiber bundle. This is because one has ‘‘singular’’ orbits of SO~3! through points
outside of Ṁ ; the orbits through each point ofM1 and of M0 are diffeomorphic withS2

5SO(3)/SO(2) andwith a point, respectively, while generic orbits throughxPṀ are diffeomor-
phic with SO~3!.

Since a HamiltonianĤ for many-particle systems with internal interaction only is SO~3!
invariant, the reduction procedure with compact Lie groups is applied to provide a reduced s
(L2(M ;H ,)G, idH , ^ Ĥ) with G5SO(3) and,50,1,2,... . Note that at this level of reduction,M

does not need to be restricted toṀ . Equation~19! then takes the form

~Em
, f !~gx!5D,~g!~Em

, f !~x!, gPSO~3!, xPM , ~99!

which implies that theH ,-valued functionEm
, f describes an eigenstate associated with the eig

value,(,11) of the total angular momentum operator.
RestrictingM to Ṁ , we obtain a principal bundleṀ→Ṁ /SO(3) and can make up the vect

bundle associated withṀ→Ṁ /SO(3) by using a representation spaceH ,. The reduced system
(L2(Ṁ ;H ,)SO(3), idH , ^ Ĥ) is then in one-to-one correspondence with (G,

2(Ṁ /SO(3)),Ĥ,). If we
want to treat the whole ofM , we must impose boundary conditions on wave functions at
boundary]Ṁ5M0øM1 .4 Since the collinear configurations are inM1 , we have to consider
boundary conditions on wave functions at collinear configurations. For a three-body sy
Mitchell and Littlejohn19 studied the behavior of wave functions at collinear configurations fr
the viewpoint of bundle theory. By a coordinate-based method, Watson20 studied small vibrations
in the neighborhood of collinear configurations.

We turn to the reduction of quantum systems with discrete symmetry. The center-of
systemM is looked upon as the set of configurations of the Jacobi vectors (r1 ,...,rN21), where
r j ’s are defined to be
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r j5S 1

m j
1

1

mj 11
D 21/2S xj 112

1

m j
(
i 51

j

mixi D , m j5(
i 51

j

mi . ~100!

We here assume that all particles are identical and set the masses all equal to one. Then E~100!
becomes

r j5A j

j 11S xj 112
1

j (
i 51

j

xi D . ~101!

Since all particles are identical, the system is unchanged if particles are exchanged mutua
another way, the configurations of particles admits symmetry by the action of the symmetric
SN ;

~x1 ,...,xN!°~xs(1) ,...,xs(N)!, sPSN . ~102!

Since new Jacobi vectors associated with a new configuration (xs(1) ,...,xs(N)),

r j
s5A j

j 11S xs( j 11)2
1

j (
i 51

j

xs( i )D , j 51,...,N21, ~103!

are linearly related with the old Jacobi vectorsr j , there exists anN3N matrix A depending on
sPSN such that (r1

s ,...,rN21
s )5(r1 ,...,rN21)A. Thus one can find a matrix representationp:

SN→GL(N21,R) throughp(s21)5A. Thus,SN acts onM in the manner

~r1 ,...,rN21!°~r1 ,...,rN21!p~s21!, sPSN . ~104!

We have to note here that since we deal withSN as acting onM to the right, the productst of s,
tPSN is interpreted as this:s comes first and thent follows, so that one has (12)(1 2 3)
5(1 3), for example. If we choose the left action ofSN , we shall obtain (12)(1 2 3)5(2 3), of
course.

For example, ifN53, one obtains the two-dimensional representationp2 which has the
matrix expression as follows:

p2~s1!5S 1 0

0 1D , p2~s4!5S 21 0

0 1D ,

p2~s2!5S 21/2 )/2

2)/2 21/2D , p2~s5!5S 1/2 )/2

)/2 21/2D , ~105!

p2~s3!5S 21/2 2)/2

)/2 21/2 D , p2~s6!5S 1/2 2)/2

2)/2 21/2 D ,

where

s15~1!, s25~1 2 3!, s35~1 3 2!,
~106!

s45~1 2!, s55~2 3!, s65~1 3!.

Incidentally, it is well known that there are three inequivalent unitary irreducible representatio
S3 . The p2 is one of them, and the other two are the trivial representation:p0(s)51, and the
signum representation;p1(s)5sgn(s), both of which are one-dimensional representations.
cording to the Fourier series expansion formula~36!, f PL2(M ) is decomposed into
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f ~x!5~Q1
0f !~x!1~Q1

1f !~x!1(
j 51

2

~Qj
2f !~x!, ~107!

whereQj
,
ªQj

p,
, ,50,1,2, j 51,...,dp,

, are the projection operators defined by~34!. Denoting
(r1 ,r2)p2(sa

21), a51,...,6, simply byxsa , we can show that

~Q1
0f !~x!5 1

6 ~ f ~xs1!1 f ~xs2!1 f ~xs3!1 f ~xs4!1 f ~xs5!1 f ~xs6!!, ~108!

~Q1
1f !~x!5 1

6 ~ f ~xs1!1 f ~xs2!1 f ~xs3!2 f ~xs4!2 f ~xs5!2 f ~xs6!!, ~109!

~Q1
2f !~x!5 1

3 ~ f ~xs1!2 1
2 f ~xs2!2 1

2 f ~xs3!2 f ~xs4!1 1
2 f ~xs5!1 1

2 f ~xs6!!,

~110!

~Q2
2f !~x!5 1

3 f ~xs1!2 1
2 f ~xs2!2 1

2 f ~xs3!1 f ~xs4!2 1
2 f ~xs5!2 1

2 f ~xs6!).

We proceed to the reduction of quantum systems of many identical particles bySN . Since the
HamiltonianĤ should be permutation invariant, we can apply the reduction procedure with
groups to obtain (L2(M ;K x)H, idK x ^ Ĥ) with H5SN . As for SN , we have two representation
frequently used in many-identical particle systems, one of which is a trivial representationp0:
g°1, and the other the signum representation,p1: g°sgn(g), where sgn(s) is equal to 1 or21
according to whethers is an even or odd permutation. Forp0 andp1, the projection operators
defined in~34! take the form

Q05
1

N! (
sPSN

V~s! and Q15
1

N! (
sPSN

sgn~s!V~s!, ~111!

respectively, where we have denotedQ1
0 andQ1

1 simply byQ0 andQ1, respectively, asp0 andp1

are one-dimensional representations. The operatorsQ0 andQ1 provide a method for forming wave
functions obeying Bose and Fermi statistics, respectively. In fact, from~46! with H5SN , one
obtains

~Q0f !~xg!5~Q0f !~x!, ~Q1f !~xg!5sgn~g!~Q1f !~x!, gPSN . ~112!

Note here that one hasF1
05Q0 and F1

15Q0, sincep0 and p1 are one-dimensional represent
tions. Thus Bose and Fermi statistics are viewed asp0-equivariant andp1-equivariant states
respectively, so that they are considered as reduced states with respect toSN .

To give another reduced state, we consider the system of three identical particles a
representationp2 given by ~105!. Then we can formC2-valued p2-equivariant functionsF j

2f
which obey the transformation rule coming from~46!:

~F j
2f !~xg!5p2~g!T~F j

2f !~x!, j 51,2, xPM . ~113!

Since~113! is a generalization of~112! with N53, we may consider thatF j
2f obeys some kind of

statistics, like Bose or Fermi statistics. TheC2-valued equivariant functions are described expl
itly as follows:

~F1
2f !~x!5

1

&
S ~Q11

2 f !~x!

~Q21
2 f !~x! D , ~F2

2f !~x!5
1

&
S ~Q12

2 f !~x!

~Q22
2 f !~x! D , ~114!

where
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~Q21
2 f !~x!5

1

3 S 2
)

2
f ~xs2!1

)

2
f ~xs3!1

)

2
f ~xs5!2

)

2
f ~xs6! D ,

~115!

~Q12
2 f !~x!5

1

3 S)2 f ~xs2!2
)

2
f ~xs3!1

)

2
f ~xs5!2

)

2
f ~xs6! D ,

andQ11
2 5Q1

2 andQ22
2 5Q1

2 are given in~110!. We notice in addition that terms containingf (xs1)
and f (xs4) disappear on the right-hand sides of~115! on account of vanishing coefficient
p21

2 (s1)5p21
2 (s4)50, etc.

In conclusion, we have to point out that the action~104! of SN on the center-of-mass syste
M determines an (N21)-dimensional unitary representation ofSN . For example, forN54, we
can show, by the help of computer algebra, that the representation determined by~104! has the
matrix expression as follows:

p~1!215S 1 0 0

0 1 0

0 0 1
D , ~116!

p~123!215S 2
1

2
2

1

2
) 0

1

2
) 2

1

2
0

0 0 1

D , ~117!

p~124!215S 2
1

2
2

1

6
) 2

1

3
A6

1

6
)

5

6
2

1

3
&

1

3
A6 2

1

3
& 2

1

3

D , ~118!

p~132!215S 2
1

2

1

2
) 0

2
1

2
) 2

1

2
0

0 0 1

D , ~119!

p~134!215S 1

2
2

1

6
) 2

1

3
A6

2
1

2
) 2

1

6
2

1

3
&

0
2

3
& 2

1

3

D , ~120!
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p~142!215S 2
1

2

1

6
)

1

3
A6

2
1

6
)

5

6
2

1

3
&

2
1

3
A6 2

1

3
& 2

1

3

D , ~121!

p~143!215S 1

2
2

1

2
) 0

2
1

6
) 2

1

6

2

3
&

2
1

3
A6 2

1

3
& 2

1

3

D , ~122!

p~234!215S 1

2

1

6
)

1

3
A6

1

2
) 2

1

6
2

1

3
&

0
2

3
& 2

1

3

D , ~123!

p~243!215S 1

2

1

2
) 0

1

6
) 2

1

6

2

3
&

1

3
A6 2

1

3
& 2

1

3

D , ~124!

p~~12!~34!!215S 21 0 0

0
1

3

2

3
&

0
2

3
& 2

1

3

D , ~125!

p~~13!~24!!215S 0 2
1

3
)

1

3
A6

2
1

3
) 2

2

3
2

1

3
&

1

3
A6 2

1

3
& 2

1

3

D , ~126!
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p~~14!~23!!215S 0
1

3
) 2

1

3
A6

1

3
) 2

2

3
2

1

3
&

2
1

3
A6 2

1

3
& 2

1

3

D , ~127!

p~12!215S 21 0 0

0 1 0

0 0 1
D , ~128!

p~13!215S 1

2
2

1

2
) 0

2
1

2
) 2

1

2
0

0 0 1

D , ~129!

p~14!215S 1

2
2

1

6
) 2

1

3
A6

2
1

6
)

5

6
2

1

3
&

2
1

3
A6 2

1

3
& 2

1

3

D , ~130!

p~23!215S 1

2

1

2
) 0

1

2
) 2

1

2
0

0 0 1

D , ~131!

p~24!215S 1

2

1

6
)

1

3
A6

1

6
)

5

6
2

1

3
&

1

3
A6 2

1

3
& 2

1

3

D , ~132!

p~34!215S 1 0 0

0
1

3

2

3
&

0
2

3
& 2

1

3

D , ~133!
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p~1234!215S 2
1

2
2

1

6
) 2

1

3
A6

1

2
) 2

1

6
2

1

3
&

0
2

3
& 2

1

3

D , ~134!

p~1243!215S 2
1

2
2

1

2
) 0

1

6
) 2

1

6

2

3
&

1

3
A6 2

1

3
& 2

1

3

D , ~135!

p~1324!215S 0
1

3
) 2

1

3
A6

2
1

3
) 2

2

3
2

1

3
&

1

3
A6 2

1

3
& 2

1

3

D , ~136!

p~1342!215S 2
1

2

1

6
)

1

3
A6

2
1

2
) 2

1

6
2

1

3
&

0
2

3
& 2

1

3

D , ~137!

p~1423!215S 0 2
1

3
)

1

3
A6

1

3
) 2

2

3
2

1

3
&

2
1

3
A6 2

1

3
& 2

1

3

D , ~138!

p~1432!215S 2
1

2

1

2
) 0

2
1

6
) 2

1

6

2

3
&

2
1

3
A6 2

1

3
& 2

1

3

D . ~139!

It is known that there are two three-dimensional inequivalent unitary representations ofS4 , one of
which is isomorphic with the group of symmetries of the tetrahedron, and the other with the
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of symmetries of the cube.18 The former is a discrete subgroup of O~3! and the latter a discrete
subgroup of SO~3!. Since the groupp(S4) given above includes matrices of determinant21, it
must be isomorphic with the group of symmetries of the tetrahedron.

In conclusion, we note that since the actions of SO~3! andSN commute, one can perform th
reduction procedure with SO~3! and further withSN , so that one can talk about Bose and Fer
statistics for the reduced states in (G,

2(Ṁ /SO(3);H ,).
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In this short note, we prove that, for periodic Schro¨dinger operators perturbed by an
Anderson-type random potential with long-range single site potential, the density of
states always show a Lifshitz tail at a band edge. Thus, we correct a mistake made
in an earlier paper@F. Klopp, Duke Math. J.98, 335–396~1999!#. © 2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1470706#

I. INTRODUCTION

The present note is devoted to the study of Lifshitz tails for periodic Schro¨dinger operators
perturbed by a random potential of Anderson-type~or alloy-type! with long-range single site
potentials. The existence of Lifshitz tails at any band edge is proven.

Lifshitz tails are a special behavior of the density of states at the edges of the spectrum
behavior is typical for random operators. We refer to Ref. 1 for a more detailed presentat
Lifshitz tails.

Let us describe the model we study. PickG a nondegenerate lattice inRd. C(0,0) denotes the
fundamental cell of the latticeG, i.e., if G5 f (Zd) where f is linear and invertible, then, we se
C(x,n)5 f (C̃(x,n)), whereC̃(x,n)5$yPRd; for j 51, . . . ,d, 2n21/2,yj2xj<n11/2%.

Let the potentialW be real valued,G-periodic, and inL loc
p (Rd) ~here,p52 if d<3, p.2 if

d54, andp.d/2 if d>5! and, letH52D1W be a periodic Schro¨dinger operator acting on
L2(Rd). Then, by Ref. 2,H is essentially self-adjoint onC 0

`(Rd) with domainH2(Rd). Its unique
self-adjoint extension is also denoted byH.

It is well known that the spectrum ofH is made of bands of purely absolutely continuo
spectrum separated by gaps~see, e.g., Refs. 1, 2, 3!. We assume that one of the gaps is open~that
is nonempty! and that the band above this gap starts at energy 0~this is not a restriction asW may
be shifted by a constant!; that is, we assume thats(H), the spectrum ofH, has a gap below
energy 0 of length at leastd that is:

~H.1! For somea.0 andd.0, sù@0,a#5@0,a# andsù@2d,0)5B.
We now consider the random Schro¨dinger operator

Hv5H1Vv5H1 (
gPG

vgV~•2g!, ~1.1!

whereV is a real valued function onRd satisfying:
~H.2! There existsnP(d,d12# and 0<g2<g1 , g1PLp(C(0,0)); here,p52 if d<3, p

.2 if d54, andp.d/2 if d>5 ~see Refs. 2 and 4! and 0,g2 on some open set, such that, f
any gPG and almost everyxPC(0,0), one has

g2~x!<V~x1g!•~11ugu!n<g1~x!, ~1.2!

and the random variables (vg)gPG satisfy

a!Electronic mail: klopp@math.univ-paris13.fr
29480022-2488/2002/43(6)/2948/11/$19.00 © 2002 American Institute of Physics

                                                                                                                



the
hange

sure of

all

e,

t

.2),

d that

f the

d
ns, the

decay

evel-
hly as
are

2949J. Math. Phys., Vol. 43, No. 6, June 2002 Internal Lifshitz tails for Schrödinger operators

                    
~H.3!
~1! They are independent, identically distributed, nontrivial and bounded.
~2! They are nonnegative and 0 is in their essential support.
~3! lim supe→01 logulogP($v0<e%)u/u logeu 50.
Remark 1.1:Assumption~H.2! is the correctlong-range conditionfor the single site poten-

tials.
The positivity assumption on the (vg)gPG is not necessary as using the boundedness of

random variables, we may always shift them to be positive. The price to pay for that is a c
in the periodic background potentialW.

The second point of the previous assumption ensures that the common probability mea
the i.i.d random variables (vg)gPG does not vanish too fast~actually exponentially fast! at 0.

Assumption~H.2! and the boundedness of the random variables guarantee that, forv
5(vg)gPG , Vv is locally uniformly Lp, i.e., there existsM.0 such that, for anygPG,
*C(g,0)uVv(x)updx<M ~see Refs. 2 and 4!.

We define the main object of our study, the integrated density of states. ForHv defined as
above andn.0, we defineHv,n

D to be the Dirichlet restriction ofHv to the cubeC(0,n). Hv,n
D has

only discrete spectrum~Ref. 2!. For EPR, we define

Nv
n ~E!5

]$eigenvalues ofHv,n
D <E%

Vol~C~0,n!!
, ~1.3!

where]E denotes the number of points of the setE and Vol(C(0,n)), the volume ofC(0,n).
Under assumptions~H.1!–~H.3!, one shows that,v-almost surely,Nv

n (E) has a limit when
n→1` ~Refs. 4 and 5.! This limit is independent of the realization ofv. It is the integrated
density of statesof Hv . We denote it byN(E).

Assumptions~H.1!–~H.3! guarantee thatS, the almost sure spectrum ofHv , contains some
interval of the form@0,a) (a.0) ~see Ref. 6!. We want to study Lifshitz tails near 0. Therefor
we need to know that 0 is the edge of a gap forS. More precisely, fortP@0,1#, we define the
random Schro¨dinger operatorHv(t)5H1tVv and its almost sure spectrum,S(t); we assume tha

~H.4! For somed8.0, for anytP@0,1#, S(t)ù@2d8,0)5B.
Note that, if the random variables or the potentialV are sufficiently small, then assumption~H.4!
holds by standard perturbation theory.

Our main result is
Theorem 1.1: Let H and Hv be constructed as previously, and assume that (H.1), (H

(H.3), and (H.4) hold. Then,

lim
E→01

logu log~N~E!2N~0!!u
logE

52
d

n2d
. ~1.4!

Let us comment on this result. First, it corrects a result given in Ref. 1 where it was state
~1.4! holds if and only if the density of states ofH is nondegenerate at 0. Here, we prove that~1.4!
is obtained without any condition on the behavior of the integrated density of states o
underlying periodic operator.

The behavior~1.4! was already known at the bottom of the spectrum~see, e.g., Refs. 4, 5, an
7!. Note that we stated Theorem 1.1 for lower band edges; under symmetric assumptio
corresponding result is valid for upper band edge.

We note that Theorem 1.1 also explains the necessity of single sites potentials that
sufficiently fast at infinity in the study done in Ref. 8.

II. PERIODIC APPROXIMATIONS

Though working in the framework of Ref. 1, we use a method different from the one d
oped in that paper; it is related to the method used in Refs. 9 and 10. The proof goes roug
follows. First we prove that the periodic approximations introduced in Sec. 5.1 of Ref. 1
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exponentially close to the true density of states. Then, for a given small energy, we pick a
enough cube so that the density of states of the periodic approximation is close enough
density of states of the random operator, and we study the density of states of that approxim

Let us first recall some facts from the Floquet theory for periodic Schro¨dinger operators. Basic
references where this material may be found are Refs. 2, 11, and 3. PickuPRd. As H is
G-periodic, we considerHu the operator defined by the differential expression2D1W acting on
Lu

2 , the space of locally square integrable functions satisfying the quasiperiodic boundary
tions u(•1g)5eiguu(•) for all gPG. As H is essentially self-adjoint with domainH2(Rd), Hu

is essentially self-adjoint with domainHu
2 ~i.e., the functions inLu

2 that are locally inH2!. More-
over, asH is elliptic, the spectrum ofHu is discrete. LetE0(u)<E1(u)<¯<Ek(u)<¯ be its
eigenvalues; they are calledFloquet eigenvaluesof H. It is well known thatH admits the Floquet
decomposition

H5E
T*

%

Hu du, ~2.1!

whereT*ªRd/G* whereG* 5$g* PRd; ;gPG, ^g* g&P2pZ%.
Let nPN\$0% and define the following periodic Schro¨dinger operator:

Hv,n5H1 (
gPC(0,n)ùG

vg (
bP(2n11)G

V~x2g2b!5H1Vv,n . ~2.2!

Then, for anyvPV and nPN* , Hv,n is a (2n11) G-periodic, essentially self-adjoint Schro¨-
dinger operator. It is anH-bounded perturbation ofH with relative bound 0. We notice that th
boundedness assumption on the (vg) implies that the family (Hv,n)v,n is uniformly H-bounded
~see Remark 1.1!. Hv,n also denotes its self-adjoint extension.

The operatorHv,n admits an integrated density of states denoted byNv,n and given by

Nv,n~E!5
1

Vol~Tn* ! (
kPN

E
$uPTn* ; Ek,n(u,v)<E%

du,

whereTn*ªRd/((2n11)G)* and (Ek,n(u,v))k>0 are the Floquet eigenvalues ofHv,n . In Ref. 1,
we proved

Theorem 2.1„Ref. 1…: For any wPC 0
`(R), we have

lim
n→1`

ES E
R
w~l!dNv,nD 5E

R
w~l!dN. ~2.3!

Moreover, forlPR, a continuity point of N(l), one has

lim
n→1`

E~Nv,n~l!!5N~l!. ~2.4!

We now give an estimate on the rate of convergence in~2.3! and ~2.4!. Let Hv,n be the
periodic approximation~2.2! andNv,n be its integrated density of state. Then, we prove

Theorem 2.2: Assume (H.1), (H.2), and (H.3). Pickh0.0 and I ,R, a compact interval.
Then, there existsn0.0 and e0.0 such that, for0,e,e0 , EPI , and n>e2n0, we have

E~Nv,n~E1e/2!2Nv,n~E2e/2!!2e2e2h0<N~E1e!2N~E!

<E~Nv,n~E12e!2Nv,n~E22e!!1e2e2h0.

~2.5!
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Theorem 2.2 states that the density of states of the random HamiltonianHv is exponentially
well approximated by the expectation of the densities of states of the periodic HamiltoniansHv,n

even for n not very large~i.e., for n of size roughly a negative power of the approximati
parametere!.

Proof: Theorem 2.2 is a consequence of a similar result for random operators with com
supported single site potentials. More precisely, defineVe(x)5V(x)1e•uxu<1 and the random op-
erator

He,v5H1Ve,v5H1 (
gPZd

vgVe~•2g!.

Let Ne be the integrated density of states ofHe,v . We defineHe,v,n , the periodic approximations
of He,v in the same way as forHv @just replaceV by Ve in ~2.2!#. Let Ne,v,n be their integrated
density of states.

We first notice that, using the decay assumption~H.2! and the fact that the random variable
(vg)g are bounded, uniformly inn andv, we have

i~12D!21~He,v2Hv!i1i~12D!21~He,v,n2Hv,n!i<Cen2d.

This implies that, uniformly inn andv, and locally uniformly inE, one has

Ne~E2Cen2d!<N~E!<Ne~E1Cen2d!,
~2.6!

Ne,v,n~E2Cen2d!<Nv,n~E!<Ne,v,n~E1Cen2d!.

So to prove Theorem 2.2, we only need to prove it forHe,v and replacee by e1/(n2d). The gain is
that, for the new operators, the single site potential is compactly supported. The proof of Th
2.2 in this case relies upon the

Lemma 2.1: Assume that the single site potential V is compactly supported in a ball of r
R centered at 0. Pick I, a relatively compact open interval inR. For any bP(0,1), there exists
C.1 and r.0 @depending only on d, the bound on (vg)g and on iVi l 1(Lp)

ª(gPGiViLp(C(g,0))# such that, for anywPC 0
`(I ), for kPN* and nPN* , n.R, we have

uE~~w,dNv,n!!2~w,dN!u<Cun2Ru2(12b)k
•kk

• sup
xPR

0< j <k1r

U~ uxu1C!r1k
djw

djx
~x!U. ~2.7!

Proof: This lemma was proved in Refs. 9, 10, and 12 in different settings but essential
same arguments apply in the present case too. The proof relies upon two facts.

~1! For wPC 0
`(R), one has

E~~w,dNv,n!!5
1

Vol~C~0,0!!
E~ tr~1C(0,0)w~Hv,n!1C(0,0)!!. ~2.8!

~2! The following estimate on the difference between the resolvents ofHv,n and Hv at an
energyzPC\R:

i1C(0,0)~~z2Hv,n!212~z2Hv!21!1C(0,0)i5i1C(0,0)~~z2Hv,n!21~Vv,n2Vv!~z2Hv!21!1C(0,0)i

<C expS 2
uIm zu

C•(11uzu)
un2Ru D . ~2.9!

Equality ~2.8! is proved in Ref. 1@formula ~5.7! on p. 357#. Estimate~2.9! is a consequence of th
computation done to prove Theorem 5.1 in Ref. 1~pp. 358–360! of the fact that, by construction
(Vv,n2Vv) vanishes in the cube centered at 0 of side length 2(n2R)11 ~asV is supported in a
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ball of size R!, and of the exponential decay of the resolvent kernels (z2Hv)21 and (z
2Hv,n)21 @this is a consequence of the Combes–Thomas estimates, see, e.g.,~Refs. 13 and 14!#.
To obtain Lemma 2.1 from~2.9!, one then uses the representation formula~5.9! in Ref. 1 forw(H)
in terms of almost analytic extensions ofw, and the standard estimates for almost analytic ext
sion ~5.8! in Ref. 1. h

Let us now derive Theorem 2.2 from Lemma 2.1. Letw be a Gevrey class function of Gevre
exponenta.1 ~see Ref. 15!; assume, moreover, thatw has compact support in (22,2), that 0
<w<1, and thatw[1 on @21,1#. Let EPR and set

wE,e~• !5wS •2E

e D .

Fix I ,R compact. Then, by Lemma 2.1 and the Gevrey estimates on the derivatives ofw, we get
that, there existC.1 such that, forEPI , n.R, k>1 and 0,e,1, we have

uE~~wE,e ,dNv,n!!2~wE,e ,dN!u<e2k2r~k1r!2a(k1r)~n2R!2(12b)k.

We pick k1r5(n2R)(12b)/(4a) for n2R large, and get that, there existC.1 such that, forE
PI , n.R12, k>r and 0,e,1, we have

uE~~wE,e ,dNv,n!!2~wE,e ,dN!u<~~n2R!2(12b)/4e2a!(n2R)(12b)/(4a)
.

Now, in the case we are interested in, we have setR5Re;e1/(d2n). Hence, we chooseh.1, n
>e2h(4a)/(12b)1Re ; so, there existe0.0 such that, for 0,e,e0 , we have

uE~~wE,e ,dNv,n!!2~wE,e ,dN!u<e2e2h
. ~2.10!

By the definition ofw, asdNe,v,n anddNe are positive measures, we have

E~Ne,v,n~E1e!2Ne,v,n~E2e!!<E~~wE,e ,dNe,v,n!!<E~Ne,v,n~E12e!2Ne,v,n~E22e!!,

Ne~E1e!2Ne~E2e!<~wE,e ,dN!<Ne~E12e!2Ne~E22e!.

This, Eqs.~2.6! and ~2.10! complete the proof of Theorem 2.2 forHe,v and hence forHv . h

III. THE PROOF OF THE LOWER BOUND

We now turn to the proof of

lim inf
e→0
e.0

logu log~N~e!2N~02!!u
loge

>2
d

n2d
. ~3.1!

In Sec. 6 of Ref. 1, it is proved that if 0 is a band edge of the spectrum ofH and u0PT* is a
Floquet parameter such that, for somen>0, one hasEn(u0)50, then, there existsV, a neighbor-
hood ofu0 in T* , and f :uPV° f (•,u) a real analytic,Hu

2-valued function such that, for som
C.0, one has

;uPV, iHu f ~•,u!iL2(C(0,0))<Cuuu2 and i f ~•,u!iL2(C(0,0))51. ~3.2!

Let a.0 be a small constant. Picke.0. Let xPC 0
`($uuu,1%) be positive, and such tha

*$uuu,1%x
2 du52. Then, we define

we~u!5e2 d(11a)/4x~e2(11a)/2~u2u0!!PL2~T* !.

We also define
                                                                                                                



f the

2953J. Math. Phys., Vol. 43, No. 6, June 2002 Internal Lifshitz tails for Schrödinger operators

                    
we
f ~• !5E

T*
we~u!• f ~•,u!du.

Using ~3.2!, for e sufficiently small, one checks that

iwe
f i25E

T*
i f ~•,u!iL2(C(0,0))

2 uwe~u!u2du52 ~3.3!

and that, for someC.0, one has

iHwe
f i2<Ce2(11a). ~3.4!

Using the fact thatf (•,u) satisfies quasiperiodic boundary conditions, the smoothness o
function u° f (x,u) and the nonstationary phase, one proves that, for anykPN, there existsCk

.0 such that, for anygPG,

E
C(g,0)

uwe
f ~x!u2dx5E

C(0,0)
U E

T*
e2 iguwe~u! f ~x,u!duU2

dx

5E
C(0,0)

Ued(11a)/4E
$uuu,1%

e2 i e11a/2gux~u! f ~x,u01e~11a!/2u!duU2

dx

<Ck~11ue~11a!/2gu2!2k/2. ~3.5!

Similar estimates hold for*C(g,0)u¹we
f (x)u2dx and for*C(g,0)uHwe

f (x)u2dx.
Pick x̃, a C 0

`-function supported inuxu<2 such thatx̃[1 for uxu<1; and setx̃e(x)
5x̃(e (112a)/2x). Then, fore sufficiently small, the functionwe5x̃ewe

f satisfies

~1! we is supported in a ball of center 0 and radius 2e2(112a)/2,
~2! 1<iweiL2

2 <2,
~3! iHweiL2

2 <Ce2(11a) for someC.0.

Point ~1! is obvious. Point~2! follows from ~3.3! and~3.5!. And point ~3! follows from ~3.4!,
~3.5! and its analog for¹we

f andHwe
f as i¹x̃ei`<Ce (112a)/2 and iDx̃ei`<Ce112a.

Pick nPN* such thatn;e2h for h.max(n0,1/(n2d)1a); here,n0 is given in Theorem 2.2
for h0.d/(n2d)1da. As we has compact support in the interior ofC(0,n), it can be ‘‘peri-
odized’’ to satisfy quasiperiodic boundary conditions; foruPRd, we set

we,u~• !5 (
bP(2n11)G

e2 ibuwe~•1b!.

Then,we,u satisfieswe,u(x1b)5eibuwe,u(x) for xPRd andbP(2n11)G. And, one has

iwe,uiL2(C(0,n))
2 >1. ~3.6!

We define

La~e!5$gPG; for 1< j <d, ug j u<e2(113a)/(n2d)%.

Using assumption~H.1!, one computes
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Vv,n~x!5 (
gPG

v [g]V~x2g!where@g#5g mod~2n11!G

< (
gPG

v [g] (
aPG

g1~x2g2a!•~11uau!2n

5 (
aPG

Aa~v!g1~x2a!whereAa~v!5 (
gPG

v [g]~11ua2gu!2n. ~3.7!

If we assume that, forgPLa(e), one hasvg<e11a, then~3.7! implies

iVv,nwe,ui<Ce11aiwe,ui . ~3.8!

This, ~3.6!, and point~3! imply that, for someC.0 ande sufficiently small, one has

iHv,n,uwe,ui<Ce11aiwe,ui .

This proves that, fore sufficiently small, if, forgPLa(e), one hasvg<e11a, then for all u
PTn* , Hv,n,u has an eigenvalue in@2e/2,e/2#. Hence, we get that

E~Nv,n~E1e/2!2Nv,n~E2e/2!!>P~e,a!, ~3.9!

whereP(e,a) is the probability of the event$v; ;gPLa(e), vg<e11a%. By assumption~H.3!,
one has

lim inf
e→0
e.0

logu log~P~e,a!!u
loge

>2
d

n2d
~113a!.

Combining this estimate with~3.9! and ~2.5! @recall that we pickedh0.d/(n2d)1da], we
obtain

lim inf
e→0
e.0

logu log~N~e!2N~02!!u
loge

>2
d

n2d
~113a!.

As a is an arbitrary positive number, we get~3.1!.

IV. THE PROOF OF THE UPPER BOUND

We pickh0.d/(n2d) in Theorem 2.2 andn;e2h for h.n0 (n0 is given in Theorem 2.2!.
To complete the proof of~1.4!, in view of ~2.5!, we only need to prove that

lim sup
e→01

logu log~E~Nv,n~e!2Nv,n~0!!!u
loge

<2
d

n2d
. ~4.1!

Indeed, by assumption~H.4!, we know that, fore sufficiently small, for allv and n, one has
Nv,n(0)5Nv,n(2e) ~see also Sec. 5.2 in Ref. 1!.
We prove

Lemma 4.1: Define the potential G by G(•)5(gPGg2(•2g). Then, if n;e2r with r
.1/(n2d), the event$v; Vv,n>eG% has probability at least12Pe where Pe satisfies

lim sup
e→01

logu log~Pe!u
loge

<2
d

n2d
. ~4.2!
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Lemma 4.2: There exists C.0 and e0.0 (independent of n andv) such that, if0,e,e0

and v satisfies Vv,n>CeG, then for nPN, one has Nv,n(0)5Nv,n(e).
Lemma 4.2 just says that ifVv,n>CeG, thenHv,n has no spectrum in the interval (0,e).

Estimate~4.1! is now an immediate consequence of Lemmas 4.1 and 4.2. Indeed, pickC
as in Lemma 4.2, one computes

E~Nv,n~e!2Nv,n~0!!5E~@Nv,n~e!2Nv,n~0!#1$v; Vv,n>CeG%!

1E~@Nv,n~e!2Nv,n~0!#1$v; Vv,n>” CeG%!

5E~@Nv,n~e!2Nv,n~0!#1$v; Vv,n>” CeG%!<C0P~$v; Vv,n>” CeG%!

5C0~12P~$v; Vv,n>CeG%!!5C0PCe

and we conclude using~4.2! as (n2d)h0.1. Here, we have used the fact that the integra
density of states ofHv,n is bounded locally uniformly in energy, uniformly inv andn.

A. Proof of Lemma 4.2

The operatorH1eG is G-periodic. Hence, it is also (2n11)G-periodic. When doing the
Floquet reduction using this period, we call it (H1eG)n , and (H1eG)n,u denotes this operato
considered with quasiperiodic boundary conditions given byu, i.e., as acting on$uPL loc

2 ;
u(•1g)5eiguu(•), ;gP(2n11)G%.

Let q((H1eG)n,u ,E) denote the number of eigenvalues of (H1eG)n,u below energyE.
Standard perturbation theory and the results of Sec. 5.2 in Ref. 1@see in particular~5.24!# tell us
that, for e.0 sufficiently small, one has

q~~H1eG!n,u,0!5q~~H !n,u,0!5q~Hv,n,u,02!. ~4.3!

Hence, ifVv,n>eG, this immediately implies that, forE>0, one has

0<Nv,n~E!2Nv,n~0!<Ne~E!2Ne~0!,

whereNe is the density of states of theG-periodic operatorH1eG. So Lemma 4.1 is proved if we
prove that there existsC.0 ~independent ofe) such that, fore sufficiently small, one has
Ne(e/C)2Ne(0)50. This is a consequence of

Lemma 3.3: Let H be aG-periodic Schro¨dinger operator, and G be a non-negativeG-periodic
potential in Lloc

p (Rd) [where p is chosen as in assumption (H.2)] and such that G.0 on some
open set. Assume that, for somed.0, (2d,0) does not intersect the spectrum of H.

Then, there exists C.0 and e0.0 such that, for0<e<e0 , (2d/2,e/C) does not intersect
the spectrum of H1eG.

Proof: Let us first assume that 0 is not in the spectrum ofH; then, there existsd8.0 such that
(2d,d8) does not intersect the spectrum ofH, and regular perturbation theory tells us that, foe
sufficiently small, (2d/2,d8/2) does not intersect the spectrum ofH1eG. This completes the
proof of Lemma 4.3 in this case.

We now assume that 0 belongs to the spectrum ofH. Let (En(e,u))1<n be the Floquet
eigenvalues of (H1eG)u ordered increasingly; they are continuous ine andu. Hence, there exists
e0.0 andn0>1 such that, for 0<e<0, one has thatEn(e,u),0 if and only if n,n0 . Then, to
prove Lemma 4.3, we need to prove that there existsC.0 ande0.0 such that, for 0<e<e0 , one
has

En0
~e,u!>e/C. ~4.4!
                                                                                                                



l

f

2956 J. Math. Phys., Vol. 43, No. 6, June 2002 Frédéric Klopp

                    
DefineS5$uPT* ; En0
(0,u)50%; S is compact. Outside of a neighborhood ofS, ~4.4! is cer-

tainly satisfied as, there, one hasEn0
(e,u)>En0

(0,u)>d8 ~for somed8.0). So we need only to
prove ~4.4! in a neighborhood ofS.

Therefore, picku0PS. Let p(u0) be the multiplicity of 0 as an eigenvalue ofHu5(H
1eG)u ue50 ; it is finite. Foru close tou0 ande small, define the Riesz projector

Pe,u5
1

2ip R
C0

~~H1eG!u2z!21dz, ~4.5!

whereC05$uzu5d8% is a small loop in the complex plane.Pe,u is the projector onto the spectra
space associated with the interval (2d8,d8) and the operator (H1eG)u . It is real analytic inu
ande, hence, of constant rank. Moreover, for someC.0, for anye, e8 sufficiently small andu,
u8 sufficiently close tou0 , one has

iPe,u2Pe8,u8i<C~ ue2e8u1uu2uu!. ~4.6!

This implies that, for anye, e8 sufficiently small andu, u8 sufficiently close tou0 , one has

Pe,uPe8,u8Pe,u> 1
2 Pe,u . ~4.7!

En0
(e,u) is the smallest eigenvalue of the finite rank operatorOe,u5Pe,u(H1eG)uPe,u @acting

on Pe,uLu
2(Rd)]. The operatorOe,u is real analytic ine and u. Consider the operatorÕe,u

5Pe,uP0,u(H1eG)uP0,uPe,u . UsingP0,uH5H, one computes

Oe,u2Õe,u5Pe,u~12P0,u!~H1eG!u~12P0,u!Pe,u1ePe,u~12P0,u!GP0,uPe,u

1ePe,uP0,uG~12P0,u!Pe,u

5Pe,u~Pe,u2P0,u!~H1eG!u~Pe,u2P0,u!Pe,u1ePe,u~Pe,u2P0,u!GP0,uPe,u

1ePe,uP0,uG~Pe,u2P0,u!Pe,u .

This implies that, for someC.0, for e sufficiently small andu close tou0 , one has

iOe,u2Õe,ui<Ce2.

So, for e sufficiently small positive andu close tou0 , one has

Oe,u>Õe,u2Ce2>ePe,uP0,uGP0,uPe,u2Ce2. ~4.8!

One proves
Lemma 4.4: For some C.0 and u close tou0 , one has

P0,uGP0,u>1/CP0,u . ~4.9!

This, ~4.8! and ~4.7! imply that, for e positive, sufficiently small, one has

Oe,u>
e

2C
Pe,u . ~4.10!

Equation~4.10! then immediately implies~4.4! for e sufficiently small andu sufficiently close to
u0 . We then obtain~4.4! for a neighborhood ofS asS is compact. This completes the proof o
Lemma 4.3. h

Proof of Lemma 4.4:First, we note that
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P0,uGP0,u5P0,uP0,u0
GP0,u0

P0,u2P0,u~P0,u0
GP0,u0

2P0,uGP0,u!P0,u .

Hence, asu°P0,uGP0,u is continuous, by~4.7!, we just need to prove~4.9! for u5u0 . Let
(c j )1< j <p(u0) be a basis of eigenvector in the kernel ofHu0

. Then P0,u0
5(1< j <p(u0)c j ^ c j .

Hence,~4.9! is satisfied if and only if the matrix ((^Gc i ,c j&)) i , j is positive definite. It is non-
negative. If 0 were an eigenvalue of this matrix, there would existc PSpan((c j )1< j <p(u0)) such
that*C(0,0)G(x)uc(x)u2dx50. Hence, asG.0 on some open set,c would vanish on this open se
this is not possible by the unique continuation principle asc satisfiesHc50 ~see, e.g., Refs. 16
and 17!. h

B. Proof of Lemma 3.1

Let us write outVv,n and use assumption~H.2!. One computes

Vv,n~x!5 (
gPG

v [g]V~x2g!> (
gPG

v [g] (
aPG

g2~x2g2a!•~11uau!2n

5 (
aPG

Aa~v!g2~x2a!where Aa~v!5 (
gPG

v [g]~11ua2gu!2n.

As v [g] is (2n11)G-periodic, so isAa(v). DefineG2n115G/(2n11)G5$gPG;ugu<n%. Then,
we have

P~$Vv,n>eG%!>P~$;gPG2n11 ; Ag~v!>e%!>12 (
gPG2n11

P~$Ag~v!<e%!.

Note that, as the (vg)g are stationary, the distribution of the random variableAg(v) is indepen-
dent ofg. Hence

P~$Vv,n>eG%!>12~2n11!dP~$A0~v!<e%!. ~4.11!

So we only need to estimateP($A0(v)<e%). Therefore, we compute

A0~v!5 (
bP(2n11)G

(
gPG2n11

vg~11ub1gu!2n

5 (
gPG2n11

vgug where ug5 (
bP(2n11)G

~11ub1gu!2n.

Using Markov’s inequality, for anyl.0, one obtains

P~A0~v!<e!<ES expS lS e2 (
gPG2n11

vgugD D D<ele )
gPG2n11

E~e2lvgug!. ~4.12!

Using the Taylor expansion ofx°e2x at 0, as the random variables (vg)g are bounded, for
lug,h, h sufficiently small, one obtains

E~e2lvgug!<12E~vg!lug1C~lug!2<12E~vg!lug~12Ch!.

Hence, we have proved that, there existsh.0 such that, iflug,h, then

E~e2lvgug!<e2v0lug/2, ~4.13!
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wherev05E(v0).0 by assumption~H.3!.
Plugging~4.13! into ~4.12!, we compute

log~P~A0~v!<e!!<le2
lv0

2
• (

gPG2n11
lug,h

ug . ~4.14!

Assume thatn@l1/n; then, the definition ofug implies that, for someC.0, one has

(
gPG2n11

lug,h

ug> (
gPG

Cl1/n<ugu<n2l1/n

~11ugu!2n>
1

C
l~d2n!/n.

Plugging this back into~4.14! and pickingl5ren/(d2n), we obtain

log~P~A0~v!<e!!<2r~v0rd/n/C21!e2 d/~n2d!<2
1

C
e2 d/~n2d! ~4.15!

for r sufficiently large.
So that, if we pick, e.g.,n;e2p with p.1/(n2d), and, we exponentiate estimate~4.15! and

plug into ~4.11!, we complete the proof of Lemma 4.1. h
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Noncommutative tori and universal sets of nonbinary
quantum gates

Alexander Yu. Vlasova)

Federal Radiological Center (IRH), 197101, Mira Street 8, St. Petersburg, Russia

~Received 12 December 2000; accepted for publication 13 March 2002!

We address the problem of universality in simulation of evolution of quantum
system and in theory of quantum computations related with the possibility of ex-
pression or approximation of arbitrary unitary transformation by composition of
specific unitary transformations~quantum gates! from given set. In an earlier paper
application of Clifford algebras to constructions of universal sets of binary quantum
gatesUkPU(2n) was shown. For application of a similar approach to nonbinary
quantum gatesUkPU( l n), in present work we used rational noncommutative torus
T1/l

2n . A set of universal nonbinary two-gates is presented here as one
example. ©2002 American Institute of Physics.@DOI: 10.1063/1.1476391#

I. INTRODUCTION

Let Hl be a Hilbert space of quantum systems withl states andH l
n[H l

^ n is an
l n-dimensional Hilbert space ofn systems expressed as thenth tensor power. Forl 52 an element
of H2 (H 2

n) is usually called a qubit~s!. An algebraC( l n3 l n) of all complex l n3 l n matrices
corresponds to general linear transformations ofH l

n and a group of unitary matricesU( l n) cor-
responds to physically possible evolution. Because of the natural structure of tensor pow
possible to consider groups of transformations of subsystemsU( l k)>U( l n)ù(C( l k3 l k)
^ 1l

^ n2k). Such transformations correspond toquantum gates. For l 52 they are usually called
k-qubits gates.

The problem of universality in quantum simulation and computation is related to approx
tion with necessary precision~in some appropriate norm! of arbitrary unitary transformationU
PU( l n) of H l

n as a product of matricesUk from some fixed set called here theuniversal set of
quantum gates. One origin of the task was the idea of generalization of the Church–Tu
principle from computer science to physical systems in works by David Deutsch,1,2 where it was
suggested there be some universal set of matrices for ‘‘binary’’ quantum gates withl 52.

It was found also that it is possible to express necessary conditions of universality by
elegant framework with Lie algebrau(2n) of Lie group U(2n).3–5 In the approach it is necessar
to find a set of elementsAkPu(2n), Ak

†52Ak , which generate full algebrau(2n). It is possible
to useUk

t5exp(tAk) with infinitesimal parametertPR as a universal set of quantum gates. In
more physical picture,Ak, iH k , whereHk are Hamiltonians and Lie brackets also contain m
tipliers with imaginary unit.

Previous work6 suggested construction of the universal set by inclusionu(2n) in Clifford
algebraCl(2n,C)>C(2n32n) with Lie algebra structure due to bracket operation@a,b#[ab
2ba ~cf. Ref. 7!. Because commutation laws for basis elements of Clifford algebra are si
enough due to canonical relations between generators,

G jGk1GkG j52dk j1, ~1.1!

it was possible to represent useful constructions of universal sets with 2n11 elements~see Ref.
6!.

a!Electronic mail: qubeat@mail.ru or alex@protection.spb.su
29590022-2488/2002/43(6)/2959/6/$19.00 © 2002 American Institute of Physics
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For generalization of the method for ‘‘nonbinary’’ quantum gatesU( l n), l .2, it is useful to
find some algebra with simple commutation rules, like Eq.~1.1!, and use it to express elements
u( l n). In this article as such, generalization ofCl(2n,C)>C(2n32n) used anoncommutative torus
T1/l

2n>C( l n3 l n) with 2n generators:

~Tk!
l51, ~1.2a!

TjTk5zTkTj ~ j ,k!, ~1.2b!

z5exp~2p i / l !. ~1.2c!

For l 52 Eq. ~1.2! coincides with Eq.~1.1!. For l .2, elementsTk¹u( l n) for most or allk, but it
is possible to use representationu(N),R(gl(N,C)). More concretely, it is enough to find a set
elements MkPgl(N,C), which generate full algebragl(N,C). It is possible to useGk

t

5exp(it (Mk1Mk
†)), Fk

t5exp(t(Mk2Mk
†)) with infinitesimal parametertPR as a universal set o

quantum gates.

II. NONCOMMUTATIVE TORUS Tu
2 AND QUANTUM ONE-GATES

Let us consider one-particle transformations. For two-dimensional case,H2 , any two Pauli
matrices, for examplesx and sz , generate full four-dimensional basis ofC(232), i.e., $sx

2

5sy
2512 ,sx ,sz ,sy5 isxsz%.
Analogously, two generatorsU,V of noncommutative torusTu

2 defined as8

UV5exp~2p iu!VU, VV†5UU†51, ~2.1!

produce for rationalu51/l an algebra isomorphic toC( l 3 l ). The bases of the algebra arel 2

elementsUmVn, m,n50,...,l 21.
Let us use the Weyl representation ofU andV as the right cyclic shift operator and its Fouri

transform:

Uk j5dk11(mod l ), j , Vk j5exp~2p ik/ l !dk j . ~2.2!

The representation andUmVn basis are well known in quantum information science after ap
cation to the theory of quantum error correction.9

To find transformation between basisUmVn and canonical basisEab of C( l 3 l ), there
(Eab) jk5da jdbk , it is enough to useE005(1/l ) (k50

l 21 Vk together withEab5Ul 2aE00Ub.
Let us show that anyUmVn ~except1l for m5n50! can be generated fromU andV using

only commutators@A,B#[(ad A) B[AB2BA. For U andV commutator is simply@U,V#5(1
2z) UV}UV, wherez5exp(2pi/l). It is convenient to use ‘‘ad’’ for consecutive commutato
for example, (adA)2B[@A,@A,B##, and symbol ‘‘proportional,’’A}B⇒A5aB, to avoid unes-
sential nonzero complex multipliersa.

Direct expressions forl 221 elementsUmVn are

UmVn}~ad U !m21(mod l )~~ad V!n21(mod l )@U,V# !, ~2.3!

where 0<m,n, l for any pair of numbers exceptm5n50, (adU)0 or (adV)0 corresponds to the
absence of the term, and21(mod l )5 l 21.

Of course it is possible to suggest simpler expression for particular values ofm andn, but Eq.
~2.3! shows also application of a third elementW}UV:

UW5zWU, WV5zVW. ~2.4!

It is convenient to define
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W5z ( l 21)/2UV, Wl51l . ~2.5!

Similar with casel 52 with (sx ,sy ,sz), any pair between (U,V,W) may be used for gen
eration of a full algebra due to Eq.~2.3! and due to possibility to express initial pair (U,V) from
(U,W) or (V,W):

V}~ad U ! l 21W, U}~ad V! l 21W, ~2.6!

but for l>3 there is a special property that should be taken into account. Let us use notaA
→zB for AB5zBA. The definition of relation ‘‘→z’’ is asymmetric forl>3.

It is clear from the diagram:

For different sets with three operators the relation may be transitive or not.
For example,U→zV from Eq. ~2.1!, U→zW and W→zV from Eq. ~2.4! and so we have

transitive relationU→zW→zV, i.e., ordering. Let us call it z-order for certainty. On the other
hand, it is simply to checkW†→zU andV→zW

† and here is some cyclic graph. The cyclic ca
is more symmetric, because all pairs are equivalent.

For the ordered case it is not so, becausez-order produces a canonical map to a set of natu
numbers, i.e., indexes, and it is convenient for construction of noncommutative torusT1/l

2n ,
z-ordered by definition:Tk→zTj for k, j @see Eq.~1.2!#.

Because of the principle we use the following definition for generators ofT1/l
2 :

T0[U, T1[W. ~2.7!

whereU is defined in Eq.~2.2! andW in Eq. ~2.5!.

III. REPRESENTATIONS OF NONCOMMUTATIVE TORI T1Õl
2n

Let us use notationTx[U, Ty[W, Tz5V, whereU, V, W are defined in Eqs.~2.2! and
~2.5!. There isz-orderTx→zTy→zTz , i.e.,

TxTy5zTyTx , TyTz5zTzTy , TxTz5zTzTx . ~3.1!

It is possible to introduce 2n generators ofT1/l
2n as
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~3.2a!

~3.2b!

in direct analogy with construction of Clifford algebras.6,7

It is clear that different products ofTk generate full matrix algebraC( l n3 l n), becauseTx and
Ty generateC( l 3 l ). Let us prove that generators Eq.~3.2! satisfy definition~1.2! of noncommu-
tative torusT1/l

2n :
Tk

l 51 becauseTx
l 5Ty

l 5Ty
l 51l .

To prove thatTk→zTj for any k, j , it is enough to consider a few cases~here ‘‘T’’ means
‘‘any element’’ and ‘‘↓z’’ marks z-order of only a pair of noncommutative terms in the tens
products!:

Case 1: T2k→zT2k11 , k>0

Case 2: T2k→zT2k1 j 11 , k>0, j .0

Case 3: T2k11→zT2k111 j , k>0, j .0

IV. GENERATION OF T1Õl
2n BY COMMUTATORS

Let us prove that forl .2 it is possible to generateT1/l
2n using only commutators of 2n

elementsTk . The case withl 52, Cl(2n,C)>T1/2
2n was considered in earlier work,6 and it was

shown that 2n generators are not enough and it is necessary to add any element of third or
order.

We present proof that forl .2 2n generators are enough. Let us instead ofTi
niTj

nj
¯Tk

nk write
simply T(ni ,nj ,...,nk) if it is possible without lost of clarity. Sequences of indexes are alw
chosen ordered 0< i , j ,¯,k,2n. Let us use # for the number of different indexes in prod
#(n0 , . . . ,nk21)[k andS for total number of termsS(n0 , . . . ,nk21)[( j 50

k21nj .
It is possible to prove proposition using recursion. The case with #52 may be expressed b

generalization of Eq.~2.3!:
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T~ni ,nj !}~ad Ti !
ni21(mod l )~~ad Tj !

nj 21(mod l )@Ti ,Tj # !. ~4.1!

Let all cases withT(ni 1
,...,ni k

), 2<k,2n, i 1, i 2,¯, i k , be proved and it is necessary
generate allT(ni 1

,...,ni k
,nj ) with i k, j <2n.

There are a few different cases:
Case 1:S(ni 1

,...,ni k
) mod lÞ0:

T~ni 1
,...,ni k

,nj !}~ad Tj !
njT~ni 1

,...,ni k
!. ~4.2!

Case 2:S(ni 1
,...,ni k

) mod l 50 and Eq.~4.2! vanishes:
Case 2.1:'niP(ni 1

,...,ni ,...,ni k
),niÞnj :

T~ni 1
,...,ni k

,nj !}@Ti ,~ad Tj !
njT~ni 1

,...,ni21,...,ni k
!#. ~4.3!

Case 2.2:'” niP(ni 1
,...,ni ,...,ni k

),niÞnj , i.e., ni 1
5...5ni k

5nj .
Case 2.2.1:2njÞ l :

T~ni 1
,...,ni k

,nj !}@T~ni 1
,...,ni k21

!,T~ni k
,nj !#. ~4.4!

Case 2.2.2:2nj5 l ; let nki
5nki

8 1nki
9 :

T~ni 1
,...,ni k

,nj !}@T~ni 1
,...,nki

8 !,T~ni k
9 ,nj !#. ~4.5!

The cases include all possible variants and so the suggestion is proved by recursion
l n21 possible products of generators except of1 can be represented using commutators.

V. UNIVERSAL SET OF QUANTUM TWO-GATES

ElementsTk have up ton non-unit terms in tensor product Eq.~3.2!. Here is described
construction with no more than two terms. It is used for description of a universal set of qua
two-gates and also has direct analog with two-qubit gates.6

Let us considerB05T0 , Bj5TjTj 21
† , 1< j ,2n. It is possible to generate fullT1/l

2n using the
2n elements:T1}@T0 ,B1#, Ti}@Bi ,Ti 21#, ; i .1, and so it is possible to generate recursively
Ti and use construction ofT1/l

2n described above.
With using Eq.~3.2! it is possible to write expressions forBj :

B05T051^ (n21)
^ Tx , ~5.1a!

B2k115T2k11T2k
† }1^ (n2k21)

^ Tz^ 1^ k, ~5.1b!

B2k125T2k12T2k11
† }1^ (n2k22)

^ Tx^ Tx
†

^ 1^ k, ~5.1c!

with k50,...,n21 ~or n22!.
To produce a universal set of quantum one- and two-gates it is enough to use construct

unitary matrices mentioned in the Introduction:

Gk
t5ei t(Bk1Bk

†), Fk
t5et(Bk2Bk

†). ~5.2!

It is possible to chooset to express an arbitrary matrix with given precision as product of matr
~5.2!.
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A note on the improvement ambiguity of the stress tensor
and the critical limits of correlation functions

D. Anselmi
Dipartimento di Fisica, Universita` di Pisa, via F. Buonarroti 2, 56126 Pisa, Italia

~Received 6 November 2001; accepted for publication 26 February 2002!

I study various properties of the critical limits of correlators containing insertions of
conserved and anomalous currents. In particular, I show that the improvement term
of the stress tensor can be fixed unambiguously, studying the RG interpolation
between the UV and IR limits. The removal of the improvement ambiguity is
encoded in a variational principle, which makes use of sum rules for the trace
anomaliesa anda8. Compatible results follow from the analysis of the RG equa-
tions. I perform a number of self-consistency checks and discuss the issues in a
large set of theories. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1475766#

I. INTRODUCTION

In a large set of models, the renormalization-group~RG! flow interpolates between well
defined ultraviolet~UV! and infrared~IR! fixed points, the zeros of the beta function. The R
interpolation can be studied comparing the UV and IR limits of a certain class of correla
Finite operators play a special role in this context, since they define central charges in th
formal limits.

Among the finite operators, noticeable are the conserved currents, in particular the
tensorTmn . When the theory contains scalar fieldsw, there exists an improvement operator

DTmn5~]m]n2hdmn!w2,

which mixes withTmn under renormalization. It is possible to diagonalize this mixing,1,2 and this
makes the improvement term finite as well. There exists a one-parameter family of finite
served, spin-2, dimension-4 operatorsTmn(h)5Tmn1hDTmn . At the level of the Lorentz com-
mutator algebra, the operatorsTmn(h) are equivalent. At the level of the correlation functions a
operator-product expansions, they are not. For example, in a conformal field theory, the e
ding in external gravity is fixed unambiguously by conformal invariance. This means that th
no improvement arbitrariness in the UV and IR limits. In most models, the RG equationsh
extend the removal of the improvement arbitrariness from the critical points to the interme
energies.

A universal principle for the removal of the improvement ambiguity can be formulated u
the sum rules for the trace anomaliesa anda8.3 This is a sort of variational principle,4 which fixes
a privileged valueh̄ for h. We can distinguish two cases.

~i! When the improvement term survives in a critical limit~typically, the UV!, the valueh̄
determined by the variational principle coincides with the value fixed by conformal inv
ance at criticality and the RG equations. Matching the stress tensor at intermediate en
with its UV limit removes theh-arbitrariness at all energies.

~ii ! When the improvement term vanishes at the critical points, all operatorsTmn(h) are in
principle equally acceptable, but the valueh̄ is still privileged. Specifically, the minimum
of Da8(h̄) over the flow trajectories connecting the same pair of fixed points is equal tDc
29650022-2488/2002/43(6)/2965/13/$19.00 © 2002 American Institute of Physics
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in a class of models.~This relation is empirically known to hold in massive Gauss
models, unitary and not unitary. Nevertheless, a satisfactory theoretical understand
this relation is still lacking.!

There is a universal way to remove theh-arbitrariness and select a unique stress tenso
accord with all present knowledge.

In this paper I study this issue and other properties of the critical limits of correlators. In
II I discuss the properties of the improvement term and list the criteria for the removal o
h-ambiguity. In Sec. III I illustrate the statements in a set of Gaussian models where calcul
can be carried over to the end. Then, I analyze the RG equations in IR-free and UV-free th
In all cases the parameterh is fixed uniquely with the rules of Sec. II. In the appendix I discu
other aspects of the critical limits of correlators containing insertions of finite and non
operators. In particular, I show that anomalous currents and the topological charge dens
finite in various models.

II. REMOVAL OF THE h-AMBIGUITY

The UV and IR limits of correlators containing insertions of the trace of the stress-tensor
been studied systematically in Ref. 3. General sum rules for the central chargesa and a8 have
been written. Particularly meaningful is the notion of flow invariant, that is to say, a flow inte
or combination of flow integrals, whose value depends only on the extrema of the flow.

I briefly summarize the derivation of the sum rules. The theory is embedded in ext
gravity. The central chargesa anda8 ~andc! are defined by the trace anomaly at criticality, whi
reads

Q* 5
1

~4p!2 Fc W22
a

4
G1

2

3
a8 hRG , ~2.1!

whereW is the Weyl tensor and G54RmnrsRmnrs216RmnRmn14R2 is the Euler density. The
induced action for the background metric is denoted withG@gmn#. TheQ-correlators are related to
the derivatives ofG@gmne2f# with respect to the conformal factorf of the metric. In particular,

Q52
dG@gmne2f#

df U
f50

.

In general, theQ-correlators have involved expressions, at intermediate energies, but their c
limits are universal and simple: they contain just two local structures, multiplied bya and a8,
which can be read from~2.1!. The sum rules forDa5aUV2aIR and Da85aUV8 2aIR8 are direct
consequences of the property that theQ-correlators tend to the universal critical limits param
etrized bya anda8.

The derivation of the sum rules forDa and Da8 simplifies considerably if the metric is
conformally flat,gmn5dmne2f. More general metrics are necessary to derive sum rules forDc,
becauseQ* is insensitive toc on conformally flat spaces. In that case, it is not sufficient to st
the critical limits of the correlators ofQ. Correlators with one insertion ofQ and at least two
insertions of the full stress tensorTmn have to be considered.

From now on, I assume that the background metric is conformally flat.
Concretely, I study two sum rules forDa, taken from Sec. 7 of Ref. 3. The first formu

involves integrals of the two- and three-point functions:
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Da15
p2

48
E d4x uxu4 ^Q̃~x! Q̃~0!&1

p2

48
E d4x d4y x2 y2 H ^Q̃~x! Q̃~y! Q̃~0!&

1K d̃Q̃~x!

d̃f~y!
Q̃~0!L 12K d̃Q̃~x!

d̃f~0!
Q̃~y!L J . ~2.2!

The second formula involves integrals of the two-, three- and four-point functions:

Da25
p2

48
E d4x uxu4 ^Q̃~x! Q̃~0!&1

p2

48
E d4x d4y d4z ~x•y!~x•z! K Q̃~x! Q̃~y! Q̃~z! Q̃~0!

12
d̃Q̃~x!

d̃f~y!
Q̃~z! Q̃~0!1

d̃Q̃~x!

d̃f~0!
Q̃~y! Q̃~z!1

d̃Q̃~y!

d̃f~z!
Q̃~x! Q̃~0!12

d̃Q̃~y!

d̃f~0!
Q̃~x! Q̃~z!

1
d̃2Q̃~x!

d̃f~y! d̃f~z!
Q̃~0!12

d̃2Q̃~x!

d̃f~y! d̃f~0!
Q̃~z!1

d̃2Q̃~y!

d̃f~z! d̃f~0!
Q̃~x!12

d̃Q̃~x!

d̃f~y!

d̃Q̃~z!

d̃f~0!

1
d̃Q̃~x!

d̃f~0!

d̃Q̃~y!

d̃f~z!
L . ~2.3!

The notation is as follows. Iff is the conformal factor of the metric andw denotes generically
the dynamical fields of the theory, with conformal weighth, then thed̃/ d̃f-derivatives are the

derivatives with respect tof at constantw̃[w ehf. We haveQ̃52 d̃S/ d̃f, whereS denotes the

action. It is understood that, after taking thef-derivatives ofQ̃, f is set to zero.
I also study theDa8-sum rule

Da85
p2

48 E d4x uxu4 ^Q̃~x! Q̃~0!&. ~2.4!

The central chargea is unambiguous at criticality, buta8 is ambiguous. This ambiguity
disappears in the differenceDa8, which is a physical quantity. These facts have important im
cations in the context of flow invariance and the dependence on the improvement ambigu

We can evaluate the above flow integrals using the one-parameter family of stress t
Tmn(h). Two situations can occur.

If the improvement term of the stress tensor does not vanish at both critical points,
nontrivial functions ofh are generated, which depend also on the sum rule. This depende
emphasized by the subscripti in the labelsD ia. Formulas~2.2! and ~2.3! define the functions
D1a(h) and D2a(h), respectively. Formula~2.4! definesDa8(h). Since, however,a is unam-
biguous at criticality, there must be a privileged value ofh which resolves the ambiguity an
reproduces the correctDa. This value can be found studying the RG equations for the param
h, imposing conformal invariance at the critical points.

If the improvement term vanishes at both critical points, all values ofh are in principle
acceptable. The functionsD ia(h) do not depend oni and h and are identically equal toDa.
Instead, sincea8 has no unambiguous definition at criticality, the functionDa8(h) can depend on
h. We know from Ref. 4 that the valueh̄ at whichDa8(h) is minimum has particularly interestin
properties. Using this, we can remove the improvement ambiguity also in this case.
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Both situations are resolved by a universal criterion for the removal of the improve
ambiguity, encoded in a variational principle studied in Ref. 4, which expresses the indepen
of the flat-space theory from the embedding in external gravity. When both this principle an
analysis of the RG equations fixh, the results agree.

A. Criterion for the removal of the improvement ambiguity

Determine the~unique! h̄ which satisfies

dDa8~h!

dh U
h5h̄

50,
dD ia~h!

dh U
h5h̄

50. ~2.5!

The functionsD ia(h) andDa8(h) are at most quadratic inh ~this will be shown explicitly in the
next section!, so the condition~2.5! has one solution for every sum rule.~In even dimension
greater than four, theh-polynomials can have a higher degree. I am grateful to G. Festucci
this remark.! The solutionh̄ does not depend on the sum rule. The correct stress tensor isTmn(h̄)
and the correct value ofDa is D ia(h̄), independently ofi . This criterion fixes alsoDa8 unam-
biguously.

The integrals of~2.2! and ~2.3! are assured to converge, when there is no improvem
ambiguity. When the stress tensor admits improvement terms, instead, there can be a diverg
Da8(h). This divergence provides alternative criteria for the removal of theh-ambiguity~see Sec.
II B !. If, on the other hand, theQ-correlators are expanded perturbatively, the convergence o
term-by-term integration is not assured. Observe that the resolution of theh-ambiguity is intrin-
sically nonperturbative. A useful perturbative expansion can be defined, although computatio
not simple.

B. Shortcuts and other criteria to remove the h-ambiguity

The valueh̄ does not depend on the sum rule and so it can be determined from the sim
of those, i.e.,Da8(h). The Da-sum rules involve more complicated flow integrals. In vario
cases,h̄ can be fixed by conformal invariance at the critical points. In the next sections I stud
criteria for the removal of the improvement ambiguity in a variety of models. These cover e
tially all cases. We can have the following behaviors:

~i! The RG equations imply that the improvement term ofTmn(h) survives at one of the
critical points, where, however, the stress tensor is uniquely fixed by conformal invari

~ii ! The RG equations imply that the improvement term ofTmn(h) diverges at one of the
critical points and the divergence disappears ifh is chosen appropriately.

~iii ! The improvement term vanishes at the critical points, but not sufficiently quickly.
quantityDa8 should be finite because it is physically meaningful~although it is not a flow
invariant4!. The finiteness ofDa8(h) can fixh. This can also be seen as a consequenc
~2.5!.

In all cases, theh̄ fixed with the criteria~i!, ~ii !, and~iii ! coincides with theh̄ of ~2.5!. In the
next section I present checks of this.

The fourth situation is when the improvement term disappears quickly enough at both c
points. When this happens, we haveD ia(h)5Da for everyi andh. The variational principle~2.5!
applies also to this case, in the sense that it outlines a noticeable valueh̄, such thatDa8(h̄) has
the properties studied in Ref. 4. This behavior is studied in a higher-derivative model.
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C. Modified, h-independent sum rules

Following Ref. 4, the criterion~2.5! is equivalent to theh-independence of more complicate
sum rules. This illustrates that the removal of theh̄-ambiguity fixed by~2.5! is compatible with
the fact that the quantum field theory in flat space is independent of the nonminimal coupli
external gravity.

We proceed as follows. Using the fact thatD ia(h) is at most quadratic inh, we write

D ia~h!5D ia~ h̃ !1~h2h̃ !
dD ia~h!

dh U
h̃

1
1

2
~h2h̃ !2

d2D ia~h!

dh2 U
h̃

. ~2.6!

The right-hand side is clearly independent ofh̃.
Finding h̄ according to~2.5!, inserting it in~2.6! and renamingh̃→h, we get

Da5D ia~ h̄ !5D ia~h!2
1

2

~dD ia~h!/dh!2

d2D ia~h!/dh2 . ~2.7!

The final expression is an involved combination of flow integrals. It can be seen as a gene
sum rule forDa, in the spirit of the formulas of Ref. 4. The result is clearly independent ofh and
gives the correct value ofDa. In the generalized sum rule, we can choose forD ia(h) any
equivalentDa-formula from Ref. 3; for example,~2.2! and ~2.3! of the present article. The
i -independence of the result can be rephrased in terms of equivalence relations among t
integrals. These involve correlators ofQ and the improvement operator.

III. CHECKS AND ILLUSTRATIVE EXAMPLES

In this section I study various examples, starting from simplest case, namely the massiv
scalar. A richer structure is exhibited by Gaussian nonunitary theories, where the issue o
invariance is more apparent. This model describes some qualitative features of physical t
with several independent masses or dimensioned parameters. Then, I consider thew4-theory and
asymptotically free theories, supersymmetric and non-supersymmetric. Finally, I comment
most general case.

A. Massive scalar field

The action in external gravity is

S5
1

2 E d4x Ag $gmn]mw ]nw1hRw21m2w2%.

Focusing on the conformal factorf and eliminating a total derivative, we can simplify the acti
and write

S5
1

2 E d4x$~]mw̃!21m2w̃2e2f1~126h!w̃2~hf1~]mf!2!%, ~3.1!

wherew̃5w ef. We need

Q̃52
d̃S

d̃f
52m2w̃2e2f1

1

2
~126h!@h~ w̃2!22]m~w̃2]mf!#, ~3.2!

whered̃ is thef-derivative at fixedw̃ ~check Ref. 3 for definitions!, and the first two derivatives

of Q̃ with respect tof.
The calculations give
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D1a~h!52 89
360 13h29h2, D2a~h!52 37

180 1 5
2 h2 15

2 h2.

The condition~2.5! gives the~expected! value h̄5 1
6 in both cases andD1a(h̄)5D2a(h̄)5 1

360

5Da. It is well-known that the valueh̄5 1
6 is such that the action~3.1! is conformal atm50. The

correct stress tensor can be fixed, more simply, by requiring thatQ̃ be zero in the UV limit. This
is a check that the criterion~2.5! gives the same result as conformal invariance at the crit
points, expressed by shortcut~i!. On the other hand,D1a(h) andD2a(h) do not coincide forh
Þh̄.

The coincidences of the values ofh̄ determined byD1,2a(h) and the equality ofD1,2a(h̄) are
nontrivial. They are due to identities among the flow integrals. An illustrative example is

m2E d4x d4y x2^w2~x! w2~y! w2~0!&52E d4x x2^w2~x! w2~0!&,

which is relevant for the calculation ofD1a(h). This identity can be verified directly or seen as
consequence of dimensional counting~each integral has the form const/m2!, combined with the
property that an insertion of*d4x m2w2(x) is equivalent to the derivative2m]/]m. A similar
cancellation takes place inD2a(h). The variational principle~2.5! ‘‘knows’’ about such relations.

Let us now studyDa8. The explicit calculation shows that a coefficient is infinite. Precis

Da8~h!52 3
40 1 1

2 h1~126h!2`.

In theDa-sum rule~2.2!, the infinite term is compensated by a contribution coming from the fl
integral of ^d̃Q̃/ d̃f Q& and the sum is finite for each value ofh. An analogous compensatio
occurs in~2.3!. Observe that~2.5!, applied toDa8, still fixes h̄ to 1

6, so that, correctly,Da8(h̄)
5 1

120.
5,4

The quantityDa8 is much less restricted thanDa. For example, it can depend on the flo
connecting the two fixed points.4 Still, it is a physically meaningful quantity and characterizes
flow. The infinity ofDa8(h) is not a ‘‘divergence’’ to be removed. The correct value ofDa8 must
be finite. In the theory at hand~but also in thew4-theory and other models discussed below!,
finiteness ofDa8 fixes h̄. We have a check that theh̄ ’s fixed with shortcut~iii ! and any of the
~2.5! coincide.

B. Flow invariance

Examples of flows interpolating between the same fixed points are easy to construct.
illustration, take non-Abelian Yang–Mills theory with groupG5SU(Nc), Nf massless quarks an
M f massive quarks in the fundamental representation. In the largeNc limit, with Nf /Nc& 11

2 fixed,
the theory is UV-free and has an interacting IR fixed point. Indeed, at low energies, the m
fermions decouple and the beta function

b52
1

6p
~11Nc22Nf ! a21

25

~4p!2 Nc
2 a31O~a4!

has a second zero. The higher-loop terms can be neglected in the given large-Nc limit.
The UV and IR fixed points do not depend on the values of the masses of theM f massive

quarks. For each set of values of the masses we have a different flow interpolating betwe
same conformal field theories.

At the computational level, it is not easy to study the sum rules~2.2! and~2.3! in this model.
A treatable perturbative expansion of the flow integrals of~2.2! and~2.3! has still to be developed
Gaussian higher-derivative theories, on the other hand, provide an interesting laboratory o
interpolating between the same fixed points. Calculations are still lengthy, but doable.
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C. Higher-derivative scalar field

The Lagrangian of the theory is

L5 1
2 @~hw!21bm2~]mw!21m4w2#. ~3.3!

The embedding in external gravity gives

L5 1
2Ag~wD4w1bm2~]mw!~]nw!gmn1hRm2w21m4w2!, ~3.4!

where the differential operator

D45¹2¹212¹m@Rmn2 1
3 gmnR#¹n ~3.5!

is such thatAgD4 is conformally invariant~see, for example, Ref. 6!.
I do not consider nonminimal couplings of the formR2w2. Their coefficients can be set t

zero imposingQ50 at criticality, as in the previous example. The nonminimal couplingm2Rw2,
instead, disappears both in the UV limit (m→0) and IR limit~m→` andw→0, keeping the mass
term m4w2 bounded!.

I perform two calculations, with~2.2! and ~2.3!. The relevant operator is

Q̄52
dS

df
52bm2~]mw!2e2f22m4w2e4f13hm2@efh~w2ef!1efw2hef#.

Tilded quantities are equal to untilded quantities in this model, since the canonical weight
higher-derivative scalar field is zero.

Cubic and quartic terms inh do not contribute to~2.2! and ~2.3!. The improvement term~in

Q̃ and itsf-derivatives! carries ah. Using integrations by parts, the boxes can be moved and
on the degree-4 polynomialsx2y2 or (x•y)(x•z). Three boxes kill the polynomials and therefo
the integral. This observation implies that the condition~2.5! always has a unique solution.

The sum rules~2.2! and ~2.3! give

D1a~h!5D2a~h!52 7
90 5Da,

independently ofh. I recall that in this model,aUV527/90 ~Ref. 7! andaIR50.
The calculations, lengthy and cumbersome, have been done with Mathematica. I do not

here intermediate results, because they do not seem to be particularly instructive.
The flow invariance ofD ia(h) and the cancellation of theO(h)-terms andO(h2)-terms in

~2.2! and~2.3! are consequences of nontrivial identities among flow integrals. Each term of~2.2!
and ~2.3! separately violates these properties. As for the quantityDa8, we have

Da8~h!5
1117r 2217r 42r 6110~11r 21r 41r 6!ln r

40~r 221!3 1hU~r !1h2V~r !,

U~r !523r
12r 412~11r 4!ln r

2~r 221!3 , V~r !59r 2
12r 21~11r 2!ln r

~r 221!3 ,

wherer is defined byb5r 11/r . r is the unique dimensionless parameter of the theory, bes
the improvement coefficienth. SinceDa8(h) is finite for everyh, none of the shortcuts of the
previous section applies. All values ofh are in principle acceptable, but the value ofh which
minimizesDa8(h) is privileged, in the sense that it has various interesting properties, outlin
Ref. 4. We have
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h̄~r !52
U~r !

2V~r !
5

12r 412~11r 4!ln r

12r ~12r 21~11r 2!ln r !

and4

Da8~ h̄ !52
~r 221!2~3r 4226r 213!1~r 8118r 6218r 221!ln r 2210r 2~r 411!ln2 r 2

40~r 221!3~r 2 ln r 21 ln r 222r 212!
.

The valueDa8(h̄) depends onr , which means that it not a flow invariant. Its minimum coincid
with Dc521/15.4

In conclusion, the ‘‘good’’ stress tensor of the theory~3.3! is

Tmn52]nhw ]mw2]mhw ]nw12hw ]m]nw1
2

3
]m]n]aw ]aw2

4

3
]m]aw ]n]aw

1dmnF1

3
]ahw ]aw1

1

3
~]a]bw!22

1

2
~hw!22

m4

2
w2G1bm2S ]mw ]nw2

dmn

2
~]aw!2D

2h̄~r !m2~]m]n2hdmn!w2,

and does not contain more parameters than the flat-space action~3.3!.

D. The w4-theory

The renormalization mixing between the stress tensor and its improvement term i
w4-theory has been studied in detail by Brown and Collins1 and Hathrell.2 In the formulas below,
the dimensional regularization technique and the minimal subtraction scheme are understo

The parameterh satisfies the inhomogeneous RG equation2

m
dh

dm
2d~l!h5bh~l![2d~l!d~l!. ~3.6!

Hered(l) is the anomalous dimension of the composite operatorw2, while d(l) is determined by
the simple pole in thew4-hw2 renormalization mixing. Precisely,

m42n@w4#

4!
5

~n24!

b̂
H l0w0

4

4!
2

g

n24
@E#2

d1Ld

n24
h@w2#J ,

wheren is the space–time dimension,@E# is thew-field equation,g is thew-anomalous dimension
b̂5(n24)l1b(l), b(l) is the beta function, andLd denotes the poles higher that the simp
one. The subscript 0 denotes bare quantities, and the square brackets denote renormalize
tors. The trace of the stress tensor reads in four dimensions

Q̃52b
@w4#

4!
2g@E#1~h2d!h@w2#.

The equation~3.6! can be decomposed in the following way:

h5h̃~l!1h8v~l!,

whereh8 is finite (mdh8/dm50), h̃ is a particular solution of~3.6!, fixed conventionally so tha
h̃(0)50, andv satisfies the homogeneous equation:

v~l!5expS El d~l8!

b~l8!
dl8D . ~3.7!
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It is not necessary to specify the second extremum of integration, which can be absorbed
factor h8. The functionv(l) is related to the renormalization constant of the operatorw2.

The surviving finite constanth8 parametrizes the stress-tensor ambiguity, which reads

Tmn~h8!5Tmn~0!2 1
3 h8v~l!~]m]n2dmnh !@w2#. ~3.8!

It follows immediately from~3.7! that if Tmn(0) is finite (m dTmn(0)/dm50), thenTmn(h8) is
also finite.

In Ref. 1 it was observed thath8 can be consistently set to zero. In Ref. 2 it was remarked
h8 should be fixed ‘‘by experiment,’’ since it is the coefficient of the nonminimal coupling
external gravity. Here we want to see if there is a reason whyh8 should be seta priori to a
particular value.

There is strong evidence that thew4-theory is nonperturbatively trivial. Even if we canno
view this theory as an RG interpolation between a UV and a IR fixed point, we can make a c
of general observations, which apply also to more general cases studied below.

To the lowest order, we have2

d~l!5
l

~4p!2 1O~l2!, b~l!53
l2

~4p!2 1O~l3!, bh~l!52
1

36

l4

~4p!8 ,

so that

h52
1

288

l3

~4p!6 1O~l4!1h8l1/3~11O~l!!.

Let us consider the flow integral~2.4!, which definesDa8(h). In the absence of information abou
the UV, we can study the convergence of this integral around the IR limit. Using the perturb
values given above and the Callan–Symanzik equations for the pair of operators (w4,hw2), the
behavior of the integral around the IR is

Da8~h!;E`

dtS a1

t4 1h8
a2

t10/31h82
a3

t2/3D ,

where theai are numerical factors. We see that theO(h82)-contribution diverges in the IR
extremum of integration. Since the integrand is non-negative, this divergence cannot be cu
contributions from intermediate energies or by a hypothetical second fixed point~which exists in
the models studied below, to which similar considerations apply!. Therefore, the only value com
patible with a finiteDa8 is h850.

This case is different from the case of a free-massive scalar field. Here the improvemen
of ~3.8! does disappear at criticality@at a velocityl(t)1/3, wherel(t);1/t, t5 lnuxum#, but it does
not disappear sufficiently quickly for the sum rule to converge. This forcesh8 to be zero, by
shortcut~iii !.

Thew4-interaction can be nontrivial in several models, which may admit conformal windo
In particular, interesting cases are the supersymmetric models, with or without superpot
Supersymmetry is not necessary to the logic of the arguments below, but it simplifies th
amples.

E. NÄ1 supersymmetric QCD

I consider nowN51 supersymmetric QCD with gauge groupG5SU(Nc) andNf quark and
antiquark superfields in the fundamental representation. The theory has no superpotentia
unique coupling constantg. For Nf,3Nc the theory is asymptotically free. The mass opera
w̄w, which is essential for the improvement term, is the lowest component of the Ko
                                                                                                                



as

onishi
ed IR
.
l

ious
erges in

theory
m can
se, its
on is
f

ment
tional
ncrete

2974 J. Math. Phys., Vol. 43, No. 6, June 2002 D. Anselmi

                    
superfield.8 Since the axial currents have no anomalous dimension at the one-loop order~see the
appendix!, this is true also ofw̄w. The two-loop contribution to the anomalous dimensiond can be
found in Ref. 9:

d~g!54~Nc
221!Nf S g2

16p2D 2

1O~g6!.

The structure of the RG equation forh and theh8-ambiguity of the stress tensor are the same
in ~3.6! and~3.8!. In particular, the functionv is given by the analog of~3.7!. The one-loop beta
function isb52g3(3Nc2Nf)/(16p2)1O(g5), so that the function

v~g!5expS 2
g2

8p2

Nf~Nc
221!

~3Nc2Nf !
1O~g4! D ~3.9!

tends to unity atg→0. Instead,bh(g) goes to zero at least as fast asg8. We conclude thath
→h8 in the UV limit, so that the improvement term of~3.8! survives at criticality. As in the case
of the free massive scalar field, this forcesh8 to be set to zero, by shortcut~i!.

F. Supersymmetric theories with a superpotential

The superpotential gives a one-loop contribution to the anomalous dimension of the K
operator. An example of UV-free supersymmetric theory with superpotential and a well-defin
fixed point is the theory obtained adding mesonic fieldsMi

j to the N51 supersymmetric QCD
The meson superfields interact with the quarksqi and q̄ j by means of a superpotentia
f M j

i qi q̄
j .10,11 In complete generality, denoting the superpotential couplings byYi jk , the one-loop

anomalous dimension of the mass operatorw̄w is

d~Y!5
3

16p2 uYu2, ~3.10!

uYu being defined byYi jkYi j l 5uYu2dk
l . Solving the RG equations around the UV fixed point10 and

applying ~3.7!, we have

v;utuc, ~3.11!

for t→2`, with c positive numerical constant. The situation is even worse than in the prev
model, where the superpotential was absent: the improvement term of the stress tensor div
the free-field limit. This forces us again to seth850, by shortcut~ii !.

G. Asymptotically free theories and flows with interacting UV fixed points

The arguments of the previous two cases apply to the most general asymptotically free
with scalar fields, supersymmetric or not. The anomalous dimension of the improvement ter
have a vanishing one-loop contribution or a nonvanishing one-loop contribution. In either ca
first radiative correction is positive. On the other hand, the first term of the beta functi
negative. Then,v(t) behaves as in~3.9! or ~3.11!. In the free-field limit, the improvement term o
the stress tensor is finite and nonvanishing or divergent. This fixesh8.

The same can be said of flows with interacting UV fixed points, wheredUV can be non-
vanishing. We can conclude, in full generality, that in unitary models the UV behavior ofTmn(h8)
is unacceptable, unless theh8-term of ~3.8! is suitably fixed, according to the rules of Sec. II.

IV. CONCLUSIONS

A proper RG interpolation between the UV and IR fixed points removes the improve
ambiguity of the stress tensor. The general criterion for this removal is encoded in the varia
principle ~2.5!. In various cases suitable shortcuts can be more efficient. I have analyzed co
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examples, one for each relevant situation. In particular, in asymptotically free theories, th
equations imply that the improvement term survives at one critical point or diverges there,
the improvement parameter is suitably fixed. In IR free theories, the improvement term
disappear at criticality, but not sufficiently quickly. The behavior of Gaussian higher-deriv
theories shows that there are cases in which all improved stress tensors are in principle acc
Nevertheless, the criterion~2.5! outlines a privileged stress tensor also in this case. In conclus
we can always consistently remove the improvement ambiguity with the rules of Sec. II.
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APPENDIX: OTHER REMARKS ABOUT THE CRITICAL LIMITS OF CORRELATORS

In this appendix I consider other ambiguities in the critical limits of correlators. Let us ass
that two observers study the same model using different renormalization schemes. We w
know what amount of information the observers can objectively compare and how many qua
they need to normalize before the comparison. I consider correlators of composite operato
distinguish the cases of finite and nonfinite operators.

Let O be a multiplicatively renormalized operator. The Callan–Symanzik equations imply
the two-point function can be written in the form

^O~x! O~0!&5
1

uxu2d Z2~a~1/uxu!,a~m!!G~a~1/uxu!!, ~A1!

where d is the canonical dimension ofO, Z is the renormalization constant anda(l) is the
running coupling constant at the energy scalel. Now, in the UV~respectively, IR! limit, namely
uxu→0 (uxu→`), a(1/uxu) tends to the critical valueaUV (IR) . If O is not finite~i.e., ZÞ1!, then
the limit depends ona(m) and the subtraction scheme. The valuesaUV (IR) are themselves schem
dependent.

Among the finite operators, we distinguish conserved currents, anomalous~classically con-
served! currents and others. Suppressing the space–time indices, ifO is a conserved current, th
UV and IR limits of ~A1! have the structure

^O~x! O~0!&UV (IR);
G~aUV (IR) !

~x2!d . ~A2!

The quantitiesG(aUV (IR)) ~called primary central charges12! carry information about the confor
mal fixed points. The scheme dependence ofaUV (IR) is compensated by an equal and oppos
scheme dependence ofG, so thatG(aUV (IR)) is scheme independent. Similar consideratio
extend to correlators with more insertions. When the two observers compare their results
have to find the same answer.

Classically conserved anomalous currents can be finite. In an asymptotically free theo
example, the renormalization constantZ5 of the axial currentJ5

m resums nonperturbatively to
finite functionC(a). Finiteness can be formally recovered multiplyingJ5

m by C21(a). Then, in
~A1! the renormalization constant can be nonperturbatively replaced by unity. Scalar operato
be finite as well. An example is the topological-charge density. Details are given below
function G(a(1/uxu)) tends to a constant in the free-field limit and behaves like a power ofx2m2

around the interacting critical limit. Formula~A2! is upgraded to the more general expression

^O~x! O~0!&UV (IR);
GUV (IR)

~x2!d~x2m2!hUV (IR)
. ~A3!
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Here the critical limits are unambiguous once the scalem is normalized~m plays the role of the RG
invariant scale, e.g.,LQCD!. Two observers can compare their results, once they agree on
definition of the reference scale. It is possible to define ‘‘secondary’’ central charges,12 where the
m-normalization is simplified away.

Finally, the critical limits of correlators containing insertions of nonfinite operators pro
one piece of information less,12 since a nonfinite operator needs to be normalized at some r
ence energy. In~A1! this is emphasized by thea(m)-dependence surviving in the limitsuxu→0
and uxu→`.

These observations apply to operators whose correlators have power-behaved critical
Logarithmic behaviors are not infrequent, however. The improvement term of the stress
often exhibits a logarithmic behavior: check thew̄w-two-point function in ~a! the w4-theory
around the IR and~b! supersymmetric theories with superpotential around the UV@see~3.11!#.

1. Anomalous currents

Anomalous currents can be finite operators, and therefore have unambiguous critical lim
the form ~A3!. This paragraph extends a discussion of Collins13 to singlet currents and the
topological-charge density.

I consider the axial current in an asymptotically free gauge theory. I assume that the cur
conserved at the classical level. The inclusion of mass terms is straightforward. The an
equation

]mJ5
m2

g2Nf

16p2
FF̃5c̄g5

d lS

dc̄
1

d rS

dc
g5c5finite ~A4!

and the definition@J5
m#5Z5J5

m imply the relations

@]mJ5
m#5Z5]mJ5

m ,
g2Nf

16p2 @FF̃#5~Z521!]mJ5
m1

g0
2Nf

16p2 FF̃.

Calling O15]mJ5
m andO25g2FF̃/(16p2), we have

@Oi #5Zi j Oj , Zi j 5S Z5 0

Z521 1D .

Consider the two-point function̂@J5#m(x) @J5#n(0)&. At the one-loop order it has a conforma
invariant form, namely,

^@J5
m#~x! @J5

n#~0!&5A~g2!
dmn22xmxn/x2

~x2!31d5(g2)
1O~g4!. ~A5!

The one-loop conformal invariance is assured by the Callan–Symanzik equations. Indee
conformal-violating term in

m
]

]m
1b~g!

]

]g
12d5~g2!

is b ]/]g. Sinceb5O(g3), this term is irrelevant at the one-loop order.
Taking two divergences of~A5!, using the anomaly equation~A4! and excluding the coinci-

dent point, we get

^@]mJ5
m#~x! @]nJ5

n#~0!&5
g4Nf

2

~4p!4 ^@FF̃#~x! @FF̃#~0!&524A~g2!
d5~g2!~21d5~g2!!

~x2!41d5(g2)
.
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SinceA(g2)5O(1), we concluded5(g2)5O(g4). This result is unaffected by the presence
masses or other super-renormalizable parameters, but does not hold when the conservatioJ5

m

is violated at the classical level by marginal operators, such as in supersymmetric theories
superpotential: see~3.10!.

Now, we observe that the renormalization constantZ5 has a finite limit when the cut-off is
sent to infinity. We can see this using the dimensional-regularization technique, but it is
explicit to write the limit in the familiar cut-off notation. Precisely,

lim
L→`

Z5~g~L!,g~m!!5 lim
L→`

expS 2E
g(m)

g(L) d5~g8!

b~g8!
dg8D 5C~g2!5finite.

This property holds because in an asymptotically free theory,g(L) tends to zero whenL→`.
The integral is convergent around zero, becaused5(g2)5O(g4) andb(g)5O(g3).

The full matrix Zi j has a finite limitCi j (g
2). Using the Callan–Symanzik equations, w

conclude that the operatorsJ5
mR[C21(g2)@J5

m# andO i
R[Ci j

21(g2)@Oj # have two-point functions
of the form

^J5
mR~x! J5

nR~0!&5
A~g2~1/uxu!!dmn1B~g2~1/uxu!! xmxn/x2

~x2!3 , ^O i
R~x! O j

R~0!&5
Ai j ~g2~ t !!

~x2!4 ,

and admit unambiguous critical limits, as in~A3!.
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Hierarchy of Dirac, Pauli, and Klein–Gordon conserved
operators in Taub-NUT background
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The algebra of conserved observables of the SO~4,1! gauge-invariant theory of the
Dirac fermions in the external field of the Kaluza–Klein monopole is investigated.
It is shown that the Dirac conserved operators have physical parts associated with
Pauli operators that are also conserved in the sense of the Klein–Gordon theory. In
this way one gets simpler methods of analyzing the properties of the conserved
Dirac operators and their main algebraic structures including the representations of
dynamical algebras governing the Dirac quantum modes. ©2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1469669#

I. INTRODUCTION

The relativistic quantum mechanics, seen as the one-particle restriction of the Lagra
quantum field theory on curved space–times, give rise to interesting mathematical problem
cerning the properties of the physical observables. It is known that one of the largest algeb
conserved operators is produced by the Euclidean Taub-NUT geometry since, beside usua
etries, this has a hidden symmetry of the Kepler type.1,2 This is related to the existence o
Stäckel–Killing tensors connected with the components of an analog to the Runge–Lenz vec
the Kepler-type problem which, in addition, can be expressed in terms of four Killing–Y
tensors.2–4

The theory of the Dirac equation in the Kaluza–Klein monopole field was studied in
mid-1980s.5 An attempt to take into account the Runge–Lenz vector of this problem was do
Ref. 6. We have continued this study showing that the Dirac equation is analytically solvable7 and
determining the energy eigenspinors of the central modes. Moreover, we derived all the con
observables of this theory, including those associated with the hidden symmetries of the
NUT geometry. Thus we obtained the Runge–Lenz vector-operator of the Dirac theory, po
out its specific properties.8 The consequences of the existence of this operator were studied in
9 showing that the dynamical algebras of the Dirac theory corresponding to different sp
domains are the same as in the scalar case2 but involving other irreducible representations. Th
for the discrete energy spectra we obtained two irreducible representations of theo(4) algebra
describing distinguish quantum modes for each energy level.9

This new phenomenon encourages us to continue the mathematical study of the whole
of conserved observables of the Dirac theory in Taub-NUT background. In our opinion
operators related to the manifest or hidden symmetries of the Taub-NUT geometry are of a
interest since they reflect the effects of the geometry on the behavior of different quantum sy
with integer or half-integer spin. However, in the Dirac case there are several complicated
tors whose manipulation can be sometime extremely difficult. We hope that a general stu
their action on the Dirac spinors could lead to simpler calculation methods.

a!Electronic mail: cota@physics.uvt.ro
b!Electronic mail: mvisin@theor1.theory.nipne.ro
29780022-2488/2002/43(6)/2978/10/$19.00 © 2002 American Institute of Physics
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The present article is devoted to this problem. Our goal is to separate the active parts
conserved Dirac operators, called here physical parts, which determine the effects on the
energy eigenspinors. Obviously these are projections obtained with the help of the proj
operator on the whole space of physical spinors. We show that these are of a specific d
~even! or off-diagonal~odd! form depending on Pauli operators that are also conserved in
sense of the Klein–Gordon theory. In this way we derive simpler calculation rules and ide
associations among conserved Dirac and Pauli operators as those currently used in theo
volving monopoles10–12 or new others we write down here.

We start in the second section with a brief review of some previous results7–9 we need. In the
next section we study the algebra of the conserved Dirac operators and introduce a new
even operators which help us to define the projection operator that separates the physica
Furthermore, we point out that the diagonal~even! physical parts of the Dirac observables can
associated with well-defined conserved Pauli operators obeying the same algebraic relati
Sec. IV we discuss the physical parts of the main conserved Dirac operators7–9 and we identify
their associated Pauli conserved operators. Here, after presenting the simplest conserve
operators, we derive those corresponding to isometries or hidden symmetries including th
erators of the dynamical algebras. In this way we show that the results of Ref. 9 hold also
case of continuous energy spectra, forso(3,1) or e(3) dynamical algebras. The conclusions a
comments are presented in the last section and in a short Appendix some formulas involv
important Pauli operator studied in Refs. 11 and 12 are given.

We work in natural units with\5c51.

II. PRELIMINARIES

The background of the gauge-invariant five-dimensional theory of the Dirac fermions i
external field of the Kaluza–Klein monopole13 is the Taub-NUT space with the time coordina
trivially added. It is convenient to consider the static chart of Cartesian coordinatesxm,
(m,n, . . .50,1,2,3,5), with the line element

ds25gmndxmdxn5dt22
1

V
dl22V~dx51Aidxi !2, ~1!

where dl25(dxW )25(dx1)21(dx2)21(dx3)2 is the usual Euclidean three-dimensional line e
ment in Cartesian physical space coordinatesxi ( i , j , . . .51,2,3). The other coordinates are th
time, x05t, and the Cartesian Kaluza–Klein extra-coordinate,x5. In ~1! the function 1/V(r )51
1m/r depends onr 5uxW u and the real parameterm while Ai are the potentials of the Dira
monopole.

This background has the isometry groupGs5SO(3)̂ U(1)5^ Tt(1) formed by the rotations
of the Cartesian space coordinates andx5 and t translations. The U(1)5 symmetry is important
since this eliminates the so called NUT singularity ifx5 has the period 4pm. The Killing vectors
k( i ) ( i 51,2,3) andk(5) are directly connected with the conserved operators which appear i
scalar case. They can be expressed in terms of momentum operatorsPi52 i (] i2Ai]5) and P5

52 i ]5 .2 The last one, for negative mass models, can be interpreted as the ‘‘relative e
charge’’ and it is always conserved. Moreover, the Taub-NUT geometry possesses four Ki
Yano tensors,f mn

( i ) ( i 51,2,3) andf mn
Y , of valence 2, related to the hidden symmetries of

Taub-NUT geometry reflected by the existence of the nontrivial Sta¨ckel–Killing tensors
k( i )

mn .2,4,7,14

In this Kaluza–Klein geometry there is a pentad gauge fixing15 where the massless Dirac field
c, satisfies a simple gauge-covariant Dirac equation,D” c50, whereD” 5 ig0] t2D” s .16,5,7,9In the
standard representation of the Dirac matrices@with diagonal g0 ~Ref. 17!# the Hamiltonian
operator7,9

H5g0D” s5S 0 a*

a 0 D ~2!
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has manifest supersymmetry. It is expressed in terms of Pauli operators,

a5AVp5AVS sP2
iP5

V D , ~3!

a* 5Vp*
1

AV
5VS sP1

iP5

V D 1

AV
, ~4!

where sP5sW •PW involves the Pauli matrices,s i . These operators give the space part of
Klein–Gordon operator as7,9

D5a* a5Vp* p5VPW 21
1

V
P5

2. ~5!

We specify that the star superscript is a mere notation that does not represent the He
conjugation because here we use a nonunitary representation of the algebra of Dirac opera
course, this is equivalent with the unitary representation where all of these operato
self-adjoint.7

SinceP5 commutes with all the other conserved observables, we settle its eigenvalue,q̂, such
that q[2mq̂50,61/2,61, . . . .1,2 We denote byG the space of usual and generalized ene
eigenspinors of the formUE5(uE ,E21auE)T which solve the eigenvalue problemHUE

5EUE .7 In Refs. 7 and 9 we showed thatuE is a solution of the static Klein–Gordon equatio
DuE5E2uE , that may be square integrable with respect to the specific relativistic scalar pr
of the Dirac theory7 or behave as tempered distributions. The Klein–Gordon equation is an
cally solvable producing continuous energy spectra,E>uq̂u, for any realm and discrete energy
levels, En with n.uqu.0, only for m,0. These are included in the domain (0,q̂) such that
limn→`En5uq̂u. Hence, there are no zero modes and the operatorD can be considered invertibl
on the space of of the spinorsuE . Therefore, we can conclude that the Dirac equation produce
sameenergy spectra as the Klein–Gordon one. Moreover, since there are no zero mod
Hamiltonian operator~2! is also invertible. The meaning of this operation will be discussed in
next section.

III. THE ALGEBRA OF CONSERVED DIRAC OPERATORS

Our aim is to study here the form and the action of theconservedoperators of the Dirac theory
which, by definition, are the Dirac operators thatcommutewith the Hamiltonian~2!. We denote by
D the algebra of these operators. We say that a Pauli operatorX̂ acting on the space of th
two-component Pauli spinorsuE is conservedif it commutes withD. We denote byP the algebra
of the conserved Pauli operators, including the conserved observables of the Klein–G
theory, called hereorbital operators. In this section we denote systematically by capitals
operators ofD and by hatted ones the operators ofP without using special notations for th
identity operators of these algebras.

In general, the Pauli blocks,X̂(ab) (a,b51,2), of any conserved Dirac operator

X5S X̂(11) X̂(12)

X̂(21) X̂(22)D PD ~6!

satisfy the conditions

X̂(22)a5aX̂(11), a* X̂(22)5X̂(11)a* , ~7!

X̂(12)a5a* X̂(21), aX̂(12)5X̂(21)a* , ~8!
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which are equivalent with@X,H#50. Hereby it results that

X̂(21)5aX̂(12)aD21 ~9!

and

@X̂(11),D#5@X̂(12)a,D#5@a* X̂(21),D#50, ~10!

which means thatX̂(11), X̂(12)a, a* X̂(21)PP.
We observe that possible solutions of Eqs.~7! and ~8! are the diagonal operators

D~X̂!5S X̂ 0

0 aX̂D21a*
D , ~11!

whereX̂PP. Particularly, forX̂51 we obtain the projection operator

I 5D~1!5S 1 0

0 aD21a* D ~12!

on the spaceG. This split the algebraD5D0% D1 in two subspaces of the projectionsXIPD0 and
X(12I )PD1 of all XPD. According to Eqs.~7! and ~8! we find that the projections of two
arbitrary operatorsX,YPD satisfy (XI)(YI)5(XY)I and @X(12I )#(YI)50 which lead to the
conclusion thatD0 is a subalgebra whileD1 is even an ideal inD. Obviously, I is the identity
operator ofD0 . On the other hand, in Ref. 7 we introduced theQ-operators defined as

Q~X̂!5H H,S X̂ 0

0 0
D J 5S 0 X̂a*

aX̂ 0
D , ~13!

whereX̂ may be any Pauli operator. However, ifX̂PP, thenQ(X̂)PD0 since@Q(X̂),H#50 and
Q(X̂)I 5Q(X̂). If X̂51, we obtain just the Hamiltonian operatorH5Q(1)PD0 . Consequently,
the inverse ofH with respect toI can be represented asH215Q(D21). The mappingsD:P
→D0 andQ:P→D0 are linear and have the following algebraic properties,

D~X̂!D~Ŷ!5D~X̂Ŷ!, ~14!

Q~X̂!Q~Ŷ!5D~X̂ŶD!, ~15!

D~X̂!Q~Ŷ!5Q~X̂!D~Ŷ!5Q~X̂Ŷ!, ~16!

for any X̂,ŶPP. Moreover, the relations

@g0,D~X̂!#50, $g0,Q~X̂!%50 ~17!

indicate that, according to the usual terminology,17 D andg0D areevenDirac operators whileQ
andg0Q areoddones. We note that there are many other odd or even operators which do no
such forms.

In general, sinceI is the projection operator on the space of the Dirac energy eigenspinoG,
we say that the projectionIXI of any Dirac operatorX, conserved or not, represents thephysical
part of X. We can convince ourselves that ifXPD, then

IXI[XI5D~X̂(11)!1Q~X̂(12)aD21!, ~18!
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which means that all the operators fromD0 can be written asD or Q-operators. Thus the action o
X reduces to that of the Pauli operators involved in~18!, allowing us to rewrite the problems of th
Dirac theory in terms of Pauli operators.8,9 Indeed, it is easy to show that the action of a
operatorXPD on UEPG is

XUE5XIUE5S P̂E~X!uE

E21aP̂E~X!uE
D , ~19!

where, by definition,

P̂E~X!5X̂(11)1E21X̂(12)a ~20!

is the conservedPauli operatorassociatedto X. Since the mappingP̂E :D→P is linear and
satisfiesP̂E(X)5P̂E(XI) it results that KerP̂E5D1 . In other respects, Eqs.~7! and~8! lead to the
important property

P̂E~XY!5P̂E~X!P̂E~Y!, ;X,YPD, ~21!

which guarantees thatP̂E preserves the algebraic relations, mapping any algebra or superal
of D0 into an isomorphicalgebra or superalgebra ofP, with the same commutation and anticom
mutation rules.

IV. CONSERVED OBSERVABLES

In what follows we focus on the physical parts of the main Dirac conserved observa
pointing out the technical advantages of usingD and Q-operators that help us to identify th
associated Pauli operators defined by~20!. The even physical parts,D, are associated to Pau
operators independent onE which are, therefore, well-defined physical observables. For
reason it is useful to briefly review the most important conserved Pauli operators and then
the physical parts of the Dirac ones.

A. Conserved orbital and Pauli operators

In general, the Pauli operators are 232 matrix differential operators acting on two-compone
Pauli spinors. There are many nonconserved operators which do not commute withD as, for
example,a,a* ,p,p* ,s r5sW •xW /r or the operatorl5sW •(xW3PW )11 proposed in Ref. 11 and dis
cussed in Ref. 12. Some algebraic properties of these operators are given in the Appendix

By definition, the conserved operators ofP commute withD, which is the static part of the
Klein–Gordon operator. As mentioned, these can be the usual conserved orbital operators
scalar fields or more complicated ones involving, in addition, the Pauli matrices which
commute withD.

The main conserved orbital operators are the basis generators of the natural represent
the groupGs carried by the space of scalar fields. These generators are defined up to the fac2 i
as the Killing vector fields corresponding to isometries or the operators given by the K
tensors associated to the hidden symmetries. TheU5(1) generator isP5 and the Killing vectors
k( i )

m give the SO~3! generators which are the componentsLi of the orbital angular momentum
operator7,9

LW 5xW3PW 2m
xW

r
P5 . ~22!

These commute withD and satisfy the canonical commutation relations among themselves
with the components of all the other vector operators~e.g. coordinates, momenta, etc.!. On the
other hand, the specific Killing tensorsk( i )

mn of the Taub-NUT geometry allow one to define th
Runge–Lenz operator for scalar particles2
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KW 5
1

2
~PW 3LW 2LW 3PW !2

m

2

xW

r
D1m

xW

r
P5

2, ~23!

which commute withD and its components satisfy the commutation relations

@Li ,K j #5 i« i jkKk , @Ki ,K j #5 i« i jkLkF
2, ~24!

whereF25P5
22D. For given values ofE and q̂ this operator can be rescaled in order to reco

the dynamical algebras corresponding to different spectral domains of the Kepler-type prob2

The new operators

Ri5H F21Ki for m,0 and E,uq̂u,

Ki for any m and E5uq̂u,

6 iF 21Ki for any m and E.uq̂u,
~25!

and Li ( i 51,2,3) generate either a representation of theo(4) algebra for the discrete energ
spectrum in the domain 0,E,uq̂u or a representation of theo(3,1) algebra for continuous spec
trum in the domainE.uq̂u. A special case is that of the dynamical algebrae(3) which corre-
sponds only to the ground energy of the continuous spectrum,E5uq̂u.

The operators ofP involving Pauli matrices can be vector operators as the total ang
momentum,

JW5LW 1
sW

2
, ~26!

or scalar operators of the formsL5sW •LW , sK5sW •KW or sR5sW •RW , involved in superalgebras as

$sK ,sL11%50. ~27!

Other conserved Pauli operators with more complicated structure have to be derived in asso
with the physical parts of the conserved Dirac observables.

B. Associated Dirac and Pauli operators

We have seen that the physical parts of the conserved Dirac observables can have diag
off-diagonal terms; among them only the diagonal ones can be correctly associated to con
Pauli operators independent onE. However, the off-diagonal operators can be transformed at
time in diagonal ones using the multiplication withH or H21. For example,H itself which is
off-diagonal is related to the diagonal operatorsH25D(D) or I . Thus each conserved Dira
operator can be brought in a diagonal form associated with an operator fromP.

Let us start with the generators of the representations of the groupGs carried by the space o
the Dirac spinors. The U(1)5 generator remains the former operatorP5 but the SO~3! generators
get the usual spin terms,Si5

1
2diag(si ,si) of the total angular momentum whose components,Ji

5Li1Si , commute withH even if neitherLi nor Si do not have this property.7,9 However, the
effect on the spinors ofG is due only to the physical parts which read

Ji I 5D~Ji !5D~Li !1 1
2D~s i !, ~28!

where both the orbital and the spin terms areseparatelyconserved sinceLi ands i commute with
D. Obviously, in this case the associated Pauli operators are justJi defined by~26!.

The simplest conserved off-diagonal operators are the so called Dirac-type operators
ated by the first three Killing–Yano tensors,f ( i ). We have shown7,8 that these can be written
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simply in the formQi5Q(s i), which explains why their algebraic properties are close to thos
the Pauli matrices. Now, we can prove that the diagonal operatorsH21Qi5D(s i) form a repre-
sentation of the algebra of Pauli matrices with values inD0 since

H21QiH
21Qj5d i j I 1 i« i jkH21Qk . ~29!

The corresponding Dirac-type operator of the last Killing–Yano tensor,f Y, calculated accord-
ing to the general rule of Ref. 18 has been obtained in Ref. 8. This has the form

QY52Q~s r !1
2i

mAV
S 0 l

2l 0D . ~30!

Using the identities presented in the Appendix one finds the equivalent forms reported in
and verifies thatQY commutes withH andP5 and anticommutes withD” s andg0. Moreover, after
a little calculation, we obtain the remarkable identity

mP5@QY1Q~s r !#5$H,L% ~31!

involving the operatorL5diag(l,l) that is a particular version of a Biedenharn operator.19 This is
not conserved butL25JW 22m2P5

21 1
4 has this property. Furthermore, we observe that, accord

to ~A1! and ~A3!, the physical part ofQY can be put in the form

QYI 5QS 2s r1
2i

m
lpD21D5Q~sYD21! , ~32!

where

sY5
2

m
@sK1~sL11!P5# ~33!

is a new conserved Pauli operator associated toHQY5HQYI 5D(sY).

C. The Runge–Lenz operator and dynamical algebras

These results allow us to calculate directly the physical parts of the Runge–Lenz opera
the Dirac theory~related to the Killing tensorkWmn!, following the same procedure as in Ref. 8. W
start with the equivalent definition of the physical parts of the auxiliary operators8

Ni I 5
m

4
$HQY,H21Qi%2Ji P5I , ~34!

which can be written as

Ni I 5DS m

4
$sY,s i%2Ji P5D5D~N̂i !, ~35!

in terms of their associated conserved Pauli operators,

N̂i5Ki1
s i

2
P5 . ~36!

Furthermore, we define the physical parts of the components of the conserved Runge
operator8,9
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Ki I 5Ni I 1 1
2 ~F2P5!H21Qi , ~37!

whereF 25P5
22H2. SinceF 2I 5D(F2), we can expressKi I 5D(K̂ i), now the associated con

served Pauli operators being

K̂ i5Ki1
s i

2
F. ~38!

All these associations help us to understand the significance of the isomorphism among the
of the Dirac operators,8,9

@Ji ,Kj #5 i« i jkKk , @Ki ,Kj #5 i« i jkJkF 2, ~39!

that of the Pauli operators,

@Ji ,K̂ j #5 i« i jk K̂k , @K̂ i ,K̂ j #5 i« i jkJkF
2, ~40!

and ~24!.
Rescaling~37! as in the case of the orbital operators~25!, but usingF instead ofF, one

obtains the even operatorsRiPD ~Ref. 9! having simple physical parts,Ri I 5D(R̂i), associated
with the conserved Pauli operators

R̂i5H Ri1
s i

2
for EÞq̂,

Ki for E5q̂.

~41!

We specify that the orbital and spin terms ofNi I , Ki I and Ri I ~for EÞq̂! are also separately
conserved, as in the case of the angular momentum, sinceKi andF commute withD.

The representations of the dynamical algebraso(4) or o(3,1) that govern the Dirac modes fo
EÞq̂ are generated byJi andRi ~Ref. 9! whose physical parts,Ji I andRi I , have the same spin
terms,D(s i)/2. Therefore, each of these representations is the direct product between th
ducible representation of scalar modes and a spin half two-dimensional~fundamental! represen-
tation of the dynamical algebra.9 WhenE5q̂, thenF andF vanish such that the representation
the subalgebraso(3),e(3) remains generated by the operators~28! while the operatorsKi I lose
their spin terms, becoming the translation generators ofe(3). All these representations arisin
from direct products are reducible. We note that this phenomenon is new since in the
~Klein–Gordon! case the representations of the dynamical algebras of the Kepler-type pro
are irreducible.2 However, these results could be easily obtained analyzing theequivalentrepre-
sentations generated by the associated Pauli operatorsJi andR̂i as we did already in Ref. 9 for the
discrete energy spectrum. We recall that therein we introduced the new conserved opeC
52JW •RW 2 1

2 in order to distinguish between the irreducible representations of theo(4) dynamical
algebra. Now we see thatCI 5D(sR1sL11) where, according to~27!, we have$sR ,sL11%
50.

V. CONCLUSIONS

The first conclusion is that our approach allows one to associate the conserved Dirac op
of diagonal~even! form to conserved Pauli operators independent onE. Thus for each type of
symmetry we have conserved operators at three levels: Dirac, Pauli and orbital~of the Klein–
Gordon theory!. The following table resumes this hierarchy~K is an abbreviation for Killing, K-Y
for Killing–Yano; * denotes entries which involve issues too complex to be abbreviated in
table and some comments are given below!.
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Geometric
object Nature Symmetry

Dirac
operator

Pauli
operator

Klein–Gordon
operator

f mn
( i ) K-Y tensor * H21Qi s i

¯

f mn
Y K-Y tensor * HQY sY

¯

k(5)
m K vector U(1)5 P5 P5 P5

k( i )
m K vector SO~3! Ji Ji Li

k( i )
mn K tensor hidden Ki ,Ri K̂ i ,R̂i Ki ,Ri

However, there are many other even or odd conserved Dirac operators@e.g.,D(sK
2 ), Q(Li),

Q(sY), etc.# which can be constructed with the help of the conserved Pauli or orbital ones.
large collection of conserved observables is in fact a rich algebra freely generated by those
to the manifest or hidden symmetries of the Taub-NUT geometry.

In N51 supersymmetric quantum models with standard supersymmetry there is a
superchargeQ that closesQ25H on the Hamiltonian. In many of these models, and that is
case of the Taub-NUT manifold, one can find additional or hidden, nonstandard superc
involving Killing–Yano tensors. The Killing–Yano tensorsf mn

( i ) ( i 51,2,3) give a vector represen
tation of SO~3! and their existence is connected with the complex structures of the hyper-K¨hler
Taub-NUT space. The forth Killing–Yano tensorf mn

Y is a singlet and exists by virtue of the metr
being typeD. All four Killing–Yano tensors are invariant under the action of U(1)5 which
physically represents the relative electric charge of two monopoles.

For spin-12 particles, the Killing–Yano tensors are essential in construction of Dirac-
operators and evaluation of the spin contributions to the conserved quantities from the scala
The antisymmetric features of these operators make them the natural object used in descri
the Dirac fermion in a curved space–time. On the other hand, the fact that the Sta¨ckel–Killing
tensors involved in the Runge–Lenz vector~23! can be expressed as symmetrized products
Killing–Yano tensors seems to be useless for scalar particles described by Schro¨dinger or Klein–
Gordon equations. Therefore the existence of a certain square root of the Sta¨ckel–Killing tensors
becomes relevant only in the presence of fermions.

In other respects, we can eliminate many difficulties due to the spin terms of the Dirac t
if we restrict ourselves only to the physical partsXI of the operatorsXPD giving up the projec-
tionsX(12I )PD1 which can give rise sometimes to very complicated calculations. Moreove
get the advantage of reducing the algebraic operations among the physical parts fromD0 to
calculations involving only the associated Pauli operators fromP. For example, if instead o

@QW ,QY#, we calculate only its physical part,@QW ,QY#I 5@H21QW ,HQY#5D(@sW ,sY#), we avoid a
tedious algebra, easily obtaining the interesting identity

m

4
@QW ,QYI #5 i ~KW 1JW P5!3~H21QW !1~F1P5! H21QW ~42!

which shows that this commutator does not produce new conserved observables.
Finally, we note that our method based on the separation of the physical parts expres

terms ofD andQ-operators could be used in any problem where the Hamiltonian is invertible
has manifest supersymmetry.

APPENDIX: THE OPERATOR l

The operator

l5sW •~xW3PW !115sL111ms r P5 ~A1!

has the properties
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$s r ,l%50, @s r ,sP#5
2i

r
l, ~A2!

and

sPl52lsP5
i

2
sW •~PW 3LW 2LW 3PW !2

im

r
lP5 , ~A3!

which lead to

$a* ,l%5
2i

AV
lP5 , $a,l%52

2i

AV
lP5 . ~A4!
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7I. I. Cotăescu and M. Visinescu, hep-th/0008181; Int. J. Mod. Phys. A16, 1743~2001!.
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We study a largeNc limit of a two-dimensional Yang–Mills theory coupled to
bosons and fermions in the fundamental representation. Extending an approach due
to Rajeev we show that the limiting theory can be described as a classical Hamil-
tonian system whose phase space is an infinite-dimensional super-Grassmannian.
The linear approximation to the equations of motion and the constraint yields the
’t Hooft equations for the mesonic spectrum. Two other approximation schemes to
the exact equations are discussed. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1477936#

I. INTRODUCTION

To gain a better understanding of gauge theories, two-dimensional models are often us
testing ground. In a by now classic paper, ’t Hooft has shown that the large-Nc limit allows us to
obtain an equation describing the meson spectrum of two-dimensional Quantum Chromody
~QCD!.1 The same model was analyzed using different approaches2–5 and they confirmed the
results obtained by ’t Hooft.

In this article we study the large-Nc limit of certain two-dimensional~2D! theories following
a general approach developed by Rajeev6,7 ~see also Refs. 8 and 9 for similar approaches!. In the
large Nc limit of various quantum field theories~e.g., QCD! the quantum fluctuations becom
small and the theories are well described by a classical limit. This classical limit howev
different from the conventional one in that many of the essential nonperturbative features
quantum theory survive the largeNc limit.10,1,11 In the formulation of Ref. 7 the classical theor
corresponding to largeNc limit of 2D QCD is described by a Hamiltonian system defined on
infinite-dimensional Grassmannian. The points of this infinite-dimensional manifold can be
tified with subspaces in infinite-dimensional Hilbert space~see the main text for precise defin
tions!. The Grassmannian is a topologically nontrivial manifold whose connected componen
labeled by an integer which can be identified with the baryon number. The ’t Hooft equ
describing the meson mass spectrum can be obtained in the linear approximation to the eq
of motion on the Grassmannian.7 In addition to meson masses, this approach also allows on
estimate the baryon mass via a variational ansatz.12,6 The overall scheme resembles the Skyrm
model of baryons in four-dimensional QCD. However unlike the Skyrme model the Grassma
system of Ref. 7 can be derived as a largeNc limit of an underlying gauge theory. The Gras
mannian is a homogeneous manifold. It is equipped with an action of an infinite-dimens
group~which is unitary for the fermionic matter and pseudounitary in the case of bosonic ma!.
This fact is very important for the structure of the phase space. In particular, it can be us

a!Electronic mail: konechny@thsrv.lbl.gov
b!Electronic mail: turgutte@boun.edu.tr
29880022-2488/2002/43(6)/2988/23/$19.00 © 2002 American Institute of Physics
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quantization of the classical system which would allow one to get a handle on 1/Nc corrections
~including nonperturbative ones!. We believe that besides the possibility of describing baryons,
captured by the original ’t Hooft approach,10 the present approach can be made mathematic
more precise. We remark that when the matter fields are in the adjoint representation, the
ematical techniques required are also very elegant and interesting, involving the Cuntz alg
various forms. For this approach, we refer the reader to the papers of Halpern and Schwart13 and
Rajeev and Lee.14

The 2D QCD interacting with bosons in the fundamental representation was also worke
following ’t Hooft, partly because bosonic theory resembles the four-dimensional QCD in ce
respects more than the fermionic one.15–17 The approach of Ref. 7 was extended to the boso
case in Ref. 18~see also Ref. 19 for a similar approach to the problem!.

In this paper we study the case when both bosonic and fermionic matter are presen
motivation for this is the fact that a dimensional reduction of four-dimensional QCD prod
two-dimensional fundamental fermions and bosons in the adjoint representation coupled
fermions via gauge fields. We do not expect that the bosons in the fundamental represe
capture completely the adjoint case, but it can be used again as a testing ground. We also
a more general case that includes the Yukawa type interaction between bosons and fermi

The model of fundamental bosons and fermions interacting via SU(Nc) gauge field was
studied, following the same ideas in the original paper of ’t Hooft, by Aoki.20,21The more genera
models in the large-Nc limit are presented in a paper by Cavicchi, where he uses a bilocal
approach in the path integral picture.22 Some of the models discussed in Ref. 22 are more gen
containing more complicated interactions, some of which in fact require a coupling con
renormalization.

In Refs. 20–22 it is shown that there are ’t Hooft-like spectral equations for various typ
mesons. In our case we have boson–boson, fermion–fermion, and boson–fermion type m
and they all satisfy essentially the same equation. In each case the meson spectrum is disc
these mesons are all stable in the large-Nc approximation. One cannot say much about the bary
using these methods.

In the present work we generalize the approach of Ref. 7 to QCD for the bosonic
fermionic matter fields coupled via gauge fields. We will see that the phase space of the
corresponds to a certain superversion of the infinite-dimensional Grassmanian. Although the
nal system does not have any supersymmetry the main objects describing the largeNc limit, such
as the phase space, group action, symplectic form, can be described in supergeometric te~A
similar phenomenon was observed in another two-dimensional model in Ref. 23, and inde
is a general feature of bosons and fermions coupled via gauge fields!. We obtain the equations
describing the meson spectrum of the model within the linear approximation. These equ
agree with the ones found by Aoki.20,21 The theory we will present is actually nonlinear and c
accommodate solitonic solutions which should describe baryons. We identify the operator
gives us the baryon number. We also propose some approximations to the spectral equation
beyond the linear approximation and discuss some consequences.

The layout of the paper is as follows. In Sec. II we reformulate the model in terms of c
invariant bilinears. We further derive the Poisson brackets and the constraints imposed
bilinear variables in largeNc limit. In Sec. III we describe this Hamiltonian system in more prec
terms using the language of supergeometry. The linear approximation to the equations of
giving the meson mass spectrum is discussed in Sec. IV. In Sec. V we propose two approxi
schemes that incorporate some nonlinear corrections and give a qualitative discussion o
influence on the spectrum.

II. THE ALGEBRA OF COLOR INVARIANT OPERATORS

We start by writing the action functionals of the two theories that we are interested in.
theories have a gauge field that can be completely eliminated in favor of static 2D Cou
potential. We will use the light cone coordinatesx15(1/&) (t1x), x25(1/&) (t2x) and
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choose theA150 gauge. We first look at the gauge-coupled complex bosons with a qu
self-interaction term and Dirac fermions both in the fundamental representation of SU(Nc):

S5E dx1 dx2F2
1

2
Tr F12F121 i&cL*

a~]21 igA2!a
bcLb1 i&cR*

a]1cRa

2mF~cL*
acRa1cR*

acLa!22f* a]2]1fa1 ig~]1f* aA2a
b fb2f* aA2a

b ]1fb!

2mB
2f* afa2

l2

4
f* afaf* bfbG . ~1!

In the other model we will look at parity broken and a Yukawa-type interaction is ad
between fermions and bosons,

SY5E dx1 dx2F2
1

2
Tr F12F121 i&cL*

a~]21 igA2!a
bcLb1 i&cR* ]1cR22f* a]2]1fa

1 ig~]1f* aA2a
b fb2f* aA2a

b ]1fb!2mB
2f* afa2

l2

4
f* afaf* bfb1m~cR* cLaf* a

1cL*
acRfa!G . ~2!

In both cases we normalize the Lie algebra generatorsTa as TrTaTb5dab, and we choose them
to be Hermitian. This second model is anomalous because it is not a chiral gauge theory.
exist some ideas in the literature to treat an anomalous two-dimensional model,24 but we will not
follow this path. Instead we will take the above-mentioned model at the classical leve
eliminate the gauge fields which are not dynamical, and subsequently quantize the effective
One can check that the resulting system has a global SU(Nc) symmetry and relativistic invariance
We regard this as a toy model which isinspired from gauge theory.

We can further use the Gauss constraint to eliminate the gauge fieldA2 and the fermionic
equations of motion to eliminate the right moving fermioncR (cRa). We will do these reductions
in the quantized model for the first case, and classically for the second one. The resulting ac
first order in the ‘‘time direction’’x2 so we can pass to Hamiltonian formalism in a straightf
ward way.

The Fourier mode expansions read,

fa~x1!5E aa~p!e2 ipx1 dp

2p~2upu!1/2, cLa~x1!5E xa~p!e2 ipx1 dp

2p21/4

~to simpify the notation instead ofp1 we write p!. The normalization factors are chosen to gi
the correct classical limits. The commutation/anticommutation relations for the fields in the
cone gauge take the form,6

@xa~p!,x†b~q!#15da
b2pd~p2q!, @aa~p!,a†b~q!#5sgn~p!da

b2pd~p2q!. ~3!

We defined@p2q#52pd(p2q), and use@dp#5 dp/2p to keep track of factors of 2p.
One defines a Fock vacuum stateu0& by the conditions,

aa~p!u0&5xa~p!u0&50 for p.0, a†a~p!u0&5x†a~p!u0&50 for p,0. ~4!

The corresponding normal orderings are defined as

:x†a~p!xb~q!:5H 2xb~q!x†a~p! if p,0,q,0,

x†a~p!xb~q! otherwise,
~5!
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:a†a~p!ab~q!:5H ab~q!a†a~p! if p,0,q,0,

a†a~p!ab~q! otherwise.
~6!

~Later on we also use the extension of normal ordering to product of four operators, and it
standard one.! For our purposes it is most convenient to remember the normal ordering
bilinears in the following form:

:xa†~p!xb~q!:5xa†~p!xb~q!2
db

a

2
@12sgn~p!#d@p2q#,

:aa†~p!ab~q!:5aa†~p!ab~q!2
db

a

2
@12sgn~p!#d@p2q#.

Written as quantum operators, we have in the first model,

cRa5
mF

& i ]1

cLa ~7!

and its Hermitian conjugate, and

cR52
m

& i ]1

f* acLa ~8!

and its Hermitian conjugate for the second model. In the first case,A2 is given in terms of the
other fields as

A2
a 52

g

]1
2 :~&cL

†a~Ta!a
bcLb1 i @f†a~Ta!a

b]1fb2]1f†a~Ta!a
bfb#!: . ~9!

In the second model we are using the same equation to eliminateA2 at the classical level~which
means without the normal ordering!.

By eliminating the redundant degrees of freedom we can express the action in terms
bilinears of the fieldscLa andfa only. We introduce

M̂ ~p,q!5
2

Nc
:x†a~p!xa~q!:,

~10!

N̂~p,q!5
2

Nc
:a†a~p!aa~q!:,

and their odd counterparts,

Q̂~p,q!5
2

Nc
x†a~p!aa~q!, QC ~r ,s!5

2

Nc
a†a~r !xa~s!. ~11!

Once the redundancies are removed the resulting action is already first order in the ‘
variable hence we can read off the Hamiltonian, and the resulting commutation relation
consistent with the ones obtained from the conventional canonical quantization. The reduc
straightforward in principle but requires a long and careful computation. Since the detai
explained in Rajeev’s lecture notes6 we only give the result:

H5H01HI , ~12!
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H05
1

4
MB

2E @dp#

upu
N~p,p!1

1

4
MF

2E @dp#

p
M ~p,p!, ~13!

where for the first model we use

MF
25mF

22
g2

p
, MB

25mRB
2 2

g2

p
. ~14!

We employ a logarithmic renormalization on the bare mass of the bosonic field,19 and denote the
renormalized mass asmRB . For the second model, since we reduce it at the classical level t
are no corrections coming to the boson mass term,

MF
250, MB

25
mB

2

4
. ~15!

The interaction parts are given by

HI5E @dp dq ds dt#G1~p,q;s,t !M ~p,q!M ~s,t !1E @dp dq ds dt#G2~p,q;s,t !N~p,q!N~s,t !

1E @dp dq ds dt#G3~p,q;s,t !Q~p,q!Q̄~s,t !,

where for both the first and second models,

G1~p,q;s,t !52
g2

16S 1

~p2t !2 1
1

~q2s!2D d@p1s2t2q#, ~16!

G2~p,q;s,t !5
g2

64S 1

~p2t !2 1
1

~q2s!2D d@p1s2t2q#
qt1ps1st1pq

Aupqstu
1

l2

64

d@p1s2t2q#

Aupqstu
.

~17!

In the first model we use

G3~p,q;s,t !5
g2

8

q1s

~q2s!2

d@p1s2t2q#

Auqsu
, ~18!

and for the second model we only have an additional term,

G3~p,q;s,t !5
m2

16

1

~p2q!

1

Auqsu
d@p2t2q1s#1

g2

8

q1s

~q2s!2

d@p1s2t2q#

Auqsu
. ~19!

Above we rescaled our coupling constants by a factor ofNc and kept the same symbols for th
couplings~sog2Nc°g2, m2Nc°m2, andl2Nc°l2! to simplify notation. For the precise mean
ing of these singular integral kernels we refer to the lecture notes of Rajeev:6 we should interpret
them as Hadamard principal value. We will continue to write the ordinary integrals but ke
mind that the integrals are evaluated with this prescription.

The theory we obtained still possesses a global SU(Nc) invariance. The corresponding gen
erator of symmetry is
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Q̂b
a5E @dp#S :x†a~p!xb~p!:2

1

Nc
db

a :x†g~p!xg~p!: D
1E @dp#sgn~p!S :a†a~p!ab~p!:2

1

Nc
db

a :a†g~p!ag~p!: D . ~20!

It is known~at least for the purely spinor and purely scalar QCD2! that in the light-like axial gauge
only the color singlet sector of the model can be quantized in a way that preserves L
invariance~Refs. 5, and 4!. In this paper we will therefore consider only the restrictions of o
models to this sector. In general for a gauge theory it is expected that in the largeNc limit any
gauge invariant correlator factorizes, i.e.,^AB&5^A&^B&1O(1/Nc). So when the two-
dimensional theory is restricted to the color invariant subspace in the largeNc limit any color
invariant correlator should be expressible in terms of correlators of color invariant bilinear o

tors,M̂ , N̂ andQ̂, QC given in~10! and~11!. We compute the~anti!commutation relations betwee
these bilinears:

@M̂ ~p,q!,M̂ ~r ,s!#5
2

Nc
@M̂ ~p,s!d@q2r #2M̂ ~r ,q!d@p2s#2d@p2s#d@q2r #~sgn~p!

2sgn~q!!#,

@N̂~p,q!,N̂~r ,s!#5
2

Nc
@N̂~p,s!sgn~q!d@q2r #2N̂~r ,q!sgn~p!d@p2s#

2d@q2r #d@p2s#~sgn~p!2sgn~q!!#,

@Q̂~p,q!,QC ~r ,s!#15
2

Nc
@M̂ ~p,s!sgn~q!d@q2r #1N̂~r ,q!d@p2s#

1d@p2s#d@q2r #~12sgn~p!sgn~q!!#,

@M̂ ~p,q!,Q̂~r ,s!#5
2

Nc
d@q2r #Q̂~p,s!, ~21!

@N̂~p,q!,Q̂~r ,s!#52
2

Nc
d@p2s#sgn~p!Q̂~r ,q!,

@M̂ ~p,q!,QC ~r ,s!#52
2

Nc
d@p2s#QC ~r ,q!,

@N̂~p,q!,QC ~r ,s!#5
2

Nc
d@q2r #sgn~q!QC ~p,s!.

All the other~anti!commutators vanish. The first two relations were used before in Refs. 7
18, respectively. These~anti!commutation relations define an infinite dimensional Lie supera
bra. Its even part is isomorphic to a direct sum of central extensions of infinite-dimensional u
and pseudounitary groups each one generated by operatorsM̂ (p,q) andN̂(p,q), respectively~see
Ref. 18 for details!. We will talk more about this Lie superalgebra and the corresponding su
group in Sec. III. As the right-hand sides of~21! all contain a factor of 1/Nc in the largeNc limit
all of the bilinears commute~or anticommute, respectively! and can be thought of as coordinat

on a classical phase space. We denote the classical variables corresponding toM̂ , N̂, Q̂, QC by the
same letters with carets removed. This classical phase space is an infinite-dimensional sup
fold endowed with a super-Poisson structure inherited from the~anti!commutation relations~21!.
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The corresponding Poisson superbrackets are obtained from the~anti!commutators in~21! by
substituting2 i instead of 1/Nc factors ~note that this brings an extra factor of 2!. There is no
simple way to decide which multiple of 1/Nc should be the quantum parameter. If one attemp
geometric quantization of this model, the symplectic form should be an integer multiple o
Chern character of the line bundle; the symplectic form we have in Sec. III is in fact the basi
form. The other possibility is to write the symplectic form in the action and use single valued
of the path integral as is done in Ref. 7.~We note in passing that there is a factor of 2 missing
Ref. 18, due to an error in the conventions, but we scale the Hamiltonian with the same par
so the large-Nc results are the same. The geometric quantization parameter instead shoul
been 1/Nc!.

However the super-Poisson structure corresponding to~21! only gives a local structure of the
classical phase space of the theory. In addition to that there are some global constraints
classical variables assigned to the color invariant bilinears. The constraints emerge in the laNc

limit as consequences of the color invariance conditionQ̂b
a50.

To write down these constraints it is convenient to introduce the following operator pro
convention:

~AB!~p,q!5E @dr #A~p,r !B~r ,q!,

whereA, B stand for any of the above-mentioned~classical! bilinears. We also introduce operato
1 and e as the operators with the kernelsd@p2q# and 2sgn(p)d @p2q#, respectively. In this
notation the constraints read as follows:

~M1e!21QeQ†51,

eQ†M1eQ†e1eNeQ†1Q†50,
~22!

MQ1eQ1QeN1Qe50,

~eN1e!21eQ†Q51.

For brevity we will present here a derivation only of the first constraint in~22!. The deriva-
tions of all the others are very similar. We will restrict ourselves to the zero subspace o
operatorQ̂b

a and we define the number operators

F̂[
1

Nc
E @dp#:x†a~p!xa~p!:, B̂[

1

Nc
E @dp#sgn~p!:a†a~p!aa~p!: . ~23!

~Note that these operators are scaled by a factor of 1/Nc so taking the limitNc→` gives us zero
when these operators are acting on mesonic states. They are nonzero when we look at the b
states as we will see shortly.!

By writing out the product of operators at hand in terms of the variablesa, a†, x andx† and
moving the suitable combinations to the right one can prove the identity~that holds on the whole
Fock space!

~~M̂1e!21Q̂eQ̂†!~r ,s!5d@r 2s#1
2

Nc
2 x†a~r !xb~s!~Q̂a

b1da
b~ F̂1B̂!!.

On the subspaceQ̂a
b50, the operatorB̂1F̂ will be equal to the baryon number operatorB̂. Thus

when we restrict ourselves to a fixed baryon numberB, we get

~~M̂1e!21Q̂eQ̂†!~r ,s!5d@r 2s#1~M̂112e!~r ,s!
B

Nc
,
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this in the largeNc limit produces the first constraint in~22!.
When we look at a possible exotic baryon state:

E ea1 . . . asas11¯ aNc
Z~p1 , . . . ,ps ;ps11 , . . . ,pNc

!x†a1~p1!

. . . x†as~ps!a
†as11~ps11! . . . a†aNc~pNc

!u0., ~24!

where p1 ,p2 , . . . ,pNc
are all positive, andZ(p1 , . . . ,ps ,ps11 , . . .,pNc

) is symmetric in

p1 , . . . ,ps and antisymmetric inps11 , . . . ,pNc
. The operatorB̂ gives 1 acting on such a state. O

mesonic states this operator has vanishing matrix elements in the large-Nc limit. One can prove
more generally therefore that this operator is the baryon number operator. If we act b
operator on a product of such exotic baryons and finite number of mesons in the large-Nc limit we
get the number of baryons,B. In this discussion we see the possibility of having exotic baryo
and we will come back to the geometric meaning of this in Sec. III~and show that it is indeed a
integer in our model!. We will also show that just as in the purely bosonic and purely fermio
cases the constraints~22! have an elegant geometric interpretation in terms of infinite dimensi
disk and Grassmannian.

III. PHASE SPACE OF THE THEORY: SUPER-GRASSMANNIAN

In this section we present the geometry of the phase space without going into the math
cal intricacies. We believe the most proper treatment requires an infinite-dimensional exten
Berezin’sZ-graded version of supergeometry. We do not give such a complete presentatio
develop a more formal approach~in many cases we provide parenthetical remarks on the gen
case!. We plan to provide a more detailed discussion in a later publication when we di
geometric quantization of this system. The proper treatment of second quantization with b
and fermions, which fits to our point of view, can be found in Refs. 25, 26, and also in Ref. 2
order to understand the geometry of the phase space, we define an operator in supermatr

F5S eN1e eQ†

Q M1e D , ~25!

whereF:H euH o→H euH o. We think of the direct sumH e
% H o of one-particle Hilbert spaces o

bosons and fermions, respectively, as even and odd graded and the notationH euH o is used to
emphasize this grading. We usee5(0

21
1
0) in both of these spaces. This matrix realization cor

sponds to the decomposition of the Hilbert spaces into positive and negative energy subsp
H1

e
% H2

e for bosons andH1
o

% H2
o for fermions.

The constraints and the conditions that we found in Sec. II on the basic variables of our
in terms ofF become

F251, EF†E5F, ~26!

whereE5(0
e

1
0).

If we introduce a supergroup of operators acting onH euH o, obeying the relations

gEg†5E, g†Eg5E, ~27!

we see that the action of this group on the variableF, (g,F)°gFg21 preserves the above-state
conditions onF. The orbit of ê5(0

e
e
0) under the action of this superunitary group can be para

etrized byF.
The condition that the bilinears, originally defined on the Fock space of the quantum th

create finite norm vectors implies that the off-diagonal components ofM and N are Hilbert–
Schmidt operators~see Refs. 7, 6, and 18 and for the ideals in the nonsuper case see Refs.
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29!. A similar computation shows that the off-diagonal components of the superoperatorsQ and
Q† also satisfy these conditions. These finite norm conditions in two dimensions can be writ
an economical way as the Hilbert–Schmidt condition on the supermatrixF. To state these con
vergence conditions more properly we should decomposeH euH o into negative and positive
energy subspaces and think ofF as an operator acting fromH 1

e uH 1
o

% H 2
e uH 2

o to the same space
Thus we have the convergence conditions,

@ ê,F#PI2 , ê5S 21 0

0 1D , ~28!

where we writeê ’s matrix realization with respect to this positive–negative energy decompos
Here for the upper off-diagonal component the ideal of Hilbert–Schmidt operatorsI2 refers to the
set of operatorsB:H 2

e uH 2
o →H 1

e uH 1
o , such that TrB†B is convergent.~This definition in theZ2

graded case is the usual one, since the operators have ordinary numbers as their matrix en
a fully Z graded case these questions are delicate and we have to give a precise meanin
Hilbert–Schmidt condition. For this work we ignore this question but see Ref. 30 for fu
comments on it!. The lower off-diagonal block will be a Hilbert–Schmidt operatorC:H 1

e uH 1
o

→H 2
e uH 2

o as well. ~Since the even and odd Hilbert spaces are isomorphic, it is convenie
drop the superscript when there is no confusion.! The above-mentioned considerations suggest
we should use as our symmetry group the restricted superunitary group:

U1~H2 ,H1uH!5$gugEg†5E, g†Eg5E @ ê,g#PI2%, ~29!

whereI2 denotes the ideal of Hilbert–Schmidt operators as in the above-mentioned pos
negative energy decomposition used forF’s convergence conditions.

We look at the orbit ofê5(0
e

e
0), this time we write it with respect to the original decomp

sition H euH o, under the restricted superunitary group. We notice that this orbit is in fa
homogeneous supersymplectic manifold:

SGr15
U1~H2 ,H1uH!

U~H2uH2!3U~H1uH1!
. ~30!

The stability subgroup has a natural embedding into the full group. This physically means th
allow mixing of the positive energy states of bosons and fermions as well as the negative

Notice that a tangent vectorVu at any point on this super-Grassmannian is given by its ef
on F, Vu(F)5 i @u,F#s , where we use the super-Lie bracket which is defined by

F S a1 b1

g1 d1
D ,S a2 b2

g2 d2
D G

s

5F S a1 0

0 d1
D ,S a2 0

0 d2
D G1F S a1 0

0 d1
D ,S 0 b2

g2 0 D G
1F S 0 b1

g1 0 D ,S a2 0

0 d2
D G1F S 0 b1

g1 0 D ,S 0 b2

g2 0 D G
1

for a decomposition ofu into (g
a

d
b), with respect toH euH o. In general the super-Lie algebr

elementu will depend on the positionF.
Our homogeneous manifold carries a natural two-form, this turns it into a phase spac

formally define a two-form;

V5
i

4
StrF dF∧dF. ~31!

One can give the symplectic form explicitly via its action on vector fields, and this define
above-mentioned two-form:
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i Vu
i Vv

V5
i

8
StrF@@u,F#s ,@v,F#s#s . ~32!

Using exactly the same methods as in Refs. 7 and 18 we can show that it is closed and
generate.

In fact the above-mentioned form is also a homogeneous two-form invariant under the
action, as can be verified in a simple manner. We note that the super-Poisson brackets wh
introduced in Sec. I as a result of the large-Nc limit, are precisely the ones given by this symplec
form. Therefore we may introduce a classical dynamical system defined on this s
Grassmannian with this symplectic form which gives us the same set of super-Poisson br
This shows that the large-Nc limit of our theory has an independent geometric formulation:
phase space is an infinite-dimensional homogeneous manifold with a natural symplectic st
on it.

The group action is generated by moment mapsFu52 ( i /2)Stre u(F2(0
e

e
0)), where we use

the even–odd decomposition to write all the operators and conditional trace to be defined
following. They satisfy the following super-Poisson realization of the super-unitary group:

$Fu ,Fv%5F2 i [u,v] s
2

i

2
StreF S e 0

0 e D ,uG
s

v, ~33!

where @ .,.#s again denotes the super-commutator~super-Lie bracket!. To see this, one way is to
compute both sides, the other is to use general principles and evaluate both sides atê5(0

e
e
0)

~written with respect to the even–odd decomposition!. The moment function on the right vanishe
there and the central term is constant on the phase space, this gives us

Ss~u,v !52
i

8
StrS e 0

0 e D F F S e 0

0 e D ,uG ,F S e 0

0 e D ,vG G
s

52
i

2
~Tre@e,a~u!#a~v !2Tre~@e,b~u!#g~v !

1@e,b~v !#g~u!!2Tre@e,d~u!#d~v !!

52
i

2
StreF S e 0

0 e D ,uGv.

The conditional supertrace is defined by Stre(C
A

D
B)5Tre A2Tre D, and Tre A5 1

2Tr(A
1eAe). Notice that the convergence conditions onF guarantees that the conditional trace exi
~in fact a better convergence is possible, see the following!. This can be seen most easily by usin
F2 ê5gêg212 ê52@ ê,g#g21. It is more natural to compute this with respect to the positiv
negative energy decomposition~we use the subscripts6 to denote the supermatrix elemen
acting between various subspaces!,

@ ê,g#g215S 0 g12

g21 0 D S ~g21!11 ~g21!12

~g21!21 ~g21!22
D 5S I1 I2

I2 I1
D , ~34!

whereI1 denotes the ideal of trace class operators andI2 is the ideal of Hilbert–Schmidt opera
tors. We used the fact that the off-diagonal elements are Hilbert–Schmidt and the othe
bounded, and the analog of the well-known conditionsI2I2PI1 in the supercase. If we multiply
this with an element of the Lie algebra we see that the conditional traces exist. It sugg
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slightly better way to write the moment maps,Fu52 ( i /2)Strê u(F2 ê), which shows that the
conditional convergence could be actually defined with respect to the positive–negative e
decomposition.

The previous discussion further implies that Strê(F2 ê) is convergent. This expression is i
fact conserved by the equations of motion of a quadratic Hamiltonian. We may understa
meaning of this number, if we think of its action on color invariant states before we take the
Nc limit. We can prove that in this case this operator gives us twice the baryon number. Reca
the baryons in this theory can be exotic, that is we may have color singlet combinations
form,

E ea1a2 ¯ aNc
Z~q1 , . . .qs ;qs11 , . . . ,qNc

!x†a1~q1!

¯ x†ak~qk!a
†ak11~qk11! ¯ a†aNc~qNc

!u0&, ~35!

where all the momenta are positive, andZ is symmetric inp1 , . . . ,ps and antisymmetric in
ps11 , . . . ,pNc

, as we have seen in Sec. II. The negative momenta case,

E ea1a2 ¯ aNcZ̄~q1 , . . . ,qk ;qk11 , . . . ,qNc
!xa1

~q1! . . . xak
~qk!aak11

~qk11! . . . aaNc
~qNc

!u0&,

~36!

where all the momenta are negative, and similar symmetry properties forZ̄ correspond to an
antibaryon andB̂ acting on such a state gives21. So we identify the large-Nc limit of the baryon
number operator as

B52 1
2Strê~F2 ê !. ~37!

We show in Appendix A that the baryon number operator is indeed an integer usin
geometry of our phase space. We will leave the discussion of the geometry of the phase s
this point and return to the dynamics.

IV. THE LINEAR APPROXIMATION

In this section we discuss the linear approximation to the above-mentioned theory. At p
we do not have a simple physical interpretation of the full equations of motion. In principle
are straightforward to compute using the Hamiltonians we have and the defining Poisson br
Our phase space is defined by the Poisson brackets we get from the supercommutators
system in the large-Nc limit and the constraints which define the global nature of the phase sp
We note that part of the interactions of this theory are in these constraints. We give the
Poisson brackets that define the kinematics of our theory:

$M ~p,q!,M ~r ,s!%522i @M ~p,s!d@q2r #2M ~r ,q!d@p2s#

2d@p2s#d@q2r #~sgn~p!2sgn~q!!#,

$N~p,q!,N~r ,s!%522i @N~p,s!sgn~q!d@q2r #2N~r ,q!sgn~p!d@p2s#

2d@q2r #d@p2s#~sgn~p!2sgn~q!!#,

$Q~p,q!,Q̄~r ,s!%1522i @M ~p,s!sgn~q!d@q2r #1N~r ,q!d@p2s#

1d@p2s#d@q2r #~12sgn~p!sgn~q!!#,

$M ~p,q!,Q~r ,s!%522id@q2r #Q~p,s!, ~38!
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$N~p,q!,Q~r ,s!%52id@p2s#sgn~p!Q~r ,q!,

$M ~p,q!,Q̄~r ,s!%52id@p2s#Q̄~r ,q!,

$N~p,q!,Q̄~r ,s!%522id@q2r #sgn~q!Q̄~p,s!.

We have the constraints for the basic variables given in Eq.~21!.
If we are given a Hamiltonian we can compute the equations of motion using the a

mentioned super-Poisson brackets. This is a complete description of a classical system. Of
since the theory is infinite dimensional there are various delicate questions, such as, is it p
to define trajectories for any given initial data, what is the dense domain on which the Hamilt
is defined, etc. We will not attempt to answer these questions here. In the limitNc→`, we can
rewrite the Hamiltonians of interest in terms of these classical variables, the answers are g
Sec. II,

H5H01HI . ~39!

Here H05*@dp#hF(p)M (p,p)1*@dp#hB(p)N(p,p), and we takehF(p)5 (MF
2/4)(1/p) and

hB(p)5 (MB
2/4)(1/upu) with the interpretation that these mass terms are given by the prev

expressions.HI , the interaction part, is given generally by

HI5E @dp dq ds dt#G1~p,q;s,t !M ~p,q!M ~s,t !1E @dp dq ds dt#G2~p,q;s,t !N~p,q!N~s,t !

1E @dp dq ds dt#G3~p,q;s,t !Q~p,q!Q̄~s,t !.

In Sec. V, it will be useful to keep this general form of the Hamiltonian, but their explicit forms
given in the discussion of the models in Sec. II in~16!, ~17!, ~19!; we will use them directly~in the
calculations we keepm2 always, for the first model we must setm250!.

It is straightforward to find the resulting nonlinear equations of motion simply by compu

]O~x2!

]x2 5$O~x2!,H%s , ~40!

for any observableO of the theory~we allow for an odd Hamiltonian in the above-mention
form, but in our cases, the Hamiltonians are even!. However, it is simpler to first look at the
linearization where everything decouples~equations forM andN were analyzed in this approxi
mation in previous publications7,18,6!. We will see that we get the same equations forM ,N as in
Refs. 7 and 18 in our linearized theory.

Let us ignore all the quadratic terms in the equations of motion and all the quadratic ter
the constraints. First let us write down the resulting constraints in this approximation:

eM1Me50,

eNe1N50,

eQ†e1Q†50,

eQ1Qe50.

We note that the last two equations are identical and the constraints on these variables de
hence they can be solved independently. The solutions are

M ~u,v !50, N~u,v !50, Q~u,v !50 for uv.0. ~41!
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The other components, that is the ones which have opposite sign momenta, are not restrict
equations of motion one gets for the variableM in the linear approximation are~for u.0,v,0!:

]M ~u,v;x2!

]x2 5 i
MF

2

2 S 1

u
2

1

v D M ~u,v !2
ig2

2p E
2 ~u2v !/2

~u2v !/2
dp

M S p2
u2v

2
,p1

u2v
2 D

S p2
u1v

2 D 2 , ~42!

which is identical with the one in Refs. 7 and 6. If we make the ansatz~see Ref. 7! M (u,v)
5jM(x)eiP2x2

, wherex5 u/(u2v), and define the invariant massLM
2 52P2(u2v)—recall that

(u2v)5P1—we get

LM
2 jM~x!5MF

2 S 1

x
1

1

12xD jM~x!2
g2

p E
0

1 dy

~y2x!2 jM~y!. ~43!

This is the well-known ’t Hooft equation.10 Similarly for N(u,v) using the same type of ansat
N(u,v)5jN(x)eiP2x2

, and the invariant massLN
2 52P2(u2v), we get

LN
2 jN~x!5MB

2 S 1

x
1

1

12xD jN~x!2
g2

4p E
0

1 dy

~y2x!2

~x1y!~22x2y!

Ax~12x!y~12y!
jN~y!

1
l2

8p E
0

1 dy

Ax~12x!y~12y!
jN~y!. ~44!

This is the bosonic analog of the ’t Hooft equation.15,16,17,19The equations forQ,Q̄ are given in
Sec. V in a slightly more general context, so we will not repeat it here. If we again use an a
for the Q(u,v) given by Q(u,v;x2)5cQ(x)eiP2x2

and the same interpretation of the symbo
and an invariant mass,LQ

2 52P2(u2v), we get

LQ
2 cQ~x!5S MF

2

x
1

MB
2

12xD cQ~x!2
g2

2p E
0

1 dy

~y2x!2

22x2y

A~12x!~12y!
cQ~y!

1
m2

4p E
0

1 dy

A~12y!~12x!
cQ~y!. ~45!

Settingm250 we recover the equations found by Aoki.20,21 Similarly for the complex conjugate
variableQ̄, we get

L
Q̄

2
cQ̄~x!5S MB

2

x
1

MF
2

12xD cQ̄~x!2
g2

2p E
0

1 dy

~y2x!2

x1y

Axy
cQ̄~y!1

m2

4p E
0

1 dy

Ayx
cQ̄~y!. ~46!

We remark that the equation forcQ̄ can be obtained from the equation forcQ if we make the
change of variablex°12x, and interchangeMB andMF and use the principal value prescriptio
~this ultimately comes from the charge conjugation invariance!.

The properties of these equations have been discussed in the literature. The two kernel
differ from the ones given in Refs. 10, 15, 20, and 21 by a relatively compact perturbation so
behave in the same way. What is remarkable about them is that they only allow for di
spectrum, they do not have scattering states. The corresponding eigenvectors form a basi

We make a short digression and note an interesting limit: in the second model let u
g250. There is no coupling to gauge fields thus there is no reason to assume that the obse
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of the theory are color invariant. We can study this case along the same lines assumingit is a sort
of mean-field approximation onlyand we search for bound states of a fermion and a boson in
linear approximation. The Hamiltonian is quite simple,

H5
1

4
mB

2E @dp#

upu
N~p,p!1

m2

16 E @dp dq ds dt#

Auqsu

d@p2q1s2t#

t2s
Q~p,q!Q̄~s,t !. ~47!

The linearization is the same as before, for the bound state solution we obtain Eq.~44! with g2

50. Unfortunately this equation will not have a solution for the bound state energy. We nee
opposite sign in the Hamiltonian for the coupling ofQQ̄. It is an amusing exercise to check th
the seemingly different interactionim(f* acR* cLa2cL*

acRfa) produces the same Hamiltonian
so we will still not find a bound state for fermion–boson pair. We hope to come back to som
these issues in a separate work.

V. BEYOND THE LINEAR APPROXIMATION

In this section we will discuss the equations of motion of our theory in a semilinear app
mation. The exact equations of motion can of course be written, but it is hard to grasp
meaning at this point for the most general case. It will be interesting to look at other appro
tions to see what new information they contain.

Our first semilinear approach is this: We will keep everything linear in the variablesM andN
and terms second order inQ andQ† only. We will drop terms of the formMQ, NQ andM2,N2.
Even though we have not found a justification for why this should be a good approximatio
expect that it may give us a better feeling for the system. We first show that this is a cons
approximation, that is, if the equations of motion are also kept to the same approximatio
truncated constraints are preserved.

The constraints in this new approximation become

Me1eM1QeQ†50,

Qe1eQ50,

eNe1N1eQ†Q50.

We should also obtain semilinearized equations of motion for these variables. We now sho
the linearized constraints are left invariant by the semilinearized equations of motion. We
present the proof for a general quadratic Hamiltonian. The solution of the constraint onQ is
simple:Q(u,v)50 whenu andv have the same sign. We notice that the first constraint does
impose anything onM (u,v) for u.0,v,0 or u,0,v.0, and the constraint is consistent since f
this case we have*Q(u,q)@2sgn(q)#Q̄(q,v)@dq#50. Thus we should look atu.0,v.0 or both
negative case forM in the constraint:

22M ~u,v !1E Q~u,q!@2sgn~q!#Q̄~q,v !@dq#522M ~u,v !1E
2`

0

@dq#Q~u,q!Q̄~q,v !50.

~48!

Let us check that it is preserved by the linearized equations of motion,
                                                                                                                



t on

3002 J. Math. Phys., Vol. 43, No. 6, June 2002 A. Konechny and O. T. Turgut

                    
]M ~u,v !

]x2 5$M ~u,v !,H%52i ~hF~u!2hF~v !!M ~u,v !1E @dp dr ds dt#G1~p,r ,s,t !

3$M ~u,v !,M ~p,r !M ~s,t !%1E @dp dr dr dt#G3~p,r ,s,t !$M ~u,v !,Q~p,r !Q̄~s,t !%)

52i ~hF~u!2hF~v !!M ~u,v !14i E @dp dr #G1~p,r ;v,u!M ~p,r !@sgn~u!2sgn~v !#

22i E @dr ds dt#G3~v,r ,s,t !Q~u,r !Q̄~s,t !

12i E @dp dr ds#G3~p,r ,s,u!Q~p,r !Q̄~s,v !.

The equations of motion forQ in this approximation become

]Q~u,q!

]x2 52ihF~u!Q~u,q!22i sgn~q!hB~q!Q~u,q!

12i E G3~p,r ,q,u!Q~p,r !@12sgn~u!sgn~q!#. ~49!

Similarly for Q†,

]Q̄~q,v !

]x2 522ihF~v !Q̄~q,v !12i sgn~q!hB~q!Q̄~q,v !

22i E G3~v,q;s,t !Q̄~s,t !@12sgn~v !sgn~q!#. ~50!

Combining these equations and using the constraint again we obtain

2
]M ~u,v !

]x2 2E
2`

0 F ]Q~u,q!

]x2 Q̄~q,v !1Q~u,q!
]Q̄~q,v !

]x2 G @dq#50. ~51!

Using the same equations, we can check that the conditionQ(u,v)50 whenu, v have the same
sign, is also preserved by the equations of motion, hence also forQ̄(u,v).

We write down the equation of motion forN(u,v),

]N~u,v !

]x2 52i @hB~u!sgn~u!2hB~v !sgn~v !#N~u,v !

14i E @dp dq#G2~p,q;v,u!@sgn~u!2sgn~v !#N~p,q!

12i E @dp dq dt#@G3~p,u;q,t !Q~p,v !Q̄~q,t !sgn~u!

2G3~p,q;v,t !Q~p,q!Q̄~u,t !sgn~v !#.

Using the above-mentioned equations of motion we can check that the truncated constrainN
is preserved under time evolution:
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~11sgn~u!sgn~v !!
]N~u,v !

]x2 2sgn~u!E
2`

0

@dq#F ]Q̄~u,q!

]x2 Q~q,v !1Q̄~u,q!
]Q~q,v !

]x2 G50.

~52!

Next we discuss the equations of motion for the unconstraint components. From the a
mentioned equations we see that the equations forQ and Q† are independent ofM and N,
therefore they can be solved independently. Furthermore, the solution acts as a source term
M and N equations. Let us write down the equation of motion forQ in the case ofu.0 and
v,0 for our model:

]Q~u,v !

]x2
52ihF~u!Q~u,v !12ihB~v !Q~u,v !

1 i
m2

8~u2v !
E

2 ~u2v !/2

~u2v !/2
@dq#

QS q2
u2v

2
,q1

u2v

2
D

AUq1
u2v

2
Uuvu

2 i
g2

2
E

2 ~u2v !/2

~u2v !/2
@dp#

p2
u

2
1

3v

2

S p2
u1v

2
D 2

QS p1
u2v

2
,p2

u2v

2
D

AUp2
u2v

2
Uuvu

.

A similar equation forQ̄(u,v) holds @which can also be found by complex conjugation of t
Q(v,u)#.

Notice that the equations of motion forM (u,v) ~for u.0,v,0) become

]M ~u,v !

]x2 52i ~hF~u!2hF~v !!M ~u,v !2 ig2E @ds#
M ~s1~u2v !/2,s2~u2v !/2!

@s2~u1v !/2#2

1
ig2

4 E @dq ds#
q1s

~q2s!2

1

Auqsu
@Q~q1u2s,q!Q̄~s,v !2Q~u,q!Q̄~s,v1s2q!#

2
im2

8 E @dq ds#

Auqsu
FQ~u,q!Q̄~s,s2v1q!

v2q
2

Q~u1q2s,q!Q̄~s,v !

u2s
G .

We note that in the second term on the right we should separate the constrained variableM
from the unconstrained ones. At the same time we do some shift of integration variable
obtain

]M ~u,v;x2!

]x2 5 i
MF

2

2 F1

u
2

1

vGM ~u,v !2 ig2E
2 ~u2v !/2

~u2v !/2
@ds#

M ~s1~u2v !/2,s2~u2v !/2!

@s2~u1v !/2#2

1 f 1~u,v;x2!1 f 2~u,v;x2!1g1~u,v;x2!1g2~u,v;x2!1Y1~u,v;x2!

1Y2~u,v;x2!,

where all the forcing terms are functions ofQ,Q̄ and their explicit expressions are given
Appendix B. Note that once we know the solution forQ andQ†, f ’s, g’s, andY’s just become-
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time dependent sources for theM and N equations. Therefore we can think of this as a forc
linear equation. Let us also write down the resulting equation of motion forN(u,v), for u.0,
v,0,

]N~u,v;x2!

]x2
5 i

MB
2

2
F1

u
2

1

vGN~u,v !1 i E
2 ~u2v !/2

~u2v !/2
@ds#

3
N~s1~u2v !/2,s2~u2v !/2!

AUs2
u2v

2
UUs1

u2v

2
Uuuvu

F g2

4

S s1
3u

2
2

v

2
D S s1

3v

2
2

u

2
D

Fs2
~u1v !

2
G2 2

l2

8 G
1 f̃ 1~u,v;x2!1 f̃ 2~u,v;x2!1g̃1~u,v;x2!1g̃2~u,v;x2!1Ỹ1~u,v;x2!

1Ỹ2~u,v;x2!,

where we again have the forcing terms determined by the variablesQ,Q̄ ~the explicit formulas are
given in Appendix B!.

We can give a rough argument of how these equations behave. If we look at the for
given in Appendix B, we notice that the singular looking kernels are actually harmless, sinc
integration regions are outside of the singular points. This means that once we have the so
for the Q,Q̄ variables we can treat them as small perturbations to the equations. If we coul
the Green’s function for these linear operator equations given the sources we should be
solve them. Let us assume that we have the linear equationi (]M /]x2) 5LM1S(x2), whereL
is a linear Hermitian operator. If we know the eigenvectorsLMl5lMl then we can use a gener

ansatz asM5(lal(x2)Ml(x2), and getal(x2)52 i *0
x2

dx2,Ml(x2),S(x2).. ~In our case
the leading singular integral operators are Hermitian and have only discrete spectrum, he
expansion makes sense!. This is the full solution and represents transition probabilities among
stationary states of the operatorL . Perhaps it is better to think of the ordinary forced harmo
oscillator problem. When we have a time-dependent forcing, this causes transitions betwe
stationary levels of the oscillator. So, without actually solving the above equation we see th
forcing terms will cause transition between the stationary levels. That physically means th
energy levels of the mesons will have a broadening due to possible transitions.

There is another possible approximation, for which we drop allMM , NN, andQQ̄ terms and
allow for the cross termsMQ, NQ, etc., and neglect any higher orders. In some sense this is
complementary approximation to the previous one. This implies that we should write the
straint as

Me1eM50,

MQ1QeN1eQ1Qe50,

eNe1N50.

The first and the last equations are familiar conditions. The middle one has the following so
~in the given approximation!: For u,v.0 @recall thate(p)52sgn(p)#,

22Q~u,v !1E
2`

0

@dq#M ~u,q!Q~q,v !1E
2`

0

@dq#Q~u,q!~2sgn~q!!N~q,v !50. ~53!

For u.0,v,0 we have
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E
2`

0

@dq#M ~u,q!Q~q,v !2E
0

`

@dq#Q~u,q!N~q,v !50. ~54!

We satisfy the lower equation by noting that the same momenta case forQ is given by the first
constraint and the integrands then become of lower order in this case. The consistency o
approximations could be checked. In fact if we write down the time derivative of the ab
mentioned constraint,

22
]Q~u,v !

]x2 1E
2`

0

@dq#S ]M ~u,q!

]x2 Q~q,v !1M ~u,q!
]Q~q,v !

]x2 D
1E

2`

0

@dq#S ]Q~u,q!

]x2 N~q,v !1Q~u,q!
]N~q,v !

]x2 D50.

To see this we use

]Q~u,v;x2!

]x2 54i E @dp ds dt#G1~p,u;s,t !Q~p,v !M ~s,t !

24i E @dq ds dt#G2~v,q;s,t !Q~u,q!N~s,t !sgn~v !12i ~hF~u!

2sgn~v !hB~v !!Q~u,v !12i E @dp dq dt#G3~p,q;v,t !Q~p,q!M ~u,t !sgn~v !

12i E @dp dq ds#G3~p,q;s,u!Q~p,q!N~s,v !

12i E @dp dq#G3~p,q;v,u!Q~p,q!@12sgn~u!sgn~v !#.

For the first time derivative in the constraint we insert this expression, for the time derivativ
Q inside the integral we only retain the linear terms inQ, since other combinations are of lowe
order by assumption. We should also use the equations of motion ofM and N for the opposite
momenta case and only within the linear approximation as is given in the previous semilinea
we do not repeat them, higher order terms get multiplied byQ and become small. Then we se
that the constraint is preserved within the given approximation.

This time we have decoupled linear equations forM andN for the opposite momenta cas
since we ignoreQQ̄ type terms, and in principle they can be solved independently. When we
at the equations forQ, we should again be careful. The opposite momenta case is to be trea
independent dynamical variables: if we use the constraint equation, we may express the sa
momenta in terms of the solutions ofM andN and the opposite momenta terms ofQ. When we
look at the opposite sign momenta equation forQ we may separate the same sign mome
contributions in the integral operators. But these same momenta terms in the integral eq
become of higher order, since all these terms are multiplied by other variables, and the cent
vanishes in this case, hence they can be dropped. Let us denote the resulting integral e
which only acts on the opposite momenta terms byK , this is the expression we have found befo
and write the remaining parts as an abstract integral operatorF(x2). Notice that it has dependenc
on x2 via the solutions ofM andN. The time dependence ofM andN is rather simple for this
case, since we have singular integral equations with discrete spectra. We can in principle su
the solutions we picked into this equation. Hence we have an integral equation

]Q~u,v;x2!

]x2 5@KQ#~u,v;x2!1@F~x2!Q#~u,v;x2!. ~55!
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It is most natural to think of the last term as a time-dependent perturbation. We can writ
perturbation termF(x2):

@F~x2!Q#~u,v;x2!52
ig2

2 F E
0

u

@ds#E
0

u2s

@dp#1E
2`

0

@ds#E
u2s

`

@dp#G M ~s,s1p2u;x2!

~s2u!2 Q~p,v !

1 i F E
2`

v
@dq#E

0

v2q

@dt#1E
v

0

@dq#E
v2q

0

@dt#G
3Fg2

8

~ t1q!21~q2v !222q2

~v2t !2 2
l2

16GN~ t1q2v,t;x2!

Auvq~ t1q2v !u
Q~u,q!

2 i F E
v

0

@dt#E
0

t2v
@dp#1E

2`

v
@dt#E

t2v

0

@dp#G
3S m2

8~ t2v !
1

g2

4

p2t12v
~p2t !2 D M ~u,t;x2!

Au~p2t1v !vu
Q~p,p2t1v !

1 i F E
0

u

@ds#E
0

u2s

@dp#1E
u

`

@ds#E
u2s

0

@dp#G
3S m2

8~u2s!
1

g2

4

p12s2u

~p2u!2 D N~s,v;x2!

Au~p1s2u!su
Q~p,p1s2u!.

The method of solving such equations is known in principle. We can treat the last term
truly time-dependent perturbation, but this time it involves the unknown itself and thus cann
solved in closed form. However, we can solve it perturbatively. The kernels again do not be
singular within the given ranges of the integrals except at the boundaries. The singularities
as severe and we expect that the perturbations are small, so that one can obtain a rea
answer from this approach. We will not go into further details, but the basic result is agai
possibility of transitions between the different levels of the boson–fermion mesons due
interactions.
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APPENDIX A: BARYON NUMBER

We define the Fredholm operators in aZ2 graded context as in the ordinary case~there is an
extension to theZ grading which should fit to our model better: The definition of the Fredho
operator shows that the body is an ordinary Fredholm operator and the rest is compact. So
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following use the body for all the formulas, and take the supertrace ofF2 ê ’s body part!: a
Fredholm operator is an invertible operator up to compact operators. This again implies the
and the cokernel are actually finite dimensional. Let us write down the kernel in a decompo
VeuVo , and define a superdimension, which is the dimension of the even part of the kernel
the dimension of the odd part. Sdim(Ker(A))5dim(PeKer(A)Pe)2dim(PoKer(A)Po), wherePe

andPo denote projections onto the even and odd subspaces, respectively. Then the index
be

SInd~A!5Sdim~Ker~A!!2Sdim~Coker~A!!. ~A1!

We can extend the Calderon theorem to our case~see Ref. 31 for a good introduction and th
original result!: If we have an operatorA which is Fredholm, and assume we have an operatoB
such that (I 2AB)m and (I 2BA)m are trace class for an integerm, then we can compute th
super-Fredholm index as Str(I 2BA)m2Str(I 2AB)m. Let us now see that in our problem th
supertrace ofF is indeed this index. It will be more convenient to decompose our operator
respect to the positive and negative subspaces, thus we write everything with respect toH1uH1

% H2uH2 . We do not repeat odd and even superscripts, since the bar indicates this separa
this decomposition our group conditions can be found from

g†Eg5E, gEg†5E, E5S e 0

0 1D , ~A2!

so E is the same as before in this matrix representation, it is interpreted differently. The or
with respect to this decomposition,

F5gêg21, ê5S 21 0

0 1D . ~A3!

So if we writeg:H1uH1 % H2uH2→H1uH1 % H2uH2 , explicitly, we have

g5S A B

C DD B, CPI2~H7uH7 ,H6uH6!. ~A4!

From the first group condition we get,A†eA1C†C5e andD†D1B†eB51 and from the second
one we getAeA†1BB†5e and DD†1CeC†51. SinceB,C are Hilbert–Schmidt in the more
generalized sense, we haveA,D super-Fredholm. Further we can use the above-mentioned t
rem to compute the index ofA,D, for example,

SInd~D !5Str~B†eB!2Str~CeC†!. ~A5!

Let us compute the conditional supertrace ofF2 ê, ~in fact we see that this is the correct way w
should be computing it!, first we write it explicitly with respect to the above-given decompositi

gêg212 ê5S 2AeA†e1BB†e11 *

* 2CeC†1DeD†21D . ~A6!

If we use the above-mentioned group properties, we get

F2 ê5S 2BB†e *

* 22CeC†D . ~A7!

The conditional supertrace of this operator gives us, Stre(F2 ê)52(Str(BB†e)2Str(CeC†)),
which is equal to 2SInd(D) ~using Str(BB†e)5Str(B†eB)). Thus we prove using only the ge
ometry of the super-Grassmanian that this is an integer.
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APPENDIX B: FORCING TERMS

Here we present the forcing functions for the inhomogeneous equations of Sec. V. The
we obtained forM in the first semilinear approximation are given by

f 1~u,v;x2!52 i
g2

2 E
~u2v !/2

`

@dp#E
2`

0

@dq#

QS p2
u2v

2
,qD Q̄S q,p1

u2v
2 D

Fp2
u1v

2 G2 ,

f 2~u,v;x2!52 i
g2

2 E
2`

2 ~u2v !/2
@dp#E

0

`

@dq#

QS p2
u2v

2
,qD Q̄S q,p1

u2v
2 D

Fp2
u1v

2 G2 ,

g1~u,v;x2!5 i
g2

4 F E
0

u

@ds#E
2 ~u2s!/2

~u2s!/2
@dq#

1E
u

`

@ds#E
2 ~s2u!/2

~s2u!/2
@dq#G

q1
3s

2
2

u

2

Fq2
u1s

2
G2

QS q1
u2s

2
,q2

u2s

2
D Q̄~s,v !

AUq2
u2s

2
Uusu

,

g2~u,v;x2!52 i
g2

4 F E
v

0

@ds#E
2 ~s2v !/2

~s2v !/2
@dq#

1E
2`

v
@ds#E

2 ~v2s!/2

~v2s!/2
@dq#G

q1
3s

2
2

v

2

Fq2
v1s

2
G2

Q~u,s!Q̄S q2
v2s

2
,q1

v2s

2
D

AUq2
v2s

2
Uusu

,

Y2~u,v;x2!51
im2

8 F E
0

u

@ds#E
2 ~u2s!/2

~u2s!/2
@dq#

1E
u

`

@ds#E
2 ~s2u!/2

~s2u!/2
@dq#G

QS q1
u2s

2
,q2

u2s

2
D Q̄~s,v !

~u2s!AUq2
u2s

2
Uusu

,

Y1~u,v;x2!52
im2

8 F E
v

0

@ds#E
2 ~s2v !/2

~s2v !/2
@dq#

1E
2`

v
@ds#E

2 ~v2s!/2

~v2s!/2
@dq#G

Q~u,s!Q̄S q2
v2s

2
,q1

v2s

2
D

~v2s!AUq2
v2s

2
Uusu

.
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The forcing terms for the first semilinear approximation for theN variable are

f̃ 2~u,v;x2!52 i E
~u2v !/2

`

@dp#E
2`

0

@dq#

Q̄S p1
u2v

2
,qDQS q,p2

u2v

2
D

AUp2
u2v

2
UUp1

u2v

2
Uuuvu

3F g2

8

S p1
3u

2
2

v

2
D S p1

3v

2
2

u

2
D

Fp2
u1v

2
G2 2

l2

4 G ,

f̃ 1~u,v;x2!5 i E
2`

2 ~u2v !/2
@dp#E

0

`

@dq#

Q̄S p1
u2v

2
,qDQS q,p2

u2v

2
D

AUp2
u2v

2
UUp1

u2v

2
Uuuvu

3F g2

8

S p1
3u

2
2

v

2
D S p1

3v

2
2

u

2
D

Fp2
u1v

2
G2 2

l2

4 G ,

g̃1~u,v;x2!5 i
g2

4 F E
0

u

@dp#E
2 ~u2p!/2

~u2p!/2
@ds#

1E
u

`

@dp#E
2 ~p2u!/2

~p2u!/2
@ds#G

s2
p

2
1

3u

2

Fs2
u1p

2
G2

Q~p,v !QS s1
u2p

2
,s2

u2p

2
D

AUs2
p2u

2
Uuuu

,

g̃2~u,v;x2!5 i
g2

4 F E
v

0

@dp#E
2 ~p2v !/2

~p2v !/2
@ds#

1E
2`

v
@dp#E

2 ~v2p!/2

~v2p!/2
@ds#G

q1
3s

2
2

v

2

Fq2
v1s

2
G2

QS s2
v2p

2
,s1

v2p

2
D Q̄~u,p!

AUs2
p2v

2
Uuvu

,

Ỹ1~u,v;x2!52
im2

8 F E
0

u

@dp#E
2 ~u2p!/2

~u2p!/2
@ds#

1E
u

`

@dp#E
2 ~p2u!/2

~p2u!/2
@ds#G

Q~p,v !Q̄S s1
u2p

2
,s2

u2p

2
D

~p2u!AUs1
u2p

2
Uuuu

,
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Ỹ2~u,v;x2!5
im2

8 F E
v

0

@dp#E
2 ~p2v !/2

~p2v !2
@ds#

1E
2`

v
@dp#E

2 ~v2p!/2

~v2p!/2
@ds#G

QS s2
v2p

2
,s1

v2p

2
D Q̄~u,p!

~p2v !AUs1
p2v

2
Uuvu

.

1G. ’t Hooft, Nucl. Phys. B75, 461 ~1974!.
2C. G. Callan, N. Coote, and J. D. Gross, Phys. Rev. D13, 1649~1976!.
3M. B. Einhorn, Phys. Rev. D14, 3451~1976!; 15, 3037~1976!.
4N. K. Pak and H. C. Tse, Phys. Rev. D14, 3472~1976!.
5I. Bars and M. B. Green, Phys. Rev. D17, 537 ~1978!.
6S. G. Rajeev,Derivations of Hadronic Structure Functions from QCD, Conformal Field Theory, edited by Y. Nutku, C.
Saclioglu, and O. T. Turgut~Perseus, Cambridge, 2000!.

7S. G. Rajeev, Int. J. Mod. Phys. A9, 5583~1994!.
8A. Dhar, G. Mandal, and S. R. Wadia, Nucl. Phys. B436, 487 ~1994!.
9A. Dhar, P. Lakdawala, G. Mandal, and S. Wadia, Int. J. Mod. Phys. A10, 2189~1995!.

10G. ’t Hooft, Nucl. Phys. B72, 461 ~1974!.
11E. Witten, Nucl. Phys. B160, 57 ~1979!.
12P. Bedaque, I. Horvath, and S. G. Rajeev, Mod. Phys. Lett. A7, 3347~1992!.
13M. B. Halpern and C. Schwartz, Int. J. Mod. Phys. A14, 3059~1999!; 14, 4653~1999!.
14S. G. Rajeev and C. W-H. Lee, Int. J. Mod. Phys. A14, 4653~1999!; J. Math. Phys.39, 5199~1998!; Nucl. Phys. B529,

656 ~1998!.
15S. S. Shei and H. S. Tsao, Nucl. Phys. B141, 445 ~1978!.
16W. A. Bardeen and P. B. Pearson, Phys. Rev. D14, 547 ~1976!.
17M. B. Halpern and P. Senjanovic, Phys. Rev. D15, 1655~1977!.
18S. G. Rajeev and O. T. Turgut, Commun. Math. Phys.192, 493 ~1998!.
19T. N. Tomaras, Nucl. Phys. B163, 79 ~1980!.
20K. Aoki, Phys. Rev. D49, 573 ~1994!.
21K. Aoki and T. Ichihara, Phys. Rev. D52, 6435~1995!.
22M. Cavicchi, Int. J. Mod. Phys. A10, 167 ~1995!.
23O. Lunin and S. Pinsky, Phys. Rev. D63, 45019~2001!.
24R. Jackiw and Rajaraman, Phys. Rev. Lett.54, 1219~1985!, Erratum54, 2060~1985!.
25H. Grosse and E. Langmann, J. Math. Phys.33, 1032~1992!.
26H. Grosse and E. Langmann, Lett. Math. Phys.21, 69 ~1991!.
27E. Langmann, J. Math. Phys.35, 96 ~1994!.
28I. C. Gohberg and M. G. Krein,Trans. of Math. Monographys, Vol. 18, Introduction to the theory of linear nonselfadjoin

operators~AMS, Providence, 1969!.
29B. Simon,Trace Ideals and Their Applications~Cambridge University Press, Cambridge, 1979!.
30O. T. Turgut, J. Math. Phys.42, 4259~2001!.
31J. M. Gracia-Bondia, J. C. Varilly, and H. Figueroa,Elements of Noncommutative Geometry~Birkhauser, Boston, 2000!.
                                                                                                                



by a

ts
e

ugh-

inter-

the

utral

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 6 JUNE 2002

                    
Structure conserving parametrization of Feynman
diagrams

E. Mendels
Schenkkade 221, 2595 AT The Hague, The Netherlands

~Received 1 December 2001; accepted for publication 4 March 2002!

Using x-space parameters instead of Feynman parameters, dimensionally regular-
ized Feynman diagrams are expanded with respect to the external momenta, the
internal masses, the logarithms of these masses and the regularization parameter

(n- 1
2n). A general formula for an arbitrary Feynman diagram is obtained for any

dimensionn. All ultraviolet divergences appear in a direct and transparent way as

poles. Their residues in the limit (n- 1
2n)→0 are subseries that are recognized as

subdiagrams. Relations between diagrams are transparent in all orders of perturba-
tion theory. © 2002 American Institute of Physics.@DOI: 10.1063/1.1475767#

I. INTRODUCTION

In the usual formalism of quantum field theory, a Feynman diagram is represented
momentum space integral of the type1

)
1< i< f
1< i 8, i

1< j < f 21
d

E dk i 8,i
d

Pi 8,i
d

~g;k;m!

~k i 8,i
d 21mi 8,i

d 2!a
i8,i

d Vi~g;k;m!dS pj2 (
1<a< f

d

k
a, j

d D , ~1.1!

with

k
a, j

d 52k
j ,a

d . ~1.2!

About the notation we remark the following points;

• Internal momenta and masses of propagators wear three indices. The two subscripi 8,i
indicate the vertices that they are connecting, the superscriptd counts lines between thes
vertices.

• The exponentsa in the denominator are introduced in order to clarify what happens thro
out this article. In physics, they are equal to 1.

• The i«-prescription of propagators has been transformed away by Wick rotations. The
nal momenta, over which it is integrated, aren-dimensional Euclidean vectors.

• The numeratorsPi 8,i
d (g ;k;m) represent spin. They may be polynomials of matrices. In

scalar case
P

i8,i
d ~g ;k;m!51, ~1.3!

and if the spin is 1/2,

P
i8,i
d ~g ;k;m!5g•k

i 8,i

d 1mi 8,i
d . ~1.4!

• The factorsVi(g ;k;m) are vertex functions representing interaction. In the case of ne
scalar fields,

Vi~g ;k;m!51. ~1.5!
30110022-2488/2002/43(6)/3011/25/$19.00 © 2002 American Institute of Physics
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• The number of vertices is denoted byf . The number ofd-functions, that guarantee momen
tum conservation in each vertex, is one less, because of overall momentum conserva

p11p21¯1pf50. ~1.6!

• Integrating away thed-functions, the number of remaining integration vectors equals
number of independent loops.

• Remarks about notation are bulleted here and in the following sections, in order to pro
legibility.

We give two diagrams as an ilustration.
The first example to be considered is the two vertice, three internal line, scalar diagram

Its expression in momentum space is given by

E dk12
1 dk12

2 dk12
3 1

~k12
1 21m12

1 2!a12
1

~k12
2 21m12

2 2!a12
2

~k12
3 21m12

3 2!a12
3 d~p12k12

1 2k12
2 2k12

3 !

5E dk12
1 dk12

2 1

~k12
1 21m12

1 2!a12
1

~k12
2 21m12

2 2!a12
2

~~p12k12
1 2k12

2 !21m12
3 2!a12

3 . ~1.18!

The second example to be considered is the three vertice, five line diagram

Its momentum space representation is given by
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E dk12dk13
1 dk13

2 dk23
1 dk23

2 d~p12k122k13
1 2k13

2 !d~p21k122k23
1 2k23

2 !

3
1

~k12
21m12

2!a12~k13
1 21m13

1 2!a13
1

~k13
2 21m13

2 2!a13
2

~k23
1 21m23

1 2!a23
1

~k23
2 21m23

2 2!a23
2 .

~1.188!

In the case of charged fields, a vertex functionka1kb may appear in the numerator and inserti
of the identity

~kb2ka!.
~ka1kb!

~ka
21m2!~kb

21m2!
5

1

ka
21m2 2

1

kb
21m2 ~1.7!

into ~1.1! yields a relation between diagrams.
After introduction of integration parametersr,2 all k-integrations—the ‘‘easy integrations’’—

may be performed by means of Gauss integrals. Thus,~1.18! is transformed into

~1.18!5
~p1/2n!3~4p!1/2n

~2p!n

~m1!2b1
~m2!2b2

~m3!2b3

G~a1!G~a2!G~a3!

3E
0

`

dr1dr2dr3~r1!2b1
~r2!2b2

~r3!2b3S m12

r1 1
m22

r2 1
m32

r3 D 2 ~1/2! n

3expH 2r12r22r32
p1

2

m12
/r1 1 m22

/r2 1 m32
/r3J . ~1.88!

• The subscripts 1,2 are omitted for the sake of surveyability.

The parameter representation of~1.188! is

~1.188!

5
~p1/2 n!5~4p!n

~2p!2n

~m12!
2b12~m138 !2b138 ~m13

2 !2b13
2

~m238 !2b238 ~m23
2 !2b23

a

G~a12!G~a138 !G~a13
2 !G~a238 !G~a23

2 !

3E dr12dr13
1 dr13

2 dr23
1 dr23

2 ~r12!
2b12~r13

1 !2b13
1

~r13
2 !2b13

2
~r23

1 !2b23
1

~r23
2 !2b23

2

3H S m13
1 2

r13
1 1

m13
2 2

r13
2 D S m23

1 2

r23
1 1

m23
2 2

r23
2 D 1S m13

1 2

r13
1 1

m13
2 2

r13
2 D m12

2

r12
1S m23

1 2

r23
1 1

m23
2 2

r23
2 D m12

2

r12
J 2 ~1/2! n

3expH 2r122r13
1 2r13

2 2r23
1 2r23

2

2
p1

2~m23
1 2/r23

1 1m23
2 2/r23

2 !1p2
2~m13

1 2/r13
1 1m13

2 2/r13
2 !1p3

2 m12
2/r12

~m13
1 2/r13

1 1m13
2 2/r13

2 !~m23
1 2/r23

1 1m23
2 2/r23

2 !1~m13
1 2/r13

1 1m13
2 2/r13

2 ! m12
2/r121~m23

1 2/r23
1 1m23

2 2/r23
2 ! m12

2/r12
J .

~1.888!

• The number of dimensions is denoted byn and the notation

b51
2 n2a ~1.9!

has been used.

• The number of integration variablesr equals the number of internal lines.
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A parameter representation of the general Feynman diagram is derived in Ref. 2. A sho
derivation is given in Appendix B.

The integrals~1.18! and ~1.188! are ultraviolet divergent in four dimensional space–time a
so the integrals~1.88! and ~1.888! are divergent. They have to be regularized. Using dimensio
regularization,3 then in ~1.88! and~1.888! is replaced by 2n, which is considered to be a continuou
variable.

Thus, the ultraviolet infinities in four dimensional momentum space are found back as
at n52 in the complexn-plane. After a change of integration variables according to

r15rs1 ,

r25r~12s1!s2 ,
~1.10!

r35r~12s1!~12s2!s3 ,

etc.,

the r-integration may be done. It yields aG-function being responsible for a pole atn52. In the
case of one-loop diagrams, this is the only divergence and the finite part is obtained by integ
over the Feynman parameters.

In the case of multiple loops, integration over Feynman parameters—the ‘‘diffi
integrations’’—itself may be divergent3 and all kinds of infinities mix together. It is not easy
unravel them. It has been proposed to do it by partial integrations,3 but even in the most simple
two-loop integral~1.88! we did not succeed. The little bit more complicated expression~1.888!
does not look very inviting either. Anyway, there is no recipe for the general case.

The cause of this mixing of infinities is the fact that the structure of the original expres
~1.1! is obscured by the Gauss integrations that were used at the derivation of~1.88! and ~1.888!.
This loss of structure is also illustrated by relation~1.7!, which is not translated into a simpl
relation in the parameter language of~1.88! and ~1.888!.

Dimensional regularization being introduced because the structure of the original mom
space expression is left unimpaired, it seems to be logical to combine it with a structure co
ing parametrization. Because of this philosophy, it has been proposed4 to usex-space parameter
rather than Feynman parameters. Using these parameters, infinities were found easily in o
two-loop diagrams.

In this article the method is extended to all orders of perturbation theory. Thex-space param-
etrization is structure conserving so that relations between diagrams are transparent in all o
perturbation theory. Moreover, all ultraviolet divergences are separated in a direct way
x-parameters are a useful guide for this separation, rather than an obstacle.

Finally, the integrations over allx-space parameters may be done in a systematical way, p
analytically, partly numerically. In this way, a general formula, giving the expansion series
respect to external momenta, internal masses, the logarithms of these masses and the re
tion parameter, is obtained in any dimension for an arbitrary Feynman diagram.

II. DIMENSIONAL REGULARIZATION IN x-SPACE

Representation~1.1! may be written by means ofx-space integrals over polynomials, exp
nentials andk-functions as
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1

~2p!n( f 21) (
s,t

S~sc ;sa,b ;sa,b
d ;ta,b

d !

3 )
1< i< f 21
1< i 8, i

d

H 2p~1/2! n

G~ai , f
d !

~mi , f
d !2bi , f

d
12t i , f

d J H 2p~1/2! n

G~ai 8,i
d

!
~mi 8,i

d
!2b

i 8,i
d

12t
i 8,i
d J

3E dxie
ipi•xi~xi !

2si~xi 8•xi !
si 8,ik~bi , f

d 1si , f
d ;mi , f

d xi !k~bi 8,i
d

1si 8,i
d ;mi 8,i

d uxi2xi 8u!. ~2.1!

• The number ofx-space integration variables isf 21, one less than the number of vertices

The functionsk(b;mx) differ by a factor (mx/2)b from the well knownKb(mx) ~Ref. 5!—the
latter are named ‘‘Bessel functions of the third kind’’ or ‘‘McDonald functions’’—and are, up
another factor, then-dimensional Fourier transform of the propagator (k21m2)2a:

2p~1/2! n

G~a!
m2bk~b;mx!5E dke2 ik•x

1

~k21m2!a . ~2.2!

If an internal line corresponds to mass zero, thek(b;mx) has to be replaced according to

m2bk~b;mx! →
m→0 1

2
G~b!S x

2D 22b

. ~2.3!

Properties of thek-functions are summarized in Appendix A.
The momenta in the polynomialsP a,b

d (g;k;m) and Vi(g;k;m) become derivatives in
x-language; the latter become, according to~A8!, polynomials ofxc

2,xa•xb and (m a,b
d )2, in

combination with higher orderk-functions. The coefficients are matrices, denoted
S(sc ;sa,b ;s a,b

d ;t a,b
d ). In the scalar case,S is ac-number and thesc , sa,b , s a,b

d andt a,b
d assume

only the value0.
If derivatives]mk(b;mx) appear, identity

]m@k~b;mux2x1u!$]mk~b;mux2x2u!%2$]mk~b;mux2x1u!%k~b;mux2x2u!#

5~12a!m2$k~b;mux2x1u!k~b11;mux2x2u!2k~b11;mux2x1u!k~b;mux2x2u!% ~2.4!

is obtained by using differential equation~A9!. It is the translation intox-space language of th
p-space relation~1.7!. Equation~2.4! may be inserted into~2.1! and yields a relation betwee
diagrams.

• The summation variabless and t of spin and complicated interaction do not impair t
essence of our method and will be omitted from now on.

• The number of independent vectorspi is g (g< f 21) and we use the notation

ci8,i5
xi 8•xi

xi 8xi
, ci , f 211 j5

xi•pj

xipj
, cf 211 j 8, f 211 j5

pj 8•pj

pj 8pj

~1< i 8, i< f 21! 1< i< f 21;1< j <g 1< j 8, j <g

~2.5!

After introduction of appropriate coordinate systems and after calculation of the correspo
Jacobians, a number of integrations may be done and the regularized expression
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~2.1!5
1

~2p!2n( f 21) )
1< i< f 21
1< i 8, i
1< j <g

d

H 2pn~mi , f
d !2b i , f

d

G~ai , f
d !

J H 2pn~mi 8,i
d

!2b
i 8,i
d

G~ai 8,i
d

!
J 2 f 21p~2n2 f 2g1 i 11!/2

G~~2n2 f 2g1 i 11!/2!

3E
I 2.0

dxidci 8,idci , f 211 j xi
2n21eipi•xiki , f

d ~b;mxi !

3ki 8,i
d

~b;muxi2xi 8u!
~ I i ,i 11,...,f 211g!2n2 f 2g1 i 21

~ I i 11,...,f 211g!2n2 f 2g1 i ~2.6!

is obtained.

• The n andb’s are given by

n51
2 n,

~2.7!
b5n2a,

and are considered as continuous variables.

• We use the notation

ki,f
d ~b;mxi!5k~bi,f

d ;mi,f
d xi!,

~2.8!
ki8,i

d
~b1l1r;mxi !5k~b i 8,i

d
1 l i 8,i

d
1r i 8,i

d ;mi 8,i
d xi !.

• I i ,i 11,...,f 211g is the content of anf 1g2 i dimensional parallelopipidum formed by the un
vectorsxi /xi ,...,xf 21 /xf 21 ,p1 /p1 ,....,pg /pg .

This content is the square root of a polynomial of cosines. Details are discussed in App
C. Integration is restricted to the area where the polynomials are positive.

We finish this section by clearing up~2.1! and~2.6! on the hand of the two example diagram
of Sec. I.

The diagram of Fig. 1 is inx-space given by

~1.18!5~1.88!

5
~2p~1/2! n!3

~2p!n

~m1!2b1
~m2!2b2

~m3!2b3

G~a1!G~a2!G~a3!
E dx1eip1•x1k1~b;mx1!k2~b;mx1!k3~b;mx1!. ~2.18!

After performance of most of the angle integrations, formula

~2.18!5
~2pn!3

~2p!2n

~m1!2b1
~m2!2b2

~m3!2b3

G~a1!G~a2!G~a3!

2p~2n21!/2

G~~2n21!/2!
~ ip1!q12

3E dc12~c12!
q12~A12c12

2!2n23E dxx2n211q12k1~b;mx!k2~b;mx!k3~b;mx! ~2.68!

is obtained.
The diagram of Fig. 2 is given by
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~1.188!5~1.888!

5
~2p~1/2! n!5

~2p!2n

~m13
1 !2b13

1
~m13

2 !2b13
2

~m23
1 !2b23

1
~m23

2 !2b23
2

~m12!
2b12

G~a13
1 !G~a13

2 !G~a23
1 !G~a23

2 !G~a12!

3E dx1dx2eip1•x1eip2•x2k13
1 ~b;mx1!k13

2 ~b;mx1!k23
1 ~b;mx2!k23

2 ~b;mx2!k12~b;mux12x2u!,

~2.188!

which becomes, after angle integrations,

~2.188!5
~2pn!5

~2p!4n

~m12!
2b12~m13

1 !2b13
1

~m13
2 !2b13

2
~m23

1 !2b23
1

~m23
2 !2b23

2

G~a12!G~a13
1 !G~a13

2 !G~a23
1 !G~a23

2 !

22p~2n23!/2p~2n22!/2

G~~2n23!/2!G~~2n22!/2!

3E
I 2.0

dx1dx2dc12dc13dc14dc23dc24x1
2n21x2

2n21eip1•x1eip2•x2k13
1 ~b;mx1!

3k13
2 ~b;mx1!k23

1 ~b;mx2!k23
2 ~b;mx2!k12~b;mux12x2u!

~ I 1,2,3,4!
2n25~ I 2,3,4!

2n24

~ I 2,3,4!
2n24~ I 3,4!

2n23 . ~2.688!

• In the following sections, the notation

«5n21
2 n5ba,b

d 2ba,b
d ~2.9!

will be used and~2.6!, ~2.68! and ~2.688! will be considered in the limit«→0.

III. SERIES EXPANSION; ANGULAR PART

The I -functions in~2.6! cancel, with the exception of the firstI in the numerator and the las
I in the denominator.

Furthermore,f 21 of the 1/2f ( f 21) arguments ofk-functions are ‘‘simple,’’ i.e., of the form
uxi u. The other1/2(f 21)( f 22) arguments are ‘‘nonsimple:’’ they are absolute values of lin
combinations ofxi . The latter have to be split according to~A12!. Because of condition~A13!, the
integration region is to be divided into (f 21)! subregions:

~2.6!5
1

~2p!2n( f 21) (
l ,q,r

)
1< i< f 21
1< i 8, i
1< j <g

d

~2 ! l
i 8,i
d S 1

2D 2l
i 8,i
d

1r
i 8,i
d

~ ip j !
(1<a< f 21qa, f 211 j

3
1

l i 8,i
d !qi , f 211 j ! r i 8,i

d !
H 2pn~mi , f

d !2b i , f
d

G~ai , f
d !

J
3H 2pn~mi 8,i

d
!2b

i 8,i
d

12l
i 8,i
d

12r
i 8,i
d

G~ai 8,i
d

!
J 2 f 21p~2n2 f 2g1 i 11!/2

G~~2n2 f 2g1 i 11!/2!

3E
I 2.0

dci 8,idci , f 211 j~ci 8,i !
(dr

i 8,i
d

~ci , f 211 j !
qi , f 211 j

~ I 1,2,...,f 211g!2n2 f 2g

~ I f ,..., f 211g!2n2g21

3E
0<x1<x2<...<xf 21<`

dxixi

2n211(aqi , f 211a1(
d
1<a, i r a,i

d
1(

d
i ,a< f 21r i ,a

d
12(

d
i ,a< f 21l i ,a

d

3ki , f
d ~b;mxi !ki 8,i

d
~b1 l 1r ;mxi !1~ f 21!! 21 permutations. ~3.1!
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• Multiplication is over indicesi , j , etc.; summation is over indicesa,b,c, etc., i.e.,

(
i,a<f21

5 (
a5i11

f21

, etc. ~3.2!

If all external momenta are linearly independent,

g5 f 21,
~3.3!

qi , f 211 j5d i , jqi , f 211 i .

The angular part of~3.1! may be worked out after transformation according to Appendix C:

yi , j5
~ I j 11,...,f 211g!2ci , j2ci , j 11cj , j 111¯

I i , j 11,...,f 211gI j , j 11,...,f 211g
, ~3.4a!

the inverse of which is given by

ci , j5yi , j~A12~yi , j 11!2
¯A12~yi , f 211g!2!~A12~yj , j 11!2

¯A12~yj , f 211g!2!

1~yi , j 11A12~yi , j 12!2
¯A12~yi , f 211g!2!~yj , j 11A12~yj , j 12!2

¯A12~yj , f 211g!2!

1¯1~yi , f 221gA12~yi , f 221g!2!~yj , f 221gA12~yj , f 221g!2!1yi , f 211gyj , f 211g .

~3.4b!

It results in

)
1< i< f 21
1< i 8, i
1< j ,g

2 f 21p~2n2 f 2g1 i 11!/2

G~~2n2 f 2g1 i 11!/2!

3E
I 2.0

dci 8,idci , f 211 j~ci 8,i !
(dr

i 8,i
d

~ci , f 211 j !
qi , f 211 j

~ I 1,2,...,f 211g!2n2 f 2g

~ I f ,...,f 211g!2n2g21

5(
q

8 )
1< i 8, i

1< i< i 9< f 211g
1< j 8, j < j 9<g

~(dr i 8,i
d

!!

qi 8,i
i 9!

qi , f 211 j !

qi , f 211 j
j 9!

2 f 21p~2n2 f 112g1 i !/2

G~~2n2 f 112g1 i !/2!

3E
21

1

dyi 8,i~yi 8,i !
(1<a, i 8 q

a,i 8
i
1( i 8,a< i qi 8,a

i

3~A12~yi 8,i !
2!2n2 f 2g1 i 221(1<a, i 8<b< i 21q

a,i 8
b
1( i 8,a<b< i 21q

i 8,a
b

3E
21

1

dyi , f 211 j~yi , f 211 j !
(1<a, i qa,i

f 211 j
1( i ,a< f 211 j qi ,a

f 211 j

3~A12~yi , f 211 j !
2!2n2g1 j 231(1<a, i<b< f 221 j qa,i

b
1( i ,a<b< f 221 j qi ,a

b

3~yf 211 j 8, f 211 j !
(1<a< f 21q

a, f 211 j 8
f 211 j

A~12~yf 211 j 8, f 211 j !
2(

f 211 j8<b< f 221 j

1<a< f 21 q
a, f 211 j 8

b

.

~3.5!
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• The summation variablesqa,b
c are defined in~C6!. They run from 0 tò under the conditions

(
i<c<f211g

qi8,i
c
5(

d
ri8,i

d ,

~3.6!

(
f211j<c<f211g

qi,f211j
c5qi,f211j ,

which has been indicated by the8 of S8.

• The superscriptc of qa,b
c counts terms fromb to f 211g in a polynomial expansion o

~3.4b! to the powerqa,b .

Integrations overyi 8,i andyi , f 211 j yield B-functions and after a number of cancellations, t
result is

~3.5!

5(
q

9 )
1< i 8, i

1< i< i 9< f 21
1< j 8, j < j 9<g

~(dr i 8,i
d

!!qi , f 211 j !

qi 8,i
i 9!qi , f 211 j

j 9!

3
2 f 21p~2n2 f 112g1 i !/2G~~2n2 f 2g1 i 111(a,b< iqa,b

b!/2!

G~~2n2 f 2g1 i 11!/2!

3
G~~11(1<a, i 8qa,i 8

i
1( i 8,a< iqi 8,a

i
!/2!G~~11(1<a, iqa,i

f 211j1( i ,a< f 211jqi ,a
f 211 j !/2!

G~2n1(1<a, i<b< f 211gqa,i
b1( i ,a<b< f 211gqi ,a

b/2!

3~yf 211 j 8, f 211 j !
(1<a, f 21q

a, f 211 j 8
f 211 j

~A~12~yf 211 j 8, f 211 j !
2!(

f 211 j8,b< f 221 j

1,a< f 21 q
a, f 211 j 8

b

.
~3.7!

• The summation variables in~3.7! obey both~3.6! and the subsidiary condition that th
arguments of theG-functions in the numerator have to be half integer. This has been indic
by the 9 of S9.

In order to get familiar with the notations, we shall repeat the derivation line~3.1!–~3.7! for the
two example diagrams.

In the case of the example of Fig. 1, wheref 215g51, ~3.1! reduces to

~2.68!5
~2pn!3

~2p!2n ~ ip1!q12
2p~2n21!/2

G~~2n21!/2!
E dc12~c12!

q12~A12c12
2!2n23

3E
0

`

dxx2n211q12k1~b;mx!k2~b;mx!k3~b;mx!, ~3.18!

where the notation~2.5! means that

c125
x1•p1

x1p1
~2.58!

and the transformation~3.4! becomes trivial:

y125c12. ~3.48!

The angular part of~3.18! becomes

2p~2n21!/2

G~~2n21!/2!
E

21

1

dy12~y12!
q12~A12y12

2!2n235
2p~2n21!/2G~~q1211!/2!

G~~2n1q12!/2!
, ~3.78!
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if q12 is even. Ifq12 is odd, the integral of~3.78! is zero.
In the case of the example of Fig. 2, wheref 215g52, ~3.1! reduces to

~2.688!5
~2pn!5

~2p!4n ~ ip1!q13~ ip2!q24
~m13

1 !2b13
1

~m13
2 !2b13

2
~m23

1 !2b23
1

~m23
2 !2b23

2
~m12!

2b1212l 1212r 12

l 12!q13!q24! r 12!G~a13
1 !G~a13

2 !G~a23
1 !G~a23

2 !G~a12!

3
22p~2n23!/2p~2n22!/2

G~~2n23!/2!G~~2n22!/2!
~2 ! l 12S 1

2D 2l 121r 12

3E dc12dc13dc14dc23dc24~c12!
r 12~c13!

q13~c24!
q24

~ I 1,2,3,4!
2n25

~ I 3,4!
2n23

3E
0<x1<x2<`

dx1dx2x1
2n211q131r 1212l 12x2

2n211q241r 12k13
1 ~b;mx1!k13

2 ~b;mx1!

3k23
1 ~b;mx2!k23

2 ~b;mx2!k12~b1 l 1r ;mx2!11permutation. ~3.188!

• The notation~2.5! means

c125
x1•x2

x1x2
, c135

x1•p1

x1p1
, c145

x1•p2

x1p2
,

c235
x2•p1

x2p1
, c245

x2•p2

x2p2
, c345

p1•p2

p1p2
~2.588!

• The explicit form ofI 1,2,3,4and I 3,4 is given in ~C1!.

The y→c transformation~3.4! becomes in this case

y125
~ I 3,4!

2c122c13c322c14c421c13c34c421c14c43c32

I 1,3,4I 2,3,4
, y135

c132c14c34

I 1,4I 3,4
,

y145c14 y235
c232c24c34

I 2,4I 3,4
, y245c24, y345c34, ~3.4a88!

and the inverse transformationc→y is, according to~C5c!, given by

c125y12$A12~y13!
2A12~y14!

2%$A12~y23!
2A12~y24!

2%

1$y13A12~y14!
2%$y23A12~y24!

2%1y14y24,

c135y13A12~y14!
2A12~y34!

21y14y34, c145y14,

c235y23A12~y24!
2A12~y34!

21y24y34,

c245y24, c345y34. ~3.4b88!

The angular part of~3.188! now becomes

22p~2n23!/2p~2n22!/2

G~~2n23!/2!G~~2n22!/2!
E

I 2.0
dc12dc13dc14dc23dc24~c12!

r 12~c13!
q13~c24!

q24
~ I 1,2,3,4!

2n25

~ I 3,4!
2n23

5
22p~2n23!/2p~2n22!/2

G~~2n23!/2!G~~2n22!/2!
E

21

1

dy12dy13dy14dy23dy24

3$A12~y12!
2A12~y13!

2~A12~y14!
2%2n25$A12~y23!

2A12~y24!
2%2n24
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3$y12A12~y13!
2A12~y14!

2A12~y23!
2A12~y24!

21y13A12~y14!
2y23A12~y24!

2

1y14y24%
r 12$y13A12~y14!

2A12~y34!
21y14y34%

q13~y24!
q24

5
22p~2n23!/2p~2n22!/2

G~~2n23!/2!G~~2n22!/2! ( 8
q

~r 12!!

q12
2!q12

3!q12
4!

q13!

q13
3!q13

4!

q14!

q14
4!

3E
21

1

dy12~y12!
q12

2
~A12~y12!

2!2n25E
21

1

dy13~y13!
q12

3
1q13

3
~A12~y13!

2!2n241q12
2

3E
21

1

dy14~y14!
q12

4
1q13

4
~A12~y14!

2!2n231q12
2
1q12

3
1q13

3

3E
21

1

dy23~y23!
q12

3
~A12~y23!

2!2n241q12
2

3E
21

1

dy24~y24!
q12

4
1q24

4
~A12~y24!

2!2n231q12
2
1q12

3
~y34!

q13
4
~A~12~y34!

2!q13
3
. ~3.588!

• The S8 means that summation is under the subsidiary conditions

q12
21q12

31q12
45r 12,

q13
31q13

45q13, ~3.688!

q14
45q14.

Integration overy12, y13, y14, y23, andy24 yields G-functions, many of which cancel:

~3.588!

5
22p~2n23!/2p~2n22!/2G~~2n221q12

2!/2!

G~~2n22!/2! ( 9
q

3
G~~11q12

2!/2!G~~11q12
31q13

3/2!G~~11q12
41q13

4!/2!G~~11q12
3!/2!G~~11q12

41q24
4!/2!

G~~2n1q12
21q12

31q13
31q12

41q13
4!/2!G~~2n1q12

21q12
31q12

41q24
4!/2!

3~y34!
q13

4
~A12~y34!

2!q13
3
,

~3.788!

if the arguments of allG-functions in the numerator are half integer, otherwise~3.588!50.

IV. SERIES EXPANSION; RADIAL PART

The radial part of~3.1! is transformed by insertion of expansion~A7! for k-functions with
argumentx1 ,x2 ,...,xf 22 . Moreover, the integration variablesxi are transformed according to

xi

xi 11
→j i ,i 11~1< i< f 22!,

~4.1!

xf 21→x.

The result is
                                                                                                                



3022 J. Math. Phys., Vol. 43, No. 6, June 2002 E. Mendels

                    
)
1< i< f 21
1< i 8, i

d

E
0<x1<x2<...<xf 21<`

dxi ki 8 i
d

~b1 l 1r ;mxi !ki,f
d ~b ;mxi!

3xi
2n211(1<a<gqi,f211a1(

d
1<a,ira,i

d
1(

d
i,a<f21ri,a

d
12(

d
i,a<f21li,a

d

5 (
k,u,w,u

)
1<i<f22
1<i8,i

d

Ki8,i
u d

~b1l1r;k;u;w!Ki,f
u d

~b;k;u;w!Smi8,i
d

2
D22u

i8,i
d

~b
i8,i
d

1l
i8,i
d

1r
i8,i
d

!12k
i8,i
d

Smi,f
d

2 D22ui,f
d b i,f

d
12ki,f

d

3«w
i8,i
d

«wi,f
d E

0

1

dji,i11~ji,i11!
(1<a<iNa21 H2 lnS mi 8,i

d j i ,i 11j i 11,i 12 ...j f 22,f 21x

2
D J u

i 8,i
d

3H 2 lnS mi , f
d j i ,i 11j i 11,i 12 ...j f 22,f 21x

2 D J ui , f
d

3E
0

`

dx x2n211(1<a<gqf 21,f 211a1(
d
1<a, f 21r a, f 21

d
1(1<a< f 22Na

3ki , f 21
d ~b1 l 1r ;mx!kf 21,f

d ~b;mx!, ~4.2!

with the obvious notation of~2.8!:

K
i , f

ud
~b;k;u;w!5Ku~b

i , f

d ;k
i , f

d ;u
i , f

d ;w
i , f

d !,

~4.3!

K
i 8,i

ud
~b1 l 1r ;k;u;w!5Ku~b

i 8,i

d 1 l
i 8,i

d 1r
i 8,i

d ;k
i 8,i

d ;u
i 8,i

d ;w
i 8,i

d !,

and with

Ni52n1 (
1<a<g

qi , f 211a22 (
1<a, i

d

ua,i
d ~ba,i

d 1 l a,i
d 1r a,i

d !22(
d

u i , f
d b i , f

d

12 (
1<a, i

d

ka,i
d 12(

d
ki , f

d 12 (
i ,a< f 21

d

l i ,a
d 1 (

1<a, i
d

r a,i
d 1 (

i ,a< f 21
d

r i ,a
d . ~4.4!

The range of the summation variables is given in~A7!: theu’s assume valuesu50 andu51; ki 8,i

runs from 0 to` if u50 and from 0 tobi 8,i1 l i 8,i1r i 8,i21 if u51; ki , f runs from 0 to` if u50
and from 0 tob21 if u51; u runs from 0 tow11 if u50 and it takes only the value 0 ifu51;
w runs from 0 to`.

The x-integral in ~4.2! is split into two parts:

E
0

`

dx5E
0

1/M

dx1E
1/M

`

dx. ~4.5!

The j-integrations and the0*1/Mdx-integration are performed by~D2! and the result is
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~4.2!5 (
k,u,w,u

S 1

M D 2n~ f 2 l !1(1<a< f 21qa, f 211b
l<b<g

12(1<a8<a< f 21l
a8,a
d

12(1<a8,a< f 21r
a8,a
d

3 )
1< i< i 9< f 21

1< i 8, i
d

Ki 8,i
ud

~b1 l 1r ;k;u;w!Ki , f
ud

~b;k;u;w!

3
~2 !u

i 8,i
d i 91ui , f

d i 9
2u

i 8,i
d

1ui , f
d

ui 8,i
d !ui , f

d ! ~(
d
1<a8,a< iua8,a

d i1(
d
1<a< iua, f

d i !!

~ui 8,i
d

2( i<c< f 21ui 8,i
d c!! ~ui , f

d 2( i<c< f 21ui , f
d c!!ui 8,i

d i 9!ui , f
d i 9! ~(1<a< iNa!11(1<a8,a< i

d
u

a8,a
d i1(1<a< i

d
ua, f

d i

3S mi 8,i
d

2M
D 22u

i 8,i
d

~b
i 8,i
d

1 l
i 8,i
d

1r
i 8,i
d

!12k
i 8,i
d

S mi , f
d

2M D 22u i , f
d b i , f

d
12ki , f

d H lnS mi 8,i
d

M
D J u

i 8,i
d

2 (
i<c< f 21

u
i 8,i
d cH lnS mi , f

d

M D J ui , f
d

2 (
i<c< f 21

ui , f
d c

3«w
i 8,i
d

1wi , f
d

1 (
k,u,w,u

)
1< i< i 9< f 22

1< i 8, i
d

Ki 8,i
u d

~b1 l 1r ;k;u;w!Ki , f
u d

~b;k;u;w!

3
~2 !u

i 8,i
d i 91ui , f

d i 9
2u

i 8,i
d

1ui , f
d

ui 8,i
d !ui , f

d ! ~(
d
1<a8,a< iua8,a

d i1(
d
1<a< iua, f

d i !!

~ui 8,i
d

2( i<c< f 22ui 8,i
d c!! ~ui , f

d 2( i<c< f 22ui , f
d c!!ui 8,i

d i 9!ui , f
d i 9! ~(1<a< iNa!11(

d
1<a8,a< iu

a8,a
d i1(

d
1<a< iua, f

d i

3S mi 8,i
d

2
D 22u

i 8,i
d

~b
i 8,i
d

1 l
i 8,i
d

1r
i 8,i
d

!12k
i 8,i
d

S mi , f
d

2 D 22u i , f
d b i , f

d
12ki , f

d

«w
i 8,i
d

1wi , f
d

3E
1/M

`

dx x2n211(1<a<gqf 21,f 211a1(
d
1<a< f 22r a, f 21

d
1(1<a< f 22Na

3$ ln~mi 8,i
d x!%u

i 8,i
d

2( i<c< f 22u
i 8,i
d c

$ ln~mi , f
d x!%ui , f

d
2( i<c< f 22ui , f

d c
ki , f 21

d ~b1 l 1r ;mx!kf 21,f
d ~b;mx!. ~4.6!

• The superscriptc of ua,b
d c appears because of a repeated integral~D2! over logarithms. It runs

from b to f 21.

• In the0*1/M-term of ~4.6! the indexf is treated differently from the other ones because of
special position ofxf , right from the beginning.

• In the 1/M*`-term of ~4.6!, the index f 21 is treated differently as well, as th
xf 21-integration is the last one.

The general Feynman diagram is given by summation over all variables of a product of~3.7!,
~4.6! and some factors:

~3.1!5
1

~2p!2n( f 21) (
l ,q,r

)
1< i< f 21
1< i 8, i
1< j <g

d

~2 ! l
i 8,i
d S 1

2D 2l
i 8,i
d

1r
i 8,i
d

~ ip j !
(1<a< f 21qa, f 211 j

3
1

l i 8,i
d !qi , f 211 j ! r i 8,i

d !
H 2pn~m

i , f

d !2b i , f
d

G~ai , f
d !

J H 2pn~m
i 8,i

d !2b
i 8,i
d

12l
i 8,i
d

12r
i 8,i
d

G~ai 8,i
d

!
J •~3.7!•~4.6!.

~4.7!

This formula may look frightening but it has to be compared with~B4!, which is the general
integration parameter expression. The latter might look nicer, but the integrations are m
divergent.

On the other hand, the infinities are honestly visible in~4.6!, as will be discussed in the nex
section. The price for it is summation variables with three or four indices. We think this pri
worth paying.
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The1/M*`dx-integration may be computed numerically after insertion of the asymptotic s
~A11!. The splitting point 1/M is arbitrary and may be determined by the accuracy of the ca
lations.

If all u’s are 0, which may happen in the limit«→0, the logarithmic factors in the integran
disappear and the integral is recognized as the finite part of a two vertex diagram with a n
of internal lines, like~3.18!. It is named ‘‘sunset diagram,’’ ‘‘sunrise diagram’’ or ‘‘water melo
diagram.’’ Several authors6–23 derived relations in order to simplify the numerical calculations
practice. Most of these authors make use of Feynman parameters which, according to the
ism of Appendix B, are correcting for a first approximation of the propagator by a Gaussian

E dkeik"x
1

~k21m2!a → 2pn~4p!nm2b

G~a!
e2m2x2

. ~4.8!

Our approach starts from the propagator

E dke2 ik"x
1

~k21m2!a → pn1 1/22b1 1/2

G~a!
m2b

e2mx

~mx!b1~1/2! , ~4.9!

which is a better first approximation at highmx. For this reason, we have good hope for bet
numerical results.

The formalism of this section will be elucidated by applying the derivation line~4.1!–~4.6! on
our two examples.

No ~4.1!-like transformation is needed for the radial part of~2.68!, the x-variable being the
only one. It becomes

E
0

`

dx x2n211q12k1~b;mx!k2~b;mx!k3~b;mx!

5E
0

1/M

dx x2n211q12k1~b;mx!k2~b;mx!k3~b;mx!

1E
1/M

`

dx x2n211q12k1~b;mx!k2~b;mx!k3~b;mx!. ~4.58!

Since theu’s may assume two values, the first part of~4.58! consists of eight subseries:

E
0

1/M

dx x2n211q12k1~b;mx!k2~b;mx!k3~b;mx!

5 (
k,u,w,u

Ku1
~b;k;u;w!Ku2

~b;k;u;w!Ku3
~b;k;u;w!

3S m1

2 D 22u1b112k1S m2

2 D 22u2b212k2S m3

2 D 22u3b312k2

«w11w21w3

3E
0

1/M

dx x2n211q1222u1b122u2b222u3b312k112k212k3

3H 2 lnS m1x

2 D J u1H 2 lnS m2x

2 D J u2H 2 lnS m3x

2 D J u3

.

Using ~D1! we find
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~4.58!5S 1

M D 2n1q12

(
k,u,w

K01
~b;k;u;w!K02

~b;k;u;w!K03
~b;k;u;w!

3
~2 !u1,11u2,11u3,1

2u11u21u3
~u1,11u2,11u3,1!!

~n12«1q1212k112k212k3!11u1,11u2,11u3,1

3
u1!

~u12u1,1!!u1,1!

u2!

~u22u2,1!!u2,1!

u3!

~u32u3,1!!u3,1!

3H lnS m1

M D J u12u1,1H lnS m2

M D J u22u2,1H lnS m3

M D J u32u3,1S m1

2M D 2k1S m2

2M D 2k2S m3

2M D 2k3

3«w11w21w3
1S 1

M D 2n1q12

(
k,u,w

K01
~b;k;u;w!K02

~b;k;u;w!K13
~b;k;0;w!

3
~2 !u1,11u2,1

2u11u2
~u1,11u2,1!!

~2a31q1212k112k212k3!11u1,11u2,11u3,1

u1!

~u12u1,1!!u1,1!

u2!

~u22u2,1!!u2,1!

3H lnS m1

M D J u12u1,1H lnS m2

M D J u22u2,1S m1

2M D 2k1S m2

2M D 2k2S m3

2M D 22b312k2

«w11w21w3

12 permutations1S 1

M D 2n1q12

(
k,u,w

K01
~b;k;u;w!K12

~b;k;0;w!K13
~b;k;0;w!

3
~2 !u1,1

2u1
~u1,1!!

~2a212a32n22«1q1212k112k212k3!11u1,1

u1!

~u12u1,1!!u1,1!

3H lnS m1

M D J u12u1,1S m1

2M D 2k1S m2

2M D 22b212k2S m3

2M D 22b312k3

«w11w21w3
12 permutations

1S 1

M D n12q12

(
k,u,w

K11
~b;k;0;w!K12

~b;k;0;w!K13
~b;k;0;w!

3
1

~2a112a212a322n24«1q1212k112k212k3! S m1

2M D 22b112k1S m2

2M D 22b212k2

3S m3

2M D 22b312k3

«w11w21w3
1E

1/M

`

dx x2n211q12k1~b;mx!k2~b;mx!k3~b;mx!. ~4.68!

This formula, which still has to be multiplied by~3.78!, may be compared with the Feynma
parameter representation~1.88!. The hidden divergences of~1.88! are manifest via the«’s of ~4.68!.

Indeed, it is seen from this formula that in four dimensional space–time~n54! and in the
limit «→0

~i! the 0,0,0 subseries is finite;
~ii ! the three 0,0,1 subseries too are finite;
~iii ! the three 0,1,1 subseries have single poles and double poles for some values of th

mation variables, asu50 or u51; and
~iv! the 1,1,1 subseries has a single pole for some values of the summation variables.

The radial part of our second example is obtained from~3.188!. The radial integration variable
are transformed according to
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x1

x2
→j12,

~4.188!
x2→x.

After insertion of~A7!

E
0<x1<x2<`

dx1dx2 x1
2n211q131r 1212l 12x2

2n211q241r 12

3k13
1 ~b;x1!k13

2 ~b;mx1!k23
1 ~b;mx2!k23

2 ~b;mx2!k12~b1 l 1r ;mx2!

5K13
u1

~b;k;u;w!K13
u2

~b;k;u;w!

3S m13
1

2 D 22u138 b138 12k13
1 S m13

2

2 D 22u13
2 b13

2
12k13

2

«w13
1

1w13
2 E

0

1

dj12~j12!
N121H 2 lnS m13

1 j12

2 D J u13
1

3H 2 lnS m13
2 j12

2 D J u13
2

E
0

`

dx x2n211q241r 121N1k23
1 ~b;mx!k23

2 ~b;mx!k12~b1 l 1r ;mx!,

~4.288!

with

N152n1q1322u13
1 b13

1 22u13
2 b13

2 12k13
1 12k13

2 12l 121r 12 ~4.488!

is obtained.
The x-integration has to be split as in~4.58!. The *dj12-integration and the0*1/Mdx-

integration are done as in~4.68! yielding 32 terms and a1/M*`dx-integration which has to be don
numerically after introduction of~A11!.

Conclusion of this section and the previous one:~2.6! leads to the series expansion~3.1!.
Expansion with respect to external momenta, internal masses, their logarithms and the reg
tion parameter« is obtained via an angular part given by~3.7! and a radial part given by~4.6! and
~4.4!.

V. DIVERGENCES AND THEIR UNRAVELMENT

The UV divergences of momentum space appear inx-space by integration in area’s where th
arguments of a number of the functionsk(b;mx) are zero.

Two or more of theu’s in ~4.4! may assume the value 1 and, consequently, there are valu
the summation variables for which

(
1<a< i

Na'«. ~5.1!

Factor~5.1! appears after integration overxi in the neighborhood of 0 as a factor

S (
1<a< i

NaD 11 (
1<a8,a< i

d

u
a8,a
d i1 (

1<a< i
d

ua, f
d i

in the denominator and so it may lead to multiple poles at«50. The residue of such a pole at«50
is a series that is obtained by summation over the remaining variables. In the limit«→0, this
subseries is recognized as a subdiagram.
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All these are divergences caused byk(b;m)’s with a simple argument. If integration ove
nonsimple arguments does not produce infinities, the expressions of the previous sectio
correct.

If k(b;m)’s with nonsimple argument do lead to infinity after integration, it will manifest
divergence of the summations overl a,b

d and r a,b
d in ~3.1!.

In ~2.1!, it is integrated overf 21 x-variables andf 21 momenta appear in the integrand. T
momentumpf is not present manifestly, but is given by~1.6!. Due to this momentum conservatio
there is a freedom in the choice of the ‘‘dead integration variable’’xf . Translations of the kind

xi→xi1(
a, i

ea,ixa1(
b. i

ei ,bxb . ~5.2!

are allowed.
The elements of the matrixe may be chosen in such a way that any other set off 21

independent arguments is made simple. The elements ofe are 0 or 1 and the exponential part
~2.1! is transformed by~5.2! as

(
a

pa•xa→(
a,b

~ea,b
T pb!•xa , ~5.3!

whereeT is the transponed of matrixe.
In the given examples, this freedom has been used in order to put all divergences in

integrations over simple arguments.
In the integral~2.18! of the example of Fig. 1 there is nothing to be transformed, but

integral of ~2.188! of the second example may be written in three forms:

E dx1dx2eip1•x1eip2•x2k
13

1 ~b;mx1!k
13

2 ~b;mx1!k
23

1 ~b;mx2!k
23

2 ~b;mx2!k12~b;mux12x2u!

5E dx1dx2eip1•x1ei (p11p2)•x2k
13

1 ~b;mux11x2u!k
13

2 ~b;mux11x2u!

3k
23

1 ~b;mx2!k
23

2 ~b;mx2!k12~b;mx1!

5E dx1dx2ei (p11p2)•x1eip2•x2k
13

1 ~b;mx1!k
13

2 ~b;mx1!k
23

1 ~b;mux11x2u!

3k
23

2 ~b;mux11x2u!k12~b;mx2!. ~5.4!

Only the first integral of~5.4! satisfies the criterium that all multiple internal lines are represen
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by a k-function with simple argument. In a diagram like

there are 16 integral representations where three independent internal lines are made sim
give five of them:

E dx1dx2dx3eip1•x1eip2•x2eip3•x3k14
1 ~b;mx1!k14

2 ~b;mx1!k12~b;mux12x2u!

3k23
1 ~b;mux22x3u!k23

2 ~b;mux22x3u!k34~b;mx3!

5E dx1dx2dx3eip1•x1eip2•x2ei (p11p21p3)•x3k14
1 ~b;mux11x3u!k14

2 ~b;mux11x3u!

3k12~b;mux12x2u!k23
1 ~b;mx2u!k23

2 ~b;mx2u!k34~b;mx3!

5E dx1dx2dx3eip1•x1ei (p11p21p3)•x2eip3•x3k14
1 ~b;mux11x2u!k14

2 ~b;mux11x2u!

3k12~b;mx1!k23
1 ~b;mx3u!k23

2 ~b;mx3!k34~b;mux21x3u!

5E dx1dx2dx3ei (p21p21p3)•x2eip2•x2eip3•x3k14
1 ~b;mx1u!k14

2 ~b;mx1!k12~b;mx2!

3k23
1 ~b;mux22x3u!k23

2 ~b;mux22x3u!k34~b;mux11x3u!

5E dx1dx2dx3eip1•x1ei (p21p3)•x2eip3•x3k14
1 ~b;mx1!k14

2 ~b;mx1!

3k12~b;mux12x2u!k23
1 ~b;mx3!k23

2 ~b;mx3u!k34~b;mux21x3u!. ~5.5!

Only the last integral satisfies the criterium that all double lines are represented by ak-function
with simple argument.

However, at least in theory, there are diagrams where not all multiple lines can be
simple. For instance, if the vertices 1 and 2 of Fig. 2 would have been double connected a
or Fig. 3 with all vertices double connected. In such cases a more delicate procedure is re

In order to avoid zeroes of nonsimple arguments, the integration region in~3.1! is restricted to
a subregion where simple arguments are smaller than the arguments that depend on them
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x1<x2<ux22x1u,

x1<x3<ux32x1u,
~5.6!

x2<x3<ux32x2u

etc.

In terms of angles,~5.6! means that the integration is bounded by the conditions

x1<x2<x3<¯<xf 21 ,

c12<
1
2 j12,

c13<
1
2 j13, ~5.7!

c23<
1
2 j23,

etc.

with

j i j 5
xi

xj
. ~5.8!

In this way, the integration region is restricted to truncated parallelopipida. Since nons
argumentsuxa2xbu are zero only in the region where bothxa5xb andcab51, it is clear from~5.7!
that dangerous regions are avoided.

Transformations like~3.4! are not useful anymore, because of the restriction conditions
stead, the angular integrals of~3.1! in the region restricted by~5.7! are expanded directly with
respect toja,b :

)
1< i 8, i< f 51

1< j <g

E I 2.0
ci 8,i,1/2j i 8,i

dci 8,idci , f 211 j$~ci 8,i !
(dr

i 8,i
d

~ci , f 211 j !
qi , f 211 j~ I 1,2,...,f 211g!2n2 f 2g%

5 (
i a,b50

`

I S (
d

r a,b
d ;qa, f 211b ; i a,bD S 1

2
j1,2D i 1,2

i 1,2!
...

S 1

2
j f 22,f 21D i f 22,f 21

i f 22,f 21!
, ~5.9!

where

I S (
d

r a,b
d ;qa, f 211b ; i a,bD

5 )
1< i 8, i< f 21

1< j <g

E
I 2.0

dci , f 211 j~ci , f 211 j !
qi , f 211 j

3F ~]ci 8,i
! i i 8,i21H )

1<k8,k< f 21
~ck8,k!

(dr
k8,k
d

~ I 1,2,...,f 211g!2n2 f 2gJ G
c125c135¯5cf 22,f 2150

.

~5.10!

The symbolical notations
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@]ci 8,i

21 F~ci 8,i !#ci 8,i50[E
ci 8,i<0

dci 8,iF~ci 8,i !

and

@]ci 8,i

0 F~ci 8,i !#ci 8,i50[F~0! ~5.11!

have been used. The coefficientsI (Sdr a,b
d ;qa, f 211b ; i a,b) have to be computed numerically if a

least onei a,b is zero; in all other cases they are obtained analytically.
According to~5.9!, the angular integrations in the restricted area produce factors

~ja,b! i a,b.

These factors have to be joined to the radial part. This radial part in the truncated area
given by ~4.6! with additional summation variablesi i ,a in Ni :

Ni52n1 (
1<a<g

qi , f 211a22 (
1<a, i

d

ua,i
d ~ba,i

d 1 l a,i
d 1r a,i

d !22(
d

u i , f
d b i , f

d 12 (
1<a, i

d

ka,i
d

12(
d

ki , f
d 12 (

i ,a< f 21
d

l i ,a
d 1 (

1<a, i
d

r a,i
d 1 (

i ,a< f 21
d

r i ,a
d 1 (

i ,a< f 21
i i ,a . ~5.12!

Conclusion of this section: Feynman diagrams in the area restricted by~5.7! may be written as an
expansion~3.1!; the angular part is given by~5.9!–~5.11! and the radial part is given by~4.6! and
~5.12!.

Finally, all possible translations~5.2! producing a set off 21 independent simple argumen
have to be carried out and corresponding series expansions similar to~3.1! have to be summed. In
this way, integration over all space is obtained and all UV infinities are manifestly present th
a factor

)
1< i< f 21

S (
1<a< i

NaD 11(d
1<a8,a< i u

a8,a
d i1(d

1<a< i ua, f
d i

in the denominator.

APPENDIX A

Most of the formulas of this appendix are found in the textbook by Watson5 for the functions
Kb(mx). Because of practical reasons, functionsk(b;mx) have been introduced in this article
They differ by a factor (mx/2)b:

k~b;mx!5S mx

2 D 2b

Kb~mx!. ~A1!

Series expansion ofk(b;mx) is given by

k~b;mx!5
1

2 (
k50

`
~2 !k

k! H G~2b2k!S mx

2 D 2k

1G~b2k!S mx

2 D 22b12kJ . ~A2!

TheG-functions are infinite, when their argument is zero or a negative integer, but these infi
cancel, as may be seen after translation of the summation variablek in the second part of~A2!. In
this way,k(b;mx) is split into two parts:
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k~b;mx!5k0~b;mx!1k1~b;mx!, ~A3!

where

k0~b;mx!5
~2 !bp

2 sin~p«! (
k50

` H 1

G~11k2«!~b1k!! S mx

2 D 2k22«

2
1

k!G~11«1b1k! S mx

2 D 2kJ
~A4a!

and

k1~b;mx!5
1

2 (
k50

b21
~2 !k

k!
G~b1«2k!S mx

2 D 22b12k

, ~A4b!

with

«5n2 1
2 n5b2b. ~A5!

Expansion with respect to (mx/2), ln(mx/2) and« yields

k0~b;mx!5 (
k50

`

(
w50

`

(
u50

w11

K0~b;k;u;w!S mx

2 D 2kH 2 lnS mx

2 D J u

«w, ~A6a!

k1~b;mx!5 (
k50

b21

(
w50

`

K1~b;k;w!S mx

2 D 22b12k

«w. ~A6b!

A combined notation of~A6a! and ~A6b! is

ku~b;mx!5 (
k,u,w,u

Ku~b;k;u;w!S mx

2 D 22ub12kH 2 lnS mx

2 D J u

«w. ~A7!

The u’s assume valuesu50 andu51; k runs from 0 to` if u50 and from 0 tob21 if u51; u
runs from 0 tow11 if u50 and it takes only the value 0 ifu51; w runs from 0 to`.

The Ku(b;k;u;w) are finite coefficients that may be computed.
The functionsk(b;mx) satisfy the recursion relation

dk~b;mx!

dxm 52S m2xm

2 D k~b11;mx! ~A8!

and the differential equations

S ]m]n2m2
xmxn

x2 D k~b;mx!5m2H ~b11!
xmxn

x2 2
1

2
gmnJ k~b11;mx!, ~A9a!

~]m]m2m2!k~b;mx!5~12a!m2k~b11;mx!. ~A9b!

Their asymptotic behavior is given by

k~b;mx!5Ap (
h50

H21

2b2h2 1/2
G~b1h1 1

2!

h!G~b2h1 1
2!

~mx!2b2h2 1/2e2mx1O~x2H2b2 1/2!, if x→`

~A10!

from which the asymptotic expression
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)
1<d<D

E
1/M

`

dx x2n21$ ln~mdx!%ud
k~bd ;mdx!

5p~1/2! D (
0<hd<Hd21

2(
1<a<D

~ba2ha)2 ~1/2!D

)
1<d<D

G~bd1hd1 1/2!

hd!G~bd2hd1 1/2!~md!bd1hd11/2

3E
1/M

`

dx x2n212 (1<a<D~ba1ha!2 1/2D$ ln~mdx!%ud
e2~(1<a<d ma!x

1O~M 22n1Min(Hi )1(1<a<Dba11/2D! if M→0 ~A11!

is obtained.
The k-functions with a nonsimple argument may be split according to

k~b;muxi2xi 8u!5 (
l ,r 50

`
~2 ! l

l ! r ! S 1

2D 2l 1r

~mxi 8!
2l 1r~mxi !

r~ci 8,i !
rk~b1 l 1r ;mxi ! ~A12!

if

xi 8,xi . ~A13!

This formula may be obtained via the representation by Bessel functions and Gegenbaue
nomials, as shown in Ref. 4. It also is obtained by straight insertion of

~xi2xi 8!
2k

k!
5(

l ,r
~2 !r

~xi 8!
2l~2ci 8,ixi 8xi !

r~xi !
2k22l 22r

l ! r ! ~k2 l 2r !!

and

~xi2xi 8!
22b12kG~b2k!5(

l ,r
~2 ! l

~xi 8!
2l~2ci 8,ixi 8xi !

r~xi !
22b12k22l 22rG~b1 l 1r 2k!

l ! r !
~A14!

into ~A2!.
Finally, the integral representation ofk(b;mx) is

k~b;mx!5
1

2 E0

`

dr r2be2re2(mx)2/4r. ~A15!

APPENDIX B

By multiple application of then-dimensional Gauss integral

G1~p2;m2![E
2`

1`

dx eip•xe2 ~1/4! m2x2
5

~4p!n

m2n e2p2/m2
, ~B1!

formula
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Gf 21~~Sapa!2;ma,b
2 !

[ )
1< i< f 21

E dxie
ipi•xie2 ~1/4! (

1<a< i
ma, f

2xi
2

2 1/4 (
1<a< i

ma,i
2(xi2xa)2

5
~4p!( f 21)n

~n1,2,... ,f !
n

• expH 2
n1n2,3,... ,fp1

21n2n1,3,... ,fp2
21¯1n1,2n3,4,... ,f~p11p2!21¯1n1,2,3n4,5,... ,f~p11p21p3!21¯

n1,2,... ,f
J
~B2!

is obtained.
The coefficientsn1,2,... ,f are sums of products of the square masses off 21 independent

internal lines between the vertices 1,2,... ,f :

n151, n251, n351, etc.,

n1,25m1,2
2 , n1,35m1,3

2 , etc.

n1,2,35m1,2
2m1,3

21m1,2
2m2,3

21m1,3
2m2,3

2, etc., ~B3!

¯ .

n1,2,̄ , f5( m1,f
2m2,f

2
¯ ,mf 21,f

21¯ .

Combination of~A15! and ~B2! yields

)
1< i< f 21
1< i 8, i

d

E dxie
ipi•xiki , f

d ~b;mxi !ki 8,i
d

~b;muxi2xi 8u!%

5 )
1< i 8, i< f

d

S E
0

`

dS 1

2
r i 8,i

d D ~r i 8,i
d

!2b
i 8,i
d

e2(
d
1<a8,a< fr

a8,a
d

Gf 21H ~Sapa!2;(
d

ma,b
d 2

ra,b
d J D .

~B4!

The rhs is, up to a factor, the parameter representation of scalar Feynman diagrams. In the
spin, polynomials of masses and derivatives with respect to the external momenta, combine
higherb’s have to be added, as explained in Sec. II.

The integration parametersr come straight from the textbook of Watson. Hence, Feynm
parameters were known in mathematical literature long before the discovery of quantum
theory.

APPENDIX C

The expressions for the content of a unit parallelopipidum in one, two, three, and four d
sions are

I 151,

I 125A12c12
2,

I 1235A12c12
22c13

22c23
212c12c23c315I 13I 23A12S c122c13c23

I 13I 23
D 2

,
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I 1234

5A12c12
22c13

22c14
22c23

22c24
22c34

212c12c23c3112c12c24c4112c13c34c4112c23c34c41

1c12
2c34

21c13
2c24

21c14
2c23

222c12c23c34c4122c13c32c24c4122c12c24c43c31

5
I 134I 234

I 34
A12S I 34

2c122c13c322c14c421c13c34c421c14c43c32

I 134I 234
D 2. ~C1!

For the general case, the recursion formula

I 1,2,3,,... ,f5
I 1,3,... ,f I 2,3,... ,f

I 3,... ,f
A12y12

2 ~C2!

is valid, with

y125
I 3,4,... ,f

2c1,22b1,2(3,4,... ,f )

I 1,3,... ,f I 2,3,... ,f
, ~C3!

where

b1,2(3,4,... ,f )5c13c321¯1c1 fcf 22c13c34c422¯1¯ ~C4!

is the coefficient of 2c12 in I 1,2,... ,f
2.

Application of these formulas yields

I 1,2,... ,f

I 2,... ,f
5A12y12

2A12y13
2
¯A12y1,f

2, ~C5a!

dc12¯dc1,f

I 2...f
5dy12¯dy1,f S I 1,3,... ,f

I 3,4,... ,f
D S I 1,4,... ,f

I 4,5,... ,f
D ...S I 1,f 21,f

I f 21,f
D I 1,f

5dy12¯dy1,fA12y13
2~A12y14

2!2
¯~A12y1,f

2! f 22 ~C5b!

and

ci , j5
bi , j ( j 11,... ,f )1yi , j I i , j 11,... ,f I j , j 11,... ,f

I j 11...f 21
2 5yi , j~A12~yi , j 11!2

¯A12~yi , f !
2!

3~A12~yj , j 11!2
¯A12~yj , f !

2!1~yi , j 11A12~yi , j 12!2
¯A12~yi , f !

2!

3~yj , j 11A12~yj , j 12!2
¯A12~yj , f !

2!1...1~yi , f 21A12~yi , f !
2!~yj , f 21A12~yj , f !

2!

1yi , f y j , f . ~C5c!

The formula

ci , j
qi , j

qi , j !
5 (

(
b5 j

f
qi , j

b
5qi , j

$yi , j~A12~yi , j 11!2
¯A12~yi , f !

2!~A12~yj , j 11!2
¯A12~yj , f !

2!%qi , j
j

qi , j
j !

¯

3S yi , f y j , f

qi , j
f ! D qi , j

f

, ~C6!

has been used in Section III.
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APPENDIX D

By multiple application of

)
1< i< f 21

E
0

h
djjN21$ ln~mij%ui5 (

0<ui
i<ui

~2 !(1<a< f 21ua
aS (

1<a< f 21
ua

aD !
~N!11(1<a< f 21ua

a

3)
i 51

f 21
ui !

~ui2ui
i !!ui

i !
hN$ ln~mih!%ui2ui

i
, ~D1!

the formula

)
1< i 8, i< f 21

E
0

h i
dj i~j i !

Ni21$ ln~mi 8,ij ij i 11¯j f 21!%ui 8,i

5 (
na,b

c
)

1< i 8, i< i 9< f 21

~2 !u
i 8,i

i 9

~ (1<a8,a< iua8,a
i! !ui 8,i !

~ui 8,i2( i<c< f 21ui 8,i
c! !ui8,i

i 9!Ni
11(1<a8,a< i ua8,ai

3h i
Ni$ ln~mi 8,ih ih i 11¯h f 21!%ui 8,i2 (

i<c< f 21
u

i 8,i
c

~D2!

is obtained.
These formulas are obtained after a number of partial integrations. As a matter of fact,

are the partial integrations discussed in the introduction and presumably meant in Ref 3.
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Classical history theory of vector fields
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We consider the extension of classical history theory to the massive vector field and
electromagnetism. It is argued that the action of the two Poincare´ groups introduced
by Savvidou suggests that the history fields should have five components. The extra
degrees of freedom introduced to make the fields five dimensional result in an extra
pair of second class constraints in the case of the massive vector field, and in an
extended gauge group in the case of electromagnetism. The total gauge transfor-
mations depend on two arbitrary parameters, and contain ‘‘internal’’ and ‘‘external’’
U~1! gauge transformations as subgroups. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1473218#

I. INTRODUCTION

A. Motivation

The Hamiltonian formalism provides a strong link between classical and quantum theorie
is mathematically well-developed in both cases. However, a major drawback of the sta
Hamiltonian approach to relativistic field theories is that it requires a splitting of space–time
space and time, thus breaking the manifest covariance of the theory. This problem be
particularly acute when canonical methods are applied to generally covariant theories s
general relativity, and this is one aspect of the ‘‘problem of time’’ in canonical quantum gra

Recently a Hamiltonian formalism has been proposed by Isham and co-workers,1–3 in which
the fundamental physical entities are entire histories of the system under consideration, as o
to Cauchy data at an instant of time. For a thorough introduction see Ref. 4. The his
formalism was originally developed in the quantum case, but there is a well-defined cla
history formalism. The central object in a classical history theory is the space of historieP,
which is defined to be a one-parameter family of single-time state spaces. An element oP is
called a history, and the space of histories carries a symplectic structure which provides the
link to the corresponding quantum history theory.

A particularly striking fact about history theories is that there are two notions of t
evolution.5 External time corresponds to the parameter labeling the copies of state spac
internal time is generated by Hamiltonian evolution. In this way the notion of time plays
different roles in a history theory, one corresponding to the causal ordering of logical propos
and the second corresponding to dynamical evolution. The two times are linked together
action principle.

The histories formalism has been applied to scalar field theory on flat6 and curved7,8 space–
times, and in the following we discuss the extension of the classical theory to the case of
fields. In particular we examine the massive vector field and the electromagnetic field fr
histories perspective. We shall argue that, as a consequence of the two time directions, a
field should be regarded as a certain type of field on a five-dimensional space–time. We als
an analysis of the gauge transformations of histories electromagnetism.

These results are relevant to the ultimate goal of the histories program: the formulatio
histories version of general relativity.9 First, they suggest the possibility that a covariant histo

a!Electronic mail: d.noltingk@ic.ac.uk
30360022-2488/2002/43(6)/3036/17/$19.00 © 2002 American Institute of Physics
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theory of gravity should be concerned with the metric of a five-dimensional extended space
Second, gauge symmetry is an important feature of general relativity, particularly when form
in terms of tetrad fields. The study of the extended gauge transformations of histories electr
netism is relevant in this context.

B. Scalar field theory

In this section we give a brief account of the histories description of the classical scala
on Minkowski space–time,M, as given by Savvidou.6 We define the Minkowski metrichmn to
have signature (1,2,2,2).

1. The history algebra

The canonical configuration space of the scalar field isQn,t5C`(Sn,t) whereSn,t is a Cauchy
surface inM, and C`(Sn,t) denotes the set of all smooth, real-valued functions onSn,t . The
Cauchy surfaces are labeled by a future pointing timelike unit vectorn normal toSn,t , and a real
numbert. Each Cauchy surface represents an instant of time in a particular inertial frame
state spacePn,t is identified withC`(Sn,t)3C`(Sn,t) which is a dense subspace of the cotang
bundle ofQn,t . The construction of the corresponding classical history theory begins by defi
a trivial vector bundlejn :P3R→R such thatjn

21(t)5Pn,t , whereP is an abstract copy of the
state space. The space of histories of the scalar field corresponds to the space of section
bundle,Pn5G(jn). Note thatPn could be defined directly as the space of pathsR→Pn . How-
ever, the bundle picture is useful in more general situations~e.g., on curved space–times!, and also
gives a motivation for the ‘‘internal’’ / ‘‘external’’ nomenclature in history theory: internal tran
formations act internally to the fibers ofjn , while external transformations act across the fibe
The history fields satisfy the following Poisson algebra:

$fn~ t;x!,fn~ t8;x8!%50, ~1!

$pn~ t;x!,pn~ t8;x8!%50, ~2!

$fn~ t;x!,pn~ t8;x8!%5d~ t2t8!dn,t
(3)~x2x8!, ~3!

wheredn,t
(3)(x2x8) is the delta function onSn,t . The right-hand side of this equation is a spac

time scalar density of weight one. In Minkowski space–time, there is no difference betw
scalar density and a scalar~if we restrict attention to transformations under the connected pa
the Poincare´ group!, which suggests that the fields can be thought of as space–time scalars.
(t,x)PR3S can be identified with a unique four-vectorXPM asX5tn1xn , where the three-
vector x has been associated with a corresponding four-vectorxn that is n-spatial ~i.e., n•xn

ªhmnnmxn
n50). Hence we can writefn(t;x) asfn(X). The history algebra can then be writte

in the more covariant looking form

$fn~X!,fn~X8!%50, ~4!

$pn~X!,pn~X8!%50, ~5!

$fn~X!,pn~X8!%5d (4)~X2X8!. ~6!

Now it is tempting to drop then label from the fields since the right-hand side of this algebra d
not depend onn. However, this would be somewhat misleading in the sense that the fieldp(X)
has no physical meaning. This is because the conjugate momentum corresponds to th
momentum along a certain timelikedirection, and so must be written aspn(X). Although the
algebra~4!–~6! is independent ofn, Savvidou6 has shown that in the quantum theoryn labels the
physically relevant, inequivalentrepresentationsof the algebra on a particular Fock space. So
the analysis of the classical theory then-labels remain on the fields under the understanding
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they are necessary for the physical interpretation of the theory and arise naturally in quanti
However, we note that it is rather unsatisfactory to have ann label on thef field because,
physically, the value of the field at a point in space–timeis independent of the foliation. In this
particular histories formulation of classical scalar field theory all propositions about the fiel
made in the context of a particular inertial reference frame.

2. Time translations

For eachn, a ‘‘Liouville’’ functional can be constructed from the fields,

VnªE d4Xpnnm]mfn , ~7!

which generates external time translations in then direction. In coordinates adapted ton these
transformations take the formfn(t,x)°fn(t1l,x), and similarly forpn(t,x).

There is another notion of time translation in the history theory. Intuitively the Hamiltonia
each instant of external time generates dynamical evolutioninternal to each fiber ofjn . More
precisely, the time-averaged Hamiltonian,

Hnª
1

2 E d4X@pn
21~hmn2nmnn!]mfn]nfn1m2fn

2#, ~8!

generates transformationsfn(X)°fn(X,s).
The action operator is made up of the Liouville and Hamiltonian operators as follows:

SnªVn2Hn , ~9!

and the equations of motion can be written in the form

$Sn ,fn~X!%50, ~10!

$Sn ,pn~X!%50. ~11!

3. Poincaré covariance

Savvidou6 has shown the existence of two Poincare´ groups in the histories formulation of th
scalar field. Then-spatial components of the two groups are identical, but the time translatio
the internal Poincare´ group are generated by the Hamiltonian while the time translations of
external Poincare´ group are generated by the Liouville functional.

External boosts correspond to the following automorphism of the history algebra:

fn~ t,x,0!°fLn~L~ t,x!,0!, ~12!

pn~ t,x,0!°pLn~L~ t,x!,0!, ~13!

where we have used adapted coordinates to writefn(X,0)5fn(t,x,0) andL(t,x) denotes the
usual Lorentz transformations acting on inertial coordinates (t,x). We note that, in the classica
case, these automorphisms cannot be generated by canonical transformations. This is
there is no momentum conjugate to the foliation vectorn, and thus no way to generate changes
n. The ‘‘multisymplectic’’ approach10 offers a solution to this problem in the classical theory, a
in the quantum theory changes inn correspond to mapping between inequivalent representat
of the history algebra.

Internal boosts act on the fields as follows:

fn~0,x,s!°fn~0,L~x,s!!, ~14!
                                                                                                                



trans-

the

nal

n of a
on is
ld on

ssive

d by

e scalar
of the

o

3039J. Math. Phys., Vol. 43, No. 6, June 2002 Classical history theory of vector fields

                    
pn~0,x,s!°pn~0,L~x,s!!. ~15!

The internal boosts leave the foliation vector fixed and can be implemented by canonical
formations. The generator of internal boosts on the hyperplanes5const is

intKn~m!5mmE d4X@ps]mf2XmHn~X!#, ~16!

whereHn(X) is the Hamiltonian density and the integral is over the surfaces5const.
The fieldsfn(X,s) are defined on an extended space–timeN5M3R. However, the theory

is not invariant under the full SO(2, 3) isometry group of this space–time. This is evident from
fact that the algebra~4!–~6! is defined on external space–time, that is the surface inN defined by
s50, and does not take the same form on internal space–time~defined byn•X50!. This indicates
that the fields are not true scalar fields onN. However, the fields are covariant under the inter
and external SO(1, 3) subgroups of SO(2, 3).

In the case of the scalar field these subtleties can be overlooked, but the constructio
history theory of vector fields acutely illustrates this issue. A particularly relevant questi
whether the history vector field should have four indices, or five as it must to be a vector fie
N.

II. MASSIVE VECTOR FIELD

A. State space theory

In this section we give a brief overview of the standard state space theory of the ma
vector field onM.

We begin with the covariant theory. The covariant configuration space isX0(M), the space of
vector fields onM with appropriate boundary conditions. The massive vector field is describe
the following Lagrangian:11

L52 1
4 fmnfmn1 1

2 m2fmfm, ~17!

wherefmn(X)ª2] [mfn] (X) andfPX0(M). The resulting field equations are

~h1m2!fm~X!50, ~18!

]mfm~X!50. ~19!

The first of these equations shows that each component of the field behaves like a massiv
field. The second equation is known as the Fierz–Pauli equation and it is the first indication
presence of constraints in the theory.

To pass to the canonical theory we choose a Cauchy surface inM and consider the fields on
this Cauchy surface. More precisely, we choose a spacelike embeddingi:S→M, where S
.R3, and take the corresponding configuration space to be the space of fieldsfi

m(x) wherex
PS. However the fieldsfi

m(x) are not geometric objects on eitherS or M. The geometrical
interpretation of the fields is clarified by considering Emb(S,M), the space of embeddings ofS
into M. Thenfi can be thought of as an element ofTiEmb(S,M) where the tangent space t
Emb(S,M) at the embeddingi is defined as

TiEmb~S,M!5$c:S→TMuc~x!PTi(x)M%. ~20!

The configuration space of the canonical theory is then defined asQiªTiEmb(S,M) for some
fixed i. The cotangent space of Emb(S,M) at i is defined similarly:

Ti* Emb~S,M!5$ l :S→T* Mu l ~x!PTi(x)* M% ~21!
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and the pairing between these two spaces is given by

^ l ,c&i5E
S
duxl m~i~x!!cm~i~x!!, ~22!

where dux is an arbitrary volume element onS. The state spacePi is defined as the Cartesia
productQi3Ti* Emb(S,M).

As we are considering flat space–time, there exists a family of preferred embeddings;
which correspond to inertial frames. The space of preferred embeddings can be parametr
pairs (n,t) wheren is a future pointing unit vector inM and tPR. As we are considering a
deterministic system, we chooset50 without loss. We denote the configuration space and
state space corresponding to the embedding labeled by (n,0) asQn andPn , respectively. The state
spacePn carries the following Poisson algebra:

$fn
m~x!,fn

n~x8!%50, ~23!

$pm
n ~x!,pn

n~x8!%50, ~24!

$fn
m~x!,pn

n~x8!%5dn
mdn

(3)~x2x8!, ~25!

wheredn
(3)(x2x8) is the delta function onSn .

A field fn
m(x)PQn can be decomposed into the pair (fn

t (x), nfm(x)) where

fn
t ~x!ªnmfn

m~x!, ~26!

nfm~x!ªnPn
mfn

n~x!, ~27!

and we have introduced then-spatial projection tensor defined by

nPn
m
ªdn

m2nmnn . ~28!

It follows thatnm
nPn

m50 andnnnPn
m50. The fieldsfn

t (x) andnfm(x) are defined on the space o
embeddings, butfn

t (x) pulls back to give a ‘‘scalar field’’ onSn . We can use the metric onM to
lower the index onnfm(x). The resulting one-form can be pulled back toSn , and then the index
can be raised using the metric onSn to give a ‘‘vector field’’ on Sn . In a similar way, objects
defined bynpm(x)ªnPm

n pn
n(x), and nfmn(x)ªnPs

m nPr
nfn

sr(x) can be thought of as a ‘‘one
form’’ and a ‘‘covariant tensor’’ onSn .

The canonical momenta are computed from the Lagrangian and turn out to be12

p t
n~x!50, npm~x!5nPm

r nnfnr~x!. ~29!

The first of these equations is a primary constraint. The canonical Hamiltonian is computed

Hn5E
S
dux F1

2
npm

npm1
1

4
nfmn

nfmn2
1

2
m2~fn

t !21
1

2
m2 nfm

nfm2fn
t n]m npmG , ~30!

where then-spatial derivative is defined asn]m5nPn
m]n. For the primary constraintp t

n(x)50 to
be preserved by the dynamical evolution, it is necessary and sufficient that$Hn ,p t

n(x)%50. This
implies the secondary constraint

m2fn
t ~x!1n]m npm~x!50. ~31!

A point in the constraint surfaceCn determines and is fully determined by the pa
(npm(x), nfn(x)).
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The constraints do not commute under the Poisson bracket and so they form a secon
pair. This implies that the pull-back of the symplectic two-form onPn to the constraint surface i
nondegenerate. Therefore there is a well-defined Poisson algebra on the constraint surfac
is given by the Dirac brackets:

$nfm~x!, npn~x8!%D5nPn
md (3)~x2x8!, ~32!

with all other brackets vanishing.

B. Classical history theory

We begin with the abstract state spaceP, and follow the usual procedure of taking a on
parameter family of copies ofP. This results in a trivial vector bundlejn :P3R→R where the
fiber jn

21(t)5Pn,t for eacht. Sections ofjn correspond to histories of the vector field with respe
to the foliation labeled byn. Thus a history is a map

hn :t°~fn
m~ t;x!,pn

n~ t;x!!. ~33!

If we choose a volume element onR then a symplectic structure is induced on the space of m
R→P becauseP is a symplectic manifold. Using the Lebesgue measure, the symplectic stru
defines the following algebra:

$fn
m~ t;x!,fn

n~ t8;x8!%50, ~34!

$pm
n ~ t;x!,pn

n~ t8;x8!%50, ~35!

$fn
m~ t;x!,pn

n~ t8;x8!%5dn
md~ t2t8!dn

(3)~x2x8!. ~36!

In the case of the scalar field a one-parameter family of functions onSn :

t°fn~ t;x! ~37!

was identified with a functionfn(X) on M. In a similar way, for a fixed foliation, a one
parameter family of elements ofQn ,

t°fn
m~ t;x!, ~38!

is equivalent to a unique vector fieldfn
m(X)PX(M). The one-parameter familyt°pm

n (t;x) can
be identified with a one-formpm

n (X)PL1(M) in the same way, and these fields satisfy t
covariant looking algebra

$fn
m~X!,fn

n~X8!%50, ~39!

$pm
n ~X!,pn

n~X8!%50, ~40!

$fn
m~X!,pn

n~X8!%5dn
md (4)~X2X8!. ~41!

In this way, the history space,Pn , can be identified with the spaceX(M)3L1(M). We can
decomposefn

m(X) into the pair (fn
t (X), nfm(X)) defined by

fn
t ~X!ªnmfn

m~X!, ~42!

nfm~X!ªnPn
mfn

n~X!, ~43!

and we use these fields to define the generators of internal and external time translations. E
time translations are generated by the ‘‘Liouville’’ functional,
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VnªE d4X @p t
nnn]nfn

t 1npmnn]n nfm#. ~44!

Internal time translations are generated by the time-averaged Hamiltonian

Hn5E d4XF1

2
npm

npm1
1

4
nfmn

nfmn2
1

2
m2~fn

t !2 ~45!

1
1

2
m2 nfm

nfm2fn
t n]m npmG . ~46!

The internal time translations generated byHn take the form

fn
m~X!°fn

m~X,s!. ~47!

In Sec. II C we will consider the geometric meaning of these curious objects which have
components, but depend on five space–time variables.

In the remainder of this section we discuss the history constraint surfaceCn,Pn . An arbitrary
element ofPn will not be compatible with the constraints. The constraint submanifold,Cn ,
contains all elements ofP which satisfy the constraints:

p t
n~X!50, m2fn

t ~X!1n]m npm~X!50. ~48!

Thus a point inCn is equivalent to a pair (nfm(X), npn(X)). The Poisson algebra induced onCn

by pulling back along the natural inclusion mapCn�Pn is given by

$nfm~X!, nfn~X8!%50, ~49!

$npm~X!, npn~X8!%50, ~50!

$nfm~X!, npn~X8!%5nPn
md (4)~X2X8!, ~51!

and we note thatCn is symplectomorphic to the space of sections of the bundleCn3R→R.

C. Poincaré covariance

As discussed in Sec. I. B. 3 for the case of the scalar field, the notion of two times
naturally to the definition of two Poincare´ groups. The external Poincare´ group mixes the externa
time with then-spatial variablesx and the internal Poincare´ group mixes internal time withx. The
crucial new feature of the generators for the vector field is the mixing of the time-like
space-like components of the field.

1. External Poincare´ group

The generators of external space–time translations can be written in covariant looking fo

extPn
m5E d4Xpn

n~X!]mfn
n~X!. ~52!

Next we define

Mn
mn5E d4Xpr

n~X!~Xm]n2Xn]m!fn
r~X!1sn

mn , ~53!

where the ‘‘spin tensor’’ is
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sn
mn5E d4Xpr

n~X!~drmds
n 2drnds

m!fn
s~X!. ~54!

By an ‘‘n-spatial rotation’’ we shall mean a rotation that leavesn fixed.n-spatial rotations can
be parametrized by two vectorsm1 andm2 satisfyingm1

•n5m2
•n50 in the following way:

Mn~m1,m2!5mm
1 mn

2Mn
mn . ~55!

As in the case of the scalar field, the external boosts cannot be implemented by canonica
formations because of the change in foliation. The natural definition of the automorphisms
erated by the action of the external boosts is

fn
m~ t,x,0!°Ln

mfLn
n ~L~ t,x!,0!, ~56!

pm
n ~ t,x,0!°Lm

n pn
Ln~L~ t,x!,0!. ~57!

So the external boosts mixt with x, and the external time componentfLn
t (t,x,0) with the

space-like componentsLnfm(t,x,0).

2. Internal Poincare´ group

The n-spatial rotation and translation generators of the internal Poincare´ group coincide with
those for the external Poincare´ group. However, internal time translations are generated by
Hamiltonian, and therefore act internally asfn

m(X)°fn
m(X,s). We tentatively define the genera

tor of internal Lorentz transformations on thes5const hyperplane in the ‘‘obvious’’ way:

intKn~m!ªmmE d4X@pn
ns]mfn

n2XmHn~X!#1nmmnsmn, ~58!

whereHn(X) is the Hamiltonian density,m is a vector satisfyingm•n50, and the integral is ove
the surfaces5const. This functional generates the automorphisms

fn
m~0,x,s!°Ln

mfn
n~0,L~x,s!!, ~59!

pm
n ~0,x,s!°Lm

n pn
n~0,L~x,s!!. ~60!

intKn(m) mixess with x, andfn
t (0,x,s) with nfn

m(0,x,s). So in this transformation, the functio
fn

t (0,x,s) is associated with theinternal time direction, whereas it was associated with theexter-
nal time direction by the external boosts. These transformations are rather curious, and do n
to a clear geometric interpretation of the history vector field.

D. Alternative interpretations of the history vector field

The above-presented discussion suggests that it is inappropriate to think of the history
fields as a family of four-vectors on external space–time. We propose two alternative inter
tions of the history vector fields.

1. Four-component fields

One way of thinking of the history fields is as a family of four-vectors, but with the temp
component in the]tª]s1] t direction,

fn5fn
t~X,s!]t1fn

i ~X,s!] i , ~61!

wherefn
t(X,s)5fn

t (X,s) and we have used coordinates adapted ton. From this perspective it is
natural to look for a representation of the Poincare´ group in which the boosts act in this directio
The internal boost generator ons50 would be
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Kn~m!ªE d4X@n•Xpm
n ~X!mn]nfn

m~X!2m•X~Vn~X!1Hn~X!!#, ~62!

whereVn(X) is the ‘‘Liouville’’ density. However, it can be shown that

$Kn~m1!,Kn~m2!%Þmm
1 mn

2Mn
mn , ~63!

even on the solutions to the equations of motion, and so the functionalsKn(m) do not form a
representation of the Poincare´ group.

Thus it is not possible to eliminate the two times in favor of one ‘‘physical’’ time direction]t ,
in a covariant way. Nevertheless,t does have a special significance in the theory. This is indica
by the equations of motion. Returning to the example of the scalar field for a moment, iffn(X)
is a solution then$Sn ,fn(X)%50 implies that

~]s2] t!fn~X!us5050 ~64!

and so all the temporal change in such histories occurs in thet direction.

2. Five-component fields

We can augmentfn
m(X,s) with a new degree of freedomfn

s(X,s) to form f̃n
M(X,s), a

five-component ‘‘vector field’’ on the extended space–timeN5M3R. The extended fields are
written

f̃n5f̃n
M~X,s!]M , p̃n5p̃M

n ~X,s!dxM. ~65!

The labelM runs overt, 1, 2, 3,s, where we defineM5t to refer to external time,M51, 2, 3 to
correspond to the spatial directions, andM5s to refer to internal time.

The extended history space,P̃n , contains all ordered pairs (f̃n ,p̃n) that satisfy the interna
field equations:

]sf̃n
M~X,s!5$H̃n ,f̃n

M~X,s!%, ~66!

]sp̃M
n ~X,s!5$H̃n ,p̃M

n ~X,s!%, ~67!

whereH̃n is the Hamiltonian on extended history space, and is defined in Sec. II. E.
The history algebra can be extended to these fields in a natural way:

$f̃n
M~X!,p̃N

n ~X8!%5dN
Md (4)~X2X8!. ~68!

This defines the algebra of the fields on the surfaces50, which is a submanifold ofN. Hamil-
tonian evolution can be used to extend this definition to the rest ofN. The fact that the algebra i
naturally defined on the hyperplanes50 and not on the hyperplanen•X50 reflects the underly-
ing asymmetry between the two ‘‘modes’’ of time. As a consequence of this asymmetry, the t
constructed from the fieldsf̃n will not be covariant under the full SO(2, 3) isometry grou
associated withN. In particular it will not be covariant under the action of the SO(2) subgr
acting in the (s,t) plane.

In order to discuss the Poincare´ transformations of the five-component fields, we make
definition:

M̃n
MN5E

M (e)
d4Xp̃R

n~X!~XM]N2XN]M !f̃n
R~X!1s̃n

MN , ~69!
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whereM (e),N is external space–time, defined as the surfaces50, and the extended spin tens
is defined as

s̃n
MN5E

M (e)
d4Xp̃A

n~X!~dAMdB
N2dANdB

M !f̃n
B~X!. ~70!

Using M̃n
MN we can write the rotation generators as

M̃n~m̃1,m̃2!5m̃M
1 m̃N

2 M̃n
MN , ~71!

wherem̃1 andm̃2 aren-spatial in the sense thatm̃M
1 ñM5m̃M

1 ẽM50, and similarly form̃2.
The foliation vectorn is an element of the external space–time which is a subspace oN.

Using the canonical embedding,n can be considered as a vector inN, which we denote byñ and
is given in coordinates (X,s) by (n,0). Using this coordinate system the internal future point
unit vector ẽ can be written as~0,1!. We can use these vectors to decompose an extended
f̃n

M(X,s) into its external and internal time components as follows:

f̃n
t ~X,s!5ñMf̃n

M~X,s!, f̃n
s~X,s!5ẽMf̃n

M~X,s!. ~72!

Finally, given three orthogonal,n-spatial, unit vectors inN, m̃i , where i 51, 2, 3, the spatial
components off̃n

M(X,s) are

f̃n
i ~X,s!5m̃M

i f̃n
M~X,s!. ~73!

Using this basis we write the action of the external boosts as

f̃n
s~ t,x,0!°f̃Ln

s ~L~ t,x!,0!, ~74!

f̃n
m~ t,x,0!°Ln

mf̃Ln
n ~L~ t,x!,0!, ~75!

p̃s
n~ t,x,0!°p̃s

Ln~L~ t,x!,0!, ~76!

p̃m
n ~ t,x,0!°Lm

n p̃n
Ln~L~ t,x!,0!, ~77!

wherem takes the valuest, 1, 2, 3.
Internal boosts are generated by

intK̃n~m̃!ªm̃MEM s
(e)

d4X@p̃N
n s]Mf̃n

N2XMH̃n~X!#1ẽMm̃Ns̃n
MN , ~78!

and the resultant automorphisms are

f̃n
t ~0,x,s!°f̃n

t ~0,L~x,s!!, ~79!

f̃n
m̄~0,x,s!°Ln̄

m̄f̃n
n̄~0,L~x,s!!, ~80!

p̃ t
n~0,x,s!°p̃ t

n~0,L~x,s!!, ~81!

p̃m̄
n ~0,x,s!°Lm̄

n̄ p̃ n̄
n~0,L~x,s!!, ~82!

wherem̄ takes the values 1, 2, 3,s. Now the components off̃n andp̃n are mixed in a way which
is consistent with the mixing of the space–time variables. This indicates that the extended
are an appropriate way of thinking about the history fields. However, it should be emphasize
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the extended fields are not covariant under SO(2, 3). LetVM denote the vector defined by the fie
f̃n

M(X,s) at the point (X,s). Using the basis (ñ,ẽ,m̃i), VM can be decomposed into an ‘‘externa
four-vector (Vt,Vi), or into an ‘‘internal’’ four-vector (Vs,Vi), and each of these four-vectorsis a
covariant object under the appropriate Poincare´ group. This suggests a third interpretation of t
history vector fields aspairs of four-component fields with identicaln-spatial components. How
ever, this identification is not preserved under the action of the boosts, so it seems that we
with the five-vector interpretation as the only viable one.

It remains to be shown that the extra degrees of freedom can be included in the action in
that is consistent with the symmetries and equations of motion of the theory.

E. The action

In the case of scalar field theory the physical action functional is written asSn5Vn2Hn . The
Liouville operator is associated with external time in the sense that it generates translations
external time direction. In the same way, the Hamiltonian is associated with internal time, an
action functional mixes the two ‘‘modes’’ of time.

First we will need the following definition: Then-spatial part off̃n
M(X,s) is defined as

nf̃M~X,s!ªnP̃N
Mf̃N~X,s!, ~83!

where the extendedn-spatial projection tensor is

nP̃N
M
ªdN

M2ñMñN2ẽMẽN . ~84!

Similarly we definen]M
ª

nP̃N
M]N.

Let Ṽn denote the extension of the Liouville operator to the extended fields.Ṽn is defined in
the following natural way.

ṼnªE
M (e)

d4X@p̃s
n]n

t f̃n
s1p̃ t

n]n
t f̃n

t 1np̃M]n
t nf̃M#, ~85!

where ]n
t
ªñM]M is the derivative in the external time direction defined byñ. The extended

Hamiltonian,H̃n , is defined as

H̃nªE
M (e)

d4XF1

2
np̃M

np̃M1
1

4
nf̃MN

nf̃MN2
1

2
m2~f̃n

s!2

2
1

2
m2~f̃n

t !21
1

2
m2 nf̃M

nf̃M2f̃n
t n]M np̃M G . ~86!

The important thing about this Hamiltonian is thatf̃n
s and f̃n

t both appear in the mass term
but only f̃n

t appears as the coefficient ofn]M np̃M . Due to this asymmetry betweenf̃n
s and f̃n

t ,
the Hamiltonian is not invariant under SO(2, 3). The action is defined to beS̃nªṼn2H̃n . The
resulting field equations are

$S̃n ,f̃n
s%50⇒]n

t f̃n
s50, ~87!

$S̃n ,p̃s
n%50⇒]n

t p̃s
n1m2f̃n

s50, ~88!

$S̃n ,f̃n
t %50⇒]n

t f̃ t50, ~89!

$S̃n ,p̃ t
n%50⇒]n

t p̃ t
n1m2f̃n

t 1n]M np̃M50, ~90!
                                                                                                                



t have
e-like
ons

cond-

s.
rentz

metry

al

l

is

ce

3047J. Math. Phys., Vol. 43, No. 6, June 2002 Classical history theory of vector fields

                    
$S̃n , nf̃M%50⇒]n
t nf̃M2~np̃M1n]Mf̃n

t !50, ~91!

$S̃n , np̃M%50⇒]n
t np̃M2~n]N nf̃NM1m2 nf̃M !50. ~92!

The physical action has not been derived in the usual way from a Lagrangian, so we do no
the usual identification of primary constraints. The field equations do not determine the tim
components of thep̃ field, so we augment the equations of motion with the following equati
which are interpreted as the primary constraints of the theory:

p̃s
n~X!50, p̃ t

n~X!50. ~93!

We require these constraints to be conserved in internal time which implies the following se
ary constraints:

f̃n
s~X!50, m2f̃n

t ~X!1n]M np̃M~X!50, ~94!

so in the history theory of the massive vector field there aretwo pairs of second class constraint
In the state space theory a single pair of constraints allow the theory to be written in a Lo
covariant way. In the five-component history theory where there are two SO(1, 3) sym
groups, we have to introduce two pairs of constraints in order to have a covariant theory.

The three functionals,Ṽn , H̃n , and S̃n are all invariant under the action of the intern
Poincare´ group. However, the external boosts change the foliation with respect to whichṼn and
H̃n are defined, giving the transformationsṼn°ṼLn andH̃n°H̃Ln . These transformations imply
S̃n°S̃Ln , and the history theory is covariant under both Poincare´ groups if we include the interna
foliation dependence.

III. ELECTROMAGNETISM

A. State space theory

In this section we consider vacuum electromagnetism onM. The covariant configuration
space for electromagnetism isQ5L1(M), and the Lagrangian is

L52 1
4 FmnFmn, ~95!

whereFmn(X)ª2] [mAn] (X) for APQ. The covariant equations of motion which follow from th
Lagrangian are

Fnm
,n~X!50. ~96!

Given an embeddingi:S→M, the canonical configuration space isQi5Ti* Emb(S,M) and the
state space,Pi , can be identified withQi3TiEmb(S,M). The Poisson algebra on the state spa
associated with the embedding labeled by (n,0) is

$Am
n ~x!,An

n~x8!%50, ~97!

$En
m~x!,En

n~x8!%50, ~98!

$Am
n ~x!,En

n~x8!%5dm
n dn

(3)~x2x8!. ~99!

The canonical momenta are computed from the Lagrangian;

En
t ~x!50, nEm~x!5nPr

mnnFnr~x!, ~100!
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where we again use the decomposition into time-like and space-like parts. The canonical
tonian is

Hn5E
S
duxF1

2
nEm nEm1

1

4
nFmn

nFmn2At
nn]m

nEmG . ~101!

The equation of motion forEn
t implies the secondary constraint

n]m
nEm~x!50, ~102!

which can be recognized as Gauss’ law. The constraints form a first class pair. The corresp
gauge freedom is manifested in the fact that the equations of motion do not determineAt

n or AL
n

whereAL
n is the longitudinal part ofAn. The pull back of the symplectic two-form onPn to the

constraint surfaceCn is degenerate because of the first class nature of the constraints. The re
state space is obtained after gauge fixing and contains only four of the original eight degr
freedom.

B. History theory

We follow the same procedure as before and consider sections of the trivial vector b
P3R→R. So a history is a map

t°~Am
n ~ t;x!,En

n~ t;x!!, ~103!

and again, there is a unique pair (Am
n (X),En

n(X)) corresponding to such a history so we fix ann
and identifyPn with the abstract spaceL1(M)3X(M). These history fields satisfy the covaria
looking algebra,

$Am
n ~X!,An

n~X8!%50, ~104!

$En
m~X!,En

n~X8!%50, ~105!

$Am
n ~X!,En

n~X8!%5dn
m d (4)~X2X8!, ~106!

and the Liouville, Hamiltonian, and action operators are defined as

VnªE d4X@En
t ]n

t At
n1nEm]n

t nAm#, ~107!

HnªE d4XF1

2
nEm

nEm1
1

4
nFmn

nFmn2At
n n]m nEmG , ~108!

SnªVn2Hn . ~109!

C. Constraints

We follow the procedure detailed for the vector field and work in the extended history s

P̃n . The extended history fields are written in the form

Ãn5ÃM
n ~X,s!dxM, Ẽn5Ẽn

M~X,s!]M , ~110!

and using a basis we have the decomposition ofÃn into time-like and space-like componen
(Ãs

n ,Ãt
n ,Ãi

n). The transformations of the history electromagnetic field under the action o
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Poincare´ group are very similar to the transformations of the vector field. From now on we fi
n, and work in coordinates adapted ton, dropping then-label for typographical convenience. Th
new feature of electromagnetism is, of course, gauge invariance.

We extend the Liouville, Hamiltonian, and action functionals to the extended history spa

ṼªE
M (e)

d4X@Ẽs] tÃs1Ẽt] tÃt1Ẽi] tÃi #, ~111!

H̃ªE
M (e)

d4XF1

2
Ẽi Ẽ

i1
1

4
F̃ i j F̃ i j 2Ãt]

i Ẽi G , ~112!

S̃ªṼ2H̃. ~113!

As before we regard the equations

Ẽs~X!50, Ẽt~X!50 ~114!

as the primary constraints of the theory. The corresponding secondary constraints follow fro
Hamilitionian evolution ofẼs and Ẽt. The equation$H̃,Ẽs(X)%50 is identically satisfied and

$H̃,Ẽt(X)%50 implies Gauss’ law,

] i Ẽ
i~X!50. ~115!

Gauss’ law is conserved in internal time,$H̃,] i Ẽ
i(X)%50, as a consequence of the antisymme

of F̃ i j . Equations~114! and ~115! are the first class constraints of the theory.

D. External local symmetries

To investigate the external local symmetries we define the extended action,13

S̃E
ªS̃2E

M (e)
d4X@l0Ẽs1l1Ẽt1l2] i Ẽ

i #. ~116!

The transformations

dÃs~X!5e0~X!, ~117!

dÃt~X!5e1~X!, ~118!

dÃi~X!5] ie2~X!, ~119!

are generated by the functional

c5E
M (e)

d4X@e0Ẽs1e1Ẽt1e2] i Ẽ
i #. ~120!

The extended action is invariant under these transformations if

dl0~X!5] te0~X!, ~121!

dl1~X!5] te1~X!, ~122!

dl2~X!5e1~X!2] te2~X!. ~123!
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The symmetry of the total action, and therefore of the underlying Lagrangian theory is fou
settingl250 ~anddl250!, thus eliminating the secondary constraint. The resulting transfor
tions are

dÃs~X!5e0~X!, ~124!

dÃm~X!5]me2~X!, ~125!

wherem5t, 1, 2, 3. These transformations contain two arbitrary real functions on external sp
time. Settinge050 we obtain ‘‘external’’ U(1) gauge transformations:

dÃm~X!5]me2~X!, ~126!

which correspond to the symmetries of the external Maxwell tensorF̃mn52] [mÃn] .

E. Internal local symmetries

The mapÃM(X)°ÃM(X,s) is one-to-many for gauge systems. This introduces an e
ambiguity into the theory which is not contained in Eqs.~124! and ~125!. We make this extra
ambiguity explicit by introducing Lagrange multipliers to make the mapÃM(X)°ÃM(X,s) one-
to-one. To accomplish this we define the extended Hamiltonian,

H̃s
E@l0 ,l1 ,l2#ªH̃2E

M s
(e)

d4X@l0Ẽs1l1Ẽt1l2] i Ẽ
i #. ~127!

At each moment of internal times, the integral is overM s
(e) ~the surfaces5const!, and the

Lagrange multipliers are arbitrary real valued functionsl(•,s):M s
(e)→R. The extended Hamil-

tonian generates canonical transformations of the potential field

]sÃM~X,s!5$Hs
E ,ÃM~X,s!%, ~128!

and the mapÃM(X)°ÃM(X,s) is given by the flow of the time-dependent vector field genera
by Hs

E . ThusÃM(X,s) is the solution of the following integral equation:

ÃM~X,s!5ÃM~X,0!1expS E
0

s

ds8$H̃s8
E ,ÃM~X,s8!% D . ~129!

Because the transformationÃM(X)°ÃM(X,s) is canonical, it preserves the Poisson bracket s

$ÃM~X,s!,ẼN~X8,s!%5dM
N d (4)~X2X8!. ~130!

Gauge-equivalent histories correspond to different choices of the Lagrange multipliers
extended Hamiltonian. The functional defined by

cs5E
M s

(e)
d4X@e0Ẽs1e1Ẽt1e2] i Ẽi #, ~131!

generates transformations on the fields onM s
(e) as follows:

dÃM~X,s!5$cs ,ÃM~X,s!%, ~132!

and these transformations take the form

dÃs~X,s!5e0~X,s!, ~133!
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dÃt~X,s!5e1~X,s!, ~134!

dÃi~X,s!5] ie2~X,s!. ~135!

In order that Eq.~128! is preserved by these transformations up to a change in the Lagr
multipliers associated with the primary constraints, the transformations must satisfy

dÃs~X,s!5e0~X,s!, ~136!

dÃt~X,s!5]se2~X,s!, ~137!

dÃi~X,s!5] ie2~X,s!. ~138!

These are the internal local symmetry transformations of histories electromagnetism. They c
two arbitrary real valued functions on extended space–time, but are not just a trivial extens
the external local transformations to each moment of internal time. The transformationÃt

contains a derivative with respect to internal time rather than external time. This is becau
internal gauge transformations correspond to the symmetries of the internal field equations
than the symmetries of the external field equations.

If we sete05]se2 and restrict to a surfacet5const, we obtain ‘‘internal’’ U(1) gauge trans
formations:

dÃm̄~X,s!5]m̄e2~X,s!, ~139!

where m̄ runs over 1, 2, 3,s. These are the symmetries of the internal Maxwell tensorF̃ m̄n̄

52] [ m̄Ãn̄ ] .

F. Internal versus external

An arbitrary history satisfies the internal equations of motion. Therefore all histories tha
related by internal gauge transformations should be regarded as physically equivalent. Ho
most histories will not satisfy the external equations of motion, and so need not respe
external symmetry transformations. Histories which are solutions to the external equatio
motion are invariant under both internal and external symmetry transformations.

An internal local symmetry transformation is also an external local symmetry transform
if and only if

~] t2]s!e2~X,s!50, ~140!

so the equation of motion (] t2]s)Ãm50 is conserved by these transformations. It is interestin
note that if Eq.~140! holds and we sete05]se2 then we obtain U(1) gauge transformations onN:

dÃM~X,s!5]Me2~X,s! ~141!

which are the symmetries of the five-dimensional Maxwell tensorF̃MN5] [ MÃN] .

IV. SUMMARY AND CONCLUSION

We have shown that the global symmetry transformations of geometric objects in a h
theory suggests the introduction of an extra pair of fields. The extended history fields can th
interpreted as fields onN5M3R that are covariant under the action of two Poincare´ groups, but
not the SO(2, 3) group associated withN. The history fields can be decomposed into tw
SO(1, 3)-vectors at each point in the extended space–time, where the spatial components
two vectors are the same.
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In the case of the massive vector field, the theory contains two pairs of second clas
straints, and in the case of electromagnetism, we obtain three first class constraints. In bot
examples, the extra degrees of freedom can be set to zero, and eliminated from the the
taking Dirac brackets. It seems reasonable to expect this pattern to continue in the exten
other constrained field theories as there is no physical information in the extra degrees of fre
So although Lorentz covariance suggests that the fields should have five components, th
constraints allow the extra variables to be eliminated.

In conclusion, the geometry of classical history theories is not fully understood. In the
space approach the solutions to the field equations are sections of tensor bundles associa
SO(1, 3) principal bundle overM. This formulation elegantly characterizes the way that the fie
transform under Lorentz transformations. If the history fields were covariant under SO(2, 3
we would have a description of history fields in terms of sections of bundles associated
SO(2, 3) principal bundle overN. However the reality of the situation appears to be more co
plicated. There is an SO(1, 3) group associated to each surface of constantt, and to each surface
of constants, but the action of these two groups is intertwined in a nontrivial way. Sim
remarks apply to the local symmetries in a history theory: they cannot be interpreted a
transformations of a U(1) connection on a principal bundle overN.

In a subsequent paper we will discuss the quantization of histories electromagnetism us
BRST formalism.
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Poincaré invariance for continuous-time histories
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We show that the relativistic analog of the two types of time translation in a
nonrelativistic history theory is the existence of two distinctPoincarégroups. The
‘‘internal’’ Poincaré group is analogous to the one that arises in the standard ca-
nonical quantization scheme; the ‘‘external’’ Poincare´ group is similar to the group
that arises in aLagrangian description of the standard theory. In particular, it
performs explicit changes of the space–time foliation that is implicitly assumed in
standard canonical field theory. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1471924#

I. INTRODUCTION

The generalization of continuous-time history theory to include relativistic quantum fi
raises some subtle issues that tend to be hidden in the normal canonical treatment of a q
field.

The standard canonical quantization of a relativistic field requires the choice of a Loren
foliation on the background space–time: the Hamiltonian is then defined with respect t
foliation. There exist many unitarily inequivalent representations of the canonical commu
relations for this quantum field theory: the physically appropriate one is chosen by requirin
the Hamiltonian exists as a well-defined self-adjoint operator. In this sense—like the Hamilt
itself—the physically appropriate representation is foliation dependent. Relativistic covaria
then implemented by seeking a representation of the Poincare´ group on the resulting Hilbert space
However, the Poincare´ group thus constructed does not explicitly perform achange of the folia-
tion.

The HPO continuous-time histories approach to quantum theory1–4 is particularly suited to
deal with systems that have a nontrivial temporal structure, and therefore it should be a
provide a significant clarification of this point.

Specifically, we will show that the relativistic analog of the two types of time translation
arise in a nonrelativistic history theory is the existence of two distinctPoincaré groups. The
‘‘internal’’ Poincarégroup is analogous to the one that arises in the standard canonical quanti
scheme as sketched above.

However, the ‘‘external’’ one is a novel object: it is similar to the group that arises in
Lagrangian description of the field theory. In particular, it explicitly performschangesof the
foliation. This arises from the striking property that HPO theories admit two distinct types of
transformation, each representing a distinct quality of time.1 The first corresponds to time consid
ered purely as a kinematical parameter of a physical system, with respect to which a his
defined as a succession of possible events. It is strongly connected with the temporal-
structure of the theory and is related to the view of time as a parameter that determin
ordering of events. The second corresponds to the dynamical evolution generated by the
tonian. For a detailed presentation of the HPO continuous-time program, see Ref. 1.

As we shall see, one of the important results of the formalism as applied to a field the
that, even though the representations of the history algebra are foliation dependent, the p
quantities~probabilities! arenot.

a!Electronic mail: ntina@ic.ac.uk
30530022-2488/2002/43(6)/3053/21/$19.00 © 2002 American Institute of Physics
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In Sec. II, we shall give a brief description of the underlying concepts of the continu
histories program: this is necessary for establishing the framework of the ensuing work.

In Sec. III, we present the histories version of a classical scalar field theory: in particula
show how two Poincare´ groups arise as an analog of the two types of time transformation in
nonrelativistic history theory.

The free quantum scalar field theory is presented in Sec. IV. We show that due to the his
temporal structure previously introduced in Ref. 1, manifest Poincare´ invariance is possible. Spe
cifically, we show how different representations of the history algebra—corresponding to diff
choices of foliation—are realized on thesameFock space~notwithstanding the fact that th
different representations are unitarily inequivalent!, and we show that they are related in a cert
way with Poincare´ transformations.

II. THE HISTORY PROJECTION OPERATOR APPROACH

The history projection operator~the, so-called, ‘‘HPO’’ approach! theory was a development2

~emphasizing quantumtemporal logic! of the consistent-histories approach to quantum the
inaugurated by Griffiths, Omne´s, Gell-Mann and Hartle.5 However, the novel temporal structur
introduced in Ref. 1 led to a departure from the original ideas on decoherence. In particular,
approach, emphasis is placed on the distinction between~i! the temporal logic structure of th
theory and~ii ! the dynamics.3

In consistent-histories theory, a history is defined as a sequence of time-ordered propo
about properties of a physical system, each of which can be represented, as usual, by a pr
operator. In normal quantum theory, it is not possible to assign a probability measure to the
all histories. However, when a certain ‘‘decoherence condition’’ is satisfied by a set of hist
the elements of this setcan be given probabilities.

The probability information of the theory is encoded in the decoherence functional: a com
function of pairs of histories which—in the original approach of Griffithset al.—can be written as

d~a,b!5tr~C̃a
†rC̃b!, ~2.1!

wherer is the initial density-matrix, and where theclass operator C˜ a is defined in terms of the
standard Schro¨dinger-picture projection operatorsa t i

as

C̃aªU~ t0 ,t1!a t1
U~ t1 ,t2!a t2

¯U~ tn21 ,tn!a tn
U~ tn ,t0!, ~2.2!

whereU(t,t8)5e2 i (t2t8)H/\ is the unitary time-evolution operator from timet to t8. Each pro-
jection operatora t i

represents a proposition about the system at timet i , and the class operatorC̃a

represents the composite history proposition ‘‘a t1
is true at timet1 , and thena t2

is true at timet2 ,
and then ..., and thena tn

is true at timetn . ’’
Isham and Linden developed the consistent-histories formalism further, concentrating

temporalquantum logic structure.2 They showed that propositions about the histories of a sys
could be represented byprojection operatorson a new, ‘‘history’’ Hilbert space. In particular, th
history proposition ‘‘a t1

is true at timet1 , and thena t2
is true at timet2 , and then ..., and thena tn

is true at timetn’’ is represented by thetensor producta t1
^ a t2

^¯^ a tn
which, unlikeC̃a , is a

genuine projection operator that is defined on the tensor product of copies of the standard
spaceHt1

^ Ht2
^¯^ Htn

. Hence the ‘‘history projection operator’’ formalism extends to multip
times, the quantum logic of single-time quantum theory.

The history space. An important way of understanding the history Hilbert spaceF is in terms
of the representations of the ‘‘history group’’—in elementary systems this is the history anal
the canonical group.2 For example, for the simple case of a point particle moving on a line, the
algebra of the history group for acontinuoustime parametert is described by the history com
mutation relations
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@xt ,xt8#50, ~2.3!

@pt ,pt8#50, ~2.4!

@xt ,pt8#5 i\d~ t2t8!, ~2.5!

where2`<t, t8<`. It is important to note that these operators are in theSchrödinger picture,
and that the history algebra is invariant under translations of the time index of these opera

The choice of the Dirac delta-function on the right hand side of Eq.~2.5! is associated with the
requirement that time be treated as a continuous variable. One important consequence is
that the observables cannot be defined at sharp moments of time, but rather appear natu
time-averaged.

A unique representation of this algebra can be found by requiring the existence of an op
analog of a time-averaged HamiltonianH5*2`

` dt Ht , where Ht is the standard Hamiltonian
defined at a moment of timet.6

The action and Liouville operators. One of the original problems in the development of t
HPO theory was the lack of a clear notion of time evolution, in the sense that there was no n
way to express the time translations from one time slot—that refers to one copy of the H
spaceHt—to another one that refers to another copyH t8 . The situation changed with the intro
duction of the ‘‘action’’ operator S.

Indeed, the crucial step for constructing the temporal structure of the theory was the defi
in Ref. 1 of the action operatorS—a quantum analog of the Hamilton–Jacobi functional,7 written
as

SkªE
2`

1`

dt~ptẋt2k~ t !Ht!, ~2.6!

wherek(t) is an appropriate test function.
The first term of the action operatorSk in Eq. ~2.6! is identical to the kinematical part of th

classical phase space action functional. This ‘‘Liouville’’ operator is formally written as

VªE
2`

`

dt ~ptẋt! ~2.7!

so that

Sk5V2Hk . ~2.8!

A. The temporal structure

A fundamental property of the HPO form of history theory is that the Liouville operatorV and
the Hamiltonian operatorHk generate two distinct types of time transformation. The Liouv
operator V relates the Schro¨dinger-picture operators associated with different time-t labels,
whereasHt is associated with internal dynamical changes at the fixed timet ~with an analogous
statement for the smeared operatorHk!. The action operatorSk is thus the generator of both type
of time translation.1

More precisely, it was shown that there existtwo distinct types of time transformation. One—
generated by the Liouville operatorV—refers to time as it appears in temporal logic, and it
related tot-label in Eqs.~2.3!–~2.5!. The other—generated by the Hamiltonian—refers to time
it appears in the implementation of dynamical laws, and it is related to the labels in the ‘‘history
Heisenberg picture’’ operator, which is hence defined in accord to the novel conceptual
introduced with the ‘‘two modes of time,’’

xt~s!ªeisH/\xte
2 isH/\, ~2.9!
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whereH is defined to beHk with k set equal to 1.
We will use the notationxf(s) for these history Heisenberg-picture operators smeared

respect to the time labelt, and we notice from Eq.~2.9! that these quantities behave like standa
Heisenberg-picture operators with a time parameters.

For any specific physical system these two transformations are intertwined with the aid
action operatorS as

ei tS/\xf~s!e2 i tS/\5xf t
~s1t!, ~2.10!

where f t(t)ª f (t1t), and whereS meansSk with k51.

B. Classical histories theory

The continuous-time histories description has a natural analog for classical histories.3 In this
scheme, the basic mathematical entity is the spaceP5C(R,G) of differentiable paths taking thei
value in the manifoldG of classical states. Hence an element ofP is a smooth pathg:R→G. In
effect, we associate a copy of the classical state space with each moment of time, and
differentiable sections of the ensuing bundle overR.

The key idea in this approach to classical histories is contained in the symplectic struct
this space of temporal pathsP. For example, for a particle moving in one dimension~with
configuration coordinatex and momentum coordinatep!, the history spaceP is equipped with a
symplectic form

v5E dt dpt`dxt , ~2.11!

which generates the history Poisson brackets

ˆxt ,xt8‰50, ~2.12!

ˆpt ,pt8‰50, ~2.13!

ˆxt ,pt8‰5d~ t2t8!. ~2.14!

In general, given a functionf on G we can define an associated familyt°Ft of functions onP as

Ft~g!ª f ~g~ t !!. ~2.15!

In this way, all transformations implemented through the Poisson bracket in the norm
nonical theory correspond to transformations in the history theory thatpreserve the time label t.
Indeed, for two families of functionst°Ft and t°Gt defined through~2.15! we have

$Ft ,Gt8%5Ltd~ t,t8!, ~2.16!

whereLt corresponds to the functionl on G:

l 5$ f ,g%G . ~2.17!

In this way all relevant structures of the canonical theory can be naturally transferred t
histories framework.3

The Liouville, Hamilton and action functionals onP are defined respectively as

V~g!ªE
2`

`

dt @ptẋt#~g!, ~2.18!
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H~g!ªE
2`

`

dt @Ht~pt ,xt!#~g!, ~2.19!

S~g!ªV~g!2H~g!, ~2.20!

whereẋt(g)5(]xt /]t)(g) is the velocity at the time pointt of the pathg. These definitions are
crucial for the dynamics of the theory. In particular,V and H are the classical analogs of th
generators of the two types of time transformation in the history quantum theory.1

The crucial result of classical histories theory is that one may deduce the equations of m
in the following way:1 a classical historygcl is the realized path of the system—i.e., a solution
the equations of motion of the system—if it satisfies the equations

$xt ,V%~gcl!5$xt ,H%~gcl!, ~2.21!

$pt ,V%~gcl!5$pt ,H%~gcl!, ~2.22!

wheregcl is the patht°(xt(gcl),pt(gcl)), andxt(gcl) is the position coordinate of the realize
pathgcl at the time pointt.

The equations~2.21!–~2.22! are the history equivalent of the canonical equations of mot
In particular, the symplectic transformation generated by the history action functionalS(g) leaves
invariant the paths that are classical solutions of the system:

$xt ,S%~gcl!50, ~2.23!

$pt ,S%~gcl!50. ~2.24!

More generally, any functionF on P satisfies the equation

$F,S%~gcl!50. ~2.25!

This is the way in which equations of motion appear in the classical history theory. Notice
the role of the action as the generator of time transformations emerges naturally in this cla
case. Furthermore, the condition~2.25! above emphasizes the role of the Hamiltonian and Li
ville functionals in histories theory as generators of different types of time transformation. It
clarifies the new temporal structure that arises in history theory when compared with the sta
classical theory.

This result is of particular importance in the case of parameterized systems, where the
of time is recoveredafter the phase space reduction.3

III. CLASSICAL SCALAR FIELD THEORY

A. Background

1. Standard canonical treatment

In the Hamiltonian description of a free scalar fieldf with massm̃ on Minkowski space–time,
the first step is to choose a spacelike foliation, which can be specified by its normal—a
timelike vectornm. We shall take the signature of the Minkowski metrichmn to be (1,2,2,
2).

The first step is to select a specific foliation, and to choose a reference leafS.R3 that is
characterized byt50, wheret is the natural time label associated with the foliation.

The corresponding configuration space is the spaceC`(S) of all smooth scalar functions
f(x) on S, while the phase spaceG is its cotangent bundleT* C`(S) defined in an appropriate
way. @To make these statements mathematically rigorous it would be necessary to invo
differential geometry of infinite-dimensional spaces likeC`(S). However, we do not need to
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become involved in such complexities here: for our purposes it suffices to postulate the
Poisson algebra relations~3.12!–~3.14! that follow.# The key point about this structure is that th
state space of fields is equipped with the Poisson brackets

$f~xI !,f~xI 8!%50, ~3.1!

$p~xI !,p~xI 8!%50, ~3.2!

$f~xI !,p~xI 8!%5d~xI 2xI 8!. ~3.3!

Poincarégroup symmetry. The relativistic scalar field theory is covariant under the action
the Poincare´ group.8 For a free massive scalar field, the generators of time translationsP0, space
translationsPi , spatial rotationsJi and Lorentz boostsKi are respectively~obtained by the use o
Noether’s theorem on the Lagrangian theory, and a Legendre transform!

H5P05
1

2 E d3xI @p21] if] if1m̃2f2#, ~3.4!

Pi5E d3xI p] if, ~3.5!

Ji5
1

2
e i jkE d3xI pxj]kf, ~3.6!

Ki5M0i5E d3xI F tp] if2xi
1

2
~p21] jf] jf1m̃2f2!G , ~3.7!

where we note that the sub/superscriptsi , j ,k refer to coordinates in the surfaceS that is spatial
with respect to the chosen foliation vectorn. Similarly, the integrals above are all defined overS.

If we define the partial differential operator

~G f !~xI !ª@~hmn2nmnn!]m]n1m̃2# f ~xI !, ~3.8!

we can write the convenient expressions for the Hamiltonian and the boosts generator as

H5
1

2 E d3xI @p21fGf#, ~3.9!

Ki5E d3xI F tp] if2
1

2
xi~p21fGf!G . ~3.10!

For the special case of hypersurfacet50 the boost generator is written as

Ki5E d3xI F2
1

2
xi~p21fGf!G . ~3.11!

B. Histories description for the classical scalar field

In the histories formalism of a scalar field, the space of phase-space historiesP is an appro-
priate subset of the continuous Cartesian product3 tG t of copies of the standard state spaceG,
each labeled by the time parametert. ~One may write a history version of the Lagrangian tre
ment, however this description is not relevant to the immediate aims of this work.! The choice of
G depends on the choice of a foliation vectornm, hence the space of histories also has an imp
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dependence onnm and should therefore be written asnP. Furthermore, we writeS t5(n,t), the
spacelike surfaceS defined with respect to its normal vectorn, and labeled by the parametert.

To be more precise, for each spacelike surfaceS t we consider the state spaceG t

5T* C`(S t). Then we define the fiber bundle with basisR and fiberG t , at eachtPR. Histories
are defined as the cross-sections of the ensuing bundle, and the history spacenP is the space of all
smooth cross-sections of this bundle.

The Poisson algebra relations of the history theory are

$f~X!,f~X8!%50, ~3.12!

$p~X!,p~X8!%50, ~3.13!

$f~X!,p~X8!%5d4~X2X8!, ~3.14!

whereX andX8 are space–time points. The fieldf(X) and its conjugate momentump(X8) are
implicitly defined with respect to the foliation vectornm.

The definitions of the actionS, Liouville V and ‘‘Hamiltonian’’ H functionals are

SªV2
1

2 E d4X$p2~X!1f~X! nG f~X!%, ~3.15!

VªE d4X p~X!nm]m f~X!, ~3.16!

Hª

1

2 E d4X$p2~X!1f~X! nG f~X!%, ~3.17!

respectively, where again there is an implicitn label on these three quantities, and whereG is the
differential operator

Gª@~hmn2nmnn!]m]n1m̃2# ~3.18!

introduced above.
As we explained earlier, the variation ofS@g# leaves invariant the pathsgcl that are classica

solutions of the system:

$f~X!,S%~gcl!50, ~3.19!

$p~X!,S%~gcl!50. ~3.20!

As we shall now see,H is the generator to the time averaged internal Poincare´ group.

C. Poincaré symmetry

The Poincare´ group is the group of isometries of the Minkowski metric. Hence, any fi
theory in Minkowski space–time needs to be covariant under the action of the Poincare´ group. As
we shall now see, in a history theory—because of its augmented temporal structure—the
ated group theory leads to a particular interesting result: namely, there aretwo distinct Poincare´
groups that act on the history space.

1. The internal Poincare ´ group

One significant feature of histories theory is that it gives a representation of the tempora
of the system that isindependentof the dynamics involved. Hence, propositions about the stat
the system at different times are represented by appropriate subsets of the space of path
context of symmetries, however, the temporal logic structure entails the following.
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For each copyG t of the standard state space, there exists a Poincare` group symmetry of the
type one would expect in a canonical treatment of relativistic field theory. On the other ha
the history theory the state space is heuristically the Cartesian product of such copies,
physical quantities in the standard treatment now appear as naturally time-averaged.1 Hence one
may write time-averaged generators of theinternal Poincare´ groups, in a covariantlike notation, a

H5
1

2 E d4X $p~X!21f~X! nG f~X!%, ~3.21!

P~m!5mmE d4X p~X! ]m f~X!, ~3.22!

J~m!5
1

2
nmmnemnrsE d4X p~X! Xr ]s f~X!, ~3.23!

K~m!5mmE d4XH 2
1

2
Xm@p~X!21f~X! nGf~X!#J , ~3.24!

wheremm is an ‘‘n-spacelike’’ vector, i.e., one such thatn•mªnmmnhmn50 andK(m) is written
for the special case of hypersurfaces50.

Of special interest are the groups of canonical transformations generated by the Hami
generatorH and the boosts generatorK. Note that a space–time pointX can be associated with th
pair (t,xI )PR3R3, as X5tn1xn , where the three-vectorxI has been associated with a corr
spondingn-spatial four-vectorxn ~i.e., n•xn50!; note thatt5n•X. Then we define the classica
analog of the Heisenberg picture fields as

f~X!
H
→ f~X,s! ~3.25!

or

f~ t,xI !
H
→ f~ t,xI ,s!ªcos~nG1/2s!f~X!1

1
nG1/2sin~nG1/2s!p~X!, ~3.26!

where f(X)ªf(t,xI ) and f(X,s)ªf(t,xI ,s). The square-root operatornG1/2, and functions
thereof, can be defined rigorously using the spectral theory of the self-adjoint, partial differ
operatornG on the Hilbert spaceL2(R4,d4X).

Notice also that the time labelt is not affected by this transformation since@n•], nG#50. For
a fixed value of timet, the field f(t,xI ,s) is the ‘‘Heisenberg-picture’’ field of the standar
canonical treatment.

The action of boost transformations is best shown upon objectsf(X,s)5f(t,xI ,s) as

f~ t,xI ,s!→f~ t,xI 8,s8!, ~3.27!

where (xI 8,s8) and (xI ,s) are related by the Lorentz boost parametrized bymm as

s85coshumus1
sinhumu

umu
ximi ,

xi85S d i j 2
mimj

umu2 D xj1
mimj

umu2 coshumuxj1
sinhumu

umu
mis, ~3.28!

where, as above,xi is the spatial part ofX with respect ton, so thatX5tn1xn and i 51,2,3.
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Hence, for each copy of the standard classical state space, there exists an ‘‘internal’’ Po`
group that acts on the copy of standard canonical field theory that is labeled by the samet-time
label.

2. The external Poincare ´ group

For each fixedn, there also exists an ‘‘external’’ Poincarégroup with generators

P̃m5E d4X p~X!]mf~X!, ~3.29!

M̃mn5E d4X p~X!~Xm]n2Xn]m!f~X!, ~3.30!

wherem,n50,1,2,3 andP̃m generate space–time translations. Then-spatial parts of the tenso
M̃mn generate spatial rotations; the time parts generate boosts.

The space translations and rotations are identical to those of theinternal Poincare´ group.
However, the time translation and the boosts differ. Indeed, underVª P̃0 we have

f~ t,xI !
V
→ f~ t1t,xI !, ~3.31!

p~ t,xI !
V
→ p~ t1t,xI !, ~3.32!

where t is the time translation generated byV. Thus, what we have shown here is that t
time-translation generator for the ‘‘external’’ Poincare´ group is the Liouville functionalV. On the
other hand, the boost generatorK̃ i5M̃0i generates Lorentz transformations of the type

f~X!→f~LX!, ~3.33!

p~X!→p~LX!, ~3.34!

where for future convenience we write asL the element of the Lorentz group obtained by exp
nentiation of the boost parameterized bymi .

Furthermore, under the action of this external group, the generators of theinternal Poincare´
group transform as follows

nH
K̃
→

LnH, ~3.35!

nK~m!
K̃
→

LnK~Lm!, ~3.36!

where we have now attached the explicitn labels that were implicit in our previous notation fo
these quantities. The action functional transforms in the same way

nS→LnS. ~3.37!

Note that the action of the two groups coincides on classical solutionsgcl :

$f~X!,K~m!%~gcl!5$f~X!,K̃~m!%~gcl!, ~3.38!

$p~X!,K~m!%~gcl!5$p~X!,K̃~m!%~gcl!. ~3.39!
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We must emphasize again that the definition ofP depends on the foliation vector. Hence,
will the action of the Poincare´ group. Here we deal with the scalar field, for which this depende
is not explicit. However, this dependence, and analog of the Poincare´ group action, is a major
feature in systems where there is an explicit foliation dependence. For example, this is the
general relativity which is discussed in Ref. 9.

IV. HISTORIES QUANTUM SCALAR FIELD THEORY

A. Background

1. Canonical quantum field theory

Canonical quantization proceeds by looking for a representation of thecanonical commutation
relations

@f̂~xI !,f̂~xI 8!#50, ~4.1!

@p̂~xI !,p̂~xI 8!#50, ~4.2!

@f̂~xI !,p̂~xI 8!#5 i\d3~xI 2xI 8! ~4.3!

on a Hilbert space which, in practice, is selected by requiring the existence of the Hamilton
a genuine~essentially! self-adjoint operator.

For a free field, such a representation can be found on the Fock spaceF5expL2(R3, d3xI ) on
which the fields can be written in terms of the creation and annihilation operatorsb andb† that
defineF

f̂~xI !5
1

&
nG21/4~ b̂~xI !1b̂†~xI !!, ~4.4!

p̂~xI !5
1

&
nG1/4~ b̂~xI !2b̂†~xI !!, ~4.5!

where

@b~xI !,b†~xI 8!#5d3~xI 2xI 8!. ~4.6!

The ~normal-ordered! Hamiltonian then reads

Ĥ5E d3 xI b̂†~xI ! nG1/2 b̂~xI !5(
k

vk b̂k
† b̂k . ~4.7!

~In momentum space we writeb and b† from the well known relationbk5Avk/2fk

1 i /A2vkpk .)
Poincarégroup symmetry. A representation of the full Poincare´ group exists on this Hilbert

space. The starting point is the generators of the classical theory, suitably normal-orde
correspond to well-defined operators. Substituting the fields in terms of creation and annih
operators, the generators can be written as

P̂i5 i E d3xI b̂†~xI ! ] i b̂~xI !, ~4.8!

Ĵi5 i e i jkE d3xI b̂†~xI ! xj ]k b̂~xI !, ~4.9!
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K̂ i5E d3xI b̂†~xI ! nG1/4xi nG1/4 b̂~xI !. ~4.10!

These generators, together withĤ defined in Eq.~4.7!, satisfy the Lie algebra relations of th
Poincare´ group.

In the canonical picture, the covariant fields are obtained by the Heisenberg equatio
motion:

f̂~xI ,s!ªe~ i /\! sĤf̂~xI !e2 ~ i /\! sĤ5cos~nG1/2s!f̂~xI !1nG21/2sin~nG1/2s!p̂~xI !, ~4.11!

p̂~xI ,s!ªe~ i /\! sĤp̂~xI !e2 ~ i /\! sĤ52nG1/2sin~nG1/2s!f̂~xI !1cos~nG1/2s!p̂~xI !. ~4.12!

The explicit automorphisms generated by the boosts may easily be calculated for the H
berg picture creation and annihilation operators,

b̂~xI ,s!ªe~ i /\! sĤb̂~xI !e2 ~ i /\! sĤ5e2 is nGb̂~xI !, ~4.13!

and they give

eimi K̂
i
b̂~xI ,s!e2 imi K̂

i
5b̂~xI 8,s8!, ~4.14!

where the transformation (xI ,s)°(xI 8,s8) is given by Eq.~3.28!, so that we can write

eimi K̂
i

b̂~xI ,s!e2 imi K̂
i
5b̂~L~xI ,s!!. ~4.15!

From this, one can write the explicit transformation laws for the Heisenberg fieldsf̂(xI ,s) and
p̂(xI ,s).

Some questions that arise in the canonical treatment. The first question that arises in th
standard treatment is whether the Poincare´ transformations are associated with any changes
foliation. Working canonicallythere is no trace of the foliation vectoron the Fock space define
by Eq. ~4.6!, so this question cannot readily be answered.

Being able to talk about foliations is a necessary step if we are to elucidate the space
character of a quantum theory, in which the parameters of the Heisenberg-picture objects corr
sponds to the foliation time parameter in space–time. For example, the physical meaning
parameters of the Heisenberg objects depends on the choice of foliation vector.

B. Histories quantum field theory

Quantum mechanics histories. As we have already mentioned in Sec. II, the introduction
the history group2 as an analog of the canonical group relates the spectral projectors o
generators of its Lie algebra with propositions about history phase space quantities. This a
is infinite-dimensional and therefore there exist infinitely many representations. Howeve
physically appropriate representation of the smeared history algebra can be uniquely sele
the requirement that the time-averaged energy exists as a proper self-adjoint operator.2 The result-
ing Hilbert space has a natural interpretation as a continuous-tensor product: hence by this
we also gain a natural mathematical implementation of the concept of ‘‘continuous’’ tem
logic.

1. Histories Hamiltonian algebra

We shall now apply the histories ideas to relativistic quantum field theory on Minkow
space–time. The representation of the history algebra is to be selected by requiring th
time-averaged energyHx5*d4X x(t)Ht ~which is associated with history propositions abo
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temporal averages of the energy! exists as a proper essentially self-adjoint operator.2 In what
follows, for the sake of typographical simplicity we will no longer use hats to indicate quan
operators.

We start with the abstract algebra

@f~X!,f~X8!#50, ~4.16!

@p~X!,p~X8!#50, ~4.17!

@f~X!,p~X8!#5 i\d4~X2X8!, ~4.18!

whereX andX8 are space–time points.
In order to find suitable representations of this algebra we start with the Fock spaF

ªexpL2(R4,d4X) in which there is a natural definition of creation and annihilation opera
b(X) andb†(X) that satisfy the commutation relations

@b~X!,b~X8!#50, ~4.19!

@b†~X!,b†~X8!#50, ~4.20!

@b~X!,b†~X8!#5\d4~X2X8!. ~4.21!

An appropriate representation of the Poincare´ group can be defined by requiring

U~L!b~X!U~L!†5b~LX!, ~4.22!

U~L!u0&5u0&, ~4.23!

whereu0& is the cyclic ‘‘vacuum’’ state for the theory. Then clearly history fields can be define

f~X!ª
1

&
~b~X!1b†~X!!, ~4.24!

p~X!ª
1

i&
~b~X!2b†~X!!, ~4.25!

and satisfy Eqs.~4.16!–~4.18!. They also transform in the obvious covariant way under the
eratorsU(L) introduced above.

It should be emphasized that the fieldsf(X) andp(X) thus defineddo nothave any foliation
vector dependence. However, an operatorHx of the time-averaged energy of the systemcannotbe
well defined so that it depends functionally on these fields in the usual way.

Hence we must seek a different, and more physically appropriate, representation f
history algebra on the history Hilbert spaceF.

We start by making afixed choice of a unit timelike vectorn which we use to foliate the
four-dimensional Minkowski space–time. It is clear that the average-energy operator is
dependent upon the choice of foliationn, and therefore this must also be true for the element
the history algebra. Hence to emphasize that the physically appropriate representation dep
n we rewrite the history commutation relations as

@nf~X!, nf~X8!#50, ~4.26!

@np~X!, np~X8!#50, ~4.27!

@nf~X!, np~X8!#5 i\d4~X2X8!, ~4.28!
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where X and X8 are space–time points. The dependence of the representation of the h
algebra on the choice of the timelike foliation vectorn is indicated by the upper left symbol for th
field nf(X) and its ‘‘conjugate’’np(X).

One may also write the canonical version of the history algebra. Notice that—as i
discussion above of classical history theory—in relating Eqs.~4.26!–~4.28! with the canonical
version of the history algebra the three-vectorxI may be equated with a four-vectorxn that satisfies
n•xn50 ~the dot product is taken with respect to the Minkowski metrichmn! so that the pair
(t,xI )PR3R3 is associated with the space–time pointX5tn1xn ~in particular, t5n•X!. The
canonical history commutation relations can be written therefore as

@nf~ t,xI !, nf~ t8,xI 8!#50, ~4.29!

@np~ t,xI !, np~ t8,xI 8!#50, ~4.30!

@nf~ t,xI !, np~ t8,xI 8!#5 i\d~ t2t8!d3~xI 2xI 8!, ~4.31!

where, for eachtPR, the fieldsnf(t,xI ) andnp(t,xI ) are associated with the spacelike hypers
faceS t5(n,t), characterized by the normal vectorn and by the foliation parametert. In particu-
lar, the three-vectorxI in nf(t,xI ) or in np(t,xI ) denotes a vector in this space.

A central feature of the approach that is followed in this work for the histories quantum
theory is that, for all foliation vectorsn, the corresponding foliation-dependent representation
the history algebra Eqs.~4.26!–~4.28! can all be realized on thesame Fock spaceF
5expL2(R4,d4X) that also carries the ‘‘covariant’’ fieldsf(X) andp(X) defined in Eqs.~4.24!
and ~4.25!.

The foliation-dependent fieldsnf(X) and np(X) are expressed in terms of the covaria
creation and annihilation operators of expL2(R4,d4X), and the related covariant fieldsf(X) and
p(X) of Eqs.~4.26!–~4.28!, as

nf~X!5
1

&
nG21/4~b~X!1b†~X!!5nG21/4f~X!, ~4.32!

np~X!5
1

i&
nG1/4~b~X!2b†~X!!5nG1/4p~X!, ~4.33!

and, conversely,

b~X!5
1

&
~f~X!1 ip~X!!5

1

&
~nG1/4 nf~X!1 i nG21/4 np~X!! ~4.34!

b†~X!5
1

&
~f~X!2 ip~X!!5

1

&
~nG1/4nf~X!2 i nG21/4 np~X!!, ~4.35!

where nG denotes the partial differential operator defined in Eq.~3.18! on the Hilbert space
L2(R4,d4X).

For a fixed foliation vectorn, we seek a family of ‘‘internal’’ HamiltoniansnHt , tPR, whose
explicit formal expression may be deduced from the standard quantum field theory expres
be

nHtª
1

2 E d4X$np~X!21~nmnn2hmn!]m
nf~X!]n

nf~X!1m̃2 nf~X!2%d~ t2n•X!.

~4.36!
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The corresponding smeared expression~which must be normal-ordered to be well defined! is

nHxªE
2`

`

dtx~ t ! nHt5
1

2
:E d4X$np~X!21~nmnn2hmn!]m

nf~X!]n
nf~X!

1m̃2 nf~X!2%x~n•X!:, ~4.37!

wherex is a real-valued test function.
We next augment the history algebra with the following commutation relations that wou

satisfied by the operatorsnH(x), if they existed:

@nHx , nf~X!#52 i\x~n•X! np~X!, ~4.38!

@nHx , np~X!#5 i\x~n•X! nG nf~X!, ~4.39!

@nHx , nHx8#50. ~4.40!

If the operatorsnH existed, the above commutation relations would give rise to the tran
mations

e~ i /\!nHx nf~X!e~2 i /\!nHx5cos@x~n•X!nG1/2# nf~X!1nG21/2sin@x~n•X!nG1/2# np~X!,
~4.41!

e~ i /\!nHx np~X!e~2 i /\!nHx52nG1/2sin@x~n•X!nG1/2# nf~X!1cos@x~n•X!nG1/2# np~X!.
~4.42!

Note that the expressionx(n•X)nG
1
2 is unambiguous since, viewed as an operator

L2(R4,d4X), multiplication byx(n•X) commutes withnG
1
2.

The right hand sides of Eqs.~4.41! and~4.42! define an automorphism of the history algeb
Eqs.~4.26!–~4.28!, and all that remains is to show that these automorphisms are unitarily im
mentable in this representation. To this end, we use Eqs.~4.34! and ~4.35! to prove that

ei nHx /\ b~X! e2 i nHx /\5e2 i x(n•X) nG1/2
b~X!. ~4.43!

However, the operator defined onL2(R4,dX) by

~O~x!c!~X!ªe2 ix(n•X) nG1/2
c~X! ~4.44!

is easily seen to be unitary, and hence we conclude2 that the desired quantitiesnHx exist as
self-adjoint operators on the Fock spaceF associated with the creation and annihilation operat
b†(X) andb(X). The spectral projectors of these operatorsnHx represent propositions about th
time-averaged value of the energy in the space–time foliation determined byn.

To conclude: for eachfixedchoice of a foliation vectorn, we have a physically meaningfu
representation of the history algebra Eqs.~4.26!–~4.28! on the Hilbert space F
5expL2(R4,d4X). Thus the same Hilbert spaceF carriesall different representations—for dif
ferent choices ofn—of the quantum field theory history algebra.

2. The action operator

We now define the actionnSx and the LiouvillenV operators as normal-ordered versions
their classical analogus

nSx5nV2
1

2
:E d4X$np2~X!1nf~X!nGnf~X!%x~n•X!:, ~4.45!
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nV5:E
2`

`

d4X np~X! nm]m
nf~X!:. ~4.46!

The automorphisms of the history algebra that are generated by the action and Liouville op
are

eisnSx /\ b~X!e2 isnSx /\5e2 i *
s82s
s81s

ds8 x(nX1s8)nG1/22snm]mb~X!, ~4.47!

eisnV/\b~X! e2 isnV/\5e2s nm]mb~X!, ~4.48!

and are easily shown to be unitarily implementable. In what follows, the real-valued sme
function x is set equal tox(t)51 for everytPR.

C. Poincaré group covariance

A significant feature of the histories formalism is the temporal structure of the theo
introduces a new approach to the concept of time, in which time is distinguished as an or
parameter~logical structure!, and as an evolution parameter~dynamics!. In particular, as we have
already shown in nonrelativistic quantum mechanics,1 the Liouville operatornV generates time
translations with respect to the ‘‘external’’t-time parameter, and the Hamiltonian operatornH
generates time translations with respect to the ‘‘internal’’ evolutions-time parameter. The action
operatornS generatesboth types of time transformations; it is the time generator for the histo
theory for solutions of the equations of motion.@In histories theory the physical time translatio
generator is the action operatornS; both Liouville nV and HamiltoniannH operators are time
translation generators that correspond to two different aspects~two modes! of the notion of time.
However, onlynS is related to the actual physical time parameter, in analogy with the stan
theory where the HamiltoniannH is the time translation generator.# The same construction is tru
for a histories quantum field theory.

The invariance of standard quantum field theory under the Poincare´ group has been a difficul
issue to address for many years. In a canonical treatment of quantum field theory, the Schro¨dinger-
picture fields depend on the reference frame~i.e., choice of foliation!. In order to demonstrate
manifest independence of this choice with the aid of Heisenberg-picture fields, one still h
contend with the foliation dependence of the Hamiltonian that generates the Heisenberg fi

In histories theory, the enhanced temporal structure enables the study of a Poincare´ group
transformation between different foliations. In particular we will show that different represe
tions corresponding to different foliation vectorsn are related by Lorentz boosts of the ‘‘externa
Poincare´ group,

U~L! nf~X!U~L!215Lnf~LX!, ~4.49!

and where the time translations generator is closely related to the ‘‘Liouville’’ operatorV.
The Heisenberg-picture operators. We first define the Heisenberg-picture analog of the sc

field to illustrate the different time translations associated with the two time labels. We u
similar notation to that in the classical case: i.e., the Heisenberg-picture field is writte
nf(X,s)5nf(t,xI ,s), where the space–time pointX5(t,xI ) is expressed in coordinates adapted
n. Thus

nf~X,s!5nf~ t,xI ,s!ªe( i /\) snH nf~ t,xI !e2 ( i /\) snH

5cos~s nG1/2! nf~X!1nG21/2sin~s nG1/2! np~X!, ~4.50!

np~X,s!5np~ t,xI ,s!ªe( i /\) snH np~ t,xI !e2 ( i /\) snH

52nG1/2sin~s nG1/2! nf~X!1cos~s nG1/2! np~X!. ~4.51!
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The different types of time translation are particularly easy to see by studying the action
Liouville nV and actionnS operators on the Heisenberg-picture fieldsb(X,s):

ei tnHb~ t,xI ,s!e2 i tnH
ªb~ t,xI ,s1t!, ~4.52!

ei tnVb~ t,xI ,s!e2 i tnV
ªb~ t1t,xI ,s!, ~4.53!

ei tnSb~ t,xI ,s!e2 i tnS
ªb~ t1t,xI ,s1t!. ~4.54!

The labels corresponds to the ‘‘internal’’ time of the unitary Hamiltonian time evolution, whilt
corresponds to the ‘‘external’’ time that labels the time ordering of events in a history fo
Shrödinger-picture operators.

1. The internal Poincare ´ group

As we showed previously, each fixed choice of foliation vectorn corresponds to a itdifferent
representation of the history algebra on thesameFock spaceF5expL2(R4,d4X). Hence, we may
heuristically say that, for a given vectorn, and for each value of the associated timet, there will
be a Hilbert spaceHt that carries an independent copy of the standard quantum field theory.~The
physical quantities in histories appear naturally1 space–time averaged, therefore they are sme
with appropriate test functions. Strictly speaking, quantities labeled at moments of time a
well-defined mathematically.! In particular, there exists a representation of the Poincare´ group
associated with each spacelike slice (n,t), wheretPR.

In what follows, a particularly important role will be assigned to the averaged ‘‘intern
Poincare´ group. For example, we define the averaged energynHª*d4X nHt that generates trans
lations on thes-time parameter of the Heisenberg-picture fieldsnf(X,s)5nf(t,xI ,s), without
affecting the ‘‘external’’t-time parameter:

nf~X,s!5
nH
→

nf~X,s1s8!, ~4.55!

np~X,s!5
nH
→

np~X,s1s8!. ~4.56!

The expressions for the ‘‘internal’’ Poincare´ generators of spatial translationsPi , and rotations
Ji , can be written in direct analogy with the expressions~3.22!–~3.24! of the classical case. We
use the normal-ordered expressions

P~m!5 :E d4Xp~X!mm]mf~X!:5 i E d4Xb†~X!mm]mb~X!, ~4.57!

J~m!5
1

2
nmmnemnrs:E d4Xp~X!Xr]sf~X!:5 i

1

2
nmmnemnrsE d4Xb†~X!Xr]sb~X!.

~4.58!

We have used a ‘‘pseudo-covariant’’ notation by employing ann-spacelike vectorm ~i.e., such that
nmmm50!. Note that the terms involving a pair of creation operators, or a pair of annihila
operators, can be shown to vanish through integration by parts.

Of particular interest is the action of the boost generatornK(m) defined as

nK~m!5E d4Xb†~X! nG1/4Xmmm
nG1/4b~X!. ~4.59!
                                                                                                                



nberg

erators

—the

ses
boosts

oincare

3069J. Math. Phys., Vol. 43, No. 6, June 2002 Poincaré invariance for continuous-time histories

                    
The key feature of the boost generatornK(m) is that it mixes the its-time parameter with the
three-vectorsxI . The action of these boost transformations is most clearly seen on the Heise
objectsf(X,s)5f(t,xI ,s):

intU~L! nf~ t,xI ,s! intU~L!215nf~ t,L~xI ,s!!, ~4.60!

whereintU(L)ªeiK (m) is the unitary operator that generates Lorentz transformations, andL is the
Lorentz transformation generated bym.

At this point we note the action of the internal Poincare´ group on the actionnS, Hamiltonian
nH and Liouville nV operators, respectively:

intU~L! nH intU~L!215nH, ~4.61!

intU~L! nV intU~L!215nV, ~4.62!

intU~L! nS intU~L!215nS. ~4.63!

As we would expect from standard canonical quantum field theory, we see that the above op
remain invariant under the ‘‘internal’’ Lorentz transformations.

2. External Poincare´ group

A key result in histories classical field theory is that there also exists a second
‘‘external’’—Poincarégroup symmetry of the theory, with generators

P̃m5:8E d4Xp~X!]mf~X!:, ~4.64!

M̃mn5:E d4Xp~X!~Xm]n2Xn]m!f~X!:. ~4.65!

Note that these definitions use the covariant fieldsf(X) andp(X) that satisfy the algebra~4.16!–
~4.18! rather than the foliation-dependent fieldsnf(X) and np(X) of Eqs. ~4.26!–~4.28!. How-
ever, many of the generators of the external Poincare´ group are exactly the same whether one u
covariant fields expressions or foliation-dependent ones: they differ only for the case of the
generatorsnK(m).

In particular, the Liouville operatorP̃05V, given by the expression

V5:E d4X p~X!nm]m f~X!:5 i E d4X b†~X!nm]mb~X!, ~4.66!

generates translations on the time labelt.
The space translations and rotation generators are identical to those of the internal P´

group~4.57! and~4.58!. However, the external boost generatorK̃(m) differs from the internal one
nK(m), and hence it is of particular interest to study the action of the former.

The generator of time-translationsV acts on Schro¨dinger picture objects as

nf~X!5nf~ t,xI !
V
→

nf~ t1t,xI !, ~4.67!

np~X!5np~ t,xI !
V
→

np~ t1t,xI !. ~4.68!

The ‘‘external’’ boost generatorK̃(m) is
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K̃~m!5:E
2`

`

d4X p~X! Tm f~X!: ~4.69!

5 i E
2`

`

d4X b†~X! Tm b~X!, ~4.70!

where we define the operatorTm as

~Tmf !~X!ªnmmn~Xm]n2Xn]m! f ~X! ~4.71!

andn•m50. Then the boost generatorK̃(m) acts on the fieldsnf(X) as

extU~L! nf~X! extU~L!215Lnf~L~X!!, ~4.72!

and it mixes thet-time parameter with the three-vectorxI . However, the crucial point is thatK̃(m)
generates Lorentz transformationson the foliation vector nas well.

This can be viewed as a demonstration of explicit Poincare´ covariance, as we can see from th
action of the external Lorentz transformations on the Heisenberg-picture fieldsnf(X,s) as

extU~L! nf~X,s! extU~L!215Lnf~L~X,s!!. ~4.73!

The generators of theinternal Poincare´ group transform under the action of theexternalPoincare´
group as

extU~L! nHextU~L!215LnH, ~4.74!

extU~L! nK̃~m! extU~L!215LnK̃~Lm!. ~4.75!

Of considerable importance is the fact that the action operatornS transforms in the same way:

extU~L! nSextU~L!215LnS. ~4.76!

Hence the action of the external Poincare´ group relatesrepresentations of the theory thatdiffer
with respect to the foliation vectorn. As we shall see in the following section, this is crucial wh
we discuss the Poincare´ invariance of probabilities.

In summary, we have shown that the history version of quantum field theory carries r
sentations of two Poincare´ groups. The ‘‘internal’’ Poincare´ group is defined in analogy to the on
in the standard canonical treatment of the theory. It corresponds to time-translations with r
to the ‘‘internal’’ s-time parameter of histories theory. The Lorentz part of the ‘‘external’’ Poinc´
group intertwines representations of the theory associated with different choices of foliation,
which, however, are realized on thesameFock spaceF. It corresponds to time-translations wit
respect to the ‘‘external’’t-time parameter.

The translation parts of these two types of Poincare´ transformation—corresponding to th
relations between thet time parameter and kinematics, and thes time parameter and dynamics—
have very significant analogs in the case of the histories version of general relativity.9

3. The decoherence functional

‘‘Classical’’ coherent states. In Ref. 1, we showed how a classical quantum relation can
nicely described in histories theory by using the history analog of coherent states. In the hi
formalism, a non-normalized coherent state vector is written as2

uexpz&5 %
n50

`

~n! !2 1/2~ ^ uz&)n. ~4.77!
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The corresponding normalized coherent states can be obtained by unitary transformations
vacuum state as

uz&ª
1

A^expzuexpz&
uexpz&5U@ f ,h#u0&, ~4.78!

whereU@ f ,h# is the Weyl operator defined as

U@ f ,h#ªe( i /\)(nf( f )2np(h)), ~4.79!

and f andh are smearing functions that belong toL2(R4,d4X). We write the normalized coheren
stateuz& corresponding to the pairf ,h as u f ,h&. In this context we know thatf andh correspond
to classical values and therefore correspond to a path on classical phase space. In this co
dence, the functionsf andh are the classical values of the fieldf(X) and its conjugate moment
p(X), respectively.

The set of all coherent states is independent of the choice of foliation since these co
states are eigenstates of the annihilation operatorb(X), which is foliation independent. Howeve
the physical identification of the vectoruz& with a phase space pathis foliation dependent since i
depends on the Weyl operator, which itself depends on the choice of the representation
history algebra on the Fock spaceF. @Given a complex pathz, the classical phase space pa
( f ,h) is defined by the foliation-dependent expressionz5nG1/4f 1 i nG21/4h.# One should recall
that the space of classical historiesP is itself dependent on the choice of foliation.

So far our discussion of the histories version of quantum field theory has been at the le
field algebras and group transformations. However, in histories formalism physically cr
‘‘probabilistic’’ information is contained in the decoherence functional.

In this HPO formalism, the most general form for the decoherence functional of a pa
history propositionsa, b is

d~a,b!5TrF3F~a ^ bJ!, ~4.80!

in terms of an operatorJ on F3F.10

In our case, the operatorJ reads

Jª^0ur2`u0&~SctsU!†
^ ~SctsU!, ~4.81!

in terms of the operatorSctsU that we proved in Ref. 1 that it is an implicit function of the actio
operator: therefore there is an implicit dependence ofJ on the foliation vectorn. The matrix
elements ofSctsU in a coherent state basis can written in terms of the classical action funct
S@ f ,h# as

^ f ,huSctsUu f ,h&5eiS[ f ,h] . ~4.82!

The explicit relation ofSctsU with the action operatornS is as follows. For a general operato
A on L2(R4,d4X) one can define an operatorG(A) on F as

G~A!uexpz&5uAz&. ~4.83!

In our case we have

eisnS5G~eisns!, ~4.84!

SctsU5G~11 i ns!, ~4.85!

in terms of the operatorns5nm]m2nG1/2. Hence, the decoherence functional depends on
representation through the phase space actionnS.
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This raises the critical issue of the physical meaning of the fact that the formalism appe
depend on a specific choice of the foliation vectorn. We have seen above that the representa
of the phase space quantities by Hilbert space operators depends onn, and that there exist unitary
intertwiners between different representations given by the boosts of the external Poincare´ group.
As has been discussed in Ref. 11, a transformation law for the observables by means of a
operatorU,

a→a85UaU†, ~4.86!

implies that the operatorJ of the decoherence functional, carrying a label for the foliat
dependencen, ought to transform as

nJ→LnJ5~U ^ U ! nJ ~U†
^ U†! ~4.87!

so that the values of the decoherence functional~corresponding to probabilities and correlatio
functions of the theory! are representation independent,

Lnd~Lna,Lnb!5nd~na,nb!, ~4.88!

whereLnd is the decoherence functional defined with reference to the operatorLnJ.

In our case we haveU5eiK̃ (m)5extU(L). This changes the foliation dependence of t
fundamental fieldsnf(X) andnp(X), and hence of any observablena that depends upon them

na→LnaªU~L! naU~L!†. ~4.89!

Some physically interesting examples of observables, in this sense, are integrals*dX nf(X) f (X)
of fields nf(X), smeared with appropriate test functionsf (X), that satisfyf (X)5 f (L(X); an-
other example is any space–time average of the normal-ordered polynomial functions of
fields.

In order to see how the boosts generator acts onnJ, it suffices to check its action onSctsU.
This is

U nSctsU U†5G~11 ie2Tm ns eTm!5G~11 i Lns!. ~4.90!

Consequently, the operatornJ transforms asnJ→LnJ. Hence the values of the decoheren
functional are foliation independent:

nd~na,nb!5Lnd~Lna,Lnb!. ~4.91!

V. CONCLUSIONS

We have studied both the classical and the quantum history versions of scalar field theo
have showed that, in both cases, the crucial feature of the history field theory is the appear
two Poincare´ groups, in direct analogy to the two types of time transformation that characte
the history formalism. The internal Poincare´ group is related to time as an ordering parameter~the
HamiltonianH is the time translations generator!, and it is in analogy to the Poincare´ group of
standard field theory. On the other hand, the external Poincare´ group is related to time as
parameter of evolution~the Liouville V is the time translations generator!, and it is of particular
interest for the quantum case, as it relates representations of the quantum field theory, for d
choices of foliation, with Poincare´ transformations.

These results will be proved to be of great importance in the study of history general rela
theory in Ref. 9. In particular, the histories formalism is suitable to deal with issues that lie a
level of the interplay between quantum theory and the space–time structure. The presen
focuses on quantum field theory in a fixed space–time, however the techniques involved a
concepts introduced have been able to precisely identify the relation between the quantu
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chanical observables and the necessary notion of the space–time foliation. Many issues ar
at the level of the meaning of reference frames in quantum theory—a foliation correspond
reference frame—and more importantly at the level of quantum gravity.

The latter is eventually the aim of the histories program, and this involves a further elucid
of the meaning of space–time in a quantum theory. What strikes us as relevant at presen
one might have to disentangle between the two different views of space–time transformatio
passiveand theactiveview. This is subtly hinted by the fact that the transformations generate
the external Poincare´ group should be viewed in the passive sense, since the argumentX cannot be
identified with a fixed, absolute space–time pointin all representations.

In order to successfully address the above issues we must first study the history vers
general relativity; this is the context of the forthcoming paper.9
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In this paper we study the largeNc limit of SO(Nc) gauge theory coupled to a
Majorana field and a real scalar field in 111 dimensions extending ideas of Rajeev
@Int. J. Mod. Phys. A9, 5583~1994!#. We show that the phase space of the resulting
classical theory of bilinears, which are the mesonic operators of this theory, is
OSp1(HuH)/U(H1uH1), where HuH refers to the underlying complex graded
space of combined one-particle states of fermions and bosons andH1uH1 corre-
sponds to the positive frequency subspace. In the begining to simplify our presen-
tation we discuss in detail the case with Majorana fermions only@the purely
bosonic case is treated in Toprak and Turgut, J. Math. Phys.43, 1340~2002!#. In
the Majorana fermion case the phase space is given byO1(H)/U(H1), whereH
refers to the complex one-particle states andH1 to its positive frequency subspace.
The meson spectrum in the linear approximation again obeys a variant of the
’t Hooft equation. The linear approximation to the boson/fermion coupled case
brings an additonal bound state equation for mesons, which consists of one fermion
and one boson, again of the same form as the well-known ’t Hooft equation.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1467097#

I. INTRODUCTION

Gauge theories play a fundamental role in our description of nature. Nevertheless our
standing of confining phase of gauge theories is not so complete. In principle we should be
calculate the hadronic spectrum starting from quantum chromodynamics~QCD!, which is a gauge
theory, yet this has not been possible up to now. It is believed that the hadrons are co
excitations of the underlying gauge theory and we never see the constituent quarks as fr
ticles. This suggests that in this case we should have an independent formulation of gauge t
in terms of color singlet operators of the original gauge theory. In general this is a very hard

Gauge theories in 111 dimensions provide a great testing ground for many ideas a
realistic theories. This is a great simplification, various difficult problems of higher dimens
theories will not be there, yet there are still interesting aspects of these theories which mak
worth studying in depth. In Ref. 1, Rajeev constructed a theory of mesons in two dimensions
limit Nc , the number of colors in SU(Nc) goes to infinity using only the color invariant variable
~which correspond to the meson operators!. The idea that QCD should simplify while keeping a
its essential features in this limit goes back to ’t Hooft2,3 and that this limit should be a kind o
classical mechanics to Migdal and Witten.4 This is a very promising step in simplifying gaug
theories, but the large-Nc theory is also quite complicated and it is not possible as yet to un
stand it in four dimensions.

a!Electronic mail: toprake@boun.edu.tr
b!Electronic mail: turgutte@boun.edu.tr
30740022-2488/2002/43(6)/3074/23/$19.00 © 2002 American Institute of Physics
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Originally ‘t Hooft studied two-dimensional QCD in the large-Nc limit to understand the
meson spectrum and obtained his bound state equation in his seminal paper.3 Soon after the scala
two-dimensional QCD was worked out by Shei and Tsao in Ref. 5 following ‘t Hooft, and late
Tomaras using Hamiltonian methods in Ref. 6. These works obtained the analog of the ‘t
equation for this case. A natural extension of these would be to look at combined~fermionic! QCD
and scalar QCD; this is done in a paper of Aoki,7 where it is shown that three types of mesons
possible and they all obey a certain type of ‘t Hooft equation~see also Ref. 8!. Cavicchi9 using a
path integral approach with bilocal fields, developed in Ref. 10, studied coupled fermion
bosons as well as some other models in two dimensions and he obtained some generaliz
sions of the ’t Hooft equation.

To understand gauge theories better, we study the problem of bosons and fermions cou
SO(Nc) gauge fields in 111 dimensions. We will apply the methods developed by Rajeev to
toy model. We recommend his lectures for a more detailed exposition of the underlying idea
various other directions.11 In Ref. 1 it was shown that the phase space of the two-dimensi
QCD is an infinite dimensional Grassmannian.12 Using the same methods scalar version of QC
is worked out in Ref. 13, the phase space of the theory comes out to be an infinite dimen
disk. Recently Konechny and O.T.T. obtained the large-Nc phase space of bosons and fermio
coupled to SU(Nc) gauge theory; a certain kind of super-Grassmannian.14 The linearized equa-
tions agree with the ones found in Ref. 7. The correct equations are nonlinear and vario
proximation schemes are also discussed in Ref. 14. There are some ideas in the literature
suggest that gauge theories in two dimensions all behave in a very similar way,15 therefore it will
be interesting to see how much of this holds for SO(Nc) gauge theory.

The organization of our work is as follows, since we did not want to go into technical de
of supergeometry immediately, we first study the purely fermionic case. The essential calcu
are very similar to the ones in Rajeev’s lectures11 and for the geometry basic ideas are already
Refs. 16 and 12, we also recommend Ref. 17 for a good discussion. We show that on
formulate the large-Nc limit in terms of bilinears along the lines in Ref. 1. We obtain a variant
the ’t Hooft equation in the linear approximation. We explain the geometry of the phase spac
show that it is a homogeneous manifold,O1(H)/U(H1) ~see explanations in Sec. IV!, and the
symplectic form is the natural one. In the second part, we study the combined system of b
and fermions, this part is very brief—we mostly state the results. We obtain a super-Po
structure of the bilinears in the large-Nc limit and the resulting Hamiltonian. The equations
motion in the linear approximation agree with the purely bosonic and purely fermionic ones
an additional one for the mesons made up of one fermion and one boson. This is again a
of the well-known ’t Hooft equation. The discussion on the geometry of the resulting infi
dimensional supersymplectic space requires some new ideas. This part is technically comp
we use essentially Berezin’s ideas,18 but we do not claim that all the technicalities of the infini
dimensional case are understood. We show that the underlying phase space should be th
homogeneous manifold OSp1(HuH)/U(H1uH1), and the supersymplectic form is the natural o
on this space. We plan to come to the more mathematical aspects of this problem in a
publication.

II. THE SO„Nc… MAJORANA FERMIONS IN THE LIGHT-CONE

Since the basic philosophy was explained in Ref. 1 we can be brief and only stat
conventions and define our theory. We will use the light cone coordinatesx15(1/&) (t1x),
x25(1/&) (t2x), ~we recommend Ref. 19 for an introduction to light-cone quantization,
Ref. 20 for a more comprehensive review!, the action functional is

S5E F1

2
Tr FmnFmn1 i C̄Mgm~]m1gAm!CM2mC̄MCM G , ~1!

where we have an SO(Nc) gauge theory for which the matter fields are in the fundame
representation and Tr denotes an invariant inner product in the Lie algebra. The Lie a
condition for SO(Nc) implies thatAm

T52Am . To compute the variations of the action we need
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independent degress of freedom, we can expandAm5Am
a Ta, whereTa are the generators of th

Lie algebra of SO(Nc), chosen such that TrTaTb52 1/2dab. Our conventions for the Majoran
fermions are as follows: we choose the Majorana representation in which the fermions ar
i.e., CM

† 5CM
T ~transpose here also includes the color indices to simplify the notation!. The

gamma matrices now are given by,

g05S 0 2 i

i 0 D g15S 0 2 i

2 i 0 D g55S 21 0

0 1D . ~2!

Note thatg5 happens to be diagonal in 111 dimensions and we setC̄M5CM
T g0. We now

rewrite the action in the light-cone coordinates and eliminate all nondynamical degrees o
dom. We writeCM5(c2

c1), and useg15(1/&) (g01g1), g25(1/&) (g02g1). We further set

A250 and choosex1 as the evolution variable, which we call ‘‘time,’’

S5E dx1 dx2F1

2
~]2A1

a !21 i&c1
T]2c11 i&c2

T]1c21 i2mc1
Tc21 i&gc2

TA1
a Tac2G ~3!

~from now onT only means tranpose in the color space!. We note also that we have areal two
component fermion, they are Grassmann valued obeyingc1c252c2c1 . We can check that the
action is real if we use the following complex conjugation convention for spinors, (cj)*
5j* c* . We see thatc1

a is nondynamical, and hence can be eliminated using its equatio
motion,

c1
a52

m

&]2

c2
a . ~4!

Similarly we solve for the nondynamicalA1
a , and get

A1
a 5

i&g

]2
2 c2

TTac2 . ~5!

A remark is in order here to clarify what we mean by ‘‘real fermions’’ while the action and
constraint equation forA1

a have explicit factors ofi . The resolution of this seeming paradox is th
it is the equations of motion which are actually real. To see this note first that the symplectic
has a factor ofi in it, and thec1

a constraint only has real operators. TheA1
a constraint is also rea

if we choose complex conjugation of fermions to be (cj)* 5j* c* . This convention implies tha
the product of two real fermions is imaginary, and this is the reason for the extra factors ofi in the
action. The equation of motion forc2

a reads

]1c2
a5

m

&
c1

a , ~6!

which is manifestly real. This shows that the ‘‘time’’ evolution preserves the real valued
condition imposed on the fermions.

If we insert the above-mentioned constraints into the action we arrive at

S5E dx1 dx2F i&c2]1c22
&m2

2
c2

1

i ]2
c22g2c2

TTac2

1

]2
2 c2

TTac2G . ~7!

This defines our theory at the classical level with the redundant degrees of freedom elim
Since it is written entirely in terms ofc2 we will refer to this field asc from now on. The real
fermions have a super-Poisson bracket, which can be read off from the action, given by
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$ca~x2,x1!,cb~y2,x1!%15
2 i

2&
dabd~x22y2!. ~8!

Since our real fermions are Grassmann valued we use a symplectic structure which isi times a real
symmetric operator, and the Hamiltonian is actuallyi times an antisymmetric one, as we will se
in more detail in Sec. III. There is an ambiguity in the quantization, we follow Rajeev’s orig
approach,11,1 we will remove the nondynamical fields after quantizing the dynamical field,ca.
Using the Dirac rule we get an anticommutator forc,

@ca~x2!,cb~y2!#15 i\S 2 i

2&
dabd~x22y2!D 5

\

2&
dabd~x22y2!. ~9!

~Note that for the orthogonal group, the distinction of upper and lower indices is irrelevant,
the metric tensor is unity.! The reason for our convention of complex conjugation is to arrive
this more familiar form of the Clifford algebra. We could have chosen a convention in which
product of real fermions is real, then we would arrive at a Clifford algebra with a factor ofi as in
Ref. 16, but this usual form is preferable~it leads to a positive inner product, or the Hermitia
conjugation is compatible with the inner product in the fermionic Fock space!. Let us introduce the
Fourier decomposition, which is done in a complex Hilbert space~to simplify notation we drop the
subscript inp2 , set\51, and@dp#5 dp/2p!,

ca~x2!5E
2`

` @dp#

23/4 xa~p!e2 ipx2
. ~10!

~To be precise, in the above-mentioned expansion, we should assume a cut-offe0 around zero
momentum, to be taken to zero at the end of our calculations.! We see thatxa(p) satisfies the
basic anticommutator,

@xa~p!,xb~q!#15dabd@p1q#, ~11!

where we write d@p2q#52pd(p2q). Real valuedness of the original field implies th
xa†(p)5xa(2p). In standard physics notation the expansion would be written as

ca~x2!5E
0

`

@xa~p!e2 ipx2
1xa†~p!eipx2

#
@dp#

23/4 . ~12!

As is well known in the physics literature, to make the Hamiltonian bounded from below
should choose a vacuum to be used to construct a fermion Fock space, and further im
normal ordering prescription. This is done by simply requiring thatxa(p)u0.50 for p.0, and
defining

:xa~p!xb~q!ªH 2xb~q!xa~p! if p.0, q,0,

xa~p!xb~q! otherwise.
~13!

This can be stated in one formula as

:xa~p!xb~q!ªxa~p!xb~q!2 1
2 dabd@p1q#@11sgn~p!#. ~14!

For most of our calculations we need only the bilinears and the above-given expression~For
the Hamiltonian we actually need the normal ordering of product of four such operators, an
defined as usual all the annihilation operators are to be taken to the right of creation opera
will be briefly explained later on.! We can reduce our Hamiltonian after this quantization proc
and we get
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H5E dx2S m2&

2
:ca

1

i ]2
ca:2

g2

2
:ca~x2!cb~x2!:ux22y2u:cb~y2!ca~y2!: D . ~15!

Previously we used (Ta)ab(Ta)ls52 1/2(dasdbl2daldbs) and the Green function
1/2ux22y2u5]2

22d(x22y2). The last normal orderings can be rearranged to act only on
color invariant combinations in the large-Nc limit, we will discuss this in Sec. III.

Next we introduce the algebra of color invariant bilinears and study the resulting system
large-Nc limit following Refs. 1 and 11.

III. CLASSICAL MECHANICS OF COLOR INVARIANT OPERATORS

We define color invariant bilinears as in Refs. 1, 11, and 14 to be our dynamical variable
find the large-Nc limit by postulating Poisson algebra of these bilinears and defining the p
space to be a manifold where these Poisson brackets make sense. Since the theory i
renormalizable we expect this to be related to the Hilbert–Schmidt ideal condition whi
well-known in the literature on the Fock spaces.12,21–23We will see these aspects in more detail
Sec. IV when we talk about the geometry of the phase space. We define our basic dyn
variables, bilinears,

R̂~p,q!5
2

Nc
(
a

:xa~p!xa~q!:, ~16!

which are color invariant combinations of the fermion operators. We find it useful to defi
related operator,F̂(p,q)5R̂(2p,q), we will see that this is the correct variable for the geome
of the phase space. We assume that there are proper large-Nc limits of our operators, then they
become classical variables when they are restricted to color invariant sector of the full Fock
Following Ref. 1, we postulate the following Poisson brackets~we choose the quantization pa
rameter to be 1/Nc!;

$R~p,q!,R~s,t !%522i ~R~p,t !d@q1s#2R~q,t !d@p1s#1R~s,p!d@q1t#2R~s,q!d@p1t#

1~d@q1t#d@p1s#2d@p1t#d@q1s# !~sgn~ t !1sgn~s!!!.

Our dynamical system is not defined completely yet, since there is still a left over global
invariance, generated by

Q̂ab5E @dp#:xa†~p!xb~p!ªE
0

`

@dp#xa†~p!xb~p!2E
0

`

@dp#xb†~p!xa~p!. ~17!

The commutators of these generators satisfy the Lie algebra of SO(Nc).
If we restrict ourselves to the color invariant states, we find a constraint equation satisfi

the large-Nc limit, which can be best expressed in terms ofF(p,q)5R(2p,q),

E @dq#F~p,q!F~q,s!2sgn~p!F~p,s!2F~p,s!sgn~s!50. ~18!

We definee(p,q)52sgn(p)d @p2q#, then we can rewrite this constraint as a simple quadr
operator equation,

~F1e!251 ~19!

~we interpretF,e as integral kernels acting onL2 space of initial data!. In Sec. IV we will analyze
the geometric meaning of these constraints. The Hamiltonian and the above-mentioned P
brackets determine the evolution of our classical system; the Poisson brackets are consiste
the constraint equation.
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The large-Nc Hamiltonian is obtained by dividing the original Hamiltonian byNc and rewrit-
ing it in terms of our large-Nc variables. After certain manipulations which are sketched in
following, we obtain the following Hamiltonian,

H5PE 1

8 S m22
g2

2p D @dp#

p
R~2p,p!2

g2

64
FPE @dp dq ds dt#

~p1s!2 R~p,q!R~s,t !d @p1q1s1t#,

~20!

whereP and FP refer to the principal value and finite part prescriptions, respectively. In
following we will often write * for P * and FP * , but one should keep in mind that thes
regularization perscriptions are used to define the singular integrals. The main steps of th
vation of the above-mentioned Hamiltonian are very similar to the one in Ref. 11, although
are some small differences. Here we supply the basic ingredients to help the reader: for sim
in many places we writex,y instead ofx2,y2, we definee(z)5P*2`

` sgn(p)e1ipz, note the sign
of the exponent. We have the vacuum expectation value of our field product,

^0uca~x2!cb~y2!u0&5
1

4&
@d~x22y2!2e~x22y2!#. ~21!

An important formula for the reduction is given in Ref. 11: Iff (x,y)5*@dp dq#eipx1 iqy f̃ (p,q),

E e~x2y!ux2yu f ~x,y!52
1

p
PE @dp#

p
f̃ ~2p,p!. ~22!

We also have

ux2yu5FPE @dp#

p2 eip(x2y).

We use a form of Wick’s theorem for normal ordered products,

:ca~x!cb~x!<cb~y!ca~y!ª:ca~x!cb~x!cb~y!ca~y!:1^0uca~x!ca~y!u0&:cb~x!cb~y!:

1^0ucb~x!cb~y!u0&:ca~x!ca~y!:

2^0uca~x!cb~y!u0&:cb~x!ca~y!:

2^0ucb~x!ca~y!u0&:ca~x!cb~y!:1^0uca~x!ca~y!u0&

3^0ucb~x!cb~y!u0&2^0ucb~x!ca~y!u0&^0uca~x!cb~y!u0&.

Note that when we take the large-Nc limit we can expand the full normal ordering in the leadin
order to get :ca(x)ca(y)<cb(x)cb(y):. In the above-mentioned equality the fourth and fi
terms on the right are of smaller order in the large-Nc limit as well as the last term in the equalit
The sixth term is an infinite vacuum expectation value, but that is a constant term which w
contribute to the equations of motion hence we can drop it. As a result,

:ca~x!cb~x!<cb~y!ca~y!ª:ca~x!ca~y!<cb~x!cb~y!:1^0uca~x!ca~y!u0&:cb~x!cb~y!:

1^0ucb~x!cb~y!u0&:ca~x!ca~y!:

Using the above-given formulas we get a finite renormalization of the mass term.
Let us compute the equations of motion at the linear approximation. What we mean by

to linearize the constraint as well as the equations of motion. The linearization of the con
simply says thatR(u,v)50 if u,v have different signs. We thus restrict ourselves tou,v.0 and
compute
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]R~u,v;x1!

]x1 5$R~u,v;x1!;H%. ~23!

We also putP5u1v,x5u/P and make the ansatzR(u,v;x1)5zR(x)e2 iP1x1
. For further de-

tails we refer to Refs. 1 and 11, where similar calculations are done in more detail with the
type of ansatz; this yields an eigenvalue equation,

m2zR~x!5S m22
g2

2p D F1

x
1

1

12xGzR~x!2
g2

8p E
0

1

dy
zR~y!2zR~12y!

~y2x!2 , ~24!

where m252P1P is the invariant mass of the excitation. By looking at the behavior of
equation underx°12x, and y°12y, we see that we can choose our wave functions to
antisymmetric undery°12y, thusz(12y)52z(y). This gives us

m2zR~x!5S m22
g2

2p D F1

x
1

1

12xGzR~x!2
g2

4p E
0

1

dy
zR~y!

~y2x!2 . ~25!

This equation is one of our main results and it is a variant of the well-known ‘t Hooft equa
Apart from the numerical factors this equation is the same as the original one, and this res
to the ideas in Ref. 15. Its properties are well known, the most important one is that there ar
bound state solutions.

An interesting question is the existence of ‘‘baryon’’-like excitations. These should corres
to operators of the form

1

Z
ea1a2 . . . aNc

xa1†~p1!xa2†~p2! . . . xaNc
†~pNc

!, ~26!

but the meaning of these operators asNc→` is not so obvious. Yet we can think about normaliz
states of this form whenall the momenta are positiveacting on the Fock vacuum, they shou
correspond to such baryon-like states. Perhaps our large-Nc theory can detect their presenc
Indeed, one can check that the operator,

B̂5
1

Nc
E

0

`

@dp#xa†~p!xa~p!, ~27!

measures the number of such excitations. This operator can be given a meaning in our the
the large-Nc limit therefore it is natural to expect that the operator,B5 1/2*0

`@dp#F(p,p) gives us
this number and as we will see it is well-defined. In our classical limit we can ask if this nu
makes sense for our system, that is if it is a conserved quantity. The answer, not surprisingly
the above-given baryon numberis not conservedby our equations of motion. Thus there are rea
no baryons in this theory.

IV. GEOMETRY OF THE PHASE SPACE

To understand the geometry behind the classical system that we introduce in Sec. III, w
take a look at the finite dimensional orthogonal group. Our approach will be similar to the o
Ref. 24 where we discussed the bosonic version of this theory. The basic ideas of the quan
of free Weyl fermions and the underlying geometry is discussed in the paper of Bowick
Rajeev,16 but we would like to expand on it and there are some differences in our conventi

We recall that the real orthogonal group can be defined as the set of linear transform
which leave a quadratic form invariant.

Q~Au,Av !5Q~u,v ! ~28!
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@hereQ(u,v)5uTQv represents this quadratic form, and superscriptT denotes the ordinary trans
pose#. In our case the quadratic form is diagonal, so it is the standard inner productuTv. We work
with the complexification of the original real Hilbert space, and if our Hilbert space is e
dimensional, in this complex space we can use a different quadratic form, simply by usi
invertible transformationS, Q25STQS. Assume now that we have a complex structureJ acting
on our original real Hilbert space, that is, a real antisymmetric matrix with respect to this
which is also orthogonal, implyingJ2521. If the quadratic form is the identity, we may think o
such a matrix asJ5(21

0
0
1) in an appropriate basis of thereal Hilbert space. Let us split our

Hilbert space into two isomorphic pieces with respect to the above-mentioned decomposi
the complex structure,W% W̃, and complexify the real Hilbert space, naturally we haveW^ C
% W̃^ C. Choose with respect to this decomposition,

S5S i1 2 i1

1 1 D . ~29!

This is the transform which we can use to diagonalize our complex structure. Of cours
original quadratic form now changes as we described previously: we get

Q5S 0 1

1 0D . ~30!

~In our problem we actually transform the inverse of this form, but one can see that as ma
these two forms are identical.! The complex orthogonal group is the set of transformations wh
leaves the formQ invariant. Thus a general complex matrixg5(c

a
d
b) is orthogonal if

aTc52cTa, aTd1cTb51, bTd52dTb. ~31!

In finite dimensions the quadratic form isQ(z,z)5z1zm111z2zm121 ¯ 1zmz2m . We see then
that the originalreal orthogonal groupis embedded into the complex orthogonal group defined
this quadratic form as a set of matrices

g5S a b

b̄ āD , ~32!

with now a,b satisfying,aTā1b†b51 andaTb̄52b†a ~where we decomposed the matrix in th
obvious way!. This explicitly shows that the complex structure, which is a real orthogonal ma
becomes diagonal,

J5~0
2 i1

i1
0 !.

In our physical example these diagonalizations will be accomplished by the Fourier transfo
An immediate consequence of this way of looking at the real orthogonal group is that th

orthogonal group actually carries a copy of the unitary group in it, corresponding to the elem
(0

a
ā
0). The quadratic form impliesaTā51, as well asaa†51, this impliesaa†5a†a51. It is the

unitary group ofH1 , whereH1 refers to the subspace on whichJ acts asi .
For our purposes we should extend these discussions to the infinite dimensional case

infinite dimensional one we should not use the full orthogonal group but the one with a co
gence condition.16 This condition is the well-known Hilbert–Schmidt condition in the quasifr
representations of canonical anticommutation algebra. We will comment further on the co
gence conditions when we make contact with our system. We define the restricted orth
group on the complexified Hilbert space as follows:

O1~H!5H gTQg5QUg5S a b

b̄ āD bPI2J , ~33!
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whereI2 is the ideal of Hilbert–Schmidt operators.25 We can state the convergence conditi
more economically as@e,g#PI2 , wheree5(0

1
21
0 ) with respect to the above-mentioned deco

position. This is basically the complex structure we had, except that a factor ofi has been
removed. The Lie algebra of this group can be found from an infinitesimal group element,

g511 iDu511 iDS S R

2R̄ 2S̄
D , ~34!

with RT52R andS†5S andD represents an infinitesimal parameter. The reader can verify
uTQ1Qu50. We would like to define a classical phase space using this infinite dimens
orthogonal group. This will be our phase space for the large-Nc theory, but for the moment let u
define it as a mathematical system. We introduce a variableF,

F5geg21, gPO1~H!. ~35!

The orbit ofe under the restriced orthogonal group is parametrized by this operator. It is ea
see that the orbit is diffeomorphic to

O1~H!/U~H1!. ~36!

The operatorF satisfies

F251, F52Q21FTQ, F2e5S I1 I2

I2 I1
D , ~37!

whereI1 denotes the trace class operators in the appropriate space of operators~here Q21 is
identical toQ as a matrix, but transforms differently!. The second condition really says thatF is
in the Lie algebra of this group~it is possible to think of this space as a real subset of the restri
Grassmanian, and there is an analogous construction of a line-bundle on this space, see R!.
The tangent space of this orbit is given by the infinitesimal action of the group at any poin
in fact it is a copy of the Lie algebra of this group at every point. The action of a vector fiel
the basic variableF becomesVu(F)5 i @u(F),F#, for a Lie algebra elementu(F), which
changes differentiably over the orbit. So a vector field at a pointF5geg21 comes from a Lie
algebra elementg21u(F)g.

It is well-known27 that such orbits in finite dimensions typically carry a symplectic struct
If we formally define a two form,

V5
i

4
Tr F dF∧dF, ~38!

following the methods in Ref. 1 we can check that it is closed and nondegenerate. The
evaluated at two vector fieldsVu ,Vv is given by

V~Vu ,Vv!5
i

8
Tr e@@e,g21u~F!g#,@e,g21v~F!g##, ~39!

which shows that it is well-defined, due to the Hilbert–Schmidt conditions, nondegenerat
mogeneous, and Ka¨hler. The group action on this phase spaceF°g21Fg is actually Hamil-
tonian, that is there are moment maps which generate this action, given by a conditional
Fu52 1/2 Tre(F2e)u, with Tre(A)5 1/2 Tr(A1eAe). Just for completeness we record that

$Fu ,Fv%5F2 i [u,v]22Im Tr~R1R2
†!, ~40!
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if we decomposeu,v as above. The last term represents a central part and cannot be remo
this classical theory.

How does this tie up with our system? Recall that we had a symplectic form which wi
times a quadratic formQ, and a Hamiltonian for the free theory which is the mass part,i times an
antisymmetric formv, the combination of the two provides a natural operator:ṽ5Q21v is a type
~1,1! tensor hence a proper linear transformation. Its polar decomposition will have all the
pieces we need. Of course we have alsov21Q, so which one we choose is determined by t
equations of motion. If we look at this general system in the Hamiltonian formalism,

S05E dt
1

2
icQ] tc2E dt H5E dt

1

2
icQ] tc2E dt

1

2
icvc, ~41!

the equations of motion will give us

] tc5Q21vc. ~42!

Hence the operatorQ21v is the one we should use. We find the polar decomposition of
operator,ṽ5KJ, whereK is positive symmetric andJTJ51, orthogonal~we should be using the
natural inner product defined byQ to define the transpose, and in the infinite dimensional cas
define underlying real Hilbert space of initial data!. Howeverṽ is antisymmetric with respect to
our quadratic form, this means thatJ2521 and orthogonal, thus a complex structure~the com-
plex structure coming from the other choice differs from this by a minus sign!. In our example we
see that the quadratic form is 2&d(x22y2)dab ~thus all the calculations can be done with t
usual matrix transpose!, and the antisymmetric form is2&m2]2

21, so we get from the polar
decomposition,K5 (m2/2) @2]2

2 #21/2, J52@2]2
2 #1/2]2

21 ~we omit the identity in the color
space!. When we use a basis which diagonalizesṽ we get solutions which oscillate in time wit
a frequency given by the eigenvalues ofK. In our example, if we decompose the fieldca using a
Fourier mode decomposition,

ca~x2!5E
2`

` @dp#

23/4 wa~p!e2 ipx2
, ~43!

we have

wa~p,x1!5wa~p,0!expS 2 i
m2

2upu
x1D for p.0,

~44!

wa~p,x1!5wa~p,0!expS 1 i
m2

2upu
x1D for p,0.

~Note that the above-given combinations on the exponents are relativistically invariant if we
the mass-shell conditionp15m2/2p2.! This suggests that thei subspace ofJ goes to creation
operators, and2 i subspace goes to the annihilation operators, it is better therefore to represe
Fourier coefficients aswa(p)5ja(p) andwa(2p)5 j̄a(p) for p.0. If we act withJ on our field
variables,

~Jc!a~x2!5E
0

` @dp#

23/4 ~2 i j̄a~p!e2 ipx2
1 i ja~p!eipx2

!. ~45!

We see now that this Fourier transform diagonalizes our complex structure. If we look a
inverse of the quadratic form it transforms as*dx2 dy223/4eipx2

(2&)21d(x22y2)23/4eiqy2
,

which gives usd@p1q#. This is the form ofQ that we wanted to obtain.
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From the Fourier decomposition, creation and annihilation operators therefore are as
according to sgn(p), j(p)°x†a(p) andj̄(p)°xa(p). The ultimate reason for the choice of Foc
vacuum is to make the Hamiltonian bounded from below, if we write our Hamiltonian in
Fourier space,

H05PE @dp#

23/2

&m2

2upu
sgn~p!:xa~2p!xa~p!

ªE
01

` @dp#

23/2

&m2

2upu @ :xa†~p!xa~p!:2:xa~2p!xa†~2p!:#.

Notice that sgn(p) appears in the Hamiltonian, which is basically the complex structure we h
and the normal ordering~according to our choice of creation and annihilation operators! now
makes the Hamiltonian bounded from below:

H05E
01

` m2

2upu
xa†~p!xa~p!. ~46!

We could question the effect of the interactions since we have been describing everything in
of the free part of the Hamiltonian. Here we see a clear advantage of our light-cone point of
the complex structure we start with using the free Hamiltonian is independent of any o
parameters of the theory,thus the choice of quasifree representation of the canonical anticom
tation relations is not affected by the change of parameters due to interactions. In our case we
explicitly keep the change of mass due to the interactions with the gauge fields, so we a
taking advantage of this property. In the more general case this property may be helpful, in f
the scalar theory it is essential. We thus conclude our discussion on the choice of Fock spa
its relation to the natural complex structure in our system.

Next we show thatF2e really represents our basic bilinears: let us decompose the comp
fication of our one-particle Hilbert space asH1 % H2 according to2sgn(p), we can write a
general bilinear as an operator acting on the one-particle space and decomposed accordin
direct sum, one checks that

F5S S R

2R̄ 2S̄
D , ~47!

with exactly S†5S and RT52R. We also know that (F1e)251. But these are exactly th
properties satisfied byF. Our physical system has a one-particle Hilbert space given by the in
data on the light-conex150, we complexify this space and use Fourier transform to put
operators into the desired form. ThenH2 corresponds to the negative frequency component
the physics language. The Poisson bracket relations can be meaningfully extended to the H
Schmidt typeR, so we need the convergence conditions. The convergence conditions are
natural consequence of the super-renormalizability of this system. The time evolution of the
Nc system should keep us in the same free Fock space, and in the large-Nc limit this should be
expressible as an operator likeF. In fact the smeared out Poisson brackets are given by
Poisson bracket relations of the moment maps. Thus the symplectic structure we have
homogeneous manifold is the one we have found for our bilinears.

It is useful to look at the same issue from the point of view of generalized coherent s
assume that we have a Lie group which is representable on a Hilbert space by unitary op
through a highest weight vector. If we look at the orbit of this vector under the action of the g
this orbit has a natural symplectic structure, and all the vectors on the orbit correspond
generalized coherent states.28,29,4 In our case the group of Bogoluibov automorphisms, which
not act on the color part of our fermions, are represented on the fermion Fock space by th
invariant bilinears. The highest weight vector is the vacuum and its orbit under this group
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fore carries a natural symplectic structure. The corresponding group is the restricted orth
groupO1(H) and the orbit is our phase space.@In fact physically we should be using the proje
tive Fock space, since the phase does not change the physical content of a state. The b
provide a unitary representation of the central extensionÔ1(H) of the groupO1(H), when we use
the projective Fock space, the central part disappears and we descend to the restricted ort
group.# The convergence conditions are now a result of the implementability of these auto
phism in the Fock space, which is defined by our choice of the vacuum.22,21,12The large-Nc limit
allows us to restrict to the bilinears and the super-normalizability keeps us in the restricted c
implementable automorphisms. Thus taking the large-Nc limit provides a classical limit in this
sense.

This shows that our large-Nc limit has a well-defined classical phase space with a nat
symplectic structure. This opens up various possibilities, such as studying large fluctuations
field in this limit. There are various delicate questions, such as the domain of the Hamilto
existence of finite time evolution, completeness of the trajectories which we plan to come b
in the future.

V. BOSONS AND FERMIONS

This is the begining of the second part of our paper. The second part has two themes ag
construction of the phase space via the large-Nc limits of the bilinears and the geometry of th
ensuing phase space. Since the bosonic theory is developed in Ref. 24 and the fermionic
is explained in detail in the previous sections the construction of the phase space and find
Hamiltonian will be very brief. We recommend that the reader look at Ref. 24 and we us
results of the previous sections freely. The geometry part, which is in Sec. VI, will require
methods and in some sense it is not as complete. It may be helpful if the reader also consu
14, where the SU(Nc) version is discussed. We will develop these aspects as much as we ca
in some cases we indicate what the idea should be.

We start our first theme: we use the same conventions as in the previous sections a
previous paper. The action functional of the combined system of bosons and fermions c
written as

S5E F1

2
Tr FmnFmn1 i C̄MgmDmCM2mFC̄MCM1

1

2
~Dmf!T~Dmf!2

1

2
mB

2fTfG , ~48!

where we use the same conventions as in Sec. IV for the Majorana fermions. The transpos
to the color indices for the scalar field. Again the covariant derivative isDm5]m1gAm , whereAm

has values in the Lie algebra of SO(Nc). We choosex1 as time and setA250 as our gauge fixing
condition. Then the action in the light-cone formalism reads

S5E dx1 dx2F i&c1
T]2c11 i&c2

T]1c212imFc1
Tc21

1

2
fT~22]2!]1f2

mB
2

2
fTf

1gA1
a F i&c2

TTac21
1

2
~]2fTTaf2fTTa]2f!G1

1

2
~]2A1

a !2G .
The advantage of the light-cone formalism is again clear, we are already in the Hamilt
picture. We can read off the Poisson brackets satisfied by the dynamical fields. We also seec1

is not dynamical, as well asA1
a , therefore they can be eliminated through their equations

motion. The dynamical fermion fieldc2
a will be called ca for simplicity as in the previous

sections. We will assume that the fieldA1
a is eliminated after the dynamical fields are quantiz

this will give us the quantized Hamiltonian of the system,
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H5E dx2S 1

2
mB

2 :fTf:1
1

2
&mF

2:cT
1

i ]2
c:2

g2

2
:Ja:

1

]2
2 :Ja: D , ~49!

where

Ja5@ i&cTTac1 1
2 ~]2fTTaf2fTTa]2f!#. ~50!

The quantization process is defined for the Fermionic sector in Sec. II and for bosons i
24. We expand fermions and bosons into Fourier modes in acomplexspace,

ca~x2!5E
2`

` @dp#

23/4 xa~p!e2 ipx2
, fa~x2!5E

2`

` @dp#

A2upu
aa~p!e2 ipx2

, ~51!

with now xa(p)†5xa(2p) and aa†(p)5aa(2p). ~We should again assume that there is
infinitesimal cutoff around the zero momentum to be taken to zero at a later stage.! The Poisson
bracket relations go to

@xa~p!,xb~q!#15d@p1q#dab, @aa~p!,ab~q!#5sgn~p!d@p1q#dab. ~52!

These are exactly the same as before, there is one more commutator now,

@xa~p!,ab~q!#50. ~53!

As we will see in Sec. VI the definition of the Fock vacuum brings new features—a la
symmetry algebra appears. We introduce the vacuum stateu0.s , characterized byxa(p)u0.s

50,aa(p)u0.s50 for p.0, where we put a subscripts to emphasize that the vacuum is for th
full algebra of the boson/fermion system. We repeat for the convenience of the reader the
ordering rules of the bilinears~rewritten to fit to our needs!,

:xa~p!xb~q!ªxa~p!xb~q!2 1
2 dab~11sgn~p!!d @p1q#,

:aa~p!ab~q!ªaa~p!ab~q!2 1
2d

ab~11sgn~p!!d @p1q#.

There is an obvious extension of the general definition of normal ordering to the product of
than two operators, which one needs for the reduction of the Hamiltonian: set all the annih
operators to the right of creation operators in a recursive way.

We first introduce our bilinears for the large-Nc limit and work out their Poisson brackets
Then we express our Hamiltonian in the large-Nc limit in terms of these bilinears. We can see th
the basic color invariant observables are

F̂~p,q!5
2

Nc
:xa†~p!xa~q!, B̂~p,q!5

2

Nc
:aa†~p!aa~q!,

Ĉ~p,q!5
2

Nc
xa†~p!aa~q!, CC ~p,q!5

2

Nc
aa†~p!xa~q!.

Note that we have no need for normal ordering in the last two operators since they con
commuting operators. In the large-Nc limit Ĉ and CC are related,C̄5C†, and there are similar
conditions onF,B ~when we represent the resulting classical observables as integral kerne
think of them as now abstract operators!. For our calculational purposes it is better to introduce
following variables as in Sec. III and Ref. 24,

T̂~p,q!5
2

Nc
:aa~p!aa~q!ªB̂~2p,q! R̂~p,q!5

2

Nc
:xa~p!xa~q!ªF̂~2p,q!, ~54!
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and also the variable,

Ŝ~p,q!5
2

Nc
xa~p!aa~q!5Ĉ~2p,q!. ~55!

These variables in the large-Nc limit satisfy the following~super!Poisson brackets,

$T~p,q!,T~s,t !%522i ~sgn~p!d@p1s#T~q,t !1sgn~q!d@q1s#T~p,t !1sgn~p!d@p1t#T~s,q!

1sgn~q!d@q1t#T~s,p!1~sgn~p!1sgn~q!!~d@p1s#d@q1t#

1d@p1t#d@s1q# !!,

$R~p,q!,R~s,t !%522i ~R~p,t !d@q1s#2R~q,t !d@p1s#1R~s,p!d@q1t#2R~s,q!d@p1t#

1~d@q1t#d@p1s#2d@p1t#d@q1s# !~sgn~ t !1sgn~s!!!,

$T~p,q!,S~s,t !%522i ~S~s,q!sgn~p!d@p1t#1S~s,p!sgn~q!d@q1t# !,

$R~p,q!,S~s,t !%522i ~S~p,t !d@q1s#2S~q,t !d@p1s# !,

$S~p,q!,S~s,t !%1522i ~T~q,t !d@p1s#2R~s,p!sgn~q!d@q1t#

1d@p1s#d@q1t#~11sgn~p!sgn~q!!!.

We note that the last one is symmetric in the variables and the third and fourth ones showS
behaves as a module of the algebras defined by the Poisson brackets ofT,R, thus it carries a
representation of these two algebras. This is the general form of a superalgebra structure.
denote the full set of these brackets as a super-Possion bracket$ , %s .

The conversion of the normal ordered products of noncolor invariant combinations appe
in the above Hamiltonian to the full normal ordering in the large-Nc limit can be achieved as
before resulting with the same changes in the massesmF

2°mF
22g2/2p and mB

2°mR
22g2/2p,

wheremR
25mB

22g2/4p ln(LU /LI) denotes the renormalized mass of the boson. We skip the
tails of this reduction, since they are the extensions of the details in Ref. 11 and we have
some essential steps in Sec. III. The resulting Hamiltonian of our system in the large-Nc can be
expressed as a free part and an interacting part:

H05
1

8 S mR
22

g2

2p DPE @dp#

upu
T~2p,p!1

1

8 S mF
22

g2

2p DPE @dp#

p
R~2p,p!. ~56!

The interaction part is written as

HI5FPE @dp dq ds dt#~G1~p,q;s,t !T~p,q!T~s,t !1G2~p,q;s,t !R~p,q!R~s,t !

1G3~p,q;s,t !S~p,q!S~s,t !!,

where the kernels are given by

G1~p,q;s,t !5
g2

64

d@p1q1s1t#

Aupqstu

sq2st1pt2pq

~p1s!2 ,

G2~p,q;s,t !52
g2

64

d@p1q1s1t#

~p1s!2 ,
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G3~p,q;s,t !5
g2

64

d@p1q1s1t#

Autqu~p1s!2
.

We have not completed the definition of our large-Nc limit yet, there is a constraint. Reca
that we still have a left over global color invariance, which is generated by the operator,

Q̂ab5E @dp#~ :xa†~p!xb~p!:1sgn~p!:aa†~p!ab~p!: !. ~57!

When we restrict our color invariant bilinears to the color invariant sector of the full Fock sp
we find that

~F1e!21CeC†51,

CeB1Ce1FC1eC50,

eBeC†1C†1eC†e1eC†F50,

~eB1e!21eC†C51,

where we define as in Sec. III,e(p,q)52sgn(p)d@p2q# ~here the minus sign is crucial, in ou
previous works that was not important, but in the super case there is a preferred choice! and we
also employ the product convention as before for example (FC)(p,s)5*@dq#F(p,q)C(q,s). We
warn the reader that above the two epsilons have the same matrix elements but they are a
different spaces. The meaning of this constraint could best be understood if we introd
superoperator,

F5S eB1e eC†

C F1e D . ~58!

The above-mentioned constraint is simply given by

F251. ~59!

It also satisfies a Lie algebra condition, it is better to write it in the following form: us
decomposition of our superspace intoH1uH1 % H2uH2 , according to the sign ofe in even and
odd parts, respectively. Then we haveê5(0

1
21
0 ), and we introduce with respect to this decomp

sition

v̂s5~1
0

0
2 ē !,

where2 ē5(0
1

21
0 ), and this is a supermatrix acting between positive and negative subspaces

v̂sF
t1Fv̂s50, ~60!

we invite the reader to verify this.
There are also convergence conditions, which come from the super-renormalizability o

system again. The time evolution should leave this system in the same Fock space. Anoth
to see this is to think about the smeared out operators, and see that the central terms mak
only for the restricted set of operators, for which the off-diagonal blocks are in the Hilb
Schmidt class. We can write down these convergence conditions in an economical way as

@ ê,F#PI2 , ~61!

whereI2 refers to the ideal of Hilbert–Schmidt operators in this superspace. We have pro
elsewhere30 a method of introducing such operators in the supercontext, and we assum
definition is used. Since these technical matters are not completely settled we are brief
point—see also Sec. VI on the geometry. This completes the construction of our large-Nc limit: we
                                                                                                                



int and
vable

sider

ibing

osons
le. In

d 14,

erved

the
s,

is is a
ac-

3089J. Math. Phys., Vol. 43, No. 6, June 2002 Large N limit of SO(N)

                    
postulate the above-mentioned Hamiltonian, the super-Possion brackets with the constra
this defines a classical system. The ‘‘time’’ evolution is given by the basic rule: for any obser
Os of the theory

]Os

]x1 5$Os ,H%s , ~62!

where the Hamiltonian is in general an even function of our bilinears—which we should con
as the coordinates of this phase space.

It is possible to carry out the analysis given in Ref. 14, but we will be content with descr
only the linear approximation. We plan to report on these in a separate publication~they will
appear in the Ph.D. thesis of E.T.!.

We start with the linearization of the constraintF251, which gives us

Fe1eF50, eBe1B50, eC1Ce50. ~63!

The first two are exactly the conditions we have found before, for mesons made up of only b
in Ref. 24, the first one is in Sec. III, and the last one is the new condition on our odd variab
terms ofS that means we haveS(u,v)50 unlessu,v.0 or u,v,0. If we assumeu,v.0 and
evaluate the equations of motion in the linear approximation forS(u,v), ]1S(u,v;x1)
5$S(u,v;x1),H% and furthermore we make the same type of ansatz as in Refs. 11, 24, an
S(u,v;x1)5zS(x)e2 iP1x1

, with P5u1v,x5 u/P,

ms
2zS~x!5FmF

22g2/2p

x
1

mR
22g2/2p

12x GzS~x!2
g2

8p E
0

1 dy

Axy

x1y

~x2y!2 zS~12y!. ~64!

The other linearized equations are the same as before~see Sec. III and Ref. 24!.
There are baryonic states that we can measure by the operator

B̂5
1

Nc
E

0

`

@dp#~xa†~p!xa~p!1aa†~p!aa~p!!, ~65!

in the large-Nc limit this operator should go toB5 1/2*0
`@dp#(F(p,p)1B(p,p)). Thebaryonic

statesfor finite Nc correspond to states of the form

1

Z
ea1a2 ¯ aNc

xa1†~p1! ¯ xas†~ps!a
as11†~ps11! ¯ aaNc

†~pNc
!, ~66!

wherep1 ¯ pNc
.0 and products of them acting onu0.s .

Not surprisinglythe above-given baryon number is not a conserved quantity, so it does not
have the physical importance as it has in the case of Dirac fermions where it is a cons
number, in fact a topological number~see Ref. 11 for the discussion of this in the large-Nc limit
and its extension in Ref. 14!.

VI. THE GEOMETRY OF THE PHASE SPACE

Let us define a superspaceHuH, where we use a splitting to even and odd according to
grading1,2 ~we are using aZ2 gradedreal Hilbert space!. We recall some of the convention
following Berezin18: we work with the Grassmann envelope of this graded vector space~thus we
acquire aZ grading!. Its mathematical theory is delicate and we will comment on it later~some
good examples of homogeneous supersymplectic manifolds are worked out in Ref. 31, th
good reference to learn by examples!. We decompose every linear transformation or tensor
cording to this grading, the standard matrix form of a linear transformation is
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S A B

C DD :HuH→HuH, ~67!

where A,D are even andB,C are odd. This means thatA5AB1AS ,D5DB1DS where the
subscriptB refers to the body that is the ordinary numbers, the subscriptS refers to the soul, tha
is only the Grassmann part.B,C have no body, they are purely Grassmann valued.

We have the usual Hermitian conjugation of such block matrices, but the transpose ha
carefully defined. We introduce a supertranspose,t,

S A B

C DD t

5S AT CT

2BT DTD , ~68!

where T denotes the ordinary matrix transpose. One can verify that this form satisfies (AB)t

5BtAt. It will be useful to record the following properties, Str(At)5StrA, if we decompose our
graded space into a direct sum, for example in our case intoH1uH1 % H2uH2 , the operators can
also be decomposed into superoperators, say into (c

a
d
b), then

S a b

c dD
t

5S at ct

bt dtD . ~69!

Realness is related to an involution in the Grassmann algebra,j°j* and we assume that thi
involution obeys (j ij j )* 5(j j )* (j i)* and (aj)* 5āj* , wherea is a complex number and the ba
denotes the ordinary complex conjugation. The real Grassmann algebra is the part wh
invariant under this involution. This means that there will be factors ofi to make things invariant.
This implies thatthe real graded Hilbert space is defined residing inside a complex graded Hi
space.

On the space of linear transformations there is a complex conjugation operator, accord
Berezin conventions it should be given by the following: write a linear transformation in
standard form, then

S a b

c dD *
5S a* 2b*

c* d* D . ~70!

We note thatA** 5A, and (At)* 5(2b†
a†

d†
2c†

)5ẼA†Ẽ, hereẼ5(0
1

21
0 ), whereas (A* )t5A†.

We have the set ofreal linear transformations, this set is invariant under the above conjug
tion, M* 5M , it remains so under the product of supermatrices, thanks to (A1A2)* 5A1A2 . The
set of real linear operators thus is an algebra.

Let us assume that the even part has a symplectic formv and the odd part has a standa
quadratic form 1. On the complexification of this space we introduce a supersymplectic for

vs5S v 0

0 i1D , v5S 0 21

1 0 D . ~71!

Note that multiplying the last part with ani does not really change anything as far as only the e
transformations are concerned but for the full case we need this factor. We look at the spacereal
transformationswhich will leave this form invariant,

gtvsg5gvsg
t5vs , ~72!

this is a supergroup, and it is denoted by OSp(HuH). Its even part has body isomorphic t
Sp(H) % O(H), the odd parts are modules over the Grassmann envelopes of these groups

write down the group conditions for an element (c
a

d
b)5(c*

a*
d*
2b* ), wherea,d are real even,c real

odd, andb imaginary odd operators,
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aTva1 icTc5v, aTvb1 icTd50, 2bTva1 idTc50, 2bTvb1 idTd5 i1. ~73!

Since we have the complex conjugation convention (cj)* 52c* j* , the complex conjugate of a
product of odd operators become imaginary, this is why we haveicTc, then it becomes a real eve
element of the Grassmann envelope.

Decompose our spaces according to the matrix representation ofvs , W% W̃uW% W̃. Let us
assume that we also have a supercomplex structure, which is a type~1,1! tensor,

Js5S J 0

0 JD , J5S 0 1

21 0D . ~74!

Assume that we extend everything to the complexification of our original Hilbert space. The
can perform a transformationS that will put the above-mentioned complex structure into diago
form in this complexified space. To accomplish this it is better to represent it in a slightly diffe
way, use a decompositionWuW% W̃uW̃, then

Js5S 0 1

21 0D , S5
1

&
S i 2 i

1 1 D . ~75!

Now computeS21JsS and see that we getĴs5 i ê5(0
2 i

i
0), which definesê in this decomposition.

We use a decomposition according to the sign ofi and the resulting graded Hilbert space becom
H1uH1 % H2uH2 . If we compute the transformation ofvs , it goes intoStvsS since it is a two
form, and we get

v̂s5S 0 2 ē

1 0 D , ē5S 1 0

0 21D , ~76!

with respect to the above-given decomposition. Obviously our real group also transformed
same rule asJs , so a typical group element becomes according to the above-given decompo

g5S A B

B* A* D . ~77!

Note that each of the blocks are superoperators with standard decompositions, and fo

one we are using Berezin definition of the complex conjugate (c
a

d
b)* 5(c*

a*
d*
2b* ). We have a full

complex group which leaves invariant the above transformed version of the two form, this
complex OSp group,

gtv̂s g5v̂s , g5S A B

C DD , ~78!

and the real group now sits inside this complex group. Thus a complex transformation sat

AtēC2CtA50, AtēD2CtB5 ē, 2BtēC1DtA51, BtēD2DtB50. ~79!

The reader may question the consistency of these equations. We should remember thaM t)t

5 ēM ē, then we can see that they are consistent. There is an interesting subgroup, giv
elements of the formg5(0

A
A*
0 ) andA satisfies

AtēA* 5 ē, A* tA51; ~80!
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recall thatA* t5A† and (At)* 5 ēA†ē, this is the same as before except that we express it in
subspace, so we should useē instead ofẼ, we getA†A5AA†51. Let us see what it means whe
we expandA5(g

a
d
b),

a†a511g†g, a†b1g†d50, b†a1d†g50, d†d511b†b. ~81!

We see that the body parts satisfyaB
†aB51, dB

†dB51, these are the ordinary unitary groups insid
Therefore we have shown that this group’s even part has bodyU(H1) % U(H1). This group is
denoted byU(H1uH1) and it is the superunitary group ofH1 .

Let us define the orbit ofê, this is really the complex structure if we remove the factors oi ,
under the real group OSp:

F5g21êg. ~82!

It is immediate thatF251. We will now show that we also have

v̂sF
t1Fv̂s50, ~83!

so it is an element of the Lie algebra of OSp. DefineÊ5(0
ē

ē
0), this is really ourẼ written in this

splitting of the Hilbert space, and note (v̂s
t)215v̂s , v̂s

t5v̂sÊ, v̂s
25Ê and êv̂s52v̂sê, then,

Ftvs5~v̂s
21gtv̂sêg!tvs5gtêv̂sÊgttÊ5gtêv̂sg52gtv̂sêg52v̂sv̂s

21gtv̂sêg52v̂sg
21êg

52v̂sF,

where we usedÊgttÊ5g. Let us look at the stability subgroup ofê, that is given by operators o
the form (0

A
A*
0 ), and we have seen that this can be identified with the unitary operator

H1uH1 , U(H1uH1). Hence we conclude that our variableF is actually parametrizing the spac

OSp~HuH!/U~H1uH1!. ~84!

What is the advantage of this parametrization? The above supermanifold is actually a sym
manifold with a supersymplectic structure most naturally written in terms of the variableF:

Vs5
i

4
StrF dF∧dF. ~85!

This is formally defined, but we use the rules of super analysis to define our differential fo
Clearly it is closed, use

dStrF dF∧dF5Str dF∧dF∧dF5StrF2dF∧dF∧dF5StrF dF∧dF∧dFF

52StrF2 dF∧dF∧dF∧dF.

where we used StrAB5StrBA. It is also clear that this form is homogeneous. Its nondegena
can be proved atê, and homogeneity proves it everywhere.

Up to now we have really used a finite dimensional approach, but to identify the largNc

phase space of Sec. V, we need to extend these notions to the infinite dimensional cas
extension is formally simple, we assume that we have super-Hilbert spaces, that is even a
spaces each one are coming from a separable Hilbert space and we use a proper extensio
Grassmann envelope to this case~this is not so obvious and we assume our proposal in Ref. 30,
may not be the only possibility, see Refs. 32 and 33!. In this infinite dimensional setting we
introduce a Hilbert–Schmidt condition, the group that we use should be the restrictedreal OSp
group,
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OSp1~HuH!5H g5S A B

B* A* D Ug21exists, gtv̂sg5v̂s @ ê,g#PI2J . ~86!

The variableF now satisfies some convergence conditions, indeed one can check that

F2 êPS I1 I2

I2 I1
D , ~87!

where each block refers to a superoperator in the appropriate class of operator ideal.
convergence conditions imply that the supersymplectic formVs we defined in the finite dimen
sional setting makes sense. The trace class conditions are important to write down momen
but we will ignore it for this work. Hence we have an infinite dimensional phase space,

OSp1~HuH!/U~H1uH1!, Vs5
i

4
StrF dF∧dF. ~88!

The reader can now see how this is related to our system, from the experience we have
previous cases. In our problem we have a free action which has bosons and fermions,

S05E dx1 dx2S 1

2
fT~22]2!]1f1

1

2
i2&cT]1c2

1

2
mB

2fTf2
1

2
&mF

2cT
1

i ]2
c D . ~89!

This action is written in the standard light-cone frame and one of the components of the Ma
field has been eliminated in favor of the other. The transpose refers to the color indices f
gauge group SO(Nc). As it stands this does not require the full content of the supergeometry
as we have seen the interaction terms, given by the proper bilinears of field operators, ma
use of supergeometry most convenient: when we reformulate our theory in terms of bilinea
need the combinations which can only be expressed in terms of odd operators. We will no
that the Poisson algebra of these bilinears can only be formulated as a super-two form. Mo
a simple iterative solution of the constraint equation reveals that the bosonic operators sho
given as an infinite series of products of odd operators, this is why we think it is most natu
use the full content of the Berezin’s superanalysis.~We hope to come back to the more mat
ematical aspects of our system in a future publication.!

In our theory we have a supersymplectic form and a superquadratic form which is i
standard representation given by

vs5S 22]2 0

0 i2& D I c , Qs5S mB
2 0

0 2&mF
2 i ]2

21D I c , ~90!

where we have the identityI c in the color space. The relevant operator is

vs
21Qs5S 2

mB
2

2
]2

21 0

0 2
mF

2

2
]2

21D I c . ~91!

The complex structure becomes~we drop the identity in the color space!

Js5@~2vs
21Qs!

2#21/2vsQs5S 2~2]2
2 !1/2]2

21 0

0 2~2]2
2 !1/2]2

21D . ~92!
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Clearly we can use the Fourier decomposition of our fields to diagonalize this and the freq
operatorKs ,

fa~x2!5E @dp#

A2upu
wa~p!e2 ipx2

, ca~x2!5E @dp#

23/4 za~p!e2 ipx2
, ~93!

here we should think ofwa as even andza odd elements of the Grassmann algebra defined b
series~an infinite one! of unspecified generatorsua(p), Apply the operatorJs to the vectors of this
graded space,

JsC5JsS fa

ca D5E @dp#e2 ipx2
~2 i sgn~p!!S ~A2upu!21wa~p!

223/4za~p! D , ~94!

which we should rewrite as

~JsC!~x2!5E
0

`

@dp#e2 ipx2F ~2 i !S ~A2p!21z̄a~p!

223/4j̄a~p!
D 1 i S ~A2p!21za~p!

223/4ja~p! D G , ~95!

defining the superholomorphic coordinates, (za(p),ja(p)). If we assign now our creation an
annihilation operators according to the sign ofi ,

S za~p!

ja~p! D°S aa†~p!

xa†~p! D , S z̄a~p!

j̄a~p!
D °S aa~p!

xa~p! D , ~96!

we get the commutation/anticommutation relations foraa†(p),ab(q) andxa†(p),xa(q) respec-
tively, and the zero commutator between the two sets. These commutation/anticommutatio
tions have the operatorv̂s on the right-hand side, this is what determines the algebra. Henc
see that we are in the geometric setting we were describing. Our bilinears combined in the f
F satisfy all the Lie algebra properties. In fact it is instructive to write down the supersympl
form Vs with F expressed in terms of the bilinearsB,F,C,C†. Then the reader can see that w
have the same Poisson brackets satisfied by these bilinears.

From the above-given discussion we again see the remarkable fact that the geometry w
defined by the complex structureJs is independent of the parameters of the theory in this lig
cone method. This meanseven though the masses change due to the interactions this wil
change the representation of canonical commutation/anticommutation relations we started w, as
a result the geometry stays the same.

Our bilinears will correspond to the generators of the automorphisms of this full algeb
commutation/anticommutation relations, and it is the restricted real OSp group~for finite dimen-
sional automorphism groups see Ref. 34, for Bogoliubov automorphisms of qausifree repre
tions see Refs. 35–38!. We can check that the bilinears we have satisfy the Lie algebra condi
and the implementability of these automorphisms will imply the convergence conditions. T
fore the evolution of the system in the large-Nc limit realizes all automorphisms of the quasifre
second quantization of this system when we think of it without the color part—the color par
been averaged out and reduced the system to the bilinears. We may give an argument u
supercoherent states,39,40similar to the ordinary cases: there is a central extension of the auto
phism group OSp̂

1 which is realized by these bilinears on the full Fock space. When we t
about the projective Fock space this descends to the OSp1 group. The orbit of the vacuum unde
this group gives us a classical phase space albeit a more general one, with a supersymplec
The large-Nc limit provides this reduction to the space of supercoherent states. This is a n
classical phase space and the large-Nc limit corresponds to this classical limit.

Before ending our discussions we would like to make a few comments of general natur
us write down a superdynamical system in the Hamiltonian form
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S05E dt
1

2
Ctvs] tC2E dt

1

2
CtQsC. ~97!

We assume that the action is an element of the even part of the Grassmann algebra. If we w
to be real we demand (CtQsC)* 5CtẼQs* C5CtQsC, that isQs5ẼQs* , we are again using
Ẽ5(0

1
21
0 ) in the standard decomposition. For the first term it implies the sameẼvs* 5v. If we

further note that it should be invariant under the transpose, we get for the first term usi
integration by parts for the time derivative,Ctvs] tC52Ctvs

tẼ] tC, which implies vs

52vs
tẼ and the second term requiresCtQsC5CtQs

tẼC, which means we should haveQs

5Qs
tẼ. The equations of motion will give us

] tC5vs
21QsC. ~98!

This suggests that we should further investigate operatorvs
21Qs which is a type~1,1! tensor, thus

a true linear transformation. We note thatvs
21Qs is real: (vs

21Qs)* 5(vs
21)* Qs* 5vs

21ẼẼQs

5vs
21Qs , by using the conjugation properties ofvs andQ. This operator is antisymmetric with

respest to the form defined byQs :

Qs
21~vs

21Qs!
tQs5Qs

21Qs
t~vs

t!21Qs52Qs
21QsẼẼvs

21Qs52vs
21Qs , ~99!

as well as undervs . It would be most natural if we could use a generalization of the p
decomposition forQs

21vs , and write this operator asvs
21Qs5JsKs , where Js

t Js51, and Ks

.0, Ks
t 5Ks , with an appropriate transposet and positivity is assumed to be given a meaning

this supercontext. Then we could claim that the basis in whichJs is diagonal, will tell us the
separation of creation and annihilation operators in this full generality. This can be done
simple case we looked at, when the operators involved only had body parts, and no Gras
numbers. Unfortunately for the general case we do not have the proper mathematical mac
If we could find a supertransformationS, such thatS21vs

21QsS is diagonal with each entry
(6 ilk) for a pure numberlk we could postulate the quantization by means of canon
commutation/anticommutation relations. To the best of our knowledge there is no such the
We think these questions deserve further investigations.
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The embedding of space–times in five dimensions
with nondegenerate Ricci tensor

F. Dahia and C. Romero
Departamento de Fı´sica, Universidade Federal da Paraı´ba,
C. Postal 5008, Joa˜o Pessoa, PB, 58059-970, Brazil

~Received 23 November 2001; accepted for publication 5 February 2002!

We discuss and prove a theorem which asserts that anyn-dimensional semi-
Riemannian manifold can be locally embedded in an~n11!-dimensional space
with a nondegenerate Ricci tensor which is equal, up to a local analytic diffeomor-
phism, to the Ricci tensor of an arbitrary specified space. This may be regarded as
a further extension of the Campbell–Magaard theorem. We highlight the signifi-
cance of embedding theorems of increasing degrees of generality in the context of
higher dimensional space–times theories and illustrate the new theorem by estab-
lishing the embedding of a general class of Ricci-flat space–times. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1473680#

I. INTRODUCTION

Modern physical theories which regard our space–time as a hypersurface embedde
five-dimensional manifold constitute nowadays a branch of theoretical physics undergoing
an active research. On the other hand, the idea of an extra fifth dimension is not new an
back to the works of Kaluza and Klein carried out around the first quarter of the 20th centu1,2

Kaluza–Klein’s seminal work has inspired theoretical physicists to generalize their conject
the construction of unified theories of the fundamental interactions of nature. Subsequent
opments which assume that the universe contains extra hidden dimensions include among
11-dimensional supergravity and superstring theories.3,4 More recently much attention has bee
devoted to the so-called Randall–Sundrum braneworld scenario where the space–time is
as a four-dimensional hypersurface embedded in a five-dimensional Einstein space.5 Noncompac-
tified approaches to Kaluza–Klein gravity also make use of embedding mechanisms an
been largely discussed in the literature.6–11

In a sense one could say that all space–time embedding theories12 assume, implicitly or
explicitly, a mathematical framework which must provide consistency for the postulates and
principles set forth by such theories. In this connection it is of interest to know whethe
embedding theorems of differential geometry are properly taken into account when constr
higher dimensional models. The analysis of the geometrical structure underlying some m
embedding theories has recently attracted the interest of some authors.13–18 It seems that there is
now a quest for embedding theorems with increasing degrees of generality, i.e., theorems e
that arbitraryn-dimensional space–times can be embeddable in classes of~n11!-dimensional
spaces the most general as possible.

Two theorems of historical importance which have played a significant role in physical
ries of higher dimensions should be mentioned. The first is the well-known Janet–Cartan the
which asserts that if the embedding space is flat, the minimum number of extra dimensions
to analytically embed ann-dimensional Riemannian manifold isd, with 0<d<n(n21)/2.19 An
important application of this theorem may be illustrated by the isometric embedding o
Schwarzschild solution in a six-dimensional flat space.20 Other interesting examples of isometr
embeddings with application to general relativity and strings may be found in Refs. 21 and

The second theorem is a little known but powerful theorem due to Campbell,23 the proof of
which was outlined by Campbell and completed by Magaard.24 The content of the Campbell–
Magaard theorem is that anyn-dimensional Riemannian manifold with analytic metric, local
30970022-2488/2002/43(6)/3097/10/$19.00 © 2002 American Institute of Physics
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can be isometrically embedded into a certain~n11!-dimensional Ricci-flat manifold. How geo
metric properties of the embedding space, such as extrinsic curvature, can be related
energy-momentum tensor is discussed in Ref. 25. It is interesting to note that both the
specify a geometry property to be satisfied by the embedding space by imposing the restr
Rmnlr50 in one case andRmn50 in the other. It is also worth noting that by relaxing the flatne
condition, assumed in the Janet–Cartan theorem, and replacing it by the weaker Ricci-fl
condition, the Campbell–Magaard theorem drastically reduces the codimension of the emb
space tod51. This seems to give support to the mathematical consistency of theories in whic
dynamics of the embedding space is governed by the vacuum Einstein field equations.6 However,
the view adopted by Randall–Sundrum braneworld model5 that the embedding space, i.e., th
bulk, should correspond to an Einstein space sourced by a negative cosmological const
naturally raised the question of whether the Campbell–Magaard theorem could be exten
include embeddings in arbitrary Einstein spaces. This conjecture was shown to be, in
theorem, the proof of which is given in Ref. 18. Embeddings into spaces sourced by scalar
also have been considered and a different extension of the Campbell–Magaard theorem h
proved.17,26 In seeking higher levels of generalization one is led to consider the more ge
situation of embedding spaces whose Ricci tensor is arbitrary. In this paper we shall be con
with this problem. In Sec. II we state and prove a theorem which considers embedding spac
arbitrary nondegenerate Ricci tensor, and, in a way, would represent a further generaliza
Campbell–Magaard’s result. In Sec. III we illustrate the theorem by establishing the embedd
a general class of Ricci-flat space–times in a given collection of five-dimensional spaces
Ricci tensor is equivalent to a specified nondegenerate and nonconstant Ricci tensor.

We believe that insofar as five-dimensional embedding theories are metric theories it a
to be of relevance to allow the embedding spaces to have different geometrical properties,
must ultimately be determined by the dynamics of the theory in question. Therefore gene
tions of the known embedding theorems might be helpful in building new higher dimens
models.

II. EXTENSION OF CAMPBELL–MAGAARD THEOREM: EMBEDDING SPACES WITH
ARBITRARY NONDEGENERATE RICCI TENSOR

In this section we want to investigate the existence of a local analytic embedding
n-dimensional semi-Riemannian manifold (Mn,g) into a class of (n11)-dimensional space
whose Ricci tensor isequivalentto the Ricci tensor of a (n11)-dimensional space arbitraril
specified.

Definition: Consider a(n11)-dimensional semi-Riemannian space(M̃0
n11 ,g̃0) and let Sab

denote the components of the Ricci tensor in a coordinate system$x8a%. Let (M̃n11,g̃) be another

(n11)-dimensional semi-Riemannian space with R˜
ab denoting the components of the Ricci tens

in a coordinate system$xa% which covers a neighborhood of a point pPM̃n11 whose coordinates

are xp
15 ¯ 5xp

n1150. Then, we shall say that Sab and R̃ab are equivalent if there exists a

analytic local diffeomorphism f:̄M̃0
n11→M̃n11 at p such that

R̃ab~xg!5
] f̄ m

]xa

] f̄ n

]xb Smn~x8k!, ~1!

where x8k5 f̄ k(xl). In others words, Sab and R̃ab are said to be equivalent if there exists

analytic function f̄m5 f̄ m(xa) such that: (i)u ] f̄ m/]xa uÞ0 at 0PRn11 and (ii) the condition (1)

holds in a neighborhood of0PRn11. In this case(M̃0
n11 ,g̃0) and (M̃n11,g̃) are said to be

‘‘Ricci-equivalent’’ spaces. ~Henceforth we shall follow the convention adopted in Ref. 18 wh
Latin and Greek indices run from 0 ton andn11, respectively.!

Clearly, from the above, the collectionMg̃0

n11 of all spaces which are Ricci-equivalent to

given space (M̃0
n11 ,g̃0) is well defined. Therefore it makes sense to discuss the existence o
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embedding of a given arbitraryn-dimensional semi-Riemannian manifold (M̃n,g̃) into the class
Mg̃0

n11. In what follows we shall show that if the Ricci tensor of (M̃0
n11 ,g̃0) is nondegenerate, i.e

the matrix formed by its components has inverse, then the existence of the embedding
ensured.

We should note, however, that~1! defines a notion of equivalence between the covariant R
tensorSab andR̃ab . This equivalence does not imply that the contravariant Ricci tensorSab and
R̃ab are also equivalent. In general they are not, unless the diffeomorphism is an isome
condition which is more restrictive than~1!.

Let us consider (M̃n11,g̃) and choose a coordinate system in which the metric has the

ds25ḡikdxidxk1«f̄2dy2, ~2!

where«561. In these coordinates~1! may be written in the following equivalent form:

R̃ik5R̄ik1«ḡ jm~V̄ ikV̄ jm22V̄ jkV̄ im!2
«

f̄

]V̄ ik

]y
1

1

f̄
¹̄i¹̄kf̄5

] f̄ m

]xi

] f̄ n

]xk
Smn~ f̄ a!, ~3!

R̃i
y5

«

f̄
ḡ jk~¹̄jV̄ ik2¹̄iV̄ jk!5

«

f̄2

] f̄ m

]y

] f̄ n

]xi
Smn~ f̄ a!, ~4!

G̃y
y52

1

2
ḡikḡ jm~R̄i jkm1«~V̄ ikV̄ jm2V̄ jkV̄ im!!5

1

2

«

f̄2

] f̄ m

]y

] f̄ n

]y
Smn~ f̄ a!

2
1

2
ḡ jm

] f̄ m

]xj

] f̄ n

]xm
Smn~ f̄ a!, ~5!

where

V̄ ik52
1

2f̄

]ḡik

]y
, ~6!

Gab is the Einstein tensor and a bar is used to denote all the geometrical quantities calculate
the induced metricḡik on a generic hypersurfaceSc of the foliationy5c5const. Before we state
the main theorem we need a few preliminaries.

We begin by defining the tensor

F̃b
a5G̃b

a2S g̃ag
] f̄ m

]xg

] f̄ n

]xb Smn2
1

2
db

ag̃gl
] f̄ m

]xg

] f̄ n

]xl SmnD . ~7!

If we now impose that the functionsf̄ a satisfy the equation

¹̃aS g̃ag
] f̄ m

]xg

] f̄ n

]xb Smn2
1

2
db

ag̃gl
] f̄ m

]xg

] f̄ n

]xl SmnD 50, ~8!

then it is easily seen that, as the Einstein tensorGb
a has vanishing divergence, the tensorF̃b

a also
is divergenceless for any metricg̃ab , even those which are not solutions of Eq.~1!. Thus, we are
ready to state the following lemma.

Lemma 1: Let the functions gīk(x1, . . . ,xn,y),f̄(x1, . . . ,xn,y) and f̄a(x1, . . . ,xn,y) be ana-
lytical at (0, . . . ,0)PS0,Rn11. Assume that the following conditions hold:
                                                                                                                



es

n

3100 J. Math. Phys., Vol. 43, No. 6, June 2002 F. Dahia and C. Romero

                    
(i) ḡ ik5ḡki ;
(ii) det(ḡik)Þ0;
(iii) f̄Þ0.

Suppose further that gīk and f̄a satisfy the equations (3) and (8) in an open set V,Rn11

which contains0PRn11, and (4) and (5) hold atS0 . Then, ḡik , f̄ and f̄a satisfy (4) and (5) in
a neighborhood0PRn11.

Proof: The key point of the proof is given by the equation¹̃aF̃b
a50, which can be written as

]F̃b
y

]y
52

]F̃b
i

]xi 2G̃ml
m F̃b

l1G̃lb
m F̃m

l . ~9!

On the other hand, by assumption~3! holds inV,Rn11. Then, it can be shown that inV we have
F̃k

i 52dk
i F̃y

y . After some algebra we can deduce that

]F̃y
y

]y
52«f̄2ḡi j

]F̃ i
y

]xj 22G̃ iy
i F̃y

y1S 2«
]~f̄2ḡi j !

]yj 2«f̄2ḡi j G̃k j
k 1G̃yy

i D F̃ i
y , ~10!

]F̃ i
y

]y
5

]F̃y
y

]xi 12G̃yi
y F̃y

y1~ G̃yi
k 1«f̄2ḡk jG̃ i j

y 2G̃ym
m d i

k!F̃k
y . ~11!

Since at the hypersurfaceS0 the equations~4! and~5! also hold, it follows thatF̃b
y 50 at S0 and

hence]F̃b
y /]y uy5050. It is not difficult to show by mathematical induction that all the derivativ

~to any order! of F̃b
y vanish aty50. As F̃b

y is analytic we conclude thatF̃b
y 50 in an open set of

Rn11. Hence, Eqs.~4! and ~5!, which are equivalent toF̃b
y 50, also hold in an open set ofRn11

which includes the origin. This proves the lemma.
The question which now arises is: do Eqs.~3! and~8! admit solution? To answer this questio

we first note that~3! can be expressed in the following form:

]2ḡik

]y2
522«f̄2S ] f̄ m

]xi

] f̄ n

]xk
Smn~ f̄ a!D 1

1

f̄

]f̄

]y

]ḡik

]y
2

1

2
ḡ jmS ]ḡik

]y

]ḡ jm

]y
22

]ḡim

]y

]ḡ jk

]y
D

22«f̄S ]2f̄

]xi]xk
2

]f̄

]xj
Ḡ ik

j D 22«f̄2R̄ik . ~12!

Second, let us rewrite Eq.~8! in the form

]

]xa S g̃ag
] f̄ m

]xg

] f̄ n

]xb Smn2
1

2
db

ag̃gl
] f̄ m

]xg

] f̄ n

]xl SmnD 1G̃as

a S g̃sg
] f̄ m

]xg

] f̄ n

]xb SmnD
2G̃ab

s S g̃ag
] f̄ m

]xg

] f̄ n

]xs SmnD 50. ~13!

We now isolate the terms which contain second-order derivatives off̄ a with respect toy in the
equation above. Puttingb5n11 we obtain
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«

f̄2

]2 f̄ m

]y2

] f̄ n

]y
Smn52

1

2

] f̄ m

]y

] f̄ n

]y

]

]y S «

f̄2
SmnD 1

1

2

]

]y
S ḡ jk

] f̄ m

]xj

] f̄ n

]xk
SmnD

2
]

]xj S ḡ jk
] f̄ m

]xk

] f̄ n

]y
SmnD 2G̃as

a S g̃sg
] f̄ m

]xg

] f̄ n

]xb
SmnD 1G̃ab

s S g̃ag
] f̄ m

]xg

] f̄ n

]xs
SmnD .

~14!

For b5 i we have

«

f̄2

]2 f̄ m

]y2

] f̄ n

]xi
Smn52

] f̄ m

]y

]

]y
S «

f̄2

] f̄ n

]xi
SmnD 2

]

]xj S ḡ jk
] f̄ m

]xj

] f̄ n

]xi
SmnD

1
1

2

]

]xi S g̃sg
] f̄ m

]xg

] f̄ n

]xb
SmnD 2G̃as

a S g̃sg
] f̄ m

]xg

] f̄ n

]xb
SmnD

1G̃ab

s S g̃ag
] f̄ m

]xg

] f̄ n

]xs
SmnD . ~15!

Clearly, the right-hand side of~14! and~15! does not contain second-order derivatives of
functions f̄ a and ḡik with respect toy. Therefore, they are of the form

]2 f̄ m

]y2

] f̄ n

]xb Smn5QbS f̄ l,
] f̄ l

]xs ,
]2 f̄ l

]xs]xi ,ḡik ,
]ḡik

]xs D . ~16!

~Of courseQb also depends onf̄ and its derivatives, however this fact is not relevant for o
present reasoning.! Thus, assuming thatu ] f̄ m/]xa uÞ0 ~we shall see later on that this assumpti
can always be made! we can write

]2 f̄ m

]y2
Smn5

]xb

] f̄ n
QbS f̄ l,

] f̄ l

]xs
,

]2 f̄ l

]xs]xi
,ḡik ,

]ḡik

]xs D . ~17!

If we suppose thatSmn is invertible, i.e., there exists (S21)nl such that

Smn~S21!nl5dm
l , ~18!

then ~8! can be put into the canonical form

]2 f̄ m

]y2 5PmS f̄ l,
] f̄ l

]xs ,
]2 f̄ l

]xs]xi ,ḡik ,
]ḡik

]xs D , ~19!

where eachPm is analytic with respect to its arguments provided thatu ] f̄ m/]xa uÞ0, uḡikuÞ0 and
f̄Þ0.

It easy to see that the Cauchy–Kowalewski theorem~see the Appendix! can be applied to the
equations~19! and ~12!, which are equivalent to~3! and ~8!, respectively. According to the
above-mentioned theorem, if an analytic functionf̄Þ0 is chosen, then there exists a unique se
analytic functionsḡik and f̄ a that are solutions of~3! and ~8! satisfying the initial conditions

ḡik~x1,...,xn,0!5gik~x1,...,xn!, ~20!
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]ḡik

]y
~x1,...,xn,0!522f̄~x1,...,xn,0!V ik~x1, . . . ,xn!, ~21!

f̄ a~x1,...,xn,0!5ja~x1,...,xn!, ~22!

] f̄ a

]y
~x1,...,xn,0!5ha~x1,...,xn!, ~23!

wheregik , V ik , ja andha are analytic functions at the origin 0PRn, and the following condi-
tions hold: (i ) u ] f̄ m/]xa u0Þ0 and (i i ) ugikuÞ0. @Incidentally, we can easily verify that th
condition (i ) is satisfied by simply choosing:j i5xi ; jn1150; h i50 andhn1151. With this
choice,u ] f̄ m/]xa u051.#

We now are ready to state the following theorem.
Theorem 1: Let Mn be an n-dimensional semi-Riemannian manifold with metric given b

ds25gikdxidxk,

in a coordinate system$xi% of Mn. Let pPMn have coordinates xp
15¯5xp

n50. Then, Mn has a
local isometric and analytic embedding (at the point p! in an (n11)-dimensional space

(M̃n11,g̃) whose Ricci tensor is equivalent to the symmetric, analytic and nondegenerate
Smn if and only if there exist functionsV ik(x1, . . . ,xn) ( i ,k51,...,n), ja(x1,...,xn), ha(x1,...,xn)
(a51, . . . ,n11) and f(x1,...,xn)Þ0 that are analytic at0PRn, such that

V ik5Vki , ~24!

gjk~¹jV ik2¹iV jk!5
1

f
hm

]jn

]xi Smn~ja!, ~25!

gikgjm~Ri jkm1«~V ikV jm2V jkV im!!52
«

f2 hmhvSmn~ja!1gjm
]jm

]xj

]jn

]xm Smn~ja!, ~26!

U]j1

]x1 ¯

]jn11

]x1

] ]

]j1

]xn ¯

]jn11

]xn

h1
¯ hn11

UÞ0. ~27!

Proof: Let us start with the necessary condition. If (Mn,g) has an embedding in (M̃n11,g̃),
then it can be proved that there exists a coordinate system in which the metric of the emb
space has the form18

ds25ḡikdxidxk1«f̄2dy2, ~28!

where the analytic functions ḡik(x1, . . . ,xn,y) and f̄(x1, . . . ,xn,y) are such that
f̄(x1, . . . ,xn,y)Þ0 and thatḡik(x1, . . . ,xn,0)5gik(x1, . . . ,xn) in an open set ofRn which con-
tains the origin. Given that the Ricci tensor of the embedding space (M̃n11,g̃) is, by assumption,
equivalent toSmn , then the equations~3!, ~4!, ~5! and ~8! are satisfied in a neighborhood of
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PRn11 for some functionsf̄ m. In particular, the equations~4! and~5! hold for y50. Therefore, if
we define V ik , ja, ha by the relations ~21!, ~22! and ~23!, and take f(x1,...,xn)
5f̄(x1, . . . ,xn,0), then the Eqs.~24!–~27! are satisfied.

Let us turn to the sufficiency. Suppose there exist functionsV ik(x1, . . . ,xn), ja(x1,...,xn),
ha(x1,...,xn) and f(x1,...,xn)Þ0 which satisfy ~24!–~27!. Choose an analytic function
f̄(x1, . . . ,xn,y)Þ0 such that f̄(x1, . . . ,xn,0)5f(x1,...,xn). By virtue of the Cauchy–
Kowalewski theorem there exists a unique set of analytic functionsḡik(x1, . . . ,xn,y) and
f̄ a(x1, . . . ,xn,y) satisfying the equations~3! and~8! and the initial conditions~20!–~23!. Since, by
assumption, the initial conditions satisfy the equations~24!–~26!, then ḡik ,f̄ and f̄ a satisfy ~4!

and ~5! at y50. It follows from Lemma 1 thatḡik ,f̄ and f̄ a satisfy ~1! in an open set ofRn11

which contains the origin. Further, we can say thatf̄ a is a diffeomorphism since by virtue of~27!

we haveu ] f̄ m/]xa uÞ0. Therefore, we conclude that the (n11)-dimensional manifold whose line
element~28! is formed with the solutionsḡik andf̄ is a space whose Ricci tensor is equivalent
Smn , and the embedding of the manifold (Mn,g) is given byy50. This completes the proof.

We now need to show that once the functionsgik are given the system of equations~24!–~27!
always admits solution forV ik . For simplicity we takej i5xi ; jn1150; h i50 e hn1151. With
this choice the condition~27! is readily satisfied. The equations~24!–~26! constitute a set ofn
partial differential equations~25! plus a constraint equation~26! for n(n11)/2 independent func-
tions V ik . Except forn51, the number of unknown functions is greater than@or equal to (n
52)# the number of equations. Then, out of the set of functionsV ik we pick n functions
V1k(k>2) andV r 8n to be regarded as the unknown.~Ther 8 index has the following meaning. W
assume, for the sake of the argument, that we are using a coordinate system in whichg11Þ0 and
g1k50, k52, . . . ,n. Hence, there exists at least an indexr 8.1 such thatgr 8nÞ0, sinceugiku
Þ0.! The next step is to write~25! in a suitable form for application of the Cauchy–Kowalews
theorem~first-order derivative version! to ensure the existence of the solution. For the sake
brevity we shall omit the detailed proof and refer the reader to Refs. 18 and 24 where a s
procedure is carried out. Then it can be shown that after solving~25! for V1k (k>2) andV r 8n we
obtain

]V r 8n

]x1 5
1

gr 8n~d r 8n22! F2 grs

r ,s.1
V1s,r12grs V rs,1

1,r ,s
r ,sÞr 8,n

1grr V rr ,1
r .1
rÞr 8

1gr 8r 8V r 8r 8,1~12d r 8n!

2 grs

r ,s.1S V tr
t<r

Gs1
t 1V rt

r ,t
Gs1

t 2V11Gsr
1 2V1t

t,1
Gsr

t D1
1

f
S1y~xi !G , ~29!

where no sum overr 8 is implied, and

]V1k

]x1 5g11F2 grs

r ,s.1S Vsk,r
s<k

1Vks,r
k,s

22V rs,k
r ,s D2g11V11,k2grr V rr ,k

r .1

2grsS V tr
t<r

Gsk
t 1V rt

r ,t
Gsk

t 2V tk
t<k

Gsr
t 2Vkt

k,t
Gsr

t D1
1

f
Sky~xi !G , k>2, ~30!

whereV11 must be substituted by
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V115
1

2g11 grs

r ,s.1S V rs
r<s

1Vsr
s,r D F2g11 grs

r ,s.1
V1rV1s2grsgtu

r ,s,t,u.1 F S V rs
r<s

1Vsr
s,r D S V tu

t<u
1Vut

u,t D2 S V ru
r<u

1Vur
u,r D

3S Qst
s<t

1V ts
t,s D G2«S R2

«

f2 Syy~xi !1gjmSjm~xi ! D G . ~31!

Finally, if we choose the functionsV ik @ i<k,i .1,(i ,k)Þ(r 8,n)#, fÞ0 as being analytic a
the origin, and sinceSmn(xi) are also analytic, then in view of the Cauchy–Kowalewski theor
the system of equations~29! and ~30! admits a solution that is analytic at the origin. Therefo
given arbitrary analytic functionsgik(x1, . . . ,xn) the existence of the functionsV ik(x1, . . . ,xn)
3( i ,k51,...,n), ja(x1,...,xn), ha(x1,...,xn) which satisfy~24!–~27! is ensured, so Theorem
applies.

It should be mentioned that in the case whereSmn50, Eq.~8! holds for any functionsf̄ a(xb);
hence all the results derived above apply when the space (M̃0

n11 ,g̃0) has a vanishing Ricci tenso
Therefore, we can state the following theorem:

Theorem 2: Let Mn be an n-dimensional semi-Riemannian manifold with metric given b

ds25gikdxidxk,

in a coordinate system$xi% of Mn. Let pPMn, have coordinates xp
15¯5xp

n50. Consider an

(n11)-dimensional semi-Riemannian space(M̃0
n11 ,g̃0) whose Ricci tensor is either nondege

erate or null. If gik are analytic functions at0PRn, then (Mn,g) has a local isometric and
analytic embedding (at the point p! in an (n11)-dimensional space which is Ricci equivalent

(M̃0
n11 ,g̃0).
Therefore, we conclude that if the space (M̃0

n11 ,g̃0) is a solution of the Einstein equations fo
some source, then Theorem 2 guarantees that there exists a space which satisfies the
Einstein equations up to a coordinate transformation@see Eq.~1!#, in which the space–time
(Mn,g) can be embedded.

III. A SIMPLE APPLICATION OF THEOREM 2

Up to this point we have considered the Ricci tensor only through its covariant compo
R̃ab . However, it is not difficult to realize that all the previous results we have obtained are
valid if the mixedR̃b

a or contravariant componentsR̃ab are considered instead.
In what follows we illustrate Theorem 2 in its Ricci tensor mixed-components version.
Consider the five-dimensional semi-Riemannian space (M̃0

5 ,g̃0) with a metric given by

5ds25~y11!4/5~2dt21dx21dy21dz2!1 24
25 «dy2. ~32!

If we calculate the mixed components of the RicciSn
m tensor for this metric we obtain

Sn
m5diagS 1

4
,
1

4
,
1

4
,
1

4
,21D «

~y11!2 . ~33!

We can view~32! as a five-dimensional analog of the Friedmann–Robertson–Walker co
logical metric for radiation, with an energy density given byr(y)52 «/(y11)2 ~as measured by
observers]y!.

Consider now a four-dimensional space (M4,g) with a vanishing Ricci tensor, i.e., a vacuu
solution of the Einstein field equations. Let us consider the question of embedding (M4,g) into the
collectionMg̃0

5 of five-dimensional spaces that are Ricci equivalent to (M̃0
5 ,g̃0). In order to work

with a mixed Ricci tensor we redefine the Ricci-equivalence property by the equation
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R̃n
m5

] f̄ m

]xa

]xb

] f̄ v
Sb

a . ~34!

To find the embedding we begin with the ansatz

ḡik~x1, . . . ,x4,y!5u~y!gik~x1,...,x4!, ~35!

f̄~x1, . . . ,x4,y!51, ~36!

f̄ a~x1, . . . ,x4,y!5xa, ~37!

wheregik is the metric of (M4,g) andu(y) is a function such thatu(0)51.
From Lemma 1 we can show that~34! is equivalent to the ordinary differential equation

u85
4

5

u

~y11!
. ~38!

Therefore, after integrating~38! we conclude that (M4,g) has a local embedding in the spa

5ds25~y11!4/5~gikdxidxk!1 24
25 «dy2, ~39!

whose Ricci tensor is the same asSn
m , given by~33!. Finally, it is worth mentioning that although

the spaces~32! and ~39! are Ricci equivalent they are not isometric. This can simply be veri
since the Weyl tensorWmnlr calculated from~32! vanishes while~39! may haveWmnlrÞ0 for
somegik ~choose, for example,gikdxidxk to be the line element of Schwarzschild space–tim!.

IV. FINAL COMMENTS

The restriction of the Ricci tensor being nondegenerate, as required by Theorem 2, ce
imposes a limitation on the set of possible sources of the embedding space. For examp
would have to leave out of consideration solutions of the Einstein equations such as cosmo
models sourced by dust-type perfect fluid. We feel that although a great number of solutio
physical interest have nondegenerate Ricci tensor, e.g., Friedman–Robertson–Walker
sourced by incoherent radiating perfect fluids, it seems indisputable that a theorem in whi
condition of nondegeneracy is relaxed would be most welcome. We are currently investi
whether this limitation can be overcome by taking into account the divergenceless conditio

0¹̃a~ g̃0
agSmn2 1

2 db
ag̃0

glSmn!50, ~40!

where0¹̃a denotes the covariant derivative compatible with the metricg̃0 .
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APPENDIX: CAUCHY–KOWALEWSKI THEOREM

Theorem „Cauchy–Kowalewski…: Let us consider the set of partial differential equations

]2uA

]~yn11!2 5FAS ya,uB,
]uB

]ya ,
]2uB

]ya]yi ,D , A51, . . . ,m, ~41!
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where u1,...,um are m unknown functions of the n11 variables y1, . . . ,yn,yn11, a51, . . . ,n
11, i 51,...,n, B51, . . . ,m. Also, let v1, . . . ,vm,w1, . . . ,wm, functions of the variables
y1, . . . ,yn, be analytic at0PRn. If the functions FA are analytic with respect to each of the
arguments around the values evaluated at the point y15¯5yn50, then there exists a uniqu
solution of Eqs. (41) which is analytic at0PRn11 and that satisfies the initial condition

uA~y1, . . . ,yn,0!5vA~y1, . . . ,yn!, ~42!

]uA

]yn11 ~y1, . . . ,yn,0!5wA~y1, . . . ,yn!, A51, . . . ,m. ~43!
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New Liouville integrable noncanonical Hamiltonian
systems from the AKNS spectral problem

Maciej Błaszaka)

Institute of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland

Wen-Xiu Mab)

Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700

~Received 6 March 2001; accepted for publication 14 March 2002!

Liouville integrable noncanonical Hamiltonian systems with variable coefficient
symplectic forms are generated from the AKNS 333 matrix Lax pairs by binary
symmetry constraints of the AKNS hierarchy. These integrable systems provide
new integrable factorization for every AKNS system in the hierarchy. ©2002
American Institute of Physics.@DOI: 10.1063/1.1478802#

I. INTRODUCTION

Symmetry constraints of soliton systems give us a systematic method of constructing
ville integrable finite-dimensional Hamiltonian systems, as well as allow us to find an impo
class of solutions of related field systems. Moreover, most of the examples constructed so~for
example, see Refs. 1–20!, both through mono nonlinearization1 and through binary
nonlinearization13 of spectral problems of soliton systems, written down in natural coordina
i.e., eigenfunctions of spectral problems, are Hamiltonian~or multi-Hamiltonian5,7–12! systems
with constant coefficient symplectic forms. A natural question arises whether there are
symmetry constraints which nonlinearize spectral problems of soliton systems into Hamilt
systems with variable coefficient symplectic forms.

In this article we give a positive answer on the basis of considering the symmetry cons
of the AKNS 232 matrix spectral problem as an illustrative example. The appropriate Po
structure will be derived by the Dirac constraint method applied to the Poisson structure of b
constrained AKNS 333 matrix spectral problem.18 Nevertheless, the method suggests the e
tence of Hamiltonian systems with variable coefficient symplectic forms by binary symm
constraints for other spectral problems like multicomponent KdV or Kaup–Newell ones.

The article is organized as follows. In Sec. II we present a concept of factorization of a
soliton system into a pair of Hamiltonian systems with constant coefficient symplectic fo
derived through the so-called binary symmetry constraints.13,21 Then, in Sec. III we illustrate the
method by the example of binary symmetry constraints of the AKNS systems in the cases
232 matrix spectral problem and the 333 matrix spectral problem. In each case we obtain
respective factorization of every AKNS field system into a pair of finite-dimensional Liouv
integrable Hamiltonian systems with constant coefficient symplectic forms. Finally, in Sec. I
present a new factorization of the AKNS systems into a pair of finite-dimensional Liou
integrable Hamiltonian systems with variable coefficient symplectic forms. This new cla
factorizations will be derived by using the Dirac constraint method applied to the binary symm
constraints of the AKNS 333 matrix spectral problem.

II. BASIC FORMULATION OF BINARY SYMMETRY CONSTRAINTS

Let B denote the differential algebra of differential functionsu5u(x,t) and we write

Ṽ r5V r
^ C@l,l21#, V r5$~Pi j !r 3r uPi j PB%.

a!Electronic mail: blaszakm@main.amu.edu.pl
b!Electronic mail: mawx@math.usf.edu
31070022-2488/2002/43(6)/3107/17/$19.00 © 2002 American Institute of Physics
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A typical soliton system is related to a particular spectral problem

fx5Uf5U~u,l!f, UPṼ r , ~1!

and its adjoint representation equation

Vx5@U,V#, VPṼ r . ~2!

For an infinite set of Lax pairs

fx5Uf, f tn
5V(n)f, V(n)5~lnV!11Dn , n>1, ~3!

where plus denotes the choice of the non-negative power ofl and Dn is some additional term
which depends on a particular system under consideration, the compatibility conditions, i.
so-called zero-curvature equations, are equivalent to an infinite hierarchy of nonlinear
differential equations~PDEs! in the evolutionary form under the condition thatl tn

50:

Utn
2Vx

(n)1@U,V(n)#50⇔utn
5K~u,ux , . . . !5K@u#, n>1. ~4!

Moreover, the property

Vtn
(m)2Vtm

(n)1@V(m),V(n)#50, m,n>1, ~5!

means22 that all vector fields do commute in pairs,@Km ,Kn#50.
In fact, there is another natural set of Lax pairs related to the adjoint spectral problem

cx5U* c52UTc, c tn
5V* (n)c52~V(n)!Tc, n>1, ~6!

whereT means the transpose of matrices. Obviously we have

Utn
2Vx

(n)1@U,V(n)#50⇔Utn
* 2Vx*

(n)1@U* ,V* (n)#50. ~7!

There exists an additional object being very important in our theory, i.e., so-called recu
operatorF. This second rank tensor, generally of integro-differential form, can be derived dir
from the Lax representation~3! and~4!, and has such a property that an action on one symm
generatorKi produces another oneKi 11 : Ki 115FKi . So, the infinite hierarchy of PDEs~4! can
be generated recursively:utn

5FnK0 . In generic cases, i.e., before different type of reductions,Kn

are multi-Hamiltonian vector fields and the adjoint operatorF* produces a hierarchy of close
one-forms being differentials of conserved functionals~see, for example, Ref. 12!.

It is well known that eigenfunctions of the recursion operator~or its adjoint! are closely
related to particular solutions of systems of equations from the considered chain of PDEs.
other hand, each eigenfunction ofF(F* ) is expressible through the respective components
eigenfunctionsf, c of isospectral problem~1! and its adjoint~6!. The idea of symmetry con
straints means the restriction of thekth symmetry~respectively,kth conserved one-form! to a
finite number of eigenfunctions ofF ~respectively,F* ! and then to express each component
chosen eigenfunctions by related components off and c. This last step for binary symmetr
constraints is carried out according to the following.

Lemma 1:18 Let U(u,l) be a square matrix of order r depending on u,ux , . . . and a param-
eter l. Suppose thatf5(f1 ,f2 , . . . ,f r)

T, c5(c1 ,c2 , . . . ,c r)
T satisfy the spectral problem

and the adjoint spectral problem

fx5U~u,l!f, cx52UT~u,l!c,

and set the matrix V̄5fcT5(fkc l) r 3r . Then
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(i) the variational derivative of the spectral parameterl with respect to the potential u can b
expressed, up to a normalized constant, by

dl

du
5tr ~V̄]U/]u!, ~8!

(ii) the matrix V̄ is a solution of the adjoint representation equation Vx5@U,V#, i.e., V̄x

5@U,V̄#.
Restriction ofK0 , i.e., the simplest symmetry from the hierarchy, to a finite sum of eig

functions of the recursion operator allows us to expressu through these eigenfunctions. Le
ũ(f,c) denote such a restricted potentialu. IntroducingN distinct eigenvaluesl1 ,l2 , . . . ,lN ,
the nth Lax pair ~3! and its adjoint~6! become

f ix5U~ ũ,l i !f i , i 51, . . . ,N,
~9!

c ix52UT~ ũ,l i !c i , i 51, . . . ,N,

f i t n
5V(n)~ ũ,l i !f i , i 51, . . . ,N,

~10!
c i t n

52~V(n)!T~ ũ,l i !c i , i 51, . . . ,N.

The compatibility condition of~9! and ~10! is still the nth PDE systemũtn
5Kn@ ũ#, but now

systems~9! and ~10! turn into finite-dimensional Hamiltonian systems with constant coeffic
symplectic forms. Hence, such a procedure factorizes a given system of PDEs into two syst
ordinary differential equations~ODEs!. Solving simultaneously both systems of ODEs, we
immediately a solution of the related PDE.

III. BINARY SYMMETRY CONSTRAINTS OF THE AKNS SYSTEMS

In the following section we illustrate the factorization procedure by binary symmetry
straints on the example of the AKNS hierarchy. These results will be important for our fu
considerations, when we present a factorization procedure by a new type of binary sym
constraint which leads to noncanonical Hamiltonian systems with variable coefficient symp
forms.

A. The case of 2 Ã2 matrix spectral problem

Consider the AKNS 232 matrix spectral problem23

fx5Uf, U5U~u,l!5S 2l q

r l
D , f5S f1

f2
D , u5S q

r D . ~11!

Take

V5S a b

c 2aD 5(
i 50

` S ai bi

ci 2ai
D l2 i ~12!

and

f tn
5V(n)~u,l!f, V(n)5(

i 50

n S ai bi

ci 2ai
D ln2 i . ~13!

The adjoint representation equationVx5@U,V# gives
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a0521, b05c050, a150, b15q, c15r , a25 1
2 qr, . . . S ck11

bk11
D5F* S ck

bk
D ,

ak5]21~qck2rbk!, k51,2,. . . , ~14!

F* 5
1

2 S ]22r ]21q 2r ]21r

22q]21q 2]12q]21r D , ]5
]

]x
, ]]215]21]51.

The AKNS hierarchy associated with~11! and ~13! takes the form24

utn
5S q

r D
tn

5p~F* !nS r
qD5p

dH̃n

du
, n>0, ~15!

where

p5S 0 22

2 0 D , H̃n5E 2

n11
an12dx, S cn11

bn11
D5

dH̃n

du
, n>0.

For n52 we have

V(1)5S 2l q

r l
D[U, V(2)5S 2l21

1

2
qr ql2

1

2
qx

rl1
1

2
r x l22

1

2
qr
D , ~16!

and zero curvature conditions~7! give n52 AKNS systems~15!:

qt2
52 1

2 qxx1q2r ,

~17!

r t2
5 1

2 r xx2r 2q.

According to Lemma 1, we have13

dl

du
5S dl/dq

dl/dr D5tr F S f1c1 f1c2

f2c1 f2c2
D ]U~u,l!

]u G5S f2c1

f1c2
D , ~18!

which should be read componentwise. Moreover, one can verify that underfx5Uf, cx5
2UTc, we have

F* S f2c1

f1c2
D5lS f2c1

f1c2
D1I S f2c1

f1c2
D , I 5

1

2
f1c12

1

2
f2c2 , ~19!

whereI is an integral of motion offx5Uf, cx52UTc.
Binary symmetry constraints are determined by13,25

dHk

du
5S ck11

bk11
D5(

j 51

N
dl j

du
5S ^Q2 ,P1&

^Q1 ,P2&
D . ~20!

Hereafter we denote the inner product inRN by ^.,.& and

Qi5~f i1 , . . . ,f iN!T, Pi5~c i1 , . . . ,c iN!T, i 51,2. ~21!
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The simplest binary constraint fork50 gives

dH0

du
5S c1

b1
D5S ^Q2 ,P1&

^Q1 ,P2&
D5S r

qD . ~22!

Under constraint~22!, for arbitraryn, and forN distinct eigenvaluesl1 , . . . ,lN , thenth Lax pair
~9! and its adjoint~10!,

S f1 j

f2 j
D

x

5U~ ũ,l j !S f1 j

f2 j
D , j 51, . . . ,N,

~23!

S c1 j

c2 j
D

x

52UT~ ũ,l j !S c1 j

c2 j
D , j 51, . . . ,N,

S f1 j

f2 j
D

tn

5V(n)~ ũ,l j !S f1 j

f2 j
D , j 51, . . . ,N,

~24!

S c1 j

c2 j
D

tn

52~V(n)!T~ ũ,l j !S c1 j

c2 j
D , j 51, . . . ,N,

become two finite-dimensional Hamiltonian systems with constant coefficient symplectic f
with evolution parameterst15x andtn , respectively. 2N pairs of canonical coordinates are give
by (f1 j ,c1 j ) j 51

N , (f2 j ,c2 j ) j 51
N . For x-evolution we have

Q1x5
]H1

]P1
, Q2x5

]H1

]P2
, P1x52

]H1

]Q1
, P2x52

]H1

]Q2
, x5t1 ,

~25!
H15^AP2 ,Q2&2^AP1 ,Q1&1^P2 ,Q1&^P1 ,Q2&,

and for t2-evolution

Q1t2
5

]H2

]P1
, Q2t2

5
]H2

]P2
, P1t2

52
]H2

]Q1
, P2t2

52
]H2

]Q2
,

~26!

H25^A2P2 ,Q2&2^A2P1 ,Q1&1^P2 ,Q1&^AP1 ,Q2&1^AP2 ,Q1&^P1 ,Q2&2 1
2 ~^P2 ,Q2&

2^P1 ,Q1&!^P2 ,Q1&^P1 ,Q2&.

Hence,t2-AKNS PDE ~17! is factorized by two ODE systems~25! and~26!. For N51 one finds

f1x52lf11f1f2c2 ,

f2x5lf21f1f2c1 ,
~27!

c1x5lc12f2c1c2 ,

c2x52lc22f1c1c2 ,

f1t2
52l2f112lf1f2c21f1

2f2c1c22 1
2 f1f2

2c2
2 ,

f2t2
5l2f212lf1f2c12f1f2

2c1c21 1
2 f1

2f2c1
2 ,
~28!
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c1t2
5l2c122lf2c1c22f1f2c1

2c21 1
2 f2

2c1c2
2 ,

c2t2
52l2c222lf1c1c21f1f2c1c2

22 1
2 f1

2c1
2c2 ,

and it is easy to verify that for any solution (f1 ,f2 ,c1 ,c2) of two ODE systems~27! and ~28!
q̃5f1c2 , r̃ 5f2c1 is a solution of the PDE system

q̃t2
52 1

2q̃xx1q̃2r̃ ,

~29!

r̃ t2
5 1

2r̃ xx2 r̃ 2q̃.

Both systems~25! and ~26! belong to the same family of Liouville integrable systems.
As shown in Ref. 13, there is a natural set of integrals of motion generated by the rela

Fx5S 1

2
trV2D

x

5
d

dx
~a21bc!50, ~30!

i.e., F is a generating function of integrals of motion for~25!. After settingF5(n>0Fnl2n, we
obtain the following expressions:

F1522a15^P2 ,Q2&2^P1 ,Q1&,
~31!

Fn5 (
i 51

n21

~aian2 i1bicn2 i !22an

5^An21P2 ,Q2&2^An21P1 ,Q1&

1 (
i 51

n21 F1

4
~^Ai 21P1 ,Q1&2^Ai 21P2 ,Q2&!~^An2 i 21P1 ,Q1&

2^An2 i 21P2 ,Q2&!1^Ai 21P2 ,Q1&^A
n2 i 21P1 ,Q2&G .

Integrals of motion~31! are closely related to the zero boundary condition imposed onf andc:
limuxu→` f i5 limuxu→` c i50, i 51,2. Actually, one can then verify that

F* S f2c1

f1c2
D5lS f2c1

f1c2
D , ~32!

and under the constraint~22! we have

S cn11

bn11
D5~F* !nS c1

b1
D5S ^AnQ2 ,P1&

^AnQ1 ,P2&
D , ~33!

whereA5diag(l1, . . . ,lN), and thus

an115]21~qcn112rbn11!5 1
2 ~^AnP1 ,Q1&2^AnP2 ,Q2&!. ~34!

All Hamiltonian functionsHn are expressible through theFk ones13

Hn5 (
m50

n
dm

m11 (
i 11 . . . 1 i m115n11

Fi 1
¯Fi m11

, i 1 , . . . ,i m11>1, n>0, ~35!
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where constantsdm are defined by

d051, d152
1

2
, d25

3

8
, dm52dm212

1

2 (
s51

m22

dsdm2s212
1

2 (
s51

m21

dsdm2s , m>3.

~36!

For exampleH15F22 1
4F1

2, H25F32 1
2F1F21 1

8F1
3 , . . . . Notice thatI 52 1

2F1 . The involutivity
and functional independence of one of two sets$Fn%n51

N , $Hn%n51
N results in the same propertie

of another one. Moreover, there exists an additional set ofN integrals of motion

f k5f1kc1k1f2kc2k , k51, . . . ,N. ~37!

The set of 2N functions (f k ,Hk)k51
N is functionally independent and all functions are

involution,13 and hence all systems~23! and ~24! are Liouville integrable. Moreover, as demo
strated in Refs. 26–28, they are also separable, so again integrable by quadratures, and g
to explicit solutions to the related PDE systems.

B. The case of 3 Ã3 matrix spectral problem

As was demonstrated in Ref. 18, the AKNS hierarchy can also be reconstructed fro
following 333 matrix spectral problem:

f̃x5S f̃1

f̃2

f̃3

D
x

5U~ul!S f̃1

f̃2

f̃3

D 5S 22l &q 0

&r 0 &q

0 &r 2l
D S f̃1

f̃2

f̃3

D . ~38!

The standard procedure with

V5S 22a &b 0

&c 0 &b

0 &c 2a
D 5(

i 50

` S 22ai &bi 0

&ci 0 &bi

0 &ci 2ai

D l2 i ~39!

generates again the hierarchy~14! and ~15!, but binary symmetry constraints lead to anoth
factorization, i.e., another Liouville integrable Hamiltonian system with constant coefficient
plectic forms, and, as a consequence, to a new class of solutions of the underlying AKNS sy

Let us briefly sketch the results of Ref. 18. Following Lemma 1, for the zero boun
conditions imposed onf̃ and c̃ functions, we have the variational derivative of the spec
parameter for the spectral problem~38! and its adjoint given by

dl

dq
5&~f̃2c̃11f̃3c̃2!,

dl

dr
5&~f̃1c̃21f̃2c̃3!. ~40!

The simplest binary constraint~20! with k50 takes the form

S c1

b1
D5&S ^P̃1 ,Q̃2&1^P̃2 ,Q̃3&

^ P̃2 ,Q̃1&1^P̃3 ,Q̃2&
D 5S r̃

q̃D , ~41!

and, hence, using~38!

F* S&~f̃2c̃11f̃3c̃2!

&~f̃1c̃21f̃2c̃3!
D 5lS&~f̃2c̃11f̃3c̃2!

&~f̃1c̃21f̃2c̃3!
D 1I S&~f̃2c̃11f̃3c̃2!

&~f̃1c̃21f̃2c̃3!
D , ~42!

I 5f̃1c̃12f̃3c̃3 , where again̂ .,.& denotes the standard inner product ofRN and
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S Q̃i

P̃i
D 5S ~f̃ i1 , . . . ,f̃ iN!T

~ c̃ i1 , . . . ,c̃ iN!T D , i 51,2,3. ~43!

The substitution of~41! and ~38! into the corresponding Lax equations~9! and ~10! yields a
hierarchy of finite-dimensional Hamiltonian systems with constant coefficient symplectic f
for n>1:

S f̃1 j

f̃2 j

f̃3 j

D
tn

5V(n)~ ũ,l j !S f̃1 j

f̃2 j

f̃3 j

D , j 51, . . . ,N,

~44!

S c̃1 j

c̃2 j

c̃3 j

D
tn

52~V(n)!T~ ũ,l j !S c̃1 j

c̃2 j

c̃3 j

D , j 51, . . . ,N.

For example, fort15x,

H̃1522~^AP̃1 ,Q̃1&2^AP̃3 ,Q̃3&!12~^P̃1 ,Q̃2&1^P̃2 ,Q̃3&!~^P̃2 ,Q̃1&1^P̃3 ,Q̃2&!, ~45!

and for t2

H2522~^A2P̃1 ,Q̃1&2^A2P̃3 ,Q̃3&!12~^AP̃1 ,Q̃2&1^AP̃2 ,Q̃3&!~^P̃2 ,Q̃1&1^P̃3 ,Q̃2&!

12~^P̃1 ,Q̃2&1^P̃2 ,Q̃3&!~^AP̃2 ,Q̃1&1^AP̃3 ,Q̃2&!12~^P̃1 ,Q̃2&1^P̃2 ,Q̃3&!~^P̃2 ,Q̃1&

1^P̃3 ,Q̃2&!~^P̃1 ,Q̃1&2^P̃3 ,Q̃3&!. ~46!

Hence,t2-AKNS PDE system~17! is again factorized by two ODE systems~44!–~46!.
For N51 one finds

f̃1x522lf̃112f̃2~f̃1c̃21f̃2c̃3!,

f̃2x52f̃3~f̃1c̃21f̃2c̃3!12f̃1~f̃2c̃11f̃3c̃2!,

f̃3x52lf̃312f̃2~f̃2c̃11f̃3c̃2!,
~47!

c̃1x52lc̃122c̃2~f̃2c̃11f̃3c̃2!,

c̃2x522c̃1~f̃1c̃21f̃2c̃3!22c̃3~f̃2c̃11f̃3c̃2!,

c̃3x522lc̃322c̃2~f̃1c̃21f̃2c̃3!,

and

f̃1t2
522l2f̃114l~f̃1c̃21f̃2c̃3!f̃212~f̃1c̃21f̃2c̃3!~f̃1c̃12f̃3c̃3!f̃2

12~f̃2c̃11f̃3c̃2!~f̃1c̃21f̃2c̃3!f̃1 ,

f̃2t2
54l~f̃2c̃11f̃3c̃2!f̃114l~f̃1c̃21f̃2c̃3!f̃312~f̃1c̃21f̃2c̃3!~f̃1c̃12f̃3c̃3!f̃3

12~f̃2c̃11f̃3c̃2!~f̃1c̃12f̃3c̃3!f̃1 ,
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f̃3t2
52l2f̃314l~f̃2c̃11f̃3c̃2!f̃212~f̃2c̃11f̃3c̃2!~f̃1c̃12f̃3c̃3!f̃2

22~f̃2c̃11f̃3c̃2!~f̃1c̃21f̃2c̃3!f̃3 ,
~48!

c̃1t2
52l2c̃124l~f̃2c̃11f̃3c̃2!c̃222~f̃2c̃11f̃3c̃2!~f̃1c̃12f̃3c̃3!c̃2

22~f̃2c̃11f̃3c̃2!~f̃1c̃21f̃2c̃3!c̃1 ,

c̃2t2
524l~f̃2c̃11f̃3c̃2!c̃324l~f̃1c̃21f̃2c̃3!c̃122~f̃1c̃21f̃2c̃3!~f̃1c̃12f̃3c̃3!c̃1

22~f̃2c̃11f̃3c̃2!~f̃1c̃12f̃3c̃3!c̃3 ,

c̃3t2
522l2c̃324l~f̃1c̃21f̃2c̃3!c̃222~f̃1c̃21f̃2c̃3!~f̃1c̃12f̃3c̃3!c̃2

12~f̃2c̃11f̃3c̃2!~f̃1c̃21f̃2c̃3!c̃3 ,

and it is not difficult to verify that for an arbitrary solution (f̃1 ,f̃2 ,f̃3 ,c̃1 ,c̃2 ,c̃3) of two ODE
systems~47! and ~48!, q̃5&(f̃1c̃21f̃2c̃3), r̃ 5&(f̃2c̃11f̃3c̃2) is a solution of the PDE
system~29!. The integrals of motion~30!, expressed byQ̃,P̃ coordinates, are

F̃152~^P̃3 ,Q̃3&2^P̃1 ,Q̃1&!,
~49!

F̃n52~^An21P̃3 ,Q̃3&2^An21P̃1 ,Q̃1&!1 (
i 51

n21

@~^Ai 21P̃3 ,Q̃3&2^Ai 21P̃1 ,Q̃1&!~^An2 i 21P̃3 ,Q̃3&

2^An2 i 21P̃1 ,Q̃1&!12~^Ai 21P̃2 ,Q̃1&1^Ai 21P̃3 ,Q̃2&!~^An2 i 21P̃1 ,Q̃2&

1^An2 i 21P̃2 ,Q̃3&!#,

and againI 52 1
2F̃1 . Integrals~49! are related to the zero boundary condition imposed onf̃ and

c̃ which leads to the following relations:

F* S&~f̃2c̃11f̃3c̃2!

&~f̃1c̃21f̃2c̃3!
D 5lS&~f̃2c̃11f̃3c̃2!

&~f̃1c̃21f̃2c̃3!
D , ~50!

ai 115^Ai P̃1 ,Q̃1&2^Ai P̃3 ,Q̃3&, i>0,

bi 115&~^Ai P̃2 ,Q̃1&1^Ai P̃3 ,Q̃2&!, i>0, ~51!

ci 115&~^Ai P̃1 ,Q̃2&1^Ai P̃2 ,Q̃3&!, i>0.

Again all Hamiltonian functionsH̃n are expressible through theF̃k ones according to formula
~35! and ~36!. For example,H̃15F̃22 1

4F̃1
2, H̃25 1

4F̃32 1
2F̃1F̃21 1

8F̃1
3 , . . . . Moreover, there exists

an additional set ofN integrals of motion

f̃ k5f̃1kc̃1k1f̃2kc̃2k1f̃3kc̃3k , k51, . . . ,N. ~52!

As was shown in Ref. 18, the set of 3N functions (f̃ k)k51
N , (H̃k)k51

2N is functionally independen
and all functions are in involution, hence all systems~44! with n>1 are Liouville integrable.
Separability of these systems leads to a new class of solutions of the underlying PDEs.
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IV. NEW LIOUVILLE INTEGRABLE NONCANONICAL HAMILTONIAN SYSTEMS

The importance of factorization of a given PDE system into two integrable Hamiltonian O
systems makes the procedure of binary nonlinearization worth further investigation. A n
question arises, whether in the frames of the formalism presented one can find another fa
tion, different from those found till now. Of course one possibility is to search for a higher o
matrix Lax representation and stay inside a binary symmetry constraint yielding integrable H
tonian systems with constant coefficient symplectic forms. Another one is to go beyond s
symmetry constraint. Let us come back again to the AKNS 232 matrix Lax representation
According to Lemma 1, we found that (f2c1 ,f1c2)T is an AKNS symmetry constraint. On th
other hand, we also know thatf 5f1c11f2c2 is an integral of motionfx5Uf, cx52UTc,
i.e., f x50. So, it is not difficult to verify that

dl

du
5S dl/dq

dl/dr D5S 2f2c1f
2f1c2f D5S 2f2c1~f1c11f2c2!

2f1c2~f1c11f2c2! D ~53!

is again an admissible symmetry constraint and for the zero boundary condition case it is a
eigenfunction ofF* with an eigenvaluel. The constant 2 was chosen for further convenien
Let us factorize the AKNS hierarchy with respect to the constraint~53!. Denoting

XY5~x1y1 , . . . ,xNyN!T, if X5~x1 , . . . ,xN!T, Y5~y1 , . . . ,yN!T, ~54!

the simplest symmetry constraint takes the form

dH0

du
5S r

qD5S c1

b1
D5(

j 51

N
dl j

du
5S 2~^Q2

2 ,P1P2&1^P1
2 ,Q1Q2&!

2~^Q1
2 ,P1P2&1^P2

2 ,Q1Q2&! D . ~55!

Under the substitution~55!, for N distinct eigenvaluesl1 , . . . ,lN , the t15x spectral problem
~11! and its adjoint take the form of finite-dimensional dynamical system~23!, which is equivalent
to the following one

f1i ,x52l if1i12(
j 51

N

@f1 jc2 j~f1 jc1 j1f2 jc2 j !#f2i , i 51, . . . ,N,

f2i ,x5l if2i12(
j 51

N

@f2 jc1 j~f1 jc1 j1f2 jc2 j !#f1i , i 51, . . . ,N,

~56!

c1i ,x5l ic1i22(
j 51

N

@f2 jc1 j~f1 jc1 j1f2 jc2 j !#c2i , i 51, . . . ,N,

c2i ,x52l ic2i22(
j 51

N

@f1 jc2 j~f1 jc1 j1f2 jc2 j !#c1i , i 51, . . . ,N.

Contrary to the cases from the previous section, this system has no Hamiltonian structur
constant coefficient symplectic forms.29 Actually, the system~56! was considered recently in Re
29, where the authors confirmed the nonexistence of some class of constant coefficient P
structures. As we will show later, this considered system has a coordinate dependent P
structure. In fact, such a Poisson structure can be attached to any finite-dimensional dyn
system~24! constructed fromtn spectral problem~13! and its adjoint, under the constraint~55!.

For N51,tn5t15x and tn5t2 , one finds respectively
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f1x52lf112f1f2c2~f1c11f2c2!,

f2x5lf212f1f2c1~f1c11f2c2! ,
~57!

c1x5lc122f2c1c2~f1c11f2c2!,

c2x52lc222f1c1c2~f1c11f2c2!,

and

f1t52l2f114lf1f2c2~f1c11f2c2!14f1
2f2c1c2~f1c11f2c2!2

22f1f2
2c2

2~f1c11f2c2!2,

f2t5l2f214lf1f2c1~f1c11f2c2!24f1f2
2c1c2~f1c11f2c2!2

12f1
2f2c1

2~f1c11f2c2!2,
~58!

c1t5l2c124lf2c1c2~f1c11f2c2!24f1f2c1
2c2~f1c11f2c2!2

12f2
2c1c2

2~f1c11f2c2!2,

c2t52l2c224lf1c1c2~f1c11f2c2!14f1f2c1c2
2~f1c11f2c2!2

22f1
2c1

2c2~f1c11f2c2!2.

Again one can verify that when (f1 ,f2 ,c1 ,c2) is a solution of two ODE systems~57! and~58!,
then

q̃5f1c2~f1c11f2c2!, r̃ 5f2c1~f1c11f2c2!

is a solution of a related PDE system~29!. Moreover, one can verify that with the constraint~55!
andx-evolution ~57!

F* S 2f2c1~f1c11f2c2!

2f1c2~f1c11f2c2! D5lS 2f2c1~f1c11f2c2!

2f1c2~f1c11f2c2! D1I S 2f2c1~f1c11f2c2!

2f1c2~f1c11f2c2! D ,

I 5f1
2c1

22f2
2c2

2 .

For the zero boundary condition we have

S cn11

bn11
D5~F* !nS c1

b1
D5S 2~^AnQ2

2 ,P1P2&1^AnP1
2 ,Q1Q2&!

2~^AnQ1
2 ,P1P2&1^AnP2

2 ,Q1Q2&! D , ~59!

and thus

an115]21~qcn112rbn11!5~^AnP1
2 ,Q1

2&2^AnP2
2 ,Q2

2&!. ~60!

Formula~30! still guarantees the existence of integrals of motion for the system~56! which
now, according to relations~59! and ~60!, takes the form
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F̄1522a1522~^P1
2 ,Q1

2&2^P2
2 ,Q2

2&!,
~61!

F̄n5 (
i 51

n21

~aian2 i1bicn2 i !22an522~^An21P1
2 ,Q1

2&2^An21P2
2 ,Q2

2&!

1 (
i 51

n21

@~^Ai 21P1
2 ,Q1

2&2^Ai 21P2
2 ,Q2

2&!~^An2 i 21P1
2 ,Q1

2&2^An2 i 21P2
2 ,Q2

2&!

14~^Ai 21Q1
2 ,P1P2&1^Ai 21P2

2 ,Q1Q2&!~^An2 i 21Q2
2 ,P1P2&1^An2 i 21P1

2 ,Q1Q2&!#.

Notice that againI 52 1
2F̄1 and one can construct the alternative set of integrals of motion$H̄n%

according to formulas~35! and ~36!.
The question is how to relate these integrals of motion to an appropriate Hamiltonian fo

lation for Eqs.~56!. The key observation is that the two constraints

f̃2
222f̃1f̃350, c̃2

222c̃1c̃350 ~62!

imposed on the eigenfunction components of the 333 matrix spectral problem~38! relate it to the
232 matrix spectral problem. Actually, the relation between (f̃1 ,f̃2 ,f̃3), (c̃1 ,c̃2 ,c̃3) and
(f1 ,f2), (c1 ,c2) takes the form29

~f̃1 ,f̃2 ,f̃3!5~f1
2 ,&f1f2 ,f2

2!, ~ c̃1 ,c̃2 ,c̃3!5~c1
2 ,&c1c2 ,c2

2!. ~63!

One can immediately notice that under constraints~63! binary symmetry constraint~40! trans-
forms into the one~53! yielding integrable Hamiltonian systems with variable coefficient sy
plectic forms. It means that the dynamical system~56! can be reconstructed by the Dirac constra
procedure applied to the Hamiltonian system~25!.

Actually, let us impose on the system~44!, ~45! 2N constraints of the following form:

w i5f̃2i
2 22f̃1if̃3i , i 51, . . . ,N,

~64!

wN1 i5c̃2i
2 22c̃1i c̃3i , i 51, . . . ,N.

The general theory due to Dirac assures that the modified Poisson structure is defined by

$A,B%D5$A,B%2$A,w i%Gi j
21$w j ,B%, Gi j 5$w i ,w j%, detGÞ0, G5~Gi j !. ~65!

In the case considered we have

wN1 iªw̄ i , i 51, . . . ,N, G5S G11 G12

2~G12!T G22D ,

~G11! i j 5$w i ,w j%50, ~G22! i j 5$w̄ i ,w̄ j%50, ~66!

~G12! i j 5$w i ,w̄ j%5d i j ~f̃1 j c̃1 j1f̃2 j c̃2 j1f̃3 j c̃3 j !,

so,

$A,B%D5$A,B%1(
i 51

N
$A,w i%$B,w̄ i%2$A,w̄ i%$B,w i%

~f̃1i c̃1i1f̃2i c̃2i1f̃3i c̃3i !
. ~67!
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The Poisson bracket$.,.%D is degenerated, contrary to the canonical one$.,.%, and has 2N Casimir
functions w i ,w̄ i , i 51, . . . ,N. Substituting forA,B the coordinatesf, c, one gets appropriate
matrix elements of the Dirac Poisson tensorD. All nonzero elements are as follows:

$f̃1i ,c̃1i%D5f̃1i c̃1i1f̃2i c̃2i , $f̃1i ,c̃2i%D5f̃2i c̃3i , $f̃1i ,c̃3i%D52f̃1i c̃3i ,

$f̃2i ,c̃1i%D5f̃3i c̃2i , $f̃2i ,c̃2i%D5f̃1i c̃1i1f̃3i c̃3i , $f̃2i ,c̃3i%D5f̃1i c̃2i , ~68!

$f̃3i ,c̃1i%D52f̃3i c̃1i , $f̃3i ,c̃2i%D5f̃2i c̃1i , $f̃3i ,c̃3i%D5f̃2i c̃2i1f̃3i c̃3i .

Now, let us perform the following coordinate transformation:

f1i
2 5f̃1i ,

f2i
2 5f̃3i ,

c1i
2 5c̃1i ,

~69!

c2i
2 5c̃3i ,

c1i5w i~f̃ !5f̃2i
2 22f̃1if̃3i ,

c2i5w̄ i~ c̃ !5c̃2i
2 22c̃1i c̃3i , i 51, . . . ,N.

Then, on the symplectic leafc1i5c2i50, i 51, . . . ,N, parametrized by a set of coordinate
(f1i ,f2i ,c1i ,c2i) i 51

N , we get the following nonzero elements of a nondegenerated Poisson
sor p̄:

$f1i ,c1i%5
f1ic1i12f2ic2i

4~f1ic1i1f2ic2i !
2 , $f1i ,c2i%5

2f1ic2i

4~f1ic1i1f2ic2i !
2 ,

~70!

$f2i ,c1i%5
2f2ic1i

4~f1ic1i1f2ic2i !
2 , $f2i ,c2i%5

2f1ic1i1f2ic2i

4~f1ic1i1f2ic2i !
2 .

Moreover, the transformation~69! with c1i5c2i50 relates

f̃ k5f̃1kc̃1k1f̃2kc̃2k1f̃3kc̃3k→ f̄ k5~f1kc1k1f2kck!2, k51, . . . ,N, ~71!

F̃n~f̃,c̃ !~49!→F̄n~f,c!~61!, n>1

H̃n~f̃,c̃ !→H̄n~f,c!, n>1,

whereH̃n and H̄n are constructed according to recursion formulas~35! and ~36!. Hence, Hamil-
tonian function~45! reduces to the following one:

H̄1522~^AP1
2 ,Q1

2&2^AP2
2 ,Q2

2&!14~^P1P2 ,Q1
2&1^P2

2 ,Q1Q2&!~^P1P2 ,Q2
2&1^P1

2 ,Q1Q2&!

522(
i 51

N

l i~f1i
2 c1i

2 2f2i
2 c2i

2 !14 (
i , j 51

N

~f1i
2 c1ic2i1f1if2ic2i

2 !~f1 jf2 jc1 j
2 1f2 j

2 c1 jc2 j !,

~72!
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which is an appropriate Hamiltonian function of the system~56!. In the simplest case ofN51
~57!, the Hamiltonian function and the Poisson tensor are

H̄1522l~f1
2c1

22f2
2c2

2!14f1f2c1c2~f1c11f2c2!2,

and

p̄5
1

4~f1c11f2c2!2

3S 0 0 f1c112f2c2 2f1c2

0 0 2f2c1 2f1c11f2c2

2f1c122f2c2 f2c1 0 0

f1c2 22f1c12f2c2 0 0

D . ~73!

Theorem 1:The integrals of motion( f̄ k ,F̄n) and( f̄ k ,H̄n) are in involution with respect to the
Poisson bracket (70).

Proof: The relation$ f̄ i , f̄ j%50 is obvious asp̄ does not relate coordinates to differenti .
Noticing thatp̄¹ f̄ i5(0, . . . ,0,f1i ,f2i ,2c1i ,2c2i ,0, . . . ,0)T, one immediately gets

$F̄n , f̄ i%5
1

2
S ]F̄n

]f1i
f1i1

]F̄n

]f2i
f2i2

]F̄n

]c1i
c1i2

]F̄n

]c2i
c2i D 50, ~74!

which follows from the form ofF̄n ~61!. Therefore,$H̄n , f̄ i%50. According to Noether’s theorem
the relation$H̄n ,H̄m%50 is equivalent to commutativity of related vector fields

S A
f1i

f2i

A
c1i

c2i

A

D
tn

5V̄(n)~l1 , . . . ,lN ;ũ!S A
f1i

f2i

A
c1i

c2i

A

D ªK (n)~l;ũ!5p̄¹H̄n , ~75!

where V̄(n)(l1 , . . . ,lN ;ũ)5diag(V(n)(l1,ũ), . . . ,V* (n)(lN ,ũ)). After simple calculations one get
the following form of the commutator:

@K (n)~l;ũ!,K (m)~l;ũ!#5K (n)8 ~l;ũ!@K (m)~l;ũ!#2K (m)8 ~l;ũ!@K (n)~l;ũ!#

5~V̄tm
(n)2V̄tn

(m)1@V̄(n),V̄(m)# !S A
f1i

f2i

A
c1i

c2i

A

D , ~76!

where8 means a Gateaux derivative with respect to the coordinates (f1i , . . . ,c2N). The commu-
tator ~76! is equal to zero ifV̄tm

(n)2V̄tn
(m)1@V̄(n),V̄(m)#50. The last equality holds if

Vtm
(n)~l i ,ũ!2Vtn

(m)~l i ,ũ!1@V(n)~l i ,ũ!,V(m)~l i ,ũ!#50,
~77!
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Vtm
* (n)~l i ,ũ!2Vtn

* (m)~l i ,ũ!1@V* (n)~l i ,ũ!,V* (m)~l i ,ũ!#50,

for i 51, . . . ,N. As the relations~77! are true for arbitraryl andu, they are also true for particula
l5l i ,u5ũ(f,c). Finally, $H̄n ,H̄m%50 and thus$F̄n ,F̄m%50. The proof is finished.

Theorem 2:The functions f̄i , i 51, . . . ,N, and F̄n ,n51, . . . ,N, are functionally independen
over some region of R4N.

Proof: We use the method established in Ref. 20. LetP0 be a point ofR4N satisfying

c ik5«, k51, . . . ,N, i 51,2. ~78!

At P0 we have

] f̄ k

]f i j
52«2~f1 j1f2 j !f i j dk j ,

~79!

]F̄k

]f i j
524«2l j

k21f i j 1O~«4!, i 51,2, k, j 51, . . . ,N.

Then, at the pointP0 , the Jacobian of the functionsf̄ k , F̄k , k51, . . . ,N, with respect tof i j can
be calculated as follows

U ]~ f̄ 1 , . . . ,f̄ N ,F̄1 , . . . ,F̄N!

]~f11,f21, . . . ,f1N ,f2N!
U

524«4N

3U2
1

2
~f111f21! 0 0 . . . . . . 0

0 2
1

2
~f121f22! 0 . . . . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 2
1

2
~f1N1f2N!

f11 f21 . . . . . . f1N f2N

l1f11 l1f21 . . . . . . lNf1N lNf2N

. . . . . . . . . . . . . . . . . .

l1
N21f11 l1

N21f21 lN
N21f1N lN

N21f2N

U
1O~«4N12!524«4NS 2

1

2D N

)
k,l 51,k. l

N

~lk2l l !)
j 51

N

~f1 j
2 2f2 j

2 !1O~«4N12!. ~80!

In the evaluation of the determinant we first subtracted from the 2r 21 column the 2r one for r
51, . . . ,N. Hence we conclude that if thel1 , . . . ,lN are distinct, the above Jacobian is n
identically equal to zero and additionally is a polynomial function off i j , therefore, the functions
f̄ k , F̄k , k51, . . . ,N, are functionally independent at least over some dense open subset oR4N.
The proof is finished.

So, finally, we can summarize our results in the following way.
Theorem 3: The binary constrained spatial system (56) is a Liouville integrable Hamilton

system
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S Q1

Q2

P1

P2

D
x

5p̄¹H̄1 , ~81!

with a Poisson structure given by (70) and a Hamiltonian function

H̄1522~^AP1
2 ,Q1

2&2^AP2
2 ,Q2

2&!14~^P1P2 ,Q1
2&1^P2

2 ,Q1Q2&!~^P1P2 ,Q2
2&1^P1

2 ,Q1Q2&!

5F̄22
1

4
F̄1

2 . ~82!

Moreover, the system (81) has2N functionally independent and involutive integrals of motionī ,
i 51, . . . ,N, and F̄n , n51, . . . ,N, defined by (61) and (71).

Let us mention that all other binary constrained temporal systems

S f1 j

f2 j
D

tn

5V(n)~ ũ,l j !S f1 j

f2 j
D , j 51, . . . ,N,

~83!

S c1 j

c2 j
D

tn

52~V(n)!T~ ũ,l j !S c1 j

c2 j
D , j 51, . . . ,N,

form a family of Hamiltonian systems with the Poisson tensor~70! and the corresponding Hamil
tonian functionsH̄n expressible throughF̄m . For example,H̄25F̄32 1

2F̄1F̄21 1
8F̄1

3 .

V. CONCLUDING REMARKS

In this article we have established the Liouville integrability of a factorization of the AK
field systems of PDEs into pairs of systems of ODEs, presented in Ref. 29. In other words,
been shown that in a natural set of coordinates, i.e., eigenfunctions of a spectral proble
resulting binary constrained flows defined by~56! are Liouville integrable Hamiltonian system
with variable coefficient symplectic forms. The results also provide an amendment to the a
of the question posed in Ref. 29.

The method applied suggests the existence of similar factorizations for other soliton h
chies. However, in order to find explicit solutions of the AKNS field systems, a transform
from the set of eigenfunctions to the set of separated coordinates has to be found. This wo
progress and it will be prepared for a separate paper.
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Bruhat Poisson structure on CPn and integrable systems
Philip Fotha)

Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089
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In this note we present a simple formula for the Bruhat Poisson structure on com-
plex projective spaces in terms of the momentum coordinates. We also give a
simple description of a family of functions in involution on compact Hermitian
symmetric spaces obtained via the bi-Hamiltonian approach using the Bruhat Pois-
son structure and an invariant symplectic structure. We compute these functions
explicitly onCPn and relate them to the Gelfand–Tsetlin coordinates. We also show
how the Lenard scheme can be applied. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1477261#

I. INTRODUCTION

Let K be a compact real form of a complex semi-simple Lie groupG and letH,K be a
subgroup ofK defined byH5KùP, whereP is a parabolic subgroup ofG containing a Borel
subgroupB,G. The Bruhat Poisson structurep` on X5K/H is constructed from a classica
dynamical r -matrix and has its origin from quantum groups. It was first introduced
Lu–Weinstein1 and Soibelman,2 and has the property that its symplectic leaves are precisely
Bruhat cells inX. If T5KùB, a maximal torus ofK, thenp` is T-invariant. WhenX5CPn, we
use the momentum map coordinates (x1 , . . . ,xn) and the corresponding angular coordina
(f1 , . . . ,fn) to show thatp` is given by

p`5(
i 51

n

Q i∧]f i
,

where

Q i5~x11¯1xi21!]xi
1 (

j 5 i 11

n

xj]xj
.

Let vs ~respectively,ps) stand for aK-invariant symplectic form~respectively, its dual bi-
vector field! on X. WhenX is a Hermitian symmetric space, Khoroshkin, Radul, and Rubts3

proved that the two Poisson structures,p` andps form a Poisson pair, meaning that the Schou
bracket ofp` andps vanishes,@p` ,ps#50. In particular, any bi-vector field of the formap`

1bps , (a,b)PR2, is Poisson. In this situation, one can takea5b51 and introduce the fol-
lowing family $sk% of functions:

skª~~ps1p`!∧k,vs
∧k!,

obtained by the duality pairing of exterior powers ofv andp`1ps . If the ~real! dimension ofX
is equal to 2n, then we haven functions:s1 , . . . , sn , which may carry useful information abou
X. These functions are in involution with respect to either of the two Poisson structures an
related to the fundamental weights for the Lie algebrasl(n11,C). We show that onCPn the
functions that we have obtained are constant multiples of the elementary symmetric polyn

a!Electronic mail: foth@math.arizona.edu
31240022-2488/2002/43(6)/3124/9/$19.00 © 2002 American Institute of Physics
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in the Gelfand–Tsetlin variables studied by Guillemin and Sternberg.4 These variables define
completely integrable systems on coadjoint orbits of the unitary group. In a subsequent publ
we show that this statement extends to the complex Grassmannians as well as other He
symmetric spaces. In the last part of the paper we make explicit computations using the L
scheme.5

II. BRUHAT POISSON STRUCTURE ON CPn

We recall the Bruhat Poisson structure and its properties.1 Let K be a compact semi-simple Li
group with Lie algebrak, G a complexification ofK with Lie algebrag, andT,K a maximal torus
with Lie algebrat. The complexificationh of t is a Cartan ing. Let D be the set of all roots ofg
with respect toh. We chooseD1,D a subset of positive roots. Let^,& be the Killing form ofg
and letHa be the image ofaPD under the isomorphismh* →h which is defined bŷ ,&. For each
aPD1 choose a root vectorEa such that̂ Ea ,uEa&521, whereu is the complex conjugation on
g defined byk. ThenE2aª2uEa is a root vector for2a. Let Xa ,YaPk be given byXa5Ea

2E2a andYa5A21(Ea1E2a). We set:

L5 (
a.0

Xa∧YaPk∧k.

Let L l andL r be the left and right invariant bivector fields onK with their value at identity equa
to L. ThenpK5L l2L r becomes a Poisson structure onK, making it into a Poisson Lie group
Let H,K be a subgroup ofK given by the intersection ofK with a parabolic subgroup ofG
containing the Borel determined byD1. There is a unique Poisson structure onX5K/H, denoted
by p` such that the natural projection (K,pK)→(X,p`) is a Poisson map. The space (X,p`) is
a (K,pK)-homogeneous Poisson manifold, and the symplectic leaves ofp` on X are precisely the
Bruhat cells.

WhenK5SU(n11), an obvious choice ofH yieldsX5CPn, the complex projective space o
~complex! dimensionn. Let @Z0 :Z1 : ¯ :Zn# be a homogeneous coordinate system onX. We use
the standard Fubini-Study formv for the invariant symplectic formvs and the following descrip-
tion of p` obtained by Lu.6 First, we need Lu’s coordinates on the largest Bruhat cell, wh
Z0Þ0 and we letzi5Zi /Z0 :

yiª
zi

A11uzi 11u21¯1uznu2
, 1< i<n.

Lu’s coordinates are not holomorphic, but convenient for the Bruhat Poisson structure,
now assumes the following form:

p`5A21(
i 51

n

~11uyi u2!]yi
∧] ȳi

.

In order to be able to compute withv and p` , we need to move to the polar variablesr i ,f j

defined byzi5r ie
A21f i and eventually to the momentum map variablesxi ,f j , wherexi is defined

by

xi5
r i

2

11r 1
21¯r n

2 .

The functionsxi ’s are globally defined onCPn, and if one identifiesRn with t* , then these
functions define the momentum map associated with theT-action onCPn. One of the advantage
of using the coordinates$x1 , . . . ,xn% is that the Fubini–Study symplectic structure and the c
responding bi-vector field have the following simple form:
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v5(
i 51

n

dxi∧df i , ps5(
i 51

n

]xi
∧]f i

.

In fact, the simplest form for the Bruhat Poisson structure is also achieved in this coord
system.

Proposition 2.1: The Bruhat Poisson structurep` on CPn can be written in the coordinate
system(xj ,f i) as follows:

p`5(
i 51

n

Q i∧]f i
,

where

Q i5~x11¯1xi21!]xi
1 (

j 5 i 11

n

xj]xj
.

Proof: The proof of this statement is purely computational. One can introduce aux
variablesqi5 log(11uyiu2), and use these to write

p`52(
i 51

n

]qi
∧]f i

,

the action-angle form forp` . Eventually, one can establish the following relations:x151
2e2q1, and for j .1,

xj5e2(q11¯1qj 21)2e2(q11¯1qj ).

The rest is straightforward. h

Notice that if we take the sump`1ps , the 21 in the above-given formula will disappear

III. FAMILIES OF FUNCTIONS IN INVOLUTION

Multi-Hamiltonian structures are very important in the theory of integrable systems. Sta
with the fundamental works of Magri,5 they found many interesting and fundamental applicatio
as in Refs. 7–10, and references therein. We say that two Poisson structuresp0 andp1 form a
Poisson pairif their Schouten bracket equals zero:@p0 ,p1#50. This is equivalent to the condition
that for anya,bPR the bi-vector fieldap01bp1 is also Poisson. We refer to such fami
ap01bp1 as aPoisson pencil.

Let M be a manifold and letpb andps be two Poisson structures onM such that:

~1! The Poisson structureps is nondegenerate~so the subscripts stands for symplectic!.
~2! The Poisson structuresps andpb form a Poisson pair.

If dim( M )52n, then we can definen functionss1 , . . . , sn as follows:

s j5
pb

j ∧ps
n2 j

ps
n .

The operation of division by the top degree bi-vector field makes perfect sense, sinceps is
nondegenerate, and thus in any local coordinate system~x1 , . . . x2n! the 2n-vector fieldps

n looks
like

ps
n5h~x1 , . . . ,x2n!]x1

∧¯∧]x2n
,
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for a nonvanishing function~hx1 , . . . , x2n!. For an equivalent definition, which only differs by
constant multiple, one can use the symplectic formvs dual tops , then one can define

sk5~pb
∧k ,vs

∧k!,

where we use the duality pairing

G~M ,∧2kTM! ^ G~M ,∧2kT* M !→C`~M !.

It turns out that this family of functions has the following property.
Proposition 3.1: The family of functionss i defined previously are in involution with respect

either Poisson structure, pb or ps .
Proof: ~J.-H. Lu! Let Xj5 i ds j

pb and letYj5 i ds j
ps . Then we have:@Xj ,ps#52@Yj ,pb#,

@Xj ,pb#50, and@Yj ,ps#50. Consider the equalityskps
n5pb

k∧ps
n2k and computeLXl

of both
sides to arrive at the following identity:

n2k

k11
$sk11 ,s l%s52$sk ,s l%b1nsk$s1 ,s l%s ,

where the subscriptss and b indicate the Poisson structure with respect to which the Pois
bracket is taken. Finally, use the induction onl . h

Remark:The approach that we have followed here is intimately related to the Pois
Nijenhuis structures, which were studied by Magri and Morosi,11 Kosmann-Schwarzbach an
Magri,7 Vaisman,8 and others. The set of our functions$s j% can be expressed, polynomiall
through the traces of powers of the intertwining operator corresponding to the Nijenhuis te

Now let us takeM5X to be a coadjoint orbit ink* , which we assume to be a compa
Hermitian symmetric space. Letps5p be the Kirillov–Kostant–Souriau symplectic structure a
pb5p` the Bruhat Poisson structure, which is obtained via an identification ofX with K/(PùK)
as in Sec. I. Under this identification,p is K-invariant. The following was first proved in Ref. 3
and we offer a shorter proof due to Lu:

Proposition 3.2: If X is a Hermitian symmetric space as previously, then the Poisson s
turesps and p` form a Poisson pair.

Proof: If ( K,pK) is a connected Poisson–Lie group, and (X,pX) is a (K,pK) Poisson homo-
geneous space, then for anyYPk,

Lk(Y)pX5k~d~Y!!,

where k:k→G(TX) is the infinitesimal action map, extended tok:∧2k→G(∧2TX) and d:k
→∧2k is the cocycle definingpK . Indeed, by definition of the Poisson homogeneous space,

pX~kx!5k* pX~x!1x* pK~k!,

where

k:X→X, k~x!5k•x, and x:K→X, x~k!5k•x

are the action and the evaluation maps, respectively. SinceK acts by diffeomorphisms, we ca
define

k* ~pX!~x!ªk* pX~k21~x!!.

Then we see that

k* ~pX!~x!5k* ~k
*
21pX~x!1x* pK~k21!!5pX~x!1x* ~ l k* pK~k21!!,
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wherel k is the left translation onK. Now we setk5exp(tY) and compute d/dt ut50 of both sides
to conclude that

Lk(Y)pX~x!5k~d~Y!!~x!,

where

d~Y!5
d

dt ut50l exp(tY)pK~exp~2tY!!P∧2k

is the Lie algebra cocycle which determinespK .
Now sinceps is K-invariant, we can compute that for anyYPk:

Lk(Y)@p` ,ps#5@Lk(Y)p` ,ps#1@p` ,Lk(Y)ps#5@k~d~Y!!,ps#1@p` ,0#50,

sincek(d(Y)) is the sum of wedges of generating vector fields for theK-action. This shows tha
@p` ,ps# is an invariant three-vector field.

Now we notice that in the case whenX5G/P is a Hermitian symmetric space, the nilradic
of P is Abelian, and therefore eachK-invariant nonzero differential form is closed and not exa
We also know thatH3(X)50, and thus there is no nonzeroK-invariant three-forms onX. Thus
there is no nonzeroK-invariant three-vector field onX, which implies that@ps ,p`#50.

Thus we have proven thatp` and ps commute with respect to the Schouten bracket, a
hence form a Poisson pair. h

Therefore, we have the following:
Proposition 3.3: Let X be a coadjoint orbit of K. Assume that X is a Hermitian symmetr

space of complex dimension n. The above-mentioned recipe yields nfunctions~s1 , . . . ,sn! on X,
which are in involution with respect to eitherp` or ps .

Now let us return to the case ofX5CPn with the commuting Poisson structuresps andp`

introduced in Sec. II. Let us introduce the following linear change of variables onRn:

ck5x11¯1xk .

In these variables, we can easily compute the desired functions as follows:
Theorem 3.4:The functions$s i%, 1< i<n on CPn defined by:

s i5~v∧ i ,~ps1p`!∧ i !,

up to constant multiples, are equal to the elementary symmetric polynomials in~c1 , . . . , cn!:

s j5 (
i 1, ¯ , i j

ci 1
¯ci j

.

Proof: The simple linear and triagonal form ofp`1ps makes the computation of the func
tions $s i% straightforward. h

The explicit nature of these integrals is essential in looking at the relation with the ce
natural flows. So, in particular we see that

s15c11¯1cn

and that the Hamiltonians1 in terms of the momentum map variables is given by

s15nx11~n21!x21¯12xn211xn .

Then the gradient of this function in the momentum simplex has coordinatesl i5n112 i . If we
treat these numbers as weights assigned to the vertices of the moment polytope, which cor
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to the centers of the Bruhat cells, we see the clear correspondence between these number
complex dimensions of the corresponding cells. Besides, we see that the functions$ci% are linearly
independent and satisfyci2ci 215xi , so we conclude that:

Theorem 3.5:The functions$s i% are generically linearly independent onCPn. They Poisson
commute with respect to eitherps or p` . The corresponding common level sets coincide w
those for the standard torus action onCPn. The value ofs1 at the center of a Bruhat cell equal
n minus the complex dimension of that cell.

Remark:For any compact semi-simple Lie algebrak of rank l , there arel distinguished linear
functions onk* defined by the fundamental weights forg5k^ C. Namely, letp:k* →t* be the
projection dual to the inclusiont�k. The restriction ofp to any co-adjoint orbitX in k* is a
momentum map for theT-action onX. If we regard thel fundamental weights forg as linear
functions ont* , then their pull-backs byp* composed with the restriction toX definel functions
on X. For k5su(n11) these functions are exactlyc1 , . . . ,cn .

Remark:The functions1 has another application. The gradient flow with respect tos1 onCPn

is just the Toda flow as explained, e.g., in Ref. 12.
The functions (s1 , . . . ,sn) that we have constructed turn out to be related to the Gelf

Tsetlin coordinates in the case whenK5SU(n), as we will see later on. In Sec. IV we will carr
explicit computations of these functions on the projective spaces.

IV. RELATION WITH GELFAND–TSETLIN

When X5Gr(k)—the Grassmannian ofk-planes inCn11, we have obtainedk(n2k11)
functions in involution onX. Let us recall the standard embedding

C:Fn�Gr~1!3¯3Gr~n!,

whereFn is the manifold of full flags inCn11, and the locus of the embedding is given by t
incidence relations. This embedding respects the KKS Ka¨hler structures on the manifolds in
volved, if we would like to view them as coadjoint orbits ink* . Moreover, this embedding is
equivariant with respect to theK5SU(n11)-action. For convenience we identify the dual of t
unitary Lie algebrauk with the space ofk3k complex Hermitian matrices using2A21 Tr(AB)
as the pairing.

Recall the Gelfan–Tsetlin system onFn . We fix the orbit type ofFn , i.e., we fix the eigen-
valuesl i of a complex Hermitian matrixA and order them, sol1.l2.¯.ln11 . For conve-
nience and easier visualization, we will assume thatln1150 ~so all the eigenvalues are non
negative!, which corresponds to takingAPun11* rather than insun11* . The Gelfand–Tsetlin
system looks like:4,13

l1.l2.¯.ln.0

m1
(n)>m2

(n)>¯>mn
(n)

¯ ¯ ¯

m1
(2)>m2

(2)

m1
(1) ,

where in the i th row are the eigenvalues of the imagepi(A) of the projection pi :un11*
→un122 i* , which is dual to the embeddingU(n122 i )�U(n11) as the left upper corne
submatrix. The eigenvaluesm i

j together withl i ’s satisfy the interlacing property:

m i
( j )>m i

( j 21)>m i 11
( j ) , l i>m i

(n)>l i 11 , mn
(n).0.
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The above-given picture can be adapted to any orbit, in particular to Gr(k), where we would
takel15¯5lk.0, and otherl’s equal to zero. Whenk varies from 1 ton, the above-mentioned
picture acquires more and more nonzero elements. At each step, while going from levelk to k
11, we will get new integrals on Gr(k11), which we can pull back toFn usingC.

We also notice that ifrPA21•t is given by 2r5(a.0a, then it is easy to see that the su
of all m i

( j )’s is equal to the value of the momentum map for the diagonal torus action evalua
the direction ofr.

Our goal is to relate the integralss j which we obtained in Sec. III using the bi-Hamiltonia
approach on Hermitian symmetric spaces, and the Gelfand–Tsetlin coordinates forX5CPn.

Let B be the (n11)3(n11) matrix, representing an element ofu(n11)* such that the only
nonzero element ofB is l, located in the very left upper place. The coadjoint orbitOB of B is
isomorphic toCPn, where the identification goes as follows. Any element in the coadjoint orb
B can be viewed asABA21, whereAPU(n11). Let (ai j ) be the entries ofA. Then the identi-
fication

w: OB→CPn

is given by

w~ABA21!5@a11:a21: ¯ :an11,1#,

in terms of a homogeneous coordinate system@Z0 : ¯ :Zn# on CPn. We suspect that the following
is well-known, and in any case, is not hard to compute, that the Gelfand–Tsetlin coordinate

m r
(k)50 for rÞ1,

m1
(k)5l~x11¯1xk!,

where (x1 , . . . ,xn) are the momentum map coordinates that we used in Sec. III. We arrive a
conclusion that the Gelfand–Tsetlin coordinates$m1

(k)% coincide~up to the multiple ofl, which we
can assume equals one! with the coordinates$ck% introduced in Sec. III. Now, it remains to notic
that our Theorem 3.4 from Sec. III immediately yields:

Theorem 4.1:The complete family of integrals in involution$s i% on CPn obtained using the
bi-Hamiltonian approach with respect to the Bruhat Poisson structure and an invariant symp
structure are expressed by the elementary polynomials in the Gelfand–Tsetlin coordinates.

We prove a similar result for other Hermitian symmetric spaces in a forthcoming paper

V. COMPARISON TO THE LENARD SCHEME

Recall the following result.5 If ap01bp1 is a Poisson pencil on a manifoldM , and V a
vector field, preserving this pencil, then there exists a sequence of smooth functions$gi% on M ,
such thatg1 is the Hamiltonian ofV with respect top0 and the vector field of thep0-Hamiltonian
gj is the same as the vector field of thep1-Hamiltoniangj 11 :

i dgj
p05 i dgj 11

p1 .

Moreover, the functions in the family$gj% are in involution with respect to bothp0 andp1 .
Our goal in this section is to show that if we start withM5CPn, and take the pencil (ps ,p`)

as before, then there is a natural choice ofV on CPn leading to a completely integrable system
and the integrals$gj% in question can be easily expressed in terms of the coordinates (c1 , . . . ,cn)
that we introduced in Sec. III.

It is a matter of a simple computation that if we start with a Hamiltoniang15a1x11¯

1anxn , where (x1 , . . . ,xn) are the momentum map coordinates as before, then on the big ce
corresponding initial vector fieldV is given by
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V5 i dg1
p`5(

j
@aj~x11¯xj !1aj 11xj 111¯1anxn#]f j

.

From this, one can compute

g25(
j

aj

2
xj

21(
l ,k

akxlxk ,

etc. An interesting choice forg1 turns out to be

g15c11¯1cn5nx11~n21!x21¯1xn ,

which coincides withs1 from Sec. III. The reason for this choice is:
Proposition 5.1: The Lenard scheme associated with the Poisson pencil(p` , ps) on CPn

which starts with g15c11¯1cn and

V5(
j

@~n2 j 11!~x11¯1xj !1~n2 j !xj 111¯12xn211xn#]f j
,

yields

gk5c1
k1c2

k1¯1cn
k ,

which determines a completely integrable bi-Hamiltonian system onCPn.
Proof: With all the explicit formulas that we have presented in this paper, the proof is a si

computation. h

We should remark that the constants (a1 , . . . ,an) for the first Hamiltonian in the Lenard
scheme have to be chosen with care for two reasons. First, the computations are not simpl
arbitrary choice. Second, as the next example shows, we do not always arrive at a com
integrable system.

Example. If one takesg15x11¯1xn , and V5( j (x11¯1xn)]f j
, then applying the

above-mentioned scheme, one would obtain

gk5~x11¯1xn!k5~g1!k.

The differentials of all functions in this family are clearly linearly dependent.
Remark:In fact, it was shown in Ref. 7 that in the Poisson–Nijenhuis situation the trace

the powers of the intertwining operator do satisfy the Lenard recursion relations. And, in fac
easy to see that in our situation forX5CPn, equipped withp` , andvs , the trace of the operato
itself is a multiple ofc11¯1cn . However, the computations for the higher powers seem m
complicated.

ACKNOWLEDGMENTS

I would like to thank Lu Jiang-Hua and Sam Evens for answering many questions rega
Bruhat Poisson structures. Lu Jiang-Hua also provided simple proofs of Propositions 3.1 a
I thank Hermann Flaschka for conversations about integrable systems. I thank Yan Soibelm
historical remarks, Ping Xu for discussions about Poisson–Nijenhuis manifolds, and M
Gekhtman for useful comments. Research is partially supported by NSF Grant No. DMS-007

1J.-H. Lu and A. Weinstein, J. Diff. Geom.31, 501 ~1990!.
2Y. Soibelman, Leningrad J. Math.2, 161 ~1991!.
3S. Khoroshkin, A. Radul, and V. Rubtsov, Commun. Math. Phys.152, 299 ~1993!.
4V. Guillemin and S. Sternberg, J. Funct. Anal.52, 106 ~1983!.
5F. Magri, J. Math. Phys.19, 1156~1978!.
6J.-H. Lu, Transform. Groups4, 355 ~1999!.
                                                                                                                



ami-

3132 J. Math. Phys., Vol. 43, No. 6, June 2002 Philip Foth

                    
7Y. Kosmann-Schwarzbach and F. Magri, Ann. I.H.P. Phys. Theor.53, 35 ~1990!.
8I. Vaisman, Compos. Math.101, 55 ~1996!.
9I. M. Gelfand and I. Zakharevich, Selecta Math.~N.S.! 6, 131 ~2000!.

10A. G. Reyman and M. A. Semenov-Tian-Shansky,Dynamical Systems. VII. Integrable Systems, Nonholonomic Dyn
cal Systems, Encyclopaedia of Mathematical Sciences Vol. 16~Springer, Berlin, 1994!, p. 116.

11F. Magri and C. Morosi, Quaderno S.19, 1 ~1984!.
12A. Bloch, R. Brockett, and P. Crouch, Commun. Math. Phys.187, 357 ~1997!.
13V. Guillemin and S. Sternberg, Ergod. Theory Dyn. Syst.3, 219 ~1983!.
                                                                                                                



entieth
ential
ions
nlinear
that

s with

tc.
sed in
o-

exact
mic

,
re
ditary
ct the
E is a
e the
nd his

calar

, India.

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 6 JUNE 2002

                    
The coupled modified Korteweg–de Vries equations:
Similarity reduction, Lie–Ba ¨cklund symmetries
and integrability

R. Sahadevan and N. Kannagia)

Ramanujan Institute for Advanced Study in Mathematics, University of Madras,
Chennai 600 005, Tamil Nadu, India

~Received 17 July 2001; accepted for publication 15 February 2002!

The Lie point symmetries ofN-coupled modified Korteweg–de Vries equations
(N-cmKdV) is derived and shown that the similarity reduction associated with
symmetries passes the Painleve´ property indicating its integrability. The nonclassi-
cal symmetry analysis of Bluman and Cole and the direct method of Clarkson and
Kruskal to N-cmKdV equations show that there exists no new similarity reduc-
tions. A sequence of Lie–Ba¨cklund symmetries forN-cmKdVequations is derived
explicitly, establishing its complete integrability. The question of constructing the
recursion operator ofN-cmKdV, a characteristic of integrable systems, is also
discussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1473219#

I. INTRODUCTION

One of the most remarkable achievements in mathematics in the second half of the tw
century is the discovery of solitons or integrable systems governed by nonlinear partial differ
equations~PDEs!.1,2 The discovery of solitons exhibited by a particular class of wave equat
has generated much interest to investigate different mathematical and physical aspects of no
PDEs, both~111! and higher dimensions, during the past few decades or so. It was found
these integrable nonlinear partial differential equations have rich mathematical structure
surprising features. For example, it possesses infinitely many Lie–Ba¨cklund ~or nonpoint or gen-
eralized! symmetries, infinitely many integrals of motion~if the model is conservative!, Bäcklund
transformations, bilinear or trilinear structure equations, the Painleve´ property ~after perhaps a
suitable change of variables!, recursion operator, hereditary operator, master symmetries, e1–7

Analytical techniques from Lie theory, group theory, differential geometry, etc., have been u
connection with these properties.3,7–12Among them, the Lie symmetry analysis originally adv
cated by Sophus Lie and later on developed by Ovsiannikov13 and others8,9,14provides an effective
and algorithmic technique to investigate mathematical aspects starting from finding an
solution to deriving Kac–Moody algebras of nonlinear PDEs. The applicability of this algorith
method has been widely illustrated to several nonlinear PDEs in different contexts.15–17 It is well
known that if a nonlinear PDE admits infinitely many Lie–Ba¨cklund or generalized symmetries
then it is expected to be integrable.3 If the Lie–Bäcklund symmetries of a given nonlinear PDE a
explicitly known, then it is quite often possible to construct the so called recursion and here
operator.18 It is widely believed that the existence of recursion operator helps one to constru
Hamiltonian operators, if they exist, enabling one to check whether a given nonlinear PD
bi-Hamiltonian or tri-Hamiltonian system or not. Another systematic approach to investigat
integrability nature of nonlinear PDEs, using the symmetry consideration, is due to Shabat a
school.11,12 In this approach, requiring the existence of a small number of symmetries~conserva-
tion laws! yields large classes of integrable nonlinear PDEs. It is well known that several s
integrable nonlinear PDEs of~111! dimension admit a sequence of Lie–Ba¨cklund symmetries.

a!On leave of absence from the Department of Mathematics, Queen Mary’s College, Chennai-600 004, Tamil Nadu
Electronic mail: nkannagi@yahoo.com
31330022-2488/2002/43(6)/3133/14/$19.00 © 2002 American Institute of Physics
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However, the existence of a sequence of Lie–Ba¨cklund symmetries for the coupled or multicom
ponent integrable nonlinear PDEs has not been investigated so far, perhaps except for two
Korteweg–de Vries equations. In this article, we consider a system ofN-coupled modified
Korteweg–de Vries (N-cmKdV) equations

]Ui

]t
16S (

j 51

N

~U j !2D ]Ui

]x
1

]3Ui

]x3 50, i 51,2,...,N, ~1.1!

and investigate different group theoretical properties including a sequence of Lie–Ba¨cklund sym-
metries and discuss its relation with the integrability of it. Tsuchida and Wadati19 have shown that
Eq. ~1.1! is solvable by inverse scattering transform technique and also derive soliton solutio
it.

The plan of the article is as follows: In Sec. II, the Lie point symmetries ofN-cmKdV, Eqs.
~1.1!, is derived and shown that the similarity reduction associated with symmetries pass
Painlevéproperty of ordinary differential equations. Also the existence of nonclassical symm
and other reduction to be obtained from the direct method have been investigated in detail.
III, a sequence of Lie–Ba¨cklund symmetries for Eqs.~1.1! is explicitly derived, establishing its
integrability. The question of constructing the recursion operator for Eqs.~1.1! has been discusse
in Sec. IV. Section V contains brief details of our results.

II. SIMILARITY REDUCTION AND INTEGRABILITY

A. Classical Lie symmetry analysis

Consider a one parameter~e! Lie group of continuous point transformations

x* 5x1ej~x,t,U1,U2,..., UN!1O~e2!,

t* 5t1et~x,t,U1,U2,..., UN!1O~e2!, ~2.1!

~Ui !* 5Ui1eh i~x,t,U1,U2,..., UN!1O~e2!,

wherej, t, h i( i 51,2,. . . ,N) are infinitesimal symmetries and so the infinitesimal generator

X5j
]

]x
1t

]

]t
1h

]

]U1 1h2
]

]U2 1¯1hN
]

]UN . ~2.2!

Hereafter, the indexi varies from 1,2,...,N unless otherwise specified. Equations~1.1! are invari-
ant under the above continuous point transformations Eq.~2.1! if

]U* i

]t*
16S (

j 51

N

~U* j !2D ]U* i

]x*
1

]3U* i

]x* 3 50, ~2.3!

providedUi satisfy Eqs.~1.1!. Substituting the expressions for various derivatives of (Ui)* in Eq.
~2.3! along with Eq.~2.1! and then equating different coefficients of like derivative terms ofUi to
zero, we obtain a system of overdetermined linear PDEs and, solving them successive
determine the explicit form of infinitesimals

j5
a

3
x1d, t5at1g, ~2.4!

h15
2a

3
U1, h25

2a

3
U2, ..., hN5

2a

3
UN, ~2.5!

wherea, g, d are constants and so the infinitesimal generator Eq.~2.2! takes the following form:
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X5S a

3
x1d D ]

]x
1~at1g!

]

]t
2

a

3 FU1
]

]U1 1U2
]

]U2 1...1UN
]

]UNG . ~2.6!

Obviously the generators are

X15
x

3

]

]x
1t

]

]t
2

1

3 S U1
]

]U1 1U2
]

]U2 1...1UN
]

]UND ,

~2.7!

X25
]

]t
, X35

]

]x
.

The commutator relations satisfy

@X1 ,X2#52X2 , @X1 ,X3#5 1
3 X3 , @X2 ,X3#50, ~2.8!

and so the underlying symmetry algebra is a finite dimensional one.
In order to find the similarity variable and similarity transformations associated with

infinitesimal symmetries given in Eqs.~2.4! and ~2.5!, we solve the characteristic equation,

dx

j
5

dt

t
5

dU1

h1 5
dU2

h2 5...5
dUN

hN . ~2.9!

The similarity variablez and the similarity transformationsf i(z) are

z5S x1
3d

a D S t1
g

a D 21/3

, ~2.10!

f 1~z!5S t1
g

a D 1/3

U1, f 2~z!5S t1
g

a D 1/3

U2, ..., f N~z!5S t1
g

a D 1/3

UN. ~2.11!

Substituting the similarity transformations, Eq.~2.11!, along with the similarity variable, Eq
~2.10!, in Eqs.~1.1!, we find that it reduces into a system ofN-coupled nonautonomous third orde
ordinary differential equations

~z f 181 f 1!218S (
j 51

n

f j
2D f 1823 f 1-50,

~z f 281 f 2!218S (
j 51

N

f j
2D f 2823 f 2-50,

... ~2.12!

...

~z f N8 1 f N!218S (
j 51

N

f j
2D f N8 23 f N-50,

wheref 85 d f /dz . Obviously Eqs.~2.12! can be transformed into the well known second Painle´
transcendental equation forN51. However, forN>2 it is very difficult to transform the coupled
third order Eqs.~2.12! into a known integrable equation. In order to investigate the nature o
system of Eqs.~2.12!, whether integrable or not, we apply the Painleve´ analysis of ordinary
differential equations.6 Also, it was demonstrated by Ablowitz, Ramani, and Segur~ARS! that
there exists a deep connection between the nonlinear PDEs solvable by inverse scatterin
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form ~IST! and the Painleve´ equations. In fact, they have conjectured that every ordinary dif
ential equation obtained by an exact reduction of PDEs solvable by IST is of Painleve´ type,
perhaps after a transformation of variable. Exploiting the Painleve´ analysis~also known as ARS
algorithm!, several new integrable systems have been identified in recent years2,17,20–22~see also
Refs. 23 and 24!. We present below brief details of the Painleve´ analysis of the similarity reduc
tion equations~2.12!.

B. Painlevé analysis of the N-coupled similarity reduction

The Painleve´6 analysis essentially consists of the following three steps:

~a! determination of the leading order of the Laurent series solution of the given ord
differential equation in the neighborhood of a movable singular point;

~b! determination of powers~called resonances! at which arbitrary constants enter into th
Laurent series expansion; and

~c! verification that a sufficient number of arbitrary constants exist as that of the order o
differential equation without the introduction of movable critical points.

To apply the Painleve´ analysis, we consider a solution of Eqs.~2.12! expressed as a serie
expansion

f i~z!5~z2z0!pi (
m50

`

aim~z2z0!m,

wherepi are negative integers,ai0Þ0 in the neighborhood of arbitrary movable singularityz0 .
Substituting now

f i~z!'ai0lpi, l5~z2z0!→0 ~2.13!

in Eqs.~2.12!, we find from the dominating terms that

pi521, ~2.14!

and theN equations resulting from Eqs.~2.12! reduce into a single equation

(
j 51

N

aj 0
2 521. ~2.15!

To obtain the resonance values, we substitute

f i~z!'ai0lpi1b il
pi1r , l→0, ~2.16!

into the leading order terms of Eqs.~2.12! and obtain a system ofN-coupled linear algebraic
equations for theb i . To have a nontrivial set of solutions, we require

detMN~r !50, ~2.17!

where

MN~r !5F 212a10
2 1r 8 212a10a20 ... 212a10aN0

212a20a10 212a20
2 1r 8 ... 212a20aN0

A A A A

212aN0a10 212aN0a20 ... 212aN0
2 1r 8

G ,
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wherer 85r (r 21)(r 25). Solving Eq.~2.17! we find the following resonance values:
r 521,0,0,...(N21) times, 1,1,...(N21) times, 3,4,5,5,...(N21) times.
Next, in order to identify the arbitrary constantsaim , we substitute the series expansion

f i~z!5 (
m51

5

aimlm21 ~2.18!

into all the terms of Eqs.~2.12! and, by equating the like coefficients ofl at eachm, we obtain an
equation of the form

@MN,m#@aim#5@Sm#, ~2.19!

where@MN,m# is anN3N matrix, and@aim# and@Sm# areN31 column matrices. The matrix@Sm#
depends only on theaim21 coefficients. The application of Cramer’s rule for determinants yie
a unique solution to Eq.~2.19!:

aim5detM̄N,m /detMN,m , detMN,mÞ0, ~2.20!

where theN3N matrix @M̄N,m# is obtained by replacing thei th column in@MN,m# by the column
matrix @Sm#.

From Eq.~2.15! we conclude that (N21) of ai0’s, i 51,2,. . . ,N’s, are arbitrary correspond
ing to the resonance values 0,0,0,. . . ,(N21) times. Similarly, by equating the coefficients ofl23

in all the equations of Eqs.~2.12! to zero, we find that theN-equations reduce to a single equati

(
j 51

N

ai0aj 150, ~2.21!

and so the (N21) coefficients ofaj 1 , j 51,2,. . . ,N, are arbitrary associated with the resonan
values 1,1,1,. . . ,(N21) times. Next, by solving a system ofN-equations obtained by equatin
the coefficient ofl22 of Eqs.~2.12! to zero, we obtain

ai25ai0F (
j 51

N

aj 1
2 2

z0

18G , ~2.22!

uniquely. Similarly, by solving a system ofN-equations obtained from the coefficients ofl21 and
l0 in Eqs.~2.12! we find that one of coefficients ofai3 andai4 is arbitrary corresponding to th
resonance values 3 and 4, respectively. Next by equating the coefficients ofl1 in Eqs.~2.12! we
find that theN-equations reduce into a single equation and therefore (N21) coefficients ofai5 are
arbitrary corresponding to the resonance values 5,5,5,. . . ,(N21) times.

Thus the Laurent series expansion solution~2.18! of the similarity reduction~2.12! possesses
the required number, 3N, of arbitrary constants, and is free from movable critical points. Thus
Painlevéproperty or ARS conjecture is satisfied. Hence the similarity reduction, Eqs.~2.12!, of the
N-cmKdVequation~1.1! is expected to be integrable.

C. Nonclassical symmetry analysis

The nonclassical symmetry analysis which is also known as method of conditional symm
was originally proposed by Bluman and Cole25 and illustrated its applicability through the he
equation as an example. Later on this method was applied to several nonlinear evolution eq
possessing solitons by different authors and they derived similarity reductions.25–29 In the litera-
ture, there do exist nonlinear PDEs which possess similarity reductions that are not ob
through the classical Lie group method. For instance, new similarity reductions of the Bous
equation were derived through the nonclassical method which cannot be obtained through c
Lie method.28 In this subsection we apply the nonclassical symmetry analysis to Eqs.~1.1! and
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investigate whether there exist any new symmetry reductions or not. Since the methodol
nonclassical symmetry analysis is presented by different authors25–28 in detail, we refrain from
presenting detailed calculations.

In the nonclassical method,N coupled systems of Eqs.~1.1! are augmented with the invarian
surface conditions

j
]Ui

]x
1t

]Ui

]t
2h i50, ~2.23!

wherej(x,t,Ui), t(x,t,Ui) and h i(x,t,Ui) are unknowns to be determined. Now we apply t
standard symmetry algorithm that provides the symmetry algebra. Then there are two
namely (tÞ0,jÞ0) and (t50,jÞ0), possible.

Let us first consider the casetÞ0,jÞ0. Without loss of generality we assume thatt51 and
so the invariant surface conditions, Eqs.~2.23!, become

]Ui

]t
1j

]Ui

]x
2h i50. ~2.24!

Making use of the point transformations~2.1! we obtain a system of invariant equations for Eq
~1.1! which involves]Ui /]t and ]3Ui /]x3. Using Eq. ~2.24! we replaced the derivative term
]Ui /]t in the above mentioned invariance equation and rearranging it yields a system of o
termined nonlinear PDEs. By solving the obtained determining equations successively we
itly determinej, h i ,

t51, j5
x

3t
, h15

2U1

3t
, h25

2U2

3t
, ..., hN5

2UN

3t
, ~2.25!

and the associated infinitesimal generator takes the following form:

X5
x

3t

]

]x
1

]

]t
2

1

3t S U1
]

]U1 1U2
]

]U2 1...1UN
]

]UND . ~2.26!

Let us compare the nonclassical symmetries of Eqs.~1.1! with the classical ones. We now multipl
the invariant surface conditions~2.24! and the corresponding vector field~2.26! by t gives the
following vector field:

Y5t
]

]t
1

x

3

]

]x
2

1

3 S U1
]

]U1 1U2
]

]U2 1...1UN
]

]UND . ~2.27!

Comparing the infinitesimal generator of Eq.~2.6! obtained from the classical symmetry analys
with that of Eq.~2.27! we find that there exist no nonclassical symmetries in this case. Sim
conclusions for the caset50 andjÞ0 can also be arrived at. Thus we conclude that no nonc
sical symmetries exist for the system ofN-cmKdV, Eqs.~1.1!.

D. Direct method

The direct method of deriving similarity reductions of PDEs was originally proposed
Clarkson and Kruskal30 and was applied to a variety of nonlinear PDEs by differe
researchers2,31–33~see also Ref. 34!. The unusual characteristic of this method in comparison w
the other methods is that it involves no use of group theory or Lie symmetry analysis. The
idea of this method is to seek a solution of a nonlinear PDEs involving two independent var
in the form

U~x,t !5F~x,t,w~z~x,t !!!. ~2.28!
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Then, requiring that substitution of Eq.~2.28! into the given nonlinear PDE yields an ordina
differential equation forw(z). This imposes a condition uponF(x,t,w(z)) and its derivatives
which enables one to solve forF(t,x,w(z)), which yields the desired reduction.

In order to use the direct method as usual we substitute

Ui~x,t !5Ai~x,t !1Bi~x,t !wi~z~x,t !!, ~2.29!

whereAi(x,t) andBi(x,t) are unknown functions in Eqs.~1.1!. We then obtain the following third
order nonlinear ordinary differential equation:

Bizx
3wi-1w9~3Bi ,xzx

213Bizxzxx!1wi8~Bizt13Bi ,xxzx13Bi ,xzxx1Bizxxx1ÃBizx!

1wi~Bi ,tzt1Bi ,xxx1ÃBi ,x!1B̃Ai ,x1wiB̃Bi ,x1wiC̃Bi ,x1wi8C̃Bizx

1wi8B̃Bizx1C̃Ai ,x1Ai ,t1Ai ,xxx1ÃAi ,x50, ~2.30!

where

Ã56(
j 51

N

Aj
2 ,B̃56(

j 51

N

wj
2Bj

2 ,C̃512(
j 51

N

wjAjBj ,w85
dw

dz
.

Note that the coefficient ofwi- is Bizx
3 . Using this as the normalizing coefficient and taking t

other coefficient of the formBizx
3G(z), whereG(z) is an unknown function to be determined, w

obtain the following equations:

wi
2wi8 :Bi

3zx5Bizx
3G1 , ~i!

wi
2:Bi

2Ai ,x5Bizx
3G2 , ~ii !

wiwi8 :AiBi
2zx5Bizx

3G3 , ~iii !

wi
3:Bi

2Bi ,x5Bizx
3G4 , ~iv!

wi9 :Bi ,xzx
21Bizxzxx5Bizx

3G5 , ~v!

wi8 :Bizt13Bi ,xxzx13Bi ,xzxx1Bizxxx16S (
i 51

N

Aj
2DBizx5Bizx

3G6 , ~vi!

wi :Bi ,t1Bi ,xxx112AiBiAi ,x16S (
j 51

N

Aj
2DBi ,x5Bizx

3G7 . ~vii !

Solving the above determining equations~i!–~vii ! successively, we find that the consistency co
dition holds only if

Ui~x,t !5t21/3wi~z!,z5xt21/3. ~2.31!

Thus the similarity transformation and the similarity variable obtained through the direct me
are exactly the same derived through the classical Lie method. Thus we conclude that the
method also does not yield any new similarity reductions for the system ofN-cmKdV, Eqs.~1.1!.

III. LIE–BÄ CKLUND SYMMETRIES OF N-cmKdV EQUATIONS

It is well known that the existence of infinitely many commuting Lie–Ba¨cklund symmetries is
the defining feature of complete integrability of nonlinear PDEs. It was shown by different au
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that several scalar integrable nonlinear PDEs of~111! dimension admit a sequence of Lie
Bäcklund symmetries.3,14,35,36However, the existence of a sequence of Lie–Ba¨cklund symmetries
for the coupled or multicomponent integrable PDEs has not been investigated so far. I
subsection we show that theN-coupled modified Korteweg–de Vries equations~1.1! admits a
sequence of Lie–Ba¨cklund symmetries.

Basically the Lie–Ba¨cklund transformations are the generalized Lie groups of point trans
mations that are defined by infinitesimals depending on a finite number of derivatives o
dependent variables. Now consider a one parameter~e! infinitesimal Lie–Bäcklund transforma-
tion,

~Ui !* 5Ui1eh i~x,t,Uk
i !1O~e2!,

x* 5x,t* 5t,
~3.1!

~Ut
i !* 5Ut

i1e@h t
i #1O~e2!,

~Uk
i !* 5Uk

i 5e@hx
i #1O~e2!,k50,1,2,. . . ,`,

where

U0
i 5Ui , Uk

i 5
]kUi

]xk , Ukt
i 5

]Uk
i

]t
, @h t

i #5Dth
i ,

~3.2!
@hx

i #5Dxh
i , @hxx

i #5Dx
2h i , @hxxx

i #5Dx
3h i .

Define the total derivative operators

Dx5(
i 50

N

(
k50

`

Uk11
i ]

]Uk
i , Dt5(

i 50

N

(
k50

`

Ukt
i ]

]Uk
i , ~3.3!

and the Lie–Ba¨cklund ~LB! operator

X~h i !5(
i 50

N

~Dth
i !

]

]Ut
i 1(

i 50

N

(
k50

`

~Dx
kh i !

]

]Uk
i . ~3.4!

Making use of the one parameter~e! Lie–Bäcklund transformations~3.1! along with the different
derivatives ofUi in Eqs.~1.1! we obtain the following system of coupled invariance equation

@h t
i #16S (

j 51

N

~U j !2D @hx
i #112S (

j 51

N

U jh j DUx
i 1@hxxx

i #50. ~3.5!

The above coupled equations can be written as a polynomial inUi and its derivatives with respec
to the variablesx andt. We further assume thath i do not depend on the independent variablex
and t. Then by equating the coefficients of different derivatives ofUi in Eq. ~3.5! to zero and
solving them successively we find the form ofh i ’s explicitly. Since the calculations of obtainin
the Lie–Bäcklund symmetriesh i for Eqs.~1.1! are tedious and cumbersome for arbitraryN, for
clarity, we present the details for the casesN52 andN53. Let

U15u, U25v, U35w,
]U1

]x
5u1 ,

]U2

]x
5v1 ,

]U3

]x
5w1 ,

~3.6!
]2U1

]x2 5u2 ,
]2U2

]x2 5v2 ,
]2U3

]x2 5w2 ,
]3U1

]x3 5u3 ,
]3U2

]x3 5v3 ,
]3U3

]x3 5w3 .
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Case (i): N52. The two coupledmKdV equations are

ut16~u21v2!u11u350, v t16~u21v2!v11v350, ~3.7!

and so the invariance equations~3.5! become

@h1,t#16~u21v2!@h1,x#112~uh11vh2!u11@h1,xxx#50, ~3.8a!

@h2,t#16~u21v2!@h2,x#112~uh11vh2!v11@h2,xxx#50. ~3.8b!

The trivial symmetries of the two coupled modified Korteweg–de Vries equations~3.7! are

h I
15u1 , h I

25v1 ~3.9!

and

h II
1 5u316~u21v2!u1 , h II

2 5v316~u21v2!v1 . ~3.10!

Detailed calculations show that the next higher order symmetriesh III
1 andh III

2 to be of the form

h III
1 5u51F~u,u1 ,u2 ,u3 ,u4 ,v,v1 ,v2 ,v3 ,v4!, ~3.11!

h III
2 5v51G~u,u1 ,u2 ,u3 ,u4 ,v,v1 ,v2 ,v3 ,v4!, ~3.12!

whereF, G are unknown functions to be determined. Substituting the above Eqs.~3.11! and~3.12!
along with derivative terms with respect tox and t in the two coupled invariant equations~3.8a!
and ~3.8b! and first equating the coefficients ofu7 ,u6 ,u5 ,u4 andv7 ,v6 ,v5 ,v4 to zero yields the
following determining PDEs:

]h III
1

]u4
50,

]h III
2

]u4
50,

]h III
1

]v4
50,

]h III
2

]v4
50,

]h III
1

]v3
50,

]h III
2

]u3
50, ~3.13!

]h III
1

]u3
510~u21v2!,

]h III
2

]v3
510~u21v2!. ~3.14!

Solving Eqs.~3.13! and ~3.14! we obtain

F510~u21v2!u31F1~u,u1 ,u2 ,v,v1 ,v2! ~3.15!

and

G510~u21v2!v31G1~u,u1 ,u2 ,v,v1 ,v2!, ~3.16!

whereF1 , G1 are arbitrary functions to be determined. Proceeding further we obtain the ex
forms of F1 andG1 and so the next order Lie–Ba¨cklund symmetriesh III

1 andh III
2 are

h III
1 5u5110~u21v2!u3130~u21v2!2u1110~u1

21v1
2!u1

120~uu21vv2!u1120~uu11vv1!u2 , ~3.17!

h III
2 5v5110~u21v2!v3130~u21v2!2v1110~u1

21v1
2!v1

120~uu21vv2!v1120~uu11vv1!v2 . ~3.18!

Continuing this algorithmic procedure, we find that the two coupled modified Korteweg–de
equations~3.7! admit a sequence of Lie–Ba¨cklund symmetries.

Case (ii): N53. The three coupledmKdV equations are
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ut16r2u11u350, v t16r2v11v350, wt16r2w11w350, ~3.19!

and the associated invariance equations become

@h1,t#16r2@h1,x#112~uh11vh21wh3!u11@h1,xxx#50, ~3.20a!

@h2,t#16r2@h2,x#112~uh11vh21wh3!v11@h2,xxx#50, ~3.20b!

@h3,t#16r2@h3,x#112~uh11vh21wh3!w11@h3,xxx#50, ~3.20c!

where r25u21v21w2. Proceeding as before, as that of two coupled modified Korteweg
Vries equations we obtain following Lie–Ba¨cklund symmetries for the three-cmKdVequations:

h I
15u1 ,h II

1 5u316r2u1 ,h I
25v1 , h II

2 5v316r2v1 , h I
35w1 ,h II

3 5w316r2w1 ,
~3.21!

h III
1 5u5110r2u3130r4u1110r1

2u1120r2u2120r3u1 , ~3.22!

h III
2 5v5110r2v3130r4v1110r1

2v1120r2v2120r3v1 , ~3.23!

h III
3 5w5110r2w3130r4w1110r1

2w1120r2w2120r3w1 , ~3.24!

wherer1
25u1

21v1
21w1

2, r25uu11vv11ww1 andr35uu21vv21ww2 . Since the procedure is
algorithmic we refrain from presenting the further details of the next order Lie–Ba¨cklund sym-
metries.

Case (iii): For N-cmKdV, Eqs. ~1.1!, the Lie–Bäcklund symmetries take the following
forms:

h I
15Ux

1 , h I
25Ux

2 , ..., h I
N5Ux

N , ~3.25!

h II
1 5Uxxx

1 16V2Ux
1 , h II

2 5Uxxx
2 16V2Ux

2 , ..., h II
N5Uxxx

N 16V2Ux
N , ~3.26!

h III
1 5Uxxxxx

1 110V2Uxxx
1 130V4Ux

1110V1
2Ux

1120V2Uxx
1 120V3Ux

1 , ~3.27!

h III
2 5Uxxxxx

2 110V2Uxxx
2 130V4Ux

2110V1
2Ux

2120V2Uxx
2 120V3Ux

2 , ~3.28!

¯

¯

h III
N 5Uxxxxx

N 110V2Uxxx
N 130V4Ux

N110V1
2Ux

N120V2Uxx
N 120V3Ux

N , ~3.29!

whereV25( j 51
N (U j )2, V1

25( j 51
N (Ux

j )2, V25( j 51
N U jUx

j , V35( j 51
N U jUxx

j .
The next higher order Lie–Ba¨cklund symmetriesN-cmKdVof Eqs.~1.1! can be obtained in

a straightforward manner.

IV. RECURSION OPERATOR

In the investigation of algebraic properties of integrable nonlinear PDEs such as infi
many symmetries, integrals of motion, existence of a bi-Hamiltonian formulation, etc., recu
operators play a central role.3,4 If a nonlinear PDE admits a sequence of Lie–Ba¨cklund symme-
tries, it is often possible to construct its recursion operator. If the recursion operator is here
then the equation possesses infinitely many symmetries. It is widely believed that the existe
recursion operators helps one to construct the Hamiltonian operators, if they exist, enabling
check whether a given nonlinear PDE is a bi-Hamiltonian or tri-Hamiltonian system or not. T
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exist different analytical techniques to construct a recursion operator for a given integrable
linear PDE.4,37–40Among them the method proposed by Aiyer37 provides an effective technique t
construct a recursion operator through group theory techniques. The advantage of this app
that it does not require the existence of Lax representation of the concerned equation.
subsection we use this method to construct recursion operators for theN-cmKdVequations~1.1!.
For clarity, we present the details forN52 and N53, which are 232 and 333 matrices,
respectively.

Case (i): N52
HereU15u, U25v. Let T(u,v) be a 232 recursion operator of the two-cmKdVequations

~3.7!, connecting (ux ,vx)5(u1 ,v1) to (ut ,v t). ThenT(u,v) is given by

T~u,v !S u1

v1
D5S T11 T12

T21 T22
D 5S ut

v t
D , ~3.30!

where

T1152Dx
224~u21v2!24u1Dx

21~u!; T12524u1Dx
21~v !,

T21524v1Dx
21~u!; T2252Dx

224~u21v2!24v1Dx
21~v !.

In order to find the Lie–Ba¨cklund or infinitesimal transformations of the next higher order,
look for a recursion operator such that

T2~u,v !S u1

v1
D5S h III

1

h III
2 D . ~3.31!

ThenT2(u,v) takes the following form:

T2~u,v !5S T11 T12

T21 T22
D ,

where

T115Dx
418~u21v2!Dx

2120uu1Dx110vv1Dx120~uu21vv2!

110~u1
21v1

2!118~u21v2!214$u316~u21v2!u1%Dx
21~u!,

T12510u2v14$u316~u21v2!u1%Dx
21~v !,

T21510v2u14$v316~u21v2!v1%Dx
21~u!,

T225Dx
418~u21v2!Dx

2120vv1Dx110uu1Dx120~uu21vv2!

110~u1
21v1

2!118~u21v2!214$v316~u21v2!v1%Dx
21~v !.

Thus T(u,v), whose elements are given by Eq.~3.30!, exists, and, acting repeatedly on (v1

u1),

generates two sets of infinitesimal transformations. Further, we get the following hierarchy
two cmKdVequations~3.7!:

S ut

v t
D5Tn~u,v !S u1

v1
D5S h1

(n11)

h2
(n11)D , ~3.32!

where
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h1
(1)5h I

15u1 , h2
(1)5h I

25v1 ,

h1
(2)5h II

15u316~u21v2!u1 , h2
(2)5h II

25v316~u21v2!v1 , etc.

Case (ii): N53
Here U15u, U25v, U35w. Let T(u,v,w) be a 333 recursion operator of the three

cmKdVequations, connecting (u1 ,v1 ,w1) to (ut ,v t ,wt). ThenT(u,v,w) is given by

T~u,v,w!S u1

v1

w1

D 5S T11 T12 T13

T21 T22 T23

T31 T32 T33

D 5S ut

v t

wt

D ~3.33!

with

T1152Dx
224r224u1Dx

21~u!; T12524u1Dx
21~v !; T13524u1Dx

21~w!;

T21524v1Dx
21~u!; T2252Dx

224r224v1Dx
21~v ! T23524v1Dx

21~w!;

T31524w1Dx
21~u!; T32524w1Dx

21~v !;

T3352Dx
224r224w1Dx

21~w!;

wherer25u21v21w2.
In order to find the Lie–Ba¨cklund or infinitesimal transformations of the next higher order,

look for a recursion operatorT(u,v,w) for the three-cmKdVEqs.~3.19! such that

T2~u,v,w!S u1

v1

w1

D 5S h III
1

h III
2

h III
3
D . ~3.34!

ThenT(u,v,w) takes the following form:

T~u,v,w!5S T11 T12 T13

T21 T22 T23

T31 T32 T33

D , ~3.35!

where

T115Dx
418r2Dx

2120uu1Dx110~vv11ww1!Dx120~uu21vv21ww2!

110r1
2118r414$u316r2u1%Dx

21~u!,

T12510u2v14$u316r2u1%Dx
21~v !,

T13510u2w14$u316r2u1%Dx
21~w!,

T21510v2u14$v316r2v1%Dx
21~u!,

T225Dx
418r2Dx

2120vv1Dx110~uu11ww1!Dx120~uu21vv2

1ww2!110r1
2118r414$v316r2v1%Dx

21~v !, ~3.36!

T23510v2w14$v316r2v1%Dx
21~w!,
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T31510w2u14$w316r2w1%Dx
21~u!,

T32510w2v14$w316r2w1%Dx
21~v !,

T335Dx
418r2Dx

2120ww1Dx110~uu11vv1!Dx120~uu21vv21ww2!

110r1
2118r414$w316r2w1%Dx

21~w!,

wherer1
25u1

21v1
21w1

2 .
Here also, we get the following hierarchy of the three-cmKdVequations~3.19!

S ut

v t

wt

D 5Tn~u,v,w!S u1

v1

w1

D 5S h1
(n11)

h2
(n11)

h3
(n11)

D ,

where

h1
(1)5h I

15u1 , h2
(1)5h I

25v1 , h3
(1)5h I

35w1 ,

h1
(2)5h II

15u316r2u1 , h2
(2)5h II

25v316r2v1 , h3
(2)5h II

35w316r2w1 , etc.

By applying the procedure described above toN-cmKdVequations~1.1!, one can derive its
recursion operator.

V. CONCLUSIONS

Using the classical Lie symmetry approach we derive the Lie point symmetries ofN-cmKdV
equations and show that the similarity reduction associated with symmetries passes the P´
property for ordinary differential equations. Also, detailed investigations through the noncla
symmetry approach and the direct method show that no new similarity reductions exist. Fur
sequence of Lie–Ba¨cklund symmetries forN-cmKdVequations is derived, explicitly establishin
its integrability. We have made an attempt to derive the recursion operator, a characteri
integrable systems, forN-cmKdV equations. The question of factorization of the derived rec
sion operator and the derivation of the well known hereditary operator is under investigatio
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Generalized symmetries in mechanics and field theories
L. Fatibene,a) M. Ferraris, M. Francaviglia, and R. G. McLenaghanb)
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Generalized symmetries are introduced in a geometrical and global formalism.
Such a framework applies naturally to field theories and specializes to mechanics.
Generalized symmetries are characterized in a Lagrangian context by means of the
transformation rules of the Poincare´–Cartan form and the~generalized! Nöther
theorem is applied to obtain conserved quantities~first integrals in mechanics!. In
the particular case of mechanics it is shown how to use generalized symmetries to
study the separation of variables of Hamilton–Jacobi equations recovering standard
results by means of this new method. Supersymmetries~Wess–Zumino model! are
considered as an intriguing example in field theory. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1469668#

I. INTRODUCTION

In a number of different applications, both in mechanics and in field theory, symmetries
more general nature than the standard Lagrangian symmetries are often used~see Refs. 1–4!.
Ordinary Lagrangian symmetries are usually defined as transformations in the phase spac
preserve the Lagrangian~or the Hamiltonian! form ~see Refs. 5–8 and references quoted there!.
To each one-parameter flow of Lagrangian symmetries a conserved quantity can then be
ated via the so-calledNöther theorem~see, e.g., Refs. 6, 8, and 9!. Such a theorem can b
generalized in at least two physically relevant different directions.

First, one can consider transformations which do not preserve the Lagrangian form e
but modulo contact forms and exact differentials. Both contact forms and exact forms are, i
irrelevant to the No¨ther theorem. Second, one can consider transformations acting on field
figurations which are not induced by a transformation on the configuration space. Furthe
since all quantities in the No¨ther theorem are computed along a field configurations~and, in
particular, usually along a solution! a one-parameter flow of transformations is enough to de
Nöther currents by Lie dragging. In this perspective transformations on the configuration spa
just a way of obtaining such a flow. More generally one can consider a transformation o
infinite jet prolongation of the configuration bundle; the infinitesimal generators of such tran
mations aregeneralized vector fieldswhich will be introduced and discussed later~see Refs. 2 and
10!. This approach turns out to be along the lines traced by Carter in the linear case~see Ref. 11!.
In the present article we develop the necessary notions and tools to deal with nonlinear s
and provide detailed examples which illustrate the relation between Lagrangian symmetri
Killing tensors.

Such a geometrical definition of generalized symmetries has been implicitly used in a nu
of contexts and applications. In mechanics, the first integrals of motion can often be rela
separation of variables for the Hamilton–Jacobi equation and they may be generated via¨ther
theorem starting from generalized symmetries. In field theory, BRST transformations, whic
the most powerful tool for the quantization of gauge theories, are generalized symmetrie~see
Refs. 3, 4, and 12!. Finally, also supersymmetries are interpretable as generalized symmetrie~see
Refs. 3 and 13!.

a!Electronic mail: fatibene@dm.unito.it
b!On the leave of absence from Department of Applied Mathematics, University of Waterloo, Ontario, Canada.
31470022-2488/2002/43(6)/3147/15/$19.00 © 2002 American Institute of Physics

                                                                                                                



ndard
in the
ly on

mu-
f the

der of
gen-

les to
nd VI
les of

field
theory
17.

deal

he

one-

-
the

3148 J. Math. Phys., Vol. 43, No. 6, June 2002 Fatibene et al.

                    
The main purpose of this article is to set these applications in the general and sta
contexts of Lagrangian formalism and variational calculus. In fact, as we shall discuss
sequel, most of the applications mentioned above in their original formulation strongly re
Hamiltonian formalism, while we are going to set them in a purely Lagrangian context~which is
certainly more standard, at least for field theories!.

The plan of the article is as follows. In Sec. II we shall briefly recall the geometrical for
lation of field theory which will be used extensively below. We use the geometric language o
Lagrangian framework on bundles together with the Poincare´–Cartan formulation since it is
particularly suited to deal with mechanics and field theory at the same time and at any or
fields derivatives involved. In Sec. III generalized vector fields, generalized symmetries and
eralized No¨ther’s theorem are defined. In Sec. IV we collect a number of worked out examp
mechanics and separation of variables for Hamilton–Jacobi equation. Finally, in Secs. V a
we deal with BRST transformations and Wess–Zumino supersymmetric model as examp
application of generalized symmetries to field theory.

II. GEOMETRICAL FRAMEWORK FOR FIELD THEORY AND MECHANICS

We shall here briefly summarize the notations used in the geometrical formulation of
theory and mechanics. We assume the reader to be familiar with the basic ideas of bundle
and classical differential geometry. Further details can be found in Refs. 6, 8, 10, and 14–

Let C5(C,M ,p;F) be theconfiguration bundle; hereC, M andF are manifolds called the
total space, thebaseand thestandard fiber, respectively. The mapp:C→M is called theprojec-
tion and it is a surjective map of maximal rank. Fiber bundles are the natural framework to
with calculus of variations; in fact fibered coordinates onC are (xm;yi) where the coordinates
xm @m51, . . . ,dim(M )# on M denote theindependent variableswhile the coordinatesyi

@ i 51, . . . ,dim(F)# on F denote thedependent variables, i.e., the fields.
In mechanics one can chooseC5R3Q whereQ is the configuration space of the system. T

base manifold isM5R and the only independent variable is denoted byt. The fibered coordinates
on R3Q are (t,qi) andqi are the usual Lagrangian coordinates of the system.

A vector fieldJ overC is projectableif it projects over a vector fieldj of the base manifold
M . Locally, projectable vector fields are hence of the form

J5jm~x!]m1j i~x,y!] i . ~2.1!

The flow of such a projectable vector field is made of fiber preserving morphisms, i.e., a
parameter subgroup of bundle morphisms

x8m5fs
m~x!,

~2.2!
y8 i5Ys

i ~x,y!.

The vector fieldJ is the infinitesimal generator of the flow of bundle morphisms, i.e.,

jm5
dfs

m

ds
~x!U

s50

,

~2.3!

j i5
dYs

i

ds
~x,y!U

s50

.

A vertical vector fieldis a vector field overC which projects over the zero vector field inM .
Locally, a vertical vector field is in the formJ5j i(x,y)] i .

A (field) configurationis a sections:M→C of the configuration bundle; locally it corre
sponds to a maps(x)5(xm,yi(x)), which specifies the dependent variables as functions of
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independent variable@in mechanicss(t)5(t,qi(t)) represents a curve in the configuration spa
Q#. The transition functions of the bundleC encode the global topological properties of t
system.

The jet prolongation of order kof the bundleC will be denoted byJkC, for eachk>0. We
setJ0C.C. It is a bundle overM ~and overC as well as over eachJhC for h<k! which takes
into account the fields with their derivatives up to orderk included. The intermediate projec
tions are ph

k :JkC→JhC, with pk
k5 id. Fibered coordinates onJkC are denoted by

(xm,yi ,ym
i ,ymn

i , . . . ,ym1 . . . mk

i ). In mechanics the configuration bundle is isomorphic toR3Q ~the

isomorphism being, by definition, theobserver! and one hasJkC.R3TkQ where TkQ is the
tangent bundle of orderk ~a point inTkQ is an equivalence class of curves inQ having contact of
order k at t50!. For k51 the bundleTkQ reduces to the ordinary tangent bundleTQ of the
configuration space and the standard first order framework of mechanics is recovered.

The inverse limit of the inverse familyJkC is an infinite dimensional bundle which is denote
by J`C and it is called theinfinite jet bundleof C ~see Ref. 18!. All the constructions we make on
finite jet bundles extend in a straighforward way to the infinite jet bundle.

If one considers a bundle morphismF5~F,f!:C→C8, it can be prolonged at any order; the j
prolongation will be denoted byJkF5( j kF,f), and it makes the following diagram commutativ

JkC
——→

j kF
JkC8

↓ ↓

C
——→

F
C8

↓ ↓

M
——→

f
M 8

~2.4!

One can also define the infinite jet prolongationj `F as the inverse limit of the family of bundle
morphismsj kF.

A section s:M→C can be lifted to a sectionj ks:M→JkC which is locally given by
j ks(x)5(xm,yi(x),dmyi(x), . . . ,dm1 . . . mk

yi(x)). The lift to the infinite jet bundles is obtained b
the inverse limit and it is denoted byj `s.

Finally any ~projectable! vector fieldJ5jm(x)]m1j i(x,y)] i on C can be prolonged at an
order to define a~projectable! vector field j kJ on JkC. The prolongation of a~projectable! vector
field J is the infinitesimal generator of the prolongation of the bundle morphisms~2.2!. As an
example, fork51 the vector fieldj 1J5jm]m1j i] i1jm

i ] i
m is locally expressed by

jm
i 5dmj i2yn

i dmjn, ~2.5!

where the operator

dm5]m1ym
i ] i1ynm

i ] i
n1¯ ~2.6!

denotes~at any orderk! the formal total derivativewith respect toxm. Analogous but more
complicated expressions hold fork.1 ~see, e.g., Refs. 8, 17, and 18!.

Contact one-formsover JkC are the forms belonging to the ideal generated inV(JkC) by

v i5dyi2yn
i dxn,

vm
i 5dym

i 2ynm
i dxn,

~2.7!
. . .
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vm1 . . . mk21

i 5dym1 . . . mk21

i 2ym1 . . . mk21n
i dxn.

Notice that all contact formsv vanish when evaluated along the prolongation of any section,
( j ks)* v50.

Whenever we consider a forma overJkC we can uniquely split its pull-back (pk
k11)* a into

the sum of a horizontal part hor~a! and a contact parta (K) so that (pk
k11)* a5hora % a (K) , where

both hor(a) and a (K) are forms overJk11C. By an abuse of notation one identifies (pk
k11)* a

with a and simply writesa5hora % a (K) . For example, ifa5amdxm1a idyi1a i
mdym

i is a one-
form overJ1C, where all coefficients depend on (xm,yi ,ym

i ), then we have the splitting

a5~am1a i ym
i 1a i

nymn
i !dxm

% ~a iv
i1a i

mvm
i !5hora % a (K) . ~2.8!

We stress once again that both hor(a)5(am1a i ym
i 1a i

nymn
i )dxm and a (K)5a iv

i1a i
mvm

i are
one-forms overJ2C since they both involveymn

i . Such an example can be easily generalized
any form over anyJkC ~see Ref. 19!.

A Lagrangian of order kis a bundle morphismL:JkC→Am(M ), whereAm(M ) is the bundle
of m-forms overM @dim(M )5m#. Locally the Lagrangian is expressed as

L5L~xm,yi ,ym
i ,ymn

i , . . . ,ym1 . . . mk

i !ds ~2.9!

with ds5dx1∧¯∧dxm. We will consider only first order Lagrangians (k51) even though most o
the theory can be easily generalized to any order~see Refs. 20–23!. ThePoincaré–Cartan formof
a first order Lagrangian is them-form QL over J1C locally given by

QL5Lds1pi
mv i∧dsm , pi

m5
]L
]ym

i , ~2.10!

wheredsm5 i ]m
ds andpi

m are theLagrangian momenta.
The action functional can be recast in terms of the Poincare´–Cartan form as

AD~s![E
D

L+ j 1s5E
D

~ j 1s!* QL , ~2.11!

whereD#M is any compact domain with a regular boundary]D. If X5j i(x,y)] i is any vertical
vector field onC, together with its flowFs and its lift j 1X to J1C, we can drag the sections
alongX by definingss5Fs+s. Thevariation of the actionalongX is hence given by

dXAD~s!5
d

ds
AD~ss!5E

D
~ j 1s!* £ j 1XQL5E

D
~ j 1s!* i j 1XdQL1E

]D
~ j 1s!* i j 1XQL ,

~2.12!

wherei j 1X denotes contraction of forms along the vector fieldj 1X and d~•! denotes the relevan
exterior differential. If the vectorX vanishes on the boundary]D of the regionD, the second
integral vanishes, too. By the Hamilton principle a sections is then acritical section when
dXAD(s)50, for all regionsD and any vertical vector fieldX which vanishes on]D. Equiva-
lently, s is a critical section if and only ifi j 1XdQL50, for any vertical vector fieldX. This
framework is completely equivalent to the ordinary Lagrangian framework~see Refs. 20 and 21!.
In fact, it can be easily shown that forX vanishing on the boundary one hasdXAD(s)
5*D( j 1s)* i j 1XdQL5*D( j 2s)* ^E(L)uX&, whereE(L) is the Euler–Lagrange morphism and^u&
denotes the standard contraction. The Poincare´–Cartan formulation is well suited to deal wit
symmetries~as well as an introduction for Hamiltonian formalism and as a tool to unify
mechanics and field theory at any order!. In mechanics all standard results are recovered.
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III. GENERALIZED SYMMETRIES AND GENERALIZED NÖ THER THEOREM

Consider the following commutative diagram

~3.1!

The bundle (p0
k)* (TC) is the pull-back of the bundletC :TC→C along the mapp0

k :JkC→C and
F* is uniquely defined~see Refs. 10 and 19!; a point in (p0

k)* (TC) is a pair (p,v) where p
PJkC, vPTC and tC(v)5p0

k(p), i.e., vPTp
0
k(p)C. Let J be a section of the bundle

(p0
k)* (TC)→JkC with local expression

J:JkC→~p0
k!* ~TC!:p°~p,jm~p!]m1j i~p!] i !. ~3.2!

The sectionJ is called ageneralized vector fieldand by an abuse of notation is denoted simply

J5jm~xm,yi ,ym
i , . . . ,ym1 . . . mk

i !]m1j i~xm,yi ,ym
i , . . . ,ym1 . . . mk

i !] i . ~3.3!

Consider further a sections:M→C together with its prolongationj ks; by composition we
obtain a sectionF* +J+ j ks of the bundleTC→M which is avector field over the sections. In
principle, the sections can be dragged alongJ.

Notice that a generalized vector fieldJ is not a vector field onC ~unlessk50! since its
components depend on the derivatives of fields~see Ref. 2!. Moreover, no jet prolongationj rJ of
a generalized vector fieldJ is an ordinary vector field on anyJsC. As an example, we can
consider its prolongation toJ1C

j 1J5jm]m1j i] i1jm
i ] i

m , jm
i 5dmj i2yn

i dmjn. ~3.4!

Clearly this is not a vector field onJ1C ~sincejm
i depends on the second order derivatives of fiel!

nor it is a vector field onJ2C @since no] i
mn is involved and the local expressions~3.4! do not glue

together when changes of fibered coordinates onC are considered#. In other words, even if one ca
drag sections along a generalized vector fieldJ, such an object does not define a transformat
on any finite jet bundle. Generalized vector fields can in fact be regarded as infinitesimal g
tors of transformations onJ`C ~see Refs. 2 and 18!. We shall hereafter restrict toprojectable
generalized vector fieldswhen the componentsjm(x) are independent on fields orvertical gener-
alized vector fieldswhich havejm50.

Let ss be a family of sections ofC and letJ be a projectable~generalized! vector field. The
vertical part of J5jm]m1j i] i is defined by

J (V)5j i2jmym
i . ~3.5!

We remark that even whenJ is an ordinary vector field the vertical partJ (V) is in any case a
generalized~vertical! vector field. We say thatss is dragged alongJ if and only if

d

ds
ss5J (V)+ss . ~3.6!
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A generalized symmetryof a LagrangianL is a generalized vector fieldJ overC such that the
Poincare´–Cartan form ofL satisfies the following condition

£ j 1JQL5v1da, ~3.7!

wherev is any contact form anda is any (m21)-form ~both possibly depending on the deriv
tives of fields!.

Since the sum between horizontal and contact forms is direct, condition~3.7! is equivalent to

hor~£ j 1JQL!5hor da, ~3.8!

which, since the Lie derivative of a contact form is again a contact form, is in turn equivale

hor~£ j 1J~horQL!!5hor~£ j 1J~Lds!!5hor da. ~3.9!

By expanding this last equation in local fiber coordinates (xm,yi ,ym
i ) over J1C, for the jet pro-

longation of a~generalized! vector field j 1J5jm]m1j i] i1jm
i ] i

m projecting ontoj5jm]m , one
obtains

@dm~jL!2pi~jmym
i 2j i !2pi

m~jnymn
i 2jm

i !#5dmam. ~3.10!

One can also regard this latter condition as a global condition expressed directly in terms
Lagrangian~i.e., not involving the Poincare´–Cartan form!; in the standard notation, see, e.g., R
8, Eq. ~3.10! can be in fact intrinsically expressed as

£jL2^dLu j 1£Js&5Div~a!. ~3.11!

In other words, a generalized symmetry leaves the Lagrangian form invariant modulo pure
gence terms plus terms which depend on the first variationdL. However, in the sequel we sha
prefer to use the Poincare´–Cartan formalism which is more direct since it deals only with for
over JkC.

If J is a generalized symmetry,s is a solution of field equations andss is a dragging ofs
alongJ in the sense of~3.6!, thenss is a solution for alls. In fact we have

d

ds
AD~ss!5

d

ds ED
~ j 1ss!* QL5E

D
~ j 1s!* £ j 1JQL5E

D
~ j 1s!* v1E

D
~ j 1s!* da. ~3.12!

The first integrand vanishes sincev is contact; by Stokes’ theorem the second integral reduce
*]D( j 1s)* a, which is constant with respect to deformations. In fact its variation along a ver
vector fieldX vanishes sinceX50 on ]D. Hence (d/ds)dXAD(ss)50, which implies that the
variation of the action is constant along the flow of the symmetry, which in turn preserves c
sections. Thegeneralized No¨ther theoremimmediately follows. It is a constructive theorem ass
ciating to any symmetry generatorJ a conserved currentE. In fact for any generalized symmetr
generatorJ ~of orders! the following identity holds true:

£ j 1JQL5v1da. ~3.13!

Expanding the Lie derivative and collecting terms it can immediately be recast as

d~ i j 1JQL2a!52 i j 1JdQL1v. ~3.14!

Define the quantities

H E5~ j 2k21s!* ~ i j 1JQL2a!,
W52~ j 2ks!* i j 1JdQL . ~3.15!
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Then the identity~3.14!, pulled back onM along a sections, can be expressed as

dE5W. ~3.16!

This is the expression of No¨ther’s theorem; in fact, whenevers is a solution of field equations
thenW50 and hence the so-calledNöther currentE is conserved, i.e., dE50 which is equivalent
to a continuity equation.

Equation,~3.16! is called aweak conservation lawsince it implies dE50 on-shell~i.e., along
critical sections!.

For formal reasons it will be useful to define also the quantity

Ē5hor~ i j 1JQL2a!. ~3.17!

Because of the splitting into horizontal and contact part we have

~ j 2ks!* Ē5E. ~3.18!

IV. GENERALIZED SYMMETRIES IN MECHANICS AND SEPARATION OF VARIABLES

Let us consider a mechanical system described by a first order LagrangianL ~or, equivalently,
by its Poincare´–Cartan formQL! on the configuration bundleC.R3Q and a first order~project-
able! generalized vector field

J5jm~ t !] t1j i~ t,qi ,q̇i !] i . ~4.1!

The generatorJ is a generalized symmetry if it leaves the Poincare´–Cartan form invariant modulo
contact forms and exact forms, i.e., if

£ j 1JQL5v1da, ~4.2!

wherea(t,q,q̇) is a zero-form overJ1C.R3TQ andv is a contact form. Then, in this case, w
have for the horizontal part

hor~£ j 1JQL!5
da

dt
dt, ~4.3!

where da/dt is the formal total derivative ofa with respect oft and, consequently, the right han
side of Eq.~4.3! is an horizontal one-form overJ2C. HenceJ is a generalized symmetry if an
only if the horizontal part of the Lie derivative of the Poincare´–Cartan form is an exact differen
tial.

Now one can considerL85hor(£j 1JQL) as an auxiliary Lagrangian. Whenever its equatio
of motion are identically satisfied, thenL8 is an exact differential. The equations of motion of t
auxiliary LagrangianL8, considered as a system of partial differential equations for the com
nents (jm,j i) of the symmetry generatorJ, are hence called thecovariance conditions for the
original Lagrangian L.

These partial differential equations are usually quite diffucult to solve, but one can try to
them for the most general generalized symmetry and subsequently to apply the No¨ther theorem
with the aim of obtaining conserved quantities~i.e., first integrals in mechanics!. As we shall see,
such a computation leads to quite general results.

A. Free particle in the plane

Let us consider the free particle on the planeR2. Without loss of generality we can assume
mass to be unitary. The Lagrangian is hence

L5 1
2 ~ ẋ21 ẏ2!dt. ~4.4!
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The corresponding Poincare´–Cartan form reads

QL52 1
2 ~ ẋ21 ẏ2!dt1 ẋ~dx2 ẋdt !1 ẏ~dy2 ẏdt !5 1

2 ~ ẋ21 ẏ2!dt1 ẋdx1 ẏdy. ~4.5!

Let us look for the general expression of the generators of generalized~first order! symmetries
of L. A first order generalized vector field may be locally expressed as

J5j~ t !] t1Jx~ t,x,y,ẋ,ẏ!]x1Jy~ t,x,y,ẋ,ẏ!]y . ~4.6!

Let us assume the components to be linear in the velocities, i.e., let us suppose that we h

Jx~ t,x,y,ẋ,ẏ!5ax~ t,x,y!1jx~ t,x,y!ẋ1zx~ t,x,y!ẏ,
~4.7!

Jy~ t,x,y,ẋ,ẏ!5ay~ t,x,y!1zy~ t,x,y!ẋ1jy~ t,x,y!ẏ.

The horizontal part of the Lie derivative of the Poincare´–Cartan formQL with respect to the
symmetry generatorJ is hence

hor~£ j 1JQL!5@~jxẋ1zyẏ!ẍ1~zxẋ1jyẏ!ÿ1 ẋ2~ ẋ]xjx1~]yjx1]xzx1]xzy!ẏ

1] tjx1]xax2 1
2 ] tj!1 ẏ2~ ẏ]yjy1~]xjy1]yzy1]yzx!ẋ1] tjy1]yay2 1

2 ] tj!

1 ẋẏ~]yax1]yax1] tzx1] tzy!1 ẋ] tax1 ẏ] tay .#dt. ~4.8!

To check whether~4.8! is a total derivative with respect to time we have to regard it as an auxi
Lagrangian and see when its equations of motion identically vanish. In that way we ob
system of partial differential equations which can be solved with respect to the symmetry g
tor J. The result one obtains is the following general expression for the~generalized! symmetry
generator:

J5a0j~ t !~] t1 ẋ]x1 ẏ]y! % a1]x% b1]y% a2t]x% b2t]y% a3~xt2 ẋt2!]x% b3~yt1 ẏt2!]y

% a4ẋ]x% b4ẏ]y% a5~~ txẋ22tyẋ!]x1~ txẋ2x2!]y! % b5~~ ty ẏ2y2!]x1~ ty ẏ22txẏ!]y!

% a6~~y2 ẏt !]x2t ẋ]y! % b6~2t ẏ]x1~x2 ẋt !]y! % a7~~xẋ22yẏ!]x1xẋ]y!

% b7~yẏ]x1~yẏ22xẋ!]y! % a8~x22t ẋ!]x% b8~y22t ẏ!]y% c1~ ẏ]x1 ẋ]y!

% c2~~xyẏ2y2ẋ!]x1~xyẋ2x2ẏ!]y! % c3~~yt2t2ẏ!]x1~xt2t2ẋ!]y!, ~4.9!

wherea1 ( i 50,1,. . . ,8), bj ( j 51,2,. . . ,8) andcl ( l 51,2,3) are 20 real constants.
Each of these generators yields a generalized symmetry for the LagrangianL. We can now

apply the No¨ther theorem to obtain respectively the following 20 first integrals of motion~one of
which is trivial! for the free particle in the plane:

E050,

E15 ẋ, E25 ẏ,

E35t ẋ2x, E45t ẏ2y,

E552 1
2 ~x2t ẋ!2, E652 1

2 ~y2t ẏ!2,

E75 1
2 ẋ2, E85 1

2 ẏ2,

E952~x2t ẋ!~xẏ2yẋ!, E105~y2t ẏ!~xẏ2yẋ!,
~4.10!

E115~x2t ẋ!ẏ, E125~y2t ẏ!ẋ,
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E135~xẏ2yẋ!ẋ, E145~yẋ2xẏ!ẏ,

E155~x2t ẋ!ẋ, E165~y2t ẏ!ẏ,

E175 ẋẏ,

E1852 1
2 ~xẏ2yẋ!2,

E1952~x2t ẋ!~y2t ẏ!.

One can easily check that all these quantities are conserved along solutions of the equa
motion ofL. We should remark that the particular form of these first integrals of motion dep
on the particular basis we have chosen for the symmetry generators, which in turn depends
algorithm chosen to solve the covariance condition. One is free to change the basis, i.e., to p
any linear combination of the first integrals of motion. For example, one can considerE112E12

5xẏ2yẋ, and recover angular momentum.
It is known ~see Refs. 1 and 24–26! that there are exactly four coordinate systems~indepen-

dent on time! which lead to the separation of variables of the corresponding Hamilton–Ja
equation in the plane; they are related to the following first integrals of motion~see Refs. 1 and
25!:

ẋ252E7 ~Cartesian coordinates!,

~xẏ2yẋ!ẏ52E14 ~parabolic coordinates!,
~4.11!

~xẏ2yẋ!2522E18 ~polar coordinates!,

22E182cẏ~xẏ2yẋ!522E1812c2E7 ~Elliptic coordinates!.

Consequently we can relate~modulo overall constant factors which are unessential! the four
separation of variables in the plane with the following symmetry generators:

J15 ẋ]x ~Cartesian coordinates!,

J25yẏ]x1~yẏ22xẋ!]y ~parabolic coordinates!,
~4.12!

J35~xẏ2yẋ!~y]x2x]y! ~polar coordinates!.

J45J3% c~yẏ]x1~yẏ22xẋ!]y! ~Elliptic coordinates!.

Notice that none of these is an ordinary vector field so that separation of variables
related to ordinary vector fields and generalized symmetries are required. Explicit calcul
have been carried out by using the MapleV tensor package~see Ref. 27!.

B. Kepler problem

Let us consider a particle on the plane attracted to a fixed center by a Newtonian potent
can assume its mass to be unitary. The Lagrangian is hence

L5F1

2
~ ṙ 21r 2u̇2!1

k

r Gdt. ~4.13!

The corresponding Poincare´–Cartan form reads as
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QL5F1

2
~ ṙ 21r 2u̇2!1

k

r Gdt1 ṙ ~dr 2 ṙdt !1r 2u̇~du2 u̇dt !52F1

2
~ ṙ 21r 2u̇2!2

k

r Gdt1 ṙdr 1r 2u̇du.

~4.14!

Let us look for the general expression of the generators of generalized~first order! symmetries
of L. A first order generalized vector field is locally expressed as

J5j~ t !] t1Jx~ t,x,y,ẋ,ẏ!]x1Jy~ t,x,y,ẋ,ẏ!]y , ~4.15!

and the components are assumed to be linear in the velocities, i.e., we have

Jx~ t,x,y,ẋ,ẏ!5ax~ t,x,y!1jx~ t,x,y!ẋ1zx~ t,x,y!ẏ,
~4.16!

Jy~ t,x,y,ẋ,ẏ!5ay~ t,x,y!1zy~ t,x,y!ẋ1jy~ t,x,y!ẏ.

The resulting generalized symmetry generators have the following general expression:

J5a0] t % a1]u % a2~r 2u̇ sinu] r1~22r cosu1 ṙ sinu!]u!

% a3~r 2u̇ cosu] r1~22r sinu1 ṙ cosu!]u! % a4r 2u̇]u , ~4.17!

whereai ( i 50,1,2,3,4) are five real constants.
All these generators can be directly checked to provide a generalized symmetry fo

LagrangianL. We can apply No¨ther’s theorem to obtain respectively the following five fir
integrals of motion

E05
1

2
~ ṙ 21r 2u̇2!2

k

r
,

E15r 2u̇,

E25r 3u̇2 cosu1r 2ṙ u̇ sinu2k cosu, ~4.18!

E35r 3u̇2 sinu1r 2ṙ u̇ cosu2k sinu,

E452 1
2 r 4u̇2.

The first one is total energy, the second thez-component of angular momentum; the vectorL
5E2]x1E3]y5v3(r 3v)2k] r is the so-calledLaplace vector, also known as theRunge–Lenz
vector, which is related to the perihelia precession.

One can easily check that all these quantities are conserved along solutions of the equa
motion. The integralE4 leads to polar separation. The components of the Laplace vectorE2 lead
to parabolic separation, while22E412c2E2 leads to elliptic separation~c is the distance betwee
the center and the focuses! ~see Refs. 1, 24 and 25!.

Explicit calculations have been carried out by using the Maple V tensor package~see Ref. 27!.

V. BRST TRANSFORMATIONS

As an example of generalized symmetries in field theories we shall hereafter consider
transformations, which are very relevant to the contemporary approach to quantum field th
~see Refs. 4, 12 and reference quoted therein!.

Let us consider Minkowski space–time (M ,h) on which we choose Cartesian coordinatesxm

and we define the dynamical fieldAm
C . The field Am

C is a Yang–Mills field, i.e., a principa
                                                                                                                



ang–
r of the

l
gauge
nger

g-

r

efines
t observ-
ey are
level.

ut to
d

3157J. Math. Phys., Vol. 43, No. 6, June 2002 Generalized symmetries in mechanics

                    
connection on a suitable~a priori fixed! principal bundleP with a semisimple gauge groupG ~see
Ref. 28!. The Cartan–Killing metric overG will be denoted bykAB . The curvature ofAm

C is given
by

FA
mn5dnAm

C2dmAn
C1cC

ABAm
AAn

B , FA
mn[kABFrs

B gmrgns. ~5.1!

The Yang–Mills Lagrangian,

LYM52 1
4 Fmn

A FA
mnAgds, ~5.2!

has very attractive symmetry properties related to gauge transformations.
From a quantum viewpoint, however, the situation does not appear so positive. The Y

Mills Lagrangian is degenerate; as a direct consequence one cannot define the propagato
Yang–Mills field. This is ultimately due to the fact that the gauge fieldAm

A contains both physica
and unphysical degrees of freedom. One usually fixes a gauge, for example, the Lorentz
gmndmAn

A50. This solves the problem of propagators, but unfortunately the theory is no lo
unitary, i.e. its dynamics does not conserve probability normalization~see 12!. Fortunately enough
unitarity can be restored by introducing aghost field cA together with its antighost fieldc̄A. In our
case (cA,c̄A) are scalar anticommuting fields. Another fieldBA has to be introduced as a Lagran
ian multiplier for the Lorentz gauge fixing.

Following Ref. 4, we consider the Lagrangian

LBRST5F2
1

4
FA

mnFA
mn1dmc̄ADmcA2dmBAAm

A1
a

2
BABAGAgds, ~5.3!

wherea is a coupling constant andDmcA5dncA1cA
BCAm

BcA, is the covariant derivative of the
ghost field. Modulo a pure divergence term2dm(BAAm

A), one can identify the Lagrange multiplie
termBAdmAm

A in order to introduce the Lorentz gauge and the ghost kinetic term dmc̄ADmcA. This
Lagrangian is no longer gauge covariant but it yields a unitary quantum field theory and it d
good propagators which are nonetheless gauge dependent. However, propagators are no
able physical quantities. Only Green functions will be observable and one can prove that th
not affected by the gauge choice; gauge covariance is hence restored at an observational

The field equations are

DnFC
nl5dlc̄AcA

BCcB1dlBC ,

h c̄A1 c̄CcC
ABdmAm

B5dm~ c̄CcC
ABAm

B!,
~5.4!

hcA5dm~cA
BCAm

BcC!,

aBA1dmAm
A50,

where, as usual, we restrict to deformations which keep the backgroundh fixed and where we
denote byh the box operatorh5dmdm .

In the quantization of such a theory, which is beyond the scope of this article, it turns o
be useful to notice that the LagrangianLBRST is covariant with respect to the following generalize
transformations:

dAA
m5eDmcA5e~dmcA1cA

BCAm
BcC!,

dcA52
e

2
$c,c%A,

~5.5!
d c̄A5eBA,
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dBA50,

where$c,c%A5cA
BCcBcC is the relevant~anti!-commutator. We remark thatdcAÞ0, sincecA is an

anticommuting field.
These are generalized symmetries, both since they depend on the derivatives of field~thus

they are generalized vector fieldsJ in the sense of our definition above!

J5~DmcA!
]

]AA
m

2
1

2
$c,c%A

]

]cA 1BA
]

] c̄A , ~5.6!

and since they do not leave the Poincare´–Cartan form invariant. In fact, one can easily check t
the Poincare´–Cartan form is~see Ref. 4!

QL5Lds1@FA
mn~dAn

A2dlAn
Adxl!1dmc̄A~dcA2dlcAdxl!

1~dc̄A2dlc̄Adxl!~dncA1cA
BCAn

BcC!gmn2An
Agmn~dBA2dlBAdxl!#∧dsm . ~5.7!

Its Lie derivative alongJ is given by

£ j 1JQ52FA
mn~dcm

A2cml
A dxl!∧dsn1dmBA~dcA2cl

Adxl!∧dsm . ~5.8!

Hence the hypotheses of the generalized No¨ther theorem are satisfied and the conserv
currents are given by

E~L,J!5@FA
mnDncA2BADmcA1 1

2 dmc̄A$c,c%A#dsm . ~5.9!

VI. WESS–ZUMINO MODEL

We consider finally another example of generalized symmetries in field theory~see Refs. 3,
13, 29!. Let us fix a signatureh5(r ,s) and a principal Spin~h!-bundleS over the space–timeM
of dimensionm5r 1s. Consider the action

l:Spin~h!3GL~m!→GL~m!, l~S,J!•ea
m5Jn

m
•eb

nl a
b~S21!, ~6.1!

wherel :Spin~h!→SO~h! is the covering map exhibiting the spin group as a double coverin
the orthogonal group in the fixed signature. By means of the actionl we can define the associate
bundle Sl5S3ML(M )3lGL(m) which admits fiber coordinates (xm,ea

m). The fieldsea
m are

calledspin frames onS and they are in one-to-one correspondence with the spin structures de
on S ~see Refs. 30 and 31 and references quoted therein!. A spin frameea

m induces a metric
gmn5em

a haben
b ~en

b being the inverse matrix ofea
m!. Despite the fact that spin frames can be loca

confused with local sections ofL(M ), their behavior with respect to change of coordinates a
their global properties differ from local frames~see Refs. 30–32!. We have to warn the reader tha
in many cases in the literature of spinor physics when vielbein are mentioned spin frames
are what is meant. One can recognize this by comparing the expression for the covariant de
of vielbein ~which is there introduced as anad hoc prescription! and the canonical covarian
derivative for spin frames~see Refs. 33 and 34!.

Let us then consider another representation of the spin group

r:Spin~h!3V→V, r~S!•ca5rb
a~S!cb, ~6.2!

induced by the choice of a set ofk3k Dirac matricesga such that$ga ,gb%52habI, hab being the
canonical diagonal matrix in signatureh5(r ,s). As a further Hermitian requirement we assum
that g0ga

†g05ga . The sectionsc of the associated bundleSr5S3rV are calledspinor fields.
The conjugationc̄5c†g0 induces an inner product on spinors given byc̄c. Hereafter~see also
Refs. 10, 17, and 35! we shall considerV5@L2#k modeled on the odd part of an exterior algeb
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so that the local componentsca:U→L2 of spinors actually anticommute, i.e.,cafb52fbca.
This is necessary for path integral quantization~see Refs. 3 and 36! in order to implement the
Pauli principle. Hence we implement it from the very beginning also in the classical framew
For convenience we consider Majorana spinors. Recall that a spinor fieldc is called aMajorana

spinor if it satisfies the conditionc5Cc̄†, where C is the charge conjugation operator. In
dimensionm54 and Lorentzian signatureh5(1,3) we choose a set of Dirac matrices

g05S 0 I

I 0D , g i5S 0 2s i

s i 0 D , ~6.3!

where thes i two-by-two matrices denote the standard Pauli matrices. We have

C5S 2 is2 0

0 is2D , cMaj5S a
is2 ta†D , ~6.4!

wherea is any two-component spinor. The action of the spin group Spin~1,3! is compatible with
the Majorana condition, so that Majorana spinors are globally well-defined.

Let us consider the following fields: a Majorana~anticommuting! field c and four scalar
~possibly densities! commuting fields (A,B,C,D) on a space–time manifoldM with a spin frame
ea

m fixed on it. We shall denote byem
a the spin coframe which is represented by the inverse of

matrix ea
m . As a consequence of the spin frame fixing the manifoldM is endowed with an induced

metric structureg and a compatible spin structure. We further consider the Lagrangian

LWZ5
l

2
~¹mA¹mA1D212mAD!eds2c̄~ iga¹ac1mc!)eds

1
l

2
~¹mB¹mB1C222mBC!e3 ds. ~6.5!

Here the covariant derivatives of scalar fields are considered with respect to the Levi-
connection induced by the metric, which is in turn induced by the spin frame. Analogously
covariant derivatives of spinors are with respect to the spin connection induced by the spin
i.e.,

¹ac5ea
m~dmc1 1

8 Gm
ab@ga ,gb#c!, Gm

ab5er
a~Gsm

r ec
s1dmec

r!hcb. ~6.6!

This Lagrangian is kept invariant~modulo divergence terms! by the infinitesimal transforma
tions

dA5
a

2
~ ēc!, dC52

a

2
~ ēg5ga¹ac!e21,

dB52 i
a

2
~ ēg5c!e21, dD5 i

a

2
~ ēga¹ac!,

~6.7!

dc5
a

2
@~gae!i¹aA1~gag5e!e¹aB1~g5e!ieC1~e!D#,

dc̄5
a

2
@2 i¹aA~ ēga!2e¹aB~ ēg5ga!1 ieC~ ēg5!1D~ ē !#.

Here the transformation parametere is a Majorana~anticommuting! spinor which is assumed to b
covariantly conserved, i.e.,¹me50. Further comments about spinor transformation~anticommut-
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ing! parameters will follow below. Notice that the relative coupling constants appear to be fix
the requirement that the infinitesimal transformations~6.7! are symmetries of the Lagrangia
LWZ . On the contrary, one could replace the fields (A,B,C,D) with scalar densities of arbitrary
weight.~Of course, in this case the Lagrangian has then to undergo a number of minor chan
manitain covariance.!

We stress that the condition fore to be covariantly conserved is a very strong one. It cor
sponds more or less to the point independent transformation on which gauge theories are
The model we present here is a first step towards a field theory which is covariant with resp
point-dependent transformations. Such a theory is calledsupergravityand one has to redefine th
Lagrangian and to introduce auxiliary fields to obtain covariance with respect to this wider cl
transformations~see Ref. 13!. Here we are not interested in these generalizations for which
refer the interested reader to Refs. 3 and 13. Under these conditions the transformation~6.7! is
global only when trivial structure bundlesS5M3Spin(h) are considered.

One can define the infinitesimal~vertical! generalized symmetry

J5~dA!
]

]A
1~dB!

]

]B
1~dC!

]

]C
1~dD !

]

]D
1~dc!

]

]c
1~dc̄ !

]

]c̄
, ~6.8!

which is called thesupersymmetry generatorand which can be shown to leave the Lagrang
invariant modulo the following divergence term:

dLWZ5Div~a!,
~6.9!

a5
a

4
@~2imA~ ēgmc!12¹mA~ ēc!2¹nA~ ēgngmc!1 iD ~ ēgmc!!e1~2mB~ ēg5gmc!

22i¹mB~ ēg5c!1 i¹nB~ ēg5gngmc!1C~ ēgmg5c!!e2#dsm .

Notice that the supersymmetry generators are not closed with respect to the commutato
can in fact check that, given two supersymmetries generated bye1 ande2 , their commutator is the
Lie derivative with respect to the vector field defined on the structure bundleS by

ĵ5jm~]m2Gm
absab! % ~em

a ¹njmebn!sab , jm5 i
a2

2
~e2gme1!. ~6.10!

We remark that the vector field~6.10! is the so-calledKosmann liftof the space–time vector field
j5jm]m ~see Ref. 34!.

The vector fields~6.10! and the supersymmetry generators form an algebra with the follow
commutation rules.

@d1 ,d2#5£ĵ , @d1 ,£ĵ#50, @£ẑ ,£ĵ#50. ~6.11!

Of course these vector fields do not span an ordinary Lie algebra, since some of the parame
actually anticommuting, while the ordinary Lie algebra parameters are scalars. In fact, one
regard them as generators of a graded Lie algebra~also calledsuperalgebra!.

VII. CONCLUSION AND PERSPECTIVES

Nöther’s theorem has been generalized to include a number of cases which play a pro
role in modern applications both in mechanics and field theory. As a first application o
generalized No¨ther theorem we have shown how to recover the classical results for the sepa
of variables of the Hamilton–Jacobi equation in mechanics. This new perspective for separa
variables is particularly interesting. In fact No¨ther’s theorem is stated in a purely Lagrangi
context. Though of course one needs the Hamiltonian formalism to obtain the Hamilton–J
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equation, its separation of variables appears to be studied both in the Hamiltonian and
Lagrangian framework.

This is of some interest for mechanics but may turn out to be very important in field th
In field theory there are a number of examples of separation of variables which rely on ope
which commute with field equations. The relation between separation of variables in mec
and in field theory is still unclear. Although one has a fairly general theory on separatio
variables in mechanics in field theory a general framework still needs to be developed
generalized No¨ther’s theorem may provide such a framework for treating the problem of sep
tion of variables in field theory. The advantage of this perspective is that it relies completely o
Lagrangian formalism which is quite important in field theory~where there is no general agre
ment on what is to be regarded as Hamiltonian framework!. Further investigations will therefore
be devoted to separation of variables in field theory.
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Radiation of horizontal electric dipole on large dielectric
sphere

Dionisios Margetisa)

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 27 June 2001; accepted for publication 29 January 2002!

The electromagnetic field in air of a radiating electric dipole located below and
tangential to the surface of a homogeneous, isotropic and optically dense sphere is
studied anew. The starting point is the eigenfunction expansion for the field in
spherical harmonics, which is now converted into series of integrals via the Poisson
summation formula. A creeping-wave structure for all six components along the
boundary is revealed that consists of waves exponentially decreasing through air
and rays bouncing and circulating inside the sphere. The character of individual
modes of propagation and the interplay between ‘‘electric’’ and ‘‘magnetic’’ types
of polarization are investigated. Connections with and differences from standard
ray optics and the cases of the radiating vertical dipole and scalar plane-wave
scattering are outlined. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1467610#

I. INTRODUCTION

The scattering and diffraction of electromagnetic waves have long been understo
boundary-value problems of Maxwell’s equations. In principle, the field can be determined e
where by specifying the source and the boundary conditions. In practice, even when close
solutions are then obtained, the chosen representations may not be amenable to quantita
derstanding. This difficulty often plagues analyses where current sources lie too close
boundary separating two media. Such a case arises in connection with the long-distance c
nication along the sea surface at very low frequencies.1,2

In the present article, a three-dimensional idealized model is studied in which the sourc
electric dipole located below and tangential to the surface of a homogeneous and isotropic
trically large sphere surrounded by air. Of course, none of the field components can be m
vanish identically in this case. A dipole vertical to the spherical boundary,3,4 on the other hand,
introduces an axis of symmetry, having only three nonzero spherical components; these
eigenfunction expansions of simpler structure. In both problems, the formal solution is e
attainable in terms of spherical harmonics but is not directly amenable to computation
interpretation. One of the objectives of this work is to unveil the underlying physical pictur
asymptotic methods for the case of the horizontal dipole, describing the interplay betwee
coexisting polarizations. The assumption of an optically dense sphere is thus imposed
attention is restricted to points lying in the spherical boundary. The analysis is also intend
reveal differences from the known case of plane-wave scattering in the context of the scala
and Schro¨dinger’s equations. Because the emphasis is on the physical concepts and th
needed to expose such concepts, actual numerical calculations are beyond the scope of thi

There is a fairly long sequence of papers in connection with the present problem. Notew
is Mie’s formal expansion5 in partial waves for a plane wave incident on a homogeneous sp
Another formulation found in a later paper by Debye6 is related to his previous studies of high
frequency plane-wave scattering by an infinitely long cylinder.7 An exposition and discussion o

a!On leave from the Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. Ele
mail: dio@math.mit.edu
31620022-2488/2002/43(6)/3162/40/$19.00 © 2002 American Institute of Physics
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these as well as of other works was given by van de Hulst.8 Watson9 appears to be the first to
investigate systematically the radiation of a point source in the presence of a sphere with
large compared to the wavelength. In his formulation the source was an electric dipole lo
above and vertical to the surface of a perfectly conducting sphere; his focus was on scalar
tials that furnish the electromagnetic field via successive differentiations. The merits of Wa
approach are unquestionable: the slowly converging expansion in partial waves was conve
an integral which in turn generated a rapidly converging series. This method was later invok
other authors10–12 in their efforts to treat the case of a finitely conducting sphere. Among th
authors, Gray,12 for example, identified a ‘‘magnetic’’ type of wave propagating and attenua
through air with an attenuation rate independent of the adjacent medium, when the sour
magnetic dipole vertical to the surface of a lossy sphere.

Being aware of these works, Norton13 proposed simplified formulas and graphs for the fie
intensity of vertical and horizontal dipoles elevated over a spherical earth. Bremmer14,15compared
the fields of the two configurations by considering the direct wave and the leading reflected
in free space; his analysis pointed to a simple picture for wave propagation in air for dist
exceeding the free-space wavelength. The radiation of a horizontal dipole above a finitel
ducting sphere was investigated by Fock16 by use of scalar potentials. He approximated the fi
through air in the ‘‘shadow region’’ in terms of exponentially decreasing waves, and gav
corresponding attenuation rates as solutions to two uncoupled transcendental equation
started with an extension of Watson’s method9 by neglecting the field that travels through th
sphere and not examining the transition to planar-earth formulas. In the same spirit, the pr
was essentially revisited by Wait17 in the 1950s; he concluded that at ‘‘low radio frequencies’’ t
horizontal component of the electric field is negligibly small compared to the vertical one. O
basis of Watson’s method,9 geometrical-ray pictures were invoked in that same period of tim
the study of elastic waves inside spherical cavities.18,19 ~See Refs. 20 and 21 for later develo
ments in the theory of elastic-wave propagation.!

In a remarkable paper, Wu22 invoked the concept of the creeping wave in order to study
high-frequency scattering of plane waves by impenetrable cylinders and spheres in the con
Schrödinger’s and Maxwell’s equations. He derived asymptotic expansions for the total scat
cross sections that went well beyond the standard geometrical optics, and pointed out
mathematical tool leading to the creeping wave in the case of a sphere is the Poisson sum
formula. Notably, Wu22 extended the familiar concept of the creeping wave in two sp
dimensions23–26 from high frequencies to all positive frequencies by arguments of algeb
topology.27 The underlying physical idea was soon after generalized to other scattere
Seshadri.28 A similar analysis based on the Poisson summation formula was later use
Nussenzveig,29 who referred to Ref. 22, for the study of high-frequency, plane-wave scatterin
transparent spheres. Key points in his analysis were the imposition of a large index of refr
and the expansion of the total scattering amplitude in a series of the Debye type.7 Nussenzveig
provided a description in terms of waves that attenuate exponentially along the boundary an
bouncing and circulating inside the sphere. The relevant Poisson summation formula c
written as30

(
l 50

`

g~ l !5 (
n52`

`

e2 inpE
0

`

dn gS n2
1

2D ei2pnn, ~1.1!

where the left-hand side is the starting eigenfunction expansion. The right-hand side o
equation was interpreted in terms of ‘‘classical paths’’ by Berry and Mount.31 This interpretation
stems from noticing that for high frequencies each indexn identifies a path that encircles th
origin n times.31,32Accordingly, these authors invoked stationary-phase calculations and elab
uniform approximations.

Recently, Houdzoumis3,4,33 applied the Poisson summation formula in order to study
radiation of a vertical electric dipole over a sphere, by imposing the simplifying assumption
large index of refraction. As mentioned earlier, the number of nonzero field components is re
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to three in this case, with the corresponding polarization being termed as of the ‘‘electric t
Houdzoumis placed equal emphasis on the wave that attenuates exponentially along the bo
in air and the rays that circulate around the origin inside the sphere. Kinget al.1,2 made use of
these results for the surface wave in order to calculate the field of an antenna on the sea su
the range of very low frequencies~VLF!.

In the spirit of Houdzoumis’ analysis,3,4,33the present article has a threefold purpose. The
purpose is to give the complete solution for the field of an electric dipole located inside a s
without recourse to scalar potentials. The dipole is taken to lie in the plane defined by a
tangent and the center of the sphere, and is parallel to the tangent. The second purpo
evaluate all six components when the dipole approaches the boundary from below by con
the series of partial waves into integrals according to the Poisson summation formula. In thi
all series diverge in the usual sense and some care needs to be exercised. By use of asym
it is found that, apart from waves that reach the observation point with the air and earth
velocities, significant contributions may arise from rays bouncing and circulating inside
sphere. The third purpose is to compare these findings with other, known cases such
plane-wave scattering and the radiation of a vertical electric dipole.

The remainder of the article is organized as follows. Section II starts with Maxwell’s e
tions; the ordinary differential equations in the radial distance for theu- andf-components of the
field in spherical coordinates are solved explicitly. The eigenfunction expansions in sph
harmonics are then converted into series of integrals, and both the source and the observati
are allowed to approach the boundary. In Sec. III, integral expressions are obtained w
inverse electrical radius used as the expansion parameter. The lowest-order terms are
Sommerfeld integrals.34 Corrections to these integrals account for the finite curvature of
boundary, describing waves that travel through air and through the dense medium. Inte
expressions are given for these waves whenk2

2!uk1
2u, k2r@1 and the observation angleu is

sufficiently small, wherek2 is the wave number in air, assumed to be real throughout the papek1

is the complex wave number in the sphere, andr is the cylindrical distance from the source. Th
expressions for the wave through the sphere are new to the author’s knowledge. The acco
ing zeroth-order integral terms have been evaluated via rapidly converging series elsewhere34,35In
Sec. IV, the aforementioned asymptotic formulas are modified to account for the transition
planar-boundary formulas to waves decreasing exponentially through air, with the distinct
two modes of propagation pertaining to polarizations of an ‘‘electric’’ and a ‘‘magnetic’’ type
description is also provided for the field with the phase velocity of the enclosed medium
analysis in Sec. V shows that, foru5O(1) andp2u5O(1), thetotal field consists of waves tha
attenuate exponentially, and rays that circulate in the sphere and are multiply reflected
boundary. The contributions of these rays are negligible for a finitely conducting sphere. A
limiting cases of the ray contributions are placed under scrutiny, an example being the case
the antipodal point atu5p is approached along the boundary. The interplay between contribu
of the two polarizations to the ray amplitudes as well as deviations from the ray charact
discussed.

In some of the calculations presented in this article, such as those in Appendix A, the
number in the sphere,k1 , is treated as real for the sake of simplicity. This poses no restrictio
the final asymptotic formulas, however, which are usable for complex values ofk1 with 0
<Arg k1<p/4, and are therefore applicable to spheres of finite conductivity. Thee2 ivt time
dependence is suppressed throughout the analysis.

II. FORMULATION

A. Formal representations

The geometry of the problem is depicted in Fig. 1. It consists of anx-directed electric dipole
S of unit moment located inside a homogeneous, isotropic and nonmagnetic sphere~region 1,r
,a! at a distanceb from the origin. The sphere is surrounded by air~region 2,r .a!. Maxwell’s
equations in each regionj ( j 51, 2) read as follows:
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1

r sinu

]

]u
~sinu Ej f!2

1

r sinu

]

]f
~Ej u!5 ivBjr , ~2.1!

1

r sinu

]

]f
~Ejr !2

1

r

]

]r
~rE j f!5 ivBj u , ~2.2!

1

r

]

]r
~rE j u!2

1

r

]

]u
~Ejr !5 ivBj f , ~2.3!

1

r sinu

]

]u
~sinu Bj f!2

1

r sinu

]

]f
~Bj u!52 i

kj
2

v
Ejr , ~2.4!

1

r sinu

]

]f
~Bjr !2

1

r

]

]r
~rB j f!5m0Jj u2 i

kj
2

v
Ej u , ~2.5!

1

r

]

]r
~rB j u!2

1

r

]

]u
~Bjr !5m0Jj f2 i

kj
2

v
Ej f , ~2.6!

where the current density is

J~r !5d~x!d~y!d~z2b!x̂. ~2.7!

The field in region 1 is the superposition of a primary and a secondary field, viz.,

F15F1
(pr)1F1

(sc), F5E, B. ~2.8!

In order to calculate the primary field, introduce the vector potentialA1
(pr)5G(r ;b) x̂, where

G~r ;b!5
m0

4p

eik1R

R
5

im0k1

4p (
l 50

`

~2l 11! j l~k1r ,!hl
(1)~k1r .!Pl~cosu!, ~2.9!

R5Ar 21b222rb cosu, r . is the larger ofr andb, andr , is the smaller.j l andhl
(1) denote the

spherical Bessel and Hankel functions, and Pl
m is the Legendre function of the first kind.36 Hence,

FIG. 1. Spherical coordinates and horizontal electric dipoleS inside an isotropic and homogeneous sphere.
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B1r
(pr)5b1r

(pr)~r ,u! sinf52
1

r

]G

]u
sinf52

im0k1

4pr
sinf(

l 50

`

~2l 11! j l~k1r ,!hl
(1)~k1r .!Pl

1~cosu!,

~2.10!

B1u
(pr)5b1u

(pr)~r ,u! sinf, B1f
(pr)5b1f

(pr)~r ,u! cosf, ~2.11!

E1r
(pr)5e1r

(pr)~r ,u! cosf52
iv

k1
2r

]

]u S ]G

]b
1

1

b
GD cosf

5
vm0

4pb

1

k1r
cosf(

l 50

`

~2l 11!c l~k1r !@c̆ l~k1b!1k1b c̆ l8~k1b!#Pl
1~cosu!,

~2.12!

E1u
(pr)5e1u

(pr)~r ,u! cosf, E1f
(pr)5e1f

(pr)~r ,u! sinf, ~2.13!

where (c l ,c̆ l)5( j l ,hl
(1)) if r ,b, (c l ,c̆ l)5(hl

(1), j l) if r .b, and the prime denotes differentia
tion with respect to the argument. Let

Bjr 5bjr ~r ,u! sinf, Bj u5bj u~r ,u! sinf, Bj f5bj f~r ,u! cosf, ~2.14!

Ejr 5ejr ~r ,u! cosf, Ej u5ej u~r ,u! cosf, Ej f5ej f~r ,u! sinf. ~2.15!

It follows that

]2

]r 2 ~rb j f!1kj
2~rb j f!5

1

sinu

]

]r
~bjr !1

ik j
2

v

]

]u
~ejr !, ~2.16!

]2

]r 2 ~rej f!1kj
2~rej f!52 iv

]

]u
~bjr !2

1

sinu

]

]r
~ejr !, ~2.17!

bj u5
i

v F 1

r sinu
ejr 1

1

r

]

]r
~rej f!G , ~2.18!

ej u5
iv

kj
2 F 1

r sinu
bjr 2

1

r

]

]r
~rb j f!G . ~2.19!

The total field must be bounded at the origin and satisfy the usual radiation conditions.37 It is
natural to set

e1r
(sc)52

m0v

4pr

1

k1b (
l 50

`

~2l 11!Ãl j l~k1r !@ j l~k1b!1k1b j l8~k1b!#Pl
1~cosu!, ~2.20!

e2r5
m0v

4pr

1

k1b (
l 50

`

~2l 11!B̃lhl
(1)~k2r !@ j l~k1b!1k1b j l8~k1b!#Pl

1~cosu!, ~2.21!

b1r
(sc)5

im0k1

4pr (
l 50

`

~2l 11!C̃l j l~k1r ! j l~k1b!Pl
1~cosu!, ~2.22!

b2r52
im0k1

4pr (
l 50

`

~2l 11!D̃ lhl
(1)~k2r ! j l~k1b!Pl

1~cosu!, ~2.23!
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whereÃl , B̃l , C̃l , andD̃ l are coefficients yet to be determined.
In region 1, Eqs.~2.16! and~2.17! split into two equations by virtue of Eq.~2.8!. In compact

notation, these equations are

]2

]r 2 ~rw !1k2~rw !5
1

sinu

]g

]r
, ~2.24a!

]2

]r 2 ~rw !1k2~rw !5
]g

]u
, ~2.24b!

whereg5g(r ,u) (g5bjr ,ejr ) is treated as known. Specifically,

g~r ,u!5r 21(
l 50

`

~2l 11!clc l~kr !Pl
1~cosu!. ~2.25!

In the above,c l5 j l andk5k1 if r ,a, c l5hl
(1) andk5k2 if r .a.

A solution to Eq.~2.24a! is

rw~r ,u!5
1

sinu (
l 50

`
2l 11

l ~ l 11!
clwl~r !Pl

1~cosu!. ~2.26!

Eachwl(r ) ( l 50, 1, 2, . . . )should of course satisfy

S d2

dr2 1k2Dwl~r !52
l ~ l 11!

r 2 @c l~kr !2krc l8~kr !#, ~2.27!

and therefore equalswl(r )5(d/dr)@rc l(kr)#. With regard to Eq.~2.24b!,

rw~r ,u!5(
l 50

`
2l 11

l ~ l 11!
clwl~r !

]Pl
1

]u
, ~2.28!

wherewl(r ) is forced to satisfy

S d2

dr2 1k2Dwl~r !5
l ~ l 11!

r
c l~kr !, ~2.29!

with an admissible solutionwl(r )5rc l(kr). Oncebj f andej f are determined in this fashion,bj u

andej u follow from Eqs.~2.18! and ~2.19!.
The coefficientsÃl , B̃l , C̃l , andD̃ l in Eqs.~2.20!–~2.23! are calculated via imposition of th

continuity of Ef and Bu at r 5a. These conditions yield two independent systems of lin
equations, namely, one forÃl , B̃l and one forC̃l and D̃ l . The former set describes a magnet
type (H-) polarization ~Br50, ErÞ0!, while the latter one pertains to an electric-type (E-)
polarization~Er50, BrÞ0!, in correspondence to the case with a planar boundary. Explicitly

Ãl5
hl

(1)~k1a!

j l~k1a! H 1

k2a
1

hl
(1)8~k2a!

hl
(1)~k2a!

2
k2

k1
F 1

k1a
1

hl
(1)8~k1a!

hl
(1)~k1a!

G J 1

Kl
, ~2.30!

B̃l5
i

k1k2a2 j l~k1a!hl
(1)~k2a! Kl

, ~2.31!
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C̃l5
hl

(1)~k1a!

j l~k1a!
Fhl

(1)8~k1a!

hl
(1)~k1a!

2
k2

k1

hl
(1)8~k2a!

hl
(1)~k2a!

G 1

Ml
, ~2.32!

D̃ l52
i

~k1a!2 j l~k1a!hl
(1)~k2a! Ml

, ~2.33!

where the two principal denominators read as

Kl5
hl

(1)8~k2a!

hl
(1)~k2a!

1
1

k2a
2

k2

k1
F 1

k1a
1

j l8~k1a!

j l~k1a!
G , ~2.34!

Ml5
j l8~k1a!

j l~k1a!
2

k2

k1

hl
(1)8~k2a!

hl
(1)~k2a!

. ~2.35!

The terminology above primarily serves the purpose of distinguishing between contributions
these two denominators.

The field in region 2 is

E2r5
ivm0

4pk1rk2a2 cosf(
l 50

`

~2l 11!
j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
GPl

1~cosu!,

~2.36!

E2u5
ivm0

4pk1a2 cosf(
l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
G

3F 1

k2r
1

hl
(1)8~k2r !

hl
(1)~k2r !

G ]Pl
1

]u

2
ivm0

4pk1a2 sinu
cosf(

l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml
Pl

1~cosu!, ~2.37!

E2f52
ivm0

4pk1a2 sinu
sinf(

l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
G

3F 1

k2r
1

hl
(1)8~k2r !

hl
(1)~k2r !

GPl
1~cosu!

1
ivm0

4pk1a2 sinf(
l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml

]Pl
1

]u
, ~2.38!

B2r52
m0

4pk1ra2 sinf(
l 50

`

~2l 11!
j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml
Pl

1~cosu!, ~2.39!

B2u52
m0k2

4pk1a2 sinf(
l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml
F 1

k2r
1

hl
(1)8~k2r !

hl
(1)~k2r !

G ]Pl
1

]u

2
m0k2

4pk1a2 sinu
sinf(

l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
GPl

1~cosu!,

~2.40!
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B2f52
m0k2

4pk1a2 sinu
cosf(

l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Ml
F 1

k2r
1

hl
(1)8~k2r !

hl
(1)~k2r !

GPl
1~cosu!

2
m0k2

4pk1a2 cosf(
l 50

`
2l 11

l ~ l 11!

j l~k1b!

j l~k1a!

hl
(1)~k2r !

hl
(1)~k2a!

1

Kl
F 1

k1b
1

j l8~k1b!

j l~k1b!
G ]Pl

1

]u
. ~2.41!

Expansions~2.36!–~2.41! converge uniformly in all parameters ifrÞa or bÞa. For largel
each series is majorized by a geometric series with expansion parameterb/a)
3(min$r,a%/max$r,a%). For k2a@1, the summands withl<O(k1a) oscillate rapidly, hindering
physical interpretation and rendering direct computations impractical.

B. Electromagnetic field on the surface

When the dipole and the observation point are allowed to approach the boundary~b→a2,
r→a1!, the series expansions for the field diverge.38 Application of the Poisson summatio
formula ~1.1! converts Eqs.~2.36!–~2.41! into the following series:

E2r5
ivm0

2pk1k2a3 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

K~n!
F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
GPn21/2

1 ~cosu!,

~2.42!

E2u5
ivm0

2pk1a2 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

K~n!
F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G
3F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
G ]Pn21/2

1

]u
2

ivm0

2pk1a2 sinu
cosf

3 (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

M~n!
Pn21/2

1 ~cosu!, ~2.43!

E2f52
ivm0

2pk1a2 sinu
sinf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

K~n!
F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G
3F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
GPn21/2

1 ~cosu!

1
ivm0

2pk1a2 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

M~n!

]Pn21/2
1

]u
, ~2.44!

B2r52
m0

2pk1a3 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

M~n!
Pn21/2

1 ~cosu!, ~2.45!
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B2u52
m0k2

2pk1a2 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

M~n!
F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G ]Pn21/2
1

]u

2
m0k2

2pk1a2 sinu
sinf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

K~n!

3F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
GPn21/2

1 ~cosu!, ~2.46!

B2f52
m0k2

2pk1a2 sinu
cosf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

M~n!

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu!

2
m0k2

2pk1a2 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22
1

4

1

K~n!
F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
G ]Pn21/2

1

]u
,

~2.47!

where

K~n!5
Hn

(1)8~k2a!

Hn
(1)~k2a!

1
1

2k2a
2

k2

k1
F 1

2k1a
1

Jn8~k1a!

Jn~k1a!
G , ~2.48!

M~n!5
Jn8~k1a!

Jn~k1a!
2

k2

k1

Hn
(1)8~k2a!

Hn
(1)~k2a!

. ~2.49!

The integrands in Eqs.~2.42!–~2.47! are meromorphic functions ofn. The zeros ofK(n) and
M(n) are sometimes called Regge poles in the literature~for example, see Ref. 29!. The study of
the possible resonances associated with these poles, which are often believed to give
various effects of absorption and scattering from spheres and other scatterers, lies beyo
scope of this analysis. A discussion on the location of the zeros ofK(n) andM(n) is provided in
Appendix A. Each integral diverges in the usual sense, but is interpreted unambiguously a38

E
0

`

dn ~¯ !5 lim
y→01

E
0

`

dn ~¯ ! e2yn. ~2.50!

III. SOMMERFELD INTEGRALS AND LOWEST-ORDER CORRECTIONS

A. Approximate integral formulas

As u→01, Eqs. ~2.42!–~2.47! should reduce to known integral formulas.34 The following
steps are taken whenu!1: (i ) Only the n50 terms are retained, since the integrands withn
Þ0 are highly oscillatory. (i i ) The Bessel functions are replaced by asymptotic formulas tha
valid outside the transitional regions.39 ( i i i ) The Legendre functions are replaced by MacDonal
formulas36 that involve Bessel functions. (iv) The integration path is properly deformed in th
fourth quadrant of then-plane, as suggested by the analysis in Appendix A.
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Accordingly,K 21(n) andM 21(n) from Eqs.~2.48! and~2.49! are approximated as follows

1

K~n!
;2 i FA12S n

k2aD 2

1
k2

k1
A12S n

k1aD 2 G21

2
1

2k2a

~n/k2a!2@12~n/k2a!2#212 ~k2
2/k1

2! ~n/k1a!2@12~n/k1a!2#21

@A12~n/k2a!21 ~k2 /k1!A12~n/k1a!2#2
, ~3.1!

1

M~n!
; i FA12S n

k1aD 2

1
k2

k1
A12S n

k2aD 2 G21

2
1

2k1a

@12~n/k1a!2#212@12~n/k2a!2#21

FA12~n/k1a!21
k2

k1
A12~n/k2a!2G2 .

~3.2!

Note that the simplifiedK 21(n5la) exhibits a pair of poles at

l56kS56
k1k2

Ak1
21k2

2
;6S k22

k2
3

2k1
2D , k2

2!uk1
2u. ~3.3!

No poles exist in the approximation forM 21(la).
With l5n/a andr5au, the field components reduce to

E2r
n50; i

vm0k2
2

2pk1
~ I ez2I ez

c !cosf, ~3.4!

E2u
n50;2

vm0k2
2

4pk1
~ I er1I er

c !cosf, ~3.5!

E2f
n50;

vm0k2
2

4pk1
~ I ef1I ef

c !sinf, ~3.6!

B2r
n50; i

m0k2
2

2p
~ I bz1I bz

c !sinf, ~3.7!

B2u
n50;2

m0k2
3

4pk1
~ I br1I br

c !sinf, ~3.8!

B2f
n50;2

m0k2
3

4pk1
~ I bf1I bf

c !cosf. ~3.9!

In the above,I f k ~f 5e, b; k5r, f, z! denote the Sommerfeld integrals,34 viz.,

I ez5k2
23E

0

`

dl
A12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
l2J1~lr!, ~3.10!

I er5k2
22E

0

`

dl lH A12~l/k1!2 A12~l/k2!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
@J0~lr!2J2~lr!#

1
1

A12~l/k1!21~k2 /k1!A12~l/k2!2
@J0~lr!1J2~lr!#J , ~3.11!
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I ef5k2
22E

0

`

dl lH A12~l/k1!2 A12~l/k2!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
@J0~lr!1J2~lr!#

1
1

A12~l/k1!21~k2 /k1!A12~l/k2!2
@J0~lr!2J2~lr!#J , ~3.12!

I bz5k1
21k2

22E
0

`

dl
1

A12~l/k1!21~k2 /k1!A12~l/k2!2
l2J1~lr!, ~3.13!

I br5k2
22E

0

`

dl lH A12~l/k2!2

A12~l/k1!21~k2 /k1!A12~l/k2!2
@J0~lr!2J2~lr!#

1
A12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
@J0~lr!1J2~lr!#J , ~3.14!

I bf5k2
22E

0

`

dl lH A12~l/k2!2

A12~l/k1!21~k2 /k1!A12~l/k2!2
@J0~lr!1J2~lr!#

1
A12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
@J0~lr!2J2~lr!#J . ~3.15!

The lowest-order correctionsI f k
c read as

I ez
c 5

i

2k2
4a
E

0

`

dlH k2

k1

~l/k1!2

12~l/k1!2

1

A12~l/k2!21~k2 /k1!A12~l/k1!2

1A12~l/k1!2
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2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l2J1~lr!, ~3.16!

I er
c 5

i

2k2
3a
E

0

`

dlH A12~l/k1!2
~l/k2!2

12~l/k2!22~k2 /k1!A12~l/k2!2
~l/k1!2

12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2

2A12~l/k2!2A12~l/k1!2

~l/k2!2

12~l/k2!2 2~k2
2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l@J0~lr!

2J2~lr!#1
i

2k1k2
2a
E

0

`

dl
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2
l@J0~lr!1J2~lr!#,

~3.17!
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I ef
c 5

i

2k2
3a
E

0

`

dlH A12~l/k1!2
~l/k2!2

12~l/k2!2 2~k2 /k1!A12~l/k2!2
~l/k1!2

12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2

2A12~l/k2!2A12~l/k1!2

~l/k2!2

12~l/k2!2 2~k2
2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l@J0~lr!1J2~lr!#

1
i

2k1k2
2a
E

0

`

dl
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2
l@J0~lr!2J2~lr!#, ~3.18!

I bz
c 5

i

2k1
2k2

2a
E

0

`

dl
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2
l2J1~lr!, ~3.19!

I br
c 5

i

2k2
3a
E

0

`

dlH ~l/k2!2

12~l/k2!2

1

A12~l/k1!21~k2 /k1!A12~l/k2!2

1
k2

k1

A12~l/k2!2
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2 J l@J0~lr!2J2~lr!#

2
i

2k2
3a
E

0

`

dlH k2

k1

~l/k1!2

12~l/k1!2

1

A12~l/k2!21~k2 /k1!A12~l/k1!2

1A12~l/k1!2

~l/k2!2

12~l/k2!2 2~k2
2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l@J0~lr!1J2~lr!#,

~3.20!

I bf
c 5

i

2k2
3a
E

0

`

dlH ~l/k2!2

12~l/k2!2

1

A12~l/k1!21~k2 /k1!A12~l/k2!2

1
k2

k1

A12~l/k2!2
@12~l/k1!2#212@12~l/k2!2#21

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2 J l@J0~lr!1J2~lr!#

2
i

2k2
3a
E

0

`

dlH k2

k1

~l/k1!2

12~l/k1!2

1

A12~l/k2!21~k2 /k1!A12~l/k1!2

1A12~l/k1!2

~l/k2!2

12~l/k2!2 2~k2
2/k1

2!
~l/k1!2

12~l/k1!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
J l@J0~lr!2J2~lr!#.

~3.21!
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The first Riemann sheet is chosen so that all square roots are positive for 0,l,k2 , if k1 is real,
with the branch-cut configuration of Fig. 2; evidently, no pole lies in this sheet.

B. Integrated formulas, k 2rš1, k 2
2™zk 1

2z

When k2r@1, the major contributions to integration in Eqs.~3.10!–~3.21! arise from the
vicinities of branch points atl5kj ( j 51, 2). Explicit expressions for the integralsI f k are given
elsewhere.34,35 It is noted in passing thatI er , I ef and I bz are evaluated exactly in terms o
well-converging series that involve Fresnel and exponential integrals.35

Attention is now turned toI f k
c . By following the procedure in Appendix B of Ref. 35, letI f k, j

c

denote the contour integral over the pathG j of Fig. 2. Clearly,I f ,k
c 5I f k,2

c 1I f k,1
c , since eachI f k, j

c

follows from I f k
c under

E
0

`

dl ~¯ !Js~lr!→ 1

2 EG j

dl ~¯ !Hs
(1)~lr!. ~3.22!

With l5kj (11 i t ) in each side of the branch cuts in Fig. 2, it follows that

A12~l/kj !
256e2 ip/4A2t A11 i t /2;6e2 ip/4A2t, t→01, At>0, ~3.23!

where the upper sign holds along the left-hand side and the lower sign along the right-hand
each branch cut. Due to the factors@12(l/kj )

2#21, the indentationsCd, j contribute to the value
of I f k, j

c asd approaches 0. For example,I ez,2
c requires the limit

lim
d→01

E
Cd,2

dlH ~k2 /k1!~l/k1!2 @12~l/k1!2#21

A12~l/k2!21~k2 /k1!A12~l/k1!2

1
A12~l/k1!2$~l/k2!2 @12~l/k2!2#212~k2

2/k1
2!~l/k1!2 @12~l/k1!2#21%

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2 J
3l2H1

(1)~lr!

52p i S 2k2

2
D A 12~k2 /k1!2

@~k2 /k1!A12~k2 /k1!#2

2 k2
2H1

(1)~k2r!;2ei (k2r2p/4) k1
2k2A2p

k2r
.

~3.24!

FIG. 2. Branch-cut configuration and integration pathsG andG j , j 51, 2, pertaining to integrals~3.10!–~3.21!; k1 is taken
to be real. The final formulas can be extended to complexk1 .
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Define

`5
k2

3r

2k1
2 5

k2
2

2k1
2 ~k2a!u, ~3.25!

F~` !5e2 i ` È`

dx
eix

A2px
5e2 i `F1

2
~11 i !2C~` !2 iS~` !G , ~3.26!

whereC(`) andS(`) are the Fresnel integrals defined as36

C~` !5E
0

`

dx
cosx

A2px
, S~` !5E

0

`

dx
sinx

A2px
. ~3.27!

The relevant calculations are illustrated by

I ez,2
c ;2

1

4
ei (k2r23p/4)

1

k2a
A 2

pk2rE0

`

dt H k2
3

k1
3 F2

1

e2 ip/4A2t1k2 /k1

1
1

2e2 ip/4A2t1k2 /k1
G

1S 1

22i t
2

k2
4

k1
4D F2

1

~e2 ip/4A2t1k2 /k1!2
1

1

~2e2 ip/4A2t1k2 /k1!2G J e2k2rt

1
1

2
ei (k2r23p/4)

k1
2

k2
3a
A p

2k2r

;
i

2
eik2r

1

k2a
Apk2rH F~` !2 i ~2p` !21/21~2i ` !21FF~` !2

1

2
~11 i !G J ~3.28a!

;5
11 i

4
eik2rA p

k2r

k1
2

k2
3a

, u`u@1,

12 i

4
eik2rA p

k2r

r

a
, u`u!1,

~3.28b!

I ez,1
c ;2

1

2
ei (k1r2p/4)

k1

k2
2a
A p

2k1r
. ~3.29!

From formulas~3.4!–~3.9!, with k2a@1, k2
2!uk1

2u, k2au@1, andu sufficiently small,

E2r
n50; i

vm0k2
2

2pk1
cosfH 2 ieik2r

k2

k1
A p

k2r FF~` !2 i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !G J G1

eik1r

k2
2r2 S 11

12 i

4
Apk1r

r

a D J , ~3.30!

E2u
n50;

vm0k2
2

2pk1
cosfH eik2r

k2
2

k1
2 A p

k2r FF~` !2 i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !G J G1

eik1r

k2
2r2 S 11

12 i

4
Apk1r

r

a D J , ~3.31!
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E2f
n50; i

vm0k2
2

2pk1
sinfH eik2r

k2

k1
2r
A p

k2r FF~` !22i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !~122i ` !G J G1 i

eik1r

k2
2r2 S 11

12 i

4
Apk1r

r

a D J , ~3.32!

B2r
n50;

m0k2
2

2p
sinfH eik2r

k1
2r2 S 12

12 i

4
Apk2r

r

a D2
eik1r

k2
2r2 S 11

12 i

4
Apk1r

r

a D J , ~3.33!

B2u
n50; i

m0k2
3

2pk1
sinfH eik2r

k1r
A p

k2r FF~` !22i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !~122i ` !G J G1eik1r

k1

k2
3r2 S 11

12 i

4
Apk1r

r

a D J ,

~3.34!

B2f
n50;2

m0k2
3

2pk1
cosfH eik2r

k2

k1
A p

k2r FF~` !2 i ~2p` !21/21
k1r

2k2a H F~` !2 i ~2p` !21/2

1~2i ` !21FF~` !2
1

2
~11 i !G J G1

eik1r

k2
2r2 S i

k2

k1
2

1

k2r D S 11
12 i

4
Apk1r

r

a D J . ~3.35!

Consequently,uI f k, j u;uI f k, j
c u provided that, for realk1 ,

r;a~kja/2!21/35rcr,j5aucr,j , j 51, 2, ~3.36!

wherercr,2 is essentially Fock’s ‘‘reduced distance.’’16 Both rcr,j , j 51, 2, enter as parameters
the analysis for a vertical electric dipole.3,4,33 Evidently, expressions~3.30!–~3.35! imply that

u!ucr,j . ~3.37!

Of course, ifk1 is complex, one of these inequalities is replaced byu!uucr,1u.
When 1!k2r!uk1ru!uk1rcr,2u, the maximum magnitudes inf of the field components trav

eling with the air phase velocity satisfy

uE2r ,2
n50um :uE2u,2

n50um :uE2f,2
n50um5O~1!:O~k2 /k1!:O@~k1r!21#, u`u<O~1!,

5O~1!:O~k2 /k1!:O~k2
3/k1

3!, u`u@1, ~3.38a!

uB2r ,2
n50um :uB2u,2

n50um :uB2f,2
n50um5O@~k1r!21#:O@~k2r!21#:O~1!, u`u!1,

5O@~k2r!23/2#:O@~k2r!21#:O~1!, `5O~1!,

5O~k2
3/k1

3!:O~k2
2/k1

2!:O~1!, u`u@1. ~3.38b!

IV. WAVES IN THE CRITICAL RANGES, uÄO„ucr ,j…

Whenu becomes of the order ofucr,1 or ucr,2 introduced in Eq.~3.36!, approximations~3.4!–
~3.9! break down. The approximation of Bessel functions by Airy integrals gives39,40

K 21~n!;2
k2

k1
F11

k2
2

k1
2 S 2

k1aD 1/3

H~j1 ;0!G , j15~k1a/2!21/3~n2k1a!5O~1!, ~4.1a!
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K 21~n!;2S k2a

2 D 1/3

@H~j2 ;2p/3!2 ia#21, j25~k2a/2!21/3~n2k2a!5O~1!, ~4.1b!

while

M 21~n!;11S 2

k1aD 1/3

H~j1 ;0!, j15O~1!, ~4.2a!

M 21~n!; i 1
k2

k1
S 2

k2aD 1/3

H~j2 ;2p/3!, j25O~1!. ~4.2b!

In the above,

H~j;c!5eic
Ai 8~eicj!

Ai ~eicj!
, ~4.3!

a5
k2

k1
S k2a

2 D 1/3

. ~4.4!

Notice the appearance of the Airy function Ai(z) and its derivative.40 The Legendre functions ar
replaced by Bessel functions36,39 of argumentnu wherenu@1.

By using the subscriptj to denote the contribution fromn5kja ( j 51, 2),

E2r ,2
n50;2

vm0

4pa
ei (k2au1p/4)

k2

k1
S k2a

2 D 2/3A 2

pk2au
I cosf, ~4.5a!

E2r ,1
n50;2

vm0

4pa
ei (k1au2p/4)A 2

pk1au
I1 cosf, ~4.5b!

E2u,2
n50;2

vm0

4pa
ei (k2au1p/4)

k2
2

k1
2 S k2a

2 D 2/3A 2

pk2au FI1
i

k2au S k2a

2 D 22/3

I2G cosf, ~4.6a!

E2u,1
n50;

vm0

4pa
ei (k1au1p/4)A 2

pk1au
I1 cosf, ~4.6b!

E2f,2
n50;2

vm0

4pa
ei (k2au1p/4)

k2
2

k1
2 A 2

pk2au FI21 i
ucr,2

2u
IG sinf, ~4.7a!

E2f,1
n50;2

vm0

4pa
ei (k1au1p/4)A 2

pk1au
I1 sinf, ~4.7b!

B2r ,2
n50;2

m0k2

4pa
ei (k2au1p/4)

k2
2

k1
2 A 2

pk2au
I2 sinf, ~4.8a!

B2r ,1
n50;2

m0k1

4pa
ei (k1au1p/4)A 2

pk1au
I1 sinf, ~4.8b!

B2u,2
n50;2

m0k1

4pa
ei (k2au1p/4)

k2
2

k1
2 A 2

pk2au FI21 i
ucr,2

2u
IG sinf, ~4.9a!
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B2u,1
n50;2

m0k1

4pa
ei (k1au2p/4)A 2

pk1au
I1 sinf, ~4.9b!

B2f,2
n50;

m0k2

4pa
ei (k2au1p/4)

k2

k1
S k2a

2 D 2/3A 2

pk2au FI1
i

k2au S k2a

2 D 22/3

I2G cosf, ~4.10a!

B2f,1
n50;

m0k2

4pa
ei (k1au1p/4) S 1

k2au
2 i

k2

k1
D A 2

pk1au
I1 cosf, ~4.10b!

where

I15I1~u!5E
2`2 i §

`2 i §

dj ei (u/ucr,1)j H~j;0!, ~4.11!

I25I2~u!5E
2`2 i §

`2 i §

dj ei (u/ucr,2)j H~j;2p/3!, ~4.12!

I5I~u;a!5E
2`2 i §

`2 i §

dj
ei (u/ucr,2)j

H~j;2p/3!2 ia
, §.0. ~4.13!

Because the sole singularities of the integrands are poles in the upperj-plane, including the rea
axis, terms with factorse2 i (u/ucr,j )j are integrated out to zero.I and I2 describe propagation
through region 2.

For u!uucr,1u, the leading contributions to integration in Eqs.~4.11!–~4.13! are determined by
the large-j behavior ofH(j;c). Accordingly,40

I1;2E
2`2 i §

`2 i §

dj ei (u/ucr,1)j SAj1
1

4j D5e2 ip/4A2p

k1aS r

aD 23/2

2
ip

2
, ~4.14!

while, for u!ucr,2,

I2;E
2`2 i §

`2 i §

dj ei (u/ucr,2)j SAj2
1

4j D52e2 ip/4A2p

k2aS r

aD 23/2

2
ip

2
, ~4.15!

I;E
2`2 i §

`2 i §

dj
ei (u/ucr,2)j

Aj2 1/4j 2 ia
; ip eip/4 23/2

k2

k1
S k2a

2 D 1/3H F~` !2 i ~2p` !21/21
k1r

2k2a FF~` !

2 i ~2p` !21/21~2i ` !21H F~` !2
1

2
~11 i !J G J , ~4.16!

in agreement with formulas~3.30!–~3.35!.

A. Propagation through air

The integralI2 of Eq. ~4.12! is expressed as a general Dirichlet series41 over the residues
associated with poles ofH(j;2p/3). ~See Appendix A fork5k2 /k1 .! By closing the contour in
the upperj-plane,

I252p i (
s51

`

ei (u/ucr,2)uasue
ip/3

, ~4.17!
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whereas are the zeros of Ai(z) numbered in order of ascending magnitude.40 Series~4.17! is
approximated by its first term ifu@ucr,2.

The poles associated withI are obtained by solving

ei2p/3
Ai 8~jei2p/3!

Ai ~jei2p/3!
5 ia, a5

k2

k1
S k2a

2 D 1/3

. ~4.18!

Let $js5js(a)%s51, 2, ... be the sequence of these roots;js(0) are numbered in order of increasin
imaginary part. The integralI equals

I52p i (
s51

`
ei (u/ucr,2)js

js1a2 . ~4.19!

Because$js% do not have any finite limit, they should approach the Stokes line Argj5p/3 as
s→`. Eachjs(z) satisfies

djs

dz
5

i

js1z2 , js~0!5uǎsueip/3, ~4.20!

via differentiation of both sides of Eq.~4.18! in a[z. ǎs denote the zeros of Ai8(z).40 Equation
~4.20! was given by Fock16 and has been studied numerically in the literature.42 By integrating
~4.20! along a path whereujs(z)u@uz2u,

js~a!;js~0!1
ia

js~0!
. ~4.21!

Clearly,

I;2p i
ei (u/ucr,2) j̄

j̄1a2
, u@ucr,2, ~4.22!

where j̄5 j̄(a) is the root of Eq.~4.18! with the smallest imaginary part. It is of interest
compare mins Im js(a) with its limiting value fora→`. With a5te2 iq ~0<t,`, 0<q<p/4!
and fixedq, the trajectory of eachj j (a)5b j (t)1 ig j (t) can be described by the coupled equ
tions

db j

dt
5

g j cosq1~b j2t2!sinq

~b j1t2 cos 2q!21~g j2t2 sin 2q!2 , ~4.23a!

dg j

dt
5

~b j1t2!cosq2g j sinq

~b j1t2 cos 2q!21~g j2t2 sin 2q!2 , ~4.23b!

where b j (0)5uǎ j u/2, g j (0)5)uǎ j u/2, and uǎ j u,uaj u,uǎ j 11u. Of course, limt→`j j (a(t))
5uaj ueip/3 uniformly in q. For definiteness, considerj 51. If q50, b1(t) andg1(t) are mono-
tonically increasing int, and the slope ofj1(a(t)) equalsp/6 for t50 and approachesp/2 as
t→`. A close inspection of Eqs.~4.23! shows thatg1(t) remains monotonically increasing fo
fixed qP(0,p/6#, while b1(t) reaches a maximum. For fixedqP(p/6,p/4#, g1(t) is monotoni-
cally decreasing and reaches a minimum, and then progresses monotonically to its limiting
The lowest minimum ofg1(t) is reached forq5p/4, when the slope ofj1(a(t)) is 2p/12 for
t50 and 3p/4 as t→`. By relaxing routine rigor, the assumed analyticity ofj1(a) in DR

5$a: 0,uau,R, 2p/4,Arg a,0%, where R is positive and arbitrarily large, entails tha
Im j1(a) is harmonic inDR and hence cannot attain any maximum or minimum there. It follo
from Fig. 3 that the maximum occurs along the boundary$a: uau5R, Arg a5p/4%.
                                                                                                                



3180 J. Math. Phys., Vol. 43, No. 6, June 2002 Dionisios Margetis

                    
It is therefore implied that, fora<O(1),

I2 /I5O@e2(u/ucr,2)h̄#, h̄[ 1
2 ) ua1u2min

s
Im js~a!, u@ucr,2, ~4.24a!

while for a→`,

I2 /I5O~a2! as a→`. ~4.24b!

Formulas~4.6a! and ~4.10a! are further simplified:

E2u,2
n50;2

vm0

4pa
ei (k2au1p/4)

k2
2

k1
2 S k2a

2 D 2/3A 2

pk2au
I cosf;

k2

k1
E2r ,2

n50 , ~4.25!

B2f,2
n50;

m0k2

4pa
ei (k2au1p/4)

k2

k1
S k2a

2 D 2/3A 2

pk2au
I cosf;2

1

c
E2r ,2

n50 , ~4.26!

FIG. 3. Imaginary part of the rootj1(a) of ~4.18! for fixed values of the phase2q and varying magnitudeuau, where
a5uaue2 iq5(k2 /k1)(k2a/2)1/3, for ~a! 0<uau<5, and~b! 0<uau<50.
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wherec is the velocity of light in air.
From expressions~4.7a! and ~4.9a!,

E2f,2
n50;2 i

vm0

8pa
ei (k2au1p/4)

k2
2

k1
2A 2

pk2au

ucr,2

u
I sinf, ~4.27!

B2u,2
n50;2 i

m0k1

8pa
ei (k2au1p/4)

k2
2

k1
2A 2

pk2au

ucr,2

u
I sinf, u@ucr,2, uau<O~1!. ~4.28!

It is inferred that whenO(ucr,2)<u!1, uau<O(1),

uE2r ,2
n50um :uE2u,2

n50um :uE2f,2
n50um5O~1!:O~k2 /k1!:O@~k1au!21#, ~4.29a!

uB2r ,2
n50um :uB2u,2

n50um :uB2f,2
n50um5OFI2

I
k2

k1
S k2a

2 D 22/3G :O@~k2au!21#:O~1!. ~4.29b!

B. Propagation through region 1

Difficulties in the evaluation ofI1 arise because of the presence of poles in the negative
axis. These poles stem from zeros ofK(n) or M(n), as outlined in Appendix A. By use of th
Wronskian of Ai(z e2 ip/3) and Ai(z eip/3),

I15E
L
dz @H~2z;0!2H~2z;22p/3!# e2 i (u/ucr,1)z52

eip/6

2p E
L
dz

e2 i (u/ucr,1)z

Ai ~zeip/3! Ai ~2z!
,

~4.30!

whereL is a path that extends along the negative real axis, passes through zero and then
slightly above the positive real axis. This integral can be cast in a form that is amenab
numerical computation.33 Alternatively, rewriteI1 as

I152
eip/6

2p F E
0

`

dj
ei (u/ucr,1)j

Ai ~je2 i2p/3! Ai ~j!
1E

0

`1 i §

dz
e2 i (u/ucr,1)z

Ai ~zeip/3! Ai ~2z!G
52

i

p H E
0

`

dy
exp@2~u/ucr,1!yeip/6#12exp@~u/ucr,1!ye2 ip/6#

Ai ~y!21Bi~y!2

1 i E
0

`

dy
exp@2~u/ucr,1!yeip/6#

Ai ~y!21Bi~y!2

Bi~y!

Ai ~y! J , ~4.31!

by rotation of each integration path in thej- or z-plane by 2p/3 or p/3 counterclockwise. The
right-hand side of Eq.~4.31! involves exponentially converging integrals.

Whenu@uucr,1u, I1 is further simplified. By virtue of the equality

Ai ~2z!1ei2p/3 Ai ~z e2 ip/3!1e2 i2p/3 Ai ~z eip/3!50,

it is deduced that

1

Ai ~zeip/3! Ai ~2z!
52p e2 ip/6

d

dz E0

Ã(z) dy

11y
, ~4.32!

where

Ã~z![e2 i2p/3
Ai ~ze2 ip/3!

Ai ~zeip/3!
. ~4.33!
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Note thatÃ(z) is bounded everywhere except near the zeros of Ai(z eip/3). Substitution of Eq.
~4.32! into ~4.30! and application of integration by parts furnish

I152 i
u

ucr,1
F (

p50

P21
~21!p

p11 E
L
dz e2 i (u/ucr,1)z Ã~z!p111RP~u/ucr,1!G , ~4.34!

where

RP~x!5~21!PE
L
dz e2 ixzE

0

Ã(z)

dy
yP

11y
, P>1, ~4.35!

RP~x!;
~21!P

P11 E
L
dz e2 ixz

Ã~z!P11

11Ã~z!
, P@1. ~4.36!

For u@uucr,1u, the leading contributions in Eq.~4.34! come from pointszp that render the
phase ofe2 i (u/ucr,1)z Ã(z)p11 stationary. Consequently,zp obey

Ã8~zp!

Ã~zp!
5 i

u

ucr,1~p11!
, ~4.37!

or

1

p

1

Ai ~2zp!21Bi~2zp!2 5
u

2ucr,1~p11!
5xp . ~4.38!

Whenp,O(u/ucr,1), zp is positive and large,40 viz.,

zp5xp
21O~xp

24!, uxpu@1. ~4.39!

On the other hand,xp5O(1) implieszp5O(1). In view of approximation~4.36!, the remainder
in Eq. ~4.34! can be neglected ifP is of the order ofu/ucr,1. With

Ã~z!p11;~2 i !p11 expF i
4

3
~p11!z3/2G , ~4.40!

an ordinary stationary-phase calculation leads to

I1;2 i
u

ucr,1
(
p50

O(u/ucr,1) ~21!p

p11
expF2

i

12

u3

ucr,1
3 ~p11!2G ~2 i !p11

3E
2`

`

dz expH i
u

ucr,1
Fucr,1~p11!

u G2

~z2zp!2J
;2eip/4S u

ucr,1
D 3/2

Ap S~k1au3!, ~4.41!

S~z!5 (
p50

`
i p

~p11!2 expF2
i

24

z

~p11!2G . ~4.42!

Finally, for u@uucr,1u, k2
2!uk1

2u andk2au@1,

E2r ,1
n50;

vm0u

4pa
eik1au S~k1au3! cosf; iE2u,1

n50 , ~4.43!
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E2f,1
n50;

ivm0u

4pa
eik1au S~k1au3! sinf, ~4.44!

B2r ,1
n50;

im0k1u

4pa
eik1au S~k1au3! sinf; iB2u,1

n50 , ~4.45!

B2f,1
n50;2

im0k2u

4pa
eik1au S 1

k2au
2 i

k2

k1
DS~k1au3! cosf

;2
m0k2

2u

4pk1a
eik1au S~k1au3! cosf, k2au@uk1u/k2 . ~4.46!

V. FIELD IN THE RANGE O„ucr ,j…ËuÏp

A. Formulation

Consider the identity

M~n!2
Hn

(2)8~k1a!

Hn
(2)~k1a!

52
W@Hn

(1)~k1a!,Hn
(2)~k1a!#

2Hn
(2)~k1a! Jn~k1a!

2
k2

k1

Hn
(1)8~k2a!

Hn
(1)~k2a!

5
2i

pk1a Hn
(2)~k1a! Jn~k1a!

2
k2

k1

Hn
(1)8~k2a!

Hn
(1)~k2a!

, ~5.1!

which is implied from Eq.~4.32! and leads to the decomposition

1

M~n!
5

1

D~n!
2F~n! (

p50

P21

G~n!p2F~n!
G~n!P

12G~n!
, ~5.2!

where

D~n!5
Hn

(2)8~k1a!

Hn
(2)~k1a!

2
k2

k1

Hn
(1)8~k2a!

Hn
(1)~k2a!

, ~5.3!

F~n!5
4i

pk1a

1

D~n!2 Hn
(2)~k1a!2 , ~5.4!

G~n!5
2Hn

(1)~k1a!

Hn
(2)~k1a!

2
4i

pk1a

1

D~n! Hn
(2)~k1a!2 . ~5.5!

When P→`, Eq. ~5.2! reduces to an expansion of the Debye type,7 also employed by
Nussenzveig.29,32 In the lowern-plane slightly below the positive real axis, the limitP→` in Eq.
~5.2! is meaningful becauseuG(n)u,1. However, care should be exercised in taking this lim
under the integral sign.

A corresponding decomposition forK 21(n) reads as

1

K~n!
5

1

A~n!
1B~n! (

p50

P21

C~n!p1B~n!
C~n!P

12C~n!
, ~5.6!

where

A~n!5
Hn

(1)8~k2a!

Hn
(1)~k2a!

2
k2

k1

Hn
(2)8~k1a!

Hn
(2)~k1a!

1
1

2k2a
2

k2
2

k1
2

1

2k2a
, ~5.7!
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B~n!5
4i

pk1a

k2

k1

1

A~n!2 Hn
(2)~k1a!2 , ~5.8!

C~n!5
2Hn

(1)~k1a!

Hn
(2)~k1a!

1
4i

pk1a

k2

k1

1

A~n! Hn
(2)~k1a!2 . ~5.9!

Expressions~5.6!–~5.9! are also derived in Ref. 33 for the field of a vertical electric dipole ove
spherical earth.A(n) andD(n) are entire functions ofn satisfying39

A~2n!5A~n!, D~2n!5D~n!. ~5.10!

A brief discussion on the location of their zeros is given in Appendix B.
Residues that are associated with the polesn j of A 21(n) and ñ j of D 21(n) in the upper

n-plane give rise to exponentially decreasing waves that propagate through air. On the othe
stationary-phase contributions fromB(n)C(n)p and F(n)G(n)p, combined withei2pnn and the
Legendre functions, give rise to rays that travel in region 1. Contributions from these rays be
significant when Imk1a!1.

With Eqs.~C1! and ~C5! of Appendix C,

E25E2
res1E2

ray, B25B2
res1B2

ray, ~5.11!

where

E2r
res5

ivm0

2pk1k2a3 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

A~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

GPn21/2
1 ~cosu!,

~5.12!

E2u
res5

ivm0

2pk1a2 cosf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

3H Hn
(2)8~k1a!

Hn
(2)~k1a!

1
k2

k1

1

A~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G 2J ]Pn21/2
1 ~cosu!

]u

2
ivm0

2pk1a2 sinu
cosf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

D~n!
Pn21/2

1 ~cosu!, ~5.13!

E2f
res52

ivm0

2pk1a2 sinu
sinf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

3H Hn
(2)8~k1a!

Hn
(2)~k1a!

1
k2

k1

1

A~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G 2J Pn21/2
1 ~cosu!

1
ivm0

2pk1a2 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

D~n!

]Pn21/2
1

]u
, ~5.14!

B2r
res52

m0

2pk1a3 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

D~n!
Pn21/2

1 ~cosu!, ~5.15!
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B2u
res52

m0

2pa2 sinf (
n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

D~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G
3

]Pn21/2
1

]u
2

m0k2

2pk1a2 sinu
sinf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

A~n!

3F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G Pn21/2
1 ~cosu!, ~5.16!

B2f
res52

m0

2pa2 sinu
cosf (

n52`

`

~21!nE
0

`

dn ei2pnn
n

n22 1
4

1

D~n!

3F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G Pn21/2
1 ~cosu!2

m0k2

2pk1a2 cosf (
n52`

`

~21!n

3E
0

`

dn ei2pnn
n

n22 1
4

1

A~n!
F 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G ]Pn21/2
1

]u
, ~5.17!

and

E2r
ray5

ivm0

2pa

1

~k2a!2 cosf (
n52`

`

~21!n(
p50

` E
0

`

dn ei2pnnnB~n!C~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu!, ~5.18!

E2u
ray5

ivm0

2pk2a2 cosf (
n52`

`

~21!n(
p50

` E
0

`

dn ei2pnn
n

n22 1
4

B~n!C~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G 2
]Pn21/2

1 ~cosu!

]u
1

ivm0

2pk1a2 sinu
cosf (

n52`

`

~21!n

3 (
p50

` E
0

`

dn ei2pnn
n

n22 1
4

F~n!G~n!p Pn21/2
1 ~cosu!, ~5.19!

E2f
ray52

ivm0

2pk2a2 sinu
sinf (

n52`

`

~21!n(
p50

` E
0

`

dn ei2pnn
n

n22 1
4

B~n!C~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G 2

Pn21/2
1 ~cosu!2

ivm0

2pk1a2 sinf (
n52`

`

~21!n

3 (
p50

` E
0

`

dn ei2pnn
n

n22 1
4

F~n!G~n!p
]Pn21/2

1

]u
, ~5.20!

B2r
ray5

m0

2pk1a3 sinf (
n52`

`

~21!n(
p50

` E
0

`

dn ei2pnnnF~n!G~n!p Pn21/2
1 ~cosu!, ~5.21!
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B2u
ray5

m0k2

2pk1a2 sinf (
n52`

`

~21!n(
p50

` E
0

`

dn ei2pnn
n

n22 1
4

F~n!G~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G ]Pn21/2
1

]u
2

m0

2pa2 sinu
sinf (

n52`

`

~21!n

3 (
p50

` E
0

`

dn ei2pnn
n

n22 1
4

B~n!C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G Pn21/2
1 , ~5.22!

B2f
ray5

m0k2

2pk1a2 sinu
cosf (

n52`

`

~21!n(
p50

` E
0

`

dn ei2pnn
n

n22 1
4

F~n!G~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G Pn21/2
1 ~cosu!2

m0

2pa2 cosf (
n52`

`

~21!n

3 (
p50

` E
0

`

dn ei2pnn
n

n22 1
4

B~n!C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G ]Pn21/2
1

]u
. ~5.23!

B. Residue series

The residue contributions are illustrated by

E2r
res52

ivm0

k1k2a3 cosf (
n50

`

(
j 51

` H ei (2n11)pn nF 1

2k1a
1

Hn
(2)8~k1a!

Hn
(2)~k1a!

G
3Pn21/2

1 ~2cosu!J
n5n j

Resn5n j
$A 21~n!%, ~5.24!

B2r
res5

m0

k1a3 sinf (
n50

`

~21!n(
j 51

`

@ei (2n11)pn n Pn21/2
1 ~2cosu!#n5 ñ j

Resn5 ñ j
$D 21~n!%,

~5.25!

where the poles are numbered in order of ascending imaginary part.
If both u andp2u areO(1),36

Pn21/2
1 ~2cosu!;A n

2p sinu (
s56

e2 is[n(p2u)1p/4]. ~5.26!

Hence, eachn in Eqs.~5.24! and ~5.25! represents the ‘‘winding number’’ of two wave paths
air, namely, one of lengthrn

1(u)5(2pn1u)a and another of lengthrn
25rn

1(2p2u). Both
paths originate from the source and reach the observation point clockwise (1) or counterclock-
wise (2) in the plane determined by the point source, center of sphere and observation poin
plane is henceforth called the meridian plane. The configuration is shown in Fig. 4.

The approximations for the Hankel functions yield39

A~n!;2S 2

k2aD 1/3

@H~j;2p/3!2 ia#, a5~k2 /k1!~k2a/2!1/3, ~5.27!

D~n!;
k2

k1
S 2

k2aD 1/3

H~j;2p/3!2 i , j5~n2k2a!~k2a/2!21/3, ~5.28!
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whereH(j;c) is defined by Eq.~4.3!. Retainment of then50 terms in the residue series~5.24!
and ~5.25! and use of approximation~5.26! recover formulas~4.5a! and ~4.8a!, when O(ucr,2)
<u,p and k2a(p2u)@1. This procedure is also applied to the tangential field compone
Care should be exercised when (i ) u,O(ucr,2), because the relevant residue series conve
slowly, calling for the procedure of Sec. III, and (i i ) p2u<O@(k2a)21#, where the Legendre
functions must be replaced by Bessel functions of argumentn(p2u).

By following point (i i ) above and extending MacDonald’s formulas36 to the rangeO(ucr,2)
,u<p, one gets43

E2r
res;2

vm0

a

k2

k1
S k2a

2
D 2/3

1

j̄1a2
Ap2u

sinu
ein1pJ1~n1~p2u!! cosf, ~5.29!

B2r
res;2

m0k2

a

k2
2

k1
2Ap2u

sinu
eipñ1J1~ ñ1~p2u!! sinf, ~5.30!

where

n1;k2a1~k2a/2!1/3j̄, ñ1;k2a1~k2a/2!1/3ua1ueip/3. ~5.31!

Bear in mind thatj̄ is introduced in Eq.~4.22! anda1 is the first zero of Ai(z).
Evidently, for fixeda5(k2 /k1)(k2a/2)1/3 and u@ucr,2, the H-type wave attenuates faste

than the E-type one. Due to the factors of Pn21/2
1 (2cosu)/sinu, the latter prevails for all

O(ucr,2),u<p. For example,

FIG. 4. Paths of lengthsrn
6 (n>0) traveled by exponentially decreasing waves that reach the observation point th

the air.
                                                                                                                



e

sepa-

3188 J. Math. Phys., Vol. 43, No. 6, June 2002 Dionisios Margetis

                    
E2f
res;2

ivm0

a
eik2ap

k2
2

k1
2 Ap2u

sinu
F 1

2ucr,2

ei ~p/ucr,2!j̄
J1~n1~p2u!!

sinu

1

j̄1a2

1ei ~p/ucr,2!ua1ueip/3
J18~ ñ1~p2u!!Gsinf

;2
ivm0

2rcr,2

eik2apAp2u

sinu

k2
2

k1
2

J1~n1~p2u!!

p2u

ei (p/ucr,2) j̄

j̄1a2
sinf. ~5.32!

C. Ray representations

1. Case uÄO(1), pÀuÄO(1)

Attention is now turned to Eqs.~5.18!–~5.23!. Approximations of the Bessel functions outsid
the transitional regions fork2

2a/uk1u@1 yield39

A~n!; iA12S n

k2aD 2

1 i
k2

k1
A12S n

k1aD 2

, ~5.33!

B~n!;22i
k2

k1
F12S n

k2aD 2G21/2

TE~n/a!expF2iA~k1a!22n222in arccosS n

k1aD2 i
p

2 G ,
~5.34!

C~n!;RE~n/a! expF2iA~k1a!22n222in arccosS n

k1aD2 i
p

2 G , ~5.35!

D~n!;2 iA12S n

k1aD 2

2 i
k2

k1
A12S n

k2aD 2

, ~5.36!

F~n!;22i TH~n/a! expF2iA~k1a!22n222in arccosS n

k1aD2 i
p

2 G , ~5.37!

G~n!;RH~n/a! expF2iA~k1a!22n222in arccosS n

k1aD2 i
p

2 G , ~5.38!

where

RE~l!52
A12~l/k2!22~k2 /k1!A12~l/k1!2

A12~l/k2!21~k2 /k1!A12~l/k1!2
, ~5.39!

RH~l!5
A12~l/k1!22~k2 /k1!A12~l/k2!2

A12~l/k1!21~k2 /k1!A12~l/k2!2
, ~5.40!

TE~l!5
A12~l/k1!2 A12~l/k2!2

@A12~l/k2!21~k2 /k1!A12~l/k1!2#2
, ~5.41!

TH~l!5
A12~l/k1!2

@A12~l/k1!21~k2 /k1!A12~l/k2!2#2
. ~5.42!

RE and RH are the usual Fresnel reflection coefficients. The corresponding integrands are
rated into two groups as follows.
                                                                                                                



tional

3189J. Math. Phys., Vol. 43, No. 6, June 2002 Horizontal dipole on large dielectric sphere

                    
~i! The first group contains terms of the radial components along with integrands propor
to ]Pn21/2

1 /]u. For instance,

nB~n! C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu! ei2pnn

;
k2

k1
nA 2n

p sinu
TE~n/a! RE~n/a!p ~eiFpn11eiFpn2!, ~5.43!

n

n22
1

4

B~n! C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G 2
]Pn21/2

1

]u
ei2pnn

; i
k2

k1
A 2n

p sinuF12S n

k2aD 2G1/2

TE~n/a! RE~n/a!p @ei (Fpn11p/2)1ei (Fpn22p/2)#,

~5.44!

where

Fpn6~n;u!52~p11!A~k1a!22n222~p11!n arccosS n

k1aD2~p11!
p

2
12pnn6S nu1

p

4 D .

~5.45!

The phaseFpn6(n;u) becomes stationary at

n5npn65k1a coscpn6 , cpn65
2pn6u

2~p11!
, 0<cpn6<p/2, ~5.46!

where the ‘‘1 ’’ sign holds if 0<2n<p and the ‘‘2 ’’ sign holds if 0,2n<p11. The integrals are
calculated by the stationary-phase method with

d2Fpn6

dn2 U
n5npn6

5
2~p11!

k1a sincpn6
. ~5.47!

The radial components involve the integrals

E
0

`

dn ei2pnn nB~n! C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu!

;e2 ip/4
k1k2a2

Asinu

e2 ipp/2

Ap11
(

s56
coscpnsAsin 2cpnsTE~k1 coscpns! RE~k1 coscpns!

p

3exp@2i ~p11!k1a sincpns1 isp/4#, ~5.48!

E
0

`

dn ei2pnn nF~n! G~n!p Pn21/2
1 ~cosu!

;2eip/4
~k1a!2

Asinu

e2 ipp/2

Ap11
(

s56
coscpnsAsin 2cpnsTH~k1 coscpns! RH~k1 coscpns!

p

3exp@2i ~p11!k1a sincpns1 isp/4#. ~5.49!
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~ii ! Terms of the second group pertain to the tangential components containing the
Pn21/2

1 (cosu). The respective integrals are treated similarly, but the leading contributions
from the endpointn50 with width O(1) and from the stationary-phase pointsnpn6 with width
O(Ak1a). The former contributions are cancelled. The surviving terms are correc
O@(k1a)21# whencpn65O(1) andp/22cpn65O(1). For instance,

(
n52`

`

(
p50

` E
0

`

dn ei2pnn
n

n22
1

4

F~n! G~n!p Pn21/2
1 ~cosu!

;2eip/4
1

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

A2 tancpns

3TH~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.50!

where

Sp15$n: 0<2n<p%, Sp25$n: 0,2n<p11%. ~5.51!

The preceding considerations lead to the rays

E2r
ray;eip/4

vm0k1

2pk2a

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n coscpnsAsin 2cpns

3TE~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.52!

E2u
ray;e2 ip/4

vm0

2pa

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n Asin 2cpns

3T̄E~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns2 isp/4#

1
1

k1a
e2 ip/4

vm0

2pa sinu

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n A2tancpns

3TH~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.53!

E2f
ray;e2 ip/4

vm0

2pa

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n Asin 2cpns

3TH~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns2 isp/4#

1
1

k1a
e2 ip/4

vm0

2pa sinu

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n A2tancpns

3T̄E~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.54!

B2r
ray;2eip/4

m0k1

2pa

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n coscpnsAsin 2cpns

3TH~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.55!
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B2u
ray;2e2 ip/4

m0k2

2pa

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n Asin 2cpns

3T̄H~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns2 isp/4#

2
1

k1a
e2 ip/4

m0k2

2pa sinu

sinf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n A2tancpns

3TE~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.56!

B2f
ray;e2 ip/4

m0k2

2pa

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n Asin 2cpns

3TE~k1 coscpns! RE~k1 coscpns!
p exp@2i ~p11!k1a sincpns2 isp/4#

1
1

k1a
e2 ip/4

m0k2

2pa sinu

cosf

Asinu
(
p50

`
e2 ipp/2

Ap11
(

s56
(

nPSps

~21!n A2tancpns

3T̄H~k1 coscpns! RH~k1 coscpns!
p exp@2i ~p11!k1a sincpns1 isp/4#, ~5.57!

where

T̄F~l!5A12~l/k2!2 T~l!, F5E, H. ~5.58!

Note that corrections to the leading terms of the first group introduced above are omitted.
An inspection of the summands forp@2n.1, u5O(1) andp2u5O(1) shows that their

magnitudes decrease asuRup/p2 when medium 1 is lossless. Of course, convergence is impro
when Imk1 is positive andO(1). In general,uR(l)u<1 for complexl while the conditionk2

2

!uk1
2u forcesuR(k1 coscpn6)u to be nearly 1.44

The rays described by formulas~5.52!–~5.57! circulate around the origin in the meridian plan
while they are multiply reflected at the spherical boundary, as depicted in Fig. 5;p is the number
of reflections,n is the number of circulations, the signs56 specifies the sense of circulation, an
cpn6 is the angle between the incident ray and the corresponding local tangent. The overal
of each ray undergoes a change of2p/2 at each reflection~see also Ref. 33!.

2. Reduction to a wave through region 1, u™1

Whenu5O@(k1a)21/3# andn50, the widthO(Ak1au) of the stationary-phase contributio
above becomes comparable to the widthO@(k1a)1/3# of the transitional region aboutn5k1a. This
suggests the transition of rays to the wave propagating in region 1 according to the integraI1 in
Sec. IV. The two asymptotic formulas connect smoothly ifO@(k1a)21/3#,u,O@(k1a)21/5#. The
approximation

sincp01;cp012cp01
3 /6, uk1uau5!24 5!,

in the phase, along withk2
2au/uk1u@1, sin(2cp01);2cp01 , and

R~k1 sincp01!;21,

TE~k1 sincp01!;2 i ~k2 /k1! cp01 , TH~k1 sincp01!;2cp01

in the amplitude reduce then50 terms in~5.52!–~5.57! to formulas~4.42!–~4.45!.
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3. Field close to the antipodes, pÀu™1

Care should be exercised whenu;p. This condition implies that a combination of expone
tials may no longer be a reasonable approximation for the Legendre function.36 In fact, in order to
overcome this difficulty, one has to seek an alternative representationa priori. The identity
Pl

1(cosu)5(21)l11 Pl
1(cos(p2u)) suggests the replacement

Pn21/2
1 ~cosu!→ ieipn Pn21/2

1 ~cos~p2u!!. ~5.59!

The new representation is illustrated by

E2r
ray52

vm0

2pa

1

~k2a!2 cosf (
n852`

`

~21!n8(
p50

` E
0

`

dn eip(2n811)nnB~n!C~n!p

3F 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~2cosu!. ~5.60!

The ray (n,p,s56) of Sec. V C 1 is identified with the ray (n85n,p,s852) if s51, or
(n85n21,p,s851) if s52 in the present formalism. The stationary-phase points are give

ñpn865k1a cosc̄pn86 , c̄pn865
~2n811!p6u8

2~p11!
, 0<c̄pn86<p/2, ~5.61a!

u85p2u, ~5.61b!

with the sign convention$1: 0<2n8<p21% and$2: 0<2n8<p%.

FIG. 5. Geometry of rays bouncing and circulating in the interior of the sphere.P is the observation point.
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An interesting case arises whenp2u<O@(k1a)21/2# and 2n85p (s852), because the
endpoint of integration,n50, then falls inside the critical vicinity of a stationary-phase point. T
requisite integrals for 2n85p are evaluated through MacDonald’s formulas36 with ulu5un/au
!1 in the radicals of expressions~5.33!–~5.42!. The phase ofeip(2n811)nB(n)C(n)p and
eip(2n811)nF(n)G(n)p is expanded aboutn50 up to O(n2). Let ]Pn21/2

1 /]u852]Pn21/2
1

(2cosu)/]u. The requisite integral forE2r is

i E
0

`

dn eip(p11)n nB~n!C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

GPn21/2
1 ~cosu8!

;22
k2

k1
e2i (p11)k1a2 ipp/2E

0

`

dn S n22
1

4D J1~nu8! ei (p11)n2/(k1a)

;
k1k2a2

2

e2 ipp/2

~p11!2 ~p2u!exp@2i ~p11!k1a2~ i /4!k1a~p2u!2/~p11!#, ~5.62!

provided thatuk1au(p2u)2<O(1). Comparison with formula~5.48! shows that the character o
this ray is not modified asu approachesp, in contradistinction to the case of a vertical dipole33

Indeed, the approximation

sinc (2n)n1;12
~p2u!2

8~p11!2 ,
uk1au ~p2u!4

~p11!4 !1,

in the phase of formula~5.48!, along with

cosc (2n)n1;
p2u

2~p11!
, sin 2c (2n)n1;

p2u

p11
, TE;1, RE;1,

readily furnish formula~5.62!. Similar considerations apply toB2r
ray, with the requisite integral

i E
0

`

dn eip(p11)n nF~n!G~n!p Pn21/2
1 ~cosu8!

;2 i
~k1a!2

2

e2 ipp/2

~p11!2 ~p2u!exp@2i ~p11!k1a2~ i /4!k1a~p2u!2/~p11!#.

~5.63!

For E2u
ray, it suffices to compare the following integrals:39

eup5
2 i

k2a E0

`

dn eip(p11)n
n

n22
1

4

B~n!C~n!pF 1

2k2a
1

Hn
(1)8~k2a!

Hn
(1)~k2a!

G 2
]Pn21/2

1

]u8

;
22i

k1a
e2i (p11)k1a2 ipp/2

]

]u8
E

0

`

dn J1~nu8! ei (p11)n2/(k1a)

52Fe2( i /4)k1a(p2u)2/(p11)

p11
12i

12e2( i /4)k1a(p2u)2/(p11)

k1a~p2u!2 Ge2i (p11)k1a2 ipp/2 ~5.64!

and
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ẽup5
i

k1a~p2u!
E

0

`

dn eip(p11)n
n

n22
1

4

F~n!G~n!p Pn21/2
1 ~cosu8!

;2i
12e2( i /4)k1(p2u)2/(p11)

k1a~p2u!2 e2i (p11)k1a2 ipp/2. ~5.65!

The three terms of formula~5.64! become of the same order in magnitude ifk1a(p2u)2

5O(1). The first term is dominant ifuk1au(p2u)2@1 and then recovers the correspondi
geometrical ray with 2n5p ands51. In contrast, in formula~5.65! all terms must be retained
the second term multiplied byk1a(p2u) connects smoothly to the correction appearing in~5.53!,
while the first term is the contribution from the endpointn50. This contribution is cancelled by
the corresponding term in~5.64!, viz.,

eup1ẽup;2 i
e2 ipp/2

p11
exp@2i ~p11!k1a2~ i /4!k1a~p2u!2/~p11!#. ~5.66!

These considerations can be repeated for the integral ofE2f
ray with Pn21/2

1 (cosu8)/u8 and
]Pn21/2

1 /]u8 interchanged. Along the same lines is the analysis for the components of the ma

field, because the presence of the factor@(2k2a)211Hn
(1)8(k2a)/Hn

(1)(k2a)# amounts to multipli-
cation byi .

The amplitudes of other rays with 2n8<p21 are determined by noticing that the Bess
function varies slowly over the region of widthO(Ak1a) about each stationary-phase point, a
can therefore be pulled out of the corresponding integrals. This program can be carrie
straightforwardly; this case is not discussed further in this article.

VI. REMARKS AND DISCUSSION

Before closing this article, it is worthwhile making the following remarks.
~i! The order of magnitude of the critical distancercr,j in Eq. ~3.36! can be obtained by

postulating that, whenr5O(rcr,j ), the difference between the arc lengthr5au and its projection
on the tangent atu50 becomes comparable to the wavelength in air (j 52) or earth (j 51).3,4

~ii ! It is tempting to compare the field of a horizontal dipole to that of the vertical dipole w
equal moment, examined, for example, in Ref. 33. The dominant components of the forme
are E2r , E2u and B2f . These are precisely the nonzero components of a vertical dipole.
corresponding maximum magnitudes inf satisfy the relations

uEhorum;
k2

uk1u
uEveru, uBf

horum;
k2

uk1u
uBf

veru. ~6.1!

~iii ! The present analysis offers some insight into the problem of a dipole elevated at a
h (h5b2a!a). A complication in this case stems from the additional transitional point in
integrands of the Poisson summation formula. For example,

E2r5
im0v

2pa S a

bD 1/2 1

~k2a!2 cosf (
n52`

`

~21!nE
0

`

dn ei2pnnn
Hn

(1)~k2b!

Hn
(1)~k2a!

1

K~n!

3F 1

2k2b
1

Hn
(1)8~k2b!

Hn
(1)~k2b!

GPn21/2
1 ~cosu!. ~6.2!

It is readily concluded that elevation of the dipole results in the increase of the critical angleucr,j

by O(A2h/a). The analysis is simplified whenk2h!(k2a)1/3 so that the pointsk2a andk2b can
be treated, in some sense, as a single transitional point.
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For arbitraryh, the residue series forE2r whenu.O(A2h/a) contains the factors

f j~h!5
Hn j

(1)~k2b!

Hn j

(1)~k2a!
, j 51, 2, . . . , ~6.3!

wheren j are zeros of theA(n) defined by Eq.~5.7! that lie in the vicinity ofn5k2a. f j (h) is the
‘‘height-gain factor’’ introduced by Bremmer.14 In the corresponding factorf̃ j (h) for B2r , then j

need to be replaced by the zerosñ j of the D(n) defined by Eq.~5.3!. These factors express th
dependence of the field beyond the horizon on the parameter (k2a)1/3A2h/a. The height-gain
factors for theu- and f-components are defined in a similar fashion. With regard toE2u , one
needs to consider the factor

Hn j

(1)~k2b!

Hn j

(1)~k2a!

~1/k2b! 1 @Hn j

(1)8~k2b!/Hn j

(1)~k2b!#

~1/k2a! 1 @Hn j

(1)8~k2a!/Hn j

(1)~k2a!#
.

~iv! The method of solution here needs to be modified when the medium in region 1
contains inhomogeneities, as is the case with ionospheric effects. The ionosphere can be m
crudely via replacement of the air forr .d (d.a) by a perfect conductor.

A problem of interest arises when the index of refraction near the earth’s surface ex
variations due to high moisture. This phenomenon is called ‘‘ducting’’ and may cause s
refraction when rays emitted from the radiating source bend downwards.14 A model for the di-
electric permittivity gives14

e2~r !5e0

A1B~r 2r 0!2

r 2 . ~6.4!

~v! The method of stationary phase for the rays employed in Sec. V becomes questi
whennpn6 lies in a neighborhood of widthO(Ak1a) of any pole ofA 21(n) or D 21(n) close to
the positive real axis. The valuenpn6;k2a corresponds to a ray that undergoes total inter
reflection.45 Such a case follows, for instance, from taking 2n5p, s51 and

npn15k2a~12 ē !, ē512
k1

k2

p2u

2~p11!
, u ēu!1. ~6.5!

A remedy to this anomaly is quite elaborate, in principle involving sums of Fresnel integrals
is provided elsewhere.33

VII. SUMMARY AND CONCLUSIONS

The problem of the radiating electric dipole lying just below and tangential to the surfa
an electrically large, homogeneous, isotropic and nonmagnetic sphere surrounded by air h
revisited. The present analysis, however, has a different perspective from previous works, s
was guided by the physical concept of the creeping wave.22 The Poisson summation formula
employed over 40 years ago in the study of plane-wave scattering by impenetrable obj22

provided a useful starting point. In the present case the creeping wave, although evidentl
dimensional, has a more intricate structure being dependent on the nature and orientation
source.

All six components of the electromagnetic field on the boundary were determined wi
recourse to scalar potentials. For an optically dense sphere, each component is decompo
waves propagating through air and through the sphere. When the polar angleu is sufficiently lower
than a critical value given by Eq.~3.36!, known planar-earth formulas are recovered34 along with
simplified corrections to account for the curved boundary. In particular, the electric-type wa
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the tangential components with the air phase velocity gives rise to Fresnel integrals and s
waves,34 and therefore has a character distinctly different from solutions to plane-wave scat
within the scalar wave and Schro¨dinger’s equations.29

As u progresses to values that are comparable to or exceeducr,2, the electric-type wave
through air is described by series of exponentials decreasing inu. The attenuation rates wer
determined to the lowest order in (k2a)21 andk2 /k1 by solving a transcendental equation, al
encountered in the problem of the vertical radiating dipole;42 its roots depend on the widel
varying parametera5(k2a/2)1/3k2 /k1 . On the other hand, lowest-order attenuation constants
the magnetic-type wave are fixed numbers, in agreement with early findings by Gray.12 Higher-
order corrections to these equations are easily obtained within this scheme. By starting w
zeroth-order equations, an argument was presented to show that theH-type wave attenuates faste
than theE-type one whenuau<O(1); aconjecture made by Fock16 was therefore placed on firme
grounds. The electric field was found to have a dominant component perpendicular to the b
ary, while the magnetic field has a dominant component in the azimuthal direction. The en
polarization resembles that of a vertical electric dipole, but the maximum magnitude of the fi
this case is multiplied by the factork2 /uk1u. When u5O(ucr,1) the wave inside the sphere
described by a well-converging integral of Airy functions.

A physical picture of waves exponentially decreasing in air and rays circulating in the int
of the sphere via their multiple reflections at the boundary was exposed whenu5O(1) andp
2u5O(1). These ray contributions are significant when Imk1a!1. As expected from elementar
geometrical optics, only one type of wave~electric or magnetic! prevails in each component, wit
the amplitude of the dominant ray being described by the corresponding Fresnel reflection
ficient. There are features of both the amplitude and phase of these rays, however, th
attributed to the nature of the source and are not fully predictable by standard geometrical
This ray picture breaks down at the antipodal point (u;p), or any point of total internal
reflection.45 In both cases, the modified analysis unveils characteristics due to the nature
source. For instance, the two types of polarization in the tangential components can p
comparable ray contributions ifu;p, when 2n5p, s51 in the notation of Sec. V; the tota
amplitude then recovers the Fresnel reflection coefficient of geometrical optics. This situatio
be contrasted with the case of a vertical dipole, where the ray amplitude changes drastically
antipodes.
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APPENDIX A: ON THE ZEROS OF K„n…, M„n…

To simplify the calculations in this appendix, considerk1 to be real, unless it is stated othe
wise. Fork2a@1, k2

2!k1
2 and k2

2a/k1@1, the terms (2k2a)21 and k2k1
21(2k1a)21 in K(n) are

neglected. Following Refs. 29 and 33, define

P~n;k!5
Jn8~k1a!

Jn~k1a!
2k

Hn
(1)8~k2a!

Hn
(1)~k2a!

, ~A1!

wherek5k1 /k2 corresponds toK(n) andk5k2 /k1 corresponds toM(n). In this appendix, the
task is to locate thosen that satisfy

P~n;k!50. ~A2!

For 0,n,k1a and un2k1,2au@(k1,2a)1/3,
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Jn8~k1a!

Jn~k1a!
;2A12S n

k1aD 2

tanFA~k1a!22n22n arccosS n

k1aD2
p

4 G , ~A3!

Hn
(1)8~k2a!

Hn
(1)~k2a!

; i A12S n

k2aD 2

, ~A4!

and the branch cut emanating fromn5k2a lies in the uppern-plane. Accordingly,

P~n;k!;2A12S n

k1aD 2

tanFA~k1a!22n22n arccosS n

k1aD2
p

4 G
2 ikA12S n

k2aD 2

. ~A5!

No zeros of the right-hand side lie in (0,k2a). The analytic continuation to (k2a,k1a) through the
lower n-plane does not exhibit any zeros either. More precisely,

Hn
(1)8~k2a!

Hn
(1)~k2a!

;
Yn8~k2a!

Yn~k2a! H 11 i
W@Jn ,Yn#

Yn~k2a! Yn8~k2a!J , ~A6!

where W@Jn ,Yn#5(2/p)(k2a)21 denotes the Wronskian ofJn(k2a) andYn(k2a). This approxi-
mation produces a recessive imaginary term forn.k2a. Hence,~A2! reads as

tanFA~k1a!22n22n arccosS n

k1aD2
p

4 G
;kA@n/~k2a!#221

12@n/~k1a!#2H 12 i expF22n cosh21S n

k2aD12An22~k2a!2G J . ~A7!

This equation cannot be satisfied by any realn. In fact, it is satisfied only in the uppern-plane.
Let n5n r1 in i , wheren r andn i are real,un i u!n r , andk2a,n r,k1a. Then,

tanFA~k1a!22n r
22n r arccosS n r

k1aD2 in i arccosS n r

k1aD2
p

4 G
;kA@n r /~k2a!#221

12@n r /~k1a!#2H 12 i expF22n rcosh21S n r

k2aD12An r
22~k2a!2G J . ~A8!

For k5k1 /k2 ,

A~k1a!22n r
22n r arccosS n r

k1aD;arctanH k1

k2
A@n r /~k2a!#221

12@n r /~k1a!#2J 1mp1
p

4
, ~A9!

n i arccosS n r

k1aD;
k2

k1
A12@n r /~k1a!#2

@n r /~k2a!#221
expF22n r cosh21S n r

k2aD12An r
22~k2a!2G ,

~A10!

wherem is any integer. In particular, ifk2a!n r!k1a,

n r;
2k1a

p
2S 2m1

3

2D , n i;
4k2

pk1
S k2a

2n r
D 2nr11

e2nr. ~A11!

For k5k2 /k1 ,
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A~k1a!22n r
22n r arccosS n r

k1aD;arctanH k2

k1
A@n r /~k2a!#221

12@n r /~k1a!#2J 1mp1
p

4
, ~A12!

n i arccosS n r

k1aD;
k2

k1
A@n r /~k2a!#221 A12@n r /~k1a!#2

3expF22n rcosh21S n r

k2aD12An r
22~k2a!2G . ~A13!

These expressions are trivially simplified ifk2a!n r!k1a, i.e.,

n r;
2k1a

p
2S 2m1

1

2D , n i;
2n r

pk1a S k2a

2n r
D 2nr

e2nr. ~A14!

Consider 0,Ren,k2a. Setting the right-hand side of~A5! equal to zero in the uppern-plane
yields

k1a2
np

2
;mp1

p

4
2 i arctanFk1

k2
A12S n

k2aD 2G ~A15!

for k5k1 /k2 , or

k1a2
np

2
;mp1

p

4
2 i

k2

k1
A12S n

k2aD 2

~A16!

for k5k2 /k1 . With 0,unu!k2a,

n;
2k1a

p
2S 2m1

1

2D1 i , ~A17!

or

n;
2k1a

p
2S 2m1

1

2D1 i
2k2

pk1
. ~A18!

In consideration of the transitional region ofHn
(1)(k2a),39 ~A2! becomes

tanFA~k1a!22n22n arccosS n

k1aD2
p

4 G5kS 2

k2aD 1/3

ei2p/3
Ai 8~ei2p/3j!

Ai ~ei2p/3j!
. ~A19!

This is not satisfied by any realn. In the lowern-plane,

ei2p/3
Ai 8~ei2p/3j!

Ai ~ei2p/3j!
5 i k̄, ~A20!

where

k̄5k21S k2a

2 D 1/3

. ~A21!

Use of the large-argument approximation for the Airy function whenuk̄u@1 evinces that no zero
exist for 2p,Arg j,0. In the upperj-plane, Eq.~A20! is satisfied at pointsjs lying in the
neighborhoods of zeros of the denominator:
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js;~2as!e
ip/3@11eip/6 as

21k̄21#, uk̄u@1, s51, 2, . . . , ~A22!

whereas are the zeros of Ai(z) (as,0) numbered in order of ascending magnitude.40 On the
other hand,

js;~2ǎs!e
ip/3@11eip/6 ǎs

22k̄ #, uk̄u!1, s51, 2, . . . , ~A23!

whereǎs are zeros of Ai8(z).40 A function can be constructed which is holomorphic in the sec
$k̄:2p/4,Arg k̄,p/4% and whose values are determined by the zeros in the lowerj-plane
given by Eq.~A20!. By starting with expression~A22!, it can be shown via analytic continuatio
that no such zeros exist. Such a construction is given in Ref. 33.

APPENDIX B: ON THE ZEROS OF A„n… AND D„n…

In the spirit of Appendix A, consider the equation

Hn
(2)8~k1a!

Hn
(2)~k1a!

2k
Hn

(1)8~k2a!

Hn
(1)~k2a!

50, ~B1!

wherek5k1 /k2 for A(n) andk5k2 /k1 for D(n). The following conclusions are reached.
( i ) A(n) andD(n) exhibit no zeros for 0<Ren,k2a andk2a,Ren,k1a outside the tran-

sitional regions associated withn5k1a or n5k2a.
( i i ) The zeros inside the transitional region ofHn

(1)(k2a) are approximated by those of th
correspondingK(n) andM(n) in the uppern-plane according to~A20! of Appendix A.

( i i i ) A(n) and D(n) have zeros inside the transitional region ofHn
(2)(k1a) in the lower

n-plane. In view of Eq.~4.3!, the equation there is

H~j;22p/3!5k
k1

k2
S k1a

2 D 1/3

, j5~n2k1a!~k1a/2!21/3, ~B2!

which is in turn approximated by

Ai ~e2 i2p/3j!50. ~B3!

APPENDIX C: AN INTEGRAL IDENTITY

In this appendix, it is shown that

(
n52`

`

~21!nE
0

`

dn ei2pnn f ~n! Pn21/2
1 ~cosu!

522p (
n50

`

~21!n (
s56

(
j 51

`

s eis(2n11)pn j
s
Pn

j
s21/2

1
~2cosu! Res$ f ~n!%un5n

j
s, ~C1!

where f (n) is a meromorphic function with simple poles$n j
s% in the first (s51) and fourth (s

52) quadrant~j 51, 2, . . . , inorder of ascending imaginary part!, and with no singularities in
the imaginary and real axes other than poles that coincide with zeros of Pn21/2

1 (cosu). f (n) is
assumed to satisfy

f ~2n!52 f ~n! ; n, f ~n!5O~nd! as n→`, Ren.0, ~C2!

whered is a real number that may depend on Argn.
In the spirit of Ref. 9, the left-hand side of~C1! is written as an integral over a contourC

encircling the positive real axis clockwise, as shown in Fig. 6. Then,
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(
n52`

`

~21!nE
0

`

dn ei2pnn f ~n! Pn21/2
1 ~cosu!

5 i(
l 50

`

ei ( l 11/2)p f S l 1
1

2DPl
1~2cosu!

52
1

2i EC

dn

cospn
f ~n!Pn21/2

1 ~2cosu!

52p (
s56

(
j 51

` Pn
j
s21/2

1
~2cosu!

cospn j
s Res$ f ~n!%un5n

j
s2

1

2i E2 i`

i` dn

cospn
f ~n! Pn21/2

1 ~2cosu!,

~C3!

by employing Pl
1(cosu)5(21)l11Pl

1(cos(p2u)) and properly closingC at infinity. By virtue of
~C2! and the identity P2n21/2(x)5Pn21/2(x), the integral in the right-hand side of~C3! is identi-
cally zero. The expansion

1

cospn
52e6 ipn (

n50

`

~21!n e6 i2pnn, ~C4!

where Imn.0 (1) or Imn,0 (2), immediately yields~C1!. As a corollary,

(
n52`

`

~21!nE
0

`

dn ei2pnn f ~n! Pn21/2
1 ~cosu!50, ~C5!

if f (n) is holomorphic for Ren.0.
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Plasma velocity in hydromagnetic dynamos
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Hydromagnetic dynamos are plasma configurations generating for some time an
exponentially increasing magnetic field. By using a number of functional inequali-
ties, we estimate the rate of increase of magnetic energy in terms of the plasma
resistivity and diferent norms on the plasma velocity. Our bounds are proved to be
optimal as far as the powers of the relevant magnitudes are concerned. ©2002
American Institute of Physics.@DOI: 10.1063/1.1473679#

I. INTRODUCTION

A hydromagnetic dynamo in a plasma is a configuration allowing for a finite time an e
nential growth of the magnetic field. The behavior of the main magnitudes in an incompre
plasma is governed by the magnetohydrodynamic~MHD! system: the velocityu, magnetic fieldB,
kinetic pressurep, viscosityn and resistivityh satisfy, after the usual normalizations,

]u

]t
5nDu2u•¹u1B•¹B2¹p2¹S B2

2 D , ~1!

]B

]t
5hDB2u•¹B1B•¹u, ~2!

¹•u5¹•B50. ~3!

The MHD system, for any boundary conditions allowing no input of energy from the outsid
dissipative~see e.g. Ref. 1!. Therefore, any growth of magnetic energy must ultimately be don
the expense of the kinetic one, i.e., of the plasma velocity. Once this velocity is taken for gr
the magnetic field is governed by the induction equation~2!, and the magnetic energy by th
integral identity obtained making the scalar product of~2! andB:

1

2

]

]t EV
B2dV5hE

V
DB•BdV1E

V
B•¹u•B dV2E

V
u•¹B•BdV. ~4!

If we assumeu•nu]V50 ~i.e., the fluid does not cross the boundary!, the last integral vanishes. A
for the term

hE
V

DB•BdV52hE
V

u¹Bu2dV1
h

2 E
]V

]B2

]n
ds,

provided there is no input of magnetic energy from the outside,

E
]V

]B2

]n
ds<0, ~5!

yields the fundamental energy inequality

a!Electronic mail: mnjmhd@am.uva.es
32020022-2488/2002/43(6)/3202/5/$19.00 © 2002 American Institute of Physics
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1

2

]

]t EV
B2dV<2hE

V
u¹Bu2dV1E

V
B•¹u•BdV. ~6!

Condition ~5! holds ~with an equality! for Dirichlet (Bu]V50) or perfect conductor (B•nu]V

50; (¹3B)3nu]V50) conditions. We will assume either periodic boundary conditions in a
V with

E
V

u dV5E
V

B dV50, ~7!

or

u•nu]V5B•nu]V50, ~8!

in a smoothN-dimensional domainV. Thus we will take~6! as the starting inequality. The firs
term on the right-hand side of~6! accounts for the diffusive effects of the resistivity, while th
second is an advective term showing the transport of the magnetic field by the flow. In fa
ideal plasmas (h50) the magnetic field lines are transported by the plasma as material point
the field strength may be enhanced by this process.

From here one may ignore the diffusive term and bound the advective one by

U E
V

B•¹u•BdVU< 1

2
i¹u1~¹u! ti`E

V
B2dV, ~9!

wherei i` means the maximum norm and ( )t the transposed matrix~see, e.g., Ref. 2!. Therefore,
the growth parameterg satisfies

g< 1
2 i¹u1~¹u! ti` . ~10!

This estimate goes back to Backus.3 Thus the maximal exponential growth rate does not exc
the largest eigenvalue of the strain matrix1

2(¹u1(¹u) t). This elementary inequality has som
merits: the main one is that it does not depend on the resistivity and therefore it holds even
h→0. A velocity configuration yielding a dynamo even whenh→0 @ infh→0g(h).0# is called a
fast dynamo;4 this is an extensively studied subject. On the minus side, we first note that any
involving the gradient of the velocity is somewhat unsatisfactory. This is so because in
turbulent flows there exist sharp changes in the velocity vector, whereas the velocity size re
moderate. Indeed, on general principles one may reject an extremely large plasma veloc
there is no physical reason to exclude rapid variations of the flow: thus any norm on the ve
itself may be much smaller than the norm of the gradient. Moreover, the maximum norm
worst possible: it could happen that the plasma remains almost quiescent except for a tiny
which alone ensures that the maximum of the strain matrix is large. One does not expe
magnetic energy of the whole domain to be governed by a minute portion of the plasma. W
see that~9! may be significantly improved.

II. THE MAIN ESTIMATES

Certain subspaces of the Sobolev spaceH1(V) possess the property that

i f iH1<ki¹ f i2 ,

i.e., theL2-norm of f is dominated by the norm of its gradient. These are the so-called Poin´
inequalities. One of the most general descriptions of spaces where one of these inequalitie
is as follows~see Refs. 1 and 5!: let p be a continuous seminorm@i.e., a continuous norm, excep
for the fact thatp( f )50 does not implyf 50# on H1(V) such that for everyconstantfunction
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gÞ0, p(g)Þ0. Then any subspaceH of H1(V), such thatp( f )50 for all f PH, satisfies a
Poincare´ inequality. Among the many examples of such seminorms, we will use the follow
ones:

p~ f!5U E
V

fdVU, ~11!

p~ f!5E
]V

uf•nu ds. ~12!

Equation~11! covers periodic problems because of the zero mean condition~7!, while ~12! covers
the remaining cases, since~8! holds. That the seminormp of ~12! is continuous follows from the
fact that the trace of any functionf PH1(V) at the boundary belongs toL1(]V) @and even to
L2(]V)].

Our main tool will be a weak version of the Gagliardo–Nirenberg inequality~Ref. 6, pp.
65–68!: denoting as usual byi ip the norm inLp(V),

i f ip<Ci f iH1
t i f i2

12t , ~13!

whereC is a constant depending only on the domain,t5(N/2)2(N/p). This holds providedp
>2, (N/2)2(N/p),1, i.e., p,2N/(N22). Thus, forN53, 2<p,6; for N52, any p>2 is
admissible.

Since

E
V

B•¹u•BdV52E
V

B•¹B•udV, ~14!

by the inequality of Cauchy–Schwarz

U E
V

B•¹u•BdVU<E
V

uBuu¹BuuuudV<iBipi¹Bi2iuiq , ~15!

for any positivep, q such that 1/p11/q5 1
2; hencep,q>2. By ~13!,

iBip<CiBiH1
~N/2! 2 ~N/p!iBi2

12 ~N/2! 1 ~N/p! 5CiBiH1
N/q iBi2

12 ~N/q! , ~16!

providedp,2N/(N22), i.e.,q.N. Thus,

U E
V

B•¹u•BdVU<CiBiH1
N/q iBi2

12 ~N/q!i¹Bi2iuiq . ~17!

Let us use now the Poincare´ inequality, written as

iBiH1<ki¹Bi2 .

We have

U E
V

B•¹u•BdVU<CkN/qi¹Bi2
11 ~N/q!iBi2

12 ~N/q!iuiq . ~18!

Let us denote

r 5
1

2
2

N

2q
. ~19!
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We may write the right-hand term as

CkN/q~ i¹Bi2
2!12r~ iBi2

2!r iuiq5~ai¹Bi2
2!12r~~CkN/qiuiq!1/ra2(12r )/r iBi2

2!r , ~20!

wherea is a positive constant to be determined later. By using the classical inequality

xry12r<rx1~12r !y,

for x,y.0 ~which amounts to the convexity of the exponential function!, we find

U E
V

B•¹u•BdVU<~12r !ai¹Bi2
21rC1/rkN/qra2(12r )/r iuiq

1/r iBi2
2 . ~21!

Take nowa5h/(12r ). Then the term in¹B cancels with the dissipative term in~6!, and we are
left with

1

2

d

dt
iBi2

2<r ~12r !(12r )/r~CkN/qh2(12r )iuiq!1/r iBi2
2 . ~22!

Therefore, if there exists a magnetic dynamo of exponential growth rateg, for anyq.N,

g<2r ~12r !(12r )/r~CkN/qh2(12r )iuiq!1/r , ~23!

wherer is given by~19!. C andk are universal constants. The estimate improves with largeq and
h, and becomes singular ash→0 or r→0 ~i.e., q→N!. For q→` it becomes

g< 1
2 Ch21iui`

2 , ~24!

which improves the Backus bound~10! in the sense that it does not need the velocity gradi
although the resistivity occurs. The estimate~23! is satisfactory in the sense that it involves
integral norm of the velocity and therefore it is a measure of its mean size: it shows th
dynamo cannot be governed by what happens in small regions of the plasma, although the
be relevant in the process of stretching which is basic in the dynamo process. Howev
physically most important norm of the velocity is the kinetic energyiui2 , which is not reached by
~23!. For N52 it lies at the lower limit and the constants blow there; forN53 it is well beyond
reach. To see that this is a physical fact and not merely the result of poor bounds, we will
that ~23! is a sharp inequality as concerns the order of the magnitudes.

III. COUNTEREXAMPLES FOR LOWER ORDER NORMS

We will consider an initial condition formed by velocity and field depending only on
radius, and radially directed. ThenB•¹u is also radially directed and the termB•¹u•B is pre-
cisely uBu2u¹uu. Specifically, assumeB5B(R)er , er the unit radial vector,B decreasing linearly
from B5h at r 50 to B50 at r 5L: B(r )5h2hr/L for r P@0,L#, B(r )50 for r .L. Takeu
5B. These magnitudes are not really smooth, as they fail to be differentiable atr 50 and r
5L, but they can be uniformly approximated by smooth functions such that the values of a
integrals tend to the respective values for our chosen functions.

First, since the Jacobian in dimensionN depends onr like r N21, the normiuiq behaves like
hLN/q, andiBi2 like hLN/2. u¹uu is identical toh/L for r P@0,L#, and zero otherwise; thus

E
V

uBu2u¹uudV5hL21E
V

uBu2dV;hL21h2LN5h3LN21. ~25!

On the other hand,
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hE
V

u¹Bu2dV;hh2LN22, ~26!

so that the behavior of the right-hand side of Eq.~6!, as a function ofh andL, is

2hh2LN221h3LN21. ~27!

Therefore, any exponential growth rateg should be of the order of~27! divided byh2LN, i.e.,

g;2hL221hL21, ~28!

while iuiq;hLN/q.
Assumeq,N, and takes such that 1,s,N/q. Chooseh5L2s. Then, forL small,

g;2hL221L212s;L212s. ~29!

While iuiq;LN/q2s tends to zero withL, g→`. Thus there is no possible bound ofg in terms of
iuiq .

For q5N, we must avoid the possible indetermination in~29! occurring forh5L21. There-
fore, we takeh5L21 logL21. For L small enough,

2hL221L22 logL21;L22 logL21, ~30!

whereasiuiq; logL21. Since obviously, for any powern,

~ logL21!n!L22 logL21, ~31!

whenL→0, there cannot be any bound ofg in terms of any power ofiuiq .
Logically the method fails forq.N, because any attempt of settingh5L2s would yield a

negative power ofL at both sides; we could choose an adequate power on the right-hand s
make the magnitudes comparable. Notice that our test functions are localized in a neigborh
0 and therefore satisfy our boundary conditions.

IV. CONCLUSIONS

Defining hydromagnetic dynamos as plasma configurations producing an exponential g
of the magnetic field for some time, it is desirable to bound the possible growth rates in ter
the size of the plasma velocity. Classical inequalities involve the maximum norms of the ve
gradient, which are unsuitable for several reasons. We prove a bound of the growth rat
power of theLq-norm of the velocity and the conductivity, for anyq strictly larger than the spac
dimensionN. The estimate blows up in the limitq5N as well as in the ideal limit of zero
resistivity. It is shown by examples that there cannot be analogous bounds forq<N.
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Symmetric periodic solutions of the anisotropic
Manev problem

Manuele Santopretea)

Department of Mathematics and Statistics, University of Victoria,
P.O. Box 3045, Victoria, British Columbia V8W 3P4, Canada
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We consider the Manev potential in an anisotropic space, i.e., such that the force
acts differently in each direction. Using a generalization of the Poincare´ continua-
tion method we study the existence of periodic solutions for weak anisotropy. In
particular we find that the symmetric periodic orbits of the Manev system are
perturbed to periodic orbits in the anisotropic problem. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1469670#

I. INTRODUCTION

In this article we consider the anisotropic Manev problem~AMP! that was introduced by
Diacu1 in the early 1990s. The work on the AMP was inspired by the anisotropic Kepler pro
introduced by Gutzwiller in the early 1970s. Gutzwiller aimed to find connections between
sical and quantum mechanics. His interest was stimulated by an old unsolved quantum mec
problem formulated in a paper written by Einstein:2 even if the Born–Sommerfeld–Einstein co
dition ~e.g., see Ref. 2! were appropriate to describe the semi-classical limit of quantum theo
was unclear how to find a classical approximation for nonintegrable systems.

Similarly the main reason for considering the AMP is to further analyze similarities betw
classical mechanics and quantum theory. Moreover, as it was remarked in Ref. 1, the AM
brings general relativity into the game, since the Manev potential explains the perihelion ad
of the inner planets with the same accuracy as general relativity.3 It should be remarked tha
bringing general relativity into the game is of particular importance since a satisfactory qua
theory of gravitation does not exist.

Some of the qualitative features of the anisotropic Manev problem have already been s
In Ref. 1, a large class of capture-collision and ejection-escape solutions is studied by mean
collision and infinity manifold techniques. In particular that paper also brought arguments fav
the chaoticity and nonintegrability of the system by showing the existence of heteroclinic
within the zero energy manifold. In Ref. 4 the occurrence of chaos on the zero energy ma
and the nonintegrability are finally proved, putting into evidence that the AMP is a very com
problem.

In this work, to gain a better understanding of the complicated dynamics of the AMP, we
the symmetric periodic orbits. Analyzing those orbits is especially important since, by now
well known that studying periodic orbits is a valuable general approach to tackle complex
lems in classical mechanics. The existence of periodic orbits for small values of the anisotr
proved using generalizations of the Poincare´ continuation method developed in Refs. 5–8~see
also Refs. 9–11!.

The ~planar! anisotropic Manev problem is described by the Hamiltonian

H5
1

2
p22

1

Ax21my2
2

b

x21my2 , ~1!

where m.1 is a constant andq5(x,y) is the position of one body with respect to the oth

a!Electronic mail: msantopr@math.uvic.ca
32070022-2488/2002/43(6)/3207/13/$19.00 © 2002 American Institute of Physics
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considered fixed at the origin of the coordinate system, andp5(px ,py) is the momentum of the
moving particle. The constantm measures the strength of the anisotropy and form51 we recover
the classical Manev problem. Furthermore, the equation of motion can be expressed as

q̇5p,
~2!

ṗ52
]H

]q
.

Now consider weak anisotropies, i.e., choose the parameterm.1 close to 1. Introducing pola
coordinatesx5r cosu, y5r sinu and the notatione5m21 with e!1 we can expand the Hamil
tonian ~1! in powers ofe and obtain

H5
1

2
p22

1

r
2

b

r 2 1eS 1

2r
1

b

r 2D cos2u[H01eW~r ,u!. ~3!

It should be pointed out that the termW(r ,u) becomes unbounded asr→0 so that a perturbation
analysis is not correct on the ejection-collision orbits. This means that the global dynamics
AMP cannot be completely described by perturbations to the Manev problem even at the
e→0. However, many interesting results concerning the Hamiltonian~1! for weak anisotropies
~i.e.,e!1! can be found studying the Hamiltonian~3!, some of which are presented in this artic

In the next section we describe the symmetries of the AMP and we find some propertie
will be useful to find symmetric periodic orbits. In Sec. III we prove a continuation theorem
the symmetric periodic orbits of ‘‘second kind,’’ i.e., the noncircular ones. In Sec. IV we pro
continuation theorem for the orbits of ‘‘first kind,’’ i.e., the circular ones, following the meth
developed in Ref. 8.

II. SYMMETRIES OF THE ANISOTROPIC MANEV PROBLEM

To find periodic orbits in the anisotropic problem it is peculiarly important to know
symmetries of the system, as it was, for example observed in Refs. 5 and 6. The symmetrie
problem under discussion have been examined in Ref. 1 and they are the same as the one
in Ref. 7 for the anisotropic Kepler problem:

E : ~x,y,px ,py ,t !→~x,y,px ,py ,t !,

S0 : ~x,y,px ,py ,t !→~x,y,2px ,2py ,2t !,

S1 : ~x,y,px ,py ,t !→~x,2y,2px ,py ,2t !,

S2 : ~x,y,px ,py ,t !→~2x,y,px ,2py ,2t !,

S3 : ~x,y,px ,py ,t !→~2x,2y,2px ,2py ,t !,

S4 : ~x,y,px ,py ,t !→~2x,y,2px ,py ,t !,

S5 : ~x,y,px ,py ,t !→~x,2y,px ,2py ,t !,

S6 : ~x,y,px ,py ,t !→~2x,2y,px ,py ,2t !,

~4!

whereE is the identity.
The symmetries above can be interpreted in the following way: Letg(t) be a solution of~2!.

ThenSi(g(t)) is another solution fori P$0,1,2,3,4,5,6%. For i P$0,1,2,3,4,5,6% the orbitg(t) will
be called symmetric if and only ifSi(g(t))5g(t).
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Let us remark that the symmetries in~4!, together with the composition of functions, denot
by s, form an Abelian group in which the operation acts according to the table below.

From the table above it is easy to deduce the following.
Proposition 1: The symmetries of the anisotropic Manev problem form an elementary Ab

group of order eight, i.e., a group isomorphic toZ23Z23Z2 .
The symmetries in~4!, ~exceptE andS6! are very useful to find symmetric periodic orbit

especially by means of the continuation method, as we show in the next two sections.
important properties of the symmetric orbit, summarized in Ref. 7, are expressed in the foll
lemma:

Lemma 1: (i) For i51 ~resp. i52! we have that an orbitg(t) is Si-symmetric if and only if
it crosses the x axis (resp. y axis) orthogonally.

(ii) An orbit g(t) is S0-symmetric if and only if it has a point on the zero velocity curve.
(iii) For i 54,5 an orbit g(t) is Si-symmetric if and only if it is S0-symmetric.
(iv) All the S3-symmetric orbits are periodic.
The properties of theSi-symmetric orbits were first studied by Birkhoff9 for the restricted

three body problem and later by many other authors. In particular Casasayas and Llibre7 state a
proposition that gives a technique useful to obtain symmetric periodic orbits with respect tS0 ,
S1 , S2 for the anisotropic Kepler problem that are verified also for the problem under discu
in this article:

Proposition 2: (i) For i51 ~resp. i52) we have that an orbitg(t) is an Si-symmetric
periodic orbit if and only if it crosses the x axis (resp. y axis) orthogonally at two distinct po

(ii) An orbit g(t) is an-S0 symmetric periodic orbit if and only if it meets the zero veloc
curves at two distinct points.

(iii) An orbit g(t) is an-S1 and S2-symmetric periodic orbit if and only if it crosses the x ax
and the y axis orthogonally.

(iv) For i 51,2an orbit g(t) is a S0- and Si-symmetric periodic orbit if and only if it meets th
zero velocity curve and crosses the x, respectively y axis, orthogonally.

(v) For i54,5, if an orbit g(t) is Si-symmetric, then it is S0-symmetric and periodic.

Now we want to find the symmetric periodic orbit for the unperturbed problem~e50 or m
51! and continue them to periodic solutions of the anisotropic system~for e!1!. First we
observe that, by Proposition 2, theSi-symmetric orbits withi 50,4,5 must meet the zero velocit
curve at two points, i.e., there must be a point where the angular momentumK5xpy2ypx is zero,
but sinceK is a constant of motion it must be zero along the orbit. Therefore such orbits
ejection-collision orbits, are not periodic and cannot be studied by means of the contin
method. Hence we are going to consider the symmetric periodic orbits withi 51,2, and also the
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ones withi 53 that are the circular orbits of the unperturbed problem. To exploit those prope
of the symmetric periodic orbits it is convenient to write the equation of motion in diffe
coordinates.

For theSi symmetric orbits withi 51,2, as it was noted in Ref. 5, it is convenient to write t
canonical equations of the restricted three body problem using the Delaunay variables
rotating frame.5 Also the Poincare´ synodic variables can be used to find symmetric periodic or
of the restricted three body problem.6 The anisotropic Manev problem is different since t
Hamiltonian that describes it is time independent, hence the idea of using rotating coordin
the present case cannot be applied. Moreover, our problem is nondegenerate; however, eve
case it is advantageous to perform a change of variables and apply a variation of the actio
variables used in Refs. 4 and 12. Here the nondegeneracy of the problem plays a role simila
rotating coordinate system in the restricted three body problem.

For theS3-symmetric orbits we can instead consider the equations in the rotating frame
prove a theorem similar to the one proved in Ref. 8 for the anisotropic Kepler problem~in Ref. 8
the author remarks that the analysis of the Kepler problem can be redone in the Manev ca
he does not provide a proof!.

III. THE Si-SYMMETRIC ORBITS WITH iÄ1,2

We recall that the action variables introduced in Refs. 4 and 12 are given by

I 5
1

2p R prdr52AK222b1
1

2
A 2

uhu
,

~5!
K5xpy2ypx ,

whereh is the energy constant andK is the angular momentum. These variables are defined
h,0 andK2.2b, I .0, to avoid collision orbits as well as circular orbits. The related frequen
are

v I5
1

~ I 1AK222b!3
,

vK5
K

AK222b~ I 1AK222b!3
,

andu andf are the angle variables associated toK and I , respectively.
The unperturbed Hamiltonian in the new variables can be written as

H052
1

2~ I 1AK222b!2
.

Now we can consider new variables that are linear combination of the previous ones. Th
defined by the following canonical transformation

L5K1I ,

G52I ,
~6!

l 5u,

g5u2f.

Wherel is the mean anomaly@wherel (t)5vL(t2t0) andt0 is the time of pericenter passage#, g
is the longitude of pericenter as they are defined for the Manev problem in Ref. 13. Moreove
the action variables can be written in terms of the orbital elements of the Manev problem. If w
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a5
1

2uhu
and e5A122~K222b!uhu

as in Refs. 4 and 13, then

G52a1/2@12~12e2!1/2# and L52G6Aa~12e2!12b,

wherea is the pseudo-semimajor axis,e is the pseudo-eccentricity, and the sign1(resp.2) holds
for K.0 (resp.,0). The conditions to avoid collision orbits and circular orbits, on whichg
becomes meaningless, can be written in terms of the orbital elements asa.0 and 0,e,1. The
new unperturbed Hamiltonian is

H052
1

2~2G1A~G1L !222b!2
, ~7!

so the perturbed equations of motion become

L̇52
]~H01eW!

] l
52e

]W

] l
,

Ġ52
]~H01eW!

]g
52e

]W

]g
,

~8!

l̇ 5
]~H01eW!

]L
5vL1e

]W

]L
,

ġ5
]~H01eW!

]G
5vG1e

]W

]G
,

whereW is expressed in the new variables and

vL5vK5
G1L

~2G1A~G1L !222b!3A~G1L !222b

vG5vK2v I5
G1L2A~G1L !222b

~2G1A~G1L !222b!3A~G1L !222b

With these preparations, i.e., the introduction of the action angle variables~6!, we are well on our
way to establishing the following result:

Theorem 1: Let g(t) be an Si-symmetric periodic orbit of the Manev problem with i51,2.Let
the period bet and sete5m21 with e!1. Then there exists at-periodic solution of the aniso-
tropic Manev problemge(t) such thatge(t)5g(t)1O(e).

Proof: Let us consider anS1-symmetric orbit of periodt52pm/k ~m, k relatively prime
integers!. We remark that, since the equations of motion are autonomous, we can reduce to
the symmetric orbits that have either the pericenter or the apocenter on the positivex axis at t
50.

If at t50, e50, the pericenter of this orbit is on the positivex axis, and it is crossing thex
axis perpendicularly, we have

g~0!50 and l ~0!50. ~9!

Since the periodic orbit isS1-symmetric, by Proposition 2, at the half period one has
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gS t

2D5mp, l S t

2D5kp, ~10!

which follows from the solution of~8! for e50:

L5const, G5const
~11!

l 5vLt, g5vGt.

Now if, for eÞ0, we consider onlyS1-symmetric solutions of~8!, it follows from the implicit
function theorem that if the functional determinant

D5detS ] l

]L

] l

]G

]g

]L

]g

]G

D Þ0 ~12!

at

t5
t

2
, e50, ~13!

then~10! would be satisfied fore.0. To compute the determinant we can by analyticity substi
~10! into ~11! to find out at the timet5t/2 that

D5
6b~t/2!2

~2G1A~G1L !222b!7~~G1L !222b!3/2
Þ0. ~14!

Thus the existence ofS1-symmetric periodic orbits of periodt obtained from thet periodic
S1-symmetric solutions of the unperturbed problem, that att50 have the pericenter on the pos
tive x axis, is readily established.

On the other hand, if att50, e50, the apocenter is on the positivex axis, and it is crossing
the x axis perpendicularly, we have

g~0!5
p

l
and l ~0!52

p

l
, ~15!

wherel5(vL2vG)/vL . By Proposition 1, at the half period we have

gSt2D5S m1
1

l Dp, l S t

2D5S 2
1

l
1kDp. ~16!

Instead of computing the functional determinant directly, in this case, it is easier to consid
new variables given by the relations

L̃5L,

G̃5G,
~17!

l̃ 5 l 1
p

l0
,

g̃5g2
p

l0
,
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which define a family of canonical transformations parametrized byl0(L0 ,G0). For each orbit
choose a different transformation from the family~17!, wherel05l is a fixed quantity defined by
the value of the action variables along the periodic orbit under consideration.

The equations~16!, expressed in the new variables, are of the same form as in~10!. Thus the
functional determinant, in the new variables, is exactlyD, and the existence of the remainin
S1-symmetrict-periodic orbits follows.

Now the proof for theS2-symmetric orbits can be done along the same lines. Conside
S2-symmetric periodic orbit of periodt52pm/k. If at t50, e50 the pericenter of the orbit is on
the positivey axis and it is crossing they axis perpendicularly, we have

g~0!5
p

2
and l ~0!50. ~18!

Since the periodic orbit isS2-symmetric one has, at the half period,

gS t

2D5mp1
p

2
, l S t

2D5kp. ~19!

Now we consider onlyS2-symmetric solutions of~8! for eÞ0. Again it follows from the implicit
function theorem that if the determinantD computed att5t/2 for e50 is nonzero, then~19!
would be satisfied fore.0. It is trivial to see from~14! that DÞ0, and hence we found
S2-symmetric periodic orbits for the perturbed problem.

For theS2-symmetric orbits having the apocenter on the positivex axis att50 the canonical
transformation~17! can be used. Again we find the same expression for the functional determ
and, hence, by the implicit function theorem, the existence of the remainingS2-symmetric periodic
orbits is proved.

It is interesting to remark that Theorem 1 and its proof can be easily extended to consid
Si-symmetric perturbation withi 51,2 and a very general class of nondegenerate integr
Hamiltonians, however such a generalization is trivial and not strictly related to the problem
consideration and hence it will not be discussed any further.

We can also observe that forb50, i.e., for the Kepler problem, the determinant in~14! is zero.
Thus in the case of the anisotropic Kepler problem, the continuation theorem proved above
be applied, and the existence of symmetric periodic orbits of the ‘‘second kind’’~for weak
anisotropies! remains unclear. On the other hand, the continuation theorem that we prove
next section~for the circular orbits! can be applied to the anisotropic Kepler problem8 and hence
at least the existence of symmetric periodic orbits of the first kind is a well established fac

IV. THE S3-SYMMETRIC ORBITS

Again we can consider the anisotropic Manev problem taking the parameterm close to 1. Let
F(t,(r , ṙ ),m) be the flow of the equation of motion~1!. In this section we prove the following
theorem:

Theorem 2: Let r0(t) be an S3-symmetric periodic orbit of the Manev problem, i.e., a circul
one. Sete5m21, and let t be the period ofr0(t). Then there exists at-periodic solution
F(t,(r (e), ṙ (e)),e) of the anisotropic Manev problem such thatF(t,(r (0),ṙ (0)),0)
5(r0(t), ṙ0(t)).

A. The equation of motion

Now using the same notation as in Ref. 8 letr0(t) be a circular solution of the Manev problem
which corresponds tom51 in the xy-plane,v its angular speed anda its radius. Fore5m21
Þ0 we set
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r ~ t,e!5r0~ t !1es~ t,e!. ~20!

Expanding¹H in powers ofm21 sufficiently small, after substituting the expression forr given
above, considering the notationr0(t)5x0(t)1 iy0(t) ands5u1 iv we have thatr (t,e) is a solu-
tion of equation of motion defined by~1! if, and only if, s(t,e) is a solution of the equations

ü52S 1

a3 2
3x0

2

a5 2
8bx0

2

a6 1
2b

a4 Du1S 3x0y0

a5 1
8bx0y0

a6 D v1h~ t !1O~e!,

~21!

v̈5S 3x0y0

a5 1
8bx0y0

a6 Du2S 1

a3 2
8by0

2

a6 2
3y0

2

a5 1
2b

a4 D v1j~ t !1O~e!

where

h~ t !5
3x0y0

2

a5 1
4bx0y0

2

a6

j~ t !5
3y0

2

2a5 2
y0

a3 1
4by0

3

a6 2
2by0

a4 .

Consider the orthonormal frame inR2, e1(t) ande2(t) defined by

e15
r0

ur0u
5eivt5cosvt1 i sinvt, e25 ie1 ,

and, using the same notation as in Ref. 8 where

s5x1e11x2e2 , ṡ5y1e11y2e2 ,

Eq. ~21! can be written in an equivalent form as

ż5A0~ t !1Az1O~e!, ~22!

wherez5(x1 ,x2 ,y1 ,y2)T, and

A05S 0
0

a~ t !
b~ t !

D , A5S 0 v 1 0

2v 0 0 1

2 v212
b

a4 0 0 v

0 2v2 2v 0

D ,

where

a~ t !cosvt2b~ t !sinvt5h~ t !,

a~ t !sinvt1b~ t !cosvt5j~ t !,

or, equivalently,

a~ t !5sin2vtS 1

2a2 1
2b

a3 D ,

~23!
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b~ t !52sinvt cosvtS 1

a2 1
2b

a3 D .

The eigenvalues ofA are 0, with multiplicity two,i /a3/2 and2 i /a3/2. One of the two eigenvalue
vanishes because the system is autonomous, and the second due to the presence of the firs
H.

Now consider the real Jordan formJ of A. The matrix J is defined by the relationJ
5T 21AT whereT is

T5S 2 v2a3 0
v2a412 b

a
0

0 2
v~3 v2a412 b!

a
0 22

va2~v2a412 b!

~a!3/2

0
1

2

4 a~v2a41b!12 ~v2a412 b!2

a5 0
~v2a412 b!2

a7/2

2
v~v2a412 b!

a
0 2

v~v2a412 b!

a
0

2
and the columns ofT are the generalized eigenvectors ofA.

The vectorJ05T 21A0 and the matrixJ are

J05S j 1~ t !
j 2~ t !
j 3~ t !
j 4~ t !

D , J5S 0 0 0 0

1 0 0 0

0 0 0
Aa

a2

0 0 2
Aa

a2 0

D ,

where the fact thatj 1(t)5(2v3a22 v(v2a412b)/a2)21b(t) is the only information aboutJ0

that we need to retain. Furthermore, we remark thatv2a42a22b50 gives the relation betwee
a andv and solving this equations gives only one positive solution~for b.0!.

Letting z5Tz, the equation of motion becomes

ż5J0~ t !1Jz1O~e!, ~24!

and its flow is given by

c~ t,z,e!5g~ t !1eJt1O~e!, ~25!

where by the variation of constants

g~ t !5eJtE
0

t

e2JsJ0~s!ds. ~26!

Therefore, we have
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eJt5S 1 0 0 0

t 1 0 0

0 0 cos
Aa

a2 t sin
Aa

a2 t

0 0 2sin
Aa

a2 t cos
Aa

a2 t

D ,

and from~26! we obtain

g~ t !5S g1~ t !
g2~ t !
g3~ t !
g4~ t !

D , ~27!

where we retain only the information that

g1~ t !5S 2v3a22
v~v2a412b!

a2 D 21E
0

t

b~s!ds. ~28!

B. The periodicity equation

Since the HamiltonianH of the anisotropic Manev problem isS3-symmetric, as we have
shown, we can write the periodicity equation as in8

FS t

2
,~r , ṙ !,e D52~r , ṙ !. ~29!

Then it easy to check thatF(t,(r , ṙ ),e) is a periodic solution of the equation of motion wit
periodt. To find periodic solutions we have to verify that~29! is satisfied for a family of initial
conditions. Equation~29! in z coordinates is

cS t

2
,z,e D2z50, ~30!

wherec(t,z,e) is the flow of ~24!. Let us denote byP(z,e) the left hand side of the periodicity
equation~29!, that is, let

P~z,e!5cS t

2
,z,e D2z5gS t

2D1~eJt/22I !50. ~31!

Using ~25! we notice that the requirement

P~z* ,0!5gS t

2D1~eJt/22I !z* 50 ~32!

imposes the restrictions

g1S t

2D50, z1* 52
2

t
g2S t

2D , z2* 5arbitrary, ~33!

and
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z3* 5
1

2~12cosa* ! S 2g3S t

2D ~cosa* 21!1g4S t

2D sina* D
~34!

z4* 5
21

2~12cosa* ! S g3S t

2D sina* 1g4S t

2D ~cosa* 21! D ,

wherea* 5p(112b/a)21/2. It easy to see from~23! and~28! thatg1(t/2)50, therefore, we take

z* 5~z1* ,z2* ,z3* ,z4* !T, ~35!

with z2* arbitrary, for the moment. Now using the flow~25!, we determine that the Jacobian matr
of P with respect to the variablesz evaluated at the point (z* ,0) is given by

S 0 0 0 0

t/2 0 0 0

0 0 cosa* 21 sina*

0 0 2sina* cosa* 21

D . ~36!

Consider the system of three equations formed by those in~31! corresponding to the indicesi
52,3,4, and fix the variablez25z2* . Its Jacobian matrix has determinantt(12cosa* ) that is
always positive since 0,p(112b/a)21/2<p. Therefore, the implicit function theorem guara
tees the existence of analytic functionsz i5z i(e), i 51,3,4, in a neighborhood ofe50, satisfying
the equations

Pi~z,e!50 ~ i 52,3,4!, ~37!

where

z~e!5~z1~e!,z2* ,z3~e!,z4~e!! ~38!

and such that

z i~0!5z i* ~ i 51,2,3,4!. ~39!

It remains to show, in order to have periodicity, that also the remaining equation

P1~z~e!,n~e!,e!50 ~40!

is satisfied in a possibly smaller, neighborhood ofe50. That will be done employing a firs
integral of the system under discussion, i.e., the Hamiltonian.

C. Integral of motion

Since the Hamiltonian is an integral of motion of the problem under discussion we can
the same analysis as in Refs. 8 and 14. In particular, using the same notations as in Ref. 8
define

He~z,t !5H~r , ṙ ,e!,

whereHe(z,t) is a time-dependent,t-periodic first integral for system~22!. The above integral
satisfies the following relation,

HeS z,t1
t

2D5He~z,t ! ~41!
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for all t, sinceH(2r ,2 ṙ )5H(r , ṙ ), r (t)5r0(t)1e s(t) and

r0S t1
t

2D52r0~ t !, sS z,t1
t

2D52s~z,t !.

Performing a change of coordinates we can defineHe(z,t)5He(Tz,t), hence~41! can be
written as

He~z,t1t/2!5He~z,t !. ~42!

Moreover, sinceHe is an integral of motion it verifies that

He~f~z,e,t !!5He~z,0!. ~43!

Thus applying Eqs.~42! and ~43! it follows that

He~c~t/2,z,e!,0!5He~z,0!,

and by means of the mean value theorem we obtain

¹zHe~ z̃,0!•P~z,e!50, ~44!

where¹zHe is the gradient ofHe with respect toz, and z̃ is a point on the segment joiningz to
c(t/2,z,e).

ExpandingC(e)5c(t/2,z,e) in power ofe sufficiently small it is easy to show~see Ref. 8!
that C(e)5z* 1O(e) and consequently

z̃5sz~e!1~12s!C~e!5z* 1O~e!

for somesP(0,1). Moreover, if we also expand the HamiltonianHe(z,0) in powers ofe we get

He~z,0!5H01e~H11H2•z!1O~e2!

or, in z coordinates

He~z,0!5H01e~H11H2•z!1O~e2!, ~45!

where H05H05(1/2v2a22 1/a 2 b/a2), H15H1 and H25T TH25T T(a2212ba23,0,0,av)
5(av2z1,0,0,0). Hence we obtain

1

e
¹zHe~ z̃,0!5H21O~e!. ~46!

With these preparations Eq.~44! reduces to the equation in the unknownP1

@av21O~e!#P150, ~47!

since, for smalle, we already found in Sec. IV B thatPi50 for i 52,3,4. It is easy to see that fo
e50 the equation above has solutionP150. Thus, by continuity,@av21O(e)# is different from
zero fore sufficiently small. Therefore, for such values ofe, this equation has a unique solutio
that is the trivial one. Consequently, the remaining equation,

P1~z~e!,e!50,
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is also satisfied in a possibly smaller neighborhood ofe50. Hence all the equations of th
periodicity system~31! are satisfied whenz5z(e), as long ase is sufficiently small. This com-
pletes the proof of Theorem 2.
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Metric-independent analysis of the stress-energy tensor
Reuven Segeva)
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The stress-energy tensor of field theory is defined and analyzed in a geometric
setting where a metric is not available. The stress is a linear mapping that trans-
forms the three-form representing the flux of any given property, e.g., charge-
current density, to the three-form representing the flux of energy. The example of
the electromagnetic stress-energy tensor is given with the additional structure of a
volume element. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1475347#

I. INTRODUCTION

The introduction of the stress-energy tensor in field theory and the related analysis of c
vation laws utilize the metric properties of space–time afforded by relativity theory~see, for
example, Refs. 1–5!. Since one cannot assume that the metric tensor is known in advan
would be preferable, at least from the theoretical point of view, to have a formulation of the th
that does not rely on the metric structure. Such a presentation of the stress-energy ten
conservation laws is the subject of this article.

For the electromagnetic field as a concrete example, the construction may be described
as follows: the value of a stress-energy tensor at any event is a linear mapping that transfo
charge-current density three-form to the corresponding energy flux three-form.

The basic geometric setting is that of anm-dimensional space–time manifoldU. Space–time
is assumed to be orientable and a specific orientation is assumed to be chosen. In particula
not use a metric or a connection in the analysis. The first part of the article, containing Secs.
III, is concerned with the fibration of space–time induced by a conservation law for an exte
propertyp, for example, the electric charge. Assuming that the flux of the propertyp out of any
regionR in space–time is given as an integral of a flux density (m21)-form tR , and using a
generalization of the traditional Cauchy assumptions regarding the dependence of the formtR on
R, there is a unique flux (m21)-form J ~see Ref. 6!, the analog of the charge-current dens
three-form in electromagnetism, such that for any regionR, tR5i* (J), wherei* is the restriction
of forms defined on space–time to the boundary ofR. The flux density form induces a one
dimensional subbundle of the tangent bundleTU whose integral manifolds are the worldline
associated with the property. Thus, even in this general setting, the conservation of the p
induces enough structure so the analogs of particles and velocities—worldlines and
(m21)-forms—may be defined. If a volume elementu is given onU, the flux form induces a
vector fieldv, the analog of the four-velocity, by the conditionJ5v4u.

The next part of the article, consisting of Secs. IV–VI, presents stress theory on man
~see also previous works, Refs. 7 and 8!. Consider a vector bundleW→U, whose elements are
interpreted as values of generalized velocities. For a regionR in space–time, Sec. IV is concerne
with a linear functional on sectionsw of W that contain a ‘‘volume’’ term and a boundary term
The boundary term for a regionR,U is given astR(w) wheretR is a section of the bundle o
linear mappingsL(W,Lm21(T* ]R)). Again, with the Cauchy postulates for the dependence otR
on R, there is a unique sections of L(W,Lm21(T* U)), the Cauchy stress, that induces
restriction of forms the vector valued formstR for the various regions.

a!Electronic mail: rsegev@bgumail.bgu.ac.il
32200022-2488/2002/43(6)/3220/12/$19.00 © 2002 American Institute of Physics
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Section V considers a linear functional on sections ofW that may be represented as follow
Let J1(W) be the jet bundle associated withW. Then, there is a section ofL(J1(W),Lm(T* U)),
the variational stress density, such that the value of the functional for a sectionw is *RS( j 1(w)),
where j 1(w) is the first jet of the sectionw. The divergences of variational stress densities
defined and the relation between Cauchy stresses and variational stresses is presented in

The values of the functionals described above are interpreted in Sec. VII as the e
variation associated with the motion of the propertyp as represented by the flux formJ. Accord-
ingly, Lm21(T* U) is used for the vector bundleW over space–time. In this case, the Cauc
stress is a section ofL(Lm21(T* U),Lm21(T* U))— the stress-energy tensor. It is shown in S
VIII that stress-energy tensors can be represented naturally by sections of the bundle of
mappingsL(TU,TU).

Finally, Sec. IX presents the example of the stress-energy tensor for electromagnetis
particular relation is used for the constitutive relation between the Maxwell and Faraday
forms and the only additional geometric structure used is that of a volume element. Math
cally, this enables us to obtain the four-velocity vector field from the flux form. The expressio
the Lorentz force we obtain is analogous to that of Ref. 2, p. 91, where a metric is used.

In Ref. 9, Gotay and Marsden present a derivation of a metric independent stress-
tensor using a different approach. In comparison with the present article, the authors a
additional structure of a Lagrangian and a gauge group. Accordingly, the results they obta
more comprehensive. The stress object derived in Ref. 9 is a~1,1!-tensor density, i.e., a section o
L(L(TU,TU),Lm(T* U)) that may be identified with a section ofL(TU,Lm21(T* U)). Here,
allowing a slight generalization where a stress is an element ofL(L(W,TU),Lm(T* U)) for some
vector bundleW, and then puttingW5Lm21(T* U) ~see Sec. VII for the motivation!, we arrive at
a stress object that is a~1,1! tensor, i.e., a section ofL(TU,TU).

II. SCALAR VALUED EXTENSIVE PROPERTIES ON SPACE–TIME

We consider the conservation of an extensive propertyp in space–timeU. It is assumed that
U is anm-dimensional orientable manifold with a definite orientation chosen. Anm-dimensional
submanifold with boundaryR of U will be referred to as acontrol region.

Specifically, it is assumed that for each control regionR there is an (m21)-form tR on ]R,
the flux density. The integral*]RtR is interpreted as the flux of the property out of the cont
region in space–time relative to the positive orientation induced on]R by the orientation onU
and the outwards pointing vectors. In case a frame is given, the flux density through a spa
slice is interpreted as the density of the propertyp in space and the flux through a hyperpla
containing the]/]t tangent vector is interpreted as the classical flux density ofp into the corre-
sponding slice consisting of simultaneous events.

RegardingtR as the value of a set function defined on the collection of control regi
Cauchy’s postulates of continuum mechanics can be generalized to differentiable manifo
follows ~see Refs. 6 and 8!.

GC1 There is a volume elementu on U such that

U E
]R

tRU<E
R

u.

GC2 Consider the Grassmann bundle of hyperplanespG :Gm21(TU)→U whose fiber
Gm21(TxU) at any event xPU is the Grassmann manifold of hyperplanes, i.
(m21)-dimensional subspaces of the tangent spaceTxU. Let Lm21(Gm21(TU))* →Gm21(TU)
be the vector bundle overGm21(TU) whose fiber over a hyperplaneH is the vector space o
(m21)-forms onH. Then, the dependence oftR on R is via a smooth section

t:Gm21~TU!→ L
m21

~Gm21~TU!!* ,
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such thattR5t(Tx]R).
Cauchy’s theorem, generalized in Refs. 6 and 8 to manifolds, states that there is a

(m21)-form J on U such that for any control regionR,

tR5t~Tx]R!5i* ~J!.

Here,i:]R→U is the natural inclusion andi* is the pull-back of forms it induces. We will refe
to J as theflux formassociated with the propertyp.

Usually, it is assumed that there is a source density terms for the property, anm-form onU,
so that the conservation equation of the property is

E
]R

tR5E
R

s.

In this case, Stokes’ theorem implies that the conservation equation may be written in a diffe
form asdJ5s. Again, if a frame is given on space–time, then the time component ofJ is the
density in space of the propertyp and the term indJ containing it is the time derivative of tha
density. The spacelike components ofJ describe the three-dimensional flux and the terms indJ
involving the spacelike components make its (m21)-dimensional divergence. In a particula
frame, for every timet, the classical conservation law has the integral form

E
R

bR1E
]R

tR5E
R

s,

where hereR is interpreted as a region in space~a slice of space–time! and bR is the rate of
change of the density of the property—a three-form. In order that the previous Cauchy as
tions apply, it is usually assumed thatbR is actually independent ofR.

Remark 2.1:Assume the manifoldU is given a particular volume elementu. Then, there is a
vector bundle isomorphism

i u : L
m21

~Tx* U!→TxU

such that (i u +J)4u5J, where4 denotes the contraction~interior product! of forms by vectors. If
u is represented locally by

r ~xi ! dx1∧ ¯ ∧dxm,

thenv5 i u +J, which we will also write asi u(J), is represented by

v i5
~21! i 11Ji

r
.

If J is a flux form of an extensive propertyp and a volume element is given, we will refer tov
5 i u(J) as thekinematic fluxassociated withp. The kinematic flux is the analog of the fou
velocity field. If L denotes the Lie derivative, then the differential conservation equation can
be written in the formLvu5s.

III. WORLDLINES AND GENERALIZED BODY POINTS

A flux form J induces a one-dimensional distribution over the open submanifold ofU where
it does not vanish. LetE(J) be the minimal enveloping subbundle associated withJ, i.e., the
minimal subbundleZ of T* U such that J(x)PLm21Zx . We will refer to the annihilator
E(J)',TU of the minimal enveloping subbundle as theflux bundle, that is,
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E~J!x
'5$vPTxU;f~v !50, for all fPE~J!x%.

The flux bundle is one-dimensional and a tangent vectorv is in the flux bundle if and only if
v4J50. The flux bundle is also the one-dimensional bundle obtained by the relationv5 i u(J)
when the flux formJ is kept fixed and the volume elementu is allowed to vary. Being one-
dimensional, the flux bundle is integrable, and its one-dimensional integral manifolds w
referred to as~local! worldlines. Consider the equivalence relationx;x8 if x andx8 are on the
same worldline. We will refer to the collection of worldlinesB5U/; as thematerial universe.

The worldlines form a foliation ofU. ~See Ref. 10 for a detailed treatment.! In case the
foliation is regular, soB is an (m21)-dimensional submanifold ofU and the natural projection
U→B5U/; is a submersion, an element ofB is a material point and a compact
(m21)-dimensional submanifold with boundary ofB is a material body. A necessary and suffi
cient condition for the foliation to be regular is the existence of local slices, i.e., at every evx
there exists a local (m21)-dimensional submanifoldP of U such thatP intersects every worldline
at one point at most andTxU5TxP3TxY, whereY is the worldline throughx.

Thus, in case the foliation by worldlines is regular, the construction we described gener
material structure in space even though the velocity field is not defined uniquely. In additio
flux form J is an object that generalizes the velocity field even if a volume element is not g
and even if the foliation it generates is not regular.

Clearly, foliated charts and slices generate frames that assign to events unique materia
and ‘‘time’’ coordinates. If a volume element is given, the kinematic flux induces a unique
coordinate in the neighborhood of every event~independently of a chart!. Thus, a flux form and a
volume element induce together a local frame.

IV. CAUCHY’S STRESS THEORY FOR MANIFOLDS

Let p:W→U be a vector bundle over them-dimensional orientable manifoldU. The vector
bundle is interpreted as the bundle of generalized velocities overU. In classical continuum me
chanics, ifU is interpreted as the physical space~a slice of space–time!, then in many casesW is
the tangent bundleTU. If U is interpreted as the material body, thenW is usually the pull-back of
the tangent bundle of the space manifold under the configuration mapping that embeds the
rial universe in space. This is the interpretation used in previous works~e.g., Refs. 7 and 8!. In
either case, a section of the bundlep is interpreted as a generalized velocity field from either
Eulerian or the Lagrangian points of view.

Cauchy’s stress theory for manifolds, presented in Ref. 8, considers for each co
m-dimensional submanifold with boundaryR of U a linear functional of the generalized veloci
fields containing a volume term and a boundary term of the form

FR~w!5E
R

bR~w!1E
]R

tR~w!.

Here, w is a section ofW, bR , the body force, is a section ofL(W,Lm(T* R)) and tR the
boundary forceis a section ofL(W,Lm21(T* ]R)) so the integrals make sense. The functio
FR is interpreted as the force, or power, functional and the valueFR(w) is classically interpreted
as the power of the force for the generalized velocity fieldw.

We note that body forces and surface forces may be regarded as covector valued form
example, a surface forcetR may be identified with a sectiont̂R of Lm21(T(]R),W* ) by

t̂R~v1 , . . . ,vm21!~w!5tR~w!~v1 , . . . ,vm21!,

so we have an isomorphism ofLm21(T]R,W* ) with L(W,Lm21(T* ]R)).
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The Cauchy postulates for forces are analogous to those pertaining to the scalar
properties. The body term,bR , is assumed to be independent ofR ~and is omitted in the space
time formulation anyhow!. The local dependence on the tangent hyperplane is now provided
section

S:Gm21~TU!→L~pG* ~W!, L
m21

~Gm21~TU!!* !,

wherepG* (W) is the pull-back of the vector bundleW by the projection of the Grassmann bund
onto Gm21(TU) ~see diagram!:

The boundedness postulate, the analog of GC1, requires that there is a sectionS of the bundle
of linear mappingsL(J1(W),Lm(T* U)) such that

uFR~w!u5U ER
b~w!1E

]R
tR~w!U<E

R
uS~ j 1~w!!u.

Here,J1(W) is the first jet bundle ofW, j 1(w) is the first jet of the sectionw, and the absolute
value of anm-form u, S( j 1(w)), in this case, is given as

uu~x!u5 H u~x! if u~x! is positively oriented,
2u~x! if u~x! is negatively oriented,

relatively to the orientation chosen onU.
The resulting generalized version of Cauchy’s theorem states that there is a unique ses

of Lm21(TU,W* )>L(W,Lm21(T* U)), called theCauchy stress, such thattR(w)5i* (s +w).
We will write s(w) for s +w andi* (s) for i* +s so we have theCauchy formulatR5i* (s) in
analogy with the scalar case~with the difference that the forms are vector valued now!.

Using Stokes’ theorem, the action ofFR may now be rewritten using an integral overR of
R-independent forms and without a boundary term as

FR~w!5E
R

~ds~w!1b~w!!.

Assume that (xi ,wa) are local vector bundle coordinates in a neighborhoodp21(U),W,
U,U with local basis elements$ea% so a section ofW is represented locally bywaea . Then,
denoting the dual base vectors by$ea% a stresss is represented locally by

sa1 . . .k̂ . . . mea
^ dx1∧¯∧dxk̂∧¯∧dxm,

where a ‘‘hat’’ indicates the omission of an item~an index or a factor!. The value ofs(w) is
represented locally by

sa1 . . .k̂ . . . mwadx1∧¯∧dxk̂∧¯∧dxm.

V. VARIATIONAL STRESSES

Let p:W→U be a vector bundle as in the previous section. Avariational stress densityis a
section ofL(J1(W),Lm(T* U)).
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For the vector bundle coordinates (xi ,wa),i 51, . . . ,m, a51, . . . ,dim(Wx), the jet of a sec-
tion is represented locally by the functions$wa(xi),w, j

b (xk)%, where a subscript following a
comma indicates partial differentiation. A variational stress density will be represented loca
the functions$Sa1 . . .m ,Sb1 . . .m

j % so that the single component of them-form S( j 1(w)) in this
coordinate system is

S~ j 1~w!!1 . . .m5Sa1 . . .mwa1Sb1 . . .m
j w, j

b .

Note that the notation distinguishes between the components ofS that are dual to the values of th
section and those dual to the derivatives by the number of indices only. The next few para
motivate the introduction of variational stress densities.

Variational stress theory is formulated usually in a particular frame where the s
(m21)-dimensional manifoldM is a global slice of space–time andU is interpreted as the (m
21)-dimensional material universe manifold. In such a situation, for any bodyR—an
(m21)-dimensional compact submanifold with boundary ofU—one may considerconfigurations
of the body in space defined as embeddings ofR in M.

The rationale behind the variational formulation of stress theory is the framework for
chanical theories where a configuration manifold is constructed for the system under con
ation, generalized velocities are defined as elements of the tangent bundle to the config
manifold, and generalized forces are defined as elements of the cotangent bundle of the c
ration space. For the mechanics of continuous bodies in space, the natural topology f
collection of embeddings is theC1 topology for which the collection of embeddings is open in t
collection of allC1 mappings of the body into space. Using this topology, the tangent space
configuration manifold at the configurationk:R→M is C1(k* (TM)), the Banachable space o
C1 sections of the pull-backk* (TM). Thus, forces in continuum mechanics are elements
C1(k* (TM))* —continuous, linear functionals on the space of differentiable vector fi
equipped with theC1 topology.

The basic representation theorem~see Ref. 7! states that a force functionalF
PC1(k* (TM))* may be represented by a measure onU—the variational stress measure—
valued inJ1(k* (TM))* , the dual of the first jet bundleJ1(k* (TM))→U. The evaluation of a
force FR on the generalized velocityw is

FR~w!5E
R

dm~ j 1~w!!,

wherem is theJ1(k* TM)* -valued measure—a section Schwartz distribution.
Assuming thatk is defined on all the material universeU, we use the notationW for

k* (TM). This vector bundle can be restricted to the individual bodies, and, with some abu
notation, we use the same notation for both the bundle and its restrictions to the individual b

In the smooth case, a variational stress measure is given in terms of a sectionS of
L(J1(W),Lm21(T* U)) ~recalling theU is now the material manifold with dimensionm21! so

FR~w!5E
R

S~ j 1~w!!.

Since in the sequel we consider only the smooth case, we will use ‘‘variational stresses’’ to
to the densities.
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VI. THE RELATION BETWEEN THE CAUCHY APPROACH AND THE VARIATIONAL
APPROACH

In Ref. 11 we define a canonical mapping

ps :L~J1~W!,L
m

~T* U!!→L~W, L
m21

~T* U!!

that assigns to a variational stress densityS a Cauchy stresss satisfying the following relation. At
everyxPU ~we suppress the evaluation atx in the notation!

f∧s~w!5S~ j f ^ w!,

for any one-formf. Here, j f ^ w is roughly the jet atx of a section whose value is 0PWx and its
derivative isf ^ w. More precisely, ifu:U→W is the section whose first jet atx is j f ^ w , thenu
satisfies the following conditions:u(x)50; denoting the zero section ofW by 0, Txu2Tx0
PL(TxU,T0(x)Wx) induces the linear mappingf ^ w through the isomorphism ofT0(x)Wx with
Wx . The local representation ofps is as follows. Ifs5ps(S), then, using the local represent
tives of s andS as in the previous sections,

sb1 . . . ı̂ . . . m5~21! i 21S1
b1 . . .m
i , ~no sum over i !.

The mappingps is clearly linear and surjective.
Given a variational stress densityS, its generalized divergence DivS is the section of

L(W,Lm(T* U)) defined by

Div S~w!5d~ps~S!~w!!2S~J1~w!!.

The local expression for DivS(w) is

~Sa1 . . .m,i
i 2Sa1 . . .m!wadx1∧¯∧dxm,

which shows that DivS depends only on the values ofw and not its derivative. With these
definitions one obtains that

E
R

S~ j 1~w!!5E
R

bR~w!1E
]R

tR~w!,

where tR(w)5iR* (ps(S)(w)) and DivS1bR50. We conclude that every variational stress
duces a unique force system$(bR ,tR)% through the Cauchy stress it induces and its divergen
Actually, we obtained a decomposition ofS( j 1(w)) into an exact differential and a term that
linear in the values ofw.

The converse is also true. If we have a force system that satisfies Cauchy’s postulates, t
induced Cauchy stress enables us to define a sectionS of L(J1(W),Lm(T* U)) by S( j 1(w))
5b(w)1ds(w). Clearly, writing the local expression forS, it is linear in the jet ofw. Hence,

FR~w!5E
R

b~w!1E
R

ds~w!5E
R

S~ j 1~w!!.

If for a given variational stressb5Div S50, then,S( j 1(w))5dps(S)(w).
Thus, we have a complete correspondence between the Cauchy approach and the va

approach to stress theory.
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VII. STRESS-ENERGY TENSORS

Following the interpretation of the flux formJ as an object generalizing the velocity vect
field, we may consider stress theory on space–timeU where we setW5Lm21(T* U). To empha-
size this we may write

FR~J!5E
]R

tR~J!.

Here, the boundary termtR is a section ofL(Lm21(T* U),Lm21(T* ]R)). Note that for the
space–time formulation the term involvingbR is omitted. Assuming that the generalized Cauc
postulates hold fortR , the Cauchy stresss is a section ofL(Lm21(T* U),Lm21(T* U)). Finally,
Div S50 andds(J)5S( j 1(J)).

The situation may be described generally as follows. We started with an extensive propep,
given in terms of the flux densitiestR for the various control regionsR in space–time. The sourc
term for propertyp is s and, assuming the Cauchy postulates are satisfied, the propertyp has a
flux form J. We now consider a second property, theq property, whose flux densitiestR

(q) for the
various control regions and source terms(q) satisfy the conservation equation

E
]R

tR
(q)5E

R
s(q).

Again, assuming the Cauchy postulates hold for the propertyq, we have the corresponding flu
form J(q) satisfyingtR

(q)5i* (J(q)) and the conservation equation has the differential represe
tion dJ(q)5s(q).

We will say that the propertyq is aresourcefor the propertyp if the flux densitytR
(q) depends

pointwise linearly on the flux formJ of the propertyp. Thus, there is a sectiontR as above such
that tR

(q)5tR(J).
In this framework, the Cauchy theorem implies that

i* ~J(q)!5tR
(q)5tR~J!5i* ~s~J!!,

for the inclusion i of an arbitrary region, soJ(q)5s(J). In other words, the Cauchy stres
transforms the flux of the propertyp to the flux of the resource thatp uses—the propertyq. The
source term for the propertyq is now given bys(q)5ds(J).

Naturally, in the sequel we will be concerned primarily with the energy resource.

VIII. REPRESENTATIONS OF FORCE DENSITIES AND STRESS-ENERGY TENSORS

For the situation under consideration a force density~the analog ofbR if considered! is given
in terms of a section ofL(Lm21W* ,LmW* ). Such sections have simple representations as
lows.

For a vector spaceW with dimensionm, consider the space of linear mappings (LpW* )T

5L(LpW* ,LmW* ). Define the mapping∧p:Lm2pW* →(LpW* )T by ∧p(a)(b)5a∧b.
Clearly ∧p is a linear mapping between the two spaces. In addition, asLmW* is one-

dimensional, dim(LpW* )T5dim(LpW* )5dim(Lm2pW* ). Thus, ∧p is an isomorphism if
Kernel(∧p)5$0%. It is clear, however, that if∧p(a)(b)5a∧b50 for all b, thena50.

We may conclude, for example, that a body force density is of the formA∧J for a one-form
A.

As the stress-energy tensor is now a section ofL(Lm21(T* U),Lm21(T* U)), it is locally
represented by a matrix with respect to a local basis ofLm21(T* U). We will make below some
further observations regarding the representations of stresses.

Assume that a volume elementu is given onU. Then, we may use the vector bundle isomo
phism
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i u : L
m21

~T* U!→TU

to represent the sections of L(Lm21(T* U),Lm21(T* U)) by a sections̃ of L(TU,TU) satisfying
s̃ + i u5 i u +s.

Let us consider the relation between the local representation ofs and the local representatio
s̃ i

jdxi
^ ]/]xj of s̃. To represents locally, we will use the notationêi for the basis elemen

dx1∧ ¯ ∧dxî∧ ¯∧dxm of Lm21(T* U). Thus, the flux formJ is represented locally byĴi ê
i ,

and the stress is represented locally in the formŝ i
j êj ^ êi , where$êj% is the dual basis to$êi%.

If the volume elementu is represented locally byrdx1∧•••∧dxm, the action ofi u is given
locally by

Ĵi ê
i°(

i
~21! i 11

1

r
Ĵi

]

]xi

~we use the summation symbol as the summation convention cannot be used on the right!. Thus,
i u(s(J)) is represented by

(
j

~21! j 11
1

r
ŝ j

i Ĵi

]

]xj ,

and s̃( i u(J)) is represented by

(
i

~21! i 11
1

r
s̃ i

j Ĵi

]

]xj .

Hence, the relation betweens and s̃ is represented locally as

s̃k
j 5~21! j 1kŝ j

k .

It is interesting to note that the volume element does not enter the last relation and on
attempt to arrive at a natural isomorphism between the bundlesL(Lm21(T* U),Lm21(T* U)) and
L(TU,TU). Such a natural isomorphism can be constructed as follows. Consider the tensor
uct T* U^ UTU. This tensor product is naturally isomorphic toL(TU,TU). For an elements̃
5s̃ i

jf i
^ v j in T* U^ UTU, v jPTxU, f iPTx* U, set

s: L
m21

~T* U!→ L
m21

~T* U!

by

~* ! s~J!5s̃ i
jv j4~f i∧J!5s̃ i

j~f i~v j !J2f i∧~v j4J!!.

We note thats is indeed linear inJ. Sinces depends linearly on thev i and on thef j , it depends
linearly on the elements of the tensor product.

For the local coordinates$xi%, let us determine the stresss induced by the linear mapping
s̃PL(TU,TU) represented locally by the tensors̃ i

jdxi
^ ]/]xj . By definition,s(J) is represented

by ~the sum oni is explicitly written!
                                                                                                                



dles
he

energy
me that
of
tions
of

n of

ace of
ssed in

3229J. Math. Phys., Vol. 43, No. 6, June 2002 Analysis of the stress-energy tensor

                    
(
i

s̃ i
j ]

]xj 4~dxi∧J!5(
i

s̃ i
j ]

]xj 4~dxi∧~ Ĵkdx1∧ ¯∧dxk̂∧ ¯∧dxm!!

5(
i

s̃ i
j ]

]xj 4~~21! i 11Ĵidx1∧ ¯∧dxm!

5(
i

s̃ i
j~21! i 1 j Ĵidx1∧ ¯ ∧dxĵ∧ ¯ ∧dxm

5(
i

s̃ i
j~21! i 1 j Ĵi ê

j5(
i

ŝ j
i Ĵi ê

j .

Hence, the matrix representings is ŝ j
i 5(21)i 1 j s̃ i

j . We conclude that~* ! is indeed the
natural, invariant representation of the isomorphism between the bun
L(Lm21(T* U),Lm21(T* U)) andL(TU,TU). This motivates even further the interpretation of t
Cauchy stress as a transformation operating on the flux or velocity field of the propertyp to give
the flux form for the energy or velocity of the generalized energy points.

IX. EXAMPLE: THE MAXWELL STRESS-ENERGY TENSOR WITHOUT A METRIC

As an example for the foregoing analysis, we consider a generalization of the stress-
tensor of classical electromagnetism to the setting where a metric is not available. We assu
there is a volume element on the four-dimensionalU. The following setting is also independent
any relation between the Maxwell two-form and the Faraday two-form such as the rela
between the fields~E, B! and~D, H! in vacuum. The extensive property under consideration is
course the electric charge andJ is the charge-current density—a three-form. The conservatio
charge implies thatdJ50 and the Maxwell two-formg is a flow potential for the flux form so
J5dg. For a one-formA, the vector potential, the energy source density isA∧J. It follows that
the Faraday two-formf5dA satisfiesdf50.

Thus, assuming that a volume elementu is given onU, we setw5 i u(J) and define the
stress-energy tensor as the sections of L(Lm21(T* U),Lm21(T* U)) by ~cf. Ref. 12, p. 36 for the
closest expression we found!

s~J!5~ i u~J!4g!∧f2~ i u~J!4f!∧g.

Alternatively, using

w4~g∧f!5~w4g!∧f1g∧~w4f!,

the definition of the electromagnetic stress-energy tensor may also be written as

s~J!5 i u~J!4~g∧f!22~ i u~J!4f!∧g.

Note that the matrix of the Cauchy stress with respect to the natural basis of the sp
(m21)-forms is related to the usual matrix of the stress-energy-momentum tensor as discu
the previous section.

We now consider the energy source termds(J). Usingw5 i u(J) one obtains

ds~J!5d~~ i u~J!4g!∧f2~ i u~J!4f!∧g!

5d~w4g!∧f2~w4g!∧df1~w4f!∧dg2d~w4f!∧g

5d~w4g!∧f1~w4f!∧J2d~w4f!∧g,

where Maxwell’s equations were used to arrive at the last line. Using the identityd(w4a)
5Lwa2w4da, for any differential forma, we have
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ds~J!5~w4f!∧J1~Lwg2u4dg!∧f2~Lwf2w4df!∧g.

Finally, asw4J50, Maxwell’s equations give

ds~J!5~w4f!∧J1~Lwg!∧f2~Lwf!∧g.

It is noted that the term (w4f)∧J represents the power of the Lorentz force. In addition, in
classical formulation where a metric is available andg5* f ~* denotes the Hodge operator!, the
terms (Lwg)∧f and (Lwf)∧g are equal and the energy source density contains the power o
Lorentz force~and energy conservation! only. For an analogous expression where the constitu
relation betweeng and f is not specified but a metric is used, see Ref. 2, p. 91.
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APPENDIX: LOCAL REPRESENTATION OF THE MAXWELL STRESS-ENERGY TENSOR

We write the local representationf̂i j dxi∧dxj of the Faraday two-formf in the form

$ f̂i j %5S 0 2E1 2E2 2E3

E1 0 B3 2B2

E2 2B3 0 B1

E3 B2 2B1 0

D ,

and the corresponding representationĝi j dxi∧dxj for the Maxwell two-form as

$ĝi j %5S 0 H1 H2 H3

2H1 0 D3 2D2

2H2 2D3 0 D1

2H3 D2 2D1 0

D .

For simplicity of the notation we assume that locally the volume elementu is of the form
dx1∧ ¯∧dx4. Then,w5 i u(J) is represented bywi5(21)i 11Ĵi . With this notation, the matrix
$ŝ i

j% representing the stress-energy tensor is

$ŝ i
j%5~ $ŝ i

1% $ŝ i
2% $ŝ i

3% $ŝ i
4% ! ,

where

ŝ i
15H H1B11H2B21H3B31D1E11D2E21E3D3

2~E3H22E2H3!

2~E3H12E1H3!

2~E2H12E1H2!
J ,

ŝ i
25H 2~B3D22B2D3!

H1B12H2B22H3B31E1D12E2D22E3D3

2~E1D22B2H1!

2~E1D31B3H1!
J ,
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ŝ i
35H 2~B3D12B1D3!

2~B1H22E2D1!

2H1B11H2B22H3B32E1D11E2D22E3D3

2~2E2D32B3H2!
J ,

ŝ i
45H 2~B2D12B1D2!

2~B1H32E3D1!

2~2E3D22B2H3!

2H1B12H2B21H3B32E1D12E2D21E3D3

J .
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This paper is devoted to the derivation of multigroup diffusion equations from the
Boltzmann equation. The limit system couples the energy levels from both zeroth-
order term and diffusion currents. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1475346#

I. INTRODUCTION

Production of nuclear energy relies on the disintegration of atoms~uranium or plutonium!,
when subjected to collisions with neutrons. Therefore, reactor design requires an accurate d
tion of the motion of the population of neutrons. The motion of neutrons is described throug
evolution of the densityf (t,x,v) of neutrons occupying at timet>0 the positionxPRN and
having velocity vPRN. It will be convenient in what follows to see this last variable asv
5A2e/m v, m.0 being the mass of the neutron,e>0 its energy, andvPSN21 the direction of
the flight. The unknownf verifies a transport equation

] t f 1v•¹xf 5Q~ f ! ~1!

that relates the free transport~left-hand side! to the various interaction processes undergone by
neutrons and described through the operatorQ( f ). The latter are essentially collisions. Furthe
more, the number of neutrons in any volume, at any time, remains smaller than the num
atomic nuclei~1011 is a typical ratio! so that it is reasonable to assume that the most prob
event is an elastic collision with the surrounding medium. Consequently, the right-hand side~1!
is usually given by a Boltzmann linear operator

Q~ f !5E s~x,v,v8! f ~ t,x,v8! dv82S~x,v ! f ~ t,x,v !. ~2!

The transfer functions(x,v,v8)>0 is such thats(x,v,v8)dv represents the probability that
neutron impinging with velocityv8 will have velocity in the volume dv around v after the
collision; while S(x,v)>0 is the so-called removal cross section. If the operator is conserva
i.e.,*Q( f ) dv50, which means thatS(x,v)5*s(x,v8,v) dv8, then absorption/fission events a
neglected or compensated with scattering. One also says that the reactor is critical in this
is worth remarking that, since the ratio of the mass of the nuclei to the mass of the neutrons
large, then, during an elastic collision, the energy of the neutron is practically unchanged; the
effect of such a collision is only to modify the direction of the flight. Notice also that inela
scattering, with loss of energy, remains possible, but it can only occur for highly energetic
trons.

a!Electronic mail: goudon@math.unice.fr
b!Electronic mail: mellet@mip.ups-tlse.fr
32320022-2488/2002/43(6)/3232/29/$19.00 © 2002 American Institute of Physics
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On the other hand, nuclear engineers are motivated in the derivation of simplified mode
describe the physics accurately enough but remain of moderate computational cost. In
applications, one encounters a very large range of energies, from 1/40 eV to some MeV; and
simplification arises by breaking the energy range into several disjoint energy gr
@emin ,emax#5øi51

I @ei ,ei11#. In most of the situations, the total number of groupsI is finite. One
assumes that the cross sections do not vary too much on the energy groups and neutron
according to averaged quantities, such as average scattering cross sections. Consequent
led to semidiscrete versions of Eqs.~1! and ~2!. This will be detailed in Sec. II.

Next, a commonly used strategy consists in neglecting the angular variablev and writing a
diffusion equation for a macroscopic energy distribution functionr(t,x,e), e being the energy
variable ~discrete or continuous!. Actually, one deals in this context with systems of equatio
coupled by the energy variable, which usually have the following form:

] tr~ t,x,e!2divx~D~x,e!¹xr~ t,x,e!!5E s̃~x,e,e8!r~ t,x,e8! de82S̃~x,e!r~ t,x,e!, ~3!

where the coefficientsD, s̃, S̃ are non-negative. Of course, one obtains similar systems in
~energy-!discretized context. These equations can be derived directly from a balance relat
the population of neutrons, through a phenomenological analysis of the scattering event
diffusion coefficients are due to elastic scattering when neutrons do not lose energy duri
collision process. Zeroth-order terms are due to absorption, inelastic scattering~i.e., collisions with
loss of energy!, or fission. Furthermore, system~3! can be generalized by postulating that t
diffusion operator couples the energy levels as follows:

divxS E k~x,e,e8! ¹xr~ t,x,e8! de8 D .

Indeed, gradients of the densityr at a given energye8 can have some effect on the diffusion o
another energy levele.

However, it is also tempting to obtain systems like~3! from the kinetic modeling, Eqs.~1! and
~2!, and to identify the coefficients through an asymptotic analysis. Then, starting from the
tinuity equation

] tr1divxj 5E
SN21

Q~ f ! dv ~4!

satisfied by the macroscopic density

r~ t,x,e!5E
SN21

f ~ t,x,A2e/m v! dv,

and the macroscopic current

j ~ t,x,e!5E
SN21

A2e/m v f ~ t,x,A2e/mv! dv,

we search for a diffusion equation by postulating a relation betweenr and j that takes the form of
a generalized Fick’s law

j ~ t,x,e!52E k~x,e,e8! ¹xr~ t,x,e8! de8.
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Such an approximation is intended to apply in the limit of small mean free paths, which is re
to the probability of collisions by unit length and decreases when the density of the me
increases. It leads to singular perturbation problems and this work is devoted to such a qu

For details on the physics of nuclear reactors we refer to the classical books of B. Davi17

E. Wigner,41 E. Wachspress,40 J. Bussac and P. Reuss,12 J. Planchard,37 and C. Cercignani.15 The
mathematical study of the vanishing mean free path limit and of the diffusion approximation
now a classical problem with applications in various fields of physics; we refer among others
Larsen and J. Keller,32 A. Bensoussan, J.-L. Lions, and G. Papanicolaou,10 C. Bardos, R. Santos
and R. Sentis,8 and, for recent progresses, to R. Dautray and J. L. Lions,16 F. Malvagi, D. Lever-
more, and G. Pomraning,35 F. Poupaud,38 F. Golse,26 C. Bardos, F. Golse, and B. Perthame,6 C.
Bardos, F. Golse, B. Perthame, and R. Sentis,7 F. Golse and F. Poupaud,27 P. L. Lions and G.
Toscani,34 P. Degond, T. Goudon, and F. Poupaud,20 etc. Another difficulty in reactor physics i
related to the high heterogeneity of the surrounding medium. Accordingly, the cross se
depend on the space variable and present very large oscillations. This leads to homogen
questions. Depending on the ordering, the homogenization procedure can be performed
kinetic level, see F. Golse,24,25L. Dumas and F. Golse,22 P. Gérard and F. Golse23 or directly on the
diffusion approximation as in J. Dorning, R. Uddin, and H. Zhang,21 Y. Capdeboscq,13,14G. Allaire
and Y. Capdeboscq,2 and G. Allaire and F. Malige.3 We can also combine altogether these effe
as in E. Larsen,30,31 E. Larsen and M. Williams,33 C. Bardos, L. Dumas, P. Ge´rard, and F. Golse,5

G. Allaire and G. Bal,1 G. Bal,4 T. Goudon and F. Poupaud,29 and T. Goudon and A. Mellet.28

However, it is a well-known fact that different~formal! methods of approximation can giv
rise to difference on the limit coefficients, see Ref. 31 or Refs. 37, 1, and 13 for some exam
Furthermore, when starting from multigroup equations and performing the diffusion appro
tion limit, one usually obtains a single diffusion equation in the space variable only, see R
and 13: the limit procedure forgets the multigroup aspect. This is because the system is con
to relax toward an equilibrium under both elastic and inelastic collisions at the same
However, it could be interesting to derive more complex models, which retain the energy
variable and where the diffusion as well as the inelastic collisions couple the various energy
This is the goal of the present paper. To that purpose, our analysis is inspired by reas
developed in the modeling of semiconductor devices where, instead of obtaining a drift-diff
equation, we are led to an intermediate system, by keeping the energy as a variable, s
Abdallah and P. Degond,9 and P. Degond.18,19 We also mention the recent application to t
phonons dynamics by J. P. Bourgade.11 These so-called SHE-models have been shown to be
accurate, in particular for numerical simulations. It is worth noticing at the moment that the e
coupling can be obtained either through the zeroth-order terms when the inelastic collisio
treated as perturbations, or through the diffusion operator when inelastic processes are trea
more intricate way, as it has been done by P. Degond,19 in the framework of semiconductor theor
for continuous energy levels. However, the analysis developed in the present paper, though
inspired from Ref. 19, requires less restrictive hypotheses~see in particular Sec. III and Propos
tion 5!. Note that this work is only concerned with the diffusion approximation problem;
homogenization question will be addressed elsewhere. Note also that we have chosen to t
evolution problem but, of course, our analysis can be applied to eigenvalue problems as w

The paper is organized as follows. In Sec. II, we will set up precisely the multigroup aspe
the Boltzmann equation. Section III is devoted to a discussion of some properties of the co
operator. In particular, we aim at splitting the Boltzmann operator into an elastic part, which l
the number of neutrons in a given energy level unchanged, and an inelastic part. This can b
either locally or not as far as the energy variable is concerned. In some sense, the latter
some relevant information on the energy exchange during the collisions with the medium. I
IV we formally discuss the small mean free path asymptotic limit with the requirement that el
or quasielastic, processes dominate. Actually, our method can be viewed as a heuristic pro
to derive macroscopic models, which are intermediate between a full kinetic description
simple diffusion equation. Finally, Sec. V is concerned with a rigorous proof of convergenc
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II. MULTIGROUP EQUATIONS

The evolution of the population of neutrons is described through an equation relating tra
to interaction processes as follows:

~] t1v•¹x! f 5Q~ f !,

Q~ f !5
1

uSN21u ERN
s~x,v,v8! f ~v8! dv82S~x,v ! f ~v !,

S~x,v !5
1

uSN21u ERN
s~x,v8,v ! dv8.

~5!

The third relation means that the operatorQ is conservative, or critical, in the sense that, negle
ing integrability questions for the time being, we have

E
RN

Q~ f ! dv50.

Compared to Sec. I, we have changed the cross sections by introducing the normalizat
1/uSN21u for pure convenience; it will allow us to work with normalized measure and will simp
some forthcoming computations.

We write the velocity of the particles as follows:

v5uvuv5A2e/m v,
v5v/uvu5angular variablePSN21,
e5mv2/25energy variablePR1.

Denoting by dv the normalized Euclidian measure onSN21, we have dv5uSN21ur N21dr dv, with
r 5uvu5A2e/m, and therefore dr 5 de/A2me. We deduce the following change of variable fo
mula:

E
RN

w~v ! dv5E
0

`

uSN21u E
SN21

w~A2e/m v! ~2e/m!N/2
de

2e
dv,

which applies to any integrable functionw.
Let us discretize the energy levels by introducing the energy step«.0 ~we point out that«

will remain fixed throughout the paper, and will not tend to zero!. We setEi5@ i«,(i 11)«@ and
then we consider

f i~ t,x,v!5
1

2« EEi

f ~ t,x,A2e/m v! ~2e/m!N/2
de

2e
,

which will be a new unknown. Equations for thef i ’s are obtained by averaging~5!. On the
left-hand side, we approachv by v i5A2i«/m v and the transport term is approximately (] t

1v i•¹x) f i . For the collision term, one has

1

2« EEi

Q~ f !~ t,x,uvuv! uvuN
de

2e

5
1

2« EEi
S E

0

`E
SN21

s~A2e/m v,A2e8/m v8! f ~A2e8/mv8! ~2e8/m!N/2
de8

2e8
dv8

2E
0

`E
SN21

s~A2e8/m v8,A2e/m v! ~2e8/m!N/2
de8

2e8
dv8 f ~A2e/m v! D ~2e/m!N/2

de

2e
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5
1

2« (
j
E

Ej

E
SN21S EEi

s~A2e/m v,A2e8/m v8!

3~2e/m!N/2
de

2eD f ~A2e8/m v8! ~2e8/m!N/2
de8

2e8
dv82

1

2« EEi

f ~A2e/m v!

3S (
j
E

Ej

E
SN21

s~A2e8/m v8,A2e/m v!~2e8/m!N/2
de8

2e8
dv8D ~2e/m!N/2

de

2e
.

Then, we suppose thats does not vary too much as the energy variables (e,e8) belong to the set
Ei3Ej and we make the following approximation:

For e8PEj ,

s i j ~v,v8!;E
Ei

s~A2e/m v,A2e8/m v8!~2e/m!N/2
de

2e
,

so thatQ( f ) is replaced by

Q~ f ! i~v!5(
j
E

SN21
s i j ~v,v8! f j~v8! dv82S i~v! f i~v!, ~6!

where

S i~v!5(
j
E

SN21
s j i ~v8,v! dv8.

These notations lead to the following multigroup kinetic equation:

~] t1v i•¹x! f i5Q~ f ! i . ~7!

Remark 1: Of course, the subdomains Ei can be defined by using another discretization ru
For instance, one often discretizes the energy range by means of the lethargyl(e)5 ln(eref /e) and
Ei5$e>0,l(e)P@l i ,l i 11@%, seeRef. 41.

III. SPLITTING OF THE COLLISION OPERATOR

In this section, we introduce two different splittings of the collision operator into elastic
inelastic parts. Here and in the following ‘‘elastic’’ means that the operator leaves invarian
total number of neutrons on a given energy level. As in Ref. 19, we will see that it is releva
use a convex combination of these splittings. For convenience, we skip the space depe
having in mind that the estimates discussed in the following are uniform with respectx.
Besides, we shall only state precisely the assumptions on the cross-sectionss i j and the properties
of the collision operators that will be necessary later on; proofs are postponed to the Appe

A. First splitting

Let us split the collision operator~6! as follows:

Q~ f ! i~v!5(
j
E

SN21
~s i j ~v,v8! f j~v8!2s j i ~v8,v! f i~v8!! dv8

1E
SN21S (j

s j i ~v8,v! D ~ f i~v8!2 f i~v!! dv8. ~8!
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The first operator modifies energy while angle remains unchanged, thus, we refer to it
inelastic part, denoted byQ0

inel ; the second operator modifies the velocity direction while ene
is conserved, thus, we call it the elastic part, denoted byQ0

el . Let us set

G i~v8,v!5(
j

s j i ~v8,v!, S i~v!5E
SN21

G i~v8,v! dv8

then we have

Q0
el~ f ! i5E

SN21
G i~v8,v!~ f i~v8!2 f i~v!! dv85K~ f ! i2S i f i .

Let us now state the first assumptions concerning the kernels i j (v,v8):
(h1) First symmetry assumption:S i(v)5*SN21G i(v8,v) dv85*SN21G i(v,v8) dv8.
In order to derive the coercivity properties of the operatorQ0

el , we also require the following
hypothesis:

~h2! H There exists a sequence of positive reals~g i ! i PN

and a constantM0 such thatg i<G i~v8,v!<M0g i .

For technical purposes now, we introduce a sequence (Bi) i PN of positive numbers, satisfying:
(h3) Weight assumption: (Bi) i PN is such that( iBig i5M1,`

~it is easy to check that such a sequence always exists!. Note that (h2) and (h3) yield

(
i

BiE
SN21

S i~v!dv<M0M1 .

It is worth having in mind the following simple example of the isotropic Boltzmann equat
with typically Bi5e2 i :

s i j ~v,v8!5cicjBi , ciBiPl 1. ~9!

This leads toG i(v,v8)5icBi l 1ci and ~h2! is fulfilled with M05icBi
l 1
2 , andg i5ci .

We now introduce the following functional spaces:

E5H f :N3SN21→R such that i f iE
25(

i
E

SN21
u f i~v!u2

S i~v!

Bi
dv,`J ,

F5H f :N3SN21→R such that i f iF
25(

i
E

SN21
u f i~v!u2

1

S i~v!Bi
dv,`J .

We shall identify the space

L5H f :N3SN21→R such that i f iL
25(

i
E

SN21
u f i~v!u2

1

Bi
dv,`J

with its dual when equipped with the inner product

~ f ,g!L5(
i

E
SN21

f i~v!gi~v!
1

Bi
dv.

Consequently, we note that
                                                                                                                



e

r

ctions

e

rm:

3238 J. Math. Phys., Vol. 43, No. 6, June 2002 T. Goudon and A. Mellet

                    
U(
i

E
SN21

f i~v!gi~v!
1

Bi
dvU<i f iEigiF

for any f PE, gPF and we can identifyF with the dualE8. We are now ready to establish th
main properties of the elastic operatorQ0

el .
Proposition 1: Assume that(h1) holds. Then, Q0

elPL(E,F) with iQ0
el( f )iF<2i f iE , and we

have

(i) Conservation property:*SN21Q0
el( f ) idv50 (at least formally; see Remark 3),

(ii) Dissipativity property: for all f, g in E, we set B0( f ,g)52( i*SN21
Q0

el( f ) igiBi
21dv.

Then, B0 is bilinear continuous onE and satisfies

B0~ f , f !51/2(
i

E
SN21

E
SN21

G i~v8,v!u f i~v!2 f i~v8!u2 Bi
21 dv8 dv>1/2iQ0

el~ f !iF
2.

(iii) The eigenspaceKer(Q0
el) is the spaceE0 of functions inE which do not depend on the angula

variable.
Remark 2: Under Hypothesis(h2), one remarks thatE05$ f :N→R, ( i f i

2g iBi
21,`% does

not reduce to$0%. For instance, with(h2) – (h3) it contains$ f i5Bigi , gPl `%,E0 . Indeed, for
such as f, we get

0<(
i

E
SN21

S i f i
2/Bi dv5(

i
S gi

2 BiE
SN21

S i dv D<M1M0igi
l `
2

,`.

When taking into account time and space variable we will work with sequences of fun
f i(t,x) that satisfy the corresponding integrability condition.

Remark 3: Assumption(h3) also implies thatF is a subset of integrable functions, for th
measuredv ^ di , wheredi is the counting measure onN, since one has

(
i

E
SN21

ugi udv<S (
i

E
SN21

gi
2/~BiS i !dv D 1/2 S (

i
E

SN21
BiS i dv D 1/2

<igiF~M0M1!1/2.

A similar conclusion holds for fPE if one assumes

(
i

E
SN21

Bi /S i dv,`.

For (9), this means that B/cPl 1.
In order to state a coercivity property in a useful setting, we introduce the following no

N~ f !5(
i

E
SN21

u f i~v!u2
g i

Bi
dv.

In view of Hypothesis~h2!, it is readily seen thatN( f ) defines an equivalent norm onE. Actually
we have

N~ f !2<i f iE
2<M0N~ f !2.

Corollary 1: Under Hypotheses(h1) – (h3), the following coercivity estimate

B0~ f , f !>N2~ f 2^ f &!

holds for any fPE, where one denoteŝf & i5*SN21f i(v)dv.
Remark 4: The adjoint operator of Q0

el reads
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Q0
el,* ~g! i5E

SN21
G i~v,v8!gi~v8!dv82S i~v!gi~v!5E

SN21
G i~v,v8!~gi~v8!2gi~v!!dv.

B. Second splitting

On the other hand, we can also introduce the following splitting into elastic and ine
operators:

Q~ f ! i5Q1
el~ f ! i1Q1

inel~ f ! i

with

Q1
el~ f ! i5(

j
E

SN21
s i j ~v,v8!~ f j~v8!2 f j~v!!dv8,

Q1
inel~ f ! i5(

j
S E

SN21
s i j ~v,v8!dv8 f j~v! D 2 f i~v!(

j
E

SN21
s j i ~v8,v!dv8.

~10!

The boundedness ofQ1
el relies on the following assumption:

~h4! H There exists a constantM2 such that

(
j

E
SN21

s i j ~v,v8!Bj dv8<M2g iBi .

It is worth pointing out that this assumption is a straightforward consequence of (h2) – (h3), if we
assume the following relation, known as the detailed balance principle,

s i j ~v,v8!Bj5s j i ~v8,v!Bi . ~11!

We also need the

~h18! Second symmetry condition:E
SN21

s i j ~v8,v!dv85E
SN21

s i j ~v,v8!dv8.

Remark that (h18) is stronger than (h1), and that (h4) as well as (h2) are fulfilled if we assume
s i j <Mg iBig j .

Proposition 2: Assume that(h18), (h2), (h3), (h4) hold. Then, Q1
elPL(E,F) with

iQ1
el( f )iF<2M2

1/2i f iE , and we have

(i) Conservation property:*SN21Q1
el( f ) i dv50,

(ii) For all f , g we setB1( f ,g)52( i*SN21Q1
el( f ) igiBi

21 dv. Then, B1 is bilinear continuous on
E and it satisfies

B1~ f ,g!5
1

2 (
i , j

E
SN21

E
SN21

~ f j~v8!2 f j~v!!~s i j ~v8,v!gi~v8!

2s i j ~v,v8!gi~v!!Bi
21dv8 dv.

(iii) E0,Ker(Q1
el), and the following estimate holds:

uB1~ f , f !u<M0A2M2N~ f 2^ f &!2.
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Of course functions depending only on the energy variable belong to Ker(Q1
el); however, the

kernel of Q1
el contains much more functions. Note that~iii ! is slightly sharper than the estima

obtained by using the norm ofQ1
el ; it can be improved under more restrictive assumptions on

kernels.
Corollary 2: Under the

~h19! Strong symmetry assumption:s i j ~v,v8!5s i j ~v8,v!

and

~h29! s i j ~v,v8!<Mg iBig j with (
i

Big i5M1,`,

the operator Q0
el is self-adjoint and, concerning Q1

el , we have

B1~ f ,g!51/2(
i , j

E
SN21

E
SN21

s i j ~v,v8!~ f j~v8!2 f j~v!!~gi~v8!2gi~v!!Bi
21dv8 dv.

As a consequence, if^ f &50, then (iii) becomes

uB1~ f , f !u<MM1 N~ f !2.

Remark 5: Notice that(h19) implies (h18) while (h29) implies both(h2) and (h3) with
M05MM1 , and (h4) with M25M1 . The bound from below in(h2) is fulfilled if one assumes a
similar estimate from below on thes i j ’ s.

Remark 6: The previous symmetry conditions are included in

s i j ~v,v8!Bj5s i j ~v8,v!Bj5s j i ~v8,v!Bi5s j i ~v,v8!Bi , ~12!

which also implies that Q1
el is self-adjoint. This corresponds to the symmetry assumption use

Ref.19; but here we aim at dealing with a larger class of collision kernels.
Let us go back to the fundamental example~9!. DenoteC5( i ciBi,`. One has in this

simple case

Q0
el~ f ! i5Cci~^ f i&2 f i !,

Q1
el~ f ! i5ciBi(

j
cj~^ f j&2 f j !.

Therefore, we get

B0~ f ,g!5(
i , j

ciBi
21cjBj~^ f i&^gi&2^ f igi&!,

B1~ f ,g!5(
i , j

cicj~^ f j&^gi&2^ f jgi&!.

We write gi5^gi&1r i where^r i&50. It yields
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B1~ f ,g!5(
i , j

cicj~^ f j&^gi&2^ f j^gi&&2^ f j r i&!

52(
i , j

cicj^ f j r i&

52(
i , j

cicjE
SN21

f j r i dv

52E
SN21S (j

cj f j D S (
i

ci r i Ddv.

If g lies in the orthogonal set of Ran(Q1
el), we deduce that( i ci r i(v) vanishes for almost allv

PSN21.
Remark 7: The adjoint operator of Q1

el is given by

Q1
el,* ~g! i5(

j
E

SN21
s j i ~v8,v!~gj~v8!2gj~v!!

Bi

Bj
dv8.

In particular, we note that, if relation (11) holds, then Q1
el is a self-adjoint operator.

C. Combination of the splitting

From now on, we assume that (h18), (h2), (h3), (h4) hold and we denote by~H! this set of
hypotheses. The idea will be to combineQ1

el with Q0
el so that the coercivity of the latter compen

sates the lack of positivity of the former; we are thus able to preserve the crucial dissip
properties. Let us consider the following elastic operator, obtained as a convex combinationQ0

el

andQ1
el ; for uP@0,1#, we set

Qu5uQ1
el1~12u!Q0

el.

One deduces from Corollary 1 and Proposition 2 that

Bu~ f , f !52(
i
E

SN21
Qu~ f ! i f iBi

21 dv>~12u~11M0A2M2!!N~ f 2^ f &!2

holds for anyf PE. We are thus led to the following statement.
Proposition 3: LetuP@0,(11M0A2M2)21@ . Then, there exists a constantku.0 such that,

for any fPE, we have

Bu~ f , f !>kuN~ f 2^ f &!2.

Consequently, the set of equilibriaEu5Ker(Qu) coincides withE0 ~the set of functions dependin
only on the energy level!. If one assumes(h19) and (h29), the domain foru enlarges to@0,(1
1M0)21@ .

One may also establish the following Fredholm alternative.
Proposition 4: For any hPF the problem to find fPE such that Qu( f )5h has a solution if

and only if ^h&50. The solution is unique inE05$ f PE such that̂ f &50% and satisfies

N~ f !<~1/Aku!ihiF .

Proof: Since the operatorQu is clearly conservative, the condition of null average on the d
h is necessary. The problem recasts into the following variational formulation:
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;wPE0 , Bu~ f ,w!5(
i
E

SN21
hiw iBi

21 dv5~h,w!L

and we conclude by applying the Lax–Milgram theorem. h

Of course, one has a similar statement for the adjoint operator:Qu* is defined by

Qu* 5uQ1
el,* 1~12u!Q0

el,* ,

and fulfills the same coercivity property asQu with the same constant of coercivity, since

Bu~ f , f !52(
i
E

SN21
Qu* ~ f ! i f iBi

21 dv.

Therefore we have
Corollary 3: For any hPF there exists fPE such that Qu* ( f )5h if and only if ^h&50.

Moreover, there exists a unique such function inE05$ f PE such that̂ f &50%, and this solution
satisfies

N~ f !<~1/Aku!ihiF .

IV. FORMAL APPROACH

The starting point of the asymptotic study is the following rescaled equation:

] t f i
h1

1

h
v i•¹xf i

h5
1

h2 ~Qh~ f h!! i . ~13!

Precisely, we consider the situation where the mean free pathh.0 is small at time scale of orde
1/h. On the other hand, we assume that the collision operatorQh splits as follows:

Qh~ f !5Qu~ f !1h2Qu
inel~ f !,

which means that inelastic collisions are of orderh2 compared to the elastic ones. This agrees w
the fact that dominant scattering events are elastic. Of course, in this splittingu is fixed and cannot
be too small compared toh. In particular, it is also required thatu belongs to the range which
guarantees the coercivity of the operatorQu , see Proposition 3. Our aim is to describe t
asymptotic behavior of the solutions of~13! ash→0. We will obtain a set of diffusion equations
which can be viewed as a semidiscrete~with respect to the energy! version of the SHE-system o
Ref. 19 for the limit macroscopic density with a coupling of the energy levels due to the acti
the operatorQ1

el and/or the inelastic terms.

A. Formal Hilbert expansion

We can guess the limit behavior by inserting the formal ansatz

f h5 f 01h f 11h2f 21¯

into ~13! and then we identify the terms that arise with the same power ofh. As usual, theh22

terms lead to

Qu~ f 0!50,

which means, by Proposition 3, that (f 0) i(v)5r iPE0 does not depend on the angular variab
Hence, one expects that the asymptotic limit is entirely determined in terms of ‘‘macrosc
quantities. Next, theh21 equation reads

Qu~ f 1!5v•¹xr,
                                                                                                                



the

this

the

the
ire
utron
highly

3243J. Math. Phys., Vol. 43, No. 6, June 2002 Discrete version of SHE asymptotics

                    
while theh0 equation is

Qu~ f 2!1Qu
inel~r!5v•¹xf 11] tr.

Integrating with respect tov, we are led to the following relation:

] tr i1divxS E
SN21

A2ei /mv f i
1~v!dv D 5E

SN21
Qu

inel~r!dv. ~14!

The usual strategy consists in inverting theh21 equation; one expects in this way to determine
current*SN21A2ei /mv f i

1(v)dv in the previous equation as a linear function of¹xr, i.e., a Fick’s
relation. The difficulty of this method here comes from the action of the operatorQ1

el which mixes
the energy levels. In particular, ifr i depends only on the energy andf i(v) depends on the two
variables, in general one has

Q1~r f ! i5(
j
E

SN21
s i j ~v,v8!r j~ f j~v8!2 f j~v!!dv8

Þr iQ1~ f ! i

5r i(
j
E

SN21
s i j ~v,v8!~ f j~v8!2 f j~v!!dv8

@while Q0(r f ) i5r iQ0( f ) i#. However, we can solve the problem as follows. Let us definex̄ i

P(E0)N solution of

Qu~ x̄ .
i ! i 0

52v i 0
d i 0i ,

whered i 0i51 if i 5 i 0 , and 0 if iÞ i 0 . The equation has to be understood componentwise, and
definition makes sense thanks to Proposition 4~since*SN21v dv50!. Then one checks that

f i 0
1 5(

i
x̄ i 0

i
•¹xr i

provides a solution to theh21 equation. Plugging this expression into~14! gives

] tr i 0
2¹xS (

i
Di 0i¹xr i D 5q~r! i 0

,

q~r! i 0
5E

SN21
@Qu

inel~r!# i 0
dv,

Di 0i52E
SN21

v i 0
^ x̄ i 0

i dv,

where^ stands for the tensor product inRN: for (a1 , . . . ,aN) and (b1 , . . . ,bN) in RN, a^ b is the
N3N matrix with componentsaabb . We observe in the limit equation a coupling between
energy levels, both from the diffusion matrix and from the right-hand side.

A possible strategy to justify these computations would be to start from a solutionr of the
expected limit equation~which has to be studied independently!, and to define successivelyf 1, f 2

in terms ofr as solutions of theh21 and h0 equations, respectively. It remains to estimate
remainderr h5 f h2(r1h f 11h2f 2). The drawback of this method is that it is known to requ
some regularity onr, thus on the coefficients. Such an assumption can be unrealistic for ne
transport since the physical properties of the media interacting with the neutrons are usually
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heterogeneous. On the other hand, it could be quite delicate to carry out this strategy in t
generality considered here. Therefore, let us instead develop a duality approach, which
close to our actual method of proof.

B. Duality interpretation

Let us assume thatf h converges to somef 0 in a suitable sense. Multiplying byh2 and taking
the limit h→0 in ~13!, we recover

Qu~ f 0! i50, ; i PN,

and thusf i
0(t,x,v)5r i(t,x).

We introduce the following macroscopic quantities

density of i th energy level: r i
h~ t,x!5E

SN21
f i

h~ t,x,v!dv,

current of i th energy level: Ji
h~ t,x!5

1

h E
SN21

uv i uv f i
h~ t,x,v!dv.

~15!

In view of the penalization of the collision term, one expects thatf h tends to belong to the kerne
of Qu , therefore it is mainly given by its macroscopic partrh, up to a formally small remainder
Hence, let us write a first-order expansion off h as follows:

f i
h~ t,x,v!5r i

h~ t,x!1hgi
h~ t,x,v!

so thatrhPKer(Qu) and

Ji
h~ t,x!5E

SN21
uv i uvgi

h~ t,x,v!dv.

Integrate Eq.~13! with respect tov. Since the operatorQu has null average onSN21, we get for
all i PN:

] tr i
h1¹x•Ji

h5E
SN21

Qu
inel~ f h! idv,

which is theh-dependent version of the integratedh0 equation in the above-mentioned form
expansion. Ash goes to 0, we are formally led to the continuity equation

] tr i1¹x•Ji5E
SN21

Qu
inel~r! idv.

It remains to find the relation between the limit currentJ andr.
Multiply ~13! by somehw i(v). We get

(
i

1

h E
SN21

Qu~ f h! iw idv5(
i
E

SN21
~v•¹xf h! iw idv1h(

i
E

SN21
] t f i

hw idv,

and therefore

(
i
E

SN21
Qu~gh! iw idv5(

i
S E

SN21
uv i uvw idv D •¹xr i

h1Rh, ~16!

whereRh is formally of orderO(h).
                                                                                                                



3245J. Math. Phys., Vol. 43, No. 6, June 2002 Discrete version of SHE asymptotics

                    
Suppose that, fori 0 fixed in N, we are able to find the auxiliary functionBix i
i 0(v)P(E0)N,

that solves

Qu* ~B.x .
i 0! i5v i 0

Bi 0
d i 0i5A2ei 0

/mBi 0
vd i 0i . ~17!

Sincev i 0
lies in RN, Eq. ~17! holds for theN scalar equations with right-hand sidesva for a

P$1,...,N%. Remarking that

E
SN21

v dv50,

the existence ofx i 0 is given by Corollary 3.
Hence, for the test functionw i(v), we choose the components ofx i

i 0(v) and ~16! becomes

(
i
E

SN21
gi

hQu* ~Bx i 0! iBi
21 dv5(

i
S E

SN21
uv i ux i

i 0^ v dv D •¹xr i
h1O~h!, ~18!

with

(
i
E

SN21
gi

hQu* ~Bx i 0! iBi
21 dv5(

i
E

SN21
gi

hA2ei 0
/mvd i 0i dv5A2ei 0

/mE
SN21

vgi 0
h dv5Ji 0

h .

Here, we used the following fact:

(
i
E

SN21
Qu~gh! ix i

i 0 dv5~Qu~gh!,Bx i 0!L

5(
i
E

SN21
gi

hQu* ~Bx i 0! iBi
21 dv.

Thus, passing to the limith→0 in ~18!, we are led to

Ji 0
~ t,x!52(

i
Di 0i¹xr i~ t,x!, ~19!

where the matrixD is defined through the auxiliary functionx by

Di 0i52uv i u E
SN21

x i
i 0^ v dvPMN3N , ~20!

whereMN3N stands for the space ofN3N matrices.
The formal limit of ~13! is therefore the following macroscopic equation:

] tr2¹x•~D~x!¹xr!5q~r!, ~21!

where the unknown is the sequencer(t,x)5$r i(t,x),i PN%, D is given by ~17!, ~20! and the
right-hand side by

q~r! i5E
SN21

Qu
inel~r! i dv5(

j
L i j r j2S̃ ir i , ~22!

with
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L i j 5E
SN21

E
SN21

s i j ~v,v8!dv dv8,

S̃ i5(
j
E

SN21
E

SN21
s j i ~v8,v!dv dv85(

j
L j i .

It is also worth splitting the matrixD as follows. The properties discussed onQ0
el allow us to

define a uniquew i 0(v)PRN verifying

~12u!Q0* ~B.w
i 0d i 0 .! i5v i 0

Bi 0
d i 0i ,

with *SN21w i 0(v)dv50. Then, we splitx i
i 05w i 0d i 0i1x̄ i

i 0 , where

Qu* ~B.x̄ .
i 0! i52uQ1* ~B.w

i 0d i 0 .! i .

In this way, we can rewrite

Di 0i5di 0
d i 0i1D i 0i ,

di 0
52uv i 0

u E
SN21

w i 0^ v dv,

D i 0i52uv i u E
SN21

x̄ i
i 0^ v dv.

Hence, one gets@D¹xr# i 0
5di 0

¹xr i 0
1( iD i 0i¹xr i . Of course, we can verify readily that this defi

nition of the diffusion matrix coincides with the one obtained in the previous section.
This limit equation~21! appears as a semidiscrete~in energy! SHE-model with a coupling of

the energy levels. Actually, one obtains a hierarchy of possible limit systems:
~1! A system of uncoupled diffusion equations with respect to the space variable, energy

only a parameter. This arises when inelastic terms are negligible andu50.
~2! A system of diffusion equations with a coupling of the energy levels through zeroth-o

terms. This arises withu50 and treating inelastic processes as a perturbation. Diffusivity rem
locally defined~with respect to energy! and the coupling describes gain/loss at a given ene
level due to inelastic collisions.

~3! A system of diffusion equations with a strong coupling, from both zeroth-order terms
diffusion currents which are now nonlocal: energy exchanges during the collisions induce
sive effects.

C. Fundamental properties of the diffusivity

We are naturally led to discuss some properties of the diffusivityD. To this end, one intro-
duces the following Hilbert space of vector-valued sequences:

H5H F:N→RN;(
i

uF i u2
2« i

mg iBi
,1`J .

We shall identifyl 5$F:N→RN,( i uF i u2Bi
21,`% with its dual; accordingly, the dual ofH reads

H85H J:N→RN;(
i

uJi u2
mg i

2« iBi
,1`J ,

with the duality relation
                                                                                                                



e

r

3247J. Math. Phys., Vol. 43, No. 6, June 2002 Discrete version of SHE asymptotics

                    
^J,F&H8,H5S JAmci

2« i
,FA2« i

mci
D

l

5(
i

JiF iBi
21 .

Lemma 1: Assume(H). Let us set

D~C,F!5(
i , j

Di j C j•F iBi
21 ;F,CPH.

Then,
(i) D is a bilinear continuous form onH;
(ii) D is positive-definite (symmetric as soon as Qu is a self-adjoint operator). Furthermore, ther
exists a constant c.0 such that for allFPH,

D~F,F!>ciFiH
2 .

Proof: Assuming~H!, one associates toF in the weightedl 2 spaceH, the function

f:N3SN21→R

~ i ,v!°f i~v!5v i•F i5v•A2« i /mF i .

One remarks thatf lies in F0 , andifiF provides a norm equivalent to the natural norm onH ~by
using (h2)). Therefore, Proposition 4 allows us to define the mapping

K:H→E0

F°KF,

with Q* (KF) i(v)5v i•F i5f i(v), i.e., KF5Q* 21(f). Clearly,K is a bounded linear operato
from H to E.

With these notations, we have the following relation, which will be proved later on,

Bj
21K j

F~v!5(
i

x j
i ~v!•F iBi

21 . ~23!

From the definition ofDi j , and~23!, we can rewriteD as follows:

D~C,F!5(
i j

Di j C j•F iBi
21

52(
i j

E
SN21

x j
i ~v!•F iBi

21v j•C j dv

52(
j
E

SN21S (i
x j

i ~v!•F iBi
21D v j•C j dv

52(
j
E

SN21
Bj

21K j
F~v!c j~v!dv.

Hence we have

D~C,F!52(
i
E

SN21
c i~v!Q* 21~f! i~v!Bi

21 dv52(
i

S C i•S E
SN21

v iKi
F dv DBi

21D .

~24!
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The lemma follows, since the first expression recasts as

2(
i
E

SN21
Q* ~KC! i~v!Ki

F~v!Bi
21 dv5Bu~KF,KC!,

which easily leads to the conclusion by using Corollary 3.
We are thus left with the task of proving~23!. However, this is a simple consequence of

linearity of Q* , which implies that summation overi commutes with the action of this operato
We are thus able to show thatQ* acts on the right-hand side of~23! as follows:

Q* S (
i

B.x .
i
•F iBi

21D
j

5(
i

Q* ~B.x .
i ! j•F iBi

215(
i

v iBid i j •F iBi
215v j•F j5f j5Q* ~KF! j .

h

From Lemma 1, we can deduce the following claim which will give a precise meaning t
current relation~19!. It will play a key role in our rigorous analysis.

Corollary 4: We can define a linear, continuous and invertible mappingJ:H→H8 such that,
for any F and C in H one has

D~F,C!52~J~F!,C!l 52(
i

J~F! iC iBi
21 .

Proof: For anyFPH, the Riesz theorem defines a uniqueJ(F)PH8, such thatD(F,C)
52(J(F),C) l for any CPH. The corresponding mappingJ:H→H8 is of course linear and
continuous. Conversely, letJPH8. The Lax–Milgram theorem applies to solve the variatio
problem

find FPH such that, for allCPH one hasD(F,C)52(J,C) l .

By Proposition 4, this problem admits a unique solutionFPH which satisfies, by its definition
J(F)5J. h

This statement will allow us to interpret the current equation~19! in a duality sense byJ
5J(¹xr). Accordingly, one expects thatJ lies in L2(Rt

13Rx
N ;H8) and¹xrPL2(Rt

13Rx
N ;H). It

is worth noting this gain in ‘‘regularity,’’ both in the space and energy variables on the de
since this property is not guaranteed in general forrh, for h.0. This is a usual fact when dealin
with diffusion approximation, see for instance Refs. 29 and 20; the noticeable point here
this effect also applies to the energy variable.

V. RIGOROUS DERIVATION

This section is devoted to the rigorous study of the asymptotic behavior ash goes to 0 of the
solution f h of the kinetic equation

] t f i
h1

1

h
v i•¹xf i

h5
1

h2 ~Qu~ f h!! i in Rt
13Rx

N3Ni3Sv
N21 ,

f h~ t50!5FI
h .

~25!

In order to take into account time and space variables, one needs to define again some fu
spaces, based on the previous ones. We set

L 25H f :Rx
N3Ni3Sv

N21→R, (
i
E

RN
E

SN21
f i

2 Bi
21 dv dx,`J .
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It is nothing but theL2 space onRN3N3SN21 endowed with the measure dx^ (Bi
21 di ) ^ dv,

where di stands for the counting measure onN. Accordingly, we also set

E5H f :Rx
N3Ni3Sv

N21→R, (
i
E

RN
E

SN21
f i

2 g i

Bi
dv dx,`J 5L2~RN;E!

and

F5H f :Rx
N3Ni3Sv

N21→R, (
i
E

RN
E

SN21
f i

2 1

g iBi
dv dx,`J 5L2~RN;F!.

Similarly, for vector-valued macroscopic quantities, independent on the angular variable, w

H5H F:Rx
N3Ni→RN, (

i
E

RN
uF i u2

2« i

mg iBi
dx,`J 5L2~RN;H!

and

H85H J:Rx
N3Ni→R, (

i
E

RN
uJi u2

mg i

2« iBi
dx,`J 5L2~RN;H8!,

which is the dual ofH when one identifiesL2(RN,l )5L2(RN3N,dx^ Bi
21di ) with its dual,

namely

^J,F&H8,H5(
i
E

RN
F i•JiBi

21 dx.

We shall not detail the existence theory for the transport equation~25!. With some maybe
stronger assumptions on the cross sections, this can be done by means of semigroups the
can also use some monotonicity argument, following Petterson.36 Instead, we shall assume from
now on that there exists a functionf hPC0(R1;L 2)ùL`(R1;E) satisfying the following weak
formulation of ~25!

2E f h] tw B21 dm2
1

h E f hv•¹xw B21 dm1F E f hw B21 dn G
0

T

5
1

h2 E Qu~ f h!w B21 dm.

~26!

Here, dm indicates integration over (0,T)3RN3N3SN21 with the measure dt ^ dx^ di ^ dv
while dn has the same meaning onRN3N3SN21 with the measure dx^ di ^ dv. Relation~26!
holds for anyw in an appropriate space of admissible test functionsD. In particular, it makes sens
for wPL loc

1 (R1;E) such that] tw and¹x•(vw) belong toL loc
1 (R1;L 2). It is worth remarking that

a sequence defined by a finite number of non zero functionsw i(t,x,v) lying in C0
1(@0,T#

3RN;L`(SN21)) is admissible.
Remark 8: If one assumes that0,g i<C,1`, we obtain the inclusionsF,L,E, and

therefore Qu can be viewed as a bounded operator onL 2, with values inL 2, and existence-
uniqueness is easy to be established. Of course, the problem forh.0 fixed and most of our
convergence analysis become easier if one deals with a finite number of energy groups.

Then, we can now state our main result.
Theorem 1: Suppose(H) and let FI

h be bounded inL 2. Then, rh5*SN21f h dv converges
weakly-* in L`(0,T;L2(RN3N;B21 di ^ dx)) ~and in C0(@0,T#,L2(RN3N;B21 di ^ dx))-weak)
to r and Jh5*SN21A2« i /mv f h dv converges weakly-* in L2(0,T;H8) to J (see (27) in the
following). These limits satisfy
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] tr1divxJ50,

¹xrPL2~0,T;H!, and J~¹xr!5J.

The proof naturally falls into four steps.
Step 1: A priori estimates and weak convergences.

The main estimates onf h are obtained by formally multiplying Eq.~25! by f h/B and integrating.
It yields

i f h~ t !iL 2
2

1
2

h2 E
0

tE
RN

Bu~ f h, f h! dx ds5iFI
hiL 2

2 .

Therefore, the coercivity ofBu allows us to estimatei f hiL 2 and (1/h) N( f h2rh)5N(gh) and
thus leads to the following statement.

Lemma 2: Suppose that(H) holds and let FI
h be bounded inL 2. Then,

(i) f h is bounded in L`(Rt
1 ;L 2), with i f h(t)iL 2

2 <iFI
hiL 2

2 <C.

(ii) g h5( f h2rh)/h is bounded in L2(Rt
1 ;E),

(iii) r i
h(t,x)5*SN21f i

h(t,x,v) dv is bounded in L`(Rt
1 ;L2(RN3N,dx^ Bi

21 di )),

(iv) Ji
h(t,x)51/h*SN21v i f

h(t,x,v) dv5*SN21(2« i )/m vgh(t,x,v) dv is bounded in
L`(Rt

1 ;H8).

Proof: It remains to establish the bounds on the macroscopic quantities. Clearly, one h

(
i
E

RN
ur i

hu2 Bi
21 dx5(

i
E

RNU ESN21
f i

h dvU2

Bi
21 dx<i f hiL 2.

Next, the current satisfies

(
i
E

R1
E

RN
uJi

hu2
mg i

2« iBi
dx dt5(

i
E

R1
E

RNU ESN21
A2« i

m
vgi

h dvU2 mg i

2« iBi
dx dt

<(
i
E

R1
E

RN
E

SN21
ugi

hu2
g i

Bi
dv dx dt<E

R1
E

RN
N~gh!2 dx dt

and the boundedness ofJh is a consequence of~ii !. h

Possibly at the cost of extracting subsequences, we can assume that

f h⇀* f weakly * in L`~Rt
1 ;L 2!,

gh⇀* g weakly * in L2~Rt
1 ;E!,

rh⇀* r weakly * in L`~Rt
1 ;L2~RN3N,dx^ Bi

21 di !!,

Jh⇀* J weakly * in L2~Rt
1 ;H8!.

~27!

This means, respectively,
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lim
h→0

E f hw Bi
21 dm5E f w B21 dm,

where E
R1S E

RN3N3SN21
w i~ t,x,v!2Bi

21 dv di dxD 1/2

dt,`,

lim
h→0

E ghc Bi
21 dm5E gc B21 dm,

where E c i~ t,x,v!2 ~g iBi !
21 dm,`,

lim
h→0

E
R13RN3N

rhk Bi
21 di dx dt5E

R13RN3N
rk B21 di dx dt,

where E
R1S E

R13RN3N
k i~ t,x!2 Bi

21 di dxD 1/2

dt,`,

lim
h→0

E
R13RN3N

Jh
•F B21 di dx dt5E

RN3N
J•F B21 di dx dt,

where E
R13RN3N

uF i~ t,x!u2
2« i

mg iBi
di dx dt,`.

Choosing, with the above-mentioned properties,w i(t,x,v)5k i(t,x) and c i(t,x,v)
5(2« i /m)1/2 v•F i(t,x), we realize that

r5E
SN21

f dv, J5E
SN21

A2« i

m
vg dv

holds. In fact, we obviously havef 5r by taking the limit in the distributional sense inf h5rh

1hgh.
Step 2: Continuity equation.
We wish to establish the following claim.
Lemma 3: For any i the continuity relation

] tr i1divxJi50

holds inD8((0,T)3RN).
Proof: We use in~26! the test functionk iBiz(t,x) with k iPl ` ~preciselyk i5d i j !, and z

PC0
`((0,T)3RN); then we take the limith→0. h

Remark 9: Under suitable hypotheses, one could also rigorously derive the inelastic term
Actually, if s i j (v,v8) is such that Qu

inel is bounded inL, a priori estimate can still be derived b
means of an application of Gronwall’s lemma when Qu5Qu

el1h2Qu
inel .

Step 3: Current equation.
According to our discussion in the previous section, the expected current equ

J52( jDi j ¹xr j has to be understood in the dual senseJ(¹xr)5J, which means that

D~¹xr,F!52^J,F& ~28!

holds for anyFPL2(R1,H). Of course, the notation now takes into account the time and s
variables. Precisely, the right-hand side reads

E J•F B21 di dx dt5E gv•F B21 dm.
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Since we can associate toFPL2(R1,H) a uniqueKFPL2(R1,E) ~with null average! such that
Q* (KF)5v•F, we get

~J,F!5E gQ* ~KF! B21 dm.

On the other hand, the left-hand side in~28! is

2E ¹xr•vKF B21 dm52E
R3N3RN

¹xrS E
SN21

vKF dv D Bi
21 di dx dt

by using~23!. Then,~28! reduces to

E gQ* ~KF! B21 dm5E
R3N3RN

¹xrS E
SN21

vKF dv D B21 di dx dt. ~29!

In order to justify equality~28!, it thus would be tempting to usew5KF as a test function in
~26!. However, difficulties arise when we ask for such a function to belong to the admissib
D. We note that, forFPL2(0,T;H), we naturally haveKFPL2(0,T;E) and *SN21vKF dv
PL2(0,T;H8). However we recall that it is required that¹x•(vw)PL2(0,T;L 2) for w to be an
admissible test function. Space regularity is not a real difficulty, but it is not clear how it ca
guaranteed thatvKF belongs toL2(0,T;L 2). Except in some very particular cases~for instance if
2« i<Cg i which implies thatH8 embeds tol or in some isotropic case as in Ref. 19!, sinceQu

21

mixes all the energy levels, it seems that a truncation ofF on the high levels does not give suc
a control and it is not clear at all that the set$FPL2(0,T;H), ¹x•vKFPL2(0,T;L 2)% is not empty
in the general case. This difficulty leads to some technical restrictions on the cross sections
19.

On the other hand, if we are able to prove that¹xrPL2(0,T;H), then, the relation~29! makes
sense providedFPL2(0,T;H) and does not require further property onF. This motivates our
strategy of proof: First, we establish an approximate current equation, from which we will be
to deduce that¹xrPL2(0,T;H); and then we derive the current equation~29!. We are thus led to
the main statement of the step.

Proposition 5: We have¹xrPL2(0,T;H), and the limit J of Jh satisfies (29).
Proof: Let F be a test function inL2(0,T;H) compactly supported with respect to time

(0,T). Moreover, one assumes that] tFPL2(0,T;l ) and¹xFPL2(0,T;H). This can be obtained
by regularizing in time and space and eventually truncating in energy a function inL2(0,T;H).
Then, Qu*

21(v•F)5KFPL2(0,T;E) ~recall thatKF depends onv, though F does not!. We
introduce the functionm (n) defined onN by

m i
(n)5H 1 if i<n

0 if i .n.

The parametern will help us in approximating~29!. Then, we consider the admissible test fun
tion w i(t,x,v)5m i

(n) Ki
F(t,x,v)PL2(0,T;E). We obtain from~26!

2E f hv•¹x~m (n)KF! B21 dm2hE f h] t~m (n)KF! B21 dm5
1

h E Qu~ f h!m (n)KF B21 dm.

~30!

The right-hand side gives

E Qu~gh!m (n)KF B21 dm5E gh Qu* ~m (n)KF! B21 dm,
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while the left-hand side is rewritten

2E rh m (n)v•¹xK
F B21 dm2hS E f h] t~m (n)KF! B21 dm1E gh m (n)v•¹xK

F B21 dm D .

Since all the sums are actually finite, there is no trouble in applying convergences~27!, n being
fixed. The left-hand side in~30! tends, ash goes to 0, toward

2E r¹x•~v jm
(n)vKF! B21 dm52E

R13RN3N
~m (n)r!¹x•S E

SN21
vKF dv D B21 di dx dt.

Moreover, the right-hand side in~30! becomes

E ghQu* ~m (n)KF! B21 dm→E gQu* ~m (n)KF! B21 dm.

Thus, we are led to the equality

2E
R13RN3N

~m (n)r!¹x•S E
SN21

vKF dv DB21 di dx dt5E gQu* ~m (n)KF! B21 dm, ~31!

which appears as an approximate form of~28!. We wish to conclude by lettingn go to `. Let us
introduce the linear mappingJ(n) defined on the set

H FPL2~0,T;H!,¹x•S E
SN21

vKF dv D PL2~0,T;H8!J
by

J(n)~F!52E
R13RN3N

~m (n)r!¹x•S E
SN21

vKF dv DB21 di dx dt,

which corresponds to a weak definition of2D(m (n)¹xr,F). Note that this set is obviously dens
in L2(0,T;H) ~it is only concerned with space regularization since*SN21vKF dv naturally lies in
L2(0,T;H8)). Furthermore,~31! says that one actually has

J(n)~F!5E gQu* ~m (n)KF! B21 dm.

One deduces that

uJ(n)~F!u<CigiL2(0,T;E) iFiL2(0,T;H)

andJ(n) is a bounded sequence of continuous linear forms defined on the whole spaceL2(0,T;H).
According to Corollary 4, we can associate a sequenceQ (n) satisfying

iQ (n)iL2(0,T;H)<CigiL2(0,T;E) ,

and

J(n)~F!52D~Q (n),F!5E
R13RN3N

Q i
(n)~ t,x!S E

SN21
v iKi

F~ t,x,v! dv D Bi
21 di dx dt,

for any FPL2(0,T;H) @where we used~24!#. Then, coming back to~31!, Q (n) is a bounded
sequence inL2(0,T;H) which coincides with m (n)¹xr as a linear form on the subse
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$*SN21vKF dv, FPL2(0,T;H)%,L2(0,T;H8). Hence, we will conclude that the limit ofQ (n)

defines¹xr as element ofL2(0,T;H) if we are able to prove the following claim.
Lemma 4: The setK5$*SN21vKFdv, FPH% is dense inH8.
Lemma 4 yieldsm (n)¹xr5Q (n) in L2(0,T;H), and thereforem (n)¹xr is bounded in this space

uniformly with respect ton. Since the sequence converges toward¹xr asn→` in a distributional
sense, we deduce thatm (n)¹xr converges weakly toward¹xr in L2(0,T,H).

We end the proof by taking the limitn→` in the equality~31!; we finally get

2D~¹xr, F!5E gv•F B21 dm5E
R13RN3N

J•F B21 di dx dt.

Now, it remains to justify Lemma 4. h

Proof of Lemma 4:It is equivalent to prove that the orthogonal set ofK is reduced to 0 inH.
Let QPH satisfy

S Q,E
SN21

vKF dv D
L

50, ; FPH.

Then, by~24!, this readsD(Q,F)50 for all FPH, which yieldsQ50 thanks to the coercivity
of the bilinear formD. h

Step 4: Compactness in time.
We would like to recover as initial datar I for the limit problem a function depending on th

behavior of the sequence of dataFI
h for the kinetic equation. Of course this relies on a compa

ness in time property, at least for some weak topology. On the other hand, it can be sh
uniqueness result for the limit equation in the class of continuous functions with valu
L2(RN3N;B21 di ^ dx) and having the gradient inL2(0,T;H). In turn, of course, the whole
sequencerh will converge to thisr.

Lemma 5: The sequence(rh)h.0 is sequentially compact in C0(@0,T#;L2(RN3N,Bi
21 di

^ dx)-weak). In particular, there exists a sequence(rhn)nPN such that for anyfPL2(RN

3N,Bi
21 di ^ dx)

E
RN

rhnf B21 di dx→E
RN

rf B21 di dx

as n→` in C0(@0,T#).
Proof: First, letcPL2(RN3N,(11 i /g i)Bi

21 di ^ dx) with ¹xcPH. Looking at the continu-
ity equation, one gets

E
RN

rh~ t !c B21 di dx2E
RN

rh~s!cB21 di dx5E
0

t

~Jh,¹xc!H8,H ds

<CiJhiL2(0,T;H8) Aut2su i¹xciH .

The bound~iv! in Proposition 2 combined with the Arzela–Ascoli theorem allows us to ded
that (*rh(t)c B21 di dx)h.0 lies in a compact set inC0(@0,T#). By considering finite series an
space regularization, one sees that the above-used set ofc’s is dense intoL2(RN3N,Bi

21di
^ dx). Then, letfPL2(RN3N,Bi

21di ^ dx). We deduce that, for any«.0,

S E
RN

rh~ t !f B21 di dxD
h.0

,B~0,«!1Compact Set inC0~@0,T# !.

Hence, (*rh(t)f B21 di dx)h.0 also lies in a compact set inC0(@0,T#). We conclude by using
the separability ofL2(RN3N,Bi

21di ^ dx) and a Cantor argument. h
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Lemma 5 says that we recover as initial data for the limit equation the limit, in the w
L2(RN3N,Bi

21di ^ dx) sense, ofr I
h5*SN21FI

h dv. Moreover, classical reasoning gives the co
tinuity in time for the limit problem, see for instance Ref. 16.

Lemma 6: The limitr is a continuous function on@0,T# with values in L2(RN3N,Bi
21di

^ dx); and it satisfies

d

dt
iriL2

2
522E

RN
D~¹xr,¹xr! dx ~32!

in D8(#0,T@).
Proof: The point relies on the following facts:

rPL`~R1;L2~RN3N,Bi
21di ^ dx!!,

rPC0~@0,T#;L2~RN3N,Bi
21di ^ dx!2weak!,

¹xrPL2~R1;H!.

In turn, Eq.~21! implies that] tr reads as the space derivative of an element ofL2(R1;H8). This
legitimates the product withr. Indeed, by regularization~in time! and truncation~in energy!, we
can construct a sequencer (n) which lies in C`(@0,T#;HùL2(RN3N,Bi

21di ^ dx)), with ] tr
(n)

PC`(@0,T#;H8ùL2(RN3N,Bi
21di ^ dx)) and satisfying

r (n)→r in L2~0,T;L2~RN3N,Bi
21di ^ dx!!,

] tr
(n)→] tr in L2~0,T;¹x•~H8!!

asn goes to`. When dealing with regular functions, one has clearly

d

dt
ir (n)iL2

2
52~] tr

(n),r (n)!L252^] tr
(n),r (n)&,

where the brackets stand for the duality product between$r such that ¹xrPH% and
$( uau51]x

aJ,JPH8%. Passing to the limitn→` justifies that

d

dt
iriL252^] tr,r&

holds inD8(#0,T@), which gives~32!. Therefore, one deduces that (d/dt) iriL2PL1(0,T) and

ir~ t !iL2
2

5ir I iL2
2

1E
0

t

2^] tr,r&ds

defines a continuous function on@0,T#. Furthermore,

ir~ t !2r~ t0!iL2
2

5ir~ t !iL2
2

1ir~ t0!iL2
2

22~r~ t !,r~ t0!!L2

tends to 0 ast goes tot0 sincerPC0(@0,T#,L22weak). h

In turn, one deduces the following uniqueness statement which proves that the who
quencerh converges.

Corollary 5: There exists a unique solutionr of (21) with rPL`(R1;L2(RN3N,Bi
21di

^ dx)) and ¹xrPL2(R1;H).
Proof: The previous lemma guarantees thatr is continuous with values inL2(RN3N,Bi

21di
^ dx). By linearity, it suffices to consider the solutionr corresponding to datar I50. Then,~32!
combined to the positivity ofD implies thatir(t)iL250. h

As a concluding remark, let us notice that we can improve the convergence ofrh to r. Indeed,
using vd i j as test function in~26!, we obtain that¹xr i reads as a bounded term inL2((0,T)
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3RN) plus h3(first derivatives of bounded terms inL2((0,T)3RN))), hence it is compact in
H21((0,T)3B(0,R)) for any 0,T,R,`. Combining this information with the continuity equa
tion in Lemma 3, we can apply the Div-Curl argument of L. Tartar,39 as in Refs. 34, 29, 20, an
28 and we deduce that for anyi PN, r i

h lies in a compact set ofL loc
2 ((0,T)3RN). If further the

Bi ’s tend to 0, one easily concludes thatrh converges tor strongly inL2((0,T)3B(0,R)3N), for
any 0,T,R,`.

APPENDIX: PROPERTIES OF THE COLLISION OPERATORS

1. Proof of Proposition 1

We writeQ0
el( f ) i5K( f ) i2S i f i . Of course, one hasiS f iF5i f iE . Next, using (h1), we get

(
i
E

SN21
uK~ f ! i u2

1

S iBi
dv

5(
i
E

SN21U ESN21
G i~v8,v! f i~v8!dv8U2 1

S iBi
dv

<(
i
E

SN21H S ESN21
G i~v8,v!dv D u f i~v8!u2dv8E

SN21
G i~v,v8!dv8

1

S iBi
J dv

<(
i
E

SN21
S i ~v8!u f i~v8!u2Bi

21 dv85i f iE
2. ~A1!

It follows that Q0
elPL(E,F), with iQ0

el( f )iF<2i f iE .
According to Hypothesis~h1!, we easily get (i )

E
SN21

Q0
el~ f ! i dv5E

SN21
f i~v!S E

SN21
~G i~v,v8!2G i~v8,v!!dv8D dv50.

Now, B0 is clearly bilinear and continuous onE3E and we compute

B0~ f , f !52(
i
E

SN21
E

SN21
G i~v8,v!@ f i~v8!2 f i~v!# f i~v!Bi

21 dv8 dv

52(
i
E

SN21
E

SN21
G i~v8,v! f i~v! f i~v8!Bi

21 dv8 dv

1
1

2 (
i
E

SN21
E

SN21
G i~v8,v!u f i~v!u2dv8 dv

1
1

2 (
i
E

SN21
E

SN21
G i~v,v8!u f i~v8!u2dv8 dv

51/2(
i
E

SN21
E

SN21
G i~v8,v!~ u f i~v!u2

1u f i~v8!u222 f i~v! f i~v8!!Bi
21 dv8 dv

51/2(
i
E

SN21
E

SN21
G i~v8,v!u f i~v!2 f i~v8!u2Bi

21 dv8 dv.

This obviously leads to the characterization of the kernel ofQ0
el in ( i i i ).

Moreover, we have
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(
i
E

SN21
uQ0

el~ f ! i u2
1

S iBi
dv<(

i
E

SN21
E

SN21
G i~v8,v!u f i~v!2 f i~v8!u2

S i

S iBi
dv8 dv

<2B0~ f , f !,

which implies the last inequality in assertion (i i ). h

2. Proof of Corollary 1

Set f 5^ f &2r . Sincer has null average, assumption (h2) yields

B0~ f , f !51/2(
i
E

SN21
E

SN21
G i~v8v!u f i~v8!2 f i~v!u2Bi

21 dv8 dv

>1/2(
i
E

SN21
E

SN21
u f i~v8!2 f i~v!u2g iBi

21 dv8 dv

>1/2(
i
E

SN21
E

SN21
ur i~v8!2r i~v!u2g iBi

21 dv8 dv

>1/2(
i
E

SN21
E

SN21
~r i

2~v8!1r i
2~v!22r i~v!r i~v8!!g iBi

21 dv8 dv

>(
i
E

SN21
r i

2~v!g iBi
21 dv5N2~r !.

h

3. Proof of Proposition 2

First, let us estimate

iQ1
el~ f !iF

25(
i
E

SN21U(j
E

SN21
s i j ~v,v8!~ f j~v8!2 f j~v!!dv8U2

~S i ~v!Bi !
21dv

<(
i
E

SN21S (j
E

SN21
s i j ~v,v8!Bj dv8

3(
j
E

SN21
s i j ~v,v8!u f j~v8!2 f j~v!u2Bj

21 dv8D ~S iBi !
21dv

<M2(
j
E

SN21
E

SN21S (i
s i j ~v,v8! D u f j~v8!2 f j~v!u2Bj

21 dv8 dv

<M2(
j
E

SN21
E

SN21
G j~v,v8!u f j~v8!2 f j~v!u2Bj

21 dv8 dv

<2M2B0~ f , f !<2M2iQ0
el~ f !iFi f iE<4M2i f iE

2 , ~A2!

where we used the Cauchy–Schwarz inequality and the results in Proposition 1. This prov
Q1

elPL(E,F).
In view of Remark 2, we can integrateQ1

el with respect tov and we get
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E
SN21

Q1
el~ f ! idv5(

j
E

SN21
f j~v8!S E

SN21
s i j ~v,v8!dv D dv82(

j
E

SN21
f j~v!

3S E
SN21

s i j ~v,v8!dv8D dv

5(
j
E

SN21
f j~v!S E

SN21
~s i j ~v8,v!2s i j ~v,v8!!dv8D dv50,

by using the symmetry assumption (h18).
Then,B1 is obviously a bilinear continuous form onE, and a straightforward computatio

yields

B1~ f ,g!52(
i , j

E
SN21

E
SN21

s i j ~v,v8!~ f j~v8!2 f j~v!!gi~v!Bi
21 dv8 dv

5(
i , j

E
SN21

E
SN21

s i j ~v8,v!~ f j~v8!2 f j~v!!gi~v8!Bi
21 dv dv8

51/2(
i , j

E
SN21

E
SN21

~ f j~v8!2 f j~v!!~s i j ~v8,v!gi~v8!

2s i j ~v,v8!gi~v!!Bi
21 dv8 dv.

Finally, in view of ~10!, it is easy to check thatE0,Ker(Q1
el), and writing f 5^ f &1r , we

immediately get

uB1~ f , f !u5u~Q1
el~ f !, f !Lu5u~Q1

el~r !,r !Lu<ir iEiQ1
el~r !iF<2AM2ir iE

2<2M0AM2N~ f 2^ f &!2.

We can improve this bound, by noticing that, since the average ofr vanishes,~A2! and ~h3!
yield

iQ1
el~r !iF

2<M0M2(
j

g jBj
21E

SN21
E

SN21
ur j~v8!2r j~v!u2dv8 dv

<M0M2(
j

g jBj
21~2^r j

2&22^r j&
2!

<2M0M2(
j

g jBj
21^r j

2&52M0M2N~r !2,

and therefore

B1~ f , f !<A2M0M2ir iEN~r !<M0A2M2N~ f 2^ f &!2.
h

4. Proof of Corollary 2

By combining the symmetry condition (h19) with estimate (h29), we can dominate
uB1( f , f )u, as given in Proposition 2~ii ! by
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M /2(
i j

E
SN21

E
SN21

g ig j u f j~v8!2 f j~v!uu f i~v8!2 f i~v!udv dv8

<M /2(
i j

g ig j S E
SN21

E
SN21

u f j~v8!2 f j~v!u2dv dv8D 1/2

3S E
SN21

E
SN21

u f i~v8!2 f i~v!u2dv dv8D 1/2

.

Since one assumes^ f &50, the integral becomes

E
SN21

E
SN21

u f i~v8!2 f i~v!u2dv dv852^ f i
2&.

Hence, we get

uB1~ f , f !u<M(
i j

g ig j^ f j
2&1/2^ f i

2&1/2

<M S (
i j

g iBi
21^ f i

2&g jBj
21^ f j

2& D 1/2S (
i j

g iBig jBj D 1/2

<MM1(
i

g iBi
21^ f i

2&5MM1N~ f !2.
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12Bussac, J. and Reuss, P.,Traité de Neutronique~Herrman, Paris, 1978!.
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Inhomogeneous six-vertex model with domain wall
boundary conditions and Bethe ansatz

V. Korepin and P. Zinn-Justina)

C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook,
Stony Brook, New York 11794-3840

~Received 29 August 2000; accepted for publication 14 September 2001!

In this note, we consider the six-vertex model with domain wall boundary condi-
tions, defined on anM3M lattice, in the inhomogeneous case where the partition
function depends on 2M inhomogeneitiesl j andmk . For a particular choice of the
set ofl j we find a new determinant representation for the partition function, which
allows evaluation of the bulk free energy in the thermodynamic limit. This provides
a new connection between two types of determinant formulas. We also show in a
special case that spin correlations on the horizontal line going through the center
coincide with the ones for periodic boundary conditions. ©2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1415430#

I. INTRODUCTION

The six-vertex model was first introduced in Ref. 1. It was solved exactly by Lieb2 and
Sutherland3 in 1967 by means of Bethe ansatz for periodic boundary conditions~PBC!. Later the
six-vertex model was studied for different boundary conditions.4–6 Domain wall boundary condi-
tions were introduced in 1982.7 These boundary conditions are interesting because they allow
to derive determinant representations for correlation functions8 and the same boundary condition
help to enumerate alternating sign matrices.9,10 Recently the bulk free energy was calculated
these boundary conditions.11

In this paper we show that for special choices of inhomogeneities, one can compute th
energy and some correlation functions of the system. This observation might be useful beca
expect some properties of the model to be independent of the inhomogeneities, i.e., to depe
on the anisotropy parameter. In the simplest situation, the correlation functions coincide wi
ones for periodic boundary conditions.

II. INHOMOGENEITIES AND BETHE ANSATZ

In this section we define the inhomogeneous six-vertex model with domain wall boun
conditions and choose the spectral parameters~inhomogeneities! to satisfy Bethe ansatz equation
this will imply special properties of the partition function.

We now introduce the notations. Given anM3M square lattice with spectral parametersl i

andmk attached to the lines and columns, one defines the usual Boltzmann weightsa, b, c to be

a~l,m!5sinh~g~l2m1 i /2!!,

b~l,m!5sinh~g~l2m2 i /2!!, ~2.1!

c~l,m!5sinh~ ig!,

a!Electronic mail: pzinn@insti.physics.sunysb.edu
32610022-2488/2002/43(6)/3261/7/$19.00 © 2002 American Institute of Physics
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whereg is the anisotropy. We have fixed boundary conditions for the external edges: horiz
~respectively, vertical! external edges are outgoing~respectively, incoming!. The partition function
is denoted byZM($l j%,$mk%). Using recursion relations satisfied by theZM , one can show that the
following determinant formula holds:12,13

ZM~$l j%,$mk%!5
)1< j ,k<M sinh~g~l j2mk1 i /2!!sinh~g~l j2mk2 i /2!!

)1< j < j 8<M sinh~g~l j2l j 8!!)1<k,k8<M sinh~g~mk2mk8!!

3 det
1< j ,k<M

F sinh~ ig!

sinh~g~l j2mk1 i /2!!sinh~g~l j2mk2 i /2!!G . ~2.2!

In the homogeneous case this representation was used in order to evaluate the bulk free
in the thermodynamic limit.11 In a special inhomogeneous case we shall use another determ
represention to evaluate the bulk free energy in the thermodynamic limit. Let us define our s
case. We choose the spectral parameters in relation to the Bethe ansatz. In order to do t
convenient to introduce the formalism of the algebraic Bethe ansatz. The Boltzmann weigh
encoded into theL-matrix

L~l!5S a~l! 0 0 0

0 b~l! c~l! 0

0 c~l! b~l! 0

0 0 0 a~l!

D . ~2.3!

We next introduce themonodromy matrix T(l) which is an operator acting onC2M
^ C2 ~physical

space times auxiliary space! defined by

T~l;m1 ,...,mM !5L~l2mM !L~l2mM21!...L~l2m1!, ~2.4!

where L(l2mk) acts on thekth factor of the tensor product in the physical space, and
auxiliary space. As an operator on the two-dimensional auxiliary space,T(l) can be written as

T~l!5S A~l! B~l!

C~l! D~l!
D , ~2.5!

whereA, B, C, D are operators on the physical spaceC2M
. The usualtransfer matrixcorrespond-

ing to periodic boundary conditions is defined as

T~l!5A~l!1D~l!. ~2.6!

We shall make use of this operator later. Here, our fixed boundary conditions imply the follo
formal expression for the partition function:7

ZM~$l j%,$mk%!5^↓uB~l1 ;m1 ,...,mM !...B~lM ;m1 ,...,mM !u↑&, ~2.7!

where

u↑&[S 1
0D ^ M S respectivelyu↓&[S 0

1D ^ M D
is the state with all spins up~respectively, down!.

Let us specify inhomogeneities. We choose the$l j% to be divided into two sets$l j
15l j , j

51,...,m1% and$l j
25l j 1m1, j 51,...,m2% which each satisfy theBethe ansatz equations:
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)
j 851
j 8Þ j

ma
sinh~g~l j

a2l j 8
a

1 i !!

sinh~g~l j
a2l j 8

a
2 i !!

5)
k51

M sinh~g~l j
a2mk1 i /2!!

sinh~g~l j
a2mk2 i /2!!

~2.8!

with a51,2. We define the left and right states

^1u5^↑uC~l1
1!...C~lm1

1
!,

~2.9!
u2&5B~l1

2!...B~lm2
2

!u↑&,

and theflip operatorR to be the operator on the physical space that flips all arrows: in terms o
usual Pauli matrices,R5)k51

M sk
x . Now using the overall invariance of the monodromy mat

under flip: @T(l),Rsx#50 ~where the additionalsx acts on the auxiliary space!, one finds that
RB(l)R5C(l) and therefore we can rewrite formula~2.7! in terms of the states we have define

ZM~$l j%,$mk%!5^1uRu2&. ~2.10!

We now consider the situation whereM is even andm15m25M /2. As proven in~A3!, the
Bethe stateu2& is an eigenstate ofR ~with eigenvalue61!. At this point we use orthogonality o
Bethe states~A2! to conclude that

ZM~$l j%,$mk%!56d$l j
1%,$l j

2%^1u2&. ~2.11!

The nonzero scalar product~square of the norm! is given by the following formula,7 dropping the
superscripts:

^1u1&5~sing!M /2F)
j 51

M /2

a~l j !d~l j !GF )
j , j 851
j Þ j 8

M /2
sinh~g~l j2l j 81 i !!

sinh~g~l j2l j 8!! G det
1< j , j 8<M /2

F ]w j

]l j 8
G ~2.12!

with the following definitions:a(l) andd(l) are the eigenvalues ofA(l) andD(l) acting onu↑&:

a~l!5)
k51

M

sinh~g~l2mk1 i /2!!,

~2.13!

d~l!5)
k51

M

sinh~g~l2mk2 i /2!!,

and thew j are the logarithms of the B.A.E.~2.8!:

w j5 i log~a~l j !/d~l j !!1 i (
j 851
j 8Þ j

M /2

log
sinh~g~l j2l j 81 i !!

sinh~g~l j2l j 82 i !!
. ~2.14!

Note that the general determinant formula~2.2!, in the case of two identical sets$l j
1%5$l j

2%,
becomes

ZM~$l j%,$mk%!5
)

1<k<M
1< j <M /2 sinh2~g~lk2mk1 i /2!!sinh2~g~l j2mk2 i /2!!

)1< j , j 8<M /2 sinh2~g~l j2l j 8!!)1<k<k8<M sinh~g~mk2mk8!!

3 det
1< j <M /2
1<k<M

@f~l j2mk!,c~l j2mk!# ~2.15!
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with f(l)[sinh(ig)/(sinh(g(l1i/2))sinh(g(l2i/2))) and

c~l!5
1

g

d

dl
f~l!.

Our new determinant representation~2.12! is quite different from Eq.~2.15!; it is in particular
much easier to study its thermodynamic limit.

III. CORRELATION FUNCTIONS

So far we have studied the function partition of the system; what about correlation funct
Unfortunately it is not possible to find such a simple expression for an arbitrary correl

function; however, if we restrict ourselves to the case of special correlations which lie on a
horizontal line, then one can again derive determinant formulas for them.

To be specific, let us assume again that the$l j% consist of two identical sets$l j , j
51¯M /2%. Then the probability that all arrows located at columnsk1 ,...,kn and between lines
M /2 andM /211 are up, is given by

^pk1
¯pkn

&[
^↓uB~l1!¯B~lM /2!pk1

¯pkn
B~l1!¯B~lM /2!u↑&

^↓uB~l1!¯B~lM /2!B~l1!¯B~lM /2!u↑&
, ~3.1!

wherepk[
1
2(11sk

z)5(0
1

0
0) acts on thekth space.

Similarly to what was done for the partition function, one can transform Eq.~3.1! using the
flip operatorR and find:

^pk1
¯pkn

&5
^1upk1

¯pk2
u1&

^1u1&
. ~3.2!

In other words this is simply the usual correlation functions of the spin operators1
2(11sz) for the

corresponding spin chain. The computation of these averages is a well-known problem, a
general strategy to perform it is by now well understood.14 One must use the solution of th
quantum inverse scattering problem for these operators:15,16

pk5)
l 51

k21

T~m l1 i /2!A~mk1 i /2! )
l 5k11

M

T~m l1 i /2! ~3.3!

and then use the fact that our stateu1& is an eigenstate of theT(l), as well as the commutation
relations satisfied by theA(l) andB(l). In this way we can reduce Eq.~3.1! @respectively, Eq.
~3.2!# to a sum of expressions of the type^↓uB(l̃1)¯B(l̃M /2)B(l1)¯B(lM /2)u↑& ~respectively

^↑uC(l̃1)¯C(l̃M /2)B(l1)¯B(lM /2)u↑&!. These can finally be expressed as determinants e
using Eq.~2.2!, or according to the general formula for scalar products~p. 237 of Ref. 8!.

The casen51 is trivial: u1& is an eigenstate ofR, and thereforê pk&51/2. The simplest
higher correlation function is the emptiness formation probability where allki are nearest neigh
bors, in which case we obtain immediately

^pk11¯pk1n&5 )
l 5k11

k1n Fa~m l1 i /2!)
j 51

M /2
sinh~g~m l2l j1 i /2!!

sinh~g~m l2l j2 i /2!! G ^1u )
l 5k11

k1n

A~m l1 i /2!u1&.

~3.4!

We shall give the thermodynamic limit of this expression in a particular case.
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IV. THERMODYNAMIC LIMIT

We shall show in a particular example how to take the thermodynamic limit in formulas~2.12!
and~3.4!. We set allmk to 0 and consider the critical regime, i.e.,g real. We specify the stateu1&
to be the ground state of the transfer matricesT(l) ~or of the Hamiltonian of the correspondin
XXZ spin chain!. In the limit M→` the l j form a continuous distribution on the real ax
determined by its densityr(l)51/(2 cosh(pl)).

Let us first consider the free energy. One can show that the undetermined sign in Eq.~2.11! is
1, and therefore we haveF52 log^1u1&. We now analyze Eq.~2.12! in the largeM limit. We see
that we have

2F'M2F1

2 E dlr~l!log@sinh~g~l2 i /2!!sinh~g~l1 i /2!!#

1
1

4 E dlr~l!dl8r~l8!log
sinh~g~l2l81 i !!

sinh~g~l2l8!! G1M
1

2
log sing1 log detD. ~4.1!

The terms of orderM2 form the bulk free energy. In order to go further we have to analyze
behavior of the determinant. It is easy to see that the determinant of the matrixD[@]w j /]l j 8# is
dominated by its diagonal elements; the latter are, by definition ofr(l),

]w j

]l j
52p

M

2
r~l j ! ~4.2!

and therefore

log detD'
M

2
log~pM !1

M

2 E dlr~l!logr~l!. ~4.3!

This gives us the expansion of the free energy up to linear terms in the sizeM. Note that similar
expressions@with different densitiesr(l)# can be found for other states, as long as they hav
properM→` limit.

As to the correlation functions, it is known that there is a general multiple integral repre
tation for correlation functions in the thermodynamic limit17 ~see also Refs. 18 and 19!. We shall
not repeat the derivation here; let us simply mention that starting for example from~3.4!, one can
prove the following formula:15,20

^pk11¯pk1n&522nS p

z D n~n21!/2E
2`

1`

dr1¯drn)
j ,k

sinhp~r j2rk!

sinhg~r j2rk2 i !

3)
j 51

n
sinhj 21 g~r j2 i /2!sinhm2 j g~r j1 i /2!

coshm pr j
. ~4.4!

This result is identical to the correlation functions of the six-vertex model with periodic boun
conditions.

APPENDIX: A NONDEGENERACY PROPERTY

We assume in this appendix thatq[eig is generic~i.e., not a root of unity, except the isotrop
caseq521!. We also assume that the spectral parameters$mk% do not form any ‘‘strings’’@i.e.,
Im(mk2ml)Þ1;k,l#. We consider two Bethe statesu1& and u2& characterized by two sets$l j

1, j
51,...,m1% and $l j

2, j 51,...,m2%. Bethe states are eigenstates of the set of commuting tran
matricesT(l), with corresponding eigenvalue
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T~l!ua&5FQa~l2 i !

Qa~l!
a~l!1

Qa~l1 i !

Qa~l!
d~l!G ua&, ~A1!

where a(l) and d(l) are given by Eq.~2.13! and are independent of the state, whereasQa

characterizes the$l j
a%:

Qa~l!5)
j 51

ma

sinh~g~l2l j
a!!. ~A2!

Note that the Bethe ansatz equations are simply the equations which ensure pole cancell
the eigenvalue ofT(l): ResT(l)ua& ul5l

j
a50.

Because of the symmetry of the transfer matricesT(l) under the flip operatorR, we are only
considering states withma<M /2.

We now assume thatu1& and u2& have the same eigenvalue, that is

Q1~l1 i !

Q1~l!
a~l!1

Q1~l2 i !

Q1~l!
d~l!5

Q2~l1 i !

Q2~l!
a~l!1

Q2~l2 i !

Q2~l!
d~l! ;l. ~A3!

We rewrite this as

a~l!@Q1~l1 i !Q2~l!2Q2~l1 i !Q1~l!#5d~l!@Q2~l2 i !Q1~l!2Q1~l2 i !Q2~l!#.
~A4!

Up to an overall prefactore22(M1m11m2)gl, both the left- and right-hand sides are polynomials
e2gl of degree at mostM1m11m2. Furthermore they have the following 2M known zeroes:
l5mk6 i /2,k51,...,M . If somemk coincide the zeroes have a multiplicity; however note tha
mk1 i /2 cannot coincide with am l2 i /2 ~since themk are not allowed to form strings!. There are
now two situations:

~1! m11m2,M . In this case we conclude directly that both sides of Eq.~A4! are zero.
~2! m11m25M . Sincem1<M /2 andm2<M /2, this can only happen ifm15m25M /2. However

in this case direct computation of the highest degree terms of the polynomials in Eq.~A4!
shows that they are zero, and therefore they are in fact of degree at most 2M21. Again this
means that both sides of the equation are zero.

In either case, we finally find

Q1~l1 i !

Q1~l!
5

Q2~l1 i !

Q2~l!
;l. ~A5!

If q is not a root of unity, this implies immediately that$l j
1%5$l j

2%. What we have proven is the
following result:

~A.1! Two Bethe states withm<M /2 ~i.e., Sz>0! correspond to the same eigenvalues of
T(l) ~for all l! if and only if they are identical.

This has the following two immediate corollaries:
~A.2! Two distinct Bethe states are orthogonal to each other.
~A.3! A Bethe state withm5M /2 ~i.e., Sz50! is an eigenstate of the flip operatorR.
Remark:the situation is much more subtle ifq is a root of unity. One way to see this is t

consider Eq.~A5!, and assume now thatq2N51. One can add an extra ‘‘full string’’ of the form
l i5l01 i j , j 51,...,N to one of the sets without modifying the correspondingQ function. This
suggests extra degeneracy can appear whenq is a root of unity between states withDSz5N,
which is precisely the phenomenon observed in Ref. 21.
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Construction of diffusion algebras
P. N. Pyatov
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
Dubna, Moscow Region 141980, Russia

R. Twarocka)

Department of Mathematics, City University,
Northampton Square, London EC1V 0HB, United Kingdom
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In Isaevet al. @J. Phys. A34, 5815–5834~2001!# diffusion algebras were intro-
duced in the context of one-dimensional stochastic processes with exclusion in
statistical mechanics. While Isaevet al. is based on the needs of the physicist
reader and thus states results without proofs and focuses on the discussion of
lower-dimensional examples, it is the purpose of this paper to present a construc-
tion formalism for diffusion algebras and to use the latter to prove the results in
Isaevet al. © 2002 American Institute of Physics.@DOI: 10.1063/1.1473220#

I. INTRODUCTION

Diffusion algebras play a key role in the understanding of one-dimensional stochastic
cesses. In the case ofN species of particles with only nearest-neighbor interactions with exclu
on a one-dimensional lattice, diffusion algebras are useful tools in finding expressions f
probability distribution of the stationary state of these processes. Following the idea of m
product states,1,2 the latter are given in terms of monomials built from the generators of a quad
algebra. Depending on whether the system is closed, i.e., the stochastic process is defin
ring, or open, in which case boundary conditions at the end of the lattice come into play
expression varies; Ref. 3 presents an exposition of these facts and the reader is referred
reference and references within for more details about the application of diffusion algeb
physics.

It is the purpose of this work to treat diffusion algebras from the mathematician’s poi
view and to prove a construction theorem for diffusion algebras. We consider the follo
setting.

Let a,bPI Nª$1,...,N% and consider quadratic relations of the form

gabDaDb2gbaDbDa5xbDa2xaDb ~1!

with gabPR\$0%, gbaPR, andxaPC. @Note that dependence on all the nonvanishing coefficie
xa in ~1! is easily suppressed by rescaling the elementsDa asxaDa . We choose to display the
dependence on these coefficients here, because they are important in applications to st
models, which is the physical motivation for the study of this type of algebra.# Then one has

Definition 1.1: An algebra with generators$DauaPI N% and relations of type (1) is called
diffusion algebra, if it admits a linear PBW-basis of ordered monomials of the form

Da1

k1 Da2

k2
¯Dan

kn , kjPN0 ~2!

with a1.a2.¯.an .
We remark that although we formulate the mathematical setting for coefficients inR in

relation ~1!, for physical reasons only relations with positive coefficientsgabPR.0 and gba

a!Electronic mail: r.twarock@city.ac.uk
32680022-2488/2002/43(6)/3268/12/$19.00 © 2002 American Institute of Physics
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PR>0(a,b) are relevant, because they are interpreted as hopping rates in stochastic m
Since we are treating diffusion algebras from the mathematical point of view here, we wi
impose this restriction, but comment on the implications of this restriction on our results afte
main theorem.

The requirement of having a PBW basis~2! implies conditions on the coefficientsgab andxa

in ~1! according to the diamond lemma in ring theory.4 In particular, the latter gives a criterion t
check under which conditions the relations in~1! are of PBW type: it is the case if each subset
three generators$Da ,Db ,Dg% with orderinga,b,g is reduction unique with respect to th
ordering, that is if the two ways of reducing the monomialDaDbDg to the monomialDgDbDa

lead to the same result when expressed in the PBW basis~2!.
The task of deriving all diffusion algebras withN generators thus reduces to the following tw

steps:

~1! Find all diffusion algebras with three generators.
~2! Find all algebras withN generators such that each subset of three generators coincides
one of the cases listed before.

The first is a trivial exercise, which amounts to finding those coefficientsgab andxa in ~1! for
which a set$Dg ,Db ,Da% of three generators is reduction unique in the above-mentioned s
The corresponding list of algebras is given in Ref. 3, and we review it here in order to s
notation and render this paper self-contained. The second is a combinatorial problem, and r
one to combine in a consistent way the three generator algebras listed before to algebrasN
generators for generalN.3.

A construction method for diffusion algebras, and thus a constructive method to approa
second point, is the so-called blending procedure in Ref. 3, which is an inductive procedure
construction of diffusion algebras. It uses the three generator cases and augments them t
units by attaching further generators in accordance with the requirements of the diamond l
then giving a prescription of how these larger building blocks may be glued~or in the terminology
of Ref. 3 ‘‘blended’’! together in order to obtain a general diffusion algebra ofN generators. The
advantage of the inductive procedure is that it facilitates the construction of representations,
are crucial for applications in physics. The main purpose of this paper is to provide a diff
construction method, which is more suitable for mathematical purposes, in particular, to de
proof for the fact that the set of algebras obtained via the blending procedure corresponds
to the set of diffusion algebras in Definition 1.1.

After recalling the three-generator case in Sec. II, we present in Sec. III a derivatio
diffusion algebras from first principles. Furthermore, we present in Sec. III a compact formu
for the blending procedure, and obtain the exhaustiveness of the inductive approach in Ref
corollary to our main theorem.

II. REVIEW OF DIFFUSION ALGEBRAS WITH THREE GENERATORS

As mentioned in Sec. I, the three-generator case provides the building blocks for the d
tion of diffusion algebras according to the diamond lemma and we therefore briefly reca
results of Ref. 3 for this case.

Consider a set$Da ,Db ,Dg% of three generators with an ordering induced by the ordering
the index seta,b,g and relations as in~1!. SincegabÞ0 for all a,bPI N by assumption, we
can cast the relations into the following form:

DaDb5qbaDbDa1xb
abDa2xa

abDb ,

DaDg5qgaDgDa1xg
agDa2xa

agDg , ~3!

DbDg5qgbDgDb1xg
bgDb2xb

bgDg ,
                                                                                                                



f-

. The
ut this

3270 J. Math. Phys., Vol. 43, No. 6, June 2002 P. N. Pyatov and R. Twarock

                    
where qjiªgji /gi j , xk
i j
ªxk /gi j for k, i , j P$a,b,g%. Then, using~3!, any monomial can be

expressed in terms of the PBW basis~2!. This is well defined, if applying~3! in different orders
leads to the same result, that is if the reductions

DaDbDg→DbDaDg→DbDgDa→DgDbDa ~4!

and

DaDbDg→DaDgDb→DgDaDb→DgDbDa ~5!

using ~3! coincide when expressed in the PBW basis~2!.4 This leads to restrictions on the coe
ficients gab and xa in ~1!. In particular, they are constrained by a set of six equations@see
~2.5!–~2.10! in Ref. 3# and their solutions determine all diffusion algebras of three generators
latter are listed here for future convenience and in order to set up notations. Througho
section, we assumea,b,g andxjÞ0 for j P$a,b,g%.

~1! The case of AI :

g@Da ,Db#5xbDa2xaDb ,

g@Da ,Dg#5xgDa2xaDg , ~6!

g@Db ,Dg#5xgDb2xbDg ,

wheregÞ0.
~2! The case of AII :

gabDaDb5xbDa2xaDb ,

gagDaDg5xgDa2xaDg , ~7!

gbgDbDg5xgDb2xbDg ,

wheregi jªgi2gj with giÞgj for all i , j P$a,b,g%.
~3! The case of B(1):

gbDaDb2~gb2L!DbDa52xaDb ,

gDaDg2~g2L!DgDa5xgDa2xaDg , ~8!

gbDbDg2~gb2L!DgDb5xgDb ,

where gÞ0 and gbÞ0. For the same ordering, we also find relations of typeB(1) which are
relations~8! with an exchangea↔b or g↔b and restrictionsgÞ0 andga¹$0,L% or, respec-
tively, gÞ0 andgg¹$0,L% on the parameters.

~4! The case of B(2):

gabDaDb52xaDb ,

gagDaDg2ggaDgDa5xgDa2xaDg , ~9!

gbgDbDg5xgDb ,

wheregab , gag andgbgÞ0.
~5! The case of B(3):

gDaDb2~g2L!DbDa5xbDa2xaDb ,
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ggDaDg52xaDg , ~10!

~gg2L!DbDg52xbDg ,

wheregÞ0 andgg¹$0,L%.
~6! The case of B(4):

~ga2L!DaDb5xbDa ,

gaDaDg5xgDa , ~11!

gDbDg2~g2L!DgDb5xgDb2xbDg ,

wheregÞ0 andga¹$0,L%.
~7! The case of C(1):

gbDaDb2~gb2L!DbDa52xaDb ,

ggDaDg2~gg2L!DgDa52xaDg , ~12!

gbgDbDg2ggbDgDb50,

wheregb ,gg and gbgÞ0. For the same ordering, we also find relations of typeC(1) which are
relations~12! with an exchangea↔b or a→g→b→a and restrictionsgaÞL andgg ,gagÞ0
or, respectively,ga ,gbÞL andgabÞ0 on the parameters.

~8! The case of C(2):

gabDaDb2gbaDbDa52xaDb ,

gagDaDg2ggaDgDa52xaDg , ~13!

DbDg50,

where gab and gagÞ0. For the same ordering, we also find relations of typeC(2) which are
relations~13! with an exchangea↔b or a→g→b→a and restrictionsgab ,gbgÞ0 or, respec-
tively, gag ,gbgÞ0 on the parameters.

~9! The case of D:With qjiªgji /gi j , i , j P$a,b,g% ~recall thatgi j Þ0 for i , j ! we have

DaDb2qbaDbDa50,

DaDg2qgaDgDa50, ~14!

DbDg2qgbDgDb50.

We remark that the division into algebras of typeA, B, C, and D reflects the number o
coefficientsxj , j P$a,b,g%, being zero in comparison with the general form~1!: for algebras of
type A, B, C, andD, respectively, none, one, two, or all three of the coefficientsxi vanish. The
subdivision for each type then corresponds to the different choices for the coefficientsgab , which
are compatible with the diamond lemma.

III. THE CASE OF GENERAL N

This section consists of four parts: we start by providing a decomposition of the inde
which later facilitates the presentation of the algebras. In other words, we decompose the
family of algebras, which depends on the ordered set of parameters$gab ,xaua,bPI % in the
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relations~1!, into several subfamilies. Each subfamily is determined by a specific subset o
parametersxa andgab , which are subject to a set of conditions formulated in the following@see
conditions~16!, ~20!–~23!, ~24! and ~26!#.

As a next step, we list some general properties specific to diffusion algebras in each
subfamilies. They are later used in the proof of the main result. This is followed by the li
diffusion algebras and a theorem which proves the exhaustiveness of the approach. We
comment on the counting of diffusion algebras.

A. Decomposition of the index set

The structure of the algebras in~6!–~14! suggests the following decomposition of the ind
set I N5$1,...,N%:

I N5I øR, ~15!

where

Iª$aPI NuxaÞ0%,
~16!

Rª$aPI Nuxa50%.

In the following we will use the notationNIªuI u andNRªuRu for the cardinalities of these sets
We introduce the following terminology and notations:
Definition 3.1: Normal ordering of two generators Da and Db is defined as

:DaDb :ªH DaDb i f a,b

DbDa i f b,a.
~17!

Definition 3.2: Fora,b we introduce the following short-hand notation:

@Da ,Db#qba
ªDaDb2qbaDbDa , ~18!

where the index at the commutator is referring to the coefficients qba in terms of which the
commutator is defined.

Using these notations, we subdivide the setR into nonintersecting and nonempty subsets

RªR1øR2ø¯øRMR
~19!

according to the following requirements.
~1! Relations between generators from the setsRa andRb for aÞb are given by

:Dr 1
Dr 2

5..0, ;r 1PRa and ;r 2PRb . ~20!

~2! Relations within a setRa such thatuRau>2 are given by

@Dr 1
,Dr 2

#qr 2r 1
50, ;r 1,r 2PRa , ~21!

where the coefficients in~21! are subject to the condition opposite to~20!, that is: for any
subdivisionRa5R8øR9 into two nonintersecting and nonempty partsR8 andR9,

'r 1PR8 and r 2PR9:gr 1r 2
gr 2r 1

Þ0. ~22!

In other words, this means that for any pair of indicesr ,sPRa there exists a finite sequenc
$r kPRauk51, . . . ,n% such thatr 15r , r n5s and
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)
k51

n21

gr kr k11
gr k11r k

Þ0. ~23!

Thus, relations~22! and ~23! may be represented graphically via aconnectivity conditionon
an ordered graph the vertices of which are labeled by the indicesr PRa and the edges connec
only those verticesr 1,r 2 for which the conditionqr 2r 1

Þ0 is satisfied.
Furthermore, forNI>2 we split the setR into two setsS andT as follows:
For anyRa,R we define

RaªH Sa if 'r PRa and i PI : gir gri Þ0,

Ta otherwise.
~24!

Suppose that theMR setsRa in ~19! split into MS setsSa and MT setsTa in this way, thus
MR5MS1MT . We number these sets asSa , a51,...,MS , andTa , a51,...,MT , and introduce

Sªøa51
MS Sa , Tªøa51

MT Ta . ~25!

Although the decomposition of the setS into subsetsSa has been used in the definition of the s
S, it will not be of practical importance in what follows. Contrary to that, the structure of the
T is crucial and needs further refinement.

For anyTa,T define

TaªH Ta
d if ' i , j PI : Ta,$ i 11,i 12 . . . ,j 21% and

I ù$ i 11,i 12, . . . ,j 21%5B

Ta
s otherwise.

~26!

Thus in short-hand notationT5$Ta
dua51,...,MT

d%ø$Ta
sua51,...,MT

s% with MT5MT
d1MT

s.

B. General structural remarks about N-generator diffusion algebras

Until now we have primarily discussed index sets. By an abuse of terminology, we will
now on also refer to ‘‘generators of a setI , S, T, or R, ’’ meaning the generators indexed b
elements from the corresponding set.

Definition 3.3: A set of three generators$Dx ,Dy ,Dz% with x, y, and zPX, Y, Z, respectively,
where X, Y, and Z are any of the sets I, R, S, and T or any set in their decomposition will b
called a triplet (of type)$X,Y,Z%.

Note that any triplet of type$I ,I ,I % in a diffusion algebra ofN>3 generators gives rise to
diffusion algebra of typeAI or AII , any triplet of type$I ,I ,R% to a diffusion algebra of typeB(1),
B(2), B(3), or B(4), any triplet of type$I ,R,R% to a diffusion algebra of typeC(1) or C(2), and any
triplet of type$R,R,R% to a diffusion algebra of typeD.

Then we have:
Lemma 3.4: For any Diffusion algebra (1) with N>3 generators the following statemen

hold
(1) If NI>3, then all subalgebras corresponding to triplets of type$I ,I ,I % are of the same

type, which is either AI (that is, gi j 5g ; i , j PI ! or AII (that is, gji 50, gi j 5gi2gj , giÞgj ,
; i , j PI).

(2) If NI>3 and all subalgebras corresponding to triplets$I ,I ,I % are of type AI then for any
sPS and for all iPI one has

gis5gsi5gs . ~27!

(3) If NI>3 and all subalgebras corresponding to triplets$I ,I ,I % are of type AII then S
5B.
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(4) Let NI>2.
For any iPI and for all t,t8PTa (here Ta means both Ta

s and Ta
d) with t, i and t8. i the

coefficients gti and git 8 depend only on the index a of the set Ta and not on the individual indices
t or t8. If t ,t8PTa

s one furthermore has gti52git 8 .
For any i, j PI and for all t,t8PTa :t, i and t8. j ,

gti1L i j 5gt j , ~28!

git 85gjt 81L i j , ~29!

whereL i jªgi j 2gji .
(5) Let NI51. Denote the only index in I asi in order to stress that it is not a running index

For all r PRa one has

gir2gr i5La . ~30!

Note that both the left- and the right-hand sides of relation (30) depend only on the inde
the set Ra and not on the individual index r.

Proof of (1): It follows from the fact that in each set$Di ,D j ,Dku i , j ,kPI % one has either
gbaÞ0 for all a,bP$ i , j ,k%, or, gba50, for all a,bP$ i , j ,k%, but no mixture thereof, which
contradicts a mixing ofAI andAII type algebras.

Proof of (2):Let NI>3 andgi j 5g ; i , j PI . By ~25! it is enough to check~27! for anySa,S.
Consider an indexr PSa which satisfies the conditiongr j gjr Þ0 for somej PI . Then, for anyi
PI , the triplets$Dr ,Di ,D j% are all of typeB(1) with L50 and, hence,gir 5gri 5gr .

Next, take anysPSa . By definition, there exists a sequencer kPSa , k51, . . . ,n, such that
r 15r , r n5s and such that the connectivity condition~23! is satisfied. Then, for anyi PI , starting
with the triplet$Dr 1

,Dr 2
,Di% one inductively proves that all the triplets$Dr k

,Dr k11
,Di% are of type

C(1) with L50, and hence~27! follows.
Proof of (3): Let NI>3 and gji 50, gi j 5gi2gj , giÞgj , ; i , j PI and supposeSÞB.

Consider someSa,S and take those indicesr PSa and i 0PI for which conditiongi 0rgri 0
Þ0 is

satisfied. For anyj ,kPI the triplets$Di 0
,D j ,Dr% and$Di 0

,Dk ,Dr% are both of typeB(1), which
also implies that the triplets$D j ,Dk ,Dr%, ; j ,kPI , are all of typeB(1). Now, there is no mutua
ordering of any arbitrarily chosen indicesi , j ,kPI and the indexr PSp for which the existence
of any B(1)-type triplet$Di ,D j ,Dr%, $Di ,Dk ,Dr%, and$D j ,Dk ,Dr% is compatible with the con-
dition thatgik5gi j 1gjk—a contradiction.

Proof of (4): Let NI>2 and consider any three indicesi PI and t,t8PTa . Exploiting the
connectivity property~23! of the setTa one can find a sequence$tkuk51, . . . ,n% such thatt1

5t, tn5t8 and such that all theC-type triplets$Di ,Dtk
,Dtk11

% are not of typeC(2). Hence, their
corresponding nonzero coefficientsgit k

~for i ,tk! or gtki ~for tk, i ! are subject to the condition
for triplets of typeC(1) @see~12!# which together with the definition~24! of the setTa implies
git5git 8 in the casei ,t,t8, gti5gt8 i in the caset,t8, i , and gti52git 8 in the caset, i
,t8, thus proving the first part of the fourth statement in the lemma.

To prove the second part notice that for any four indicesi , j PI and t,t8PTa which are
ordered ast, i , j ,t8 their corresponding triplets$Dt ,Di ,D j% and$Di ,D j ,Dt8% are of typeB(4)

and,B(3), respectively. Conditions~28! and~29! then reproduce the relations between the coe
cients in those triplets@see Eqs.~10! and ~11!#.

Proof of (5): Let NI51 and consider any pair of indicesr ,r 8PRa . As before, for every
connective setRa there exists a chain ofC-type triplets$D i ,Dr k

,Dr k11
%, k51, . . . ,n21, with

r 15r and r n5r 8 which are not of typeC(2). Hence one obtains~30! with one and the same
coefficientLa for all C(1) type triplets$I ,Ra ,Ra%. h

Lemma 3.4 suggests listing diffusion algebras in families according to the number of ge
tors in the setI and provides information about the structure of relations among generators
the setsI , S, T, andR in each case.
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C. List of diffusion algebras with N generators

In this section, we list allN-generator diffusion algebras and provide a theorem which pro
the exhaustiveness of the formalism.

Diffusion algebras withN generators are listed as five families of algebras:AI , AII , B, C,
and D. As in the case ofN53 the number of nonzero coefficientsxa or, in other words, the
cardinality of the setI is used as a criterion for separating diffusion algebras into families of
typesA(NI>3), B(NI52), C(NI51) or D(NI50). TypeA algebras are separated further in
two familiesAI andAII depending on the number of nonzero coefficientsgi j with indicesi , j in
the setI .

Different algebras in the families are obtained in dependence on the choice of the dec
sition of the set I N5$1,2,. . . ,N% into ordered subsets I, S, Ta

s , a51, . . . ,MT
s , Tb

d , b
51, . . . ,MT

d ~or Ra , a51, . . . ,MR for NI51! as well as on the choice of coefficients in the
defining relations. In the following we adopt a notation for diffusion algebras where the c
sponding decomposition of the setI N is given explicitly as argument to the family symbol. T
avoid any confusion let us stress that the subscript indicesa andb in our notation are treated a
running ones so that, e.g.,

AI~ I ,S,Ta
s ,Tb

d![AI~ I ,S,T1
s , . . . ,TM

T
s

s
,T1

d , . . . ,TM
T
d

d
!,

where we implyI N5I øSø(ø
a51
MT

s

Ta
s)ø(ø

b51
MT

d

Tb
d), andI , S, Ta

s , andTb
d are mutually nonin-

tersecting ordered subsets inI N . The values of the coefficientsgab are not shown explicitly in
these notations so that in fact our notation displays connnective components in a vari
diffusion algebras rather than the particular algebras.

All relations in ~31!–~35! below are to be complemented by relations~20!, ~21! for the
elements of the subsetR together with the conditions~22! or ~23! on the coefficients involved.

~1! Diffusion algebras of type AI(I ,S,Ta
s ,Tb

d), NI>3:

g@Di ,D j #5xjDi2xiD j , ; i , j PI ,

gs@Ds ,Di #5xiDs , ;sPS,i PI ,

ga
s :DiDt :52xiDt , ;a,tPTa

s ,i PI , ~31!

gb
1DiDt52xiDt , ;b,tPTb

d ,i PI : i ,t,

gb
2DtDi5xiDt , ;b,tPTb

d ,i PI : i .t,

whereg, gs , ga
s , gb

6Þ0.
~2! Diffusion algebras of type AII (I ,Ta

s ,Tb
d), NI>3:

~gi2gj !DiD j5xjDi2xiD j , ; i , j PI ,

~gi1ga
s!:DiDt :52xiDt , ;a,tPTa

s ,i PI ,
~32!

~gi1gb
1!DiDt52xiDt , ;b,tPTb

d ,i PI : i ,t,

~gb
22gi !DtDi5xiDt , ;b,tPTb

d ,i PI : i .t,

wheregiÞgj for iÞ j andgi¹$ga
s ,7gb

6%.
~3! Diffusion algebras of type B(I 5$ i,j%,S,Ta

s ,Tb
d):

We use the notationi and j with i, j for the two elements of the setI to emphasize that they
are not running indices. Note also thati,t, j for all tPTb

d in this case.
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gDiD j2~g2L!D jD i5xjD i2xiD j ,

gsD iDs2~gs2L!DsD i52xiDs , ;sPS,

gsDsD j2~gs2L!D jDs5xjDs , ;sPS,

ga
s :D iDt :52xiDt , ;tPTa

s , ~33!

~ga
s2L!:D jDt :52xjDt , ;tPTa

s ,

gb
1D iDt52xiDt , ;tPTb

d ,

gb
2DtD j5xjDt , ;tPTb

d ,

wheregÞ0, gsÞ0 for all s and gsÞL for s such that eithers, i or s. j , ga
s¹$0,L% and gb

6

Þ0.
~4! Diffusion algebras of type C(I 5$ i%,Ra):
As in Lemma 3.4 the only element ofI is denoted here asi,

grD iDr2~gr2La!DrD i52xiDr , ;r PRa , ~34!

wheregrÞ0 for r , i andgrÞLa for r . i.
~5! Diffusion algebras of type D(R):

DrDs2qsrDsDr50, ;r ,sPR. ~35!

Theorem 3.5: The previously given list of algebras is exhaustive and contains all pos
diffusion algebras with N generators.

Proof: According to the diamond lemma, an algebra ofN generators with relations of type~1!
is a diffusion algebra if each of its triplets$Da ,Db ,Dg% generates a subalgebra coinciding w
one of the cases listed in Sec. II. Lemma 3.4 provides information about possibile cons
combinations of several such triplets and we thus have to demonstrate that the families of a
~31!–~35! exhaust the list of diffusion algebras which are allowed by this lemma.

Let us start with the caseNI>3. According to the first statement of Lemma 3.4 there are
possible types of relations between generators from the setI . This gives rise to two families of
diffusion algebras—AI andAII . Statement~2! of Lemma 3.4 describes the relations between
generators from the setsI andS in the case of the familyAI , and the third statement of Lemm
3.4 excludes the presence of a nonempty setS in the case of the familyAII . The coefficients in the
relations between the generators from the setI and the setsTa

s andTb
d are subject to the condi

tions given in the fourth statement of Lemma 3.4, whereL i j 50 for theAI family andL i j 5(gi

2gj ) for the AII family. These conditions fix the relations between the generators in the fam
of type AI and AII to the expressions in~31! and ~32!. Since the triplets of the form$I ,S,T%
~occurring only for theAI family! and$I ,Ta ,Tb% for aÞb are of typeC(2), no further conditions
arise from these relations. This exhausts all possibilities, and thus no further conditions oc

Let NI52. For each subsetSa,S the connectivity property~23! implies relations of typeB(1)

for all triplets $I ,I ,Sa%, and thus for any triplet$I ,I ,S%. The corresponding relations are listed
the first three lines of~33!. The compatibility conditions within the triplets$I ,Ta ,Ta% and$I ,I ,Ta%
are given in the fourth statement of Lemma 3.4, where we now haveL ij[L. These conditions fix
the form of the last four lines in~33!. SinceC(2) type relations for$I ,S,T% and $I ,Ta ,Tb% (a
Þb) triplets do not imply further restrictions, no further constraints arise.

In the caseNI51 a decomposition of the setR into S andT is not necessary, and we thu
work with the whole setR. Then the form of the relations~34! is implied by the fifth statement o
Lemma 3.4, which describes the compatibility conditions for the$I ,Ra ,Ra% triplets. The relations
in the C(2) triplets $I ,Ra ,Rb% for aÞb give no further constraints.
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In the caseNI50 all the triplets are of typeD, which are compatible without any restriction
on the coefficients. h

Note that while mathematically possible, not all algebras in the families are relevant from
physicist’s point of view. Due to the fact that the structure constants of diffusion algebra
interpreted as hopping rates, that is probabilities, in the framework of stochastic proces
linear lattices, only non-negative structure constants are relevant. This not only implies restr
on the structure constants themselves, but also on the decompositions of the setI N , because some
configurations are not compatible with non-negative structure constants. In particular, d
Lemma 3.4, statement~4!, part 1, non-negative structure constants throughout are possible o
the subsetsTa

s fulfill one of the following two requirements:

~1! ;tPTa
s and ; i PI :t, i or ~2! ;tPTa

s and ; i PI :t. i . ~36!

We conclude this section with some comments on the classification problem for diffu
algebras. To deal with the problem one should first establish criteria of equivalence, an
discuss two natural ones here.

~1! One can consider linear transformations on the set of generators$DauaPI N%. However,
there is the difficulty that not all linear transformations respect the ansatz~1!. There are two
special cases: rescaling transformationsDa→kaDa and substitution transformationsDa

→Ds(a) , wheres is an element of the symmetric groupSN .
As has already been mentioned in Sec. I, rescalings may be used to fix~depending on the

context of the physical application! some special values for the nonzero coefficientsxa . In par-
ticular, this implies that the values of the nonzero coefficientsxa are not relevant.

The substitution transformations clearly respect the form of the relations~1!, but may contra-
dict the requirement on the mutual ordering of the generators, that isgabÞ0 for a,b. In
particular, a permutation of the elements from different subsetsTa and between the subsetsT and
S, or T andI is strictly forbidden. In addition, one cannot permute two elementsr ,s in the same
subsetRa unlessqsrÞ0. On the other hand, permutations inside the subsetI and ~in most cases!
between the subsetsI andS are allowed unless they contradict the above-described requirem
Thus, substitution transformations establish certain equivalence classes inside each of the
AI(I ,S,Ta

s ,Tb
d), AII (I ,Ta

s ,Tb
d), B($ i, j%,S,Ta

s ,Tb
d), C($ i%,Ra), and D(R). These equivalence

classes can be calculated in concrete cases, but one hardly expects their complete descr
the case of generalN.

Note that besides the rescalings and the substitutions which always exist there may
other types of linear transformations which relate different types of diffusion algebras. Fo
stance, in the case ofN53 theC(1) type algebras in~12! with LÞ0 can be reduced to~a subclass
of! D type algebras by the transformationDa→Da2xa /L. For generalN, such transformations
allow one to reduce the number of nonzero parametersLa in the family of C type diffusion
algebras in~34! by 1.

~2! One can use the algebra antihomomorphism which simultaneously inverts multiplic
in the algebra, that isDaDb→DbDa , and the order of indices, that isa,b→a.b. This
transformation amounts to a mirror reflection of the corresponding stochastic processes. F
ample, in the list of diffusion algebras withN53 the familiesB(3) andB(4) are mirror symmetric.
Further examples of mirror symmetry for the caseN54 can be found in Ref. 3 in Appendix B.

D. Description of the blending procedure

The blending procedure is a constructive method to generate diffusion algebras. The
sponding construction theorem states that any diffusion algebra can be obtained from a
building blocks@Eqs.~4.1!–~4.7! in Ref. 3# via blending. In the following table we describe th
correspondence between the building blocks from Ref. 1~left-hand column below! and the specific
subclasses of the families in Theorem 3.5~right-hand column below!:
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AI
(1) : AI~ I ,S!, T5B,

AI
(2) : AI~ I ,Ts!, and AII ~ I ,Td!, S5B,

AII : AII ~ I ,Ts!, and AII ~ I ,Td!, ~37!

B(1) : B~ I 5$ i, j%,S!, T5B,

B(2) : B~ I 5$ i, j%,Ts!, and B~ I 5$ i, j%,Td!, S5B,

C : C~ I 5$ i%,R!,

D : D~R!.

Here it is understood that the setsTs andTd whenever they appear in the right-hand column
the only connective components in the decomposition~25! of the subsetTPI N . The connectivity
condition may be also imposed on the subsetsS and R in the right-hand column of~37!. We
remark that the mathematical setting adopted in the present paper allow us to extract elem
building blocks for the blending procedure. They are shown in the right-hand column of~37! and
the blocks listed in the left-hand column and used in Ref. 3 can be constructed by blending
arbitrary number of the corresponding blocks from the right-hand column. Note that in the se
of Ref. 3 extracting the elementary blocks would only amount to imposing additional connec
conditions~23! on the coefficientsgab in relations~4.1!–~4.7! there and so would not suit th
purposes of Ref. 3.

Furthermore we remark that in contrast to Ref. 3 we do not fix the order betweenD i , D j and
Ds to i,s, j for all sPS in B(I 5$ i, j%,S), because the other orders are needed when blen
with B(I 5$ i, j%,Ts) and B(I 5$ i ,j%,Td) in order to obtain all diffusion algebras. This is a
inaccurracy in the formulation of the construction theorem in Ref. 3. Despite that in the li
N54 diffusion algebras given in Appendix B of Ref. 3 the blending of such blocks is tre
correctly ~see example 13 there!.

Let Xl(I ,Ul), l 51,...,K denoteK building blocks in the list~37!, whereUl refers to the set
R, S, Ts, or Td corresponding to the building block, and which are such that they have the
number of elementsNI in I with generatorsDi , i PI satisfying in all blocksXl the same relations
among themselves.

Consider an ordered setI whose elements are labeled by the indices from the setI ,
U1 , . . . ,UK and such that for anyl 51, . . . ,K the order of the elements ofI with their labels form
I andUl is the same as the order of the indices in the blockXl(I ,Ul). In this situation we say tha
the order onI is compatiblewith the orders in the blocksXl .

Let us denote asXI(I ,U1 , . . . ,UK) the algebra with generators labeled by the elements in
setI and which satisfies the following conditions.

~1! For anyl 51, . . . ,K the generators ofXI with indices from the subsetsI , Ul,I satisfy the
same relations as their corresponding generators in the blocksXl(I ,Ul).

~2! For anyl 1Þ l 2P$1, . . . ,K% and for allaPUl 1
,I andbPUl 2

,I the corresponding gen
eratorsDa , DbPXI satisfy the relation

:DaDbª0. ~38!

The procedure of constructing the algebrasXI from their building blocksXl(I ,Ul) is called
blending. Clearly the number of different algebrasXI which are associated with the set of buildin
blocks$Xl(I ,Ul)% l 51, . . . ,K , coincides with the number of different ordered setsI whose order is
compatible with the orders in all blocksXl .5

The following statement made in Ref. 1 is a corollary to the construction theorem 3.5:
Theorem 3.6: Every diffusion algebra can be obtained via a blending of building block

(37).
                                                                                                                



ilies
ince
in Ref.

e ac-
. has
nt No.

t fu
d by a
atics

3279J. Math. Phys., Vol. 43, No. 6, June 2002 Construction of diffusion algebras

                    
IV. CONCLUSION

We have presented a derivation of diffusion algebras, which has led to five different fam
of algebras:AI , AII B, C, andD and it has been shown that the approach is exhaustive. S
these families of algebras correspond to the algebras obtained via the blending procedure
3, this also proves the construction theorem in Ref. 3.
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Algebraic dynamics in O* -algebras: A perturbative
approach
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In this paper the problem of recovering an algebraic dynamics in a perturbative
approach is discussed. The mathematical environment in which the physical prob-
lem is considered is that of algebras of unbounded operators endowed with the
quasiuniform topology. After some remarks on the domain of the perturbation,
conditions are given for the dynamics to exist as the limit of a net of regularized
linear maps. ©2002 American Institute of Physics.@DOI: 10.1063/1.1467609#

I. INTRODUCTION

In the so-called algebraic approach to quantum systems, one of the basic problems to
consists of the rigorous definition of the algebraic dynamics, i.e., the time evolution of observ
and/or states. For instance, in quantum statistical mechanics or in quantum field theory one
recover the dynamics by performing a certain limit of the strictlylocal dynamics. However, this
can be successfully done only for few models and under quite strong topological assumption~see,
for instance, Ref. 1, and references therein!. In many physical models the use of local observab
corresponds, roughly speaking, to the introduction of somecutoff ~and to its successive remova!
and this is in a sense a general and frequently used procedure, see Refs. 2–4 for conserva
Refs. 5 and 6 for dissipative systems.

Introducing a cutoff means that in the description of some physical system, we kn
regularizedHamiltonianHL , whereL is a certain parameter closely depending on the natur
the system under consideration. We assume thatHL is a bounded self-adjoint operator in th
Hilbert spaceH of the physical system.

There are several possible situations of some interest. Among these we will consid
following ones:

a. HL converges to an operator H. This is apparently the simplest situation. Of course
should specify the sense in which the convergence is understood. But for the moment, w
only to focus on the possible problems that arise.

For each fixedL, we know the solution of the dynamical problem, i.e., we know the solu
of the Heisenberg equation

i
daL

t ~A!

dt
5@HL ,aL

t ~A!#. ~1!

This solution,aL
t (A)5eiH LtAe2 iH Lt, would give thecutoffdynamics of the system. Then it make

sense to ask the question as to whetheraL
t (A) converges, possibly in the same sense asHL

converges toH, to the solutiona t(A) of the Heisenberg equation

a!Electronic mail: bagarell@unipa.it
b!Electronic mail: trapani@unipa.it
32800022-2488/2002/43(6)/3280/13/$19.00 © 2002 American Institute of Physics
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i
da t~A!

dt
5@H,a t~A!#. ~2!

It is worth stressing that even thoughH is a well-defined self-adjoint operator, it is in gener
unbounded. For this reason, while the right-hand side of Eq.~1! is perfectly meaningful, the nee
for clarifying the right-hand side of Eq.~2! is always in order sinceH is certainly not everywhere
defined inH.

Of course, the analysis of the convergence ofaL
t (A) to a t(A) @in this case wherea t(A) is

explictly known# is significant only for deciding the accuracy of the approximation ofa t(A) with
aL

t (A).
b. HL does not converge. In this case, the situation becomes more difficult and a serie

questions arise whose answer is highly nontrivial.
As a first step, one could begin by considering the derivations

dL~A!5 i @HL ,A#

that give, at infinitesimal level, the dynamics of the system.
The first issue, of course, is if these derivations converge, in a certain sense, to a derivd

and which properties this derivationd enjoys. For instance, is it a spatial derivation?~i.e, is there
a symmetric operatorH that implements, at least in a generalized sense, the derivation?7!

Further, can this derivation be integrated to some automorphisms group of the operato
bra we are dealing with? Or, conversely, sincedL can be integrated without any problem
aL

t (A)5eiH LtAe2 iH Lt, what can be said about the limit ofaL
t ? And how are these two problem

related? These questions are well-known not to admit an easy general solution.
In this paper we will be mainly concerned with situation~a! above, while we will only make

a few comments on the more difficult situation~b!, which will be considered in more detail in
future paper.

Our basic assumptions is that the HamiltonianH of the system can be expressed in the fo

H5H01B;

in other words, our approach is tentativelyperturbative: indeed, we suppose that we have fu
knowledge of theunperturbed systemwhose Hamiltonian isH0 . In other words, givenH we can
extract what we call a free HamiltonianH0 , which we know in all details, and considerBªH
2H0 as a perturbation ofH0 itself.

As we have already said, handling with unbounded operators poses a problem of dom
the algebra generated by the powers of the HamiltonianH0 . The natural choice is to take the s
of C`-vectors ofH0 . Once a perturbationB is introduced, it is natural to ask ourselves in whi
sense the corresponding domain forH is related to that ofH0 .

This is the main subject of Sec. II, where we start with the assumption thatD `(H)
5D `(H0) and derive some properties of the correspondingquasiuniformtopologies that the two
operators define.

Then we give, in a quite general way, conditions on two self-adjoint operatorsH0 andH for
D `(H) andD `(H0) to coincide.

In Sec. III, we come back to the problem of describing the dynamics of the perturbed s
as limit of a cutoff dynamics. In other words, we introduce a regularized HamiltonianHL

5QL
0HQL

0 where theQL
0’s are certain spectral projections of the unperturbed HamiltonianH0 and

we look for conditions under which the unitary group generated byHL converges to that generate
by H. A class of examples fitting our hypotheses is also given.

The main scope of the paper is to try and construct a mathematical environment whe
kind of problem can be successfully treated and also to develop techniques that could be a
for the study of the more relevant case~b! outlined previously. It is worth stressing that this is
rather common situation in physics~think of mean-field models or systems with ultraviol
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cutoff2,3! and a perturbative approach should also be considered for the derivations that de
the system at infinitesimal level. A short discussion on this point is made in Sec. IV.

II. THE MATHEMATICAL FRAMEWORK

We begin this section by summarizing some known facts on unbounded operator algebr
their topological properties. We refer to Refs. 4, 8–10 for full details.

Let D be a dense domain in Hilbert spaceH; with L†(D) we denote the set of all weakl
continuous endomorphisms ofD. Then to each operatorAPL†(D) we can associate an operat
A†PL†(D) with A†5A�D* whereA* is the usual Hilbert adjoint ofA. ThenL†(D), under the
usual operations and the involution†, is a* -algebra of unbounded operators or, simply,
O* -algebra.

Now let S be a self-adjoint operator inH and

DªD `~S!5ùn>1D~Sn!.

ThenD endowed with the topologytS of D `(S) defined by the set of seminorms

f °iSnf i , n50,1,...

or, equivalently

f °i~11S2n!1/2f i , n50,1,...

is a reflexive Fre´chet space and the topologytS is equivalent to the topologytL†(D) defined onD
by the set of seminorms

f °iA fi , APL†~D!.

In the *-algebraL†(D) several topologies can be defined. For the purposes of this pape
will only need thequasiuniform topologydefined onL†(D) in the following way. Put

iAiN,B5supfPNiBAfi , BPL†~D!, N bounded inD@ tL†(D)#.

Then, the quasiuniform topology,t
*
D on L†(D) is defined by the set of seminorms:

APL†~D!→max$iAiN,B,iA†iN,B%.

In the case whereD5D `(S), the quasiuniform topology onL†(D) can be described in an easi
way.

Indeed, letF denote the class of all positive, bounded and continuous functionsf (x) on R1 ,
which are decreasing faster than any inverse power ofx, i.e., supxPR1

xkf (x),`, k50,1,....
Then, if we put

Sf5$ f ~S!f;fPD,ifi51%

for f PF, the family $Sf% f PF is a basis for the bounded sets ofD@ tS#.
In practice this means that, for eachtS-bounded setN in D, there exists anSf such thatN,Sf .

This fact easily implies that the quasiuniform topology,t
*
D on L†(D) can be, equivalently,

defined by the set of seminorms:

L†~D!PA°iAi
*
f ,k5max$iSkA f~S!i ,i f ~S!ASki% f PF,kPNø$0%, ~3!

where the norm on the right-hand side of~3! is the usual norm inB(H). The *-algebra
L†(D)@t

*
D# is, in this case, a complete locally convex*-algebra, i.e., the involution and the righ

and left-multiplications are continuous.
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Remark: When estimating seminorms of type~3! we will often consider only the term
i f (S)ASki ; this is exactly what is needed whenA5A†. In the general case, anyAPL†(D) is a
linear combination of symmetric elements and so, as far as only estimates are concern
arguments go usually through.

We can now consider more concrete situations. To begin with, we consider the sim
possible example in which a physical system is described by a HamiltonianH0 that mathemati-
cally is a self-adjoint operator; we assumeH0>1; thenH0 has a spectral decomposition

H05E
1

`

ldE~l!.

We put, forL>1,

QL
05E

1

L

dE~l! ~4!

and define the regularized Hamiltonian by

HL5QL
0H0QL

0 .

Then if D5D `(H0) it turns out that the operatorsQL
0 andHL are bounded operators inB(H)

which belong toL†(D) ~the QL
0’s are indeed projectors! and they commute with each other an

with H0 .
This makes it quite easy to prove the following convergence properties@in what follows the

topologyt
*
D is that defined in Eq.~3! with S replaced byH0]:

~c1! HL→H0 with respect to the topologyt
*
D ,

~c2! eitH L→eitH 0 with respect to the topologyt
*
D ,

~c3! for eachAPL†(D), eitH LAe2 i tH L→
t
*
D

eitH 0Ae2 i tH 0.

All these statements can be derived from Lemma 2.2.
The next step consists in considering a Hamiltonian

H5H01B, ~5!

whereB is regarded as aperturbationof the operatorH0 . We suppose that the cutoff is dete
mined byH0 , i.e., we assume that

HL5QL
0~H01B!QL

05H0QL
01QL

0BQL
0, ~6!

whereQL
0 is defined as in Eq.~4! by the spectral familyE(•) of H0 . The right-hand side is wel

defined sinceQL
0AQL

0 is bounded for anyAPL†(D).
Clearly ~6! must be read as a formal expression unless the domains of the involved ope

are specified. To be more definite, we make the following assumptions:

~a! D5D `(H0),
~b! D(H0)#D(B) andH5H01B is self-adjoint onD(H0),
~c! D `(H0)5D `(H).

Under these assumptions, we have:
Lemma 2.1: (1) The topologies tH0

and tH are equivalent onD; (2) the topologies onL†(D)
defined, respectively, by the set of seminorms

L†~D!PA°max$iH0
kA f~H0!i ,i f ~H0!AH0

ki% f PF,kPN
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and

L†~D!PA°max$iHkA f~H !i ,i f ~H !AHki% f PF,kPN

are equivalent.
Proof: The statement~1! follows by taking into account thatH is continuous with respect to

tH0
andH0 is continuous with respect totH , according to the fact that the domain is reflexive
The statement~2! follows from ~1!, since the family oftH-bounded subsets ofD and the

family of tH0
-bounded subsets coincide. h

By the previous Lemma, the topologyt
*
D , can be described, following the convenience,

the seminorms inH or by those inH0 . Now, we can prove the following
Lemma 2.2:For eachXPL†(D), X5t

*
D2 limL→`QL

0XQL
0.

Proof: First, notice that, for,PN1, we have

iH0
2,~ I 2QL

0!fi25E
L

` 1

l2, d~E~l!f,f!<
1

L2, ifi2, ;fPD

and so

iH0
2,~ I 2QL

0!i→0 as L→`.

Now let f PF andkPN; then we have

i f ~H0!~B2QL
0BQL

0!H0
ki<i f ~H0!BH0

k~ I 2QL
0!i1i f ~H0!~12QL

0!BH0
kQL

0i5 sup
ifi5ici51

u

,H0
2,~12QL

0!f,H0
k1,B1 f ~H0!c.u1 sup

ifi5ici51
u

, f ~H0!H0
,BH0

kQL
0f,H0

2,~12QL
0!c.u

<iH0
2,~12QL

0!iiH0
k1,B1 f ~H0!i1iH0

, f ~H0!BH0
kiiH0

2,~12QL
0!i→0

for L→`. h

Incidentally, this lemma gives a proof of~c1! and ~c2! above. The proof of~c3! requires the
use of a triangular inequality of~c2! and of the commutation rule@H0 ,HL#50.

Taking into account the separate continuity of the multiplication and the previous lemm
have:

Corollary 2.3:dL(A)ª i @A,HL# converges tod(A)ª i @A,H# with respect to the topologyt
*
D .

Going back to our assumptions on the domains, it is apparent that conditions~b! and~c! given
previously are quite strong. It is natural to ask the question under which conditions onB they are
indeed satisfied.

The domain. Our starting point is an operator

H5H01B

under the assumption that theperturbation B is a symmetric operator andD(B)$D(H0). In
generalH may fail to be self-adjoint, unlessB is H0-bounded in the sense that there exist two r
numbersa,b such that

iBfi<aiH0fi1bifi , ;fPD~H0!. ~7!

If the inf of the numbersa for which 7 holds~the so-calledrelative bound! is smaller than 1, then
the Kato–Rellich theorem11 states thatH is self-adjoint and essentially self-adjoint on any core
H0 .
                                                                                                                



ion,

rem
e

:

g

o–

s

3285J. Math. Phys., Vol. 43, No. 6, June 2002 Algebraic dynamics in O* -algebras

                    
This is clearly always true ifB is bounded: in this case the relative bound is 0. In conclus
the Kato–Rellich theorem gives a sufficient condition for~b! to be satisfied.

Let us now focus our attention on condition~c!. We first discuss some examples.
Example 1:To begin with, we stress the fact that the conditions of the Kato–Rellich theo

are not sufficient to imply thatD `(H)5D `(H0). This can be seen explicitly with a simpl
example. Indeed, let us consider the case whereB5Pf with f PH\D(H0) andPf the projection
onto the one-dimensional subspace generated byf . It is quite simple to prove that, in this case

D~~H01Pf !
2!ùD~H0

2!5D~H0!ù$ f %'.

This equality implies that neitherD `(H01Pf) is a subset ofD `(H0) nor the contrary. So, in this
example,D `(H) andD `(H0) do not compare.

Example 2:Let p andq be the operators inL2(R) defined by

~p f !~x!5 i f 8~x!, f PW1,2~R!,

~q f !~x!5x f~x!, f PFW1,2~R!,

whereF denotes the Fourier transform. Let us consider

H05p21q2,

then, as is known,H0 is an essentially self-adjoint operator onS(R) and this domain is exactly
D `(H0).

Let us now take asB the operator2q2, then

D `~H !5$ f PC`~R!!: f (k)PL2~R!,;kPN%.

Thus, in this caseD `(H).D `(H0).
In order to construct an example where the opposite inclusion holds, we start by takinH0

5p2 andB5q2. In this case,

D `~H !5S~R!,$ f PC`~R!!: f (k)PL2~R!,;kPN%5D `~H0!.

These examples show that all situations are possible, when comparingD `(H) andD `(H0).
For shortness, we will callB a KR-perturbation if it satisfies the assumption of the Kat

Rellich theorem. Before going forth, we give the following
Proposition 2.4: Let A and B be two self-adjoint operators in Hilbert spaceH. Then

D `~A!5D `~B!

if, and only if, the following two conditions hold:

(i) for each kPN there exists,PN such that D(B,)#D(Ak),
(ii) for each hPN there exists mPN such that D(Am)#D(Bh).

Proof: We put D5D `(A)5D `(B). Because of Lemma 2.1, the topologiestA and tB are
equivalent. Without loss of generality we assume thatA>0, B>0; this makes the usual familie
of seminorms defining the two topologies directed. This implies that for eachkPN there exist
,PN andCk.0:

iAkfi<CkiB,fi , fPD.

But D is a core for any power ofB, therefore for eachf PD(B,) there exists a sequence (f n) of
elements ofD such thatf n→ f and (B, f n) is convergent. Then we get

iAk~ f n2 f m!i<CkiB,~ f n2 f m!i→0
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and thereforef PD(A�D
k )5D(Ak). The proof of~ii ! is similar.

Let us now assume that~i! and ~ii ! hold. For anykPN we put

,k5min$,PN:D~B,!,D~Ak!%.

Then we have

D `~B!#ù
k51

`

D~Bl k!,ù
k51

`

D~Ak!5D `~A!.

In similar way the converse inclusion can be proven. h

Example:The previous proposition easily implies the following well-known fact:

D `~Ak!5D `~A!, ;kPN

since~i! and ~ii ! hold, as is readily seen.
Proposition 2.5: Let A>1 and B>1. Then if

D `~A!5D `~B!

the following two conditions hold:

(i) for each kPN there exist,PN such that AkB2, is bounded;
(ii) for each hPN there exist mPN such that BhA2m is bounded.

Conversely, if D`(A)ùD`(B) contains a common coreD0 for all powers of A and B and both (i
and (ii) hold, then

D `~A!5D `~B!.

Proof: Assume thatD `(A)5D `(B)5:D. As seen in the proof of Proposition 2.4, the equiv
lence of the topologies implies that for eachkPN there exist,PN andCk.0:

iAkfi<CkiB,fi , fPD,

which can be written as

iAkB2,fi<Ckifi , fPD.

The second condition can be proved in similar way.
Now, suppose thatD0 is a common core for all powers ofA andB and that~i! and~ii ! hold.

Then from~i! one gets that for eachkPN there exist,PN andCk.0:

iAkfi<CkiB,fi , fPD0 .

Proceeding as in the proof of Proposition 2.4 one proves that for thesek and,, D(B,)#D(Ak).
Analogously, condition~ii ! implies ~ii ! of Proposition 2.4.

h

Proposition 2.6: Let B be a KR-perturbation and assume B:D `(H0)→D `(H0). Then
D `(H0)#D `(H). Moreover, if the families of seminorms are directed,

;k,sPN',PN,Ck.0:iH0
sHkfi<CkiH0

,fi , ;fPD `~H0!.

Proof: In this case,D `(H0) is left invariant byH; but D `(H) is the largest domain with this
property. ThereforeD `(H0)#D `(H).

The given inequality follows easily from the continuity ofHk in D `(H0). h

Remark:The above inequality also says thattH0
is, in general, finer thantH .
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In order to get the equality of the two domains some stronger condition onB must be added.
We have, indeed:

Proposition 2.7: Let B be a perturbation of H0 such that HªH01B is self-adjoint on
D(H)5D(H0). In order that

D `~H !5D `~H0!

it is necessary and sufficient that the following conditions hold:

(i) B:D `(H0)→D `(H0),
(ii) H is essentially self-adjoint inD `(H0),
(iii) the topologies tH0

and tH are equivalent onD `(H0).

Proof: The necessity of~i! is obvious. As for~ii !, it is well-known thatD `(H) is a core forH
~and for all its powers!. The necessity of~iii ! follows from ~1! in Lemma 2.1.

We now prove the sufficiency.
First, by Proposition 2.6 and~i! it follows that D `(H0)#D `(H) and sinceH is essentially

self-adjoint inD `(H0),

D `~H�D `(H0)!5D `~H !.

But as is well known, the domain on the left-hand side is the completion ofD `(H0) in the
topologytH . The equivalence oftH andtH0

, in turn implies thatD `(H0) is complete undertH and
so the statement is proved. h

Remark:If B is bounded, thenH5H01B is automatically essentially self-adjoint inD `(H0).
Example:Let H05p21q2; thenD `(H0)5S(R). Let B5aq with aPR.

Then it is easily seen thatH5p21q21aq leavesS(R) invariant.
Since H5p21(q2b)21b2 with b5a/2, it is clear thatS(R) is a domain of essentia

self-adjointness forH.
The equivalence of the topologiestH0

and tH can be proven with easy estimates of the respec
seminorms. Thus Proposition 2.7 leads us to conclude thatD `(H0)5D `(H).

As a consequence of Proposition 2.7, we now consider the special case of a pertu
weaklycommuting withH0 .

Let L †(D,H) denote the space of all closable operatorsA in H such thatD(A)5D,
D(A* ),D. As for L †(D), we putA†5A�D* .

Now, if A is a †-invariant subset ofL †(D,H), the weak unbounded commutantAs8 of A is
defined as

As85$YPL †~D,H!:^X f ,Y†g&5^Y f,X†g&,; f ,gPD;;XPA%.

If T is a self-adjoint operator inH, we can consider theO* -algebraP(T) generated byT on
D `(T). It is well-known10 that P(T)s85$T%s8 . Furthermore, anyYP$T%s8 leavesD `(T) invari-
ant. We now apply these facts to our situation:

Corollary 2.8: Let B be a perturbation of H0 . Assume that B satisfies the conditions:
(i) ^H0f ,Bg&5^B f ,H0g&,; f ,gPD `(H0),
(ii) H is essentially self-adjoint inD `(H0),
(iii) iH0f i<iH f i ,; f PD `(H0),

thenD `(H0)5D `(H).
Proof: Condition ~i! implies thatB leavesD `(H0) invariant; thereforeH is tH0

-continuous
~together with all its powers!. So it remains to check thattH is finer thantH0

in order to apply
Proposition 2.7.

We will prove by induction that
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iH0
nf i<iHnf i , ; f PD `~H0!.

The casen51 is exactly condition~iii !. Now we assume the statement true forn21. Then we
get

iH0
nf i5iH0~H0

n21f !i<iH~H0
n21f !i5iH0

n21H f i<iHnf i , ; f PD `~H0!.

since, by~i!, H0 andH commute~algebraically! on D `(H0). h

III. DYNAMICAL ASPECTS

We now come back to the dynamical problem posed at beginning of the paper concerni
perturbative situation and again we will consider the case whereH exists. So far, we were able t
prove the convergence of the dynamics only at infinitesimal level~Corollary 2.3!. The problem of
the convergence ofaL

t (A) to a t(A) is not completely solved in the simple case we are dea
with. Of course, givenH and its spectral projectionsQL as seen in Sec. II, we can always prov

setting ĤL5QLHQL , that eiĤ LtAe2 iĤ Lt converges toeiHtAe2 iHt for any A in L†(D). What
makes the difference here~and this is the spirit of the whole paper! is that we are defining the cu
off Hamiltonian HL5QL

0HQL
0 via the spectral projections of the unperturbed HamiltonianH0 .

This is of practical interest since only in very few instances~finite discrete systems, harmon
oscillators, hydrogen atoms, etc.! the spectral projections ofH are known. On the other hand,H0

can be chosen with a sufficient freedom to guarantee the knowledge of theQL
0 .

With this in mind, we consider the problem of finding conditions under whicheiH Lt converges,
with respect to the topologyt

*
D , to eiHt .

To this aim, we define the operator function

gL~ t !5eiH Lt2eiHt5 i E
0

t

eiH L(t2t8)~HL2H !eiHt 8dt8,

the latter equality being obtained by solving

ġL~ t !5 iH LgL~ t !1 i ~HL2H !eiHt ,

which comes directly from the definition ofgL(t). Easy estimates allow one to state the followi
Lemma 3.1: For each kPN there exists sPN such that

lim
L→`

iH0
2s~HL2H !H0

ki50,

then we have
Proposition 3.2: If there exists T.0 such that, for each fPF, sPNø$0% there exists M

5M (T, f ,s) such that

E
0

t

i f ~H0!eiH L(t2t8)H0
sidt8,M , tP@0,T#

then

t
*
D2 lim

L→`

gL~ t !50.

Proof: We have indeed
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igL~ t !i f ,k<E
0

t

i f ~H !eiH L(t2t8)~HL2H !e2 iHt 8Hkidt8

5E
0

t

i f ~H !eiH L(t2t8)~HL2H !Hkidt8

<CE
0

t

i f 1~H0!eiH L(t2t8)~HL2H !H0
k1idt8

<CE
0

t

i f 1~H0!eiH L(t2t8)H0
sidt8•iH0

2s~HL2H !H0
k1i

for suitableC.0, f 1PF andk1PN and withs chosen, correspondingly tok1 so that Lemma 3.1
can be used. h

This proposition implies that the Schro¨dinger dynamics can be defined. The analysis of
Heisenberg dynamics is more complicated and will not be considered here.

The assumptions of Proposition 3.1 are indeed quite strong. They are, of course, verified
perturbationB commutes withH0 . But this is, clearly, a trivial situation. We will now discuss
nontrivial example where they are satisfied.

Example:Let H05a†a andB5an, n being an integer larger than 1. The conditions on
domains of the operators discussed in Sec. II are satisfied, as it is more easily seen workin
configuration space, so that our procedure can be applied. HereQL

05P0
01P1

01P2
01¯1PL

0 ,
whereP i

0 is the projection operator ofH0 , H05( l 50
` lP l

0 . Using the algebraic rules discussed
Ref. 12, and, in particular the commutation rulesQL

0a5aQL11
0 andP l

0a5aP l 11
0 , we find that

Hl5QL
0HQL

05HQL
0 .

It is a straightforward computation now to check that for anyf PF and for any naturals,
i f (H)eiH LtHsi5i f (H)(H1(eiH t21)anPL,n

0 )si , where we have defined the following orthog
nal projection operator

PL,n
0 5PL11

0 1PL12
0 1 ¯ 1PL1n

0 5QL1n
0 2QL

0 .

These seminorms can be estimated for each value ofs and it is not difficult to check that they ar
bounded by a constant which depends onf , s, andn ~obviously! but not onL andt. Therefore the
main hypothesis of Proposition 3.1 is verified and so the Schro¨dinger dynamics can be defined. W
give the estimate of the above seminorm here only in the easiest nontrivial case,s51. The
extension tos.1 only increases the length of the computation but does not affect the resu

i f ~H !~H1~eiH t21!anPL,n
0 !i<i f ~H !Hi1i f ~H !~eiH t21!aniiPL,n

0 i<i f ~H !Hi12i f ~H !ani ,

which is bounded and independent of bothL andt.
The same strategy can also be applied to the more general situation whenB is any given

polynomial ina anda†.
In order to find more cases in which Proposition 3.2 can be applied, we begin with

following
Lemma 3.3: For each fPF and for each k,,PN we have

lim
L→`

i f ~H !~HL
,2H,!Hki50.

Proof: We proceed by induction on,.
For ,51 the statement follows immediately by the equivalence of the topologies and

Lemma 2.2.
Now,
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i f ~H !~HL
,112H,11!Hki<i f ~H !HL~HL

,2H,!Hki1i f ~H !~HL2H !H,1ki

and the second term on the right-hand side goes to 0 because we have just proved the indu
,51.

The first term of the right-hand side can easily be estimated, once more making use
equivalence of the topologies, by a term of the kind

C8i f 1~H0!~HL
,2H,!Hk1i ,

which goes to zero again because of the induction. h

Proposition 3.4: If there exists mPN such that@HL ,H#m1150 then

E
0

t

i f ~H0!eiH L(t2t8)H0
sidt8,`, tPR1

for each fPF and for each sPNø$0%.
Proof: By the assumption, we have

eiH L(t2t8)He2 iH L(t2t8)5H1 i ~ t2t8!@HL ,H#1¯

i m

m!
@HL ,H#m . ~8!

Now, using the equivalence between the topologies produced byH0 andH, it is easy to see tha

i f ~H0!eiH L(t2t8)H0
si<Ci f 1~H !~eiH L(t2t8)He2 iH L(t2t8)!s1i .

Inserting~8! on the right-hand side and making use of Lemma 3.3, we finally get the estim

i f ~H0!eiH L(t2t8)H0
si<Ci f 1~H !Hs1i ,

and this easily implies the statement. h

Clearly, even if the conditions given previously for thet
*
D-convergence ofeiH Lt to eiHt occur,

the convergence ofaL
t (A) to a t(A) is not guaranteed. For this reason we conclude this sectio

outlining a different possible approach.
Assume that, for eachLPR there exists a one-parameter familybL

t (A) of linear maps of
L†(D) ~not necessarily an automorphisms group! such that, for eachf PF andkPN,

i f ~H !~bL
t ~A!2aL

t ~A!!Hki→0 as L→`. ~9!

Clearly the convergence ofbL
t (A) to a t(A) would directly lead to the solution of the dynamic

problem. We want to stress thatbL
t could be ratherunusualand, therefore, it should be onl

considered as a technical tool.
In general, however, the possibility of finding a good definition for thebL

t ’s that allows~9! to
hold is quite difficult and the lesson of the previous discussion on the convergence ofeiH Lt is that
strong assumptions must be imposed in order to get it.

A weaker condition on thebL
t ’s, whose content of information is, nevertheless, nonem

would consist in requiring, instead of~9!, that

~a! bL
t (A) converges toa t(A), for eachAPL†(D) together with all time derivatives. This

means that an Heisenberg dynamicseiHt(•)e2 iHt can be recovered.
~b! As for the Schro¨dinger dynamics, that is for the dynamics in the space of vectors, we asbL

t

of being in some way~to be specified further! generatedby a family of bounded operator
which, when applied to anyCPD, is tH-convergent together with all time derivatives.

This happens, for instance, in the case whereH exists, if we define
                                                                                                                



rated

rs
se

ect is

when a
e

nition

e in

It

h
e can

at

are

he

3291J. Math. Phys., Vol. 43, No. 6, June 2002 Algebraic dynamics in O* -algebras

                    
bL
t ~A!5VL

t AVL
2t ,

whereVL
t
ªQL

0eiHtQL
0 and theQL

0’s are the projection ofH0 . ~4!.
Under these assumptions,VL is a well-defined bounded operator ofL†(D), and the following

Proposition holds:
Proposition 3.5: In the above given conditions, the following statements hold:

(i) t H2 limL→` VL
t c5c(t)ªeiHtc, ;cPD,

(ii) t
*
D2 limL→` VL

t 5eiHt ,
(iii) t

*
D2 limL→` bL

t (A)5a t(A)ªeiHtAe2 iHt , ;APL†(D)

and, more generally:
( i 8) tH2 limL→` (dn/dtn) VL

t c5 (dn/dtn) c(t), ;cPD,nPNø$0%,
( iii 8) t

*
D2 limL→` (dn/dtn) bL

t (A)5 (dn/dtn) a t(A), ;APL†(D),nPNø$0%.
The proof of this Proposition follows from the equivalence between the topologies gene

by H andH0 , proved in Lemma 2.1.
This approach, which is only one of the possible strategies whenH exists, could be of a

certain interest for situations when the dynamics can only be obtained via a net of operatoHL

5H01BL , H0 being the free Hamiltonian andBL being a regularized perturbation. In this ca
the approach to the thermodynamical limit could involve the family of bounded operatorsVL,M

t

ªQL
0eiH MtQL

0 , and one can try to extend the above results. A further analysis on this subj
currentlywork in progress.

IV. OUTCOME AND POSSIBLE DEVELOPMENTS

In this paper we have analyzed a possible approach to define an algebraic dynamics
free HamiltonianH0 is perturbed by an operatorB which essentially leaves the domain of all th
powers ofH0 invariant.

What is still missing, as discussed in Sec. I, is the analysis of the situation where the defi
of the dynamics is not straightforward since it should follow from a net of operators$HL% whose
limit does not exist in any physical topology.2,3 In this case a possible approach can be mad
terms of derivations, for instance, in the way explained in the following.

Let us suppose that to a free spatial derivationd0(.)5 i @H0 ,.# a perturbation termdP is added,
so that

d~A!5d0~A!1dP~A!, APL†~D!.

In this case we definehL(A)5QL
0d(A)QL

0 , with APL†(D) andQL
0 as in the previous sections.

is easy to see thathL is not in general a derivation because the Leibniz rule may fail. LetDL be
a map onL†(D) which has the property thatdL5hL1DL satisfies the Leibniz rule together wit
the other properties of a derivation. Of course, this map is not unique since, for instance, w
always add a commutatori @H8,.# to DL , with any self-adjoint operatorH8, without affecting the
properties of a derivation~we should only care about domain problems in choosingH8! !. From a
physical point of view it is reasonable to expect thatDL can be chosen in such a way th
iDL(A)i f ,k→0 with L since we would like to recover the original derivationd after removing of
the cutoff and we know from Corollary 2.3 thati(hL(A)2d(A))i f ,k→0. If alsodP is spatial, then
it is not difficult to give an explicit expression forDL and to check that the requirements above
satisfied. In this case in fact

DL~A!5$QL
0H0 ,@QL

0 ,A#%1QL
0B@QL

0 ,A#1@QL
0 ,A#BQL

0 ,

where$X,Y%5XY1YX.
Once we have introduceddL the next step is to find conditions for this map to be spatial. T

related operatorHL , which we expect to be of the formQL
0(H01B)QL

0 for a suitable self-adjoint
operatorB, can be used to perform the same analysis as that discussed in Sec. III.
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Of course this is by no means the only possibility of approaching this problem, but is th
which is closer to our previous analysis, and in this perspective, is particularly relevant for u
hope to discuss this problem in full detail in a future paper.
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Stochastic heat and Burgers equations and their
singularities. I. Geometrical properties a…
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Arnol’d and Thom’s beautiful classification of caustics~shockwaves! for the Bur-
gers equation suggests a similar one for the wavefronts of the corresponding heat
equation. We give here a general theorem for Hamiltonian systems characterizing
how the level surfaces of Hamilton’s principal function~wavefronts! meet the caus-
tic surface in both the deterministic and stochastic cases. We further show how
these results can be applied to the stochastic Burgers equation by using earlier
results of Truman and Zhao. The generic example of a caustic, appearing in the
two-dimensional case, is the semicubical parabolic cusp with the corresponding
zero level surface being a combination of a generalized hypocycloid and a line pair.
We refer to these as the cusp and tricorn. The analogous butterfly caustic, in the
three-dimensional case, has a cusped zero level surface, the fish, which meets the
butterfly caustic in three cusped curves and touches it along a straight line. Our
results explain in terms of classical mechanics the properties of the caustic and
wavefront for these two archetypal examples and characterize the caustic-
wavefront intersection for the general stochastic case. We discuss the application of
these results to turbulence for the Burgers velocity field. ©2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1471925#

I. INTRODUCTION

Stochastic Burgers equations have attracted a considerable amount of attention in recen
e.g., Refs. 1–14. See also Refs. 15–20 for related works. They have been used to give mo
turbulence~see especially Ref. 4! and to model the large scale structure of the universe.21 Here we
shall be interested in what has come to be called Burgulence.

Consider the stochastic viscous Burgers equation for the velocity field

vm5vm~x,t !,xPRd,t.0,

]vm

]t
1~vm

•¹!vm5
m2

2
Dvm2¹c~x!2e¹k~x,t !Ẇt , ~1.1!

with initial velocity vm(x,0)5¹S0(x) wherem2 is the coefficient of viscosity. Herec andk areC2

functions andWt is a Wiener process on the probability space$V, F, P%. We shall be interested in
the ‘‘blow-up’’ of v0(x,t) where

a!Dedicated to V. I. Arnol’d.
b!Electronic mail: i.m.davies@swansea.ac.uk
c!Electronic mail: a.truman@swansea.ac.uk
d!Electronic mail: h.zhao@lboro.ac.uk
32930022-2488/2002/43(6)/3293/36/$19.00 © 2002 American Institute of Physics
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v0~x,t !5 lim
m→0

vm~x,t !,

i.e., the advent of discontinuities inv0.
The corresponding heat equation forum5um(x,t) is the Stratonovich equation

]um

]t
5

m2

2
Dum1

1

m2 c~x!um1
e

m2 k~x,t !um+Ẇt ,

~1.2!
um~x,0!5exp„2S0~x!/m2

…,

the connection betweenum and vm being the Hopf–Cole logarithmic transformationvm

52m2¹ ln um.
Following Donsker and Freidlinet al.22,23 we expect, asm→0,

2m2 ln um~x,t !→ inf
X~0!

@A„X~0!,x,t…1S0„X~0!…#5S~x,t !, ~1.3!

with

A~X~0!,x,t !5 inf
X~s!

X~ t !5x

A@X#, ~1.4!

whereA@X# is the stochastic action,

A~X~0!,x,t !5
1

2 E0

t

Ẋ2~s! ds2E
0

t

c„X~s!… ds2eE
0

t

k„X~s!,s… dWs . ~1.5!

S(x,t) is the solution of the stochastic Hamilton–Jacobi equation,

dSt1
u¹Su2

2
dt1c~x!dt1ek~x,t !dWt50, S~x,0!5S0~x!, ~1.6!

and soS(x,t) is Hamilton’s principal function for a stochastic mechanical path. To see
observe that ifẊ(s) is a continuous process with the integration by parts property (ibp2): for all
~deterministic! uPC1(0,t),

E
0

t

u̇~s!Ẋ~s! ds5u~ t !Ẋ~ t !2u~0!Ẋ~0!2E
0

t

u~s! dẊ~s!,

settingu(t)50, A@X#5A@X#1S0„X(0)…, we easily obtain forS0PC1, cPC1,kPC1,0

2
d

dhU
h50

A@X1hu#5E
0

t

u~s!@dẊ~s!1¹c„X~s!…ds1e¹k„X~s!,s…dWs#

1u~0!~Ẋ~0!2¹S0„X~0!…!.

Hence necessary conditions for the extremizer are, forsP@0,t#,

dẊ~s!1¹c„X~s!…ds1e¹k„X~s!,s…dWs50, Ẋ~0!5¹S0„X~0!…. ~1.7!

From Eq.~1.3!, asm→0, we expect thatum switches from being exponentially large to expone
tially small across the level surface

S~x,t !50 ~zero level surface!.
                                                                                                                



,

e

der

austic
,

ic

ime
the
ers

ui-

’s

es and
g

3295J. Math. Phys., Vol. 43, No. 6, June 2002 Stochastic heat and Burgers equations I

                    
If we demand thatX(t)5x, for fixed t andx, X(s) satisfying Eq.~1.7! may not be unique. Hence
we expect that shockwaves forv arise from precaustics@in (x0 ,t) variables# when infinitely many
of these classical mechanical paths fromx0 and a neighborhood focus in a set of zero volum
centered onX(t). The condition for paths starting fromx0 focusing at a pointX at time t is

DetS ]X~ t !

]x0
D50 ~precaustic!. ~1.8!

Define the random mapFs :Rd→Rd corresponding to the classical flow by the second-or
stochastic differential equation

dsḞs52¹c~Fs!ds2e¹k~Fs ,s!dWs , ~1.9!

with F05I and Ḟ05¹S0 so thatX(s)5FsF t
21x, where we accept thatx0(x,t)5F t

21x is not
necessarily unique. Given some regularity, the global inverse function theorem gives a c
time T(v) such that, fors,T(v), Fs is a random diffeomorphism.24 Therefore, as we shall see

v0~x,t !5ḞtF t
21x5¹S~x,t ! ~1.10!

is a formal solution of the Burgers equation withm50, which is well defined up to the caust
time becausex0(x,t) is unique.

After the caustic time, for polynomialS0 , x0(x,t) will usually have finite multiplicity. As long
as the minimizingx0(x,t) is unique, Eq.~1.10! can be assumed to be true beyond the caustic t
if we work with that part of the level surface of Hamilton’s principal function corresponding to
minimizing x0(x,t). This is equivalent to taking the minimum entropy solution of the Burg
equation.25 As expected, the main contribution to limm→0 vm will come from the minimizing
x0(x,t), which we shall assume is unique. When there are a finite number~.1! of minimizing x0’s
the limiting solution,v0, is more complicated,26 but can still be written down.

We expect the nonuniqueness ofx0(x,t) to be associated with the appearance of discontin
ties inv0(x,t) andu0(x,t). An obvious way for these to arise is if~as above! infinitely many paths
X(s) focus in zero volume centered atx. Eliminatingx0 by usingx5F t(x0) gives the equation of
the causticCt :

DetS ]X~ t !

]x0
D U

x05F
t
21x

50 ~caustic!. ~1.11!

The precausticF t
21Ct has defining equation~1.8!. Starting with the level surfaces of Hamilton

principal functionHt one can define the prelevel surfacesF t
21Ht in a similar way by settingx

5F t(x0). The prelevel surfaces and the precaustic are just the preimages of the level surfac
the caustic under the classical flow mapF t . The wavefront is the zero level set of the minimizin
Hamilton function which, as we shall see, is part ofHt .

For a nondegenerate critical point, when the multiplicity ofx0(x,t), n5n(x,t), is finite so
that F t

21$x%5$x0
1(x,t),x0

2(x,t),...,x0
n(x,t)%, from Refs. 26–30 we can deduce that

um~x,t !;(
i 51

n

u i exp $2S0
i ~x,t !/m2%, ~1.12!

where

S0
i ~x,t !5S0„x0

i ~x,t !…1A„x0
i ~x,t !,x,t…,
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for i 51,2,...,n, andu i is an asymptotic series inm2 whose detailed structure is discussed later
this work. HereHt5$x:S0

i (x,t)50, some i % so it includes the wavefront whereu0 switches
smoothly from being exponentially large to exponentially small. Needless to say, the dom
term in Eq.~1.12! comes from the minimizingx0(x,t) so that

S~x,t !5 min
i 51,2,...,n

S0
i ~x,t !

in line with the results of Freidlinet al. Of courseu0(x,t) can switch discontinuously from bein
exponentially large to exponentially small as we cross parts of the caustic since the minimizS0

i

can disappear.
Example 1.1: The paradigm for c5k[0 is when S0(x,y)5x2y/2 in the two-dimensional

case. This gives us the generic cusp catastrophe as shown in Fig. 1.
Thecaustic~shockwave!, Ct , with Eq. (4.2) is the classical semicubical parabola (cusp). T

gives the surface of discontinuity ofv0(x,t) with v0(x,0)5¹S05(xy,x2/2). The corresponding
zero level surface of Hamilton’s principal function, Ht , is a generalized hypocycloid (tricorn) with
Eq. (4.1) and line pair x250. Only the top part of this tricorn forms the wavefront. The other t
curves come from spurious zeros of S0

i where S0
i is not minimizing. This top part of the tricorn

defines the region where um switches from being exponentially large to exponentially small.
suppress the line pair in Fig. 1 to highlight how the caustic splitsR2. The important result here is
that u0 has a sharp discontinuity on the caustic itself. Note that within the cusp there are
preimages for each point, on the cusp there are two preimages for each point, and outwith th
there is only one preimage for each point.

If we fix the time t and let the point a be inside the semicubical parabolic cusp so tha
multiplicity of the x0’ s is three, there are three level surfaces S0

i (x,t)5c, one for each x0
i (a,t),

i 51,2,3,only one of which corresponds to the minimizer. The prelevel surfaces and their c
sponding x0’ s are shown in Figs. 2 and 3 with the cusp included for reference in the case o
2.

We now display all the level surfaces passing through the point a in relation to the cu
shown in Figs. 4 and 5.

In the case when the point a is on the cusp, Fig. 6, there are only two preimage point
correspondingly only two level surfaces passing through a, one of which has a cusp at a.

The final case, Fig. 7, is where the point a lies outwith the cusp and there is only one
surface.

In Figs. 8 and 9 we see how the cusped level surfaces coalesce as the point a approac
caustic.The first of these figures corresponds to the two cusped level surfaces having posi0

and the second corresponds to the two cusped level surfaces having negative S0 . In both cases the

FIG. 1. Cusp and tricorn.
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appearance of the cusp means that the corresponding S0
i cannot be continued across the caust

This is what makes u0 discontinuous across the cusp caustic, because the cusped part of the
surface corresponds to the minimizer x0(x,t).

In the above example we see that the multiplicity ofx0(x,t), n, changes by a multiple of 2 a
we cross the caustic surface. We shall see that this is associated with level surfaces of Ham
principal function having cusps on the caustic, caused by differentx0(x,t)’s coalescing. Moreover
the cusp on the level surface~if it corresponds to the minimizingx0! means that we have to tak
a different minimizerS0

i on different sides of the caustic. This makesu0 discontinuous. Thus, it is
important to know when the point of intersection of a level surface and caustic is a genuine
generalized cusp, or a crossover point.

In more than one dimension forS0PC2 there is a robust geometrical relationship betwe
level surfaces and caustics even in the presence of noise. This is because, as we shall pr

FIG. 2. Three prelevel surfaces—positive.

FIG. 3. Three prelevel surfaces—two negative and one positive.
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tangent plane to the level surfaceHt at a pointx on the causticCt is spanned by the image of th
tangent plane to the prelevel surface, where this prelevel surface tangent plane necessarily
the kernel of the derivative of theF t map if xPF t(F t

21CtùF t
21Ht). In understanding Burgers

turbulence this switches attention fromCt andHt to their unfoldingsF t
21Ct andF t

21Ht . In two
dimensions, at a point on the precaustic, it follows that this kernel spans the tangent plane
prelevel surface. In three dimensions the dimension of the tangent plane to the level surfac
from two to one as we approach points on the caustic inF t@F t

21HtùF t
21Ct#, which is essen-

tially the cusped part of the level surface, Cusp(Ht). This manifests itself in the tangent plane
the level surface on the caustic folding back on itself—the fold being the one-dimensional ta
plane at the point of intersection. In two dimensions this is quite elementary to prove, but in
dimensions it depends on a careful analysis of the geometry of the level surface and its pre

FIG. 4. Three level surfaces—positive.

FIG. 5. Three level surfaces—two negative and one positive.
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Our main theorem~in Sec. V! concerning this geometric relationship for the above stocha
Hamiltonian system, given some mild restrictions, is for fixedt:

Theorem: Any point x on the level surface Ht , x5F t(x0) with x05F t
21(x) on the prelevel

surface, can only be a generalized cusp of a curve on Ht if x0 is a generalized cusp of the precurv
on the prelevel surface or if x0PF t

21Ct the precaustic. In three dimensions the planar cro
section y5const~with normal ey! of the level surface Ht through a point x where it meets Ct , the
caustic surface, will have a genuine cusp at x if xPCusp(Ht) and there is a nonzero solutiondx
of Eqs. (C1), (C2), and (C3). The direction of the axis of the cusp will bed x̂.

This result explains the bizarre pictures of the fish and the butterfly~Figs. 19–22! in Sec. IV
and similar phenomena. In Sec. II we recapitulate our main results for the Burgers equation
can be skipped if the reader is primarily interested in the geometrical result. An outline pro
our main geometrical result is given in Sec. III where the free case is considered in deta
proved. Section IV contains simple archetypal examples in both two and three dimensions. S
V treats the general stochastic case. In Secs. III–V we give a brief discussion of the ramific

FIG. 6. Two level surfaces.

FIG. 7. One level surface.
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of our results for Burgers turbulence. In particular we explain how our results give a simple m
for the intermittence of turbulence for the stochastic Burgers equation at the end of Sec. V

II. SOLUTIONS OF INVISCID BURGERS AND HEAT EQUATIONS AND ASYMPTOTIC
SERIES u

Here letvm5vm(x,t) satisfy for t.0, xPRd,

dvm1~vm
•¹!vmdt1¹cdt1e¹kdWt5

m2

2
Dvmdt,

with vm(x,0)5¹S0(x), wherec5c(x), k5k(x,t).
Since the convected derivative

D

Dt
5

]

]t
1v•¹,

FIG. 8. Coalescing level surfaces—positiveS0 .

FIG. 9. Coalescing level surfaces—negativeS0 .
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the above Burgers equation describes a fluid where particles pass through each other
interaction, the particles being subject to a force„2¹c(x)2e¹k(x,t)Ẇt… with Ẇt being white
noise.~In fact, infinitely many pass through each other at points on the caustic and to this e
our continuation of the solution may be considered unphysical. Nevertheless, the Burgers eq
has been used successfully in modeling the large-scale structure of the universe21,31 and in study-
ing related equations.!

Let vm5¹Sm. ThenSm satisfies the stochastic Hamilton–Jacobi equation

dSm1 1
2u¹Smu2dt1cdt1ekdWt5

1
2m

2DSmdt.

Formally, if Sm; (
j 50

`

m2 jSj , we obtain from the last equation the stochastic Hamilton–Ja

continuity equations

]Sj

]t
1

1

2 (
i 1 ,i 2>0
i 11 i 25 j

¹Si 1
•¹Si 2

5
1

2
DSj 21 ,

for j 50,1,2,..., with the convention 1/2DS2152c2ekẆt , Ẇt being white noise.
The corresponding stochastic mechanical flowFs satisfies

dḞs52¹c~Fs!ds2e¹k~Fs ,s!dWs ,

with F0(x)5x, Ḟ0(x)5¹S(x,0)5¹S0(x). Now assumeFs(v):Rd→Rd is a diffeomorphism for
0<s,T(v). Define

S̃0~y,t !5
1

2 E0

t

uḞs~y!u2 ds1S~y,0!2E
0

t

c~Fsy! ds2eE
0

t

k~Fsy,s! dWs

and

S0~x,t !5S̃0~F t
21x,t !.

The main result of stochastic Hamilton–Jacobi theory13,32 is the following.
Proposition 2.1: Assume cPC2(Rd), kPC2(Rd3R) and S0(•,0)PC2(Rd). Then

(i) for a.e. vPV, 0<t,T(v),

Ḟt5¹S0~F t ,t !,

and S0 satisfies the stochastic Hamilton–Jacobi equation

dS0~x,t !1 1
2u¹S0~x,t !u2dt1c~x!dt1ek~x,t !dWt50.

(ii) Define r(x,t)5uDet„(]/]x)F t
21(x)…u. Then for a.e.vPV, any xPRd, 0<t,T(v), r

satisfies the continuity equation

]r

]t
1¹•~r¹S0!50.

Suppose now thatT0 :Rd→R is a smooth positive function whose physical role is explained la
~Eventually we will setT0[1 for the applications discussed here.! Define

T0~y,t !5T0~y!
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and, for j 51,2,...,

Tj~y,t !5E
0

t

r21/2~•,s!D.„r1/2~•,s!Tj 21~Fs
21

•,s!…uFsy ds.

Then for j 50,1,2,..., define

c j~x,t !5Tj~F t
21x,t !r1/2~x,t !.

Then we have the following lemma.
Lemma 2.1:

]c j

]t
1¹c j•¹S052

1

2
c jDS01Dc j 21

for j 50,1,2,...,with the conventionc21[0.
We have now assembled the main tools we need. We now explain how to solve the sto

Hamilton–Jacobi continuity equations.
Proposition 2.2: Assume that cPC2(Rd), kPC2(Rd3R), S0PC2(Rd) and F t satisfies a

no-caustic condition. Then for a.e.vPV solutions of the Hamilton–Jacobi continuity equations

]Sj

]t
1

1

2 (
i 1 ,i 2>0
i 11 i 25 j

¹Si 1
•¹Si 2

5
1

2
DSj 21 , j >0,

(with the convention1/2DS2152c2ekẆt) are given by

S1~x,t !52 ln c0~x,t !

and for j>2

Sj~x,t !5212 jS2
c j 21

c0
1 (

i 1 ,i 2>1
i 11 i 25 j 21

c i 1
c i 2

2c0
2 2 (

i 1 ,i 2 ,i 3>1
i 11 i 21 i 35 j 21

c i 1
c i 2

c i 3

3c0
3 1¯1

~21! j 21c1
j 21

~ j 21!c0
j 21 D (x,t).

There is an important Corollary:
Corollary 2.1:

]

]t S (j 50

m

m2 jSj D 1
1

2 (
j 50

m

m2 jS (
i 1 ,i 2>0
i 11 i 25 j

¹Si 1
•¹Si 2D 1c1ekẆt5

m2

2
D (

j 50

m21

m2 jSj .

An all important role is played by the Nelson diffusion processys
m with drift given by

2¹„( j 50
m m2 jSj (ys

m ,t2s)…:

dys
m5mdB~s!2¹(

j 50

m

m2 jSj~ys
m ,t2s!ds,

y0
m5~x!.

Consider the stochastic heat equation of Stratonovich type:
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dut
m~x!5Fm2

2
Dut

m~x!1m22c~x!ut
m~x!Gdt1em22k~x,t !ut

m~x!+dWt ,

u0
m~x!5T0~x! exp„2S0~x!/m2

….

Proposition 2.3: For each m>0,

ut
m~x!5expH 2m22(

j 50

m

m2 jSj~x,t !J E exp H 2
m2m

2 E
0

t

DSm~ys
m ,t2s! ds

1
1

2 (
j 5m11

2m

m2~ j 21! (
0< i 1 ,i 2<m

i 11 i 25 j

E
0

t

¹Si 1
•¹Si 2

~ys
m ,t2s! dsJ .

Note that the second factor is of the form„11O(m2m)… and the first factor gives the expansion u
to m2m22 for each m.

Our main result is the following.
Proposition 2.4: The solution of the viscous stochastic Burgers equation is for each m>0

vm~x,t !5(
j 50

m

1m2 jv j~x,t !2m2 ¹ ln EH expH 2
m2m

2 E
0

t

¹•vm~ys
m ,t2s! ds

1
1

2 (
j 5m11

2m

m2~ j 21! (
0< i 1 ,i 2<m

i 11 i 25 j

E
0

t

v i 1
•v i 2

~ys
m ,t2s! dsJ J ,

wherev j (x,t)5¹Sj (x,t).
Remark 2.1: When T051, the fluid densityr is simply given by

r1/2~x,t !5e2S1~x,t !. ~2.1!

In the case T0Þ1, we note that initiallyr is T0
2 explaining its physical significance. Also, obser

that up to the caustic time

E
Rd

r~x,t ! dx5E
Rd

T0
2
„F t

21~x!…uDet„¹xF t
21~x!…u dx5E

Rd
T0

2~y! dy5E
Rd

r~y,0! dy.

So, mass is conserved.
In this section we have recapitulated some of the key results of Refs. 12 and 14 on sto

Burgers equations. We have elucidated the detailed structure of the asymptotic seriesu in Eq.
~1.12! whenFs is a diffeomorphism, 0<s<t, so thatx0(x,t) is unique. If we now combine the
above results with those of Davies and Truman26,27and Ellis and Rosen,28–30we can see that eve
whenx0(x,t) is not unique, for nondegenerate critical points,u i has exactly the same structure
above save that we work with thei th branch ofF t

21 defined byx0
i (x,t). What breaks down here

is the closed form expansion for the remainder term as a functional integral. We hope to a
this in a future paper,33 but we will not need those results here.

III. SINGULARITIES OF THE FREE BURGERS EQUATION AND HEAT EQUATION

We investigate the geometrical relationship between the level surfaces of the heat eq
and the shock waves~caustics! of the Burgers equation. We find a robust geometrical relations
between curves on level surfaces and the caustics which~when suitably modified! carries over to
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the general stochastic setup. In two dimensions the curves on the level surfaces are th
surfaces themselves. In three dimensions we think of these curves as arising from plana
sections.

Definition 3.1: A curve x5x(g), gPN(g0 ,d), is said to have a generalized cusp atg
5g0 , g being arc length if

dx~g!

dg U
g5g0

50.

A. A simple geometrical relationship

In this section and Sec. V we were inspired by V. I. Arnol’d’s beautiful treatment of clas
mechanics in Ref. 34.

Let A5A(x0 ,x,t) be the classical action for the initial momentum¹S0 ,

A~x0 ,x,t !5A~x0 ,x,t !1S0~x0!, ~3.1!

where in the deterministic case

A~x0 ,x,t !5 inf
X~s!

X~ t !5x
X~0!5x0

H 1

2 E0

t

Ẋ2~s! ds2E
0

t

c„X~s!…dsJ ,

c being the deterministic potential energy. The Euler–Lagrange equation for the above
reduces to

Ẍ~s!52¹c~X~s!!, sP@0,t#,

andX(t)5x, X(0)5x0 . The free case corresponds to settingc[0 and

A~x0 ,x,t !5
~x2x0!2

2t
,

A~x0 ,x,t !5
~x2x0!2

2t
1S0~x0!.

We assume thatA(x0 ,x,t) is at leastC4 in space variables fort.0. Defining the corresponding
classical flow now reduces to

¹x0
A~x0 ,x,t !50,

i.e.,

~x02x!/t1¹S0~x0!50 or x5F t~x0!5x01t¹S0~x0!.

We sometimes writex05F t
21x5x0(x,t) as the~possibly nonunique! solution of

x01t¹S0~x0!5x.

Consider the level surface equations obtained by eliminatingx0 between

A~x0 ,x,t !50 and
]A
]x0

a ~x0 ,x,t !50, a51,2,...,d. ~3.2!
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We obtain the prelevel surface by eliminatingx in the above equations. Considering for any re
constantc, the equation obtained by eliminatingx0 between

A~x0 ,x,t !5c and
]A
]x0

a ~x0 ,x,t !50, a51,2,...,d, ~3.3!

gives the level surface of Hamilton’s principal functionS(x,t)5c with S(x,0)5S0(x). We denote
this level surface byHt and the prelevel surface byF t

21Ht .
Imitating the above, the precaustic equation and caustic equation can be obtained in a

way by considering

DetS ]2A
]x0

2 ~x0 ,x,t ! D50,
]A
]x0

a ~x0 ,x,t !50, a51,2,...,d. ~3.4!

We denote these surfaces byF t
21Ct andCt , respectively.

Let x→a, a point on the caustic. Then, since we expect the multiplicity of thex0
i PF t

21$x% to
change as we cross the caustic, we anticipate thatx0

j (x,t)→x0
k(x,t) asx→a. Since different parts

of the level surface correspond to differentx0
i , if Sj (a,t)5Sk(a,t)5c, then the partsSj (x,t)

5c and Sk(x,t)5c meeting ata could have a cusp. It is cusps like this which give rise
turbulent behavior of the Burgers velocity field. We therefore investigate in the free cas
conditions under which we get cusps.

In the free case the equation of the zero prelevel surface is the eikonal equation

t

2
u¹S0~x0!u21S0~x0!50,

and the derivative mapDF t(x0):Tx0
→Tx , mapping tangent spaces, is the linear map

DF t~x0!5„I 1t¹2S0~x0!…,

where¹2S0 is the Hessian ofS0 . The following elementary identity is crucial in what follows

¹x0H t

2
u¹S0~x0!u21S0~x0!J 5„I 1t¹2S0~x0!…¹S0~x0!. ~3.5!

SinceDF t(x0) is in this case a real symmetric matrix, we can analyse what happens very e
especially for two dimensions.

B. Results in two dimensions

Lemma 3.1: Assume that the prelevel surface meets the precaustic at the point x0 , where
u„I 1t¹2S0(x0)…¹S0(x0)uÞ0 and dim(Ker„I 1t¹2S0(x0)…)51. Then the tangent plane to th
prelevel surface Tx0

is spanned byKer„I 1t¹2S0(x0)….
Proof: The last displayed formula shows that where the prelevel surface meets the prec

the nonzero normal to the prelevel surface is a linear combination of eigenvectors corresp
to the nonzero eigenvalues of„I 1t¹2S0(x0)…. The eigenvector of„I 1t¹2S0(x0)… corresponding
to eigenvalue zero,e0 , is orthogonal to these eigenvectors, so becauseTx0

is only one dimen-
sional, we haveTx0

5^e0&. h

When¹S0(x0)50 at x0 a point of the prelevel surface, the above argument shows thatx0 is
a singular point of the prelevel surface, typically a node with two different directions of
tangent plane. Because the partial derivatives

]A
]x0

a ~x0 ,x,t !50, a51,2,
                                                                                                                



ase
s

easy

at
urface
e pair
the

austic

n be a
l

n
ase

ndition

ance

We

3306 J. Math. Phys., Vol. 43, No. 6, June 2002 Davies, Truman, and Zhao

                    
we have forx05F t
21x

¹xA~x0 ,x,t !5
~x2x0!

t
5¹S0~x0!,

independent of dimension.~In point of fact the last result is true merely because in the free c
the momentum is constant.! Hence, at the image pointx5F t(x0) ~independent of the dimension
of the space and independent of whether or notx0PF t

21Ct! u¹xAu50 sox is also a singular point.
Typically then, even if we are not on the precaustic, we expect that in the free casex0 andF t(x0)
are both nodes with two or more different directions of the tangent plane. This eventuality is
to investigate with the derivative mapDF t(x0). Whenx0PF t

21Ct @becauseDF t(x0) annihilates
the zero eigenvectore0 on the precaustic# we have only one direction for the tangent plane
F t(x0) even though there were two distinct directions for the tangent plane to the prelevel s
at x0 . This happens, for example, where the prelevel surface consists of an ellipse and a lin
crossing atx0 where the ellipse is tangential to the parabolic precaustic. It also occurs in
three-dimensional fish and butterfly example along the straight line of intersection of the c
and zero level surface. Both of these examples are elucidated in Sec. IV.

Lemma 3.2: Assume that the prelevel surface meets the precaustic at the point x0 where
u¹S0(x0)u50, x0 being a node, anddim (Ker„I 1t¹2S0(x0)…)51. Then the image pointF t(x0)
where the level surface meets the caustic is a singular point which cannot be a node but ca
cusp. If x0 is a node of the prelevel surface, x0¹F t

21Ct , then x5F t(x0) is a node of the leve
surface.

Proof: In the first case, the two different directionst1 and t2 at x0 of the tangent plane to the
prelevel surface where it meets the precaustic are both mapped into„I 1t¹2S0(x0)…e0

' , e0
' being

the nonzero eigenvector of„I 1t¹2S0(x0)…. So botht1 andt2 get mapped into the same directio
ase0

' . Moreover,u¹Au50, soF t(x0) is a singular point so it has to be a cusp. The second c
follows because the two different directionst i get mapped into the two different directions„I
1t¹2S0(x0)…t i for i 51,2. h

Remark 3.1: Needless to say there is an analog of this lemma in d dimensions. The co
u¹S0(x0)u50 should be seen as a zero speed condition.

When„I 1t¹2S0(x0)…¹S0(x0) is nonzero, there is a simple result concerning the appear
of cusps on the level surface. We use the intrinsic equation of the prelevel surfacex05x0(g),
gPN(g0 ,d), wherex0(g0) is the point of intersection of the prelevel surface and precaustic.
write x(g)5F t„x0(g)… and assume thatx0 andx are differentiable ing.

Proposition 3.1: Assume thatu„I 1t¹2S0(x0)…¹S0(x0)uÞ0, so x0 is not a singular point of the
prelevel surface. ThenF t(x0) can only be a generalized cusp of the level surface ifF t(x0)
PCt , the caustic. Moreover, if x5F t(x0)PF t(F t

21CtùF t
21Ht), x will indeed be a generalized

cusp of the level surface.
Proof: We have the normaln(x0)5„I 1t¹2S0(x0)…¹S0(x0)Þ0, dx0(g)/dgug5g0

Þ0 and
from above

dx~g!

dg U
g5g0

5„DF t~x0!…
dx0~g!

dg U
g5g0

5„I 1t¹2S0~x0!…
dx0~g!

dg U
g5g0

.

For this to be zero it is necessary that Det„I 1t¹2S0(x0)…50, sox0PF t
21Ct i.e., it is necessary

that F t(x0)PCt . Trivially from Lemma 3.1 it follows that ifx0PF t
21Ct , thendx(g)/dgug5g0

50. h

C. Results in three dimensions

Consider the above setup in three dimensions so that the wavefrontHt has the equation inx
obtained by eliminatingx0 between
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A~x0 ,x,t !5c and
]A
]x0

a ~x0 ,x,t !50, a51,2,3,

and the causticCt by eliminatingx0 between

DetS ]2A
]x0

2 ~x0 ,x,t ! D50 and
]A
]x0

a ~x0 ,x,t !50, a51,2,3.

We define the cusped part ofHt by

Cusp~Ht!5$xPHt :xPF t~F t
21CtùF t

21Ht!,x5F t~x0!,

x0PF t
21CtùF t

21Ht ,n~x0!5„I 1t¹2S0~x0!…¹S0~x0!Þ0%.

Typical of what happens in three dimensions for whichd53 is the following:
Theorem 3.1:Let xPCusp(Ht). Then Tx , the tangent plane to the level surface Ht at x, is at

most one dimensional.
Remark 3.2: The tangent plane Tx folds over onto itself at points xPCusp(Ht), the direction

of the fold being the direction of the one-dimensional tangent space at x.
Proof: Let n be the unit normal to the tangent planeTx0

, x0PF t
21CtùF t

21Ht . This is the
well-defined vector

n5u„I 1t¹2S0~x0!…¹S0~x0!u21
„I 1t¹2S0~x0!…¹S0~x0!,

which is clearly a linear combination of the nonzero eigenvectors of„I 1t¹2S0(x0)…. Let e0 be an
eigenvector corresponding to eigenvector zero which is orthogonal ton. SincenÞ0, Tx0

is a

well-defined two-dimensional space spanned bye0 and n∧e05e0
' . BecauseDF t(x0)5„I

1t¹2S0(x0)…, Tx is spanned by (I 1t¹2S0(x0))e0
' . h

We now see what it takes for us to observe cusps on planar cross sections of the level
where it meets the caustic. We shall assume, without loss of generality, that the planar
sections are on a planey5const with normaley . We writex5F t(x0) and

¹S0~x0!5a0e01a1e11a2e25¹xA,

where

~ I 1t¹2S0~x0!!e050,

~ I 1t¹2S0~x0!!ei5l iei , i 51,2,

x0PF t
21CtùF t

21Ht .
Then, from above, the unit normal

n5~a1l1e11a2l2e2!u

and

e0
'5~a2l2e12a1l1e2!u,

whereu5(a1
2l1

21a2
2l2

2)21/2. At a pointxPCusp(Ht), the axis system$e0 ,e0
' ,n% is well defined

and intrinsically related to the geometry of the prelevel surface atx0PF t
21CtùF t

21Ht . This is
our preferred axis system for discussing cusps.

We assume thatS0 is at leastC4 and write

x5x01t¹S0~x0!.
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We work to second order

x1dx5x01dx01t¹S0~x01dx0!

5x01dx01t¹S0~x0!1t~dx0•¹!¹S0~x0!1
t

2
~dx0•¹!2¹S0~x0!1O„~dx0!3

….

Hence, correct to second order,

dx5„I 1t¹2S0~x0!…dx01
t

2
~dx0•¹!2¹S0~x0!.

We now set

dx05«~le01me0
'!1«2~je01he0

'1zn!.

The first term gives the direction ofdx0 /dg and the secondd2x0 /dg2 evaluated atg5g0 , where
x0(g0) is the point of intersection. Then we obtain

dx5«ml1l2~a2e12a1e2!u

1«2S hl1l2~a2e12a1e2!u1z~a1l1
2e11a2l2

2e2!u1
t

2
~l]01m]0

'!2¹S0~x0! D ,

]0 and]0
' being directional derivatives parallel toe0 ande0

' .
For a genuine cusp we clearly have to setm50, for which

dx05«le01«2~je01he0
'1zn!, (C0)

dx5«2S hl1l2~a2e12a1e2!u1z~a1l1
2e11a2l2

2e2!u1
t

2
l2]0

2¹S0~x0! D .

(C1)

We now have to satisfy two further conditions:

dx•ey50, (C2)

dx•
]A
]x

5dx•¹S0~x0!5dx•~a0e01a1e11a2e2!50. (C3)

If we can choosel, h, andz to satisfy the above two equations for nonzerodx, the planar cross
section of the level surfaceHt , y5const, will have a genuine cusp atxPCusp(Ht). The axis of
the cusp will bed x̂. This explains why genuine cusps are so numerous on planar cross sec

Theorem 3.2: Any point x on the level surface Ht , x5F t(x0) with x05F t
21(x) on the

prelevel surface, can only be a generalized cusp of a curve on Ht if x0 is a generalized cusp of th
precurve on the prelevel surface or if x0PF t

21Ct the precaustic. In three dimensions, the plan
cross section y5const~with normal ey! of the level surface Ht through a point x where it meets Ct

will have a genuine cusp at x if xPCusp(Ht) and there is a nonzero solutiondx of Eqs. (C0), (C1),
(C2) and (C3). The direction of the axis of the cusp isd x̂.

Proof: The first part of the theorem is obvious.
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Equations (C1), (C2) and (C3) uniquely fix the direction ofd x̂, if nonzerol, h andz exist
satisfying these equations. It is easy to see that Eqs. (C0), (C1), (C2), and (C3) are sufficient to
solve

A~x0 ,x,t !5c,

A~x01dx0 ,x1dx,t !5c,

]A
]x0

a ~x0 ,x,t !50, a51,2,3,

]A
]x0

a ~~x01dx0 ,x1dx,t !50, a51,2,3,

correct to second order, if

DetS ]2A
]x0

2 ~x0 ,x,t !U
x5F t~x0!

D 50,

x0PF t
21CtùF t

21Ht , x5F t(x0), andn(x0) nonzero. h

This analysis explains the plethora of cusps which we observe in the free case. Moreo
we shall see, the argument above can be generalized to include random and deterministic
forces i.e., nonzeroc andk terms in the Burgers equation.

Remark 3.3: We make the point that

F t
21CtùF t

21Ht,F t
21~CtùHt!, ~3.6!

but the opposite inclusion does not hold and so images of points inF t
21(CtùHt)\

(F t
21CtùF t

21Ht) give rise to cross-over points.

D. Consequences for the Burgers fluid

Here we recapitulate a result of Truman and Zhao.12 See Ref. 31 for more recent relate
results.

Theorem 3.3: Let t(a) be the first time such that there exist minimizers y1Þy2 , y1 , y2

PRd, such thatFt(y1)5Ft(y2)5a and Ḟt(y1)ÞḞt(y2), i.e., t is a caustic time at point a.
Thenv0(x,t) is discontinuous at(t,a).

We now give a simple application of the above results to the Burgers fluid in two dimens
For smoothS0 , in two dimensions, we can divide one side of the caustic intohot andcool parts.
We consider points of intersectiona with the level surfaceS(x,t)5S(a,t) cusped ata: if the part
of the level surface cusped ata corresponds to the minimizingx0(a,t), then the Burgers velocity
field v0(x,t)5¹S(x,t)→¹S(a,t)50 asx→a from the cusped side of the caustic. This is mere
because the condition forS(x,t)5S(a,t) to have a cusp atx5a is ¹S(a,t)50. Moreover, this
entails the minimizing surface changing as we cross the caustic. Indeed the cusp occurs b
the minimizing surface on the cusped side of the caustic cannot be continued across the cau
u0(x,t) is necessarily exponentially discontinuous as we cross such parts of the caustic. T
because here twox0(x,t)’s coalesce as the minimizer at the cusp and then disappear. We cal
points a cool because the Burgers fluid has zero velocity on one side of the caustic ata. The
whole of one side of the generic semi-cubical parabolic cusp is cool. Not all of one side o
two-dimensional swallowtail is cool. This is discussed in the next section, where we give nu
cal confirmation of this result. The exponential discontinuity inu0 can be seen by inspecting Fig
10 which shows the number of negativeS0

i ’s in the different regions. Similar results apply in thre
dimensions.
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IV. DETERMINISTIC AND ARCHETYPAL EXAMPLES

ConsiderS0 given in the following table for two and three dimensions, respectively,

Shockwave Zero Level Surface S0

Cusp Tricorn x0
2y0/2

Swallowtail Plough x0
51ux0u3/2y0

Butterfly Fish x0
3y0/31x0

2z0/2
Swallowtail Seagull ux0u51ux0u11cy01ux0ucz0

where 1/2,c,1. The nature of the caustic~shockwave! is given in the first column and the
corresponding zero level surfaces in the second. The zero level surface corresponding
semicubical parabolic cusp is the tricorn, which has three cusps on the semi-cubical parabo
of which coincides with the original cusp of the shockwave, and a line-pair. The zero level su
corresponding to the butterfly is the fish, which meets the butterfly in four curves~three of which
are cusped and one of which is a straight line on which they touch!. See Refs. 35 and 36 for furthe
and more surprising examples.

A. A two-dimensional example

For S0(x0 ,y0)5x0
2y0/2 the zero prelevel surface has equation

x0
2S ~y011/2t !2

~1/2t !2 1
x0

2

~1/t !221D 50,

and the precaustic has equation

11ty05t2x0
2.

Note also that¹S0(x0 ,y0)50 at the point (0,21/t), so the zero speed condition is satisfied he
and this point is a node of the zero prelevel surface. We now map (x,y)5F t(x0 ,y0) to obtain the
hypocycloid tricorn

x5
cosu~11sinu!

2t
, y5

sinu~12sinu!

2t
, ~4.1!

FIG. 10. Number of negativeS0 .
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for 0<u,2p, as the zero level surface at timet for the heat equation and semi-cubical parabo
cusp

8~yt11!3527t2x2, ~4.2!

as shockwave at timet for the corresponding Burgers velocity field.
Figures 11 and 12 illustrate the level surfaceSt(x,y)50. Figures 13 and 14 illustrate the lev

surfaceSt(x,y)52. Figures 15 and 16 illustrate the level surfaceSt(x,y)52227.
We have verified numerically that the caustic surfaces are indeed discontinuities fo

Burgers velocity field as shown in Fig. 17. Further, it is not difficult to see that the whole of
side of this cusp surface is cool. One has to note, and it is not too onerous to check, that fo
point of the cusp the minimizingS0

i corresponds to a cusp and not a crossover. The agreemen
the cusp catastrophe is shown in Fig. 18.

Finally we add that in two dimensions the tricorn will be a common feature of the l
surfaces of Hamilton’s principal function when the corresponding prelevel surface touche
precaustic. Here the point is that the unfolding of the tricorn under the inverse classical flow

FIG. 11. Precaustic and prelevel surface.

FIG. 12. Cusp and tricorn.
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F t is the ‘‘halo’’ shown in Fig. 11. The point of contact is denoted byx0
0 and the direction of the

unit tangent vector bye0 . To see this from above we know thatF t(x0
06«e0)5F t(x0

0)1o(«). If
the slightly stronger result holds, namely,F t(x0

06«e0)5F t(x0
0)1«2w01o(«2), then necessarily

we have a tricorn with axisw0 since both halves of the common tangent get mapped onto the
axis parallel tow0 , the other two points of intersection being mapped onto cusps.

B. A three-dimensional example

For S0(x0 ,y0 ,z0)5x0
3y0/31x0

2z0/2 we can quickly see the close relationship with the pre
ous example by means of the cross sectionsy5const shown in Figs. 19 and 20.

To see where the butterfly~Fig. 21! and fish~Fig. 22! meet, consider the classical mechani

x5x01t~x0
2y01x0z0!,

y5y01
t

3
x0

3,

z5z01
t

2
x0

2.

FIG. 13. Precaustic~parabola! and prelevel surface~kneecap!.

FIG. 14. Caustic~cusp! and level surface~neckline!.
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FIG. 15. Precaustic~parabola! and prelevel surface~pebble pair!.

FIG. 16. Caustic~cusp! and level surface~lapel pair!.

FIG. 17. uvmu2 for small m.
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Solving the precaustic equation leads to

z052
12t2x0

22t2x0
412tx0y0

t
,

and with this we simplify the zero prelevel surface equation, one solution of which isx050
leaving a quadratic equation fory0 with roots,

y05
2216t2x0

226t2x0
41A413t2x0

218t2x0
4

6tx0
,

and

FIG. 18. Contour plot ofuvmu2 with cusp and tricorn.

FIG. 19. Prebutterfly and fish.
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y05
2216t2x0

216t2x0
41A413t2x0

218t2x0
4

6tx0
.

Whenx050, we havez0521/t and¹S0(x0 ,y0 ,z0)50 on this line. Hence on this line the zer
speed condition is satisfied and the tangent plane to the zero prelevel surface here has two
directions. Therefore the zero level surface and caustic meet on a straight line at

x50, z521/t, yPR.

FIG. 20. Butterfly and fish.

FIG. 21. The butterfly singularity for Burgers equation.
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It is easy to see that the two surfaces actually touch on this line because this line is o
precaustic. For one value ofy0 , we obtain the parametric equations of the two curves of in
section~x0.0 andx0,0!

x5 1
6x0~21A41t2x0

2~318x0
2!!,

y52
222t2x0

2~314x0
2!1A41t2x0

2~318t2!

6tx0
,

z5
23t2x0

2~112x0
2!12~211A41t2x0

2~318t2!!

6t
.

For the other value ofy0 we obtain the parametric equation of one additional curve:

x52 1
6x0~221A41t2x0

2~318x0
2!!,

FIG. 22. The fish level surface for heat equation~a section!.

FIG. 23. Precaustic.
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y5
2212t2x0

2~314x0
2!1A41t2x0

2~318t2!

6tx0
,

z52
3t2x0

2~112x0
2!12~11A41t2x0

2~318t2!!

6t
.

C. A cautionary two-dimensional example

We briefly consider the nongeneric two-dimensional swallowtail, whereS0(x0 ,y0)5x0
5

1ux0u3/2y0 . Here the zero level surface crosses the caustic bec
F t

21(CtùHt)úF t
21CtùF t

21Ht . This example also shows~Fig. 24! that we can have
dx0(g0)/dg50 occurring on the zero prelevel surface, although we should point out thatS0 is
nonpolynomial in this case. We have many other cases of polynomialS0 giving rise to two-
dimensional swallowtail singularities.

Note the alignment of the generalized cusps on the zero prelevel surface and precausti
23 and 24, respectively. Figures 25 and 26 are the corresponding caustic and zero level s

We also illustrate in Fig. 27 the case where the zero level surface crosses the caustic
pointsP andQ, whenF t

21 gives distinct points on the zero prelevel surface and precaustic.

FIG. 24. Prelevel surface.

FIG. 25. Swallowtail caustic.
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D. Swallowtail

We briefly illustrate ~Figs. 28 and 29!, the caustic forS0(x0 ,y0 ,z0)5ux0u51ux0u5/3y0

1ux0u2/3z0 . This was the first suchS0 found to generate the swallowtail, but we also have
amples of strictly polynomialS0 which generate the same archetypal caustic in three dimens
in analogy to the examples of the previous section.

V. THE STOCHASTIC AND GENERAL CASES

A. The stochastic action

Let A(x0 ,p0 ,t) be defined by

A~x0 ,p0 ,t !5
1

2 E0

t

Ẋ2~s! ds2E
0

t

@c„X~s!… ds1ek„X~s!,s… dWs#,

almost surely, whereX(s)5Xs5X(s,x0 ,p0) satisfies

dẊ~s!52¹c„X~s!…ds2e¹k„X~s!,s…dWs , sP@0,t#,

with X(0)5x0 and Ẋ(0)5p0 ,x0 ,p0PRd. We shall assume thatXs is unique and as usual isFs

measurable. We also allow forp0 to be an as yet unspecified function ofx0 .
Recall the integration by parts property (ibp2) for the continuous processẊ(s)

5Ẋ(s,x0 ,p0),

E
0

t

u~s! dẊ~s!5u~ t !Ẋ~ t !2u~0!Ẋ~0!2E
0

t

u̇~s!Ẋ~s! ds,

for deterministicuPC1(0,t). This integration by parts property is also valid for randomu, if the
stochastic integral is of Itoˆ’s form and,dusdẊs , the corresponding Itoˆ correction, is zero. An
important case in point is when

FIG. 26. Plough level surface.

FIG. 27. Swallowtail and plough.
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us5
]Xs

]x0
a ,

for sP@0,t# anda51,2,...,d. Then, if we assume¹c, ¹k are Lipschitz, with Hessians¹2c, ¹2k
and all second derivatives with respect to space variables ofc and k bounded, according to
Kunita,37 ]Xs /]x0

a satisfies

d

ds S ]Xs

]x0
a D 5

]Ẋ0

]x0
a2E

0

sF¹2c„X~r !…
]X~r !

]x0
a dr1e¹2k„X~r !,r …

]X~r !

]x0
a dWr G .

So the Itôcorrection is zero. Hence forus5]Xs /]x0
a we can use the ibp2. Moreover,

Ẋs5Ẋ02E
0

s

@¹c„X~r !… dr1e¹k„X~r !,r … dWr #. ~5.1!

Therefore, using Kunita37 again, we obtain

FIG. 28. The swallowtail singularity for Burgers equation.

FIG. 29. The seagull level surface for heat equation.
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d

ds S ]Xs

]x0
a D 5

]Ẋs

]x0
a, a51,2,...,d.

This gives the following lemma.
Lemma 5.1: Assume S0 , cPC2 and kPC2,0, ¹c, ¹k are Lipschitz, with Hessians¹2c, ¹2k

and all second derivatives with respect to space variables of c and k bounded. If X˙
s satisfies Eq.

(5.1) and p0 , possibly x0 dependent, then almost surely

]A

]x0
a ~x0 ,p0 ,t !5Ẋ~ t !•

]X~ t !

]x0
a 2Ẋa~0!.

Proof: Arguing as above, fora51,2,...,d, we obtain

]A

]x0
a ~x0 ,p0 ,t !5E

0

tS Ẋ~s!•
]Ẋ~s!

]x0
a 2¹c„X~s!…•

]X~s!

]x0
a D ds2eE

0

t

¹k„X~s!,s…•
]X~s!

]x0
a dWs .

So using the key identity and the ibp2 formula gives

]A

]x0
a ~x0 ,p0 ,t !52E

0

t ]X~s!

]x0
a •@dẊ~s!1¹c„X~s!… ds1e¹k„X~s!,s… dWs#1F Ẋ~s!•

]X~s!

]x0
a G

0

t

,

proving the desired result. h

Remark 5.1: Observe that, if we fix X(t), we obtain almost surely

]A

]x0
a ~x0 ,p0 ,t !52Ẋa~0!,

for a51,2,...,d.
Let

X~s,x0 ,x!5X~s,x0 ,p0!up05p~x0 ,x,t ! ,

where p05p(x0 ,x,t) is the ~random! minimizer ~assumed unique! of A(x0 ,p0 ,t) with
X(t,x0 ,p0)5x. Set

A~x0 ,x,t !5A~x0 ,p0 ,t !up05p~x0 ,x,t ! .

Theorem 5.1:Defining A(x0 ,x,t) as above,

]

]x0
aU

fixed~x,t !

A~x0 ,x,t !52Ẋa~0!, a51,2,...d,

and so

]

]x0
aU

fixed~x,t !

@A~x0 ,x,t !1S0~x0!#50, a51,2,...d,

defines the classical stochastic mechanical flow mapF t with x5F t(x0).
Proof: A trivial consequence of the last lemma. h

We now define the stochastic action corresponding to the initial momentum¹S0(x0) by

A~x0 ,x,t !5A~x0 ,x,t !1S0~x0!.
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B. The level surface geometry

We assume thatA(x0 ,x,t) is C4 in space variables and thatt is such that

DetS ]2A
]x0]x

~x0 ,x,t ! DÞ0, x0 ,xPRd.

The last assumption can be considerably weakened but with this last assumption the pro
simpler. In the free case, considered previously, this assumption is valid for allt.0.

We now imitate the free case. We define the prelevel surface of Hamilton’s principal fun
by eliminatingx between the equations

A~x0 ,x,t !5c and
]A
]x0

a ~x0 ,x,t !50, a51,2,...,d,

and the level surface by eliminatingx0 . So the prelevel surface isF t
21Ht . Similarly we define the

causticCt and the precausticF t
21Ct by eliminatingx0 or x between

DetS ]2A
]x0

2 ~x0 ,x,t ! D50 and
]A
]x0

a ~x0 ,x,t !50, a51,2,...,d.

Lemma 5.2: The classical flow map x5F t(x0) is a differentiable map fromF t
21Ht to Ht with

Frechet derivative

DF t~x0!5S 2
]2A

]x]x0
~x0 ,x,t ! D 21S ]2A

]x0
2 ~x0 ,x,t ! D ,

if A is C3 in space derivatives.
Proof: We assumex5F t(x0), x0PF t

21Ht , xPHt , so

A~x0 ,x,t !5c and
]A
]x0

a ~x0 ,x,t !50, a51,2,...,d.

We move to a neighboring point (x01dx0 ,x1dx,t) on F t
21Ht and Ht , respectively. Then we

obtain

A~x01dx0 ,x1dx,t !5c and
]A
]x0

a ~x01dx0 ,x1dx,t !50, a51,2,...,d,

i.e., correct to first order

S ]2A
]x0

2D dx01S ]2A
]x]x0

D dx50,

and

dx•
]A
]x

~x0 ,x,t !50,

proving the desired result. h

We can now prove the following proposition ind dimensions.
Proposition 5.1: We consider the random prelevel surface obtained by eliminating x be

the equations
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A~x0 ,x,t !5c and
]A
]x0

a ~x0 ,x,t !50, a51,2,...,d.

Then the normal to the prelevel surface at the point x0 is to within a scalar multiplier given by

n~x0!52S ]2A
]x0

2D S ]2A
]x0]xD 21

Ẋ„t,x0 ,¹S0~x0!….

Proof: Evidently n(x0)5¹x0
A(x0 ,x,t), wherex5F t(x0), the mapF t being defined by

]A
]x0

a ~x0 ,x,t !50, a51,2,...,d.

Hence only the partial derivatives with respect tox contribute ton(x0), giving

n5„DF t~x0!…T
]A

]x
~x0 ,x,t !U

x5F t~x0!

,

T denoting transpose. However, following the method of Lemma 5.1, we obtain

]A

]xa ~x0 ,x,t !U
x5F t~x0!

5Ẋa„t,x0 ,¹S0~x0!…,

almost surely, fora51,2,...,d, proving the proposition. h

Corollary 5.1: In three dimensions at any point x0PF t
21CtùF t

21Ht where n(x0)Þ0 and

KerS ]2A
]x0

2 ~x0 ,x,t ! D U
x5F t~x0!

5^e0&,

e0 being the zero eigenvector, Tx0
the tangent plane to the prelevel surface is spanned by e0 and

(n(x0)∧e0).
Proof: We obtain by symmetry of (]2A/]x0

2)

e0•n52S ]2A
]x0

2De0•S ]2A
]x0]xD 21

Ẋ„t,x0 ,¹S0~x0!…50.

So e0 is in the tangent planeTx0
, settinge0

'5n∧e0PTx0
by definition. h

Remark 5.2: When the speeduẊ„t,x0 ,¹S0(x0)…u50, n(x0)50 and so x0 is a singular point of
the prelevel surface, either a node with two distinct directions for the tangent plane or a cu

singularity. Because]A/]x5Ẋ necessarily x5F t(x0) is a singular point of the level surface eve

if x0¹F t
21Ct . In the case x0¹F t

21Ct and Ẋ50 we know that this singularity can only be a nod
because the tangent space is fully two dimensional at this point.

Corollary 5.2: In two dimensions let the prelevel surface meet the precaustic at a poi0

where n(x0)Þ0 andKer(]2A/]x0
2(x0 ,F t(x0),t))5^e0&, e0 being the zero eigenvector. Then th

tangent plane to the prelevel surface at x0 , Tx0
is spanned by e0 .

Proof: This is a trivial consequence of the proposition above. h

Proposition 5.2: Assume that in two dimensions at x0PF t
21Ht the above normal n(x0)Þ0, so

that the prelevel surface does not have a generalized cusp at x0 . Then the level surface can onl
have a generalized cusp atF t(x0) if F t(x0)PCt , the caustic surface. Moreover, if x5F t(x0)
PF t$F t

21CtùF t
21Ht%, the level surface will have a generalized cusp at x.
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Proof: Becausen(x0) is nonzero, the direction of the tangent to the prelevel surface curv
well defined atx0 . Hence, if the intrinsic parameterization of the curve isx05x0(g), g
PN(g0 ,d) in a neighborhood ofx05x0(g0), the tangent to the level surface

dx~g!

dg U
g5g0

5S DF t~x0!
dx0~g!

dg U
g5g0

D 5S 2
]2A

]x]x0
D 21S ]2A

]x0
2D dx0~g0!

dg
50,

becauseTx0
is spanned bye0 , x0PF t

21HtùF t
21Ct . What is moredx(g0)/dg50 implies that

necessarily Det(]2A/]x0
2)50 if x0(g0) is not a generalized cusp. h

Needless to say, ifdx0(g0)/dg50, it follows from the above thatdx(g0)/dg50. So gener-
alized cusps map into generalized cusps regardless of whether or notx0PF t

21Ct , cf. Figs. 23 and
24 for the two-dimensional swallowtail. This is true independent of the dimension of the s
We now return to the three-dimensional setup.

Definition 5.1: We define the cusped part of the level surface Ht in three dimensions by

Cusp~Ht!5$xPHt :xPF t~F t
21CtùF t

21Ht!,x5F t~x0!,n~x0!Þ0%.

Proposition 5.3: Let xPCusp(Ht). Then in three dimensions, Tx , the tangent space to th
level surface at x, is one dimensional at most.

Proof: We know thatx5F t(x0), x0PF t
21CtùF t

21Ht with n(x0)Þ0. It follows that there is
a well-defined two-dimensional tangent plane to the prelevel surface atx0 , Tx0

spanned bye0 and
(n∧e0). However, the derivative map is given by

DF t~x0!5S 2
]2A

]x]x0
D 21S ]2A

]x0
2D .

So DF t(x0)e050 andTx5^DF t(x0)(n∧e0)& is at most one dimensional. h

Of course a similar result holds in higher dimensions.

C. A plethora of cusps

We conclude by explaining why we expect to see generalized cusps on planar cross s
of level surfaces in three dimensions. We first of all observe that, ifdx is of second order of smal
quantities, solving

]A
]x0

a ~x0 ,x,t !50, a51,2,3,

and

]A
]x0

a ~x01dx0 ,x1dx,t !50, a51,2,3,

to second order reduces in our case to

dx5S 2
]2A

]x]x0
D 21H S ]2A

]x0
2D dx01

1

2
~dx0•¹x0

!2
]A
]x0

J .

Write

S ]2A
]x0]xD 21

Ẋ„t,x0 ,¹S0~x0!…52~a0e01a1e11a2e2!,

wheree0 is the zero eigenvector of (]2A/]x0
2) and
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]2A
]x0

2 ei5l iei , i 51,2,

are the remaining eigenvector equations,$e0 ,e1 ,e2% an orthonormal system. Then, from abov
unit normal

n5~a1l1e11a2l2e2!~a1
2l1

21a2
2l2

2!21/2

and

e0
'5n∧e05~a2l2e12a1l1e2!~a1

2l1
21a2

2l2
2!21/2.

We now set

dx05«~le01me0
'!1«2~je01he0

'1zn!.

The first term gives the direction ofdx0(g0)/dg, the second termd2x0(g0)/dg2. Then

dx5S 2
]2A

]x]x0
D 21H @«ml1l2~a2e12a1e2!1«2

„hl1l2~a2e12a1e2!1z~a1l1
2e11a2l2

2e2!…#u

1
1

2
~dx0•¹x0

!2
]A
]x0

J ,

whereu5(a1
2l1

21a2
2l2

2)21/2. Note that there is an«2 term hidden within the last term of th
above.

Clearly for a genuine cusp we have to setm50, giving

dx05«le01«2~je01he0
'1zn! (C0)

dx5S 2
]2A

]x]x0
D 21H «2u„hl1l2~a2e12a1e2!1z~a1l1

2e11a2l2
2e2!…1

«2

2
l2]0

2 ]A
]x0

J .

(C1)

We now have to satisfy two further conditions:

dx•ey50, (C2)

dx•
]A
]x

5~a0e01a1e11a2e2!•S u„hl1l2~a2e12a1e2!1z~a1l1
2e11a2l2

2e2!…1
l2

2
]0

2 ]A
]x0

D
50.

(C3)

Surprisingly the last condition does not depend uponh. It simplifies to give

„z~a1
2l1

21a2
2l2

2!…1/21
l2

2
~a0e01a1e11a2e2!•]0

2 ]A
]x0

50. (C38)

The equation (C38) determines the ratioz:l2 and equation (C2) determines the ratioh:l2.
Theorem 5.2: Any point x on the level surface Ht , x5F t(x0) with x05F t

21(x) on the
prelevel surface can only be a generalized cusp of a curve on Ht if x0 is a generalized cusp of th
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precurve on the prelevel surface or if x0PF t
21Ct the precaustic. In three dimensions the plan

cross section y5const(with normal ey) of the level surface Ht through a point x where it meet
Ct , the caustic surface, will have a genuine cusp at x if xPCusp(Ht) and there is a nonzero
solutiondx of Eqs.(C1), (C2), and (C3). The direction of the axis of the cusp will bed x̂.

Proof: Similar to that of Theorem 3.2 using the generalizations expounded above. h

D. A random example

Example 5.1: Here we illustrate the random caustic and level surface for the
S0(x0 ,y0)5x0

2y0/2, c(x)50 and k(x,t)5x for e51/10. Figures 30 and 31 correspond t
St(x,y,v)50.

We now display Figs. 32 and 33 corresponding to St(x,y,v)521/64.

E. Consequences for the Burgers fluid

We now recast the comments made at the end of Sec. III in the more general setting oc and
k nonzero. We emphasize that the above results hold for any finitee ~the strength of the white
noise! as long as Det(]2A/]x0]x)Þ0. In a future paper38 we will expound on the smalle case in
some detail, explaining why the caustics~shockwaves! are stable and the level surfaces are u
stable under noisy perturbations.

Recall that our random mapFs(v):Rd→Rd satisfies

dsḞs52¹C~Fs!ds2e¹k~Fs ,s!dWs ,

FIG. 30. Stochastic precaustic and prelevel surface.

FIG. 31. Stochastic caustic and level surface.
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with F05I andḞ05¹S0 . The global inverse function theorem23 gives the following.
Proposition 5.4: If c, k and S0 are smooth with bounded second order partial derivativ

there exists T(v).0 such thatFs(v):Rd→Rd is a random diffeomorphism0<s<T(v).
We then have the following.
Proposition 5.5: The random Burgers velocity field in the limit of zero viscosity is

v0~x,t !5v0~F t
21x,0!2E

0

t

¹C~FsF t
21x! ds2E

0

t

e¹k~FsF t
21x,s! dWs ,

with v0(x,0)5¹S0(x). This v0 is almost surely0<t<T(v), a classical solution of the Burger
equation. The corresponding solution of the continuity equation, the random densityr(x,t)
5uDet(¹F t

21x)u, is continuous almost surely for0<t<T(v), but v0 has jump discontinuities on
the random caustics. Evidently¹∧v0[0, almost surely.

Remark 5.3: More detailed information on the behavior ofv0 andr on the caustic is given in
Ref. 31.

After the caustic timeT(v), we have seen how to characterize in terms of the stocha
action when the level surface meets the caustic in cusps. In two dimensions, this enables
divide the caustic into hot and cool parts depending on whether or not the speed of the B
fluid is zero on one side of the caustic. We have also seen how a zero speed condition
precaustic and prelevel surface leads to turbulent like behavior of the Burgers fluid at the
sponding points of the caustic. For instance, the large jump discontinuity in the speed
Burgers fluid which we see in crossing the semicubical parabolic shockwave at the cusp is

FIG. 32. Stochastic precaustic and prelevel surface.

FIG. 33. Stochastic caustic and level surface.
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by this zero speed condition. Here we should emphasize that the stochastic and determ
behaviors are very similar if we take snapshots of the Burgers fluid fixed in time.

We now emphasize that new features emerge if one tries to use the above ideas to ana
‘‘intermittence’’ of stochastic turbulence as opposed to deterministic turbulence. We shall d
this in detail in a future paper. The reason for the sharp contrast between stochastic and de
istic turbulence can already be seen here if we associate turbulent behavior with a change
number of cusped curves on the level surface. According to Proposition 5.3 and Theorem 5
times t when this occurs are just the times when the prelevel surfacestouch the precaustic. The
times t when this number of curves changes in the deterministic case are simply the zero
deterministic functionz, usually isolated zeros. In the stochastic casez is a stochastic proces
whose zeros usually form a perfect set, i.e., an infinite set containing no isolated points. At
times the number of cusped curves changes with infinite frequency because of the infinitely
oscillation of the stochastic processz. This is in line with what one would expect for turbulen
behavior. When the stochastic processz is recurrent this turbulent behavior is ‘‘intermittent’’ so
that the scale of turbulent fluctuations varies in a random periodic way.

VI. CONCLUSION

We have seen how generally the level surfaces of Hamilton’s principal function mee
caustic surface in cusped curves and discussed some of the ramifications of this for B
turbulence. In particular, the cool part of the caustic is associated with jump discontinuities in
u0 andv0. The results in this article should be compared with results for Euler’s equation, w
is identical to the above save for the constraint that the fluid densityr is unity. In a future paper
we hope to relax the assumption that the Burgers velocity field is irrotational, when more re
comparisons with Euler’s equation can be made. Needless to say, the detailed nature
geometry of the caustic surface and the level surface will affect the value ofvm(x,t) on the
caustic. Geometrical and analytical results are clearly relevant here for small noise in the wa
relate the stochastic and deterministic situations. We will discuss some more analytical res
our future papers.33,38

The main object lesson of the present study is that the number of cusped curves
wavefront will change infinitely rapidly in the stochastic case when the presurfaces touch an
this behavior will recur in a random periodic way if a certain stochastic process is recurrent
is the ‘‘intermittence’’ of turbulence in our model. There is no analog of this for the determin
Burgers equation. We shall discuss this in more detail in a future publication.
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Regular obstructed categories and topological quantum
field theory

Steven Duplija) and Wladyslaw Marcinekb)
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50-204 Wroclaw, Poland
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A proposal of the concept ofn-regular obstructed categories is given. The corre-
sponding regularity conditions for mappings, morphisms, and related structures are
considered. Ann-regular topological quantum field theory is introduced. The con-
nection of time nonivertibility with the regularity is shown. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1473681#

I. INTRODUCTION

In the generalized histories approach1 to quantum theory the whole universe is represented
a class of ‘‘histories.’’ In this approach the standard Hamiltonian time evolution is replaced
partial semigroup called a ‘‘temporal support.’’ A possible realization of such program ca
described in terms of cobordism manifolds and corresponding categories.2 The temporal suppor
arises naturally as a cobordismM, where the boundary]M of M is a disjoint sum of the ‘‘incom-
ing’’ boundary manifoldS0 and the ‘‘outgoing’’ oneS1 . This means that the cobordismM
represents certain quantum process transformingS0 into S1 . In other words,S1 is a time conse-
quence ofS0 . Obviously, we have two opposite possibilities to declare which boundary is
initial one.

Let N be a cobordism with the ‘‘outgoing’’ boundary ofM as its ‘‘incoming boundary’’ andS2

as the ‘‘outgoing boundary.’’ Then there is a cobordismN+M whose incoming boundary isS0 ,
and the outgoing one isS3 . In this case we say that these two cobordisms are glued alongS1 .
Such gluing of cobordisms up to diffeomorphisms define a partial semigroup operation. On
consider cobordism with several incoming and outgoing boundary manifolds. The class o
sible histories can be represented by gluing of cobordisms in several different ways. Henc
is the corresponding coherence problem for such description.

Let Cob be a category of cobordisms, where the boundary]M of MPCob is a disjoint sum
of the incoming boundary manifoldS0 and the outgoing oneS1 . There is also the cylinde
cobordismS3@0,1# such that](S3@0,1#)5SCS* . The class of boundary components is d
noted by Cob0 . According to Atiyah,3 Baez and Dolan,4 the topological quantum field theor
~TQFT! is a functorF from the category Cob to the category Vect of finite-dimensional ve
spaces. This means thatF sends every manifoldSPCob0 into vector spaceF(S) such that

F~S* !5~F~S!!* , F~S0CS1!5~FS0! ^ ~FS1!, F~B !5I , ~1!

and a cobordismM (S0 ,S1) to a mappingF(M )P linI(FS0 ,FS1) such thatF(S3@0,1#)
5 idFS , where I is a field, andS* is the same manifoldS but with the opposite orientation
Kerler5 found examples of categories formed by some classes of cobordism manifolds pres
some operations like the disjoint sum or surgery. It was discussed by Baez and Dolan4 that it is not
easy to describe such categories in a coherent way. Crane6,7 applied the category theory to a
algebraic structure of the quantum gravity.

a!On leave of absence from Kharkov National University, Kharkov 61001, Ukraine. Electronic mail:
Steven.A.Duplij@univer.kharkov.ua

b!Electronic mail: wmar@ift.uni.wroc.pl
33290022-2488/2002/43(6)/3329/13/$19.00 © 2002 American Institute of Physics
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The idea of regularity as generalized invertibility was first introduced by von Neumann8 and
applied by Penrose for matrices.9 Let R be a ring. If for an elementaPR there is an elementa!

such that

aa!a5a, a!aa!5a!, ~2!

then a is said to be regular anda! is called a generalized inverse inverse ofa. Generalizing
transition from invertibility to regularity is a widely used method of abstract extension of var
algebraic structures. The intensive study of such regularity and related directions was develo
many different fields, e.g., generalized inverses theory,10–12semigroup theory,13–19supermanifold
theory,20–22 Yang–Baxter equation in endomorphism semigroup and braided al
bialgebras,23–25 weak bialgebras, week Hopf algebras,26 and category theory.27

In this paper we are going to study certain class of categories which can be useful f
study of quantum histories with noninvertible time, quantum, gravity, and field theory. The
larity concept for linear mappings and morphisms in categories are studied. Higher order re
ity conditions are described. Commutative diagrams are replaced by ‘‘semicommutative’’
The distinction between commutative and semicommutative cases is measured by a n
obstruction proportional to the difference of some self-mappingse(n) from the identity. This
allows one to regularize the notion of categories, functions, and related algebraic structure
interesting that this procedure is unique up to an equivalence defined by invertible morphism
regularity concept is nontrivial for equivalence classes of nonivertible morphisms. The re
version of TQFT is a natural application of the formalism presented here. In this cas
n-regularity means that a time evolution is noninvertible, although repeated aftern steps, but up to
a classes of obstructions. Our considerations are based on the concepts of generalized inv12,27

and semisupermanifolds.20

The paper is organized as follows. In Sec. II we consider linear mappings without require
of ‘‘invertibility.’’ If f :X→Y is a linear mapping, then instead of the inverse mappingf 21:Y
→X we use less restricted ‘‘regular’’f ! one by extending ‘‘invertibility’’ to ‘‘regularity’’ according
to

f + f !+ f 5 f , f !+ f + f !5 f !. ~3!

We also propose some higher regularity conditions. In Sec. III the higher regularity noti
extended to morphisms of categories. Commutative diagrams are replaced by semicomm
ones. The concept of regular cocycles of morphisms in a category is described. An exi
theorem for these cocycles is given. The corresponding generalization of certain categorica
tures as tensor operation, algebras and coalgebras, etc., to our higher regularity case is
Sec. IV. Regular equivalence classes of cobordism manifolds and the corresponding structu
considered in Sec. V. Ann-regular TQFT is introduced as ann-regular obstructed category repr
sented by some special classes of cobordisms called ‘‘interactions.’’ Our study is not comp
is only a proposal for new algebraic structures related to topological quantum theories.

II. GENERALIZED INVERTIBILITY AND REGULARITY

Let X andY be two linear spaces over a fieldk. We use the following notation. Denote by IdX

and IdY the identity mappings IdX :X→X and IdY :Y→Y. If f :X→Y is a linear mapping, then the
image off is denoted by Imf, and the kernel by Kerf .

Here we are going to study some generalizations of the standard concept of invert
properties of mappings. Our considerations are based on the article of Nashed.12 Let f :X→Y be a
linear mapping. Iff + f r

215IdY for some f r
21:Y→X, then f is called aretraction, and f r

21 is the
right inverse. Similarly, iff l

21+ f 5IdX , then it is called acoretraction, f l
21 is the left inverse off.

A mapping f 21 is called an inverse off if and only if it is both right and left inverse off.
This standard concept of invertibility is in many cases too strong to be fulfilled. To ob

more weak conditions one has to introduce the following ‘‘regularity’’ conditions
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f + f in
! + f 5 f , ~4!

where f in
! :Y→X is called aninner inverse, and suchf is calledregular. Similar ‘‘reflexive regu-

larity’’ conditions

f out
! + f + f out

! 5 f out
! ~5!

define anouter inverse fout
! . Notice that in generalf in

! Þ f out
! Þ f 21 or it can be thatf 21 does not

exist at all.
Definition 1:A mappingf satisfying one of the conditions~4! or ~5! is said to be regular or

three-regular. A generalized inverse of a mappingf is a mappingf !, which is both inner and oute
inversef !5 f in

! 5 f out
! .

Lemma 2: If fin
! is an inner inverse of f, then a generalized inverse f! exists, but need not be

unique.
Proof: If f in

! is an inner inverse, then

f !5 f in
! + f + f in

! ~6!

is always both inner and outer inverse i.e., generalized inverse. It follows from~6! that both
regularity conditions~4! and ~5! hold. h

Definition 3: Let us define two operatorsPf :Y→Y andPf !:X→X by

Pfª f + f !, Pf !ª f !+ f . ~7!

Lemma 4: These operators satisfy

Pf+Pf5Pf , Pf+ f 5 f +Pf !5 f
~8!

Pf !+Pf !5Pf !, Pf !+ f !5 f !+Pf5 f !.

h

Lemma 5: If f! is the generalized inverse of the mapping f, then the following properties
obvious:

Im f 5Im~ f + f !!, Ker~ f + f !!5Ker f !,
~9!

Im~ f !+ f !5Im f !, Ker~ f !+ f !5Ker f .

In addition there are two decompositions

X5Im f !
% Ker f , Y5Im f % Ker f !. ~10!

The restriction fu Im f!:Im f!→Im f is one to one mapping, and operators Pf , Pf ! are projectors of
Y, X ontoIm f, Im f!, respectively.

Theorem 6: Let f:X→Y be a linear mapping. If P and Q are projectors corresponding to
following two decompositions

X5M % Ker f , Y5Im f % N, ~11!

respectively, then there exist unique generalized inverse of f, and

f !
ª i + f̃ 21+Q, ~12!

where f̃ª f uM , and i:M�X.
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Here we try to construct higher analogs of generalized invertibility and regularity condi
~4! and ~5!. Let us consider two mappingsf :X→Y and f !:Y→X and introduce two additiona
mappingsf !!:X→Y and f !!!:Y→X. We propose here the following higher regularity conditio

f + f !+ f !!+ f !!!+ f 5 f . ~13!

This equation defines a four-regularity condition. By cyclic permutations we obtain

f !+ f !!+ f !!!+ f + f !5 f !,

f !!+ f !!!+ f + f !+ f !!5 f !!, ~14!

f !!!+ f + f !+ f !!+ f !!!5 f !!!.

By recursive considerations we can propose the following formula ofn-regularity:

~15!

wheren52k, k51,2,... and their cyclic permutations.

~16!

We can introduce ‘‘higher projector’’ by

~17!

It is easy to check the following properties:

Pf
~2k!+ f 5 f ~18!

and idempotencePf
(2k)+Pf

(2k)5Pf
(2k) .

Theorem 7: Let f:X→Y be a linear mapping. If P and Q are projectors corresponding to
following two decompositions

X5M % Ker f , ‘ Y5Im f % N, ~19!

respectively, and

f !uIm f 5 f !!!u Im f , ~20!
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then the five-regularity condition of f can be reduced to the two three-regularity conditions

f + f !+ f 5 f , f !+ f !!+ f !5 f !. ~21!

III. SEMICOMMUTATIVE DIAGRAMS AND REGULAR OBSTRUCTED CATEGORIES

In Sec. II we considered mappings and regularity properties for two given spacesX and Y,
because we studied various types of inverses. Now we will extend these considerations
number of spaces and introduce semicommutative diagrams~first introduced in Ref. 20!.

A directed graphC is a pair$C0 ,C1% and a pair of functions

C0¸
t

s

C1 , ~22!

where elements ofC0 are said to beobjects, elements ofC1 are said to bearrows or morphisms,
sf is said to be adomain (or source)of f, and tf is a codomain (or target)of f PC1 . If s f5X

PC0 , andt f 5YPC0 , then we use the following notationX→
f

Y and

C~X,Y!ª$ f PC1 :s f5X,t f 5Y%. ~23!

We denote by End(X) the collection of all morphisms defined onX into itself, i.e., End(X)
ªC(X,X),XPC0 .

Two arrows f ,gPC1 such thatt f 5sg are said to be composable. If in additions f5X, sg

5t f 5Y, andtg5Z, then we use the notationX→
f

Y→
g

Z. In this case a compositionf +g of two
arrows f :X→Y and g:Y→Z can be defined as an arrowf :X→Y. The associativity means tha
h+(g+ f )5(h+g)+ f 5h+g+ f . An identity id in C is an inclusionXPC0� idXPEnd(X) such that

f + idX5 idY+ f 5 f ~24!

for everyX, YPC1 , andX→
f

Y.
A directed graphC equipped with associative composition of composable arrows and ide

satisfying some natural axioms is said to be acategory.28,29 If C is a category, then right cance
lative morphisms areepimorphismswhich satisfyg1+ f 5g2+ f⇒g15g2 , whereg1,.2:Y→Z and
left cancellative morphisms aremonomorphismswhich satisfy f +h15 f +h2⇒h15h2 , where

h1,.2:Z→X. A morphismX→
f

Y is invertible means that there is a morphismY→
g

X such thatf
+g5 idY andg+ f 5 idX . Instead of such invertibility we can use the regularity condition~4!, i.e.,
f +g+ f 5 f , whereg plays the role of an inner inverse.12

Usually, for three objectsX, Y, Z and three morphismsf :X→Y andg:Y→Z andh:Z→X one
can have the ‘‘invertible’’ triangle commutative diagramh+g+ f 5IdX . Its regular extension has th
form

f +h+g+ f 5 f . ~25!

Such a diagram
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can be called asemicommutative diagram. By cyclic permutations of~25! we obtain

h+g+ f +h5h,
~26!

g+ f +h+g5g.

These formulas define the concept of three-regularity.
Definition 8: A mapping f :X→Y satisfying conditions~25! and ~26! is said to be three-

regular. The mappingh:Z→X is called the first three-inversion and the mappingg:Y→Z the
second one.

The above-given concept can be expanded to any number of objects and morphisms.
Definition 9: Let C5(C0 ,C1) be a directed graph. Ann-regular cocycle~X,f! in C, n

51,2,..., is a sequence of composable arrows inC,

X1→
f 1

X2→
f 2

¯ →
f n21

Xn→
f n

X1 , ~27!

such that

f 1+ f n+¯+ f 2+ f 15 f 1 ,

f 2+ f 1+¯+ f 3+ f 25 f 2 , ~28!

f n+ f n21+¯+ f 1+ f n5 f n ,

and

eX1

~n!
ª f n+¯+ f 2+ f 1PEnd~X1!,

eX2

~n!
ª f 1+¯+ f 3+ f 2PEnd~X2!, ~29!

eXn

~n!
ª f n21+¯+ f 1+ f nPEnd~Xn!.

Definition 10: Let ~X,f! be an n-regular cocycle inC, then the correspondenceeX
(n) :Xi

PC0°eXi

(n)PEnd(Xi), i 51,2,...,n, is called ann-regular cocycle obstruction structure on~X,f! in

C.
Lemma 11: We have the following relations

f i+eXi

~n!5 f i , eXi 11

~ i ! + f i5 f i , eXi

~n!+eXi

~n!5eXi

~n! ~30!

for i 51,2,...,n(modn).
Proof: The lemma simply follows from relations~28! and ~29!. h

Definition 12: An n-regular obstructed category is a directed graphC with an associative
composition and such that every object is a component of ann-regular cocycle.

Example 1:If all obstructions are equal to the identityeXi

(n)5 idXi
, and
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f n+¯+ f 2+ f 15 idX1
,

f 1+¯+ f 3+ f 25 idX2
, ~31!

f n21+¯+ f 1+ f n5 idXn
,

then the sequence~27! is trivially n-regular. Observe that the trivial two-regularity is just the us
invertibility, hence every grupoidG is a trivially two-regular obstructed category. We are int
ested with obstructed categories equipped with some obstruction different from the identity

Definition 13: The minimum numbern5nobstr such thateX
(n)Þ idX is called the obstruction

degree.
Example 2:Every inverse semigroupS is a nontrivial two-regular obstructed category. It h

only one object, morphisms are the elements ofS.
Theorem 14: Let C be a category, and

X1→
f 1

X2→
f 2

¯ →
f m21

Xn→
f n

X1 ~32!

be a sequence of morphisms of categoryC. Assume that there is a sequence

Y1→
f̃ 1

Y2→
f̃ 2

¯ →
f̃ n21

Yn→
f̃ n

Y1 , ~33!

where Yi is a subobject of Xi such that there is a collection of mappingsp i :Xi→Yi and i:Yi

→Xi satisfying the conditionp i+i i5 idYi
for i 51,2,...,n. If in addition

f̃ n+¯ f̃ 2+ f̃ 15 idY1
,

f̃ 1+¯ f̃ 3+ f̃ 25 idY2
,

~34!
¯

f̃ n21+¯ f̃ 1+ f̃ n5 idYn
,

and

f iªt i 11+ f̃ i+p i ~35!

then the sequence~62! is an n-regular cocycle.
Proof: The corresponding obstruction structure is given by

eXi

~n!5i i+p i . ~36!

If xPKer f 1 , then the theorem is trivial, ifxPXi \Ker f 1 , then we obtain

~ f 1+ f n+¯+ f 2+ f 1!~x!5i2+ f̃ 1+p1+i1+ f̃ n+¯+ f̃ 2+ f̃ 1+p1~x!5i2+ f̃ 1+p15 f 1~x!,

where conditions~34! and ~35! have been used. We can calculate all cyclic permutations
similar way. h

Example 3: There is an n-regular obstructed categoryC5(C0 ,C1), where C05$Xi : i
51,...,n(modn11)% and C15$ f i : i 51,...,n(modn11)% are described in the above-mention
theorem.

Definition 15:Let ~X,f!, ~Y,g! be twon-regular cocycles inC. An n-regular cocycle morphism
a: (X, f )→(Y,g) is a sequence of morphismsaª(a1 ,...,an) such that the diagram
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X1 →
f 1 X2 →

f 2

¯ →
f n21 Xn →

f n X1

↓a1 ↓a2 ↓an ↓a1

Y1 →
g1 Y2 →

g2

¯ →
gn21 Yn →

gn Y1

~37!

is commutative. If every componenta i of a is invertible, thena is said to be ann-regular cocycle
equivalence.

It is obvious that then-regular cocycle equivalence is an equivalence relation.
Definition 16: Let C be ann-regular obstructed category. A collection of all equivalen

classes ofn-regular cocycles inC and correspondingn-regular cocycle morphisms is denoted b
Reg(n)(C) and is said to be ann-regularization ofC.

Comment 17:It is obvious that then-regular cocycle equivalence is an equivalence relat
Equivalence classes of this relation are just elements of Reg(n)(C). Our n-regular cocycles and
obstruction structures are unique up to an invertiblen-regular cocycle morphism. If@~X,f!# is an
equivalence class ofn-regular cocycles, then there is the corresponding class ofn-regular obstruc-
tion structureseX

(n) on it. The correspondence is a one to one.

IV. REGULARIZATION OF FUNCTORS AND RELATED STRUCTURES

We are going to introduce the concepts ofn-regular functors, natural transformations, inv
lution, duality, and so on. All of our definitions are in the general case the same as in the
category theory,29 but the preservation of the identity idX is replaced by the requirement o
preservation of obstructionseX

(n) up to then-regular cocycle equivalence.
It is known that for two usual categoriesC andD a functorF:C→D is defined as a pair o

mappings (F0 ,F1), whereF0 sends objects ofC into objects ofD, andF1 sends morphisms ofC
into morphisms ofD

F1~ f +g!5F1~ f !+F1~g!, F1idX5 idF0X , ~38!

for XPC0 , FXPD0 .
Let C and D be two n-regular obstructed categories. We postulate that all definitions

formulated on everyn-regular cocycle~X,f! in C up to then-regular cocycle equivalence, andi
51,2,...~mod n!.

Definition 18:An or n-regular cocycle functorF(n):C→D is a pair of mappings (F0
(n) ,F1

(n)),
whereF0

(n) sends objects ofC into objects ofD, andF1
(n) sends morphisms ofC into morphisms

of D such that

F1
~n!~ f i+ f i 11!5F1

~n!~ f i !+F1
~n!~ f i 11!, F1

~n!~eXi

~n!!5eF0~Xi !
~n! , ~39!

whereXPC0 .
Lemma 19: LetC and D be n-regular obstructed categories, and let

X1→
f 1

X2→
f 2

¯ →
f n21

Xn→
f n

X1 ~40!

be an n-regular cocycle inC. If F(n):C→D is n-regular cocycle functor, then

F~n!~ f i !+eXi

~n!5F~n!~ f i !. ~41!

Proof: It is a simple calculation

F~n!~ f i !5F~n!~ f +eXi

~n!!5F~n!~ f !+F~n!~eXi

~n!!5F~ f i !+eF0Xi

~n! . ~42!

h
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Multifunctors can be regularized in a similar way.
Let F(n) andG(n) be twon-regular cocycle morphisms of the categoryC into the categoryD.
Definition 20:An n-regular natural transformations:F(n)→G(n) of F(n) into G(n) is a collec-

tion of functorss5$sXi
:F0(Xi)→G0(Xi)% such that

sXi 11
+F1

~n!~ f i !5G1
~n!~ f i !+sXi

, ~43!

for f i :Xi→Xi 11 .
Definition 21:An n-regular obstructed monoidal categoryC[C( ^ ,I ) can be defined as usua

but we must remember that instead of the identity idX^ idY5 idX^ Y we have an obstruction struc
ture eX

(n)5$eXi

(n)PEnd(Xi);n51,2,...% satisfying the condition

eXi ^ Yi

~n! 5eXi

~n!
^ eYi

~n! ~44!

for every twon-regular cocycles~X,f! and (Y, f 8).
Let C be ann-regular obstructed monoidal category. We introduce an*-operation inC as a

function which sends every objectXi into objectXi* called the dual ofX,

Xi** 5Xi , ~Xi ^ Yi !* 5Xi* ^ Yi* , ~45!

reverse all arrows

~ f +g!* 5g* + f * . ~46!

The categoryC equipped with such*-operation is called ann-regular obstructed monoidal cat
egory with duals.

Lemma 22: LetC be an n-regular obstructed monoidal category with duals. If~X,f! is an
n-regular cocycle inC, then there is a corresponding n-regular cocycle(X* , f * ) in C* , called the
dual of ~X,f!.

Proof: If we reverse all arrows in~X,f! and replace all objects by the corresponding du
then we obtain (X* , f * ), where

X1* →
f n*

Xn* →
f n21*

¯→
f 2*

X2* →
f 1*

X1* ~47!

is a sequence such that

f 1* + f n* +¯+ f 2* + f 1* 5 f 1* , eX
1*

~n!
ª f n* +¯+ f 2* + f 1* , ~48!

wheref i* :Xi 11* →Xi* , i 51,...,n, andXn11* [X1* is the dual. We have corresponding relations
all cyclic permutations. h

Definition 23:An n-regular pairinggC in ann-regular obstructed monoidal categoryC can be
defined in an analogy to the usual case as a collection of mappings

gC5$gXi
[^2u2&Xi

:Xi* ^ Xi→I % ~49!

satisfying some natural consistency conditions and in addition the following regularity relat

gXi 11
+~ f i* ^ f i !5gXi

, ~50!

and

^eX
i*

~n!
Xi* uXi&Xi

5^Xi* ueXi

~n!Xi&Xi
, ~51!
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where~X,f! is a regularn-cocycle inC, and let (X* , f * ) be the corresponding duals.
It is known that an associative algebra in an ordinary category is an objectA of this category

such that there is a multiplicationm:A^ A→A which is also a morphism of this category sat
fying some axioms like the associativity, the existence of the unity.

Definition 24: Let C be ann-regular obstructed monoidal category. Ann-regular cocycle
algebraA in the categoryC is an object of this category equipped with an associative multi
cationm:A^ A→A such that

m+~eA
~n!

^ eA
~n!!5eA

~n!+m. ~52!

Obviously such multiplication does not need to be unique.
One can define ann-regular cocycle coalgebra or bialgebra in a similar way. A comultipli

tion D:A→A^ A can be regularized according to the relation

D+eA
~n!5~eA

~n!
^ eA

~n!!+D. ~53!

Definition 25:Let A be ann-regular cocycle algebra. IfA is also regular coalgebra such th
D(ab)5D(a)D(b), then it is said to be ann-regular cocycle almost bialgebra.

If A is an n-regular cocycle algebra, then we denote byhomm(A,A) the set of morphisms
sPhomC(A,A) satisfying the condition

s+m5m+~s^ s!. ~54!

Let A be ann-regular cocycle almost bialgebra. We define the convolution product

s!tªm+~s^ t !+D, ~55!

where s,tPhomm(A,A). If A is a regularn-cocycle almost bialgebra, then the convoluti
product is regular.

Definition 26: A two-regular cocycle almost bialgebraH equipped with an elementS
Phomm(H,H) such that

S! idH!S5S, idH! idH5 idH ~56!

is said to be a two-regular cocycle almost Hopf algebraH.
The above-given definition is a regular analogy of week Hopf algebras considered in Re

Similar algebras has been also considered in Ref. 30 and 31.
Lemma 27: IfA is an n-regular cocycle algebra, then there is an n-regular cocycle coalge

A* such that31

^D~j!,x1^ x2&5^j,m~x1^ x2!&, ~57!

where x1 , x2PA, jPA* .
Proof: Let us apply the regularity condition~52! to the above-given duality condition~57!.

Then the lemma follows from relations~44!, ~53!, and~51!. h

Lemma 28: LetA be an n-regular cocycle almost bialgebra. Then the dualA* is also
n-regular cocycle almost bialgebra

^D~j!,x1^ x2&5^j,m~x1^ x2!&,
~58!

^m̂~j ^ z!,x1^ x2&5^j ^ z,D̂x&.

Let A be ann-regular cocycle algebra. Then we can define a leftn-regular cocycleA-module as
an object equipped with anA-module actionrM :A^ M→M such that
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rM+~m^ idM !5rM+~ idA^ rM !,
~59!

rM+~eA
~n!

^ eM
~n!!5eM

~n!+rM .

If A is ann-regular cocycle coalgebra, then one can define ann-regular cocycle comoduleM in a
similar way. For a coactiondM :A→A^ M of A on M we have the following regularity condition

dM+~eA
~n!

^ eM
~n!!5eM

~n!+%M . ~60!

Remark 1:Observe that we have the following duality betweenA-module actionrM :A
^ M→M andA* -comodule coactionsdM* :A* →M* ^ A* ,

^dM* ~j!,a^ x&5^j%M~a^ x!&, ~61!

whereaPA, xPM , jPA* .

V. REGULAR COBORDISMS AND TQFT

Let Cob be a directed graph of cobordisms whose objects Cob0 are d-dimensional compac
smooth and oriented manifolds without boundary and whose arrows are classes of cob
manifolds with boundaries. We would like to discuss the correspondingn-regular cocycles and
their meaning. For this goal we use here a parametrization such that the boundary]M is a
multiconnected space, a disjoint sum of the ‘‘incoming’’ boundary manifoldS in and the ‘‘outgo-
ing’’ one Sout. We call them ‘‘physical.’’ The empty boundary component is also admissible.
S0 , S1PCob0 , then the disjoint sum is denoted byS0qS1 . For a manifoldSPCob0 there is the
corresponding manifoldS* with the opposite orientation.

We wish to represent quantum processes of certain physical system by cobordism ma
M with the incoming boundary manifoldS0 ~an ‘‘input’’ !, and the outgoing oneS0 ~an ‘‘output’’!.
The incoming boundary manifoldS0 represents an initial condition of the system, the outgo
boundary represents the final configuration, and the cobordism manifolds represent possibl
action of the system. Note that the same cobordism manifoldM but with different boundary
parametrization represent different physical processes!

Definition 29:An ‘‘interaction’’ is a triple S0
MS1

, where the incoming boundary manifoldS0

is multiconnected space withm components and the outgoing oneS1 is equipped withn compo-
nents, andM is a class of cobordism manifolds up to parametrization preserving diffeomorfi
S0 , S1PCob0 , MPCob1 .

Definition 30:The ‘‘opposite interaction’’ ofS0
MS1

is the ‘‘interaction’’S1
MS0

op with reversed

boundary parametrization, i.e., the incoming boundary ofM is the outgoing boundary ofMop and
vice versa.

Example 4:A ‘‘collapsion’’ of SPCob0 is an arbitrary ‘‘interaction’’ of the formsSMB , this
means the incoming boundary isS and the outgoing boundary is empty. The correspond
‘‘expansion’’ of S is the opposite of the collapsion.

Definition 31: Let us denote byCob5(Cob0 ,Cob1) a directed graph whose objects a
Cob0[Cob0 and arrowsCob1 are ‘‘interactions.’’ A composition of two interactionsS1

M1S2
and

S2
M2S3

is an interactionS1
(M1S2

M2)S3
, whereM1S2

M2 is a result of gluingM1 and M2

alongS2 .
The trivial gluing along the empty boundary component is also admissible. For instanc

can glue a ‘‘collapsion’’ ofS and the corresponding ‘‘expansion’’ in the trivial way. In this way w
obtain an interactionS(MMop)S . If we glue the expansion ofS and the collapsion ofS alongS,
then we obtain a class of manifolds with empty boundaries.

Example 5:Classes of two-dimensional surfaces with holes provide examples of string
actions.

We wish to build the temporal support semigroup as an arbitrary sequence
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X1→
f 1

X2→
f 2

¯ →
f n21

Xn ~62!

of objects and arrows of a directed graphC indexed by a discrete time. We wish to represent

interactionS1
MS2

as an arrowX1→
f

X2 of C. Obviously composable arrowsX1→
f 1

X2→
f 2

X3 should
represent the gluingS1

(M1S2
M2)S3

. Two interactionsS1
MS2

andS
18
M8S

28
should be represente

by the same arrowX1→
f

X2 if and only if both interactions are ‘‘parallel~simultaneous! in the
time.’’

Let us assume that the directed graphC is an n-regular monoidal category with duals. Le

X1→
f 1

X2→
f 2

¯ →
f n21

Xn be ann-regular cocycle. If there is an equivalence> in Cob such that objects
of the n-regular cocycle represent equivalence classes of> and arrows represent time cons
quences, then we say that we have ann-regular TQFT.

What doesn-regularity mean here? It is natural to assume that the oppositeS2
MS1

op of S1
MS2

should be represented by a reversed arrowX1←
f

X2 . The trivial two-regularity is clear, it mean
that the time is invertible. We postulate that the time is directed and always runs further,
back, never stops. In other words, ‘‘our time’’ is not invertible in general, but it can ben-regular,
where the regularity is nontrivial.

Example 6:Let us consider for instance the two-regular ‘‘interactions.’’ Let

S1
M1S2

and S2
M2S1

be two interactions, thenS1
(M1S2

M2)S1
and S2

(M2S1
M1)S2

can be represented as arrow

X1→
f 1

X2→
f 2

X1 , and X2→
f 2

X1→
f 1

X2 , respectively. Interactions S1
M1S2

M2S1
M1S2

and

S2
M2S1

M1S2
M2S1

should be represented byX1→
f 1

X2→
f 2

X1→
f 1

X2 , and X2→
f 2

X1→
f 1

X2→
f 2

X1 , re-
spectively. Now the two-regularity conditions are clear.

Observe that the regularity concept can be useful for the construction of quantum theory
whole universe with nonivertible time evolution. In fact the nontrivialn-regularity conditions
mean that all processes always go further, never back, never stop, but are cyclically repeatin
n-steps up to an equivalence.

ACKNOWLEDGMENTS

One of the authors~S.D.! would like to thank Jerzy Lukierski for kind hospitality at th
University of Wroclaw, where this work was begun, Andrzej Borowiec, Andrzej Frydryszak,
Cezary Juszczak for valuable help during his stay in Wroclaw, and Friedemann Brandt, D
Leites, Volodymyr Lyubashenko for fruitful discussions at the NATO ARW in Kiev and Fang
for useful correspondence and rare reprints. The paper is partially supported by the Polish
Grant No. 5P03B05620.

1M. Gell-Mann and J. Hartle, ‘‘Quantum mechanics in the light of quantum cosmology,’’ inProceedings of the Third
International Symposium on the Foundations of Quantum Mechanics in the Light of New Technology, edited by S.
Kobayashiet al. ~Physical Society of Japan, Tokyo, 1990!, pp. 321–343.

2C. J. Isham, J. Math. Phys.35, 2157~1994!.
3M. Atiyah, The Geometry and Physics of Knots~Cambridge University Press, Cambridge, 1990!.
4J. C. Baez and J. Dolan, J. Math. Phys.36, 6073~1996!.
5T. Kerler, ‘‘Bridged links and tangle presentation of cobordism categories,’’ math.GT/980614~1998!.
6L. Crane, J. Math. Phys.36, 6180~1995!.
7L. Crane, ‘‘Topological field theory as the key to quantum gravity,’’ lecture presented to the conference on knot
and quantum gravity, Riverside, CA, hep-th/9308126~1993!.

8J. von Neumann, Proc. Natl. Acad. Sci. U.S.A.22, 707 ~1936!.
9R. Penrose, Math. Proc. Cambridge Philos. Soc.51, 406 ~1955!.
                                                                                                                



e,

’

3341J. Math. Phys., Vol. 43, No. 6, June 2002 Regular obstructed categories and TQFT

                    
10G. Rabson,The Generalized Inverses in Set Theory and Matrix Theory~American Mathematical Society, Providenc
1969!.

11C. R. Rao and S. K. Mitra,Generalized Inverse of Matrices and its Application~Wiley, New York, 1971!.
12M. Z. Nashed,Generalized Inverses and Applications~Academic, New York, 1976!.
13W. D. Munn and R. Penrose, Math. Proc. Cambridge Philos. Soc.57, 247 ~1961!.
14A. H. Cliford, Semigroup Forum10, 84 ~1975/76!.
15G. Lallement, Semigroup Forum4, 95 ~1972!.
16J. M. Howie,An Introduction to Semigroup Theory~Academic, London, 1976!.
17M. V. Lawson,Inverse Semigroups: The Theory of Partial Symmetries~World Scientific, Singapore, 1998!.
18S. Duplij, J. Math. Phys.32, 2959~1991!.
19S. Duplij, Semigroup Forum54, 253 ~1997!.
20S. Duplij, Semisupermanifolds and Semigroups~Krok, Kharkov, 2000!.
21S. Duplij, Pure Math. Appl.9, 1 ~1998!.
22S. Duplij, Habilitation thesis, Kharkov State University, math-ph/9910045, Kharkov, 1999.
23F. Li, J. Algebra208, 72 ~1998!.
24F. Li, ‘‘Solutions of Yang–Baxter equation in an endomorphism semigroup and quasi-~co!braided almost bialgebras,’

Zhejiang Univ.preprint, Hangzhou, 1999.
25F. Li, ‘‘Weaker structures of Hopf algebras and singular solutions of Yang-Baxter equation,’’ Zhejiang Univ.preprint,

Hangzhou, 2000.
26F. Nill, ‘‘Axioms for week bialgebras,’’ q-alg/9805104 1998.
27D. L. Davis and D. W. Robinson, Linear Algebr. Appl.5, 329 ~1972!.
28B. Mitchell, Theory of Categories~Academic, New York, 1965!.
29S. MacLane,Categories for the Working Mathematician, 2nd ed.~Springer, Berlin, 2000!.
30F. Li and S. Duplij, Czech. J. Phys.51, 1306~2001!; math.QA/0105064 2001.
31F. Li and S. Duplij, Commun. Math. Phys.225, 191 ~2002!.
                                                                                                                



r-
ial

avail-

dence

ele-
s an
of
tegral
tain a
nown

blem.
emati-
r
or the
recur-
ce, we
ted old
-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 6 JUNE 2002

                    
Integrals of monomials over the orthogonal group
T. Gorina)

Centro de Ciencias Fı´sicas, University of Mexico (UNAM), Avenida Universidad s/n,
C.P. 62210 Cuernavaca, Morelos, Me´xico
and Theoretische Quantendynamik, Fakulta¨t für Physik, Universita¨t Freiburg,
Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany

~Received 10 December 2001; accepted for publication 20 February 2002!

A recursion formula is derived which allows one to evaluate invariant integrals over
the orthogonal groupO(N), where the integrand is an arbitrary finite monomial in
the matrix elements of the group. The value of such an integral is expressible as a
finite sum of partial fractions inN. The recursion formula largely extends presently
available integration formulas for the orthogonal group. ©2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1471367#

I. INTRODUCTION

Integrals over the classical compact groups1,2 are of interest in various fields, such as ha
monic analysis3 or random matrix theory.4 In these applications the integrand is often a polynom
in the matrix elements of the group itself~i.e., of the true matrix representation of the group!. Thus
we have to integrate an arbitrary monomial of these matrix elements. Closed formulas are
able only for very special cases3,5–7 and even a new method by Prosenet al.8 using computer
algebras is practically limited to low degrees. For arbitrary monomials there is strong evi
that the results in Ref. 8 are exact at least up to the next leading order inN21 with respect to the
approximation of the group integral by independent Gaussian distributed matrix elements.9

In the present paper we shall address the case of the orthogonal groupO(N). First we rederive
the well-known one-vector formula.4,6 In this context, the terms ‘‘R-vector formula’’ or ‘‘R-vector
integral’’ refer to the case where the monomial in question contains only powers of matrix
ments fromR rows orR columns, respectively. Next we derive a recursion formula that relate
R-vector integral to a linear combination of (R21)-vector integrals. This is the central result
the present paper. Together with the one-vector formula, it allows one to calculate any in
over a monomial of finite degree in a finite number of steps. This result is then used to ob
closed expression for general two-vector integrals that is much simpler than the one k
before.6 Besides, the older formula contains mistakes which~to the best of my knowledge! had
never been corrected in the literature.

The paper is organized as follows: In Sec. II we describe the current approach to the pro
In addition, we introduce some compact nonstandard notations, which help to keep the math
cal expressions manageable. Then the one-vector result of Ullah6 is rederived, as it is the base fo
the recursion formula developed later on. In passing we obtain an equally simple formula f
corresponding one-vector integral over the unitary group. In Sec. III we derive the general
sion formula. In Sec. IV some applications are presented. As an immediate consequen
obtain a closed expression for the two-vector integral, which is then compared to the correc
result.6 We also illustrate the use of our general formula forR.2, calculating a particular three
vector integral. Section V contains the conclusions.

a!Electronic mail: Thomas.Gorin@physik.uni-freiburg.de
33420022-2488/2002/43(6)/3342/10/$19.00 © 2002 American Institute of Physics

                                                                                                                



of

be

rows
it is

e

nd

e

is

g

3343J. Math. Phys., Vol. 43, No. 6, June 2002 Integrals of monomials over the orthogonal group

                    
II. GENERAL CONSIDERATIONS

To be specific, let us consider the orthogonal matrixwPO(N) as a point in Euclidean
N2-dimensional space. Then we are interested in integrals of monomials in the coordinatesw.
These are denoted by

^M &5E ds~w! )
i ,j51

N,R

wi j
Mi j. ~1!

Heres is the normalized Haar measure10 of O(N), i.e.,* ds(w)51, andM is anN3R matrix of
non-negative integers, withR<N. M is called the power matrix. In the recursion formula to
developed,R is used as the recursion parameter. Hence it is important, thatR, the number of
columns ofM , is as small as possible.

The integral over the orthogonal group is invariant under any permutation of columns or
of the integration variablewPO(N). It is also invariant under taking the transpose. Therefore
sufficient to consider such monomials which contain matrix elements from the firstR<N columns
of w only. According to Ullah6 one may then write

^M &5
N~M !

N~o!
, N~M !5E )

j51

R H dV~wW j!)
i 51

N

wi j
Mi jJ )

m,n
d~^wW muwW n&!, ~2!

whereo is an N3R matrix of zeros. The integration region is the Cartesian product ofR unit
spheres with constant measures dV(wW j), and$wW 1 ,...,wW R% are the corresponding unit vectors. Th
orthogonality of the unit vectors is implemented with the help of appropriately chosend-functions.
^wW muwW n& denotes the scalar product between the two vectorswW m andwW n .

A. Compact notations for certain products of multinomials

In the calculations to follow, we will frequently deal with certain products of binomial a
multinomial coefficients. For better legibility we use two special notations: In what follows,xW and
yW areN-dimensional real vectors, andmW andnW areN-dimensional vector-indices of non-negativ
integers. There are two typical cases in which products of multinomials appear:

~1! Consider the expressionE5) i 51
N (xi1yi)

ni. Its expansion gives

E5(
kW

)
i 51

N S ni

ki
D xi

kiyi
ni2ki, ~3!

where the sum runs over allkW for which ; i :ki<ni . In this case, the product of binomials
denoted by the following symbol:

)
i 51

N S ni

ki
D 5S nW

kW D . ~4!

~2! On other occasions, we encounter expressions of the type:E85) i 51
N ^tW uwW i8&

ni, where
^tW uwW i8& is the scalar product of the two (R21)-dimensional vectorstW and wW i8 . In this case the
expansion reads

E85(
K

H)
i 51

N

~ni uKi1 ,...,Ki ,R21!J )
j51

R21

tj
k̄j )

i 51

N

wi j
Ki j. ~5!

Here we have to use theN3(R21) matrix K as an index. The elements ofK are non-negative
integers.kW j is thejth column vector ofK, andk̄j is the sum of its components:k̄j5( i 51

N Ki j . The
sum in Eq.~5! runs over allK for which ; i :(j51

R21 Ki j5ni . In this case, we use the followin
notation:
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)
i 51

N

~ni uKi1 ,...,Ki ,R21!5~nW uK !. ~6!

B. The one-vector integral

In the one-vector case,R51, there are no orthogonality relations to respect. The power ma
M consists of one single column vector, here denoted bymW . According to Eq.~2! we may write

^mW &5
N~mW !

N~oW !
, N~mW !5E dV~wW !)

i 51

N

wi
mi, ~7!

whereoW is an N-dimensional vector of zeros. Following the original calculation of Ullah,4,6 we
integrate over the full vector spaceRN and implement the normalization of the column vector w
the help of ad-function. This introduces the integration constantcN :

N~mW !5cN
21H)

i 51

N E
2`

`

dxi xi
miJ d~ ixiW 221!. ~8!

The next step is to remove thed-function. Settingxi5ui /Ar , we obtain

N~mW !r (N1m̄)/2215cN
21H)

i 51

N E
2`

`

dui ui
miJ d~ iuiW 22r !, ~9!

wherem̄5( i 51
N mi . Thed-function can now be removed by multiplying theleft-hand sideand the

right-hand sidewith e2r and integrating onr from 0 to `:

N~mW !GS N1m̄

2 D cN5)
i 51

N E
2`

`

dui ui
mie2ui

2
5)

i 51

N

GS 11mi

2 D . ~10!

Solving this equation forN(mW ), the ratioN(mW )/N(oW ) can be calculated, which leads to th
desired result:

^mW &5S N

2 D
m̄/2

21

)
i 51

N S 1

2D
mi /2

. ~11!

Here it is convenient to use the Pochhammer symbol (z)n5G(z1n)/G(z).11 Note that Eq.~10!
implies that the integral̂mW & vanishes if at least one component ofmW is odd.

C. The one-vector integral over the unitary group

It is natural to consider also integrals over the unitary groupU(N). This is much more
complicated because in general the monomials to integrate contain powers of the matrix el
and their complex conjugated counterparts. In the one-vector case, however, the integral o
unitary group can be mapped on a corresponding integral over the orthogonal group, which
again to a simple result~it seems that such a formula has never been published elsewhere!. If more
vectors are involved,R.1, the orthogonality conditions destroy this simple correspondence.

To obtain the desired expression for one-vector integrals, it is convenient to consider m
mials in the real and imaginary parts of the complex unit vectorwW . They can be identified with the
coordinates in a 2N-dimensional Euclidean space, where the Haar measure reduces to the co
measureV2 on the unit hypersphere. Denoting the one-vector integral of an arbitrary monom
^mW :nW &5^) i 51

N xi
miyi

ni&, wherewi5xi1 iyi , we may write
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^mW :nW &5
M~mW ,nW !

M~oW ,oW !
, M~mW ,nW !5E dV2~wW !)

i 51

N

xi
miyi

ni, wi5xi1 iyi . ~12!

Note the different notations:^mW :nW & stands for the one-vector integral over the unitary group, w
^mW ,nW &, used in Sec. IV, stands for the two-vector integral over the orthogonal group. As Eq~12!
shows, we may expresŝmW :nW & as a one-vector integral over the orthogonal groupO(2N):

^mW :nW &5^pW ,& wherepW is the 2N-dimensional concatenation ofmW andnW . Then we may apply Eq
~11!. This leads to

^mW :nW &5~N!(m̄1n̄)/2
21 )

i 51

N S 1

2D
mi /2

S 1

2D
ni /2

. ~13!

Again the integral̂ mW :nW & vanishes, if at least one component ofmW or nW is odd.

III. THE RECURSION FORMULA

The desired recursion formula shall express an arbitrary integral^M &, whereM is a power
matrix with R columns, as a linear combination of simpler integrals^M 8&, whereM 8 has only
R21 columns. Starting from Eq.~2! one may attack this problem head on, and separate
integration on the last unit vectorwW R from the remaining integral:

N~M !5E H )
j51

R21

dV~wW j!)
i 51

N

wi j
Mi jJ H )

m,n

R21

d~^wW muwW n&!J J~wW 1 ,...,wW R21 ;mW R!. ~14!

HeremW R is the last column vector of the power matrixM , and

J~wW 1 ,...,wW R21 ;mW R!5E dV~wW !H)
i 51

R

wi
MiRJ )

j51

R21

d~^wW juwW &!. ~15!

As shown in the following, the value of this integral can be expressed as a linear combinat
monomials in the integration variables$wi juj<R21%. If this is inserted back into Eq.~14!, it
obviously leads to the desired recursion formula.

To evaluate the integral~15!, we replace the integration over the unit sphere by an integra
over the full spaceRN, implementing the normalization condition with the help of ad-function.
This introduces the normalization constantcN as before in Eq.~8!. Then we remove thed-function
again, using the same trick as in Sec. II B. After that, we replace the remainingd-functions
~responsible for the orthogonality relations! by their respective Fourier representations. All th
leads to

J~wW 1 ,...,wW R21 ;mW R!5cN
21H)

i 51

N E dxi xi
MiRJ d~ ixW i221! )

j51

R21

d(^wW juxW &)

5cN
21GS N2R1m̄R11

2 D 21H)
i 51

N E dxi xi
MiRe2xi

2J )
j51

R21

d~^wW juxW &!

5cN
21GS N2R1m̄R11

2 D 21E dR21tW

pR21 )
i 51

N E dxi xi
MiRe2xi

2
12i ^tW uwW i8&xi,

~16!

wherewW i8 stands for the row-vector (wi1 ,...,wi ,R21)T. The integrals onxi are easily evaluated:
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J~¯ !GS N2R1m̄R11

2 D cN5E dR21tW

pR21 exp2( i 51
N ^tW uwW i8&2

)
i 51

N F (
k i50

MiR
k i :evenS MiR

k i
D

3~ i^tW uwW i8&!MiR2k iGS 11k i

2 D G . ~17!

Expanding theN-fold product in the second line, we obtain for the left-hand side

l.h.s.5(
kW

S mW R

kW D im̄R2k̄H)
i 51

N

GS 11k i

2 D J E dR21tW

pR21 H)
i 51

N

^tW uwW i8&
MiR2k iJ e2^tW uAtW &, ~18!

wherekW 5(k1 ,...,kN)T. Note that the sum runs only over suchkW , for which all components are
even, and that for the product of binomials the abbreviation from Eq.~4! is used. A bar over vecto
quantities such asm̄R andk̄ denotes the sum of all their components. The quadratic matrixA, with
elementsAmn5^wW muwW n&, has dimensionR21.

Now, the key observation is the following: The orthogonality conditions implemented in
form of d-functions in Eq.~14! select from the total integration region only a submanifold. Th
it holds that^wW muwW n&5dmn , so that the matrixA may be replaced by the unit matrix. Then it
possible to evaluate thetW -integral. The expansion of the product of scalar products leads to

l.h.s.5(
kW

S mW R

kW D im̄R2k̄H)
i 51

N

GS 11k i

2 D J (
K

~mW R2kW uK !H )
j51

R21 E dtj

p
tj

k̄je2tj
2

)
i 51

N

wi j
Ki jJ ,

~19!

whereK is a matrix index withR21 columns, as introduced in Eq.~6! together with the abbre
viation for the product of multinomials. Thek̄j’s are the sums over the components of the colu
vectors ofK. The remaining integrals are easily evaluated, which results in

J~ !5
p12R

cNGS N2R1m̄R11

2 D (
kW

S mW R

kW D ~21!(m̄R2k̄)/2H)
i 51

N

GS 11k i

2 D J
3(

K
~mW R2kW uK ! )

j51

R21

GS 11 k̄j

2
D)

i 51

N

wi j
Ki j. ~20!

Note that, as a consequence of thetj-integrals, the sum in the second line runs over suchK only,
for which all k̄1 ,...,k̄R21 are even. Inserting this expression into the initial Eq.~14! we obtain

N~M !5
p12R

cNGS N2R1m̄R11

2 D (
kW

S mW R

kW D ~21!(m̄R2k̄)/2H)
i 51

N

GS 11k i

2 D J (
K

~mW R2kW uK !

3H )
j51

R21

GS 11 k̄j

2
D J H )

j51

R21 E dV~wW j!)
i 51

N

wi j
Mi j1Ki jJ H )

m,n

R21

d~^wW muwW n&!J . ~21!

The integral over the normalized vectorswW 1 ,...,wW R21 can be identified withN(M (R21)1K)
which is a (R21)-vector integral. In this way, we obtain a recursion formula forN(M ). For the
normalization constant, we find
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N~o!5
p12R

cNGS N2R11

2 D H)
i 51

N

GS 1

2D J H )
j51

R21

GS 1

2D J N~o(R21)!. ~22!

Thus we obtain for theR-vector integral̂ M &, defined in Eq.~2!:

^M &5S N2R11

2 D
m̄R/2

21

(
kW

S mW R

kW D ~21!(m̄R2k̄)/2H )
i 51

N S 1

2D
k i /2

J
3(

K
~mW R2kW uK !H )

j51

R21 S 1

2D
k̄j/2

J ^M (R21)1K&. ~23!

This is the desired recursion formula and the main result of the present paper. As mentioned
it is understood that the first sum runs over suchkW only for which all components are even, whi
the second runs over suchK only for which all k̄j5( i 51

N Ki j are even. Furthermorem̄R

5( i 51
N MiR ,k̄5( i 51

N k i , andM (R21) stands for the matrix consisting of the firstR21 columns
of the matrixM .

In principle Eq.~23! allows one to evaluate integrals of arbitrary monomials of finite deg
The result is always expressible as a rational function of the dimensionN, because the repeate
expansion of Eq.~23! leads to nested sums of partial fractions inN. In this context it is useful to
note that only the prefactor of the r.h.s. depends explicitly onN. The formula~23! can be used
conveniently if eitherR or the degree of the monomial to be integrated is small. Otherwise
~23! may lead to very lengthy expressions. However, such expressions should still be mana
with an appropriate computer algebra system. This would allow for further systematic stud
this class of integrals.

In contrast to what one might expect, the integral^M & does not necessarily vanish if th
power matrixM has odd elements. It rather holds the following: If any sum over a row or col
of M is odd, then̂ M &50. Though this is in fact well known,12 it is still instructive to see that it
follows almost immediately from the recursion relation~23!.

To this end, permute columns and rows, and take the transpose if necessary, to transforM in
such a way that its last column contains the row or column whose sum of components is odd
apply Eq.~23!: The sum overkW is restricted to suchkW which have only even components. Hen
k̄ is even. Asm̄R is odd, and(j51

R21 k̄j5m̄R2k̄, at least one of the sumsk̄1 ,...,k̄R21 must be odd
as well. Such a term vanishes, because of what is said below Eq.~20!. This implies that all terms
of the sum overK vanish likewise, so that the complete integral gives zero.

IV. APPLICATIONS

In random matrix theory, many matrix ensembles are based on the concept of ortho
invariance. Physically this corresponds to a situation where the Hamiltonian for a spinless
tum particle possesses an antiunitary symmetry, e.g., time reversal invariance. The Gauss
circular orthogonal ensembles4,13,14 are well-known examples based on this concept. Other
amples are the Poisson orthogonal ensemble,15 or the recently introduced matrix ensembles f
semiseparable systems.8 In those cases the orthogonal group acts directly on the Hamiltonian
the statistical properties of the eigenvectors are uniquely determined by the orthogonal gro
its invariant measure. In fact, the ensemble of eigenvectors is simply given by the ortho
group itself. Therefore any correlators between the eigenvectors can be expressed and ca
in terms ofR-vector integrals.

In what follows, we first apply our integration formula~23! to the two-vector case. In this wa
we obtain a closed expression for arbitrary two-vector integrals. Then we compare this resu
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the corrected formula of Ref. 6. For illustration, we finally compute a simple three-vector inte
which can be evaluated with an independent method also. As it should be, we find the
answer with both methods.

A. The two-vector integral

Consider the arbitrary two-vector integral^M &5^mW ,nW &, where the first column vector ofM is
denoted bymW and the second bynW . In this case, Eq.~23! leads directly to

^mW ,nW &5S N21

2 D
n̄/2

21

(
kW

S nW
kW D ~21!(n̄2k̄)/2H )

i 51

N S 1

2D
k i /2

J S 1

2D
(n̄2k̄)/2

^mW 1nW 2kW &. ~24!

The sum runs over suchkW only, for which all components are even. A bar over a vector quan
denotes, as before, the sum of all its components. This formula has already been used in
to calculate various two-vector integrals, and numerical tests performed therein have confirm
validity. For later purpose we use Eq.~24! to evaluate the following simple integral:

K S 1 1

1 1

0 0

] ]

D L 5
2

N21
~21!

1

2 K S 2
2
0
]

D L 5
21

~N21!N~N12!
. ~25!

Note that the same result can be obtained by an indirect method12 also.
In principle, an integration formula for general two-vector integrals has already been

lished some time ago.6 After the correction of two misprints, it reads

)
i

ui
2miv i

2ni5p2N11222N1422((mi1ni )
G~N21!G@N211( i~mi1ni !#

G@( imi1~N21!/2#G@( ini1~N21!/2#

3 (
k1 ,...,kN ,l 1 ,...,l N50,...,0

2m1 ,...,2mN,2n1 ,...,2nN

~21!( i l i

3

) i S 2mi

ki
D S 2ni

l i
DG@~ki1 l i11!/2#G@mi1ni2~ki1 l i21!/2#

G@N/21( i~ki1 l i !/2#G@N/21( i~mi1ni !2( i~ki1 l i !/2#
, ~26!

where ; i :ki1 l i must be even. Here the original notation of Ref. 6 is used. The correc
concern the first line, where the nominator has been multiplied withG@N211( i(mi1ni)#, and
the sum overk1 ,...,kN ,l 1 ,...,l N , where the indices must start with zeros instead of ones. Fin
the notation is quite unfortunate, as it seems to prohibit monomials with odd powers, though
is no reason for it. Indeed, Eq.~26! holds in those cases as well. This can be checked, for insta
by computing the integral~25! with the help of Eq.~26!, settingm15m25n15n251/2.

Using the notation adopted in the present work, Eq.~26! reads

^mW ,nW &5
~N21!(m̄1n̄)/2

2m̄1n̄S N21

2 D
m̄/2

S N21

2 D
n̄/2

(
kW , lW

S mW

kW D S nW

lW D ~21! l̄ ^kW1 lW&^mW 2kW1nW 2 lW&. ~27!

If we compare the integration formulas~24! and ~27!, they differ considerably. It seems rath
difficult to prove their equivalence directly. Note moreover, that our result is much sim
because there the sum runs over a single vector-index only.
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B. A simple three-vector integral

The three-vector integral considered here is chosen because of its simplicity and bec
may be evaluated using an indirect method, which allows to crosscheck the result. W
compute the integral̂M & with

M5S 2 0 0

0 2 0

0 0 2

0 0 0

] ] ]

D . ~28!

Henceforth we will skip those parts of the column vectors which are zero anyway. Using
recursion formula~23! the three-vector integral̂M & can be reduced to a linear combination
two-vector integrals, for which we already have a closed expression, i.e., Eq.~24!. Thus, the
evaluation of̂ M & needs only a few steps:

K S 2 0 0

0 2 0

0 0 2
D L

5
2

N22 H 2(
K

S S 0
0
2
D UKD S 1

2D
k̄1/2

S 1

2D
k̄2/2
K S 2 0

0 2

0 0
D 1KL 1

1

2 K S 2 0

0 2D L J
5

2

N22 H 2
1

2 F K S 2 0

0 2

2 0
D L 1K S 2 0

0 2

0 2
D L G1

1

2

N11

~N21!N~N12!J
5

1

N22 H N11

~N21!N~N12!
22

N13

~N21!N~N12!~N14!J
5

N213N22

~N22!~N21!N~N12!~N14!
. ~29!

The result is expressed as a rational function, where care has been taken that nomina
denominator have no more common factors.

Alternatively we may computêM & with M as defined in Eq.~28!, starting from the following
identity:

S (
i

wi1
2 D S (

j
wj 2

2 D S (
k

wk3
2 D 51, ~30!

which holds for an arbitrarywPO(N). To this end we expand the products on the l.h.s. a
integrate on both sides over the group. This gives

N~N21!~N22!K S 2 0 0

0 2 0

0 0 2
D L 13N~N21!K S 2 0

2 0

0 2
D L 1NK S 2

2
2
D L 51. ~31!

It allows one to express the three-vector integral^M & as a linear combination of a one-vector a
a two-vector integral. According to Eqs.~11! and ~24!, these integrals are given by
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K S 2
2
2
D L 5

1

N~N12!~N14!
, K S 2 0

2 0

0 2
D L 5

N13

~N21!N~N12!~N14!
. ~32!

Thus we obtain

K S 2 0 0

0 2 0

0 0 2
D L 5

~N12!~N14!23~N13!11

~N22!~N21!N~N12!~N14!

5
N213N22

~N22!~N21!N~N12!~N14!
. ~33!

As expected, the result coincides with that in Eq.~29!. Here the indirect method worked so we
because we first wrote down the identities~30! and ~31!, and then chose our particular examp
^M &. However, if the value of a certain integral is needed, one would have to guess u
identities which allow one to express the integral by a linear combination of simpler on
procedure which is very difficult. In contrast to that, the recursion formula~23! always provides a
well-defined finite procedure, for the computation of any integral.

V. CONCLUSIONS

To summarize, we have derived a recursion formula, which expresses an arbitraryR-vector
integral over the orthogonal group as a linear combination of (R21)-vector integrals. It allows
one to successively evaluate the group integral of any finite monomial in the matrix eleme
the group. The simplicity of the result depends primarily onR, the number of column or row
vectors involved, and only secondarily on the degree of the monomial in question. The re
always given as a finite sum of partial fractions inN.

As an immediate consequence of the general result, we obtained a closed integration f
for arbitrary two-vector integrals, which is quite different and much simpler than the corre
previously known result.

In principle a similar recursion formula can be obtained for integrals over the unitary g
also. To that end one should consider monomials in the real and imaginary parts of the
elements. Though the derivation along the lines of the orthogonal case is rather straightfo
the resulting expressions are much more involved. It seems that the simple result for theR
51 is only an exception. More work is clearly necessary to clarify the situation in this case
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A generalization of the Weierstrass system of equations corresponding toCP2

harmonic maps is presented. This generalization allows us to study two-
dimensional surfaces immersed in a flat spaceR8 with Euclidean metric. We use
this system to suggest a possible geometrical interpretation ofCP2 harmonic maps.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1473874#

I. INTRODUCTION

Sigma models in two spatial dimensions are integrable and have been studied for a var
reasons. They are low dimensional analogs of four-dimensional Yang–Mills theories which
pivotal role in particle physics, they arise in some areas of condensed-matter physics, et
they are also interesting from a purely mathematical point of view. Moreover, they arise nat
in differential geometry in the investigation of immersion and deformations of surfaces.

Of course, there are many classes ofs models; particularly important amongst them are t
so-calledCPN21 s models. These models, all, possess topological properties and, as such,
the appearance of ‘‘topological solitons.’’

The models are a generalization of the, perhaps simplest,s model, namely theS2 model—
also called the vectorSO(3) model. TheCPN21 models involve maps fromR2, or S2 if one
wants to have nontrivial topology, toCPN21. It is easiest to define them in terms of the Lagran
ian density1

L5 1
4~Dmz!†

•Dmz, ~1.1!

wherez is a vector field ofN components,z5(z1,...,zN), which satisfies

z†
•z51. ~1.2!

The covariant derivativeDm acts onz:S2→CPN21 according to

Dmz5]mz2z~z†
•]mz!. ~1.3!

Herem51,2, of course, and denotes the space coordinatesx andy.
The total Lagrangian is given by

L5E L dx dy ~1.4!

and, if the model is defined overS2, we require thatL is finite.

a!Electronic mail: Grundlan@crm.umontreal.ca
b!Electronic mail: W.J.Zakrzewski@durham.ac.uk
33520022-2488/2002/43(6)/3352/11/$19.00 © 2002 American Institute of Physics
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As is well known, theCP1 sigma model (N52) can be equivalently described in terms of
three-component real vector fieldfW defined by

fW 5z†sW z, ~1.5!

wheresW is a vector of Pauli’ss matrices.
Then the Lagrangian density of theCP1 model ~1! becomes

L5]mfW "]mfW ~1.6!

together with the constraint

fW "fW 51, ~1.7!

i.e., fW lies on a unit sphereS2.
For a model defined overS2 all harmonic maps, i.e., solutions of the Euler Lagrange equat

which follow from ~1.4! are well known.1 They come in three separate classes: those which
holomorphic, those which are antiholomorphic, and the mixed ones. TheCP1 model has only
holomorphic and antiholomorphic harmonic maps but forCPN N>2 there are also mixed maps
These solutions have very different properties, e.g., holomorphic solutions are stable, as th
minima of the total Lagrangian, while the mixed solutions are not, as they are only saddle p

Recently, there has been a lot of interest in relatingCP1 maps to the solutions of the Weie
strass problem.2–4

In this case, according to Ref. 4 one considers a set of first-order equations for complex
f andc of z and z̄, given by

]c5pf, ]̄f52pc, p5ufu21ucu2 ~1.8!

where

]5
]

]~x1 iy !
5

]

]z
, ]̄5

]

]z̄
. ~1.9!

From the Weierstrass system~1.8! one constructs a geometric coordinate system of three
variablesXi , i 51,2,3 and, treatingXi(x,y) as a map ofR2 into R3 discusses the geometry o
these surfaces.

In this paper we address the question of the generalization of these ideas to higherCPN. Thus
we consider the case ofCP2. What is the corresponding Weierstrass system and how does
construct the corresponding real quantitiesXi? In Sec. II we collect together various results on t
CP1 system. We then discuss various formulations of theCP2 model and recall some of its
solutions. Next we present our generalized Weierstrass system and discuss some of its pro
We then present our ideas on how to construct a set of real-valued functionsXi(x,y) and show
how they describe the geometry of surfaces.

II. CP1 MODEL

A. General properties

For theCP1 sigma model it is convenient to introduce

W5
z2

z1
5

f11 if2

11f3 . ~2.1!

In terms ofW the Lagrangian becomes
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L5E u]Wu21u]W̄u2

~11uWu2!2 dz dz̄ ~2.2!

and its Euler Lagrange equations take the form

]]̄W22W̄
]W]̄W

uWu211
50. ~2.3!

In Ref. 3 it was shown that the relation betweenCP1 maps W and thef, c fields of the
Weierstrass problem is given by~up to an overall multiplication off andc by a factor21!

c5W
~ ]̄W̄!1/2

11uWu2
, f5

~]W!1/2

11uWu2
, ~2.4!

where

W5
c

f̄
. ~2.5!

As is well known5 the CP1 equations can be written as a compatibility condition for a se
two linear spectral equations for a two component auxiliary vectorC,

]C5
2

11l
@]P,P#C, ]̄C5

2

12l
@]̄P,P#C, ~2.6!

where the 2 by 2 matrixP is a projector given by

P5
1

A S 1 W̄

W uWu2D , A511uWu2. ~2.7!

The compatibility conditions for~2.6! are, clearly,

@]]̄P, P#50 ~2.8!

which, as can be easily checked, are equivalent to~2.3!.
Note that~2.8! can be written in the form of a conservation law

]@ ]̄P,P#1 ]̄@]P,P#50 ~2.9!

or, equivalently, using the traceless matricesK andM ,

]K1 ]̄M50, ~2.10!

where the matricesK andM are given by

K5
1

A2 S W̄]̄W2W]̄W̄ ]̄W̄1W̄2]̄W

2 ]̄W2W2]̄W̄ W]̄W̄2W̄]̄W
D ~2.11!

and

M5
1

A2 S W̄]W2W]W̄ ]W̄1W̄2]W

2]W2W2]W̄ W]W̄2W̄]W
D . ~2.12!
                                                                                                                



3355J. Math. Phys., Vol. 43, No. 6, June 2002 The Weierstrass representation for surfaces

                    
To proceed further it is worth recalling the existence of various quantities of theCPN21

model which are holomorphic.1 One of them is

T5~D̄z!†
•Dz, ~2.13!

whereD5 1
2(D12 iD 2) andD̄5 1

2(D11 iD 2) denote the covariant derivative~1.3! with respect to
z5x1 iy . As is easy to check,T satisfies

]̄T50 ~2.14!

and so is a function ofz5x1 iy only.
In the CP1 case, the functionT expressed in terms ofW is given by

T52
]W]W̄

~11uWu2!2 . ~2.15!

In fact, for the solutions of~2.3! which describe fields defined onS2, W is any holomorphic or
antiholomorphic function and soT50.

B. Weierstrass system

Let us introduce the complex fieldsf andc by ~2.4! and~2.5!. In Refs. 3 and 4 it was shown
that

]c5pf, ]̄f52pc, ~2.16!

where

p5ufu21ucu25
~]W]̄W̄!1/2

11uWu2
. ~2.17!

Now we reexpress the quantityT in terms of them using~2.4! we get

T5c̄]f2f]c̄. ~2.18!

Moreover, we also have

p5Aufu2, A511uWu2 ~2.19!

and we can express the first derivatives ofW in terms ofc andf:

]W5A2f2, ]̄W52T̄~f̄ !22. ~2.20!

This allows us to derive the explicit form of matricesK andM in terms off andc. So, we
have

K5S 2~cf̄1R̄c̄f! f̄22R̄c̄2

2c21R̄f2 cf̄1R̄c̄f
D ~2.21!

and

M5S ~ c̄f1Rcf̄! c̄22Rf̄2

2f21Rc2
2~ c̄f1Rcf̄!,

D ~2.22!

where we have introduced the following notation:
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R5
T

p2 .

As a consequence of~2.9! we find that the system~2.16! possesses, at least, three furth
conservation laws

2]~cf̄1R̄c̄f!1 ]̄~ c̄f1Rcf̄!50,

]~2c21R̄f2!1 ]̄~2f21Rc2!50, ~2.23!

]~f̄22R̄c̄2!1 ]̄~ c̄22Rf̄2!50.

These formulas differ slightly from the conservation laws given in Ref. 4, as they co
additional terms involvingR. However, if we putR50 in ~2.23! we recover the expressions o
Ref. 4.

As a result of conservation laws~2.23! we can introduce three real-valued functionsXi(z,z̄),
i 51,2,3 given by

X15 i E
g
@c̄21f22R~c21f̄2!#dz2@c21f̄22R̄~ c̄21f2!#dz̄,

X25E
g
@c̄22f21R~c22f̄2!#dz1@c22f̄21R̄~ c̄22f2!#dz̄, ~2.24!

X3522E
g
@c̄f1Rcf̄#dz1@cf̄1R̄c̄f#dz̄,

whereg is any curve from a fixed point toz.
The conservation laws~2.23! guarantee that quantitiesXi do not depend on the choice of th

curveg in the complex planeC ~but only its end points!. This is becauseXi can be rewritten as

Xi5E
g
Fi~z,z̄ !dz1F̄ i~z,z̄ !dz̄, i 51,2,3, ~2.25!

whereFi satisfy the following conditions:

]̄Fi5]F̄ i , ~2.26!

which shows that the integrands are total derivatives.
The functionsXi(z,z̄) can be considered as components of a radius vector

rW~z,z̄ !5~X1~z,z̄ !,X2~z,z̄ !,X3~z,z̄ !! ~2.27!

of an orientable, simply connected, surface~locally parametrized byz and z̄ immersed inR3).
This allows us to calculate the tangent vectors to the surface, i.e.,

]rW5~ i @c̄21f22R~c21f̄2!#,@c̄22f21R~c22f̄2!#,22~ c̄f1Rcf̄!! ~2.28!

and

]̄rW5~2 i @c21f̄22R̄~ c̄21f2!#,@c22f̄21R̄~ c̄22f2!#,22~cf̄1R̄c̄f!!. ~2.29!
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These expressions allow us to calculate the induced metric. We find the following expre
for the components of the induced metric~written in holomorphic components!:

gzz5~]rW,]rW !54Rp2, gz̄ z̄5~ ]̄rW,]̄rW !54R̄p2 ~2.30!

and

gzz̄5~]rW,]̄rW !52~p21uRu2p2!. ~2.31!

Hence, for the harmonic maps,R50 and the only nonvanishing component of the metric
gzz̄52p2. In this case solutions of the system~2.16! are represented by expression~2.4!, where
W(z) is an arbitrary holomorphic function. As is well known1 finiteness of the energy restrict
W(z) to being a rational function. Geometrically, such functions parametrize an immersed s
S2PR3.

III. CP2 MODEL

A. General properties

Now we consider a more general situation when the Lagrangian is given by~1.1! with a
three-component vectorz5(z1 ,z2 ,z3) (zi , which satisfiesz̄•z5( i z̄izi51!. We can define two
complex fieldsWi , i 51,2 through

W15
z1

z3
, W25

z2

z3
~3.1!

and find that the Euler Lagrange equations take the form6

]̄]W12
2W̄1

A
]W1]̄W12

W̄2

A
~]W1]̄W21 ]̄W1]W2!50,

~3.2!

]̄]W22
2W̄2

A
]W2]̄W22

W̄1

A
~]W1]̄W21 ]̄W1]W2!50,

and their respective complex conjugate equations and where

A511uW1u21uW2u2.

Clearly, when, say,W250 ~i.e., z250) the model, and its equations, reduce to theCP1 case.
Like in the CP1 case we still have an auxiliary spectral problem given by~2.6! but this time

the auxiliary vectorF has three components and the 333 projectorP is given by

P5
1

A S 1 W̄1 W̄2

W1 uW1u2 W1W̄2

W2 W̄1W2 uW2u2
D . ~3.3!

As in the CP1 case the compatibility condition for the two equations in~2.6! gives the
equations of motion~2.8! which are equivalent to~3.2!. Similarly as in the previous case th
system~3.2! possesses a conservation law

]K1 ]̄M50 ~3.4!

with
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K5@ ]̄P,P#, M5@]P,P#. ~3.5!

The explicit forms of 333 traceless matricesK andM are rather complicated expressions so
shall not write them explicitly here.

In the CP2 case the quantityT can be written in terms ofW1 andW2 as

T5
]W1]W̄11]W2]W̄21~W̄1]W̄22W̄2]W̄1!~W1]W22W2]W1!

~11uW1u21uW2u2!2 . ~3.6!

All solutions of theCP2 model are well known. They fall into three classes; those descr
by analytic fields, i.e.,Wi5Wi(z), antianalytic@Wi5Wi( z̄)#, and mixed ones.

Mixed solutions can be determined from either the holomorphic or the antiholomorphic
by the following procedure. Take arbitrary holomorphic functionsf i5 f i(z) and define

Fi j 5 f i] f j2 f j] f i , i , j 51,2,3. ~3.7!

Next, introduce new complex valued functions:

gi5(
kÞ i

f̄ kFki . ~3.8!

Then we can determineWi as ratios of the components ofgi , i.e.,

W15
g2

g1
, W25

g3

g1
. ~3.9!

Then it can be shown1 that all mixed solutions correspond toWi constructed in this way from
somef i(z). An alternative approach starts with antiholomorphicf i i.e., f i5 f ( z̄) and constructsgi

in the same way but using]̄ instead of] in the definition ofFi j .

B. Generalized Weierstrass system

Now, according to the discussion of the previous section we can introduce two pa
complex functionsc i ,f i i 51,2, which have to satisfy

Wi5
c i

f̄ i

, i 51,2. ~3.10!

The aim of this section is to find a system of first-order equations which is a generalizati
~2.16! and which are in a one-to-one correspondence with the equations of theCP2 sigma model
~3.2!.

Let us note that a possible set of equations for functionsc i andf i is given by

]̄f152
1

2 F ~A1uW1u2!f1f̄2c21~A111uW1u2!uf1u2c11
f2

f1
c̄2c1

21~11uW2u2!
uf2u4

uf1u2
c1G ,
~3.11!

]̄f252
1

2 F ~A1uW2u2!f2f̄1c11~A111uW2u2!uf2u2c21
f1

f2
c̄1c2

21~11uW1u2!
uf1u4

uf2u2 c2G ,
~3.12!
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]c152
1

2 F ~A1uW1u2!f2c̄2c11~A111uW1u2!uc1u2f11
f̄2

f̄1
2

c̄1c2uc1u2G
2

1

2
~11uW2u2!

uf2u4

f̄1uf1u2
uc1u21A~11uW1u2!uf1u2f11Af2c1c̄2 , ~3.13!

]c252
1

2 F ~A1uW2u2!f1c̄1c21~A111uW2u2!uc2u2f21
f̄1

f̄2
2

c̄2c1uc2u2G
2

1

2
~11uW1u2!

uf1u4

f̄2uf2u2
uc2u21A~11uW2u2!uf2u2f21Af1c2c̄1 , ~3.14!

A511uW1u21uW2u2,

and their respective complex conjugate equations, where we can use Eq.~3.10! to express the
above-given expressions in terms ofc i andf i ’s.

It is easy to check that if we putf25W250 then the system of equations~3.11!–~3.14!
reduces to Eq.~2.16! and the system~3.2! reduces to theCP1 model ~2.3!. These limits charac-
terize some properties of solutions of the system of first-order equations~3.11!–~3.14!.

Moreover, it is possible, although somewhat tedious, to show that Eqs.~3.11!–~3.14! are
equivalent to~3.2!. Thus Eqs.~3.11!–~3.14! can be thought of as beingCP2 analogs of~2.16!;
@like ~2.16! they involve only first derivatives and only]̄f i and]c i are given#.

Here we can use the fact@the generalization of~2.4!# that

A2f1
25~11uW2u2!]W12W1W̄2]W2 ,

~3.15!

A2f2
25~11uW1u2!]W22W2W̄1]W1 .

Next we address the question of the existence of real valued functionsXi ’s. To construct them
we note that we can exploit the matricesK andM given by~3.4! and~3.5!. Then theCP2 analog
of matrices~2.21! and ~2.22! becomes

K5K12
1

A2 K2 , ~3.16!

where

K15S 2~c1f̄11c2f̄2! f̄1
2 f̄2

2

2W1~c1f̄11c2f̄2! c1f̄1

c1

f̄1

f̄2
2

2W2~c1f̄11c2f̄2!
c2

f̄2

f̄1
2

c2f̄2

D ~3.17!

and
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K25S 2~W̄1]̄W11W̄2]̄W2! 2W̄1~W̄1]̄W11W̄2]̄W2! 2W̄2~W̄1]̄W11W̄2]̄W2!

F1 W̄1F1 W̄2F1

F2 W̄1F2 W̄2F2

D ,

~3.18!

where we have defined the following expressions:

F15~11uW2u2!]̄W12W1W̄2]̄W2 ,
~3.19!

F25~11uW1u2!]̄W22W2W̄1]̄W1

in order to abbreviate expressions~3.16! and ~3.18!.
Similarily, matrix M is given by

M5M12
1

A2 M2 , ~3.20!

where

M15S ~ c̄1f11c̄2f2! W̄1~ c̄1f11c̄2f2! 1W̄2~ c̄1f11c̄2f2!

2f1
2

2c̄1f1 2
c̄2

f2
f1

2

2f2
2

2
c̄1

f1
f2

2 2c̄2f2

D ~3.21!

and

M25S 2~W̄1]̄W11W̄2]̄W2! F̄1 F̄2

2W1~W1]W̄11W2]W̄2! W1F̄1 W1F̄2

2W2~W1]W̄11W2]W̄2! W2F̄1 W2F̄2

D . ~3.22!

Note that matricesK2 andM2 involve expressions which involve]̄Wi which are not known.
In the holomorphic caseW5Wi(z) and soK25M250. In fact, this is also true in general; whe
the equations of motion are satisfied we can setM25K250 and the conservation laws are st
satisfied. Hence, in our search of real-valued functionsXi we can restrict our attention to onlyK1

andM1 .
As both matrices (K1 andM1) are traceless we can use them to define eight new conserv

laws. These in turn allow us to define nine real quantitiesXi(z,z̄), eight of which are linearly
independent.Xi i 51,2,3 are constructed by taking diagonal entries of matricesM andK:

X152E
g
@c̄1f11c̄2f2#dz1@c1f̄11c2f̄2#dz̄,

X25E
g
c̄1f1dz1c1f̄1 dz̄, ~3.23!

X35E
g
c̄2f2 dz1c2f̄2 dz̄,

which satisfy
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X11X21X350. ~3.24!

The off-diagonal entries of matricesK and M when combined with the property thatK†52M
give us a further six real quantitiesXi , i 54,...,9 i.e.,

X41 iX55E
g
F2mf1

21m̄S c̄1
21c̄1c̄2

f2

f1
D Gdz1F2m̄f̄1

21mS c1
21c1c2

f̄2

f̄1

D Gdz̄,

X61 iX75E
g
F2nf2

21 n̄S c̄2
21c̄1c̄2

f1

f2
D Gdz1F2 n̄f̄2

21nS c2
21c1c2

f̄1

f̄2

D Gdz̄, ~3.25!

X81 iX952E
g
Faf2

2 c̄1

f1

1āf1
2 c̄2

f2
Gdz1F āf̄2

2 c1

f̄1

1af̄1
2 c2

f̄2
Gdz̄.

Herem, n, anda are arbitrary constants. As in theCP1 case the integrals in the definition o
Xi do not depend on the trajectory of the curveg ~but are only on its end pointz! in C since
conditions ~2.26! hold. So we can then consider functionXi as components of an eigh
dimensional vectorrW and use it to construct and investigate two-dimensional surfaces immers
R8. Thus, putting it all together, we see that if the complex functionsc i and f i , i 51,2 are
solutions of the system of first-order equations~3.11!–~3.14!, the generalized Weierstrass formul
given by ~3.23!–~3.25! determine the conformal immersion of a surface intoR8.

To see this we takem5n5a5 (11 i )/2 and considerXi , i 52,...,9 as components of a radiu
vector inR8,

rW~j,j̄ !5~X2 ,X3 ,...,X9!. ~3.26!

This allows us to define the induced metric@by expressions like~2.30! and ~2.31!#. We find
that onlygjj̄Þ0 and, in fact, is given by

gjj̄5
u]W1u21u]W2u21uW2]W12W1]W2u2

~11uW1u21uW2u2!2 . ~3.27!

Having found the metric we can now study various geometrical aspects of our surfaces
will be discussed in more detail in future work.

IV. CONCLUSIONS AND FURTHER COMMENTS

In this paper we have shown how to generalize the old ideas of Weierstrass from theCP1 to
the CP2 case. We have found that the corresponding first-order equations have much more
plicated form. We have also started discussing the geometry of the associated surfaces
details to a future publication. We are currently looking at the generalization of our resu
CPN.
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Expansion of higher transcendental functions in a small parameter are needed in
many areas of science. For certain classes of functions this can be achieved by
algebraic means. These algebraic tools are based on nested sums and can be for
mulated as algorithms suitable for an implementation on a computer. Examples
such as expansions of generalized hypergeometric functions or Appell functions are
discussed. As a further application, we give the general solution of a two-loop
integral, the so-called C-topology, in terms of multiple nested sums. In addition, we
discuss some important properties of nested sums, in particular we show that they
satisfy a Hopf algebra. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1471366#

I. INTRODUCTION

The expansion of higher transcendental functions1,2 is a common problem occurring in man
areas of science. It is of particular interest in particle physics in the calculation of higher
radiative corrections to scattering amplitudes. There, higher transcendental functions occ
quently in formal solutions for specific loop integrals. The necessary expansions of these fun
are in general a highly nontrivial task. This is particularly true if the expansions are require
very high order.

In calculations of higher order radiative corrections, classical polylogarithms,3 as well as
Nielsen’s generalized polylogarithms4 appear. However, this set of functions will not suffice, if th
number of loops grows, or if several different scales are involved in the problem. Several e
sions of this class of functions to multiple polylogarithms have been discussed recently.5–8

It is the aim of this paper to perform a systematic study of multiple nested sums appear
the expansion of higher transcendental functions around integer values of their indices. T
end, we define so-calledZ-sums, study their algebraic properties, and discuss their relation t
multiple polylogarithms introduced in the literature.5–8 We give algorithms to solve these multip
nested sums to any order in the expansion parametere in terms of a given basis inZ-sums. All
algorithms can be readily implemented on a computer. TheZ-sums can be considered as certa
generalizations of Euler–Zagier sums9,10 or of harmonic sums11–13 involving multiple ratios of
scales. The latter are known in physics since the calculation of higher order Mellin moments
deep-inelastic structure functions.11,14–16

At the same time, our results allow us to investigate higher loop multiscale integrals occ
for instance in pertubative corrections to four-particle scattering amplitudes. These integral
received great attention in recent years, mainly motivated by calculations of the next-to-ne
leading order corrections to amplitudes for Bhabha scattering,17 for pp→2 jets18–20 for pp
→gg,21 and for light-by-light scattering.22

a!Electronic mail: moch@particle.uni-karlsruhe.de
b!Electronic mail: uwer@particle.uni-karlsruhe.de
c!Electronic mail: stefanw@fis.unipr.it
33630022-2488/2002/43(6)/3363/24/$19.00 © 2002 American Institute of Physics
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The relevant master integrals at two loops with four external legs have been calculated
a variety of techniques. Analytic results were obtained either with the help of Mellin–Ba
representations23,24or with differential equations.8,25Numerical results were obtained by a nume
cal evaluation of the coefficients of thee-expansion.26,27 Here, we want to advocate a differen
point of view based on multiple nested sums. As a new result and to illustrate our approac
discuss a specific two-loop integral, the so-called C-topology with one leg offshell, which ca
reduced for arbitrary powers of the propagators and arbitrary dimensions to the aforemen
sums. This is useful for the calculation of the two-loop amplitude fore1e2→3 jets. Some of the
techniques presented here have already been used in a recent calculation with massive fer28

In addition, there exists a wide variety of related literature on higher transcendental fun
occurring in loop integrals and we can only mention a few of them here.29–35

This paper is organized as follows. In Sec. II we introduce nested sums, show that they
an algebra and summarize some important special cases of our definitions. Section III conta
main results of this paper, in particular the algorithms for solving certain classes of nested
In Sec. IV we give some examples for expansions of generalized hypergeometric functions,
functions, and the Kampe´ de Fériet function. As an application to higher loop multiscale integra
we discuss the C-topology in Sec. IV D. In Appendix A we show that the algebraic structu
nested sums forms a Hopf algebra.36,37 In Appendix B we briefly review the multiple polyloga
rithms of Goncharov.5

II. DEFINITION AND PROPERTIES OF NESTED SUMS

We define theZ-sums by

Z~n!5H 1, n>0

0, n,0,
~1!

Z~n;m1 , . . . ,mk ;x1 , . . . ,xk!5(
i 51

n x1
i

i m1
Z~ i 21;m2 , . . . ,mk ;x2 , . . . ,xk!,

k is called the depth,w5m11 . . . 1mk the weight. An equivalent definition is given by

Z~n;m1 , . . . ,mk ;x1 , . . . ,xk!5 (
n> i 1. i 2.¯. i k.0

x1
i 1

i 1
m1

¯

xk
i k

i k
mk

. ~2!

In a similar way we define theS-sums by

S~n!5H 1, n.0

0, n<0,
~3!

S~n;m1 , . . . ,mk ;x1 , . . . ,xk!5(
i 51

n x1
i

i m1
S~ i ;m2 , . . . ,mk ;x2 , . . . ,xk!.

Once again an equivalent representation is given by

S~n;m1 , . . . ,mk ;x1 , . . . ,xk!5 (
n> i 1> i 2>¯> i k>1

x1
i 1

i 1
m1

¯

xk
i k

i k
mk

. ~4!

TheS-sums are closely related to theZ-sums, the difference being the upper summation bound
for the nested sums: (i 21) for Z-sums,i for S-sums. We introduce bothZ-sums andS-sums,
since some properties are more naturally expressed in terms ofZ-sums while others are mor
naturally expressed in terms ofS-sums. We can easily convert from the notation withZ-sums to
the notation withS-sums and vice versa:
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S~n;m1 , . . . ;x1 , . . . !5 (
i 151

n x1
i 1

i 1
m1 (

i 251

i 121 x2
i 2

i 2
m2

S~ i 2 ;m3 , . . . ;x3 , . . . !

1S~n;m11m2 ,m3 , . . . ;x1x2 ,x3 , . . . !,
~5!

Z~n;m1 , . . . ;x1 , . . . !5 (
i 151

n x1
i 1

i 1
m1 (

i 251

i 1 x2
i 2

i 2
m2

Z~ i 221;m3 , . . . ;x3 , . . . !

2Z~n;m11m2 ,m3 , . . . ;x1x2 ,x3 , . . . !.

The first formula allows to convert recursively anS-sum into aZ-sum. The second formula yield
the conversion from aZ-sum to a S-sum. For example in terms ofS-sums theZ-sum
Z(n;m1 ,m2 ,m3 ,x1 ,x2 ,x3) reads

Z~n;m1 ,m2 ,m3 ,x1 ,x2 ,x3!5S~n;m1 ,m2 ,m3 ,x1 ,x2 ,x3!2S~n;m11m2 ,m3 ,x1x2 ,x3!

2S~n;m1 ,m21m3 ,x1 ,x2x3!1S~n;m11m21m3 ,x1x2x3!. ~6!

Furthermore theZ-sums and theS-sums obey an algebra. A product of twoZ-sums with the
same upper summation limit can be written in terms of singleZ-sums. A straightforward gener
alization of the results given by Vermaseren on the multiplication of harmonic sums yields12

Z~n;m1 , . . . ,mk ;x1 , . . . ,xk!Z~n;m18 , . . . ,ml8 ;x18 , . . . ,xl8!

5 (
i 151

n x1
i 1

i 1
m1

Z~ i 121;m2 , . . . ,mk ;x2 , . . . ,xk!Z~ i 121;m18 , . . . ,ml8 ;x18 , . . . ,xl8!

1 (
i 251

n x18
i 2

i
2
m18

Z~ i 221;m1 , . . . ,mk ;x1 , . . . ,xk!Z~ i 221;m28 , . . . ,ml8 ;x28 , . . . ,xl8!

1(
i 51

n
~x1x18! i

i m11m18
Z~ i 21;m2 , . . . ,mk ;x2 , . . . ,xk!Z~ i 21;m28 , . . . ,ml8 ;x28 , . . . ,xl8!. ~7!

Recursive application of Eq.~7! leads to singleZ-sums. The proof of Eq.~7! follows immediately
from

(
i 51

n

(
j 51

n

ai j 5(
i 51

n

(
j 51

i 21

ai j 1(
j 51

n

(
i 51

j 21

ai j 1(
i 51

n

aii , ~8!

which is sketched in Fig. 1. Note that Eq.~7! directly translates into an algorithm for the mult
plication of twoZ-sums. Details on the implementation of this algorithm on a computer ca
found for example in Ref. 12. We give an example for the product of twoZ-sums:

FIG. 1. Sketch of the proof for the multiplication ofZ-sums. The sum over the square is replaced by the sum over the
regions on the right-hand side.
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Z~n;m1 ,m2 ;x1 ,x2!3Z~n;m3 ;x3!5Z~n;m1 ,m2 ,m3 ;x1 ,x2 ,x3!1Z~n;m1 ,m3 ,m2 ;x1 ,x3 ,x2!

1Z~n;m3 ,m1 ,m2 ;x3 ,x1 ,x2!1Z~n;m1 ,m21m3 ;x1 ,x2x3!

1Z~n;m11m3 ,m2 ;x1x3 ,x2!. ~9!

Note that the product conserves the weight. TheZ-sums form actually a Hopf algebra. Mor
details can be found in Appendix A.

The S-sums also obey an algebra. The basic formula reads

S~n;m1 , . . . ,mk ;x1 , . . . ,xk!3S~n;m18 , . . . ,ml8 ;x18 , . . . ,xl8!

5 (
i 151

n x1
i 1

i 1
m1

S~ i 1 ;m2 , . . . ,mk ;x2 , . . . ,xk!S~ i 1 ;m18 , . . . ,ml8 ;x18 , . . . ,xl8!

1 (
i 251

n x18
i 2

i
2
m18

S~ i 2 ;m1 , . . . ,mk ;x1 , . . . ,xk!S~ i 2 ;m28 , . . . ,ml8 ;x28 , . . . ,xl8!

2(
i 51

n
~x1x18! i

i m11m18
S~ i ;m2 , . . . ,mk ;x2 , . . . ,xk!S~ i ;m28 , . . . ,ml8 ;x28 , . . . ,xl8!. ~10!

Note the minus sign in front of the last term compared to the corresponding formula forZ-sums.
Special cases. Z-sums andS-sums are generalizations of more known objects. We give h

an overview of the most important special cases.
For n5` the Z-sums are the multiple polylogarithms of Goncharov:5

Z~`;m1 , . . . ,mk ;x1 , . . . ,xk!5Limk , . . . ,m1
~xk , . . . ,x1!. ~11!

For x15 ¯ 5xk51 the definition reduces to the Euler–Zagier sums:9,10

Z~n;m1 , . . . ,mk ;1, . . . ,1!5Zm1 , . . . ,mk
~n!. ~12!

For n5` andx15 ¯ 5xk51 the sum is a multiplez-value:6

Z~`;m1 , . . . ,mk ;1, . . . ,1!5z~mk , . . . ,m1!. ~13!

The S-sums reduce forx15 ¯ 5xk51 ~and positivemi! to harmonic sums:12

S~n;m1 , . . . ,mk ;1, . . . ,1!5Sm1 , . . . ,mk
~n!. ~14!

The multiple polylogarithms of Goncharov contain as the notation already suggests as s
the classical polylogarithms Lin(x),3 as well as Nielsen’s generalized polylogarithms4

~15!

~16!

and the two-dimensional harmonic polylogarithms introduced recently by Gehrmann
Remiddi.8 The exact connection to the two-dimensional harmonic polylogarithms is show
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Appendix B together with a brief review of the multiple polylogarithms of Goncharov. Eul
Zagier sums and harmonic sums occur in the expansion of gamma functions: For positive in
n we have on the positive side

G~n1e!5G~11e!G~n!~11eZ1~n21!1e2Z11~n21!1e3Z111~n21!

1 ¯ 1en21Z11 . . . 1~n21!!. ~17!

On the negative side~againn.0! we have

G~2n111e!5
G~11e!

e

~21!n21

G~n!
~11eS1~n21!1e2S11~n21!1e3S111~n21!1 . . . !.

~18!

The usefulness of theZ-sums lies in the fact that they interpolate between Goncharov’s mul
polylogarithms and Euler–Zagier sums. In addition, the interpolation is compatible with the
bra structure. Figure 2 summarizes the relations between the various special cases.

III. ALGORITHMS

In this section we give the detailed algorithms which allow one to solve thee-expansion of
nested transcendental sums in terms ofZ-sums orS-sums defined in Eqs.~1! and~3!, respectively.
By a transcendental sum we mean a sum overi of finite or infinite summation range involving th
following objects.

~1! Fractions of the form

xi

~ i 1c!m , ~19!

wherem is an integer,c a non-negative integer, andx a real number.
~2! Ratios of two gamma functions

G~ i 1a11b1e!

G~ i 1a21b2e!
, ~20!

wherea1 anda2 are integers.
~3! Z- andS-sums are also allowed to appear as subsums:

FIG. 2. The inheritance diagram forZ-sums shows the relations between the various special cases.
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Z~ i 1c21;m1 , . . . ;x1 , . . . ! or S~ i 1c8;m1 , . . . ;x1 , . . . !. ~21!

The offsetsc andc8 are integers.
~4! We further allow these building blocks to occur also with index (n2 i ), for example as in

S~n2 i ;m18 , . . . ;x18 , . . . !. ~22!

Heren denotes the upper summation limit.
~5! In addition binomials

S n
i D5

n!

i ! ~n2 i !!
~23!

may occur.
Some examples of sums which can be constructed from these building blocks are

(
i 51

n
xi

~ i 14!3

yi

~ i 12!8

G~ i 111e!

G~ i 1213e!
, (

i 51

`

xi
G~ i 1ae!

G~ i 112ce!

G~ i 1be!

G~ i 11!
. ~24!

There are some simplifications, which can be done immediately: Partial fractioning is us
reduce a product forc1Þc2 ,

x1
i

~ i 1c1!m1

x2
i

~ i 1c2!m2
5

1

c22c1
F x1

i

~ i 1c1!m1

x2
i

~ i 1c2!m221 2
x1

i

~ i 1c1!m121

x2
i

~ i 1c2!m2G , ~25!

to terms which involve only the first factor or only the second one, but not both.
Ratios of two gamma functions as in Eq.~20! are first reduced to the formG( i 1b1e)/G( i

1b2e) with the help of the identityG(x11)5xG(x). They are then expanded ine using Eq.~17!.
To invert the power series which is obtained in the denominator the formula

~11eZ1~n21!1e2Z11~n21!1e3Z111~n21!1 ¯ 1en21Z11 ¯ 1~n21!!21

512eS1~n21!1e2S11~n21!2e3S111~n21!1 ¯ ~26!

is useful to speed up the computation on a computer.
There are also some basic operations involvingZ- or S-sums. First of all we can easily conve

between the two notations, using Eq.~5!. Furthermore we would like to be able to relate theZ-
sumZ(n1c21, . . . ) toZ(n21, . . . ) or theS-sumS(n1c, . . . ) to S(n, . . . ), wherec.0 is a
fixed number. This can easily be done with the help of the following formulas:

Z~n1c21;m1 , . . . ;x1 , . . . !5Z~n21;m1 , . . . ;x1 , . . . !1 (
j 50

c21

x1
j

x1
n

~n1 j !m1

3Z~n211 j ;m2 , . . . ;x2 , . . . !,
~27!

S~n1c;m1 , . . . ;x1 , . . . !5S~n;m1 , . . . ;x1 , . . . !1(
j 51

c

x1
j

x1
n

~n1 j !m1
S~n1 j ;m2 , . . . ;x2 , . . . !.

TheZ- or S-sums appearing in the last term have a reduced depth and the problem can be
recursively.

Another situation which appears quite often is the product of two sums. If the upper su
tion limits of the two sums differ by some integerc we first synchronize them with the help of Eq
~27!. For sums with equal upper summation limit one may use the algebra Eq.~7! or Eq. ~10! to
convert the product into single sums of higher weight.
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Furthermore we can bringZ-sums andS-sums to a standard form by eliminating letters w
negative degrees, that is positive powers ofi . In general, these cases are easy to handle.
illustrate this forS-sums. We considerS(n;2m1 ,m2 , . . . ;x1 ,x2 , . . . ), write out the outermost
sum of theS-function, and then interchange the order of summation:

S~n;2m1 ,m2 , . . . ;x1 ,x2 , . . . !5 (
i 251

n x2
i 2

i 2
m2

S~ i 2 ;m3 , . . . ! (
i 15 i 2

n

i 1
m1x1

i 1 . ~28!

The inner sum can be evaluated for any given weight analytically. Subsequently the outer su
be done with Eq.~3!. If a negative weight occurs inside a sum, Eq.~28! is applied to the subsum
starting from the negative weight.

If a binomial appears in the sum, this sum may be written as a conjugation. To any fun
f (n) of an integer variablen one defines the conjugated functionC+ f (n) as the following sum:12

C+ f ~n!52(
i 51

n S n
i D ~21! i f ~ i !. ~29!

Conjugation satisfies the following two properties:

C+151, ~30!

C+C+ f ~n!5 f ~n!, ~31!

which can be easily verified.
We classify four types of transcendental sums, which are dealt with in the algorithms A

~1! Sum overi involving only Z( i 21; . . . ) ~type A!.
~2! Sum overi involving bothZ( i 21; . . . ) andZ(n2 i 21; . . . ) ~type B!.
~3! Sum overi involving S( i ; . . . ) and abinomial ~type C!.
~4! Sum overi involving bothS( i ; . . . ), S(n2 i ; . . . ) and abinomial ~type D!.

Many of the algorithms use a recursion. They relate a given problem to a simpler one,
with a reduced depth or weight of theZ-sums orS-sums involved. In these cases we only give o
step in the recursion.

The algorithms presented in this paper are all suited for programming in a computer a
system likeGINAC,38 FORM,39 or the commercial ones likeMATHEMATICA or MAPLE. Implementa-
tions within theGINAC framework and inFORM along the lines of Ref. 12 are in preparation
have been published elsewhere.40

A. Algorithm A

Here we consider sums of the form

(
i 51

n
xi

~ i 1c!m

G~ i 1a11b1e!

G~ i 1c11d1e!
¯ .

G~ i 1ak1bke!

G~ i 1ck1dke!
Z~ i 1o21,m1 , . . . ,ml ,x1 , . . . ,xl ! ~32!

and show how to reduce them toZ-sums. We assume that allaj andcj are integers,c is assumed
to be a non-negative integer ando should be an integer. The upper summation limit is allowed
be infinity.

After expanding the gamma functions and synchronizing the subsumZ( i 1o21,m1 , . . . ) the
problem is reduced to sums of the form

(
i 51

n
xi

~ i 1c!m Z~ i 21, . . .! ~33!
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with c>0. It remains to reduce the offsetc to zero. If the depth of the subsum is zero, we ha

(
i 51

n
xi

~ i 1c!m 5
1

x (
i 51

n
xi

~ i 1c21!m 2
1

cm 1
xn

~n1c!m . ~34!

The last term contributes only ifn is not equal to infinity. If the depth of the subsum is not eq
to zero, we have

(
i 51

n
xi

~ i 1c!m Z~ i 21, . . .!5
1

x (
i 51

n
xi

~ i 1c21!m Z~ i 21, . . .!2 (
i 51

n21
xi

~ i 1c!m

x1
i

i m1
Z~ i 21,m2 , . . . !

1
xn

~n1c!m Z~n21, . . .!. ~35!

Note that the third term only contributes ifn is not equal to infinity. Finally we arrive at

(
i 51

n
xi

i m Z~ i 21, . . .!, ~36!

which is again aZ-sum. If the upper summation limitn equals infinity this sum yields immedi
ately a multiple polylogarithm according to Eq.~11!. In the special case wheren equals infinity
and the subsum is an Euler–Zagier sum we obtain a harmonic polylogarithm according
~16!.

B. Algorithm B

Here we consider sums of the form

(
i 51

n21
xi

~ i 1c!m

G~ i 1a11b1e!

G~ i 1c11d1e!
¯

G~ i 1ak1bke!

G~ i 1ck1dke!
Z~ i 1o21,m1 , . . . ,ml ,x1 , . . . ,xl !

3
yn2 i

~n2 i 1c8!m8

G~n2 i 1a181b18e!

G~n2 i 1c181d18e!
¯

G~n2 i 1ak8
8 1bk8

8 e!

G~n2 i 1ck8
8 1dk8

8 e!

3Z~n2 i 1o821,m18 , . . . ,ml 8
8 ,x18 , . . . ,xl 8

8 ! ~37!

and show how to reduce them toZ-sums. Here, allaj , aj8 , cj andcj8 should be integers,c, c8
should be non-negative integers ando, o8 should be integers. Note that the upper summation li
is (n21). The upper summation limit should not be infinity.

Using the expansion of the gamma functions and the synchronization of the subsum
immediately obtain sums of the form

(
i 51

n21
xi

~ i 1c!m Z~ i 21,m1 , . . . !
yn2 i

~n2 i 1c8!m8
Z~n2 i 21,m18 , . . . !. ~38!

Partial fractioning@and a change of the summation indexi→n2 i in sums involving the fraction
with (n2 i 1c8)# reduces these sums further to sums of the type

(
i 51

n21
xi

~ i 1c!m Z~ i 21,m1 , . . . !Z~n2 i 21,m18 , . . . !. ~39!

If the depth ofZ(n2 i 21,m18 , . . . ) is zero, we have a sum of type A with upper summati
index (n21):
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(
i 51

n21
xi

~ i 1c!m Z~ i 21,m1 , . . . !. ~40!

Otherwise we can rewrite Eq.~39! as

(
j 51

n21 F (
i 51

j 21
xi

~ i 1c!m Z~ i 21,m1 , . . . !
x18

j 2 i

~ j 2 i !m18
Z~ j 2 i 21,m28 , . . . !G ~41!

and use recursion. The inner sum is again of type B, but with a reduced depth, such th
recursion will finally terminate.

C. Algorithm C

Here we consider sums of the form

2(
i 51

n S n
i D ~21! i

xi

~ i 1c!m

G~ i 1a11b1e!

G~ i 1c11d1e!
¯

G~ i 1ak1bke!

G~ i 1ck1dke!
S~ i 1o,m1 , . . . ,ml ,x1 , . . . ,xl !,

~42!

whereaj andcj are integers,c is a non-negative integer, ando is an integer. The upper summatio
limit should not be infinity. These sums cannot be reduced toZ-sums with upper summation limi
n alone. However, they can be reduced toZ-sums with upper summation limitn and multiple
polylogarithms~which areZ-sums to infinity!.

Again, we expand the gamma functions and synchronize the subsum. It is therefore su
to consider sums of the form

2(
i 51

n S n
i D ~21! i

xi

~ i 1c!m S~ i , . . . ! ~43!

with c>0. To reduce the offsetc to zero we rewrite the sum as

S 2
1

xD 1

n11
~21! (

i 51

n11 S n11
i D ~21! i

xi

~ i 1c21!m iS~ i 21, . . .!. ~44!

Repeated application of the above-given relation yields sums of the form

2(
i 51

n S n
i D ~21! i

xi

i m S~ i , . . . !. ~45!

If m is negative we rewrite Eq.~45! as

2nx~21! (
i 51

n21 S n21
i D ~21! i

xi

~ i 11!m11 S~ i 11, . . .!1nxS~1, . . .!. ~46!

We can therefore assume thatm is a non-negative number. Furthermore, due to Eq.~28! we may
assume that in theS-sumS( i ;m1 , . . . ;x1 , . . . ) nomj is negative and that if somemj is zero, then
the correspondingxj is not equal to 1. The sumS( i , . . . ) is then rewritten as
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S~ i ;m1 , . . . ,mk ;x1 , . . . ,xk!5S~N;m1 , . . . ,mk ;x1 , . . . ,xk!

2S~N;m2 , . . . ,mk ;x2 , . . . ,xk!3S (
i 15 i 11

N x1
i 1

i 1
m1D

1S~N;m3 , . . . ,mk ;x3 , . . . ,xk!3S (
i 15 i 11

N

(
i 25 i 111

N x1
i 1

i 1
m1

x2
i 2

i 2
m2D

2 . . . 1~21!kS (
i 15 i 11

N

(
i 25 i 111

N

¯ (
i k5 i k2111

N x1
i 1

i 1
m1

x2
i 2

i 2
m2

¯

xk
i k

i k
mkD .

~47!

The proof of Eq.~47! is not too complicated and consists in repeated application of
identity

(
i 51

n

(
j 51

i

ai j 5(
i 51

N

(
j 51

i

ai j 2 (
i 5n11

N

(
j 51

N

ai j 1 (
i 5n11

N

(
j 5 i 11

N

ai j . ~48!

Equation~47! holds for anyN and in particular we may takeN5` in the end. Each term is the
a product of anS-sum at infinity and a sum of a new type. TheS-sum at infinity is converted to
a Z-sum at infinity and expressed in terms of multiple polylogarithms. We now deal with sum
the form

2(
i 51

n S n
i D ~21! i

x0
i

i m0 (
i 15 i 11

N

(
i 25 i 111

N

¯ (
i k5 i k2111

N x1
i 1

i 1
m1

x2
i 2

i 2
m2

¯

xk
i k

i k
mk

. ~49!

We introduce raising and lowering operators as follows:

~x1!m"15
1

m!
lnm~x!,

x1"f ~x!5E
0

x dx8

x8
f ~x8!, ~50!

x2"f ~x!5x
d

dx
f ~x!.

It is understood that in the second line only functions which are integrable atx50 are
considered. We see thatx2 is the inverse tox1, e.g.x2x15 id. Howeverx1x25 id holds only if
applied to nontrivial sums. For the trivial sum we havex1x2Z(n)50.

With the help of the raising operators Eq.~49! may be rewritten as

~xk
1!mk~xk21

1!mk21
¯ ~x1

1!m1~x0
1!m0~21!(

i 51

n S n
i D ~2x0! i

3 (
i 15 i 11

N

(
i 25 i 111

N

¯ (
i k5 i k2111

N

x1
i 1x2

i 2 . . . xk
i k . ~51!

It may happen that somexi ’s are equal to one. In this case we first calculate the sum for arbit
xi ’s and then take the limitxi→1. Some care has to be taken for the double limitx→1 andN
→`. The order is as follows: First all limitsx→1 are taken, then the limitN→` in Eq. ~47! is
performed.
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The sums in Eq.~51! can be performed with the help of the geometric series

(
i 5n11

N

xi5
x

12x
xn2

x

12x
xN. ~52!

It is evident that if we do not have to take the limitx→1 we can immediately neglect the seco
term. Also in the casex51 the second term can be neglected. It gives rise to terms of the f

~x1!m
x

12x
xN5 (

i 5N11

`
xi

i m . ~53!

On the right-hand side the limitx→1 may safely be performed and the resulting sum give
vanishing contribution in the limitN→`.

Performing the sums in Eq.~51! we therefore only have to consider expressions of the fo

~xk
1!mk~xk21

1!mk21
¯ ~x1

1!m1~x0
1!m0

xk

12xk

xk21xk

12xk21xk
¯

x1 ¯ xk

12x1 ¯ . xk

3@12~12x0x1 ¯ xk!
n#. ~54!

We then perform succesively the integrations corresponding to the raising operators. Th
formulas are

x1
1@12~12x1x2!n#5(

i 51

n
1

i
@12~12x1x2! i #,

x1
1

x1x2

12x1x2
@12~12x0x1x2!n#52~12x0!n(

i 51

n
1

i S 1

12x0
D i

@12~12x0x1x2! i #

1~12~12x0!n!(
i 51

N
~x1x2! i

i

1x1
1

x1x2

12x1x2
~x1x2!N~12~12x0!n!, ~55!

x1
1

x1x2

12x1x2
@12~12x1x2!n#52

1

n
@12~12x1x2!n#1(

i 51

N
~x1x2! i

i
1~x1

1!
x1x2

12x1x2
~x1x2!N.

We use the first formula to reducem0 in Eq. ~54! to zero:

(
i 51

n
1

i
~xk

1!mk
¯ ~x1

1!m1~x0
1!m021

xk

12xk

xk21xk

12xk21xk
¯

x1 ¯ xk

12x1 ¯ xk
@12~12x0x1 ¯ xk!

i #.

~56!

In the following we may therefore assumem050 in Eq. ~54!. If m050, m1.0 andx0Þ1 we
obtain for Eq.~54!

2~12x0!n(
i 51

`
1

i S 1

12x0
D i

~xk
1!mk

¯ ~~x0x1!1!m121
xk

12xk

xk21xk

12xk21xk
¯

x2 ¯ xk

12x2 ¯ xk

3@12~12~x0x1! ¯ xk!
i #1~12~12x0!n!(

i 51

N x1
i

i m1 (
i 25 i 11

N

¯ (
i k5 i k2111

N x2
i 2

i 2
m2

¯

xk
i k

i k
mk

.

~57!
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Here we neglected terms of the form~53!. In the casem050, m1.0, andx051 we use the
third formula of Eq.~55!. Again we may neglect contributions of the form~53!. Doing so we
obtain

2
1

n
~xk

1!mk
¯ ~x1

1!m121
xk

12xk

xk21xk

12xk21xk
¯

x2 ¯ xk

12x2 ¯ xk
@12~12x1 ¯ xk!

n#

1(
i 51

N x1
i

i m1 (
i 25 i 11

N

¯ (
i k5 i k2111

N x2
i 2

i 2
m2

¯

xk
i k

i k
mk

. ~58!

It remains to treat the last term to complete the recursion. The last term introduces a sum
type

(
i 15n11

N

¯ (
i k5 i k2111

N x1
i 1

i 1
m1

¯

xk
i k

i k
mk

. ~59!

Using the inverse formula to Eq.~47!

(
i 15n11

N

¯ (
i k5 i k2111

N x1
i 1

i 1
m1

¯

xk
i k

i k
mk

5~21!kS~n;m1 , . . . ,mk ;x1 , . . . ,xk!

2~21!kS~N;m1 , . . . ,mk ;x1 , . . . ,xk!1~21!kS~N;m2 , . . . ,mk ;x2 , . . . ,xk!

3 (
i 15n11

N x1
i 1

i 1
m1

2 ¯ 1~21!kS~N;mk ;xk! (
i 15n11

N

¯ (
i k215 i k2211

N x1
i 1

i 1
m1

¯

xk21
i k21

i k21
mk21

, ~60!

this sum is easily related toS-sums with upper summation limitn and ~after taking the limitN
→`) to multiple polylogarithms.

If m050, m150, andx1Þ1 we rewrite Eq.~54! as

2
1

12x1
~xk

1!mk
¯ ~x3

1!m3~~x2x1!1!m2
xk

12xk
¯

x3 ¯ xk

12x3 ¯ xk

~x1x2!x3 ¯ xk

12~x1x2!x3 ¯ xk

3@12~12x0~x1x2!x3 ¯ xk!
i #1

x1

12x1
~xk

1!mk
¯ ~x2

1!m2
xk

12xk
¯

x2x3 ¯ xk

12x2x3 ¯ xk

3@12~12~x0x1!x2x3 ¯ xk!
i #. ~61!

The casem050, m150, andx151 has to be excluded. However, with an appropriate choice
the standard form forS-sums@cf. Eq. ~28!# this case never occurs.

D. Algorithm D

Here we consider sums of the form

2 (
i 51

n21 S n
i D ~21! i

xi

~ i 1c!m

G~ i 1a11b1e!

G~ i 1c11d1e!
¯

G~ i 1ak1bke!

G~ i 1ck1dke!
3S~ i 1o,m1 , . . . ,ml ,x1 , . . . ,xl !

3
yn2 i

~n2 i 1c8!m8

G~n2 i 1a181b18e!

G~n2 i 1c181d18e!
¯

G~n2 i 1ak8
8 1bk8

8 e!

G~n2 i 1ck8
8 1dk8

8 e!

3S~n2 i 1o8,m18 , . . . ,ml 8
8 ,x18 , . . . ,xl 8

8 !. ~62!
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Here, all aj , aj8 , cj , and cj8 are integers,c, c8, are nonnegative integers, ando, o8 are
integers. Note that the upper summation limit is (n21). The upper summation limit should not b
infinity. As in the case of sums of type C, we cannot relate these sums toZ-sums with upper
summation limit (n21) alone, but we can reduce them toZ-sums with upper summation limi
(n21) and multiple polylogarithms~which areZ-sums to infinity!.

After the expansion of the gamma functions and the synchronization of the subsums w
sums of the form

2 (
i 51

n21 S n
i D ~21! i

xi

~ i 1c!m S~ i ,m1 , . . . !
yn2 i

~n2 i 1c8!m8
S~n2 i ,m18 , . . . !. ~63!

Partial fractioning leads to

2 (
i 51

n21 S n
i D ~21! i

xi

~ i 1c!m S~ i ,m1 , . . . !S~n2 i ,m18 , . . . ! ~64!

with c>0. In order to reduce the offsetc to zero one rewrites Eq.~64! as

S 2
1

xD 1

n11
~21! (

i 51

n1121 S n11
i D ~21! i

xi

~ i 1c21!m iS~ i 21, . . .!S~n112 i ,m18 , . . . !. ~65!

We arrive at sums of the form

2 (
i 51

n21 S n
i D ~21! i

xi

i m S~ i ,m1 , . . . !S~n2 i ,m18 , . . . !. ~66!

If the depth ofS(n2 i ,m18 , . . . ) is zero, we have a sum of type C:

2 (
i 51

n21 S n
i D ~21! i

xi

i m S~ i ,m1 , . . . !52(
i 51

n S n
i D ~21! i

xi

i m S~ i ,m1 , . . . !1
~2x!n

nm S~n,m1 , . . . !.

~67!

Otherwise, we first reducem to zero. Form.0 we rewrite Eq.~66! as

(
j 51

n
1

j F ~21!(
i 51

j 21 S j
i D ~21! i

xi

i m21 S~ i ,m1 , . . . !S~ j 2 i ,m18 , . . . !G
1(

j 51

n
1

j F ~21!(
i 51

j 21 S j
i D ~21! i

xi

i m S~ i ,m1 , . . . !
x18

j 2 i

~ j 2 i !m1821
S~ j 2 i ,m28 , . . . !G . ~68!

For m,0 we rewrite Eq.~66! as

2nx~21! (
i 51

n22 S n21
i D ~21! i

xi

~ i 11!m11 S~ i 11,m1 , . . . !S~n212 i ,m18 , . . . !

1nxS~1,m1 , . . . !S~n21,m18 , . . . !. ~69!

Having reducedm to zero we arrive at sums of the form

2 (
i 51

n21 S n
i D ~21! ixiS~ i ,m1 , . . . !S~n2 i ,m18 , . . . !. ~70!

For xÞ1 we obtain after some algebra
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2 (
i 51

n21 S n
i D ~21! ixiS~ i ,m1 , . . . !S~n2 i ,m18 , . . . !5~12x!n(

j 51

n
1

j S 1

12xD j

~21!(
i 51

j 21 S j
i D

3~21! i
~xx1! i

i m121 S~ i ,m2 , . . . !S~ j 2 i ,m18 , . . . !1~12x!n(
j 51

n
1

j S 1

12xD j

~21!(
i 51

j 21 S j
i D

3~21! ixiS~ i ,m1 , . . . !
x18

j 2 i

~n2 i !m1821
S~ j 2 i ,m28 , . . . !, ~71!

where the original problem is reduced to one of the same type but with lower weight. In the
x51 the right-hand side of Eq.~71! reduces to

1

n
~21! (

i 51

n21 S n
i D ~21! i

x1
i

i m121 S~ i ,m2 , . . . !S~n2 i ,m18 , . . . !1
1

n
~21! (

i 51

n21 S n
i D

3~21! iS~ i ,m1 , . . . !
x18

n2 i

~n2 i !m1821
S~n2 i ,m28 , . . . !. ~72!

Again, the original problem is reduced to one of the same type but with lower weight.
above-mentioned algorithm thus yields a recursion to treat sums of type D.

IV. APPLICATIONS

The algorithms given in this paper can be used for the expansion of higher transcen
functions around integer values of their indices, where the expansion parameter occurs
Pochhammer symbols. In this section we give a few examples. Additionally, we illustrat
applicability of the algorithms for nested sums to the calculation of loop integrals, in particu
integrals with several scales. As an example, we discuss the C-topology and show that the
can be written as a nested sum of the type previously discussed.

A. Generalized hypergeometric functions

The generalized hypergeometric functions are defined by1,2

J11FJ~a1 , . . . ,aJ11 ;b1 , . . . ,bJ ;x!5 (
n50

`
~a1!n ¯ ~aJ11!n

~b1!n ¯ ~bJ!n

xn

n!
, ~73!

where (a)n5G(n1a)/G(a) denotes a Pochhammer symbol. These functions can be rewritt

J11FJ~a1 , . . . ,aJ11 ;b1 , . . . ,bJ ;x!

511
G~b1! ¯ G~bJ!

G~a1! ¯ G~aJ11! (i 51

`

xi
G~ i 1a1!

G~ i 1b1!
¯

G~ i 1aJ!

G~ i 1bJ!

G~ i 1aJ11!

G~ i 11!
~74!

and fall therefore into the category of transcendental sums of type A. We give a few exa
obtained using the algorithms given in Sec. III A:

2F1~ae,be;12ce;x!511ab Li2~x!e21ab~c Li3~x!1~a1b1c! S1,2~x!!e31O~e4!,
~75!

2F1~1,2e;12e;x!511 ln~12x!e2Li2~x!e22Li3~x!e32Li4~x!e4

2Li5~x!e52Li6~x!e62Li7~x!e71O~e8!,
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3F2~22e,22e,12e;122e,122e;x!

5114 Li2~x!e21~12 Li3~x!24S1,2~x!!e31~32 Li4~x!

14S1,3~x!212S2,2~x!!e41~80 Li5~x!24S1,4~x!

112S2,3~x!232S3,2~x!!e51O~e6!, ~76!

which all agree with known results in the literature.41,42

B. Appell functions

The first Appell function is defined by43,2

F1~a,b1 ,b2 ;c;x1 ,x2!5 (
m150

`

(
m250

` ~a!m11m2
~b1!m1

~b2!m2

~c!m11m2

x1
m1

m1!

x2
m2

m2!
. ~77!

It can be rewritten as

F1~a,b1 ,b2 ;c;x1 ,x2!511
G~c!

G~a!G~b1! (i 51

`

x1
i G~ i 1a!G~ i 1b1!

G~ i 1c!G~ i 11!

1
G~c!

G~a!G~b2! (i 51

`

x2
i G~ i 1a!G~ i 1b2!

G~ i 1c!G~ i 11!

1
G~c!

G~a!G~b1!G~b2! (
n51

`
G~n1a!

G~n1c! (
i 51

n21

x1
i G~ i 1b1!

G~ i 11!
x2

n2 i G~n2 i 1b2!

G~n2 i 11!
.

~78!

The inner sum of the last term is of type B. The first Appell function can therefore be expa
with the help of algorithms A and B.

The second Appell function is defined by43,2

F2~a,b1 ,b2 ;c1 ,c2 ;x1 ,x2!5 (
m150

`

(
m250

` ~a!m11m2
~b1!m1

~b2!m2

~c1!m1
~c2!m2

x1
m1

m1!

x2
m2

m2!
. ~79!

It can be rewritten as

F2~a,b1 ,b2 ;c1 ,c2 ;x1 ,x2!

511
G~c1!

G~a!G~b1! (i 51

`

x1
i G~ i 1a!G~ i 1b1!

G~ i 1c1!G~ i 11!
1

G~c2!

G~a!G~b2! (i 51

`

x2
i G~ i 1a!G~ i 1b2!

G~ i 1c2!G~ i 11!

2
G~c1!G~c2!

G~a!G~b1!G~b2! (
n51

`
G~n1a!

G~n11!
~21! (

i 51

n21 S n
i D

3~21! i~2x1! i
G~ i 1b1!

G~ i 1c1!
x2

n2 i G~n2 i 1b2!

G~n2 i 1c2!
. ~80!

The inner sum of the last term is of type D. The second Appell function can therefor
expanded with the help of algorithms A–D. As an example we give
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F2~1,1,e;11e,12e;x,y!5
1

12x
1

1

12x
~2 ln~12x!2 ln~12x2y!!e1

1

12x F2 Li2~x!

12 Li2~y!2Li2~x1y!14S0,2~x!1S0,2~x1y!1Li1,1S y

x1y
,x1yD

22 Li1,1S x

x1y
,x1yD22 Li1,1S x1y

x
,xD Ge21

1

12x FLi3~x1y!

22 Li3~x!1S0,3~x1y!28S0,3~x!2S1,2~x1y!24S1,2~x!14S1,2~y!

2H1,2~x1y!24H1,2~x!12 Li1,2S x

x1y
,x1yD2Li1,2S y

x1y
,x1yD

12 Li1,2S x1y

x
,xD12 Li2,1S x

x1y
,x1yD13 Li2,1S y

x1y
,x1yD

12 Li2,1S x1y

x
,xD24 Li2,1S y

x
,xD14 Li1,1,1S x

x1y
,
x1y

x
,xD

14 Li1,1,1S x1y

x
,1,xD14 Li1,1,1S 1,

x

x1y
,x1yD12 Li1,1,1

3S 1,
y

x1y
,x1yD22 Li1,1,1S y

x1y
,
x1y

x
,xD1Li1,1,1S y

x1y
,1,x1yD

22 Li1,1,1S x

x1y
,1,x1yD22 Li1,1,1S 1,

x1y

x
,xD

22 Li1,1,1S x1y

x
,

x

x1y
,x1yD Ge31O~e4!. ~81!

After taking into account a typo in Eq.~A.47! of Ref. 44 this result agrees up to ordere with
the one obtained along the lines of Ref. 44. Multiple polylogarithms of low weight can be
pressed as products of classical polylogarithms and the result of the expansion in Eq.~81! can be
simplified. However, we present here the output of our algorithm. Our algorithm gives the
as a linear combination of polylogarithms and does not generate products of polylogarithm

C. Kampé de Fériet function

The Kampe´ de Fériet function is defined by43

S1~a1 ,a2 ,b1 ;c,c1 ;x1 ,x2!5 (
m150

`

(
m250

` ~a1!m11m2
~a2!m11m2

~b1!m1

~c!m11m2
~c1!m1

x1
m1

m1!

x2
m2

m2!
. ~82!

It can be rewritten as

S1~a1 ,a2 ,b1 ;c,c1 ;x1 ,x2!511
G~c!G~c1!

G~a1!G~a2!G~b1! (i 51

`

x1
i G~ i 1a1!G~ i 1a2!G~ i 1b1!

G~ i 1c!G~ i 1c1!G~ i 11!

1
G~c!

G~a1!G~a2! (i 51

`

x2
i G~ i 1a1!G~ i 1a2!

G~ i 1c!G~ i 11!

2
G~c!G~c1!

G~a1!G~a2!G~b1! (
n51

`

x2
n G~n1a1!G~n1a2!

G~n1c!G~n11!
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3~21! (
i 51

n21 S n
i D ~21! i S 2

x1

x2
D i G~ i 1b1!

G~ i 1c1!
. ~83!

The inner sum of the last term is of type C. The Kampe´ de Fériet function can therefore be
expanded with the help of the algorithms A and C.

D. The C-topology

Here we study the C-topology with one massive external leg and arbitrary powers o
propagators and arbitray dimensions, which can be solved using the algorithms given in this
The importance of this result lies in the fact that one avoids having to solve a system of equ
obtained from partial integration or Lorentz invariance. Solving such a system becomes
difficult if one external leg is massive. The result obtained here is thus a useful ingredient f
calculation of the two-loop amplitudes with one massive external leg, such ase1e2→3 jets.
The second C-topology, where the massive leg is attached to the other corner, as well
simpler topologies, can be obtained along the same lines. The two-loop C-topology wit
massive external leg is defined by

I 5E dDk1

ipD/2 E dDl 5

ipD/2

1

~2k1
2!n1

1

~2 l 2
2!n2

1

~2 l 3
2!n3

1

~2k4
2!n4

1

~2 l 5
2!n5

~84!

with

l 25k11 l 52p1 ,

l 35 l 22p2 , ~85!

k45k12p123.

Figure 3 shows the corresponding Feynman diagram. We first perform thel 5-integration.
Combining with Feynman parameters firstl 2

2 and l 3
2 and then the resulting propagator withl 5

2 we
obtain

I 5
G~n2352m1e!

G~n2!G~n3!G~n5!

G~2n231m2e!G~2n51m2e!

G~2n23512m22e!
E

0

1

da an221ān321

3E dDk1

ipD/2

1

~2k1
2!n1

1

~2~k12p12āp2!2!n2352m1e

1

~2k4
2!n4

. ~86!

As a short-hand notation we usedD52m22e, ā512a, andn2355n21n31n5 . The second
line is a one-loop triangle with three external masses. The solution for this one-loop integra
arbitrary powers of the propagators and arbitrary dimensions is known.45 We use the solution
given in Ref. 44 and perform the remaining integration. We obtain

FIG. 3. The C-topology reduces to a triangle with three external masses and an additional integration over the F
parametera.
                                                                                                                



s

)
cific

operties
matical
These
ation
ropa-
a Hopf

y
r.

3380 J. Math. Phys., Vol. 43, No. 6, June 2002 Moch, Uwer, and Weinzierl

                    
I 5
G~2m22e2n1235!G~11n123522m12e!G~2m22e2n2345!G~11n234522m12e!

G~n1!G~n2!G~n3!G~n4!G~n5!G~3m23e2n12345!

3
G~m2e2n5!G~m2e2n23!

G~2m22e2n235!
~2s123!

2m22e2n12345(
i 150

`

(
i 250

` x1
i 1

i 1!

x2
i 2

i 2!

3FG~ i 11n3!G~ i 21n2!G~ i 11 i 222m12e1n12345!G~ i 11 i 22m1e1n235!

G~ i 11122m12e1n1235!G~ i 21122m12e1n2345!G~ i 11 i 21n23!
2x1

2m22e2n1235

3
G~ i 112m22e2n125!G~ i 21n2!G~ i 11 i 21n4!G~ i 11 i 21m2e2n1!

G~ i 11112m22e2n1235!G~ i 21122m12e1n2345!G~ i 11 i 212m22e2n15!

2x2
2m22e2n2345

3
G~ i 11n3!G~ i 212m22e2n345!G~ i 11 i 21n1!G~ i 11 i 21m2e2n4!

G~ i 11122m12e1n1235!G~ i 21112m22e2n2345!G~ i 11 i 212m22e2n45!

1x1
2m22e2n1235x2

2m22e2n2345
G~ i 112m22e2n125!G~ i 212m22e2n345!

G~ i 11112m22e2n1235!G~ i 21112m22e2n2345!

3
G~ i 11 i 212m22e2n235!G~ i 11 i 213m23e2n12345!

G~ i 11 i 214m24e2n123452n5! G , ~87!

where we setx15(2s12)/(2s123) andx25(2s23)/(2s123). Changing the summation indices a
in the case of the second Appell function yields a sum of type D. For specific~integer! values of
n i andm this expression can be expanded ine with the algorithm given in Sec. III. This is a new
and useful result. Up to now this integral has only been known form52 and the sets (1,1,1,1,1
and (1,1,1,1,2) for (n1 ,n2 ,n3 ,n4 ,n5). We have verified that our result agrees in these two spe
cases with the ones given by Gehrmann and Remiddi.8

V. CONCLUSIONS

In this paper we studied some algebraic properties of nested sums. Based on these pr
we developed a number of algorithms which can be used to expand a certain class of mathe
functions. All presented algorithms are suitable for the implementation on a computer.
algorithms allow the evaluation of integrals occurring in high-energy physics. As an applic
we have shown how the two-loop C-topology can be evaluated for arbitrary powers of the p
gators and arbitrary dimensions. Furthermore we have shown that the nested sums satisfy
algebra and established the connection with the Hopf algebra of Kreimer.
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APPENDIX A: THE HOPF ALGEBRA OF Z-SUMS

In this section we show that theZ-sums form a Hopf algebra.36,37 It is sufficient to demon-
strate that theZ-sums form a quasishuffle algebra. A general theorem46 guarantees then, that the
also form a Hopf algebra. We also discuss the connection with the Hopf algebra of Kreime47

Before we start, we have to introduce some notation. We call a pair (mj ;xj ) a letter and the
set of all letters the alphabetA. We further callmj the degree of the letter (mj ,xj ). On the
alphabetA we define a multiplication

•:A3A→A,
~A1!

~m1 ,x1!•~m2 ,x2!5~m11m2 ,x1x2!,
                                                                                                                



n the

f

e
e

ormu-
and a
t and a
he two
at the

of
the

te down

The
p.
.,

ced to

rt
n

ent of
has at

3381J. Math. Phys., Vol. 43, No. 6, June 2002 Nested sums

                    
e.g., thexj ’s are multiplied and the degrees are added. As a short-hand notation we will i
following denote a letter just byXj5(mj ;xj ). A word is an ordered sequence of letters, e.g.,

W5X1 ,X2 , . . . ,Xk . ~A2!

We denote the word of length zero bye. The sums defined in~1! are therefore completely
specified by the upper summation limitn and a wordW. In particular for any positiven the sum
corresponding to the empty worde equals 1. A quasishuffle algebraA on the vector space o
words is defined by46

e+W5W+e5W,
~A3!

~X1 ,W1!+~X2 ,W2!5X1 ,~W1+~X2 ,W2!!1X2 ,~~X1 ,W1!+W2!1~X1•X2!,~W1+W2!.

Note that ‘‘• ’’ denotes multiplication of letters as defined in Eq.~A1!, whereas ‘‘+ ’’ denotes the
product in the algebraA, recursively defined in Eq.~A3!. We observe that the formula for th
multiplication ofZ-sums Eq.~7! is identical to Eq.~A3!. TheZ-sums therefore form a quasishuffl
algebra.

We now discuss the connection with the Hopf algebra of Kreimer.47 Kreimer showed that the
process of renormalization of UV-divergences occurring in quantum field theories can be f
lated in terms of a Hopf algebra structure. We first recall the properties of an algebra
coalgebra: An algebra has a unit and a multiplication, whereas a coalgebra has a couni
comultiplication. A Hopf algebra is an algebra and a coalgebra at the same time, such that t
structures are compatible with each other. In addition there is an antipode. We show th
coalgebra structure ofZ-sums is identical to the coalgebra structure of the Hopf algebra
Kreimer. To this aim we introduce the explicit definitions of the counit, the coproduct, and
antipode. It is convenient to phrase the coalgebra structure in terms of rooted trees. AZ-sums can
be represented as rooted trees without any sidebranchings. As a concrete example we wri
the pictorial representation of a sum of depth three:

~A4!

The pictorial representation views aZ-sum as a rooted tree without any sidebranchings.
outermost sum corresponds to the root. By convention, the root is always drawn on the to

Trees with sidebranchings are given by nested sums with more than one subsum, e.g

~A5!

Of course, due to the multiplication formula, trees with sidebranchings can always be redu
trees without any sidebranchings:

(
i 51

n x1
i

i m1
Z~ i 21;m2 ,x2!Z~ i 21;m3 ;x3!5Z~n;m1 ,m2 ,m3 ;x1 ,x2 ,x3!1Z~n;m1 ,m3 ,m2 ;x1 ,x3 ,x2!

1Z~n;m1 ,m21m3 ;x1 ,x2x3!. ~A6!

The coalgebra structure is formulated in terms of rooted trees~e.g., there is no need to conve
rooted trees to a basis of rooted trees without sidebranchings!. We first introduce some notatio
how to manipulate rooted trees. We adopt the notation of Kreimer and Connes.47,48An elementary
cut of a rooted tree is a cut at a single chosen edge. An admissible cut is any assignm
elementary cuts to a rooted tree such that any path from any vertex of the tree to the root
most one elementary cut. An admissible cut maps a treet to a monomial in treest1+ ¯ +tk11 .
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Note that precisely one of these subtreest j will contain the root oft. We denote this distinguishe
tree byRC(t), and the monomial delivered by thek other factors byPC(t). The counitē is given
by

ē~e!51,
~A7!

ē~ t !50, tÞe.

The coproductD is defined by

D~e!5e^ e,

D~ t !5e^ t1t ^ e1 (
adm. cutsCof t

PC~ t ! ^ RC~ t !, ~A8!

D~ t1+ ¯ +tk!5D~ t1!~+ ^ + ! ¯ ~+ ^ + !D~ tk!.

The antipodeS is given by

S~e!5e,

S~ t !52t2 (
adm. cutsC of t

S~PC~ t !!+RC~ t !, ~A9!

S~ t1+ ¯ +tk!5S~ t1!+ ¯ +S~ tk!.

The proof that these definitions yield a Hopf algebra can be found in Ref. 46 and is not rep
here. The Hopf algebra of Kreimer and Connes,47,48 which emerged in the context of renorma
ization of UV-divergences, has a slightly different algebra structure. There the algebra is gen
by rooted trees. In this algebra a product of two rooted trees is not necessarily a rooted tree
However, the coalgebra structures are identical, which is a remarkable observation.

Let us give some examples for the coproduct and the antipode forZ-sums:

DZ~n;m1 ;x1!5e^ Z~n;m1 ;x1!1Z~n;m1 ;x1! ^ e,
~A10!

DZ~n;m1 ,m2 ;x1 ,x2!5e^ Z~n;m1 ,m2 ;x1 ,x2!1Z~n;m1 ,m2 ;x1 ,x2! ^ e1Z~n;m2 ;x2!

^ Z~n;m1 ;x1!,

SZ~n;m1 ;x1!52Z~n;m1 ;x1!,
~A11!

SZ~n;m1 ,m2 ;x1 ,x2!5Z~n;m2 ,m1 ;x2 ,x1!1Z~n;m11m2 ;x1x2!.

APPENDIX B: REVIEW OF GONCHAROV’S MULTIPLE POLYLOGARITHMS

At the end of the day we express our results in terms of Goncharov’s multiple polylogari
They therefore form an important specialization of nested sums and we therefore review so
their properties. After the introduction by Gonacharov5 they have been extensively studied b
Borwein et al.6 They use a different notation which is related to the one of Goncharov by

Limk , . . . ,m1
~xk , . . . ,x1!5lS m1 , . . . ,mk

b1 , . . . ,bk
D , bj5

1

x1x2 ¯ xj
. ~B1!

Most of the material reviewed in this section is based on the work of Borweinet al.6
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1. Integral representations

We first define the notation for iterated integrals

E
0

L dt

an2t
+¯+

dt

a12t
5E

0

L dtn

an2tn
E

0

tn dtn21

an212tn21
3¯3E

0

t2 dt1

a12t1
. ~B2!

We further use the following short-hand notation:

~B3!

The integral representation for Limk , . . . ,m1
(xk , . . . ,x1) reads

Limk , . . . ,m1
~xk , . . . ,x1!5E

0

x1x2 ¯ xkS dt

t
+ D m121 dt

x2x3 ¯ xk2t
+S dt

t
+ D m221

3
dt

x3 . . . xk2t
+ ¯ +S dt

t
+ D mk21 dt

12t
. ~B4!

In the notation of Borweinet al. this representation reads

Limk , . . . ,m1
~xk , . . . ,x1!5~21!kE

0

1S dt

t
+ D m121 dt

t2b1
+S dt

t
+ D m221 dt

t2b2
+ ¯ +S dt

t
+ D mk21 dt

t2bk
,

~B5!

where thebj ’s are related to thexj ’s as in Eq.~B1!. Changing the integration variables accordi
to t→12t yields the dual integral representation:

Limk , . . . ,m1
~xk , . . . ,x1!5~21!kE

0

1 dt

12bk2t
+S dt

12t
+ D mk21

3
dt

12bk212t
+S dt

12t
+ D mk2121

+ ¯ +
dt

12b12t
+S dt

12t
+ D m121

.

~B6!

In addition to these weight-dimensional integral representations there is also a depth-dime
integral representation:

Limk , . . . ,m1
~xk , . . . ,x1!5

1

G~m1! ¯ G~mk!
E

1

` dt1

t1

~ ln t1!m121

t1

x1
21

3E
1

` dt2

t2

~ ln t2!m221

t1t2

x1x2
21

3 ¯

3E
1

` dtk

tk

~ ln tk!
mk21

t1 ¯ tk

x1 ¯ xk
21

. ~B7!

2. The shuffle algebra

Instead of specifying a multiple polylogarithm by thexj ’s and mj ’s, we may denote the
function by a single string
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~a1 ,a2 , . . . ,aw!5~0, . . . ,0,b1 ,0, . . . ,0,b2 , . . . ,0, . . . ,0,bk!, ~B8!

where (mj21) zeros preceedbj . Defining further

V~a i !5
dt

t2a i
~B9!

allows us to rewrite the integral representation Eq.~B5! as

Limk , . . . ,m1
~xk , . . . ,x1!5~21!kE

0

1

V~a1!+ ¯ +V~aw!. ~B10!

From the iterated integral representation one deduces a second algebra structure with
plication given by

Limk , . . . ,m1
~xk , . . . ,x1!3Limk1 l , . . . ,mk11

~xk1 l , . . . ,xk11!

5~21!k1 lE
0

1

V~a1!+ ¯ +V~awk
!E

0

1

V~awk11!+ ¯ +V~awk1wl
!

5~21!k1 l (
shuffle

E
0

1

V~as(1)!+ ¯ +V~as(wk1wl )
!, ~B11!

wherewk5m11 ¯ 1mk , wl5mk111 ¯ 1mk1 l and the sum is over all permutations, whic
preserve the relative order of the stringsV(a1) ¯ V(awk

) andV(awk11) ¯ V(awk1wl
).

3. Reduction to simpler functions

The multiple polylogarithms contain a variety of other functions as a subset. We start
depth one. As the notation already suggests, the multiple polylogarithms are in this case id
to the classical polylogarithms, e.g.,

Li 0~x!5
x

12x
, Li1~x!52 ln~12x! ~B12!

and

Lin~x!5E
0

x

dt
Lin21~ t !

t
. ~B13!

Nielsen’s generalized polylogarithms,4 defined through

Sn,p~x!5
~21!n211p

~n21!! p! E
0

1

dt
lnn21~ t !lnp~12tx!

t
, ~B14!

are related to the multiple polylogarithms by

~B15!

where (p21) one’s occur beforen11 and x. The harmonic polylogarithms of Remiddi an
Vermaseren7 are related to the multiple polylogarithms for positive indices as

~B16!

The harmonic polylogarithms are defined recursively through
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H0~x!5 ln~x!, H1~x!52 ln~12x!, H21~x!5 ln~11x!, ~B17!

and

Hm111,m2 , . . . ,mk
5E

0

x

dt f 0~ t !Hm1 ,m2 , . . . ,mk
~ t !,

~B18!

H61,m2 , . . . ,mk
5E

0

x

dt f 61~ t !Hm2 , . . . ,mk
~ t !,

where the fractionsf 0(x), f 1(x), and f 21(x) are given by

f 0~x!5
1

x
, f 1~x!5

1

12x
, f 21~x!5

1

11x
. ~B19!

Recently Gehrmann and Remiddi8 extended the harmonic polylogarithms to two-dimensio
harmonic polylogarithms~2dHPL! by extending the fractions to

f ~z,x!5
1

z1x
, f ~12z,x!5

1

12z2x
. ~B20!

From the integral representation Eq.~B4! it is clear that the 2dHPL are a subset of Goncharo
multiple polylogarithms. If we identitfyx5x1x23 ¯ 3xk we have

E
0

x

dt f ~z,t !Limk , . . . ,m1S xk , . . . ,x2 ,
t

x2 . . . xk
D52Limk , . . . ,m1,1S xk , . . . ,x2 ,2

z

x2 ¯ xk
,2

x

zD ,

~B21!

E
0

x

dt f ~12z,t !Limk , . . . ,m1S xk , . . . ,x2 ,
t

x2 ¯ xk
D5Limk , . . . ,m1,1S xk , . . . ,x2 ,

12z

x2 ¯ xk
,

x

12zD .
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Universitéde Montréal, C. P. 6128, succ. Centre Ville, Montre´al, Québec H3C 3J7,
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A graphical formalism is introduced for describing subgroup type coordinates
on n-dimensional Lorentzian hyperboloids imbedded inton11 dimensional
Minkowski spaces. The O(n,1) group element is parametrized according to differ-
ent subgroup chains, involving Lorentz, rotation, and Euclidean subgroups. The
coordinates are then induced by the corresponding group action. Eigenfunctions of
the Laplace–Beltrami operator are obtained as products of Jacobi functions, asso-
ciated Legendre functions, and modified Bessel functions. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1467709#

I. INTRODUCTION

The purpose of this article is to study in a systematic manner all possible subgroup
coordinates on ann-dimensional Lorentzian hyperboloid, embedded into ann11-dimensional
Minkowski space. The isometry group of this space is the pseudo-orthogonal group O(n,1), the
Lorentz group inn space dimensions. The space itself can be identified as the quotient
O(n,1)/O(n), or O(n,1)/O(n21,1), for the two-sheeted or one-sheeted hyperboloid, respecti

By ‘‘separable coordinates’’ we mean curvlinear coordinates (j1 ,j2 , . . . ,jn) on a hyperboloid
Hn , such that the Laplace–Beltrami equation

DLBC~j1 ,j2 , . . . ,jn!5n~n1n21! C~j1 ,j2 , . . . ,jn!, ~1.1!

allows the ‘‘multiplicative’’ separation

Cl1 ,l2 ,..,ln
~j1 ,j2 , . . . ,jn!5)

i 51

n

F i~j i ;l1 ,l2 ,...,ln!. ~1.2!

In Eq. ~1.2! each functionF i depends only on one variablej i , but can depend on all the
separation constantsl j .

We make use of an algebraic approach to the separation of variables in Riemann
pseudo-Riemannian spaces.1–10 In this approach the separated solutionsC(j1 ,j2 , . . . ,jn) are
simultaneous eigenfunctions of a complete set of commuting operators$Y1 ,Y2 , . . .,Yn%, wheren
is the dimension of the space. The operatorsYi are second-order operators in the envelop
algebra ofL, whereL is the Lie algebra of the isometry groupG of the corresponding space, an
the Laplace–Beltrami operatorDLB is included in the set$Y1 ,Y2 , . . .,Yn%. A classification of

a!Electronic mail: pogosyan@fis.unam.mx
33870022-2488/2002/43(6)/3387/24/$19.00 © 2002 American Institute of Physics
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different coordinate systems corresponds to a classification of such commuting sets of op
under the action of the groupG. Subgroup type coordinates are obtained when we take a cha
subgroups

G[G1.G2.¯.Gk ~1.3!

each of which has at least one second-order Casimir operator. The commuting op
$Y1 ,Y2 , . . .,Yn% are then taken as Casimir operators of the groups in the chain~1.3!.

Subgroup type coordinates on homogeneous spaces associated with rotation groups On) and
unitary groups SU(n) were studied by Vilenkin, Kuznetsov, Smorodinsky and others.11–15 They
introduced a graphical method, the ‘‘method of trees,’’ to describe subgroup coordinat
spheresSn;O(n11)/O(n) and complex ‘‘spheres’’Cn;SU(n)/U(n21).

The relation between tree diagrams and subgroup chains was explored in a
publication,15 devoted to Lie algebra contractions and the separation of variables. The meth
trees was extended from spheres to Euclidean spaces in the same article.15

In this article we shall adapt the method of trees to a noncompact group, namely O(n,1) and
introduce a graphical method for coordinates on hyperboloids. We shall relate tree diagra
subgroup diagrams, representing chains of subgroups. We show that the subgroup chains
used to directly generate separable coordinates by acting on a chosen ‘‘origin’’ on the ho
neous space.

In Sec. II we introduce notation and review some basic facts on maximal subgrou
pseudo-orthogonal, orthogonal, and Euclidean Lie groups. Coordinate and subgroup diagra
all types of separable subgroup coordinates are introduced in Sec. III, first for the low-dimen
groups O~2,1! and O~3,1!, then for the general case of O(n,1) for n arbitrary. Section IV is
devoted to the eigenfunctions of the Laplace–Beltrami operator for O~2,1! and O~3,1!. Eigenfunc-
tions for the general case of O(n,1) are presented in Sec. V and are associated with the diffe
types of subgroup and coordinate diagrams.

II. SUBGROUP CHAINS AND SUBGROUP DIAGRAMS

A. General setting

We consider the upper sheet of the two-sheeted hyperboloidHn ,

u•u5u25u0
22u251, u25u1

21u2
21¯1un

2 , ~2.1!

whereum , m50,1, . . .,n are Cartesian coordinates in the ambient Minkowski spaceMn,1 . The
Laplace–Beltrami operator in curvilinear coordinates onHn is written as

DLB[D~Hn!5
1

Ag

]

]jm Ag gmn
]

]jn , ~2.2!

where the metric is

ds25gmndjm djn, g5udet~gmn!u, gamgmn5da
n . ~2.3!

The relation between the metric tensorGmn5diag(1,21,21, . . . ,21), (m,n50,1,2, . . .,n) in the
ambient space andgmn(j) of Eqs.~2.2! and ~2.3! is

gmn~j!5Gik

]ui

]jm

]uk

]jn . ~2.4!

The isometry group is SO(n,1), the proper Lorentz group. Its Lie algebra o(n,1) is realized by
vector fields with a standard basisMmn , namely
                                                                                                                



lgebras

or

ic
bient

-

gebra

3389J. Math. Phys., Vol. 43, No. 6, June 2002 Separation of variables and subgroup

                    
Mik52S ui

]

]uk
2uk

]

]ui
D , M0k5S u0

]

]uk
1uk

]

]u0
D , i ,k51,2, . . .,n ~2.5!

with the commutation relations

@Mmn ,Mab#5GnaMmb2GnbMma2GmaM nb1GmbM na , a,b,m,n50,1,2, . . .,n. ~2.6!

The Laplace–Beltrami operator and the second order Casimir operator of o(n,1) are related
by

D~Hn!5Q~n,1!, Q~n,1!5(
i 51

n

M0i
2 2 (

1< i ,k

n

M ik
2 . ~2.7!

B. Subgroups of O „n ,1…

Since we are interested in subgroup type coordinates, we need a classification of suba
of the algebra o(n,1). Consider the defining representation of o(n,1), i.e., matricesX satisfying

XI1,n1I 1,nXT50, I n,15S 1 0

0 2I n
D , XPR(n11)3(n11). ~2.8!

A maximal subalgebra of o(n,1) can be embedded in this representation reducibly,
irreducibly.16,17 A reducibly imbedded subalgebra will leave a proper vector subspace ofRn11

invariant, an irreducibly imbedded subalgebra will only leaveRn11, and 0 invariant. Here we will
only need reducibly imbedded subalgebras.

Maximal subalgebras are obtained if the invariant subspace is either completely isotrop~all
vectors in the space are lightlike and mutually orthogonal with respect to the metric in the am
space!, or nondegenerate~no lightlike vectors in an orthogonal basis!. For o(n,1), that means the
following maximal subalgebras exist:

o~n,1!.o~n1 ,1! % o~n2!, n11n25n, n1>1, n2>2, ~2.9!

o~n,1!.sim~n21!, ~2.10!

where sim(n21) is the Lie algebra of the similitude group of then21 dimensional Euclidean
space@the groupE(n21) extended by dilations#. The subalgebra in Eq.~2.9! leaves invariant a
space spanned byn1 negative length vectors@in the metric~2.8!# and also its orthogonal comple
ment in the Minkowski spaceMn,1 . We can choose the basis elements of subalgebra~2.9! to be

$Mik ,M j 0%, $Mab% 1< i ,k<n1 , 1< j <n1 n111<a,b<n11n25n. ~2.11!

It is to be remembered that the algebras o~1! and o~0,1! are empty. Forn1>1 andn2>2 the
subalgebras in Eq.~2.1! contribute two Casimir operators

C~n1,1!5(
i 51

n1

Mi0
2 2 (

1< i ,k<n1

Mik
2 , C~n2!5 (

n111<a,b<n11n2

Mab
2 . ~2.12!

The subalgebra sim(n21) leaves invariant a one-dimensional isotropic space inMn,1 and is
spanned by

$M0n ,Mik ,M0i1Mni%, 1< i ,k<n21, 1< i<n21. ~2.13!

The algebra sim(n21) does not have a second-order Casimir operator, but its maximal subal
e(n21), the Euclidean Lie algebra, does. The algebrae(n21) is obtained from~2.13! by omit-
ting M 0n . The corresponding Casimir operator is
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P25~M011Mn1!21~M021Mn2!21¯1~M0n211Mnn21!2. ~2.14!

We shall use subgroup diagrams, first introduced in Ref. 3. A semicircle will denote an op,1)
algebra with the numberp indicated inside. A circle will denote an o(p) algebra, again with the
numberp indicated. Finally, a square with a number inside will indicate a Euclidean algebrae(p).

Links in a subgroup chain can be of the following types~each indicated subgroup on the rig
is maximal in the group on the left!:

O~p,1!.O~p!, O~p,1!.O~p21,1!, ~2.15!

O~p,1!.E~p21!, ~2.16!

O~p,1!.O~p1,1! ^ O~p2!, p11p25p, p1>1, p2>2, ~2.17!

O~p!.O~p21!, ~2.18!

O~p!.O~p1! ^ O~p2!, p11p25p, p1>p2>1, ~2.19!

E~p!.O~p!, ~2.20!

E~p!.E~p1! ^ E~p2!, p11p25p, p1>p2>1. ~2.21!

The group O(p,1) itself provides one second order operator, the Laplace operator itself.
subgroups on the right in Eqs.~2.15!, ~2.16!, ~2.18!, and ~2.20! provide one further Casimir
operator each. The direct products on the right-hand sides of~2.17! and ~2.19! provide two
Casimir operators in each case. The groupE(p1) ^ E(p2) in ~2.21! provides two Casimir opera
tors, however their sum is equal to the Casimir operator of theE(p) group on the left-hand side
of Eq. ~2.21!.

All ‘‘allowed’’ subalgebra chains and the corresponding Casimir operators for o~2,1! and
o~3,1! are shown on the left-hand side of Figs. 1 and 2, respectively. The word ‘‘allowed’’ in
previous sentence means that each subalgebra has least one second-order Casimir opera
maximal amongst those that have this property.

FIG. 1. All subgroup and coordinate diagrams for the O~2,1! hyperboloid.
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The procedure of writing all subgroup chains for anyp is recursive. From a circle, we can g
to one or two circles. From a semicircle to a circle, a semicircle, a square, or a circle p
semicircle. From a square we can go to a circle, or to two squares.

III. SUBGROUP TYPE COORDINATES AND COORDINATE DIAGRAMS

A. General procedure

Subgroup type coordinates can be interpreted quite literally. They can be obtained by s
sively applying a series of one-dimensional subgroups of the isometry groupG to the origin of the
considered space.

Let us consider the hyperboloidHn @of Eq. ~2.1!# and the isometry group O(n,1). We start
from the origin which we choose to be the point (u0 ,u1 , . . . ,un)5(1,0,. . . ,0)[1. Next, we
parametrize an element of O(n,1) as

G5HG1eM0kAG0 , APR, ~3.1!

FIG. 2. All subgroup and coordinate diagrams for the O~3,1! hyperboloid.
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whereG0;O(n) is the isotropy group of the origin. The exponential represents a pseudoro
in the (0k) plane. We will choosek5n, or k51, as the case may be. The groupG1;O(n21)
leaves the space expMok1 ~a hyperbola! invariant. FinallyH will act effectively on the hyperboloid
and generate the coordinate system.

We will run through all different choices of the groupHG1 and relate subgroup diagrams, tre
diagrams, and subgroup coordinates. We mention thatH itself is not a group.

We shall first treat low dimensional examples, then return to the general case.

B. The group O „2,1…

1. O(2,1)¤O(2)

Formula~3.1! reduces to

G5eM12feM01AeM12a ~3.2!

and the procedureu5G 1 produces spherical coordinates (0<A,`,0<f,2p)

S u0

u1

u2

D 5S coshA
sinhA cosf
sinhA sinf

D . ~3.3!

The commuting set of operators corresponding to this system is

Y15M01
2 1M02

2 2M12
2 , Y25M12

2 .

FIG. 2 ~Continued.!
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2. O(2,1)¤O(1,1)

We have

G5eM01BeM02AeM12a ~3.4!

and we obtain hyperbolic coordinates (2`,A,`,2`,B,`)

S u0

u1

u2

D 5S coshA coshB
coshA sinhB

sinhA
D . ~3.5!

The commuting set of operators is

Y15M01
2 1M02

2 2M12
2 , Y25M01

2 .

3. O(2,1)¤E(1)

We have

G5e(M011M21)reM02AeM12a ~3.6!

and we obtain horospheric coordinates (2`,A,`,2`,r ,`)

S u0

u1

u2

D 5S coshA1
r 2

2
e2A

re2A

sinhA1
r 2

2
e2A

D . ~3.7!

The commuting set of operators is

Y15M01
2 1M02

2 2M12
2 , Y25~M011M21!

2.

Notice that the group element exp(M01A) in Eq. ~3.2! and exp(M02A) in ~3.4! and~3.6! takes
us onto a hyperbola in the 01 or 02 plane, respectively. The element on the left-hand
exp(M12f), exp(M01B), or exp(M011M21)r completes the parametrization of the O~2,1! hyper-
boloid and introduces an ‘‘ignorable variable’’f, B, or r , respectively. Ignorable variables do n
figure in the metric tensor, or in the coefficients of the Laplace–Beltrami operator. In the solu
of the Helmholtz equation they figure as exponentials.

For the group O~2,1! the groupG1 of Eq. ~3.1! is G15I andH is a one-dimensional subgroup
In Fig. 1 we show the subgroup and coordinate diagrams for the group O~2,1! acting on the

hyperboloidH2 . The coordinate diagrams of Figs. 1~a! and 1~b! are obvious extensions of the tre
diagrams13 for a sphereSn . Each point at the top of a coordinate diagram corresponds to a p
in the ambient spaceMn,1 ~M2,1 in Fig. 1!. The coordinateu0 will always be chosen to be on th
extreme left-hand side of the tree. All nodes on the branch leading tou0 will be denoted by a
double circle, as in Figs. 1~a! and 1~b!. Nodes on branches leading to the coordinatesui ( i
51, . . . ,n) will be denoted by a single~full ! circle @see Fig. 1~a!#. At each double circle~hyper-
bolic node! we introduce a hyperbolic ‘‘angle’’Ai @A in Fig. 1~a!, A andB in Fig. 1~b!#. At each
single circle~trigonometric node! we introduce a trigonometric angleu i @f in Fig. 1~a!#. The rules
for writing coordinates corresponding to such tree diagrams are a slight modification of the
for Sn spheres.13 We move along a tree from the bottom to the top and write cosui , or, respec-
tively, coshAi , when we go to the left at a node and sinui , or, respectively, sinhAi when we go to
the right.

We mention that for the sphereS2 the diagrams of Figs. 1~a! and 1~b! would be equivalent.
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The subgroup diagrams involving squares~Euclidean subgroups! and the corresponding horo
spheric coordinates are a specific new feature arising for the noncompact group O(n,1). The
vertex in Fig. 1~c! is a three prong one. A variableA is asigned to the central prong. This pron
leads to a rectangle, representingEn21 @E1 in Fig. 3~c!#. Further coordinates are introduced
En21 . For O~2,1! there is only one such coordinate, namely a Cartesian one which we callr . The
general case O(k,1).E(k21) is treated in the following.

C. The group O „3,1…

From now on we drop the groupsG0 andG1 in Eq. ~3.1! that act trivially, and hence do no
produce coordinates.

1. O(3,1)¤O(3)¤O(2) [Fig. 2(a)]

In formula ~3.1! we have

H5eM23feM12ueM01A ~3.8!

and coordinates induced by the actionu5G1 are the spherical ones

u05coshA, 0<A,`,

u15sinhA cosu, 0<u<p,
~3.9!

u25sinhA sinu cosf, 0<f,2p,

u35sinhA sinu sinf.

The O~2! subgroup on the left in~3.8! provides the ignorable variablef. The entire O~3! subgroup
in the chain is given as (expM23f)(expM12u) (expM23a), but we drop (expM23a) in Eq. ~3.8!,
since it acts trivially on the origin of the sphereu1

21u2
21u3

25sinh2 A.
The commuting set of operators corresponding to this system is

Y15D~H3!, Y25M13
2 1M12

2 1M23
2 , Y35M23

2 .

2. O(3,1)¤O(2,1)¤(2) [Fig. 2(b)]

The action on the origin ofH3 is given by

H5eM12feM01BeM03A ~3.10!

and the coordinates are

u05coshA coshB, 2`,A,`,

u15sinhA sinhB cosf, 0<B,`,
~3.11!

u25sinhA sinhB sinf, 0<f,2p,

u35sinhA.

The variablef is ignorable, the others not. The O~2,1! subgroup is generated byM12, M01 and
M02. The element (expM02C) is omitted in Eq.~3.10! since it acts trivially on expM03A•1.

The commuting set of operators is

Y15D~H3!, Y25M01
2 1M02

2 2M12
2 , Y35M12

2 .
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FIG. 3. Subgroup and coordinate diagrams for the O(n,1) hyperboloid.
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3. O(3,1)¤O(2,1)¤O(1,1) [Fig. 2(c)]

The action on the origin ofH3 is given by

H5eM01CeM02BeM03A ~3.12!

and the corresponding hyperbolic coordinates are

u05coshA coshB coshC, 2`,A,`,

u15sinhA coshBsinhC, 2`,B,`,
~3.13!

u25sinhA sinhB, 2`,C,`,

u35sinhA.

The variableC is ignorable,A andB are not.
The commuting set of operators corresponding to this system is

Y15D~H3!, Y25M01
2 1M02

2 2M12
2 , Y35M01

2 .

4. O(3,1)¤O(2,1)¤E(1) [Fig. 2(d)]

We take

H5e(M011M21)reM02BeM03A ~3.14!

and obtain

u05coshAS coshB1
r 2

2
e2BD , 2`,A,`,

u15coshAre2B, 2`,B,`,
~3.15!

u25coshAS sinhB1
r 2

2
e2BD , 2`,r ,`,

u35sinhA.

The ~only! ignorable variable isr . Notice that the rule for introducing the coordinatesB and r
coincides with that of Eq.~3.7! for O~2,1!.

The commuting operators are

Y15D~H3!, Y25M01
2 1M02

2 2M12
2 , Y35~M011M12!

2.

5. O(3,1)¤E(2)¤O(2) [Fig. 2(e)]

We have

H5eM12fe(M011M31)reM03A ~3.16!

and

u05S coshA1
r 2

2
e2AD , 2`,A,`,

u15re2A cosf, 0<r ,`,
~3.17!
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u25re2A sinf, 0<f,2p,

u35S sinhA1
r 2

2
e2AD

where the only ignorable variable isf.
The commuting set of operators are

Y15D~H3!, Y25M12
2 , Y35~M011M31!

21~M021M32!
2.

6. O(3,1)¤E(2)¤E(1)‹E(1) [Fig. 2(f)]

The group parametrization is

H5e(M011M31)r 1e(M021M32)r 2eM03A ~3.18!

and we have

u05coshA1
r 2

2
e2A, 2`,A,`,

u15r 1e2A, 2`,r 1,`,
~3.19!

u25r 2e2A, 2`,r 2,`,

u35sinhA1
r 2

2
e2A,

wherer 25r 1
21r 2

2. In this case the two exponentials on the left-hand side in Eq.~3.18! commute,
i.e., $M011M31, M021M32% is a ~maximal! Abelian subalgebra of o~3,1!. Hence we obtain two
ignorable variables,r 1 and r 2 .

The commuting set of operators is

Y15D~H3!, Y25~M011M31!
2, Y35~M021M32!

2.

7. O(3,1)¤O(2)‹O(1,1) [Fig. 2(g)]

The most convenient parametrization is

H5eM01BeM23feM02A, ~3.20!

which yields

u05coshA coshB, 0<A,`,

u15coshA sinhB, 2`,B,`,
~3.21!

u25sinhA cosf, 0<f,2p,

u35sinhA sinf.

The subalgebrasM01 and M23 commute, hence bothB and f are ignorable variables an
$M01,M23% is a maximal Abelian subalgebra of O~3,1!.

The commuting set of operators are

Y15D~H3!, Y25M01
2 , Y35M23

2 .
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For a classification of maximal Abelian subalgebras of o(p,q) see Ref. 18, for those of th
pseudo-Euclidean Lie algebrase(p,q); see Refs. 19 and 20.

All subgroup and coordinate diagrams for O~3,1! and the hyperboloidH3 are shown in Fig. 2.
The ones that differ qualitatively from tree diagrams for O~4! are Figs. 2~d!–2~f!, involving
Euclidean subalgebras of O~3,1! and hence horospheric type coordinates.

Our parametrization of the group elementsG;O(3,1) is such that we can read off coordinat
on Hn , as in the case of O~2,1! from the coordinate diagrams~for 2<n! as follows. For subgroup
chains not involvingE(n) groups we start at the bottom of the coordinate diagram. When
ceeding along the line leading tou0 in the ambient space, we write coshAi , when we go to the left,
sinhAi when we go to the right~toward a spacelike coordinate in the ambient space!. When we
proceed along a line toward a spacelike coordinate, then again for each vertex we writeui

when we go to the left, sinui when we go to the right@as for Sn ~Refs. 13–15!#. The E(n)
subgroups always occur at the end of a chain. Before we come to the corresponding ‘‘fo
‘‘tri-tail’’ on the diagram we proceed as before~coshAi to the left, sinhAi to the right!. The fork
and the box in it@see Fig. 3 for O(n,1)# corresponds to coordinates in a Euclidean spaceEn .

D. Subgroup diagrams and coordinate diagrams for O „n ,1…

The two cases considered previously, O~2,1! and O~3,1!, have demonstrated two features
the general case. The first is that subgroup type coordinates are generated by successively
the action of a chain of one-dimensional subgroups to the origin1 of the hyperboloid. The secon
is that the process is recursive. To obtain all subgroup type coordinates on the hyperboloHn,1

we will need to know all subgroup type coordinates on hyperboloidsHk,1 (2<k,n), spheres
Sk (3<k<n), and Euclidean spacesEk , (2<k<n21).

The actual formula for generating the coordinates is

u5HeM0k1, ~3.22!

wherek is eitherk51 or k5n andHG1 of Eq. ~3.1! is the Lorentz group O(n21,1), the rotation
group O(n), the Euclidean groupE(n21), or a direct product O(n1,1)^ O(n2), n11n25n. The
group G1;O(n22) acts trivially, so we omit it in Eq.~3.22!, even thoughH itself is not, in
general, a group. Actually,H is a product of one-dimensional subgroups and we now procee
discuss different choices ofH.

1. Subgroup chain O(n,1) ¤O(nÀ1,1)¯¤O(2,1)¤O(1,1) [see Fig. 3(a)]

We write Eq.~3.22! as

u5eM01BeM02An21
¯eM0nA11 ~3.23!

and obtain the coordinates

u05coshA1 coshA2¯coshAn21 coshB,

u15coshA1 coshA2¯coshAn21 sinhB,

u25coshA1 coshA2¯sinhAn21 ,

¯

~3.24!
¯

un225coshA1 coshA2 sinhA3 ,

un215coshA1 sinhA2 ,

un5sinhA1 .
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Only the last coordinate introduced, namelyB, is ignorable.

2. Subgroup chain O(n,1) ¤O(nÀ1,1)¯¤O(k,1)¤O(k) [see Fig. 3(b)]

Equation~3.22! in this case is

u5GeM01An2k11eM0k11An2k
¯eM0n21A2eM0nA11, ~3.25!

whereG;O(k), k>2. The coordinates are

u05coshA1 coshA2¯coshAn2k11 , 1<a<k,

ua5coshA1 coshA2¯coshAn2k11sa ,

uk115coshA1 coshA2¯sinhAn2k ,

¯

~3.26!
¯

un225coshA1 coshA2 sinhA3 ,

un215coshA1 sinhA2 ,

un5sinhA1 .

The variablessa satisfy

s1
21s2

21¯1sk
251 ~3.27!

and are parametrized by introducing spherical, or polyspherical coordinates on the sphereSk .11–15

The ignorable variables are ‘‘hidden’’ insa , a51,2,...,k. The number of ignorable variablesNI

satisfies 1<NI<@k/2# where we haveNI51 for spherical coordinates onSk , NI5@k/2# for
cylindrical coordinates.

3. The subgroup chain O(n,1) ¤O(nÀ1,1)¯¤O(k,1)¤E(kÀ1) [see Fig. 3(c)]

Equation~3.22! in this case

u5GeM0kAn2k11eM0n11An2k
¯eM0nA11 ~3.28!

with G;E(k21), k>2. The coordinates are

u05coshA1 coshA2¯coshAn2kS coshAn2k111
r 2

2
e2An2k11D , ~3.29!

ua5coshA1 coshA2¯coshAn2ke
2An2k11r a , 1<a<k21,

uk5coshA1 coshA2¯coshAn2kS sinhAn2k111
r 2

2
e2An2k11D ,

uk115coshA1 coshA2¯sinhAn2k ,
~3.29!

¯

un225coshA1 coshA2 sinhA3 ,
                                                                                                                



l

aram-

3400 J. Math. Phys., Vol. 43, No. 6, June 2002 G. S. Pogosyan and P. Winternitz

                    
un215coshA1 sinhA2 ,

un5sinhA1 .

We have

r 1
21r 2

21¯1r k21
2 5r 2, 2`,r a,` ~3.30!

and r a are coordinates ink21 dimensional Euclidean space. The Euclidean Lie algebrae(k
21) has the basis

$M0a1Mka ,Mbc%, 1<a<k21, 1<b,c<k21. ~3.31!

Subgroup coordinates, subgroup diagrams, and coordinate diagrams~called ‘‘cluster diagrams’’!
were discussed in detail in an earlier article.15 In particular we can simply user a , 1<a<k21 as
Cartesian coordinates, generated by exp(M0a1Mka)ra . In this caser 1 ,...,r k21 are ignorable vari-
ables since$M011Mk1 , . . . ,M0k211Mkk21% is a maximal Abelian subalgebra18 of O~k,1!. The
minimal number of ignorable variables in this case isNI51, obtained if we introduce spherica
coordinates in the Euclidean spaceEk .

4. The subgroup chain O(n,1) ¤O(nÀ1,1)¯¤O(k,1)¤O(k1,1)‹O(k2), k1¿k2Äk, 3ÏkÏn,
1Ïk1, 2Ïk2

Equation~3.22! in this case

u5G1G2eM0k111An2k11eM0k11An2k
¯eM0n21A2eM0nA11 ~3.32!

with G1;O(k1,1), 1<k1<k22, andG2;O(k2), 2<k2<k21,

ua5coshA1 coshA2¯coshAn2k coshAn2k11xa , 0<a<k1 ,

ua5coshA1 coshA2¯coshAn2k sinhAn2k11sa , k111<a<k11k25k,

uk115coshA1 coshA2¯sinhAn2k ,

¯ ~3.33!

un225coshA1 coshA2 sinhA3 ,

un215coshA1 sinhA2 ,

un5sinhA1 .

The coordinatesxa andsa satisfy

x0
22x1

22x2
22¯2xk1

2 51, ~3.34!

sk111
2 1sk112

2 1¯1sk11k2

2 51. ~3.35!

The hyperboloid~3.34! must be parametrized according to some subgroup chain of O(k1,1), using
the diagrams of Fig. 3 withn replaced byk1 ~a lower dimensional problem!. Similarly, the sphere
~3.35! is parametrized according to the ‘‘method of trees.’’10–14

The recursive character of the subgroup type coordinates is very clear in Fig. 3. The p
etrization is complete only in Fig. 1~a! @see Eq.~3.24!#. In Figs. 1~b!, 1~c!, and 1~d! the spaces
~3.27!, ~3.30!, ~3.34! and ~3.35!, respectively, remain to be parametrized.
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The conventions are so chosen that the coordinate systems are obtained as for O~2,1! and
O~3,1!. We write coshAi when we go left at a vertex on the coordinate diagram, sinhAi when we
go right.

As an example, let us consider the subgroup and coordinate diagrams shown in Fig. 4
hyperboloidH8 . The coordinates and complete set of commuting operators are

u05coshA1 coshA2~coshA31 1
2 ~r 1

21r 2
2!e2A3!,

u15coshA1 coshA2e2A3r 1 ,

u25coshA1 coshA2e2A3r 2 cosf,

u35coshA1 coshA2e2A3r 2 sinf,

u45coshA1 coshA2~sinhA31 1
2 ~r 1

21r 2
2!e2A3!, ~3.36!

u55coshA1 sinhA2 cosu1 ,

u65coshA1 sinhA2 sinu1 cosu2 ,

u75coshA1 sinhA2 sinu1 sinu2 ,

u85sinhA1 ,

Y15DLB , Y25(
i 51

7

M0i
2 2 (

1< i ,k<7

n

Mik
2 , Y35(

i 51

4

M0i
2 2 (

1< i ,k<4

n

Mik
2 ,

~3.37!

Y45(
i 51

3

~M0i1M4i !
2, Y55M011M41, Y65M23, Y75M56

2 1M57
2 1M67

2 , Y85M67
2 .

IV. SOLUTIONS OF THE LAPLACE–BELTRAMI EQUATION FOR THE GROUP O „2,1…
AND O„3,1…

A. General comments

The general form of the Laplace–Beltrami operator for any Riemannian, or pse
Riemannian space is given in Eq.~2.2!.

FIG. 4. Example of a subgroup and coordinate diagram for the O~8,1! hyperboloid.
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For the hyperboloidHn we wish to solve Eq.~1.1! with C as in Eq.~1.2!. We will request that
the functionC be normalizable with respect to the invariant measure for representations o
principal series of unitary representations of O(n,1)12 when we have

n52
n21

2
1 ir, rPR. ~4.1!

For a ~compact! rotation group O(n11) we have

DLBC5D~Sn!C52l ~ l 1n21!C, l PIZ, ~4.2!

and for a Euclidean groupE(n),

DLBC5D~En!C52k2C, kPR, ~4.3!

whereD is the Laplace operator.
We shall present normalizable eigenfunctions but do not give their normalization con

explicitly.

B. The group O „2,1…

The coordinates corresponding to Figs. 1~a!, 1~b!, and 1~c! are given in Eqs.~3.3!, ~3.5!, and
~3.7!, respectively. In all cases, one coordinate is ignorable and figures only in an exponenti
take the solution asC(A,z)5 f (A)einz with z5f, B, or r , respectively. The equations forf (A)
and their normalizable solutions are, respectively,

~1! O(2,1).O(2),

F 1

sinhA

]

]A
sinhA

]

]A
2

m2

sinh2 A
2n~n11!G f ~A!50, ~4.4!

leading to

Cnm~A,f!5Pn
m~coshA!eimf, mPZ, n52 1

2 1 ir, ~4.5!

wherePn
m(z) is an associated Legendre function.

~2! O(2,1).O(1,1),

F 1

coshA

]

]A
coshA

]

]A
2

k2

cosh2 A
2n~n11!G f ~A!50, ~4.6!

Cnk~A,B!5
1

AcoshA
P2 1/21 ik

n1 1/2 ~ tanhA!eikB, kPR, n52
1

2
1 ir. ~4.7!

~3! O(2,1).E(1),

FeA
]

]A
e2A

]

]A
2k2e2A2n~n11!G f ~A!50, ~4.8!

Cnk~A,r !5eA/2Kn1 1/2~keA!eikr , ~4.9!

where Kn(z) is a modified Bessel function~of an imaginary argument!, sometimes called a
Macdonald function.21,22
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C. The group O „3,1…

The coordinates corresponding to the diagrams in Figs. 2~a!–2~g! are ~3.9!, ~3.11!, ~3.13!,
~3.15!, ~3.17!, ~3.19!, and ~3.21!, respectively. The diagrams already indicate the recursive c
acter of the procedure. The top row in the subgroup diagrams 2~a!–2~g! provides ignorable
variables and hence exponentials in the solutions. The second row will provide function
already occur in the separation of variables for the sphereS2 , the hyperboloidH2 , or the Euclid-
ean spaceE2 . Figures 2~f! and 2~g! correspond to two ignorable variables. In all cases a n
equation occurs only at the ‘‘ground level’’ of the diagrams and will involve the variableA. Let us
run through all seven cases.

~1! O(3,1).O(3).O(2).
We put

Cnl m~A,u,f!5 f nn~A!Yl m~u,f!. ~4.10!

In ~4.10! Yl m(u,f) are spherical harmonics, coming from the O~3! subgroup withl PZ, 2l

<m<l . The functionf (A) satisfies

F 1

sinh2 A

]

]A
sinh2A

]

]A
2

l ~ l 11!

sinh2 A
2n~n12!G f ~A!50, ~4.11!

and hence we obtain

f nl ~A!5
1

AsinhA
P1/21n

2l 2 1/2~coshA!, n5211 ir. ~4.12!

The negative sign in the superscript of the Legendre function was chosen to assure th
function is finite forA50.

~2! O(3,1).O(2,1).
We consider diagrams of Figs. 2~b!, 2~c!, and 2~d! simultaneously, withG;O(2), O(1,1) and

E(1), respectively. We put

G;O~2!: Cn1n2m~A,B,f!5 f n1n2
~A!Pn2

m ~coshB!eimf, ~4.13!

G;O~1,1!: Cn1n2k~A,B,C!5 f n1n2
~A!

1

AcoshB
P

2 1/21 ik
n21 1/2

~ tanhB!eikC, ~4.14!

G;E~1!: Cn1n2k~A,B,r !5 f n1n2
~A!eB/2Kn21 1/2~keB!eikr . ~4.15!

The general form of the equations takes into account the results of Sec. IV B. The fun
f n1n2

(A) is the same in all three cases. It satisfies

F 1

cosh2 A

]

]A
cosh2A

]

]A
1

n2~n211!

cosh2 A
2n1~n212!G f n1n2

~A!50, ~4.16!

and is hence equal to

f n1n2
~A!5

1

coshA
Pn2

n111
~ tanhA!, n15211 ir, n252

1

2
1 iq. ~4.17!

~3! O(3,1).E(2).G.
We now consider diagrams of Figs. 2~e! and 2~f!, with G;O(2) andG;E(1)^ E(1), re-

spectively. Subgroup coordinates in the Euclidean planeE2 are either polar (E(2).O(2)) or
Cartesian (E(2).E(1)^ E(1)), so we put
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O~2!: Cnkm~A,r ,f!5 f nk~A!Jm~kr !eimf, ~4.18!

T~1! ^ T~1!: Cnk1k2
~A,r 1 ,r 2!5 f nk~A!ei (k1r 11k2r 2), k25k1

21k2
2. ~4.19!

The functionf nk(A) is the same in both cases and satisfies

Fe2A
]

]A
e22A

]

]A
2k2e2A2n~n12!G f nk~A!50. ~4.20!

We obtain

f nk~A!5eAKn11~keA!, n5211 ir. ~4.21!

~4! O(3,1).O(1,1)̂ O(2).
We have

Cnkm~A,B,f!5 f nkm~A!eikBeimf, ~4.22!

where f nkm(A) satisfies

F 1

sinhA coshA

]

]A
sinhA coshA

]

]A
2

k2

cosh2 A
2

m2

sinh2 A
2n~n12!G f nkm~A!50. ~4.23!

The solution can be written in terms of the hypergeometrical functions or in terms of J
functions as

f nkm~A!5~coshA! ik~sinhA!mP(n2 ik2m)/2
(m,ik) ~cosh 2A!, mPZ, kPR, n5211 ir.

~4.24!

V. SOLUTIONS OF THE LAPLACE–BELTRAMI EQUATION FOR Hn

In Sec. IV we presented the separated solutions of the Laplace–Beltrami equation
subgroup type coordinates onH2 and H3 . The case ofH3 and the group O~3,1! illustrated the
recursive character of the procedure. We will make use of this character to write out the so
for the hyperboloidHn for arbitrary n. To do this we need to know the basis functions for t
spheresSk , Euclidean spacesEk , and hyperboloidsHk for k<n21. The procedure depends on
on the first link in the subgroup chain O(n,1).G and we shall consider four cases separately

A. O„n ,1…¤O„n …

This case is represented by Fig. 5~a!. To the coordinates onSn21 we add one hyperbolic angl
A. The coordinates onHn are

u05coshA, ui5si sinhA, s1
21s2

21¯1sn
251. ~5.1!

The Laplace–Beltrami operator onHn can be written as

D~Hn!5
1

sinhn21 A

]

]A
sinhn21A

]

]A
1

1

sinh2 A
D~Sn21!. ~5.2!

We write the solutions onHn as

C~A,j1¯jn21!5 f nnl n21
~A!Yl n21 , . . . ,l 1

~j1 ,j2 , . . . ,jn21! ~5.3!

where f (A) satisfies
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F ]2

]A2 1~n21!cothA
]

]A
2

l n21~ l n211n22!

sinh2 A
2nn~nn1n21!G f nnl n21

~A!50. ~5.4!

The functionYl n21 , . . . ,l 1
(j1 ,j2 , . . . ,jn21) is the solution of the Laplace–Beltrami equation

Sn21 in any one of the subgroup type coordinates on that space. That is, it corresponds to a
of the Sn21 tree diagrams.13–15

Equation~5.4! is easy to solve in terms of associated Legendre functions and we have

f nnl n21
~A!5~sinhA!(22n)/2Pnn1 (n22)/2

2l n212 (n22)/2
~coshA!. ~5.5!

The negative sign in the superscript was again chosen to assure that the function is finiteA
50. It should be remembered thatl n21 refers to representations of the rotation group O(n)
whereasnn to those of O(n,1). Hence,l n21 is an integer whereasnn satisfiesnn52 (n21)/2
1 ipn for unitary representations of the principal series~with pn real!.

We mention that for the group O(n11) and the sphereSn the corresponding formula can b
written as

f l n ,l n21
~u!5~sinu!(22n)/2Pl n1 (n22)/2

2 l n212 (n22)/2
~cosu!, ~5.6!

which corresponds to the diagrams in Fig. 6~a!.

FIG. 5. Elementary links forHn coordinate diagrams and O(n,1) subgroup diagrams.
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B. O„n ,1…¤O„nÀ1,1…

This case is represented in Fig. 5~b!. We write coordinates onHn as

um5xm coshA, un5sinhA, m50,1,2,...,n21, x0
22x1

22¯2xn21
2 51. ~5.7!

The Laplace–Beltrami operator onHn can be written in terms of the one onHn21 as

D~Hn!5
1

~coshn21 A!

]

]A
~coshn21 A!

]

]A
1

1

cosh2 A
D~Hn21!. ~5.8!

We again write the solutions onHn as in Eq.~5.3!, whereYl n21 , . . . l 1
(j1 ,j2 , . . . ,jn21) is a set

of eigenfunctions ofDLB(Hn21) in some subgroup type coordinate system onHn21 . The function
f (A) satisfies

F ]2

]A2 1~n21!tanhA
]

]A
1

nn21~nn211n22!

cosh2 A
2nn~nn1n21!G f nnnn21

~A!50. ~5.9!

The solution of this equation that is square integrable for representations of the principal ser
again be expressed in terms of associated Legendre functions

f nnnn21
~A!5~coshA!~12n!/2 Pnn211 ~n23!/2

nn1 ~n21!/2
~ tanhA!. ~5.10!

Taking into account that we havenn52 (n21)/21 ipn , we can rewrite Eq.~5.10! as

f nnnn21
~A!5~coshA!~12n!/2 P

2 1/21 ipn21

ipn ~ tanhA!. ~5.11!

For Sn , Eq. ~5.10! is not convenient since the argument of the associated Legendre fun
would be imaginary. The contribution to the eigenfunction corresponding to the diagrams in
6~b! can be better written as

f l nl n21
~u!5~cosu!~2n12!/2Pl n1 ~n22!/2

l n211 ~n22!/2
~sinu!. ~5.12!

FIG. 6. Elementary links forSn coordinate diagrams and O(n11) subgroup ones.
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C. O„n ,1…¤E„nÀ1…

We write coordinates corresponding to Fig. 5~c! as

u05coshA1
r 2

2
e2A, r 1

21r 2
21¯1r n21

2 5r 2,

ui5r ie
2A, i 51,2,. . . ,n21, ~5.13!

un5sinhA1
r 2

2
e2A.

The Laplace–Beltrami operator onHn is now expressed in terms of Laplace operator for
Euclidean spaceEn21 as

D~Hn!5e(n21)A
]

]A
e2(n21)A

]

]A
1e2AD~En21!. ~5.14!

The separated eigenfunctions have the form~5.3! where this timeYl n , . . . ,l 1
(j1 ,j2 , . . . ,jn21) are

eigenfunctions ofD(En21). The functionf nnk(A) satisfies

F ]2

]A2 2~n21!
]

]A
2k2e2A2nn~nn1n21!G f nnk~A!50, ~5.15!

where we have put

DY52k2Y. ~5.16!

The functionf nnk satisfying Eq.~5.15! is best expressed in terms of modified Bessel functions

f nnk~A!5e~n21!/2 A Knn1 ~n21!/2~keA! ~5.17!

or equivalently

f pnk~A!5e~n21!/2 A Kipn
~keA!. ~5.18!

These formulas do not have an analog for the group O(n11).

D. O„n ,1…¤O„n 1,1…‹O„n 2…, n 1¿n 2Än

We write the coordinates corresponding to Fig. 5~d! as

ua5xa coshA, a50,1,2,. . . ,n21, x0
22x1

22¯2xn1

2 51,

~5.19!
un5si sinhA, i 5n111,..,n11n2 , sn111

2 1sn112
2 1¯1sn11n2

2 51.

The Laplace–Beltrami operator onHn in this case is

D~Hn!5
1

coshn1 A sinhn2 A

]

]A
coshn1 A sinhn2 A

]

]A
1

1

cosh2 A
DLB~Hn1

!1
1

sinh2 A
DLB~Sn221!.

~5.20!

The separated eigenfunctions ofHn have the form

C~A,j1 ,...,jn1
,h1 , . . . ,hn221!5 f ~A! Z~j1 ,...,jn1

! Y~h1 ,...,hn221!, ~5.21!
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wherej i and ha are subgroup coordinates onHn1
and Sn221 , respectively. The functionf (A)

satisfies

F ]2

]A2 1@n1 tanhA1~n221!cothA#
]

]A
1

nn1
~nn1

1n121!

cosh2 A
2

l n2
~ l n2

1n222!

sinh2 A
2nn~nn1n

21!G f ~A!50. ~5.22!

The ~normalizable! solutions of this equation can be expressed in terms of Jacobi functions

f nn1
l n2

nn
~A!5~coshA!nn1 ~sinhA! l n2 PN

(a,b)~cosh 2A!,

~5.23!

N5
1

2
~nn2nn1

2l n1
!, a5l n2

1
n222

2
, b5nn1

1
n121

2
.

The analog of Eq.~5.23! for the sphereSn is

f l nl n1
l n2

~u!5~cosu! l n1 ~sinu! l n2 PN
(a,b)~cos 2u!,

~5.24!

N5
1

2
~ l n2l n1

2l n2
!, a5l n2

1
n222

2
, b5l n1

1
n121

2
.

It corresponds to the diagrams in Fig. 6~c! andPN
(ab) is in this case a Jacobi polynomial.

VI. CONCLUSIONS

The main results of this article is that we have presented all separable subgroup type c
nates on a Lorentzian hyperboloidHn , together with the corresponding separated eigenfuncti
We have introduced coordinate diagrams incorporating those introduced earlier for ro
groups11–15and Euclidian ones.15 We have related theHn coordinate diagrams to O(n,1) subgroup
diagrams. Finally, we have shown that for arbitraryn the eigenfunctions of the Laplace operat
involve products of the functions~5.5!, ~5.6!, ~5.10!, ~5.12!, ~5.17!, ~5.23! only. No new functions
occur for higher dimensions, only associated Legendre functions and polynomials with v
subscripts, superscripts and arguments, cylindrical functions, and Jacobi functions and pol
als.

The recursive formulas~5.2!, ~5.8!, ~5.14!, and ~5.20! bring out another feature of the sep
ration of variables. Namely, they make it obvious that every separable coordinate system
sphereSn21 the hyperboloidHn21 , the Euclidean spaceEn21 , and the product spaceHn1

^ Sn221 will provide separable coordinates on the hyperboloidHn . We have emphasized this fo
subgroup type coordinates only, but we could also introduce ellipsoidal, paraboloidal, or
nonsubgroup coordinates on the lower dimentional manifolds and obtain ‘‘semisubgroup’’8 type
coordinates onHn .

This recursive character of separable coordinates in various spaces also gave rise to a d
graphical formalism describing all coordinates in which the Laplace–Beltrami equation sepa
The formalism was first introduced for the O(n11) spheresSn and Euclidean spacesEn ,23 then
extended ton-dimensional hyperboloids.10 In all cases certain ‘‘irreducible’’ types of coordinate
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are introduced for anyn. They are of ellipsoidal, or paraboloidal type. The graphs introduced
Kalnins and Miller then show how various coordinate systems in lower dimensions can be
bined together to provide ‘‘reducible’’ type coordinates in higher dimensions. The diagrams
duced in the present paper can be directly mapped onto a proper subset of those used in

The main new contributions are

~1! The explicit relation between subgroup chains and subgroup type coordinates.
~2! The explicit construction of complete sets of invariant operators, their eigenfunctions

eigenvalues.

Finally, let us mention some directions for future research. In this article we have studie
separation of variables in the Laplace–Beltrami equation onHn . We could also study the sepa
ration of variables in a Schro¨dinger equation, i.e., add a scalar potential, or scalar and a vecto
to the Laplace–Beltrami operator. This would allow us to study quantum~and classical! inte-
grable, or superintegrable, systems on hyperboloids. Another open problem is that of Lie a
contractions in which the distanceR, characterizing the hyperboloidu0

22u1
22¯2un

25R2 is
subject to the limitR→`. The hyperboloid will ‘‘contract’’ to a Euclidean, or pseudo-Euclide
space and we will obtain asymptotic formulas for the special functions involved~see Refs. 15,
24–26 for Sn→En contractions and Ref. 27 forH2→E2 ones!. Finally a systematic study o
nonsubgroup type coordinates and their contractions is under consideration.

ACKNOWLEDGMENTS

The authors thank Professor E. G. Kalnins, Professor W. Miller, Jr., Professor M. A.
riguez, Professor M. B. Sheftel, Professor A. N. Sissakian, and Professor V. M. Ter-Antony
interesting discussions. The authors are grateful to A. R. Balabekyan for her help in prepara
the diagrams. This work was started during the visit of G.P. to the CRM, Universite´ de Montreal
and that of P.W. to the JINR in Dubna, Russia. It was finished while G.P. was visiting the C
de Ciencias Fı´sicas UNAM in Cuernavaca, Mexico, and P.W. was visiting the Departament
Fı́sica Teorica II, Universidad Complutense de Madrid. All institutions involved are acknowle
for their hospitality. G.P. acknowledges the Consejo Nacional de Ciencia y Tecnologı´a ~Mexico!
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Coherent states in the time-energy plane provide a natural basis to study adiabatic
scattering. We relate the~diagonal! matrix elements of the scattering matrix in this
basis with the frozen on-shell scattering data. We describe an exactly solvable
model, and show that the error in the frozen data cannot be estimated by the Wigner
time delay alone. We introduce the notion of energy shift, a conjugate of Wigner
time delay, and show that for incoming stater(H0) the energy shift determines the
outgoing state. ©2002 American Institute of Physics.@DOI: 10.1063/1.1476952#

I. INTRODUCTION

Scattering from a slowly changing scatterer is described, to leading order, by atime indepen-
dentscatterer frozen at the scattering time.1 Although this seems like stating the obvious, it tur
out that in trying to make precise how accurate this approximation is, one encounters bot
ceptual and technical difficulties. Our aim is to describe these difficulties and explain how the
resolved.

One conceptual difficulty is to understand what the frozen S matrix—a function of energ
scattering time—means. Strictly speaking, a function of both time and energy is in conflict
the uncertainty principle. A wave that is sharp in energy will have an ill-defined scattering
and, conversely, a wave with a well-defined scattering time is ill-defined in energy. What, th
the meaning of the frozen S matrix?

The resolution of this problem is related to the fact that the adiabatic limit naturally lea
different parametrizations of time, and the right parametrization has small uncertainty. Sp
cally, the physical timet will parametrize the intrinsic ‘‘fast’’ dynamics and has the usual tim
energy uncertainty\. The slow variation in the external conditions will be parametrized bys. We
refer to the latter asepoch. Since the epoch often plays the role of a parameter it is convenie
choose s dimensionless. The two parametrizations are related bys5vt, with v a slow
frequency—the adiabaticity parameter. The epoch-energy uncertainty then takes the formdsde
;\v and so arbitrarily small in the adiabatic limit.

Coherent states provide a convenient basis to analyze the semi-classical limit.2,3 Semi-
classical analysis is traditionally about the\→0 limit, but is equally valid when\ is fixed ~and
henceforth set equal to one! andv→0. Here we introduce coherent states labeled by points in
time-energy plane, with time being the scattering time. As we shall see, the frozen S m
approximates the diagonal matrix elements of the dynamical scattering matrix in such co

a!Electronic mail: avron@physics.technion.ac.il
b!Electronic mail: aelgart@princeton.edu
c!Electronic mail: gmgraf@itp.phys.ethz.ch
d!Electronic mail: sadun@math.utexas.edu
34150022-2488/2002/43(7)/3415/10/$19.00 © 2002 American Institute of Physics
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states. This reconciles the time-energy uncertainty with the frozen scattering data. In a furthe
matrix elements of the frozen S matrix can be approximated by the on-shell data.

Another thorny issue that we address is when a description in terms of frozen data is
ingful and how accurate it is. The question can also be rephrased as a question about the
time scale relevant to scattering. Ift denotes this time scale, thenvt is the error in the frozen data
andvt!1 characterizes the adiabatic regime.

The Wigner time delay14 tw(E,s) conveys information about the time the particle spends n
the scatterer. It is a function of the energyE and scattering epochs. It is tempting to hope thatt
might be estimated bytw(E,s), but there is no compelling argument for doing so. One can
argue on the basis of dimensional analysis alone, sinceṫw andAtw8 , with dot a derivative with
respect to the epoch and prime with respect to the energy, give additional and independe
scales. In fact, since Wigner time delay is acomparisonof the arrival time at a faraway point
relative to the time of arrival in the free dynamics, it is not even positive-definite. This sug
that it cannot quite capturet, which is more closely related to the ‘‘dwell time’’ near the scatter

The way to determinet is to consider the error in approximating the scattering data by
frozen data. The error is, to leading order, proportional to the adiabaticity parameterv. Since the
error is, in general, complex, we identifyt with the absolute value of the error divided byv.
Calculating the error, to leading order inv, is no harder, and reminiscent of, calculating t
scattering in the lowest order of the Born approximation.

We shall see that, to leading order, the adiabatic time scalet can be estimated from th
scattering data and the derivative of the HamiltonianH with respect to the epoch, Eq.~7.4! below,
but not from the Wigner time delay alone. We show this by considering an exactly soluble m
where the dynamical S matrix can be computed explicitly.

We introduce theenergy shiftoperatorE. This is a measure of the energy change in tim
dependent scattering and is a natural dual of the Wigner time delay. As we shall see, in th
that the incoming state isr(H0), the outgoing state isr(H02vE). In the adiabatic limit, the
energy shift can be approximated by the frozen energy shift, which is related to the logar
derivative of the on-shell scattering matrix with respect to the epoch, Eq.~4.2!. The energy shift
then gives a handle on the exchange of energy4,5 and the pumping of charge in adiabat
scattering.6,15

II. ELEMENTS OF SCATTERING THEORY

Scattering theory is a comparison of dynamics: One is the actual dynamics generated
time dependentH(t)5Hs , (s5v t), the other is a fiducial dynamics generated by atime inde-
pendentHamiltonianH0 . The HamiltonianH0 is the generator of dynamics for which there
trivial scattering and the S matrix is the identity.

The results of this section are true in general, without taking the adiabatic limitv→0. We
shall assume thatH and H0 admit good scattering. Namely, we assume the existence of w
operators and the unitarity of the S matrix. For explicit conditions onH0 andH(t) that guarantee
this, see, e.g., Refs. 7 and 8.

A. The wave operator

Let U(t9,t8) andU0(t9,t8)5U0(t92t8) denote the evolution from timet8 to t9, generated by
H(t) and the time-independentH0 , respectively.

Definition 2.1: The wave operators, based at epoch s, are defined by the (strong) limit

V6~s;H,H0!5 lim
t8→6`

U~ t,t8!U0~ t82t ! ~s5vt !. ~2.1!

The existence of the limit, and the equation of motion imply the following.
Proposition 2.2: The dependence of the wave operator on the base point s satisfy the

ential equation
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2 ivV̇6~s!5HsV6~s,H,H0!2V6~s,H,H0!H0 . ~2.2!

As we shall presently see, the notion of wave operator based at epochs is only interesting in
the case of a time dependentH(t).

B. The frozen wave operators

The frozen HamiltonianHs is time independentso U(t9,t8)5eiH s(t92t8), in this case, and
V6(s0 ,Hs ,H0) is independent of the base points05vt0 . This follows from the existence of the
limit in Eq. ~2.1! sincet8→6` is the same ast82t0→6`. To stress this we writeV6(Hs ,H0).
From Eq. ~2.2! then follows the standard intertwining relation of time-independent scatte
theory:

Corollary 2.3: The wave operatorsV6(Hs ,H0) relating the frozen Hamiltonian at epoch
and H0 are independent of the base point, and intertwine the two dynamics:

HsV6~Hs ,H0!5V6~Hs ,H0!H0 . ~2.3!

C. The dynamical S matrix

The ~dynamical! scattering matrix based at epochs is defined by

Sd~s;H,H0!5V1
† ~s;H,H0!V2~s;H,H0!. ~2.4!

The S matrices based on different points in time are all related by conjugation generated
free evolution. Namely, we have the following.

Proposition 2.4: Suppose that the wave operators exist. Then

Sd~s;H,H0!5e2 iH 0tSd~0;H,H0!eiH 0t ~s5v t !. ~2.5!

This follows fromU(s,t)V6(s;H,H0)5V6(s;H,H0)e2 iH 0(s2t). Under a change of the ref
erence Hamiltonian, say to the frozen HamiltonianHs ,

Sd~s;H,H0!5V1
† ~Hs ,H0!Sd~s;H,Hs!V2~Hs ,H0!. ~2.6!

D. The frozen S matrix

In the frozen S data the epoch is decoupled from time. As such it can also be studied
time independent methods, which are normally quite powerful.8 Its basic properties are in marke
contrast with that of the dynamical S matrix, namely:

Corollary 2.5: The frozen S matrix

Sf~Hs ,H0!5V1
† ~Hs ,H0!V2~Hs ,H0! ~2.7!

is independent of the base point. It depends on freezing time parametrically through Hs .

E. The on-shell S matrix

H0 provides a basis that spans the Hilbert space of scattering states. LetuE, j ) denote the
generalized eigenvectors ofH0 :

H0uE, j )5EuE, j ), ~E, j uE8, j 8!5d~E2E8!d j , j 8 . ~2.8!

E is the energy andj labels the scattering channels.Sf commutes withH0 , by Eq. ~2.3!, hence

~E, j uSf~Hs ,H0!uE8, j 8!5d~E2E8!Sj j 8~s,E!. ~2.9!
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Sj j 8(s,E) is theon-shellscattering matrix. Note that in the frozen Hamiltonian the physical ti
is decoupled from the epoch, which now has been relegated to the role of a paramete
on-shell scattering matrix therefore is not in conflict with the uncertainty principle.

III. THE ENERGY SHIFT

By taking thes-derivatives of Eq.~2.5! one gets

ivṠd~s!Sd~s!†5H02Sd~s!H0Sd~s!†5@H0 ,Sd~s!#S d
†~s!5@H0 ,Sd~s!2Sf~Hs ,H0!#S d

†~s!.
~3.1!

This equation may be interpreted as follows. If we think ofH0 as the asymptotic observab
associated with the outgoing energy, thenH0,in5Sd(s)H0Sd(s)† represents the asymptoti
observable9 corresponding to the incoming energy. This motivates calling

Ed~s!5 i Ṡd~s!S d
†~s! ~3.2!

the operator of energy shift.
The energy shift vanishes for time independent scattering, as it must. It gives a han

changes in~certain! quantum states. By the functional calculus applied to Eq.~3.1!, for any
function r,

Sd~s!r~H0!Sd~s!†5r~H02vEs~s!!. ~3.3!

This is interpreted as follows: Ifr(H0) is the incoming state, then the corresponding outgo
state isr(H02v _Es(s)). The energy shift is a first order quantity in the adiabaticity param
and, as we shall see, it can be approximated, to leading order, by the frozen data. This the
a handle on the outgoing stater to first order in the adiabaticity parameter.

Proposition 3.1: The energy shift based on time s is conjugate to the energy shift bas
time zero

Ed~s!5eiH 0tEd~0!e2 iH 0t ~s5vt !. ~3.4!

This follows directly from Eqs.~2.5! and ~3.1!.

IV. THE PROBLEM OF ADIABATIC SCATTERING

The dynamical S matrix has qualitatively different properties from the frozen S matrix:
dynamical S matrix has no freezing time—it does not ‘‘know’’ when the incoming wave is g
to hit the scatterer. It does depend, however, by conjugation, on a choice of a base po
contrast, the frozen S matrix is independent of the choice of a base point and depends non
on the freezing time. The frozen scattering data for one epoch know nothinga priori about the
corresponding data at any other epoch.

Matrix elements of the scattering matrix carry information about the time that the wave is
the scatterer. For such matrix elements, the adiabatic limit can be expressed in terms
corresponding frozen matrix elements. However, the introduction of wave packets promot
epoch from playing the role of a parameter, to that of real, albeit slow, time. One then ne
confront the uncertainty principle. We do that by considering matrix elements between co
states labeled by points in the energy time plane.

A. The Wigner time delay

The Wigner time delay is defined in terms of the on-shell scattering matrix. When this
nition is transcribed to the frozen, on-shell, S matrix it reads

tw~s,E!52 iS8~s,E!S†~s,E!. ~4.1!
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Prime denotes partial derivative with respect to the energy. With this definition, the Wigner
delay is a Hermitian matrix.

B. The frozen energy shift

For the frozen, on-shell, Hamiltonian one can associate a matrix of energy shift which
natural conjugate of the Wigner time delay:

E~s,E!5 iṠ~s,E!S†~s,E!, ~4.2!

where dot denotes derivative with respect to the epoch.

C. Time scales

The frozen on-shell S matrix defines several time scales, among themtw and the~dimension-
less! time scaleE 21. The coherent states provide us with yet another time scale related to the
width of the coherent states. One of the problems of adiabatic scattering is to study the r
between these time scales and the time scalet such thatvt!1 characterizes the adiabatic regim

V. TIME-ENERGY COHERENT STATES

A. The role of dispersion

For a particle moving on the line, its energy and the time that it crosses the origin
canonical coordinates. One can therefore construct energy-time coherent states in analogy
usual phase space coherent states. The explicit construction, however, depends on the di
law. For linear dispersion the construction is particularly simple.

Consider a classical particle with dispersion lawe(p) moving freely on the line. The velocity
of the particle ise8(p) so the time of passage through the origin ist5 2q/e8(p). Time-energy are
~local! canonical coordinates since

de∧dt5dq∧dp. ~5.1!

The global aspects of the energy-time phase space can be complicated. For example, fo
~massive! particle, with quadratic dispersione(p)5p2, the energy-time phase space is made
two copies of the half planee>0 depending on the direction of crossing of the origin.

A simpler situation is obtained in the case of linear dispersion,e(p)5p. There is now no
ambiguity in the direction of crossing and the energy-time phase space is again the plane. T
(q,p)↔(e,t) is, in fact, the identity

e5p, t52q. ~5.2!

The usual coherent states are then also the coherent states on the energy-time plane.

B. Coherent states for linear dispersion

The time-energy coherent states are

ut,e;«&5ei (tP1eX)ug«&, @P,X#52 i , ~5.3!

with g« Gaussian:

^pug«&5
1

A4 p«2
e2 p2/2«2

. ~5.4!

They have the following properties:2

~A! The statesut,e;«& are normalized.
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~B! ut,e;«& have Gaussian localization in time and energy near the point (t,e) with width

de;«, dt;
1

«
, ds;

v

«
.

Hencev plays the role of\ in the epoch-energy plane.
~C! H0 is the generator of shifts of the coherent states:

e2 iH 0t8ut,e;«&5e2 i t 8e/2ut2t8,e;«&.

~D! The overlap of coherent states is

^t,e,«ut8,e8,«&5e2 (e2e8)2/4«2
e2 «2(t2t8)2/4e2 i ~et82e8t !/2.

~E! The coherent states give a resolution of the identity

E dtde

2p
ut,e;«&^t,e;«u51.

~F! The scalar product between coherent states and the eigenstates ofH05P is

~Eut,e;«&5e2 i te/2e2 i tE
e2(E2e)2/2«2

A4 p«2
.

VI. SCATTERING BETWEEN CHANNELS WITH LINEAR DISPERSION

Linear dispersion approximates the low energy physics of electrons in one dimensional
nels provided the Fermi energy is large. The price one pays is that the ‘‘ultraviolet’’ propertie
pathological. In particular, the spectrum is unbounded below and this then leads to certain a
lies which must be correctly interpreted. With linear dispersion one can also solve certain m
with interacting electrons.10

In the following we shall study adiabatic scattering fornoninteractingparticles with linear
dispersion. The particles move on a collection of lines and are allowed to ‘‘hop’’ from one lin
the other and scatter. Each line serves as an incoming and outgoing channel since the flow
unidirectional. An example with two channels is shown in Fig. 1.~Such models bear some resem
blance to Schro¨dinger operators on graphs.!11 The Hilbert space is% j 51

n L2(R), a finite direct sum.
j labels the scattering channels.H0 is then

~H0c!~x, j !52 ic8~x, j !, xPR, 1< j <n.

For the interaction one may take, for example,

~~H~s!2H0!c!~x, j !5(
j 8

v j , j 8~x,s!c~x, j 8!

FIG. 1. A network of two channels. Each channel is chiral and lets particles propagate to and from infinity, accor
the arrows. The circle denotes the region where the channels are coupled.
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with v j j 8 Hermitian, and compactly supported. Alternatively, one may consider finite rank pe
bations.

A. A soluble model

Here we describe a simple, time dependent, model for which the calculation of bot
dynamical and frozen scattering matrices is reduced to quadrature.

Consider scattering on the line with

H05P52 i¹, Hs5P1 f ~s!V, s5v t,

with (Vc)(x)5v(x)c(x) a potential~multiplication operator! which is sufficiently regular and
short range so that* uv(x)udx, * uxv(x)udx,`. The model has one channel and should not
confused with the two-channel example pictured in Fig. 1.

To calculate the dynamical S matrix note that

V~ t,t8!ªU~ t,t8!U0~ t82t !, ~6.1!

satisfies the Volterra type equation:

]V~ t,t8!

]t8
5 i f ~vt8!V~ t,t8!V~ t2t8!, V~ t8,t8!51, ~6.2!

with V(t) the ~backward! free Heisenberg evolution of the potential, i.e.,

V~ t !ªU0~ t !VU0~2t !. ~6.3!

SinceH05P is the generator of shifts,V(t) is the shifted potential:

~V~ t !c!~x!5v~x2t !c~x!. ~6.4!

In particular,V(t) at different times commute, and the solution of the Volterra type problem
given simply by

V~ t,t8!5e2 i *0
t2t8 f (s2vt9)V(t9)dt9, s5vt. ~6.5!

From the definition of the wave operators based on times, Eq. ~2.1!, we obtain for the dynamica
wave operators

V2~s;H,H0!5e2 i *0
` f (s2v t8)V(t8)dt8, V1~s;H,H0!5ei *2`

0 f (s2vt8)V(t8)dt8.

From this we obtain for the dynamical scattering matrix

Sd~s,H,H0!5e2 i *2`
` f (s2vt8)V(t8)dt8. ~6.6!

The dynamical scattering matrix, as well as the wave operators, are local gauge transform
i.e., multiplication by afunctionof position, of modulus one.

The wave operators and the S matrix reduce to the frozen ones upon replacing the fu
f (s2vt8) by its frozen valuef (s), hence,

Sf~Hs ,H0!5e2 i f (s)*2`
` V(t)dt5e2 i f (s)*2`

` V1(t)dt, ~6.7!

where 2V1(t)5V(t)1V(2t). Sf is just a number, not a function of position.
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The frozen scattering matrix provides very little information on the potentialv(x), for it
depends on just one number—the total weight of the potential~this is in sharp contrast with
scattering problems whereH0 is the Laplacian12!. The dynamical S matrix, in contrast, provide
independent information about the potential for each value ofs.

Since the frozen S matrix is independent of the incident energy, the Wigner time
vanishes identically in this model:tw50. The ~frozen! energy shift is just a real number~a
multiple of the identity!

Ef5 ḟ ~s!E
2`

`

v~x!dx.

In contrast, the dynamical energy shift is the multiplication operator:

Ed5E
2`

`

ḟ ~s2v t8!V~ t8!dt8. ~6.8!

B. The on-shell scattering matrix and coherent states

For later purposes we shall need the matrix elements of the frozen S matrix. SinceSf com-
mutes withH0 , the matrix elements are independent oft and are related to the on-shell matrix b

^t,e, j ;«uSf~Hs ,H0!ut,e, j 8;«&5
1

Ap«
E dESj j 8~s,E!e2 (E2e)2/«2

5Sj j 8~s,e!1O~«2]EES!.

~6.9!

The estimate is obtained by observing thatSj j 8(s,E)2Sj j 8(s,e) does not contribute to the integra
to first order inE2e. Since

~]EES!S†52tw
2 1 i tw8

~with prime denoting the derivative with respect to the energy!, we see that the on-shell S matr
approximates the diagonal entries of the frozen S matrix, provided the Wigner time delay a
energy dependence are both small:

«2~tw
2 1utw8 u!!1. ~6.10!

VII. THE ADIABATIC TIME SCALE t

In this section we compute, to leading order, the time scalet relevant to adiabatic scattering
This time scale is defined so thatvt!1 characterizes the adiabatic regime in the sense tha
frozen scattering data approximate the dynamical scattering data.

There are two results in this section, one positive and one negative. The positive resu
that, at least to leading order,t can be computed from time independent quantities alone, Eq.~7.4!
below. The negative result is thatt cannot be computed from the on-shell scattering matrix and
derivatives. In particular, the Wigner time delay alone does not determinet.

Using Eqs.~2.5!–~2.7! and property~C! in Sec. V B, one finds

^t,e, j ;«u~Sd~0;H,H0!2Sf~Hs ,H0!!ut,e, j 8;«&

5^0,e, j ;«uV1
† ~Hs ,H0!~Sd~s;H,Hs!21!V2~Hs ,H0!u0,e, j ;«&. ~7.1!

The correction to the leading order of the S matrix can be approximated by an analog of the
series:8

Sd~s;H,Hs!21'2 i E
2`

`

eiH st8~Hs1v t82Hs!e
2 iH st8dt8. ~7.2!
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SinceHs1vt82Hs is supported near the origin, only smallt8 contribute to the matrix elements i
Eq. ~7.1!. More precisely, this depends only on the time localization property of either the b
the ket. We can therefore approximateHs1v t82Hs'v t8Ḣs . Using property~C! in Sec. V B,

e2 iH stV2~Hs ,H0!u0,e, j ;«&5e2 iet/2V2~Hs ,H0!ut,e, j ;«&,

we finally get

^t,e, j ;«u~Sd~0;H,H0!2Sf~Hs ,H0!!ut,e, j 8;«&'2 ivt~e,s;«!, ~7.3!

where

t~e,s;«!5E
2`

`

^t8,e, j ;«uV1
† ~Hs ,H0!ḢsV2~Hs ,H0!ut8,e, j ;«&t8dt8. ~7.4!

t(e,s;«) involves the frozen wave operators and the rate of change of the Hamiltonian a
epochs. In particular, one can use methods of time-independent scattering theory to compu
is in general complex. The adiabatic time scale,t5ut(e,s;«)u, is a measure of the error.vt
!1 then clearly characterizes the adiabatic regime.

Propagation estimates can, and have been, used13 to bound the error in the frozen data. The
estimates yield bounds ont.

A. Example: The soluble model

For the case of one channel scattering withH(s)5P1 f (s)V, by Eqs.~6.6! and ~6.7!

Sd~s;H,H0!2Sf~Hs ,H0!5~e2 i *2`
` ( f (s2vt)2 f (s))V(t)dt21!Sf~Hs ,H0!

' iv ḟ ~s!S E
2`

`

tV~ t !dtDSf~Hs ,H0!. ~7.5!

The adiabatic time scalet is, in analogy with Eq.~7.3!, the multiplication operator:

t'2 ḟ ~s!S E
2`

`

tV~ t !dtDSf~Hs ,H0!52 ḟ ~s!S E
2`

`

tV2~ t !dtDSf~Hs ,H0!;

2V2~ t !5V~ t !2V~2t !. ~7.6!

By Eq. ~6.7! the frozen S matrix only depends onV1 , while the error only depends onV2 . Since
V2 andV1 are independent this shows that the error term in the adiabatic expansion can
estimated in terms on the frozen scattering data alone.

Combining Eqs.~6.9! and~7.3! we obtain a relation between matrix elements of the dyna
cal S matrix and the on-shell S matrix:

^t,e, j ;«uSd~0;H,H0!ut,e, j 8;«&5Sj j 8~s,e!1O~«2~tw
2 1utw8 u!1vt~e,s;«!!. ~7.7!

VIII. THE ENERGY SHIFT

The energy shift is a first order quantity; nevertheless, it is determined, to leading order,
frozen data:

^t,e, j ;«uEd~0!ut,e, j 8;«&' i ~Ṡ~s,e!S†~s,e!! j j 8 ~s5v t !. ~8.1!
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We first remark that~7.3! and ~7.4! generalize to off-diagonal matrix elements, i.e., the timet in
the ketut,e, j 8;«& may be shifted tot1Dt @resp.t81Dt in ~7.4!# while leaving the bra unchanged
By the translation property of coherent states, property~C! in Sec. II B, multiplication byH0 can
be traded for derivative with respect to time. Hence

^t,e, j ;«u@H0 ,Sd~0;H,H0!#ut1Dt,e, j 8;«&5 i ] t^t,e, j ;«uSd~0;H,H0!ut1Dt,e, j 8;«&

' i ] t^t,e, j ;«uSf~Hs ,H0!ut1Dt,e, j 8;«&

5 iv^t,e, j ;«uṠf~Hs ,H0!ut1Dt,e, j 8;«&. ~8.2!

In principle, the order of the error in the frozen data in the passage from the second to th
line does not determine the order of the error in derivatives, but this can be justified in the p
case. The last identity in the equation above can be seen from

^t,e, j ;«uSf~Hs ,H0!ut1Dt,e, j 8;«&5
1

Ap«
E dESj j 8~s,E!e2 (E2e)2/«2

e2 i (Dt)e/2e2 i (Dt)E.

We then multiply~8.2! with the complex conjugate of the mentioned generalization of~7.3! and
integrate overDt using property~E! of Sec. V B. The result then heuristically follows from E
~3.1! and the statement forEf analogous to~6.9!. An alternate derivation of~8.1! can be made,
more directly, starting from the rhs of Eq.~3.1! and using Born’s expansion.

The energy shift plays a role in the theory of adiabatic quantum pumps. In particula
pumped charge, the entropy production and noise generation in quantum pumps can all
pressed in terms of the energy shift.3 It is remarkable that basic properties of adiabatic quant
pumps can be understood, to leading order, in terms of the frozen scattering data alone.
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Coherent state realizations of su „n¿1… on the n-torus
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We obtain a new family of coherent state representations of SU(n11), in which
the coherent states are Wigner functions over a subgroup of SU(n11). For repre-
sentations of SU(n11) of the type~l, 0, 0,...!, the basis functions are simple
products ofn exponential. The corresponding coherent state representations of the
algebra su(n11) are also obtained, and provide a polar decomposition of su(n
11) for anyn11. The su(n11) modules thus obtained are useful in understand-
ing contractions of su(n11) and su(n11)-phase states of quantum optics.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1479301#

I. INTRODUCTION

In this paper, we wish to present a new kind of coherent state1 construction for the groups
SU(n11). The construction is applicable to unitary irreducible representations~unirreps! of
SU(n11) characterized by integral highest weights of the type~l, 0,...! for which there is no
weight multiplicity, described by Young tableaux having a single row.

Our coherent states differ from the usual coherent states in that our basis function
functions over a subgroupk of SU(n11) rather than polynomials in holomorphic variable
Because there is no multiplicity of weights in SU(n11) unirreps of the type~l, 0,...!, we can
choosek to be the Cartan subgroup of SU(n11). Basis functions for our modules are simp
products ofn exponential factors, and are closely related to the SU(3).SO(3) construction of
Ref. 2.

The realization of su(n11) that we obtain is particularly well-suited for a discussion of po
decompositions of su(n11) generators. We consider as an application a study of phase stat3–6

and, in particular, of SU~2! and SU~3! phase states. The general case can be inferred from
discussion of the SU~3! case and from the results of Sec. III.

Coherent states are also useful in understanding the ‘‘semiclassical’’ behavior of systems7 Our
construction can also be used to understand some of the possible asymptotic limits of qu
systems. For SU(n11) unirreps of the type~l, 0,...!, which are applicable to (n11)-channel
interferometry,6 the asymptotic limit corresponds to taking the number of~unpolarized! photonsl
to be arbitrarily large. The parameters which enter in the explicit realization of the su(n11)
generators will be related to the partition ofl photons betweenn11 channels.

The construction is presented first for SU~2! in Sec. II. The general construction, valid for th
irreps~l, 0,...! of SU(n11) is presented in Sec. III. Section IV contains an application to SU~3!
of the general formalism. Our paper ends with a discussion containing further results and a
conclusion.

a!Electronic mail: hdeguise@mail.lakeheadu.ca
34250022-2488/2002/43(7)/3425/20/$19.00 © 2002 American Institute of Physics
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II. SU„2…

A. Coherent state representation of the su „2… algebra

A basis forA1 , the complex extension of the su~2! algebra, is given in the usual way, by th
three operators$ĥ1 ,ê1 ,ê2% with nonzero commutation relations

@ ĥ1 ,ê6#562ê6 , @ ê1 ,ê2#5ĥ1 . ~1!

For l any positive integer, a highest weightuxl& for an irrep of dimensionl11 ~the numberl is
just twice the spin of the representation! is defined by

ĥ1uxl&5luxl&, lPZ1, ê1uxl&50. ~2!

Now it can be verified explicitly that the mapG:

ĥ1°G~ ĥ1!52 i
d

dw
,

ê1°G~ ê1!52
1

2
e2iw~ tanb!21S l1 i

d

dw D , ~3!

ê2°G~ ê2!52
1

2
e22iw~ tanb!S l2 i

d

dw D ,

preserves the commutation relations of su~2! and is therefore a realization ofA1. A carrier space
for this representation is the span of exponential functions$einu,n52l,2l12,...,l22, l%. The
highest and lowest weight state proportional toeilu ande2 ilu, respectively.

To obtain Eq.~3!, one first chooses some fixed but otherwise arbitrary~generic! angleb in the

range 0,b,2p. With b fixed, the stateRy(b)uxl&, whereRy(b)5e(ê12ê2)b, Rz(w)5ewĥ1, is
cyclic under the action ofRz

21(w). Ry(b)uxl& then acts as a fiducial vector ‘‘translated’’ b
Rz

21(w).
Let uc& be an arbitrary state in the irrep with highest weightl, and define the coherent sta

wave function foruc& by

uc&°cb~w![^xluRy~b!Rz~w!uc&. ~4!

Since^xluê250, it is convenient to writeRy(b) in antinormal-ordered form, so that, ignorin
a normalization and a phase factor,

cb~w!5^xluRy~b!Rz~w!uc&}^xluetanbê1Rz~w!uc&. ~5!

The coherent state realizationG(X̂) of an operatorX̂ in su~2! is defined by

X̂uc&→@G~X̂!c#b~w![^xluetanbê1Rz~w!X̂uc&. ~6!

Using Rz(w)5exp(iwĥ1), it follows immediately from this that

ĥ1°G~ ĥ1!52 i
d

dw
, ~7!

since

G~ ĥ1!cb~w!5^xluetanbê1Rz~w!ĥ1uc&. ~8!
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If X̂5ê6 , we then have

@G~ ê6!cb#~w!5^xluetanbê1Rz~w!ê6uc&5e62iw^xluetanbê1ê6Rz~w!uc&. ~9!

The step which differentiates ours from the usual construction is to expandê6 as

ê65x6e2tanbê1ê2etanbê11y6e2tanbê1ĥ1etanbê11z6ĥ1 , ~10!

wherex6 , y6 , andz6 are coefficients to be determined. This expansion is always possible
ê6 is a traceless su~2! matrix and can therefore always be expanded in terms three line
independent traceless matrices inA1 .

Before solving for the coefficients in Eq.~10!, it is worth observing that, once substituted
Eq. ~9!, one obtains the simpler expression

@G~ ê6!cb#~w!5e62iw~y6^xluĥ1etanbê1Rz~w!uc&1z6^xluetanbê1Rz~w!ĥ1uc&!

5e62iwS ly62 iz6

d

dw Dcb~w!, ~11!

where Eq.~7!, ^xluĥ15l^xlu and ^xluê250 have been used.
Although they will depend on the parameterb, the coefficientsy6 andz6 cannot depend on

the particular choice of representation used to compute them, as long as the represent
faithful: if they did, commutation relations which would hold in a representation would
necessarily hold in another. Thus, one can compute these coefficients in the defining 232 repre-
sentation, where

ê1°S 0 1

0 0D , ê2°S 0 0

1 0D , ĥ1°S 1 0

0 21D , etanbê1°S 1 tanb

0 1 D . ~12!

For X̂5ê1 , Eq. ~10! yields the matrix system

S 0 1

0 0D 5x1S 2tanb 2tan2 b

1 tanb D 1y1S 1 2 tanb

0 21 D 1z1S 1 0

0 21D . ~13!

It is immediately possible to solve forx1 , as it multiplies the only matrix with a nonzer
entry below the diagonal. Knowingx1 , it is then easy to solve fory1 andz1 . The solution is
simply y152z15 1

2(tanb)21 so that the final expression forG(ê1) corresponds to that given in
Eq. ~3!. Repeating the steps forê2 yields x251 andy252z25 1

2 tanb so thatG(ê2) has the
form given in Eq.~3!.

B. Basis functions

First, we claim that the set of states$Rz
21(w)Ry

21(b)uxl&, Rz
21(w)PU(1), b fixed%, obtained

by U~1! rotation of the stateRy
21(b)uxl& through all possible anglew, spans the carrier spaceVl

for an irrep of SU~2! with highest weightl. To show this, recall thatVl is generated fromuxl& by
repeated action of the lowering operatore2 . Now,

Rz
21~w!Ry

21~b!uxl&}Rz
21~w!etanbê2uxl&}etanbe22iwê2uxl&eilw ~14!

by using the normal form ofe2b(ê12ê2). This can be seen to indeed generate the whole ofVl

~provided that tanbÞ0, which is our assumption aboutb being generic!.
Thus, to any stateuc& in Vl there corresponds a unique coherent state wave function

uc&°cb~w![^xluRy~b!Rz~w!uc&, ~15!
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which belongs to the set of U~1! square-integrable functions. In particular, the basis functionsuln&
are given bycb;ln(w)5^xluRy(b)uln&einw and must be proportional to the only normalize
function on the half-circle with weightn:

cb;ln~w!}
1

Ap
einw. ~16!

Note that we can restrict to the half circle because the difference of two weights in an inv
subspace is always an even integer.

C. Making the representation Hermitian

The representation of su~2! given in Eq.~3! is not Hermitian with respect to the natural U~1!
inner product. If, as usual, the adjoint ofê1 is taken asê2 , i.e., ê1

† 5ê2 , then

^ln8uG~ ê1!uln&Þ^lnuG~ ê2!uln8&* ~17!

if

^cbucb8 &5E
0

p

dw cb* ~w!cb8 ~w!. ~18!

However, sincel is integral, the representationG must be equivalent to a Hermitian repr
sentationg, i.e., there must exist an intertwining operatorK such that

K21GK5g, with ^ln8ug~ ê1!uln&5^lnug~ ê2!uln8&* . ~19!

To construct the operatorK, note thatG(ĥ1) is actually Hermitian in the representation of Eq.~3!,
so thatK21G(ĥ1)K5G(ĥ1)5g(ĥ1). Thus,K commutes withG(ĥ1) and weight eigenstates o
G(ĥ1) are also weight eigenstates ofK. Let

ĥ1uln&5nuln&, Kuln&5Knuln&. ~20!

Using Eq.~19!, the Hermiticity condition reads

^l,n12ug~ ê1!uln&5
1

2 tanb
~l2n!

Kn

Kn12
5^lnug~ ê2!ul,n12&* 5

1

2
tanb~l1n12!

Kn12*

Kn*
~21!

from which we conclude that the ratio ofKn12 /Kn must satisfy, up to a phase that we choose
be 11,

Kn12

Kn
5

1

tanb
A l2n

l1n12
, ~22!

so thatg is indeed Hermitian and given explicitly by

^l,n12ug~ ê1!uln&5
1

2
A~l1n12!~l2n!5^lnug~ ê2!ul,n12&. ~23!

D. Application: Phase operators and phase states

Any matrix M can be factorized in polar formU•D, with U a unitary matrix andD a
semipositive definite diagonal matrix.8 The operatorD is always well-defined. The unitary matri
U is the exponential of a Hermitian ‘‘phase’’ operator associated with the phase of the obse
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described by the matrixM. The problems of constructing a phase operator in a finite or se
infinite dimensional space are related to the lack of uniqueness in the definition ofU which occurs
when the rank ofM is smaller than its dimension.

Our realizationG acts in a natural way in the infinite dimensional irreducible space span
by the set of U~1! functions ~phase functions! Vs2

5$ei (2p1s2)w/Ap,pPZ%, where s2 is the
‘‘duality’’ of the representation:s250 for bosons ands251 for fermions. Furthermore, the
realizationG of ê1 or ê2 can obviously be factored as a product of two operators. One may e
show that the ‘‘diagonal’’ part of the decomposition ofG(ê6) obtained, to within a sign, from
AG†(ê6)G(ê6).

We are primarily interested in the matrix representation of the operatorÊw[e2iw. In the
infinite-dimensional spaceVs2

, the matrix representation ofÊw contains zeroes everywhere, e

cept immediately above the diagonal.Êw is unitary with respect to the inner product of Eq.~18!.
Since@G(ĥ1),Êw#5Êw ,Êw is the exponential of an Hermitian ‘‘phase’’ operator that is conjug
to ĥ1 .

The eigenstates ofÊw , known as phase states,3 are labeled by the continuous variableu + and
given by

uu +&5 (
p52`

`

ei ~2p1s2!~u+1w!, Êwuu +&5e22iu+uu +&. ~24!

To obtain a finite dimensional Hermitian representation of su~2!, we project fromVs2
a finite

dimensional subspaceVl spanned by an appropriate subset of exponential functions. Rowe9 has
already observed that the appropriate projection operator is the intertwining operatorK of Eq.
~19!. SinceKn50 for unu.l, K isolates from the set of all U~1! functions$eipw,p52`,... ,̀ % a
subset of pertinent functions which form a basis for thephysical SU(2) subspacefor the repre-
sentation.K also adjusts the matrix elements of the various generators of the algebra so as to
g Hermitian. Thus, the expression ofg in terms of an intertwining operator which acts as
projector ties in nicely with the work by Popov and collaborators10 on phase operators in a finit
dimensional subspace.

The restriction ofÊw to the finite-dimensional spaceVl is no longer unitary: the highes
weight is annihilated byÊw so thatÊw is now nilpotent, with the last line of its matrix represe
tation containing only zeroes:

Êw5S 0 1 0 ...

0 1 0

] � 1 �

1

0 0 ... 0

D . ~25!

We would like to transformÊw into a unitary matrix, but that transformation is not unique, as
rank of the matrix representation ofg(ê6) in Vl is less than the dimension of this matrix. It
nevertheless possible to obtain a unitary operator closely related toÊw . The choice

Eŵ~j !5S 0 1 0 ...

0 1 0

] � 1 �

1

ei j 0 ... 0

D ~26!
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will produce a unitary matrix with determinantei j. The factorj is related to the phase of th
vacuum state, which cannot be determined.

Vourdas4 has done an extensive analysis of the case wherej50, which amounts to imposing
a cyclic boundary condition by identifyingul,l12&;ul,2l&. The case of generalj does not
differ significantly from this particular case wherej50: the eigenvalues and eigenvectors of t
matrix of Eq.~26! are simply shifted by inessential phase factors. Thus, we setj50 and define

Eŵ[Eŵ~0!, ~27!

so that det(Eŵ)51. The notation indicates thatEŵ is the exponential of a Hermitian ‘‘phase
operatorŵ.

Phase states in the finite dimensional subspaceVl are eigenstates ofEŵ . They are obtained by
restricting the sum in Eq.~24! to those values ofn that correspond to states occurring in the su~2!
irrep with highest weightl:

ul;ul&5 (
n52l,2l12,...,l

einululn&5
sin~~l11!~w1ul!!

sin~w1ul!
, ul52p/~l11!, ~28!

using uln&°einw. The stateul;ul& behaves like a periodicd function asl→`, in accordance
with the requirement of Ref. 5.

E. Application: Asymptotic SU „2… Wigner function

Let l→` and setn05l cos 2b, i.e., set cos 2b5n0 /l to its ‘‘classical value.’’ Then

lim
l→`

Kn01p12

Kn01p
5 lim

l→`

tanbA~l1n01p12!

~l2n02p!
5tanbA11cos 2b

12cos 2b
511O~p/l!. ~29!

For finite values ofp, we can therefore solve forKn01p asKn01p51. For finitep, the operatorsê6

are now represented by

g~ ê1!→2 1
2 e2iwl~12cos 2b!cotanb52 1

2 le2iw sin 2b,

~30!

g~ ê2!→2 1
2 e22iwl~11cos 2b!tanb52 1

2 le22iw sin 2b,

and, in particular, we haveg(L̂y)5 i (g(ê1)2g(ê2))5l sin 2b sin 2w. The reduced SU~2!-
Wigner function,^lnuexp(iuL̂y)uln8&, can therefore be written, in the limit, as

lim
l→`

^ 1
2 l, 1

2 ~n01p!uexp~ iu~g~ ê1!2g~ ê2!!!u 1
2 l, 1

2 ~n01q!&

→ 1

p E
0

p

ei ~~1/2!~p2q!!2weiul sin 2b sin 2wdw

5Jp2q~~2l sin 2b!u!, ~31!

whereJn is a Bessel function and we have used an integral expression forJn found in Ref. 11.
This result has been further investigated in Ref. 12.
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III. GENERALIZATION TO SU „N¿1… IRREPS OF TYPE „l, 0,...…

A. Algebraic formulation

In this section we generalize the above-mentioned construction to obtain a representa
su(n11) on then-torus. We start by going to the complex extension of u(n11), spanned by the
(n11)2 operators$Ĉi j ,i , j 51,...,n11% which satisfy the commutation relations

@Ĉi j ,Ĉkl#5d jkĈil 2d i l Ĉk j . ~32!

The complex extension of su(n11) is obtained by selecting from the above set the operatorsĈi j ,
iÞ j and ĥk , where

ĥk5Ĉkk2Ĉk11,k11 , k51,...,n. ~33!

Let h be the Cartan subalgebra ofg5sl(n11,C) consisting of diagonal matrices. Let~l, 0, ...!
be a dominant integral weight~with respect toh! and uxl& the highest weight vector of a repre
sentation on the spaceV which has only trivial weight multiplicities. Lets be the stabilizer
subalgebra of̂xlu, i.e.,

s5$sPg s.t. ^xlus5a~s!^xlu%, ~34!

wherea(s)PC. Note that the Cartan subalgebrah,s.
Choose and fix a generic elementg in SL(n11,C) and construct another ‘‘twisted’’ copy o

the Cartan subalgebraghg21. The only condition ong must be that

g5s1ghg21, ~35!

i.e., it must be possible to expand an arbitrary element ing as a sum of an element ins and an
element inghg21. The coherent state representation of an operatorX̂Pg is then defined by

G~X̂!cg~k![^xlug k X̂uc&, kPH. ~36!

Since H is just ann-dimensional torus, the group elementkPH is parametrized byn angles
w1 ,...,wn as ink5exp(iSp wpĥp), wherep runs fromp51,...,n. We will abuse the notation and
write the coherent state as a function ofwI 5@w1 ,...,wn#. With this notation we find that, for

X̂5ĥkPh,

G~ ĥk!52 i
]

]wk
. ~37!

If X̂5Ĉj , , ,Þ j so thatX̂¹h, then we have

G~Ĉj ,!cg~w!5^xlug exp~ iSkwkĥk!Ĉj ,uc&,

5exp~ iSkmj ,
k wk!^xlugĈj , exp~ iSwkĥk!uc&

5exp~ iSkmj ,
k wk!^xlu~gĈj ,g21!g exp~ iSkwkĥk!uc&, ~38!

wherek runs from 1 ton and where

@ ĥk ,Ĉj ,#5mj ,
k Ĉj ,5dk jĈk,2dk11,j Ĉk11,,2dk,Ĉjk1dk11,,Ĉj ,k11 ~39!

for j Þk51,...,n11. With the understanding thatw05wn1150, the sumSk51
n mj ,

k wk can be
rewritten as
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(
k51

n

mj ,
k wk5w j2w j 212w,1w,21 . ~40!

In order to complete the description of our coherent state representation ofg, we need to compute
explicitly, for every (j ,), the decomposition

~41!

as per Eq.~35!. It is simpler~and equivalent! to compute

Ĉj ,5g21ŝj ,g1d̂ j , . ~42!

Substitution of~42! into Eq. ~38! then yields

G~Ĉj ,!cg~w!5exp~ iSkmj ,
k wk!^xlu~ ŝj ,g1d̂ j ,!exp~ iSkwkĥk!uc&,

5exp~ iSkmj ,
k wk!^xlu~ ŝj ,g exp~ iSkwkĥk!1g exp~ iSkwkĥk!d̂ j ,!uc&. ~43!

It follows therefore that, in accordance with Eq.~37!, d̂ j , will be a sum of differential operators in
the variableswk , while the action on the left ofŝj , will yield back ^xlu to within a normalization
factor.

Again we observe that the expansion coefficients cannot depend on the choice of repr
tion, so that we choose to work in the (n11)3(n11) representation whereuxl&5(1,0,...,0)t.
The computation is further facilitated if we observe that the dependence ong is actually only up
to left multiplication ofS; hence we can writeg5S•ḡ, with SPS in the stabilizer subgroup an
ḡ a conveniently chosen coset representative inS\G; a different choice of the representativeg8
5s•g will produce equivalent representations in which the coherent states are multiplied
characterx(s). Then,

Ĉj ,5~ ḡ!21ŝj , ḡ1d̂ j , . ~44!

If the highest weight vector̂xlu is the vector~1, 0,..., 0!, then a general elementŝPs and coset
representativeḡ have respective the matrix forms

ŝ°S y 0

xt YD , ḡ5S 1 2v

0t 1 D , ~45!

where Y is an n3n complex matrix,x5(x2 ,x3 ,...,xn11) is a complex 13n vector, 0 is the
13n null vector,y52Tr(Y), v5(v2 ,v3 ,...,vn11) is a complex vector, and1 is the n3n unit
matrix. @The matrix form ofḡ can be compared with Eq.~12!.#

The productḡ21ŝḡ is a matrix of the form

S y1v"x 2~y1v"x!v1vY

xt 2x^ v1Y D , ~46!

wherev"x is the usual scalar product and̂ denotes the outer product so thatx^ v is an n3n
matrix.

We therefore seek to match the matrix expression ofĈj , with the expansion

S y1v"x 2~y1v"x!v1vY

xt 2x^ v1Y D 1d, ~47!
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whered is a diagonal matrixd5diag(d1,...,dn11) of zero trace.
For every different pair of indices (j ,,), j Þ,, and withv appearing as parameter~which does

not depend onj, ,!, we need to solve the above-given equation fory, Y, x, d. These unknowns
depend onj, , but, to avoid overburdening the notation, we will keep writingy for yj , , dk for dj ,

k ,
etc., until we reach final formulas.

Using the form ofŝ, the highest weight state (1,0,...)t and Eq.~43!, we find that the only
coefficient inŝ that enters in the expression ofG(Ĉj ,) is y. The only element ins to have nonzero
entry in position~1,1! is ĥ1 . As ^xluĥ15^xlul, Eq. ~43! simplies to

G~Ĉj ,!5yj ,exp~ iSkmk
j ,wk!S l2 i (

k51

n

zk
]

]wk
D , yj ,zk5dk. ~48!

We divide the straightforward search for the solution into three subcases. It is also us
this point to introduce an auxiliary set ofn11 vectors in the Cartan Lie-algebrah, given by

r̂k52 (
j 51

k21

j ĥ j1(
j 5k

n

~n2 j 11!ĥ j5diag~21,...,21, n
kth-term

,21,...,21!, k51,...,n11, ~49!

G~ r̂k!52 i S (
j 51

k21

j
]

]w j
2(

j 5k

n

~n2 j 11!
]

]w j
D . ~50!

Note that, forr̂n11 , there is no contribution from the second sum in Eq.~49!.

1. Case 1: Ĉ 1ø

Let j 51, c be the vector of components (c)k5d,k , k52,3,...,n11 and write

Ĉ1,5S 0 c

0t 0D , ~51!

From Eq.~47!, x50, y1d150, andY1d50; Y is a diagonal matrix with entriesy5Ykk5
2dk.

From v(2y11Y)5c, we find first thatYkk5y for kÞ,, and, using the conditiony1,

1Tr(Y)50, thatY,,52ny. Finally, from the nonzero component,5k of c, one obtains

y5
21

~n11!v,
. ~52!

If Eq. ~35! is to hold, then we must havev,Þ0 ;,. The matrixd is given by

~53!

Therefore we finally have

G~Ĉ1,!5y1, ei ~w12w,1w,21!~l1G~r̂,!!, y1,5
21

~n11!v,
, ~54!

where we have foundSk51
n mk

1,wk5w12w,1w,21 usingwn1150 and Eq.~40!.
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2. Case 2: Ĉ j ø , øÅ j , ø, jÐ2

We now write

Ĉj ,5S 0 0

0t cj ,
D , ~55!

where (cj ,)mn5d jmd,n . Using Eq.~47!, x50 once more, so thaty1d150. Thus, the diagona
elements ofY are such thatYkk1dk50. The only off-diagonal entry inY is a 1 in thej th row, ,th
column.~For consistency it is convenient to enumerate the entries of then3n matrix Yjk with j,
k52,...,n11.! From v(2y11Y)50, we obtain the equations

vk~2y1Ykk!1v jd,k50, ~56!

from which we conclude that, ifkÞ,, Ykk5y. The coefficientY,, is fixed byy1tr(Y)50 to be
Y,,52ny. Finally, from Eq.~56! with ,5k, we conclude that

y5
v j

~n11!v,
, ~57!

wherev jÞ0Þv, by assumption. The diagonal matrixd is given by

~58!

Summarizing, we find, using Eq.~40!,

G~Ĉj ,!5yj ,ei ~w j 2w j 212w,1w,21!~l1G~r̂,!!, yj ,5
v j

~n11!v,
. ~59!

3. Case 3: Ĉ ø1 , øÅ1

In this case, the vectorxt has componentsxj5d, j . Thus, the scalar productv"x5v, , and the
equationy1v,1d150 gives

d152~v,1y!. ~60!

From v(2y11v,11Y)50, we conclude that

~2y2v,!vm1 (
k51

n

vkYkm50, m52,3,...,n11. ~61!

Now, (x^ v)pm5xpvm5d,pvm . Thus, we have

052~x^ v!pm1Ypm1dmdpm52d,pvm1Ypm1dmdpm , m52,3,...,n11. ~62!

Multiplying Eq. ~62! by vp and summing overp, we obtain

05(
p

~2d,pvpvm!1(
p

vpYpm1(
p

vpdmdpm , m52,3,...,n11. ~63!

Using Eq.~61! and the fact thatvmÞ0, this can be simplified to

052v,1y1v,1dm5y1dm, m52,3,...,n11. ~64!

Now using the fact thatSk51
n11 dk50, we immediately find
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y52
v,

n11
, ~65!

so that, using Eq.~60!, we find the matrixd to be

d5diag~ny,2y,...,2y!52yr̂152
v,

n11
r̂1 . ~66!

Hence,

G~Ĉ,1!5y,1ei ~w,2w,212w1!~l1G~r̂1!!, y,15
v,

n11
, ,52,...,n11, wn11[0. ~67!

B. Evaluating the vk coefficients

The coefficients vk are related to SU(n11) Wigner functions as follows. Ifn
5(n1 ,n2 ,...,nn11) denotes an ordered partition ofl, i.e., n11n21...1nn115l with n i a non-
negative integer, then the set of states$cn%, labeled by different partitionsn of l, can be chosen
as basis states for the irrep~l, 0,..., 0! of su(n). These states satisfy

ĥkcn5~nk2nk11!cn , ~68!

and are uniquely identified by the set of eigenvalues of the operatorsĥk .
Next, we needg5ḡ•S, or ḡ5S21g5ḡ, with S21 andG matrices of the form

S215S w 0

Qt XD , g5S a b

ct U D , ~69!

where a5^xluguxl& and bk5^xlugucnk
&, with cxl

the highest weight state of th
(n11)-dimensional defining representation~1, 0,..., 0! andcnk

, k52,...,n11, the remaining basis
states of this irrep. Thus we have

w5
1

^xluguxl&
, vk5

^xlugucnk
&

^xluguxl&
. ~70!

C. Basis functions

We have already observed that, withḡ of the form of Eq.~45! andv jÞ0 ; j , then (ḡ)21uxl&
generates the whole representation space. Thus, the state (ḡ)21uxl& acts as a cyclic vector for the
irrep with highest weight~l, 0, 0,...! under the action of any fixed elementkPH in the Cartan
subgroup. Hence, to every vectorc in the representation space, there corresponds a unique
tion on H:

c°cg~k!5^xlug kuc&. ~71!

The basis statecn of ~l, 0,..., 0! is mapped to the normalized element on then-torus

cn°^xluḡkucn&}^xluḡucn&exp~ iSk~nk2nk11!wk!°
exp~ iSk~nk2nk11!wk!

~2p!n/2 . ~72!

The highest weight statecxl
of ~l, 0,..., 0! is represented bycxl

°eiw1/(2p)n/2.
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D. Making the representation Hermitian

States on the torus are naturally normalized with respect to the inner product

^cn8ucn&5
1

~2p!n E
0

2p

dw1E
0

2p

dw2¯E
0

2p

dwn exp~2 iSk~nk82nk118 !wk!exp~ iSp~np2np11!wp!

5) dn
k82nk2n

k118 1nk11
. ~73!

However, with this inner product, the action of the operatorsG(Ĉi j ), iÞ j , is not Hermitian:

^cn8uG~Ĉi j !ucn&Þ^cn8uG
†~Ĉj i !ucn&5^cnuG~Ĉj i !ucn8&* ; ~74!

the resulting representation does not exponentiate to a unitary representation of the group
all representations of su(n11) having integral dominant weight are equivalent to Hermit
representations, there must exist an intertwining operatorK that will transformG into a Hermitian
representationg, i.e., there existsK

g~Ĉi j !5K21G~Ĉi j !K, such that ^cn8ug~Ĉi j !ucn&5^cnug~Ĉj i !ucn8&* . ~75!

We find K by combining Eq.~75! with its Hermitian conjugateg†(Ĉj i )5K†G†(Ĉj i )(K21)†, so
that

g~Ĉi j !5g†~Ĉj i !⇒G~Ĉi j !S5SG†~Ĉj i !, ~76!

whereS5KK† is a Hermitian operator. Noting that the Cartan elementsĥk are represented unde
the mapG by operators Hermitian with respect to the inner product of Eq.~73!, we may takeS to
be diagonal in the weight basis:Sucn&5Snucn&. Thus, using Eq.~76!, we obtain the condition

^cn8uG~Ĉi j !Sucn&5^cn8uSG†~Ĉj i !ucn&⇒
Sn

Sn8
5

yji* ~l1r i~n8!!

yi j ~l1r j~n!!
[Rn,n8 , ~77!

wherenk5nk81d ik2d jk and

r i~n!5^cnur̂ i ucn&5 (
k51

n11

~r i !kknk , ~78!

where (r i)kk is thekth entry in the diagonal matrixr i defined in Eq.~49!.
To construct the coefficientsSn from the ratios of Eq.~77!, one starts by~arbitrarily! fixing to

11 the coefficient of the highest weight corresponding to the trivial partition~l, 0, 0,...!; changing
this would just changeS by an overall multiplicative factor. Noting now thatS5KK† is a positive
Hermitian matrix, the ratioKn /Kn8 can therefore be obtained, up to a phase, as the square ro
the right-hand side of Eq.~77!. The phase of the ratioKn /Kn8 should be chosen so that the matr
elements ofg(Ĉi j ) are real, something that it is always possible to do. In practice, one cho
without loss of generality, the elementgPG, from whichyi j is obtained, so thatyi j is always real.
Assuming therefore thatg is chosen in this way, we havevk always real and

Kn

Kn8
5Ayji ~l1r i~n8!!

yi j ~l1r j~n!!
. ~79!
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IV. APPLICATION TO SU „3…

A. Representation on the 2-torus

The su~3! Lie algebra is spanned in the usual way by the subset of u~3! operators comprising
the ladder operators$Ĉi j ,iÞ j % together with the Cartan generatorsĥ15Ĉ112Ĉ22, ĥ25Ĉ22

2Ĉ33. The $Ĉi j % operators satisfy the general commutation relations@Ĉi j ,Ĉkl#5d jkĈil

2d i l Ĉk j .
The highest weight state of the irrep~l,0! is mapped to the stateul,0,0&°eilw1/2p. More

generally, a stateun1 ,n2 ,n3&, with n11n21n35l, is mapped to

un1 ,n2 ,n3&°
ei ~n12n2!w11 i ~n22n3!w2

2p
5

ei ~n12n2!w11 i ~2n21n12l!w2

2p
, ~80!

where the conditionn11n21n35l has been used.
Following the parametrization of Ref. 13 for SU~3! elements, and using the fact that we c

chooseg to be such that the matrix elements are real, we find

w5
1

cos1
2 b2

, v25cos
1

2
b3 tan

1

2
b2 , v35sin

1

2
b3 tan

1

2
b2 . ~81!

Simple application of Eqs.~37!, ~54!, ~59!, and~67! then yields

G~ ĥ1!52 i
]

]w1
, G~ ĥ2!52 i

]

]w2
,

G~Ĉ12!5
21

3 cos1
2b3 tan 1

2b2

ei ~2w12w2!Fl1 i
]

]w1
2 i

]

]w2
G ,

G~Ĉ21!5
2cos1

2b3 tan 1
2b2

3
e2 i ~2w12w2!Fl22i

]

]w1
2

]

]w2
G ,

G~Ĉ13!5
21

3 sin 1
2b3 tan 1

2b2

ei ~w11w2!Fl1 i
]

]w1
12i

]

]w2
G , ~82!

G~Ĉ31!5
2sin 1

2b3 tan 1
2b2

3
e2 i ~w11w2!Fl22i

]

]w1
2 i

]

]w2
G ,

G~Ĉ23!5
1

3 tan1
2b3

ei ~2w112w2!Fl1 i
]

]w1
12i

]

]w2
G ,

G~Ĉ32!5
tan 1

2b3

3
ei ~w122w2!Fl1 i

]

]w1
2 i

]

]w2
G .
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The ratios ofK matrix elements required to compute the matrix elements ofg(Ĉi j ) are
Kn /Kn8 , with nk85nk1d ik2d jk . Usingn11n21n35l, they are given explicitly by

Kn1n2n3

Kn111,n2 ,n321
5v3Al1r1~n8!

l1r3~n!
5sin

1

2
b3 tan

1

2
b2Al12~n1112n2!1~n22n311!

l2~n12n2!22~n22n3!

5sin
1

2
b3 tan

1

2
b2An111

n3
, ~83!

Kn1n2n3

Kn1n221,n311
5

v2

v3
Al1r3~n8!

l1r2~n!
5

1

tan
1

2
b3

An311

n2
, ~84!

Kn1n2n3

Kn111,n221,n3

5v2Al1r1~n8!

l1r2~n!
5cos

1

2
b3 tan

1

2
b2An111

n2
. ~85!

To obtain the matrix elementg(Ĉ13), for instance, one computes

^cn111,n2 ,n321ug~Ĉ13!ucn1 ,n2 ,n3
&

5E dw1

2p E dw2

2p
exp@2 i ~n12n211!w12 i ~n22n321!w2#

3~K21G~Ĉ13!K!exp@ i ~n12n2!w11 i ~n22n3!w2#,

5E dw1

2p E dw2

2p
exp@2 i ~n12n211!w12 i ~n22n321!w2#

3S 1

Kn111,n2 ,n321
ei ~w11w2!

21

3 sin
1

2
b3 tan

1

2
b2

Fl1 i
]

]w1
12i

]

]w2
GKn1 ,n2 ,n3D

3exp@2 i ~n12n2!w11 i ~n22n3!w2#

3
21

3 sin
1

2
b3 tan

1

2
b2

@l2~n12n2!22~n22n3!#sin
1

2
b3 tan

1

2
b2An111

n3
,

52A~n111!n3. ~86!

B. Application: the SU „3…\†R6
‡U„1…2 contraction

Consider the limit wherel→`. Set

n̄15lS cos
1

2
b2D 2

, n̄25lS sin
1

2
b2D 2S cos

1

2
b3D 2

, n̄35lS sin
1

2
b2D 2S sin

1

2
b3D 2

. ~87!

The anglesb2 andb3 then provide a convenient way to parametrize the distribution ofl photons
in three modes with modei containing a large numbern i of photons.
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With this, it is readily seen that the values of the anglesb2 , b3 for which the representation
G of Eq. ~82! is singular correspond to a distribution such that at least one of the three
contains no quanta. Provided thatG is nonsingular, we then have, for values ofn and n8 suffi-
ciently close to the average valuesn̄,

lim
l→`

Kn

Kn8
511O~1/l!. ~88!

The representationG is then Hermitian; the diagonal operatorsĥ1 and ĥ2 remain unchanged, an
the ladder generators become, in the limit wherel→`,

G~Ĉ12!→22lei ~2w12w2! sinb2 cos
1

2
b3 ,

G~Ĉ21!→22le2 i ~2w12w2!sinb2 cos
1

2
b3 ,

G~Ĉ13!→22lei ~w11w2!sinb2 sin
1

2
b3 ,

~89!

G~Ĉ31!→22le2 i ~w11w2!sinb2 cos
1

2
b3 ,

G~Ĉ23!→2lei ~2w112w2!S sin
1

2
b2D 2

sinb3 ,

G~Ĉ32!→2lei ~w122w2!S sin
1

2
b2D 2

sinb3 .

All the ladder operators commute with one another, and the resultant algebra is@R6#U(1)2.

C. Application: Phase operators and SU „3… phase states

The realizationG acts naturally in the irreducible infinite-dimensional space of functionsVs3
,

where a state un,m&, n,mPZ is represented by the function over the 2-tor
un,m&°ei (2n2m)w1ei (2m2n2s3)w2/2p. Here,s350, 1, or 2 is the ‘‘triality’’ of the representation

We introduce three ‘‘phase-like’’ operators:

Êw12
5ei ~2w12w2!, Êw23

5ei ~2w112w2!, Êw13
5ei ~w11w2!. ~90!

In Vs3
, the operatorsÊw12

andÊw23
are unitary with respect to the natural inner product o

the 2-torus; they are the exponential of phase operators conjugate toĥ1 andĥ2 , respectively, since

F1

2
G~ ĥ1!,Êw12G5Êw12

, F1

2
G~ ĥ2!,Êw23G5Êw23

. ~91!

Note that@ 1
2G(ĥ1),Êw23

#Þ0, @ 1
2G(ĥ2),Êw12

#Þ0.

The realization of an element ofA2 , say,G(Ĉ12) can be expressed as products of a unit

and a diagonal matrix:G(Ĉ12)52Êw12
ê12, whereê125AG†(Ĉ12)G(Ĉ12).
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In the infinite-dimensional spaceVs3
, the unitary operatorsÊw12

andÊw23
commute, and it is

possible to find their common set of eigenvectors. It can be verified that, for anyu1 , u2 , states of
the type

uu1 ,u2&5 (
n,mPZ

ei ~2n2m!u1ei ~2m2n!u2un,m&5 (
n,mPZ

ei ~2n2m!~w11u1!ei ~2m2n!~w21u2!, ~92!

are the simultaneous eigenstate ofÊw12
, Êw23

, andÊw13
:

Êw12
uu1 ,u2&5e2 i ~2u12u2!uu1 ,u2&, Êw23

uu1 ,u2&5e2 i ~2u112u2!uu1 ,u2&,

~93!
Êw13

uu1 ,u2&5e2 i ~u11u2!uu1 ,u2&.

The statesuu1 ,u2& are therefore phase states.
Consider now the finite-dimensional subspaceVl,Vs3

such thatVl is the carrier space for a
unirrep of highest weight~l, 0!. This subspace is projected using theK operator fromVs3

. In
going from the infinite-dimensional spaceVs to the finite-dimensionalVl, a number of problems
arise in connection with the definition and properties of the phase operators.

We denote the states inVl by three non-negative integers as per Eq.~80!. First, however, we
note that it is not difficult to properly define the radial part of an operator. For instance, the

part Ĵ12 of g(Ĉ12) is found fromĴ125Ag†(Ĉ12)g(Ĉ12).
In Vl, the restrictions of the operatorsÊw i j

are nilpotent and therefore no longer unitary. T

rank of Êw i j
is equal to dim(Vl)2(l11) as there are (l11) states annihilated byÊw i j

@one state
in each su(2)i j subrepresentation occurring in the su~3! irrep ~l, 0!#.

In contrast with the SU~2! case, where a single entry ofÊw could be changed so as to obta
the unitary operatorEŵ , an arbitrary complex linear combination of the (l11) states annihilated
by Êw i j

yields another state annihilated byÊw i j
. Thus, we are left with infinitely many ways o

transformingÊw i j
into a unitary phase operatorEŵ i j

, even if we insist that the determinant ofEŵ i j

be 1. Furthermore, it can easily be verified that, forl>2, the restriction ofÊw i j
is an operator that

does not necessarily commute with the otherÊwkl
operators:@Êw i j

,Êwkl
#Þ0.

We point out that, in the matrix representation of@Êw12
,Êw23

# there are preciselyl entries
which are 1 rather than zero in this commutator. The ‘‘faulty’’ nonzero matrix elements appe
positions corresponding to matrix elements of the type^n111,0,n321uÊw13

un1,0,n3&, i.e., matrix
elements involving vacuum states in mode 2: the familiar problems associated with the con
tion of unitary phase operators in the presence of vacuum states are still present.

Thus, the number of ‘‘faulty’’ nonzero matrix elements in commutators of the type@Êw i j
,Êw jk

#

will grow like l, since the number of states having the vacuum in one mode grows likel. On the
other hand, the number of states in the irrep~l, 0! grows like l2. The classical limit wherel
→` corresponds to the limit where the phases commute, provided that we ignore the rela
small number of ‘‘faulty’’ nonzero matrix elements compared to the number of ‘‘correct’’ z
matrix elements. This relative number grows like 1/l.

In particular, in the interpretation of Eq.~89!, the realizationG becomes singular for state
near the vacuum state whenl→` limit. Hence, provided that the distribution of photons in
input state is such that the vacuum can be safely ignored, phase operators can be consid
commuting.

A similar result on the lack of commutativity between thetotal and relative su~2! phase
operators in systems containing few photons has been obtained in Ref. 14. These author
that commutativity was recovered in the classical limit. Our results are similar to those fou
Ref. 14, albeit applicable to the case of noncommutingrelative phases in a three-beam system
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The three-dimensional representation~1, 0! merits special attention. Besides providing
illustrative example for our previous discussion, this representation is the only one that a
commutingunitary phase operators while preserving the polar decomposition.

More precisely, in a system containing a total ofl5n11n21n351 quantum, the explicit
matrix realization of~some of! Ĉi j in terms ofÊw i j

• Ĵi j can easily be found:

~ i j ! Êw i
Ĵi j Ĉi j 5Êw i j

• Ĵi j

~1,2! S 0 1 0

0 0 0

0 0 0
D S 0 0 0

0 1 0

0 0 0
D S 0 1 0

0 0 0

0 0 0
D , ~94!

~2,3! S 0 0 0

0 0 1

0 0 0
D S 0 0 0

0 0 0

0 0 1
D S 0 0 0

0 0 1

0 0 0
D ,

~1,3! S 0 0 1

0 0 0

0 0 0
D S 0 0 0

0 0 0

0 0 1
D S 0 0 1

0 0 0

0 0 0
D .

To computeÊw12
, for instance, one usesÊw12

5ei (2w12w2), i.e., the ‘‘phase’’ part ofG(Ĉ12), the

basis states$ 1
2peiw1, 1

2pei (2w11w2), 1
2peiw2%, and the inner product

^CuF&5E
0

2pE
0

2p

dw1 dw2 C* F. ~95!

The operatorsÊw i j
are explicitly not unitary. WhereasÊw12

•Êw23
5Êw13

it is not true that

@Êw12
,Êw23

#5Êw13
: the phase operators do not commute.

There are many ways of turningÊw i j
into a unitary operatorEŵ i j

while still preserving the

decomposition ofĈi j into a phase and a diagonal part. What is unique of the~1,0! representation
is that it is also possible to find unitary operatorsÊŵ i j

such thatÊŵ i j
preserves the polar decom

position of Ĉi j and simultaneously produces commuting phase operators:@Êŵ i j
,Êŵkl

#50. This
remarkable choice is

Eŵ12
5S 0 1 0

0 0 1

1 0 0
D , Eŵ23

5S 0 1 0

0 0 1

1 0 0
D , Eŵ13

5S 0 0 1

1 0 0

0 1 0
D . ~96!

It is not possible to convertÊw i j
into a unitary operatorEŵ i j

that will have all of the above
enumerated properties when the total number of photons is greater than 1.

This result on the existence of commuting unitary phase operators is expected, as the
sentation~1,0! is pertinent to the classical description of a three-channel interferometer,15 for
which the phases are~of course! expected to commute.
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V. DISCUSSION AND CONCLUSION

In deriving the representationG acting over the functions defined over the maximal torusH of
G5SU(n11), the main hinge is the decomposition of the Lie algebra as per Eq.~35!. This is
equivalent to requiring that the dimension of the subgroupH or, equivalently, the rank of the grou
G @i.e., n in the case of SU(n11)# is exactly of complementary dimension to the stabilizer of
highest weight state.

The question arises now as to whether there are other representations and/or groupsG which
allow a similar decomposition. The answer is—unfortunately—no, i.e., we need some exte
to the above-presented picture in order to accommodate other groups. We discuss why
such an obstruction in the Appendix.

The technique adopted in this paper has been limited in scope to unirreps of SU(n11) with
highest weights of the type~l, 0,...!. However, it is possible to extend the formalism presen
here to general irreps by suitably enlarging the subgroup over which the coherent stat
defined. Irreps of the type~l, m, 0,...! are particularly interesting as they can be expected to h
applications to the description of polarized beams. For irreps with highest weight~l, m, 0,...!, the
appropriate subgroupk of SU(n11) is S(U(2)3U(1)3...3U(1)): the basis states and th
representationG will then be expressed16 in terms of Wigner functions over this subgroup.

The major result of this paper is a realization of the su(n11) Lie algebra~or, more precisely,
of the complex extension of this algebra!, appropriate for irreps with integral highest weights
the form~l, 0,...!, for which basis functions and generators are expressed in terms of expon
functions and derivatives of phase angles. This would appear to be particularly suitable for
cations to phase states, and for the study of the asymptotic limits of a representation a
appropriate limit of Wigner functions.

Although this has been done explicitly only for SU~2! and SU~3!, the parameters which ente
in the realization can be generally interpreted as projective coordinates, related to SU(n11)
Wigner functions, and understood physically as related to the distribution ofl photons between
n11 fields.
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APPENDIX A: HOW TO COUNT THE DIMENSION OF THE STABILIZER

In this section, we show why our construction only works for algebras which haveAn as their
complexification, and for which representations ofAn our construction is possible.

Let h be the Cartan subalgebra of a Lie algebra of one of the classical groups@i.e., SU(n),
SO(2n11), Sp(2n), SO(2n) or their noncompact versions#. A good comprehensive review o
Lie algebra structure is Refs. 17 and 18.

Let f a be a lowering operator corresponding to the positive roota: in order thatf axlÞ0 it is
necessary and sufficient that (a,l)>0, where~ , ! is the Killing form. Notice that such lowering
operators form a nilpotent subalgebra: we denote bytl the subset of positive roots for whic
(l,a).0.

Now, let $a i% i 51...l be a set of simple~positive! roots, $v i% i 51...l the corresponding set o
weights, i.e., (v i ,a j )5d i j .

Any dominant weight and positive root can be written as

l5(
i 51

n

l iv i , l iPN1 , a5(
i 51

n

mia i , miPN1 . ~A1!
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Let us fix a fundamental weightvk ~which is equivalent to choosing a node on the Dynk
diagram!.

For a given Lie algebrag ~i.e., for a given Dynkin diagram! one can compute the number o
roots in tvk

and check to see, as we choose different nodes of the Dynkin diagram, if the
sufficiently many roots to allow a decomposition of the type proposed in Eq.~35!.

The results are here below~we refer to the Planches in Ref. 18!.
~1! SU(n11) (An): choosing thekth node there arek(n112k) positive roots intvk

. The
minimum for tvk

is n, which occurs whenk51 or k5n. These choices correspond, respective
to the representations~l, 0,...! or ~0,..., 0,l!.

~2! SO(2n11) (Bn ,n.1): choosing thekth node there arek1k(n2k)1k(n112k)
52k(n112k) positive roots intvk

. The minimum is 2n, which is bigger than the rankn of the
group: it is impossible to construct SO(2n11) on the torus.

~3! Sp(2n) (Cn ,n.2): choosing thekth node there arek(n2k)1k1k5k(n122k) posi-
tive roots. The minimum isn11, and this is again greater than the rankn of Sp(2n).

~4! SO(2n) (Dn): choosing thekth node there arek(n2k)1k1k5k(n122k) positive
roots, the minimum isn11, which is also greater than the rank of the group.
As we see, the minimal number is equal to the rank of the algebra only forAn .

APPENDIX B: A COHOMOLOGICAL PERSPECTIVE ON S-MATRIX THEORY

We wish to draw the attention of the reader to the following interesting ‘‘cohomologi
interpretation of the solution for the operatorS.

In the construction of the coefficientsSn of the operatorS from the ratios of Eq.~77! as
described above, it is nota priori clear that the coefficientSn corresponding to a nontrivia
partition n defined starting from the trivial partition does not depend on the particular ‘‘path’
have followed to reach the given partitionn. Indeed—in general—there are different ways
getting to a given partitionn starting from the trivial one; for instance, we have

~l,0,0,0,...!°

C21

~l21,1,0,0,...!°

C31

~l22,1,1,0,...! or ~B1!

~l,0,0,0,...!°

C31

~l21,0,1,0,...!°

C21

~l22,1,1,0,...!. ~B2!

We have to make sure that the coefficientS(l22,1,1,0,...)defined along these two different ‘‘paths
does not depend on the choice of path. We observe here that this in particular implies th
following cocyclecondition holds

Rn,n8Rn8,n9Rn9,n51 ~B3!

for any partitionsn, n8, n9 which are adjacent in the following sense: Two partitionsn, n8 of l are
said to beadjacentif there existiÞ j such that

nk5nk81d ik2d jk , k51,...,n11. ~B4!

Let us verify this fact and consider the small loop

n→
Ci j

n8→
Cjk

n9→
Cki

n, ~B5!

n r85n r1d ir 2d j r , n r95n r81d j r 2dkr5nk1d ir 2dkr , ~B6!

and the associated cocycle condition
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Rnn8Rnn8Rn8n95
yji* ~l1r i~n8!!

yi j ~l1r j~n!!

yk j* ~l1r j~n9!!

yjk~l1rk~n8!!

yik* ~l1rk~n!!

yki~l1r i~n9!!
, ~B7!

which, according to Eq.~B3!, should be 1.
Using the expressions foryi j , it can be verified explicitly that, if we setv1[1, then

~yji !*

yi j
5S v j* v j

v i* v i
D , v1[1. ~B8!

Using Eq.~B8!, one sees at once that they dependence drops out Eq.~B7!. Moreover, sincei, j,
k are distinct indices, one checks also that

r i~n9!5r i~n8!, r j~n9!5r j~n!, rk~n!5rk~n8!. ~B9!

Therefore Eq.~B7! is consistent with Eq.~B3!. In a similar way, one can easily check th
Rn,n85(Rn8,n)21. This equation, together with Eq.~B7!, define acocycleover partitions.
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Integrable variant of the one-dimensional Hubbard model
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A new integrable model which is a variant of the one-dimensional Hubbard model
is proposed. The integrability of the model is verified by presenting the associated
quantumR-matrix which satisfies the Yang–Baxter equation. We argue that the
new model possesses the SO~4! algebra symmetry, which contains a representation
of theh-pairing SU~2! algebra and a spin SU~2! algebra. Additionally, the algebraic
Bethe ansatz is studied by means of the quantum inverse scattering method. The
spectrum of the Hamiltonian, eigenvectors, as well as the Bethe ansatz equations,
are discussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1481956#

I. INTRODUCTION

Since the discovery of high temperature superconductivity in cuprates,1 a tremendous effort
has been made to uncover the mystery of this phenomenon. It is generally believed th
strongly correlated electron systems behaving as non-Fermi liquids are closely related to
conducting materials. This has caused an intense study in strongly correlated electron syst2–7

These systems possess various physical characteristics which are decisively dominated
competing interactions; e.g., the Coulomb interaction in the Hubbard model, spin fluctua
through the antiferromagnetic coupling for the super-symmetric t-J model and current-d
correlated interaction inducing hole pairs of Cooper type superconductors in the one-dimen
~1D! Bariev model. The 1D Hubbard model as a prototype among the strongly correlated el
systems has attracted a substantial deal of interest in the study of integrable quantum field
mathematical physics and condensed matter physics since its exact solution was achieved
and Wu8 in 1968. Towards a complete understanding of the mathematical structure of th
Hubbard model in the framework of the quantum inverse scattering method~QISM!, a fundamen-
tal advance was achieved by Shastry9 in demonstrating the integrability of the model. Specifical
it was shown that a two-dimensional statistical covering model of two coupled symmetri
vertex models provides a one parameter family of transfer matrices commuting with the H
tonian of the 1D Hubbard model. The algebraic formulation with respect to the integrability
to the quantumR-matrix9–12 which facilitates not only the algebraic Bethe ansatz solution,13 but
also the construction of the boost operator14 for the model. Remarkably, the Hamiltonian of th
Hubbard model was proved to exhibit the SO~4! symmetry by Yang and Zhang15 ~see also Ref.
16!. Besides the spin SU~2! algebra, the SO~4! algebra contains theh-pair SU~2! algebra with the

a!Electronic mail: guan@if.ufrgs.br
34450022-2488/2002/43(7)/3445/13/$19.00 © 2002 American Institute of Physics
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raising operator creating an on-site pair of electrons with opposite spins. This can be interpr
a localized Cooper pair. A complete set of eigenstates of the Hamiltonian can be obtain
exploiting the SO~4! symmetry.17

The 1D Hubbard Hamiltonian with more competing interactions may also be consid
Along this line, many extended Hubbard models have been constructed in the literature, su
u(2u2) extended Hubbard model,5 supersymmetricUq(osp(2u2)) electronic systems18 and SU(N)
Hubbard models.19 In this article, we present an alternative 1D Hubbard model such tha
Hamiltonian has off-site Coulomb interaction instead of the on-site one of the standard Hu
model. The integrability of this model is verified by presenting the associated quantumR-matrix
which fulfills the Yang–Baxter equation~YBE!. We show that the model exhibits the SO~4!
symmetry with new representations of theh-pairing SU~2! algebra and thez-pairing spin SU~2!
algebra. Moreover, the algebraic Bethe ansatz is formulated by means of the QISM. Thou
model exhibits the same spectrum as the standard Hubbard model on a periodic lattice, t
quantumR-matrix, the hidden nesting structure associated with an asymmetric isotropic six-v
model and the Bethe eigenvectors do distinguish this model from the standard one.9,10 The essen-
tial differences between the two models manifest in the open lattice versions, which we
discuss in more depth in the conclusion.

The article is organized as follows. In Sec. II, we introduce a Lax operator associated wi
new Hubbard model and construct a nontrivial higher conserved quantity commuting wit
Hamiltonian. In Sec. III, we present theR-matrix associated with the model by solving th
Yang–Baxter relation. The SO~4! symmetry is verified too. In Sec. IV, we formulate the algebr
Bethe ansatz solutions for the model with periodic boundary conditions. The eigenvector
eigenvalues of the Hamiltonian are presented explicitly. Section V is devoted to a discussio
conclusion.

II. THE MODEL

Let us begin by introducing a variant of the 1D Hubbard model with the Hamiltonian

H5(
j 51

L

$~s j
1s j 11

2 1s j
2s j 11

1 !1~s→t!%1
U

4 (
j 51

L

s j
zt j 11

z . ~1!

Above s j and t j are the two commuting species of Pauli matrices acting on sitej , andU is a
Coulomb coupling constant. Above and throughout, periodic boundary conditions are impos
all summations evaluated over the lattice lengthL. The difference from the standard Hubba
model is that the model~1! exhibits the off-site Coulomb interaction instead of the on-site one.
shall see that it not only breaks the spin reflection symmetry but also specifies a new repre
tion of h-pairing SU~2! algebra and spin SU~2! algebra in order to maintain the SO~4! symmetry.
To verify the integrability of the model, we, at first, identify a relation between the Hamilto
~1! and the transfer matrix which is defined by

t~u!5Tr0T~u! ~2!

with

T~u!5L0L~u!¯L01~u!. ~3!

The local Lax operators associated with model~1! have to be alternatively chosen as
                                                                                                                



-

3447J. Math. Phys., Vol. 43, No. 7, July 2002 Integrable variant of the one-dimensional

                    
L0 j~u!5L0 j
s ~u!I 0

2L0 j
t ~u! ~4!

5S eh(u)Pj
1Qj

1 eh(u)Pj
1t j

2 e2h(u)s j
2Qj

1 e2h(u)s j
2t j

2

e2h(u)Pj
1t j

1 e2h(u)Pj
1Qj

2 eh(u)s j
2t j

1 eh(u)s j
2Qj

2

eh(u)s j
1Qj

1 eh(u)s j
1t j

2 e2h(u)Pj
2Qj

1 e2h(u)Pj
2t j

2

e2h(u)s j
1t j

1 e2h(u)s j
1Qj

2 eh(u)Pj
2t j

1 eh(u)Pj
2Qj

2

D , ~5!

where

Pj
65w4~u!6w3~u!sz;

Qj
65w4~u!6w3~u!tz

with a parametrizationg(u)5w4(u)2w3(u)5sin(u); a(u)5w4(u)1w3(u)5cos(u). We would
like to mention that the Lax operators

L0 j
s ~u!5w4~u!1w3~u!s j

zs0
z1s j

1s0
21s0

1s j
2 , ~6!

L0 j
t ~u!5w4~u!1w3~u!t j

zt0
z1t j

1t0
21t0

1tJ
2 , ~7!

I 05cosh
h~u!

2
1s0

zt0
z sinh

h~u!

2
, ~8!

have been chosen the same as that for the Hubbard model.9–11 It follows that the Hamiltonian~1!
is related to the transfer matrix~2! in the following way:

ln t~u!5 ln t~0!1Hu1
1

2!
Ju21¯ , ~9!

above the HamiltonianH5( j 51
L H j ( j 11) with the Hamiltonian density

H j ( j 11)5L0( j 11)~0!L0 j8 ~0!L0 j
21~0!)L0( j 11)

21 ~0!, ~10!

and the second higher conserved current can be given as

J5(
j 51

L

Jj ( j 11)( j 12) ~11!

with

Jj ( j 11)( j 12)5Bj ( j 11)2H j ( j 11)
2 2@H j ( j 11) ,H ( j 11)( j 12)#, ~12!

Bj ( j 11)5L0( j 11)~0!L0 j9 ~0!L0 j
21~0!L0( j 11)

21 ~0!. ~13!

Here the prime denotes the derivative with respect to spectral parameteru. After a straightforward
calculation, the equation~10! does provide us with the expression~1!, whereas the second con
served quantity~11! has the form
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Jj ( j 11)( j 12)5
U

2
$@2s j

1s j 11
2 1s j

2s j 11
1 #t j 11

z 1@2t j
1t j 11

2 1t j 11
1 t j

2#1s j
z@2s j

1s j 11
2

1s j
2s j 11

1 #t j 12
z 1@2t j 11

1 t j 12
2 1t j 12

1 t j 11
2 #s j

z%1@2s j 12
1 s j

21s j
1s j 12

2 #s j 11
z

1@2t j 12
1 t j

21t j
1t j 12

2 #t j 11
z . ~14!

Here we would like to stress that both the Hamiltonian~1! and the conserved quantity~11! should
be understood as global operators. It is meant that@H,J#50 rather than@H j ( j 11) ,Jj ( j 11)( j 12)#
50. The mutual commutativity ofH andJ convinces us of the existence of a quantumR-matrix
associated with the model~1!. We shall present a rigorous proof of the integrability of the mo
in the next section.

III. INTEGRABILITY OF THE MODEL

It has long been clarified that the existence of the quantumR-matrix which fulfills the Yang–
Baxter relation is desirable for constructing integrable quantum chains. This suggests to us
to verify the integrability of the model presented above. Indeed, following Ref. 11, we, af
cumbersome algebraic calculation, can find a class of solutions to the Yang–Baxter relatio

R
∨

~u,v !L0 j~u! ^ L0 j~v !5L0 j~v ! ^ L0 j~u!R
∨

~u,v !, ~15!

which is given as

R
∨

~u,v !

5

¨

r1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 r2
2 0 0 r9 0 0 0 0 0 0 0 0 0 0 0

0 0 r2
1 0 0 0 0 0 r9 0 0 0 0 0 0 0

0 0 0 r5 0 0 r6
1 0 0 r6

2 0 0 r8 0 0 0

0 r10 0 0 r2
1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 r4 0 0 0 0 0 0 0 0 0 0

0 0 0 r6
2 0 0 r3 0 0 r7 0 0 r6

1 0 0 0

0 0 0 0 0 0 0 r2
2 0 0 0 0 0 r10 0 0

0 0 r10 0 0 0 0 0 r2
2 0 0 0 0 0 0 0

0 0 0 r6
1 0 0 r7 0 0 r3 0 0 r6

2 0 0 0

0 0 0 0 0 0 0 0 0 0 r4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 r2
1 0 0 r10 0

0 0 0 r8 0 0 r6
2 0 0 r6

1 0 0 r5 0 0 0

0 0 0 0 0 0 0 r9 0 0 0 0 0 r2
1 0 0

0 0 0 0 0 0 0 0 0 0 0 r9 0 0 r2
2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r1

©
,

~16!
with the Boltzmann weights

r15~cosu cosvel1sinv sinue2 l !r2 ,
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r45~cosu cosve2 l1sinv sinuel !r2 ,

r95~sinu cosve2 l2sinv cosuel !r2 ,

r105~sinu cosvel2sinv cosue2 l !r2 ,

r2
15elr2 , r2

25e2 lr2 ,

r35
~cosu cosvel2sinv sinue2 l !

cos2 u2sin2 v
r2 ,

r55
~cosu cosve2 l2sinv sinuel !

cos2 u2sin2 v
r2 ,

r6
15

~cosu sinue2 l2sinv cosvel !

cos2 u2sin2 v
r2 ,

r6
25

~cosu sinuel2sinv cosve2 l !

cos2 u2sin2 v
r2

and

r85r32r1 ,

r75r52r4 , ~17!

l 5h~u!2h~v !, i
sinh 2h~u!

sin 2u
5

U

2
,

which enjoy the following identities:

r4r11r9r1051,

r1r51r3r452,

r6
1r6

25r3r521.

This R-matrix with more distinct Boltzmann weights is indeed different from the one for
standard Hubbard model9–11 and a twisted version20 which is associated with the Hubbard mod
with chemical potential terms. Running a Maple program we may check that theR-matrix satisfies
the Yang–Baxter equation

R12~u,v !R13~u,w!R23~v,w!5R23~v,w!R13~u,w!R12~u,v !. ~18!

So far we have built up the QISM mechanism for the alternative Hubbard model and conc
the integrability of the model as well. On the other hand, a fermionic model is always favora
the study of the condensed matter physics due to the clear distinction between the fer
degrees of freedom and bosonic degrees of freedom. By performing the Jordan–W
transformations,11,21 one may obtain the Hamiltonian of a fermionic model which is equivalen
the Hubbard model~1!:

H52 (
j 51

N21

(
s

~a( j 11)s
† ajs1ajs

† a( j 11)s!1U(
j 51

N S nj↑2
1

2D S n( j 11)↓2
1

2D . ~19!
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Aboveajs
† andajs are creation and annihilation operators with spins~s5↑ or ↓! at sitej satisfying

the anti-commutation relations

$ajs ,aj 8s8%5$ajs
† ,aj 8s8

† %50, ~20!

$ajs ,aj 8s8
† %5d j j 8dss8 , ~21!

andnjs5ajs
† ajs is the density operator. The integrability of the fermionic model~19! requires that

the graded Lax operator related to the Hamiltonian~19!,

L0 j~u!5S 2eh(u) f j↑ f j↓ 2eh(u) f j↑aj↓ ie2h(u)aj↑gj↓ ie2h(u)aj↑aj↓
2 ie2h(u) f j↑aj↓

† e2h(u) f j↑gj↓ eh(u)aj↑aj↓
† ieh(u)aj↑gj↓

eh(u)aj↑
† f j↓ eh(u)aj↑

† aj↓ e2h(u)gj↑ f j↓ e2h(u)gj↑aj↓
2 ie2h(u)aj↑

† aj↓
† e2h(u)aj↑

† gj↓ ieh(u)gj↑aj↓
† 2eh(u)gj↑gj↓

D , ~22!

must generate the graded Yang–Baxter relation

R
∨

~u,v !L0 j~u! ^ L0 j~v !5L0 j~v ! ^ L0 j~u!R
∨

~u,v !, ~23!

with the gradedR-matrix which is given by

R
∨

~u,v !5WR
∨

~u,v !W21, ~24!

where

W5sz
^ S 1 0 0 0

0 2 i 0 0

0 0 2 i 0

0 0 0 1

D ^ I ~25!

and

f js5sinu2~sinu2 i cosu!njs , gjs5cosu2~cosu1 i sinu!njs , ~26!

with the gradingP(1)5P(4)50, P(2)5P(3)51. The monodromy matrix is defined by

T~u!5L0L~u!¯L01~u!, ~27!

such that the transfer matrices

t~u!5str0T~u! ~28!

commute each other for different values of the parameteru. It can be verified that an expansion o
the logarithm of the transfer matrix~28! in powers ofu will lead to the Hamiltonian~19! as well
as higher conserved quantities.

We would like to remark that the model possesses the SO~4! symmetry if we consider a new
representation of theh-pair SU~2! algebra,

h5(
i 51

L

~21! iai↑a( i 11)↓ , h†5~h!†, hz5
1

2 (
i 51

L

~ni↑1ni↓!2
1

2
L, ~29!

and thez-pair spin SU~2! algebra
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z5(
i 51

L

ai↑
† a( i 11)↓ , z†5~z!†, zz5

1

2 (
i 51

L

~n( i 11)↓2ni↑!, ~30!

which comprise the SO~4! algebra. Taking into account the globality of these operators, one
show that the Hamiltonian~19! commutes with the generators of the above two SU~2! algebras.
This symmetry could be expected to complete all eigenstates of the Hubbard model like th
in the standard Hubbard model. Here theh-pairing raising operator creating a pair of electro
with opposite spin on different sites could be interpreted as a delocalized Cooper pair.

IV. ALGEBRAIC BETHE ANSATZ

Towards an exact solution of an integrable model, the algebraic Bethe ansatz seems
more utility than the coordinate Bethe ansatz because the former not only provides us w
spectrum of all conserved quantities, but makes a close connection to the finite tempe
properties of the model. There have been a lot of papers devoted to the study of the
algebraic Bethe ansatz22 for the multistate integrable models with Lie algebra~or Lie superalge-
bra! symmetry. Following the so-called ABCDF approach to solve the Hubbard-like models13,23

we shall formulate the algebraic Bethe ansatz for the model in that which follows. To this en
usual, we have to perform the ansatz step by step. However, it is not necessary to restate a
calculations used in solving our model because of the similarity to the routine proposed in R

In order to carry out the algebraic Bethe ansatz for this Hubbard model, we first need t
the eigenvalues and eigenvectors of the transfer matrix~28!:

tuFn&5luFn&. ~31!

Following the prescription in Ref. 13, the eigenvectors of the transfer matrix are given by

uFn&5Fn .Fu0&, ~32!

where the components ofF are coefficients of an arbitrary linear combination of vectorsFn and
u0& is the pseudovacuum state, chosen here as the standard ferromagnetic one

u0&5 ^ j 51
N u0& j , ~33!

where

u0& i5S 1
0D

i

^ S 1
0D

i

~34!

which corresponds to the doubly occupied state. We write the monodromy matrixT(u) in ~27! as

T~u!5S B~u! B1~u! B2~u! F~u!

C1~u! A11~u! A12~u! E1~u!

C2~u! A21~u! A22~u! E2~u!

C3~u! C4~u! C5~u! D~u!

D ~35!

such that the necessary commutation relations between the diagonal fields and the creatio
can be derived from the Yang–Baxter algebra

R12~u,v !T
1

~u!T
2

~v !5T
2

~v !T
1

~u!R12~u,v !. ~36!

In the above,
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R12~u,v !5PR
∨

~u,v !.

Here P is the graded permutation operator. Let us first display an important commutation
which reveals to us a hidden nesting structure and the symmetry of eigenvectors,

BW ~u!BW ~v !5
r4~u,v !

r1~u,v !
BW ~v !BW ~u!• r̂ ~u,v !1

i

r8~u,v !r1~u,v !
F~v !B~u!jW1~u,v !

1
i

r8~u,v !
F~u!B~v !jW2~u,v !, ~37!

where

jW1~u,v !5~0,f 1~u,v !, f 2~u,v !,0!; jW2~u,v !5~0,r6
1~u,v !,r6

2~u,v !,0!,

r̂ ~u,v !5S 1 0 0 0

0 a~u,v ! b~u,v ! 0

0 c~u,v ! d~u,v ! 0

0 0 0 1

D , ~38!

with

f 1~u,v !5r6
2~u,v !r8~u,v !2r6

1~u,v !r5~u,v !,

f 2~u,v !5r6
2~u,v !r5~u,v !2r6

1~u,v !r8~u,v !,

a~u,v !5
r3~u,v !r8~u,v !2r6

1~u,v !2

r4~u,v !r8~u,v !
,

d~u,v !5
r3~u,v !r8~u,v !2r6

2~u,v !2

r4~u,v !r8~u,v !
,

b~u,v !5c~u,v !5
r6

1~u,v !r6
2~u,v !2r8~u,v !r7~u,v !

r4~u,v !r8~u,v !
.

It turns out that the auxiliary matrixr̂ (u,v) is nothing but a gauged rationalR-matrix of an
isotropic six-vertex model. If we adopt the parametrization introduced in Ref. 13 or 24, expli

x̃52
sinx

cosx
e22h(x)1

cosx

sinx
e2h(x), x5u,v, ~39!

one may find that

a~u,v !52
Ue2u(u,v)

ũ2 ṽ2U
, d~u,v !52

Ueu(u,v)

ũ2 ṽ2U
,

b~u,v !5c~u,v !5
ũ2 ṽ

ũ2 ṽ2U
,

with
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e2u(u,v)5
cosv sinu

sinvcosu
.

We shall see that ther̂ -matrix ~38! is related to the one of the isotropic six-vertex model via
proper gauge transformation, which does not change the spectrum of the spin sector. This s
provide a new version of theR-matrix, which does not have the difference property, for
isotropic six-vertex model. In view of the commutation relation~37!, the creation operatorsBW a ,
EW a do not intertwine. So it is reasonable that the eigenvectors of the transfer matrices are
ated only by the creation operatorsBW a(u) andF(u). Following the argument in Ref. 13, we ma
find that then-particle vector can be determined recursively by the following relation:

Fn~v1 ,...,vn!5BW ~v1! ^ Fn21~v2 ,...,vn!1(
j 52

n
1

ir8~v1 ,v j !
)
kÞ j

n
r1~vk ,v j !

ir9~vk ,v j !
@jW2~v1 ,v j !

^ F~v1!Fn22~v2 ,...,v j 21 ,v j 11 ,...,vn!B~v j !#)
k52

j 21
r4~vk ,v j !

r1~vk ,v j !
r̂ k,k11~vk ,v j !.

~40!

Explicitly, the two-particle eigenvector reads

F2~v1 ,v2!5BW ~v1! ^ BW ~v2!1jW2~v1 ,v2! ^ F~v1!B~v2!
1

ir8~v1 ,v2!
. ~41!

From the commutation relation~37!, we can conclude thatFn(v1 ,...,vn) satisfies an exchang
symmetry relation

Fn~v1 ,...,v j ,v j 11 ,...,vn!5
r4~v j ,v j 11!

r1~v j ,v j 11!
Fn~v1 ,...,v j 11 ,v j ,...,vn!• r̂ j , j 11~v j ,v j 11! ~42!

based on the following identity:

r4~v j ,v j 11!

r1~v j 11 ,v j !r8~v j 11 ,v j !r1~v j ,v j 11!
jW 1~v j 11 ,v j !• r̂ ~v j ,v j 11!

52
1

r8~v j ,v j 11!
jW 2~v j ,v j 11!. ~43!

In the above expressions,jW plays the role of forbidding two spin up or two spin down electrons
same site. Also,F(u) creates a local hole pair with opposite spins. In order to manipulate
eigenvalue of the transfer matrix~28! we need the commutation roles involving the diagonal fie
over the creation fields. After some algebra, from the Yang–Baxter relation~36! we have

B~u!BW a~v !5
r1~v,u!

ir9~v,u!
BW a~v !B~u!2

1

ir9~v,u!
BW a~u!B~v !•ĥ1~v,u!, ~44!

D~u!BW a~v !5
ir10~u,v !

r8~u,v !
BW a~v !D~u!2

1

r8~v,u!
F~v !CW a13* ~u!•ĥ1~u,v !

1
r5~u,v !

r8~u,v !
F~u!CW a13* ~v !1

i

r8~u,v !
jW 2~u,v !•~EW * ~u! ^ Â~v !!, ~45!
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Âab~u!BW a~v !5
ir4~u,v !

r9~u,v !
BW ~v ! ^ Â~u!• r̂ ~u,v !2

i

r9~u,v !
ĥ2~u,v !•BW ~u! ^ Â~v !

1
1

r9~u,v !r8~u,v !
$F~v !CW 32a~u! ^ jW1~u,v !1ĥ2~u,v !•F~u!CW 32a~v !

^ jW2~u,v !%1
1

r8~u,v !
EW * ~u!B~v ! ^ jW2~u,v !. ~46!

Above we introduced the notations

ĥ1~u,v !5S r2
1~u,v ! 0

0 r2
2~u,v !

D ,

ĥ2~u,v !5S r2
2~u,v ! 0

0 r2
1~u,v !D ,

Â~u!5S A11~u! A12~u!

A21~u! A22~u!
D , ~47!

BW 5~B1 ,B2!, CW 5S C1

C2
D ,

CW * 5~C4 ,C5!, EW * 5S E1

E2
D .

In order to determine the eigenvalue of the transfer matrix~28! acting on the mult-particle eigen
states we need to consider the commutation relations for the creation fieldF(u):

B~u!F~v !52
r1~v,u!

r8~v,u!
F~v !B~u!1

r5~v,u!

r8~v,u!
F~u!B~v !2

i

r8~v,u!
@BW ~u! ^ BW ~v !#•jW2

t ~v,u!,

~48!

D~u!F~v !52
r1~v,u!

r8~v,u!
F~v !D~u!1

r5~v,u!

r8~v,u!
F~u!D~v !1

i

r8~v,u!
jW 2~v,u!•@EW * ~u! ^ EW * ~v !#,

~49!

Â~u!F~v !5F12
r2

1~u,v !r2
2~u,v !

r9~u,v !r10~u,v !
GF~v !Â~u!1

1

r9~u,v !r10~u,v !
ĥ2~u,v !•F~u!Â~v !•ĥ2~u,v !

1
1

ir9~u,v !
ĥ2~u,v !•BW ~u! ^ EW * ~v !2

1

ir10~u,v !
EW * ~u! ^ BW ~v !•ĥ2~u,v !, ~50!

BW ~u!F~v !5
ir9~u,v !

r1~u,v !
F~v !BW ~u!1

1

r1~u,v !
ĥ2~u,v !•BW ~v !F~u!, ~51!

F~u!BW ~v !52
ir10~u,v !

r1~u,v !
BW ~v !F~u!1

1

r1~u,v !
ĥ1~u,v !•F~v !BW ~u!. ~52!

Finally, if we adopt the variablesz6(v i) used in Ref. 13, i.e.,
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z2~v i !5
cosv i

sinv i
e2h(v i ), z1~v i !5

sinv i

cosv i
e2h(v i ), ~53!

and make a shift on the spin rapidityl̃ j5l̃ j1U/2, the eigenvalue of the transfer matrix~28! is
given as~up on a common factor!

t~u!uFn~v1 ,...,vn!&5H @z2~u!#L)
i 51

n
sinu~11z2~v i !/z1~u!!

cosu~12z2~v i !/z2~u!!

1@z1~u!#L)
i 51

n
sinu~11z2~v i !z2~u!!

cosu~12z2~v i !z1~u!!

2)
i 51

n
sinu~11z2~v i !/z1~u!!

cosu~12z2~v i !/z2~u!!
)
l 51

M
~ ũ2l̃ l1U/2!

~ ũ2l̃ l2U/2!

1)
i 51

n
sinu~11z2~v i !z2~u!!

cosu~12z2~v i !z1~u!!
)
l 51

M
~ ũ2l̃ l23U/2!

~ ũ2l̃ l2U/2!
J uFn~v1 ,...,vn!&,

~54!

provided that

@z2~v i !#
L5)

l 51

M
~ ṽ i2l̃ l1U/2!

~ ṽ i2l̃ l2U/2!
, ~55!

)
i 51

n
~ l̃ j2 ṽ i1U/2!

~ l̃ j2 ṽ i2U/2!
52)

l 51,
lÞ j ,

M
~ l̃ j2l̃ l1U !

~ l̃ j2l̃ l2U !
, ~56!

where

j 51,...M , i 51,...,n.

If we express the variablez2(ui) in terms of the~hole! momentaki by z2(ui)5eiki, from the
relation ~39!, the energy is given by

En52~N/22n!U2(
i 51

n

2 coski . ~57!

Using the momentaki instead of the charge rapidityṽ i via the relation~39! and making a scaling
on the spin rapidityl̃ j asl j52( i /2)l̃ j , then the Bethe equations~55! and ~56! read

eiLki5)
l 51

M
~sinki2l l2 iU /4!

~sinki2l l1 iU /4!
,

)
i 51

n
~sinki2l j2 iU /4!

~sinki2l j1 iU /4!
52)

l 51,
lÞ j

M
~l j2l l1 iU /2!

~l j2l l2 iU /2!
, ~58!

j 51,...M , i 51,...,n.
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V. CONCLUSIONS AND DISCUSSION

We have proposed an integrable variant of the Hubbard model with off-site Coulomb
action. The integrability of the model was verified by showing that the quantumR-matrix satisfies
the Yang–Baxter equation. It was argued that the model possess SO~4! symmetry, however, it
contains a new representation ofh-pairing SU~2! algebra andz-pair spin SU~2! algebra. By means
of the nested Bethe ansatz, we have presented the spectrum of the Hamiltonian, eigenvec
the Bethe ansatz equations for the model with periodic boundary conditions. We found th
model exhibits a gaugedr -matrix of the isotropic XXX model, which plays a crucial role i
solving the model. Under periodic boundary conditions the alternative model and the sta
Hubbard model share the same spectrum and Bethe ansatz equations. However, the newR-matrix
we obtained permits different boundary conditions from that for the usual one.25,26 This is meant
that there does not exist simple transformation or gauge transformation between the newR-matrix
and the original one. In turn, the differences in spectrum for the two models would be appar
the case of open boundary conditions. We would like to remark that the 1D Hubbard mode
long range Coulomb interaction, i.e.,U( j 51

N (nj↑2 1
2)(n( j 1r )↓2 1

2), r 51,2,..., instead of the on-
site one in the standard Hubbard model would be also integrable. But this type of inter
would result in nondiagonal boundary scattering matrices which provide competing intera
terms in the Hamiltonain. This seems to open an opportunity to identify new boundary imp
effects27–29 in a Luttinger liquid. An interesting problem is to identify the boost operator for
spectral parameter extension of this new model, which can iteratively generate all of the con
currents, using the results of Ref. 14. We shall be focusing on these problems in the near
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Renormalization analysis of correlation properties
in a quasiperiodically forced two-level system

B. D. Mestela)

School of Mathematical Sciences, University of Exeter, Exeter EX4 4QE, United Kingdom

A. H. Osbaldestinb)

Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU,
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~Received 10 January 2002; accepted for publication 10 February 2002!

We give a rigorous renormalization analysis of the self-similarity of correlation
functions in a quasiperiodically forced two-level system. More precisely, the sys-
tem considered is a quantum two-level system in a time-dependent field consisting
of periodic kicks with amplitude given by a discontinuous modulation function
driven in a quasiperiodic manner at golden mean frequency. Mathematically, our
analysis consists of a description of all piecewise-constant periodic orbits of an
additive functional recurrence. We further establish a criterion for such orbits to be
globally bounded functions. In a particular example, previously only treated nu-
merically, we further calculate explicitly the asymptotic height of the main peaks in
the correlation function. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1483108#

I. INTRODUCTION

A number of authors have investigated the possibility of the existence of dynamics
singular continuous spectrum in quasiperiodically forced two-level quantum systems.2,5,10In these
works, such a spectrum—suggestive of a form of weak mixing—is observed in the prese
piecewise-constant discontinuous forcing. Moreover, for the forcing frequencies considere
autocorrelation function is observed not only neither to decay to zero nor to return to
repeatedly, but also to possess an asymptotic self-similar structure.~We shall confine our descrip
tion of the form of the dynamics to one of the nature of the autocorrelation function.! This
self-similarity suggests that a renormalization analysis is appropriate to help understand th
nomenon, and this is indeed the content of the analysis of Feudelet al. in Ref. 5. There have, in
addition, been many other studies of the response of two-level systems to quasiperiodic f
but we shall concentrate on the self-similarity aspects here.~See, for instance, the references
Ref. 5, and also Refs. 1, 3, and 15 to mention but a few.!

As is implicit in some of the works cited above~and is explicitly acknowledged in Ref. 5!,
there is much in common between the response of these quantum systems and the n
strange nonchaotic attractors. Consequently, our work here will have important implications
context, too.

In this article we give a rigorous renormalization analysis explaining and generalizin
numerical results in Ref. 5. Because of its number-theoretic simplicity, most analysis has
concerned with the case of forcing at golden mean frequency, and this article will be no exce
The self-similar structure is then explained by means of the additive functional recurrence

Zn~x!5Zn21~2vx!1Zn22~v2x1v!, ~1.1!

wherev5(A521)/2 is the golden mean.

a!Electronic mail: b.d.mestel@ex.ac.uk
b!Electronic mail: a.h.osbaldestin@lboro.ac.uk
34580022-2488/2002/43(7)/3458/26/$19.00 © 2002 American Institute of Physics
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The multiplicative version of~1.1! has been previously studied in some detail. It natura
appears in seemingly disparate contexts. First, it arises in the analysis of the self-similar fl
tions of the localized eigenstates of the Harper equation.7 Second, it helps explain universa
characteristics present in the birth of a strange nonchaotic attractor.9 In Ref. 8 these two phenom
ena are indeed linked. It further arises in the analysis of the autocorrelation function of the or
a strange nonchaotic attractor.4 ~In each of these contexts the recurrence arises when the frequ
parameterv is taken to be the golden mean.!

In Ref. 11 we proved that there exists a fixed point of the multiplicative version of~1.1! of the
type numerically found in Ref. 7.@To do this at times we considered the additive recurrence~1.1!
in our proof.# In Ref. 12 we gave a description of all of its piecewise-constant periodic or
thereby providing a mathematical understanding of, and generalizing, the numerical observ
in Ref. 4. In a forthcoming work13 we give an analysis of its analytic periodic orbits, there
explaining the beautiful ‘‘orchid’’ picture of Ketoja and Satija7 arising in a generalized Harpe
equation. We expect this analysis can be adapted to the birth of a strange nonchaotic a
scenario.9

In this article we describe all piecewise-constant periodic orbits of~1.1!. Further, we charac-
terize those periodic orbits which are globally bounded. As a consequence, it follows th
autocorrelation functions are indeed asymptotically self-similar for a wide class of piece
constant forcing functions. The precise locations of the discontinuities of these function
however, crucial. See Fig. 1 for an example of such an autocorrelation function. Much o
analysis of the multiplicative recurrence in Ref. 12 can be adapted to the additive case~1.1!, and
we begin by doing this in Sec. II. There are some important differences to be taken into ac
too. The piecewise-constant periodic orbits of the multiplicative problem consist of func
taking values61 only, and, as a consequence, an analysis of the discontinuities suffic
determine periodicity. In the additive problem there is no such restriction. In Sec. II F we est
a criterion to guarantee periodicity in this case. Moreover, it is quite simple to find piece
constant periodic orbits of the additive recurrence that are spatially unbounded. We ident
nature of the locations of the discontinuities ofZn on the whole ofR in Sec. III, and use this
information, in Sec. IV, to establish a criterion to distinguish those periodic orbits that are spa
bounded. In Sec. V we look in detail at the particular example studied numerically by Feudelet al.
in Ref. 5 resulting in the period-6 orbit shown in Fig. 2. For this example we calculate
averages of the functionZn which give the asymptotic height of the main peaks in the correspo
ing correlation function, which is shown in Fig. 1. As a consequence, we show that the asym
height of the peaks in Fig. 1 is 121/A550.552 786. . . .

In the remainder of this introduction we describe the system under consideration mor
cisely, and, following Ref. 5, indicate how the recurrence~1.1! arises in the analysis of its auto
correlation functions.

FIG. 1. Autocorrelation functionKPy
for modulation function~1.29! andk5p/2.
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A. Formulation of the equations of motion

The Hamiltonian of a two-level system in a time-dependent magnetic fieldB(t) takes the form
H5B(t)•s, wheres5(sx ,sy ,sz) consists of the Pauli spin matrices

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D . ~1.2!

Following the previous authors, we consider the special caseB(t)5(S(t)/2,0,k/2), which gives
the Hamiltonian

H~ t !5 1
2 ksz1

1
2 S~ t !sx . ~1.3!

Schrödinger’s equation for the spinorc5(c1 ,c2) is then

i ċ15 1
2 kc11 1

2 S~ t !c2 , i ċ252 1
2 kc21 1

2 S~ t !c1 . ~1.4!

~We take\51.! This is conveniently expressed in terms of the components of the polariz
vectorP5c* sc, the so-called Bloch variables,

Px5c2c1* 1c1c2* , Py5 i ~c1c2* 2c2c1* !, Pz5c1c1* 2c2c2* , ~1.5!

as the first-order linear time-dependent system

Ṗx52kPy , Ṗy5kPx2S~ t !Pz , Ṗz5S~ t !Py , ~1.6!

FIG. 2. Period-6 orbit of the recurrence~1.1!. Left column Z0 , Z1 , Z2 reading downwards, right columnZ3 , Z4 , Z5

reading downwards.
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which, from the normalizationc1c1* 1c2c2* 51, satisfies the constraint

Px
21Py

21Pz
251. ~1.7!

We suppose that the forcing consists of period-T d-function kicks, so that we have

S~ t !5 (
n52`

`

Rnd~ t2nT!, ~1.8!

with variable amplitudeRn . Between kicks we have a rotation in the (Px ,Py) plane, and at kicks
a rotation in the (Py ,Pz) plane resulting in the linear kick-to-kick mapping

S Px,n11

Py,n11

Pz,n11

D 5S coskT 2sinkT cosRn sinkT sinRn

sinkT coskT cosRn 2coskT sinRn

0 sinRn cosRn

D S Px,n

Py,n

Pz,n

D , ~1.9!

where (Px,n ,Py,n ,Pz,n) denotes the value of the polarization vector at time stepn.
Although the kicks occur periodically, they do so with variable amplitudeRn which we now

take to be determined in a quasiperiodic manner governed by the rotation

fn115fn1v ~mod 1!, ~1.10!

with the rotation numberv¹Q. The amplitudeRn is then defined via a period-1modulation
functionF to be

Rn5kF~fn!, ~1.11!

wherek is an amplitude. The precise form of the modulation functionF is crucial for the resulting
dynamics. It is the case of piecewise-constant discontinuous modulation function, where a s
continuous spectrum is observed, that will concern us in this article.

To simplify matters we assume that the time between kicks,T, is commensurate with the
fundamental frequencyk, setting

kT52pm, mPZ, ~1.12!

thereby decoupling the variablePx,n so that the resulting dynamics is merely a rotation in
(Py ,Pz) plane.~Numerical work in Ref. 5 indicates that this simplification may not be essenti
witness the singular continuous spectrum.! Because of the constraint~1.7!, without loss of gener-
ality, we may setPx,n50 ~otherwise we can simply rescale the remaining variables!. Thus, writing

Py,n5cosun , Pz,n5sinun , ~1.13!

we arrive at the skew-product system

fn115fn1v ~mod 1!, ~1.14!

un115un1kF~fn!. ~1.15!

We remark that it is in such systems that early work on the appearance of strange nonc
attractors was undertaken,6 and that, in some sense, such attractors lie intermediate bet
regular and chaotic dynamics. In particular, the presence of a singular continuous spectrum
mooted as a candidate for their characterization.

Of course it is straightforward to ‘‘solve’’ the system~1.14! and ~1.15!:

fn5f01nv ~mod 1!, ~1.16!
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un5u01k (
l 50

n21

F~f01 lv!, ~1.17!

but this does not help illuminate the behavior of the variableu, i.e., (Py ,Pz). To this end we turn
to an analysis of correlations.

B. Renormalization analysis of the autocorrelation function

For completeness we recall here the renormalization analysis of the autocorrelation fu
from Feudelet al.5 The autocorrelation function of the~zero mean! observablePy is

KPy
~ t !5

^Py,nPy,n1t&

^Py,n
2 &

, ~1.18!

where we have defined the average

^ f ~n!&5 lim
N→`

1

N (
n51

N

f ~n!. ~1.19!

Using the trigonometric identity 2 cosAcosB5cos(A1B)1cos(A2B), we have

^Py,nPy,n1t&5^cosun cosun1t&5 1
2 ^cos~un1t2un!&5 1

2 ^coskQt~fn!&, ~1.20!

where we have averaged over the initial phaseu0 to remove the average of cos(un1t1un), and then
defined

Qt~f!5(
l 50

t21

F~f1 lv!, Q0~f!50. ~1.21!

Thus

KPy
~ t !5^coskQt~fn!&5E

0

1

coskQt~f!df, ~1.22!

where we have used the fact that for irrationalv the rotation~1.14! is ergodic with respect to
Lebesgue measure to replace the time average by a space average.

We now specialize to the case of golden mean rotation number, settingv5(A521)/2, and
accordingly consider Fibonacci times only. ThenQn satisfies the recurrence relation

QFn
~f!5QFn21

~f!1QFn22
~f1Fn21v!, ~1.23!

where the Fibonacci numbers (Fn) are defined byF050, F151, and Fn5Fn211Fn22 for
n>2. Using the identity

Fn21v5Fn222~2v!n21, ~1.24!

and defining the rescaled variables

Zn~y!5QFn
~y~2v!n!, ~1.25!

results in the iterative functional recurrence

Zn~x!5Zn21~2vx!1Zn22~v2x1v!, ~1.26!
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with initial conditions

Z0~x!50, Z1~x!5F~2vx!. ~1.27!

This recurrence is the object of study in this article.
In terms of the functionsZn , the autocorrelation functionKPy

at Fibonacci times is

KPy
~Fn!5

1

~2v!2n E
0

(2v)2n

coskZn~y!dy. ~1.28!

For the particular choice of modulation function

F~f!5H 11, 0<$f%, 1
2,

21, 1
2<$f%,1,

~1.29!

where$f% denotesf ~mod 1!, with the initial conditions given by~1.27!, Feudelet al.5 observe
that iteration of~1.1! leads to a period-6 orbit as shown in Fig. 2. The corresponding autoc
lation functionKPy

~with k5p/2! is shown in Fig. 1. Note that the height of the largest peak
approximately 0.55 and is numerically calculated in Ref. 5 from an average ofuZnu with n[
0 mod 3, i.e., either of the top two figures in Fig. 2, to be asymptotically approximately 0.55
By carefully describing the locations of the discontinuities in Fig. 2, in Sec. V we shall show
this value is in fact 121/A550.552 786 . . . .

Our analysis shows that self-similarity of the autocorrelation function occurs for many
choices of modulation function in addition to~1.29!. However, the locations of the discontinuitie
of the modulation function must be preperiodic points of a map of the interval to be introduc
the next section.

II. PERIODIC ORBITS AND THEIR DISCONTINUITIES

We begin this section by adapting our previous analysis12 of the multiplicative version of~1.1!
to the problem at hand. We introduce an expanding piecewise-linear map of an interval
periodic orbits correspond to the discontinuities of the piecewise-constant periodic orbits of~1.1!,
and show that the dynamics of this interval map ‘‘drives’’ the global behavior of periodic orbi
~1.1!. We also give a detailed analysis of the periodicity of the discontinuities. We then g
necessary and sufficient criterion for the piecewise-constant orbits of~1.1! to be periodic.

A. Iterated function system and the inverse map F

Defining

f1~x!52vx, f2~x!5v2x1v, ~2.1!

we may write Eq.~1.1! in the form

Zn~x!5Zn21~f1~x!!1Zn22~f2~x!!, ~2.2!

wherev5(A521)/2 is the golden mean,
The iterated function system~IFS! on R given byf1 , f2 has the following properties:

~1! f1 and f2 are linear contractions with fixed points 0 and 1, respectively, and w
f18(x)52v andf28(x)5v2.

~2! The fundamental interval I5@2v,1# is the fixed point set for the IFS. Indee
f1(I )5@2v,v2#, f2(I )5@v2,1#, so thatf1(I )øf2(I )5I .

~3! The fundamental intervalI is the attractor for the IFS. Indeed given any compact sub
K,R and any«.0, there existsNPN such that for anyk>N and any choicei 1 , . . . ,i k

P$1,2% we have
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f i 1
+¯+f i k

~x!P@2v2«,11«# ~2.3!

for any xPK. This property will be important when we consider the behavior of Eq.~2.2!
outside the fundamental interval.

Let F:I→I be defined by

F~x!5H f1
21~x!52v21x, xP@2v,v2#;

f2
21~x!5v22x2v21, xP@v2,1#,

~2.4!

as drawn in Fig. 3. We shall see below that periodic points ofF correspond to discontinuities o
the periodic solutions of~2.2!.

We note that for any periodic pointyPI , precisely one off1(y), f2(y) is also a periodic
point of F. This follows from the fact that each period point has two preimages, exactly on
which is a periodic point on the same orbit.~Note thatv2 is not a periodic point ofF.! We analyze
the dynamics ofF in terms of a code of a pointxPI . As in Ref. 12 we let the interval
@2v,v2) be encoded with the symbol 1 and (v2,1# with the symbol 2. We define the code ofxPI
to be the sequence (an)n>0 in $1,2%N0 given by

an5H 1, Fn~x!P@2v,v2!;

2, Fn~x!P~v2,1#,
~2.5!

and ignore the~countable! set of~nonperiodic! points whose orbits underF include the pointv2.
Hence the codes are all infinite sequences. In terms of the codea0a1a2 . . . of a pointxPI , we
have

F~x!5~2v21!a0x2~a021!v21. ~2.6!

SinceF is uniformly expanding (uF8(x)u>v21), every pointxPI corresponds to a unique cod
and vice versa. In particular, periodic orbits ofF correspond to periodic codes in$1,2%N0 under the
shift maps :

FIG. 3. The functionF.
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s~a0a1a2 ...!5a1a2 ... . ~2.7!

A periodic orbit y0 ,y1 ,...,yk21 of period k of F is given uniquely by a periodic cod
a0a1 ...ak21, which we henceforth denote as justa0a1 ...ak21 . Indeed, given a code
a0a1 ...ak21 , it is straightforward to calculate the corresponding periodic orbity0 ,y1 ,...,yk21 of
F. We havefak21

21 +¯+fa0

21(y0)5y0 , or, equivalently,fa0
+¯+fak21

(y0)5y0 , whose~unique!

solution is readily calculated to be

y05
2( j 50

k21~aj21!~2v!11( i 50
j 21ai

12~2v!Saj
, ~2.8!

where empty sums are defined to be zero. The other points of the orbit may be calcula
applying this formula with the codea0a1 ...ak21 cyclically permuted.

For example,F(y) has two fixed points:y50 with code 1, andy51 with code 2. The
period-2 orbit with code 21 is given byy05 1

2 andy152v/2. It is the fixed pointy50 and this
period-2 orbit that are the discontinuity points in the fundamental interval of the period-6
shown in Fig. 2.

B. Reduction of Zn on R to the fundamental interval

In this section we consider Eq.~2.2! outside the fundamental intervalI 5@2v,1#, i.e., on the
whole of R. The fact thatI is the attractor for the IFS leads to the conclusion that the glo
behavior of~2.2! is ‘‘driven’’ by its behavior in I .

The following result is a straightforward variation of the corresponding result in Ref. 12
Lemma 1: Let Z0 , Z1 be initial conditions for (2.2) onR and let «.0 be such that Z0(x)

5Z1(x)50 for all xP@2v2«,11«#. Then for each L.1, there exists N.0 ~depending only on
L! such that Zn(x)50 for all xP@2L,L# and all n.N.

In other words, if the initial conditions on, and just outside, the fundamental interval are
then the value ofZn at all points eventually becomes zero.

From the lemma we may prove the following proposition whose proof again follows mu
mutandis the corresponding result in Ref. 12.

Proposition 1: Let Zn be a piecewise-constant periodic orbit of (2.2) of period p onR with
Zn(11)5Zn(1). Then Zn is periodic with period p on the fundamental interval I. Conversely,

suppose that Zn is periodic with period p on I. Then there is a unique extension Z˜
n of Zn to R such

that Z̃n is periodic with period p onR.
Moreover, Lemma 1 further implies the following.
Proposition 2: Let Z0 , Z1 be piecewise-constant initial conditions for (2.2) onR with

Z0(11)5Z0(1), Z1(11)5Z1(1). Suppose Zn is periodic of period p on the fundamental inte

val I. Then the sequence Zn converges to the unique periodic extension Z˜
n given by proposition 1,

i.e., for all integers r>0 we have Zr 1np(x)→Z̃r(x) as n→`.
In other words, initial data on the fundamental interval resulting in periodic behavior uniq

determines an asymptotic~right continuous at 1! global periodic behavior. It is important to
realize, however, that such globally defined periodic orbits will not in general consist of bou
functions. We shall address this issue in Sec. IV.

C. Analysis of the discontinuities

In order to study the piecewise-constant periodic orbits of the recurrence~1.1! we first con-
sider the dynamics of the discontinuities. We define, for eachxPR andn>0,

Dn~x!5Zn~x1 !2Zn~x2 !, ~2.9!

the difference of the right-hand limit atx to the left-hand limit atx, so thatDn(x)Þ0 if and only
if Zn has a discontinuity atx. The recurrence~2.2! for Zn naturally induces a recurrence forDn :
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Dn~x!5Zn~x1 !2Zn~x2 !

5Zn21~f1~x1 !!1Zn22~f2~x1 !!2Zn21~f1~x2 !!2Zn22~f2~x2 !!

5Zn21~f1~x!2 !2Zn21~f1~x!1 !1Zn22~f2~x!1 !2Zn22~f2~x!2 !

52Dn21~f1~x!!1Dn22~f2~x!!. ~2.10!

Clearly if Zn is periodic with periodp, thenDn is also periodic with periodm dividing p. Our task
is to determine the possible periodsm of Dn and relatem to p, the period ofZn .

From now on we assume thatZn is periodic with periodp and thatDn is periodic with period
m, and, in view of Proposition 1, we only consider the behavior ofZn andDn on the fundamenta
interval I 5@2v,1#. We define therestricted discontinuity set

D5$xPI :Dn~x!Þ0 for some n>0%. ~2.11!

ThenD is the finite set of points inI for which Zn has a discontinuity for at least onen>0. As in
our analysis of the multiplicative recurrence,12 the restricted discontinuity setD consists of finitely
many periodic orbits of the mapF as we now show.

Proposition 3: Let Zn be a piecewise-constant periodic orbit of (2.2), and let D be
associated restricted discontinuity set. Then D consists of a finite collection of periodic orb
the map F.

Proof: Suppose yPD. Then Dn(y)Þ0 for some n>0. From ~2.10! we have that
Dn2 i 1

(f i 1
(y))Þ0 for somei 1P$1,2%. We therefore havef i 1

(y)PD. Continuing in this way, we
obtain a sequencei 1 ,i 2 ,...P$1,2% such thatf i k

+¯+f i 1
(y)PD for eachkPN. SinceD is finite

there existr , r 8PN with r .r 8 andf i r 8
+¯+f i 1

(y)5f i r
+¯+f i 1

(y). Applying Fr to this equation

givesFr 2r 8(y)5y, so thaty is a periodic point ofF of period j dividing r 2r 8.
Now let y05y,y1 ,...,yk21 be the points on the orbit ofy0 underF with yi 11(modk)5F(yi)

for i 50,1,...,k21, and leta0a1 ...ak21 be the code of the orbit. Then for 0< i<k21 we have

fai

21~yi !5yi 11 , or, equivalently, fai 21
~yi !5yi 21 , ~2.12!

where here, and in what follows, we assume that expressions relating to the periodic
y0 ,y1 ,...,yk21 are reduced modulok.

Moreover, as we noted earlier, precisely one off1(yi), f2(yi) is periodic. Thus, ifai 21

51 thenf2(yi)¹D and soDn(f2(yi))50 for all n, while if ai 2152, thenf1(yi)¹D and so
Dn21(f1(yi))50 for all n. The recurrence~2.10! may therefore be written

Dn~yi !5H 2Dn21~yi 21!, ai 2151,

Dn22~yi 21!, ai 2152,
~2.13!

which can be written as

Dn~yi !5~21!ai 21Dn2ai 21
~yi 21!. ~2.14!

Thus Dn1a01¯1ai 21
(yi)5(21)a01¯1ai 21Dn(y0), so that if Dn(y0)Þ0, then

Dn1a01¯1ai 21
(yi)Þ0, i.e., if y0PD, thenyiPD. We conclude that not only must every poi

yPD be a periodic point ofF, but that every point on the periodic orbit ofy also lies inD, so that
D consists of complete orbits ofF. h

D. Period of the discontinuities for a single periodic orbit of F

From ~2.14! we see that over a complete periodic orbit with codea0a1 ...ak21 the indexn
decreases by
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l 5 (
i 50

k21

ai , ~2.15!

and, moreover, we haveDn(yi)5(21)lDn2 l(yi), for 0< i<k21. We therefore deduce the fo
lowing result.

Proposition 4: Let m be the period of the discontinuity function Dn restricted to a periodic
orbit y0 , . . . ,yk21 of F and let l be the sum of the code over the orbit of F. Then m divides
lcm$2,l %, i.e., if l is even m dividesl, while if l is odd m divides2l .

We define for any integerm

m̂5 lcm$2,m%5H m, m even;

2m, m odd.
~2.16!

A convenient representation of the discontinuity data is in terms of anl̂ 3k matrix M , the dis-
continuity matrix, with entries defined by

Mn,i5Dn~yi !, ~2.17!

for 0<n< l̂ 21, 0< i<k21, so that the entry in rown and columni is the value ofDn at the
point yi on the orbity0 ,y1 ,...,yk21 .

The relation~2.14! above gives a special structure to the matrixM . Indeed~2.14! translates to

Mn,i5~21!ai 21Mn2ai 21 ,i 21 , ~2.18!

where here, and in what follows, indices referring to the periodicity ofDn are reduced modulol̂ .
The structure of~2.18! can be more easily understood as follows. Columni of the matrixM

is simply column (i 21) cyclically permuted downwards byai 21 single cyclic permutations with
a change of sign ifai 2151. This observation also holds wheni 50, for then~2.18! becomes

Mn,05~21!ak21Mn2ak21 ,k21 . ~2.19!

Let us denote the first column ofM by (X0 ,X1 ,...,Xl̂ 21), i.e., Mn,05Xn for 0<n< l̂ 21. Then
the relation~2.18! tells us that

Mn,15~21!a0Mn2a0,05~21!a0Xn2a0
, ~2.20!

and, in general,

Mn,i5~21!S j 50
i 21ajMn2S

j 50
i 21aj ,0

5~21!S j 50
i 21ajXn2S

j 50
i 21aj

, ~2.21!

so that each column ofM is simply a cyclic permutation with an appropriate sign change of
first column ofM . In the case of odd l, in order to satisfy~2.19!, the first column ofM must take
the form (X0 ,X1 ,...,Xl 21 ,2X0 ,2X1 ,...,2Xl 21).

Example 1:The period-2 orbit$ 1
2,2v/2% has code 21, sok52, l 53, l̂ 56 and

M5S X0 2X1

X1 2X2

X2 X0

2X0 X1

2X1 X2

2X2 2X0

D ,
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in which, sincea052, the second column is the first column shifted down two rows without s
change. Utilizinga151 on the second column reproduces the first column by shifting down
and changing sign.

Example 2:The fixed point 0 ofF has code 1 so herek5 l 51, l̂ 52 and

M5S X0

2X0
D .

The combination of Examples 1 and 2 was our initial motivation for studying this problem,
enables us to give a precise description of the numerical results of Feudelet al.5 We shall return
again to this example later on in this article, after discussing how to treat discontinuity
containing more than one periodic orbit ofF in the next subsection.

Example 3:The fixed point 1 ofF has code 2 so herek51, l 5 l̂ 52 and

M5S X0

X1
D .

Example 4:When the code is 2112 we havek54, l 5 l 856 and

M5S X0 X4 2X3 X2

X1 X5 2X4 X3

X2 X0 2X5 X4

X3 X1 2X0 X5

X4 X2 2X1 X0

X5 X3 2X2 X1

D .

When l is even, by a suitable choice of first column, i.e., of the l numbersX0 ,X1 ,...,Xl 21 , we
may arrange for the discontinuities to have any period dividing l. When l is odd, by sui
choosingX0 , X1 ,...,Xl 21 , any period twice any divisor of l can be obtained~or the trivial
period-1 case of no discontinuities!. Moreover, in this latter case, the discontinuities sati
Xn1 l52Xn .

We emphasize that our freedom of choice is in choosing the values of the discontinui
each point of a periodic orbit ofF. It is not the case that one may arbitrarily select the disco
nuities of the initial conditionsZ0 , Z1 . This would correspond to specifying the first tworowsof
the discontinuity matrix. As our analysis shows, however, the rows are not independent. Ho
we remark that each row of the discontinuity matrix contains eachXi at most once, and that an
two adjacent rows together contain eachXi at least once. Indeed, given one row, it is clear th
those entries which appear in the following row are simply those in the columns correspond
yi with code 1. Thus an alternative~equivalent! method of specifying a periodic discontinuity orb
may be given directly in terms of the discontinuities ofZ0 and Z1 at eachyi . Namely, the
discontinuities ofZ1 , i.e.,D1(yi) may be chosen arbitrarily, as may the discontinuitiesD0(yi) of
Z0 at eachyi with code 2.~This exhausts l freedoms.! The discontinuities ofZ0 at eachyi with
code 1, however, are given asD0(yi)52D1(yi 11) ~with periodk on the index!. While useful for
ensuring that initial conditions result in periodic behavior, this alternative description is less u
for determining the precise period. This description will, however, be useful in Sec. IV whe
wish to analyze the global behavior of recurrence~2.2!.

E. Multiple periodic orbits in D

In general, the restricted discontinuity setD will be composed of points of more than on
periodic orbit ofF. Let t be the number of periodic orbits ofF in D. For 0<s<t21, we consider
the periodic orbits of F in D. We make the general convention that superscripts refers to the
orbit s. Now, from the additive structure of~2.10!, we have that a sum of solutions is again
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solution of the equation. Moreover, because the periodic orbits inD are distinct, and are neve
mapped to each other under the two mapsf1 , f2 , we have that the dynamics ofDn on each of
the periodic orbits inD are independent. Indeed, we may write

Dn~x!5(
s50

t21

Dn
s~x!, ~2.22!

whereDn
s is the restriction ofDn to the periodic orbits, i.e.,

Dn
s~x!5H Dn~x!, xP$y0

s , . . . ,yks21
s %;

0, otherwise.
~2.23!

We may then apply the analysis of the previous subsection to each of the functionsDn
s . This is

becauseDn
s(x)50, except whenx is one of the points on the periodic orbity0

s . . . yks21
s of F.

The theory forDn that we discussed above carries over in a straightforward manner t
function Dn

s . In particular, for each orbit inD we can formulate anl̂ s3ks discontinuity matrix
Ms, defined byMn,i

s 5Dn
s(yi

s) for 0<n< l̂ s21 and 0< i<ks21. To simplify notation, we adop
the convention that matrix indices are reduced moduloks when dealing with expressions relatin
to the periodic orbity0

s ,...,yks21
s of F, while those relating to the periodicities ofDn are reduced

modulo l̂ s. These matrices are independent of each other since the dynamics ofDn on each
periodic orbit inD are independent.

Thus, as in~2.18!, we have

Mn,i
s 5~21!ai 21

s
Mn2a

i 21
s ,i 21

s
, ~2.24!

for 0<n< l̂ s21 and 0< i<ks21, and the matrixMs is determined by its first column
(X0

s ,X1
s ,...,Xl̂ s21

s ). @When l s is odd this column takes the form (X0
s ,X1

s ,...,Xl s21
s ,2X0

s ,
2X1

s ,...,2Xl s21
s ).# Indeed, as in~2.21!,

Mn,i
s 5~21!S j 50

i 21aj
s
Xn2S

j 50
i 21a

j
s

s
, ~2.25!

and the periodms of the first column is precisely the row period ofMs. We also have
msu l̂ s.Conversely, letl̂ 5 lcm( l̂ 0, . . . ,l̂ t21). Then for anymu l̂ we definems5gcd(m, l̂ s). Then
msu l̂ s and by appropriate choices of (X0

s ,X1
s ,...,Xl̂ s21

s ) we may construct a matrixMs with row
periodms if l s is even, orm̂s if l s is odd, and, extending periodically to alln>0, we have thatDn

has periodms if l s is even, orm̂s if l s is odd, when restricted to the orbity0
s ,...,yks21

s .
We therefore have the following proposition.
Proposition 5: Let Zn be a piecewise-constant periodic orbit of (2.2). Then the period m of

discontinuity function Dn is given by

m5 lcm~m0,...,mt21!, ~2.26!

where ms is the period of the function Dn
s , given by the period of(X0

s ,X1
s ,...,Xl̂ s21

s ), i.e., the first
column of the discontinuity matrix Ms. Furthermore, m divides

l̂ 5 lcm~ l̂ 0, . . . ,l̂ t21!. ~2.27!

Moreover, by appropriate choices of(X0
s ,X1

s ,...,Xl̂ s21
s ), for any m dividing lˆ we may construct a

periodic orbit of Dn with period m̂(and, if all ls are even, we may construct a periodic orbit
odd period m).
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F. The criterion for orbits to be periodic

In the previous subsection we dealt quite extensively with the periodicity of the discontin
on the fundamental intervalI 5@2v,1#. It is perfectly feasible for the sequence of discontinuit
Dn to be periodic while the sequence (Zn) itself is not. The simple exampleZ0(x)50, Z1(x)
51 for all x, with no discontinuities at all, generates the Fibonacci numbers as the values foZn .
This sequence is clearly not periodic, growing without bound. In order to ensure that (Zn) is itself
periodic it suffices to ensure that the values at a single point are periodic. It will be conveni
choose an end point ofI for this purpose. We consider then the valuesZn(1). As we saw inSec.
II B, it is not just the fundamental interval, but also the right hand limit at the end point 1 o
interval that dictates the global behavior. With this in mind we takeZn to be right continuous at 1
and writeZn

115Zn(1)5Zn(11).
Iteration ~2.2! gives

Zn~11 !5Zn21~f1~11 !!1Zn22~f2~11 !!. ~2.28!

Now f2 is increasing andf2(1)51, sof2(11)511, and thusZn22(f2(11))5Zn22(11).
On the other handf1 is decreasing andf1(1)52v, so now f1(11)52v2. To relate
Zn21(f1(11)) to Zn21(11) we therefore need to pass from2v2 to 11, which means that we
need to add in the effect of all of the discontinuities ofZn21 in I . Let us therefore write

Zn21~11 !5Zn21~2v2 !1Sn21 , ~2.29!

where we denote

Sn215 (
yP[ 2v,1]

Dn21~y!. ~2.30!

We thus have the following recurrence relation forZn
11 :

Zn
115Zn21

11 1Zn22
11 2Sn21 . ~2.31!

This is a second-order inhomogeneous recurrence relation of a Fibonacci type. Its solution

Zn
115FnZ1

111Fn21Z0
112(

i 52

n

Fn112 iS i 21 . ~2.32!

If we now requireZn to be a periodic orbit of periodp of ~2.2!, then in particular we requireZn
11

to have periodp. The inhomogeneity is merely the sum of the discontinuities ofZn and therefore
this too has periodp. Thus imposing periodicity of periodp we can arrive at two simultaneou
linear equations forZ0

11 andZ1
11 , namely,

Z0
115Zp

115FpZ1
111Fp21Z0

112(
i 52

p

Fp112 iS i 21 , ~2.33!

Z1
115Zp11

11 5Fp11Z1
111FpZ0

112 (
i 52

p11

Fp122 iS i 21 . ~2.34!

When written in matrix form, the determinant of the matrix of coefficients of this system
1(21)p2Fp112Fp21Þ0, thus these equations always possess a unique solution. The co
sion is that we may arbitrarily select the discontinuities over a set of periodic orbits ofF on the
fundamental interval~i.e., select the first columns of the discontinuity matrices!, and then define
Z0

11 , Z1
11 , i.e., Z0(1), Z1(1), by solving this system of linear equations, and the resulting o
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is periodic on the fundamental interval. By the results of Sec. II B this local data determine
asymptotic~right continuous at 1! globally periodic orbit. In summary we have the followin
theorem.

Theorem 1: A necessary and sufficient condition for a piecewise-constant, right-continuo
1, orbit of (2.2) to be periodic (on the whole ofR! with period p is that its discontinuities hav
period p and that Z0

11 , Z1
11 satisfy Eqs. (2.33) and (2.34).

For example, consider Example 3 above with arbitrary discontinuitiesX0 , X1 at 1 ofZ0 , Z1 ,
respectively. Solving~2.33! and~2.34! with p5 l 52 givesZ0

115X0 , Z1
115X1 , i.e., that bothZ0

andZ1 must be zero to the left of 1 onI . Figure 4 shows the caseX051, X1522.

For the case of discontinuity set given by the union of Examples 1 and 2,D5$ 1
2,

2v/2%ø$0%, with discontinuitiesX0
0, 2X1

0, X0
1, andX1

0, 2X2
0, 2X0

1 of Z0 andZ1 at 1
2, 2v/2, 0,

respectively, for the period-6 orbit of the discontinuities to be a period-6 orbit of~2.2! we solve
~2.33! and ~2.34! with p56, and thereby specify

Z0
115~2X0

02X1
01X2

012X0
1!/2, Z1

115~2X0
012X1

02X2
022X0

1!/2. ~2.35!

III. DISCONTINUITIES ON R

Thus far we have a necessary and sufficient condition for orbits of~2.2! to be periodic on the
whole ofR. We further wish to address the problem of the spatial boundedness of such orbit
example shown in Fig. 4 demonstrates that orbits can be periodic~in time! but unbounded~in
space!. To find conditions for spatial boundedness we must understand both the locations a
sizes of the discontinuities ofZn on the whole ofR, and that is the purpose of this section. T

FIG. 4. Period-2 orbit of the recurrence~2.2!.
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sizes of the discontinuities will be straightforward to calculate, but identifying their locat
presents some difficulty. Since recurrence~2.2! is linear, we may consider the contribution of ea
periodic orbit, and, indeed, each discontinuity of each periodic orbit, to the global discontinui
of Zn separately.

We shall return to the issue of spatial boundedness in Sec. IV. A precise identification
locations of the discontinuities ofZn will also enable us to calculate the autocorrelation functio
This we shall do in Sec. V.

A. Discontinuities and the field Q„v…

Let Ln denote the set of locations of the discontinuities ofZn , i.e.,

Ln5$xPR:Dn~x!Þ0%. ~3.1!

From ~2.2! it is clear that

Ln5f1
21~Ln21!øf2

21~Ln22!, ~3.2!

unless there is a cancellation of discontinuities~which, as we shall see below, may occur if both
and 0 are discontinuities!. As we saw in Sec. II B, the global discontinuities ofZn are generated
from those in the fundamental intervalI , and the latter consist of elements of periodic orbits of
mapF. It is clear from~2.8! that such periodic orbits must be composed of elements of the

Q~v!5$a1bv:a,bPQ%. ~3.3!

As a consequence, the setsLn consist of elements ofQ(v), since the mapsf1
21, f2

21 act onQ(v)
as

f1
21~a1bv!52~a1b!2av, ~3.4!

f2
21~a1bv!52a1b211~a1b21!v. ~3.5!

Rather than consider a periodic orbit itself, we shall consider initially an orbit asymptotic
generated from discontinuity data on the fundamental interval only. By the results of Sec. II
orbit is eventually periodic and identical to the desired periodic orbit on any bounded subseR.

Consider then the case ofZ0 having a single discontinuity of sizeX at a1bvP(2v,1#, and
Z1 having discontinuity only atf1

21(a1bv). This discontinuity will have size2X. If a1bv
P(2v,v2) ~i.e., a1bv has code 1!, then f1

21(a1bv)5F(a1bv)P(2v,1), otherwise~a
1bv has code 2! f1

21(a1bv)¹(2v,1#.
The first few discontinuity location sets are

L05$a1bv%5a1bv1$010v%,

L15$2~a1b!2av%52~a1b!2av1$010v%,

L252a1b1~a1b!v1$212v,010v%,
~3.6!

L352~3a12b!2~2a1b!v1$212v,010v,21v%,

L455a13b1~3a12b!v1$2423v,2322v,212v,010v,21v%,

L552~8a15b!2~5a13b!v1$2423v,2322v,212v,010v,

21v,412v,513v,714v%,
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where, whenx is a number andS is a set of numbers,x1S denotes the set$x1s:sPS%. We shall
write these sets in the form

Ln5c(n)1d(n)v1Mn . ~3.7!

We observe that the numbersc(n), d(n) obey a simple Fibonacci recurrence, and that the sets (Mn)
grow in an alternating manner, appending successively on the right and left of the existing lis
that Mn containsFn11 elements. Moreover,Mn consists of numbers of the forma1bv in which
b increases uniformly by 1 from2Fn21 to Fn21 whenn is odd, and from2Fn to Fn2121
whenn is even. However, the componenta has increments given by a sequence 1,2,1,2,2,1,2
ranging from2(Fn21) to Fn1121 whenn is odd, and from2(Fn1121) to Fn21 whenn is
even. The size of each discontinuity inLn is (21)nX.

We shall now identify the precise form of the setMn , and then prove that the above obse
vations hold for alln.

B. Discontinuities arising from a single discontinuity in I

We now state and prove the precise form of the setsLn based on our preliminary observatio
in the previous subsection.

For xPR, we let dxe denote the ceiling ofx, namely min$nPZ:n>x%, andbxc denote the floor
of x, namely max$nPZ:n<x%. First, we have the following proposition.

Proposition 6: The discontinuity location sets(Ln) arising from applying recurrence (2.2) to
initial conditions in which Z0 has a single discontinuity of size X at a1bvPI , and Z1 has a
single discontinuity of size2X at f1

21(a1bv), are L05$a1bv% and for n>1

Ln5c(n)1d(n)v1Mn , ~3.8!

where

Mn5$ d i /v e1 iv: i 5 l n ,...,r n%, ~3.9!

with

l n ,r n5H 2Fn21 ,Fn21, n odd,

2Fn ,Fn2121, n even,
~3.10!

and where

c(n)5~21!n~Fn11a1Fnb!, d(n)5~21!n~Fna1Fn21b!. ~3.11!

Moreover, each discontinuity of Ln is of size(21)nX.
Proof: The proof is by induction with the base case being clear. Suppose now thatLn21 and

Ln22 are given as in the statement of the proposition. As we noted earlier in~3.2! we haveLn

5f1
21(Ln21)øf2

21(Ln22). We readily calculate that

f1
21~Ln21!5c(n)1d(n)v1f1

21~Mn21!, ~3.12!

f2
21~Ln22!5c(n)1d(n)v1f2

21~Mn22!, ~3.13!

so that we need only establish thatMn5f1
21(Mn21)øf2

21(Mn22) with Mn as given by~3.9!. To
do this it suffices to show that each element ofMn is in eitherf1

21(Mn21) or f2
21(Mn22), since

Mn has Fn11 elements andf1
21(Mn21), f2

21(Mn22) have Fn , Fn21 elements, respectively
Suppose thatn is even and leti P$2Fn ,...,Fn2121%. Considering~3.4! and~3.5!, we must show
there exists eitherj P$2Fn22 ,...,Fn2121% such thati 52 d j /v e and d i /v e52 d j /v e2 j or k
P$2Fn22 ,...,Fn2321% such thati 5 dk/v e1k21 andd i /v e52dk/v e1k21.
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Set j 5 b2 iv c so thatj 1«152 iv, i.e.,

j /v1«1 /v52 i , ~3.14!

for some«1P(0,1). We note thatj P$ b2(Fn2121)v c,...,bFnv c%, for which the identity~1.24!
~recalling thatn is even! gives bFnv c5 bFn212vnc5Fn2121, and b2(Fn2121)v c5 b2Fn22

1v2vn21c52Fn22 , so thatj is in the desired range.
Now ~case 1! if «1P(0,v), then «1 /vP(0,1) so that~3.14! gives d j /v e52 i , i.e., i

52 d j /v e. We further havei /v5 i 1 iv5 i 2 j 2«152 d j /v e2 j 2«1 , and thusd i /v e52 d j /v e
2 j as desired.

On the other hand~case 2!, if «1P(v,1), then«1 /vP(1,v21) and we deduce thatd j /v e
52 i 21, so thatiÞ2 d j /v e, and we thus need to define a suitablek. ~Note that the case«1

5v is clearly impossible sincev is irrational. For the same reason we have«1Þ0.! We setk
5 b2 j v c so that there exists«2P(0,1) such that

2 j v5k1«2 . ~3.15!

Sincej P$2Fn22 ,...,Fn2121%, by an argument similar to that above, we deduce, as desired
kP$2Fn22 ,...,Fn2321%. Addition of ~3.14! and ~3.15! gives j 1«1 /v52 i 1k1«2 so that,
since «1 /vP(1,v21) and «2P(0,1), we have«25«1 /v21, and thus«2P(0,v), i.e., «2 /v
P(0,1). Equation~3.15! is 2 j 5k/v1«2 /v which thus gives

2 j 5 dk/v e. ~3.16!

Now addition of ~3.15! and ~3.16! gives 2 j 2 j v2«25k1 dk/v e, i.e., 2k2 dk/v e5 j /v1«2

5 d j /v e and so, sinced j /v e52 i 21, we deduce thati 5 dk/v e1k21. From j 1«152 iv and j
52 dk/v e, it immediately follows thati /v5 i 1 iv5 i 1 dk/v e2«152dk/v e1k212«1 , and so
d i /v e52dk/v e1k21 as desired.

The casen odd is established in a similar manner.
That each discontinuity ofLn is of size (21)nX follows immediately from the facts thatf1

21

is orientation reversing andf2
21 is orientation preserving. h

We have thus established the locations and sizes of the discontinuities ofZn that arise from the
presence of a discontinuity inZ0 at a1bvPI .

We must also consider the case in whichZ0 has no discontinuities andZ1 has a single
discontinuity inI . However, this situation is clearly identical to the case just considered, but
a reduction of one in all subscripts. More precisely, we have the following.

Proposition 7: The discontinuity location sets(Ln) arising from applying recurrence (2.2) to
initial conditions in which Z0 has no discontinuities and Z1 has a single discontinuity of size2X
at a1bvPI are L05B, L15$a1bv%, and for n>2

Ln5c(n21)1d(n21)v1Mn21 , ~3.17!

with c(n), d(n), Mn as in the statement of Proposition 6. Moreover, each discontinuity of Ln is of
size(21)nX.

The proof of Proposition 7 is analogous to that of Proposition 6.
Thus far we have considered functions possessing only a finite number of discontinuit

globally periodic orbit, however, possesses an infinite number of discontinuities, being the
~defined by pointwise convergence! of the sets (Ln) considered thus far. It is clear from Propos
tion 6 what the discontinuity set generated by a single discontinuity at the fixed point ze
namely

$ d i /v e1 iv: i PZ%, ~3.18!
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this being the limit of the corresponding setsLn with a5b50, so thatc(n)5d(n)50 for all n.
However, care is needed in the determination of these sets for other periodic orbits. We shal
to this issue in Sec. V where we consider the period-6 orbit of~2.2! generated by the period-2 orb

$ 1
2,2v/2% of F.

We remark that a symbolic formulation of the discontinuity locations is possible in term
‘‘words’’ with letters drawn from the ‘‘alphabet’’$1, 2%. More precisely, a sequence of Fibonac
words with first few elements

1

12

1212

~3.19!

1212212

121221212212

may be used to describe the increments in the elements of the discontinuity setsLn . These words
may be obtained by the following rules. We denote byL the empty word, byS the substitution
operator 1°2, 2°12, and byR the reversal operatorw1 ...wk°wk ...w1 . The nth Fibonacci
word wn may be written as the concatenationunvn with the rule u15v15L, and, for n>1,
un115R(S(vn)1), vn115R(S(un)). We index the ‘‘letters’’ inwn by settingw0

n to be the last
letter of un and settingw1

n to be the first letter ofvn. Then the wordswn are the words given in
~3.19!. As n→`, wn→w* , the biinfinite Fibonacci word. One may write the set~3.18! as $xi

1 iv% wherex050 andxi2xi 215wi* .

IV. GLOBAL BOUNDEDNESS

In the previous section we determined the global effect of a single discontinuity in the
damental interval. Each of the l variablesX0 ,X1 ,...,Xl 21 in the discontinuity matrix of a peri-
odic orbit gives rise to such a discontinuity in the initial conditionsZ0 , Z1 in the form of one of
the three following cases.

~1! Z0 has a single discontinuity inI at xP(2v,v2) andZ1 has a single discontinuity atF(x)
PI 2$1%.

~2! Z0 has a single discontinuity in (v2,1# andZ1 has no discontinuities inI .
~3! Z0 has no discontinuities inI andZ1 has a single discontinuity inI .

Case 1 corresponds to a discontinuity ofZ0 at a pointyi with code 1, so thatyi 11 is a discontinuity
location of Z1 ~having the same size, but opposite sign!. Case 2 corresponds to a discontinu
locationyi of Z0 with code 2. Case 3 corresponds to a discontinuity locationyi of Z1 such that
yi 21 has code 2.~It is illustrative to look at a discontinuity matrix such as that of Example 4
understand these three cases.! Cases 1 and 2 are handled by Proposition 6, while Propositio
treats case 3.

The important thing to note from Propositions 6 and 7 is that each discontinuity genera
ordered set of discontinuities of the same size and sign in which the elements of each se
identical relative displacements: the elements of each set are separated from each otheby the
same amount~11v or 21v! in the same order. Moreover, with the exception of the fixed poin
1, each nonzero discontinuity causes an unbounded monotonic growth as we move furthe
the fundamental interval on both sides.

From Proposition 6 we see that ifZ0 has a discontinuity at 1 of sizeX ~case 2!, then this
discontinuity gives rise to discontinuities inZn of sizeX at locations>1 for evenn and of size
2X at locations<212v for odd n. Proposition 7 shows that ifZ1 has a discontinuity at 1 o
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size2X8 ~case 3!, thenthis discontinuity gives rise to discontinuities inZn of sizeX8 at locations
<212v for even nand of size2X8 at locations>1 for odd n. This may be seen in Fig. 4, in
which the discontinuities in the first figure~evenn! are of size 1 on the right~corresponding to the
discontinuity inZ0!, while those on the left are of size 2~corresponding to the discontinuity inZ1!.
The situation is reversed in the second figure~wheren is odd!.

For global boundedness we require there to be cumulative growth on neither the left n
right hand sides of the fundamental interval.

Consider the case of evenn. For boundedness on the right we must include the effect o
being a discontinuity location forZ0 . For boundedness on the left we must include the effect o
being a discontinuity location forZ1 .

We first look at the cumulative effect of the discontinuities contributing to growth to the r
of the fundamental interval. We must consider all discontinuities from cases 1 and 2, and th
case 3 excluding the fixed point 1. The sum over all discontinuities of all periodic orbits o
type of case 2 is

(
yP(v2,1]

D0~y!. ~4.1!

The combined contribution of all discontinuities of all periodic orbits of the type of cases 1 a
is

2 (
yP(2v,1)

D1~y!, ~4.2!

the contributions from case 1 being of the form1D0(yi 21)52D1(yi), and from case 3 of the
form 2D1(yi). Note that 1 is excluded from the range of this sum since, as we noted a
discontinuities associated with 1 being a discontinuity of the type of case 3 are to the left
fundamental interval for evenn. Because of the same relative spacing of discontinuity locatio
as we increase to the right the contributions from all three cases grow at the same ra
boundedness we therefore require the sum of~4.1! and ~4.2! to be zero, i.e., we require

(
yP(v2,1]

D0~y!5 (
yP(2v,1)

D1~y!. ~4.3!

Now look to the left of the fundamental interval~with n still even!. The sum over all disconti-
nuities of all periodic orbits of the type of case 2 is now

(
yP(v2,1)

D0~y!, ~4.4!

and the sum over all discontinuities of all periodic orbits of the type of cases 1 and 3 is

2 (
yP(2v,1]

D1~y!, ~4.5!

where 1 is now excluded from the first sum since discontinuities associated with a 1 being a
discontinuity of the type of case 2 are to the right of the fundamental interval for evenn. For the
same reasons as above, we require the sum of~4.4! and ~4.5! to be zero, i.e., we require

(
yP(v2,1)

D0~y!5 (
yP(2v,1]

D1~y!. ~4.6!
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For evenn, it is clear that if condition~4.3! is violated, there will be unbounded growth on th
right, while if condition ~4.6! is violated, there will be unbounded growth on the left. Thus o
combined conditions are necessary and sufficient.@Consideration of boundedness for oddn results
in the same two conditions~4.3! and ~4.6!.# We thus have the following.

Theorem 2: A necessary and sufficient criterion for a piecewise-constant periodic orb
(2.2) to be globally bounded is

(
yP(2v,1]

D1~y!5 (
yP(v2,1)

D0~y! and (
yP(2v,1)

D1~y!5 (
yP(v2,1]

D0~y!. ~4.7!

Note that in general the inclusion or exclusion of 1 from the intervals in these sums is cr
~However, the points2v and v2 are never discontinuities.! Further note that when 1 is not
discontinuity location these two conditions are identical. For instance, for the period-6
resulting from Examples 1 and 2 the condition~4.7! is the single constraintX0

02X1
01X2

01X0
1

50.
We remark that we may produce orbits that are unbounded, butrelatively globally boundedby

ensuring the condition of Theorem 2 is satisfied but the condition for periodicity of Sec
~Theorem 1! is violated.@We define the orbit (Zn) to be relatively globally bounded if there exis
a constantK such thatuZn(x)2Zn(0)u<K for all xPR and for allnPN.# The simplest example
of such an orbit is that generated by the constant functionsZ0(x)50, Z1(x)51 in which there are
no discontinuities.

From the physical point of view we deduce that we may choose many forms for the m
lation function in ~1.11!, and, provided the conditions for periodicity~Theorem 1! and global
boundedness~Theorem 2! are satisfied, the resulting autocorrelation function will disp
asymptotic self-similarity. More precisely, provided the functionF is chosen so that the initia
conditionsZ0(x)50, Z1(x)5F(2vx) are periodic or preperiodic on the fundamental inter
@2v,1#, and that two successive functions on this periodic orbit satisfy the periodicity and g
boundedness conditions, then there is asymptotic self-similarity of the autocorrelation func

We look in detail at the particular choice~1.29! in the next section.

V. THE PERIOD-6 ORBIT

As a further application of our work in Sec. III, we now look in detail at the particu
example of Feudelet al.5 briefly mentioned in the Introduction. The choice of modulation funct
~1.29! results in the period-6 orbit shown in Fig. 2. However, it is important to note that
discontinuities of the initial conditions~1.27! do not all form discontinuities of the period-6 orbi
In particular, the functionZ1(x)5F(2vx) has a discontinuity atx5v21/2 which is not periodic

for F, but its image underF is 1
2, which is part of the period-two orbit$ 1

2,2v/2%. The other
discontinuity ofZ1 in the fundamental interval@2v,1# is the fixed point 0.

Henceforth, when we refer to the orbit (Zn) we mean the global periodic orbit, and not th
orbit asymptotic to it that we generate from the periodic orbit on the fundamental interval.
global period-6 orbit is generated from the restricted discontinuity set equal to the uni

Examples 1 and 2, namely$ 1
2,2v/2%ø$0% with discontinuity valuesX0

0522, X1
050, X2

050,

corresponding to$ 1
2,2v/2%, andX0

152 corresponding to$0%. This data means thatZ0 has dis-
continuitiesX0

0522 at 1
2, 2X1

050 at 2v/2, andX0
152 at 0, whileZ1 has discontinuitiesX1

0

50 at 1
2, 2X2

050 at 2v/2, and2X0
1522 at 0. The point 1 is not a discontinuity point, and

guarantee periodicity we specifyZ0
115Z0(1)50, andZ1

115Z1(1)521 according to~2.35!. We
further note that this data satisfies the conditionX0

02X1
01X2

01X0
150, which is the criterion of the

previous section~Theorem 2! guaranteeing a globally bounded periodic orbit.
The value of the corresponding autocorrelation functionKPy

at Fibonacci timesFn will be
calculated explicitly in terms of the amplitudek. Figure 1 showsKPy

for the casek5p/2. In the
casesn[1, 2 mod 3, since~as we shall show! Zn561, Eq.~1.28! gives usKPy

(Fn)5cosk ~50
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whenk5p/2!. In the casen[0 mod 3, where now~again, as we shall show! Zn50, 62, we have
KPy

(Fn)512a1a cos 2k ~5122a whenk5p/2! where 2a is the asymptotic average value o

uZnu. In Ref. 5 it is numerically calculated thata'0.2236. In fact, this constant is 1/(2A5) as we
shall show in this section. As a consequence, whenk5p/2, for n[0 mod 3 we haveKPy

(Fn)

→121/A550.552 786 . . . asn→`.

A. The discontinuity location sets

1. Discontinuities arising from the fixed point 0

We have thatZ0 andZ1 both have a single discontinuity at 0 (5010v) only, and so, taking
the limit n→` in Proposition 6, the discontinuity location set associated with the fixed point

L15$ d i /v e1 iv: i PZ%. ~5.1!

2. Discontinuities arising from the period-two orbit $1
2,ÀvÕ2%

The discontinuity location sets associated with the period-two orbit$ 1
2,2v/2% are generated

from Z0 having a discontinuity at12 and Z1 having no discontinuities in fundamental interva

@2v,1#. @Of course,Z1 has a discontinuity atf1
21( 1

2)52v21/2, but this is outside the funda
mental interval.# The result is period-3 behavior. Let us define the sets

L0,05$ d i /v1 1
2e2 1

21 iv: i PZ%, ~5.2!

L0,15$ d~ i 2 1
2!/v1 1

2e2 1
21~ i 2 1

2!v: i PZ%, ~5.3!

L0,25$ d~ i 2 1
2!/v e1~ i 2 1

2!v: i PZ%. ~5.4!

Then we have the following.

Proposition 8: The discontinuity location sets Ln generated by the period-2 orbit$ 1
2,2v/2%

satisfy

L0,0ùLn5$ d i /v1 1
2e2 1

21 iv: i 5 l n
0 , . . . ,r n

0%, n[0 mod 3; ~5.5!

L0,1ùLn5$ d~ i 2 1
2!/v1 1

2e2 1
21~ i 2 1

2!v: i 5 l n
1 , . . . ,r n

1%, n[1 mod 3; ~5.6!

L0,2ùLn5$ d~ i 2 1
2!/v e1~ i 2 1

2!v: i 5 l n
2 , . . . ,r n

2%, n[2 mod 3, ~5.7!

where, as n→`, l n
k→2`, r n

k→` for k50,1,2,so that the sets L0,0, L0,1, L0,2 are the limits as
m→` of the sequences(L3m), (L3m11), (L3m12), respectively.

Proof: We must consider the three residue classes modulo 3 separately. We shall u
readily established fact that the Fibonacci numbers have the following parity structure:Fn[0 mod
2 whenn[0 mod 3, andFn[1 mod 2 whenn[1,2 mod 3.

~a! n[0 mod 3. We treat the two casesn[0 mod 6,n[3 mod 6, separately.
In the casen[0 mod 6, so thatn is even, Proposition 6 gives

Ln5$Fn11/21 d i /v e1~Fn/21 i !v: i 52Fn , . . . ,Fn2121%, ~5.8!

which by relabeling is

Ln5$Fn11/21 d~ i 2Fn/2!/v e1 iv: i 52Fn/2, . . . ,Fn/21Fn2121%. ~5.9!

~Note thatFn is even.! To establish the result we must show that

Fn11/21 d~ i 2Fn/2!/v e5 d i /v1 1
2e2 1

2 ~5.10!
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for a suitable range ofi . Now, sinceFn11 is odd,

1
21Fn11/21 d~ i 2Fn/2!/v e5 d 1

21Fn11/21~ i 2Fn/2!/v e
5 d 1

21~ i 1~Fn11v2Fn!/2!/v e
5 d 1

21~ i 1vn11/2!/v e5 d i /v11/21vn/2)e, ~5.11!

where we have used the identity~1.24!. We must show that for suitablei this equalsd i /v1 1
2e.

Sincei /v5 i 1 iv our desired equality may be written asd iv1 1
21vn/2e5 d iv1 1

2e, which is true
if, and only if, d iv1 1

2e2( iv1 1
2)>vn/2, in which we note thatd iv1 1

2e2( iv1 1
2)5u iv1 1

22r u,
wherer 5 d iv1 1

2e.
Now since the ratios of successive Fibonacci numbers are the continued fraction approx

to v we have that

uqv2pu>uFnv2Fn21u5vn, ~5.12!

for all pPZ and all integersq with uqu<Fn .
We thus haveu2iv1122r u>vn for all integers i such that 2u i u<Fn , i.e., u iv1 1

22r u
>vn/2, for all integersi such thatu i u<Fn/2. This establishes our desired equality for a range
i of the desired type.

The casen[3 mod 6 is similar, with minor modifications to take into account the oddnes
n. Such modifications may be seen in the proof of the first part of the next case.

~b! n[1 mod 3. We consider separately the two casesn[1 mod 6,n[4 mod 6.
In the casen[1 mod 6, so thatn is odd, Proposition 6 gives

Ln5$2Fn11/21 d i /v e1~ i 2Fn/2!v: i 52Fn21 , . . . ,Fn21%, ~5.13!

which by relabeling is

Ln5$2Fn11/21 d~ i 1~Fn21!/2!/v e1~ i 2 1
2!v: i 52Fn212~Fn21!/2, . . . ,~Fn21!/2%.

~5.14!

~Note thatFn is now odd.! To establish the result we must show that

2Fn11/21 d~ i 1~Fn21!/2!/v e5 d~ i 2 1
2!/v1 1

2e2 1
2 ~5.15!

for a suitable range ofi . We now proceed as in case~a!. First we have

1/22Fn11/21 d~ i 1~Fn21!/2!/v e5 d i /v2v/21vn/2e, ~5.16!

and so we must show thatd iv2v/21vn/2e5 d iv2v/2e for suitablei , which is true if, and only
if, d iv2v/2e2( iv2v/2).vn/2. Now d iv2v/2e2( iv2v/2)5u iv2v/22r u, where r 5 d iv
2v/2e, and we haveu2iv2v22r u5u(2i 21)v22r u>vn for all integersi such thatu2i 21u
,Fn . This is justu iv2v/22r u.vn/2 for such a range ofi as desired.

The casen[4 mod 6 is similar.
~c! n[2 mod 3. We omit the detail for this case which is similar to those above. h

B. Combining the discontinuities

Note that

L0,n,H ~Z/22Z!1vZ, n50,

~Z/22Z!1v~Z/22Z!, n51,

Z1v~Z/22Z!, n52,

~5.17!

while
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L1,Z1vZ. ~5.18!

It follows that the discontinuity location sets generated from the period-two orbit$ 1
2,2v/2% are

disjoint from those associated with the fixed point 0. Thus, there can be no cancellation, o

modification, of the discontinuities generated by one periodic orbit~$ 1
2,2v/2% or $0%! by the other.

We further recall that the elements of each of these sets form an increasing sequence wit
ration either 11v or 21v.

The initial conditions for the discontinuities areX0
0522, X1

05X2
050, andX0

152. It follows

that each discontinuity ofZn due to the period-two orbit$ 1
2,2v/2% is of size22 whenn is even,

and of size 2 whenn is odd. Each discontinuity ofZn due to the fixed point 0 is of size 2 whe
n is even, and of size22 whenn is odd.

As well as specifying the initial discontinuity data, we have also specified the initial va
Z0(1)50 andZ1(1)521, thereby giving us initial conditions asymptotic to a globally bound
periodic orbit of period-6. It is straightforward to check thatZ2(1)51, Z3(1)50, Z4(1)51,
Z5(1)521, so that, knowing from Sec. II that the discontinuities have period-6 satisf
Dn1352Dn , the periodic orbit (Zn) itself satisfiesZn1352Zn .

C. Calculation of the autocorrelation function

Given this detailed knowledge of the locations and sizes of all discontinuities we can cal
the autocorrelation function~1.28!. We denote the discontinuity locations associated with the fi

point 0 given in~5.1! asai
11bi

1v, and those associated with the period-2 orbit$ 1
2,2v/2% given in

~5.2!–~5.4! asai
01bi

0v.
We must consider the three residue classes modulo 3 separately.

1. nÆ0 mod 3

When n[0 mod 3 we see from~5.1! and ~5.2! that discontinuities may be matched by th
coefficients ofv. The separation of matched discontinuities is then

ai
11bi

1v2~ai
01bi

0v!5 d i /v e1 iv2~ d i /v1 1
2e2 1

21 iv!5 1
21 d i /v e2 d i /v1 1

2e56 1
2, ~5.19!

and these discontinuities occur in strict alternation since the separation of elements in ea
quence is either 11v or 21v.

Now when, in addition,n is even so thatn[0 mod 6, each discontinuity from$ 1
2,2v/2% has

sizeX0
0522, while each discontinuity from$0% has sizeX0

152. Moreover, we have thatZn(1)
50, so that the matched discontinuities combine to give an interval of height62 and width1

2 in
the graph ofZn , as in the top two graphs in Fig. 2. For instance, the first pair after 1 is 21v with
discontinuity 2, and5

21v with discontinuity22. Thus the graph ofZn consists of intervals a
height zero punctuated by excursions of width1

2 to a height62. The analysis for oddn ~i.e., so
that nown[3 mod 6! is identical, but with all signs reversed.

The autocorrelation function valuesKPy
(Fn) may now be calculated.

Theorem 3: Let (Zn) be the globally bounded period-6 orbit of~2.2! generated by disconti-

nuity set $ 1
2,2v/2,0% with initial data D0( 1

2)522, D0(2v/2)50, D0(0)52, D1( 1
2)50, D1

(2v/2)50, D1(0)522, with Z0
115Z0(1)50, and Z1

115Z1(1)521. Then, for n[0 mod 3,

lim
n→`

KPy
~Fn!512a1a cos 2k, ~5.20!

where

a5
1

2A5
. ~5.21!
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For the special casek5p/2 shown in Fig. 1 we thus haveKPy
(Fn)→121/A550.552 786 . . . as

n→` with n[0 mod 3.
Proof: We have already seen thatZn takes values 0,62. Note that

coskZn~y!5H 1, Zn~y!50,

cos 2k, uZn~y!u52.
~5.22!

Thus, defining

an5
1

~2v!2n E
0

(2v)2n uZn~y!u
2

dy, ~5.23!

as the proportion of the interval@0,v2n# for evenn, @2v2n,0# for odd n, for which uZn(y)u
52, ~1.28! becomes

KPy
~Fn!512an1an cos 2k. ~5.24!

Now

Fn5
v2n

A5
1O~1!, ~5.25!

from which it is straightforward to deduce that

v2n5Fn111Fnv1O~1!. ~5.26!

We now recognize thatFn111Fnv, respectively2(Fn111Fnv), is a discontinuity point gen-
erated by the fixed point 0, and thus the interval@0,v2n#, respectively@2v2n,0#, containsFn

1O(1) intervals of length1
2 with uZnu52, and thus

an5
Fn1O~1!

2v2n → 1

2A5
. ~5.27!

Hence the result. h

2. nÆ1 mod 3

Whenn[1 mod 3 the discontinuity location sets are given by~5.1! and ~5.3!. We have

ai
11bi

1v2~ai
01bi

0v!5 d i /v e1 iv2~ d~ i 2 1
2!/v1 1

2e2 1
21~ i 2 1

2!v!

5v21/21 d i /v e2 d i /v2v/2e.0 ~5.28!

and

ai 11
0 1bi 11

0 v2~ai
11bi

1v!5 d~ i 1 1
2!/v1 1

2e2 1
21~ i 1 1

2!v2~ d i /v e1 iv!

5 d i /v1v/2e2 d i /v e1v21/2.0, ~5.29!

so that the two sets of discontinuities alternate in a strict manner.~Note that the distance betwee
discontinuities may bev21/2 or 11v21/2. See the second row of Fig. 2.!

When, in addition,n is odd, i.e.,n[1 mod 6, each discontinuity from$ 1
2,2v/2% has size

2X0
052, while each discontinuity from$0% has size2X0

1522. We further haveZn(1)521 in
this case, and the first discontinuity after 1 is3

21v/2 at which Zn increases to11. ThusZn

oscillates between values61 with discontinuity locations as calculated above.
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The situation for the subcase in whichn is even~i.e., n[4 mod 6! follows similarly, or more
simply from the fact thatZn1352Zn .

It is a simple consequence of the fact thatZn561 that the autocorrelation function valu
KPy

(Fn) in Eq. ~1.28! equals cosk.

3. nÆ2 mod 3

Whenn[2 mod 3 the discontinuity location sets are given by~5.1! and ~5.4!. We have

ai
11bi

1v2~ai
01bi

0v!5 d i /v e1 iv2~ d~ i 2 1
2!/v e1~ i 2 1

2!v!5v/21 d i /v e2 d i /v2v21/2e.0
~5.30!

and

ai 11
0 1bi 11

0 v2~ai
11bi

1v!5 d~ i 1 1
2!/v e1~ i 1 1

2!v2~ d i /v e1 iv!5 d i /v1v21/2e2 d i /v e1v/2.0.
~5.31!

~Note now that the distance between discontinuities may bev/2 or 11v/2. See the third row of
Fig. 2.!

For both even and odd cases here, as in the previous case, we deduce that the two
discontinuities alternate in a strict manner, and, sinceZ6l 12(1)52Z6l 15(1)51, that for all n
[2 mod 3,Zn oscillates between values61 with discontinuity locations as calculated above.

Again, we immediately deduce that in this case~1.28! is simply KPy
(Fn)5cosk.

VI. CONCLUSION

We have verified and generalized rigorously the numerical results in Ref. 5 concernin
asymptotic self-similarity of the autocorrelation function in a quasiperiodically forced two-l
quantum system. As in studies of the self-similar fluctuations of the localized eigenstates
Harper equation,7 the birth of a strange nonchaotic attractor,9 and of the autocorrelation function o
a strange nonchaotic attractor,4 this self-similarity is explained by means of a functional rec
rence, the key to the understanding of which is the dynamics of a simple piecewise-linear m
the interval.11–13

To accomplish this task, a description of the piecewise-constant periodic orbits of the ad
recurrence~1.1! has been completed. Moreover, a necessary and sufficient criterion for such
to be spatially bounded has been derived. As a consequence, provided the locations of its
tinuities are carefully chosen, a piecewise-constant modulation function gives rise to asym
self-similarity of the autocorrelation function. It seems likely that, as in the case of the gener
Harper equation with next-nearest-neighbor interactions,7,13 there will be an underlying strange s
on which these orbits lie. If so, an understanding of the form of the autocorrelation function
presence of a general piecewise-constant modulation function will follow.

Our work has been in the case of golden mean frequency only, but numerical work in R
for this problem indicates that the singular continuous spectrum is present for a wider cl
irrationals. For the parallel problem of the autocorrelation function in strange nonchaotic a
tors, there is evidence in Ref. 14 that, at least for certain quadratic irrational frequencie
autocorrelation function displays self-similarity of the type studied here. Periodic orbits
generalization of the functional recurrence~1.1! provide an explanation of this phenomenon
both settings, and will be the subject of a forthcoming paper.
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We investigate particular models which can beN-fold supersymmetric at specific
values of a parameter in the Hamiltonians. The models to be investigated are a
periodic potential and a parity-symmetric sextic triple-well potential. Through the
quantitative analyses on the nonperturbative contributions to the spectra by the use
of the valley method, we show how the characteristic features ofN-fold supersym-
metry which have been previously reported by the authors can be observed. We
also clarify the difference between quasi-exactly solvable and quasi-perturbatively
solvable cases in view of the dynamical property, that is, dynamicalN-fold super-
symmetry breaking. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1485115#

I. INTRODUCTION

In our previous paper,1 we have formulated in formal and abstract waysN-fold supersymmetry
in quantum mechanics2–6 and investigated general properties of the models which possess
symmetry.N-fold supersymmetry is characterized by the supercharges which areN-th order
polynomials of momentum and similar generalizations of supercharges were also investiga
different contexts.7–23We have shown thatN-fold supersymmetric models have a lot of significa
properties similar to the ordinary supersymmetric ones24–27 such as degenerate spectral struct
between bosonic states and fermionic ones, non-renormalization theorems for the gene
Witten index and for a part of the spectra, and so on. Furthermore, we have introduced the
of quasi-solvabilityto identify an important aspect ofN-fold supersymmetry and have proved th
equivalence betweenN-fold supersymmetry and quasi-solvability. Recently, we have furt
shown5 that Type Asubclass ofN-fold supersymmetry, which was first introduced in Ref. 4,
equivalent to the quasi-solvable models constructed by sl~2! generators.28 Then, it has turned ou
that the equivalence between them for special cases which had been reported previously
2, 17, and 23 holds generically.

Quasi-solvability means the existence of a finite dimensional invariant subspace und
action of the Hamiltonian. As a consequence, a part of the spectra can be solved by a
dimensional algebraic equation. In the case where the subspace is physical, that is,L2, these
spectra give thetrue eigenvalues of the Hamiltonian. In this case, the system is often ca
quasi-exactly solvable.28–30 On the other hand, if the subspace is not physical, solvable sp
only giveperturbativeeigenvalues at most and thus we have dubbed this casequasi-perturbatively
solvable.4 This distinction is quite important, especially in view of dynamicalN-fold supersym-
metry breaking;N-fold supersymmetry is broken dynamically if a system is quasi-perturbati
solvable while it is not broken if a system is quasi-exactly solvable.

In this article, we analyze particular models which can beN-fold supersymmetric more

a!Electronic mail: msato@issp.u-tokyo.ac.jp
b!Present address: Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 5

Japan. Electronic mail: ttanaka@het.phys.sci.osaka-u.ac.jp
34840022-2488/2002/43(7)/3484/27/$19.00 © 2002 American Institute of Physics
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quantitatively. Previously in Ref. 2, an asymmetric quartic double-well potential was investi
in detail by the valley method.31–39It was shown that the system possessesN-fold supersymmetry
at specific values of a parameter in the Hamiltonian where the leading Borel singularity o
perturbative corrections for the firstN-th energies disappear. This result is a consequence
general property ofN-fold supersymmetry, namely, the non-renormalization theorem. It was
shown that the nonperturbative corrections for the firstN-th energies do not vanish even when t
system becomesN-fold supersymmetric. This result consistently reflects the fact that, in the
of an asymmetric quartic double-well potential, the solvable subspace is not physical, that
system is quasi-perturbatively solvable; nonvanishing nonperturbative effects breakN-fold super-
symmetry dynamically.

These observations show that combining with the formal discussions in Ref. 1 quant
analyses may give deeper and complement understanding on dynamical properties of theN-fold
supersymmetric models. As in the case of the ordinary supersymmetric models, nonpertu
analyses are quite important in theN-fold supersymmetric case; dynamicalN-fold supersymmetry
breaking can take place via purely nonperturbative effects, e.g., quantum tunneling. Ho
nonperturbative analyses are in general quite nontrivial even in the simple one-dimensiona
tum mechanics. The valley method is one of the most successful tools for this kind of purpo
we fully employ it in this work.

The article organizes as follows. In the next section, we summarize the general resul
properties of the Type A subclass ofN-fold supersymmetry.1,4–6 In Sec. III, we develop particula
cases of the Type A models which are especially relevant for the analyses in this article. Se
IV and V are devoted to valley method analyses on a periodic and a sextic triple-well pote
respectively. We choose potentials to be investigated so that the systems can be Type AN-fold
supersymmetric at specific values of a parameter involved in the potentials. The way of the
enables us to clarify the characteristic features of Type AN-fold supersymmetry. The periodi
potential is always quasi-exactly solvable when Type AN-fold supersymmetric while the triple
well potential can be either quasi-exactly or quasi-perturbatively solvable. In both the cas
show that the disappearance of the leading Borel singularity occurs. However, the nonpertu
corrections vanish when and only when the systems are quasi-exactly solvable. Finally, w
summary in the last section.

II. GENERAL PROPERTIES OF TYPE A N-FOLD SUPERSYMMETRY

First of all, we summarize the general results and properties of Type AN-fold supersymmetry.
For details, e.g., derivation of the results, see Refs. 1 and 5. To defineN-fold supersymmetry, we
introduce the following HamiltonianHN and theN-fold supercharges,

HN5HN
2~p,q!cc†1HN

1~p,q!c†c, ~2.1!

QN5PN
† ~p,q!c, QN

† 5PN~p,q!c†. ~2.2!

Herec andc† are fermionic coordinates which satisfy

$c,c%5$c†,c†%50, $c,c†%51, ~2.3!

and are usually represented as the following 232 matrix form:

c5S 0 0

1 0D , c†5S 0 1

0 0D . ~2.4!

The component of theN-fold superchargesPN is given by anN-th order polynomial ofp
52 id/dq and thus expressed as

PN5pN1wN21~q!pN211¯1w1~q!p1w0~q!, ~2.5!
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without any loss of generality. Then, the system is said to beN-fold supersymmetric if the
HamiltonianHN commutes with theN-fold superchargesQN andQN

† :

@QN ,HN#5@QN
† ,HN#50. ~2.6!

The Type AN-fold supersymmetry is characterized by a particular class of theN-fold super-
charges which can be expressed as the following form:40

PN5S D1 i
N21

2
E~q! D S D1 i

N23

2
E~q! D¯S D2 i

N21

2
E~q! D

[ )
k52(N21)/2

(N21)/2

~D1 ikE~q!!, D5p2 iW~q!. ~2.7!

If we restrictHN
6 to be the following Schro¨dinger type,

HN
65 1

2 p21VN
6~q!, ~2.8!

we can show5 that necessary and sufficient conditions of the Hamiltonian~2.1! with ~2.8! to be
Type A N-fold supersymmetric, that is, to satisfy the relation~2.6!, are as the following:

VN
6~q!5

1

2
W~q!21

N 221

24
~E~q!222E8~q!!6

N
2

W8~q!, ~2.9a!

S d

dq
2E~q! D d

dq S d

dq
1E~q! DW~q!50 ~N>2!, ~2.9b!

S d

dq
22E~q! D S d

dq
2E~q! D d

dq S d

dq
1E~q! DE~q!50 ~N>3!. ~2.9c!

A. The solvable subspaces

Owing to the relation Eq.~2.6!, theN-dimensional vector spaces defined by

VN
25ker PN , VN

15ker PN
† ~2.10!

are invariant under the action ofHN
2 andHN

1 , respectively. We can therefore define the matric
S6 as follows:

HN
6fn

65 (
m51

N
Sn,m

6 fm
6 , ~2.11!

wheref6 are bases of theVN
6 , respectively. It can be proved1 for generalN-fold supersymmetry

that the mother HamiltonianHN defined by the anticommutator of the supercharges can
expressed as

HN[
1

2
$QN

† ,QN%5
1

2 S detMN
1~HN

1!1p1PN
† 0

0 detMN
2~HN

2!1p2†PN
D , ~2.12!

where

MN
6~l!52~lI2S6!, ~2.13!
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and p6 are at most (N21)-th order differential operators. From the definition of the mot
Hamiltonian~2.12!, the elements of the subspacesVN

6 are also characterized as the zero-modes
the mother Hamiltonian.

In the case of Type A, we can obtain analytic expressions for these bases:

fn
6~q!5h~q!n21h8~q!2(N21)/2U~q!61, ~n51,...,N!, ~2.14!

where41

U~q!5e*dqW(q), ~2.15!

andh(q) is a solution of the following linear differential equation:

h9~q!2E~q!h8~q!50, ~2.16!

and thus generically given by

h~q!5c1E dqe*dqE(q)1c2 . ~2.17!

The appearance of the two arbitrary constantsc1,2 in Eq. ~2.17! reflects the fact that the spacesVN
6

spanned by the bases Eq.~2.14! are invariant under any linear transformations onh(q). With the
aid of these bases Eq.~2.14!, the components of the matricesSn,m

6 defined by Eq.~2.11! can be
determined~for each fixedn51,...,N! by the following recurrence relations:

Sn,N2m
2 5

PN2m21~HN
2fn

22(k5N2m11
N Sn,k

2 fk
2!

PN2m21fN2m
2 , ~2.18a!

Sn,N2m
1 5

PN2m21
† ~HN

1fn
12(k5N2m11

N Sn,k
1 fk

1!

PN2m21
† fN2n

1 , ~2.18b!

for m51,...,N21 with the initial conditions

Sn,N
2 5

PN21HN
2fn

2

PN21fN
2 , Sn,N

1 5
PN21

† HN
1fn

1

PN
†

21fN
1 . ~2.19!

From Eq.~2.11!, the spectraEn
6 of the HamiltoniansHN

6 in the subspacesVN
6 are given by

detMN
6~En

6!50. ~2.20!

If fn(q)’s are normalizable, linear combinations of them which diagonalize the matrixS are the
true eigenstates ofHN . In this case, the system is often calledquasi-exactly solvable.28–30On the
other hand, iffn(q)’s are not normalizable, they have, at most, restricted meanings in the
turbation theory. In this case, the spectra determined by Eq.~2.20! only give perturbatively correc
ones. For this reason, we dub the casequasi-perturbatively solvable.1 Then,N-fold supersymme-
try of the total systemHN is dynamically broken whenboth of the systemsHN

6 are quasi-
perturbatively solvable. Otherwise, that is, at least one of the systemsHN

6 is quasi-exactly solv-
able, the elements of the corresponding solvable subspace give theN-fold supersymmetric
physical states and thereforeN-fold supersymmetry is preserved.

B. A non-renormalization theorem

A kind of the non-renormalization theorem holds for the Type A models. We first assume
we can setW(0)50 by the redefinition of the origin of the coordinateq and the energy. To define
a perturbation theory, we then introduce a coupling constantg as
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W~q!5
1

g
w~gq!, E~q!5ge~gq!, ~2.21!

so that, in the leading order ofg, the potentialVN
6 become harmonic with frequencyuw8(0)u,

VN
6~q!5 1

2 w8~0!2q21O~g!. ~2.22!

From Eq.~2.14! with Eqs.~2.15!, ~2.17! and ~2.21!, we can easily see that thefn
6 behave as

fn
6~q!5U~0!61~qn211O~g!!e6w8(0)q2/2. ~2.23!

Here, we choose the two arbitrary constantsc1,2 in Eq. ~2.17! ash(0)50, h8(0)51. Thus, as far
asw8(0).0(,0), all thefn

2(fn
1) remain normalizable inany finiteorder ofg even iffn

2(fn
1)

themselves arenot normalizable. So, they stay theN-fold supersymmetric vacua in any order
the perturbation theory and therefore any perturbative corrections do not breakN-fold supersym-
metry.

III. SPECIAL CASES OF TYPE A N-FOLD SUPERSYMMETRY

In this section, we illustrate some special cases of the Type AN-fold supersymmetry by using
the general results obtained in the previous section.

A. Exponential type potentials

At first, we will consider the case whereE(q)5l ~nonzero constant!. This is a trivial solution
of Eq. ~2.9c!. From Eq.~2.9b! we yield

W~q!5C1elq1C2e2lq1C3 . ~3.1!

In this case, the Hamiltonians and the supercharge are given by

H6N5
1

2
p21

1

2
W~q!21

N 221

24
l26

N
2

W8~q!, PN5 )
k52(N21)/2

(N21)/2

~D1 ikl!. ~3.2!

The functionh(q) can be chosen as

h~q!5
elq

l
. ~3.3!

Bases of the solvable subspacesVN
6 are calculated as

fn
6~q!5

1

ln21 expF2
1

2
~N22n11!lq6C3q6

C1

l
elq7

C2

l
e2lqG . ~3.4!

Thus, normalizability offn
6 depends on the values of the constantsCi and l. For example,

provided that all the constantsC1 , C2 and l are nonzero real numbers, eitherf1 or f2 is
normalizable whenC1C2,0 while both of f6 are not whenC1C2.0. The correspondenc
between quasi-exact solvability andN-fold supersymmetry in the case of the exponential ty
potentials Eq.~3.1! was recently discussed in Ref. 17.

The nonzero matrix elements ofS6 can be calculated as follows. The direct action of t
Hamiltonians Eq.~2.8!, with the Type A potentials Eq.~2.9a!, on the bases Eq.~2.14! reads
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HN
6fn

652
1

2
~n21!~n22!h82fn22

6 1
1

2
~n21!@~N22!h972Wh8#fn21

6

2
N21

12
@~N22!~E81E2!76~W81EW!#fn

6 . ~3.5!

From Eqs.~3.1! and ~3.3!, the following relations hold:

h825l2h2, ~3.6a!

h95l2h, ~3.6b!

E81E25l2, ~3.6c!

Wh85C1l2h21C3lh1C2 , ~3.6d!

W81EW52C1l2h1C3l. ~3.6e!

Substituting the above relations~3.6! for Eq. ~3.5!, we obtain

Sn,n21
6 57~n21!C2 , ~3.7a!

Sn,n
6 52 1

12 @~N21!~N22!16~n21!~n2N!#l26 1
2 ~N22n11!C3l, ~3.7b!

Sn,n11
6 57~n2N!C1l2. ~3.7c!

All the other matrix elements are zero.
The special choicesl5 ig, C151/2ig, C2521/2ig andC350 lead to

W~q!5
1

g
sin~gq!, E~q!5 ig, ~3.8!

and correspond to the periodic potential in Ref. 3. We note that Eq.~3.8! is incorporated with the
perturbation theory defined by Eq.~2.21!. We will later carry out nonperturbative analysis of th
special case in Sec. IV.

B. Sextic oscillator potentials

Next, we will consider the case where

E~q!5
1

q2q0
. ~3.9!

This is also a solution of Eq.~2.9c!. This special case corresponds to~one of! the cubic type in
Ref. 4. The Hamiltonians and the supercharge are given by

HN
65

1

2
p21

1

2
W~q!21

N 221

8~q2q0!2 6
N
2

W8~q!, ~3.10!

PN5 )
k52(N21)/2

(N21)/2 S D1 i
k

q2q0
D , ~3.11!

with
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W~q!5C1~q2q0!31C2~q2q0!1
C3

q2q0
. ~3.12!

We note that the Hamiltonians~3.10! are parity symmetric. The functionh(q) can be chosen as

h~q!5
~q2q0!2

2
. ~3.13!

Bases of the solvable subspacesVN
6 are calculated as

fn
6~q!5

1

2n21 ~q2q0!2n2 N/2 2 3/26C3 expF6
C1

4
~q2q0!46

C2

2
~q2q0!2G . ~3.14!

Thus, eitherf1 or f2 is normalizable unlessC15C250 and the corresponding systemHN
1 or

HN
2 is quasi-exactly solvable. The correspondence between quasi-exact solvability andN-fold

supersymmetry in the case of the sextic potential Eq.~3.10! was recently pointed out in Ref. 23
The nonzero matrix elements ofS6 can be obtained by Eq.~3.5!. From Eqs.~3.9!, ~3.12! and

~3.13!, the following relations hold:

h8252h, ~3.15a!

h951, ~3.15b!

E81E250, ~3.15c!

Wh854C1h212C2h1C3 , ~3.15d!

W81EW58C1h12C2 . ~3.15e!

Substituting the above relations~3.15! for Eq. ~3.5! we obtain

Sn,n21
6 5 1

2 ~n21!@~N22n12!72C3#, ~3.16a!

Sn,n
6 56~N22n11!C2 , ~3.16b!

Sn,n11
6 574~n2N!C1 . ~3.16c!

All the other matrix elements are zero.
If we rewrite Eq.~3.12! as

W~q!5w~q!1
C3

q2q0
, w~q!5C1~q2q0!31C2~q2q0!, ~3.17!

the potential partsVN
6(q) of the Hamiltonians~3.10! are, in terms ofw(q),

VN
6~q!5

1

2
w~q!21

~2C37N21!~2C37N11!

8~q2q0!2 6S N
2

6
C3

3 Dw8~q!1
2

3
C2C3 . ~3.18!

We note that in the cases whenC35(N61)/2 and2(N61)/2, one of the potential-pairVN
6(q)

becomes a genuine sixth order polynomial:

VN
1~q!5

1

2
w~q!21

4N61

6
w8~q! S C35

N61

2 D , ~3.19a!
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VN
2~q!5

1

2
w~q!22

4N61

6
w8~q! S C352

N61

2 D , ~3.19b!

where irrelevant constant terms are omitted. Conversely, a sextic anharmonic oscillator or a
well potential ~with parity symmetry! can be one of the Type AN-fold supersymmetric pair
whenever the potential can be put in one of the forms of Eq.~3.19!. WhenC35(N61)/2, the
bases Eq.~3.14! for VN

1(q) read

fn
1~q!5

1

2n21 ~q2q0!2n2 3/261/2expFC1

4
~q2q0!41

C2

2
~q2q0!2G S C35

N61

2 D . ~3.20!

It is worth noting that the solvable subspaceVN
1 consists of the states with definite parity@odd for

C35(N11)/2 and even forC35(N21)/2#. We will later see close relation between this fact a
pattern of the nonperturbative spectral shifts. WhenC352(N61)/2, the bases Eq.~3.14! for
VN

2(q) are similarly

fn
2~q!5

1

2n21 ~q2q0!2n2 3/261/2expF2
C1

4
~q2q0!42

C2

2
~q2q0!2G S C352

N61

2 D .

~3.21!

Again, the subspaceVN
2 contains only odd-parity states forC352(N11)/2 and only even-parity

states forC352(N21)/2.

C. Quartic oscillator potentials

In the next, we will consider the case whereE(q)50. This is also a trivial solution of Eq
~2.9c!. From Eq.~2.9b! we yield

W~q!5C1q21C2q1C3 . ~3.22!

In this case, the Hamiltonians and the supercharge are given by

H6N5
1

2
p21

1

2
W~q!26

N
2

W8~q!, PN5DN. ~3.23!

The functionh(q) reads

h~q!5q. ~3.24!

Bases of the solvable subspacesVN
6 are calculated as

fn
6~q!5qn21 expF6

C1

3
q36

C2

2
q26C3qG . ~3.25!

Thus, both off6 are not normalizable and therefore the system is quasi-perturbatively solva
far asC1 is a nonzero real number. The relation between quasi-perturbative solvability andN-fold
supersymmetry in a special case of the models was pointed out in Ref. 2.

The nonzero matrix elements ofS6 can be obtained by Eq.~3.5!. From Eqs.~3.22! and~3.24!,
the following relations hold:

h8251, ~3.26a!

Wh85C1h21C2h1C3 , ~3.26b!

W81EW52C1h1C2 . ~3.26c!
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Substituting the above relations~3.26! for Eq. ~3.5! we obtain

Sn,n22
6 52 1

2 ~n21!~n22!, ~3.27a!

Sn,n21
6 57~n21!C3 , ~3.27b!

Sn,n
6 56 1

2 ~N22n11!C2 , ~3.27c!

Sn,n11
6 57~n2N!C1 . ~3.27d!

All the other matrix elements are zero.

IV. ANALYSIS OF A PERIODIC POTENTIAL

A. The valley method

Before proceeding to show the results of the analyses, we briefly review the v
method31–39 which is employed in this research. For more details about the method, see Re

The main problem in quantum theories concerns with the evaluation of the Euclidean pa
function:

Z5JE Dq e2S[q] . ~4.1!

Since the evaluation cannot be done exactly in general, one must find out a proper method
enables one to get a good estimation of the quantity. The semi-classical approximation is kn
be one of the most established methods. Especially, the uses of instantons have been succ
analyzing nonperturbative aspects of various quantum systems which have degenerate v42

However, validity of the approximation comes into question when the fluctuations aroun
classical configuration contain a negative mode. Let us consider an asymmetric double-w
tential as a typical example. For this potential, there is a so-called bounce solution as the cl
solution which has a negative mode in the fluctuations. The negative mode contributes n
imaginary part of the spectra in the approximation, showing instability of the system. Sinc
spectra of the model must be real, the instability in the approximation must befake.

The appearance of a negative mode indicates that the classical action does not g
minimum but rather a saddle point in the functional space. In this case, one may expect th
quantity~4.1! is dominated by the configurations along the negative mode, which may intuit
constitute avalley in the functional space. The valley method is a natural realization of
consideration.

At first, we give a geometrical definition of the valley in the functional spaceq(t):34

d

dq~t! F1

2 E dt8S dS@q#

dq~t8! D
2

2lS@q#G50. ~4.2!

The above definition~4.2! can be interpreted as follows; for each fixed ‘‘height’’S@q#, the valley
is defined at the point where the norm of the gradient vector becomes extremal. Introduc
auxiliary field F(q), we can make the valley equation~4.2! a more perspicuous form:

dS@q#

dq~t!
5F~t!, ~4.3a!

E dt8 D~t,t8!F~t8!5lF~t!, ~4.3b!

where the operatorD is defined as
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D~t,t8!5
d2S@q#

dq~t!dq~t8!
. ~4.4!

It is now evident that any solution of the equation of motion is also a solution of the va
equation~4.3! with F(t)[0.

Next, we separate the integration along the valley line from the whole functional integra
We parametrize the valley line by a parameterR and denote the valley configuration byqR(t). We
then define Faddeev–Popov determinantD@wR# by the following:

E dRdS E dt wR~t!GR~t! DD@wR#51, ~4.5!

wherewR(t)5q(t)2qR(t) is the fluctuation over which we will be doing Gaussian integratio
andGR(t) is the normalized gradient vector,

GR~t!5
dS@qR#

dqR~t!YAE dt8 S dS@qR#

dqR~t8! D
2

. ~4.6!

Inserting Eq.~4.5! into the functional integral~4.1!, expanding the actionS@q# aroundwR(t)
50 and integrating up to the second order term inwR(t), we finally obtain the one-loop orde
result:

Z5JE dRE Dq dS E dt wR~t!GR~t! DD@wR#e2S[q].JE dR

A2p det8DR

D@wR#e2S[qR] ,

~4.7!

where the JacobianD@wR# is given by, in this approximation,

D@wR#5
dS@qR#

dR YAE dt8 S dS@qR#

dqR~t8! D
2

. ~4.8!

In the above, det8 denotes the determinant in the functional subspace which is perpendicular
gradient vectorGR(t). The valley equation~4.3! ensure that the subspace does not contain
eigenvector of the eigenvaluel. Therefore, we can safely perform the Gaussian integrations e
when we encounter a nonpositive mode. The extension to the multi-dimensional valley, whic
be needed when there are multiple nonpositive eigenvalues, is straightforward.

In this article, we only deal with one-dimensional quantum mechanics where the Eucl
action is given by

S@q#5E dt F1

2 S dq

dt D 2

1V~q!G . ~4.9!

In this case, the valley equations~4.3! are explicitly written as

2
d2q~t!

dt2 1V8~q!5F~t!, ~4.10a!

F2
d2

dt2 1V9~q!GF~t!5lF~t!. ~4.10b!

B. Valley-instantons

At first, we will analyze a periodic potential. The form of the potential to be analyzed is
following:
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V~q;e!5
1

2g2 sin2~gq!1
e

2
cos~gq!. ~4.11!

This is a periodic potential with periodicity 2p/g ~unlesse50! and has two local minima atq
52kp/g andq5(2k11)/g (k50,61,62,...) in oneperiod ~see Fig. 1!.

Comparing this potential with Eqs.~3.2! and~3.8!, we find that the system has Type AN-fold
supersymmetry when

e56N. ~4.12!

Since the system is defined on a bounded region, all the bases of the solvable spaceVN
6 are

normalizable. Thus, certain linear combinations of them serve as physical eigenstates
Hamiltonian andN-fold supersymmetry is not broken dynamically. Therefore, we may expect
the nonperturbative corrections for certainN physical states will vanish and the perturbation ser
for the corresponding spectra will be convergent whene56N.

We note that the potential~4.11! has the following symmetry:

VS q2
p

g
;e D5V~q;2e!. ~4.13!

Therefore, we can restricte to be positive without any loss of generality.
In the case ofe50, there are~anti-!instanton solutions of the equation of motion whic

describe the quantum tunneling between the neighboring vacua. The instanton and anti-in
which connect the two vacua atq5kp/g andq5(k11)p/g are given by

q0
(I )~t2t0!5

kp

g
1

1

g
arccos~2tanh~t2t0!!, ~4.14a!

q0
( Ī )~t2t0!5

kp

g
1

1

g
arccos~ tanh~t2t0!!. ~4.14b!

When eÞ0, the classical solutions drastically change into the so-called bounce solutions
cause fake instability. On the other hand, the solutions of the valley equation~4.10! contain a
continuously deformed~anti-!instanton which connects the two nondegenerate local minima a
called ~anti-!valley-instanton.2

FIG. 1. The form of the periodic potential investigated in this section.
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The solutions of the valley equation~4.10! also contain a family of the configurations, whic
tends to the trivial vacuum configuration in the one limit and tends to well-separated va
instanton and anti-valley-instanton configuration in the other limit. The latter configuratio
called I Ī -valley. The bounce solution is also realized as an intermediate configuration o
family, which is consistent with the fact that the solution of the equation of motion is al
solution of the valley equations. For details, see the numerical result in Ref. 2. For theI Ī -valley
configuration, it turns out thatulu!1 and thus the asymptotic form of the configuration can
obtained by solving the valley equation~4.10! with perturbative expansion inl:

q~t!5q0~t!1lq1~t!1¯ , F~t!5lF1~t!1l2F2~t!1¯ . ~4.15!

Indeed, if we denote the distance between the valley-instanton and the anti-valley-instantonR,
the lambda is orderl;O(e2R) quantity. The action of theI Ī -valley with the boundary condition
q(6T/2)52kp/g (T@1) is finally obtained as

S(I Ī )~R̃!5S( Ī I )~R̃!52S0
(I )2

e

2
R̃1

e

2
~T2R̃!2

8

g2 e2R̃1O~e22R̃!, ~4.16!

while the one withq(6T/2)5(2k11)p/g (T@1) is

S(I Ī )~R!5S( Ī I )~R!52S0
(I )1

e

2
R2

e

2
~T2R!2

8

g2 e2R1O~e22R!, ~4.17!

whereS0
(I ) denotes the Euclidean action of one~anti-!instanton Eq.~4.14! and amounts to

S0
(I )5

2

g2 . ~4.18!

In Eqs.~4.16! and ~4.17!, the fourth term can be interpreted as the interaction term between
valley-instanton and the anti-valley-instanton. Therefore, the minus sign indicates that the
action is attractive.

The other type of the solutions emerges in this case, which is asymptotically composed
successive valley-instantons or two successive anti-valley-instantons. We call themII -valley and
Ī Ī -valley, respectively. These configurations do not appear in the case of double-well pote
since they connect every other vacuum. The Euclidean action of them with large separationR can
be also calculated in the same way as

S(II )~R̃!5S( Ī Ī )~R̃!52S0
(I )2

e

2
R̃1

e

2
~T2R̃!1

8

g2 e2R̃1O~e22R̃!, ~4.19!

for the configuration withq(2T/2)52kp/g andq(T/2)5(2k62)p/g (T@1), and

S(II )~R!5S( Ī Ī )~R!52S0
(I )1

e

2
R2

e

2
~T2R!1

8

g2 e2R1O~e22R!, ~4.20!

for the one withq(2T/2)5(2k11)p/g andq(T/2)5(2k1162)p/g (T@1). Note that the sign
of the fourth term is plus and thus the interaction between the~anti-!valley-instantons in this cas
is repulsive.

C. Analysis of two-valley sector

From the results on theI Ī -valley, the contribution of theI Ī -valley to the partition function can
be written as the following form:
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Z(I Ī )5
4e2T/2

pg2 E
0

T

dR~T2R!e2SI Ī (R)5
4e2T/2

pg2 E
CV

dt F~ t !e2t/g2
, ~4.21!

where we have changed the integration variableR to t5g2SIĪ (R) in the second line. The integra
tion contourCV is @0,2g2S0

(I )) and the integrandF(t) has a singularity att52g2S0
(I ) . The integral

Eq. ~4.21! contains both the perturbative contribution att;0 and the nonperturbative one att
;2g2S0

(I ) . To separate the perturbative and the nonperturbative contribution, we deform
contourCV to the sum ofCP andCNP:

Z(I Ī )5
4e2T/2

pg2 E
CP

dt F~ t !e2t/g2
1

4e2T/2

pg2 E
CNP

dt F~ t !e2t/g2
5ZP

(I Ī )~g2!1ZNP
(I Ī )~g2!, ~4.22!

as is shown in Fig. 2.
We identify the first term as the formal Borel summation of the perturbation series an

second term as the nonperturbative contribution. For the nonperturbative contribution, the f
ing analytic property holds. If we perform the analytic continuation ofZNP(ug2ueiu) from u50 to
u5p, the contour forZNP changes fromCNP(0) to CNP(p), as shown in Fig. 3. In the wea
coupling limit, the integral ofCNP(p) can be well-approximated by that ofCV because the
dominant contribution of the integral comes fromt;2g2S0

(I ) . Therefore, in the case ofg2

5ug2ueip when the interaction between valley-instantons is repulsive, the following relation h
approximately:

ZNP~ ug2ueip!.Z~ ug2ueip!. ~4.23!

This relation coincides with what Bogomolny suggested heuristically as a method of evaluat
the instanton–anti-instanton contribution.43

FIG. 2. Deformation of the contourCV to the sum ofCP andCNP.

FIG. 3. The change of the contourCNP(u) asu is changed from zero top.
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An immediate consequence of our decomposition of the perturbative and nonpertur
contribution is

Im ZP1Im ZNP50, ~4.24!

sinceZ5ZP1ZNP is real. From the relation above, the dispersion relation becomes2

ZP~g2!5
1

2p i R
Cg2

dz
ZP~z!

z2g2 .2
1

p (
r 50

`

g2rE
0

`

dz
Im ZNP~z!

zr 11 , ~4.25!

whereCg2 is the counter aroundz5g2 and we have neglected the contribution from the sin
larities far from the origin. The last line of Eq.~4.25! gives the relation between the coefficients
the perturbation series and the imaginary part of the nonperturbative contribution. Rewritin
above relation in terms of the energy spectra, we find for the perturbative part of the s
EP(g

2)5( r 50
` a(r )g2r that the coefficientsa(r ) can be estimated as

a(r )52
1

p E
0

`

dg2
Im ENP~g2!

g2r 12 . ~4.26!

The situation in the case ofĪ I -valley is completely the same as that in theI Ī -valley.
On the other hand, the situation in the case ofII -valley is different, reflecting the fact that th

II -valley configuration cannot be deformed continuously to the trivial vacuum configuration
contribution of theII -valley to the partition function has quite similar form to that of theI Ī -valley:

Z(II )5
4e2T/2

pg2 E
CV

dt F~ t !e2t/g2
. ~4.27!

However, the integration contour is nowCV5(2g2S0
(I ) ,g2S(II )(0)# and thus is disconnected to th

perturbative regiont;0 ~see Fig. 4!.
This means that Eq.~4.27! contains only the nonperturbative contribution,

ZNP~g2!5Z~g2!. ~4.28!

Therefore, we need not separate the integration as in the case of theI Ī -valley. As a consequence
the II -valley configuration does not contribute to the imaginary part and also to the large
behavior of the perturbation series, which will be confirmed in the examples in Secs. IV a
Furthermore, since the interaction for theII -valley configuration is repulsive, as has been o
served in Eqs.~4.19! and~4.20!, the integral is dominated aroundt;2g2S0

(I ) and can be approxi-

FIG. 4. The integration contourCV in the case of theII -valley.
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mated by the integral on the contour@2g2S0
(I ) ,`) in the weak coupling limit. Therefore, analyti

continuation is not needed. The situation in the case of theĪ Ī -valley is completely the same as th
in the II -valley.

D. Multi-valley calculus

Utilizing the knowledge of the~anti-!valley-instantons and the interactions between th
obtained previously and applying the manipulation discussed in Sec. IV C, we will evalua
partition functionZ5tr e2HT by summing over those configurations made of several~anti-!valley-
instantons which satisfy a boundary condition inT. The periodic boundary condition for a con
figurationq(t) is in general given by

q~t1T!5q~t!. ~4.29!

For a system which has a periodic potential like Eq.~4.11!, however, the condition~4.29! can be
relaxed and be replaced with

q~t1T!5q~t!1
2kp

g
~k50,61,62,...!. ~4.30!

This condition restricts the number of the valley-instantons to be even, 2n. The nonperturbative
contributions from the multi-valley configurations satisfying Eq.~4.30! can be calculated by the
extension of the technique developed in Ref. 44. We divide the time interval 0<t<T into n
regions and put a valley-instanton pair on each of the region. In order to distinguish what k
pairs, we introduce the indicese i and ẽ i for the i -th region~mod n! as follows:

~i! e i51, ẽ i51 for II -valley,
~ii ! e i51, ẽ i521 for I Ī -valley,
~iii ! e i521, ẽ i51 for Ī I -valley,
~iv! e i521, ẽ i521 for Ī Ī -valley.

In this way, the allowed configurations for a given valley-instanton number 2n are exhausted by
the allowed combinations of the set$e i ,ẽ i% ( i 51,...,n). Combining the results on well-separate
valley-instanton pairs with the above conventions, the well-separated multiple valley-inst
action for givenn and$e i ,ẽ i% is expressed as

Sn52nS0
(I )1

8

g2 (
i 51

n

e i ẽ ie
2Ri1

8

g2 (
i 51

n

ẽ ie i 11e2R̃i1
e

2 (
i 51

n

~Ri2R̃i !1 i
q

2 (
i 51

n

~e i1 ẽ i !,

~4.31!

whereRi is the distance between the (2i 21)-th and 2i -th ~anti-!valley-instanton andR̃i the one
between the 2i -th and the (2i 11)-th ~anti-!valley-instanton~mod n! anden115e1 ~see Fig. 5!.

The sum of the contributions from the 2n valley-instantons configuration can be written a

ZNP5 (
n51

`

a2nJn , ~4.32!

wherea2 denotes the contribution of the Jacobian and theR-independent part of the determina
for one valley-instanton-pair and is calculated as, in this case,

a25
4

pg2 e24/g2
. ~4.33!

The termJn is given by
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Jn5
T

n E
0

`S )
i 51

n

dRi D S )
i 51

n

dR̃i D dS (
i 51

n

~Ri1R̃i !2TD (
e i ,ẽ i561

expS 2
11e

2 (
i 51

n

Ri2
12e

2 (
i 51

n

R̃i

2
8

g2 (
i 51

n

e i ẽ ie
2Ri2

8

g2 (
i 51

n

ẽ ie i 11e2R̃i2 i
q

2 (
i 51

n

~e i1 ẽ i !D . ~4.34!

To calculate the sum over the set$e i ,ẽ i%, we introduce the following transfer matrices:

T~Ri !5S expS 2
8

g2 e2Ri2 iq D expS 8

g2 e2Ri D
expS 8

g2 e2Ri D expS 2
8

g2 e2Ri1 iq D D , ~4.35a!

T̃~R̃i !5S expS 2
8

g2 e2R̃i D expS 8

g2 e2R̃i D
expS 8

g2 e2R̃i D expS 2
8

g2 e2R̃i D D . ~4.35b!

Then, using these matrices we have

Jn5
T

2p in E
2 i`2h

i`2h
ds e2Ts tr S )

i 51

n E
0

`

dRi e(s2 1/22 e/2)RiT~Ri !E
0

`

dR̃i e(s2 1/21 e/2)R̃i T̃~R̃i !D
5

T

2p in E
2 i`2h

i`2h
ds e2Ts tr @T~s,e,q!n#, ~4.36!

FIG. 5. The collective coordinatesRi and R̃i for a 2n valley-instantons configuration.
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where

T~s,e,q!5S K~s2e/2!e2 iq I ~s2e/2!

I ~s2e/2! K~s2e/2!eiqD S K~s1e/2! I ~s1e/2!

I ~s1e/2! K~s1e/2!
D . ~4.37!

In the above,K and I are defined by

K~s!5E
0

`

dR e(s2 1/2)R2 ~8/g2! e2R
.S 8

g2D s2 1/2

GS 2s1
1

2D , ~4.38a!

I ~s!5E
0

`

dR e(s2 1/2)R1 ~8/g2! e2R
.S 2

8

g2D s2 1/2

GS 2s1
1

2D , ~4.38b!

where the manipulation explained in Sec. IV C is utilized for estimating each of the integra
The calculation of the trace in Eq.~4.36! can be done by diagonalizingT. If we denote the two
eigenvalues ofT as t6 , we immediately yield

Jn5
T

2p in E
2 i`2h

i`2h
ds e2Ts~ t1~s!n1t2~s!n!. ~4.39!

From Eq.~4.37!, t6 is evaluated as

t6~s!5K~s1e/2!K~s2e/2!cosq1I ~s1e/2!I ~s2e/2!

6$@ I ~s1e/2!22K~s1e/2!2#K~s2e/2!2 sin2 q,,

1@K~s1e/2!I ~s2e/2!1I ~s1e/2!K~s2e/2!cosq#2%1/2. ~4.40!

Finally, combining Eqs.~4.32! and ~4.39! we obtain the nonperturbative contribution to the p
tition function:

ZNP52
T

2p i E2 i`2h

i`2h
ds e2Ts ln~12a2t1~s!!~12a2t2~s!!. ~4.41!

E. Nonperturbative contributions

From the results in Eqs.~4.38!, ~4.40! and ~4.41!, the nonperturbative contributions to th
spectra are determined by the following equation:

a2b6~E,e,q!S 8

g2D (E2 1/2)2

GS 2E1
1

2
2

e

2DGS 2E1
1

2
1

e

2D51, ~4.42!

where

b6~E,e,q!5cosq1~2 !(E2 1/2)2

6A~2 !(E2 1/22 e/2)21~2 !(E2 1/21 e/2)21~2 !(E2 1/2)22 cosq2sin2 q.

~4.43!

We will solve the above equation by the series expansion ina:

En6
5En6

(0)1aEn6

(1)1a2En6

(2)1¯ , En6

(0)5n61
1

2
6

e

2
, ~4.44!
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whereEn1
stands for the spectra corresponding to, in the limitg→0, the eigenfunctions of the

shallower potential wells andEn2
stands for the ones corresponding to the eigenfunctions of

deeper potential wells. ForeÞN (N51,2,3,...), the first order contributions vanish and th
leading second order contributions are calculated as follows:

En6

(2)52@cosq1~2 !6e#
~2 !n611

n6! S 8

g2D 2n66e

G~2n67e!. ~4.45!

For e5N (N51,2,3,...), all the harmonic spectraEn1

(0) of the shallower wells and the highe

harmonic spectraEn2

(0) of the deeper wells degenerate forn25n11N; see Fig. 6 fore5N
51,2. Between these degenerate states, resonant tunneling enhances the nonperturbativ
tions, and results in ordera1 contributions to the spectraEn2

andEn1
with n25n11N:

En6

(1)57A2@11~2 !N cosq#

n1! n2! S 8

g2D n11n2

, ~4.46!

En6

(2)5
En6

(1)2

2 F 2 ln~2 !

11~2 !N cosq
12 lnS 8

g2D2c~n111!2c~n211!G , ~4.47!

wherec(z)5d ln G(z)/dz is the digamma function. For the other spectra, say, the lowerEn2
with

n2,N, the contributions are the same as Eq.~4.45!. We see from Eq.~4.45! the nonperturbative
corrections for these lowerEn2

vanish, at least up to ordera2, at q50(p) when e5N is
odd~even! and thus, from Eq.~4.12!, the system hasN-fold supersymmetry. This means that whe
the system isN-fold supersymmetric with odd~even! N, among the physical states for each of t
lower N spectral bands, the state which satisfies the periodic~anti-periodic! boundary condition
does not receive nonperturbative correction. From Eq.~3.4! in this case, these physical states a
surely the elements of the solvable subspaceV 2. Therefore, the results are consistent with the f
that N-fold supersymmetry in this case is not broken dynamically.

Finally, we make a remark on the resultant equation~4.42!. The origin of the disappearance o
the nonperturbative corrections discussed above comes from the factorb6 in Eq. ~4.42!. Indeed,
to make the lhs of Eq.~4.42! finite whenb650, the gamma functions must diverge adequate
This happens only whenE5En6

(0) for certain values ofn6 , and therefore the nonperturbativ

corrections must vanish.45 From the derivation of Eq.~4.42!, we can see that the appearance of
factor b6 is achieved by taking into account both of the repulsive and attractive interac
between the valley-instantons properly. Therefore, we guess that naive application of the
gas approximation can hardly lead to the correct results even for the ground-state energy.

FIG. 6. Degeneracies of the harmonic spectra for~a! e51 and~b! e52.
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F. Large order behavior of the perturbation series

The large order behavior of the perturbation series ing2 for the spectra can be estimated b
the same way as in the case of the double-well potential. From the nonperturbative contrib
Eqs.~4.45!–~4.47!, we can easily see that the imaginary parts of them are continuous, at lea
to the ordera2, in e and yield

Im En6
;2a2

2p

n6!G~n6116e! S 8

g2D 2n66e

, ~4.48!

which are valid for arbitrarye. Then, if we expand the spectra in power ofg2 such that

En6
5En6

(0)1(
r 51

`

an6

(r )g2r , ~4.49!

the large order behavior of the coefficientsa(r ) for sufficiently larger are calculated as, using Eq
~4.26! and ~4.48!,

an6

(r );An6
~e! 42rG~r 12n6116e!, ~4.50!

where

An6
~e!5

2

p

22n66e

n6!G~n6116e!
. ~4.51!

Equation~4.50! shows that the perturbative coefficients diverge factorially unless the pref
A(e) vanish. From Eq.~4.51!, we can find the disappearance of the leading divergence takes
only whene5N (N51,2,3,...). Comparing the results with Eq.~4.12! and taking the symmetry
~4.13! into account, we see that the above cases completely coincide with the case whe
system possesses Type AN-fold supersymmetry. Therefore, the results of the valley met
analyses are consistent with a consequence of Type AN-fold supersymmetry, that is, the non
renormalization theorem.

V. ANALYSIS OF A TRIPLE-WELL POTENTIAL

In this section we will analyze a sextic triple-well potential. The form of the potential to
analyzed is the following:

V~q!5
1

2
q2~12g2q2!21

e

2
~123g2q2!. ~5.1!

This has three local minima atq50 andq.61/g for eg2!1 ~see Fig. 7!.
Comparing this potential with Eq.~3.19!, C1 , C2 andq0 in w(q) being

C152g2, C251, q050, ~5.2!

we can easily see that the system has Type AN-fold supersymmetry when

e56
4N61

3
. ~5.3!

More precisely, the system becomes one of theN-fold supersymmetric pairHN
6 ; HN

1 when e
5(4N61)/3 andHN

2 whene52(4N61)/3. As has been explained in Sec. III B,N-fold super-
symmetry does not break in the cubic type because either bases of the solvable subspacVN

1 or
those ofVN

2 are normalizable in general. SinceC1,0 in this case, bases of the solvable subsp
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VN
1 are normalizable and physical while those ofVN

2 are not. Therefore, we may expect that t
nonperturbative corrections for certainN states will vanish whene5(4N61)/3 while those will
not whene52(4N61)/3, though the perturbation series for the corresponding spectra will b
both the cases convergent.

As far as we know, little has been investigated for triple-well potentials. We have found
two references46,47 on the subject, both of which employed the dilute-gas approximation. H
ever, from the consideration mentioned at the end of Sec. IV E, we intend to analyze beyo
dilute-gas approximation using the same technique of the valley method as in Sec. IV.48

In the case ofe50, the three local minima of the potential have the same potential va
Thus, there are~anti-!instanton solutions of the equation of motion which describe the quan
tunneling between the neighboring vacua:

q0
(I )~t2t0!56

1

g

1

~11e72(t2t0)!1/2, q0
( Ī )~t2t0!56

1

g

1

~11e62(t2t0)!1/2. ~5.4!

WheneÞ0, the solutions of the valley equation now become the~anti-!valley-instantons. In this
case, there are three kinds of the solutions of the valley equation which are asymptotically
posed of two~anti-!valley-instantons. Contrary to the periodic potential in Sec. IV, there are
different I Ī -valley or Ī I -valley configurations in this case since the curvature at the central po
tial bottom~at q50! is different, even at the leading order ofg2, from the one at the side potentia
bottoms~at q.61/g!; the I Ī ( Ī I )-valley which satisfyq(6T/2)50 (T@1) are different from the
ones which satisfyq(6T/2).1/g or 21/g (T@1). The Euclidean action of the former with larg
separationR can be calculated by the perturbative expansion inl;O(e22R) as follows:

S(I Ī )~R!5S( Ī I )~R!52S0
(I )2eR1

e

2
~T2R!2

1

g2 e22R1O~e24R!, ~5.5!

while the one of the latter with large separationR̃ can be calculated in the same way as

S(I Ī )~R̃!5S( Ī I )~R̃!52S0
(I )1

e

2
R̃2e~T2R̃!2

2

g2 e2R̃1O~e22R̃!, ~5.6!

whereS0
(I ) denotes the Euclidean action of one~anti-!instanton Eq.~5.4! and amounts to

S0
(I )5

1

4g2 . ~5.7!

FIG. 7. The form of the triple-well potential investigated in this section.
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The other type isII -valley or Ī Ī -valley. The Euclidean action of them with large separationR̃ can
be also calculated in the same way as

S(II )~R̃!5S( Ī Ī )~R̃!52S0
(I )1

e

2
R̃2e~T2R̃!1

2

g2 e2R̃1O~e22R̃!. ~5.8!

A. Multi-valley calculus

The evaluation of the partition functionZ5tr e2HT by summing over multi-valley-instanton
configurations can be done in the same manner as those for the double-well and the p
potentials. One can easily see that in order to incorporate with the periodic boundary condi
T, the number of the valley-instantons in a periodT must be even. For a given number 2n of the
valley-instantons, however, there are still several configurations. If we regard a configuration

valley-instanton pairs, we have four kinds of pair,II -, I Ī -, Ī I -, and Ī Ī -valleys. We denote the
number of theII - and Ī Ī -valley asnII andnĪ Ī , respectively, and that of the others asnI Ī . Contrary
to the periodic potential case, the particle must come back to the start point after the peT
passes in this case. Therefore, we must impose Eq.~4.29! rather than Eq.~4.30!. This condition
results innII 5nĪ Ī . As a consequence we have

2nII 1nI Ī 5n. ~5.9!

This restriction shows that for a givenn there are@n/2#11 variety of thenII value. Forn andnII

fixed, however, the configuration is not determined uniquely yet. There remains a freedom
permutation of the pairs. The number of cases can be calculated if one notices that the c
ration is uniquely determined as far as the position of theII - and Ī Ī -valleys amongn area is fixed.
We denote a set of the position as$ i II %. It is therefore clear that for givenn andnII there arenC2nII

configurations of the multiple valley-instantons. Combining the results on well-separated v
instanton pairs with the above considerations, the well-separated multi-valley-instanton act
given n, nII and$ i II % is expressed as

Sn,nII

$ i II % 52nS0
(I )2e(

i 51

n

Ri1
e

2 (
i 51

n

R̃i2
1

g2 (
i 51

n

e22Ri1
2

g2 (
i P$ i II %

e2R̃i2
2

g2 (
i ¹$ i II %

e2R̃i, ~5.10!

whereRi is the distance between the (2i 21)-th and 2i -th ~anti-!valley-instanton andR̃i is the one
between the 2i -th and the (2i 11)-th ~anti-!valley-instanton~mod n! ~see Fig. 8!.

FIG. 8. The collective coordinatesRi and R̃i for a 2n valley-instantons configuration.
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The sum of the contributions from the 2n valley-instantons configuration can be written a

ZNP5 (
n51

`

a2nJn , Jn5 (
nII 50

[n/2]

(
$ i II %

Jn,nII

$ i II % , ~5.11!

wherea2 denotes the contribution of the Jacobian and theR-independent part of the determina
for one valley-instanton-pair and is calculated as, in this case,

a25
&

pg2 e21/2g2
. ~5.12!

The termJn,nII

$ i II % is given by

Jn,nII

$ i II % 5
T

n E
0

`S )
i 51

n

dRi D S )
i 51

n

dR̃i D dS (
i 51

n

~Ri1R̃i !2TD expF2~12e!(
i 51

n

Ri2S 1

2
1

e

2D(
i 51

n

R̃i

1
1

g2 (
i 51

n

e22Ri2
2

g2 (
i P$ i II %

e2R̃i1
2

g2 (
i ¹$ i II %

e2R̃iG . ~5.13!

In the above expression, we notice that forn andnII fixed, the contributionJn,nII

$ i II % does not depend

on the choice of the set$ i II %. This means the following equality,

(
$ i II %

Jn,nII

$ i II % 5S n
2nII

DJn,nII
, ~5.14!

whereJn,nII
is the contributionJn,nII

$ i II % for a specific$ i II % and is evaluated as

Jn,nII
5

T

n E
0

`S )
i 51

n

dRi D S )
i 51

n

dR̃i D dS (
i 51

n

~Ri1R̃i !2TD expF2~12e!(
i 51

n

Ri2S 1

2
1

e

2D(
i 51

n

R̃i

1
1

g2 (
i 51

n

e22Ri2
2

g2 (
i 51

2nII

e2R̃i1
2

g2 (
i 52nII 11

n

e2R̃iG
5

T

2p in E
2 i`2h

i`2h
ds e2TsK2~s!nK1

(1)~s!2nII K1
(2)~s!n22nII . ~5.15!

In the last expression forJn,nII
, severalK ’s are defined by

K2~s!5E
0

`

dRexpF ~s211e!R1
1

g2 e22RG.
1

2 S 2
1

g2D s/2 2 1/21 e/2

GS 2
s

2
1

1

2
2

e

2D ,

~5.16a!

K1
(1)~s!5E

0

`

dR̃expF S s2
1

2
2

e

2D R̃2
2

g2 e2R̃G.S 2

g2D s2 1/22 e/2

GS 2s1
1

2
1

e

2D , ~5.16b!

K1
(2)~s!5E

0

`

dR̃expF S s2
1

2
2

e

2D R̃1
2

g2 e2R̃G.S 2
2

g2D s2 1/22 e/2

GS 2s1
1

2
1

e

2D ,

~5.16c!

where the manipulation explained in Sec. IV C is again utilized for estimating each of the
grations. Eventually, from Eqs.~5.11!, ~5.14! and ~5.15! we obtain
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ZNP5 (
n51

`

a2n (
nII 50

[n/2] S n
2nII

DJn,nII

52
T

4p i E2 i`2h

i`2h
dse2Ts ln~12a2K2~s!K1

(1)~s!!~12a2K2~s!K1
(2)~s!!, ~5.17!

where

K1
(6)~s!5K1

(2)~s!6K1
(1)~s!. ~5.18!

B. Nonperturbative contributions

From the results in Eqs.~5.16!–~5.18!, the nonperturbative contributions to the spectra
determined by the following equation:

a2b6~E,e!S 2

g2D E2 1/22 e/2

GS 2E1
1

2
1

e

2D S 2
1

g2D E/2 2 1/21 e/2

GS 2
E

2
1

1

2
2

e

2D51,

~5.19!

where

b6~E,e!5
~2 !E2 1/22 e/261

2
. ~5.20!

We will solve the above equation by the series expansion ina:

En0
5En0

(0)1aEn0

(1)1a2En0

(2)1¯ , En0

(0)5n01
1

2
1

e

2
, ~5.21a!

En6
5En6

(0)1aEn6

(1)1a2En6

(2)1¯ , En6

(0)52n6112e, ~5.21b!

whereEn0
stands for the spectra corresponding to, in the limitg→0, the eigenfunctions of the

center potential well andEn6
for the ones corresponding to the parity eigenstates obtained b

linear combinations of the eigenfunctions of each side potential well. ForeÞ6(2N11)/3 (N
50,1,2,...), thefirst order contributions vanish and the leading second order contribution
calculated as follows:

En0

(2)52
1

n0! S 2

g2D n0S 2
1

g2D n0/2 2 1/41 ~3/4! e

GS 2
n0

2
1

1

4
2

3

4
e D , ~5.22!

En6

(2)52~ ~2 !~123e!/261!
1

n6! S 2

g2D 2n61 1/22 ~3/2! eS 1

g2D n6

GS 22n62
1

2
1

3

2
e D . ~5.23!

In this case, degeneracies of the harmonic oscillator spectra for each potential well only
between both side wells. The different nonperturbative contributions forn6 in Eq. ~5.23! show the
splitting of the degeneracies via the quantum tunneling as in the case of symmetric doub
potentials.

When e5(4N11)/3 (N50,1,2,...), all theeven-parity central harmonic spectraE2m0

(0) and

the higher side harmonic spectraEn6

(0) degenerate forn65m01N @see Fig. 9~a! for e5 5
3 (N

51)#.
It is interesting, however, that the interference due to the quantum tunneling only o

between the same~even-!parity states. As a consequence,E2m0
and En1

satisfyingn15m01N
acquire ordera1 contributions as follows:
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En1/2m0

(1) 56A 2

n1! ~2m0!! S 2

g2D 2m0S 1

g2D n1

, ~5.24!

En1/2m0

(2) 5
En1/2m0

(1)2

4 F lnS 2
2

g2D1 lnS 2

g2D1 lnS 2
1

g2D2c~n111!22c~2m011!G . ~5.25!

For the other spectra, say,En2
, E2m011 and the lowerEn1

with n1,N, the contributions are the
same as Eqs.~5.22! and ~5.23!. When e52(4N21)/3 (N51,2,3,...), all the side harmonic
spectraEn6

(0) and the higher even-parity central harmonic spectraE2m0

(0) degenerate form05n6

1N @see Fig. 9~b! for e521 (N51)#. In this case, the interference also occurs only between
same~even-!parity states. The contributions forE2m0

andEn1
satisfyingm05n11N are given by

the same as Eqs.~5.24! and ~5.25!. For the other spectra, say,En2
, E2m011 and the lowerE2m0

with m0,N, the contributions are the same as Eqs.~5.22! and ~5.23!.
Whene5(4N21)/3 (N51,2,3,...), all theodd-parity central harmonic spectraE2m011

(0) and

the higher side harmonic spectraEn6

(0) degenerate forn65m01N @see Fig. 10~a! for e51 (N
51)#.

In this case, only the odd-parity states interfere and yield ordera1 contributions forn2

5m01N:

En2/2m011
(1) 56A 2

n2! ~2m011!! S 2

g2D 2m011S 1

g2D n2

, ~5.26!

En2/2m011
(2) 5

En2/2m011
(1)2

4 F lnS 2
2

g2D1 lnS 2

g2D1 lnS 2
1

g2D2c~n211!22c~2m012!G .
~5.27!

The contributions for the other spectra, say,En1
, E2m0

and the lowerEn2
with n2,N, are given

by the same as Eqs.~5.22! and ~5.23!. When e52(4N11)/3 (N50,1,2,...), all theside har-

FIG. 9. Degeneracies of the harmonic spectra for~a! e5
5
3 and ~b! e521.

FIG. 10. Degeneracies of the harmonic spectra for~a! e51 and~b! e52
5
3.
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monic spectraEn6

(0) and the higher odd-parity central harmonic spectraE2m011
(0) degenerate for

m05n61N @see Fig. 10~b! for e52 5
3 (N51)#. Only the odd-parity states interfere in the sam

way and the nonperturbative contributions forE2m011 and En2
satisfyingm05n21N are the

same as Eqs.~5.26! and ~5.27!. Again, the expressions for the other spectra, say,En1
, E2m0

and
the lowerE2m011 with m0,N, are given by Eqs.~5.22! and ~5.23!.

From the whole result obtained here, we see that the nonperturbative corrections vanis
when e5(4N61)/3 (N51,2,3,...). More precisely, whene5(4N11)/3, Eq.~5.23! is applied
for the even-parity states labeled by the quantum numbern2 and results inEn2

(2)50 for all n2

,N. Similarly, whene5(4N21)/3, Eq.~5.23! is applied for the odd-parity states labeled by t
quantum numbern1 and results inEn1

(2)50 for all n1,N. It should be noted that in the case

e52(4N61)/3 (N51,2,3,...) the nonperturbative corrections do remain although the mod
areN-fold supersymmetric, reflecting the fact that they are only quasi-perturbatively solvabl
are not quasi-exactly solvable. These results are just what we have expected from the
properties ofN-fold supersymmetry.

C. Large order behavior of the perturbation series

The large order behavior of the perturbation series ing2 for the spectra can be estimated b
the same way as in the case of the double-well and periodic potentials. From the nonpertu
contributions Eqs.~5.22!–~5.27!, we can easily see that the imaginary parts of them are con
ous, at least up to the ordera2, in e and yield

Im En0
;2a2

p

n0!GS n0

2
1

3

4
1

3

4
e D S 2

g2D n0S 1

g2D n0/2 2 1/41 ~3/4! e

, ~5.28a!

Im En6
;2a2

p

n6!GS 2n61
3

2
2

3

2
e D S 2

g2D 2n61 1/22 ~3/2! eS 1

g2D n6

, ~5.28b!

which are valid for arbitrarye. Then, if we expand the spectra in power ofg2 such that

En0 /n6
5En0 /n6

(0) 1(
r 51

`

an0 /n6

(r ) g2r , ~5.29!

the large order behavior of the coefficientsa(r ) for sufficiently larger are calculated as, using Eq
~4.26! and ~5.28!,

an0

(r );An0
~e!2rGS r 1

3

2
n01

3

4
1

3

4
e D , ~5.30a!

an6

(r );An6
~e!2rGS r 13n61

3

2
2

3

2
e D , ~5.30b!

where

An0
~e!5

&

p

2~5/2! n01 3/41 ~3/4! e

n0!GS n0

2
1

3

4
1

3

4
e D , ~5.31a!
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An6
~e!5

&

p

25n61223e

n6!GS 2n61
3

2
2

3

2
e D . ~5.31b!

Equations~5.30! show that the perturbative coefficients diverge factorially unless the prefa
A(e)’s vanish. From Eq.~5.31!, we can find the disappearance of the leading divergence t
place only whene56(2n11)/3 (n51,2,3,...). More precisely, we obtain the following results

~1! e5(4N61)/3(N51,2,3,...)

An6
~e!50 for n6,N.

~2! e52(4N11)/3(N51,2,3,...)

A2m011~e!50 for m0,N.

~3! e52(4N21)/3(N51,2,3,...)

A2m0
~e!50 for m0,N.

Comparing these results with Eq.~5.3!, we see that the above cases completely coincide with
case where the system possesses Type AN-fold supersymmetry. Again, the results of the vall
method analyses are consistent with the non-renormalization theorem.

VI. SUMMARY

In this article, we have made nonperturbative analyses on the models which can beN-fold
supersymmetric at specific values of the parameter. Combining the results obtained in this
with the ones in Ref. 2, we get the following:

~1! For all the potentials investigated~double-well, triple-well, periodic!, the leading divergence
of the perturbation series disappears when and only when they areN-fold supersymmetric.
The non-renormalization theorem ensures thatN-fold supersymmetry is sufficient for th
disappearance of the divergence. The results indicate that it may also be necessary.

~2! The nonperturbative corrections to the spectra for certain states vanish when and only
the models are quasi-exactly solvable~triple-well, periodic!.

~3! For the quasi-perturbatively solvable potentials~double-well, triple-well!, the nonperturbative
corrections remain although they areN-fold supersymmetric.

As was mentioned in Ref. 28 the quasi-solvable models constructed by sl~2! generators do no
always have normalizable solvable states. Although the conditions on the normalizability
models were fully investigated in Ref. 49, it remains unclear what is the role of the p
algebraization of the models without normalizable solvable states. The results listed above p
an answer to this problem. Even though the solvable wave functions are not normalizable
can be normalizable and thus make sense in the perturbation theory. In this case, the
corresponding to the solvable states also make sense in the perturbation theory. As was s
Ref. 1, the perturbation series for them are convergent since they are the solutions of a finit
algebraic equation. However, the fact that the solvable states and the corresponding spect
sense only in the perturbation theory inevitably means the existence of the nonperturbative
which is in contrast to the case of the quasi-exactly solvable models. That is why we have
the case quasi-perturbatively solvable.

Finally, we would like to mention about applicability of the dilute-gas approximation. As
been mentioned previously, the dilute-gas approximation cannot give proper results, that i
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sistent results withN-fold supersymmetry, for both the potentials Eqs.~4.11! and~5.1!. Therefore,
it seems that the success of the dilute-gas approximation for the symmetric double-well po
is rather exceptional and applicability of it is quite limited.
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Quantum jump dynamics in cavity QED
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We study the stochastic dynamics of the electromagnetic field in a lossless cavity
interacting with a beam of two-level atoms, given that the atomic states are mea-
sured after they have crossed the cavity. The atoms first interact at the exit of the
cavity with a classical laser fieldE and then enter into a detector which measures
their states. Each measurement disentangles the field and the atoms and changes in
a random way the stateuc(t)& of the cavity field. For weak atom-field coupling, the
evolution of uc(t)& when many atoms cross the cavity and the detector is charac-
terized by a succession of quantum jumps occurring at random times, separated by
quasi-Hamiltonian evolutions, both of which depend on the laser fieldE. For E50,
the dynamics is the same as in the Monte Carlo wave function model of Dalibard
et al. @Phys. Rev. Lett.68, 580~1992!# and Carmichael,An Open System Approach
to Quantum Optics, Lecture Notes in Physics Vol. 18~Springer, Berlin, 1991!#. The
density matrix of the quantum field, obtained by averaging the projector
uc(t)&^c(t)u over all results of the measurements, is independent ofE and follows
the master equation of the damped harmonic oscillator at finite temperature. We
provide numerical evidence showing that for largeE, an arbitrary initial field state
uc~0!& evolves under the monitoring of the atoms and the measurements toward
squeezed statesua,re2if&, moving in thea-complex plane but with almost constant
squeezing parametersr andf. The values ofr andf are determined analytically.
On the other hand, forE50, the dynamics transforms the initial state into Fock
statesun& with fluctuating numbers of photonsn, as shown in Kistet al. @J. Opt. B:
Quantum Semiclassical Opt.1, 251~1999!#. In the last part, we derive the quantum
jump dynamics from the linear quantum jump model proposed in Spehner and
Bellissard @J. Stat. Phys.104, 525 ~2001!#, for arbitrary open quantum systems
having a Lindblad-type evolution. A careful derivation of the infinite jump rates
limit, where the dynamics can be approximated by a diffusion process of the quan-
tum state, is also presented. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1476392#

I. INTRODUCTION

The dissipative dynamics of an open quantum systemS can be described in two differen
ways. The first one consists in couplingS with a reservoirR and assuming that the total syste
S1R is isolated. Since one is concerned by the dynamics ofS only, one traces out the degrees
freedom ofR in the equation of motion ofS1R. Within the Markov approximation, the reduce
density matrix ofS follows a first-order differential equation with time-independent coefficie
In many cases, a separation of time scales between the Hamiltonian~R-independent! and dissipa-
tive ~R-dependent! evolutions allows one to perform a local averaging in time, which kills n
resonant terms.1,2 The coarse-grained master equation obtained in this way has the Lindblad f3

An alternative approach to this density matrix description has been developed in the la

a!Present address: Universita¨t Essen, Fachbereich Physik, D-45117 Essen, Germany; electronic mail: spehner@
phys.uni-essen.de
35110022-2488/2002/43(7)/3511/27/$19.00 © 2002 American Institute of Physics
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decades in quantum optics4–8 ~see, e.g., Ref. 9!, quantum measurement theory,10–13 quantum and
classical stochastic calculus,14–17and electronic transport in solids.18–20This approach is based o
stochastic evolutions of pure states. The system is described by a random wave function~RW!
evolving according to a linear or nonlinearstochastic Schro¨dinger equation. Consistency with the
density matrix approach requires that the pure state evolution gives the master equation ba
averaging over the dynamical noise. Apart from being intuitively appealing, the RW mo
provide quite efficient tools for solving master equations numerically, since Schro¨dinger equations
haveN components, whereas master equations haveN3N components,N being the dimension of
the Hilbert space ofS. However, the RW models are more than simple mathematical or nume
tools: they describe thereal evolution of single quantum systems under continuous monitoring
measurements~photon counting, homodyne or heterodyne detections!.5,8,9 In recent years, the
attainment of low temperature and low dissipation regimes, as well as the improveme
detection techniques, has allowed the investigation of the dynamics of such continuously
tored systems. Remarkable examples of these are single ions21 and Bose–Einstein condensates22 in
electromagnetic traps, probed by laser beams, and electromagnetic fields in highQ-cavities,23

probed by beams of highly excited atoms~Rydberg atoms!. This new generation of experiment
combined with the difficulties usually encountered in solving the master equation, has str
stimulated the developments of the RW approach in quantum optics.

The aim of this paper is to investigate a specific physical realization, which could b
principle realizable experimentally~although this question is not addressed here!, of a class of RW
models based on quantum jumps. The system we consider is the electromagnetic field of
Q-cavity interacting with a beam of two-level atoms, which forms the reservoir of temperatuT.
The states of the atoms leaving the cavity are measured by a detector. A laser fieldE is placed
between the cavity and the detector. The corresponding master equation, obtained by av
over the results of the measurement on the atoms, is, for weak atom-field coupling, the equa
the damped harmonic oscillator with finite temperature. The same problem has been consid
Ref. 24 in the reverse situation where one knows exactly the state of each atom before it c
the cavity and no measurement is performed on it at the exit~its final state thus being unknown!.
It has been shown in this reference that the cavity field evolves at large times to a state w
completely controlled by the atomic initial states.

We first introduce in Sec. II the class of quantum jump models studied in this work
arbitrary open systems having a Lindblad-type evolution. The experimental scheme is prese
Sec. III, where we also compute the random evolution of the cavity field and its correspo
average evolution. We focus in Sec. IV on single quantum trajectories, i.e., single realizatio
the measurements. The numerical simulations and analytical results presented in this sectio
that for T.0 and large laser fieldsE, the state of the cavity field localizes at large times
squeezed states with an almost constant squeezing amplituder which depends only onT. Section
V is devoted to the derivation, for arbitrary open systems, of the nonlinear quantum jump sc
from the corresponding linear ones introduced in Ref. 18. Their relation with the so-called
tum state diffusion stochastic Schro¨dinger equations10–12,15–17is also established. Our conclusion
are presented in Sec. VI.

II. THE QUANTUM JUMP SCHEMES

Let us first recall briefly a few basic facts about the master equation approach to
quantum systems. Consider an open systemS interacting with a reservoirR. The density matrixs
of the total systemS1R is assumed to follow the Liouville–von Neumann equation of clos
systems. A state ofS is specified by the reduced density matrixr, defined as the partial trace ofs
over the reservoir’s Hilbert space. By tracing out the degrees of freedom ofR in the Liouville–von
Neumann equation, one obtains an integro-differential equation forr ~Nakajima–Zwanzig
equation!.25 Using a Born–Markov approximation and a local time averaging on a time s
much larger than the inverse Bohr frequencies ofS, this equation is transformed into a simpl
first-order linear differential equation, called themaster equation.1,25 This coarse-grained equatio
has in most cases the Lindblad form:3
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dr

dt
52 i@H,r#1

1

2 (
m

~@Lmr,Lm
† #1@Lm ,rLm

† # !. ~1!

H is the Hamiltonian ofS ~including the energy shifts due to the coupling with the reservoir!, and
Lm are some operators acting on the Hilbert space ofS. The sum over the discrete indicesm can
be finite or infinite, depending on the nature of the problem.

We now describe the random wave function approach of Dalibard, Castin, and Mølme4 and
Carmichael.5 This approach, called in the former reference the Monte Carlo wave func
method, has been introduced independently by several other authors.6,7,13 It is based on quantum
jumps, i.e., on discontinuous random evolutions of the wave function ofS.

At some random times, quantum jumps~QJ! occur as a result of some continuous measu
ment on the systemS ~e.g., a detection of a photon emitted by a system constituted by an a!.
If a jump occurs, the wave functionuc& of S is modified discontinuously as follows:

jump m: uc&→
Lmuc&

iLmuc&i , ~2!

whereLm are the Lindblad operators appearing in~1!. The probability of occurrence of a jump o
type m in the time interval@ t,t1dt# is

dpm~ t !5iLmuc~ t !&i2dt. ~3!

One must choosedt small enough so thatdpm(t)!1 for any uc& and allm’s ~this is fulfilled if
dt21 is much bigger than the damping constantsgm appearing in the master equation, contain
in the operatorsLm!. If no jump occurs betweent and t1dt, the wave function evolves betwee
these two times according to Schro¨dinger’s equation with an effective HamiltonianH1K, and is
then normalized att1dt:

uc~ t1dt !&5
uw~ t1dt !&
iw~ t1dt !i ,

~4!
uw~ t1dt !&5e2 idt(H1K)uc~ t !&.

K can be computed in special cases by first determining perturbatively the wave function
total systemS1R and then projecting it onto the subspace corresponding to the no-
measurement.4,9 An easier~though less fundamental! way to computeK is to ask directly that the
averageMuc(t)&^c(t)u satisfies the master equation~1! ~see the following!. This gives4

K5K0[
1

2i (m Lm
† Lm . ~5!

Note thatK0 is not self-adjoint. Hence the norm of the wave function is not conserved by
evolution operatore2 idt(H1K0). This can be interpreted by invoking the gain of information on
system provided by the measurement, namely, by the knowledge that no jump occurred bet
andt1dt. For instance, in the case of an atom coupled to the quantized electromagnetic fie
may infer from a no-photon detection that the atom has not emitted spontaneously a photo

Since the wave function is normalized at each stepdt in ~2! and~4!, the random dynamics is
norm-preserving on the time resolutiondt. These normalizations make the stochastic quan
evolution nonlinear. We will see in Sec. V that it is possible to define an equivalent linear m
in which the random wave function is not normalized.18,14The maptP@0,̀ @°uc(t)& for a given
outcome of the jumps is called aquantum trajectory.5

Let us consider the average density matrixr(t)5Muc(t)&^c(t)u, whereM is the average ove
all realizations of the jumps. It can be easily shown4 that r(t) obeys the master equation~1! to
lowest order iniLmi2dt. Actually, takingH50 for simplicity, one has
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r~ t1dt !5Mt1dtuc~ t1dt !&^c~ t1dt !u

5MtS S 12(
m

dpm~ t ! D e2 idtK0uc~ t !&^c~ t !ueidtK0
†

ie2 idtK0uc~ t !&i2 1(
m

dpm~ t !
Lmuc~ t !^c~ t !uLm

†

iLmuc~ t !&i2 D .

This equation is simplified by taking

e2 idtK05S 12dt(
m

Lm
† LmD 1/2

. ~6!

Then, by~3!:

r~ t1dt !5S 12dt(
m

Lm
† LmD 1/2

r~ t !S 12dt(
m

Lm
† LmD 1/2

1dt(
m

Lmr~ t !Lm
† . ~7!

Expanding the square roots and keeping only terms of order one indt, one obtains~1! andK0 is
given by ~5!. Note that, for an arbitrary time intervaldt between consecutive measuremen
r(t1dt) is not given by integrating~1! from t to t1dt ~a different result is already obtained at th
next orderdt2!. This should be kept in mind when dealing with real or numerical experime
wheredt is always finite.

Consider a transformationLm→Lm8 on the operatorsLm which does not change~1!. The
quantum jumps and the effective HamiltonianK may be modified by this replacement. This lea
to a different stochastic dynamics, which unravels the same master equation. A particular
formation leaving~1! invariant is26

Lm→Lm8 5Lm1lm , H→H85H1
1

2i (m ~lm* Lm2lmLm
† !5H8†, ~8!

wherelm’s are complex numbers. This invariance of the Lindblad equation is not related
particular symmetry of the system or its coupling with the reservoir. It simply expresses th
separation between the Hamiltonian part2 i @H,r# and the remaining dissipative part in~1! is not
unique. The transformation~8! generates a whole family of distinct QJ models depending on
set of numberslm . The modification of the wave function at a jumpm is now given by

jump m: uc&→
Wmuc&

iWmuc&i ~9!

with the jump operatorsWm proportional to (Lm1lm):

Wm5gm
21/2~Lm1lm!. ~10!

The new generalized HamiltonianH1K is obtained by replacingLm by Lm8 in ~5! and adding to
it H82H:

K5
1

2i (m ~Lm
† Lm12lm* Lm1ulmu2!. ~11!

The last term in the sum, proportional to the identity operator, is written only for convenien
is irrelevant because of the normalization in Eq.~4! giving the evolution between jumps. Th
probability of occurrence of a jump of typem becomes

dpm~ t !5i~Lm1lm!uc~ t !&i2dt5gmdt iWmuc~ t !&i2. ~12!

Note that it increases likeulmu2 for largelm .
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III. FIELD MODE IN A CAVITY

It is shown in this section that the QJ schemes described in Sec. II can be physically re
by an atomic beam crossing a cavity with perfectly reflecting walls and interacting with
quantum field inside, which forms the systemS. The measurements are performed on the outgo
atoms, after they have interacted with a classical laser fieldE placed between the cavity and th
measuring apparatus.

A. Experimental scheme

Let us consider one mode of the quantized electromagnetic field of a lossless cavity co
to its environment. The environment is a beam of atoms prepared in one of two Rydberg staug&
~‘‘ground state’’! and ue& ~‘‘excited state’’! in resonance with the frequencyv of the mode. The
fluxes r g and r e of atoms crossing the cavity, prepared, respectively, in statesug& and ue&, are
assumed to be such that at most one atom is in the cavity at any time. The time interval be
the crossing of two consecutive atoms in the cavity isdt5(r g1r e)

21. To simplify, all the atoms
of the beam are supposed to have the same speed. They thus spend the same timet,dt in the
cavity, interacting with the field mode. The atom-mode interaction Hamiltonian is in the inte
tion picture~rotating-wave approximation!:1,2

H int52 i ~l* ug&^eu a†2lue&^gu a!, ~13!

wherea† anda are the creation and annihilation operators of a photon. The coupling constl

is equal toAq2v/2«0V dW ge"sW , where dW ge is the matrix element of the atomic dipole,sW the
polarization vector of the field mode,q the charge of the electron, andV the volume of the cavity.

At the exit of the cavity, the atoms enter into a second cavity, identical to the first
containing a classical laser fieldEW ~Fig. 1!. They spend a timetL,dt there, interacting with the
laser field. Under the dipolar and rotating-wave approximations, the atom-laser interaction H
tonian is in the interaction picture:1,2

HL52
i

2
~V* ug&^eu 2Vue&^gu!, ~14!

whereV5 i dW ge"EW is the Rabi frequency. The Hamiltonian~14! describes the atom-laser interactio
for a laser field in resonance with the atomic transition. The more general situation of no
detuning of the laser frequency will be discussed in the following.

Finally, the state of each atom at the exit of the second cavity is measured by a detector,
us if it is in its ‘‘ground’’ or in its ‘‘excited’’ state. The corresponding experimental scheme
presented in Fig. 1. It has been considered in Ref. 27 without the laser fieldE. The flight times of
the atoms between the two cavities and between the second cavity and the detector ar
sufficiently small so that spontaneous emission of photons by the atoms can be neglected

FIG. 1. The two-level atoms of the beam cross one by one a cavity containing the studied quantum fielda, a second cavity
containing a laser fieldE, and a detector measuring their states.
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B. Stochastic dynamics of the field mode

Let us compute the evolution of the state of the field mode in the first cavity, for a given r
of the measurements. If one looks at it with a time resolution equal or bigger than the timdt
separating the entrance of consecutive atoms, the field mode is continuously monitored
measurements on the atoms~continuous measurement!. The coupling constantl, the Rabi fre-
quencyV, and the interaction timest, tL are assumed to satisfy

ulut!1, uVutL!1. ~15!

Let us first determine the change of the wave functionuc(t)& of the field mode when one
atom, initially in stateu i &, i 5g or e, crosses the two cavities and the detector. At the timet just
prior to the entrance of the atom in the first cavity, the wave functionuC(t)& of the total system
‘‘atom1field mode’’ is a tensor product stateuC(t)&5u i &uc(t)& ~the atom and the field did not ye
interact!. Since the two fields are in separated cavities, the atom interacts with the quantum
beforeinteracting with the classical fieldE. The total wave function at the exit of the second cav
~before the measurement! is thus, in the interaction picture,

uCent&5e2 i tLHL e2 i tH intu i &uc~ t !&. ~16!

Note that the evolution would be different if the laser field was placed in the first cavity~in this
case, the product of exponentials must be replaced by the exponential ofH int1HL). Because of
their interaction, the quantum field and the atom are now entangled, i.e.,uCent& is not a product
state. After the measurement on the atom has been performed, the field and the atom again
disentangled and the wave function of the total system is

uC~ t1dt !&5u j &uc~ t1dt !&, uc~ t1dt !&5
^ j uCent&

i^ j uCent&i , ~17!

with j 5g if the atom is detected in its ground state andj 5e if it is detected in its excited state
We have assumed for simplicity that the measurement is performed at a timet1tmes,t1dt
earlier than the entrance of the next atom in the first cavity. Since we work in the intera
picture,uC(t1tmes)& is then equal touC(t1dt)&. The wave functionuc(t1dt)& of the mode at
the timet1dt is thus well-defined and given by

uc~ t1dt !&5
uw~ t1dt !&
iw~ t1dt !i ,

~18!
uw~ t1dt !&5^ j ue2 i tLHLe2 i tH intu i &uc~ t !&.

The probability that the atom is detected in stateu j &, given that it enters in the cavity in stateu i &,
is

pi→ j5i^ j uCent&i25iw~ t1dt !i2. ~19!

A straightforward computation leads to

e2 i tH int5 (
p50

`
~2ulu2t2!p

~2p!!
~ ug&^gu np1ue&^eu ~n11!p!

1 (
p50

`
~2ulu2t2!p

~2p11!!
~ltue&^gu a np2l* tug&^eu np a†!,

where n5a†a is the number operator. Denoting byn1/2 its square root, this formula can b
rewritten in a more compact form:
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e2 i tH int5ug&^gu cos~ ulutn1/2!1ue&^eu cos~ ulut~n11!1/2!

1ltue&^gu a sinc~ ulutn1/2!2l* tug&^eu sinc~ ulutn1/2! a† ~20!

with sinc(u)5(sinu)/u. Similarly,

e2 i tHL5cosS uVutL

2 D1
VtL

2
ue&^gu sincS uVutL

2 D2
V* tL

2
ug&^eu sincS uVutL

2 D .

Let us introduce the operator

ã5a sinc~ ulutn1/2! ~21!

and the complex numbers

h5lt, e5
V tan~ uVutL/2!

uVult
. ~22!

Four cases must be considered.
~1! The atom enters the first cavity in its ground state and is detected in the same

i 5 j 5g. Then,

uw~ t1dt !&5~11uheu2!2 1/2~cos~ uhun1/2!2uhu2e* ã!uc~ t !&[~12 idt Kg!uc~ t !&. ~23!

~2! The atom enters the first cavity in its ground state and is detected in its excited
i 5g, j 5e. Then,

uw~ t1dt !&5h ~11uheu2!2 1/2W2uc~ t !&, W2[ã1e cos~ uhun1/2!. ~24!

~3! The atom enters the first cavity in its excited state and is detected in its ground
i 5e, j 5g. Then,

uw~ t1dt !&52h* ~11uheu2!2 1/2W1uc~ t !&, W1[ã†1e* cos~ uhu~n11!1/2!. ~25!

~4! The atom enters the first cavity in its excited state and is detected in the same
i 5 j 5e. Then,

uw~ t1dt !&5~11uheu2!2 1/2~cos~ uhu~n11!1/2!2uhu2e ã†!uc~ t !&[~12 idt Ke!uc~ t !&.
~26!

Cases~2! and~3! correspond, respectively, to the absorption and the emission of a phot
the cavity mode or of the laser field by the atom. In order to have quantum jumps separa
‘‘continuous’’ Hamiltonian evolutions on time scales bigger thandt, the probabilities of these
events must be very small. The probabilitydp2(t) of case~2! is equal topg→e multiplied by the
probability r g dt that the atom enters in the first cavity in stateug&. With the help of~19! and~24!,
one gets

dp2~ t !5
r g dt uhu2

11uheu2 iW2uc~ t !&i25r g dt~ i sin~ uhun1/2!uc~ t !&i21O~he!). ~27!

The probabilitydp1(t) of case~3! is given by a similar formula, replacingr g by r e , W2 by W1 ,
andn by n11. The probabilities of cases~1! and ~4! are, respectively,r g dt2dp2(t) and r e dt
2dp1(t). We see thatdp6(t) is small if uhu5ulut!1 anduheu.uVutL/2!1, provided that also

^c~ t !u~ uhun1/22kp!2quc~ t !&5O~hq!, q51,2,. . . , ~28!
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with k a non-negative integer. This condition is met fork50 if the maximal number of photons in
the cavity is much smaller thanuhu22 ~of order uhu21 or smaller!. This corresponds to the
perturbative regime. If the condition is met fork>1, the atom makes almostk/2 Rabi oscillations
in the cavity and leaves it, with a high probability, nearly in the same state as it entered it. In
neglecting terms of orderh2 andh4e4, it follows from ~22!, ~23!, and~26!:

dtKg.
uhu2

2i
~ ã†ã12~21!ke* ã1ueu2!,

~29!

dtKe.
uhu2

2i
~ ã ã†12~21!ke ã†1ueu2!,

up to an irrelevant additional phasekp. When the atom is measured in the same state as its in
state@cases~1! and~4!#, the normalized wave function of the mode is thus modified, up to a s
by an amount of orderuhu1uh3/2eu. In the opposite cases~2! and~3!, the mode wave function is
modified by an amount of order 1. It suffers a quantum jump:

uc~ t1dt !&5
W6uc~ t !&

iW6uc~ t !&i , ~30!

with the jump operators

W2.ã1~21!ke,
~31!

W1.ã†1~21!ke* .

The signs2 and1 correspond to case~2! ~absorption of a photon! and case~3! ~emission of a
photon!, respectively. The probability that a jump6 occurs is of orderuhu1uh3/2eu1uheu2, see
~27! and ~28!. It is given approximately by

dp6~ t !.g6dtiW6uc~ t !&i2, ~32!

where we have introduced the damping rates:

g25r guhu25r gulu2t2,
~33!

g15r euhu25r eulu2t2.

The operatorã is given, up to terms of orderh1/2, by

ã.H a if k50

~21!k aS uhun1/22kp

kp
2

~ uhun1/22kp!2

~kp!2 D if k>1.
~34!

If uc(t)&5un& is a Fock state withn5(kp/uhu)2 photons, the crossing of the atom of initial sta
u i & has no effect on the field ifi 5g ~sinceãuc(t)&50), and a small effect ifi 5e and uhu!1.

If condition ~28! is not met, the atom strongly modifies the state of the field mode in all c
~1!–~4!. Hence there is no ‘‘continuous-like’’ Hamiltonian evolution changing weakly the stat
the mode, separated by unlikely jumps. Fore50, the evolutions fori 5g @Eq. ~23!# andi 5e @Eq.
~26!# have the form~6! ~the jump operatorsW6 are proportional toã† and ã, respectively, and
cos2(uhun1/2)512uhu2ã†ã, cos2(uhu(n11)1/2)512uhu2ãã†). Although there isa priori no concep-
tual difficulty in treating this case, the corresponding dynamics becomes cumbersome when
atoms cross the cavities. We thus restrict ourself in what follows to the simpler situation in w
conditions~15! and ~28! are fulfilled.
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Let us determine the change of the wave function of the field mode when many atoms
the cavities. LetDt be such that the numberDt/dt of atoms crossing the cavities in a time interv
@ t,t1Dt# is large but much smaller than the inverse of the coupling strengthuhu:

1!
Dt

dt
!uhu21,uh3/2eu21,uheu22. ~35!

Assuming thatr g andr e are of the same order of magnitude, the numbers of atoms entering i
first cavity in stateug& andue& betweent andt1Dt are large and approximately equal tor gDt and
r eDt, respectively. Since the probabilitiesdp6(t) of occurrence of jumps when one atom cross
the cavities are assumed to be as small asuhu1uh3/2eu1uheu2, the probability of occurrence o
two or more jumps betweent and t1Dt is negligible. Suppose first that no jump occur betwe
these two times, i.e., that only cases~1! and ~4! occur for all atoms. Then,

uw~ t1Dt !&5¯~12 idtKg!¯~12 idtKe!¯~12 idtKg!¯uc~ t !&. ~36!

There arer gDt factors (12 idtKg) andr eDt factors (12 idtKe). Let us expand the products an
neglect terms of order (Dt/dt)2uh (41m)/2emu, m50, . . . ,4,which are small by~35!. We find:

uc~ t1Dt !&5
uw~ t1Dt !&
iw~ t1Dt !i ,

~37!
uw~ t1Dt !&.~12 iDtK !uc~ t !&,

with K5r gdtKg1r edtKe . Note that the changeuw(t1Dt)&2uw(t)& is proportional toDt. The
effective HamiltonianK is the average of the operatorsKi , which describe the evolution of th
quantum field as onegivenatom crosses the cavities without absorbing or emitting a photon,
its ~unknown! initial stateu i & ~i 5g with probability r gdt, and i 5e with probability r edt!. This
averaging is related to our assumption that many atoms cross the cavities betweent andt1Dt; it
is an average over the initial states of the atoms, and must be distinguished from the avera
the results of the measurements. Equation~29! gives

K5
1

2i
~g2~ ã†ã12~21!ke* ã1ueu2!1g1~ ãã†12~21!keã†1ueu2!!. ~38!

If a jump 6 occurs betweent and t1Dt, the change of the wave function is approximately

uc~ t1Dt !&5
W6uc~ t !&

iW6uc~ t !&i . ~39!

Actually, the change due to atoms crossing the cavities without modifying their states@cases~1!
and~4!# betweent and t1Dt is of order (Dt/dt)(uhu1uh3/2eu). It can be neglected with respec
to the change due to an atom having emitted or absorbed a photon, of order 1. Similar
probability Dp6(t) of occurrence of a jump6 in the time interval@ t,t1Dt# is obtained by
replacingdt by Dt in ~32!.

The above coarse-grained stochastic dynamics coincides forg15r e50 with that considered
by Wiseman and Milburn8 for a damped mode monitored by homodyne detection. In the Sc¨-
dinger picture, the mode wave functionucS(t1Dt)& is given by~39!, in which W6 is replaced by
W6

S (t)5e2 i tHW6eitH , if a jump 6 occurs betweent andt1Dt. In the opposite~and much more
probable! case, it is given by~37!, with K replaced byH1KS(t), KS(t)5e2 i tHKeitH . HereH
5v(a†a11/2) is the free Hamiltonian of the field mode, and we have assumedvDt!1. The
jump operators in the Schro¨dinger picture are, up to irrelevant phase factors,W2

S (t)5ã
1(21)kee2 ivt andW1

S (t)5ã†1(21)ke* eivt. Like the HamiltonianH int , W6 depends on time
in the Schro¨dinger picture and is time-independent in the interaction picture. The dynamics i
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Schrödinger picture is the same as in the interaction picture provided thate is replaced by an
oscillating field e(t)5ee2 ivt. This is also true for the dynamics between jumps,KS(t) being
obtained from~38! by the same rule.

For e50, the random evolution ofucS(t)& coincides with the random evolution in the mod
of Dalibard et al.,4 in agreement with the results of Ref. 27. ForeÞ0, it coincides with the QJ
evolution of Sec. II with the two Lindblad operatorsL25Ag2ã andL15Ag1ã†, and withl2

5Ag2(21)kee2 ivt, l15Ag1(21)ke* eivt.
All the results of this section are actually valid for an arbitrary HamiltonianHL—describing

the interaction of the two-level atoms with an arbitrary external field placed between
first cavity and the detector—such thatiHLitL!1. In fact, if we define e
5^eue2 i tLHLug&/lt^eue2 i tLHLue&, the only change in the calculation is the replacement of
prefactor (12uheu2)21/2 by ^gue2 i tLHLug& in ~23! and~25! and by^eue2 i tLHLue& in ~24! and~26!.
In particular, the stochastic dynamics is not modified if the laser frequency is detuned fro
atomic frequency byd5vL2v, with udutL!1. This is becausee is independent ofd in leading
order iniHLitL , i.e., the interaction timetL is too short for the atoms to feel the frequency sh
from the atomic transition.

C. Average dynamics of the field mode

In order to relate the random wave function dynamics with the familiar density matrix
proach, let us compute the master equation satisfied by the field mode density matrix:

r~ t !5Muc~ t !&^c~ t !u, ~40!

whereM denotes the mean value over the results of the measurements on the atoms~i.e., over all
quantum trajectories!.

As is well known, averaging the projectoruc(t)&^c(t)u over all results of the measuremen
is the same as not performing any measurement. One may therefore equivalently determ
differential equation for the reduced density matrixr̃(t) of the photon mode, in the same expe
mental scheme as in Fig. 1 butwithout the detector. The reduced density matrixr̃(t) is defined
as the partial trace over the atomic Hilbert spaces of the density matrixs(t) of the total system
‘‘atoms1field mode’’ ~see Sec. II!:

r̃~ t !5tr
A
~s~ t !!. ~41!

In order to justify the above-mentioned statement, let us show that the changes ofr(t) and
r̃(t) when one atom crosses the cavities are the same. The atom arrives in the first cavity
u i &, i 5g or i 5e. Before it enters in the cavity, the total density matrixs(t) is a tensor product
u i &^ i u ^ r̃(t). We assume thatr̃(t)5r(t)5Muc(t)&^c(t)u. It follows from the second equality in
~17!, from ~19!, and from the fact that the measurements on the atoms are independent:

r~ t1dt !5Mt1dtuc~ t1dt !&^c~ t1dt !u5tr
A
~MtuCent&^Centu!, ~42!

whereuCent& is given by~16!. Thus,

r~ t1dt !5tr
A
~e2 i tLHLe2 i tH intu i &^ i ur~ t !ei tH intei tLHL!5 r̃~ t1dt !5tr

A
~e2 i tH ints~ t !ei tH int!. ~43!

Hence the changes ofr(t) and r̃(t) are identical as one atom crosses the cavities. The
exponentials ofHL in ~43! disappear by cyclicity of the trace, showing thatr̃(t1dt)5r(t1dt)
does not depend on the laser fieldE. This last point is actually clear, since if no measurement
the atoms is performed, their interaction with the laser field in the second cavity has no eff
the field in the first cavity.
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Since they have the same time evolution, we identify in what followsr(t) and r̃(t) and
compute the master equation for the usual density matrix~41!. Two cases must be distinguishe

~1! The atom enters in the first cavity in its ground state:i 5g. By replacing~20! into ~43!,

r~ t1dt !5~12uhu2ã†ã!1/2r~ t !~12uhu2ã†ã!1/21uhu2ãr~ t !ã†[~11dtLg!r~ t !, ~44!

whereã is given by~21!.
~2! The atom enters in the first cavity in its excited state:i 5e. Then,

r~ t1dt !5~12uhu2ãã†!1/2r~ t !~12uhu2ãã†!1/21uhu2ã†r~ t !ã[~11dtLe!r~ t !. ~45!

For a given initial state of the atom, the evolution in~44! and~45! has the general form~7!. Under
the conditions~15! and ~28!, one has

dtLg~r!.uhu2~ ãrã†2 1
2 $ã†ã,r%!,

~46!
dtLe~r!.uhu2~ ã†rã2 1

2 $ãã†,r%!,

where the curly brackets denote the anticommutator$A,B%5AB1BA.
Let us determine the coarse-grained evolution ofr(t) on the time scaleDt satisfying~35!. By

the same arguments as in Sec. III B,

r~ t1Dt !5¯~11dtLg!¯~11dtLe!¯~11dtLg!¯r~ t !,

with r gDt factors (11dtLg) andr eDt factors (11dtLe). One can retain only the terms of ord
one inDt in the expansion of the product:

r~ t1Dt !.$11Dt~r gdtLg1r edtLe!%r~ t !. ~47!

The superoperator inside the parentheses is the average of the superoperatorLi over the initial
atomic statesu i &, i 5e or g. Writing Dr/Dt5dr/dt, the coarse-grained master equation in
interaction picture is therefore

dr

dt
5g2~ ãr~ t !ã†2 1

2 $ã†ã,r~ t !%!1g1~ ã†r~ t !ã2 1
2 $ãã†,r~ t !%!. ~48!

Not surprisingly, this is the equation of the damped harmonic oscillator with finite temperatuT.
HereT is the temperature of the atomic beam:

expS 2
v

kBTD5
r e

r g
5

g1

g2
, ~49!

wherekB is the Boltzmann constant. Equation~48! has the general form~1!, with two Lindblad
operatorsL25Ag2ã andL15Ag1ã†. Recall thatã coincides with the usual annihilation oper
tor a only if k50 ~perturbative regime!.

In conclusion, ifulut!1 and condition~28! holds, i.e., if each atom modifies weakly the sta
of the field, the average density matrix~40! satisfies the master equation~48!. Although the
quantum trajectories of the mode depend onE, the corresponding master equation is the same
all laser fields, in accordance with the general results of Sec. II.

IV. SINGLE QUANTUM TRAJECTORIES OF THE FIELD MODE

We focus in this section on single quantum trajectories of the field mode, correspond
specific realizations of the measurements. The main question addressed in the following co
the localization properties of the random dynamics at large times, for different laser fieldsE. In the
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caseE50, i.e, for the ‘‘standard’’ Monte Carlo wave function dynamics, it has been shown in
27 that the field wave function evolves at large times toward Fock statesun(t)& @with a time
fluctuating number of photonsn(t)#. Note that it is straightforward to prove that Fock states fo
an invariant family of states under the stochastic dynamics. In fact, ife50, the jump operators
W6 transformun& into un61& ~up to multiplicative constants!, and un& is an eigenvector ofH
1K05v(n11/2)2 i (g2sin2(uhun1/2)1g1sin2(uhu(n11)1/2))/(2uhu2). The localization property is
much more difficult to prove. For nonzero laser fields, Fock states do no longer form an inv
family and the localization is of different nature. In the case of zero temperature (g150), it has
been shown in Ref. 8 that the field mode has a diffusive dynamics in the limite→`, given by a
stochastic Schro¨dinger equation with real Wiener processes; we will prove in Sec. V that
remains true at any temperature. Such kind of dynamics has been widely studied
literature.11,12,15,26,28It is expected that localization occurs toward coherent or squeezed sta
the Lindblad operators are linear combinations ofa anda†. However, this has only been prove
in the caseL}(a1a†) as far as we are aware.28 Here we present numerical results indicating th
for T.0 and large enoughe, the mode wave functionuc(t)& evolves toward squeezed states af
some timeDt of the order of the thermalization time in the absence of measurements. At
times, the squeezing amplituder (t) of the squeezed states is found to fluctuate slightly aroun
mean valuer̄ , and the squeezing anglef(t) evolves linearly in time,f(t)5f02vt. Interest-
ingly, r̄ and f0 are independent of the realization and of the initial state, being, respect
functions of the temperatureT and the laser fieldE only. By lettinge→`, writing the correspond-
ing quantum state diffusion equation~which is derived in the general case in Sec. V!, and using a
result due to Rigo and Gisin,26 we obtain in Sec. IV B analytic expressions forr̄ andf0 in good
agreement with the numerical simulations.

A. Numerical results

Let us first look at the HusimiQ-function for the mode wave function in the interactio
picture,

FIG. 2. Q(a,t)11 for e50 andg1 /g253/4, at four different times:g2t50 ~top left!, g2t55 ~top right!, g2t520
~bottom left!, andg2t560 ~bottom right!.
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Q~a,t !5
1

p
u^auc~ t !&u2, aPC.

The simulations of single quantum trajectories fore50 and e550 give the results plotted in
Figs. 2 and 3, respectively. Recall that for Fock statesuc&5un&, Q(a) is equal to
uau2n exp(2uau2)/pn!, and for squeezed statesuc&5ua0 ,j& with jPR, uju5r ,

Q~a!5
1

p cosh~r !
expS 2

2R~a2a0!2

11e22r 2
2I~a2a0!2

11e2r D
~see Ref. 29!. This asymmetric paraboloid becomes symmetric for a coherent stateuc&5ua0&,
which corresponds tor 50 in the above-mentioned formula. It is seen in Fig. 2 that in the c
e50, the initial coherent stateua5212i & is transformed into states which are close to Fock sta
at timest3520/g2 (nÞ0) andt4560/g2 (n50). This is in agreement with the results of Re
27. On the other hand, fore550, Fig. 3 shows that the same initial coherent state is transfor
into states which are close to squeezed statesua,reif&. The squeezed states att3

and t4 have approximately the same squeezing parametersr and f50, but they have different
centersa.

In order to study more precisely the localization toward squeezed states at large values oe, let
us follow the time evolution of the mean square deviations for a given quantum traje
t°uc(t)&:

Dxf
2 ~ t !5^cS~ t !uXf

2 ucS~ t !&2^cS~ t !uXfucS~ t !&2,
~50!

Dyf
2 ~ t !5^cS~ t !uYf

2 ucS~ t !&2^cS~ t !uYfucS~ t !&2.

Xf andYf are the usual field quadrature operators rotated by an anglef:

FIG. 3. Q(a,t)11 for e550 andg1 /g253/4, at the same times as in Fig. 2.
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Xf5
ae2 if1a†eif

2
, Yf5Xf1p/25

ae2 if2a†eif

2i
. ~51!

We denote byfmin(t) the angle for whichDxf
2 (t) is minimum. The minimum mean squar

deviationDxfmin(t)
2 (t) is denoted byDx2(t) and, similarly,Dyfmin(t)

2 (t) is denoted byDy2(t). Ob-

viously, Dx2(t) and Dy2(t) remain unchanged if the wave functionucS(t)& in the Schro¨dinger
picture is replaced in~50! by the wave functionuc(t)& in the interaction picture. This replaceme
leads to an increase offmin(t) by vt.

The time evolutions ofDx2(t) and Dx2(t)Dy2(t) are shown in Figs. 4 and 5, for differen
quantum trajectories starting from the same coherent stateuc(0)&5ua&. Note that the time scale
is of order of the thermalization time of the density matrixr(t). Figure 4 corresponds toe520
and Fig. 5 toe5100. One sees in both Figs. 4 and 5 thatDx2(t) begins to fluctuate around a mea

FIG. 4. Dx2(t) ~solid, dashed, and dotted lines! andDx2(t)Dy2(t) @~1!, ~L!, and~,!# vs g2t for three different quantum
trajectories with initial coherent state. The values of the parameters aree520 andg1 /g253/4. The dotted line and the
triangles correspond to the exact dynamics using the nonperturbative formulas~23!–~26! for Kg , W6 , and Ke , with
ulut50.9331022.

FIG. 5. Same as in Fig. 4 but withe5100~the nonperturbative results are not shown but look similar!. In the upper square,
Dx2(t) andDx2(t)Dy2(t) are shown on a finer time scale, on which discontinuous quantum jumps can be seen sep
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valueDx2 after some transient timeDt.10/g2 . The comparison of the numerical results for t
different trajectories shows thatDx2 does not depend upon the specific realization. The fluc
tions are considerably reduced in the casee5100 ~Fig. 5! with respect to the casee520 ~Fig. 4!.
Moreover, in the former case, the productDx2(t)Dy2(t) is much closer to the minimum valu
1/16 allowed by the Heisenberg uncertainty principle. The variation ofDx2 andDx2Dy2 with e for
fixed temperatureT.0.288v/kB is presented in Fig. 6. One observes thatDx2 is almost constant
for 50<e<100. Furthermore, the time average ofDx2(t)Dy2(t) goes closer and closer to 1/16 a
e increases. The result presented in the inset shows moreover thatDx2 andDx2Dy2 are indepen-
dent of arg(e), up to small fluctuations.

Most numerical simulations were done using the approximations~31! and ~38! for the jump
operatorsW6 and forK, together withã5a. This is justified if the maximum number of photon
nmax is small with respect touhu225ulu22t22, and uhu225ulu22t22, and nmax

3/2 !uhu24ueu21,
nmax

3/2 !uhu22ueu ~see Sec. III B!. Since we worked in the Fock states basis,nmax was bounded by
the dimension of the Hilbert space~which was taken between 75 and 150!. One may be worried,
however, that, despite the smallness of the error made at each time stepdt, the error made after
many steps might be large and could invalidate our results in the long time limit. We checke
this is actually not the case by integrating numerically the exact dynamics, using formulas~23!–
~26! for the evolution on each time stepdt, and the exact possibilities of occurrence of the fo
cases. The curve in the dotted line and the triangles in Fig. 4 are the values ofDx2(t) and
Dx2(t)Dy2(t) obtained from a simulation of this nonperturbative dynamics. This means usin
exact formulas~23!–~26! for the evolution on each time stepdt, and the exact probabilities o
occurrence of the four cases. The total number of atoms crossing the cavity in the whol
interval is 23106, anduhu5A(g21g1)dt.0.0093. The exact results show very similar fluctu
tions, around the same valuesDx2 and Dx2Dy2, as the two trajectories obtained using the p
turbative scheme. No systematic deviation increasing with time is seen. This result, togethe
other simulations for different values ofe andh,31 shows errors in the considered time range. N
however that if uhu is too large~for values in the range 0.06–0.09 or larger in Fig. 4, a
0.02–0.04 or larger in Fig. 5!, large time fluctuations ofDx2(t) andDx2(t)Dy2(t) are observed
and therefore the localization is of different nature.

In all our simulations, we found thatDx2 andDx2Dy2 are insensitive to the initial stateuc~0!&
of the field mode. This is illustrated in Fig. 7 fore520 ande520110i ~similar results are

FIG. 6. Time averagesDx2 ~plain line! andDx2Dy2 ~L! for different values ofRe ~shown in the horizontal axis! and
Ie50. Inset: same for different values of arge ~shown in degrees in the horizontal axis! and fixed modulusueu550. The
time average is taken on the interval@10/g2,100/g2# andg1 /g253/4.
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obtained fore5100!. On the right-hand side of the Fig. 7, it is seen thatDx2(t) differs noticeably
at smallt ’s if uc~0!& is a coherent state@cases~1! and~2!# and if it is a Fock state@case~3!; the first
small time values are outside the range of the figure:Dx2(0)52.75#. However, the three curve
are hard to distinguish forg2t*10. In the two trajectories shown on the left-hand side, the
distinct initial states are chosen by picking randomly the 20 first components^nuc(0)& in the Fock
states basis~the realization of the measurements is also different in the two cases!. For times
bigger than 10/g2 , one observes thatDx2(t) fluctuates around the same value for both trajec
ries.

For the quantum trajectories studied in Figs. 3–5, the anglefmin(t)1vt is found to be zero at
timest>Dt. Nonvanishing angles are obtained if one considers non reale’s. The time dependence
of fmin(t)1vt for e520110i is presented in Fig. 8 for different initial states. It is seen tha
evolves toward a constant valuef0 which neither depends onuc~0!& nor on the ratiog1 /g2 . As
shown in the inset, we obtainf05arg(e).

FIG. 7. Dx2(t) ~lines! andDx2(t)Dy2(t) @~1!, ~L!, and ~s!# vs g2t for trajectories with different initial statesuc~0!&.
Left-hand side: in the two shown trajectories,^nuc(0)& is chosen randomly for 0<n<20 and vanishes forn.20; uc~0!&
and the realization of the measurements are different in each trajectory;e520110i andg1 /g251/2. Right-hand side:~1!
uc~0&5ua& with a5A3/2(11 i ) @plain line, (s);# ~2! id. with a52115i @dashed line,~1!;# ~3! uc(0)&5un55& @dotted
line, ~L!#; in all cases,e520 andg1 /g253/4. The dotted line on the left-hand side and dot-dashed line on the right-
side correspond to the theoretical result~64! for e→`.

FIG. 8. Anglefmin(t)1vt ~in degrees! vs g2t for e520110i and different initial states and temperatures:~1! uc~0!&5ua&
with a5222i ; g1 /g251/4 ~n!; ~2! uc(0)&5(212e29)21/2 ~ua&1ub&! with a523i andb53; g1 /g253/4 ~d!; ~3!
uc(0)&5un& with n510; g1 /g253/4 ~1!; ~4! uc~0!& is chosen randomly as in Fig. 7;g1 /g251/2 ~dashed line!. Inset:
time average off0(t)5fmin(t)1vt as function of arge ~both in degrees! for ueu550 andg1 /g253/4 ~time average as in

Fig. 6!. The result is well fitted by the broken linesf̄05arg(e) mod. 180.
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Bringing together the above-mentioned results, we are led to the following conclusions
large ueu and smalluhu smaller than.0.01, the wave functionucS(t)& of the field mode evolves
whatever its initial stateucS(0)&, to some almost minimum uncertainty states~MUS! at timest
>Dt, whereDt is a transient time. Moreover, ifT.0,

Dx2~ t !.Dx2,1/4, fmin~ t !.f02vt ~52!

at large times where bothDx2 andf05arg(e) are independent ofucS(0)& and of the realization of
the measurements. Therefore, providedueu is big enough anduhu small enough, the state of the fiel
mode at timest>Dt is close to a squeezed state:

ucS~ t !&.ua~ t !,j~ t !&. ~53!

The squeezing amplituder (t)5uj(t)u fluctuates slightly around a time-independent va
r .2 ln(4Dx2)/2 and arg(j(t)).2(f02vt). The centera(t) of the squeezed state moves around
the complex plane. Actually, by ergodicity, the time average ofucS(t)&^cS(t)u must coincide with
the equilibrium density matrixr (eq)5Z21 exp(2v(a†a11/2)/kBT). To check ergodicity, we have
computed numerically the time average ofu^nuc(t)&u2 on the interval@0,100/g2# for a single
quantum trajectory. It is indeed seen in Fig. 9 that it reproduces well the Bose–Einstein exp
tial distributionrnn

~eq!.

B. Analytical results

The above-given numerical results suggest that the dynamics has the localization pr
toward squeezed states in the limit of large laser fieldsueu→`. In particular, the squeezed stat
should form an invariant family of states under the stochastic dynamics in this limit. The se
statement can be shown analytically as follows. We restrict our analysis here to the pertu
regime whereuhu!1, uheu!1 and~28! holds withk50, so thatã.a. As said previously, one can
describe the mode’s dynamics in the limitueu→`, uhu→0, uheu→0 by a stochastic Schro¨dinger
equation with real Wiener processes~quantum state diffusion!. This is because the probability o
occurrence of jumps grows likeueu2 ~for instance, in Figs. 4 and 5, the total number of jumps
the whole time interval@0,100/g2# is close to 73104 and 1.753106, respectively!. On the other
hand, as is clear from~31! and~39!, the change of the wave function during a jump is of order 1e.
Hence there are infinitely many jumps with an infinitesimal impact on the wave function in

FIG. 9. Time average of the probabilityu^nuc(t)&u2 to find n photons fore550, g1 /g253/4 ~1!. The average is taken
over 5000 discrete times in the interval@0,100/g2#. The solid line corresponds to the Bose–Einstein distribution.
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limit ueu→`. On a time scale much bigger than the inverse frequencies of jumps@but small enough
so that uc(t)& does not change much on such a time scale#, uc(t)& satisfies the following Itoˆ
stochastic differential equation in the limite→`, arge5u:

udc&5FAg2~e2 iua2R^e2 iua& t!dw2~ t !1Ag1~eiua†2R^eiua†& t!dw1~ t !

1R^eiua†& tS g2e2 iua1g1eiua†2
g21g1

2
R^eiua†& tDdt2 iK 0 dt G uc~ t !&. ~54!

The notation is as follows:K05(g2a†a1g1aa†)/2i , ^O& t5^c(t)uOuc(t)& is the quantum ex-
pectation at timet and dw6(t) are the stochastic infinitesimal increments of two independent
Wiener processes, which have zero mean and satisfy the Itoˆ rules:30

dw6~ t !dw6~ t !5dt, dw2~ t !dw1~ t !50, dw6~ t !dt50. ~55!

Equation~54! will be derived in Sec. V in the general case. It belongs to the class of stoch
Schrödinger equations studied in Refs. 11 and 12 and has been derived from the QJ dynam
Wiseman and Milburn8 ~see also Refs. 5 and 9! in the case of a mode in a decaying cav
~corresponding here tog150!. It can actually be derived directly from the stochastic dynamics
Sec. III B, Eqs.~23!–~26!, with the probabilities~27!, in the limit ueu→`, uhu→0, uehu5const.,
under assumption~28! with k50.31 A related equation with complex Wiener processes has b
studied in Ref. 10.

Rigo and Gisin26 have shown that the stochastic Schro¨dinger equation~54! preserves squeeze
states. Since~54! actually differs from the equation considered by these authors by some
tional phase factorse6 iu, and the explicit solution of the evolution equations for the squeez
parameters is not given in Ref. 26, we briefly recall here their derivation. We use the Itoˆ formalism
of stochastic differential equations,30 whereas Stratanovich formalism was used in Ref. 26. I
convenient to characterize squeezed states by the following criterion:

uc&5iciua,j5re2if&⇔~a2Ga†2b!uc&50, G52e2if tanh~r !, b5a2Ga* . ~56!

The family of the squeezed states is invariant under~54! if uc&1udc& remains a squeezed state f
any uc&5ua,j&, i.e., (a2Ga†2dG a†2b2db)(uc&1udc&)50. This is equivalent to26

@a2Ga†,D~c!#uc&2~dG a†1db!D~c!uc&5~dG a†1db!uc&, ~57!

whereD(c) is the operator inside the square brackets in~54!. The left-hand side is found to be

S 2
g11g2

2
~a1G a†!dt1R^eiua†&~g1eiudt1g2e2 iuG dt1Ag1db dw11Ag2db dw2!

1Ag1 eiu~2a†db dw11dw1!1Ag2e2 iu~2a db dw21G dw2! D uc&. ~58!

We have thrown away all terms dG dw6 since dG is proportional to dt. This is because, by
inspection of~58!, the terms containing the noises dw6 on the left-hand side of~57! are propor-
tional to uc&. Multiplying both members of~57! by dw6 and using~55! and ~58! gives

db dw15Ag1eiudt, db dw25Ag2e2 iuG dt. ~59!

Now we use the well-known identityS(2j)D(2a)aD(a)S(j)5a coshr1G a† coshr1a, where
S(j)5exp(j*a2/22ja†2/2) andD(a)5exp(aa†2a*a) are, respectively, the squeezing and t
displacement operators.2 The squeezed stateuc& is equal toD(a)S(j)u0&. Let us multiply the two
members of~57! by S(2j)D(2a) and substitute~58! and ~59! into this equation. This leads to
the two coupled stochastic differential equations:
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dG52e2iu~11e22iuG!~g11g2e22iuG!dt,
~60!

db52S g21g1

2
1g2e22iuG Db dt12R~eiua* !~g1eiu1g2e2 iuG!dt

1Ag1eiudw11Ag2e2 iuG dw2 .

These equations are equivalent to~57! and have a solution. Hence the squeezed statesua,j& form
an invariant family under the quantum state diffusion dynamics, anda and j evolve in time
according to~60!.

We now obtain the squeezing amplitudesr (t) and anglesf(t) of the squeezed states b
solving ~60!. They are determined by the first equation:

G~ t !52e2iu
g1e(g22g1)t1c

g2e(g22g1)t1c
52e2if(t) tanh~r ~ t !!, ~61!

where c is an arbitrary complex constant. Thusr (t) and f(t) are deterministic, unlikea(t),
which is given by the second equation. Going back to the Schro¨dinger picture, one has fo
t(g22g1)@1:

tanh~r ~ t !!.
g1

g2
5expS 2

v

kBTD ,

~62!
f~ t !.u2vt.

It is worth noticing that perfect squeezing@r (t)→`# is obtained in thehigh temperature limit
kBT@v. The rate (g22g1)21 of convergence of tanhr(t) to tanhr̄5exp(2v/kBT) also tends to
infinity in this limit. Since the number of photons in the cavity becomes very large at very
temperatures and long times, the perturbative approximation~28! should however break down a
some point. This can put a limitation on the attainment of very larger (t). A more detailed study
of this apparently surprising result is the object in a separate work.31

As stated previously, the second equation in~62! agrees quite well with the results of th
numerical simulations of Fig. 8. Using the minimum mean square deviationDx25e22r /4 of
squeezed states2 yields the time averageDx2:

Dx2.
g22g1

4~g21g1!
. ~63!

In the particular case of an initial coherent stateuc(0)&5ua&, the constantc is equal to2g1 , so
that ~62! is exact at all timest>0 and

Dx2~ t !.
g22g1

4g214g1~122e2(g22g1)t!
. ~64!

This solution is compared in Fig. 7 with the numerical results forueu;20. The exact value ofDx2

is close to the approximated value 1/12 obtained from~63! for g1 /g251/2 ~left-hand side of Fig.
7!. It is a bit higher than the theoretical prediction 1/28.0.0357 forg1 /g253/4 ~right-hand
side!. For 50<e<100, one has a better agreement, as seen in Fig. 6. Hence the dynamics
mode is well described by the quantum state diffusion equation~54! for e>50, at this temperature

V. STOCHASTIC SCHRÖDINGER EQUATIONS

In this section we discuss the mathematical link between the quantum jump dynamics o
II and various stochastic Schro¨dinger equations found in the literature. The analysis is done
arbitrary open quantum systems having a Lindblad-type dynamics.
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A. Linear quantum jump dynamics

A linear version of the QJ dynamics of Sec. II, in which the random wave function is
normalized at each time stepdt, has been introduced in Ref. 18. The unormalized wave func
uw(t)& of the open systemS satisfies the following Itoˆ stochastic differential equation:

udw&5F2 i ~H1K !dt1(
m

~Wm21!dNm~ t !G uw~ t !&, ~65!

whereH is the Hamiltonian ofS, the jump operatorsWm are related to the Lindblad operatorsLm

by

Lm5Agm~Wm21!, ~66!

and dNm(t)50,1 are the stochastic increments of independent Poisson processesNm with param-
etersgm . These increments have meanM dNm(t)5gm dt and satisfy the Itoˆ rules:

dNm~ t !dNn~ t !5dn,mdNm~ t !, dNm~ t !dt50. ~67!

Equation~65! has been first considered by Belavkin14 with some jump operatorsWm proportional
to Lm @the relation with the jump operators~66! is given by the transformation~8!#. It has also
been considered independently in Ref. 16. It is easy to show thatr(t)5Muw(t)&^w(t)u obeys the
Lindblad equation~1! if K is appropriately chosen. In fact, by~65! and ~67!,

dr5M~ udw&^wu1uw&^dwu1udw&^dwu!

52 i @H,r#dt2 iKr dt1 irK† dt1(
m

gm~~Wm21!r1r~Wm
† 21!1~Wm21!r~Wm

† 21!!dt.

Replacing~66! into this equation yields

dr52 i @H,r#dt1(
m

S LmrLm
† 2

1

2
$Lm

† Lm ,r% Ddt,

provided that

K5
1

2i (m gm~Wm
† 11!~Wm21!5

1

2i (m ~Lm
† Lm12AgmLm!. ~68!

To give a physical meaning to the linear stochastic dynamics, one must choose the jump ragm

equal to the probability per unit time of the corresponding transitions. These are given b
Fermi golden rule to second order in perturbation theory. For instance, for the field mode
sidered in Sec. III,g6 are the damping rates~33! for the absorption and emission of a photon
the atoms.

Let us write ~65! in the ‘‘dissipative interaction picture’’uw̃(t)&5U(t)uw(t)&, whereU(t)
5exp(it(H1K)). It reads udw̃&5(m(W̃m(t)21)dNm(t)uw̃(t)&, with W̃m(t)5U(t)WmU(2t).
This implies:

uw̃~ t !&5W̃mp
~ tp!¯W̃m1

~ t1!uw~0!&,

where 0<t1<¯<tp<¯ are the jump times~times such that(m dNm(t)51!, tp<t,tp11 , and
mq is the index of the jump occurring at timetq ~dNmq

(tq)51, q51,...,p!. Hence the stochastic
Schrödinger equation~65! admits the solution:

uw~ t !&5e2 i (t2tp)(H1K)Wmp
e2 i (tp2tp21)(H1K)

¯Wm1
e2 i t 1(H1K)uw~0!&, tp<t,tp11 . ~69!
                                                                                                                



the ex-

ly

the
the

ar QJ

I
ier

e
the

3531J. Math. Phys., Vol. 43, No. 7, July 2002 Quantum jump dynamics in cavity QED

                    
In other words, the evolution of the quantum state may be computed as follows.
~1! If there is a jumpm betweent and t1dt, then

uw~ t1dt !&5Wmuw~ t !&. ~70!

This occurs with a probabilitygmdt independent ofuw(t)&.
~2! If no jump occurs betweent and t1dt, then

uw~ t1dt !&5~12 i dt~H1K !!uw~ t !&. ~71!

If g5(m gm,`, the time delayst2tp ,tp2tp21 ,...,t1 and the jump indicesmp ,...,m1 in ~69!
are independent random variables. The time delays are equally distributed, according to
ponential lawe2gs ds. Because of the independence of the Poisson processesNm , the probability
that mq5m is gm /g.

It has been proven in Ref. 18 that, under appropriate hypothesis onWm and gm , the wave
function ~69! is still well defined~as some limit of the right-hand side! if g5`, in which case
infinitely many jumps occur between 0 andt. This result is important for electrons in strong
disordered solids, wherem5( i , j ) labels pairs of eigenstatesu i &,u j & of the electronic Hamiltonian,
and Li j is equal or ‘‘close’’ to Ag i j u j &^ i u, i.e., Wi j .11u j &^ i u ~locality condition!. Then, the
number of jumps in a finite interval becomes infinite in the infinite volume limit, due to
divergence of the double sum( i , j g i j . In this case, the presence of the identity operator inside
parentheses in~66! is necessary for the mathematical definiteness ofuw(t)&.

B. Nonlinear quantum jump dynamics

The nonlinear QJ scheme of Sec. II can be deduced from the above-mentioned line
dynamics in the following way. By comparing~9! and ~4! with ~70! and ~71!, it is clear that, for
a given realization of the jumps, the normalized wave function

uc~ t !&5
uw~ t !&
iw~ t !i ~72!

evolves according to the nonlinear QJ scheme withlm5Agm. However, it was argued in Sec. I
that the density matrixr(t) is the mean value ofuc(t)&^c(t)u, whereas it has been seen earl
thatr(t)5Muw(t)&^w(t)u. This means that the probabilityP8 attached touc(t)& is different from
the probabilityP attached touw(t)&, that is, to the Poisson processesNm . This change of prob-
ability P→P8 provides the link between the two random evolutions foruw(t)& and uc(t)&. We
define it as follows. Let us denote byM8 and M the mean values with respect toP8 and P,
respectively. LetF be an arbitrary~operator-valued! stochastic process such thatF(t) depends
only upon the realizations of the jump times up to timet. SuchF is said to beadaptedto the
filtration of the Poisson processesNm .33 We ask that

M8~F~ t !!5M~F~ t !iw~ t !i2! ~73!

for any such processF. TakingF(t)5uc(t)&^c(t)u, this implies in particular

r~ t !5M8uc~ t !&^c~ t !u5Muw~ t !&^w~ t !u. ~74!

Let us compute the probability of occurrence of a jumpm between timest andt1dt for the new
probability P8:

dpm~ t !5M8~dNm~ t !uc~ t !!. ~75!

The right-hand side is the conditional~mean! expectation ofdNm(t) given uc(t)&, for the prob-
ability P8. Indeed, the (P8) probability of a jump betweent and t1dt depends upon the wav
function uc(t)& at time t. Let F(t) be an arbitrary stochastic force adapted to the filtration of
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Nm’s. ThenF(t)dNm(t) depends upon the realizations of theNm’s until time t1dt @recall that
dNm(t)5Nm(t1dt)2Nm(t)]. Therefore, replacingF(t) by F(t)dNm(t) in ~73!,

M8~F~ t !dNm~ t !!5M~F~ t !dNm~ t !iw~ t1dt !i2!5M~F~ t !dNm~ t !iWmuw~ t !&i2).

Formula~70! together with the fact thatdNm(t)50,1 have been used in the second line. By
independence of the forward incrementdNm(t) andF(t)iWmuw(t)&i2, one gets

M8~F~ t !dNm~ t !!5M~dNm~ t !!M~F~ t !iWmuw~ t !&i2)5gmdtM8~F~ t !iWmuw~ t !&i2iw~ t !i22).
~76!

But F(t) is arbitrary, thus~76! implies the identity of the conditional expectations:

dpm~ t !5M8~dNm~ t !uc~ t !!5gmdtM8~ iWmuw~ t !&i2iuw~ t !&i22uc~ t !)5gmdtiWmuc~ t !&i2,
~77!

in accordance with~12!. As a result, the stochastic evolution of the normalized wave func
uc(t)& with probability P8 coincides with that described in Sec. II forlm5Agm. It is moreover
given by the nonlinear stochastic Schro¨dinger equation:15

udc&5F2 i S H1K1
1

2
^K†2K& tDdt1(

m
S Wm

A^Wm
† Wm& t

21D dNm~ t !G uc~ t !&, ~78!

with ^O& t5^c(t)uOuc(t)&. This equation is readily obtained by computinguc(t1dt)& from ~70!
and ~71!.

C. Linear quantum state diffusion

It has been shown by Carmichael and Wiseman and Milburn5,8 that the nonlinear QJ dynamic
of the quantum field considered in Sec. III, withg150, is well described in limitueu→` by a
quantum state diffusion~QSD! stochastic equation involving real Wiener processes~white noise!.
The linear version of QSD is obtained in this section in the more general setting of arb
Markovian quantum open systems, by taking the limit of infinite jump ratesgm→` in the linear
QJ dynamics of Sec. V A.

Following Wiseman and Milburn,8 we introduce a small dimensionless parameter«.0 that
will tend to zero. Our goal is to increase up to infinity the ratesgm of the jumps in the linear QJ
dynamics, without modifying the master equation giving the average dynamics. Hence the
blad operatorsLm are here considered asfixed, i.e., independent of«. So are the damping rate
contained in the master equation, given by some«-independent ratesḡm.0. The jump ratesgm

are assumed to go to infinity like«24:

gm5«24ḡm . ~79!

The magnitude of the negative power of« is chosen for future convenience. Letuw(t)& be the
solution of the linear QJ stochastic equation~65!. We are interested in the variation ofuw(t)& on
a time intervalDt@gm

21 such that infinitely many jumps occur betweent and t1Dt in the limit
«→0. On the other hand, we wantDt to be small enough so that the changeuDw&5uw(t1Dt)&
2uw(t)& of the wave function goes to zero as«→0. A possibleDt realizing these two conditions
is

Dt5«3ḡ21, ~80!

whereḡ5(m ḡm is the sum of the fixed damping rates. Indeed, from~66!,

Wm511«2ḡm
21/2Lm . ~81!
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Since theLm are «-independent, the impact of each jump onuw& is of order«2. Moreover, the
number of jumpsm betweent andt1Dt is of ordergmDt5«21ḡm /ḡ. This means that the impac
of the jumps betweent and t1Dt is of order«213«25«, which is indeed small for small«.

Let DNm(t) be the number of jumpsm in the time interval@ t,t1Dt#. By dividing this
interval into smaller intervals@tn ,tn11# of length gm

21 , DNm(t) can be written as a sum o
gmDt5O(«21) independent random variablesNm(@tn ,tn11#) ~number of jumps betweentn and
tn11!, which have mean and variance 1. Therefore, by the central limit theorem,

Dzn5
DNm2gmDt

Agm

~82!

can be approximated for small« by a Gaussian random variable of zero mean and varianceDt @the
convergence as«→0 actually holds for a fixed«-independentDt; for Dt given by~80!, one gets
an infinitesimal increment dzn#. Shifting t by Dt or changingm leads to independent incremen
DNm and Dzm . It follows that Dzm are the infinitesimal increments of some independent
Wiener processeszm in the limit «→0. Indeed, a Wiener processz is by definition a stochastic
process with independent incrementsDz5z(t1Dt)2z(t) distributed according to a Gaussian la
of varianceDt. The convergence of (Nm2gmt)/Agm to a Wiener process can be shown mo
rigorously by using a theorem proven in Ref. 32.

The next step consists in evaluating both the mean and the fluctuating parts ofuDw& to leading
order in«. Let p5(m DNm(t) be the total number of jumps betweent and t1Dt. We denote by
sq5tq112tq , q51,...,p21, the time delays between consecutive jumps and sets05t12t and
sp5t1Dt2tp . By ~79! and~80!, p andsq have mean valuesgDt andg21 of order«21 and«4,
respectively. The generalized Hamiltonian~68! can be decomposed into two parts:

K5K02 i«22R, ~83!

whereK0 andR are«-independent:

K05
1

2i (m Lm
† Lm , R5(

m
AḡmLm . ~84!

Let us setVq5ḡmq

21/2Lmq
if q51,...,p andV050. With the help of~69!, ~81!, and~83!, one obtains

uDw&5H )
q5p

0 F S 12«22sqR1
1

2
«24sq

2R22 isq~H1K0!1O~«6! D ~11«2Vq!G21J uw~ t !&,

~85!

where the product is taken in decreasing order inq. The terms of order« in the expansion of the
product are

uDw& ( f )5 (
q50

p

~2«22sqR1«2Vq!uw~ t !&

5(
m

~2«22Dtḡm
1/21«2DNm~ t !ḡm

21/2!Lmuw~ t !&5(
m

Dzm~ t !Lmuw~ t !&. ~86!

These are the leading order fluctuating forces~of zero mean!. Since fluctuating terms of highe
order should not contribute in the limit«→0, we may replace the product in~85! by its mean value
in computing the terms of order«2 and more. This simplifies greatly the computation, because
order of the operators in the product then becomes of no importance. In fact, by the r
following ~71!, the random variabless0 ,...,sp , m1 ,...,mp are independent, so that the mean of t
product is the product of the means. Moreover,MVq5(m(gm /g)ḡm

21/2Lm5R/ḡ. Therefore, one
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can commute all operators in the product when computing the mean value. It is easy to sho
the terms of order«2 cancel on average. The terms of order«3 are found to be proportional toDt:

uDw& (d)5MuDw&52 i ~H1K0!Dt~11O~«!!. ~87!

This is the drift contribution touDw&.
The previous computation shows that the QJ dynamics is transformed as«→0, if one looks at

it with the time resolutionDt5ḡ21«3, to a diffusive dynamics given by the linear Itoˆ stochastic
differential equation:12,15,17

udw&5F2 i ~H1K0!dt1(
m

Lmdzm~ t !G uw~ t !&. ~88!

Here K05(m Lm
† Lm/2i and dzm(t) are the infinitesimal increments of independentreal Wiener

processeszm , which have zero mean and satisfy the Itoˆ rules:

dzm~ t !dzn~ t !5dn,m dt, dzm~ t !dt50. ~89!

D. Nonlinear quantum state diffusion

We have so far determined the linear stochastic Schro¨dinger equation foruw(t)&. The corre-
sponding nonlinear equation for the normalized wave functionuc(t)& is obtained by means of th
above-mentioned change of probabilityP→P8. This derivation of the nonlinear QSD equatio
from the linear one is actually well-known.12,28 It is slightly more complicated than for the Q
dynamics, becauseudc& is to be expressed in terms of Wiener processes for the new proba
P8. This can be done by using Girsanov’s theorem,33 which states that a Wiener differential dwm

for P8 is obtained by adding an appropriate drift differential to dzm . For the change of probability
defined by~73!, the conditional~mean! expectation of dP8/dP given uw(t)& is iw(t)i2. The drift
differential is then2iw(t)i22diwi2dzm ~for more details, see Refs. 12, 28!. From ~88! and~89!,
one gets

diwi252iw~ t !i2(
m

R^Lm& tdzm , ~90!

which implies thatiw(t)i2 is a local martingale. Thus,

dwm~ t !5dzm~ t !22R^Lm& tdt. ~91!

According to Itô’s formula,30 one has

udw&
iwi 5

d~Aiwi2uc&)
iwi 5udc&1S diwi2

2iwi 2
diwi2diwi2

8iwi3 D uc&1udc&
iwi .

The multiplication of both members by dzm leads, with the help of~88!–~90!, to dzmudc&5(Lm

2R^Lm& t)uc&dt. Going back to the original equation, it follows:

udc&5F2 i ~H1K0!dt1(
m

R^Lm& tS 2Lm1
3

2
R^Lm& tDdt1(

m
~Lm2R^Lm& t!dzmG uc&.

The nonlinear QDS equation is obtained by replacing~91! into this equation:11,12,15

udc&5F2 i ~H1K0!dt1(
m

R^Lm& tS Lm2
1

2
R^Lm& tDdt1(

m
~Lm2R^Lm& t!dwm~ t !G uc~ t !&.

~92!
                                                                                                                



rving
If
s
ed

malized

tomic
st with
g by
caying
n the

e
f

play
laser
riven
sult,

verage
a

rature
, the

eezed
small

arge
s move

3535J. Math. Phys., Vol. 43, No. 7, July 2002 Quantum jump dynamics in cavity QED

                    
Let us come back to the mode dynamics of Sec. III. If one sticks to the norm-prese
QJ dynamics, the jump operatorsW6 in ~31! are defined up to a multiplicative constant.
k50, ã.a, they can be obtained, up to such a constant, from the Lindblad operatorL1

5Aḡ1a† andL25Aḡ2a by means of formula~66!, provided that the transition rates are replac
by some effective ratesg65ḡ6ueu2 andL6 are multiplied by the phase factorse6 iu, u5arge.
Thus the above-presented analysis can be used to compute the QSD equation for the nor
mode wave functionuc(t)& in the limit of large laser fieldsueu→`. The introduction of the phase
factorse6 iu in ~92! leads to the QSD equation~54!.

E. Links between the stochastic Schro ¨ dinger equations

The summary of the results of this section is given in Fig. 10. The stochastic Schro¨dinger
equations in Itoˆ form for the linear and nonlinear QJ models are, respectively, Eqs.~65! and~78!,
and those for the linear and nonlinear QSD models are, respectively, Eqs.~88! and ~92!.

VI. CONCLUSION

We have shown that the nonlinear quantum jump~or Monte Carlo wave function! model
applied to a simple optical system~damped harmonic oscillator at finite temperatureT! can be
generalized to describe the evolution of the quantum field in a cavity monitored by an a
beam of two level atoms. These atoms cross one by one the cavity and interact at its exit fir
a classical laser fieldE, and then with a detector measuring their states. This kind of monitorin
measurements is similar to that obtained by homodyne measurement of the field in a de
cavity,5,8 the photon counting on the output field being replaced by the measurements o
atoms. Actually, if all atoms are sent in their ground state (T50), the stochastic evolution of th
wave function of the quantum field~quantum trajectories! is the same for the two kinds o
monitoring. If the atoms form a beam of randomly prepared atoms with temperatureT.0, they
may also emit photons in the cavity and thus a new kind of quantum jump comes into
~creation of a photon!. This has notable effects on the quantum trajectories. The effect of the
field E is to modify the two jump operators. In fact, the measured atomic transitions can be d
by this field as well as by the interaction with the studied quantum field in the cavity. As a re
E also modifies the generalized Hamiltonian that rules the evolution between jumps. The a
over all realizations of the measurements leads to anE-independent dynamics, described by
density matrix satisfying the master equation of the damped harmonic oscillator with tempe
T. Whereas the density matrix converges at large times to the Bose–Einstein equilibrium
individual quantum trajectories for given realizations experience localization toward squ
states at largeE. The squeezing parameters evolve to some almost constant values, up to
fluctuations going to zero in the infinite laser intensity limit. This localization occurs at l
enough times, for any initial state of the quantum field. The centers of the squeezed state

FIG. 10. The links between the different stochastic Schro¨dinger equations.
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randomly in the complex plane, in such a way that the time averages of the quantum proba
to find n-photons are distributed according to Bose–Einstein~ergodicity!. The squeezing ampli-
tude r and phasef are controlled, respectively, by the temperatureT and the laser fieldE. r is
found to increase withT, which means that the squeezing is enhanced by increasing the tem
ture of the atomic beam; however, the waiting time beforer reaches its almost stationary value
also temperature increasing. On the other hand, no squeezing is obtained atT50, and localization
toward Fock states occurs ifE50. As in the case of the homodyne measurement, the quan
trajectories are given in the infiniteE limit by a so-called quantum state diffusion~QSD! stochastic
Schrödinger equation, involving real white noise.5,8,11,12A precise mathematical derivation of th
equation from the quantum jump dynamics was performed in Sec. V for arbitrary open qua
systems having a Lindblad-type dynamics. More precisely, this derivation starts from a
version of the QJ dynamics proposed in Ref. 18, in which the wave function is not normaliz
each step, which is proven to be related to the nonlinear QJ model by a simple chan
probability.
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Quantum models related to fouled Hamiltonians
of the harmonic oscillator
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We study a pair of canonoid~fouled! Hamiltonians of the harmonic oscillator which
provide, at the classical level, the same equation of motion as the conventional
Hamiltonian. These Hamiltonians, sayK1 and K2 , result to be explicitly time
dependent and can be expressed as a formal rotation of two cubic polynomial
functions,H1 andH2 , of the canonical variables~q,p!. We investigate the role of
these fouled Hamiltonians at the quantum level. Adopting a canonical quantization
procedure, we construct some quantum models and analyze the related eigenvalue
equations. One of these models is described by a Hamiltonian admitting infinite
self-adjoint extensions, each of them has a discrete spectrum on the real line. A
self-adjoint extension is fixed by choosing the spectral parameter« of the associ-
ated eigenvalue equation equal to zero. The spectral problem is discussed in the
context of three different representations. For«50, the eigenvalue equation is
exactly solved in all these representations, in which square-integrable solutions are
explicitly found. A set of constants of motion corresponding to these quantum
models is also obtained. Furthermore, the algebraic structure underlying the quan-
tum models is explored. This turns out to be a nonlinear~quadratic! algebra, which
could be applied for the determination of approximate solutions to the eigenvalue
equations. ©2002 American Institute of Physics.@DOI: 10.1063/1.1479300#

I. INTRODUCTION

A few years ago, in Ref. 1 a method was devised to find alternative Lagrangians for
time-dependent oscillator

q̈1v~ t !2q50, ~1!

whereq5q(t), v(t) is a given differentiable function, and the dot stands for time derivative.
method, which is based on the concept of fouling transformation,2 is reviewed in Sec. II.

In this paper we study certain nonconventional quantum Hamiltonians corresponding
classical fouled Hamiltonians associated with the Lagrangians derived in Ref. 1. This investi
is motivated by the fact that these nonconventional quantum Hamiltonians, having a polyn
structure in the operatorsa anda†, may play an important role in the context of quantum opti
especially in handling coherence and squeezing of multiphoton systems.

All the fouled Lagrangians of the hierarchy found in Ref. 1 lead to the same equatio
motion ~1! as occurs for the conventional LagrangianL151/2(q̇22v(t)2q2) @see~5!#. In Sec. III
the fouled HamiltoniansK6 , related to the simplest fouled Lagrangians,L2

(1) andL2
(2) , given by

~23! and~24! are written down. By way of example, we have limited ourselves to considering
standard~harmonic! oscillator wherev(t)[l is a constant. Furthermore, it is shown that~at the
classical level!, as one expects,K6 reproduce the same equation of motion coming from
conventional HamiltonianH051/2(p21l2q2). For brevity, we shall deal withK1 only. It turns

a!Also at: Dipartimento di Fisica dell’Universita` di Salerno, 84100 Baronissi, Salerno, Italy.
b!Electronic mail: soliani@le.infn.it
35380022-2488/2002/43(7)/3538/16/$19.00 © 2002 American Institute of Physics
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out thatK1 ~see Sec. IV! can assume two possible forms, denoted byK1
(1)[K1 andK1

(2)[K2 @see
~39! and~40!#, which are independent but depend explicitly on time via the coefficients coslt and
sinlt. Consequently,K1 andK2 can be formally interpreted as the result of arotation ~of an angle
lt! of the quantitiesH15Al(p21l2q2)q andH25(2/3Al)p3, which arenot explicitly depen-
dent on time. In other words, we haveK1

21K2
25H1

21H2
2, and

$K1 ,K2%q,p5$H1 ,H2%q,p

~see Sec. IV!, where the symbol$,% denotes the Poisson bracket with respect to the canon
variables~q,p!, namely

$A,B%q,p5
]A

]q

]B

]p
2

]A

]p

]B

]q
.

In Sec. V the canonical quantization procedure based on a bosonic couple of annihilatio
creation operators,a anda† ~with @a,a†#51!, is applied to the fouled HamiltoniansK1 andK2 .
In such a wayK1 and K2 are converted into a pair of Hamiltonian operators, sayK1 and K2 .
@Classically, as we know,K1 andK2 provide the same equation of motion~1!.# Furthermore, since
the canonical quantization procedure does affect only the cubic polynomial functions of~q,p!,
namelyH1 and H2 , here we limit ourselves to study the operatorsH1 and H2 , which are the
quantized versions ofH1 and H2 , respectively. The arisingquantum modelsare investigated in
Secs. VI and VII.

Precisely, in Sec. VI we show that the quantum model coming fromH1 gives rise to a linear
second-order eigenvalue equation of the Sturm–Liouville type~in the harmonic oscillator excita
tion number representation, orn-rep!.

An interesting feature of the operatorH1 is that it is connected with an undetermined Ha
burger moment problem.3–5 We show that this operator has deficiency indices~1,1! and allows a
one-parameter family of self-adjoint extensions whose spectra are discrete and with no p
common. This goal has been achieved essentially by associating the operatorH1 with a Jacobi
matrix.3,5 A possible physical interpretation of the operatorH1 is provided by fixing, among the
infinite self-adjoint extensions, the extension corresponding to«50, where« denotes the spectra
parameter. In this case the eigenvalue equations forH1 can be solved exactly in all the following
representations: the harmonic oscillator excitation number representation~n-rep!, the coordinate
space representation~q-rep!, and the Fock–Bargmann holomorphic function representa
~z-rep!.6–8 In all these representations, for«50 square-integrable solutions of the eigenva
equations are explicitly obtained.

In Sec. VII we deal with the eigenvalue equation forH2 . The analysis of this Hamiltonian is
trivial. It is exactly solvable,9 its spectrum is on the whole line, and the related eigenfunctions
be easily found. Nevertheless,H2 has been involved in the construction of two quantum mod
described by the operatorsH3 andH4 @see~57! and~58!#, whereH25H31H4 . One can attribute
to H3 a physical meaning. Specifically,H3 can be interpreted as a special case of a clas
Hamiltonians appearing in the higher order nonlinear optical processes.5,10–12This Hamiltonian is
involved in the construction of third power squeezed states.5,11,13

On the other hand, as we can see in Sec. VII, the operatorH4 is closely related toH1 so that
the solutions of the corresponding eigenvalue equation can be derived from the solutions
eigenvalue equation forH1 .

In Sec. VIII some constants of motion involving the operatorsH1 , H2 , H3 , H4 , andH5

;a31a†3 are derived. Section IX contains a discussion on a possible algebraic framework
could be employed to analyze Eq.~69!. This approach resorts to a quadratic algebra in term
which the operatorH1 can be naturally expressed. Finally, in Sec. X a few concluding remarks are
presented, while in the Appendix a detail of a calculation is reported.
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II. FOULED LAGRANGIANS

We recall that a fouling transformation is a transformation under which the coordinat
configuration space are preserved:

Q5q, ~2!

while

Pn5Pn~q,p,t !; ~3!

Pn being a polynomial of degreen in the variablesq andp5]L1 /]q̇5q̇, i.e.,

Pn5(
j 50

n

aj p
n2 jqj , ~4!

where

L15 1
2~ q̇22v~ t !2q2! ~5!

is the conventional Lagrangian, andaj5aj (t) are ~real! time-dependent coefficients.
In Ref. 1 it was proven that the functionLn5Ln(q,q̇,t) expressed by

Ln5(
j 50

n
1

n2 j 11
aj q̇

n2 j 11qj1~ ȧn2v2an21!
qn11

n11
~6!

satisfies

]Ln

]q̇
5Pn ,

]Ln

]q
5 Ṗn . ~7!

The compatibility condition for these equations provides

ȧ052
n21

n
a1 , ȧ j5~n2 j 11!v2aj 212~ j 11!

n2 j 21

n2 j
aj 11 , ~8!

with j 51,2,...,n21. Furthermore, we have

d

dt

]Ln

]q̇
2

]Ln

]q
5I n~ t !~ q̈1v~ t !2q!, ~9!

whereI n(t) is a time-dependent constant of motion, viz., (d/dt)I n(t)50, given by

I n~ t !5(
j 50

n

~n2 j !aj p
n2 j 21qj5

]2Ln

]q̇2 ~10!

for any n>1.
From Eq.~9! we deduce that corresponding to the solutionq of the generalized oscillator~1!,

Ln satisfies the Euler–Lagrange equation. We notice that forn51, Eq.~6! gives the conventiona
Lagrangian~5! ~with a051 anda150!. The related invariant isI 15]2L1 /] q̇

251.
Hereafter, by way of example, we are interested in the casen52. Then, from~6! and~10! we

obtain

L25 1
3a0q̇31 1

2a1q̇2q1a2q̇q21 1
3~ ȧ22v2a1!q3, ~11!
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I 252a0p1a1q, ~12!

where@see~8!#

ȧ052 1
2a1 , ȧ152v2~ t !a0 , ~13!

namely

ä01v2~ t !a050. ~14!

The general solution of Eq.~14! can be written in the form

a05&sS c1 cos
u

2
1c2 sin

u

2D . ~15!

wherec1 , c2 are constants, ands, u are defined by

s̈1v2~ t !s5
1

4s3 , ~16!

and

u̇5
1

s2 . ~17!

In the following we shall limit ourselves to the choicev(t)5l5const. Consequently, Eqs
~16! and ~17! admit the solution

s5
1

A2l
~18!

and

u52lt. ~19!

Equation~15! has the two independent solutions

a0
~1!5

1

Al
coslt, a0

~2!5
1

Al
sinlt, ~20!

while the corresponding valuesa1
(1) , a1

(2) are @see~13!#

al
~1!52Al sinlt, a1

~2!522Al coslt. ~21!

On the other hand, the expressions ofa2
(1) , a2

(2) turn out to be~see Ref. 1!

a2
~1!5l3/2coslt, a2

~2!5l3/2sinlt. ~22!

Now, using~20!–~22!, from ~11! we obtain the two alternative fouled Lagrangians,

L2
~1!5

1

3Al
cosltq̇31Al sinltq̇2q1l3/2cosltq̇q22l5/2sinltq3, ~23!
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L2
~2!5

1

3Al
sinltq̇32Al cosltq̇2q1l3/2sinltq̇q21l5/2cosltq3, ~24!

which furnish the two independent invariants

I 2
~1!5

]2L2
~1!

]q̇2 5
2

Al
cosltq̇12Al sinlt q, ~25!

I 2
~2!5

]2L2
~2!

]q̇2 5
2

Al
sinltq̇22Al coslt q, ~26!

respectively@see~10!#.
Equations~25! and ~26! provide the general solutionq and the momentump5q̇ of the

harmonic oscillator (v[l), i.e.,

q5
1

2Al
~ I 2

~1! sinlt2I 2
~2! coslt !, ~27!

p5 ṗ5
Al

2
~ I 2

~1! coslt1I 2
~2! sinlt !, ~28!

from which, as one expects,

H05
1

2
~p21l2q2!5

l

8
@~ I 2

~1!!21~ I 2
~2!!2#5const, ~29!

whereH0 is the conventional Hamiltonian.

III. FOULED HAMILTONIANS

At this point, we build up the Hamiltonian corresponding to the LagrangianL2 given by~11!.
Following the procedure of Ref. 1, we get

K652
a1

2a0
qP6

2

3
a0F S a1

2

4a0
22

a2

a0
D q21

P

a0
G3/2

1F a1

6a0
S 3a22

a1
2

2a0
D 2

1

3 ~ ȧ22l2a1! Gq3,

~30!

where

P5a0p21a1qp1a2q2. ~31!

For the sake of definiteness, later we shall study the HamiltonianK1 only.
The Hamilton equations forK1 read

q̇52
a1

2a0
q1

I 2

2a0
, ~32!

Ṗ5
a1

2a0
P2

a1
224l2a0

2

4a0
2 I 2q23a1S l22

a1
2

12a0
2D q2, ~33!

where the relation
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S a1
2

4a0
22

a2

a0
D q21

P

a0
5S I 2

2a0
D 2

~34!

with a25l2a0 has been used~see Ref. 1!.
By developing Eqs.~31! and ~32! with the help of~12! and ~30!, we arrive at

I 2~ q̈1l2q!50, ~35!

which tells us that the fouled HamiltonianK1 , as it occurs for the related fouled LagrangianL2

@see~9!#, gives rise to the same equation of motion emerging from the conventional Hamilto
~29!.

By virtue of ~33!, the Hamiltonians~30! take the form

K15 1
2a1~p21l2q2!q1 2

3a0p3, ~36!

K252
3

2
a1p2q2

a1
2

a0
q2p1S a1

2
l22

a1
3

6a0
2D q32

2

3
a0p3. ~37!

One can see that

K65Pp2L2 , ~38!

whereP andL2 are given by~31! and ~11!.

IV. THE FOULED HAMILTONIANS K¿
„1… AND KÀ

„2…

By using~20!–~22!, from ~36! we derive the pair of~explicitly time-dependent! Hamiltonians

K1
~1![K15H1 sinlt1H2 coslt, ~39!

K1
~2![K252H1 coslt1H2 sinlt, ~40!

whereH1 andH2 are defined by

H15Al~p21l2q2!q52AlH0q, ~41!

H25
2

3Al
p3. ~42!

One can check straightforwardly that the following evolution equations:

K̇15$K1 ,H0%q,p1
]K1

]t
, ~43!

K̇25$K2 ,H0%q,p1
]K2

]t
, ~44!

Ḣ15$H1 ,H0%q,p , ~45!

Ḣ25$H2 ,H0%q,p , ~46!

hold, whereH0 is given by~29! and

$H1 ,H0%q,p52AlpH0 , ~47!
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$H2 ,H0%q,p522
l2

Al
p2q. ~48!

We also have that the Poisson brackets betweenK1 , K2 andH1 , H2 concide, i.e.,

$K1 ,K2%q,p5$H1 ,H2%q,p . ~49!

This is a direct consequence of the rotation form of the transformations~39! and ~40!.

V. QUANTIZATION

Hereafter, we shall put for simplicityl5\51.
In order to quantize the fouled Hamiltonians~39! and ~40!, let us introduce the operators

q̂5
1

&
~a1a†!, p̂52

i

&
~a2a†!, ~50!

wherea anda† denote a~boson! annihilation and a creation operator, respectively.
By means of~50!, we can write the operatorsH1 and H2 corresponding to the classica

functions~41! and ~42!. We obtain

H15&~a†2a1a†a21a†1a!, ~51!

H25
i

&
F1

3
~a32a†3!1~a†2a2a†a21a†2a!G , ~52!

with the help of the commutation rule

@a,a†#51 ~53!

or, in terms of the Heisenberg commutation relation:@ q̂,p̂#5 i .
Now let us use the representationq̂5x, p̂52 i (d/dx), so that the operatorsa anda† can be

written as@see~50!#

a5
1

&
S x1

d

dxD , a†5
1

&
S x2

d

dxD . ~54!

In terms of these quantities,H1 andH2 take the forms

H152S x
d2

dx2 1
d

dxD1x3, ~55!

and

H25
2i

3

d3

dx3 . ~56!

For later convenience, we shall report also in the representation~54! the following operators
appearing in~52!:

H3[
i

&

1

3
~a32a†3!5

i

2 F1

3

d3

dx3 1S x2
d

dx
1xD G , ~57!
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H4[
i

&
~a†2a2a†a21a†2a!5

i

2 F d3

dx32S x2
d

dx
1xD G . ~58!

In Sec. VI, we shall study the operatorsH1 and H2 by dealing with the correspondin
eigenvalue problems.

VI. SELF-ADJOINT EXTENSIONS OF THE OPERATOR H1

In order to clarify the quantum-mechanical meaning of the HamiltonianH1 , it is crucial to
establish whetherH1 enjoys self-adjoint type properties. In doing so, first let us recall that one
provide different representations for the operator~51!, which correspond to various forms of th
related eigenvalue equations. We shall consider the following representations: the harmonic
lator excitation number representation~n-rep!, the coordinate representation~q-rep!, and the
Fock–Bargmann holomorphic function representation~z-rep!.

For reader’s convenience, we shall summarize in the following the main properties of
representations.8

Let h denote the Hilbert space where the operatorsq̂, p̂ anda†, a act. In then- rep, the vectors
$un&% form a basis inh. The following relations

a5Anun21&, a†un&5An11un11&, a†aun&5nun& ~59!

hold.
On the other hand, in theq-rep a vectoruc& belonging to the spaceh is represented by a

coordinate function̂quc&5c(q) which is square-integrable:

E
2`

1`

uc~q!u2 dq,`. ~60!

The basic vectorun& is described by the function

^qun&5wn~q!5NnHn~q!expS 2
q2

2 D , ~61!

whereNn5(Ap2nn!) 21/2 andHn(q) is the Hermite polynomial of degreen. In theq-rep, formu-
las ~59! become the standard recursion relations for the Hermite polynomials.

In order to introduce the Fock–Bargmann representation~or z-rep!, let uc& be an arbitrary
normalized vector inh, namely

uc&5 (
n50

`

cnun&, ~62!

with ^cuc&5(n50
` ucnu251. Furthermore, taking into account the Glauber form

uz&5expS 2
uzu2

2 D (
n50

`
zn

An!
un&, ~63!

the stateuc& is completely determined by

^zuc&5expS 2
uzu2

2 Dc~ z̄!, ~64!

where
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c~z!5 (
n50

`

cnun~z!, ~65!

with un(z)5zn/An!. Owing to the condition(n50
` ucnu251, the series in~65! converges uniformly

in any compact domain of the complexz plane. Consequently,c(z) turns out to be an entire
holomorphic function in thez plane, and

ici25E exp~2uzu2!uc~z!u2 dm~z!^`, ~66!

where dm(z)5p21 dx dy, z5x1 iy .8

The scalar product of two entire functionsc1(z) and c2(z) obeying the condition~66! is
given by

^c1uc2&5E exp~2uzu2!c̄1~z!c2~z!dm~z!. ~67!

As proven by Bargmann,7 the Fock–Bargmann representation space with a scalar product
vided by~67! is really a Hilbert space. We observe also that in thez-rep, the operator solution fo
the commutation relation@a,a†#516 is

a→ d

dz
, a†→z. ~68!

Now let us consider the eigenvalue equation

~a†2a1a†a21a1a†!ux&5«ux&. ~69!

Starting from then-rep and following the lines of Ref. 5, let us put

ux&5 (
n50

f n~«!un& ~70!

into Eq. ~69!. By using Eq.~59!, after simple calculations we obtain the recursion formula

~n11!3/2f n11~«!2« f n~«!1n3/2f n21~«!50 ~71!

for n>1, and

f 1~«!5« f 0~«! ~72!

~the boundary condition!.
We remark that the sequence$ f n% is such that the series(n50u f nu2 converges, i.e., the se

quence$ f n%[( f 0 , f 1 , f 2 ,...) belongs to the Hilbert spacel 2.
To show this, first let us consider the case«50. Then, Eqs.~71! and ~72! provide

f 2n5~21!nF ~2n21!!!

~2n!!! G3/2

f 0 , ~73!

the odd terms being zero. Thus, from the asymptotic formula of gamma function~Ref. 14, p. 257!,
we deduce that forn→`, u f 2nu2 behaves asn23/2, so that(n50u f 2nu2,`. In general, i.e., for
«Þ0, Eq. ~71! tells us that for great values ofn, the sum of the first and the last term is leadi
with respect to the second term. This allows us to see easily that both even and odd termsu f 2nu2

and u f 2n11u2, behave asymptotically asn23/2. To conclude, the series(n50u f nu2 is convergent,
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namely the sequence$ f n% belongs to the Hilbert spacel 2 for any value of the spectral paramet
«. Then, the equationH1

†ux&5«ux&, for Im lÞ0, has nontrivial solutions~Ref. 3, p. 140!.
Now, by introducing the notationbn5(n11)3/2, we see that it is possible to associate with t

difference equation~71! the ~infinite! Jacobi matrix

A5S 0 b0 0 0 ¯

b0 0 b1 0 ¯

0 b1 0 b2 ¯

0 0 b2 0 ¯

¯ ¯ ¯ ¯ ¯

D , ~74!

so that Eq.~69! is equivalent to the eigenvalue equationA f5« f , with f 5( f 0 , f 1 ,...)T.
The Jacobi matrix~74! plays a crucial role in the study of the Hamburger moment prob

~see, for example, Refs. 3, 5, and 15!. Precisely, let us consider the moments

sn5E
2`

1`

xn ds~x!, n50,1,2,..., ~75!

wheres denotes a~positive! measure onR ~Ref. 15, p. 145!. The Hamburger moment problem
to determine conditions on a sequence of real numbers$sn%n50

` , so that there exists a measu
satisfying~75!. One can show that a sequence of real numbers$sn% are the moments of a positiv
measure onR if and only if for all N and alla0 ,a1 ,...,aNPC, one has

(
n,m50

N

ānamsn1m>0. ~76!

From the Jacobi matrix~74! we get the limitations

(
n50

`
1

bn
5 (

n50

`
1

~n11!3/2,`, bn21bn11,bn
2. ~77!

Consequently, the Jacobi matrix~74! belongs to the typeC ~limit circle case!, and corresponds
to an undetermined Hamburger moment problem~Refs. 3 and 5!. So, the properties of the operato
H1;a†2a1a†a21a1a† are similar to the properties of the operatorak1a†k (k53) discussed
by Nagel.5 In other words, the operatorH1 has deficiency indices~1, 1! and allows a one-
parameter family of self-adjoint extensions, each having a purely discrete spectrum on th
line.4,16 The spectra of two different extensions turn out to have no point in common~Ref. 3, p.
152!. We have that different self-adjoint extensions correspond to different dynamics.15,17

Since every self-adjoint extension ofH1 has a discrete spectrum on the real line, and tak
one eigenvalue determines the corresponding extension uniquely, let us choose«50.

In this case the eigenvalue equation underlying the operatorH1 can be solved exactly in al
the representations mentioned at the beginning of this section.

To show this, let us deal with theq-rep. With the help of~54!, the eigenvalue equation~69!
reads

xf91f81~&«2x3!f50, ~78!

wheref8[(d/dx)f.
Equation~78! can be written as the Sturm–Liouville equation~Ref. 18, p. 59!

L@f~x!#52&«f~x!, ~79!

whereL denotes the Sturm–Liouville operator
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L5
d

dx Fx
d

dxG2x3. ~80!

By using the transformation

f~x!5expS 2
x2

2 Dc~x!, ~81!

Eq. ~78! becomes

xc91~122x2!c81~&«22x!c50. ~82!

This equation is satisfied by

c~x!5 (
n50

`

f nNnHn~x!, ~83!

where the coefficientsf n fulfill the recursion relations~71! and~72!. We have already shown tha

$ f n%P l 2. Then, the functionc(x) belongs to the Hilbert spaceL
e2x2
2

(2`,`) @exp(2x2) is the
weight function#. We point out that generally the relation~83! is not valid in the pointwise sense
but it holds in accordance with the metric ofL

e2x2
2

(2`,`), namely

lim
n→`

E
2`

1`Uc~x!2 (
k50

n

f kNkHk~x!U2

exp~2x2!dx50. ~84!

For «50, via the change of variablej5x2 Eq. ~82! can be written as a special case of
Kummer equation, whose independent solutions areM (1/2,1;x2) and U(1/2,1;x2) ~Ref. 14, p.
504!. In the case the solutionc(x) of Eq. ~82! with the propertyc(x)PL

e2x2
2

(2`,`) is given by

c~x!5cUS 1

2
,1;x2D5 (

n50

`

f 2nN2nH2n~x!, ~85!

where the constantc is such thatcp3/45 f 0 , and

f 2n5 f 0p23/4N2n E
2`

1`

US 1

2
,1;x2DH2n~x!exp~2x2!dx. ~86!

One can easily check that~86! is satisfied for anynPN
Finally, in thez-rep, i.e., forux&→x, a†→z, a→d/dz, Eq. ~69! gives

zxzz1~11z2!xz1~z2«!x50, ~87!

where

x5 (
n50

`

f n

zn

An!
~88!

and f n satisfies the recursion relations~71! and ~72!. For «50, the eigenvalue equation~87! as
well can be exactly solved. In fact, by settingz25y, z52y/2, this equation becomes a spec
case of the Kummer equation.

Therefore, in thez-rep, where the eigenfunction should be a holomorphic~and normalizable!
function in the wholez-plane, one has the solutionM (1/2,1;2z2/2). The other solution, namely
the Kummer functionU(1/2,1;2z2/2), is not holomorphic atz50.
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To conclude this section, we observe that the solutions of the eigenvalue equation forH1 in
the case«50 can be also found from Eqs.~71! and~72!, obtained within then-rep, by means of
the standard integral representations of the confluent hypergeometric functions. An example
procedure is displayed in Ref. 19.

VII. THEH2 , H3 , H4 MODELS

The eigenvalue problem for the operatorH2 can be written as

Lc5«c, ~89!

where L5(2i /3)Dx
3 (Dx5d/dx). The study of Eq.~89! is trivial. It is exactly solvable,9 its

spectrum is on the whole line, and the related eigenfunctions are of the exponential type.
The operatorH3 @see~57!# belongs to the class of Hamiltonians

H5 ikn~an2a†n! ~90!

appearing in the higher order nonlinear optical processes. In particular,~57! describes a subhar
monic generation process, in which a photon from a strong pump beam producesn photons of the
signal beam in a nonlinear medium.11 The constantkn is related to thenth nonlinear susceptibility
coefficient and to the amplitude of the pump field, whilea and a† are the annihilation and the
creation operators for the signal field. In this context, the evolution of an arbitrary initial
uC~0!& of the signal field to the stateuC(t)& is governed by

uc~ t !&5exp@knt~an2a†n!#uC~0!&. ~91!

The squeezing of this state was examined by Hillery, Zubairy, and Wo´dkiewicz.11 They
showed that to any order in the coupling constantkn , the vacuum state is not squeezed in t
higher order nonlinear optical processes (n>3).

This important result stimulated the analysis ofnth power squeezed states. Interesting~and,
generally, not yet completely explored! questions arise in connection with this argument. Some
them are discussed in Refs. 5, 13, and 19, and references therein.

Now let us make some comments about the HamiltonianH4 . This operator is closely relate
to H1 . This can be seen by means of the phase transformationa85 ia, a8†52 ia†, so thatH4

takes the form

H452
1

&
~a82†a81a8†a821a8†1a8!. ~92!

In other words, one hasH451/2H1 ~in terms of the primed operators!. This corresponds to
pick up q852p and p85q. In such a wayH4 turns out to be the inverse Fourier transform
~55!. Therefore, the solutions of the eigenvalue equation for the Hamiltonian operatorH4 can be
derived from the solutions of the eigenvalue equation for the Hamiltonian operatorH1 @see~69!#.

The eigenvalue equation forH1 (H4) can be investigated by means of the algebraic appro
outlined in Sec. IX.

VIII. EQUATIONS AND CONSTANTS OF MOTION RELATED TO THE OPERATORS Hj

The equations of motion for the HamiltoniansHj ( j 51,2,3,4) arise immediately by using th
Heisenberg representation. In other words, by puttinga(t)5a(0)exp(2it) and a†(t)
5a†(0)exp(it) in the expressions~51! and ~58!, we easily find~as one expects! that H1 andH4

satisfy the same equation of motion~i.e., the equation for the harmonic oscillator of frequen
l51!:
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d2

dt2 H11H150,
d2

dt2 H41H450. ~93!

On the other hand, for the operatorsH35( i /&) 1
3(a

32a†3) @see ~57!# and H5

5(1/&)1/3(a31a†3), the same considerations made forH1 andH4 in Sec. VII hold. One has
thatH3 andH5 obey the same equation of motion~i.e., the equation for the harmonic oscillator
frequency 3!:

dt2H319H350,
d2

dt2 H519H550. ~94!

Some comments on Eqs.~93! and ~94! are presented in Sec. X.
At this point, we observe that in addition to the constants of motion

q̃5e2 i tĤ 0q̂eitĤ 05q̂ cost2 p̂ sint, ~95!

p̃5e2 i tĤ 0p̂eitĤ 05q̂ sint1 p̂ cost, ~96!

where@ q̂,p̂#5 i , Ĥ051/2(p̂21q̂2), and q̃521/2I 2
(2) , p̃51/2I 2

(1) , we obtain also the following
set of constants:

H̃15H1 cost22H4 sint, ~97!

H̃45
1

4
H1 sint1H4 cost, ~98!

H̃35H3 cos 3t2H5 sin 3t, ~99!

H̃55H3 sin 3t1H5 cos 3t. ~100!

In terms of the arbitrary constantsH̃ j ( j 51,4,3,5), one can express the general solutions
Eqs.~93! and~94!, which can be easily found by inverting the transformations~97!, ~98! and~99!,
~100!, respectively.

IX. A POSSIBLE ALGEBRAIC FRAMEWORK FOR THE STUDY OF EQ. „69…

For «Þ0, Eq. ~69! could be investigated following different analytical techniques. Amo
these, an important role is played by the algebraic approach, which allows one to express E~69!
in terms of the generators of aquadraticalgebra.20,21

As an example of a quadratic algebra, we can consider a nonlinear deformation of the~linear!
su(1,1) algebra, defined by

@J0 ,J6#56J6 , ~101!

@J1 ,J2#5P~J0!, ~102!

where the Jacobi indentity holds.J6 are the ladder operators, andP(J0) is a second-degree
polynomial function of the diagonal operatorJ0 . P(J0) can be written in the form

P~J0!5a11a2J01a3J0
2, ~103!

wherea i ( i 51,2,3) are arbitrary coefficients (a3Þ0).
Now let us introduce the~bosonic! realization
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J05a†a1 1
2, ~104!

J252~a†a21a!, ~105!

J15a†2a1a†, ~106!

with J152(J2)†. Then, the operators~104!–~106! turn out to obey the commutation relation

@J0 ,J6#56J6 ,@J1 ,J2#5 1
413J0

2. ~107!

We remark that the quadratic algebra~107! is a finiteW3
(2)-algebra,20,21 which corresponds to

choosinga151/4, a250, anda353 in ~103!.
By virtue of ~104!–~106!, Eq. ~69! can be reexpressed as

V~«!ux&50, ~108!

with

V~«!5J12J22«. ~109!

Therefore, the eigenvalue problem~69! can be formulated in terms of the generatorsJ6 of a
quadratic algebra of the typeW3

(2) . The Casimir operator of the quadratic algebra~107! is con-
sidered in the Appendix.

X. CONCLUSIONS

In the context of the existence of an infinite set of fouled Lagrangians and Hamiltonian
the generalized~time-dependent! oscillator, we have studied a special case where the frequen
the oscillator is assumed to be a constantl ~harmonic oscillator!. By way of example, we have
considered a pair of independent fouled Lagrangians (L2

(1) ,L2
(2)) @see ~23! and ~24!# and, in

correspondence, a pair of fouled independent Hamiltonians (K1 ,K2) @see~39! and ~40!# which
lead, at the classical level, to the same equation of motion provided by the conventional La
ian and Hamiltonian. Both (L2

(1) ,L2
(2)) and (K1 ,K2) are explicitly time-dependent. The metho

followed to find these alternative Lagrangians and Hamiltonians implies the construction o
independent invariants~constants of motion!, I 2

(1) and I 2
(2) ; in terms of them the canonical var

ablesq andp can be expressed. These invariants, which are of the No¨ther type,22 are connected
with the ‘‘quadrature-phase amplitudes’’ appearing in the problem of generation of squeezed
in certain optical devices.23

In this paper we have focused our attention mainly on the quantized version of the f
Hamiltonians (K1 ,K2). Since K1 and K2 are related to the cubic polynomialsH15Al(p2

1l2q)q andH25(2/3Al)p3 by a formal rotation, the canonical quantization prescription affe
essentiallyH1 andH2 . Our purpose has been to study, at the quantum level, the HamiltonianH1

andH2 @see~51! and~52!# corresponding toH1 andH2 . The model described byH2 is associated
with an eigenvalue problem given by a~linear! third-order differential equation, with constan
coefficients, which is exactly solvable.9 Furthermore, we have putH25H31H4 , whereH4 @see
~58!# turns out to be closely related to the quantum modelH1 in the sense discussed in Sec. V
On the other hand, the quantum modelH3 has a well-defined physical interpretation. It belongs
a class of Hamiltonians which finds applications in the field ofnth power squeezed states.

Finally, the operatorH1 , considered in Sec. VI, has deficiency indices~1, 1! and allows a
one-parameter family of self-adjoint extensions, each having a purely discrete spectrum on t
line. The spectra of two different extensions have no point in common. Since different self-a
extensions correspond to different dynamics, we needed to fix a given dynamics. This ha
carried out by choosing the value«50 for the eigenvalue parameter. In this case all the differ
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tial equations coming from~69! in all the representations:n-rep, q-rep, andz-rep, can be solved
exactly. In this case, square-integrable solutions of the eigenvalue equations are explicitly
mined.

In order to investigate some properties of the HamiltoniansHj ( j 51,2,3,4), in Sec. VIII we
have introduced the operatorH5;(a31a3†), which is connected withH3 , as one can see b
using the transformationa85 ia, a8†52 ia†. We have built up a set of constants of motio
involving (H1 ,H4) and (H3 ,H5). These constants play the role of the arbitrary constants pre
in the general solution of two equations of the harmonic oscillator-type of frequencies 1 a
respectively, which are satisfied by (H1 ,H4) and (H3 ,H5) @see~93! and ~94!#.

To conclude, we point out that quadratic~and, more in general, polynomially deformed alg
bras! take place in quantum optics in relation to the construction of coherent states and
description of multiphoton processes~see, for example Refs. 24 and 25, and references ther!.
Keeping in mind these problems, it should be of interest to deal with the quantization of f
Hamiltonians~of the generalized oscillator! expressed by polynomials in the canonical variab
~q,p! of degree higher than three.
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APPENDIX: THE CASIMIR INVARIANT FOR THE QUADRATIC ALGEBRA „107…

We remind the reader that a standard form of a quadratic algebra, which is important
treatment of coherent states of trilinear boson Hamiltonians,26 is24,25,27

@N0 ,N6#56N6 , @N1 ,N2#562N01dN0
2, ~A1!

where the positive~negative! sign of 2N0 indicates a polynomially deformedsu(2) (su(1,1)),
andd is a parameter.

The Casimir operator is given by24,25,27

C5N2N11N0~N011!F11
d

6
~2N011!G . ~A2!

By setting

J05a0N01b0 , ~A3!

J25k1N2 , ~A4!

J15k2N1 , ~A5!

and choosing, for example,

a051, b05
i

2)
, k1k25

i)

2
, ~A6!

the commutator relations~107! are converted into

@N0 ,N6#56N6 , @N1 ,N2#52N01dN0
2, ~A7!

with d522i). Hence, the Casimir operator~A2! reads
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C5N2N11N0~N011!F12
i

)
~2N011!G . ~A8!
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Redefining spinors in Lorentz-violating quantum
electrodynamics

Don Colladaya) and Patrick McDonaldb)

New College of Florida, Sarasota, Florida 34243
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An analysis of spinor redefinitions in the context of the Lorentz-violating quantum
electrodynamics~QED! extension is performed. Certain parameters that apparently
violate Lorentz invariance are found to be physically irrelevant as they can be
removed from the Lagrangian using an appropriate redefinition of the spinor field
components. It is shown that conserved currents may be defined using a modified
action of the complex extension of the Lorentz group on the redefined spinors. This
implies a natural correspondence between the apparently Lorentz-violating theory
and conventional QED. Redefinitions involving derivatives are shown to relate
certain terms in the QED extension to Lagrangians involving nonlocal interactions
or skewed coordinate systems. The redundant parameters in the QED extension are
identified and the Lagrangian is rewritten in terms of physically relevant coupling
constants. The resulting Lagrangian contains only physically relevant parameters
and transforms conventionally under Lorentz transformations. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1477938#

I. INTRODUCTION

The possibility of miniscule violations of Lorentz invariance arising from a more fundame
theory of nature has been of recent interest.1 For example, such violations may arise in th
low-energy limit of string theory,2 or physically realistic noncommutative field theories.3 The full
standard model extension uses the general concept of spontaneous symmetry breaking to c
a Lagrangian consisting of all possible terms involving standard-model fields that are ob
Lorentz scalars, including terms having coupling coefficients with Lorentz indices. At low e
gies, the relevant operators that are gauge invariant all have mass dimensionD<4, and are given
in Ref. 4. At higher energy scales nonrenormalizable terms are expected to play a role
theoretical consistency of the model.5

Various experiments have placed stringent bounds on parameters in the standard-mo
tension, including comparative tests of quantum electrodynamics~QED! in Penning traps and
colliders,6–11 spectroscopy of hydrogen and antihydrogen,12,13 measurements of muo
properties,14,15 clock-comparison experiments,16–20 observations of the behavior of a spin
polarized torsion pendulum,21,22 measurements of cosmological birefringence,23,4,24 studies of
neutral-meson oscillations,25–27 and observations of the baryon asymmetry.28

In the theoretical results involving experimentally observable quantities, some of the p
eters in the standard model extension do not appear while others occur only in specific
combinations. The reason behind this is that some parameters that apparently violate L
invariance when the spinor field is assumed to transform in the standard way under the ac
the Lorentz group do not in fact violate this symmetry when the action on the field is appropr
modified such that the associated Lorentz currents are conserved. The freedom to selec
coordinates in different ways generates a natural equivalence relation on the collect
Lagrangians. Different Lagrangians in the same equivalence class are related by field redefi
that is, by an invertible map between fields used to describe the same physics. The e

a!Electronic mail: colladay@ncf.edu
b!Electronic mail: McDonald@ncf.edu
35540022-2488/2002/43(7)/3554/11/$19.00 © 2002 American Institute of Physics
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construction of the redefinition used in this paper appears in Eq.~5!. All Lagrangians in the same
class are physically equivalent and the spinor transformation properties can be implemen
that the Lorentz currents are as close to conserved as possible. In other words, redefinitio
be used to define the currents so that they absorb the apparently Lorentz-violating terms wh
obstructions to conservation. This means that one can use the transformation properties to
nate a subset of the parameters appearing in the standard model extension and no more.

In this paper, the effects of field redefinitions in the context of extended QED are examin
detail. Particular terms in the standard model extension are already known to be unobse
since explicit redefinitions of the spinor components have previously been considered.4 It is the
goal of this work to analyze a more general set of field redefinitions and use them to simpli
full Lorentz-violating Lagrangian as much as possible. The basic idea is to remove paramete
depend explicitly on the spinor coordinates. Once these redundant parameters have bee
nated, the remaining field transforms according to the standard action of the complex L
group.

The paper is organized as follows. In Sec. II, the extended QED theory is summarized. I
III, an analysis is presented of the field redefinitions that are used to generate specific term
QED extension. The effects of transformations which do not include terms involving differe
tion as well as those that do are investigated. The currents associated with U~1! and Poincare´
group transformations for the general QED extension are derived in Sec. IV. It is shown
conserved currents can be defined when only redundant parameters are present by using
representation to the conventional complex Lorentz group action. Section V contains the co
tion of the physical extended QED Lagrangian with all redundant parameters removed.

II. EXTENDED QED

To study the effects of specific field redefinitions, we restrict our attention to the QED s
involving only the electron and photon sectors of the full standard model extension presen
Ref. 4. In the pure-photon sector, there is one CPT-even (kF) and one CPT-odd (kAF) Lorentz-
violating term. The free photon Lagrangian is

Lphoton52 1
4FmnFmn2 1

4 ~kF!klmnFklFmn1 1
2~kAF!keklmnAlFmn, ~1!

where the couplingkF is a real, dimensionless coupling that can be taken to have the symm
of the Riemann tensor, and the coefficientkAF is real and has dimensions of mass.

Denoting the four-component electron field byc and the electron mass bym, the general
QED Lagrangian for electrons and photons including Lorentz-violating interactions arising fr
generic spontaneous symmetry breaking mechanism is

L electron
QED 5

i

2
c̄GnDJ nc2c̄Mc, ~2!

whereDm5]m1 iqAm is the usual covariant derivative,

Gn5gn1cmngm1dmng5gm1en1 i f ng51 1
2glmnslm, ~3!

and

M5m1 im5g51amgm1bmg5gm1 1
2Hmnsmn. ~4!

Note that any Lorentz-preservingterms that arise from spontaneous symmetry breaking ca
absorbed into the bare mass termsm, m5 , and the overall normalization of the Lagrangian. T
normalization is chosen such that the coefficient of thegn term in Eq.~3! is one. The coupling
coefficientsa, b, c, d, e, f , g, m5 , andH are real, constant parameters related to the vacu
expectation value of contributing tensor fields in the underlying theory.
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Some of these parameters~or combinations of parameters! are only apparently Lorentz
violating as the Lagrangian containing them can be shown to be equivalent to the standa
grangian using the appropriate field redefinition. This question is taken up in Sec. III.

III. GENERAL FERMION FIELD REDEFINITIONS

Some of the Lorentz-violating couplings in Eq.~2! can in fact be eliminated through
redefinition of the spinor field. To determine precisely which terms can be removed in this ma
it is useful to begin with the standard Dirac Lagrangian in terms ofc with no Lorentz-violating
terms and perform a field redefinition of the formc5Rx, whereR is some operator. The La
grangian in terms ofx will contain terms included in the full Lorentz-violating Lagrangian. In th
section, we examine possible choices for the field redefinition and examine the resulting te
the Lagrangian.

To see which terms can be removed from the theory, we consider generic redefinitions
fermion fields of the form

c~x!5@11 f ~x,]!#x~x!, ~5!

where f (x,]) represents a general 434 matrix function of the coordinates and derivatives. On
lowest order terms in the field redefinition parameters are retained since the Lorentz-vio
couplings in the full Lagrangian are assumed small. By applying this transformation to the
ventional free fermion Lagrangian~containing no Lorentz-violating parameters! we will see which
terms can be eliminated from the extended theory by applying the inverse transformation.

To simplify the task, note that the Lorentz-violating terms generated by this transform
must have no explicit dependence on the coordinates and must consist of dimensionD<4
operators.29 Candidate terms forf (x,]) up to second order inx and] are of the form

f ~x,]!5v•G1 iu1 iAmxm1Bm]m1g5B̃m]m1Cmnxm]n, ~6!

wherev represents a set of arbitrary complex constants multiplying an arbitrary gamma m
denotedG, in the set$ ig5 ,gm,g5gm,smn%, u is a complex constant, whileAm , Bm , B̃m , andCmn

are arbitrary real constants. Note that this is a generalization of the field redefinitions prev
considered in Ref. 4.

The terms Reu, Bm and the antisymmetric part ofCmn ~together with the appropriate spi
componentsvmn! are simply the generators of the U~1! and Poincare´ groups and are symmetries o
the conventional Lagrangian. These terms do not generate any artificial Lorentz-violating p
eters. The term Imu rescales the Lagrangian and can be absorbed into the other constants
leaves several independent transformations that may generate artificial Lorentz-violating
We proceed to calculate these explicitly in the rest of this section. Since we are working to l
order in Lorentz-violating parameters, we can consider each term independently.

First, we summarize the results obtained using thev terms which have been previous
described in Ref. 4. An explicit example is presented to illustrate the general method. As sho
Sec. IV, a field redefinition of this type can be interpreted as selecting a new basis in spinor
for the representations of SL(2,C), the complex extension of the Lorentz group. The stand
Lagrangian expressed in terms of the redefined field is given by

L5
i

2
c̄gm ]Jmc2mc̄c

5L01
i

2
x̄@$gm,G•Rev%1 i @gm,G•Im v## ]Jmx22m Rev•x̄Gx, ~7!

whereL0 is the conventional free field Lagrangian in terms ofx. For example, consider the fiel
redefinition induced byv•G5vmgm. Using the above-given relation yields
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L5L01Revm@ i x̄]m
Jx22mx̄gmx#2 i Im vm@x̄smn ]Jnx#. ~8!

Inspection of the term proportional to Imvm indicates that the four terms in the extended Lagra
ian ~2! of the form

glmn52 Im~vmgln2vlgmn!, ~9!

do not contribute in lowest order to the free fermion Lagrangian. Examination of the t
multiplying Revm indicates that the simultaneous choice of

em52 Revm, am52m Revm ~10!

can be removed from the Lagrangian. This means that the field redefinition can remove eitem

or am, but not both, unlessam5mem happens to hold in the original Lagrangian. Similar calc
lations can be done for the other choices ofv•G. The results are summarized in Table I. Note th
a ~finite! transformation of the formeivg5 with vPR is used to remove any term of the formm5

in the original Lagrangian to all orders. The effect is anm5 dependent mixing of some of th
Lorentz-violating parameters, but the structure is essentially unchanged.

Next, we consider theA, B, B̃, andC redefinitions. To lowest order in these parameters,
transformed Lagrangian becomes

L5L02x̄Amgmx1Bm]mL02B̃m]mF i

2
x̄g5gn ]JnxG

2mx̄g5B̃m ]Jmx1Cmnxm]nL01
i

2
Cmnx̄gm ]Jnx. ~11!

The A term can be used to eliminateam as is discussed in detail in Ref. 4. TheB term is a total
divergence that drops out of the action. This is a direct consequence of translational inva
since under a~finite! translation of the coordinates byB,

c~x!5eB•]x~x!5x~x1B!5x~x8!, ~12!

and the action takes the same form in the translated coordinate system. The firstC term can be
partially integrated to yield a total divergence and a rescaling ofL0 . The finalC term is of the
form c as defined in Eq.~2!.

A few remarks are in order regarding the above-mentioned transformation involvingC. First,
note that such a field redefinition appears equivalent to changing fermion coordinates to a
with a new~constant! metric that skews the coordinates. We can see this by examination o
transformation

c~x!5~11Cmnxm]n!x~x!'eCmnxm]nx~x!5x~x1C•x!5x~x8!, ~13!

wherex8m5xm1Cn
mxn are the new field coordinates. This redefinition is therefore equivalen

transforming to a skewed coordinate system with a nondiagonal metric given by

TABLE I. Summary of terms generated by field redefinitions of the form
v•G.

v"G vPR (v[Rev) vPI (v[Im v)

v( ig5) Used to eliminatem5 term dmn52vgmn

vmgm em52vm andam52mvm glmn52(vmgln2vlgmn)
vmg5gm glmn522elmn

ava and
bm52mvm

f m522vm

vmnsmn dmn522emn
abvab and

1
2Hmn52mvmn

cmn52v [mn]
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g8mn5hmn1C(mn). ~14!

Rewriting the transformed Lagrangian in terms of this new metric yields

L5
i

2
x̄~x8!g̃m ]Jm8 x~x8!2mx̄~x8!x~x8!, ~15!

where the modified matricesg̃m5(hn
m1cn

m)gn satisfy the relations$g̃m,g̃n%52g8mn. The result-
ing Lagrangian can be related to the conventional one using the vierbein formalism of g
relativity by performing the appropriate general coordinate transformation. This shows that
is a natural association between the theory containing ac term and a theory formulated in
skewed coordinate system defined by the above-given metric. If the free fermions are th
component to the theory it is possible to perform the appropriate general coordinate transfor
on the skewed coordinates relating it to the conventional case. This is because it is not pos
distinguish the theory in a skewed coordinate system~with a c term! from a conventional theory
in an orthonormal system since fermion propagation properties are the only tool available to
the coordinate system itself.

However, when photon interactions are incorporated through the covariant derivative, it
longer possible to perform the general coordinate transformation without affecting the p
sector. There is now an alternate way to distinguish the coordinates physically so that the s
coordinates become observable. Under the fermion field redefinition, the fermion–photon in
tion term becomes

Lint52qc̄~x!gmAm~x!c~x!→2qx̄~x8!g̃mAm8 ~x!x~x8!, ~16!

where the photon field is expressed as a function of the conventional coordinatesx, but its
components are resolved in the modified coordinatesx8. In this picture, the theory exhibits a form
of nonlocality since the fermion fields interact with the photon field at different space–time p
If the photon field is reexpressed in terms of the new coordinatesx8, the Lagrangian become
local, but picks up an extra term that breaks the natural association between the theori
another approach is to redefine the physical photon fieldAm8 (x)→Am8 (x8), but the new metric
introduces corrections of the form in Eq.~1! into the kinetic photon sector. Therefore, the phot
interactions prevent the trivial elimination of symmetricc terms using the above-given fiel
redefinition. Similar problems arise when using other derivative transformations, so these a
considered in detail in subsequent sections of this paper. For example, the termB̃ in Eq. ~6!
generates a term of the formf @defined in Eq.~2!# as well as a total divergence in the transform
Lagrangian of Eq.~11!. This transformation corresponds to a shift in opposite directions for
left-handed and right-handed fields due to the presence ofg5 . There is therefore a natural corre
spondence between the Lagrangian with anf term and the conventional theory provided t
left-handed and right-handed fields can be translated independently.30 The interaction that break
the correspondence with the conventional theory in this case is the fermion mass term tha
left-handed and right-handed fields. A similar situation occurs when the above-discussedC trans-
formation is multiplied byg5 . Symmetric components of the formd defined in Eq.~2! arise in the
transformed Lagrangian, but the mass term depends explicitly onx, therefore breaking the natura
correspondence between the theories.

Finite field transformations can be constructed through exponentiation of Eq.~5!. The results
of these transformations are often much more complicated than the infinitesimal ones since
parameters can be mixed. As an example, consider a field redefinition of the form

c5evmgm
x5S coshv1

vmgm

v
sinhv Dx, ~17!
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with vm real, timelike, and the quantityv defined byv5Avmvm. Application of this transforma-
tion to the standard Lagrangian in terms ofc yields a Lagrangian forx with apparent Lorentz-
violating parameters and a modified mass given by

em5
vm

v
sinh 2v, cmn5

vmvn

v2 ~cosh 2v21!,

~18!

m85m cosh 2v, am5
mvm

v
sinh 2v.

Note that the corrections toc andm terms appear only at second order inv.
Such a choice of parameters in the QED extension leaves the dispersion relation unalte

therefore leads to no stability problems or microcausality violations. This is true for any finite
redefinition of the formev•G since the field redefinition commutes with the square of the conv
tional Dirac equation. The set of all such transformations generates a class of Lagrangians
lent to the conventional one.

The derivative field redefinitions may also be exponentiated to yield finite transformation
the cases ofB̃ andC of Eq. ~6!, finite transformations correspond to finite coordinate transfor
tions, possibly different for various spinor components. As in the infinitessimal case, intera
between various spinor components and other fields limit the usefulness of these transform
due to nonlocality problems.

To gain further insight into the invariance of the physics under the above-mentioned tra
mations, it is useful to compute the currents associated with the generators of the Poincare´ group.
We will see that it is necessary to redefine the action of the complex Lorentz group along wi
field in order to yield maximally conserved Lorentz generators.

IV. POINCARÉ GENERATORS

We start with a general free fermion Lagrangian of the form

L5
i

2
x̄Gn ]Jnx2x̄Mx, ~19!

and apply Noether’s theorem to obtain the divergence of the currents associated with v
continuous transformations of the field. Invariance under a global U~1! phase transformation
yields a conserved current of

j m5x̄Gmx, ~20!

satisfying]m j m50. Invariance under translations yields a conserved energy momentum ten

Qmn5
i

2
x̄Gm ]Jnx, ~21!

satisfying]mQmn50.
The Lagrangian is no longer invariant under the conventional action of the Lorentz grou

the divergences of the corresponding currents will not vanish. These can be calculated us
standard technique of writing the action over an arbitrary four-volume in terms of boosted
dinates and fields atx8m5L n

m xn'xm1e n
m xn and calculating the variation to lowest order

e n
m . A choice must be made for the induced transformation properties of the spinor compo

of x under the complex extension of the Lorentz group SL(2,C). Using the standardS(L)51
2 ( i /4)smnemn yields currents given by

]a j amn5Xmn, ~22!
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where

j amn5x[mQan]1 1
4x̄$Ga,smn%x, ~23!

and

Xmn52a[mx̄gn]x2b[mx̄g5gn]x2
i

2
x̄~c[nagm] ]Ja1ca[nga ]Jm] !x2

i

2
x̄~d[nag5gm] ]Ja

1da[ng5ga ]Jm] !x1
i

2
e[mx̄ ]Jn]x2

1

2
f [mx̄g5]Jn]x

2
i

4
x̄~2g[nabs a

m] ]Jb1gab[nsab ]Jm] !x2x̄H [mas a
n] x. ~24!

All of these equations can be verified by direct calculation.
It is expected that terms which can be eliminated using a field redefinition should al

removable fromXmn with the appropriate redefinition of the associated currents. To expli
construct the conserved currents, the field redefinition is applied to the conventional cu
written in terms ofc, satisfying the conventional Dirac equation. These conserved current
reexpressed in terms ofx giving the proper conserved currents for the new Lagrangian.

Alternatively, the conserved currents of the modified Lagrangian may be computed
Nöether’s theorem using a modified action of the Lorentz group on the spinor fields. Us
general finite field redefinitionc5ev•Gx, it is found that the action of U~1! and translations is the
same onc andx meaning that the four-current and energy-momentum tensors are computed
Eqs.~20! and~21!. However, the action of the Lorentz transformations is in fact modified du
the field redefinition. Under an infinitesimal Lorentz transformation of the coordinates, tc
spinor components mix according todc5S(L)c, while the corresponding change inx is calcu-
lated to bedx5e2v•GS(L)ev•Gx5S̃(L)x. This means that thex components transform accord
ing to a similar representation of the complex Lorentz group. When the associated curr
computed using this modified action of SL(2,C) on x, it is indeed conserved.

As an example, consider the field redefinition used in Eq.~8! involving Revm . If the conven-
tional S(L) is used to find the current associated with the Lorentz transformations, the res
j x
amn given by Eq.~23!, which is not conserved. However, ifS̃(L) is used to transform the fieldx,

then the associated current is

̃x
amn5x[mQan]1 1

4x̄$Ga,smn%x1 1
2x̄e[msn]ax, ~25!

which is in fact conserved. This shows that one must be careful to map the correct con
generators into the proper associated currents written in terms ofx. Similar maps between gen
erators can be performed using the derivative transformations, however, in this case the U~1! and
translation currents may also be modified.

As a practical approach, the redundant parameters can first be removed from the Lagr
and then the conventionalS(L) can be used to construct the currents in the redefined Lagran
We perform this removal of the redundant parameters in Sec. V.

V. ELIMINATION OF REDUNDANT PARAMETERS

In this section, we start with a general Lagrangian and apply field redefinitions to re
redundant parameters. The starting point is the Lagrangian given in Eq.~2!. The parametersm5 ,
am , em , f m , andc[mn] can all be immediately removed using a combination of the transformat
described in Sec. III. The parameterglmn can be replaced by the tracelessg̃lmn satisfying
glng̃lmn5gmng̃lmn50. The other transformations listed in Table I involve linear combination
parameters.
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To handle these terms, the Lagrangian must be reexpressed in terms of the new, phy
relevant linear combinations of parameters. For example, the combination of antisymmetricd and
H terms of Eq.~2! are reexpressed as

i

4
c̄d[mn]g5gm ]Jnc2

1

2
c̄Hmnsmnc5vab

1 F i

2
c̄emn

abg5gm ]Jnc2mc̄sabcG
1vab

2 F i

2
c̄emn

abg5gm ]Jnc1mc̄sabc G , ~26!

wherevab
6 5 1

4 (d̃ab61/m Hab), andemn
abd̃ab5d[mn] . The combinationvab

2 can be removed using
a field redefinition, leaving onlyvab

1 terms in the Lagrangian. Theg andb terms can be similarly
combined using the definitionva

65 1
2(ga61/m ba)

After all of these redefinitions have been performed, the form for the Lagrangian beco

L5
i

2
c̄S gn1

1

2
c(mn)g

m1
1

2
d(mn)g5gm1

1

2
ĝlmnslmD ]Jnc2mc̄c1

1

4 S d̃ab1
1

m
HabD

3F i

2
c̄emn

abg5gm ]Jnc2mc̄sabc G2
1

2 S ga2
1

m
baD F i

2
c̄

1

2
elm

naslm ]Jnc2mc̄g5gac G ,
~27!

where ĝlmn is a traceless coupling with a vanishing totally antisymmetric piece. The to
antisymmetric component ofg̃ is absorbed intoga52ea

lmng̃lmn . This Lagrangian can be written
in the form

L5
i

2
c̄G̃n ]Jnc2c̄M̃c, ~28!

where

G̃n5gn1 1
2c(mn)g

m1~ 1
2d(mn)1emn

abvab
1 !g5gm1 1

2~ ĝlmn2elmn
ava

2!slm, ~29!

and

M̃5m~11vab
1 sab2va

2g5ga!, ~30!

where all distinct parameters are now physically relevant.
This Lagrangian is therefore the one for whichc can be assumed to transform under t

standard representation of SL(2,C), yielding maximally conserved currents.31 The relevant cur-
rents are given as in Sec. IV with appropriately mapped constants found by comparison of E~2!
and ~28!. The remaining terms cannot be removed by a redefinition of spinor coordinates.
terms may be eliminated in the free theory using transformations involving derivatives of the
as discussed in Sec. III, but interactions between the fermion fields and other fields often bre
natural correspondence between the redefined Lagrangian and the original theory. This me
if these terms are removed from the free fermion sector, they will appear as modified inter
terms and will not be removed from the theory, only shifted to another sector.

Physical quantities should therefore depend only on the combinations occurring in th
grangian of Eq.~28!. Therefore, it is not possible to obtain experimental bounds on all Lore
violating parameters of Eq.~2! independently, only on the combinations present in Eq.~28!. For
example, it is only the linear combinationvab

1 of the antisymmetric part ofd and H that is
observable. This implies that only one parameter should in fact be used to describe this qu
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Comparison with previous calculations within the context of this model verify that thi
indeed the case. For example, in applications to electrons and positrons in Penning traps6–9 the
relevant experimental bound is obtained from the observable cyclotron and anomaly frequ
(g̃lmn50 in this calculation!

vc
e6

'~12c00
e 2c11

e 2c22
e !vc ,

~31!
vc

e6
'va72b3

e12md30
e 12H12

e ,

which can place bounds only on the combinations of parameters found in Eq.~27!, not on the
parameters that can be removed by the field redefinitions. As another example, a calculation
cross section fore1e2→2g within the QED extension10 only depends on the symmetric comp
nents ofc. Similar results have been obtained in other QED systems.32

For many practical calculations it is convenient to perform another field redefinition to
malizeG̃0→g0. This has the effect of removing extra time derivative couplings ensuring tha
resulting Schro¨dinger equation has a conventional time evolution.6,17 Starting with a genera
Lagrangian of the form~2!, the appropriate field redefinition that removes time derivative c
plings to lowest order isc5Ax with

A512 1
2g

0~G02g0!

512 1
2 g0~cm0gm1dm0g5gm1e01 i f 0g51 1

2glm0slm!. ~32!

Note that these are in 1–1 correspondence with the nonunitary transformations of the formv•G
examined in Sec. III. The unitary transformations of this type can be obtained by lettin
coupling constants in Eq.~32! be pure imaginary rather than real. In this case, the time deriva
structure is unaffected by the field redefinition. This provides an alternative perspective o
spinor component field redefinitions. The unitary transformations preserve the time deri
terms while the nonunitary transformations modify the time derivative structure. This can be
directly from Eq. ~7! by noting that the requirement that no time derivatives are introduce
equivalent to the condition (v•G)†52v•G, hence making the field redefinition unitary to lowe
order. The unitary transformations are used in the standard Dirac theory to transition be
various representations of the gamma matrices, an alternative perspective to the explicit cor
terms used in this paper. In other words, any apparent Lorentz-violating terms generate
unitary transformation may be absorbed into a modified gamma matrix representation.

As a practical method for calculation, the procedure is therefore to first remove the redu
parameters to obtain Eq.~28!, then perform the field redefinition of Eq.~32! ~usingG̃0 in place of
G0). The resulting Lagrangian will therefore yeild a conventional Schro¨dinger equation time
evolution and will not contain any redundant parameters.

VI. SUMMARY

In this paper, an analysis of field redefinitions in the context of the Lorentz-violating Q
extension was presented. It was shown that a variety of parameters that apparently violate
invariance can be eliminated from the Lagrangian using suitable fermionic field redefinition

The approach taken to find these parameters was to begin with the conventional Dira
grangian, introduce an arbitrary spinor redefinition, and examine the resulting transforme
grangian. Any parameters generated using this procedure can be removed by the corres
inverse transformation. The action of SL(2,C) on the spinor fields is deduced using the conve
tional action on thec spinors and performing the field redefinition to determine the correspon
action onx. The resulting transformation matrices of the new spinor are related by a simi
transformation to the original matrices. This modified action must be taken into account
defining the conserved generators in the modified Lagrangian.
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This implies a procedure for elimination of redundant parameters from the original Lag
ian. By first identifying all possible terms that can be generated from the conventional Lagra
by a field redefinition, these terms can be omitted from the physical Lagrangian. This proc
has been carried out in Sec. V. A further transformation may be implemented to normalize th
derivative structure of the theory to obtain conventional Schro¨dinger time evolution and physica
particle states.

The possible nonderivative field redefinitions that can be applied to the QED extensio
into two general categories, unitary and nonunitary. The nonunitary transformations modi
time derivative structure of the Lagrangian and can be used to construct a hermitian hami
and a Schro¨dinger equation with conventional time evolution. The time derivative couplings
general bilinear Lagrangian of the form in Eq.~2! can always be removed using a suitab
nonunitary transformation. Moreover, there is a one-to-one correspondence between these
tary transformations and the field redefinitions used to eliminate the extra time derivative
plings.

Redefinitions involving differentiation may be useful in the free fermion theory, but often
to nonlocal interactions or skewed coordinate systems when interactions are present. Thes
lems make it difficult to perform a generic analysis of all possible applications of these tran
mations. Derivative redefinitions may be applied on a case by case basis where they m
useful in simplification of calculations.

Stability and causality issues5 cannot be effectively addressed using the above-presente
guments since the redefinition was only carried out to lowest order in Lorentz-violating pa
eters. Causality and stability problems appear either when the coupling constants are la
when the momentum is significantly large to invalidate the linear approximations involved. H
ever, the finite field redefinition considered in Eq.~17! leads to a finite set of parameters th
maintain the conventional dispersion relation. The resulting theory must therefore be stab
microcausal. A class of apparently Lorentz-violating Lagrangians that are microcausal and
may therefore be generated by applying finite versions of the field redefinitions discussed
paper. A complete nonperturbative analysis would be of interest, but is beyond the scope
work.

Application of a similar analysis to the entire standard model extension would be of int
For example, cross-generational mixings would allow for a richer structure of possible
redefinitions than in QED.
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Phase space structure and short distance behavior
of local quantum field theories
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In this article a general relation between the short distance structure of quantum
field theories and their phase space properties is exemplified by the simple class of
generalized free fields. As is known, theories with decent phase space properties,
resulting from a finite or moderately increasing infinite particle spectrum, always
have non-trivial scaling~short distance! limits @cf. D. Buchholz and R. Verch, Rev.
Math. Phys.10, 775~1998!#. But, whereas in the finite particle case the phase space
properties of the limit theories comply with strong nuclearity conditions, they vio-
late in the infinite particle case even rather mild compactness assumptions. These
results provide further evidence to the effect that relevant information on the short
distance structure of a theory can be obtained by phase space analysis. ©2002
American Institute of Physics.@DOI: 10.1063/1.1486262#

I. INTRODUCTION

In quantum field theory the structure of a physical theory at small distances is an inter
issue in several respects. It is important for understanding the particle structure at small sc
well as the classification of the ultraviolet properties of the theory.

Recently, Buchholz and Verch presented a model independent approach to the investiga
these problems in Ref. 8, which is carried out in the framework of algebraic quantum field th
There, they adapted the method of the renormalization group to this framework by introduci
notions of scaling algebra and scaling limit.

Before summarizing the ideas of Buchholz and Verch, let us give a brief account o
framework of algebraic quantum field theory~see, e.g., Ref. 12!.

In this framework, a quantum field theory is given by the net of algebras of local observ
A together with a covariant action of the translation group by automorphismsax,xPRd. This is a
map

O°A~O!, ~1!

fulfilling certain properties. HereO,Rd5s11 is an open bounded region ind5s11 dimensional
Minkowski-space andA(O) is unital C* -algebra, the algebra generated by all observables w
can be measured inO. TheC* -algebra generated by all the local algebrasA(O) ~asC* -inductive
limit ! is also denoted byA. Furthermore, we impose the following properties:

~1! Locality: ObservablesAPA(O1) and BPA(O2) corresponding to spacelike separat
regionsO1 andO2 should commute:

@A,B#50. ~2!

~2! Covariance:The translation groupRd acts on the net by automorphismsaxPAut(A), for
xPRd:

ax~A~O!!5A~O1x!. ~3!

a!Electronic mail: mohrdis@math.unibas.ch
35650022-2488/2002/43(7)/3565/10/$19.00 © 2002 American Institute of Physics
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Furthermore, we require the representation of the translation group to be continuous in the
topology, i.e., the mapsx°ax(A) to be continuous in the norm topology, for allAPA.

~3! Vacuum state:In general, a physical state of the theory is a positive, linear, normal
functional s on the netA. Such a state allows us to get a representationps of the netA on a
Hilbert spaceHs via GNS-construction. If the corresponding states is invariant under the trans
lation group, there exists a unitary representationUs(x), xPRd, of the translation group onHs

implementing the representationa:

Us~x!ps~A!Us~2x!5ps~ax~A!!, ~4!

for all APA. Let us assume that our theory has a vacuum state, i.e., that there exist a trans
invariant states, such that the joint spectrum of the generators of all implementors is contain
the forward light cone.

Now, let us briefly summarize the approach of Buchholz and Verch~for details we refer to
Ref. 8!:

Given a local, covariant net of observablesA, ax,xPRd in d space–time dimensions we con
struct the scaling netAI ,aI x,xPRd, again a local covariant net, by the following rule: LetAI :R.0

→A be a bounded function. Then we set

AI ~O!ª$AI uAI lPA~lO!, x°aI x~AI ! continuous in norm topology%,

aI x~AI !lªalx~AI l!.

The crucial point is that the scaling net carries a representation of the dilation grouptl , l
PR.0. Starting with the vacuum states on the underlying theory, we define itscanonical lift sI
on the scaling net:sI (AI )ªs(AI 1). Then one considers the scaled statessI +tl . This net of states on
the scaling net has limit pointssI (0,n), nPJ for l↘0, in the weak* -topology. Here,J is a
suitable index set. Via GNS-construction, we get representationsA(0,n), nPJ, of the scaling net
AI corresponding to these states. TheA(0,n), nPJ are calledthe scaling limit netsof the under-
lying theory.

Buchholz and Verch also provided a classification of the scaling limit. Since we do not
it here, we refer to Ref. 9.

Furthermore, it was observed by Buchholz,1 that phase space properties should play an
portant role for the short distance structure of a theory. This can heuristically be illustrated b
following example, which was more thoroughly investigated by Lutz:15

Assume we have a quantum field theory exhibiting the following behavior: The ene
momentum transfer of local observable scales withl2q with q.1 under renormalization group
transformations, while its localization in space–time scales withl. Since we require Planck’s
constant not to vary with the scale, its scaling limit theory should be a classical theory, i.
observables commute.

In this article we consider a generalized free field ind>3 space–time dimensions with finit
or moderately increasing infinite particle spectrum. To be more precise, we impose the foll
condition on the mass spectrum:

;b.0: (
i PI

e2bmi,`, ~5!

where I is either finite orN. It was shown by Buchholz and Verch that these theories h
nontrivial scaling limit, cf. Ref. 9. As is well known,10 these theories fulfill the nuclearity cond
tion.

Our aim is to show that its scaling limit theories exhibit the following phase space prope
If the mass spectrum is finite, all the scaling limit theories fulfill the strong nuclearity condi
But, none of its scaling limit theories complies with the weaker compactness criterion in
infinite case. Heuristically the situation can be understood as follows: In the finite case the s
                                                                                                                



rity
in the
rite-

f the

rties in
ties and

pper
Using

ll the
ass

. This is

rlying
s of
hed by

in the

ts

s

ocal,
it, the

3567J. Math. Phys., Vol. 43, No. 7, July 2002 Phase space structure and quantum field theories

                    
limit should be the massless theory with finite multiplicity, which is known to fulfill the nuclea
condition. On the other hand, in the infinite case, the scaling limit theory is expected to conta
massless free field with infinite multiplicity, which does not comply with the compactness c
rion.

Our analysis will be carried out by only investigating the phase space properties o
underlying theory.

The article is organized as follows:
In Sec. II we rephrase the mathematical tools for the investigation of phase space prope

quantum field theory. Afterwards, we describe the interaction between phase space proper
the structure of the scaling limit.

The models we are dealing with are introduced in Sec. III. There we also indicate u
bounds in the scaling limit of the nuclear norms of the phase space maps of our theories.
this we show that all the scaling limit theories in the case of a finite mass spectrum fulfi
nuclearity condition. In Sec. IV, we prove that the scaling limit in the case of an infinite m
spectrum has no decent phase space behavior, and it violates the compactness criterion
carried out by considering lower bounds of thee-contents of the phase space maps.

II. THE PHASE SPACE AND THE SCALING LIMIT

As was already pointed out in the Introduction, the phase space properties of the unde
theory should~partially! determine its short distance behavior. In fact, a link between propertie
the scaling limit and the phase space properties of a local quantum field theory was establis
Buchholz~cf. Ref. 1!. Here, we want to summarize the main results of his article.

Let us start by recalling the main notions for the description of phase space properties
framework of local quantum field theory~cf. Refs. 1, 2, 4, 17, and 18!.

Let T be an arbitrary bounded linear operator between two Banach spacesE andF.
Definition 2.1: (i) Thee-content NT(e) of T is the maximal number (or infinity) of elemen

EiPE1 , such that

; iÞ j : iT~Ei2Ej !i.e. ~6!

(ii) T is called p-nuclear, pPR.0, if there exist sequences enPE* and FnPF, nPN, such
that

T5 (
n51

`

enFn ,

~7!

(
n51

`

ienipiFnip,`.

The first sum should converge in the strong topology. We setiuTuipª inf( (n51
` ienipiFnip)1/p and

call this the nuclear p-norm. (To be precise, it is only a quasi-norm for0,p,1.! The infimum is
taken over all decompositions of T as in Eq. (7).

Furthermore, we setiAipª(TruAup)1/p for a bounded endomorphismA of a Hilbert space, if
this trace exists. This will be called thepth trace norm of A. For further properties of and relation
between these concepts, we refer to Refs. 1 and 2.

In the fr amework of local quantum field theory, ‘‘decent’’ phase space properties of a l
covariant netA are described by the compactness criterion or, a sharpened version of
nuclearity criterion~cf. Refs. 13, 10, and 7!: First let us define thephase space mapsQb,O , for
each bounded regionO,Rd andbPR.0:

Qb,O :A~O!→H,
~8!

A°e2bHAV.
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Here,H is the Hamiltonian of the theory.
Compactness condition:A local covariant netA fulfills the compactness condition, iff the

phase space mapsQb,O are compact, for everyb andO as above.
Nuclearity Condition:A local covariant net fulfills thenuclearity condition, iff the phase space

mapsQb,O arep-nuclear, for everyp.0, bounded regionO and sufficiently largeb.0.
We should mention that these conditions have a large variety of consequences for the p

interpretation and statistical and thermodynamical properties of the underlying theory. Since
not need them here, we refer to Refs. 13, 10, 7, 6, 14, and 19.

With these tools we are able to give an account on the interplay between phase spac
erties of the underlying theory and the structure of the scaling limit. We only present the re
For the proofs, we refer to Ref. 1, Proposition 4.3 and Theorems 4.5 and 4.6.

Investigating the nuclearp-norms of the phase space maps we can decide whether the sc
limit theories fulfill the nuclearity condition or not:

Theorem 2.1: Consider a quantum field theory with p-nuclear phase space mapsQb,O for
some0,p, 1

3. Furthermore, assume thatlim supl↘0iuQlb,lOuip,`. Then we have the follow
ing.

The phase space mapsQb,O
(0,n) of every scaling limit netA(0,n), nPJ, are q-nuclear, for q

.2p/(223p.) Furthermore, there exists a constant c depending only on pandq, such that

iuQb,O
(0,n)uiq<clim sup

l↘0
iuQlb,lOuip . ~9!

Using thee-contents the following sufficient and necessary conditions for the validity of
compactness criterion of the scaling limit theories hold. Here, thee-content ofQb,O will be
denoted byNb,O(e).

Proposition 2.1: All scaling limit theories of a given quantum field theory fulfill the comp
ness criterion, iflim supl↘0Nlb,lO(e),`, for all e.0 and bounded regionsO. A necessary
condition for the compactness criterion is thatlim infl↘0Nlb,lO(e),`, for all e.0 and
bounded regionsO.

Remark:By investigating phase space properties it is also possible to decide whethe
scaling limit theories are trivial~cf. Ref. 1!. Using the techniques presented in this article even
nontriviality of the scaling limit of the models under consideration can be shown~cf. Ref. 16!. We
will not outline this here because of the stronger results in Ref. 9, where the scaling limit ne
directly constructed.

III. THE MODELS AND UPPER BOUNDS

In this section we first give a brief description of our models. Then we show that the n
arity condition holds in the scaling limit, in the case of a finite mass spectrum. This is don
calculating upper bounds for the nuclearp-norms of the phase space mapsQb,O and investigating
their behavior in the limitl↘0.

Let us start by giving the construction of our quantum field theories in the Cauchy
formulation.

Let K be the one-particle Hilbert space:

Kª%
i PI

L2~Rs,C!, ~10!

where s5d21 is the number of space-dimensions. OnK we have a scalar product^,& in a
canonical way. In addition, there is an antilinear involutionJ given by componentwise comple
conjugation of the functions inK. Our vacuum Hilbert spaceH will be the symmetric Fock spac
over K. Its scalar product will be denoted by~,!.

The creation and annihilation operatorsa* (F) resp.a(F), FPK, act onH. We define the the
Weyl operatorsW(F), FPK:
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W~F !ªei (a* (F)1a(F))2
, FPK. ~11!

Here, (a* (F)1a(F))2 denotes the self-adjoint operator extending the densely defined~un-
bounded! operatora* (F)1a(F). The Weyl operators are subject to the canonical commuta
relations:

W~F !W~G!5eiI^G,F&W~F1G!. ~12!

Let P be the momentum operator onL2(Rs,C). Then the one particle HamiltonianvI acts as
follows:

vI Fª%
i PI

v i f i , v iªAuPu21mi
2. ~13!

By second quantization we get the HamiltonianH onH. It is the generator of the time translation
of our quantum field theory.

Let OrPRd be a double cone with BasisOr5$xPRs,uxu,r %,Rs, the ball of radiusr cen-
tered at 0 in thet50-plane. Then we define closed subspaces ofK @HereD(Or) denotes the se
of test function with support contained inOr!:

Lf
mi~Or !ªv i

2 1/2D~Or !
i .iL2(Rs,C), ~14!

Lp
mi~Or !ªv i

1/2D~Or !
i .iL2(Rs,C), ~15!

Lf~Or !ªvI 2 1/2%
i PI

D~Or !
i .iK5 %

i PI

Lf
mi~Or !

i .iK, ~16!

Lp~Or !ªvI 1/2%
i PI

D~Or !
i .iK5 %

i PI

Lp
mi~Or !

i .iK. ~17!

The corresponding projectors are denoted byEf
mi(r ), Ep

mi(r ), EI f(r ), resp.EI p(r ). Now we con-
sider the real linear subspaceL(Or),K:

L~Or !ª~11J!Lf~Or ! % ~12J!Lp~Or !. ~18!

We define the local von Neumann algebrasA(O), for O as above, to be the von Neuman
algebras generated by all Weyl operators located inO:

A~Or !ª$W~F !u FPL~Or !%9. ~19!

Here the prime denotes the commutant. The local algebras for arbitrary bounded regio
defined by use of the translation operators and additivity:

A~O!ªS ø
x1Õ,O

A~x1Õ! D 9. ~20!

Here,Õ is a double cone of the shape as above. So,A(O) is the smallest von Neumann algeb
containing all translated algebrasA(x1Õ).

Before continuing we have to deal with the following rather subtle problem: The net of
Neumann algebras we have constructed so far complies with all of the assumptions made
Introduction except for the norm continuity of the mapsx°ax(A). Now, one can obtain a net o
C* -algebrasO°A(O) fulfilling norm continuity by ‘‘smearing out’’ with test functions. The
local algebrasA(O) will be weakly dense in the algebrasA(O). Now, it is nota priori clear how
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the phase space properties behave under this procedure. The following lemma shows that
not change. Thus, we are allowed to work with the larger von Neumann algebras.

The phase space maps and thee-contents for theory using the weakly dense subalgebrasA(O)
are denoted with a tilde.

Lemma 3.1: We have the following.
(i) The phase space mapQb,O is p-nuclear, iff Q̃b,O is p-nuclear and their nuclear p-norms

coincide:

iuQb,Ouip5iuQ̃b,Ouip . ~21!

(ii) For the correspondinge-contents, the following chain of inequalities holds:

Ñb,O~e!<Nb,O~e!<Ñb,OS e

2D . ~22!

Proof: The proof of~i! is in analogy to the proof of Lemma 2.2. in Ref. 3. It can be found
Ref. 16.

~ii ! follows by use of a 3e-type argument from the Kaplansky density theorem and the d
nition of e-content. j

Our main result of this section is the following:
Theorem 3.1:All scaling limit theories of the generalized free field with finite mass spect

in d>3 space–time dimensions fulfill the nuclearity condition.
Proof: In d53,4 space–time dimensions the theorem follows easily from Ref. 9: There

proven that scaling limit of the theories in question is a generalized free field of mass zero
finite multiplicity. By Ref. 5 these theories fulfill the nuclearity condition.

In higher dimensions we use Theorem 2.1 to reduce the statement of the theorem
following proposition:

Proposition 3.1:Let O,Or be a double cone contained in a second one with a ball of rad
r centered at 0 as a basis in the t50-plane.

Then, the following upper bounds hold for the nuclear p-norms of the phase space maps:

iQb,Oip<5 expFC~p,s!S r

b D s

(
i PI

e2 ~b/4! pmiG , b<r ,

expFC~p,s!S r

b D @~s21!/2# p

(
i PI

e2 ~b/4! pmiG , b.r .

Remark:One easily sees that these upper bounds forlr ,lb diverge in the limitl↘0, if the
mass spectrum is infinite.

Proof of the proposition:Analogously to the proof of the theorem in the Appendix of Ref.
and the proofs of Theorem 2.1 and Lemma 2.2 in Ref. 5~see also Ref. 16, Lemma 4.2.1!, we get

iuQb,Ouip<expH 2

p S (
n51

`
1

n
I uEI f~r !e2bvI unI

p

p

1 (
n51

`
1

n
I uEI p~r !e2bvI unI

p

pD J .

Now, we have the direct sum decompositionEI f(r )5 % i PIEf
mi(r ), a corresponding one forEI p(r )

and the following inequalities:

iuEI e2bvI ur i1<iEI e2rbvI i1 , ;r P$1%øR>2, ~23!

Tr~ uAur !<Tr~ uAuq!, ;r>q,iAi<1, ~24!

of which the first one is proven in Ref. 5, Lemma 2.2, while the second is immediate. Using
equations, we derive the following upper bound for the nuclearp-norm of Qb,O :
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iuQb,Ouip<expH 2

p (
i PI

F S (
n51

K
1

n D ~ iEf
mi~r !e2bv iip

p1iEp
mi~r !e2bv iip

p!

1 (
n5K11

`
1

n
~ iEf

mi~r !e2npbv ii11iEp
mi~r !e2npbv ii1!G J , ~25!

whereK is the biggest natural number withKp,2.
We only need to calculate the nuclearp-norms forp5 2/N. Because of the formula above,

is sufficient to establish upper bounds for the trace norms of the operatorsEf
mi(r )e2npbv i and

Ep
mi(r )e2npbv i. The basic idea is to decompose the above operators intoN Hilbert–Schmidt

operators, whose kernels can easily be estimated. We will describe this briefly forEf
mi(r )e2npbv i:

Let xPD(Rs) be a test function, which is identical to 1 onO1 and setx r by x r(x)ªx(r 21x).
Denote by the same symbol the corresponding multiplication operator. Let us now defin
following operators:

hn
mi ,r ,b

ªv i
1/2~11l2v i

2!s(n21)x r~11l2v i
2!2snv i

21/2, ~26!

kn
mi ,r ,b

ªv i
1/2~11l2v i

2!s(n21)x rv i
21/2e2bv i. ~27!

Now, setlªmin$r,b%. Using the identityEf
mi(r )5Ef

mi(r )v i
1/2x rv i

21/2, we obtain the following
decomposition for everyNPN:

Ef
mi~r !5Ef

mi~r !h1
mi ,r ,b

¯hN21
mi ,r ,bkN

mi ,r ,b . ~28!

By an easy, but tedious, calculation, we obtain upper bounds for thep-trace-norms of
Ef

mi(r )e2bv i, where the constantC is independent ofr ,b andmi :

iEf
mi~r !e2bv iip

p<H CS r

b D s

e2 ~b/4! pmi, b<r ,

CS r

b D @~s21!/2# p

e2 ~b/4! pmi, b.r .

~29!

Inserting this and a similar estimate for the trace norms ofEp
mi(r )e2bv i into Eq. ~25!, the claim

follows. j

IV. THE CASE OF AN INFINITE MASS SPECTRUM

In this section we will prove that the scaling limit theories violate the compactness criteri
the case of an infinite mass spectrum. For doing this we need lower bounds of thee-content of the
phase space maps. Since this investigation of lower bounds does not appear in the literatur
our discussion will be more detailed in this part. Here is our final result:

Theorem 4.1:LetA be a generalized free scalar field in d>3 space–time dimensions, having
a discrete infinite mass spectrum, which fulfills the condition( i PNe2bmi,`, for all b.0.

Then none of its scaling limit theories fulfills the compactness criterion.
For the proof of this theorem we need some auxiliary results: First, let us fix our notation

xPD(Rs) be a test function with Supp(x),O1 , which is identical to 1 onO1/2. Definex r by
x r(x)ªx(r 21x). We use the same notation for the corresponding multiplication operator. N
let us set

Kf, mi

b ~r !ªv i
1/2x rv i

21e22bv ix rv i
1/2. ~30!

We can state a first auxiliary result:
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Lemma 4.1: Keeping the definitions made above, the following estimate holds:

lim inf
l↘0

iKf,lb
mi ~lr !i>iKf,b

0 ~r !i . ~31!

Proof: To obtain this, we first present the operatorsKf, lb
mi (lr ) as integral kernels in momen

tum space:

Kf,lb
mi ~lr !5E dsk

~ upu21mi
2!1/4~ uqu21mi

2!1/4

Auku21mi
2

e22lbAuku21mi
2

3~lr !2sx̃~~lr !~p2k!!x̃~~lr !~k2q!!. ~32!

Here the tilde denotes the Fourier transform. Now, letf PD(Rs) be an arbitrary test function with
i f i51. Then we definef l by f l(x)ªl2s/2 f (l21x). This implies i f li51. Using the integral
kernel presentation above and the self-adjointness ofKf, lb

mi (lr ), we get

iKf,lb
mi ~lr !i>^ f l ,Kf,lb

mi ~lr ! f l&5^ f ,Kf,b
lmi~r ! f &, ~33!

where the last equation follows by substitution. Now, there exists an integrable upper b
uniform in themi . It is, up to a positive constant, given by

1

11up2ku2s12

1

11uqus11 HAupuAuqu
uku

1Aupu
uku

1Auqu
uku

11J e22buku. ~34!

Thus, applying Lebesgue’s theorem, we can interchange the integral with the limitl↘0 to obtain

lim inf
l↘0

iKf,lb
mi ~lr !i> lim

l→0
^ f ,Kf,b

lmi~r ! f &5^ f ,Kf,b
0 ~r ! f &. ~35!

SinceD(Rs) is dense inL2(Rs,C) the lemma follows. j

Before proving the main result of this section, we still need a lemma:
Lemma 4.2: There exists a constant C independent of r,b and the mass spectrum, such th

the following estimate holds:

vI 2 1/2x rvI x rvI
2 1/2<CEI f~r !. ~36!

Proof: The inequality is obtained as follows:
Trivially, we have ivI 21/2x rvI x rvI

21/2i5supi PI iv i
21/2x rv ix rv i

21/2i . We present
v i

21/2x rv ix rv i
21/2 as an integral kernel in momentum space:

v i
2 1/2x rv ix rv i

2 1/2
ª~ upu21m2!21/4r 2sE dskx̃~r ~p2k!!

3~ uku21m2!1/2x̃~r ~k2q!!~ uqu21m2!21/4.

Now, we can indicate, after a long but straightforward calculation, an upper boundC for its norm,
uniform in mi and r . This is achieved by using the criterion of Schur~cf. Ref. 11!, which we
rephrase for convenience:

Let I 5I (p,q) be an integral kernel, such that the following estimates are finite:
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N1ª sup
pPRs

E dsquI ~p,q!u,`,

N2ª sup
qPRs

E dspuI ~p,q!u,`.

Then,I defines a bounded operator andi I i<AN1N2. j

Proof of the theorem:We will prove this theorem using Proposition 2.1, by showing t
lim infl↘0 Nlb,lO(e)5`, for somee.0.

By the identity ue2bvI EI f(r )u5 % i PNue2bv i Ef
mi(r )u we can find orthonormal eigenfunction

Ff, i
(l) PLf(Olr), i PN, of ue2lbvI EI f(lr )u corresponding to the eigenvaluesie2lbv i Ef

mi(lr )i .
We define local operatorsAf, i

(l) PA(lO), iAf, i
(l) i51:

Af,i
(l)

ª

1

11e21/2~W~Ff,i
(l)!2e2 1/21!. ~37!

With these definitions, the following estimate holds, foriÞ j :

iQlb,lO~Af,i
(l)2Af, j

(l) !i25
e21

~11e21/2!2 ~exp$ie2lbv iEf
mi~lr !i2%1exp$ie2lbv jEf

mj~lr !i2%22!

>
e21

~11e21/2!2 ~ ie2lbv iEf
mi~lr !i21ie2lbv jEf

mj~lr !i2!. ~38!

Applying Lemma 4.2, we conclude withC independent ofr ,b andmi :

ie2lbv iEf
mi~lr !i25ie2lbv iEf

mi~lr !e2lbv ii>CiKf,lb
mi ~lr !i . ~39!

Combining the last two equations and Lemma 4.1, we get, foriÞ j ,

lim inf
l↘0

iQlb,lO~Af,i
(l)2Af, j

(l) !i2>CiKf,b
0 ~r !i . ~40!

The constantC does not depend onr ,b and i , j . Therefore the theorem follows. j
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Conditions for the alignment of the principal null
directions of two Weyl-like tensors

G. E. Sneddona)

School of Mathematical and Physical Sciences, James Cook University, Townsville, 4811,
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A possible means to classify the interaction between the Weyl and Ricci tensors is
to look at the number of principal null directions that the Weyl and Plebanski
tensors have in common. This paper presents algebraic conditions that can be used
to determine this number without explicitly calculating the principal null directions
themselves. ©2002 American Institute of Physics.@DOI: 10.1063/1.1483377#

I. INTRODUCTION

Over the past decade, considerable attention has been paid to understanding the invar
the Riemann tensor and the relationships between them.1–8 This renewed interest focused on th
identities between the invariants and how they can be used to find information about the Ri
tensor. As a result of work by Sneddon5–7 it is possible to write down a complete set of invarian
for the Riemann tensor. Unfortunately, the number of elements required in a complete set is
large and this limits the usefulness of such a set. Other workers1,4 have sought to find a smaller se
of invariants that is not necessarily complete, but which can be used to obtain information
all other invariants.

One reason for developing an understanding of these invariants is to enable a classifica
the Riemann tensor that takes into account the interaction between the Weyl tensor and th
tensor~the irreducible parts of the Riemann tensor!. Most existing classifications classify each
these tensors separately. An exception is the work by Haddow,3 who looked at the particular case
of Einstein–Maxwell fields and perfect fluids.

In Sec. II the main features of the existing classifications of the Weyl tensor and Ricci t
are summarized. It is argued that in the first instance a classification of the interaction sho
based on the principal spinors of the Weyl spinorC and the Plebanski spinorL. In Sec. III the
condition forC andL to have at least one principal null direction~PND! in common is presented
This is essentially a condition on the scalar invariants of the Riemann tensor. In Sec. IV cond
for C andL to have at least two PNDs in common are given. It is shown that these condition
be expressed as a rotor equation,XABC50. Each of the components ofX can be expressed in term
of the NP components ofC andL, but the covariant expression forX in terms ofC andL is not
determined at this stage. Similarly, Sec. V gives conditions forC and L to have at least three
PNDs in common. Also in this section, conditions for the spinors to have four PNDs in com
are given. While this is really a trivial case~since thenC}L! it does lead to a means to fin
covariant expressions for the previous conditions in terms ofC and L. These conditions are
presented in Sec. VI.

Most of the conditions were obtained using a numerical procedure rather than index m
lations. They were all checked subsequently by assigning symbolic values to the componenC
andL and evaluating the expressions using a computer algebra package.

Although the properties being investigated relate to principal spinors, in most instance
conditions are expressed in the language of self-dual bivectors or rotors. The main reason
is that the smaller number of indices needed for these quantities usually leads to more co

a!Electronic mail: Graeme.Sneddon@jcu.edu.au
35750022-2488/2002/43(7)/3575/11/$19.00 © 2002 American Institute of Physics
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expressions. On some occasions it is helpful to refer to both forms~almost interchangeably!. Thus
A,B,... will be used for rotor indices and will take values from 1 to 3. Spinor indices will
represented bym,n,... and will take values 0 and 1. Finally,k,l ,... will represent tensor indices.

II. PRELIMINARIES

The classification of the Riemann tensor proceeds by first separating the tensor into it
ducible parts, i.e.,

Rklmn5Cklmn1Eklmn1
1
6 gk[mgn] lR,

whereCklmn is the Weyl tensor,Eklmn52g[k[mSn] l ] whereSkl is the trace-free Ricci tensor, andR
is the trace of the Ricci tensor. Each ofCklmn andEklmn ~or Skl! can be classified separately. The
are several approaches to the classifications of these tensors. These have been desc
Plebanski,9 Kramer, Stephani and Herlt,10 Hall,11 Penrose and Rindler,12 and Joly and
MacCallum13 ~among others!. The Weyl tensor can be classified according to the solutions of
eigenvalue equationCkl

mnV
mn5lVkl whereVkl is a bivector. Similarly, the trace free Ricci tens

can be classified by the solutions of the equationEkl
mnV

mn5gVkl or of Sk
lv

l5gvk.
Alternatively, the classification can be carried out on the spinor equivalents of these tens

the case of the Weyl tensor, the spinor equivalent isCmnrs which can be expressed in terms of i
principal spinors byCmnrs5a (mbngrds) . The classification is according to the coincidences
the principal spinors and gives the same results as the approach in terms of eigenbivector
approaches lead to the Petrov classification of the Weyl tensor.

The spinor equivalent ofEklmn is Fmnṙṡ . The dotted indices appear becauseEklmn is the
anti-self-dual part of the Riemann tensor. This means that, unlikeC, the decomposition ofF into
principal spinors is not possible. Instead the classification can be based on the solutions
eigenvalue equationFmn

ṙṡx̄ ṙṡ5gxmn, where the eigenspinorxmn can be scaled so thatg will be
real. Again this gives essentially the same results as the direct classification of eitherEklmn or Skl .
These approaches lead to the Plebanski classification or equivalently, a classification accor
the Segre´ type of the Ricci tensor.

The classification ofFmnṙṡ can also be carried out according to the locusv of complex null
vectorszk↔jmhṅ where the function

V~j,h!5Fmnṙṡjmjnhṙhṡ

vanishes.12 The resulting classification, together with the separation into various categories
refinement of the Plebanski classification.

The classification of these tensors can also be expressed in the language of complex s
bivectors~or rotors!.14 This is the notation that was used by Sneddon5–7 to describe the relation
ships between the invariants of the Riemann tensor. A brief description of this notation is giv
Ref. 5, but the main feature is that pairs of symmetric spinor indices are replaced by a singl
index which can take values from 1 to 3. ThusCmnrs→CAB andFmnṙṡ→GAḂ , whereCAB is
symmetric and trace-free andGAḂ is Hermitian. The metric in this space is denoted byaAB . The
symbols used are summarized in Table I. In this notation the relevant eigenvalue equation

CA
BfB5lfB, GA

Ḃx̄ Ḃ5gxA.

One other classification scheme for the Ricci tensor is based on the Plebanski tensor

Lklmn5S[k[mSn] l ]1g[k[mSn]
pSl ] p2 1

6 gk[mgn] lSpqS
pq.

This tensor has the same symmetries as the Weyl tensor and it is trace-free. Its spinor equ

~to within a factor! is given byLmnrs52F (mn
ġḋFrs)ġ ḋ . In terms of rotors,Lmnrs is equivalent to

LAB which is the trace-free part ofKAB5GAĊḠ Ċ
B . It is clear thatLAB will have the same
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symmetries asCAB . This means that the Petrov classification can be applied directly to
Plebanski tensor andLmnrs can be expressed in terms of its principal spinors. Classifying
Ricci tensor according to the coincidences of these spinors gives rise to the Petrov–Pleban~or
PP! classification9 of the Ricci tensor. As might be expected, the PP classification is not as fi
the Plebanski classification. Essentially, some of the detail available inG is lost when we take the
square~and then remove the trace!. However, provided@K# ~the trace ofK! is still available, the
only types that cannot be distinguished by the PP classification are the pairs

@11~1,1!# and @~11!1,1#, @~11!~1,1!# and @~11!2#,

@1~11,1!# and @~111!,1#, @~111,1!# and @~112!#.

~See the table on page 1001 of Ref. 9.!
It should also be noted that the PP classification can be obtained from the eigenvalue eq

for L ~or K!. The equation isLA
BfB5lfA. The relationship between the eigenbivectorsfA ~or

their spinor equivalents! and the principal spinors ofL has been given by Plebanski,9 but it is not
straightforward.

As noted by Penrose and Rindler~Ref. 12, p. 266!, the separate classification ofC andF will
not give the full story. There is still the interrelationship between the two parts to conside
classifying this interrelationship, it is not essential that all possible information from the
entities be represented. An analogy might be with the classification of two matrices. Each
can be classified according to the nature of its eigenvalues and eigenvectors. The relat
between the matrices could then be classified according to the alignments of the two s
eigenvectors. In that case the eigenvalues of the matrices would not affect the classification
interrelationship.

There are two possibilities on which such a classification ofC andF might be based. Thes
are the alignments of the eigenbivectors ofC andL and the coincidences between the princip
spinors of C and L. Given the nature of the relationship between the principal spinors
eigenbivectors, it is unlikely that the two approaches would be completely compatible. Th
neither could be seen as a refinement of the other. However, of the two approaches, it is th
that is likely to result in a simpler classification scheme in the first instance. This is the app
taken by Haddow3 for Einstein–Maxwell fields. In either case, it would be the properties ofL,
rather thanG, that influence the classification. In other words, some of the information availab
G would not influence the classification of the interaction betweenC and G. Alternatively, the
classification based on principal spinors could be viewed as asking how many of the pri
spinors ofCmnrs generate a family of complex null vectors that is tangent to~or touches! the
curvev formed fromFmnṙṡ ~Ref. 12, p. 287!.

With this in mind, the aim in the remainder of this paper is to find algebraic conditions foC
andL to have one, two, three, or four principal spinors in common.

TABLE I. The notation for the tensor, spinor, and rotor forms of the different entities.

Weyl tensor Ricci tensor Plebanski tensor

Skl

Tensor form Cklmn ↓ Lklmn

Eklmn

Spinor form Cmnrs Fmnṙṡ Lmnrs

KAB5GAĊḠ Ċ
B

Rotor form CAB GAḂ ↓
LAB
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III. THE CONDITION FOR ONE PND IN COMMON

The principal spinors~and hence the PNDs! of C andL can most easily be obtained from th
roots of the polynomials

P~z!5C014zC116z2C214z3C31z4C4 ,

Q~z!5L014zL116z2L214z3L31z4L4 ,

respectively, whereC i and Li are the NP components ofC and L. Thus, the condition for one
PND in common is just the condition that these two polynomials have a root in common.
condition is well known and is simply that the resultant of the two polynomials be zero.~See Cox,
Little, and O’Shea,15 for example.!

In our case, the quartic polynomials will have a root in common if and only if there are c
polynomials,A(z) andB(z), such that

P~z!A~z!1Q~z!B~z!50. ~1!

If the coefficients ofA(z) and B(z) are a0¯a3 and b0¯b3 , respectively, Eq.~1! can be ex-
panded and the coefficients of the powers ofz can be set equal to zero. This gives the followi
set of equations for the coefficients ofA(z) andB(z):

1
C0 0 0 0 L0 0 0 0

4C1 C0 0 0 4L1 L0 0 0

6C2 4C1 C0 0 6L2 4L1 L0 0

4C3 6C2 4C1 C0 4L3 6L2 4L1 L0

C4 4C3 6C2 4C1 L4 4L3 6L2 4L1

0 C4 4C3 6C2 0 L4 4L3 6L2

0 0 C4 4C3 0 0 L4 4L3

0 0 0 C4 0 0 0 L4

2 S
a0

a1

a2

a3

b0

b1

b2

b3

D 5S 0
0
0
0
0
0
0
0

D .

Since we need a nonzero solution, the determinant

R5U C0 0 0 0 L0 0 0 0

4C1 C0 0 0 4L1 L0 0 0

6C2 4C1 C0 0 6L2 4L1 L0 0

4C3 6C2 4C1 C0 4L3 6L2 4L1 L0

C4 4C3 6C2 4C1 L4 4L3 6L2 4L1

0 C4 4C3 6C2 0 L4 4L3 6L2

0 0 C4 4C3 0 0 L4 4L3

0 0 0 C4 0 0 0 L4

U ~2!

must be zero. This determinant is the resultant ofP(z) andQ(z).
If the expression forR is expanded, there will be 219 terms, so this form will be qu

cumbersome in the general case. Since the property of having a PND in common is an in
property, it is to be expected thatR can be written in terms of the invariants ofC andL. If so, this
should provide a simpler expression than~2!. Using a computer algebra package~in this case,
MATHEMATICA ! it is easy to show thatR is invariant under a general Lorentz transformation
expected. For example, if$om,im% forms a dyad for spin space then, under the transformatio
                                                                                                                



-

ed
r

ts of

f this

hy
-

pres-

ner

are
r the

3579J. Math. Phys., Vol. 43, No. 7, July 2002 Principal null directions of two Weyl-like tensors

                    
om→om1bim, im→im, ~3!

the components ofC undergo the transformation

C0→C014bC116b2C214b3C31b4C4 ,

C1→C113bC213b2C31b3C4 ,

C2→C212bC31b2C4 ,

C3→C31bC4 ,

C4→C4

and the components ofL will change similarly. However,R is left unchanged by this transforma
tion.

The method used to expressR in terms of the invariants is the ‘‘method of undetermin
coefficients’’ first used by Ouchterlony16 and described in Ref. 7. To obtain the expression foR
we start by writing down all products of invariants that have degree four in bothC andL. ~It is
sufficient to include only those invariants that belong to the complete set forC andL given by
Sneddon.5! ThenR must be a linear combination of these terms. Equations for the coefficien
these terms can be found by giving random numerical values to the components ofC and L.
These equations can be solved to give

R5248@C2L2#218@C2L2#@CL#2232@CL2#@C2L#@CL#1288 det~C!det~L !@CL#

26@C2#@L2#@CL#2296 det~C!@CL2#@L2#296 det~L !@C2L#@C2#1@CL#4

140@C2L2#@C2#@L2#27@C2#2@L2#2132@L2#@C2L#2132@C2#@CL2#2. ~4!

~The notation is that@C2L2# represents the trace of the matrix productC2L2, etc.! It can easily be
confirmed that the right-hand side of this expression is equivalent to the determinant~2!.

One disadvantage with this method is that it does not give any indication of the origin o
expression in terms of the componentsCAB andLAB or the principal spinors ofC andL. In Sec.
VI a covariant expression forR is obtained in terms of the components, but it is still unclear w
this expression should imply thatCmnrs andLmnrs have a principal spinor in common. Presum
ably, if C andL are each written as symmetrized products of their principal spinors, the ex
sion for R will reduce to a product of all possible inner products of a principal spinor ofC with
a principal spinor ofL. If two such principal spinors are proportional to each other then their in
product will be zero and soR will be zero. On the other hand, ifR50, one of the inner products
must be zero and so the corresponding spinors are proportional.

IV. THE CONDITIONS FOR TWO PNDS IN COMMON

The condition for two coincident PNDs is that there exist quadratics,A(z) andB(z), such that
P(z)A(z)1Q(z)B(z)50. ~This will also include the case where the two common PNDs
actually equal.! In a similar fashion to the case for one PND in common, the equations fo
coefficients ofA(z) andB(z) will have a nonzero solution if the rank of the matrix
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S C0 0 0 L0 0 0

4C1 C0 0 4L1 L0 0

6C2 4C1 C0 6L2 4L1 L0

4C3 6C2 4C1 4L3 6L2 4L1

C4 4C3 6C2 L4 4L3 6L2

0 C4 4C3 0 L4 4L3

0 0 C4 0 0 L4

D ~5!

is less than or equal to 5. This means that the determinant of any 636 submatrix must be zero
While this gives seven separate conditions~one for each row that is to be removed! only two of
these can be independent. The determinant of the submatrix with the (72 i )th row removed will
be denoted byXi .

Unlike the equation for one PND in common, theXi are not invariant under a Lorent
transformation. This removes any hope of being able to write these conditions in terms of i
ants. Instead, under the transformation~3! the Xi transform as

X0→X016bX1115b2X2120b3X3115b4X416b5X51b6X6 ,

X1→X115bX2110b2X3110b3X415b4X51b5X6 ,

X2→X214bX316b2X414b3X51b4X6 ,

X3→X313bX413b2X51b3X6 ,

X4→X412bX51b2X6 ,

X5→X51bX6 ,

X6→X6 .

This is precisely the transformation of the components of a six index, completely symm
spinor Xmnrsgd . The corresponding rotor will beXABC , which is completely symmetric and
trace-free.

In fact, XABC satisfies some other properties as well as being symmetric and trace-fre
have seen that only two of the conditionsXi50 can be independent. The relations between th
conditions can be found easily. For example, if the matrix~5! is augmented with the column
(C0 ,4C1 ,6C2 ,4C3 ,C4,0,0)T the determinant of the resulting matrix is identically zero. The
fore,

C0X614C1X516C2X414C3X31C4X2[0. ~6!

Five similar identities can be found by augmenting~5! with (0,C0 ,4C1 ,6C2 ,4C3 ,C4,0)T,
(0,0,C0 ,4C1 ,6C2 ,4C3 ,C4)T, and similar columns constructed from the components ofL. In
terms of rotors, these identities are

CABXABC[0, LABXABC[0.

There is still the task of writingXABC as a covariant expression in terms ofCAB andLAB . A
sketch of one possible method for doing this is given at this stage. A different approach is u
Sec. IV, which leads to a simpler result. Each term in the expression forXABC must have three
factors ofCAB and three factors ofLAB . In order to get an odd number of indices the alternat
tensor,eABC , must also appear in each term. Index contraction can be used to reduce the n
of free indices to three. Terms of this type can have one of two possible forms. These
follows.
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~i! seDEFFD
(AGE

BHF
C) , where s is a scalar andF, G, and H are matrix products~all

different! of C andL. These matrix products can be chosen from the basis set of matrices, E~3!
of Sneddon.6 It can further be shown that only terms withF equal to the identity matrix are
needed.

~ii ! seDEFFDEGF
(AHBC) where s is a scalar,F is a skew-symmetric matrix, andH is a

symmetric matrix. Again,G can be taken to be the identity.
There are a total of 62 such terms. Of these only 24 are irreducible. All other terms c
obtained from these. The method of undetermined coefficients can be used to find the coef
of each of these terms in the expression forXABC . Unfortunately, the resulting expression giv
little insight into why it should be zero if there are two PNDs in common.

V. THE CONDITIONS FOR THREE AND FOUR PNDS IN COMMON

The procedures of Secs. III and IV can be extended to the cases of three or four PN
common. If there are three PNDs in common the rank of the matrix

S C0 0 L0 0

4C1 C0 4L1 L0

6C2 4C1 6L2 4L1

4C3 6C2 4L3 6L2

C4 4C3 L4 4L3

0 C4 0 L4

D ~7!

is less than or equal to 3. Again, this means that the determinant of any 434 submatrix must be
zero. It is clear that it cannot be a simple spinor involved on this occasion. In fact, these term
separate into three different quantities, an eight index spinor, a four index spinor, and a
These will be denoted byU, V, andW, respectively. IfDi j is the determinant of the submatri
obtained by removing thei th andj th rows, the components ofU, V, andW are given in Table II.
The terms in each of the first two columns transform as the components of a spinor un
Lorentz transformation.

The rotor equivalent ofU will be a four index, completely symmetric, trace-free quantity. T
of V will be a two index, completely symmetric, trace-free quantity. Again, there will be relat
ships connecting the conditionsUABCD50, VAB50, andW50. Only three of these conditions ca
be independent. Also, each of these quantities will be expressible in terms ofCAB andLAB . This
is not done at this stage, other than to note that the scalarW can be expressed as

W524@C2L2#222@C2#@L2#110@CL#2.

Finally, if there are four PNDs in common the rank of the matrix

TABLE II. The conditions for three coincident PNDs arranged as spinor components.

Umnrsabgd Vmnrs W

U05D56

U15
1
2D46

U25
1

14(3D3615D45) V05D3623D45

U35
1

14(D2615D35) V15
1
2(D2622D35)

U45
1

70(D16115D25120D34) V25
1
6(D161D2528D34) W5D1625D25110D34

U55
1

14(D1515D24) V35
1
2(D1522D24)

U65
1

14(3D1415D23) V45D1423D23

U75
1
2D13

U85D12
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S C0 L0

4C1 4L1

6C2 6L2

4C3 4L3

C4 L4

D ~8!

is less than or equal to 1. The determinant of any 232 submatrix must be zero. This means th
C andL must be proportional to each other. This also follows immediately from the fact that
are four PNDs in common.

There are a total of ten conditions, not all independent. These can be arranged into a g
seven~that transform as the components of a six index spinor! and a group of three~that transform
as the components of a two index spinor!. The six index spinor will be equivalent to a three ind
rotor. The terms in the expression for this rotor must have one factor ofCAB , one factor ofLAB ,
and one ofeABC . Virtually the only quantity that meets these requirements and is symmetri

YABC5eDE(ACD
BLE

C) . ~9!

The trace-free part of this rotor gives the seven conditions that transform as a six index spino
trace ofYABC is YA5YAB

B. The remaining three conditions are given byYA50. All ten conditions
can be deduced from the single equation

YABC50.

These conditions also satisfy certain identities. An example of one such set of identities is

C (A
DYBC)D2C (ABYC)1a (ABCC)

DYD[0.

~This equation has been obtained using computer algebra rather than index manipulation.!
It turns out thatYABC also plays an important role in the expression of the conditions for

two, and three PNDs in common. These expressions are obtained in Sec. VI.
The spinor form of rotors such asYABC , that contain the alternating tensor, is not immediat

apparent. However, because of the central role played byYABC it is important to note its spinor
equivalent. The spinor equivalent ofeDEAcDfE is obtained in the Appendix. It follows that if th
indices ofYABC correspond to spinor indices according toA↔mn, B↔rs, andC↔gd, then

eDEACD
BLE

C↔2Cars(mLa
n)gd .

YABC will correspond to that part of this spinor that is symmetric under the interchange of a
the index pairsmn, rs, andgd. Note that this spinor will not be completely symmetric. Instead,
symmetric spinor 2Ca(rsmLa

ngd) will correspond to the trace-free part ofY which is YABC

2 3
5a (ABYC) .

VI. COVARIANT EXPRESSIONS FOR THE CONDITIONS

The method used to obtain the conditions for coincident PNDs gives no insight into how
can be written in terms of covariant expressions. In the case of four coincidences though,
possible to deduce that the conditions could be expressed asYABC50. It turns out that all of the
conditions can be expressed in terms ofYABC.

Conditions with a certain degree inC andL can be obtained by first writing down all possib
combinations ofYABC that have that degree and the required number of free indices an
required symmetries. The method of undetermined coefficients can then be used to det
which linear combination of these will give the required condition. In the process, it is shown
YABC also satisfies certain identities. These are noted along the way. Throughout, the rotor e
sion of the condition is given rather than the spinor form.
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A. Conditions for three coincident PNDs

These conditions are all quadratic inY. We look at the scalarW first. The only possible
quadratic terms areYABCYABC andYAYA . We find that

2 1
72W5W̃5YABCYABC1YAYA . ~10!

The possible quadratic two index quantities areYABCYC , YACDYB
CD , YAYB and terms involving

the metric. The components ofV come from the trace-free part ofYABCYC . In fact,

1
144VAB5ṼAB5YABCYC2 1

3 aABYCYC . ~11!

Equivalent expressions forVAB can be found by using the identity

2YABCYC2YACDYB
CD1YAYB5 1

3 aAB~3YCYC2YCDEYCDE!. ~12!

The four index, quadratic terms that can be formed areYE(ABYE
CD), Y(ABCYD), and terms

involving the metric. UABCD is proportional to the trace-free part of23YE(ABYE
CD)

14Y(ABCYD). We have

1
12UABCD5ŨABCD523YE(ABYE

CD)14Y(ABCYD)1 18
7 a (ABYCD)EYE

1 1
35a (ABaCD)~14YEFGYEFG251YEYE!. ~13!

Any metric with four coincident PNDs must also have at least three coincident PNDs. T
fore, if the condition for four coincidences is satisfied, the condition for three coincidences s
be automatically satisfied. In this case, it follows trivially that ifYABC50 then each ofUABCD,
VAB andW will also be zero.

B. Conditions for two coincident PNDs

These conditions are cubic inY and have three rotor indices. There are several terms that
this requirement. They are

YDE(AYB
EFYC)F

D , YDE(AYBC)FYDEF , YDE(AYBC)
EYD , YDE(AYB

DEYC),

YD(ABYC)YD , YDEFYDEFYABC, YDYDYABC, YAYBYC,

and terms involving the metric. First, there are three identities connecting these terms,

YDE(AYB
DEYC)22YD(ABYC)YD2YAYBYC50,

23YDE(AYBC)FYDEF16YDE(AYBC)
EYD13YD(ABYC)YD1YDEFYDEFYABC23YDYDYABC50,

and

26YDE(AYB
EFYC)F

D1YDEFYDEFYABC16YAYBYC13YDYDYABC

2 3
5 ~26YDEFYDE

GY(A
FG1YDEFYDEFY(A19YDYDY(A!aBC)50.

The first two can be obtained from Eq.~12!, by multiplying by YF andYFG
C , respectively. The

third identity is new and was found using the method of undetermined coefficients. The tra
the first two identities also give identities with one free index. The trace of the third is identi
zero.

The expression for XABC comes from the trace-free part of 12YDE(AYBC)
EYD

2YDEFYDEFYABC25YDYDYABC. We find
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2 1
144XABC5X̃ABC512YDE(AYBC)

EYD2YDEFYDEFYABC25YDYDYABC

2~12YEYDYED(A1YDEFYDEFY(A23YDYDY(A!aBD). ~14!

Again, we should be able to deduce thatXABC50 from the conditions for two coinciden
PNDs. This follows from

XABC5212VD(AYBC)
D22WYABC1 3

5 ~4VD(AYD18VDEY(A
DE12WY(A!aBC).

C. Condition for one coincident PND

In this case, there are eight possible terms in the expression forR. They are

YABCYADEYDF
BYEF

C , YABCYABDYEF
AYD

EF , YABCYD
BCYE

ADYE ,

YABCYD
ABYCYE , YABCYAYBYC , ~YABCYABC!2, ~YAYA!2, ~YAYA!~YBCDYBCD!.

There are four identities connecting these invariants. These are

6YABCYADEYDF
BYEF

C224YABCYAYBYC2~YABCYABC!2

19~YAYA!226~YAYA!~YBCDYBCD!50,

3YABCYABDYEF
AYD

EF236YABCYAYBYC2~YABCYABC!2

16~YAYA!224~YAYA!~YBCDYBCD!50,

YABCYD
BCYE

ADYE25YABCYAYBYC1~YAYA!22~YAYA!~YBCDYBCD!50,

and

3YABCYD
ABYCYE26YABCYAYBYC2~YAYA!~YBCDYBCD!50.

The expression forR can be written as

2 1
144R5R̃548YABCYAYBYC2~YABCYABC!229~YAYA!216~YAYA!~YBCDYBCD!, ~15!

although several other forms are possible.
Finally, it must be possible to obtain the condition,R50, from XABC50. In fact, it can be

shown that

R5YABCXABC . ~16!

We can also show

YABCXABD5 1
3 RdC

D . ~17!

VII. CONCLUSION

We have obtained algebraic conditions for the Weyl tensor and Ricci tensor to have a
number of PNDs in common. Initially, these conditions were given in terms of the determina
certain matrices. They were also written in a covariant form in terms of rotors or com
bivectors. For one PND in common, we needR50, whereR is given by Eq.~15!. For two PNDs
in common, we needXABC50 @Eq. ~14!#. For three PNDs in common, we needW50, VAB50,
andUABCD50 @Eqs.~10!, ~11!, and~13!#. Finally, if YABC50 @Eq. ~9!# there will be four PNDs
in common. All of these conditions are expressed in terms ofYABC .
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Although it is of theoretical interest that these conditions can be expressed in terms of
riant quantities, these expressions are generally fairly complex. In practice it may be the ca
the expressions for these conditions in terms of the determinants will be of more use.

These results mean that it is possible to classify the Riemann tensor according to the n
of PNDs the Weyl and Plebanski tensors have in common without calculating the PNDs exp
Such a classification would be additional to the separate classifications of the Weyl tensor a
Ricci tensor. It would be a first attempt at classifying the interaction between these tensors

APPENDIX: ROTOR EXPRESSIONS CONTAINING eABC

It will be sufficient to consider the spinor equivalent ofeDEAcDfE. The notation used is tha
of Buchdahl14 and is summarized in Ref. 5. The connection between spinors and rotors is giv

fA5lAmnfmn, fmn5 1
2 lAmnfA.

In addition, we need the identitieslAmnlAar52d (m
(adn)

r) and

l [D
rslE]ab5eDEClC

(a
(rdb)

s) . ~A1!

@Equation~A1! is from p. 417 of Ref. 14. It was not recorded in Ref. 5.# Then,

eDEAcDfE5eDEAlD
rslEabcrsfab5eDEAeDEClC

(a
(rdb)

s)c
rsfab52lAarcr

bfab.

The spinor equivalent is

lAmnlAarcr
bfab52d (m

(adn)
r)c

m
bfnb52c (m

bfn)b.
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A generic route is described for the modification of fractal basin boundaries in
nonlinear systems by changing only theshapeof a periodic~autonomous or non-
autonomous! term in the dynamics equations. Two examples are used to illustrate
the route: a non-invertible two-dimensional map, and a driven dissipative oscillator
with a cubic potential that typically models a metastable system close to a
fold. © 2002 American Institute of Physics.@DOI: 10.1063/1.1481546#

I. INTRODUCTION

The dynamics of generic physical systems is determined by their global structures su
strange attractors and the boundaries of basins of attraction. In particular, the existence of
basin boundaries~FBB!1–8 has fundamental implications for the behavior since small uncertain
in initial conditions~or other system parameters! may lead to large uncertainties in the response
the system. Indeed, FBBs are of practical importance for the control of a wide class of c
systems such as coupled oscillator arrays. We here describe a generic route to control FB~i.e.,
to vary their fractal dimension! by solely varying the waveform of a periodic term in the dynam
equations.

To demonstrate the new technique in the simplest possible context, consider the foll
two-dimensional map:

un115
4K~m!

p
un mod 2p, ~1a!

zn115lzn1cnF4K~m!

p
un ;mG , ~1b!

where we assume 1,l,2, 0<u,2p, mP@0,1@ , and where cn is the Jacobian elliptic functio
of parameterm and~real! period 4K(m), with K(m) the complete elliptic integral of the first kind
When m50, then cn@4K(m50)u/p;m50#5cos(2u), i.e., we recover a map similar to tha
considered in Ref. 2. Increasingm makes the pulse given by cn@4K(m)u/p;m# progressively
narrower. The Jacobian matrix of the map~1! has eigenvalues 4K(m)/p andl, which are greater
than 1 so that there can be no attractors with finitez. In fact, there exist only two attractors2z
51` and z52`2 and we wish to characterize the evolution of the fractality of their ba
boundary,z5 f (u), asm varies over the range@0,1@. To find this boundary set, we note first th
un5@4K(m)/p#nu0 mod (2p). The map~1! is two-to-one, i.e., givenun11 , it is not possible to
find un uniquely since there are two possible solutions of~1a!, un5un11 /@4K(m)/p# and un

5p2/2K(m)1un11 /@4K(m)/p#. However, we can select anyzn and find one orbit that ends a
(zN ,uN), by using the aboveun and takingzn215l21zn2l21cn$@4K(m)/p#nu0 ;m%. For the
given (zN ,u0) one finds that this orbit started atz05l2NzN2( i 51

N l2 icn$@4K(m)/p# iu0 ;m%.
The boundary between the two basins are those (z0 ,u0) such thatzN is finite asN→`, so these
z andu are related by
35860022-2488/2002/43(7)/3586/6/$19.00 © 2002 American Institute of Physics
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z52 (
n51

`

l2ncnH F4K~m!

p Gn

u;mJ [ f ~u!. ~2!

Since l.1 and mP@0,1@ , this sum converges absolutely and uniformly. One also
d f(u)/du5(n51

` @4K(m)/pl#nsn$@4K(m)/p#nu;m%dn$@4K(m)/p#nu;m%, where sn and dn are
the Jacobian elliptic functions. The latter sum diverges;mP@0,1@ becausel,2. Hencef (u) is
nondifferentiable. Figure 1 shows approximate plots of the curve~2! for three values of the shap
parameterm5$0,0.5,0.99%. It can be shown9 that the box-counting dimension of the curve~2! is

FIG. 1. Approximate plots of the fractal curve~2! ~by computing the first 103 terms of the series! for l51.5 and three
values of the shape parameterm: ~a! m50, ~b! m50.5, and~c! m50.99.
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d5d~m![22
Lnl

Ln@4K~m!/p#
. ~3!

For m50, we recover the valued(m50)522(Lnl)(Ln2)21 reported, for a similar version o
the trigonometric counterpart of the map~1!, in Ref. 2, while we obtaind(m→1)→2 as the
symmetric pulses modeled by the function cn@4K(m)u/p;m# become narrow. Figure 2 shows th
normalized box-counting dimensiond(m)/d(m50) versusm for l5const. One sees that th
increase in the normalized box-counting dimension is especially noticeable for very narrow
(m&1), which is a consequence of its dependence onK(m). It is worth mentioning that similar
results can be obtained10 for other periodic functions instead of cn, i.e., the fractality of a ba
boundary can be varied by reshaping a suitable periodic term in the map equations.

II. CONTROL OF CHAOTIC ESCAPE FROM A POTENTIAL WELL

To illustrate the same phenomenon in a physically motivated model equation, conside
the chaotic-escape problem of the dissipative driven oscillator

ẍ52x1bx22d ẋ1gcn~vt;m! ~4!

from the cubic potential well that typically models a metastable system close to a fold.11,12 We
assume thatd,g!1 and v5v(m)[4K(m)/T, where T is the forcing period. This latter is
fundamental in comparing the structural stability of the system when only the forcing sha
varied~i.e., by changingm in the range@0,1@ !. The forcing cn@4K(m)t/T;m# can induce escape
in such a way that, before escape, chaotic transients of unpredictable duration—due to the
character of the basin boundary~of the attractor at infinity!—are usually observed. In order t
characterize the evolution of such FBBs as the shape parameter is varied, we shall ap
Melnikov method~MM ! to Eq.~4!. The MM provides a criterion for the occurrence of homoclin
~and heteroclinic! chaos in a wide variety of dynamical systems. As is well known, its predict
for the appearance of strange attractors are both approximate and limited. However, it appe
the criterion for the homoclinic~and heteroclinic! orbits—accurately predicted by MM—in vari
ous systems4,11 is coincident with the change from a smooth to an irregular FBB. This is
relevant result for our analysis of the evolution of the FBB as the shape parameterm is varied with
the remaining parameters held constant. Since MM is today considered standard, we re
interested reader to the abundant literature.13–17

The application of MM to Eq.~4! involves calculating the Melnikov function,

FIG. 2. Normalized fractal dimension of the curve~2!, d(m)/d(m50) @cf. Eq. ~3!#, vs m for l51.5.
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M ~ t0!5E
2`

` H 2d ẋ0
2~ t !1g ẋ0~ t !cnF4K~m!

T
~ t1t0!;mG J dt, ~5!

where

x0~ t !5
1

b S 12
3

11cosh~ t ! D ,

~6!

ẋ0~ t !5
3

b

sinh~ t !

@11cosh~ t !#2

are the parametric equations of the separatrix of the underlying conservative system (d5g50).

FIG. 3. Function@D(m)/D(m50)#21 vs m in the rangemP@0,mthreshold#, whereD(m)[U(b,m,T)2d/g @cf. Eq. ~9!#,
andd50.1, g50.08,b51.0, T52p/0.85, andmthreshold'1.

FIG. 4. Inverse normalized escape probability@P(m)/P(m50)#21 vs m for the same parameters as in Fig. 3. To gener
numerically the basins of attraction, we selected a grid of 3003300 starting points in the region of phase spa
$x(t50)P@20.7,1.5#,ẋ(t50)P@21.0,0.7#%. From this grid of initial conditions, each integration was continued u
eitherx exceeds 20, at which point the system is deemed to have escaped~i.e., to the attractor at infinity!, or the maximum
allowable number of cycles, here 30, is reached.
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After substituting Eq.~6! into Eq. ~5!, using the Fourier expansion of cn,18 and computing the
resulting integrals with the aid of standard integral tables,19 Eq. ~5! can be written as

M ~ t0!52
6d

5b2 2
96p4g

b (
n50

`

cn~m!bn~T!sinF2p~2n11!t0

T G , ~7!

with

cn~m![
1

AmK~m!
sechF S n1

1

2D pK~12m!

K~m! G ,
~8!

bn~T![
1

T2 S n1
1

2D 2

cschF S n1
1

2D 4p2

T G .
It is straightforward to demonstrate that a homoclinic bifurcation is guaranteed if

FIG. 5. Basin erosion of the system~4! for d50.1, g50.08, b51.0, andT52p/0.85 in the window20.7,x,1.5,
21.0, ẋ,0.7: ~a! m50.68,mc'0.7, ~b! m50.72.mc .
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d

g
,U~b,m,T![80bp4(

n50

`

cn~m!bn~T!, ~9!

where U(b,m,T) is the threshold function. Withd,g,b, and T constant, we can now define
‘‘function distance’’ to fractality of the basin boundary,D(m)[U(b,m,T)2d/g, so that FBBs
~do not! appear whenD(m).0(D(m)<0). Figure 3 shows a plot of the function@D(m)/D(m
50)#21 versusm for a set of parameters (d,g,b,T) such that a FBB already occurs form
5mthreshold, i.e., D(m5mthreshold).0, anda fortiori for mP@0,mthreshold# @cf. Eq. ~9!#. It is worth
noting thatD(m) provides aqualitative estimate for the variation of the fractality of the FB
~indeed, observe the similarity with Fig. 2!. We can now discuss the connection between
function D(m)/D(m50) and the normalized escape probabilityP(m)/P(m50). We found two
different regimes asm varies, as can be seen in Fig. 4. First, there is anonlinearregime over the
rangemP@0,mc#, where the variation of the normalized escape probability is very similar to
of the functionD(m)/D(m50) ~compare Figs. 3 and 4!. Second, there is alinear regime over the
rangemP]mc,1@ , where P(m)5P(m50)/(am1b), with a,b,mc functions of the remaining
system parameters. Note that the critical valuemc represents the threshold between having fr
tallike fingers protruding into the nonescaping basin@as in Fig. 5~a!# and their almost complete
disappearance@as in Fig. 5~b!#.

III. CONCLUSIONS

The analysis based on models~1! and~4! can be developed in two important ways.10 First, the
results extend to general nonautonomous systems with FBBs. Second, the manner of alte
geometrical shape of the periodic term can be chosen quite freely, which is fundamen
technological applications.

In sum, we have presented a generic way to reduce or increase the fractality of a FBB b
altering the waveform of a suitable periodic term. We connected it with the escape probabi
a generic escape problem, where two distinct escape regimens were characterized.
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Consider a classical HamiltonianH in n dimensions consisting of a kinetic energy
term plus a potential. If the associated Hamilton–Jacobi equation admits an or-
thogonal separation of variables, then it is possible to generate algorithmically a
canonical basisQ, P whereP15H, P2 ,...,Pn are the other second-order constants
of the motion associated with the separable coordinates, and$Qi ,Qj%5$Pi ,Pj%
50, $Qi ,Pj%5d i j . The 2n21 functionsQ2 ,...,Qn ,P1 ,...,Pn form a basis for the
invariants. We show how to determine for exactly which spaces and potentials the
invariantQj is a polynomial in the original momenta. We shed light on the general
question of exactly when the Hamiltonian admits a constant of the motion that is
polynomial in the momenta. Forn52 we go further and consider all cases where
the Hamilton–Jacobi equation admits a second-order constant of the motion, not
necessarily associated with orthogonal separable coordinates, or even separable
coordinates at all. In each of these cases we construct an additional constant of the
motion. © 2002 American Institute of Physics.@DOI: 10.1063/1.1484540#

I. INTRODUCTION

The quest for integrable systems has a long history. Basically, the question is, given a cl
HamiltonianH5H(x,p) wherex5(x1 , . . . ,xn), p5(p1 , . . . ,pn), how can one find all the so
lutions to the Poisson bracket condition

$H,L%5(
i 51

n S ]H

]pi

]L

]xi
2

]H

]xi

]L

]pi
D50, ~1!

whereL5L(x,p).1 There is no known comprehensive solution to this problem. However, if
associated Hamilton–Jacobi equationH(x, ]S/]x)5E is additively separable in the orthogon
variablesx, then a complete integral of the equation can be constructed by quadratures an
can find a basis of 2n21 functionally independent solutions to Eq.~1!. Indeed there is an explici
canonical change of coordinates from the variablesx, p with $xi ,pj%5d i j to variablesQ, P where
P15H, P2 ,...,Pn are the other second-order constants of the motion associated with the ort

a!Electronic mail: e.kalnins@waikato.ac.nz
b!Electronic mail: jonathan@math.waikato.ac.nz
c!Electronic mail: miller@ima.umn.edu
d!Permanent address: Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow

141980, Russia and International Center for Advanced Studies, Yerevan State University, A. Manougian 1, 3
Yerevan, Armenia.
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nal separablex-coordinates, and$Qi ,Qj%5$Pi ,Pj%50, $Qi ,Pj%5d i j . Thus the 2n21 functions
Q2 ,...,Qn ,P1 ,...,Pn form a basis for the invariants. Each invariantQj can be expressed as a su
of the form

Qj5 (
k51

n

Mk~xk ,P!, ~2!

see Ref. 1.
Numerous examples have been found through this approach, but important problems r

Many of the known interesting dynamical systems have extra constants of the motionL which are
polynomial in the canonical momentapi ,i 51,...,n. This often enables global statements to
made about the system in question, e.g., the existence of closed orbits. However, though
interesting results have been obtained, e.g., Refs. 2 and 3, an algorithmic way of genera
polynomial solutions to~1! is not known. In particular, from thex-based integrals in~2! it is
difficult to tell if Qj is a polynomial in the momentapi . In this article we adopt ap-based
approach to the calculation of the invariantsQj in which the termMk take the formMk

5M (pk ,P), and we can say in advance for exactly which separable metrics and potentialsQj is
a polynomial in the momenta. We give, in principle, a complete solution to this problem. M
over, we show how to characterize each termMk in ~2! by the Poisson brackets$Mk ,Pj%. @Note:
Although the termMk(xk ,P) always exists, there are cases where it cannot be express
Mk(pk ,P), i.e., as a function ofpk alone. These are exactly the cases wherexk is an ignorable
variable, i.e., where the components of the metric tensor in thex-coordinates do not depend onxk

and where, also, the potentialV does not depend onxk . However, these special cases whereMk

and the invariantQi of which it is a component term always have polynomial dependence~after
multiplication by a linear combination of second-order invariants! can be handled separately or b
requiring thatMk depends on a variable with somex dependence, such asMk(r (xk)pk ,P) treated
below.#

Of course, the system could admit a polynomial invariant

L5R~P,Q2 ,...,Qn!

such thatL,P is functionally independent, even ifQ2 ,...,Qn are not polynomials. It is a much
more difficult problem to classify all such possibilities for polynomialL as functions of possibly
nonpolynomialQj . We make some progress toward the solution of this problem, through
consideration of important examples. These questions of when a system withn second-order
constants of the motion~generated by an orthogonal separation of variables! admits additional
polynomial constants of the motion are closely related to the concept of superintegrability.4–18

For dimensionn52 in this article, we go beyond the formulation discussed above and
sider all cases where the Hamilton–Jacobi equation admits a second-order constant of the
not necessarily associated with orthogonal separable coordinates, or even separable coord
all. In each of these cases we construct an additional constant of the motion.

II. CARTESIAN SYSTEMS IN TWO DIMENSIONS

Let us first consider two dimensional Euclidean space. In Cartesian coordinates the H
tonianH has the form

H5px
21py

21V~x,y!.

If we have separation of variables in Cartesian coordinates the potential must take the for

V~x,y!5X~x!1Y~y!. ~3!
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We immediately observe that there are already two invariants arising from the separation, n
L15px

21X(x) and L25py
21Y(y). Our problem is to calculate a third invariant and determ

when it can be chosen to be a polynomial in the canonical momenta. To do this we compu
functionsM (x,px) andN(y,py) that satisfy the conditions

$H,M %51, $H,N%51. ~4!

These equations can be solved in principle if we know the original functionsX andY. Indeed, if
we write out the first of these conditions, we obtain

2px

]M

]x
2X8

]M

]px
51.

This equation can be readily solved to give

M52E X821dQ,

whereQ5px and L15px
21X. @We considerX8215dx/dX to be a function ofX5L12Q2 to

compute the integral. An arbitrary functionf (L1 ,L2) can be added to the integral, but this mak
no difference sinceL1 ,L2 are invariants.# OnceM andN have been determined, we see thatL3

5N2M must be an invariant. It is immediately clear that ifX5x1/p wherep is an integer, then
M is a polynomial inpx . As examples of this consider the following.

~1! p53:

M523x2/3px24x1/3px
32 8

5 px
5 .

~2! p54:

M524x3/4px28x1/2px
32 32

5 x1/4px
52 64

35 px
7 .

It follows from these two examples that the Hamiltonian

H5px
21py

21x1/31y1/4

has, in addition to the obvious invariants

L15px
21x1/3, L25py

21y1/4,

the additional invariant

L353x2/3px14x1/3px
31 8

5 px
524y3/4py28y1/2py

32 32
5 y1/4py

52 64
35 py

7 . ~5!

From this observation we conclude that all potentials of the form

V5ax1/p1by1/q ~6!

have the superintegrability property with three functionally independent invariants which
polynomial inpx andpy . This includes the known examples corresponding top51,2. If X(x) is
determined by a polynomial relation of the form

(
j 51

n

ajX
j5x,
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we can go even further. Then the functionM is always a polynomial in the canonical momentu
px . As an example consider

X~x!5221/3@$x1Ax211%1/32$x1Ax211%21/3#. ~7!

The inverse function is

x5X31
3

22/3X

and the corresponding functionM (x,px) is given by

2M ~x,px!5
8

5
px

514Xpx
313X2px1

3

22/3px .

It is clear that all that we have done applies also to potentials that separate inn dimensions,
in Cartesian coordinates. There is only one further Cartesian case for which polynomial inva
can be generated. Let us consider the case whenX(x)5v1

2x2. The corresponding function
M (x,px) is given by

M ~x,px!5
1

4v1
arcsinS v1

2x22px
2

v1
2x21px

2D .

If Y(y)5v2
2y2, this establishes that the Hamiltonian

H5px
21py

21v1
2x21v2

2y2 ~8!

has the constant of motion

L35
1

4v1
arcsinS v1

2x22px
2

v1
2x21px

2D 2
1

4v2
arcsinS v2

2y22py
2

v2
2y21py

2D , ~9!

in addition to the constantsL15px
21v1

2x2 and L25py
21v2

2y2. In general this invariant is no
polynomial in the canonical momenta. However, ifv1 /v2 is a fractionp/q for integersp,q, then
v15ps,v25qs andL385sin(4spqL3) will be a rational invariant whose common denominator
a product of powers ofL1 andL2 . The numerator is then an additional polynomial invariant, e
considerv151,v252. Then

L385sin~8L3!5
L1L2

222~xpy
224ypxpy24xy2!2

L1L2
2 ,

which indicates that L395xpy
224ypxpy24xy2 is an additional invariant. In genera

L1
pL2

q sin(4spqL3) will be a polynomial invariant, functionally independent ofL1 andL2 .

III. GENERAL TWO-DIMENSIONAL SEPARABLE SYSTEMS

If we extend this problem to the case of orthogonal separable coordinates in a gener
mannian space, we know that the Hamiltonian in a given set of coordinates with a sep
potential has the form

H5L15
px

21py
21v1~x!1v2~y!

f 1~x!1 f 2~y!
, ~10!

and, due to the separability, there is the invariant19–21
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L25
f 2~y!~px

21v1~x!!2 f 1~x!~py
21v2~y!!

f 1~x!1 f 2~y!
.

We can implement the same ansatz as we have done previously by looking for a fu
M (H,x,px) which satisfies

$H,M %5
1

f 1~x!1 f 2~y!
. ~11!

The condition has the form

~2v18~x!1 f 18~x!H !
]M

]px
12px

]M

]x
51. ~12!

Assuming thatuv18u1u f 18u.0, we see that this equation has the solution

M ~H,L2 ,px!5E U821dQ,

where

Q5px , L25v1~x!2 f 1~x!H1px
2 , U~x!52v1~x!1 f 1~x!H1L2 .

@We considerU8215dx/dU to be a function ofU5Q2. An arbitrary functionf (L1 ,L2) can be
added to the integral, but this makes no difference sinceL15H andL2 are invariants.# There is a
similar condition for the functionN(H,L2 ,y,py). The new invariant isL35N2M . It is straight-
forward to verify the condition

$L2 ,L3%51. ~13!

Indeed,$L2 ,M %5 f 2 /( f 11 f 2), $L2 ,N%52 f 1 /( f 11 f 2). This implies that the setL1 ,L2 ,L3 is
functionally independent.

Similarly, we can construct functionsM (H,x,px),N(H,y,py) that satisfy

$H,M %5
f 1~x!

f 1~x!1 f 2~y!
, $H,N%5

2 f 2~y!

f 1~x!1 f 2~y!
. ~14!

Assuming thatuv i8u1u f i8u.0 for i 51,2, we see that these equations have the solutions

M ~H,L2 ,px!5E f 1~x!U18
21dQ, N~H,L2 ,py!52E f 2~y!U28

21dQ,

where

Ui52v i1 f iH1L2 .

SettingL45N2M , we see thatL4 , not an invariant, satisfies

$H,L4%51, $L2 ,L4%50. ~15!

Let us illustrate what can happen with some examples.
~1! We choose parabolic coordinates in Euclidean space22 x85 1/2 (j22h2), y85jh. First

consider the parabolic-separable Hamiltonian
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H5L15
pj

21ph
21j

j21h2 . ~16!

We can immediately associate with this the extra invariant

L25
h2pj

22j2ph
21h2j

j21h2 .

If we look for our functionsM (j,pj) andN(h,ph), as before we obtain

M ~j,pj!5
1

4AH
lnS AHpj1

1

2
2jH

2AHpj1
1

2
2jH

D ,

N~h,ph!5
1

4AH
lnS AHh1ph

AHh2ph
D .

If we now consider the constant cosh(4(M2N)AH), we find that it can be written in the form

4 cosh~4~M2N!AH !5
L3

2H

~124HL2!L2
,

where

L35
2jh

j21h2 ~pj
21ph

2 !22pjph1
h~j22h2!

j21h2 ~17!

is an additional invariant quadratic in the canonical momenta. This is a special case of a
general example in Ref. 23.

~2! Consider the Hamiltonian in Cartesian coordinates

H5px
21py

21
x

Ax21y2
. ~18!

In parabolic coordinates this Hamiltonian has the form

H5L15
pj

21ph
21j22h2

j21h2 .

The second-order invariant associated with this separation is

L25
j2ph

22h2pj
222j2h2

j21h2 .

The additional invariant calculated by our method is given by

L35
arccosh~@~H21!j21pj

2#/@~H21!j22pj
2# !

AH21

1
arccosh~@~H11!h21ph

2 #/@~H11!h22ph
2 # !

AH11
, ~19!
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which is clearly transcendental.
~3! If we consider the Hamiltonian

H5px
21py

21 ib~x1 iy !, ~20!

then using the semihyperbolic coordinates22

x1 iy5 i ~u1w!, x2 iy5~2 i /2!~u2w!2

and applying our construction, we find

exp~M2N!2 i

exp~M2N!1 i
52 i

Ab̄2 iX

Ab1 iX
,

thus giving rise to the additional constantX5px1 ipy .
~4! Let us now look at an example of a potential where our construction yields ell

integrals. We consider the potentialV52x1 b/y2. If we carry out the construction using para

bolic coordinatesx5( 1
2)(j

22h2), y5jh, then the functionsM andN are given by the integrals

M5
1

2 E jdj

A2j61Hj41Lj22b
, N5

1

2 E hdh

Ah61Hh41Lh22b
,

whereL is the quadratic constant associated with the separation of variables in parabolic c
nates. If we change variables according tou5j2, v52h2, then bothM and N are given by
integrals of the form

I 5
1

2 E dl

A~a2l!~b2l!~c2l!
,

wherel5u,v and

abc52b, L5ab1bc1ac, H5a1b1c.

There are a variety of ways of evaluating elliptic integrals of this type. We recall that all
considerations are in the complex domain. As an example, we can choose to use the c
equivalent of the integral

E
2`

u dx

A~a2x!~b2x!~c2x!
5

2

Aa2c
F~a,p!,

valid for a.b.c>u and for which

Aa2c

a2u
5sina5sn~A,p!, p5Aa2b

a2c
.

Then if we calculate sn2(Aa2c(M2N),p) using the addition formulas for elliptic functions w
obtain

sn2~Aa2c~M2N!,p!5
c2a

c1b1L1
,
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whereL1 is the second quadratic constant associated with this super-integrable system. Bec
the various ways of evaluating elliptic integrals, there are a number of ways of uncoverin
presence ofL1 .

In analogy with the constructions~5!–~7!, we can find Riemannian spaces and potentials w
polynomial invariants of arbitrarily high order. Set

x5PnS U1A

a1bH D , A5d1fH2L2 , ~21!

wherePn is a polynomial of ordern anda,b,d,f are constants. Then there exists a functionFn ,
inverse toPn , i.e., Fn(Pn(y))5y, such that

U5~a1bH !Fn~x!2d2fH1L2 ,

andv1(x)52aFn(x)1d, f 1(x)5bFn(x)2f, where (a1bH)nM (x,px) is a polynomial in the
momenta. The Cartesian coordinate constructions~5!–~7! correspond to the special caseb50.

The solution of the equation~11! can be understood in a more general context. We have
dual relations

x5F~U2L2 ,H !, U~x,H !52v1~x!1 f 1~x!H1L2 , UxÞ0. ~22!

~Since U and L2 occur only asU2L2 , we will, without loss of generality, setL250 in the
theoretical developments to follow, and then replaceU by U2L2 in the examples.! Thus we have

15FUUx , FUUH1FH50.

The condition thatU(x,H) is linear in H, i.e., UHH50, leads to the following necessary an
sufficient conditions that the functionx5F(U,H) correspond to an invariantM on a Riemannian
manifold with potential:

FHHFU
2 22FUHFUFH1FUUFH

2 50, FUÞ0. ~23!

This equation admits an infinite dimensional conformal symmetry group. Indeed ifV5F(U,H) is
a solution, thenG(V) is also a solution, foranynonconstant functionG. Also, this group contains
the subgroup of inhomogeneous affine symmetries: ifF(U,H) is a solution, then so isF(@a11U
1a12H11a13#/A,@a21U1a22H1a231a23#/A), whereai j are constants, det(aij)Þ0 and

A5a31U1a32H11a33.

Note that the functionV15(U1d1fH)/(a1bH) satisfies~23!, so any function ofV1 must
also satisfy the requirement. This puts~21! in the proper context. A more general solution isV2

5(U1fH1d)/(aU1bH1g), where again any function ofV2 also satisfies the requiremen
Equation~23! also occurs in the theory of level sets, used in computational geometry and
puter vision,24 since it describes the family of functionsF whose level sets are always straig
lines in the (U,H) plane.

We have seen that the construction~21! always leads to a polynomial invariantL3 , up to
multiplication by a polynomial inH andL2 . In fact these are theonly polynomial invariantsL3

that can be constructed directly from the integration. This follows from the following theore
Theorem 1: The function F(U,H) with FUÞ0 is a solution of Eq. (21) with polynomia

dependence on U if and only if it is of the form

F~U,H !5PS U1aH1b

gH1d D ,

where P is a (nonconstant) polynomial anda,b,g,d are constants withugu21udu2.0.
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Proof: Let

F5a0~H !UN1a1~H !UN211¯1aN21~H !U1aN~H !

be a solution of~21! with N>1 anda0Þ0. Substituting this expression into~21! and equating the
coefficient ofU3N22 on both sides of the resulting expression, we find the conditiona09a05((N
11)/N)a08

2, so a0(H)5(gH1d)2N. Now we make the change of variablesŨ5 U/(gH1d) ,
H̃5 (fH1r)/(gH1d), wherefd2grÞ0. It follows that

F5ŨN1ã1~H̃ !ŨN211¯1ãN21~H̃ !Ũ1ãN~H̃ !

in the new coordinates, andF is a solution of

FH̃H̃F
Ũ

2
22FŨH̃FŨFH̃1FŨŨF

H̃

2
50. ~24!

Substituting the polynomial into~24! and equating coefficients ofŨ3N23, we find ã19N
250 or

ã15a1H̃1b1 . Using this information, we return to our original expression for the polynom
and make a new change of variables of the form

Ũ5
U1aH1b

gH1d
, H̃5

xH1z

gH1d
, ~25!

wherexd2gzÞ0, anda, b are chosen such that the transformed coefficient ofŨN21 vanishes. In
these variables

F5ŨN1ã2~H̃ !ŨN221¯1ãN21~H̃ !Ũ1ãN~H̃ !.

We substitute this expression into~24!, and equating coefficients ofŨ3N24 we find ã2950, soã2

is a polynomial inH̃ of order<1. Proceeding in this fashion to equate coefficients ofŨ3N2s for
s55,6,... in order, we find that the first occurence ofãk ,k>3 in this sequence of equations tak
the formãk95pk(ã2 ,...,ãk21) wherepk is a polynomial of order 3 at most. It follows by inductio
on k that eachãk is a polynomial inH̃.

At this point we have shown thatF is a polynomial in bothŨ and in H̃. Let H̃M be the
maximal power ofH̃ that occurs inF. If M50, we are done. AssumeM>1. If we use the
argument of the first paragraph of this proof withŨ and H̃ interchanged, we see that the coef
cient of H̃M in F must take the forma0 /(b1Ũ11) with a0Þ0. SinceF is a polynomial inŨ we
must haveb150.

Thus

F5ŨN1ã2~H̃ !ŨN221¯1ãN21~H̃ !Ũ1a0H̃M.

Now substitute this expression into~24! and equate coefficients ofŨnH̃m wheren1m is maximal.
SupposeN>M . The highest power term inFH̃H̃F

Ũ

2
is aNM (M21)N2H̃M22Ũ2N22. The highest

power term inFŨŨF
H̃

2
is aN

2 N(N21)M2H̃2M22ŨN22, but this is of lower order. The highes

power term in 2FŨH̃FH̃FŨ is t52aNaN1 ,M1
N1M1NMŨN11N22H̃M11M22 whereaN1 ,M1

is the

coefficient ofŨN1H̃M1 in F. HereN1,N,M1,M . If N.N11M1 , then the highest power term
is the coefficient ofH̃M22Ũ2N22, so M51. If N<N11M1 , then t50, soaN1 ,M1

50. Thus, the
only possiblity isM51, so

F5ŨN1a2ŨN221¯1aN21Ũ1aNH̃.
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Substituting this expression into the differential equation we see thatFŨŨ50, or F5Ũ1aNH̃.
But this is impossible sinceN51 and the coefficient ofŨN21 must be 0. HenceF depends only
on Ũ. There is a similar argument for the caseM.N. QED

If we limit our search for potentials to a space in whichUH5 f 1(x) is prescribed, then the
general conditions~23! are replaced by

FH1 f 1~F !FU50, FUÞ0. ~26!

Equation~26! admits the complete integral

F~U,H,a,b!5 f 1
21S U1a

H1b D ,

where f 1
21 is the function inverse tof 1 . From this one can use standard techniques~method of

characteristics, envelopes of solutions! from the theory of quasilinear first-order partial differenti
equations to construct solutions of~26! that satisfy particular initial conditions or that depend
arbitrary functions~Ref. 25, Chap. II or Ref. 26, Sec. 88!.

Note:Standard Hamilton–Jacobi theory gives essentially these same constants of the m
but from a different viewpoint.1 Our expression forL3 , for example, is

L35E Ux8
21dpx2E Uy8

21dpy5M2N,

whereUx52v1(x)1 f 1(x)H1L2 , etc. Standard Hamilton–Jacobi theory gives

L35
1

2 E dx

A2v11 f 1H1L2

2
1

2 E dy

A2v21 f 2H2L2

5M̃2Ñ.

In the standard theoryM̃5M̃ (H,L2 ,x), etc., whereas in our approachM5M (H,L2 ,px), etc. In
both cases the condition~12! is satisfied. Our approach makes it easier in some cases to dete
if polynomial invariants exist. It also points out the bracket relations betweenM ,N and the
operatorsL j defining the separation, e.g.,~11!.

Examples abound of spaces for which these constructions apply. We illustrate this w
family of surfaces in Minkowski space:ds25dz22dy22dx2. The surfaces involve a horispher
cal coordinatej and take the form

X~ t,j!5~x,y,z!5~2tj,g~ t !1~j221!t,g~ t !1~j211!t !. ~27!

The metric on the surface is

ds254@ tg8~ t !dt22t2dj2#54t2@dr22dj2#5~ f ~r!11!@dr22dj2#,

where (dr/dt)25g8(t)/t2, and we can construct a polynomial invariant for the surface~and for an
appropriate added potential! provided that the functiont25F(r) has a polynomial inverse func
tion, i.e.,r5G(t2) whereG is a polynomial. Clearlyg8(t)54t4G8(t2)2 and any polynomialG
will determine a surface with a polynomial invariant. For example, chooseG(t2)5 1

2t
41t2. Then

we can takeg(t)5 4
9t

91 8
7t

71 4
5t

5 andr(t)5 1
2t

41t2. The resultingM will be third-order polyno-
mial in pj andpr . Similarly, we can determine a potential termv(r) with v8Þ0 such that N is
a polynomial inpj andpr .

Rather than make either of the choicespx or x for the independent variable in~12! we could
choose some other functionw(x,px), adapted to the specific problem at hand. For example, le
takew(x,px)5r 8(x)px for some given functionr , and requireM5M (H,L2 ,w). Solving ~12! in
these variables we find
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M5E dr~x!

dw2 dw, ~28!

where

w25U5r 8~x!2px
25r 8~x!2~2v11 f 1H1L2!, r ~x!5F~U,H,L2!.

This approach will work even ifv1 and f 1 are constants; it is guaranteed to yield a polynom
invariant if we require

r 5PnS U1a1H1a2L21a3

a4H1a5L21a6
D , ~29!

wherePn is a polynomial of ordern and thea i are constants. Then there exists a functionFn ,
inverse toPn , such that

U5~a4H1a5L21a6!Fn~r !2~a1H1a2L21a3!5r 82~2v11 f 1H1L2!.

Equating coefficients ofL2 we find the conditionr 8(x)25a5Fn(r )2a2 and we can solve forr (x)
by quadratures. Equating coefficients ofH and the constant term, we obtain expressions forf 1 and
v1 :

f 1~x!5
a4Fn~r !2a1

a5Fn~r !2a2
, v1~x!5

a32a6Fn~r !

a5Fn~r !2a2
.

It follows that (a4H1a5L21a6)nM (rpx) is a polynomial in the momenta.

IV. LIE FORM AND NONORTHOGONAL SEPARATION IN TWO DIMENSIONS

We know that if a Hamiltonian

H5 (
i , j 51

2

gi j pipj

admits a constant of the motionL that is quadratic in the momenta

L5 (
i , j 51

2

ai j pipj , $H,L%50, ~30!

and if the roots of the determinantuai j 2lgi j u are distinct, then the eigenforms define new~sepa-
rable! variablesr, m and the Hamiltonian can be written in Liouville form

H5
pr

21pm
2

f ~r!1g~m!
.

However, it may be that the roots of this determinant are equal. In this caseH cannot be put into
Liouville form, but rather Lie form, which for a suitable choice of variables~nonseparable! is

H5
pxpy

x1B~y!
. ~31!

The associated quadratic constant of the motion is

L5px
222yH. ~32!
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We now ask the question: When the roots ofL are equal, how can we calculate the thi
invariant? We are interested in the the same question when a potential is added to the Hami
These questions can readily be answered. Indeed if we look for a functionN(H,L,y,py) that is in
involution with H, we obtain the equation

~x1B~y!!Ny1pyB8~y!Npy
50. ~33!

If we solve ~31! and ~32! for x andpx in terms of the variablesH, L, y andpy , we obtain

px5AL12yH, x5
py

H
AL12yH2B~y!.

The equation~33! for N then has the form

AL12yH

HB8(y)
Ny1Npy

50.

From this condition a second invariant can be readily obtained in the form

L85HE B8~y!

AL12yH
dy2py . ~34!

We now extend these considerations by considering the possibility of adding a potential.
do this and have an extra quadratic constant, thenH andL have the forms

H5
pxpy1 1

2 K~y!

x1B~y!
1

1

2
U8~y!, L5px

222yH1U~y!. ~35!

Solving ~35! for px andx gives

px5AL2U~y!12yH, x5
pyAL2U~y!12yH1 1

2 K~y!

H2 1
2 U8~y!

2B~y!.

Then the equation forN has the form

2AL2U~y!12yH~2H2U8~y!!Ny1@22U9~y!AL2U~y!12yHpy1B8~y!U8~y!2

14B8~y!H22U9~y!K~y!24B8~y!U8~y!H1K8~y!U8~y!22K8~y!H#Npy
50. ~36!

This equation can, in principle, be solved directly. In fact, for suitable redefinition of the varia
y→Y, py→Py , Eq. ~36! can be put in the form

NY1~PY1s~Y!!NPY
50 ~37!

that can be solved by the further transformation

PY85PY1t~Y!, Y85Y.

Then, provided that

t8~Y!2t~Y!1s~Y!50,

~37! reduces to
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NY81PY8NPY8
50.

From this we immediately deduce an extra constant of the motion of the form

L85eY8/PY8 . ~38!

The equation fort(Y) has the solution

t~Y!5eYEY

e2us~u!du.

There is one remaining possibility for a quadratic constant of the motion~30! in two dimen-
sions: the constant may be associated withnonorthogonalseparation of variables. In two dimen
sions there is only one case: separation in light cone~null! coordinates.27 For this case the Hamil-
tonian takes the form

H5pzpz̄1 f ~ z̄!,

and there is a Killing vectorpz , sopz
2 is a second-order constant of the motion. In addition th

is a quadratic constant

L5Mpz1
i

2 E z̄
d f

dz̄
dz̄.

Thus we have answered the following questions.

~1! If a Hamiltonian with potential admits a quadratic constant of the motion in two dimens
how does one calculate the third constant?

~2! A subset of problem 1 is when we require separation only and ask to calculate the
constant.

V. SYSTEMS IN THREE DIMENSIONS

Let us now look at how the orthogonal separation of variable considerations extend to
dimensions. If we have a general separable coordinate system in three dimensions, we co
the Hamiltonian to be20,28,29

H5L15
g22g3

F
~px1

2 1v1~x1!!1
g32g1

F
~px2

2 1v2~x2!!1
g12g2

F
~px3

2 1v3~x3!!, ~39!

wheregi5gi(xi), f i5 f (xi) andF is the determinant of the Sta¨ckel matrix

S 1 f 1 g1

1 f 2 g2

1 f 3 g3

D . ~40!

This automatically gives us two more invariants:

L25
f 32 f 2

F
~px1

2 1v1~x1!!1
f 12 f 3

F
~px2

2 1v2~x2!!1
f 22 f 1

F
~px3

2 1v3~x3!!, ~41!

L35
f 2g32 f 3g2

F
~px1

2 1v1~x1!!1
f 3g12 f 1g3

F
~px2

2 1v2~x2!!1
f 1g22 f 2g1

F
~px3

2 1v3~x3!!.

~42!
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We need to find an additional two invariants, such that the five form a functionally indepe
set.

If we look for a functionM1 such that

$H,M1%5
g22g3

F
, ~43!

then this function satisfies the equation

2px1
]x1

M11@2v18~x1!1 f 18H1g18L2#]px1
M151, ~44!

which looks like the form we have been using in two dimensions. There are similar equatio
the corresponding functionsMi for i 52,3. For M1(H,L2 ,L3 ,Q1) with Q15px1

this has the
solution

M15E U18
21dQ1,

where U1(x1)52v1(x1)1 f 1H1g1L21L3 and L35v12 f 1H2g1L21px1

2 . ~Here, we consider

U18
215dx1 /dU1 to be a function ofU15Q1

2 to compute the integral. We also assume thatuv18u
1u f 18u1ug18u.0.! The corresponding invariant that we can calculate from these three functio
L385M11M21M3 . This is based on the obvious identity

~g22g3!1~g32g1!1~g12g2!50.

Note:As in the two dimensional case, the solution of the equation~44! can be understood in
a more general context. We have the dual relations

x5F~U2L3 ,H,L2!, U~x,H,L2!52v1~x!1 f 1~x!H1g1~x!L21L3 , ~45!

whereUxÞ0. ~SinceU and L3 occur only asU2L3 we can, without loss of generality, setL3

50 in the equations immediately following, and then replaceU by U2L3 in the examples.! Thus
we have

15FUUx , FUUH1FH50, FUUL2
1FL2

50.

The condition thatU(x,H,L2) is linear in H and L2 , i.e., UHH5UL2L2
5UHL2

50, leads to the
following necessary and sufficient conditions that the functionx5F(U,H,L2) correspond to an
invariantM1 on a Riemannian manifold with potential:

FHHFU
2 22FUHFUFH1FUUFH

2 50, FUÞ0,

FUUFL2

2 22FL2UFL2
FU1FL2L2

FU
2 50, ~46!

FL2L2
FH

2 22FHL2
FHFL2

1FHHFL2

2 50.

These equations admit an infinite dimensional conformal symmetry group. Indeed,V
5F(U,H,L2) is a solution, thenG(V) is also a solution, forany nonconstant functionG. Also,
this group contains the subgroup of inhomogeneous affine symmetries: ifF(U,H,L2) is a solu-
tion, then so isF(@a11U1a12H1a13L21a14#/A,@a21U1a22H1a23L21a24#/A,@a31U1a32H
1a33L21a24#/A) whereai j are constants, det(aij)Þ0 and

A5a41U1a42H1a43L21a44.
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As in the two dimensional case, the only polynomial functionsF of U are of a very specia
form.

Theorem 2: The function F(U,H,L2) with FUÞ0 is a solution of Eqs. (46) with polynomia
dependence on U if and only if it is of the form

F~U,H,L2!5PS U1a1H1a2L21b

g1H1g2L21d D ,

where P is a (nonconstant) polynomial anda i ,b,g i ,d are constants withug1u21ug2u21udu2

.0.
Proof: The proof is similar to that of Theorem 1. It follows from this theorem and the first

equations in~46! that

F5P(1)~U (1),L2!5P(2)~U (2),H !,

where theP( i ) are polynomials of strict orderN in their first arguments and

U (1)5
U1a1

(1)L2H1b (1)L2

g1
(1)L2H1d (1)L2

U (2)5
U1a1

(2)HL21b (2)H

g1
(2)HL21d (2)H

.

Furthermore, the coefficients of theN21-st power of their first arguments can be asumed to
zero. Comparing the coefficients of the highest powerUN of U in F, we see that this coefficien
must be of the form

~g1H1g2L21g3HL21d!2N,

where now theg i ,d are constants. Substituting this into the third equation in~46! and equating
coefficients ofU3N, we see thatg350.

Equating the coefficients ofUN21 in the P( i ) we see that

U (1)5U (2)5Ũ5
U1a1H1a2L21fHL21b

g1H1g2L21d
,

where the coefficients are constants. Then, substituting this result into the third equation aga
comparing coefficients ofU3N21 we see thatf50. At this point we have shown thatF
5P(Ũ,H,L2) whereP is a polynomial of order exactlyN in its first argument. The proof thatP
is independent of its second and third arguments follows exactly as in the last part of the pr
Theorem 1. QED

If we limit our search for potentials to a space in whichUH5 f 1(x),UL2
5g1(x) are pre-

scribed, then the general conditions~46! are replaced by

FH1 f 1~F !FU50, FL2
1g1~F !FU50, FUÞ0. ~47!

From this one can use standard techniques~method of characteristics, envelopes of solutions! from
the theory of systems of quasilinear first order partial differential equations to construct sol
of ~47! that satisfy particular initial conditions or that depend on arbitrary functions.

The invariantL385M11M21M3 also commutes withL2 . Indeed, from the fact that

]x1
L25

f 32 f 2

F
~v182 f 18H2g18L2!

we can verify that~44! implies
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$L2 ,M1%5
f 32 f 2

F
. ~48!

The corresponding conditions are satisfied byM2 and M3 . Then the fact that$L2 ,L38%50 is
implied by the obvious identity

~ f 32 f 2!1~ f 12 f 3!1~ f 22 f 1!50.

Finally, from the fact that

]x1
L35

f 2g32 f 3g2

F
~v182 f 18H2g18L2!

we can verify that~44! implies

$L3 ,M1%5
f 2g32 f 3g2

F
. ~49!

The corresponding conditions are satisfied byM2 and M3 . Then the fact that$L3 ,L38%51 is
implied by the identity

~ f 2g32 f 3g2!1~ f 3g12 f 1g3!1~ f 1g22 f 2g1!5F. ~50!

Similarly, we can define a new invariantL28 by requiring that a new functionM1 satisfy

$L1 ,M1%5
g1~g22g3!

F
, ~51!

with analogous conditions forM2 and M3 . For M1(H,L2 ,L3 ,Q1) with Q15px1
this has the

solution

M15E g1U18
21dQ1,

whereU1(x1)52v1(x1)1 f 1H1g1L21L3 .
@Note that forM1 to be a polynomial inpx ,py ,pz we must haveg1(F)FU a polynomial inU.

If g1850, this reduces to requiringF to be a polynomial inU. If g18Þ0, we can replace the variabl
x by x̃15r (x1)5*g1(x1)dx1 with x̃15G(U,H,L2 ,L3). Then g1(F)FU5GU and our original
analysis goes through withF replaced byG. It is guaranteed to yield a polynomial invariant if w
require

r 5PnS U1a1H1a2L21a3L31a4

a5H1a6L21a7
D , g15r 8~x1!, ~52!

wherePn is a polynomial of ordern and thea i are constants. Then there exists a functionFn ,
inverse toPn , such that

U5~a5H1a6L21a7!Fn~r !2~a1H1a2L21a3L31a4!52v11 f 1H1g1L21L3 .

Equating coefficients ofL2 we find the conditionr 85a6Fn(r )2a2 and we can solve forr (x1) by
quadratures. Equating coefficients ofH, L3 and the constant term, we finda3521 and

f 1~x!5a5Fn~r !2a1 , g1~x!5a6Fn~r !2a2 , v1~x!5a42a7Fn~r !.

It follows that (a5H1a6L21a7)nM1 is a polynomial in the momenta.#
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The corresponding invariant that we can calculate from these three functions isL285M1

1M21M3 . This is based on the obvious identity

g1~g22g3!1g2~g32g1!1g3~g12g2!50.

Then it follows that

$L2 ,M1%5
g1~ f 32 f 2!

F
, $L3 ,M1%5

g1~ f 2g32 f 3g2!

F
,

with analogous results forM2 , M3 . Thus, from the definition ofF we see that$L2 ,L28%51.
Finally, we define a functionL185M11M21M3 by requiring

$L1 ,M1%5
f 1~g22g3!

F
, ~53!

with similar conditions forM2 andM3 . For M1(H,L2 ,L3 ,Q1) with Q15px1
this has the solution

M15E f 1U18
21dQ1 .

Then it follows that

$L2 ,M1%5
f 1~ f 32 f 2!

F
, $L3 ,M1%5

f 1~ f 2g32 f 3g2!

F
,

with analogous relations forM2 andM3 .
In summary, all brackets between the six functionsLi ,Li8 are zero except that

$L3 ,L38%5$L2 ,L28%5$L1 ,L18%51. ~54!

Thus the mapping (x1 ,x2 ,x3 ,px1
,px2

,px3
)→(L1 ,L2 ,L3 ,L18 ,L28 ,L38) is canonical.

Note: Standard Hamilton–Jacobi theory gives exactly these same constants of the m
from a different viewpoint.1 Our expression forL38 , for example, is

L385(
j
E U j8

21dpxj
5(

j
M j ,

whereU j52v j (xj )1 f jL11gjL21L3 andU j5pxj

2 . Standard Hamilton–Jacobi theory gives

L385
1

2 (
j
E dxj

A2v j1 f jL11gjL21L3

5(
j

M̃ j .

In the standard theory M̃ j5M̃ j (L1 ,L2 ,L3 ,xj ), whereas in our approachM j

5M j (L1 ,L2 ,L3 ,pxj
). In both cases the condition~44! is satisfied. Our approach makes it straigh

forward to determine exactly when theLi8 are polynomials in the momentapxj
. It also points out

the bracket relations between theMi and the operatorsL j defining the separation, e.g.,~43!, ~48!,
~49!, ~51!, and~53!.

The generalization ton dimensions is straightforward.
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Conservation laws for a class of nonlinear equations
with variable coefficients on discrete and
noncommutative spaces

M. Klimeka)

Institute of Mathematics and Computer Science, Technical University of Cze¸stochowa,
ul.Da̧browskiego 73, 42-200 Cze¸stochowa, Poland

~Received 4 January 2001; accepted for publication 14 March 2002!

The conservation laws for a class of nonlinear equations with variable coefficients
on discrete and noncommutative spaces are derived. For discrete models the con-
served charges are constructed explicitly. The applications of the general method
include equations on quantum plane, supersymmetric equations for chiral and an-
tichiral supermultiplets, auxiliary equations of integrable models which means vari-
ous cases of nonlinear Toda lattice equations and anomalous diffusion equation.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1480449#

I. INTRODUCTION

Our aim is to present the procedure of derivation of the conservation laws and conseq
the conserved charges for a certain class of nonlinear equations with variable coefficients.
classical field theory the conserved currents and charges follow from the Noether theorem a
connected with the symmetry of the action. In the case of linear equations of motion with co
coefficients the construction of conserved currents by Takahashi and Umezawa method1 can be
applied.

In previous papers2–5 we have extended this procedure to the linear equations on discret
noncommutative spaces including quantum Minkowski6–9 and braided linear spaces.10,11 It ap-
pears, however, that we can consider in a similar way a wide class of equations with va
coefficients built within framework of any differential calculus with the Leibniz’s rule for par
derivatives deformed via the transformation operator which is multiplicative and invertible.
range of admissible spaces includes the classical space–time with continuous coordina
discrete space, the mixed space with discrete and continuous coordinates, superspace in
space–time and spinor coordinates, and quantum Minkowski and braided linear spaces~with
q-Minkowski as a special case!.

The equations we shall investigate have the variable coefficients which fulfill the corres
ing restriction~3! including the conjugated derivatives. The possibility of derivation of the c
servation laws for some equations with variable coefficients on noncommutative spaces w
dicated earlier,4,5 but the proposed conditions for coefficients were too strong to construct u
examples. In constrast the new condition~as we show explicitly in the applications! appears to be
identical with the nonlinear equations of some of the integrable models for which we deriv
conserved currents via the auxiliary linear equations with variable coefficients.

Resuming the proposed method can be applied to nonlinear models in two ways: name
can consider the equation with nonlinear term free from the derivatives~in form of the potential!
or alternatively we investigate the auxiliary linear equations with variable coefficients for no
ear integrable models.

The article is organized as follows: Sec. II contains the description of the investigated m
and the derivation of the conservation laws. In Sec. III we extend the procedure to discre
mixed discrete and continuous models, including both types of derivatives initial] and its conju-

a!Electronic mail: klimek@matinf.pcz.czest.pl
36100022-2488/2002/43(7)/3610/26/$19.00 © 2002 American Institute of Physics
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gation]†. For this class of equations we add the construction of conserved charges followin
classical method of integrating the time-component of the conserved current over the su
excluding the time-coordinate. This result is due to the fact that for the discrete and cla
differential calculi the definite integral over mentioned subspace is known to commute
time-derivative~71!.

Section IV includes applications of the derived procedure. We start with a simple exam
an equation of the second order with variable coefficients on quantum plane, then we consi
conserved currents and charges for a pair of chiral and antichiral supermultiplets onD54, N
51 superspace connected via a nonlinear equation of motion. We also review the conse
laws and conserved charges for various cases of the nonlinear Toda lattice equation for wh
use our results for mixed discrete and continuous spaces in order to write explicitly the con
currents and charges. The section is closed with the derivation of the conservation law f
equation of anomalous diffusion.

II. NONLINEAR EQUATIONS WITH VARIABLE COEFFICIENTS AND THEIR
CONSERVATION LAW

In the previous papers we discussed the conservation laws for linear equations with co
coefficients for discrete differential calculus2,3 as well as for a wider category of equations acti
on noncommutative spaces, namely on quantum Minkowski spaces4,12 and the braided linea
ones.5,13,14

Now we would like to present our results for an extended class of equations with va
coefficients of the form

L~]!F50, ~1!

L~]!5L01(
l 51

N

Lm1 . . . m l
]m1

¯]m l, ~2!

where coefficients~may be matrices! fulfill the condition

]† m1Lm1 . . . m l
50 ~3!

for l 51, . . . ,N and with the conjugated derivative described below~30!.
In addition we assume the coefficients to obey symmetry properties with respect to th

mutation of indices. Their exact form is connected with the commutation relations in the al
of partial derivatives. In the classical case this algebra is commutative, thus the coefficien
such models are fully symmetric with respect to permutation of the set of indices. In the sequ
describe the symmetry properties of the discussed equation for specific differential calculu

We include into considerations the nonlinear equations provided the only nonlinear term
not depend on derivatives, which means

L05L0~F!. ~4!

As will be shown, this class of equations contains some of the equations of motion for supe
metric models in superfield formulation as well as auxiliary linear equations yielded by nonl
integrable models as, for example, Toda lattice equations.

Our construction presented below in Propositions 2.1 and 2.2 holds for any differentia
culus with the following deformation of Leibniz’s rule:

] i~ f g!5~] i f !g1~z j
i f !] jg, ~5!

wherez is the invertible transformation operator.
We shall now discuss the admissible differential calculi. They include classical, disc

noncommutative and supersymmetric models described below.
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A. Differential calculi with Leibniz’s rule of the form „5…

Starting with the classical commutative differential calculus~for which z is the identity op-
erator! we can also include the discrete differential calculus with derivatives defined by one o
formulas:

] i f k5~z i21! f k5 f k112 f k , ~6!

] i f k5~xk112xk!
21~z i21! f k5~xk112xk!

21~ f k112 f k!, ~7!

wherek denotes the position on the lattice in the directioni .
The first one is widely used in the discrete models and measures the difference betwe

values of the function between two points of the lattice in the given directioni while the second
one ~introduced in Refs. 2 and 3! is a quotient of the change of value of the function over
distance between the two neighboring points of the lattice taken in the directioni . Both types of
the derivatives obey~5! with the transformation operator being the shift operator along the la
in the directioni :

z i f k5 f k11 , ~8!

wherek in the above formula denotes the value of thei th coordinate of the point on the lattice
It is clear that we can also include mixed models depending both on classical commu

derivatives with respect to continuous coordinates and discrete derivatives~6! or ~7! with respect
to lattice dimensions.

Similarly to the classical differential calculus, the algebra of discrete derivatives in the
~6! or ~7! is commutative, thus we consider in these models equations with coefficients
symmetric with respect to permutation of each of the sets of indices (m1 , . . . ,m l).

The Leibniz’s rule of the form~5! is also characteristic for noncommutative spaces. We h
checked4,5 that for quantum Minkowski spaces and for braided linear spaces~including the
q-Minkowski space! it is given by the formula~5! with transformation operators determined b
their multiplicity property:

z j
i ~ f g!5~zk

i f !~z j
kg! ~9!

and the action on monomials of the first order:

z j
i xk5Ra j

ik xa2~RZ! j
ik , ~10!

z j
i xk5Rk j

li xl . ~11!

The first of the above formulas is valid on the quantum Minkowski space and the second
braided linear space withR being the matrices fulfilling the QYBE.9–11 For quantum Minkowski
spaces introduced by Podles´ and Woronowicz theR matrix is self-invertibleR251 and for braided
linear spaces developed by Majid it is bi-invertible:

~R21!kl
i j Rab

kl 5Rkl
i j ~R21!ab

kl 5da
i db

j , ~12!

R̃al
ibRjb

ak5Ral
ibR̃jb

ak5d j
i d l

k . ~13!

Let us recall the algebra of partial derivatives for both cases:

] l]k5Ri j
lk] i] j , ~14!

] l]k5~R8! i j
lk] j] i , ~15!
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with the first relation valid for the quantum Minkowski case and the second for the bra
differential calculus. The above commutation relations yield respectively for coefficients of
~1! and ~2! the following symmetry properties (l 51, . . . ,N):

Rnr
mkmk11Lm1 . . . mkmk11 . . . m l

5Lm1 . . . nr . . . m l
, ~16!

~R8!nr
mkmk11Lm1 . . . mkmk11 . . . m l

5Lm1 . . . rn . . . m l
. ~17!

We should here point out that also the differential calculus on finite groups investigated by
and Majid and their collaborators15–19 includes Leibniz’s rule of the form~5!. The partial deriva-
tives in this calculus read as (i 51, . . . ,n):

] i f ~x!5 f ~xxi !2 f ~x!, ~18!

where elementsxi numbering the basis of partial derivatives belong to the cyclic conjugacy c
of a certain finite groupG and thex is an arbitrary element of groupG. It is clear that the
transformation operatorz is in this case

z i f ~x!5 f ~xxi !. ~19!

The commutation rules for partial derivatives~18! are rather complicated so we shall discuss o
the inverse operator forz in the next section, leaving the derivation of the conservation laws
general equation on finite groups for further investigation.

Let us notice that the important category of models on noncommutative spaces are sup
metric models in the superspace formulation. In this framework the noncommutative sp
divided into the classical commutative Minkowski space coordinatesx ~with corresponding indi-
ces and metric! and the spinor coordinatesu ~we shall not specify below the type of spinors—
Majorana or Weyl!. For all equations within this class the part connected with space–tim
described using the classical commutative differential calculus while for spinor coordinate
have anticommuting derivatives. The first part of the components of the transformation op
looks as follows:

zn
m5dn

m , zn
a5za

n 50, ~20!

where for the supersymmetric models we have denoted the space–time indices asm, n while we
usea andb as spinor indices~Weyl or Majorana!. The only nontrivial part of the transformatio
operator for the supersymmetric models are the components which act between the spinor
namely for the monomials of the first order they are of the form

zb
axm5db

axm , zb
aug52db

aug . ~21!

We can extend the supersymmetric transformation operator to an arbitrary function by its
plicity property ~9!.

Respectively the coefficients of equations~1! and ~2! should be antisymmetric under perm
tation of two spinor indices and symmetric for all the other permutations.

B. The modification of the Leibniz’s rule

For all the considered differential calculi~discrete, supersymmetric, quantum Minkowski a
braided! the transformation operators have one common feature, namely, they are invertib
discrete models with derivatives~6! or ~7! the inverse operatorsz2 are simply backshift operator
in the given direction while for noncommutative models the inverses are given by their mult
ity property:

z j
2 i~ f g!5~z j

2 kf !~zk
2 ig! ~22!
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together with their action on monomials of the first order:

z j
2 ixk5Rja

ki xa1Zj
ki , ~23!

z j
2 ixk5R̃k j

l i xl , ~24!

whereR̃ is the second inverse of theR matrix characteristic for braided linear spaces.10,11

The inverse transformation operator for differential calculus on a finite group can be de
using the definition of the cyclic conjugacy class.19 Namely it implies the existence of the speci
elementx1 such thatAdx1

is a cyclic permutation ofC2$x1%. If x1
n215e ~e being the neutral

element in the groupG!, then also (xi)
n215e for i 52, . . . ,n. Thus the inverse transformatio

operator is given by the following formula:

~z i !215~z i !n22. ~25!

Now let us discuss the supersymmetric differential calculus. The inverse operator for supe
metric models is given by

zn
2 m5dn

m , zn
2 a5za

2 n50, ~26!

with the spinor–spinor part defined by the multiplicity~22! and its action on monomials of the firs
order:

zb
2 axm5db

axm , zb
2 aug52db

aug . ~27!

All the described above inverse operators fulfill the condition

z j
kzk

2 i5z j
2 kzk

i 5d j
i . ~28!

The properties of the transformation operatorsz and z2 imply the following modification of
Leibniz’s rule:

]k@~zk
2 i f !g#5~2]† i f !g1 f ~] ig!5 f ~2]Q† i1] i !g, ~29!

where the conjugated derivative]† is defined as follows:

]† i
ª2]kzk

2 i , ~30!

and we take for the given type of the derivative the connected inverse transformation opera
see that after modification we deal with Leibniz’s rule where the right-hand side is analogo
the classical differential calculus:

] i~ f g!5 f ~2]Q† i1] i !g

for which the conjugated derivative is given by:]† i52] i .
The conjugated derivatives form the conjugated equation which for the class describ

conditions~1!–~3! looks as follows:

L~]Q†!5L0~F!1(
l 51

N

]Q† m1
¯ ]Q† m l~zm l

2 a l
¯ zm1

2 a1La1 . . . a l
!. ~31!

The following propositions hold for Eqs.~1!–~3! and are the extension of results derived in Re
3–5.
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C. Derivation of the conservation laws for admissible differential calculi

Proposition 2.1: The unique solution of the operator equation

(
m

~2]Q† m1]m!+Gm~],]Q†!5L~]!2L~]Q†! ~32!

in the class of polynomials of derivatives]Q† and ] for the equation operatorL fulfilling (3) is of
the form

Gm~],]Q†!5~zm
2 aLa!

1 (
l 51

N21

(
k50

l

]Q† m1
¯ ]Q† mk~zm

2 azmk

2 ak
¯ zm1

2 a1La1 . . . akamk11 . . . m l
!]mk11

¯ ]m l.

~33!

Proof: Let us explain that the ‘‘+’’ operation describes the way the noncommuting derivativ
work on monomials of derivatives]Q† and], namely,

~2]Q† m1]m!+@n1 , . . . ,n l #a~xW !@r1 , . . . ,rk#

ª2@n1 , . . . ,n l ,m#a~xW !@r1 , . . . ,rk#1@n1 , . . . ,n l #]
ma~xW !@r1 , . . . ,rk#, ~34!

where the following notation for monomials was used:

@r1 , . . . ,rk#ª]r1
¯ ]rk, ~35!

@n1 , . . . ,n l #ª]Q† n1
¯ ]Q† n l. ~36!

The further calculations base on the assumption that we consider the general operator of th
N21 with respect to the derivatives and on the associativity of the algebra of derivatives
explicit solution of the condition~32! is enclosed in the Appendix.

We modify theG operator due to the deformation of Leibniz’s rule@Eqs. ~5! and ~29!# and

obtain the operatorĜ:

Ĝm~],]Q†!5zQm
2 j~z j

2 aLa!

1 (
l 51

N21

(
k50

l

]Q† m1
¯ ]Q† mkzQm

2 j~z j
2 azmk

2 ak
¯ zm1

2 a1La1 . . . akamk11 . . . m l
!]mk11

¯ ]m l,

~37!

which for a pair of arbitrary functionsf andg is connected with theG operator by the equality

(
m

]m f Ĝm~],]Q†!g5(
m

f ~2]Q† m1]m!+Gm~],]Q†!g. ~38!

The immediate consequence of Proposition 2.1 is therefore the construction of conserved c
yielded by the following statement.

Proposition 2.2: Let us assume that functionF is an arbitrary solution of Eqs. (1) and (2) with
coefficients fulfilling (3), which means

L~]!F50, ~39!

and functionF8 solves the conjugated equation with the operator of the form (31):
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F8L~]Q†!50. ~40!

Then

Jm5F8Ĝm~],]Q†!F, ~41!

where the operatorĜm is defined by (37), is a current which obeys the conservation law:

(
m

]mJm50. ~42!

Proof: This is a corollary from the~38! property of theĜ operator, from the operator equatio
~32! for G and finally from the fact that functionsF andF8 fulfill the respective equations~1! and
~40!.

Let us notice that the auxiliary conjugated equation for the nonlinear model is now the
one with respect to the solutionF8:

F8S L0~F!1(
l 51

N

]Q† m1
¯ ]Q† m lzm l

2 a l
¯ zm1

2 a1La1 . . . a l D 50. ~43!

The solutionF8 depends on the solution of the initial equationF which defines the potential fo
the conjugated equationL0(F).

Now the interesting question arises whether the presented construction which works on
class of spaces can be extended to equations with operators including both] and]† derivatives. As
we know from discrete models~see, for example, Refs. 20 and 21! the equations depend explicitl
on the forth- and backshifts along the lattice. Also the equations of motion built within
framework of generalized difference derivatives~7! ~which was discussed in Refs. 3 and 2!
include both initial and conjugate derivatives as a consequence of the minimal action prin
The method of derivation of the conserved currents for the discrete and mixed models sh
described in the next section. It is based on the fact that acting on functions of commu
coordinates the operators~6! and ~7! yield two symmetric formulas for Leibniz’s rules~both for
initial and conjugated derivative!.

III. CONSERVED CURRENTS AND CHARGES FOR DISCRETE AND MIXED MODELS
DEPENDING ON THE  AND † DERIVATIVES

Our aim is now to extend the construction described in Propositions 2.1 and 2.2 t
equations depending on the initial and conjugated derivatives of the form

@L~]!1L̃~]†!#F50, ~44!

L~]!5L01(
l 51

N

Lm1 . . . m l
]m1

¯ ]m l, ~45!

L̃~]†!5L̃01(
l 51

Ñ

L̃m1 . . . m l
]† m1

¯ ]† m l. ~46!

Following the previous considerations we restrict the class of equations to variable coeffi
fulfilling the extended version of the condition~3!:

]† m1Lm1 . . . m l
50, ]m1L̃m1 . . . mk

50, ~47!
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for all l 51, . . . ,N andk51, . . . ,Ñ.
Furthermore, the coefficientsL and L̃ are symmetric under permutation of indices.
We include the nonlinear equations provided the nonlinear terms do not depend on t

rivatives, which means they have a form of potential:

L05L0~F!, L̃05L̃0~F!. ~48!

As we shall see in the subsequent sections the class of equations fufilling~47! contains the widely
studied in different context linear auxiliary equations connected with nonlinear integrable m
such as equations of nonlinear Toda lattice models.

The important factor in our calculations is the fact that for discrete~or mixed—classical and
discrete! differential calculus we can write the modified Leibniz’s rule symmetrically in the
lowing form:

]a~za
2 b f !g5~2]† b f !g1 f ]bg5 f ~2]Q† b1]b!g, ~49!

]† a~za
b f !g5~2]b f !g1 f ]† bg5 f ~2]Qb1]† b!g. ~50!

Equation~50! indicates that the statement analogous to Proposition 2.1 holds for the op
L̃(]†); namely, we shall prove that the operator equation~51! has the unique solution by virtue o
Proposition 3.1:

(
m

~2]Qm1]† m!+G̃m~]†,]Q !5L̃~]†!2L̃~]Q !, ~51!

where the conjugated operatorL̃(]Q ) looks as follows:

L̃~]Q !5L̃0~F!1(
l 51

Ñ

]Qm1
¯ ]Qm l~zm l

a l
¯ zm1

a1La1 . . . a l
!. ~52!

Proposition 3.1: The unique solution of (51) in the class of polynomials of derivatives]Q and

]† for the equation operatorL̃ ~46! with coefficients fulfilling (47) is of the form

G̃m~]†,]Q !5~zm
aL̃a!1 (

l 51

Ñ21

(
k50

l

]Qm1
¯ ]Qmk~zm

azmk

ak
¯ zm1

a1L̃a1 . . . akamk11 . . . m l
!]† mk11

¯ ]† m l.

~53!

Proof: The formula~53! is the immediate consequence of the proof of Proposition 2.1
closed in the Appendix as the following connections between derivatives and transform
operators hold:

]† a~ f g!5~]† a f !g1~zb
2 a f !]† bg, ~54!

~z2!215z, ~55!

~]†!† g52~2]bzb
2 a!za

g5]g. ~56!

We notice thatz2 is the transformation operator for the derivative]†, the operatorz being its
inverse. Therefore, all the calculations from the proof of Proposition 2.1 can be repeated
suitable replacements. In this way we obtain the formula for theG̃ operator~53! which is simply
the ~33! operator with new derivatives]† and ]Q and the operatorz acting now as the inverse
transformation operator.
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We modify the operatorG̃ similarly as in~37! and obtain the operatorĜ̃:

Ĝ̃m~]†,]Q !5zQm
j ~z j

aLa!

1 (
l 51

Ñ21

(
k50

l

]Qm1
¯ ]QmkzQm

j ~z j
azmk

ak
¯ zm1

a1L̃a1 . . . akamk11 . . . m l
!]† mk11

¯ ]† m l,

~57!

which in turn fulfills the equality

(
m

]† m~ f G̃
ˆ

m~]†,]Q !g!5(
m

f ~~2]Qm1]† m!+G̃m~]†,]Q !!g ~58!

for a pair of arbitrary functionsf andg.

We can use the constructed operatorsĜ and Ĝ̃ to derive the conserved currents by the fo
lowing proposition:

Proposition 3.2: Let us assume that the functionF is an arbitrary solution of Eq. (44) with
coefficients fulfilling (47), which means

@L~]!1L̃~]†!#F50, ~59!

and the functionF8 solves the conjugated equation with operators (31) and (52):

F8@L~]Q†!1L̃~]Q !#50. ~60!

Then,

Jm5F8ĜmF, J̃m5F8G̃
ˆ

mF, ~61!

where the operatorsĜ and Ĝ̃ are given by (37) and (57) are a current that obeys the conserva
law:

(
m

]mJm1(
m

]† mJ̃m50. ~62!

Proof: The conservation law~62! is implied by the properties~38! and ~58! of the applied

operatorsĜ and Ĝ̃:

]mF8ĜmF1]† mF8G̃
ˆ

mF5F8S (
m

~2]Q† m1]m!+Gm~],]Q†!1(
m

~2]Qm1]† m!+G̃m~]†,]Q ! DF

5F8~L̃~]†!2L̃~]Q !1L~]!2L~]Q†!!F50. ~63!

Corollary 3.3: The components of the conserved current for the equation (44) fulfilling
condition (47) can be written also in the form

Jm8 5F8‘ ĜmF2zm
2 n~F8Ĝ̃nF!. ~64!

They obey the conservation law including only the] derivatives:
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(
m

]mJm8 50, ~65!

providedF is the solution of (44) and the functionF8 solves the conjugate equation with oper
tors (31) and (52).

Let us notice that the presented construction holds when we work within the framewo
classical commutative differential calculus~for which the conjugation means]†52] and the
transformation operator is the identity! as well as for mixed models where part of the coordina
is continuous and the other part is discrete with suitable difference derivatives in the form~6! or
~7!.

In the sequel we shall use the construction~37!, ~57!, and~61! in order to derive the conserve
currents and in consequence the conserved charges for the mixed discrete nonlinear Tod
and for the double discrete Toda model as well.

As we know from the classical field theory we can use the conserved currents in constr
of the conserved charges. This is also the case for our discrete and mixed discrete mode
derivatives defined by~6! or ~7!. We shall integrate the time component of the conserved cur
over subspace excluding the time-coordinate. We use in derivation the conserved currents g
Proposition 3.2 or accordingly by Corollary 3.3 if the conjugated derivative with respect to
time-coordinate appears in the model. Integrating we must remember to take the corresp
integral. Namely for continuous coordinates we understand*dxi as the Lebesque integral whil
for the discrete derivative~6! the definite integral is given by

E dxiª (
k52`

1`

~z i !
k. ~66!

If the equation includes the discrete derivative of the type~7!, we use the definite integral in th
form

E dxiª (
k52`

1`

~xk11
i 2xk

i !~z i !
k. ~67!

In the above formulas for discrete integrals thez i is the shift operator in the directioni along the
lattice.

Let us denote the integral over subspace with excluded time-coordinate as*sub. Then the
conserved charges for discrete and mixed discrete models with variable coefficients can be
using the following proposition:

Proposition 3.4: Let us assume that in the model described by the equation (44) the
gated discrete derivative with respect to the time-coordinate does not appear. Then the ch

Q5E
sub

Jt , ~68!

where Jt is the time component of the conserved current described in Proposition 3.2, is
served:

] tQ50. ~69!

Proof: The conservation of the charge~68! is implied by the conservation law from Propos
tion 3.2, namely,

] tQ5E
sub

] tJt5E
sub

2(
kÞt

~]kJk1]† kJ̃k!5boundary terms50, ~70!
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provided the currents vanish at the infinity in the corresponding spacelike dimensions. We
used here also the property of the discrete and mixed discrete differential calculus:

] tE
sub

5E
sub

] t. ~71!

Let us point out that the equality~71! does not apply in general to noncommutative spaces~the
superspace being an exception! and this fact is the major difficulty in construction of the co
served charges for an arbitrary model on noncommutative space.13,14

If in equation~44! both initial and conjugate time-derivatives appear, we derive the conse
charge using Corollary 3.3, namely the following statement is then valid~with proof being the
copy of the above calculations for Proposition 3.4!:

Corollary 3.5: Let us assume that in the model described by the equation (44) both dis
derivatives] t and ]† t appear. Then the charge

Q5E
sub

Jt8 , ~72!

where Jt8 is the time component of the conserved current described in Corollary 3.3, is conse

] tQ50. ~73!

IV. APPLICATIONS

A. The second order equation on quantum plane with variable coefficients

Let us start with the simple example of the second order equation on quantum plane
coefficients depending on coordinatesx andy.

The commutation relations for derivatives and coordinates look as follows:10,11

yx5qxy, ]y]x5q21]x]y. ~74!

Leibniz’s rule ~5! in differential calculus is defined by the followingR-matrix:

R5F q2 0 0 0

0 q q221 0

0 0 q 0

0 0 0 q2

G , R85q22R. ~75!

From the above matrix we can deduce the explicit action of the transformation operatorz on the
monomials of the first order~11!. It yields the following formulas for the inverse transformatio
z2:

zx
2 xx5q22x, zx

2 xy5q21y, zy
2 xx5~q2221!y, zy

2 xy50, ~76!

zy
2 yy5q22y, zy

2 yx5q21x, zx
2 yy50, zx

2 yx50. ~77!

The conjugated derivatives are defined using the inverse transformation operator:

]† x52]xzx
2 x2]yzy

2 x, ]† y52]xzx
2 y2]yzy

2 y . ~78!

Now let us discuss an arbitrary equation of the second order with the coefficients dependinx
andy and check which of them fufills the condition~3!:

L~]x,]y!5Lxx]
x]x1Lyx]

y]x1Lxy]
x]y1Lyy]

y]y. ~79!
                                                                                                                



f the
-

3621J. Math. Phys., Vol. 43, No. 7, July 2002 Conservation laws for a class of nonlinear equations

                    
The condition~3! for our simple case reads as follows:

]† xLxx1]† yLyx50, ]† yLyy1]† xLxy50. ~80!

Let us assumeLxy5Lyx50. Then we can show thatLxx5f(y) andLyy5c(x) obey the condi-
tions ~3!, namely,

]† xLxx5~2]xzx
2 x2]yzy

2 x!f~y!52]xzx
2 xf~y!52]xf~q21y!50, ~81!

]† yLyy5~2]xzx
2 y2]yzy

2 y!c~x!52]yzy
2 yc~x!52]yc~q21x!50. ~82!

Now we can apply our construction to obtain theG operator:

Gx5]Q† xf~q22y!1f~q21y!]x, Gy5]Q† yc~q22x!1c~q21x!]y. ~83!

It is easy to check that this operator fulfills the operator equation~32!:

~2]Q† x1]x!+Gx1~2]Q† y1]y!+Gy

52~]Q† x]Q† xf~q22y!1]Q† y]Q† yc~q22x!!1f~y!]x]x1c~x!]y]y, ~84!

where the operatorL(]Q ) gives the conjugated equation:

L~]Q !5]Q† x]Q† xf~q22y!1]Q† y]Q† yc~q22x!. ~85!

The modifiedĜ operator is given by the formula

Ĝx5]Q† xzQ x
2 xf~q22y!1zQ x

2 xf~q21y!]x, ~86!

Ĝy5]Q† xzQ y
2 xf~q22y!1zQ y

2 xf~q21y!]x,

1]Q† yzQ y
2 yc~q22x!1zQ y

2 yc~q21x!]y. ~87!

Having the explicit form of theG and Ĝ operators we can construct the conserved currents:

Jx5F8ĜxF, Jy5F8ĜyF, ~88!

where the functionsF8 andF solve the respective equations:

F8~]Q† x]Q† xf~q22y!1]Q† y]Q† yc~q22x!!50, ~89!

~f~y!]x]x1c~x!]y]y!F50. ~90!

According to Proposition 2.2 the above current obeys the conservation law:

]xJx1]yJy50, ~91!

provided functionsF8 andF are the solutions of the corresponding equations~89! and ~90!.

B. Nonlinear equation of motion for chiral and antichiral supermultiplets

The supersymmetric models in the superfield formulation yield interesting examples o
equations of motion with coefficients depending on variables.23 Let us recall that in such a frame
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work the fields depend on superspace coordinates including the space–time and spinor v
while in construction of the action the covariant derivatives are used which explicitly depen
spinor coordinates.

We shall study in this section theD54 N51 chiral and antichiral superfields obeying th
nonlinear equation of motion resulting from the supersymmetric action:

I 5E d4xd2ud2ūF̄F1E d4xd2uS m

2
F21

g

3
F3D1E d4xd2ūS m

2
F̄21

g

3
F̄3D . ~92!

The integration over spinor variablesu and ū can be expressed in terms of the covariant deri
tives:

E d2u52
1

4
D2, E d2ū52

1

4
D̄2, ~93!

E d2ud2ū5
1

16
D2D̄25

1

16
D̄2D25

1

16
DaD̄2Da5

1

16
D̄ ȧD2D̄ ȧ. ~94!

The covariant derivatives used in supersymmetric models are built from the basic derivative
respect to the space–time and spinor coordinates:

Da5]a1 is
aḃ

m
ūḃ]m , Da5eabDb , ~95!

D̄ ȧ52]ȧ2 iubsbȧ
m ]m , D̄ ȧ5eȧḃD̄ ḃ . ~96!

Due to the fact that chiralF and antichiralF̄ superfields fulfill the following condition,

D̄ ȧF50, DaF̄50, ~97!

we obtain from the action~92! the equations of motion in the form

S 1
4 D2 m1gF̄

m1gF 1
4 D̄2 D S F

F̄
D 50. ~98!

We have written the equations for the superfieldsF andF̄ in the matrix form. In this example we
deal with the coefficients of the equation depending explicitly onu andū variables due to the form
of the covariant derivatives~95! and ~96!:

D25DaDa52]a]a12i ū ḃs
aḃ

m
]m]a2 ū2h, ~99!

D̄25D̄ ȧD̄ ȧ52 ]̄ ȧ]̄ ȧ22iuas
aḃ

m
]m]̄ḃ1u2h. ~100!

The second important feature of the chiral–antichiral superfield equation of motion is its no
earity forgÞ0. However, the nonlinear term does not depend on the derivatives so we can
our method of derivation to the conservation law provided the condition~3! for the kinetic part of
the operator is fulfilled. Let us extract thez and z2 operators from Leibniz’s rule for basi
derivatives:

]m~ f g!5~]m f !g1 f ]mg, ~101!

]a~ f g!5~]a f !g1~zb
a f !]bg, ~102!
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]̄ ȧ~ f g!5~ ]̄ ȧ f !g1~z
ḃ

ȧ
f !]̄ ḃg. ~103!

It is clear thatzn
m5dn

m and the following components of the transformation operator vanish:

za
m5zm

a50, zȧ
m5zm

ȧ50, za
ȧ5zȧ

a50. ~104!

The remaining components of thez operator are defined by its action on the monomials of the
order in superspace variables:

zb
axn5db

axn , zb
aug52db

aug , zb
aūġ52db

aūġ . ~105!

The analogous formulas hold also for dotted indices. Hence we get for the inverse transfor
operator

zb
2 axn5db

axn , zb
2 aug52db

aug , zb
2 aū ġ52db

aūġ , ~106!

with the corresponding expressions with dotted indices of the same form.
Now having the explicitly derived inverse transformation operator we arrive at the conjug

derivatives given by the formulas

]† m52]m, ]† a52]bzb
2 a, ]̄† ȧ52 ]̄ ḃz

ḃ

2 ȧ. ~107!

Using the conjugated derivatives we obtain the condition~3! written for our equation for the chira
and antichiral superfields:

]† aLam1 ]̄† ȧLȧm1]† nLnm50, ~108!

]† aLab1]† mLmb50, ~109!

]̄† ȧLȧḃ1]† mLmḃ50. ~110!

One can easily check that the above conditions are fulfilled using the explicit form of the c
cients from Eq.~98!:

Laḃ5Lḃa5S 0 0

0 0D , ~111!

Lab52eabS 1

4
0

0 0
D , ~112!

Lȧḃ52eȧḃS 0 0

0
1

4
D , ~113!

Lma5Lam5S i

4
ū ḃs

aḃ

n 0

0 0
D gnm , ~114!

Lmȧ5Lȧm5S 0 0

0 2
i

4
ubsbȧ

n D gnm , ~115!
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Lmn5S 2
1

4
ū2 0

0 2
1

4
u2
D gmn . ~116!

The next step is therefore the application of the general formula~33! for the G operator to our
model:

Gm5]Q† nLnm1Lmn]n, ~117!

Ga52]Q† mLma1]Q† gLga1Lag]g2Lam]m, ~118!

Gȧ52]Q† mLmȧ1]Q†ġLġȧ1Lȧġ]ġ2Lȧm]m. ~119!

The operatorĜ differs from theG by insertion of thez2 operator in the middle of the monomia
of derivatives:

Ĝm5Gm , ~120!

Ĝb52]Q† mzQb
2 aLma1]Q† gzQb

2 aLga1zQb
2 aLag]g2zQb

2 aLam]m, ~121!

Ĝ ḃ52]Q† mzQ
ḃ

2 ȧLmȧ1]Q† ġzQ
ḃ

2 ȧLġȧ1zQ
ḃ

2 ȧLȧġ]ġ2zQ
ḃ

2 ȧLȧm]m. ~122!

We apply the obtained operatorĜ to derive the currents:

Jm5~F̄8,F8!ĜmS F

F̄
D , ~123!

Ja5~F̄8,F8!ĜaS F

F̄
D , ~124!

Jȧ5~F̄8,F8!Ĝ ȧS F

F̄
D , ~125!

which obey the conservation law:

]mJm1]aJa1 ]̄ ȧJȧ50, ~126!

provided the fields used in construction fulfill the corresponding equation of motion~98! and the

pair of superfieldsF̄8 andF8 its conjugated version:

~F̄8,F8!S 1

4
DQ †2

m1gF̄

m1gF
1

4
D̄Q †2 D 50. ~127!

Let us notice that this equation is linear with respect to superfieldsF̄8 and F8 and its solution

depends on the potential given by the chiral and antichiral superfieldsF andF̄.
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Due to the properties of covariant derivatives built from the self-conjugated operator

conclude that the conjugated set of equations for superfields (F̄8,F8) has at least following
solutions:

~i! For the casegÞ0 we can takeF̄85F andF85F̄ whereF andF̄ are solutions for~98!.

~ii ! When g50, the superfieldF̄8 is an arbitrary solution of the chiral part andF8 of the
antichiral part of the set of equations~98!.

The above solutions give in turn the explicit form of the conserved currents~123!–~125! where we
replace the multiplet (F̄8,F8) with (F,F̄) for gÞ0 and with (dF,dF̄) for g50. Let us notice
that for linear modelg50 we obtain the full set of conserved currents connected with symm
operators of chiral–antichiral supermultiplet equation:

Jm5~dF,dF̄!ĜmS F

F̄
D , ~128!

Ja5~dF,dF̄!ĜaS F

F̄
D , ~129!

Jȧ5~dF,dF̄!ĜȧS F

F̄
D , ~130!

where the symmetriesd include supersymmetric transformations:

Qa52 i ]a2s
aḃ

l
ū ḃ] l , Q̄ȧ52 i ]̄ ȧ1sa

l ȧua] l , ~131!

and the operators from Poincare` algebra: momenta, angular momentum and boosts for f
dimensional Minkowski space.

We can use the obtained conserved current~123!–~125! to construct the integral of motion b
integrating the time-component of the current~123! over the subspace,

Q5E d3xd2ud2ūJ0 , ~132!

as the following equality holds:

]0Q5E d3xd2ud2ū]0J05E d3xd2ud2ū~2]kJk2]aJa2]ȧJȧ!5boundary terms50.

~133!

Let us point out that the developed method allows immediate construction of conserved ch
The obtained charges are supermultiplets built from component charges which are also con
separately. The application of our method to the equations obeying the condition~3! is an alter-
native to the procedure used in supersymmetric models~see, for example, Ref. 24 for chira
superfields and Ref. 25 for supersymmetric principal chiral model! where the conservation law
include covariant spinor derivativesD andD̄ instead of basic derivatives]m, ]a and]̄ ȧ which we
have used. The consequence of the fact that the time-derivative does not appear explicitly
conservation law is an additional procedure required to derive the component conservatio
and conserved charges.
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C. Nonlinear integrable models and their consistency conditions

1. Nonlinear Toda lattice equation

The interesting case of application of Proposition 3.2 is the linear set of equations w
originates from the nonlinear Toda lattice equation. The set of auxiliary equations derived in
21 from gauged bidifferential calculus reads as follows:

ẋk5l~eqk212qkxk212xk!z, ~134!

xk112xk52l~ẋk1q̇kxk!z, ~135!

where we have used our notation for the transformation operator which for the mixed mod
the one considered in this section is simply shifting along the latticez f k5 f k21 with respect to the
spacelike dimension. We shall discuss the consistency condition which we obtain after elimi
of the parameterl and operatorz from the set of equations~134! and ~135!. It is an equation of
second order including classical derivative with respect to the time-variable and the discre
with respect to the space-lattice variable:

ẍk1q̇kẋk2eqk212qk~xk212xk!2~xk112xk!50. ~136!

Let us notice that this equation is free of the parameterl and the operatorz.
We can rewrite this equation using the notation

xk212xk5~z21!xk5]xk , xk112xk5~z221!xk5]†xk , ~137!

qk212qk5~z21!qk5]qk , ḟ 5] t f , ~138!

and it has the following form:

@] t] t1~] tq!] t2e(]q)]2]†#x50. ~139!

In this form we see clearly that the equation involves both] and ]† derivatives so we should
follow the construction for discrete models given in Propositions 3.1 and 3.2.

Let us observe that the discussed equation fulfills the restriction~3! and it coincides in this
case with the nonlinear Toda lattice equation:

]† tL t1]†Lx52q̈k2eqk2qk111eqk212qk50. ~140!

We construct theG operator according to~33!, ~37!, ~53!, and ~57! taking into account that the
transformation operator acts as follows:

z t f k~ t !5 f k~ t !, z f k~ t !5 f k21~ t !, z2 f k~ t !5 f k11~ t !, ~141!

Ĝ t5G t52]Q t1] t1~] tq!, ~142!

Ĝx52zQ 2e2(]†q), ~143!

Ĝ̃x5zQ . ~144!

The components of theĜ operator yield the corresponding components of the current:

Jt
d5dx8Ĝ tx, Jx

d5dx8Ĝxx, J̃x
d5dx8G̃

ˆ
xx, ~145!

which obeys the conservation law including the conjugated derivative:
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] tJt
d1]Jx

d1]†J̃x
d50, ~146!

provided the fieldx fulfills the consistency condition~139!, and the fieldx8 its conjugation:

x8@]Q t]Q t2]Q t~] tq!2]Q†e2(]†q)2]Q #50, ~147!

and the operatord is now the symmetry operator of the conjugated equation~147!.
We proceed taking integrals with respect to the discrete spatial variable~we have denoted it as

x! and obtain the charges

Qd5E dxJt5E dxdx8Ĝ tx, ~148!

which are also conserved:

] tQ50. ~149!

In the above formula we understand the discrete definite integral*dx as given by~66!.
We can check that the following operators transform solutionx8 of equation~147! into the

solutiondx8:26

d05c
]

]x8
, d15eq

]

]x8
, d25@2]21~] tq!1t#

]

]x8
, ~150!

where the indefinite discrete integral]21 is given by

]215
1

z21
52 (

k50

`

zk, ~151!

andc is a constant.
The derived symmetries of the equation~139! lead to the following expressions for charge

Q05E dxcG tx, ~152!

Q15E dxeqG tx, ~153!

Q25E dx@2]21~] tq!1t#G tx. ~154!

After expanding the solutionsx with respect to powers of the operatorslz we shall be able to
rewrite the expressions~148! as an infinite set of conserved charges:

Q0(m)5E dxcG tx
(m), ~155!

Q1(m)5E dxeqG tx
(m), ~156!

Q2(m)5E dx@2]21~] tq!1t#G tx
(m), ~157!

where the componentsx (m) read as follows:
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x (m)5~21!m21@~]†!21~] t1~] tq!!#m22~]†!21~] tq!, m>2. ~158!

2. Nonlinear Toda lattice equation—generalization

Our next example is the generalization of nonlinear Toda model sketched in Ref. 21
functions depend now smoothly on one time variablet, one spacelike variabley and one discrete
spacelike coordinatex. The bidifferential calculus is in this case defined as follows:21

d f 5@S21, f #t2 f 8j, d f5 ḟ t1@S, f #j, ~159!

A5Xt1~Y21!Sj, ~160!

whereX and Y are matrices with entries being smooth functions oft and y and discrete in the
coordinatex. The conditiondA50 leads to the following generalized Toda model nonline
equations:

Xk85Yk2Yk21 , Ẏk5YkXk112XkYk . ~161!

The linear version for auxiliary fieldx can be deduced following Ref. 21 from the set of equatio
given by

dx5l~d1A!x, ~162!

and looks as follows:

~S2121!x5l@ẋ1Xx#S, ~163!

2x85l@~S21!x1~Y21!~Sx!#S. ~164!

We can rewrite the above set of equations using our notations:

S5z, S215z2, ~165!

zxk~ t,y!5xk11~ t,y!, z2xk~ t,y!5xk21~ t,y!, ~166!

~z21!x5]x, ~z221!x5]†x, ~167!

x85]yx, ẋ5] tx, ~168!

and they are given by the formulas

]†x5l@] t1X#xz, ~169!

2]yx5l@]x1~Y21!~zx!#z. ~170!

The consistency equation~in the symmetric form! for the above set of equations reads as

@ 1
2 ]y] t1 1

2 ] t]y1X]y2Y]2]†#x50. ~171!

Let us point out that in the derivation of the consistency equation for the generalized Toda
not only Eqs.~169! and ~170!, but also the second of the Toda equations~161! were used.

We check now the condition~3! for the variable coefficients of the operator of the equati

]† yLy1]†Lx52]yX1Y2z2Y50. ~172!
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Our equation fulfills the restriction~3! due to the fact thatX andY obey the first of the equation
of nonlinear Toda model~161!. The condition~47! also holds as the coefficient for the derivativ
]† is constant.

Similarly to the previous examples we can apply Propositions 3.1 and 3.2 for the dis

models depending on initial and conjugate discrete derivatives. In this way we obtainĜ
operator in the form

Ĝ t5G t5
1
2 ~2]Q y1]y!, Ĝy5Gy5 1

2 ~2]Q t1] t!1X, ~173!

Ĝx52zQ 2~z2Y!, G̃
ˆ

x52zQ . ~174!

We use the above components of theĜ andĜ̃ operators to construct the respective component
the currents:

Jt
d5dx8Ĝ tx, Jy

d5dx8Ĝyx, ~175!

Jx
d5dx8Ĝxx, J̃x

d5dx8Ĝ̃xx, ~176!

where we have denotedd as the symmetry operator of the conjugated equation~177! andx is the
solution of ~169!–~171! while x8 solves its conjugation:

@2 1
2 ]y] t2 1

2 ] t]y1]#x81~]yx8!X1~]†x8!~z2Y!50. ~177!

As the currents fulfill the conservation law,

] tJt
d1]yJy

d1]Jx
d1]†J̃x

d50, ~178!

they yield the conserved charges@with the integral*dx in the sense of~66!#:

Qd5E dydxJt
d5E dydxdx8Ĝ tx. ~179!

Following the procedure applied earlier we expand the solutionx in terms of powers of the
operatorlz:

x5 (
m50

`

x (m)~lz!m. ~180!

After assuming the first components in the form of the unitalN3N matrix,

x (0)5x8(0)5x (1)5x8(1)51N3N , ~181!

we obtain the following equations for the subsequent components:

]†x (m)5@] t1X#x (m21), m>2, ~182!

2]yx (m)5@]1~Y21!z#x (m21), m>2. ~183!

Inserting the expansion~180! into the expressions for currents and charges we arrive at the infi
towers of the conserved currents and charges:

Jm
d (m)5dx8Ĝmx (m), ~184!
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Qd (m)5E dxdydx8Ĝ tx
(m), ~185!

with the following explicit expressions for the components of the fieldsx:

x (2)5~]†!21X, ~186!

x (m)5@~]†!21~] t1X!#m22~]†!21X, m>2, ~187!

and the initial solutions for the conjugated equation~177! related to the symmetry operators in th
form

d0x85C, d1x85]21X2y, ~188!

with C being a constantN3N matrix.

3. Double discrete nonlinear Toda lattice equation

Let us end the review of the integrable models with the fully discrete Toda lattice equa
The set of auxiliary linear equations given in Ref. 20 has the following form:

xk~n!2xk~n21!52
g

c
@gk

21~n!gk11~n!xk11~n!2xk~n!#, ~189!

xk~n!2xk21~n!52gc@gk
21~n!gk~n11!xk~n11!2xk~n!#. ~190!

We rewrite the above equations using our notation:

f k~n!2 f k21~n!52]xf k~n!, zx
2 f k~n!5 f k11~n!, ~191!

f k~n!2 f k~n21!52] t f k~n!, z t
2 f k~n!5 f k~n11!. ~192!

Then the set of equations~189! and ~190! looks as follows:

2] tx52
g

c
@g21~zx

2g!~zx
2x!2x#, ~193!

2]xx52gc@g21~z t
2g!~z t

2x!2x#. ~194!

The consistency equation for the above set reads as

2g21~zx
2g!]† xx2]xx1c2g21~z t

2g!]† tx1c2] tx50. ~195!

The condition~47! for our example is fulfilled:

]† xLx1]† tL t50, ~196!

]xL̃x1] tL̃ t52]xg21~zx
2g!1c2] tg21~z t

2g!50, ~197!

provided the double discrete nonlinear Toda lattice equation is valid for the fieldg:

]xg21~zx
2g!5c2] tg21~z t

2g!. ~198!

We construct the conserved currents following Propositions 3.1 and 3.2. As both initia

conjugated derivatives appear in the equation we use theG and G̃ operators:
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Gx521, G̃x52~zxg
21!g, ~199!

G t5c2, G̃ t5c2~z tg
21!g, ~200!

and obtain theĜ and G̃
ˆ operators with the following components:

Ĝx52zQ x
2 , Ĝ̃x52zQ x~zxg

21!g, ~201!

Ĝx5c2zQ t
2 , G̃

ˆ
t5c2zQ t~z tg

21!g. ~202!

The above operators give in turn the currents:

Jm
d 5dx8Ĝmx, J̃m

d 5dx8G̃
ˆ

mx, ~203!

which are conserved according to Proposition 3.2:

] tJt
d1]xJx

d1]† tJ̃t
d1]† xJ̃x

d50, ~204!

provided the functionx solves the equation~195!, x8 the conjugated equation:

x8@]Q x~zxg
21!g1]Q† x2c2]Q t~z tg

21!g2c2]Q† t#50, ~205!

andd is the symmetry operator for the conjugated equation.
Following Corollary 3.3 we can reformulate the currents~203! in order to obtain the conser

vation law including only the] derivatives:

Jx8
d5Jx

d2zx
2~ J̃x

d!, Jt8
d5Jt

d2z t
2~ J̃t

d!. ~206!

The currentJ8 obeys the conservation law:

] tJt8
d1]xJx8

d50. ~207!

Now we apply the~64! version of the conserved current so as to obtain the conserved char

Qd5E dxJt8
d5E dx~dx8Ĝ tx2z t

2~dx8G̃
ˆ

tx!!, ~208!

where the integral*dx is defined as in~66!.

D. Anomalous diffusion equation

Let us close the applications with an example of the equation built within the framewo
standard differential calculus. In recent years the phenomenon of anomalous diffusion at
more and more attention. In this context the general equation for anomalous diffusion wa
cussed in Refs. 27–29. It contains the fractional time-derivative.30 We shall consider here th
special case with standard partial derivatives:

F] t2
1

r D21 ] r r 2Qr D21] r2
a

r 2GP~r ,t !50, ~209!

whereD is the Hausdorff dimension of the underlying fractal structure andQ is connected with
the anomalous diffusion parameterdw ; Q5dw22 anda is an arbitrary constant.
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As the above equation is the partial differential equation we work with commuting deriva
and the transformation operator is the identity. The diffusion equation~209! can be rewritten to the
form

@r Q] t2~] r !22V~r !#W~r ,t !50, ~210!

with the new potential

V~r !52r 22FD212Q

2
2

~D212Q!2

4 G1ar Q22 ~211!

and the new density function

W~r ,t !5r (D212Q)/2P~r ,t !. ~212!

The transformed equation~210! obeys the main condition~3!:

] tL t50, ] rL rr 50. ~213!

Analogous transformation shall be applied to the conjugated equation:

F2] t2] r r 2Qr D21] r
1

r D21 2
a

r 2GP8~r ,t !50. ~214!

Using the modified density function

W8~r ,t !5r (2D112Q)/2P8~r ,t !, ~215!

we arrive at the corresponding form of the conjugated equation:

@2r Q] t2~] r !22V~r !#W8~r ,t !50. ~216!

As both the diffusion equation~210! and its conjugation~216! fulfill the condition ~3! we can

apply the general method to this partial differential equation. The components of the modifiĜ
operator coincide in our case with those of theG operator:

Ĝ t5G t5r Q, Ĝ r5G r5]Q r2] r . ~217!

The current looks as follows:

Jt5W8~r ,t !G tW~r ,t !, ~218!

Jr5W8~r ,t !G rW~r ,t !. ~219!

It can be expressed in terms of the probability density functions,

Jt5P8~r ,t !P~r ,t !, ~220!

Jr5r 2QFP8~r ,t !~]Q r2] r !P~r ,t !2
D21

r
P8~r ,t !P~r ,t !G , ~221!

and due to Proposition 2.2 is conserved:

] tJt1] rJr50, ~222!

provided the probability density functionsP andP8 solve respective diffusion equations~209! and
~214!.

The conservation law for the fractional version of the diffusion equation

FDt
g2

1

r D21 ] r r 2Qr D21] r2
a

r 2GP~r ,t !50 ~223!
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is currently under investigation. We shall follow the results developed for fractional differe
equations with constant coefficients.31

V. FINAL REMARKS

We have discussed the method of derivation of the conservation laws for a class of equ
with variable coefficients. It can be applied to models built using supersymmetric, discrete,
discrete and noncommutative~quantum Minkowski or braided! differential calculus.

The conserved charges were constructed explicitly for considered supersymmetric an
crete equations. The problem of derivation of such charges for noncommutative models is
The integration over noncommutative spaces, namely braided linear space~including
q-Minkowski!, is well developed,32–34but subintegrals and commutation rules for subintegrals
derivatives need further study. In particular, the generalized version of the property~71!,

] tE
sub

5E
sub

] t,

must be derived. As we have shown for models on quantum planes,13 it is crucial in the construc-
tion of the conserved charges.

APPENDIX: PROOF OF PROPOSITION 2.1

Let us recall the notation for monomials of derivatives:

@r1 . . . rk#ª]r1
¯ ]rk, @n1 ¯ nm#ª]Q† n1

¯ ]Q† nm. ~A1!

Due to the modification of Leibniz’s rule we are to consider the solution of the operator equ
for the G operator in the form of the polynomial of orderN21:

Gm~],]Q†!5am
0 1 (

l 51

N21

(
k50

l

@m1 , . . . ,mk#amm1 . . . m l

k @mk11 , . . . ,m l #, ~A2!

where the coefficientsak depend on the coordinatesxW .
The condition~32! from Sec. II applied to the above polynomial yields the equations

coefficientsamm1 . . . m l

k :

(
m

~2]Q† m1]m!+Gm~],]Q†!52 (
l 51

N21

(
k50

l

(
m

@m1 , . . . ,mk ,m#amm1 . . . m l

k @mk11 , . . . ,m l #

1 (
l 51

N21

(
k50

l

@m1 , . . . ,mk#(
m

~zn
mamm1 . . . m l

k !@n,mk11 , . . . ,m l #

1 (
l 51

N21

(
k50

l

@m1 , . . . ,mk#(
m

~]mamm1 . . . m l

k !@mk11 , . . . ,m l #

2(
m

@m#am
0 1(

m
~zn

mam
0 !@n#1(

m
~]mam

0 !5L~]!2L~]Q†!.

~A3!

The procedure is analogous to the one used in the proof of Proposition 4.1 from Ref. 5,
describes the derivation of conservation law for the equation with constant coefficients or ful
the strong condition@see~23! and~24! from Ref. 5#. Now we have decided to change the form
the conjugated equation. This results in the weaker restrictions for coefficients of equation~1! and
changes the set of equations for functionsamm1 . . . m l

k defining the operatorG for the following one:
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]mam
0 50, ~A4!

am
0 5zm

2 aLa , ~A5!

]aaam
0 1zm

n an
05Lm , ~A6!

zm
aaam1 . . . m l

0 1]aaamm1 . . . m l

0 5Lmm1 . . . m l
, ~A7!

2amm1 . . . m l

k 1zmk11

a aam1 . . . mkmmk12 . . . m l

k11 1]aaam1 . . . mkmmk11 . . . m l

k11 50, ~A8!

amm1 . . . m l

l 1]aaam1 . . . m lm
l 5zm

2 azm l

2 a l . . . zm1

2 a1La1 . . . a la
, ~A9!

with l 51, . . . ,N21 andk50, . . . ,l 21.
We see that equations~A4!, ~A5!, and ~A9! yielded by the coefficients of the conjugate

equation differ from the case studied earlier in Refs. 4 and 5. We begin to solve this s
equations by deriving the coefficientsamm1 . . . m l

0 from Eqs.~A5!–~A7!. Namely for l 5N21 we

have

zm
aaam1 . . . mN21

0 5Lmm1 . . . mN21
. ~A10!

Applying the inverse operatorz2 we obtain

amm1 . . . mN21

0 5zm
2 aLam1 . . . mN21

. ~A11!

We insert this solution into~A7! for l 5N22 and solve the next equation:

zm
aaam1 . . . mN22

0 2]† aLamm1 . . . mN22
5Lmm1 . . . mN22

. ~A12!

By assumption~3! after usingz2 operator and~28! we deriveamm1 . . . mN22

0 as

amm1 . . . mN22

0 5zm
2 aLam1 . . . mN22

. ~A13!

Passing to the next equation from the subset~A7! and solving them in the similar way we obta
the unique solution for coefficientsa0:

am1 . . . m l

0 5zm1

2 aLam2 . . . m l
, l 51, . . . ,N. ~A14!

This solution for initial coefficients allows us to evaluate the remaining ones using~A8! and~A9!,
namely we obtain thea1 coefficients after writing the subset~A8! for k50 and solving it the way
we solved the subset~A5!–~A7! for a0. The result is unique and looks as follows:

amm1m2 . . . m l

1 5zm
2 azm1

2 a1La1am2 . . . m l
, l 51, . . . ,N21. ~A15!

The same method applied to subsets of~A8! and ~A9! for k51, . . . ,N22 produces the unique
solution of the set of equations for coefficients in the form

amm1 . . . m l

k 5zm
2 azmk

2 ak
¯ zm1

2 a1La1 . . . akamk11 . . . m l
, l 51, . . . ,N21. ~A16!

The derivation of the explicit formulas for unique solution of the coefficients of the operatoGm

concludes the proof of Proposition 2.1.
Let us notice once more that in the derivation of coefficients for theGm operator the crucial

factors were the properties of coefficients of the equations~1!–~3! which enabled us to solve th
equation~32! in the explicit form.
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Boundary values as Hamiltonian variables. II.
Graded structures

Vladimir O. Solovieva)

Institute for High Energy Physics, 142284 Protvino, Moscow Region, Russia

~Received 9 December 2001; accepted for publication 14 March 2002!

It is shown that the new formula for the field theory Poisson brackets arises natu-
rally in the proposed extension of the formal variational calculus incorporating
divergences. The linear spaces of local functionals, evolutionary vector fields, func-
tional forms, multi-vectors and differential operators become graded with respect to
divergences. The bilinear operations, such as the action of vector fields onto func-
tionals, the commutator of vector fields, the interior product of forms and vectors
and the Schouten–Nijenhuis bracket are compatible with the grading. A definition
of the adjoint graded operator is proposed and antisymmetric operators are con-
structed with the help of boundary terms. The fulfilment of the Jacobi identity for
the new Poisson brackets is shown to be equivalent to vanishing of the Schouten–
Nijenhuis bracket of the Poisson bivector with itself. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1478144#

I. INTRODUCTION

The Hamiltonian formalism of classical mechanics may serve as the ideal model illust
the harmony of physics and mathematics. Starting from the 1970s it was realized that a num
its mathematical constructions, for example, the Schouten–Nijenhuis bracket,1 could be extrapo-
lated to field theory.2,3 This development made the search for new nonlinear integrable mo
much easier. More general constructions uniting the Schouten–Nijenhuis bracket wit
Frolicher–Nijenhuis bracket were considered by A. Vinogradov.4

But these methods~initially called the formal variational calculus5! have some restrictions
Boundary conditions are limited by those allowing free integration by parts. As a rule, the pe
boundary conditions or the rapid decay of fields at spatial infinity are required. Of course, the
not all the physically interesting cases. For example, the Coulomb potential in electrodyn
does not tend to zero rapidly enough. The similar behavior is typical for Yang–Mills and g
tation fields. Nontrivial boundary problems arise also in the motion of material continua.

We consider the Hamiltonian treatment of nontrivial boundary problems as an interesting
of research where there is some place for new approaches and results. The field theory
brackets which fulfill the Jacobi identity under arbitrary boundary conditions have been pro
in Ref. 6. Here we extend the formal variational calculus to the most general case when n
boundary term arising in integration by parts can be discarded. We present some physica
cations of the methods developed here in the next paper of this series.7 Let us also say that the
interest in the role of divergences in field theory is vivid now as can be seen from re
papers.8–10

We add that recently there has appeared a new proposal11 for the Poisson bracket satisfyin
the Jacobi identity irrespective of boundary conditions. But this new formula still has no su
geometric background as the one developed here. For this reason it is not clear yet whethe
be applied, for example, to non-ultralocal brackets. We address the interested reader to Ref
a discussion.

As an example, illustrating the nonstandard nature of the problems to be considered,

a!Electronic mail: vosoloviev@mx.ihep.su
36360022-2488/2002/43(7)/3636/19/$19.00 © 2002 American Institute of Physics
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remind the history of the long discussion on the role of surface integrals in the canonical fo
lation of general relativity. During about 15 years Arnowitt, Deser and Misner,13 Dirac,14 Higgs,15

Schwinger,16 DeWitt,17 and Regge and Teitelboim18 were involved in it. The solution obtained i
the last work18 serves as the paradigm for the treatment of similar problems up to now. It has
proposed to work with the special class of the so-called ‘‘differentiable’’ functionals. These
tionals are defined by the requirement that their variation should not have surface contrib
under the prescribed boundary conditions. The Poisson brackets for these functionals
standard ones, i.e., they are just the same as given in the formal variational calculus

$F,G%5E
V
S dF

dqA~x!

dG

dpA~x!
2

dG

dqA~x!

dF

dpA~x! Ddnx,

but now nonzero surface contributions are allowed.
Here a natural question to ask is: do these brackets fulfill the standard axiomatic require

i.e., the Jacobi identity and the existence of the Poisson algebra on this space of adm
functionals? For the infinite domain of integration and the asymptotic boundary condition
affirmative result for the second requirement was obtained by Brown and Henneaux.19 The first
requirement was partially analyzed by us and, in the case treated above, the answer
positive.

It is more difficult to study the finite domain case. Let us take as a second example the m
of a fluid or plasma. It was shown by Lewiset al.20 that the Jacobi identity for the standa
Poisson bracket can be violated even in the case of fixed boundary, and so the Poisson b
should be modified by surface terms. In the free boundary case it turns out to be natural to
the space of admissible functionals so that their variation could include nonzero surface co
tions. But according to Ref. 20 the presence of a nonzero term withdqA in the boundary integra
requires the absence of the corresponding term withdpA and vice versa. A new formula fo
Poisson brackets arises as a result of a generalization of the variational derivative which
allowed to contain a surface contribution

dH5E
V

d∧H

dqA dqAdnx1 R
]V

d∨H

dqA dqAU
]V

dS1E
V

d∧H

dpA
dpAdnx1 R

]V

d∨H

dpA
dpAU

]V

dS.

Unfortunately, it is not quite clear whether the Poisson bracket of the two functionals, admi
in this new sense, will be admissible functional itself.

As a third example, we would like to attract the reader’s attention to consequences
noncommutativity of the standard variational derivatives, i.e., the Euler–Lagrange deriva
This point was discussed formally in publications by I. Anderson21,22 and Aldersley.23 We faced
the problem independently, in the course of studying surface terms in the Poisson algebra
Ashtekar formalism of canonical gravity.24 There it was found that transformations of the type

qA~x!→qA~x!, pA~x!→pA~x!1
dF@q#

dqA~x!
,

were noncanonical ones if surface terms were not ignored. Tracing the connection of this
lation with the standard calculations withd-functions,25 we have found that the corresponden
could be restored by introduction ofuV—the characteristic function of the domainV

uV~x!5H 1, if xPV;

0, otherwise.

Then the standard relations
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S ]

]xi 1
]

]yi D d~x,y!50

should be modified as

S uV~x!
]

]xi 1uV~y!
]

]yi D d~x,y!52
]uV

]xi d~x,y!,

where the usually discarded surface term is preserved.
All the above examples lead us to the necessity to extend the formal variational calculu

total divergences. This extension consists in the introduction of a new grading for the linear s
of local functionals, vector fields, functional forms, multi-vectors and differential operators
come back to the standard case one should putuV(x)[1 in Rn.

The extension of the formal variational calculus naturally incorporates the new definitio
local functionals~not modulo divergences now! and of their differentials~as a full variation, not
restricted on the boundary!. The Poisson bivectors are now defined in a more general way and
can include boundary contributions. The definition of pairing~interior product! is also revised and
now the trace of two differential operators is used for it, so the pairing becomes compatible
the grading. The Poisson bracket found more or less heuristically in Ref. 6 arises now on th
of the geometrical constructions as

$F,G%5dG4dF4C,

whereC is the Poisson bivector.
We show here that the Jacobi identity for the new Poisson brackets can be verified witho

long calculations of binomial sums used in Ref. 6. Its fulfillment is equivalent to the vanishin
the Schouten–Nijenhuis bracket of the Poisson bivector with itself. And in its turn this cond
can be easily tested along with the procedure proposed by Olver2 with a minimal modification of
it. More attention than in Ref. 6 is paid here to non-ultralocal Hamiltonian operators with
constant coefficients, because now the technical obstacles are removed. It turns out to be
all operators which are Hamiltonian with respect to the standard brackets remain Hamilton
relation to the new brackets. For example, the second structure of the Korteweg–de Vries eq
is not automatically Hamiltonian with respect to the new formalism; the Jacobi identity in this
is valid only up to divergence. In this respect it strongly differs from the first KdV structure

The content of this work is as follows. In Sec. II we introduce the grading for local funct
als, and evolutionary vector fields. In Sec. III the differential, the functionalm-forms, the interior
product of vector fields ontom-forms and Lie derivative are defined. Section IV deals with gra
differential operators and their adjoints. In Sec. V we discuss multi-vectors and the Scho
Nijenhuis bracket. It is shown how one-vectors and evolutionary vector field spaces are is
phic. Section VI contains the general definition of Poisson bracket, its realization in this fo
ism, the definition of Hamiltonian vector fields and the theorem on connection betwee
commutator of two Hamiltonian vector fields and the Poisson bracket of corresponding Ha
nians. All constructions are illustrated by an example: the first Hamiltonian structure o
Korteweg–de Vries equation. The proof of Jacobi identity is postponed until Sec. VII. This
proof is applicable for all local Poisson brackets and so supersedes the proofs given earlier
6. The proofs are easy to compare as notations are the same. At last, in Sec. VIII we consid
examples of the non-ultralocal Poisson brackets with field dependent coefficients~this class of
brackets cannot be studied by the methods of Ref. 6!. We show that the second structure of t
Korteweg–de Vries equation is Hamiltonian only up to surface terms, whereas the
dimensional flow of the ideal fluid is exactly described by Hamiltonian structure. This poin
nontrivial character of the generalization of the formal variational calculus suggested here. A
summary is given in Sec. IX and the points remaining unclear are mentioned.
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As a rule, we use below the same notations as in Ref. 6 except for a change in the nota
the Fréchet derivative~from D f to f 8! and omitting the sign of summation according to t
Einstein rule. We find it convenient to represent integrals over finite domainV through integrals
over the infinite spaceRn by inserting into all integrands the characteristic functionuV . Then the
formalism seems closer to the standard formal variational calculus where local functiona
functional forms are defined modulo divergences. But the formal divergences that we discar
are integrated to zero under arbitrary conditions on the boundary of the finite domain, where
divergences are incorporated into graded structures. All the operations introduced below ar
patible both with discarding formal total divergences~if one object is a formal divergence, then th
result of operation is also formal divergence! and with the grading~i.e., the same is valid for rea
divergences!. Extension of the space of differential operators by admitting their grading permi
to use the concept of adjoint operator. So, antisymmetric operators can now be constructed
Poisson bracket formulas become more compact than in Ref. 6, though their content is the
Nevertheless, in the proof of the Jacobi identity we prefer to use old notations to make eas
comparison with not so general proofs of Ref. 6.

Henceforth we consider the spaceRn and the multi-index notationsJ5( j 1 , . . . ,j n) where
j i>0:

fA
(J)5

] uJufA

] j 1x1 . . . ] j nxn , uJu5 j 11 ¯ 1 j n .

The Fréchet derivative is defined as

f A85
] f

]fA
(J) DJ , ~1!

where

Di5
]

]xi 1fA
(J1 i ) ]

]fA
(J) , DJ5D1

j 1
¯ Dn

j n , Di
051, Di

2150.

Binomial coefficients for multi-indices are

S J
K D5S j 1

k1
D¯S j n

kn
D ,

S j
kD5H j !/ ~k! ~ j 2k!! !, if 0<k< j ;

0 otherwise.

With the help of them we introduce the so-called higher Eulerian operators2,23,26

EA
J ~ f !5~21! uKu1uJuS K

J DDK2J

] f

]fA
(K) . ~2!

II. LOCAL FUNCTIONALS AND EVOLUTIONARY VECTOR FIELDS

Let us start with notions from the theory of graded spaces as they are given in Ref
grading in linear spaceL is a decomposition of it into a direct sum of subspaces, with a spe
value of some functionp ~grading function! assigned to all the elements of any subspace.

Below the functionp takes its values in the set of all positive multi-indicesJ5( j 1 , . . . ,j n)
and so,
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L5 %
J50

`

L ^J&.

Elements of each subspace are called homogeneous.
A bilinear operationx,y°x+y, defined onL, is said to becompatible with the gradingif the

product of any homogeneous elements is also homogeneous, and if

p~x+y!5p~x!1p~y!.

Now let us turn to the concrete structures.
There are two ways to write a local functional: as the integral of a smooth func

f ^0&(fA
(K)(x)) of fields and their derivatives up to some finite order over the prescribed domaV

in Rn, or as the integral over all the spaceRn but with the characteristic function of the domainuV

included into the integrand

F5E
V

f ^0&~fA
(K)~x!!dnx[E

Rn
uV f ^0&dnx. ~3!

As in Ref. 6, let us denote the space of local functionals asA. Here we shall call the expressio
given above thecanonical form of a local functional. We formally extend that definition by
allowing local functionals to be written as follows:

F5E
Rn

DJuV f ^J&~fA
(K)~x!!dnx[E u (J) f ^J&dnx[E f dnx,

where only a finite number of terms is allowed. Here and below we simplify the notation
derivatives ofu and removeV. All the integrals without the domain of integration shown expl
itly are integrals overRn; below we shall omitdnx. Of course, any functional can be transform
to the above form~3!, exclusively used in Ref. 6, through integration by parts

F5E u f̃ ^0&[E
V

f̃ ^0&,

where

f̃ ^0&5~21! uJuDJf ^J&.

Evidently, the formal integration by parts over infinite spaceRn changes the grading. It will be
clear below that the general situation is the following: from one side we have the compatibil
all the bilinear operations with the grading and from the other side—with the formal integratio
parts. So, basic objects~local functionals, etc.! are defined as equivalence classes modulo for
divergences~i.e., divergences of expressions containingu-factors! and the unique decompositio
into the homogeneous subspaces with the fixed grading function can be made only for rep
tatives of these classes.

We call expressions of the form

C5E u (J)DKcA
^J&

]

]fA
(K) [E u (J)c^J&[E c,

the evolutionary vector fields. The action of the evolutionary vector field on a local functiona
given by the expression
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CF5E u (I 1J)DKcA
^J&

] f ^I &

]fA
(K) [E u (I 1J)c^J& f ^I &[E c f . ~4!

It is a straightforward calculation to check that this operation is compatible with the fo
integration by parts, i.e.,

cD f 5D~c f !,

as it is in the standard formal variational calculus. This relation is, of course, valid for integr
It is easy to see that the evolutionary vector field with coefficients

cA
^J&5DLjB

^I &
]lA

^J2I &

]fB
(L) 2DLlB

^I &
]jA

^J2I &

]fB
(L)

can be considered as thecommutator of the evolutionary vector fieldsJ andL,

CF5@J,L#F5E ~j~l f !2l~j f !!,

with the Jacobi identity fulfilled for the commutator operation, and so these vector fields fo
Lie algebra.

Let us comment upon the representation of the evolutionary vector fields as integrals,
is different from the traditional notations.

The formal variational calculus5 operates with the local functionals which are expressed
single integrals of functions of the specified class, for example, infinitely differentiable ones
functional forms and multi-vectors are expressed by similar integrals. The pairing of two
objects gives us a single integral again.

At the same time, other notations are widespread, especially in physical literature, whic
thed-function and its derivatives. Then a result of the pairing of two single integrals is under
as a double integral. But as this double integral contains thed-function, it always can be converte
into the single one.

This conversion of a double integral into the single one with the help of thed-function is
trivial when no boundary terms could arise. The subject of this work is just a study of the opp
case. The new rule is necessary here and it has been proposed in Ref. 6 as Rule 4.2:

E
V
E

V
f ~x!g~y!DJ

(x)DK
(y)d~x,y!5E

V
DKf DJg. ~5!

In this article we give really new and equivalent forms of these rules which help to avoid the
of double integrals at all.

The concept of vector field appeared initially in the course of studying the evolutio
differential equations and their symmetries. In the formal variational calculus5 functionals are, in
fact, replaced by equivalence classes of functions, and so the action of evolutionary vecto
onto local functionals is replaced by their action on functions:

c f 5DKcA

] f

]fA
(K) .

However, to represent functionals by integrals and to require that the result of the action
evolutionary vector field onto a local functional is a local functional, i.e., an integral, it is a
lutely natural to represent the evolutionary vector fields also as integrals,

C5E
V

DKcA~x!
]

]fA
(K)~x!

[E c,
                                                                                                                



vector
n Ref.
multi-

nt of
to the
when
ector
ty is

nse-

6,
uced

rse,

3642 J. Math. Phys., Vol. 43, No. 7, July 2002 Vladimir O. Soloviev

                    
in combination with the standard rule

]fA
(J)~y!

]fB
(K)~x!

5d~x,y!dABdJK . ~6!

Another argument supporting our notations is the equivalence between evolutionary
fields and one-vectors, which is demonstrated for the standard formal variational calculus i
2 and also for the graded case in Sec. V of this article. One-vectors as a partial case of
vectors are always written as integrals.

Apart from the notational revision we would like to mention a new feature in our treatme
the vector fields: now they are not derivations when applied to standard functions, but only
graded ones. Of course, in the traditional approach the vector fields are not derivations
applied to functionals, because the multiplication of functionals is not defined. But these v
fields, traditionally written without the integral sign, are derivations of functions. This proper
partially lost here. It can be restored formally if we consider integrands containingu as functions
and take a relation

DIu3DJu5DI 1Ju ~7!

as a definition of their multiplication.
In this context, formula~4!, introduced as a definition, can be interpreted also as a co

quence of the standard relation~6! and a new definition~7!.
Therefore, it is evident that our ‘‘rule for multiplication of distributions’’ taken from Ref.

i.e., Eq.~7!, is nothing more than another way to define the pairing compatible with the introd
grading.

At last, let us mention the possibility to use other notations in this formalism. It is, of cou
possible to avoidu-functions and to use integrals over the domainV only. Then any local func-
tional can be given as

F5E
V

DJf ^^J&&,

where

f ^^J&&5~21! uJu f ^J&,

with analogous rewriting of the other objects. Correspondingly, Eq.~4! will be written as

CF5E
V

DI 1JS DKcA
^^J&&

] f ^^I &&

]fA
(K) D .

III. DIFFERENTIALS AND FUNCTIONAL FORMS

The differential of a local functionalis simply the first variation of it,

dF5E u (J)
] f ^J&

]fA
(K) dfA

(K)[E u (J)df ^J&[E df .

Here and belowdfA
(K)5DKdfA . It can also be expressed through the Fre´chet derivative~1! or

through the higher Eulerian operators~2!:

dF5E u (J) f ^J&8~df!5E u (J)DK~EA
K~ f ^J&!dfA!.
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This differential is a special example of functional one-form. A general functional one-form ca
written as

S5E u (J)sAK
^J& dfA

(K)[E u (J)s^J&[E s.

Of course, the coefficientssAK
^J& are not unique since we can make formal integration by parts.

us call the following expression thecanonical form of a functional one-form:

S5E u (J)sA
^J&dfA .

Analogously, we can definefunctional m-formsas integrals or equivalence classes modulo form
divergences of verticalm-forms:

S5
1

m! E u (J)sA1K1 , . . . ,AmKm

^J& dfA1

(K1)∧ ¯ ∧dfAm

(Km)
5E u (J)s^J&5E s.

Define thepairing ~or the interior product! of an evolutionary vector field and one-form as

S~J!5J4S5E u (I 1J)sAK
^J&DKjA

^I &5E u (I 1J)s^J&~j^I &!5E s~j!. ~8!

The interior product of an evolutionary vector field and a functionalm-form will be given as
follows:

J4S5
1

m!
~21! i 11E u (I 1J)sA1K1 , . . . ,AmKm

^J& DKi
jAi

^I &dfA1

(K1)

∧ ¯ ∧dfAi 21

(Ki 21)∧dfAi 11

(Ki 11)∧ ¯ ∧dfAm

(Km) .

Then a value of them-form on them evolutionary vector fields will be defined by the formula

S~J1 , . . ,Jm!5Jm4 ¯ J14S.

It can be checked by straightforward calculation that

~Ds!~j1 , . . . ,jm!5D~s~j1 , . . . ,jm!!.

The differential of the m-form, which is given as

dS5
1

m! E u (J)
]sA1K1 , . . . ,AmKm

^J&

]fA
(K) dfA

(K)∧dfA1

(K1)∧ ¯ ∧dfAm

(Km)
5E u (J)ds^J&5E ds,

satisfies standard properties

d250

and

dS~J1 , . . . ,Jm11!5(
i

~21! i 11J iS~J1 , . . . ,Ĵ i , . . . ,Jm11!

1(
i , j

~21! i 1 jS~@J i ,J j #,J1 , . . . ,Ĵ i , . . . ,Ĵ j , . . . ,Jm11!.
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TheLie derivativeof a functional formS along the evolutionary vector fieldJ can be introduced
by the standard formula

LJS5J4dS1d~J4S!.

IV. GRADED DIFFERENTIAL OPERATORS AND THEIR ADJOINTS

We call linear matrix differential operators of the form

Î AB5u (J)I AB
^J&NDN

the graded differential operators.
Let us call the linear differential operatorÎ * the adjoint to Î if for an arbitrary set of smooth

functions f A , gA

E f AÎ ABgB5E gAÎ AB* f B .

For coefficients of the adjoint operator we can derive the expression

I AB* ^J&M5~21! uKuS K
L D S K2L

M DDK2L2MI BA
^J2L&K . ~9!

It is easy to check that the relation

Î AB~x!d~x,y!5 Î BA* ~y!d~x,y!

follows from Rule 4.2 of Ref. 6. For example, we have

S u~x!
]

]xi 1u~y!
]

]yi D d~x,y!52u ( i )d~x,y!. ~10!

In one of our previous publications24 we tried to connect the appearance of surface term
Poisson brackets and the standard manipulations with thed-function. The ansatz used there for th
above simplest example coincided with~10! up to the sign. The reason for this difference laid
the other choice made there instead of Rule 4.2 of Ref. 6. That ansatz lead us to the s
Poisson brackets, which are not appropriate for nontrivial boundary problems.

Operators satisfying the relation

Î * 52 Î

will be called theantisymmetricones. With the help of them it is possible to express two-for
~and also two-vectors to be defined below! in the canonical form

S5
1

2 E dfA∧ Î ABdfB .

It is clear that we can consider representations of functional forms as decompositions ov
basis derived as a tensor product ofdfA , with the totally antisymmetric multilinear operators

ŝ5u (J)sA1K1 , . . . ,AmKm

^J& ~DK1
•, . . . ,DKm

• !

as coefficients of these decompositions.
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V. MULTI-VECTORS, MIXED TENSORS AND SCHOUTEN–NIJENHUIS BRACKET

Let us introduce dual basis toudfA& by the relation

K d

dfB~y!
,dfA~x!L 5dABd~x,y! ~11!

and construct by means of the tensor product a basis

d

dfB1
~y!

^
d

dfB2
~y!

^ ¯ ^
d

dfBm
~y!

.

Then by using totally antisymmetric multilinear operators described in the previous section w
define thefunctional m-vectors~or multi-vectors!

C5
1

m! E u (J)cB1L1 , . . . ,BmLm

^J& DL1

d

dfB1

∧ ¯ ∧DLm

d

dfBm

5E u (J)c^J&.

Here a natural question on the relation between evolutionary vector fields and one-vectors
Evidently, evolutionary vector fields lose their form when being integrated by parts wh
one-vectors preserve it. Let us make a partial integration in the expression of a general evo
ary vector field

J5E u (J)DKjA
^J&

]

]fA
(K)

by removingDK from jA
^J& . Then we get

J5E jA
^J&u (J1L)~21! uKuS K

L DDK2L

]

]fA
(K) .

It is easy to see that by using~7!, i.e., Rule 5.4 from Ref. 6, in the backward direction we can wr

J5E ~u (J)jA
^J&)~u (L)~21! uLuEA

L !5E u (J)jA
^J&

d

dfA
,

where the higher Eulerian operators~2! and the full variational derivative~Definition 5.1 of Ref.
6!

dF

dfA
5( ~21! uJuEA

J ~ f !DJu

are consequently used. Therefore, we arrive at the following statement.
Statement 5.1: There is a one-to-one correspondence between the evolutionary vecto

and the functional one-vectors. The coefficients of a one-vector in the canonical formjA
^J& are

equal to the characteristics of the evolutionary vector field.
It is not difficult to show that we can deduce the pairing~interior product! of one-forms and

one-vectors and this pairing preserves the identification. Really, the definition of the dual
~11! and ~7!, i.e., Rule 5.4 of Ref. 6, permits us to derive that
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S~J!5J4S5E E u (I )~x!u (J)~y!sAK
^I & ~x!jBL

^J&~y!K DL

d

dfB~y!
,DKdfA~x!L

5E u (I 1J)DLsAK
^I & DKjAL

^J&

5E u (I 1J)s^I &~j^J&!5E s~j!5E u (I 1J)Tr~s^I &j^J&!,

and when a one-vector is in the canonical form~only L50 term is nonzero!, this result coincides
with Eq. ~8!.

This formula for the pairing will be exploited below also for the interior product of o
vectors andm-forms or one-forms andm-vectors. Its importance comes from the fact that it
invariant under the formal partial integration both in forms and in vectors, i.e.,

~Ds!~j!5D~s~j!!5s~D~j!!.

Evidently, it is the trace construction for convolution of differential operators~as coefficients of
tensor objects in the proposed basis! that guarantees this invariance.

The interior product of a one-vector ontom-form and, analogously, of a one-form on
m-vector is defined as

J4S5
1

m!
~21!( i 11)E u (I 1J)DKi

jAiL
^I & DL~sA1K1 , . . . ,AmKm

^J& dfA1

(K1)

∧¯∧dfAi 21

(Ki 21)∧dfAi 11

(Ki 11)∧ ¯ ∧dfAm

(Km)
!

5~21!( i 11)E u (I 1J)j^I &
4s^J&. ~12!

Then we also can define the value ofm-form on m one-vectors~or, analogously,m-vector onm
one-forms!

S~J1 , . . . ,Jm!5Jm4¯ J14S5E u (J1I 11 . . . 1I m)Tr~s^J&j1
^I 1&

¯jm
^I m&!,

where each entry of multilinear operators acts only on the correspondingj, whereas each deri
vation of the operatorj acts on the product ofs and all the rest of thej’s.

It is possible to define thedifferential of m-vector

dC5
1

m! E u (J)
]cA1K1 , . . . ,AmKm

^J&

]fB
(L) dfB

(L)DK1

d

dfA1

∧ ¯ ∧DKm

d

dfAm

,

as an example of a mixed (1
m) object. Evidently,d2C50.

With the help of the previous constructions we can define theSchouten–Nijenhuis bracket

@J,C#SN5dJ4C1~21!pqdC4J

for two multi-vectors of ordersp andq. The result of this operation isp1q21-vector and it is
analogous to the Schouten–Nijenhuis bracket in tensor analysis.1 Its use in the formal variationa
calculus is described in Refs. 2 and 3. However, in cited references this bracket is usually d
for operators. We can recommend Ref. 27 as an interesting source for the treatment
Schouten–Nijenhuis bracket of multi-vectors. Our construction of this bracket guarantees a
patibility with the equivalence modulo divergences
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@Dj,c#SN5D@j,c#SN5@j,Dc#SN.

Statement 5.2: The Schouten–Nijenhuis bracket of functional one-vectors up to a sign co
cides with the commutator of the corresponding evolutionary vector fields.

Proof: Let us take the two one-vectors in canonical form without loss of generality,

J5E u (J)jA
^J&

d

dfA
, C5E u (K)cB

^K&
d

dfB
,

and compute

@J,C#SN5dJ4C2dC4J.

We have

dJ5E u (J)jA
^J&8~df!

d

dfA
5E u (J)

]jA
^J&

]fC
(L) dfC

(L) d

dfA
,

and

dJ4C52E u (J1K)
]jA

^J&

]fB
(L) DLcB

^K&
d

dfA
.

Therefore, we obtain

@J,C#SN52E u (J1K)S DLcB
^K&

]jA
^J&

]fB
(L) 2DLjB

^K&
]cA

^J&

]fB
(L) D d

dfA
52@J,C#,

and the proof is completed.
Statement 5.3 (Olver’s lemma2): The Schouten–Nijenhuis bracket for two bivectors can b

expressed in the form

@L,C#SN52
1

2 E j∧ Î 8~K̂j!∧j2
1

2 E j∧K̂8~ Î j!∧j, ~13!

where the two differential operators Iˆ, K̂ are the coefficients of the bivectors in their canonic
form.

Proof: Let us consider the Schouten–Nijenhuis bracket for the two bivectors and withou
of generality take them in the canonical form

L5
1

2 E u (L)jA∧I AB
^L&NDNjB ,

C5
1

2 E u (M )jC∧KCD
^M &PDPjD ,

wherejA5d/dfA and operatorsÎ , K̂ are antisymmetric. Then we have

dL5
1

2 E u (L)
]I AB

^L&N

]fE
(J) dfE

(J)jA∧DNjB

and
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dL4C5
1

4 E u (L1M )
]I AB

^L&N

]fC
(J) DJ~KCD

^M &PDPjD!∧jA∧DNjB

2
1

4 E u (L1M )DPS ]I AB
^L&N

]fD
(J) jA∧DNjBD ∧DJ~jCKCD

^M &P!.

Now let us make integration by parts in the second term:

dL4C52
1

4 E u (L1M )jA∧~ I AB
^L&N!8~K̂ ^M &j !∧DNjB

2
1

4 E u (L1M1Q)~21! uPuS P
QD ]I AB

^L&N

]fD
(J) jA∧DNjB∧DJ1P2Q~jCKCD

^M &P!.

At last we change the order of multipliers under wedge product in the second term, m
replacementM→M2Q and organize the whole expression in the form

dL4C52
1

4 E u (L1M )jA∧~ I AB
^L&N!C8 S K̂CD

^M &jD1~21! uPuS P
QD

3S P2Q
R DDP2Q2RKCD

^M2Q&pDRjCD∧DNjB .

Having in mind the definition of adjoint operator~9! we can represent the final result of th
calculation as follows,

@L,C#SN52
1

2 E u (L1M )j∧~~ Î ^L&!8~K̂ ^M &j !1~K̂ ^M &!8~ Î ^L&j !!∧j,

thus supporting in this extended formulation the method, proposed in Ref. 2 for testing the
identity ~see Sec. VII!. For the general procedure of testing Hamiltonian properties see also
28.

VI. POISSON BRACKETS AND HAMILTONIAN VECTOR FIELDS

Let us call the bivector

C5
1

2 E d

dfA
∧ Î AB

d

dfB
,

formed with the help of the graded antisymmetric differential operator

Î AB5u (L)I AB
^L&NDN ,

the Poisson bivectorif

@C,C#SN50.

The operatorÎ AB is then called theHamiltonian operator. We call the value of the Poisso
bivector on the differentials of two functionalsF andG,

$F,G%5C~dF,dG!5dG4dF4C,

the Poisson bracketof these functionals.
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The explicit form of the Poisson bracket can easily be obtained. It depends on the e
form of the functional differential, which can be changed by the formal partial integration
course, all the possible forms are equivalent. Taking the extreme cases we get an exp
through Fre´chet derivatives,

$F,G%5E u (J)Tr~ f A8 Î AB
^J&gB8 !, ~14!

or through higher Eulerian operators~2!,

$F,G%5E u (J)DP1Q~EA
P~ f ! Î AB

^J&EB
Q~g!!. ~15!

Theorem 6.1: The Poisson bracket defined above satisfies the standard requirements
bilinearity, antisymmetry and closure on the space of local functionalsA, i.e., Definition 2.3 of
Ref. 6.

Proof: ~1! From the previous formulas~14! and~15! it is clear that$F,G% is a local functional,
~2! antisymmetry of$F,G% is evident and~3! equivalence of the Jacobi identity to the Poiss
bivector property will be proved in Sec. VII.

The result of interior product of the differential of a local functionalH on the Poisson bivecto
~up to the sign! will be called theHamiltonian vector field~or theHamiltonian one-vector!

ÎdH52dH4C

corresponding to the HamiltonianH. Evidently, the standard relations take place:

$F,H%5dF~ ÎdH !5~ ÎdH !F.

Theorem 6.2: The Hamiltonian vector field corresponding to the Poisson bracket of
functionals F and H coincides up to the sign with the commutator of the Hamiltonian vector
corresponding to these functionals.

Proof: Consider a value of the commutator of Hamiltonian vector fieldsÎdF and ÎdH on the
arbitrary functionalG,

@ ÎdF, ÎdH#G5 ÎdF~ ÎdH~G!!2 ÎdH~ ÎdF~G!!

5 ÎdF~$G,H%!2 ÎdH~$G,F%!

5$$G,H%,F%2$$G,F%,H%52$G,$F,H%%52 Îd$F,H%~G!,

where we have used the Jacobi identity and antisymmetry of Poisson bracket. Due to th
trariness ofG the proof is completed.

Example 6.3:Let us consider the first structure

$u~x!,u~y!%5 1
2 ~Dx2Dy!d~x,y!

of the Korteweg–de Vries equation~Example 7.6 of Ref. 2!

ut5uxxx1uux .

Construct the adjoint graded operator touD according to Eq.~9!,

~uD !* 52uD2Du,

and the antisymmetric operator is
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Î 5 1
2 ~uD2~uD !* !5uD1 1

2 Du.

The Poisson bivector has a form

C5
1

2 E uS d

du
∧D

d

duD .

The differential of a local functionalH ~for simplicity it is written in canonical form!

H5E uh

is equal to

dH5E uh8~du!5E u (k)~21!kEk~h!du,

where the Fre´chet derivative or higher Eulerian operators can be used. Therefore, the Hamilt
vector field generated byH is

ÎdH52dH4C52
1

2 E uS h8S D
d

duD2Dh8S d

duD D ,

or

2
1

2 E u (k)~21!k~Ek~h!D2DEk~h!!
d

du
,

or also

2
1

2 E u (k)~21!kDi~Ek~h!D2DEk~h!!
]

]u( i ) .

The value of this vector field on another functionalF coincides with the Poisson bracket

2dF4dH4C5$F,H%5
1

2 E u (k1 l )~21!k1 l~Ek~ f !DEl~h!2Ek~h!DEl~ f !!.

VII. PROOF OF THE JACOBI IDENTITY

In this section we will prove that the Jacobi identity for the Poisson bracket is fulfilled if
only if the Schouten–Nijenhuis bracket of the corresponding Poisson bivector with itself is
to zero. This should complete the proof of Theorem 6.1.

Let us use one of the possible forms of the Poisson brackets given in the Appendix of R

$F,G%5
1

2 E u (J)Tr~ f 8~ Î ^J&g8!2g8~ Î ^J& f 8!!,

where the differential operatorÎ is not supposed to be antisymmetric for the easier compariso
this proof with that given in Ref. 6. We remind that in less condensed notations

Tr~ f 8~ Î g8!!5S J
M D S K

L DDL

] f

]fA
(J) DJ1K2L2MI AB

N DN1M

]g

]fB
(K)
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~in the Appendix of Ref. 6 the indicesM andL in the binomial coefficients of the same formu
are unfortunately given in the opposite order!.

We will estimate the bracket

$$F,G%,H%5
1

2 E u (J)Tr~$ f ,g%8~ Î ^J&h8!2h8~ Î ^J&$ f ,g%8!!,

where$ f ,g% denotes the integrand of$F,G%. Since the Fre´chet derivative is a derivation we hav

$ f ,g%85 1
2 u (K)Tr~ f 9~ Î ^K&g8,• !1 f 8 Î 8^K&~• !g81g9~ f 8 Î ^K&,• !2~ f↔g!!

and

Tr~$ f ,g%8 Î h8!5 1
2 Tr~ f 9~ Î g8, Î h8!1 f 8 Î 8~ Î h8!g81g9~ f 8 Î , Î h8!2~ f↔g!!.

Let us explain thatf 9 denotes the second Fre´chet derivative, i.e., the symmetric bilinear opera
arising in calculation of the second variation of the local functionalF ~in the canonical form!:

f 9~j,h!5
]2f

]fA
(J)]fB

(K) DJjADKhB .

When we put into entries off 9 operators under the trace sign it should be understood that t
operators act on everything except their own coefficients, for example,

Tr~ f 9~ Î g8, Î h8!!5S L
PD S L2P

Q D S M
S D S M2S

T D
3DL1M2P2Q2S2T

]2f

]fA
(J)]fB

(K) DJ1TS DPÎ AC

]g

]fC
(L)DDK1QS DSÎ BD

]h

]fD
(M )D

and the expression remains symmetric under permutation of its entries

Tr~ f 9~ Î g8, Î h8!!5Tr~ f 9~ Î h8, Î g8!!.

When the operatorÎ stands to the right from the operator of Fre´chet derivativef 8 as in expression

Tr~g9~ Î h8, f 8 Î !!,

it acts on everything exceptf 8. At last, for the Fre´chet derivative of the operator we have

Î 8~ Î h8!5
]I AB

K

]fC
(J) DJS I CD

L DL

]h

]fD
(M ) DM DDK .

Making similar calculations we get

Tr~h8 Î $ f ,g%8!5 1
2Tr~ f 9~h8 Î , Î g8!1 f 8 Î 8~h8 Î !g81g9~ f 8 Î ,h8 Î !2~ f↔g!!

and therefore

$$F,G%,H%5
1

4 E u (J1K)Tr~ f 9~ Î ^J&g8, Î ^K&h8!2 f 9~h8 Î ^J&, Î ^K&g8!2 f 9~ Î ^J&h8,g8 Î ^K&!

1 f 9~g8 Î ^J&,h8 Î ^K&!1 f 8 Î 8^J&~ Î ^K&h82h8 Î ^K&!g82~ f↔g!!.
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Just the first four terms, apart from the fifth containing the Fre´chet derivative of the operatorÎ ,
were present in our proof for the non-ultralocal case given in Ref. 6~only terms with zero grading
were allowed forÎ there!. After cyclic permutation ofF, G, H all terms with the symmetric
operator of the second Fre´chet derivative are mutually cancelled and

$$F,G%,H%1c.p.5
1

4 E u~J1K !Tr~ f 8 Î 8^J&~ Î ^K&h82h8 Î ^K&!g82g8 Î 8^J&~ Î ^K&h82h8 Î ^K&! f 81c.p.!,

where cyclic permutations ofF, G, andH are abbreviated to c.p. When operatorÎ is given in
explicitly antisymmetric form all the four terms are equal. Taking into account Olver’s Lem
~13! we get

$$F,G%,H%1c.p.52@ Î , Î #SN~dF,dG,dH !,

so finishing the proof.

VIII. EXAMPLES: NON-ULTRALOCAL OPERATORS WITH NONCONSTANT
COEFFICIENTS

The second structure of the Korteweg–de Vries equation may serve as a counterexam
the hypothesis29 that all operators which are Hamiltonian~modulo divergences! with respect to the
standard Poisson brackets should also be Hamiltonian~exactly! in the new brackets.

Example 8.1:
Let us start with the standard expression~Example 7.6 of Ref. 2!

$u~x!,u~y!%5S d3

dx3 1
2

3
u

d

dx
1

1

3

du

dxD d~x,y!

and construct the adjoint operator to

K̂5u~D31 2
3 uD1 1

3 Du!,

which is

K̂* 52u~D31 2
3 uD1 1

3 Du!2Du~3D21 2
3 u!23D2uD2D3u.

Then the antisymmetric operator

Î 5 1
2 ~K̂2K̂* !5u~D31 2

3 uD1 1
3Du!1Du~ 3

2 D21 1
3 u!1 3

2 D2uD1 1
2 D3u

can be used for forming the bivector

C5
1

2 E j∧ Î j,

whered/du5j. This bivector has a form

C5
1

2 E S uj∧D3j1
3

2
Duj∧D2j1S 3

2
D2u1

2

3
uuD j∧Dj D .

Then evaluating the Schouten–Nijenhuis bracket for the bivector with the help of Statemen

@C,C#SN5E S 2

3
uj∧D3j∧Dj1Duj∧D2j∧Dj D ,
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and integrating the first term by parts we get

@C,C#SN5
1

3 E uD~j∧Dj∧D2j!.

Therefore, instead of the Jacobi identity we have

$$F,G%,H%1c.p.52
1

3 EV
Di 1 j 1k11~Ei~ f !DEj~g!D2Ek~h!1c.p.!dx.

So, the second structure of KdV equation can be Hamiltonian only under special boundar
ditions.

Example 8.2:Now let consider another example which is also non-ultralocal, but the ope
remains to be Hamiltonian in the new brackets independently of boundary conditions. The
equations for the flow of ideal fluid can be written2 in Hamiltonian form as follows~Example 7.10
of Ref. 2!:

]v

]t
5D dH

dv
,

where

H5E 1

2
uuu2d2x, v5¹3u.

Let us limit our consideration by the two-dimensional case whenv has only one componentv and

D5vxDy2vyDx ,

wherev i5Div, i 5(x,y). We can construct the antisymmetric operator

Î 5 1
2 ~uD2~uD!* !5u~vxDy2vyDx!1 1

2 ~Dyuvx2Dxuvy!,

and then the bivector

C5
1

2 E j∧ Î j5
1

2 E u~vxj∧jy2vyj∧jx!,

wherej5d/dv. Statement 5.3 gives us

@C,C#SN5E ~u~vx~j∧jxy∧jy2j∧jyy∧jx!1vy~j∧jxy∧jx2j∧jxx∧jy!!

1~Dyuvx2Dxuvy!j∧jx∧jy!,

and after integration by parts the expression can be reduced to zero.

IX. CONCLUSION

We have shown that there exists an extension of the standard formal variational ca
which incorporates divergences~without any specification of boundary conditions!. It would be
important to understand how this formalism is related to the constructions of the varia
bicomplex.30 It seems also rather interesting to study if some physically relevant algebras c
realized with the help of new Poisson brackets as algebras of local functionals. One such e
is considered in Ref. 31. This formalism may be also applied to free boundary problems as
in the next article of this series.7
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Boundary values as Hamiltonian variables. III. Ideal fluid
with a free surface
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Institute for High Energy Physics, 142284 Protvino, Moscow Region, Russia
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An application of the approach to Hamiltonian treatment of boundary terms pro-
posed in previous articles of this series is considered. Here the Hamiltonian for-
malism is constructed and the role of standard boundary conditions is revealed for
a inviscid compressible fluid with surface tension which moves in a field of the
Newtonian gravitational potential. It is shown that these boundary conditions guar-
antee absence of singular contributions to the equations of motion, i.e., to the
Hamiltonian vector field. From the other side the Hamiltonian variation contains a
nonzero boundary term. Such Hamiltonians are usually treated as ‘‘nondifferen-
tiable’’ or ‘‘inadmissible.’’ We conclude that nondifferentiable functionals can be
admissible Hamiltonians for non-ultralocal Poisson brackets. We give a four-sided
picture of free surface dynamics: both in Lagrangian and in Eulerian variables and
also both in variational and in Hamiltonian approaches. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1478145#

I. INTRODUCTION

In our previous publications1,2 we have tried to construct a general field theory Hamilton
formalism preserving all boundary terms arising from any integration by parts. We addre
reader to these references for the detailed motivation and elaboration of the approach. The
of this article is to apply this formalism to a concrete problem—the ideal compressible
dynamics—in order to clarify the role played by boundary conditions in fixing the class o
missible functionals. A new and general result, if compared with the approach suggested by
and Teitelboim,3 which is now the most popular one~see, for example, Ref. 4!, is the fact that this
class may differ from the class of ‘‘differentiable’’ functionals for non-ultralocal Poisson brack
A very short and preliminary presentation of this result has already appeared in Ref. 5 wit
examples considered: Ashtekar variables in canonical gravity and hydrodynamics of idea
The first example later was treated in detail in Ref. 6. Here we intend to thoroughly stud
second one.

Let us remind the reader first of the history of applications of the Hamiltonian approa
surface waves in the ideal~inviscid! fluid. In 1967 Zakharov7 was the first who suggested to app
the canonical formalism to the waves on the surface of the incompressible fluid in the case
potential flow. Later, in 1977, this problem was discussed also by Miles8 and Milder.9 In 1986
Lewis, Marsden, Montgomery, and Ratiu~LMMR !10 suggested a new approach to a more gen
problem where the incompressible ideal fluid flow was already not supposed to be poten
1988 Abarbanelet al.11 treated the compressible fluid case. The approaches by these author
rather different. It would be interesting to rederive all these results on the base of the form
proposed in Refs. 1 and 2. But here we limit ourselves to the compressible fluid case.

Henceforth the main objective of our study will be the compressible inviscid fluid dyna
described in Eulerian coordinates and the main method will be the Hamiltonian formalism
serving all the boundary terms. For completeness of this presentation we will remind the
here of the connections between the four possible ways of the hydrodynamics descriptio

a!Electronic mail: vosoloviev@mx.ihep.su
36550022-2488/2002/43(7)/3655/21/$19.00 © 2002 American Institute of Physics
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variational approach and the Hamiltonian approach both in Lagrangian and in Eulerian c
nates. These connections may be illustrated by the following commutative diagram

Variational Principle
in Lagrangian variables ——→

Legendre transform Hamiltonian formalism
in Lagrangian variables

Clebsch↓potentials ↓reduction

Variational Principle
in Eulerian variables ——→

Legendre transform1reduction Hamiltonian formalism
in Eulerian variables

Our presentation is new in the part related to boundary terms. As it was already men
before,11 the reduction of Hamiltonian formalism from Lagrangian variables to Eulerian ones,
made by LMMR,10 requires here a small modification.

We will step by step consider each of the four angles and each of the four arrows of the
diagram. For every case we consider both a fixed boundary and a free boundary.

Section II concerns the variational principle in Lagrangian variables. The Lagrangian de
tion of fluid dynamics is similar to the mechanical one and the fluid is considered as a
number of identical mass points. The basic variables are here the coordinates of the mass
But one needs to add to the usual potential energy of particles moving in an external field~in our
case this is a field of the Newtonian gravitational potential! the internal energy which is suppose
to depend on the fluid density and specific entropy. Therefore thermodynamics comes int
and a fluid temperature and pressure appear.

When dealing with the free boundary case we use the approach first proposed in Ref.
particular it allows us to include into the action the surface tension energy by a suitable way
further step to the Hamiltonian formalism.

In Sec. III we describe the transform from the Lagrangian to the Hamiltonian formalis
Lagrangian variables. Here this transformation does not create a lot of difficulties; it is
necessary to find the conjugate momenta to the coordinates of fluid particles and to ma
Legendre transform.

In the case of free boundary we need not go beyond the Regge–Teitelboim criterion
deriving Hamiltonian equations of motion. This is a consequence of ultralocality of the Po
brackets.

Section IV deals with the transform from Lagrangian variables to Eulerian ones in the fr
work of Hamiltonian formalism. The Eulerian description in contrast to the Lagrangian one
like a field theory rather than mechanics. The transformation to new variables is rather non
because this transformation mixes the ‘‘dependent’’~fields! and the ‘‘independent’’~spatial coor-
dinates! variables. All formal calculations of the Poisson brackets are made by mean
d-functions, and this could not be understood as a rigorous deduction in the free boundar
But results of this deduction are justified by their self-consistence. In the fixed boundary ca
present explicit calculations based on our previous work2 to demostrate the fulfillment of the
Jacobi identity. This is not an easy way to prove a result as has been observed in Ref. 10.
moment we have no such easy proof of the Jacobi identity for the free boundary case. Ne
less, the formalism gives us the Hamiltonian equations~or the Hamiltonian vector field! by means
of the internal product of the one-form~the Hamiltonian variation! and the bivector which define
the Poisson bracket. At first we have a singular contribution to the Hamiltonian vector field w
is proportional to the boundaryd-function. But if we put a regularity condition, i.e., require th
term to be zero, we obtain the standard boundary condition for this problem~which is also the
natural boundary condition following from the variational principle!.

In Sec. V we construct the variational principle in Eulerian variables. The interesting sto
this problem for the fixed boundary case can be found in a book by Kupershmidt.12 After adding
to the Lagrangian~which is initially taken from the Lagrangian variables approach! some con-
straints, there appear Clebsch variables which in the next section will serve as canonical va
of the Hamiltonian formalism.
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In the free boundary case we add to the action~with minus sign! the surface energy term. Bu
this is not enough to obtain correct boundary conditions from the variational principle and w
to add a new surface term. Then the Lagrangian density is equal to the pressure. In the pa
case of the two-dimensional potential flow of incompressible fluid without surface tension th
that the dynamical boundary conditions follow from the variational principle has been reveal
Luke.13 Zakharov7 has shown almost simultaneously that these boundary conditions are H
tonian equations.

Section VI treats the transform from the variational principle for Eulerian variables to
Hamiltonian formalism. In the fixed boundary case the Clebsch variables become canonica
We use here the Faddeev–Jackiw approach,14 i.e., simply invert the symplectic matrix withou
looking for Dirac’s ‘‘primary constraints.’’15 It is easy to express the standard momenta of
Eulerian approach by means of Clebsch variables. Poisson brackets for these momenta re
the diffeomorphism algebra. The Hamiltonian also can be expressed through these momen
few of the Clebsch potentials: density and entropy. All this closes our diagram in its down
angle.

In the case of free boundary a new function arises which refers to the position of the bou
and so variables become noncanonical. This time we use the Dirac method for dealing
constraints and derive the Dirac brackets to construct the Poisson bivector. It is written in
variables and so differs from the one found in Sec. IV. But applying it to find the Hamilto
vector field, i.e., to derive Hamiltonian equations, we again arrive at the result of Sec. IV. T
fore the diagram is commutative also for the free boundary case.

It is necessary to mention that recently there has appeared16 another formula for the Poisso
bracket exactly fulfilling the Jacobi identity. But this new proposal is still not general enoug
include the treatment of non-ultralocal brackets and so cannot be used in this work.

II. VARIATIONAL PRINCIPLE IN LAGRANGIAN VARIABLES

The description of the continuum media in Lagrangian variables is such that the moti
each separate mass point is explicitly provided. It allows us to derive the media equations
equations of motion for mass points. Also, the thermodynamic characteristics~internal energy,
temperature, pressure, entropy, etc.! are included. The particles could be numbered, for exam
by their initial positions. Let the motion go on in some~fixed or changing with time! regionV of
Euclidean spaceRn, and letrPV0 be the particle ‘‘number,’’ whereasY(t) is its position at an
arbitrary moment of timet. For simplicity we limit ourselves to Cartesian coordinates. Then
law of motion is given by the following function:

Y5Y~r ,t !, where r[Y~r ,0!.

Classical mechanics is a deterministic theory, therefore the existence of inverse function is
anteed:

R5R~x,t !, and so r[R~Y~r ,t !,t !.

A. Fixed boundary

It is rather natural to expect that the media Lagrangian is expressed as an integral
difference of the kinetic and potential energy densities~with the internal energy density added
the last one! taken over the regionV0 :

L5E
V0

r0~r !F Ẏ2

2
2F~Y!2«~r~Y!,s0~r !!Gdr . ~1!
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Here Ẏ5]Y/]t(r ,t); F(Y) is the potential; and«(r,s0) is the internal energy per unit mas
which is a function of the mass densityr(Y) and the specific entropys0(r ), wherer0(r ) is the
mass density taken at the initial instant of timet50. It is suitable to introduce the transformatio
matices

Ji j 5
]Yi

]r j , Ji j 5
]r i

]Yj . ~2!

Let us denoteJ5detuJij u. It is evident that the following relation takes place:

Ji j J
jk5d i

k .

Due to the mass conservation law we have

r0~r !dr5r~Y!dY, therefore r05rJ.

The entropy is supposed to be adjusted to any separate particle and additive,

s0~r !5s~Y~r ,t !,t !.

Some additional information is given by the first law of thermodynamics

d«5Tds02pd
1

r
,

whereT is the absolute temperature andp is the pressure, i.e.,

T5
]«

]s0
, p5r2

]«

]r
.

Varying the action as a functional ofY(r ,t),

dE
t1

t2
Ldt5E

t1

t2E
V0

r0~r !F Ẏ
]

]t
dY2

]F

]Y
dY2

]«

]r
drGdr ,

where

dr5dS r0

J D52
r0

J2 dJ,

and therefore

2r0

]«

]r
dr5pdJ

leads to equations of motion. Taking into account that the Jacobian variation is given b
following formula,

dJ5JJji dJi j 5JJji
]

]r j dYi ,

we obtain

pdJ5
]

]r j ~pJJji dYi !2JJji
]p

]r j dYi2p
]

]r j ~JJji !dYi .
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In the Appendix it is shown that the last term is, in fact, zero. Taking into account that

]p

]Yi 5
]p

]r j

]r j

]Yi 5Jji
]p

]r j ,

we arrive at the following expression for the action variation:

dE
t1

t2
Ldt5E

V0

drr0ẎdYu t1
t21E

t1

t2E
V0

dYF2r0Ÿ2r0

]F

]Y
2J

]p

]YGdr1E
t1

t2
dt R

]V0

pJJji dYidSj .

~3!

According to the variational principle by Hamilton we are to fix variables at the boundarie
the time interval:

dY~ t1!5dY~ t2!50.

The term with variationdY on the spatial boundary]V0 is zero due to the fixed boundar
conditions for domainV5V0 ,

njJ
ji dYi u]V0

50, or n•dYu]V50, ~4!

wherenj is the normal to the boundary]V0 ~for the definiteness here and below it is the u
outside normal!, which is supposed to be smooth; correspondingly,n is the same vector given in
coordinatesY.

The meaning of these boundary conditions is that particles which occur on the boundary
initial moment of time will stay there forever.

As the volume integral in the variation of action should be zero, we obtain the Lagran
equations of motion in Lagrangian coordinates:

Ÿ52
]F

]Y
2

1

r

]p

]Y
, or Ÿi52JJji

]F

]r j 2
JJji

r0

]p

]r j . ~5!

B. Free boundary

Suppose now that the fluid boundary or some part of it is free. Then position of the bou
]V5]V t is to be decribed by dynamical variables. In the Eulerian approach it requires
introduce a new independent function, but here it is sufficient to use the same variableY(r ,t),
though its variation on the boundary now is not constrained by condition~4!. Moreover, some new
terms given by boundary integrals may arise in the action, for example, the energy of s
tension

L→L2Esurf,

which is defined~up to a constant! by the following expression,

Esurf5tE
]V t

dS5tE
]V t

nidSi5tE
V t

¹•ndY, ~6!

whereni is unit outward normal to the boundary which is smoothly continued onto the w
domainV. It is possible to treat such problems on the base of the formalism suggested
previous papers,1,2 but it should be slightly generalized. Let us introduce functionPV(Y), which
is positive everywhere in the regionV, equal to zero on the boundary]V and negative outside
Then we can formally write the integral over our domainV as an integral over the whole spac
Rn:
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E
V

f dY5E u~PV! f dY. ~7!

The required generalization is that earlier1,2 we have not treatedPV as a variable, whereas now w
do so. If we suppose¹PVÞ0 on]V, the unit outward normal to the boundary surface is given
the following formula:

n52
¹PV

u¹PVu
.

Then the surface tension energy of the fluid~6! may be written as follows:

Esurf5tE u~PV!¹•ndY52tE ~¹u•n!dY.

From the other side,

]u~PV!

]Yi 5
du~PV!

dPV

]PV

]Yi ,
du~PV!

dPV
5S ¹u~PV!•

¹PV

u¹PVu2D , ~8!

i.e.,

Esurf5tE du~PV!

dPV
u¹PVudY.

Let us introduce a notion

K5¹•n.

It is easy to be convinced that on the boundaryK is equal to the trace of a second fundamen
form of a boundary surface. Then

Esurf5tE
V t

KdY5tE u~PV!KdY.

To deduce a natural boundary condition we are to find a variation of this expression
function Y(r ,t) is varied. First consider the surface energy variation due to varyingPV :

dEsurf5tE du~PV!

dPV
dPVKdY1tE u~PV!dKdY.

Let us demonstrate that the second term is really zero~we omit dY!,

E u~PV!dK5E u~PV!d¹•n52E ¹u~PV!dn52E du

dPV
u¹PVu~n•dn!50, ~9!

as the only contribution to the integral comes from the boundary]V, and the unit normal variation
on the boundary is orthogonal to the normal itself. Therefore we obtain

dEsurf5tE du

dPV
KdPVdY.
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We will use this formula as it is when dealing with Eulerian coordinates. But here we are to
variationdEsurf induced by variationdY, asPV is not an independent variable in the Lagrangi
picture. The point is that the domain of definition forr , i.e.,V0 , does not change even in the ca
of the variable domainV.

Instead of functionPV(Y,t), corresponding toV, for the regionV0 we can use function

PV0
~r !5PV~Y~r ,t !,t !

or

PV~x,t !5PV0
~R~x,t !!.

FunctionPV0
(r ) should not be varied as also functionsr0(r ) ands0(r ). Therefore we should take

into account the following equation:

dPV5
]PV

]Y
dY5

]PV0

]r j Jji dYi .

Then

dEsurf5tE du

dPV

]PV

]Yi
KdYidY,

or, taking into account~8!,

dEsurf5tE u , jKJJji dYidr52tE
V0

] j~KJJji dYi !dr .

This term, together with the surface term from Eq.~3!, give us the full surface contribution to th
action variation in the free boundary case:

~dS!surf5E
t1

t2
dtE

V0

] j~~p2tK !JJji dYi !dr5E
t1

t2
dt R

]V0

~p2tK !JJji dYidSj .

The variational principle by Hamilton requires this term to be zero and as variationdY is here
arbitrary we obtain the so-called natural boundary conditions:17,18

~p2tK !u]V0
50. ~10!

As boundary maps to boundary after the coordinate transformr→Y(r ,t), the last equality can be
rewritten in the standard form:19

~p2tK !u]V50. ~11!

III. HAMILTONIAN FORMALISM IN LAGRANGIAN VARIABLES

A. Fixed boundary

It is easy to see from the action variation~3! that the momenta conjugated to variablesY(r ,t)
are as follows:

M ~r ,t !5r0~r !Ẏ~r ,t !, $Yi~r ,t !,M j~r 8,t !%5d j
i d~r ,r 8!.

The standard Legendre transform of Lagrangian~1! leads to the following Hamiltonian:
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H5E
V0

S M2

2r0
1r0F~Y!1r0«~r~Y!,s0! Ddr . ~12!

In the Hamiltonian variation

dH5E
V0

S dM FM

r0
G1dYFr0

]F

]Y
1J

]p

]YG Ddr2E
]V0

pJJji dYidSj

the last term becomes zero if boundary conditions~4! are valid. This result gives us an opportuni
to treat the expressions in square brackets as variational derivatives. Then Hamiltonian eq
reduce to the standard form

Ẏ5$Y,H%5
dH

dM
, Ṁ5$M ,H%52

dH

dY
~13!

or, explicitly,

Ẏ5
M

r0
, Ṁ52r0

]F

]Y
2J

]p

]Y
. ~14!

It is easy to see that these equations are equivalent to Lagrangian ones~5!. As to the Jacobi
identity, canonical Poisson brackets defined in Refs. 1 and 2 satisfy it without any referen
boundary conditions as shown there.

B. Free boundary

Let us add to Hamiltonian~12! the surface energy

H5E
V0

S M2

2r0
1r0F~Y!1r0«~r~Y!,s0! Ddr1tE

]V
nidSi .

Now its variation is as follows,

dH5E
V0

S dM FM

r0
G1dYFr0

]F

]Y
1J

]p

]YG Ddr2E
]V0

~p2tK !JJji dYidSj ,

where variationdY is free on the boundary. Then we calculate the full variational derivative

dH

dYi 5u~PV0
!Fr0

]F

]Yi 1J
]p

]Yi G1
]u~PV0

!

]r i @p2tK#,

dH

dMi 5u~PV0
!FMi

r0
G .

The Hamiltonian vector field and equations of motion are formally the same as in the
boundary case~13!. But now there is a singular contribution proportional to thed-function. If we
demand that this term has to be zero, we get standard boundary conditions~10!. Here the Poisson
bracket is canonical, and so, ultralocal,

$F,G%52dF4dG4C5E S dF

dYi

dG

dMi
2

dG

dYi

dF

dMi
Ddr ,

therefore this requirement is equivalent to the disappearance of the surface term in the
tonian variation, i.e., to the ‘‘differentiability’’ condition for the Hamiltonian in accordance w
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Regge–Teitelboim approach.3 Below we will see that these two requirements are not equivalen
the case of non-ultralocal Poisson brackets. As to the Jacobi identity the arguments given
for the fixed boundary are still valid because]V0 is not dynamical.

Let us mention as a curious thing that both in Ref. 10, and in our paper, Ref. 1, just s
nonzero surface terms in the Hamiltonian variation for incompressible fluid have served
motivation to modify the standard formula for Poisson bracket. But in Ref. 11 it was reaso
stated that just this surface contribution should be zero as a consequence of boundary con
Such contributions, as we will see below, are important only for more complicated situations
Poisson brackets are non-ultralocal.

IV. HAMILTONIAN FORMALISM IN EULERIAN VARIABLES

A. Fixed boundary

The step from the Lagrangian description to the Eulerian one on the base of Hamilt
formalism is a change of variables of the more general type than we used to do in the field t
In some sense such a change is like general relativity transformations making coordinates
dent on the metric tensor~c-numbers become functions ofq-numbers in quantum theory!,

Mi~r ,t !dr5p i~Y~r ,t !,t !dY,

or

p i~x,t !5E
V0

d~x2Y~r ,t !!Mi~r ,t !dr .

Analogous relations are valid for mass densities in the two approaches

r0~r !dr5r~Y~r ,t !,t !dY, r~x,t !5E
V0

d~x2Y~r ,t !!r0~r !dr ,

but equations for the specific entropy are different as it is a scalar, not a scalar density:

s~x,t !5s0~R~x,t !!, s~x,t !5E
V0

d~r2R~x,t !!s0~r !dr . ~15!

Here

R~Y~r ,t !,t ![r , Y~R~x,t !,t ![x.

Though momentaMi(r ,t) are replaced in the Eulerian approach by an equal number of degre
freedomp i(x,t), coordinatesYi(r ,t) are replaced by new variablesr(x,t), s(x,t), and their
number in general is not equal to the spatial dimension. We will see, after all, that even for th
momentap i Poisson brackets are different from canonical ones.

To calculate the Poisson brackets for the new variables it is convenient to go to their
functionals, as follows,

p~l!5E
V

dxl i~x!p i~x!5E
V

dxE
V0

drl i~x!d~x2Y~r ,t !!Mi~r ,t !5E
V0

drl i~Y~r ,t !!Mi~r ,t !.

Therefore
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$p~l!,p~m!%5E
V0

drE
V0

dr 8$l i~Y~r ,t !!Mi~r ,t !,m j~Y~r 8,t !!M j~r 8,t !%

5E
V0

drE
V0

dr 8S $l i~Y~r ,t !!,M j~r 8,t !%Mi~r ,t !m j~Y~r 8,t !!

1$Mi~r ,t !,m j~Y~r 8,t !!%l i~Y~r ,t !!M j~r 8,t !

52E
V0

dr @l,m# iM i

52E
V

dx@l,m# ip i52p~@l,m#!, ~16!

where

@l,m# i5l jm , j
i 2m jl , j

i .

In a similar way we obtain

$r~l!,p~m!%5r~m il ,i !. ~17!

By using results from previous papers1,2 we come to the conclusion that Eqs.~16! and~17! locally
are equivalent to the following equations:

$p i~x!,p j~x8!%5p i~x8!d , j~x8,x!2p j~x!d ,i~x,x8!, ~18!

$r~x!,p i~x8!%5r~x8!d ,i~x8,x!. ~19!

It is easy to see that these Poisson brackets correspond to the standard realization of the
morphism algebra with generators given by variablesp i(x).

The Poisson bracket forr(x) corresponds to the scalar density transformation law. In cont
s(x) transforms as a scalar, i.e.,

$s~x!,p~x8!%52s,id~x,x8!. ~20!

Apparently all other brackets are zero.
Poisson brackets for arbitrary local functionals of variablesp i(x), r(x), s(x) can be derived

with account for all the boundary terms on the base of the Poisson bivector, interior pr
operation, and the full variation~differential! of local functional defined according to ou
formalism:2

$F,G%52dF4dG4C.

For example, in the simplest case, if the boundary of domainV is fixed and if everything depend
only on variablesp i(x), r(x), s(x), but not on their spatial derivatives, we obtain

$F,G%5E
V

dxFrS ] i S ] f

]r D ]g

]p i
2] i S ]g

]r D ] f

]p i
D2s,i S ] f

]s

]g

]p i
2

]g

]s

] f

]p i
D

1p i S ] j S ] f

]p i
D ]g

]p j
2] j S ]g

]p i
D ] f

]p j
D G .

The analytical form of the Hamiltonian practically does not change after the transform to Eu
variables:
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H5E
V

dxS p2

2r
1rF~x!1r«~r,s! D . ~21!

Its variational derivatives are as follows:

dH

dp i
5u

p i

r
,

dH

dr
5uS 2

p2

2r2 1F1«1
p

r D ,

dH

ds
5ur

]«

]s
5urT.

The Hamiltonian equations are derived by means of the interior product of the Hamilto
differential and the Poisson bivector according to the general formalism.2 It is convenient to
rewrite these equations in terms of the Eulerian velocityv i5p i /r,

ṙ52~rv i ! ,i , ~22!

ṡ52v is,i , ~23!

v̇ i52v jv , j
i 2F ,i2

p,i

r
, ~24!

wherep5r2]«/]r. To test the Jacobi identity here we can exploit an approach presente
motivated in our previous work.2 In fact, this calculation is different from the one presented,
example, in Olver’s book20 only by preserving all the boundary contributions. The bivector wh
determines the Poisson bracket is as follows:

C5
1

2 E E d

dfA~x!
$fA~x!,fB~y!%∧

d

dfB~y!

5
1

2 E E d

dp i~x!
$p i~x!,p j~y!%∧

d

dp j~y!
1

d

dr~x!
$r~x!,p i~y!%∧

d

dp i~y!

1
d

dp i~x!
$p i~x!,r~y!%∧

d

dr~y!
1

d

ds~x!
$s~x!,p i~y!%∧

d

dp i~y!

1
d

dp i~x!
$p i~x!,s~y!%∧

d

ds~y!
.

After some transformations and integrations we can get another form of it:

C5E p iD j S d

dp i
D∧

d

dp j
1rDi S d

dr D∧
d

dp i
2s,i

d

ds
∧

d

dp i
.

Then it is easy to see that

dC5E dp iD j S d

dp i
D∧

d

dp i
1drDi S d

dr D∧
d

dp i
2~ds! ,i

d

ds
∧

d

dp i
,

and therefore
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dC4C5E p iDkFD j S d

dp i
D∧

d

dp j
G∧

d

dpk
2D j S d

dp i
D∧

d

dp j
∧pkDi S d

dpk
D

2D j S d

dp i
D∧

d

dp j
∧rDi S d

dr D1s,iD j S d

dp i
D∧

d

dp j
∧

d

ds

1DkFDi S d

dr D∧
d

dp i
G∧r

d

dpk
1

d

ds
∧

d

dp i
∧Di S s,k

d

dpk
D .

By straightforward calculation, preserving all divergences, it is easy to check that this expre
vanishes exactly~not up to divergences!. It means that the Schouten–Nijenhuis bracket of bivec
C with itself becomes zero as for bivectors

@C,C#SN5dC4C1~21!2•2dC4C52dC4C,

and as it has been proved in Ref. 2 that this is equivalent to the Jacobi identity fulfillmen
arbitrary local functionals:

$$F,G%,H%1$$H,F%,G%1$$G,H%,F%52@C,C#SN~dF,dG,dH !. ~25!

B. Free boundary

If we were working in Lagrangian coordinates, the same set of variables as in the case o
boundary was enough, but here we should add functionPV(x,t) introduced earlier in~7! as an
independent dynamical variable. The following formulas analogous to~15! are valid:

PV~x,t !5P0~R~x,t !!, PV~x,t !5E
V0

d~r2R~x,t !!P0~r !dr ,

therefore the Poisson brackets forPV(x,t) are in close analogy with brackets for the entro
variables(x,t)

$PV~x,t !,p i~x8,t !%52PV,id~x,x8!,

brackets ofPV(x,t) with other variables are zero.
In the free boundary case the Hamiltonian depends on functionPV both through the argumen

of u-function and through the surface energy expression~6!:

H5E u~PV!Fp2

2r
1rF~x!1r«~r,s!1t¹•nGdx, ~26!

moreover in the last case it also depends on spatial derivatives of functionPV up to the second
order. But taking into account relation~9!, the full variational derivative of the Hamiltonian ove
function PV is equal to the following expression:

dH

dPV
5

du

dPV
Fp2

2r
1rF~x!1r«~r,s!1t¹•nG , ~27!

or

dH

dPV
5u ,i

PV,i

uPV,i u2
Fp2

2r
1rF~x!1r«~r,s!1tKG .

The derivatives over other variables do not change if compared with the fixed boundary ca
According to our definitions,1,2 from the Poisson bivector
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C5
1

2 E E d

dfA~x!
∧

d

dfB~y!
$fA~x!,fB~y!%dxdy

5E p iD j S d

dp i
D∧

d

dp j
1rDi S d

dr D∧
d

dp i
2s,i

d

ds
∧

d

dp i
2PV,i

d

dPV
∧

d

dp i
,

and by means of the interior product operation we get the Hamiltonian vector field

2dH4C5E u@2v is,i #
d

ds
1u@2v i PV,i #

d

dPV
1u@2p i ,i #

d

dr

1u@2~p iv j ! , j2r] iF2] i p#
d

dp i
2u ,i@p2tK#

d

dp i
.

The requirement of absence of any singular contributions to the Hamiltonian equations
us to the already known boundary condition~11!. It is easy to see that equations of motion do n
change in comparison with~22!, ~24! and ~23!. But we also get the following new equation,

ṖV52~v•¹!PV . ~28!

Here it is evident that the requirement of disappearance of boundary terms in the Hamil
variation @or equivalently in the full variational derivatives~27!# leads to the boundary conditio
which is different from the standard one. It means that in the general statement of a problem
the canonical choice of variables is not prescribed from the very beginning, the criterion by R
and Teitelboim of choosing the surface contributions3 should be replaced by the requirement
vanishing of the singular contributions to the Hamiltonian vector field, i.e., to the Hamilto
equations of motion.

It should be stated that in the case of the dynamical domain of integrationV we are unable to
check the Jacobi identity by calculating@C,C#SN because the proof of Eq.~25! given in Ref. 2 is
not valid here.

V. VARIATIONAL PRINCIPLE IN EULERIAN VARIABLES

It is natural to ask whether it is possible to derive the Hamiltonian formalism for Eule
variables, considered in the previous section, directly from the corresponding variational prin
without appealing to the Hamiltonian formalism for Lagrangian variables. The answer wi
definitely in the affirmative, but the construction of this variational principle is rather nontr
and deserves a special discussion. It is interesting that such a discussion has been used b
shmidt as an intrigue for his book~see Ref. 12, Introduction!. A discussion on this problem ca
also be found in Refs. 13, 21–23.

A. Fixed boundary

Let us first ask how to construct the Lagrangian and corresponding variables if we kn
Hamiltonian @in our case as a functional ofp i(x), r(x) and s(x)# and Poisson brackets fo
Hamiltonian variables. If variables are canonical, then, certainly, it is sufficient to use the
endre transform, but in the general case this may be a nontrivial task. Momentap i(x) have
nonzero Poisson brackets between themselves, Hamiltonian~21! does not imply variables conju
gate to these momenta~‘‘coordinates’’! and the total number of variables is not in general ev
~for example, in caseR3 it is equal to five!. The solution may be to introduce some auxilia
variables.

Therefore, to move along the left vertical arrow of the diagram we add to the ‘‘na
Lagrangian
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L05E
V

dxrS v2

2
2F~x!2«~r,s! D ,

derived from Lagrangian~1! by a trivial change of variables and formed as a difference of
kinetic and potential energies~with the internal energy added to the last one!, some constraints
together with the corresponding Lagrange multipliers.

As the first and the most evident constraint we take the continuity equation~the mass conser
vation law!

]r

]t
1div~rv!50. ~29!

Also we use the entropy conservation law

]s

]t
1~v•¹!s50, ~30!

which is possible to rewrite, combining with~29! also as follows:

]~rs!

]t
1div~rsv!50.

At last, it is necessary to put a condition providing guarantee for existence of the Lagra
coordinates. It means that any mass point having at the momentt position with coordinatesx, may
be supplied by its ‘‘number’’am , for example, by the coordinates of its initial positionR(x,t).
This ‘‘number’’ should also be ‘‘conserved’’ in the process of the fluid motion

]am

]t
1~v•¹!am50. ~31!

Here the number of degrees of freedom or the range for indexm, in general, does not coincide wit
the spatial dimension ofRn, for example, in the casen53 one variablea is enough. As a result
still up to surface terms, we arrive at the following Lagrangian,

L5L01E
V

dxFfS ]r

]t
1div~rv! D2hS ]s

]t
1~v•¹!sD2bmS ]am

]t
1~v•¹!amD G ,

or at the following action

S5E
t1

t2
dtE

V
dxFrS v2

2
2F~x!2«~r,s! D1fS ]r

]t
1div~rv! D2h

Ds

Dt
2bm

Dam

Dt G , ~32!

where

D

Dt
5

]

]t
1~v•¹!,

and the signs in front ofh, bm are taken for convenience, so that we get positive signs in form
~33!. By varying action~32! overf, h, bm we evidently get supplementary conditions~29!–~31!.

By varying ~32! over velocity v we get the so-called Clebsch representation for velo
variable,

v5¹f1
h

r
¹s1

bm

r
¹am , ~33!
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which means that velocity may be treated as an auxiliary variable.
By varying action~32! over densityr we get the following equation,

v2

2
2F~x!2«~r,s!2r

]«

]r
2ḟ2~v•¹!f50,

which may be understood as an equation for evolution of potentialf:

ḟ52~v•¹!f1
v2

2
2F~x!2«~r,s!2

p

r
. ~34!

We get new independent equations of motion by varying~32! over s,

ḣ52div~hv!1r
]«

]s
, ~35!

and overam

ḃm52div~bmv!. ~36!

It is easy to be convinced that equations of motion for ‘‘old’’ variablesr, s are still the same
~22! and ~23!.

It is possible to demonstrate that the same is true for velocityv, Eq. ~24!. For this purpose we
need to differentiate~33! over time and substitute into the derived expression values ofṙ, ḟ, ṡ, ḣ,
ȧm , ḃm taken from equations of motion~29!, ~34!, ~30!, ~35!, ~31!, and~36!, correspondingly.

Of course, we do not yet touch surface terms arising from integration by parts in the a
variation ~32!. Let us display them explicitly:

~dS!surf5E
V

dx@fdr2hds2bmdam# t1

t21E
t1

t2
dt R

]V
@v~fdr2hds2bmdam!1rfdv#•ndS.

~37!

Boundary condition

n•vu]V50,

which means, as in previous sections, fixed edge of the domainV, provides vanishing of all
variation contributions at the spatial part of the boundary. The contribution from variations o
time boundary disappears because variablesr, s, am must be fixed at the initial and final instan
of time.

B. Free boundary

Let us add to action~32! a surface energy contribution and let us, as before, describe the
boundary dynamics by means of functionPV(x,t)

S5E
t1

t2
dtE u~PV!FrS v2

2
2F~x!2«~r,s! D1fS ]r

]t
1div~rv! D2h

Ds

Dt
2bm

Dam

Dt
2t¹•nGdx.

~38!

The variation of this action will differ from the variation of action~32! by some new surface term
only. Let us display them separately:
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~d8S!surf5E
t1

t2
dtE du

dPV
S ṖV~2fdr1hds1bmda!

1dPVFrS v2

2
2F~x!2«~r,s! D1fS ]r

]t
1div~rv! D2h

Ds

Dt
2bm

Dam

Dt
2tKG Ddx.

First line terms arise as a result of integration by parts of partial time derivatives. Varying ovK
does not contribute, as shown before@see~9!#.

By combining the derived expression with the contribution~37! found above, which may be
rewritten as follows,

~d9S!surf5E
t1

t2E dx
]

]t
@u~PV!~fdr2hds2bmdam!#

2E
t1

t2
dtE ¹u~PV!•@v~fdr2hds2bmdam!1rfdv#dx,

we obtain

~dS!surf5E u~PV!~fdr2hds2bmdam!dxu t1
t22E

t1

t2
dtE ¹u~PV!•~rfdv!dx

2E
t1

t2
dtE du

dPV
~ ṖV1~v•¹!PV!~fdr2hds2bmdam!dx1E

t1

t2
dtE du

dPV
dPV

3FrS v2

2
2F~x!2«~r,s! D1fS ]r

]t
1div~rv! D2h

Ds

Dt
2bm

Dam

Dt
2tKGdx.

Some terms here give us a boundary condition

ṖV1~v•¹!PV50,

and some other terms disappear when fields on the time boundaries are fixed. But there a
terms which do not allow us to derive the famous boundary condition~10!. It is well known17,18

that actions which differ by boundary terms lead to different natural boundary conditions
action ~38! should be modified by some surface integral. It is easy to get convinced that we
obtain the desired action after subtracting from~38! the following expression:

DS5E
t1

t2
dtE

V
S ]

]t
~rf!1¹•~rfv! Ddx.

Therefore, the action which leads to correct equations of motion and boundary conditio
the free boundary case has the following form:

S5E
t1

t2
dtE u~PV!FrS v2

2
2F~x!2«~r,s! D2r

Df

Dt
2h

Ds

Dt
2bm

Dam

Dt
2tKGdx. ~39!

If we compare the above expression with formula~34!, we can see that the Lagrangian density
to the sign is equal to the pressure when equations of motion are satisfied. In a paper by Luk13 for
the two-dimensional

dx5dxdy, PV~x,y,t !5h~x,t !2y,
                                                                                                                



ns for
the

harov.

in the
nt to
ngian

econd

o

3671J. Math. Phys., Vol. 43, No. 7, July 2002 Boundary values as Hamiltonian variables. III

                    
potential flowv5¹f of the incompressible fluidr51, ands5const without surface tensiont
50 in a constant gravitational fieldF(x)5gy, it was first pointed out that action~39!, taking the
following form

S52E
t1

t2
dtE dxEh(x,t)

dyS 1

2
fx

21
1

2
fy

21ḟ1gyD ,

allowed us to derive not only equations of motion but also the dynamical boundary conditio
the free surface. The presence ofḟ in the Lagrangian density is essential as it generates
symplectic form

v5E dxdh∧df,

corresponding to the Poisson bracket discovered in an almost simultaneous paper by Zak7

It is easy to see that action~39! can be also used in the fixed boundary case for domainV.

VI. AN ALTERNATIVE WAY TO THE HAMILTONIAN FORMALISM FOR EULERIAN
VARIABLES

Let us show that starting from the variational principle for Eulerian variables discussed
previous section, it is possible to construct a new Hamiltonian formalism which is equivale
the one constructed above by means of reduction of the Hamiltonian formalism for Lagra
variables. This construction may be provided both by Dirac method,15 and by inverting the sym-
plectic form matrix~Faddeev–Jackiw method14!.

A. Fixed boundary

In the Dirac approach, action~39! with variablev eliminated by means of Eq.~33! leads to the
appearance of primary constraints

pf52r, pr50,

ps52h, ph50,

pa52b, pb50.

Then we look for secondary constraints, and next we derive Dirac brackets and eliminate s
class constraints.

The Faddeev–Jackiw approach looks simpler here. We determine the symplectic form

v5E u~P!~df∧dr1ds∧dh1dam∧dbm!dx

~here and below we reduce notationPV to P!, which is explicitly canonical, and this allows us t
find the Poisson brackets

$r~x!,f~x8!%5d~x,x8!, $h~x!,s~x8!%5d~x,x8!, $bm~x!,an~x8!%5dmnd~x,x8!,

which coincide with the Dirac brackets. Let us introduce the following quantities,

p5r¹f1h¹s1bm¹am ,

and calculate their Poisson brackets. The result is the same as given by Eq.~18!. In an analogous
way we may check the correspondence with formulas~19! and ~20!. The Hamiltonian can be
obtained by the standard Legendre transform and it coincides with expression~21! being ex-
pressed in variablesp.
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Therefore, by using Clebsch potentials we can maintain the correspondence betwe
variational principle and the Hamiltonian formalism in Eulerian coordinates.

B. Free boundary

Here for simplicity we replaceam by a. In the free boundary case it is necessary to cons
P as a dynamical variable. Time derivatives enter action~39! in the following form,

E
t1

t2
dtE dxu~P!~2rḟ2h ṡ2bȧ!,

so, the corresponding symplectic form is as follows:

v52E dx~u~P!~dr∧df1dh∧ds1db∧da!1u8~P!dP∧~rdf1hds1bda!!.

In the case of the potential flow of incompressible fluid considered by Zakharov,7 this form
reduces~for r51! to the following expression,

v5E dxu8~P!df∧dP,

allowing us to use the canonical Poisson brackets for the pair of conjugate variables: ve
potential on the boundary and the position of the boundary.

Here in order to come to the Hamiltonian formalism we will use Dirac approach. Le
introduce conjugate momenta for all variables

$f~x!,pf~y!%5$r~x!,pr~y!%5$s~x!,ps~y!%5d~x,y!,

$h~x!,ph~y!%5$a~x!,pa~y!%5$b~x!,pb~y!%5$P~x!,pP~y!%5d~x,y!,

and find their values from action~39! by means of the standard formula

p i5
]L
]q̇i

.

As the Lagrangian density depends on velocities in a linear way we get as many primary
straints as many momenta we have introduced

c15pf1u~P!r, c45pr ,

c25ps1u~P!h, c55ph ,

c35pa1u~P!b, c65pb ,

c75pP .

The Legendre transform gives the initial Hamiltonian

H05E dxu~P!S 1

2r
~r¹f1h¹s1b¹a!21rF1r«~r,s!1tK D ,

coinciding with expression~26! with the only difference: momentap i expressed by means o
Clebsch variables. But Hamiltonian H0 when expressed in new variables does not provide
correct equations of motion and so should be accompanied by a linear combination of the p
constraints
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H5H01E dx(
i 51

7

l ic i .

Evidently, the first six constraints are second class. The matrix of their Poisson brackets,

$c i ,c j%5S 0 I

2I 0D u~P!d~x,y!,

has an inverse@here we are to consideru(P)d(x,y) as a unit operator#

Ci j ~x,y!5S 0 2I

I 0 D u~P!d~x,y!,

so it is possible to determine the Dirac brackets by the standard formula

$ f ~x!,g~y!%D5$ f ~x!,g~y!%2 (
i , j 51

6 E dzE dw$ f ~x!,c i~z!%Ci j ~z,w!$c j~w!,g~y!%.

Therefore, we exclude the first six momenta, and, correspondingly, the first six constraints
the Hamiltonian

H5E dxFu~P!S 1

2r
~r¹f1h¹s1b¹a!21rF1r«~r,s!1tK D1lPpPG .

The calculation of Dirac brackets for the other eight variables gives us the following result

$r~x!,f~y!%D5u~P!d~x,y!, $r~x!,pP~y!%D52u8~P!rd~x,y!,

$h~x!,s~y!%D5u~P!d~x,y!, $h~x!,pP~y!%D52u8~P!hd~x,y!,

$b~x!,a~y!%D5u~P!d~x,y!, $b~x!,pP~y!%D52u8~P!bd~x,y!,

$P~x!,pP~y!%5d~x,y!.

Therefore, we can now relate to the initial symplectic form the following Poisson bivector:

C5E dxFu~P!S d

dr
∧

d

df
1

d

dh
∧

d

ds
1

d

db
∧

d

da D
1

d

dpP
∧S 2

d

dP
1u8~P!S r

d

dr
1h

d

dh
1b

d

db D D G .
The differential of the Hamiltonian has the following form,

dH5E dx
dH

dfA
dfA , ~40!

where some full variational derivatives have nontrivial boundary contributions

dH

dr
5u~P!S v¹f2

v2

2
1F1«1

p

r D ,

dH

dh
5u~P!v•¹s,
                                                                                                                



two

he
re-

es.

amil-
s are

tiabil-

3674 J. Math. Phys., Vol. 43, No. 7, July 2002 Vladimir O. Soloviev

                    
dH

db
5u~P!v•¹a,

dH

df
52u8~P!rv•¹P2u~P!¹~rv!,

dH

ds
52u8~P!hv•¹P2u~P!~¹~hv!2rT!,

dH

da
52u8~P!bv•¹P2u~P!¹~bv!,

dH

dP
5u8~P!S rv2

2
1rF1r«1tK D ,

dH

dpP
5lP .

The interior product of this differential onto the Poisson bivector gives~up to the sign! the
following Hamiltonian vector field

2dH4C5@2u8~P!r~lP1v•¹P!2u~P!¹~rv!#
d

dr
1@2u8~P!h~lP1v•¹P!

2u~P!~¹~hv!2rT!#
d

dh
1@2u8~P!b~lP1v•¹P!2u~P!¹~bv!#

d

db

1u8~P!~p2tK !
d

dp
2u~P!v•¹a

d

da
1lP

d

dP

1u~P!Fv2

2
2v•¹f2F2«2

p

r G d

df
2u~P!@v•¹s#

d

ds
,

i.e., Hamiltonian equations of motion, for example,

Ṗ5lP . ~41!

If we require that all terms singular on the boundary should be zero, we get the following
equations:

u8~P!~lP1v•¹P!50, ~42!

u8~P!~p2tK !50. ~43!

Taking into account~41! we recognize the same standard boundary conditions~11! and~28!. If we
start from Regge–Teitelboim criterion,3 i.e., if we demand cancellation of boundary terms in t
Hamiltonian variation~40!, then we obtain incorrect boundary conditions, in particular, the
quirement of stationarity for the boundary.

After cancellation of singular terms, derived equations coincide with the Lagrangian on

VII. CONCLUSION

We have demonstrated that the method proposed in Refs. 1 and 2 is applicable for H
tonian treatment of free boundary problems. The special features of this class of problem
explicit in the approach.

It is important to stress that the most popular now Regge–Teitelboim approach3 is not ad-
equate for non-ultralocal Poisson brackets as the requirement of the Hamiltonian ‘‘differen
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ity’’ leads to boundary conditions different from those obtained on the base of the variat
principle. At the same time, it does not exclude singular boundary contributions from equatio
motion.

We require that boundary conditions must exclude the contributions proportional to
d-function and its derivatives from the Hamiltonian equations of motion, i.e., from the Ha
tonian vector fields. At the same time such terms may be present in the Hamiltonian variat
in the Poisson bivector.

These conclusions are supported by some other examples.5,6 We hope that the method dis
cussed here will be useful in treating various free boundary problems.

APPENDIX: A PROOF OF ONE FORMULA USED IN SEC. II

Let us prove the following formula,

]

]r j ~JJji !50,

for variables given in Eq.~2!.
According to the standard variational rules we have for the determinant and for the in

matrix the following relations, correspondingly,

dJ5JJlkdJkl , dJji 52JjkJli dJkl .

Then we obtain

]

]r j ~JJji !5J~Jji Jlk2JjkJli !
]2Yk

]r j]r l 5JS ]r j

]Yi

]r l

]Yk 2
]r j

]Yk

]r l

]Yi D ]2Yk

]r j]r l 5JF ]r l

]Yk

]

]r j S ]Yk

]r l D ]r j

]Yi

2
]r l

]Yi

]

]r j S ]Yk

]r l D ]r j

]YkG5JF ]r l

]Yk

]

]Yi S ]Yk

]r l D2
]r l

]Yi

]

]Yk S ]Yk

]r l D G5JF ]

]Yi S ]Yk

]r l

]r l

]YkD
2

]Yk

]r l

]2r l

]Yi]Yk 2
]

]Yk S ]Yk

]r l

]r l

]Yi D1
]Yk

]r l

]2r l

]Yk]Yi G50.
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The Keller theorem in the problem of effective conductivity in anisotropic two-
dimensional~2D! many-component composites makes it possible to establish a
simple inequalitys is

e (s i
21)•s is

e (sk).1 for the isotropic parts is
e (sk) of the second

rank symmetric tensorŝ i , j
e of effective conductivity. ©2002 American Institute of

Physics. @DOI: 10.1063/1.1480450#

The extension of the Keller theorem1 in the problem of effective conductivity in the infinit
2D two-component composites on the many-component case2 poses a new question on the duali
relation for the second rank symmetric tensorŝ i , j

e of effective conductivity in anisotropic media
It is related to the restrictions imposed on the linear invariant ofŝ i , j

e which is called an isotropic
part s is

e (sk) of effective conductivity. Recently the perturbation theory for the infinite perio
three-component 2D checkerboard with twofold rotation lattice symmetry was developed3 where
the coincidence ofs is

e (sk) with solutionsB(sk) of the Bruggemann equation was established
to the sixth order term. This fact is curious because it gives grounds to think that effective m
approximation~EMA! describes exactlys is

e (sk) in this certain structure. Here we will discuss th
conclusion.

Let us define the isotropic part of conductivity tensor

s is
e ~sk!5 1

2 Tr ŝ i , j
e ~sk!, k51,2,. . . ,n, ~1!

which is an invariant scalar with respect to the plane rotation. We recall the extension2 of the
Keller theorem for the principal valuesŝe

xx , ŝe
yy of diagonalized matrixŝe

i j for 2D n-component
composite

ŝe
xx~s1

21 ,s2
21 , . . . ,sn

21!•ŝe
yy~s1 ,s2 , . . . ,sn!51,

~2!
ŝe

yy~s1
21 ,s2

21 , . . . ,sn
21!•ŝe

xx~s1 ,s2 , . . . ,sn!51.

Both ~1! and ~2! make it possible to derive a simple inequality forL is
e 5s is

e (s i
21)•s is

e (sk)>1.
Indeed,

L is
e 5

1

4
@21ŝe

xx~sk!•ŝe
xx~sk

21!1ŝe
yy~sk!•ŝe

yy~sk
21!#5

1

4 F21
ŝe

xx~sk!

ŝe
yy~sk!

1
ŝe

yy~sk!

ŝe
xx~sk!

G>1, ~3!

where the only isotropic mediaŝe
xx5ŝe

yy corresponds to the equality in~3!. At the same time
another isotropic invariantD is

e 5detŝij
e(sk) satisfies the duality relation

D is
e ~sk!•D is

e ~sk
21!51.

The EMA theory of the infinite 2Dn-component isotropic composite has as its consequence
Bruggemann equation4

a!Electronic mail: lfel@post.tau.ac.il
36760022-2488/2002/43(7)/3676/2/$19.00 © 2002 American Institute of Physics
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(
k51

n
sk2sB~sk!

sk1sB~sk!
50, ~4!

which necessarily leads to the duality relation

sB~sk
21!•sB~sk!51. ~5!

The last formula means thats is
e can satisfy the Bruggemann equation only for isotro

Sn-permutation invariant media:ŝe
xx5ŝe

yy , ŝe
xy50 in any reference frame$x,y%.

The infinite periodic 2D three-component checkerboard was considered in Ref. 3 for
metrically related partial conductivities (s151,s2,3516d), see Fig. 1. Such structure does n
possess an isotropy of the second rank conductivity tensorŝe

i , j that follows from the simple
crystallographical consideration5 as well as from the straightforward calculation3 of the nondiago-
nal termŝe

xy}d2. Therefores is
e (sk) for this structure cannot satisfy the Bruggemann equation~4!

even if its coincidence withsB(sk) reached thed6 term in the perturbation theory. In fact, th
Bruggemann equation cannot provide an exact solution for the scalar linear invariants is

e (sk) of
the macroscopic conductivity tensorŝ i , j

e in any 2D problem where that tensor is nonscalar.
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FIG. 1. A unit cell of periodic 2D three-component checkerboard considered in Ref. 3.
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Based on the value of the orbital eccentricity of an object and also its proximity to
the exact resonant orbit in a three-body system, the pendulum approximation@S. F.
Dermott and C. D. Murray, Nature~London! 319, 201 ~1983!# or the second fun-
damental model of resonance@M. H. Andoyer, Bull. Astron.20, 321 ~1903!; J.
Henrard and A. Lemaıˆtre, Celest. Mech.30, 197 ~1983!# are commonly used to
study the motion of that object near its resonant state. In this paper, we present the
method of partial averaging as an analytical approach to study the dynamical evo-
lution of a body near a resonance. To focus attention on the capabilities of this
technique, a restricted, circular and planar three-body system is considered and the
dynamics of its outer planet while captured in a resonance with the inner body is
studied. It is shown that the first-order partially averaged system resembles a math-
ematical pendulum whose librational motion can be viewed as a geometrical inter-
pretation of the resonance capture phenomenon. The driving force of this pendulum
corresponds to the gravitational attraction of the inner body and its contribution, at
different resonant states, is shown to be proportional toes, wheres is the order of
the resonance ande is the orbital eccentricity of the outer planet. As examples of
such systems, the cases of~1:1!, ~1:2!, and~1:3! resonances are discussed and the
results are compared with known planetary systems such as the Sun–Jupiter–
Trojan asteroids. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1482148#

I. INTRODUCTION

The study of the dynamical evolution of a planetary system while captured in a resonan
a long history in dynamical astronomy. Since the pioneering work of Poincare´1 on the study of the
near-resonance motions in a restricted three-body system by means of a zeroth-order re
Hamiltonian~i.e., a Hamiltonian with no perturbing terms other than the resonant ones!, the body
of literature produced on this subject has become so rich and extensive that it is virtually im
sible to cite all the articles here. Recent discoveries of extrasolar planetary systems such as
876,2 where two planets are locked in a near~2:1! commensurability, have also provided ric
grounds for astrodynamicists to extend such studies to the systems beyond the boundarie
solar system.3–7

There are two analytical approaches that are commonly taken in the study of the dynam
the bodies of a three-body system while captured in a resonance. For an object with high
eccentricity (>0.15) in a first-order resonance, or for an object at any higher order resonanc
pendulum model is used when the object’s orbit is sufficiently close to the real reson
location.8 The Hamiltonian model, or as it is often called, the second fundamental mod
resonance,9,10 is usually used for small eccentricities. A comparison of the results of the app
tion of these two models to the study of the motion of a test particle in a first-order int
resonance as well as an exterior (1:n8),n852,3,4,5 commensurability, with the results of nume
cal integrations, can be found in a series of papers by Winter and Murray.11,12 In these articles, as

a!Electronic mail: nader@dtm.ciw.edu
36780022-2488/2002/43(7)/3678/17/$19.00 © 2002 American Institute of Physics
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a part of their comprehensive project CRISS-CROSS on understanding the location and or
chaotic regions in the phase space of our solar system, Winter and Murray present a d
analysis of the dynamics of a test particle at resonance.

The purpose of this paper is to present a relatively new approach, namely the meth
partial averaging near a resonance, to study analytically the dynamics of a system near a r
state. This technique, which is based on the averaging theorem~see Refs. 13 and 14!, enables one
to avoid certain complexities by studying the behavior of the system averaged over a fast a
variable.15–17 It is necessary to mention that a complete picture of the dynamical evolution o
system can only be obtained by direct analysis of its equations of motion. The partially ave
system allows one to focus attention on the slow-changing quantities. Such an idea is com
used in celestial mechanics: the Hamiltonian of the system is averaged over a fast variable
resulting averaged Hamiltonian is used to study the slow dynamics of the system. A review
technique can be found in the work of Ferraz-Mello18 and the references cited therein. To de
onstrate the capabilities of the method of partial averaging, a restricted, circular and planar
body system is considered here and the motion of its outer planet near an (n:n8) resonance is
studied.

Although the method of partial averaging near a resonance has long been used by ma
ticians in their studies of dynamical systems near resonances,15–17 its application to astronomica
systems is quite recent. One can find such applications in papers by this author on the stud
dynamical evolution of a planetary system in a uniform and homogeneous mediu
planetesimals19,20and also in a series of articles by Chicone, Mashhoon, and Retzloff21–26on their
extensive study of the dynamics of a binary system subject to incident gravitational radiat
well as gravitational radiation damping.

The system of interest in this paper is a hypothetical restricted, planar and circular three
system consisting of a star and two planets. The equations of motion of the outer planet
system are presented in Sec. II. Section III deals with the system at resonance. In Sec.
method of partial averaging near a resonance is applied and the averaged dynamics of th
planet, in the first order of perturbation, is studied. It is shown in this section that the contrib
of the gravitational attraction of the inner planet on the averaged dynamics of the outer b
different resonant states is directly proportional to the orbital eccentricity of the latter with a p
equal to the order of the resonance. As examples of such cases, the~1:1!, ~1:2!, and ~1:3! reso-
nances are studied in detail and a comparison with the system of Sun–Jupiter–Trojan aste
an actual case of a near~1:1! commensurability is presented. Section V concludes this study
reviewing the results and presenting remarks on their applicability to other planetary syste

II. THE SYSTEM

The system of interest in this study is a planar three-body system consisting of a starS and
two planetsP1 and P2 whereP2 is the outer planet andP1 , the more massive planet, orbitsS
uniformly along a circular path. The orbital period ofP1 is considered to be known and consta
It is also assumed that the mass ofS is so much larger thanP1 and P2 that the effect of their
gravitational attraction onS can be neglected.

As mentioned earlier, it is the dynamics ofP2 that is of interest here. In an inertial coordina
system with its origin atS and its axes on the plane of the system, the equation of motion o
outer planet can be written as

m2

d2 rW2

dt2
1G Mm2

urW2u3
rW 21G m1m2

urW22rW1u3 ~rW22rW1!50. ~1!

In this equation,G is the gravitational constant,rW1 and rW2 are the position vectors of the tw
planets,m1 and m2 are their corresponding masses, andM is the mass of the central star. Fo
future purposes, it is more convenient to write Eq.~1! in a dimensionless form. Introducingr 0 and
t0 as the quantities that carry units of length and time, respectively, Eq.~1! can be written as
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d2r̂W

dt̂2
1 k̂

r̂W

u r̂Wu3
1m k̂

~ r̂W2 r̂W1!

u r̂W2 r̂W1u3
50, ~2!

wherer̂W, r̂W1 , and t̂ are dimensionless quantities given byrW25r 0 r̂W , rW15r 0 r̂W 1 , andt5t0 t̂. In Eq.
~2!, k̂5GMt0

2/r 0
3 andm5m1 /M . The assumption of a uniform circular motion forP1 allows one

to setk̂51 by choosingr 05r 1 and t05T1/2p whereT1 is the orbital period ofP1 .
As mentioned in Sec. I, we would like to analyze Eq.~2! using the method of partial averag

ing. To do so, it is necessary to write Eq.~2! in terms of appropriate action-angle variabl
~Appendix A!. The most appropriate action-angle variables for this purpose are the Dela
variables given byL5a1/2, G5Pu5@a(12e2)#1/2, ,5u2e sinu, and g5u2v, where e
5PrPu /sinv anda are the eccentricity and the semimajor axis of the osculating ellipse ofP2 , u
is its plane-polar angle,Pr andPu are its radial and angular momenta, andu andv are its eccentric
and true anomalies related as

r 5
G2

11e cosv
5a ~12e cosu!. ~3!

In order to write Eq.~2! in terms of the Delaunay variables, it is more convenient to first write
equation in terms ofPr andPu . That is,

Pr5 ṙ , ~4!

Pu5r 2 u̇, ~5!

Ṗr5
1

r 3 P u
22

1

r 22
m

urW2r¢1u3
@rW2cos~u2u1!#, ~6!

Ṗu52
m

urW2r¢1u3 r sin~u2u1!, ~7!

whereu15v1 t̂ andv151 is the dimensionless angular velocity ofP1 . In Eqs.~4!–~7!, the hat
signs have been dropped for the sake of simplicity and the overdot indicates a derivativ
respect to the dimensionless timet̂ . The vectorr¢1 in Eqs.~6! and~7! is the unit vector alongrW1 .
In terms of the Delaunay variables, Eqs.~4!–~7! can be written as

Ġ5r F u , ~8!

L̇5a ~12e2!21/2@Fu1e ~Fr sinv1Fu cosv !#, ~9!

ġ5
1

e
@a~12e2!#1/2 F FuS sinv

11e cosv D2~Fr cosv2Fu sinv !G , ~10!

,̇5a23/21
r

e
a21/2 H ~Fr cosv22 Fu sinv !1

1

2
e @~Fr cos 2v2Fu sin 2v !23 Fr #J , ~11!

where

Fr52m
r 2cos~u2u1!

urW2r¢1u3
, Fu52m

sin~u2u1!

urW2r¢1u3
. ~12!
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III. SYSTEM AT RESONANCE

Consider an (n:n8) commensurability between the angular frequency of the inner planetv1 ,
andv,5a23/2, the Keplerian frequency of the osculating ellipse of the outer one. That is,

n v15n8 v, . ~13!

For our restricted circular system with this resonance condition, the Keplerian frequencyv, , and
therefore, the semimajor axis of the outer planet at resonance are constant. The constant
the semimajor axis, denoted bya(n:n8) , corresponds to the resonant value of the action variabL
asL (n:n8)5a(n:n8)

1/2 . We would like to study the dynamics of the outer planet whenL varies in the
vicinity of this value. For this purpose, we need to introduce an appropriate transformatio
renders Eqs.~8!–~11! in a form that includes deviations ofL from L (n:n8) . Let D be an action
variable measuring these deviations. We then write~Appendix A!

L5a(n:n8)
1/2

1m1/2D, ~14!

and

,5a(n:n8)
23/2 t̂1w, ~15!

wherew denotes the deviations of the mean anomaly, from its Keplerian value. Such transfo
mations have been repeatedly used in application of Hamiltonian averaging techniques to re
systems.18 It is important to mention that the choice ofm1/2 in Eq. ~14! is to assure equal lowes
order of perturbation forḊ and ẇ after writing Eqs.~8!–~11! for the system near resonanc
Details on this can be found in Refs. 14 and 20.

For the purpose of writing Eqs.~8!–~11! near a resonance, it is more convenient to write th
equations as~Appendix B!

L̇52m
]H

],
, Ġ52m

]H

]g
, ~16!

and

,̇5v,1m
]H

]L
, ġ5m

]H

]G
, ~17!

whereH52urW2r¢1u21 ~hereafter,external Hamiltonian! represents the perturbative effect of th
inner planet,P1 . The dynamical equations of the system near resonance can now be writte19

Ḋ52m1/2
]H

],
2m D

]2H

],]L
1O~m3/2!, ~18!

ẇ523 m1/2a(n:n8)
22 D1m F6a(n:n8)

25/2 D21
]H

]L G1O~m3/2!, ~19!

Ġ52m
]H

]g
1O~m3/2!, ~20!

ġ5m
]H

]G
1O~m3/2!. ~21!
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In these equations, all partial derivatives are evaluated at (L (n:n8) ,G,L (n:n8)
23 t̂1w,g). The averaged

dynamics of the system is obtained by applying the averaging technique presented in Appe
to Eqs.~18!–~21!.

IV. FIRST-ORDER AVERAGED SYSTEM

As mentioned before, we would like to study the averaged dynamics of the outer plane
a resonance, in the first order of the perturbation parameterm1/2. In that order, Eqs.~18!–~21! are
written as

Ḋ52m1/2F, ẇ52m1/2F 3D

a(n:n8)
2 G , Ġ5ġ50, ~22!

whereF5]H/], is evaluated at (L (n:n8) ,G,L (n:n8)
23 t̂1w,g).

In this section, we apply the method of partial averaging, as described in Appendix A, t
~22!. As mentioned in Appendix A, the analysis presented there is only valid for systems wit
angular variable. An inspection of the main dynamical equations of the outer planet@i.e., Eqs.~16!

and~17!# reveals that these equations along withu̇151 represent the time variations of two actio
variablesL andG and three angular variables,, g, andu1 . However, as shown by Eq.~22!, to
the first order ofm1/2,ġ50. That is, the angular variableg is a constant. Also, from the resonan
condition ~13! and the transformation~15!, the angular variables, and u15 t̂ are related as,
5(n/n8) t̂1w. These relations imply that, in fact, Eq.~22! represents a dynamical system with
action variableD( t̂ ) and an angular variablew( t̂ ). These equations are now in the correct form
applying the partial averaging technique.

The averaged dynamics of the outer planet, to the first order of perturbation, is obtain
averaging quantitiesD andw in Eq. ~22! using integral~A7!. The result, after eliminatingD̄, can
be written as

ẅ̄23 m a(n:n8)
22 F̄~L (n:n8) ,G,w̄,g!50, ~23!

where the overbar denotes an averaged quantity. To study this equation, it is necessary to c
F̄. From the definition ofF, however, one has to first write theexternal Hamiltonian Hin terms
of the mean anomaly,. To do so, we start by writingH as

H52@11r 222 r cos~u2u1!#21/2. ~24!

The dependence ofH on the mean anomaly is, in fact, implied through the dependence ofr and
u on the true anomalyv. That is, in order to writeH as a function of,, we need to substitute fo
r from Eq. ~3! and replaceu by g1v. The mean anomaly, appears when cosv and sinv are
replaced by

cosv52e12 S 12e2

e D (
j 51

`

cos~ j , !Jj~ je!, ~25!

and

sinv5~12e2!1/2 (
j 51

`

sin~ j , !@Jj 21~ je!2Jj 11~ je!#. ~26!

HereJj is the Bessel function of orderj . The HamiltonianH can, therefore, be written as
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H52$@11a222a cos~,1g2u1!#2e a@2a cos,1cos~2,1g2u1!23 cos~g2u1!#

1 1
4a e2@2a~32cos 2, !14 cos~,1g2u1!23 cos~3,1g2u1!2cos~,2g1u1!#

1O~e3!%21/2. ~27!

To calculateF, we need to differentiateH with respect to the mean anomaly,. From Eq.~27!,
we can see that such a differentiation will result in a very complex expression for the functiF,
which makes the calculation of its averaged value through integral~A7!, if not impossible, quite
difficult. Traditionally in celestial mechanics, such complexities are avoided by expandin
gravitational effects of the perturbing bodies in terms of the osculating orbital elements su
eccentricity.27 Such expansions are quite customary in studies of the dynamics of the bodies
as planets of our solar system where, except Pluto, the mean orbital eccentricities range fr
to 8%.

In this paper, the perturbative effect of the outer planet appears as functionF in Eq. ~23!. One
can consider this equation as the equation of a dynamical system written according to the
ton’s second law whereF represents its associated force. After differentiating Eq.~27! with
respect to the mean anomaly and expanding the results in terms of the eccentricity of the
planet, this force can be written as

F5F (0)1eF (1)1e2 F (2)1O~e3!, ~28!

where

F (0)5a @11a222a cos~,1g2u1!#23/2sin~,1g2u1!, ~29!

F (1)5a @11a222a cos~,1g2u1!#23/2@a sin,1sin~2,1g2u1!#

1 3
2 a2 @11a222a cos~,1g2u1!#25/2 sin~,1g2u1!

3@2a cos,1cos~2,1g2u1!23 cos~g2u1!#, ~30!

and

F (2)5 1
8a @11a222 a cos~,1g2u1!#23/2@4a sin 2,24 sin~,1g2u1!19 sin~3,1g2u1!

1sin~,2g1u1!#2 3
16a

2 @11a222 a cos~,1g2u1!#25/2@20a sin~,1g2u1!

214a sin~3,1g2u1!114a sin~,2g1u1!116 sin 2~,1g2u1!27 sin 2~2,1g2u1!

12~724a2!sin 2,2sin 2~g2u1!#1 15
32a

3@11a222a cos~,1g2u1!#27/2@2~4a2

113!sin~,1g2u1!1~4a227!sin~3,1g2u1!2~4a2215!sin~,2g1u1!1sin~5,13g

23u1!1 9 sin~,13g23u1!14a sin 2~2,1g2u1!216a sin 2,212a sin 2~g2u1!

28 a sin 2~,1g2u1!26 sin 3~,1g2u1!#. ~31!

Expansion ofF in terms ofe, as given by Eq.~28!, enables us to simplify the calculations o
F̄ by integrating only the terms that play more significant roles. The question is now ho
identify such terms. In the following, we answer this question.

To compute the averaged value ofF, we need to integrate Eq.~28! using formula~A7!. From
Eqs. ~29!–~31! one can see that because of the terms@11a222a cos(,1g2u1)#

2l,
l53/2,5/2,7/2, calculation of integral~A7! may not be quite doable. This difficulty can, howeve
be overcome taking into account that for the outer planetr 2.r 1 , or in a dimensionless form
and in terms of the osculating elements,a.1. Therefore, the above-mentioned quantity can
written asa22l@11a2222a21 cos(,1g2u1)#

2l, which can, subsequently, be expanded using
identity
                                                                                                                



r
.

s.

tity,

eraged

as the
s
while

the
value

f
cases

r

In

3684 J. Math. Phys., Vol. 43, No. 7, July 2002 Nader Haghighipour

                    
~122 j cosa1j2!2l5 (
q50

`

Cq
l ~cosa!jq, uju,1. ~32!

In this equation,

Cq
l~cosa!5 (

h50

q
G~l1h!G~l1q2h!

h! ~q2h!! @G~l!#2 cos@~q22h!a# ~33!

are the Gegenbauer polynomials anda andj are equal to,1g2u1 anda21, respectively.
An inspection of Eqs.~29!–~31! reveals that quantitiesF (0), F (1), andF (2) share a common

feature; the terms@11a222a cos(,1g2u1)#
2l are multiplied by sinus functions with angula

arguments of a general form@n,1n8(g2u1)# wheren andn8 are integers. For instance, in Eq
~29!, n5n851 and in the first term of Eq.~30!, n51 andn850. Therefore, a general term of Eq
~29!–~31! can be written as

@11a222a cos~,1g2u1!#2l sin@n,1n8~g2u1!#

5 (
q50

`

(
h50

q

a2(q12l)
G~l1h!G~l1q2h!

h! ~q2h!! @G~l!#2 cos@~q22h!~,1g2u1!# sin@n,1n8~g2u1!#.

~34!

Consequently,F will be equal to the sum of terms proportional toes cos@(q22h)(,1g
2u1)#sin@n,1n8(g2u1)# wheres50,1,2.

The above-mentioned quantity appeared in Eq.~28! after the Hamiltonian~27! was differen-
tiated with respect to the mean anomaly,. That means, the three components of this quan
cos@(q22h)(,1g2u1)#, sin@n,1n8(g2u1)# and es, have their origins inH. A deeper look at Eq.
~27! indicates what the nature of these components are and how they contribute to the av
dynamics of the outer planet.

The first term in the curly braces in Eq.~27! is the term responsible for@11a222a cos(,
1g2u1)#

2l and consequently, for the expansion~32!. As seen from Eq.~27!, this term is associ-
ated with the zeroth power of eccentricity. That is, it represents the effect of the inner planet
F (0) component of the force of the dynamical system~23!. Later in this section, we will discus
this component in more detail and explain its contribution to the dynamics of the system
captured in a~1:1! resonance.

The sin@n,1n8(g2u1)# term in the above-mentioned coupling has its roots in all terms of
HamiltonianH. To study this term in more details, it proves useful to evaluate the averaged
of F using formula~A7!. Using the expansion~34!, a general term ofF̄ will be proportional to

E
0

2pn8
sin@~n1q22h!,1~n81q22h!~g2u1!#dt̂

1E
0

2pn8
sin@~n2q12h!,1~n82q12h!~g2u1!#dt̂ .

Recall that in an (n:n8) resonance,,5(n/n8) t̂1w. We also haveu15 t̂ . Therefore, because o
their harmonic natures, the above-mentioned integrals will be equal to zero except for those
where the variablet̂ in the integrands vanishes. In the first integral, this corresponds ton1q
22h56n8 andn81q22h56n and in the second integral we must haven2q12h56n8 and
n82q12h56n. These four equations imply that (q22h) has to be equal to one of the fou
integers6(n6n8) and, at the same time, one of the four integers6(n86n) with the same
arrangement of1 and2 signs, in order for the quantityF to have a nonzero averaged value.
other words, we must have
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uDnu5un2n8u5n82n. ~35!

Equation~35! is, indeed, aselection rule. That is, it can be used to identify the contributin
terms of expansion~28! in the averaged dynamics of the outer planet in an (n:n8) resonance. To
show this, we apply the above-mentioned analysis to a specific three-body system consis
Sun, a proto-Jupiter, and a proto-Saturn. It was shown by Melita and Woolfson28 and also by
Haghighipour19 that in a medium of planetesimals, the protoSaturn of the three-body system
undergo an inward migration when the dynamical friction force of the medium is taken
consideration. Recently Masset and Snellgrove29 have also arrived at the same conclusion in th
study of the migration of giant protoplanets embedded in a protoplanetary disk. As a result
migration, the semimajor axis of the protoSaturn decreases until it is captured in a nea~1:2!
resonance with the protoJupiter. It has also been shown that under certain conditions, this bo
migrate outward and become captured in higher order resonances of the form (1:n8) where
n8>3.19,20,30Equation~23! can, therefore, be used to study the averaged dynamics of the p
Saturn above near a~1:2! and also near a higher order resonance of~1:3!.

From theselection rule~35!, it becomes evident that for the system in a~1:2! resonance, only
F (1) will have nonzero averaged value and when the system is captured in a~1:3! commensura-
bility, only F (2) will contribute. Tables I and II show the angular arguments of the sinus funct
of the contributing terms ofF (1) andF (2) and also their corresponding values of (q22h).

The quantityuDnu in the selection rule~35! is called the order of the resonance. The fact t
F (1) is the first contributing term of expansion~28! in a ~1:2! resonance andF (2) is its first
contributing term in a~1:3! resonance imply that in a first-order exterior resonance such as~1:2!,
the first contributing term is proportional toe1 and similarly, in a second-order resonance such
~1:3!, the first contributing term is proportional toe2. In general, by expandingF to higher orders
of eccentricity, one can show that in an exterior (n:n8) resonance of orderuDnu, the first fulfill-
ment of the condition~35! by the factor sin@n,1n8(g2u1)# appears in a term proportional toes

wheres is equal touDnu. For instance, the contribution of expansion~28! to the averaged dynam
ics of the outer planet in a resonance of the form (n:n11) will first appear in its second term
F (1), and the third term of this expansion,F (2), will be the first term with a nonzero average

TABLE I. The angular arguments of the contributing terms of expansion
~28! for a Sun–protoJupiter–protoSaturn system in a~1:2! resonance.

Angular argument of the
contributing terms (n,n8) 6(q22h)

, ~1,0! 3,1
g2u1 ~0,1! 2,0
,12g22u1 ~1,2! 3,1
2,1g2u1 ~2,1! 4,2,0
3,12g22u1 ~3,2! 5,3,1

TABLE II. The angular arguments of the contributing terms of expansion
~28! for a Sun–protoJupiter–protoSaturn system in a~1:3! resonance.

Angular argument of the
contributing terms (n,n8) 6(q22h)

2, ~2,0! 5,1
2(g2u1) ~0,2! 3,1
,13g23u1 ~1,3! 4,2
,2g1u1 (1,21) 4,2,0
3,1g2u1 ~3,1! 6,2,0
2(2,1g2u1) ~4,2! 7,3,1
5,13g23u1 ~5,3! 8,4,2
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value when the system is captured in an (n:n12) commensurability. The role of sin@n,1n8(g
2u1)# in the coupling term and, consequently, in the averaged dynamics of the outer plane
differentiate the contributing terms of the expansion~28! for an (n:n8) resonance by determinin
the power of the eccentricity to which the disturbing forceF has to be expanded, through th
selection rule~35!. The factores in the coupling represents the strength of the contributing te
associated with a resonance of orders5Dn. It is customary in celestial mechanics to call th
resonant state anes-resonance.27 For instance, the~1:2! resonant state in the Sun–protoJupite
protoSaturn system studied previously is ane1-resonance and the state of the system in a~1:3!
commensurability corresponds to ane2-resonance.

Let us now, just as examples of the first- and the second-order exterior resonances, st
averaged system near~1:2! and ~1:3! commensurabilities. In general, after replacing, by its
equivalent value given by Eq.~15!, substituting for (q22h) by 6(n6n8) and 6(n86n), and
averaging the results, the product of cos@(q22h)(,1g2u1)# and sin@n,1n8(g2u1)# will produce
terms that are proportional to sin(n8w̄1ng). For instance, for a system near a~1:2! resonance,

F̄(1:2)5
e(1:2)

a(1:2)
2 s (1:2) sin~2w̄1g!, ~36!

and for a~1:3! resonance,

F̄(1:3)5
e(1:3)

2

4a(1:3)
2 Fs (1:3)

(3/2) 13s (1:3)
(5/2) 1

15

a(1:3)
2 s (3:1)

(7/2) G sin~3w̄1g!. ~37!

In these equations,

s (1:2)5 (
h50

` F GS 3

2
1hD

a(1:2)
h h!GS 3

2D G
2

H 11S 2h13

h11 D F 12
3

4a(1:2)
2 S 2h15

h12 D G J , ~38!

s (1:3)
(3/2) 5 (

h50

` F GS 3

2
1hD

a(1:3)
h h!GS 3

2D G
2

H 9

2
1S 2h13

h11 D F11
1

8a(1:3)
2 S 2h15

h12 D G J , ~39!

s (1:3)
(5/2) 5 (

h50

` F GS 5

2
1hD

a(1:3)
h h!GS 5

2D G
2

H 7

2
1F12

7

8a(1:3)
2 G S 2h15

h11 D

2
1

8a(1:3)
2 F71

1

4a(1:3)
2 S 2h19

h13 D G ~2h17!~2h15!

~h12!~h11! J , ~40!
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s (1:3)
(7/2) 5 (

h50

` F GS 7

2
1hD

a(1:3)
h h!GS 7

2D G
2

H 1

2 Fa(1:3)
2 2

7

4G2
3

4 S 2h17

h11 D

1F1115a(1:3)
2 24a(1:3)

4

32a(1:3)
2 G ~2h19!~2h17!

~h12!~h11!

1
3

16a(1:3)
2 F12

3

8a(1:3)
2 S 2h113

h14 D G ~2h111!~2h19!~2h17!

~h13!~h12!~h11! J . ~41!

BecauseF̄ is proportional to sin(n8w̄1ng), Eq. ~23! can be viewed as the equation of
mathematical pendulum with a potential function proportional to cos(n8w̄1ng) @see Eq.~A12!#.
Such a pendulum, with its harmonic potential, is a characteristic of the first-order partially
aged system near a resonance wheree(n:n8) is considered to be constant.13,14,19,31For instance, for
the cases of~1:2! and ~1:3! resonances,

U(1:2)~ w̄ !5
3e(1:2)

2a(1:2)
4 s (1:2) cos~2w̄1g!1constant, ~42!

and

U(1:3)~ w̄ !5
e(1:3)

2

4a(1:3)
4 Fs (1:3)

(3/2) 13 s (1:3)
(5/2) 1

15

a(1:3)
2 s (1:3)

(7/2) G cos~3w̄1g!1constant. ~43!

Figure 1 shows the graphs of these two potential functions with their corresponding phas
grams. In producing these graphs, the numerical values of the orbital eccentricity and the
major axis ofP2 have been taken from the restricted three-body system of Haghighipour19 at ~1:2!
and ~1:3! resonances.

The harmonic nature of the potential function of the pendulum~23! indicates that this pendu
lum can be in three dynamical states; stable equilibrium corresponding to the minimum
potential function~centersC on the phase diagrams!, unstable equilibrium corresponding to th

FIG. 1. Graphs of the potential functionU(1:2)(w̄) ~top left panel! and its phase diagram~top right panel! and the potential
function U(1:3)(w̄) ~bottom left panel! with its associated phase diagram~bottom right panel! for the system studied by
Haghighipour~Ref. 19! at ~1:2! and~1:3! resonances. The scale on all vertical axes is 0.01. The origins on the horiz
axes of the graphs of the~1:2! resonance have been shifted by20.44(rad) and the corresponding origins of the graphs
the ~1:3! resonance have been shifted by21.7(rad).
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maximum of the potential function~saddle pointsS! or, an oscillatory~librational! motion around
the stable equilibrium~the orbits inside theseparatrix, the dashed orbit that passes through
saddle pointS!. The resonance lock phenomenon is geometrically depicted by these libra
motions.

The oscillatory variations in values ofw̄ create a harmonic behavior for the action variableD̄.
From Eq.~22!, for a system at an (n:n8) resonance whereF̄ is proportional to sin(n8w̄1ng), D̄

will be proportional to cos(n8w̄1ng). Figure 2 shows the graphs ofD̄ and w̄ against time for the
systems of Fig. 1. As mentioned in Sec. III,D is the measure of changes in the action variableL
or, in other words, an indication of the variations of the semimajor axis of the outer planet fro
resonant value. From Eq.~A14!, the width of the resonance band within which the semimajor a
of the outer planet varies around its resonant value is limited by the height of the separatrix
the first order of perturbation can be written as

Da(n:n8)54 @ 2
3 m a(n:n8)

3 D U(n:n8)~ w̄ !#1/2, ~44!

whereD U(n:n8)(w̄) is equal to the difference between the maximum and the minimum value
U(n:n8)(w̄).

It is necessary to mention that the procedure presented here for expansion of@11a2

22a cos(,1g2u1)#
2l using Gegenbauer polynomials, is not valid for a~1:1! resonance. At this

state, from Eq.~13!, the Keplerian period of the outer planet becomes nearly equal toT1 . That
means,a(1:1).1 and expansion~32! is no longer applicable. However, it is still possible to use
method of averaging to study the dynamics of the outer planet near a~1:1! commensurability. The
external Hamiltonian H, in this case, must be studied in its entirety as given by Eq.~25!. Ex-
panding H to the second order in eccentricity and integratingF in the vicinity of the ~1:1!
resonance, we have

F̄(1:1)5
1
2 a(1:1) @22e(1:1)

2 # sin~ w̄1g! @11a(1:1)
2 22a(1:1) cos~ w̄1g!#23/2

23 a(1:1)
2 e(1:1)

2 sin 2~ w̄1g! @11a(1:1)
2 22a(1:1) cos~ w̄1g!#25/2

1 45
4 a(1:1)

3 e(1:1)
2 sin3~ w̄1g!@11a(1:1)

2 22a(1:1) cos~ w̄1g!#27/2. ~45!

The potential function associated with the first-order partially averaged system is given by

FIG. 2. Graphs ofD̄( t̂ ) and w̄( t̂ ) for the systems of Fig. 1, partially averaged to the first order.
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U(1:1)~ w̄ !5
3

a(1:1)
2 @11a(1:1)

2 22a(1:1) cos~ w̄1g!#21/22
21

2a(1:1)
e(1:1)

2 cos~ w̄1g!

3@11a(1:1)
2 22a(1:1) cos~ w̄1g!#23/21

27

4
e(1:1)

2 sin2~ w̄1g!

3@11a(1:1)
2 22a(1:1) cos~ w̄1g!#25/2. ~46!

Figure 3 shows the graph of this potential forg50°. The fact that dU(1:1)(w̄)/dw̄ shows slight
deviations from zero near the points of stable equilibrium is an indication of a slow-frequ
librational motion in those neighborhoods. To see this, let us apply this analysis to the sys
Sun–Jupiter–Trojan asteroid. Located at theL4 andL5 Lagrangian points of Jupiter’s orbit, Troja
asteroids are in a near~1:1! resonance with Jupiter and have a librational motion with a perio
approximately 148 years.32,33 Substituting fora ande in Eq. ~46! by the values of the semimajo
axis and the eccentricity of Trojan asteroids and Taylor expandingU(1:1)(w̄) around its stable
equilibrium, one will obtain a librational period of approximately 110 years. The difference
tween this period and the 148 years reported in the above-mentioned references can be a
to several factors such as neglecting the gravitational effect of Saturn, restricting Jupiter to s
a circular orbit, and also to the coupling betweenw and the argument of the pericenterg. Studies
are currently under way to extend the partially averaged equations of this system to the s
order of perturbation wherew andg decouple. A closer value for the above-mentioned libratio
period is expected in this case.

The first-order partially averaged system near a resonance, presented by Eq.~23! is, in gen-
eral, Hamiltonian. It portrays the phenomenon of resonance-lock as librational motion of a
dulum. However, with respect to an arbitrary perturbation, this Hamiltonian system is struct
unstable. In an actual system, in order to be able to draw conclusions on long-term beha
quantities such as orbital eccentricity of the outer planet, its angular momentum and al
precession of its orbit, it is necessary to extend this analysis to higher orders of the pertur
parameterm1/2. Such an extension will allow for the time variation of the angleg to be taken into
consideration. This will render the system of Eqs.~18!–~21! in a set of equations with two angula
variables,w andg. In order to be able to apply the method of partial averaging near a reson
to this system, it is then necessary to introduce an averaging transformation that rende
equations of the system in a form that to the first order of perturbation, it becomes automa
equivalent to the first-order partially averaged system at resonance. The second-order p
averaged system is then obtained by averaging those equations using formula~A7!. Such studies
are currently in preparation for publication.

V. SUMMARY AND CONCLUDING REMARKS

Application of the method of partial averaging to the study of the dynamics of the outer
of a restricted three-body system while captured in a resonance has been presented here.
of the first-order partially averaged system near a resonance has revealed that the equa

FIG. 3. Graphs of the potential functionU(1:1)(w̄) ~left panel! and its phase diagram~right panel! againstw̄.
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motion of the outer planet, averaged over fast periodic motion at resonance, resemble a
ematical pendulum. Such a pendulum analogy can also be found in the comprehensive s
orbital resonances among planetary satellites by Peale34 and also in the comprehensive study
the dynamical behavior of a test particle near an interior as well as an exterior resonanc
restricted three-body system by Winter and Murray.11,12

In the analysis presented here, the driving force of the pendulum-like first-order par
averaged system is obtained from theexternal Hamiltonian H@Eq. ~24!# which involves the
gravitational effect of the inner planet on the dynamics of the outer one. In writing the dyna
equations of the outer planet in terms of the Delaunay variables, this force appears asFr andFu

in Eqs.~8!–~11!. It is important to mention that the form of these equations@i.e., Eqs.~8!–~11!# is
quite general and independent of the physical nature of the perturbation. In a system wh
perturbations are non-Hamiltonian, extra terms will be added to the functionsFr andFu as well as
Eqs. ~16! and ~17!. However, Eqs.~8!–~11! will keep their general form.19,20 The procedure
presented here regarding the application of the partial averaging technique and the analysi
pendulum-like equation are also quite general and can be applied to non-Hamiltonian syst
a similar fashion. In fact, one of the most important features of the method of partial aver
near a resonance is that it presents a general analytical procedure that is equally applicable
Hamiltonian and non-Hamiltonian systems. As examples of the systems where the met
partial averaging near a resonance has been used in conjunction with non-Hamiltonian pe
tions, we refer the reader to Refs. 19, 23, and 24.

As mentioned in Sec. IV, the first-order partially averaged system near a resonance p
the first step in utilizing the method of averaging in the analytical study of the dynamics
resonance-locked system. To this order of approximation, the argument of the pericenterg was
assumed to be constant. In order to obtain a more comprehensive picture of the dynami
system near a resonance and the roles that perturbative effects play in its stability, one
extend this analysis to higher orders of the perturbation parameterm1/2. Such an extension is
necessary to assure decoupling of the anglesw andg ~see, e.g., Ref. 20!. At that stage, one can
apply the averaging technique presented here to the dynamics of the system at the second
perturbation by averaging those equations over the fast-changing angular variablew and studying
the pendulum-like equation of the angular variableg. Such studies are currently under way for t
case of~1:1! resonance and their applications to Trojan asteroids.

The choice of a restricted system as presented in this study was merely to focus atten
the method of partial averaging and its capabilities as another approach to analytical anal
the dynamics of a system near a resonance. The analysis presented here is quite general
be applied to any dynamical system at resonance. One can apply such analysis to the sys
interior resonances wherea,1, by settingj5a in Eq. ~32! and changing theselection rule~35!
to

uDnu5n2n8. ~47!

An implication of this selection rulecan be found in a recent paper by Michtchenko a
Ferraz-Mello35 on analytical modeling of the Jupiter–Saturn system near their~5:2! resonance.
They show that at the lowest order, the contribution of the resonant part of the disturbing fu
appears as the third power of eccentricity, a result that is also implied by theselection rule~47!.

Other interesting cases for application of the partial averaging technique are the study
stability of the extrasolar planetary system Gliese 8762 where its two planets are locked in a ne
~2:1! commensurability, the study of dynamical stability of P-type binary planetary systems w
recent numerical integrations by Holman and Wiegert36 have indicated the existence of islands
instabilities for eccentric binaries at (n:1),n.3, resonances and also the study of the dynam
evolution of pulsar planetary systems such as PSR B125711237 and PSR B1620-26.38–41 It
appears that gravitational radiation reaction may play a vital role in the dynamical evoluti
these system.21–26
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APPENDIX A: METHOD OF PARTIAL AVERAGING NEAR A RESONANCE

A short introduction to the method of partial averaging near a resonance as used in this
is presented here. For more details on this technique, the reader is referred to Refs. 13, 14,
20.

Partial averaging near a resonance is based on the application of the method of avera
the dynamical equations of a system in the vicinity of its resonant state.13,14 These equations ar
usually written in one of the several standard forms.13 In celestial mechanics, it is customary
write the dynamical equations of the system in terms of action-angle variables.

Consider a perturbation system with an action variableB and an angular variableb such that

Ḃ5« M~B,b,t,«!, ~A1!

and

ḃ5v0~B!1« Q~B,b,t,«!, ~A2!

whereM andQ are periodic in time with periodT andv0 is the frequency of the unperturbe
(«50) system. At resonanceT andv0 are related as

l v05 l 8 vT , ~A3!

wherevT is the angular frequency associated withT and l and l 8 are positive integers. One ca
show that in the vicinity of the resonance state~A3!, Eqs.~A1! and ~A2! can be written as14,20

Ė5«1/2M~B0 ,b,t !,1« E ]M
]B ~B0 ,b,t !1O~«3/2! ~A4!

and

Q̇5«1/2E ]v0

]B ~B0!1« FQ~B0 ,b,t !1
1

2
E 2

]2v0

]B 2 ~B0!G1O~«3/2!, ~A5!

where

E5«21/2~B2B0!, Q5b2v0~B0!t, ~A6!

represent deviations ofB andb from their resonant valuesB0 andv0(B0)t, respectively. Equa-
tions ~A6! are, indeed, the necessary transformations for writing Eqs.~A1! and ~A2! in the
neighborhood of the (l : l 8) resonance. The averaged dynamics of the system at this neighbo
is obtained by averaging Eqs.~A4! and ~A5! using the averaging integral

R̄5
1

lT E0

lT
R@B0 ,v0~B0!t1Q , t# dt, ~A7!

whereR is a general function.
The first order partially averaged system near (l : l 8) resonance is obtained by neglecting t

O(«) terms in Eqs.~A4! and ~A5! and is given by
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EG5«1/2M̄~B0 , Q̄!, ~A8!

and

QG 5«1/2 Ē ]v0

]B ~B0!, ~A9!

where the overbar indicates an averaged quantity. According to the principle of averaging13,14,19,23

the dynamics of the system of Eqs.~A1! and ~A2! can be approximated by the dynamics of t
system~A8! and~A9! during the time interval«21/2t. It is necessary to emphasize that in order
be able to make such an approximation, it is required by the principle of averaging that the
dynamical system@i.e., Eqs.~A1! and ~A2!# have only one angular variable. Extension of t
method of averaging to the systems with two or more angular variables can be found in the
of Grebenikov and Ryabov,42 Arnold, Kozlov, and Neishtadt43 and also in a recent paper b
Cucu-Dumitrescu and Selaru44 on the study of the equations of motion around an oblate plane
the first order of perturbation, however, such an extension is not necessary.

IntroducingH, as

H5«1/2F1

2
Ē2

]v0

]B ~B0!2E M̄~B0 ,Q̄, t ! dQ̄G , ~A10!

one can show that Eqs.~A7! and ~A8! can be written as

EG52
]H
]Q̄

, QG 5
]H
] Ē

. ~A11!

Equation~A11! implies thatH can be considered as the Hamiltonian of the first-order parti
averaged system at resonance. To this Hamiltonian, one can attribute a potential function g

V~Q̄!52E M̄~B0 ,Q̄! dQ̄. ~A12!

Differentiating Eqs.~A11! with respect tot and using the HamiltonianH, one can write

QJ 2« F]v0

]B ~B0!G M̄~B0 ,Q̄!50. ~A13!

Equation~A13! can be regarded as the equation of a mathematical pendulum with HamiltonH
and potential functionV(Q̄). The librational motion of this pendulum presents a geometr
interpretation for the resonance-lock phenomenon. The maximum variation of the action va
B associated with these librational motions is given by14

DB52 H 2 « F]v0

]B ~B0!G21

@Vmax~Q̄!2Vmin~Q̄!#J 1/2

1O~«!. ~A14!

APPENDIX B: PROOF OF EQUATIONS „16… AND „17…

From the definition ofH, we have

]H

]L
5

1

urW2r¢1u23 H @r 2cos~u2u1!#
]r

]L
1r sin~u2u1!

]u

]LJ , ~B1!
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]H

]G
5

1

urW2r¢1u23 H @r 2cos~u2u1!#
]r

]G
1r sin~u2u1!

]u

]GJ , ~B2!

]H

],
5

1

urW2r¢1u23 H @r 2cos~u2u1!#
]r

],
1r sin~u2u1!

]u

],J , ~B3!

]H

]g
5

1

urW2r¢1u23 r sin~u2u1!
]u

]g
. ~B4!

From these equations it is evident that one needs to compute derivatives ofr andu with respect to
all Delaunay variables. From Eq.~3!, we have

]r

]L
52S G

11e cosv D 2 S cosv
]e

]L
2e sinv

]v
]L D , ~B5!

]r

]G
52 S G

11e cosv D2S G

11e cosv D 2 S cosv
]e

]G
2e sinv

]v
]GD , ~B6!

]r

],
5easinu

]u

],
~B7!

and]r /]g50. On the other hand, fromu5g1v, ]u/]g51 and the derivatives ofu with respect
to L, G and , will be equal to derivatives ofv with respect to these variables. Using,5u
2e sinu andG5L(12e2)1/2 along with Eq.~3!, the partial derivatives ofr with respect to the
Delaunay variables can be written as

]r

]L
5

r

e
a21/2~2e2cosv2e cos3 v !, ~B8!

]r

]G
5

1

e
@a~12e2!#1/2cosv, ~B9!

]r

],
5ea~12e2!21/2sinv, ~B10!

and the partial derivatives ofu with respect toL,G, and, will be equal to

]u

]L
5

G2

e L3 ~12e2!
sinv ~21e cosv !, ~B11!

]u

]G
52

1

e
@a~12e2!#1/2F1

r
1

1

a~12e2!G sinv, ~B12!

]u

],
5S a

r D 2

~12e2!1/2. ~B13!

Replacing the derivatives ofr andu in Eqs.~B1!–~B4! by their equivalent expressions given b
Eqs.~B8!–~B13!, one can write

]H

]L
5

r

e
a21/2 H F r 2cos~u2u1!

urW2r¢1u3 G ~2e2cosv2e cos3 v !1Fsin~u2u1!

urW2r¢1u3
G ~21e cosv ! sinvJ ,

~B14!
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]H

]G
5

1

e
@a~12e2!#1/2 H F r 2cos~u2u1!

urW2r¢1u3
G cosv2Fsin~u2u1!

urW2r¢1u3 G F1

r
1

1

a~12e2!G sinvJ ,

~B15!

]H

],
5a ~12e2!21/2 H e sinvF r 2cos~u2u1!

urW2r¢1u3
G1

a

r
~12e2! Fsin~u2u1!

urW2r¢1u3 G J , ~B16!

and

]H

]g
5

r sin~u2u1!

urW2r¢1u3
, ~B17!

which along with Eq.~12! immediately results in expressions~16! and ~17!.
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A mathematical problem of the theory of gelation
J. G. Batisheva,a) V. V. Vedenyapin,b) and S. I. Kuchanovc)
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Miusskaya Square, 4, 125047 Moscow, Russia
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Current theory of gelation describes this process in terms of a set of nonlinear
integral equations. In this article the uniqueness of nontrivial solutions of these
equations within the unit functional hypercube has been proved. Besides, the con-
vergence to this solution of iterations from an arbitrary point of the above hyper-
cube has been established, which is of utmost importance for calculations of par-
ticular gelation processes. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1476954#

I. INTRODUCTION

Today mathematical methods are finding ever-increasing use in chemistry.1–4 These methods
prove to be especially efficient in the solution of theoretical problems of polymer chemistr
view of the leading positions of polymer manufacturing in modern chemical industry the ro
mathematical modeling of polymerization processes is hard to overestimate. Among them th
challenging for such a modeling are the processes of obtaining polymer networks. Such a n
~gel! is a giant macromolecule occupying the whole of the reaction system.

In the present article considering the formation of a gel we will focus exclusively on
processes of polycondensation of monomers, at least one of which has more than two fun
groups. This condition is, however, only a necessary prerequisite of the gelation occuring
course of a branched polycondensation. Indeed, when this process is conducted in a dilute s
of monomers along with intermolecular reactions, which lead to the enlargement of poly
intramolecular reactions will vigorously proceed. These latter are responsible for a retarda
gelation due to the decrease in polymer molecules’ functionality. At sufficiently pronounce
tensity of intramolecular reactions a polymer network will not be formed at all in the course o
synthesis. In this case a suspension of colloid polymer particles will be the product of the rea

Our theoretical approach is based on the kinetic model which neglects intramolecular
tions in molecules of finite size. The validity of this assumption, experimentally verified for m
particular polycondensation processes,3,4 is nowadays extensively used in polymer chemistry.

Initially there is a mixture of low-molecular compounds referred to as monomers. Ea
them, RaA1

f 1aA2
f 2a

¯An
f na, is composed of monomeric unit Ra and adjacent functional group

A i( i 51,...,n) whose numbers$ f ia% in this ath monomer represent elements of a rectangu
matrix of functionalitiesf of this monomer. In the course of the stepwise polymerization~poly-
condensation! functional groups react with each other to form stable chemical bonds bet
monomeric units. Such chemical transformations in the reaction system result in the forma
polymer molecules involving different number of monomeric unitsl 1 ,...,l a ,...,l m , which may be
regarded as components of composition vectorl. The probability that a monomeric unit chosen
random in the momentt constitutes polymer molecule with given vectorl is known as composi-
tion distribution. The problem of finding of this distributionF( l;t) or its generating function

a!Electronic mail: batisheva@newmail.ru
b!Electronic mail: vicveden@keldysh.ru
c!Electronic mail: kuchanov@orc.ru
36950022-2488/2002/43(7)/3695/9/$19.00 © 2002 American Institute of Physics
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G~s;t !5(
l

F~ l;t ! )
a51

m

sa
l a ~1!

represents one of the key problems of the theory of polymerization. In the course of this p
the enlargement of polymer molecules takes place accompanied by the growth of their a
size:

l̄ ~ t !5(
l

(
a51

m

l aF~ l,t !5(
a

sa

]G

]sa
U

s51

. ~2!

At a certain momentt5t* the quantityl̄ turns into infinity. To such a situation there correspon
the appearance of infinite macromolecule of gel. Weight fractionvg(t) of this polymer network
increases during the polymerization due to the decrease of the weight fractionvs(t) of molecules
of finite sizes constituting sol:

vs~ t !5(
l

F~ l;t !5G~ l;t !. ~3!

Determination of the dependencevg(t)512vs(t) along with the calculation of the gel point is
fundamental problem of the theory of gelation for polymerization processes.

The article is organized as follows. In Sec. II we give the description of the most po
kinetic model of gelation. In Sec. III we propose a convenient generalization of the main equ
In Sec. IV we prove uniqueness of a solution and in Sec. V we prove convergence of itera

II. MATHEMATICAL MODELS

The distributionF( l;t) of sol molecules in a simple manner is related to the concentration
the moleculesC( l;t) present at the instantt in the reaction system by

F~ l;t !5
1

M (
a

l ac~ l;t !, where M5(
l

(
a

l ac~ l;t !. ~4!

The evolution of these concentrations with time can be described by material balance equ
which resemble the discrete Boltzmann equation.5 Its form is prescribed by the choice of
particular chemical model of polymerization.

The simplest among them is the ideal model3 which suggests that the probability for eve
pair of groups Ai and Aj to react is controlled exclusively by their typesi and j . In terms of this
model monomeric units are differentiated not only by typesa but by their kinds as well. Kindq
of theath type monomeric unit is specified by rectangular matrixg whose elementgia equals the
number of reacted groups Ai in the ath unit. Let us denote byPa

q(t) the fraction ofath units of
the kind q contained in polymers at momentt. Thus, the exact solution of the equation f
generating function~1!, obtained in Ref. 6 for the ideal model of stepwise polymerization, can
presented as follows:

G~s;t !5H~s;u!, where H~s;u!5(
a

sa(
q

Pa
q)

i
ui

gia, ~5!

where the dependence of components$ui% of the vectoru on components$sa% of the vectors is
possible to determine from the solution of the set of equations

ui5(
j

p i j hj~s;u!~ i 51,...,n!. ~6!
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Here use is made of the following designations:

hj~s;u!5
H j~s;u!

H j~1;1!
, where H j~s;u!5

]H

]uj
, ~7!

while p i j represents the fractions of all reacted groups Ai that formed chemical bond (i j ) by
reacting with groups Aj . FunctionsPa

q(t) and p i j (t) can be found from the solution of th
Cauchy problem for the set of the first-order ordinary differential equations whose coefficien
the parameters of ideal kinetic model which characterize the probabilities of reactions be
different groups. Particular form of functionsPa

q(t) andp i j (t) is, however, beyond the scope o
our present work. We will just make use of the fact that all their values belong to the segmen@0,1#
and meet obvious normalization conditions

(
a

(
q

Pa
q[1, (

j
p i j [1. ~8!

Weight fraction of sol~3! is determined according to~5! and ~6! by the expression

vs5H~1;y!, ~9!

where the components of vectory are obtainable from the solution of the set of equations

yi5(
j

p i j hj~1;y!~ i 51,...,n!. ~10!

It is easy to notice that in view of~8! this set always has trivial solution

y15y25¯5yn51, ~11!

which is the only one in unit hypercube 0<yi<1(i 51,...,n) just up to the moment when
polymer network is formed. At this momentt5t* average size of polymers~2! becomes infinite
to which there mathematically corresponds turning into unity of the largest eigenvalue o
matrix with elements

u ik5(
j

p i j

]hj~1;u!

]uk
U

u51

. ~12!

At gel point t5t* the bifurcation happens which results in forkingt.t* from trivial solution~11!
of the equation~6! and of a nontrivial one situated inside unit hypercube. The substitution of
solution into expression~3! enables one to find the dependence of the weight fraction of so
time of polymerization.

The ideal model of stepwise polymerization being of prime importance in macromole
chemistry fails, however, to describe some particular gelation processes. In such cases ma
cal models normally resort to more sophisticated kinetic models. The most reputable amon
is the ‘‘substitution effect’’~SE! model,7 which takes account of the dependence of a functio
group reactivity on the number of groups of every type among its neighbors in monomeri
which have already reacted with one or another groups of other molecules. As a result o
chemical transformations a group Ai reacts with group Aj to yield chemical bond (i j ). The set of
such bonds adjoined to theath type unit characterizes in terms of the SE model the kindq of this
unit. The following expression,7

G~s;t!5H~s;@u# !, ~13!

represents an extension of the expression~5! whereH stands for the generating functional of th
distributionPa

q of the probabilities oflabeledunits for typesa and kindsq:
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H~s;@u# !5(
a

sa(
q
E ¯E Pa

q~$ta%!)
g

ug~tg!dtg . ~14!

A unit is termed ‘‘labeled’’ if all bonds$g%5(g1 ,g2 ,...,g r) adjoining to it are supplied by label
$tg%5(tg1

,tg2
,...,tgr

) indicating the time of the formation of each of them. Sin

Pa
q($tg%)dt1dt2¯dt r has the meaning of the infinitesimal probability for a randomly chosen

to have at instantt the typea and kindq with bonds$g% adjoining to it formed within the intervals
$tg ,tg1dtg%, then the integration of this probability distribution over the whole possible se
variables$tg% yields Pa

q(t).
The vector-functionu(t) that should be substituted into functional~13! in order to get gen-

erating function~1! can be found from the solution of the set of equations

ug~t!5(
d

pgd~t!hd~s,@u#;t!, ~15!

where the following designations are used:

hd~s,@u#;t!5
Hd~s,@u#;t!

Hd~1,@1#;t!
, Hd~s,@u#;t!5

dH~s,@u# !

dud~t!
. ~16!

Equations~15!, unlike algebraic equations~6! of the ideal model, are integral ones. The structu
of the first and the second equations is virtually the same with the only distinction that the r
the partial derivatives~7! is played here by variational derivatives~16!.

In the case of the SE model the following expression,

vs5H~1;@y# !, ~17!

extends the formula~9!. Here the vector-functiony(t) is the solution of the set of integra
equations

yg~t!5(
d

pgd~t!hd~1,@y#;t!. ~18!

Inasmuch as the matrixp(t) is stochastic one, this set always has the trivial solution~11!, which
as it will be proven below is unique within functional hypercube 0<yg(t)<1 up to the gelation
moment. The attainment of unity by the largest eigenvalue of the integral operator with ke

ugn~t8,t9!5(
d

pgd~t8!
dhd~1,@u#;t!

dun~t9!
U

u(t)51

~19!

will be the condition for the calculation of the gel point.
Proceeding from physical analogies the assertion was made8 that the set of equations~18! at

t.t* will have within unit functional hypercube the unique nontrivial solutiony(t) whose inser-
tion into formula~17! provides a possibility to calculate the decrease of the weight of sol
time. This assertion was verified9 by the results of computer calculations for monomer R3

homopolymerization described by the SE model.
The prime objective of this work is to provide rigorous within the framework of this mo

mathematical proof of the validity of this assertion for arbitrary process of stepwise polyme
tion. Besides, we will demonstrate the convergence of the iterative process to this non
solutiony(t) and will prove that such a convergence is the case under numerical solution
set of integral equations~18! irrespective of the choice of starting point within functional un
hypercube.
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III. Operator R

Let Q be the set of continuous vector functionsu(t)5(u1(t),u2(t),...,un(t)) on the seg-
ment @0,t#, satisfying the inequalities 0<uk(t)<1, k51,...,n, tP@0;t#.

We introduce the following notation for elementsu,vPQ:

~1! u,v, if uk(t),vk(t) strictly for anyk, t;
~2! u5v, if uk(t)5vk(t) for any k, t;
~3! u %/ v, if uk(t)<vk(t) for any k, t but there exists pointk8,t8 in which the inequality is

strict;
~4! u<v, if uk(t)<vk(t), i.e., eitheru5v or u %/ v.

Let 0PQ be the vector function, for whichuk(t)[0 everywhere, and1PQ is the vector
function, withuk(t)[1. We define an operator R on the set Q by the formula:

Ri@u#~t!5E
Dt

K i~t,x,u~x!!dx, i 51,...,n. ~20!

Here u(x)5(u1(x1),u2(x2),...un(xn)), xPRn, Dt5$xu0<x1<x2<¯<xn<t%.
K i(t,x2 ,x2 ,...xn ,r 1 ,r 2 ,...,r n) i 51,...,n are nonnegative functions possessing the follow
properties.

(10) K iPC2(@0,t#3Dt3@0,1#n).
(20) For anyi , Ki>0 and KiÓ0.
(30) *Dt

K i(t,x,1)dx51, i 51,...,n.
(40) K i monotone increasing functions with respect to anyr k :]K i /]r k.0 for any i

51,...,n, k51,...,n.
(50) K i are strictly convex in non-negative directions, i.e., for anybPRn, b	0 the inequality

( j ,k ]2K i /]r j]r k bjbk.0 holds for anyt, x, r , i.
The operator in the right-hand side of~18! has all the properties of the operator R in~20!. Now

we formulate the properties of R that follow from (10) – (50):
~A! R maps Q into Q andR@1#51.
~B! R is monotone:u�v implies R@u#,R@v#.
~C! R is strictly convex in the non-negative directions, i.e., foruP@0;1#, any tP@0;t#, k

51,...n and forh	0, hPQ, uPQ, such thatu1u•hPQ, the functionw(u)5Rk@u1u•h#(t) is
strictly convex:w9(u).0.

IV. A THEOREM ON THE UNIQUENESS OF A FIXED POINT

Theorem 1: If the equation

R@u#5u ~21!

has a solution nonequal to1, then this solution is unique on the set Q\1.
Proof:
Lemma 1 (on the convexity):Let u�v and let there exist a point (k,:) such that Rk@u#(:)

<uk(:) and Rk@v#(:)<vk(:). Let w5w(u)5u1u(v2u) be the segment connectingu andv.
Then the formula Rk@w#(:),wk(:) is true for anyuP(0;1).

Proof: Consider the functionw(u)5Rk@w(u)#(:)2wk(u)(:). Clearly w(0)<0, w(1)<0
andw~u! is strictly convex due to property~C!: w9(u).0, sinceh5v2u	0. Lemma 1 is proved.

We divide the proof of the theorem into three steps:
Step 1. Let us show that the solutionu0Þ1 of the equationu5R@u# has the stronger property

u0,1. Let there be a point (l ,l), at whichul
0(l)51. Then Rl@u0#(l)51 ~sinceu0 is a solution!

as well as Rl@1#(l)51. These two equalities contradict property~B! ~monotonicity!.
Step 2. Let us consider an elementu1,1, which does not belong to the setP(u0)5$uu0

<u�u0% the set of elements that are not strictly less thenu0. We show thatu1 is not a solution of
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~21!. Let us definev andw from Q ~see Figs. 1 and 2! as follows.v is an element given by the
formula:v i(t)5min$ui

0(t);ui
1(t)%; w is defined as an element from Q, which belongs to the stra

line that connectsv and u1 and is continued up to the upper bound of Q. Sow is the point of
intersection of the upper bound Q and these straight lines:w5v1u•(u12v), u.1. Let (r ,r) be
such thatwr(r)51.

We show thatv andw satisfy the conditions of Lemma 1, i.e.,

Rr@v#~r!<v r~r! ~22!

and

Rr@w#~r!<wr~r!. ~23!

Inequalities~22! and ~23! and Lemma 1 imply the Rr@u1#(r),ur
1(r). Inequality ~23! is

obvious sincewr(r)51; inequality~22! follows from the monotonicity ofR and the relationv
<u:Rr@v#(r)<Rr@u0#(r)5ur

0(r)5v r(r). Thus we have proved that R@u1#Þu1.
Step 3. Let u1,1 andu1PP(u0). We shall show that R@u1#Þu1. Assume the contrary and

consider the setP(u1). We conclude that R@u0#Þu0 similar to step 2, that is a contradiction.
The theorem is proved.
Now we investigate iterations.

V. ITERATIONS

We consider the iterationsum115R@um# (m50,1,...) andshow that the convergence prop
erties depend strongly on the linearizationR8@1# at point1, fixed point ofR ~R@1#51, property
~A! of the operatorR!.

Consider the linear operatorA5R8@1#:

FIG. 1.

FIG. 2.
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Ah5R8@1#h5(
j 51

n E
Di

]K ~t,x,1!

]r j
hj~x!dx. ~24!

Properties~A! and ~B! of operatorR provide the strong positivity10,11 of operatorA in the
solid coneK5$v5(v1(t),v2(t),...,vn(t))uv i(t)PC(@0,t#) i 51,...,n; v>0% of the space of
continuous functionsC(@0,t#). This means that every boundary point except zero is a map
into the cone, i.e.,v	0 implies Av.0. Indeed, the following decomposition is valid:

R@1#2R@12«v#5«R8@1#v1O~«v!.0, vPK\0.

Here O(«v) is such thatO(«v)/« tends to0 in sup-norm as« tends to 0. The last inequality
follows from property~B!. As «.0 tends to zero, we haveR8@1#v.0, i.e., R8@1#vPK\]K.

Due to theorem 6.2 from Ref. 10 the operator A has a simple maximal positive eigen
~Perron eigenvalue!, and the corresponding eigenfunction is positive~Perron eigenfunction!.

We show below that the behavior of iterations depends upon the Perron eigenvaluer of A:
casesr<1 or r.1 specify two different types of behavior.

To prove the convergence of iterations we need the following lemma.
Lemma 2: Letr be an eigenvalue of a linear integral operator

A i@ f#~t!5(
j 51

n E
0

t

Ai j ~t,s! f j~s!ds

with positive continuous kernels Ai j (s,t). Let the eigenfunctionh corresponding tor be positive.
And letg be an arbitrary positive element of@C(@0,t#)#n. Then there exists a point(k,t) @respec-
tively a point(k8,t8)#, such that@(A2rE)g#k(t)>0 ~respectively@(A2rE)g#k8(t8)<0!.

Proof:
Step 1.Let f, f8 be strictly positive elements ofC(@0,t#). We shall show that the assertion

(A2rE)f.0 and (A2rE)f8,0 exclude each other. Suppose that for anyi 51,...,n and t
P@0;t#

2r f i~t!1(
j 50

n E
0

t

Ai j ~t,s! f j~s!ds.0, ~25!

r f i8~t!2(
j 50

n E
0

t

Ai j ~t,s! f j8~s!ds.0. ~26!

Define « i(t)5 f i(t)/ f i8(t).0, and note that« iPC(@0,t#). Multiplying ~26! by « i(t) and
adding~25! we get

(
j 50

n E
0

t

Ai j ~t,s!~ f j~s!2« i~t! f j8~s!!ds.0 for any ~ i ,t!. ~27!

Inequality~27! is violated at point (i 8,t8) of the maximum of« i(t): if « i(t)<« i 8(t8), then
f j (s)2« i 8(t8) f j8(s)<0 and all the terms in~27! are nonpositive.

Step 2. Suppose (A2rE)g,0. Takeg85lh2g, whereh is the eigenfunction ofA andl is
large enough forlh2g.0. Then we get

~A2rE!f52~A2rE!f8,

consequently (A2rE)g8.0. This contradicts to the step 1; hence (A2rE)g8²0 and there exists
a point (k,t) satisfying the statement of the lemma. Similarly, supposing (A2rE)g.0 we get
existence of a point (k8,t8) with desired properties.
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There is an important property of the iterationsum115R@um#. If u0�u1 (u0<u1), then
uk,uk11 (uk<uk11) for k.0. If u0	u1 (u0>u1), thenuk.uk11 (uk>uk11) for k.0.

Theorem 2: If r<1, then the iterationsum115R@um# (m50,1,...) converge to1 for any
u0PQ.

Proof: Consider the sequencevm115R@vm# with v050. R@0#>0 and so the sequence in
creases monotonically (vm>vm21). As vm,1 the limit v5 lim vm exists and is not continuous i
general, and therefore it does not belong to Q. ButR@u#(t) is equicontinuous overt with respect
to u, in view of uRi@u#(t)2Ri@u#(t8)u<Mtnut2t8u with M5 sup

t,x,u
u]Ki /]tu. So $vm(t)% is equi-

continuous with respect tom, andvPQ due to the Arzela theorem~on the compactness of a subs
of continuous functions12!. Hence it follows thatv is a fixed point ofR:R@v#5v. Let us show that
v51.

If v�1, then by Lemma 1 foru(u)5v1(12v)u and for any (k,:) w(u)5Rk@u(u)#(:)
2uk(u)(:) we have w9(u).0, w(0)5w(1)50 and hencew8(1).0 strictly. But w(1)
5@R8@1#2E#k(12v)(:), where E is the unit operator. In accordance with Lemma 2 the foll
ing inequality holds:@(R8@1#2rE)(12v)#k(:)<0 at some point (k,:). Hence,

w8~1!5@~R8@1#2E!~12v!#k~: !<@~R8@1#2rE!~12v!#k~: !<0.

This contradiction shows thatv51. Any other sequenceum115R@um# is bounded below by$vm%
and bounded above by1, and hence tends to1 as well.

Theorem 2 is proved.
Note: If r,1, then the theorem on spectrum radius11 shows that there existsp for which

iApi,q,1 and hence Rp is a contraction map. This shows that convergence to1 is exponential
in this case.

Theorem 3: If r.1, then the iterationum115R@um# with u0Þ1 converges to the unique
solution in Q\1 of the equationu5R@u#, and1 is a repelling fixed point.

Proof: For any u0PQ we shall construct two sequences$vm% and $wm% minorizing and
majorizing$um% respectively:0<vm<um<wm,1 (m51,2,...).

We takev050 andvm115R@vm#. Then$vm% is monotonically increasing:vm11>vm and has
a limit v, v5R@v# as in Theorem 2.

For w1 we takew1512«h, h is the Perron eigenfunction of the operator A: Ah5rh. As
u15R@u0#,1 we getw1512«h for « small enough, and so$wm% majorizes$um%. It decreases
monotonically as R@wm#,wm: R@12«h#512«rh1O(«h).

Hence as in Theorem 2$wm% has the limitw, that is the fixed point of the operatorR also.
From Theorem 1~Sec. IV! we havew5v, and this completes the proof of the theorem.

VI. CONCLUSIONS

We have proved theorems that are infinite-dimentional analogs of ones from branchin
cess theory.13–15We showed that they are useful for computations of statistical characteristics
gel. These general results are of utmost importance for the quantitative theory of polyme
works. It would be interesting to use the correspondence between quantum Hamiltonian
kinetic equations.16,17
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We develop a very simple method to study the high temperature, or equivalently
high external field, behavior of the Sherrington–Kirkpatrick mean field spin glass
model. The basic idea is to couple two different replicas with a quadratic term,
trying to push out the two replica overlap from its replica symmetric value. In the
case of zero external field, our results reproduce the well known validity of the
annealed approximation, up to the known critical value for the temperature. In the
case of nontrivial external field, we can prove the validity of the Sherrington–
Kirkpatrick replica symmetric solution up to a line, which falls short of the
Almeida–Thouless line, associated to the onset of the spontaneous replica symme-
try breaking, in the Parisi ansatz. The main difference with the method, recently
developed by Michel Talagrand, is that we employ a quadratic coupling, and not a
linear one. The resulting flow equations, with respect to the parameters of the
model, turn out to be very simple, and the parameter region, where the method
works, can be easily found in explicit terms. As a straightforward application of
cavity methods, we show also how to determine free energy and overlap fluctua-
tions, in the region where replica symmetry has been shown to hold. It is a major
open problem to give a rigorous mathematical treatment of the transition to replica
symmetry breaking, necessarily present in the model. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1483378#

I. INTRODUCTION

The mean field spin glass model, introduced by Sherrington and Kirkpatrick in Ref. 1, is
considered in the high temperature regime, or, equivalently, for a large external field. It is
well known, on physical grounds, that in this region the replica symmetric solution hold
shown for example in Ref. 2, and references quoted there. However, due to the very larg
tuations present in the model, it is not so simple to give a complete, mathematically rigo
characterization of this region, especially when there are external fields. Rigorous work o
subject include Refs. 3–8. For other rigorous results on the structure of the model, we re
Refs. 9–15.

The method developed in Ref. 8, by Michel Talagrand, is particularly interesting. The sta
point is given by the very sound physical idea that the spontaneous replica symmetry br
phenomenon can be understood by exploring the properties of the model, under the applica
auxiliary interactions, which explicitly break the replica symmetry. In Ref. 8, the replica sym
ric solution is shown to hold in a region, which~probably! coincides with the region found in th
theoretical physics literature, as shown for example in Ref. 2, i.e., up to the Almeida–Tho
line.16

a!Electronic-mail: francesco.guerra@roma1.infn.it
b!Electronic-mail: f.toninelli@sns.it
37040022-2488/2002/43(7)/3704/13/$19.00 © 2002 American Institute of Physics
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The main tool in Talagrand’s treatment is an additional minimal replica coupling, linear in
overlap between two replicas. Then, a kind of quadratic stability for the so modified free e
leads immediately, through a generalization of the methods developed in Ref. 15, to establ
validity of the replica symmetric solution in a suitable parameter region.

Here we propose a very different strategy, by introducing a quadratic replica couplin
tempting to push the overlap away from its replica symmetric value. In a sense, our method
natural extension, with applications, of the ideas put forward in Ref. 15, where sum rules
introduced for the free energy, by expressing its deviation from the replica symmetric solut
terms of appropriate quadratic fluctuations for the overlap. We choose exactly these qu
fluctuation terms to act as additional interaction between two replicas, thus explicitly bre
replica symmetry. Then, a generalization of the sum rules, given in Ref. 15, for this mo
model, allows us immediately to prove that the free energy of the original model converges,
infinite volume limit, to its replica symmetric value, at least in a parameter region, expli
determined.

The organization of the article is as follows. In Sec. II, we recall the basic definitions o
mean field spin glass model, and introduce the overlap distribution structure. As a first introd
of our method of quadratic coupling, in Sec. III, we treat the well known case of zero ext
field, by showing that the annealed approximation holds, in the infinite volume limit, up to the
critical inverse temperaturebc51. Our proof shows explicitly that there is a strong connect
between the critical value of the transition temperature for the zero external field model, a
analogous, and numerically equivalent, temperature for the well known ferromagnetic C
Weiss mean field model.

In Sec. IV, we consider the model with external field, and introduce the associated mode
quadratic replica coupling. Then, simple stability estimates give immediately the convergen
the free energy to its replica symmetric value, in a suitable, well defined, region of the param

Section V reports about results on the free energy and overlap fluctuations, in our deter
replica symmetric region. We also sketch the method of proof, based on cavity consideratio
developed for example in Refs. 2 and 5. A more complete treatment will be found in a forthco
paper.17

Finally, Sec. VI is dedicated to a short outlook about open problems and further developm
For the relevance of the mean field spin glass model for the understanding of the ph

properties of realistic spin glasses, we refer to Ref. 18, but see also Ref. 19.

II. THE GENERAL STRUCTURE OF THE MEAN FIELD SPIN GLASS MODEL

The generic configuration of the mean field spin glass model is defined by Ising spin var
s i561, attached to each sitei 51,2,. . . ,N. The external quenched disorder is given by t
N(N21)/2 independent and identical distributed random variablesJi j , defined for each couple o
sites. For the sake of simplicity, we assume eachJi j to be a centered unit Gaussian with averag

E~Ji j !50, E~Ji j
2 !51.

The Hamiltonian of the model, in some external field of strengthh, is given by

HN~s,J!52
1

AN
(
( i , j )

Ji j s is j2h(
i

s i . ~1!

The first sum extends to all site couples, and the second to all sites. The normalizing factorAN
is typical of the mean field character of the model, and guarantees a good thermodynamic li
the free energy per spin, i.e., the existence of a finite and nontrivial limit for the free ener
N→`. The first term in~1! is a long range random two body interaction, while the seco
represents the interaction of the spins with a fixed external magnetic fieldh.
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For a given inverse temperatureb, we introduce the disorder dependent partition funct
ZN(b,J), the ~quenched average of the! free energy per sitef N(b), the internal energy per site
uN(b), the Boltzmann statevJ , and the auxiliary functionaN(b), according to the definitions

ZN~b,J!5 (
s1 . . . sN

exp~2bHN~s,J!!, ~2!

2b f N~b!5N21E logZN~b,J!5aN~b!, ~3!

vJ~A!5ZN~b,J!21 (
s1 . . . sN

A exp~2bHN~s,J!!, ~4!

uN~b!5N21EvJ~HN~s,J!!5]b~b f N~b!!52]baN~b!, ~5!

whereA is a generic function of thes’s. In the notationvJ , we have stressed the dependence
the Boltzmann state on the external noiseJ, but, of course, there is also a dependence onb, h and
N.

We are interested in the thermodynamic limitN→`.
Let us now introduce the important concept of replicas. Consider a generic numbers of

independent copies of the system, characterized by the Boltzmann variabless i
(1) , s i

(2) , . . . , dis-
tributed according to the product state

VJ5vJ
(1)vJ

(2) . . . vJ
(s) ,

where allvJ
(a) act on each ones i

(a)s, and are subject to thesamesampleJ of the external noise.
Clearly, theBoltzmannfaktorfor the replicated system is given by

exp~2b~HN~s (1),J!1HN~s (2),J!1¯ 1HN~s (s),J!!!. ~6!

The overlaps between two replicasa, b are defined according to

qab~s (a),s (b)!5
1

N (
i

s i
(a)s i

(b) ,

and they satisfy the obvious bounds

21<qab<1.

For a generic smooth functionF of the overlaps, we define the^ & averages

^F~q12,q13, . . . !&5EVJ~F~q12,q13, . . . !!,

where the Boltzmann averagesVJ act on the replicateds variables, andE is the average with
respect to the external noiseJ.

We remark here that the noise averageE introduces correlations between different groups
replicas, which would be otherwise independent under the Boltzmann averagesVJ , as for ex-
ampleq12 andq34.

The ^ & averages are obviously invariant under permutations of the replicas.
Overlap distributions play a very important role in the theory. For example, by using inte

tion by parts on theJ integrals, a simple direct calculation2,11 shows that

]baN~b!5
b

2
~12^q12

2 &!. ~7!
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In order to introduce our treatment, based on flow equations with respect to the parame
the theory, it is convenient to start from aBoltzmannfaktorgiven by

expSA t

N (
( i , j )

Ji j s is j1bh(
i

s i1Ax(
i

Jis i D . ~8!

Notice that we have introduced an auxiliary additional one body random interaction ruled b
strengthAx, x>0, andN quenched independent and identically distributed centered unit Gau
random variablesJi , so that

E~Ji !50, E~Ji
2!51.

In order to get the original model, we have to putx50 at the end. Moreover, we have writte
b5At, with t>0. The variablest, andx, will play the role of time variable, and space variab
respectively, in our flow equations. Now we define the partition functionZ by using theBoltz-
mannfaktor~8!, and the auxiliary functionaN(x,t) in the form

aN~x,t !5N21E logZN .

Then, as in the proof of~7!, we have

] taN~x,t !5 1
4 ~12^q12

2 &!, ~9!

]xaN~x,t !5 1
2 ~12^q12&!. ~10!

It is very simple to calculate explicitly the averageN21E logZN for t50, at a generic strengthx0

of the one body random interaction. In fact, att50, the interaction factorizes, and the spins
different sites become independent. Therefore we have

a~x0,0!5 log 21E log cosh~bh1zAx0!dm~z!, ~11!

independently ofN, wheredm is the centered unit Gaussian, representing each singleJi ,

dm~z!5expS 2
z2

2 Ddz/A2p.

Starting from ~11! and ~10! at t50, we can immediately calculate the order parameterq̄(x0)
according to

q̄~x0!5^q12&~x0,0!5E tanh2~bh1zAx0!dm~z!.

Let us now consider linear trajectories at constant velocity given by

x~ t !5x02q̄~x0!t, ~12!

where x0 is the initial starting point. Consider the problem of inverting~12!, i.e., to find the
conditions such that, for a given point (x,t), x>0, t>0, there is only one trajectory arriving atx,
at time t. A precise statement is given by the following theorem.

Theorem 1: Consider first the case of nonzero external field h. Then, for any point(x,t),
x>0, t>0, there exists a unique x0(x,t) such that

x5x0~x,t !2q̄~x0~x,t !!t,
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and a unique q̄(x,t)5q̄(x0(x,t)), such that

q̄~x,t !5E tanh2~bh1zAx1q̄~x,t !t !dm~z!.

If h50, then, for any point(x,t), x>0, t>0, with the exclusion of the segment x50, 0<t<1,
there exists a unique x0(x,t).0, such that the previous formulas hold.

The proof is very simple, and can be found in Ref. 15.
By following the methods of Ref. 15, sum rules connectinga and its SK approximation can

be easily found by using transport equations. They involve overlap fluctuations. In fact,
considera along the trajectories in~12!, i.e., a(x(t),t). An easy calculation gives

d

dt
aN~x~ t !,t !5

1

4
~12q̄~x0!!22

1

4
^~q122q̄~x0!!2&. ~13!

Now we integrate alongt, take into account the initial condition~11!, and the invertibility of~12!,
and find the sum rule

ā~x,t !5aN~x,t !1
1

4 E0

t

^~q122q̄!2&x(t8),t8dt8. ~14!

Here, we have defined the replica symmetric Sherrington–Kirkpatrick solution1,2 in the form

ā~x,t !5 log 21E log cosh~bh1zAx0!dm~z!1
t

4
~12q̄~x0!!2, ~15!

wherex0 and q̄(x0) are expressed in terms of (x,t), according to the invertibility assured by th
previous theorem. A very simple, but important, consequence of the sum rule is thataN is
dominated by its replica symmetric solution, uniformly inN,

aN~x,t !5N21E logZN<ā~x,t !. ~16!

This is a simple consequence of the positivity of the term under integration in~14!. Notice that
~16! is a lower bound for the free energy, so that it is not directly connected to any variat
principle for the Boltzmann–Gibbs state.

It is our aim to explore the parameter region where thet8-integral in~14! can be neglected, in
the thermodynamic limit.

Now, we are ready to explain our method of quadratic coupling, starting with the simple
of zero external field, and then going to the case of nontrivial external fields.

III. QUADRATIC COUPLING FOR ZERO EXTERNAL FIELD

The high temperature region (b,1) of the zero external field SK model is a very particu
case where everything can be computed. As it is well known,3 in this case the annealed approx
mation is exact in the infinite volume limit. In fact, we have

lim
N→`

1

N
E ln ZN~ t,J!5ā~ t ![ ln 21

t

4
5

1

N
ln EZN~ t,J!1

t

4N
. ~17!

In this section we give a new proof of Eq.~17!, based on sum rules for the free energy. O
method is very simple and can be easily extended to the case of nontrivial external field, c
ered in the next section.

Whenh50, x50, then alsoq̄50 andx050. Then, the sum rule in~14! reads
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aN~ t !5ā~ t !2
1

4 E0

t

^q12
2 & t8dt8. ~18!

The presence of̂q12
2 &, as order parameter, suggests to couple two replicas with a term pr

tional to the square of the overlap, the corresponding partition function being

Z̃N~ t,l,J!5 (
$s,s8%

expSA t

N (
( i , j )

Ji j ~s is j1s i8s j8!1
l

2
Nq12

2 D , ~19!

with l>0. The effect of the added term is to give a larger weight to the configurations ha
q12Þ0, thus favoring non-self-averaging of the overlap. Of course, the system possesses s
symmetry also forlÞ0, so that^q12&50. Therefore, if^q12

2 &Þ0, then the overlap is non-self
averaging. Now replica symmetry is explicitly broken.

The basic idea of our method is to show that, as long ast,1 andl is small enough, the term
lNq12

2 does not change the value of the free energy in the thermodynamic limit. There
‘‘most’’ configuration must haveq1250 and the overlap must be self-averaging. In order
implement this intuitive idea, one introduces thel dependent auxiliary function

ãN~ t,l!5
1

2N
E ln Z̃N ,

where the normalization factor12 is chosen so thatãN(t,0)5aN(t). Through a simple explicit
calculation, we can easily calculate thet derivative in the form

] tãN5 1
4 ~11^q12

2 &22^q13
2 &!, ~20!

where now all averageŝ& involve thel-dependent state withBoltzmannfaktorgiven in agreement
with ~19!. Moreover, it is obvious that

]lãN5 1
4 ^q12

2 &.

Starting from some pointl0.0, consider the linear trajectoryl(t)5l02t, with obvious invert-
ibility in the form l05l1t. Let us take thet derivative ofãN along this trajectory

d

dt
ãN~ t,l~ t !!5~] t2]l!ãN5

1

4
2

1

2
^q13

2 & t,l(t) .

Notice that the term containinĝq12
2 & disappeared. By integration we get the sum rule and

inequality

ãN~ t,l!5
t

4
1ãN~0,l0!2

1

2 E0

t

^q13
2 & t8,l(t8)dt8<

t

4
1ãN~0,l0!, ~21!

where^q13
2 & t8,l(t8) refers tol(t8)5l02t85l1t2t8.

Next, we computeãN(0,l0). We introduce an auxiliary unit Gaussianz, and perform simple
rescaling, in order to obtain

ãN~0,l0!5
1

2N
ln (

$s,s8%

e1/2l0Nq12
2

5
1

2N
ln (

$s,s8%
E eAl0Nq12zdm~z! ~22!
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5 ln 21
1

2N
ln E S coshzAl0

N D N

dm~z!

5 ln 21
1

2N
ln E dyANl0

2p
expNS 2l0

y2

2
1 ln cosh~yl0! D , ~23!

where we performed the change of variablesz to yANl0 in the last step. It is immediately
recognized that the integral in~23! appears in the ordinary treatment of the well known ferrom
netic mean field Curie–Weiss model. The saddle point method gives immediately

lim
N→`

ãN~0,l0!5 ln 21
1

2
max

y
S 2l0

y2

2
1 ln cosh~yl0! D . ~24!

Therefore, the critical value forl0 is lc51. Forl0.1 we have

lim
N→`

ãN~0,l0!. ln 2,

while for l0,1, one can use the elementary property 2 ln coshx<x2 to find

ãN~0,l0!< ln 21
1

4N
ln

1

12l0
. ~25!

Notice that, whenl0 approaches the value 12, the term of order 1/N diverges, since Gaussia
fluctuations around the saddle point become larger and larger.

Thanks to~25!, the inequality in~21! becomes

ãN~ t,l!<ā~ t !1
1

4N
ln

1

12l0
,

which holds for 0<l0,1, i.e., for 0<t1l,1.
Next, we use convexity ofãN(t,l) with respect tol and the fact that

]lãN~ t,l!ul505 1
4 ^q12

2 & t

to write

aN~ t !1
l

4
^q12

2 & t<ãN~ t,l!<ā~ t !1
1

4N
ln

1

12l2t
,

for l.0. For 0<t< t̄ ,1, choosel5(12 t̄ )/2, so that

l1t<l̄0[~11 t̄ !/2,1,

and

1

4
^q12

2 & t<
1

l
~ā~ t !2aN~ t !!1

1

4Nl
ln

1

12l̄0

. ~26!

Recalling Eq.~18!, one has

d

dt
~ ā~ t !2aN~ t !!5

1

4
^q12

2 & t<
1

l
~ā~ t !2aN~ t !!1

1

4Nl
ln

1

12l̄0

, ~27!
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so that

aN~ t !5ā~ t !1O~1/N!,

uniformly for 0<t< t̄ ,1. Of course, from Eq.~21! and convexity ofãN one also has

ãN~ t,l!5ā~ t !1O~1/N!,

^q13
2 & t,l5O~1/N!,

for 0<t1l<l̄0,1.
We have gained a complete control of the system in the triangular region 0<t,1, 0<l,1

2t. Note that we have not only proved Eq.~17! but we have also shown that the leadin
correction to annealing is of order at most 1/N.

IV. THE GENERAL CASE

The method we follow for the general case, where theBoltzmannfaktoris given by~8!, is a
direct generalization of the one explained in the previous section. In fact, by taking into ac
the t derivative in~13!, we are led to introduce the auxiliary function

ãN~x,l,t !5
1

2N
E ln Z̃N~x,l,t;J!,

whereZ̃N is the partition function for a system of two replicas coupled by the term

l

2
N~q122q̄~x,t !!2,

with l>0. In order to simplify notation, we omit the argumenth.
Now the t derivative is given by

] tãN5
1

4
~11^q12

2 &22^q13
2 &!1

l

2
~ q̄2^q12&!

]q̄

]t
,

while thex andl derivatives appear as

]xãN5
1

2
~11^q12&22^q13&!1

l

2
~ q̄2^q12&!

]q̄

]x
,

]lãN5
1

4
^~q122q̄~x,t !!2&.

Starting from pointsl0.0, x0 , consider the linear trajectoriesl(t)5l02t, x(t)5x02q̄(x0)t, as
in ~12!, with obvious invertibility as explained before. Sinceq̄ is constant along the trajectory, an
therefore] tq̄2q̄]xq̄50, one finds for the total time derivative ofãN

d

dt
ãN~x~ t !,l~ t !,t !5~] t2q̄]x2]l!ãN5

1

4
~12q̄!22

1

2
^~q132q̄!2&.

Notice that in this case the term containing^(q122q̄)2& disappeared.
By integration, we get the sum rule and the inequality
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ãN~x,l,t !5
t

4
~12q̄!21ãN~x0 ,l0,0!2

1

2 E0

t

^~q132q̄!2& t8,x(t8),l(t8)dt8

<
t

4
~12q̄!21ãN~x0 ,l0,0!,

where^(q132q̄)2& t8,x(t8),l(t8) refers to

l~ t8!5l02t85l1t2t8,

x~ t8!5x02q̄t85x1q̄~ t2t8!.

If VJ is the product state for two replicas with the originalBoltzmannfaktorgiven by~8!, then we
can write

ãN~x,l,t !2aN~x,t ![
1

2N
E ln VJS exp

1

2
lN~q122q̄!2D .

Therefore, by exploiting the Jensen inequality, we have, forl>0,

l

4
^~q122q̄!2&x,t<ãN~x,l,t !2aN~x,t !.

Let us also define

DN~x0 ,l0![ãN~x0 ,l0,0!2a~x0,0!5
1

2N
E ln VJ

0S exp
1

2
l0N~q122q̄!2D , ~28!

where we have introduced the stateVJ
0 for two replicas, corresponding tot50, andx5x0 , in ~8!.

Notice thatVJ
0 is a factor state over the sitesi .

By collecting all our definitions and inequalities, and taking into account the definition~15!,
we have

l

4
^~q122q̄!2&x,t<DN~x0 ,l0!1ā~x,t !2aN~x,t !.

Let us now introducelc(x0) such that, for anyl0<lc(x0), one has

lim
N→`

DN~x0 ,l0!50.

Then, by the same reasoning already exploited starting from~26!, and taking into account~13!, we
obtain the proof of the following.

Theorem 2: For any t<lc(x0(x,t)), where x0(x,t) is defined as in Theorem 1, we have t
convergence

lim
N→`

aN~x,t !5ā~x,t !. ~29!

For the specification oflc(x0), we can easily establish the complete characterization of
DN limit. In fact, the following holds.

Theorem 3: The infinite volume limit ofDN is given by

lim
N→`

DN~x0 ,l0!5D~x0 ,l0!.
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Here, D(x0 ,l0) is defined through the variational expression

D~x0 ,l0![
1

2
max

m
S E ln~coshm1tanh2~bh1zAx0!sinhm!dr~z!2mq̄2

m2

2l0
D , ~30!

where dr(z) is the centered unit Gaussian measure.
Of course, the expression~30! is in agreement with~24!, when there are no external fields
It is easy to realize that the valuelc , in the general case, is strictly less than the expec

value tc , following from the Almeida–Thouless argument,

tcE cosh24~bh1zAx0!dm~z!51.

The proof of Theorem 3 is easy. First of all, let us establish the elementary bound, unifo
N,

DN~x0 ,l0!>D~x0 ,l0!. ~31!

In fact, starting from the definition ofDN(x0 ,l0) given in ~28!, we can write, forl0Þ0, and any
m,

~q122q̄!2>2
m

l0
~q122q̄!2S m

l0
D 2

,

and conclude that

DN~x0 ,l0!>a0~m!2
m2

4l0
, ~32!

where we have defined

a0~m![
1

2N
E ln VJ

0~expmN~q122q̄!!

5
1

2 E ln~coshm1tanh2~bh1zAx0!sinhm!dr~z!2
1

2
mq̄.

Of course, it is convenient to take the maxm on the rhs of~32!, so that the bound in~31! is
established. The proof that the bound is in effect the limit, asN→`, can be obtained in a very
simple way by using a Gaussian transformation on~28!, as it was done in~22!. In fact, we now
have

1

2N
E ln VJ

0S exp
1

2
l0N~q122q̄!2D5

1

2N
E ln E VJ

0~expAl0N~q122q̄!z!dr~z!. ~33!

Therefore, by exploiting the fact that alsoVJ
0 factorizes with respect to the sitesi , we can write

DN~x0 ,l0!5
1

2N
E ln E )

i
S coshAl0

N
z1tanh2~bh1JiAx0!sinhAl0

N
zD

3exp~2Al0Nq̄z!dr~z!. ~34!

Now, we find it convenient to introduce a smalle.0, so that
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1

l0
5

1

l08
1e. ~35!

Notice thatl0,l08 . We also introduce the auxiliary~random! function

fN~y,l08![
1

N (
i

ln~coshy1tanh2~bh1JiAx0!sinhy!2q̄y2
1

2

y2

l08
.

By the strong law of large numbers, asN→`, for anyy, we have theJ almost sure convergenc
of fN(y,l08) to f(y,l08) defined by

f~y,l08![E ln~coshy1tanh2~bh1zAx0!sinhy!dr~z!2q̄y2
1

2

y2

l08
5EfN~y,l08!.

Here dr(z) performs the averages with respect to theJi variables. Let us also remark that th
convergence isJ almost surely uniform for any finite number of values of the variabley.

Now we can go back to~34!, write explicitly the unit Gaussian measuredr(z), perform the
change of variablesy5zAl0N21, make the transformation~35!, take the supy for the fN , and
perform the residual Gaussian integration overy. We end up with the estimate

DN~x0 ,l0!<
1

2
Esup

y
fN~y,l08!1

1

2N
ln

1

Al0e
. ~36!

Since theJ-dependent supy is reached in some finite interval, for any fixedl08 , and the function
fN is continuous with respect toy, with bounded derivatives, we can perform the supy with y
running over a finite discrete mesh of values, by tolerating a small error, which becomes s
and smaller as the mesh interval is made smaller. But in this case the strong law of large nu
allows us to substitutefN with f, in the infinite volume limitN→`. On the other hand, the
second term on the rhs of~36! vanishes in the limit. Therefore, we conclude that

lim sup
N→`

DN~x0 ,l0!< 1
2 sup

y
f~y,l08!.

From continuity with respect tol0 , we can letl08 approachl0 , and the theorem is proven.

V. FLUCTUATIONS OF OVERLAPS AND FREE ENERGY

In the previous sections we proved that, in a certain region of the parameterst, x, bh, the
typical values of the free energy lnZN /N and of the overlapqab are the replica symmetric expres
sionsā andq̄, respectively. In the same region, one can obtain a more precise characteriza
the fluctuations of these quantities, forN→`, showing that a central limit-type theorem hold
after suitable rescaling. This will be analyzed in detail in a subsequent paper.17 Here, we just give
the main results and sketch the ideas underlying the proof.

Concerning the fluctuations of the overlap around the Sherrington–Kirkpatrick order pa
eter q̄, we prove the following.

Theorem 4:17 The rescaled overlap variables

jab
N [AN~qab2q̄!

tend in distribution, as N→`, to centered, jointly Gaussian variables with covariances

^jab
2 &5A~ t,x,h!,

^jabjac&5B~ t,x,h!,
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^jabjcd&5C~ t,x,h!,

where bÞc, cÞa,b, and dÞa,b. The expressions of A, B, C are explicitly given and coincide
with those found in Ref. 15.

Recently, an analogous result was proved independently by Talagrand,20 who computed the
N→` limit for all moments of thej variables.

The scheme of our proof is as follows: The control we obtained on the coupled two re
system and concentration of measure inequalities for the free energy21 imply that the fluctuations
of qab from q̄ are exponentially suppressed forN large. Then, by means of the cavity method2 one
can write a self-consistent closed equation for the characteristic function of the variablesjab

N . This
equation turns out to be linear, apart from error terms which vanish asymptotically forN→`,
thanks to the strong suppression of the overlap fluctuations. The solution, which is easily
coincides with the characteristic function of a Gaussian distribution, with the correct covar
structure.

Concerning the free energy, the result we prove is the following:
Theorem 5:17 Define the rescaled free energy fluctuation as

f̂ N~ t,x,h;J![ANS ln ZN~ t,x,h;J!

N
2ā~ t,x,h! D .

Then,

f̂ N~ t,x,h;J!→
d

N~0,s2~ t,x,h!!,

whereN(m,s2) denotes the Gaussian random variable of mean m and variances2, and

s2~ t,x,h!5Var~ ln cosh~zAq̄t1x1bh!!2
q̄2t

2
.

Here, Var(.) denotes the variance of a random variable and z5N(0,1).
This result is a consequence of Theorem 4 and of concentration of measure inequalities

free energy.

VI. OUTLOOK AND CONCLUSIONS

We obtained control on the thermodynamic limit of the model, in a region above
Almeida–Thouless line, by suitably coupling two replicas of the system and studying sta
with respect to the coupling parameter. The question naturally arises, whether and ho
method can be extended up to the expected critical line. This problem seems to be commo
approaches proposed so far.

The method can also be further generalized to the case where more and more repli
mutually coupled. In this case, replica symmetry is explicitly broken at various levels, and
possible to give a generalization of the Ghirlanda–Guerra relations.13 We plan to report soon on
these generalizations.22
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Wave focusing on the line
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Focusing of waves in one dimension is analyzed for the plasma-wave equation and
the wave equation with variable speed. The existence of focusing causal solutions
to these equations is established, and such wave solutions are constructed explicitly
by deriving an orthogonality relation for the time-independent Schro¨dinger equa-
tion. The connection between wave focusing and inverse scattering is studied. The
potential at any point is recovered from the incident wave that leads to focusing to
that point. It is shown that focusing waves satisfy certain temporal-antisymmetry
and support properties. Discontinuities in the spatial and temporal derivatives of the
focusing waves are examined and related to the discontinuities in the potential of
the Schro¨dinger equation. The theory is illustrated with some explicit
examples. ©2002 American Institute of Physics.@DOI: 10.1063/1.1483894#

I. INTRODUCTION

Consider a~Dirac-delta! plane wave incident onto an inhomogeneous medium. As t
progresses the plane wave is scattered by the inhomogeneity and consequently develops
that trails the wavefront. One of the questions considered in this article concerns the op
process. Namely, ‘‘Can one prepare an incident wave~consisting of a plane wave plus a tail! such
that the tail vanishes at a specified instant due to the interaction with the inhomogeneity, i.
wave reduces to the plane wave at that instant?’’ If this happens, we say that the wave foc
the point being crossed by the wavefront at the specified instant. We are also interested in
mining remotely the value of the inhomogeneity at any specified point in space from the inc
wave that is going to focus to that point; this will be done by performing a measurement o
incident wave at some arbitrarily chosen moment in time before the wavefront reaches that

Mathematically speaking, our aim is to analyze focusing of causal solutions to the pla
wave equation

]2u~x,t !

]x2 2
]2u~x,t !

]t2 5V~x!u~x,t !, x,tPR, ~1.1!

where V is real valued and belongs toL1
1(R), the class of measurable potentials such t

*2`
` dx(11uxu)uV(x)u is finite. In order to do this, we derive the orthogonality relation~3.6! for

the associated Schro¨dinger equation

d2c~k,x!

dx2 1k2c~k,x!5V~x!c~k,x!, xPR, ~1.2!

and exploit the connection between~1.1! and ~1.2! through the Fourier transformation

u~x,t !ª
1

2p E
2`

`

dkc~k,x!e2 ikt. ~1.3!
37170022-2488/2002/43(7)/3717/29/$19.00 © 2002 American Institute of Physics
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We use the subscript ‘‘l’’ to indicate waves incident from the left~i.e., coming fromx52`! and
use ‘‘r’’ for incidence from the right. Our focusing waves consist of a~Dirac-delta distribution!
wavefront and a tail lying either to the left or right of the wavefront in such a way that the
completely disappears at a certain moment in time and thus the whole wave reduces
wavefront at the focusing point. There is no loss of generality in choosing the focusing mom
t50, and we denote the focusing point byx0 . Hence, we are interested in constructing cau
solutions to~1.1! incident either from the left or right such thatu(x,0)5d(x2x0), whered(x)
denotes the Dirac delta distribution. In Sec. VII we display]u(x,0)/]t explicitly for our focusing
waves and hence show that it is also possible to view them as some specific solutions t~1.1!
satisfying certain initial conditions. Clearly, unless]u(x,0)/]t[0 whenxPR\$x0% for our focus-
ing waves, their energy is not concentrated atx0 whent50; hence, in general, focusing of wave
is not the same as focusing of the wave energy.

Our analysis helps us to understand better the connection between~1.1! and ~1.2!. In our
treatment we include bound states ofV, whereas such states are usually excluded in the ana
of ~1.1! by imposing further restrictions onV such as positivity. Throughout our article, unle
otherwise stated,V is only assumed to be real valued and belonging toL1

1(R); any other assump
tions onV will be explicitly stated.

In our article we also investigate the connection between wave focusing and inverse s
ing. The inverse scattering problem for~1.1! and ~1.2! consists of the recovery ofV from an
appropriate set of scattering data. The recovery in the time domain is usually achieved by
some layer-stripping methods, see, e.g., Burridge~1980!, Bube and Burridge~1983!, Morawetz
and Kriegsmann~1983!, Baylisset al. ~1989!, and Sacks~1993!, in terms of the impulse respons
to a plane wave sent ontoV(x) either fromx52` or from x51`. In these techniques on
considers the solution to~1.1! satisfying u(x,t)5d(x2t)1o(1) and ]u(x,t)/]t5d8(x2t)
1o(1) when t→2` as the wave incident from the left, oru(x,t)5d(x1t)1o(1) and
]u(x,t)/]t5d8(x1t)1o(1) whent→2` as the wave incident from the right. The contrast w
our focusing waves can be visualized by considering waves incident from the left especially
V[0 for x,0: our focusing wave forx,0 andt,2x0 consists of the wavefrontd(x2x02t)
followed by @cf. ~5.19!# the nontrivial tailKr(x0 ,x2t), whereas the wave in the aforemention
references isd(x2t) for x,0 andt,0. We show in Sec. VII that the value ofV(x0) for any fixed
x0.0 is recovered from the incident wave that is going to focus tox0 with a measuremen
performed at an arbitrary momentt,2x0 ~i.e., before the wavefront reaches the inhomogenei!;
in contrast, in the layer-stripping methods one lets the incident wave penetrate the inhomog
during the time interval 0,t,2x0 in order to recoverV(x) for 0,x,x0 . A heuristic discussion
of the physics connecting focusing and inverse scattering appears in Rose~2002!, which is a
strictly time-domain analysis that avoids reference to scattering solutions to~1.2!.

This article is organized as follows. In Sec. II we introduce the Jost solutions, scatt
coefficients, and normalized bound-state solutions of~1.2!. In Sec. III we derive the orthogonality
relation~3.6!, a key result for obtaining the causal focusing wave solutions to~1.1! ~incident either
from the left or right! explicitly in terms of the Jost solutions, transmission coefficient, a
normalized bound-state solutions of~1.2!. In Sec. IV, we construct such causal waves that focu
t50, namelyU l incident from the left andU r incident from the right, and we study some of the
properties; we also indicate how the value ofV(x0) can be recovered by using waves focusing
x0 and its vicinity. In Sec. V we examine the connection between wave focusing and in
scattering problem; in particular, we analyze the relationship between wave focusing an
Marchenko inversion method, construct our focusing waves in terms of the solutions t
Marchenko integral equations, and show that wave focusing can be viewed as a consequ
the Marchenko method. In Sec. VI we explore certain temporal antisymmetries satisfied b
tails of our focusing waves; in this section we also show that, for potentials vanishing on a
line, the tail of a focusing wave may vanish in some regions at certain times and that a ga
develop between the wavefront and the tail. In Sec. VII, under more restrictive conditionsV,
we analyze the discontinuities in the spatial and temporal derivatives of our focusing wave
relate such discontinuities to jump discontinuities ofV; we also show thatV(x0) can be recovered
                                                                                                                



ed

the
les to

Sec. IX

f

po-

at the

d

3719J. Math. Phys., Vol. 43, No. 7, July 2002 Wave focusing on the line

                    
solely from the incident wave leading to focusing tox0 , where the measurement can be perform
at one arbitrarily chosen moment before the wavefront reachesx0 ; as a corollary we obtain the
interesting identities~7.22! and ~7.25! for the solutions to the Marchenko equations when
corresponding potential vanishes on a half line. In Sec. VIII we present some explicit examp
illustrate various aspects of wave focusing and the recovery ofV(x0) via focusing, and we also
provide some snapshots of focusing waves as their tails disappear and reappear. Finally, in
we analyze wave focusing for the variable-speed wave equation~9.14!.

II. PRELIMINARIES

Let C1 denote the upper-half complex plane andC1
ªC1øR. There are two types o

solutions to~1.2!. The scattering solutions consist of linear combinations ofeikx ande2 ikx as x
→6`, and they occur forkPR\$0%; on the other hand, the bound-state solutions decay ex
nentially asx→6`, and they can occur only at certaink-values on the imaginary axis inC1. Let
us useN to denote the number of bound states, which is known to be finite, and suppose th
bound states occur atk5 ik j with 0,k1, ¯ ,kN .

Among the scattering solutions to~1.2! are the Jost solution from the left,f l , and the Jost
solution from the right,f r , satisfying the respective boundary conditions

e2 ikxf l~k,x!511o~1!, e2 ikxf l8~k,x!5 ik1o~1!, x→1`, ~2.1!

eikxf r~k,x!511o~1!, eikxf r8~k,x!52 ik1o~1!, x→2`, ~2.2!

where the prime is used for the derivative with respect to the spatial coordinatex. From the spatial
asymptotics

f l~k,x!5
eikx

T~k!
1

L~k!e2 ikx

T~k!
1o~1!, x→2`, ~2.3!

f r~k,x!5
e2 ikx

T~k!
1

R~k!eikx

T~k!
1o~1!, x→1`, ~2.4!

we obtain the scattering coefficients, namely, the transmission coefficientT, and the reflection
coefficientsL andR from the left and right, respectively.

Each bound state corresponds to a pole ofT in C1 and vice versa. It is known that the boun
states are simple and there exists only one linearly independent solution to~1.2! at eachk5 ik j

belonging toL2(R). The bound-state norming constantscl j andcrj are defined as

cl jªF E
2`

`

dx fl~ ik j ,x!2G21/2

, crjªF E
2`

`

dx fr~ ik j ,x!2G21/2

, ~2.5!

and they are related to each other via the residues ofT as

Res~T,ik j !5 ic l j
2g j5 i

crj
2

g j
, ~2.6!

whereg j is the dependency constant given byg jª f l( ik j ,x)/ f r( ik j ,x). The sign ofg j is the same
as that of (21)N2 j and hencecrj5(21)N2 jg j cl j . The normalized bound-state solutionw j (x) at
k5 ik j is defined as

w j~x!ªcl j f l~ ik j ,x!5~21!N2 j crj f r~ ik j ,x!. ~2.7!
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III. AN ORTHOGONALITY IDENTITY

The scattering and bound-state solutions to~1.2! satisfy the completeness relation, see, e
Newton ~1983! and Chadan amd and Sabatier~1989!,

1

4p E
2`

`

dk@c l~k,x!c l~2k,x0!1c r~k,x!c r~2k,x0!#1(
j 51

N

w j~x!w j~x0!5d~x2x0!, ~3.1!

wherec l andc r are the physical solutions to~1.2! related to the Jost solutions as

c l~k,x!ªT~k! f l~k,x!, c r~k,x!ªT~k! f r~k,x!. ~3.2!

In the Jost solutions, physical solutions, and scattering coefficients, for realk, replacingk by 2k
has the same effect as taking complex conjugation. Moreover, we have

f l~2k,x!5T~k! f r~k,x!2R~k! f l~k,x!, kPR, ~3.3!

f r~2k,x!52L~k! f r~k,x!1T~k! f l~k,x!, kPR, ~3.4!

which are consequences of the fact that either$ f l(k,•), f r(k,•)% or $ f l(2k,•), f r(2k,•)% is a
linearly independent set of solutions to~1.2! whenkPR\$0% and that the functions in one set ca
be expressed as a linear combination of those in the other. It is known that

R~k!T~2k!52L~2k!T~k!, kPR. ~3.5!

Next we prove an orthogonality identity for~1.2! that will be useful in the analysis of wav
focusing for~1.1!.

Theorem 3.1:Assume V is real valued and belongs to L1
1(R). Then

1

2p E
2`

`

dkT~k! f l~k,x! f r~k,x0!1(
j 51

N

w j~x!w j~x0!5d~x2x0!. ~3.6!

Proof: The proof will be given by showing that the integral term in~3.6! is identical to the
integral in ~3.1!. From ~3.2!–~3.4! we get

c r~k,x!5 f l~2k,x!1R~k! f l~k,x!, kPR,

c l~2k,x0!5 f r~k,x0!1L~2k! f r~2k,x0!, kPR.

Thus, forkPR we have

c l~k,x!c l~2k,x0!1c r~k,x!c r~2k,x0!

5T~k! f l~k,x!@ f r~k,x0!1L~2k! f r~2k,x0!#1@ f l~2k,x!1R~k! f l~k,x!#T~2k! f r~2k,x0!

5T~k! f l~k,x! f r~k,x0!1T~2k! f l~2k,x! f r~2k,x0!, ~3.7!

where we have used~3.5! in the last step for simplification. Replacing the dummy integrat
variablek by 2k, we get

E
2`

`

dkT~2k! f l~2k,x! f r~2k,x0!5E
2`

`

dkT~k! f l~k,x! f r~k,x0!,

and hence from~3.7! we obtain
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E
2`

`

dk@c l~k,x!c l~2k,x0!1c r~k,x!c r~2k,x0!#52E
2`

`

dkT~k! f l~k,x! f r~k,x0!.

Thus, the integral on the left-hand side of~3.6! is the same as that on the left-hand side of~3.1!.j

IV. WAVE FOCUSING FOR THE PLASMA-WAVE EQUATION

In this section we construct focusing waves of~1.1! incident either from the left or right in
terms of the Jost solutions, transmission coefficient, and bound states for~1.2!. We also relate the
discontinuities at the wavefront of such focusing waves to an integral ofV and show how the
value of V(x) at any specific point can be extracted from waves focusing to that point an
vicinity.

In terms of the Jost solutions of~1.2!, let us define

K l~x,t !ª
1

2p E
2`

`

dk@ f l~k,x!2eikx#e2 ikt, ~4.1!

K r~x,t !ª
1

2p E
2`

`

dk@ f r~k,x!2e2 ikx#eikt. ~4.2!

Using ~2.7! and the inverse Fourier transforms on~4.1! and ~4.2!, we obtain

w j~x!5~21!N2 j crjFek j x1E
2`

x

dsKr~x,s!ek j sG5cl jFe2k j x1E
x

`

dsKl~x,s!e2k j sG . ~4.3!

The properties ofK l andK r stated in the following theorem are already known, see, e.g., Fad
~1967!, Marchenko~1986!, Chadan and Sabatier~1989!, Deift and Trubowitz~1979!, and they are
used later in our analysis.

Theorem 4.1:Assume V is real valued and belongs to L1
1(R). Then

(i) For each fixed xPR, K l(x,•) and Kr(x,•) belong to L2(R)ùL1(R).
(ii) For any aPR, K l(x,t) is uniformly bounded in(x,t) for x>a; similarly, K r(x,t) is

uniformly bounded in(x,t) for x<a. Moreover, we have

K l~x,t !50, t,x; K r~x,t !50, t.x. ~4.4!

(iii) K l and Kr are continuous in(x,t) except when t5x, and the jumps there are related to V
as

K l~x,x1!5
1

2 Ex

`

dzV~z!, K r~x,x2!5
1

2 E2`

x

dzV~z!. ~4.5!

Define

L̂~ t !ª
1

2p E
2`

`

dkL~k!eikt, R̂~ t !ª
1

2p E
2`

`

dkR~k!eikt. ~4.6!

When V is real valued and belongs toL1
1(R), each ofL̂ and R̂ is continuous and belongs t

L2(R). In fact, they are absolutely continuous and differentiable, and for each fixedaPR their
derivatives satisfyL̂8PL1

1(2`,a) and R̂8PL1
1(a,1`).

Let us define

Pl~x,t !ª
1

2p E
2`

`

dk@T~k!21# f l~k,x!e2 ikt, ~4.7!
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Pr~x,t !ª
1

2p E
2`

`

dk@T~k!21# f r~k,x!eikt, ~4.8!

F l~x,t !ª
1

2p E
2`

`

dk@c l~k,x!2eikx#e2 ikt, ~4.9!

F r~x,t !ª
1

2p E
2`

`

dk@c r~k,x!2e2 ikx#eikt. ~4.10!

Proposition 4.2: Assume V is real valued and belongs to L1
1(R). Then, for any fixed xPR,

each of Pl(x,•), Pr(x,•), F l(x,•), and F r(x,•) belongs to L2(R). Moreover, we have

F l~x,t !5Pl~x,t !1K l~x,t !, F r~x,t !5Pr~x,t !1K r~x,t !, ~4.11!

F l~x,t !5Pl~x,t !52(
j 51

N

~21!N2 j crjw j~x!ek j t, t,x, ~4.12!

F r~x,t !5Pr~x,t !52(
j 51

N

cl jw j~x!e2k j t, t.x, ~4.13!

F l~x,t !5K r~x,t !1L̂~2x2t !1E
2`

x

dsL̂~2t2s!K r~x,s!, tÞx, ~4.14!

F r~x,t !5K l~x,t !1R̂~x1t !1E
x

`

dsR̂~ t1s!K l~x,s!, tÞx, ~4.15!

Pl~x,x01t !1E
2`

x0
dsPl~x,s1t !K r~x0 ,s!1(

j 51

N

w j~x!w j~x0!ek j t50, x.x01t, ~4.16!

Pr~x,x02t !1E
x0

`

dsPr~x,s2t !K l~x0 ,s!1(
j 51

N

w j~x!w j~x0!ek j t50, x,x02t. ~4.17!

Proof: We obtain~4.11! by using~3.2!, ~4.1!, ~4.2!, and~4.7!–~4.10!. With the help of~2.6!,
~2.7!, ~4.4!, ~4.7!, ~4.8!, and ~4.11!, by using a contour integration along the infinite semicirc
enclosingC1, we obtain~4.12! and~4.13!. Using~4.2!, ~4.6!, and a Fourier transform on~3.4! we
get ~4.14!. Similarly, by using~3.3!, ~4.1!, and ~4.6! we get ~4.15!. With the help of~4.3! and
~4.12! we establish~4.16!. In the same manner, using~4.3! and ~4.13! we get~4.17!. j

Define

U l~x,t;x0!ª
1

2p E
2`

`

dkc l~k,x! f r~k,x0!e2 ikt1(
j 51

N

w j~x!w j~x0!ek j t, ~4.18!

U r~x,t;x0!ª
1

2p E
2`

`

dkc r~k,x! f l~k,x0!e2 ikt1(
j 51

N

w j~x!w j~x0!ek j t, ~4.19!

Y l~x,t;x0!ªU l~x,t;x0!2d~x2x02t !, ~4.20!

Y r~x,t;x0!ªU r~x,t;x0!2d~x2x01t !. ~4.21!
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Theorem 4.3:Assume V is real valued and belongs to L1
1(R). Then Ul is a causal solution to

(1.1) incident from the left and focusing to x5x0 when t50. Similarly, U r is a causal solution to
(1.1) that is incident from the right and that focuses to x5x0 when t50.

Proof: First, c l , c r , f l , and f r are solutions to~1.2! and they are transformed from th
k-domain to thet-domain as in~1.3!. Thus, with the help of~2.7!, we see that each ofU l andU r

is a solution to~1.1!. Using ~4.2!, ~4.9!, ~4.11!, ~4.18!, and~4.20! we get

Y l~x,t;x0!5K r~x0 ,x2t !1K l~x,x01t !1E
x2t

x0
dsKl~x,s1t !K r~x0 ,s!1Pl~x,x01t !

1E
2`

x0
dsPl~x,s1t !K r~x0 ,s!1(

j 51

N

w j~x!w j~x0!ek j t. ~4.22!

Similarly, using~4.1!, ~4.10!, ~4.11!, ~4.19!, and~4.21! we obtain

Y r~x,t;x0!5K l~x0 ,x1t !1K r~x,x02t !1E
x0

x1t

dsKr~x,s2t !K l~x0 ,s!1Pr~x,x02t !

1E
x0

`

dsPr~x,s2t !K l~x0 ,s!1(
j 51

N

w j~x!w j~x0!ek j t. ~4.23!

With the help of~4.4! it follows that at any fixed momentt each of the first three terms on th
right-hand side of~4.22! vanishes whenx.x01t; moreover, using~4.16! it follows that the last
three terms add to zero whenx.x01t. Thus,U l consists of the wavefrontd(x2x02t) followed
by the tailY l on the left, and it is incident from the left. Similarly, at any fixed momentt each of
the first three terms on the right-hand side of~4.23! vanishes whenx,x02t; moreover, from
~4.17! it follows that the last three terms add to zero whenx,x02t. Hence,U r is a wave
consisting of the wavefrontd(x2x01t) followed by the tailY r on the right and the wave is
incident from the right. Each of the wavesU l and U r focuses tox5x0 at t50 because
U l(x,0;x0)5d(x2x0) andU r(x,0;x0)5d(x2x0), as readily seen by comparing~4.18! and~4.19!
with ~3.6!. j

Since~1.1! is linear and homogeneous, any linear combination ofU l andU r also focuses at
t50. In fact, for the special choiceU l2U r even the wavefronts cancel each other and the w
vanishes on the entirex-axis at t50. On the other hand, for the special choiceU l1U r the
wavefronts superimpose on top of each other att50.

Proposition 4.4: Assume V is real valued and belongs to L1
1(R). Then the only discontinuities

of Pl and Pr can occur when x5t. Such discontinuities are given by

Pl~x,x2!5F l~x,x2!52(
j 51

N

~21!N2 j crjw j~x!ek j x, ~4.24!

Pr~x,x1!5F r~x,x1!52(
j 51

N

cl jw j~x!e2k j x, ~4.25!

Pl~x,x1!52
1

2 E2`

`

dsV~s!2(
j 51

N

~21!N2 j crjw j~x!ek j x, ~4.26!

Pr~x,x2!52
1

2 E2`

`

dsV~s!2(
j 51

N

cl jw j~x!e2k j x. ~4.27!

Proof: Note that~4.24! and ~4.25! are equivalent to~4.12! and ~4.13!, respectively. SinceL̂
andK r(x,•) are square integrable, their product is integrable; hence the integral term in~4.14! is
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continuous in (x,t) as a result of the Lebesgue dominated convergence theorem. Similarly,
the square-integrability ofR̂ and ofK l(x,•) it follows that the integral term in~4.15! is continuous
in (x,t). Using the fact thatL̂ andR̂ are continuous, from~4.11!, ~4.14!, and~4.15! we see that the
discontinuities ofPl and Pr coincide with those ofK l and K r ; hence, such discontinuities ca
occur only whenx5t. In fact, with the help of~4.4! we get

Pl~x,x1!2Pl~x,x2!52K r~x,x2!2K l~x,x1!, ~4.28!

Pr~x,x1!2Pr~x,x2!5K l~x,x1!1K r~x,x2!. ~4.29!

Thus, using~4.5!, ~4.24!, ~4.25!, ~4.28!, and~4.29!, we get~4.26! and ~4.27!. j

Theorem 4.5:Assume V is real valued and belongs to L1
1(R). Then the only discontinuities o

U l and Ur occur at the wavefront, and the jumps in the tails at the wavefront are related to

Y l~x0
21t,t;x0!52

1

2 Ex0

x01t

dzV~z!, ~4.30!

Y r~x0
12t,t;x0!52

1

2 Ex02t

x0
dzV~z!. ~4.31!

Proof: From~4.22! and~4.23! we see that the discontinuities inY l andY r can come only from
the first, second, and fourth terms on the right-hand sides of~4.22! and ~4.23!, respectively; the
third and fifth terms are continuous in (x,t) because the integrands there, being products
L2-functions, are integrable ins. Thus, with the help of Proposition 4.4 and the fact thatK r andK l

can have discontinuities only whenx5t, we conclude that the discontinuities inY l andY r can
only occur at the wavefront, and we have

Y l~x0
21t,t;x0!2Y l~x0

11t,t;x0!5K r~x0 ,x0
2!2K r~x0 ,x0

1!1K l~x01t,x0
11t !2K l~x01t,x0

21t !

1Pl~x01t,x0
11t !2Pl~x01t,x0

21t !, ~4.32!

Y r~x0
12t,t;x0!2Y r~x0

22t,t;x0!5K l~x0 ,x0
1!2K l~x0 ,x0

2!1K r~x02t,x0
22t !2K r~x02t,x0

12t !

1Pr~x02t,x0
22t !2Pr~x02t,x0

12t !. ~4.33!

Now using ~4.4!, ~4.5!, ~4.28!, and ~4.29! in ~4.32! and ~4.33! and the fact thatU l and U r are
causal, we establish~4.30! and ~4.31!. j

As an application of Theorem 4.5, let us show how one can recover the value ofV(x0) by
using waves focusing tox0 and its vicinity. Consider the left-hand side of~4.30! at some fixed
time t in the interval (2`,2x0); in fact, one can even consider it whent→2`. Let

G l~x0 ,t !ªY l~x0
21t,t;x0!. ~4.34!

Thus, G l(x0 ,t) indicates the height of the tail ofU l at the wavefront at some fixed timet
,2x0 . From ~4.30!, if V is continuous atx0 andx01t, we see that

V~x0!2V~x01t !52
]G l~x0 ,t !

]x0
. ~4.35!

Note thatV(x01t) can be made as small as we want by choosingt so that eitherx01t lies to the
left of the support ofV ~if V is supported in a right-half line! or by lettingt→2` ~if the support
of V extends tox52`!. Clearly,]G l(x0 ,t)/]x0 can be obtained by using waves focusing tox0

and its vicinity. An explicit example in Sec. VIII illustrates the recovery ofV(x0) by using the
technique described here.
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Note that in the recovery technique outlined above, we have not made any other assum
on V besidesVPL1

1(R), its realness, and its continuity atx0 andx01t for some fixedt,2x0 . In
fact, even whenV is not continuous but only sectionally continuous, this technique still ho
provided we replace~4.35! by

V~x0
2!2V~x0

11t !52
]G l~x0 ,t !

]x0
, t,2x0 .

Under some stronger assumptions onV in Sec. VII, we will see that we can recoverV(x0) by only
using the wave that focuses tox0 without needing any waves focusing nearx0 .

V. CONNECTION WITH THE MARCHENKO METHOD

In this section we explore the connection between wave focusing for~1.1! and the Marchenko
method to solve the inverse scattering problem for~1.2!. By presenting certain representations f
U l andU r , we show that their focusing is a direct consequence of the Marchenko method.

Let us define

M r~ t !ªL̂~2t !1(
j 51

N

crj
2 ek j t, M l~ t !ªR̂~ t !1(

j 51

N

cl j
2e2k j t, ~5.1!

whereL̂ andR̂ are as in~4.6!, andcrj andcl j are as in~2.5!. Using~4.3!, ~4.4!, ~4.12!–~4.15!, and
~5.1! we get the two Marchenko equations

K r~x,t !1M r~x1t !1E
2`

x

dsMr~ t1s!K r~x,s!50, t,x, ~5.2!

K l~x,t !1M l~x1t !1E
x

`

dsMl~ t1s!K l~x,s!50, t.x, ~5.3!

and using~4.4!, ~4.14!, and~4.15! we obtain the two complementary equations

F l~x,t !5L̂~2x2t !1E
2`

x

dsL̂~2t2s!K r~x,s!, t.x, ~5.4!

F r~x,t !5R̂~x1t !1E
x

`

dsR̂~ t1s!K l~x,s!, t,x. ~5.5!

Let

F l~x,t !ªK l~x,t !1M l~x1t !1E
x

`

dsMl~ t1s!K l~x,s!, ~5.6!

F r~x,t !ªK r~x,t !1M r~x1t !1E
2`

x

dsMr~ t1s!K r~x,s!, ~5.7!

Zl~x,t !ªF l~x,t !2L̂~2x2t !2E
2`

x

dsL̂~2t2s!K r~x,s!, ~5.8!

Zr~x,t !ªF r~x,t !2R̂~x1t !2E
x

`

dsR̂~ t1s!K l~x,s!. ~5.9!

Using ~4.4! we can write the Marchenko equations~5.2! and ~5.3! as
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F r~x,t !50, t,x; K r~x,t !50, t.x, ~5.10!

F l~x,t !50, t.x; K l~x,t !50, t,x, ~5.11!

and the complementary equations~5.4! and ~5.5! as

Zl~x,t !50, t.x; Zr~x,t !50, t,x. ~5.12!

The following proposition shows that the focusing waveU l can be constructed from th
scattering data$L,$k j%,$crj%% via the solutionK r of the Marchenko equation~5.2!; similarly, the
focusing waveU r can be constructed from the data$R,$k j%,$cl j%% via the solutionK l of the
Marchenko equation~5.3!.

Proposition 5.1: The waves Ul and Ur defined in (4.18) and (4.19) can be expressed in te
of the quantities defined in (4.1), (4.2), (5.6), and (5.7) as

U l~x,t;x0!5d~x2x02t !1K r~x0 ,x2t !1F r~x,x01t !1E
2`

x0
dsFr~x,t1s!K r~x0 ,s!,

~5.13!

U r~x,t;x0!5d~x2x01t !1K1~x0 , x1t !F l~x,x02t !1E
x0

`

dsFl~x,s2t !K l~x0 ,s!. ~5.14!

Proof: Using ~4.3!, ~4.14!, ~4.22!, ~5.1!, and ~5.7!, we obtain~5.13!. Similarly, using~4.3!,
~4.15!, ~4.23!, ~5.1!, and~5.6!, we obtain~5.14!. j

Let us define

Ar~x,t;x0!ªK r~x0 ,x2t !2K r~x0 ,x1t !2F r~x0 ,x2t !1F r~x0 ,x1t !

2E
2`

x

dsKr~x,s!@F r~x0 ,s2t !2F r~x0 ,s1t !#

1E
2`

max$x,x0%
ds@K r~x0 ,s!K r~x,s1t !2K r~x0 ,s1t !K r~x,s!#, ~5.15!

Al~x,t;x0!ªK l~x0 ,x1t !2K l~x0 ,x2t !1F l~x0 ,x2t !2F l~x0 ,x1t !

2E
x

`

dsKl~x,s!@F l~x0 ,s1t !2F l~x0 ,s2t !#

1E
min$x,x0%

`

ds@K l~x0 ,s!K l~x,s2t !2K l~x0 ,s2t !K l~x,s!#. ~5.16!

Note that att50 bothAr(x,t;x0) andAl(x,t;x0) vanish.
Proposition 5.2: The waves Ul and Ur defined in (4.18) and (4.19) can be expressed in te

of the quantities defined in (4.1), (4.2), (5.6)–(5.9), (5.15), and (5.16) as

U l~x,t;x0!5d~x2x02t !1Zl~x,x01t !1F r~x0 ,x2t !1E
x01t

x

dsFr~x0 ,s2t !K r~x,s!1Ar~x,t;x0!,

~5.17!

U r~x,t;x0!5d~x2x01t !1Zr~x,x02t !1F l~x0 ,x1t !

1E
x

x02t

dsFl~x0 ,s1t !K l~x,s!1Al~x,t;x0!. ~5.18!
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Proof: We obtain~5.17! by using~4.3!, ~4.11!, ~4.14!, ~5.1!, ~5.7!, and~5.8! in ~4.22!. Simi-
larly, ~5.18! is obtained by using~4.3!, ~4.11!, ~4.15!, ~5.6!, and~5.9! in ~4.23!. j

Theorem 5.3:Assume that V is real valued and belongs to L1
1(R). Then we have the follow

ing.

(i) The causality of Ul is a consequence of the Marchenko equation (5.2).
(ii) The causality of Ur is a consequence of the Marchenko equation (5.3).
(iii) The focusing of Ul to x0 at t50 is a consequence of (5.2) and (5.4).
(iv) The focusing of Ur to x0 at t50 is a consequence of (5.3) and (5.5).

Proof: Recall that~5.2! and ~5.3! are equivalent to~5.10! and ~5.11!, respectively; similarly,
~5.4! and~5.5! are equivalent to the first and second equations in~5.12!, respectively. Note that if
~5.10! holds, then the right-hand side of~5.13! vanishes whenx.x01t and hence (i ) is proved.
Similarly, if ~5.11! holds, then the right-hand side of~5.14! vanishes forx,x02t and hence (i i )
is proved. If~5.10! and the first equation in~5.12! hold, then each of the first four terms on th
right-hand side of~5.17! vanishes whenx,x01t; moreover, the last termAr(x,t;x0) vanishes at
t50 and hence (i i i ) is proved. In the same manner, if~5.11! and the second equation in~5.12!
hold, then each of the first four terms on the right-hand side of~5.18! vanishes whenx.x02t;
moreover, the last termAl(x,t;x0) vanishes att50 and hence (iv) is also proved. j

Let us comment on the roles that the complementary equations~5.4! and ~5.5! play in the
Marchenko method. For the recovery ofV by solving ~5.2!, one uses the ‘‘right’’ scattering dat
$L,$k j%,$crj%% as the input and obtains the ‘‘right’’ quantityK r , from which the ‘‘right’’ Jost
solution f r is obtained with the help of~4.1!. The complementary equation~5.4! is a means to
construct the ‘‘left’’ quantityF l , from which the ‘‘left’’ physical solutionc l can be obtained via
the inverse Fourier transform on~4.9!. In a similar manner, the complementary equation~5.5! is a
means to construct the ‘‘right’’ quantities such asc r by using only the ‘‘left’’ scattering data
$R,$k j%,$cl j%% as the input to the Marchenko procedure. Hence, Theorem 5.3(i i i ) is equivalent to
the statement that the focusing ofU l is a consequence of the Marchenko method using the ‘‘rig
scattering data as the input. Similarly, Theorem 5.3(iv) is equivalent to saying that focusing ofU r

is a consequence of the Marchenko method using the ‘‘left’’ scattering data as the input.
The following result and its proof are used in the proof of Theorems 6.4 and 6.5. Even th

this result is already known, we include a brief proof for convenience because we later refer
facts stated in it.

Proposition 5.4: Assume V is real valued and belongs to L1
1(R). If V[0 for x.0, then

M l(t)50 for t.0, and if V[0 for x,0, then Mr(t)50 for t,0, where Ml and Mr are the
quantities defined in (5.1).

Proof: If V[0 for x.0, thenR is meromorphic inC1 with simple poles at the bound state
k5 ik j having the residues Res(R,ik j )5 ic l j

2 , andR(k)e2ikx5o(1/k) ask→` in C1 for eachx
>0. Similarly, if V[0 for x,0, thenL is meromorphic inC1 with simple poles at the bound
statesk5 ik j having the residues Res(L,ik j )5 ic rj

2 , andL(k)e22ikx5o(1/k) ask→` in C1 for
eachx<0. Thus, from~5.1! with the help of a contour integration, we directly get the conclus
of our proposition. j

Let us make a contrast between an incident focusing wave and an incident plane wa
latter is often used to probe an inhomogeneous medium. For simplicity, consider the speci
V[0 for x,0. In this case, from~4.2! it follows that K r(x,t)50 for x,0. Thus, using~5.7! and
Proposition 5.4 we getF r(x,x01t)50 for x,0 andt,2x0 . Hence, from~5.13! it follows that
our focusing wave incident from the left is given by

U l~x,t;x0!5d~x2x02t !1K r~x0 ,x2t !, x,0, t,2x0 . ~5.19!

From ~5.19! we see that, ifx0.0, U l contains some information aboutV even before the inciden
wave first encounters the potential atx50 andt52x0 . Using x01t,0 andV(z)50 for z,0,
from ~4.30! we getY l(x0

21t,t;x0)5(1/2)*0
x0dzV(z). This is in contrast to the case where a pu
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plane wave is sent ontoV from x52`, in which case the incident wave consists solely of
Dirac-delta wavefront alone and a tail is nonexistent until the wave encounters the poten
x50.

VI. TEMPORAL ANTISYMMETRIES AND SUPPORT PROPERTIES

In this section we are interested in showing that the focusing wavesU l andU r satisfy certain
temporal antisymmetries and support properties that are useful in understanding their focusi
also show that for potentials vanishing on a half line, a gap may develop between the wav
and the tail of these focusing waves. We present our results only forU l because the correspondin
results forU r are obtained in a similar manner.

In terms of the Jost solutions of~1.2!, let us define the Faddeev functionsml and mr as
follows:

ml~k,x!ªe2 ikxf l~k,x!, mr~k,x!ªeikxf r~k,x!.

Then, we can writeY l andY r defined in~4.20! and ~4.21!, respectively, as

Y l~x,t;x0!5
1

2p E
2`

`

dk@T~k!ml~k,x!mr~k,x0!21#eik(x2x02t)1(
j 51

N

w j~x!w j~x0!ek j t,

~6.1!

Y r~x,t;x0!5
1

2p E
2`

`

dk@T~k!mr~k,x!ml~k,x0!21#e2 ik(x2x01t)1(
j 51

N

w j~x!w j~x0!ek j t.

~6.2!

From Theorem 4.3 we know thatU l andU r are causal. Hence, from~6.1! and~6.2! we conclude
the following.

Corollary 6.1: Assume V is real valued and belongs to L1
1(R). Then forx.x01t we have

1

2p E
2`

`

dk@T~k!ml~k,x!mr~k,x0!21#eik(x2x02t)52(
j 51

N

w j~x!w j~x0!ek j t, ~6.3!

and for x,x02t we have

1

2p E
2`

`

dk@T~k!mr~k,x!ml~k,x0!21#e2 ik(x2x01t)52(
j 51

N

w j~x!w j~x0!ek j t. ~6.4!

Theorem 6.2:Assume V is real valued and belongs to L1
1(R). Then, for t,x02x, the tail Y l

defined in (4.20) satisfies

Y l~x,t;x0!5
1

2p E
2`

`

dk@ml~k,x!ml~2k,x0!21#@eik(x2x02t)2eik(x2x01t)#. ~6.5!

Similarly, for t,x2x0 , the tail Y r defined in (4.21) satisfies

Y r~x,t;x0!5
1

2p E
2`

`

dk@mr~k,x!mr~2k,x0!21#@e2 ik(x2x01t)2e2 ik(x2x02t)#. ~6.6!

Proof: From ~3.3! we get

T~k!mr~k,x0!5ml~2k,x0!1R~k!e2ikx0ml~k,x0!, kPR,

and, hence, for realk, we have
                                                                                                                



le

wave

xt
f the

3729J. Math. Phys., Vol. 43, No. 7, July 2002 Wave focusing on the line

                    
T~k!ml~k,x!mr~k,x0!5ml~k,x!ml~2k,x0!1R~k!ml~k,x!e2ikx0ml~k,x0!. ~6.7!

From ~3.3! we see that

R~k!ml~k,x!5e22ikx@T~k!mr~k,x!2ml~2k,x!#, kPR. ~6.8!

Thus, using~6.8! in the second term on the right-hand side of~6.7!, we obtain

T~k!ml~k,x!mr~k,x0!5@T~k!mr~k,x!2ml~2k,x!#ml~k,x0!e2ik(x02x)

1ml~k,x!ml~2k,x0!, kPR. ~6.9!

Using ~6.9! in ~6.1! we get

Y l~x,t;x0!5I 12I 21I 32I 41I 51I 6 ,

where we have defined

I 1ª
1

2p E
2`

`

dkml~k,x!ml~2k,x0!eik(x2x02t),

I 2ª
1

2p E
2`

`

dkml~2k,x!ml~k,x0!e2 ik(x2x01t),

I 3ª
1

2p E
2`

`

dke2 ik(x2x01t), I 4ª
1

2p E
2`

`

dkeik(x2x02t),

I 5ª
1

2p E
2`

`

dk@T~k!mr~k,x!ml~k,x0!21#e2 ik(x2x01t),

I 6ª(
j 51

N

w j~x!w j~x0!ek j t.

Because of~6.4! we haveI 51I 650 whenx02t2x.0. Changing the dummy integration variab
k to 2k in I 2 andI 3 we obtain~6.5!. The proof of~6.6! is similar to that of~6.5! and is obtained
with the help of~3.4! and ~6.3!. j

From ~6.5! and ~6.6! we get the following antisymmetry properties forY l andY r .
Corollary 6.3: Assume V is real valued and belongs to L1

1(R). Then

Y l~x,2t;x0!52Y l~x,t;x0!, tP~x2x0 ,x02x!,

Y r~x,2t;x0!52Y r~x,t;x0!, tP~x02x,x2x0!,

Y l~x,2t;x0!2Y r~x,2t;x0!5Y r~x,t;x0!2Y l~x,t;x0!, x,t,x0PR.

We remark that the temporal antisymmetry is a key part of the physics underlying
focusing. It is immediate from Corollary 6.3 that bothY l andY r vanish att50.

Next, we present some results related to the support properties ofY l when the potential
vanishes on a half line. Similar results hold forY r although they are not listed here. In the ne
theorem, we show that, if the incident wave focuses to a point lying behind the support o
potential, a gap develops between the wavefront and the tail of the wave.

Theorem 6.4: Assume V is real valued, belongs to L1
1(R), and vanishes for x.0; let x0

>0. Then we have the following.
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(i) When t>0, we haveY l(x,t;x0)50 for x>2x01t.
(ii) When tP@2x0,0#, we haveY l(x,t;x0)50 for x>2x02t.
(iii) Consequently, the wavefrontd(x2x02t) is in distance2x0 ahead of the tailY l

for t>0.
(iv) Similarly, the wavefrontd(x2x02t) is in distance2(x01t) ahead of the tailY l for

tP@2x0,0#.

Proof: The proof will be given by showing thatY l vanishes on the closure of the rectangu
region lying below the wavefront and above the shaded region exemplified in Fig. 1. IfV[0 for
x.0, thenml(k,x)51 for x>0 andT(k)mr(k,x0)511R(k)e2ikx0. Thus, from~6.1!, with the
help of ~2.7!, we get

Y l~x,t;x0!5R̂~x1x02t !1(
j 51

N

cl j
2e2k j (x1x02t), x>0. ~6.10!

Comparing~6.10! with ~5.1!, we see thatY l(x,t;x0)5M l(x1x02t); hence, with the help of
Proposition 5.4, we conclude thatY l(x,t;x0)50 for x.2x01t andx>0. By the continuity ofY l

on the linex52x01t, as indicated in Theorem 4.5, we getY l(x,t;x0)50 for x>2x01t.
On the other hand, whenx<0, using T(k)mr(k,x0)511R(k)e2ikx0, from ~6.1! we get

Y l(x,t;x0)5I 71I 8 , where we have defined

I 7ª
1

2p E
2`

`

dk@ml~k,x!21#eik(x2x02t), ~6.11!

I 8ª
1

2p E
2`

`

dkR~k!ml~k,x!eik(x1x02t)1(
j 51

N

w j~x!w j~x0!ek j t. ~6.12!

For x.2x01t, from ~6.12! we obtain

I 85 i (
j 51

N

Res~R,ik j !ml~ ik j ,x!e2k j (x1x02t)1(
j 51

N

cl j
2ml~ ik j ,x!e2k j (x1x02t).

As mentioned in the proof of Proposition 5.4, we have Res(R,ik j )5 ic l j
2 , and henceI 850 for

x<0 andx.2x01t. Thus, from~4.1! and ~6.11!, we see thatY l(x,t;x0)5K l(x,x01t) for x
<0 andx.2x01t. From the Marchenko equation~5.3!, we get

FIG. 1. The support ofY l with x051 in Theorem 6.4 is shaded in thetx-plane.
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K l~x,x01t !1M l~x1x01t !1E
x

`

dsMl~x01t1s!K l~x,s!50, x01t.x. ~6.13!

Note that in our region of interest, we havex1x01t.0, and hence by Proposition 5.4 each of t
second and third terms on the left-hand side of~6.13! vanishes. Thus, from~6.13! we conclude
K l(x,x01t)50, which in turn gives usY l(x,t;x0)50 for x<0 and x.max$2x02t,2x01t%.
Again by the continuity ofY l everywhere except at the wavefront ofU l , we getY l(x,t;x0)50
also on the line segmentx52x01t for tP@0, x0# and on the segmentx52x02t for t
P@2x0,0#. Therefore, we have proved (i ) and (i i ). Note that (i i i ) and (i v) directly follow from
( i ) and (i i ). j

In the next two theorems, whenV[0 for x,0, we investigate the support properties of t
focusing waveU l .

Theorem 6.5: Assume V is real valued, belongs to L1
1(R), and vanishes for x,0; let x0

<0. Then we have the following.

(i) At each time t<2x0 , we haveY l(x,t;x0)50.
(ii) At each time t>2x0 , we haveY l(x,t;x0)50 for x<2x02t.
(iii) Consequently, at each fixed time t.2x0 , the support ofY l(•,t;x0) is the finite interval

(2x02t,x01t).

Proof: The proof will be given by showing that the support ofY l is confined to the interior of
the region exemplified in Fig. 2. BecauseU l is a causal wave, in the regionx<6x06t we have
x<0; henceT(k)ml(k,x)511L(k)e22ikx, andmr(k,x0)51. Thus, from~6.3!, with the help of
~2.7!, we get

Y l~x,t;x0!5L̂~2x2x02t !1(
j 51

N

crj
2 ek j (x1x01t), x<0. ~6.14!

From~5.1! and~6.14! we see thatY l(x,t;x0)5M r(x1x01t), and by Proposition 5.4 we conclud
Y l(x,t;x0)50 for x,2x02t. Because of the continuity ofY l in the tx-plane off the wavefront,
we also getY l(x,t;x0)50 on the line segmentx52x02t for t>2x0 . j

Theorem 6.6: Assume V is real valued, belongs to L1
1(R), and vanishes for x,0; let x0

>0. Then we have the following:

(i) At each time t<0, we haveY l(x,t;x0)50 for x<2x01t.
(ii) At each time t>0, we haveY l(x,t;x0)50 for x<2x02t.

FIG. 2. The support ofY l with x0521 in Theorem 6.5 is shaded in thetx-plane.
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(iii) Consequently, at each fixed t<0, the support ofY l(•,t;x0) is the finite interval
(2x01t,x01t). Similarly, at each fixed t>0, the support ofY l(•,t;x0) is the finite
interval (2x02t,x01t).

Proof: The proof is obtained by using arguments similar to those used in the proof of The
6.4 and by showing that the support ofY l is confined to the interior of the shaded region exe
plified in Fig. 3. j

VII. DISCONTINUITIES IN DERIVATIVES OF FOCUSING WAVES

In this section, under more restrictions onV, we analyze the discontinuities in the spatial a
temporal derivatives of our focusing waves, and we present some corollaries of our analysis
we show that we can recoverV(x0) remotely by using only the wave that focuses tox0 with a
measurement taken at any fixed specified timet,2x0 ; this complements our result in Sec. IV o
the recovery ofV(x0) from measurements on waves focusing tox0 and its vicinity. Next, we
examine thet-derivative of our focusing waves att50. Finally, for potentials vanishing on a ha
line, we derive an identity involving the temporal and spatial derivatives of the solutions t
Marchenko equations. We present the results mainly for the focusing wave incident from th
because the results for the incidence from the right can be obtained analogously.

In our analysis in the section, we put some or all of the following restrictions onV:
~H1! V is real valued and belongs toL1

1(R).
~H2! V is sectionally continuous with jump discontinuities atx5aj for j 51, . . . ,n.
~H3! V is piecewise continuously differentiable in each of the intervals (2`,a1),

(an ,1`), and (aj ,aj 11) with j 51, . . . ,n21.
~H4! V8 is integrable in each interval of its continuity.
~H5! V8 is piecewise differentiable, andV9 is integrable in each interval it exists.
Paraphrasing, hypothesis~H2! states thatV is continuous onR except perhaps at a finit

number of points, andV has finite left and right limits at those points;~H3! is a similar statemen
for V8. Hypotheses~H4! and~H5! state thatV8 andV9 exist everywhere except perhaps at a fin
number of points; moreover, if we remove those points fromR, V8 andV9 are integrable on the
resulting set.

Define

a l~x!ªE
x

`

dyV~y!, a r~x!ªE
2`

x

dyV~y!, bªE
2`

`

dyV~y!, ~7.1!

ql~k,x!ªV~x!1 (
aj .x

@V~aj
1!2V~aj

2!#e2ik(aj 2x), ~7.2!

FIG. 3. The support ofY l with x051 in Theorem 6.6 is shaded in thetx-plane.
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qr~k,x!ª2V~x!1 (
aj ,x

@V~aj
1!2V~aj

2!#e2ik(x2aj ). ~7.3!

In the next proposition we list the large-k asymptotics of the transmission coefficient and t
Faddeev functions and theirx-derivatives up to the orders needed in~7.15! and~7.16! @cf. p. 163
of Deift and Trubowitz~1979! where some expansions are given up too(1/k2) ask→` in C1#.

Proposition 7.1: (i) Assume V satisfies hypotheses (H1)–(H4). Then, as k→` in C1 we have

T~k!511
b

2ik
2

b2

8k2 1O~1/k3!, ~7.4!

ml~k,x!512
a l~x!

2ik
2

1

8k2 @a l~x!222ql~k,x!#1O~1/k3!, ~7.5!

mr~k,x!512
a r~x!

2ik
2

1

8k2 @a r~x!212qr~k,x!#1O~1/k3!. ~7.6!

(ii) In addition, if V satisfies also hypothesis (H5), then as k→` in C1 we have

ml8~k,x!5
ql~k,x!

2ik
1O~1/k2!, mr8~k,x!5

qr~k,x!

2ik
1O~1/k2!. ~7.7!

Proof: The proof is straightforward. For example,~7.5! is obtained by iterating the integra
representation forml , see, e.g., Deift and Trubowitz~1979!,

ml~k,x!511
1

2ik Ex

`

dy@e2ik(y2x)21#V~y!ml~k,y!, ~7.8!

and using integration by parts on*x
`dye2ik(y2x)V(y). Differentiating~7.8! with respect tox and

using iteration and integration by parts, we obtain the asymptotics forml8 . Similarly, with the help
of the integral representations

mr~k,x!511
1

2ik E2`

x

dy@e2ik(x2y)21#V~y!mr~k,y!,

1

T~k!
512

1

2ik E2`

`

dyV~y!ml~k,y!,

we obtain the large-k asymptotics formr , mr8 , andT. j

Let u(x) denote the Heaviside function, and with the help of~7.1!–~7.3! let us define

D~x,x0!ªb@a l~x!1a r~x0!#2a l~x!a r~x0!2
1

2
@b21a l~x!21a r~x0!2#. ~7.9!

Using ~7.1! we simplify the right-hand side in~7.9! to obtain

D~x,x0!52
1

2 F E
x

x0
dyV~y!G2

. ~7.10!

Theorem 7.2:Assume that V satisfies hypotheses (H1)–(H5). Then, the discontinuous part o
]Y l(x,t;x0)/]x is given by
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1

4
@V~x0!2V~x!1D~x,x0!#u~x01t2x!2

1

4
u~x01t2x! (

aj .x
@V~aj

1!2V~aj
2!#

3u~x22aj1x01t !2
1

4
u~x01t2x! (

aj ,x0

@V~aj
1!2V~aj

2!#u~2x12aj2x01t !,

~7.11!

where D(x,x0) is the quantity in~7.10!.
Proof: Consider the representation ofY l given in ~6.1!, from which we get

]Y l~x,t;x0!

]x
5u~x01t2x!F I 101I 111(

j 51

N

w j8~x!w j~x0!ek j tG , ~7.12!

where we have defined

I 10ª
i

2p E
2`

`

dk k@T~k!ml~k,x!mr~k,x0!21#eik(x2x02t), ~7.13!

I 11ª
1

2p E
2`

`

dkT~k!ml8~k,x!mr~k,x0!eik(x2x02t). ~7.14!

When VPL1
1(R), it is known thatw j8 is continuous; hence, the summation term within t

brackets in~7.12! is continuous in (x,t). From the integrands in~7.13! and~7.14! let us separate
the terms that are continuous in (k,x) and integrable ink; by the Lebesgue dominated conve
gence theorem, the integrals of such terms are continuous in (x,t). Using~7.1!–~7.7! and~7.9!, as
k→` in C1 we obtain

ik@T~k!ml~k,x!mr~k,x0!21#52
1

2 Ex

x0
dyV~y!1

i

4~k1 i01!
@D~x,x0!1ql~k,x!2qr~k,x0!#

1O~1/k2!, ~7.15!

T~k!ml8~k,x!mr~k,x0!5
ql~k,x!

2i ~k1 i01!
1O~1/k2!, ~7.16!

where theO(1/k2)-terms are continuous in (k,x) and integrable ink. When x,x01t, the
O(1)-term in ~7.15! does not contribute to the integral in~7.13!. Using *2`

` dkeikz/(k1 i01)
522p iu(2z), we evaluate the contribution of theO(1/k)-terms in~7.13! and~7.14! to I 10 and
I 11, respectively, which, with the help of~7.10!, results in~7.11!. j

Let us define

G~x,t;x0!ª2
1

4
@V~x0!1V~x!1D~x,x0!#u~x01t2x!

2
1

4
u~x01t2x! (

aj .x
@V~aj

1!2V~aj
2!#u~x22aj1x01t !

1
1

4
u~x01t2x! (

aj ,x0

@V~aj
1!2V~aj

2!#u~2x12aj2x01t !, ~7.17!

whereD(x,x0) is the quantity in~7.10!.
Theorem 7.3:Assume that V satisfies hypotheses (H1)–(H5). Then, the discontinuous part o

]Y l(x,t;x0)/]t is equal to G(x,t;x0) defined in (7.17).
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Proof: As in ~7.12! we have

]Y l~x,t;x0!

]t
5u~x01t2x!F2I 101(

j 51

N

k jw j~x!w j~x0!ek j tG . ~7.18!

Proceeding as in the proof of Theorem 7.2, we see that the only contribution to the discontin
comes from theO(1/k)-term in ~7.13!, which gives us~7.17!. j

As a corollary of~7.18!, we see thatU l(x,t;x0) is the solution to~1.1! satisfying the initial
conditionsU l(x,0;x0)5d(x2x0) and

]U l~x,0;x0!

]t
5d8~x2x0!1(

j 51

N

k jw j~x!w j~x0!

2
i

2p E
2`

`

dk k@T~k!ml~k,x!mr~k,x0!21#eik(x2x0). ~7.19!

With the help of~7.11!–~7.13!, it is possible to identify the discontinuities on the right-hand s
of ~7.19! and hence also in]U l(x,0;x0)/]t. The initial value]U r(x,0;x0)/]t can be obtained
similarly and its discontinuities can be evaluated explicitly in an analogous manner.

Next, we turn our attention to the inverse scattering problem and describe the recov
V(x0) by using only the waveU l(x,t;x0) focusing tox0 . Assume thatV satisfies hypothese
~H1!–~H5! and thatx0 is a point of continuity ofV. As stated below~4.34!, we know that the
height of the tailY l at the wavefront at any fixed timet,2x0 is given by~4.30!. Furthermore,
from ~7.11! we see that thex-derivative from the left for the tailY l at the wavefront is given by

]Y l~x0
21t,t;x0!

]x
5

1

4
@V~x0!2V~x01t !#2

1

8 S E
x01t

x0
dzV~z! D 2

. ~7.20!

Eliminating the integral term in~4.30! and ~7.20!, we get

V~x0!5V~x01t !12Y l~x0
21t,t;x0!214

]Y l~x0
21t,t;x0!

]x
. ~7.21!

Note that all of the three terms on the right-hand side of~7.21! can be measured at some mome
t,2x0 , wherex01t is a point of continuity forV; in fact, we can even make our measureme
whent→2`, in which caseV(x01t)→0. Thus,V(x0) can be remotely determined by using on
the wave that focuses tox0 .

As a corollary of the arguments leading to~5.19! and~7.21! we obtain the following property
for the solution to the Marchenko equation~5.2!.

Theorem 7.4: Assume V satisfies hypotheses (H1)–(H5) and V[0 for x,0. Then, for any
point xPR at which V is continuous, the solution Kr(x,t) of the Marchenko equation (5.2
satisfies

]K r~x,x2!

]x
2

]K r~x,x2!

]t
5K r~x,x2!2, xPR. ~7.22!

Proof: Note that~7.22! holds trivially for all x<0 becauseK r(x,t)50 for x<0 as indicated
above~5.19!. From the Marchenko method, it is known that

V~x0!52
]K r~x0 ,x0

2!

]x
12

]K r~x0 ,x0
2!

]t
, xPR. ~7.23!
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From ~5.19! we see thatY l(x,t;x0)5K r(x0 ,x2t) for all x,0 andt,2x0 ; hence, we can write
~7.21! with x0.0 andt,2x0 as

V~x0!52K r~x0 ,x0
2!214

]K r~x0 ,x0
2!

]t
, x0.0. ~7.24!

Finally, comparing~7.23! and ~7.24!, we see that~7.22! also holds forx.0. j

We next present the analog of Theorem 7.4 forK l without a proof. It can also be obtaine
from ~7.22! by changing the signs ofx and t.

Theorem 7.5: Assume V satisfies hypotheses (H1)–(H5) and V[0 for x.0. Then, for any
point xPR at which V is continuous, the solution Kl(x,t) of the Marchenko equation (5.3
satisfies

]K l~x,x1!

]x
2

]K l~x,x1!

]t
5K l~x,x1!2, xPR. ~7.25!

VIII. EXAMPLES

In this section we illustrate wave focusing, various properties of focusing waves, an
recovery of a potential via wave focusing. An animated example of wave focusing can be fo
the web site http://www.msstate.edu/;aktosun/publications.html.

Example 8.1:Consider the wave focusing for

V~x!5u~2x!
16~&11!2e22&x

@~&11!2e22&x21#2
.

Note thatV, being non-negative, does not support any bound states; moreover, it is suppo
(2`,0) and hence the region (0,1`) is the ‘‘free region.’’ The corresponding scattering coef
cients are rational functions ofk, and one can obtain explicitly the scattering coefficients and
solutions of~1.2!. We havef l(k,x)5eikx for x>0,

f r~k,x!5e2 ikxF11
i

k1& i

2&

~&11!2e22&x21
G , x<0,

T~k!5
k~k1& i !

~k1 i !2 , L~k!52
1

~k1 i !2

k1& i

k2& i
, R~k!5

1

~k1 i !2 .

Using a contour integration in~4.18!, we can evaluateU l explicitly and verify thatU l focuses to
x0 at timet50. Whenx0.0, as indicated in Theorem 6.4, a gap develops between the wave
and the tail, which is illustrated in Fig. 4. Whenx0,0, the corresponding wave is illustrated
Fig. 5. It can be verified directly that the discontinuity in the tail at the wavefront, the disc
nuities in thex-derivative of the tail, and the discontinuities in thet-derivative of the tail agree
with the results in~4.30!, ~7.11!, and~7.17!, respectively.

Next, we illustrate the recovery ofV(x0) by using the technique described in Sec. IV utilizin
~4.35!.

Example 8.2:Consider the wave focusing for the potential

V~x!5u~x!
80~A511!~A512!e2A5x

@~A511!~A512!e2A5x22#2
. ~8.1!

The corresponding scattering coefficients and Jost solutions can be evaluated explicitly as
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T~k!5
k~k1A5i !

~k1 i !~k12i !
, L~k!5

2

~k1 i !~k12i !
, R~k!5

22~k1A5i !

~k1 i !~k12i !~k2A5i !
,

f l~k,x!5eikxF11
iE~x!

k1A5i
G , x>0; f r~k,x!5e2 ikx, x<0,

f l~k,x!5
~k1 i !~k12i !

k~k1A5i !
eikx1

2

k~k1A5i !
e2 ikx, x<0,

f r~k,x!5e2 ikxF12
iE~x!

k2A5i
G2

2~k1A5i !eikx

~k1 i !~k12i !~k2A5i !
F11

iE~x!

k1A5i
G , x>0,

where

E~x!ª
4A5

~11A5!~21A5!e2A5x22
.

Using ~4.18! it is possible to constructU l(x,t;x0) explicitly. SinceV[0 whenx,0, we see that
V(x01t)50 for any fixedt,2x0 . Note thatG l(x0 ,t) given in ~4.34! can be computed asA5
231E(x0). Then, using~4.35!, we obtainV(x0)52E8(x0), agreeing with~8.1!.

FIG. 4. The focusing wave of Example 8.1 withx051 is shown att521,0,0.5,1,2.
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Finally, we illustrate the recovery ofV(x0) by using the technique described in Sec. V
utilizing ~7.21!.

Example 8.3:Consider the wave focusing for the potential

V~x!52
16c2e2x

~2e2x1c2!2 , ~8.2!

where c.0 is the bound-state norming constant. The corresponding scattering coefficien
T(k)5(k1 i )/(k2 i ), L(k)5R(k)50, and the Jost solutions forxPR are given by

f l~k,x!5eikxF12
2i

k1 i

c2

2e2x1c2G , f r~k,x!5e2 ikxF12
4i

k1 i

e2x

2e2x1c2G .
Using ~4.18! we get

U l~x,t;x0!5d~x2x02t !1u~2x1x01t !
4c2ex1x0~et2e2t!

~2e2x1c2!~2e2x01c2!
.

Hence,

Y l~x0
21t,t;x0!5

4c2et1x0~et2e2t!

~2e2x01c2!~2e2(t1x0)1c2!
,

FIG. 5. The focusing wave of Example 8.1 withx0521 is shown att521,0,1,2,3.
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lim
t→2`

Y l~x0
21t,t;x0!52

4ex0

2e2x01c2 , ~8.3!

]Y l~x0
21t,t;x0!

]x
5

4c2e2x01t~et2e2t!~c22e2(t1x0)!

~2e2x01c2!~2e2(t1x0)1c2!2 ,

lim
t→2`

]Y l~x0
21t,t;x0!

]x
5

4e2x0

2e2x01c2 . ~8.4!

Since limt→2` V(x01t)50, using~8.3! and ~8.4! in ~7.21!, we can constructV(x0) explicitly,
agreeing with its value obtained from~8.2!.

IX. FOCUSING FOR THE VARIABLE-SPEED WAVE EQUATION

In this section we analyze focusing for the variable-speed wave equation given in~9.14! by
using the corresponding results for~1.1!.

Consider the generalized Schro¨dinger equation

d2c~k,x!

dx2 1k2H~x!2c~k,x!5Q~x!c~k,x!, xPR, ~9.1!

where Q is real valued and belongs toL1
1(R), and H is bounded, strictly positive,H21

PL1(R), and 2HH923(H8)2PL1
1(R). Via the Liouville transformation

y5y~x!ªE
0

x

dzH~z!, f~k,y~x!!ªAH~x!c~k,x!, ~9.2!

we can transform~9.1! into the Schro¨dinger equation

d2f~k,y!

dy2 1k2f~k,y!5V~y!f~k,y!, yPR, ~9.3!

with

V~y!5V~y~x!!ª
Q~x!

H~x!2 1
H9~x!

2H~x!3 2
3H8~x!2

4H~x!4 . ~9.4!

The aforementioned conditions onQ andH guarantee thatV is real valued and belongs toL1
1(R),

for which the direct and inverse scattering problems are well understood.
Let f l(k,x) and f r(k,x) denote the Jost solutions of~9.1! satisfying the boundary condition

~2.1! and~2.2!, respectively. The scattering coefficients for~9.1! are obtained as in~2.3! and~2.4!.
For the analysis of the scattering and inverse scattering problems for~9.1!, see, e.g., Aktosunet al.
~1992a,b!. It is known that the potentialV(y) has bound states if and only ifQ(x) has bound
states. SinceH(x) is strictly positive, the mappingx°y is one-to-one. Thus, for anyx0 there is a
uniquey0ªy(x0), and conversely.

Let us denote the Jost solutions of~9.3! by gl(k,y) and gr(k,y), from the left and right,
respectively. Let us uset(k), r(k), and l (k) to denote the transmission coefficient and t
reflection coefficients from the right and left, respectively, for~9.3!. We have, see, e.g., Aktosu
et al. ~1992a!,

gl~k,y!5e2 ikA1AH~x! f l~k,x!, gr~k,y!5e2 ikA2AH~x! f r~k,x!, ~9.5!

t~k!5T~k!eikA, l ~k!5L~k!e2ikA2, r~k!5R~k!e2ikA1, ~9.6!
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where

A6ª6E
0

6`

dt@12H~ t !#, AªA21A1 .

As seen from the first formula in~9.6! the bound states for~9.1! and~9.3! occur simultaneously a
the samek-value on the positive imaginary axis, i.e., at the common poles ofT(k) andt(k) in
C1. We let N denote the number of bound states for~9.1! and let the bound states occur atk
5 ik j with 0,k1, ¯ ,kN .

In terms of the Jost solutions of~9.3!, as in~4.1! and ~4.2!, let us define

K̃ l~y,t !ª
1

2p E
2`

`

dk@gl~k,y!2eiky#e2 ikt,

K̃ r~y,t !ª
1

2p E
2`

`

dk@gr~k,y!2e2 iky#eikt.

As in ~4.4! we have

K̃ l~y,t !50, t,y; K̃ r~y,t !50, t.y.

For each fixedyPR, K̃ l(y,•) and K̃ r(y,•) belong toL2(R)ùL1(R). They are discontinuous a
t5y, and as in~4.5! the jumps there are related toV as

K̃ l~y,y1!5
1

2 Ey

`

dzV~z!, K̃ r~y,y2!5
1

2 E2`

y

dzV~z!.

Next we present the analog of Theorem 3.1 for~9.1!.
Theorem 9.1:Assume Q and H satisfy the conditions stated below (9.1). Then

1

2p E
2`

`

dkT~k! f l~k,x! f r~k,x0!1(
j 51

N
w j~x!w j~x0!

H~x!H~x0!
5

d~x2x0!

H~x!H~x0!
, ~9.7!

wherew j (x) are the normalized bound-state wave functions for (9.1) corresponding to the b
states at k5 ik j with j51, . . . ,N.

Proof: Using ~9.5! and ~9.6!, from ~3.6! we get

1

2p E
2`

`

dkt~k!gl~k,y!gr~k,y0!1(
j 51

N

j j~y!j j~y0!5d~y2y0!, ~9.8!

wherej j (y) are the normalized bound-state wave functions for~9.3!. Using ~9.5! and ~9.6!, we
can write the first term on the left-hand side of~9.8! as

1

2p E
2`

`

dkt~k!gl~k,y!gr~k,y0!5
AH~x!H~x0!

2p E
2`

`

dkT~k! f l~k,x! f r~k,x0!. ~9.9!

As in ~2.5! and ~2.7!, for j 51, . . . ,N we have

j j~y!5
gl~ ik j ,y!

A*2`
` dzgl~ ik j ,z!2

, w j~x!5
H~x! f l~ ik j ,x!

A*2`
` dzH~z!2f l~ ik j ,z!2

. ~9.10!

With the help of~9.5! and ~9.10!, we see thatj j (y) andw j (x) are related to each other as
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j j~y!5
w j~x!

AH~x!
, ~9.11!

and thus the summation term on the left-hand side of~9.8! is expressed as

(
j 51

N

j j~y!j j~y0!5(
j 51

N
w j~x!w j~x0!

AH~x!H~x0!
. ~9.12!

Moreover, fromdy/dx5H(x) and the fact thaty5y0 if and only if x5x0 , we get

d~y2y0!5
d~x2x0!

AH~x!H~x0!
. ~9.13!

Hence, using~9.9!, ~9.12!, and~9.13! in ~9.8!, we obtain~9.7!. j

Using the Fourier transformation~1.3!, we can transform~9.1! into the variable-speed wav
equation

]2w~x,t !

]x2 2H~x!2
]2w~x,t !

]t2 5Q~x!w~x,t !, x,tPR, ~9.14!

where 1/H(x) corresponds to the variable wave speed. We are interested in wave focusin
~9.14!; in other words, we would like to construct causal solutions to~9.14! incident either from
the left or right such that they focus at timet50 to any specified pointx0 . In particular, we want
to construct solutions to~9.14! satisfyingw(x,0)5d(x2x0)/H(x0).

Let us define

Wl~x,t;x0!ª
1

2p E
2`

`

dkT~k! f l~k,x! f r~k,x0!e2 ikt1(
j 51

N
w j~x!w j~x0!

H~x!H~x0!
ek j t, ~9.15!

Wr~x,t;x0!ª
1

2p E
2`

`

dkT~k! f r~k,x! f l~k,x0!e2 ikt1(
j 51

N
w j~x!w j~x0!

H~x!H~x0!
ek j t, ~9.16!

wherew j are the normalized bound-state wave functions given in~9.10!.
Theorem 9.2:Assume thatQ andH satisfy the conditions stated below~9.1!. ThenWl is a

causal solution to~9.14! that is incident from the left and that focuses tox5x0 when t50.
Similarly, Wr is a causal solution to~9.14! that is incident from the right and that focuses tox
5x0 when t50.

Proof: Sincegl(k,y) is a solution to~9.3!, with the help of~9.2!, ~9.10!, and~9.11! we see that
Wl defined in~9.15! is a solution to~9.14!. Using ~9.5!, ~9.6!, and~9.12! in ~9.15! we get

AH~x!H~x0!Wl~x,t;x0!5
1

2p E
2`

`

dkt~k!gl~k,y!gr~k,y0!e2 ikt1(
j 51

N

j j~y!j j~y0!ek j t.

~9.17!

By comparing the right-hand sides of~4.18! and~9.17! and applying Theorem 4.3, we see that t
theorem is proved forWl . The proof forWr defined in~9.16! is similarly obtained. j

We see from Theorem 9.2 thatWl consists of the wavefrontd(y2y02t)/AH(x)H(x0) fol-
lowed by a tail on the left and that it is incident from the left. Similarly,Wr consists of the
wavefrontd(y2y01t)/AH(x)H(x0) followed by a tail on the right and that it is incident from th
right.
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The Marchenko equations associated with~9.1! were analyzed in Aktosunet al. ~1992a!.
Using the results given in Secs. III and IV, it is possible to give various representations forWl and
Wr , similar to those in~4.22!, ~4.23!, ~5.13!, ~5.14!, ~5.17!, and~5.18!, and thus obtain the analog
of Theorems 4.5 and 5.3. We let the interested reader work out the details.

Next we present an example of focusing for~9.14!.
Example 9.3:Consider

y~x!5u~2x!Fx211
1

12xG1u~x!Fx112
1

x11G ,
and hence

H~x!5u~2x!
11~12x!2

~12x!2 1u~x!
11~11x!2

~11x!2 .

Note thatH(x) is continuous, butH8(x) has a discontinuity atx50. Even though the focusing
theory we outlined above is developed under the assumption thatH9 exists, it can be extended i
a straightforward manner whenH9 contains some Dirac delta distributions. We haveH(0)52,
H8(01)522, H8(02)52, and henceH9 contains a delta distribution atx50. Letting

Q~x!5u~2x!
23

@11~12x!2#2 1u~x!
23

@11~11x!2#2 , ~9.18!

from ~9.4! we getV(y)52d(y)/2. In Fig. 6 we showy(x), H(x), andQ(x).
Using ~9.5! and ~9.6! we obtain

T~k!5
4ke2ik

4k2 i
, R~k!5

4ie2ik

4k2 i
, L~k!5

4ie2ik

4k2 i
,

FIG. 6. The plots ofy(x), H(x), andQ(x) in Example 9.3.
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f l~k,x!55
eik(y21)

AH~x!
, x>0,

S 11
1

4ik D e2 ik(y11)

AH~x!
2

1

4ik

eik(y21)

AH~x!
, x<0,

f r~k,x!55 S 11
1

4ik D e2 ik(y11)

AH~x!
2

1

4ik

eik(y21)

AH~x!
, x>0,

e2 ik(y11)

AH~x!
, x<0.

Note that there is a bound state atk5 i /4. Using~2.7! and~9.11! we get the normalized bound-sta
wave function as

w~x!5
AH~x!

2
e2uyu/4.

If the focusing pointx0 occurs in@0,1`), with y0ªy(x0) from ~9.15! we get

Wl~x,t;x0!5
d~y2y02t !

AH~x!H~x0!
1

u~2x!w2~x,t;x0!1u~x!w1~x,t;x0!

4AH~x!H~x0!
,

where

w2~x,t;x0!ª2u~2y1y01t !1u~y1y01t !1u~2y2y01t !2u~y2y01t !

1u~y2y01t !e(y2y01t)/4,

w1~x,t;x0!ªu~2y2y01t !e2(y1y02t)/4.

It can directly be verified thatWl(x,0;x0)5d(x2x0)/@H(x)H(x0)#. This wave is illustrated in
Fig. 7.

Now let us consider a slight modification of the above example.
Example 9.4:Suppose thaty(x) and henceH(x) are as in Example 9.3. Let us assume th

Q(x) is given by

Q~x!5d~x!1u~2x!
23

@11~12x!2#2 1u~x!
23

@11~11x!2#2 ,

and hence differs from~9.18! by a delta distribution atx50. From ~9.4! it follows that V(y)
50 for all yPR, and hencet(k)51 andr(k)5l (k)50. Thus, we have a reflectionless case a
there are no bound states. In this case, from~9.5! and ~9.6! we getT(k)5e2ik, R(k)5L(k)50,
and

f l~k,x!5
eik(y21)

AH~x!
, f r~k,x!5

e2 ik(y11)

AH~x!
.

SinceQ contains a delta distribution,f l8 and f r8 are discontinuous inx at x50. Using~9.15! we
obtain
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Wl~x,t;x0!5
d~y2y02t !

AH~x!H~x0!
.

Thus, the waveWl is always focused, and there is no tail following the wave front due to the
that there is no reflection.
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We prove that the Frobenius–Perron operatorU of the cusp mapF:@21,1#
→@21,1#, F(x)5122Auxu ~which is an approximation of the Poincare´ section of
the Lorenz attractor! has no analytic eigenfunctions corresponding to eigenvalues
different from 0 and 1. We also prove that for anyqP(0,1) the spectrum ofU in
the Hardy space in the disk$zPC:uz2qu,11q% is the union of the segment@0,1#
and some finite or countably infinite set of isolated eigenvalues of finite
multiplicity. © 2002 American Institute of Physics.@DOI: 10.1063/1.1483895#

I. INTRODUCTION

The so-called cusp map1

F:@21,1#→@21,1#, F~x!5122Auxu

is an approximation of the Poincare´ section of the Lorenz attractor.2,3 This map is ergodic.4 The
unique absolutely continuous invariant probability measurem has densityr(x)5(12x)/2.1

The Frobenius–Perron operator~F.P.O.! U of F is the adjoint of the Koopman operatorV
~Ref. 5! in the Hilbert spaceL2(@21,1#,m):

V f~x!5 f ~F~x!!,

U f ~x!5
1

2 S 12
~12x!2

4 D f S ~12x!2

4 D1
1

2 S 11
~12x!2

4 D f S 2
~12x!2

4 D . ~1!

The spectral analysis of the F.P.O. in different function spaces is useful for the probab
approach to nonlinear dynamics. The spectrum of the F.P.O. known also as resonance sp
gives estimates on the decay of correlation functions, see, e.g., Refs. 5–7. The spectral de
sition of the Koopman and Frobenius–Perron operators acquires meaning in locally convex
logical spaces and allows for probabilistic prediction.8–11

a!Electronic mail: shkarin@math.uni-wuppertal.de
b!Electronic mail: eiarevsk@ulb.ac.be
37460022-2488/2002/43(7)/3746/13/$19.00 © 2002 American Institute of Physics
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The cusp map is not expanding.6 In Refs. 12–14, the following family of maps dependin
analytically on the parameter«P(0,1/2# is introduced and studied:

F« :@21,1#→@21,1#, F«~x!5
12A124«~12«22uxu!

2«
, for «P~0,1

2#. ~2!

This family consists of piecewise analytic expanding maps and has the cusp map as the lim
for «5 1

2. For any map~2!, the spectrum of the F.P.O. in the space ofC` functions consists of a
sequence of eigenvalues of finite multiplicity converging to 0, and the corresponding eigen
tions are analytic.15,6 The divergence of the eigenfunctions as the maps~2! approach the cusp ma
has been observed numerically.13,14,16These numerical results indicate that the F.P.O.~1! has no
analytic eigenfunctions corresponding to eigenvalues different from 0 or 1. In the present
we give an analytic proof of this fact. Our result confirms the reliability of the numer
works.13,14,16

The spectral properties of the F.P.O. of piecewise analytic maps with one neutral fixed
~i.e., fixed point with derivative equal to 1; this is the pointx521 for the cusp map! have been
addressed by Rugh.17 For each map satisfying certain properties, Rugh has constructed a
dependent Banach space of functions, analytic everywhere except at the neutral fixed poi
spectrum of the Frobenius–Perron operator in this Banach space is the union of the segme@0,1#
and some isolated eigenvalues of finite multiplicity. However, Rugh’s results do not specif
spectrum of the F.P.O. in the space of everywhere analytic functions. Moreover, the cusp ma
not satisfy the properties of the class of maps considered by Rugh as a result of the cusp
larity. Nevertheless, we prove in this article that for anyqP(0,1) the spectrum of the F.P.O.~1! in
the usual Hilbert Hardy space in the disk$zPC:uz2qu,11q% is the union of the segment@0,1#
and a finite or countable set of isolated eigenvalues of finite multiplicity.

The article is organized as follows. In Sec. II, we summarize in Theorems 1–4 our re
about spectra of the operatorU, and derive Theorems 1 and 2. We prove auxiliary lemmas in S
III, while the main proofs are presented in Secs. IV and V.

II. THE SPECTRUM OF THE F.P.O.

We shall use the following notations.A is the space of real-analytic functionsf :@21,1#→C
and E is the space of entire functions of one complex variable~endowed with their natura
topologies18!. P is the space of polynomials of one complex variable. As usual in algebra
assume that the degree of zero polynomial is21.

The spectral structure of the F.P.O. in the spacesA and E is given by the following two
theorems.

Theorem 1: The spectra of both operators UE5UuE :E→E and UA5UuA :A→A coincide
with the whole complex plane.

Theorem 2: (I) The point spectra of both operators UE and UA coincide with the two-point
set$0,1%. The eigenvalue1 is simple and the eigenvalue0 has infinite multiplicity for both opera-
tors.

(II) Let f PA. Then U f[0 if and only if f(x)[(11x)g(x) for all xP@21,1#, where g
PA is odd.

(III) Let lPC, f PA, nPN and (U2lI )nf 50 ~where I is the identity operator!.

(i) If l¹$0,1%, then f50.
(ii) If l51, then f is constant.

As we have already mentioned, Rugh’s theorem17 cannot be applied for the cusp map. Mor
over, one cannot use the technique of Rugh’s proof to prove a similar theorem for the cusp
Indeed, the key element of Rugh’s proof is a holomorphic functionw, defined in an open simply
connected set, containing all points of the segment except the neutral fixed point suc
w+j+w21(z)[z11, wherej is a branch of the inverse map containing the neutral fixed p
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@j(z)52(12z)2/4 for the cusp map#. Such a mapw obviously does not exist ifj8 vanishes
somewhere on the segment, which is the case for the cusp map sincej8(1)50. Nevertheless,
using similar ideas but quite different technique, we prove thatU has the spectral structure as
Rugh’s theorem in appropriate Hardy spaces. The definitions of the Hardy spacesH2 in the unit
disk and in the upper half-plane$z:Im z>0% can be found, e.g., in Ref. 19, Chaps. 3 and 8. Th
spaces are separable Hilbert spaces.

Theorem 3: Let qP(0,1) and X be the Hardy space H2 in the disk$zPC:uz2qu,11q%.
Then U is a bounded operator on the Hilbert space X and the spectrum of UuX :X→X is the union
of the segment@0,1# and a finite or countable set of isolated eigenvalues of finite multiplicity.

The proof of Theorem 3 is given in Sec. V. The Hardy spaces in any other disk or half-
are the results of appropriate linear change of variables applied to the Hardy space in the u
or the upper half-plane.

For the sake of completeness we formulate here the following theorem proved in Ref.
Theorem 4: The spectrum of the operator UuX :X→X, where X is either Lp(@21,1#,m) (1

<p<1`) or Ck@21,1# (k50,1,. . . ,`), is the closed unit disk. The point spectrum of UuX is the
set$zPC:uzu,1%ø$1%. The eigenspace corresponding to the eigenvalue1 is the one dimensiona
space of constants. The eigenspace corresponding to the eigenvalues$z:uzu,1% is infinite dimen-
sional.

For the proof of Theorems 1 and 2 we need the following.
Proposition: (I) LetlPC\$0%, gPE, f PA and

U f ~x!5l f ~x!1g~x!, ~3!

for all xP@21,1#. Then fPE.
(II) If additionally gPP, then fPP and degf <degg11.
(III) If g PP anddegg54k11, k50,1, . . ., then the functional equation (3) has no solutio

in A.
The proof of the Proposition is given in Sec. IV.
Proof of Theorem 1:The number 0 is an eigenvalue ofUA andUE . For example,U f 50 if

f (x)5(11x)x. Therefore, the number 0 belongs to the spectra of these operators. Ll
PC\$0%. According to the proposition, the functional equation~3! has in the spaceP no solutions
for g with degree of the form 4k11. Thus, the functional equationU f (x)5l f (x)1x has no
analytic solutions. Therefore, the functiong(x)5x does not belong to the image of the opera
UA2lI ~and to the smaller image ofUE2lI ! for any lPC\$0%. Hence, operatorsUA2lI and
UE2lI are non-invertible. Therefore the spectra ofUA andUE coincide with the whole complex
plane.

Proof of Theorem 2:Let zPC\$0%, cPC and f PA. The proposition implies that

if U f 2z f[c, then f is a constant. ~4!

Let lPC, lÞ0, f PA and (U2lI )nf 50. Relation~4! implies consequently that the func
tions h15(U2lI )n21f , h25(U2lI )n22f , . . . , hk215(U2lI ) f , hk5 f are constants. In par
ticular, f [a for someaPC. SinceU151, we have that 05(U2lI )nf 5(12l)n

•a. Therefore
eitherl51 or f 50. This proves part III of the theorem.

Let now f PA. According to~1!, the equalityU f 50 can be written in the form

S 12
~12x!2

4 D f S ~12x!2

4 D1S 11
~12x!2

4 D f S 2
~12x!2

4 D50, ~5!

xP@21,1#. For x521 the equality~5! implies thatf (21)50. Thereforef (x)[(11x)g(x) for
somegPA. Substituting (11x)g(x) instead off (x) into ~5!, we obtain

S 12
~12x!4

16 D S gS ~12x!2

4 D1gS 2
~12x!2

4 D D50 ~6!
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for xP@21,1#. Denotingy5(12x)2/4, we arrive tog(y)5g(2y) for yP@0,1). Hence,g is odd.
Suppose now thatf (x)[(11x)g(x) for odd gPA. This implies the validity of~6! and

therefore~5!, which is equivalent toU f 50. Part II of the theorem is proved. Part I follow
immediately from parts II and III. j

III. ANALYTIC CONTINUATION OF EIGENFUNCTIONS

First, we introduce some notations, which we shall use in Secs. III and IV without addit
comments. Letl, g, and f be as in the proposition. ForzPC and r P(0,1`) we denote

D~z,r !5$wPC:uw2zu,r %, D̄~z,r !5$wPC:uw2zu<r %.

By C2 we denote the setC\(2`,0). We reserve the symbolAz for the ‘‘positive’’ branch of the
square root on the setC2 , i.e., Az5Areiw/2, wherez5reiw, 2p,w,p.

For an infinite connected subsetA#C we say that a functionw:A→C is analytic if w admits
an analytic extension to some open set, containingA. In particular,A is the space of all functions
analytic on@21,1#. For a connected setA#C and a subsetB#A, having at least one limit poin
in A, we say that a functionw:B→C is analytic onA if w admits a~unique! analytic extension on
A. We shall also denote byw the extension.

We shall show that the functionf admits an analytic extension to the diskD(0,21)) in
several steps.

Lemma 1: Let A and B be subsets ofC, w1 :A→C and w2 :B→C be analytic functions, and
M#AùB be a set having at least one limit point in AùB. Let also the set AùB be connected
and w1uM[w2uM . Then the function

w:AøB→C, w~z!5H w1~z! if zPA;

w2~z! if zPB

is well defined and analytic on AøB.
Proof: SinceM has a limit point in the connected setAùB, then according to the uniquene

theorem20 w1uAùB[w2uAùB . Thereforew is well defined. Analyticity ofw follows from analyticity
of w1 andw2 . j

Lemma 2: The analyticity of f on D(̄0,c)(c>1) implies the analyticity of f on

D̄(0,c)øD̄(1,2Ac).
Proof: Let f be analytic onD̄(0,c). Considerh:D̄(1,2Ac)→C, h(z)5(U f (z)2g(z))/l.

Clearly h is well defined and analytic. Since~3! is valid on@21,1#, we have thath(z)5 f (z) for
zP@21,1#. Lemma 1 implies that the function

q~y!5H f ~y! if yPD̄~0,c!,

h~y! if zPD̄~1,2Ac!,

is well defined and analytic onD̄(0,c)øD̄(1,2Ac). This is the desired analytic extension off .j
Lemma 3: The function f is analytic on the closed disk D(̄1,2) and the functional equation (3

is valid for all xPD̄(1,2).
Proof: It suffices to show thatf is analytic onD̄(1,2) @the validity of the functional equation

~3! for all xPD̄(1,2) follows then from the uniqueness theorem20#. For this goal it suffices to show
that f is analytic onD̄(0,1). Analyticity onD̄(1,2) then follows from Lemma 2. ForaP(0,1# let

Ka5$zPD̄~0,1!:uIm zu,a%, K̄a5$zPD̄~0,1!:uIm zu<a%.

Suppose thatf is not analytic onD̄(0,1). Let us denote
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a5sup$bP~0,1!: f is analytic on Kb%.

ThenaP(0,1#, f is analytic onKa and f is not analytic onK̄a .
Let zPK̄a , x5Rez, y5Im z and w5(12z)2/4. Since uzu<1, we have thatuwu<(1

1uzu)2/4<1. Sincex21y2<1 anduyu<a we have thatuIm wu5u(x21)yu/2<aux21u/2. Therefore
uIm wu<a. Moreover, uIm wu5a if and only if x521 and uyu5a. But then uzu5A11a2.1.
Hence,uIm wu,a. Thus, we have shown that

6~12z!2/4PKa for any zPK̄a . ~7!

Formulas~7! and ~1! imply that the functionh(z)5(U f (z)2g(z))/l is well defined and
analytic on K̄a . The equation~3! implies that f (x)5h(x) for xP@21,1#. Thereforeh is an
analytic continuation off , i.e., f is analytic onK̄a . This contradiction completes the proof.j

Lemma 4: (I) Let cP@2,1`), zPD̄(21,c)\D(1,c). Then122A2zPD̄(21,c).
(II) Let aP@3,1`), zPD̄(0,a), Rez>0. Then w,uPD(0,a), where w52Az21 and u5z

2w.
Proof: ~I! According to the maximum principle,20 it suffices to show that

AzPD̄~1,c/2! for any zP]M , ~8!

where]M is the boundary of the setM5$zPD̄(1,c):Rez>0%. Clearly ~8! is equivalent to

AzPD̄~1,c/2! for any zPG15$ i t :tP@2Ac221,Ac221#; ~9!

AzPD̄~1,c/2! for any zPG25$zPC:uz21u5c, Rez>0%. ~10!

ParametrizingzPG2 by polar coordinatesz5reiw, we obtain that~9! and~10! are equivalent
to

max$t112A2t:tP@0,Ac221#%<c2/4; ~11!

r 11<2Ar cos~w/2!1c2/4 if r 222r cosw5c221, wP@2p/2,p/2#, ~12!

respectively. Sincer 222r cosw5c221, inequality from~12! is equivalent to

c4/161c2~Ar cos~w/2!21!>0.

As r and cos(w/2) are decreasing with respect towP@0,p/2# and the functiont112A2t on
the segment@0,Ac221# takes the maximal value fort5Ac221, we obtain that inequalities~11!
and ~12! are respectively equivalent to

4a428a218a23>0 for aP@~3/4!1/4,1`!; ~13!

4a4116a215>0 for aP@~3/4!1/4,1`!. ~14!

Since 4a428a218a235(2a212a23)(2a212a11) and 4a4116a2155(2a212a
23)(2a222a15), the number (A721)/2,(3/4)1/4 is the maximal real zero of both polynom
als 4a428a218a23 and 4a4116a215. This proves~13! and ~14!, which imply ~8!.

~II ! We have to prove thatuwu,a anduuu,a. According to the maximum principle, it suffice
to verify this for zPG, where G5G1øG2 , G15$ i t :tP@2a,a#% and G25$aeiw:w
P@2p/2,p/2#%.

For zPG1 we have

uwu254utu22A2utu11, uuu25t222&utu3/214utu22&utu1/211.
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For zPG2 we have

uwu254a1124Aa cos~w/2!,

uuu25a224a3/2cos~w/2!14a12a cosw24a1/2cos~w/2!11.

Differentiating these functions with respect tot andw, we find that bothuuu2 and uwu2 for z
PG1 are maximal whent56a and that bothuuu2 and uwu2 for zPG2 are maximal whenw
56p/2. Thus, in any case,

uwu2<4a22A2a11 and uuu2<a222&a3/214a22&a1/211. ~15!

Hence, it suffices to verify that

a224a12A2a21.0 and 2&a3/224a12&a1/221.0 ~16!

for a>3. Both functions from~16! are increasing fora>3. Hence, we should only prove~16! for
a53, which is a simple arithmetic exercise. j

Lemma 5: Let cP@2,1`). Then the analyticity of f on D(̄1,c) implies the analyticity of f on

D̄(1,c)øD̄(21,c).
Proof: Let f be analytic onD̄(1,c). Pick «.0 such thatf is analytic onD̄(1,c1«) and let

S05D̄~1,c1«!ù~D̄~1,c!øD̄~21,c!!,
~17!

Sn115Snø$zPD̄~21,c!:122A2zPSn%5Snø~$2~12w!2/4:wPSn%ùD̄~21,c!!.

Evidently f is analytic onS0 . It is easy to see thatSn , n50,1,2..., is an increasing sequen
of subsets ofD̄(1,c)øD̄(21,c).

First, we shall show that analyticity off on Sn implies analyticity of f on Sn11 . Let f be
analytic onSn . Consider the functionh:An→C,

h~z!5
11z

z21
f ~2z!1

2l

12z
f ~122A2z!1

2

12z
g~122A2z!, ~18!

where An5$zPD̄(21,c):z¹@0,1`),122A2zPSn%. Clearly h is well defined and analytic
Moreover, from~3! and the definition ofh it follows thathu(21,0)5 f u(21,0) . Lemma 1 implies that
the function

q:Sn115AnøSn→C, q~z!5H f ~z! if zPSn ,

h~z! if zPAn ,

is well defined and is an analytic extension off to Sn11 . Thereforef is analytic on ø
n50

`

Sn . It

remains to show that

D̄~1,c!øD̄~21,c!5ø
n50

`
Sn . ~19!

From the definition ofSn , the pointzPD̄(21,c)\D(1,c1«) belongs to ø
n50

`

Sn , if and only

if there existsmPN such thatzjPD̄(21,c)\D(1,c1«) for 0< j <m andzm11PS0 , where

z05z, zj 115122A2zj . ~20!
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Suppose that there existszPD̄(21,c)\D(1,c1«) such thatznPD̄(21,c) for all nPN. Let
K be the closure of the set$zn :n50,1, . . .%. Then K is a closed subset of the compact setA

5D̄(21,c)\D(1,c1«), and w(K)#K, where w(z)5122A2z. Since uw8(u)u,1 for any u
PA, wuK :K→K is a contraction. According to the contraction map theorem, there exists a
point of the mapwuK . But the unique solution~in C\@1,1`)! of the equationw(w)5w is w5

21¹A. This contradiction shows that for anyzPD̄(21,c)\D(1,c1«) there exists the first
positive integerm for which zm¹D̄(21,c)\D(1,c1«). Thenzm21PD̄(21,c)\D(1,c1«). Ac-
cording to Lemma 4zm5122A2zm21PD̄(21,c)ùD̄(1,c1«),S0 . According to the descrip-

tion of the set ø
n50

`

Sn , we have thatzP ø
n50

`

Sn . This implies~19!. j

Lemma 6: The function f is analytic on the disk D(0,21)).
Proof: Let c051, cn115A4cn21 for n51,2,. . . . This sequence strictly increases and co

verges to 21). From Lemma 3 it follows thatf is analytic onD̄(0,c0). According to Lemmas
2 and 5, analyticity of f on D̄(0,cn) implies analyticity of f on D̄(1,2Acn)
øD̄(21,2Acn).D̄(0,cn11). Thereforef is analytic onD̄(0,cn) for any n50,1, . . . Hence,f is

analytic on the setø
n50

`

D̄(0,cn)5D(0,21)). j

IV. PROOF OF THE PROPOSITION

~I! Without loss of generality we can assume thatg(21)50 andf (21)50. If this is not the
case, we can achieve these conditions just by adding suitable constants tof and g. Therefore
f (x)5w(x)(11x), g(x)5c(x)(11x) and cPE, wPA. Moreover, analyticity off on a con-
nected setA.@21,1# implies analyticity ofw on the same setA. Let

f 0~x!5~w~x!1w~2x!!/2, f 1~x!5~w~x!2w~2x!!/2;
~21!

g0~x!5~c~x!1c~2x!!/2, g1~x!5~c~x!2c~2x!!/2.

Theng0 ,g1PE, f 0 , f 1PA. The analyticity off on a connected symmetric~with respect to 0!
setA.@21,1# implies the analyticity off 0 , f 1 on the same set. Thus, according to Lemma 6f 0

and f 1 are analytic onD(0,21)).
Evidently f 0 ,g0 are even,f 1 ,g1 are odd and

f ~x!5~11x!~ f 0~x!1 f 1~x!!, g~x!5~11x!~g0~x!1g1~x!!. ~22!

From ~3! and ~22! it follows that

S 12
~12x!4

16 D f 0S ~12x!2

4 D5l~11x!~ f 0~x!1 f 1~x!!1~11x!~g0~x!1g1~x!!

for any xP@21,1#. Dividing by (11x) we obtain

1

16
~15211x15x22x3! f 0S ~12x!2

4 D5l~ f 0~x!1 f 1~x!!1g0~x!1g1~x!. ~23!

Adding ~23! for x with ~23! for 2x we obtain that for anyxP@21,1#,

1

32
~15211x15x22x3! f 0S ~12x!2

4 D1
1

32
~15111x15x21x3! f 0S ~11x!2

4 D5l f 0~x!1g0~x!.

~24!
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Let us prove thatf 0PE. Suppose thatf 0¹E. Sincef 0 is analytic onD(0,21)), there exists
aP@21),1`) such thatf 0 is analytic onD(0,a) and is not analytic onD̄(0,a). Since f 0 is
even, we have thatf 0 is not analytic on the setB5$zPD̄(0,a):zÞ0,Rez>0%. According to
Lemma 4,x52Ay21PD(0,a) and y2xPD(0,a) for any yPB. Since 15111x15x21x3Þ0
for yPB, the function

h~y!5
~x325x2111x215! f 0~y2x!132l f 0~x!132g0~x!

15111x15x21x3 ,

where x5x(y)52Ay21, is well defined and analytic onB. On the other hand,~24! and the
definition of h imply that h(x)5 f (x) for all xP(0,1). The uniqueness theorem implies thath is
an analytic extension off 0 from (0,1# to B, which does not exist. This contradiction proves th
f 0PE.

From ~23! it follows that

f 1~x!5
1

16l
~15211x15x22x3! f 0S ~12x!2

4 D2 f 0~x!2
1

l
~g0~x!1g1~x!!. ~25!

Thereforef 1PE. Formula~22! implies thatf is entire and part I is proved.
~II ! Let gPP. We have to prove thatf PP. According to~21! g0 ,g1PP. Let k5degg0 if

g0[0 andk50 if g0[0. Let us show thatf 0PP and degf 0<k/221.
The functional equation~24! can be rewritten in the form

f 0S ~11x!2

4 D5
32l f 0~x!

x315x2111x115
1

32g0~x!

x315x2111x115
1

x325x2111x215

x315x2111x115
f 0S ~12x!2

4 D .

~26!

Since f 0 is even

M ~R!5 max
uxu5R

u f 0~x!u5 max
uxu5R, Rex>0

u f 0~x!u. ~27!

Let yPC, uyu5R, Rey>0, x52Ay21, w5y2x. Thenuxu52AR1O(1) and

uwu5uyuU12
y

xU5RU12
2

Ay
1

1

yU5RU12
2

Ay
U1O~1!.

All O-symbols are considered here forR→`. The numberu12(2/Ay)u for uyu5R, Rey>0, is
maximal fory56Ri. Therefore,

uwu<RU12
&~11 i !

AR
U1O~1!5R2A2R1O~1!

and

uwu,R2AR, uxu52AR1O~1!,R2AR ~28!

for sufficiently largeR. Formula~26! implies that

f 0~y!5
32l f 0~x!

x315x2111x115
1

32g0~x!

x315x2111x115
1

x325x2111x215

x315x2111x115
f 0~w!. ~29!

Note that
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Ux325x2111x215

x315x2111x115U5U12
10

x
1OS 1

x2D U5U12
5

Ay
U1O~R21!.

The numberu12(5/Ay)u for uyu5R, Rey>0, is maximal fory56Ri. Therefore,

Ux325x2111x215

x315x2111x115U<12
5

A2R
1O~R21!. ~30!

Formulas~29!, ~27!, ~28! and ~30! imply that

M ~R!<M ~R2AR!S 12
5

A2R
1O~R21!D 1O~R(k23)/2!.

If f 0 is a polynomial of degree at mostk/221, we have proved the statement. Otherw
Rk/25O(M (R)). HenceR(k23)/25O(M (R2AR)/R), and

M ~R!<M ~R2AR!S 12
5

A2R
1O~R21!D . ~31!

ThereforeM (R)<M (R2cAR) for sufficiently largeR. HenceM (R)5O(1) andf 0 is a constant
according to the Liouville theorem.20 HenceM (R) is constant. Formula~31! implies then that
M (R)[0. Therefore,f 0[0 andk50 according to~26!. Thus, anywayf 0PP and degf 0<k/2
21.

From ~25! we find thatf 1PP and

degf 1<max$k11,degg1%.

Then using~22! we find thatf PP and degf <degg11.
~III ! Suppose thatgPP and f PA satisfies~3!. According to part II of the Propositionf (x)

5(k50
n akx

k, anÞ0. If n is odd, then according to~1! degU f 52n12 and degg5deg (U f
2l f )52n12 is even. Ifn is even andnÞdegU f , then degg5max$degf ,degU f % is even. It
remains to consider the case degU f 5n. Since degU f is always a multiple of 4, we have tha
n54m, m50,1,. . . . According to~1!

U f ~x!5(
l 51

2m

~a2l2a2l 21!224l~12x!4l1a0 . ~32!

Since degU f 54m we have thata2l5a2l 21 if m, l<2m anda2mÞa2m21 . Substituting~32! into
~3! and taking these relations into account, we obtain that degg54m or degg54m21. In any
case degg does not have form 4j 11.

V. PROOF OF THEOREM 3

We start with two lemmas.
Lemma 7: Let qP(0,1) and zPD̄(q,11q). Then(12z)2/4PD(q,11q).
Proof: We have to prove that

u~z21!224qu,414q. ~33!

SincezPD̄(q,11q), we find thatz5q1(11q)u, whereuuu<1. Obviously~33! is equivalent to

u126q1q222~12q2!u1~112q1q2!u2u,414q. ~34!
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If 1 26q1q2>0, we have

u126q1q222~12q2!u1~112q1q2!u2u<126q1q212~12q2!1~112q1q2!

5424q,414q.

If 1 26q1q2,0, we have

u126q1q222~12q2!u1~112q1q2!u2u<2116q2q212~12q2!1~112q1q2!

5414q22~12q!2,414q.
j

Lemma 8: LetH be the Hardy space H2 in the upper half-planeP5$zPC:Rez.a%, aPR,
n,w:P̄→C be bounded analytic functions and c,«P(0,1`) be such that

Rew~z!>« f or all zPP; ~35!

E
2`

1`

un~a1 is!u2 ds<A,`; E
2`

1`

uw~a1 is!2cu2 ds<A,`. ~36!

Then the operator S:H→H, S f(z)5(11n(z)) f (z1w(z)) is the sum of two operators A an
B, where A is bounded, self-adjoint and has purely absolutely continuous spectrum@0,1# and B is
a Hilbert–Schmidt operator.

Proof: Without loss of generality we assumea50. According to the Paley–Wiener theore
~Ref. 19, Chap. 8!, the Laplace transform

Lg~z!5
1

A2p
E

0

`

e2ztg~ t ! dt

is a unitary operator fromL2@0,1`) onto H.
Let D1 be the subspace ofL2@0,1`), consisting of infinitely differentiable functions with

compact support lying in (0,1`). Consider the operatorS̃5L21SL:L2@0,1`)→L2@0,1`).
Using the standard formula for the inverse Laplace transform we obtain that

S̃g~ t !5
1

2p E
2`

1`E
0

1`

g~t!eis(t2t)e2w( is)t~11n~ is!! dt ds

for any gPD1 . Therefore,

S̃g~ t !5g~ t !e2ct1E
0

1`

g~t!K~t,t ! dt, ~37!

where

K~t,t !5
1

2p E
2`

1`

eis(t2t)@e2w( is)t~11n~ is!!2ect# ds.

The existence of the last integral~in the principle value sense! for anyt and almost allt, follows
from the Plancherel theorem, since formula~36! implies square integrability, with respect tos, of
the functione2 ist@e2w( is)t(11n( is))2ect#.

According to the Parseval identity and using formulas~35! and ~36!, we obtain
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E
2`

1`

uK~t,t !u2dt5
1

2p E
2`

1`

ue2w( is)t~11n~ is!!2ectu2ds

<
e22t«

p E
2`

1`

~ ue2(w( is)2«)t2e(c1«)tu21ue2(w( is)2«)tn~ is!u2! ds

<
e22t«

p E
2`

1`

~t2uw~ is!2cu21un~ is!u2! ds

<
Ae22t«~t211!

p
.

According to Fubini’s theorem

E
0

1`E
0

1`

uK~t,t !u2dtdt<E
0

1`E
2`

1`

uK~t,t !u2dtdt<
A

p E
0

1`

e22t«~t211! dt,1`.

Therefore,KPL2(@0,1`)2). SinceD1 is dense inL2@0,1`), formula ~37! is valid for any
gPL2@0,1`). Therefore,S̃5Ã1B̃, where

Ãg~ t !5g~ t !e2ct and B̃g~ t !5E
0

1`

g~t!K~t,t ! dt,

the operatorÃ is bounded, self-adjoint and has purely absolutely continuous spectrum@0,1#, and
the operatorB̃ is a Hilbert–Schmidt operator. It remains to note that operatorsS and S̃ are
unitarily equivalent. j

Now we can prove Theorem 3. EvidentlyU5U01U1, where

U0f ~x!5
1

2 S 11
~12x!2

4 D f S 2
~12x!2

4 D , ~38!

U1f ~x!5
1

2 S 12
~12x!2

4 D f S ~12x!2

4 D . ~39!

According to Lemma 7, there exists ar .11q such that for anyf PX the functionU1f

admits an analytic extension toD̄(q,r ). Let Xr be the Hardy space in the diskD(q,r ). Then
formula ~39! defines a bounded linear operatorUr

1 from X to Xr . The operatorUX
1 :X→X is the

superposition ofUr
1 and the identity embeddingJ of Xr into X. Since the operatorJ is nuclear

@J has thes-numbers (11q)nr 2n)#, we find thatUX
15U1uX :X→X is also nuclear and therefor

compact.
Let H be the Hardy space in the upper half-plane$zPC:Rez.(11q)21%. One can easily

verify that the operatorM :X→H,

M f ~z!5
1

z
f S 2

z
21D , ~40!

is unitary up to a multiplication on a positive constant. Then the operatorsUX
0 and W0

5MU0M 21:H→H are unitarily equivalent.
From the definitions of~38! and ~40! we obtain that

M 21f ~z!5
2

z11
gS 2

z11D and W0f ~z!5~11n~z!! f ~z1w~z!!,
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where

n~z!5
12z

2z22z
and w~z!5

1

2
1

1

4z22
.

One can easily verify thatw andn satisfy all conditions of Lemma 8 with«5c5 1
2. According

to Lemma 8,W0 is a sum of a self-adjoint operator with the purely absolutely continuous spec
@0,1# and a Hilbert–Schmidt operator. SinceUX

0 andW0 are unitarily equivalent andUX
1 is nuclear,

we have thatUX is a sum of a self-adjoint operator with purely absolutely continuous spec
@0,1# and a Hilbert–Schmidt operator. Following Ref. 21, we say thatzPC is a normal point of a
bounded linear operator on a separable Hilbert space if eitherz is a regular point orz is an isolated
eigenvalue of finite multiplicity. According to Theorem 5.2 of Chap. 1 in Ref. 21, for any boun
self-adjoint operatorA and any compact operatorB acting on the same Hilbert space, the sets
normal points ofA andA1B coincide. It remains to apply this theorem. j

VI. CONCLUDING REMARKS

~1! So far there exist very few results on the spectral properties of the F.P.O. of the map
parabolic neutral fixed points. We would like to point out the result of H. Rugh,17 who considered
the F.P.O. of piecewise analytic maps, which are expanding everywhere except one parabol
point. Namely, he constructed a specific map-dependent Banach space of analytic functions
the spectrum of the F.P.O. consists of the segment@0,1# and some isolated normal eigenvalue
This space is in fact the image ofL1@0,1`) with respect to some map-dependent integral tra
formation similar to the Laplace transform.

The cusp map does not satisfy the conditions of Rugh’s theorem because of the cusp-
singularity. Nevertheless, we proved that the F.P.O. of the cusp map has similar spectral pro
in the Hardy spacesH2 in the disksD(q,11q), 0,q,1. We also conjecture that the spectrum
the F.P.O.U of the cusp map in the Hardy spacesH2 in the disksD(q,11q), 0,q,1 is precisely
the segment@0,1#, i.e., the set of isolated eigenvalues ofU is empty. Note that the functions o
these Hardy spaces as well as the functions of Rugh’s spaces are analytic in all points
segment except at the parabolic fixed point~x521 in the case of the cusp map!. However, we
should notice that the spectrum of the F.P.O. of a mapS in spaces of analytic functions with
singularity at a fixed point ofS may differ considerably from the spectrum in spaces of eve
where analytic functions. We have proved that this is precisely the case for the cusp map.

~2! The theory of the point spectrum for the maps has been recently developed in ter
locally convex topological vector spaces.9 For different classes of observables the same evolu
law may have different resonances, i.e., different rates of approach to equilibrium. However
the class of observables is chosen, the resonance structure is unique.9,10 In terms of the assump
tions of Ref. 9, the admissible point spectra for a given map are described. Here we see that
cusp map, we have continuous spectra in Hardy spaces. This type of spectra was not addr
Ref. 9.

~3! We would like also to notice that Theorems 1 and 2 remain valid if one replaces the F
~1! of the cusp map by some positive transfer operator6 of the cusp map, for example,

Ũ f ~x!5
1

2
f S ~12x!2

4 D1
1

2
f S 2

~12x!2

4 D .

Of course, Theorems 1 and 2 do not remain valid for all positive transfer operators in the
considered in Ref. 6. For example, let us consider the operator

W f~x!5S 1

2
2b1

a~x!

4 D f ~a~x!!1S 1

2
1b2

a~x!

4 D f ~2a~x!!,
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wherea(x)5(12x)2/4. For the real parameterbP@2 1
4,

1
2#, this is a positive transfer operator fo

the cusp map, andW151. On the other hand, the function

f ~x!5x2
x2

2
1

b

2~12b!

is the eigenfunction ofW corresponding to the eigenvalueb: W f5b f . Hence Theorems 1 and
are not valid for the operatorW.

~4! We do not consider Hardy spacesHp, pÞ2, although Theorem 3 can be generalized
such spaces. In order to do this, one has to generalize results of Chap. 1 of Ref. 21 for ar
continuous linear operators on Banach spaces. This can be done with minor modificati
proofs.21

~5! There are few questions which remain open for the cusp map. First, the question abo
asymptotics of the autocorrelation function. As the eigenvalues of the F.P.O. of the family~2! tend
to unity when«→ 1

2, one can expect nonexponential decrease of the autocorrelation function
estimations in Ref. 14 show that the autocorrelation functionC(n) decreases as 1/n, when n
→`. However, this conjecture has not yet been analytically proven. Another question add
the choice of the space of analytic functions where the spectrum of the F.P.O. is naturally d
by the dynamics of the map.

ACKNOWLEDGMENTS

We would like to thank Professor Ilya Prigogine and Professor Victor Sadovnichy for he
discussions. This work enjoyed the financial support of the European Commission, Proje
IST-2000-26016 IMCOMP, and the Belgian Government through the Interuniversity Attra
Poles. SAS is supported by the Alexander von Humboldt foundation.

1P. C. Hemmer, J. Phys. A17, L247 ~1984!.
2E. Ott, Rev. Mod. Phys.53, 655 ~1981!.
3W. Tucker, C. R. Acad. Sci. Paris328, 1197~1999!.
4I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,Ergodic Theory~Springer-Verlag, New York, 1982!.
5A. Lasota and M. Mackey,Probabilistic Properties of Deterministic Systems~Cambridge University Press, Cambridg
1985!.

6V. Baladi, Positive Transfer Operators and Decay of Correlation, ~World Scientific, Singapore, 2000!.
7T. Bedford, M. Keane, and C. Series,Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces~Oxford University
Press, Oxford, 1991!.

8I. Antoniou and Bi Qiao, Phys. Lett. A215, 280 ~1996!.
9I. Antoniou and S. Shkarin, inGeneralized Functions, Operator Theory, and Dynamical Systems, edited by I. Antoniou
and G. Lumer, CRC Research Notes in Mathematics 399~Chapman & Hall, London, 1999!, p. 171.

10I. Antoniou, V. Sadovnichii, and S. Shkarin, Phys. Lett. A258, 237 ~1999!.
11O. F. Bandtlow, I. Antoniou, and Z. Suchanecki, Comput. Math. Appl.34, 95 ~1997!.
12G. Györgyi and P. Sze´pfalusy, Z. Phys. B: Condens. Matter55, 179 ~1984!.
13Z. Kaufmann, H. Lustfeld, and J. Bene, Phys. Rev. E53, 1416~1996!.
14H. Lustfeld and P. Sze´pfalusy, Phys. Rev. E53, 5882~1996!.
15D. Ruelle, Commun. Math. Phys.125, 239 ~1989!.
16I. Antoniou, S. A. Shkarin, and E. Yarevsky, J. Phys. A35, 2833~2002!.
17H. H. Rugh, Invent. Math.135, 1 ~1999!.
18A. Robertson and V. Robertson,Topological Vector Spaces~Cambridge University Press, Cambridge, 1964!.
19K. Hoffman, Banach Spaces of Analytic Functions~Dover, New York, 1988!.
20E. C. Titchmarsh,The Theory of Functions~Oxford University Press, Oxford, 1984!.
21I. Gohberg and M. Krein,Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Math. Mono-

graphs, Vol. 18,~AMS, Providence, RI, 1969!.
                                                                                                                



r in
pplied
able to

ined by
l case,
ain
rms of

ed by
oper
ined a

ed by

to a
ulas

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 7 JULY 2002

                    
Analytic continuation of the Hurwitz zeta function
with physical application
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A new formula relating the analytic continuation of the Hurwitz zeta function to the
Euler gamma function and a polylogarithmic function is presented. In particular,
the values of the first derivative of the real part of the analytic continuation of the
Hurwitz zeta function for even negative integers and the imaginary one for odd
negative integers are explicitly given. The result can be of interest both on math-
ematical and physical side, because we are able to apply our new formulas in the
context of the spectral zeta function regularization, computing the exact pair pro-
duction rate per space–time unit of massive Dirac particles interacting with a
purely electric background field. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1481976#

I. INTRODUCTION

In 1951, Schwinger1 computed the implicit effective Lagrangian for a Dirac charged spino
a general electromagnetic background field using proper time approach. In particular, he a
the result to the physical case of a constant and uniform electric background and he was
evaluate the exact pair-production rate per space–time unit, namely

w~E,e,m!5
e2E2

4p3 (
n51

1`
e2n pm2/eE

n2 . ~1!

This result is well known and can be obtained by other ways~e.g., Itzykson and Zuber,2 using
the S-matrix approach, and by Beneventano and Santangelo3!. In 1990 Blauet al.,4 using the
techniques of the spectral zeta function regularization, tried to obtain the same results obta
Schwinger. However, they were able only to obtain nonexact results for the four dimensiona
using asymptotic analysis. In 1996, Soldati and Sorbo5 obtained a new expression, but once ag
their methods were based on asymptotic analysis and the results were expressed in te
asymptotic series.

The problem for general electromagnetic external field has been recently discuss
Schubert6 and by Cho and Pak.7 Schubert obtained the same action by Schwinger using pr
time method and techniques of computation inspired by string theory. Cho and Pak obta
renormalized action from the general one~non-renormalized! found by Schwinger, using the
so-called Sitacaramachandrarao identity. Recently, Beneventano and Santangelo8 have compared
their results obtained using spectral zeta function methods with the general result obtain
Schwinger, showing that they agree.

In this article, we shall compute the imaginary part of the effective Lagrangian related
Dirac field in a constant and uniform external electric field by making use of new form

a!Electronic mail: adesi@science.unitn.it
b!Author to whom correspondence should be addressed. Electronic mail: zerbini@science.unitn.it
37590022-2488/2002/43(7)/3759/7/$19.00 © 2002 American Institute of Physics
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concerning the analytic continuation of the first derivative of the Hurwitz zeta function.
The content of the article is the following. In Sec. II, we briefly introduce the spectral

function regularization procedure and illustrate the result obtained by Blauet al., which will be
our starting point for the application of the new formulas. In Sec. III, we derive a new expre
for the analytic continuation of the Hurwitz zeta function, viewed as an analytic function of
complex variables. In Sec. IV, we use that result to recover the rate of pair creation of
particles in constant and uniform electric background.

II. ZETA FUNCTION REGULARIZATION

In this section, we shall review the relation between the mathematical problem that we
solved and the physical problem associated with the Dirac pair creation. For a review
method, see, for example, Refs. 9–11 and references quoted therein.

Within the context of quantum field theory~QFT! interacting with a classical gauge bac
ground field, one is forced to confront with the determinants of differential operators.
In the context of a Klein Gordon field interacting with an external gauge fieldA, this determinant
is related to some physical quantities formally obtained from theEuclideanfunctional integral:

Z@AE#5E Dwe2 ~1/2! *d4xwAEw, ~2!

whereAE is the Euclidean Klein Gordon operator. In the definition of this integral we hav
analytically continue some global Minkowski temporal coordinatex0 into imaginary value
x0→ ix0 and consider the analytical continuation of all relevant quantities.

The above Gaussian functional integral could be interpreted as a Wiener measure, but,
purposes, we may interpret it in terms of a functional determinant, and rewrite the definition~2!
as

Z@AE#5FdetS AE

m D G2 1/2

, ~3!

wherem is a constant with the same physical dimension of the operatorAE .
It is sometime useful to introduce two physical quantities: the effective action and the e

tive Lagrangian. The former is defined as the logarithm ofZ. The latter is a function of space
time points and gives, after an integration on the whole space–time, the effective action
physical interpretation of this determinant is found after a reanalytical continuation of the im
nary time into a real time. The result is the vacuum to vacuum transition amplitude.

We can use zeta function regularization to give a rigorous meaning to functional determi
This regularization technique was introduced by Ray and Singer for elliptic differe
operators.12 Within the quantum field theory, it was used by by Dowker and Chritchley13 and
Hawking.14 Given a compact Riemannian manifoldM and for elliptic and second order operato
acting onL2(M ), it can be proved that such definition gives a useful extension of the notio
functional determinant.

Since the square of the Euclidean Dirac operator is an elliptic second order differ
operator, making use of the zeta regularization technique, Blauet al.4 arrived at the following
effective Lagrangian for a Dirac field in an external constant and uniform electric field:

Leff~E,0!52
e2E2

2p2 H F12 lnS 22ieE

m2 D GzHS 21;11 i
m2

2eED1
d

ds
zHS s;11 i

m2

2eED
s521

J
1 i

m2eE

8p2 F ln
m2

m2 21G , ~4!

wherezH(s;x) is the Hurwitz zeta function defined by
                                                                                                                



s of
one

wing

o

duce

n.
author
ations

or

3761J. Math. Phys., Vol. 43, No. 7, July 2002 Analytic continuation of Hurwitz zeta function

                    
zH~s;x!ª(
n50

` S 1

n1xD s

, Res.1.

They were not able to find an explicit form for the analytic continuation of the derivative
the Hurwitz zeta function ats521. Thus, a direct comparison between their result and the
obtained by Schwinger was missing.

III. ANALYTIC CONTINUATION OF THE HURWITZ ZETA FUNCTION

In this section, we discuss the analytical properties of the Hurwitz zeta function. Follo
Ref. 15, we obtain a new identity involving the Hurwitz zeta function, the EulerG(s) function and
a polylogarithmic function.

Recall that the Hurwitz zeta function is defined as follows:

zH~s;x!ª(
n50

1`

~n1x!2s, ~5!

where Res.1, xÞ0,21,22, . . . . One cananalytically extend it into an analytic function of tw
complex variabless andx.

In order to search for the analytical continuation in the double complex plane, we intro
the functionF(s;z) defined by the following series:

F~s;z!ª lim
k→`

(
n52k

k

~2 in1z!2s. ~6!

Notice that the series above is absolutely convergent for Res.1, zÞ6 ik,kPN. Thus, one may
write

F~s;z!ª lim
k→`

F (
n50

k

~2 in1z!2s1 (
n50

k

~ in1z!2sG2z2s. ~7!

Using this definition for the series~6!, we proceed in searching for its analytical continuatio
With regard to this issue, previous attempts can be found in Refs. 16 and 17. Here the
obtained an expression different from ours, requiring, however, as far as physical applic
were concerned, anad hocfinite renormalization.

It is straightforward to prove the following relation betweenF(s;z) andzH(s;z):

F~s;z!5 i szH~s; iz!1 i 2szH~s;2 iz!2z2s. ~8!

First, let us investigate the functionF(s;x). The following theorem gives an expression f
the analytic continuation ofF(s;z) in terms of polylogarithmic function.

Theorem: Following the definition stated above, the analytic continuation ofF(s,z) for each
sPC and Rez.0 is given by

F~s;z!5
~2p!s

G~s! (
n51

1`
e22npz

n12s . ~9!

Proof: Define the sequenceFk(s;z):

Fk~s;x!ª (
n52k

k

~2 in1z!2s, ~10!

which obviously converges toF(s;z).
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Recall the definition of the EulerG(s) function for Res.0,

G~s!ªE
0

`

ts21e2tdt.

Consider the product of this function and the sequenceFk(s;x):

Fk~s;z!G~s!5 (
n52k

1k

~2 in1z!2sE
0

`

ts21e2tdt5E
0

`

(
n52k

1k

~2 in1z!2sts21e2tdt.

We may change variables according tot5t(2 in1z), which is allowed forz not purely imagi-
nary integer sinceu dt/dt uÞ0, and we obtain

Fk~s;z!5
1

G~s!
E

0

1`

dte2tzts21 (
n52k

1k

eint. ~11!

The part of the integrand in~11! multiplying the seriesvanishesin t50 for Res.1. This
implies that the integration may be interpreted as the action of thek-element of a sequence o
distributionsgk(t),

gk~t!ª (
n52k

1k

eint ~12!

on the continuous functione2tzts21. It is a well-known result of the theory of distribution tha
this sequence converges and gives the Poisson summation formula:

lim
k→`

gk~t!5 lim
k→`

(
n52k

1k

eint52p (
n52`

1`

d~t22np!.

Thus we obtain in the limitk→`:

F~s;z!5
1

G~s!
E

0

1`

e2tzts21 (
n52`

1`

eint5
~2p!s

G~s! (
n51

1`
e22npz

n12s ,

which, as stated in the hypotheses of the theorem, makes sense as analytic continuation
sPC and Re z.0.

Recalling the relation~8! betweenF(s;z) andzH(s;z), we have the following corollary:
Corollary: The following formula is valid for eachsPC and Rez.0 in the sense of the

analytic continuation:

~ i !szH~s; iz!1 i 2szH~s;2 iz!2z2s5
~2p!s

G~s! (
n51

1`
e22npz

n12s . ~13!

Proof: Direct use of Eqs.~8! and ~9!.
Equation~13! can be checked fors52n. In this case the right hand side is vanishing and E

~13! gives

i 2nzH~2n,iz!1 i nzH~2n,2 iz!2z2s50. ~14!

Recall that the values of the Hurwitz zeta function are known for negative integers and are r
to the Bernoulli’s polynomials by the following formula:
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zH~2n,z!52
Bn11~z!

n11
. ~15!

It is easy to show that this equation is identically fulfilled.
Remark:We now notice that the series

(
n51

1`
e22npz

n12s ~16!

and its derivatives are uniformly convergent in the variables for Rez.0 and ResP(2`,a) with
a,`. A straightforward computation leads to the following lemma:

Lemma 1:The following formula holds for eachsPC and Rez.0 in the sense of the analyti
continuation:

~ i !s
d

ds
zH~s; iz!1~ i !2s

d

ds
zH~s;2 iz!

5~2p!sS d

ds

1

G~s! D (n51

1`
e22npz

n12s 1
~2p!s

G~s! (
n51

1`
e22npz ln~2np!

n12s

1 i
p

2 F22~ i !szH~s; iz!1z2s1
~2p!s

G~s! (
n51

1`
e22npz

n12s G2~z!2s~ lnuzu1 iarg z!. ~17!

Proof: One simply applies the derivative on both sides of the formula obtained in the coro
above, then uses the remark above to exchange the series with the derivative with respect ts, and
then analytically continues the result for all the values ofs.

As a result, we shall derive formulas for the real and imaginary values of the first deriv
of the Hurwitz zeta function respectively for even and odd negative integers.

Using parity properties of the real and the imaginary part of this polynomials it is eas
prove the following lemma.

Lemma 2:For xPR, x.0, and fornPN, n,0, the Hurwitz zeta function has the followin
parity properties:

RezH~2n; ix !5RezH~2n;2 ix !, ~18!

Im zH~2n; ix !52Im zH~2n;2 ix !. ~19!

We have the following.
Proposition: For xPR and for mPN, the following two formulas are valid for any natura

number:

Im
d

ds
zH~2~2m11!; ix !5p Re

B2m12~ ix !

4~m11!
1

~21!m11x2m11

2
ln x

1
~21!m11~2m11!!

2~2p!2m11 (
n51

1`
e22npx

n2(m11) , ~20!

Re
d

ds
zH~22m; ix !52p Im

B2m11~ ix !

2~2m11!
1

~21!m11x2m

2
ln x1

~21!m~2m!!

2~2p!2m (
n51

1`
e22npx

n112m .

~21!

Proof: Simple computation using Lemma 1 and 2.
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Note: It is possible to obtain other identities involving higher order derivatives of the Hur
zeta function starting from~13!. As a consequence, it is possible to obtain the values of hig
derivatives of either the imaginary or real part of the Hurwitz zeta function for negative inte
using recursive formulas.

As far as we know only asymptotic values have been found by E. Elizalde18,19for the analytic
continuation of the derivatives of the Hurwitz zeta function. Thus~20! and~21! are new formulas.
In the next section, we use the second one for the application to the study of the Dirac pair c
in the pure electrical background field.

IV. APPLICATION TO SCHWINGER PAIR CREATION

In this last section we shall apply the formula~20! to the problem of Dirac pair creation in
purely electrical background field, recovering the Schwinger result. The starting point i
effective Lagrangian obtained by Blauet al.

Leff~E,0!52
e2E2

2p2 H F12 lnS 22ieE

m2 D GzHS 21;11 i
m2

2eED d

ds
zHS s;11 i

m2

2eED
s521

J
1 i

m2eE

8p2 F ln
m2

m2 21G . ~22!

We have to find the imaginary part of the right-hand side of~22!. Making use of Eq.~20! to s
521, we obtain

Im
d

ds
zH~21;ix !52

1

4p (
n51

1`
e22npx

n2 2
x

2
ln x1

p

24
2

px2

4
. ~23!

If we plug this formula in the effective Lagrangian expression, we obtain the Schwinger re

w~E,e,m!5
e2E2

4p3 (
n51

1`
e2n pm2/eE

n2 . ~24!
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KT-geometry is the geometry of a Hermitian connection whose torsion is a 3-form.
HKT-geometry is the geometry of a hyper-Hermitian connection whose torsion is a
3-form. We identify nontrivial conditions for a reduction theory for these types of
geometry. ©2002 American Institute of Physics.@DOI: 10.1063/1.1487443#

I. INTRODUCTION

Symplectic reduction is a novel method of constructing symplectic manifolds from others
admit a group action of symplectic diffeomorphisms. To describe the main result, letG be a
compact group of symplectic diffeomorphisms acting on the symplectic manifold (M ,v) andg be
the Lie algebra ofG. It can be shown that under certain conditions,N5n21(z)/G is also a
symplectic manifold, wherezPg* and n:M→g* is the moment map. The manifoldN is also
denoted withM //G. It is remarkable that symplectic reduction can be generalized in var
ways. First, it can be shown that ifM is a Kähler manifold admitting aG-action of holomorphic
isometries, thenM //G is also a Ka¨hler manifold. Furthermore, it can be shown that ifM is a
hyper-Kähler manifold admitting anG-action of triholomorphic isometries, thenM //G5n21(z)
is also hyper-Ka¨hler, wheren5(n1 ,n2 ,n3):M→R3

^ g* and z5(z1 ,z2 ,z3)PR3
^ g* .1 In the

context of hyper-Ka¨hler reduction there are three moment maps each associated to the
complex structures. One common feature of all symplectic, Ka¨hler and hyper-Ka¨hler reductions is
that moment maps exist because theG-action preserves some symplectic form.

More generally it has been shown that ifM is a hypercomplex manifold admitting a triholo
morphic group action, thenM //G is also hypercomplex.2 The details of this construction will be
summarized in Sec. II B. Here it is worth mentioning that in the context of hypercomplex re
tions, moment maps do not arise naturally because in the generic case there are no sym
forms which are preserved by the group action. Instead it is assumed that one can fin
functions onM which have the required properties.

In the next section, we assume the existence of aG-moment map onM and study the
geometry on the reduced spaceN. The aim is to prove that the reduction of a KT-space is
KT-space and the reduction of a HKT-space is again a HKT-space. The definition and t
construction of HKT spaces have been given in Ref. 3. The properties of KT and HKT man
have been widely investigated in the literature.3–5 The result on KT-space in Sec. II is not surpri
ing because a Hermitian structure can easily be found on a reduced space and every He
structure has a unique KT-connection. The existence of HKT-connection on the reduction

a!Permanent address: Department of Mathematics, Sofia University, 5 ‘‘James Bourchier,’’ 1126 Sofia, Bulgaria. Ele
mail: geogran@math.uconn.edu

b!Electronic mail: gpapas@mth.kcl.ac.uk
c!Electronic mail: ypoon@math.ucr.edu
37660022-2488/2002/43(7)/3766/17/$19.00 © 2002 American Institute of Physics
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HKT-space is less trivial. Examples of HKT-reduction in this regard are given at the end o
paper.

In the third section, we identify nontrivial and sufficient topological or cohomological c
straints on either the manifoldM or the groupG to ensure the existence of aG-moment map on
strong KT-manifolds and strong HKT-manifolds. In the absence of symplectic forms, this
nontrivial result as one usually generates moment map through the Ka¨hler form. In the fourth
section, we discuss when a potential function on a HKT-space may descend to a potential fu
on the reduced HKT-space.

II. EXISTENCE OF HKT-STRUCTURES ON REDUCED SPACES

Assuming the existence of ‘‘moment maps,’’ we examine the geometry on the reduced
in the next two sections.

A. KT reduction

Before we explain HKT reduction, it is instructive to consider first the reduction of
manifolds, i.e., Hermitian manifolds equipped with the hermitian connection whose torsion
three-from.

Let M be a KT manifold and letG be a compact group of complex isometries onM . Denote
the algebra of holomorphic vector fields byg. Next introduce aG-equivariant mapn:M→g
satisfying the transversality condition, i.e.,Idn(X)Þ0 for all XPg. We remark that a mapn is
equivariant ifn(g•x)5Ad g* (n(x)).

Definition 1: A mapn is called G-moment map if and only if (i) it is equivariant and (ii)
satisfies the transversality condition.

We remark that for simply connected Ka¨hler manifolds the moment map can be construc
using the invariance of Ka¨hler form and complex structure and it satisfies the transvers
property. However additional conditions are required in order the moment map to be equiv

Next given a pointzPg, denote the level setn21(z) by P. Since the mapn is G-equivariant,
level sets are invariant if the groupG is Abelian or if the point§ is invariant. Assuming that the
level setP is invariant, and the action ofG on P is free, then the quotient spaceN5P/G is a
smooth manifold. Letp:P→N be the quotient map.

It can be shown that in factN5P/G is a complex manifold. This construction can be done
follows. For each pointm in the spaceP, its tangent space is

TmP5$tPTmM :dn~ t !50%.

Consider the vector subspace

Um5$tPTmP:Idn~ t !50%.

Due to the transversality condition, this space is transversal to the vectors generated by e
in g. In addition, this space is a vector subspace ofTmP with co-dimension dimg, and hence it is
a vector subspace ofTmM with co-dimension 2 dimg. The same condition implies that, as
subbundle ofTM uP , U is closed underI . Moreover there is a G-invariant splitting,

TP5U% V, ~1!

whereV is the tangent space to the orbits of G and it is the bundle of kernels ofdp. We use the
terms ‘‘horizontal’’ and ‘‘vertical’’ for U andV.

As the projectionp is an isomorphism onU, for any tangent vectorÂ at p(m), there exists a
unique elementAu in Um such thatdp(Au)5Â. We call Au horizontal lift of Â. The complex
structure onN is defined by

IÂ5dp~ IAu!, i.e., ~ IÂ !u5IAu. ~2!
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Theorem 1: Let (M ,I,g) be a KT-manifold. Suppose that G is a compact group of com
isometries admitting a G-moment mapn. Then the complex reduced space N5M //G inherits a
KT structure.

Proof: To show this, it suffices to find a complex structureI and a Hermitian metricg on N
which are induced fromM because for every Hermitian structure (I ,g), there always exists a
unique KT structure onN.5,6

To begin, sinceU is G-invariant, ifXu is tangent toP at m and is contained inU, then for any
elementf PG, dLf(X

u) is tangent toP at f (m) and is contained inU. Usingp+L f5p, if Xu is
a horizontal lift of X̂ to a pointm, thendp+dLf(X

u)5dp(Xu)5X̂. Therefore,dLf(X
u) is the

horizontal lift of X̂ to f (m).
SinceG is also a group of isometries,g(dLf(X),dLf(Y))5g(X,Y) for any vectorsX andY

tangent toP. Define a metricĝ on N by

ĝp(p)~X̂,Ŷ!5gp~Xu,Yu!, ~3!

whereXu andYu are the horizontal lifts ofX̂ and Ŷ, respectively. From the analysis above, t
metric ĝ is independent from the choice of the reference pointp of the orbit. Note that the
‘‘horizontal’’ and ‘‘vertical’’ spaces ARE NOT necessarily orthogonal.

To prove thatĝ is Hermitian, we note that

gp(p)~ IX̂,IŶ!5gp~~ IX̂ !u,~ IŶ!u!

5gp~ I ~X̂u!,I ~Ŷ!u!5gp~X̂u,Ŷu!5gp(p)~X̂,Ŷ!. ~4!

Q.E.D.

B. HKT reduction

We shall begin with a description of hypercomplex reduction developed by Joyce.2 Let G be
a compact group of hypercomplex automorphism onM . Denote the algebra of hyper-holomorph
vector fields byg. Suppose thatn5(n1 ,n2 ,n3):M→R3

^ g is aG-equivariant map satisfying the
following two conditions. The Cauchy–Riemann condition,I 1dn15I 2dn25I 3dn3 , and the trans-
versality condition,I adna(X)Þ0 for all XPg. In analogy with a similar definition given in the
previous section, any map satisfying these conditions is called aG-moment map. Given a poin
z5(z1 ,z2 ,z3) in R3

^ g, denote the level setn21(z) by P. Assuming that the level setP is
invariant, and the action ofG on P is free, then the quotient spaceN5P/G is a smooth manifold.

Joyce proved that the quotient spaceN5P/G inherits a natural hypercomplex structure.2 His
construction runs as follows. For each pointm in the spaceP, its tangent space is

TmP5$tPTmM :dn1~ t !5dn2~ t !5dn3~ t !50%.

Consider the vector subspace,

Um5$tPTmP:I 1dn1~ t !5I 2dn2~ t !5I 3dn3~ t !50%. ~5!

Due to the transversality condition, this space is transversal to the vectors generated by e
in g. Due to the Cauchy–Riemann condition, this space is a vector subspace ofTmP with co-
dimension dimg, and hence it is a vector subspace ofTmM with co-dimension 4 dimg.

The same condition implies that, as a subbundle ofTM uP , U is closed underI a . Moreover
there is a G-invariant splitting,

TP5U% V, ~6!
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whereV is the tangent space to the orbits of G and it is the bundle of kernels ofdp. Again, we use
the terms ‘‘horizontal’’ and ‘‘vertical’’ forU andV although these two spaces are not necessa
orthogonal. Following techniques and notations of the last section, a hypercomplex structurN
is defined by

I aÂ5dp~ I aAu!, i.e., ~ I aA!u5I aAu. ~7!

Theorem 2: Let (M ,I,g) be a HKT-manifold. Suppose that G is a compact group of hyp
complex isometries admitting a G-moment mapn. Then hypercomplex reduced space N5M //G
inherits a HKT structure.

Proof: Define hypercomplex structuresI a on N5P/G as in ~7!. As in the previous section
define a metricĝ on N by

gp~Xu,Yu!5ĝp(p)~X̂,Ŷ!, ~8!

where Xu and Yu are the horizontal lifts ofX̂ and Ŷ, respectively. This is a hyper-Hermitia
metric.

On M , defineFa(X,Y)5g(I aX,Y) and

v15F22 iF 3 . ~9!

This is a~0,2!-form with respect toI 1 . Since the hyper-Hermitian structure onX admits a HKT-
metric, ]̄v150. Equivalently, the~0,3!-part of dv1 vanishes.

Similarly, we definev̂1 on N. By ~Ref. 5, Proposition 2!, the hyper-Hermitian metricĝ is a
HKT-metric if and only if ]̄v̂150. In other words, we need to prove that the type~0,3!-part of
dv̂1 with respect toI 1 vanishes. This is equivalent to

p* dv̂1~Xu,Yu,Zu!50 ~10!

for any vectorsXu,Yu,Zu in U I 1

0,1. As

p* v̂1~Yu,Zu!5v1~Yu,Zu! ~11!

and we have the following computation:

dp* v̂1~Xu,Yu,Zu!5Xu~p* v̂1~Yu,Zu!!2Yu~p* v̂1~Zu,Xu!!1Zu~p* v̂1~Xu,Yu!!

2p* v̂1~@Xu,Yu#,Zu!2p* v̂1~@Yu,Zu#,Xu!2p* v̂1~@Zu,Xu#,Yu!

5Xu~v1~Yu,Zu!!2Yu~v1~Zu,Xu!!1Zu~v1~Xu,Yu!!2v1~@Xu,Yu#u,Zu!

2v1~@Yu,Zu#u,Xu!2v1~@Zu,Xu#u,Yu!5dv1~Xu,Yu,Zu!

1v1~@Xu,Yu#v,Zu!1v1~@Yu,Zu#v,Xu!1v1~@Zu,Xu#v,Yu!

5v1~@Xu,Yu#v,Zu!1v1~@Yu,Zu#v,Xu!1v1~@Zu,Xu#v,Yu!.

To complete the proof of this theorem we claim that@Xu,Yu#v50. Equivalently,
dana(@Xu,Yu#)50 for a51,2,3. SinceXu andYu are in the kernel ofdana for a51,2,3,

ddana~Xu,Yu!5Xu~dana~Yu!!2Ya~dana~Xu!!2dana~@Xu,Yu# !52dana~@Xu,Yu# !.

As dd1n1 is of type-~1,1! with respect toI 1 and Xu and Yu are type-~0,1! with respect toI 1 ,
dd1n1(Xu,Yu)50. By the Cauchy–Riemann conditiond1n15d2n25d3n3 , our claim follows.

Q.E.D.
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III. MOMENT MAPS FOR STRONG KT AND HKT SPACES

As we have seen, the construction of new HKT manifolds using HKT reduction require
existence of a G-moment map satisfying the requirements of Theorem 2. This moment map
specified within the theory, as it is the case for the hyper-Ka¨hler reduction, but rather its existenc
is an additional assumption of the construction. However as we shall see in the special c
reduction for strong KT~and HKT! manifolds, under certain assumptions, there is such a mom
map which arises naturally. The local construction of a moment map for KT and HKT geom
presented below parallels the construction of an action for two-dimensional~2,0!- and ~4,0!-
supersymmetric gauged sigma models with the Wess–Zumino term in Ref. 7, respectively.
we focus on a reduction theory for strong KT-structure first. The reduction theory for s
HKT-structures follow.

A. Local consideration

Let G a compact group of complex automorphisms on astrongKT manifold M . In particular
G is a group of isometries onM which leaves in addition the torsion three-formH invariant. To
continue we introduce a basis$ea ;a51, . . . ,dimg% in the Lie algebra ofg and denote the asso
ciated vector fields ofM with $Xa;a51, . . . ,dimg%; denote with$ea;a51, . . . ,dimg* % the as-
sociated basis in the dualg* of g. The conditions for invariance of the KT structure can now
written as

Lag50, LaH50, LaI 50, ~12!

whereLa5L Xa; similarly later for the inner derivation we havei a5 i Xa.
Using the assumption thatM is a strong KT manifold,dH50, the last equation above implie

that diaH50 and so there is a locally defined one-formua such that

i aH5dua .

Clearly ua is uniquely defined up to the addition of a closed one-form.
Next let us denote withX̃ the one-form dual with the vector fieldX with respect to the KT

metric. UsingLaI 50, one can show that the two-formd(X̃a1ua) is type-~1,1! with respect to the
complex structureI . Therefore, by the]̄-Poincare Lemma, there is a locally defined comple
valued functionha on M such that (X̃a1ua)1,05]ha . Let f a be the real part ofha . Define

wa5X̃a1ua2d fa . ~13!

Thenwa
1,05 i ]na , wherena is a constant multiple of the imaginary part ofha . Therefore, we can

write

wa5Idna . ~14!

Let j5jaea be any element ing. Define a mapn from M to g* by

n~x!~j!ª(
a

jana~x!. ~15!

A necessary condition forn to be well-defined onM is that the class ofi aH in H2(M ,R)
should be trivial. If in additionM satisfies the]]̄-lemma, thenn will be well-defined onM .

In the case when the groupG is Abelian, the issue of equivariance is absent and hence
map n so constructed is the moment map. Before we investigate equivariance in gener
consider the issue of nondegeneracy.
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Definition 2: A holomorphic Killing vector field X is nondegenerate if dnXÞ0.
Therefore, a holomorphic Killing vector field is nondegenerate if its moment map is non

stant. The following proposition is useful to determine when a holomorphic Killing vector fie
nondegenerate.

Proposition 1: If the length of a holomorphic Killing vector field is nonconstant, then
vector field is nondegenerate.

Proof: Note thatdnX50 if and only if dX̃1du50, i.e.,dX̃1iXH50. It means that for any
vector fieldY andZ,

Y~g~X,Z!!2Z~g~X,Y!!2g~X,@Y,Z# !1H~X,Y,Z!50,

i.e., g~¹YX,Z!1g~X,¹YZ!2g~¹ZX,Y!2g~X,¹ZY!2g~X,@Y,Z# !1H~X,Y,Z!50,

or g~¹YX,Z!2g~¹ZX,Y!12H~X,Y,Z!50.

On the other hand, sinceLXg50 and¹g50,

05X~g~Y,Z!!2g~@X,Y#,Z!2g~Y,@X,Z# !

5g~¹XY,Z!1g~Y,¹XZ!2g~@X,Y#,Z!2g~Y,@X,Z# !

5g~¹YX,Z!1g~@X,Y#,Z!1H~X,Y,Z!1g~Y,¹ZX!

1g~Y,@X,Z# !1H~Y,X,Z!2g~@X,Y#,Z!2g~Y,@X,Z# !

5g~¹YX,Z!1g~Y,¹ZX!.

Combining the above two identities, we find that for any vector fieldsY, Z,

g~¹YX,Z!52H~X,Y,Z!52duX~Y,Z!. ~16!

In particular,g(¹YX,X)50 for anyY. Since¹g50. It implies thatdg(X,X)50. Q.E.D.

B. Equivariance

Now we seek conditions forn to be equivariant. This issue will be analyzed in the next f
paragraphs. The mapn is equivariant if and only ifn(g•x)5Adg* (n(x)). Let X be any element
in g. The equivariance is determined by

n~g•x!~X!5n~x!~Ad g~X!!. ~17!

The infinitesimal version of the above identity is

LYnX5n [V,X] ; equivalently LYnX2n [Y,X]50. ~18!

Let @Xb ,Xa#5 f ba
c Xc be the structural equations for the algebrag so that f ba

c are constants.
Apply the above formula towa andua , respectively, with respect toXb , the equivariance condi
tions for wa andua are

Lbwa2 f ba
c wc50, Lbua2 f ba

c uc50. ~19!

These are nontrivial conditions. Note that

dLbua5Lbdua5LbiaH5iLbXa
H1iaLbH

5iLbXa
H5 f ba

c icH5 f ba
c duc5d~ f ba

c uc!. ~20!

By Poincare´ lemma, there exists a locally defined closed 1-formvba such that
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Lbua2 f ba
c uc5vba . ~21!

Therefore,vba is the obstruction forua to be equivariant.
Next, note thatLag50,

~LbX̃a!X5Lb~g~Xa ,X!!2g~Xa ,LbX!

5g~LbXa ,X!1g~Xa ,LbX!2g~Xa ,LbX!

5 f ba
c g~Xc ,X!5 f ba

c X̃cX.

Therefore, theg* -valued 1-formwªwaha is equivariant if and only ifuªuaha is equivariant.
Assuming thatu is equivariant. This implies that after a possible shift ofua with respect to a

closed one-form,ua must satisfy the above equation. Note that even ifua is equivariant, it is not
unique but rather defined up to an equivariantclosedone-form.

Next sincedwa is an~1,1!-form and if we assume that the]]̄-lemma applies on the manifold
M ~see either Ref. 8, 5.11 or Ref. 9, Corollary 2.110!, there is a functionna on M such that

dwa5ddcva5dIdna . ~22!

Therefore, the 1-form,

za5wa2Idna

is closed. In the above equationna is not uniquely defined but rather it is defined up the addit
of the real part of aholomorphicfunction.

As we have assumed thatua is equivariant,wa is equivariant. We obtain

Idnba1zba50, ~23!

where nba5Lbna2 f ba
cnc and zba5Lbza2 f ba

czc . Since dzba50, ~23! implies that ddcnba

50. By ]]̄-Lemma again,nba is a harmonic function and hence is the real part of a holomorp
function f ba . If, in addition,

f ba5LbFa2 f ba
cFc ~24!

for some holomorphic functionsFa , then redefiningna asna2ReFa andza asza2d Im Fa both
na andza become equivariant. So there is a choice ofua , such thatwa5Idna . Therefore, we have
found an equivariant moment mapn:M→g* .

C. Cohomology

The various conditions that we have found for the existence of a moment map in the pre
section can be identified as classes in de-RhamHdR* and in Hd* cohomology, whered will be
defined shortly. LetdG be the map defining Lie algebra cohomology in the usual way.10 In
particular, foruPg* andz, hPg,

dGu~z,h!52u~@z,h#!. ~25!

Therefore,~note the convention for wedge product! in terms of structural constants with respect
the dual basisua,
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dGua52(
b,c

f bc
a ub

^ uc

52 (
b,c

f bc
a ~ub

^ uc2uc
^ ub!52 (

b,c
f bc

a ub∧uc52
1

2 (
b,c

f bc
a ub∧uc. ~26!

In particular,dG
2 50. Next forf in L l(M ) andX in g, define

d̂f~X!ªLXf. ~27!

Equivalently,d̂f5Laf•ua. Then we extend this operator to

d:L l~M ! ^ Lkg* ^ g* →L l~M ! ^ Lk11g* ^ g* ~28!

as follows. Iff is in L l(M ), u is in Lkg* andh is in g* , then define

d~f•u ^ h!ª d̂f∧u ^ h1f•dGu ^ h

1~21!kf•u∧dGh. ~29!

This map generates a resolution.

L l~M ! ^ g* →
d0

L l~M ! ^ L1g* ^ g*¯

→L l~M ! ^ Lkg* ^ g*

→
dk

L l~M ! ^ Lk11g* ^ g*¯ .

We claim that this resolution is a complex, i.e.,dk+dk115d250. To check, notice that

d2~f•u ^ h!5d~d̂f∧u! ^ h1~21!k11d̂f∧u∧dGh1 d̂f∧dGu ^ h

1f•dG
2 f ^ h1~21!k11f•dGu∧dGh1~21!kd̂f∧u∧dGh

1~21!kf•dGu∧dGh1~21!2kf•u∧dG
2 h

5d~d̂f∧u! ^ h1 d̂f∧dGu ^ h5~d~ d̂f∧u!1 d̂f∧dGu! ^ h

5~d~ d̂f!∧u2 d̂f∧dGu1 d̂f∧dGu! ^ h

5~d~L afua!!∧u ^ h

5~LbL af•ub∧ua1Lcf•dGuc!∧u ^ h

5~LbLaf2 1
2 f ba

c Lcf!•ub∧ua∧u ^ h.

Since@La ,La#f5 f ba
c Lcf and f ba

c 52 f ab
c ,

LbLaf2 1
2 f ba

c Lcf5LaLbf1 1
2 f ba

c Lcf5LaLbf2 1
2 f ab

c Lcf. ~30!

It shows that the termLbLaf2 1
2 f ba

c Lcf is symmetric in the indicesab while the termub∧ua is
skew symmetric inab. It follows thatd(L afua)50 and henced250 as claimed.

One can now define a cohomology theory with respect tod in the usual way and denote it wit
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Hd
k~L l~M ! ^ g* !ª

kerdk

imagedk21
. ~31!

Since d commutes withd, one can also naturally define the cohomology groupsHd
k(Cl(M )

^ g* ), whereCl(M ) are the close l-forms onM .
A cohomology theory based on a resolution ofO^ g* , whereO is the sheaf of germs o

holomorphic functions onM , is similarly defined. This is possible because the groupG consists of
holomorphic actions. In particular,]̄+La5La+ ]̄. This cohomology is

Hd
k~O^ g* !ª

kerd:O^ Lkg* ^ g*

imaged:O^ Lk21g* ^ g*
. ~32!

Returning now in the discussion of the previous section, we have seen a necessary co
for the existence of a moment map in the KT case is thati aH is a trivial class inHdR

2 (M ). Now
we write i aH5dua and defineu5uaha. This is a section ofL1(M ) ^ g* . Using ~26!,

du5~dua! ^ ha1(
c

ucdGhc

5Lbuaub
^ ha2 (

a,b,c
f ba

c ucu
b

^ ha ~33!

5(
a,b

S Lbua2(
c

f ba
c ucD ub

^ ha. ~34!

Due to ~20!, the 1-form part is closed. Thereforedu is an element ofC1(M ) ^ L1g* ^ g.
Obviously, it is in the kernel ofd. It defines a class inHd

1(C1(M ) ^ g* ). Sinceu is not necessarily
a closed 1-form, this class is not necessarily trivial although it is represented bydu. Due to
computation of previous paragraphs, this cohomology class is the obstruction for adjustingu by a
closed 1-form so that it could be equivariant.

If this class vanishes, then as we have explainedd(waha)50 as well. Using this and assum
ing thatna is well-defined inw5Idn1z, wheren5naha andz5zaha, we haveIddn1dz50.
As we have explained in the previous section the obstruction for bothz andn to be equivariant are
dz and dn, respectively. The last identity implies that it suffices to find the condition fordn
50.

Due to identity~22!, dw50 andLaI 50, we havedIddn50. Therefore, by]]̄-Lemma, there
exists holomorphic functionf ba such thatnba5Refba. Define

fª f bau
b

^ ha. ~35!

This is an element inO^ L1g* ^ g* . The function part ofd f is holomorphic as the groupG
consists of holomorphic actions.

However, the real part ofd f is equal todn50. Therefore,d f is purely imaginary. This is
possible only ifd f 50. It follows that f defines a class inHd

1(O^ g* ). Note that the class off
vanishes if and only if the equationf 5dF has a solution. In other words, there are solutions
Eq. ~24!.

Some of the conditions that we have derived above can be cast into an elegant form
equivariant cohomology.11 In physics, it is known that the obstructions for gaugingbosonictwo-
dimensional sigma models with the Wess–Zumino term12,13 are elements of equivarian
cohomology.14 The theorem below provides sufficient conditions for KT reduction.
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Theorem 3: Let M be a strong KT manifold and G be a compact group acting on M
leaving invariant the KT structure. If the torsion three-form H admits an equivariant extensio

a closed form in EG3GM , Hd
1(O^ g* )50 and the]]̄-lemma applies on M, then M//G is a KT

manifold.
Proof: Note thatEG is the universal classifying bundle space for the groupG. It can be

shown that a closed three-formH in M admits an equivariant extension inEG3GM , if H is
invariant under the group action ofG on M and there are equivariant one-forms$ua ;a
51, . . . ,dimg% on M such that

i aH5dua and i aub1 i bua50. ~36!

Of course the one-formua is defined up to the addition of an equivariant closed one-formva .
Because of this, the one-formwa5ua1X̃a is equivariant anddwa is an ~1,1! form on M . If the
]]̄-lemma applies, thenwa5Idna1za , wherena is a function onM andza is closed one-form. It
can be shown that in factza is equivariant. Indeed, sincewa is equivariant and theG-action
preserves the complex structure, we have

Idnba1zba50, ~37!

wherenba5Lbna2 f ba
cnc andzba5Lbza2 f ba

czc . We have seen that the obstruction forza and
na to be equivariant lies inHd

1(O^ g* ). Since this vanishesza andna are equivariant. So there i
a choice ofua , such thatwa5Idna .

It remains to prove the transversality condition. This follows from the last condition in~36!
because it implies thati aub is skew-symmetric and soi awb is the sum of a nondegenera
symmetric matrix withi aub . Thereforen is a G-moment map and soM //G is a KT manifold.

Q.E.D.
D. Moment maps on strong HKT structures

The construction ofG-moment maps for the reduction of strong HKT manifolds can proc
as in the case of strong KT manifolds above. The only difference is that for each complex str
$I r ;r 51,2,3% one gets

wa5I rd~n r !a1za
r , ~38!

where za
r are again equivariant closed one-forms provided that the obstructions inHd

1(O^ g)
vanish. In this case however it is not always possible to redefineua such thatwa5I rd(n r)a unless
za

15za
25za

3 . Nevertheless, we can still use the mapn:M→R3
^ g as defined in~38! as a moment

map. This moment map is equivariant but neither transversality nor the Cauchy–Riemann
tions generically hold. Thus we have the following theorem:

Theorem 4: Let M be a strong HKT manifold and G be a compact group acting on M
leaving invariant the HKT structure. If the torsion three-form H admits an extension as a c
form in EG3GM such that wa5I rd(n r)a with n equivariant, then M//G is a HKT manifold.

Proof: The proof follows from that of reductions of strong KT manifolds and that of red
tions of weak HKT manifolds. Q.E.D

IV. POTENTIAL FUNCTIONS

Recall that if (M ,I,g) is a HKT manifold with Kähler forms va , a HKT potential is a
function r such that 2v15dd1r1d2d3r,2v25dd2r1d3d1r,2v35dd3r1d1d2r. In this sec-
tion, we follow the methods in Ref. 15 to find a potential function on reduced space. We con
to use the notations established in Sec. II B.

Theorem 5: Let (M ,I,g) be a HKT manifold with HKT potential functionr. Suppose that G
is a compact group of hypercomplex isometries leavingr invariant with moment mapn
5(n1 ,n2 ,n3) such that the tangent vectors to the orbits of G inn21(0) are in theker(dar), for
a51,2,3. Then the functionr induces a HKT potential function on the reduced space
5M //G.
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Proof: Let Pªn21(0) and i :P→M be the inclusion map. Now we first check th
i * ddaruU5ddai * ruU , whereU is defined in~5!. To this end notice that

i * dr~Xu!5dr~Xu!, i * dr~@Xu,Yu# !5dr~@Xu,Yu# !,

and i * I adr(Xu)5I adr(di(Xu))52dr(I aXu) becauseI adr(X)52dr(I aX). By direct compu-
tations after restricting on points ofP we have

~ i * ddar!~Xu,Yu!5di* dar~Xu,Yu!

5Xu~~ i * I adr!~Yu!!2Yu~~ i * I adr!~Xu!!2 i * I adr~@Xu,Yu# !

52Xu~dr~ I aYu!!1Yu~dr~ I aXu!!1dr~ I a@Xu,Yu# !

52Xu~dr~ I aYu!!1Yu~dr~ I aXu!!1dr~ I a@Xu,Yu#u!.

The last equality is due todr(I a@Xu,Yu#v)52dar(@Xu,Yu#v)50. This is true because@Xu,Yu#v

is tangent to an orbit ofG and the condition in the theorem. We shall use the same argum
repeatedly and implicitly in subsequent computation.

As the mapr is G-invariant, forx in P, we may define

rN~p~x!!ªr~x!, ~39!

wherep is the quotient map fromP onto N5P/G. In other words,p* rN5r. It follows that

~p* ddarN!~Xu,Yu!5dp* darN~Xu,Yu!

5Xu~darN~dp~Yu!!!2Yu~darN~dp~Xu!!2darN~dp~@Xu,Yu# !!

52Xu~drN~ I adpYu!!1Yu~drN~ I adpXu!!1drN~ I adp@Xu,Yu# !!

52Xu~dr~ I aYu!!1Yu~dr~ I aXu!!1drN~dp~ I a@Xu,Yu#u!!

52Xu~dr~ I aYu!!1Yu~dr~ I aXu!!1dr~ I a@Xu,Yu#u!.

It follows that i * ddar uU5p* ddarNuU . Similarly,

~i* dadbr!~Xu,Yu!5~ I adIcdr!~di~Xu!,di~Yu!!

5~ I adIcdr!~Xu,Yu!

5dIcdr~ I aXu,I aYu!

5I aXu~dcr~ I aYu!!2I aYu~dcr~ I aXu!!2dcr~@ I aXu,I aYu# !

5I aXu~dcr~ I aYu!!2I aYu~dcr~ I aXu!!2dcr~@ I aXu,I aYu#u!.

On the other hand,

~p* dadbrN!~Xu,Yu!5~ I adIcdrN!~dp~Xu!,dp~Yu!!

5~dIcdrN!~ I adp~Xu!,I adp~Yu!!

5~dIcdrN!~dpI a~Xu!,dpI a~Yu!!

5~p* dIcdrN!~ I aXu,I aYu!

5~dp* I cdrN!~ I aXu,I aYu!

5I aXu~p* I cdrN~ I aYu!2I aYu~p* I cdrN~ I aXu!!2p* I cdrN~@ I aXu,I aYu# !

5I aXu~2drN~dp~ I cI aYu!!2I aYu~2drN~dp~ I cI aXu!!

2drN~dpI c@ I aXu,I aYu# !

5I aXu~ I cdr~ I aYu!!2I aYu~ I cdr~ I aXu!!1dr~dpI c@ I aXu,I aYu#u!

5I aX~dcr~ I aYu!!2I aYu~dcr~ I aXu!!2dcr~@ I aXu,I aYu#u!.
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Therefore,i * dbdcr uU5p* dbdcrNuU for all even permutations (abc) of ~123!. At the end we use
the fact that the reduced Ka¨hler forms v̄a are characterized by the condition (p* v̄a) uU
5( i * va) uU and conclude that 2v̄a5ddarN1dbdcrN . Q. E. D.

Remark: In the case of when the torsion vanishes the condition in the above theore
equivalent to the one proposed by Kobak and Swann.15 In both cases the crucial point is to ensu
i * I adr5I ai * dr. In both casesdr(Xv)50 sincer is invariant.

V. EXAMPLES

It is known that SU(3) admits invariant hypercomplex structure, constructed by Joyce. M
over Pedersen and Poon16 considered the deformation of this structure and succeeded to repr
any ‘‘small’’ deformation as a hypercomplex reduced space of the spaceS13S11 under an appro-
priateS1 action. As it is shown in Refs. 5 and 17, the spaceS13S11 is HKT and one can check tha
the S1-actions considered in Ref. 16 Sec. 6.3 are HKT isometries. Now according to the the
of Sec. II B we have:

Theorem 6: Any small deformation of the invariant hypercomplex structure on SU(3) admits
a HKT structure.

In the rest of this section, we will construct new HKT-metrics through a reduction process
begin with a well-known metric, namely the Taub-NUT metric.

A. Taub-NUT metric

We use the notation of Ref. 18. LetM5H3H with quaternionic coordinates (q,w). We
identify points (t,x,y,z)PR4 with a quaternionqPH: q5t1 ix1 jy1kz. The ~quaternion! con-
jugate isq̄5t2 ix2 jy2kz. The flat metric onM is

dsflat
2 5dqdq̄1dwdw̄. ~40!

Using left multiplication of the unit quaternionsi , j , andk, we find the hypercomplex structur
I ,J, andK such that

Idt5dx,Idx52dt,Idy5dz,Idz52dy,

Jdt5dy,Jdx52dz,Jdy52dt,Jdz5dx,

Kdt5dz,Kdx5dy,Kdy52dx,Kdz52dt. ~41!

With respect to these complex structures, the Ka¨hler form of the flat metricdqdq̄ are

v I5dt∧dx1dy∧dz, vJ5dt∧dy1dz∧dx,vK5dt∧dz1dx∧dy. ~42!

Let G be R, tPR with the action (q,w)→(qeit ,w1lt), for l in R. This is a group of
hyper-Kähler isometries. It generates a moment map,

n5
1

2
qiq̄1

l

2
~w2w̄!. ~43!

We write r5qiq̄, r 5ur u andw5y1y so r andy are inR3. Moreover,

n5 1
2 r1ly. ~44!

Definec by q5reic/2, wherer is a pure quaternion. Now using the coordinates (c,r ,y,y), we
write the flat metric onM as

dsflat
2 5

1

4 S 1

r
dr21r ~dc1v•dr !2D1dy21dy2, ~45!
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where curlv5grad(1/r ). In these coordinates theG-action is

~c,y!→~c12t,y1lt !, ~46!

which leavest5c22y/l invariant. Onn21(0), one hasy52 (1/2l) r . The induced metric in
the coordinates (r ,t,y) on n21(0) is

dsflat
2 5

1

4 S 1

r
dr21r S dt1

2

l
dy1v•dr D 2D1dy21

1

4l2 dr2. ~47!

The quotient spacen21(0)/G is obtained by an orthogonal projection along the Killing vec
field ]/]y. It turns out that the quotient metric is the Taub–NUT metric,

dsTN
2 5

1

4 S 1

r
1

1

l2Ddr21
1

4 S 1

r
1

1

l2D 21

~dt1v•dr !2. ~48!

B. A HKT-version of the Taub–NUT metric

Given the preparation of the last section, we are now ready to consider HKT-reduction.h
be a function ofr . We consider the metric onH\$0%3H given by

dsh
25

h~r !

qq̄
dqdq̄1dwdw̄5

h~r !

r
dqdq̄1dwdw̄. ~49!

As @h(r )/r # dqdq̄ is a HKT-metric onH\$0% and product of HKT metrics is again a HKT metric
ds2 is a HKT metric. Since the hypercomplex structure does not change, the groupG remains
hypercomplex. It is again a group of isometries. Therefore, we again use the moment mn
generated by the actionG with respect to the hyper-Ka¨hler metricdsflat

2 . On n21(0) the induced
metric with respect todsh

2 is

h

4r S 1

r
dr21r S dt1

2

l
dy1v•dr D 2D1dy21

1

4l2 dr2

5
1

4 S h

r 2 1
1

l2Ddr21S 11
h

l2Ddy2

1
h

2l
dy(~dt1v•dr !1

h

4
~dt1v•dr !2. ~50!

Here we useda(b5a ^ b1b ^ a. Soa(a52a ^ a.
As hyper-Kähler reduction is also obtained by orthogonal projection, the horizontal distr

tion U is defined by keru. Therefore, the reduced metric is obtained by taking the restriction ofds2

on n21(0) modulou or m, where

u5i]/]ydsflat
2 , m5dy1

1

2l

~dt1v•dr !

S 1

r
1

1

l2D . ~51!

In other words, ifĝ is the quotient metric, then there is a 1-forma and functiona on n21(0) such
that

dsh
25am ^ m1~a ^ m1m ^ a!1ĝ. ~52!

It follows that i]/]yds25am1a. In our example,
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a511
h

l2 , a5
1

2l S h2S 11
h

l2D S 1

r
1

1

l2D 21D ~dt1v•dr !. ~53!

Therefore the quotient metric is

1

4 S h

r 2 1
1

l2Ddr21S 11
h

l2Ddy21
h

2l
dy(~dt1v•dr !1

h

4
~dt1v•dr !2

2S 11
h

l2D S dy1
1

2l

~dt1v•dr !

1

r
1

1

l2
D 2

2S dy1
1

2l

~dt1v•dr !

1

r
1

1

l2
D

(
1

2l S h2S 11
h

l2D S 1

r
1

1

l2D 21D ~dt1v•dr !

5
1

4 S h

r 2 1
1

l2Ddr21
1

4 S h

r 2 1
1

l2D S 1

r
1

1

l2D 22

~dt1v•dr !2. ~54!

5S h

r 2 1
1

l2D S 1

r
1

1

l2D 21

dsTN
2 . ~55!

In particular, the quotient metric is conformally equivalent to the Taub–NUT metric, a hy
Kähler metric.

Amongst the class of weak HKT metrics that have been constructed above, there is a
HKT metric which is complete. This is

ds25S 1

r
1

1

l2DdsTN
2 . ~56!

For this metric, the functionh is

h~r !511
2

l2 r 1
1

l2 S 1

l2 21D r 2. ~57!

This metric is strong HKT because the conformal factor is a harmonic function with respect
Taub-NUT hyper-Ka¨hler metric. The asymptotic behavior of the metric is as follows: Asr→`,
the metric~56! approaches the standard metric onS13R3. As r→0, the metric~56! approaches

ds2;
1

r S r ~dt1v•dr !21
1

r
dr2D .

Changing back to the quaternionic coordinatesq, we find that the above metric can be rewritt
as

ds25
1

qq̄
dqdq̄5du21ds2~S3!

with r 5qq̄ andu5 log(uqu). So it is the standard metric onR3S3. In physics language, the metri
~56! interpolates between the ten-dimensional Kaluza–Klein vacuum and the near horizon
etry of the NS5-brane.
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C. A HKT-version of the Lee–Weinberg–Yi metric

We are interested in examples beyond four-real dimension. As noted in Ref. 18, a
dimension analog of the Taub-NUT metric is the Lee–Weinberg–Yi~LWY ! metric. We construct
a family HKT-version of this metric. Moreover, these metrics are not conformal to the LW
metric.

We first review the construction of the LWY-metric very briefly to fix notations. We ta
M5Hm3Hm with coordinates (qa ,wa), a51, . . . ,m. Let L5(la

b) be a real nondegeneratem
3m-matrix. LetV5(va

b) be the inverse matrix. ForG5Rm5(t1 , . . . ,tm), define an action by

qa°qaeit a, wa°wa1(
b

la
btb . ~58!

With respect to the flat metricdsflat
2 5(adqadq̄a1(adwadw̄a and the hypercomplex structur

defined as in~41!, groupG is a group hyperholomorphic isometry. The moment map

n5~n1 , . . . ,nm!:M→Rm
^ R3 ~59!

is given by

na5
1

2
qaiq̄a1

1

2 (
b

la
b~wb2w̄b!. ~60!

Definera5qaiq̄a , r a5urau5qaq̄a , ya5 1
2(wa2w̄a). It follows thatwa5ya1ya . Now ra andya

are inR3 and the moment map is

na5
1

2
ra1(

b
la

byb . ~61!

Define ca by qa5raeica/2, where ra is a pure quaternion. Now using the coordina
(ca ,ra ,ya ,ya), one may construct explicitly a hyper-Ka¨hler metric on the quotient space in th
way the Taub-NUT metric is constructed. This is the LWY-metric.

For reference in subsequent computation, we note that in these coordinates theG-action is
(ca ,ya)→(ca12ta ,ya1(bla

btb). It leaves the functions

ta5ca22(
b

va
byb ~62!

invariant. On the level setn21(0), ra522(bla
byb . Equivalently,ya52 1

2(bva
brb .

Next, consider a new metric onM,

ds25(
a

f a~qaq̄a!dqadq̄a1(
a

dwadw̄a

5(
a

f a~r a!dqadq̄a1(
a

dwadw̄a . ~63!

This is a HKT-metric. The groupG is again a group of hyper-holomorphic isometries. We may
the G-moment mapn again to construct a quotient metricĝ with respect tods2.

The restriction of the metricds2 on n21(0) with respect to the coordinates (ra ,ta ,ya) is
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(
a

S f a

4r a
dra

21
f ar a

4 S 2(
b

va
bdyb1dta1AaD 2

1dya
21

1

4 S (
b

va
bdrbD 2D

5
1

4 (
b,c

S db
c f c

r c
1(

a
va

bva
cD drb^ dr c1(

b,c
S db

c1(
a

~ f ar ava
bva

c! Ddyb^ dyc

1
1

2 (
a,b

f ar ava
bdyb(~dta1Aa!1

1

4 (
a

f ar a~dta1Aa!2. ~64!

To find the quotient metricĝ, it suffices to find functionsFab and 1-formsaa such that

ds25(
a,b

Fabua^ ub1(
a

~ua^ aa1aa^ ua!1ĝ. ~65!

Now the problem is that the Killing vector fields]/]ya generated byG on the zero level se
in general are not mutually orthogonal.

From now on, we limit our discussion to the case whenla
b5lada

b . Equivalently,L is a
diagonal matrix whose nonzero entry isla . Its inverse is a diagonal matrix whose non-zero en
is va51/la . In this case,

ucªi]/]yc
ds25~11r cvc

2!dyc1
1

2
r cvc~dtc1Ac!

5S 11
r c

lc
2Ddyc1

r c

2lc
~dtc1Ac!, ~66!

whereAcªv(ra)•dra . Since the vector fields]/]ya are mutually orthogonal with respect tods2,

i]/]yc
ds25~11r cvc

2!S (
a

Fcaua1acD . ~67!

The restriction of the metricds2 on n21(0) with respect to the coordinates (ra ,ta ,ya) is

(
a

S f a

4r a
dra

21
f ar a

4
~2vadya1dta1Aa!21dya

21
va

2

4
dra

2D
5(

a
S f a

4r a
dra

21
f ar a

4 S 2

la
dya1dta1AaD 2

1dya
21

1

4la
2 dra

2D
5(

a
~ 1

4 ~ f ar a1va
2!dra

21~11 f ar ava
2!dya

21 1
2 f ar avadya(~dta1Aa!

1 1
4 f ar a~dta1Aa!2!.

Therefore,

i]/]ya
ds25~11 f ar ava

2!dya1 1
2 vaf ar a~dta1Aa!

5
~11 f ar ava

2!

~11r ava
2!

ua1 1
2 f avar aS 12

11 f ar ava
2

~11r ava
2! f a

D ~dta1Aa!5
~11 f ar ava

2!

~11r ava
2!

ua

1
var a

2~11r ava
2!

~ f a21!~dta1Aa!.
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It implies that the matrix (Fab) is a diagonal matrix and

Fa5Faa5
~11 f ar ava

2!

~11r ava
2!2 , aa5

var a

2~11r ava
2!2 ~ f a21!~dta1Aa!. ~68!

Then the quotient metric is n

ĝ5ds22(
a

~Faua^ ua1ua(aa!

5
1

4 S f a

r a
1va

2Ddra
21S f ar a

4
2

r a
2va

2~11 f ar ava
2!

4~11r ava
2!2 2

va
2r a

2~ f a21!

2~11r ava
2!2D ~dta1Aa!2

5
1

4 (
a

S f a1r ava
2

11r ava
2 D S S 11r ava

2

r a
Ddra

21S 11r ava
2

r a
D 21

~dta1Aa!2D . ~69!

When f a51 for all a, we obtain a simple version of the LWY-metric,

dsLWY
2 5

1

4 (
a

S S 11r ava
2

r a
Ddra

21S 11r ava
2

r a
D 21

~dta1Aa!2D . ~70!

This is simple because this metric is a product metric.
In general, so long as not all thela51/va are equal, the quotient metricĝ is a HKT-metric.

However, it is no longer conformal to the LWY-metric.
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Contact metric 5-manifolds, CR twistor spaces
and integrability
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The CR twistor space is defined over a contact metric 5-manifoldM . Like the
4-dim twistor theory, the integrability of the almost CR twistor structure is dis-
cussed in terms of the Weyl conformal curvature and also the scalar curvature of
M . © 2002 American Institute of Physics.@DOI: 10.1063/1.1476953#

I. INTRODUCTION AND MAIN THEOREMS

The twistor space for 4-manifolds stems from the idea of R. Penrose developed in math
cal physics of gravity~see Ref. 15!. The twistor space is endowed with the canonical alm
complex structure. The integrability of this almost complex structure is exhibited by Ati
Hitchin and Singer in terms of conformally half flatness of a base 4-manifold.

Theorem„Atiyah, Hitchin and Singer2,3
…: Let Z 2 be the twistor space of an oriented Ri

mannian 4-manifold (M ,g). Then, the almost complex structure onZ 2 is integrable if and only
if ( M ,g) is self-dual, namely, the anti-self-dual Weyl conformal tensorW2 vanishes.

The twistor space of a 4-manifold presents a profound link between 4-dimensional conf
geometry and theory of complex manifolds. For this direction, for instance, refer to Hitc
paper8 and the Ward correspondence.19

Twistor space is defined also on odd dimensional spaces, such as a mini-twistor spa
Einstein-Weyl 3-manifolds, defined by N. Hitchin in Ref. 9. LeBrun defined in this direction a
twistor space for conformal 3-manifolds in Ref. 14 as null cones over complexified tan
bundle.

We will focus on a contact 5-manifold in this article and investigate the twistor space de
on it. So, letM be a smooth 5-manifold and suppose thatM be equipped with a contact metri
structure (h,j,f,g).

M admits then a particular direction along the characteristic fieldj in each tangent space an
also the rank 4 contact bundleE5Ker h so thatTM5E% ^j&. The bundleE plays a role of the
tangent bundle of a 4-manifold. ToE is associated an SO~4!-principal bundle, the oriented ortho
normal frame bundlePE .

We take as the CR twistor spaceZ the sphere bundleU(L2
2 (E* ))5$aPL2

2 (E* ) u uau52%
for the dualE* of E. Anti-self-dual two-formsa on E of norm uau52 are identified with orthogo-
nal almost complex structuresJ of E. So,Z can be regarded as the space of orthogonal alm
complex structures on the contact bundleE.

To define an almost CR structureJ on Z we utilize the contact splitting ofTM and the
tangent space decomposition ofZ at aPZ into the vertical and horizontal subspaces:TaZ5Va

% Ha , where the vertical subspaceVa>TP1(C) and the horizontal subspaceHa>TxM , x
5p(a). Herep:Z→M is the projection.

At aPZ via the identification ofa with Ja, an almost complex structure ofEx , we define

Ja : Va→Va ; Ja~V!5 j ~V!,

Ha8→Ha8 ; p* ~Ja~X8!!5Ja~p* ~X8!!,

a!Electronic mail: itohm@sakura.cc.tsukuba.ac.jp
37830022-2488/2002/43(7)/3783/15/$19.00 © 2002 American Institute of Physics
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Ha9→Ha9 ; Ja~X9!50.

Here j is the canonical almost complex structure ofP1(C) and H has the splittingHa5Ha8
% Ha9 according to the contact splitting ofTM.

Set E5V% H8, the subbundle of the tangent bundleTZ, on which J acts as an almos
complex structure with the splittingE^ C5E 1,0

% E 0,1.
Definition: The almost CR structureJ on Z is integrableif

@X2A21JX,Y2A21JY#PG~E 1,0!

for any smooth sectionsX2A21JX,Y2A21JY of E 1,0.
The main purpose of this article is to exhibit an integrability of the almost CR structureJ in

terms of the base manifold curvature.
The curvature tensorR:L2(T* M )→L2(T* M ) of (M ,g) enjoys the decomposition

R5W1B2
s

20
id,

into the Weyl conformal curvature partW, the trace free Ricci tensor partB and the scalar
curvature part2(s/20) id.

In terms of the splitting ofL2(T* M ),

L2~T* M !5L1
2 ~E* ! % L2

2 ~E* ! % h∧L1~E* !,

R has the block decomposition

R5S R1
1 R1

2 R1
0

R2
1 R2

2 R2
0

R 0
1 R 0

2 R 0
0
D ,

with the similar decompositions ofW, B.12

The following theorem indicates the validity of contact geometrical analog of the theore
Atiyah, Hitchin and Singer.

Theorem 1.1: Let (M ,h,j,f,g) be a K-contact 5-manifold andZ5U(L2
2 (E* )) its CR

twistor space.
Then,J onZ is integrable if and only if (M ,g) is self-dual contact-metric, in other words, th

anti-self-dual Weyl conformal tensorW2
2 vanishes and the scalar curvatures524.

Here, aK-contact manifold is a contact metric manifold for whichj is a Killing field ~see Sec.
II !. The connection¹E, induced from the Levi-Civita connection, is utilized to define the vertic
horizontal splitting ofZ. However, it is observed that an arbitrary metric connection onE, for
example, a generalized Tanaka–Webster connection given by Tanno,17 yields an almost CR struc
ture onZ, whose integrability may also be interesting.

The CR twistor spaceZ with the almost CR structure (E,J), even not integrable, admits
vector fieldj̃, the horizontal lift ofj on M .

Theorem 1.2:Let Z be the CR twistor space of aK-contact 5-manifold (M ,h,j,f,g). Then,
the following are equivalent.

( i ) j̃ is a CR holomorphic vector field, i.e.,

@ j̃,X2A21JX#PG~E 1,0!

for any smooth sectionX2A21JX of E 1,0.
( i i ) R 0

25W 0
21B 0

2 : h∧L1(E* )→L2
2 (E* ) vanishes,
                                                                                                                



of the

ld

e

CR
or-

t
d to

se

e

r

e

ly

3785J. Math. Phys., Vol. 43, No. 7, July 2002 Contact metric 5-manifolds and CR twistor spaces

                    
An almost CR structureJ on Z induces an almost complex structureI on the product space
Z3R or Z3S1 such thatIuE5J, I( j̃)5 ]/]t. It is not difficult to show thatI on Z3R or Z
3S1 is integrable if and only ifJ on Z is integrable and alsoj̃ is CR holomorphic.

So an immediate consequence of Theorems 1.1 and 1.2 is the following integrability
almost complex structure.

Corollary 1.1: Let (M ,h,j,f,g) be aK-contact 5-manifold. The almost complex manifo
(Z3R,I) is integrable if the following curvature conditions hold:

W2
250,

R 0
25W 0

21B 0
250

ands524.
We exhibit certain examples of theK-contact 5-manifold for which the CR twistor spac

admits the integrable CR structure.
From its full curvature formula~see Ref. 4! a Sasakian 5-manifold (M ,h,j,f,g) with con-

stantf-sectional curvaturec523 satisfies these three conditions in Corollary 1.1. So the
twistor space of this manifoldM admits the integrable almost CR structure with the CR holom
phic vector fieldj̃.

Restricting ourselves to a certain class ofK-contact 5-manifolds,K-contact 5-manifolds admi
an S1-fibration with a connectionh, the contact form. The above theorems are then transfere
the following.

Theorem 1.3:Let (M ,h,j,f,g) be aK-contact 5-manifold which is anS1-principal bundle
over a 4-manifoldN with a connectionh. Then, the CR twistor spaceZ of M is integrable if and
only if N is self-dual, i.e.,WN

250 and has zero scalar curvature,sN50.
Moreover, the horizontal vector fieldj̃ is always CR holomorphic so that for a ba

4-manifoldN which is self-dual and of zero scalar curvature the product spaceZ3R or Z3S1 is
a complex 4-dimensional manifold.

From Boothby–Wang fibration theorem the base 4-manifoldN in Theorem 1.3 must be an
almost Kähler manifold with a Ka¨hler form whose lift isdh. WhenM is moreover Sasakian,N is
Kähler, due to the result of Hatakeyama~see Ref. 7!. For a Kähler 4-manifold the scalar curvatur
s50 if and only if the self-dual Weyl conformal tensorW150 ~see Refs. 10 and 5!. Therefore the
CR twistor space of a Sasakian 5-manifoldM admitting a compatibleS1-bundle structure is
integrable if and only if the base Ka¨hler 4-manifoldN of M is conformally flat (W50). SinceN
is self-dual, the twistor spaceZ of M is anS1-fibration over the Penrose twistor spaceZN of N so
that one gets a sequence of fibrations:Z3R→Z→ZN .

As a concrete example, we take a canonically defined circle bundleM over N5S23H2, the
Riemannian product ofS2 andH2. So,M is equipped with a Sasakian structure.N is geometri-
cally conformally flat, Ka¨hler and of sN50. Moreover, N is conformally equivalent toR
3(R3\0) and hence toS4\C, whereC is a great circle so thatZN is P3(C)\Ĉ, whereĈ is the set
of twistor lines overC. The CR twistor spaceZ of M is then a certain circle bundle ove
P3(C)\Ĉ. Namely we get the double fibration:

Z ——→
S1

P3~C!\Ĉ ——→
P1(C)

S23H2.

Dividing this by a certain discrete subgroupG of SL(2,R), one can get compact quotients. Th
details of the argument of Theorem 4 will be given elsewhere.13

Remarks:~i! Notice that h̃5p* h, the pulled back one-form toZ of h, gives rise to the
degeneracy of the Levi form (Z1 ,Z2)°dh̃(JZ1 ,Z̄2) so that our CR twistor space is not strong
pseudo-convex.

~ii ! We have
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p* L1
2 ~E* !5L (1,1)~Z!ùp* L2~E* !

similarly to the twistor space of a 4-manifold~see, for example, Ref. 2, p. 442!, and contrarily
L2

2 (E* ) lifts to (L (2,0)
% L (0,2))(Z).

~iii ! A contact CR analog of the Ward correspondence holds~see Ref. 2, p. 441 and Ref. 19!.
In fact, we easily observe that ifV is a Hermitian vector bundle with a self-dual connectionD, i.e.,
a connectionD with curvature RD satisfying RDPG(L1

2 (E* ) ^ End V) over a K-contact
5-manifold ofW 2

250 ands524, and if Ṽ5p* V is the pulled back bundle onZ, then the lift
D̃5p* D of D, a connection onṼ, satisfies two of the three properties of so-called Tan

canonical connection, namely,~a! i ( j̃)RD̃50 and ~b! RD̃PG(L (1,1)(Z) ^ End Ṽ). See Refs. 16
and 18 for Tanaka canonical connection.

~iv! We can define, similarly toZ, the positive type of CR twistor spaceZ 1 over M as
Z 15U(L1

2 (E* )) which admits an almost CR structureJ 1. However, it can not be integrable
since thef-invariance ofdh obstructs its integrability.

In Sec. II we will give a basic summary of contact-metric structure and almost CR struc
To investigate the integrability of the almost CR structure we take the projective spinor b
description of the CR twistor space. We therefore provide in Sec. III a brief summary of Cli
algebra and spinors to define the projective spinor bundle. Integrability argument will be giv
Sec. IV by lifting it up on the orthonormal frame bundlePE of E. We divide Sec. V into five smal
sections to accomplish a proof of Theorems 1. For this description and the argument
integrability we owe much to Ref. 6. In Sec. VI we deal with the CR holomorphic condition o
horizontal characteristic field.

The author is indebted to the referee for valuable comments.

II. CONTACT METRIC STRUCTURE AND ALMOST CR STRUCTURE

We first introduce the notion of contact metric structure. For a reference of contact m
structures see Ref. 4 and also Ref. 11.

Definition 2.1:We call a quadruplet (h,j,f,g) of tensors on a 5-manifoldM a contact metric
structure, ifhPG(M ;L1(M )), jPX(M ), fPG(M ;EndTM) and a smooth metricg on M sat-
isfy

~i! h∧(dh)2Þ0,
~ii ! h(j)51, dh(j,•)50,
~iii ! f2(X)52X1h(X)j, and
~iv! g(X,fY)5 1

2dh(X,Y), g(fX,fY)5g(X,Y)2h(X)h(Y).

Then uju51 and f(j)50. So the contact bundleE5Kerh carries a Hermitian structure
(guE ,fuE) and

TM5E% ^j&.

An orthonormal framee5(e1 ,...,e4) of (E,guE) is called f-basis, if e25f(e1), e4

5f(e3).
Lemma 2.1:Let e5(e1 ,...,e4) be a f-basis. Then for any odd permutation (i 1 ,...,i 4) of

(1,2,3,4) thej-component of@ei 1
,ei 2

#1@ei 3
,ei 4

# vanishes.
Proof: This is obvious, since

dh~f~X!,f~Y!!5dh~X,Y!, X,YPE, ~1!

and that thej-component of@ej ,ek# is h(@ej ,ek#)52dh(ej ,ek).
The contact bundleE inherits a metric connection¹E,

¹X
EY5prE¹XY,
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where prE is the projection fromTM onto E and¹ is the Levi-Civita connection.
Lemma 2.2:
~i! For ZPG(E), andXPTM,

¹XZ5¹X
EZ1aX~Z!, aX~Z!52g~Z,¹Xj!j,

and
~ii ! the Gauss equation for the curvatureRE of ¹E is

RE~X,Y!Z5~R~X,Y!Z!E2g~Z,¹Xj!¹Yj1g~Z,¹Yj!¹Xj, X,YPTM, ZPG~E!.

Here the curvature tensor is defined asRE(X,Y)Z5¹X
E¹Y

EZ2¹Y
E¹X

EZ2¹ [X,Y]
E Z.

A contact metric structure (h,j,f,g) is calledK-contactif j is a Killing field. Basic proper-
ties of a (2n11)-dimensionalK-contact structure are

¹Xj52f~X!,

R~j,X!j52X,

Ric~j,j!52n for XPEx .

We have from Lemma 2.2, (i i ) for a K-contact 5-manifold (M ,h,j,f,g) the components
Ri jk ,

E 5g(RE(ei ,ej )ek ,e,) in terms of af-basis are given as follows.
Lemma 2.3:

Ri jk ,
E 5Ri jk ,2g~fei ,ek!g~fej ,e,!1g~fei ,e,!g~fej ,ek!,

i , j ,k,,51,2,3,4.

Hence the curvatureRE enjoys the symmetries

Ri jk ,
E 5Rk, i j

E for i , j ,k,,51,2,3,4.

Moreover, we get

Ri jk ,
E 5Ri jk ,

except for

R1324
E 5R132421, R1423

E 5R142311.

A contact metric manifold (M ,h,j,f,g) is called Sasakianwhen the canonically defined
almost complex structure onM3R is integrable~see Ref. 4!. This notion is equivalent to thatf
satisfies (¹Xf)Y5g(X,Y)j2h(Y)X. A Sasakian manifold isK-contact. The curvature tensor o
a Sasakian manifold satisfies

g~R~j,X!Y,Z!50, X,Y,ZPE,

giving rise to the partial vanishing ofR asR 0
15R 0

250.
Let N be a smooth orientable odd dimensional manifold.
In order to define a CR structure~i.e., an integrable almost CR structure! on N we take the

complexified tangent bundleTN^ C and consider a special subbundle of it.
Let S be a complex vector subbundle ofTN^ C satisfyingSùS̄5$0% and dimCTN^ C/S

% S̄51. Then the pair (N,S) or S is called analmost CR structure~see Ref. 1!.
S is calledintegrableif @G(S),G(S)#,G(S).
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Real hypersurfaces of a complex manifold are prototype of the CR manifold. From the
tion on the structure tensorf one can see that Sasakian manifolds are CR manifolds.

A vector fieldz on N is CR holomorphicwhen@z,G(S)#,G(S). For basic references of CR
structure, see, for instance, Refs. 1, 16, and 18.

III. THE PROJECTIVE SPINOR DESCRIPTION

The contact bundleE of a contact metric 5-manifold (M ,h,j,f,g) is rank 4, oriented and
carries the fiber inner productguE . The oriented orthonormal frame bundlePE associated toE has
structure group SO~4!.

The spinor group Spin(4)5SU(2)13SU(2)2 , the universal covering group of SO~4!, en-
joys, via the Clifford multiplication onS5S1

% S2>C2
% C2, the spinor representation

r6:Spin(4)→SU(S6) yielding the actionr 2 of SO~4! on P1(C).
So, we define the projective spinor bundleP(S2(E)) associated toE as

P~S2~E!!5PE3 (SO(4),r 2)P~S2!.

From the basic Clifford multiplication property the CR twistor spaceZ5U(L2
2 (E* )) can be

identified with the projectified negative spinor bundleP(S2(E)). We will explain this in a natural
way in Sec. IV.

To state more precisely we let Cliff(R4) denote the Clifford algebra over the Euclidea
4-space with the negative inner product (R4,2^,&).

Cliff( R4) is 16-dimensional and generated by the orthonormal basise1 ,e2 ,e3 ,e4 of R4 with
the relationsei•ei521 for i 51,...,4 andei•ej1ej•ei50 for iÞ j .

As is well known in Clifford algebra theory, the complexification CliffC(R4) is isomorphic to
the algebraC(4) of all 434 complex matrices. We denote thus obtained isomorphism
r:Cliff C(R4)→C(4). Then,r is defined as

e1°I 2^ g1 , e2°I 2^ g2 , e3°g1^ T, e4°g2^ T, ~2!

where

I 25S 1 0

0 1D , T5S 0 2 i

i 0 D , g15S i 0

0 2 i D , g25S 0 i

i 0D . ~3!

We write r(X)u asX•u for brevity, for XPCliff C(R4) anduPC4.
The group Spin(4) is generated multiplicatively by all elementsx•y with x,yPR4 and uxu

5uyu51. The covering homomorphisml:Spin(4)→SO(4) is given by

l~z!x5z•x•z21, zPSpin~4!, xPR4. ~4!

The Lie algebraspin(4) of Spin(4) is identified with the linear hull of the set$ei•ej u i , j %.
On the other hand,$Ei j u i , j % is the standard basis of the Lie algebraso(4). The differential
r* :spin(4)→so(4) of the mapr is then given byr* (ei•ej )52Ei j . Here Ei j , i , j , is the 4
34 skew-symmetric matrix whose (i , j )-entry is21, while the (j ,i )-entry is 1, and other ones ar
zero.

By restricting the mapr to Spin(4), we get acomplex representaion of Spin(4) onC4>S for
which we use the samer. This decomposes into two irreducible unitary representations, called
spinor representationsr6:Spin(4)→SU(S6), whereS5S1

% S2>C2
% C2.

Notice that the differential of the representationr:Spin(4)→GL(S) is given byr* 5r.
With respect to a certain basis ofS5S1

% S2 we have

r2:(
i , j

ai j ei•ej°S i ~a342a12! ~a131a24!1 i ~a142a23!

2~a131a24!1 i ~a142a23! i ~a122a34!
D . ~5!
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The spinor representationr2 induces the transitive isometric actionr 2 of SO~4! on the
complex projective lineP(S2)>P1(C) preserving the complex structure. So, we write

P~S2!5SO~4!/H2,

whereH2 is the isotropy group of this action at the reference point@1:0#PP1(C).
To exploit the integrability of the almost CR structureJ given in Sec. I we introduce bases o

the Lie algebrah2 of H2 and its orthogonal complementn2 in so(4).
The algebrah2 is the image underl:spin(4)→so(4) of the inverse image (r2)21(s1),

wheres1 is the isotropy subalgebra insu(2) at the point@1:0#.
Thus we get the following form ofh2 by the aid of the precise description of the spin

representation;

h25H(
i , j

ai j Ei jUa131a2450, a145a23J .

Its orthogonal complementn2 with respect to the canonical inner product is

n25R~E131E24! % R~E142E23!

giving the tangent space ofP1(C) at the origin.
The complex structurej is now written as

j :E131E24°2~E142E23!, E142E23°E131E24.

The detailed argument of these descriptions is referred to Ref. 6.

IV. INTEGRABILITY OF THE ALMOST CR STRUCTURE

In their paper2 Atiyah, Hitchin, and Singer proved the integrability by reducing the problem
the integrability on the spinor bundlesS2 instead ofP(S2).

In this article, however, we will reduce the integrability to certain conditions on the fr
bundlePE with respect to a submersionF:PE→P(S2(E)). The frame of argument we adopt he
is almost similar to that in Ref. 6. But our CR twistor space situation is quite different from
in Ref. 6 and so we must proceed to observe the details of the argument.

Choose a pointxPM and take a small neighborhoodU of x diffeomorphic toR5. Then,PE

over U admits the associated Spin(4)-bundleP̃E over U and hence the spinor bundleS2(E)U

5 P̃E3Spin(4)S
2 over U.

The projectionp:S2→P(S2);u°p(u) yields the canonical projection

p:S2~E!U→P~S2~E!!uU ;ĉ25@ ẽ,u#°c25@e,p~u!#, ẽP P̃EuU ,

whereẽ is a lift of ePPEuU .
To eachc2 of P(S2(E))uU at xPU we define an almost complex structureJc2

:Ex→Ex in
the following way.

Choose a nonzeroĉ2 in S2(E) such thatp(ĉ2)5c2.
Then the Clifford multiplication induces theR-linear isomorphism

Ex→S2~E!x ;X°X•ĉ2.

The complex structure ofS2(E)x yields canonically aguE-orthogonal almost complex struc
ture Jc2

of Ex as

~Jc2
~X!!•ĉ25A21~X•ĉ2!.
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Remark that this definition does not depend on any choice of negative spinorsĉ2 for c2.
So, P(S2(E)) is identified with the space of reversely oriented, orthogonal, almost com

structures onE and hence with the twistor spaceZ5U(L2
2 (E)).

We decompose by the aid of the connection¹E on E the tangent bundleTPE into

TPE5V̂% Ĥ,

whereV̂ andĤ are the vertical and horizontal subbundles, respectively.
We further decomposeV̂ into the isotropic vertical partV̂h2

5$A* uAPh2% and its orthogonal
complementV̂n2

5$B* uBPn2%. HereA* means the fundamental vector field onPE generated by
APso(4).

So we have the decomposition

TPE5V̂h2
% V̂n2

% Ĥ8% Ĥ9, Ĥ5Ĥ8% Ĥ9

corresponding to the contact decompositionTM5E% ^j&.
Now we choose a pointqPP(S2) and take a nonzero spinoruPS2 such thatp(u)5q.
So, associated touPS2, we have a smooth submersionF5Fu : PE→P(S2(E)), e°c2

5@e,p(u)#.
Remark that these submersionsFu obey

Fu~ea!5F âu~e!,ePPE

for aPSO(4) andâPSpin(4) withl(â)5a.
We define an associated endomorphismĴ:TePE→TePE at ePPE by
~1! Ĵ50 on V̂h2

,
~2! Ĵ5 ̂ on V̂2, wherê is canonically defined aŝ(B* )5( jB)* , BPn2,
~3! for XPĤ8 Ĵ(X) is the horizontal vector inĤ8 for which

~pP!* ~Ĵ~X!!5JF(e)~~pP!* ~X!!,

whereJF(e):Ex→Ex is the almost complex structure defined byF(e)PP(S2(E)), and
~4! Ĵ50 on Ĥ9, i.e., Ĵ( ĵ)50 for the horizontal liftĵ of j.
The definition ofĴ on PE yields the relation

F* ~Ĵ~X!!5J~F* ~X!!,XPTPE .

Remark that KerF* 5V̂h2
and furtherF* maps the subbundleÊ5V̂n2

% Ĥ8 isomorphically
onto the subbundleE5V% H8 of TP(S2(E)).

With respect toĴ the complexified bundleÊ^ C5(V̂n2
% Ĥ8) ^ C decomposes into the~1,0!-

part and~0,1!-part as

Ê^ C5 Ê(1,0)
% Ê(0,1).

Since theF is a submersion, the bracket operation@•,•# is preserved throughF for w-related
vector fields. So, we can state the integrability condition of the almost CR structure as foll

Proposition 4.1:The almost CR structureJ on Z5P(S2(E)) is integrable if and only if, for
eachp(u)PP(S2), the endomorphismĴ5ĴF associated to theF5Fu fulfills

@Z2A21ĴZ,W2A21ĴW#PG~ V̂h2
^ C% Ê(1,0)!

for any smooth sectionsZ2A21ĴZ,W2A21ĴW of Ê(1,0).
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Since the pair (h2,n2) is a symmetric pair, that is,@n2,n2#,h2, Proposition 4.1 reduces t
the following.

Proposition 4.2:J on Z 2 is integrable if and only if, with respect to anyĴ5ĴF associated
to Fu , the following two conditions hold
~i!

@V2A21ĴV,W2A21ĴW#PG~ V̂h2
^ C% Ê(1,0)!

for any smooth sectionsV2A21ĴV of (V̂n2
)(1,0) andW2A21ĴW of (Ĥ8)(1,0).

~ii !

@Z2A21ĴZ,W2A21ĴW#PG~ V̂h2
^ C% Ê(1,0)!

for any smooth sectionsZ2A21ĴZ,W2A21ĴW of the same subbundle (Ĥ8)(1,0).

V. THE CURVATURE CONDITIONS AND THE PROOF OF THEOREM 1.1

We will verify Theorem 1.1 by investigating the integrability hypothesis given in Proposi
4.2.

1. First we show by choosing appropriate negative spinors that the integrability con
implies the curvature conditions stated in Theorem 1.1, namely, that aK-contact 5-manifold
(M ,h,j,f,g) satisfiesW 2

250 for the Weyl conformal curvature tensorW and the scalar curva
ture s524.

In fact, we will take three negative spinors inS2(E) such that the associated almost comp
structures correspond to the three anti-self-dual formsu1∧u22u3∧u4 ,u1∧u31u2∧u4 ,u1∧u4

2u2∧u3 , respectively. Here$u i% is the dual frame of af-basis$ei%.
We make use of the decomposition ofso(4)5h2

% n2 and their bases given in Sec. III and s

Y15E12, Y25E34, Y35E132E24, Y45E141E23,

Y55E131E24, Y65E142E23,

so h2 is spanned byYi ,i 51,...,4 andn2 by Y5 ,Y6 .
Let xPM and choose a neighborhoodU containingx. Take an orthonormal frame fielde

5(e1 ,e2 ,e3 ,e4) of E, which is af-basis.
Thus,e5(e1 ,...,e4) gives a smooth section ofPE over U so thatPE admits a trivialization

PEuU5U3SO~4!.

Fix a u in S2\$0% with the submersion F5Fu :PEuU→P(S2(E))uU . So F(e)
PP(S2(E))uU yields an almost complex structureJ5JF(e):Ey→Ey at y5pP(e)PU.

ThenĤ8 is spanned by

Zi5ei2~vE~ei !!* 5ei2(
j ,k

v jk
E ~ei !Ejk* , i 51,...,4,

where vE5(v jk
E )5(v jkEjk is the connection form of¹E with respect to the frame fielde

5(ei);

¹X
Eei5(

j 51

4

v j i
E~X!ej .

To simplify the argument we may assumev jk
E 50 at x.

From the definition ofĴ we have
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ĴZi5JF(e)ei2( v jk
E ~JF(e)ei !Ejk* , i 51,2,3,4.

Hence the integrability conditions of Proposition 4.2 reduce to the following two condition
x:

~ i!8 @Y6* 2A21Y5* , Zi2A21ĴZi #PG~~ V̂h2
! ^ C% ~ Ê!(1,0)!, i 51,...,4

and

~ ii !8 @Zi2A21ĴZi , Zj2A21ĴZj #PG~~ V̂h2
! ^ C% ~ Ê!(1,0)!, i , j

hold.
Remark that~ii !8 is equivalent to

~ ii !9 Ĵ~@Zi2A21ĴZi ,Zj2A21ĴZj # !2A21@Zi2A21ĴZi ,Zj2A21ĴZj #PG~~ V̂h2
! ^ C!,

sinceÊ(1,0) is theA21-eigenspace ofĴ.
First we remark that (i )8 is always satisfied.
In fact, Y5* , Y6* and Ejk* are vector fields onU3SO(4) having only SO(4)-components

which are constant alongU, while ei andJF(e)ei have onlyU-components, constant along SO(4).
So

@Y6* 2A21Y5* ,Zi2A21ĴZi #52( v jk
E ~ei !@Y6* 2A21Y5* ,Ejk* #

1A21( v jk
E ~JF(e)ei !@Y6* 2A21Y5* ,Ejk* #.

The above vanishes atx, sincevE50. So the condition (i)8 is fulfilled.
2. To exploit~ii !9 we choose auPS2\$0% such thatJ5JF(e) associated toF(e)5Fu(e) is

given by

J~e1!5e2 , J~e3!52e4.

So we have ĴZ15Z2 and ĴZ45Z3 and then Z12A21ĴZ15Z12A21Z2 and Z3

2A21ĴZ35Z31A21Z4 .
The nontrivial conditions in~ii !9 are then only the one for (i , j )5(1,3), namely,

Ĵ@Z12A21Z2 ,Z31A21Z4#2A21@Z12A21Z2 ,Z31A21Z4#PG~~ V̂h2
! ^ C!.

At the e in PE over x the bracket@Z1 ,Z3# takes the value

@Z1 ,Z3#5@e12~vE~e1!!* ,e32~vE~e3!!* #

5@e1 ,e3#2@e1 ,~vE~e3!!* #1@e3 ,~vE~e1!!* #1@~vE~e1!!* ,~vE~e3!!* #

5@e1 ,e3#2Fe1 ,( v jk
E ~e3!Ejk* G1Fe3 ,( v jk

E ~e1!Ejk* G .
It follows then from the assumptionvE50 at thex that
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@Z1 ,Z3#5@e1 ,e3#2( e1~v jk
E ~e3!!)Ejk* 1( e3~v jk* ~e1!!Ejk*

5@e1 ,e3#2(
j ,k

~dv jk
E !~e1 ,e3!Ejk*

5@e1 ,e3#2(
j ,k

V jk
E ~e1 ,e3!Ejk* , ~6!

whereVE denotes the curvature form of¹E on E. Thus we get the following.
Lemma 5.1:At e in PE5U3SO(4) overx

@Z12A21Z2 ,Z31A21Z4#52( $V jk
E ~e1 ,e3!1V jk

E ~e2 ,e4!1A21~ V jk
E ~e1 ,e4!

2V jk
E ~e2 ,e3!!%Ejk* . ~7!

For brevity we write this as

@Z12A21Z2 ,Z31A21Z4#52( V jk
E ~e12A21e2 ,e31A21e4!Ejk* . ~8!

Proof: From ~2!

@Z12A21Z2 ,Z31A21Z4#5$@e1 ,e3#1@e2 ,e4#%1A21$@e1 ,e4#2@e2 ,e3#%2( $V jk
E ~e1 ,e3!

1V jk
E ~e2 ,e4!1A21~ V jk

E ~e1 ,e4!2V jk
E ~e2 ,e3!!%Ejk* . ~9!

From Lemma 2.1, the first two terms on the rhs have noj-component. So, they vanish atx,
since@e1 ,e3#1@e2 ,e4#1¯ is given by¹e1

E e32¹e3

E e11¯ which vanishes atx.

We now express~5! in terms of the basis$Yi* u i 51,...,6% as

@Z12A21Z2 ,Z31A21Z4#52V12
E ~s,t !Y1* 2V34

E ~s,t !Y2* 2 1
2 $V13

E ~s,t !2V24
E ~s,t !%Y3*

2 1
2 $V14

E ~s,t !1V23
E ~s,t !%Y4* 2 1

2 $V13
E ~s,t !1V24

E ~s,t !%Y5*

2 1
2 $V14

E ~s,t !2V23
E ~s,t !%Y6* ,

where we sets5e12A21e2 and t5e31A21e4 , for brevity.
So, by the definition ofĴ,

Ĵ@Z12A21Z2 ,Z31A21Z4#5 1
2 $V13

E ~s,t !1V24
E ~s,t !%Y6* 2 1

2 $V14
E ~s,t !2V23

E ~s,t !%Y5* .
~10!

On the other hand,

A21@Z12A21Z2 ,Z31A21Z4#52
A21

2
$V13

E ~s,t !1V24
E ~s,t !%Y5* 2

A21

2
$V14

E ~s,t !

2V23
E ~s,t !%Y6* mod V̂h2

. ~11!

Therefore the condition~ii !9 for ( i , j )5(1,3) is equivalent to
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Ĵ@Z12A21Z2 ,Z31A21Z4#2A21@Z12A21Z2 ,Z31A21Z4#

5H 2
1

2
~V14

E ~s,t !2V23
E ~s,t !!1

A21

2
~V13

E ~s,t !1V24
E ~s,t !!J Y5*

1H 1

2
~V13

E ~s,t !1V24
E ~s,t !!1

A21

2
~V14

E ~s,t !2V23
E ~s,t !!J Y6* P G~ V̂h2

^ C!.

Clearly this holds if and only if

2
1

2
~V14

E ~s,t !2V23
E ~s,t !!1

A21

2
~V13

E ~s,t !1V24
E ~s,t !!50, ~12!

1

2
~V13

E ~s,t !1V24
E ~s,t !!1

A21

2
~V14

E ~s,t !2V23
E ~s,t !!50. ~13!

Equation~13! is reduced to~12! and one can see that, when one writesVk,
E (ei ,ej )5R,ki j

E ,
~12! is written as the two real equations;

R1341
E 1R2441

E 2R1332
E 2R2432

E 1R1431
E 2R2331

E 1R1442
E 2R2342

E 50 ~14!

and

R1441
E 2R2341

E 2R1432
E 1R2332

E 2R1331
E 2R2431

E 2R1342
E 2R2442

E 50. ~15!

From the symmetry of the curvatureRi jk ,
E in ( i , j ) and (k,,) these are

2R1413
E 1R1323

E 2R1424
E 1R2324

E 50 ~16!

and

2R1414
E 12R1423

E 2R2323
E 1R1313

E 12R1324
E 1R2424

E 50. ~17!

By the aid of Lemma 2.3 and the remark there they can be further written in terms o
Riemannian curvatureRi jk , of (M ,h,j,f,g) as

2R14131R13232R14241R232450 ~18!

and

2R141412~R142311!2R23231R131312~R132421!1R242450. ~19!

We now make use of the decomposition ofRi jk , in terms of the Weyl conformal tensorWi jk , ,
the Ricci tensorRi j 5(kRki jk and the scalar curvatures:

Ri jk ,5Wi jk ,2
1

3
~Rikd j ,1Rj ,d ik2Ri ,d jk2Rjkd i ,!2

s

12
~d jkd i ,2d j ,d ik!.

We then rewrite the above as follows:

2W141412W14232W23231W131312W13241W242450

2W14131W13232W14241W232450, ~20!

namely
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W~u1∧u42u2∧u3 ,u1∧u42u2∧u3!5W~u1∧u31u2∧u4 ,u1∧u31u2∧u4!, ~21!

W~u1∧u42u2∧u3 ,u1∧u31u2∧u4!50. ~22!

3. We next take anotheru8PS2\$0% such thatJ associated withFu8 is given

J~e1!5e3 , J~e2!5e4 .

Just like the preceding case, we get

W~u1∧u22u3∧u4 ,u1∧u42u2∧u3!5W~u1∧u32u4∧u2 ,u1∧u42u2∧u3! ~23!

and

W~u1∧u42u2∧u3 ,u1∧u42u2∧u3!1W~u1∧u22u3∧u4 ,u1∧u31u2∧u4!5
s

6
1

2

3
. ~24!

Notice aK-contact metric 5-manifoldM has the scalar curvatures5( i 51
4 Rii 1Ric(j,j) and

Ric(j,j)54.
Further, choose au9PS2\$0% such that the associated almost complex structureJ satisfies

J~e1!5e4 , J~e3!5e2 .

In this case we write similarly the integrability condition as

W~u1∧u32u4∧u2 ,u1∧u42u2∧u3!5W~u1∧u22u3∧u4 ,u1∧u31u2∧u4! ~25!

and

W~u1∧u32u4∧u2 ,u1∧u32u4∧u2!1W~u1∧u42u2∧u3 ,u1∧u22u3∧u4!5
s

6
1

2

3
. ~26!

4. From the above equations altogether, we see thatW 2
2 has only diagonal components

Further, by making use of the symmetric consideration in indices$1,2,3,4%, that is, by taking
account of the even permutation invariance of the integrability, it follows thatW 2

2 is a scalar
multiple c5s/61 2

3 of the standard bilinear form. Notice that the permutational invariance is b
on the ambiguity in choosing the isotropy subgroupH2 representingP1(C) as SO(4)/H2.

Therefore, from the trace free property of the Weyl conformal tensorW 2
2 must vanish and

s/61 2
350, that is,s524. In fact, we have the following.

Lemma 5.2:

trW 2
250.

Proof: Sinceu1∧u22u3∧u4 , u1∧u32u4∧u2 andu1∧u42u2∧u3 form a basis ofL2
2 (E* ),

trW 2
25W~u1∧u22u3∧u4 ,u1∧u22u3∧u4!1W~u1∧u32u4∧u2 ,u1∧u32u4∧u2!

1W~u1∧u42u2∧u3 ,u1∧u42u2∧u3!, ~27!

which reduces to

trW 2
25 (

i , j 51, i , j

4

Wi ji j 22~W12341W13421W1423!.
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Here the second term vanishes from the first Bianchi identity, sinceW12341W13421W1423

5R12341R13421R1423. On the other hand, from the trace free property of the Weyl confor
tensorW we have(a51

4 Wa1a152W0101 where 0 means thej-direction. So, by using again th
trace free property the half of the first term is

(
a

Wa1a11(
a

Wa2a21(
a

Wa3a31(
a

Wa4a452(
a

W0a0a50.

5. In order to verify the converse implication of Theorem 1.1 it suffices to show that unde
curvature conditions in Theorem 1.1J is integrable at an arbitrarycPZ5P(S2(E)). Any c can
be represented as@e,p(v)#, wheree5(e1 ,...,e4) is an orthonormalf-basis at the pointp(c)
5x andvPS2. But there is anâ5(id,a2)PSpin(4)5SU(2)13SU(2)2 such thatv5â•u for
the appropriate negative spinoruPS2 which appeared in Sec. V B.

So c5@e,p(â•u)# is @ea,p(u)#, aPSO(4).
Since the property off-basis is invariant under the SU(2)2-action,ea is again af-basis.
Renamingea ase, we have the induced almost complex structureJ5Jc:Ex→Ex satisfying

J~e1!5e2 , J~e3!52e4 .

So, the integrability ofJ at c reduces to the one ofJ at a particular negative spinor, which
guaranteed by the curvature conditionW 2

250 ands524, as was shown in Sec. V B.
Thus Theorem 1.1 is completely proved.

VI. THE CR HOLOMORPHICITY OF j̃

To prove Theorem 1.2 we take, similarly as in the proof of Theorem 1.1, overPE the hori-
zontal lift ĵ of j and consider the CR holomorphicity ofj̃ in terms ofĵ.

j̃ on Z is CR holomorphic if and only if, for eachFu :PE→Z, uPS2, it holds that@ ĵ,Z# is
a section ofÊ1,0 modG(V̂h2

^ C) for each sectionZ of Ê1,0.
This is equivalent to the following:
For eachFu

~i! @ ĵ,Y6* 2A21Y5* # is a section ofÊ1,0 modG(V̂h2
^ C), and

~ii ! @ ĵ,Z2A21ĴZ# is a section ofÊ1,0 modG(V̂h2
^ C) for any ZPG(Ĥ8), whereĴ is the

almost complex structure associated toFu .

The first condition is always fulfilled.
It suffices for the proof of Theorem 1.2 to show the following.
Proposition 6.1:Let (M ,h,j,f,g) be aK-contact metric 5-manifold andZ be its CR twistor

space.
j̃ is CR holomorphic onZ if and only if the curvatureR of (M ,h,j,f,g) satisfies

R0i122R0i345R0i131R0i245R0i142R0i2350, i 51,...,4, ~28!

where (e1 ,...,e4) is an orthonormalf-basis ande05j.
Proof of Proposition 6.1:We will investigate condition (i i ).
Assumej̃ is CR holomorphic.
Take a pointxPM and an orthonormal frame fielde of E aroundx which is af-basis and

choose the spinoruPS2\$0% again such that the associated almost complex structureJ satisfies

J~e1!5e2 , J~e3!52e4.

As was shown in Sec. VZi5ei2(vE(ei))* is the horizontal lift ofei and Z12A21Z2 ,
Z42A21Z3 span (Ĥ8)1,0.
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Then, the condition (i i ) for vector fieldsZ12A21Z2 , Z42A21Z3 is written in terms of the
curvatureRE as

2~R1014
E 2R1023

E !1~R2013
E 1R2024

E !50,

~R2014
E 2R2023

E !1~R1013
E 1R1024

E !50

and

2~R4014
E 2R4023

E !1~R3013
E 1R3024

E !50,

~R3014
E 2R3023

E !1~R4013
E 1R4024

E !50.

Sincef(j)50, from the Gauss equations in Sec. II we get

~R10142R1023!2~R20131R2024!50,

~R20142R2023!1~R10131R1024!50

and

~R40142R4023!2~R30131R3024!50,

~R30142R3023!1~R40131R4024!50.

We take another negative spinoru8PS2\$0%. Then the conditions foru8 are written similarly.
So, we obtain

R0i131R0i245R0i142R0i2350, i 50,...,4.

By the permutational argument we have alsoR0i122R0i3450, i 51,...,4.
The converse implication of Proposition 6.1 is obtained without difficulty, just like the p

of Theorem 1.1. So we complete the proof.
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Cyclic identities involving Jacobi elliptic functions
Avinash Kharea) and Uday Sukhatmeb)

Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607-7059

~Received 22 March 2002; accepted for publication 5 April 2002!

We state and discuss numerous new mathematical identities involving Jacobi ellip-
tic functions sn(x,m), cn(x,m), and dn(x,m), wherem is the elliptic modulus
parameter. In all identities, the arguments of the Jacobi functions are separated by
either 2K(m)/p or 4K(m)/p, wherep is an integer andK(m) is the complete
elliptic integral of the first kind. Eachp-point identity of rankr involves a cyclic
homogeneous polynomial of degreer ~in Jacobi elliptic functions withp equally
spaced arguments! related to other cyclic homogeneous polynomials of degreer
22 or smaller. We algebraically demonstrate the derivation of several of our iden-
tities for specific small values ofp and r by using standard properties of Jacobi
elliptic functions. Identities corresponding to higher values ofp and r are verified
numerically using advanced mathematical software packages. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1484541#

I. INTRODUCTION

The Jacobi elliptic functions sn(x,m), cn(x,m), and dn(x,m) with real elliptic modulus
parameterm(0<m<1) have been extensively studied and used in mathematics, scienc
engineering.1,2 Recently, while studying3,4 the properties of quantum mechanical period
potentials,5,6 we have discovered numerous new mathematical identities involving Jacobi e
functions. The purpose of this article is to tabulate, derive and discuss these identities.

To the best of our knowledge, our results are not discussed in the mathematics lite
However, we did find that geometrical constructions called the ‘‘poristic polygons of Ponc
give rise to a few of our very simplest identities like Eqs.~3! and ~40! involving just the Jacobi
elliptic functions dn(x,m). For a discussion of this geometrical approach, see Refs. 7 and 8

Our new identities play a crucial role in obtaining a large class of novel periodic solutio
both integrable and the nonintegrable nonlinear equations like the Korteweg–de Vries~KdV! and
modified Korteweg–de Vries equations,9 the nonlinear Schro¨dinger and KP equations, the sine
Gordon and Boussinesq equations, as well as thelf4 model.10 The solutions obtained for the
KdV equation9 all correspond to one gap periodic potentials. This process can be generali
obtain new solvable periodic potentials with a finite number of band gaps.4

If K(m) denotes the complete elliptic integral of the first kind, the elliptic functions sn(x,m)
and cn(x,m) have real periods 4K(m), whereas dn(x,m) has a period 2K(m). The m50 limit
gives K(0)5p/2 and trigonometric functions: sn(x,0)5sinx, cn(x,0)5cosx, dn(x,0)51. The
m→1 limit gives K(1)→` and hyperbolic functions: sn(x,1)→tanhx, cn(x,1)→sechx,
dn(x,1)→sechx. Therefore, our new identities for Jacobi elliptic functions can be thought o
generalizations to arbitrarym of identities involving trigonometric and hyperbolic functions.

The plan of the article is as follows. In Sec. II, we discuss the general structure o
identities and various different ways of obtaining them. Each identity has two integer labelsr and
p. Here,r denotes the rank of the identity andp is the number of subdivisions of the period
which Jacobi elliptic functions are evaluated. In Sec. III, we algebraically derive some o
identities given in Tables I, II, and III for rankr 52, 3 andp52, 3, 4. Finally, in Sec. IV, we offer
several comments regarding the general patterns revealed by the identities. In Tables I and
have listed identities for ranksr 52 and 3, respectively. For clarity, we give explicit expressio

a!Permanent address: Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, Orissa, India.
b!Author to whom correspondence should be addressed. Electronic mail: sukhatme@tigger.cc.uic.edu
37980022-2488/2002/43(7)/3798/9/$19.00 © 2002 American Institute of Physics

                                                                                                                



ftware

sepa-
ft

of
r

imple

g

re

bit
n
same

3799J. Math. Phys., Vol. 43, No. 7, July 2002 Cyclic identities involving Jacobi functions

                    
for p52, 3, 4 and then given the general structure for arbitraryp. In Table III we have given some
examples of identities of rank 4 and above. The algebraic proofs of identities with large rankr and
p.4 are tedious, but we have numerically verified the identities using the mathematical so
package Maple.

II. DESCRIPTION OF THE IDENTITIES

In all the identities discussed in this article, the arguments of the Jacobi functions are
rated by either 2K(m)/p or 4K(m)/p, wherep is an integer (p>2) depending on whether the le
hand side of the identity is a periodic function of period 2K(m)/p or 4K(m)/p. For any given
choice ofp, we define the quantitiessi , ci anddi as follows:

si[snFx1
2~ i 21!K~m!

p
,mG , ci[cnFx1

2~ i 21!K~m!

p
,mG , di[dnFx1

2~ i 21!K~m!

p
,mG .

~1!

Similarly, we define

s̃i[snFx1
4~ i 21!K~m!

p
,mG , c̃i[cnFx1

4~ i 21!K~m!

p
,mG , d̃i[dnFx1

4~ i 21!K~m!

p
,mG .

~2!

Each p-point identity which we discuss will involve a cyclic homogeneous polynomial
degreer ~in Jacobi elliptic functions withp equally spaced arguments! expressed as a linea
combination of other cyclic homogeneous polynomials of degreer 22n, where 1<n<r /2. We
designate this to be ap-point identity of rankr.

Let us consider a few examples to clarify the terminology and establish the notation. A s
p-point identity of rank 2 is

d1d21c.p.[d1d21d2d31¯1dpd15A, ~3!

where we have used the notation ‘‘1c.p. ’’ to denote cyclic permutations of the indices 1,2,...p.
Later, we have also used the notation ‘‘2c.p. ’’ to denote cyclic permutations with alternatin
positive and negative signs in a few identities wherep is an even integer. For the special casep
54, the quantities in Eq.~3! are

d1[dn~x,m!,d2[dn~x1K~m!/2,m!,d3[dn~x1K~m!,m!,d4[dn~x13K~m!/2,m!. ~4!

As discussed in the next section, forp54, the constantA can be computed and shown to beA

52 t̃ (11 t̃ 2) where

t̃[dn~K~m!/2,m!5~12m!1/4. ~5!

Similarly, two examples of three-point identities of rank 2 and rank 3 are

c̃1c̃21c.p.52
q~q12!

~11q!2 , c̃1d̃2d̃31c.p.52q2~ c̃11 c̃21 c̃3!, ~6!

where

q[dn~2K~m!/3,m!, ~7!

and the arguments arex, x14K(m)/3 andx18K(m)/3, respectively. Many more examples a
given in Tables I, II, and III.

Althoughx-independent constants likeA do depend on the number of pointsp, the rankr, the
modulus parameterm, and the specific identity involved, for simplicity, we do not usually exhi
these dependences explicitly. In fact, the symbolsA and B appearing in the identities given i
Tables I, II, and III are just meant to denote generic constants. They do not all have the
values.
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Given anyp-point identity of rankr, one way of generating a newp-point identity of rank
r 11 is by differentiation and use of the well-known formulas

d

dx
sn~x,m!5cn~x,m!dn~x,m!,

d

dx
cn~x,m!52sn~x,m!dn~x,m!,

d

dx
dn~x,m!52msn~x,m!cn~x,m!, ~8!

sn2~x,m!1cn2~x,m!51, dn2~x,m!1msn2~x,m!51. ~9!

For example, differentiation of thep-point rank 2 identity

d1d21...1dpd15A ~10!

yields the rank 3 identity

s1c1~d21dp!1c.p.50, ~11!

which reduces to the well-known trigonometric identity

(
i 51

p

sinF2x1
2~ i 21!p

p G50 ~12!

in the limit m50.
Anotherp-point rankr identity of interest forr<p is

d1d2¯dr1c.p.5A ~r even!, ~13!

d1d2¯dr1c.p.5B(
i

p

di ~r odd!. ~14!

One also has similar identities involvings̃i or c̃i ~instead ofdi! for any odd integer value ofp. All
these identities have the remarkable property of reducing the degree of the polynomial
Jacobi functions fromr to 0 ~1! depending on whetherr is even~odd!. For small values ofp and
r, the constantsA, B in Eqs.~13! and ~14! are easily evaluated. Some results are

A~p52,r 52!52A12m,A~p53,r 52!5q~q12!,A~p54,r 52!52 t̃ ~11 t̃ 2!,

B~p53,r 53!53S m

12q221D ,B~p54,r 53!5A12m, ~15!

A~p54,r 54!54~12m!.

For the special limiting casesm50 andm51, one gets

A~m50,p,r !5p, B~m50,p,r !51, A~m51,p,r !5B~m51,p,r !50. ~16!

Another way of obtaining additional identities is by manipulating established identities
example, forp53 andr 53, Eq. ~14! is

d1d2d35
B

3
~d11d21d3!, ~17!

whereB[B(p53,r 53) is as given by eq.~15!. Squaring identity~3! for p53 and using Eqs.
~15! and ~17! yields the new identity

d1
2d2

21c.p.522S m

12q221D(
i 51

3

di
21F ~12q2!21

6m

12q22324mG . ~18!
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A similar identity is also true for anyp, and in fact we have used it in a crucial manner
obtaining new periodic solutions of the KdV equation.9 However, to establish thisp-point identity,
one needs a generalization of identities~3! and ~14!. The generalized identities are

d1dn1c.p.5A ~n52,3,4,...!, ~19!

and

d1dj 1
dj 2

1c.p.5B(
i 51

p

di ~1, j 1, j 2<p!. ~20!

which we have verified to be true numerically using Maple for many specific choices o
integersn, j 1 , j 2 , p.

III. DERIVATION OF IDENTITIES FOR pÄ2, 3, 4

For illustrative purposes, we now outline the proof of thep-point identityd1d21c.p.5A, for
p52, 3, 4. The left hand side of this identity containsp terms. The proof forp52 is trivial, since
it is well known thatd1d2[dn(x,m)dn(x1K(m),m)5A12m.1,2 For p53, one needs to com
pute d1d21d2d31d3d1[dn(x,m)dn(x12K(m)/3,m)1dn(x12K(m)/3,m)dn(x14K(m)/3,m)
1dn(x14K(m)/3,m)dn(x,m). This can be accomplished by algebraic simplification after us
the addition theorem1,2

dn~u1v !5~dnu dnv2m snu cnu snv cnv !/~12m sn2u sn2v !, ~21!

and the fact that

dn~4K~m!/3,m!5dn~2K~m!/3,m!, sn~4K~m!/3,m!5sn~2K~m!/3,m!,
~22!cn~4K~m!/3,m!52cn~2K~m!/3,m!.

The result is the constantA for thep53 case. One getsA5q(q12), whereq has been defined in
Eq. ~7!. One has also made use of the fact thatq satisfies the fourth order equation

q412q322~12m!q2~12m!50, ~23!

which follows by making use of Eqs.~21! and~8! with u5v52K(m)/3. Similarly, the result for
p54, as discussed following Eq.~3!, can be easily derived.

In principle, an analogous algebraic procedure can be used for any value ofp, but the algebra
becomes increasingly lengthier. We have therefore verified identity~3! numerically using the
advanced mathematical software package Maple. Note that for any chosen value ofp, the constant
A equalsp in the limit m50 and vanishes form→1.

Proceeding in this way, and using the addition theorems

cn~u1v !5~cnu cnv2snu dnu snv dnv !/~12m sn2u sn2v !, ~24!

sn~u1v !5~snu cnv dnv1snv cnv dnu!/~12m sn2u sn2v !, ~25!

for p52, 3, 4, we have derived all the identities of rank 2 as given by Eqs.~31!–~34!. It may be
noted that the identities forp54 contain identities forp52 as special cases.

In the limit of m→0, two of the identities in Eq.~32! reduce to the well known trigonometri
identity

cosx cos~x12p/3!1cos~x12p/3!cos~x14p/3!1cos~x14p/3!cosx52 3
4. ~26!

Let us now turn our attention to the derivation of the identities of rankr 53 in casep52, 3,
4. Forp52, 4 these identities are easily derived by using the identities of rank 2 as given by
~31! and~34! and these are listed as Eqs.~39! and~60!–~63!. Note that for these cases, and in fa
in general for any even integer case, one obtains identities with both1c.p. and 2c.p. As an
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illustration, we start from the identity~3! with p54 andA52 t̃ (11 t̃ 2) and t̃ 5(12m)1/4. On
multiplying both sides of this identity by (d12d21d32d4) and using the relationsd1d35d2d4

5A12m, we immediately obtain the four-point identity

d1
2~d21d4!2c.p.52 t̃ ~11 t̃ 1 t̃ 2!~d12c.p.!. ~27!

However, forp53, all the identities of rank 3 cannot be derived from those of rank 2. We
that there are four basic identities of rank 3@say those given by Eqs.~40!–~43!# which we have
derived using the addition theorems@Eqs.~21!, ~24!, and~25!# and relations~22! and~23!. As an
illustration, let us consider the derivation of identity~41!,

c̃1c̃2c̃35
q2

12q2 ~ c̃11 c̃21 c̃3!, ~28!

where q is as given by Eq.~7!. On using the addition theorem~24! and the fact that
cn(2K(m)/3,m)5q/(11q) with q satisfying Eq.~23!, the identity~28! is easily derived.

Using these four basic identities and those of rank 2, one can then derive the remain
identities of rank 3~for p53! as given in Table II. For example, consider the identity~57!. This
is easily derived by starting from the rank 2 (p53) identity

c̃1c̃21c.p.5
2q~21q!

~11q!2 , ~29!

multiplying both sides by (c̃11 c̃21 c̃3) and using identity~28! and Eq.~27!.
Finally, let us consider identities of rank 4 and higher in casep52, 3, 4, some of which have

been given in Table III. We find that all these identities can be derived by using the identit
rank 2 and 3 as given in Tables II and III. For example, identities~77!, ~79! and~80! simply follow
from the basic rank 3 identities~40!–~42!.

IV. DISCUSSION AND COMMENTS

By the techniques described in the previous sections, we have obtained a large number
identities, many of which are displayed in Tables I, II, and III. It should be noted that the mod
parameterm is not transformed and remains unchanged in all identities. Although it is not ea
give a complete systematic classification, we can comment on some general properties a
terns.

~i! For any identity of rankr, the left hand side is a cyclic homogeneous polynomial exp
sion of degreer with p terms.

~ii ! If the polynomial on the left hand side is periodic with period 2K(m)/p @4K(m)/p#, then
the identity involves arguments spaced by 2K(m)/p @4K(m)/p#.

~iii ! The right hand side involves polynomials of rankr 22, r 24,..., which are ‘‘irreducible,’’
some examples being(di , ( s̃i , ( c̃i , ( c̃i d̃i , ( s̃i d̃i , (cisi , (cisidi , etc., and all these
irreducibles multiplied bydi

2n wheren51,2,... .
~iv! In general, many of the identities of higher rank can be obtained from those of lower

by either differentiation or algebraic manipulation. Similarly, many identities of a gi
rank r (r .2) can be derived from lower rank identities as well as some identities o
same rank. For example, forp53, using the identities of rank 2 and three of the rank
identities as given by Eqs.~40!–~42! one can obtain all other identities of rank 3 as giv
in Table II.

~v! The generic constantsA, B, C in any identity can be determined by choosing speci
convenient values ofx in the arguments. The valuex50 is a good choice in many case
Note that forp<4, we have given explicit values for all the constants appearing in
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identities—for three-point identities, all constants are expressed in terms oq

[dn(2K(m)/3,m), and for four-point identities, all constants are expressed in termst̃
[dn(K(m)/2,m)5(12m)1/4.

~vi! Some identities for even values ofp involve alternating positive and negative signs. T
symbol ‘‘2c.p. ’’ in these identities refers to cyclic permutations with alternating sig
Many of these identities, liked1

2(d21dp)2d2
2(d31d1)1¯2dp

2(d11dp21)5A(d12d2

1¯2dp), play a crucial role in determining band edge wave functions of solvable q
tum mechanical periodic potentials.4

~vii ! It should be noted that our identities involve cyclic permutations6c.p. of terms which
have no clockwise or anticlockwise ‘‘handedness.’’ For example, for evenp, there is no
identity of the type (d1

2d22c.p.) proportional to (d12c.p), since the termd1
2d2 has a

clockwise handedness. It is only when one adds on an anticlockwise handed termd1
2dp that

the combination@d1
2(d21dp)2c.p.# is indeed proportional to (d12c.p.).

~viii ! In the limit m→0, one recovers many known nontrivial trigonometric identities. In the li
m→1, since the periodK(1)→`, one usually gets trivial hyperbolic function identitie
Both these limits serve as a useful check on all the new identities involving Jacobi e
functions obtained in this paper. Of course, as mentioned previously, software packag
Maple or Mathematica quickly provide confirmation of any identity to typically eight d
accuracy.

~ix! Identities for a given value ofp contain identities of the factors ofp as special cases. Fo
example, for evenp, only half of d1 ,...,dp are independent since they satisfy identities

d1d~p12!/25¯5dp/2dp5A12m, ~30!

coming fromp52. Similarly, the full list ofp56 identities containsp52, 3 identities. For
example, d1d45d2d55d3d65A12m and similarly d1d31d3d51d5d15d2d41d4d6

1d6d25q212q, whereq is as given by Eq.~7!.

TABLE I. Identities of rank 2. The symbolsA in Eqs.~35! and~37! are used generically to denote constants independ
of x; the constants are in general all different.

p52:

d1d25A12m. ~31!
p53: @q[dn(2K(m)/3,m)#

d1d21c.p.5q~q12!, c̃1c̃21c.p.5
2q~q12!

~11q!2 , s̃1s̃21c.p.5
1

m
~q221!, ~32!

c̃1~d̃21d̃3!1c.p.5s̃1~d̃21d̃3!1c.p.5c̃1~s̃21s̃3!1c.p.50. ~33!

p54: @ t̃[dn(K(m)/2,m)5(1
2m)1/4#

d1d35d2d45A12m, d1d21c.p.52 t̃ ~11 t̃ 2!. ~34!
p5even integer:

d1d21c.p.5A, d1d31c.p.5A, ..., d1dp/21c.p.5A, ~35!

d1dp/2115d2dp/2125¯5dp/2dp5A12m. ~36!
p5odd integer:

d1d21c.p.5A, c̃1c̃21c.p.5A, s̃1s̃21c.p.5A,
]

d1d~p11!/21c.p.5A, c̃1c̃~p11!/21c.p.5A, s̃1s̃~p11!/21c.p.5A, ~37!

c̃1~d̃21d̃p!1c.p.50, s̃1~ d̃21d̃p!1c.p.50, c̃1~ s̃21 s̃p!1c.p.50,
]

c̃1~ d̃~p11!/21d̃~p13!/2!1c.p.50, s̃1~ d̃~p11!/21d̃~p13!/2!1c.p.

50, c̃1~ s̃~p11!/21 s̃~p13!/2!1c.p.50. ~38!
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TABLE II. Identities of rank 3. The symbolsA in Eqs.~66!–~73! are used generically to denote constants independen
x; the constants are in general all different.

p52:

d1
2d26d2

2d15A12m~d16d2!, c1s1d21c2s2d150. ~39!

p53: @q[dn(2K(m)/3,m)#

d1d2d35
~q21m21!

12q2 ~d11d21d3!, ~40!

c̃1c̃2c̃35
q2

12q2 ~c̃11c̃21c̃3!, ~41!

s̃1s̃2s̃35
21

12q2 ~s̃11s̃21s̃3!, ~42!

c̃1~s̃2d̃31s̃3d̃2!1c.p.50, ~43!

c̃1d̃2d̃31c.p.52q2~c̃11c̃21c̃3!, ~44!

mc̃1s̃2s̃31c.p.52~11q!2~c̃11c̃21c̃3!, ~45!

s̃1d̃2d̃31c.p.5
2~12m!

q2 ~s̃11s̃21s̃3!, ~46!

s̃1c̃2c̃31c.p.5
q~q12!

12q2 ~s̃11s̃21s̃3!, ~47!

d̃1c̃2c̃31c.p.5
2q2

~11q!2 ~d̃11d̃21d̃3!, ~48!

d̃1s̃2s̃31c.p.5
21

~11q!2 ~d̃11d̃21d̃3!, ~49!

d̃1~d̃2c̃21d̃3c̃3!5c.p.52q~q11!~c̃11c̃21c̃3!, ~50!

ms̃1~s̃2c̃21s̃3c̃3!1c.p.52q~q11!~c̃11c̃21c̃3!, ~51!

d̃1~d̃2s̃21d̃3s̃3!1c.p.5
2~q212q2m11!

11q
~s̃11s̃21s̃3!, ~52!

c̃1~c̃2s̃21c̃3s̃3!1c.p.5
22q~q12!

~11q!~12q2!
~s̃11s̃21s̃3!, ~53!

c̃1~c̃2d̃21c̃3d̃3!1c.p.5
22q

~11q!2 ~d̃11d̃21d̃3!, ~54!

s̃1~s̃2d̃21s̃3d̃3!1c.p.5
22q

~11q!2 ~d̃11d̃21d̃3!, ~55!

d1
2~d21d3!1c.p.5

2~q2m11!

11q
~d11d21d3!, ~56!

mc̃1
2~c̃21c̃3!1c.p.522~11q2m!~c̃11c̃21c̃3!, ~57!

ms̃1
2~s̃21s̃3!1c.p.5

2~q31q22q1mq12m21!

12q2 ~s̃11s̃21s̃3!, ~58!

c1s1~d21d3!1c.p.50, c̃1d̃1~ s̃21 s̃3!1c.p.50,

d̃1s̃1~ c̃21 c̃3!1c.p.50. ~59!

p54: @ t̃[dn(K(m)/2,m)5(12m)1/4#

d1d2d36d2d3d41d3d4d16d4d1d25A12m~6d11d26d31d4!, ~60!

d1
2~d21d4!6d2

2~d31d1!1d3
2~d41d2!6d4

2~d11d3!52t̃~17 t̃1 t̃2!~d16d21d36d4!,
~61!

d1
2d36d2

2d41d3
2d16d4

2d25A12m~d16d21d36d4!, ~62!

c1s1~d21d4!1c.p.50, c1s1d31c3s3d150, c2s2d41c4s4d250. ~63!
p5even integer:

c1s1~d21dp!1c.p.50, c1s1~d31dp21!1c.p.50,...,c1s1~dp/21dp/212!

1c.p.50, ~64!

c1s1dp/2111cp/211sp/211d15c2s2dp/2121cp/212sp/212d25¯5cp/2sp/2dp

1cpspdp/250, ~65!
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TABLE III. Some indentities of rank 4 and above. The symbolsA, B in Eqs.~84!–~87! are used generically to denot
constants independent ofx; the constants are in general all different.

r54, p52:

d1
3d26d2

3d15A12m~d1
26d2

2!, d1
2d2

2512m, ~75!

mc1s1c2s25A12m@12s1
22s2

2#, c1d1c2d252~12m!s1s2 , s1d1s2d2

52c1c2 . ~76!
r54, p53: @q[dn(2K(m)/3,m)#

s1c1d2d31c.p.5
~q21m21!

12q2 ~s1c11c.p.!, ~77!

d1
3~d21d3!1c.p.5

2mq

12q2 ~d1
21c.p.!22~12m!, ~78!

s̃1d̃1c̃2c̃31c.p.5
q2

12q2 ~s̃1d̃11c.p.!, ~79!

c̃1d̃1s̃2s̃31c.p.5
21

12q2 ~c̃1d̃11c.p.!, ~80!

m2c1s1c2s21c.p.5
2mq

12q2 ~d1
21c.p.!1@m2~22m!~11q!2#. ~81!

r55, p53:

d1
3~s2c21s3c3!1c.p.5

22mq

12q2 ~s1c1d11c.p.!, ~82!

ms̃1
4 ~s̃21s̃3!1c.p.5

2~q21m21!

12q
~s̃1

31c.p.!1
2~q31q21mq2q12m21!

~12q2!2

~s̃11c.p.!. ~83!
r56, p56:

d1
3~d2

2d31d6
2d5!1c.p.5A~d1

21c.p.!1B. ~84!

r58, p56:

c1d1c2d2s3s4s5s61c.p.5A~s1s2s3s4s5s6!. ~85!
r, p:

mps1
2s2

2
¯sp

25A~s1
21c.p.!1B ~r52p!. ~86!

TABLE II. ~Continued.!

d1
2~d21dp!6c.p.5A~d16c.p.!, d1

2~d31dp21!6c.p.5A~d16c.p.!, ~66!

d1
2~dp/21dp/212!6c.p.5A~d16c.p.!, d1

2dp/2116c.p.5A12m~d16c.p.!,
~67!

d1d2d36c.p.5A~d16c.p.!, d1djdk6c.p.5A~d16c.p.!. ~68!
p5odd integer:

For indices 1, j 1, j 2<p:

d1dj1
dj2

1c.p.5A~d11c.p.!, c̃1c̃j1
c̃j2

1c.p.5A~c̃11c.p.!, s̃1s̃j1
s̃j2

1c.p.5A~s̃11c.p.!,
~69!

c̃1~s̃2d̃p1s̃pd̃2!1c.p.50,...,c̃1~ s̃~p11!/2d̃~p13!/21 s̃~p13!/2d̃~p11!/2!1c.p.50, ~70!

c̃1d̃2d̃p1c.p.5A~c̃11c.p.!,...,c̃1d̃~p11!/2d̃~p13!/21c.p.5A~ c̃11c.p.!, ~71!

d̃1~d̃2c̃21d̃pc̃p!1c.p.5A~c̃11c.p.!,...,d̃1~d̃~p11!/2c̃~p11!/21d̃~p13!/2c̃~p13!/2!1c.p.

5A~ c̃11c.p.!, ~72!

d1
2~d21dp!1c.p.5A~d11c.p.!,...,d1

2~d~p11!/21d~p13!/2!1c.p.5A~d11c.p.!, ~73!

c1s1~d21dp!1c.p.50,...,c1s1~d~p11!/21d~p13!/2!1c.p.50. ~74!

Note that additional identities can be obtained by changing the pair (c̃d̃) in Eq. ~71! or ~72! into any of the pairs (c̃s̃),

( s̃d̃), (s̃c̃), (d̃c̃), (d̃s̃). Likewise, additional identities can be obtained by changingd to c̃ or s̃ in eq.~73! and by changing

~c, s, d! to (c̃,d̃,s̃) or (d̃,s̃,c̃) in Eq. ~74!.
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~x! It should be noted that in many applications like finding new solutions of the K
equation,9 the identities needed involve summations over all combinations of many~say
two! indices i, j 51,...,p. These combinations correspond to the sum of several cy
identities discussed in the tables.

~xi! In this article, we have concentrated our attention on cyclic identities in which the a
ments are separated by fractions of the periods 2K(m) or 4K(m) on the real axis. How-
ever, each one of our identities can be easily translated into a corresponding one in
the arguments are separated by fractions of the periodsi2K8 or i4K8 on the imaginary axis,
where K8[K(12m). For example, the simple two-point identity dn(x,m)dn(x
1K(m),m)5A12m translates to the new identity sn(u,m)sn(u1 iK 8,m)51/Am. The
general procedure consists of first replacingm by 12m @which in alternative standard
notation2 corresponds to replacingk[Am by k8[A12m andK(m) by K8#, then using the
well known results

sn~x,12m!5
icn~ ix1K,m!

A12msn~ ix1K,m!
, cn~x,12m!5

dn~ ix1K,m!

A12msn~ ix1K,m!
.

dn~x,12m!5
1

sn~ ix1K,m!
,

and finally changing to a new variableu5 ix1K.

In conclusion, even though Jacobi elliptic functions have been studied for approximatel
centuries, it is exciting to discover new cyclic identities connecting them. What makes our r
doubly exciting is that the identities play a vital role in the study of periodic potentials4 and in
yielding new solutions of nonlinear differential equations of physical interest.9
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TABLE III. ~Continued.!

For indices 1, j 1, j 2,¯, j r 21<p:

d1dj1
dj2

¯djr21
1c.p.5A ~r5even,p!,

d1dj 1
dj 2

¯dj r 21
1c.p.5B~d11c.p.! ~r 5odd,p!,

s̃1s̃j 1
s̃j 2

¯ s̃j r 21
1c.p.5A, c̃1c̃ j 1

c̃ j 2
¯ c̃ j r 21

1c.p.5A ~r 5even, p5odd!,
~87!

s̃1s̃j1
s̃j2
¯s̃jr21

1c.p.5B~s̃11c.p.!, c̃1c̃j1
c̃j2
¯c̃jr21

1c.p.5B~c̃11c.p.!

(r 5odd, p5odd),

d1
r21~d21dp!1c.p.5A~d1

r221c.p.!1B~d1
r241c.p.!1¯ .

The last equation ends with a constant ifr is odd, and with a term proportional to (d11c.p.) if r is even.
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The quasiclassical limit of the scalar nonlocal]̄-problem is derived and a quasi-
classical version of the]̄-dressing method is presented. Dispersionless Kadomtsev–
Petviashvili ~KP!, modified KP, and dispersionless two-dimensional Toda lattice
~2DTL! hierarchies are discussed as illustrative examples. It is shown that the
universal Whitham hierarchy is nothing but the ring of symmetries for the quasi-
classical ]̄-problem. The reduction problem is discussed and, in particular, the
d2DTL equation of B type is derived. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1481545#

I. INTRODUCTION

Considerable interest has been paid recently to dispersionless or quasiclassical limits o
grable equations and hierarchies~see, e.g., Refs. 1–13, and references therein!. Study of disper-
sionless hierarchies is of great importance since they arise in the analysis of various probl
physics, mathematics, and applied mathematics from the theory of quantum fields and strin14–16

to the theory of conformal maps on the complex plane.17–18

Different methods have been used to study dispersionless equations and hierarchies1–13 In
particular, several 111-dimensional equations and systems have been analyzed by the qua
sical version of the inverse scattering transform, including the local Riemann–Hilbert pro
approach.2,3,11–13,19 Similar study of the 211-dimensional equations and hierarchies, li
Kadomtsev–Petviashvili~KP! and dispersionless two-dimensional Toda lattice~2DTL!, has been
missing. Recently this problem has been addressed in Ref. 20 and the quasiclassical]̄-dressing
approach to the dispersionless KP hierarchy has been proposed.

In this paper we consider a class of scalar dispersionless integrable hierarchies gover
the scalar]̄-problem with the dispersionless KP~dKP!, modified dkP~mdKP!, and d2DTL hier-
archies as particular cases. We derived the general form of the quasiclassical]̄-problem. It is given
by the system

]S

]l̄
5WS l,l̄;

]S

]l
D , ~1.1!

]w

]l̄
5W8S l,l̄;

]S

]l
D ]w

]l
1W̃S l,l̄;

]S

]l
D ]2S

]l2
w, ~1.2!

for lPG, whereG is a domain in the complex planeC andW andW̃ are some functions. The
type of hierarchy is specified by the undressed partS0(l,T) of S and the domainG. A quasi-
claszsical]̄-dressing method based on the system~1.1!–~1.2! allows us to construct dispersionles
integrable hierarchies and provides us a method for finding their solutions. The dKP, dmK
d2DTL hierarchies are considered as illustrative examples.

a!Elecronic mail: luism@eucmos.sim.ucm.es
38070022-2488/2002/43(7)/3807/17/$19.00 © 2002 American Institute of Physics
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Symmetries of the quasiclassical]̄-problem~1.1! and~1.2! are defined by linear Beltrami-typ
equations and form an infinite-dimensional ring. It is shown that this ring, parametrized by
metry parameters, is nothing but the universal Whitham hierarchy introduced in Ref. 8. In
ticular, the dKP, mdKP, and m2DTL hierarchies are special subrings of symmetries for pro
~1.1! and ~1.2!.

We also discuss the reduction of the dispersionless hierarchies and present the disper
2DTL equation of B type.

Equations of the form~1.1! and~1.2! are well-known in the complex-analysis; in particular,
connection with quasiconformal mappings in the plane~see, e.g., Refs. 21–23!. Thus, there is a
close connection between the theory of quasiclassical integrable hierarchies and the the
quasiconformal mappings.

II. DISPERSIONLESS HIERARCHIES AND UNIVERSAL WHITHAM HIERARCHY

We begin by recalling some relevant formulas for dispersionless hierarchies and choo
Kadomtsev–Petviashili~KP! hierarchy to illustrate their main features. The usual KP hierarch
an infinite set of the compatibility condition for the system

Lc5lc, ~2.1!

]c

]tn
5~Ln!1c, ~2.2!

whereL5]1u1]211u2]221¯ ,]5]/]t ,(Ln)1 denotes the pure differential part of the oper
tor Ln, l is a spectral parameter, andc is a common KP wave function. The KP equation itself
the equation for coefficientu1 as a function of the first three timest1 ,t2 ,t3 . For the modified KP
~mKP! hierarchy the operatorL is of the form L5]1u01u1]211u2]221¯ while for the
two-dimensional Toda lattice~2DTL! hierarchy one needs two operatorsL1 andL2 .10

The dispersionless KP~dKP! hierarchy is a formal limit«→0 of the KP hierarchy for
which1–10

ukS Tn

« D ——→
«→0

uk0
~T!1O~«!, ~2.3!

and

cS Tn

« D ——→
«→0

e~1/«! S(l,T)1O(«), ~2.4!

whereTn are slow times.
Under such a limit, Eq.~2.1! gives rise to the Laurent seriesL5p1(n51

` un(T)p2n, where
p5 ]S/]T1 while Eq. ~2.2! becomes

]p

]Tn
5

]Bn~p!

]T1
~2.5!

whereBn(p)5@L n(p)#1 and @L n#1 denotes here a polynomial part ofL n. The compatibility
conditions for~2.5! are given by the infinite set of equations

]Bn

]Tm
2

]Bn

]Tm
1$Bn ,Bm%50 ~2.6!

where the Poisson bracket$,% is defined as
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$ f ,g%5
] f

]p

]g

]T1
2

] f

]T1

]g

]p
. ~2.7!

Equation~2.5! or ~2.6! represent the dKP hierarchy. Similarly, the dmKP hierarchy is given
equations of the form~2.5!–~2.7! with L5p1(n51

` un(T)p2n.24 The d2DTL hierarchy can be
written by a set of equations similar to~2.5!–~2.7! for two Laurent seriesL1 andL2 ~Ref. 10! with
the substitutionp→ep.

A more general dispersionless-like hierarchy has been introduced in Ref. 8. This uni
Whitham hierarchy is given by the infinite set of equations

]VA

]TB
2

]VB

]TA
1$VA ,VB%50, A,B51, 2, 3, . . . , ~2.8!

whereVA(p,T) are arbitrary holomorphic functions ofp. As has been shown in Ref. 8, the dK
d2DTL, and Benney hierarchies are particular cases.

III. QUASICLASSICAL ̄-PROBLEM

The ]W -dressing method is a powerful tool to study usual integrable equations
hierarchies.25–27 In this paper we shall formulate its quasiclassical version. We shall demons
that it provides an effective method to construct and study dispersionless hierarchies.

We begin with the derivation of the quasiclassical limit of the basic]̄-problem.
The usual scalar integrable hierarchies are associated with the following scalar linear no

problem~see Refs. 24–26!:

]x~l,l̄;t !

]l̄
5E E

C
dm∧dm̄x~m,m̄;t !g~m,t !R0~m,m̄;l,l̄ !g21~l,t !, ~3.1!

where l is a complex variable~‘‘spectral parameter’’!, l̄ denotes complex conjugation o
l,x(l,l̄;m) is a complex-valued function on the complex planeC (l,l̄PC), the kernel
R0(m,m̄;l,l̄) is the ]̄-data. Usually, it is assumed that the functionx has a canonical normaliza
tion i.e.,

x→11
x1

l
1

x2

l2 1¯ , l→`,

and that the problem~3.1! is uniquely solvable. Concrete integrable hierarchies are specialize
the form of the functiong(l,t)5exp(S0(l,t)) and by the domainG of the support for the]̄-data
R0 ~R0(m,m̄;l,l̄)50 for m,lPC/G.! For the KP hierarchyS05(k51

` lktk andG ia a disk with
center at the origin, while for the 2DTL hierarchyS0(l;x,y,n)5n ln l1(k51

` lkxk1(k51
` l2kyk

wherexk andyk are continuous variables andn is an integer discrete variable. The domainG in
this case is an annulusa<ulu<b. Given g(l) the ]̄-dressing method provides us with th
corresponding hierarchy of nonlinear equations and their linear problems.24–26 Solutions of non-
linear equations are given by the functionx evaluated at certain pointsl0 . For instance, for the
KP hierarchyu1522(]x1(t)/]t1).

In order to derive the quasiclassical limit of the]̄-problem ~3.1! we first introduce slow
variablesT ~t i5Ti /« for KP and mKP,xi5Xi /« , yi5Yi /« , n5 T/« for 2DTL! for small « and
proceed to the limit«→0. In this limit g(T/«)5exp@S0(l,T)/«#. Motivated by the formula of the
type ~2.4! and by the structure of Eq.~3.1! we will look for solutionsx of the form
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xS l,l̄;
T

« D5x̂~l,l̄;T;«!expS S̃(l,l̄;T)

«
D , ~3.2!

whereS̃(l,l̄;T) is a certain function and

x̂~l,l̄;T;«!5 (
n50

`

x̂n~l,l̄;T!«n. ~3.3!

It is clear that only for special]̄-dataR0 Eq. ~3.1! will have a well-defined limit as«→0. Thus, it
is not difficult to see that the]̄-data of the form

R0~m,m̄;l,l̄;«!5 (
k50

`

Gk~m,m̄ !«k21d (k)~m2l2«ak~l,l̄ !! ~3.4!

do a job. HereGk(m,m̄), ak(l,l̄) are arbitrary functions~Gk50 at lPC/G! and d (k) is the
k-derivative Dirac delta-function (d (k)(l)5 (]k/]lk) d(l)). Indeed, in the simplest caseak50,
substituting~3.4! into ~3.1!, one gets

]x̂~l,l̄;T,«!

]l̄
1

1

«

]S~l,l̄;T!

]l̄
x̂~l,l̄,T,«!

5E E
C
dm∧dm̄x̂~m,m̄,«!expS S(m,T)2S(l,T)

« D (
k50

`

Gk~m,m̄ !«k21d (k)~m2l! ~3.5!

where

S~l,l̄;T!ªS̃~l,l̄;T!1S0~l;T!.

Evaluating in~3.5! the terms of the order 1/«, one obtains

]S~l,l̄;T!

]l̄
5WS l,l̄;

]S

]l
D , ~3.6!

where

WS l,l̄;
]S

]l D5 (
k50

`

~21!kGk~l,l̄ !S ]S

]l D k

. ~3.7!

Furthermore, the terms of zero order in« in ~3.5! give @the contribution proportional tox̂1

disappears due to~3.6!#:

]w

]l̄
5W8S l,l̄;

]S

]l
D ]w

]l
1W̃S l,l̄;

]S

]l
D ]2S

]l2
w, ~3.8!

where

wªx̂0 , W8~l,l̄;j!ª
]W~l,l̄;j!

]j
,
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and

W̃ª~21!2G2 1~21!3G33
]S

]l
1¯5

1

2
W9S l,l̄;

]S

]l D . ~3.9!

Since]S0 /]l̄ 50 at lPG, then Eqs.~3.6!–~3.9! for lPG can be rewritten as

]S

]l̄
5WS l,l̄;

]S

]l
D , ~3.10!

]w

]l̄
5W8

]w

]l
1W̃

]2S

]l2
w. ~3.11!

Equations~3.10! and~3.11! are the quasiclassical limit of the nonlocal]̄-problem~3.1!. One gets
similar equations for the kernels~3.4! with akÞ0. The derivation given above suggests that
quasiclassical limit of the]̄-problem ~3.1! is given by Eqs.~3.10! and ~3.11! also for a more
general than~3.4! ]̄-dataR0 .

The functionS is widely used in the analysis of the dispersionless limits of the integr
hierarchies.4–10 Within the ]̄-approach it is a nonholomorphic function of the ‘‘spectral’’ variab
l and obeys the nonlinear]̄-equation~3.10! ~for lPG!. The functionw5x̂0 obeys the local
]̄-problem~3.11! of the Beltrami type. Note that the ratiof of two solutionsw1 and w2 of Eq.
~3.11! satisfies the Beltrami equation

]f

]l̄
5W8S l,l̄;

]S

]l
D ]f

]l
. ~3.12!

For the Orlov’s functionM5 ]S/]l Eqs.~3.10! and~3.11! take the form of quasilinear equation

]M

]l̄
5

]

]l
W~l,l̄;M !, ~3.13!

]w

]l̄
5W8~l,l̄;M !

]w

]l
1W̃~l,l̄;M !

]M

]l
w. ~3.14!

Quasiclassical]̄-problems~3.10! and ~3.11! are basic equations for our approach. The eq
tions of the type~3.10! and ~3.11! are well known and widely studied in the theory of nonline
elliptic systems with two independent variables and in complex analysis~see, e.g., Refs. 27
21–23!. One theorem from the theory of such equations will be crucial for our further cons
tions. This theorem~see theorem 3.32 from Ref. 27! states that, under certain mild condition onA

~see the appendix!, the only solution of the Beltrami equation]Z/]l̄ 5A (]Z/]l) in C which
vanish asl→` is Z[0.

We would like to note that the systems of the type~1.1! and ~1.2! arise also within the
complex Wenthel–Kramers–Brillouin method: see, e.g., the general canonical system~1.14!,
~1.148! in Ref. 28. This connection and the ‘‘elliptic’’ version of Maslov’s method for the syst
~1.1! and ~1.2! will be discussed elsewhere.
                                                                                                                



f
he

ns

n

able

m
s

3812 J. Math. Phys., Vol. 43, No. 7, July 2002 B. Konopelchenko and L. Martinez Alonso

                    
IV. QUASICLASSICAL ̄-DRESSING METHOD

The principal goal of the]̄-dressing method based on Eqs.~3.10! and~3.11! is the same as o
the original ]̄-dressing method.24–26 It is to extract the nonlinear differential equations from t
quasiclassical]̄-problems.

Now the time dependence of the functionsS and w is encoded in the undressed functio
S0(l,T). Since

S̃511
S1

l
1

S2

l2 1¯

at l→` then the behavior of]S/]TA for largel is completely defined by

]S

]TA
5

]S0

]TA
1

1

l

]S1

]TA
1¯ , ~4.1!

whereTA is a slow time.
A basic property of the nonlinear equation~3.10! is that it implies the linear Beltrami equatio

for the infinitesimal variationsdS ~symmetries!:

]

]l̄
~dS!5W8S l,l̄;

]S

]l
D ]

]l
~dS!. ~4.2!

In particular, for any timeTA ,

]

]l̄
S ]S

]TA
D 5W8S l,l̄;

]S

]l
D ]

]l
S ]S

]TA
D . ~4.3!

Any power of solution of the Beltrami equation is a solution too as well as any differenti
function of two solutions. So together with]S/]TA1

, . . . ,]S/]TAn
any differentiable function

f S ]S

]TA1

, . . . ,
]S

]TAn
D

with arbitraryn is a solution of Eq.~4.3!. Thus the symmetries of the problem~3.10! form a ring.
Due to ~4.1!, the functions

f S ]S

]TA1

, . . . ,
]S

]TAn
D

have singularities in certain points. The functions

f 0S ]S

]TA1

, . . . ,
]S

]TAn
D

which are bounded inC and vanish asl→` are very special. According to the Vekua’s theore
mentioned at the end of Sec. III they vanish identicaly. So we have the nonlinear equation

f 0S ]S

]TA1

, . . . ,
]S

]TAn
D 50. ~4.4!
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Note that in contrast to the usual hierarchies we get nonlinear equations for the ‘‘wave fun
S ~the classical action!.

Now we turn to the]̄-problem~3.11!. It is linear one. So the construction is similar to that
the usual case. Namely, suppose that one has found a solutionw0 to Eq. ~3.11! of the form w0

5Lw whereL is a certain linear operator andw0 is bounded and vanishes asl→`. Sincew
→11 w1 /l 1¯ asl→` the ratiow0 /w vanishes asl→` and obeys the Beltrami equation

]

]l̄
S w0

w
D 5W8

]

]l
S w0

w
D . ~4.5!

Then according to the Vekua’s theoremw0 /w vanishes identically and, consequently,

Lw50 ~4.6!

that is the desired linear problem for the wave functionw. Note that one can get the same resu
assuming that the problem~3.11! with canonically normalizedw is uniquely solvable.

Equations~4.4! and~4.6! are the basic equations associated with the quasiclassical]̄-problems
~3.10! and~3.11!. They are compatible by construction. Equations~4.4! and~4.6! provide us also
with equations for functionsuk(T) which depend only on the timesT. Usually one has infinite
families of equations of the type~4.4! and~4.6!. So the quasiclassical]̄-problems~3.10! and~3.11!
give rise to an infinite hierarchy of integrable quasiclassical~or dispersionless! equations.

V. dKP AND dmKP HIERARCHIES

Let us consider concrete examples to illustrate the general scheme. We start with th
hierarchy. In this caseS0(l,T)5(n51

` lnTn and ]S/]Tn 5ln1 (1/l)(]S1 /]Tn) 1 (1/l2)
3(]S2 /]Tn) 1 . . . (n51, 2, . . .). Since]S/]Tn have power singularities at infinity the desire
function f 0 will be, clearly, polynomials. Taking, for instance, the derivatives]S/]T2 and]S/]T
we readily see that the difference]S/]T2 2(]S/]T1)2 behaves as22(]S1 /]T1) 1O(1/l) asl
→`. Thus, the desired functionf 0 is ]S/]T2 2(]S/]T1)212(]S1 /]T1). So we get

]S

]T2
2S ]S

]T1
D 2

2u50, ~5.1!

whereu522(]S1 /]T1).
Analogously, taking the derivatives]S/]T3 and]S/]T1 one easily concludes that the comb

nation]S/]T3 2(]S/]T1)32V1 (]S/]T1) 2V0 vanishes atl→0 if V1523(]S/]T1) andV05
23(]S2 /]T1) 52 3

2(]S1 /]T2). So one gets the other functionf 0 and

]S

]T3
2S ]S

]T1
D 3

2V1

]S

]T1
2V050 ~5.2!

where]V0 /]T1 5 3
4(]u/]T2).

In a similar manner one constructs an infinite family of equations

]S

]Tn
2S ]S

]T1
D n

2 (
k50

n22

Vnk~T!S ]S

]T1
D k

50, n51, 2, 3, . . . ~5.3!

with appropriate coefficientsVnk(T).
Equation~5.3! is nothing but the Eq.~2.5! of the dKP hierarchy. Evaluating the left-hand sid

of ~5.3! at l→`, taking the term of the order 1/l and using other equations~5.3!, one gets the
dKP hierarchy for the functionu and, in particular, the dKP equation
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uT1T3
5 3

2 ~u uT1
!T1

1 3
4 uT2T2

. ~5.4!

In a usual manner Eq.~5.4! arises as the compatibility conditions for Eqs.~5.1! and~5.2!. Equation
~5.3! implies the hierarchy of nonlinear equations for the functionS only. Indeed, eliminating all
coefficientsunk(T) from ~5.3! one gets the family of equations

]S

]Tn
5FnS ]S

]T1
,

]S

]T2
D , n53, 4, 5, . . . .

The lowest of these equations is of the form

]2S

]T1]T3
5

3

4

]2S

]T2
2 1

3

2 F ]S

]T2
2S ]S

]T1
D 2G ]2S

]T1
2 .

Now we proceed to the]̄-problem ~3.11!. For simplicity we restrict ourselves to the caseW̃
5 1

2W9. It is not difficult to show, differentiating~3.11! and using Eqs.~5.1! and ~5.2!, that the
function Z5Lw5 ]w/]T2 22(]S/]T1)(]w/]T1) 2 (]2S/]T1

2) w1ũw where ũ522(]w1 /]T1)
obeys

]Z

]l̄
5W8

]Z

]l
1

1

2
W9

]2S

]l2
Z ~5.5!

and vanish atl→0. Consequently the ratioZ/w obeys the Beltrami equation (]/]l̄) (Z/w)
5W8(]/]l) (Z/w) and Z/w 5O(1/l) as l→`. According to the Vekua’s theorem this rat
vanishes identically and, consequently, we get the linear problemZ50, i.e.,

]w

]T2
22

]S

]T1

]w

]T1
2

]2S

]T1
2 w1ũw50. ~5.6!

In a similar manner, one gets

]w

]T3
26F2S ]S

]T1
D 2

1ũG ]w

]T1
23F4

]S

]T1

]2S

]T1
2 1

]ũ

]T1
22ũ

]S

]T1
1w̃Gw50 ~5.7!

and higher-time equations

]w

]Tn
2An

]w

]T1
2Bnw50, n51, 2, 3, . . . . ~5.8!

All linear problems~5.6!–~5.8! are compatible by construction.
In the particular caseũ5w̃50 Eq. ~5.6! is known as the transport equation within the qu

siclassical approximation in quantum mechanics~see, e.g., Ref. 28!. Note that in the caseũ5w̃
50 Eqs.~5.6! and ~5.7! @and also~5.8!# take the form of conservation laws

]f

]T2
2

]

]T1
S ]S

]T1
f D50,

~5.9!
]f

]T3
2

]

]T1
S 12S ]S

]T1
D 2

f D50.

Considering the adjoint dKP hierarchy for whichc* (T)5x̃* (T,l;«)e2 S/«, one gets the
same equation~4.1! for S and equations forw* which are adjoint to~5.6! and ~5.7!. It is inter-
esting that the quantityw(l,T)w* (l,T) obeys exactly Eq.~5.9!.
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Our second example is given by the dmKP hierarchy. In this caseS05(k51
` l2kTk and

]S

]Tk
5

1

lk 1
]S̃~l,T!

]Tk

whereS̃(l,T) is holomorphic aroundl50. So to construct required functionsf 0 one has to cance
singularities aroundl50. Taking again the derivatives]S/]T1 and]S/]T2 one readily sees tha
the combination]S/]T2 2(]S/]T1)2 has only simple pole atl50. To cancel it, we subtrac
V(T)(]S/]T1) whereV(T)522(]S̃(l50)/]T2). Then atl50 one has

]S

]T2
2S ]S

]T1
D 2

2V~T!
]S

]T1
5OS 1

l D .

So due to the Vekua’s theorem we conclude

]S

]T2
2S ]S

]T1
D 2

2V~T!
]S

]T1
50, ~5.10!

whereV(T)522(]S̃(l50,T)/]T2). Taking the derivatives]S/]T1 and]S/]T3 , one finds

]S

]T3
2S ]S

]T1
D 3

2
3

2
VS ]S

]T1
D 2

2S 3

4
V223WD ]S

]T1
50, ~5.11!

where S̃(l)5S̃(0)1lW(T)1¯ as l→0. Analogously, one obtains the infinite hierarchy
equations

]S

]Tn
2S ]S

]T1
D n

2 (
k51

n21

Vnk~T!S ]S

]T1
D k

50, n51, 2, 3, . . . . ~5.12!

Equations~5.12! give us the dmKP hierarchy~see, e.g., Ref. 29!. The simplest of these equation
is the dmKP equation

Vt1
3
2 V2Vx2 3

4 Vx]x
21Vy2 3

4 ]x
21Vyy50. ~5.13!

Analogously to the KP case, one can also construct the hierarchy of linear problems f
function w. The simplest of them is of the form

]w

]T2
2S 2

]S

]T1
1VD ]w

]T1
2

]2S

]T1
2 w50. ~5.14!

Analogously to the dKP case Eq.~5.12! implies the hierarchy of equations forS only.

VI. DISPERSIONLESS TWO-DIMENSIONAL TODA LATTICE „2DTL… HIERARCHY

Our third example is the d2DTL hierarchy. In this caseS0(l;X,Y,T)5T ln l1(n51
` lnXn

1(n51
` l2nYn and the domainG is the ringDa,b(a<ulu<b) with the cutted piece of the real axis

The derivatives ofS now have singularities both in the origin and at the infinity:

]S

]T
5 ln l1

]S̃

]T
,

]S

]Xn
5ln1

]S̃

]Xn
, ~6.1!
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]S

]Yn
5l2n1

]S̃

]Yn
, n51, 2, 3, . . . .

Since

S̃~l;X,Y,T!511
S̃1

l
1

S̃2

l2 1 . . . , l→`,

~6.2!
S̃~l;X,Y,T!5S01lS11l2S21 . . . , l→0

one has atl→`,

]S

]Xn
5ln1

1

l

]S̃1

]Xn
1 . . . ,

]S

]Yn
5l2n1

1

l

]S̃1

]Xn
1 . . . , n51, 2, 3, . . . ,

~6.3!

e]S/]T5l1
]S̃1

]T
1

1

l
F ]S̃2

]T
1

1

2
S ]S̃1

]T
D 2G ,

e2 ]S/]T5
1

l
2

1

l2

]S̃1

]T
,

while at l→0,

]S

]Xn
5

]S0

]Xn
1O~l!

]S

]Yn
5

1

ln 1
]S0

]Yn
1O~l!, n51, 2, 3, . . . ,

~6.4!

e]S/]T5le]S0 /]T1l2e]S0 /]T
]S1

]T
1O~l3!,

e2 ]S/]T5
1

l
e2 ]S0 /]T2

]S1

]T
e2 ]S0 /]T1O~l!.

The required functionf 0 should not have singularities atl50 and atl5` and should vanish a
l→`. Taking the derivatives]S/]T , ]S/]Xn , ]S]Yn and using~6.2!, ~6.3!, one finds the fol-
lowing two equations:

]S

]Y1
2Ve2 ]S/]T50, ~6.5!

]S

]X1
2e]S/]T2U50, ~6.6!

whereV(X,Y,T)5e]S0 /]T andU(X,Y,T)52 ]S̃1 /]T. The system~6.5! and~6.6! is the simplest
system of equations for the functionS associated with the d2DTL hierarchy. We note that
contrast to the papers of Ref. 10 we have only one functionS.
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To extract from the above-mentioned system nonlinear equations for the functionsV(X,Y,T)
and U(X,Y,T) we perform the expansion of the left-hand-side of~6.5! at largel and of the
left-hand-side of Eq.~6.6! around l50. The terms of the order 1/l in ~6.5! give V51
1 ]S̃/]Y1 while vanishing of the zero-order terms in Eq.~5.6! provides us with the equation
]S0 /]X1 2U50. As a result, we get the system of equations

11
]S̃1

]Y1
5e]S0 /]T,

]S0

]X1
1

]S̃1

]T
50. ~6.7!

To rewrite it in a more familiar form we introduce the functiona5 ]S0 /]T, differentiate twice the
first equation in~6.7! with respect toT, and use the second equation in~6.7!. One gets

]a

]X1]Y1
1

]2

]T2 ~ea!50, ~6.8!

which is the standard form of the dispersionless 2DTL equation.
It is easy to show that the formal compatibility conditions for~6.5!, ~6.6! are equivalent to the

system

VX1
2VUT50, UY1

1VT50 ~6.9!

which, of course, again gives rise to Eq.~6.8! (a5 ln V). In the form~6.9! the 2DTL equation has
been derived in Ref. 8.

Higher equations forS can be obtained analogously. Taking the timesX2 andY2 , one finds
the following:

]S

]Y2
2V2e22~]S/]T!2V1e2 ]S/]T50, ~6.10!

]S

]X2
2e2~]S/]T!2U1e~]S/]T!50, ~6.11!

where

V25e2~]S0 /]T!, V152
]S1

]T
e]S0 /]T,

U1522
]S̃1

]T
, U0522

]S̃2

]T
. ~6.12!

Higher d2DTL equations have, consequently, the form

]V2

]X2
22V2

]U0

]T
50,

]V1

]X2
2V1

]U0

]T
22V2

]U1

]T
2U1

]V2

]T
50,

~6.13!
]U0

]Y2
1

]

]T
~U1V1!12

]V2

]T
50,

]U1

]Y2
12V1

]V1

]T
50.
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The hierarchy of equations forS takes the form

]S

]Yn
2 (

k51

n

Vnk~X,Y,T!e2k ~]S/]T!50, ~6.14!

]S

]Xn
2 (

k50

n

Unk~X,Y,T!ek~]S/]T!50, ~6.15!

where Vnk and Unk(Unn51) are appropriate functions. These equations provides us with
d2DTL hierarchy for the coefficientsVnk andUnk .

The formulas~6.14! and~6.15! shows the role of the functione]S/]T. In the 111-dimensional
case this fact was first noted in Ref. 5.

The d2DTL hierarchy clearly contains the dKP and dmKP hierarchies as subhierarchie
first arises if one consider only timesXn puttingTn5T50 while the dmKP hierarchy is associate
only with timesYn(Xn5T50).

Equations~6.14! and ~6.15! imply the hierarchy of equations for the functionS only. The
lowest of them is of the form

]2S

]X1]Y1
1e]S/]T

]S

]Y1

]2S

]T2 50. ~6.16!

VII. RING OF SYMMETRIES FOR THE QUASICLASSICAL ̄-PROBLEM AND
UNIVERSAL WHITHAM HIERARCHY

The results of Sec. VI demonstrate that the symmetries of the quasiclassical]̄-problem have
a rather special property. Namely, for the dKP, dmKP, and d2DTL hierarchies different symm
vA5]S/]TA are connected by certain algebraic relations@see formulas~5.3!, ~5.12! and ~6.14!,
~6.15!#.

This property of the symmetries of the quasiclassical]̄-problem has, in fact, a deeper bac
ground and is of general character. This background is provided by certain theorems ab
solutions of the Beltrami equation~see Ref. 27!.

Thus, let us start with the general quasiclassical]̄-problem,

]S

]l̄
5WS l,l̄;

]S

]l
D , ~7.1!

whereW(l,l̄;j) is a certain function and dependence ofS on parameters~times! is not specified
yet.

Infinitesimal symmetriesv of the problem~7.1! are defined by the linear Beltrami equatio

]v

]l̄
5W8S l,l̄;

]S

]l
D ]v

]l
. ~7.2!

Linear Beltrami equation possesses a number of interesting properties. They have been stu
detail as a part of the theory of generalized analytic functions~see Ref. 27!. The first important
property is formulated in Sec. 3~Chap. II! of Ref. 27. This Theorem 1~see the Appendix! states
that for measurable and bounded on the entire complex planeC functionsW8 which satisfies the
condition uW8u<W0,1 and some other mild conditions, Eq.~7.2! has a solutionv0(l) ~so-
called, basic homeomorphism! for which
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v0~l!5l1OS 1

l D , l→`. ~7.3!

Another Theorem~theorem 2.16 from Ref. 27—see the Appendix! says that all solutions~in some
class! of Eq. ~7.2! are given by

v~l,l̄ !5V~v0~l,l̄ !!, ~7.4!

whereV(j) is an arbitrary analytic function in the domainv(D0).
These two basic results allow us to construct infinite hierarchy associated with the pro

~7.1!. Indeed, let us assign the timetA for each symmetryvA such thatvA5]S/]TA . So for the
basic solution~7.3! v05]S/]T0 . The first theorem now says that there exists a symmetry of
~7.1! such that

]S

]T0
5l1OS 1

l D . ~7.5!

Then the second theorem states that for any symmetry]S/]TA one has

]S

]TA
5VAS ]S

]T0
~l,l̄ !,TD , ~7.6!

whereV(j,T) is an appropriate function of the first argument. Thus the above two theorems
that under certain conditions the]̄-equation~7.1! possesses an infinite ring of symmetries~defor-
mations! given by

]S~l,l̄;T!

]TA
5VAS ]S

]T0
,TD , A50, 1, 2, 3, . . . , ~7.7!

whereVA(j,T) are arbitrary analytic functions of thej. The set of equations~7.7! is compatible
by construction. Equation~7.7! gives rise to certain nonlinear equations for functionsUk(T) on
which S may depend. These equations can be obtained also from the equations forVA which
follow from ~7.7!. They are

]VA

]TB
2

]VB

]TA
1$VA ,VB%50, A,B50, 1, 2, . . . , ~7.8!

where

$ f ,g%5
] f

]p

]g

]T1
2

] f

]T1

]g

]p
. ~7.9!

and we denotedp5 ]S/]T0 .
So we constructed an integrable hierarchy of equations out of the]̄-problem ~7.1!. It is an

infinite ring sinceVA(j,T) are arbitrary analytic functions. To get a concrete hierarchy one ha
specify the set of functionsVA . The set of functionsVA(p(l,l̄;T),T) such thatVk;lk

1O(1/l) asl→` with identificationT05T1 , Tk5TA21 gives rise to the dKP hierarchy.
In the above-given construction the timeT0 has played a special role being connected with

‘‘basic’’ symmetryv0 . Infinite ring of symmetries for the problem~7.1! admits more general an
symmetric formulation. It is due to the already mentioned obvious fact that any different
function
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f S ]S

]TA1

,
]S

]TA2

, . . . D
of any set of symmetries]S/]TA1

, ]S/]TA2
, . . . , is again a symmetry@i.e., a solution of Eq.

~7.2!#. Then the implicit function theorem implies that any symmetry]S/]TA can be chosen as
basic one.

So, let us take~arbitrary! symmetryp5 ]S/]T0 . The infinite hierarchy of symmetries now
takes the form

]S

]TA
5VA~p,T!, ~7.10!

whereVA(j,T) are arbitrary differentiable functions ofj. The compatibility conditions for Eq
~7.10! is of the form ~7.8! and ~7.9! where nowT0 and p5 ]S/]T0 are arbitrary time and the
corresponding symmetry.

The infinite set of equations~7.8! in this case is nothing but the universal Whitham hierarc
introduced in the different way in Ref. 8. So in our approach the universal Whitham hierarc
an infinite ring of symmetries of the general quasiclassical]̄-problem~7.1!.

VIII. DISPERSIONLESS HIERARCHIES OF THE B TYPE

Various type of reductions for the dKP hierarchy have been considered in Refs. 5 and 10
we will discuss the dispersionless hierarchies of the so-called B type. The dispersionles
hierarchy has been discussed briefly in Ref. 30. The dBKP hierarchy is characterized
constraint30

S~2l,T!52S~l,T!. ~8.1!

This constraint immediately implies that only odd powers of]S/]T1 are allowed in Eq.~5.3!.
Since in this caseS0(l,T)5lT11l3T31l5T51¯ and S̃511 S1 /l 1 S3 /l3 1¯ as l→`,
the hierarchy of equations forS takes the form

]S

]T2n11
2S ]S

]T1
D 2n11

2 (
k50

n21

Unk~T!S ]S

]T1
D 2k11

50. ~8.2!

The two lowest equations~8.2! are

]S

]T3
2S ]S

]T1
D 3

2U
]S

]T1
50, ~8.3!

]S

]T5
2S ]S

]T1
D 5

2V3S ]S

]T1
D 3

2V1

]S

]T1
50, ~8.4!

where

U523
]S1

]T1
, V35

5

3
U, V15

5

9
U22

]S3

]T1
. ~8.5!

Equations~8.3! and ~8.4! imply that

9

5

]U

]T5
1U2

]U

]T1
2U

]U

]T3
2

]U

]T1
]T1

21S ]U

]T3
D2]T1

21S ]2U

]T3
2 D 50. ~8.6!
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Equation ~8.5! is the dispersionless limit of the 211-dimensional Sawada–Kotera~and also
Kaup-Kupershmidt! equation.31,32

To get the d2DTL hierarchy of the B type we shall use the universal Whitham hiera
equation~7.10! and~7.7!. Due to constraint~8.1! only odd functionsVA(2p,T)52V(p,T) are
admissible. Taking the timet15X as the reference one~i.e., p5 ]S/]X) and two other equations
~7.10! in the form

]S

]Y
5

V

p2U
2

V

p1U
,

]S

]T
5 ln

p2U

p1U
, ~8.7!

whereu andV are functions ofX,Y,T, one obtains

VT1UY50,
~8.8!

UT1
UX

U
2

VX

V
50.

Introducing the functionb5 ln(V/U), one can rewrite the system~8.8! as

bXY1~Ueb!TT50,
~8.9!

bX1UT50.

It is the d2DTL equation of the B type. The analog of Eqs.~6.5! and ~6.6! for the B-d2DTL
equation~8.9! is rather interesting

]S

]Y
1

V

U
shS ]S

]TD50,

~8.10!
]S

]X
1U cthS 1

2

]S

]TD50.

The compatibility condition for this system is equivalent to the system~8.8!.
Note finally that the nonlinear equation forS(z,z̄;X,Y,T) in this case is of the form

STT SXSY

11ch~ST!
2

STXSY

sh~ST!
1SXY50. ~8.11!
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APPENDIX: PROPERTIES OF THE BELTRAMI

There is a well-established theory of generalized solutions of the linear Beltrami equatio~see
for instance Refs. 21–23 and 28!

Zl̄5AZl , ~A1!

whereA is any given measurable functioniAi`,1 on G. Obviously, forA[0 we get into the
class of conformal mappings. To present these results we need to introduce the operators
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Th~l!ª
1

2p i E E
C3C

h~l8!

l82l
dl8∧dl̄8, Ph~l!ª

]Th

]l
~l!,

where the integral is taken in the sense of the Cauchy principal value. Then one has:
Lemma: For any p.1 the operatorP defines a bounded operator in Lp(C) and for any0

<k,1 there existsd.0 such that

kiPip,1,

for all up22u,d.
The next theorem summarizes the properties of solutions of~A1! that we need in our discus

sion.
Theorem: Given a measurable function A with compact support inside the circleulu,R and

such thatiAi`,k,1. Then, for any fixed exponent p5p(k).2 such that kiPip,1, it follows
that

~1! There is a unique function Z0 on C with distributional derivatives satisfying the Beltram
equation~A1! such that

Z0~l!5l1OS 1

l D , l→`, ~A2!

with Z0,l̄ and Z0,l21 being elements of Lp(C).
~2! Every solution of~A2! on a domain Gof C can be represented as

Z~l!5F~Z0~l!!, ~A3!

whereF is an arbitrary analytic function on the image domain Z0(G) of G under Z0 .
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3nj -coefficients of su „1,1… as connection coefficients
between orthogonal polynomials in n variables

S. Lievensa) and J. Van der Jeugtb)

Department of Applied Mathematics and Computer Science, University of Ghent,
Krijgslaan 281-S9, B-9000 Gent, Belgium

~Received 21 February 2001; accepted for publication 29 March 2002!

In the tensor product ofn11 positive discrete series representations of su~1,1!, a
coupled basis vector can be described by a certain binary coupling tree. To every
such binary coupling tree, polynomialsRl

(k)(x) andR l
(k)(x) are associated. These

polynomials aren-variable Jacobi and continuous Hahn polynomials, and are or-
thogonal with respect to a weight function. The connection coefficients expressing
such a polynomial associated with a given binary coupling tree in terms of those
polynomials associated with another binary coupling tree are proportional to
3n j-coefficients of su~1,1!. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1482149#

I. INTRODUCTION

The 3n j-coefficients of su~2! @or so~3!# play a dominant role in quantum theory of angul
momentum1–5 and its applications in nuclear, atomic, and molecular physics. For 3j - and
6 j -coefficients of su~2! there exist expressions in terms of hypergeometric series,5–7 explaining the
close relation with orthogonal polynomials such as Hahn and Racah polynomials.7 For example,
the 6j -coefficient of su~2! is expressed in terms of a terminating balanced4F3 series of unit
argument. The parameters of the4F3(1) series are written in terms of the six representation lab
~angular momenta! of the 6j -coefficient. By the nature of these representation labels~integer or
half-integer positive numbers!, the parameters of the4F3(1) series are integers.6,7 When identi-
fying the 6j -coefficient with a Racah polynomialRm(l(x);a,b,g,d), it is not easy to decide
which parameters correspond to the degreem, which to the variablex, and which to the param
etersa, b, g, d of the polynomial. In a way, this identification becomes easier when dealing
positive discrete series representations of su~1,1! rather than with su~2! representations. This is, fo
us, one of the main reasons to consider couplings of such su~1,1! representations, thei
3n j-coefficients, and the connections with orthogonal polynomials in this article.

The Lie algebra su~1,1!, or so~2,1!, plays itself an important role in physical models. It h
been extensively used as spectrum generating algebra in many simple quantum systems,
the nonrelativistic Coulomb problem, the isotropic harmonic oscillator, Schro¨dinger’s relativistic
equation, and the Dirac–Coulomb problem~Ref. 8, and references therein!. In certain boson
models,9,10 the relevant representations are the positive discrete series representationsD 1(k). To
fix the notation, letJ0 , J6 be the generators of su~1,1! subject to

@J0 ,J6#56J6 , @J1 ,J2#522J0 , ~1.1!

with the conditionsJ0
†5J0 andJ6

† 5J7 . The positive discrete series representations7 D 1(k) (k
.0) have a basisuk,n&, with n50,1,2,..., and theaction of the generators is given by

J0uk,n&5~n1k!uk,n&,

a!Electronic mail: stijn.lievens@rug.ac.be
b!Electronic mail: joris.vanderjeugt@rug.ac.be
38240022-2488/2002/43(7)/3824/26/$19.00 © 2002 American Institute of Physics
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J1uk,n&5A~n11!~2k1n!uk,n11&, ~1.2!

J2uk,n&5An~2k1n21!uk,n21&.

@In the rest of the article, we always mean ‘‘positive discrete series representations’’ whenev
say ‘‘representations’’ of su~1,1!.# The tensor product of two positive discrete series represe
tions (k1)5D 1(k1) and (k2)5D 1(k2) @or the coupling of two representations(k1) and (k2)#
decomposes as follows:7

~k1! ^ ~k2!5 %
j 50

`

~k11k21 j !. ~1.3!

The ‘‘coupled basis vectors’’ are written in terms of the uncoupled ones by means of the s~1,1!
Clebsch–Gordan coefficients:

u~k1k2!k,n&5 (
n1 ,n2

Cn1 ,n2 ,n
k1 ,k2 ,k uk1 ,n1& ^ uk2 ,n2&. ~1.4!

Herein, k5k11k21 j for some integerj >0, and the sum is such thatn11n25 j 1n. Explicit
expressions for the Clebsch–Gordan coefficients are given, e.g., in Refs. 7, 11, and 12, in te
a 3F2(1) series.

In this article we shall be dealing with the coupling or tensor product ofn11 such represen
tations, labeled by positive integersk1 ,k2 ,...,kn11 . For the description of coupled basis vectors
such a tensor product, the notion of binary coupling trees is essential~see Ref. 4, Topic 12 and
Refs. 13 and 14!. Binary couplings find their origin in the recoupling theory ofn11 angular
momenta~Ref. 4 Topic 12! @thus in the context of tensor products of (n11) su~2! representa-
tions#, but apply also to the ‘‘recoupling theory’’ ofn11 positive discrete series representations
su~1,1!.13,14 Binary coupling trees describe the coupling scheme~the way of taking tensor prod
ucts!, i.e., the sequential pairwise coupling~Ref. 4 Topic 12!. A 3n j-coefficient of su~1,1! is then
the coefficient of a unitary transformation which connects two basis vectors correspond
different binary coupling schemes ofn11 representations.4,6,13,14Thus a 3n j-coefficient is char-
acterized by two binary treesT1 and T2 ~with labeled leaves and nodes!, and since it is the
transformation coefficient or overlap coefficient, it is usually denoted by^T1 ,T2&. For the reader
not familiar with binary coupling trees, their meaning will become transparent from the exam
given in this article.

The motivation for the work presented here stems from interpretations of identities invo
orthogonal polynomials and su~1,1! Racah coefficients@or su~1,1! 6 j -coefficients#. One such
identity appears already in the seminal work of Granovski� and Zhedanov@Ref. 15, Eq.~9!#: this
is a convolution identity involving products of Jacobi polynomials and Racah coefficients.
identity can be interpreted as a connection coefficient identity between orthogonal polynom
two variables, with su~1,1! Racah coefficients as connection coefficients~see Refs. 11 and 12!. It
was later extended to the case of continuous Hahn polynomials~Ref. 12, Theorem 3.13!: here the
connection coefficients are the same@namely su~1,1! Racah coefficients#, but the orthogonal poly-
nomials in two variables are certain products of two continuous Hahn polynomials.

In the present article orthogonal polynomials inn variables will be associated with the tens
product of n11 representations of su~1,1!. A different class of orthogonal polynomials arise
depending upon the~internal! binary coupling tree. Then, the connection coefficients relating
such orthogonal polynomials associated with a different binary coupling tree are give
3n j-coefficients~associated with the coupling trees!. For the case of three couplings Jacobi po
nomials and continuous Hahn polynomials appear. Also for then-variable case, these two familie
are present: the orthogonal polynomials we are dealing with are either products of certain
polynomials, or products of continuous Hahn polynomials.
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In general, orthogonal polynomials in several variables give rise to certain difficulties tha
not present in the one variable situation. For example, orthogonal polynomials inn variables are
no longer uniquely defined by the areaV and the weight function on the area. This is close
related to the fact that there is no obvious natural order for polynomials in several variable

The space of all polynomials in the variablesx1 ,...,xn with real coefficients is denoted
R@x1 ,...,xn# or Pn for short. The degree of a polynomialPPPn is the highest degree of any o
its monomials. Let̂ •,•& be an inner product defined onPn. ThenP is an orthogonal polynomia
if ^P,Q&50 for all polynomialsQ with degQ,degP. This definition does not require thatP is
orthogonal with other~orthogonal! polynomials of the same degree.

In our case the inner product will be defined in terms of some~classical! weight functionW
on some~classical! areaV in Rn: ^P,Q&5*VP(x)Q(x)W(x)dx.

The outline of the rest of this article is as follows. In Sec. II we confine ourselves to the
variable case. The basic identities are convolution identities involving su~1,1! Racah coefficients
and Jacobi polynomials15,11 or continuous Hahn polynomials.12 The new aspect here is that w
show how to deduce these identities from the Biedenharn–Elliott identity.4 More particularly, we
show how the Biedenharn–Elliott identity yields a new convolution identity involving the Wil
and Racah polynomials. The products of Wilson polynomials on both sides of the identit
shown to be orthogonal inR2 with respect to some weight function. Using limiting relatio
between the Wilson, continuous Hahn and Jacobi polynomials, two other~known! convolution
identities are~re!derived.

Section III generalizes the result involving Jacobi polynomials ton variables. With the cou-
pling of n11 representations in su~1,1! we associate a set of orthogonal polynomials on
simplex with respect to the classical weight functionx1

a1
¯xn

an(12x12¯2xn)an11 (a i.21).
For n52 these polynomials are due to Proriol.16 For arbitraryn, but associated to a specia
coupling tree, these polynomials appear in Ref. 17. The more general case was also consid
Rosengren18 in the context of multilinear Hankel forms.

Section IV does the same for the result involving continuous Hahn polynomials. In this
the area is the complete spaceRn, and the weight function is in terms of gamma functions.

In Sec. V we prove that the sets of polynomials defined in the previous sections form bas
Pn. Moreover, we show that the generalized recoupling coefficients of su~1,1!, which are essen-
tially sums of products of Racah coefficients, are the connection coefficients between the di
bases.

In the rest of this article we will use the following abbreviations:k always stands for the
(n11)-tuple (k1 ,...,kn11)PR1

n11 , and l is an n-tuple (l 1 ,...,l n)PNn. Moreover, we useuku
5k11¯1kn11 andu l u5 l 11¯1 l n . The Kronecker delta symbold l ,l 8 then stands for the prod
uct d l 1 ,l

18
,...,d l n ,l

n8
, etc.

II. A CONVOLUTION IDENTITY INVOLVING WILSON POLYNOMIALS

In general recoupling theory of su~2!, the Biedenharn–Elliott identity is well known.4,1,6 In the
case of positive discrete series representations of su~1,1!, the identity is essentially the same. It
easily derived by considering the overlap or transformation coefficient~Ref. 4, pp. 456–457!,13,14

^~~~k1 ,k2!k12,k3!k13,k4!k14u~k1 ,~k2 ,~k3 ,k4!k34!k24!k14&

and computing this in two different ways: either directly, yielding a product of two recoup
coefficients, or in three steps, introducing a summation variable and thus yielding a sum
product of three recoupling coefficients. Explicitly we obtain

(
k23

Uk3 ,k13 ,k23

k1 ,k2 ,k12 Uk4 ,k14 ,k24

k1 ,k23 ,k13Uk4 ,k24 ,k34

k2 ,k3 ,k23 5Uk4 ,k14 ,k34

k12 ,k3 ,k13Uk34 ,k14 ,k24

k1 ,k2 ,k12 , ~2.1!
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wherek23 is restricted to some range, andU stands for a Racah coefficient~or recoupling coef-
ficient, or 6j -coefficient! of su~1,1!. All ki ’s or ki j ’s refer to su~1,1! representation labels and a
positive real numbers. An explicit form for the recoupling coefficients in terms of termina
balanced4F3(1) series is known:7,11,12

Uk3 ,k0 ,k23

k1 ,k2 ,k125S j 1 j 12

j 23
D ~2k2! j 12

~2k3! j~2k112k212k31 j 1 j 1221! j 23

~2k3,2k212k31 j 2321! j 23
~2k212k312 j 23! j 8

3Aj 8! ~2k1,2k23,2k112k231 j 821! j 8 j 23! ~2k2,2k3,2k212k31 j 2321! j 23

j ! ~2k12,2k3,2k1212k31 j 21! j j 12! ~2k1,2k2,2k112k21 j 1221! j 12

34F3S 2k112k21 j 1221,2k212k31 j 2321,2 j 12,2 j 23

2k2,2k112k212k31 j 1 j 1221,2 j 2 j 12
;1D , ~2.2!

with the following restrictions and definitions:

k125k11k21 j 12, k235k21k31 j 23,

k05k121k31 j 5k11k231 j 8, j 12, j , j 23, j 8PN, and j 121 j 5 j 231 j 8.

In ~2.2!, we follow the classical notation for Pochhammer symbols (a)n and for hypergeometric
seriespFq .19–21

Both the Racah and Wilson polynomials are defined in terms of terminating balanced4F3(1)
series. We will now perform an appropriate renaming of the nine free parameters and the s
tion variable in~2.1! to derive a convolution identity involving Wilson and Racah polynomial

Wilson polynomials, denotedWm(x2;a,b,c,d), are defined as follows:

Wm~x2;a,b,c,d!5~a1b!m~a1c!m~a1d!m 4F3S 2m,m1a1b1c1d21,a1 ix,a2 ix
a1b,a1c,a1d ;1D ,

~2.3!

while Racah polynomials, denotedRm(l(x);a,b,g,d), are defined by

Rm~l~x!;a,b,g,d!54F3S 2m,m1a1b11,2x,x1g1d11
a11,b1d11,g11 ;1D , ~2.4!

wherel(x)5x(x1g1d11) and one of the denominator parameters equals2M with MPN and
0<m<M .

Here ~and in the rest of the article!, we use the notation of Ref. 22 for Wilson and Rac
polynomials~and for all other one variable orthogonal polynomials!.

Theorem 1: The Wilson polynomials satisfy the following convolution identity:

(
l 50

m1 j S j 1m
l D ~2k2!m~2k3! j~2k112k212k31 j 1m21! l

~2k3! l~2k212k31 l 21! l~2k212k312l ! j 1m2 l
Rl~l~m!;2k221,2k321,

2 j 2m21,2k112k21 j 1m21!Wm1 j 2 l~~x12t !2;k11 i t ,k21k31 l 2 is1 i t ,k12 i t ,k21k3

1 l 1 is2 i t !Wl~~x11x22t !2;k22 ix11 i t ,k32 is1 i t ,k21 ix12 i t ,k31 is2 i t !

5Wm~~x12t !2;k11 i t ,k22 i ~x11x2!1 i t ,k12 i t ,k21 i ~x11x2!2 i t !

3Wj~~x11x22t !2;k11k21m1 i t ,k32 is1 i t ,k11k21m2 i t ,k31 is2 i t !, ~2.5!

where j, mPN, k1 , k2 , k3 , x1 , x2 , x3 , tPR and s5x11x21x3 .
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Proof: In the case of su~1,1!, the summation range fork23 in ~2.1! is from k21k3 to
min(k132k1 ,k242k4). The summation variablek23 thus takesreal values, starting withk21k3

and increasing in steps of one. Substituting~2.2! in ~2.1! yields an identity between terminatin
balanced4F3(1) series:

(
k235k21k3

min(k132k1 ,k242k4)

f 34F3S k11k21k1221,k21k31k2321,k11k22k12,k21k32k23

2k2 ,k131k11k21k321,k11k21k32k13
;1D

34F3S k11k231k1321,k231k41k2421,k11k232k13,k231k42k24

k11k231k42k14,2k23,k141k11k231k421 ;1D
34F3S k21k31k2321,k21k32k23,k31k41k3421,k31k42k34

k21k31k42k24,2k3 ,k241k21k31k421 ;1D
54F3S k31k41k3421,k121k31k1321,k31k42k34,k121k32k13

k121k31k42k14,2k3 ,k141k121k31k421 ;1D
34F3S k11k21k1221,k11k22k12,k21k341k2421,k21k342k24

2k2 ,k11k21k342k14,k141k11k21k3421 ;1D ,

wheref is a numerical factor that is easily calculated from~2.2!. Renaming the following positive
integer differences as

m5k122k12k2 , j 5k132k122k3 and l 5k232k22k3 ,

and performing appropriate Bailey transformations~Ref. 23, Theorem 3.3.3! on the balanced

4F3(1)’s, yields that~whenk132k1<k242k4)

(
l 50

j 1m

f 834F3S 2 l ,l 12k212k321,2m,m12k112k221
2k2 ,2k112k212k31 j 1m21,2 j 2m ;1D

34F3S 2m2 j 1 l ,m1 j 1 l 12k112k212k321,k11k141k2421,k11k142k24

2k1 ,k11k21k31 l 1k41k1421,k11k21k31 l 1k142k4
;1D

34F3S 2 l ,l 12k212k321,k21k241k3421,k21k242k34

2k2 ,k21k31k242k4 ,k241k21k31k421 ;1D
54F3S 2 j , j 12m12k112k212k321,m1k11k21k142k34,m1k11k21k141k3421

2m12k112k2 ,m1k11k21k31k41k1421,m1k11k21k31k142k4
;1D

34F3S 2m,m12k112k221,k11k141k2421,k11k142k24

2k1 ,k11k21k142k34,k11k21k141k3421 ;1D ,

where, once again,f 8 is a numerical factor that is easily calculated.
This last identity can be written in terms of Wilson and Racah polynomials by putting

ix15k142k24, ix25k242k34, ix35k342k4 and i t 5k41 i ~x11x21x3!2 1
2.

Note that all the renamings are invertible. Determination of the factorf 8 now yields the desired
result. Since~2.5! is a rational identity in the parameterski , xi and t, it is valid for all values of
these parameters. h

From Theorem 1 we can easily rederive a convolution identity for continuous Hahn po
mials. The continuous Hahn polynomials, denotedpm(x;a,b,c,d), are defined as22

pm~x;a,b,c,d!5 i m
~a1c!m~a1d!m

m! 3F2S 2m,m1a1b1c1d21,a1 ix
a1c,a1d ;1D ; ~2.6!
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for their orthogonality@when R(a,b,c,d).0, c̄5a and d̄5b#, see Ref. 22 or~4.3!. Using the
limit transition,22

lim
t→2`

Wm~~x2t !2;a1 i t ,b1 i t ,c2 i t ,d2 i t !

~2t !mm!
5pm~x;a,b,c,d!, ~2.7!

in ~2.5!, one finds the following corollary~see also Ref. 12, Theorem 3.13!.
Corollary 2: The continuous Hahn polynomials satisfy the following convolution identity

(
l 50

m1 j S j 1m
m D ~2k2!m~2k3! j~2k112k212k31 j 1m21! l

~2k3! l~2k212k31 l 21! l~2k212k312l ! j 1m2 l
Rl~l~m!;2k221,2k321,

2 j 2m21,2k112k21 j 1m21!pm1 j 2 l~x1 ;k1 ,k21k31 l 2 is,k1 ,k21k31 l 1 is!

3pl~x2 ;k2 ,k32 i ~s2x1!,k2 ,k31 i ~s2x1!!

5pm~x1 ;k1 ,k22 i ~x11x2!,k1 ,k21 i ~x11x2!!

3pj~x11x2 ;k11k21m,k32 is,k11k21m,k31 is!, ~2.8!

where j ,mPN, k1 ,k2 ,k3 ,x1 ,x2 ,x3PR ands5x11x21x3 . h

The classical Jacobi polynomials are defined by

Pm
(a,b)~x!5

~a11!m

m! 2F1S 2m,m1a1b11
a11 ;

12x

2 D ; ~2.9!

for a,b.21, they are orthogonal over the interval@21,1# for the weight function (12x)a(1
1x)b. Replacingxi by sxi in ~2.8! and lettings tend to infinity yields Corollary 3~see also Ref.
12 Corollary 3.15, or Refs. 15 and 11!:

Corollary 3: The Jacobi polynomials satisfy the following convolution identity:

(
l 50

m1 j S j 1m
m D ~2k2!m~2k3! j~2k112k212k31 j 1m21! l

~2k3! l~2k212k31 l 21! l~2k212k312l ! j 1m2 l
Rl~l~m!;2k221,2k321,

2 j 2m21,2k112k21 j 1m21!Pm1 j 2 l
(2k121,2k212k312l 21)

~122x1!

3~12x1! l Pl
(2k221,2k321)S 12x122x2

12x1
D

5~x11x2!mPm
(2k121,2k221)S x22x1

x11x2
D Pj

(2k112k212m21,2k321)
~122x122x2!.

h

Both Corollaries 2 and 3 can be written in a more symmetric~and unified! way using a different
scaling for the continuous Hahn and Jacobi polynomials. Defining the polynomialS m

k1 ,k2(x1 ,x2)
as

S m
k1 ,k2~x1 ,x2!5Am! ~2m12k112k221!G~m12k112k221!

G~m12k1!G~m12k2!

3pm~x1 ;k1 ,k22 i ~x11x2!,k1 ,k21 i ~x11x2!!, ~2.10!

we have the following identity@Ref. 12, Eq.~3.15!#:
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S k122k12k2

k1 ,k2 ~x1 ,x2!S k02k122k3

k12 ,k3 ~x11x2 ,x3!

5 (
k235k21k3

k02k1

Uk3 ,k0 ,k23

k1 ,k2 ,k12S k232k22k3

k2 ,k3 ~x2 ,x3!S k02k12k23

k1 ,k23 ~x1 ,x21x3!. ~2.11!

Formula~2.11! is easily remembered by considering two ways in which three su~1,1! representa-
tions can be coupled, as shown in Fig. 1. Notice how the left side of~2.11! follows from the tree
on the left side of this figure. With each non-leaf node~i.e., with each intermediate or fina
coupling! one associates anS-polynomial. The first~resp. second! variable of thisS-polynomial is
the sum of all the variables associated with the leaves in the left~resp. right! subtree of the
considered node. The upper parameters are determined by the value of the representation
the left and right child~in that order!. The ~positive integer! lower parameter is the differenc
between the value of the coupled representation label and the consisting labels. TheS-polynomials
on the right side of~2.11! are formed in the same way but working with the tree on the right s
of the figure. The recoupling coefficient appearing in~2.11! is that associated with a recoupling o
three representations as shown in Fig. 1.

The S-polynomials have the following property:

S m
k1 ,k2~x1 ,x2!5~21!mS m

k2 ,k1~x2 ,x1!, ~2.12!

which is a direct consequence of Whipple’s transformation for terminating3F2(1) series~Ref. 23,
p. 142!.

If we define15,11

Sm
k1 ,k2~x1 ,x2!5~21!mA m!

~2k1,2k2,2k112k21m21!m
~x11x2!mPm

(2k121,2k221)S x22x1

x21x1
D ,

~2.13!

then relations~2.11! and~2.12! are still valid~after replacingS by S!. This follows from the fact
that

lim
u→`

S m
k1 ,k2~ux1 ,ux2!

um 5AG~2m12k112k2!

G~2k1!G~2k2!
Sm

k1 ,k2~x1 ,x2!. ~2.14!

It is known12 that the products of continuous Hahn polynomials on both the left and right sid
~2.8! @or ~2.11!# are orthogonal onR2 for the weight function

G~k16 ix1!G~k26 ix2!G~k36 i ~s2x12x2!!, ~2.15!

where, for conciseness of notation, the productG(kj1 ix)G(kj2 ix) is written asG(kj6 ix). This
convention is adopted throughout this article. Moreover, we will writeG(6kj7 ix) instead of
G(kj2 ix)G(2kj1 ix), etc. Observe that~2.11!, with x35s2x12x2 , can thus be interpreted as

FIG. 1. Two possible ways of coupling three representations.
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connection coefficient formula between orthogonal polynomials in two variables, and the s~1,1!
Racah coefficients are the connection coefficients. Similarly, replacingS by S in ~2.11!, one
obtains again a connection coefficient formula. This time, the orthogonal polynomials are ort
nal on the simplex determined byx1 ,x2.0, x11x2,s, and the weight function is
x1

2k121x2
2k221(s2x12x2)2k321.

In this section we have shown how the Biedenharn–Elliott identity implies two conne
coefficient formulas for orthogonal polynomials in two variables, one constructed with contin
Hahn polynomials, and one constructed with Jacobi polynomials. In the following section
will be generalized to orthogonal polynomials inn variables. Finally, observe that also the pro
ucts of Wilson polynomials in Theorem 1 are related to orthogonal polynomials in two varia
~see Appendix A!.

III. ORTHOGONAL POLYNOMIALS RELATED TO JACOBI POLYNOMIALS

When considering orthogonal polynomials inn variables, one of the classical areas is t
simplexTs

n :

Ts
n5$xPRnu0,xj and x11¯1xn,s%. ~3.1!

Herein,s denotes some positive constant, and in almost all casess is taken to be equal to 1. Th
classical weight function in this case is

x1
k121/2

¯xn
kn21/2

~s2uxu!kn1121/2, ~3.2!

where eachk i.2 1
2. In Ref. 24, Proposition 2.3.8, an explicit orthonormal basis is given ass

ated with the weight function~3.2! on the simplex~3.1!. Such a basis is not unique. In fact, wit
every binary coupling tree onn11 leaves, a different basis can be constructed. In this section
n-variable orthonormal polynomial will be constructed out of a product ofn S-polynomials~2.13!,
and associated with a binary coupling ofn11 representations of su~1,1!. We will show that this
polynomial is orthogonal on the simplexTs

n for the classical weight function. The outline of th
proof is as follows: by a change of variables, we will transform the simplex into the cube onRn.
This transformation will map the integral over the simplex into an integral over the cube, w
one part can be interpreted as the multiple Jacobi weight function:

)
i 51

n

~12xi !
ai~11xi !

bi, ~3.3!

while the other parts are the corresponding Jacobi polynomials.
Theorem 4: With every coupling of(n11) su~1,1! representations labeled by k1 ,...,kn11 ,

i.e., with every binary coupling tree with n internal nodes, we associate a set of polyno
Rl

(k)(x) in n variables orthogonal on the simplex Ts
n for the weight function

w(k)~x!5x1
2k121

¯xn
2kn21

~s2uxu!2kn1121, ~3.4!

where each ki.0. Explicitly the orthogonality reads

E
Ts

n
Rl

(k)~x!Rl 8
(k)

~x!w(k)~x! dx5d l ,l 8

s2uku12u l u21

G~2uku12u l u! )
i 51

n11

G~2ki !. ~3.5!

Note that in~3.5! we also have orthogonality between polynomials of the same degree, wh
more than the definition of orthogonality requires.

Remark 5:In principal the notation of the polynomial should contain a reference to the bi
coupling tree it corresponds to. For the moment, we can assume that the binary coupling
fixed, and we do not mention it in the notation ofRl

(k)(x). When we want to emphasize th
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dependence ofRl
(k)(x) on the given binary coupling treeT, we shall writeRl ,T

(k)(x). The meaning
of the subscriptl is related to the labeling of the internal nodes, and will soon become apparej

The association of a polynomial with a binary coupling tree is an extension of the me
described after Eq.~2.11!. For a given binary coupling tree, the polynomialRl

(k)(x) consists of a
product ofS-polynomials, each of these associated with a non-leaf node of the tree. Let u
describe an example.

Example 6:With the binary coupling tree shown in Fig. 2 we associate the following p
nomial:

R~x1 ,x2 ,x3 ,x4 ,x5!5Sk122k12k2

k1 ,k2 ~x1 ,x2!Sk1232k122k3

k12 ,k3 ~x11x2 ,x3!Sk452k42k5

k4 ,k5 ~x4 ,x5!

3Sk02k1232k45

k123,k45 ~x11x21x3 ,x41x5!

5C3~x11x2!k122k12k2Pk122k12k2

(2k121,2k221)S x22x1

x21x1
D

3~x11x21x3!k1232k122k3Pk1232k122k3

(2k1221,2k321)S x32x12x2

x31x11x2
D

3~x41x5!k452k42k5Pk452k42k5

(2k421,2k521)S x52x4

x51x4
D

3~x11x21x31x41x5!k02k1232k45Pk02k1232k45

(2k12321,2k4521)S x41x52x12x22x3

x41x51x11x21x3
D .

Herein,C is some numerical factor that can be determined from~2.13!. j

So theS-polynomial, associated to a non-leaf node of the tree, has as~upper! parameters the
representation labels of left and right child of the node; as degree~the subindex! the difference
between the representation label of the node and those of the children~this is a non-negative
integer!; and as left~resp. right! argument the sum of all the variables associated with the lea
in the left ~resp. right! subtree of the considered node.

Such a polynomialR(x1 ,...,xn11), defined as a product ofS-polynomials in this way, is
homogeneous in the variablesx1 ,...,xn11 . So we can choose the constraint

x11x21¯1xn115s, ~3.6!

where s is some arbitrary, positive constant. Note that this constraint is compatible with
definition of the weight function~3.4!. The resulting polynomial will be denoted byRl

(k)(x). The
subscriptl in Rl

(k)(x) stands for the sequence of degrees of theS-polynomials, in a chosen orde
~see later for this choice!.

In order to prove~3.5!, we shall transform variables from (x1 ,...,xn) to (v1 ,...,vn); deter-
mine the Jacobian and integration area for this transformation; determine the transformed
function; and finally deduce the orthogonality. All of this can be done quite explicitly for
given binary coupling tree, and will be presented in the following subsections.

FIG. 2. Example binary coupling tree.
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A. Change of variables

We will change from variablesx to variablesv. The v i are the arguments of the Jaco
polynomials appearing in the product expansion ofRl

(k)(x) ~see, for instance, Example 6!.
Since eachS-polynomial~and thus each Jacobi polynomial! in the product is associated wit

a specific non-leaf node of the tree, we can associate a variablev i with each non-leaf node. The
exact order is irrelevant but, for simplicity, we choosepostorder~Ref. 25, Sec. 2.3.1!. See Fig. 3
for an illustration.

Example 7:The arguments of the Jacobi polynomials in Example 6 are

v15~x22x1!/~x21x1!,

v25~x32x12x2!/~x31x11x2!,
~3.7!

v35~x52x4!/~x51x4!,

v45~x41x52x12x22x3!/~x41x51x11x21x3!.

The set of equations~3.7!, together with the constraint~3.6!, has a unique solution:

x15s~12v1!~12v2!~12v4!/8,

x25s~11v1!~12v2!~12v4!/8,

x35s~11v2!~12v4!/4, ~3.8!

x45s~12v3!~11v4!/4,

x55s~11v3!~11v4!/4.

Notice how the solution~3.8! of ~3.7! can easily be deduced from the tree in Fig. 3: eachxj

consists of a factors and factors (16v i)/2. There is a factor (11v i)/2 if xj is in the right subtree
of v i , and there is a factor (12v i)/2 if xj is in the left subtree ofv i . j

This observation can be generalized to an arbitrary tree. Then we have

v i5S (
right leaves

of v i

xj2 (
left leaves

of v i

xj D Y (
all leaves

of v i

xj , for i 51,...,n,

~3.9!
x11x21¯1xn115s.

Lemma 8: The system (3.9) of n11 (linear) equations for the variables xj has the unique
solution

FIG. 3. Association of the variablesv i with non-leaf nodes.
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xj5s )
right ancestors

of xj

11v i

2 )
left ancestors

of xj

12v i

2
, for j 51,...,n11, ~3.10!

where we callv i a right (resp. left) ancestor of xj if x j is in the right (resp. left) subtree ofv i .
Proof: By induction onn. It is easily verified that this statement is true whenn51. If n.1

and the left subtree ofvn has 0<n1,n internal nodes, then the last two equations of~3.9! read

vn5S (
right leaves

of vn

xj2 (
left leaves

of vn

xj D Y (
j 51

n11

xj ,

~3.11!
x11x21¯1xn115s.

These equations have the following unique solution for(
of vn

right leavesxj and(
of vn

left leavesxj ~compare this

with the casen51!:

(
right leaves

of vn

xj5s
11vn

2
, (

left leaves
of vn

xj5s
12vn

2
. ~3.12!

Using this solution for(
of vn

left leavesxj5(
of vn1

leavesxj with the first n1 equations of~3.9!, which involve

only variablesx that are in the left subtree ofvn , yields ~by induction! the desired form of the
unique solution for the variablesx in the left subtree. The same applies to the variablesx in the
right subtree. This proves formula~3.10!. We can even say more:

(
leaves
of v i

xj5s )
right ancestors

of v i

11vm

2 )
left ancestors

of v i

12vm

2
, ~3.13!

and

(
left leaves

of v i

xj5s
12v i

2 )
right ancestors

of v i

11vm

2 )
left ancestors

of v i

12vm

2
. ~3.14!

h

B. The Jacobian of the transformation

Example 9:The Jacobian]xj /]v i of ~the first four equations of! ~3.8! is the following matrix:

S 2s~12v2!~12v4!/8 2s~12v1!~12v4!/8 0 2s~12v1!~12v2!/8

s~12v2!~12v4!/8 2s~11v1!~12v4!/8 0 2s~11v1!~12v2!/8

0 s~12v4!/4 0 2s~11v2!/4

0 0 2s~11v4!/4 s~12v3!/4
D .

~3.15!
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At first sight, this matrix is quite arbitrary. However, by taking linear combinations of rows an
swapping rows, it can be transformed into a simple upper triangular matrix. From~3.8! @or directly
from ~3.14!# we see that

(
left leaves

of v1

xj5x15s~12v1!~12v2!~12v4!/8,

(
left leaves

of v2

xj5x11x25s~12v2!~12v4!/4,

(
left leaves

of v3

xj5x45s~12v3!~11v4!/4,

(
left leaves

of v4

xj5x11x21x35s~12v4!/2.

So, performing the row combinationsR2←R21R1 , R3←R31R2 and swapping the rowsR3 and
R4 of the Jacobian results in the following upper triangular matrix:

S 2s~12v2!~12v4!/8 2s~12v1!~12v4!/8 0 2s~12v1!~12v2!/8

0 2s~12v4!/4 0 2s~12v2!/4

0 0 2s~11v4!/4 s~12v3!/4

0 0 0 2s/2
D .

~3.16!

The determinant of the Jacobian is thus

2s4~12v2!~12v4!2~11v4!/256. ~3.17!

Notice that the determinant only contains factorss/2 and (16v i)/2. The power of each of thes
factors can easily be read from the tree in Fig. 3. There are four factorss/2, and the tree has fou
internal nodes. There are two factors (12v4)/2 and there are three leaves in the left subtree ofv4 .
There is one factor (11v4)/2 and there are two leaves in the right subtree ofv4 . The same applies
to v1 , v2 andv3 .

Again, these observations can be generalized to an arbitrary tree.
Lemma 10: The absolute value of the determinant of the Jacobian, denoted J, of the trans-

formation (3.10) (with j51,...,n) equals

J5Udet
]xj

]v i
U5S s

2D n

)
i 51

n S 11v i

2 D nri21S 12v i

2 D nli21

, ~3.18!

where nri ~resp. nli! is the number of leaves in the right (resp. left) subtree ofv i .
Proof: We will prove ~3.18! by transforming the matrix]xj /]v i into an upper triangular

matrix by taking linear combinations of rows and by swapping rows. These manipulations d
change~up to a sign factor! the determinant of this matrix.

From ~3.14! and the fact that we choose postorder, it is easily seen that(
of v i

left leavesxj depends on

v i but not onvm whenm, i . Therefore, we wish to perform row operations such that themth row
becomes
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]S (
left leaves

of vm

xj D
]v i

. ~3.19!

We use induction onn to show that is possible. By the induction hypothesis, we can create
desired linear combinations in the left and right subtree. Note that the linear combinations
right subtree do not depend on the variablesv1 ,...,vnln21 ~i.e., the variablesv in the left subtree!.
In this process the row corresponding to the variable associated with the rightmost leaf of t
subtree is not used. For clarity, assume that this variable isxnln

. The Jacobian now has th
following form:

xnln

v1 v2 v3 ¯ vnln21 vnln
vnln11 ¯ vn21 vn

1
* ! ! ¯ * 0 0 ¯ 0 *
0 * ! ¯ * 0 0 ¯ 0 *
] ] ] ] ]

0 0 0 ¯ * 0 0 ¯ 0 *
! ! ! ¯ * 0 0 ¯ 0 *
0 0 0 ¯ 0 * ! ¯ * *
0 0 0 ¯ 0 0 * ¯ * *
] ] ] ] ] ] ]

0 0 0 ¯ 0 0 0 ¯ * *

2 . ~3.20!

Herein,* represents a nonzero value and! an arbitrary value.
We will now use the row]xnln

/]v i to create the sum of the variables corresponding to
leaves in the left subtree of the root, i.e., the row

]S (
left leaves

of vn

xj D
]v i

5

]S (
left leaves
of vnln21

xj D
]v i

1

]S (
right leaves
of vnln21

xj D
]v i

. ~3.21!

By induction, the first term on the rhs is already a row of the matrix. Ifxnln
is the only leaf in the

right subtree ofvnln21 , then we are finished: simply add the row corresponding to the first t
to the row corresponding toxnln

. If there is more than one leaf in the right subtree ofvnln21 , we
call the root of this right subtreevm and we have

]S (
right leaves
of vnln21

xj D
]v i

5

]S (
left leaves

of vn

xj D
]v i

1

]S (
right leaves

of vm

xj D
]v i

. ~3.22!

The first term of the rhs of this equation is a row of the matrix~by induction!. If xnln
is the only

right leaf of vm , we are finished; add the two rows corresponding to the first terms in~3.21! and
~3.22! to the row corresponding toxnln

. It is clear that we can continue in this way to create t
desired row.

By swapping the rows in this matrix, we have created an upper triangular matrix with
same determinant~up to a sign! as the original matrix.

From ~3.14! it is clear that the elements of this upper triangular matrix consist only of fac
s/2, (16v i)/2 ~and21!. Each element on the diagonal of the upper triangular matrix has a s
factor 2s/2. There is a single factor (11v i)/2 for each variablevm that is in the right subtree o
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v i . There arenri21 ~i.e., the number of internal nodes in the right subtree ofv i! such variables,
so there arenri21 entries on the diagonal that have a factor (11v i)/2. In the same way one see
that there arenli21 entries on the diagonal that have a factor (12v i)/2. Multiplying the elements
on the diagonal yields formula~3.18!. h

C. Transformation of the area and weight function

The cubehn in Rn is defined as

hn5$vPRnu21,v j,1%. ~3.23!

Lemma 11: When x andv are connected through (3.9) and (3.10), then xPTs
n⇔vPhn.

Note that, although the simplexTn
s depends ons, the cubehn does not. An explicit proof of

this lemma is given in Appendix B.
Next, we consider the transformation of the weight function~3.4!, first for an example, and

then for an arbitrary binary coupling tree.
Example 12:For the tree of Fig. 2 the weight function is

w(k)~x1 ,x2 ,x3 ,x4!5x1
2k121x2

2k221x3
2k321x4

2k421
~s2x12x22x32x4!2k521. ~3.24!

Rewriting this weight function in terms of the variablesv, using~3.8!, gives

w̃(k)~v1 ,v2 ,v3 ,v4!5s2k112k212k312k412k525

3S 11v1

2 D 2k221S 11v2

2 D 2k321S 11v3

2 D 2k521S 11v4

2 D 2k412k522

3S 12v1

2 D 2k121S 12v2

2 D 2k112k222S 12v3

2 D 2k421S 12v4

2 D 2k112k212k323

.

j

Lemma 13: The transformation of the weight function (3.4) under the substitution (
becomes

w̃(k)~v !5s2uku2n21)
i 51

n S 11v i

2 D (
right leaves

of v i

2kj 2mri S 12v i

2 D (
left leaves

of v i

2kj 2nli

. ~3.25!

Proof: Since the weight function is essentially equal to) j 51
n11xj

2kj 21 , it becomes a product o
factorss, and (16v i)/2. Eachxj has a single factors; the power ofs is thus ( j 51

n11(2kj21)
52uku2n21. Furthermore, eachxj which is in the right~resp. left! subtree ofv i has a factor
(11v i)/2 @resp. (12v i)/2#. h

D. Verifying the orthogonality

If two su(1,1) representationsk1 and k2 are coupled tok12, then the differencek122k1

2k2 is a non-negative integer@see~1.3!#. So, with each internal node, sayv i , of a binary coupling
tree we can associate a non-negative integer, sayl i . Furthermore, we can associate a real posit
value with each node of the tree; for the leaves this value is simplykj , and for an internal node
v i the value equals the value of the left child plus the value of the right child plusl i , or explicitly

(
leaves
of v i

kj1 (
nodes in

subtree ofv i

l j1 l i . ~3.26!

Example 14:In Fig. 4 the value of each node is indicated in the tree. j
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For a given binary coupling tree, the knowledge ofk5(k1 ,k2 ,...,kn11) and l 5( l 1 ,...,l n)
completely determines the polynomialRl

(k)(x). Now we are in a position to prove Theorem 4.
As already mentioned, we will transform the integral overTs

n into an integral overhn by
changing the variables fromx to v. We will get a product ofn integrals over the interval
(21,1), each involving two Jacobi polynomials and a factor acting as weight function. Usin
orthogonality of the Jacobi polynomials over this interval with respect to this weight function
yield the desired result. Explicitly, the orthogonality of the Jacobi polynomials reads

E
21

1

Pm
(a,b)~ t !Pn

(a,b)~ t !~12t !a~11t !bdt5dm,nhm
(a,b) , a,b.21, ~3.27!

with

hm
(a,b)5

2a1b11G~m1a11!G~m1b11!

~2m1a1b11!m!G~m1a1b11!
.

After transformation, using~3.13!, the polynomialRl
(k)(x) becomes

R̃l
(k)~v !5C)

i 51

n S s )
left ancestors

of v i

12vm

2 )
right ancestors

of v i

11vm

2 D l i

Pl i

(ai ,bi )~v i !, ~3.28!

with

C5~21! u l u)
i 51

n A l i !

~ai11,bi11,ai1bi1 l i11! l i

. ~3.29!

Herein,ai equals two times the value of the node corresponding to the left child ofv i minus one,
or explicitly

ai5 (
left leaves

of v i

2kj1 (
nodes in left
subtree ofv i

2l j21. ~3.30!

Similarly, one finds

bi5 (
right leaves

of v i

2kj1 (
nodes in right
subtree ofv i

2l j21. ~3.31!

Now we turn our attention to the transformed integrand of~3.5!. Apart from the products

Pl i

(ai ,bi )~v i !Pl
i8

(ai8 ,bi8)
~v i !, ~3.32!

FIG. 4. Value of the nodes in the tree.
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it consists of factorss and (16v i)/2. Let us determine the power of (12v i)/2. There are three
contributing parts:

~i! the determinant of the Jacobian, yielding a termnli21 @see~3.18!#;
~ii ! the transformed weight function, yielding a term( left leaves

of v i

2kj2mi @see~3.25!#; and

~iii ! the transformed polynomials, yielding a term(nodes in left
subtree ofv i

l j1(nodes in left
subtree ofv i

l h8 @see~3.28!#.

It is thus clear that the powerpi
2 of (12v i)/2 is

pi
25 (

left leaves
of v i

2kj1 (
nodes in left
subtree ofv i

l j1 (
nodes in left
subtree ofv i

l j821. ~3.33!

In the same way one finds that the powerpi
1 of (11v i)/2 is

pi
15 (

right leaves
of v i

2kj1 (
nodes in right
subtree ofv i

l j1 (
nodes in right
subtree ofv i

l j821. ~3.34!

Example 15:In our example the transformed integral, denotedI , is, up to a constant factor
equal to the following product of four integrals:

E
21

1

Pl 1

(2k121,2k221)
~v1!P

l
18

(2k121,2k221)
~v1!S 12v1

2 D 2k121S 11v1

2 D 2k221

dv1

3E
21

1

Pl 2

(2k112k212l 121,2k321)
~v2!P

l
28

(2k112k212l 1821,2k321)
~v2!

3S 12v2

2 D 2k112k21 l 11 l 1821S 11v2

2 D 2k321

dv2

3E
21

1

Pl 3

(2k421,2k521)
~v3!P

l
38

(2k421,2k521)
~v3!S 12v3

2 D 2k421S 11v3

2 D 2k521

dv3

3E
21

1

Pl 4

(2k112k212k312l 112l 221,2k412k512l 321)
~v4!

3P
l
48

(2k112k212k312l 1812l 2821,2k412k512l 3821)
~v4!

3S 12v4

2 D 2k112k212k31 l 11 l 181 l 21 l 2821S 11v4

2 D 2k412k51 l 31 l 3821

dv4 .

Now, using the orthogonality~3.27! of the Jacobi polynomials, the first of these integrals is ze
except whenl 15 l 18 . Assuming thatl 15 l 18 , we see that the second integral is zero, except w
l 25 l 28 . The third integral immediately implies thatI is zero if l 3Þ l 38 . Assuming thatl i5 l i8 , for
i 51,...,3, we see thatI is zero, except whenl 45 l 48 . We thus see thatI 5d l ,l 8hl

(k) , whereh is
some numerical constant. j

In general, the transformation yields
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I 5E
Ts

n
Rl

(k)~x!Rl 8
(k)

~x!w(k)~x!dx

5DE
h
)
i 51

n

Pl i

(ai ,bi )~v i !Pl
i8

(ai8 ,bi8)
~v i !S 12v i

2 D pi
2S 11v i

2 D pi
1

dv

5D)
i 51

n E
21

1

Pl i

(ai ,bi )~v i !Pl
i8

(ai8 ,bi8)
~v i !S 12v i

2 D pi
2S 11v i

2 D pi
1

dv i . ~3.35!

Herein, the constantD equals

D5Csu l u3C8su l 8u3s2uku2n213S s

2D n

5
CC8su l u1u l 8u12uku21

2n . ~3.36!

The first two factors come from~3.28!, the third factor comes from the transformed weig
function ~3.25!, and the last factor originates from the Jacobian~3.18! of the transformation.

Notice thatpi
2 equalsai when l j5 l j8 for the nodes in the left subtree ofv i . An analogous

argument applies topi
1 and bi . Suppose one computes the product of integrals~3.35! in the

indicated order. At the moment that one is dealing with the integral involvingv i , the situation is
so thatI is zero if there is aj , i so thatl jÞ l j8 . Therefore, we can at that moment assume t
ai5pi

2 andbi5pi
1 , and apply orthogonality~3.27! of the Jacobi polynomials, implying thatl i

should equall i8 in order to have a nonzero value of the integralI .
From ~3.35! and ~3.27! we have that

E
Ts

n
Rl

(k)~x!Rl 8
(k)

~x!w(k)~x!dx5D)
i 51

n E
21

1

Pl i

(ai ,bi )~v i !Pl
i8

(ai8 ,bi8)
~v i !S 12v i

2 D pi
2S 11v i

2 D pi
1

dv i

5d l ,l 8D)
i 51

n
2G~ l i1ai11!G~ l i1bi11!

~2l i1ai1bi11!l i !G~ l i1ai1bi11!

5d l ,l 8s
2u l u12uku21)

i 51

n
G~ l i1ai11!

~ai11! l i

G~ l i1bi11!

~bi11! l i

3
1

~2l i1ai1bi11!G~ l i1ai1bi11!~ l i1ai1bi11! l i

5d l ,l 8s
2u l u12uku21)

i 51

n
G~ai11!G~bi11!

G~2l i1ai1bi12!

5d l ,l 8

s2u l u12uku21

G~2uku12u l u! )
i 51

n11

G~2ki !. ~3.37!

The last equation follows from the previous one by induction onn, using the result on the left an
right subtree.

We thus have proved that with every binary coupling onn internal nodes there is an associat
polynomial Rl

(k)(x) in n variables that is orthogonal on the simplexTs
n for the weight function

w(k)(x).
As final comment, forn52 the polynomials constructed here are due to Proriol.16 The poly-

nomialsRl
(k)(x) associated with the special binary coupling tree in the shape of aspine14 were

already constructed in Ref. 17. The polynomialsRl
(k)(x) associated with a general binary tree we

also studied by Rosengren18 in the context of multilinear Hankel forms. In his approach, orthog
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nality of these polynomials follows quite easily. His methods, however, are less accessible
mathematical physicist. Furthermore, the relation to classical 3n j-coefficients~see Sec. V! is more
explicit here.

IV. ORTHOGONAL POLYNOMIALS RELATED TO CONTINUOUS HAHN POLYNOMIALS

The notation in this section is as before, i.e.,k stands for (k1 ,...,kn11) and l for ( l 1 ,...,l n).
But we will also need a notation for parts of the components, sokm5(k1 ,...,km), km

5(km ,...,kn11) @and similarly for lm and lm, and lm
j 5( l m ,...,l j ) (m< j )#. As usual,u lm

j u5 l m

1¯1 l j .
In the way that a binary coupling tree definesRl

(k)(x) as a product ofS-polynomials~Jacobi
polynomials!, we define new polynomialsR l

(k)(x) as the same product ofS-polynomials~con-
tinuous Hahn polynomials!. In this section, we will prove the following theorem.

Theorem 16: With every coupling of(n11) su~1,1! representations k1 ,...,kn11 , i.e., with
every binary coupling tree with n internal nodes, we associate a set of polynomialsR l

(k)(x) in n
variables. This set is orthogonal onRn for the weight function

w(k)~x!5G~k16 ix1!¯G~kn6 ixn!G~kn116 i ~s2uxu!!. ~4.1!

Explicitly, the orthogonality reads

E
Rn

R l
(k)~x!Rl 8

(k)
~x!w(k)~x!dx5d l ,l 8~2p!nG~ uku1u l u6 is!. ~4.2!

Recall that theS-polynomials are defined by~2.10!. TheS-polynomial in~2.10! is of degreem in
the variablesx1 andx2 , but it is not homogeneous in these variables~see the proof of Lemma 19!.
This implies that the productR l

(k)(x) is not homogeneous in the variablesxi , however, we still
put x11¯1xn115s. Note that this is consistent with the definition of the weight function~4.1!.

Example 17:With the binary coupling tree shown in Fig. 2 we associate the following po
nomial ~before the replacement ofx5 by s2x12x22x32x4!:

R~x1 ,x2 ,x3 ,x4 ,x5!

5S l 1

k1 ,k2~x1 ,x2!S l 2

k12 ,k3~x11x2 ,x3!S l 3

k4 ,k5~x4 ,x5!S l 4

k123,k45~x11x21x3 ,x41x5!

5C3pl 1
~x1 ;k1 ,k22 i ~x11x2!,k1 ,k21 i ~x11x2!!

3pl 2
~x11x2 ;k11k21 l 1 ,k32 i ~x11x21x3!,k11k21 l 1 ,k31 i ~x11x21x3!!

3pl 3
~x4 ;k4 ,k52 i ~x41x5!,k4 ,k51 i ~x41x5!!

3pl 4
~x11x21x3 ;k11k21k31 l 11 l 2 ,k41k51 l 32 i ~x11x21x31x41x5!,

k11k21k31 l 11 l 2 ,k41k51 l 31 i ~x11x21x31x41x5!!,

whereC is some numerical factor that can be computed from~2.10!. The subscriptsl i are the same
as before. j

It is well known that the continuous Hahn polynomials, appearing in the definition of
S-polynomials, are orthogonal onR for the weight functionG(a1 i t )G(b1 i t )G(c2 i t )G(d
2 i t ) whenR(a,b,c,d).0, c5ā andd5b̄:
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E
R
G~a1 i t !G~b1 i t !G~c2 i t !G~d2 i t !pm~ t;a,b,c,d!pj~ t;a,b,c,d!dt

52pdm, j

G~ j 1a1c!G~ j 1b1d!G~ j 1a1d!G~ j 1b1c!

j ! ~2 j 1a1b1c1d21!G~ j 1a1b1c1d21!
. ~4.3!

Using this orthogonality relation,~4.2! is easily established in the casen51.
To investigate the general case, we introduce new variablesu, but use a different approac

than the one in the previous section. We do not define the variablesu as the arguments of th
continuous Hahn polynomials in the product, but we introduce essentially only one new var
namelyx11¯1xnln

5y ~and thusxnln111¯1xn115s2y!. Here, we assumed for simplicit
that the variables associated with the leaves in the left subtree arex1 ,...,xnln

. This will enable us
to use induction onn. Again, it is constructive to consider first an example.

Example 18:For the tree in Fig. 2, we define the variablesui as follows:

u15x1 , u25x2 , u35x11x21x3 , u45x4 .

We thus leave all the variablesx unchanged, except the rightmost variable of the left subtree~in
this case thusx3!. We choose the sum of all the variables in the left subtree equal to a new va
~in this caseu3!. Integrating last to this variable allows this variable to be viewed as a consta
the integrands of the other integrals, enabling us to use induction.

When integrating last tou3 , the integral becomes

E
R4

R l
(k)~x!Rl 8

(k)
~x!w(k)~x!dx

5Al 4! ~2u l u12uku21!G~ l 412uku12u l3u21!

G~ l 412uk3u12u l2u!G~ l 412uk4u12l 3!

3Al 48! ~2u l 8u12uku21!G~ l 48u12uku12u l38u21!

G~ l 4812uk3u12u l28u!G~ l 4812uk4u12l 38!

3E
R
pl 4

~u3 ;uk3u1u l2u,uk4u1 l 32 is,uk3u1u l2u,uk4u1 l 31 is!

3pl
48
~u3 ;uk3u1u l28u,uk

4u1 l 382 is,uk3u1u l28u,uk
4u1 l 381 is!I leftI rightdu3 ,

with

I left5Al 1! ~2l 112uk2u21!G~ l 112uk2u21!

G~ l 112k1!G~ l 112k2!
Al 18! ~2l 1812uk2u21!G~ l 1812uk2u21!

G~ l 1812k1!G~ l 1812k2!

3Al 2! ~2u l2u12uk3u21!G~ l 212uk3u12l 121!

G~ l 212uk2u12l 1!G~ l 212k3!

3Al 28! ~2u l28u12uk3u21!G~ l 2812uk3u12l 1821!

G~ l 2812uk2u12l 18!G~ l 2812k3!

3E
R2

pl 1
~u1 ;k1 ,k22 i uu2u,k1 ,k21 i uu2u!pl

18
~u1 ;k1 ,k22 i uu2u,k1 ,k21 i uu2u!

3pl 2
~ uu2u;uk2u1 l 1 ,k32 iu3 ,uk2u1 l 1 ,k31 iu3!pl

28
~ uu2u;uk2u1 l 18 ,k32 iu3 ,uk2u1 l 18 ,k31 iu3!

3G~k16 iu1!G~k26 iu2!G~k36 i ~u32uu2u!!du1du2 .
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The integralI left thus corresponds to the orthogonality relation~4.2! restricted to the left subtree o
the tree in Fig. 2 and withs replaced byu3 . By induction, the value of this integral is

I left5d l 1 ,l
18
d l 2 ,l

28
~2p!2G~ uk3u1u l2u6 iu3!.

The integralI right equals

I right5Al 3! ~2l 312uk4u21!G~ l 312uk4u21!

G~ l 312k4!G~ l 312k5!
Al 38! ~2l 3812uk4u21!G~ l 381uk4u21!

G~ l 3812k4!G~ l 3812k5!

3E
R
pl 3

~u4 ;k4 ,k52 i ~s2u3!,k4 ,k51 i ~s2u3!!pl
38
~u4 ;k4 ,k52 i ~s2u3!,k4 ,

k51 i ~s2u3!!G~k46 iu4!G~k56 i ~s2u32u4!!du4 . ~4.4!

The integralI right corresponds to the orthogonality relation~4.2! restricted to the right subtree wit
s replaced bys2u3 . The value of this integral is thus

I right5d l 3 ,l
38
2pG~ uk4u1 l 36 i ~s2u3!!.

Using the values ofI left and I right enables us to use the orthogonality of the continuous H
polynomials when integrating overu3 , yielding the following:

E
R4

R l
(k)~x!Rl 8

(k)
~x!w(k)~x!dx5d l ,l 8~2p!4G~ uku1u l u6 is!. j

In the general case, assume that the variables associated with the leaves of the tree a~from
left to right! x1 ,...,xn11 . Define the variablesu as follows:

uj5xj , j P$1,...,n%\nln and unln
5x11¯1xnln

. ~4.5!

It is clear that the absolute value of the Jacobian of this transformation is 1 and thatuPRn⇔x
PRn.

Continuous Hahn polynomials associated with internal nodes of the left subtree only in
variablesx1 ,...,xnln

, as do the gamma functions of the weight function associated with the le
of the left subtree. Replacingxnln

by unln
2u12¯2unln21 @see~4.5!# yields an integral over

Rnln21 involving the variablesu1 ,...,unln21 , and with unln
playing the role ofs. The way in

which this integral is constructed allows induction. Denoting this integral byI left , we have

I left5d lnln21 ,l
nln218 ~2p!nln21G~ uknln

u1u lnln21u6 iunln
!. ~4.6!

On the other hand, continuous Hahn polynomials associated with internal nodes in the
subtree involve variablesxnln11 ,...,xn , but may also involve variablesx1 ,...,xnln

. When the
latter is the case, it is always the difference2(x11¯1xnln

)52unln
which occurs. So essen

tially, s is replaced bys2unln
; this integral involving the variablesunln11 ,...,un can also be

calculated by induction. Denoting this integral overRnrn21 by I right we have
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I right5d l
nln

n21,l8nln

n21~2p!nrn21G~ uknln11u1u lnln
n21u6 i ~s2unln

!!. ~4.7!

The integralI , i.e., the left side of~4.2!, then reduces to

I 5A l n! ~2u l u12uku21!G~ l n12uku12u ln21u21!

G~ l n12uknln
u12u lnln21u!G~ l n12uknln11u12u lnln

n21u!

3A l n8! ~2u l 8u12uku21!G~ l n812uku12u ln218 u21!

G~ l n812uknln
u12u lnln218 u!G~ l n812uknln11u12u l8nln

n21u!ER
pl n

~unln
;uknln

u1u lnln21u,

uknln11u1u lnln
n21u2 is,uknln

u1u lnln21u,uknln11u1u lnln
n21u1 is!pl

n8
~unln

;uknln
u1u lnln218 u,

uknln11u1u l8nln
n21u2 is,uknln

u1u lnln218 u,uknln11u1u l8nln
n21u1 is!3I left3I rightdunln

5d ln21 ,l
n218 ~2p!n21A l n! ~2u l u12uku21!G~ l n12uku12u ln21u21!

G~ l n12uknln
u12u lnln21u!G~ l n12uknln11u12u lnln

n21u!

3A l n8! ~2u l 8u12uku21!G~ l n812uku12u ln218 u21!

G~ l n812uknln
u12u lnln218 u!G~ l n812uknln11u12u l8nln

n21u!ER
pl n

~unln
;uknln

u1u lnln21u,

uknln11u1u lnln
n21u2 is,uknln

u1u lnln21u,uknln11u1u lnln
n21u1 is!

3pl
n8
~unln

;uknln
u1u lnln218 u,uknln11u1u l8nln

n21u2 is,uknln
u1u lnln218 u,uknln11u1u l8nln

n21u1 is!

3G~ uknln
u1u lnln21u6 iunln

!G~ uknln11u1u lnln
n21u6 i ~s2unln

!!dunln

5d l ,l 8~2p!nG~ uku1u l u6 is!.

Once again, we have used the orthogonality~4.3! of continuous Hahn polynomials. This complet
the proof of Theorem 16.

V. CONNECTION COEFFICIENTS BETWEEN DIFFERENT BASES OF ORTHOGONAL
POLYNOMIALS

We will show that the set of polynomials associated with afixedbinary coupling tree andfixed
leaf valueskj , but varying valuesl i , form a basis forPn.

Lemma 19: For any binary coupling tree T the degree of the polynomial Rl
(k)(x) ~or R l

(k)(x)!
associated with T isu l u.

Proof: In the case of Jacobi polynomials, i.e., the case ofS-polynomials, the result immedi
ately follows from the fact thatSm

k1 ,k2(x1 ,x2) is homogeneous of degreem in the variablesx1 and
x2 .

Now consider the case of continuous Hahn polynomials. Althoughpm(t;a,b,c,d) is a poly-
nomial of degreem in t, we have to be careful because, in the case ofS-polynomials, the variables
xi also appear in the parametersb andd. The polynomials associated with an internal node not
the path from the leafxn11 to the root are, up to a constant factor,pm(x;a,b2 i (x1y),a,b
1 i (x1y)) ~x andy stand for a sum of variablesxj !. Using the definition of the continuous Hah
polynomials we have
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pm~x;a,b2 i ~x1y!,a,b1 i ~x1y!!

5 i m
~2a!m~a1b1 i ~x1y!!m

m! 3F2S 2m,m12a12b21,a1 ix
2a,a1b1 i ~x1y!

;1D
5 i m

~2a!m~a1b1 i ~x1y!!m

m! (
j 50

m
~2m! j~m12a12b21! j~a1 ix ! j

~2a! j~a1b1 i ~x1y!! j j !

5 i m
~2a!m

m! (
j 50

m
~2m! j~m12a12b21! j~a1 ix ! j~a1b1 i ~x1y!1 j !m2 j

~2a! j j !
.

From this last equation one sees that the degree of this polynomial is at mostm. It is easy to see
that the coefficient ofym is (i 2m(2a)m /m!) Þ0, since in our casea.0. The same can be done fo
a polynomial associated with an internal node on the path fromxn11 to the root. h

Theorem 20: The polynomials Rl
(k)(x) andR l

(k)(x) associated with a fixed binary couplin
tree T on n internal nodes form a basis forPn.

Proof: Theorems 4 and 16 imply that the sets of polynomials associated withT are linearly
independent.

The number of polynomials associated withT that have degreem equals the number o
compositionsJ(m,n) of m into n parts, i.e., the number of ways that one can writem as a sum of
n non-negative integers whereby the order of the summands is important. There are
(k50

m J(k,n) polynomials of degree at mostm associated withT. It is not difficult to see that this
is exactly the dimension ofPm

n , the set of polynomials inn variables with degree at mostm. h

We recall the two properties~2.11! and ~2.12! of the S-polynomials. We can use these tw
properties to determine the connection coefficients between the different bases. This is st
the following theorem.

Theorem 21: Consider a binary coupling tree, T1 , with fixed values kj and li . Consider
another binary coupling tree T2 with the same fixed values kj but varying values li8 , such that
u l u5u l 8u. Then the polynomials Rl ,T1

(k) (x) @resp.Rl ,T1

(k) (x)] can be written as a linear combination o

polynomials Rl 8,T2

(k) (x) ~resp.R l 8,T2

(k) ):

Rl ,T1

(k) ~x!5 (
u l 8u5u l u

Cl 8Rl 8,T2

(k)
~x!; R l ,T1

(k) ~x!5 (
u l 8u5u l u

Cl 8R l 8,T2

(k)
~x!. ~5.1!

The connection coefficient Cl 8 is equal to the3n j-coefficient̂ T1( l ),T2( l 8)& (which is zero any-
way if u l uÞu l 8u).

Proof: This follows from Theorem 20 and the two basic properties ofS- andS-polynomials.
These basic properties are given in~2.11! and ~2.12!. Observe that~2.11! simply expresses

R ( l 1 ,l 2),T1

(k1 ,k2 ,k3)
~x1 ,x2!5 (

u l 8u5u l u
U

k3 ,uku1u l u,k21k31 l
18

k1 ,k2 ,k11k21 l 1 R
( l

18 ,l
28),T2

(k1 ,k2 ,k3)
~x1 ,x2!, ~5.2!

whereT1 ~resp.T2! is the tree on the left hand side~resp. right hand side! of Fig. 1 with k12

5k11k21 l 1 and k05uku1u l u ~resp. withk235k21k31 l 18 and k05uku1u l 8u). By definition the
Racah coefficient~or 6j -coefficient! can be expressed as the overlap coefficient of two bin
coupling trees, i.e.,

U
k3 ,uku1u l u,k21k31 l

18

k1 ,k2 ,k11k21 l 1 5^T1~ l !,T2~ l 8!&.

In the general case, letT1 ~with fixed valueskj and l i! andT2 ~with the same fixed valueskj ! be
given. The expansion ofRl ,T1

(k) (x) in terms ofS-polynomials is then fixed. In order to expres

Rl ,T1

(k) (x) in terms of polynomials associated with the second treeT2 , one can use~2.11! and~2.12!
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a number of times. Equation~2.11! corresponds to an elementary tree operation~the flop operation
of Ref. 13!, depicted in Fig. 1. Equation~2.12! corresponds to an exchange operation13 on trees.
So, to expressRl ,T1

(k) (x) in terms of polynomialsR l 8,T2

(k) (x), one has to perform sufficiently man

elementary tree operations onT1 until one ends up with a tree of shapeT2 . Each such operation
corresponds to an application of~2.11!, introducing a Racah coefficient and a summation index
to an application of~2.12!, introducing only a phase factor. As a consequence, the coefficienCl 8
in ~5.1! stands for a certain sum over products of Racah coefficients. But this sum over pro
of Racah coefficients is just the 3n j-coefficient defined by the left and right binary coupling tre
since the ‘‘method of trees’’13,14 yields that the expansion of a 3n j-coefficient in terms of Racah
coefficients is obtained exactly by such elementary tree operations. h

Observe there are some alternative ways of expressing the previous results. For exam
two n-variable Jacobi polynomials corresponding to the same binary coupling tree, their
product is given by~3.5!. For two n-variable Jacobi polynomials with different binary couplin
tree, the inner product is essentially given by a 3n j-coefficient:

E
Ts

n
Rl ,T1

(k) ~x!Rl 8,T2

(k)
~x!w(k)~x!dx5^T1~ l !,T2~ l 8!&

s2uku12u l u21

G~2uku12u l u! )
i 51

n11

G~2ki !, ~5.3!

wherew(k)(x) is the classical weight function~3.4!.
In the same way, we have forn-variable continuous Hahn polynomials corresponding

different binary coupling trees that

E
Rn

Rl ,T1

(k) ~x!Rl 8,T2

(k)
~x!w(k)~x!dx5^T1~ l !,T2~ l 8!&~2p!nG~ uku1u l u6 is!, ~5.4!

where in this casew(k)(x) is given by~4.1!.

APPENDIX A: ORTHOGONALITY OF PRODUCTS OF WILSON POLYNOMIALS

In this appendix we show that the products of Wilson polynomials in~2.5! also satisfy an
orthogonality relation onR2; thus also~2.5! can be interpreted as a connection coefficient formu

WhenR(a,b,c,d).0 and nonreal parameters occur in conjugate pairs, Wilson polynom
are orthogonal onR1 for the weight functionuG(a1 ix)G(b1 ix)G(c1 ix)G(d1 ix)/G(2ix)u2:

E
0

`UG~a1 ix !G~b1 ix !G~c1 ix !G~d1 ix !

G~2ix !
U2

Wm~x2;a,b,c,d!Wj~x2;a,b,c,d!dx

52p
G~ j 1a1b!G~ j 1a1c!G~ j 1a1d!G~ j 1b1c!G~ j 1b1d!G~ j 1c1d!

G~2 j 1a1b1c1d!

3~ j 1a1b1c1d21! j j !dm, j , ~A1!

see, e.g., Ref. 22.
Theorem 22:The products of Wilson polynomials on both the left and right sides of Eq. (

are orthogonal onR2 for the weight function

G~k16 ix1!G~k26 ix2!G~k36 i ~s2x12x2!!

3
G~k16 i ~x122t !!G~k26 i ~2x11x222t !!G~k36 i ~s22t1x11x2!!

G~62ix172i t !G~62ix162ix272i t !
, ~A2!

if k1 ,k2 ,k3.0.
Following the convention mentioned earlier, each factor in~A2! stands for the product of two

gamma functions.
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Proof: Consider the polynomial on the right side of~2.5!. The parameters of the Wilso
polynomials occur in conjugate pairs and the real parts of the parameters are positive. This
us to use the orthogonality relation~A1!.

Denoting the weight function~A2! by w(x1 ,x2), we want to determine the value of

E E
R2

w~x1 ,x2!Wm~~x12t !2;k16 i t ,k26 i ~x11x22t !!

3Wm8~~x12t !2;k16 i t ,k26 i ~x11x22t !!

3Wj~~x11x22t !2;k11k21m6 i t ,k36 i ~s2t !!

3Wj 8~~x11x22t !2;k11k21m86 i t ,k36 i ~s2t !!dx1dx2 .

The notation is obvious: each entry of the formk16 i t stands for two parameters of the Wilso
polynomial. In order to compute the integral, introduce two new variables, namely the argu
of the Wilson polynomials:u15x12t andu25x11x22t. Changing variables and integrating fir
with respect tou1 and then with respect tou2 gives a constant timesdm,m8d j , j 8 for the above
integral, if we use the facts thatG( z̄)5G(z) and that the integrands are even functions.

Similar arguments yield the desired result for the Wilson polynomials on the left sid
~2.5!. h

APPENDIX B: PROOF OF LEMMA 11

In this appendix we prove Lemma 11. First, we show that ifxPTs
n , then21,v i,1 for each

v i given by ~3.9!. The position of the variablev i in the binary coupling tree plays a role in it
expression. For a variablev i not on the path fromxn11 to the root of the tree, the equatio
expressingv i in terms ofx is

v i5S (
right leaves

of v i

xj2 (
left leaves

of v i

xj D Y (
all leaves

of v i

xj ,

which is of the formf (y,z)5 (y2z)/(y1z) with 0,y, 0,z ~andy1z,s!. It is easy to see tha
21, f (y,z),1 if y,z.0. On the other hand, ifv i is on the path fromxn11 to the root, we have,
after substitution ofxn11 by s2uxu, that

v i5S s2 (
non-leaves

of v i

xj22 (
left leaves

of v i

xj D Y S s2 (
non-leaves

of v i

xj D ,

which is of the formg(y,z)5 (s2y22z)/(s2y) with 0,y, 0,z and y1z,s. A simple ex-
amination shows thatg(y,z) reaches its maximum11 in this area whenz50, and its minimum
21 when y1z5s. Thus 21,g(y,z),1 for y,z.0 with y1z,s. So we have that21,v i

,1 for each 1< i ,n. For the variablevn a completely analogous reasoning can be given.
Before provingvPhn⇒xPTs

n in general, consider an example.
Example 23:Let vPh4 and consider Eqs.~3.7! with x5 replaced bys2x12x22x32x4 :

v15~x22x1!/~x21x1!,

v25~x32x12x2!/~x31x11x2!,
~B1!

v35~s2x12x22x322x4!/~s2x12x22x3!,

v45~s22x122x222x3!/s.

Since21,v4,1, the fourth equation of~B1! implies
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21,v4,1⇒0,x11x21x3,s. ~B2!

The denominator of the second equation of~B1! is thus positive, and

21,v2⇒x3.0 and v2,1⇒x11x2.0, ~B3!

hence

21,v1⇒x2.0 and v1,1⇒x1.0. ~B4!

From ~B2! it also follows that the denominator of the third equation of~B1! is positive, implying

21,v3⇒x11x21x31x4,s and v3,1⇒x4.0. ~B5!

So we clearly havevPh4⇒xPTs
4 . j

In general, letvPhn. We know that

vn5S s22 (
left leaves

of vn

xj D Y s,

with s.0, and thus

21,vn,1⇒0, (
left leaves

of vn

xj,s. ~B6!

Now consider the variable associated with the left child ofvn , that is,vnln21 :

vnln215S (
right leaves
of vnln21

xj2 (
left leaves
of vnln21

xj D Y (
all leaves
of vnln21

xj .

From ~B6! we know that the denominator of the previous formula is positive, and we have

21,vnln21⇒ (
right leaves
of vnln21

xj.0 ~B7!

and

vnln21,1⇒ (
left leaves
of vnln21

xj.0. ~B8!

Continuing in this way for all internal nodes of the left subtree~in in-order25! yields thatxj.0 for
every variable in the left subtree, since

21,
y2z

y1z
,1⇒y.0 and z.0,

if y1z.0.
Consider the variable associated with the right child ofvn , i.e., vn21 . For vn21 we have the

following expression:
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vn215S s2 (
non-leaves
of vn21

xj22 (
left leaves
of vn21

xj D Y S s2 (
non-leaves
of vn21

xj D .

The ‘‘non-leaves ofvn21’’ are exactly the ‘‘left leaves ofvn , ’’ so from ~B6! we have once again
that the denominator of the previous formula is positive. We thus have

21,vn21⇒ (
non-leaves
of vn21

xj1 (
left leaves
of vn21

xj,s, ~B9!

and

vn21,1⇒ (
left leaves
of vn21

xj.0. ~B10!

Starting from this last equation, we can perform the same actions as in the left subtree to co
thatxj.0 for all leaves in the left subtree ofvn21 . Continuing in this way we get thatxj.0, for
j 51,...,n and uxu,s, since

21,
s2y22z

s2y
,1⇒y1z,s and z.0,

if s2y.0. This completes the proof thatvPhn⇒xPTs
n .
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The properties ofA-statistics, related to the classA of simple Lie algebras@T. D.
Palev, preprint JINR E17-10550~1977!; hep-th/9705032#, are further investigated.
The description of eachsl(n11) is carried out via generatorsa1

6 ,...,an
6 , which

we call Jacobson generators. With respect to these generators, the definition of a
Fock space ofsl(n11) is given. It is proved that the Fock spacesWp , pPN are
the simple symmetric~finite-dimensional! modules ofsl(n11). The Pauli prin-
ciple of the underlying statistics is formulated. Within eachWp operatorsB(p) i

6

5ai
6/Ap ( i 51,...,n), called quasi-Bose creation and annihilation operators

~CAOs!, are defined. Then limp→`B(p) i
65Bi

6 , where Bi
6 are ordinary Bose

CAOs. ThereforeA-statistics appears as an approximation of Bose statistics with
CAOs acting in finite-dimensional state spaces. We indicate that thep51 quasi-
Bose operatorsB(1)1

6 ,...,B(1)n
6 are natural operators for the description of hard-

core Bose models and of the related Heisenberg spin models. We argue that~up to
a certain natural assumption! A-statistics can be interpreted as an exclusion statis-
tics. © 2002 American Institute of Physics.@DOI: 10.1063/1.1481544#

I. INTRODUCTION

During the last two decades quantum statistics became a field of increasing interest
field theorists and condensed matter theorists. Various new statistics were suggested, lea
generalizations or deviations from some of the first principles in quantum physics, such
Heisenberg commutation relations, the Pauli exclusion principle, and the commutativity of s
time.

The literature on the subject is vast, especially in the part related to quantum groups.1–5 In a
paper entitled ‘‘Twisted second quantization,’’6 Pusz and Woronowicz introduced multimode d
formed Bose creation and annihilation operators~CAOs!, covariant under the action of the qua
tum groupUq@sl(n)# ~for n pairs of them!. Another deformation with commuting modes of CAO
was proposed in Ref. 7; the link between them was established in Ref. 8. A third deform
which for one mode of CAOs was known for many years,9 the so-called quon algebra,10 was
defined as an associative algebra, subject to relationsai

2aj
12qaj

1ai
25d i j . This generalization

~note that no relations among only creation operators or among only annihilation operato
required! was in the origin of a model proposed for a verification of small violations of Bo
Fermi statistics in quantum field theory~QFT!.11 The quon statistics, which in the classification
Doplicher, Haag, and Roberts12 belongs to the class of ‘‘infinite statistics,’’ was studied by seve
authors13 from different points of view~see Ref. 14 for further discussions and references!.

Recently string theory was also involved in discussions on quantum statistics, the latter r

a!Permanent address: Institute for Nuclear Research and Nuclear Energy, Boul. Tsarigradsko Chaussee 72, 17
Bulgaria; electronic mail: tpalev@inrne.bas.bg

b!Electronic mail: joris.vanderjeugt@rug.ac.be
38500022-2488/2002/43(7)/3850/24/$19.00 © 2002 American Institute of Physics
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to its prediction that Heisenberg’s uncertainty principle has to be corrected at distances of o
the Planck lengthkP510232 cm. Consequently there emerges an absolute minimum uncert
in the measuring of any length.15 These predictions motivated several authors to search for m
independent arguments, leading to the same conclusions as string theory does~we refer to Ref. 16
for a survey on the subject!. In particular it has been shown that the above-mentioned results
be reproduced on a purely kinematical level with appropriate deformations of the Heise
commutation relations,17–20 i.e., of canonical quantum statistics. In all such cases the coordin
do not commute~see also Refs. 21–24!, a result which is consistent with the spirit of noncom
mutative geometry.25

Turning to condensed matter physics we refer to anyons, ‘‘particles’’ with fractional stat
in two-dimensional systems.26 The theoretical studies of this and other noncanonical statis
were strongly pushed forward after the discovery of the fractional quantum Hall effect in
dimensional electron gases.27 Its theoretical explanation led Laughlin28 to the conclusion that there
exist quasiparticles carrying fractional electric charges. The statistics of these particles~we write
‘‘particles’’ for the elementary excitations, the ‘‘quasiparticles,’’ when no confusion can arise! also
turned out to be fractional statistics.29

A further breakthrough in the area of quantum statistics was marked with the 1991 pa
Haldane,30 who proposed a generalized version of the Pauli exclusion principle. For only one
of identical particles this new statistics, now called~fractional! exclusion statistics~ES!, asserts
that the changeDd in the dimensiond of the single-particle Hilbert space is defined via t
relation

Dd52g•DN. ~1.1!

HereDN is an allowed increase of the number of particles. The constantg is called an exclusion
statistics parameter.

Our approach to quantum statistics is strongly influenced by the ideas of Wigner, outlin
his 1950’s work ‘‘Do the equations of motion determine the quantum mechanical commu
relations?’’31 This was the first paper where it was clearly indicated that the canonical qua
statistics may, in principle, be generalized in a logically consistent way. Wigner demonstrate

on the example of a one-dimensional oscillator with a Hamiltonian (m5v5\51) H5 1
2 (p2

1q2). Abandoning the requirement@p,q#52 i , Wigner was searching for all operatorsq andp,
such that the ‘‘classical’’ equations of motionṗ52q, q̇5p are identical to the Heisenber
equationsṗ52 i @p,H#, q̇52 i @q,H#. Apart from the canonical solution he found infinitely man
other solutions. LetA2B1

65q7 ip. It turns out32 that all these different operators satisfy one a
the same triple relation, namely~1.2! with i 5 j 5k51 ~see the end of this section for the notation!:

@$Bi
j ,Bj

h%,Bk
e#5d ik~e2j!Bj

h1d jk~e2h!Bi
j , i , j ,kPN, j,h,e56, 61. ~1.2!

The operatorsBi
6 , i 51,2,... are para-Bose~pB! operators, discovered by Green33 three years later

as a possible generalization of statistics of tensor fields in QFT. Thus the infinitely many dif
solutions found by Wigner were in fact the Fock representations of one pair of para-Bose
tors.

It is known that the linear span of all operatorsBi
j , $Bj

h ,Bk
e% is a Lie superalgebra34 isomor-

phic to the orthosymplectic Lie superalgebraosp(1/2n) for i , j ,k51,...,n andj,h,e56.35 The
para-Bose operators constitute a basis in the odd subspace of this superalgebra and gen
Consequently the representation theory ofn pairs of pB operators is completely equivalent to t
representation theory ofosp(1/2n). Hence Wigner found all Fock representations ofosp(1/2)
long before Lie superalgebras~and supersymmetry! became of interest in physics.

Similarly, anyn pairs of para-Fermi CAOsF1
6 ,F2

6 ,...,Fn
6 ,33 defined by

@@Fi
j ,F j

h#,Fk
e#5 1

2d jk~e2h!2Fi
j2 1

2 d ik~e2j!2F j
h , i , j ,kPN, j,h,e56, 61, ~1.3!
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generate the Lie algebraso(2n11).36,37 The key observation here is that bothso(2n11) and
osp(1/2n) belong to classB of the basic Lie superalgebras in the classification of Kac.38 Hence
parastatistics~and in particular Bose and Fermi statistics! appear as particular Fock representatio
of Lie superalgebras from one and the same class, the Lie superalgebras of classB. In this sense
Green’s parastatistics could be calledB-~para!statistics.

The clarification of the mathematical structure, hidden in parastatistics, provides a n
background for further searches of new quantum statistics. One such possibility is to co
deformations of parastatistics, namely deformations ofso(2n11) andosp(1/2n) in the sense of
quantum groups. We refer to Ref. 39 for discussions and results along this line. Note that p
tistics associated withso(2n11) ~parafermions: finite dimensional representations! and with
osp(1/2n) ~parabosons: infinite dimensional representations! are not related to the known corre
spondence betweenso(2n11) andosp(1/2n)40,41 where only finite dimensional representatio
play a role.

In another approach, initiated in Ref. 42, it was shown that to each infinite classA, B, C, and
D of simple Lie algebras there corresponds quantum statistics. Examples from classesA andB of
proper Lie superalgebras are also available. We have in mind Wigner quantum systems~WQSs!.32

Some such systems possess quite unconventional physical features. As an example we me
(n11)-particle WQS, based on the Lie superalgebrasl(1/3n) from classA.43 This WQS exhibits
a quark-like structure: the composite system occupies a small volumeV around the center of mas
and no particles can be extracted out ofV. Moreover the geometry withinV is noncommutative.
Another example is theosp(3/2) WQS from classB.44 It leads to a picture where two spinles
point particles, ‘‘curling’’ around each other, produce an orbital~internal angular! momentum 1/2,
a result which cannot be obtained in canonical quantum mechanics.

The present paper is also in the frame of quantum statistics. We study further the~micro-
scopic! properties ofA-statistics, introduced in Ref. 42~see also Ref. 45!, namely the statistics o
Lie algebrasAn[sl(n11), n51,2,... . Since Refs. 42 and 45 are not available as journal pu
cations, we review the main issues ofA-statistics in Secs. II and III and partially in Sec. I
omitting most of the proofs.

We begin~Sec. II! by recalling how the Lie algebrasl(n11) can be described via generato
a1

6 ,...,an
6 and relations; see~2.5!. These generators, which we call Jacobson generators~JG!,

provide an alternative to the Chevalley description ofsl(n11).
The Fock modules of the Jacobson generators, extended also togl(n11)-modules, are de-

fined and classified in Sec. III. It is shown how they can be selected out of all irreduciblegl(n
11)-modules on the ground of natural physical requirements; see Definition 1. All Fock mo
Wp are finite-dimensional and are labeled by one positive integerpPN. More precisely, the
signature~the highest weight! of the gl(n11)-moduleWp is (p,0,0,...,0), or equivalently, the
representation ofgl(n11) in Wp is a symmetric representation. The definition of the Fock spa
is given in such a way that withinWp each generatorai

1 ~respectively,ai
2! can be interpreted a

an operator creating~respectively, annihilating! a ‘‘particle’’ in a statei ~on the orbitali !.
The Pauli principle forA-statistics inWp is formulated in Sec. IV~Corollary 3!. It states that

any number of particles up top and no more thanp can be distributed in an arbitrary way alon
the orbitals. This restriction leads to properties typical for exclusion statistics.30 We show that
under a certain natural assumption theA-statistics can be interpreted as an exclusion statistic
the form of Wu.46

Next, in Sec. V, representation-dependent creation and annihilation operatorsB(p) i
6

5ai
6/Ap( i 51,...,n) in Wp are defined. We prove that in an appropriate topology limp→`B(p) i

6

5Bi
6 , where B1

6 ,...,Bn
6 are Bose creation and annihilation operators. The opera

B(p)1
6 ,...,B(p)n

6 possess also other Bose-type properties. For these reasonsB(p)1
6 ,...,B(p)n

6

are referred to as quasi-Bose operators~of order p!, the representations ofsl(n11) andgl(n
11) in Wp as quasiboson representations and the statistics as quasi-Bose statistics.

The Jacobson CAOsa1
6 ,...,an

6 are ‘‘bosonized’’ in Sec. VI. These operators are expressed
n pairs of Bose CAOsB1

6 ,...,Bn
6 . The related realization ofgl(n11) in Wp turns out to be the

known Holstein–Primakoff realization.47
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In Sec. VII we point out that the quasi-Bose operators can also be of more general intere
the example of a two-legS51/2 Heisenberg spin ladder we show that the Bose realization o
Hamiltonian48,49 together with the restrictions selecting the physical subspace simply mean
the Bose operators related to each site have to be replaced by quasi-Bose operators ofp
51. This conclusion is of a more general nature. It holds for any hard-core Bose model,50 since
the p51 particles are hard-core bosons~Proposition 5!.

Section VIII is devoted to some conclusions and discussions.
Throughout the paper we use the following abbreviations and notation~some of them

standard!:

JGs Jacobson generators;
CAOs creation and annihilation operators;
UEA universal enveloping algebra;
N all positive integers;

Z1 all non-negative integers;

@a,b#5ab2ba, $a,b%5ab1ba;
% direct sum of linear spaces or of Lie algebras.

II. JACOBSON GENERATORS OF sl „n¿1…

The sl(n11)-statistics, includingn5`, was introduced in Ref. 42~see also Ref. 45! as an
alternative way for quantization of spinor fields in quantum field theory. References 42 and
not available as journal publications. Therefore here and in Sec. III we outline the main featu
this statistics in somewhat more details.

In order to define the Jacobson generators, it is convenient to considersl(n11) as a subal-
gebra of the Lie algebragl(n11). The universal enveloping algebraU@gl(n11)# of the latter
can be defined as an associative algebra with unity of the generators$ei j u i , j 50,1,...,n% subject to
the relations

@ei j ,ekl#5d jkeil 2d i l ek j . ~2.1!

Thengl(n11) is a subalgebra ofU@gl(n11)#, considered as a Lie algebra, with generatorsei j ,
i , j 50,1,...,n and commutation relations~2.1!.

The Cartan subalgebraH8 of gl(n11) has a basishi[eii , i 50,1,...,n. Let h0,h1,...,hn be
the dual basis,hi(hj )5d i j . The root vectors of bothgl(n11) and sl(n11) are ei j , iÞ j
50,1,...,n. The root of eachei j is hi2hj . Then

sl~n11!5span$ei j ,eii 2ej j u iÞ j 50,1,...,n%. ~2.2!

The Jacobson generators~JGs! of sl(n11) are part of the generatorsei j , namely

ai
15ei0 , ai

25e0i , i 51,...,n. ~2.3!

The correspondence with their roots reads

ai
6↔7~h02hi !, i 51,...,n, ~2.4!

and therefore the JGsai
1 (ai

2) are negative~positive! root vectors with respect to the natur
orderingh0,h1,...,hn. Since any other root is a sum of the roots ofaj

2 andai
1 , namely

hi2hj5~h02hj !2~h02hi !, iÞ j 51,...,n,

the JGs~2.3! generatesl(n11) in the sense of a Lie algebra.
From ~2.1! and ~2.3! one derives the triple relations
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@@ai
1 ,aj

2#,ak
1#5dk jai

11d i j ak
1 , ~2.5a!

@@ai
1 ,aj

2#,ak
2#52dkiaj

22d i j ak
2 , ~2.5b!

@ai
1 ,aj

1#5@ai
2 ,aj

2#50. ~2.5c!

On the contrary, settingei j 2d i j e005@ai
1 ,aj

2#, one derives from~2.5! the commutation relation
between allsl(n11) generatorsei j , eii 2ej j , iÞ j 50,1,...,n.

The above-given description ofsl(n11) via generators and relations is a particular case
describing Lie algebras via Lie triple systems, initiated by Jacobson.51 For this reason the elemen
ai

6 are referred to as Jacobson generators ofsl(n11).
The presentation of simple Lie algebras in terms of generators and relations@as illustrated here

by the JGs forsl(n11)# is a topic of interest to physicists.52,53 In fact, any simple finite dimen-
sional Lie algebra can be generated by two elements only; this was first claimed by Jacobs~see
also Ref. 54! and proved in Ref. 55. For this reason, these two generators are sometimes re
to as ‘‘Jacobson’s generators.’’ We shall not use this terminology here, in order to avoid con
with the Jacobson generators defined in this section. Observe that the nature of the re
becomes extremely complicated when using only these two generators. A simpler descriptio
given in Ref. 56, in terms of three generators@by adding a third generator to the earlier two, whi
are related to a principalsl(2) embedding#. The description ofsl(n), and other simple Lie
algebras or superalgebras, is explicitly given in Ref. 56 in terms of such three generators a
corresponding relations~which are not triple relations, but of higher degree!. Such a description
~with three generators and a number of higher order relations! is appropriate to present the so
called Lie algebra of matrices of complex sizegl(l), see Refs. 56 and 53, since forgl(l) or
sl(l) there is no analog of a Cartan matrix or of Chevalley generators.

In the present paper, however, we shall only use the presentation ofsl(n11) by means of the
JGs~2.3! and the triple relations~2.5!, which is essentially a description by means of Jacobso
Lie triple systems~LTSs!.51 The approach by means of LTSs was further developed to
Z2-graded case by Okubo.57 Let us be more concrete. By definition51 a Lie triple systemL is a
subspace of an associative algebraU, so thatL is closed under the ternary operationv:L^ L
^ L→L defined asv(a^ b^ c)5@@a,b#,c#, a,b,cPL. The definiton of a Lie supertriple system
~equivalent to the definition in Ref. 57! is similar. The difference is thatL is aZ2-graded subspace
of an associative superalgebraU and the commutators in the definition ofv are replaced by
supercommutators.

The JGs ofsl(n11) are closely related to the above-given definition. More precisely, letLsl

be the linear span of the generators~2.3! and Usl be the associative unital algebra of the J
subject to the relations~2.5!. ThenLsl is a subspace ofUsl . Moreoverv:Lsl^ Lsl^ Lsl→Lsl as
a consequence of~2.5!. HenceLsl is a Lie triple system with a basis consisting of the JGs~2.3!
and Usl is the UEA of sl(n11). Similarly, the linear spanLpf of para-Fermi CAOs
F1

6 ,F2
6 ,...,Fn

6 together with the associative algebraUpf of these operators@subject to the rela-
tions ~1.3!# is another example of a LTS. Hence the para-Fermi operatorsF1

6 ,...,Fn
6 could be

called JGs ofso(2n11). In the same spirit the para-Bose operatorsB1
6 ,...,Bn

6 are JGs of
osp(1/2n).

From a purely algebraic point of view the Jacobson generators provide an alternative
Chevalley description ofsl(n11), so(2n11), and osp(1/2n). The JGs ofso(2n11) and
osp(1/2n) however~contrary to the Chevalley generators! have a direct physical significance
These operators extend the canonical Fermi and Bose statistics to the more general paras
In the following we proceed to show that the JGs ofsl(n11) also introduce a new quantum
statistics, different from Bose and Fermi statistics and their generalization—parastatistics
statistics is intrinsically related to classA of simple Lie algebras in the same way as the pa
Fermi statistics is related to classB of simple Lie algebras.
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Typically the ‘‘commutation relations’’ between the creation and the annihilation operator~or
the related position and momentum operators in case of finite degrees of freedom! are derived
from ~more precisely, are required to be consistent with! the main quantization equation

@H,ai
6#56e iai

6 , ~2.6!

whereH is the Hamiltonian andi replaces all indices that may appear~momentum, spin, charge
etc.!. In quantum field theory~2.6! expresses the translation invariance of the field~in infinitesimal
form!. In quantum mechanics the same equation appears as a compatibility condition~in the sense
of Wigner31! between the Heisenberg equations of motion and the classical equations,
system has a classical analog~for more details see Refs. 32 and 58!. There are certainly severa
other conditions to be satisfied~Galilean or relativistic invariance, causality, etc.; we refer to R
43 for discussions in case of noncanonical quantum mechanics!. The possibility for choosing
different statistics essentially depends upon the way one represents the HamiltonianH. We are
going to illustrate this on the example of para-Fermi statistics.

Consider a nonrelativistic free field locked in a finite volume. In the case of a Fermi field
HamiltonianĤ is written in a normal-product form

Ĥ5(
i

e i f i
1 f i

2 , ~2.7!

so that the energy of the vacuum is zero. Heref i
1 ( f i

2) are Fermi creation~annihilation! operators:

$ f i
j , f j

h%5 1
4 (j2h)2d i j , j,h56 or 61. Then~2.6! holds,

@Ĥ, f i
6#56e i f i

6 , ~2.8!

and eachf i
j can be interpreted as an operator creating (j51) or annihilating (j52) a particle,

i.e., a fermion with energye i . Equation~2.8! is not fulfilled however, if the Fermi operators i
~2.7! are replaced by para-Fermi operators~1.3!: for H5( i e iFi

1Fi
2 the equation

@H,Fi
6#56e iFi

6 ~2.9!

does not hold. Why? In order to answer this question using proper Lie algebraic language a
that the sum in~2.7! is finite ~finite number of Fermi oscillators!,

Ĥ5(
i 51

n

e i f i
1 f i

2 . ~2.10!

This is only an intermediate step. The considerations in the following remain valid forn5`.
Recall now that anyn pairs of Fermi CAOs generate a particular Fermi representation of the
algebraso(2n11)[Bn , whereas the para-Fermi operatorsF1

6 ,...,Fn
6 are ~representation inde

pendent! generators ofso(2n11).36,37 Equation~2.8! is not preserved, when passing to oth
representations ofBn , becauseH is not an element fromBn and hence@H,Fi

6# on the left-hand
side of ~2.9! is not a representation independent commutator. This observation also sugge
answer: one has to rewrite~2.10! in a representation independent form. In order to achieve t
represent~2.10! in the following identical form:

Ĥ5
1

2 (
i 51

n

e i~@ f i
1 , f i

2#1$ f i
1 , f i

2%!. ~2.11!
                                                                                                                



-

f

n

ithin
that
an

3856 J. Math. Phys., Vol. 43, No. 7, July 2002 T. D. Palev and J. Van der Jeugt

                    
Consider the Lie algebra generated fromf 1
6 ,...,f n

6 and$ f i
1 , f i

2%. Since$ f i
1 , f i

2%51, we obtain a
representation of the Lie algebraBn% I , whereI is the one-dimensional center. NowĤPBn% I
and therefore the commutation relations~2.8! hold for any other representation ofBn% I . In other
words, if we substitutef i

6→Fi
6 and$ f i

1 , f i
2%→ p̂ in ~2.11!, i.e., set

H5
1

2 (
i 51

n

e i~@Fi
1 ,Fi

2#1 p̂!, ~2.12!

wherep̂ is a generator of the centerI , then the quantization condition~2.8! will be fulfilled for any
representation ofBn% I and in particular for the para-Fermi operators~1.3!: @H,Fi

6#56e iFi
6 .

The requirementp̂u0&5pu0&, pPN ~andFi
2F j

1u0&5d i j pu0&, Fi
2u0&50), leads to a representa

tion with an order of the~para!statisticsp.59 Then the energy of the vacuum is also zero.
We shall now apply a similar approach for the algebrasl(n11). Let Ei j , i , j 50,1,...,n, be

the (n11)3(n11) matrix units. The mapp:ei j →Ei j ,i , j 50,1,...,n, gives a representation o
gl(n11) ~usually referred to as defining or identity representation!. Its restriction tosl(n11)
gives a representation ofsl(n11). The operatorsAi

15Ei0 , Ai
25E0i , i 51,2,...,n satisfy the

triple relations~2.5!. Set

Ĥ5(
i 51

n

e iAi
1Ai

2 . ~2.13!

Then

@Ĥ,Ai
6#56e iAi

6 . ~2.14!

HenceAi
j can be interpreted as an operator creating (j51) or annihilating (j52) a particle

~quasiparticle, excitation! with energye i for any i 51,...,n. The representationp is an analog of
the Fermi representation of para-Fermi statistics.

The commutation relations~2.14! do not hold for other representations ofsl(n11). In order
to extend the class of admissible representations we rewrite the Hamiltonian~2.13!, like in the
Fermi case, in the following identical form:

Ĥ5(
i 51

n

e i~@Ai
1 ,Ai

2#1E00!. ~2.15!

The Lie algebra generated from the operatorsA1
6 ,...,An

6 andE00 is gl(n11) ~in the representa-
tion p!. SinceĤPgl(n11) ~in this representation!, ~2.14! also holds for any other representatio
of gl(n11). In other words the Hamiltonian

H5(
i 51

n

e i~@ai
1 ,ai

2#1e00!5(
i 51

n

e i~@ai
1 ,ai

2#1h0! ~2.16!

satisfies~2.6! for any other representation ofgl(n11).
One may argue that expression~2.16! is not satisfactory, because the HamiltonianH is not a

function of the Jacobson generators only. In the following, in Corollary 1, we show that w
every irreducible representationH can be written as a function of the JGs. Here we note
@ai

1 ,ai
2#1e005hi and therefore the Hamiltonian~2.16! can be represented manifestly as

element from the Cartan subalgebra ofgl(n11):

H5(
i 51

n

e ihi . ~2.17!
                                                                                                                



the main
etween
a

.
is
n on
ional
al

le

hest

le

nd the

he

3857J. Math. Phys., Vol. 43, No. 7, July 2002 Jacobson generators, Fock representations

                    
III. FOCK REPRESENTATIONS OF sl „n¿1…

We proceed to outline those representations of the Jacobson generators that possess
features of Fock space representations in ordinary quantum theory. In order to distinguish b
the abstract generators and their representations, the JGsa1

6 ,...,an
6 , considered as operators in

certain sl(n11)-moduleW, are called~Jacobson! creation and annihilation operators ofsl(n
11) @abbreviated also as Jacobson CAOs ofsl(n11), sl(n11)-CAOs, A-CAOs or simply
CAOs#.

Definition 1: Let a1
j ,...,an

j be Jacobson creation(j51) and annihilation(j52) operators.
The sl(n11)-module W is said to be a Fock space of the algebra sl(n11) if it is a Hilbert space,
so that the following conditions hold:

1. Hermiticity condition~A* denotes the operator conjugate to A!

~ai
1!* 5ai

2 , i 51,...,n. ~3.1!

2. Existence of vacuum. There exists a vacuum vectoru0&PW such that

ai
2u0&50, i 51,...,n. ~3.2!

3. The representation space W is spanned on vectors

ai 1
1ai 2

1
¯ai m

1 u0&, mPZ1 . ~3.3!

The Fock space ofsl(n11) is also said to be anAn-module of Fock or simply a Fock module
Assume thatW is a Fock space. Condition~3.1! asserts that any Fock representation

unitarizable with respect to this star operation, considered as an antilinear antiinvolutio
sl(n11). It is known that all such representations are realized in direct sums of finite-dimens
irreducible sl(n11)-modules. Then~3.3! yields that any Fock module is a finite-dimension
irreduciblesl(n11)-module.

We list a few propositions, proofs of which can be found in Refs. 42 and 45.
Proposition 1: The sl(n11)-module W is a Fock space if and only if it is an irreducib

finite-dimensional module with a highest weightL such that

ai
2aj

1xL50, iÞ j 51,...,n. ~3.4!

The vacuumu0& is unique (up to a multiplicative constant) and can be identified with the hig
weight vector xL in W: u0&5xL .

For a proof see Theorem 1 in Ref. 45.
Recall that the HamiltonianH, see~2.17!, does not belong tosl(n11). It is an element from

gl(n11). In order to defineH as an operator inW, we extend each Fock module to an irreducib
gl(n11)-module. To this end we define the action of thegl(n11) central element@also gl(n
11) Casimir operator# h01h11¯1hn in W, setting

~h01h11¯1hn!x5px,;xPW, ~3.5!

wherep can be any number.
The next proposition classifies the Fock spaces. Unless otherwise stated, the roots a

weights are represented by their coordinates in the basish0,h1,...,hn, i.e., l5( i 50
n l ih

i

[( l 0 ,l 1 ,...,l n).
Proposition 2: The irreducible gl(n11)-module Wp is a Fock space, so that the energy of t

vacuum is zero(Hu0&50), if and only if its highest weight (namely the weight ofu0&) is L
5ph0[(p,0,...,0), i.e., if

h0u0&5pu0&, hi u0&50, i 51,...,n, ~3.6!
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where p is an arbitrary positive integer.
Let us add that a representation with a highest weight (p,0,...,0) is thepth symmetric power

of the identity representation (1,0,...,0). It corresponds to a Young diagram with one row andp
boxes.

From ~2.3! and ~3.5! h01h11¯1hn5p, h02hi5@ai
2 ,ai

1#, i 51,...,n, which yields

h05
1

n11 S p1(
i 51

n

@ai
2 ,ai

1# D , hi5
1

n11 S p1n@ai
1 ,ai

2#2 (
kÞ i 51

n

@ak
1 ,ak

2# D . ~3.7!

The last result shows that within any Fock module the generatorsei j can be expressed as function
of a1

6 ,...,an
6 . In view of this we say thata1

6 ,...,an
6 are Jacobson CAOs of bothsl(n11) and of

gl(n11).
An immediate consequence of~2.16! and ~3.7! is the following
Corollary 1: Within every Fock module Wp the Hamiltonian (2.16) can be expressed entire

via the Jacobson creation and annihilation operators:

H5
1

n11 (
i 51

n

e iS p1n@ai
1 ,ai

2#2 (
kÞ i 51

n

@ak
1 ,ak

2# D . ~3.8!

From ~3.4!, ~3.6!, and~3.7! one concludes:
Corollary 2: The Fock module Wp with a highest weightL5(p,0,...,0) is completely defined

by the relations

ai
2aj

1u0&5d i j pu0&, ak
2u0&50, pPN, i , j ,k51,...,n. ~3.9!

The above two conditions are the same as in the case of Green’s parastatistics of ordp.33

Thereforep is referred to as an order ofsl(n11)-statistics~or A-statistics!. The conclusion is that
like in parastatistics the Fock spaces are labeled by a positive integerpPN. The representations
corresponding to different orders of statistics have different highest weights and are the
inequivalent.

Taking into account the second relationak
2u0&50 in ~3.9!, one can also define the Foc

moduleWp by means of the relations

@ai
2aj

1#u0&5d i j pu0&, ak
2u0&50, pPN, i , j ,k51,...,n. ~3.10!

In view of this A-statistics and its Fock representations can be formulated in a somewhat
mathematical terminology. The latter is based on the observation that the linear span of a
erators@ai

2aj
1#, ai

2 , i , j 51,...,n, is a subalgebraA of gl(n11) @which contains as subalgebr
alsogl(n)5span$@ai

2aj
1#u i , j 51,...,n%#. Equation~3.10! defines one-dimensional representatio

of A, spanned on the vacuumu0&. Therefore the Fock modulesWp can be defined as thos
irreducible finite-dimensionalgl(n11)-modules, which are induced from trivial one-dimension
modules ofA via Eq. ~3.10!. Thenp labels the different, inequivalent one-dimensional modu
of A.

On the other hand one can defineA-statistics by means of the triple relations~2.5!. Then Eq.
~3.9! defines completely the Fock modulesWp . All calculations can be carried out without eve
mentioning the underlying Lie algebraic structure ofA-statistics~which is usually the case fo
parastatistics!.

Let Wp be a Fock space with order of statisticsp. From ~3.3! and the fact that the creatio
operators commute with each other one concludes thatWp is a linear span of vectors
(a1

1) l 1(a2
1) l 2

¯(an
1) l nu0&, l 1 ,...,l nPZ1 . The correspondence weight↔weight vector is one to

one:
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~a1
1! l 1~a2

1! l 2
¯~an

1! l nu0&↔S p2 (
k51

n

l k ,l 1 ,l 2 ,...,l nD , ~3.11!

i.e., all weight subspaces are one-dimensional.
Proposition 3: Let Wp be an sl(n11)-module of Fock with order of statistics p. The vector

~a1
1! l 1~a2

1! l 2
¯~an

1! l nu0& ~3.12!

is not zero if and only if

l 11 l 21¯1 l n<p. ~3.13!

The proof is a consequence of the properties of the roots in any finite-dimensional irred
sl(n11)-moduleW. If L5(L0 ,L1 ,...,Ln) is the highest weight inW, then for any other weight
l5( l 0 ,l 1 ,...,l n) the following inequality holds:

l i 0
1 l i 1

1¯1 l i m
<L01L11¯1Lm , ~3.14!

where i 0Þ i 1Þ...,Þ i m50,1,...,n and m50,1,...,n. Equation~3.14! is an equality form5n. If
Wp is a Fock space,L01L11¯1Lm5p.

Proposition 3 can be proved also by a direct, but rather long computation. One verifies th
infinite-dimensional moduleŴp spanned on all vectors~3.12! with l 1 ,...,l n being arbitrary non-
negative integers contains an invariant subspaceVp spanned on all vectors~3.12! with l 11 l 2

1¯1 l n.p. ThenWp is the factor moduleŴp /Vp and all vectors~3.12!, subject to~3.13! are
~representatives of! the basis vectors inWp5Ŵp /Vp .

We proceed to recall how one defines a metric inWp , so that it is a Hilbert space and th
hermiticity condition~3.1! holds. Consider the vectors

~a1
1! l 1~a2

1! l 2
¯~an

1! l nu0&, l 11 l 21¯1 l n<p ~3.15!

from Wp . All such vectors have different weights. Consequently they are linearly independen
can be considered as a basis inWp . Define a Hermitian form~ , ! on Wp in the usual way~for
quantum theory!, postulating@in addition toai

2u0&50, see~3.2!#:

~ u0&,u0&)[^0u0&51, ~3.16a!

^0uai
150, i 51,...,n, ~3.16b!

~~a1
1!m1~a2

1!m2
¯~an

1!mnu0&,~a1
1! l 1~a2

1! l 2
¯~an

1! l nu0&)

5^0u~an
2!mn

¯~a2
2!m2~a1

2!m1~a1
1! l 1~a2

1! l 2
¯~an

1! l nu0&. ~3.16c!

With respect to this form the vectors~3.15! are orthogonal. Moreover,

~~a1
1! l 1~a2

1! l 2
¯~an

1! l nu0&, ~a1
1! l 1~a2

1! l 2
¯~an

1! l nu0&)5
p!

~p2( j 51
n l j !!

)
i 51

n

l i ! .0. ~3.17!

Therefore all vectors

up; l 1 ,...,l n&5A~p2( j 51
n l j !!

p!

~a1
1! l 1

¯~an
1! l n

Al 1! l 2!...l n!
u0&, l 11 l 21¯1 l n<p ~3.18!

constitute an orthonormal basis inWp , i.e., ~ , ! is a scalar product. Then by construction t
hermiticity condition~3.1! holds too.
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The transformation of the basis~3.18! under the action of the Jacobson CAOs reads:

ai
1up; l 1 ,...,l i ,...,l n&5A~ l i11!S p2(

j 51

n

l j D up; l 1 ,...,l i 21 ,l i11,l i 11 ...,l n ,&, ~3.19!

ai
2up; l 1 ,...,l i ,...,l n&5Al iS p2(

j 51

n

l j11D up; l 1 ,...,l i 21 ,l i21,l i 11 ...,l n&. ~3.20!

Moreover,

h0up; l 1 ,l 2 ,...,l n&5S p2(
i 51

n

l i D up; l 1 ,l 2 ,...,l n&, ~3.21!

hi up; l 1 ,l 2 ,...,l n&5 l i up; l 1 ,l 2 ,...,l n&, i 51,...,n. ~3.22!

Let us consider in some more detail thep51 representation. Denote bybi
6 the Jacobson

CAOs ai
6 in this representation. In this particular case the representation spaceW1 is

(n11)-dimensional with a basis

u1;l 1 ,...,l n&, l 11¯1 l n<1, ~3.23!

i.e., at most one of the labelsl 1 ,...,l n in u1;l 1 ,...,l n& is equal to 1 and all other are zeros. Th
~3.19! and ~3.20! reduce to

bi
1u1;l 1 ,...,l i 21 ,l i ,l i 11 ,...,l n&5~12 l i !u1;l 1 ,...,l i 21 ,l i11,l i 11 ,...,l n&,

~3.24!
bi

2u1;l 1 ,...,l i 21 ,l i ,l i 11 ,...,l n&5 l i u1;l 1 ,...,l i 21 ,l i21,l i 11 ,...,l n&.

The matrix elements of bi
1 and bi

2 , in the basis ordered a
u1;0,0,0,...,0&,u1;1,0,0,...,0&,u1;0,1,0,...,0&,u1;0,0,1,...,0&,...,u1;0,0,0,...,1& are the same as thos
of the matrix unitsEi0 and E0i in the defining (n11)-dimensional matrix representation o
gl(n11). Hence thep51 representation is the same as the defining representation and on
think of the operatorsbi

6 as of matrices,

Ei05bi
1 , E0i5bi

2 , i 51,...,n. ~3.25!

From here and~3.7! ~with p51! one can also express the rest of the generators viap51 Jacobson
creation and annihilation operators:

E005
1

n11 S 12(
i 51

n

@bi
1 ,bi

2# D , Ei j 5@bi
1 ,bj

2#1
d i j

n11 S 12 (
k51

n

@bk
1 ,bk

2# D , i , j 51,...,n.

~3.26!

IV. THE PAULI PRINCIPLE FOR A-STATISTICS

The results obtained so far justify the terminology used. Equations~2.17! and ~3.6! yield

Hup; l 1 ,...,l i ,...,l n&5(
i 51

n

l ie i up; l 1 ,...,l i ,...,l n&. ~4.1!

Therefore the stateup; l 1 ,...,l i ,...,l n& can be interpreted as a many-particle state withl 1 particles
on the first orbital,l 2 particles on the second orbital, etc. For reasons that will become clear
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we refer to these particles asA-particles or simply particles. The operatorhi , i 51,...,n, see
~3.22!, is the number operator for theA-particles on theith orbital, whereasN̂5h11¯1hn

counts all particles, accommodated in the stateup; l 1 ,...,l i ,...,l n&.
Since, see~3.19!,

ai
1up; l 1 ,...,l i ,...,l n&;up; l 1 ,...,l i 21 ,l i11,l i 11 ,...,l n& if (

i 51

n

l i,p, ~4.2!

the operatorai
1 creates anA-particle on thei th orbital, a particle with energye i , if the state

contains less thanp particles. On the other hand,ai
1up; l 1 ,...,l i 21 ,l i ,l i 11 ,...,l n&50, if ( i 51

n l i

5p, i.e., no more thanp particles can be accommodated. Similarly, ifl i.0, ai
2 ‘‘kills’’ a particle

with energye i . Therefore, reformulating Proposition 3, one obtains:
Corollary 3 (Pauli principle for A-statistics): Let Wp be a Fock space of sl(n11), corre-

sponding to an order of statistics p. Within Wp all states containing no more than p A-particles,
namely all states

up; l 1 ,...,l i ,...,l n& with 0<(
i 51

n

l i<p, ~4.3!

are allowed. There are no states accommodating more than p A-particles.
Let us consider, as an example,A-statistics of orderp54 with n56 orbitals~for instance with

six different energy levels!. From ~4.3!, it follows that there is no restriction on the number
particles to be accommodated on a certain orbital as long as the total number of particles
configuration does not exceedp. Hence, the following three states or configurations are allow
~the orbitals, for instance the energy levels, are represented by lines, and the particles by!:

Note that the last two configurations~b! and~c! are already ‘‘saturated’’ in the sense that no mo
particles can be added, since the total number of them is already equal top54. The following two
configurations correspond to forbidden states:

None of the states~d! and ~e! is allowed since the total number of particles in the configurat
exceedsp54.

This example illustrates the statistical interaction between the orbitals: the filling of an o
depends on how many particles are already accommodated on the other orbitals. This pro
typical for Haldane’s exclusion statistics.30 Although Haldane’s relation~1.1! does not hold for
A-statistics, up to a certain natural assumptionA-statistics can be viewed as a special case
exclusion statistics in the sense of Wu.

In Ref. 46 Wu proposed an ‘‘integral form’’ compatible with Haldane’s relation~1.1!:
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d~N!5n2g~N21!. ~4.4!

This should be interpreted as follows: letn be the total number of orbitals that are available for t
first particle, and supposeN21 particles are already accommodated in the configuration,
d(N) expresses the dimension of the single-particle space for theNth particle~or the number of
orbitals where theNth particle can be ‘‘loaded’’!. Bose statistics hasg50, and Fermi statistics ha
g51.

The natural assumption mentioned previously is that the domain of definition of the fun
d(N) consists of alladmissiblevalues ofN, i.e., one does not require~4.4! to be applicable for
values of N which the system cannot accommodate. Under this assumptionA-statistics is a
particular case of exclusion statistics, also withg50:

d~N!5n, ;NP$1,2,...,p%. ~4.5!

If however one drops the condition forN to be an admissible value, one cannot satisfy Eq.~4.4!.
Indeed,~4.4! with g50, does not hold forN5p11, sinced(p11)50.60,61

A-statistics is similar to Bose statistics in the sense that there is no restriction on the n
of particles on an orbital apart from the general requirement that the total configuration s
contain no more thanp particles. This restriction leads perhaps to the simplest statistical inte
tion between the orbitals. Nevertheless the situation is not as easy as it sounds. As in an~non-
trivial! model of an exclusion statistics~so also in this case! the orbitals cannot be considere
anymore as independent~or quasiclosed! subsystems. In particular the grand partition function
the system cannot be represented anymore as a product of the partition functions of the o
The latter makes the problem of studying the statistical properties ofA-statistics more involved as
compared to Bose or Fermi systems. From the point of view of statistical mechanics this
main difference betweenA-statistics and Bose statistics.62

V. QUASI-BOSE CREATION AND ANNIHILATION OPERATORS

In the present section we show first approximately and then in a strict sense thatA-statistics
can be viewed as a good finite-dimensional approximation to Bose statistics for large val
order of statisticsp. The terminologyfinite-dimensional approximationcomes to remind one tha
the Fock spacesWp of A-statistics are finite-dimensional linear spaces, whereas any Bose
space is infinite-dimensional.

Introduce new, representation-dependent, creation and annihilation operators

B~p! i
65

ai
6

Ap
, i 51,...,n, pPN, ~5.1!

in Wp . The transformations following from~3.19! to ~3.20! read

B~p! i
1up; l 1 ,...,l i ,...,l n&5A~ l i11!S 12

(k51
n l k

p D up; l 1 ,...,l i11,...,l n&, ~5.2!

B~p! i
2up; l 1 ,...,l i ,...,l n&5Al i S 11

12(k51
n l k

p D up; l 1 ,...,l i21,...,l n&. ~5.3!

Consider the above-given equations for values of the order of statisticsp, which are much greate
than the number of accommodated particles, namelyl 11 l 21¯1 l n!p. In this approximation
one obtains
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B~p! i
2up; l 1 ,...,l i 21 ,l i ,l i 11 ,...,l n&.Al i up; l 1 ,...,l i 21 ,l i21,l i 11 ,...,l n&,

~5.4!
B~p! i

1up; l 1 ,...,l i 21 ,l i ,l i 11 ,...,l n&.Al i11up; l 1 ,...,l i 21 ,l i11,l i 11 ...,l n&,

which yields~an approximation to! the Bose commutation relations:

@B~p! i
1 ,B~p! j

1#5@B~p! i
2 ,B~p! j

2#50 ~exact commutators!, ~5.5!

@B~p! i
2 ,B~p! j

1#.d i j if l 11 l 21¯1 l n!p. ~5.6!

Since forl 11 l 21¯1 l n[(k l k!p,

~p2(kl k!!

p!
p(kl k5

p

p2(kl k11

p

p2(kl k12
...

p

p
.1,

in a first approximation~3.18! reduces also to the well-known expressions for the orthonorm
basis in a Fock space ofn pairs of Bose creation and annihilation operators:

up; l 1 ,...,l n&5
~B~p!1

1! l 1
¯~B~p!n

1! l n

Al 1! l 2!¯ l n!
u0&. ~5.7!

The conclusion is that the representations ofB(p) i
6 in ~finite-dimensional! state spacesWp with

large values ofp, restricted to states with a small amountl 11 l 21¯1 l n!p of accommodated
particles, provide a good approximation to Bose creation and annihilation operators.42,45 For this
reason we refer to the operatorsB(p) i

6 as quasi-Bose creation and annihilation operators (
order p) and to the corresponding particles as quasibosons.

In the remaining part of this section we will prove that in the limitp→` the quasi-Bose
operators reduce to Bose creation and annihilation operators. To this end we proceed to in
first an appropriate topology.

Let W be a Hilbert space with an orthonormed basis

u l 1 ,...,l i ,...,l n&[uL&, ; l 1 ,...,l nPZ1 . ~5.8!

Whenever possible we writeuL& as an abbreviation foru l 1 ,...,l i ,...,l n& and denote byuL&6 i a
vector obtained fromuL& by replacingl i with l i61, namely

uL&6 i5u l 1 ,...,l i 21 ,l i61,l i 11 ,...,l n&. ~5.9!

The spaceW consists of all vectors

F5 (
l 150

`

¯ (
l n50

`

c~ l 1 ,...,l n!u l 1 ,...,l n&[(
L

c~L !uL&, ~5.10!

wherec( l 1 ,...,l n)[c(L) are complex numbers such that

(
l 150

`

¯ (
l n50

`

uc~ l 1 ,...,l n!u2[ (
l 1 ,...,l n50

`

uc~ l 1 ,...,l n!u2[(
L

uc~L !u2,`, ~5.11!

and this is in fact the square of the Hilbert space norm (uFu0)2 of F.
Embed thesl(n11)-moduleWp in W via an identification of the basis vectors

up; l 1 ,...,l i ,...,l n&[u l 1 ,...,l i ,...,l n&[uL&, ; l 11¯1 l n<p. ~5.12!
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In order to turn the entire spaceW into an sl(n11)-module, so that the restriction onWp,W
coincides with~5.2! and ~5.3!, we set

B~p! i
1F5 (

l 11¯1 l n<p
c~L !A~ l i11!S 12

(k51
n l k

p D uL& i , ~5.13!

B~p! i
2F5 (

l 11¯1 l n<p
c~L !Al i S 11

12(k51
n l k

p D uL&2 i , ~5.14!

whereF is any vector~5.10! from W and ( l 11¯1 l n<p is a sum over all possiblel 1 ,...,l nPZ1

such thatl 11¯1 l n<p. Note that the sums in~5.13! and ~5.14! are finite.
The transformation of the basis, following from~5.13! to ~5.14!, reads

B~p! i
1uL&5A~ l i11!S 12

(k51
n l k

p D uL& i , ;L such that (
k51

n

l k<p, ~5.15!

B~p! i
2uL&5Al i S 11

12(k51
n l k

p D uL&2 i , ;L such that (
k51

n

l k<p, ~5.16!

B~p! i
6uL&50, ;L such that (

k51

n

l k.p. ~5.17!

Relations~5.15! and ~5.16! are the same as~5.2! and ~5.3! @via the identification~5.12!#.
Since the quasi-Bose operatorsB(p) i

6 take values in a finite-dimensional subspace ofW, see
~5.13! and ~5.14!, they are bounded and hence continuous linear operators inW. In view of this
see~5.10!, B(p) i

6F5B(p) i
6(Lc(L)uL&5(Lc(L)B(p) i

6uL& and therefore~5.13! and~5.14! are a
consequence of~5.15!–~5.17!.

Next we proceed to definen pairs of Bose operatorsBi
6 , i 51,...,n, in W. It is known that

such operators cannot be realized as bounded operators inW ~so that the corresponding positio
and momentum operators are selfadjoint operators inW; see, for instance, Ref. 63 or 64!. There-
fore care has to be taken about the common domain of definitionV of the Bose operators
Following Ref. 65 we setV to be a dense subspace ofW ~with respect to the Hilbert spac
topology!, consisting of all vectors~5.10! for which the series

~ uFur !25 (
l 1 ,...,l n50

` S 11 (
k51

n

l kD r

uc~ l 1 ,...,l n!u2 ~5.18!

is convergent for anyr 50,1,2,... . Then the relations

Bi
2uL&5Al i uL&2 i , Bi

1uL&5Al i11uL& i , ~5.19!

define a representation ofn pairs of bosonsB1
6 ,...,Bn

6 , namely of operators, which satisfy th
relations

@Bi
2 ,Bj

1#5d i j , @Bi
1 ,Bj

1#5@Bi
2 ,Bj

2#50, i , j 51,...,n ~5.20!

in V ~with V being a common domain of definition for all them!. In terms of these operators

~ uFur !25S F,S 11 (
k51

n

Bk
1Bk

2D r

F D . ~5.21!
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The normsuFur , r 50,1,2,..., turn V into a countably normed topological space~which can be
viewed also as a metric space66!. All balls

B~F0 ;r ,e!5$FPVuuF2F0ur,e%, ;F0PV, ;r PZ1 , ;e.0, ~5.22!

constitute a basis of open sets in the countably normed topological spaceV, whereas the balls
~5.22! with a fixed r yield a basis inV, viewed as au•ur-normed topological space. Clearly an
u•ur-normed topology~r -normed topology! is weaker than the countably normed topolo
~cn-topology!.

From now on we restrict the domain of definition of all quasi-Bose operators~5.1! to beV.
The fact that each quasi-Bose operator mapsV into a finite-dimensional subspace ofV, see~5.13!
and~5.14!, indicates that each such operator is a bounded and hence a continuous linear o
with respect to ther -normed topology for anyr PZ1 . A similar property however does not hol
for the Bose creation and annihilation operators~5.19!. These operators are not continuous w
respect to any of ther -normed topologies inV. Therefore, if( i 51

` F i5F converges in the sens
of a certainr -normed topology, for instance in the Hilbert space topology (r 50), one cannot in
general use relations like

Bi
6(

i 51

`

F i5(
i 51

`

Bi
6F i . ~5.23!

One of the advantages of thecn-topology is that it avoids the above-mentioned difficulties. H
are some of the properties of this topology, which will be relevant for the rest of the exposit65

1. V is stable under the action of any polynomial of Bose operators,

P~B1
6 ,...,Bn

6!V,V. ~5.24!

2. Any polynomial of Bose CAOs is a continuous linear operator inV with respect to the
cn-topology;

~5.25!

3. The scalar product inV is continuous with respect to the convergence defined by
cn-topology.

~5.26!

As a consequence,~5.23! holds for any series( i 51
` F i which converges in thecn-topology;

moreover~5.26! yields (( i 51
` F i ,C)5( i 51

` (F i ,C). The relevance of thecn-topology however
goes far beyond the above-mentioned considerations. This topology, called nuclear topolog
prime importance in the theory of generalized functions,66,67 and their applications in quantum
theory ~see, for instance, Ref. 65!.

Let P be the set of all linear operators inV defined everywhere inV, which are continuous in
the cn-topology. With respect to the usual operations between operatorsP is an associative
algebra.66 According to ~5.25! the Bose operators belong toP. The quasi-Bose operators~5.1!
~with domain of definition restricted toV! also belong toP. IndeedB(p) i

6 are bounded and henc
continuous operators inV with respect to anyr -normed topology. LetB(F0 ;r ,e) be an arbitrary
open ball in thecn-topology; see~5.22!. B(F0 ;r ,e) is an open ball also in ther -normed topology.
Therefore the inverse imageO5@B(p) i

6#21B(F0 ;r ,e) of B(F0 ;r ,e) is an open set in the
r -normed topology. Since the latter is weaker than thecn-topology,O is an open set also in th
cn-topology. Thus, the inverse imageO5@B(p) i

6#21B(F0 ;r ,e) of any open ball~i.e., of any
open set from the basis! in the cn-topology is an open set with respect to the same topolo
ThereforeB(p) i

6 is a continuous operator in thecn-topology.
Introduce a topology onP in a way similar to the strong topology in the algebraB~H! of all

bounded linear operators on a Hilbert spaceH.68 Let F1 ,...,Fs be s different elements fromV
ande be a positive number. A strong neighborhoodU(A0 ;F1 ,...,Fs ;e) of the operatorA0PP is
~defined as! the set of all operatorsAPP, which satisfy the inequalities
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u~A2A0!Fku0,e, ;k51,...,s. ~5.27!

Definition 2: A strong topology onP is the topology with a basis of open sets consisting of
possible strong neighborhoods U(A0 ;F1 ,...,Fs ;e) (namely the collection of strong neighbo
hoods, corresponding to any A0PP, to anye.0, to any sPN, and to any sequenceF1 ,...,Fs of
different elements fromV).

Proposition 4: In the strong topology

lim
p→`

B~p! i
65Bi

6 , i 51,...,n. ~5.28!

Proof: In order to prove that~5.28! holds it is sufficient to show that every strong neighbo
hoodU(Bi

6 ;F1 ,...,Fs ;e) of Bi
6 contains all elements of the sequenceB(1)i

6 ,B(2)i
6 ,... apart

from a finite number of them. SinceU(Bi
6 ;F1 ,...,Fs ;e)5ùk51

s U(Bi
6 ;Fk ;e), it is sufficient to

show that for any neighborhoodU(Bi
6 ;F;e) there exists an integerN such that B(p) i

6

PU(Bi
6 ;F;e) for any p.N or, which is the same, see~5.27!, that

u~B~p! i
62Bi

6!Fu0,e, ;p.N. ~5.29!

Equation ~5.29! has to hold for anyF and any e. In generalN depends onF and e, N
5N(F,e).

The fact thatBi
12B(p) i

1 is a continuous linear operator inV is essential since relations lik
~5.23! can be used. The latter together with~5.13!–~5.14! and ~5.19! yields

~Bi
12B~p! i

1!F5 (
l 11¯1 l n,p

c~L !S Al i11S 12A12
(kl k

p D uL& i1 (
l 11¯1 l n>p

c~L !~Al i11uL& i .

~5.30!

The continuity of the scalar product with respect to thecn-topology and the fact that all terms o
the right-hand side of~5.30! are orthogonal to each other yield

~ u~Bi
12B~p! i

1!Fu0!25 (
l 11¯1 l n,p

uc~L !u2~ l i11!S 12A12
(kl k

p D 2

1 (
l 11¯1 l n>p

uc~L !u2~ l i11!.

Let e.0. Selectp0PN to be fixed. For anyp.p0 ,

~ u~Bi
12B~p! i

1!Fu0!25 (
l 11¯1 l n<p0

uc~L !u2~ l i11!S 12A12
(kl k

p D 2

1 (
p0, l 11¯1 l n,p

uc~L !u2~ l i11!S 12A12
(kl k

p D 2

1 (
l 11¯1 l n>p

~11 l i !uc~L !u2

, (
l 11¯1 l n<p0

uc~L !u2~ l i11!S 12A12
(kl k

p D 2

1 (
l 11¯1 l n.p0

~11 l i !uc~L !u2. ~5.31!
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Since the partial sums of( l 1,...,l n50
` (11 l i)uc(L)u2 constitute an increasing sequence of posit

numbers, which is restricted from above,( l 1 ,...,l n50
` (11 l i)uc(L)u2<uFu1 , the series

( l 1 ,...,l n50
` (11 l i)uc(L)u2 converges. Choosep0 such that ( l 11¯1 l n.p0

(11 l i)uc(L)u2,e2/2.

Then for anyp.p0 ,

~ u~Bi
12B~p! i

1!Fu0!2, (
l 11¯1 l n<p0

uc~L !u2~ l i11!S 12A12
(kl k

p D 2

1
e2

2

, (
l 11¯1 l n<p0

uc~L !u2~ l i11!S 12A12
p0

p D 2

1
e2

2

,dS 12A12
p0

p D 2

1
e2

2
, ~5.32!

where d5( l 11¯1 l n<p0
uc(L)u2( l i11) is a constant. Clearly there existsNPN such thatd(1

2A12 p0 /p)2,e2/2 for anyp.N. Hence for everye.0 there exists a positive integerN such
that u(Bi

12B(p) i
1)Fu0,e, ;p.N, i.e., ~5.29! holds.

In a similar way one proves that limp→` B(p) i
25Bi

2 . This completes the proof. h

VI. BOSONIZATION OF A-STATISTICS

A simple comparison of~3.19!–~3.20! with ~5.19! suggests that the Jacobson CAOs of a
order p can be bosonized, namely that they can be expressed as functions of Bose
B1

6 ,...,Bn
6 ; see ~5.20!. Indeed, taking into account thatBi

1Bi
2[Ni is a number operator fo

bosons in a statei ,

Ni uL&[Ni u l 1 ,...,l i ,...,l n&5 l i u l 1 ,...,l i ,...,l n&, i 51,...,n, ~6.1!

one rewrites~3.19! as

ai
1uL&5A~ l i11!S p2 (

k51

n

Nk11D uL& i .

In view of ~5.19! the latter can also be represented as

ai
1uL&5Ap112 (

k51

n

Nk Bi
1uL&5Bi

1Ap2 (
k51

n

Bk
1Bk

2uL&. ~6.2!

Since~6.2! holds for anyuL&,

ai
15Bi

1Ap2 (
k51

n

Bk
1Bk

2, i 51,...,n. ~6.3!

In a similar way one derives from~3.20!:

ai
25Ap2 (

k51

n

Bk
1Bk

2 Bi
2 , i 51,...,n. ~6.4!

Evidently also, see~3.21!,

h05p2 (
k51

n

Bk
1Bk

2 . ~6.5!
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Note that the entire Fock spaceW is reducible with respect to the Jacobson CAOs. Its fin
dimensional ‘‘physical’’ subspaceWp , see~5.12!, is a simple~5irreducible! gl(n11)-module
and within this module (ai

1)* 5ai
2 holds.

After simple calculations and taking into account thatai
15ei0 , ai

25e0i , i 51,...,n, see~2.3!,
one can express all generators$ei j u i , j 50,1,...,n% of gl(n11) via n pairs of Bose operators:

ei j 5Bi
1Bj

2 , i , j 51,...,n, ~6.6a!

ei05Bi
1Ap2 (

k51

n

Bk
1Bk

2, e0i5Ap2 (
k51

n

Bk
1Bk

2 Bi
2 , i 51,...,n, ~6.6b!

e005p2 (
k51

n

Bk
1Bk

2 , ~6.6c!

where, we recall,p is any positive integer,pPN.
The above-presented bosonization ofgl(n11) is not unknown. Up to a choice of notation

is the same as the so-called Holstein–Primakoff~HP! realization ofgl(n11),47 initially intro-
duced forsl(2).69,70 Note that ~6.6a! alone gives the known Jordan–Schwinger realization
gl(n) via n pairs of Bose operators.

VII. QUASI-BOSE OPERATORS IN SPIN MODELS

In the present section we show that the Jacobson CAOs are implicitly present in va
models. We demonstrate this on the example of a two-legS51/2 Heisenberg spin ladder.48,49The
considerations in the following hold however for several other Heisenberg spin models~examples
include lattice models with dimerization,71–73 two-layer Heisenberg models74–76! and more gen-
erally for any hard-core Bose model50 with degenerated orbitals per site~as for instance in Refs
77 and 78!.

The Hamiltonian of the model reads:

Ĥ5(
i

~JŜi
1Ŝi 11

1 1JŜi
2Ŝi 11

2 1J'Ŝi
1Ŝi

2!. ~7.1!

Here Ŝi
6[(Ŝ1i

6 ,Ŝ2i
6 ,Ŝ3i

6) are two commuting spin-1/2 vector operators ‘‘sitting’’ on sitei of the
chain6 and the Hamiltonian is a scalar with respect to the total spin operatorŜ5( i(Ŝi

11Ŝi
2):

@Ŝa i
6 ,Ŝb i

6 #5 i(
g

eabgŜg i
6 , @Ŝa i

1 ,Ŝb j
2 #50, @Ĥ,Ŝ#50. ~7.2!

Every local state spaceWi related to sitei is four-dimensional with a basisu↑,↑&, u↑,↓&, u↓,↑&,
u↓,↓& andW5W1^ W2^¯^ WN is the global state space of the system~in the case of a ladde
with N sites!. The notation is standard: ifA is any operator inWi , then the operator correspondin
to it in W is denoted asAi , whereAi[ id1^ ...^ idi 21^ A^ idi 11^ ...^ idN .

If the system is in a disordered phase (J'@J) its state is well described with the bon
operator representation of spin operators,71,79 which is a particular kind of bosonization:

Ŝa i
6 5 1

2 ~6Ba i
2 6Ba i

1 2 i eabgBb i
1 Bg i

2 !, a,b,g51,2,3. ~7.3!

HereB1i
6 , B2i

6 , B3i
6 are three pairs of Bose CAOs related to sitei and the vectorsu0& i , B1i

1u0& i ,
B2i

1u0& i , B3i
1u0& i constitute another basis inWi .

The treatment of the model in terms of bosonic operators is advantageous because
simpler commutation rules of Bose statistics. However, it raises certain problems. As men
previously, any local state spaceWi is four-dimensional, whereas the local Bose Fock spaceF i is
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infinite-dimensional. MoreoverWi is not invariant inF i with respect to the Bose CAOs@and, as
a result, with respect to the local spin operators~7.3!#. The physical state spaceW is not an
invariant subspace of the global Fock spaceF5F1^ F2^¯^ FN with respect to the Hamil-
tonian ~7.1!.

Various approaches have been proposed in order to overcome the problem. Following R
additional scalar bosonssi

6 were introduced in Ref. 48. Then the physical states are those w
satisfy an additional constraintsi

1si1(aBia
1 Bia51. Another way is to keep the realization~7.3!

but to introduce ‘‘by hands’’ a fictitious infinite on-site repulsion between the ‘‘bosons’’75 ~first
proposed in Ref. 50 for a nondegenerate case!. This forbids configurations with two or mor
bosons accommodated on one and the same site. The latter leads to the ‘‘hard-core’’ co
Ba i

6 Bb i
6 50, i.e., the hard-core bosons are not quite bosons, since they satisfy fermionic-like

ditions.
A third approach was worked out in Ref. 79~see also Refs. 72–74!. It proposes the Bose

operatorsBa i
6 in ~7.3! to be replaced throughout by new operatorsba i

6 as follows:

Ba i
1 →ba i

1 5Ba i
1A12 (

b51

3

Bb i
1 Bb i

2 , Ba i
2 →ba i

2 5A12 (
b51

3

Bb i
1 Bb i

2 Ba i
2 . ~7.4!

A simple comparison with~6.3! and ~6.4! indicates the following.
1. The Bose operators related to sitei , i.e., B1i

6 , B2i
6 , B3i

6 , are replaced byp51 Jacobson
CAOs ~or, which is the same, byp51 quasi-Bose operators!,

B~1!a i
6 [ba i

6 , a51,2,3, ~7.5!

in their Holstein–Primakov realization. Consequently~Proposition 3! the hard-core condition
ba i

1 bb i
1 50 holds.
2. The Jacobson CAOs from different sites commute:

@ba i
j ,bb j

h #50 if iÞ j for any j,h56 and a,b51,2,3. ~7.6!

It is essential that the substitution~7.4! does not change the commutation relations~7.2! between
the new spin operators

Sa i
6 5 1

2 ~6ba i
2 6ba i

1 2 i eabgbb i
1 bg i

2 !, a,b,g51,2,3, ~7.7!

and the corresponding new Hamiltonian

H5(
i

~JSi
1Si 11

1 1JSi
2Si 11

2 1J'Si
1Si

2!. ~7.8!

Moreover each local state spaceWi is an invariant subspace ofF i with respect to the Jacobso
CAOs and hence with respect to any function of them@in particular with respect to the spi
operators~7.7!#. The Hamiltonian~7.8! is also a well-defined operator inW.

The conclusion is that replacing the Bose operators throughout the model withp51 Jacobson
CAOs ba i

6 , which commute at different sites@see~7.6!#, one obtains directly the physical sta
space and the correct expressions for the spin operators and the Hamiltonian.

Let us point out that the above-mentioned results can be also derived from the follo
proposition, which is of independent interest.

Proposition 5: Let Ba
6 , a51,...,n, be n pairs of Bose CAOs with a Fock spaceF and a basis

(5.8). Denote byF1 the subspace ofF linearly spanned on the vacuum and all ‘‘single-particle
states,

F15span$u l 1 ,...,l n&u l 11¯1 l n<1%. ~7.9!
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Let P be a projection operator ofF onto F1 :

Pu l 1 ,...,l n&5H u l 1 ,...,l n& i f l 11¯1 l n<1

0 i f l 11¯1 l n.1.
~7.10!

Then the operatorsPBa
6P, a51,...,n, considered as operators inF1 , are p51 Jacobson CAOs,

PBa
6P5B~1!a

6[ba
6 , a51,...,n. ~7.11!

Proof: One verifies directly that~2.5! and ~3.24! hold. h

Coming back to the two-leg spin ladder model, introduce a projection operatorPw5P1^ P2

^¯^ PN of F onto W, where eachPi projectsF i onto Wi according to~7.10! with n53. The
projectorPw provides an alternative way for writing down the expressions for the spin oper
~7.7! and the Hamiltonian~7.8!. Instead of using the substitution~7.4!, one can set:

H5PwĤPw , Sa i
6 5Pi Ŝa i

6 Pi , i 51,...,N. ~7.12!

The operatorPw is a Bose analog of the Gutzwiller projection operators,80 extensively used in the
t-J models in order to exclude the double occupation of fermions at each site~see, for instance
Ref. 81 where a similar problem, at-J two-leg ladder is investigated!.

VIII. CONCLUDING REMARKS

From a mathematical point of view the JGsa1
6 ,...,an

6 provide a new description of the Lie
algebrasl(n11) in terms of generators and relations~2.5!, based on the concept of Lie tripl
systems. For the same reason anyn pairs of parafermions~respectively, parabosons! can be called
Jacobson generators of the orthogonal Lie algebraso(2n11) @respectively, of the orthosymplec
tic Lie superalgebraosp(1/2n)#. The JGs provide an alternative to the Chevalley description
these Lie~super!algebras.

From a physical point of view the interest in the JGs ofsl(n11) stems from the observatio
that they indicate the possible existence of a new quantum statistics. Indeed, we have se
within each Fock spaceWp the operatorai

1 ~respectively,ai
2! can be interpreted as an operat

creating~respectively, annihilating! a particle in a statei ~in particular with an energye i!.
In many respects the quasibosons behave as bosons. Similar to bosons, the quasiboson

distributed along the orbitals in an arbitrary way as far as the number of accommodated pa
M does not exceedp. The number of different states ofM<p quasibosons is the same as f
bosons~the M -particle subspaces of quasibosons and bosons have one and the same dim!.
There is however one essential difference: quasiboson systems of orderp can accommodate a
mostp particles.

In order to use a proper Lie algebraic language we have restricted our considerat
finite-dimensional Lie algebras. In other words, we were studying systems with a finite numn
of orbitals. Such systems certainly do exist. Examples are the local state spaces of spin syst~in
particular the example considered in Sec. VII!, su(n) lattice models, etc. Nevertheless it is natu
to ask whetherA-statistics can be extended to incorporate infinitely many orbitals as this is u
in quantum theory. The answer to this question is positive and it is in fact evident from the r
we have obtained so far. First of all the description ofsl(n11) via generators~2.3! and relations
~2.5! is well defined fori , j ,kPZ1 , namely forsl(`)5span$ei j 2d i j e00u i , j PZ1% @an equivalent
definition is to say thatsl(`) is the algebra of all traceless infinite~in one direction! matrices
containing no more than a finite number of nonzero entries#. Second, any Fock moduleWp as
given in Corollary 2 and in particular Eq.~3.9! are also well defined fori , j ,kPN. In this case any
Wp is an irreduciblesl(`) module, generated out of the vacuum by means of the Jaco
creation operators. Therefore each stateup; l 1 ,...,l i ,...& contains no more than a finite number
nonzero entriesl i . Moreover due to Proposition 3 the physical state space is a linear span
vectorsup; l 1 ,...,l i ,...& with
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(
i 51

`

l i<p. ~8.1!

All such states constitute an~orthonormal! basis inWp . They transform according to the sam
relations~3.19! and~3.20! with n5`. It is straightforward to verify that anysl(`) moduleWp is
a Fock space in the sense of Definition 1. Finally, the Pauli principle~Corollary 3! remains valid
also for n5`: despite the infinitely many available orbitals, the infinitely many places to
occupied by the quasibosons, the system cannot accommodate more thanp particles.@For an
overview of commonly recognized definitions ofgl(`), see Ref. 82, where in particular sever
types of infinite dimensional Lie superalgebras of typegl are studied.#

We should point out that withinA-statistics the main quantization equation~2.6! does not
determine uniquely the creation and annihilation operators. The Jacobson generators~2.3! yield
one possible solution of~2.6!. For another possible choice~a causalA-statistics!, we refer to Ref.
83.

The quasi-Bose operatorsB(p)1
6 ,...,B(p)n

6 , introduced in Sec. V can be used as an appro
mation to Bose statistics for values of the order of statisticsp, which is much bigger than the
number of accommodated particles. An additional advantage of the quasi-Bose CAOs of an
p is that they are bounded linear operators, defined everywhere in the Fock spaceWp . This
property avoids the rather delicate questions of whether the operators under consideration
defined on a common domain of definitionV, so that any polynomial of them is also well define
in V.

The ‘‘opposite’’ to p→` case, namely thep51 Jacobson CAOs~or, which is the same, the
p51 quasi-Bose operators! turns out to appear implicitly in various models simply because
hard-core bosons arep51 quasibosons. We have illustrated this on a particular example
condensed matter physics. This observation does not lead to immediate new results as
hard-core Bose models are concerned. Even so, we believe that the clarification of the
quasiboson structure of these models is of some interest. If, for instance, the Hamilton
written explicitly via quasibosons, then the model is representation independent. Consi
instead of the hard-core bosons quasibosons with order of statisticsp5M , one is led to a mode
where each site can accommodate up toM particles.

For applications of quasiboson representations in nuclear theory we refer to Ref. 6
indicated there, thep51 quasi-Bose operators reduce to Klein–Marshalek algebras,84 which are
extensively used in nuclear physics.

One way to enlarge the class of statistics studied here is to deform the relations~2.5! or, which
is the same, to deformsl(n11) so that the main quantization equation~2.6! remains unaltered
The possibility for such deformations stems from the observation that the commutation rel
between the Cartan elements@the Hamiltonian is a Cartan element; see~2.17!# and the root vectors
@the Jacobson generators are root vectors; see~2.4!# remain unaltered upon quantum deformatio
~q-deformations!. Therefore the problem actually is to express the knownq-deformations of
sl(n11) via deformed Jacobson generators. This is the first step. The second step will be to
the Fock representations and to write down the deformed analog of~3.19! and ~3.20!. Partial
results in this respect were already announced.85,86
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Erratum: ‘‘Euclidean Friedman–Robertson–Walker
cosmology in Brans–Dicke-like theories of gravity’’
†J. Math. Phys. 43, 1487 „2002…‡

Bertrand Chauvineau
UMR 6162 (ILGA), Observatoire de la Coˆte d’Azur, Avenue Copernic,
06130 Grasse, France

~Received 29 March 2002; accepted for publication 12 April 2002!

@DOI: 10.1063/1.1485116#

In a recent paper, I have studied the cosmological model in Brans–Dicke gravity, in the m
dominated area.1 The set of equations considered in the paper, and often considered in p
dealing with this problem, is the equation BD~0,0!, obtained replacing the indicesi and j by zero
in the Brans–Dicke equation,2 the scalar field equation BD~F!, and the conservation equatio
BD~C!. BD~C! writes ra35Cste in the problem under consideration. The conservation equa
BD~C! is a consequence of the full set of cosmological equations. This full set is BD~0,0!, BD~1,1!
and BD~F!. BD~1,1! is obtained replacing the indicesi and j by one in the Brans–Dicke equation
which gives

2
ä

a
1S ȧ

aD 2

1
v

2
S Ḟ

F
D 2

12
ȧ

a

Ḟ

F
1

F̈

F
50.

The solutions of the system@BD~0,0!, BD~F!, BD~C!#, studied in the paper, are

~a! a set S1(A,P), depending on two arbitrary constants, forv.23/2; these solutions are
referenced~13! and ~14! in the paper;1

~b! a set S2(A,P), depending on two arbitrary constants, forv,23/2; these solutions are
referenced~19! and ~20! in the paper;1

~c! a setS3(A), depending on one arbitrary constant, forv,23/2; these solutions are refe
enced~9! and ~10! in the paper.1

By inserting these solutions in the field equation BD~1,1!, it turns out that this equation is no
verified byS3(A) ~while it is by bothS1(A,P) andS2(A,P)!. S3(A) is then not a set of solution
of the full set of Brans–Dicke cosmological equations.

It could be worthwhile remarking that, while the system@BD~0,0!, BD~F!, BD~C!# is not
strictly equivalent to the full system@BD~0,0!, BD~1,1!, BD~F!#, it is equivalent up to a subset o
solutions of zero measure. This is differs from what happens in general relativity, where th
strict equivalence between the two systems@EE~0,0!, EE~1,1!# and @EE~0,0!, EE~C!# ~EE for
Einstein equation! in the framework of Friedman–Robertson–Walker cosmology.

1B. Chauvineau, J. Math. Phys.43, 1487~2002!.
2C. Brans and R. H. Dicke, Phys. Rev.124, 925 ~1961!.
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y

prove
l

rs

of
ory
l

w

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 8 AUGUST 2002

                    
Symmetry breaking regime in the nonlinear
Hartree equation

W. H. Aschbacher,a) J. Fröhlich,b) G. M. Graf,c) K. Schnee,d) and M. Troyere)

Theoretische Physik, ETH-Ho¨nggerberg, CH-8093 Zu¨rich, Switzerland

~Received 22 August 2001; accepted for publication 18 April 2002!

The present article is concerned with minimizers of theattractive Hartree energy
functionalHg@c̄,c#5 1

2i¹ci2
21(c,vc)21g(c,V* ucu2c)2 onRd, d>2, for a gen-

eral class of external potentialsv and two-body interactionsV of positive type,
with g,0. We prove spontaneous symmetry breaking in the large coupling limit. A
numerical investigation visualizes this regime in the example of an external double
well potential. © 2002 American Institute of Physics.@DOI: 10.1063/1.1488673#

I. INTRODUCTION

In this article we investigate the problem ofuniquenessof minimizers of the Hartree energ
functional

Hg@c̄,c#ª 1
2 i¹ci2

21~c,vc!21g ~c,V* ucu2c!2 ~1!

in an external potentialv, for attractive two-body interactiongV, V of positive type~e.g., the
Coulomb potential!,

g,0. ~2!

The main results of this article are described in Theorems 1 and 2 in the next section: we
that, for small couplings, there exists one and only one minimizer of the Hartree functiona~1!,
whereas, forlarge enough couplings, minimizers of~1! arenot unique!

The existenceof minimizers of~1! is assured by the following well known facts: minimize
exist for allg,0, as soon asugu exceeds some critical valueg* >0, ugu>g* ~for vanishingv, or
for a nonzerov!; the existence of ag* follows from standard arguments in the calculus
variations, whereas the size ofg* can be determined with the help of Birman–Schwinger the
of binding in quantum mechanics. Forv50, it implies that, ind51,2 dimensions, the critica
coupling vanishes,g* 50. This also holds ind>3 dimensions forlong rangetwo-body potentials
V. For short rangepotentialsV, the threshold isstrictly above zero, g* .0, for d>3 ~e.g., by the
Cwikel–Lieb–Rozenblujm bound!, cf. Ref. 1. In the case of a nonvanishingconfiningexternal
potential,vÞ0, a minimizeralwaysexists~i.e., for all g>g* 50!. Nevertheless, there is a ne
strictly positivecritical coupling,gv , say, which relates the length scale,DH , set by a minimizer
to the length scale,Dv , of the external potential by

DH'Dv , for ugu,gv , DH!Dv , for ugu.gv ,

andDH is independentof the external potentialv.

a!Electronic mail: aschbach@itp.phys.ethz.ch
b!Electronic mail: juerg@itp.phys.ethz.ch
c!Electronic mail: gmgraf@itp.phys.ethz.ch
d!Electronic mail: schnee@itp.phys.ethz.ch
e!Electronic mail: troyer@itp.phys.ethz.ch
38790022-2488/2002/43(8)/3879/13/$19.00 © 2002 American Institute of Physics
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We may compare the foregoing to the existence properties of minimizers of the follo
local functional ~i.e., with V5d!, called theGross–Pitaevskii functional,

H g
GP@c̄,c#ª 1

2 i¹ci2
21g icip11

p11 , p53, ~3!

which does not possess anyglobal minimizer for g,0: plugging the dilate wave function
cl(x)ªld/2c(lx), lPR1, into ~3!, we arrive at

H g
GP@c̄l ,cl#5l2 1

2 i¹ci2
21g l~d/2!(p21) icip11

p11 . ~4!

For attractive interaction,g,0, the scaled functional~4! diverges to2` in the limit l→` if p
.114/d, in d dimensions. Ford>3 andp53, this is the case@and~4! tends to2` in the limit
l→`, for d52, providedugu is sufficiently large#!

One of ourphysical motivationsfor the investigation of the Hartree functional~1! comes from
a description of Bose–Einstein condensation~BEC! based on an analysis of theweak coupling
limit of large bosonic systems, cf. Refs. 2–4. In the standard BEC scenario, where the interato
force isrepulsiveand the mean interboson distance is much larger than the range of the two
potentialV, low-energy scattering theory implies that the Hartree nonlinearity may be assum
be local, V5d. However, for the case ofattractiveinteratomic forces,g,0, e.g., for lithium~3

7Li,
with scattering length21.4531029 m, cf. Ref. 5!, the system undergoes a collapse, as soon
the number of condensate atoms exceeds a critical value, cf. Refs. 6 and 7. Using a n
two-body potentialV provides a less coarse-grained resolution of the boson–boson intera
~compared toV5d!.

We stress that for a system of bosonic atoms close to collapsecollision processesbecome
important, see, e.g., Ref. 8. Such processes~as well as interactions of electrons and nuclei with t
radiation field! arenot taken into account in a description of the system in terms of Hartree the
Furthermore, if we neglect short range repulsive~soft core or hard core! interactions between the
atoms, such that the two-body forces arepurely attractive, we are dealing with a system that isnot
thermodynamically stable.

Nevertheless, in themean-field regime, a dilute gas of bosonic atoms is well described
Hartree theory, and, remarkably, this theory continues to be meaningful,mathematically, as the
collapse point of a system with attractive two-body forces is approached, and even beyon
point. It may thus be expected to reproducequalitativelysome features ofstructure formationin
a gas of bosonic atoms with attractive two-body forces, such as3

7Li. One may expect that Hartre
theory also provides a qualitatively valuable description of bosonic dwarf stars if the two-
potential gV is chosen to be the Newtonian gravitational potential. These features of Ha
theory contrast with the limited applicability of thelocal Gross–Pitaevskii functional, which doe
not have global minimizers forattractive two-body interactions.

In this article, we modestly study some variational problems associated with the H
energy functional. Our main results are rigorous, mathematically. They are important as in
ents for studies of Hartreedynamics. But we do not address dynamical problems in this articl

It was kindly brought to our attention that similar topics have been investigated in Refs. 9

II. SYMMETRY BREAKING REGIME AT FINITE COUPLING

In this section we will prove that for large enough negative couplingg the minimizer of the
functional~1! will break very general symmetries possibly induced by the external potentialv. For
convenience, we will formulate this statement forN5ici2

2 instead ofg, which without loss of
generality will be set equal to21. Theorem 1 will be worked out for the case whereV is a
Coulomb potential, but at the end of the proof we will briefly discuss other potentials.

Our main theorem is the following.
Theorem 1: Let V be the Coulomb potential inRd, V5uxu21, and vPCb(Rd), d>2. Let

E(d) be the Euclidean group in d dimensions.
If for some RPE(d), any minimizing sequence xkPRd for the external potentialv,
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lim
k→`

v~xk!5 inf
xPRd

v~x!, ~5!

fulfills

lim inf
k→`

uRxk2xku.0,

then, for sufficiently large N, any minimizerF of the Hartree functional (1) satisfies

uF+Ru2ÞuFu2.

Remark:If the infimum of v is attained on its setX of minimima only, i.e., if ~5! implies
limk→` dist(xk ,X)50, then the hypothesis simply means inf$uRx* 2x* u ux* PX%.0.

Corollary 1 (symmetry breaking): IfvPCb(Rd) has a symmetry RPE(d), then Theorem 1
predicts symmetry breaking in the sense that no ground state wave functionF is invariant
under R.

The formulation of Theorem 1 is quite general. For illustration we consider more closel
particular cases of~a! a nonvanishing external potential consisting in a double well which ha
discrete symmetry respective to the reflection at the axis orthogonal to the line between i
separate minima,~b! the Mexican hat and~c! a periodic potential. Case~a! is considered also in
view of our numerical simulations. Note that Theorem 1 is not restricted to discrete symmet
all. The corollary now tells us that for sufficiently large couplingg the ground stateF of the case
considered will not have the symmetry properties of~a! the double well,~b! the Mexican hat, resp
~c! the periodic potential. In the cases~a! and~b! this means thatF can be localized either in on
or the other well, resp. part of the Mexican hat. We mention that for a single well potentia
hypotheses of the theorem are not fulfilled for anyR which is a symmetry of the potential.

Proof of Theorem 1:The proof of Theorem 1 will be done in three steps correspondin
Lemma 1, Lemma 2 and the proof of the theorem itself: The first step of our proof is to show
an approximate minimizer of thefree energy functional~i.e., without external potential!,

Eg@c̄,c#5 1
2 i¹ci2

21g~c,V* ucu2c!2 , g,0, ~6!

will be concentrated in a ball in space whose size can be arranged by varying the size ofN. This
is stated somewhat more accurately in the following lemma. There the termh-approximate mini-
mizer~of the free functional! is used: Leth.0. An h-approximate minimizeris defined as a wave
function c that satisfies

ici2
25N, E21@c̄,c#<~12h!EN , ENªE@N,21#,

where

E@N,g#ª inf$Eg@c̄,c#ucPW1,2~Rd!,ici2
25N%.

Lemma 1 (concentration of approximate minimizer): Givend.0, there ish.0 such that, for
N large enough, anyh-approximate minimizerc obeys

E
B(y,d)

ddxuc~x!u2>~12d!N for some yPRd. ~7!

It will then be shown that the minimizer of the full energy functional~1! is an approximate
minimizer of the free energy functional, in the sense of Lemma 1, and that they are loc
around the minima of the potential:

Lemma 2 (localization): LetvPCb(Rd) and e,d.0 be fixed. Then, for N large enough, an
minimizerF of
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H21@c̄,c#5E21@c̄,c#1E
Rd

ddx v~x!uc~x!u2, ici2
25N, ~8!

satisfies

E
B(y,d)

ddxuF~x!u2>~12d!N ~9!

and

inf
xPB(y,d)

v~x!< inf
xPRd

v~x!1e. ~10!

The last step of our proof will explicitly prove symmetry breaking.
In the following a scaling property of the wave function and the ground state energy w

used: The scaled functioncN,g(x)5ugud/2N(11d)/2c1,1(uguNx) satisfies ford>2

icN,gi2
25Nic1,1i2

2 , E@N,g#5g2N3E@1,21#, E@1,21#,0. ~11!

The key ingredient for the proof of Lemma 1 is a partition of unity in the following form: F
somexPC0

`(Rd) with 0<x<1, ixi251, supp(x),B(0,1), the ball of radius 1 with center at 0
the convolution of these approximate characteristic functions satisfies

E
Rd

ddyx2~x2y!x2~x82y!>12g, ~12!

for any 0,g<1 and forux2x8u,e(g) small enough. The functions

j y~x!5d2 d/2x~d21~x2y!![d2 d/2xy,d~x!

indexed byyPRd form a partition of unity:

E
Rd

ddy jy
2~x!51.

Using the IMS-localization formula14

p25E dy jyp2 j y2E dy~¹ j y!2,

with p being the momentum operator, we get for the kinetic energy

1

2
i¹ci2

25
d2d

2 E
Rd

ddy i¹~xy,dc!i2
22

d22

2
i¹xi2

2ici2
2. ~13!

Proof of Lemma 1:Using ~12! and takingux2x8u,e(g)d we write for the nonlinearity

~c,V* ucu2c!2<2gd2dE
ux2x8u,ed

E
Rd

ddy
ddxddx8

ux2x8u
uxy,d~x!c~x!u2 uxy,d~x8!c~x8!u2

1E
ux2x8u>ed

ddxddx8

ux2x8u
uc~x!u2uc~x8!u2,

where we have set 0.g52(12g)21. The last term is obviously bounded by (ed)21N2. Using
~13! and extending the double integral in the first term to the whole space, which can be
because the integrand is positive, we get
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E21@c̄,c#>d2dE
Rd

ddyEg@xy,dc,xy,dc#2~ed!21N22
d22

2
i¹xi2

2N ~14!

with g52(12g)21. Now we use~11! and obtain

E21@c̄,c#1~ed!21N21
d22

2
i¹xi2

2N>g2d2dS E
Rd

ddy ixy,dci2
6E@1,21# D

>g2d2dsup
y

ixy,dci2
4S E

Rd
ddy~ ixy,dci2

2!E@1,21# D
5g2Nsup

y
ixy,dci2

4E@1,21#.

By assumption (12h)N3E@1,21#>E21@c̄,c# and, sinceE@1,21#,0,

N22~sup
y

ixy,dci2!4g2>~12h!1S ~ed!21N211
d22

2
i¹xi2

2N22DE@1,21#21.

Choose nowg~h! such that

g225~12g!2>12h.

For N.N0(h) sufficiently large,

S ~ed!21N211
d22

2
N22i¹xi2

2DE@1,21#21>2h.

So one gets

~sup
y

ixy,dci2!4N22>~122h!~12h!>S 12
d

2D 2

for h(d) small enough. And, finally,

E
B(y,d)

ddxuc~x!u2>ixy,dci2
2>~12d!N ~15!

for someyPRd.
Proof of Lemma 2:It is enough to prove this lemma for ad05O(e) because it then holds fo

any d>d0 as well.
We first show that a minimizerF of ~1! is an approximate minimizer of~6! and so by Lemma

1 the first statement holds.
For anyc with ici2

25N one has by assumption:H21@F̄,F#<H21@c̄,c#. This gives

E21@F̄,F#2E21@c̄,c#<E
Rd

ddxv~x!~ uc~x!u22uF~x!u2!<2ivi`N

and by passing to the infimum overc

E21@F̄,F#<ENS 12
2ivi`N

~2EN! D5ENS 12
2ivi`

N2uE@1,21#u D .

For N large enough the bracket is>~12h!, whereh is as in Lemma 1, and so
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E21@F̄,F#<EN~12h!.

Hence~7! holds true.
The second statement of Lemma 2 will be proved by contradiction.
In the following we denote infxPRdv(x) by v* . Pick y0PRd andd.0 small enough, so tha

v~x!<v* 1
e

2
;xPB~y0 ,d!,

and assume the second statement is false. For

F̃~x!5F~x2~y02y!!,

the translate ofF by (y02y), one has

E
B(y0 ,d)

ddxuF̃~x!u2>~12d!N

and, since*Rd\B(y0 ,d)d
dx uF̃(x)u2<dN,

E
Rd

ddx~v~x!2v* !uF̃~x!u2<
e

2
N1iv2v* i`dN.

On the other hand, if~10! were false,

E
Rd

ddx ~v~x!2v* !uF~x!u2.e~12d!N2iv2v* i`dN.

This gives

H21@FD ,F̃#2H21@F̄,F#5E
Rd

ddx~v~x!2v* !~ uF̃~x!u22uF~x!u2!

<2
e

2
~122d!N12iv2v* i`dN

52S e

2
2d~2iv2v* i`1e! DN,0

for d,e/(4iv2v* i12e). This contradictsF being a minimizer and proves Lemma 2.
Proof of Theorem 1:By assumption, there is 0,d, 1

2 for e sufficiently small such that

v~x!< inf
x8

v~x8!12e

implies

uRx2xu.4d.

By Lemma 2,

E
B(y,d)

ddx uF~x!u2>~12d!N

holds for somey with
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uRy2yu.4d22d52d.

AssumeuF(Rx)u[uF(x)u. Then~9! also holds fory replaced byRy. This leads to

N5E
Rd

ddxuF~x!u2>E
B(y,d)

ddxuF~x!u21E
B(Ry,d)

ddxuF~x!u2>2~12d!N.N

sinceB(y,d) andB(Ry,d) are disjoint, which is a contradiction.
This proves Theorem 1.
We will now show how Theorem 1 can easily be extended to other potentials like the

where the two-body potentialV is a potential of the formVPCb(Rd) such thatV(x)→supV
impliesx→0. We first note that we have the following inequality for the energy of the minimi

E@N,21#5EN<2V~0!N21r, where r5o~N2! as N→`. ~16!

The validity of this inequality can easily be seen by noting that the scaled functionf̃(x)
5N1/2a2 d/2f(a21x), ifi2

251, satisfies

N22Eg~f̃ !5a22N21i¹fi2
22E

R2d
ddx̃ddx̃8V~ ux̃2 x̃8ua!uf~ x̃!u2uf~ x̃8!u2, x̃5a21x,

andif̃i25N. Settinga5N21/3 and using dominated convergence in the limit of largeN, one gets
~16!.

For the proof of Lemma 1 we note the following: We again split up the nonlinearity in~6! into
two terms, one involving the integration overux2x8u,ed @with e5e~g! as in~12!# and the other
over its complement. Noting that supVªV(0).V(x) for xÞ0 by assumption, we setf (x,x8)
5uc(x)u2 uc(x8)u2 and write

~c,V* ucu2c!2<V~0!E
ux2x8u,ed

ddxddx8 f ~x,x8!1V* E
ux2x8u>ed

ddxddx8 f ~x,x8!

5~V~0!2V* !E
ux2x8u,ed

ddxddx8 f ~x,x8!1V* N2

5~V~0!2V* !S E
ux2x8u,ed

ddxddx8 f ~x,x8!2N2D 1V~0!N2,

where we have setV*ªsupux2x8u>edV(x2x8). Now we use~12! to get

~c,V* ucu2c!2<~V~0!2V* !~2g sup
yPRd

~ ixy,dci2
2!N2N2!1V~0!N2,

where againg52(12g)21 and the first integral was evaluated as

d2dE
ux2x8u,ed

E
Rd

ddyddxddx8uxy,d~x!c~x!u2uxy,d~x8!c~x8!u2< sup
yPRd

~ ixy,dci2
2!N.

By assumption (12h)E@N,21#>E21(c̄,c) for an h-approximate ground state and using~16!
we arrive at

~12h!~V~0!N22r!<~V~0!2V* !~2gN sup
yPRd

~ ixy,dci2
2!2N2!1V~0!N2.

This is rewritten as
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2g21S 12
hV~0!1rN22

V~0!2V* D<N21 sup
yPRd

~ ixy,dci2
2!.

Setting nowg5c21d with c@d and choosingh small andN large enough, such that

hV~0!1rN22

V~0!2V*
,c21d,

we get

N21 sup
yPRd

~ ixy,dci2
2!>~12c21d!2>12d,

which gives the first lemma.
The proofs of the second lemma and of Theorem 1 are almost the same as before.
Remark:This is complemented by the following result, which conversely implies that

symmetry breaking of the ground state occurs at small coupling. This feature is reproduced
numerical simulations.

Theorem 2: ~positive critical coupling for d>1!: Let the two-body potential V
PL1(Rd)ùL`(Rd) be real-valued, and the external potentialvPCb(Rd), d>1, such that

H052 1
2 D1v ~17!

has an isolated ground state.
Then, for sufficiently small couplingugu, there exists a unique nonlinear ground statec,

ici251, of

Hg
(c)5H01gV* ucu2. ~18!

This implies that, in any dimension d>1, symmetry breaking occurs above a strictly positi
critical coupling g* only, ugu.g* .

Proof of Theorem 2:The ground state energyE0 of H0 is nondegenerate by the Perron
Frobenius theorem~see, e.g., Ref. 1!. Let c0 ~with ic0i[ic0i251! be the corresponding groun
state, andP0 its eigenprojection. The perturbation in~29! is bounded in operator norm sinc
iV* ucu2i<iVi`ici2; hence,Hg

(c) is an analytic family of type A. By the Kato–Rellich theorem1

and its proof, we have the following.
~i! Let G be a circle aroundE0 of small enough radiusr , so that no other point ins(H0) is

encircled. Then

C[supi~Hg
(c)2z!21i,`,

where the supremum is overzPG, ugu,g* and ici<1, providedg* is small enough.
~ii ! For suchg andc there is precisely one~nondegenerate! eigenvalue ofHg

(c) within G. It is
the ground state energy, and its eigenprojection is

Pg
(c)52~2p i !21 R

G
dz~Hg

(c)2z!21.

A nonlinear ground state is the same~up to the phase! as a fixed point of the map

T: S5$ici51%→S, c°
Pg

(c)c0

iPg
(c)c0i

. ~19!

By the contraction mapping principle,15 it suffices to prove thatT is a strict contraction. Indeed,
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Pg
(c)2Pg

(f)5~2p i !21 R
G
dz~Hg

(c)2z!21~gV* ~ ucu22ufu2!!~Hg
(f)2z!21

is estimated forici, ifi<1 as

iPg
(c)2Pg

(f)i<uguC2r iVi`iucu22ufu2i1<2uguC2r iVi`ic2fi ,

where the triangle inequality has been used onucu22ufu25c(c̄2f̄)2(c2f)f̄. The same
bound applies to

uiPg
(c)c0i2iPg

(f)c0iu<i~Pg
(c)2Pg

(f)!c0i .

In particular forf50, and hencePg
(f)5P0 , iPg

(f)c0i51, this shows thatiPg
(c)c0i> 1

2 for g*
small enough. Thus~19! is well defined. From

T~c!2T~f!5iPg
(c)c0i21~Pg

(c)2Pg
(f)!c0

1iPg
(c)c0i21iPg

(f)c0i21~ iPg
(c)c0i2iPg

(f)c0i !Pg
(f)c0

T is now seen to be a strict contraction onS.
This proves Theorem 2.

III. NUMERICAL INVESTIGATION

The following simulation performed by a branch of ourC11 HARTREE package16 ~using
the extensionBLITZ11, cf. Ref. 17! is built on a bilinear Lagrange finite element discretizati
of the numerical configuration spaceV,R2, V5]0,D@32, D.0, endowed with homogeneou
Dirichlet boundary conditions leading to a Galerkin space of globally continuous function
W0

1,2(V).
Discretizing the Hartree equation by means of these bilinear finite elements, we arrive

following nonlinear eigenvalue problem,

1

~h(n)!2 S 1

2
A(N)1v (N)1gW(N)@cI

(N)# DcI
(N)5E(N)cI

(N), ~20!

whereA(N), v (N), andW(N) denote the finite element discretizations of the Laplacian2D, the
external potentialv, and the Hartree energyV* ucu2, respectively, on the square grid ofN5n2

vertices, and mass lumping saves us the inversion of the massmatrix.cI
(N) denotes the componen

vector gained by expandingc (N) with respect to the finite element basis in the Galerkin space,
h(n)

ªD/(n21).
Since we would like to use a version of the fast Fourier transform algorithm~MFFT, cf. Ref.

18! for the fast evaluation of the Hartree energy termW(N), we depart from the finite elemen
framework in the treatment ofW(N) using a quadrature scheme for its computation. We denot
W̃(N) this nonconforming discretization. The two-body potentialsV considered here are three
dimensional regularized Coulomb and Yukawa potentials

W̃(N)@cI
(N)# ( i , j ),(k,l )5d ikd j l ~h(n)!4 (

i 8, j 850

n21

uc i 8 j 8
(N) u2

e2(ah(n)A( i 2 i 8)21( j 2 j 8)2)

h(n)A~ i 2 i 8!21~ j 2 j 8!21d
~21!

depending on the falloff parametera and the regularizationd. Here, the indices represent pairs
coordinates of the vertices in the two-dimensional grid.
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The external potentialv is chosen to consist of two smooth potential wells. They-coordinates
of their minima are equal whereas thex-coordinates are connected by a reflection at the a
orthogonal to the line joining the two local minimima ofv. Hence, this external potential pos
sesses a discrete symmetry, cf. Fig. 1.

The nonlinear eigenvalue problem~20! is solved by means of two interlocking iterativ
procedures

C (N),p,q ——→
PM

q→`

C (N),p ——→
PC

p→`

C (N) ~22!

for C (N),p,q
ª(E(N),p,q,FI (N),p,q) and analogously forC (N),p andC (N). The superscriptp is index

of thePicard ~PC! iteration sequenceC (N),p whose elements are the solutions of the sequenc
linearizedproblems

1

~h(n)!2 S 1

2
A(N)1v (N)1gW̃(N)@FI (N),p# DFI (N),p115E(N),p11FI (N),p11 ~23!

for some suitably chosen starting guessFI (N),0. Note that the Hartree energyW̃(N) depends onp
only, and not onp11!

Each element of this sequence of linear problems is solved by use of thepower method ~PM!
consisting simply in a repeated application of the linearized operator on the rhs of~23! on a
starting guessFI (N),p,0 for the linear problem, for allpPN0 . Subsequently, the iterate is norma
ized. ThisPM iteration is assigned the superscriptq in C (N),p,q.

Although there is aLanczos algorithmimplemented in theHARTREE package16 we discuss
the elementaryPM iteration for reasons of monitoring the iterates directly. For the Lanc
algorithm, cf. Refs. 19 and 20.

ThePM iteration procedure works as follows. Given a linear real symmetric operatorH on a
complex finiteN-dimensional Hilbert spaceH and a vectorc0PH, PM provides us with the
eigenvector whose corresponding eigenvalue is the eigenvalue with largest modulus ofH re-
stricted to the subspace determined byc0. More precisely, if$fk%k50

N21 is an orthonormal eigen
basis ofH in H, Hfk5Ekfk , in which c0 may be expanded,c05(k50

N21ckfk , thenPM com-
putes a multiple of the eigenfunctionf* P$fk%k50

N21 with eigenvalueE* , for which

FIG. 1. Modulus squared of selected wave function iterates from thePC sequence converging to a symmetry brok
minimizer. For the reason of visibility, the volumes of the boxes are determined by the maximal value of the mod
the iterate.
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uE* u5max$uEkuuEkPs~Huspan$fkuckÞ0%!% ~24!

holds ~provided they are unique!. This is achieved by iterating the application ofH on c0 with
subsequent normalization of the iterate:

c j
ª

H jc0

iH jc0i 5 (
k50

N21
ck~Ek /E* ! j

~ uc* u21( l 50,lÞ*
N21 ucl u2~El /E* !2 j !1/2fk ——→

j→` c*
uc* u

f* , ~25!

~c j ,Hc j !5 (
k50

N21 ucku2~Ek /E* !2 j

uc* u21( l 50,lÞ*
N21 ucl u2~El /E* !2 j Ek ——→

j→`

E* . ~26!

As we can see in~24! the restriction to a subspace ofH is determined by the choice of nonvan
ishing components in the eigenbasis expansion of the starting seedc0. Now, depending on the
location of the spectrum, we have to shift the linear operatorH by an amountsPR which, in our
case, reads as

Hs
(N)@FI (N),p#FI (N),p11

ªF 1

h(n)2 S 1

2
A(N)1v (N)1gW̃(N)@FI (N),p# D1sI(N)GFI (N),p11

5~E(N),p111s!FI (N),p11 ~27!

such that for the computation of the ground state energy, at most,

umins~Hs
(N)@FI (N),p# !u.umaxs~Hs

(N)@FI (N),p# !u. ~28!

Then, the ground state energy ofHs
(N)@FI (N),p# has maximal modulus among all energies

Hs
(N)@FI (N),p#.

Theconvergence speed characteristicis determined by the quotientqk̃(s) in the numerator of
~25! shifted bys, wherek̂P$0, . . . ,N21% denotes the energy level for which the quotientqk̂(s)
is closest to one among all existingqk(s), kP$0, . . . ,N21%,

qk̂~s!ªS Ek̂1s

E* 1sD
j

. ~29!

The length and energy scalesl andE set by a minimizer arel}ugu21, andE}g2. For numerical
reasons, we have to allow grid resolutions withl @h only ~hªh(n) for somen!. But the maximal
kinetic energy on such a grid is roughly proportional toh22, which determines the scale of th
couplingg, ugu!h21. This implies the existence of positive energy states on the grid since
depth of the Hartree energy well isO(g2). Hence,

maxs~H (N)@FI (N),p# !5O~h22!.0.

Approximating the Hartree energy well around its minimum by a harmonic potential, we fin
level spacingDE to be

DE5O~g2!.

Since, on the length scaleugu21, the quadratic function changes asg2 ~depth of the energy well!,
it is of the formO(g4)x2 which results in a harmonic oscillator frequencyv5O(g2). Therefore,
we can setE052a0g2 and the first excited stateE152a1g2 with a02a1.0. The convergence
speed characteristicq1(s) from ~29! is now expanded ing2h2!1, with (a02a1) is of order
O(1):

q1~2h22!1/j512~a02a1!g2h21O~g4h4!. ~30!
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Now, in order to get an idea for thesizeof j , we can expandc j up to first order,k50,1, for
example, and computej approximately from

IHsc
j2~c j ,Hsc

j !c j

~c j ,~Hs2sI!c j !
I<e rel , ~31!

which is the chosenstopping criterionfor the PM iteration, given the relative errore rel ~with
HsªH1s1!. Note that this criterion does not depend on the shiftsPR if c j is normalized for all
j .

Clearly, ~31! is satisfied forany eigenstate ofH. But as soon as the*-component in the
expansion ofc0 is nonvanishing~e.g., due tofinite precision arithmetic!, c* Þ0, the sequencec j

will eventually converge to a multiple off* .
But, note that the chosen accuracy may be reachedbeforea nonvanishingc* is generated!

IV. FIGURES

In Fig. 1 we visualize some instructive elements of thePC iteration sequence$F (N),p%p50
` .

The data specification for the simulation in Figs. 1 and 2 is as follows.
The grid is generated by six bisections leading ton526564.
The external potentialv(x,y) is chosen to be a double well potential composed of two w

of the form

v~x,y!5V0 /cosh~~x2x0!2/a21~y2y0!2/b2!

localized at

~~x1!0 ,~y1!0!5~0.35,0.5!

and

~~x2!0 ,~y2!0!5~0.65,0.5!

with widths

~a1 ,b1!5~a2 ,b2!5~0.03,0.03!

and strengths

FIG. 2. Total energy of the interlockingPC iterates andPM iterates for the sequence in Fig. 1.
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~V1!05~V2!0520.1.

The two-body potentialV has the form~21! with

a50 and d50.1.

This Hartree energy is coupled by a coupling constantg5216.
The starting guessF (N),0 for the iteration is chosen to be the ground state for the pure kin

energy inV. With the additional rule

FI (N),p11,0
ªFI (N),p,`, ~32!

all the necessary starting approximations are determined, wherepPN0 , andFI (N),0,̀
ªFI (N),0.

In the following simulation,q5` meansq5O(10)2O(102) iterations, whereasp5` is p
5O(10).

Figure 1 visualizes the density contours of selected iterates from thePC iteration sequence
The first picture shows the ground state for the pure kinetic energy. After a while, a state s
to the ground state of the linear operator2 1

2D1v is approached. This state becomes unsta
such that, finally, one of the two possible nonlinear ground states results. The decision for t
or the right potential well is made by finite precision arithmetic.

The qualitative behavior of Fig. 1 is confirmed for different grid resolutionsn52m, mPN,
where the location and strength of the external potentialv have been kept fixed.

On the chosen level of accuracy,e rel51026, and on this space discretization level,n564, the
critical coupling lies around

g* '16

~we are only interested in the qualitative behavior!. Aboveg* , the minimizer density looks as in
the second picture of Fig. 1.

In Fig. 2 the expectation value ofH (N) in thePC states from Fig. 1 and their underlyingPM
states is monitored. We note that the energy minimum for all these states is in fact reached
final configuration.
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Bound states in straight quantum waveguides
with combined boundary conditions

J. Dittricha) and J. Křı́žb)

Nuclear Physics Institute, Academy of Sciences of the Czech Republic,
250 68 Řež, Czech Republic

~Received 7 December 2001; accepted for publication 8 May 2002!

We investigate the discrete spectrum of the Hamiltonian describing a quantum
particle living in the two-dimensional straight strip. We impose the combined Di-
richlet and Neumann boundary conditions on different parts of the boundary. Sev-
eral statements on the existence or the absence of the discrete spectrum are com-
pared for two models with combined boundary conditions. Examples of
eigenfunctions and eigenvalues are computed numerically. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1491597#

I. INTRODUCTION

Quantum waveguides with Dirichlet boundary conditions were extensively studied~e.g., Refs.
1–7, and references therein!. Their spectral properties essentially depend on the geometry o
waveguide, in particular the existence of bound states induced by curvature1,2,3,5or by coupling of
straight waveguides through windows4,6 were shown. The waveguides with Neumann bound
condition were also investigated in several papers, e.g., Refs. 8–10. The possible next ge
zation are waveguides with combined Dirichlet and Neumann boundary conditions on dif
parts of the boundary. Some very simple combinations of these conditions appear due
symmetry of special configurations in systems studied, for example, in Refs. 4, 5, 6, 8, 10
‘‘combined’’ systems might also be of interest in nanoscopic physics if interphases model
different conditions could be realized. The presence of different boundary conditions also
rise to nontrivial spectral properties like the existence of bound states.

In the present paper, we compare two simple cases of straight planar waveguides of c
width with combined boundary conditions. We show the examples with8 and without the presenc
of bound states. The systems we are going to study are sketched in Fig. 1. We consider a¨-
dinger particle whose motion is confined to a planar strip of widthd. For definiteness we assum
that it is placed to the upper side of thex axis. On part of the boundary the Neumann condition
imposed~thin lines in the picture!, while on the other part the Dirichlet one holds~thick lines!. The
length of the overlay of Neumann boundaries is 2d and it is placed to both sides of they axis in
both cases. We shall denote this configuration space byV5R3(0,d) and its particular parts by
V I5(2`,2d)3(0,d), V II5(2d,d)3(0,d) andV III 5(d,`)3(0,d).

In Sec. II we define the Hamiltonian as a Laplace operator with chosen boundary cond
with the help of a quadratic form. We also explicitly give the operator domain which con
functions not belonging to the Sobolev spaceH2(V). For those functions2D f PL2(V) but the
separated second derivatives are not square integrable. Due to this fact the proof of the o
domain form is a little complicated. Similar functions are known to occur in the domains o
Dirichlet Laplacian in regions with boundaries having angles larger thanp.11 In Sec. III we study
the question of bound state existence below the threshold of the essential spectrum for exa
For comparison, the known case B8 is given to stress the different properties of two examples w

a!Also at: Doppler Institute of Mathematical Physics, Faculty of Nuclear Sciences and Physical Engineering,
Technical University, Brˇehová7, 115 19 Prague 1, Czech Republic; electronic mail: dittrich@ujf.cas.cz

b!Also at: Faculty of Mathematics and Physics, Charles University, V Holesˇovičkách 2, 180 00 Prague 8, Czech Republi
electronic mail: kriz@ujf.cas.cz
38920022-2488/2002/43(8)/3892/24/$19.00 © 2002 American Institute of Physics
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different symmetries. While in case B a bound states always exists, it appears for sufficiently
overlay 2d only in case A. The proved results are illustrated in Sec. IV by numerical calculat
Some technical points are left to appendices.

II. THE HAMILTONIAN

As we are going to prove several statements that are valid for more general combinati
boundary conditions, let us define several objects. Let there be a finite number of points
boundary]V, where the boundary condition is changing, which we denotePk5^xk ,yk&, k
51,...,M . We can choose the numbering so asyk5d for k51,...,M 8 andx1,x2,¯,xM8 and
yk50 for k5M 811,...,M andxM811,xM812,¯,xM . Let ]V5DøNøøk51

M $Pk%, whereD
is a union of finite number of intervals in]V, where Dirichlet condition is imposed andN
5(]V\D)0 is similar for the Neumann condition. For our examples we have
~A!

D5$^x,0&ux,2d%ø$^x,d&ux.d%,

N5$^x,0&ux.2d%ø$^x,d&ux,d%,

P15^d,d&, P25^2d,0&,

~B!

D5$^x,d&u~x,2d!∨~x.d!%,

N5$^x,0&uxPR%ø$^x,d&u2d,x,d%,

P15^2d,d&; P25^d,d&.

Putting\2/2m51, we may identify the particle Hamiltonian with the self-adjoint operator
the Hilbert spaceL2(V), defined in the following way. Let us define a quadratic form

q0~ f ,g!5E
V

¹ f •¹gd2x with domain Q~q0!5$ f PH1~V!u f �D50%, ~2.1!

whereH1(V)5$ f PL2(V)u¹ f PL2(V)% is the standard Sobolev space and we denote asf �D the
trace of functionf on D. Now q0 is obviously densely defined, symmetric, and below boun
quadratic form. The formq0 is also closed as a direct consequence of Theorem 7.53 in Ref

FIG. 1. Straight quantum waveguides with combined boundary conditions. The thin lines denote the Neumann b
condition, the thick lines the Dirichlet one.
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There is the unique self-adjoint operator associated with this form~see, e.g., Ref. 13, Theorem
4.6.8!. We denote this operator2DDN

V and its domainD(V). It is our Hamiltonian. We will show
that this operator acts as the usual Laplace operator with the Dirichlet condition onD and Neu-
mann condition onN.

Theorem 1: The domain of the operator2DDN
V is

D~V!5H f PH1~V!U2D f PL2~V!, f �D50,
] f

]y
�N50J ,

~2.2!

2DDN
V f 52D f for every f PD~V!.

Proof: First, we know thatD(V),Q(q0). Moreover f PD(V) if and only if there exists a
function hPL2(V) such that for allgPQ(q0) the equalityq0(g, f )5(g,h)L2(V) holds. Thenh
52DDN

V f ~see Ref. 13, Theorem 4.6.8!. Let g be any function fromC0
`(V). ThengPQ(q0) and

(¹g,¹ f )L2(V)5(g,2D f )L2(V) using only definition of the distributional derivatives. S
2DDN

V f 52D f for all f PD(V). We know now

D~V!5$ f PQ~q0!u2D f PL2~V!,~;gPQ~q0!!~~g,2D f !L2(V)5~¹g,¹ f !L2(V)!%. ~2.3!

Now we prove the implicationf PD(V)⇒ ] f /]y �N50. Let V0 be an open subset ofV,
such thatPk¹V̄0 ,k51,...,M . We will show that everyf PD(V) belongs toH2(V0) for such
subdomains. There exist real, positive numbershk , k51,...,M such that the open ball
B(Pk,2hk) have empty intersections withV0 . We can choosehk so small that even
B(Pk,2hk)ùB(Pk8,2hk8)5B for kÞk8. Let us denote

v05~2`,x12h1!3~d,2d!,

A

vM8215~xM8211hM821 ,xM82hM8!3~d,2d!,

vM85~xM81hM8 ,`!3~d,2d!,

vM8115~2`,xM8112hM811!3~2d,0!,

A

vM115~xM1hM ,`!3~2d,0!

and let ṽk be the reflection ofvk to the domainV for k50,...,M11, i.e., ṽk5R1(vk) for k
50,...,M 8 andṽk5R2(vk) for k5M 811,...,M11, where the bijectionsRi :R2→R2, i 51,2 are
defined as follows:R1(^x,y&)5^x,2d2y& andR2(^x,y&)5^x,2y&. Let Ṽ5(øk50

M11vkøV)0. In
fact, we can say thatṼ is the original domainV with its copy on each side of its boundary, fro
which we cut the columns@xk2hk ,xk1hk#3@d,2d), respectively,@xk2hk ,xk1hk#3(2d,0#,
above, respectively, below, the pointPk depending on which part of]V the point Pk lies. We
construct a functionf̃ PL2(Ṽ) as follows. For every point̂x,y&PṼ\]V we define~so we see that
the function will be defined almost everywhere inṼ!:
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f̃ ~x,y!55
f ~x,y! for ^x,y&PV

f ~x,2d2y! for ^x,2d2y&PV, ^x,d&PN
2 f ~x,2d2y! for ^x,2d2y&PV, ^x,d&PD
f ~x,2y! for ^x,2y&PV, ^x,0&PN
2 f ~x,2y! for ^x,2y&PV, ^x,0&PD.

Now for anywPC0
`(Ṽ) we can write

~2D f̃ ,w!L2(Ṽ)5~ f̃ ,2Dw!L2(Ṽ)

5~ f ,2Dw!L2(V)1 (
k50

M11

~ f̃ ,2Dw!L2(vk)

5~ f ,2Dw!L2(V)7 (
k50

M8

~21!kE
ṽk

f ~x,y!Dw~x,2d2y!d2x

1~21!s (
k5M811

M11

~21!kE
ṽk

f ~x,y!Dw~x,2y!d2x

5~ f ,2Dw̃!L2(V) , ~2.4!

where we used the definition of the distributional derivatives and the substitutiony°2d2y,
respectively,y°2y. The2 sign in 7 is valid for these systems, where the Neumann condit
is imposed on$^x,d&uxP(2`,x1)%, the 1 sign for others. The numbers equals 0 or 1, so ass
1M 811 is odd for systems, where the Neumann condition is imposed on$^x,0&ux
P(2`,xM811)% and even for others. Finally, a new function is defined on the domainV as

w̃~x,y!5w~x,y!6 (
k50

M8

~21!kxṽk
~x,y!w~x,2d2y!2~21!s (

k5M811

M11

~21!kxṽk
~x,y!w~x,2y!,

wherexv is the standard characteristic function of the setv. Taking into consideration the con
struction of the domainṼ and that suppw,Ṽ, we conclude thatw̃PC`(V̄) and it has a bounded
support. Further, we know that the tracew̃�]V equals limy→d2w̃(x,y) in the point ^x,d& and
similarly limy→01w̃(x,y) in the point^x,0& for smooth functions~see the definition of traces, e.g
in Ref. 12!. So the traces onDùṼ are

~ w̃�]V!~x,d!5 lim
y→d2

w̃~x,y!5 lim
y→d2

~w~x,y!2w~x,2d2y!!50,

~ w̃�]V!~x,0!5 lim
y→01

w̃~x,y!5 lim
y→01

~w~x,y!2w~x,2y!!50.

In a similar way for parts of boundary]V with the Neumann condition insideṼ,

S ]w̃

]y
�]V D ~x,d!5 lim

y→d2

]w̃

]y
~x,y!5 lim

y→d2

]

]y
~w~x,y!1w~x,2d2y!!50,

S ]w̃

]y
�]V D ~x,0!5 lim

y→01

]w̃

]y
~x,y!5 lim

y→01

]

]y
~w~x,y!1w~x,2y!!50.
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On the rest of the boundary]V, i.e.,]V\Ṽ, both Dirichlet and Neumann conditions are satisfie
which can be seen from the definition ofw̃. So it is clear thatw̃PH2(V) and it satisfies prescribe
boundary conditions. It is easy to check that all such functions belong toD(V), using the Gauss
theorem. Because both functionsf and w̃ are in D(V), which is a subset ofQ(q0), we can
continue the calculation from~2.4!,

~ f ,2Dw̃!L2(V)5~¹ f ,¹w̃!L2(V)5~2D f ,w̃ !L2(V)

5~2D f ,w!L2(V)7 (
k50

M8

~21!kE
vk

D f ~x,2d2y!w~x,y!d2x

1~21!s (
k5M811

M11

~21!kE
vk

D f ~x,2y!w~x,y!d2x5~F,w!L2(Ṽ) ,

where we used the ‘‘reflection’’ substitution again andF is a function defined by the last formula
Here FPL2(Ṽ), because it is the sum of the finite number ofL2-functions. As we choose the
functionw arbitrarily, we see that2D f̃ 5FPL2(Ṽ). Let cPC`(R2), it is bounded together with
its first and second derivatives, and let suppc,Ṽ. Thenc f̃ PL2(R2). Using the Leibnitz rule and
several times a lemma from Sec. IX.6 in Ref. 14, we conclude that even2D(c f̃ )PL2(R2) @the
Leibnitz rule itself does not give the result unless we know¹ f̃ PL2(Ṽ)]. We now use this lemma
once more and we get the result thatc f̃ PH2(R2). We can choose a functionc so asc�V051. It
is possible, becauseV0,,Ṽ and our regions have a simple form atx→6`. Let r 1,r 2,r 3 be
the real positive numbers such that@xk22hk ,xk12hk#,(2r 1 ,r 1) for every k51,...,M and
denoteR25(2r 2 ,r 2)3(0,d), R35(2r 3 ,r 3)3(2d,2d). Then using Ref. 15, Lemma XIV.2.1 w
find a functionc1PC0

`(ṼùR3), such that 0<c1(x)<1 for all xPṼùR3 andc1(x)51 for x

PV0ùR2. This function has compact support inṼ, so its derivatives are bounded. Let nowg
PC0

`(2d,2d), such thatg(y)51 for yP(0,d) ~it can be constructed according to the sam
lemma as c1!. Let bPC`(R) such that b(x)51 for uxu>r 2 , b(x)50 on the interval
@2r 1 ,r 1# ~we can again use the same lemma for construction of 12b!. Then c5c1(12b)
1gb satisfies all desired properties. Thusf̃ c�V05 f̃ �V05 f �V0 , so f PH2(V0).

Now let us take any interval (a,b), such thatxk¹@a,b# for k51,...,M . Let jPC0
`(a,b) be

a real function. Because region (a,b)3(0,d) satisfies all conditions forV0 , f PH2((a,b)
3(0,d)). Using the Leibnitz rule we can see thatj f PH2((a,b)3(0,d)). For anygPQ(q0) we
havegjPQ(q0) and

~¹g,¹~ f j!!L2(V)5~¹g,j¹ f !L2(V)1S ]g

]x
, f

dj

dxD
L2(V)

5~j¹g,¹ f !L2(V)1S g
dj

dx
,
] f

]xD
L2(V)

2S g
dj

dx
,
] f

]xD
L2(V)

1S ]g

]x
, f

dj

dxD
L2(V)

5~gj,2D f !L2(V)1E
V

]~g~x,y! f ~x,y!!

]x

dj~x!

dx
dx dy22S g

dj

dx
,
] f

]xD
L2(V)

5~g,2jD f !L2(V)22S g,
dj

dx
•

] f

]xD
L2(V)

2S g, f
d2j

dx2D
L2(V)

5~g,2D~ f j!!L2(V) .

~2.5!

Hencej f PD(V). Using the Gauss theorem~it can be used forH2-functions! we get for anyg
PQ(q0),
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~g,2D~j f !!L2(V)5~¹g,¹~j f !!L2(V)2E
a

bS g~x,d!j~x!
] f

]y
~x,d!2g~x,0!j~x!

] f

]y
~x,0! Ddx.

So due to~2.5!

E
a

bS g~x,d!j~x!
] f

]y
~x,d!2g~x,0!j~x!

] f

]y
~x,0! Ddx50

for any considereda,b and anygPQ(q0),jPC0
`(a,b). Now we conclude that

] f

]y
�N50 a.e.

This finishes the second part of proof.
It remains to show that iff satisfies all conditions from~2.2! then f PD(V) @in the sense of

definition ~2.3!#. Let V0,«5V\øk51
M B(Pk ,«), V«5øk51

M B(Pk ,«)ùV. Because we know from
the previous part of the proof thatf PH2(V0,«), we can use the Gauss theorem:

~¹g,¹ f !L2(V)1~g,D f !L2(V)5~¹g,¹ f !L2(V0,«)1~g,D f !L2(V0,«)1~¹g,¹ f !L2(V«)

1~g,D f !L2(V«)

52 (
k51

M E
0

p ] f̃ k~«,u!

]r
g̃k~«,u!« du1~¹g,¹ f !L2(V«)

1~g,D f !L2(V«) , ~2.6!

where f̃ k , g̃k are the transformations off , g to the polar coordinates in the neighborhood of ea
Pk in the way, that the region (0,«)3(0,p),V, Pk is the origin of polar coordinates, andf̃ k

satisfies the Dirichlet condition foru50. We can see that the last two terms in~2.6! go to zero as
«→0, because¹ f , ¹g, 2D f , gPL2(V) and the measure ofV« goes to zero. So we only hav
to prove that

(
k51

M E
0

p ] f̃ k~r n ,u!

]r
g̃k~r n ,u!r ndu→0 as n→` ~2.7!

for some sequence$r n%n50
` , limn→` r n50. We will show that each term in this sum tends to ze

For simplicity we will not write indices in the following text. We will decomposef̃ to the
orthonormal transverse basis which respects our boundary conditions,

f̃ ~r ,u!5 (
k50

` A2

p
Fk~r !sin

2k11

2
u, ~2.8!

and in the same way

g̃~r ,u!5 (
k50

` A2

p
Gk~r !sin

2k11

2
u. ~2.9!

Let R be a small positive real number, so as minkÞk8 dist(Pk ,Pk8).R. It is easy to check the
following equivalences:
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f ,gPH1~VùB~P,R!!⇔ f̃ ,g̃,
] f̃

]r
,
]g̃

]r
,
1

r

] f̃

]u
,
1

r

]g̃

]u
PL2~~0,R!3~0,p!,rdr du!, ~2.10!

D f PL2~VùB~P,R!!⇔S ]2 f̃

]r 2 1
1

r

] f̃

]r
1

1

r 2

]2 f̃

]u2 D PL2~~0,R!3~0,p!,rdr du!. ~2.11!

Using ~2.10! we can decompose (1/r )(] f̃ /]u) to the orthonormal transverse basis

1

r

] f̃

]u
5 (

k50

` A2

p
ak~r !cos

2k11

2
u.

For almost everyr we have

ak~r !5A2

p E
0

p 1

r

] f̃

]u
~r ,u!cos

2k11

2
u du

and

Fk~r !5A2

p E
0

p

f̃ ~r ,u!sin
2k11

2
u du

52A2

p

2

2k11 E0

p

f̃ ~r ,u!
]

]u
cos

2k11

2
u du

5A2

p

2

2k11 E0

p ] f̃

]u
~r ,u!cos

2k11

2
u du1A2

p

2

2k11
f̃ ~r ,0!5

2

2k11
rak~r !,

due to the boundary conditionf̃ (r ,0)50. So

ak~r !5
1

r

2k11

2
Fk~r !. ~2.12!

Now we decompose in the same way] f̃ /]r ,

] f̃

]r
5 (

k50

` A2

p
bk~r !sin

2k11

2
u.

Let $jk,n%n51
` be a sequence ofC0

`(0,p) functions so as limn→`ijk,n2A(2/p) sin (2k
11)/2uiL2(0,p)50 for k51,...,M and letvPC0

`(0,R). Then using twice the definition of the
distributional derivatives, the definitions ofFk and bk , and the fact thatvjk,nPC0

`((0,R)
3(0,p)) we get

E
0

R d

dr
Fk~r !v~r !dr 52E

0

R

Fk~r !v8~r !dr

52E
0

R

v8~r !E
0

pA2

p
f̃ ~r ,u!sin

2k11

2
u du dr

52 lim
n→`

E
0

RE
0

p

v8~r !jk,n~u! f̃ ~r ,u!du dr

5 lim
n→`

E
0

RE
0

p

v~r !jk,n~u!
] f̃

]r
~r ,u!du dr

5E
0

R

v~r !E
0

pA2

p

]

]r
f̃ ~r ,u!sin

2k11

2
u du dr 5E

0

R

bk~r !v~r !dr .
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Becausev(r ) was chosen arbitrarily, we conclude that

bk~r !5
dFk~r !

dr
5Fk8~r !. ~2.13!

We can apply the same procedure tog̃(r ,u). Using~2.12! and~2.13! we know that the series~2.8!
and ~2.9! can be differentiated by terms. Now we use the similar derivation forD f . Let

S ]2 f̃

]r 2 ~r ,u!1
1

r

] f̃

]r
~r ,u!1

1

r 2

]2 f̃

]u2 ~r ,u! D 5A2

p (
k50

`

ck~r !sin
2k11

2
u.

From the first part of the proof we knowf̃ (r ,.)PH2(0,p) for a.e.r and we can compute

E
0

RS Fk9~r !1
1

r
Fk8~r !2

1

r 2 S 2k11

2 D 2

Fk~r ! D rv~r !dr

52E
0

R

rF k8~r !v8~r !dr 2S 2k11

2 D 2E
0

R 1

r
Fk~r !v~r !dr

5E
0

R

~rv8~r !!8E
0

pA2

p
f̃ ~r ,u!sin

2k11

2
u du dr

2S 2k11

2 D 2E
0

R v~r !

r E
0

pA2

p
f̃ ~r ,u!sin

2k11

2
u du dr

5 lim
n→`

E
0

R

~rv8~r !!8E
0

p

f̃ ~r ,u!jk,n~u!du dr 1E
0

R v~r !

r E
0

pA2

p
f̃ ~r ,u!

d2 sin
2k11

2
u

du2 du dr

52 lim
n→`

E
0

RE
0

p

v8~r !jk,n~u!r
] f̃

]r
~r ,u!du dr 1E

0

R v~r !

r

3A2

p S 2
2k11

2
f̃ ~r ,0!2~21!k

] f̃

]u
~r ,p!1E

0

p ]2 f̃

]u2 ~r ,u!sin
2k11

2
u du D dr

5 lim
n→`

E
0

RE
0

p

v~r !jk,n~u!
]

]r
S r

] f̃

]r
~r ,u! D du dr

1E
0

R v~r !

r
A2

p E
0

p ]2 f̃

]u2 ~r ,u!sin
2k11

2
u du dr

5E
0

RE
0

pA2

p
v~r !r S ]2 f̃

]r 2 ~r ,u!1
1

r

] f̃

]r
~r ,u!1

1

r 2

]2 f̃

]u2~r ,u! D sin
2k11

2
u du dr

5E
0

R

ck~r !rv~r !dr ,

so

ck~r !5Fk9~r !1
1

r
Fk8~r !2

1

r 2 S 2k11

2 D 2

Fk~r ! for a.e. r . ~2.14!
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Let us denote Dpf̃ (r ,u)5 (]2 f̃ /]r 2) (r ,u)1 (1/r ) (] f̃ /]r ) (r ,u)1 (1/r 2) (]2 f̃ /] u2)(r ,u).
Taking into account~2.11! we will solve an equationDpf̃ (r ,u)5h(r ,u) for any hPL2((0,R)
3(0,p),rdr du). We are seeking, of course, only those solutions for which the functionf (x,y)
corresponding to the functionf̃ (r ,u) remains in the setH1(B(P,R)ùV). If we decompose a
function h to the seriesh5A(2/p)(k50

` Hk(r )sin(2k11)/2u we get a set of equations:

Fk9~r !1
1

r
Fk8~r !2

1

r 2 S 2k11

2 D 2

Fk~r !5Hk , k50,... .

We denoten5k11/2. The solutions of these equations are

F05r 1/2E
0

r

H0~z!z1/2dz2r 21/2E
0

r

H0~z!z3/2dz1C1
(0)r 1/21C2

(0)r 2 1/2 ~2.15!

and fork.0,

Fk5
1

2n
r nE

R

r

Hk~z!z2n11dz2
1

2n
r 2nE

0

r

Hk~z!zn11dz1C1
(k)r n1C2

(k)r 2n. ~2.16!

We can compute the first derivatives

F085
1

2
r 2 1/2E

0

r

H0~z!z1/2dz1
1

2
r 2 3/2E

0

r

H0~z!z3/2dz1
1

2
C1

(0)r 2 1/22
1

2
C2

(0)r 2 3/2 ~2.17!

and fork.0,

Fk85
1

2
r n21E

R

r

Hk~z!z2n11dz1
1

2
r 2n21E

0

r

Hk~z!zn11dz1nC1
(k)r n212nC2

(k)r 2n21.

~2.18!

Becausef̃ , ] f̃ /]r PL2((0,R)3(0,p),rdu dr ), the functionsFk and Fk8 have to be in the se
L2((0,R),r dr ) for all k. Taking the first two terms in~2.16! we get after application of the triangl
and Schwarz inequalities

U 1

2n
r nE

R

r

Hk~z!z2n11dz2
1

2n
r 2nE

0

r

Hk~z!zn11dzU
<

1

2n S r nAE
r

R

uHk~z!u2z dzAE
r

R

z22n11dz1r 2nAE
0

r

uHk~z!u2z dzAE
0

r

z2n11 dzD
<

1

2n
rAE

0

R

uHk~z!u2z dzSA12S R

r D 22n12

2n22
1

1

A2n12
D

<
r

nA2n22
AE

0

R

uHk~z!u2z dz

for 0,r ,R. Using a similar procedure on~2.15!, ~2.17!, and ~2.18! we get the following in-
equalities holding for everyk50,1,...:

uFk2C1
(k)r n2C2

(k)r 2nu<
r

nAu2n22u
AE

0

R

uHk~z!u2z dz, ~2.19!
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uFk82nC1
(k)r n211nC2

(k)r 2n21u<
1

Au2n22u
AE

0

R

uHk~z!u2z dz. ~2.20!

We conclude using this estimate that the first three terms in~2.16! belong toL2((0,R),r dr ) and
thus the fourth term has to be in this set too. But it is obvious thatr 2n¹L2((0,R),r dr ) for n
>3/2. HenceC2

(k)50 for k>1. Applying the same arguments to~2.17! we have alsoC2
(0)50.

Moreover the condition*0
R(k50

` uFk8(r )u2r dr ,` must be satisfied. First we supposeC1
(k)50 for

all k. Then using estimate~2.20!

E
0

R

(
k50

`

uFk8~r !u2r dr<E
0

R

r dr (
k50

`
1

2un21u E0

R

uHk~z!u2z dz

<ihiL2((0,R)3(0,p),r du dr )
2 E

0

R

r dr

5
R2

2
ihiL2((0,R)3(0,p),r du dr )

2 .

Thus we must choose the constantsC1
(k) so as

(
k50

` E
0

R

uC1
(k)u2n2r 2n22r dr 5 (

k50

`

uC1
(k)u2

n

2
R2n,`. ~2.21!

Now we turn our attention to the functiong̃(r ,u). Using ~2.10! we can write

u~r !ª(
k50

`
1

r 2 S 2k11

2 D 2

uGk~r !u2PL1~~0,R!,r dr !.

Denotingv(r )5ru(r ) we get a functionvPL1(0,R). Thus we can state lim infr→01urv(r )u50.
Otherwiseurv(r )u>a.0 for a.e. smallr , souv(r )u>a/r for some constanta and a.e. sufficiently
small r , which is a contradiction of the fact thatvPL1(0,R). Hence we can find a sequenc
$r n%n51

` such thatr n→01 and

lim
n→`

ur nv~r n!u5 lim
n→`

(
k50

` S 2k11

2 D 2

uGk~r n!u250. ~2.22!

Now we are ready to return to~2.7!. We rewrite the particular terms of this sum using~2.8! and
~2.9!,

E
0

p ] f̃ k~r n ,u!

]r
g̃k~r n ,u!r n du5 (

k50

`

r nFk8~r n!Gk~r n!.

The right-hand side of this equality can be estimated using~2.20!, the triangle inequality and the
Schwarz inequality in the spacel 2,

U(
k50

`

r nFk8~r n!Gk~r n!U<r n(
k50

`

uGk~r n!uSAE
0

R

uHk~z!u2z dz
1

Au2n22u
1nuC1

(k)ur n
n21D

<A(
k50

`

uGk~r n!u2S r nihiL2((0,R)3(0,p),r du dr )1A(
k50

`

n2uC1
(k)u2r n

2nD .

~2.23!
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Because of~2.22! it is enough to show that the last term in brackets in~2.23! is bounded and we
will know that the statement~2.7! holds. Due to~2.21! it is sufficient to prove that the inequalit
nr 2n,R2n/2 holds for alln51/2,3/2,... and sufficiently smallr . Rewriting the inequality to the
form

r

R
,S 1

2n D 1/2n

~2.24!

we will study the functionf(x)5(1/x)1/x on the interval@1,̀ !. It is obvious thatf is continuous
and strictly positive on this interval. As

d

dx
f~x!5f~x!

ln~x!21

x2 ,

f reaches its global minimum at the pointx5e. Thus forr /R,(1/e)1/e the inequality~2.24! holds
for everyn, which completes the proof. j

Remark 1: The fact that all the functions from the domain of the Hamiltonian, which is de
by the quadratic form, satisfy the prescribed boundary condition is supposed to be well-kno
domains with reasonable boundaries. But it is also very often supposed that the operator d
is the subset of the Sobolev space H2(V), which satisfies the boundary conditions. The syste
with combined boundary conditions are examples of operators for which this assertion is no
The situation is similar to the systems studied in Ref. 11. It was shown there, that for bo
regions in the planeR2 with piecewise C3-boundary, which has finite number of angles larger th
p, there exists for each such angle one function, which is not in H2(V) and which belongs to the
operator domain with the Dirichlet boundary condition. The operator domain is then a span o
H0

2(V) space and all these functions, called Guseva functions.
It is easy to check that similar functions belong to operator domain in our systems, too. L

take the following function, written in polar coordinates with the origin in some Pk and R,d:

f ~r ,u!5j~r !r 1/2sin
u

2
, ~2.25!

where j(r )PC`(0,̀ ), j(r )51 on (0,R/2), and j(r )50 for r .R. This function satisfies the
boundary conditions, Dpf PL2(V) and fPH1(V), thus fPD(V). But f¹H2(V). The trace on
the part of the boundary(2R/2,R/2) is

1

r

] f

]u
~r ,u!5H 1

2
r 21/2 for u50

0 for u5p.

So even the trace of the normal derivatives on the boundary is not square integrable. These
reasons why we cannot immediately use the Gauss theorem in the proof of Theorem 1.

The interesting open question arises whether all eigenfunctions have Guseva-like be
near the points Pk .

III. BOUND STATES

Now we are going to study our specific systems from Fig. 1. First we localize the ess
spectra of these systems and make the first estimate on the number of bound states be
essential spectrum threshold using the technique of the Dirichlet–Neumann bracketing~see, e.g.,
Ref. 14, Sec. XIII.15!. Then we will continue with the specification of the number of bound sta
using variational methods.
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A. Essential spectrum, number of bound states

The following arguments are the same for both our systems, so we do not distinguish be
them in this section. Cutting the domainV by the additional Neumann or Dirichlet boundari
parallel to they axis atx56d, we get new operatorsH (N), H (D) defined in the standard way
using the quadratic form. We can decompose these operatorsH ( j )5Ht

( j )
% Hc

( j ) , j 5N,D, where
the ‘‘tail’’ part corresponds to the two half strips and the rest to the central part with the Neum
and Dirichlet condition on the vertical boundaries, respectively. Using Dirichlet–Neumann b
eting we haveHt

(N)
% Hc

(N)<2DDN
V <Ht

(D)
% Hc

(D) in the sense of quadratic forms~see Ref. 14,
Sec. XIII.15!.

Now sess(Ht
( j ))5@p2/4d2 ,`), j 5N,D ~we get this result after simple calculation using E

ample 4.9.6 in Ref. 13 and Corollary of Theorem VIII.33 in Ref. 14!. By the minimax principle
~see e.g., Ref. 14, Sec. XIII.1! 2DDN

V has the same infimum of the essential spectrum. To ve
that sess(2DDN

V ) is indeed the whole interval@p2/4d2 ,`) we can use the same procedure as
Ht

( j ) ~see Example 4.9.6 in Ref. 13!. Possible isolated eigenvalues of2DDN
V are squeezed betwee

those ofHc
( j ) , j 5N,D. Because the first eigenvalue ofHc

(N) is zero,2DDN
V has an eigenvalue

below the essential spectrum threshold providedHc
(D) does, which is true ifd.d.

More generally, the numberND of eigenvalues ofHc
(D) smaller thanp2/4d2 equals the larges

integer number smaller thand/d, i.e., ND52@2d/d#21, where@•# denotes the entire part. Th
number of ‘‘Neumann’’ eigenvalues ofHc

(N) is NN511ND . This means that the number of boun
states of2DDN

V below the essential spectrum threshold satisfies the inequality

2F2
d

dG21<N<2F2
d

dG . ~3.1!

We see that2DDN
V has isolated eigenvalues, at least for large enoughd. In the same way, one find

that themth eigenvaluemm of 2DDN
V is estimated by

S m21

l D 2

<
mm

m
<S m

l D 2

, ~3.2!

wherel5d/d and m5 inf(sess)5 p2/4d2, and that the critical valuelm5dm /d at which mth
eigenvalue appears satisfies the bounds

m21<lm<m. ~3.3!

To learn more about the dependence of the eigenvalues and the corresponding eigenfunc
l, we have to use a different technique.

B. Existence of bound states

The above-presented existence argument forl.1 is a crude one. In fact, there is no low
bound on the length of the overlay of Neumann boundaries for case~B!, which was shown in Ref.
8, Lemma 3.2. On the other hand we will show that in system~A! the discrete spectrum of th
Hamiltonian is empty for smalll, but the ground state appears sooner thanl51. We will distin-
guish the two cases writing2DDN

V,A , respectively,2DDN
V,B instead of2DDN

V andQA(q0), respec-
tively, QB(q0) instead ofQ(q0).

Theorem 2: The operator2DDN
V,B has an isolated eigenvalue in@0,m! for any d .0.

The proof can be found in Ref. 8, Lemmas 2.2 and 3.1. We repeat the theorem here to
the difference with case~A!, where the situation is more complicated.

Theorem 3: There exists a real numberL0P(0,1), such that the discrete spectrum of th
operator2DDN

V,A(l) is empty for alll<L0 and there exists at least one isolated eigenvalue in
spectrum of this operator for alll.L0 .
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Proof: Taking into account thatm1(l)5 infwPQA(q0),iwi51q0(w) is a nonincreasing continuou
function ofl ~see Appendix A! and the minimax principle,14 it is sufficient to show that there ar
two real positive numbersL1,L2 , L1 , L2P(0,1), such that

~i! the discrete spectrum is empty for alll,L1 ,
~ii ! there exists at least one isolated eigenvalue in the spectrum for alll.L2 .

We know from Sec. III A that there exists a bound state forl.1. Let us search for a bette
estimateL2,1 by the variational technique. We are seeking the trial functionFPQA(q0), for
which the functionalq defined by

q@F#5q0~F,F!2miFiL2(V)
2 ~3.4!

has a negative value~see, e.g., Ref. 16, Chap. 4!. We can chooseF continuous insideV, but not
necessarily smooth. To make the longitudinal contribution to the kinetic energy small, we u
external scaling.

We start with the trial function

Fs~x,y!5ws~x!sin
py

2d
1cs~x!cos

py

2d
1h~x!1x~x!cos

py

d
, ~3.5!

where

ws~x!5H w~x! for x>2d

w~2d1s~x1d!! for x<2d,

cs~x!5H c~x! for x<d

c~d1s~x2d!! for x>d,

w, cPS(R), w(2d)5c(d)51; w(x)50 on @d,`), c(x)50 on (2`,2d#, h, xPC`@2d,d#
andh(x)5x(x)50 for uxu>d. The value 1 ofw(2d) andc(d) is not important, it can be any
constant without the influence on the result. We choosew(2d)5c(d), because we expect th
ground state to be symmetric. We shall assume the functionsw, c, h, x to be real. We decompos
the functionalq to three parts, in each of which one integrates over regions I, II, and III, res
tively,

q@Fs#5qI@Fs#1qII@Fs#1qIII @Fs#5
d

2
s~ iw8iL2(2`,2d)

2
1ic8iL2(d,`)

2
!1qII@Fs#. ~3.6!

We see that the first term here is always positive, but it can be arbitrarily small, due t
parameters, while the second term does not depend ons. We easily compute

qII@Fs#5E
2d

d S d

2
~w8~x!21c8~x!21x8~x!2!1dh8~x!21

2d

p
w8~x!c8~x!1

4d

3p
x8~x!~c8~x!

2w8~x!!1
4d

p
h8~x!~w8~x!1c8~x!!1

p

d
x~x!~c~x!2w~x!!1

3p2

8d
x~x!2

2
p

d
w~x!c~x!2

p2

4d
h~x!22

p

d
h~x!~c~x!1w~x!! Ddx. ~3.7!

We choose the solution of the Euler equations
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dw9~x!1
2d

p
c9~x!2

4d

3p
x9~x!1

4d

p
h9~x!1

p

d
~c~x!1h~x!1x~x!!50,

dc9~x!1
2d

p
w9~x!1

4d

3p
x9~x!1

4d

p
h9~x!1

p

d
~w~x!1h~x!2x~x!!50,

dx9~x!1
4d

3p
~c9~x!2w9~x!!2

p

d
~c~x!2w~x!!2

3p2

4d
x~x!50,

2dh9~x!1
4d

p
~c9~x!1w9~x!!1

p

d
~c~x!1w~x!!1

p2

2d
h~x!50

to be a trial function. By linear combinations of these equations we can obtain uncoupled se
order differential equations forw2c andw1c. Then the solution with above-mentioned boun
ary condition is obtained,

x~x!5
4

3p S sinh
)px

2d

sinh
)pd

2d

2

sinh
px

d
A3

3p28

9p2218p232

sinh
pd

d
A3

3p28

9p2218p232

D ,

w~x!5
1

2 S cosh
px

d
A 42p

p212p216

cosh
pd

d
A 42p

p212p216

2

sinh
px

d
A3

3p28

9p2218p232

sinh
pd

d
A3

3p28

9p2218p232

D ,

~3.8!

c~x!5
1

2 S cosh
px

d
A 42p

p212p216

cosh
pd

d
A 42p

p212p216

1

sinh
px

d
A3

3p28

9p2218p232

sinh
pd

d
A3

3p28

9p2218p232

D ,

h~x!5
2

p S cos
px

2d

cos
pd

2d

2

cosh
px

d
A 42p

p212p216

cosh
pd

d
A 42p

p212p216

D .

As the quadratic form of the derivatives in~3.7! is positive definite this trial function is a goo
candidate for a minimum of the functional~3.7!. Now we substitute~3.8! to ~3.7! and after a
tedious but straightforward calculation we obtain

qII@Fs#5
A~42p!~p212p216!

2p
tanh

pd

d
A 42p

p212p216
1

8

3)p
coth
)pd

2d

1
A~3p28!~9p2218p232!

6)p
coth

pd

d
A3

3p28

9p2218p232
2

4

p
tan

pd

2d
. ~3.9!
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Now we can understandqII like a function of a variabled. We see thatqII is a continuous function
on the interval (0,d), limd→01 qII(d)51` and limd→d2 qII(d)52`. So there must exist a poin
d0P(0,d) and corresponding numberL25d0 /d, such thatqII(d),0 for dP(d0 ,d). Thus we can
find for everyd from this interval a numbers small enough to haveq@Fs#,0, which finishes the
proof of the existence ofL2 .

Now we are going to prove that the discrete spectrum of the operator2DDN
V,A(l) is empty for

all l<L1 . It will be shown if we demonstrate that the functionalq@F#>0 for all F from a
suitable dense@in H1(V) norm# set inQA(q0), say

Q~V!5$cPH1~V!ùC~V̄ !ucPC2~V j !, j 5I,II,III, c�D50%,

whereC(V̄) is just the set of functions continuous in the closure ofV. It can be proven that this
set is really dense inQA(q0) ~See Appendix B!. We again decomposeq into three partsq@F#
5qI@F#1qII@F#1qIII @F#. The ‘‘tail’’ parts of FPQ(V) we expand to the series

F~x,y!5A2

d (
k50

`

ak~x!sin
2k11

2d
py ~3.10!

in the regionV I and

F~x,y!5A2

d (
k50

`

bk~x!cos
2k11

2d
py ~3.11!

in regionV III . Using the same procedure like in the proof of Theorem 1, we know that these s
can be differentiated by terms. Hence

qI@F#5 (
k50

` E
2`

2dS uak8~x!u21
p2

d2 ~k21k!uak~x!u2Ddx, ~3.12!

qIII @F#5 (
k50

` E
d

`S ubk8~x!u21
p2

d2 ~k21k!ubk~x!u2Ddx, ~3.13!

and we see thatqI@F#>0 andqIII @F#>0 for all FPQ(V). As we have seen previously abov
@similar to ~3.6!# the contributions from the termsua08(x)u2 and ub08(x)u2 can be arbitrarily small.
We minimalize the rest of the functional using Euler equations, the general boundary cond
fixing the function values atx5d, x52d, and the square integrability. AsFPC(V̄) the Fourier
coefficients ak , bk are continuous in (2`,2d#, @d,`) and ak(2d), bk(d) are those of
F(2d,•), F(d,•), respectively. The solution of the Euler equations will be really the abso
minimum of qI1qIII . It is easy to see that for allF in the setQ(V), qI@F#1qIII @F#5qI@F0#
1qIII @F0#1qI@F2F0#1qIII @F2F0#, whereF0 is given by Euler equations and we have se
previously thatqI@F2F0#1qIII @F2F0#>0. Fork51,2,... we get

ak9~x!2
p2

d2 k~k11!ak~x!50,

bk9~x!2
p2

d2 k~k11!bk~x!50

and the square integrable solutions of these equations are

ak~x!5Ak expS p

d
Ak~k11!~x1d! D , ~3.14!
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bk~x!5Bk expS p

d
Ak~k11!~d2x! D . ~3.15!

Putting these results to~3.12! and ~3.13! we have

qI@F#1qIII @F#>
p

d (
k51

`

Ak~k11!~ uAku21uBku2!. ~3.16!

Let us turn our attention to the functionalqII . First we estimate the valueiFiL2(V II )
2 . Denot-

ing F2(y)5F(2d,y) andF1(y)5F(d,y) we can write

iFiL2(V II )
2

5E
0

dE
2d

d UF2~y!1E
2d

x ]F

]x
~z,y!dzU U E

x

d ]F

]x
~z,y!dz2F1~y!Udxdy

<E
0

dE
2d

d S uF2~y!u1E
2d

d U]F

]x
~z,y!UdzD S uF1~y!u1E

2d

d U]F

]x
~z,y!UdzD dxdy

52dE
0

dS uF2~y!u uF1~y!u1~ uF2~y!u1uF1~y!u!E
2d

d U]F

]x
~z,y!Udz

1S E
2d

d U]F

]x
~z,y!UdzD 2D dy<2dS iF2iL2(0,d) iF1iL2(0,d)1iuF2u

1uF1u iL2(0,d)AE
0

dS E
2d

d U]F

]x
~z,y!UdzD 2

dy12d I ]F

]x I
L2(V II )

2 D
<2dS iF2iL2(0,d) iF1iL2(0,d)1A2diuF2u1uF1u iL2(0,d)I ]F

]x I
L2(V II )

12d I ]F

]x I
L2(V II )

2 D ,

where we used the fact thatFPC2(V II) and the Schwarz inequality. Denotingk5lp, we use the
last estimate and obtain

qII@F#5 I ]F

]x I
L2(V II )

2

1 I ]F

]y I
L2(V II )

2

2
p2

4d2 iFiL2(V II )
2 > I ]F

]x I
L2(V II )

2

~12k2!

2A2d
kp

2d
iuF2u1uF1u iL2(0,d)I ]F

]x I
L2(V II )

2
kp

2d
iF2iL2(0,d) iF1iL2(0,d) .

~3.17!

Let us assume that there existsFPQ(V) such thatq@F#,0. Taking into consideration~3.16! we
conclude thatqII@F#,0 for consideredFPQ. Then also

I ]F

]x I
L2(V II )

2

~12k2!2A2d
kp

2d
iuF2u1uF1u iL2(0,d)I ]F

]x I
L2(V II )

2
kp

2d
iF2iL2(0,d) iF1iL2(0,d),0.

This inequality holds obviously fork>1. Let us solve this inequality fork,1. Then using the
triangle inequality together with the inequality
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2iF2iL2(0,d)iF1iL2(0,d)<
1
2~ iF2iL2(0,d)1iF1iL2(0,d)!

2 ~3.18!

we get

I ]F

]x I
L2(V II )

,
k

2A2d~12k!
~ iF2iL2(0,d)1iF1iL2(0,d)!. ~3.19!

We use this result in the following estimate:

iF12F2iL2(0,d)5AE
0

dU E
2d

d ]F

]x
dxU2

dy<A2d I ]F

]x I
L2(V II )

,
k

2~12k!
~ iF2iL2(0,d)1iF1iL2(0,d)!. ~3.20!

Now we use estimates~3.16! and~3.17! together with inequality~3.18!, the triangle inequality and

~ iF2iL2(0,d)1iF1iL2(0,d)!
2<2~ iF2iL2(0,d)

2
1iF1iL2(0,d)

2
! ~3.21!

to estimate whole functionalq@F#. DenotingA05a0(2d), B05b0(d), we obtain

q@F#>
p

d (
k51

`

Ak~k11!~ uAku21uBku2!1 I ]F

]x I
L2(V II )

2

~12k2!2A2d
kp

2d
iuF2u

1uF1u iL2(0,d)I ]F

]x I
L2(V II )

2
kp

2d
iF2iL2(0,d) iF1iL2(0,d)

>
p&

d (
k51

`

~ uAku21uBku2!1~12k2!S I ]F

]x I
L2(V II )

2A2d
kp

4d

iuF2u1uF1u iL2(0,d)

12k2 D 2

2
k3p

8d

iuF2u1uF1u iL2(0,d)
2

~12k2!
2

kp

4d
~ iF2iL2(0,d)

2
1iF1iL2(0,d)

2
!

>
p&

d (
k51

`

~ uAku21uBku2!2
kp

4d~12k2! (
k50

`

~ uAku21uBku2!, ~3.22!

where we also used~3.10! and~3.11! together with~3.14! and~3.15!. We assumedq@F#,0, thus
the same is true for the last expression in~3.22! and so we obtain fork,(A129
21)/8&80.92,

(
k51

`

~ uAku21uBku2!,
k

4&~12k2!2k
~ uA0u21uB0u2!. ~3.23!

Now we need estimates~3.21!, ~3.20!, and ~3.23! together with known inequalities for non
negative numbers

2ab<a21b2,

~a1b1c!2<3~a21b21c2!,

and the triangle inequality to do the last step of the proof. First notice, that
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2

d IA0 sin
py

2d
2B0 cos

py

2d I
L2(0,d)

2

5uA0u21uB0u22
4

p
R~A0B0!>S 12

2

p D ~ uA0u21uB0u2!.

~3.24!

On the other hand,

2

d IA0 sin
py

2d
2B0 cos

py

2d I
L2(0,d)

2

5IF22F12A2

d (
k51

` S Ak sin
~2k11!py

2d
2Bk cos

~2k11!py

2d D I
L2(0,d)

2

<S iF22F1iL2(0,d)1A(
k51

`

uAku21A(
k51

`

uBku2 D 2

<S k

2~12k!
~ iF2iL2(0,d)1iF1iL2(0,d)!1A(

k51

`

uAku21A(
k51

`

uBku2 D 2

, 3S k2

2~12k!2 (
k50

`

~ uAku21uBku2!1 (
k51

`

~ uAku21uBku2!D
, 3

2&~11k!k21k~12k!

~12k!~4&~12k2!2k!
~ uA0u21uB0u2!.

We compare this inequality with~3.24! and we have

12
2

p
,3k

2&~11k!k112k

~12k!~4&~12k2!2k!
. ~3.25!

FIG. 2. Probability densityucu2 ~in units ofd22! for the bound state in model A,l5 1/2, coordinatesx, y in the units of
d. Only one discrete bound state exists here.
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We recall that we investigate this inequality for 0,k,(A12921)/8&. The right-hand side of
~3.25! is a positive, continuous function ofk on this interval and it goes to zero ask does. Hence
there must exist a numberk0 ~and soL1!, such that this inequality does not hold forkP(0,k0!,
i.e., for lP(0,L1!. Thusq@F#>0 for all FPQ(V) for these values of the parameterl, which
has been to prove. j

Remark 2: We also know that the discrete eigenvalues emerge at the essential sp
threshold and they are continuous functions ofl in both our specific cases. The rigorous form
lation and the proof of this statement are given in Appendix A.

IV. NUMERICAL RESULTS

We have solved the Schro¨dinger equation corresponding to our systems numerically. SincV
consists of three rectangular regions, the easiest way to do that is the mode-matching meth~see,
e.g., Ref. 4!. The results are shown in Figs. 2–5. In Figs. 4 and 5 we can notice that the
eigenvalue in model A appears forL0.0. Our numerical results indicate thatL080.26 in agree-
ment with our analytical proofs. Solving numerically the equationqII@Fs#50 with the right-hand
side given by~3.9! we get the resultL280.34. In the same way from~3.25! we get after
numerical computationL180.08. HenceL1,L0,L2 , which we have expected.
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APPENDIX A: THE CONTINUITY OF THE EIGENVALUES

First we define some notations for purposes of this appendix. Letl.0 then

Q~l!5$ f PH1~V! u f �D~l!50%,

where

D~l!5$^x,0& u x,2ld%ø$^x,d&ux.ld%

or

FIG. 3. The same as in Fig. 2 butl50.27. It is close to the threshold for bound state appearance.
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D~l!5$^x,d& u ~x,2ld!∨~x.ld!%.

So we have stressed only the dependence of the form domain on the parameterl. We define

U~w1 ,...,wm ;l!5 inf
cPQ(l),cÞ0
c'w1 ,...,wm

i¹ciL2(V)
2

iciL2(V)
2 ,

mn~l!5 sup
w1 ,...,wn21PL2(V)

U~w1 ,...,wn21 ;l!.

From the minimax principle,14 we know that for everyn51,2,..., mn(l) is either thenth eigen-
value of the operator~counting multiplicity! or the bottom of its essential spectrum. The aim
this appendix is to show thatmn(l) are continuous functions in~0,̀ !.

Lemma 1: Functionsmn : l°mn(l) are nonincreasing, finite, and continuous in~0,̀ ! for
every n51,2,... .

Proof: We know from the minimax principle and the Dirichlet–Neumann bracketing14 that
0<mn(l)< p2/4d2 for all l.0 andn51,2,... . Letl1.l2 . ThenQ(l2),Q(l1) and so for any
m50,1,... and anym-tuple w1 ,...,wm ,

U~w1 ,...,wm ;l1!<U~w1 ,...,wm ;l2!<mm11~l2!.

Because these inequalities hold for everym-tuplew1 ,...,wm from our Hilbert space they must b
fulfilled even for supremum over thesem-tuples. Hence

mm11~l1!<mm11~l2! ~A1!

for everym50,1,... andmm11 are thus nonincreasing.
For any%.1 we definew (%)(x,y)5w(%x,y). The equivalenceswPQ(l)⇔w (%)PQ(l/%)

andw'c⇔w (%)'c (%) are obvious. Moreover

FIG. 4. Eigenvalues~in the units ofm5 p2/4d2! for model A in dependence onl.
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i¹w (%)iL2(V)
2

iw (%)iL2(V)
2 5

%2i
]w

]x
iL2(V)

2
1i

]w

]y
iL2(V)

2

iwiL2(V)
2 <%2

i¹wiL2(V)
2

iwiL2(V)
2 . ~A2!

Let integerm>0, l.0 andw1 ,...,wmPL2(V) are chosen arbitrarily. Then for anywPQ(l)
such thatw'w1 ,...,wm we knoww1

(%) , ...,wm
(%)PL2(V), w (%)PQ(l/%), andw (%)'w1

(%) , ...,wm
(%) .

Then using~A2! we get

US w1
(%) , ...,wm

(%) ;
l

% D<
i¹w (%)iL2(V)

2

iw (%)iL2(V)
2 <%2

i¹wiL2(V)
2

iwiL2(V)
2 .

Because these inequalities hold for arbitrarym-tuplew1 ,...,wm it must hold even for the infimum
of

i¹wiL2(V)
2

iwiL2(V)
2

and hence

US w1
(%) , ...,wm

(%) ;
l

% D<%2U~w1 ,...,wm ;l!<%2mm11~l!.

Passing again to the supremum over allm-tuplesw1
(%) , ...,wm

(%) and taking into account~A1! we
obtain

mm11~l!<mm11S l

% D<%2mm11~l!, ~A3!

becausel.l/%. From the second inequality of~A3! and from~A1! we get

FIG. 5. First eigenvalues for models A and B in dependence ofl. While in model B the eigenvalue exists for anyl.0 in
model A appears atL.L0 ~numerical calculations indicateL080.26!.
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1

%2 mm11~l!<mm11~l% !<mm11~l! ~A4!

usingl%.l. We recall that these inequalities hold for anymP$0,1,...%.
For any 0,l8,l we set%5 l/l8 and we put it to~A3!

mm11~l!<mm11~l8!<S l

l8D
2

mm11~l!.

We see that liml8→l2 mm11(l8)5mm11(l). We repeat the same procedure for 0,l,l8 using
the inequalities~A4! instead of~A3! and we get liml8→l1 mm11(l8)5mm11(l), which finishes
the proof. j

APPENDIX B: THE DENSE SET IN QA
„q 0…

The goal of the appendix is to prove the following lemma.
Lemma 2: The set Q˜ (V)5$cPC`(V̄) u c5c̃�V,c̃PC0

`(R2),c�D50% is dense in the se
QA(q0) with respect to the H1(V) norm.

Proof: Let wPQA(q0). Then for every«.0 we can find the functionw1
(«) from the set$c

PC`(V̄) u c5c̃�V,c̃PC0
`(R2)% such thatiw2w1

(«)iH1(V),« ~see, e.g., Ref. 12, Theorem 3.18!.
Due to Theorem 5.22 in Ref. 12 we can also writei(w2w1

(«))�DiL2(D),AC«, whereC is a
constant. Letg be the function from the classC`(R) with the following properties: 0<g(t)<1
for tPR, g(t)50 for t< 1/2 , g(t)51 for t>1 andu dg(t)/dt u< G/5 for some constantG and
every tPR. For ^x,y&PV and«,d/2 we define

v«
(1)~x,y!55 gS 4~d2y!

« DgSA~x2d!21~y2d!2

« D for x>d

gSA~x2d!21~y2d!2

« D for x<d,

v«
(2)~x,y!55 gS 4y

« DgSA~x1d!21y2

« D for x<2d

gSA~x1d!21y2

« D for x>2d

andv«5v«
(1)v«

(2) . Obviouslyw2
(«)5w1

(«)v«PQ̃(V). Let us denote

V«5$^x,y&PV u dist~^x,y&,D!,«%,

V«
15~~d,`!3~d2«,d!!ø~~2`,2d!3~0,«!!,

V«
25~~d2«,d!3~d2«,d!!ø~~2d,2d1«!3~0,«!!,

V«
35~~d2«,d1«!3~d2«,d!!ø~~2d2«,2d1«!3~0,«!!.

Now we are going to estimateiw2
(«)2wiH1(V)

2 ,

iw2
(«)2wiH1(V)

2
5i~w1

(«)2w!v«1w~v«21!iL2(V)
2

1i¹~w1
(«)2w!v«1¹w~v«21!

1w1
(«)¹v«iL2(V)

2 <3S iw1
(«)2wiH1(V)

2
1iwiH1(V«)

2
1

G2

«2 iw1
(«)iL2(V«)

2 D .
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Now we continue by estimating ofiw1
(«)iL2(V«)

2 ,

iw1
(«)iL2(V«)

2 <iw1
(«)iL2(V

«
1)

2
1iw1

(«)iL2(V
«
2)

2
,

iw1
(«)iL2(V

«
1)

2
5E

d

`E
d2«

d

uw1
(«)~x,y!u2dy dx1E

2`

2dE
0

«

uw1
(«)~x,y!u2dy dx.

Because the estimates of the second term in the previous expression will be analogous to
the first term we will not write the second integral, but only ‘‘second term’’ instead of it,

iw1
(«)iL2(V

«
1)

2
5E

d

`E
d2«

d Uw1
(«)~x,d!2E

y

d ]w1
(«)

]t
~x,t !dtU2

dy dx1second term

<2E
d

`E
d2«

d S uw1
(«)~x,d!u21«E

d2«

d U]w1
(«)

]t
~x,t !U2

dt D dy dx1second term

52S «iw1
(«)�DiL2(D)

2
1«2I ]w1

(«)

]y
I

L2(V
«
1)

2 D
<2«2~C«1iw1

(«)iH1(V
«
1)

2
!<2«2~C«12~ iw1

(«)2wiH1(V)
2

1iwiH1(V
«
1)

2
!!

<2«2~C«12«212iwiH1(V
«
1)

2
!.

For anyzP(d,d1«) we calculate

iw1
(«)iL2(V

«
2)

2
5E

d2«

d E
d2«

d U E
x

z ]w1
(«)

]t
~ t,y!dt1E

y

d ]w1
(«)

]s
~z,s!ds2w1

(«)~z,d!U2

dy dx1s.t.

<3E
d2«

d E
d2«

d S 2«E
d2«

d1«U]w1
(«)

]t
~ t,y!U2

dt1«E
d2«

d U]w1
(«)

]s
~z,s!U2

ds

1uw1
(«)~z,d!u2D dy dx1second term.

When we integrate the last inequality overz from d to d1« we obtain

«iw1
(«)iL2(V

«
2)

2
<3S 2«3I ]w1

(«)

]x
I

L2(V
«
3)

2

1«3I ]w1
(«)

]y
I

L2(V
«
3)

2

1«2iw1
(«)�DiL2(D)

2 D
and so

iw1
(«)iL2(V

«
2)

2
<6«2iw1

(«)iH1(V
«
3)

2
13C«3<12«2~«21iwiH1(V

«
3)

2
!13C«3.

We give both these estimates together and we get

iw1
(«)iL2(V«)

2 <5C«3116«4116«2iwiH1(V
«
1øV

«
2)

2
.

Hence

iw2
(«)2wiH1(V)

2 <3~~1116G2!~«21iwiH1(V
«
1øV

«
2)

2
!15CG2«!.
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Here lim«→01iwiH1(V
«
1øV

«
2)

2
50, e.g., by the dominated convergence. Soiw2

(«)2wiH1(V)
2 goes to

zero as« does which has been to show. j

Remark 3: Our set Q˜ is obviously a subset of the setQ defined in the proof of the Theorem
HenceQ is a dense set in QA(q0) as well.
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Bogoliubov transformations and exact isolated solutions
for simple nonadiabatic Hamiltonians

C. Emarya) and R. F. Bishop
Department of Physics, University of Manchester Institute of Science and Technology
(UMIST), P.O. Box 88, Manchester M60 1QD, United Kingdom

~Received 10 December 2001; accepted for publication 25 April 2002!

We present a new method for finding isolated exact solutions of a class of non-
adiabatic Hamiltonians of relevance to quantum optics and allied areas. Central to
our approach is the use of Bogoliubov transformations of the bosonic fields in the
models. We demonstrate the simplicity and efficiency of this method by applying it
to the Rabi Hamiltonian. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1490406#

I. INTRODUCTION

There exists a class of simple, nonintegrable, nonadiabatic Hamiltonians of the type th
application as models of light–matter interactions, for which it is possible to find exact iso
solutions. Generally these models involve some atomic system, typically characterized by a
two-level ~or multilevel! system, interacting with a number of bosonic fields. Making the fami
rotating-wave approximation usually renders these models completely soluble, but avoidin
approximation maintains the nonintegrability of the models, and gives rise to the possibil
isolated exact solutions. This was first demonstrated for the Jahn–Teller model by Judd,1 and these
solutions are often referred to as Juddian solutions. Probably the simplest model for which
solutions have been found is the Rabi Hamiltonian~RH!, which describes a two-level atom
interacting with a single-mode bosonic field via a dipole interaction.2 The Juddian solutions of the
RH were first discovered by Reik and co-workers,3 where they were seen to occur at the lev
crossings in the energy schema of the system. This turns out to be a general and important
of these solutions.

Apart from being of interest for what they tell us about the structure and symmetries of
models, the Juddian solutions are of considerable further value. Simple quantum optics and
models, such as the RH, have long been utilized as test cases for various calcul
techniques,4–6 and the possession of exact solutions facilitates their accurate assessment. F
more, the existence of isolated exact solutions in nonintegrable quantum models is also of i
from the perspective of studying possible quantum chaos in such systems.7,8 In addition, it is
hoped that these exact solutions may serve as useful starting points for perturbative treatm
the entire spectra of these models.

In this paper we present a new and more general method for finding these isolated
solutions, which we believe to have several advantages over the methods hitherto employe
and Reik, working in the Bargmann representation, have used power series and Neuman
ansätze for the field mode. Neither of these approaches is particularly intuitive and the res
algebra can become complicated. Kus´ and Lewenstein9 have given a more concise approa
which, as we describe later, is clearly related to the method that we describe here. For mode
as the RH they used Bargmann representation ansa¨tze for the field consisting of a finite number o
bosonic excitations on top of a coherent state. They have also extended their method to
further systems, such as a three-level system and an auto-ionizing ion.

We believe that the method we outline in this paper is both more intuitive and more effi

a!Electronic mail: emary@dirac.phy.umist.ac.uk
39160022-2488/2002/43(8)/3916/11/$19.00 © 2002 American Institute of Physics
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than those discussed previously, and that it reflects the essential physics of the systems to a
degree. At the heart of the method is a simple canonical transformation of the bosonic
operators of the models. This transformation suggests the existence of exact solutions in
direct manner. Our method also has the advantage that it is easy to generalize, and is read
to be extended to ‘‘two-photon’’ type interactions, in which two photons are required to induc
atomic transition.10

The remainder of this paper is organized as follows. In Sec. II we outline our metho
finding the Juddian solutions. We describe in some detail the theory of Bogoliubov transf
tions of a boson mode and pay particular attention to their relation to the coherent and sq
states. We then use these transformations to investigate the displaced and squeezed h
oscillators, to develop insight into the reasoning behind this approach. In Sec. III we appl
method to the Rabi Hamiltonian, as an example of the use of this method. We then finish
some conclusions and indications of further work.

II. METHODOLOGY

The models that we consider here consist of an atomic system interacting with one or
bosonic modes. Each of these modes is described by annihilation and creation operators,b andb†,
respectively, which obey the usual commutation relation,

@b,b†#51. ~1!

In general the atomic system will be described in terms of a set of matrices. For examp
two-level system in the RH is described by the SU~2! Pauli matrices.

Our method for finding exact isolated solutions for such systems involves two compon
First, one must choose an appropriate representation for the atomic matrices and then, cr
one performs a Bogoliubov transformation of the operators of the field mode. The nature o
transformation depends upon the type of interaction being considered and, with the correct
of parameters, it leaves the Schro¨dinger equation in a form that admits exact solutions with v
simple ansa¨tze.

A. Bogoliubov transformations

A Bogoliubov transformation is a transformation from one description of a field mode in te
of the bosonic operators,b andb†, to a description in terms of new bosonic operators,b̃ and b̃†,
say. This transformation is canonical so that the new operators obey the same comm
relation as the old ones, namely

@ b̃,b̃†#51. ~2!

The most general linear Bogoliubov transformation may be viewed as a rotation plus
lation of the original oscillator Hilbert space to the new oscillator space,

b̃5e2 ib~12usu2!21/2~b2sb†2z!,
~3!

b̃†5eib~12usu2!21/2~b†2s* b2z* !,

wheres and z are complex numbers describing the amplitudes of the rotation and transl
respectively.b is a simple, and usually rather unimportant, phase factor. From the outset
important to note the restrictionusu,1 in order to preserve the unitarity of the transformation.
the following we consider two specializations of this transformation, namely a pure translatio
a pure rotation. These transformations may be very simply related to the familiar cohere
squeezed states of quantum optics and it is from this standpoint that we introduce the trans
tions.
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B. Coherent bosons

The usual Glauber coherent states,uz&, may be defined as eigenkets of the single-mo
bosonic annihilation operator,11

buz&5zuz&, ~4!

where z is a complex number. Such states are readily constructed as the following equi
forms:

uz&5e2 1/2 uzu2ezb†
u0& ~5!

5e(zb†2z* b)u0&, ~6!

where we have normalized the coherent state such that^zuz&51. The exponential operator in Eq
~6! is denoted as follows:

D~z![e(zb†2z* b), ~7!

and is called the displacement operator. It is a unitary operator and we may readily us
perform a unitary transformation of the field operators,

D~z!bD†~z!5b2z[a,
~8!

D~z!b†D†~z!5b†2z* [a†.

The operatorsD(z) form a representation of the Weyl~or Heisenberg–Weyl! group when multi-
plied by a trivial phase factor exp(if), with f real. The operatorsa and a† obey the same
commutator relation as the original operators, and thus we see this transformation to be a
liubov transformation of the type described earlier as a pure translation. Equations~4! and ~8!
clearly imply

auz&50, ~9!

from which we see that the operatora annihilates the coherent stateuz&. Thus uz& may be
considered as the vacuum state of thea-type bosons, and we rewrite it accordingly asu0;z&
[uz&,

au0;z&50. ~10!

We shall call thesea-type bosons ‘‘coherent bosons’’ and write their number states asun;z&, such
that a†aun;z&5nun;z&.

C. Displaced harmonic oscillator

The simplest application of the coherent bosons is to the displaced harmonic oscillator

HD5 1
2 ~x1&l!21 1

2 p2, ~11!

in which the center of the oscillator is shifted by an amount2&l. Introducing the harmonic
oscillator operators via

x[
1

&
~b†1b!,

~12!

p[
i

&
~b†2b!,
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the Hamiltonian reads

HD5b†b1l~b†1b!1 1
2 1l2. ~13!

By performing a Bogoliubov transformation of the original bosonic operators to a new s
coherent bosons,a† anda, such that

a[b1l, a[b†1l, ~14!

we may rewrite the Hamiltonian of Eq.~13! in the form

HD5a†a1 1
2. ~15!

The eigenstates of this Hamiltonian are thus clearly seen to be the number states of thea-type
bosons, with corresponding eigenenergiesEn5n1 1

2.

D. Squeezed bosons

Following Bishop and Vourdas12 we construct the most general squeezed state,uz;r,u,b&, by
acting upon the bosonic vacuumu0& first with the displacement operatorD(z) of Eq. ~7! and then
with the pure squeezing operatorS(r,u,b),

uz;r,u,b&5S~r,u,b!D~z!u0&, ~16!

The squeezing operator is given by

S~r,u,b![exp~2 1
4 re2 iub†21 1

4 reiub2!exp~ ibb†b!, ~17!

wherer,u,b are real parameters. It is a unitary operator,S†S51, and provides a representation
the group SU~1,1!. Using a relationship given by Perelomov,13 we are able to write the squeezin
operator in the equivalent form

S~s,b!5exp~ 1
2 sb†2!~12usu2!b†b/211/4exp~2 1

2 s* b2!exp~ ibb†b!, ~18!

whereb is the same real parameter as above, ands is a complex number with modulususu,1,

given bys[2e2 iu tanh(12r). Using this expression, we can use the squeezing operator to m
unitary transformations of the bosonic annihilation and creation operators,

S~s,b!bS†~s,b!5e2 ib~12usu2!21/2~b2sb†![c,
~19!

S~s,b!b†S†~s,b!5eib~12usu2!21/2~b†2s* b![c†.

The operatorsc andc† satisfy the commutation relation@c,c†#51 and thus the transforma
tion b,b†→c,c† is a Bogoliubov transformation of the rotation type. From Eq.~19!, it follows that
for any functionf (b,b†),

S f~b,b†!S†5 f ~c,c†!↔S f~b,b†!5 f ~c,c†!S. ~20!

Equation~20! implies thatSb5cSand henceuz;sb&[uz;rub& are eigenstates of the annihilatio
operatorc,

cuz;sb&5cS~s,b!uz&5S~s,b!buz&5zuz;sb&. ~21!

If we consider the squeezed vacuumSu0&5u0;s,b&5u0;s&, we see that it is independent o
b and that

cu0;s&50. ~22!
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The number states of thec-type bosons are denotedun;sb&, such thatc†cun;sb&5nun;sb&. We
call thec-type bosons ‘‘squeezed’’ bosons.

E. Squeezed harmonic oscillator

In position representation the squeezed harmonic oscillator has the form

HS5 1
2 ~112l!x21 1

2 ~122l!p2, ~23!

where the real parameterl determines the degree of squeezing, with the restriction thatulu, 1
2.

Translating this into the standard bosonic representation defined by Eq.~12! we have

HS5b†b1 1
2 1l~b†21b2!. ~24!

We introduce squeezedc-type bosons defined by

c†5
b†1sb

A12s2
, c5

b1sb†

A12s2
, ~25!

and leaves real but undetermined for the moment. Making these substitutions into Eq.~24!, we
have

HS5
1

~12s2! H @2s1l1ls2#~c21c†2!1~s21124ls!S c†c1
1

2D J . ~26!

We eliminate the first term in this Hamiltonian by choosing

2s1l1ls250, ~27!

giving, as one of the two solutions,

s5
~12V!

2l
, V[A124l2. ~28!

With this choice, the Hamiltonian becomes

HS5$c†c1 1
2%V. ~29!

The eigenstates of this Hamiltonian are clearly the number states of the squeezedc-type bosons,
with eigenenergies

En5$n1 1
2%V. ~30!

We note that the other solution of Eq.~27! with s5 (11V)/2l leads to the unphysical oscillato
with HS52(c†c1 1

2)V, and since this Hamiltonian does not have square-integrable solution
discard it.

III. APPLICATION TO THE RABI HAMILTONIAN

The Rabi Hamiltonian~RH! describes a two-level atom interacting with a single mode
quantized electromagnetic radiation via a dipole interaction.2 It is usually written in the form

HRabi5
1
2 v0sz1vb†b1g~b†1b!~s11s2!, ~31!
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wherev0 is the atomic level splitting,v is the frequency of the boson mode, andg is the coupling
strength of the atom to the field. The two-level atom is described by the Pauli pseudo
operators, which satisfy the SU~2! commutation relations

@sk ,s l #52i«klmsm , ~32!

where k,l ,mP$x,y,z% with kÞ l and «klm is the antisymmetric Levi-Civita symbol. We hav
defined the raising and lowering operators as

s1[sx1 isy , s2[sx2 isy . ~33!

It is convenient to rescale the Hamiltonian asHRabi5vH̃Rabi, where

H̃Rabi5ṽsz1b†b1l~b†1b!sx , ~34!

and ṽ[ v0/(2v) andl[ 2g/v. There is a conserved parityP associated with the Hamiltonian

P[exp@ ip~b†b1 1
2 ~sz11!!#52sz cos~pb†b!, ~35!

such that@HRabi,P#50. The parity operatorP has two eigenvalues,p561. The RH is not
known to be integrable, but isolated exact solutions do exist. Here we use the above-o
technique to find these Juddian solutions.

In order to do this we first require an appropriate matrix representation for the Pauli ma
which for this model is one in whichsx is diagonal. We shall use

sx5F1 0

0 21G , sy5F 0 i

2 i 0G , sz5F0 1

1 0G . ~36!

In terms of the two-component wave function,uC&5( uC2&
uC1&), the time-independent Schro¨dinger

equation for the system,H̃RabiuC&5EuC&, then reads

ṽuC2&1~b†b1l~b†1b!2E!uC1&50,
~37!

ṽuC1&1~b†b2l~b†1b!2E!uC2&50.

We now make the Bogoliubov transformation to the coherent bosons,a† anda, specified by

a†5b†2l, a5b2l. ~38!

The vacuum state of these bosons is the coherent stateul&. It should be noted that this choice o
transformation may be intuited from considering theṽ50 limit of the Hamiltonian, where the
same transformation is used to solve the model exactly in this limit, which is essentially equi
to the displaced oscillator considered earlier. With this transformation Eq.~37! becomes

ṽuC2&1$a†a12l~a†1a!13l22E%uC1&50,
~39!

ṽuC1&1$a†a2l22E%uC2&50,

where the ketsuC1,2& are now in the transformed representation. For these kets we choos
ansatz
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uC1&5 (
n50

N21

pnun;l&5 (
n50

N21

pn

~a†!n

An!
u0;l&5PN21~a†!u0;l&,

~40!

uC2&5 (
n50

N

qnun;l&5 (
n50

N

qn

~a†!n

An!
u0;l&5QN~a†!u0;l&,

where un;l& are number states of the coherent bosons,a†aun;l&5nun;l&, and we have intro-
duced the polynomialsPN21 andQN of orderN21 andN, respectively. Making these substitu
tions we have

ṽ (
n50

N

qnun;l&1 (
n50

N21

pn~n13l22E!un;l&

12l (
n50

N21

pnAn11un11;l&12l (
n51

N21

pnAnun21;l&50,

~41!

ṽ (
n50

N21

pnun;l&1 (
n50

N

qn~n2l22E!un;l&50.

Considering the highest number state,uN;l&, in the second of these equations, we see that
this equation to hold we require

~N2l22E!qN50. ~42!

SinceqNÞ0 by ansatz, we obtain a determination of the energy

E5N2l2. ~43!

This equation identifies the Juddian baseline energies, along which the Juddian solutio
Comparing the coefficients of the remaining number states gives us 2N11 linear equations for the
2N11 coefficients (pm , 0<m<N21) and (qk , 0<k<N). To obtain nontrivial solutions, we
clearly require the determinant of this equation set to be zero. This gives the compatibility
dition, providing the locations of the Juddian points. The first two conditions (N51,2) have the
explicit forms

ṽ214l251, for N51, ~44!

ṽ41~12l225!ṽ2132l4232l21450, for N52, ~45!

as have been given by Kus´ and Lewenstein.9 Thus, for a givenN, we have a polynomial ofNth
order inl2 andṽ2. Each of these hasN roots forl2 in terms ofṽ2, which all turn out to be real,
thus giving the location ofN Juddian solutions. Before we look at these results, it is of interes
consider the other possible type of finite ansatz at the Juddian points. These are found by us
coherent bosons

a†5b†1l, a5b1l, ~46!

and interchanging the roles ofuC1& and uC2&.
Results. By solving the complementary conditions we have calculated the first ten Jud

points for the resonant RH. These are displayed in Table I, listed to ten decimal places.
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The location of these Juddian points in the energy schema of the Hamiltonian is displa
Fig. 1, where the schema was obtained by approximate numerical diagonalization via a st
configuration-interaction method, using a basis size of the lowest 101 harmonic oscillator st14

Also plotted are the Juddian baselines from Eq.~43!.
From Fig. 1 we see that the Juddian points occur at the level crossings in this diagram

we see that they occur when two solutions of different parityP become degenerate in energy, a
this degeneracy is the key to the existence of the Juddian solutions. The coherent-boson
statesun;l& are not eigenstates ofP, and thus the ansa¨tze ~40! is not of definite parity. It is
precisely because we can construct wave functions of mixed parity that allows us to find
simple ansatz at the Juddian points.

We are now able to make explicit the connection between this method and that used b´
and Lewenstein9 in investigating the RH. They worked in the Bargmann representation,15 in which
the bosonic operators are represented by

b†→z; b→ d

dz
~47!

and postulated the following forms for the two components of the wave function:

FIG. 1. The first ten Juddian points of the Rabi Hamiltonian~diamonds!. Also plotted are the energy levels obtained b
numerical diagonalization~dark lines!, and the Juddian base lines~light lines!. The Hamiltonian is resonant;v5v051.

TABLE I. The couplings, energies, andN, of the first ten Juddian points of
the resonant Rabi Hamiltonian (v5v051).

g E N

0.216 506 351 0 0.812 500 000 0 1
0.166 164 073 2 1.889 558 003 1 2
0.446 040 357 8 1.204 191 996 9 2
0.140 088 959 0 2.921 500 334 3 3
0.366 471 488 7 2.462 794 592 0 3
0.616 382 915 3 1.480 288 407 1 3
0.123 422 939 9 3.939 067 116 1 4
0.319 907 578 1 3.590 636 565 8 4
0.524 339 512 0 2.900 272 304 5 4
0.758 249 241 5 1.700 232 351 1 4
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C1~z!5e2uzu2/2^zuC1&5 P̃N21~z!elz,
~48!

C2~z!5e2uzu2/2^zuC2&5Q̃N~z!elz,

where P̃N21(z) and Q̃N(z) are polynomials inz of orderN21 andN, respectively. Bearing in
mind the form of the coherent state~6!, these wave functions are simply seen to be of the form
polynomials in the bosonic creation operator,b†, acting upon a coherent state of amplitudel. In
our ansatz~40!, we have the same coherent state but now being acted upon by polynomi
a†5(b†2l), which shares a closer connection to the coherent state thanb†.

The polynomials of Kus´ and Lewenstein are simply related to those of ansatz~40! by
P̃N(z)5PN(z2l). In the present case where we have only used displacements of the
mode, the difference between the two approaches is thus minimal. However, this is not th
when we require the use of squeezed bosons. Generally, an ansatz posited in the squeez
sentation would contain polynomials of the formPN(c†), wherec† is the creation operator of th
squeezed bosons. The analogous ansatz to Eq.~48! would still contain a polynomial inz, P̃N(z)
say. If we assume the simplest type of squeezing and writec†5(b†1sb)/(A12s2) as in Eq.
~25!, then the Kus´ and Lewenstein polynomial can be written

P̃N~z!5PN
S z1s

d

dz

A12s2
D , ~49!

which, crucially, contains bothz and its derivative, and although formal relationships do e
between the polynomials of the two methods, these relationships are generally not trivial,
cially if one considers the more general form of the Bogoliubov transformation. So the ansa¨tze of
the two methods are seen to be significantly different, and we conjecture that the one de
here has several advantages which we shall discuss in the conclusion.

IV. CONCLUSIONS

We have presented a method for finding isolated exact solutions of a class of nonad
models, of the type frequently used in quantum optics and related fields.

Compared with the original approaches of Judd and Reik, the above-mentioned met
more transparent and considerably simpler, advantages that it shares with the technique of K´ and
Lewenstein. However, we believe that the use of transformed bosons is more obviously phy
meaningful than the use of wave functions in Bargmann space, especially given the connec
these bosons to the coherent and squeezed states, so important in quantum optics.

As an example of the use of this technique, we have applied it to the Rabi Hamiltonia
obtained in a simple fashion the known Juddian solutions of this model. In this example, we
used the coherent bosons to obtain Juddian solutions for a problem with an interaction of th
l(b†1b)sx . It is hopefully now clear how one may apply this method to further proble
containing the same type of interaction. We have not as yet mentioned the application
squeezed bosons in performing this kind of calculation. This second type of Bogoliubov tra
mation is useful in finding Juddian solutions of models containing two-photon type interac
An obvious example is the two-photon Rabi Hamiltonian,16 which has the Hamiltonian

H5ṽsz1b†b1l~b†21b2!sx . ~50!

Using squeezed bosons we are able to obtain a set of Juddian solutions for this model an
results will be discussed in a future publication.

Due to the intuitive nature and simplicity of this technique it is easy to extend to o
systems. For example, in view of their mode of construction we expect that our displace
squeezed coherent states will be of particular use in any quantum field theory that has und
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dynamical symmetry of the Weyl group or the SU~1,1! group, or to which the~inhomogeneous or
homogeneous! Bogoliubov transformation may be profitably applied. The obvious gro
theoretical foundations of the technique also point the way to other approximations, sinc
example in the squeezed~two-photon! case, SU~1,1! is not the only relevant group. Thus, th
three-dimensional Lorentz group SO~2,1!, which is the group of rotations in three-dimension
Minkowski space with two space and one time dimensions, is locally isomorphic to SU~1,1!.
Similarly, both the groups SL~2,R! of real second-order matrices with unit determinant and
symplectic group Sp~2,R! are also locally isomorphic to SU~1,1!.

One may also readily generalize the current approach for the two-level models invo
linear or quadratic interactions with a single boson~or canonical quantum mode! to the corre-
sponding case of linear or bilinear interactions involving several distinct bosons or modes. F
linear models involving only displacements this is essentially trivial. However, for models inv
ing squeezing, in the case ofn bosons or modes the various bilinear products of operatorsbi

†bj
† ,

bibj andbi
†bj , i , j 51,2,...,n now form a realization of the higher symplectic algebra Sp(2n,R).

As before one can simply construct a unitary representation of this group by exponentiati
skew-adjoint operators in the algebra. For example, Bishop and Vourdas17 have shown explicitly
how to construct the most general two-mode squeezed states associated with a unitary re
tation of the group Sp~4,R!. Once again such states are the ordinary coherent states with resp
the new destruction operatorsc1 andc2 , which are themselves general linear Bogoliubov tra
formations of the original destruction operatorsb1 , b2 and their Hermitian-conjugate creatio
operatorsb1

† , b2
† . The Sp~4,R! algebra has various subalgebras corresponding to different so

linear pairing terms. For example, whereas the single-mode paring operatorsK1
( i )[ 1

2(bi
†)2; K2

( i )

[ 1
2bi

2 ; K0
( i )[ 1

2bi
†bi1

1
4 for i 51,2 correspond to the so-called (1

4,
3
4) representations of SU~1,1!, the

mixed pairing operatorsL1[b1
†b2

† ; L2[b1b2 ; L0[ 1
2(b1

†b11b2
†b211) correspond to the

discrete-series representation of SU~1,1!. By contrast, the mixed pairing operatorsJ1[b1
†b2 ;

J2[b1b2
† ; J0[ 1

2(b1
†b12b2

†b2) correspond to the~Schwinger representation of! the angular mo-
mentum subalgebra SU~2!. Bishop and Vourdas have shown in a separate publication18 how
squeezed~pair! coherent states can also be used in connection with a rather broad class of qu
Lagrangians which include the damped harmonic oscillator, and hence with problems inv
‘‘quantum friction’’ or fluctuation-dissipation phenomena in general. Within quantum optics
example, the quantum theory of lasers and photon detection provide obvious applications
problems can now also usefully be extended by our present treatment to the case of such
systems coupled to two level atoms.

The possibility of using these solutions as the basis of a perturbative approach exten
method away from just the isolated exact points to the remainder of the spectrum of the s
The properties of such an approach are yet to be investigated. Finally we note that the ex
to similar single-mode or multimode systems as considered earlier coupled ton-level atoms with
n>2 is also straightforward in principle.
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The Dirac operator in a fermion bag background in 1 ¿1
dimensions and generalized supersymmetric
quantum mechanics
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We show that the spectral theory of the Dirac operatorD5 i ]”2s(x)2 ip(x)g5 , in
a static background (s(x),p(x)) in 111 space–time dimensions, is underlined by
a certain novel generalization of supersymmetric quantum mechanics, and we ex-
plore some of its mathematical and physical consequences. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1485114#

I. INTRODUCTION: BAGS AND RESOLVENTS

In this article we prove that the spectral theory of the Dirac operatorD5 i ]”2s(x)
2ip(x)g5 in a static scalar and pseudo-scalar background (s(x),p(x)) in 111 space–time di-
mensions is governed by a pair of isospectral Strum–Liouville operators. This observatio
generalization of the well known fact that the spectral theory of the simpler Dirac operato
purely scalar backgroundi ]”2s(x) is equivalent to one dimensional supersymmetric quan
mechanics. We then explore some of the physical and mathematical consequences of th
isospectral Sturm–Liouville operators.

The spectral theory ofi ]”2s(x)2 ip(x)g5 is most relevant in the physics of fermion bag
which we outline briefly in the rest of this section.

A central concept in particle physics states that fundamental particles acquire their m
through interactions with vacuum condensates. Thus, a massive particle may carve out
itself a spherical region1 or a shell2 in which the condensate is suppressed, thus reducing
effective mass of the particle at the expense of volume and gradient energy associated w
condensate. This picture has interesting phenomenological consequences.1,3

This phenomenon may be studied nonperturbatively in model field theories in 111 space–
time dimensions such as the Gross–Neveu~GN! model4 and the multi-flavor Nambu–Jona
Lasinio ~NJL!5 model, in the largeN limit.

Explicit calculations of fermion bag profiles in the GN and NJL models were given origin
in Refs. 6–8.

Following these works, fermion bags in the GN and NJL models were discussed i
literature several other times.9–12 For a recent review on these and related matters, see Ref.

Very recently, static chiral fermion bag solitons14 in a 111 dimensional model, as well a
nonchiral~real scalar! fermion bag solitons,15 were discussed, in which the scalar field that coup
to the fermions was dynamical already at the classical level.

Mathematical considerations similar to those involved in studying fermion bags appear a
other branches of theoretical physics, such as the theory of inhomogeneous superconducto16 and
the results of this paper may be applicable there as well.

Studying the physics of fermion bags necessarily involves knowledge of the resolvent
Dirac operator in the background of the bag. As an example, let us consider the 111 dimensional
NJL model~which contains the GN model as a special case!.

a!Electronic mail: joshua@physics.technion.ac.il
b!Permanent address.
39270022-2488/2002/43(8)/3927/10/$19.00 © 2002 American Institute of Physics
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One version of writing the action of the 111 dimensional NJL model is

S5E d2xH (
a51

N

c̄a@ i ]”2~s1 ipg5!#ca2
1

2g2 ~s21p2!J , ~1.1!

where theca(a51,...,N) areN flavors of massless Dirac fermions, with Yukawa couplings to
scalar and pseudoscalar auxiliary fieldss(x),p(x).

The partition function associated with~1.1! is

Z5E DsDpDc̄Dc expi E d2xH c̄@ i ]”2~s1 ipg5!#c2
1

2g2 ~s21p2!J . ~1.2!

Integrating over the Grassmannian variables leads toZ5*DsDp exp$iSeff@s,p#% where the bare
effective action is

Seff@s,p#52
1

2g2 E d2x~s21p2!2 iN Tr log@ i ]”2~s1 ipg5!# ~1.3!

and the trace is taken over both functional and Dirac indices.
This theory has been studied in the limitN→` with Ng2 held fixed.4 In this limit, ~1.2! is

governed by saddle points of~1.3! and the small fluctuations around them. The most gen
saddle point condition reads

dSeff

ds~x,t !
52

s~x,t !

g2 1 iNtrF ^x,tu
1

i ]”2~s1 ipg5!
ux,t&G50,

~1.4!
dSeff

dp~x,t !
52

p~x,t !

g2 2NtrFg5^x,tu
1

i ]”2~s1 ipg5!
ux,t&G50.

Fermion bags are the space–time dependent solutions (s(x,t),p(x,t)) of ~1.4!, subjected to
appropriate boundary conditions at spatial infinity, and on whichSeff /N is finite.

Thus, studying fermion bags necessarily involves the resolvent of the Dirac operator
background of the bag.

In this article we discuss some mathematical aspects of the much simpler problem ofstatic
fermion bags, namely, the static solutions (s(x),p(x)) of ~1.4!.

For the usual physical reasons, we set boundary conditions on our static fields such thas(x)
andp(x) start from a point on the vacuum manifolds21p25m2 ~with constants,p of course,
and wherem is the dynamical mass4! at x52`, wander around in thes2p plane, and then relax
back to another point on the vacuum manifold atx51`. Thus, we must have the asymptot
behavior

s ——→
x→6`

m cosu6 , s8 ——→
x→6`

0,

~1.5!
p ——→

x→6`

m sinu6 , p8 ——→
x→6`

0,

whereu6 are the asymptotic chiral alignment angles. Only the differenceu12u2 is meaningful,
of course, and henceforth we use the axial U(1) symmetry of~1.1! to setu250, such thats
(2`)5m andp(2`)50. We also omit the subscript fromu1 and denote it simply byu from
now on. As typical of solitonic configurations, we expect thats(x) and p(x) tend to their
asymptotic boundary values~1.5! on the vacuum manifold at an exponential rate which is de
mined, essentially, by the mass gapm of the model.

Thus, in order to study static fermion bags, we need to invert the Dirac operator
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D[ i ]”2~s~x!1 ip~x!g5! ~1.6!

in a given background of static field configurationss(x) and p(x), subjected to the boundar
conditions~1.5!. In particular, we have to find the diagonal resolvent of~1.6! in that background.
We stress that inverting~1.6! has nothing to do with the largeN approximation, and consequent
our results are valid for any value ofN.

The rest of the article is organized as follows: In Sec. II we show that the Dirac equ
( i ]”2(s(x)1 ip(x)g5))c50 in a given statics(x)1 ig5p(x) background is equivalent to a pa
of two isospectral Sturm–Liouville equations in one dimension, which generalize the well kn
one dimensional supersymmetric quantum mechanics. We use this generalized supersymm
express all four entries of the space-diagonal Dirac resolvent~i.e., the resolvent evaluated a
coincident spatial coordinates! in terms of a single function. In Sec. III, we use the results of S
II to derive simple expressions for various bilinear fermion condensates in the given statics(x)
1 ig5p(x) background. In particular, we prove that each frequency mode of the spatial cu

^c̄(x)g1c(x)& vanishes identically in the static background.

II. RESOLVENT OF THE DIRAC OPERATOR WITH STATIC BACKGROUND FIELDS

As was explained in the Introduction, we need to invert the Dirac operator~1.6!, D[ i ]”
2(s(x)1 ip(x)g5), in a given background of static field configurationss(x) and p(x), sub-
jected to the boundary conditions~1.5!.

In this article we use the Majorana representation

g05s2 , g15 is3 and g552g0g15s1 ~2.1!

for g matrices. In this representation~1.6! becomes

D5S 2]x2s 2 iv2 ip

iv2 ip ]x2s
D 5S 2Q 2 iv2 ip

iv2 ip 2Q† D , ~2.2!

where we introduced the pair of adjoint operators

Q5s~x!1]x , Q†5s~x!2]x . ~2.3!

@To obtain~2.2!, we have naturally transformedi ]”2(s(x)1 ip(x)g5) to thev plane, since the
background fieldss(x),p(x) are static.#

Inverting ~2.2! is achieved by solving

S 2Q 2 iv2 ip~x!

iv2 ip~x! 2Q† D •S a~x,y! b~x,y!

c~x,y! d~x,y!
D 52 i1d~x2y! ~2.4!

for the Green’s function of~2.2! in a given backgrounds(x),p(x). By dimensional analysis, we
see that the quantitiesa,b,c andd are dimensionless.

A. Generalized ‘‘supersymmetry’’ in a chiral bag background

We now show that the spectral theory of the Dirac operator~2.2! is underlined by a certain
generalized one dimensional supersymmetric quantum mechanics. This generalized super
try is very helpful in simplifying various calculations involving the Dirac operator and its re
vent.

The diagonal elementsa(x,y),d(x,y) in ~2.4! may be expressed in terms of the off-diagon
elements as

a~x,y!5
2 i

v2p~x!
Q†c~x,y!, d~x,y!5

i

v1p~x!
Qb~x,y!, ~2.5!
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which in turn satisfy the second order partial differential equations

FQ†
1

v1p~x!
Q2~v2p~x!!Gb~x,y!5

2]xF ]xb~x,y!

v1p~x!G1Fs~x!21p~x!22s8~x!2v21
s~x!p8~x!

v1p~x! G b~x,y!

v1p~x!
5d~x2y!,

~2.6!

FQ
1

v2p~x!
Q†2~v1p~x!!Gc~x,y!5

2]xF ]xc~x,y!

v2p~x!G1Fs~x!21p~x!21s8~x!2v21
s~x!p8~x!

v2p~x! G c~x,y!

v2p~x!
52d~x2y!.

Thus,b(x,y) and 2c(x,y) are simply the Green’s functions of the corresponding second o
Sturm–Liouville operators17

Lb~v!b~x!52]xF ]xb~x!

v1p~x!G1Fs~x!21p~x!22s8~x!2v21
s~x!p8~x!

v1p~x! G b~x!

v1p~x!
,

~2.7!

Lc~v!c~x!52]xF ]xc~x!

v2p~x!G1Fs~x!21p~x!21s8~x!2v21
s~x!p8~x!

v2p~x! G c~x!

v2p~x!
,

in ~2.6!, namely,

b~x,y!5
u~x2y!b2~x!b1~y!1u~y2x!b2~y!b1~x!

Wb
,

~2.8!

c~x,y!52
u~x2y!c2~x!c1~y!1u~y2x!c2~y!c1~x!

Wc
.

Here$b1(x),b2(x)% and$c1(x),c2(x)% are pairs of independent fundamental solutions of the
equationsLbb(x)50 andLcc(x)50, subjected to the boundary conditions

b1~x!,c1~x! ——→
x→2`

Ab,c
(1)~k!e2 ikx, b2~x!,c2~x! ——→

x→1`

Ab,c~k!(2)eikx, ~2.9!

with some possiblyk dependent coefficientsAb,c
(1)(k),Ab,c

(2)(k) and with18

k5Av22m2, Im k>0. ~2.10!

The purpose of introducing the~yet unspecified! coefficientsAb,c
(1)(k),Ab,c

(2)(k) will become clear
following Eqs.~2.13! and~2.14!. The boundary conditions~2.9! are consistent, of course, with th
asymptotic behavior~1.5! of s and p due to which bothLb and Lc tend to a free particle
Hamiltonian@2]x

21m22v2# asx→6`.
The Wronskians of these pairs of solutions are

Wb~k!5
b2~x!b18~x!2b1~x!b28~x!

v1p~x!
,

~2.11!

Wc~k!5
c2~x!c18~x!2c1~x!c28~x!

v2p~x!
.
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As is well known,Wb(k) andWc(k) are independent ofx.
Note in passing that the canonical asymptotic behavior assumed in the scattering theory

operatorsLb andLc corresponds to settingAb,c
(1)5Ab,c

(2)51 in ~2.9!. Thus, the Wronskians in~2.11!
arenot the canonical Wronskians used in scattering theory. As is well known in the literature,19 the
canonicalWronskians are proportional~with a k independent coefficient! to k/t(k), wheret(k) is
the transmission amplitude of the corresponding operatorLb or Lc . Thus, on top of the well-
known features oft(k), such as the fact thatt(k) has simple poles on the positive imagina
k-axis ~corresponding to bound states!, the Wronskians in~2.11! will have additional spurious
k-dependence coming from the amplitudesAb,c

(1)(k),Ab,c
(2)(k) in ~2.9!.

Substituting the expressions~2.8! for the off-diagonal entriesb(x,y) andc(x,y) into ~2.5!, we
obtain the appropriate expressions for the diagonal entriesa(x,y) andd(x,y). We do not bother
to write these expressions here. It is useful, however, to note that, despite the]x’s in the Q
operators in~2.5! that act on the step functions in~2.8!, neithera(x,y) nor d(x,y) contains pieces
proportional tod(x2y). Such pieces cancel one another due to the symmetry of~2.8! under
x↔y.

We will now prove that the spectra of the operatorsLb andLc are essentially the same. Ou
proof is based on the fact that we can factorize the eigenvalue equationsLbb(x)50 andLcc(x)
50 as

1

v2p~x!
Q†

1

v1p~x!
Qb5b,

~2.12!

1

v1p~x!
Q

1

v2p~x!
Q†c5c,

as should be clear from~2.6! and ~2.7!.
The factorized Eqs.~2.12! suggest the following map between their solutions. Indeed, gi

that Lbb(x)50, then clearly

c~x!5
1

v1p~x!
Qb~x! ~2.13!

is a solution ofLcc(x)50. Similarly, if Lcc(x)50, then

b~x!5
1

v2p~x!
Q†c~x! ~2.14!

solvesLbb(x)50.
Thus, in particular, given a pair$b1(x),b2(x)% of independent fundamental solutions

Lbb(x)50, we can obtain from it a pair$c1(x),c2(x)% of independent fundamental solutions
Lcc(x)50 by using~2.13!, and vice versa. Therefore, with no loss of generality, we hencef
assume that the two pairs of independent fundamental solutions$b1(x),b2(x)% and$c1(x),c2(x)%
are related by~2.13! and ~2.14!.

The coefficientsAb,c
(1)(k),Ab,c

(2)(k) in ~2.9! are to be adjusted according to~2.13! and~2.14!, and
this was the purpose of introducing them in the first place.

Thus, with no loss of generality, we may make the standard choice

Ab
(1)5Ab

(2)51 ~2.15!

in ~2.9!. The coefficientsAc
(1) ,Ac

(2) are then determined by~2.13!:
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Ac
(1)5

s~2`!2 ik

p~2`!1v
,

~2.16!

Ac
(2)5

s~`!1 ik

p~`!1v
.

We note that theseb(x)↔c(x) mappings can break only if

Qb50 or Q†c50, ~2.17!

for b(x) or c(x) that solve ~2.12!. Do such solutions exist? Let us assume, for example,
Qb50 and thatLbb50. From the first equation in~2.12! @or in ~2.6!#, we see that this is possibl
if and only if v6p(x)[0, which clearly cannot hold if]xp(x)Þ0. A similar argument holds for
Q†c50. Thus, if]xp(x)Þ0, the mappings~2.13! and~2.14! are one-to-one. In particular, a boun
state inLb implies a bound state inLc ~at the same energy! and vice versa.

An interesting related result concerns the WronskiansWb and Wc . From ~2.11!, and from
~2.13! and ~2.14!, it follows immediately that for pairs of independent fundamental soluti
$b1(x),b2(x)% and$c1(x),c2(x)% we have

Wc5
c2]xc12c1]xc2

v2p~x!
5c1b22c2b15

b2]xb12b1]xb2

v1p~x!
5Wb . ~2.18!

The Wronskians of pairs of independent fundamental solutions ofLb andLc , which are related via
~2.13! and ~2.14!, are equal!

To summarize, if]xp(x)Þ0, Lb and Lc have the same set of energy eigenvalues and t
eigenfunctions are in one-to-one correspondence.

If, however,p5const, then we are back to the familiar ‘‘supersymmetric’’ factorization

Q†Qb5~v22p2!b, QQ†c5~v22p2!c, ~2.19!

and mappings

c~x!5
1

v1p
Qb~x!, b~x!5

1

v2p
Q†c~x!. ~2.20!

As is well known from the literature on supersymmetric quantum mechanics, the mappings~2.20!
break down if eitherQb50 or Q†c50, in which case the two operatorsQ†Q and QQ† are
isospectral, but only up to a ‘‘zero-mode’’~or, rather, anv25p2 mode!, which belongs to the
spectrum of only one of the operators.20 The casep(x)[0 brings us back to the GN mode
Supersymmetric quantum mechanical considerations were quite useful in the study of fe
bags in Ref. 10.

The ‘‘Witten index’’ associated with the pair of isospectral operatorsLb andLc is always null
for backgrounds in which]xp(x)Þ0, since they are absolutely isospectral, and not only up to z
modes. There is no interesting topology associated with spectral mismatches ofLb andLc . This is
not surprising at all, since the NJL model, with its continuous axial symmetry, does not su
topological solitons. This is in contrast to the GN model, for whichp[0, which contains topo-
logical kinks, whose topological charge is essentially the Witten index of the pair of oper
~2.19!.

We note in passing that isospectrality ofLb andLc , which we have just proved, is consiste
with the g5 symmetry of the system of equations in~2.4!, which relates the resolvent ofD with
that of D̃52g5Dg5 . Due to this symmetry, we can map the pair of equationsLbb(x,y)5d(x
2y) andLcc(x,y)52d(x2y) @Eqs.~2.6!# on each other by

b~x,y!↔2c~x,y! together with ~s,p!→~2s,2p!. ~2.21!
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@Note that under these reflections we also havea(x,y)↔2d(x,y), as we can see from~2.5!.# The
reflection (s,p)→(2s,2p) just shifts both asymptotic chiral anglesu6 by the same amountp,
and clearly does not change the physics. Since this reflection interchangesb(x,y) and c(x,y)
without affecting the physics, these two objects must have the same singularities as functionv,
consistent with isospectrality ofLb andLc .

Isospectrality ofLb andLc realizes a concrete generalization of SUSY quantum mecha
We should mention, in passing, the recent discussion in Ref. 21, made in a different contex
other generalizations of SUSY quantum mechanics.

B. The diagonal resolvent

Following Refs. 22 and 11 we define the diagonal resolvent^xu iD 21ux& symmetrically as

^xu2 iD 21ux&[S A~x! B~x!

C~x! D~x!
D 5

1

2
lim

e→01
S a~x,y!1a~y,x! b~x,y!1b~y,x!

c~x,y!1c~y,x! d~x,y!1d~y,x!
D

y5x1e

.

~2.22!

HereA(x) throughD(x) stand for the entries of the diagonal resolvent, which following~2.5! and
~2.8! have the compact representation23

B~x!5
b1~x!b2~x!

Wb
, D~x!5

i

2

@]x12s~x!#B~x!

v1p~x!
,

~2.23!

C~x!52
c1~x!c2~x!

Wc
, A~x!5

i

2

@]x22s~x!#C~x!

v2p~x!
.

We now use the generalized ‘‘supersymmetry’’ of the Dirac operator, which we discussed
previous subsection, to deduce some important properties of the functionsA(x) throughD(x).

From ~2.23! and from~2.3! we have

A~x!5
i

2

]x22s~x!

v2p~x! S 2
c1c2

Wc
D5

i

2Wc

c2Q†c11c1Q†c2

v2p~x!
.

Using ~2.14! first, and then~2.13!, we rewrite this expression as

A~x!5
i

2Wc
~c2b11c1b2!5

i

2Wc

b1Qb21b2Qb1

v1p~x!
.

Then, using the fact thatWc5Wb @Eq. ~2.18!# and ~2.23!, we rewrite the last expression as

A~x!5
i

2

]x12s

v1p~x! S b1b2

Wb
D5

i

2

~]x12s!B~x!

v1p~x!
.

Thus, finally,

A~x!5D~x!. ~2.24!

Supersymmetry renders the diagonal elementsA andD equal.
Due to ~2.23!, A5D is also a first order differential equation relatingB andC. We can also

relate the off diagonal elementsB andC to each other more directly. From~2.23! and from~2.13!
we find

C~x!52
c1c2

Wc
52

~Qb1!~Qb2!

~v1p!2Wc
. ~2.25!
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After some algebra, and using~2.18!, we can rewrite this as

2~v1p!2C5s2B1sB81
b18b28

Wb
.

The combinationb18b28/Wb appears inB95(b1b2 /Wb)9. After usingLbb1,250 to eliminateb19 and
b29 from B9, we find

b18b28

Wb
5

1

2
B92

p8B8

2~v1p!
2S s21p22s82v21

sp8

v1p DB.

Thus, finally, we have

2~v1p!2C5
1

2
B91S s2

p8

2~v1p! DB82S p22s82v21
sp8

v1p DB. ~2.26!

In a similar manner we can prove that

~v2p!2B52
1

2
C91S s2

p8

2~v2p! DC81S p21s82v21
sp8

v2p DC. ~2.27!

We can simplify~2.26! and ~2.27! further. After some algebra, and using~2.23!, we arrive at

C~x!5
i

v1p~x!
]xD~x!2

v2p~x!

v1p~x!
B~x!,

~2.28!

B~x!5
i

v2p~x!
]xA~x!2

v1p~x!

v2p~x!
C~x!.

Supersymmetry, namely, isospectrality ofLb andLc , enables us to relate the diagonal resolve
of these operators,B andC, to each other.

Thus, we can use~2.23!, ~2.24! and ~2.28! to eliminate three of the entries of the diagon
resolvent in~2.23!, in terms of the fourth.

Note that the two relations in~2.28! transform into each other under

B↔2C simultaneously with ~s,p!→~2s,2p!, ~2.29!

in consistency with~2.21!. The relations in~2.28! are linear and homogeneous, with coefficien
that for ]xp(x)Þ0 do not introduce additional singularities in thev plane. Thus, we see, onc
more, thatB andC have the same singularities in thev plane. We refer the reader to Sec. IV
Ref. 11 for concrete examples of such resolvents.

The casep(x)[0 brings us back to the GN model. In the GN model, ourB andC coincide,
respectively, withvR2 and2vR1 defined in Eqs.~9! and ~10! in Ref. 10. With these identifi-
cations, the relationA5D @Eq. ~2.24!# coincides essentially with Eq.~18! of Ref. 10. The relations
~2.26! and ~2.27! were not discussed in Ref. 10, but one can verify them, for example, for
resolvents corresponding to the kink cases(x)5m tanhmx @Eq. ~29! in Ref. 10#, for which

C52
v

2Am22v2
, B5F S m sechmx

v D 2

21GC.
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III. BILINEAR FERMION CONDENSATES AND VANISHING OF THE SPATIAL FERMION
CURRENT

Following basic principles of quantum field theory, we may write the most generic fla
singlet bilinear fermion condensate in our static background as

^c̄aa~ t,x!Gabcab~ t,x!& reg5NE dv

2p
trFG^xu

2 i

vg01 ig1]x2~s1 ipg5!
ux& regG

5NE dv

2p
trH GF S A~x! B~x!

C~x! D~x!
D 2S A B

C DD
VACG J , ~3.1!

where we have used~2.22!. Herea51,...,N is a flavor index, and the trace is taken over Dir
indices a,b. As usual, we regularized this condensate by subtracting from it a short dis
divergent piece embodied here by the diagonal resolvent

^xu2 iD 21ux&VAC5S A B

C DD
VAC

5
1

2Am22v2 S im cosu v1m sinu

2v1m sinu im cosu D ~3.2!

of the Dirac operator in a vacuum configurations
VAC

5m cosu andpVAC5m sinu.
In our convention forg matrices~2.1! we have

S A~x! B~x!

C~x! D~x!
D 5

A~x!1D~x!

2
11

A~x!2D~x!

2i
g11 i

B~x!2C~x!

2
g01

B~x!1C~x!

2
g5 .

~3.3!

An important condensate is the expectation value of the fermion current^ j m(x)&. In particular,
consider its spatial component. In our static background (s(x),p(x)), it must, of course, vanish
identically

^ j 1~x!&50. ~3.4!

Thus, substitutingG5g1 in ~3.1! and using~3.3! we find

^ j 1~x!&5 iNE dv

2p
@A~x!2D~x!#. ~3.5!

But we have already proved thatA(x)5D(x) in anystatic background (s(x),p(x)) ~Eq. ~2.24!!.
Thus, each frequency component of^ j 1& vanishes separately, and~3.4! holds identically. It is
remarkable that the generalized supersymmetry of the Dirac operator guarantees the consis
any static (s(x),p(x)) background.

Expressions for other bilinear condensates may be derived in a similar manner~here we write
the unsubtracted quantities!. Thus, substitutingG5g0 in ~3.1! and using~3.3!, ~2.24! and ~2.28!,
we find that the fermion density is

^ j 0~x!&5 iNE dv

2p
@B~x!2C~x!#5 iNE dv

2p

2vB~x!2 i ]xD~x!

v1p~x!
. ~3.6!

Similarly, the scalar and pseudoscalar condensates are

^c̄~x!c~x!&5NE dv

2p
@A~x!1D~x!#52NE dv

2p
D~x!, ~3.7!

and
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^c̄~x!g5c~x!&5NE dv

2p
@B~x!1C~x!#5NE dv

2p

2p~x!B~x!1 i ]xD~x!

v1p~x!
. ~3.8!

ACKNOWLEDGMENTS

I am happy to thank A. Zee and M. Moshe for useful discussions. This work has
supported in part by the Israeli Science Foundation Grant No. 307/98~090-903!.

1T. D. Lee and G. Wick, Phys. Rev. D9, 2291~1974!; R. Friedberg, T. D. Lee, and R. Sirlin,ibid. 13, 2739~1976!; R.
Friedberg and T. D. Lee,ibid. 15, 1694 ~1976!; 16, 1096 ~1977!; A. Chodos, R. Jaffe, K. Johnson, C. Thorn, and
Weisskopf,ibid. 9, 3471~1974!.

2W. A. Bardeen, M. S. Chanowitz, S. D. Drell, M. Weinstein, and T. M. Yan, Phys. Rev. D11, 1094~1974!; M. Creutz,
ibid. 10, 1749~1974!.

3R. MacKenzie, F. Wilczek, and A. Zee, Phys. Rev. Lett.53, 2203~1984!.
4D. J. Gross and A. Neveu, Phys. Rev. D10, 3235~1974!.
5Y. Nambu and G. Jona-Lasinio, Phys. Rev.122, 345 ~1961!; 124, 246 ~1961!.
6C. G. Callan, S. Coleman, D. J. Gross, and A. Zee, unpublished. This work is described by D. J. Gross inMethods in
Field Theory, edited by R. Balian and J. Zinn-Justin, Les-Houches session XXVIII 1975~North Holland, Amsterdam,
1976!.

7R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D12, 2443~1975!.
8S. Shei, Phys. Rev. D14, 535 ~1976!.
9See, e.g., A. Klein, Phys. Rev. D14, 558 ~1976!; R. Pausch, M. Thies, and V. L. Dolman, Z. Phys. A338, 441 ~1991!.

10J. Feinberg, Phys. Rev. D51, 4503~1995!.
11J. Feinberg and A. Zee, Phys. Rev. D56, 5050~1997!; Int. J. Mod. Phys. A12, 1133~1997!.
12J. Feinberg and A. Zee, Phys. Lett. B411, 134 ~1997!.
13V. Schoen and M. Thies,2d Model Field Theories at Finite Temperature and Density, Contribution to the Festschrift in

honor of Boris Ioffe, edited by M. Shifman, hep-th/0008175.
14E. Farhi, N. Graham, R. L. Jaffe, and H. Weigel, Nucl. Phys. B585, 443 ~2000!; Phys. Lett. B475, 335 ~2000!.
15S. V. Bashinsky, Phys. Rev. D61, 105003~2000!.
16I. Kosztin, S. Kos, M. Stone, and A. J. Leggett, Phys. Rev. B58, 9365 ~1998!; S. Kos and M. Stone,ibid. 59, 9545

~1999!.
17Note thatv plays here a dual role: in addition to its role as the spectral parameter@thev2 terms in~2.7!#, it also appears

as a parameter in the definition of these operators, hence the explicitv dependence in our notations for these operat
in ~2.7!. For this reason, it is possible to completely factorize the operatorsLb andLc by additional obviousv-dependent
similarity transformations onQ and Q†. However, these similarity transformations are singular at points wherep(x)
56v and are thus ill defined, and we will avoid them.

18We see that if Imk.0, b1 andc1 decay exponentially to the left, andb2 andc2 decay to the right. Thus, if Imk.0, both
b(x,y) andc(x,y) decay asux2yu tends to infinity.

19L. D. Faddeev and L. A. Takhtajan,Hamiltonian Methods in the Theory of Solitons~Springer Verlag, Berlin, 1987!; L.
D. Faddeev, J. Sov. Math.5, 334~1976!, reprinted in L. D. Faddeev,40 Years in Mathematical Physics~World Scientific,
Singapore, 1995!; S. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov,Theory of Solitons—The Invers
Scattering Method~Consultants Bureau, New York, 1984! ~Contemporary Soviet Mathematics!.

20This is true for short range decaying potentials on the whole real line. Strictly speaking~to the best of our knowledge!,
only the casep50 appears in the literature on supersymmetric quantum mechanics.

21D. V. Vassilevich and A. Zelnikov, Nucl. Phys. B594, 501 ~2001!.
22J. Feinberg, Nucl. Phys. B433, 625 ~1995!.
23A, B, C andD are obviously functions ofv as well. For notational simplicity we suppress their explicitv dependence.
                                                                                                                



t
d fun-
Prange

t
trons

urities.
n the
l. This,
ll

n states
single
zero

ed by
lsive

single
tic and
s the

ractive
electric
m, the
m Hall

e
o zero.
nce of
of the
trong
hese
not gen-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 8 AUGUST 2002

                    
Stabilization of impurity states in crossed magnetic
and electric fields

K. Krajewska and J. Z. Kamiński
Institute of Theoretical Physics, Warsaw University, Hoz˙a 69, 00-681 Warszawa, Poland
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It is shown that the renormalizability of the zero-range interaction in the two-
dimensional space is always followed by the existence of a bound state, which is
not true for odd-dimensional spaces. A renormalization procedure is defined and the
exact retarded Green’s function for electrons moving in two dimensions and inter-
acting with both crossed magnetic and electric fields and an attractive zero-range
interaction is constructed. Imaginary parts of poles of this Green’s function deter-
mine lifetimes of quasibound~resonance! states. It is shown that for some particular
parameters the stabilization against decay occurs even for strong electric
fields. © 2002 American Institute of Physics.@DOI: 10.1063/1.1491596#

I. INTRODUCTION

The observations of the integer and fractional quantum Hall effects1,2 are among the mos
important discoveries of recent years and have had a profound impact on both applied an
damental physics. Many aspects of these discoveries are presented in the books edited by
and Girvin3 and by Das Sarma and Pinczuk,4 and in the monographs.5,6 From the theoretical poin
of view the quantum Hall phenomenon is due to the two-dimensional dynamics of elec
moving under the influence of crossed magnetic and electric fields in the presence of imp
Since the de Broglie wavelength of electrons scattered by impurities is much larger the
interaction range, therefore, it is legitimated to describe a scatterer by a zero-range potentia
in fact, has been already proposed by Prange7 shortly after the discovery of the quantum Ha
effect, and discussed further in Refs. 8 and 9. In his seminal paper Prange studied electro
in two dimensions in perpendicular magnetic and in-plane electric fields in the presence of a
repulsive ‘‘delta-like’’ scatterer. Prange’s model, with an attractive zero-range potential and
electric field, has been reconsidered by Perez and Coutinho,10 and by Cavalcanti and de
Carvalho.11 They showed that the attractive zero-range interaction can be rigorously defin
renormalizing the strength of thed-function. Such a procedure cannot be developed for a repu
two-dimensionald-function ~as it will follow shortly!, for which an artificial cutoff has to be
introduced, as described for instance in Ref. 12. The problem of electron scattering by a
impurity represented by a repulsive short-range potential in the presence of both magne
electric fields has been further studied from the classical point of view in Ref. 13, wherea
quantum description has been developed in Ref. 12 for a repulsive, and in Ref. 14 for an att
d-function potential. Both these quantum analyses show that due to external magnetic and
fields new long living quasibound states appear in the positive part of the energy spectru
existence of which appears to be crucial for the explanation of the robustness of the quantu
effect.7,12

There has been shown12,14 that in the limit of a very weak electric field the lifetime of thes
quasibound states tends to infinity and grow in a Gaussian way as the electric field tends t
This finding, not taking into account, however, the precisely determined functional depende
the lifetime on the strength of the electric field, agrees with our common understanding
decay problem in a weak electric field. The aim of this paper is to analyze this problem for s
electric fields. It is usually believed that with an increasing electric field the lifetimes of t
quasibound states should decrease to zero. It appears, however, that such a behavior is
39370022-2488/2002/43(8)/3937/7/$19.00 © 2002 American Institute of Physics
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erally true and that for some particular values of magnetic and electric fields one observes
phenomenon, the stabilization of these new quasibound states. We demonstrate this phen
for an attractived-function potential considered in Ref. 14.

In this paper we use units in which\51.

II. ATTRACTIVE d-FUNCTION POTENTIAL

In this section we shall define the renormalized attractived-function potential for one-, two-,
and three-dimensional cases. To this end let us assume that a quantum system without th
action is described by the hamiltonianH0 . We introduce further a regularization of a zero-ran
potential such that the total hamiltonian is equal to

H5H01lsds~r !, ~1!

in which s is a regularization parameter,ls is a bare coupling constant, andds(r ) tends to the
Dirac distributiond(r ) in a d-dimensional space. Our aim is to construct the retarded Gre
function satisfying the equation,

~E2H !G(1)~r ,r 8;E!5d~r2r 8!, ~2!

provided that the range of a regularized potential isvery small, i.e., is much smaller than th
electron’s de Broglie wavelength or the size of a bound state wave function. This means tha
Lippmann–Schwinger equation

G(1)~r ,r 8;E!5G0
(1)~r ,r 8;E!

1lsE ddr 9G0
(1)~r ,r 9;E!ds~r 9!G(1)~r 9,r 8;E!, ~3!

in which G0
(1)(r ,r 8;E) is the Green’s function for the HamiltonianH0 , we can approximate unde

the integral the full Green’s functionG(1)(r 9,r 8;E) by G(1)(0,r 8;E). This allows us to calculate
G(1)(0,r 8;E) and to arrive at the following expression for the retarded Green’s function:

G(1)~r ,r 8;E!5G0
(1)~r ,r 8;E!

1
G0

(1)~r ,0;E!G0
(1)~0,r 8;E!

ls
212*ddr 9G0

(1)~0,r 9;E!ds~r 9!
. ~4!

In order to proceed further let us choose a particular regularization prescription for which a
space and momentum integrals, that will appear below, can be carried out and expressed i
of elementary functions, namely,

ds~r !5E ddk

~2p!d exp~ ik•r2s2k2!. ~5!

Let us also assume for a moment thatH0 describes free electrons of a reduced massm* . For such
a hamiltonian the retarded Green’s function adopts the form

G0
(1)~r ,r 8;E!52 iE

0

`

dtei(E1 i«)t

3E ddk

~2p!d expS ik•~r2r 8!2 i
k2

2m*
t D , ~6!

in which « is an infinitesimally small positive real number. Thus, after performing the Ga
integration overk, the denominator in Eq.~4! becomes
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D~E!5ls
211 iS m*

2p iD
d/2E

0

`

dt
ei(E1 i«)t

~ t22im* s2!d/2 . ~7!

As we see, ford51 the last integral exists fors50, i.e., there is no need for the renormalizati
of a coupling constantls . On the other hand, ford.1 the integral in the equation above diverg
for small t in the limit of a vanishing regularization parameters. It can be shown, however, tha
the divergent part of this integral can be absorbed into the bare coupling constantls . To this end
let us consider in the beginning the case ofd52. Integrating by parts we end up in the limit o
vanishings with

D~E!5lR
211

m*

2p S ln~ i!2 iEE
0

`

dtei(E1 i«)t ln~ t/t0! D , ~8!

wheret0 is an arbitrary positive real number of the same dimensionality ast, introduced only for
dealing with a dimensionless argument of the logarithm function, andlR is the renormalized
coupling constant,

lR
215 lim

s→0
Fls

212
m*

2p
lnS 2m* s2

t0
D G . ~9!

As it follows from the equation above the bare coupling constantls has to be negative in order t
carry out the renormalization procedure. Hence, the zero-range limit exists only for an attr
interaction. Performing the remaining integration we finally arrive at

D~E!5lR
211

m*

2p
lnS e2g

2Et0
D , ~10!

where g is the Euler’s constant. Since the energy of a bound state,EB,0, supported by this
interaction is determined by the zero ofD(E), therefore

EB52
1

t0
e2g12p/lRm* . ~11!

As one sees, the expression above is always negative, independently weather the renor
coupling constant is negative or positive. This means that the zero-range potential in
dimensional space always supports one bound state. Combining~10! with ~11! we arrive at the
following expression for the denominatorD(E):

D~E!5
m*

2p
lnS EB

E D , ~12!

in which an artificial parametert0 does not appear any more.
The existence of a bound state for a zero-range interaction, irrespectively of the sign

renormalized coupling constant, can only happen ford52. In order to show this let us consider th
case ofd53. Now we do not need to introducet0 and end up with

D~E!5lR
211

m*

2p
A22m* E, ~13!

where the renormalized coupling constant is equal to

lR
215 lim

s→0
S ls

211
m*

2p3/2s D . ~14!
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Hence, it is clearly seen that again the renormalization procedure can be only performed
negative bare coupling constant. Nevertheless, contrary to the two-dimensional case, a bou
exists only for a negative renormalized coupling constantlR . A similar situation occurs for the
one-dimensionald-function potential supporting one bound state just for negative coupling
stants~renormalized and bare coupling constants are equal here and amount to2A2uEBu/m* !.

Summarizing, for the two-dimensional zero-range interaction the renormalizability is follo
by the existence of a bound state, irrespectively of the sign of the renormalized coupling co
In our further discussion we shall limit ourselves to the two-dimensional renormalizable
range interaction. Let us also note in closing this section that the zero-range potential
arbitrary dimensional space has been studied by Wo´dkiewicz15 who also emphasized the differ
ence between odd and even dimensions.

III. QUASIBOUND STATES IN CROSSED MAGNETIC AND ELECTRIC FIELDS

We can now include into our two-dimensional model external magnetic and electric fields
this we need the exact form of the retarded Green’s function for the Hamiltonian,

H05
1

2m* ~2 i“2eA~r !!22eE•r . ~15!

Let us assume that electrons move in thexy-plane, the magnetic fieldB is perpendicular to this
plane and the electric fieldE points into thex-direction. For such a geometry and for the vec
potential in the symmetric gauge, i.e.,A5 1

2B3r ,

H05
1

2m* F S 2 i]x1
eB
2

yD 2

1S 2 i]y2
eB
2

xD 2G2eEx, ~16!

and the Green’s function adopts the form

G0
(1)~r ,r 8;E!52

m* v

4p E
0

`

dt
ei(E1 i«)t

sin
vt

2

3expF im* v

4
~~x2x8!21~y2y8!2!cot

vt

2
1

im* v

2
~xy82x8y!1

ieEt

2
~x1x8!

1
ieE
v S vt

2
cot

vt

2
21D S 2y1y81

eEt

2m* v D G , ~17!

with v5ueuB/m* being the cyclotron frequency. Since lifetimes of quasibound states are d
mined by poles of the Green’s function, therefore, we shall concentrate in our further discu
on the denominator in Eq.~4!. One can find that in this particular caseD(E) can be expressed a
follows:

D~E!5ls
211

m* v

4p E
0

`

dt
ei(E1 i«)t

sin
vt

2
2 im* vs2 cos

vt

2

3expF it

2m* S eE
v D 2S vt

2
cot

vt

2
21D2s2S eE

v D 2 S vt

2 D 2

1S vt

2
cot

vt

2
21D 2

12 im* vs2 cot
vt

2

G , ~18!
                                                                                                                



d by

h the
d as

living
zeros
ergy
his

d 2 we

eld
that at
, and

. Only

ce

st

3941J. Math. Phys., Vol. 43, No. 8, August 2002 Impurity states in magnetic and electric fields

                    
where the integral above diverges logarithmically for small values oft in the zero-range limit.
However, as we have proved it in the previous section, this singularity can be remove
combining the divergent term with the bare coupling constantls .

For our further analysis it is convenient to introduce dimensionless variables, in whic
length is measured in the units of 1/Am* v, whereas the electric field and the energy are scale
Ẽ5ueuE/Am* v3 and Ẽ52E/v, respectively. Changing the integration variable tos5vt/2 we
obtain finally fors→0,

D~E!5
m*

2p
F lnS ẼB

Ẽ
D 1E

0

`

dsei( Ẽ1 i«)sS exp~ iẼ2s~s cots21!!

sins
2

1

s
D G . ~19!

We shall demonstrate now that even in strong electric fields one can observe long
quasibound states. This nonperturbative result follows from the numerical determination of
of D(E). It appears that for some particular values of the electric field and the binding en
there exist zeros of~19! with very small imaginary parts, although real parts remain positive. T
phenomenon, which we call the stabilization, is presented in Figs. 1, 2, and 3. In Figs. 1 an
draw the dependence of lifetimes,t52(2 Im(E))2152(v Im(Ẽ))21, and real parts ofE, Re(E)
5 (v/2)Re(Ẽ), in units ofv21 andv/2, respectively. We see that with the increasing electric fi
the lifetime initially decreases, which is a commonly accepted result. We observe, however,
a particular value for the electric field the lifetime starts increasing, approaches its maximum
then monotonically decreases. In both presented cases the real part ofE remains positive and is
just below the third Landau level of energy 5v/2 or above the second one of energy 3v/2. In Fig.
3 we show the position of these poles of the Green’s function in the complex energy plane

FIG. 1. Presents the dependence of the lifetimet521/Im(Ẽ) and the real part ofẼ on the scaled electric fieldẼ for an

impurity which supports one bound state of energyẼB526.4. ForẼ50.132 we observe the stabilization of a resonan
state located just below the third Landau level.

FIG. 2. The same as in Fig. 1 but forẼB522.8. The stabilization occurs forẼ50.163 for a resonance state located ju
above the second Landau level.
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for the visual purpose the imaginary part is raised to the power 1/5. We see that with an incr
electric field the poles in the beginning depart from the real axis, but afterward start approa
it, reach minimum for the absolute value of the imaginary part ofE ~which appears to be almos
equal to zero within the accuracy of our numerical calculation! and then again migrate downward
Such an unexpected nonmonotonic behavior happens for some particular values of the b
energies as well as the applied fields. At this point let us only mention that estimations of ma
and electric fields show that they can be generated easily in experimental setups.

What we have checked in our numerical investigations is that the stabilization occurs on
states which are close to the excited Landau levels and does not appear for states near
Landau level. Indeed, for very small electric fields resonances considered in this paper ap
the second and the third Landau levels, i.e., the excited ones. This appears to be a general
the electric field generates new resonance states in a close vicinity ofexcitedLandau levels. These
states differ from the ones considered by Prange7 and reinvestigated by Cavalcanti and
Carvalho.11 In their case, when the electric field is switched off, the point interaction modifies
Landau states with the vanishing angular momentum, because only for these states th
function does not vanish at the origin. The states with a nonzero angular momentum, i.
vortex Landau states, for which the wave functions explicitly depend on the polar anglew and
vanish at the origin, are not affected by a point interaction. The situation changes if a small e
field is applied. Then the vortex Landau states acquire small contributions which do not van
the origin, as follows for instance from perturbation theory. Hence, the interaction with a co
potential does not vanish, and apart from the well-known states considered previously7,11 new
resonance states emerge close to the excited Landau levels. These are the states for w
stabilization takes place. Since the wave function of them for small electric fields is predomin
composed of the vortex Landau states of nonzero angular momentum, therefore, one can c
the vortex resonance states. This fact suggests that the stabilization presented in this pape
to the angular motion of electrons around the impurity, as it also happens in the classical c
erations for a repulsive potential.13 The analysis presented above can be applied to weak ele
fields. For strong nonperturbative electric fields we can rather rely on the exact numerical an
of this problem with the hope that the picture above still remains valid. However, the almos
suppression of ionization rates for some particular values of the electric field hardly ca
explained only in terms of classical physics and we expect that its origin is due to compli
quantum interference effects which can only be studied numerically.
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FIG. 3. Shows the trajectories of two resonances considered in Figs. 1 and 2 in the complex energy plane. For th

purpose the imaginary part is raised to the power 1/5. The left frame corresponds to the binding energyẼB526.4 and the

right one toẼB522.8. The circle marks the minimum valueẼ50.01, whereas the asterisk indicates the maximum va

Ẽ53.1. The stabilization occurs forẼ50.132, Re(Ẽ)54.83, Im(Ẽ)520.111310210 and Ẽ50.163, Re(Ẽ)53.0266,

Im(Ẽ)520.398310211, respectively.
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of pseudo-Hermiticity and the presence
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We show that a diagonalizable~non-Hermitian! Hamiltonian H is pseudo-
Hermitian if and only if it has an antilinear symmetry, i.e., a symmetry generated by
an invertible antilinear operator. This implies that the eigenvalues ofH are real or
come in complex conjugate pairs if and only ifH possesses such a symmetry. In
particular, the reality of the spectrum ofH implies the presence of an antilinear
symmetry. We further show that the spectrum ofH is real if and only if there is a
positive-definite inner-product on the Hilbert space with respect to whichH is
Hermitian or alternatively there is a pseudo-canonical transformation of the Hilbert
space that mapsH into a Hermitian operator. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1489072#

I. INTRODUCTION

The main reason for the recent interest inPT-symmetry1 is that the eigenvalues of ever
PT-symmetric Hamiltonian are real or come in complex conjugate pairs. In particular, i
PT-symmetry is exact, the spectrum of the Hamiltonian is real. In Ref. 2, we introduced
concept of a pseudo-Hermitian operator and showed that the remarkable spectral propertie
PT-symmetric Hamiltonians follow from their pseudo-Hermiticity. Under the assumption of
diagonalizability~equivalently the existence of a complete biorthonormal set of energy eigen
tors!, we obtained in Ref. 3 a complete characterization of all the~non-Hermitian! Hamiltonians
that have a real spectrum. Here we also pointed out that the spectral properties
PT-symmetric Hamiltonians are common to all Hamiltonians possessing an antilinear sym
~a symmetry generated by an invertible antilinear operator!. Therefore, at least for the class o
diagonalizable Hamiltonians, presence of an antilinear symmetry implies pseudo-Hermitic
the Hamiltonian. The main purpose of the present article is to show that the converse o
statement holds as well, that is, pseudo-Hermiticity of a Hamiltonian implies the existence
antilinear symmetry. A direct consequence of this result is that if the spectrum of the Hamilt
is real, then the system has an antilinear symmetry,PT-symmetry being the prime example.

The organization of the article is as follows. Section II includes a brief review of the nece
results reported in the companion articles.2,3 Section III examines anti-pseudo-Hermiticit
~pseudo-Hermiticity with an antilinear automorphism.! Here we prove that every~non-Hermitian!
diagonalizable Hamiltonian is anti-pseudo-Hermitian and that the pseudo-Hermiticity o
Hamiltonian implies the presence of an antilinear symmetry. Section IV offers a description
Hamiltonians with a real spectrum in terms of certain associated Hermitian operators. Sec
presents a summary of the main results and the concluding remarks.

Throughout this article we shall consider~non-Hermitian! HamiltoniansH that are diagonal-
izable and have a discrete spectrum. As we explain below, this means that these Hamil
admit a complete biorthonormal set of eigenvectors$(ucn ,a&,ufn ,a&)%. The latter satisfy the
following defining relations:4

a!Electronic mail: amostafazadeh@ku.edu.tr
39440022-2488/2002/43(8)/3944/8/$19.00 © 2002 American Institute of Physics
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Hucn ,a&5Enucn ,a&, H†ufn ,a&5En* ufn ,a&, ~1!

^fm ,bucn ,a&5dmndab , ~2!

(
n

(
a51

dn

ucn ,a&^fn ,au51, ~3!

wheren anda are, respectively, the spectral and degeneracy labels,dn is the multiplicity ~degree
of degeneracy! of En , † and* , respectively, denote the adjoint and complex-conjugate,dmn stands
for the Kronecker delta function, and 1 is the identity operator. In view of Eqs.~1!–~3!, we also
have

H5(
n

(
a51

dn

Enucn ,a&^fn ,au, H†5(
n

(
a51

dn

En* ufn ,a&^cn ,au. ~4!

In order to see the equivalence of the existence of a complete biorthonormal set of eig
tors of H and its diagonalizability, we note that by definition a diagonalizable HamiltoniaH
satisfiesA21HA5H0 for an invertible linear operatorA and a diagonal linear operatorH0 , i.e.,
there is an orthonormal basis$un,a&% in the Hilbert space and complex numbersEn such that
H05(n(aEnun,a&^n,au. Then lettingucn ,a&ªAun,a& andufn ,a&ª(A21)†un,a&, we can eas-
ily check that$ucn ,a&,ucn ,a&% is a complete biorthonormal system forH. The converse is also
true, for if such a system exists we may setAª(n(aucn ,a&^n,au for some orthonormal basi
$un,a&% and check thatA215(n(aun,a&^fn ,au andA21HA5H0 , i.e., H is diagonalizable.

We would like to emphasize that the diagonalizability condition may be viewed as a phy
requirement without which an energy eigenbasis would not exist. To our knowledge all k
non-Hermitian Hamiltonians that are used in physical applications are diagonalizable and
fore admit a complete biorthonormal set of eigenvectors. This in particular includes all the
mitian Hamiltonians as well as the non-Hermitian Hamiltonians used in ionization optics,5 the
study of dissipative systems and resonant states,6 two-component formulation of the minisupe
space quantum cosmology,7 and also thePT-symmetric Hamiltonians whose spectral propert
have been obtained using numerical methods.

II. PSEUDO-HERMITICITY

Let H:H→H be a linear operator acting in a Hilbert spaceH and h:H→H be a linear
Hermitian automorphism~invertible transformation!. Then theh-pseudo-Hermitian adjoint ofH is
defined by2

H]
ªh21H†h. ~5!

H is said to be pseudo-Hermitian with respect toh or simplyh-pseudo-Hermitian ifH]5H. H is
said to be pseudo-Hermitian if it is pseudo-Hermitian with respect to some linear Herm
automorphismh.

The basic properties of pseudo-Hermitian operators are discussed in Refs. 2 and 3. H
survey the properties that we shall make use of in this article. LetH:H→H be a diagonalizable
linear operator. Then

~i! H is pseudo-Hermitian if and only if its eigenvalues are real or come in complex-conju
pairs;2 and

~ii ! if H is pseudo-Hermitian with respect to two linear Hermitian automorphismsh1 andh2 ,
thenh1

21h2 generates a symmetry ofH, i.e., @H,h1
21h2#50.2
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III. ANTI-PSEUDO-HERMITICITY

We first recall that a functiont:H→H acting in a~complex! Hilbert spaceH is said to be an
antilinear operator if for alla,bPC and uj&,uz&PH,

t~auj&1buz&)5a* tuj&1b* tuz&. ~6!

An antilinear operatort:H→H is said to be anti-Hermitian8 if for all uj&,uz&PH,

^zutuj&5^jutuz&. ~7!

Definition 1:A linear operatorH:H→H acting in a Hilbert spaceH is said to be anti-pseudo
Hermitian if there is an antilinear anti-Hermitian automorphismt:H→H satisfying

H†5tHt21. ~8!

We begin our analysis by giving a characterization of antilinear anti-Hermitian operators
respect to which a given linear operator is anti-pseudo-Hermitian.

Theorem 1: Let H be a Hilbert space andH:H→H be a diagonalizable linear operator wi
a discrete spectrum and a complete biorthonormal set of eigenvectors$(ucn ,a&,ufn ,a&)%. Then
t:H→H is an antilinear anti-Hermitian operator andH is t-anti-pseudo-Hermitian if and only i
there are symmetric invertible matricesc(n) with entriescab

(n) such that for alluz&PH,

tuz&5(
n

(
a,b51

dn

cab
(n)^zufn ,a& ufn ,b&. ~9!

Proof: Suppose thatt:H→H is a given antilinear anti-Hermitian operator andH is t-anti-
pseudo-Hermitian, i.e.,~8! or equivalently

H†t5tH ~10!

holds. Letting both sides of~10! act onucn ,a& and using~1! and ~6!, we have

H†~tucn ,a&)5En* ~tucn ,a&).

Comparing this equation with the second equation in~1!, we find

tucn ,a&5 (
b51

dn

cba
(n)ufn ,b&, ~11!

wherecab
(n) are defined by

cab
(n)
ª^cn,autucn ,a&. ~12!

We can also express~11! in the form

^cm ,butucn ,a&5dmncba
(n) . ~13!

Next note that becauset is an invertible operator, the matrixc(n)5(cab
(n)) formed by cab

(n) is
nonsingular. In fact, applyinĝfn,cut21 to both sides of~11! and using~6! and the fact thatt21

is also antilinear, we have

~c(n)21
!ab5^fn ,aut21ufn ,b&* . ~14!

Furthermore, in view of~12! and ~7!, c(n) is a symmetric matrix. Now letuz& be an arbitrary
element ofH and use~13!, ~3! and ~7! to compute
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(
n

(
a,b51

dn

cab
(n)^zufn ,a& ufn ,b&5(

n,m
(

a,b51

dn

ufm ,b&^zufn ,a&^cn ,autucm ,b&

5(
m

(
b

ufm ,b&^zutucm ,b&

5(
m

(
b

ufm ,b&^cm ,butuz&

5tuz&.

This establishes~9!. Next, suppose thatc(n) are given invertible symmetric matrices andt is
defined by~9!. Then the antilinearity oft follows from the antilinearity of the inner-product in it
first entry. The following simple calculation shows thatt is anti-Hermitian. For alluj&,uz&PH,

^jutuz&5(
n

(
a,b51

dn

cab
(n)^zufn ,a&^jufn ,b&

5(
n

(
a,b51

dn

cab
(n)^zufn ,b&^jufn ,a&

5(
n

(
a,b51

dn

cab
(n)^jufn ,a&^zufn ,b&

5^zutuj&,

where we used~9! and the fact thatc(n) are symmetric. In order to establish thet-anti-pseudo-
Hermiticity of H we first observe that~9! implies

t21uz&5(
n

(
a,b51

dn

~c(n)!ab
21* ^zucn ,a& ucn ,b&. ~15!

This can be easily checked by applyingt to the right-hand side of~15! and using~9!, ~2!, and~3!
to show that the result isuz&. Next, we note that applying both sides of~9! to ucn ,a& we recover
~11!. Finally, we use~9!, ~15!, ~6!, ~1!, ~4!, and~11! to compute, for alluz&PH,

tHt21uz&5t(
n

(
a,b51

dn

c(n)
ab
21* ^zucn ,a& Enucn ,b&

5(
n

(
a,b51

dn

En* c(n)
ab
21^zucn ,a&* tucn ,b&

5(
n

(
a,b,c51

dn

En* ^cn ,auz&cca
(n)c(n)

ab
21ufn ,c&

5(
n

(
b51

dn

En* ufn ,b&^cn ,buz&5H†uz&.

Therefore,tHt215H†. h

We should emphasize that, unlike the case of pseudo-Hermitian Hamiltonians, the
pseudo-Hermiticity does not restrict the energy spectrum. In fact, we can use Theorem 1 to
the following.
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Corollary 1: Every diagonalazable linear operatorH:H→H with a discrete spectrum is ant
pseudo-Hermitian.

Proof: Let $(ucn ,a&,ufn ,a&)% be a complete biorthonormal set of eigenvectors, andt:H
→H be defined by~9! with c(n)51 for all n, i.e., for all uz&PH,

tuz&ª(
n

(
a51

dn

^zufn ,a& ufn ,a&. ~16!

Then according to Theorem 1,t is an antilinear anti-Hermitian operator andH is t-anti-pseudo-
Hermitian. h

Corollary 2: Every diagonalizable pseudo-Hermitian linear operatorH:H→H with a discrete
spectrum has an antilinear symmetry.

Proof: Let H be pseudo-Hermitian. Then according to Corollary 1 it is also anti-pseu
Hermitian, i.e., there are a linear Hermitian automorphismh:H→H and an antilinear anti-
Hermitian automorphismt:H→H such that

hHh215H†5tHt21. ~17!

Hence,@H,h21t#50. Clearlyh21t is an antilinear operator. h

Theorem 2:Let H:H→H be a diagonalizable linear operator acting in a Hilbert spaceH with
a discrete spectrum. Then the following are equivalent.

~1! The eigenvalues ofH are real or come in complex-conjugate pairs.
~2! H is pseudo-Hermitian.
~3! H has an antilinear symmetry.

Proof: The equivalence of~1! and ~2! was established in Ref. 2; Corollary 2 shows that~2!
implies ~3!; the fact that~3! implies ~1! follows from a simple calculation given in Ref. 3. h

A class ofPT-symmetric Hamiltonians is given by

H5
p2

2m
1V1~x!1 iV2~x!, ~18!

whereV1 and V2 are, respectively, even and odd real-valued functions and the classical
space is assumed to be real, i.e.,x and p are the standard Hermitian operators representing
position and momentum of a particle of massm. As we point out in Ref. 2, the Hamiltonian~18!
is P-pseudo-Hermitian. It is also easy to check that it isT-anti-pseudo-Hermitian. The
P-pseudo-Hermiticity andT-anti-pseudo-Hermiticity of this Hamiltonian implies itsP21T5PT
symmetry. In general, there arePT-symmetric Hamiltonians H that are neither
P-pseudo-Hermitian norT-anti-pseudo-Hermitian. According to Theorem 2, if we make the ph
cal assumption thatH is diagonalizable, so that it admits a complete biorthonormal set of en
eigenvectors, thenH must be pseudo-Hermitian with respect to a linear Hermitian automorph
h. It turns out that the choice ofh is not unique. But fixing an antilinear anti-Hermitian opera
t with respect to whichH is anti-pseudo-Hermitian@namely,~9!#, we can expressh in terms ofPT
andt according to

h5tPT. ~19!

One can easily check thatPT-symmetry (@PT,H#50) and anti-pseudo-Hermiticity~8! imply
pseudo-Hermiticity ofH with respect to~19!.

Next we consider a general diagonalizable HamiltonianH with a discrete spectrum and
symmetry generated by a general invertible antilinear operatorX,

@H,X#50. ~20!
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The antilinearity ofX implies h-pseudo-Hermiticity ofH with respect to some linear Hermitia
automorphismh. The anti-pseudo-Hermiticity ofH with respect to an antilinear automorphism
the form~9! always holds. Hence Eqs.~17! are valid. Taking the adjoint of both sides of~20! and
making use of~17!, we can easily show thatXh

]
ªh21Xh andXt

]
ªt21Xt commute withH, i.e.,

they generate antilinear symmetries of the system as well.

IV. NON-HERMITIAN HAMILTONIANS WITH A REAL SPECTRUM

We first recall the following results which we reported in Refs. 2 and 3.
~1! The ~indefinite! inner-product defined by

;uj&,uz&PH, ^̂ juz&&ª^juhuz&, ~21!

is invariant under the evolution generated by anh-pseudo-Hermitian HamiltonianH.2 It is also
easy to check that such a Hamiltonian is Hermitian with respect to the~indefinite! inner-product
~21!. See also Ref. 9.

~2! A diagonalizable~non-Hermitian! Hamiltonian has a real spectrum if and only if it
pseudo-Hermitian with respect to a linear Hermitian automorphism of the form

h5OO†, ~22!

whereO:H→H is a linear automorphism.3

These statements suggest the following characterization of the~non-Hermitian! Hamiltonians
with a real spectrum. See also Ref. 10.

Theorem 3:A diagonalizable HamiltonianH acting in a Hilbert spaceH has a real spectrum
if and only if there is a positive-definite inner-product onH with respect to whichH is Hermitian.

Proof: SupposeH has a real spectrum so that it isOO†-pseudo-Hermitian for a linear auto
morphism O:H→H. Then the inner-product~21! with h5OO† is clearly a positive-definite
inner-product with respect to whichH is Hermitian. Conversely, suppose that there is a posit
definite inner-product ( , ) with respect to whichH is Hermitian. Then treating the spectr
problem forH in the Hilbert spaceH with the inner-product ( , ), we find thatH has a real
spectrum.

Corollary: Suppose thatH has an antilinear symmetryX. If X is an exact symmetry ofH,
then there is a positive-definite inner product onH with respect to whichH is Hermitian. h

Proof: Exactness of an antilinear symmetry implies reality of the spectrum ofH.3 The con-
clusion then follows from Theorem 3. h

Next we give an alternative and in a sense equivalent characterization of the~non-Hermitian!
Hamiltonians with a real spectrum.

Definition 2: Consider a quantum system with the Hilbert spaceH and the Hamiltonian
H:H→H. Then a linear automorphismA:H→H is said to be apseudo-canonical transformatio
for the system if for alluz&PH the transformation

uz&→u z̃&ªAuz& ~23!

leaves the Schro¨dinger equation,

i
d

dt
uc~ t !&5Huc~ t !& ~24!

form-invariant. A unitary pseudo-canonical transformation is called a~quantum! canonical
transformation.11

Clearly the defining condition for a pseudo-canonical transformation implies the follow
transformation rule for the Hamiltonian:

H→H̃ªAHA211 iȦA21, ~25!
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where a dot denotes a time-derivative. For a time-independent pseudo-canonical transformaA,
the second term on the right-hand side of~25! drops andH transforms as

H→H̃ªAHA21. ~26!

Theorem 4: A diagonalizable time-independent HamiltonianH has a real spectrum if an
only if there is a pseudo-canonical transformation that mapsH into a Hermitian operator.

Proof: Suppose thatH has a real spectrum. Then it isOO†-pseudo-Hermitian for a linea
automorphismO:H→H, i.e., H†5OO†H(OO†)21. Let AªO†. Then, in view of~26! and the
preceding equation, we have

H̃†5~AHA21!†5~A21!†H†A†5~A21!†A†AHA21~A†!21A†5AHA215H̃.

Hence the transformed Hamiltonian is Hermitian. Conversely suppose that there is a p
canonical transformationA:H→H under whichH transforms to a Hermitian HamiltonianH̃ and
let OªA†. Then using~26! and H̃†5H̃, we have

OO†H~OO†!215A†AA21H̃A~A†A!215A†H̃†~A†!215~A21H̃A!†5H†.

Therefore,H is OO†-pseudo-Hermitian, and its spectrum is real. h

Corollary: Suppose thatH has an antilinear symmetryX. If X is an exact symmetry ofH,
then there is a pseudo-canonical transformation that mapsH into a Hermitian operator.

Proof: Exactness of an antilinear symmetry implies reality of the spectrum ofH.3 The con-
clusion then follows from Theorem 4. h

V. DISCUSSION AND CONCLUSION

In this article we established the equivalence of the notion of pseudo-Hermiticity and pre
of an antilinear symmetry for the class of diagonalizable~non-Hermitian! Hamiltonians. This
required the study of pseudo-Hermiticity with respect to antilinear anti-Hermitian automorph
It turned that the latter does not restrict the choice of the Hamiltonian and such antilinear
morphisms always exist. In fact, we obtained the general form of these automorphisms. For
complete biorthonormal eigenbasis, they are determined in terms of a sequence of comple
metric matricesc(n). The choice of unity for all these matrices leads to a canonical antilin
anti-Hermitian automorphism, namely~16!. Under an invertible transformationu of the basis

ucn ,a&→ (
b51

dn

ubaucn ,b&, ufn ,a&→ (
b51

dn

~u21†!baufn ,b&

that preserves its completeness and biorthonormality, the matricesc(n) transform according to

c(n)→u* tc(n)u* 5u†c(n)u†t,

where t denotes the transpose. We can transform to a basis where a generalt has the canonica
form ~16! if we can find invertible matricesv5u21† satisfyingc(n)5vv t. As shown in Ref. 12
this is always possible. Therefore, up to the choice of the biorthonormal eigenbasis,t is actually
unique.

A simple consequence of our findings is that the reality of the spectrum of a Hamilto
implies the presence of an antilinear symmetry. In view of the proof of Corollary 2 and Eq.~9! of
this article and Eq.~23! of Ref. 2, we have in fact an explicit expression for the generator of s
a symmetry in terms of the biorthonormal eigenvectors of the Hamiltonian. We also gave
characterizations of Hamiltonians with real spectrum. These characterizations show how a
tonian with a real spectrum may be related to an associated Hermitian Hamiltonian. An
simple implication of our analysis is that every Hermitian Hamiltonian has an antilinear symm
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Energy levels and wave functions of vector bosons
in a homogeneous magnetic field
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We aimed to obtain the energy levels of massive spin-1 particles moving in a
constant magnetic field. The method used here is completely algebraic. In the
process to obtain the energy levels the wave function is expressed in terms of
Laguerre polynomials. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1489502#

I. INTRODUCTION

The problem of finding the states of a spinning particle moving in an external field has
solved for many different situations. The relativistic wave equation of spin-1 particles was a
derived by Kemmer in 1939.1 Kemmer theory gives an entirely different aspect of the meson
is similar to the Dirac’s equation of the electron. The similarity is very striking and the me
investigated by Kemmer yields more than a mere restatement of the others. Kemmer equat
Dirac type equation but involves matrices obeying a different scheme of commutation rules.
rules were first given by Duffin.2 The theory can be developed in strikingly close corresponde
to Dirac’s electron theory; practically all the definitions of physical quantities like spin, mag
moment etc., have their exact counterpart.

There are various wave equations to describe the spin-1 particles given in literature.3–6 The
methods used in these equations are quite complicated and give different results when th
compared. The method of Shay and Good is to expand the six-component wave function in
of complete set of functions. This method leads to an invariant way to find the matrix elem
and it allows for arbitrary magnetic dipole moment and electric quadrupole moment of the
ticle. The eigenvalues of Shay and Good’s equation have been obtained by Krase, Lu, and
by using the quite complicated conventional method of solving the differential equation. A ge
method of obtaining the energy levels of any spin theory has been proposed by Tsai and
They went on to obtain the energy levels of the spin-1 theory of Proca and Kemmer and ob
that spin-1 theory is consistent only when there is no anomalous magnetic moment coupli

The generally accepted method of approach is to define the Lagrange equation of moti
use the differential equation techniques to solve for the eigenfunctions and eigenvalues
system. This method becomes complicated when higher spinning particles are handled.

In this study by starting from the Kemmer equation we used an algebraic method for obta
the energy levels of massive spin-1 particles without anomolous magnetic moment movin
homogeneous magnetic field.

The method we used does not require an explicit solution of the equation. The massive
particle will be considered as a two-identical particle system of spin-1/2 instead of a single s
particle. This is the second quantization approach of Schro¨dinger applied to this problem. In th
process to obtain the energy levels of the massive spin-1 particles, the solutions of sp
particles moving in a homogeneous magnetic field are used. The solutions of the Dirac equa
a magnetic field have been found in terms of Laguerre polynomials.7 Since Kemmer matrices ar
expressed in terms of Dirac matrices and a massive spin-1 particle is considered as a two-id
fermion system, we used the Kemmer equation for obtaining the energy spectrum. To intr
39520022-2488/2002/43(8)/3952/11/$19.00 © 2002 American Institute of Physics
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the method we first used it to obtain the energy levels of spin-1/2 particles moving in a hom
neous magnetic field in Sec. II. In the Conclusion we compared our results with the pre
results and saw that they were in agreement with them.

The vector potential we used is

AW 52 1
2 yBx̂1 1

2 xBŷ, ~1!

whereB is constant.

II. ENERGY SPECTRUM OF SPIN-1Õ2 PARTICLES

Covariant form of the Dirac equation for a spin-1/2 particle moving in an external field

~gmpm2M !C~x!50, ~2!

wheregm are 434 Dirac matrices;pm5(P02eA0 ,PW 2eAW ) is electrodynamical four-momentum
vector;M is the mass of spin-1/2 particle,C(x) is the four-component spinor;Am5(A0 ,AW ) is the
four-vector electromagnetic potential ande is the charge of the electron. In the writing of th
equation the Heaviside unitsc5\51 were used. The gamma matrices are given in the form

g05b5S I 0

0 2I D , gW 5baW , ~3!

aW 5g0gW 5S 0 sW

sW 0 D . ~4!

Equation~2! can be written as

~aW •pW 1bM1eF!C~x!5p0C~x!. ~5!

For steady states if we choose the wave function in the form

C~x05t, xW !5e2 iEtS w~xW !

x~xW ! D ~6!

and useaW matrices, Eq.~5! takes the following form

S M1eF sW •pW

sW •pW 2M1eF
D S w~xW !

x~xW ! D5ES w~xW !

x~xW ! D . ~7!

If the particle is chosen to be moving in a homogeneous magnetic field thenA05F50. Since the
particle is rotating aroundz-axis with a u angle in thexy-plane and going forward in thez
direction the geometry of the problem is cylindrically symmetrical.

By definingw andx as

w5S w1

w2
D , x5S x1

x2
D , ~8!

Eq. ~7! takes the following form:

S ~E2M ! 0 2Pz 2p2

0 ~E2M ! 2p1 Pz

2Pz 2p2 ~E1M ! 0

2p1 Pz 0 ~E1M !

D S w1

w2

x1

x2

D 50, ~9!
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wherew1 and x1 are the solutions with positive frequency andw2 and x2 are with negative
frequency. Helicity raising and lowering operators are defined in cylindrical coordinates as

p15p11 ip25eiuF2 i
]

]r
1

1

r

]

]u
2

iBre

2 G , ~10!

p25p12 ip25e2 iuF2 i
]

]r
2

1

r

]

]u
1

iBre

2 G . ~11!

The exact solutions of Dirac equation for a homogeneous magnetic field are given in ter
Laguerre polynomials. Before obtaining the energy levels of spin-1/2 particles we must not
the effect of helicity raising and lowering operators on Laguerre polynomials are given as fol

~i! for m.0,

p1LN
umu~x!Fm~r,u,z!52iv1/2x1/2LN21

umu11~x!Fm11~r,u,z!, ~12!

p2LN
umu~x!Fm~r,u,z!522iNv1/2x21/2LN11

umu21~x!Fm21~r,u,z!, ~13!

and
~ii ! for m,0

p1LN
umu~x!Fm~r,u,z!522i ~N1umu!v1/2x1/2LN

umu21~x!Fm11~r,u,z!, ~14!

p2LN
umu~x!Fm~r,u,z!52iv1/2x1/2LN

umu11~x!Fm21~r,u,z!, ~15!

wherem is quantum number of the system and

Fm~r,u,z!5~Ax! umueimu1 iPzz2 ~x/2!, ~16!

x5
eB

2
r2. ~17!

The other index of Laguerre polynomials is defined in the form

N5
1

4v
~E22M22Pz

2!1
~m2umu!

2
, for m.0, ~18!

N5
1

4v
~E22M22Pz

2!1
~m2umu22!

2
,for m,0. ~19!

There are two possible cases due to spin orientations in magnetic field and each of them are
with the positive and negative values ofm quantum number. Finally we have four differe
situations for the spin-1/2 particle:

Situation 1:Spin is parallel to the magnetic field andm.0.
If we choose the wave function in the form

C5F LN
umu~x!Fm~r,u,z!

0
c1LN

umu~x!Fm~r,u,z!

d1LN21
umu11~x!Fm11~r,u,z!

G ~20!

and use it in Eq.~9! we obtain the energy spectrum andc1 , d1 coefficients as follows:

E↑,m.0
2 5Pz

21M214v~N21!, ~21!
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c15
Pz

~E1M !
, ~22!

d15
2iv1/2x1/2

~E1M !
. ~23!

Situation 2:Spin is parallel to the magnetic field andm,0.
If we choose the wave function in the form

C5F LN
umu~x!Fm~r,u,z!

0
c2LN

umu~x!Fm~r,u,z!

d2LN
umu21~x!Fm11~r,u,z!

G ~24!

and use it in Eq.~9! we obtain the energy spectrum andc2 , d2 coefficients as follows:

E↑,m,0
2 5Pz

21M214v~N1umu!, ~25!

c25
Pz

~E1M !
, ~26!

d25
22i ~N1umu!v1/2x21/2

~E1M !
. ~27!

Situation 3:Spin is anti-parallel to the magnetic field andm.0.
If we choose the wave function in the form

C5F 0
LN

umu~x!Fm~r,u,z!

c3LN11
umu21~x!Fm21~r,u,z!

d3LN
umu~x!Fm~r,u,z!

G ~28!

and use it in Eq.~9! we obtain the energy spectrum andc3 , d3 coefficients as follows:

E↓,m.0
2 5Pz

21M214vN, ~29!

c35
22iNv1/2x21/2

~E1M !
, ~30!

d35
2Pz

~E1M !
. ~31!

Situation 4:Spin is anti-parallel to the magnetic field andm,0.
If we choose the wave function in the form

C5F 0
LN

umu~x!Fm~r,u,z!

c4LN
m11~x!Fm21~r,u,z!

d4LN
umu~x!Fm~r,u,z!

G ~32!

and use it in Eq.~9! we obtain the energy spectrum andc4 , d4 coefficients as follows:
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E↓,m,0
2 5Pz

21M214v~N1umu11!, ~33!

c45
2iv1/2x1/2

~E1M !
, ~34!

d45
2Pz

~E1M !
. ~35!

It can be seen that these results are in agreement with the results given in Ref. 7.

III. ENERGY SPECTRUM OF MASSIVE SPIN-1 PARTICLES

For massive spin-1 particles the Kemmer equation is given in the form

~bmpm2M̃ !CK~x!50, ~36!

where 16316 Kemmer matricesbm are given as

bm5gm
^ I 1I ^ gm ~37!

with the usualgm Dirac matrices.M̃ is the total mass of two identical spin-1/2 particles a
CK(x) is the 16-component wave function of the Kemmer equation.

Since massive spin-1 particle will be considered as two-identical spin-1/2 particles, the
function can be rewritten in the form

CK~x!5CD ^ CD5S A
B
C
D
D , ~38!

whereCD(x) is the solution of Dirac equation which was given in Sec. II andA, B, C, D are four
component spinors given as

A5S A1

A0

Aõ

A2

D 5S w1w1

w1w2

w2w1

w2w2

D , B5S B1

B0

Bõ

B2

D 5S w1x1

w1x2

w2x1

w2x2

D , ~39!

C5S C1

C0

Cõ

C2

D 5S x1w1

x1w2

x2w1

x2w2

D , D5S D1

D0

Dõ

D2

D 5S x1x1

x1x2

x2x1

x2x2

D .

In these matrices the left and right elements of the right matrix indicate first and second pa
respectively. In this case we can see the following equalities:

B05Cõ , Bõ5C0 ,

A05Aõ , D05Dõ . ~40!

Therefore, the wave function of the massive spin-1 particle is a ten-component spinor.
After some algebra Kemmer equation takes the following form:
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@~g1
0

^ I 21I 1^ g2
0!E2~g1

0
^ aW 21aW 1^ g2

0!•pW 2M̃g1
0

^ g2
0#S A

B
C
D
D 50. ~41!

We obtain four linear algebraic equations, ultimately 16 equations from Eq.~41!:

~2E2M̃ !A2sW (1)•pW C2sW
(2)
•pW B50, ~42!

sW (2)•pW A2sW (1)•pW D2M̃B50, ~43!

sW (1)•pW A2sW (2)•pW D2M̃C50, ~44!

~2E1M̃ !D2sW (1)•pW B2sW (2)•pW C50, ~45!

where

sW (1)•pW 5~sW ^ I !•pW 5S Pz 0 p2 0

0 Pz 0 p2

p1 0 2Pz 0

0 p1 0 2Pz

D , ~46!

sW (2)•pW 5~ I ^ sW !•pW 5S Pz p2 0 0

p1 2Pz 0 0

0 0 Pz p2

0 p1 p1 2Pz

D . ~47!

By using these matrices in Eqs.~42!–~45! and eliminating one of the same equations
obtain ten linear algebraic equations in the form

~2E2M̃ !A122PzB122p2B050, ~48!

~2E2M̃ !A02p1B12p2B21Pz~B02Bõ!50, ~49!

~2E2M̃ !A212PzB222p1Bõ50, ~50!

~2E2M̃ !D122PzB122p2Bõ50, ~51!

~2E2M̃ !D02p1B12p2B21Pz~Bõ2B0!50, ~52!

~2E2M̃ !D212PzB222p1B050, ~53!

Pz~A12D1!1p2~A02D0!2M̃B150, ~54!

Pz~D22A2!1p1~A02D0!2M̃B250, ~55!

Pz~A01D0!1p2A22p1D12M̃Bõ50, ~56!

Pz~A01D0!2p1A11p2D21M̃B050. ~57!
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In order to find the energy eigenvalues we will chooseB0 andBõ in terms of Laguerre polyno-
mials:

B05LN
umu~x!Fm~r,u,z!, ~58!

Bõ52LN
umu~x!Fm~r,u,z!. ~59!

~i! For m.0:
If we useB05LN

umu(x)Fm(r,u,z) andBõ52LN
umu(x)Fm(r,u,z) in Eqs.~48!–~53! we find A,

B, C, D spinors in the form

B5S b1v1/2x21/2LN11
umu21~x!Fm21~r,u,z!

LN
umu~x!Fm~r,u,z!

2LN
umu~x!Fm~r,u,z!

b2v1/2x1/2LN21
umu11~x!Fm11~r,u,z!

D , ~60!

C5S b1v1/2x21/2LN11
umu21~x!Fm21~r,u,z!

2LN
umu~x!Fm~r,u,z!

LN
umu~x!Fm~r,u,z!

b2v1/2x1/2LN21
umu11~x!Fm11~r,u,z!

D , ~61!

A51
2

2E2M̃
~Pzb122iN !v1/2x21/2LN11

umu21~x!Fm21~r,u,z!

1

2E2M̃
@2iv~b12~N21!b2!22Pz#LN

umu~x!Fm~r,u,z!

1

2E2M̃
@2iv~b12~N21!b2!22Pz#LN

umu~x!Fm~r,u,z!

2
2

2E2M̃
~Pzb212i !v1/2x1/2LN21

umu11~x!Fm11~r,u,z!

2 , ~62!

D51
2

2E1M̃
~Pzb112iN !v1/2x21/2LN11

umu21~x!Fm21~r,u,z!

1

2E1M̃
@2iv~b12~N21!b2!12Pz#LN

umu~x!Fm~r,u,z!

1

2E1M̃
@2iv~b12~N21!b2!12Pz#LN

umu~x!Fm~r,u,z!

2
2

2E1M̃
~Pzb222i !v1/2x1/2LN21

umu11~x!Fm11~r,u,z!

2 . ~63!

We obtain four algebraic equations given below by using these spinors in Eqs.~54!–~57!:

FE22Pz
22

M̃2

4
22vNGb112N~N21!vb250, ~64!

FE22Pz
22

M̃2

4
22v~N21!Gb212vb150, ~65!
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FE22Pz
22

M̃2

4
14vS E

M̃
2S N2

1

2D D G1 ivPz~N21!b21 ivPzb150, ~66!

FE22Pz
22

M̃2

4
24vS E

M̃
1S N2

1

2D D G2 ivPz~N21!b22 ivPzb150. ~67!

From Eqs.~64! and ~66! we find

b15

2NvFE22Pz
22

M̃2

4
14vS E

M̃
2S N2

1

2D D G
ivPzFE22Pz

22
M̃2

4
24vNG , ~68!

b25

2FE22Pz
22

M̃2

4
14vS E

M̃
2S N2

1

2D D G FE22Pz
22

M̃2

4
22vNG

ivPz~N21!FE22Pz
22

M̃2

4
24vNG .

. ~69!

If we substitute these into Eqs.~65! and ~67! we obtain the energy levels as follows

E56
1

2
A4Pz

21M̃2116vS N2
1

2D , ~70!

E5
2v

M̃
6

1

2A16v2

M̃2
1M̃214Pz

2116vS N2
1

2D , ~71!

E52
2v

M̃
6

1

2A16v2

M̃2
1M̃214Pz

2116vS N2
1

2D . ~72!

~ii ! For m,0:
If we useB05LN

umu(x)Fm(r,u,z) andBõ52LN
umu(x)Fm(r,u,z) in Eqs.~48!–~53! we find A,

B, C, D spinors in the form

B5S b1v1/2x1/2LN
umu11~x!Fm21~r,u,z!

LN
umu~x!Fm~r,u,z!

2LN
umu~x!Fm~r,u,z!

b2v1/2x21/2LN
umu21~x!Fm11~r,u,z!

D , ~73!

C5S b1v1/2x1/2LN
umu11~x!Fm21~r,u,z!

2LN
umu~x!Fm~r,u,z!

LN
umu~x!Fm~r,u,z!

b2v1/2x21/2LN
umu21~x!Fm11~r,u,z!

D , ~74!
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A51
2

2E2M̃
~Pzb112i !v1/2x1/2LN

umu11~x!Fm21~r,u,z!

1

2E2M̃
@22iv~N1umu11!b112ivb222Pz#LN

umu~x!Fm~r,u,z!

1

2E2M̃
@22iv~N1umu11!b112ivb222Pz#LN

umu~x!Fm~r,u,z!

2

2E2M̃
@2Pzb212i ~N1umu!#v1/2x21/2LN

umu21~x!Fm11~r,u,z!

2 , ~75!

D51
2

2E2M̃
~Pzb122i !v1/2x1/2LN

umu11~x!Fm21~r,u,z!

1

2E2M̃
@22iv~N1umu11!b112ivb212Pz#LN

umu~x!Fm~r,u,z!

1

2E2M̃
@22iv~N1umu11!b112ivb212Pz#LN

umu~x!Fm~r,u,z!

2
2

2E2M̃
@Pzb212i ~N1umu!#v1/2x21/2LN

umu21~x!Fm11~r,u,z!

2 . ~76!

We obtain four algebraic equations given below by using these spinors in Eqs.~54!–~57! in the
form

FE22Pz
22

M̃2

4
22v~N1umu11!Gb112vb250 ~77!

FE22Pz
22

M̃2

4
14vS E

M̃
2S N1umu1

1

2D D G2 ivPzb22 ivS N1umu1
1

2D Pzb150, ~78!

FE22Pz
22

M̃2

4
24vS E

M̃
1S N1umu1

1

2D D G1 ivPzb21 ivS N1umu1
1

2D Pzb150, ~79!

FE22Pz
22

M̃2

4
22v~N1umu!Gb212v~N1umu!~N1umu11!b150. ~80!

From Eqs.~77!–~79! we find

b15

2vFE22Pz
22

M̃2

4
24vS E

M̃
1S N1umu1

1

2D D G
ivPzFE22Pz

22
M̃2

4
24v~N1umu11!G , ~81!

b25

2FE22Pz
22

M̃2

4
24vS E

M̃
1S N1umu1

1

2D D G FE22Pz
22

M̃2

4
22v~N1umu11!G

ivPzFE22Pz
22

M̃2

4
24v~N1umu11!G .

~82!
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If we substitute these into Eqs.~78!–~80! we obtain the energy levels as follows:

E56
1

2
A4Pz

21M̃2116vS N1umu1
1

2D , ~83!

E5
2v

M̃
6

1

2A16v2

M̃2
1M̃214Pz

2116vS N1umu1
1

2D , ~84!

E52
2v

M̃
6

1

2A16v2

M̃2
1M̃214Pz

2116vS N1umu1
1

2D . ~85!

IV. CONCLUSIONS

There are several techniques developed for understanding the behavior of spin-1 pa
moving in a constant magnetic field. These techniques are quite complicated. Because the
availablity of experimental tests of these techniques we do not know which one is the bes

We used here a simple algebraic method for obtaining the energy levels of a massive
particle moving in a constant magnetic field. Spin-1 particle was considered as a two-ide
fermion system and in the process to obtain the energy levels the wave functions of sp
particle which are written in terms of Laguerre polynomials were used.

The nonrelativistic approximation applies when the energiespz
2/M andeB/M are small com-

pared to the rest energyM . On taking the positive roots ofE2 to first order only, one finds, a
approximations to Eqs.~70!–~72!,

E5M1
PZ

2

2M
1

eB

2M
~2N21!, ~86!

E5M1
PZ

2

2M
1

eB

2M
~2N21!1

eB

2M
~61!, ~87!

and Eqs.~83!–~85!,

E5M1
PZ

2

2M
1

eB

2M
~2N12umu11!, ~88!

E5M1
PZ

2

2M
1

eB

2M
~2N12umu11!1

eB

2M
~61!, ~89!

where we usedM̃52M . These are the exact results those obtained by Krase, Lu, and Good
first of these energy spectra can be interpreted as corresponding toms50 and the of second are fo
ms561. Our results are more general those were obtained by W. Tsai, W. Tsai, and A. Y
They found the energy spectrum in the limitp350, ultimately in two dimensions. In this limit the
first of these energy spectra are the same as the result obtained by them, only 2N12umu has been
replaced by 2n for m,0.

If the magnetic field is quite weak, we see that the difference of the second from the
energy level is6eB/2M . This is the interaction energy of the spin with the magnetic field. Fr
these spectra we can see that the magnetic moment of the massive spin-1 particle is

ms5~61!
e

M̃
. ~90!
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The energy spectra given in Eqs.~87! and~89! can be interpreted as corresponding to the spin
particle and anti-particle being parallel and anti-parallel to the magnetic field, respectively.
these spectra it is seen that for all values of magnetic field the energy difference between t
s51 to s521 is equal to

DE65
eB

M
. ~91!
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The propagator for the radial Dirac equation is explicitly constructed. It turns out to
be a distribution of order zero, but it is shown that there exists no path-space
measure associated with this equation. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1486263#

I. INTRODUCTION

It is always of interest to know whether or not there is a path-space measure associate
an initial-value problem for an evolution equation in mathematical physics, so that we
represent its solution by a path integral, that is, an integral with respect to as-additive set function
defined on somes-algebra of subsets of a suitable function space of ‘‘paths.’’ Then perturba
to the original equation have solutions represented by a path integral, too, and we can
information about the solution by means of this representation.

A broad class of initial-value problems can be treated by semigroup theory, but the p
relationship of the idea of a path integral to these problems is somewhat ill-defined. Unfortun
no such path-space measure exists as a mathematically rigorous measure associated
Schrödinger equation, although it was with this equation in mind that Feynman conceived the
concept ofpath integration~Feynman, 1948!.

However, as is well-known, for the imaginary-time Schro¨dinger equation, that is, the hea
equation or more general evolution equations appearing in a Markov process in probability t
the solution semigroupS(t), t>0, is a positivity preserving operator on some spaceL`(S) of
bounded measurable functions on a certain setS, and there exists an associated path integra
path-space measure.

It is, roughly speaking, because there exists an integral kernel or transition functionpt(x,dy)
such thatS(t) is given by

~S~ t ! f !~x!5E
S

pt~x,dy! f ~y!, xPS, t>0,

for f PL`(S) and that the boundiS(t) f i`<i f i` holds for all f PL`(S).
The aim of this article is to discuss this issue for the Dirac equation, in particular, the r

Dirac equation. Before going to the situation in three space dimensions, we first consider the
operatorD1 with massm.0 in one space dimension, defined in the spaceL2(R,C2) of C2-valued
square-integrable functions inR by

D15a
1

i

]

]x
1mb, ~1!

for two (232) Hermitian matricesa andb satisfyinga25b251 andab1ba50. Here and in
the following, we are using a coordinate system where the speed of lightc and Planck’s constan

a!Electronic mail: ichinose@kappa.s.kanazawa-u.ac.jp
b!Electronic mail: b.jefferies@unsw.edu.au
39630022-2488/2002/43(8)/3963/21/$19.00 © 2002 American Institute of Physics

                                                                                                                



e,

l of

r

ch

n, the

n-

sions,

3964 J. Math. Phys., Vol. 43, No. 8, August 2002 T. Ichinose and B. Jefferies

                    
\ are equal to one. In Ichinose~1982, 1984! and Ichinose and Tamura~1984, 1987, and 1988!, T.
Ichinose and H. Tamura showed that the group of operatorse2 iD 1t, tPR, acting onL2(R,C2), is
similar to a strongly continuous groupS(t) of operators for which the bound

iS~ t ! f i`<emutui f i` ~2!

holds for all tPR and all bounded continuous functionsf 5 t( f 1 , f 2) in L2(R,C2), where i f i`

5max$if1i` ,if2i`% stands for the norm off as an element of the spaceL`(R,C2) of C2-valued
bounded functions inR, endowed withl `-norm onC2. As in the case of a Markov process abov
the bound~2! is sufficient to ensure that there exist matrix-valued path-space measuresnx,t such
that

E
V

nx,t~dv! f ~v~0!!5~e2 i tD 1f !~x!, almost all xPR, t>0, ~3!

for every bounded functionf in L2(R,C2). It should be mentioned here that the integral kerne
e2 i tD 1 is a matrix-valued distribution of order zero or a matrix-valuedmeasurein R3R. For each
xPR andt>0, the measurenx,t , defined on the cylindricals-algebra of the spaceVx,t of all paths
v:@0,t#→R with v(t)5x, takes values in the spaceM2(C) of (232) complex matrices. Furthe
analysis in Ichinose and Tamura~1988! or Ichinose and Tamura~1987! shows thatnx,t is a
s-additive Borel measure concentrated on the spaceVx,t8 of all Lipschitz-continuous paths
v:@0,t#→R with v(t)5x and with velocity61 and finitely many changes of direction in ea
finite time interval.

Initial-value problems for which the associated evolutionS(t), t>0, satisfies a bound of the
form ~2! are comparatively rare. Together with the wave equation in one space dimensio
examples mentioned above are the most studied in the literature.

This article is concerned withC2-valued solutionsu(r ,t) of the initial-value problem for the
radial Dirac equation:

]u

]t
~r ,t !52 i ~tku!~r ,t !, u~r ,0!5u0~r !, ~4!

for all r PR1ª(0,̀ ) and tPR. The differential operatortk is defined fork561,62, . . . by

tk :u°S 0 21

1 0 D S u18~r !

u28~r ! D 1S m 2k/r

2k/r 2m D S u1~r !

u2~r ! D , ~5!

for suitably smoothuPL2(R1 ,C2). The nonzero integerk represents an eigenvalue of the ‘‘spi
orbit operator’’ ~see Thaller 1992, pp. 125–130!. The radial Dirac operator~5! arises from the
spin-angular momentum decomposition of the free Dirac operator in three space dimen
defined as follows.

The Dirac operator D3 in three space dimensions is defined in the spaceL2(R3,C4) of
C4-valued square-integrable functions inR3 by means of the differential expression

D35(
j 51

3

a jpj1a4m,

wherem.0 is the mass of the particle as in~1!,

pj5
1

i

]

]xj
, a j5S 0 s j

s j 0 D , for j 51,2,3,

with the Pauli matrices
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s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D
and

a45S s0 0

0 2s0
D , with s05S 1 0

0 1D .

Here we have taken the standard representation of the Dirac operator@Thaller, 1992!, Eq. ~1.213!,
p. 36#. Then via the spin-angular momentum decomposition, the operatorD3 is equal to the direct
sum of operators unitarily equivalent to the operators~5! with k561,62, . . . .

The fact thattk defines a self-adjoint operator acting inL2(R1 ,C2) follows from the spin-
angular momentum decomposition ofD3 ~Thaller, 1992, Theorem 4.14!, hence,e2 i t tk, tPR, is a
strongly continuous unitary group of operators acting onL2(R1 ,C2).

The initial-value problem~4! is a worthy object of study, because on adding a Coulo
potential s0e/r , ePR, to t1 , we get an essentially self-adjoint operator if and only ifueu
<)/2 ~Weidmann, 1987, Theorem 6.9!. For)/2,ueu,1, there is a distinguished self-adjoin
extension. In this respect, the operatort11s0e/r has properties similar to the Laplacian plus
attractive potential proportional to 1/r 2 treated by a Feynman path integral in Nelson~1964!. For
larger values ofueu close to one, the boundary conditions nearr 50 need to take into account th
effects of the nuclear dimensions and particle pair-production in quantum field theory~Popov,
1971!.

The initial-value problem~4! has a superficial appeal from the point of view of analysis
path integrals because of the following line of reasoning. The operator

i S 0 21

1 0 D ]

]x

is unitarily similar to the generator

S 1 0

0 21D ]

]x
~6!

of the direct sum of groups of translations acting onL`(R,C2). This is obviously a group of
isometries ofL`(R,C2).

For eachtPR and r .0, the matrix

expF2 i t S m 2k/r

2k/r 2m D G ~7!

is unitary. The operator of multiplication by a function taking its values in the unitary (232)
matrices is obviously an isometry ofL`(R1 ,C2).

Thus, one might hope to apply the Trotter product formula

e2 i t tk5 lim
N→`

FexpS 2 i t

N S 0 21

1 0 D ]

]r D expS 2 i t

N S m 2k/r

2k/r 2m D D GN

to show thate2 i t tk is L`(R1 ,C2)-bounded and the operator norm is one. Standard argum
would then enable one to construct as-additive path-space measure associated withe2 i t tk, t
PR. As seen in Ichinose and Tamura~1984!, such a scalar measure representing (e2 i t tkf ,g)
actually exists for statesf and g with supports sufficiently separated from zero. The evide
seems to suggest that the initial-value problem~4! possesses a path-space measure.
                                                                                                                



n
,

at

be

ow
f

it

-

e is
.
the
is no
e Dirac

to
er-

n

r

f

.
g

distri-

tribu-

3966 J. Math. Phys., Vol. 43, No. 8, August 2002 T. Ichinose and B. Jefferies

                    
However, the argument above isfalse. The mistake is as follows. In order that multiplicatio
by the matrix-valued function~7! be unitary, we need to giveC2 the usual Euclidean norm, that is
the ,2-norm. But equipped with this norm, the operator

expF2 i t S 0 21

1 0 D ]

]r G
is not a contraction onL`(R1 ,C2) ~to make sense of this exponential, a boundary condition
r 50 must be added!. The group generated by~6! is a continuous group of isometries onL`(R,C2)
only if we endowC2 with the ,`-norm.

The conflict between the two norms forC2 means that the Trotter product formula cannot
used in L`(R1 ,C2). Intuitively, we would not expect a path-space measure for~4! to exist,
otherwise path-integrals would select a distinguished self-adjoint extension foreveryperturbation
by a Coulomb potentials0e/r by virtue of a type of Feynman–Kac formula, whereas we kn
that an essentially self-adjoint perturbed operator exists only forueu<)/2. The main purpose o
this work is to clarify the situation: we show in Sec. IV, Corollary 1, that the operatore2 i t t1 is not
actually bounded onL`(R1 ,C2) for any tÞ0.

It is not hard to see thate2 i t t1 is bounded onLp(R1 ,C2) for all 1,p,` and tPR. By
contrast, for the LaplacianD in Rn and the Dirac operatorD3 in R3, for eachtÞ0, the operator
eitD is bounded onLp(Rn) and the operatore2 i tD 3 is bounded onLp(R3,C4), only for p52
~Hörmander, 1960; Brenner, 1966!.

In order to obtain information about the groupe2 i t t1, tPR, of operators, we need an explic
formula for the propagator, that is, the integral kernelKt of the operatore2 i t t1 for eachtPR.
Althoughe2 i t t1 is a unitary operator acting onL2(R1 ,C2) for eachtPR, its kernelKt may well
be a matrix-valued distribution defined onR13R1 . Explicit formulas are known for the propa
gator of the groupe2 i tD 3, tPR ~Prosser, 1963; Vladimirov, 1971; Rosen, 1983; Brzez´niak, 1990!.
For eachtÞ0, this is a matrix-valued distribution of order one, from which it follows that ther
no path-space measure associated with the Dirac equation in four space–time dimensions

The main result of this article, given in Theorem 1 of Sec. IV, is an explicit formula for
propagatorKt associated with the radial Dirac equation. From this we deduce that there
path-space measure associated with the radial Dirac equation like the one that exists for th
equation in two space–time dimensions. More formally, we show thate2 i t t1 does not map
L2(R1 ,C2)ùL`(R1 ,C2) into L`(R1 ,C2) for any tÞ0. Nevertheless, a path integral approach
this equation is given in Jefferies~1994, 1996a! along the mathematical lines developed in Jeff
ies ~1996b! for integration with respect to unbounded set functions.

Although the propagator associated withD3 is a matrix-valued distribution of order one o
R33R3, it is somewhat surprising to learn thatKt is a matrix-valued distribution of orderzeroon
R13R1 . In the course of the derivation of the formula forKt , it is apparent that averaging ove
the unit sphere smooths out the kernel.

It can be verified directly that]/]tKt(r ,r)52 i t1Kt(r ,r), for all r .0, r.0, with K0(r ,r)
5d(r 2r)s0 from the formula~19! for the distributionKt we obtain in Sec. IV, but the proof o
Theorem 1 may be applied to obtain the kernel ofe2 i t tk for integer values ofk other than one.

A key part of our derivation is the representation~14! of the kernel ofe2 i tD 3 obtained in Sec.
III. The representation first appears in Rosen~1983!, but we give a formal proof in Proposition 2
Using this representation, we obtain a regularization ofe2 i tD 3 which preserves the reducin
subspaces ofD3 with respect to the ‘‘spin-orbit’’ operator@Thaller, 1992, Eq.~4.105!, p. 125#. The
regularization simplifies our computations because we can deal with functions rather than
butions.

II. PRELIMINARIES

We first briefly fix some notation and terminology concerning function spaces and dis
tions.
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A. Function notation

Let n be a positive integer. The sesquilinear inner product ofCn is denoted by (•,•), which is
linear in the first component and antilinear in the second. The corresponding inner product
Cn-valued functionsf (x)5 t( f 1(x), . . . ,f n(x)) andg(x)5 t(g1(x), . . . ,gn(x)) in Rd is denoted by

~ f ,g!5E
Rd

~ f ~x!,g~x!!dx5E
Rd(j 51

n

f j~x!gj~x!dx.

We shall also use the bilinear inner product^•,•&.
For an open subsetU of Rd, Cc

`(U,Cn) denotes the space ofCn-valuedC`-functions with
compact support inU. S(Rd,Cn) is the space ofCn-valued rapidly decreasingC` functions onRd.
For n51, they are the usual function spacesCc

`(U) andS(Rd). The notationC0(Rd,Cn) is used
for the space ofCn-valued continuous functions vanishing at infinity onRd. It has the supremum
norm.

For two locally convex topological linear spacesX and Y, L(X,Y) denotes the topologica
linear space of all continuous linear mappings ofX into Y.

SinceCn2
is identified with the spaceMn(C) of (n3n) matrices, we denote the space of a

Mn(C)-valued distributions with compact support inU by L(Cc
`(U),Mn(C)), which is the dual

space of the spaceCc
`(U,Mn(C)). We denote also the space ofMn(C)-valued tempered distribu

tions onRd by L(S(Rd),Mn(C)), which is the dual space of the spaceS(Rd,Mn(C)). For n51,
they are nothing but the usual spacesCc

`(U)8 of Schwartz distributions inU, and S(Rd)8 of
tempered distributions onRd.

B. Kernels of bounded linear operators

Let U be an open subset ofRd. An Mn(C)-valued distributionK defined inU3U, i.e., an
element inL(Cc

`(U3U),Mn(C)), is called theintegral kernelor just thekernel, of a bounded
linear operatorT of L2(U,Cn) into itself, if for every f ,gPCc

`(U) and j ,l 51, . . . ,n, the equality

~T~ f ej !,ḡel !5~K~g^ f !ej ,el !

holds for the standard basis vectorse1 , . . . ,en of Cn. Hereg^ f is the function (x,y)°g(x) f (y),
x,yPU. Thus, if T:L2(U,Cn)→L2(U,Cn) is a bounded linear operator and theMn(C)-valued
function (x,y)°k(x,y), x,yPU, is measurable and locally integrable inU3U, then k is the
kernel ofT if, for every f PCc

`(U) and j 51, . . . ,n, we have

T~ f ej !~x!5E
U

@k~x,y!ej # f ~y!dy

for almost allxPU.
It follows that if k is a matrix-valued distribution defined inR, i.e., an element of the spac

L(Cc
`(R),Mn(C)), then the operator of convolution with respect tok has the distributionk(x

2y) defined inR2 as its kernel. The identity operator acting onL2(U,Cn) has the distribution
d(x2y)I as its kernel. HereI is the (n3n) identity matrix andd: f ° f (0), f PCc

`(R), is the
Dirac distribution at zero.

III. REPRESENTATION OF THE PROPAGATOR OF THE DIRAC EQUATION

The kernel ofe2 i tD 3 is known from Prosser~1963!, Vladimirov ~1971!, Rosen~1983!, and
Brzeźniak ~1990!. It is simply obtained by applying the Dirac operator to the known propag
for the Klein–Gordon equation in four space–time dimensions@for the Klein–Gordon propagator
see, for example, De Jager~1963!#.
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The derivation of the kernel ofe2 i t t1 is achieved by computing the restriction of the unita
operatore2 i tD 3 to the eigenspace corresponding to the eigenvaluek51 of the ‘‘spin-orbit’’ op-
erator@Thaller, 1992, Eq.~4.105!, p. 125#. As we see below, the calculation is not entirely straig
forward and the formula for the kernel is not simple.

We first obtain a representation of the kernel ofe2 i tD 3 that simplifies the task of calculating it
restriction to the eigenspace of the ‘‘spin-orbit’’ operator by looking at the Dirac equation in
space–time dimensions. The idea originates in Rosen~1983!, where a certain one-dimension
character of the motion of a Dirac particle is emphasized.

A. The 1-D Dirac equation

The first statement is a simple consequence of perturbation theory for linear operators. I
basis of the proof that there is a path-space measure associated with the Dirac equation
space–time dimensions~Ichinose and Tamura, 1984!. Although we have formula~9! below for the
kernel ofe2 i tD 1, it is not obvious that it gives the operator bounds set out in Proposition 1 be

Proposition 1: Let ]/]j be the operator acting in L2(R,C2), with domain D(]/]j)
5H1(R,C2) consisting of all functions f5 t( f 1 , f 2)PL2(R,C2), for which f1 and f2 are absolutely
continuous and f8 is square-integrable.

Then the operator2@s3]/]j1 ims1#:D(]/]j)→L2(R,C2) is the generator of a unitary
group e2t(s3]/]j1 ims1), tPR, such that for every1<p<`,

ie2t(s3]/]j1 ims1) f ip<emutui f ip , tPR, ~8!

for all f PL2(R,C2)ùLp(R,C2).
Furthermore, the operator e2t(s3]/]j1 ims1) leaves (the subspace) C0(R,C2) in L`(R,C2) in-

variant for each tPR.
Here note that whether a bound like~8! holds for every 1<p<` amounts essentially to th

same thing as whether it holds forp51 or p5`. Because if it holds forp51 or p5`, by duality
it also holds for the otherp, and then for every 1<p<` by interpolation.

Proof of Proposition 1:The operator]/]j is the infinitesimal generator of the group o
translations onL2(R), so s3]/]j acting in L2(R,C2) is the generator of that continuous grou
T(t) of isometries onL2(R,C2) which maps the functionj° t( f 1(j), f 2(j)), jPR, to the function
j° t( f 1(j1t), f 2(j2t)), jPR.

ThenT(t) also defines a group of isometriesTp(t) of Lp(R,C2), for 1<p<`. ClearlyTp(t)
is continuous for 1<p,`. The group of isometriesT`(t) leaves the spaceC0(R,C2) invariant,
and defines a continuous group of isometries there.

Because2 ims1 is a bounded perturbation of the operator2s3]/]j acting inLp(R,C2) ~or
C0(R,C2)!, it follows from Reed and Simon~1975, Sec. X.2! that 2s3]/]j2 ims1 is the gen-
erator of a groupS(t)5e2t(s3]/]j1 ims1), tPR, of operators satisfyingiS(t)i<emutu, for all t
PR. Here the same symbolS(t) is used for the group of operators so defined on each sp
Lp(R,C2), 1<p,`, andC0(R,C2), andi • i denotes the operator norm ofL(Lp(R,C2)), for 1
<p,`, or of L(C0(R,C2)). h

In the following, we consider the case fort.0. Similar considerations apply to the caset
,0. The integral kernel of the operatore2t(s3]/]j1 ims1) is given @Ichinose and Tamura, 1984
~3.2!# by convolution with respect to the distribution

H~j,t !5
1

2 S s0

]

]t
2s3

]

]j
2 ims1D J0~m~ t22j2!1/2!u~ t2uju!.

HereJ0(t) is the Bessel function of order zero andu is the Heaviside function—the characterist
function of the interval@0,̀ !. The distributional notation means that iff:R→C is a rapidly
decreasing function, thenH(•,t)(f)PM2(C) is the matrix
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H~•,t !~f!5
1

2 E2t

t F S s0

]

]t
2s3

]

]j
2 ims1D J0~m~ t22j2!1/2!Gf~j!dj

1
1

2
~f~ t !1f~2t !!s01

1

2
~f~ t !2f~2t !!s3 . ~9!

Now the derivatives after the integral sign are interpreted in the pointwise sense. Then fo
t.0, the convolutionH(•,t)* c belongs toC0(R,C2) for everyc belonging to the spaceS(R,C2)
of rapidly decreasingC2-valued functions, and

@H~•,t !* c#~j!5@e2t(s3]/]j1 ims1)c#~j!, jPR. ~10!

Since dJ0(t)/dt52J1(t) is bounded, it is clear from the representation~9! that H(•,t) is a
matrix-valued distribution of order zero, that is, a matrix-valued measure, so we shall some
write *RH(dj,t)f(j) for ~9! and*RH(dh,t)c(j2h) for ~10!. It follows from the representation
~9! that for eachjPR, the matrix-valued measureH(dj,t) is supported by the interval@2t,t#.

B. The kernel of e ÀitD3

A bound like~8! with p5` in Proposition 1 does not hold for the 3-D Dirac operatorD3 , as
noted in Ichinose~1984!, because the initial-value problem for the hyperbolic system of the
order in d11 space–time dimensions isL` well-posed if and only ifd51 ~cf. Brenner, 1966;
Zastawniak, 1989; Brzez´niak, 1990!. It is simply because the kernel ofe2 i tD 3 is a distribution of
orderone, as is easily seen from the explicit representation obtained in Proposition 2 below

It is convenient to take an equivalent representation of the Dirac operatorD3 , so that

a j85S s j 0

0 2s j
D , for j 51,2,3, a485S 0 s0

s0 0 D , ~11!

obtained from the Dirac matricesa j by the similarity transformationa j85Qa jQ, j 51,2,3,4, with

Q5221/2S s0 s0

s0 2s0
D . ~12!

Let $e1 ,e2% be the standard basis ofC2. The tensor productA^ B of two 232 matricesA and
B is the 434 matrix of the associated linear transformation with respect to the basisE5$e1

^ e1 ,e2^ e1 ,e1^ e2 ,e2^ e2% of C4. Linear transformations are identified with matrices with
spect to these fixed bases. Thena j85s j ^ s3 for j 51,2,3 anda485s0^ s1 and, in this represen
tation, the Dirac operator becomes

D35(
j 51

3

~s j ^ s3!pj1ms0^ s1 . ~13!

The following result appears in Rosen~1983! in a somewhat compressed form. In the rema
der of this section, we translate into the present notation and give a proof of this stateme
first give some additional notation.

Let m r be the uniform surface probability on the sphereSr of radiusr .0 in R3. For r .0, the
m r-integral of a functionf overSr is denoted bym r( f ). For a smooth functionf on R3, we have
]/]rf(x)5uxu21^x,¹&f(x), r 5uxuÞ0. For r 50, we understandm05d, the delta measure a
x50. For any M2(C)-valued Borel measurel on R and MPM2(C), the set functionM
^ l:A°M ^ @l(A)#, with A a Borel set inR, is anM4(C)-valued measure.

Proposition 2: Let D3 be Dirac operator in the representation~13!. Then for each tPR, the
operator e2 i tD 3 is convolution with respect to the matrix-valued distribution t

PL(S(R3),M4(C)) of order one, given for each test functionfPS(R3), by
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Kt~f!5E
2t

t

@m uju~f!1ujum uju~]/]rf!#@s0^ H~dj,t !#1E
2t

t

jm uju~^s,¹f&! ^ H~dj,t !,

~14!

or, as an M4(C)-valued distribution inR3, by

Kt~x!52
1

4pr
s0^ S ]H~r ,t !

]r
1

]H~2r ,t !

]r D2
1

4p
^s,¹& ^ S H~r ,t !

r
2

H~2r ,t !

r D , for r 5uxu.

~15!

The representation~14! is proved by applying the Fourier transformF:L2(R3)→L2(R3),
defined for everyf PL2(R3)ùL1(R3) by

Ff ~p!5E
R3

e2 i ^x,p& f ~x!dx, for all pPR3.

Then F 21f (x)5(2p)23*R3ei ^x,p& f (p) dp defines the inverse operator. The same symbols
used for the operators defined onL2(R3,Cn) by taking tensor products with the identity map o
Cn. SometimesFf is written asf̂ andF 21f as f̌ .

If F:R3→Mn(C) is a matrix-valued Borel measurable function, then the operator ofmulti-
plication by F sends the elementf PL2(R3,Cn) to x°F(x) f (x), xPR3. This is a bounded linea
operator onL2(R3,Cn) if and only if F is essentially bounded.

The integral*R3F(x) ^ m(dx)PM4(C) of a matrix-valued functionF:R3→M2(C) with re-
spect to anM2(C)-valued Borel measurem onR3 is taken componentwise with respect to the ba
E of C4.

Lemma 1: The operatorFe2 i tD 3F 21 acting on L2(R3,C4) is the operator of multiplication by
the matrix-valued function p°*Re2 i ^s,p&j ^ H(dj,t), pPR3, wheres5(s1 ,s2 ,s3) and ^s,p&
5( j 51

3 s j pj .
Proof: The integral converges becauseH(dj,t) is a matrix-valued Borel measure onR and in

the matrix normie2 i ^s,p&ji51 for all jPR and pPR3. By the functional calculus for the self
adjoint operatorD3 , the operatorFe2 i tD 3F 21 acting onL2(R3,C4) is the operator of multiplica-
tion by the matrix-valued functionp°e2 i t (^s,p& ^ s31ms0^ s1), so it suffices to prove that

e2 i t (^s,p& ^ s31ms0^ s1)5E
R
e2 i ^s,p&j ^ H~dj,t !. ~16!

To do so, rewrite theM4(C)-valued function on the right-hand side by a formal integral w
respect todj:

w~p,t !ªE
R
e2 i ^s,p&j ^ H~j,t !dj,

each of whose (j ,k) entries withj , k 5 1, 2 makes sense as the bilinear inner product betwe
C` function and a distribution with compact support injPR. Then we have by~10!

]w~p,t !

]t
52E

R
e2 i ^s,p&j ^ S s3

]

]j
1 ims1DH~j,t !dj

52 i E
R
@^s,p& ^ s31ms0^ s1#~e2 i ^s,p&j ^ H~j,t !!dj

52 i @^s,p& ^ s31ms0^ s1#w~p,t !.

It follows that w(p,t) is nothing but the left-hand side of Eq.~16!. h
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Lemma 2: The inverse Fourier transform of p°e2 i ^s,p&j in the sense of distributions i
m uju2^¹,x&m uju2j^s,¹&m uju for all jPR.

Proof: The Fourier transformp°m̂ r(p), pPR3, of m r is the function p° sin(rupu)/rupu
@Vladimirov, 1971, p. 135,~38!# as may be seen by calculatingm̂ r(p)5*R3e2 i ^x,p&m r(dx) di-
rectly.

Suppose thatjÞ0. It follows from the commutation relations of the Pauli matricess
5(s1 ,s2 ,s3) that e2 i ^s,p&j5cos(ujuupu)2i^s,p&j sin(ujuupu)/ujuupu. The operation of multiplication

of the Fourier transformT̂(p) of a distributionT by ip corresponds to taking the gradient¹T of
T, so (i ^s,p&j sin(uju upu)/uju upu) 5j^s,¹&muju .

The term cos(uju upu) can be expressed as

cos~ ujuupu!5F ]

]r
r

sin~ ujur !

ujur G
r 5upu

5
sin~ ujuupu!

ujuupu
1^p,¹&

sin~ ujuupu!
ujuupu

.

The operation of forming the distribution (1/i ) ¹T̂ from the Fourier transformT̂ of a distri-
bution T corresponds to multiplying the distributionT(x) by 2x, so taking the inverse Fourie
transform gives cos(uju upu)ˇ5muju2^¹,x&muju and we obtain the stated formula. In the case thaj
50, we have2@^¹,x&m0#(f)5d(r ]/]rf)50 for all fPS(R3) and the formula still holds.h

Proof of Proposition 2:Let tPR. According to Lemma 1 the operatore2 i tD 3 corresponds to
convolution with respect to the inverse Fourier transformKtPL(S(R3),M4(C)) of
p°*Re2 i ^s,p&j ^ H(dj,t), pPR3. The distributionKt is evaluated as follows.

The mapF:j°e2 i ^s,•&j, jPR, may be viewed as a function taking its values in the sp
L(S(R3),M2(C)) of matrix-valued tempered distributions. An application of~the vector-valued!
Fubini’s theorem shows that for eachfPS(R3)

Kt~f!5E
R3

f̌~p!F E
R
e2 i ^s,p&j ^ H~dj,t !Gdp5E

R
@F~j!ˇ~f!# ^ H~dj,t !.

By Lemma 2,F(j)ˇ5m uju2^¹,x&m uju2j^s,¹&m uju for everyjPR.
If fPS(R3) is a test function, then

Kt~f!5E
R
@m uju~f!1ujum uju~]/]rf!#s0^ H~dj,t !1E

R
jm uju~^s,¹&f! ^ H~dj,t !,

so that Eq.~14! holds.
We now verify the representation~15! of the distributionKt . Let fPS(R3). In terms of the

uniform probability measurem r on the sphereSr with radiusr .0, we have
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Kt~f!5E
R
E

Suju

s0^ H~j,t !f~x!dm uju~x!dj1E
R
E

Suju

ujus0^ H~j,t !
]f

]r
~x!dm uju~x!dj

1E
R
jE

Suju

@~^s,¹&f!~x! ^ H~j,t !#dm uju~x!dj

5E
0

`E
S1

s0^ @H~r ,t !1H~2r ,t !#F ]

]r
rf~rv!Gdm1~v!dr

1E
0

`

r E
S1

@^s,¹&f#~rv! ^ @H~r ,t !2H~2r ,t !#dm1~v!dr

52E
S1

E
0

`

s0^ F]H~r ,t !

]r
1

]H~2r ,t !

]r Gf~rv!rdrdm1~v!

2E
0

`E
S1

f~rv!~^s,¹& ^ @r 21H~r ,t !2r 21H~2r ,t !# !r 2dm1~v!dr,

using the change of variablesr 5uxu, v5x/r for xPR3 and Fubini’s theorem. Here note tha
dm1(v)5 (1/4p) dv, with dv the surface measure onS1 . h

IV. THE PROPAGATOR OF THE RADIAL DIRAC OPERATOR

In this section, we present the calculation of the kernel of the group generated by~the closure
of! the operatori t1 defined by~5!. The characteristic function of the interval@0,̀ ) is denoted by
u. The open interval (0,̀) is written asR1 .

The functionD(j,t)5 1
2J0(mAt22j2)u(t22j2), jPR, tPR, is the solution, in the sense o

distributions, of the initial-value problem

]2g

]t2 ~j,t !2
]2g

]j2 ~j,t !1m2g~j,t !50, g~j,0!50,
]g

]t
~j,0!5d~j!, ~17!

for the one-dimensional Klein–Gordon equation~Vladimirov, 1971!.
For eachtPR, let

E~j,t !5S ]

]t
1 imDD~j,t !,

Ē~j,t !5S ]

]t
2 imDD~j,t !, ~18!

F~j,t !5
]D

]j
~j,t !

in the sense of distributions belonging toCc
`(R)8. These distributions are of order zero an

involve unit point masses at6t. Note that asD(•,t) is an even function, so areE(•,t) and Ē
(•,t), while F(•,t) is an odd function.

The following representation for the integral kernelKt of e2 i t t1 holds.
Theorem 1: For each tPR \$0%, Kt is an M2(C)-valued distribution defined inR13R1 , i.e.,

an element inL(Cc
`(R13R1),M2(C)) of order zero such that for all f,gPCc

`(R1), the equality
^e2 i t t1( f ej ),ḡek&5^Kt(g^ f )ej ,ek& holds for j,k51,2with respect to the standard basis vecto
e1 ,e2 of C2.

The distribution e2 i t t1(r ,r)ªKt(r ,r) is given by the matrix
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S Ē~r 2r,t !2Ē~r 1r,t ! iW12~r ,r;t !

2 iW21~r ,r;t ! E~r 2r,t !1E~r 1r,t !2W22~r ,r;t !
D ~19!

of distributions of order zero belonging to Cc
`(R13R1)8, where

W12~r ,r;t !5FF~r 2r,t !1F~r 1r,t !1
1

r
~D~r 2r,t !2D~r 1r,t !!G ,

W21~r ,r;t !5FF~r 2r,t !2F~r 1r,t !2
1

r
~D~r 2r,t !2D~r 1r,t !!G ,

W22~r ,r;t !5~rr!21S ]

]t
1 imD E

ur 2ru

r 1r

D~j,t !jdj.

The differentiation in the t-variable is interpreted in the sense of distributions.

A. Regularization

Let j°v(j) be a non-negative smooth even function inR, with support in the interval
@21,1# and with the property that*Rv(j)dj51. Setv(j)5«21v(j/«) for «.0. Then the func-
tion D«( • ,t)5v«* D( • ,t) is the solution of the Klein-Gordon equation~17! but with the initial
conditionsg(j,0)50 and]g/]t(j,0)5v«(j), jPR. The function (j,t)°D«(j,t), jPR, t.0, is
smooth inj and t and for eacht.0, the functionD«( • ,t) has support in the interval@2(t
1«),t1«#.

Then, as«→01, the smooth matrix-valued functionH« defined by

H«~j,t !5S s0

]

]t
2s3

]

]j
2 ims1DD«~j,t !, jPR, t>0, ~20!

converges in the spaceL(S(R),M2(C)) of matrix-valued distributions to the distributionH(j,t)
defined by formula~9!. Furthermore, becauseH(j,t) is actually a distribution of order zero with
compact support, as«→01, the matrix-valued measureH«(j,t)dj converges toH(dj,t) in the
topology of the Banach spaceL(Cb(R),M2(C)) of all continuous linear mappings ofCb(R) into
M2(C). HereCb(R) is the Banach space of all bounded continuous functions onR.

Let Kt
(«)PL(S(R3),M4(C)) be defined by

Kt
(«)~f!5E

R
@m uju~f!1ujum uju~]/]rf!#s0^ H«~j,t !dj1E

R
jm uju~^s,¹&f! ^ H«~j,t !dj,

~21!

for every test functionfPS(R3). As a consequence of the smoothing operation of convolu
with respect tov« , we can use integration by parts in the integral above. In order to derive
representation~19! of the kernel ofe2 i t t1, we calculate the kernel ofKt

(«) and take the limit as
«→01.

Lemma 3: As«→01,

(i) the distribution Kt
(«) converges to Kt in L(S(R3),M4(C)),

(ii) for any functioncPS(R3,C4), the convolution Kt
(«)

* c belongs toS(R3,C4) and converges to
e2 i tD 3c5Kt* c in the topology ofS(R3,C4), and

(iii) for any functioncPL2(R3,C4), the convolution Kt
(«)

* c belongs to L2(R3,C4) and converges
to e2 i tD 3c5Kt* c in the topology of L2(R3,C4). The operator norm ofc°Kt

(«)* c, c
PL2(R3,C4), is bounded by emt.
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Proof: Given fPS(R3), the functionj°@m uju(f)1ujum uju(]/]rf)#, jPR, is a bounded,
continuous scalar-valued function andj°m uju(^s,¹&f), jPR, is a bounded, continuou
M2(C)-valued function. The first assertion (i ) now follows from the observation thatH«(j,t)dj
converges toH(dj,t) in L(Cb(R),M2(C)).

Observe that the distributionKt
(«) is obtained fromKt by replacingH by H« . Let T«(t) denote

the operator of convolution with respect toKt
(«) acting onS(R3,C4). The proof of Lemma 1 shows

that FT«(t)F 21 is the operator of multiplication by the matrix-valued functionp°*Re2 i ^s,p&j

^ H«(j,t) dj.
Then for everycPS(R3,C4), the functionp°@*Re2 i ^s,p&j ^ H«(j,t) dj#c(p), pPR3, also

belongs to S(R3,C4) and FT«(t)F 21c→Fe2 i tD 3F 21c in S(R3,C4) as «→01 because
H«(j,t)dj converges toH(dj,t) in L(Cb(R),M2(C)). Statement (i i ) now follows from the
observation that the Fourier transform leaves the spaceS(R3,C4) invariant. A similar argument
proves (i i i ). The bound

I E
R
e2 i ^s,p&j ^ H«~j,t !dj I

L(C4)

<iv«* H~•,t !iL1(R,M2(C))<emt

for eachpPR3 follows from ~20! and Proposition 1, soiT«(t)i<emt. h

Let fPS(R3). In terms of the uniform probability measurem r on the sphereSr with radius
r .0, we have

Kt
(«)~f!52E

0

`

r E
S1

s0^ F ]H«~j,t !

]j U
j5r

2
]H«~j,t !

]j U
j52r

Gf~rv!dm1~v!dr

1E
0

`

r E
S1

@^s,¹&f#~rv! ^ @H«~r ,t !2H«~2r ,t !#dm1~v!dr

by an appeal to Fubini’s theorem and integrating by parts as in the proof of Proposition
converting to Cartesian coordinates, the convolutionKt

(«)
* c(x) of the distributionKt

(«) with c
PS(R3,C4) is equal to

Kt
(«)

* c~x!521/4pE
R3

ux2yu21s0^ F ]H«~j,t !

]j U
j5ux2yu

2
]H«~j,t !

]j U
j52ux2yu

Gc~y!dy ~22!

21/4pE
R3

ux2yu21s0^ @H«~ ux2yu,t !2H«~2ux2yu,t !#@^s,¹& ^ s0#c~y!dy,

~23!

for all xPR3.

B. Reducing subspaces

According to Thaller~1992, Sec. 4.6.4! @see also Bjorken and Drell~1964, p. 52ff!#, for every
mk52uku, . . . ,uku21 and k561,62, . . . , the operatorse2 i tD 3, tPR, leave the subspac
H(k,mk) of L2(R3,C4) invariant. The subspaceH(k,mk) equals the orthogonal sumH(k,mk)1

% H(k,mk)2 with

H~k,mk!15H F (1)~k,mk! ^
u~r !

r
:uPL2~R1!J ,

H~k,mk!25H F (2)~k,mk! ^
u~r !

r
:uPL2~R1!J ,

for certainC4-valued eigenfunctionsF (6)(k,mk) on S1 . If u5 t(u1 ,u2)PL2(R1 ,C2) are func-
tions andc1 ,c2 are complex numbers such that the element
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c~x!5c1F (1)~k,mk! ^
u1~r !

r
1c2F (2)~k,mk! ^

u2~r !

r
, r 5uxu,

of L2(R3,C4) belongs to the domain ofD3 , then

~D3c!~x!5c1F (1)~k,mk! ^
~tku!1~r !

r
1c2F (2)~k,mk! ^

~tku!2~r !

r
, r 5uxu,

for the differential operatortk given by formula~5!. Moreover,

~e2 i tD 3c!~x!5c1F (1)~k,mk! ^
~e2 i t tku!1~r !

r
1c2F (2)~k,mk! ^

~e2 i t tku!2~r !

r
, r 5uxu,

for all cPH(k,mk). The functione2 i tD 3c is also expressed as a convolutionKt* c.
It turns out that convolution with respect to the regularized kernelKt

(«) also leaves the reduc
ing subspacesH(k,mk) invariant—the first integral~22! leaves the subspacesH(k,mk)1 and
H(k,mk)2 invariant, and the second integral~23! mapsH(k,mk)1 to H(k,mk)2 andH(k,mk)2

to H(k,mk)1 . We shall only prove this for the casek51 andmk50. A similar argument works
for k521 with only changes in signs. We compute the distributional kernel ofe2 i t t1 by taking
the limit as«→01 of K («)

t* c for cPH(1,0).
In the usual representation of the Dirac matrices,

F (1)~k,mk!5S ic~k,mk!

0
0

D , F (2)~k,mk!5S 0
0

c~2k,mk!
D ,

c~k,mk!5
1

A2k21
S Ak1mkY~k21,mk!

Ak2mk21Y~k21,mk11!
D , for k.0,

c~k,mk!5
1

A2uku11
S Auku2mkY~ uku,mk!

2Auku1mk11Y~ uku,mk11!
D , for k,0,

for the spherical harmonic functionsY( l , j ).
For k51 andm1521,0, we have

F (1)~1,0!5S iY~0,0!

0
0
0

D , F (2)~1,0!5
1

) S 0
0

Y~1,0!

2&Y~1,1!

D ,

F (1)~1,21!5S 0
iY~0,0!

0
0

D , F (2)~1,21!5
1

) S 0
0

&Y~1,21!

2Y~1,0!

D .

The spherical harmonic functions in this formula are given, with 0<u<p and 0<w<2p, by

Y~0,0!5
1

A4p
, Y~1,0!5

A3/p cosu

2
,

Y~1,1!52
eiwA3/2p sinu

2
, Y~1,21!5

e2 iwA3/2p sinu

2
,
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so that

F (1)~1,0!5
i

2Ap S 1
0
0
0
D , F (2)~1,0!5

1

2Ap S 0
0

cosu
eiw sinu

D .

With respect to the block-diagonal matrix representation~11! of the Dirac matrices, the new
eigenvectors areQF6(1,0), QF6(1,21), with Q in Eq. ~12! used to define thea j8 in Sec. III B.
For the purposes of the following computation, it is simpler to represent the tensor produs j

^ s3 , j 51,2,3 ands0^ s1 with respect to the permuted basisE85$e1^ e1 ,e1^ e2 ,e2^ e1 ,e2

^ e2% of C4 so thats0^ s j5(0
s j

s j

0 ) for j 51,2,3. With respect to this new basis, the eigenvect

QF6(1,0), QF6(1,21) are represented by the column vectors

C (1)~1,0!5
i

2A2p S 1
1
0
0
D , C (2)~1,0!5

1

2A2p S cosu
2cosu
eiw sinu

2eiw sinu
D ,

C (1)~1,21!5
i

2A2p S 0
0
1
1
D , C (2)~1,21!5

1

2A2p S e2 iw sinu
2e2 iw sinu

2cosu
cosu

D .

Proof of Theorem 1:According to Thaller~1992, Theorem 4.1.4!, the matrix elements of~19!
we are trying to calculate are the limiting distributions as«→01 corresponding to the action o
the convolutions~22! and~23! on the subspacesH(1,0)1 andH(1,0)2 of L2(R3,C4). We look at
each subspace separately.

1. The subspace H„1,0…¿

On settingc(y)5C (1)(1,0)^ r21u(r) in polar cordinates~r,u,w! in the integral~22!, we
have

21/4pE
0

`E
0

pE
0

2p

ur 21r222rr cosuu21/2s0^ F ]H«~j,t !

]j U
j5ur 21r222rr cosuu1/2

2
]H«~j,t !

]j U
j52ur 21r222rr cosuu1/2

GC (1)~1,0!u~r! rsinudwdudr

521/2E
0

`E
0

p

ur 21r222rrcosuu21/2s0^ F ]H«~j,t !

]j U
j5ur 21r222rr cosuu1/2

2
]H«~j,t !

]j U
j52ur 21r222rr cosuu1/2

GC (1)~1,0!u~r!r sinududr.

Let j5(r 21r222rr cosu)1/2. Thenj5r 1r whenu5p andj5ur 2ru whenu50. The integral
~22! becomes
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2
1

2r E0

`F E
ur 2ru

r 1r

s0^ S S ]H«

]j D ~j,t !2S ]H«

]j D ~2j,t ! DdjGC (1)~1,0!u~r!dr

52
1

2r E0

`

s0^ @H«~r 1r,t !2H«~ ur 2ru,t !1H«~2~r 1r!,t !

2H«~2ur 2ru,t !#C (1)~1,0!u~r!dr.

Now D( • ,t) is an even function and we chosev« to be even, soD«( • ,t) is also an even
function. In the expression~20! for H« , the components of (s0]/]t2 ims1)D«(j,t) are even
functions ofj and the components ofs3]D«(j,t)/]j are odd functions ofj. Furthermore, in the
chosen basis, the application of either of the matricess0^ s0 and s0^ s1 does not change the
vectorC (1)(1,0).

On settingĒ«(j,t)5(]/]t2 im)D«(j,t) for jPR and t.0, the integral~22! is therefore
equal to

2
C (1)~1,0!

r E
0

`

@Ē«~r 1r,t !2Ē«~r 2r,t !#u~r!dr.

The matrix element corresponding to~22! is thereforeĒ«(r 2r,t)2Ē«(r 1r,t).
The integrand of ~23! consists of the odd components ofH«( • ,t). Set F«(j,t)

5]D«(j,t)/]j, for all jPR and t>0. Then note that

H«~j,t !2H«~2j,t !52s3~F«~j,t !2F«~2j,t !!522s3F«~j,t !.

Then in polar coordinates, the integral~23! becomes

2E
0

`F E
S1

^s,v& ^ s3C~1 !~1,0!
F«~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 m1~dv!G F d

dr

u~r!

r Gr2dr

~24!

for r 5uxu and r̂ 5x/r . Here we have used the fact thatC (1)(1,0) is aconstantvector.
Suppose that$ê1 ,ê2 , r̂ % is an orthonormal basis ofR3 and ej5aj 1ê11aj 2ê21aj 3r̂ for the

standard basis vectorsej , j 51,2,3, ofR3. Then

^s,v&5(
j 51

3

s j@aj 1^v,ê1&1aj 2^v,ê2&1aj 3^v, r̂ &#.

Because*S1
f (^v, r̂ &)^v,êj&dm(v)50, for j 51,2 and any bounded measurable functionf , only

the integral over the term( j 51
3 s jaj 3^v, r̂ & of ^s,v& in ~24! remains. Butr̂ 5( j 51

3 ejaj 3 because
@aj k# j ,k51

3 is an orthogonal matrix, that is,aj 35 r̂ j for j 51,2,3, so the integral~24! is equal to

2E
0

`F E
S1

^v, r̂ &
F«~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 m1~dv!G F d

dr

u~r!

r Gr2dr

times the vector@^s, r̂ & ^ s3#C (1)(1,0).
With the substitutionj5@r 21r222rr cosu#1/2, cosu5^v,r̂& and integration by parts, we

have
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22E
0

`

dr
u~r!

r

]

]r
r2E

S1

^v, r̂ &
F«~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 m1~dv!

52
2

4p E
0

`

dr
u~r!

r

]

]r
r2E

0

pE
0

2p

cosu
F«~@r 21r222rr cosu#1/2,t !

@r 21r222rr cosu#1/2 sinudwdu

52E
0

`

dr
u~r!

r

]

]r
r2E

ur 2ru

r 1r r 21r22j2

2r 2r2 F«~j,t !dj

52
1

2r 2 E
0

`

dr
u~r!

r

]

]r Eur 2ru

r 1r

~r 21r22j2!F«~j,t !dj.

In the regionr.r , we have

2
1

2r 2 E
0

`

dr
u~r!

r

]

]r Er2r

r 1r

~r 21r22j2!F«~j,t !dj

52
1

2r 2 E
0

`

dr
u~r!

r S @~r 21r22j2!F«~j,t !#r2r
r 1r12rE

r2r

r 1r

F«~j,t !dj D
52

1

r E0

`

dru~r!F2~F«~r 1r,t !1F«~r2r ,t !!1
1

r
~D«~r 1r,t !2D«~r2r ,t !!G

52
1

r E0

`

dru~r!FF«~r 2r,t !2F«~r 1r,t !1
1

r
~D«~r 1r,t !2D«~r 2r,t !!G ,

becauseF« is an odd function. The same expression is obtained forr,r .
A calculation@cf. Thaller 1992, Eq.~4.122! p. 127# shows that

@^s, r̂ & ^ s3#C (1)~1,0!5 iC (2)~1,0!~ r̂ !. ~25!

Indeed,

^s, r̂ & ^ s35S r̂ 3 r̂ 12 i r̂ 2

r̂ 11 i r̂ 2 2 r̂ 3
D ^ s35S r̂ 3s3 ~ r̂ 12 i r̂ 2!s3

~ r̂ 11 i r̂ 2!s3 2 r̂ 3s3
D .

The sum of the first two columns of^s, r̂ & ^ s3 is

S r̂ 3

2 r̂ 3

r̂ 11 i r̂ 2

2~ r̂ 11 i r̂ 2!

D 5S cosu
2cosu
eiw sinu

2eiw sinu
D ,

which is a constant multiple ofC (2)(1,0)(r̂ ). The integral~23! is equal to

2 i
C (2)~1,0!~ r̂ !

r E
0

`

dru~r!FF«~r 2r,t !2F«~r 1r,t !2
1

r
~D«~r 2r,t !2D«~r 1r,t !!G ,

so that the corresponding matrix element is

2 iW21
(«)~r ,r;t !52 i FF«~r 2r,t !2F«~r 1r,t !2

1

r
~D«~r 2r,t !2D«~r 1r,t !!G .
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2. The subspace H„1,0…À

On the other hand, forc(y)5C (2)(1,0)^ r21u(r), ~23! is

22E
0

`F E
S1

s0^

]G«

]j
~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 C (2)~1,0!~v!dm1~v!Gu~r!rdr

for G«(j,t)5(s0]/]t2 ims1)D«(j,t), for all jPR and t.0. Note here that

]

]j
H«~j,t !2

]

]j
H«~2j,t !52S s0

]

]t
2 ims1D ]

]j
D«~j,t !52

]

]j
G«~j,t !.

Now

E
S1

s0^
~]G« /]j! ~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 C (2)~1,0!~v!dm1~v!

52 i E
S1

s0^
~]G« /]j! ~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 @^s,v& ^ s3#C (1)~1,0!dm1~v!

52 i E
S1

s0^
~]G« /]j! ~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 @^s, r̂ & ^ s3#C (1)~1,0!^v, r̂ &dm1~v!

5E
S1

s0^
~]G« /]j! ~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 C (2)~1,0!~ r̂ !^v, r̂ &dm1~v!

5C (2)~1,0!~ r̂ !E
S1

~]E« /]j! ~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 ^v, r̂ &dm1~v!

5421C (2)~1,0!~ r̂ !~rr!22E
ur 2ru

r 1r ]E«~j,t !

]j
~r 21r22j2!dj,

where we have used the identity~25! and the fact that (s0^ s0)C (2)(1,0)5C (2)(1,0) and (s0

^ s1)C (2)(1,0)52C (2)(1,0). Integrating by parts, we have

2221~rr!21E
ur 2ru

r 1r ]E«~j,t !

]j
~r 21r22j2!dj5E«~r 1r!1E«~r 2r!2~rr!21E

ur 2ru

r 1r

E«~j!jdj,

which is the matrix element corresponding to the convolution~22! acting onH(1,0)2 .
For the other integral~23!, appealing to the identity~25!, we have

@^s,¹&# ^ s3]c~y!5@^s,¹& ^ s3#@C (2)~1,0!~v!r21u~r!#

5
u~r!

r
@^s,¹& ^ s3#C (2)~1,0!~v!1^s,v& ^ s3C (2)~1,0!~v!

d

dr

u~r!

r

5
1

i Fu~r!

r
@^s,¹& ^ s3#@^s,v& ^ s3#C (1)~1,0!1C (1)~1,0!

d

dr

u~r!

r G ,
in coordinatesv5y/uyu andr5uyu.

The functionC (1)(1,0) is a constant vector and a calculation shows that

@^s,¹& ^ s3#^s,v& ^ s35
2

r
s0^ s0 .
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One integral in~23! is therefore

22iC (1)~1,0!E
0

`F E
S1

F«~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 m1~dv!G F d

dr

u~r!

r Gr2dr

52iC (1)~1,0!E
0

` 1

r

]

]r
r2F E

S1

F«~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 m1~dv!Gu~r!dr

5
iC (1)~1,0!

r E
0

` u~r!

r

]

]r
rF E

ur 2ru

r 1r

F«~j,t !djGdr

5
iC (1)~1,0!

r E
0

` u~r!

r

]

]r
r@D«~r 1r,t !2D«~r 2r,t !#dr

5
iC (1)~1,0!

r E
0

`FF«~r 2r,t !1F«~r 1r,t !2
1

r
@D«~r 2r,t !2D«~r 1r,t !#u~r!dr

and the other is

24iC (1)~1,0!E
0

`F E
S1

F«~@r 21r222rr^v, r̂ &#1/2,t !

@r 21r222rr^v, r̂ &#1/2 m1~dv!Gu~r!dr

52
2iC (1)~1,0!

r E
0

` u~r!

r E
ur 2ru

r 1r

F«~j,t !djdr

5
2iC (1)~1,0!

r E
0

` u~r!

r
@D«~r 2r,t !2D«~r 1r,t !#dr.

Adding the two terms, the integral~23! becomes

iC (1)~1,0!

r E
0

`FF«~r 2r,t !1F«~r 1r,t !1
1

r
@D«~r 2r,t !2D«~r 1r,t !#u~r!dr,

so that the corresponding matrix element is

iW12
(«)~r ,r;t !5 i FF«~r 2r,t !1F«~r 1r,t !1

1

r
@D«~r 2r,t !2D«~r 1r,t !#.

The operator of convolution with respect toKt
(«) therefore leaves the subspaceH(1,0) invari-

ant and its action on the radial components is the operatore2 i t t1 whose kernel is given by

S E«~r 2r,t !2E«~r 1r,t ! iW12
(«)~r ,r;t !

2 iW21
(«)~r ,r;t ! E«~r 2r,t !1E«~r 1r,t !2W22

(«)~r ,r;t !
D , ~26!

where
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W12
(«)~r ,r;t !5FF«~r 2r,t !1F«~r 1r,t !1

1

r
~D«~r 2r,t !2D«~r 1r,t !!G ,

W21
(«)~r ,r;t !5FF«~r 2r,t !2F«~r 1r,t !2

1

r
~D«~r 2r,t !2D«~r 1r,t !!G ,

W22
(«)~r ,r;t !5~rr!21E

ur 2ru

r 1r

E«~j,t !jdj.

By virtue of Lemma 3 and the observation that the operator of convolution with respe
Kt

(«) leaves the subspaceH(1,0) invariant, the operatore2 i t t1 is the limit in the strong operato
topology onL2(R1 ,C2), as«→01, of bounded linear operators with kernels given by~26!.

It is readily verified that as«→01, the components of~26! converge in the spaceCc
`(R1

3R1)8 of distributions to the components of~19!. The proof of Theorem 1 is complete. h

The explicit form of the kernele2 i t t1(r ,r) given in Theorem 1 enables us to show thate2 i t t1

is not a bounded operator onL`(R1 ,C2) for tÞ0.
Proposition 3: For eachd.0 and tÞ0, e2 i t t1(x (0,d) .e2)¹L`(R1 ,C2).
Proof: Let t.0. A similar argument holds fort,0. It is enough to show that the function

r °E
0

d
W12~r ,r;t !dr, 0,r ,t, ~27!

is not bounded nearr 5t. The distribution of order zero with the kernelF(r 2r,t)1F(r 1r,t) is
associated with the sum of convolutions with respect to measures, giving a uniformly bo
function of r , so we examine the integral

E
0

d D~r 2r,t !2D~r 1r,t !

r
dr.

In the region$(r ,r)P(R1)2:ur 1ru,t%, there exists a constantC.0 such that

uD~r 2r,t !2D~r 1r,t !u<CuAt22~r 2r!22At22~r 1r!2u

5
4Crr

At22~r 2r!21At22~r 1r!2

<
4Crr

At22~r 2r!2
.

It follows that r °*0
d`(t2r )r21@D(r 2r,t)2D(r 1r,t)# dr is a uniformly bounded function for

all 0,r ,t.
In the regionr.t2r , the termr21D(r 1r,t) in the kernelW12(r ,r;t) is zero. Suppose tha

t2d,r ,t. Then

E
t2r

d D~r 2r,t !

r
dr5

1

2 Et2r

d`(t1r ) J0~mAt22~r2r !2!

r
dr. ~28!

BecauseJ0(0)51 andJ0 is continuous, it follows that the function~28! and hence~27! has a
logarithmic divergence atr 5t. h

Corollary 1: The operator e2 i t t1 is not bounded from L`(R1 ,C2) to L`(R1 ,C2) for any t
Þ0.
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According to the following corollary, the groupe2 i t t1, t.0, does not have path-space me
sures, somewhat in the same sense that the heat equationetDD with nonreal diffusion constantD
as well as the Schro¨dinger groupeitD/2 do not possess path-space measures~cf. Cameron, 1960/
61!.

The path-spaceV r ,t consists of all functionsv:@0,t#→R1 with v(t)5r and we are looking
for a family of M2(C)-valued measuresn r ,t defined on thes-algebra generated by cylinder sets
V r ,t , such that the equations~29! below hold.

Corollary 2: There does not exist a family$n r ,t% of matrix-valued path-space measures on t
path-spaceV r ,t such that

E
Vr ,t

n r ,t~dv! f ~v~0!!5~e2 i t t1f !~r !, for all r .0, t.0, ~29!

for every continuous function f:@0,̀ )→C2 with compact support.
Proof: By smoothing out the functionx (0,d) .e2 used in Proposition 3, we can find a contin

ous functionf :@0,̀ )→C2 with compact support such that (e2 i t t1f )(r ) diverges asr→t. Hence,
a formula like~29! cannot hold forall r .0. h

By duality, e2 i t t1 cannot be bounded fromL1(R1 ,C2) to L1(R1 ,C2) either. Moreover, a
construction similar to that above shows one can find a functionf with an integrable singularity a
r5t such that the function

r °E
t2d

t

W21~r ,r;t ! f ~r!dr, 0,r ,t,

is not integrable atr 50 state.
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Properties of the symplectic structure of general relativity
for spatially bounded space–time regions
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We continue a previous analysis of the covariant Hamiltonian symplectic structure
of general relativity for spatially bounded regions of space–time. To allow for wide
generality, the Hamiltonian is formulated using any fixed hypersurface, with a
boundary given by a closed spacelike two-surface. A main result is that we obtain
Hamiltonians associated with Dirichlet and Neumann boundary conditions on the
gravitational field coupled to matter sources, in particular a Klein–Gordon field, an
electromagnetic field, and a set of Yang–Mills–Higgs fields. The Hamiltonians are
given by a covariant form of the Arnowitt–Deser–Misner~ADM ! Hamiltonian
modified by a surface integral term that depends on the particular boundary condi-
tions. The general form of this surface integral involves an underlying ‘‘energy-
momentum’’ vector in the space–time tangent space at the spatial boundary two-
surface. We give examples of the resulting Dirichlet and Neumann vectors for
topologically spherical two-surfaces in Minkowski space–time, spherically sym-
metric space–times, and stationary axisymmetric space–times. Moreover, we es-
tablish the relation between these vectors and the ADM energy-momentum vector
for a two-surface taken in a limit to be spatial infinity in asymptotically flat space–
times. We also discuss the geometrical properties of the Dirichlet and Neumann
vectors and obtain several striking results relating these vectors to the mean curva-
ture and normal curvature connection of the two-surface. Most significantly, the
part of the Dirichlet vector normal to the two-surface depends only on the space–
time metric at this surface and thereby defines a geometrical normal vector field on
the two-surface. We show that this normal vector is orthogonal to the mean curva-
ture vector, and its norm is the mean null extrinsic curvature, while its direction is
such that there is zero expansion of the two-surface, i.e., the Lie derivative of the
surface volume form in this direction vanishes. This leads to a direct relation
between the Dirichlet vector and the condition for a spacelike two-surface to be
~marginally! trapped. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1489501#

I. INTRODUCTION

In a previous paper1 we began an investigation of the covariant symplectic structure as
ated with the Einstein equations for the gravitational field in any fixed spatially compact re
S3R of space–time whose spacelike slicesS posses a closed two-surface boundary]S, with a
fixed time-flow vector field tangent to the timelike boundary hypersurface]S3R. Through an
analysis of boundary conditions required for the existence of a Hamiltonian variational prin
we derived Dirichlet, Neumann, and mixed type boundary conditions for the space–time me
the spatial boundary two-surface]S. The corresponding Hamiltonians we obtained are given b

a!Electronic mail: sanco@brocku.ca
b!Electronic mail: roh@gr.uchicago.edu
39840022-2488/2002/43(8)/3984/36/$19.00 © 2002 American Institute of Physics
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covariant form of the Arnowitt–Deser–Misner~ADM ! Hamiltonian plus a surface integral term
whose form depends on the boundary conditions. We also showed that these Hamiltonian
rally yield covariant field equations which are equivalent to a 311 split of the Einstein equation
into the well-known constraint equations and geometrical time-evolution equations for the s
time metric.

The present paper continues the previous analysis in two significant ways. First, in Sec.
investigate the covariant symplectic structure of the Einstein equations coupled to matter s
in any fixed spatially bounded region of space–time. Specifically, we consider Dirichlet
Neumann boundary conditions for a scalar field, an electromagnetic field, and a set of Yang–
Higgs fields. Furthermore, we allow the fixed time-flow vector field on space–time to hav
arbitrary direction~i.e., not necessarily timelike! in the space–time region. Such freedom in t
choice of the time-flow vector field is useful for relating the Hamiltonian boundary term
expressions for total energy, momentum, angular momentum associated with the gravitation
matter fields on given hypersurfaces in space–time.

Next, in Sec. III, we discuss in detail the geometrical structure of the gravitational part o
Dirichlet and Neumann Hamiltonian boundary terms. In particular, as noted in Ref. 1, these
involve an underlying locally constructed ‘‘energy-momentum’’ vector at each point in the tan
space at the two-surface. We show that the form of the boundary term vectors is closely rel
the mean curvature vector and normal curvature connection one-form which describe the ex
geometry of the spatial boundary two-surface in space–time. Most striking, we further show
the part of the Dirichlet boundary term vector orthogonal to the two-surface yields a directi
which the two-surface has zero expansion in space–time.

Finally, through several examples, we illustrate the properties of the Dirichlet and Neu
boundary term vectors for topologically spherical two-surfaces in various physically intere
space–times in Sec. IV. As a main result, we show that in asymptotically flat space–time
Dirichlet vector at spatial infinity can be identified in a natural way with the ADM ener
momentum vector.

We make some concluding remarks in Sec. V.~The notation and conventions of Ref. 1 a
used throughout.!

II. MATTER FIELDS

It is convenient here to employ the tetrad formulation of the Einstein equations, since
simplifies the analysis of boundary conditions and Hamiltonian boundary terms as shown i
1. We focus on Dirichlet and Neumann boundary conditions and make some remarks on
general boundary conditions at the end.

A. Preliminaries

On a given smooth orientable space–time (M ,gab), let ja be a complete, smooth time-flow
vector field, allowed to be timelike, spacelike, or null. LetS be a region contained in a fixe
hypersurface inM such that the boundary of the region is a closed orientable spacelike two-su
]S ~with the hypersurface allowed to be otherwise arbitrary!.

For treatment of boundary conditions when the time-flowja is not necessarily timelike, it is
helpful to introduce the following structure associated with the boundary two-surface]S.

Let P]S andP]S
' denote projection operators onto the tangent subspacesT(]S) andT(]S)'

with respect to the surface]S in local coordinates inM. NoteP]S1P]S
' is the identity map on the

tangent spaceT(M ) at ]S. Define the metric on]S by

sab5P]S~gab!, sab5gacgbds
bc. ~2.1!

Let eab be the metric volume form on]S, and define

* eab5ecdeabcd~g! ~2.2!
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in terms of the space–time volume formeabcd(g). Note thatP]S(* eab)5P]S
' (eab)50. A useful

identity is given by

2~P]S! [a
c~P]S!b]

d5eabe
cd. ~2.3!

Let

za5P]S
' ~ja!, Na5P]S~ja!, ~2.4!

so ja5za1Na decomposes into a sum of normal and tangential vectors with respect to]S. We
now supposeja is not tangential to]S, i.e.,zaÞ0 everywhere on the surface]S. In this situation,
much of the formalism and results given in Sec. 3 of Ref. 1 can be paralleled.

Let B denote the hypersurface given by the image of]S under a one-parameter diffeomo
phism generated byja on M. Note that the dual vector field* eabj

b is hypersurface orthogona
since it is annihilated by all tangent vectors~in particularja! in B. Define a basis$sa ,ta% for
T* (]S)' by diagonalization of the identity map

da
b5sa

b1sas* b1tat* b, ~2.5!

such thatsa}* eabj
b is hypersurface orthogonal toB, with $s* a,t* a% denoting a basis forT(]S)'

that is dual to$sa ,ta%. In particular, s* asa5t* ata51, and s* ata5t* asa50. This leads to a
corresponding decomposition of the space–time metric

gab5sab1sasa* 1tatb* ~2.6!

with sa* 5gabs* b and ta* 5gabt*
b. Now, define a projection operatorPB with respect toB by

ha
b5da

b2sas* b ~2.7!

satisfying

ha
bsb50, ha

bs* a50. ~2.8!

Then

hab5gab2sasa* 5sab1tata* ~2.9!

defines the induced metric onB. Also, define the volume form onB by

eabc~h!5eabcd~g!s* d53t [aebc] . ~2.10!

Finally, note that

* eab54t [asb] , eabcd53e [ab* ecd]54e [abc~h!sd] , ~2.11!

za52Nt* a, zata52N, zasa5zaeab50, ~2.12!

for some scalar functionN. This yields the identities

ja52Nt* a1Na, ~2.13!

jaebceabcd~g!5ja* ead522Nsd , ~2.14!

jaebceabc~h!522N, P]S~jaeabc~h!!52Nebc . ~2.15!

These will be important in the analysis of boundary conditions for both the gravitational field
matter fields.
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Now we introduce an orthonormal frame forgab given by

ua
m5sa

m1sas* m1tat* m, ~2.16!

wheresa
m5sa

bub
m is an orthonormal frame forsab , with the coefficients

s* m5s* aua
m , t* m5t* aua

m ~2.17!

defined to satisfy 7t* mt* n6s* ms* n5diag(21,1,0,0) if ja is timelike or spacelike, or
2s* (mt* n)5diag(21,1,0,0) ifja is null. Consequently, the frame components ofsa, ta, sab, gab

are given by

sm5saua
m , tm5taua

m , ~2.18!

smn5sabua
mub

n5diag~0,0,1,1!, hmn5gabua
mub

n5diag~71,61,1,1!, ~2.19!

where $sm,tm% are dual to$sm* 5hmns* n,tm* 5hmnt* n%. Hereafter we fix the frame coefficient
~2.17! and~2.18! to be independent of the space–time metricgab , so therefore under a variatio
dgab , the induced variationsdsa , dta , dsa

m , dua
m satisfy

dua
m5dsa

m1s* mdsa1t* mdta , ~2.20!

dsa5smdua
m , dta5tmdua

m , dsa
m5sn

mdsa
n , ~2.21!

dsab52smnu (a
m dub)

n 5s (a
m dsb)m , dgab52hmnu (a

m dub)
n . ~2.22!

Note, by hypersurface orthogonality ofsa , it also follows that

PB~dsa!50, P]S~dta!50, P]S
' ~dsab!50. ~2.23!

Let

ha
m5ha

bub
m5ua

m2sas* m, ~2.24!

which yields a decomposition of the frame with respect toB, satisfying

P]S~ha
m!5sa

m , P]S
' ~ha

m!5tat* m. ~2.25!

It is convenient for later to also introduce a fixed frame adapted to]S andja. Let

qa
05ta , qa

15sa , q [a
2 qb]

3 5eab , qa
25ea

bqb
3, ~2.26!

which defines the frameqa
m uniquely up to rotations ofqa

2, qa
3. Thus, in this formalism,qa

m is an
orthonormal frame whenja is timelike or spacelike, and a null frame whenja is null.

In the case whenza is timelike, the previous formalism reduces to that in Ref. 1. M
important, the formalism here applies equally well to the cases whenza is spacelike or null.

Finally, in the case thatza50, i.e.,ja is tangential to]S, we simply fix any basis$sa ,ta% of
T* (]S)' and define a frameua

m to satisfy the previous equations~2.16!–~2.19!. This yields the
same formalism as in the case thatja is not tangential to]S, except that there does not exist
hypersurfaceB generated byza50.

Now, with the frameua
m used as the gravitational field variable, the Lagrangian for the vac

Einstein equations is given by

Labcd~u!5eabcd~u!R~u!. ~2.27!
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HereR(u)5un
bRb

n(u) andRa
m(u)5un

bRab
mn(u) are the scalar curvature and Ricci curvature o

tained from the curvature two-form

Rab
mn~u!52] [aGb]

mn~u!12G [a
ms~u!Gb]s

n~u! ~2.28!

in terms of the frame connection given by

Ga
mn5ubmg¹aub

n52ub[m] [aub]
n]2ubmucnuaa] [buc]

a . ~2.29!

A variation of Labcd(u) yields

dLabcd~u!5E[bcd
m ~u!dua]

m 1] [aQbcd]~u,du!, ~2.30!

where

Ebcd
m ~u!58ebcda~u!~Ram~u!2 1

2u
amR~u!!50 ~2.31!

are the vacuum Einstein field equations forua
m , and where

Qbcd~u,du!58eabcd~g!un
eum

a dGe
mn~u! ~2.32!

is the symplectic potential three-form. It follows that the Noether current associated withja is
given by the three-form

Jabc~j,u!5Qabc~u,Lju!14jdLabcd~u!5eabcd~g!~8um
e un

dLjGe
mn~u!14jdR~u!!, ~2.33!

which simplifies to

Jabc~j;u!53] [aQbc]~j;u!2jeuemEabc
m ~u!, ~2.34!

where

Qbc~j;u!54jeebcda~g!um
d un

aGe
mn~u! ~2.35!

is the Noether charge potential.
The gravitational Noether charge associated with]S is determined by the pullback o

Qbc(j;u). A simple expression for the pullback is obtained through identities~2.2! and ~2.11!,
yielding

ebcjaedebc~g!um
d uu

eGa
mn~u!5* edeum

d un
ejaGa

mn~u!54tmsnjauem g¹aue
n54jasnte g¹aue

n ,
~2.36!

where, recall,ebc is the volume form on]S. Hence, the surface integral

QS~j;u!5E
]S

Qbc~j;u!58E
]S

ebcsnteja g¹aue
n ~2.37!

gives the gravitational Noether charge.
When ja is not tangential to]S, the pullback ofQbcd(u,du) to the hypersurfaceB can be

simplified similarly by the identities~2.14! and ~2.11! and the frame decomposition~2.24!,

1
8e

abjcQabc~u,du!5eabjceabcd~g!um
d un

edGe
nm~u!

522Nsmun
ed~ucn g¹euc

m!

522Nhn
ed~smhe

dhcn g¹duc
m!

5eabjceabc~h!hn
edKe

n, ~2.38!
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where we define

Ka
m5snha

dhcm g¹duc
n . ~2.39!

~Note these expressions have the same form as those obtained in Ref. 1 whenja is timelike.!
Hence, one obtains

PBQabc~u,du!58eabc~h!hn
edKe

n. ~2.40!

This expression leads to a simple form for the gravitational symplectic flux associated withB,

E
B
vabc~u,d1u,d2u!5E

B
d1Qabc~u,d2u!2d2Qabc~u,d1u!

58E
B
eabc~h!~~d1hm

d 2hm
d he

nd1hn
e!d2Kd

m

2~d2hm
d 2hm

d he
nd2hn

e!d1Kd
m!. ~2.41!

The vanishing of this flux determines the allowed boundary conditions on the frameuc
m at the

boundary hypersurfaceB.
We remark that in a frame~2.26! adapted to]S, one sees thatKa

m5hcmha
d g¹dsc represents

the frame components of the extrinsic curvature tensorKab5ha
dhb

c g¹dsc of the boundary hyper-
surface B. Moreover, the Noether charge~2.37! is simply QS(j;u)58*]S ebcj

atmKa
m

58*]S ebcj
ateKae .

For the sequel, we now introduce Dirichlet and Neumann symplectic vectors,

Pa
D~u!5sntcsa

dg¹duc
n2sntasbd g¹bud

n1tnsasbd g¹bud
n5 1

2e
bceacdeum

d un
eGb

mn~u!, ~2.42!

Pa
N~u!5snta g¹auc

n5 1
4e

bcebcdeum
d un

eGa
mn~u!, ~2.43!

associated with the boundary two-surface]S and the frameua
m . In a frame~2.26! adapted to the

hypersurfaceB, these vectors take the more geometrical form

Pa
D~q!5tcsa

d g¹dsc2tasbd g¹bsd1sasbd g¹btd , ~2.44!

Pa
N~q!5tcg¹asc . ~2.45!

Similarly to the derivation in Ref. 1 holding for the situation whenB is timelike, here the projec-
tion of the vectors~2.42! and ~2.43! along ja yields the respective boundary terms required
define a covariant Hamiltonian for the vacuum Einstein equations withja as the time-flow vector
field in a space–time region with spatial boundary two-surface]S, subject to Dirichlet or Neu-
mann boundary conditions on the frameua

m , for a timelike, spacelike, or null boundary hypersu
faceB. The significance and properties of the full vectors~2.42! and ~2.43! will be discussed in
Sec. III.

Lastly, we make some remarks on the gauge invariance of the preceeding results,
follow from the detailed gauge transformation analysis given in Sec. 3 of Ref. 1. Under a
SO(3,1) transformation on the frameua

m , the Noether chargeQbc(j;u) transforms inhomoge-
neously due to its explicit dependence on the frame connection. However, the curvatureRab

mn(u)
is invariant, and consequently so is the LagrangianLabcd(u). Therefore the sympletic curren
vabc(u,d1u,d2u) is necessarily gauge invariant. As a result, up to addition of a locally constru
exact two-form, the symplectic current obtained here for the frame formulation of the va
Einstein equations must agree with the analogous current derived from the standard met
mulation. This means that the presympletic formsVS(u,du,Lju) andVS(g,dg,Ljg) in the two
formulations differ by only a boundary term~i.e., a locally constructed two-form integrated ov
the two-surface]S!. Correspondingly, the Dirichlet and Neumann symplectic vectors assoc
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with VS(g,dg,Ljg) in the metric formulation are found to be the same as the ones given he
the frame formulation, up to certain gradient terms. Furthermore, ifja is timelike and orthogona
to ]S, then these gradient terms can be shown to vanish. In this situation,jaPa

D(q) andjaPa
N(q)

are precisely the Dirichlet and Neumann boundary terms in the covariant Hamiltonian deter
by the metric formulation of the vacuum Einstein equations~see Ref. 2 for a discussion of thi
Hamiltonian!. Consequently, as noted in Ref. 1, we find that the expressionjaPa

D(q) reduces to
the boundary term derived by Brown and York3,4 in the standard canonical formalism, wit
Dirichlet boundary conditions on the canonical variables in the case of a hypersurface bounB
whereja is timelike. In comparison, the covariant formulation we have presented here ap
equally well whenja is null or spacelike.

B. Electromagnetic field

We start by considering a free electromagnetic fieldAa on (M ,gab), coupled to the gravita-
tional field, generalizing the Minkowski background space–time considered in Sec. 2 in R
The Lagrangian four-form forAa is given by

Labcd~A;u!5 1
2eabcd~g!FmnF

mn53F [ab* Fcd] , ~2.46!

whereFab5g¹[aAb]5] [aAb] is the electromagnetic field strength and* Fab5eabcd(g)Fcd is the
dual field strength in terms ofFcd5gcagdbFbd , with gab5ua

mub
nhmn . A useful fact here is thatg¹a

reduces to]a in any skew derivative expression onM. By variation ofAa andua
m in this Lagrang-

ian, one obtains

dLabcd~A;u!5eabcd~g!~g¹m~dAnFmn!2dAn
g¹mFmn2Tm

e~A;u!due
m!, ~2.47!

whereTm
e(A;u)ue

m5Td
e(A;g) is the electromagnetic stress–energy tensor given by

Ta
b~A;g!52FacF

bc2 1
2da

bFmnF
mn. ~2.48!

From the coefficient of the variationdAa in dLabcd(A;u), the field equation forAa is given by the
Maxwell equations

* Ea~A;g!5g¹bFba5g¹b] [bAa]50. ~2.49!

The symplectic potential three-form obtained fromLabcd(A;u) is given by the total derivative
term in Eq.~2.47!, which yields

Qbcd~A,dA;u!54eabcd~g!dAeF
ae. ~2.50!

Hence, the Noether current associated withja for Aa is given by the three-form

Jabc~j,A;g!5Qabc~A,LjA;u!14jdLabcd~A;u!

5eabcd~g!~24FdeLjAe12jdFmnF
mn!

54edabc~g!~jeTe
d~A;g!1jeAe* Ed~A;g!!16] [a~* Fbc]j

eAe! ~2.51!

by a similar derivation as in Minkowski space–time, with

LjAa5jeg¹eAa1Ae
g¹aje52jeg¹[eAa]1

g¹a~jeAe!. ~2.52!

This yields the electromagnetic Noether charge

QS~j;A!5E
S
Jabc~j,A;g!54E

S
jeedabc~g!Te

d~A;g!12E
]S

ebcdaF
dajeAe ~2.53!
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for solutionsAa of the Maxwell equations~2.49!.
The total Lagrangian for the Maxwell equations coupled to the Einstein equations

Rm
a~u!2 1

2ua
mR~u!5Tm

a~A;u! ~2.54!

using the field variablesAa and ua
m is given byLabcd(u,A)5Labcd(u)2Labcd(A;u) from Eqs.

~2.27! and ~2.46!. One then obtains the total Noether current

Jabc~j,u,A!5Jabc~j,u!2Jabc~j,A;u!

58edabc~g!jeue
m~Rm

d~u!2 1
2um

d R~u!2Tm
d~A;u!!13] [aQbc]~j,u,A!, ~2.55!

where

Qbc~j,u,A!5jaebcde~g!~4um
d un

eGa
mn~u!22FdeAa! ~2.56!

is the Noether charge potential. Hence, on solutions of the coupled Einstein–Maxwell equ
the total Noether charge is given by the surface integral

QS~j;u,A!5E
]S

Qbc~j,u,A!. ~2.57!

The electromagnetic part of this expression simplifies through identities~2.2! and~2.11!, yielding

ebc* Fbcj
dAd5* ebcF

bcjdAd54tbscF
bcjdAd . ~2.58!

Then, substituting Eq.~2.36! for the gravitational part, one obtains

QS~j;u,A!5E
]S

ebcj
a~8snteg¹aue

n24tdseF
deAa!. ~2.59!

The Noether current gives a Hamiltonian conjugate toja on S under compact support varia
tions dua

m anddAa ,

H~j;u,A!58E
S
edabc~g!jeue

m~Rm
d~u!2 1

2um
d R~u!2Tm

d~A;u!! ~2.60!

up to a boundary term~2.59!. For variationsdua
m anddAa with support on]S, after taking into

account boundary terms, one has

dH~j;u,A!5E
]S

dQab~j,u,A!2jcQabc~u,A,du,dA! ~2.61!

for Einstein–Maxwell solutions, where

Qabc~u,A,du,dA!5Qabc~u,du!2Qabc~A,dA;u!5edabc~g!~8um
d un

edGe
mn~u!24FdedAe!

~2.62!

is the total symplectic potential three-form from Eqs.~2.32! and~2.50!. The electromagnetic par
of the symplectic potential terms in the Hamiltonian variation~2.61! can be simplified similarly to
expression~2.38! for the gravitational part, yielding

1
4e

abjcQabc~A,dA;u!5eabjcedabc~g!FdedAe52NsdFdedAe52eabjceabc~h!sdFdedAe ~2.63!

through identities~2.14! and ~2.15!. Thus, one obtains
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P]S~jcQabc~u,A,du,dA!!5P]S~jceabc~h!~8hn
edKe

n14sdFdedAe!!

52Neab~8hn
edKe

n14sdFdedAe!. ~2.64!

Hence, for the existence of a Hamiltonian conjugate toja on S, there must exist a locally
constructed three-formB̃abc(u,A) such that

P]S~jcQabc~u,A,du,dA!!5P]S~jcdB̃abc~u,A!2] [aab]~j,u,du,dA!! ~2.65!

for some locally constructed one-formab(j,u,A,du,dA) in T* (]S). Then the total Hamiltonian
is given byH(j;u,A) plus a boundary term

HB~j;u,A!5E
]S

Qab~j,u,A!2jcB̃abc~u,A!. ~2.66!

We now consider Dirichlet and Neumann type boundary conditions on the fieldsua
m andAa at

]S.
First, consider the case whenja is tangential to ]S. Then one finds

P]S(jcQabc(u,A,du,dA))50, which leads to the following result.
Proposition 2.1: Supposeja is tangential to]S. Thenno boundary conditions are necessa

for existence of a Hamiltonian conjugate toja on S. Consequently, a Hamiltonian is given b
HS(j;u,A)5H(j;u,A)1QS(u,A).

Next, assumeja is not tangential to]S, and consider Dirichlet and Neumann bounda
conditions on the electromagnetic and gravitational field variables.

Theorem 2.2:Supposeja is nowhere tangential to]S. Let

~D! d~ha
bAb!u]S50, d~ha

m!u]S50, ~2.67!

~N! d~ uhusbhc
aFcb!u]S50, d~Ka

m!u]S50, ~2.68!

whereuhu5det(ha
m) is the determinant of the components of the frame ha

m associated withB. Under
Dirichlet (D) or Neumann (N) boundary conditions for both Aa and ua

m , there exists a Hamil-
tonian H(j;u,A)1HB(j;u,A) conjugate toja on S, with the boundary term (2.66) given by

HD~j;u,A!58E
]S

ja~Pa
D~u!2 1

2 tdseF
deAa!dS, ~2.69!

HN~j;u,A!58E
]S

ja~Pa
N~u!2s [a

ctd]seF
deAc!dS, ~2.70!

in terms of the Dirichlet and Neumann symplectic vectors (2.42) and (2.43).
Proof: For case~D!, first note from Eq.~2.63! that ebcjaQabc(A,dA;u)58NsdFdehe

cdAc .
Now, using the boundary condition~D! on dAa , one has

he
cdAc5he

cd~scs* bAb!5s* bAbhe
cdsc50 ~2.71!

by the hypersurface orthogonality relations~2.7! and ~2.23!. Thus,

P]S~jaQabc~A,dA;u!!50. ~2.72!

Then, in Eq.~2.38!, sincedeabc(h)5debc50 by the boundary condition~D! on dua
m , one has

ebcjaQabc~u,du!5ebcd~8jaeabc~h!K ! ~2.73!
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and thus,

P]S~jaQabc~u,du!2d~8jaeabc~h!K !!50, ~2.74!

whereK5hn
eKe

n. Hence, substitution of Eqs.~2.72! and ~2.74! into Eq. ~2.65! yields

jaB̃abc~u,A!58jaeabc~h!K ~2.75!

andab50. This leads to the boundary term~2.69! through Eq.~2.66! as follows. The pullback of
jaB̃abc(u,A) to ]S is given by

8jaebceabc~h!K58jatasnhd
e g¹eu

dn516jatasnhd
e g¹eu

dn, ~2.76!

which, when combined with expression~2.36! for the pullback ofQbc(j,u), yields

ebc~Qbc~j,u!2jaB̃abc~u,A!!516ja~snte g¹aue
n2tasnhd

e g¹eu
dn!

516jasn~ tdsa
e2tasde!g¹eud

n516jaPa
D~u! ~2.77!

by the metric decompositions~2.6! and ~2.9! and the orthogonalityjasa50. Finally, combining
this expression with the pullback ofQbc(j,A) given by Eq.~2.58!, we obtain Eq.~2.69!.

For case~N!, one has from Eq.~2.63! that

ebcjaQabc~A,dA;u!5ebcd~4jaeabc~h!seAdFde!14ebcAej
ad~eabc~h!sdFde!. ~2.78!

Now, since

d~eabc~h!sdFde!5eabc~h!~d~sdhm
eFdm!1d lnuhusdhm

eFdm!, ~2.79!

this term vanishes by boundary condition~N! for dFab, and thus

P]S~jaQabc~A,dA;u!2d~4jaeabc~h!seAdFde!!50. ~2.80!

Next, P]S(jaQabc(u,du))50 holds immediately by boundary condition~N! for dKa
m.

Hence, from Eqs.~2.65! and ~2.80!, one hasab50 and

jaB̃abc~u,A!54jaeabc~h!seAdFde. ~2.81!

Then this leads to the boundary term~2.70! through Eq.~2.66! similarly to the derivation of the
boundary term~2.69! above. h

C. Klein–Gordon scalar field

We next consider a free Klein–Gordon scalar fieldw coupled to the gravitational field on
(M ,gab), with the standard Lagrangian four-form given by

Labcd~w;u!5 1
2eabcd~g!~g¹ew

g¹ew1m2w2!, ~2.82!

where m5const is the mass. Note, hereg¹aw5]aw, g¹aw5gab]bw, and gab5ua
mub

nhmn . A
variation of this Lagrangian with respect tow andua

m yields

dLabcd~w;u!5eabcd~g!~g¹e~dwg¹ew!2dw~g¹e g¹ew2m2w!2Tm
e~w;u!due

m!, ~2.83!

whereTm
e(w;u)ue

m5Td
e(w;g) is the Klein–Gordon stress–energy tensor given by

Ta
b~w;g!5g¹bwg¹aw2 1

2da
b~g¹ew

g¹ew1m2w2!. ~2.84!
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Hence, from the coefficient of the variationdw in Eq. ~2.83!, the Klein–Gordon field equation fo
w is given by

* E~w;g!5g¹a]aw2m2w50. ~2.85!

The symplectic potential three-form obtained fromLabcd(w;u) is given by

Qbcd~w,dw;u!54eabcd~g!g¹awdw. ~2.86!

This yields the Noether current associated withja,

Jabc~j,w;g!5Qabc~w,Ljw;u!14jdLabcd~w;u!

5eabcd~g!~24g¹dwLjw12jd~g¹ew
g¹ew1m2w2!

54edabc~g!jeTe
d~w;g!, ~2.87!

whereLjw5je g¹ew5je]ew. Hence, one obtains the Noether charge

QS~j;w!5E
S
Jabc~j,w;g!54E

S
edabc~g!jeTe

d~w;g!. ~2.88!

In contrast to the situation for the electromagnetic field, here, due to the scalar nature
Klein–Gordon field, the Noether charge does not have a surface integral term.

The total Lagrangian for the Klein–Gordon equation coupled to the Einstein equations

Rm
a~u!2 1

2ua
mR~u!5Tm

a~w;u! ~2.89!

using the field variablesw and ua
m is obtained through Eqs.~2.27! and ~2.82! by Labcd(u,w)

5Labcd(u)2Labcd(w;u). The resulting total Noether current is given by

Jabc~j,u,w!5Jabc~j,u!2Jabc~j,w;u!

58edabc~g!jeue
m~Rm

d~u!2 1
2um

d R~u!2Tm
d~w;u!!13] [aQbc]~j,u!, ~2.90!

whereQbc(j,u) is the gravitational Noether charge potential~2.35!. Thus, there is no contribution
from w to the total Noether charge.

The Noether current gives a Hamiltonian conjugate toja on S under compact support varia
tions dua

m anddw,

H~j;u,w!58E
S
edabc~g!jeue

m~Rm
d~u!2 1

2 um
d R~u!2Tm

d~w;u!! ~2.91!

up to a boundary term*]S Qab(j,u). For variationsdua
m anddw with support on]S, one has for

Einstein–Klein–Gordon solutions,

dH~j;u,w!5E
]S

dQab~j,u!2jcQabc~u,du!, ~2.92!

whereQabc(u,du) is the expression~2.38! for the gravitational symplectic potential. Thus, the
exists a Hamiltonian conjugate toja on S if

P]S~jcQabc~u,w,du,dw!!5P]S~jcdB̃abc~u,w!2] [aab]~j,u,w,du,dw!! ~2.93!

holds for a locally constructed three-formB̃abc(u,w) and one-formab(j,u,w,du,dw). Then the
total Hamiltonian is given byH(j;u,w) plus a boundary term
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HB~j;u,w!5E
]S

Qab~j,u!2jcB̃abc~u,w!. ~2.94!

Now, by an analysis similar to that for the Einstein–Maxwell equations, we obtain the
lowing results.

Proposition 2.3: Supposeja is tangential to]S. Thenno boundary conditions are necessa
for existence of a Hamiltonian conjugate toja on S. Consequently, a Hamiltonian is given b
HS(j;u,w)5H(j;u,w)1QS(u).

Theorem 2.4:Supposeja is nowhere tangential to]S. Let

~D! d~w!u]S50, d~ha
m!u]S50, ~2.95!

~N! d~ uhusa]aw!u]S50, d~Ka
m!u]S50, ~2.96!

whereuhu5det(ha
m) is the determinant of the components of the frame ha

m associated withB. Under
Dirichlet (D) or Neumann (N) boundary conditions for bothw andua

m , there exists a Hamiltonian
H(j;u,w)1HB(j;u,w) conjugate toja on S, with the boundary term (2.94) given by

HD~j;u,w!58E
]S

jaPa
D~u!dS, ~2.97!

HN~j;u,w!58E
]S

ja~Pa
N~u!2 1

2 tawsd]dw!dS, ~2.98!

in terms of the Dirichlet and Neumann symplectic vectors (2.42) and (2.43).

D. Yang–Mills and Higgs fields

Last, we generalize the previous two examples by considering on (M ,gab) a set of Yang–
Mills fields Aa

Y and Higgs fieldswY, Y51,...,n, with a gauge group given by anyn-dimensional
semi-simple Lie groupG, n>3. Let CDL

Y be the commutator structure constants of the
algebraA of G ~in a fixed basis!. The structure constants are skewCDL

Y52CLD
Y and satisfy the

Jacobi relationC[DL
YCP]Y

F50. Let GaD
Y (A)5CLD

YAa
L be the Yang–Mills connection, and de

fine kDY521/2CDL
PCYP

L, which denotes the positive definite Cartan–Killing metric onA.
The Yang–Mills Lagrangian forAa

Y is given by the four-form

Labcd~A;u!5 1
2eabcd~g!kLYFmn

L FYmn53kLYF [ab
L * Fcd]

Y , ~2.99!

where

Fab
L 5g¹[aAb]

L 1 1
2CDY

LAa
DAb

Y ~2.100!

is the Yang–Mills field strength,* Fab
L 5eabcd(g)FLcd is the dual field strength in terms ofFLcd

5gcagdbFbd
L , with gab5ua

mub
nhmn . For wY, it is convenient to introduce the gauge-covaria

Higgs field strength

Wa
L5g¹awL1eGaY

L ~A!wY. ~2.101!

In terms of this field strength the Higgs Lagrangian is given by the four-form

Labcd~w;u!5eabcd~g!~ 1
2kLYWm

LWmY1V~ uwu!!, ~2.102!

whereV(uwu) is a Higgs potential withuwu25kLYwLwY, and e5const is a coupling constan
These Lagrangians are gauge invariant under Yang–Mills gauge symmetries on the fieldsAa

Y and
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wY. ~In particular, ifUY
L denotes a homomorphism ofA given by a function of the space–tim

coordinatesxm, it is straightforward to show that the Yang–Mills gauge symmetry is then give
Aa

Y→U21Y
LAa

L2C* YD
LU21L

P]aUP
D andwY→U21Y

LwL, whereC* YD
L5kYPCLP

D denotes
the structure constants of the dual Lie algebraA* andkYP is the inverse of the Cartan–Killing
metric. Under these transformations, the field strengths are gauge covariant,Fab

Y →U21Y
LFab

L and
Wa

Y→U21Y
LWa

L .!
To proceed, we consider the combined Yang–Mills–Higgs Lagrangian,

Labcd~A,w;u!5Labcd~A;u!1Labcd~w;u!. ~2.103!

First, the coefficient of the variationdAa
Y yields the Yang–Mills field equations

kYL* EaY~A;g!5g¹bFba
L 1GbL

Y~A!Fba
Y 2eCPY

LwPWa
Y50, ~2.104!

whereeCPY
LwPWa

Y has the role of a current source. The coefficient of the variationdwY simi-
larly yields the Higgs field equations

kYL* EY~A;g!5g¹aWa
L1GaL

Y~A!Wa
Y2

1

uwu
V8~ uwu!wL50. ~2.105!

Next, by variation of ua
m , one obtains the Yang–Mills–Higgs stress–energy ten

Tm
e(A,w;u)ue

m5Td
e(A,w;g) where

Ta
b~A,w;g!5kLY~2Fac

L FYbc1Wa
LWYb!2 1

2da
bkLY~Fmn

L FYmn1Wm
LWmY!2da

bV~ uwu!.
~2.106!

The symplectic potential three-form arising from the Lagrangian~2.103! is given by

Qbcd~A,w,dA,w;u!54eabcd~g!kLY~dAe
LFYae1dwLWYa!. ~2.107!

This yields the Noether current

Jabc~j,A,w;g!5Qabc~A,w,LjA,Ljw;u!14jdLabcd~A,w;u!

5eabcd~g!~kLY~24FLdeLjAe
Y1jd2Fmn

L FYmn!

1kLY~24WLdLjw
Y12Wm

LWmY!!14V~ uwu!)

54edabc~g!~jeTe
d~A,w;g!16] [a~kLY* Fbc]

L jeAe
Y! ~2.108!

for Yang–Mills–Higgs solutions. Hence, one obtains the Noether charge

QS~j;A,w!5E
S
Jabc~j,A,w;g!54E

S
jeedabc~g!Te

d~A,w;g!12E
]S

kLYebcdaF
LdajeAe

Y .

~2.109!

For the Yang–Mills–Higgs equations coupled to the Einstein equations

Rm
a ~u!2 1

2ua
mR~u!5Tm

a~A,w;u! ~2.110!

using the field variablesAa
Y , wY, ua

m , the total Lagrangian is given byLabcd(u,A,w)
5Labcd(u)2Labcd(A,w;u) from Eqs.~2.27! and ~2.103!.

Through the same analysis as used in the Maxwell and Klein–Gordon examples, we
the following results.

Proposition 2.5: Supposeja is tangential to]S. Thenno boundary conditions are necessa
for existence of a Hamiltonian conjugate toja on S. Consequently, a Hamiltonian is given by
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H~j;u,A,w!58E
S
edabc~g!jeue

m~Rm
d~u!2 1

2 um
d R~u!2Tm

d~A,w;u!! ~2.111!

up to an unessential boundary term.
Theorem 2.6:Supposeja is nowhere tangential to]S. Let

~D! d~Aa
Y!u]S50, d~wY!u]S50, d~ha

m!u]S50, ~2.112!

~N! d~ uhusbhc
aFYcb!u]S50, d~ uhusaWa

Y!u]S50, d~Ka
m!u]S50, ~2.113!

whereuhu5det(ha
m) is the determinant of the components of the frame ha

m associated withB. Under
Dirichlet (D) or Neumann (N) boundary conditions for bothw andua

m , there exists a Hamiltonian
H(j;u,A,w)1HB(j,u,A,w) conjugate toja on S, with the boundary term given by

HD~j;u,A,w!58E
]S

ja~Pa
D~u!2Pa

D~A!!dS, ~2.114!

HN~j;u,A,w!58E
]S

ja~Pa
N~u!2Pa

N~A,w!!d,S, ~2.115!

where

Pa
D~A!5 1

2kLYtdseF
YdeAa

L , ~2.116!

Pa
N~A,w!5kLY~s [a

ctd]seF
YdeAc

L1 1
2tasdWd

YwL!, ~2.117!

and Pa
D(u), Pa

N(u) are the symplectic vectors given by~2.42! and ~2.43!.

E. Remarks

Clearly, the previous results whenja is not tangential to]S are easily generalized to mixe
Dirichlet–Neumann boundary conditions on the tetrad and matter fields similar to Theore
and Theorems 3.5 and 3.6 in Ref. 1. In particular, for allowed boundary conditions, note th
can have the tetrad satisfying~D! while the matter fields satisfy~N!, and vice versa.

III. PROPERTIES OF THE SYMPLECTIC VECTORS

We first review some geometry of spatial two-surfaces in space–time~most of this material is
standard, e.g., Ref. 5–8!. Then we describe the properties of the Dirichlet and Neumann symp
tic vectors regarded as locally constructed geometrical vector fields associated with a fixed
two-surface in space–time, independent of any Hamiltonian structure.

A. Two-surface geometry

Let (S,sab) be a closed, orientable, smooth spacelike two-surface in a space–time (M ,gab),
wheresab is the pullback ofgab to S. Let T(S) andT(S)' denote, respectively, the tangent spa
of S and the normal space toS @defined by the orthogonal complement ofT(S) in T(M )#. Since
T(S) % T(S)'5T(M ), every vector inT(M ) has a unique decomposition into vectors tangent
normal toT(S), given by projection operatorsPS :T(M )→T(S), PS

' :T(M )→T(S)'.
Fix an oriented orthonormal frame$ta,sa% for T(S)',

tasa50,2tata5sasa51, ~3.1!

with ta being a future timelike unit vector andsa being an outward spacelike unit vector.~If M is
spatially noncompact, we define the ‘‘outward’’ direction by the exterior of the setM2S. If M is
spatially compact, there is no preferred way in general to distinguish the setsSandM2S, so we
then make an arbitrary consistent choice for an ‘‘outward’’ direction.! The metric onS is given by
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sab5gab1tatb2sasb . ~3.2!

The compatible volume form onS is given by

eab5eabcd~g!sctd, ~3.3!

satisfyingsc[asb]d5eabecd . The projection operators forT(S) andT(S)' are given by

~PS!a
b5sa

b1eace
bc, ~PS

'!a
b5sasb2tatb5sa

'b5eac
' e'bc, ~3.4!

whereeab
' 52s[atb] and

sab
' 5sasb2tatb . ~3.5!

Both sab and eab are independent of choice of the orthonormal frame. Sincesab
' is a two-

dimensional Lorentz metric, any two oriented orthonormal frames$ta,sa% and$t8a,s8a% differ by
a local boost

t8a5~coshx!ta1~sinhx!sa, s8a5~coshx!sa1~sinhx!ta, ~3.6!

wherex is a function onS. Under an arbitrary boost~3.6!, sab andeab are invariant.
The intrinsic geometry of the two-surfaceS is completely determined by the metricsab . In

particular, the intrinsic curvature ofS is given by

@Da ,Db#vc5Rabc
dvd , ~3.7!

wherevc is any dual tangent vector field onS, andDa denotes the metric compatible~torsion-free!
derivative operator onS defined byDasbc50. SinceS is two-dimensional, it follows that the
intrinsic curvature tensor has only one linearly independent component

Rabc
d5 1

2sc[asb]
dR5 1

2eabec
dR ~3.8!

whereR denotes the scalar curvature ofS.
The two-surfaceS also has an extrinsic geometry with respect to (M ,gab), which is charac-

terized by the following curvatures.5,8 Let ¹a
S5sa

b¹b where¹b is the metric compatible~torsion-
free! derivative operator on (M ,gab). Then¹a

S can be decomposed into the tangential derivat
operator Da and a normal derivative operatorDa

' , with ¹a
S5Da1Da

' , defined by Da
'vb

5sc
'b¹a

Svc for any vector fieldva in T(M ) at S. Now consider¹a
Stb and¹a

Ssb . The tangential
parts yield the extrinsic curvature tensors ofS with respect to the orthonormal frame

kab~ t !5Datb , kab~s!5Dasb , ~3.9!

which are symmetric tensors onS. These measure the spatial rotation of the orthonormal fram
T(S)' under displacement onS. The normal parts of¹a

Stb and¹a
Ssb give

Da
'tb5sbJ a

' , Da
'sb52tbJ a

' , ~3.10!

where

J a
'5sc¹a

Stc , ~3.11!

which measures the boost of the orthonormal frame inT(S)' under displacement onS. The
commutator ofDa

' defines thenormal curvatureof S,

@Da
' ,Db

'#vc5Rabc
' dvd , ~3.12!
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with

Rabcd
' 52D[aJ b]

' ecd
' , ~3.13!

wherevc is any dual normal vector field onS. Hence,Ja
' is geometrically a connection one-form

on S associated with the normal curvature ofS. SinceS is two-dimensional, noteRabcd
' has only

one linearly independent component, which is proportional toeab¹a
SJb

' .
The trace of the extrinsic curvatures~3.9! of S,

k~ t !5sabkab~ t !, k~s!5sabkab~s!, ~3.14!

measures how the two-surface area changes under infinitesimal dragging ofSalong each direction
of the orthonormal frame. In particular, for any vector fieldva in T(S)',

Lveab5k~v !eab , ~3.15!

with

k~v !5Dava5 1
2s

abLvsab . ~3.16!

Thus,S is ‘‘expanding’’ or ‘‘contracting’’ in the directionva according to whether its trace extrin
sic curvaturek(v) is positive or negative.@More precisely,k(v) equals the rate of change of th
area of the image ofS under any diffeomorphism ofM whose generator agrees withva at S.# We
say that the expansion ofS defined by~3.15! for a directionva is spacelike, timelike, or null, if
vava is, respectively, positive, negative, or zero. Ifva is non-null, we refer touk(v)u/uvu as the
absolute expansionof S in the directionva ~with uvu5Auvavau!.

A preferred direction inT(S)' is given by the mean curvature vector5,8

Ha5k~s!sa2k~ t !ta. ~3.17!

If Ha is spacelike or timelike, then this is the direction of, respectively, minimum absolute sp
like or minimum absolute timelike expansion ofS. Furthermore, the minimum value of the abs
lute expansion is given by the mean extrinsic curvature ofS, uk(H)u/uHu5Auk(s)22k(t)2u Note,
here, the norm ofHa is HaHa5k(s)22k(t)2[H2.

The mean curvature vector and normal curvature tensor ofSare each independent of choice
the orthonormal frame, namely,Ha and Rabcd

' are invariant under boosts~3.6! of $ta,sa%. In
contrast, the extrinsic curvatures ofS are not invariant but instead transform like the orthonorm
frame, while the normal connection transforms like an SO~1, 1! connection

Ja8
'5J a

'1¹a
Sx ~3.18!

with respect to the SO~1, 1! group generated by the boosts~3.6!.

B. Dirichlet symplectic vector

It is convenient to work with a null frame forT(S)'. Let

&ua
15ta1sa , &ua

25ta2sa , ~3.19!

which define, respectively, outgoing and ingoing future pointing null dual vectors satisfying

ua
1u2a521. ~3.20!

Note that any two such oriented null frames$ua
1 ,ua

2% and$ua8
1 ,ua8

2% are related by a local boos

ua8
15exua

1 , ua8
25e2xua

2 , ~3.21!
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wherex is a boost parameter given by a function onS.
The extrinsic curvatures ofS in the ua

6 directions are given by

kab
6 5Daub

6 . ~3.22!

Then

k65Dau6a5 1
2s

abLu6sab ~3.23!

are the trace extrinsic curvatures which measure the expansion ofS in the ua
6 directions. Specifi-

cally, k6 is the rate of change of two-surface area ofS,

Lu6eab5k6eab , ~3.24!

under any diffeomorphism ofM whose generator is given byua
6 at S. Equivalently,k6 measures

the focusing of a congruence of null geodesics normal toS.
The mean curvature vector ofS is given by

Ha52~k2u1a1k1u2a! ~3.25!

and the connection for the normal curvature ofS is given by

J a
'5u1b¹a

Sub
2 . ~3.26!

We now consider the Dirichlet symplectic vector~2.44! associated withS in the frame$ta,sa%,
and separate it into vectors that are normal and tangential toS,

~P'!a5PS
'~Pa!5k1u2a2k2u1a, ~3.27!

~Pi!
a5PS~Pa!5sacu2b¹c

Su1
b . ~3.28!

We call (P')a theDirichlet normal vectorassociated withS. It has the important property tha
it is independent of choice of the null frame atS.7–9

Proposition 3.1:(P')a is invariant under arbitrary boosts~3.21! of the oriented null frame.
Consequently, (P')a depends only on the two-surfaceS and the space–time metricgab . ~In

particular, its components in any coordinate system can be locally constructed out of the c
nents ofg and their partial derivatives, but not in a coordinate invariant form.! Moreover, (P')a

has three significant geometrical properties.
First of all, we consider the extrinsic curvature ofS in the direction (P')a,

kab
' 5Da~P'!b . ~3.29!

Remarkably, the trace of this extrinsic curvature vanishes

k'5Da~P'!a5k1Dau2a2k2Dau1a50 ~3.30!

by Eq. ~3.23! andu6a¹a
S50. Then we have

LP'
eab5k1Lu2eab2k2Lu1eab5k'eab50. ~3.31!

This result yields the following key geometrical property of (P')a.
Theorem 3.2:The normal direction(P')a to S in the space–time(M ,gab) is area preserving,

i.e., S has zero expansion in the direction(P')a.
Moreover, this property essentially characterizes the directional part of (P')a since there is a

unique area-preserving normal direction at all points ofS, except, if any, wherek15k250 ~in
which case all normal directions toS are area-preserving!.
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Second, we find that the norm of (P')a is given by

~P'!252k1k2. ~3.32!

Hence, the direction of (P')a is timelike, spacelike, or null if the expansionsk6 of S are,
respectively, opposite sign, same sign, or at least one is zero.~These are boost invariant prope
ties.! In general, the signs ofk6 can vary onSeven if the space–time curvature satisfies posit
energy conditions. Therefore, the sign of (P')2 need not be the same everywhere onS. We note
that the situation (P')2.0 characterizesS as a trapped surface, related to the formation of bl
holes.10 Further remarks on this aspect of (P')a will be made in Sec. V.

Third, we see that (P')a is closely related to the mean curvature vector ofS.
Proposition 3.3:

~P'!aHa50, ~P'!252H2. ~3.33!

Thus, (P')a is, respectively, timelike, spacelike, or null asHa is spacelike, timelike, or null.
Let uHu5AuH2u, uP'u5Au(P')2u denote the absolute norms ofHa and (P')a. Then, in the
non-null case, the relations~3.33! give a unique characterization of (P')a ~up to a sign! as a
vector inT(S)' orthogonal toHa and with the same absolute norm asHa. Consequently, we will
write (P')a5H'

a and refer to

H'
a 5k1u2a2k2u1a ~3.34!

as thenormal mean curvature vectorof S, with H'
a Ha50, H'

2 52H2.
Lemma 3.4: SupposeuHuÞ0 or equivalentlyuP'uÞ0, i.e., Ha and H'

a 5(P')a are non-null.
Then$Ha/uHu,H'

a /uHu% is an orthonormal frame for T(S)'. Correspondingly, the pair of vector

û1a[
1

&uHu
~Ha1H'

a !5
2k2

Auk1k2u
u1a, ~3.35!

û2a[
1

&uHu
~Ha2H'

a !5
2k1

Auk1k2u
u2a, ~3.36!

is a null frame for T(S)'.
Thus, in the non-null case,Ha andH'

a 5(P')a determine a preferred orthonormal frame~or
null frame! of T(S)' which depends just on the two-surfaceS and space–time metricgab . Then
we can summarize the geometrical properties of these vectors in terms of the following orth
mal vectors inT(S)':

Ĥa5
1

A2uk1k2u
~k2u1a1k1u2a!, ~3.37!

Ĥ'
a 5

1

A2uk1k2u
~k2u1a2k1u2a!. ~3.38!

Theorem 3.5:Supposek1k2Þ0 on S, i.e., Ha and H'
a are non-null. Then:

(1) The expansion of S is zero in the unique normal direction Hˆ
'
a , which is spacelike or

timelike ask1k2 is positive or negative on S.
(2) The absolute expansion of S in the orthogonal normal direction Hˆ a is A2uk1k2u. This is

the minimum absolute spacelike expansion or minimum absolute timelike expansion wherek1k2

is, respectively, positive or negative on S.
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We now turn to consider the geometrical properties of (Pi)a. To begin, (Pi)a can be
identified6,7 with the connectionJ a

' for the normal curvature ofS, in the null frame$ua
1 ,ua

2%.
Proposition 3.6:

~Pi!
a52sabJ b

' , ~3.39!

where

J a
'5u1c¹a

Suc
2 . ~3.40!

Hence, in contrast to the invariance of (P')a under boosts~3.21! of the null frame, (Pi)a is
not invariant but instead transforms as an SO~1, 1! connection,

~Pi!a85~Pi!a2¹a
Sx, ~3.41!

wherex is a boost parameter given by a function onS. This describes a gauge transformation
(Pi)a associated with the boosts~3.21! acting onT(S)' as an SO~1,1! gauge group. Consequentl
the curl of (Pi)a has the role of the gauge invariant curvature.

Proposition 3.7:

2D[a~Pi!b]5
1
4Rabcd

' e'cd ~3.42!

is invariant under arbitrary boosts (3.21) of the null frame, whereRabcd
' is the normal curvature

of S.
Thus, the curvatureD[a(Pi)b] depends only on the two-surfaceS and the space–time metri

gab .
Interestingly, in the case whenHa is non-null, we can use the preferred orthonormal frame

null frame given by Lemma 3.4 to gauge-fix (Pi)a. We introduce

~ P̂i!a5
1

H2 H'
b DaHb5

1

H'
2 HbDaH'b5~Pi!a1 1

2 ¹a
S ln~k1/k2! ~3.43!

related to (Pi)a by a gauge transformation~3.41! with boost parameterx5 1
2 ln(k2 /k1) on S.

Proposition 3.8:( P̂i)a is invariant under arbitrary boosts (3.21) of the oriented null fram.
Consequently, we call (P̂i)a the invariant Dirichlet tangent vectorassociated withS. In

particular, (P̂i)a depends only on the two-surfaceSand the space–time metricgab . We now state
the main geometrical property of (P̂i)a , which follows from Eq.~3.43!.

Theorem 3.9: Supposek1k2Þ0 on S, i.e., Ha and H'
a are non-null. Then the boost [with

respect to T(S)'] of the area-preserving unit normal vector Hˆ
'
a to S under displacement on S

a maximum in the direction( P̂i)a . By orthogonality of Ha and H'
a , this is equivalent to the

tangent direction on S in which the boost of the unit mean curvature vector Hˆ a under displacemen
on S is a maximum.

Finally, from Propositions 3.1 and 3.8, when the mean curvature vector is non-null we
define an invariant locally constructed Dirichlet four-vector associated withS by

P̂a5~P'!a1~ P̂i!
a5k1u2a2k2u1a1sacu2b¹c

Sub
11 1

2 ¹a
S ln~k1/k2!. ~3.44!

Note that this vector depends only onS andgab and is independent of the choice of null fram
$ua

1 ,ua
2%. Indeed, in terms of purely geometrical structure associated withS,

P̂a5H'
a 1

1

H2 H'
b DaHb , ~3.45!
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whereHa is the mean curvature vector~3.25! andH'
a is the normal mean curvature vector~3.34!

of S.

C. Neumann symplectic vector

Finally, we consider the Neumann symplectic vector~2.45! associated withS,

Pa5gacu2b¹cub
1 . ~3.46!

Notice, first of all, the tangential part ofPa with respect toS,

~Pi!
a5PS~Pa!5sacu2b¹c

Sub
1 , ~3.47!

is identically equal to the tangential part of the Dirichlet symplectic vector~3.38!. Hence, similar
to Theorem 3.9, (Pi)a gives the direction in which the boost of the null frameua

6 under displace-
ment onS is a maximum. In contrast, the normal part ofPa with respect toS,

~P'!a5PS
'~Pa!5s'acu2b¹cub

152s'acu1b¹cub
2 , ~3.48!

involves derivatives of the null frameua
6 in normal directions toS. In particular, note through

substitution of

sa
'b52~ua

1u2b1ua
2u1b! ~3.49!

that

~P'!a52u1au2bu2c¹cub
11u2au1bu1c¹cub

25sc
'a@u2,u1#c ~3.50!

sinceu1b¹cub
15u2b¹cub

250.
Proposition 3.10:(P')a is the normal part of the commutator@u2,u1#a of the null frame,

(P')a5PS
'@u2,u1#a.

Consequently, unlike (Pi)a, which is well-defined given just the two-surfaceS and a null
frameu6a of T(S)', it is necessary to consider ‘‘nearby’’ two-surfacesS8, diffeomorphic toS, to
extend the null frameua

6 of T(S)' off S so that (P')a is well-defined.
Let S(l1 ,l2) denote a two-parameter (l1 ,l2) local null congruence of two-surfacesS8

diffeomorphic toS in (M ,gab) with S(0,0)5S. @The congruence is defined to be ingoing as
function ofl2 and outgoing as a function ofl1 .# Extend the null frame$u1a,u2a% off T(S)' to
T(S8)'. This extension is unique up to boosts~3.21!. Then (P')a5s 'acu2b¹cub

1 is a well-
defined normal vector at each point onS. We call (P')a the Neumann normal vectorassociated
with S in a null congruenceS(l1 ,l2).S3(l1 ,l2). It depends, of course, on the congruence
also on the choice of null frame forT(S(l1 ,l2))

'.
Proposition 3.11: Under boosts (3.21) of the null frame on the two-surfaces S(l1 ,l2)

.S(l1 ,l2), (P')a transforms as

~P'!a85~P'!a2sa
'b¹bx, ~3.51!

wherex is a boost parameter given by a function of(l1 ,l2).
By Proposition 3.6, (Pi)a has a similar boost transformation property, which has the geom

cal meaning of an SO~1,1! connection for the normal curvature ofS. This suggests that, geometr
cally, Pa5(P')a1(Pi)a is also related to an SO~1, 1! connection associated with an extrins
curvature ofS.

Consider the derivative operator¹a
' defined by¹a

'vb5sc
'b¹avc for any normal vector field

va on the two-surfacesS(l1 ,l2) . The commutator of¹a
' gives the curvature
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@¹a
' ,¹b

'#vc5Rabc
' dvd . ~3.52!

@Note that, on functions,@¹a
' ,¹b

'# f 52¹[a¹b] f 50.# Clearly, PS
'(@¹a

' ,¹b
'#)vc5@Da

' ,Db
'#vc

5Rabc
' dvd yields the normal curvature ofS. Hence,Rabcd

' is a generalization ofRabcd
' , which we

call thesectional curvature normal to Sin the null congruenceS(l1 ,l2) .
Proposition 3.12:

Rabcd
' 52¹@a

' Jb]
' ecd

' , ~3.53!

where Ja
'5u1b¹aub

2 .
Here Ja

' is geometrically a connection one-form forRabcd
' . In particular, boosts of the nul

frame act as an SO~1, 1! gauge group onT(S(l1 ,l2))
' under whichJa

' transforms asJa8
'5Ja

'

1¹ax wherex is a function onS(l1 ,l2).S3(l1 ,l2). Note that the curvatureRabcd
' is invariant

under these boosts. This leads to the main geometrical result concerningPa.
Theorem 3.13: In any null congruence of two-surfaces S(l1 ,l2) , Pa52Ja

' is a connection

one-form for the sectional curvature normal to S,

2¹@a
' Pb]5

1
4Rabcd

' e'cd. ~3.54!

Thus the curl¹@a
' Pb] is invariant under arbitrary boosts of the null frame onS(l1 ,l2) . It

depends, still, on the choice of null congruenceS(l1 ,l2).S3(l1 ,l2).
In general, there is no unique null congruence determined just byS and gab . However, a

natural choice is given by ingoing and outgoing null geodesics congruencesSl6
throughS, with

S(l1 ,l2) defined as (Sl1
)l2

or (Sl2
)l1

corresponding to constructing successive one-param
ingoing and outgoing congruences.11

If S(l1 ,l2).S3(l1 ,l2) is chosen to be a null geodesic congruence, then the geo
equation implies thatu6a satisfiesu86b¹bu86a50 whereu86a is given by a boost~3.21! for
some functionx of (l1 ,l2). Thus,

u1b¹bu1a52u1au1b¹bx, u2b¹bu2a5u2au2b¹bx. ~3.55!

This leads to a simplification of (P')a from Eq. ~3.50!,

~P'!a5u1au1bu2c¹cub
22u2au2bu1c¹cub

152u1au2c¹cx2u2au1c¹cx. ~3.56!

Proposition 3.14: In a null geodesic congruence, (P')a5s'ab¹bx , and consequently,
PS

'(Rabcd
' )50.

The converse of this result also holds, since if the normal part ofRabcd
' vanishes, then (P')a

is a gradient and henceu6a satisfies the geodesic equation~3.55! so that the congruenceS(l1 ,l2)

arises from null geodesics throughS.
Geometrically, the boost functionx in the geodesic equation~3.55! is related to the choice o

parametrization of the null congruence. Indeed, we can fix the parametrization in a natural w
x50, which implies a corresponding gauge-fixing of (P')a,

~ P̂'!a50. ~3.57!

To conclude, we remark that the use of ingoing and outgoing null congruences in de
(P')a can be replaced by using timelike and spacelike congruences, denotedSls

andSl t
, through

S. Moreover, if gab has isometries then it may be possible to fix a unique local two-param
congruenceS(ls ,l t)

constructed in a natural way from the Killing vectors and invariant surface
the isometries. In general, then (P')a is no longer just a gradient. This will be illustrated in th
examples in Sec. IV.
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Finally, it is important to note that there is no ambiguity in (P')a appearing in the Neuman
Hamiltonian boundary term~2.43!, since this involves only the component of (P')a in the direc-
tion of the time-flow vector, which is well-defined using the unique timelike congruence thr
S generated by the time-flow vector onM.

IV. EXAMPLES

We now consider examples for the Dirichlet and Neumann symplectic vectors describ
Sec. III. In particular, we calculate these vectors and their properties for spacelike, topolog
spherical two-surfaces in~a! Minkowski space–time,~b! spherically symmetric space–times,~c!
axisymmetric space–times,~d! homogeneous isotropic space–times,~e! asymptotically flat space–
times.

A. Minkowski space–time

Consider a closed orientable spacelike two-surfaceS embedded in a spacelike hyperplane
Minkowski space–time (R4,h), using spherical coordinates

hab52~dt !a~dt !b1~dr !a~dr !b1r 2~~du!a~du!b1sin2 u~df!a~df!b!, ~4.1!

whereS is given byt5t0 , r 5R(u,f) for some functionR(u,f) and constantt0 . Fix an ortho-
normal frameqa

m adapted toS in (R4,h) by

qa
05~dt !a , qa

15
1

c
~~dr !a2]aR!, ~4.2!

qa
25

1

m S r ~du!a1
]uR

r
~dr !aD , qa

35
m

c S r sinu~df!a1
]fR

m2r sinu
~~dr !a2]uR~du!a! D ,

~4.3!

where

m5A11r 22~]uR!2, c5A11r 22~~]uR!21~]fR/sinu!2!. ~4.4!

Note the metric associated withS is given in spherical coordinates by

sab5~12c22!~dr !a~dr !b12c22~dr !(a]b)R2c22]aR]bR

1r 2~~du!a~du!b1sin2 u~df!a~df!b!. ~4.5!

The pullback ofsab to S yields the induced metric onS,

sabuS5~R21~]uR!2!~du!a~du!b1~R2 sin2 u1~]fR!2!~df!a~df!b12]uR]fR~du!(a~df!b) .
~4.6!

Correspondingly, letcS5cuS5A11R22((]uR)21(]fR/sinu)2).
The trace of the extrinsic curvatures of (S,sab) with respect to the frame onT(S)'

ta5qa
0uS5~dt !a , sa5qa

1uS5
1

cS
~~dr !a2]aR!, ~4.7!

are, respectively,

k~ t !5sab¹atb52~G2
02~q!1G3

03~q!!uS50 ~4.8!

and

k~s!5sab¹asb52~G2
12~q!1G3

13~q!!uS52~q1
aq2

b] [aqb]
2 1q1

aq3
b] [aqb]

3 !ur 5R~u,f! , ~4.9!
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calculated in terms of the Ricci rotation coefficients

Gl
mn~q!5ql

aqbn¹aqb
m52ql

aqb[m] [aqb]
n]2qbmqcn] [bqc]l . ~4.10!

Herek(s) is the standard Euclidean extrinsic curvature ofS in R3.5 @The explicit expression for
k(s) as a function of the spherical coordinates is lengthy and will be omitted.#

A preferred direction inT(S)' is given by the mean curvature vector

Ha5sak~s!2tak~ t !5
k~s!

cS
S ~] r !

a2
]uR

R2 ~]u!a2
]fR

R2 sin2 u
~]f!aD , ~4.11!

which is spacelike. This vector gives the direction of the minimum absolute spacelike expa
of S in (R4,h). Furthermore, the value of the expansion is the mean extrinsic curvature ofSgiven
by

1

AH2
k~H !5uk~s!u5AH2. ~4.12!

Note S is convex or concave according to where the sign ofk(s) is negative or positive.
The normal part of the Dirichlet symplectic vector is given by the normal mean curva

vector

~P'
D!a5H'

a 5tak~s!2sak~ t !5k~s!~] t!
a. ~4.13!

Note that (P'
D)a is timelike, orthogonal toHa, with the same absolute norm asHa. Most signifi-

cant, (P'
D)a gives the direction of zero expansion ofS.

A preferred orthonormal frame forT(S)' is

t̂ a5
1

AH2
H'

a 5~] t!
auS , ŝa5

1

AH2
Ha5

1

c S ~] r !
a2

]uR

r 2 ~]u!a2
]fR

r 2 sin2 u
~]f!aD uS , ~4.14!

which depend only onS and hab but not on the Minkowski frameqa
m . In the preferred frame

~4.14!, the tangential part of the Dirichlet symplectic vector is

~Pi
D!a5sact̂ b¹cŝb52

1

cS
sacS ~] r !

b2
]uR

R2 ~]u!b2
]fR

R2 sin2 u
~]f!bD¹c~dt !b50, ~4.15!

and thus the normal curvature ofS is zero.
Hence the complete Dirichlet symplectic vector is

Pa5~P'
D!a1~Pi

D!a5k~s!~] t!
a, ~4.16!

which depends only onS andhab . In particular, it is independent of choice of original orthono
mal frame~4.2! and ~4.3! on Minkowski space and of the normals~4.7! in T(S)'.

To define the Neumann symplectic vector, it is natural to extend the preferred orthon
frame ~4.14! off S by using the obvious isometries ofhab . With respect to this extension, th
normal part of the Neumann symplectic vector is given by the commutator

~P'
N!a5PS

'@ t̂ ,ŝ#a5
1

cS
PS

'S @~] t!,~] r !#
a2

1

R2 sin2 u
@~] t!,sin2 u]uR~]u!1]fR~]f!#aD50.

~4.17!

@Alternatively, the same result for (P'
N)a is obtained by extending~4.14! off S to the congruence

of two-surfacest5const,r 2R(u,f)5const, which lie in parallel hyperplanes toS and are iso-
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metric to S.# Then, since (Pi
N)a5(Pi

D)a50, the complete Neumann symplectic vector in t
congruence of two-surfaces associated withS under isometries ofhab is given by

Pa5~P'
N!a1~Pi

N!a50. ~4.18!

Thus the sectional curvature normal toS vanishes, reflecting the fact thatS lies in a flat hyper-
plane.

1. Light cone two-sphere

Next, consider a closed orientable spacelike two-surfaceS embedded in a light cone in
(R4,h). Let u5(t2r )/&, v5(t1r )/&, u, f be light cone coordinates~i.e., r, u, f are spherical
coordinates with respect to the origin point for the cone!, with

hab522~du!(a~dv !b)1
1
2~v2u!2~~du!a~du!b1sin2 u~df!a~df!b!. ~4.19!

Then S is given byu5u0 , v5V(u,f) for some functionV(u,f) and constantu0 . Note that
(du)a and (dv)a2]aV are, respectively, a null normal and spacelike normal forS, while (]u)a

1]uV(]v)a and (]f)a1]fV(]v)a are orthogonal tangent vectors onS.
Fix a null frameqa

m adapted toS in (R4,h) by

qa
05~du!a , qa

15 1
2c

2~du!a1~dv !a2]aV, ~4.20!

qa
25r ~du!a2

]uV

r
~du!a , qa

35r sinu~df!a2
]fV

r sinu
~du!a ~4.21!

satisfyingqa
mqb

nhab522d0
(md1

n)1d2
md2

n1d3
md3

n , where

c5udVu5r 21A~]uV!21~]fV/sinu!2. ~4.22!

Note the metric associated withS is given by

sab5c2~du!a~du!b22~du!(a~]uV~du!b)1]fV~df!b)!1r 2~~du!a~du!b1sin2 u~df!a~df!b!,
~4.23!

where

sabuS5 1
2~V2u0!2~~du!a~du!b1sin2 u~df!a~df!b! ~4.24!

yields the induced metric onS.
The trace of the extrinsic curvatures of (S,sab) with respect to the null frame onT(S)'

ua5qa
0uS5~du!a , ~4.25!

va5qa
1uS5cS

2~du!a1~dv !a2]uV~du!a2]fV~df!a , ~4.26!

are, respectively,

k~u!5sab¹aub52~G2
02~q!1G3

03~q!!uS52
2

R
~4.27!

and

k~v !5sab¹avb52~G2
12~q!1G3

13~q!!uS5
2

R
~11cS

2!2
2]uR

R2

cosu

sinu
2

2]u
2R

R2 2
2]f

2 R

R2 sin2 u
,

~4.28!
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where

cS5
1

&
cuS5R21A~]uR!21~]fR/sinu!2, R5&r uS5V2u0 . ~4.29!

A preferred direction inT(S)' is given by the mean curvature vector

Ha52uak~v !2vak~u! ~4.30!

in terms of the null vectors

ua52~]v!auS , va52S ~]u!a1
c2

2
~]v!a1

]uV

r 2 ~]u!a1
]fV

r 2 sin2 u
~]f!aD U

S

. ~4.31!

The norm ofHa gives the mean extrinsic curvature ofS,

1

uHu
uk~H !u5A2uk~u!k~v !u5uHu. ~4.32!

Now, the normal part of the Dirichlet symplectic vector is given by the normal mean curv
vector (P'

D)a5H'
a 5vak(u)2uak(v), which simplifies to

~P'
D!a52k~u!~]u!a2~k~u!cS

22k~v !!~]v!a2k~u!
2]uR

R2 ~]u!a2k~u!
2]fR

R2 sin2 u
~]f!a.

~4.33!

This vector gives the direction of zero expansion ofS in (R4,h).
A preferred null frame forT(S)' consists of

ûa5
1

&uHu
~H'

a 1Ha!5Ak~v !

k~u!
~]v!a, ~4.34!

v̂a5
1

&uHu
~H'

a 2Ha!5Ak~u!

k~v ! S ~]u!a1cS
2~]v!a1

2]uR

R2 ~]u!a1
2]fR

R2 sin2 u
~]f!aD ,

~4.35!

which depend only onS and hab but not on the Minkowski frameqa
m . In the preferred frame

~4.34! and ~4.35!, the tangential part of the Dirichlet symplectic vector is given by

~Pi
D!a5sacv̂b¹cûb5sacvb¹c~du!b1 1

2s
ac]c ln~k~u!/k~v !!. ~4.36!

This simplifies to

~Pi
D!a5

1

R2 ~~]u!a1]uR~]v!a!]u ln~k~u!/k~v !!

1
1

R2 sin2 u
~~]f!a1]fR~]v!a!]f ln~k~u!/k~v !!. ~4.37!

Therefore, since the dual vector (Pi
D)a5¹a

S ln(k(u)/k(v)) is a gradient onS, the normal curvature
of S is zero.

The complete Dirichlet symplectic vector is

Pa5~P'
D!a1~Pi

D!a, ~4.38!
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which depends only onS andhab . In particular, it is independent of choice of the original nu
frame~4.20! and~4.21! on Minkowski space and of the corresponding frame~4.25! and~4.26! on
T(S)'. Geometrically, the dual vector (P'

D)a provides a preferred normal direction for a family
hypersurfaces defined to cut the light cone atS, with vanishing normal curvature.

Finally, the commutator of the null frame~4.31! yields the normal part of the Neuman
symplectic vector,

~P'
N!a5PS

'@v,u#a5PS
'[ ]u1

c2

2
]v1

]uV

r 2 ]u1
]fV

r 2 sin2 u
]f ,]v] aU

S

5
&

r
PS

'S c2

2
~]v!a1

]uV

r 2 ~]u!a1
]fV

r 2 sin2 u
~]f!aD U

S

522
cS

2

R
~]v!a, ~4.39!

through ]vc252&c2/r . The tangential part of the Neumann symplectic vector is sim
(Pi

N)a5(Pi
D)a. Hence, this yields the complete Neumann symplectic vector

Pa5~P'
N!a1~Pi

N!a, ~4.40!

which depends only on the congruence of spacelike two-surfacesu5const,v2V(u,f)5const,
lying on the light cones in Minkowski space.
2. Constant curvature two-sphere

In the special case of a constant curvature two-sphereS, viewed as embedded either in
hyperplanet5t05const, r 5R5r 05const, or in a light cone,u5u05(t02r 0)/&, v5V5v0

5(t01r 0)/&, the mean curvature vector ofS is simply Ha5(2/r 0)(] r)
a, and the complete

Dirichlet symplectic vector reduces to

Pa5H'
a 5

2

r 0
~] t!

a, ~4.41!

while the complete Neumann symplectic vector vanishes.

B. Spherically symmetric space–times

In a spherically symmetric space–time (R3S,gab),

gab52e2c~dt !a~dt !b1e22n~dr !a~dr !b1r 2~~du!a~du!b1sin2 u~df!a~df!b!, ~4.42!

wherec5c(t,r ) andn5n(t,r ), consider a spacelike two-surfaceS given by an isometry spher
r 5r 05const andt5t05const. The metric onS is

sab5r 0
2~du!a~du!b1r 0

2 sin2 u~df!a~df!b ~4.43!

and the area ofS is A(S)54pr 0
2. Fix an orthonormal frame adapted toS by

qa
05ec~dt !a , qa

15e2n~dr !a , qa
25r ~du!a , qa

35r sinu~df!a . ~4.44!

The Ricci rotation coefficients of the frame

Gl
mn~q!5ql

aqbn¹aqb
m52ql

aqb[m] [aqb]
n]2qbmqcn] [bqc]l ~4.45!

have the following nonvanishing components:

G0
1052~] re

c!ene2c, ~4.46!

G1
0152~] te

n!e2ne2c, ~4.47!
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G2
1252

en

r
5G3

13, ~4.48!

G3
2352

cosu

r sinu
. ~4.49!

The trace of the extrinsic curvatures of (S,sab) with respect to the frame onT(S)'

ta5qa
0uS , sa5qa

1uS , ~4.50!

are, respectively,

k~ t !5sab¹atb52~G2
021G3

03!uS50, ~4.51!

and

k~s!5sab¹asb52~G2
121G3

13!uS5
2en(t0 ,r 0)

r 0
. ~4.52!

A preferred direction inT(S)' is given by the mean curvature vector

Ha5sak~s!2tak~ t !5
2e2n(t0 ,r 0)

r 0
~] r !

a, ~4.53!

which is spacelike. This vector gives the direction of the minimum absolute spacelike expa
of S. Furthermore, the value of the expansion is given by the trace extrinsic curvature ofS with
respect to the unit vector in the directionHa,

1

AH2
k~H !5uk~ t !u5

2en(t0 ,r 0)

r 0
, ~4.54!

which is equal to the norm ofHa.
The normal part of the Dirichlet symplectic vector is given by the normal mean curva

vector

~P'
D!a5H'

a 5tak~s!2sak~ t !52
en(t0 ,r 0)e2c(t0 ,r 0)

r 0
~] t!

a. ~4.55!

Here (P'
D)a is timelike, orthogonal toHa, with the same absolute norm asHa. Most significant,

(P'
D)a gives the direction of zero expansion ofS.

A preferred orthonormal frame forT(S)' is

t̂ a5
1

AH2
H'

a 5e2c~] t!
a, ŝa5

1

AH2
Ha5en~] r !

a, ~4.56!

which depend only onS andhab but not on the chosen frameqa
m . In the preferred frame~4.56!

the tangential part of the Dirichlet symplectic vector is

~Pi
D!a5sact̂ b¹cŝb5~q2aG2

101q3aG3
10!uS50, ~4.57!

and thus the normal curvature ofS is zero.
Hence the complete Dirichlet symplectic vector is
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Pa5~P'
D!a1~Pi

D!a52
en(t0 ,r 0)2c(t0 ,r 0)

r 0
~] t!

a, ~4.58!

which depends only onS and hab . In particular, it is independent of choice of the origin
orthonormal frame~4.44! for gab and ~4.50! for sab

' .
To define the Neumann symplectic vector, it is natural to use the orthonormal frame~4.56!

extended offS to the congruence of isometry spherest5const,r 5const. Then, for this extension
the normal part of the Neumann symplectic vector is given by the commutator

~P'
N!a5PS

'@ t̂ ,ŝ#a5~ t̂ aG0
101 ŝaG1

10!uS5~2~] re
c!ene22c~] t!

a1~] te
n!e2c~] r !

a!uS .
~4.59!

Since (Pi
N)a5(Pi

D)a50, the complete Neumann symplectic vector with respect to the congru
of isometry spheres associated withS is given by

Pa5~P'
N!a1~Pi

N!a5en(t0 ,r 0)2c(t0 ,r 0)~2] rc~ t0 ,r 0!~] t!
a1] tn~ t0 ,r 0!~] r !

a!. ~4.60!

Finally, as a special case, consider the Reissner–Nordstro¨m black hole space–time obtaine
for

ec5en5A122m/r 1q2/r 2, ~4.61!

wherem5const andq5const are the black hole mass and charge;q50 yields the Schwarzschild
black hole. The mean curvature vector of an isometry sphereS, t5const,r 5const, is given by

Ha5
2

r S 12
2m

r
1

q2

r 2 D ~] r !
a, ~4.62!

which gives the direction of the minimum absolute spacelike expansion ofS. Furthermore, the
value of the expansion is given by the norm ofHa,

uk~s!u5
2

r
A12

2m

r
1

q2

r 2. ~4.63!

The complete Dirichlet symplectic vector is given by

Pa5
2

r
~] t!

a, ~4.64!

which depends only onS and hab . Note thatPa is timelike, orthogonal toHa, with the same
absolute norm asHa, and it gives the direction of zero expansion ofS.

With respect to the congruence of isometry spheres associated toS, the complete Neumann
symplectic vector is given by

Pa52S m

r 22
q2

r 3 D S 12
2m

r
1

q2

r 2 D 21

~] t!
a. ~4.65!

The curl of this vector yields the sectional curvature normal toS.

C. Axisymmetric space–times

Now consider a stationary axisymmetric space–time (R3S,gab),

gab52e2c~dt !a~dt !b1e22n~dr !a~dr !b1e22m1~du!a~du!b

1e22m2~~df!a2w~dt !a!~~df!b2w~dt !b!, ~4.66!
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where12 w5w(r ,u), c5c(r ,u), n5n(r ,u), m15m1(r ,u), andm25m2(r ,u). Let Sbe a space-
like two-surface given byr 5r 05const andt5t05const, which has the metric

sab5e22m1(r 0 ,u)~du!a~du!b)1e22m2(r 0 ,u)~df!a~df!b . ~4.67!

The area ofS is A(S)52p *0
p e2m1(r 0 ,u)2m2(r 0 ,u)du. A natural orthonormal frame adapted toS is

given by

qa
05ec~dt !a , qa

15e2n~dr !a , qa
25e2m1~du!a , qa

35e2m2~~df!a2w~dt !a!. ~4.68!

The Ricci rotation coefficients of the frame

Gl
mn~q!5ql

aqbn¹aqb
m52ql

aqb[m] [aqb]
n]2qbmqcn] [bqc]l ~4.69!

have the following nonvanishing components:

G0
015e2cen] re

c, G3
015 1

2e
2cene2m2] rw, ~4.70!

G0
025e2cem1]uec, G3

025 1
2e

2cem1e2m2]uw, ~4.71!

G1
035 1

2e
2cene2m2] rw, G2

035 1
2e

2cem1e2m2]uw, ~4.72!

G1
125enem1]ue2n, G2

1252enem1] re
2m1, ~4.73!

G0
135 1

2e
2cene2m2] rw, G3

1352enem2] re
2m2, ~4.74!

G0
235 1

2e
2cem1e2m2]uw, G3

2352em1em2]ue2m2. ~4.75!

The trace of the extrinsic curvatures of (S,sab) with respect to the frame onT(S)'

ta5qa
0uS , sa5qa

1uS , ~4.76!

are, respectively,

k~ t !5sab¹atb52~G2
021G3

03!uS50, ~4.77!

and

k~s!5sab¹asb52~G2
121G3

13!uS52en(r 0 ,u)] rm~r 0 ,u!, ~4.78!

wherem(r ,u)5m11m2 . A preferred direction inT(S)' is given by the mean curvature vector

Ha5sak~s!2tak~ t !52e2n(r 0 ,u)] rm~r 0 ,u!~] r !
a, ~4.79!

which is spacelike. This vector gives the direction of the minimum absolute spacelike expa
of S. Furthermore, the value of the expansion is given by the trace extrinsic curvature ofS with
respect to the unit vector in the directionHa,

1

AH2
k~H !5uk~s!u5en(r 0 ,u)u] rm~r 0 ,u!u, ~4.80!

which is equal to the norm ofHa.
The normal part of the Dirichlet symplectic vector is given by the normal mean curva

vector

~P'
D!a5H'

a 5tak~s!2sak~ t !52e2c(r 0 ,u)en(r 0 ,u)] rm~r 0 ,u!~~] t!
a1w~]f!a!. ~4.81!
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Here (P'
D)a is timelike, orthogonal toHa, with the same absolute norm asHa. Most significant,

(P'
D)a gives the direction of zero expansion ofS.

A preferred orthonormal frame forT(S)' is

t̂ a5
1

AH2
H'

a 5e2c~~] t!
a1w~]f!a!, ŝa5

1

AH2
Ha5en(] r)

a, ~4.82!

which depend only onS andhab but not on the chosen frameqa
m . In the preferred frame~4.82!

the tangential part of the Dirichlet symplectic vector is

~Pi
D!a5sact̂ b¹cŝb5~q2aG2

101q3aG3
10!uS5 1

2e
2c(r 0 ,u)en(r 0 ,u)] rw~r 0 ,u!~]f!a. ~4.83!

The curl of this vector yields the normal curvature ofS.
Hence the complete Dirichlet symplectic vector is

Pa5~P'
D!a1~Pi

D!a5e2c(r 0 ,u)1n(r 0 ,u)~2] rm~r 0 ,u!~~] t!
a1w~]f!a!1 1

2] rw~r 0 ,u! ~]f!a!,
~4.84!

which depends only onS and hab . In particular, it is independent of choice of the origin
orthonormal frame~4.68! for gab and ~4.76! for sab

' .
To define the Neumann symplectic vector, it is natural to use the orthonormal frame~4.82!

extended offS to the congruence of two-surfacest5const,r 5const. With respect to this exten
sion, the normal part of the Neumann symplectic vector is given by the commutator

~P'
N!a5PS

'@ t̂ ,ŝ#a5~ t̂ aG0
101 ŝaG1

10!uS52e2c(r 0 ,u)en(r 0 ,u)] rc~r 0 ,u!~~] t!
a1w~]f!a!.

~4.85!

Since (Pi
N)a5(Pi

D)a, the complete Neumann symplectic vector in this congruence of two-surf
associated withS is given by

Pa5~P'
N!a1~Pi

N!a5e2c(r 0 ,u)1n(r 0 ,u)(2] rc~r 0 ,u!~~] t!
a1w~]f!a!1 1

2] rw~r 0 ,u! ~]f!a).
~4.86!

The curl of this vector yields the sectional curvature normal toS.
As a special case, consider the Kerr black hole space–time obtained for

ec5
ADr

Y
, e2n5

r

AD
, e2m15r, e2m25

Y sinu

r
, w5

2amr

Y2 , ~4.87!

where

Y25~r 21a2!22a2D sin2 u, D5r 222mr1a2, r25r 21a2 cos2 u. ~4.88!

Here m5const anda5const are the black hole mass and angular momentum;a50 yields the
Schwarzschild black hole. The mean curvature vector of a two-surfaceS, t5const,r 5const, is
given by

Ha5
D

r2

] rY

Y
~] r !

a5
D

r2Y2 ~2r ~r 21a2!2a2~r 2m!sin2 u!~] r !
a, ~4.89!

which gives the direction of the minimum absolute spacelike expansion ofS. Furthermore, the
value of the expansion is given by the norm ofHa,
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uk~s!u5
AD

rY2 ~2r ~r 21a2!2a2~r 2m!sin2 u!. ~4.90!

The complete Dirichlet symplectic vector is given by

Pa5
Y

r2 S ] rY

Y
~~] t!

a1w~]f!a!1
] rw

2
~]f!aD

5
2r ~r 21a2!2a2~r 2m!sin2 u

r2Y
~] t!

a1
am

r2Y
~]f!a, ~4.91!

which depends only onS and hab . Note thatPa is timelike, orthogonal toHa, with the same
absolute norm asHa, and it gives the direction of zero expansion ofS.

With respect to this congruence of two-surfacesS, the complete Neumann symplectic vect
is given by

Pa5
Y

r2 S S ] rY

Y
2

] rD

2D
2

] rr

2r D ~~] t!
a1w~]f!a!1

] rw

2
~]f!aD

52
2m

r4YD
~~r 21a2!2~r 22a2!1a2~~r 21a2!224mr3!sin2 u!~] t!

a

1
am

r4YD
~~r 22a2!224r 3~r 2m!2a2~a22r 2!sin2 u!~]f!a. ~4.92!

D. Homogeneous isotropic space–times

Next, consider a Friedmann–Robertson–Walker space–time (R3S,gab),

gab52~dt !a~dt !b1a2~ t !S 1

12kr2 ~dr !a~dr !b1r 2~~du!a~du!b1sin2 u~df!a~df!b! D ,

~4.93!

wherek50, 1,21 @S is R3 if k50, 21 or S3 if k51# corresponding to a spatially flat, spherica
or hyperbolic geometry onS. Let S be a spacelike two-surface given by an isometry spherr
5r 05const andt5t05const. The metric onS is

sab5a2~ t0!r 0
2~~du!a~du!b1sin2 u~df!a~df!b! ~4.94!

and the area ofS is A(S)54pa(t0)r 0
2. Fix an orthonormal frame adapted toS by

qa
05~dt !a , qa

15
a~ t !

A12kr2
~dr !a , qa

25a~ t !r ~du!a , qa
35a~ t !r sinu~df!a . ~4.95!

The Ricci rotation coefficients of the frame

Gl
mn~q!5ql

aqbn¹aqb
m52ql

aqb[m] [aqb]
n ] 2qbmqcn] [bqc]l ~4.96!

have the following nonvanishing components:

G0
015

ȧ~ t !

a~ t !
5G2

025G3
03, ~4.97!

G1
125

A122kr

a~ t !r
5G3

13, ~4.98!
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G3
2352

cosu

a~ t !r sinu
. ~4.99!

~Here, an over-dot denotes a derivative with respect tot.!
The trace of the extrinsic curvatures of (S,sab) with respect to the frame onT(S)'

ta5qa
0uS ,sa5qa

1uS , ~4.100!

are, respectively,

k~ t !5sab¹atb52~G2
021G3

03!uS5
2ȧ~ t0!

a~ t0!
~4.101!

and

k~s!5sab¹asb52~G2
121G3

13!uS5
2A12kr0

2

r 0a~ t0!
. ~4.102!

A preferred direction inT(S)' is given by the mean curvature vector

Ha5sak~s!2tak~ t !52S 12kr0
2

a~ t0!2r 0
~] r !

a2
ȧ~ t0!

a~ t0!
~] t!

aD . ~4.103!

This vector gives the direction of the minimum absolute spacelike expansion ofS. Furthermore,
the value of the expansion is given by the trace extrinsic curvature ofS with respect to the unit
vector in the directionHa,

1

AH2
k~H !5uk~s!u5

2

a~ t0!
A12kr0

2

r 0
2 2ȧ2~ t0!, ~4.104!

which is equal to the norm ofHa.
The normal part of the Dirichlet symplectic vector is given by the normal mean curva

vector

~P'
D!a5H'

a 5tak~s!2sak~ t !5
2A12kr0

2

a~ t0! S 1

r 0
~] t!

a2
ȧ~ t0!

a~ t0!
~] r !

aD . ~4.105!

Here (P'
D)a is orthogonal toHa, with the same absolute norm asHa. Most significant, (P'

D)a

gives the direction of zero expansion ofS. Note that (P'
D)a is timelike ~andHa is spacelike! if and

only if the acceleration ofS satisfiesuȧ(t0)u<A12kr0
2/r 0 , depending on the radius ofS.

A preferred orthonormal frame forT(S)' is

t̂ a5
1

AH2
H'

a 5~] t!
a, ŝa5

1

AH2
Ha5

A12kr2

a~ t !
~] r !

a, ~4.106!

which depend only onS andhab but not on the chosen frameqa
m . In the preferred frame~4.56!

the tangential part of the Dirichlet symplectic vector is

~Pi
D!a5sact̂ b¹cŝb5~q2aG2

101q3aG3
10!uS50, ~4.107!

and thus the normal curvature ofS is zero.
Hence the complete Dirichlet symplectic vector is
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Pa5~P'
D!a1~Pi

D!a5
A12kr0

2

a~ to! S 1

r 0
~] t!

a2
ȧ~ t0!

a~ t0!
~] r !

aD , ~4.108!

which depends only onS and hab . In particular, it is independent of choice of the origin
orthonormal frame~4.95! for gab and ~4.100! for sab

' .
To define the Neumann symplectic vector, it is natural to use to the orthonormal frame~4.106!

extended offS to the congruence of isometry spherest5const,r 5const. Then, for this extension
the normal part of the Neumann symplectic vector is given by the commutator

~P'
N!a5PS

'@ t̂ ,ŝ#a5~ t̂ aG0
101 ŝaG1

10!uS52SA12kr0
2

a~ t0!2 D ȧ~ t0!~] r !
a. ~4.109!

Since (Pi
N)a5(Pi

D)a50, the complete Neumann symplectic vector with respect to the congru
of isometry spheres associated withS is given by

Pa5~P'
N!a1~Pi

N!a52A12kr0
2

ȧ~ t0!

a~ t0!2 ~] r !
a. ~4.110!

For an isometry sphereS, r 5const, t5const, in a time-symmetric hypersurfaceS, since
ȧ(t)50 it follows thatHa is spacelike, (P'

D)a is timelike. Then the complete Dirichlet symplect
vector is

Pa5
2A12kr2

ra~ t !
~] t!

a, ~4.111!

while the complete Neumann symplectic vector vanishes.

E. Asymptotically flat space–times

Consider an asymptotically flat space–time (M ,gab) with gab5hab1O(1/r ) and ]cgab

5O(1/r 2) asr→` at fixedt, wherehab is a flat metric~4.1! in Minkowski spherical coordinates
t, r, u, f. Suppose the total ADM mass,m, of the space–time (M ,gab) is finite and positive. Then
the metric has the asymptotic form13,14

gab52~122m/r 1O~1/r 2!!~dt !a~dt !b1~112m/r 1O~1/r 2!!~dr !a~dr !b1r 2~~du!a~du!b

1sin2 u~df!a~df!b1O~1/r 3!! as r→` at fixed t. ~4.112!

@Note that any gravitational radiation terms vanish in this limit.# We first discuss the ADM
energy–momentum vector.11 In the space–time (M ,gab), spatial infinity,i0, can be represented a
the set of asymptotic two-spheresS` given by t5const,r 5→`, which are regarded as bein
identified under asymptotic time translations generated by the Killing vector (] t)

a of hab . Now,
for a spacelike hypersurfaceS t , t5const, the ADM energy and momentum in standa
asymptotic Minkowski coordinatesxm on M are given by15

Pm55 (
n,rÞ0

1

16p E
S`

sn~]rgrn2]ngrr!dS5m, m50

(
nÞ0

1

16p E
S`

~sn] tgmn2sm] tgnn!dS50, m51,2,3.

~4.113!

Hence, the ADM energy-momentum vector at spatial infinity is represented by (PADM)a

5m(dt)auS`
. Let na5(] t)

auS`
. Then, geometrically, the vector
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1

m
~PADM !a52na ~4.114!

corresponds to an asymptotic stationary unit-norm Killing vector of the asymptotically flat m
~4.112!.

To proceed, letS be any family of spacelike two-surfaces that approaches the two-spheS`

asr→` at fixedt. Since the space–time metric is asymptotic to the Schwarzschild metric, we
use the results obtained in example~B! to calculate the Dirichlet and Neumann symplectic vect
in this limit.

The Dirichlet symplectic vector is given by

~PD!a5
2

r
~12m/r !ta1O~1/r 3!, ~4.115!

whereta5(11m/r 1O(1/r 2))(] t)
a is a unit timelike vector of (M ,gab). For a comparison with

(PADM)a, we scale (PD)a by the area ofS, A(S)54pr 21O(1/r ), which yields

A~S!~PD!a58p~r 2m1O~1/r !!ta. ~4.116!

Note that the first term in this expression is singular asr→`. It corresponds to the Dirichle
symplectic vector forS` with respect to the flat metrichab on M. We extend this vector in a
natural geometrical manner fromS` to S by

~Pflat
D !a5

2

r
ta, ~4.117!

which depends only on the radius ofSand the timelike unit vectorta with respect togab . We now
subtract (Pflat

D )a from (PD)a to obtain the normalized Dirichlet symplectic vector

~ P̄D!a5A~S!~~PD!a2~Pflat
D !a!5~28pm1O~1/r !!ta. ~4.118!

Then the limitr→` yields a well-defined~finite! vector associated toS` in terms ofta→na. This
establishes our main result.

Theorem 4.1:For an asymptotically flat space–time (M ,gab), at spatial infinity the normal-
ized Dirichlet symplectic vector (4.118) is equal to 8p times the ADM energy-momentum vect
(4.114),

1

8p
~ P̄D!auS`

5~PADM !a52mna. ~4.119!

@The 8p factor reflects the normalization chosen for the Hamiltonian variational principle
the Einstein equations in Sec. II.#

We remark that the ADM vector (PADM)a can be derived16 directly from the symplectic
structure of the Einstein equations similarly to the analysis given in Sec. 3 in Ref. 1 by
asymptotically flat boundary conditions atS` in place of the Dirichlet boundary condition atSon
the space–time metric.

Finally, we discuss the Neumann symplectic vector. Note that the normalized symp
vector ~4.118! is obtained from the locally constructed Dirichlet symplectic vector (PD)a associ-
ated with a spacelike two-surfaceS, where (PD)a depends only onS and gab . In contrast, the
Neumann symplectic vector (PN)a associated withS also depends on a choice of congruence
two-surfacesS8 diffeomorphic toS. If a suitably parametrized null geodesic congruence thro
S is used to define (PN)a, it follows from Proposition 3.14 that the normal part of (PN)a vanishes.
Moreover, the tangential part of (PN)a is equal to the tangential part of (PD)a. Thus for any
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topological two-sphereS that approachesS` asr→`, by Eq.~4.115! the resulting vector (PN)a is
at mostO(1/r 3) and is tangential toS. Consequently, if we consider the normalized symplec
vector

~ P̄N!a5A~S!~~PN!a2~Pflat
N !a! ~4.120!

defined analogously to (P̄D)a, then

~ P̄N!auS`
50. ~4.121!

Note that for an asymptotically flat metric~4.112!, asS approachesS` , all null geodesic congru-
ences throughS approach future and past null infinity,I6, and thereby provide a natural congr
ence of spacelike two-spheresSI6 associated with the two-sphereS` representing spatial infinity
i0. In particular,SI6 are related toS` by null geodesic asymptotic isometries ofgab . Hence, the
normalized symplectic vector~4.121! effectively depends only onS and gab ~including its
asymptotic structure!, similar to the vector~4.118!.

V. CONCLUDING REMARKS

In this paper we have considered the covariant symplectic structure associated with th
stein equations with matter sources. One main result is that we derive a covariant Hamil
under Dirichlet and Neumann type boundary conditions for both the gravitational field and m
fields in any fixed spatially bounded region of spacetime (M ,gab), allowing the time-flow vector
ja to be timelike, spacelike, or null.

The Dirichlet and Neumann Hamiltonians evaluated on solutions of the coupled gravita
and matter field equations reduce to a surface integral over the spatial boundary two-surfaceS. @In
fact, this result is known to hold for any diffeomorphism covariant space–time field theory.17# For
each of the boundary conditions this surface integral has the form of*S jaPadS wherePa is a
locally constructed dual vector field associated with the two-surfaceS and boundary conditions
which we call the Dirichlet and Neumann symplectic vectors. Similar results are discussed i
18.

Our principle result is to show that the purely gravitational part of the Dirichlet symple
vector (PD)a has very interesting geometrical properties when decomposed into its norma
tangential parts, (P'

D)a and (Pi
D)a, with respect toS. First, (P'

D)a depends only on the two-surfac
S and space–time metricgab and thus yields a geometrical vector field normal toS in space–
time. This vector (P'

D)a is shown to be orthogonal to the mean curvature vector ofS and,
most importantly, it gives the direction of zero expansion ofS in space–time, i.e.,LP'

eab(S)

50 whereeab(S) is the area volume form ofS. Furthermore, the norm of the vector (P'
D)a

is equal to the product of the expansions ofSwith respect to ingoing and outgoing null geodesic
u2a and u1a ~and is independent of parametrization of the geodesics!. This expression is obvi-
ously related to the condition for a spatial two-surfaceS to be trapped~or marginally trapped!,
namely, k1k2 is positive ~or zero! on S, where Lu6eab(S)5k6eab(S). Consequently,S is
trapped~or marginally trapped! precisely when (P'

D)a is spacelike~or null! on S. If this notion is
applied to the ingoing and outgoing null geodesics at each pointp on S @i.e., the pair of null
geodesics throughp is ‘‘trapped’’ ~or ‘‘marginally trapped’’! if k1k2 is positive~or zero! at p#,
then, in this sense, (P'

D)a measures pointwise how closeS is to being a trapped surface.
In contrast, (Pi

D)a depends not only on the two-surfaceSand space–time metricgab but also
on a choice of orthonormal frame or null frame for the normal tangent spaceT(S)' of S. Geo-
metrically, (Pi

D)a is shown to be a connection for the normal curvature ofS in space–time and
consequently changes by a gradient under a boost of the frame. However, if the normal
(P'

D)a is non-null, then (P'
D)a and the mean curvature vector ofS comprise a preferred frame fo

T(S)' and hence there exists a corresponding preferred, tangential vector (Pi
D)a ~evaluated in this
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frame!. Thus, in this situation, the complete Dirichlet symplectic vector is a well-defined
metrical vector field depending only onS and gab . We refer to this as the invariant Dirichle
symplectic vector associated withS.

Apart from its geometrical interest, the Dirichlet symplectic vector is also related to de
tions of canonical energy, momentum, and angular momentum given by the value of the Di
Hamiltonian for solutions of the Einstein~and matter! equations. In particular, we have shown th
in an asymptotically flat space–time in the limit ofSapproaching spatial infinityS` , the Dirichlet
symplectic vector reduces in a suitable sense to the ADM energy-momentum vector. Hen
integral *S`

ja(PD)adS yields total energy, momentum, angular momentum of the space–
when ja is chosen to be an asymptotic Killing vector associated to time-translations, s
translations, or rotations of the asymptotic flat background metric.

In addition, for a compact spatial two-surfaceS in (M ,gab), it follows from results in Ref. 2
that the quasilocal quantities*Sja(PD)adS for ja chosen to be normal and tangential toS repro-
duce Brown and York’s3,4 quasilocal energy, momentum, and angular momentum quantities.~See
also Refs. 1 and 6.! Furthermore, we have obtained matter contributions to these quantities, f
electromagnetic field and a set of Yang–Mills–Higgs fields. In a forthcoming paper we
explore geometrical quasilocal quantities defined purely in terms of (P'

D)a and (Pi
D)a. We will

also explore the use of (PD)a as a time flow vector for a boundary-initial value formulation of t
Einstein equations.
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On the problem of algebraic completeness
for the invariants of the Riemann tensor. III.
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We study the set CZ of invariants@Zakhary and Carminati, J. Math. Phys.42, 1474
~2001!# for the class of space–times whose Ricci tensors possess a null eigenvector.
We show that all cases are maximally backsolvable, in terms of sets of invariants
from CZ, but that some cases are not completely backsolvable and these all possess
an alignment between an eigenvector of the Ricci tensor with a repeated principal
null vector of the Weyl tensor. We provide algebraically complete sets for each
canonically different space–time and hence conclude with these results and those
of a previous article@Carminati, Zakhary, and McLenaghan, J. Math. Phys.43, 492
~2002!# that the CZ set is determining or maximal. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1478803#

I. INTRODUCTION

In the first article of this series,1 we introduced a new set CZ of polynomial Riemann inva
ants, satisfying the minimum degree property, which was claimed to be ‘‘determining.’’ The
purpose of the second article2 in this series was to rigorously establish this fact for class
space–times whose Ricci tensors did not possess a null eigenvector. Further, for each can
different space–time, we gave algebraically complete sets.~This was established by showing th
the given sets were curvature complete and minimal in number, by a simple real coun
various new definitions which are used here were introduced in the previous articles.! In this
article we will study class B space–times~Ricci tensor possesses a null eigenvector! and show that
each canonically different case is maximally backsolvable in terms of sets of invariants from
Interestingly, not all members of this class are completely backsolvable3 and, in fact, we will show
that such NCB space–times, in general, possess an alignment~necessary but not sufficient! be-
tween a null eigenvector of the Ricci tensor with a repeated principal null vector of the
tensor. We will give, in some cases,4 the necessary and/or sufficient invariant conditions~in terms
of algebraic relations! for these to occur, together with a maximal independent set. For the N
cases, we will also indicate, in the Ricci~or Weyl! canonical frames, the Weyl~or Ricci! infor-
mation @by component~s!# which is missing. In all cases, we do provide algebraically comp
sets for each canonically different space–time in class B and hence conclude with these res
those of a previous article2 that the CZ set is determining or maximal. As before, we will estab
all of our results by an implicit backsolving technique described previously.1,2 Most of the calcu-
lations were done using Maple.

The set CZ of invariants and the relations between the various sets, in the literature, a
syzygies for the different Petrov and Segre types of the Weyl and Ricci tensors, have been
in a previous article.1 For future use, the trace-free Ricci tensor can be written in the form

Sab522@F00nanb22F01n(am̄b)1F02m̄am̄b22F10n(amb)12F11~ l (anb)1m(am̄b)!

22F12l (am̄b)1F20mamb22F21l (amb)1F22l al b#. ~1!
40200022-2488/2002/43(8)/4020/15/$19.00 © 2002 American Institute of Physics
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II. RICCI CANONICAL FRAMES FOR CLASS B

Tables I–V give the canonical forms for the Ricci tensor when it possesses a null eigenv
A summary of the notation and complete details where the Ricci tensor does not possess
eigenvector have been given previously.2

At this point, we would like to again compare our canonical forms with those as give
McIntoshet al.5 and Joly and MacCallum.6 As before,2 apart from possible changes due tol↔n
interchange and other minor frame changes, our work differs from theirs in thatF11 could be zero
for the Segre types@2,11# and @~1,1!11#, whereas they report thatF11 is necessarily nonzero fo
these types.

III. MAXIMAL BACKSOLVING

In this section, we will prove that the CZ set is determining for class B by explicitly show
that maximal backsolving is always possible for each Segre type, with certain chosen sub
CZ. Further, we will show that these subsets are algebraically complete. As before, regardi
method of proof, after having established that a set of invariants is maximal or determini
backsolving and if necessary using the index theorem~when the subset is not curvature complet!,
we then check that we have retained the minimum possible number of invariants@‘‘minimal
number’’ property, i.e., that it cannot be further reduced~in number7 of invariants! and still achieve
the same ‘‘measure’’8 of backsolving, after all of the possible remaining tetrad freedom which
act on the curvature components, is completely used up#. It follows that once this is done, we hav

TABLE I. Canonical frames for Segre types@2,11# and @3,1#.

PP type II, Segre type@2,11# PP type III, Segre type@3,1#

Canonical
form of Rab

Rab52r1l (anb)1l l al b2r2xaxb2r3yayb ,
with r1Þr2 , r1Þr3 , r2Þr3 , l562

Rab52r1l (anb)12l l (axb)2r1xaxb2r2yayb ,
with r1Þr2 , l562&

Inner
products

Rabl
b5r1l a , Rabn

b5l l a1r1na ,
Rabx

b5r2xa , Raby
b5r3ya

Rabl
b5r1l a , Rabn

b5r1na1lxa ,
Rabx

b5r1xa2l l a , Raby
b5r2ya

Eigenvectors l a, xa, ya l a, ya

Eigenvalues r1 , r2 , r3 r1 , r2

Canonical
form of Fab

F005F015F1250,

F1152
1
8 (2r12r22r3),

F025F205
1
4 (r22r3)Þ0,

F2252
1
2 l

F005F015F2250,

F02522F115F205
1
4 (r12r2)Þ0,

F125
l

2&
Remaining
freedom

None None

TABLE II. Canonical frames for Segre types@~1,1!11# and @~1,1!~11!#.

PP type D, Segre type@~1,1!11# PP type D, Segre type@~1,1!~11!#

Canonical
form of Rab

Rab52r1l (anb)2r2xaxb2r3yayb ,
with r1Þr2 , r1Þr3 , r2Þr3

Rab52r1l (anb)2r2xaxb2r2yayb ,
with r1Þr2

Inner
products

Rabl
b5r1l a , Rabn

b5r1na ,
Rabx

b5r2xa , Raby
b5r3ya

Rabl
b5r1l a , Rabn

b5r1na ,
Rabx

b5r2xa , Raby
b5r2ya

Eigenvectors l a, na, xa, ya l a, na, xa, ya

Eigenvalues r1 , r1 , r2 , r3 r1 , r1 , r2 , r2

Canonical
form of Fab

F005F015F125F2250,

F1152
1
8 (2r12r22r3),

F025F205
1
4 (r22r3)Þ0

F005F015F025F125F2250,

F1152
1
4(r12r2)Þ0

Remaining
freedom

Boost:AD51, Ā5A.0, B5C50 Boost and spatial rotations:AD51, B5C50
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established that the subset is algebraically complete. Note that if lower degree invariants~in CZ!
are not used in the backsolving process, this means they are dependent for the particular
hand~the proof of dependency will be given in a future article!.

In cases where we have curvature complete sets, the minimal number property is esta
by simply observing that the number7 of invariants is the same as the number of unkno
functions in the curvature components~after all of the possible remaining tetrad freedom, wh
can act on the curvature components, is completely used up!. In the cases where we do not ha
curvature complete sets but which are maximal, the missing amount of information is shown
absent in all second order polynomial invariants using the index theorem. The minimal nu
property is then established by a simple real count modulo the mandatory missing cur
information.

We note that for the Segre types@2,11#, @2,~11!#, @~2,1!1# and @~2,11!#, F22561 in their
respective canonical frames. In all of these cases, we have chosenF2251 in the backsolving
procedures. The backsolving whenF22521 is identical to the case whenF2251 except for
minor insignificant sign changes. Similarly, for the Segre types@3,1# and@~3,1!#, we have chosen
F1251.

A. Segre type †2,11‡

For this type, a complete set of invariants is$R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m2 ,m3%, and we will show
that complete backsolving is always possible, at least in principle, except whenC05C150. This
exceptional case occurs when the null eigenvector of the Ricci tensor aligns with the rep

TABLE III. Canonical frames for Segre types@2,~11!# and @~2,1!1#.

PP type D, Segre type@2,~11!# PP type N, Segre type@~2,1!1#

Canonical
form of Rab

Rab52r1l (anb)1l l al b2r2xaxb2r2yayb ,
with r1Þr2 , l562

Rab52r1l (anb)1l l al b2r1xaxb2r2yayb ,
with r1Þr2 , l562

Inner
products

Rabl
b5r1l a , Rabn

b5l l a1r1na ,
Rabx

b5r2xa , Raby
b5r2ya

Rabl
b5r1l a , Rabn

b5l l a1r1na ,
Rabx

b5r1xa , Raby
b5r2ya

Eigenvectors l a, xa, ya l a, xa, ya

Eigenvalues r1 , r2 , r2 r1 , r1 , r2

Canonical
form of Fab

F005F015F025F1250,

F1152
1
4 (r12r2)Þ0,

F2252
1
2 l

F005F015F1250,

F02522F115F205
1
4(r12r2)Þ0,

F2252
1
2 l

Remaining
freedom

Spatial rotations:D5Ā, AĀ51, B5C50 1-D null rotations:A5D51, C̄5C, B50

TABLE IV. Canonical frames for Segre types@~3,1!# and @~1,11!1#.

PP type N, Segre type@~3,1!# PP type O, Segre type@~1,11!1#

Canonical
form of Rab

Rab52r1l (anb)12l l (axb)2r1xaxb2r1yayb ,
with l562&

Rab52r1l (anb)2r1xaxb2r2yayb ,
with r1Þr2

Inner
products

Rabl
b5r1l a , Rabn

b5r1na1lxa ,
Rabx

b5r1xa2l l a , Raby
b5r1ya

Rabl
b5r1l a , Rabn

b5r1na ,
Rabx

b5r1xa , Raby
b5r2ya

Eigenvectors l a, ya l a, na, xa, ya

Eigenvalues r1 , r1 r1 , r1 , r1 , r2

Canonical
form of Fab

F005F015F025F115F2250,

F125
l

2&

F005F015F125F2250,

F02522F115F205
1
4 (r12r2)Þ0

Remaining
freedom

1-D null rotations:A5D51, C̄52C, B50 3-D Lorentz group SO~1,2!:

Ā5A, B̄5B, C̄5C, D̄5D, AD2BC51
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principal null direction of the Weyl tensor. As we shall see, for this and other Segre t
complete backsolving is, in general, not possible when such alignments occur. However, m
backsolving is always achievable with certain invariants from CZ.

We begin with the backsolving for the Ricci componentsFab . In our canonical frame, the
independent Ricci invariants arer 15 2

3(F02
2 12F11

2 ) and r 2522F02
2 F11. Since the JacobianJ

52 8
3F02(F0222F11)(F0212F11)Þ0, it follows that the Ricci invariantsr 1 , r 2 are always

backsolvable forFab .
The Weyl and mixed invariants, in this case, take the form

w15 1
3 ~C0C424C1C313C2

2!,

w252C1C2C32C2
32C0C3

22C1
2C41C0C2C4 ,

m152C0F0212C2F02
2 28C2F11

2 ,

m25 2
3 F02

2 C0C41 4
3 F02

2 C1C314F02C0C218F11
2 C2

22 16
3 F11

2 C1C3

2 8
3 F11

2 C0C424F02C1
222F02

2 C2
2,

m3528F11
2 F02C018F11

2 F02
2 C222F02

4 C2 .

Next, we begin the backsolving procedure for the Weyl components by noting that the s
$m1 ,m3%, which contains only the Weyl componentsC0 and C2 , has a Jacobian equal t
29J2/(16F02) which is nonzero. Therefore, we may always solve forC0 andC2 in terms ofm1

andm3 andFab ~which in turn are determined by the Ricci invariants!. We proceed by eliminating
the productC1C3 betweenw1 andm2 to obtain an expression forC1

2 in terms ofC0 , C2 , C4 ,
Fab , and invariants. This can always be done. In order to continue, we need to treat the
whenC050 separately.

Case 1:C0Þ0: In this case,m3Þ2F02
2 m1 . SinceC0Þ0, we may use the above expressi

for C1
2 and the combination ofw1 and w2 which eliminates the productC1C3 to obtain an

expression forC3
2 in terms ofC0 , C2 , C4 , Fab , and invariants. Finally, solvingw1 for C1C3 ,

squaring this expression and then substituting the above expressions forC1
2 and C3

2 yields a
polynomial equation of degree 3 inC4 with the coefficients being polynomials inC0 , C2 , Fab ,
and invariants. This polynomial can always be solved forC4 , since the coefficient ofC4

3 is
C0J2Þ0. It follows that complete backsolving has been achieved.

Case 2A:C050 & C1Þ0: We note that, in this case,m352F02
2 m1 . Also (m1

2136r 1
2

236r 3)2Þ144m2(r 2
22r 3) and, together withm15m350 or m1

3r 2
223m1m3

2r 122m3
350 when

TABLE V. Canonical frames for Segre types@~2,11!# and @~1,111!#.

PP type O, Segre type@~2,11!# PP type O, Segre type@~1,111!#

Canonical
form of Rab

Rab52r1l (anb)1l l al b2r1xaxb2r1yayb ,
with l562

Rab52r1l (anb)2r1xaxb2r1yayb

Inner
products

Rabl
b5r1l a , Rabn

b5l l a1r1na ,
Rabx

b5r1xa , Raby
b5r1ya

Rabl
b5r1l a , Rabn

b5r1na ,
Rabx

b5r1xa , Raby
b5r1ya

Eigenvectors l a, xa, ya l a, na, xa, ya

Eigenvalues r1 , r1 , r1 r1 , r1 , r1 , r1

Canonical
form of Fab

F005F015F025F115F1250,

F2252
1
2 l

Fab50

Remaining
freedom

2-D null rotations and Spatial rotations:

D5Ā, AĀ51, B50

Full Lorentz group SO~1,3!: AD2BC51
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m1m3Þ0, provides the necessary and sufficient conditions for this case to occur. By a s
backsolving procedure, it is easily established that a complete set of invarian
$R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m2%.

Case 2B:C05C150: The necessary and sufficient conditions for this case to occur ar
w2

25w1
3 , m1

2536(r 1
22r 3)w1 , m2

2536(r 1
22r 3)w1

2 and m1
3r 2

223m1m3
2r 122m3

350. We can only
backsolve forC2 , whereC2

25w1 , but cannot backsolve forC3 or C4 . This is because thes
components do not appear in our invariants. It follows from the index theorem previously
~see the Appendix! that no other polynomial invariant formed from the Riemann tensor
contain these components~in our canonical frame!. Hence, complete backsolving is not possib
in general, but maximal backsolving is possible with the~algebraically complete! set
$R,w1 ,r 1 ,r 2%.

B. Segre type †3,1‡

The backsolving for this Segre type is very similar to@2,11#. A complete set of invariants is
$R,w1 ,w2 ,r 1 ,m1 ,m2 ,m3% and, as will be shown below, complete backsolving is always poss
at least in principle, except whenC05C150. As before, this exceptional case occurs when
null eigenvector of the Ricci tensor aligns with the repeated principal null direction of the W
tensor. However, maximal backsolving is always achievable using certain invariants from C

In our canonical frame, the independent Ricci invariant isr 154F11
2 and, hence,F11

5 1
2Ar 1. The Weyl and mixed invariants, in this case, take the form

w15 1
3 ~C0C424C1C313C2

2!,

w252C1C2C32C2
32C0C3

22C1
2C41C0C2C4 ,

m1516C1F1122C0 ,

m254C1
224C0C2216F11C1C2116F11C0C3 ,

m35224F11
2 C0264F11

3 C1 .

We begin by noting that the system$m1 , m3% contains only the Weyl componentsC0 andC1 . It
can always be solved to giveC052(m1r 11m3)/(8r 1), C15(3m1r 12m3)/(32Ar 1

3). In order to
continue, we need to treat the cases whenC050 separately.

Case 1:C0Þ0: In this case,m3Þ2m1r 1 . SinceC0Þ0, we can solvem2 for C3 in terms of
C0 , C1 , C2 , F11, andm2 . Using this expression to eliminateC3 from w1 , we can solvew1 for
C4 in terms ofC0 , C1 , C2 , F11, w1, andm2 . Substituting these expressions forC3 andC4

into w2 yields a polynomial equation of degree 3 inC2 . This polynomial can always be solved fo
C2 , since the coefficient ofC2

3 is C0
2F11

2 which is nonzero. It follows that complete backsolvin
has been achieved.

Case 2A:C050 & C1Þ0: In this case,m352m1r 1 . This condition together withm1Þ0
provides the necessary and sufficient conditions for this case to occur. A complete set of inv
is $R,w1 ,w2 ,r 1 ,m1 ,m2% and is completely backsolvable~CB!.

Case 2B:C05C150: In this case,w2
25w1

3. The necessary and sufficient conditions for th
case to occur arem15m25m350. We can only backsolve forC2 , whereC2

25w1 , but cannot
backsolve forC3 or C4 . This is because these components do not appear in our invarian
follows from the index theorem that no other polynomial invariant formed from the Riem
tensor can contain these components~see the Appendix!. Hence, complete backsolving is no
possible ~NCB!, but maximal backsolving is possible with the~algebraically complete! set
$R,w1 ,r 1%.
                                                                                                                



-

nts.

t

frame

-
in

4025J. Math. Phys., Vol. 43, No. 8, August 2002 On the problem of algebraic completeness. III

                    
C. Segre type †„1,1…11‡

In our canonical frame, the independent Ricci invariants arer 15 2
3(F02

2 12F11
2 ) and r 2

522F02
2 F11. It follows that the Ricci invariantsr 1 , r 2 are always backsolvable forFab .

Case 1:C0Þ0: In this case, we may use the tetrad freedom to makeC0C̄051. Further, we
shall need to treat the cases whereC350 or C450 separately.

Case 1A:C3C4Þ0: We will now show that a complete set is$R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m2 ,m4%
and complete backsolving is always possible. The invariants in this frame are

w15 1
3 ~C0C424C1C313C2

2!,

w252C1C2C32C2
32C0C3

22C1
2C41C0C2C4 ,

m152C2~F02
2 24F11

2 !,

m25 2
3 ~F02

2 C0C412F02
2 C1C3112F11

2 C2
224F11

2 C0C423F02
2 C2

228F11
2 C1C3!,

m45~16C2F11
2 C̄2C01F02

2 C418C3F11C̄1F02C012C2F02
2 C̄2C0

18C1F11C̄3F02C01C0
2F02

2 C̄4!/C0 .

m1 can always be solved forC2 sinceF02
2 24F11

2 Þ0. We can always solvew1 and m2 to get
C15C1 /C3 andC45C4 /C0 , whereC1 , C4 are given byFab , C2 and invariants. Substituting
these expressions intow2 we get the quadratic polynomial equationc21(w222C1C22C4C2

1C2
3)c1C1

2C450, wherec5C0C3
2Þ0. This can always be solved forc in terms ofFab , C2

and invariants. SubstitutingC35Ac/C0 into m4 , we get the following quartic polynomial equa
tion in C0 :

C0
4F02

2 C̄4Acc̄18C1F02C0
3c̄F112Acc̄~m422C2F02

2 C̄2216C2F11
2 C̄2!C0

2

18cC0F11C̄1F021F02
2 C4Acc̄50,

which can always be solved forC0 since the coefficient ofC0
4 is nonzero. Thus,C0 is determined

in terms of Fab , C2 , c and invariants which in turn are all determinable by the invaria
Therefore, complete backsolving has been achieved.

Case 1B(i):C3C1F11Þ0 & C450: For this case, a complete set is$R,w1 ,w2 ,
r 1 ,r 2 ,m1 ,m4% and complete backsolving is always possible. It is similar to case 1A except tham2

is dependent~sinceC45C450!.
Case 1B(ii):C3F11Þ0 andC15C450: A complete set is$R, w1 , w2 , r 1 , r 2 , m̃5 /mD 5%

and complete backsolving is again always possible. The Weyl and mixed invariants in this
are

w15C2
2 , w252C2

32C0C3
2,

m552~C2
2F02

2 C̄2C024C3F11C̄3F02C0
218C2

2F11
2 C̄2C01C3

2F02
2 !/C0 .

w1 determinesC2 and w2 gives C3
252(C2

31w2)/C0 . Finally, we need to determineC0 .
Substituting this expression intom5 we get the cubic polynomial equation inC0 :
8F02F11Q̄1C0

32Q0C0
212F02

2 Q150 whereQ05@m512C2
2C̄2(F02

2 18F11
2 )#/Q1 and Q1

25C2
3

1w2Þ0. From this equation and its complex conjugate, we eliminateC0
3 ~this can always be

done! to obtainF02Q0C0
224F11Q̄0C012F02(16F11

2 2F02
2 )Q150. First, we consider the spe

cial case whenQ050. It then follows thatm5 is dependent and, from the original cubic, we obta
C0

352F02Q1/(4F11Q̄1) with the conditionF02
2 516F11

2 . Henceforth, we shall assumeQ0Þ0.
Eliminating C0

2 from the quadratic equation and its complex conjugate yields 4F11(Q0
2
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2Q̄0Q̄2)C05F02(Q0Q̄02Q2Q̄2) where Q252(16F11
2 2F02

2 )Q1 . If Q0
22Q̄0Q̄250 ~i.e.,

Q2Q̄25Q0Q̄0 which is the real syzygy eliminating ‘‘half’’ of the information inm5), then the
quadratic equation becomesF02Q0

2C0
224F11Q0Q̄0C01F02Q̄0

250 which has the two possible
solutionsC05(2F116 iAF02

2 24F11
2 )Q̄0 /(F02Q0) with the conditionF02

2 .4F11
2 . In this case,

m̃5[Q̄0 . If Q0
22Q̄0Q̄2Þ0, then we obtainC0

25m̃5 /mD 5 where m̃5[(Q2Q̄22Q0Q̄0)/(Q0
2

2Q̄0Q̄2) with the real syzygym̃5mD 5516F11
2 /F02

2 . In this case, the independent informatio
resides in the composite invariantm̃5 /mD 5 which contains ‘‘half’’ of the information inm5 . The
other ‘‘half’’ of the information inm5 is not independent but is determined by the values of
other invariants$w1 ,w2 ,r 1 ,r 2% via the real syzygy previously given.

Case 1B(iii):C3C1Þ0 andC45F1150: A complete set is$R,w1 ,w2 ,r 1 ,m1 ,m̄5* /m5* % and
complete backsolving is always possible. The Weyl and mixed invariants in this frame are

w15 1
3 ~3C2

224C1C3!, w252C1C2C32C2
32C0C3

2,

m152C2F02
2 , m552F02

2 ~2C1C3C̄2C023C2
2C̄2C023C3

2!/~3C0!.

m1 determines C2 and then w1 and w2 give C153(C2
22w1)/(4C3) and C3

25(m1
3

212m1w1F02
4 216w2F02

6 )/(16C0F02
6 ). After substituting these expressions intom5 and solving

for C0 , we obtainC0
45m̄5* /m5* ~or C0

252m̄5* ) wherem5* m̄5* 51 andm5* is defined by

m5* [~8F02
4 m51m1

2m̄114F02
4 w1m̄1!/~m1

3212m1w1F02
4 216w2F02

6 !.

In this case, the independent information resides in the composite invariantm̄5* /m5* which con-
tains ‘‘half’’ of the information inm5 . The other ‘‘half’’ of the information inm5 is not indepen-
dent but is determined by the values of the other invariants$w1 ,w2 ,r 1 ,m1% via the real syzygy
m5* m̄5* 51.

Case 1B(iv):C3Þ0 andC15C45F1150: This case is similar to case 1B~iii ! with basically
the same equations holding, except thatm1 is now dependent becausem1

254F02
4 w1 . Hence, a

complete set is$R,w1 ,w2 ,r 1 ,m̄5* /m5* % and complete backsolving has been established.
Case 1C:C350 andC4Þ0: A complete set is$R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m4% as complete back-

solving can be easily carried out.
Case 1D:C35C450: A maximal ~complete! set in this case is$R,w1 ,r 1 ,r 2% and NCB.

Clearly complete backsolving is impossible since onlyC2 can be solved for usingw1 , while C0

andC1 remain undetermined~see the Appendix!. All mixed invariants are dependent.
Case 2:C050 andC1Þ0: We may use the tetrad freedom to makeC1C̄151. Further, we

shall need to treat the cases whereC350 or C450 separately.
Case 2A(i):C3F11Þ0: A complete set is$R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m4% and is CB.
Case 2A(ii):C3C4Þ0 andF1150: A complete set is$R,w1 ,w2 ,r 1 ,m1 ,m̂̄5 /m̂5%. The in-

variants in this frame are

w15 1
3 ~3C2

224C1C3!, w252C1C2C32C2
32C1

2C4 ,

m152C2F02
2 , m55 2

3 F02
2 ~2C1C̄2C323C2

2C̄223C1
2C̄4!.

m1 can always be solved forC2 since F02Þ0. We can always solvew1 and w2 to get C3

53(C2
22w1)/(4C1)Þ0 andC45(C2

323C2w122w2)/(2C1
2). Substituting these expression

into m5 we obtain the polynomial equation

F02
2 ~C̄2

323C̄2w̄122w̄2!C1
41m51F02

2 C̄2~C2
21w1!50.
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This gives C1
45m̂5 /Q̄3 together with the real syzygym̂5m̂̄55Q3Q̄3 , where m̂5[18r 1

2m5

19r 1
2w1m̄11m1

2m̄1 andQ3[27r 1
2w1m1154r 1

3w22m1
3. Alternatively,C1

85m̂5Q3 /(m̂̄5Q̄3). Note
that Q3Þ0 sinceC4Þ0. Hence, backsolving is complete.

Case 2A(iii):C3Þ0 andC45F1150: A complete set is$R,w1 ,w2 ,r 1 ,m6% and is CB.
Case 2B(i):C350 andC4Þ0: A complete set is$R,w1 ,w2 ,r 1 ,r 2 ,m̄58/m58% and complete

backsolving is always possible. The Weyl and mixed invariants in this frame are

w15C2
2 , w252C2

32C1
2C4 ,

m552~4C4F02F112C2
2F02

2 C̄228C2
2F11

2 C̄22C1
2F02

2 C̄4!.

The invariantw1 determinesC2 andC4 is determined, in terms ofC1 andw1 andw2 , by C4

52(C2
31w2)/C1

2. Substituting these expressions intom5 we obtain the polynomial equation

2F02
2 ~w̄21C̄2

3!C1
62Q4C1

228F02F11~w21C2
3!50,

whereQ4[m512(F02
2 18F11

2 )C2C̄2 .
If Q450, then necessarilyF11Þ0 and m5 is dependent. In this case, we haveC1

6

54F11(w21C2
3)/@F02(w̄21C̄2

3)# with the conditionF02
2 516F11

2 . Henceforth, we shall assum
thatQ4Þ0. Combining the sixth degree equation together with its complex conjugate to elim
C1

6 yields the quartic equationF02Q̄4C1
414F11Q4C1

22F02Q550 whereQ5[2(F02
2 216F11

2 )
3(w21C2

3). If F1150, then Q4Q5Þ0 and C1
85m58/m̄58 ~or C1

45m58! together with the real
syzygym58m̄5851, where, in this case,m58[Q4 /Q̄5 . Next, we assume thatF11Þ0. It follows that
if Q4

21Q̄4Q550⇔Q4Q̄42Q5Q̄550 ~which is the real syzygy eliminating ‘‘half’’ of the infor-
mation in m5!, then we obtain the bi-quadratic equationF02Q̄4

2C1
414F11Q4Q̄4C1

21F02Q4
250

which has the two possible solutionsC0
25(22F116 iAF02

2 24F11
2 )Q4 /(F02Q̄4) with the condi-

tion F02
2 .4F11

2 . In this case,m585Q4 .
Finally, we consider the case whenF11Q4(Q4Q̄42Q5Q̄5)Þ0. Combining the above quarti

equation together with its complex conjugate yieldsC1
45m58/m̄58 ~or equivalently C1

2

524F11m58/F02) together with the real syzygy 16m58m̄585F02
2 /F11

2 , where, in this case,m58

[(Q4
21Q̄4Q5)/(Q4Q̄42Q5Q̄5).

Case 2B(ii):C35C450: It immediately follows that a maximal~complete! set is
$R,w1 ,r 1 ,r 2% and complete backsolving is impossible, since onlyC2 can be solved for usingw1

while the argument ofC1 remains undetermined~see the Appendix!.
Case 3:C05C150 andC3Þ0: We may use the tetrad freedom to makeC3C̄351. It fol-

lows that a maximal~complete! set is$R,w1 ,r 1 ,r 2% and NCB, since onlyC2 can be solved for
usingw1 while the argument ofC3 andC4 remain undetermined~see the Appendix!.

Case 4:C05C15C350: If C4Þ0, then we may use the tetrad freedom to makeC4C̄4

51. In this case, a maximal set is$R,w1 ,r 1 ,r 2% and NCB, since onlyC2 can be solved for using
w1 while the argument ofC4 remains undetermined~see the Appendix!. This case corresponds t
an alignment between the eigenvector of the Ricci tensor and the repeated PND of the Weyl
On the other hand, ifC450,3 then the set$R,w1 ,r 1 ,r 2% is complete.

D. Segre type †„1,1…„11…‡

In our canonical frame, the only nonzero Ricci component isF11. Hence, the only indepen
dent Ricci invariant isr 154/3F11

2 which determinesF11.
Case 1:C0Þ0: We use the tetrad freedom to makeC051. Further, we shall need to treat th

cases whereC350 or C450 separately.
Case 1A:C3Þ0: A complete set is$R,w1 ,w2 ,r 1 ,m1 ,m2% and is CB.
Case 1B(i):C350 andC4Þ0: A complete set is$R,w1 ,w2 ,r 1 ,m1% and is CB.
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Case 1B(ii):C35C450: In this case all mixed invariants are dependent andw15C2
2 is the

only independent Weyl invariant. Hence, a maximal~complete! set is$R,w1 ,r 1% and is NCB~see
the Appendix!.

Case 2:C050 andC1Þ0: We use the tetrad freedom to makeC151. It follows that a
complete set is$R,w1 ,w2 ,r 1 ,m1% and is CB.

Case 3:C05C150: If C350, we can makeC451 ~providedC4Þ0!, and then the com-
plete set is$R,w1 ,r 1% with w15C2

2 determiningC2 . If C35C450, then the same set is com
plete. In both of these cases, backsolving is complete. On the other hand, ifC3Þ0, we can make
C351, and then a maximal~complete! set is$R,w1 ,r 1% with w15C2

2, while C4 is still undeter-
mined ~see the Appendix!.

E. Segre type †2,„11…‡

In our canonical frame, the only nonzero Ricci components areF11 andF2251. Hence, the
only independent Ricci invariant isr 154/3F11

2 which determinesF11.
Case 1:C0Þ0: We use the tetrad freedom to makeC0 real. Further, we shall need to tre

the cases whereC350 or C450 separately.
Case 1A:C3Þ0: A complete set is$R,w1 ,w2 ,r 1 ,m1 ,m2 ,m4% and is CB.
Case 1B(i):C350 andC4Þ0: In this case a complete set is$R,w1 ,w2 ,r 1 ,m1 ,m4% sincem2

is dependent, and complete backsolving is again always possible.
Case 1B(ii):C35C450: A complete set is$R,w1 ,r 1 ,m4 ,m5% and is CB.
Case 2:C050 andC1Þ0: A complete set is$R,w1 ,w2 ,r 1 ,m1 ,m4% and is CB. This is more

easily established in a frame whereC1 is real.
Case 3:C05C150: In this case, a maximal~complete! set is $R,w1 ,r 1% with w15C2

2,
while C3 ~which can be made real if nonzero! andC4 are still undetermined~see the Appendix!.
Complete backsolving is not, in general, possible.

F. Segre type †„2,1…1‡

In our canonical frame, the only nonzero Ricci components areF02522F115F20 and
F2251. Hence, the only independent Ricci invariant isr 154F11

2 , which determinesF11.
Case 1:C0Þ0: We may use the tetrad freedom to makeC1 real or imaginary, depending o

the structure ofC0 . We note thatm1 being either not real or real invariantly distinguishes case
from case 1B.

Case 1A:Im(C0)Þ0: A complete set is$R,w1 ,w2 ,r 1 ,m1 ,m2 ,m4% and is CB. This is easily
shown in a frame whereC1 is real.

Case 1B:Im(C0)50 and Re(C0)Þ0: In this casem1 is real. It can be shown that a comple
set is$R,w1 ,w2 ,r 1 ,m1 ,m2 ,m4% and CB, which is more easily established in a frame whereC1 is
imaginary.

Case 2:C050 andC1Þ0: In this case, we may use the tetrad freedom to makeC2 real or
imaginary, depending on the structure ofC1 . Also m150 and the nature ofm2 invariantly
distinguishes case 2A from case 2B.

Case 2A:Im(C1)Þ0: A complete set is$R,w1 ,w2 ,r 1 ,m2 ,m4% and is CB, which is easily
established in a frame whereC2 is real.

Case 2B:Im(C1)50 and Re(C1)Þ0: In this casem2 is real. It can be shown that a comple
set is $R,w1 ,w2 ,r 1 ,m2 ,m4% and is CB, which is easily established in a frame whereC2 is
imaginary.

Case 3:C05C150: A maximal ~complete! set is$R,w1 ,r 1% with w15C2
2, while C3 and

C4 remain, in general, not completely determined~even though there still remains tetrad freedo
to remove one unknown ‘‘part’’ ofC3 or C4!. Complete backsolving is, in general, not possib
~see the Appendix!.
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G. Segre type †„3,1…‡

In our canonical frame, the only nonzero Ricci components areF125F2151. All Ricci
invariants vanish.

Case 1:C0Þ0: We will use the tetrad freedom to makeC1 real or imaginary, depending o
the structure ofC0 . We note thatm1 being either not imaginary or imaginary invariantly disti
guishes case 1A from case 1B.

Case 1A:Re(C0)Þ0: A complete set is$R,w1 ,w2 ,m1 ,m2 ,m4% and is CB. This is easily
established in a frame whereC1 is real.

Case 1B:Re(C0)50 and Im(C0)Þ0: In this case m1 is imaginary. A complete set is
$R,w1 ,w2 ,m1 ,m2 ,m4% and is CB. This is readily shown in a frame whereC1 is imaginary.

Case 2:C050 andC1Þ0: In this casem150 and we may use the tetrad freedom to ma
C2 real or imaginary, depending on the structure ofC1 . We note that the nature ofm2 invariantly
distinguishes case 2A from case 2B.

Case 2A:Re(C1)Þ0: We now use the tetrad freedom to makeC2 real and will show that a
complete set is$R,w1 ,w2 ,m2 ,um5u% and complete backsolving is always possible. The Weyl
mixed invariants in this frame are

w15 1
3 ~3C2

224C1C3!, w252C1C2C32C1
2C42C2

3,

m254C1
2 , m5528C1C2~C11C̄1!.

This system of invariants can be solved~implicitly ! for the NP Weyl components to yield

C1
25m2/4, C2

25um5u2/@64C1C̄1~C11C̄1!2#,

C353~C2
22w1!/~4C1! andC45~2C1C2C32C2

32w2!/C1
2 .

Note that the invariantm5 satisfies the real syzygym̄2m5
25m2m̄5

2. Also, the real invariantm6

could be used instead ofum5u.
Case 2B:Re(C1)50 and Im(C1)Þ0: In this casem2 is real and negative and we may use t

tetrad freedom to makeC2 imaginary. Following the same procedure as in case 2A~with some
sign differences!, it can be shown that a complete set is$R,w1 ,w2 ,m2 ,um5u% and complete
backsolving is always possible.

Case 3:C05C150: A maximal ~complete! set is$R,w1% with w15C2
2, while C3 andC4

remain, in general, not completely determined~even though there still remains tetrad freedom
remove one unknown ‘‘part’’ ofC3 or C4). Complete backsolving is, in general, not possible~see
the Appendix!.

H. Segre type †„1,11…1‡

For this Segre type, it is easier to use the Weyl canonical frame. The Ricci componen
general, are9 F00562a2, F01562ab, F02562b2, F1156(ag1bb̄), F12562bg, F22

562g2 ~with the same sign all throughout! where a and g are real,b is complex andag

,bb̄. The only independent Ricci invariant isr 154(ag2bb̄)2, therefore, g5(2bb̄

2Ar 1)/(2a) if aÞ0, otherwise,bb̄5 1
2Ar 1. In the analysis that follows, we will choose the ‘‘1’’

sign throughout. The analysis with the opposite sign only differs trivially in the intermediate s
but the final conclusion does not differ.

For this Segre type and Petrov types I, II, and III, the backsolving calculations for wha
Þ0 are virtually identical to the ones in Segre type@1,~111!# and corresponding Petrov types2

However, here we need to consider the case whena50, as well. Hence, for these Petrov types, w
shall present only the backsolving for the Ricci components for whena50.
                                                                                                                



n

ts can

tor of

.
quan-

ro

set

m-

l,
ts can

4030 J. Math. Phys., Vol. 43, No. 8, August 2002 J. Carminati and E. Zakhary

                    
1. Segre type [(1,11)1], Petrov type I

Case 1:aÞ0: A complete set is$R,w1 ,w2 ,r 1 ,m4 ,m5% and is CB.
Case 2:a50: In this case,bÞ0, m4 is dependent withbb̄5 1

2Ar 1 and

m558C0
2b2~C̄2b̄21C̄0g2!18C0C2~C̄0g41C̄0b41C̄0b̄416b̄2C̄2g2!

224C2
2b2~C̄2b̄21C̄0g2!.

Substitutingb̄5Ar 1/(2b) into m5 and m̄5 and then eliminatingg from m5 and m̄5 we get a
polynomial of degree 16 inb with the coefficient ofb16 being 256C0C̄0

3C̄2
2(3C22C0)2(3C2

1C0)2Þ0. Hence, we can determineb and theng. Thus complete backsolving has bee
achieved.

2. Segre type [(1,11)1], Petrov type II

Case 1:aÞ0: A complete set is$R,w1 ,r 1 ,m4 ,m5% and is CB.
Case 2:a50: In this case,m4

2536r 1w1w̄1 , m5
2536r 1w1

2w̄1 , bb̄5 1
2Ar 1 and a maximal

~complete! set is $R,w1 ,r 1%. We can only determineubu and the argument ofb and g are still
undetermined, hence, is NCB. Using the index theorem, it can be shown that no invarian
determine these unknown quantities~see the Appendix!. Further, we have, using~1!, Sabl

b5
22F11l a . Hence,l a is an eigenvector of the Ricci tensor as well as the repeated eigenvec
the Weyl tensor.

3. Segre type [(1,11)1], Petrov type III

Case 1:aÞ0: A complete set is$R,r 1 ,m4 ,m5% and is CB.
Case 2:a50: In this case,m45m550, ubu5 1

2Ar 1 and a maximal~complete! set is$R,r 1%.
We can only determineubu and the argument ofb, andg are still undetermined, hence, is NCB
Using the index theorem, it can be shown that no invariants can determine these unknown
tities ~see the Appendix!. Again, we obtainSabl

b522F11l a . Thus, l a is an eigenvector of the
Ricci tensor as well as the repeated eigenvector of the Weyl tensor.

4. Segre type [(1,11)1], Petrov type D

For this typew15C2
2 which determinesC2 . In our Weyl canonical frame, the only nonze

Weyl component isC2 . In all type D cases below, complete backsolving is achievable.
Case 1:abÞ0: We can makeb51/a ~real! and it can be easily shown that the complete

is $R,w1 ,r 1 ,m4%. Note thatm5
25w1m4

2.
Case 2:agÞ0 andb50: We can makea561 and, hence,g57 1

2Ar 1. A complete set, in
this case, is$R,w1 ,r 1%. Note thatm5

25w1m4
2536w1

2w̄1r 1
2.

Case 3:bgÞ0 anda50: We can makeb51/g ~real! and, hence,b251/g25 1
2Ar 1. A com-

plete set, in this case, is$R,w1 ,r 1%. Note thatm5
25w1m4

2536w1
2w̄1r 1

2.
Case 4:bÞ0 anda5g50: We can makeb real and, hence,b25 1

2Ar 1. A complete set, in
this case, is$R,w1 ,r 1%. Note thatm5

25w1m4
2536w1

2w̄1r 1
2.

5. Segre type [(1,11)1], Petrov type N

For this Petrov type,w15w250. In our Weyl canonical frame, the only nonzero Weyl co
ponent isC451. We can use the remaining tetrad freedom to makeb50 if aÞ0, otherwise, we
can makeg50

Case 1:aÞ0 andb50: In this case,m454a4, m550 andg52Ar 1/(2a). Hence, a com-
plete set is$R,r 1 ,m4% and complete backsolving is always possible.

Case 2:a5g50 andbÞ0: In this case,m45m550, bb̄5 1
2Ar 1 and a maximal~complete!

set is$R,r 1%. We can only determineubu and the argument ofb is still undetermined, in genera
hence, backsolving is incomplete. Using the index theorem, it can be shown that no invarian
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determine these unknown quantities~see the Appendix!. Also, Sabl
b522F11l a and, therefore,l a

is an eigenvector of the Ricci tensor as well as the repeated eigenvector of the Weyl tenso

6. Segre type [(1,11)1], Petrov type O

For this Petrov typew15w250 andC i50. We can use the tetrad freedom to makea5g
50 andb real, i.e., the Ricci canonical frame as well. In this case,m45m550 andb25 1

4r 1 .
Hence, a complete set is$R,r 1% and complete backsolving is always possible.

See Table VI for a complete summary for this Segre type.

I. Segre type †„2,11…‡

In our canonical frame, the only nonzero Ricci component isF2251. Hence, all Ricci invari-
ants vanish.

Case 1:C0Þ0: A complete set is$R,w1 ,w2 ,m4 ,m5% and is CB, which is easily establishe
in a frame whereC0 is real andC150.

Case 2:C050, andC1Þ0: In this case,m45m550. A complete set is$R,w1 ,w2 ,m6% and
is CB, which is easily established in a frame whereC1 is real andC250.

Case 3:C05C150: In this case, a maximal~complete! set is $R,w1% with w15C2
2. If

C2Þ0, we can makeC350 and with C4 being real~rotation freedom if necessary!, it still
remains undetermined. IfC250 andC3Þ0, then we can makeC3 real andC450. In this case
C3 remains undetermined. IfC25C350 andC4Þ0, then we can makeC4 real and it remains
undetermined3 ~also, see the Appendix!.

J. Segre type †„1,111…‡

We can use the tetrad freedom to reduce the Weyl components to standard forms. In th
all Ricci and mixed invariants vanish~since allFab50). Complete backsolving is always possib
using the Weyl invariantsw1 andw2 .9

Table VII summarizes our results and Fig. 1 characterizes a setS of invariants according to
our definitions.

IV. CONCLUSION

In this third article on the problem of algebraic completeness for the invariants of the Rie
tensor, we have exhaustively analyzed all canonically different space–times in which the
tensor does have a null eigenvector. In each case we have given algebraically complete
follows from this and the previous two articles1,2 that the set CZ is determining, as was previou
claimed. Interestingly, we have also shown that complete backsolving is, in general, not po
~but maximal backsolving has been achieved! when there is an alignment between an eigenvec
of the Ricci tensor with the repeated principal null direction of the Weyl tensor.3 In such cases al
the mixed invariants are either zero or always dependent. Also, there is at most one comple
invariant (w1) and two real Ricci invariants~r 1 andr 2! together withR. As previously mentioned

TABLE VI. Algebraically complete sets for Segre type@~1,11!1# with the different Petrov types.

Petrov
type

Conditions
~in Weyl canonical frame!

Complete sets
~and subsets thereof! CB/NCB

I - $R,w1 ,w2 ,r 1 ,m4 ,m5% CB
II F005F0150 $R,w1 ,r 1% NCB

Otherwise $R,w1 ,r 1 ,m4 ,m5% CB
III F005F0150 $R,r 1% NCB

Otherwise $R,r 1 ,m4 ,m5% CB
D - $R,w1 ,r 1 ,m4 ,m5% CB
N F005F015F125F2250 $R,r 1% NCB

Otherwise $R,r 1 ,m4 ,m5% CB
O - $R,r 1% CB
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we suspect that some space–times within such classes will, in general, prove to be more d
to distinguish as inequivalent. As a final point, there still remains to fully clarify the geom
meaning of the invariants, principally the mixed ones. This will be the main focus of our wo
the next article in this series.

APPENDIX: APPLICATION OF THE INDEX THEOREM

In one of our previous articles,1 an Index theorem was presented regarding the general s
ture of any invariant formed from the Weyl and Ricci spinors:

CABCD5C0iAiBiCiD24C1o(AiBiCiD)16C2o(AoBiCiD)24C3o(AoBoCiD)1C4oAoBoCoD ,

FABȦḂ5F00iAiBī Ȧī Ḃ22F01iAiBī (ȦōḂ)1F02iAiBōȦōḂ 22F10o(AiB) ī Ȧī Ḃ14F11i (AoB) ī (ȦōḂ)

22F12i (AoB)ōȦōḂ1F20oAoBī Ȧī Ḃ22F21oAoBī (Ȧī Ḃ)1F22oAoBōȦōḂ .

Index Theorem:Let a,b,c be non-negative integers and letCaC̄bFc represent any of the
complete contractions~invariant! of a copies of the Weyl spinor,b copies of its complex conjugat
andc copies of the Ricci spinor. Then any term in the expansion of these invariants has the

TABLE VII. Algebraically complete sets for Segre types with one or two null eigenvectors.

PP
type

Segre
type

Conditions
~in Ricci canonical frame!

Complete Sets
~and subsets thereof! CB/NCB

II @2,11# C05C150 $R,w1 ,r 1 ,r 2% NCB
Otherwise $R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m2 ,m3% CB

III @3,1# C05C150 $R,w1 ,r 1% NCB
Otherwise $R,w1 ,w2 ,r 1 ,m1 ,m2 ,m3% CB

D @~1,1!11# C05C150 or C35C450 ~not both! $R,w1 ,r 1 ,r 2% NCB
C05C45F1150 & C1C3Þ0 $R,w1 ,w2 ,r 1 ,m6% CB

(C05C350 & C1C4Þ0) $R,w1 ,w2 ,r 1 ,r 2 ,m5%
a

or or CB
(C15C450 & C0C3Þ0) $R,w1 ,w2 ,r 1 ,r 2 ,m6%

(C05F1150 & C1C3C4Þ0) $R,w1 ,w2 ,r 1 ,m1 ,m5%
a

or or CB
(F115C450 & C0C1C3Þ0) $R,w1 ,w2 ,r 1 ,m1 ,m6%

Otherwise $R,w1 ,w2 ,r 1 ,r 2 ,m1 ,m2 ,m4% CB
@2,~11!# C05C150 $R,w1 ,r 1% NCB

C35C450 $R,w1 ,r 1 ,m4 ,m5% CB
Otherwise $R,w1 ,w2 ,r 1 ,m1 ,m2 ,m4% CB

@~1,1!~11!# C05C150 or C35C450 ~not both! $R,w1 ,r 1% NCB
Otherwise $R,w1 ,w2 ,r 1 ,m1 ,m2% CB

N @~2,1!1# C05C150 $R,w1 ,r 1% NCB
Otherwise $R,w1 ,w2 ,r 1 ,m1 ,m2 ,m4% CB

@~3,1!# C05C150 $R,w1% NCB
C050 $R,w1 ,w2 ,m2 ,um5u% CB

Otherwise $R,w1 ,w2 ,m1 ,m2 ,m4% CB

O @~1,11!1#b C05C150 or C35C450 ~not both! $R,w1 ,r 1% NCB
Otherwise $R,w1 ,w2 ,r 1 ,m4 ,m5% CB

@~2,11!# C05C150 $R,w1% NCB
C050 $R,w1 ,w2 ,m6% CB

Otherwise $R,w1 ,w2 ,m4 ,m5% CB
@~1,111!# - $R,w1 ,w2% CB

aWith m5 satisfying a real syzygy.
bSee Ref. 10.
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C0
a0C1

a1C2
a2C3

a3C4
a4C̄0

b0C̄1
b1C̄2

b2C̄3
b3C̄4

b4F00
c00F01

c01F02
c02F10

c10F11
c11F12

c12F20
c20F21

c21F22
c22,

wherea0 , . . . ,a4 ,b0 , . . . ,b4 ,c00, . . . ,c22 are non-negative integers which must satisfy the f
lowing conditions:

a01a11a21a31a45a, b01b11b21b31b45b,

c001c011c021c101c111c121c201c211c225c,

a112a213a314a41c101c111c1212c2012c2112c2252a1c,

b112b213b314b41c0112c021c1112c121c2112c2252b1c,

When applying the index theorem, note the following:

~1! If F i j 50 ~or C i50), we setci j 50 ~or ai5bi50!.
~2! If an invariant does not includeC̄ i ’s, we set allbi50 andb50.
~3! If F i j 51 ~or C i51!, we do not setci j 50 ~or ai5bi50).
~4! If F i j 5Fkl , we do not setci j 5ckl .

We shall use this index theorem to prove the claims of non-backsolvability made above.
We begin by eliminatinga, b andc to obtain the two conditions

2a01a11c001c011c0252a41a31c201c211c22, ~A1!

2b01b11c001c101c2052b41b31c021c121c22. ~A2!

FIG. 1. Characterization of a set S of Riemann invariants. CB5completely backsolvable, NCB5not completely back-
solvable, CC5curvature complete, NCC5not curvature complete, M5maximal, NM5not maximal, D5determining,
ND5not determining, NAD5not always dependent, AD5always dependent, AC5algebraically complete, and NAC
5not algebraically complete.
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Next, adding we obtain

2~a01b01c00!1~a11b11c011c10!52~a41b41c22!1~a31b31c121c21! ~A3!

For Segre type@2,11# with C05C150 ~in the Ricci canonical frame!, we seta05a15b0

5b15c005c015c105c125c2150. Then Eq. ~A3! gives a31b312(a41b41c22)50, which
means thata35b35a45b45c2250, i.e.,C3 , C̄3 , C4 andC̄4 ~andF22! will not appear in any
invariant and hence, they cannot be determined. A similar argument can be used for th
backsolvable cases in Segre types@3,1#, @~1,1!11#, @~1,1!~11!#, @2,~11!#, @~21!1#, @~3,1!# and
@~2,11!#.

For Petrov type II and Segre type@~1,11!1# with a50, i.e., F005F0150 ~in the Weyl ca-
nonical frame!, we seta05a15a35a45b05b15b35b45c005c0150. Then Eq.~A3! gives
c121c2112c2250, which means thatc125c215c2250, i.e.,F22, F12, andF21 will not appear in
any invariant and hence,g cannot be determined. Also, Eq.~A1! or ~A2! givesc025c20. Hence,
any invariant will only involve (F02F20)

c02, which means that onlyubu can be determined. A
similar argument can be used for the non-backsolvable cases in Segre type@~1,11!1# with Petrov
types III and N~in the Weyl canonical frame!.

1E. Zakhary and J. Carminati, J. Math. Phys.42, 1474~2001!.
2J. Carminati, E. Zakhary, and R. McLenaghan, J. Math. Phys.43, 492 ~2002!.
3However, if further information like additional structure of the Weyl tensor is supplied, then the case could be
completely backsolvable. For example, if we impose the condition that the Weyl tensor is Petrov type D and aligne
C35C450 and the case would become completely backsolvable. This comment would obviously also apply to
not completely backsolvable cases. Thus an alignment between an eigenvector of the Ricci tensor with a r
principal null vector of the Weyl tensor is a necessary but not sufficient condition to prevent complete backsolv

4A complete analysis of the necessary and/or sufficient conditions for all the not completely backsolvable cases
will be done in future work.

5C. B. G. McIntosh, J. M. Foyster, and A. W. C. Lun, J. Math. Phys.22, 2620~1981!.
6G. C. Joly and M. A. H. MacCallum, Class. Quantum Grav.7, 541 ~1990!.
7Equivalent real.
8Number~equivalent real! of curvature unknowns solved for in terms of the invariants and remaining, if any, curva
components.

9E. Zakhary, Ph.D thesis, Monash University, 1995.
10In the Ricci canonical frame, backsolving is not, in general, complete for Segre type@~1, 11!1# if C05C150 or C3

5C450, i.e., for degenerate Petrov types where the repeated PNDs coinside with an eigenvector of the Ricc
Therefore, backsolving is always complete for Petrov type I, and also for type O~sinceCa50!. For Petrov types II, III,
and N, backsolving is not, in general, always complete. On the other hand, since more conditions have been imp
Ca for Petrov type D, backsolving in this case is, understandably, complete.
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Applications of Nambu mechanics to systems
of hydrodynamical type

Partha Guha
S.N. Bose National Centre for Basic Sciences, JD Block, Sector-3,
Salt Lake, Calcutta-700098, India

~Received 19 November 2001; accepted for publication 25 March 2002!

We show that the reduced Dubrovin–Novikov hydrodynamic type models are in-
tegrable Nambu mechanical systems admitting Lax triples. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1481955#

I. INTRODUCTION

In a remarkable paper, Nambu1 initiated the study of multi-Hamiltonian systems. Apparen
Nambu mechanics presents a new alternative view to classical mechanics. Nambu’s pap
followed by a number of papers which essentially carry the idea from the physical point of
by showing that the classical part of it could be cast into the framework of classical mech
with Dirac constraint.2,3

Recently, this research was revitalized and carried forward again by Takhtajan.4 He gave rise
to a beautiful theory, revealing deep and nontrivial connection with algebra and differentia
ometry. Note that, until now, the main activity in the theory of Nambu–Poisson geometry
concentrated around the algebraic aspects of Nambu structure—see, e.g., the pa
Alekseevsky,5 de Azcárraga,6,7 Grabowski, Marmo, Michor, Vaisman, Vinogradov, etc.8–14 Some-
how, the applications of Nambu dynamics is not fully explored yet. R. Chatterjee15 had shown that
several Hamiltonian systems possessing dynamical or hidden symmetries can be realized
the framework of Nambu mechanics. Among the notable examples are the SU(n) isotropic har-
monic oscillator and the SO~4! Kepler problem. Most recently, Gonera and Nutku16 showed that
the Nambu structure can be extracted also from the rational Calogero–Moser system.

Some attempts have been made from the point of view of foliation theory by Dufour, Z
and Zhitomerski.17–19 Hence it would be rewarding to find some interesting applications
Nambu–Poisson geometry. In this article we are continuing to explore the potentiality o
application of Nambu mechanics in integrable systems.20,21

In this article we explore a higher dimensioanl analog of a 2D incompressible Euler equ
in terms of Nambu dynamics. Thus a novel Nambu type integrable system is propose
generalizing Charles Li’s22,23method we derive the corresponding linear equations or Lax tripl
this equation. Surprisingly, this theory can be applied to reduced Dubrovin–Novikov type h
dynamic systems.24 Recently these system of equations are poping up in D-Brane theory25–27with
the celebrated Born–Infeld action.28

The rest of this article is organized as follows: Since Nambu mechanics is an exotic su
so, in the next section we will address some definitions of this subject. In Sec. III, we will dis
our Nambu integrable system.

II. PRELIMINARIES

The modern concept of Nambu–Poisson structure was proposed by Takhtajan in 1994 i
to find an axiomatic formulation for then-bracket operation. LetM denote a smooth
n-dimensional manifold andC`(M ) the algebra of infinitely differentiable real valued functio
on M .

Definition 2.1: A manifold M is called a Nambu–Poisson manifold if there exits aR-multi-
linear map
40350022-2488/2002/43(8)/4035/6/$19.00 © 2002 American Institute of Physics
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$ ,..., % : @C`~M !# ^ n→C`~M !. ~1!

This is called Nambu–Poisson bracket of order n; f 1 , f 2 ,...,f 2n21PC`(M ). This bracket sat-
isfies

(1) $ f 1 ,...,f n%5(21)e(s)$ f s(1) ,...,f s(n)%,
(2) $ f 1f 2 , f 3 ,...,f n11%5 f 1$ f 2 , f 3 ,...,f n11%1$ f 1 , f 3 ,...,f n11% f 2 , and
(3) fundamental identity

$$f1,...,fn21,fn%,fn11,...,f2n21%1$fn ,$f1,...,fn21,fn11%,fn12,...,f2n21%1¯

1$fn ,...,f2n22,$f1,...,fn21,f2n21%%5$f1,...,fn21,$fn ,...,f2n21%%, ~2!

wheresPSn—the symmetric group of n elements—ande(s) is its parity.
This fundamental identity is called Takhtajan identity.
Let $.,.,...,.%:C`(M )3C`(M )¯3C`(M )→C`(M ) be a multi-derivation that satisfies th

Takhtajan identity if

~1! $.,.,...,.% satisfies Takhtajan identity for generators
~2! satisfies quadratic identities.

(
k51

n

$f,f1,...,fn22,fn1k21%$f8,fn ,...,fn1k21̂,...,f2n21%1$f8,f1,...,fn22,fn1k21%

3$f,fn11,...,fn1k21̂,...,f2n21%50. ~3!

It is known that the Nambu dynamics on a Nambu–Poisson phase space involvesn21
so-called Nambu–HamiltoniansH1 ,...,Hn21PC`(M ) and is governed by the following equa
tions of motion:

d f

dt
5$ f ,H1 ,...,Hn21%, ; f PC`~M !. ~4!

A solution to the Nambu–Hamilton equations of motion produces an evolution operatUt

which by virtue of the fundamental identity preserves the Nambu bracket structure onC`(M ).
Definition 2.2: fPC`(M ) is a first integral of XH1 ,¯Hn21

if and only if

$ f ,H1 ,H2 ,...,Hn21%50.

III. LAX TRIPLE AND NAMBU INTEGRABLE SYSTEMS

Vladimir Arnold realized that the Euler equation is a Hamiltonian system. The Lax pair o
2D Euler equation was first given by Friedlander and Vishik29,30 in terms of Lagragian coordi-
nates, and most recently by Li in terms of Eulerian coordinates.

The three-dimensional incompressible Euler equation can be expressed in vorticity for

] tV1~u•¹!V2~V•¹!u50, ~5!

whereu5(u1 ,u2 ,u3) is the velocity,V5(V1 ,V2 ,V3) is the vorticity, ¹5(]x ,]y ,]z), V5¹
3u, and¹•u50.

Dropping the third subscript ofV, the 2D euler equation can be written as

] tV1$V,x%50, ~6!

where the bracket is given by$ f ,g%5]xf ]yg2]yf ]xg, andx is the stream function given by

u52]yx, v5]xx.
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Thus the vorticity is connected to the stream function by

V5]xv2]yu5Dx.

Let us introduce our Nambu integrable system. The idea of this equation is stimulated
the work of Li, Friedlander and Vishik. This equation is a higher dimensional analog of th
Euler equation, although it is not a 3D Euler equation~see Remark 3!

Defintion 3.1: The generalized (or Nambu) integrable system is given by

] tV1$V,x1 ,x2%50,

wherex1 and x2 are two Hamiltonians and

$V,x1 ,x2%5
]~V,x1 ,x2!

]~x,y,z!
.

Proposition 3.2: The Lax triple of the Nambu integrable equation is
(1) $V,f1 ,f2%5lf2 ,
(2) ]f15$x1 ,x2 ,f1%,
(3) ]f25$x1 ,x2 ,f2%.
Sketch of the Proof:Let us differentiate the first equation. We obtain

$V t ,f1 ,f2%1$V,f1t
,f2%1$V,f1 ,f2t

%5$x1 ,x2 ,$V,f1 ,f2%%,

$V t ,f1 ,f2%1$V,$x1 ,x2 ,f1%,f2%1$V,f1 ,$x1 ,x2 ,f2%%5$x1 ,x2 ,$V,f1 ,f2%%.

Using the Takhtajan identity

$$ f 1 , f 2 , f 3%, f 4 , f 5%1$ f 3 ,$ f 1 , f 2 , f 4%, f 5%1$ f 3 , f 4 ,$ f 1 , f 2 , f 5%%5$ f 1 , f 2 ,$ f 3 , f 4 , f 5%%. ~7!

we obtain our desired result. h

Remark 3.3: An ordinary Poisson integrable system is obtained from the compatibility c
tion of two linear equations. These equations are called the Lax pair. In the case of a N
(triple bracket) integrable system we need three linear equations or Lax triple.

Remark 3.4: For n52, this coincides with the 2D Euler equation. The Lax pair of the
Euler equation given by Li is

Lf5lf, ]xf1Af50, ~8!

where Lf5$V,f%, Af1$x,f%50, and the compatibility yields

]xL1@A,L#5]xV1$V,x%50.

Remark 3.5 (Connection to n dimensional Euler equation): The higher dimensional in
pressible Euler equation is given by

] tV1~u•¹!V2~V•¹!u50, ¹•u50.

This equation can be expressed as

] t~] ju
i2] iu

j !1u•¹~] ju
i2] iu

j !2 (
k51

n

~] ju
k]ku

i2] iu
k]ku

j !50, ~9!

whereV j
i 5] ju

i2] iu
j , and V(u)5(V j

i )1< i , j <n .
When the dimension is equal to2, Eq. (9) boils down to
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] tV1u•¹V2~]1u1]1u21]1u2]2u22]2u1]1u12]2u2]2u1!50,

whereV(u)5]1u22]2u1. One can express this as

] tV1u•¹V2V~¹•u!50. ~10!

As the divergence of the vector field is zero, we get the well known relation

] tV1u•¹V50. ~11!

This equality is extremely interesting—by this one can distinguish the two dimensiona
from the n>3 case.

Hence, because of the presence of the term (V•¹)u in a higher dimensional incompressib
Euler equation, our Nambu integrable system does not coincide with it.

A. Applications to Dubrovin–Novikov systems

Dubrovin and Novikov considered an arbitraryn3n system of hydrodynamic type

ut
i5v j

i ~x!ux
j , i , j 51,...,n, ~12!

which are nondiagonalizable but integrable.
Let us consider a special set (n53) of above hyperbolic differential equations:

]u

]x1
5u

]u

]x4
1v

]u

]x3
1w

]u

]x2
, ~13!

]v
]x1

5u
]v
]x4

1v
]v
]x3

1w
]v
]x2

, ~14!

]w

]x1
5u

]w

]x4
1v

]w

]x3
1w

]w

]x2
. ~15!

These are examples of what Dubrovin and Novikov call ‘‘equations of hydrodynamic type’’
these are fully integrable—for explicit solutions, any functions homogeneous of degree
automatically solutions of these set, though the general solution can be found only in im
form.

Let us combine all the equations~13!–~15!. We obtain

]~u1i1v1i2w!

]x1
5u

]~u1i1v1i2w!

]x4
1v

]~u1i1v1i2w!

]x3
1w

]~u1i1v1i2w!

]x2
. ~16!

Let us setV5u1i1v1i2w:

]V

]x1
5u

]V

]x4
1v

]V

]x3
1w

]V

]x2
. ~17!

Suppose

u52
]~x1 ,x2!

]~x2 ,x3!
, v5

]~x1 ,x2!

]~x4 ,x2!
, w5

]~x1 ,x2!

]~x3 ,x4!
, ~18!

wherex1 andx2 are some potential functions. Hence we obtain the reduced form of Dubro
Novikov equation as
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]V

]x1
1$V,x1 ,x2%50. ~19!

Systems related 2D systems:In this case we obtain

]~u1iv !

]x
5u

]~u1iv !

]z
1v

]~u1iv !

]y
. ~20!

Let us setV5u1iv:

]V

]x
5u

]V

]z
1v

]V

]y
. ~21!

Suppose

u52
]x

]y
, v5

]x

]z
, ~22!

wherex is some potential function.
After this transformation the equation becomes

]V

]x
1$V,x%50, ~23!

where the bracket$,% is defined as

$ f ,g%5~]zf !~]yg!2~]yf !~]zg!.

The relation betweenV andx is

V5u1iv52]yx1i]zx.

IV. CONCLUSION

In this article, using Nambu mechanics we have proposed a Lax representation of the re
Dubrovin–Novikov type hydrodynamic systems. The most promising applications from this
triple should be along the direction of Darboux transformations, group theoretic application
Moreover, we hope that Lax representation and the Darboux transformations can be us
investigating finite time blow up solutions of reduced Dubrovin–Novikov type systems.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor Jean-Paul Dufour, Professor Christian Duval, Pro
David Fairle, Professor Valentin Ovsienko and Professor Nguyen Tien Zung for some stimu
discussions. The author would like to thank the referee for his valuable suggestions and re
Finally, he wishes to acknowledge the financial support by Indo-French cooperation progra

1Y. Nambu, Phys. Rev. D7, 2405~1973!.
2F. Bayen and M. Flato, Phys. Rev. D11, 3049~1975!.
3N. Mukunda and E. C. G. Sudarshan, Phys. Rev. D13, 2846~1976!.
4L. Takhtajan, Commun. Math. Phys.160, 295 ~1994!.
5D. Alekseevsky and P. Guha, Acta Math. Univ. Comenian.~N.S.! 65, 1 ~1996!.
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A unified treatment of quartic invariants at fixed
and arbitrary energy

Max Karlovinia)

Department of Physics, Stockholm University

Giuseppe Pucaccob)

Dipartimento di Fisica, Universita` di Roma ‘‘Tor Vergata’’

Kjell Rosquistc) and Lars Samuelssond)

Department of Physics, Stockholm University

~Received 11 October 2001; accepted for publication 1 January 2002!

Two-dimensional Hamiltonian systems admitting second invariants which are quar-
tic in the momenta are investigated using the Jacobi geometrization of the dynam-
ics. This approach allows for a unified treatment of invariants at both arbitrary and
fixed energy. In the differential geometric picture, the quartic invariant corresponds
to the existence of a fourth rank Killing tensor. Expressing the Jacobi metric in
terms of a Ka¨hler potential, the integrability condition for the existence of the
Killing tensor at fixed energy is a nonlinear equation involving the Ka¨hler potential.
At arbitrary energy, further conditions must be imposed which lead to an overde-
termined system with isolated solutions. We obtain several new integrable and
superintegrable systems in addition to all previously known examples. ©2002
American Institute of Physics.@DOI: 10.1063/1.1483107#

I. INTRODUCTION

The study of Hamiltonian systems by means of geometric techniques provides fruitful
about their integrability.1–3 In particular, geometrization of the dynamics by using the Jac
metric,4,5 is a standard tool to turn a natural Hamiltonian system into a geodesic flow ov
suitable Riemannian manifold. Therefore it is natural to investigate integrability of
dimensional systems by looking for invariants corresponding to Killing tensors of a confo
Riemannian geometry. These geometric objects in fact directly produce invariants polynom
the momenta: the degree of this polynomial is the same as the rank of the Killing tensor. Sin
energy enters in the Jacobi metric as a parameter, the conditions for the existence of a
tensor may happen to be satisfied only at a fixed value of energy. In this case we sp
integrability at fixed energy in distinction to the usual notion of integrability which is unders
to be valid at arbitrary energy.

In Ref. 2, quadratic invariants at arbitrary and fixed energy~respectively,stronglyandweakly
conserved phase-space functions! for two-dimensional Hamiltonian systems were treated in
unified way. The integrability condition for quadratic invariants involves an arbitrary ana
functionS(z). For invariants at arbitrary energy, the functionS(z) is a second degree polynomia
with real second derivative, and the integrability condition then reduces to the classical Da
condition for quadratic invariants at arbitrary energy.6 Thereafter, the possibility of searching fo
linear and quadratic invariants at fixed energy was addressed and some examples of a
admitting a second quadratic invariant at zero energy were provided.

Weak invariants, also calledconfigurational invariants, have been discussed by Hall7 and by

a!Electronic mail: max@physto.se
b!Electronic mail: pucacco@roma2.infn.it
c!Electronic mail: kr@physto.se
d!Electronic mail: larsam@physto.se
40410022-2488/2002/43(8)/4041/19/$19.00 © 2002 American Institute of Physics
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Sarlet, Leach and Cantrijn.8 Hietarinta,9 in his account of the direct methods for the search of
second invariant, also provides a review of all the known systems admitting one or more co
rational invariants. Generalizing the approach of Ref. 2, Karlovini and Rosquist10 have discussed
the existence of invariantscubic in the momentaat both fixed and arbitrary energy. Beside givin
a list of all known systems admitting a cubic strong invariant, they also find a superinteg
system admitting a cubic invariant related to an energy dependent linear invariant. In the p
article we are going to discuss the case of the quartic invariant associated with the existen
fourth-rank Killing tensor. Fourth-rank Killing tensors have previously been studied by one o
authors~see Ref. 11! in the Lorentzian case.

In analogy to the third-rank case, it turns out that it is natural to introduce a Ka¨hler potential
for the Jacobi metric. Expressing the conditions imposed on the geometry by Killing te
equations in terms of this Ka¨hler potential, there remains a system of nonlinear partial differen
equations. Imposing the condition of strong integrability, it turns out that in general this sy
becomes overdetermined, so that, like for cubic invariants, only isolated mechanical system
with a second invariant quartic in the momenta. Due to the complexity of the system of equa
it is impossible to get a fully general solution. However, with our approach we are able to
some new integrable and superintegrable cases. In particular, one may wonder if the knowle
a weak invariant can provide information about the global dynamical behavior of the system
introduce a method which, starting from a family of weakly integrable systems, leads to find
higher-order invariant for isolated members of the family which are therefore strongly integ
The second invariant depends on the energy as a parameter.

The plan of the article is as follows: in Sec. II we recall the necessary and sufficient cond
for the existence of a Killing tensor in the Jacobi geometry and their application in problem
analytical mechanics. In Sec. III we examine the particular case of fourth-rank Killing tenso
Sec. IV we analize the conditions for strong integrability with a quartic invariant. In Sec. V
present the method by which, starting from a family of weakly integrable systems, isolate
amples of strongly integrable systems with quartic second invariant can be found. In Sec.
give tables of integrable systems admitting a quartic invariant which include new integrabl
superintegrable systems in addition to all known cases. In Sec. VII we give our conclusion

II. JACOBI GEOMETRY AND KILLING TENSORS

A. Geometric representation of the dynamics

We are interested in the classical two-dimensional systems with Hamiltonian function

H5 1
2 ~px

21py
2!1V~x,y!. ~1!

The approach followed in studying the integrability properties of these systems is based
Jacobi geometrization procedure which associates to the Hamiltonian flow produced by~1!, a
geodesic flow on a Riemannian manifold endowed with a positive definite metric

dsJ
25gabdqadqb, a,b51,2. ~2!

It can be shown~see, e.g., Ref. 4! that the Jacobi metric

gab52~E2V!hab , ~3!

wherehab is the metric of the flat space, generates a geodesic flow corresponding to the n
mechanical system with potentialV5V(q) at energyE. In fact, if we introduce the geodesic, o
‘‘Jacobi,’’ Hamiltonian

HJ5
1

2

1

2~E2V!
habpapb[

1

2
, ~4!
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the corresponding geodesic equations

dqa

dsJ
5

]HJ

]pa
5

1

2~E2V!
habpb ,

dpa

dsJ
52

]HJ

]qa 52
1

2~E2V!

]V

]qa , ~5!

are equivalent to the canonical equations of motion given by the Hamiltonian~1!,

dqa

dt
5

]H
]pa

,
dpa

dt
52

]H
]qa , ~6!

if the natural identification of canonical coordinates

q15x, q25y, p15px , p25py ~7!

is made. The phase-space trajectories are parametrized by the affine parametersJ that is related to
the standard time variable by

dsJ52@E2V~q~ t !!#dt. ~8!

The Jacobi geometry corresponding to Hamiltonian~1! is then

ds252G~dx21dy2!52Gdzdz̄, G5E2V, ~9!

where we have introduced null variablesz5x1 iy and z̄5x2 iy .
All tensor calculations will be done in the standard null frame defined as

V05AGdz, V 0̄5AGdz̄, ~10!

in which the metric takes the simplest possible form

ds252dV0dV 0̄. ~11!

We use the convention that tensor indices in this frame take the values 0 and 0,̄ while in any
coordinate frame the values will be the names of the coordinates~e.g.,z and z̄).

B. Invariants polynomial in the momenta and Killing tensors

One of the standard tools of the geometric approach is the investigation of integrabili
looking for invariants generated byKilling tensors. Let us see the simple case of second-or
Killing tensor equations

K (ab;g)50. ~12!

The existence of a second-rank Killing tensor, that is a symmetric tensor which satisfies Eq~12!,
implies the existence of a conserved quadratic function

I J5Kabpapb ~13!

commuting with the Jacobi Hamiltonian. In fact, it is easy to check that the vanishing o
Poisson bracket of this function with the Hamiltonian implies Eq.~12!. In analogy with the theory
of second order invariants, the Jacobi geometry approach leads, as it stands, to the determ
of higher-order invariants. Generalizing Eq.~12!, anmth rankKilling tensor is a symmetric tenso
satisfying the equation

K (m1m2 ¯ mm ;mm11)50. ~14!
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It gives rise to themth order~in the momenta! invariant

I J5Km1m2¯ mmpm1
¯ pmm

. ~15!

Two remarks are in order here:

~1! The function~15! is a weak invariant, in the sense that, in general, it is a conserved quan
in the dynamics fixed by the given value of the energy appearing in the definition of the J
geometry ~9!. To grant it the full title of strong invariant, it must satisfy the addition
requirement of satisfying the Killing tensor equations at arbitrary energy.

~2! The function~15!, let us call it theJacobi invariant, is a homogeneous polynomial of degre
equal to the rank of the corresponding Killing tensor. To transform it into the ordinary in
ant in the physical time gauge there is a straightforward recipe consisting in replacin
parameterE appearing inI J with the corresponding Hamiltonian function~1!. As a conse-
quence, the physical invariant

I 5I JuE→H ~16!

becomes a polynomial which is either even or odd in the momenta.

Karlovini and Rosquist10 have discussed the existence of third-rank Killing tensors, givin
list of all known integrable or superintegrable systems admitting a cubic strong invariant. He
are going to discuss the case of the quartic invariant associated with the existence of a four
Killing tensor. Moreover, we want to exploit the results concerning the existence of higher-
invariants to generate new solutions starting from the assumption of the existence of a secon
Killing tensor.

III. QUARTIC INVARIANTS CORRESPONDING TO FOURTH-RANK KILLING TENSORS

In this section we derive the necessary and sufficient integrability condition for the J
metric to admit a fourth-rank Killing tensor at a fixed value of the energy parameterE. In the
following section we proceed by finding the conditions that ensure that the Killing tensor e
tions be satisfied at arbitrary values of the energy, with the restriction to the case in whic
energy dependence of the Killing tensor is such that the corresponding invariant of the ph
Hamiltonian is quartic in the momenta. As usual in our approach~see Ref. 11!, we decompose the
fourth-rank Killing tensor in the form

Kabgd5Pabgd1P(abggd)1
3
8 Kg(abggd) ~17!

or equivalently

Kabgd5Pabgd1K (abggd)2
1
8 Kg(abggd) , ~18!

whereKab5Kabg
g andK5Kg

g . Pabgd is the trace-free~conformal! part,Pab5Pabg
g its trace and

K the full trace of the Killing tensor. In this way, the Killing tensor equations are split into
trace-free ‘‘components’’ and the equation for the trace

P(abgd;m)2
1
2 Pn

(abg;ngdm)50, ~19!

P(ab;g)2
1
2 Pn

(a;nggd)1
1
2 Pn

abg;n50, ~20!

K ,a52 4
3 Pa;b

b . ~21!
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It is advantageous to employ also the coordinate frame components of the conformal part
its trace when parametrizing the five independent components ofKabgd . Thus, the components o
the Killing tensor can be written as

K00005G2Pz̄z̄z̄z̄5G2S̄, K0000̄5
1
2 P005

1
2 GPz̄z̄5 1

2 GR~z,z̄!,
~22!

K000̄0̄5 1
4 K, K00̄0̄0̄5 1

2 P0̄0̄5 1
2 GPzz5 1

2 GR~z,z̄!, K 0̄0̄0̄0̄5G2Pzzzz5G2S,

where, as usual,S5S(z) is a holomorphic function, so thatS̄5S̄( z̄) comes from~19!, but the
functionR5R(z,z̄) is a generic function of the arguments. With this parametrization, the equ
for the trace~21! has the integrability condition

2~G,zzR2G,z̄z̄R̄!13~G,zR,z2G,z̄R̄,z̄!1G~R,zz2R̄,z̄z̄!50, ~23!

which is analogous to that obtained for the second-rank case~but nowR is not holomorphic!!.
We now proceed to solve the Killing tensor equations. Equation~20! gives

S23/4R,z̄12~S1/4G! ,z50 ~24!

and its complex conjugate. In analogy with the approach followed in Refs. 2 and 10, we m
coordinate transformation to put the conformal Killing tensor in the simplest~standard! form.
Using a conformal transformation of the form

w5H~z!, w5X1 iY, z5x1 iy , ~25!

the transformation of the conformal tensor is such that

S̃~w!ªPwwww5@H8~z!#4Pzzzz5@H8~z!#4S~z!. ~26!

If we make the standard choice

S̃~w!ªPwwww51, ~27!

the conformal transformation is then provided by the function

H8~z!5@S~z!#21/4. ~28!

Equation~24! becomes

~S21/2R! ,w̄12G̃,w50, ~29!

with

G̃5uH8~z!u22G5AuSuG. ~30!

Moreover, under the conformal transformation generated by Eq.~28!, the functionR transforms as

R̃5Pww5@H8~z!#2Pzz5S21/2R. ~31!

InsertingR̃ into Eq. ~29!, we have the set

R̃,w̄12G̃,w50, RD ,w12G̃,w̄50. ~32!

The solution of this system can be found in terms of a real Ka¨hler potentialK(w,w̄):

G̃5K,ww̄ , R̃522K,ww . ~33!
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The integrability condition~23! determines the following equation for the Ka¨hler potential:

I$~K,wwwK,ww̄12K,www̄K,ww! ,w%50. ~34!

This is the necessary and sufficient condition for the existence of a fourth-rank Killing tens
analogy to the third-rank case~see Ref. 10! and in contrast to the first- and second-rank cases,2 the
condition is highly nonlinear. The same condition has been already found in Ref. 7 and trea
Ref. 9, even if not in the context of the present geometric approach. Note that in Ref. 9
~7.5.15!, there is a misprint for a factor 2 missing.

In the standardized coordinate frame the second invariant can be written in the form

I J52R$pw
4 12R̃HJpw

2 %1 3
2HJ

2K, ~35!

whereas in the original null coordinate frame the second invariant is

I J52R$Spz
412RHJpz

2%1 3
2HJ

2K, ~36!

where

HJ5
1

G
pzpz̄5

1

G̃
pwpw̄5p0p0̄[

1

2
~37!

is the Jacobi Hamiltonian expressed in the three different reference frames. The trace funcK
is found by integrating the system

3
4 K ,w̄1R̃,wG̃12R̃G̃,w50, 3

4 K ,w1RD ,w̄G̃12RD G̃,w̄50. ~38!

IV. ARBITRARY ENERGY INVARIANTS

Equation~34! gives the the necessary and sufficient condition for a two-dimensional
mannian geometry to admit a fourth-rank Killing tensor. If we interpret the geometry accordi
Eq. ~9! as that providing a natural mechanical system, we can derive the additional condition
make the Killing tensor equations satisfied for every value of the energyE. We use the following
form for the Kähler potential,

K5E@zz̄12R$L~z!%#2C, ~39!

whereL is a holomorphic function independent ofE and the realprepotentialC is such that

C ,zz̄5V. ~40!

In fact, no loss of generality is implied by letting the energy dependence of the K¨hler
potential be prescribed by Eq.~39! and by taking the functionS4(z) to be energy independen
given that we only take interest in the cases for which the physical invariantI is a quartic
polynomial in the momenta. Since the analogous statement was made without proving it f
cubic case,10 we give a proof here. We begin by noting that the physical invariantI , obtained from
the Jacobi invariantI J of Eq. ~36! according to prescription~16!, can be written as

I 52R$Spz
41Bpz

3pz̄%1C~pzpz̄!
2, ~41!

where

B52RG21, C5 3
2 KG22. ~42!
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Since the energy parameterE is now assumed to have been replaced by the physical Hamilto
H, the functionsS, B and C will be dependent on the momentapz and pz̄ , but clearly only
through the combinationpzpz̄ that appears inH. This implies that all five terms on the right han
side of Eq.~41! have to be quartic polynomials in the momenta sinceI is quartic by definition.
This can be clearly seen by viewingI as a function of the two independent momenta functio
pzpz̄ andpz /pz̄ , rather than the momentapz andpz̄ themselves. Indeed,I can be recast into the
form

I 5~pzpz̄!
2 (

k522

2

Qk~pz /pz̄!
k, ~43!

where

Q225Q25S, Q215Q15B, Q05C. ~44!

Clearly, with the coefficients of (pz /pz̄)
k only depending on the momenta throughpzpz̄ , there can

be no cancellation of possible nonquartic polynomial dependence in the individual terms. H
we conclude that the functionsSpz

4 , Bpz
4pz̄ andC(pzpz̄)

2, as well as the complex conjugates
the first two, must be quartic momenta polynomials. It immediately follows thatS, B andC are
polynomials in (pzpz̄)

21, with coefficients depending only onz and z̄, of degree zero, one an
two, respectively. This directly proves the part of statement aboutS having no energy dependenc
Moreover, sinceG5E2V turns intoT52pzpz̄ whenE is replaced byH5T1V, it now follows
from Eqs.~42! that the functionsR and K are restricted to be first respectively second deg
polynomials inpzpz̄ , which is the same as saying that they must be the same type of polyno
in the energy parameterE, before making the substitutionE→H. Using the second of Eqs.~33!
and the conformal transformation formulas given by Eqs.~28! and ~31!, the functionR can be
expressed in terms ofS andK according to

R522~SK,zz1
1
4 S8K,z!, ~45!

while Eqs.~38!, which notably are form invariant under conformal transformations, give that
traceK is given by integrating

3
4 K ,z̄1R,zG12RG,z50 ~46!

and its complex conjugate. Now, there is clearly no loss in generality to write the Ka¨hler potential
K as

K5E@zz̄12R$L~E,z!%#2C~z,z̄!, ~47!

with L being analytic inz and C being energy independent. Moreover, sinceS is energy inde-
pendent andR is a first degree polynomial inE, it follows from Eq.~45! that we are able to write
L(E,z) as

L~E,z!5L0~z!1L1~E,z!, ~48!

whereL1(E,z) does not contribute to Eq.~45!. However, since Eq.~46! shows thatL(z) enters
into K ,z̄ only throughR, we might as well setL1(E,z) to zero, which proves the fact that w
could have takenL(E,z) to be energy independent from the outset. We may finally note that
both R and G being first degree polynomials inE, we find from Eq.~46! that K ,z̄ is a second
degree polynomial inE, which indeed is a necessary and sufficient condition forK to be a second
degree polynomial as well, up to addition of an irrelevant integration constant, which in prin
can have an arbitrary energy dependence. This completes the proof that the form of the¨hler
potential given by Eq.~39! is the most general one which is needed for full generality.
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We are now in the position to solve the integrability condition at arbitrary energy. In
original z coordinates, Eq.~34! takes the form

I$@S~K,zzzK,zz̄12K,zzz̄K,zz!1 1
2S8~K,zzz̄K,z1

5
2K,zzK,zz̄!1 1

4S9K,zz̄K,z# ,z%50. ~49!

Substituting the ansatz~39! into Eq. ~49!, this condition provides a second degree polynom
in E:

A2E21A1E1A050. ~50!

The coefficientsA0 , A1 , A2 must vanish separately if the equation must hold for arbitr
energy. Therefore we obtain the three equations:

A25I$@L-S1 5
4 L9S81 1

4 ~ z̄1L8!S9# ,z%50, ~51!

A15I$@S~C ,zzz12L-C ,zz̄12L9C ,zzz̄!1 1
2 S8~~ z̄1L8!C ,zzz̄

1 5
2~C ,zz1L9C ,zz̄!!1 1

4S9~C ,z1~ z̄1L8!C ,zz̄!# ,z%50, ~52!

A05I$@S~C ,zzzC ,zz̄12C ,zzz̄C ,zz!1 1
2 S8~C ,zzz̄C ,z1

5
2 C ,zz̄C ,zz!1 1

4 S9C ,zz̄C ,z# ,z%50. ~53!

It turns useful to express the system of equations~51!–~53! also in the transformed coordinate
since this simplifies the computations when theS function is of higher degree. Using the notatio

F~w!5H21~z~w!! ~54!

for the inverse conformal transformation, the coefficientsA0 , A1 , A2 become

A25I$@F-F̄F8F̄812~F9!2F̄F̄81L-F8F̄81L9F9F̄8# ,w%, ~55!

A15I$@~F-F̄1L-!C ,ww̄12~F9F̄1L9!C ,www̄1F8F̄8C ,www12F9F̄8C ,ww# ,w%, ~56!

A05I$@C ,wwwC ,ww̄12C ,www̄C ,ww# ,w%. ~57!

Applying the differential operator

]2

]z] z̄

to Eq. ~51!, we get the condition

I$S+~z!%50, ~58!

so that the form allowed to theS function to have integrability at arbitrary energy is

S~z!5az41bz31gz21dz1e, aPR, b,g,d,ePC. ~59!

In Ref. 2 it has been shown that, to get arbitrary energy quadratic invariants in systems wi
degrees of freedom, the functionS(z) must satisfy the condition

I$S29~z!%50, ~60!

that is, it must be a second degree polynomial with real second derivative. Together with the
~58! and the corresponding one obtained in the third-rank case,10
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R$S3-~z!%50, ~61!

we can guess that, as a general rule, the analytic functionS(z) representing the conformal part o
a Killing tensor of arbitrary rankm is required to satisfy the condition

RH S d

dzD
m

S~z!J 50 ~m odd!,

~62!

IH S d

dzD
m

S~z!J 50 ~m even!.

As a simple illustration of the solution of the above set of Equations~51!–~53!, let us take

L50, S5b, bPR.

Equation~51! is automatically satisfied. Equation~52! gives then the equation

C ,xxxy2C ,xyyy50,

whose solution is

C ,xy5F1~x1y!1F2~x2y!.

Therefore

C5 f 1~x!1 f 2~y!1 f 3~x2y!1 f 4~x1y!.

The potential can then be written as

V5v1~x!1v2~y!1v3~x2y!1v4~x1y!,

wherev i5 f i9/4, i 51,2 andv i5 f i9/2, i 53,4. Equation~53! now gives

~v19v412v49v1!13v18v482~v19v312v39v1!23v18v38

2~v29v412v49v2!23v28v481~v29v312v39v2!23v28v3850.

This equation coincides with that reported in the review of Hietarinta.9 Its most relevant solutions
together with the expressions of the invariant, are listed in Table II later in this work.

In more general cases Eq.~52! is not as easily solved. The standard approach is to restric
attention to special cases whereS(z) is either a homogeneous polynomial or a nonhomogene
one which is simply a power of the corresponding function in lower rank cases. Even with
restrictions, many solutions can be obtained. Moreover, in all the solutions found it has turn
that L(z)5lz2, with l a complex constant. In this way the coefficient

zz̄12R$L~z!%

of E in the Kähler potential~39! is always a Hermitian form inz. In the tables included in Sec. V
are listed all the solutions found.

V. STRONG INVARIANTS GENERATED BY LOWER-ORDER WEAK INVARIANTS

In the present section we want to introduce an alternative technique to identify class
strongly integrable systems. This approach works only in a restricted subclass of systems
useful to get insight into the structure of general solutions. The key point of the idea is bas
the construction of a generic weak integrable system corresponding to the existence of a s
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rank Killing tensor. Introducing the corresponding simplified Ka¨hler potential in the general set o
equations, we try to isolate single systems that satisfy them. The reader more interested
general approach may wish to skip directly to Sec. VI with the results.

A. Quadratic invariants

The technique devised and applied in Ref. 2 amounts, in short synthesis, in a con
transformation of the form~25!. In the second-rank case, it turns out that it must be generate
an arbitrary holomorphic functionS2(z) via the relation

H~z!5E dz

AS2~z!
. ~63!

In the new coordinatesX, Y, the Jacobi potentialG5E2V turns out to be of the form

G~X,Y!5
A~X!1B~Y!

uS2~X,Y!u
, ~64!

whereA andB are arbitrary functions of their arguments, which can be thought of as thesepa-
ration coordinates. The conformal factor appearing in~64! can be written as

uS2~X,Y!u5AS2~w!S̄2~w̄!5F8~w!F̄8~w̄!. ~65!

Moreover, we can write the transformation of the momenta in the form

pX5Rpx1Qpy , pY52Qpx1Rpy , ~66!

where

R5R$F8%, Q5I$F8%. ~67!

We can therefore write the expression of the second invariant in the Jacobi gauge as

I S~pX ,pY ,X,Y!5 1
2 ~pX

22pY
2 !1B~Y!2A~X!. ~68!

As remarked in the Introduction, since to each Jacobi potentialG pertains a specific dynamica
system, we have that the found invariant is, in general, only aweak invariant for the standard
Hamiltonian, in the sense that it provides a conserved quantity only at a given value of the e
~perhaps atzero energy!. In fact, the Poisson bracket of the function~68! with the separated
Hamiltonian

HS5

1
2 ~pX

21pY
2 !2A~X!2B~Y!

uS2u
~69!

is

$I S ,HS%5
E

uS2u ~pXuS2u ,X2pYuS2u ,Y!. ~70!

B. Quartic strong invariants generated by quadratic weak invariants

In Sec. IV, the system of equations~51!–~53! was treated and many nontrivial solutions we
found. A general solution is, however, very difficult to find due to the complicated structure o
full system. Here we want instead to exploit the above results to generate new solutions
starting from the assumption of the existence of a second-rank Killing tensor.
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As a foreword to this approach, let us make the following remark. Let us suppose to
made the choice of theS2 function generating the conformal transformation which gives
second invariant~68! satisfying Eq.~70!. Denoting byH0 the numerator appearing in the expre
sion ~69! of the Hamiltonian, the Poisson bracket of a generic higher-order invariant withHS can
be written as

$I J ,HS%5
1

uS2u $I J ,H0%2
H0

uS2u2 $I J ,uS2u%5
$I J ,H0%2E$I J ,uS2u%

uS2u
. ~71!

In the case of a second-order invariant in the standard form of~68!, this reduces to~70!. On the
other hand, let us introduce thenull Hamiltonian

HN5~HS2E!uS2u5H02EuS2u. ~72!

The Poisson bracket of the invariant withHN is

$I J ,HN%5$I J ,H0%2E$I J ,uS2u%. ~73!

SinceuS2u is a non-null positive function everywhere, Eqs.~71! and~73! are equivalent for what
concerns the conservation ofI J . The conceptual difference relies on the fact that, whereas Eq.~73!
expresses the conservation ofI J in the dynamics provided byHN at zero ‘‘energy,’’ Eq. ~71!
expresses the conservation ofI J in the dynamics provided byHS at arbitrary energy. Note that the
true energyE enters intoHN as an arbitrary parameter.

In the light of this argument, the procedure to look for new integrable systems is the fo
ing: regard the null Hamiltonian, written in the form

HN5 1
2 ~pX

21pY
2 !2G̃~X,Y!, ~74!

where

G̃~X,Y!5A~X!1B~Y!1EuS2~X,Y!u, ~75!

as the system in which to find a new conserved quantity at zero energy. If the search of th
conserved quantity is successful, thenit is a strongly conserved quantity for the original Hami
tonianHS , which is therefore integrable at arbitrary energy. Going backwards with respect to th
previous approach, we take the potential of Eq.~75! and use it to solve the system~33!. Once we
have the solution, we can write the integrability condition~34! in the form

I$R,wwG13R,wG,w12RG,ww%50. ~76!

Note that in the remaining part of this section we suppress the ‘‘tilde’’ overG̃ andR̃ to simplify
the notation. The solution of this equation provides the explicit form of the functionsA(w1w̄)
andB(w2w̄) that allow for the integrability of the system. Finally, the integration of the eq
tions for the trace~38! completes the solution.

In the development of this approach, we find it convenient to use the separating real var
Equations~33! involving the Kähler potential therefore become

G~X,Y!5 1
4 ~K,XX1K,YY!,

~77!

R~X,Y!5 1
2 ~K,YY2K,XX!1 iK,XY ,

and the integrability condition~76! can be written in the form
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@~I$R%! ,XX2~I$R%! ,YY22~R$R%! ,XY#G13@~~I$R%! ,X2~R$R%! ,Y!G,X2~~R$R%! ,X

1~I$R%! ,Y!G,Y#12@I$R%~G,XX2G,YY!22R$R%G,XY#50. ~78!

The system~38! finally becomes

K ,X52 4
3 ~~R$R%! ,X1~I$R%! ,Y!)G2 8

3 ~R$R%G,X1I$R%G,Y!,

~79!
K ,Y52 4

3 ~~I$R%! ,X2~R$R%! ,Y!G2 8
3 ~I$R%G,X2R$R%G,Y!.

To solve system~33!, we need only consider the contribution to the potential~75! coming
from the conformal factor:

GC5EuS2~X,Y!u. ~80!

Recalling the relation~63! between the conformal transformation and theS2 function in the
quadratic case and the definition of the inverse transformation~54!, the above source term can als
be written as

GC5EAS2~w!S̄2~w̄!5EF8~w!F̄8~w̄!. ~81!

The solutions of system~33! for this term are

KC5E~F~w!F̄~w̄!12R$L~w!%!,
~82!

RC522E~F9~w!F̄~w̄!1L9~w!!,

so that the complete solution is therefore

K54E F E AdXGdX14E F E BdYGdY1E~F~w!F̄~w̄!12R$L~w!%!,

~83!
R52~B~Y!2A~X!!22E~F9~w!F̄~w̄!1L9~w!!.

This solution is subject to the integrability condition~76!. In analogy with the general approac
substituting in it the solution~83! we get a second degree polynomial inE of the form~50!. This
equation must be satisfied for every value of the arbitrary parameterE, so that each coefficien
must separately vanish. The three coefficients are in this case

A2524iI$~F+F̄1L+ !F8F̄815F-F9F̄8F̄13L-F9F̄812L9F-F̄8%,

A154iI$3~B,w2A,w!F9F̄823~A,w1B,w!~F-F̄1L-!12~B2A!F-F̄8

22~A,ww1B,ww!~F9F̄1L9!2~A1B!F+F̄%, ~84!

A052iI$6~B,w2A,w!~B,w1A,w!14~B2A!~A,ww1B,ww!%.

From the properties of the functionsA and B, A0 is identically zero. Limiting ourselves to th
simplest caseL50, the condition thatA2 vanishes turns out to be

I$~F+F815F-F9!F̄F̄8%50, ~85!

so that it is necessary and sufficient that

F+F815F-F956aFF8, aPR. ~86!
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The general solution is

~F8!45aF41gF21dF1e, ~87!

whereb, g, d, e are complex constants. We see that solution~87! is a subset of the general resu
~58! so that we can state that the simplified approach presented here consists in choo
function in the set

S2~z!5Aaz41gz21dz1e. ~88!

The equationA150 then picks the functionsA andB that are compatible with strong integrabilit
The practical advantage with respect to the application of the general technique of Sec. IV
equationA050 is automatically satisfied.

C. Class iz 2 systems

To illustrate the simplified approach, in this subsection we present a class of simple sy
which are strongly integrable with a quartic invariant and, at zero energy, are separable
quadratic invariant.

Consider then the function

S2~z!5 iz2. ~89!

In the solution~87! it corresponds to the choice

a521, g5d5e50. ~90!

This is the simplest polynomial form which does not satisfy the constraint~60! and therefore gives
a potential which is not automatically integrable at arbitrary energy with a quadratic se
invariant. The corresponding conformal transformation is given by

w5H~z!5
12 i

&
ln z. ~91!

Using polar coordinates, so that

z5x1 iy5r exp~ iu!,
~92!

r 5Ax21y2, u5arctan~y/x!,

in terms of real variables, we get

X5
1

&
~u1 ln r !, Y5

1

&
~u2 ln r !. ~93!

We point out, in passing, that that in Ref. 2, in Eqs.~102!–~104! corresponding to Eq.~93! above,
there is a misprint and the coordinater must be substituted with its natural logarithm. It follow
that the potential given by

V~u,r !52
A~u1 ln r !1B~u2 ln r !

r 2 ~94!

is integrable at zero energy for arbitrary functionsA andB. The common factorr 22 is due to the
fact that, from the choice of Eq.~89!, we have

uS~X,Y!u5r 25e&(X2Y). ~95!
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The solutions~83! are

K54E F E AdXGdX14E F E BdYGdY1Ee&(X2Y) ~96!

and

R52~~B~Y!2A~X!!22iEe&(X2Y). ~97!

The integrability condition~78! becomes

4Ee&(X2Y)@A92B913&~A81B8!14~A2B!#50. ~98!

This equation splits into

A913&A814A5c, B923&B814B5c, ~99!

with solutions

A~X!5a1e2&X1a2e22&X1
c

4
, B~Y!5b1e&Y1b2e2&Y1

c

4
. ~100!

The potential

V~r ,u!52
c

2r 2 2
a1e2u1b1eu

r 3 2
a2e22u1b2e2u

r 4 ~101!

is therefore integrable. As a simple concrete example, let us take

a15b15c50, a25b252 1
2 , ~102!

so that the potential is

V5
e2u1e22u

2r 4 , ~103!

which is a known result mentioned in the review by Hietarinta. The second invariant has the

I 5pu
41ch2upr

212
sh2u

r
prpu13

ch2u

r 2 pu
212

22sh2u

r 4 . ~104!

VI. CLASSIFICATION OF HAMILTONIANS ADMITTING A QUARTIC INVARIANT AT
ARBITRARY ENERGY

In the tables included in this section we present all the solutions we have found of sy
admitting an independent invariant quartic in the momenta. Some of them are new. For all
we present the potentialV ~up to linear transformations of the coordinates and a linear rescalin
the potential itself! as well as the quartic invariantI , thereby making it possible to compar
directly the results with Hietarinta’s classification of 1987.9 For the cases which are superint
grable we also indicate, using the notation of Ref. 9, to which of the real quadratic cases~1!, ~2!,
~4! or ~7! a given system belongs.

A peculiar property of our solutions is that all but one have a conformal factor generate
function S of even degree inz, with real coefficients. As a consequence of this, the soluti
obtained can be expressed in terms of the coordinate systems of separable potentials. In fa
from ~28! and ~54!, the transformation is
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H~z!5F21~w~z!!5E dz@S4~z!#21/4, ~105!

with S of the form

S4~z!56~az21bz1g!, aPR, b,gPC, ~106!

we are actually taken back to the coordinate transformations to separable variables given bS2

function satisfying the condition~60!, for which the transformation is of the form2

H~z!5E dz@S2~z!#21/2. ~107!

As an exception to this situation, we have also found a solution withS4 of third degree inz, by the
method of thecoupling constant metamorphosis~see Ref. 9! which is described in Sec. VI B.

A. Systems for which S„z… is of even degree

The simplest case is that withS4 of degree zero. This case corresponds simply to rotations
translations of the Cartesian coordinates. In Table I we list the new solutions obtained an
comparison, the quartic integrable potential of Ref. 13. In Table II the already known solutio
this class are listed together with the proper references. The first sequence of items corresp

TABLE I. Systems for whichS(z) is of zero degree.

S(z)51

K52Ex22
4
3 x422bxy22

1
3 y414c ln uyu

V54x21y21bx1cy22

I 5px
412px

2py
214Vpx

214bypxpy116x2py
212(2x21y2)(b14x)2132cx2y22

Superintegrable, case~4! and ~7!

S(z)51

K52Ex229y4/3(bx1c)2
3
2 ay42

9
10 dy8/32

8
3 ax4

V5
1
2 a(16x219y2)1(bx1c)y22/31dy2/3

I 5px
412px

2py
214Vpx

2112by1/3pxpy132ax2py
2164ax2V116bdx2256a2x4118b2y2/31144abxy4/3

S(z)521

K52Ex222x4y22
1

3
ax4y2

a2

12S x4

18
1y4D2

16

15
y62

8

15
ay514d lnuxu

V5x416x2y218y41aS83 y31x2yD1 a2

72
~x2116y2!1

d

x2 ,

I 5px
414px

2S x416x2y21ax2y1
1

72
a2x21

d

x2D2S 4

3
ax3116x3yD pxpy

14x4py
214S 2dx21x81d2x241

2

3
ady14dy2D1

x6

9
~144y2124ay2a2!1

x4

1296
~144y2124ay2a2!2

S(z)521

K52Ex222x4y22
16
15 y62

1
3 bx42

4
3 by414d lnuxu2

c

5
y2414m lnuyu

V5x416x2y218y41b~x214y2!1
d

x2 1
m

y2 1
c

x6 ~Ref. 13!

I 5px
414px

2S x416x2y21bx21
d

x2 1
c

x6D216x3ypxpy14x4py
2

14@12cy2x2412dx21x812bx61b2x412cx2212cdx281c2x2121~d212bc!x24

14x6y212mx4y2214bx4y214x4y414dy2]
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the simple solution sketched at the end of Sec. IV. All solutions are generated byS4561:
actually, there is nothing fundamental in the choice of sign which has been made only for s
comparison with already known results.

We then have some solutions withS4 of degree two and four inz. In Table III, two new
interesting classes of integrable systems are presented withS4 of degree two. They are mor
conveniently treated using the parabolic coordinates provided by the conformal transform
generated byS4516z2. In Table IV, a class of integrable systems generated byS452z4 is
presented, generalizing the separability in polar coordinates. Here, the choice of sign is dicta
the transformation used in the simplified approach of Sec. V C above, but to the same syste
can also arrive with the general method using the ‘‘proper’’ transformation given byS45z4.

B. A system for which S„z… is of degree three

In order to describe how we get this new solution, we briefly recall the method based o
coupling constant metamorphosis.9 We introduce a null Hamiltonian which, in analogy with E
~72!, is defined as

HN5~H2E!uS4u2. ~108!

TABLE II. Systems for whichS(z) is of zero degree~continued!.

S~z!51

K5E~x21y2!2 f 1~x!2 f 2~y!2 f 3~x2y!2 f 4~x1y!

V5v1~x!1v2~y!1v3~x2y!1v4~x1y!

v i~j!5
1
4 f i9~j! ~ for i 51,2!, v i~j!5

1
2 f i9~j! ~for i 53,4! ~Ref. 9!

I 5px
2py

212v2px
212~v42v3!pxpy12v1py

21h~x,y!

v150, v25ey, v35ex2y, v450, h52ex1e2(x2y)

v15e2x, v25ey, v35ex2y, v450, h52ex1e2(x2y)12e2y14ey2x

v150, v25ey, v35ex2y, v45e2x2y, h52ex1e2(x2y)12e2x1e22(x1y)22e22y

v150, v25ey, v35ex2y, v45e2(x1y)/2, h52ex1e2(x2y)1e2(x1y)22e(x23y)/2

v15e22x, v25ey, v35ex2y, v450, h52ex1e2(x2y)14e22x1y

v15
a

x2 , v25
a

y2 , v35
b

~x2y!2 , v45
b

~x1y!2 , h5
4a2

x2y2 1
16b2x4

~x22y2!4 2
16b2x2

~x22y2!3 1
16ab

~x22y2!2

S~z!51

K52Ex229y4/3S cx21d1
m

10
y4/3D2aS 4

3
x413y4D14n lnuxu

V5
9

2
cy4/31~cx21d!y22/31my2/31a~9y214x2!1

n

x2 ~Ref. 13!

I 5px
412px

2py
214px

2S ~cx21d!y22/31my2/31a~9y214x2!1
n

x2D124cxy1/3pxpy

14py
2~4ax21nx22!116cmx2132adx2y22/318

dn

x2y2/3

18
cn

y2/3 1~32am172c2!x2y2/318nmx22y2/3172anx22y214n2x24132acx2y22/3~9y21x2!132a2x2~9y212x2!

S~z!521

K52Ex22aS 1

6
x41

8

3
y4D2dS 1

3
x4y1

16

15
y5D14h1 lnuxu2

h2

5x4

V5
1

2
a~x2116y2!1dS 16

3
y31x2yD1

h1

x2 1
h2

x6 ~Ref. 13!

I 5px
414px

2S 1

2
ax21dx2y1

h1

x2 1
h2

x6D2
4

3
dx3pxpy

14@2dh2yx2412h1h2x281h2
2x2121~h1

21ah2!x241
1
4 a2x42

1
18 d2x62

1
3 d2x4y22

1
3 adx4y1

2
3 dh1y#
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TABLE III. Systems for whichS(z) is of second degree.

S~z!516z2

K5
2
3 E~2x21y2!1 f ~X!1g~Y!1C~XY!a

X5Ar 1x

2
, Y5Ar 2x

2
, r 5Ax21y25X21Y2

f ~X!5236 221/3cX4/32
18 21/3

5
aX8/3, g~Y!5236 221/3dY4/32

18 21/3

5
bY8/3, a54/3

V5
a~r 1x!1/31b~r 2x!1/31c~r 1x!21/31d~r 2x!21/3

r
1

k

y2/3 , k52
21/3C

36

I 5J228ky1/3Fpxpu2
y

r
~a~r 1x!1/31b~r 2x!1/31c~r 1x!21/31d~r 2x!21/3!G28k@a~r 2x!2/31b~r 1x!2/3#

J5pypu1
~r 1x!@b~r 2x!1/31d~r 2x!21/3#2~r 2x!@a~r 1x!1/31c~r 1x!21/3#

r
12

kx

y2/3

pu5xpy2ypx

f ~X!5
1

14 CX818a log X2
1
10cX24, g~Y!5

1
14CY818b log Y2

1
10dY24, a54

V5
1

r F a

r 1x
1

b

r 2x
1

c

~r 1x!3 1
d

~r 2x!3G1
1

2
kr2, k52

C

2

I 5J22ky3H pxpu2
y

r F a

r 1x
1

b

r 2x
1

c

~r 1x!3 1
d

~r 2x!3G1
1

4
kx2yJ 2k@a~r 2x!21b~r 1x!2#

J5pypu1
1

r H ~r 1x!F b

r 2x
1

d

~r 2x!3G2~r 2x!F a

r 1x
1

c

~r 1x!3G J 1
1

2
kxy2

TABLE IV. Systems for whichS(z) is of third degree.

S~z!564z3

K5
2
7 E~4x213y2!1 f ~X!1g~Y!2

4
3 m~X41Y4!

X5&r 1/4 cos
u

4
5r1/4A11cos

u

2
, Y5&r1/4 sin

u

4
5r1/4A12cos

u

2

r5Ax21y25~X21Y2!2/4, u5arctan~y/x!

f~X!532a log X2
8
5 cX24, g~Y!532b log Y2

8
5 dY24

V5
m

r
1

a

r2~11cosu/2!
1

b

r 2~12cosu/2!
1

c

r 3~11cosu/2!3 1
d

r 3~12cosu/2!3

I 5J21G1P2G2

J5D1B~Y!2A~X!2H~X22Y2!314m~X22Y2!

D5
2

Ar
Fcos

u

2
~r2pr

22pu
2!2sin

u

2
rprpuG

P5
2

Ar
Fsin

u

2
~r2pr

22pu
2!1cos

u

2
rprpuG

G1516HX3Y3

G2516H@H~2X6Y613X4Y4~X41Y4!!28mX4Y42aY42bX4#

H is the Hamiltonian of the system, i.e.,H5
1

2 S pr
21

pu
2

r 2 D 1V

pu5xpy2ypx , rpr5xpx1ypy
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The second case of Table III has a null Hamiltonian which, if expressed in the new coordi
has the form

HN5 1
2 ~pX

21pY
2 !2A~X!2B~Y!14C~X21Y2!324E~X21Y2!. ~109!

Then, if the term (X21Y2)3 can be identified with the conformal factor associated to a n
conformal transformation, we may interpretC as anewenergy andE as anewcoupling constant.
We get a new potential which is strongly integrable with an invariant of the same nature as b
This is the process known as coupling constant metamorphosis.

In the present instance, we have that the transformation must be still of the form~105! or,
equivalently,

F8~w!5S4
1/4, ~110!

where, for simplicity, we still denote the new variable asw5X1 iY, so thatuwu25X21Y2. Since
the conformal factor is assumed to be (X21Y2)3, we get

uF8u2;uwu6. ~111!

Therefore,F(w) must be of the orderw4, so that

w5H~z!;z1/4. ~112!

From ~105! we get

H8~z!;z23/4, ~113!

so that, finally,

S4~z!;z3. ~114!

We end up with a solution of third degree forS which had escaped a previous direct analysis. T
new integrable Hamiltonian is

TABLE V. Systems for whichS(z) is of fourth degree.

S~z!52z4

K5Ee&(X2Y)1 f ~X!1g~Y!2k~X21Y2!

X5
1

&
~u1 ln r!, Y5

1

&
~u2ln r!

A~X!5a1e
2&X1a2e22&X, A5 f 9/4

B~Y!5b1e&Y1b2e2&Y, B5g9/4

V5
k

r 2 1
aeu1be2u

r 3 1
ce2u1de22u

r 4

I 5pu
41~ce2u1de22u!pr

212Faeu2be2u1
1

r
~ce2u2de22u!Gprpu

1F2k1
2

r
~aeu1be2u!1

3

r 2 ~ce2u1de22u!Gpu
2

1
1

r 2 @2k~ce2u1de22u!2~aeu2be2u!2#

1
4

r 3 ~bceu1ade2u!1
1

r 4 ~c2e4u1d2e24u16cd!
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H5
1

2 S pr
21

pu
2

r 2 D 1
m

r
1

a

r 2~11cosu/2!
1

b

r 2~12cosu/2!
1

c

r 3~11cosu/2!3 1
d

r 3~12cosu/2!3

5Ẽ, ~115!

whereẼ5C is the new energy andm52E is the new coupling constant. Table V reports the fo
of the coordinate transformation and the expression of the second invariant.

VII. CONCLUSIONS

In this work we have explored the set of natural two-dimensional Hamiltonian system
mitting a second invariant which is a polynomial in the momenta of degree four. The appro
based on the Jacobi geometrization described in Ref. 2, where the linear and quadratic cas
also explored, and in Ref. 10, where the cubic cases were treated. The approach allows a
treatment of integrability at fixed and arbitrary energy, even if here we have limited ourselv
obtaining the list, as complete as possible, of strongly integrable systems. There are sever
in which this approach can be still useful. The most natural seems to be that of looking for sy
admitting higher order invariants of which there exist only a few known examples.

Moreover, other properties of invariants up to degree four are still worth of analysis. In
14 we have examined the properties of weakly integrable systems with quadratic second inv
and found interesting behaviors both in the integrable regime and in the generic nonintegrab
One may wonder about the information higher order weak invariants can give on the dynam
nonintegrable systems. It is reasonable to believe that increasing the order can improve t
ability of these functions when interpreting them as effective invariants approximately cons
in regular portions of phase-space. It would also be interesting to look for other examp
quartic invariants which correspond to lower rank Killing tensors on fixed energy surfaces.
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Multisymplectic geometry and multisymplectic Preissman
scheme for the KP equation

Tingting Liua) and Mengzhao Qinb)

CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, People’s Republic of China
and Institute of Computational Mathematics, Academy of Mathematics
and Systems Sciences, Chinese Academy of Sciences,
P.O. Box 2719, Beijing, 100080, People’s Republic of China

~Received 25 July 2001; accepted for publication 17 April 2002!

The multisymplectic structure of the KP equation is obtained directly from the
variational principal. Using the covariant De Donder–Weyl Hamilton function
theories, we reformulate the KP equation to the multisymplectic form which was
proposed by Bridges. From the multisymplectic equation, we can derive a multi-
symplectic numerical scheme of the KP equation which can be simplified to the
multisymplectic 45 points scheme. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1487444#

I. INTRODUCTION

The generalized Kadomtsev–Petviashvili~GKP! equation is

~ut1]xf ~u!1uxxx!x1suyy50 ~ t.0,2`,x,y,`!, ~1.1!

wheres is a constant, andf (u) is some smooth function. The usually KP equation occurs forf (u)
quadratic and it is regarded as a two-dimensional generalization of the Korteweg–de Vries~KdV!
equation. It describes the evolution of long water waves of small amplitude if they are weakl
dimensional. In the case off (u)53u2 ands523, Eq. ~1.1! is usually called the KPI equation
whereas the KPII equation withf (u)53u2 and s53. As a soliton equation important from
analytical and numerical point of view, the KP equation is one of the few known compl
integrable equations in the multidimensional soliton equations. Thus, in the last few years
siderable attention has been paid to the KP equation. Although considerable interest ha
focused on the KP equation, the numerical scheme analysis literature for the KP equa
extremely small. As far as we are aware of, Katsis proposed the explicit finite difference me1

the results of evolution of the lump solution for the KP equation was given by Minzoni,2 Wang
et al. studied the instability of a generalized KP equation,3 Feng and Mitsui took the linearize
implicit method to the KP equation.4

In this paper, we try to describe the KP equation in the language of multisymplectic geom
Recently, for first order field theory, i.e., the Lagrangian density depends on the state variab
their first order derivatives, Marsden, Patrix, and Shkoller5 derived numerical methods for the firs
order field theories. However the Lagrangian density of the KP equation is not first-order,
fore MPS theory cannot be applied directly. In Ref. 6, the authors focus their attention on the
equation whose Langrangian density is second order. The Langrangian density of the KP e
is truly third-order. In this paper, we give the multisymplectic structure of the KP equation dir
from the variational principal. In Ref. 7, the author proposed that the Cartan form is not n
sarily unique, and we find it was caused by the higher-order mixed multiple integral in u
Stokes’ formula in actual calculus variation.

In Lagrange mechanics, we know the Euler–Lagrange equation can be written as

a!Electronic mail: ttliu@lsec.cc.ac.cn
b!Electronic mail: qmz@lsec.cc.ac.cn
40600022-2488/2002/43(8)/4060/18/$19.00 © 2002 American Institute of Physics
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d

dt

]L

]q̇i 2
]L

]qi 50. ~1.2!

Taking the Legendre transform of Lagrange densityL:pi5]L/]q̇i , we can rewrite Eq.~1.2! as
regular Hamilton equation,

H dpi

dt
52

]H

]qi ,

dqi

dt
5

]H

]pi ,

~1.3!

whereH5piq̇i2L(qi ,q̇i ,t). With the covariant De Donder–Weyl Hamilton function theories8 we
can reformulate the partial differential equation to the following form:

H ]H

]p i
m 5]mqi ,

]H

]qi 52]mp i
m ,

~1.4!

wherep i
m5]L/]]mqi . According to this method, we can rewrite the KP equation to the mu

symplectic form that was introduced by Bridges.9

Multisymplectic equations have the important multisymplectic conservation laws. In the
merical study, we also hope that the numerical approximations can preserve the multisym
conservation laws. Similar to the method,10 we show that the Preissman scheme is a multisy
plectic scheme for the KP equation. Though the Preissman scheme is multisymplectic, it
more computational memory, so we reduce it to a multisymplectic 45 points scheme. Using
points scheme, we get some numerical results on soliton and solitary waves over long
intervals.

In Sec. II, we describe the multisymplectic geometry of the KP equation entirely in
framework of the variational principal. Section III is devoted to the analysis of the multisympl
Preissman scheme and reduce it to a multisymplectic 45 points scheme. In Sec. IV, some n
cal results on soliton and solitary waves over long time intervals be given.

II. MULTISYMPLECTIC GEOMETRY OF THE KP EQUATION

We now review some aspects of multisymplectic geometry.
Let X be an orientable (n11)-dimensional parameter space~which is usually space–time!

and letpXY :Y→X be a fiber overX. Sectionw:X→Y of this covariant configuration bundle is th
physical fields. Coordinates onX are denoted byxm, m51,2,...,n,0. In general,x0 denotes the
time coordinate. The parametern denotes the number of spatial variables. In this paper, we
discuss the case ofn.0. Adapted coordinates onY are yA along the fibersYx5pXY

21(x),xPX,
A51,2,...,N. N denotes the fiber’s dimensions. Consider akth order Lagrangian densityL,
viewed as a fiber-preserving mapL:JkY→∧n11X. Jk(Y) denotes thekth-order jet bundle overY
which can be induced byJ1(¯(J1(Y))). We let TxX denote the tangent space ofX at x, and
denote the derivative of the mappXY in the directionw by TpXY

•w.
At first, we introduce the first jet bundle.
Definition 2.1:The first jet bundle overY is a fiber bundle denoted byJ1(Y) whose fiber over

yPYx5pXY
21(x), xPX consists of those linear mappingsg:TxX→TyY satisfying

TpXY
+g5Identity.

If w:X→Y is a section ofY, j 1(w) is a section ofJ1(Y) and in coordinates,j 1(w) is given by
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~xm,wA~xm!,]mwA~xm!!, m51,2,...,n,0.

Similarly, higher order jet bundleJm(Y) is defined byJ1(Jm21(Y)).
Definition 2.2:Thekth-order jet bundle overY is a fiber bundle denoted byJk(Y) whose fiber

over gPJk21(Y)y ,yPY consists of those linear mappingss:TxX→TgJk21(Y) satisfying

TpX,Jk21Y
+s5Identity.

We let j k(w)5 j 1(¯( j 1(w))):x→Txj k21(w) denotekth-order jet prolongation of the sectio
w:X→Y, in which j k21(w) is a section of jet bundleJk21(Y). Thus,j k(w) is given in coordinates

~xm,wA~xm!,]mwA~xm!,...,]mn
]mn21

¯]m0
wA~xm!!.

Given akth-order Lagrangian densityL:JkY→∧n11x, the basis geometric object in the cla
sical calculus of variations is the (n11)-form uL on J2k21(Y), which was called the Cartan form

The KP equation can be written as

~2ut16uux1uxxx!x1suyy50. ~2.1!

The 2 multiplyingut is added for notational convenience, it can be eliminated by scalingt. In this
paper, we consider the KPI equation.

To put the KP equation in the variational frame work, we letwxx5u, thenw satisfies equation

2wxxxt16wxxwxxxx16wxxx
2 1wxxxxxx1swxxyy50. ~2.2!

The search for a variational principle is equivalent to the inverse problem of the calcul
variations, i.e., the existence and formulation of variational principles for systems of non
partial differential equations. The existence of a variational principle for a differential equati
equivalent to determining whether or not an operator is a potential operator. According to Va
theorem,11 in order that operatorN be a potential operator, to summarize, it is necessary
sufficient that the Gateau derivative of the operatorN is symmetry. The theorem is stated in term
of the Gateau derivative, but we assume that the Frechet derivative exists in application. LeN be
an operator which defined in an appropriate function spaceE ~typically E is Banach space!, then
N be a potential operator ifNu85Ñu8 , where

Nu8w5 lim
«→0

N~u1«w!2N~u!

«
5F ]

]«
N~u1«w!GU

«50

,

andÑu8 is the adjoint operator ofNu8 . If the operator is a potential operator, the potentialF is given
by

F5E uE
0

1

N~lu!dldV,

where*dV represents integration over the physical domain and*0
1dl represents integration ove

the scalar variablel. We test the operator

N~w!52wxxxt16wxxwxxxx16wxxx
2 1wxxxxxx1swxxyy

and findNw85Ñw8 . Hence,
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F~w!5E wE
0

1

N~lw!dldV

5E wE
0

1

@2lwxxxt16l2wxxwxxxx16l2wxxx
2 1lwxxxxxx1slwxxyy#dldV

5E wS wxxxt12wxxx
2 12wxxwxxxx1

1
2 wxxxxxx1

s

2
wxxyyDdV.

To obtainF(u) in a more familiar form, integrate by part and discard the integration over
boundary since it has nothing with the Lagrangian density, then we get the potential

F~w!5E S wxxwxt2
1
2 wxxx

2 1
s

2
wxy

2 1wxx
3 DdV.

We can determine that the Lagrangian density for Eq.~2.2! is

L~ j 3~w!!5S wxxwxt2
1

2
wxxx

2 1
s

2
wxy

2 1wxx
3 Ddx∧dy∧dt.

Corresponding to Lagrangian densityL( j 3(w)), the action function is defined as the following

S~w!5E
U

L~ j 3~w!!, U is an open set ofX.

Let G be the Lie group ofpXY bundle automorphismshY coveringhX . DenotehY
l a smooth

path in G such that

w̄5hY
l+w+~hX

l !21.

The vector field ofhY
l is

V5
d

dl U
l50

w̄5F Vx

Vy

Vt

Vw
G .

We say thatw is an extremum ofS is

d

dl U
l50

S~ w̄ !50.

Now we consider the variation

d

dl U
l50

S~ w̄ !5
d

dlU
l50

E
hX

lU
S w̄xxw̄x t̄2

1

2
w̄xxx

2
1

s

2
w̄xy

2
1w̄xx

3 Ddx̄∧dȳ∧d t̄,

where

hX
lF x

y
t
G5F x̄

ȳ

t̄
G .

A direct computation shows
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d

dl U
l50

S~ w̄ !5I 11I 2 ,

in which

I 15E
U

2~2wxxxt16wxxwxxxx16wxxx
2 1wxxxxxx

1swxxyy!~Vw2wxV
x2wyV

y2w tV
t!dx∧dy∧dt, ~2.3!

I 25E
]U

F S wxxwxt2
1

2
wxxx

2 1
s

2
wxy

2 1wxx
3 DVt1wxx~Vx

w2wxVx
x2wyVx

y2w tVx
t 2wxxV

x2wxyV
y

2wxtV
t!Gdx∧dyF2S wxxwxt2

1

2
wxxx

2 1
s

2
wxy

2 1wxx
3 DVy1swxy~Vx

w2wxVx
x2wyVx

y2w tVx
t

2wxxV
x2wxyV

y2wxtV
t!Gdx∧dt1F S wxxwxt2

1

2
wxxx

2 1
s

2
wxy

2 1wxx
3 DVx1~wxt13wxx

2

1wxxxx!~Vx
w2wxVx

x2wyVx
y2w tVx

t 2wxxV
x2wxyV

y2wxtV
t!2wxxx~Vxx

w 2wxVxx
x 22wxxVx

x

2wyVxx
y 22wxyVx

y2w tVxx
t 22wxtVx

t 2wxxyV
y2wxxtV

t2wxxxV
x!1~22wxxt26wxxwxxx

2swxyy2wxxxxx!~Vw2wxV
x2wyV

y2w tV
t!Gdy∧dt. ~2.4!

In Ref. 7, the author introduced the Lepagean equivalents which is a generalization
Poincare–Cartan form and proposed the Carton form is not necessarily unique for higher
The author also pointed out that every Lagrangian density has a Lepagean equivalent onJ2k21Y.
It turns out that Lepagean equivalents exists on jet bundles of order 2k21 or higher, but not
necessarily on jet bundle of lower order. The author presented that: As being the principal p
a Lepagean equivalents, the Cartan form always exist and are typically nonunique unlessk51. We
find it is caused by the higher-order mixed multiple integral in using Stokes’ formula in act
calculus of variations. ByI 2 , we can define a Cartan form,

uL5S12wxxx
2 2

s

2
wxy

2 12wxwxxt16wxwxxwxxx1swxwxyy1wxwxxxxx2wxxwxt22wxx
3 2wxxwxxxxDdx∧dy∧dt

1~22wxxt26wxxwxxx2swxyy2wxxxxx!dw∧dy∧dt

1~wxt13wxx
2 1wxxxx!dwx∧dy∧dt2wxxxdwxx∧dy∧dt2swxydwx∧dx∧dt1wxxdwx∧dx∧dy. ~2.5!

Since

j 5~w!* dx5dx, j 5~w!* dy5dy, j 5~w!* dt5dt,

j 5~w!* dw5wxdx1wydy1w tdt,

j 5~w!* dwx5wxxdx1wxydy1wxtdt,

j 5~w!* dwxx5wxxxdx1wxxydy1wxxtdt,

we have

I 25E
]U

j 5~w!* ~ j 5~V!cuL!.
                                                                                                                



w of

of

4065J. Math. Phys., Vol. 43, No. 8, August 2002 Multisymplectic scheme for the KP equation

                    
Here j 5(V) is the jet prolongation of the vector fieldV.12 The multisymplectic form is the 4-form
VL52duL . FormuL defines a multisymplectic structure on jet bundleJ5(Y).

Now, we consider the Euler–Lagrange equation for the action functionS(w).
SinceL( j 3(w̄))5 j 5(w̄)* uL , we have

d

dlU
l50

E
hX

lU
L~ j3~w̄!!5

d

dlU
l50

E
hX

lU
j5~w̄!*uL

5
d

dlU
l50

E
hX

lU
j5~hY

l+w+~hX
l!21!*uL

5
d

dlU
l50

E
hX

lU
~~hX

l!21!* j5~w!* j5~hY
l!*uL

5
d

dlU
l50

E
U
j5~w!* j5~hY

l!*uL5E
U
j5~w!*Lj 5(V)uL

in which the symbolL denotes the Lie derivative.
By the Cartan’s Magic formula,13

Lj 5(V)uL52 j 5~V!cVL1d~ j 5~V!cuL!.

We can obtain

d

dl U
l50

S~ w̄ !52E
U

j 5~w!* ~ j 5~V!cVL!1E
]U

j 5~w!* ~ j 5~V!cuL!.

If V is a vector field with compact support, we have

E
]U

j 5~w!* ~ j 5~V!cuL!50.

Hence, a necessary condition forw to be an extremum is that

E
U

j 5~w!* ~ j 5~V!cVL!50

for any V with compact support. Compute the integral and obtain that

j 5~w!* ~ j 5~V!cVL!5~2wxxxt16wxxwxxxx16wxxx
2 1wxxxxxx1swxxyy!

3~Vw2wxV
x2wyV

y2w tV
t!. ~2.6!

Remark:We can get the Euler–Lagrange equation from the vertical variationVw, and theVx

andVy directions horizontal variations gives the law of conservation of momentum. The la
conservation of energy can be obtained along time-direction horizontal variation.

Taking thepXY-vertical vector fieldV and using the standard method from the calculus
variations, we obtain thatw satisfies

2wxxxt16wxxwxxxx16wxxx
2 1wxxxxxx1swxxyy50, ~2.7!

i.e., Eq.~2.2!. So, for any vector fieldV,

j 5~w!* ~ j 5~V!cVL!50 ~2.8!

holds. A short computation verifies that
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j 5~w!* ~PcVL!50, ~2.9!

wherePPTJ5(Y) and isTpY,J5(Y)
-vertical. For anyWPTJ5(Y), there exists the vector fieldV,

such that

W5 j 5~V!1P. ~2.10!

So, by~2.8!–~2.10!, if w is an extremum ofS, j 5(w)* (WcVL) mush vanish for any vector field
WPTJ5(Y), thus, we get the Euler–Lagrange equation,

j 5~w!* ~WcVL!50 ~2.11!

for any vector fieldWPTJ5(Y). In the following part, we consider the multisymplectic for
formula and a corollary of the multisymplectic form formula. About the multisymplectic fo
formula for first order field theories, please refer to Ref. 14.

Theorem 2.3:Let hY
l andjY

l demote two one-parameter symmetry groups of Eq.~2.11! and
the corresponding vector fields areV andW. Then we have the multisymplectic form formula,

E
]U

j 5~w!* ~ j 5~V!c j 5~W!cVL!50. ~2.12!

Proof: Since j 5@W,V#5@ j 5(W), j 5(V)#, from ~2.11! we have

05E
U

j 5~w!* ~ j 5@W,V# cVL!

5E
U

j 5~w!* ~@ j 5~W!, j 5~V!# cVL!

5E
U

j 5~w!* ~Lj 5(W)~ j 5~V!cVL!2 j 5~V!cLj 5(W)VL!. ~2.13!

BecausehY
l andjY

l are two one-parameter symmetry groups of Eq.~2.11!, so for any vector field
QPTJ5(Y), we have

d

dl U
l50

j 5~hY
l+w+~hX

l !21!* ~QcVL!5 j 5~w!* Lj 5(V)~QcVL!50, ~2.14!

d

dl U
l50

j 5~jY
l+w+~jX

l !21!* ~QcVL!5 j 5~w!* Lj 5(W)~QcVL!50. ~2.15!

Thus ~2.13! becomes

052E
U

j 5~w!* ~ j 5~V!cLj 5(W)VL!

52E
U

j 5~w!* ~ j 5~V!cd~ j 5~W!cVL!!

5E
U

j 5~w!* ~ j 5~V!cd~Lj 5(W)uL!!. ~2.16!
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j 5(V) c j 5(W) cVL can be written as
j5~V!cj5~W!cVL5j5~V!cd~ j5~W!cuL!2j5~V!cLj 5(W)uL

5Lj 5(V)~ j 5~W!cuL!2 j 5~V!cLj 5(W)uL2d~ j 5~V!c j 5~W!cuL!. ~2.17!

So from Stokes’ formula we can obtain that

E
]U

j5~w!* ~ j5~V!cj5~W!cVL!5E
]U

j5~w!* ~Lj 5(V)~ j 5~W!cuL!2 j 5~V!cLj 5(W)uL2d~ j 5~V!c j 5~W!cuL!!

5E
U

j 5~w!* d~Lj 5(V)~ j 5~W!cuL!2 j 5~V!cLj 5(W)uL!

5E
U

j 5~w!* ~Lj 5(V)Lj 5(W)uL1Lj 5(V)~ j 5~W!cVL!2d~ j 5~V!cLj 5(W)uL!!.

~2.18!

By

Lj 5(V)Lj 5(W)uL5 j 5~V!cd~Lj 5(W)uL!1d~ j 5~V!cLj 5(W)uL!, ~2.19!

we have

E
]U

j 5~w!* ~ j 5~V!c j 5~W!cVL!5E
U

j 5~w!* ~ j 5~V!cd~Lj 5(W)uL!1Lj 5(V)~ j 5~W!cVL!!.

~2.20!

Hence, by~2.14! and ~2.16!, we obtain

E
]U

j 5~w!* ~ j 5~V!c j 5~W!cVL!50.

Although the covariant Legendre transformation~or complete Legendre transformation!
which transform time and space variable simultaneously are not necessarily unique, for thi
Cartan formuL , we can construct corresponding covariant Lengendre transformation of Lag
ian densityL. Let v5wx , u5wxx , w5wxy , p5wxt , taking the covariant Legendre transform
Lagrangian densityL,

px522wxxt26wxxwxxx2swxyy2wxxxxx,

pxx5wxt13wxx
2 1wxxxx, pxt5wxx ,

pxy5swxy , pxxx52wxxx .

According to the covariant De Donder–Weyl Hamilton function theories8 and the multisymplectic
concept introduced by Bridges,9 the KP equation can be reformulated as a system of ten first-o
partial differential equations which can be written in the form,

MZt1KZx1LZy5¹S~Z!,

Z5~w,v,u,w,p,px,pxx,pxy,pxt,pxxx!TPR10, ~2.21!

where
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M51
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2 ,

K51
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 21 0 0 0 0 0 0 0

2 ,

L51
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2 ,

S~Z!5up1 1
2 ~pxxx!21

s

2
w21u32pxv2pxxu2pxtp2pxyw.

¹S is the gradient ofS with respect to the standard inner product onR10. The system~2.21! is a
Hamiltonian formulation of the KP equation on a multisymplectic structure. Although this for
lation is not the best, we give a constructive method to get multisymplectic form which
proposed by Bridges.9 Attention should be paid to~2.21! that it is different from the multisym-
plectic form of the KP equation in Ref. 15. For Eq.~2.21!, there is a conservation law,
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] t~dZ∧MdZ!1]x~dZ∧KdZ!1]y~dZ∧LdZ!50. ~2.22!

SubstitutingM , K, L into ~2.22! leads to

]

]t
~dwx∧dwxx!1

]

]x
~dw∧~26wxxxdwxx26wxxdwxxx2sdwxyy22dwxxt2dwxxxxx!

1dwx∧~6wxxdwxx1dwxt1dwxxxx!1dwxx∧d~2wxxx!!1
]

]y
~dwx∧d~swxy!!50.U

~2.23!

This multisymplectic conservation law~2.22! is consistent with our Theorem 2.3. We ca
regard the conservation law~2.23! as a corollary of the Theorem 2.3. LetV, W be pXY-vertical
and have the expressionsVw (]/]w) , Ww (]/]w). Thus the correspondingj 5(V) and j 5(W) have
the coordinate expressions

~Vw,Vx
w ,Vy

w ,Vt
w ,Vxx

w ,Vyy
w ,Vtt

w ,Vxt
w ,Vxy

w ,Vyt
w ,Vxxx

w ,Vxtx
w ,Vxxy

w ,Vxtt
w ,

Vxyy
w ,Vttt

w ,Vyyy
w ,Vtyy

w ,Vtty
w ,Vxxxx

w ,Vxxyy
w ,Vxxtt

w ,Vxxxy
w ,Vxxxt

w ,Vxyyy
w ,Vxttt

w ,

Vtttt
w ,Vyyyy

w ,Vtyyy
w ,Vttyy

w ,Vttty
w ,Vxxxxx

w ,Vxxxxy
w ,Vxxxxt

w ,Vxxxyy
w ,Vxxxtt

w ,

Vxxyyy
w ,Vxxttt

w ,Vxyyyy
w ,Vxtttt

w ,Vyyyyy
w ,Vttttt

w ,Vyyyyt
w ,Vyyytt

w ,Vyyttt
w ,Vytttt

w !

and

~Ww,Wx
w ,Wy

w ,Wt
w ,Wxx

w ,Wyy
w ,Wtt

w ,Wxt
w ,Wxy

w ,Wyt
w ,Wxxx

w ,Wxtx
w ,Wxxy

w ,Wxtt
w ,

Wxyy
w ,Wttt

w ,Wyyy
w ,Wtyy

w ,Wtty
w ,Wxxxx

w ,Wxxyy
w ,Wxxtt

w ,Wxxxy
w Wxxxt

w ,Wxyyy
w ,Wxttt

w ,

Wtttt
w ,Wyyyy

w ,Wtyyy
w ,Wttyy

w ,Wttty
w ,Wxxxxx

w ,Wxxxxy
w ,Wxxxxt

w ,Wxxxyy
w ,Wxxxtt

w ,Wxxyyy
w ,

Wxxttt
w ,Wxyyyy

w ,Wxtttt
w ,Wyyyyy

w ,Wttttt
w ,Wyyyyt

w ,Wyyytt
w ,Wyyttt

w ,Wytttt
w !.

We can compute

j5~w!* ~ j5~V!cj5~W!cVL!5~Wxx
w Vx

w2Wx
wVxx

w !dx∧dy1~sWx
wVxy

w 2sWxy
w Vx

w!dx∧dt

1@Wxx
w Vxxx

w 2Wxxx
w Vxx

w 2Wx
w~Vxt

w16wxxVxx
w 1Vxxxx

w !1Vx
w~Wxt

w16wxxWxx
w 1Wxxxx

w !

1Vw~22Wxxt
w 26wxxWxxx

w 26wxxxWxx
w 2sWxyy

w 2Wxxxxx
w !

1Ww~2Vxxt
w 16wxxVxxx

w 16wxxxVxx
w 1sVxyy

w 1Vxxxxx
w !#dy∧dt.

By the Stokes’ formula, we can obtain

E
U

]

]t
~Wxx

w Vx
w2Wx

wVxx
w !dx∧dy∧dt2

]

]y
~sWx

wVxy
w 2sWxy

w Vx
w!dx∧dy∧dt1

]

]x
@Wxx

w Vxxx
w 2Wxxx

w Vxx
w

2Wx
w~Vxt

w16wxxVxx
w 1Vxxxx

w !1Vx
w~Wxt

w16wxxWxx
w 1Wxxxx

w !1Vw~22Wxxt
w 26wxxWxxx

w 26wxxxWxx
w

2sWxyy
w 2Wxxxxx

w !1Ww~2Vxxt
w 16wxxVxxx

w 16wxxxVxx
w 1sVxyy

w 1Vxxxxx
w !#dx∧dy∧dt50.

SinceU is arbitrary, we get
]

]t
~Wxx

w Vx
w2Wx

wVxx
w !2

]

]y
~sWx

wVxy
w 2sWxy

w Vx
w!1

]

]x
@Wxx

w Vxxx
w 2Wxxx

w Vxx
w 2Wx

w~Vxt
w16wxxVxx

w 1Vxxxx
w !

1Vx
w~Wxt

w16wxxWxx
w 1Wxxxx

w !1Vw~22Wxxt
w 26wxxWxxx

w 26wxxxWxx
w 2sWxyy

w 2Wxxxxx
w !

1Ww~2Vxxt
w 16wxxVxxx

w 16wxxxVxx
w 1sVxyy

w 1Vxxxxx
w !#50. ~2.24!
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If we let

Mt51
0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2,

Mx51
0 0 26wxxx 0 0 26wxx 2s 22 0 21

0 0 6wxx 0 1 0 0 0 1 0

6wxxx 26wxx 0 0 0 21 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0 0 0

6wxx 0 1 0 0 0 0 0 0 0

s 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

0 21 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

2 ,

M y51
0 0 0 0 0 0 0 0 0 0

0 0 0 s 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 2s 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2 ,

Mt~x,y!5xTMty,Mx~x,y!5xTMxy,M y~x,y!5xTM yy, ~2.25!

and set

j5~V!5~Vw,Vx
w ,Vxx

w ,Vxy
w ,Vxt

w ,Vxxx
w ,Vxyy

w ,Vxxt
w ,Vxxxx

w ,Vxxxxx
w !,

j 5~W!5~Ww,Wx
w ,Wxx

w ,Wxy
w ,Wxt

w ,Wxxx
w ,Wxyy

w ,Wxxt
w ,Wxxxx

w ,Wxxxxx
w !,

the other coordinates vanish. Then conservation law~2.24! can be written as
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]

]t
M t~ j 5~V!, j 5~W!!1

]

]x
Mx~ j 5~V!, j 5~W!!1

]

]y
M y~ j 5~V!, j 5~W!!50. ~2.26!

Also, since the translation invariance of the KP equation, we chooseV5W5w and take it into
~2.26!, and conservation law~2.26! becomes

]

]t
~dwx∧dwxx!1

]

]x
~dw∧~26wxxxdwxx26wxxdwxxx2sdwxyy22dwxxt2dwxxxxx!

1dwx∧~6wxxdwxx1dwxt1dwxxxx!1dwxx∧d~2wxxx!!1
]

]y
~dwx∧d~swxy!!50,

~2.27!

i.e., the conservation law~2.23!.
In the numerical study, the multisymplectic conservation law can be used to design mult

plectic numerical schemes, i.e., numerical schemes which can preserve the multisymplect
servation law.

III. MULTISYMPLECTIC PREISSMAN SCHEME FOR THE KP EQUATION

In this section, we consider the multisymplectic Preissman scheme for the KP equ
Equation~2.21! can be reformulated as

¦

]px

]x
50,

]pxx

]x
1

]pxy

]y
1

]pxt

]t
52px,

]pxxx

]x
5p13u22pxx,

sw2pxy50,

u2pxt50,

]w

]x
5v,

]v
]x

5u,

]v
]y

5w,

]v
]t

5p,

]u

]x
5pxxx.

~3.1!

For convenience, we assume that the spacing of the grid points in thex,y,t directions is
uniform, respectively. We apply the implicit midpoint discretization in time and in space to~3.1!,
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and obtain

¦

pi 11,j 1 ~1/2! ,k1 ~1/2!
x 2pi , j 1 ~1/2! ,k1 ~1/2!

x

Dx
50,

pi 11,j 1 ~1/2! ,k1 ~1/2!
xx 2pi , j 1 ~1/2! ,k1 ~1/2!

xx

Dx
1

pi 1 ~1/2! , j 11,k1 ~1/2!
xy 2pi 1 ~1/2! , j ,k1 ~1/2!

xy

Dy

1
pi 1 ~1/2! , j 1 ~1/2! ,k11

xt 2pi 1 ~1/2! , j 1 ~1/2! ,k
xt

Dt
52pi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!

x ,

pi 11,j 1 ~1/2! ,k1 ~1/2!
xxx 2pi , j 1 ~1/2! ,k1 ~1/2!

xxx

Dx
5pi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!13~ui 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!!

2

2pi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!
xx ,

swi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!5pi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!
xy ,

ui 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!5pi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!
xt ,

w i 11,j 1 ~1/2! ,k1 ~1/2!2w i , j 1 ~1/2! ,k1 ~1/2!

Dx
5v i 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2! ,

v i 11,j 1 ~1/2! ,k1 ~1/2!2v i , j 1 ~1/2! ,k1 ~1/2!

Dx
5ui 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2! ,

v i 1 ~1/2! , j 11,k1 ~1/2!2v i 1 ~1/2! , j ,k1 ~1/2!

Dy
5wi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2! ,

v i 1 ~1/2! , j 1 ~1/2! ,k112v i 1 ~1/2! , j 1 ~1/2! ,k

Dt
5pi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2! ,

ui 11,j 1 ~1/2! ,k1 ~1/2!2ui , j 1 ~1/2! ,k1 ~1/2!

Dx
5pi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!

xxx ,

~3.2!

where Dx is the x-direction step,Dy is the y-direction step,Dt is the time step, and
ui 1(1/2),j 1(1/2),k1(1/2)5u( iDx1 (Dx/2) ,j Dy1 (Dy/2) ,kDt1 (Dt/2), the others are similar.

In fact, the discretization result leads to the Preissman scheme,

1

D
M ~Zi 1 ~1/2! , j 1 ~1/2! ,k112Zi 1 ~1/2! , j 1 ~1/2! ,k!1

1

Dx
K~Zi 11,j 1 ~1/2! ,k1 ~1/2!2Zi , j 1 ~1/2! ,k1 ~1/2!!

1
1

Dy
L~Zi 1 ~1/2! , j 11,k1 ~1/2!2Zi 1 ~1/2! , j ,k1 ~1/2!!

5¹S~Zi 1 ~1/2! , j 1 ~1/2! ,k1 ~1/2!!. ~3.3!

Equation~3.3! preserves the discrete multisymplectic conservation law,

dv i 1 ~1/2! , j 1 ~1/2! ,k11∧dpi 1 ~1/2! , j 1 ~1/2! ,k11
xt 2dv i 1 ~1/2! , j 1 ~1/2! ,k∧dpi 1 ~1/2! , j 1 ~1/2! ,k

xt

Dt

1
dv i 1 ~1/2! , j 11,k1 ~1/2!∧dpi 1 ~1/2! , j 11,k1 ~1/2!

xy 2dv i 1 ~1/2! , j ,k1 ~1/2!∧dpi 1 ~1/2! , j ,k1 ~1/2!
xy

Dy

1
dw i 11,j 1 ~1/2! ,k1 ~1/2!∧dpi 11,j 1 ~1/2! ,k1 ~1/2!

x 2dw i , j 1 ~1/2! ,k1 ~1/2!∧dpi , j 1 ~1/2! ,k1 ~1/2!
x

Dx
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1
dv i 11,j 1 ~1/2! ,k1 ~1/2!∧dpi 11,j 1 ~1/2! ,k1 ~1/2!

xx 2dv i , j 1 ~1/2! ,k1 ~1/2!∧dpi , j 1 ~1/2! ,k1 ~1/2!
xx

Dx

1
dui 11,j 1 ~1/2! ,k1 ~1/2!∧dpi 11,j 1 ~1/2! ,k1 ~1/2!

xxx 2dui , j 1 ~1/2! ,k1 ~1/2!∧dpi , j 1 ~1/2! ,k1 ~1/2!
xxx

Dx

50. ~3.4!

Although the Preissman scheme~3.3! is multisymplectic, it took many efforts to realize. Hence w
elimate the auxiliary variablesw,v,w,p,px,pxx,pxy,pxt,pxxx by a trivial computation and obtain
the following multisymplectic 45 points scheme:

1

2DxDt
dy

2D t
0$ui 12,j

k 12ui 11,j
k 22ui 21,j

k 1ui 22,j
k %1

1

Dx4 $dy
2d t

2~ui 12,j
k 24ui 11,j

k 16ui , j
k 24ui 21,j

k

1ui 22,j
k !%1

s

4Dy2 $d t
2Dy

2~ui 12,j
k 14ui 11,j

k 16ui , j
k 14ui 21,j

k 1ui , j
k !%

1
2

Dx2 ~ d̄ f i , j 1 ~1/2!
k1 ~1/2! 1 d̄ f i , j 2 ~1/2!

k1 ~1/2! 1 d̄ f i , j 1 ~1/2!
k2 ~1/2! 1 d̄ f i , j 2 ~1/2!

k2 ~1/2! !50, ~3.5!

where we denoteui , j
k 5u( iDx, j Dy,kDt), f i , j

k 53(u( iDx, j Dy,kDt))2 and

H D t
0ui , j

k 5ui , j
k112ui , j

k21 ,dy
2ui , j

k 5ui , j 11
k 12ui , j

k 1ui , j 21
k ,

d t
2ui , j

k 5ui , j
k1112ui , j

k 1ui , j
k21 ,Dy

2ui , j
k 5ui , j 11

k 22ui , j
k 1ui , j 21

k ,

d̄ f i , j
k 5 f i 1 ~3/2! , j

k 2 f i 1 ~1/2! , j
k 2 f i 2 ~1/2! , j

k 1 f i 2 ~3/2! , j
k .

~3.6!

IV. SOME NUMERICAL RESULTS ON SOLITON AND SOLITARY WAVES

In this section, we test the 45 points scheme on soliton and solitary waves over long
intervals.

At first, one line soliton of the KPI equation is considered. We choose the small interval i
y-direction just for computing convenience, and it has nothing to do with the scheme and
We take the following initial conditions:

u~x,y,0!52 sech2S x2
&

2
y26D ~4.1!

and the exact boundary condition. The KPI equation has the theoretic solution,

FIG. 1. One soliton att50.
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FIG. 2. One soliton att510.

FIG. 3. Soliton interact att50.

FIG. 4. Soliton interact att51.5.
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FIG. 5. Soliton interact att53.

FIG. 6. Lump-type solitary wave att50.

FIG. 7. Lump-type solitary wave att50.5.
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u~x,y,t !52 sech2S x2
&

2
y2

5

2
t26D ,

which represents one line-soliton propagating with the velocity5
2 in the direction with the angle o

tan21(&) to the positivex-axis. We take the test on the domain@0,40#3@0,2# and chooseDx
50.2, Dy50.1, Dt50.01. Figure 1 shows the initial condition and Fig. 2 shows the nume
solution at timet510. In fact, it is the propagating 25-unit distant as we indicated.

Next we try the two line-soliton interaction.
We take the initial condition,

u~x,y,0!52(
i 51

2

ki
2 sech2@ki~x1l i y2x0,i !#, ~4.2!

wherek151.0, k251/&, l1521/), l2521.0, andx0.156.0, x0.2511.0, and the exact bound
ary condition. The initial condition~4.2! corresponds to two line solitons, each with amplitude 2ki

2

placed initially atx5x0,i and moving with velocityv i54ki
223l i

2 along thex-axis (i 51,2).
We carried out the computation on the domain@0,40#3@0,2#, and chooseDx50.2, Dy

50.1, Dt50.01. The initial condition~4.2! is shown in Fig. 3. The larger line-soliton on the rig
will move with a velocity 3.0 to the positivex-direction and the smaller one on the left will mov
with a velocity 1.0 in the inverse direction. As time goes on, they will collide with each othe
is shown in Fig. 4. Figure 5 shows that the two line-solitons have separated completely
colliding and restored their original shape by thet53.

We also consider the lump-type solitary waves of the KPI equation. The lump-type i
condition used for the test is

u~x,y,0!54
S 2~x2x0!21m2~y2y0!21

1

m2D
S ~x2x0!21m2~y2y0!21

1

m2D , ~4.3!

where the parametersm251.0, x0510.0,y0510.0, and we adopt the exact boundary conditio
We compute in a rectangle@0,20#3@0,20# and chooseDx50.1,Dy50.2,Dt50.01.Figure 6

shows the initial condition and Fig. 7 shows the numerical solution at timet50.5. By thetime
t51, the result is shown in Fig. 8. The lump solution of the KPI equation can be express

FIG. 8. Lump-type solitary wave att51.
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u~x,y,t!54
S 2~x2x023m2t2!21m2~y2y0!21

1

m2D
S ~x2x023m2t2!21m2~y2y0!21

1

m2D . ~4.4!

According to~4.4!, this lump type solitary wave will move to the positivex-direction with velocity
3m2. We can see the moving of the lump solitary wave from the graph.

A future task is expected to find a proper numerical boundary condition for collision o
two lump type solitary waves.
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The (211)-dimensional (M1N)-component AKNS system that is derived from
the inner parameter dependent symmetry constraint of the KP equation is studied in
detail. First, the Painleve´ integrability of the model is proved by using the standard
WTC and Kruskal approach. Using the formal series symmetry approach, the gen-
eralized KMV symmetry algebra and the related symmetry group are found. The
two-dimensional similarity partial differential equation reductions and the ordinary
differential equation reductions are obtained from the generalized KMV symmetry
algebra and the direct method. Abundant localized coherent structures are revealed
by the variable separation approach. Some special types of the localized excitations
like the multiple solitoffs, dromions, lumps, ring solitons, breathers and instantons
are plotted also. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1490407#

I. INTRODUCTION

In (111)-dimensions, the AKNS~Ablowitz–Kaup–Newell–Segur! system1 is a most impor-
tant physical model. The (111)-dimensional AKNS system had been extended in several di
ent directions, say, the (111)-dimensional (111)-component AKNS system had been extend
to the (N1N)-component (111)-dimensional AKNS system2 and (M1N)-component (1
11)-dimensional AKNS system.3 Several different types of (211)-dimensional integrable
AKNS systems had also been obtained, say, the DS~Davey–Stewartson! type system4 and the
breaking soliton type system.5 The (111)-dimensional AKNS system can be obtained from t
usual symmetry constraint of the KP~Kadomtsev–Petviashvili! equation.2 Recently, Lou and Hu
had obtained a general (N1M )-component (211)-dimensional AKNS system,

ipit1pixx1piux50, i 51,2,. . . ,N, ~1!

2 iq jt1qjxx1qjux50, j 51,2,. . . ,M , ~2!

uy1(
i 51

N

(
j 51

M

ai j piqj50, ~3!

from the inner parameter dependent symmetry constraints of the KP equation.3 When we takey
5x, N5M51, the system~1!–~3! is reduced to the usual (111)-dimensional AKNS system. If

a!Mailing address.
40780022-2488/2002/43(8)/4078/32/$19.00 © 2002 American Institute of Physics
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q is selected as the complex conjugate andM5N51, then the system~1!–~3! can be considered
as the asymmetric part of the DS system. The so-called long-wave–short-wave interaction
is linked with ~1!–~3! by N5M51 by

p~x,y,t !5L~x,y1 i t ,i t ![L~x8,y8,t8!, q~x,y,t !5S~x,y1 i t ,i t ![S~x8,y8,t8!.

The Maccari system6 is just also a special case of~1!–~3! with M5N52 and $q15p1* , q2

5p2* %.
One of the most powerful methods to prove the integrability of a model is the so-c

Painlevéanalysis due to WTC~Weiss–Tabor–Carnevale!.7 Furthermore, the Painleve´ analysis can
also be used to find some exact solutions no matter whether the model is integrable or not
only needs to prove the Painleve´ property of a model, one may use the Kruskal simplification
the WTC approach.8 If one hopes to find some more properties of the model, one has to us
original WTC approach or some extended forms.9–11 In Sec. II of this article, we combine th
standard WTC approach and the Kruskal simplification to study the Painleve´ integrability of the
model. In the symmetry study of the (211)-dimensional integrable models like the KP equatio
Toda field theory, Davey–Stewartson~DS! equation, dispersive long wave equation, Nizhni
Novikov–Veselov~NNV! equation, asymmetric DS~ADS! equation, asymmetric NNV~ANNV !
equation, KdV-type and AKNS type breaking soliton equations and the Sawada–Kortera~SK!
equation, there exist some types of generalized infinitely dimensional Kac–Moody–Vir
~KMV ! type symmetries with a common generalized centerless Virasoro symmetry subalge12

We had defined the Virasoro integrability if a model possesses an infinite dimensional cen
Virasoro symmetry algebra and a systematic method to construct the Virasoro integrable m
was established.13 Section III is devoted to investigating the Virasoro integrability by means of
formal series symmetry approach. The result shows us that the model possesses an infinite
sional KMV symmetry algebra with two generalized centerless Virasoro symmetry subalg
Starting from the symmetries of a model one may obtain some exact solutions of the mo
some different ways. In Sec. IV, we look for the finite transformation~symmetry group! of the
related symmetry algebra. Using the finite transformation and any special simple solution, w
obtain a new generalized solution. In Sec. V, we use the general Lie point KMV symmetry al
and the direct method to obtain the similarity solutions of the model. It is known that the fa
inverse scattering transformation~IST! can be considered as an extension of the Fourier trans
mation in nonlinear physics. The variable separation approach~VSA! is another powerful method
in linear physics. However, it is difficult to extend the VSA to nonlinear physics. Recently,
kinds of ‘‘variable separation’’ procedures were established. The first method is called the ‘‘fo
variable separation approach’’~FVSA!,14 or equivalently the symmetry constraints2 or nonlinear-
ization of the Lax pairs.15 The independent variables of a reduced field in FVSA have not tot
been separated though the reduced field satisfies some lower-dimensional equations. The
type of variable separation method was established first for the DS equation seven years ag16 and
the method was revisited and developed recently for the NNV equation,17 ANNV equation,18 DS
equations,17 ADS equation, dispersive long wave equation~DLWE! and a nonintegrable (2
11)-dimensional KdV equation.19 In Sec. VI, we will study whether the variable separati
approach can be applied to the (N1M )-component (211)-dimensional AKNS system. The
positive result shows us that the (211)-dimensional (N1M )-component AKNS system pos
sesses also abundant localized coherent structures for the quantity( i 51,j 51

N,M ai j piqj . The abundant
structures of the model are caused by the appropriate possible selections of the arbitrary fu
appearing in the seed solution. Some special types of the localized excitations like the m
solitoffs, dromions, lumps, ring solitons, breathers and instantons are studied also in this s
It is shown that the interaction between two traveling ring soliton solutions is completely e
and a ring shape breather may ‘‘breath’’ in some different ways. The last section is a summa
discussion.
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II. PAINLEVÉ INTEGRABILITY OF THE „2¿1…-DIMENSIONAL „M¿N… COMPONENT
AKNS SYSTEM

According to the standard WTC approach, if the (211)-dimensional (M1N)-component
AKNS system~1!–~3! is Painleve´ integrable, all the possible solutions of the model can be wri
as

pi5 (
k50

`

pik f k1a i, i 51,2,. . . ,N, ~4!

qj5 (
k50

`

qjk f k1b j , j 51,2,. . . ,M , ~5!

u5 (
k50

`

ukf k1g, ~6!

with sufficient (2M12N) arbitrary functions amongpik , qjk , uk in addition to f , wherea i , b j

andg should all be the negative integers. In other words, all the solutions of the model are
valued about an arbitrary movable singularity manifoldf .

To fix the constantsa i , b j and g, one may use the standard leading order analysis.
substitutingpi;pi0f a i, qj;qj 0f b j andu;u0f g into ~1!–~3! and comparing the leading terms fo
f ;0, we get the only possible branch with

a i5b j5g521, ~7!

u052 f x , (
i 51

N

(
j 51

M

ai j qj 0pi052 f xf y . ~8!

Substituting~4!–~6! with ~7! and ~8! into ~1!–~3! and vanishing all the coefficients of th
powersf k for differentk, we can obtain the recursion relations to determine the functionsuk , pik

andqjk :

1
A 0 ¯ 0 0 ¯ 0 ~k21! f xp10

0 A ¯ 0 0 ¯ 0 ~k21! f xp20

] ] ] ] ] ] ] ]

0 0 ¯ A 0 ¯ 0 ~k21! f xpN0

0 0 ¯ 0 A ¯ 0 ~k21! f xq10

] ] ] ] ] ] ] ]

0 0 ¯ 0 0 ¯ A ~k21! f xqM0

B1 B2 ¯ BN C1 ¯ CM ~k21! f y

2 1
p1k

p2k

]

pNk

q1k

]

qMk

uk

2 [JC51
P1k

P2k

]

PNk

Q1k

]

QMk

Uk

2 , ~9!

where

A[k~k23! f x
2 ,

Bi[(
j 51

M

ai j qj 0 , ~ i 51,2,. . . ,N!,

Cj[(
i 51

N

ai j pi0 , ~ j 51,2,. . . ,M !, ~10!
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Pik52 i ~pi (k22)t1~k22!pi (k21)f t!2pi (k22)xx22~k22!pi (k21)xf x2~k22!pi (k21)f xx

2 (
m50

k21

umxpi (k2m21)2 (
m50

k21

~m21! f xumpi (k2m) , ~11!

Qjk5 i ~qj (k22)t1~k22!qj (k21)f t!2qj (k22)xx22~k22!qj (k21)xf x2~k22!qj (k21)f xx

2 (
m50

k21

umxqj (k2m21)2 (
m51

k21

~m21! f xumqj (k2m) , ~12!

Uk52u~k21!y2 (
m51

k21

(
i 51

N

(
j 51

M

ai j pimqj (k2m) ~13!

with pik5qjk5uk50 for k,0. From the matrix equation~9!, it is easy to know that if the
determinant

D[detJ5~k21!~k~k23! f x
2!M1N21~k11!~k24! f x

2f y ~14!

of the coefficient matrixJ is not equal to zero, the functionspik , qjk anduk can be obtained from
~9! uniquely. When

k521,0,0,. . . ,0,1,3,3,. . . ,3,4, ~15!

the resonances occur. The resonance atk521 corresponds to the arbitrary singularity manifoldf .
If the model is Painleve´ integrable, we require (2N12M ) resonance conditions atk50 ~M1N
21 resonance conditions!, k51 ~one resonance condition!, k53 ~M1N21 resonance condi
tions!, and k54 ~one resonance condition! are satisfied identically such that other 2M12N
arbitrary functions amongpik , qjk , uk can be introduced into the general series expans
~4!–~6!. From the leading order analysis result~8!, we know that theM1N21 resonance condi
tions atk50 are satisfied identically because only one condition exists amongM1N functions
pi0 andqj 0 . For k51, we can obtain

pi152
ipi0f t12pi0xf x1pi0f xx

f xu0
, ~16!

qj 15
iq j 0f t22qj 0xf x2qj 0f xx

f xu0
, ~17!

and the resonance condition

2u0yf x
22(

i 51

N

(
j 51

M

ai j ~2qj 0xf x1qj 0f xx!pi02(
i 51

N

(
j 51

M

ai j ~2pi0xf x1pi0f xx!qj 050. ~18!

It is straightforward to see that the resonance condition~18! is satisfied identically because of~8!.
For k52, ~9! with ~10!–~13! give us

pi25
1

12f x
3f y

H 6 f xf y~ ipi0t1pi0xx1u0xpi11u1xpi0!22pi0f x
2S u1y1 (

n51

N

(
m51

M

anmqm1pn1D
2pi0(

n51

N

(
m51

M

anm@qm0~ ipn0t1pn0xx1u0xpn112u1xpn0!2pn0~ iqm0t2qm0xx2u0xqm1!#J ,

~19!
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qj 25
1

12f x
3f y

H 6~u0xqj 12 iq j 0t1u1xqj 01qj 0xx! f yf x22qj 0S u1y1 (
n51

N

(
m51

M

anmqm1pn1D f x
2

2 (
n51

N

(
m51

M

anm@~u0xpn11 ipn0t1pn0xx12pn0u1x!qm01~qm0xx1u0xqm12 iqm0t!pn0#qj 0J ,

~20!

u25
1

6 f x
2f y

H 22 f x
2u1y2(

i 51

N

(
j 51

M

ai j ~2u1xpi01 ipi0t1pi0xx1u0xpi1!qj 0

1(
i 51

N

(
j 51

M

ai j @~2qj 0xx1 iq j 0t2u0xqj 1!pi022 f x
2qj 1pi1#J ; ~21!

For k53, the component form of~9! reads (i 51,2,. . . ,N, j 51,2,. . . ,M )

~2 f xu31u2x!pi01~ f xx1u0x1 i f t!pi21~u1x1 f xu2!pi112pi2xf x1 ipi1t1pi1xx50, ~22!

~2 f xu31u2x!qj 01~ f xx1u0x2 i f t!qj 21~u1x1 f xu2!qj 112qj 2xf x2 iq j 1t1qj 1xx50, ~23!

u2y12u3f y1(
i 51

N

(
j 51

M

ai j ~qj 2pi11qj 1pi21qj 3pi01qj 0pi3!50. ~24!

Now, to verify the remained resonance conditions atk53 andk54, one can use the Kruska
simplification

f 5x1c~y,t !, pik5pik~y,t !, qjk5qjk~y,t !, uk5uk~y,t ! ~25!

without loss of the generality to prove the Painleve´ integrability, wherec(y,t) is an arbitrary
function of $y,t%. Under the simplification~25!, the known results are simplified to

u052, qj 0pi052cy , pi152 1
2 ipi0c t , qj 15 1

2 iq j 0c t , ~26!

pi25
1

12cy
F6icypi0t22pi0S u1y1 (

n51

N

(
m51

M

anmqm1pn1D
1 ipi0(

n51

N

(
m51

M

anm~pn0qm0t2qm0pn0t!G , ~27!

qj 25
1

12cy
i F2iq j 0S u1y1 (

n51

N

(
m51

M

anmqm1pn1D
26qj 0tcy1 (

n51

N

(
m51

M

anm~qm0tpn02pn0tqm0!qj 0G , ~28!

u25
1

6cy
S (

n51

N

(
m51

M

anm~ iqm0tpn02 ipn0tqm0!22u1y22(
n51

N

(
m51

M

anmqm1pn1D . ~29!

Using ~26!–~29!, we can obtain

u352 1
4 c tt ~30!
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from any one of~22! or ~23! for fixed i or j while all the remaining equations of~22! and ~23!
become resonance conditions which are really satisfied identically because of~26!–~29! and~30!.
Under the simplification~25!, Eq. ~24! is simplified to

22c ttcy22c tyc t14u2y14(
i 51

N

(
j 51

M

ai j ~qj 0pi314qj 3pi0!50, ~31!

which is the only constraint condition amongM1N functionspi3 and qj 3 . In other words,M
1N21 resonance conditions satisfy identically atk53, andN1M21 functions ofpi3 andqj 3

are arbitrary. Fork54, the resonance condition reads

u3y1(
i 51

N

(
j 51

M

ai j Fqj 3pi11qj 1pi31qj 2pi21
1

4
~2u2qj 21 iq j 2t12iq j 3c t22u3qj 1!pi0

1
1

4
~2u2pi22 ipi2t22ipi3c t22u3pi1!qj 0G50, ~32!

while pi4 andqj 4 are expressed as

pi452 1
4 ~3u4pi01 ipi2t12ipi3c t12u3pi11u2pi2!, ~33!

qj 45 1
4 ~ iq j 2t23u4qj 012iq j 3c t22u3qj 12u2qj 2! ~34!

for arbitraryu4 . After substituting~26!–~31! into ~32!, one can see that the resonance condit
~32! is also satisfied identically. So the (211)-dimensional (N1M )-component AKNS system
~1!–~3! is Painleve´ integrable.

III. GENERALIZED KMV SYMMETRY ALGEBRA OF THE MODEL

In the symmetry study of the (211)-dimensional integrable models, we have found that th
exists a quite universal symmetry algebra, the generalized centerless Virasoro type sym
algebra~or named Witt algebra!.12 We had defined the Virasoro integrability if a model posses
the generalized centerless Virasoro type symmetry algebra and a system method was estab
obtain the Virasoro integrable models.13 In this section, we are interested in studying the symme
structure of the (211)-dimensional AKNS system~1!–~3! at first and then investigating whethe
the (211)-dimensional AKNS system~1!–~3! is Virasoro integrable.

There are some different types of methods to find the symmetries of a model, say, the st
classical Lie approach,20 direct Lie point symmetry ansatz21 and the formal series symmetr
approach.12 In this article we use the formal series symmetry approach to find the symmetri
the (211)-dimensional AKNS system~1!–~3!. A symmetry of the system~1!–~3! is defined as a
solution of the linearized system of~1!–~3!,

iPit1Pixx1Piux1piUx50, i 51,2,. . . ,N, ~35!

2 iQ jt1Qjxx1Qjux1qjUx50, j 51,2,. . . ,M , ~36!

Uy1(
i 51

N

(
j 51

M

ai j ~Piqj1piQj !50, ~37!

which means the system~1!–~3! is form invariant under the transformation

$p1 ,p2 , . . . ,qN ,q1 ,q2 , . . . ,qM ,u%→$p1 ,p2 , . . . ,pN ,q1 ,q2 , . . . ,qM ,u%

1e$P1 ,P2 , . . . ,PN ,Q1 ,Q2 , . . . ,QM ,U%, ~38!
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wheree is an infinitesimal parameter. To solve the symmetry definition equations~35!–~37!, we
assume that$Pi ,Qj ,U% has the form

Pi5 (
k50

`

f (2k)Pi@k#, i 51,2,. . . ,N, ~39!

Qj5 (
k50

`

f (2k)Qj@k#, j 51,2,. . . ,M , ~40!

U5 (
k50

`

f (2k)U@k#, ~41!

where f [ f (t) is an arbitrary function oft, f (k)5dkf /dtk , f (21)5* t f dt and the undetermined
functionsPi@k#, Qj@k# andU@k# should be determined later.

Substituting~39!–~41! into ~35!–~37! and vanishing the coefficients off (2k) for different k
thanks to f being an arbitrary function, we can obtain the recursion relation for the funct
Pi@k#, Qj@k# andU@k#:

Pi@k#5~2] t1 i ]x
21 iux!Pi@k21#1 ipiUx@k21#, i 51,2,. . . ,N, ~42!

Qj@k#5~2] t2 i ]x
22 iux!Qj@k21#2 iq jUx@k21#, j 51,2,. . . ,M , ~43!

Uy@k#52(
i 51

N

(
j 51

M

ai j ~Pi@k#qj1piQj@k# ! ~44!

with

P1@0#5P2@0#5¯5PN@0#5Q1@0#5Q2@0#5¯5QM@0#50, U@0#5g~x,t !, ~45!

andg(x,t) being an arbitrary function of$x,t%. Usually the formal series symmetries~39!–~41!
with ~42!–~45! will not be truncated for the generalg(x,t). However, as in other cases~like the
KP, DS and Toda equations12,22!, if we selectg(x,t) as some polynomial functions ofx, we may
obtain some truncated symmetries. It is known that, for some types of (211)-dimensional inte-
grable models~such as the KP and the Toda equations!, one may obtain infinitely many truncate
symmetries,12 while for some other types of (211)-dimensional integrable models~like the DS
and the SK equations!, one can obtain only finite numbers of the truncated symmetries.22 For the
(211)-dimensional (N1M )-component AKNS system, we can obtain again only finite numb
of the truncated symmetries. Here are the final results obtained from the selections of the fu
g(x,t):

s05 fS 0
0
]

0
0
0
]

0
1

D , s15 i fS p1

p2

]

pN

2q1

2q2

]

2qM

0

D 1 ḟS 0
0
]

0
0
0
]

0
x

D , ~46!
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s2524 fS p1x

p2x

]

pNx

q1x

q2x

]

qMx

ux

D 12ix ḟS p1

p2

]

pN

2q1

2q2

]

2qM

0

D 1 f̈S 0
0
]

0
0
0
]

0
x2

D , ~47!

s35224fS p1t

p2t

]

pNt

q1t

q2t

]

qMt

ut

D 26 ḟS 2xp1x1p1

2xp2x1P2

]

2xpNx1pN

2xq1x1q1

2xq2x1q2

]

2xqMx1qM

2xux12u

D 13ix2 f̈S p1

p2

]

pN

2q1

2q2

]

2qM

0

D 1 f (3)S 0
0
]

0
0
0
]

0
x2

D . ~48!

Similarly, if we change the functionf [ f (t) in ~39!–~41! as h[h(y), then we can obtain
another set of formal series symmetry with two truncated ones:

S052hS p1

p2

]

pN

2q1

2q2

]

2qM

0

D , S152hS p1y

p2y

]

pNy

q1y

q2y

]

qMy

uy

D 2
1

2
ḣS p1

p2

]

pN

q1

q2

]

qM

0

D . ~49!

All the truncated Lie point symmetries expressed by~46!–~49! can all be obtained by using
other types of approaches like the methods described in Ref. 20 and/or in Ref. 21.

It is easy to prove that the symmetries~46!–~48! and ~49! constitute the following closed
symmetry algebra

@s0~ f 1!,s0~ f 2!#5@s0~ f 1!,s1~ f 2!#5@s1~ f 1!,s1~ f 2!#5@S0~h1!,S0~h2!#5@s0~ f !,S0~h!#

5@s1~ f !,S0~h!#5@s2~ f !,S0~h!#5@s3~ f !,S0~h!#5@s0~ f !,S1~h!#

5@s1~ f !,S1~h!#5@s2~ f !,S1~h!#5@s3~ f !,S1~h!#50, ~50!

@s0~ f 1!,s3~ f 2!#512s0~ f 2 ḟ 11 f 1 ḟ 2!, ~51!

@s1~ f 1!,s2~ f 2!#54s0~ f 2 ḟ 1!, ~52!

@s1~ f 1!,s3~ f 2!#524s1~ f 2 ḟ 1!, ~53!

@s2~ f 1!,s2~ f 2!#58s1~ f 2 ḟ 12 f 1 ḟ 2!, ~54!
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@s2~ f 1!,s3~ f 2!#512s2~2 f 2 ḟ 12 f 1 ḟ 2!, ~55!

@s3~ f 1!,s3~ f 2!#5s3~ f 2 ḟ 12 f 1 ḟ 2!, ~56!

@S1~h1!,S0~h2!#5S0~h1ḣ2!, ~57!

@S1~h1!,S1~h2!#5S1~ ḣ1h22ḣ2h1!, ~58!

where the commutator@A,B# (A[(A1(pi ,qj ,u),A2(pi ,qj ,u), . . . ,AK(pi ,qj ,u))T, K5N1M
11) is defined as

@A,B#5S A1p1
8 A1p2

8 ¯ A1pN
8 A1q1

8 A1q2
8 ¯ A1qM

8 A1u8

A2p1
8 A2p2

8 ¯ A2pN
8 A2q1

8 A2q2
8 ¯ A2qM

8 A2u8

] ] ] ] ] ] ] ] ]

AKp1
8 AKp2

8 ¯ AKpN
8 AKq1

8 AKq2
8 ¯ AKqM

8 AKu8

D S B1

B2

]

BK

D
2S B1p1

8 B1p2
8 ¯ B1pN

8 B1q1
8 B1q2

8 ¯ B1qM
8 B1u8

B2p1
8 B2p2

8 ¯ B2pN
8 B2q1

8 B2q2
8 ¯ B2qM

8 B2u8

] ] ] ] ] ] ] ] ]

BKp1
8 BKp2

8 ¯ BKpN
8 BKq1

8 BKq2
8 ¯ BKqM

8 BKu8

D S A1

A2

]

AK

D ~59!

and the operatorsAig8 andBig8 , (i 51,2,. . . ,K,g5pi ,qj ,u) are partial linearized operators, say

Akpi
8 h[ lim

e→0

d

de
Ai~p1 ,p2 , . . . ,pk1eh,pk11 , . . . ,pN ,q1 , . . . ,qM ,u!. ~60!

From the symmetry algebra~50!–~58!, we see thats0( f ), s1( f ), s2( f ) constitute an infinite
dimensional general loop algebra,S0(h) constitutes a commute algebra, ands3( f ) and S1(h)
constitute two centerless generalized Virasoro algebra. So according to Ref. 13
(211)-dimensional (N1M )-component AKNS system is Virasoro integrable.

IV. FINITE TRANSFORMATIONS

From the symmetry definition equation~38!, we know that a symmetry transforms a know
solution of the model to a new solution of the same model in infinitesimal form. In order to
someexactsolutions from known ones, we should find the finite transformations from the
tained symmetries. In other words, we should find a symmetry group from the related sym
algebra. Now starting from some special solutions and the finite transformations and usi
general Lie point symmetries~46!–~49!, we can find some interesting solutions. To get the gen
Lie symmetry group, we should solve the following ‘‘initial’’ problem:

dt8

de
5224f 1~ t8!, t8ue505t, ~61!

dy8

de
52g1~y8!, y8ue505y, ~62!

dx8

de
52 f 2~ t8!212

df 1~ t8!

dt8
x8, x8ue505x, ~63!
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dpi8

de
5pi8H~x8,y8,t8!, p8u i e505pi , ~64!

dqj8

de
5qj8R~x8,y8,t8!, q8u j e505qj , ~65!

du8

de
512u8

df 1~ t8!

dt8
1S~x8,t8!, u8ue505u, ~66!

whereH(x8,y8,t8), R(x8,y8,t8), S(x8,t8) are defined as

H~x8,y8,t8!5g2~y8!1
1

2

dg1~y8!

dy8
2 i f 3~ t8!23i

d2f 1~ t8!

dt82 x8222i
df 2~ t8!

dt8
x816

df 1~ t8!

dt8
,

~67!

R~x8,y8,t8!52H~x8,y8,t8!112
df 1~ t8!

dt8
1

dg1~y8!

dy8
, ~68!

S~x8,t8!52x83
d3f 1~ t8!

dt83 2x82
d2f 2~ t8!

dt82 2x8
df 3~ t8!

dt8
2 f 4~ t8!. ~69!

To solve the initial problem~61!–~66!, some different situations should be considered:

~a! f 15g150.
~b! f 150,g1Þ0.
~c! f 1Þ0,g150.
~d! f 1Þ0,g1Þ0.

In the first case (f 15g150), the general solution of~61!–~66! reads

t85t, y85y, x85x2 f 2~ t !e, ~70!

pi8~x8,y8,t8!5@pi~x,y8,t8!exp~eH1~e,x,y8,t8!!#ux5x81 f 2(t8)e , ~71!

qj8~x8,y8,t8!5qj~x81 f 2~ t8!e,y8,t8!exp~2eH1~e,x81 f 2~ t8!e,y8,t8!!, ~72!

u8~x8,y8,t8!5u~x81 f 2~ t8!e,y8,t8!1S1~e,x81 f 2~ t8!e,t8!e, ~73!

where

H1~e,x,y,t ![g2~y!24i f 3~ t !x322i f 2t~ t !x1 i f 2~ t !~6 f 3~ t !x21 f 2t~ t !!e

24i f 3t f 2
2~ t !e21 i f 3~ t ! f 2

3~ t !e3, ~74!

S1~e,x,t ![2 f 4~ t !2x f3t~ t !2x2f 2tt~ t !1 1
2 f 2~ t !~2x f2tt~ t !1 f 2~ t ! f 3t!e2 1

3 f 2
2~ t ! f 2tt~ t !e2.

~75!

In the second case (f 150,g1Þ0), the related symmetry group has the form

t85t, x85x2 f 2~ t !e, ~76!

y85G21~G~y!1e!, G~y![2Ey 1

g1~y1!
dy1 , G21~G~y!!5y, ~77!
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pi8~x8,y8,t8!5 @pi~x,y,t8!exp~H2~e,x,y,t8!!#U
x5x81 f 2~ t !e

y5G21(G(y8)2e)

, ~78!

qj8~x8,y8,t8!5F g1~y!

g1~G21~G~y!1e!!
qj~x,y,t8!exp~2H2~e,x,y,t8!!GUx5x81 f 2~ t !e

y5G21(G(y8)2e)

, ~79!

u8~x8,y8,t8!5~u~x,y,t8!1S1~e,x81 f 2~ t !e,t8!!, ~80!

where

H2~x,y,t ![~H1~e,x,y,t !2g2~y!!e1E
y

G21(G(y)1e)S g2~y1!

g1~y1!
1

g1y1
~y1!

g1~y1!
D dy1 . ~81!

For the third case~g150, f 1Þ0!, the corresponding finite transformation becomes

y85y, t85F21~F~ t !1e!, F~ t ![2
1

24E
t 1

f 1~ t1!
dt1 , F21~F~ t !!5t, ~82!

x85Af 1~ t8!

f 1~ t !
x1

Af 1~ t8!

24 E
t

t8 f 2~ t1!

f 1~ t1!3/2dt1[X1~ t8,x,t !, ~83!

pi8~x8,y8,t8!5H pi~x,y,t !expS 2
1

24Et

t8 H3~ t1!

f 1~ t1!
dt1D J U

t5T(t8)
y5y8
x5X(x8,t8)

, ~84!

qj8~x8,y8,t8!5H qj~x,y,t !Af 1~T~ t8!!

f 1~ t8!
expS 1

24Et

t8 H3~ t1!

f 1~ t1!
dt1D J U

t5T(t8)
y5y8
x5X(x8,t8)

, ~85!

u8~x8,y8,t8!5H u~x,y,t !
Af 1~ t !

Af 1~ t8!
2

1

24Af 1~ t8!
E

t

t8 S~ t1!

Af 1~ t1!
dt1J U

t5T(t8)
y5y8
x5X(x8,t8)

, ~86!

where

H3~ t1![H~x8,y8,t8!u t85t1 ,y85y,x85X1(t1 ,x,t) , ~87!

S3~ t1![S~x8,t8!u t85t1 ,x85X1(t1 ,x,t) , ~88!

T~ t8![F21~F~ t8!2e!, ~89!

X~x8,t8![Af 1~T~ t8!!

f 1~ t8!
x82

Af 1~T~ t8!!

24 E
T(t8)

t8 f 2~ t1!

f 1~ t1!3/2dt1 . ~90!

For the fourth situation, the general solution of~61!–~66! reads

t85F21~F~ t !1e!, F~ t ![2
1

24E
t 1

f 1~ t1!
dt1 , F21~F~ t !!5t, ~91!
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y85G21~G~y!1e!, G~y![2Ey 1

g1~y1!
dy1 , G21~G~y!!5y, ~92!

x85Af 1~ t8!

f 1~ t !
x1

Af 1~ t8!

24 E
t

t8 f 2~ t1!

f 1~ t1!3/2dt1[X1~ t8,x,t !, ~93!

pi8~x8,y8,t8!5H pi~x,y,t !expS 2
1

24Et

t8 H4~ t1!

f 1~ t1!
dt1D J U

t5T(t8)
y5Y(y8)
x5X(x8,t8)

, ~94!

qj8~x8,y8,t8!5H qj~x,y,t !Af 1~T~ t8!!

f 1~ t8!

g1~y!

g1~y8!
expS 1

24Et

t8 H4~ t1!

f 1~ t1!
dt1D J U

t5T(t8)
y5Y(y8)
x5X(x8,t8)

, ~95!

u8~x8,y8,t8!5H u~x,y,t !
Af 1~ t !

Af 1~ t8!
2

1

24Af 1~ t8!
E

t

t8 S3~ t1!

Af 1~ t1!
dt1J U

t5T(t8)
y5Y(y8)
x5X(x8,t8)

, ~96!

where

H4~ t1![H~x8,y8,t8!u t85t1 ,y85G21(G(y)1F(t1)2F(t)),x85X1(t1 ,x,t) , ~97!

Y~y8!5G21~G~y8!2e!. ~98!

From the above four situations, we know that if$pi(x,y,t), qj (x,y,t), u(x,y,t)% is a solution
of the system~1!–~3!, then $pi8(x8,y8,t8), qj8(x8,y8,t8), u8(x8,y8,t8)% shown by ~70!–~75!,
~76!–~80!, ~82!–~86! and ~91!–~96! are all solutions of the same AKNS system~1!–~3! with the
replacement$x,y,t,pi ,qj ,u%→$x8,y8,t8,pi8 ,qj8 ,u8%. Because of the entrance of the arbitra
functions g1(y),g2(y), f 1(t), f 2(t), f 3(t), f 4(t), abundant localized structures of the (
11)-dimensional (M1N)-component AKNS system can be obtained from some simple s
tions. To exhibit some interesting results explicitly, we discuss only the quantitypq of the simplest
case forM5N51, p[p1 , q[q1 . For the quantitypq, the corresponding finite transformation
have the forms

p~x,y,t !q~x,y,t !→p~x1 f 2~ t !e,y,t !q~x1 f 2~ t !e,y,t ! ~99!

for the first case,

p~x,y,t !q~x,y,t !→pq5
g1~Y~y!!

g1~y!
p~x1e f 2~ t !,Y~y!,t !q~x1e f 2~ t !,Y~y!,t ! ~100!

for the second case,

p~x,y,t !q~x,y,t !→pq5Af 1~T~ t !!

f 1~ t !
p~X~x,t !,Y~y!,T~ t !!q~X~x,t !,Y~y!,T~ t !! ~101!

for the third case and

p~x,y,t !q~x,y,t !→pq5Af 1~T~ t !!

f 1~ t !

g1~Y~y!!

g1~y!
p~X~x,t !,Y~y!,T~ t !!q~X~x,t !,Y~y!,T~ t !!

~102!
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for the fourth case. In Eqs.~99!–~102!, we have dropped out primes because the systems with
without primes are totally the same. Now let us write down some simple solutions of th
11)-dimensional AKNS system~1!–~3!. It is straightforward to see that the system~1!–~3!
possesses then parallel ~parallel to the linex2y/c250 with constantc! bright soliton and/orn
parallel~parallel to the linex1y/c250! dark soliton solutions because the system will be redu
to the (111)-dimensional AKNS system~s!:

ipt1pj6j6
7c2p2q50, ~103!

2 iqt1qj6j6
7c2q2p50, j65x6y/c2. ~104!

Then dark soliton solutions of~103! and~104! with up sign and then bright soliton solutions of
~103! and ~104! with lower sign are known in the literature. Now using the standardn bright
soliton solutions of~103! and ~104! located at

j25vkt1xk0 , k51,2,. . . ,n, ~105!

and the transformation relation~99!–~102!, we can obtain many (211)-dimensional localized
structures. For instance, if we take

f 1~ t !5const. ~106!

andg1(Y(y))/g1(y) asm straight line~parallel tox axis! solitons, say,

g1~Y~y!!

g1~y!
5(

j 51

m

Qj~y2y0 j !, ~107!

whereQj (y2yj 0) is a straight line soliton located aty5yj 0 , thenpq expressed by~102! becomes
a special type ofn3m ~or even more! dromion solution. All the dromions are located at the cro
points and very closed points of the straight line solitons located aty5y0 j and the curved line
solitons located at

X2Y~y!/c25vkt1xk0 , k51,2,. . . ,N, ~108!

with X and Y(y) being given by~90! and ~98!, respectively. In high dimensions, the breath
solutions may have also abundant structures. For instance, if we take the seed solution
multi-breather solutions, then~102! with ~106! and~107! becomes the breatherlike dromion sol
tions.

V. SIMILARITY REDUCTIONS

In this section, we try to find the solutions that are invariant under the symmetry g
transformations. To find the group transformation invariant solutions of the (211)-dimensional
(M1N)-component AKNS system, we should solve the following symmetry constraint equa

S 224f 1~ t !pit2~ f 2~ t !112f 1tx!pix2g1~y!piy1H~x,y,t !
224f 1~ t !qit2~ f 2~ t !112f 1tx!qix2g1~y!qiy1R~x,y,t !

224f 1~ t !ut2~ f 2~ t !112f 1tx!ux2g1~y!uy1S~x,t !
D 50, ~109!

at first, whereH(x,y,t), R(x,y,t), S(x,t) are given by~67!–~69!. One can solve the symmetr
constraint equation~109! by solving the characteristic equation

dt

224f 1~ t !
5

dx

f 2~ t !112f 1tx
5

dy

2g1~y!
5

dpi

H~x,y,t !
5

dqj

R~x,y,t !
5

du

S~x,t !
, ~110!
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where H(x,y,t), R(x,y,t) and S(x,t) are given by~67!–~69!. It is easy to find that all the
solutions of the characteristic Eq.~110! have the forms

pi5p i~j,h!exp~p0~x,y,t !!, j[j~x,y,t !, h[h~x,y,t !, ~111!

qj5t j~j,h!exp~t0~x,y,t !!, ~112!

u5b~x,y,t !u1~j,h!1u0~x,y,t !. ~113!

The more general results but with the same forms as~111!–~113! can also be obtained by the C
~Clarkson and Kruskal! direct method23 or the nonclassical Lie approach.24 So, in the following,
we list four general results directly with the forms~111!–~113! instead of solving the characterist
equation~110!.

A. Case 1

The simplest case

j5y, h5t, b~x,y,t !51, ~114!

u0~x,y,t !5U3~ t !x31U2~ t !x21U1~ t !x, ~115!

p0~x,y,t !5 1
2 ~ 1

2 G1~y,t !2 1
2 V1~y,t !!x21F1~y,t !x, ~116!

t0~x,y,t !52p~x,y,t ! ~117!

is related to the generalization of~110! with f 1(t)5g1(y)50. The reduction fieldst j (y,t),
p i(y,t) andu1(y,t) satisfy the following reduction equations

G1~y,t !p i~y,t !1 ip i t~y,t !50, ~118!

V1~y,t !t j~y,t !2 i t j t~y,t !50, ~119!

u1y~y,t !1(
i 51

N

(
j 51

M

ai j p i~y,t !t j~y,t !50, ~120!

where

V1~y,t !52U1~ t !2G1~y,t !12F1~y,t !2, ~121!

while F1(y,t) andG1(y,t) are determined by

F1t~y,t !52i @G1~y,t !F1~y,t !2F1~y,t !32F1~y,t !U1~ t !1U2~ t !# ~122!

and

G1t~y,t !5 i @6U3~ t !22F1~y,t !414F1~y,t !U2~ t !2 iU 1t~ t !12G1~y,t !2

24G1~y,t !U1~ t !12U1~ t !2#, ~123!

andU1(t), U2(t) andU3(t) are arbitrary functions oft. When the functionsF1(y,t) andG1(y,t)
are fixed by~122! and ~123!, the general solution of the reduction equations~118!–~120! can be
obtained by partial integrations:

p i5Ai~y!expS 2 i E G1~y,t !dtD , ~124!
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t j5Bj~y!expS i E V1~y,t !dtD , ~125!

u1~y,t !52(
i 51

N

(
j 51

M E ai j AiBj expS i E ~V1~y,t !2G1~y,t !!dtDdy, ~126!

with arbitrary functionsAi(y), i 51,2,. . . ,N, andBj (y), j 51,2,. . . ,M .

B. Case 2

For the second case, we have

j5x2 f 2~ t !G1~y!, h5t, b~x,y,t !50, ~127!

p0~x,y,t !5 1
2 i f 2t~ t !G1~y!x1A1~y,t !, ~128!

t0~x,y,t !52 1
2 i f 2t~ t !G1~y!x2A1~y,t !1A2~y!, ~129!

u0~x,y,t !5 1
4 f 2tt~ t !G1~y!x22 iA1t~y,t !x1 1

4 f 2t~ t !2G1~y!2x1A0~y,t !, ~130!

and the reduction fieldst j (j,t), p i(j,t) andu1(j,t) satisfy the reduction equations:

p i jj~j,t !1 ip i t~j,t !1u1j~j,t !p i~j,t !50, ~131!

t j jj~j,t !2 i t j t~j,t !1u1j~j,t !t j~j,t !50, ~132!

2u1j~j,t ! f 2~ t !1 1
4 f 2tt~ t !j21H1~ t !j1H0~ t !1(

i 51

N

(
j 51

M

ai j p i~j,t !t j~j,t !50, ~133!

where

A0~y,t !5 1
12 f 2tt~ t ! f 2~ t !2G1~y!32 1

2 H1~ t ! f 2~ t !G1~y!21H0~ t !G1~y!1H2~ t !, ~134!

A1yt~y,t !5 1
2 iG1y~y!~2 f 2tt~ t !! f 2~ t !G1~y!2 f 2t~ t !2G1~y!12H1~ t !, ~135!

A2~y!5 ln~G1y~y!!, ~136!

andH0(t), H1(t), H2(t) and f 2(t) are arbitrary functions oft andG1(y) is an arbitrary function
of y.

The reduction system~131!–~133! is equivalent to the (111)-dimensional (M
1N)-component AKNS system

RiXX~X,T!1 iRiT~X,T!1Ri~X,T! (
n51

N

(
m51

M

anmRn~X,T!Sm~X,T!50, ~137!

SjXX~X,T!2 iSjT~X,T!1Sj~X,T!(
i 51

N

(
j 51

M

ai j Rn~X,T!Sm~X,T!50, ~138!

with

p i~j,t !5Ri~X,T!expS 2 i
h1t~ t !

2h1~ t !
j22 i

h2t~ t !

h1~ t !
j1 ih3~ t ! D , ~139!
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t j~j,t !5 f 2~ t !Sj~X,T!expS i
h1t~ t !

2h1~ t !
j21 i

h2t~ t !

h1~ t !
j2 ih3~ t ! D , ~140!

u1~j,t !5
1

12f 2~ t !
@ f 2tt~ t !j316H1~ t !j2112H0~ t !j112f 2~ t !2U~X,T!#,

and$X, T, h1 , h2 , h3% being determined by

X5 f 2~ t !j12E t

h2t~ t !h1~ t !dt, T~ t !5E t

f 2~ t !2dt, ~141!

h1~ t !25 f 2~ t !, h2~ t !52E t

f ~ t8!23/2E t8
H1~ t1!dt1dt8, ~142!

h3~ t !5E t 1

2 f 2~ t8!2 F i f 2~ t8! f 2t8~ t8!12 f 2~ t8!H0~ t8!22S E t8
H1~ t1!dt1D 2Gdt8. ~143!

Actually, the second situation shown by~131!–~133! or equivalently by~137!–~138! is the
generalization of that obtained by the classical Lie point symmetry approach of~110! for f 1(t)
50, g1(y)Þ0.

C. Case 3

The third case possesses the solution

j5F2~ t !x1F3~ t !, h5y, b~x,y,t !51, ~144!

p0~x,y,t !52
iF 2t~ t !

4F2~ t !
x21

iF 3t~ t !

2F2~ t !
x1F1~ t !1 i E H1~y!dyE F2~ t !2dt, ~145!

t0~x,y,t !52p0~x,y,t !1 ln~F2~ t !!, ~146!

u0~x,y,t !5S 2
F2tt~ t !

12F2~ t !
1

1

6

F2t~ t !2

F2~ t !2 D x31S 1

4

F3tt~ t !

F2~ t !
2

1

2

F3t~ t !F2t~ t !

F2~ t !2 D x2

1S iF 2t~ t !

2F2~ t !
1

1

4

F3t~ t !2

F2~ t !2 2 iF 1t~ t !1F2~ t !2E H1~y!dyD x

1F2~ t !E H0~y!dy2F2~ t !F3~ t !E H1~y!dy1F0~ t !, ~147!

and the reduction fieldst j (j,y), p i(j,y) andu1(j,y) satisfy the reduction equations:

p i jj~j,y!1u1j~j,y!p i~j,y!50, ~148!

t j jj~j,y!1u1j~j,y!t j~j,y!50, ~149!

u1y~j,y!1H1~y!j1H0~y!1(
i 51

N

(
j 51

M

ai j p i~j,y!t j~j,y!50, ~150!

and F1(t), F2(t) F3(t), F0(t), H0(y) and H1(y) are all arbitrary functions of the indicate
variables. The third case is the generalization of the solution of~110! with f 1(t)Þ0,g1(y)50.
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D. Case 4

The fourth case is related to the generalized case of~110! with f 1(t)Þ0,g1(y)Þ0. In this
case, the general solution has the form

j5F2~ t !x1F3~ t !, h5F1~ t !1G1~y!, ~151!

b~x,y,t !5F2~ t !5AF1t, ~152!

p0~x,y,t !52
1

4F2~ t !
~ iF 2t~ t !x212iF 3t~ t !x22g0~y,t !!, ~153!

t0~x,y,t !5
1

4F2~ t !
~ iF 2t~ t !x212iF 3t~ t !x22g0~y,t !14F2~ t !@ ln~G1y~y!u1

21!1 ln~F2~ t !!# !,

~154!

u0~x,y,t !5
1

12F2~ t !2 ~~2F2t~ t !22F2~ t !F2tt~ t !!x32~3F2~ t !F3tt~ t !26F3t~ t !F2t~ t !!x2

1~26iF 2~ t !g0t~y,t !16iF 2t~ t !~g0~y,t !1F2~ t !!13F3t~ t !2!x1g1~y,t !F2~ t !2!,

~155!

and the reduction fieldst j (j,h), p i(j,h) andu1(j,h) satisfy the reduction equations:

p i jj~j,h!1u1j~j,h!p i~j,h!1 ip ih~j,h!50, ~156!

t j jj~j,h!1u1j~j,h!t j~j,h!2 i t j h~j,h!50, ~157!

u1h~j,h!u11u21~h!j1u22~h!1(
i 51

N

(
j 51

M

ai j p i~j,h!t j~j,h!50, ~158!

where

g1~y,t ![g1~h,t !512F2~ t !u1
21E ~u21~h!F3~ t !1u22~h!!dh1F6~ t !, ~159!

g0~y,t ![g0~h,t !5F4~ t !1F5~h!F2~ t !12iF 2~ t !u1
21E E F2~ t !2u21~h!dtdh, ~160!

while u1 is an arbitrary constant andG1(y), u21(h), u22(h), F5(h), F1(t), F3(t), F4(t) and
F6(t) are all arbitrary functions of the indicated arguments.

VI. ORDINARY DIFFERENTIAL EQUATION „ODE… REDUCTIONS

To find the ODE reductions, one may directly study the ODE reductions of the original sy
~1!–~3! by using the CK direct method as for the KP equation.25 However, in this section, we trea
the problem alternatively. Actually, we have obtained the (111)-dimensional partial differentia
equation ~PDE! reductions of the system~1!–~3! in the last section. If we reduce thes
(111)-dimensional equations further to ODEs, then the ODE reductions of the original sy
~1!–~3! are found at the same time thanks to the results of the last section.

Because the first type of reduction equation system~118!–~120! had been solved out and th
third reduction system~148!–~150! can be considered as a special case of the fourth typ
reduction system~156!–~158!, we only list the ODE reductions for the (111)-dimensional sys-
tems~137! and ~138! and ~156!–~158!.
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A. ODE reductions of „137… and „138…

For the (111)-dimensional (M1N)-component AKNS system~137! and ~138!, using the
standard classical and nonclassical Lie group approach and/or the direct method, we can fi
types of similarity ODE reductions.

The first type of ODE reduction of the system~137! and ~138! reads

Ri~X,T!5~T1t0!c expS i ~X1x0!2

4~T1t0!
2

ic0~X1x0!

AT1t0

2 ic1AT1t0D r i~Z!, ~161!

Sj~X,T!5~T1t0!2c21 expS 2
i ~X1x0!2

4~T1t0!
1

ic0~X1x0!

AT1t0

1 ic1AT1t0D sj~Z!, ~162!

i ~Z24c0!r iZ12r iZZ1~ i 12ic22c0
21c0Z!r i12r i (

n51

N

(
m51

M

anmr nsm50, ~163!

2 i ~Z24c0!sjZ12sjZZ1~ i 12ic22c0
21c0Z!sj12sj (

n51

N

(
m51

M

anmr nsm50, ~164!

with

Z5
~X1x0!

AT1t0

1
c1AT1t0

c0
~165!

andc, c0 , x0 , t0 andc1 being arbitrary constants.
For the second type of ODE reduction, we have

Ri~X,T!5expS iX214ic1X

4~T1t0! D r i~T!, ~166!

Sj~X,T!5expS 2
iX214ic1X

4~T1t0! D sj~T!, ~167!

ir iT1S c1
2

T2 2
i

2TD r i1r i (
n51

N

(
m51

M

anmr nsm50, ~168!

2 isjT1S c1
2

T2 1
i

2TD sj1sj (
n51

N

(
m51

M

anmr nsm50, ~169!

wherec1 and t0 are arbitrary constants.

B. ODE reductions of „156…–„158…

For the (111)-dimensional system~156!–~158!, we can find three types of ODE reduction
The first type of ODE reduction of~156!–~158! reads

p i~j,h!5 f 0r i~Z!, Z5j1x0 , ~170!

t j~j,h!5~ iu1f 0f 0hh2 iu2f 0h
2 2 f 0

2u21~h!!
sj~Z!

f 0
3a1

, ~171!
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u5u1~Z!2 i
f 0h

f 0
j1u0~h!, ~172!

r iZZ1r iu1Z50, ~173!

sjZZ1sju1z1 iA1sj50, ~174!

a1Z1a01 (
n51

N

(
m51

M

ai j r isj50, ~175!

wherea0 , a1 andA1 are arbitrary constants andf 0 andu0 are determined by

f 0hhh52A1S f 0tt2
f 0h

2

f 0
1

i f 0u21

u1
D 2 i

f 0u21h

u1
13

f 0h f 0hh

f 0
22

f 0h
3

f 0
2 ~176!

and

u0h5 i ~a01a1j0!S f 0h
2

a1f 0
2 2

f 0hh

a1f 0
2

iu21

a1u1
D 2

u22

u1
. ~177!

For the second type of similarity reduction of the system~156!–~158!, we have

p i~j,h!5e2c2(h)j22c3(h)jr i~h!, t j~j, h!5ec2(h)j21c3(h)jsj~h!, ~178!

u5 1
3 ~ ic2h24c2

2!j31 1
2 ~ ic3h24c2c3!j22~2c21c3

2!j1u0~h!1ju1~h!, ~179!

ir ih2~4c22u1!r i50, ~180!

isj h2u1sj50, ~181!

u1u0h1u221 (
n51

N

(
m51

M

ai j r isj50, ~182!

where the functionsc2 , c3 andu1 are given by

c252 i
c1

4
tanh~c1~h2h0!!, c35c5 tanh~c1~h2h0!!1c4 sech~c1~h2h0!! ~183!

and

u1h5c1 sech~c1~h2h0!!S 2c4c5~2 sech2~c1~h2h0!!21!2
i

2
c1 sech~c1~h2h0!! D

12c1~c5
22c4

2!tanh~c1~h2h0!!sech2~c1~h2h0!!2
u21

u1
, ~184!

andc1 , c4 , c5 andh0 are arbitrary constants.
The third type of ODE reduction of the system~156!–~158! has the special form

p i5 f 0 expS 2
i

4z1
z1hj~j22j0! D r i~Z!, ~185!
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t j5
z1h

f 0A2
expS i

4z1
z1hj~j22j0! D sj~Z!, ~186!

u5u02
j2~j13j0!

12z1
2 ~z1z1hh22z1h

2 !2S i f 0h

f 0
2

iz1h

2z1
2

j0
2z1h

2

4z1
2 D j, ~187!

Z5z1~j1j0!1Z0 , ~188!

z1[z1~h!5A c1

exp~c1~h2h0!!2A1
, ~189!

r iZZ1r iu1Z50, ~190!

sjZZ1sju1Z1 iA1sj50, ~191!

4A2u1~Z02Z!u1Z24u1A2u124a0A224a1A2Z2u1Z0A2A1Z224(
n51

N

(
m51

M

ai j r isj50,

~192!

where the functionsu0[u0(h) and f 0[ f 0(h) are determined by

u0h5
z1h

12u1
@2A1u1~z1j022Z0!~z1j01Z0!2112~a01a1Z01a1z1j0!#2

u22

u1
~193!

and

f 0hh5
i f 0z1z1h

4 S 4a1

u1
12iA11A1Z0

22A1j0
2z1

2D1
f 0h

2

f 0
1

1

2
iA1j0

2f 0z1h
2 2

u21f 0

u1
, ~194!

while A1 , A2 , a0 , a1 , c1 , h0 , j0 andZ0 are all arbitrary constants.

VII. EXACT SOLUTIONS OF THE M¿N COMPONENT AKNS SYSTEM OBTAINED FROM
VARIABLE SEPARATION APPROACH

It is well known that the Painleve´ analysis can also be used to obtain other interes
properties.7 For instance, substituting the truncated form of the Painleve´ expansion in the origina
system will lead to its multi-linear form. For the (M1N)-component AKNS system~1!–~3!,
substituting the truncated Painleve´ expansion

pi5
Pi

f
1pi0 , qj5

Qj

f
1qj 0 , u5

2 f x

f
1u0 ~195!

into the model yields the following bilinear form:

~ iD t1Dx
21u0x!Pi• f 1pi0Dx

2f • f 50, ~196!

~2 iD t1Dx
21u0x!Qj• f 1qj 0Dx

2f • f 50, ~197!

DxDyf • f 1(
i 51

N

(
j 51

M

ai j ~PiQj1pi0f Qj1qj 0f Pi !50, ~198!

whereDt , Dx andDy are the standard Hirota’s bilinear operator and$pi0 ,qj 0 ,u0% is an arbitrary
seed solution of the system~1!–~3!.
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If we select the seed solution as

pi05qj 050, u05u0~x,t !, ~199!

whereu05u0(x,t) is an arbitrary function ofx andt, then the bilinear system~196!–~198! can be
solved by using the variable separation ansatz

f 5a1F~x,t !1a2G~y,t !1a3F~x,t !G~y,t !, ~200!

Pi5F1i~x,t !G1i~y,t !exp~ iR1i~x,t !1 iS1i~y,t !!, ~201!

Qj5F2 j~x,t !G2 j~y,t !exp~2 iR2 j~x,t !2 iS2 j~y,t !!, ~202!

where the space variablesx and y have been totally separated into the functio
$F,F1i ,F2 j ,R1i ,R2 j% and$G,G1i ,G2 j ,S1i ,S2 j%, respectively.

Substituting the ansatz into~196!–~198! and using the fact that the space variablesx and y
have been separated into different functions$F,F1i ,F2 j ,R1i ,R2 j% and$G,G1i ,G2 j ,S1i ,S2 j%, we
can find that

G1i5
b1i

a1i~ t !
AGy, G2 j5

b2 j

a2 j~ t !
AGy, ~203!

F1i5a1i~ t !AFx, F2 j5a2 j~ t !AFx, ~204!

S1i5B~ t !1s1i~y!, S2 j5B~ t !1s2 j~y!, ~205!

R1ix5R2 jx[Rx52
1

2a1a2Fx
~a2

2a0~ t !1a1a2Ft1a2a2~ t !F1a1F2!, ~206!

Gt5
G2

a1
2 ~a3

3a0~ t !2a3a2~ t !1a1~ t !!1
G

a1
~2a3a0~ t !2a2~ t !!1a0~ t !, ~207!

u0x5
1

4a1
2a2

2Fx
2 ~a1

2a2
2Ft

212a1a2~a2a0~ t !1a2a2~ t !F1a1~ t !F2!Ft

1a2
2a1

2~Fxx
2 22FxFxxx14Fx

2~Bt~ t !1Rt!!1a2
2a2~ t !2F2

12a2a2~ t !F~a2
2a0~ t !1F2a1~ t !!1~a2

2a0~ t !1F2a1~ t !!2!, ~208!

whereb1i andb2 j are arbitrary constants andF(x,t),a1i(t), a2 j (t), s1i(y), s2 j (y), B(t), a0(t),
a1(t), a2(t) are all arbitrary functions of the indicated variables with the condition

(
i 51

N

(
j 51

M

ai j b1ib2 j exp~ i ~s1i~y!2s2 j~y!!!52a1a2 . ~209!

Hence, for the quantityv[( i 51
N ( j 51

M ai j piqj , we have

v5
2a1a2FxGy

~a1F1a2G1a3FG!2 ~210!

with F being an arbitrary function ofx and t andG5G(y,t) being an arbitrary solution of the
Riccati equation ~207!. It is interesting that the expression~210! is valid for many
(211)-dimensional models like the DS equation, NNV system, ANNV equation and ADS m
and the dispersive long wave equation, etc.4,17–19Because of the arbitrariness of the functionsF
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FIG. 1. A special two-solitoff solution for the quantityv shown by~210! with ~211! and ~212! at time t50.

FIG. 2. A single dromion solution for the quantityv shown by~210! with ~211! and ~213! at time t50.

FIG. 3. A special four-dromion solution shown by~210! with ~214! and ~217! at time t50.

FIG. 4. A special lump solution for~210! with ~219! at time t50.
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andG included in~210!, the quantityv possesses quite rich structures. For instance, as menti
in Refs. 4 and 17–19, if we select the functionsF andG appropriately, we can obtain many kind
of localized solutions like the multi-solitoff solutions, multi-dromion and dromion lattice so
tions, multiple ring soliton solutions and so on. Though these types of localized solutions
been discussed for other models, we still write down some special examples for complete

Example 1: Multi-solitoff solutions and multi-dromion solutions driven by straight-line s
tons. If we restrict the functionsF andG of ~210! as

F511(
i 51

N

exp~kix1v i t1x0i ![11(
i 51

N

exp~j i !,

~211!

FIG. 5. A special dromion solution with the selection~221! at time t50.

FIG. 6. The evolution of two saddle type ring soliton solution shown by~210! with the selection~222! at the times~a!
t521, ~b! t520.4, ~c! t50, ~d! t50.4, and~e! t51.
                                                                                                                



a

4101J. Math. Phys., Vol. 43, No. 8, August 2002 (211)-dimensional (M1N)-component AKNS system

                    
G5(
i 51

M

exp~Kiy1y0i !(
j 51

J

exp~V j t !,

wherex0i , y0i , ki , v i , Ki andV i are arbitrary constants andM , N andJ are arbitrary positive
integers, then we have the multi-solitoff solutions~we call a half straight line soliton solution as

FIG. 6. ~Continued.!
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solitoff which is caused by the resonance conditiona350! and the first type of special multi
dromion solutions (a3Þ0) driven by multiple straight line solitons. The selection~211! corre-
sponds to

a0~ t !50, a1~ t !5a3a2~ t !52a1a3

( j 51
J V j exp~V j t !

( j 51
J exp~V j t !

.

For the solution~211!, there is no dispersion relation amongki , v i , Ki andV i .
Figure 1 shows the structure of a two-solitoff solution for the quantityv shown by~210! with

~211! and

M52, N51, k15K151, K2522, a15a251, a350,
~212!

x015y0150, y02529

at time t50.
Figure 2 shows the structure of a single dromion solution for the quantityv shown by~210!

with ~211! and

M51, N51, k15K153, a1510, a253, a350, x015y0150 ~213!

FIG. 7. ~a! The contour plot related to Fig. 6~a!. ~b! The contour plot of Fig. 6~e!. The values of the contours in thes
figures from the outside contours to the inside contours areuvu50.01, uvu50.1, anduvu50.4, respectively.
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at time t50.
Example 2: Multi-dromion solutions driven by curved line ghost solitons. Recently, Lou

pointed out that for many (211)-dimensional models, a dromion may be driven not only
straight line solitons26 but also by curved line solitons.27 Actually, ~210! can be rewritten as

v5
QyPx~a1a2!

2@A1 cosh1
2 ~P1Q1C1!1A2 cosh1

2 ~P2Q1C2!#2
, ~214!

whereP andQ are related top andq by p5b1 exp(P), q5b2 exp(Q) and

A15Aa3~a1b11a2b21a3b1b2!, A25A~a11a3b2!~a21a3b1!,

C25 ln
a11a3b2

a21a3b2
, C15 ln

a3

a1b11a2b21a3b1b2
,

with arbitrary constantsb1 andb2 .
So the general multi-dromion solutions of the model expressed by~210! @or equivalently

~214!# are driven by two sets of straight line solitons and some curved line solitons. The fir
of straight line solitons appears in the factorQy , say, one can take

Qy5(
i 51

N

Qi~y2yi0!, ~215!

FIG. 8. The plots of the pointlike breather solution~210! with ~223! and ~224! and the parametersv5
1
2, a15a2510,

a351, at the times~a! t52 p/4 and~b! t5 p/4, respectively.
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whereQi5Qi(y2yi0) denotes a straight line soliton which is finite at the liney5yi0 and decays
rapidly away from the line. Similarly, the second set of straight line solitons appears in the

Px . Finally, the curved line solitons are determined by the factorsA1 cosh1
2(P1Q1C1) and

A2 cosh1
2(P2Q1C2) of ~214! and the curves are determined by

P1Q1C15min~P1Q1C1!, P2Q1C25min~P2Q1C2!, ~216!

while the number of curved line solitons is determined by the branches of the equations in~216!.
The dromions are located at the cross points and/or the closed points of the straight and
lines.

Figure 3 is a plot of a multi-dromion solution driven by the curved line solitons via taki

FIG. 9. The evolution of a special ring shape breather solution~210! with the selection~225! at the times~a! t521, ~b!
t520.5, ~c! t520.2, ~d! t50, ~e! t50.2, and~f! t51, respectively.
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P5~x2v1t !31
x2v1t

15
, Q5

~y2v2t !5

20
1~y2v2t !31

y2v2t

100
,

~217!

a15a351, a252,b153, b2540, t50.

Example 3: Multi-lump solutions. It is also known that in high dimensions, like the KP a
DSII equations, a special type of localized structure~called lump solutions! may also be formed by
rational functions. Actually, the multi-lump solutions of (211)-dimensional integrable model
can be found by taking the arbitrary functions appropriately.

For the (M1N)-component AKNS system, if we select the functionsF andG of ~210! as any
rational functions with the conditions

F.0, G.0, ;x,y,t, ~218!

FIG. 9. ~Continued.!
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anda1.0, a2.0, a3.0, then we can obtain the nonsingular localized lump solutions. In Fig
we plot a special lump solution~210! with

F511
1

11~x2v1t230!2 1
1

11~x2v2t !2 1
1

11~x2v3t130!2 , ~219!

G5
1

11~y2v4t215!2 1
1

11~y2v5t115!2 , a1510, a2510, a351 ~220!

at time t50.
Example 4: Oscillating dromion solutions. If some periodic functions in space variables a

included in the functionsp and q, we may obtain some types of multi-dromion solutions w
oscillating tails. The oscillated dromion solution in Fig. 5 is related to

F511exp~~x2v1t !cos~2~x2v1t !!1 5
4!, G5exp~y2v2t !,

~221!
a15a2510, a351, t50.

Example 5: Ring soliton solutions. In high dimensions, in addition to the pointlike localize
coherent excitations, there may be some other types of physically significant localized exci
For instance, in (211)-dimensional cases, there may be some types of ring soliton solu
which are not equal to zero identically at some closed curves and decay exponentially awa
the closed curves.17–19,21In Figs. 6 and 7, we plot the interaction property of a two traveling sad
type of ring soliton solution with the selection

FIG. 10. ~a! The evolution plots of the ring type of instanton solution~210! with ~226! at the times~a! t50 and~b! t
510.
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F5expS 2
~x220t !2

10
15D1expS 2

~x120t !2

10
11D , G5expS y2

10
25D , a15a251, a350.

~222!

In Fig. 6, we plot the evolution of the two ring soliton solution for the quantityv expressed by
~210! with ~222! at times~a! t521, ~b! t520.4, ~c! t50, ~d! t50.4 and~e! t51, respectively.
From Figs. 6~a!–6~e!, we can see that the interaction of two ring soliton solutions is elastic. To
more clearly the completely elastic interaction properties between two traveling ring solito
lutions, two counter plots related to Figs. 6~a! and 6~e! are plotted in Fig. 7.

Example 6: Multi-breatherlike soliton solutions. In (111)-dimensional cases, the breath
solutions are another type of important nonlinear excitation. Because of the arbitrariness app
in the functionsF andG of ~210!, the breather solutions of the (211)-dimensional models may
also have quite rich structures. On one hand, any (111)-dimensional breather solutions of th
(111)-dimensional integrable models~like the sine-Gordon model and the nonlinear Schro¨dinger
equation! can be used to construct the breather solutions of the higher dimensional model
the (M1N)-component AKNS system. In Fig. 8, the well known breather solution

F54 arctanS A12v2 sin~vt !

v cosh~A12v2x!
D ~223!

of the sine-Gordon model,Fxx2Ftt5sinF, is taken as the functionF of ~210! and whileG is
taken as

G5exp~y! ~224!

with the parametersv5 1
2, a15a2510, a351. On the other hand, one can put any perio

functions of t into the localized excitations as shown in the examples 1–5 to construct
interesting new breatherlike solutions. Figure 9 shows the evolution behavior of a breath
ring soliton solution shown by~210! with

F5expS 2
1

10
~x220 sin~pt !!215~1.11sin~pt !! D ,

~225!

G5expS y2

10
251sin~pt ! D , a15a251, a350.

From Figs. 9~a!–9~e!, we can see that the breatherlike ring soliton solution can ‘‘breath’’ in so
different ways, say, it can breath not only in its amplitude but also in its shape~like the radius of
the loop! and the position.

Example 7: Multiple instanton solution. If some types of decaying functions of timet are
included in the solutions~210!, then we can find some types of instanton solutions. In Fig. 10,
behavior of a special ring type of instanton solution~210! with

F5expS 2
x2 sech2 t

10
15~1.11sin~pt !! D ,

~226!

G5expS y2 sech2 t

10
25D , a15a251, a350

is exhibited. From Figs. 10~a! and 10~b!, we can see that the amplitude of the ring type
instanton solution~210! with ~226! decays rapidly fromuvu;1 to uvu;1029 as the time increase
from t50 to t510.
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VIII. SUMMARY AND DISCUSSIONS

In summary, the (211)-dimensional (M1N)-component AKNS system@which is the gen-
eralization of the (111)-dimensional multi-component AKNS system and obtained from the in
parameter dependent symmetry constraints of the KP equation# possesses various interesting pro
erties. The model is Painleve´ integrable and Virasoro integrable~possesses infinitely many dimen
sional KMV type symmetry algebra!. The finite transformation~KMV type symmetry group! is
also obtained. Using the finite transformation and special seed solutions, one may obtain
types of exact solutions. The group invariant solutions of the model are obtained by means
CK’s direct method and these types of similarity solutions can all be obtained by means
nonclassical Lie group approach.

In recent studies,17–19 it was found that a quite universal variable separation solution w
some arbitrary functions is valid for many (211)-dimensional models. For th
(211)-dimensional (M1N)-component AKNS system, the universal expression is valid for
quantity (n51

N (m51
M amnpnqm . Then, by selecting the arbitrary functions appropriately, we m

obtain many types of multi-soliton solutions like the solitoffs, dromions, positons, lumps, sa
type ring solitons, breathers, instantons, etc. Some special types of examples of these t
excitations are plotted in Sec. VI. Especially, the complete elastic interaction property betwe
traveling ring type of solutions is revealed in Figs. 6 and 7.

The Painleve´ analysis, symmetry study and the variable separation approaches are three
methods in the study of the nonlinear science. The idea to form the localized excitations
11)-dimensions can be extended to obtain some types of localized excitation
(311)-dimensions. For instance, a closed camber may be used to construct a bubble like
A closed line which is an intersection of two cambers may be used to form a (311)-dimensional
ring soliton. Some special (311)-dimensional dromions and ring solitons have been found
some Painleve´ and/or Virasoro integrable models.28 The more about the methods and the mo
are worthy of studying further.
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The symmetry properties of a classicalN-dimensional harmonic oscillator with
rational frequency ratios are studied from a global point of view. Acommensurate
oscillator possesses the same number of globally defined constants of motion as an
isotropicoscillator. In both cases invariant phase-space functions form thealgebra
su(N) with respect to the Poisson bracket. In the isotropic case, the phase-space
flows generated by the invariants can be integrated globally to a set of finite trans-
formations isomorphic to the group SU(N). For a commensurate oscillator, how-
ever, thegroup SU(N) of symmetry transformations is found to exist only on a
reducedphase space, due to unavoidable singularities of the flow in the full phase
space. It is therefore crucial to distinguish carefully between local and global defi-
nitions of symmetry transformations in phase space. This result solves the long-
standing problem of which symmetry to associate with a commensurate harmonic
oscillator. © 2002 American Institute of Physics.@DOI: 10.1063/1.1488672#

I. INTRODUCTION

Harmonic oscillators are ubiquitous in physics. To lowest order, motion close to a s
equilibrium of a classical system is often described by a Hamiltonian of the form

H~q,p!5 (
n51

N
vn

2
~pn

21qn
2!, vnPR. ~1!

Here the ~appropriately rescaled! canonical coordinates and momenta have Poisson brac
$qn ,pn8%5dnn8 , n,n851,...,N. If the frequenciesvn are all equal,

vn5v, n51,...,N, ~2!

the Hamiltonian~1! describes anisotropic N-dimensional oscillator. This system is invariant und
a set of transformations isomorphic to the group SU(N): on the one hand, the quadratic form~1!
in 2N variables is obviously invariant under proper rotations SO(2N)—on the other hand, ca
nonical transformations need to be symplectic, hence they are elements of Sp(N). However, any
transformation inR2N which is both ~special! orthogonal and symplectic must be~special!
unitary:1 SU(N)5SO(2N)ùSp(N). The group SU(N) is represented by (N221) phase-space
functions which, as constants of motion, generate symmetry transformations of the Hamilt
In fact, the isotropic oscillator is ‘‘maximally superintegrable’’ since it possesses the max
number of (2N21) functionally independent constants of motion, exceeding by far the numb
N globally defined invariants required for integrability.2

Suppose now that the frequency ratiosvn /vn8 are positive rational numbers,
41100022-2488/2002/43(8)/4110/17/$19.00 © 2002 American Institute of Physics
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vn5
v

mn
, mnPN1 , v.0. ~3!

This property defines acommensurateharmonic oscillator, or m-oscillator, with m
5(m1 ,...,mN). As shown below, it also possesses (N221) globally defined phase-space inva
ants, apart from the Hamiltonian. Their Poisson brackets form the Lie algebra su(N), as for the
isotropic oscillator. It is known that in both systems all orbits are closed. Nevertheless,
difference is to be expected, since all orbits of an isotropic oscillator have the same period,
commensurate frequencies allow for closed orbits with different periods. This is easily se
exciting only individual degrees of freedom with frequenciesvn .

In the following, the topological and group-theoretical impact of rational frequency ra
~different from one! will be made explicit. First, various papers dealing with commensurate
cillators are reviewed in Sec. II, which is independent of the later developments. The technic
starts with Sec. III, where, for simplicity, the class of two-dimensionalm-oscillators will be
studied in detail. The generalization toN>3, given in Sec. IV, isnot straightforward. Finally, the
overall picture is summarized and conclusions are drawn. A study ofquantum mechanica
m-oscillators, including the classical limit to connect with the present results, will be prese
elsewhere.3

II. SYMMETRIES OF HARMONIC OSCILLATORS

The equations of motion ofN harmonic oscillators can be solved analytically for arbitra
frequency ratios. In spite of this exceptional property many authors have wrestled with thesym-
metriesof such systems, the question being how their symmetries depend on the~ir-! rationality of
the frequency ratios. Most contributions are fostered by the difficulty to distinguish between
and global properties of phase space. Two-dimensional oscillators with rational or irrationa
quency ratios are discussed almost exclusively. Surprising claims have been made in the
to generalize properties of the isotropic oscillator inN dimensions.

Jauch and Hill4 address the problem of ‘‘accidental degeneracy’’ of quantum-mechan
energy eigenvalues. The obvious invariance of the three-dimensional harmonic oscillator~as well
as the hydrogen atom! under the group of rotations in configuration space is not sufficien
explain the observed degeneracy of the energy levels. They conclude that additional cons
motion must exist which account for extra degeneracies in the quantum mechanical energ
trum. In fact, (N221) Hermitian operators can be specified which commute with the Hamilto
of the isotropic harmonic oscillator inN dimensions. Their commutation relations turn out to
those of the algebra su(N). Therefore, the oscillator is said to have the su(N) symmetry—which
then leads to the correct degree of degeneracies of energy levels.

Pauli5 and Klein6 have pointed out that there is a connection between degeneracies of e
levels and the existence of further constants of motion in the associatedclassicalsystem. There-
fore, the result also should be manifest in the corresponding classical isotropic oscillator.
‘‘dequantizing’’ the quantum invariants, one obtains indeed (N221) constants of motion which
constitute the su(N) algebra with respect to the Poisson bracket. Hence, the classical iso
oscillator possesses indeed constants of motion other than the angular momentum. Its com
generate obviousgeometricalsymmetry transformations while the additional constants are sa
generatedynamicalsymmetry transformations. They cannot be visualized in configuration s
because they mix coordinates and momenta.

However, to exhibit a set of conserved phase-space functions which form a particular a
is not sufficient in order to prove invariance of the physical system in a global sense, i.e.,
entire phase space. Jauch and Hill assert that the ‘‘system of orbits’’ of a clas
(m1 ,m2)-oscillator be invariant under a group of transformations isomorphic to the th
dimensional group of proper rotations SO(3). However, this claim cannot be justified by loc
considerations only. In other words, global invariance under a particular group of transform
does not follow from specifying phase-space functions forming the corresponding algebra.
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McIntosh reviews accidental degeneracy in classical and quantum mechanics in Ref.
notes that the phase space of the isotropic harmonic oscillator in two dimensions foliate
hyperspheres, being surfaces of constant energy. A discussion of the canonical transform
generated by three constants of the motion quadratic in the coordinates and momenta foll
becomes obvious that the group of symmetry transformations is the special unitary group
dimensions, SU~2!—not the group of proper three-dimensional rotations, SO(3), asJauch and
Hill suggested.

Dulock and McIntosh8 devote a paper to the two-dimensional harmonic oscillator with a
trary frequency ratio. Using classical variables which mimic quantum mechanical creatio
annihilation operators, they write down three constants of motion with Poisson brackets is
phic to the so~3! algebra relations. A Hopf mapping is performed in order to visualize ‘‘how
rotational symmetry ofS 2, which is the three-dimensional rotation group, chances also to be
symmetry group of the harmonic oscillator.’’8 Formally, this method can be applied to oscillato
with arbitrary frequency ratio. However, one of the transformations, which is one-to-one in
isotropic case, becomes a multiple-valued map. For rational frequency ratios there is a
ambiguity, turning to infinite multiple-valuedness if the frequencies ratios are irrationally. In
of this result, the authors claim that the set of symmetry transformations forall types of oscillators
investigated is isomorphic to the group SU~2!—irrespective of the multiple-valuedness. On
more, the possibility to write down formal expressions which constitute particular algebraic
tions is taken as a proof of the existence of an associatedgroup of transformations.

Maiella and Vitale9 react to the claim that ‘‘every classical system should possess a ‘dyn
cal’ symmetry larger than the ‘geometrical’ one.’’9 Using action-angle variables, they provid
three constants of motion for the two-dimensional oscillator which form the su~2! algebra. How-
ever, for irrational frequency ratio the invariants are not single-valued—hence they consid
‘‘su~2! symmetry’’ to be of ‘‘formal value’’ only. It is claimed to acquire physical relevance o
for commensurate and,a fortiori, isotropic oscillators. At the same time, no argument is giv
which would forbid the existence of the group SU~2! for the irrational oscillator. The authors d
not investigate whether, in the commensurate case, the invariants generate indeed finite
valued phase-space transformations in SU~2!.

Maiella10 extends this discussion to theN-dimensional oscillator and emphasizes that o
single-valued constants of the motion generate actual symmetry transformations. Initiall
group of all contact transformations for a given dynamical system is considered. Any subgro
transformations which is generated by single-valued constants of motion and leaves the
tonian invariant is called an ‘‘invariance group.’’ The classical degree of degeneracy deter
the number of its generators: each linear relation between the classical frequencies of the
with rational coefficients is accompanied by the appearance of a single-valued constant of m
Subsequently, phase-space functions are given in action-angle variables which realize the
su(N) for an isotropic oscillator and the algebra su(n), 2<n,N, for smaller degeneracy. How
ever, it is again not proven explicitly that the generators actually give rise to globally well-de
transformations.

In the late 1960s, successful application of group theoretical concepts in elementary p
physics renewed the interest in symmetries of classical Hamiltonian systems and stimulate
general approaches. The invariance of the three-dimensional Kepler problem under the gr
four-dimensional rotations, SO~4!, was explicitly shown by Moser11 in 1970 for the first time.
Already in 1965 Bacry, Ruegg and Souriau12 proved that there exists a set of global symme
transformations for the Kepler problem being isomorphic to the group SO~4!. The transformations
presented, however, do not act on variables in phase-space. The transformations of phas
manifolds are parametrized by the components of angular momentum and of the Runge
vector. Representing only five independent constants of motion, the timet at which the particle
passes the perihelion of the orbit is taken as sixth parameter.

Dulock and McIntosh13 claim that the Kepler problem has not only the symmetry SO~4! but
SU~3!. Two papers by Bacry, Ruegg and Souriau12 and by Fradkin14 generalize this statement: a
classical central potential problems should possess the dynamic symmetries O~4! andSU~3!. This
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surprising statement is subject to the same criticism as the following, even more general cla
Mukunda:15,16 all classical Hamiltonian systems withN degrees of freedom have O(N) and
SU(N) symmetries. If this statement were true, then there would exist just one and only one
phase-space structure for systems withN degrees of freedom—the well-established distinct
between regular and chaotic systems would have no meaning at all.

Mukunda argues on the basis of a theorem by Eisenhart.17 Consider, in a Hamiltonian system
with N degrees of freedom,n,N independent functions of canonically conjugate variables~sub-
jected to weak conditions!. They can always be supplemented by (2N2n) phase-space function
such thatN pairs of canonically conjugate variables result which define a symplectic bas
phase space. Hence, starting with the Hamiltonian of the system under consideration one c
( i ) a variable being canonically conjugate to the Hamiltonian and (i i ) (N21) additional pairs of
phase-space functions with Poisson brackets equal to one, all commuting with the first pa
therefore with the Hamiltonian. Consequently, this theorem is a blueprint to construct (2N21)
independent constants of motion in any Hamiltonian system withN degrees of freedom. The
particular form of the Hamiltonian does not even enter into the construction. Next, two diff
sets of phase-space functions are defined in terms of the (2N21) functions of this particular basis
Their Poisson brackets realize the relations characteristic of the algebras O(N) and SU(N), re-
spectively. In a footnote, the author restricts the applicability of the results: ‘‘We concern ours
only with constructing realizations of Lie algebras, not of Lie groups. Even when we ta
invariance under the O(4) group, for example, we really intend invariance under the algeb15

Consequently, ‘‘invariance under the algebra’’ is alocal concept only, so that Mukunda’s constru
tion has formal value only. Actually, the phase-space functions written down by Mukunda d
neatly map phase space onto itself: the functions become imaginary if the range of the can
variables is not restricted artificially. The lesson to be learned is obvious: in order to establi
invariance of a system under agroup of phase-space transformations it is not sufficient to rea
specific Poisson-bracket relations with invariants.

A related position is put forward by Stehle and Han.18,19 To identify a particular algebra by
constants of motion does not guarantee the presence of a ‘‘higher symmetry’’—a single-valu
at most finitely many-valued, realization of the group must exist in phase-space. To show thi
show that a system is classically degenerate if the Hamilton–Jacobi equation of a par
system is separable in a continuous family of coordinate systems. This property is obse
Compare the Fourier series representation of one specific orbit described with respect
different ~continuously connected! coordinate systems. For consistency, the frequencies appe
in its Fourier decomposition must be rationally related, which corresponds to a classical d
eracy. It is important to note that the transformation from one coordinate system to the oth
single-valued, otherwise the argument does not hold. Any phase-space function and, conse
any constant of motion generates a transformation of phase-space onto itself; alternatively
be viewed as the generator for a transition to another coordinate system such that the Ham
remains invariant. Only single-valued constants of motion generate global single-v
transformations—infinitely many-valued ‘‘constants of motion’’ represent formal expressions
not necessarily related to the existence of classical degeneracy. Therefore, they donot establish a
higher symmetry group of the system.

To sum up, the construction of an algebra from constants of motion is only the first step
proof of the existence of a potential higher symmetry group. It needs to be supplemente
global investigation of the generated transformations.

III. THE TWO-DIMENSIONAL COMMENSURATE OSCILLATOR

This section deals with the symmetry properties of a two-dimensional commensurat
monic or (m1 ,m2)-oscillator described by the Hamiltonian

H~q1 ,q2 ,p1 ,p2!5
v

2 S 1

m1
~p1

21q1
2!1

1

m2
~p2

21q2
2! D , m1 ,m2PN1 , ~4!
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where the integersm1 and m2 have no common divisor. Two pairs of canonical variabl
qn ,pnP(2`,`),n51,2, label points in phase spaceG;R4, the only nonvanishing Poisso
brackets being given by

$q1 ,p1%5$q2 ,p2%51. ~5!

It will be useful to introduce two other sets of canonical variables. First, combine each pair
complex variable

an5
1

&
~qn1 ipn!, n51,2, ~6!

with nonvanishing brackets

$ā1 ,a1%5$ā2 ,a2%5 i , ~7!

whereā denotes the complex conjugate ofa. Second, action-angle variablesI nP@0,̀ ) and wn

P@0,2p), n51,2, are determined through modulus and phase ofan5AI nexp@iwn#. Their nonzero
brackets read

$I 1 ,w1%5$I 2 ,w2%51. ~8!

These coordinates provide alternative forms of the Hamiltonian,

H5vS ā1a1

m1
1

ā2a2

m2
D5vS I 1

m1
1

I 2

m2
D . ~9!

A. Constants of motion and Lie algebras

Commensurate harmonic oscillators possess a large number of constants of motio
Hamiltonian itself is an invariant as$H,H%50. Motion of the system with given energyE is thus
restricted to a three-dimensional hyper-surface, an ellipsoidE(E) in phase spaceG. Further, the
actions I 1 and I 2 , having zero Poisson brackets with the Hamiltonian and among themse
render the (m1 ,m2)-oscillator integrable. For fixed values of the actions, Arnold’s theorem2 states
that the motion takes place on a two-dimensional torusT(I 1 ,I 2). In fact, theentirephase space is
foliated by tori with radiiAI 1 and AI 2 , respectively. According to~9! the HamiltonianH is a
linear function of these invariants.

A third, functionally independent~complex! constant of the motion is given by the expressi

K5a2
m2~ ā1!m1. ~10!

As mentioned in Ref. 4, both its real and complex parts are invariant which implies that the
x of the functionK,

x5m2w22m1w1P@0,2p!, ~11!

is a constant of the motion, too. Considered as a generator of transformations in phase s
connects energetically degenerate pairs of tori. The existence of a third invariant is expec
reduce the dimensionality of the accessible manifold. Indeed, fixing the values of the three
antsI 1 , I 2 , andK ~or, equivalently,x! singles out a one-dimensional orbit on the torusT if the two
frequencies are rationally related. Generic orbits,an(t)5AI nexp(2ivt/mn1wn(0)), n51,2, retrace
themselves after a characteristic timetm52pm1m2 /v, with winding numbersm2 for a1 andm1

for a2 . However, if the frequency ratio of the motion on the tori werenot rational, an orbit would
cover the torusT densely—the functionK would represent aformal constant of the motion only
without any physical impact on the motion of the system. An important difference to the isot
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oscillator is due to the fact that anm-oscillator has different types of orbits with frequenci
v/(2pm1) and v/(2pm2), respectively. This allows one to distinguish experimentally the t
cases.

The phase space of anm-oscillator has a particulardiscretesymmetry. Combine the variable
an into a column: now the Hamiltonian is obviously invariant underm1m2 finite rotations,a
→R1

r 1R2
r 2a, r n50,...,mn21, or, explicitly,

S a1

a2
D→S e2 i2pr 1 /m1 0

0 1D S 1 0

0 e2 i2pr 2 /m2
D S a1

a2
D . ~12!

These transformations map the phase-spaceG to itself. They form a cyclic groupCm1m2
5Cm1

3Cm2
, the direct product of two cyclic groups withm1 andm2 elements, respectively. In Ref. 20

Cm1m2
has been calledambiguity group.

The Poisson bracket of two invariants results in a third invariant. Therefore, the collecti
all invariants is a Lie algebra. Typically, it will contain an infinite number of elements, all of wh
depend functionally on a smaller number of invariants. By an appropriate choice of the inva
however, algebras with a finite number of elements can be found. The simplest example is
by the three invariantsI 1 , I 2 , K giving rise to the following brackets:

$I 1 ,K%52 im1K, $I 2 ,K%5 im2K, $I 1 ,I 2%50. ~13!

The algebra contains three independent elements—it is not possible to find an algebra with
elements since them-oscillator has three invariants. It also contains two elements with vanis
Poisson bracket which, in a system with two degrees of freedom, is the maximum num
‘‘commuting’’ functionally independent invariants.

There is an alternative set of four invariantsJ5(J0 ,JW ),

J05
I 1

2m1
1

I 2

2m2
5

1

2v
H, ~14!

J15A I 1I 2

m1m2
cosx, ~15!

J25A I 1I 2

m1m2
sinx, ~16!

J35
I 1

2m1
2

I 2

2m2
. ~17!

Only three of these invariants are functionally independent because

J0
22JW250. ~18!

This constraint is conveniently rephrased by saying that the ‘‘four vector’’J is ‘‘null’’ or ‘‘light
like.’’ The functions J are particularly interesting since they form the basis of a Lie alge
isomorphic to u~2!,

$J0 ,Jj%50, $Jj ,Jk%5(
l 51

3

e jklJl , j ,k51,2,3, ~19!
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which has su~2! as a subalgebra, generated by the components ofJW . Equations~19! have been at
the origin of many attempts to associate a group SU~2! of symmetry transformations with th
two-dimensionalm-oscillator.

B. Reduced phase space and space of invariants

Consider the complex variables

bn5
uanu

Amn
S an

uanu D
mn

5A I n

mn
exp@ imnwn#, n51,2, ~20!

which satisfy

$b̄n ,bn8%5 idnn8 . ~21!

In spite of these relations, the variablesbn do not define pairs of canonical coordinates ofG since
the mapa→b is not a one-to-one transformation. The variablesbn are, however, canonica
coordinates in thereducedphase spaceGm . The reduced space is obtained from identifying tho
m1m2 points of G which satisfyb(R1

r 1R2
r 2a)5b(a), Rn

r nPCmn
. The definition of the variables

~20! is motivated by the invariance of the constants of motion in~14!–~17! under the ambiguity
groupCm1m2

.
The invariants~14!–~17! take a simple form when expressed in terms of the reduced varia

J05
1

2
~ b̄1b11b̄2b2!, ~22!

J15
1

2
~ b̄1b21b̄2b1!, ~23!

J25
1

2i
~ b̄1b22b̄2b1!, ~24!

J35
1

2
~ b̄1b12b̄2b2!. ~25!

Using the two-component ‘‘Weyl spinor’’b5(b1 ,b2), these invariants can be written

Jn5
1

2
b̄•snb, n50,...,3, ~26!

wheres0512, and the Pauli matricessk , k51,2,3, generate the algebra su~2!. Consequently, the
invariants, which span the space of invariants,Y, turn intosesquilinearexpressions on the reduce
phase spaceGm . Their structure is similar to those of the isotropic or~1,1!-oscillator: in this case,
the reduced phase space and the original one coincide,G (1,1)5G. In some sense, the non-bijectiv
mapa→b ‘‘linearizes’’ the invariants at the expense of accounting for a fraction of phase s
only. It will be shown later that the concept of the reduced spaceGm is natural in the presen
context as it provides appropriate setting to derive global statements about symmetry trans
tions.

C. Topological aspects

Turn now briefly to the topology of the spaces involved. Consider the nontrivial transfo
tions introduced so far: first, the original phase space has been mapped to the reduced phas

c:G→Gm :a°b~a!; ~27!

second, introducing the invariantsJ maps the reduced variables to the space of invariants,Y,
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f:Gm→Y:b°J~b!, ~28!

which is an upper cone inR4 sinceJ05uJW u.
The reduced phase spaceGm has the structure of a well-known fiber bundle. To see th

consider an orbita(t) in phase spaceG. Its image in the reduced spaceGm is given byb(t)
5e2 ivtb(0). The maps b→eigb form a group U~1! which leaves invariant the mapf,
J(eigb)5J(b), since the phase drops out from the sesquilinear expressions given in Eqs~26!.
Therefore,Gm is indeed afiber bundle~Y,f,O!: the invariantsY form the base, each orbitOb0

5$eigb0 ugP@0,2p)% is a fiber, and the mapf is the projection. The global structure of th
bundle follows from the fact that the restriction ofGm to the submanifoldGm(E) with points b̄
•b5E/v is isomorphic to the sphereS 3—as is obvious from the quadratic form~4!. Thus, the
restriction of the mapf to Gm(E) defines theHopf fibration of S 3. To each orbitOb in S 3

corresponds a pointJW (b) of the sphere of radiusJ05E/(2v) and a circle in the tangent space
this point.

It is interesting to look at the spaceY of invariants and the transformations among them fr
a general perspective. To do so, consider the complex instead of the real Lie algebra su~2! which
also leaves invariant the HamiltonianH;J0 in ~22! invariant. This is the Lie algebra sl(2,C)
associated with the group SL(2,C), the universal covering of the Lorentz group. The Loren
group induced by SL(2,C) in Y is the transitivity group of the upper~half-! cone.

The elements of SL(2,C) can be written asu(t,g)5exp@g(t,g)#, wheret andg are two real
parameters, and eachg is a traceless complex matrix,

g~t,g!5 1
2 ~gnW •sW 1 i tnW •sW !. ~29!

The matricesu(t,0) belong to the group SU~2!. Thus, they generate rotations and infinitesim
transformations which can be written in terms of a Poisson bracket:

dJW~t!

dt
5nW ∧JW~t![$JW ,nW •JW%. ~30!

The subsetsu(0,g) represent Lorentz boosts mapping a pointb according to

u~0,g!b5~cosh~g/2!1sinh~g/2!nW •sW !b[b~g!. ~31!

On the invariants, the transformation

Jn5b̄•snb°Jn~b!5b̄~g!•snb~g! ~32!

is induced. Hence, the sphereS 3 of radiusJ05H/(2v) is mapped to a sphere of radiusJ0(g)
with

dJ0

dg
5nW •JW ,

dJW

dg
5J0nW . ~33!

This is an infinitesimal Lorentz transformation which maps the upper coneYPR4 to itself as is
obvious fromd(J0(g)22JW (g)2)/dg50 and J0 remaining positive. Contrary to~30!, it is not
possible to express the right-hand sides of~33! by means of Poisson brackets. This can
understood from a quantum mechanical point of view. A classical theory can only manage
mann statistics whereas in quantum~field! theory, due to theanticommutativity of Weyl spinors,
it would be possible to find a commutator to express the derivativesdJn /dg.
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IV. GLOBAL INVARIANT VECTOR FIELDS

Each phase-space function generates a flow in phase spaceG, as well as in the reduced phas
spaceGm , and in the space of invariantsY. The invariants generate flows which commute with t
Hamiltonian vector field. To be more specific, consider any elementJn ,n50...3, of the Lie algebra
u~2!. When acting on an observablef through the Poisson bracket,

Vn5$ f ,Jn%, n50,...,3, ~34!

it defines a vector fieldVn in G. Its integral lines satisfy the differential equation

d f

dt
5Vn . ~35!

The solution of this differential equation is a mapf (t) which will be written in the form

f ~t!5Exp@tJn#~ f !5 (
k50

`

$ f ,Jn%k

tk

k!
, ~36!

where

$g,h%k115$$g,h%k ,h%, k51,2,..., $g,h%05g, ~37!

with smooth phase-space functionsg andh. In a simplified notation, the solutions~36! are written
as

Sn@t#[Exp@tJn#, n50,...,3, SnW@t#[ Exp@tnW •JW #, unW u51, ~38!

each unit vectornW being associated with a point of the unit sphereS 2.
The crucial question now is to investigate whether the flow~34! and hence the maps~38! are

defined everywhere in the space under consideration. Only in this case, thealgebraformed by the
closed set of Poisson brackets among the invariants integrates to agroup of symmetry transfor-
mations. More specifically, one needs to find out whether the invariants~14!–~17! of the
m-oscillator generate a set of transformations isomorphic to the group SU~2! @or U~2!#. This is
only possible if the associated vector fields are well-defined everywhere in the space whe
act. The fields will be studied separately for functionsf from the spacesG, Gm , or Y.

A. Vector fields in the space of invariants

The simplest case to look at is the orbits generated by the first component ofJ, which is a
multiple of the Hamiltonian,J05H/(2v). Not surprisingly, one has

S0@t#~J!5J, ~39!

that is, all components ofJ are invariant under the action ofJ0 . Rotations about the 3-axis, i.e
with an axis passing through the polesJ356J0 , are generated by the invariantJ35I 1 /(2m1)
2I 2 /(2m2),

S3@t#~J!5~J0 ,R3~t!JW !. ~40!

Each possible orbit inY is generated by a linear combination of invariantsnW •JW ,

SnW@t#~J!5~J0 ,RnW~t!JW !, ~41!
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where the matrixRnW(t) represents a rotation by an anglet about an axis parallel to the vectornW .
In other words, every point of the sphereuJW u5J0 is mapped to another point of the same sphe
the energyE52vJ0 being conserved.

These results are conveniently summarized by a group theoretical statement. The set

RJ5$SnW@t# u0<t,2p,nW PS 2% ~42!

of maps acting inY is a representation of the group SO~3!. In other words, there is a subset of a
phase-space functions, such that its elements transform according to the group SO~3!. Mathemati-
cally, this group is the integrated form of the adjoint representation of the algebra~19!. Conse-
quently, one can attribute this group as asymmetry groupto the reduced (m1 ,m2)-oscillator, for
any frequency ratio. Note, however, that this symmetry does not act on points in phase spacG but
on points of the space of invariantsY.

B. Vector fields in the reduced phase space

Again, the action of the generatorsJ0 ,J3 , andnW •JW will be studied, now with respect to th
variablesb5(b1 ,b2). It is straightforward to see that

S0@t#~b!5e2 i t/2b, ~43!

which is just the time evolution witht52vt. Similarly, the invariantJ3 generates a flow

S3@t#~b!5S e2 i t/2 0

0 ei t/2Db. ~44!

Comparison with~20! shows that the functionx5m2w22m1w1 is left invariant. Transformation
~44! is a special case of the map

SnW@t#~b!5~s0 cost/22 inW •sW sint/2!b[b~t!. ~45!

No ambiguities arise when mapping pointsb underSnW@t#, for whatever values of the parametert
and the directionsnW . Therefore, the set

Rb5$SnW@t#u0<t,4p,nW PS 2% ~46!

of maps faithfully represents the group SU(2) inGm . Consequently, anm-oscillator admits as
symmetry not only the three-dimensional rotation group SO~3! in Y but also the special unitary
group SU~2! in Gm .

In this restricted sense, and only in this one, (m1 ,m2)-oscillators are seen to possess bo
SO~3! and SU~2! as symmetry groups. This statement agrees with the fact that the algebras~3!
and su~2! are isomorphic. The next section deals with the question which groups, if any
represented on the original phase spaceG.

C. Vector fields acting in phase space

It will be shown in this section that the vector fields associated with the invariantsJ are not
defined globally when they act on the variablesa which span phase spaceG. Consequently, it is
not possible to implement the group SU~2! on phase spaceG. More explicitly, it will be shown that
the actionSnW@t#(a)5(a1(t),a2(t)) on G is nonlinear, and that it is inevitably singular for som
parameters (nW ,t) and initial pointsa. Contrary to one’s intuition the flows can be defined on
locally, and they cannot be extended to define agroup of symmetry transformations.

To begin with, consider the flows generated byJ0 andJ3 , respectively. The resulting orbit
are well-defined for all initial points: they are given by
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S0@t#~a!5S e2 i t/(2m1) 0

0 e2 i t/(2m2)Da, ~47!

and by

S3@t#~a!5S e2 i t/(2m1) 0

0 ei t/(2m2)Da, ~48!

respectively. Equation~47! describes the time evolution of the pointaPG, hence both the energ
E52vJ0 and the torusT(I 1 ,I 2) are left invariant. Since the values of the actions change acc
ing to I n(0)→I n(t)5uan(t)u2, the flow in ~48! also conserves the energy while it maps a to
T(I 1 ,I 2) to a different one,T(I 1(t),I 2(t)).

Now consider fields which are generated byarbitrary linear combinations of the invariants
nW •JW . Denote potential solutions of the differential equation

da

dt
5$a,nW •JW%[VnW~a! ~49!

by anW(t)5SnW@t#(a(0)), with some initial point a(0)PG. Explicitly, the complex two-
component fieldVnW reads

VnW5
1

2i S ~nW •JW1 im1~nW ∧JW !31n3J0!/ā1

~nW •JW1 im2~nW ∧JW !32n3J0!/ā2
D . ~50!

It is finite but ill-defined on the hyperplanesP15$aua150,a2Þ0% and P25$aua1Þ0,a2

50)%. There are points which, when transported by the flowSnW@t#, hit the planesP1 or P2 for
some value oft. The associated orbits will be calledsingular since they cannot be continue
unambiguously across the planes. This is due to the terms in~50! which containJ1 andJ2 ,

J16 iJ25
ua1uua2u

Am1m2

exp@6 ix#, ~51!

while all other terms are zero onP1 andP2 . Here is a toy example to illustrate the underlyin
problem. Consider a one-dimensional system with variablea5AI exp@iw#, satisfying$I ,w%51.
The flow generated byAI is ill-defined at the origin,

da

dt
5$AI ,a%5

i

2
exp@ iw# , ~52!

as its value depends on the way the pointa is approached. If a trajectory were reaching the orig
it would be impossible to continue it unambiguously beyond this point. It is important to re
that this singularity as well as the one encountered in the singular planes is not due to a ch
coordinates but an intrinsic property of the flow.

To visualize the entire set of singular orbits, look at their images inY, that is, the orbits
SnW@t#(JW ), tPR. For given energyE52vJ0 , the points ofP1 correspond to the north pol
(0,0,J05ua1u2/2m2) of the sphereS 2(J0), while those ofP2 are mapped to its south pole, (0,
2J052ua2u2/(2m1)). By c+f, an orbitSnW@t#(a) goes to a circleRnW(t)JW (a). Singularorbits
thus correspond to circles going through either one or both poles of the sphere, whileregular
orbits hit neither of them: for almost all flows, associated with a given vectornW , there exist two
‘‘critical’’ circles passing through the north pole and the south pole, respectively. These c
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coalesce into a single one passing throughboth poles if the axis of rotation is in the equatori
plane,nW 5(n1 ,n2,0). They degenerate to points located at the poles ifnW 5eW35(0,0,61). Two
conclusions can be drawn from this picture:

~1! for any given unit vectornW Þ6eW3 , the mapSnW@t# has at least one singular orbit inG;
~2! any pointaPG can be sent to a singular hyperplane by a mapSnW@t# with an appropriately

chosen vectornW P .

In fact, the vectorsnW P can be chosen fromtwo continuous sets: they only need to be in a pla
~passing through the origin! which is perpendicular to either of the vectorsJW (a)6J0(a)eW3 , or,
explicitly,

nW P
65

c1~JW~a!6J0~a!eW3!6c2JW~a!∧eW3

uc1~JW~a!6J0~a!eW3!6c2JW~a!∧eW3u
. ~53!

Regularorbits of SnW@t# are easily computed without solving the differential equation~49!.
One needs to determine modulus and phase of the variablesan ,n51,2, as a function oft. It is
useful to write down the orbits in the reduced phase space and in the space of the inva
According to~45!, the reduced variables evolve linearly,

b1~t!5~cost/22 in3 sint/2!b12~ in11n2!sin~t/2!b2 , ~54!

b2~t!5~cost/21 in3 sint/2!b22~ in12n2!sin~t/2!b1 , ~55!

while the invariantsW5JW (b) evolve inY as

W~t!5cost W1~12cost!nW +nW •W2sint nW ∧W. ~56!

Using uanu25mnubnu2,n51,2, thet-dependence of the moduli is simply

ua1~t!u25m1~ j 01 j 3~t!!, ua2~t!u25m2~ j 02 j 3~t!!. ~57!

For the evolution of the phases, plug Eqs.~54! into

exp@ im1w1~t!#5S an~t!

uan~t!u D
mn

5
bn~t!

ubn~t!u
, n51,2, ~58!

giving

exp@ im1w1~t!#5
~cost/22 in3 sint/2!b12~~ in11n2!sint/2!b2

u~cost/22 in3 sint/2!b12~~ in11n2!sint/2!b2u
[exp@ iF1~t!#, ~59!

and a similar equation for exp@im2w2(t)#. The two phaseswn(t)5Fn(t)/mn ,n51,2, must be
continuous whenevert reaches the value 4p. They will both have a value which is a multiple o
2p when the parametert takes the value 4pm1m2 . This result seems to suggest th
S@tnW •JW #(a) might be anm1m2-fold covering of the subgroupS@tnW •JW #(b), 0<t,4p,nW PS 2, of
the special unitary group, SU~2!. Due to the existence of singular orbits, however, this is
possible. Further, it is well-known that the only universal covering of SU~2! is this group itself.
Nevertheless, one might describe the situation as aramified coveringof SU~2! since the maps
S@tnW •JW # combine according to a group product law.

To visualize the obstruction of a global action of the group SU~2! differently, recall that a
given mapS@tnW •JW # sends a torusT(I 1 ,I 2)PG to a torusT(I 18 ,I 28) such thatm1I 11m2I 25m1I 18
1m2I 28 holds. For somenW andt0 it happens that one of the actions vanishes,I 18 , say. This means
that the initial two-dimensional torus (S 13S 1) is mapped to aone-dimensional torus, i.e., a circle
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S 1, and, therefore, one of the angle variables has lost its meaning. Once this has happen
impossible to unambiguously continue the trajectory which has hit the singular plane, a
missing angle could take any value. The phenomenon is similar to the passage of a spheric
through a focus.

It will be useful to give a name to the situation encountered here. A system with phase
G will be said to have afaint G symmetryif it admits a set of globally defined invariants whic
form an algebraA while the groupG associated with it cannot be realized onG but only on a
smaller part of it. Thus, all two-dimensional commensuratem-oscillators have a faint SU~2!
symmetry.

V. THE N-DIMENSIONAL COMMENSURATE OSCILLATOR

To describe a commensurate harmonic oscillator inN dimensions, the present notation
straightforward to adapt. Let the labeln run from 1 toN: the Hamiltonian of a commensurat
m-oscillator withm5(m1 ,...,mN), mneN1, reads

H~q,p!5
v

2 (
n51

N
1

mn
~pn

21qn
2!5

v

2 (
n51

N
1

mn
ānan5

v

2 (
n51

N
1

mn
I n . ~60!

The complex canonical variables are given byan5(qn1 ipn)/&, n51,...,N, while actionsI n and
angleswn are defined throughan5AI n exp@iwn#. Thus there are three sets ofN pairs of canonical
variables to choose from, with brackets

$qn ,pn8%5
1

i
$ān ,an8%5$I n ,wn8%5dnn8 , n,n851,...,N. ~61!

It will be assumed that the positive integer numbersmn do not have an overall common diviso
For the discussion to follow, two cases will be distinguished: a commensurate oscillator is s
be canonicalif no pair of numbersmn andmn8 , nÞn8, admits a common divisor but one. Th
class will be studied first. The presence of common divisors among subsets of the frequencvn

gives rise to interesting additional complications which will be considered later on.

A. Constants of motion and Lie algebras

In analogy to Eq.~10!, each function

Knn85an
mn~ ān8!

mn8, n,n851,...,N, ~62!

is seen to be an invariant for the commensurateN-oscillator,$H,Knn8%50. TheseN2 constants of
motion depend on onlyN(N11)/2 real invariants, namelyN independent actionsI n ,n51,...,N,
andN(N21)/2 relative angles

xnn85mnwn2mn8wn8 , 1<n,n8<N. ~63!

As in the two-dimensional case, the range of the functionsxnn8 must be restricted to the interva
@0,2p! because two valuesxnn8 and (xnn812p), respectively, correspond to thesameorbit. The
anglesxnn8 satisfy (N21)(N22)/2 linear relations,

xnn81xn8n91xn9n[0, n,n8,n9 all different. ~64!

Therefore, there are no more than (2N21) functionally independent constants of motion, t
maximum number of possibly independent invariants. As independent invariants, one may c
for example, theN actionsI n and (N21) relative anglesxn n11 ,n51,...,N21.

The (2N21)- dimensional surface of constant energyH5E is an ellipsoidE(E) in phase
spaceG. It contains theN-dimensional torusT(I 1 , . . . ,I N) of constant actionsI n as a submanifold.
Lines of constant actions and angles are theorbits of the motion, winding around a torusT. Each
orbit is a one-dimensional closed loop given by
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an~ t !5AI n exp~2 ivt/mn1wn~0!!, ~65!

where mnwn(0)2mn11wn11(0)5xn,n11(0). One revolution is completed after a timet
52pM /v, with the numberM taking a value such that thewinding numbers wn5M /mn of each
subsystem are integer without overall common divisor. In the canonical case,M is equal to
P1

Nmn . Here is an example forN53 which illustrates the noncanonical case: letm
5(km18 ,km28 ,m3). The numberM would then take the valuekm18m28m35m1m2m3 /k.

It is important to note that in a canonical~but not isotropic! m-oscillator ~i.e., all mnÞ1!,
there exist orbits with (2N21) different periods. There areN orbits corresponding to motion of
single oscillator only; there areN(N21)/2 orbits winding around two-dimensional tori wit
frequencies 1/mn and 1/mn8 ,1<n,n8<N, etc.

As in the two-dimensional case, the mapsRna5(a1 , . . . ,ei2p/mnan , . . . ,aN) generate a
cyclic groupCm5$R1

r 1
•••RN

r Nur nPZ%, the ambiguity group of the mapc :

c~R1
r 1
¯RN

r Na!5c~a!. ~66!

B. Reduced phase space and space of invariants

The (2N21) phase-space functionsI n andxn n11 form a basis of a Lie algebra commutin
with the HamiltonianH. Since the functionsxnn8 are not continuous on phase spaceG, it is natural
to look at appropriate periodic functions of them. Introduce, in analogy to Eq.~20!, the set of
invariants

bn5
uanu

Amn
S an

uanu D
mn

5A I n

mn
exp@ imnwn# , n51,...,N. ~67!

They provide canonical coordinates on the 2N-dimensional reduced phase spaceGm , now with
m5(m1 , . . . ,mN),

$b̄n ,bn8%5 idnn8 . ~68!

As before,~67! is a non-bijective mapc : a→b(a). It is not a projection of the phase space
a subspace but should be thought of as aramifiedcover of the reduced spaceGm .

Not surprisingly, Eqs.~26! have a straightforward generalization. Withb5(b1 ,...,bN), one
defines (N221) invariants sesquilinear in the coordinatesbn by

Jnn8
s

5
1

2
b̄•~Enn81En8n!b5

1

2
~ b̄nbn81b̄n8bn!, 1<n,n8<N, ~69!

Jnn8
a

5
1

2
b̄•

1

i
~Enn82En8n!b5

1

2i
~ b̄nbn82b̄n8bn!, 1<n,n8<N, ~70!

Jnn
d 5

1

2
b̄•~Enn2En11 n11!b5

1

2
~ b̄nbn2b̄n11bn11! , n51,...,N21. ~71!

The matricesEnn8 are of sizeN3N with elements

~Enn8!kk85dnkdn8k8 , n,n8,k,k851,...,N, ~72!

i.e., the only nonzero elements are equal to one at position (n,n8), and they generate the Li
algebrau(n) with respect to the matrix commutator.21 This property is inherited by theN2

phase-space functions

Jnn85b̄•Enn8b[b̄nbn8 ; ~73!

their Poisson brackets,
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$Jnn8 ,Jkk8%5 i ~dnk8Jkn82dn8kJnk8!, ~74!

also realize the algebraic relations ofu(N).
It is possible to find (N221) linear combinations of the matricesEnn8 which are traceless an

Hermitian—hence they provide a basis of the algebra su(N). In fact, these combinations hav
been introduced already in Eq.~69! when definingJnn8

s ,Jnn8
a , andJnn

d . Therefore, these function
form a basis of the algebra su(N) with respect to the Poisson bracket. When supplemented b~a
multiple of! the Hamiltonian

J05
1

2
b̄•1Nb5

1

2 (
n51

N

b̄nbn[
2

v
H, ~75!

where1N is theN-dimensional unit matrix, the algebrau(n) can be recovered.

C. Vector fields

There is a first group of transformations which acts in the space of invariantsY. As before, it
is the set of finite transformations on the space generated by the real invariants~69!–~71!. In other
words, it arises from integrating the adjoint representation of the algebra formed by the inva
As this group will play no role in the following, its discussion is suppressed.

Next, the invariantsJnn8
s andJnn8

a generate canonical linear maps in the reduced spaceGm ,

dbk

dt
5$bk ,Jnn8

s %5
i

2
~dknbn81dkn8bn![~Jnn8

s b!k , ~76!

dbk

dt
5$bk ,Jnn8

a %5
1

2
~dknbn82dkn8bn![~Jnn8

a b!k , ~77!

and similar ones follow when takingJnn
d as generator. These linear equations can be integrate

the spaceGm for arbitrary initial valuesb(0)5b0PGm ,

b~t!5exp~tJnn8
«

!b0 , «5a,s. ~78!

The solutions are unitary maps ofGm to itself. In analogy to the two-dimensional case, they w
be denoted by

b~t!5Exp@tJnn8
«

#~b!, «5a,s , ~79!

and similarly for finite transformations generated by the invariantsJnn
d . Due to the linearity of the

equations, no ambiguities arise upon integration. Therefore, the set of transformations
reduced spaceGm is isomorphic to the group SU(N). In this restricted sense, them-oscillator has
the special unitary group inN dimensions as a symmetry group. This group of symmetry tra
formations isnot defined in the phase spaceG of the m-oscillator but only inGm.

Finally, a genuine ‘‘pullback’’ of SU(N) in phase spaceG does not exist, for the same reaso
as in the caseN52. In fact, it is sufficient to consider a pair of oscillators with frequenciesv/mn

andv/mn8 , say, in order to see that there are obstructions which prevent the existence of aglobal
symmetry group in phase spaceG. This pair of degrees of freedom is equivalent to a tw
dimensional (mn ,mn8)-oscillator, and no set of transformations acting on it can be found w
would be isomorphic to SU~2!. If, however, theN-dimensional oscillator would have the fu
symmetry SU(N), a subgroup SU~2! should be associated with this pair of oscillators. Con
quently, the group SU(N) cannot be identified as a symmetry group of the canon
N-dimensional commensurate oscillator. In analogy to the two-dimensional commensurate
lator it is seen to have afaint SU(N) symmetry only.

D. The m-oscillator with common divisors

The canonicalm-oscillator has been shown to be invariant under transformations isomo
to the group SU(N) in the reduced spaceGm . For canonical and isotropicN-dimensional oscil-
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lators, subsystems of dimensionN8,N are invariant only with respect to a subalgebraAm8 of the
algebraAm5su(N). If the oscillator is neither isotropic nor canonical, other possibilities aris

A noncanonical oscillator is characterized by frequenciesm5(m1 , . . . ,mN) with at least one pair
(mk ,ml) having a common integer divisor different from one. LetN8,N frequencies have a
common divisor. Then, for them8-oscillator corresponding to these frequencies, constant
motion do exist which form an algebraAm85su(N8). This algebra, however, isnot a subalgebra
of Am as follows immediately from considering them8-oscillator as anN8-dimensional commen-
surate oscillator in its own right. Suppose that, after removing the common divisor, the res
oscillator, characterized bym85(m18 ,...,mN8

8 ), is a canonical one. Then one can construct a gr
of symmetry transformations SU(N8) in the reduced phase spaceGm8 , andGm8 is not a subspace
of Gm . The Poisson brackets of the generators of SU(N8) acting in Gm8 and those of SU(N)
acting inGm will not be linear combinations of the initial ones. Hence, the combination of th
two algebras will not close under the Lie product—the resulting algebra will beinfinite. This
property will be important for quantum mechanical commensurate oscillators since it e
additional degeneracies of energy which otherwise appear to be accidental.

Turn these results around: there is no finite algebra to account for all the symmetries of a
nonicalm-oscillator. Obviously, this situation can arise only ifN>3 ~if N52 any common divisor
can be factored out immediately!. In fact, if mn8

8 51, n851,...,N8, the subsystem is even a
isotropic oscillator, and it has a group SU(N8) of symmetry transformations on phase spaceG.

It is helpful to illustrate this discussion by an exhaustive list of ‘‘classes’’ for small values oN.

L N52: A commensurate oscillator is either isotropic or canonical~a common divisor of the
frequenciesm1Þm2 can be factored out!.

L N53: Five classes of commensurate oscillators can be identified. Anm-oscillator is either
isotropic or canonical, or it belongs to one of the three following classes:

~1! a single pair of two frequencies have a common divisor,m5( jm18 , jm28 ,m3), say;
~2! two pairs have common but different divisors,m5( jm18 , jkm28 ,km38), say;
~3! all three pairs have common but different divisors,m5( jkm18 ,klm28 ,l jm38), say.

For N.3 the number of different classes increases rapidly withN.
Consider an example of type 1 forN53 in detail. The three coordinatesbn of the spaceGm

allow one to define eight constants of motionJ. In addition, introduce coordinates of the reduc
phase spaceGm8 ,

bn85
uanu

Amn8
S an

uanu D
mn8

, n51,2. ~80!

The four functions

Jnn8
8 5b̄n8bn8

8 , n,n851,2, ~81!

are a different set of constants of motion because the Hamiltonian of the subsystem~1,2! has an
overall factor 1/k. The constantsJ8 are the basis of a Lie algebraAm8 isomorphic to su~2! ~setting
aside the fourth commuting invariant!, as the subsystem is anm8-oscillator with N52. The
resulting algebraAm8 gives rise to another faint SU~2! symmetry. It is, however,neithera subal-
gebra of the faint SU(N) symmetry~as it it implemented on a different reduced phase spaceGm8!
nor do the generators ofAm andAm8 commute. Consequently, the union of both algebras gi
rise to an infinite algebra. Finally, ifm185m2851, three of the functionsJ8 would generate the
group SU~2! on the original phase spaceG. In other words, the faint SU(N) symmetry of an
m-oscillator with common divisors is compatible with the existence of smaller groups a
globally in phase spaceG.
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VI. SUMMARY AND OUTLOOK

This article deals with the problem which symmetry group to associate with anN-dimensional
commensurateharmonic oscillator. Historically, structural similarities to the isotopic oscilla
seemed to indicate that the introduction of rational frequency ratiosmn /mn8 would not affect the
existence of the group SU(N) of symmetry transformations. This suggestion was based on
following observations. Arbitrary rational frequency ratiosmn /mn8 , are still compatible with the
existence of (2N21) globally defined invariants. In both cases, the invariants confine traject
to a one-dimensional manifold in phase space, the orbit. Furthermore, the invariants fo
algebra su(N) with respect to the Poisson bracket. There is, however, a subtle difference be
an isotropic and a commensurate oscillator: isotropy forces all orbits to have thesameperiod
whereas commensurate frequencies allow for orbits withdifferent periods. Consequently, thes
systemare distinguishable from an experimental point of view.

It has been shown that the algebra su(N) of the commensurate oscillator cannot be extend
globally to a representation of the group SU(N) in phase space. Strictly speaking, it is thus n
possible to attribute this group as a symmetry group to the commensurate harmonic oscillat
group SU(N) is associated with commensurate oscillators in a restricted sense only: to do s
action of the invariants must be considered in areducedphase space the points of which are
longer in a one-to-one correspondence with the states of the system. The commensurate o
is said to have afaint SU(N) symmetry. Furthermore, if the rationally related frequencies ha
common divisors, additional sets of symmetry transformations can be found. They are no
groups of the faint group SU(N), which acts in reduced phase, but they act in different redu
phase spaces.

To conclude, it has been shown that the symmetries of commensurate harmonic osc
come in a surprisingly rich variety and depend in a subtle way on the frequency ratios. Cla
and quantum mechanical oscillators are closely related. Therefore, it will be promising to stu
impact of faint symmetries on the Hilbert-space structure of quantum mechanical commen
oscillators.3 In particular, a systematic group-theoretical account of their degenerate energy
is expected to benefit from the concept of faint symmetry.
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On a low energy bound in a class of chiral field theories
with solitons
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A low energy bound for static classical solutions in a class of chiral solitonic field
theories related to the infrared physics of the SU(N) Yang–Mills theory is
established. ©2002 American Institute of Physics.@DOI: 10.1063/1.1488671#

I. THE MODEL

ConsiderN21 smooth fieldsna5na(x) in space–time taking their values in the Lie algeb
of SU(N). The fields are chosen to be commutative@na ,nb#50 and orthonormal (na ,nb)5dab

with respect to the Cartan–Killing form in the Lie algebra. For any two Lie algebra elementsj and
h, the Cartan–Killing form is defined as (j,h)5tr( ĵ ĥ) where the operatorĵ acts on the Lie
algebra as a Lie derivativeĵh5@j,h#. There can only beN21 mutually commutative and
linearly independent elements in the Lie algebra of SU(N) because the rank of SU(N) is r 5N
21 ~the dimension of the Cartan subalgebra!. If ha form an orthonormal basis in the Carta
subalgebra in a matrix representation of SU(N), then

na~x!5U†~x!haU~x!, ~1!

whereU†(x)PSU(N). In Eq.~1! U(x) is defined modulo the left multiplication by elements fro
the Cartan subgroup generated byha @the maximal Abelian subgroupT5U(1)N21#. So, in fact,
U(x)PSU(N)/T since any group element can be represented as a product of an element ofT and
an element of the quotient SU(N)/T. Under the condition thatna approaches fixed constant valu
at the spatial infinity,na(x)→ha , i.e.,U(x) approaches the group unity, the fieldsna define a map
of a spatial three-sphereS3 into the manifold SU(N)/T for every moment of time. The third
homotopy group of this map is nontrivialp3(G/T);Z, G5SU(N). WhenN52, the only fieldn1

can be regarded as a unit three-vector. It is a Hopf map:S3→S2;SU(2)/U(1). Thecorrespond-
ing topological number is the Hopf invariant which can also be interpreted as a linking numb
two curves in S3 being preimages of two distinct points ofS2. The two-forms Fa

5F jk
a dxj∧dxk, j ,k51,2,3, where

F jk
a 5 iN(

b
~na ,@] jnb ,]knb# ! ~2!

are closed, that is,F jk
a 5] jCk

a2]kCj
a . This is proved at the end of Sec. II. The formsFa may not

be exact. This follows from the fact that the cohomology ringH* (G/T) is rationally generated by
H2(G/T).1 The topological number of the mapS3→G/T should be constructed out of the two
forms Fa5 iN(na ,(b@dnb ,dnb#) on G/T. Introducing the fieldBi

a51/2e i jkF jk
a with e i jk being

the Levi-Chevita tensor, the topological number of the above-mentioned map can be writte

Q5~16p2N!21E dx(
i ,a

Ci
aBi

a . ~3!

a!On leave from Laboratory of Theoretical Physics, JINR, Dubna, Russia; electronic mail: shabanov@phys.ufl.edu
41270022-2488/2002/43(8)/4127/8/$19.00 © 2002 American Institute of Physics
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For SU~2!, Q is a Hopf invariant. Since SU(2)/U(1),G/T, the normalization coefficient in~3!
can be chosen so thatQ is an integer whenna realize a Hopf map.

An explicit realization of the Hopf map by the fieldsna is as follows. Consider the Cartan
Weyl basis in the Lie algebra. Leta be a positive root. For every positive roota, there are two
basis elementsea ande2a5ēa such that for any elementh from the Cartan subalgebra

@h,ea#5~h,a!ea , ~4!

@ea ,e2a#5a, @ea ,eb#5Na,bea1b , ~5!

whereNa,bÞ0 if a1b is a root. Note that the elementsa, ea , ande2a form a basis of an SU~2!
subalgebra~associated with the roota!. Let Uv(x)PSU(2)/U(1),SU(N)/T where the subgroup
SU~2! is associated with a simple rootv. One can always chooseh15N1/2v. The norm of any
root of SU(N) is 1/N with respect to the Cartan–Killing form~see Sec. II!. Then n1(x)
5N1/2Uv

† vUv is a Hopf map. The other fields realize a trivial map,na5ha , a.1. Indeed,
Uv(x)5exp@iuv(x)# whereuv(x)5wv(x)ev1w̄v(x)e2v . For a.1, it follows from ~4! that na

5Uv
† haUv5ha because (v,ha);(h1 ,ha)50. Now, if we introduce an orthonormal basis in th

SU~2! subgroup, t15 i (ev2e2v)/&, t25(ev1e2v)/&, and t35ANv, then @t j ,tk#
5 iN21/2e jkntn . Let n be an isotopic unit three-vector whose components are (t j ,n1). It defines
the Hopf map by construction. From~2! we infer thatF jk

a 5da1ANn"(] jnÃ]kn). Hence ourBj
a

andCj
a contain an extra factorAN when the fieldsna realize a Hopf map associated with an SU~2!

subgroup of SU(N). This explains the normalization factorN21 in ~3!. Since all the roots have th
same norm in SU(N), the normalization coefficient in~3! for any SU~2! subgroup has to be th
same. The root system is invariant under the Weyl symmetry, and so should beQ. The sum over
a in ~3! provides this invariance.

The dynamics of the fieldsna is determined by the Lagrangian density

L5m2(
m,a

~]mna ,]mna!2
g

4 (
m,n,a

Fmn
a Fmn

a , ~6!

m,n50,1,2,3; and]0 stands for the time derivative. In the case of SU~2!, this Lagrangian density
describes the Faddeev model2 for knot solitons. The knot solitons have been extensively stud
numerically.3 The model~6! has been introduced in Ref. 4 and may also have solitonic soluti
The Lagrangian~6! is believed to describe~in a certain approximation! the infrared physics of the
SU(N) Yang–Mills theory.4–6 Recent analytical7 and lattice8,9 studies of this correspondence
the SU~2! case look promising.

Due to the Lorentz symmetry of the Langrangian density, a Lorentz transformation of a
solution is a time-dependent solution of the Euler–Lagrange equations for~6!. Solutions that
describe interacting solitons are not static~even modulo Lorentz transformations!. In this paper a
low energy bound for static solitons with a topological numberQ is established:

E>cNuQu3/4, ~7!

cN58p233/8S 2N3

N22N21D 1/4

Am2g, ~8!

whereE is the energy functional

E5m2E dx(
j ,a

~] jna ,] jna!1
g

2 E dx(
j ,a

Bj
aBj

a ~9!

[E dx~E2~x!1E4~x!![E21E4 . ~10!
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For the Faddeev–Hopf knot solitons the low energy bound was found in Ref. 10 and improv
Refs. 11 and 12~meaning a larger constantc2!. Beyond conventional perturbation theory, th
Yang–Mills quantum dynamics can be studied by the largeN expansion method with the purpos
to establish a relation~duality! to a string theory on some manifold. Therefore it is of interes
investigate theN dependence of the low energy bound for solitons in the model~6!.

II. NOTATIONS AND NECESSARY FACTS

We would need the following algebraic inequalities. Letai , bi>0, a5( iai , b5( ibi , and
g>1. Then

a1
g1a2

g1¯1ar
g<ag, ~11!

Aa<Aa11Aa21¯1Aar<ArAa, ~12!

(
i

ai
pbi

q<apbq, p1q51. ~13!

Define pi5ai /a<1. Then( i p i51. The inequality~11! follows from an obvious inequalitypi
g

<pi if one takes the sum overi . The second inequality is proved by squaring it and applying
basic algebraic inequalityAaiAaj<1/2(ai1aj ). The third inequality is an algebraic Ho¨lder in-
equality ~see, e.g., Ref. 13!.

An arrow is used to denote vectors in space, e.g.,]Wf5(]1f,]2f,]3f) for the gradient. The
scalar product for two vector fields is

^uW ,vW &5E dxuW •vW . ~14!

The Lp norm of a vector field reads

iuW ip5F E dx~uW •uW !p/2G1/p

. ~15!

The following functional inequalities are used in the sequel

u^uW ,vW &u<iuW ipivW iq , p211q2151, ~16!

iuW i6/5<iuW i1
2/3iuW i2

1/3, ~17!

iuW i6<l1icurl uW i2 , l15~48!1/6~3p!22/3. ~18!

The first two inequalities are Ho¨lder-type inequalities.13 The third one follows from Rosen’s resu
for scalar functions14 ~cf. Ref. 11!

ifi6<l1i]Wfi2 , ~19!

where theLp norm for scalar functions is defined by~15! for one-dimensional vectors. Letf
5(uW "uW )1/2. We have

]Wf"]Wf5f22(
j

~] juW •uW !2<(
j

] juW "] juW .

Making use of this inequality, we infer~18! from ~19!:
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iuW i65ifi6<l1i]Wfi2<l1F E dx(
i , j

~] jui !
2G1/2

5l1icurl uW i2 . ~20!

The last equality in~20! is true if divuW50 anduW decreases sufficiently fast at spatial infinit
which we require in~18!. The coefficientl1 is the least possible coefficient in inequality~18!.14

Let va , a51,2,. . . ,r , be simple roots of SU(N). They have the same norm (va ,va)[g2.
The angle betweenva andva61 is 2p/3, and otherwise the roots are perpendicular. Any posi
root can be written in the forma5va1va111¯1va1q for a1q<r . From this it is easy to
deduce that all roots have the same norm with respect to the Cartan–Killing form, (a,a)5g2. To
find the actual normg, one should compute, say, the matrixv̂1 in the Cartan–Weyl basis and tak
the trace of its square. From~4! it follows thatv̂1 is block diagonal. The block associated with th
Cartan subalgebra is zero becauseva commute amongst each other. The nontrivial blocks co
from the subspaces spanned byea and e2a where the positive roota is either equal tov1 or
containsv2 or v11v2 . There arer 21 roots containingv2 and r 21 roots containingv1

1v2 . Theng25tr (v̂1
2)5g4N as is deduced from~4!. Hence

~va ,va!5N21. ~21!

As a consequence of~21!, the following identity holds for any Lie algebra elementv:

v5(
a

na~na ,v !1N(
a

@na ,@na ,v##[v i1v' . ~22!

The proof is based on the following observation. Relation~22! is covariant under the adjoint actio
of SU(N). So, according to~1!, na can be replaced byha after a corresponding adjoint rotation o
v. Decomposingv in the Cartan-Weyl basis, one can see that the first term in~22! is the Cartan
component ofv. The double commutator in the second term can be computed by means of~4! and
gives rise to the factor(a(a,ha)25(a,a)5N21 for every basis elementea . Thus the second
term in ~22! is nothing but a projector onto the subspace orthogonal to the Cartan suba
spanned byna .

By differentiating~1! one finds

]mna1 i @Am ,na#50, ~23!

i ]mU†U[Am2(
a

naCm
a , ~na ,Am!50. ~24!

Equation~23! can be interpreted as: The fieldsna are transported parallel with respect to t
connectionAm . Taking a commutator of~23! with na , summing overa and making use of the
identity ~22!, the connectionAm can be explicitly written viana ,

Am5 iN(
a

@]mna ,na#. ~25!

The connection~25! has been introduced by Cho to study monopoles in the Yang–Mills theor
SU~2! and SU~3!.15 By multiplying ~23! by nb using the Cartan–Killing form, one deduces th
the derivatives ofna are orthogonal to the fields themselves

~]mna ,nb!50. ~26!

Now we show that the tensor~2! is an Abelian gauge field tensor~cf. Refs. 4 and 6!, that is,
the two-formsFa are closed,dFa50. Consider the following algebraic transformations:
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]mAn2]nAm52iN(
a

@]nna ,]mna#52iN(
a

@@Am ,na#,@An ,na##, ~27!

52iN(
a

$@An ,@na ,@na ,Am###1@na ,@@na ,Am#,An##%, ~28!

52i @An ,Am#1 iN(
a

@na ,@na ,@Am ,An###, ~29!

52 i @Am ,An#2 i(
a

na~na ,@Am ,An#!. ~30!

In ~27! we have used~25!; next, ]mna has been transformed via~23!; Eq. ~28! follows from the
Jacobi identity; to derive~29!, the first term in~28! has been transformed by means of t
algebraic identity~22!, while the second one via the Jacobi identity; finally, by applying
algebraic identity~22! to ~29!, Eq. ~30! has been deduced. Introducing the Yang–Mills fie
strength tensor

Fmn5]mAn2]nAm1 i @Am ,An#, ~31!

it follows from ~30! that

Fmn5 i(
a

na~na ,@Am ,An#!5(
a

naFmn
a . ~32!

The last equality in~32! is deduced by multiplying~30! and the middle of~27! by na using the
Cartan–Killing form. Now observe that the field strength~curvature! of the pure gauge connectio
~24! is zero. Making use of the decomposition~24! of a pure gauge connection we obtain

05Fmn2(
a

na~]mCn
a2]nCm

a !, ~33!

where the identity~23! has been used again for algebraic transformations. Thus,Fmn
a 5]mCn

a

2]nCm
a . Note that~24! allows one to determineCm

a via the group elementU explicitly. In ~3! the
vector potentialCi

a can always be chosen to satisfy the Coulomb gauge,] iCi
a50, thanks to the

gauge freedomCm
a →Cm

a 1]mja.

III. A KEY ALGEBRAIC INEQUALITY

In this section the following inequality is proved

E4<kNE 2
2, kN5

gN

4m4 S 12
1

N22ND . ~34!

It is used in Sec. IV to establish the low energy bound. Consider the (N221)3(N221) matrix

G5(
i ,b

] inb^ ] inb .

It can be regarded as a linear operator on the Lie algebra, i.e.,Gh5( i ,b ] inb(] inb ,h) for any Lie
algebra elementh. It hasN21 zero eigenvalues becauseGna50. The matrixG satisfies

tr G2>
1

N22N
~ tr G!2. ~35!
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The proof is simple. Letgk , k51,2,. . . ,n5N22N, be nonzero eigenvalues ofG. They are real
sinceG5GT with respect to the Cartan–Killing form. Consider a function of one real variabj,
f (j)5(k(gk2j)2. Computing the sum explicitly, one finds thatf (j)5tr G222j tr G1j2n. The
function attains its absolute minimum atj5j05tr G/n. Since f (j)>0 for all j’s, the inequality
~35! follows from f (j0)>0.

Consider a local Cartan–Weyl basis which is obtained by an adjoint transformation o
basis ~4!, ~5! with the group elementU(x) defined in ~1!. Denoting na5U†eaU and n2a

5U†e2aU5n̄a we have

@na ,nb#5~ha ,b!nb , @na ,n2a#5U†aU[aU , ~36!

where (aU ,na)5(a,ha) and (na ,nb)50, (na ,n2a)51, (na ,na)5(n2a ,n2a)50.
To establish a relation betweenE4 , E2 andG, we decompose the connection~25! in the local

Cartan–Weyl basis

Ai5 (
a.0

~Ai
ana1c.c.![Hi1H̄ i . ~37!

Then we obtain

E25m2 tr G52m2(
i ,b

~@Ai ,nb#,@Ai ,nb# !5
m2

N (
i

~Ai ,Ai !5
2m2

N (
i

~H̄ i ,Hi !. ~38!

The second equality follows from~23!; the third one is a consequence of~22! and ~24!. Making
use of~32! we also get

E452
g

4 (
a,i , j

~na ,@Ai ,Aj # !2 ~39!

52
g

4 (
a,b.0

(
i , j

~Ai
aĀj

a2c.c.!~a,b!~Ai
bĀj

b2c.c.!

<2
g

4N (
i , j

@~Hi ,H̄ j !2c.c.#2. ~40!

Note that the local Cartan component of@Ai ,Aj # can only come from the second commutati
relation in ~36!. Hence the sum overa in ~39! yields the factor(a(a,ha)(ha ,b)5(a,b)
5N21 cosuab<N21 for any two positive rootsa and b with the angleuab between them. In a
similar fashion we derive

tr G25(
a,b

(
i , j

~@Ai ,na#,@Aj ,nb# !25(
a,b

(
i , j

~na ,@@nb ,Ai #,Aj # !2 ~41!

5 (
a,b.0

(
i , j

~Ai
aĀj

a1c.c.!~a,b!2~Ai
bĀj

b1c.c.!

<
1

N2 (
i , j

@~Hi ,H̄ j !1c.c.#2. ~42!

Combining~42! and ~40!, we infer

4Ng21E41N2 tr G2<4(
i , j

~Hi ,H̄ j !~H j ,H̄ i !<4S (
i

~Hi ,H̄ i ! D 2

54~ tr G!2, ~43!
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where the Schwartz inequality

u~Hi ,H̄ j !u2<~Hi ,H̄ i !~H j ,H̄ j !

has been used. The inequality~34! immediately follows from~43!, ~38!, and~35!.

IV. THE LOW ENERGY BOUND

Let l05(16p2N)21. Then Eq.~3! can be written asQ5l0(a^CW
a,BW a&. Making use of~16!

one gets~cf. the caseN52 in Ref. 10!

uQu<l0(
a

iCW aipiBW aip8 ~44!

<l0l1(
a

icurl CW ai2iBW ai6/5 ~45!

5l0l1(
a

iBW ai2iBW ai6/5

<l0l1(
a

iBW ai2iBW ai2
1/3iBW ai1

2/3. ~46!

To get ~45!, Eq. ~18! has been used, which dictated the choicep56 in ~44!, and also] iCi
a50;

then the substitutionBW a5curlCW a has been made; the last inequality~46! is a consequence of~17!.
The energy can be written as

E5m2(
a

i]W nai2
21

g

2 (
a

iBW ai2
25(

a
~E2a1E4a!5E21E4 . ~47!

Hence, continuing~46! we get

uQu<l0l1~2/g!2/3(
a

~E4a
4/3!1/2~ iBW ai1

4/3!1/2 ~48!

<l0l1~2/g!2/3F S (
a

E4aD 4/3G1/2F S (
b

iBW bi1D 4/3G1/2

~49!

5l0l1~2/g!2/3E4
2/3F(

b
E dxABW b•BW bG2/3

<l0l1g21~2E4!2/3~N21!1/3F E dxA2E4G2/3

~50!

<l0l1g21~2E4E2!2/3@2~N21!kN#1/3 ~51!

<l0l1g21222/3@2~N21!kN#1/3E4/3 ~52!

5cN
24/3E4/3,
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where the constantcN is given in ~8!. To get~49!, the Hölder inequality~13! for p5q51/2 and
then~11! for g54/3 have been applied;~50! follows from ~12!; the algebraic inequality~34! has
been used to deduce~51!; the final result~52!, which is equivalent to~7!, comes from the basic
inequalityE4E2<E2/4.

If the Lagrangian~6! defines an effective theory of the SU(N) gauge fields in some approx
mation, then the coefficientsm andg should depend onN, the Yang–Mills coupling constant an
a mass scale that determines the energy range in which the approximation is valid.

The result~7! is trivially generalized to the case when the mass scales and coupling con
are different for each modena , that is,m2 andg are replaced byma

2 andga , respectively, and
inserted into the corresponding sums overa in ~6! ~cf. Ref. 4!. In this case,m25maxa$ma

2% and
g5maxa$ga% in ~8!. Indeed, all the inequalities in Secs. III and IV still hold as a consequenc
ma

2<m2 andga<g. Equality ~38! becomes an inequalitym2 tr G<E2 , which, however, does no
affect our derivation of~34! from ~43!.
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The XXZ spin chain at DÄÀ1Õ2: Bethe roots, symmetric
functions, and determinants
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A number of conjectures have been given recently concerning the connection be-
tween the antiferromagnetic XXZ spin chain atD521/2 and various symmetry
classes of alternating sign matrices. Here we use the integrability of the XXZ chain
to gain further insight into these developments. In doing so we obtain a number of
new results using Baxter’sQ function for the XXZ chain for periodic, twisted and
open boundary conditions. These include expressions for the elementary symmetric
functions evaluated at the ground state solution of the Bethe roots. In this approach
Schur functions play a central role and enable us to derive determinant expressions
which appear in certain natural double products over the Bethe roots. When evalu-
ated these give rise to the numbers counting different symmetry classes of alternat-
ing sign matrices. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1487445#

I. INTRODUCTION

The XXZ Heisenberg spin chain is a central and much studied model in statistical mech
It is arguably the best known model solved by means of the Bethe wave function Ansatz1 The
ground state wave function at the particular anisotropy valueD521/2 has recently been th
source of some surprising observations. At this value Razumov and Stroganov2 observed the
appearance of the numbersA(n)51,2,7,42,429,..., which count the number ofn3n alternating
sign matrices.3–5 Here the length of the chainL is odd (L52n11) with periodic boundary
conditions imposed. Alternating sign matrices are matrices whose elements are either21,0 or 1
such that the elements along each row and each column alternate in sign. Furthermore, the
in each row and column add up to11. The numbersA(n) are well known to enumerative
combinatorialists, having appeared in other distinct problems such as the enumeration o
partitions and generalizations of determinants. The one-to-one correspondence between
configurations of the square lattice ice model with domain wall boundary conditions6 and ASM’s
has been well documented.4,5 In particular it led to Kuperberg’s alternate proof7,8 of the alternating
sign matrix conjecture.3,4

The numbersA(n) appear in the ground state wave function of the XXZ Heisenberg cha
D521/2 in three ways:2 ~i! as the ratio of the largest and smallest components in the ground
wave function,~ii ! in the sum of the components, and~iii ! in the sum of the square of th
components. These observations atD521/2 have been extended in a number of directions. T
other known cases are:~i! twisted boundary conditions9 with L even,10,11 and ~ii ! open boundary
conditions with appropriate surface fields~the quantumUq@sl(2)# invariant chain9,12,13!.10 For
both cases the ground state wave function is complex. Nevertheless, the sums of the wave f
components and of their squares are real. The numbersA(n) also appear in the twisted cas
However, the open case sees the appearance of other symmetry classes. Here appeaAV(2n
11), the number of (2n11)3(2n11) vertically symmetric alternating sign matrices whenL
41350022-2488/2002/43(8)/4135/12/$19.00 © 2002 American Institute of Physics
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52n and N8(2n), the number of cyclically symmetric transpose complement plane partiti
when L52n21. The numberN8(2n) is conjectured to beAVH(4n11)/AV(2n11), where
AVH(4n11) is the number of (4n11)3(4n11) vertically and horizontally symmetric alterna
ing sign matrices.14 These various numbers also appear in the corresponding O~1! loop model, for
which the ground state wave function is real.10 Further developments include the combinator
interpretation15–17 of the elements of the O~1! loop model wave function and the relation to
one-dimensional Temperley–Lieb stochastic process.17

The numerous conjectures made to date for the various ground state wave functionD
521/2 remain to be proved. In earlier work, Stroganov and co-workers18–20 have found an
expression for Baxter’sQ function21 in each of the above cases. By definition the zeros of thQ
function are the Bethe roots. However, little if any use has been made of this function. He
use theQ function results to obtain closed form expressions for the values of the eleme
symmetric functions with the ground state Bethe roots as arguments. This approach also in
the appearance of the Schur function and determinants in a natural way. Ultimately we are
conjectures for new determinants whose values are related to the alternating sign matrix nu
These results came from observations on the product of certain combinations of Bethe
Although some results can be proved along the way, the evaluation of the determinants, inv
the elementary symmetric functions, remains to be done exactly.

The layout of this paper is as follows. In Sec. II we collect some necessary results o
Bethe Ansatz and symmetric polynomials. In Sec. III we give our results for the periodic~L odd!,
twisted and reflecting boundary cases. Some detailed working is given in the Appendix. The
concludes with some remarks in Sec. IV.

II. PRELIMINARIES

A. XXZ spin chain and Bethe’s Ansatz

We consider the periodic anisotropic quantum XXZ spin chain. A spin variable lives on
site of the chain taking either up or down values. The interaction between two neigboring sp
described in terms of Pauli spin matrices by the well known Hamiltonian,

H52
1

2 (
j 51

L

~s j
xs j 11

x 1s j
ys j 11

y 1Ds j
zs j 11

z !, ~1!

where the anisotropyD is parametrized by

D52 1
2 ~q1q21!. ~2!

We denote the position of thei th down spin along the chain byxi . The Hamiltonian~1! is
diagonalized via the Ansatz,1

c~x1 ,...,xn!5(
p

Ap1 ...pn)
j 51

n

zp j

xj ~3!

for the form of its eigenvectors. The sum overp5(p1 ,...,pn) denotes a sum over all permuta
tions of the numbers 1,...,n. Substituting~3! into the eigenvalue equation forH one finds the
eigenvalues to be given by

E52 1
2 LD2(

i 51

n

~zi1zi
2122D!. ~4!

The amplitudesAp1¯pn are also expressed in the variableszi for which the consistency equation
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zi
L5~2 !n21)

j 51

n
122Dzi1zizj

122Dzj1zizj
~5!

are derived.
It will be convenient to make the change of variables

z5
q2w

qw21
, w5

z1q

qz11
, ~6!

for which the Bethe equations~5! take the form

S q2wi

qwi21D L

1)
j 51

n
wi2q2wj

q2wi2wj
50. ~7!

Up to a normalization, the amplitudes are given by

Ap1¯pn5qn(n21)/2)
i , j

n 122Dzp i
1zp i

zp j

zp i
2zp j

5)
i , j

n wp i
2q2wp j

wp i
2wp j

. ~8!

Note that the eigenfunctions~3! are symmetric polynomials in the variableszi . All properties of
the XXZ spin chain can therefore be expressed in symmetric functions of these variables. W
review some of the basic properties of symmetric polynomials in the next section.

From ~8! we see that the amplitudes can be written in terms of the generalized Vanderm
product,

detl~wi
n2 j !5detl~wj

i 21!5)
i , j

n

~wi1lwj !, ~9!

where we have introduced thel-determinant22 which can be defined recursively via Dodgson
algorithm for evaluating determinants.4 If X(1)5(xi j

(1)) is an n3n matrix andY(1) an (n21)
3(n21) matrix with each element equal to 1, we define new matricesX(k) andY(k) recursively
by

xi j
(k)5~xi j

(k21)xi 11,j 11
(k21) 1lxi 11,j

(k21)xi , j 11
(k21)!/yi j

(k21) , i , j 51,...,n2k11, ~10!

yi j
(k)5xi 11,j 11

(k21) , i , j 51,...,n2k. ~11!

The numberX(n) thus defined is called thel-determinant ofX(1). For the special valuel521
this procedure evaluates the ordinary determinant detX(1). Just as the determinant can be written
a sum over the set of permutation matrices, thel-determinant can be written as a sum over the
of alternating sign matrices,22

detl M5 (
APA n

lI(A)~11l21!N(A) )
i , j 51

n

mi j
ai j , ~12!

whereAn is the set ofn3n alternating sign matrices,I(A) is the inversion number ofA andN(A)
the number of21’s in A ~see e.g., Ref. 4 for the definiton ofI). The total number of terms in this
sum, or equivalently the number ofn3n alternating sign matrices is given by

A~n!5 )
j 50

n21
~3 j 11!!

~n1 j !!
5)

i< j

n
n1 i 1 j 21

2i 1 j 21
. ~13!

We will see later that this and related numbers surprisingly show up in certain combinations
variableszi when evaluated at a particular solution of the Bethe equations~5! for q5eip/3.
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B. Symmetric polynomials

This section is included for the convenience of the reader. The results collected herein
found in standard textbooks such as Refs. 4 or 23.

A partition m of k is a nonincreasing set of integersm1 ,...,m l such thatm11¯1m l5k. We
denote this bym£k. Partitions define the shape of a semistandard tableau, which is a
dimensional array of integers with the restriction that these integers are nondecreasing acro
row of lengthm j and strictly increasing down columns. An example of a semistandard table
shape~4,4,3,1,1! is

1 1 2 3

2 3 4 4

4 4 5

5

6

.

A conjugate partitionm8 or conjugate shape is the shape obtained by reflecting the semista
tableau of shapem in its main diagonal. For example, the conjugate partition of~4,4,3,1,1! is
~5,3,3,2!. The integers in the semistandard tableau may be interpreted as indices of variable
thus to every semistandard tableau is associated a monomial in which the power of each v
is the number of times its index occurs in the tableau, e.g., for the example above the mo
is given by

w1
2w2

2w3
2w4

4w5
2w6 .

Given a tableauT the corresponding monomial is denoted bywT. In this way one may associat
with every tableau of shapem a polynomialsm , called the Schur polynomial, by the definition

sm~w1 ,...,wn!5(
T

wT, ~14!

where the sum is over all semistandard tableaux of shapem with entries chosen from$1,...,n%. If
m£k, sm is a polynomial of degreek. We will see later that the Schur function is a symmet
function.

The monomial symmetric function of degreek is defined by

mm5(
p

8 )
j 51

n

wj
p j , ~15!

where the sum is over alldistinct permutations,

p5~p1 ,...,pn! of the numbers~m1 ,...,mk,0,...,0!.

The elementary symmetric function of degreek in n variables is defined as the monomial sym
metric function that corresponds to the partition withk 1’s,

e051

e15w11¯1wn ,

e25w1w21w1w31¯wn21wn ~16!

]

ek5 (
1< i 1, i 2¯, i k<n

wi 1
¯wi k

.
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Given a partitionm, this definition is extended to

em5e(m1 ,...,m l )
5em1

¯em l
. ~17!

Finally, the complete symmetric functionhk is defined to be the sum over all monomial symmet
functions of degreek, i.e.,

hk5(
m£k

mm . ~18!

In a similar way as above this is extended to

hm5h(m1 ,...,m l )
5hm1

¯hm l
. ~19!

The following facts are well known concerning the various functions defined above:

~i! The elementary and complete symmetric functions are dual to each other in the sen

ek5det~h12i1j!i,j51
k ~20!

hk5det~e12i1j!i,j51
k , ~21!

where we put by conventione2k5h2k50 for k.0. Their generating functions are give
by

(
i50

`

ei~w1,...,wn!t
i5)

j51

n

~11wjt!, ~22!

(
i50

`

hi~w1,...,wn!t
i5)

j51

n
1

12wjt
. ~23!

~ii ! The Jacobi–Trudi identity.
Let m5(m1 ,...,mn) be a partition into at mostn part, then

sm~w1,...,wn!5det~hmi1j2i!i,j51
n . ~24!

~iii ! The Nägelsbach–Kostka identity.
Let m8 be the partition conjugate tom andk the number of parts inm8, then

sm5det~em
i82i1j!i,j51

k . ~25!

~iv! The Schur function is equal to a ratio of Vandermonde determinants,

s(m1,...,mn)~w1,...,wn!5
detwi

n2j1mj

detwi
n2j . ~26!

Usually ~26! is taken as the definition of the Schur function.

III. RESULTS FOR qÄeipÕ3

We now turn to the XXZ spin chain in the following cases:~i! periodic boundaries andL
52n11, ~ii ! twisted boundaries with twist anglep/3 andL52n, and~iii ! reflecting boundaries
In these cases the XXZ chain has a trivial ground state energy. It is to be understood that
section we takeq5eip/3.

A. Periodic boundaries

Consider the functionQn(w), of which the zeros are the solutions of the Bethe equations~7!,

Qn~w!5)
i 51

n

~w2wi !5(
l 50

n

~2 ! lwn2 lel , ~27!
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whereel are the elementary symmetric functions~16! with the variableswi as arguments. Stro
ganov showed,20 using Baxter’s T–Q relation21 that Qn(w) can be calculated analytically in th
case where thewi are the solution of~7! with L52n11 corresponding to the lowest value of th
energy~4!. The answer is given as a rational function inw. Using a binomial coefficient identity
the explicit polynomial form ofQn(w) is calculated in Appendix A. Comparing expression~A7!
now with the formal expansion ofQn(w) in ~27! one can read off the values of the elementa
symmetric functions at these particular values ofwi . We find

el5S n2 1/3
n D 21

(
p50

b l /3c F S 2n23p1 l
2n D S n2 1/3

n2p D S n1 1/3
p D

2S 2n23p1 l 21
2n D S n2 1/3

p D S n1 1/3
n2p D G . ~28!

The series in~27! with the coefficients as in~28! in general does not appear to be summable,
cannot be written as a simple product, but it can be verified without too much difficulty th
satisfies the recursion relation

~w11!2~3n12!Qn11~w!53~w321!~2n11!Qn~w!

2~w22w11!2~3n11!Qn21~w!. ~29!

For special values ofw, Qn(w) simplifies dramatically. The results

q2nQn~q21!52n)
j 51

n
2 j 21

3 j 21
, Qn~0!5~2 !n, ~30!

can for example be calculated easily from~29! whenw5q21 andw50. From this we conclude
that

)
j 51

n

~11zj1zj
2!5S 3

4D n

)
j 51

n S 3 j 21

2 j 21D 2

. ~31!

As another example to derive closed form expressions for symmetric combinations of
roots, we consider the product

)
iÞ j

n

~11zi1zizj !5)
iÞ j

n
i)~q2wj2wi !

~qwi21!~qwj21!

5)
i 51

n S )q21

~wi2q21!2D n21

)
i , j

wi
32wj

3

wi2wj
, ~32!

where in the last step we recognize the Schur function in the ratio of the two Vanderm
determinants@see Eq.~26!#. Thus we find, using~30!,

)
iÞ j

n

~11zi1zizj !5S )
j 51

n
)

4 S 3 j 21

2 j 21D 2D n21

3s(2(n21),2(n22),...,2,0)~w1 ,...,wn!. ~33!

This can be rewritten using the fact that a Schur function can be written as a determinant o
elementary symmetric functions~see~25!!. We now have

s(2(n21),2(n22),...,2,0)~w1 ,...,wn!5det~en2 b( i 11)/2c2 i 1 j ! i , j
2(n21) , ~34!
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with el given by~28!. We thus have derived a closed form expression for the product~32!. When
evaluated explicitly for small values ofn we find

)
iÞ j

n

~11zi1zizj !5A~n!3, ~35!

whereA(n) is the number ofn3n alternating-sign matrices~13!. Although we have not been abl
to evaluate the determinant in~34! analytically, we conjecture that~35! is true for all values ofn.

The smallest and largest component of the groundstate wave function are give
c(1,2,...,n) andc(1,3,...,2n21) respectively. In Ref. 2 it was conjectured that their ratio is eq
to A(n). Using the definitions of Sec. II A, we find by numerical calculation for smalln that the
smallest and largest component are given by

(
p

)
i , j

n 11zp i

211zp j

zp j
2zp i

5(
p

)
i , j

n

q21
qwp i

21

q2wp i

wp i
2q2wp j

wp j
2wp i

5A~n! , ~36!

(
p

)
i , j

n zp i

21~11zp i

211zp j
!

zp j
2zp i

5(
p

)
i , j

n

q21S qwp i
21

q2wp i

D 2 wp i
2q2wp j

wp j
2wp i

5A~n!2 . ~37!

We conjecture that these equations are true for abitrary values ofn. We see that indeed the rati
of these two components isA(n). In fact, using the natural, but otherwise arbitrary, normalizat
of the amplitudes~8!, we find that the smallest component itself is normalized toA(n). Since both
functions above are~up to a common factor! symmetric polynomials, we hope that these conje
tures can be proven by making use of~28!.

B. Twisted boundaries

For twisted boundary conditions,

sL11
6 5~sL11

x 6 isL11
y !5e62ifs1

6 , ~38!

the eigenvectors and eigenvalues ofH are still given by~3! and ~4!. The equations forzi or wi

however are modified and for the special casef5p/3 become

S q2wi

qwi21D L

1q22)
j 51

n
wi2q2wj

q2wi2wj
50. ~39!

Also for this caseQn(w) can be calculated analytically when the solution of~39! with L52n
corresponds to the ground state.18 We find that the elementary symmetric functions now have
values

el5S n2 1/3
n D 21

(
p50

b l /3c11 F S 2n23p1 l 21
2n21 D S n2 1/3

n2p D S n2 2/3
p D

2S 2n23p1 l 11
2n21 D S n2 1/3

p21 D S n2 2/3
n2p D G . ~40!

In a similar way as was done above for the periodic boundaries we can use this expres
evaluate symmetric polynomials in the variableszi . For example, we find that
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)
iÞ j

n

~11zi1zizj !5S 4e2 ip/33n/221)
j 51

n S 3 j 21

n1 j D 2D n21

3 det~en2 b( i 11)/2c2 i 1 j ! i , j
2(n21) . ~41!

When evaluated for small values ofn we see this is equal to

)
iÞ j

n

~11zi1zizj !5e2(n21)ip/3A~n!AHT~2n21!, ~42!

where

AHT~2n11!5A~n!2)
k51

n
3

4 S 3k21

2k21D 2

~43!

is the number of (2n11)3(2n11) half-turn symmetric alternating sign matrices. We conject
that ~42! is true for arbitrary values ofn.

C. Reflecting boundaries

For the open chain with diagonal, or spin conserving, boundaries, the Hamiltonian is giv

H52 1
2 (

j 51

L21

~s j
xs j 11

x 1s j
ys j 11

y 1Ds j
zs j 11

z 1 1
2 ~q2q21!~s j

z2s j 11
z !!. ~44!

The eigenvectors are now

c~x1 ,...,xn!5(
p,s

As1¯sn

p1¯pn)
j 51

n

zp j

s j xj , ~45!

where the sum runs over all permutationsp5(p1 ,...,pn) of the numbers 1,...,n and all signs
s i561.12,24 In this case the energy is given by

E52 1
2 ~L21!D2(

i 51

n

~zi1zi
2122D!. ~46!

The Bethe equations become

S q2wi

qwi21D 2L

2)
j 51
j Þ i

n S q2wj2wi

wj2q2wi
D S q22wiwj

12q2wiwj
D50, ~47!

wherez andw are again related by~6!. The amplitudes are up to a normalization given by

As1¯sn

p1¯pn5)
i 51

n

zp i

2s i L
11qzp i

2s i

zp i

s i 2zp i

2s i )i , l

~q2wp i

2s i2wp l

2s l !~q22wp i

s i wp l

s l !

~wp i
2wp l

!~12wp i

21wp l

21!
. ~48!
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In this case the functionQ is defined by

Qn~w!5)
i 51

n

~w̃2w̃i !5(
i 50

n

~2 ! i w̃n2 iei~w̃1 ,...,w̃n!, w̃5w1w21. ~49!

Also for this caseQn(w) can be given analytically when the solution of~47! corresponds to the
lowest value of the energy~46!.18 The explicit polynomial form ofQn(w) is given in the Appen-
dix, from which theei can be read off.

In analogy with the periodic and twisted cases we consider the product

)
i 51

2n

)
j 51

zjÞzi
61

2n

~11zi1zizj !5)
i 51

2n

)
j 51

wjÞwi
61

2n
~q2q21!~q2wj2wi !

~qwi21!~qwj21!

5)
i 51

n S q2q21

w̃i2q2q21D 4(n21)

)
iÞ j

n wi
31wi

232wj
32wj

23

w̃i2w̃j

5)
i 51

n S q2q21

w̃i2q2q21D 4(n21)S det~wi
3(n2 j )1wi

23(n2 j )!

det~wi
n2 j1wi

2n1 j !
D 2

. ~50!

Here we use the conventionwi 1n5wi
21 . The ratio of determinants in~50! is up to a factor a

symmetric polynomial inw̃1¯w̃n . Unfortunately we have not succeeded in expressing it in
known basis of elementary symmetric functions. Nevertheless, numerical evaluation of~50! leads
us to conjecture that

)
i 51

2n

)
j 51

zjÞzi
61

2n

~11zi1zizj !5AV~2n11!2N8~2n!4, ~51!

where AV(2n11) is the number of (2n11)3(2n11) vertically symmetric alternating sign
matrices~Ref. 8, Theorem 2! given by

AV~2n11!5 )
j 50

n21

~3 j 12!
~2 j 11!! ~6 j 13!!

~4 j 12!! ~4 j 13!!
~52!

andN8(2n) is the number of cyclically symmetric transpose complement plane partitions4,22given
by

N8~2n!5 )
j 51

n21

~3 j 11!
~2 j !! ~6 j !!

~4 j !! ~4 j 11!!
. ~53!

IV. CONCLUDING REMARKS

We have made a first step towards proving the appearance of certain numbers rela
alternating sign matrices in the ground state eigenvector of the XXZ spin chain. Many o
combinatorial results concerning alternating sign matrices have been obtained using the c
tion with the integrable six-vertex model.7,8 The XXZ spin chain is closely related to the six-verte
model and the methods used in this paper provide a different application of integrability
eigenvectors of the XXZ Hamiltonian are given in the form of Bethe’s Ansatz as a result o
integrability of the spin chain for each of the different boundary conditions under consideratio
fact, the normalization of the amplitudes~8! ensures that all eigenvectors are symmetric poly
mials in the Bethe roots. As is well known, a basis for the space of symmetric polynomials is
by the elementary symmetric functions. Using the results of Stroganov and his collaborato18–20
                                                                                                                



met-

ss the
ertain
s from
evalu-
s. Our
over

ed by
k der

size

4144 J. Math. Phys., Vol. 43, No. 8, August 2002 de Gier et al.

                    
for Baxter’sQ-function, we were able to derive explicitly the values that the elementary sym
ric functions take at the ground state solution of the Bethe roots. See, e.g., Eqs.~28! and~40! for
the periodic and twisted cases. Although in principle possible, we were not able to re-expre
ground state in terms of the elementary symmetric functions. However, we could show that c
natural double products over the Bethe roots can be rewritten in this way. Using some result
the theory of symmetric functions we could then derive determinant expressions that when
ated give rise to the numbers counting different symmetry classes of alternating sign matrice
key results~35!, ~42!, and~51! thus remain as conjectures. It is yet to be seen if such products
Bethe roots have any direct combinatorial meaning.
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APPENDIX: DETAILS

1. Periodic boundaries

Stroganov’s result forQn(w) in the case of periodic boundary conditions and odd system
is20

Qn~w!5)
i 51

n

~w2wi !5S n2 1/3
n D 21

(
k50

n

~2 !kS n2 1/3
k D

3S n1 1/3
n2k Dw3k11

~21!n1w3n26k21

~11w!2n11 . ~A1!

We would like to rewrite this in the form

Qn~w!5(
i 50

n

~2 ! iwn2 iei , ~A2!

where theei are the elementary symmetric functions with argumentsw1 ,...,wn . The right-hand
side of ~A1! can be expanded using

(
m50

`

~2 !mS 2n1m
m Dw22n2m215~11w!22n21. ~A3!

It follows that Q can be written as

Qn~w!5S n2 1/3
n D 21

(
k50

n

(
m50

`

~2 !k1mwn23k2mF S 2n1m
m D S n2 1/3

n2k D S n1 1/3
k D

2S 2n1m21
m21 D S n2 1/3

k D S n1 1/3
n2k D G . ~A4!

To show that~A4! reduces to a finite sum, we first collect terms of the formm53 j , m53 j 11
andm53 j 12. Then we use the following identity to rewrite~A4!:

(
k50

n

(
j 50

`

ak, j5(
l 50

n

(
p50

l

al 2p,p1 (
l 5n11

`

(
p50

n

ap,l 2p . ~A5!

To proceed we need the result
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(
p50

n S 3p2n1s
2n D S n2 1/3

p D S n1 1/3
n2p D5 (

p50

n S 3p2n1s21
2n D S n2 1/3

n2p D S n1 1/3
p D . ~A6!

This identity is proven by first showing that both the left and right hand sides satisfy the
recursion relation inn, i.e., both sums forn5m13 can be expressed in the same sums fon
5m12,m11 and n5m. One then shows explicitly that the identity holds forn50,1,2. The
recursion relation for~A6! can be easily derived using the Paule and Schorn Mathematica im
mentation of an algorithm of Zeilberger’s.25

From ~A6! it then follows that the infinite sum in~A5! vanishes and after recollecting term
again we can finally write

Qn~w!5S n2 1/3
n D 21

(
l 50

n

(
p50

b l /3c
~2 ! lwn2 lF S 2n23p1 l

2n D S n2 1/3
n2p D S n1 1/3

p D
2S 2n23p1 l 21

2n D S n2 1/3
p D S n1 1/3

n2p D G , ~A7!

the desired result.

2. Twisted boundaries

In this case the result of Fridkinet al.18 for Qn(w) is

Qn~w!5S n2 1/3
n D 21 1

~11w!2n (
k50

n

~2 !kS n2 2/3
n2k D

3S ~2 !nS n2 1/3
k Dw3k2S n2 1/3

k21 Dw3n23k12D . ~A8!

In analogy with the periodic case we need to rewriteQn(w) in powers ofw. This can be done
along the lines of the previous subsection with the help of the result

(
p50

n S 3p2n1s
2n D S n2 1/3

p D S n2 2/3
n2p D5 (

p50

n S 3p2n1s12
2n D S n2 1/3

n2p21D S n2 2/3
p D . ~A9!

As in the case of~A6!, this identity can be proven by showing that both the left and right-h
sides satisfy the same recursion relation inn. We then find

Qn~w!5S n2 1/3
n D 21

(
l 50

n

~2 ! lwn2 l

3 (
p50

b l /3c11 F S 2n23p1 l 21
2n21 D S n2 1/3

n2p D S n2 2/3
p D2S 2n23p1 l 11

2n21 D S n2 1/3
p21 D S n2 2/3

n2p D G .
~A10!

3. Reflecting boundaries

Following Fridkin et al.18 one can prove thatQ is given by

S 2n2 2/3
2n D 21

(
k52n

n

~2 !n1kS 2n1 2/3
n2k D S 2n2 2/3

n1k D w3k112w23k21

~w2w21!~21w1w21!2n . ~A11!

Using ~A3! and
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(
p50

bn/2c
~2 !pS n2p

p D ~w1w21!n22p5
wn112w2n21

w2w21 , ~A12!

the expression forQ can be rewritten so that we can read off the values of the elemen
symmetric functions with argumentsw̃1 ,...,w̃n , wherew̃5w1w21. Namely,

Qn~w!5223nS 2n2 2/3
2n D 21

(
p50

n

~22!pw̃n2pF S 3n2p21
n2p D S 2n1 2/3

n D S 2n2 2/3
n D

1 (
m50

p

(
k51

n

~2 ! b(k1m11)/2c2m21~11~2 !k1m!S 3n2p2m21
2n21 D

3S S 2n1 2/3
n2k D S 2n2 2/3

n1k D S b~3k1m11!/2c
m D

1S 2n1 2/3
n1k D S 2n2 2/3

n2k D S b~3k1m21!/2c
m D D G . ~A13!
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Chiral mixtures
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An index evaluating the amount of chirality of a mixture of colored random vari-
ables is defined. Properties are established. Extreme chiral mixtures are character-
ized and examples are given. Connections between chirality, Wasserstein distances,
and least squares Procrustes methods are pointed out. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1484559#

I. INTRODUCTION

Classifying a set as symmetric or not has been viewed as a dichotomic yes–no de
process for centuries. Attempts to evaluate the amount of symmetry has received little att
Grünbaum~1963! noticed the difficulty to elaborate a rational approach of this problem. Physi
and chemists proposed various measures of the amount of chirality: see, for instance, Harret al.
~1999!, Le Guennec~2000! or references cited by Petitjean~1997!. Most methods handle only
homogeneous solids, or only discrete sets. Many methods are limited to planar or spatial se
continuity properties are often ignored. E.g., for a homogeneous solid, the chiral index of
~1989! is the normalized volume of the symmetric difference between the solid and its inv
image. The volume of the symmetric difference is the distance introduced by Dinghas~1957!, this
distance being itself the square of theL2-norm induced distance between the indicator functio
of the solids. In this situation, continuity fails when the set becomes subdimensional. Cl
functional distances applied to a set and its inverted image have no adequate continuity p
because they are applied to densities rather than to distribution functions.

Thus, evaluating the degree of chirality of a random vectorX in Rd is possible from some
probability metric between the distribution ofX and the distribution of its translated and rotat
inverted image. The translation and the rotation are denoted respectivelyt and R. We consider
now any two random vectorsX andY in Rd, and we look for a probability metric. For exampl
F being the distribution function ofX, andG being the distribution function ofY, the quantitymK

@Eq. ~1.1!# is issued from the Kolmogorov metric:

mK5Inf$R,t%~Sup$x%uF~x!2G~x!u!. ~1.1!

But it was noticed previously~Petitjean, 1997, and 1999a!, that some applications require u
to consider colored mixtures, i.e., mixtures of colored random variables~see definition in the nex
section!. An example is the algebraic charge density of a molecule or ion, which may be vi
as a mixture of two charge densities, namely the positive one and the negative one. As
below, the quantitymK is not adequate for colored mixtures, because it is not sensitive to co
and an extension of the Wasserstein distance will be preferred.

II. COLORED MIXTURES AND WASSERSTEIN DISTANCES

The assumption thatY is distributed as a translated and rotated inverted image ofX is not used
in this section.

A reason to work with the colored model is that, when evaluating the degree of chirality,Y has
the distribution of a rotated inverted image ofX, and thereforeY is a mixture such that eac

a!Electronic mail: petitjean@itodys.jussieu.fr
41470022-2488/2002/43(8)/4147/11/$19.00 © 2002 American Institute of Physics
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componentỸ retains the color of its associated componentX̃ and is distributed as the rotate
inverted image ofX̃. In other words, the mirror~in fact, the inversion operator! sees the colors
e.g., the eight vertices of a cube constitute indeed a chiral figure inR3 when they have all differen
colors. Another application needing a probability metric sensitive to colors is the optimal s
position problem~see Sec. II B!, the quantitative chirality evaluation being just an instance of
problem.

A. Colored mixtures

When X is a mixture of colored random variablesX̃, the more general formulation of it
distribution is written in Eq.~2.1! with the mixing distributionP1 , and, similarly, the mixtureY
of colored random variablesỸ is written in Eq.~2.2! with the mixing distributionP2 :

F~x!5E F̃~x,c!•dP1~c!, ~2.1!

G~y!5E G̃~y,c!•dP2~c!. ~2.2!

When all the components of a mixture have the same color, it means that there is in fac
one colored component, and the colored mixture is an ordinary random vector inRd. A colored
mixture may be viewed as an ordinary mixture of random vectors, for which a supplementar
has been added~the space of colors!, this axis not being of numeric nature.

The joint distributionW of X andY is expressed with the mixing distributionP operating on
the mixed distributionsW̃ @Eq. ~2.3!#:

W~x,y!5E E W̃~x,y,c1 ,c2!•d2P~c1 ,c2!. ~2.3!

In Eqs. ~2.1!–~2.3!, the summations are performed over the spaces of the colors. Now
assume that the two colored mixturesX andY are defined on the same space of colors. Moreo
the distribution of the colors is assumed to be the same forX andY, i.e., the respective margina
distributions ofX andY on the space of colors are identical, and therefore can be fully correl
This correlation is indeed assumed now:P(c1 ,c2) is null when c1Þc2 , i.e., d2P(c1 ,c2) is
expressed with the Dirac delta function in Eq.~2.4!, and integration overc2 is performed in~2.3!
to give the expression ofW in Eq. ~2.5!, in which P1 is renamedP andc1 is renamedC:

d2P~c1 ,c2!5dP1~c1!•d [c25c1]dc2 , ~2.4!

W~x,y!5E W̃~x,y,C!•dP~C!. ~2.5!

Clearly, the independence of the mixturesX andY cannot be assumed now, except ifX has
only one colored component. This ‘‘colored model’’ is such that coupling the colors of a coup
mixturesX andY induces constraints on the existence of their joint distributionsW @Eq. ~2.4!#,
and the set of joint distributions satisfying Eq.~2.5! is a nonempty subset of the set of the joi
distributions of the same couple of mixtures discarding colors.

Equations~2.4! and ~2.5! are assumed to stand further.

B. Colored Wasserstein distance and Procrustes methods

A probability metric depending on the joint density is sensitive to the constraints arising
colors @see Eq.~2.5!#. The well known Wasserstein metric~Dobrushin, 1970; Dudley, 1989
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Rachev, 1991! is so. The Wasserstein metric is itself an instance of the Kantorovich functio
which is encountered in the transportation problem~see equation 1.1.25 in Rachev and Ru¨schen-
dorf, 1998!.

The distributions associated respectively toX andY areP1 andP2, and the matricial trans-
position operator is denoted by the quote. We name here colored Wasserstein distanceC(P1,P2)
the extension of theL2 Wasserstein distancem to colored mixtures, for which the lower bound o
the expectationE@(X2Y)8•(X2Y)# is taken for all rotationsR, translationst, and joint distri-
butionsW satisfying~2.5!, i.e., such that eachW̃ belongs to the class of all joint distributions o
X̃ and Ỹ:

D2~W!5E@~X2Y!8•~X2Y!#, ~2.6!

m~P1,P2!5Inf$W%D~W!, ~2.7!

C~P1,P2!5Inf$R,t%m~P1,P2!. ~2.8!

In Eq. ~2.6!, it should be noticed that the expectation is defined through a 2d-dimensional
Lebesgue–Stiltjes integral, rather than ad-dimensional one. On the other hand, for any jo
distributionW, computingE(X8•X) with the 2d-dimensional integral leads to the same value t
E(X8•X) computed with thed-dimensional one. The same remark is valid forE(X), E(Y), and
E(Y8•Y).

Data analysis methods performing an optimal superposition of a set on another one via
squares method were named Procrustes methods by Hurley and Cattell~1962!, and the sum of the
least squares is named the Procrustes distance. These methods are classified with the
transformation allowed to superpose the moving set on the fixed set: general linear transform
orthogonal transformation, or pure rotation. The 3D instance of this latter is usually encounte
physics, chemistry and bioinformatics: see references on the RMS algorithm cited in Pe
~1998!. The translation is optional, and it is always shown that the optimal translation is obt
when the mean points are superposed at the origin before further optimizations. The null
tation condition is not required in Procrustes methods.

Clearly, minimizing theL2 Wasserstein distancem(P1,P2) @Eq. ~2.7!#, for some class of
affine transformations ofY, generalizes the Procrustes method, because the usual one is
stance whenX andY are finite mixtures ofn colored almost constant vectors, such that there
one to one correspondence between then vectorsX̃i andỸi . In this discrete situation, the uniqu
feasible joint distribution is a bistochastic matrix equal toI /n, I being the identity matrix~colors
are supposed to be enumerated in the same order forX and Y!, and the Procrustes distanc
Min(D2) is just the minimized sum of the squared distances between then pairs of vectors. The
Procrustes distance is the minimum of the distance induced by the norm itself induced
scalar productTr(ZX8•ZY), whereZX and ZY are two (n,d) rectangular matrices. The optima
rotation is analytically known whend52 ~see Section 3 in Petitjean, 1997!, and whend53 ~see
appendix in Petitjean, 1999b!. The optimal orthogonal transformation is analytically known f
any d ~Golub and van Loan 1985!.

For the noncolored model, i.e., when then colors are identical, we get the Procrustes meth
without prefixed correspondence, for which the minimization ofD2 involves the enumeration of a
mostn! possible correspondences between the two sets. Looking at the probabilistic formu
the optimal joint distribution exists and is a bistochastic matrix equal to 1/n times a permutation
matrix, because it is an extreme point of the convex polytope of the feasible solutions o
associated linear programming problem.

To summarize, the Procrustes distance becomes an instance of theL2 Wasserstein distanc
when this latter is extended to colored mixtures and minimized for a class of affine transf
tions of Y. Using the colored Wasserstein distanceC @Eq. ~2.8!# assumes that we work in th
space of finite inertia colored mixtures, but the finite inertia condition could be relaxed if o
adequate Wasserstein distances~see Rachev, 1991! are extended to colored mixtures. For clari
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we restrict the affine transformations to rotations. In this situation,C is in fact a metric for classes
of equivalence of colored mixtures, the colored mixtures being in the same class when
distributions are rotated~and optionally translated! images of one of them. It is pointed out that th
colored Wasserstein distance is not defined when the mixtures have different marginal di
tions in the space of colors. In this situation, an attempt to work with the ‘‘maximal com
substructure’’ concept rather than with distances has been done for finite discrete sets~Petitjean,
1998!. Of course, when the mixtureY is distributed asf(X), f being any transform leaving
unchanged the marginal ofX in the space of colors,C is indeed defined.

Some immediate properties ofC(P1,P2) follow.
Let mXi

and mYi
be the respective expectations ofX and Y attached to thei axis, i

P@1,...,d#, andsXi
andsYi

be their respective standard deviations. The covariance attached
i axis isci , and the respective inertia areTX andTY . Equation~2.6! is now expandable as

D25(
i

@~sXi

2 1mXi

2 !1~sYi

2 1mYi

2 !22~ci1mXi
mYi

!#.

And, after rearrangement,

D25TX1TY1(
i

@~mXi
2mYi

!222ci #. ~2.9!

The inertias and the covariances do not depend on the expectations. Thus the optima
lation t is such thatE(X)5E(Y), and the expression ofD2 becomes

D25TX1TY22( ci . ~2.10!

Although the optimal joint distribution is not ensured to exist~Rachev and Ru¨schendorf,
1998!, the optimal rotation is shown to exist, but may be not unique~Appendix A!. The optimal
general transformation and the optimal orthogonal transformation are known~Appendix A!.

III. PROPERTIES OF THE CHIRAL INDEX

Let X andY be colored mixtures inRd, Y having the distribution of a translated and rotat
inverted image ofX. W is the joint distribution of the coupleX, Y andT is the inertia ofX or Y,
i.e., T5E@(X2E(X))8•(X2E(X))# and T5E@(Y2E(Y))8•(Y2E(Y))#. We define the chiral
index x as follows:

x5
d

4T
C2~P1,P2!. ~3.1!

In Eq. ~3.1!, P2 being function ofP1, x depends only on the law ofX. In other words,x is
the normalized squared colored Wasserstein distance between the mixturesX and Y, Y being
distributed as a translated and rotated inverted image ofX. The chiral index is restricted to finite
non-null inertia distributions. The situationT50 arises whenX is almost surely equal to som
constantx0 , and offers little interest. We neglect it. The chiral index is insensitive to isome
and is size free. As noticed in the preceding section, the optimal translation is obtained
E(X)5E(Y), meaning thatX andY should be centered.

For clarity, we assume without loss of generality that the conditionE(X)5E(Y)50 is satis-
fied in all this section.

The correlation coefficient attached to thei axis is r i . Assuming the existence of the corre
lation coefficients, we get from Eqs.~2.10!, ~3.1! and ~2.8!:
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D252T22( ci , ~3.2!

x5
d

2 S 12
Sup$R,W%~(ci !

T D . ~3.3!

Whend51, R51, Y is distributed as2X, and there is only one standard deviations, and one
correlation coefficientr . Equations~3.2! and ~3.3! become

D252s2~12r !, ~3.4!

x5
12Sup$W%~r !

2
. ~3.5!

In Eq. ~3.5! the chiral index depends on one parameter only. For the noncolored mode
parameter is the maximal correlation of Gebelein~1952!, applied toX and2X.

Now we return back to thed-dimensional space, and we look for a joint distribution ensu
to exist. As noticed in the previous section, the independence of the mixturesX andY cannot be
assumed, except ifX has only one colored component. The chiral index is proportional to
colored Wasserstein distance between the colored mixturesX and Y, Y being distributed as a
rotated inverted imageX ~which does not mean thatY is a rotated inverted image ofX!. WhenY
is indeed the image ofX through rotationR and inversionQ, the joint distribution of (X,Y)
expressed from the mixed joint distributionsW̃(x,y,C) in Eq. ~3.6! is ensured to exist:

d2W̃~x,y,C!5dF̃~x,C!•h[ y5R•Q•x]dy. ~3.6!

In Eq. ~3.6!, h[ y5y0] denotes the product of thed Dirac delta functions associated to the po
y0 . Expression~3.6! is reported in~2.5! for integration overC, and, using Eq.~2.1!, the final
expression of the joint distribution is, as for a noncolored model:

d2W~x,y!5dF~x!•h[ y5R•Q•x]dy. ~3.7!

Equation~2.6! is expanded for this particular joint distribution to get Eq.~3.8!, in which the
expectation is calculated through ad-dimensional integral:

D252T22E~X8•R•Q•X!. ~3.8!

The chiral index being insensitive to isometries, we assume now that the covariance ma
X is diagonal, and thatY is the image ofX through the inversion of the coordinate associated
the smallest variance axis. We takeR5I . The inertia being the sum of the variances, Eq.~3.8!
becomes

D254sd
2. ~3.9!

The ratio of the smallest variance to the inertia is upper bounded by 1/d, thus x is upper
bounded by 1. This bound is the best possible because it is reached for some particular
variables, as shown in Sec. V~see also the colored Bernoulli distribution in Appendix B!:

0<x<1. ~3.10!

We consider now the finite discrete situation. The joint distribution is expressed with
square bistochastic matrix of the probabilitiesWi j of each couple of values$xi ,yj%. Using Eq.
~2.6!, the chiral index is rewritten
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D25(
i

(
j

Wi j •~xi2yj !8•~xi2yj !, ~3.11!

x5
d

4T
Inf$Wi j ,R,t%D

2. ~3.12!

Equations~3.11! and~3.12! were proposed previously to evaluate the amount of chirality o
fnite d-dimensional set, and thus our present approach generalizes the previous one@see Eqs.~3!
and ~4! in Petitjean~2001!#. It was also shown that, for the mass-uniform discrete case,
bistochastic matrix associated to the joint distribution is a permutation matrix. This parti
situation means that there is a one-to-one mapping between the points of the set and thos
inverted image. In general, this mapping is not symmetric.

IV. CONVERGENCE

Obtaining the convergence of the chiral index from the convergence of the random var
is desirable to ensure some kind of continuity property of the chiral index. The weakest usua
of convergence possible for random variables is the convergence in law~in distribution!, e.g.,
convergence of densities is a stronger assumption because this latter implies convergence
@see Scheffe´’s theorem in Billingsley~1995!#.

We consider the noncolored model. LetXn be a sequence of random vectors converging toX
in law. We assume also the convergence ofE@Xn8•Xn# to E@X8•X#, this latter quantity being finite
Apart from whenX is almost surely constant, the convergence properties of the chiral index
arise from the convergence of Inf$R%(m

2(Pn
1 ,Pn

2))5Inf$Wn ,R%(Dn
2) to Inf$R%(m

2(P1,P2))
5Inf$W,R%(D

2), wherem denotes the Wasserstein distance@see Eq.~2.7!#. We use the triangle
inequality to write

m~P1,P2!<m~P1,Pn
1!1m~Pn

1 ,Pn
2!1m~Pn

2 ,P2!,

m~Pn
1 ,Pn

2!<m~Pn
1 ,P1!1m~P1,P2!1m~P2,Pn

2!,

um~Pn
1 ,Pn

2!2m~P1,P2!u<m~Pn
1 ,P1!1m~Pn

2 ,P2!. ~4.1!

The inversion matrixQ being constant, inequation~4.1! stands for any rotationR common to
Yn andY. For clarity, we nameen the second member of inequation~4.1!. Obviously,en does not
depend onR. We note respectivelymn(R)5m(Pn

1 ,Pn
2) andm`(R)5m(P1,P2). Inequation~4.1!

is rewritten

umn~R!2m`~R!u<en . ~4.2!

Let Rn andR` be optimal rotations~which are shown to exist in Appendix A!, respectively
associated toDn

2 andD2. Inequation~4.2! stands for anyR, and then stands forRn andR` :

u2mn~Rn!1m`~Rn!u<en , ~4.3!

umn~R`!2m`~R`!u<en . ~4.4!

We deduce from addition of~4.3! and ~4.4!

u@mn~R`!2mn~Rn!#1@m`~Rn!2m`~R`!#u<2en . ~4.5!

We know from optimality of rotations that each of the two quantities in brackets is n
negative. Thus both quantities are upper bounded by 2en :

umn~R`!2mn~Rn!u<2en , ~4.6!

um`~Rn!2m`~R`!u<2en . ~4.7!
                                                                                                                



of
ffine

sh
of the

e

he

n
,

of

-
the

y 1/
f
any

ion

s is
re

ed

4153J. Math. Phys., Vol. 43, No. 8, August 2002 Chiral mixtures

                    
Then, adding~4.3! and ~4.7!,

umn~Rn!2m`~R`!u5umn~Rn!2m`~Rn!1m`~Rn!2m`~R`!u<3en .

This inequation is rewritten in terms of Wasserstein distances:

uC~Pn
1 ,Pn

2!2C~P1,P2!u<3en . ~4.8!

It was assumed thatXn is converging toX in distribution, and that there was convergence
E@Xn8•Xn# to E@X8•X#, with E@X8•X#,` . These convergences are preserved through a
transformations. Thus, the distribution ofYn is also converging to that ofY, discarding or not the
common rotation used in inequation~4.2!, andE@Yn8•Yn# is converging toE@Y8•Y# We know
from theorem 6.2.1 in Rachev~1991! that theL2 Wasserstein distancesm(Pn

1 ,P1) andm(Pn
2 ,P2)

are tending to zero. Then,en→0, and we get from~4.8! the convergence ofC(Pn
1,Pn

2) to
C(P1,P2) .

Looking to the definition of the chiral index in Eq.~3.1! shows that we need also to establi
the convergence of the inertia, i.e., the centered two-order moment. The convergence
two-order moment was assumed, thus it suffices to get the convergence ofE@Xn# to E@X# . Let A
be any almost surely constant random vector, andPA its distribution. We have from the triangl
inequality:

um~Pn
1,PA!2m~P1,PA!u<m~Pn

1,P1!

and therefore

uE@Xn8•Xn#2E@X8•X#22E@A#8•~E@Xn#2E@X# !u→0 .

Setting the constant successively equal to each of thed canonical base vectors lead to get t
desired convergence for each of thed components of the first order moment.

The convergence theorem follows now for the chiral index:
Theorem: If the sequence(Pn) of probability distributions converges to P and E@Xn8•Xn#

→E@X8•X#,` , and E@(X2E@X#)8•(X2E@X#)#.0 , thenx(Pn)→x(P) .

V. EXTREME CHIRALITY RANDOM VARIABLES

The chiral index mapsX onto the interval@0;1#. AssumingE(X)5E(Y)50, we look first to
the minimum of the chiral index. Let us define a mixtureX as achiral when it has the distributio
of one of its rotated and inverted images. In this situation,X andY can be identically distributed
and thus they can be fully correlated, i.e.,E(X8•Y)5E(X8•X)5E(Y8•Y), andx50. Conversely,
whenx50, X is almost surely equal toY, Y having the distribution of a rotated inverted image
X, meaning thatX is achiral.

Now we look to the maximum of the chiral index. We assume thatX has a diagonal covari
ance matrix, and thatY is the image ofX through inversion of the coordinate associated to
smallest variance axis. We reuse the joint distribution in Eqs.~3.7! and~3.8!, andR5I is set, such
that Eq.~3.9! stands. The ratio of the smallest variance to the inertia being upper bounded bd;
x cannot be equal to 1 unless all thed variances are equal. Therefore, the covariance matrix oX
is proportional to the identity matrix. This covariance matrix is insensitive to isometries, and
rotationR is optimal for the joint distribution. Equation~5.1! expresses thus a necessary condit
to getx51:

E~X•X8!5s2
•I . ~5.1!

Thed-dimensional finite mixture ofn almost surely constant equiprobable colored variable
such that the joint distribution in Eqs.~3.7! and~3.8! is the only one feasible when all colors a
different. It has been shown~Petitjean, 1999b! that the lower bound ofD2 in Eq. ~3.8! is indeed
that of Eq.~3.9!, and the chiral index of the mixture isd times the percentage of inertia associat
to the smallest eigenvalue of the covariance matrix ofX:
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x5d•sd
2Y (

i
s i

2. ~5.2!

Thus,x50 when the set of then equiprobable points is subdimensional, andx51 when Eq.
~5.1! is satisfied. Well-known figures satisfy Eq.~5.1!, including regular planar polygons, cube an
hypercubes, octahedron and higher dimensional analogs. Regular simplices fall also in th
egory. It should be pointed out that when then colors are identical, these mixtures have a n
chiral index because there is a symmetry (d21)-hyperplane.

Some maximal chirality random variables can be exhibited for the noncolored model
joint distribution of the convolution product always exists, and from Eq.~3.3!, it comes that the
chiral index is upper bounded byd/2. Whend51, this bound is optimal, because it cannot
lowered for the Bernoulli distribution~see Appendix B!. Whend>2, finding the upper bound fo
the noncolored model is an open problem. The distribution of three equiprobable points
plane maximizingx has been exhibited~Petitjean, 1997!.

VI. DISCUSSION AND CONCLUSION

In the definition ofx, the division by the inertiaT was needed to get a size free chiral inde
Thus the degenerate random variableX with a null inertia has no chiral index, because bothD2

andT are null. Viewing this degenerate situation via the limit of a family of parametrized ran
variables makes no sense, in general, because the result depends on how the parameters
to get a null inertia, and because no convergence exists around the singularityT50.

Conditions under which the convergence theorem~Sec. IV! could be extended to any colore
mixture are to be investigated. A consequence of this convergence theorem is that the chira
associated to the sample converges to that of the random variable. This could be used to ge
Carlo approximations ofx when the analytical solution is unreachable, but building consis
estimators is outside the scope of this article. Computing the chiral index of a sample is equ
to compute it in the finite discrete mass-uniform distribution. For the latter, the unidimens
case is solved analytically, and suitable numerical techniques have been built whend52 andd
53 ~Petitjean, 1997, 1999a, b!. Computingx for a general finite discrete distribution is a no
linearly constrained optimization problem@see Eqs.~3.11! and ~3.12!#. Constraints arising from
the joint distribution are linear equalities and inequalities, because the matrix associated
joint distribution is bistochastic. Constraints arising from the rotation are quadratic, i.e.,R8•R
5I , and there is the polynomial constraint on the determinant ofR.

For the noncolored model, when the rotation is fixed, our optimization problem is an ins
of the transportation problem, which is a linear programming one. For the latter, solving
rithms and existence conditions of optimal joint distributions have been recently review
Rachev and Ru¨schendorf~1998! ~see also Anderson and Nash, 1987!, and numerous results ar
available in the monodimensional case.

Compared to the noncolored model, the colored model introduces additional constraintsW.
These constraints are handled by theL2 Wasserstein metric. Extending our present approac
other color sensitive probability metrics potentially gives rise to a family of similarity meas
between colored mixtures, which seems not yet to be investigated, and from which the ass
family of chiral indices could be derived.

It should be noticed that monodimensional distributions, such as the Gaussian, are confu
called symmetric in most books. They are in fact achiral. Evaluating the amount of chirality
different concept from evaluating the amount of direct symmetry. How to extend the pr
approach to direct symmetry is an open problem.
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APPENDIX A: OPTIMAL PROCRUSTES TRANSFORMATIONS

The results in this appendix are valid for colored mixtures, and therefore stand for ra
vectors. We consider the colored Wasserstein distanceC(P1,P2) @Eqs.~2.6!–~2.8!#, and we look
for the lower bound ofD2 when the mixtureY is submitted to a linear transformationA and a
translationt:

D25E@~X2~A•Y1t !!8•~X2~A•Y1t !!#, ~A1!

C25Inf$A,W,t%D
2. ~A2!

The gradient int is null when t5E(X)2A•E(Y). It means that both mixtures should b
centered before looking to the optimal value ofA. The optional translation is further ignored, su
that all results listed in this appendix remain valid, whether or notX andY are centered prior any
optimization. Now we look to the lower bound ofD2 for A. We have a quadratic expression ofA,
except ifA is orthogonal:

D25E@~X2A•Y!8•~X2A•Y!#, ~A3!

C25Inf$A,W%D
2. ~A4!

1. The optimal general linear transformation

Derivating in ~A3!, we get:

E@2•A•Y•Y822•X•Y8#50, ~A5!

A5E@X•Y8#•~E@Y•Y8# !21. ~A6!

When the noncentered covariance matrix ofY is not inversible, we can try to solve b
interchangingX andY. If both noncentered covariance matrices are singular, the problem is in
subdimensional.

2. The optimal orthogonal transformation

The solution given by Golub and van Loan~1985! is restricted to finite sets of equiprobab
points ~in a nonprobabilistic context!. It is extended here to colored mixtures. For clarity, we
A5Q. Equation~A7! shows thatD2 is an affine expression ofQ:

D25E@X8•X1Y8•Y22•X8•Q•Y#. ~A7!

Now we look for the upper bound of:

E@X8•Q•Y#5Tr~E@Y•X8#•Q!. ~A8!

Let us write in Eq.~A9! the singular value decomposition of the square matrixE@Y•X8#, i.e.,
S being the diagonal matrix containing the singular values,U being the orthonormal matrix o
eigenvalues ofE@X•Y8#•E@Y•X8#, andV being the associated orthonormal matrix of eigenval
of E@Y•X8#•E@X•Y8#, we have

E@Y•X8#5V•S•U8. ~A9!

We look for the upper bound ofTr(V•S•U8•Q)5Tr(U8•Q•V•S). The coefficients of the
diagonal matrixS are non-negative, thus the trace is maximized when the coefficients o
orthogonal matrixU8•Q•V are all equal to 1, meaning thatU8•Q•V5I . The optimal matrixQ is

Q5U•V8. ~A10!
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WhenS is nonsingular, the determinant ofQ is obtained from~A9! and ~A10!:

det~Q!5sign~det~E@Y•X8# !!. ~A11!

The sense of the eigenvectors ofU andV are not independant, because the non-normali
matrix of eigenvalues ofE@Y•X8#•E@X•Y8# ~which becomesV after normalization! is equal to
E@Y•X8#•U. Thus, changing the sense of any eigenvector ofU is still possible, but does no
affect Q.

The optimalQ is unique, except whenS has at least one null diagonal element.

3. The optimal d -dimensional rotation

As for the general orthogonal transformation@see Eqs.~A7! and ~A8! in which we setQ
5R for clarity#, we look to the upper bound ofTr(E@Y•X8#•R), which is a linear expression o
the unknown rotation. The set of rotations is closed and bounded inRd2

. Our constrained maxi-
mization problem of a linear form inRd2

has indeed a solution, but it may be not unique. T
general expression of the solution is unknown, except in some particular situations.
det(E@Y•X8#).0, the optimal rotation is given in Eq.~A10!.

4. The optimal planar rotation

The planar rotation matrix is parametrized with the angler :

R5I •cos~r !1P•sin~r !, ~A12!

whereI is the identity matrix, andP the antisymmetric matrix associated to the rotation of an
p/2. Reporting~A12! in ~A3! and derivating forr gives the minimum and the maximum ofD2.
The minimum is

cos~r !5E@X8•Y#/E, ~A13!

sin~r !5E@X8•P•Y#/E, ~A14!

E5@~E@X8•Y# !21~E@X8•P•Y# !2#1/2, ~A15!

D25E@X8•X#1E@Y8•Y#22•E. ~A16!

5. The optimal spatial rotation

The spatial rotationR is parametrized with the unit quaternionq. Its first component is the
cosinus of the half rotation angle, and its other three components are the rotation axis, with
equal to the sinus of the half rotation angle. The quaternionsq and2q are associated to the sam
rotation. The optimal quaternion maximizes the quadratic formq8•B•q in Eq. ~A17! and the proof
is essentially that established in the appendix of Petitjean~1999b! for finite sets of equiprobable
points~in a nonprobabilistic context!. It is extended here to colored mixtures. The optimal qua
nion is the unit eigenvector associated to the highest eigenvalue of the symmetric matrixB:

D25D0
222•q8•B•q, ~A17!

D0
25E@~X2Y!8•~X2Y!#, ~A18!

B5S 0 c8

c ~Z1Z82I •Tr~Z1Z8!!
D , ~A19!

Z5E@Y•X8#, ~A20!

c5E@Y∧X#. ~A21!
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Note that the elements ofc are computable from those ofZ.

APPENDIX B: THE BERNOULLI DISTRIBUTION

The Bernouilli distribution is translated here to get a null expectation, i.e., the value 12m has
probability P(12m)5m and the value2m has probabiltyP(2m)512m. The rotationR51,
and the joint distributions betweenX andY distributed as2X, are conveniently parametrized b
only one parameterp5P(X52mùY5m21). Therefore,P(X512mùY5m21)5m2p,
P(X52mùY5m)512m2p, and P(X512mùY5m)5p. The covariance isc5p2m(1

2m), and the maximal correlation coefficient is reached forp5m when mP@0; 1
2#, and for p

512m when mP@ 1
2;1#, i.e., r 5 m/(12m) and r 5 (12m)/m, respectively. According to Eq

~2.1!, x512 ( 1
2)/(12m) whenmP]0; 1

2], andx512 (1/2)/m whenmP@ 1
2;1@ . The chiral index

is null whenm5 1
2, and is tending to12 whenm is tending to 0 or to 1. The linem5 1

2 is a symmetry
axis for the graph of the functionx(m).

The colored Bernoulli distribution is, as for the noncolored one, a mixture of two ran
variables almost surely constant, with mixing proportionsm and 12m. As previously, the mixture
is translated to get a null expectation. However, the two components of the mixture are co
and thus P(X52mùY5m21)50 and P(X512mùY5m)50. Setting now p5P(X
52mùY5m), the covariance isc52p•m22(12p)•(12m)2, and the maximal correlation

coefficient is reached forp51 whenmP@0; 1
2#, and forp50 whenmP@ 1

2;1#, i.e., r 5 2m/(1

2m) and r 5 (m21)/m, respectively. According to Eq.~2.1!, x5 (1
2)/(12m) when mP]0; 1

2],

andx5 1/2m whenmP@ 1
2;1@ . The chiral index is equal to 1 whenm5 1

2, and is tending to12 when
m is tending to 0 or to 1. The linem5 1

2 is a symmetry axis for the graph of the functionx(m).
This graph is the image of the previous one through the symmetry axisx5 1
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Twisted duality of the CAR-algebra
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We give a complete proof of the twisted duality propertyM(q)85Z̃M(q')Z̃* of
the ~self-dual! CAR-Algebra in any Fock representation. The proof is based on the
natural Halmos decomposition of the~reference! Hilbert space when two suitable
closed subspaces have been distinguished. We use modular theory and techniques
developed by Kato concerning pairs of projections in some essential steps of the
proof. As a byproduct of the proof we obtain an explicit and simple formula for the
graph of the modular operator. This formula can be also applied to fermionic free
nets, hence giving a formula of the modular operator for any double cone. ©2002
American Institute of Physics.@DOI: 10.1063/1.1483376#

I. INTRODUCTION

Twisted duality is a structural property of the von Neumann algebra obtained from the C
Algebra ~which is an abstract C* -algebra! in any Fock representation. The~self-dual! CAR-
Algebra is uniquely given once a separable Hilbert spaceh and an anti-unitary involutionG are
specified.3,4 Now for any G-invariant subspaceq of h and any Fock state characterized by
so-called basis projectionP we can canonically construct a von Neumann algebraM(q). Twisted
duality means that the equation

M~q!85Z̃M~q'!Z̃* ~1!

holds, whereZ̃ is a certain unitary twist operator to be introduced in the following section
q% q'5h. Thus in order to formulate duality in the context of the~self-dual! CAR-Algebra one
needs to distinguish two closed subspacesq andpªPh in the reference Hilbert spaceh. The study
of two closed subspaces of a Hilbert space has a long and interesting history in functional a
~e.g., Refs. 15, 13, 22, 30, 6, 11, and 26! as well as applications in mathematical physics.5

We will see how the analysis of the relative position of these subspaces will naturally su
the strategy of the complete proof of Eq.~1! that we present in this article. Concretely, givenp and
q as before we can canonically consider the Halmos decompositionh5h0% h1 ~cf. Ref. 22!, where
h0 is the maximal subspace on which the orthoprojections corresponding to the closed sub
commute~Ref. 11 Sec. III!. Our proof of ~1! in the general case is based on the correspond
property for the generic position situation whereh05$0%. The case wherep andq are in generic
position allows us to use modular theory25,12 as well as results of Kato26 for pairs of projections.
In this context we will characterize the bicontinuity of different mappings that naturally ap
here, e.g., the Tomita operator restricted to the one-particle Hilbert space. Further, we d
systematically the relation of an important mappingw ~and the components of its polar decom
position! used by Araki and Dell’Antonio2,14, to the modular objects given in our case. T
mappingw is introduced by these authors to study the type of certain local von Neumann alg

a!Electronic mail: baumg@rz.uni-potsdam.de
b!Electronic mail: lledo@iram.rwth-aachen.de
41580022-2488/2002/43(8)/4158/22/$19.00 © 2002 American Institute of Physics
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The equation~1! appears naturally in the context of algebraic quantum field theory, in
ticular in relation with Haag duality, which is one of its central concepts~see e.g., Refs. 16, 17, 31
21, and 7!. Haag duality is a strengthening of Einstein causality for a net of von Neumann alg
indexed by suitable regions inR4. In the context of the CCR-Algebra~bosonic systems!, one
usually proceeds in two steps in order to prove this property:2,18,23,27,29first one shows the so
calledabstractduality

M~m's!5M~m!8,

whereM(m)8 is the commutant of the von Neumann algebraM(m) which is generated by the
Weyl operators associated to a closed real subspacem of the one-particle Hilbert space andm's

denotes the symplectic complement ofm. This result is then crucially used in a second step
order to reduce the proof of Haag duality to the discussion of certain real subspacesm(O)
associated to sufficiently regular regionsO in R4. In the context of the CAR-Algebra~fermionic
systems!, and taking into account that now the generators of the algebra will anti-commute
corresponding elements of the reference space are mutually orthogonal, one can adapt the
of duality @cf. ~1!# and Haag duality.~In the following we will avoid the use of the adjectiv
‘‘abstract.’’! Twisted duality~1! is mentioned~without proof! in Ref. 3, Remark 4.9 and proved i
Ref. 20. For the special case of the generic position situation, see also Ref. 32, p. 49
important difference between the proof we present here and those in Refs. 20 and 32 is t
will use the self-dual approach to the CAR-Algebra3,4 and will consistently work withcomplex
Hilbert subspaces.~For further details about the relation between our proof and those in Ref
and 32 we refer to Remark 5.7 and to Sec. VI.! This is not only a matter of elegance, but only th
explicit use of a basis projectionP in order to specify the Fock states of the CAR-Algebra w
allow us to consider the natural Halmos decomposition of the reference Hilbert space. The
the whole strategy of the proof as well as various formulas we prove in Sec. IV~e.g., a simple and
explicit expression for the graph of the modular operator as well as a formula for the mo
conjugation, cf. Theorem 4.12 and Remark 5.7! will depend on this choice. Finally, the twiste
duality property~1! of the CAR-Algebra can be applied to the fermionic free nets defined in R
8, 24, and 28 in order to prove Haag duality for these models. In the mentioned referenc
authors present a direct way to construct nets of local C* -or von Neumann-algebras associated
massive~resp. massless! models for any half-integer spin~resp. helicity! value. The nets for these
models are naturally characterized by a net of localG-invariant linear subspacesO°q(O) of the
corresponding reference Hilbert space. Now the formulas for the graph of the modular op
and modular conjugation~cf. Theorem 4.12 and Remark 5.7! can also be applied to the localize
CAR-Algebras associated withq(O), whereO is a double cone. We will give in Theorem 5.10 th
corresponding formulas for the localized modular objects.

The article is structured in seven sections: In Sec. II we will state basic results concerni
CAR-Algebra that will be used later on. In the following section we will consider the Halm
decomposition of a Hilbert space and state necessary and sufficient conditions on the subsp
andq in order that the modular theory is well defined forM(q) and its Fock vacuum vectorV. In
Sec. IV we will systematically analyze the context defined by two projections: the first one
the orthoprojectionQ onto q and the other one being the basis projectionP. The main goal here
is to relate the objects that appear in the polar decomposition of the mappingw and of the Tomita
operatorS corresponding to (M(q),V) and restricted to the one-particle spacep. On the way to
this goal we will give simple formulas for the graphs ofw*w and the modular operator which sho
a beautiful symmetry wrt the interchangeP↔Q ~cf. Theorem 4.12 and Proposition 4.13!. These
results will be applied in the next section where~1! is proved in the case wherep andq are in
generic position. In Sec. VI the relation of the self-dual approach to the real subspace appr
in Refs. 20 and 32 are pointed out. In the last section we give a complete proof of~1! in the most
general situation, i.e., for anyG-invariant closed subspaceq and any Fock state. The proof is bas
on the results of the previous two sections.
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II. BASIC STRUCTURE OF THE CAR-ALGEBRA

In order to establish our notation we will begin this section collecting some standard res
concerning the CAR-Algebra that will be needed later on. For proofs and further results we
to Refs. 3 and 4. In the following subsections we will also consider additional structure of
algebra necessary for our proof of twisted duality.

Theorem 2.1: Let h be a complex Hilbert space with scalar product^•,•& and let G be an
anti-unitary involution on it, i.e., ^G f ,Gh&5^h, f &, for all f ,hPh. ThenCAR(h,G) denotes the
algebraically uniqueC* -algebra generated by1 and a( f ), f Ph, such that the following relations
hold:

(i) The mappingh{ f °a( f ) is antilinear.
(ii) For any fPh one has a( f )* 5a(G f ).
(iii) For any f ,hPh the equation a( f )a(h)* 1a(h)* a( f )5^ f ,h& 1 holds.

Next we define a class of pure states of the preceding C* -algebra. An orthoprojectionP of h
is called abasis projectionif it satisfies the relationP1GPG51. These projections uniquely
characterize so-calledFock statesvP by means of the equation

vP~a~ f !* a~ f !!ª0 for any f Ph with P f5 f . ~2!

The antisymmetric Fock space is given by

Fª%
n50

`

~∧
n

Ph!. ~3!

In order to specify the Fock representationp(a( f )) of the generatorsa( f ) we need to introduce
the usual annihilation and creation operators onF:

c~p!Vª0,

c~p!~p1∧¯∧pn!ª(
r 51

n

~21!r 21^p,pr&hp1∧¯∧ p̂r∧¯∧pn ,

c~p!* Vªp,

c~p!* ~p1∧¯∧pn!ªp∧p1∧¯∧pn ,

whereV is the Fock vacuum in the subspace corresponding ton50 in the definition~3! and
p,p1 ,...,pnPPh. p̂r means that the vectorpr is omitted in the wedge product. Finally, the Fock
representationp is defined by

p~a~ f !!ªc~PG f !* 1c~P f !, f Ph.

In the rest of the article we assume that a basis projectionP is given and when no confusion
arises we will also simply writea( f ) instead ofp(a( f )). To prove twisted duality in Sec. V we
will need an explicit formula for the vectora( f n)•¯•a( f 1)V. Let n, k, p be natural numbers
with 2p1k5n and define the following subset of the symmetric groupSn :

Sn,pªH S n n21 ¯ n22p12 n22p11 k ¯ 1

a1 b1 ¯ ap bp j 1 ... j k
D PSnua1.¯.ap ,a l.b l ,

l 51,...,p and n> j 1. j 2....j k>1J .
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Note thatSn,p contains (n22p
n ) (2p)!/ p!2p elements.

Proposition 2.2: For f1 ,...,f nPh the equation

~a~ f n!•¯•a~ f 1!!V5 (
pPSn,p
0<2p<n

~sgnp!)
l 51

p

^P fa l
,PG f b l

&PG f j 1
∧¯∧PG f j k

holds, where the indicesa l ,b l , j 1 ,..,j k are given in the definition ofSn,p and where for n52p in
the preceding sum one replaces the wedge product by the vacuumV.

Proof: See the Appendix. j

Let Z be the implementation onF of the even-oddness automorphism associated to the Bo
jubov unitarity21 ~Ref. 4, p. 76!. It satisfiesZ5Z* 5Z21 and therefore its spectral decompos
tion is simply given by

Z5E12E2. ~4!

Let furtherX5Xeven1Xodd be the unique decomposition of anyXPCAR(h,G) into its even and
odd parts. The following result will be used in Sec. VII.

Lemma 2.3: Letp be a Fock representation ofCAR(h,G) and Z5E12E2 as before. Then
for any XPCAR(h,G) we have

E1p~Xeven!E
25E2p~Xeven!E

150,

E1p~Xodd!E
15E2p~Xodd!E

250.

Proof: Recall thatZ0p(Xeven)5p(Xeven)Z0 . Multiplying from the left byE1 and from the
right by E2 we get

E1p~Xeven!E
252E1p~Xeven!E

2,

which implies the first two equations. Similarly we obtain the equations corresponding t
odd part. j

A. Direct sums and tensor products

Let (hk ,Gk), k50,1, be two Hilbert spaces with anti-unitary involutions and letPk be two
basis projections for the corresponding spaces. We denote bypk the Fock representations o
CAR(hk ,Gk) on the antisymmetric Fock spacesFk . Zk are the implementers of the respecti
even-oddness automorphisms,k50,1. Motivated by Ref. 14, p. 82~cf. also Ref. 19, p. 219! we
consider the following.

Proposition 2.4: With the preceding notation puthªh0% h1 and GªG0% G1 and consider
CAR(h,G). The representations defined onF0^ F1 by

p~a~ f 0% f 1!!ªp0~a~ f 0!! ^ 11Z0^ p1~a~ f 1!!, ~5!

p~a~ f 0% f 1!!ªp0~a~ f 0!! ^ Z111^ p1~a~ f 1!!, f kPhk , k50,1, ~6!

are the Fock representations ofCAR(h,G) wrt the basis projection PªP0% P1 on (h,G). Further,
the even-oddness automorphism ofCAR(h,G) is implemented onF0^ F1 by ZªZ0^ Z1 .

Proof: We check first that the definition~5! is compatible with the algebraic structure
CAR(h,G). Indeed, for anyf k ,hkPhk , k50,1,

p~a~ f 0% f 1!!* 5p0~a~G0f 0!! ^ 11Z0^ p1~a~G1f 1!!5p~a~G~ f 0% f 1!!!

and
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Consider next the vector state associated toV0^ V1 , whereVk are the Fock vacua inFk , k
50,1. In this case we have

^V0^ V1 ,p~a~ f 0% f 1!!* p~a~ f 0% f 1!!V0^ V1&

5ip0~a~ f 0!!V0^ V11V0^ p1~a~ f 1!!V1i2

5iP0G0f 0i21iP1G1f 1i25i~12P!~ f 0% f 1!i2.

Thus by the uniqueness of the characterizing condition~2! of a Fock state, together with the fac
that the vectorsp(a( f 0% f 1))V0^ V1 , f kPhk , generate the whole spaceF0^ F1 , we have thatp
is actually the Fock representation of CAR(h,G) wrt the basis projectionP with Fock vacuum
V0^ V1 .

We still need to show thatZ0^ Z1 implements the even-oddness automorphism of CAR(h,G)
on F0^ F1 . Note thataªad(Z0^ Z1) satisfiesa25 id and it is enough to consider the action ofa
on the generators:

~Z0^ Z1!p~a~ f 0% f 1!!~Z0^ Z1!5Z0p0~a~ f 0!!Z0^ Z1
21Z0

3
^ Z1p1~a~ f 1!!Z15p~2a~ f 0% f 1!!.

Equation~6! is shown similarly. j

Corollary 2.5: For X0PCAR(h0 ,G0) and X15X1,even1X1,oddPCAR(h1 ,G1) we have

p~X0!5p0~X0! ^ 1

and

p~X1!51^ p1~X1,even!1Z0^ p1~X1,odd!5E0
1

^ p1~X1!1E0
2

^ Z1p1~X1,odd!Z1 ,

where Z05E0
12E0

2 .

B. The subspace q and twisted causality

Let (q,G) be as in Theorem 2.1 and denote byq a closedG-invariant subspace ofh. We can
naturally associate with the subspaceq a von Neumann algebra that acts on the antisymme
Fock space characterized by the basis projectionP:

M~q!ª~$a~q!uqPq%!9,L~F!. ~7!

In order to be able to formulate causality or duality in the context of the CAR-Algebra
necessary to introduce a so-calledtwist operator Z̃onF. Indeed, this operator allows us to expre
orthogonality relations of subspaces ofh in terms of the commutant of a suitable von Neuma
algebra. Recalling the definition ofZ before Eq.~4! we define the twist operator as usual@Ref. 10,
Eq. ~26!#:
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Z̃ª
1

11 i
~11 iZ ! and Z̃a~ f !Z̃* 5 iZa~ f !, f Ph. ~8!

Putting

h~n!ªH 1, if n even,

2 i , if n odd,

we may describe the action ofZ̃ and Z̃* on F by Z̃(p1∧¯∧pn)5h(n) p1∧¯∧pn and
Z̃* (p1∧¯∧pn)5h(n) p1∧¯∧pn . Further, considering the spectral projectionsE6 of Z we also
have the relation

Z̃5E12 iE2. ~9!

The algebraZ̃ M(q) Z̃* is usually called ‘‘twisted’’ algebra. It is now immediate to check t
following inclusion, which expresses the twisted causality property in the present context.

Proposition 2.6: Letq be a closedG-invariant subspace ofh as before. Then the inclusio

Z̃ M(q') Z̃* #M(q)8 holds.
Remark 2.7:Twisted duality strengthens this relation by turning the preceding inclusion

an equality forany closedG-invariant subspaceq of h.
Remark 2.8:Writing now explicitly the Fock representation and considering Eq.~8! as well as

the even-odd grading of the CAR-Algebra we have the following ways of generating the tw
von Neumann algebra:

Z̃ M~q'! Z̃* 5$Zp~a~q'!!uq'Pq'%9

5$p~Yeven!1 iZp~Yodd!!uY5Yeven1YoddPCAR~q',G�q'!%9.

III. THE HALMOS DECOMPOSITION OF A HILBERT SPACE

From the preceding subsection we see that to formulate the duality property in the p
context one needs to distinguish two closed subspaces of the reference spaceh: the subspacep
~one-particle Hilbert space!, which is given by the basis projectionP, and theG-invariant sub-
spaceq to which we associate the orthoprojectionQ. Therefore, it is natural to consider th
Halmos decomposition22 of h wrt p andq, which is given by

h5h0% h1 , ~10!

whereh05(pùq) % (pùq') % (p'ùq) % (p'ùq') andh15h*h0 . h0 is actually the maximal sub
space whereP andQ commute~Ref. 11, Sec. III!. In h1 the subspacesp andq are said to be in
generic position,22 in the sense that the preceding four mutual intersections of the subspacep, q,
p' andq' are equal to$0%.

In the present context the decomposition~10! is also natural because it allows us to separ
the general situation into simpler ‘‘pieces’’ onh0 andh1 :

Lemma 3.1: Consider(h,G) and P,Q as before. Further, let R0 be the orthoprojection onto
the subspaceh0 in (10). Then we have

R0P5PR0 , R0Q5QR0 and R0G5GR0 .

Proof: The first two equations are clear from the form ofh0 given after~10! and recall thatR0

is the maximal orthoprojection with the propertyR0 PQ5R0 QP. Now from

GR0G PQ5GR0 ~12P!QG5GR0G QP
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and the maximality ofR0 we must haveGR0G<R0 . Finally, from theG-invariance ofh and since
G251 we getR0G5GR0 . j

Remark 3.2:The preceding result allows us to consider the following restrictions:

PkªP�hk , QkªQ�hk , and GkªG�hk , k50,1.

Further, Pk is a basis projection on (hk ,Gk) characterizing the Fock representationpk of
CAR(hk ,Gk), k50,1. This possibility to split off the general situation in an Abelian piece an
generic position piece will be essential for the proof of our main theorem in Sec. VII. In
context we will need to split again the Abelian part ash05h01% h02, where h01ª(pùq')
% G(pùq') andh02ª(pùq) % G(pùq).

A. Modular theory

Let (h,G), P and q be given as in Sec. II B and denote bypªPh the corresponding one
particle Hilbert space. We will give in this subsection necessary and sufficient conditions o
subspacesp andq in order that the Fock vacuumV becomes a cyclic and separating vector for t
von Neumann algebraM(q) ~cf. Ref. 19, p. 234!. We will see that in the case where the subspa
p and q are in generic position we can use the results in modular theory12,25 for the pair
(M(q),V). These techniques will be essentially used in the next two sections for the proof
twisted duality property in the generic position context.

Lemma 3.3: Letq,h be a closedG-invariant subspace. Then the following conditions a
equivalent:

(i) qPq and Pq50 implies q50.
(ii) P (q') is a dense submanifold ofp.
(iii) qùp5$0%.

Proof: To show (i i i )⇒( i ) takeqPq with Pq50. FromGPG512P and theG-invariance of
q we have thatGqPqùp5$0%, thusq50. The other implications (i )⇒( i i )⇒( i i i ) are checked
similarly. j

Proposition 3.4: Letq be a closedG-invariant subspace ofh as before. Then we have th
following.

(i) The vacuum vectorV is cyclic for M(q) iff Pq is a dense submanifold ofp.
(ii) The vacuum vectorV is separating forM(q) iff P(q') is a dense submanifold ofp.

Proof: ( i ) We assume thatV is cyclic for M(q) and letpPp be a vector satisfyingp'Pq.
From this, from Proposition 2.2 and from the structure of the Fock spaceF @recall Eq.~3!# we
have

p ' span$a~q1!•¯•a~qn!Vuq1 ,¯qnPq, nPN%,

thus

p ' $AVuAPM~q!%.

Now sinceV is cyclic for M(q) we must havep50.

Assume now thatPq,p is a dense submanifold, so that% n50
` (∧

n
Pq),F is also dense~here

% n50
` denotes the algebraic direct sum!. From Proposition 2.2 we obtain the inclusions

%
n50

`

~∧
n

Pq!,M~q! V,F,

which imply thatV is cyclic for M(q).
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( i i ) Suppose now thatV is a separating vector forM(q). We show that this implies part (i )
of Lemma 3.3. So, letqPq satisfyPq50. Since 05Pq5a(Gq)V and sinceV is separating for
M(q) we must havea(Gq)50, which impliesq50.

Finally, assume thatP(q') is a dense submanifold ofp. By part (i ) of the present theorem
applied toq', which is alsoG-invariant, we know thatV is cyclic for M(q'). Further, since
Z̃V5V we have thatV is also cyclic forZ̃ M(q') Z̃* and consequently by Proposition 2.6 al
for M(q)8$Z̃ M(q') Z̃* . This shows thatV is separating forM(q). j

By the preceding result we know that ifq is a closedG-invariant subspace ofh wherePq as
well asP(q') are dense submanifolds ofp, then the modular theory is well-defined for the pa
(M(q),V) and (M(q'),V). Denote byS and T the Tomita operators corresponding to the
pairs respectively. We will next study their action on the submanifoldsPq andP(q').

Lemma 3.5: With the preceding notation we have for qPq and q'Pq'

(i) S(Pq)5PGq,
(ii) T (Pq')5PGq'52S* (Pq').

Proof: The first two equations follow by direct computation:

S~Pq!5S~a~Gq! V!5a~Gq!* V5a~q! V5PGq,

and similarly forT. To prove the last equation recall thatS* is actually the Tomita operator o
M(q)8$Z̃ M(q') Z̃* . Note further that

i ~ Z̃a~Gq'!Z̃* ! V5 i Z̃a~Gq'! V5 i S 12 i

11 i D Pq'5Pq'.

From this we can finally check

S* ~Pq'!52 i S* ~ Z̃a~Gq'!Z̃* V!52 i Z̃a~q'!Z̃* V52PGq'52T~Pq'!,

and the proof is concluded. j

IV. PAIRS OF PROJECTIONS IN GENERIC POSITION AND THE MAPPING w

In this section we will consider the mathematically richest situation which appears whe
closed subspacesp andq are in generic position. LetP andQ be the corresponding orthoprojec
tions satisfying as usual the relationsGPG512P5P' andQG5GQ. Motivated by Proposition
3.4 we will also assume here that

pùq5$0%5pùq', where pªPh, ~11!

which directly implies using the basis projection property:

p'ùq5$0%5p'ùq', where p'5P'h. ~12!

Thus in the notation of Sec. III we have the extremal case wherep andq are already in generic
position and the Halmos decomposition~10! is trivial in the sense thath05$0%.

Note that the properties likep ù q5$0% can be also expressed by the corresponding pro
tions P andQ, because the orthoprojection onto the intersectionpùq is given by

s-lim
n→`

~PQ!n5s-lim
n→`

~QP!n.

Note further that by Lemma 3.3 the intersection assumptions in~11! are equivalent to the densit
conditions in Proposition 3.4.
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Remark 4.1:The following useful density statements are immediate consequences o
assumption thatp andq are in generic position. Ifr#q ~or r#q'! is a dense linear submanifold i
q ~resp. inq'!, then Pr is dense inp and P'r is dense inp'. The same holds ifQ and P are
interchanged. Thus we have, for example, thatQp' is dense inq, PQp is dense inp, etc.

We will begin next a systematic analysis of a mappingw that can be naturally defined in th
present context. Put

Hwª$~q,q'!Pq3q'uP'~q1q'!50%,

Hrª$~q,q'!Pq3q'uPq5Pq'%.

Lemma 4.2: The setsHw and Hr are graphs of linear, injective and closed mappingsw,r:q
→q' with dense domains and dense images. The graphsgraw5Hw and grar5Hr can be pa-
rametrized byp, resp.p', as

grawª$~Qp,Q'p!upPp%,
~13!

grarª$~Qp',2Q'p'!up'Pp'%,

where the domains and images are given explicitly. Moreover, the equationr215w* holds.
Proof: We consider first the mappingw and one can similarly argue forr. First note that the

assignmentw(q)ªq' if P'(q1q')50 is a well-defined linear map. Indeed, if (q,q1
')PHw

{(q,q2
'), thenq1

'5q2
' , because in this caseq1

'2q2
'Pq'ùp5$0%. Injectivity is proved analo-

gously.
Next we show Eq.~13!. Let p{p5Qp1Q'p, so that P'(Qp1Q'p)50 and we have

Qp#domw as well asQ'p# imaw. To show the reverse inclusions takeq0Pdomw, i.e.,
P'(q01q0

')50 for someq0
'Pq'. But this implies thatq05Q(q01q0

')PQp and q0
'5Q'(q0

1q0
')PQ'p and Eq.~13! is proved. Note that by the preceding remark the domain and imag

w are dense inq, resp.q', and it is easy to see that graw is closed.
Finally, it remains to show thatr215w* . Recall first that

grar215$~Q'p',2Qp'!up'Pp'%.

Using the isometric mappingU: q3q'→q'3q given by U(q,q')ª(q',2q) we may use the
well known formula~see Ref. 1, p. 124!

graw* 5~q'3q!*U~graw!.

Therefore (q',q)Pgraw* iff ^(q',q),(Q'p,2Qp)&50 for all pPp iff ^q',p&5^q,p& for all
pPp iff p'

ªq'2qPp' iff ( q',q)Pgrar21. j

Remark 4.3:Note that the preceding lemma depends only on the assumption thatP andQ are
in generic position~the different role ofP and Q wrt G, i.e., QG5GQ and GPG5P', is not
used!. This means that the preceding lemma remains true if we do the following replaceme

Q→P and P→Q'.

Then we obtain the following.
Corollary 4.4: Put

Hlª$~p,p'!Pp3p'uQ'p5Q'p'%.

ThenHl is the graph of a linear injective closed mappingl: p→p' with dense domain and image.
gral can be parametrized byq:

gral5$~Pq,2P'q!uqPq%.
                                                                                                                



g

i-
gs:

over,

econd
e of the

f

e

4167J. Math. Phys., Vol. 43, No. 8, August 2002 Twisted duality of the CAR-algebra

                    
The parametrization ofw and r in terms ofp, resp.p', suggests to consider the followin
mappings:

Q:p'→q, ~14!

Q':p'→q', ~15!

Q:p→q, ~16!

Q':p→q', ~17!

where the first two are related tor and the last two are related tow. For example, the parametr
zation ofr in terms ofp' means thatr can be seen as the composition of the following mappin

QP'h→P'h→Q'P'h.

Later we will also need to consider the mappings

P: q'→p, ~18!

P: q→p. ~19!

Due to the fact thatq and p are in generic position the mappings~14!–~19! are bounded,
injective and their images are dense in the corresponding final subspaces.

We will next give a criterion for the bicontinuity of the mappings~14!–~19!. First note that
becauseP is a basis projection

iPQi5iQPi5i~12P!Qi5iQ~12P!i5:d

and 0,d<1. So we can distinguish between the two cases:d,1 andd51.
Proposition 4.5: Let P,Q andd be given as before. Ifd,1, then the mappings (14)–(19) are

bicontinuous, in particular their images coincide with the corresponding final spaces. More
the relations

iP2Qi5i~12Q!Pi5i~12Q!~12P!i5d

hold.
Proof: This result is a special case of Theorem 6.34 in Ref. 26, p. 56. Note that the s

alternative stated in Kato’s result cannot appear in the present situation, as a consequenc
fact thatp andq are in generic position. j

Remark 4.6:This situation corresponds to the case where the index ofP andQ is 0 ~cf. Ref.
6, Theorem 3.3!.

Proposition 4.7: Let P,Q and d be given as before. Ifd51, then the inverse mappings o
(14)–(19) are unbounded and densely defined, i.e., the images of (14)–(19) are nontrivial proper
dense sets in the corresponding final subspaces.

Proof: We will only show the assertion for the mapping~19!, since one can easily adapt th
following arguments to the other cases. PutAªQP'Q�qPL(q), so thatA5A* andA>0. From

sprA5iAi5iQP'P'Qi5iP'Qi25d251

we obtain 1PspecA. However, 1 is not an eigenvalue ofA, becauseAq5q, qPq, implies
s-limn→` (QP')nq5q and this meansqPqùp'5$0%. Thus ker (1q2A)5$0% or (1q2A)21 ex-
ists and is unbounded since 1¹resA. Thereforeqªdom (1q2A)21 is a proper dense subset inq
and this means ima (1q2A)5q5 ima (Q2QP'Q)5 ima (QPQ). Finally, from the polar decom-
position ofPQ,
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PQ5sgn~PQ!•~QPQ!1/2,

we have that sgn (PQ) maps ima (QPQ)1/2 isometrically onto ima (PQ)5Pq. ThusPq is a proper
dense set inp, i.e., P:q→p is unbounded invertible. j

Remark 4.8:( i ) Note that if dimh,`, then the caseiPQi51 is not possible, since the
corresponding operators cannot have continuous spectrum. It is easy to show that in th
pùq5$0% iff iPQi,1.

( i i ) Note also thati(12P)Qi51 implies i(12Q)Pi51, because otherwise by Propositio
4.5 i(12Q)Pi,1 implies i(12P)Qi,1.

Proposition 4.9: Let the projections P,Q and the mappingsw,r be given as before. Thenw,r:
q→q' are bicontinuous iffiPQi,1.

Proof: Suppose thatiPQi,1, so that by Proposition 4.5 we have that the mappings~14!–~19!
are bicontinuous. But as mentioned before we know thatw as well asr can be seen as compositio
of the mappings

w: QPh→Ph→Q'Ph, r: QP'h→P'h→Q'P'h,

hence they must be bicontinuous.
In the case thatr and w are bicontinuous, then domr5domw5q and imar5 imaw5q'.

Finally, Proposition 4.7 impliesiPQi,1. j

Motivated by Lemma 3.5 we will analyze next the antilinear mappings defined by the fo
ing graphs:

grabª$~Pq,PGq!Pp3puqPq%,

graaª$~Pq',2PGq'!Pp3puq'Pq'%.

~Note that the rhs of the preceding equations define indeed graphs of antilinear mappings, b
the assignmentsq→Pq andq'→Pq' are injective.!

Lemma 4.10: The mappingsa,b defined by the preceding graphs are antilinear, injective a
closed with dense domains and imagesdoma5 imaa5P(q'), domb5 imab5Pq. Further, we
havea25 id, b25 id on P(q'), resp. Pq and a5b* .

Proof: We will only prove the last equation, because the other statements follow immed
from the definition. Now by definition we have (p0 ,p1)Pgrab* iff ^p0 ,PGq&5^Pq,p1& for all
qPq iff q'

ªp02Gp1Pq' iff ( p0 ,p1)Pgraa. j

Remark 4.11:( i ) Recall Sec. III A and denote byS the Tomita operator associated
(M(q),V). Then from the preceding result we haveS�p$b andS* �p$a.

( i i ) Using the mappings~18! and ~19! we can now state similarly as in Proposition 4.9
criterion for the bicontinuity ofa,b: the mappingsa,b are bicontinuous iffiPQi,1.

We introduce next the notation

Dpªb* b,

since it will later turn out thatDp is actually the modular operator restricted to the one-part
Hilbert spacep.

Theorem 4.12:The mappingDp :p→p is a densely defined linear positive self-adjoint ope
tor on p with graph

graDp5$~PQp,PQ'p!upPp%.

Moreover, Dp
215bb* 5a* a.

Proof: We will compute first the domain ofb* b. Recalling thatb* 5a we have
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dom~Dp!5$PquqPq and PGqPdoma5P~q'!%

5$PquqPq and PGq5Pq' for some q'Pq'%

5$PquqPq and GqPdomr5Q~p'!%

5$PquqPq and qPGQ~p'!5Q~Gp'!5Qp%5PQp5PQPh,

which is dense inp. Furthermore, sincePGQp52PQ'Gp, pPp ~recall PGp50, pPp!, we
have

Dp~PQp!5a~PGQp!52a~PQ'Gp!5PGQ'Gp5PQ'p, pPp.

The last equations concerning the inverse ofDp follow from the preceding computation and from
the fact thata25 id andb25 id on the corresponding domains~recall Lemma 4.10!. j

Note that domDp5PQp is dense inp and thatDp
21/25uau, hence domDp

21/25P(q'). Next
we will calculate the graph of the positive self-adjoint operatorw*w:q→q.

Proposition 4.13: The graph ofw*w is given by

graw* w5$~QPq,QP'q!uqPq%.

Proof: We begin computing dom~w*w!. Since by Lemma 4.2w* 5r21 we have

dom~w* w!5$QpupPp and Q'pPdomr215Q'p'%

5$QpupPp and Q'p5Q'p' for some p'Pp'%

5$Qpup5Pq for some qPq%5QPq5QPQh,

where for the third equation we have used Corollary 4.4. Using again this corollary we
calculate

r21~w~QPq!!5r21~Q'Pq!5r21~Q'~2P'q!!5QP'q, qPq,

and the proof is concluded. j

Now we can relatew andw*w with Dp just computing the orthogonal decomposition ofw(q),
qPdomw, resp.w* w(q), qPdomw* w, wrt h5p% p'.

Corollary 4.14: Using the notation before we have the following formulas:

w~Qp!5Dp~PQp!2P'Qp, pPp ,
~20!

~w* w!~QPq!5Dp~PQPq!1G Dp
21~PGQPq!, qPq.

Proof: From Lemma 4.2 as well as Theorem 4.12 we have

w~Qp!5Q'p5PQ'p1P'Q'p5Dp~PQp!2P'Qp, pPp.

Further, from the preceding proposition we also have for anyqPq

~w* w!~QPq!5QP'q5PQP'q1P'QP'q

5PQ'Pq1GPQPGq

5Dp~PQPq!1G Dp
21~PQ'PGq!

5Dp~PQPq!1G Dp
21~PQP'Gq!

5Dp~PQPq!1G Dp
21~PGQPq!,
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which proves the second formula. j

We will give the next two formulas in terms ofDp
1/2 for the components of the polar decom

position ofw. Denotew5sgnw•uwu, where as usualuwuª~w*w!1/2. Recall from the results in this
section that

domw5domuwu5Qp$QPq5dom~w* w!,

domb5domubu5Pq$PQp5domDp .

Theorem 4.15:With the notation above we have

uwu~q!5Dp
1/2~Pq!1G Dp

2 1/2~PGq!, qPdomw* w5QPq, ~21!

sgnw~q!5Dp
1/2~Pq!2G Dp

1/2~PGq!, qPq. ~22!

Moreover, sgnw is an isometry ofq onto q', i.e., (sgnw)*sgnw5Q andsgnw(sgnw)*5Q'.
Proof: From the explicit knowledge of all the domains of the mappings used before it is e

seen that the formulas are well defined. Further, recall Proposition 4.13 and Corollary 4.14 a
fact that the two terms of the rhs of the above formulas correspond to the decomposition oh in
terms ofPh andP'h. Applying now forqPdomw* w twice the rhs of~21! we get

Dp
1/2P~Dp

1/2~Pq!1G Dp
2 1/2~PGq!!1G Dp

2 1/2PG~Dp
1/2~Pq!1G Dp

2 1/2~PGq!!

5Dp~Pq!1GDp
21~PGq!5~w* w!~q!,

which shows the first formula. To prove the second one note first that forq85uwu(q), q
Pdomw* w, and using Eq.~21! as well as Corollary 4.14 we obtain from a similar calculation
before that

~Dp
1/2P2G Dp

1/2PG!uwu~q8!5~DpP2P'!~q8!5w~q8!.

Thus the rhs and the lhs of~22! coincide on the dense subspace imaw*w. Finally, the fact that the
rhs is also well defined for allqPq ~recall that domDp

1/25domb5Pq! and that sgnw maps
isometrically the dense subspace imauwu#q onto the dense subspace imaw5Q'p#q' proves
formula ~22!. ThereforeQ is the initial projection of sgnw and Q' is the corresponding fina
projection. j

Remark 4.16:Recall that domw*w is a core foruwu and note that the rhs of formula~21! can
not be extended to the whole domuwu.

Finally, we consider the mapping

q{q°Wqª~11Dp!
1/2 PqPp. ~23!

Lemma 4.17: W is an isometry fromq onto p.
Proof: First chooseq1 ,q2PQp which is dense inq. Now using

^Pq1 ,Dp~Pq2!&5^Pq1 ,b* b~Pq2!&5^b~Pq2!,b~Pq1!&5^P'q1 ,P'q2&

we obtain

^~11Dp!
1/2Pq1 ,~11Dp!

1/2Pq2&5^Pq1 ,~11Dp!Pq2&5^q1 ,q2& ,q1 ,q2PQp.

Further, for anypPp we have from Theorem 4.12 that (11Dp)(PQp)5PQp1PQ'p5p. This
implies that ima (11Dp)

1/25p, since

p5 ima~11Dp!# ima~11Dp!
1/2#p.
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Therefore~23! is the isometric extension ofW�Qp. j

Using now the isometryW we conclude this section showing the unitary equivalence ofuwu
andDp

1/2.
Theorem 4.18:With the preceding notation we have

W uwu~q!5Dp
1/2W~q!, qPdomuwu.

Proof: For anyqPdomw* w, which is a core ofuwu, we may use~21! and in this case

W uwu~q!5~11Dp!
1/2P~Dp

1/2~Pq!1G Dp
2 1/2~PGq!!5~11Dp!

1/2Dp
1/2~Pq!5Dp

1/2W~q!.

But this implies thatWuwuW* #Dp
1/2 and since the lhs as well as the rhs of the preceding inclu

are self-adjoint operators, we must actually have the equalityWuwuW* 5Dp
1/2. j

V. TWISTED DUALITY. THE GENERIC POSITION CASE

We begin the proof of twisted duality considering first one of the extremal cases that
appear in the Halmos decomposition~10!. For this assume that (h,G), P andQ are given as in the
preceding section. In particularp and q are in generic position, so that by Proposition 3.4 t
modular theory is well defined for the pair (M(q),V). Denote as usual byS5JD1/2 the polar
decomposition of the Tomita operator.

We prove first that the different modular objects leave then-particle submanifolds∧
n

(Pq)
invariant. This fact is well known in the context of CCR-Algebras,27 where one can use th
so-called exponential vectors which are specially well adapted to the Weyl operators.

Proposition 5.1: Let q1 ,...,qnPq andq1
' ,...,qn

'Pq'. Then the following equations hold:

S~Pq1∧¯∧Pqn!5PGqn∧¯∧PGq15S~Pqn!∧¯∧S~Pq1!,

S* ~Pq1
'∧¯∧Pqn

'!5S* ~Pqn
'!∧¯∧S* ~Pq1

'!.

Proof: The proof is done by induction on the number of vectors in the wedge product
n51 the above equations are trivially satisfied~cf. Lemma 3.5!. We will now concentrate on the
first formula since one can argue similarly forS* . Suppose that the first expression holds fo
number of vectors<n21. Then, applying this induction hypothesis as well as Proposition 2.2
get

S~PGqn∧¯∧PGq1!

5SS a~qn!•¯•a~q1! V2 (
pPSn,p

p>1

~sgnp!)
l 51

p

^Pqa l
,PGqb l

& PGqj 1
∧¯∧PGqj kD

5a~Gq1!•¯•a~Gqn! V2 (
pPSn,p

p>1

~sgnp!)
l 51

p

^PGqb l
, Pqa l

& Pqj k
∧¯∧Pqj 1

, ~24!

and recall that the indices specified bypPSn, p satisfya1.¯.ap , a l.b l , l 51,...,p andn
> j 1. j 2.¯. j k>1. But we can now apply again Proposition 2.2 to the first term of the pre
ing sum and we get

a~Gq1!•¯•a~Gqn! V5Pq1∧¯∧Pqn1 (
p8

p>1

~sgnp8!)
l 51

p

^PGqa
l8
,Pqb

l8
& Pqj

18
∧¯∧Pqj

k8
,

~25!
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where now

p85S 1 2 ¯ 2p21 2p n2k11 ¯ n

a18 b18 ¯ ap8 bp8 j 18 ¯ j k8
D

with a l8,b l8 , l 51, . . . ,p, 1< j 18, j 28,¯, j k8<n and we may reorganize the scalar produ
such thatb18,¯,bp8 . We can next associate bijectively these permutations with elemen
Sn, p by means of

p8°p05S n n21 ¯ n22p12 n22p11 k ¯ 1

bp8 ap8 ¯ b18 a18 j k8 ¯ j 18
D PSn, p .

Since sgnp85sgnp08 we have inserting~25! in ~24! that all vectors with particle number less tha
n cancel so that

S~PGqn∧¯∧PGq1!5Pq1∧¯∧Pqn

and the proof is concluded. j

Recall from Remark 4.11 (i ) S�p$b and S* �p$a. We will show next that actually the

equality holds. LetPn denote the projection ofF onto then-particle subspace∧
n

p. Then the family
of orthoprojections$Pn%nPN is mutually orthogonal andSn50

` Pn51F . Further we define the
operatorSfin by

domSfinªspan$a~q1!•¯•a~qn!Vuq1 ,...,qnPq,nPNø$0%%,

SfinxªSx, xPdomSfin .

Lemma 5.2:domSfin is a core for the Tomita operator S.
Proof: Put CªdomSfin and denote byA(q) the*-algebra generated by$a(q)uqPq%, so that

M(q)5A(q)9. Further, recall that ifS0(MV)ªM* V, MPM(q), then the graph of the Tomita
operatorS5cloS0 can be written as

graS5clow~graS0!5clow$~MV,M* V!uMPM~q!%,

where clow denotes the closure in the weak operator topology. Thus to prove the core prope
C, i.e., clo (S�C)5S, we need to show that

clow$~MV,M* V!uMPM~q!%5clow$~AV,A* V!uAPA~q!%.

Now for eachMPM(q) there exists a sequence$An%nPN,A(q) with u^x,(M2An)y&u,e
for all x,yPF if n is sufficiently large. This implies that for all (x,y)PF3F, we have

u^~MV,M* V!,~x,y!&2^~AnV,An* V!,~x,y!&u5u^~M2An!V,x&2^~M* 2An* !V,y&u<2e,

where we have used that in the weak operator topology ifAn→M , thenAn* →M* . Therefore if

(MlV,Ml* V)→
l

(x0 ,y0) weakly, then for eachl there exists a sequence$A(n,l )%nPN,A(q) such

that (A(n,l )V,A(n,l )* V)→
n

(MlV,Ml* V) weakly. Finally, the estimate

u^~A(n,l )V,A~n,l !* V!,~x,y!&2^~x0 ,y0!,~x,y!&u

<u^~A(n,l )V,A~n,l !* V!,~x,y!&2^~MlV,Ml* V!,~x,y!&u

1u^~MlV,Ml* V!,~x,y!&2^~x0 ,y0!,~x,y!&u

completes the proof. j
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From Propositions 5.1 and 2.2 we obtain further

Pn domSfin#domSfin , n50,1,... ,

Pn domSfin,Pn F is dense, n50,1,... ,

Pn Sfin Pn5Sfin Pn , n50,1,... .

Note that forxPdomSfin the seriesx5Sn50
` Pnx is a finite sum. Further, we consider the operat

Sfin(n):PnF→PnF by domSfin(n)ªPn domSfin andSfin(n)xªSfinx,xPdomSfin(n). Recall from
Lemma 4.10 thatSfin(1)5b is a closed densely defined operator fromp5P1F into p and by the
preceding arguments we have

Sfin5 %
n50

`

Sfin~n! ~algebraic direct sum!. ~26!

We can now state the following.
Proposition 5.3: The Tomita operator S and its adjoint S* can be restricted to the n-particles

subspaces PnF. We have

S�PnF5cloSfin~n! and S* �PnF5cloSfin* ~n!, n50,1,... .

In particular S�p5b andS* �p5a.
Proof: From ~26! we obtain immediately that

graS5 %
n50

`

clo graSfin~n!5CV % graSfin~1! % (
n52

`

clo graSfin~n! ~Hilbert sum!. ~27!

Note that clo graSfin(n)5gra cloSfin(n), n>2, and that now the direct sum~27!, in contrast to
~26!, is the Hilbert sum of these subspaces. Equation~27! implies immediately the assertion thatS
can be restricted toPnF and that the restriction coincides with cloSfin(n), in particularS�p5b.
The statements concerningS* are shown analogously. j

Corollary 5.4: Let S5JD1/2 be the polar decomposition of the Tomita operator. The modu
operator D5S* S and the modular conjugation J can be restricted to the respective n-particle
subspaces. In particular we have the following:

(i) Modular operator: D�p5Dp ~recall from the preceding section thatDp5b* b),

domD�PnF5∧
n
domDp and

D~p1∧¯∧pn!5~Dp p1!∧¯∧~Dp pn!, p1 ,...,pnPdomDp5PQp. ~28!

(ii) Modular conjugation:

J~p1∧¯∧pn!5~Jpn!∧¯∧~Jp1!, p1 ,...,pnPp. ~29!

Proof: Note first that from Proposition 5.3 and Lemma 4.10 we haveS* S�p5ab5b* b.
Further, Eq.~28! follows from Propositions 5.1 and 5.3. Next, applying formula~29! to the
n-particle vectorsD1/2(p1∧¯∧pn), where pkªDp

1/2 pk8 , pk8PdomDp , k51,...,n, we obtain
S(p1∧¯∧pn). Thus Eq.~29! coincides withJ�PnF on the dense set (imaDp)∧¯∧(imaDp),
which concludes the proof. j

For the next definition recall the formulas concerning sgnw in Theorem 4.15.
Definition 5.5: Define the following antilinear isometry fromq onto q':

Vqª2 i ~G sgnw!~q!5 i ~Dp
1/2PGq2G Dp

1/2Pq!, qPq.
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Theorem 5.6:With the preceding definition we have for any qPq

J a~q! J5Z̃ a~Vq! Z̃* . ~30!

Proof: Since% n50
` ∧

n

Pq ~algebraic direct sum! is dense inF and the operators on both sides

Eq. ~30! are bounded it is enough to show the preceding relation for then-particle vectors in∧
n

Pq.
For q1 ,...,qnPq and using Corollary 5.4 (i i ) the lhs of the equation reads

~J a~q! J!~Pq1∧¯∧Pqn!5Pq1∧¯∧Pqn∧JPGq

1(
r 5n

1

~21!n2r ^JPq,Pqr& Pq1∧¯∧Pqr̂∧¯∧Pqn .

To compute the rhs recall the definition of the functionh in Sec. II B:

~ Z̃ a~Vq! Z̃* !~Pq1∧¯∧Pqn!52 ih~n! Z̃•~2c~Dp
1/2Pq!* Pq1∧¯∧Pqn

1c~Dp
1/2PGq!Pq1∧¯∧Pqn!

5Pq1∧¯∧Pqn∧Dp
1/2Pq

1(
r 51

n

~21!n2r ^Dp
1/2PGq,Pqr& Pq1∧¯∧Pqr̂∧¯∧Pqn ,

where for the last equation we have used that2 ih(n)h(n11)52 ih(n)h(n21)5(21)n11.
Finally, the equality of both sides follows from the fact thatDp

1/2Pq5JSPq5JPGq, qPq. j

Remark 5.7:As expected we can relate the mappingV defined before with the mappingj ~the
modular conjugation restricted to the one-particle Hilbert space! used in Ref. 20, p. 738. Indeed
considering the projection onto the one-particle Hilbert space we have the relation

J~Pq!5Dp
1/2S~Pq!5Dp

1/2~PGq!52 iPV~q!, qPq.

Theorem 5.8: ~Twisted Duality! Let M(q) be the von Neumann algebra given at the beg
ning of this section. Then

M~q!85Z̃ M~q'! Z̃* .

Proof: From the last theorem and using standard results in modular theory we have

M~q!85J M~q! J5J $a~q!uqPq%9 J

5$J a~q! JuqPq%9

5$Z̃ a~Vq! Z̃* uqPq%9

5Z̃ $a~Vq!uqPq%9Z̃* 5Z̃ M~q'! Z̃* ,

where we have used thatV is an antilinear isometry fromq onto q'. j

Remark 5.9:If one does not want to bother about domain questions, there is possib
alternative way to show the preceding result. Indeed, one can first prove the statements
section for finite dimensional subspacesqn of q and then apply the AFD-property ofM~q! as in
the proof of Ref. 9, Theorem 15.1.3.

We will finally show that the formulas established in the previous and present section
apply to the localized algebras that appear in the context of fermionic free nets~cf. Refs. 8 and
28!. Let O,R4 be a double cone in Minkowski space and denote byq(O) the closure of the
                                                                                                                



f

s,

s of

ace.

free
n the

Refs.

le the
He has
e KMS
Fock

s of
e
rva-

t

4175J. Math. Phys., Vol. 43, No. 8, August 2002 Twisted duality of the CAR-algebra

                    
subspacesq~O! of the reference Hilbert space~h,G!. The subspacesq~O! are defined in terms o
the embeddings that characterize the free nets~essentially Fourier transformation ofC` functions
with compact support restricted to the positive mass shell/light cone!. It is easily shown that
Gq~O!5q~O!, henceGq(O)5q(O). Further, the localized C*-algebras are again CAR-algebra
i.e.,

A~O!ªC* ~$a~w!uwPq~O!%!5CAR~q~O!,G�q~O!!5CAR~q~O!,G�q~O!!,CAR~h,G!.

For the canonical basis projectionP given in the context of free nets~see, e.g., Ref. 28, p. 1157!
it is also immediate to check that for double cones

pùq~O!5pùq~O!'5$0%, where p5Ph.

This means thatp andq(O) are in generic position and we can apply the results and formula
the previous and present sections to the corresponding localized von Neumann algebras

M~O!ª$p~a~w!!uwPq~O!%9.

In particular, from Proposition 5.3 and Corollary 5.4 we have that the modular operatorD and the
modular conjugationJ are already characterized by their action on the one-particle Hilbert sp
Finally, Theorem 4.12 and Remark 5.7 imply the following theorem.

Theorem 5.10:Let O,R4 be a double cone in Minkowski space. Denote by QO the orthop-
rojection ontoq(O) and by P the canonical basis projection given in the context of fermionic
nets. Then the following formulas hold for the modular operator and modular conjugation o
one-particle Hilbert spacep:

graDp5$~PQO~p!,PQO
'~p!!upPp%,

J~Pq!5Dp
1/2~PGq!, qPq~O!.

VI. RELATION TO THE REAL SUBSPACE APPROACH

In the present section we will make explicit the relation of the real subspace approach in
20 and 32 to our consistent use of complex subspaces in the self-dual approach.

The projectionP on the complex Hilbert spaceH with conjugationg in Ref. 32 corresponds
in the self-dual approach@where hªH % H and Gª(g 0

0 g)# to a diagonal basis projectionP
ª(0

P
gP'g

0 ). Nondiagonal basis projections are not considered in Ref. 32. Further, in that artic
author extends by second quantization certain mappings on the one-particle Hilbert space.
then to verify that these second quantized operators are the modular objects by checking th
condition.~In contrast to that we construct the modular objects on the whole antisymmetric
space and show that they restrict to then-particle space.!

The following aspect is that in Ref. 20~and Ref. 32! real-linear closed manifoldsM ~resp.K!
of the one-particle~complex! spaceH ~p in our article! are used, whereas here the subalgebra
the ‘‘big’’ fermion algebra CAR~h,G! are characterized byG-invariant complex subspaces of th
reference spaceh. The relation between the two approaches is given by the following obse
tions: first, the counterpart of the realM in our approach is given byP(Re(q)), where q
PRe(q) if Gq5q. Note thatP(Re(q)) is a real-linear submanifold ofp and in general it isnot
closed~see the foregoing considerations!. Now we still need to check thatP(Re(q')) corresponds
in the real subspace approach of Ref. 20 toiM 8. ~Recall that in Ref. 20 one definesM 8 as the
symplectic complement, i.e.,M 8ª$xPHuIm^x,m&50, mPM %.M'.! The next result shows tha
indeedP(Re(q')) and iM 8 generate the same von Neumann algebra.

Lemma 6.1: Put MªP(Re(q)). Then P(Re(q')) is dense in( iM 8).
Proof: We show first thatP(Re(q'))#( iM 8). For any (q'1Gq')PRe(q'), q'Pq', and

since
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iM 8ª$pPpu^q1Gq,p&1^p,q1Gq&50, qPq%,

the inclusion follows from

^q1Gq,P~q'1Gq'!&1^P~q'1Gq'!,q1Gq&5~^q,Pq'&1^PGq',Gq&!

1~^Gq,Pq'&1^PGq',q&!

1~^q,PGq'&1^Pq',Gq&!

1~^Gq,PGq'&1^PGq',q&!

50,

where for the last equation we have usedGP1PG5G. Finally, to show the density stateme
considerp0P iM 8, i.e.,

^q1Gq,p0&1^p0 ,q1Gq&50, qPq, ~31!

such thatp0'P(q'1Gq') for all q'Pq'. Thus ^p0 ,P(q'1Gq')&50, q'Pq', and replacing
q' by iq' we also obtain̂ p0 ,P(q'2Gq')&50, q'Pq'. Hence^p0 ,Pq'&50, q'Pq', and
p0Pqùp. But according to Eq.~31! we must also havêp01Gp0 ,p0&1^p0 ,p01Gp0&50, which
implies p050. j

Finally, the conditionsMù iM 5$0% andM1 iM dense inH in Ref. 20 are equivalent to ou
conditionsqùp5$0%5q'ùp and the projectionsP1 , P2 , P3 in Ref. 20, Proposition 1.5, corre
spond in the self-dual approach to the orthoprojections ontopùq', pùq, p*(pùq'

% pùq),
respectively.

VII. TWISTED DUALITY. THE GENERAL CASE

We are now in a position to give the proof of twisted duality in the most general situation
(h,G) be a Hilbert space with anti-unitary involutionG, P anybasis projection andq any closed
G-invariant subspace inh, to which we associate the orthoprojectionQ. We adapt the argument
in Ref. 20, p. 735, to the self-dual approach.

Recall the Halmos decompostionh5h0% h1 given in Eq.~10!, whereh05(pùq) % (pùq')
% (p'ùq) % (p'ùq'). Since G(pùq')5(p'ùq') and G(pùq)5(p'ùq) it is also natural to
consider the previous decomposition as

h5h01% h02% h1 , ~32!

whereh01ª(pùq') % G(pùq') andh02ª(pùq) % G(pùq). In particular, we have

Qh015$0%, Qh025h02, ~33!

Q'h015h01, Q'h025$0%, ~34!

as well as

q5$0% % h02% Qh1 and q'5h01% $0% % Q'h1 .

Theorem 7.1:~Twisted Duality! Let ~h,G!, P andq be given as in the beginning of this sectio
Then

M~q!85Z̃ M~q'! Z̃* .

Proof: From Proposition 2.6 it is enough to show the inclusion

M~q!8#Z̃ M~q'! Z̃* . ~35!

We can apply now the formulas~5! and ~6! in Proposition 2.4 to the three-space decompo
tion in Eq.~32!. Indeed, adapting in the obvious way the notation from Proposition 2.4 we ge
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p~a~ f 01% f 02% f 1!!5p01~a~ f 01!! ^ Z02^ Z111^ p02~a~ f 02!! ^ 111^ Z02^ p1~a~ f 1!!,

f 1Ph1 , f 0kPh0k , k51,2, specifies a representation of CAR(h,G) on the corresponding tenso
product of antisymmetric Fock spacesF5F01^ F02^ F1 . Now using~33! we obtain

M~q!5C1^ L~F02! ^ M~Qh1!,

hence

M~q!85L~F01! ^ C1^ M~Qh1!8.

From ~34! we also obtain

M~q'!5L~F01! ^ $Z02%9^ M~Q'h1!5$L01^ Z02^ p1~a~ f 1!!uL01PL~F01!, f 1PQ'h1%9.

Using now the result stated in Remark 2.8 we have for the twisted von Neumann algebra

Z̃M~q'!Z̃* 5$ iZp~a~q'!!uq'Pq'%9

5$~Z01^ Z02^ Z1!•~L01^ Z02^ p1~a~ f 1!!!uL01PL~F01!, f 1PQ'h1%9,

which immediately implies~35!, since we have already proved twisted duality in the gen
position case~cf. Theorem 5.8!. j
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APPENDIX: PROOF OF PROPOSITION 2.2

We will give in this appendix the proof of Proposition 2.2. Recall the notation and resul
Sec. II.

Proposition: For f1 ,...,f nPh the equation

~a~ f n!•¯•a~ f 1!! V5 (
pPSn, p
0<2p<n

~sgnp! )
l 51

p

^P fa l
,PG f b l

& PG f j 1
∧¯∧PG f j k

holds, where the indicesa l ,b l , j 1 ,...,j k are given in the definition ofSn, p and where for n
52p in the preceding sum one replaces the wedge product by the vacuumV.

Proof: The proof is done by induction on the number of generators of the CAR-Algebra
n51 the above formula is immediately verified using the definition of creation and annihila
operators. Assume that it holds forn generators and we prove that it is also true forn11
generators. Takef n11 , f n ,...,f 1Ph and from the preceding assumption as well as the results s
in Sec. II we have

a~ f n11! ~a~ f n!•¯•a~ f 1! V!

5~c~PG f n11!* 1c~P fn11!! (a~ f n!•¯•a~ f 1! V)

5 (
pPSn, p
0<2p<n

~sgnp! )
l 51

p

^P fa l
,PG f b l

& PG f n11∧PG f j 1
∧¯∧PG f j k
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1 (
pPSn, p
0<2p<n

(
r 51

k

~sgnp! ~21!r 21 ^P fn11 ,PG f j r
&

•)
l 51

p

^P fa l
,PG f b l

& PG f j 1
∧¯∧PG f̂ j r

∧¯∧PG f j k
. ~A1!

We will determine how many terms with particle numberk8 appear in the preceding sum. For th
let p8PN be such that 2p81k85n11. Now the first term in the above formula contributes
means of expressions wherek5k821 ~hencep5p8! and there are

S n
n22pD ~2p!!

p! 2p 5S n
n22p8 D ~2p8!!

p8!2p8

such summands. Further, the second term contributes by means of expressions wherek5k811
~hencep5p821! and there are now

k S n
n22pD ~2p!!

p! 2p 5S n
n22p811D ~2p8!!

p8!2p8

such summands. Altogether we obtain

S n
n22p8 D ~2p8!!

p8!2p8
1S n

n22p811D ~2p8!!

p8!2p8
5S n11

n1122p8 D ~2p8!!

p8!2p8

terms with particle numberk8 and this coincides with the number of elements inSn11,p8 . To
conclude the proof we still need to show that each term in the sum carries the correct sign. F
summands in~A1! this follows from

sgnS n n21 ¯ n22p12 n22p11 k ¯ 1

a1 b1 ¯ ap bp j 1 ¯ j k
D

5sgnS n11 n ¯ 1

n11 a1 ¯ j k
D

5sgnS n11 n ¯ n22p13 n22p12 k11 k ¯ 1

a1 b1 ¯ ap bp n11 j 1 ¯ j k
D .

For the remaining terms we have

~21!r 21 sgnS n n21 ¯ k ¯ k122r k112r k2r ¯ 1

a1 b1 ¯ j 1 ¯ j r 21 j r j r 11 ¯ j k
D

5~21!r 21 sgnS n11 n ¯ 1

n11 a1 ¯ j k
D

5sgnS n11 n n21 n22 ¯ k ¯ k112r k2r ¯ 1

n11 j r a1 b1 ¯ j 1 ¯ j r 21 j r 11 ¯ j k
D .

Therefore, we have shown that
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~a~ f n11!•¯•a~ f 1!! V5 (
pPSn11, p8

0<2p8<n11

~sgnp! )
l 51

p8

^P fa l
,PG f b l

& PG f j 1
∧¯∧PG f j k

,

which concludes the proof. j
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A new way of constructing fusion bases~i.e., the set of inequalities governing
fusion rules! out of fusion elementary couplings is presented. It relies on a polytope
reinterpretation of the problem: the elementary couplings are associated with the
vertices of the polytope while the inequalities defining the fusion basis are the
facets. The symmetry group of the polytope associated with the lowest rank affine
Lie algebras is found; it has order 24 forsû(2), 432 forsû(3) and quite surpris-
ingly, it reduces to 36 forsû(4), while it is only of order 4 forsp̂(4). This drastic
reduction in the order of the symmetry group as the algebra gets more complicated
is rooted in the presence of many linear relations between the elementary couplings
that break most of the potential symmetries. Forsû(2) andsû(3), it is shown that
the fusion-basis defining inequalities can be generated from few~one and two,
respectively! elementary ones. Forsû(3), new symmetries of the fusion coeffi-
cients are found. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1489070#

I. INTRODUCTION

Affine fusion rules give the number of integrable representationsn̂ that appear in the produc
of two integrable representationsl̂ and m̂ for a given affine algebraĝ at fixed levelk ~see, e.g.,
Ref. 1, Chap. 16!. Fusions are in fact truncated finite Lie algebra tensor products, with the de
of truncation fixed solely by the level. More precisely, fusion rules are completely characteriz
the tensor-product coefficients pertaining to the corresponding finite~i.e., nonaffine! representa-
tions and the set of threshold levels.2 The threshold level of a particular coupling representing o
of the various copies of the representationn̂ in the productl̂3m̂ is the lowest level at which this
coupling appears in this fusion.~Note that only the full set of threshold levels associated wit
given triple coupling is an observable; the association of a particular threshold level with a
coupling is basis dependent.!

Even for sû(N), no genuine combinatorial methods—analogous to the Littlewoo
Richardson rule—have been found. The closest approach to such a goal has been obtained
3 in which a new approach to the problem of fusion rules was introduced, centered on the
of fusion basis. A fusion basis is simply a complete set of inequalities, formulated in terms
complete set of variables needed to describe a tensor product, augmented with an extra v
the levelk. Examples of bases have been constructed forsû(2), sû(3), sû(4), andsp̂(4).

The idea of the construction in Ref. 3 is the following: one starts from the tensor-pro

a!Electronic mail: pmathieu@phy.ulaval.ca
41800022-2488/2002/43(8)/4180/22/$19.00 © 2002 American Institute of Physics
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elementary couplings, extends this set to a complete set of fusion elementary couplings~using, for
instance, the conjectural completeness under outer automorphism—but there exist other po
ties! and from these, construct the inequalities in terms of the basis variables for whic
elementary couplings are the elementary solutions.

In Ref. 3, the transition from the elementary couplings to the inequalities uses Farkas’ le
The aim of this note is to indicate another way of reconstructing the fusion basis given the
elementary couplings. This new construction relies on a reinterpretation of the fusion-rule
putations in terms of counting points inside a polytope. A polytope can be described by its ve
or its facets. The reconstruction of the facets of a polytope from its vertices is the essentia
we want to adapt to the problem of fusion rules. In our context, the vertices are represented
fusion elementary couplings and the facets are the inequalities for which the elementary cou
are the elementary solutions. This reformulation is not purely cosmetic: it allows us to use
erful ~e.g., computer! techniques developed for the study of polytopes, for instance, for deri
the facets from its vertices.

But this conceptual shift in the description of the fusion basis has an immediate be
having constructed a polytope it is natural to look for its symmetries. This means looking fo
symmetry group of the fusion basis and organizing the various inequalities into a number of
of the group. In this paper we find the symmetry group of the polytopes associated with the k
fusion bases.

II. THE sû „2… EXAMPLE

As a simple illustrative example we present thesû(2) fusion basis:

k>l11n11, n12>0, l1>n12, n11>0. ~2.1!

The last three conditions define the Littlewood–Richardson~LR! basis, which is thus recovere
from the fusion basis in the infinite level limit (k→`). This basis describes the solution set of t
fusion l̂3m̂ at fixed positive integer levelk. The two Dynkin labels ofl̂ arel05k2l1 andl1 ,
with l1 being the finite Dynkin label~and we will often use the Dynkin label notation:l̂
5@l0 ,l1#!. Both Dynkin labels are assumed to be non-negative integers. The LR algorithm
by filling the boxes of the first row of the Young tableau associated tom with 1’s, the second row
with 2’s, etc. Forsu(2), m has only one row, containingm1 boxes. These boxes are inserted in
the tableau representingl, which is a row ofl1 boxes:n11 boxes are then added in the first ro
and n12 boxes in the second row. Thereforen11 and n12 are non-negative integers andn111n12

5m1 . Moreover, columns with two 1’s are not permitted, which forcesl1>n12. Finally, the
tableau associated with the representationn is read off the resulting LR tableau by taking out th
columns of two boxes:n15l11n112n12. ~For more details on the LR algorithm, see, e.g., Re
4–6.!

The elementary solutions of this system of inequalities, written in terms of vectors with e
ordered as (k,l1 ,n11,n12), are

~2.2!

We have also presented the corresponding LR tableau at the right and its ‘‘exponential’’ de
tion in between~where the variablesk, l1 , n11, n12 appear, respectively, as the exponents of
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dummy variablesd, L1 , N11, N12!. The problem we consider here is the following: givenÊi , i
50, 1, 2, 3, how can we reconstruct the inequalities? In other words, how to go from the ve
~2.2! to the facets~2.1!?

III. THE POLYTOPE INTERPRETATION OF FARKAS’ LEMMA

As we just mentioned, for the present work we suppose that the complete set of
elementary couplings$Êi% is known. These are expressed in terms of a set of variables, den
collectively asXj , j 51,...,n ~which are the dummy variablesd, L1 , N11, N12 in the previous
example!, that furnish a complete description of the fusion rules. These are in fact the vari
that describe the tensor products with the addition of the extra variabled that keeps track of the
level of the affine algebra under consideration.

A general coupling can always be decomposed into a product of elementary coupling~and
that this decomposition may not be unique is irrelevant at this point!. This product decomposition
can be transferred into a sum decomposition by characterizing an elementary coupling
exponentse i j in its decomposition in terms of the variablesXj : an elementary coupling is thereb
associated with ann-dimensional vectore i .

Again, our problem is the following: what is the set of linear and homogeneous inequa
for which thee i are the elementary solutions? These inequalities will be formulated in terms o
variablesxj , whose exponential versions are theXj . The set$xi% will typically contain the finite
Dynkin labels of the three affine weights entering in the fusion, together with the missing l
appropriate for a complete description of the corresponding tensor product, plus the levelk.

Any couplingP i Xi
xi can thus be decomposed in the formP i Êi

ai. With Êi5P j Xj
e i j , reading

off a particular coupling means looking for a choice set of non-negative integers$ai% fixed by

(
i

aie i j 5xj ~3.1!

in terms of non-negative integersxj . We are thus searching for the conditions ensuring
existence of such a coupling. This is precisely what Farkas’ lemma can do. Quite remarkab
lemma gives existence conditions in the form of inequalities on thexj ’s and these are precisely th
inequalities we are looking for.

If we write Vi j 5e j i ~hence, the columns of the matrixV are the elementary solutions!, Farkas’
lemma gives existence conditions for solutions of

Va5x ~3.2!

~in matrix form!. For instance, forsû(2), V takes the form@cf. ~2.2!#:

V5S 1 1 1 1

0 1 1 0

0 0 0 1

0 1 0 0

D . ~3.3!

In fact, we are interested in the integer solutions of~3.2!.
We should stress that Farkas’ lemma is true in general only in the rational case. Suf

conditions for its application to the integer case are known~see, for instance, Ref. 7!, but these are
not satisfied by our matricesV. Hence, the analysis has to be completed by a verification step
is, to check that the elementary solutions of the inequalities obtained are the elementary so
used at the start~cf. the discussion in Sec. 3 of Ref. 3!.

The polytope interpretation of~3.2! is almost immediate~see Sec. IV!: modulo renormaliza-
tion, ~3.2! is the equation of a polytope whose verticesv i are the columns of the matrixV without
its first row, hence our elementary couplings without their first entryd.
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Now it is a well-known result~the Weyl–Minkowski theorem! that a polytope can be de
scribed either in terms of its vertices or its facets. In the present case, we have the vertic
question is thus: what are the facets of the polytopes whose vertices are our fusion elem
couplings? These facets are the sought for inequalities, which form the fusion basis.

This reformulation is made more formal in Sec. IV. The following sections are devoted t
study of the symmetry group of the fusion polytopes for the simplest affine Lie algebras.

IV. FORMALIZING THE POLYTOPE REINTERPRETATION

To recast the problem in a general setting, letVPNn3m be such that

V5~v1 ...vm!5S w1 ¯ wm

v1 ¯ vm
D , ~4.1!

with v1 ,...,vm the fusion elementary couplings andw1 ,...,wm the entries in the first row ofV.
Also, let S denote the set of fusion couplings

S5$x5Va5a1v11¯1amvmua1 ,...,amPN%,

which, from our central hypothesis, is the set of non-negative integral combinations of elem
couplings. It is natural to suppose that the fusion couplings are the integral points of a c
geometric objectE, that is, the vectorsv1 ,...,vm form a Hilbert basis ofE. @A finite set of vectors
v1 ,...,vm is a Hilbert basis ofC5cone(a1 ,...,at) if CùZn5Nv11¯1Nvm .# One obvious
choice forE, and the one we will make, is the cone generated byv1 ,...,vm , that is

E5$x5Vl5l1v11¯1lmvmul1 ,...,lmPR1%. ~4.2!

In general,v1 ,...,vm may or may not be a Hilbert basis of this cone. However, for our exam
we find thatv1 ,...,vm is indeed a Hilbert basis ofE. This checking process is equivalent to th
verification step mentioned in Sec. III. The setS is thus given by

S5EùNm, ~4.3!

and the fusion inequalities are simply the facets of the coneE. We can therefore use Farkas’ lemm
~or any other method! to obtain the facets ofE. Now, it turns out that the fusion inequalities a
also the facets of a polytope. The remainder of this section is devoted to this reinterpretat

If we write the vectorsxPE as

x5S x0

x D , ~4.4!

we have that the fusion couplings at levelk are the integral points of the space,P(k), correspond-
ing to the intersection between the hyperplanex05k and the coneE. If we drop thex0 component,
which has valuek in P(k), we can describeP(k) as

P~k!5 H xUS k
xDPEJ 5 H xUS k

xD5Vl,lPR1
mJ 5H x5(

i
vil iUlPR1

m ,(
i

l iwi5kJ . ~4.5!

The integral points ofP(k) are

S~k!5P~k!ùNn21, ~4.6!

which are essentially the possible fusion couplings at levelk ~by adding to the elements ofS(k) an
extra componentx0 equal tok, we recover the usual fusion couplings!. Because 0,wi,`, the
transformation
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l i→l i85l i~wi /k!, vi→vi85~k/wi !vi , wi→wi85~k/wi !wi5k, ~4.7!

is well defined, and if we further set

V85S w18 ¯ wm8

v18 ¯ vm8
D 5S k ¯ k

v18 ¯ vm8
D , ~4.8!

P(k) can now be given as

P~k!5H x5(
i

vi8l i8Ul8PR1
m ,(

i
l i851J , ~4.9!

which by definition is thepolytopegiven by the convex hull of the verticesvi8 , i 51,...,m.
The main theorem of polytope theory8 tells us thatP can be equivalently described as

solution set of a finite system of, linear inequalities~facets!, that is

P~k!5$xuCx<2kb%5 H xUC8S k
xD<0J , ~4.10!

where C8 is the concatenation~bC! of b and C, with CPR,3(n21) and bPR,31. In the last
expression, we have made explicit the fact that the polytope inequalities translate into inequ
that the fusion elements atx05k must satisfy. We have thus obtained that the fusion inequal
are the facets of a polytope.

From a practical point of view, we stress that there exist powerful programs that giv
polytope facets from its vertices~and vice-versa!. The authors have used the ‘‘cdd’’ package
Fukuda9 for computations in this article. For a description of other methods, we refer the read
Ref. 8.

V. THE SYMMETRY GROUP OF THE FUSION POLYTOPES: GENERALITIES

The fusion polytope is a geometrical object and so it is natural to look for its symmetry g
However, for a polytope there are several different kinds of symmetry we can conside
example, consider the polytopeE in R2 with vertices~0,0!, ~0,2!, ~1,2!, and~1,0! which we label
1, 2, 3, and 4. This polytope is fixed by the reflections in the linesy51 andx51/2 and by a 180°
rotation about the point~1/2, 1!. These are examples of Euclidean~length preserving! symmetries.
Except for the identity transformation, there are no other Euclidean symmetries ofE. But there are
additional symmetries if we consider affine transformations, for example,x→12y/2, y→2
22x fixes the vertices 2 and 4, while exchanging 1 and 3.

In general, affine symmetries of a polytopeE in Rn21 are transformations of the form

z̄:x→Ax1kb, ~5.1!

with APR(n21)3(n21) andbPR(n21)31, such that

z̄E5E. ~5.2!

If the matrix A is orthogonal then the affine symmetry is also Euclidean.
A convenient method of finding the affine symmetries is to identifyRn21 with the planex0

5k in Rn. Then the affine extension ofz̄, denotedz, is given by

z:S k
xD→S k

Ax1kbD , ~5.3!

or, in matrix form, as
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z:S k
xD→S 1 0

b AD S k
xD . ~5.4!

Now, since any polytope is completely characterized by its vertices or its facets, a tra
mation that leavesE invariant has to leave its set of vertices and its set of facets invariant. Th
we must have from~4.9! and ~4.10! that the action ofz̄ permutesv18 ,...,vm8 , so that

z̄~v18 ¯ vm8 !5~ z̄~v18! ¯ z̄~vm8 !!5~v18 ¯ vm8 !s, ~5.5!

for some permutation matrixs. UsingV8, whose columns are vectors of the type (x
k), the require-

ment ~5.5! can be put in matrix form:

B~z!V85V8s, ~5.6!

whereB(z) is the matrix of the transformationz defined in~5.4!. We shall be mainly interested in
finding the affine symmetries of the fusion polytopes and methods for finding these symm
will be described in Sec. VI.

Note, however, that in general potential symmetries of a polytope can often be ruled o
considering the polytope’s combinatorial structure. Consider, for example, the polytopeE intro-
duced at the beginning of this section. As mentioned previously, a symmetry ofE must permute
vertices and facets and so there cannot be a symmetry of any type which exchanges vertice
3 while fixing vertices 1 and 4, since vertices 1 and 2 are joined by a common edge while
3 are not.

One type of combinatorial symmetry would be to consider all permutations of the faces
polyhedron which preserve the face lattice~see, e.g., Ref. 10, p. 128!. However, a simpler type o
combinatorial symmetry, which is easy to find in our examples, is to look for permutation
vertices and facets which preserve the vertex–facet incidence matrix. This matrix is ea
calculate given the vertices and the inequalities representing the facets: the incidence matrix
entry 1 in position~i,j! if the i th-vertex saturates~i.e., satisfies with equality! the j th facet inequal-
ity and is zero otherwise.

If we label the edges 1–2, 2–3, 3–4, and 4–1 of our example polytopeE as 1, 2, 3, and 4,
corresponding, respectively, to the inequalitiesx>0, y<2, x<1, y>0, we obtain the incidence
matrix:

I5S 1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

D . ~5.7!

If permutationss andt of the vertices and the edges, respectively, satisfysIt5I then we say
that we have an incidence symmetry. Ifs and t are such symmetries thensItt21I ts215II t

and sos commutes withII t. Call any vertex permutation which commutes withII t a vertex
symmetry.

Note that any affine symmetry induces a combinatorial face lattice symmetry and a
combinatorial incidence symmetry and a vertex symmetry. These maps are injective sinc
affine symmetry fixes all the vertices of a polytope then it fixes the whole polytope sin
polytope is the convex hull of its vertices. Thus we have the inclusions: Euclidean symmetr#
affine symmetries# combinatorial face lattice symmetries# combinatorial incidence symmetrie
# vertex symmetries. Thus finding the vertex symmetries gives a ‘‘upper bound’’ on the
types of symmetries.

For the polytopeE we have
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II t5S 2 1 0 1

1 2 1 0

0 1 2 1

1 0 1 2

D . ~5.8!

Since any vertex symmetrys commutes withII t, it must also map eigenvectors to eigenvect
and using this it is not difficult to show that every vertex symmetry ofE arises from an affine
symmetry.

In general, however, the group of combinatorial symmetries will be much larger than
group of affine symmetries. For example if we take a ‘‘generic’’ convexn-gon in R2, its combi-
natorial symmetries will be a dihedral group, but there will be no affine symmetries except fo
identity transformation.

Perhaps surprisingly, we find that for our examples that every vertex symmetry comes fr
affine symmetry and so the most economical method of finding the affine symmetries would
calculate first the vertex symmetries. However, this is not the usual situation and the onl
advantage in our cases turns out to be that the matrices we have to calculate have smalle
if we use vertex symmetries. So in Sec. VI we give general methods for finding all the a
symmetries for any polytope.

In the rest of this paper we shall only be concerned with finding affine symmetries o
polytopes, and so, unless stated otherwise, by a symmetry we shall mean an affine sym
Similarly when we refer to a vertex permutation as being a symmetry we mean that it arises
an affine symmetry as explained at the start of Sec. VI.

VI. THE SYMMETRY GROUP OF THE FUSION POLYTOPES: TECHNICAL TOOLS

In this section we will introduce some tools for finding the affine symmetries of our fu
polytopes introduced in Sec. V. We do this by considering vertex permutations and finding
ones arise from affine symmetries. These tools, however, apply in more generality than
applications and so we start with a more general definition of a symmetry of a matrix:

Definition: Let M be an n3m matrix. An m3m permutation matrixs is a symmetry of M iff
Ms5BM for some n3n matrix B.

The set of symmetries ofMPNn3m is a subset of the group of permutation matrices which
closed under multiplication, hence is a group. The corresponding set of matricesB does not
necessarily form a group, but it does if the rank ofM is n.

This definition is inspired by Eq.~5.6! since for the fusions of the affine Lie algebraĝ we will
take M to be the matrixV8. So in the terminology of Sec. V, a symmetry ofV8 is a vertex
symmetry of our fusion polytope which comes from an affine symmetry. As explained in S
we will call these vertex symmetries simply symmetries to avoid tedious repetition. The gro
symmetries ofV8 will be denoted byG@ ĝ#. For all our examples the rank ofV8 turns out to ben,
in other words the fusion polytope has ‘‘full-dimension.’’

Proposition 1: An m3m permutation matrixs is a symmetry of the n3m matrix M iff
sN(M )5N(M ) where N(M )5$zuMz50%.

Proof: If zPN(M ) thenMsz5BMz50, sosN(M )#N(M ). Also s21N(M )#N(M ), since
s21 is also a symmetry ofM ~because the symmetries form a group! and sosN(M )5N(M ).
Conversely, ifsN(M )5N(M ) then the matricesM andMs have the same null space. Thus the
rows generate the annihilator ofN(M ). In particular the rows ofMs are contained in the span o
the rows ofM and so there is a matrixB such thatBM5Ms. Sos is a symmetry ofM.

When the kernel ofM has dimension 0 or 1, this proposition is sufficient to classify
symmetries. As we will show in the following sections, this holds for the fusion polytopes
sû(2) andsû(3).

If the kernel has larger dimension, we will need another approach. However, to do so we
the additional assumptions thatM has real entries and that its rank isn. As noted previously, the
fusion polytope matricesV8 have these properties.
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With these two assumptions, using the Gram–Schmidt procedure, we can find an inv
n3n matrix L such that the rows ofW5LM form an orthonormal basis of the row space ofM.
SinceMs5BM if and only if Ws5LBL21W, it is clear thats is a symmetry ofM if and only
if s is a symmetry ofW.

Proposition 2:s is a symmetry of M if and only if Qs5sQ, where Q5WTW.
Proof: If s is a symmetry ofM then s is a symmetry ofW and soWs5TW for somen

3n matrix T. Moreover, sinces acts as an orthogonal transformation on the rows ofW, T is an
orthogonal matrix. Hence,Ws5TW implies s21WT5WTT21. So Qs5WTWs5WTTW
5sWTW as required. For the converse, note that the matrixQ performs the orthogonal projectio
onto the row space ofM. So if s commutes with the projection matrixQ then it maps the row
space ofM to itself and so is a symmetry ofM.

Sinces is a permutation, we can read off some of its properties directly fromQ. For example
a row ofQ can be mapped to another row ofQ by a symmetry only if the two rows have the sam
set of entries. A second simplification occurs by observing that ifs is a symmetry andsu5lu for
some vectoru thensQu5Qsu5lQu. In particular, ifu is fixed by the symmetry group, so i
Qu. We will apply these two observations when we compute the symmetries for thesp̂(4) fusion
polytope.

VII. THE SYMMETRY GROUP OF THE sû „2…k POLYTOPE

For sû(2), the matrix V8 takes the formkV with V given in ~3.3!; N(V8) is thus trivial.
Therefore, every permutation is a symmetry. Sincen5m54, this givesS4 as the symmetry group
G@sû(2)#. S4 is generated by the permutations~1, 2, 3, 4! and~1, 2!, where (i , j ,...,k) stands for
a cyclic permutation ofi , j ,...,k. SinceV8 is invertible, we can easily find the correspondi
transformationz acting onxT5(k,l1 ,n11,n12). It reads:

~1,2,3,4!:~k,l1 ,n11,n12!°~k,k2l12n111n12,l12n12,k2l12n11!,
~7.1!

~1,2!:~k,l1 ,n11,n12!°~k,k2n112n12,n11,k2l12n11!.

The fusion basis is given in~2.1!. Labeling these inequalities from 1 to 4, the symmetries~1,
2, 3, 4! and ~1, 2! permute the inequalities. However, the inequalities correspond to the poly
facets, which being dual to the vertices transform by the inverse of the vertex transform. T
x°Bx is the transformation corresponding to the vertices, thenaT°aTB21 is the appropriate
transformation for the facets. The necessity of this can be seen from the fact that the trans
tions should preserve the incidence relations of the vertices and facets and that this in
quantities of the formaTx.

From this it follows that the action of~1, 2! is @@1, 2#, @3#, @4##, i.e., it permutes the first two
inequalities and fixes the last two. Similarly the action of~1, 2, 3, 4! is @@1, 2, 3, 4##. Thus the
fusion basis is generated by any one of its inequalities under that action of the symmetry

Is there a simple way to understand these symmetries in terms of the symmetries of the
coefficients? First, notice that the fusion coefficients are described in terms of a smaller num
labels than those necessary for the complete description of the fusion basis. The complet
labels can be split into two subsets: the Dynkin labels of the three weights under considerati
the ‘‘missing labels.’’ If some symmetries do not involve in an essential way the missing la
they will project onto fusion-coefficient symmetries. However, if the missing labels are an e
tial part of the symmetry transformations, the symmetry will disappear in the projection
instance, tensor-product coefficients can be obtained by projection of the fusion coefficient
latter require an extra variable for their description, the levelk, and fusion coefficients have mor
symmetries than the tensor-product coefficients. The extra symmetries are the
automorphisms—see the next paragraph—and these involve the level in an essential way
make the general situation more precise: Denote collectively the finite Dynkin labels$l i ,m i ,n i%
and k by D and the set of missing labels byg. A facet symmetry is generically of the form
$D,g%→$D8(D,g),g8(D,g)%. This will be a symmetry of the fusion coefficients only whenD8
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does not depend upong. Therefore there is no simple relationship between the symmetries o
facets and the symmetries of the fusion coefficients. In this regard, each algebra has to be
separately.

The symmetries of the fusion coefficients include those that are level-independent, i.e
symmetries of the corresponding tensor-product coefficients; these are the conjugation of th
weights, (l̂,m̂,n̂)→(l̂* ,m̂* ,n̂* ) and the different permutations ofl̂, m̂ and n̂* . The remaining
symmetries are intrinsically affine. These include the outer-automorphism symmetries whic
the following form: If A, A8 are two arbitrary elements of the outer-automorphism group ofĝ, the
fusion coefficients satisfy

N
Al̂,A8m̂

~k! AA8n̂5N
l̂m̂

~k! n̂. ~7.2!

For sû(N), this group has orderN: AN51. The symmetry group can be larger than that genera
by tensor product symmetries and outer automorphisms, see e.g., Refs. 11–13. There a
symmetries which exist for some, but not all levels. The method we present here will not d
this type of symmetry and from this point we will exclude them. In other words, by symmetrie
the fusion coefficients we mean symmetries which exist for all levels.

For sû(2), there are no missing labels. Hence the symmetry group of the polytope mu
identical to the symmetry group of the fusion coefficients which exist for allk and that leavek
fixed. This group is isomorphic to the semidirect product (S23S2): S3 . TheS3 factor comes from
the permutation of the three weights, while the two factors ofS2 account for the two copies of th
outer-automorphism group~one acting on the weightl̂, the other acting onm̂!. The conjugation
action ofS3 is via the outer automorphisms ofS23S2 which permute the nonidentity element
The groupS4 contains a groupS23S2 generated by the cycles of type 22. Any of the fourS3

subgroups act on thisS23S2 as outer automorphisms by conjugation and so the symmetry g
is isomorphic toS4 .

Let us first reexpress all the basis symmetries in terms of the Dynkin labels:

~1,2,3,4!:~k,l1 ,m1 ,n1!→~k,k2n1 ,k2m1 ,l1!,

~1,2!:~k,l1 ,m1 ,n1!→~k,k2m1 ,k2l1 ,n1!,
~7.3!

~2,3!:~k,l1 ,m1 ,n1!→~k,l1 ,n1 ,m1!,

~3,4!:~k,l1 ,m1 ,n1!→~k,m1 ,l1 ,n1!.

~Clearly, the last two symmetries can be obtained from the first two.!
Let us make explicit the correspondence between these symmetries and symmetries

fusion coefficients. For this, notice first that the multiplicity of thesû(2)k productl̂3m̂. n̂ is the
same as that ofl̂3m̂3 n̂.0. Let P12 be the operator that permutes the first two weights a
similarly for the other permutation operators. Moreover, leta be thesû(2) automorphism that
interchanges the two simple roots, hence the two Dynkin labels:a@k2l1 ,l1#5@l1 ,k2l1#.
Therefore, the nontrivial actions onl̂3m̂3 n̂.0 are simply:

al̂3am̂3 n̂.0, al̂3m̂3an̂.0, l̂3am̂3an̂.0. ~7.4!

Denote these actions, respectively, as (a,a,1), (a,1,a), (1,a,a). The fusion basis symmetries ca
then be related directly toa andP actions as follows:
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~1,2,3,4![~a,a,1!P13,

~1,2![~a,a,1!P12,
~7.5!~2,3![P23,

~3,4![P12.

‘‘Pure’’ finite or affine symmetries can be obtained by composition, e.g.,

~2,3,4![P321,
~7.6!

~1,2!~3,4![~a,a,1!.

VIII. THE SYMMETRY GROUP OF THE sû „3…k POLYTOPE

The situation forsû(2) is not typical in two ways. First, there are no missing labels; he
any permutation of the vertices is bound to be a symmetry of the fusion coefficients. In add
there are no linear relations between the elementary solutions. Such relations will induce
constraints on the possible lifts of the fusion-coefficient symmetries to polytope symmetrie

For sû(3), the elementary couplings are~using the notationl̂5@l0 ,l1 ,l2# with l01l1

1l25k and the LR variables—cf. Ref. 3. Note thatl1 and l2 are Dynkin labels and not the
partition labels to which they usually refer in the Littlewood–Richardson rule as in Ref. 4, C
1, for example!:

Ê0 : @1,0,0#3@1,0,0#.@1,0,0#: d ~1,0,0,0,0,0,0,0! ~1,1!

Ê1 : @0,1,0#3@0,0,1#.@1,0,0#: dL1N12N23 ~1,1,0,0,1,0,0,1! ~a,a2!

Ê2 : @0,1,0#3@1,0,0#.@0,1,0#: dL1 ~1,1,0,0,0,0,0,0! ~a,1!

Ê3 : @1,0,0#3@0,1,0#.@0,1,0#: dN11 ~1,0,0,1,0,0,0,0! ~1,a!

Ê4 : @0,0,1#3@0,1,0#.@1,0,0#: dL2N13 ~1,0,1,0,0,1,0,0! ~a2,a! ~8.1!

Ê5 : @0,0,1#3@1,0,0#.@0,0,1#: dL2 ~1,0,1,0,0,0,0,0! ~a2,1!

Ê6 : @1,0,0#3@0,0,1#.@0,0,1#: dN11N22 ~1,0,0,1,0,0,1,0! ~1,a2!

Ê7 : @0,1,0#3@0,1,0#.@0,0,1#: dL1N12 ~1,1,0,0,1,0,0,0! ~a,a!

Ê8 : @0,0,1#3@0,0,1#.@0,1,0#: dL2N11N23 ~1,0,1,1,0,0,0,1! ~a2,a2!.

Besides each coupling, we have written the ‘‘exponential description,’’ the corresponding vece i

with entries in the order (k,l1 ,l2 ,n11,n12,n13,n22,n23), as well as the action of the outer aut
morphism on the first two weights ofÊ0 @in the form (an,am)# that yields the coupling unde
consideration.

The corresponding facets~the fusion basis! are found to be

n12>0, l21n122n132n23>0,

n13>0, n112n22>0,

n22>0, n111n122n222n23>0,
~8.2!

n23>0, k2l12l22n22>0,

l12n12>0, k2l12l22n111n23>0,

l22n13>0, k2l12n132n11>0.
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This agrees with the system of inequalities obtained in Ref. 3.
For sû(3), thematrix V8 is 839:

V85k1
1 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 1 0

0 0 0 0 1 1 0 0 1

0 0 0 1 0 0 1 0 1

0 1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1

2 ~8.3!

and since the rank ofV8 is 8, N(V8) is one-dimensional and is spanned by

wT5~1 21 0 21 0 21 0 1 1!. ~8.4!

The condition ons is thussw5lw for some scalarl and, since the eigenvalues ofs are
roots of unity,l is either 1 or21. ThusG@sû(3)# is isomorphic toS33(S3oS2). TheS3 permutes
the 0’s ofw andS3oS2 ~the wreath product ofS3 andS2 , i.e., the direct product oftwo S3’s with
S2 acting by exchanging them! permutes and exchanges the 1’s and21’s.

Let xT5(k,l1 ,l2 ,n11,n12,n13,n22,n23). The action of a set of generators of the symme
group on the variables is:

~3,5,7!:xT°~k,n121n22,l11l22n122n13,n111n132n22,n12,l12n12,n13,n23!,

~3,5!:xT°~k,n121n13,l11l22n122n13,n11,n12,l12n12,n22,n23!,
~8.5!

~1,8,9!:xT°~k,k2l22n112n121n23,l21n122n23,n11

1n122n23,k2l12l22n111n23,n13,n22,n12),

~1,8!:xT°~k,k2l22n112n121n23,l2 ,n11,k2l12l22n111n23,n13,n22,n23!,

together with

~1,2!~4,8!~6,9!:xT°~k,k2l22n122n22,l2 ,l21n122n131n22

2n23,k2l12l22n22,n13,n22,k2l12n132n11).
~8.6!

The fusion basis is given by~8.2!. Labeling these inequalities successively, column by c
umn, from 1 to 12~i.e., 8 corresponds ton112n22>0!, we find that the action of the symmetr
group on the inequalities considered as polytope facets is generated by:

~3,5,7!:@@1#,@2,3,5#,@4#,@6#,@7#,@8#,@9#,@10#,@11#,@12##,

~3,5!:@@1#,@2,5#,@3#,@4#,@6#,@7#,@8#,@9#,@10#,@11#,@12##,

~1,8,9!:@@1,4,11#,@2#,@3#,@5#,@6,12,7#,@8,10,9##, ~8.7!

~1,8!:@@1,11#,@2#,@3#,@4#,@5#,@6#,@7,12#,@8#,@9,10##,

~1,2!~4,8!~6,9!:@@1,10#,@2#,@3#,@4,12#,@5#,@6#,@7,8#,@9#,@11##,
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where as before@ i , j ,...,k# stands for a cyclic permutation of the inequalitiesi , j ,...,k. Thus there
are two orbits under the symmetry group. One consisting of the inequalities 2, 3, and 5 a
other consisting of the inequalities 1, 4, 6, 7, 8, 9, 10, 11, and 12. So the fusion basis is gen
by the two inequalitiesn12>0 andn13>0 under the action ofG@sû(3)#.

Let us now try to understand these results. As already pointed out, these symmetries m
compatible with the symmetries of the fusion coefficients. But there is a further constraint o
fusion symmetries that has not been spelled out yet: in general there are linear relations am
elementary couplings and the symmetries of the facets must preserve these relations. In thsû(3)
case, there is only one such linear relation, which is:

Ê0Ê7Ê85Ê1Ê3Ê5 . ~8.8!

This explains the existence of the threeS3 blocks: permutations among the sets$Ê0 ,Ê7 ,Ê8% and

$Ê1 ,Ê3 ,Ê5% are symmetries that preserve each side of the relation. The thirdS3 factor is bound to
relate the three remaining vertices. Moreover, theS2 group generated by~1, 2!~4, 8!~6, 9! is
another transformation that leaves the relation unchanged: but instead of leaving each side
ant, it interchanges the two sides of the relation:Ê0↔Ê1 , Ê3↔Ê7 , Ê5↔Ê8 . The occurrence of
a linear relation is thus responsible for the fact that the symmetry group is notS9 but only a
subgroup thereof.

Of course, the existence of relations is intimately connected with the matrixV8. In fact,
N(V8) is precisely the set of generating relations~in the sense of Ref. 3! out of which all the
relations can be obtained.

To complete the analysis of thesû(3)k polytope symmetries, let us investigate their expli
relation with symmetries of the fusion coefficients. For this, we first reexpress the symm
transformations in terms of the Dynkin labels of the three weights plusn23. Thus n23 is the
missing label. We also reformulate the results in terms of the symmetrized product:l̂3m̂

3 n̂.0. Recall that the multiplicity ofl̂3m̂. n̂* is the same as that ofl̂3m̂3 n̂.0, where*
denotes the finite weight conjugation; forsû(3), it amounts to interchanging the two finite Dynk
labels. The precise transformation relations are as follows:

n115L22l12l2 , n125L12L21n23,
~8.9!

n135L22n12n22n23, n225m22n23.

With the vectoryT defined asyT5(k,l1 ,l2 ,m1 ,m2 ,n1 ,n2 ,n23), we can rewrite the symmetrie
of the fusion basis as

~3,5,7!:yT→~k,L22l22n2 ,L22m12m2 ,L22l22m2 ,L2

2n12n2 ,L22m22n2 ,L22l12l2 ,n23),

~3,5!:yT→~k,L12n12n2 ,L22m12m2 ,L22l22m2 ,m2 ,n1 ,L12l12n1 ,n23!,

~1,8,9!:yT→~k,k2L11l1 ,L22m22n2 ,k2L11m1 ,L2

2l22n2 ,k2L11n1 ,L22l22m2 ,L12L21n23),
~8.10!

~1,8!:yT→~k,k2L11l1 ,l2 ,k2L11m1 ,m2 ,k2L11n1 ,n2 ,n23!,

~1,2!~4,8!~6,9!:yT→~k,k2L21n2 ,l2 ,m1 ,k2L11n1 ,L2

2l12l2 ,L12m12m2 ,n231k2L12m21n1),
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whereLi5(l1m1n,v i) with v i the i th fundamental weight. The remarkable feature of th
symmetry transformations is that they sendyT→y8T such that none of the prime variables exce
n238 depends uponn23. In other words, the new Dynkin labels, collectively denoted byD8, do not
depend uponn23. Therefore, these symmetries map a state~i.e., a tableau! of a given fusion to
another state of another fusion. The same is necessarily true for the inverted transform
There is thus a one-to-one correspondence between the two fusions, i.e., they have th
multiplicity! In other words, the symmetries of the fusion basis are symmetries of the fu
coefficients. For instance,

~3,5,7!: N ~l1 ,l2!~m1 ,m2!~n1 ,n2!
~k!

5N ~L22l22n2 ,L22m12m2!~L22l22m2 ,L22n12n2!~L22m22n2 ,L22l12l2!
~k! ,

~3,5!: N ~l1 ,l2!~m1 ,m2!~n1 ,n2!
~k! 5N ~L12n12n2 ,L22m12m2!~L22l22m2 ,m2!~n1 ,L12l12n1!

~k! ,

~1,8,9!: N ~l1 ,l2!~m1 ,m2!~n1 ,n2!
~k! 5N ~k2L11l1 ,L22m22n2!~k2L11m1 ,L22l22n2!~k2L11n1 ,L22l22n2!

~k! ,

~8.11!

~1,8!: N ~l1 ,l2!~m1 ,m2!~n1 ,n2!
~k! 5N ~k2L11l1 ,l2!~k2L11m1 ,m2!~k2L11n1 ,n2!

~k! ,

~1,2!~4,8!~6,9!: N ~l1 ,l2!~m1 ,m2!~n1 ,n2!
~k! 5N ~k2L21n2 ,l2!~m1 ,k2L11n1!~L22l12l2 ,L12m12m2!

~k! .

In this rewriting, the dependence upon then23 variable is dropped.
These are clearly new fusion symmetries as they mix the labels of the three representat

is simple to verify that they leave the explicit expression of thesû(3)k fusion coefficients~given
in Ref. 14! invariant. Here is a numerical illustration:~1, 8! maps

@4,10,12#3@1,4,11#3@9,3,4#.0↔E0E1
8E3

2E6E7
2E8

2, E1
8E2E3

2E4E6
2E7E8 ~8.12!

onto

@5,9,2#3@2,3,11#3@10,2,4#.0↔E7E1
8E3

2E6E0
2E8

2, E1
8E2E3

2E4E6
2E0E8 . ~8.13!

Both fusions have two decompositions in terms of elementary couplings, meaning that the
the same multiplicity. This symmetry is manifestly distinct from those already known. It is n
trivial symmetry in that, in terms of the elementary-coupling decompositions, it corresponds
interchange ofE0 andE7 in each decomposition.

The usual fusion symmetries can be obtained from various combinations of the a
mentioned symmetries of the fusion basis. For instance,

~2,4,6!~3,5,7![P123,

~8,9!~5,7!~2,4![CP13, ~8.14!

~2,8!~1,4!~6,9![~1,a,a2!P23,

whereC is the conjugation:

C$l̂3m̂3 n̂.0%5l̂* 3m̂* 3 n̂* .0. ~8.15!

We thus recover the known symmetries and additional ones.
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IX. THE SYMMETRY GROUP OF THE sp̂ „4…k POLYTOPE

Thesp̂(4) fusion rules are most conveniently described by means of the variables introd
in Ref. 15 and used in Refs. 3 and 6~with a slight change of notation!, namely
$k,l1 ,l2 ,m1 ,m2 ,r 1 ,r 2 ,p,q%, with p, q andr i /2 non-negative integers. The Dynkin labels of t
third weight are

n15r 22r 122p1l11m1 , n25p2q2r 21l21m2 . ~9.1!

In terms of the exponentiated variables, the elementary couplings areÊ05d, together with

Â15dM1 , Â25dL1 , Â35dL1M1PQ,

B̂15dM2 , B̂25dL2 , B̂35dL2M2R1
2R2

2,

Ĉ15dL2M1Q, Ĉ25dL1M2R2
2P, Ĉ35dL1M1P,

D̂15d2L1
2M2R2

2P2, D̂25d2L2M1
2R1

2, D̂35d2L2M2R2
2.

~9.2!

Taking these to be the vertices of a polytope, the corresponding facets are found to be:

k2l12l22m22r 1/21r 2>0, m12q>0,

k2l12l22m21r 2/2>0, m12q2r 11r 2>0,

k2l12m12m21p>0, m12p2r 11r 2>0,

k2l12l22m12m21p1q1r 1/2>0, m22r 2/2>0,
~9.3!

l12p>0, r 1>0,

l22r 1/2>0, r 2>0,

l22r 1/22q1p>0, p>0,

l22r 2/22q1p>0, q>0

in agreement with the results obtained in Ref. 3.
We next analyze the symmetries of thesp̂(4) fusion polytope. The matrixV8, with the

column ordering (Ê0 ,Â1 ,...,D̂3), reads

V85k1
1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 0 0 0 0 1 1 1 0 0

0 0 0 0 0 1 1 1 0 0 0 1/2 1/2

0 1 0 1 0 0 0 1 0 1 0 1 0

0 0 0 0 1 0 1 0 1 0 1/2 0 1/2

0 0 0 0 0 0 2 0 0 0 0 1 0

0 0 0 0 0 0 2 0 2 0 1 0 1

0 0 0 1 0 0 0 0 1 1 1 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0

2 . ~9.4!
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Unfortunately for this case the kernel ofV8 is not one-dimensional. In fact,N(V8) is four-
dimensional, which we understand from the fact that there are four generating relations—c
3, Eq.~5.18!. As a result, we must study the symmetries ofV8 via the commutant of the matrixQ
that performs the orthogonal projection onto the row space ofV8 ~cf. proposition 2 of Sec. VI!.
This matrix reads

.

~9.5!

As already pointed out in Sec. VI, a row ofQ can be mapped to another row by a symme
transformations only if the two rows have the same entries. Hence, from the explicit form
~9.5!, we see that any symmetry fixes the sets$1, 6%, $2, 10%, $3, 5%, $4, 8%, $11, 13%, $7%, $9%, and
$12%. It is not difficult to see that the permutation~3, 5! is a symmetry.

We can again examineQ to see that a symmetry exchanges rows 1 and 6 iff it exchan
columns 2 and 10. It exchanges rows 2 and 10 iff it exchanges columns 11 and 13 and exc
rows 11 and 13 iff it exchanges columns 4 and 8.

It is easy to verify that~1,6!~2,10!~11,13!~4,8! is a symmetry. Thus, the symmetries ofV8 are

G@sp̂~4!#5$~ !,~3,5!,~1,6!~2,10!~11,13!~4,8!,~3,5!~1,6!~2,10!~11,13!~4,8!% ~9.6!

isomorphic toS23S2 .
With xT5(k,l1 ,l2 ,m1 ,m2 ,r 1 ,r 2 ,p,q), the changes of variables corresponding to the g

erators of the symmetry group are:

~3,5!:xT°~k,m22r 2/21p,l2 ,m1 ,l11r 2/22p,r 1 ,r 2 ,p,q!,
~9.7!

~1,6!~2,10!~11,13!~4,8!:xT°~k,l11m12r 11r 222p,k2l12l22m12m21r 11p

1q,m1 ,m2 ,r 1 ,r 2 ,m12p2r 11r 2 ,q).

The orbits of the symmetries on the inequalities of the fusion basis are@with the inequalities
~9.3! labeled consecutively, column by column, from 1 to 16#:

~3,5!:@@5,12##,
~9.8!

~1,6!~2,10!~11,13!~4,8!:@@1,7#,@2,8#,@4,6#,@11,15##,

where orbits of length 1 have been omitted.
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As indicated in the context of thesû(3) analysis, the most severe constraints on the sym
tries come from the linear relations. There is indeed a large number of relations forsp̂(4):3

Ê0Ĉ1Ĉ25Â3D̂3 , Ê0Ĉ2Ĉ35Â1D̂1 , Ê0Ĉ3Ĉ15Â1Â3B̂2 ,

D̂1D̂25Ê0B̂3Ĉ3
2, D̂2D̂35Ê0Â1

2B̂2B̂3 , D̂1D̂35Ê0B̂2Ĉ2
2, ~9.9!

Ĉ1D̂15Â3B̂2Ĉ2 , Ĉ2D̂25Â1B̂3Ĉ3 , Ĉ3D̂35Â1B̂2Ĉ2 .

It is not difficult to check that the symmetries leave these relations invariant. In fact,
5(Â2 ,B̂1) ~which means the interchange ofÂ2 andB̂1! and these two couplings do not appear
the relations. The other symmetry reads (Ê0 ,B̂2) (Â1 ,Ĉ3) (D̂1 ,D̂3) (Â3 ,Ĉ1).

With the vectoryT defined asyT5(k,l1 ,l2 ,m1 ,m2 ,n1 ,n2 ,p,q), we can rewrite the symme
tries of the fusion basis as:

~3,5!:yT→~k,2l2/21m2/21n2/21p/21q/2,l2 ,m1 ,

l11l2/21m2/22n2/22p/22q/2,2l12l2/21m2/21n11n2/21p/21q/2,
~9.10!

l11l2/22m2/21n2/22p/22q/2,p,q),

~1,6!~2,10!~11,13!~4,8!:yT→~k,n1 ,k2n12n2 ,m1 ,m2 ,l1 ,k2l12l2 ,2l11n11p,q!.

The first polytope symmetry does not correspond to a fusion-coefficient symmetry. Howeve
second one is a combination of an outer automorphism and a permutation of two weights:

~1,6!~2,10!~11,13!~4,8!5~a,1,a!P13. ~9.11!

This is not a new symmetry of fusion coefficients.

X. THE SYMMETRY GROUP OF THE sû „4…k POLYTOPE

The whole set ofsû(4) fusion elementary couplings can all be generated from two coupl
that have no elementary finite relative:

Ê05@1,0,0,0#3@1,0,0,0#.@1,0,0,0#, F̂5@0,1,0,1#3@0,1,0,1#.@0,1,0,1# ~10.1!

by means of the outer-automorphism group. We can thus characterize a coupling by
(an,am) i wherean andam act on the first and the second weight, respectively, understanding
the action on the third weight isan1m. Here a permutes the Dynkin labels of an affinesû(4)
weight asa@l0 ,l1 ,l2 ,l3#5@l3 ,l0 ,l1 ,l2# so thata451. The subindexi refers to the elemen
tary couplingÊ0 or F̂ from which it is obtained; these are labeled respectively asi 50, 1. The
remaining elementary coupling are thus

Â15~a0,a3!0 , Â25~a3,a1!0 , Â35~a1,a0!0 ,

B̂15~a0,a2!0 , B̂25~a2a2!0 , B̂35~a2,a0!0 ,

Ĉ15~a0,a1!0 , Ĉ25~a1,a3!0 , Ĉ35~a3,a0!0 ,
~10.2!

D̂185~a2,a1!0 , D̂285~a1,a1!0 , D̂385~a1,a2!0 ,

D̂15~a2,a3!0 , D̂25~a3,a3!0 , D̂35~a3,a2!0 ,

Ê15~a0,a1!1 , Ê25~a1,a1!1 , Ê35~a1,a0!1 .
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~The explicit reexpression of the elementary couplings in terms of the LR variables can be
in Ref. 3!.

The reconstruction of the polytope facets out of these vertices reproduce the inequ
obtained in Ref. 3. These are

k2l12l22l32n33>0, l31n132n142n24>0,

k2l12l22n112n141n34>0, l31n131n232n142n242n34>0,

k2l12n112n132n14>0, n112n22>0,

k2l12l22l32n221n34>0, n111n122n222n23>0,

k2l12l22n142n22>0, n111n121n132n222n232n24>0,

k2l12l22l32n111n241n34>0, n222n33>0,

k2l12l22l31n122n222n231n34>0, n221n232n332n34>0,
~10.3!

k2l12l22n141n132n222n24>0, n12>0,

k2l12l22n112n141n23>0, n13>0,

2k22l122l22l32n142n222n111n34>0, n14>0,

l12n12>0, n23>0,

l22n13>0, n24>0,

l21n122n132n23>0, n33>0,

l32n14>0, n34>0.

We then look for the symmetry group of the resulting polytope using the commutant ofQ. The
matrix V8, with the column ordering (Ê0 ,Â1 ,¯ ,D̂18 ,¯ ,D̂3 ,Ê1 ,Ê2 ,Ê3 ,F̂), is
                                                                                                                



4197J. Math. Phys., Vol. 43, No. 8, August 2002 Fusion bases as facets of polytopes

              
V85k

¨

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1
2 0 0 1

2

0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1
2

1
2 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1
2 0 0 1

2

0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1
2

1
2

1
2

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1
2 0 0 1

2

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
2 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
2 0

0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1
2 0 1

2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1
2 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1
2

1
2

©
.

~10.4!

The matrixQ853240Q reads

.

~10.5!

Again, considering the sets of entries in each row ofQ we find that the symmetry group fixes the
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sets$1%, $2, 3, 4%, $5, 6, 7%, $8, 9, 10%, $11, 12, 13, 14, 15, 16%, $17, 18, 19%, and$20%. We notice
immediately that the permutations of 2, 3, and 4 give anS3 symmetry that commutes with all th
other symmetries.

Let us suppose thats is a symmetry and lett be the induced permutation of$11, 12, 13, 14,
15, 16%. The submatrix ofQ corresponding to rows$11, 12, 13, 14, 15, 16% and columns$5, 6, 7%
is

U15
1

3240S 2285 660 215

215 2285 660

660 215 2285

2285 215 660

660 2285 215

215 660 2285

D , ~10.6!

while the submatrix for rows$11, 12, 13, 14, 15, 16% and columns$8, 9, 10% is

U25
1

3240S 255 2420 525

525 255 2420

2420 525 255

255 525 2420

2420 255 525

525 2420 255

D , ~10.7!

and for rows$11, 12, 13, 14, 15, 16% and columns$17, 18, 19% it is

U35
1

3240S 2420 120 660

660 2420 120

120 660 2420

2420 660 120

120 2420 660

660 120 2420

D . ~10.8!

Since each of these matrices have rows with distinct entries, we can deduce the action os on
each of the sets$5, 6, 7%, $8, 9, 10%, and$17, 18, 19% from t. Sinces fixes 1 and 20 this determine
s except for its action on 2, 3, and 4, which, as noted previously, is arbitrary.

Thus, to find all symmetries, it suffices to find all possiblet. The submatrix ofQ correspond-
ing to rows$11, 12, 13, 14, 15, 16% and columns$11, 12, 13, 14, 15, 16% is

K5
1

3240S 2550 225 225 245 245 2450

225 2250 225 2450 245 245

225 225 2250 245 2450 245

245 2450 245 2250 225 225

245 245 2450 225 2250 225

2450 245 245 225 225 2250

D . ~10.9!

The permutationt commutes withK and K has an eigenvectorwT5(21,21,21,1,1,1), the
corresponding eigenspace being one-dimensional.t fixes this eigenspace and so eithertw5w or
tw52w. The group of all such permutations isS3oS2 with the twoS3 groups permuting$11, 12,
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13% and$14, 15, 16% and theS2 interchanging them. Thus, everys gives at in S3oS2 , but it is not
necessarily true that every element ofS3oS2 extends to a symmetry ofV8. In fact, only a subgroup
can be extended, as we now show.

By trial and error, we can find two elements

a5~11,14!~12,16!~13,15!, b5~11,12,13!~14,15,16! ~10.10!

of S3oS2 which can be extended to the two symmetries

~6,7!~9,10!~11,14!~12,16!~13,15!~18,19! ~10.11!

and

~5,6,7!~8,9,10!~11,12,13!~14,15,16!~17,18,19!. ~10.12!

The group generated bya and b turns out to be isomorphic toS3 ~which does not have the
standard action!.

Thus, we get a group of symmetries isomorphic toS33S3 :

G@sû~4!#5^~2,3!,~2,3,4!,~6,7!~9,10!~11,14!~12,16!~13,15!

3~18,19!,~5,6,7!~8,9,10!~11,12,13!~14,15,16!~17,18,19!&. ~10.13!

There are no other symmetries for the following reason. Suppose thats is a symmetry andt is the
induced permutation on$11, 12, 13, 14, 15, 16%. Since the group generated bya andb is transitive
on $11, 12, 13, 14, 15, 16%, there is somet8 such thattt8 fixes 11. Then, by considering the firs
row of U1 , tt8 also fixes$5, 6, 7%. Hencett8 must fix U1 . But this impliestt8 is the identity
sinceU1 has distinct rows. Thust215t8 and sos is in the groupG.

With xT5(k,l1 ,l2 ,l3 ,n11,n12,n13,n14,n22,n23,n24,n33,n34), the changes of variables co
responding to the generating symmetries are:

~2,3!:xT°~k,l1 ,l2 ,l32n141n33,n111n142n33,n12,n13,n33,n141n222n33,n23,n24,n14,n34!,

~2,3,4!:xT°~k,n121n14,l2 ,l32n141n33,l11n112n122n33,n12,n13,n33,l12n121n22

2n33,n23,n24,l12n12,n34),
~10.14!

~11,14!~12,16!~13,15!~6,7!~18,19!~9,10!:

xT°~k,l11l32n122n14,l2 ,n121n14,n111n121n132n242n34,l32n14,l2

2n13,n14,n221n232n34,l31n132n142n24,l21n12

2n132n23,n33,l31n131n232n142n242n34!,

~5,6,7!~8,9,10!~11,12,13!~14,15,16!~17,18,19!:

xT°~k,l11n111n132n222n232n24,n221n231n242n33

2n34,n141n34,l21l32n132n141n33,n111n121n132n222n232n24,n221n23

2n332n34,n14,l22n131n33,n111n122n222n23,n222n33,n33,n112n22!.

Labeling thesû(4) fusion inequalities of~10.3! from 1 to 28~row by row!, the orbits on the
fusion basis are:
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~2,3!:@@24,27##,

~2,3,4!:@@11,27,24##,
~10.15!

~11,14!~12,16!~13,15!~6,7!~18,19!~9,10!:

@@2,9#,@3,6#,@4,8#,@5,7#,@12,23#,@13,26#,@14,22#,@15,25#,@16,28#,@17,19#,@20,21##,

~5,6,7!~8,9,10!~11,12,13!~14,15,16!~17,18,19!:

@@1,6,3#,@2,5,4#,@7,9,8#,@12,20,26#,@13,21,23#,@14,17,28#,@15,18,25#,@16,19,22##,

where the orbits of length 1 have been omitted.
As already indicated, severe constraints on the symmetries come from the linear rel

And in fact there are many such relations in thesû(4) case. The full list is:3

Ê0D̂ j8D̂k5Ĉi Êi , Ê0D̂ j D̂k85B̂i Ĉj Ĉk , Êi Êj5Ê0B̂kD̂kD̂k8 ,
~10.16!

D̂ i Êi5Ĉj B̂kD̂k , D̂ i8Êi5B̂j D̂ j8Ĉk , Ê0F̂5Ĉ1Ĉ2Ĉ3

with i, j, k a cyclic permutation of 1, 2, 3. The large number of relations, and more precisely
fact that they mix elementary couplings with different threshold levels, is responsible fo
absence of symmetries involving the level. All the above-found symmetries leave this s
relations invariant. For instance, theS3 group generated by~2, 3! and~2, 3, 4! is the permutation
group of the threeÂi ’s, which do not appear in the relations.

With the vectoryT defined asyT5(k,l1 ,l2 ,l3 ,m1 ,m2 ,m3 ,n1 ,n2 ,n3 ,n12,n14,n33), we can
rewrite the symmetries of the fusion basis as:

~2,3!:yT→~k,l1 ,l2 ,l32n141n33,m12n141n33,m2 ,m31n142n33,n11n14

2n33,n2 ,n3 ,n12,n14n33!,

~2,3,4!:yT→~k,n121n33,l2 ,l11l32n122n14,l11m12n122n14,m2 ,m31n142n33,n11n14

2n33,n2 ,2l11n31n121n33,n12,l12n12,n14!,
~10.17!

~11,14!~12,16!~13,15!~6,7!~18,19!~9,10!:

yT→~k,l11l32n122n14,l2 ,n121n14,n32l11n12

1n14,n2 ,n1 ,m3 ,m2 ,l11m12n122n14,l32n14,n14,n33),

~5,6,7!~8,9,10!~11,12,13!~14,15,16!~17,18,19!:

yT→~k,l11n12n122n33,n2 ,2l11n31n121n14,n121n14,l2 ,l32n141n33,m12n14

1n33,m2 ,l11m32n122n33,n12n33,n14,n33).

These symmetries do not correspond to a fusion-coefficient symmetries.

XI. CONCLUSION

In this paper we presented the concept of fusion bases, first introduced in Ref. 3, from a
point of view as the set of facets of a polytope. This reformulation gives access to the pow
computer programs that have been developed for generating facets out of the vertices. Mo
by reformulating the problem in a geometrical way, we were led to the study of the a
symmetry group of the fusion polytope, introduced here for the first time. We developed s
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tools for studying this group analytically for the lowest rank affine Lie algebras. We also de
the vertex symmetry group of a polytope and noted that for fusion polytopes the affine and
symmetry groups appear to be the same—a property which does not hold for general poly

The order of the vertex symmetry group of the fusion polytope of the lowest rank affine
algebras was found to be 24 forsû(2), 432 forsû(3), 36 forsû(4), and 4 forsp̂(4). Comparing
sû(2) andsû(3), it is natural to see an increase of the order of the group with the rank sinc
number of vertices increases rapidly. However, it might be surprising to observe this d
reduction in the order when passing fromsû(3) to sû(4). Thereason is that the number of linea
relations, which have to be preserved by the symmetry transformations, also increases rapid
the rank.

We should stress that a fusion polytope is rather special type of polytope in that its vertic
the elementary solutions of the facets, which is far from being a generic property of polyto

It is an interesting open problem to try to generate the full set of fusion inequalitie
equivalently, to give a generic description of the fusion polytope, from a general Lie alge
point of view.

On the other hand, we could ask whether the polytope we have obtained, whose desc
relies heavily on the LR variables, is the ‘‘genuine’’ fusion polytope or whether it is just
among a variety of polytopes. In that vein, we note that Rasmussen and Walton16 have recently
also developed a polytope interpretation ofsû(3) andsû(4) fusion coefficients using a differen
approach from ours. Prompted by the referee we have investigated the relationship w
polytopes found in this paper. We find, perhaps surprisingly, after removing redundant var
and making a suitable change of coordinates that the two sets of polytopes coincide. This s
that the polytopes might be in some sense unique.

Finally, concerning the symmetry analysis, we stress that we have restricted our analys
special class of symmetries, namely those which exist at all levels. Whether symmetries
ticular levels or even symmetries that relate fusion polytopes at different levels can be unr
by our method remains to be studied.
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The introduction of a lattice converts a singular boundary-layer problem in the
continuum into a regular perturbation problem. However, the continuum limit of
the discrete problem is extremely nontrivial and is not completely understood. This
article examines two singular boundary-layer problems taken from mathematical
physics, the instanton problem and the Blasius equation, and in each case examines
two strategies, Pade´ resummation and variational perturbation theory, to recover the
solution to the continuum problem from the solution to the associated discrete
problem. Both resummation procedures produce good and interesting results for the
two cases, but the results still deviate from the exact solutions. To understand the
discrepancy a comprehensive large-order behavior analysis of the strong-coupling
lattice expansions for each of the two problems is done. ©2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1490408#

I. INTRODUCTION

In this article we report some major advances in understanding~albeit not a complete solution
to! a difficult general class of problems in mathematical physics. We consider here the conv
of a continuum problem into a discrete problem by the insertion of a lattice spacing paramea,
the solution of the continuum problem on the lattice, and the subsequent extremely subtl
tinuum limit a→0.

Almost every continuum physics problem is singular as a function of the parameters
problem. As a result, only rarely does the perturbation series take the form of a Taylor
having a nonzero radius of convergence. As an elementary example, consider the algebra
nomial equation

ex31x2150. ~1!

This problem is singular in the limite→0. In this limit, the degree of the polynomial changes fro
three to one and thus two of the roots abruptly disappear. As a consequence, a perturbative
to this problem@expressing the rootsx(e) as series in powers ofe# yields expressions that ar
more complicated than Taylor series.

A more elaborate example of a singular problem is the time-independent Schro¨dinger equation

2
\2

2M
¹2C~x!1@V~x!2E#C~x!50. ~2!

a!Electronic mail: cmb@howdy.wustl.edu
b!Electronic mail: pelster@physik.fu-berlin.de
c!Electronic mail: weisbach@physik.fu-berlin.de
42020022-2488/2002/43(8)/4202/19/$19.00 © 2002 American Institute of Physics
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In the classical limit\→0 this differential equation abruptly becomes analgebraicequation, and
thus the general solution no longer contains any arbitrary constants or functions and, as a r
can no longer satisfy the initial conditions. We know that for small\ the solution is not Taylor-like
but rather is a singular exponential in WKB form:

C~x!;eS(x)/\ ~\→0!. ~3!

In the study of quantum field theory, it is well known that infinities appear in the perturba
expansion in powers of the coupling constant. There are two kinds of infinities. The first
which is due to the pointlike nature of the interaction, requires the use of renormalization
second kind, which is due to singularities in the complex-coupling-constant plane, force
perturbation series to have a zero radius of convergence.

A quantum field theory can be regulated by introducing a lattice spacing. The resulting
crete theory is completely finite and can be studied numerically by using various kinds of nu
cal methods such as Monte Carlo integration. However, the underlying singular nature
continuum quantum field theory resurfaces in the continuum limita→0. The introduction of a
lattice spacing and the singular nature of the continuum limit was investigated in a series of
by Benderet al.1–9

A quantum field theory is just one instance in which discretization regulates and eliminat
singular nature of the problem. It is also known that introducing a lattice spacing conve
boundary-layer problem, which is a singular perturbation problem, into a regular perturb
problem.10–12 A boundary-layer problemis a differential-equation-boundary-value problem
which the highest derivative of the differential equation is multiplied by a small paramete.
Consider as an example

ey9~x!1a~x!y8~x!1b~x!y~x!5c~x!, ~4!

where the boundary conditions on the functiony(x) typically have a form such as

y~0!5A, y~1!5B. ~5!

This boundary-value problem is singular because in the limite→0 one of the solutions abruptly
disappears and the limiting solution is not able to satisfy the two boundary conditions in~5!. The
usual way to solve the boundary-value problem~4! and ~5! is to decompose the interval 0<x
<1 into two regions, anouter region, in which the solution varies slowly as a function ofx, and
an inner regionor boundary-layer region, in which the solution varies rapidly as a function ofx.
The boundary-layer region is a narrow region whose thickness is typically of ordere or some
power ofe.13

An important example of a boundary-layer problem is the instanton equation

e2f 9~x!1 f ~x!2 f 3~x!50, ~6!

with the associated boundary conditions

f ~0!50, f ~`!51. ~7!

The exact solution to this instanton problem is

f ~x!5tanh
x

e&
. ~8!

Note that the solutionf (x) varies rapidly at the originx50 over a region of thicknesse; this is the
boundary-layer region. The solution varies slowly~it is approximately 1! outside of this region.
The outer region consists of thosex not near the origin.
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A novel way to solve the instanton problem is to discretize it by introducing a lattice. On
lattice, the differential equation becomes a difference equation that can easily be solved pe
tively. In the continuum limit, as the lattice spacing vanishes, we then obtain a strong-cou
expansion that must be evaluated by means of a Pade´ or a variational perturbation theory metho
To illustrate the approach our objective will be to calculate the slope of the instanton atx50,
which from ~8! has the value

f 8~0!5
1

e&
. ~9!

We introduce a lattice with lattice spacinga so that the real axis is discretized in steps
width a. The spatial coordinate readsxn5na, where the functionf (x) assumes the valuef n

5 f (xn). On the lattice the second spatial derivative in~6! becomes

f 9~x!→ f n1122 f n1 f n21

a2 . ~10!

Thus, from the instanton equation~6! we obtain the difference equation

e2

a2 ~ f n1122 f n1 f n21!1 f n2 f n
350, ~11!

where the boundary values follow from~7!:

f 050, f `51. ~12!

The natural expansion parameter now ise2/a2, to which we assign the named:

d[
e2

a2 . ~13!

The singular perturbation problem in the continuum@whose solutionf (x) in ~8! does not posses
a Taylor expansion in powers ofe# has become aregular perturbation problem. That is, we ca
now expand the solutionf n to the difference equation~11! as aTaylor seriesin powers ofd:

f n5an,01an,1d1an,2d
21¯ . ~14!

We impose the boundary values~12! by requiring that

a0,0[0 and an,0[1 ~n>1!. ~15!

Inserting theansatz~14! into the difference equation~11!, we get the recursion relation10

an, j5
1

2
an11,j 211an, j 211

1

2
an21,j 212 (

k51

j 21

an,kan, j 2k2
1

2 (
k51

j 21

(
l 51

j 2k

an,kan,lan, j 2k2 l . ~16!

For the first derivative at the originx50 this leads to the series

f 8~0!5 lim
a→0

f 12 f 0

a
5 lim

a→0

f 1

a
5 lim

a→0

1

a (
j 50

`

a1,jd
j5 lim

a→0

1

a S 12
d

2
1

d2

8
1

11d4

128
1¯ D . ~17!

We have calculated the coefficientsa1,j with the help of Maple V R7 up to orderj 5200. The
first 20 numbers are given in Table I. A complete list of these coefficients can be found o
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webpage of the author FW.14 Note that the expansion parameterd in ~17! is not small but rather
tends to infinity in the limit as the lattice spacinga approaches zero. Using the parameterd defined
in ~13! we rewrite the series~17! as

f 8~0!5
1

e
lim

d→`

AdS 12
d

2
1

d2

8
1

11d4

128
1¯ D . ~18!

Taking into account the exact result~9!, we obtain the identity

1

&
5 lim

d→`

AdS 12
d

2
1

d2

8
1

11d4

128
1¯ D . ~19!

The purpose of this article is to examine equations like~19!. This equation shows that th
singular nature of the instanton problem has resurfaced in the continuum limitd→` of the lattice
expansion. The expression on the right side of~19! should have the value 1/&
50.707 106 7812..., but it is not at allobvious why this is so, and the objective of this article
to analyze this difficult and subtle limit.

This article is organized as follows. In Sec. II we use Pade´ techniques to perform the limit in
~19!. We will see that while the results are not bad~the accuracy is about 1%!, better methods are
needed. We perform the Pade´ analysis to much higher order than has ever been done before
we discover a new qualitative behavior that has not yet been observed. In Sec. III we try t
of the variational perturbation theory techniques introduced by Kleinert to perform the su
~19!. These techniques increase the accuracy by a factor of about 10, but they still do not g
exact result. While variational perturbation theory works very well in summing the str
coupling series for the ground-state energy of the anharmonic oscillator,15 and for the critical
exponents of second-order phase transitions,16 we show that the series in~19! is at the very edge
of validity for Kleinert’s methods. We then examine the large-order behavior of the terms o

TABLE I. The first 20 weak-coupling coefficientsa1,j for the instanton
problem~15! and ~16!.

j a1,j j a1,j

1
2

1

8

11
2

2887747

262144
2 1

8

12 99392471

4194304
3 0 13

2
215798295

4194304
4 11

128

14 3781670831

33554432
5

2
23

128

15
2

8349041385

33554432
6 295

1024

16 1188129285795

2147483648
7

2
589

1024

17
2

2659104132291

2147483648
8 39203

32768

18 47890245452569

17179869184
9

2
80723

32786

19
2

108383753179167

17179869184
10 1354949

262144

20 39433620359113981

274877906944
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sum in ~19! in Sec. IV. We show definitively that the Taylor expansion has a nonzero radiu
convergence and, thus, on the lattice, the instanton problem is a regular perturbation prob

In Sec. V we turn to a more difficult singular perturbation problem, namely, the Bla
equation of fluid dynamics. We use the same approach as for the instanton equation. In
VI–VIII we study the summation of the lattice perturbation expansion using Pade´ and variational
methods and we examine the large-order behavior of the lattice perturbation series. We fin
Padémethods give good but not excellent results and that variational perturbation theory is
than Pade´. Again, the series we need to evaluate in the continuum limit lies at the very ed
validity for Kleinert’s methods. We also find that, unlike the lattice perturbation expansion c
ficients for the instanton problem, the sign pattern of the Blasius weak-coupling series do
alternate. Rather, it is governed by a cosine function with a frequency different fromp.

II. PADÉ RESUMMATION FOR THE INSTANTON EQUATION

In this section we examine what happens if we attempt to evaluate the right side of~19! by
using Pade´ techniques. Pade´ resummation has already been applied to the instanton problem
50th order.10 However, we have been able to perform the procedures to much higher order
have discovered that remarkable and unsuspected new phenomena occur just a few orders
what has been computed.

The procedure is as follows. Consider the formal Frobenius series

S~d!5dM (
n50

`

andn, ~20!

whereM is a non-negative number. Raising this series to the power 1/M , inverting the right hand
side and reexpanding, we obtain

S1/M~d!5
d

(n50
` bndn , ~21!

with new expansion coefficientsbn . Assuming we know the firstN11 terms of the original
power series in~20!, we raise Eq.~21! to the powerN. We then truncate the summation atn
5N, finally getting

SN/M~d!5
dN

(n50
N cn

(N)dn , ~22!

where we have reexpanded and obtained new expansion coefficientscn . In the limit d→`, only
the Nth term in the denominator survives and we obtain the approximant

~SN!N/M[ lim
d→`

SN/M~d!5 lim
d→`

dN

(n50
N cn

(N)dn 5
1

cN
(N) . ~23!

The approximantSN5(cN
(N))2M /N is the zeroth-order survivor of the limiting process. Als

taking into account the first-order correction we observe that, as in the case of variational p
bation theory~see Sec. III!, there is an approach to scaling. In the limitd→` the Frobenius series
S(d) in Eq. ~20! converges to a constantC. Additionally, the approach to scaling, following from
the Pade´ resummation~23!, reveals how fast it converges:

S~d!;C1C8d21 ~d→`!. ~24!

We now apply this procedure to the boundary-layer problem~11!. @Recall that the weak-
coupling coefficients for the first 20 coefficientsa1,j obtained from~16! are shown in Table I and
that more can be found in Ref. 14.# Resumming the series~14! for n51,
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f 15(
j 50

N

a1,jd
j , ~25!

according to the Pade´ procedure~23! with M5 1
2 as follows from~19! and evaluating the approxi

mantsSN5(cN
(N))2M /N, we get the numbers listed in Table II.

Compared with the numerical solution 1/&'0.717 106 781 2, this strong-coupling expansi
seems to converge quite well. However, when we go to higher orders, we find that the nu
drop below the exact solution and assume a minimum atN524, where the approximant has th
valueS24'0.701 983 19. The approximants then rise again, cross the exact solution atN541 and
become complex atN552. The appearance of complex numbers is a consequence of takin
Nth root in Eq.~23! when the coefficientscN

(N) become negative. This phenomenon has not b
observed before in the course of using this Pade´ procedure. The imaginary part then becom
smaller and smaller asN rises. Abruptly, atN568, the approximants become real again. As o
can see from the spikes in Fig. 1 this pattern is repeated for higherN. Note that the figure only
shows the real part of the Pade´ approximantSN .

Apparently, the sequence of approximantsSN does not converge. The singular nature of t
instanton equation has the effect of making the Pade´ approximants behave like the partial sums
a divergent~asymptotic! series; at first the partial sums appear to converge to a limit, and then
veer off. In the case of the Pade´’s shown in Fig. 1 the approximants approach to within 1% of

TABLE II. The first 20 Pade´ approximants for the solution to the instanton
problem~19!.

N SN N SN

1 1 11 0.709 998 411
2 0.840 896 415 12 0.708 235 422
3 0.781 934 407 13 0.706 789 935
4 0.757 237 797 14 0.705 659 505
5 0.740 759 114 15 0.704 734 605
6 0.731 210 449 16 0.704 006 945
7 0.723 927 185 17 0.703 419 862
8 0.719 045 188 18 0.702 964 717
9 0.715 146 335 19 0.702 610 220
10 0.712 308 458 20 0.702 349 024

FIG. 1. The real part of the Pade´ approximantsSN up to 200th order. Note that the approximants do not converge to
exact solution, which is represented by the horizontal solid line. The phases where the approximants become com
marked by spikes.
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correct limit before veering off. It appears that another more powerful resummation techniq
needed to treat the expression in~19!. In the next section we apply a technique due to Kleine

III. VARIATIONAL PERTURBATION THEORY FOR THE INSTANTON EQUATION

Kleinert has developed a technique in the context of the ground-state energy of the
monic oscillator15 and of critical exponents of second-order phase transitions16 for summing
divergent perturbation series. This technique, known as Kleinert’s square-root trick, is des
below.

Consider a weak-coupling series

f N~d!5 (
n50

N

f ndn, ~26!

which is truncated at orderN. Rewrite this weak-coupling expansion by introducing an auxili
scaling parameterk:15,16

f N~d!5kp(
n50

N

f nS d

kqD nU
k51

, ~27!

which is set tok51 later. The square-root trick now reads

k→AK21k22K25KA11dr , ~28!

whereK is a ‘‘dummy’’ scaling parameter and

r 5
1

d S k2

K2 21D . ~29!

In the case of the anharmonic oscillator,K is the frequencyV of a trial harmonic oscillator.15

Substituting~28! into the truncated weak-coupling series~27!, we obtain

f N~d!5 (
n50

N

f nKp2nq~11dr !(p2nq)/2dn. ~30!

The factor (11dr )a with a[(p2nq)/2 is expanded by means of generalized binomials:

~11dr !a5 (
k50

N2n S a
k D ~dr !kO~d N2n!5 (

k50

N2n S a
k D S 1

K2 21D k

O~d N2n!, ~31!

where we have used~29! and finally have setk[1. The binomial is defined as

S a
k D[

G~a11!

G~k11!G~a2k11!
. ~32!

Thus the functionf N(d) becomesK dependent and reduces to

f N~d,K !5 (
n50

N F (
k50

N2n S 1
2 ~p2nq!

k
D S 1

K2 21D k

Kp2nqG f ndn. ~33!

To first order this expression reduces to
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f 1~d,K !5S 12
p

2D f 0Kp1
p

2
f 0Kp221 f 1dKp2q. ~34!

Applying the principle of least sensitivity17 leaves us with

] f 1~d,K !

]K
;pS 12

p

2D f 01
p~p22!

2
f 0K221~p2q! f 1dK2q[0. ~35!

Next, making the strong-coupling ansatz

K (1)~d!5d1/q~k0
(1)1k1

(1)d22/q1¯ !, ~36!

we obtain the following equation from~35!:

pS 12
p

2D f 01
p~p22!

2
f 0~k0

(1)d1/q!221~p2q! f 1d~d1/qk0
(1)!2q50. ~37!

The second term is a subleading contribution in the limit as the couplingd goes to infinity which
we can neglect. Solving fork0

(1) we then get

k0
(1)5S 2 f 1

f 0

p2q

p~p22! D
1/q

. ~38!

Assuming that the ansatz~36! for the variational parameterK(d) also holds for higher orders w
obtain from the functionf N(d,K) in ~33!

f N~d!5dp/q@b0
(N)~k0

(N)!1b1
(N)~k0

(N) ,k1
(N)!d22/q1¯#, ~39!

where the leading strong-coupling coefficientb0
(N)(k0

(N)) is given by

b0
(N)~k0

(N)!5 (
n50

N

(
k50

N2n S 1
2 ~p2nq!

k
D ~21!kf n~k0

(N)!p2nq. ~40!

The inner sum can be further simplified, using

(
k50

m

~21!kS a
k D5~21!mS a21

m D . ~41!

Thus the strong-coupling coefficient~40! reduces to

b0
(N)~k0

(N)!5 (
n50

N

~21!N2nS 1
2 ~p2nq!21

N2n
D f n~k0

(N)!p2nq. ~42!

So, looking at Eq.~39! we see that the fractionp/q tells us the leading power behavior ind and
2/q indicates the approach to scaling:

(
j 50

`

f jd
j;dp/q~b01b1d22/q1¯ ! ~d→`!. ~43!
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For the instanton equation we can determine the numbersp andq by re-obtaining the differ-
ential equation~6! from the difference equation~11!. The positive real axis is discretized in ste
of width a, so that we letxn[na. The power series expansion for the discrete functionf n

5 f (xn) has the form

f n615 f ~xn!6 f 8~xn!a1 1
2 f 9~xn!a26 1

6 f-~xn!a31 1
24 f-8~xn!a46¯ . ~44!

Thus, the numerator of the second derivative~10! becomes

f n1122 f n1 f n215 f n9a
21 1

12 f n-8a41¯ , ~45!

so the zeroth-, first-, and third-order contributions cancel. Translating the lattice result forf n back
to the continuous functionf (xn)5 f n , the difference equation~11! reads

e2@ f 9~x!1 1
12 f-8~x!a21¯#1 f ~x!2 f 3~x!50. ~46!

Writing out the power series

f ~x!5 f 0~x!1a2f 1~x!1a4f 2~x!1¯ , ~47!

and comparing even powers ofa, we get from Eq.~46! for a0

e2f 09~x!1 f 0~x!2 f 0
3~x!50, ~48!

which is just the original instanton equation~6!. For a2 we have

e2f 19~x!1 f 1~x!~123 f 0
2~x!!52 1

12e2f 0-8~x!. ~49!

The boundary values read

f 0~0!50, f 0~`!51, ~50!

and

f 1~0!5 f 1~`!50, ~51!

respectively. The solution to Eq.~48! with the boundary values~50! is of course

f 0~x!5tanh
x

e&
. ~52!

So, finally from~47! we get for the derivative at the originx50:

f 8~0!5 f 08~0!1
e2

d
f 18~0!1¯5

1

e&
1

e2

d
f 18~0!1¯ . ~53!

Comparing Eq.~53! with ~18!, we resum the weak-coupling series in~18! as

12
d

2
1

d2

8
1¯5d21/2F 1

&
1e3f 18~0!d211¯G . ~54!

Also, comparing with~43!, we conclude that the leading power and the approach to scaling
given by
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p

q
52

1

2
,

2

q
51, ~55!

respectively. So we identifyp521 andq52.
We now evaluate the leading strong-coupling coefficientb0 from ~43! according to~42! with

p521 andq52. To that end we substitute our 200 weak-coupling coefficients from Ref. 14
the formula using a computer algebra program. We are now confronted with the following
lem: The principle of least sensitivity cannot be unambiguously applied. Optimizing with re
to extrema, inflection points, or higher derivatives does yield converging results for the st
coupling limit. However, all these strong-coupling series converge to the wrong values.

There is one particularly unpleasant case: The second derivative with respect tok0
(N) for the

largestk0
(N) where this derivative exists~see Fig. 2! gives a convergent strong-coupling series. T

numbers come extremely close to 1/& as one can see from the 20 numbers in Table III. The 20
leading strong-coupling coefficient isb0

(200)50.707 417. . . . However, a Richardson
extrapolation13 based on the first 200 orders then unfortunately shows that variational perturb
theory produces a value slightly smaller than 1/&. The first six orders of Richardson extrapol

FIG. 2. The functionb0
(N)(k0

(N)) from ~42! for N5200 ~solid line! and its second derivative with respect tok 0
(N) ~dotted

line!. The upper horizontal line equals 1/&, the correct limiting value of the instanton problem. All extrema ofb0
(N) are far

from this value. Only the inflection point on the right-hand side comes close. The value fork0
(N) , for which the second

derivative vanishes, isk0
(N)518.425 10. Substituting that number into the functionb0

(N)(k0
(N)), we obtain in the 200th order

b0
(200)50.707 417. The corresponding Richardson extrapolations can be found in Table IV.

TABLE III. The last 20 variational strong-coupling coefficientsb0
(N) from

Eq. ~42!.

N b0
(N) N b0

(N)

180 0.707 530 492 190 0.707 471 024
181 0.707 524 250 191 0.707 465 419
182 0.707 518 076 192 0.707 459 872
183 0.707 511 970 193 0.707 454 384
184 0.707 505 930 194 0.707 448 952
185 0.707 499 955 195 0.707 443 575
186 0.707 494 044 196 0.707 438 253
187 0.707 488 197 197 0.707 432 986
188 0.707 482 412 198 0.707 427 771
189 0.707 476 687 199 0.707 422 609
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tions are presented in Table IV. Hence, the strong-coupling seriesb0
(N) does converge, but i

converges to the wrong number, only one part per 1000 away from the true value:

f 1
(VPT)' lim

d→`
(
n50

200

a1,ndn5b0
(`)50.706 399 832 085 88 4560.000 000 000 000 000 1 ~56!

compared withf 8(0)51/&50.707 106 7812 . . . . Thedeviation is just 0.099%, but 1/& can
unfortunately be ruled out.

Given thatp521 andq52, the failure of variational perturbation theory is not surprisin

According to Ref. 16 the fraction 2/q must lie within the open interval (1
2,1). Otherwise, one

cannot prove that variational perturbation theory converges. Thus,this problem lies exactly on the
upper boundary of the region in which the summation method is known to work.

We can understand the upper edge of the range of the parameter 2/q that describes the
approach to scaling by looking at the standard deviation from the actual limiting value. It
out16 that the deviation in the limit as the perturbative orderN goes to infinity assumes the shap

Ub0
(N)2b0

b0
U;exp~2CN122/q! ~N→`!, ~57!

whereC is a constant. So, to obtain exponential convergence for the sequence formed by thb0
(N) ,

we need 122/q.0. In other words, the approach to scaling 2/q is bounded and it must be smalle
than one. The lower edge is more subtle and is discussed in Ref. 16.

In conclusion, we have applied variational perturbation theory to a case that lies at the
edge of its applicability. We see that variational perturbation theory gives better results by a
factor of 10 than the Pade´ approximations examined in Sec. II. However, we have not yet fo
a systematic method for resumming~19! that enables us to perform the continuum limit of t
discrete lattice theory. Therefore, we now lay the foundation for further investigations by an
ing the large-order behavior of the instanton series.

IV. LARGE-ORDER BEHAVIOR FOR THE INSTANTON EQUATION

It can be seen from the numerical results in Ref. 14 that the instanton weak-coupling se
of Borel type. That is, it exhibits an alternating sign pattern. From the ratio test we can see th
coefficientsan, j do not grow factorially fast. The large-order behavior ofan, j has the general form

an, j;~21!n1 j 11Kn
j j AnBn ~ j→`!. ~58!

The constantAn can be obtained by evaluating the limit

An5 lim
j→`

log@an, j 12 an, j /~an, j 11!2#

log@ j ~ j 12!/~ j 11!2#
, ~59!

TABLE IV. Six orders of Richardson extrapolations for the strong-coupling
coefficientb0

(N)(k0
(N)) up toN5200 for the instanton problem. The last value

is only 0.099% away from the correct limiting value 1/&
50.707 106 7812 . . . .

Order Value for b0
(N) Convergence

1 0.706 400 49 decreasing
2 0.706 399 832 00 increasing
3 0.706 399 832 082 increasing
4 0.706 399 832 085 865 8 increasing
5 0.706 399 832 085 884 411 increasing
6 0.706 399 832 085 884 464 98 increasing
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and the reciprocal of the radius of convergence is

Kn52 lim
j→`

an, j 11

an, j
S j

j 11D An

. ~60!

Also, the overall factorBn is determined from

Bn5 lim
j→`

uan, j u
Kn

j j An
. ~61!

Using the 200 weak-coupling coefficients, we find that the exponentAn and the reciprocal
radius of convergenceKn are independent ofn. The value ofK252.466 829 06 coincides with
K152.466 829 06 for all significant digits. The same is true forA1521.500 000 andA25
21.500 000. Thus, it appears that we may omit the subscriptsn for Kn andAn . In contrast, the
data suggest thatBn strongly depends onn. Bn is the numerical value associated with the larg
uncertainty. In fact, Eq.~61! suggests that small deviations inK andA lead to dramatic change
in the value ofBn . We calculatedA, K, B1 , andB2 up to 200th order with the help of Maple V
R7. We then extrapolated these 200 orders to infinity using Richardson extrapolation.13 We ob-
tained

A521.500 00060.000 001,

K52.466 829 0660.000 000 1,
~62!

B150.017160.0001,

B250.119060.0001.

Detailed numerical results for the first six Richardson extrapolations for the exponentA, the
inverse radius of convergenceK, and the overall factorsB1 and B2 can be found in Tables

TABLE V. Six orders of Richardson extrapolations for the exponentA of
the large-order instanton weak-coupling coefficients, based on the first 200

weak-coupling coefficients. The valueA52
3
2 is quite plausible.

Order Value forA Convergence

1 21.4998 increasing
2 21.500 017 decreasing
3 21.500 001 1 decreasing
4 21.499 998 74 increasing
5 21.500 000 4 decreasing
6 21.499 999 893 increasing

TABLE VI. Six orders of Richardson extrapolations for the inverse radius of
convergenceK of the large-order instanton weak-coupling coefficients,
based on the first 200 weak-coupling coefficients under the assumption that

A52
3
2.

Order Value forK Convergence

1 2.466 92 decreasing
2 2.466 828 3 increasing
3 2.466 829 11 decreasing
4 2.466 829 065 decreasing
5 2.466 829 059 7 increasing
6 2.466 829 063 5 decreasing
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V–VIII. The calculation ofB1 is extremely delicate; changing the inverse radius of converge
in the sixth decimal place influences the third significant figure ofB1 . The same is true ofB2 .

Unfortunately, there is no way to derive these values by applying asymptotic analysis
recursion relation~16!. The problem is that the double summation in this equation includes s
j , so we cannot letj go to infinity and use the large-order behavior~58!. Substituting theansatz
~58! into Eq. ~16! and taking the limit leads to contradictory results. Forn51 we get

K j AB15
1

2
~ j 21!AB21~ j 21!AB12

3

2
B1

2K (
k51

j 21

kA~ j 2k!A2
1

2
B1

3K (
k51

j 21

(
l 51

j 2k

kAl A~ j 2k2 l !A.

~63!

Pulling out some factors and lettingx[k/ j , we obtain for the first summation

lim
j→`

(
k51

j S k

j D
AS 12

k

j D
A

5E
0

1

dx @x~12x!#A5
G2~A11!

G~2A12!
, ~64!

if and only if A.21. ForA,21 which is strongly favored by the data we obtain

E
0

1

dx @x~12x!#A52z~2A!. ~65!

The double summation reduces to

lim
j→`

(
k51

j

(
l 51

j 2k
kAl A

j 2A S 12
k

j
2

l

j D5E
0

1

dx E
0

1

dy @xy~12x2y!#A5
G3~A11!

G~3A13!
, ~66!

wherey[ l / j andA.21. ForA,21 the result is

TABLE VII. Six orders of Richardson extrapolations for the overall factor
B1 of the large-order instanton weak-coupling coefficients, based on the first
200 weak-coupling coefficients under the assumption thatK52.448 290 6

andA52
3
2. The value ofB1 strongly depends on the numerical values for

A and K. ChangingK in the sixth decimal place influences the third sig-
nificant figure ofB1 . Also, all the Richardson extrapolations are increasing,
so, strictly speaking, we only have a lower boundary forB1 . Thus, the
accuracy ofB1 may not be very good.

Order Value forB1 Convergence

1 0.017 083 7 increasing
2 0.017 086 4 increasing
3 0.017 087 increasing
4 0.017 089 3 increasing
5 0.017 090 8 increasing
6 0.017 092 2 increasing

TABLE VIII. Six orders of Richardson extrapolations for the overall factor
B2 of the large-order instanton weak-coupling coefficients based on the first
200 weak-coupling coefficients and the same assumptions as in the case of
B1 ~see Table VII!. The value ofB2 depends strongly onA andK.

Order Value forB2 Convergence

1 0.119 069 increasing
2 0.119 083 increasing
3 0.119 093 increasing
4 0.119 054 095 increasing
5 0.119 054 125 increasing
6 0.119 054 146 increasing
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E
0

1

dx E
0

1

dy @xy~12x2y!#A53z2~2A!. ~67!

Substituting the results in~65! and~67! into ~63! leads to a contradiction: The inverse radi
of convergence then turns out to be

K5
11 B2/2B1

113z~ 3
2!B11 3

2 z2~ 3
2!B1

2
, ~68!

which would imply that, givenB150.0171 andB250.1190, the value ofK would be

K53.940. ~69!

This result can be ruled out because of the numerical result~62!. Also, ~68! does not contain the
exponentA because all the factorsj A in ~63! cancel. SoA cannot be determined analytically usin
this asymptotic analysis.

V. BOUNDARY LAYERS ON THE LATTICE—BLASIUS EQUATION

The Blasius equation18 arises in the study of fluid dynamics. It is a special limiting case of
Navier–Stokes equation and determines the flow of an incompressible fluid across a semi-
flat plate. The equation reads

2ey-~x!1y~x!y9~x!50. ~70!

Assuming that the tangential velocityy8(x) at the outer limit of the boundary layer is constant, t
boundary conditions read19

y~0!5y8~0!50, y8~`!51. ~71!

Our objective here is to calculate the second derivativey9(0), which represents the stress o
the plate. We discretize the Blasius equation~70! by introducing a lattice spacinga:

2d~ f n1123 f n13 f n212 f n22!1 f n~ f n1122 f n1 f n21!50, ~72!

where we definef n[y(na)/a andd[e/a2. The boundary conditions~71! now read

f 05 f 2150, f n;n ~n→`!. ~73!

Expandingf n as a series in powers ofd as in Eq.~14!, we obtain the recursion relation10

an11,j22an, j1an21,j52
2

n
~an11,j 2123an, j 2113an21,j 212an22,j 21!

2
1

n (
k51

j 21

an,k~an11,j 2k22an, j 2k1an21,j 2k!. ~74!

The boundary values are

an,05n ~n>0!,

a21,050, ~75!

a2n21,j5an, j ~n>0!.
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Equation~74! can be solved order by order by using a computer algebra program. Table IX s
the first 20 weak-coupling coefficientsa1,j . All coefficients up to the 300th order can be foun
Ref. 20.

VI. PADÉ RESUMMATION FOR THE BLASIUS EQUATION

We now resum the weak-coupling coefficients using the Pade´ method~23! with M5 1
2. This

value ofM will be derived in Sec. VII in Eq.~82!. The exact solution10 to the Blasius equation
~70!, obtained numerically up to five digits, isy9(0)50.332 06. Unfortunately, the sequenc
formed by the approximantsSN appears to converge, but not to the correct value. Accordin
Table X the sequence becomes very flat and Richardson extrapolation13 shows that theSN ap-

TABLE IX. The first 20 weak-coupling coefficients for the Blasius recur-
sion relation~74! and~75!. Observe that the coefficientsa1,j are not of Borel
type ~they do not alternate in sign!. A cosine function with a frequency
different fromp governs the sign pattern~see Sec. VIII!.

j a1,j j a1,j

1 22 11 30868632383

5457375
2 2 12 6325029622

637875
3 8

3

13
2

487693745019181

13408770375
4 26 14

2
4774319527974167

37819608750
5

2
184

15

15 430321251088745734

2212447111875
6 136

9

16 796235344548876790517

603998061541875
7 11062

105

17
2

2249988054506764174584049

6776858250499837500
8

2
8162

225

18
2

178060537619150189817796

14237097164915625
9

2
10557416

14175

19
2

13224896152219729667498038639

1301909768346024337500
10

2
57628622

99225

20 121756993154067534451733120837029

1153217968487557347375000

TABLE X. The first 20 Pade´ approximants for the solution to the Blasius
equation~70!. The sequence formed by theSN converges extremely slowly.

N SN N SN

1 0.5 11 0.357 463 212 1
2 0.420 448 207 6 12 0.356 332 665 1
3 0.394 820 183 0 13 0.355 384 804 8
4 0.381 944 373 2 14 0.354 579 594 4
5 0.374 206 230 9 15 0.353 888 284 2
6 0.369 050 481 1 16 0.353 289 150 9
7 0.365 377 967 3 17 0.352 765 581 3
8 0.362 635 906 0 18 0.352 304 658 8
9 0.360 515 591 5 19 0.351 896 192 9
10 0.358 830 970 7 20 0.351 532 039 9
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proach the wrong limiting value~see Table XI!. A third-order Richardson givesS`50.3430, based
on the first 70 weak-coupling coefficients. This value is significantly higher than the correct
y9(0)50.33206, the deviation is 3.3%.

The failure of the Pade´ resummation is not surprising because the Pade´ method assumes th
approach to scalingd21 according to~24!. However, in the case of the Blasius equation t
approach to scaling isd21/2, as we will see in Eq.~82! in the next section.

VII. VARIATIONAL PERTURBATION THEORY FOR THE BLASIUS EQUATION

Variational perturbation theory for the Blasius equation fails to converge to the correct an
in the same way as for the instanton problem. We determined the leading strong-couplin
~42! up to 200th order and again it was impossible to find extrema, inflection points, or h
derivatives that yield the correct result. Tables XII and XIII show the last 20 strong-cou
coefficientsb0

(N) and six orders of Richardson extrapolation. By determining the values ofp and
q we show why variational perturbation is likely to fail for this problem.

Consider again the Taylor expansions forf n61 in ~44! together with the Taylor series fo
f n225 f (xn22a), namely,

f n225 f ~xn!22 f 8~xn!a12 f 9~xn!a22 4
3 f-~xn!a31 2

3 f-8~xn!a46¯ . ~76!

Inserting these expressions into the difference equation for the Blasius problem~72! and translat-
ing back to the continuous functionf (xn)5 f n , we get

2e~ f-~x!a2 1
2 f-8~x!a21¯ !1 f ~x!~ f 9~x!a21 1

2 f-8~x!a41¯ !50. ~77!

Next we transform back to the functiony(x)5a f(x) and assume the Taylor series

y~x!5y0~x!1ay1~x!1a2y2~x!1¯ . ~78!

To zeroth order ina we obtain

TABLE XI. Three orders of Richardson extrapolations for the Blasius equa-
tion ~70!, based on the first 70 Pade´ approximantsSN .

Order Value ofy9(0) Convergence

1 0.3445 decreasing
2 0.3436 decreasing
3 0.3430 oscillating

TABLE XII. The last 20 variational strong-coupling coefficientsb0
(N) for the Blasius equation. The very last coefficient

b0
(200)50.336 959 312 377 13, as opposed to the correct valuey9(0)50.33206.

N b0
(N) N b0

(N)

180 0.336 960 177 930 94 190 0.336 959 711 196 46
181 0.336 960 127 770 85 191 0.336 959 668 491 39
182 0.336 960 078 430 82 192 0.336 959 626 448 43
183 0.336 960 029 893 08 193 0.336 959 585 053 96
184 0.336 959 982 140 34 194 0.336 959 544 294 71
185 0.336 959 935 155 75 195 0.336 959 504 157 74
186 0.336 959 888 922 92 196 0.336 959 464 630 46
187 0.336 959 843 425 91 197 0.336 959 425 700 58
188 0.336 959 798 649 18 198 0.336 959 387 356 12
189 0.336 959 754 577 60 199 0.336 959 349 585 40
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2ey0-~x!1y0~x!y09~x!50, ~79!

which is just the Blasius equation~70!. The small parametera, which is the lattice spacing, relate
e andd by a5Ae/d. Thus, if we evaluate the Taylor series~78! for the second derivative at th
origin, we see that

y9~0!5y09~0!1ay19~0!1¯5
0.332 06

Ae
1Ae

d
y19~0!1¯ . ~80!

Comparing this series to the original weak-coupling series

y9~0!5Ad

e
~122d12d21¯ !, ~81!

we can now determine the leading powerp/q and the approach to scaling 2/q:

122d12d21¯5d21/2~0.332 061d21/2ey19~0!1¯ !, ~82!

so we obtainp522 andq54.
Again we find that the approach to scaling 2/q5 1

2 lies just on the boundary of the ope
interval ~1

2, 1!, for which the proof of convergence16 holds. This situation here is the opposite
the instanton case in that it sits at thelower boundary of the open interval in which variation
perturbation theory works.

VIII. LARGE-ORDER BEHAVIOR FOR THE BLASIUS EQUATION

The Blasius equation exhibits a large-order behavior which is a more subtle than fo
instanton problem~58!. The Blasius weak-coupling coefficients are not of Borel type; that is,
sign pattern is not alternating. Rather, the sign structure is governed by a cosine function
frequency that is significantly different fromp. Remarkably, it turns out that a pure cosine cos(an)
cannot reproduce all signs correctly. Up to 300th order the sign structure given by cos(an) is
broken twice: The signs atn562 and atn5212 are not correct if we optimize with respect toa.
So we must consider an additional phase shift cos(an1b). The parameterb turns out to be slightly
smaller thanp, but it reproduces all 300 signs correctly.

In order to determine the numerical values ofa andb we define

f ~a,b![ (
n51

N
cos~an1b!

ucos~an1b!u
a1,n

ua1,nu
. ~83!

The sum ends atN5300 because this is as high as we can calculate using Maple; we kno
first 300 weak-coupling coefficientsa1,j . For the correct values ofa andb the functionf (a,b)

TABLE XIII. Six orders of Richardson extrapolations for the strong-
coupling coefficientb0

(N)(k0
(N)) up to N5200 for the Blasius equation. The

last value is 1.5% away from the correct limiting valuey9(0)50.33206.

Order Value for b0
(N) Convergence

1 0.336 951 8 increasing
2 0.336 955 563 increasing
3 0.336 955 600 539 increasing
4 0.336 955 600 880 3 increasing
5 0.336 955 600 883 462 increasing
6 0.336 955 600 883 492 32 increasing
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must be equal to 300. We then plot the functionf (a,b) over thea–b plane and search for peak
A careful study of the peaks yields values fora andb which allow the functionf (a,b) to assume
its maximum at 300. These numbers are given in Table XIV.

The large-order behavior of the Blasius weak-coupling coefficients~unlike the large-order
behavior of the instanton coefficients! has an additional overall factor cos(an1b), and we can now
see that the remaining structure differs from the structure of the instanton weak-coupling c
cients. Dividing by the cosine, we observe that the coefficients

aj8[
a1,j

cos~a j1b!
~84!

grow factorially fast. Thus, we also divide byj !:

bj[
a1,j

cos~a j1b! j !
. ~85!

The coefficientsbj are unstable under a ratio test. That is, the ratiobj 11 /bj decreases and the
begins to oscillate. This is the inaccuracy that results from the delicate sign pattern of the fir
coefficientsa1,j .
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The problem of construction of irreducible representations of quantumAn
q algebras

is solved by explicit integration of the linear~inhomogeneous! system of equations
in finite differences in then-dimensional space. The general solution of this system
is given explicitly, and particular solutions corresponding to the irreducible repre-
sentations are selected. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1491595#

I. INTRODUCTION

In the author’s recent paper,1 the problem of construction of irreducible representations of
unimodular matrix algebraAn—the famous result obtained by Gel’fand and Tsetlin2—was refor-
mulated through explicit integration of a linear system in finite differences.

It is possible to reduce all the calculations to the solution of a linear system of equatio
finite differences~or PDEs in the continuous functional group limit!. What is surprising and
intriguing in this approach is the fact that the results obtained at the functional group level3,4 ~the
Poisson brackets of the classical Hamiltonian formalism! literally pass to those arising in th
algebraic calculations. The only thing that is necessary is to replace the Poisson brack
commutators, and canonically conjugated classical variables by elements ofn-dimensional
Heisenberg algebras and to choose the correct order of operators involved. All expression
their form at both the levels after replacing the operation of usual differentiation in the case
functional group by discrete difference in the algebra-theoretical case.

In the present paper we apply the method of Ref. 1 to the problem of construction of irr
ible representations of the quantumAn

q algebras. We try to resolve the system of commutat
relations between 3n generators~2n generators of simple rootsXi

6 andn generators of the Carta
elementshi!

@Xi
1 ,Xj

2#5d i j f i~hi !, @hi ,Xj
6#56kji Xj

6 , ~1!

wheref i are initially arbitrary functions of their arguments.
Using only the ‘‘selection rules’’ of the Gel’fand–Tsetlin paper,2 we find that in the case o

Uq(2), A1
q algebra it is possible to resolve Eq.~1! for an arbitrary functionf in a self-consistent

way. However, already in the case ofUq(3), A2
q algebras, the self-consistency of the construct

leads to a unique choice of the functionsf i in the standard trigonometrical form.
The notion of coproduct was not used at any step of our construction. We try to lite

conserve the text and presentation of the material as in Ref. 1, in order to simplify the comp
between these too very similar papers for the reader.

In Secs. II and III, we consider the simplest cases ofUq(2), Uq(3) quantum algebras with
detailed calculations. In Sec. IV, we consider the case of arbitraryUq(n11) quantum algebras. In
Sec. V, we summarize the results and discuss the perspectives for further investigations.

a!Electronic mail: andrey@buzon.uaem.mx
42210022-2488/2002/43(8)/4221/13/$19.00 © 2002 American Institute of Physics
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II. THE CASES OF A 1
qÉSUq„2… AND Uq„2…

Every section will be divided into two parts: the classical case~the functional group level! and
proper algebraic construction~‘‘quantum case’’!. As remarked in Sec. I, the classical results can
used as good guides in further algebraic~quantum! calculations.

A. The functional algebra case

The functionalUq(2) algebra contains four elementsX6, H, I connected by the Poisso
brackets:

$I ,X6%5$I ,H%50, $X1,X2%5f~H !, $H,X6%562X6, ~2!

wheref is an arbitrary function of a single argument.
In accordance with the Darboux theorem,3 of the elements of theUq(2) functional group3 it

is possible to construct a pair of canonically conjugated variablesM ,m, $M ,m%51 and two cyclic
variablesI ,L with the zero Poisson brackets with each other and with all other elements o
Uq(2) functional group~clearly, up to an arbitrary canonical transformation!. The explicit expres-
sion for them in terms of the functional group elements will be given a bit later.

Let us chooseM5H andm5 (1/4) ln(X1/X2) 1f(H). With the help of Poisson brackets~2! it
is not difficult to see thatM ,m thus constructed are really canonically conjugated variab
Resolving these relations with respect to the functional group elements leads to the foll
realization in terms of the canonical conjugated coordinatem and momentumM and the two
cyclic momentaL1 ,L2 :

X15
1

2
e2mS f S L12L2

2 D2 f ~H ! D , X25
1

2
e22mS f S L12L2

2 D1 f ~H ! D ,

~3!

H5M2
L11L2

2
, f~x!5

df 2

dx
.

It is not difficult to verify by direct calculations that~3! is indeed a realization of the functiona
group~2!. If we want to restrict ourselves to the case of quantumA1

q algebra it is necessary to pu
I 5L11L250.

B. Quantum algebra case

As always, to pass from the classical expressions to the quantum ones it is necessary t
the operators involved in a certain way and to replace the Poisson brackets by commu
Equation~3! provides a very tempting possibility to rewrite them as

X15
1

2
emS f S L12L2

2 D2 f ~H ! Dem, X25
1

2
e2mS f S L12L2

2 D1 f ~H ! De2m, ~4!

H5M2
L11L2

2
, I 5L11L2 , L5X1X21X2X11 1

4~ f 2~H11!1 f 2~H21!!

and consider nowM ,m as generators of the Heisenberg algebra (@M ,m#51, @M ,1#50, @m,1#
50), with L1 ,L2 commuting with all the generators involved in~4!. Keeping in mind the operato
relation of the Heisenberg algebra: exp(6x)pexp(7x)5p71, we conclude that the generato
defined in ~4! satisfy the commutation relations~2! of Uq(2) algebra~of course with square
brackets instead of the curly ones! andf5 1/4 (f 2(H11)2 f 2(H21)).

Two Casimir operators under realization~4! take the constant values

K (15L11L2 , K (25X1X21X2X11
1

4
~ f 2~H11!1 f 2~H21!!5

1

2
f 2S L12L2

2 D , ~5!
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which proves the irreducibility of the constructed representation. In the conclusion of this se
we want to stress the fact that commutation relations themselves give no additional restricti
the form of thef ,f functions.

III. A 2
qÆSUq„3… AND Uq„3… CASES

In this case, the problem consists in resolution of the system of commutation relations

@X1
1 ,X1

2#5f~h1!, @X1
1 ,X2

2#50, @h1 ,X1
6#562X1

6 , @h1 ,X2
6#57X2

6 ,
~6!

@X1
1 ,X2

2#50, @X2
1 ,X2

2#5F~h2!, @h2 ,X2
6#562X2

6 , @h2 ,X1
6#57X1

6 .

We choose the arbitrary functionsf(h1), F(h2) in accordance with the comments at the end
Sec. II.

The selection rules of the GZ paper allow us to try to find a resolution of this problem in
following form:

X1
15

1

2
emS f S L12L2

2 D2 f ~H ! Dem, X2
15el 1f 1el 11el 2f 2el 2,

h15M2
L11L2

2
,

~7!

X1
25

1

2
e2mS f S L12L2

2 D1 f ~H ! De2m, X2
25e2 l 1 f̄ 1e2 l 11e2 l 2 f̄ 2e2 l 2,

h252
M

2
1L11L22

N11N21N3

2
,

where all ‘‘structural’’ functionsf 1,2, f̄ 1,2 depend only on the momentum~capital letters! variables.
We intentionally preserve the order of factors to avoid rewriting the same formulas several

A. Functional group case

In this case, it is necessary to understand all the above-mentioned relations at the fun
group level. The commutators have to be replaced by the Poisson brackets understood as

$A,B%5(
1

3 S ]A

]pi

]B

]xi
2

]A

]xi

]B

]pi
D , xi5~m,l 1 ,l 2!, pi5~M ,L1 ,L2!.

Now all of the objects are commutative, and the order of the factors in~7! is unimportant. As
a consequence of the vanishing Poisson brackets$X1

1 ,X2
2%5$X2

1 ,X1
2%50, we obtain equations

determining the explicit dependence of structural functions on the momentumM . Namely

~ ln f̄ 1!M1
1

2

f 181 f 28

f 12 f 2
50, ~ ln f̄ 2!M1

1

2

2 f 181 f 28

f 12 f 2
50,

~ ln f 1!M1
1

2

f 182 f 28

f 11 f 2
50, ~ ln f 2!M2

1

2

f 181 f 28

f 11 f 2
50,

where f 1[ f ((L12L2)/2), f 2[ f (M2 (L11L2)/2) and the prime means differentiation of th
functions f 1 , f 2 with respect to their arguments.

The Poisson brackets$X2
1 ,X2

2%5F(h2) have, as their corollary, three additional equation
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~ ln f̄ 1!L2
1~ ln f 2!L1

50, ~ ln f̄ 2!L1
1~ ln f 1!L2

50

~8!
22~ f 1 f̄ 1!L1

12~ f 2 f̄ 2!L2
5F~h2!.

The condition of self-consistency of the second pair of equations containing lnf, ln f̄ with the first
one leads to the functional equation with shifted arguments for a single unknown functioX
[ f (x),Y[ f (y)):

~XxxX1YyyY!~X22Y2!5~Xx
22Yy

2!~X21Y2!. ~9!

This equation allows the exact integration, and its general solution has the form~see Appendix A!

f ~x!5A~a1b cosh~2ex!!. ~10!

In what follows, we will use a special choice of parameters~10! such thatf 5sinhex. This
choice can be connected with the condition of the correct classical limit~in the sensee→0! in
which the quantum functional algebra should pass into the functional algebraA1 . In this case, it
is possible to perform all the calculations up to explicit expressions.

Resolution of all additional equations, except for~8!, gives the following dependence of th
structure functions upon the momentumM :

f 15coshe
L12M

2
f 1~L1 ,L2!, f 25sinhe

M2L2

2
f 2~L1 ,L2!,

~11!

f̄ 15sinhe
L12M

2
f̄ 1~L1 ,L2!, f̄ 25coshe

M2L2

2
f̄ 2~L1 ,L2!,

where all new structure functions~for which we reserve the same notation! depend only on two
argumentsx1[L1 ,x2[L2 .

For two unknown functionsX1[2 f 1 f̄ 1,X2[ f 2 f̄ 2, Eq. ~8! ~keeping in mind the form of its
right-hand side! becomes the system of two equations:

~eex1X1!x1
1~eex2X2!x2

5ee(2x112x22N)~e2ex1X1!x1
1~e2ex2X2!x2

5e2e(2x112x22N), ~12!

whereN[N11N21N3 .
In accordance with Ref. 1, we try to find a solution to the last system in the form:

X15Yx2

2 , X25Yx1

1 .

Solving the linear algebraic system of equations that arises for the functionsY1,2, we are led to the
following solution of the initial system:

X15
1

4e2 S sinhe~2x11x22N!

sinhe~x12x2! D
x2

1S cothe~x12x2!Q~x1!1
Q̄~x2!

sinhe~x12x2!
D

x2

,

~13!

X252
1

4e2 S sinhe~x112x22N!

sinhe~x12x2! D
x1

2S cothe~x12x2!Q̄~x2!1
Q~x1!

sinhe~x12x2! D
x1

.

These formulas result from the exact integration of the system~12!. The remaining additiona
conditions follow from the corresponding equations for invariant~in the sense of independence
the momentumM ! structural functions. They can be summarized as follows:
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~ ln X1!x2
1~ ln X2!x1

50. ~14!

To satisfy them, it is natural to make a special choice of arbitrary functionsQ,Q̄ in the general
solution ~13!.

After performing all operations of the differentiation in~13! we obtain forX1,

X15
1

4e S sinhe~3x12N!

sinh2 e~x12x2! D1
Q~x1!

sinh2 e~x12x2!
1

sinhe~x12x2!Q̄~x2!x2
1coshe~x12x2!Q̄~x2!

sinh2 e~x12x2!
.

If we want to satisfy the auxiliary condition~14!, it is natural to find the solution in the form

X1,25
c~x1,2!

sinh2 e~x12x2!
.

Under this kind of assumption, for functionsQ,Q̄ we uniquely obtainQ5A coshex1Bsinhex,
Q̄5C coshex1D sinhex whereA,B,C,D are arbitrary numerical constants. Finally, for the fun
tion c that parametrizes the solution of the system~13!, we obtain

c~x!5
1

4e
sinhe~3x2N!1~A1C!sinhex1~B1D !coshex.

This expression forc can be parametrized in the following form:

c~x!5
1

e
sinhe~x2N1!sinhe~x2N2!sinhe~x2N3!

as one can see representing sinh as the difference of the exponentials with further multipl
term by term.

B. The quantum group case

Now in the realization~7! we consider (m,l 1 ,l 2) as coordinates and (M ,L1 ,L2) as momenta
of the three independent~commutative! Heisenberg algebras, and (N1 ,N1 ,N2) as ‘‘cyclic’’ vari-
ables that commute with all other generators. We choosef 5a sinhex, since the quantum group
should have, as its classical limit, the functional group of Sec. III A.

Commutation relations@X1
1 ,X2

2#50, @X2
1 ,X1

2#50 allow us to reconstruct the dependence
structural functionsf 1,2, f̄ 1,2 upon the momentumM exactly in the form~11!.

The only commutation relation

@X2
1 ,X2

2#5a sinhe~M22~L11L2!1N11N21N3!

not used until now, together with~7!, has, as its consequence, an additional system of equa
determining the structural functions:

f 1~L1 ,L221! f̄ 2~L121,L2!5 f 1~L1 ,L211! f̄ 2~L111,L2!,
~15!

f̄ 1~L1 ,L221! f 2~L121,L2!5 f̄ 1~L1 ,L211! f 2~L111,L2!.

Finally, we will present the last remaining equation using the following notation:X6
1 [2 f 1(L1

61,L2) f̄ 1(L161,L2),X6
2 [ f 2(L1 ,L261) f̄ 2(L1 ,L261) for new unknown functions andx1

[L1 ,x2[L2 for new coordinates. The equation takes on the form:
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2sinhe~x12M21!X2
1 1sinhe~x12M11!X1

1

2sinhe~M2L211!X2
2 1sinhe~M2L221!X1

2

52a sinhe~M22~L11L2!1N11N21N3!. ~16!

After resolution of Eq.~16! ~equating terms with sinhM, coshM on both sides!, we come to
the system of two equations for determining the two unknown functionsX1,2:

2ee(x121)X2
1 1ee(x111)X1

1 2ee(x221)X2
2 1ee(x211)X1

2 52ee(2x112x22N),
~17!

2e2e(x121)X2
1 1e2e(x111)X1

1 2e2e(x221)X2
2 1e2e(x211)X1

2 52e2e(2x112x21N),

whereN5N11N21N3 .
To solve this system, we introduce the operation of discrete differentiation as

D iF~x1 , . . . ,xn![
F~x1 ,...,xi11,...,xn!2F~x1 ,...,xi21,...,xn!

2
.

These operations commute with each other,D iD j5D jD i , and possess the linearity properties
the following sense:

D i~F11F2!5D iF
11D iF

2, D i~CF!5CD iF

if the functionC is independent of thexi coordinate.
The system~16! and ~17! can be rewritten in terms of these operations as

D1~eex1X1!1D2~eex2X2!5ee(2x112x22N),

D1~e2ex1X1!1D2~e2ex2X2!5e2e(2x112x22N).

As in Sec. III A, we seek for a solution of the last system in the form

X15D2~Y2!, X25D1~Y1!.

Keeping in mind the relation~that can be easily checked!

D2D1ee(2x112x2)5~sinh 2e!2ee(2x112x2),

we obtain the linear system of algebraic equations determiningY1,Y2. After resolution of this
system, the solution of the initial system takes the form

X15D2S 1

sinh2 2e

sinhe~2x11x22N!

sinhe~x12x2!
1cothe~x12x2!Q~x1!1

Q̄~x2!

sinhe~x12x2!
D ,

~18!

X252D1S 1

sinh2 2e

sinhe~x112x22N!

sinhe~x12x2!
1cothe~x12x2!Q̄~x2!1

Q~x1!

sinhe~x12x2! D .

After all necessary calculations, from~18! we obtain the final expression:

X15
1

2 sinh 2e

sinhe~3x12N!

sinhe~x12x221!sinhe~x12x211!

1
sinh 2eQ~x1!1Q̄~x211!sinhe~x12x211!2Q̄~x221!sinhe~x12x221!

sinhe~x12x221!sinhe~x12x211!
~19!
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and the same kind of expression forX2. If we want to satisfy the additional condition~15! that can
be rewritten in the form

X1~L1 ,L221!X2~L121,L2!5X1~L1 ,L211!X2~L111,L2!,

then it is necessary to find a solution in the form

X15
c1~x1!

f~x12x2!
, X25

c2~x2!

f~x12x2!
. ~20!

It is easy to see that with this form of solution, the additional condition~15! is satisfied
automatically. Comparing Eqs.~19! and~20!, we come to the only possible choice of the functi
(Q,Q̄),

Q~x!5A sinhx1B coshx, Q̄~x!5C sinhx1D coshx.

And as a consequence, we find thatc1(x)5c2(x)5sinhe(3x2N)1psinhex1qcoshex
[sinhe(x2N1)sinhe(x2N2)sinhe(x2N3). Finally, the solution of the initial system satisfying a
necessary additional conditions can be written in the form:

X15
sinhe~x12N1!sinhe~x12N2!sinhe~x12N3!

2 sinh 2e sinhe~x12x221!sinhe~x12x211!
,

~21!

X25
sinhe~x22N1!sinhe~x22N2!sinhe~x22N3!

2 sinh 2e sinhe~x12x221!sinhe~x12x211!
.

IV. GENERAL CASE OF ARBITRARY n

A. The algebra representation level

Let us assume that the generators of simple roots and Cartan elements ofU(n11) algebra can
be represented in the form

Xs
15 (

k51

s

el k
s
gk

sel k
s
, Xs

25 (
k51

s

e2 l k
s
ḡk

se2 l k
s
,

~22!

hs52
1

2 (
r 51

s21

Lr
s211 (

k51

s

Lk
s2

1

2 (
l 51

s11

Ll
s11, 1<s<n,

where nonzero commutators of the operators involved are

@Lk
s ,Ll

t#5dstdklI .

We assume that the structural functions are ‘‘factorizable’’ and, as functions of their argum
can be represented in the following form:

gk
s5Fk

s~Ls11,Ls! f k
s~Ls21,Ls21! ḡk

s5F̄k
s~Ls11,Ls! f̄ k

s~Ls21,Ls21!.

Without any difficulty, the reader can identifyL1 with M , L2 with L1 ,L2 andL3 with N1 ,N2 ,N3

from Sec. III.
We assume also that all necessary commutation relations for 1<s<(n21) are correctly

satisfied and

~Fk
n21!25~ F̄k

n21!25
) r 51

n sinhe~Lk
n212Lr

n!

F~Ln21!
,
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where the functionF is translation-invariant with respect to the simultaneous shift of all
argumentsLk

n21 . We prove by induction that the squares of the structural functionsFi
n5F̄ i

n

conserve their form and find the explicit expressions for the denominator.
It is obvious that under the above-mentioned restrictions, the commutation relations be

generators of the Cartan subalgebrahl and generators of simple rootsXk
6 are correctly satisfied. It

is also clear that the generatorsXn
6 commute with all generatorsXk

7 with 1<k<(n22), because
they act on essentially different arguments. And finally, the commutation relations

@Xn
6 ,Xn21

7 #50

allow us to reconstruct the explicit dependence of structural functionsf k
n , f̄ k

n on their arguments
Lk

n21 .
As a direct corollary of the last commutation relations, we arrive at the express

f k
n (Ln;...,Lr

n2121,...)F̄r
n21 (...,Lk

n21,...,Ln21)5 f k
n(Ln;...,Lr

n2111,...)F̄r
n21 (...,Lk

n11,...,Ln21)
3 f̄ k

n(Ln;...,Lr
n2121,...)Fr

n21(...,Lk
n21,...,Ln21)5 f̄ k

n(Ln,..,Lr
n2111,...)Fr

n21(...,Lk
n11,...,Ln21)

that should be satisfied for all the possible choices ofk andr indices. Keeping in mind the explici
forms F̄k

n21 as assumed previously, we can resolve the last equations in the form:

gk
n5Fk

n~Ln11;Ln!A)
r 51

n21

sinhe~Lk
n2Lr

n21!, ḡk
n5F̄k

n~Ls11;Ls!A)
r 51

s21

sinhe~Lk
n2Lr

n21!.

~23!

The only commutation relation that is not satisfied up to now is

@Xn
1 ,Xn

2#5sinhe~hn!. ~24!

It consists of the ‘‘diagonal’’ part~that does not contain the coordinates of Heisenberg su
gebrasl i! and the nondiagonal one~in the above-mentioned sense!. The arising equation for the
diagonal part can naturally be written by using the notation:

Xk
6n5Fk

n~Ln11;...Lk
n61,...!F̄k

n~Ln11;...,Lk
n61 ,. . .!

~25!

(
k51

n

)
r 51

n21

sinhe~Lk
n112Lr

n21!Xk
1n2 (

k51

n

)
r 51

n21

sinhe~Lk
n212Lr

n21!Xk
2n

5sinheS (
r 51

n21

Lr
n2112(

k51

n

Lk
n2 (

j 51

n11

L j
n11D .

The unknown functionsXk
6n depend only onLn11,Ln variables~as it follows from their defini-

tion! and thus, with respect to the variablesLn21 ~25! they are to be satisfied identically. Let u
consider the structure of the product on the left-hand side of~25! representing each hyperboli
function as a sum of two exponentials:

)
r 51

n21

sinhe~x2Lr
n21!5

1

2n21 (
k50

n21

Ake
e[(n21)22k]x] .

It is clear thatA05exp(2e(r51
n21 Lr

n21), An215(21)n21exp(e(r51
n21 Lr

n21) and all otherAk are some
complicated symmetric functions constructed from the components of the (n21)-dimensional
vectorLn21. On the right-hand side of~25! ~after the decomposition of the hyperbolic function!,
the dependence onLn21 is concentrated only in the two exponentials. Thus, equating the co
cients of such terms on both sides of~25!, we come to the system ofn equations forXk

n functions
~we introduce the notation:Lk

n21[xk and for the moment pute51!:
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(
k51

n

@e(n21)(xk11)Xk
1n2e(n21)(xk21)Xk

2n#52n22 expS 2(
k51

n

xk2(
j 51

s11

L j
s11D

(
k51

n

@es(xk11)Xk
1s2es(xk11)Xk

2s#50, s[n2122r , r 51,2,...~n22! ~26!

(
k51

n

@e2(n21)(xk11)Xk
1n2e2(n21)(xk21)Xk

2n#5~21!n2n22expS 22(
k51

n

xk1(
j 51

s11

L j
s11D .

The zero value of the ‘‘nondiagonal’’ part of~24! is equivalent to the additional conditions th
should hold for the structural functionsF,F̄:

Fk
n~Ln11;...,L j

n21,...!F̄ j
n~Ln11;...,Lk

n21,...!5Fk
n~Ln11;...,L j

n11,...!F̄ j
n~Ln11;...,Lk

n11,...!

F̄k
n~Ln11;...,L j

n21,...!F j
n~Ln11;...,Lk

n21,...!5F̄k
n~Ln11;...,L j

n11,...!F j
n~Ln11;...,Lk

n11,...!.
~27!

From ~27! we see that the solutionF j
n5F̄ j

n is the possible one and, functionsXk
n[Xk @being the

solution of ~25!# should satisfy additional conditions:

Xk~Ln11;...,L j
n21,...!Xj~Ln11;...,Lk

n21,...!5Xk~Ln11;...,L j
n11,...!Xj~Ln11;...,Ln

s11,...!.
~28!

The reader can easily obtain, from general equations of the present section, all results of S
for the casen52. At this point we interrupt our consideration for a moment to represent
general solution of a continuous version of equations~26!.

B. General solution of linear system in the continuous limit

In this section, we give the general solution of the system~26! in the continuous limit or at the
level of the functional group approach. In this limit, the system~26! can be obviously rewritten a

(
k51

n

~e(n21)xkXk!xk
522n22expS 2(

k51

n

xk2Ln11D ,

(
k51

n

~esxkXk!xk
50, s[n2122r , r 51,2,...~n22!, ~29!

(
k51

n

~e2(n21)xkXk!xk
5~21!n212n22expS 22(

k51

n

xk1Ln11D
@compare with the corresponding Eq.~12! of Sec. III A#. We have introduced the following ab
breviation,( j 51

n11 L j
n11[Ln11 .

Keeping in mind the ways of resolution of the systems of that kind known for us,1 we find the
solution in the form:

Xi5~Yi !x1 , . . . ,xi 21 ,xi 11 ,...,xn
.

After substitution of these expressions into~29!, we arrive at the linear system of algebra
equations with the known right-hand side~we have used the obvious relation (exp(2(k51

n xk

2Ln11))x1, . . .,xn
52n(exp(2(k51

n xk2Ln11))! to determine the unknown functionsYi :
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(
k51

n

e(n21)xkYk5223expS 2(
k51

n

xk2Ln11D 1Fn21,

(
k51

n

esxkYk5Fs, s[n2122r , r 51,2,...,~n22!, ~30!

(
k51

n

e2(n21)xkYk5223expS 22(
k51

n

xk1Ln11D 1F2n11.

All functions Fn2122s, 0<s<(n21) are solutions of the single equationFx1 , . . . ,xn
50 ~differ-

entiation with respect to all arguments of the problem!!.
The following notation will be useful for resolution of~30!. Let Wr be a coefficient of the

polynomial of (n21) degree expressed in terms of its roots:

Pn21~z!5W0zn211W1zn221¯1Wn215 )
k51

n21

~z2zk! ~W051!.

We denote the coefficients of the polynomial asWr
(k ; the (n21) roots of this polynomial coincide

with the (n21) exponentialse2xi except for only onee2xk.
In this notation, the resolution of the algebraic system of equations~30! can be represented a

Yk5
1

22

~sinh!cosh~2xk1( i 518k xi2Ln11!

) i 518n sinh~xk2xi !
1

(s50
n21 F (n2122s)Ws

(k

) i 518n sinh~xk2xi !
.

In the numerator of the last expression, the sign of cosh arises in the case of oddn52r 11, and
the sign of sinh, in the case of evenn52r , andLn115( j 51

n11 L j
n11 . By consequent differentiation

of Yk with respect to all independent arguments, except forxk , we come to the explicit solution o
the initial system~30!:

Xk5
1

22

~sinh!cosh~~n11!xk2Ln11!

) i 518n sinh2~xk2xi !
1S (s50

n21 F (n2122s)Ws
(k

) i 518n sinh2(xk2xi)
D

x1 ,...,xk21xk11 ,...,xn

. ~31!

The first term in~31! is a particular solution of the inhomogeneous system~30!, the second one is
a general solution of the homogeneous part of it. Of course, after performing all the differ
tions, the general solution will contain the only function that satisfies the scalar equ
(F)x1 , . . ., xn

50.
In the following we demonstrate only a particular solution of the homogeneous sy

sufficient for the aim to satisfy all necessary additional conditions of our problem. We will dire
show that

Xi5
e[(n11)22s]xi

)k518n sinh2~xi2xk!
5S e[(n11)22s]xi )

k51

8n
e2xi1e2xk

e2xi2e2xk D
x1 ,...,xi 21xi 11 ,...,xn

, 2<s<~n21!.

~32!

In the above-mentioned transformation, we have used the equality (coth(xi2xk))xk
5sinh22(xi

2xk) and the decomposition of sinh,cosh functions into two exponentials. ReplacingXi in that
form on the left-hand side of the system~30!, we have:

S (
k51

n

e[(n11)22s1(n21)22r ]xk)
i 51

8n
e2xk1e2xi

e2xk2e2xi D
x1 ,...,xn

, 0<r<~n21!. ~33!
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In all cases from restrictions ons,r , we have2n12<n2r 2s<n22. In further transformations
of the last expression, it is suitable to distinguish between two different cases: 0<n2r 2s<n
22 and2n12<n2r 2s<0. In the first one we introducel i[e2xi and rewrite~33! in the form

2n~l1 , . . . ,ln!S (
k51

n

lk
(n2s2r )

) i 518n ~lk1l i !

) i 518n ~lk2l i !
D

l1 ,...,ln

, 0<n2r 2s<n22

and in the second case we will get the same expression~up to unessential factors! introducing
l i[e22xi.

In both cases, we have a symmetric function under the sign of differentiation. Reducin
common denominator, we obtain the ratio of twon-dimensional polynomial functions, one o
which ~denominator! is exactly the Wandermond determinant~the single function that is antisym
metric with respect to permutation of each pair of coordinates!. Thus, the numerator must also b
an antisymmetric polynomial~since the ratio is a symmetric one!!. This is impossible ifn2r
2s is less thann21 ~the degree of numerator in this case is less than the degree of the Wa
mond determinant!.

We thus prove that~32! is a particular solution of the homogeneous system~30!.
Adding the particular solution~32! to the particular solution of inhomogeneous equatio

~31!, we arrive at the following solution of the inhomogeneous system~30! that satisfies all
necessary additional conditions as one can check directly:

Xk5
1

22

~sinh!cosh~~n11!xk2Ln11!1(s51
n22~Ase

((n11)xk22s)!1Bse
(2(n11)xk12s)

) i 518n sinh2~xk2xi !

[
1

22

) j 51
n11 sinh~xk2L j

n11!

) i 518n sinh2~xk2xi !
. ~34!

One can verify the validity of the last representation by decomposition of sinh into two expo
tials in each factor of the product with further multiplication term by term.

The last representation forXn accomplishes the proof of the induction procedure in the cas
the functional group.

C. Solution of the problem in the discrete case

In this section, we present the solution of the finite difference system~26! together with all
additional conditions~28! and thus prove the induction assumption.

As the reader will see, the most surprising feature of this approach is that both the calcu
themselves and the final result are not changed essentially in comparison with the cont
functional group case.

Being rewritten in terms of the operation of discrete differentiation~see Sec. III C!, the system
~26! takes the form

(
k51

n

Dk~e(n21)xkXk!522n23expS 2(
i 51

n

xi2Ln11D ,

(
k51

n

Dk~esxkXk!50, s5[~n2122r !, r 51,2,...~n22!, ~35!

(
k51

n

Dk~e2(n21)xkXk!5~21!n2n23expS 22(
i 51

n

xi1Ln11D .

Let us seek for the solution of this system in the conventional form:
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Xk5~Yk!x1 , . . . ,xk21xk11 ,. . . ,xn
.

Replacing this expression in~35! and using the obvious equalityD ie
62xi56sinh 2e62xi, we come

to linear algebraic equations for determining the unknown functionsYk:

(
k51

n

e(n21)xkYk52n23~sinh2!2nexpS 2(
k51

n

xk2Ln11D 1Fn21,

(
k51

n

esxkYk5Fs, s[n2122r , r 51,2,...,~n22!, ~36!

(
k51

n

e2(n21)xkYk522n23~sinh 2!2nexpS 22(
k51

n

xk1Ln11D 1F2n11,

where allFa are solutions of the same equation

~D1 ,D2 , . . . ,Dn!Fa50.

In the last expression, the discrete differentiation is performed with respect to all coordina
the problem.

The system~36! coincides with~??! up to unessential factors. Thus, its general solution~up to
obvious corrections! is the same as~31! ~of course, with discrete differentiation!.

To conduct the last operation, the following equality is necessary:

D i

~cosh!sinh~xi1A!

sinh~xi2xk!
5

sinh 2

2

~cosh!sinh~xk1A!

sinh~xi2xk21!sinh~xi2xk11!
.

Finally for the solution of~35!, we obtain:

Xk5
1

2 sinh 2

~sinh!cosh~~n11!xk2Ln11!

) i 518n sinh~xk2xi21!sinh~xk2xi11!
1X0

k , ~37!

whereX0
k is the general solution of the homogeneous system.

As the reader can notice, the only difference from the continuous case is the appearanc
product of sinh functions with shifted arguments in the denominator instead of the single s

As in the continuous case, it is not difficult to verify that the form

Xk5
C~xk!

F~xk2xi !

is self-consistent with all additional restrictions. We want to show now that the correspo
solution of a homogeneous system@the second term in~37!# can be chosen.

By the same methods, we show that the homogeneous system possesses solutions of

Xi5
e[(n11)22s]xi

)k518n sinh~xi2xk21!sinh~xi2xk11!

5D1 . . . D i 21D i 11 . . . DnS e[(n11)22s]xi )
k51

8n
e2xi1e2xk

e2xi2e2xk D , 2<s<~n21!. ~38!

Taking the sum of this solution and the particular solution of the inhomogeneous system~37!
we obtainXk in the factorized form,
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Xk5
1

2 sinh 2

) j 51
n11 sinh~xk2L j

n11!

) i 518n sinh~xk2xi21!sinh~xk2xi11!
.

The last expression accomplishes the proof of the induction procedure in the quantum a
case.

V. OUTLOOK

The main result of the present paper consists in the explicit realization of irreducible r
sentations of quantum algebrasAn

q of the semisimple series. The method we have used is es
tially different from the commonly used approaches to the solution of this problem in literatu5,6

Of the fundamental suggestions, we have used only the Gel’fand–Zeitlin selection rule
commutation relations between generators of the simple roots and Cartan elements ofAn

q

algebra with arbitrary functional dependence in the principal commutation relation@Xi
1 ,Xj

2#
5d i j f i(hi).

Already for the case ofA2
q algebra~and for allAn

q , n.2!, this construction is self-consisten
only for the choice off i functions in the standard trigonometrical form. No additional assump
about the existence of a coproduct is made. In fact, the result can be obtained at the leve
functional group~classic limit!, and the only thing that is necessary is to check it at the alge
theoretical level.

From the physical point of view, this means that the quasiclassical approach in fact lead
correct quantum result. We are in a position to describe this situation but would not like to
final conclusions at this step.
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APPENDIX

Choosing the new unknown function asF1(X)[Xx
2 ,F2(Y)5Yy

2 andx15X2,x25Y2 as new
independent coordinates, we rewrite~9! in the form of linear equation:

~x1Fx1

1 1x2Fx2

2 !~x12x2!5~F12F2!~x11x2!.

It possesses the three obvious solutionsF5x,F51,F5 1/x. Their linear combination with arbi-
trary coefficients is also a solution. This solution is the general one. Indeed, twice different
the last equation with respect, say, to thex1 coordinate, we come to a system of self-consist
equations of the form presented above.

1A. N. Leznov, J. Math. Phys.42, 1384~2001!.
2I. M. Gel’fand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR71, 825 ~1950!; 71, 1017~1950!.
3L. P. Eisenhart,Continuous Groups of Transformations~Princeton University Press, Princeton, NJ, 1933!.
4A. N. Leznov, I. A. Malkin, and V. I. Man’ko, Trudy FIAN96, 24 ~1977!.
5D. Uglov, Prepr. hep-th/9702020.
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Characterizing entanglement
Dagmar Brußa)

Institut für Theoretische Physik, Universita¨t Hannover,
Appelstr. 2, D-30167 Hannover, Germany

~Received 9 May 2002; accepted for publication 16 May 2002!

Quantum entanglement is at the heart of many tasks in quantum information. Apart
from simple cases~low dimensions, few particles, pure states!, however, the math-
ematical structure of entanglement is not yet fully understood. This tutorial is an
introduction to our present knowledge about how to decide whether a given state is
separable or entangled, how to characterize entanglement via witness operators,
how to classify entangled states according to their usefulness~i.e., distillability!,
and how to quantify entanglement with appropriate measures.
@DOI: 10.1063/1.1494474#

I. INTRODUCTION

The role of entanglement in quantum information processing is manifold. Rather than co
ering entanglement as a mystery, like in the early years of quantum mechanics, it is now
viewed as a resource for certain tasks that can be performed faster or in a more secure w
classically. This genuinely new aspect of quantum properties has launched intensive exper
efforts to create entangled states and theoretical efforts to understand the mathematical stru
entanglement. This tutorial presents the status regarding our understanding of entangleme

As the number of articles about entanglement has ernomously increased during the
years, it is almost impossible to give a complete overview, and this is not the purpose o
article. It will rather introduce the reader to the established knowledge and some importan
in this field, and discuss some of the questions that remain open at present.

Throughout this tutorial, we will mostly consider entanglement of just two parties, un
stated otherwise explicitly. Most concepts can be explained best with bipartite systems; so
them could then be generalized to more parties in an evident way, for others the situation c
completely for more than two parties. Not many results are known for multipartite systems. In
V D some reasons for this will become clear from studying tripartite states.

Various aspects of entanglement have recently been summarized in the following r
articles, which were partially used as a source for this tutorial: the ‘‘primer’’1 aims at introducing
the nonexpert reader to the problem of separability and distillability of quantum states
Horodecki family discusses entanglement in the context of quantum communication,2 where the
distillability properties of a given state are important. B. Terhal summarizes the use of w
operators for detecting entanglement in Ref. 3. Various entanglement measures are pres
the context of the theorem of their uniqueness in Ref. 4. Other reviews on theoretical and e
mental aspects of entanglement can be found in the first issues of the newly launched
QIC.5

This article is organized as follows: Section II presents various possible answers to the
tion ‘‘what is entanglement?,’’ thus shedding light upon different facets of quantum correlat
In Sec. III several criteria are introduced that allow us to distinguish separable from enta
states. In Sec. IV we discuss the possibility to distill entanglement, and give a distilla
criterion. Finally, Sec. V concerns attempts to quantify entanglement via entanglement mea
Some important measures are defined and their properties are discussed. The classific

a!Electronic mail: bruss@itp.uni-hannover.de
42370022-2488/2002/43(9)/4237/15/$19.00
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entangled states according to their Schmidt number is introduced, and a generalization to tr
states is included.

II. WHAT IS ENTANGLEMENT?

It is nearly 70 years ago that Erwin Schro¨dinger gave the name ‘‘Verschra¨nkung’’ to a corre-
lation of quantum nature.6 In colloquial German for nonphysicists this term is only used in
sense of ‘‘folding the arms.’’ It was then rather loosely translated to ‘‘entanglement,’’ with m
inspiring connotations.

Over the decades the meaning of the word ‘‘entanglement’’ has changed its flavor. Th
lowing list is an attempt to sketch the attitude towards entanglement of various important pe
in the fields of foundations of quantum physics and later in quantum information theory. T
statements are not quotations, unless indicated explicitly.

Einstein/Podolsky/Rosen:An entangled wavefunction does not describe the physical reality
complete way.

E. Schrödinger: For an entangled state ‘‘the best possible knowledge of the whole doenot
include the best possible knowledge of its parts.’’6

Entanglement is . . .

J. Bell: . . . acorrelation that is stronger than any classical correlation.

D. Mermin: . . . acorrelation that contradicts the theory of elements of reality.

A. Peres:‘‘ . . . a trick that quantum magicians use to produce phenomena that cannot be im
by classical magicians.’’7

C. Bennett:. . . a resource that enables quantum teleportation.

P. Shor: . . . aglobal structure of the wavefunction that allows for faster algorithms.

A. Ekert: . . . a tool for secure communication.

Horodeckifamily: . . . the need for first applications of positive maps in physics.

Our view of the nature of entanglement may continue to be modified during the coming ye

III. GIVEN A QUANTUM STATE, IS IT SEPARABLE OR ENTANGLED?

In this section we will summarizeoperationaland nonoperationalcriteria that allow us to
classify a given state as separable or entangled. Here the word ‘‘operational’’ is used in the
of ‘‘user-friendly:’’ an operational criterion is a recipe that can be applied to an explicit den
matrix %, giving some immediate answer like ‘‘% is entangled,’’ or ‘‘% is separable,’’ or ‘‘this
criterion is not strong enough to decide whether% is separable or entangled.’’

But, first of all, we need a mathematical definition for entanglement versus separability
is very simple forpure states:a pure stateuc& is calledseparableiff it can be written asuc&
5ua& ^ ub&, otherwise it isentangled. ~Remember that throughout most of this article we ta
about bipartite entanglement. In some cases the generalization to more particles is straightf
like here.! An example for a pure separable state isuc&5u00&; examples for pure entangled stat
are theBell states

uF6&5
1

&
~ u00&6u11&), ~1!
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uC6&5
1

&
~ u01&6u10&). ~2!

A mixed stateis called separable if it can be prepared by the two parties~which are traditionally
called Alice and Bob! in a ‘‘classical’’ way, that is, by agreeing over the phone on thelocal
preparation of states. A density matrix that has been created in this way can only contain cl
correlations. Mathematically this means: a mixed state% is calledseparableiff it can be written
as8

%5(
i

pi uai&^ai u ^ ubi&^bi u, ~3!

otherwise it isentangled. Here the coefficientspi are probabilities, i.e., 0<pi<1 and( i pi51.
Note that in general̂ai uaj&Þd i j , and also Bob’s states need not be orthogonal. This decomp
tion is not unique. An example for a mixed separable state that contains classical correlatio
no quantum correlations, is%51/2(u00&^00u1u11&^11u). An example for a mixed entangled sta
is a Werner state, an admixture of a Bell state as in~1! or ~2! to the identity:%W5(12p)1/41
1puF1&^F1u with 1

3,p<1. The lower limit ofp for %W to be entangled can be easily found wi
the operational criteria discussed below. In fact, any density matrix that is ‘‘close enough’’ t
identity is separable.9

Finding a decomposition as in~3! for a given %, or proving that it does not exist, is
nontrivial task which has been solved explicitly only for a few cases. Therefore, this sim
looking definition of separability is by no means ‘‘user-friendly,’’ and we are in demand of crit
that are easier to test.

A. Operational separability criteria

Here we present some separability criteria that are easy to check in an explicit case.
following we will assume that%PHA^ HB with dim HA5M and dimHB5N>M , without loss
of generality.

For pure statesthere is a very simple necessary and sufficient criterion for separability
Schmidt decomposition. A pure state has Schmidt rankr<M if it can be decomposed as th
biorthogonal sum

uc r&5(
i 51

r

ai uei&u f i&, ~4!

with ai.0 and ( i
rai

251, where^ei uej&5d i j 5^ f i u f j&. Note thatai
2 are the eigenvalues of th

reduced density matrices, and therefore the Schmidt rank is easy to compute. A given pur
uc& is separable iffr 51.

For mixed statesthe situation is less simple. There are several operational separability cr
for this case. Here they are ordered in decreasing strength, i.e., the last criterion fails to de
entangled state as entangled in more cases than the previous ones:

~1! Peres-Horodecki criterion „positive partial transpose…:10,11 The partial transpose of a
composite density matrix is given by transposing only one of the subsystems. Thus, the en
a density matrix that is partially transposed with respect to Alice are given by

~%TA!mm,nn5%nm,mn , ~5!

where Latin indices are referring to Alice’s subsystem and Greek ones to Bob’s subsystem.
separable state can be decomposed according to~3!, its partial transpose is given by
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%sep
TA5(

i
pi~ uai&^ai u!T

^ ubi&^bi u. ~6!

Since the (uai&^ai u)T are again valid density matrices for Alice, one finds immediately that%sep
TA

>0. The same holds for partial transposition with respect to Bob~or any other party for multi-
partite systems!. In conclusion, the partial transpose of a separable state% with respect to any
subsystem is positive.10 ~In our terminology a positive operator has positive or vanish
eigenvalues—more precisely it should be called positive semidefinite. The expectation valu
positive operator with any state is positive or zero.!

It was shown in Ref. 11 for bipartite systems that the converse~i.e., if %TA>0, then% is
separable! is true only for low-dimensional systems, namely for composite states of dimen
232 and 233. In this case the positivity of the partial transpose~PPT! is a necessary and
sufficient condition for separability. For higher dimensions it is only necessary, and the exis
of entangled PPT states has been shown12—these states have been calledbound entangled states,
as their entanglement does not seem to be ‘‘useful,’’ as explained in Sec. IV.

~2! Reduction criterion:13 According to the reduction criterion, if% is separable, then

%A^ 12%>0 and 1^ %B2%>0, ~7!

where%A is Alice’s reduced density matrix, and%B is Bob’s. In order to understand why th
positivity of the left-hand sides in~7! is a separability criterion, one has to note that they co
spond to the application of the positive mapL(s)5(Trs)12s to Bob’s subsystem, or to Alice’s
subsystem.~The important role of positive maps will be discussed in the next subsection,
III B. ! A positive map applied to one subsystem of a separable state preserves the propert
density matrix—therefore the resulting density matrix has to remain positive.

Like the partial transpose criterion, the reduction criterion is a necessary and sufficient
rability condition only for dimensions 232 and 233, and a necessary condition otherwise.

~3! Majorization criterion: 14 The majorization criterion says that if a state% is separable,
then

l%
↓ al%A

↓ and l%
↓ al%B

↓ ~8!

has to be fulfilled. Herel%
↓ denotes the vector consisting of the eigenvalues of%, in decreasing

order, and a vectorx↓ is majorizedby a vectory↓, denoted asx↓ay↓, when ( j 51
k xj

↓<( j 51
k yj

↓

holds for k51, . . . ,d21, and the equality holds fork5d, with d being the dimension of the
vector. Zeros are appended to the vectorsl%A,B

↓ in ~8!, in order to make their dimension equal

the one ofl%
↓ .

Thus, for a separable state the ordered vector of eigenvalues for the whole density m
majorized by the ones of the reduced density matrices. This is was summarized by Niels
Kempe as ‘‘Separable states are more disordered globally than locally.’’14 Note that the spectra o
a density matrix and its reduced density matrices do not allow us to distinguish separab
entangled states. The majorization criterion is only a necessary, not a sufficient conditio
separability.

The logical ordering of the separability criteria introduced in this section is as follows:

~i! dimension 232 and 233: % is separable⇔satisfies PPT⇔satisfies reduction
criterion⇒satisfies majorization criterion, and

~ii ! higher dimensions:% is separable⇒satisfies PPT⇒satisfies reduction criterion
?⇒satisfies

majorization criterion
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B. Nonoperational separability criteria

In this subsection we will discuss two nonoperational separability criteria. Both are nece
and sufficient criteria for any bipartite system. They bear the major problem, however, that th
not provide us with a simple procedure to check the separability properties of a given state
will become clear from their description.

~1! Positive maps:It was shown in Ref. 11 that% is separable iff for any positive mapL

~1^ L!~% !>0 ~9!

holds.
A positive map is a map that takes positive operators to positive operators. A positive mL

is called completely positive~CP! if any extension to a larger Hilbert space, i.e.,1x^ L, is a
positive map. Herex denotes the dimension of the extension and is arbitrary. It is clear from
~9! that, for the purpose of finding separability criteria, only those maps are interesting whic
positive, butnot CP, as a CP map will fulfill~9! for any given%.

In the previous section we have already studied two examples for positive maps that a
CP and the extensions of which provide separability criteria: the transpose and the mapL(s)
5(Trs)12s. There we have already explained the reason why~9! has to hold for separable
states: it is the possibility to decompose a separable state into a sum of tensor products ac
to ~3!. Applying a positive map to one of the subsystems will keep each term positive,
therefore also their sum.

Note that the problem about the nonoperational criterion of positive maps lies in the
word ‘‘any’’ just before~9!: we do not have a complete characterization of the set of all pos
maps.

~2! Entanglement witnesses:The criterion of the so-called entanglement witnesses was g
in Ref. 11 and studied in Ref. 15:

A density matrix% is entangled iff there exists a Hermitian operatorW with Tr(W%),0 and
Tr(W%sep)>0 for any separable state%sep.

We say that the witnessW ‘‘detects’’ the entanglement of%.
Correspondence between„1… and „2…: These two criteria are not independent—there is

Jamiołkowski isomorphism16 that provides us with a correspondence between an entangle
witness and a positive map,

W5~1^ L!~P1! , ~10!

whereP15(1/M ) (( i 51
M u i i &)(( j 51

M ^ j j u) is the projector onto the maximally entangled state.
Let us for the rest of this subsection pursue the concept of entanglement witnesses

seems at first sight to be a rather abstract theorem will prove to be a powerful tool, as it allo
to answer explicit questions about entanglement properties of certain states~see, e.g., Sec. V E!.

The existence of entanglement witnesses is a consequence of the Hahn–Banach th
which states the following:

Let S be a convex, compact set, and let%¹S. Then there exists a hyper-plane that separate%
from S.

This fact is illustrated in Fig. 1: the bigger ‘‘egg’’-shaped set symbolizes the convex, com
set of all density matrices. The smaller one stands for the separable density matrices, a
convex, compact subset of the bigger one. The state% is entangled and therefore¹S. The dotted
line sketches the hyper-plane that separates% from S, and is given by thoses that fulfill
Tr(Ws)50.

It is helpful to realize that Tr(W%) defines a scalar product. Let us for a moment look a
scalar product which is familiar to everybody, the scalar product of two vectors of unit length
common origin. Let us call themwW andrW. Their scalar productwW •rW is equal to cosa, wherea is
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the relative angle between the two vectors. Afixed wW defines a certain plane—the one to whichwW
is orthogonal. VectorsrW from this plane have a vanishing scalar product withwW . All vectorsrW that
are ‘‘on one side’’ of this plane have a positive scalar product withwW ; all vectorsrW ‘‘on the other
side’’ a negative one—due to the properties of the cosine function. The scalar product Tr(W%) has
the same property: all density operators on one side of the hyper-plane lead to a positive ou
the ones on the other side to a negative one.

This intuitive picture of entanglement witnesses also helps to understand how they c
optimized:17 performing a parallel transport of the hyper-plane such that it becomes tangent
set of separable states means that the corresponding optimized witnessWopt detects more en-
tangled states than before. This is also indicated in Fig. 1.

In order to completely characterize the setS one would in principle need infinitely man
witnesses, unless the shape ofS is a polytope. This is not known nowadays. But several witnes
can already give a good approximation of the set of separable states. Methods to constr
tanglement witnesses in a canonical way have been provided in Ref. 17.

IV. GIVEN AN ENTANGLED STATE, IS THE ENTANGLEMENT USEFUL?

In an ideal experiment an initially prepared maximally entangled state would remain m
mally entangled. In reality, the resource of entanglement is very fragile, due to interaction wi
environment. As entanglement is the foundation of many quantum information processing ta
would therefore be desirable to concentrate nonmaximal entanglement. A central question is
several copies of a nonmaximally entangled state, is there a process that allows us to
‘‘distill’’ its entanglement, i.e., to retrieve a maximally entangled state?

This is a straightforward motivation to study entanglement distillation. In addition, this
cept is useful in any other quantum communication task: assume that Alice wants to s
quantum message to Bob. As a simple illustration she will send a polarized photon alo
optical fiber. Interaction with the environment disturbs the original quantum state—in genera
has to deal with ‘‘noisy channels.’’ An initial pure stateuc& will arrive as some disturbed mixe
state%. This situation is sketched in Figs. 2~a! and 2~b!.

In the wide field of error correction one deals with this problem by ‘‘repairing the state,’’
via encoding, finding the error and then restoring the original state. The idea of distillatio

FIG. 1. Intuitive picture of entanglement witnesses and their optimization.
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nonmaximally entangled states pursues a different path, by ‘‘providing a noiseless chann
explained below.

Figure 2~c! visualizes this concept: Alice sends one subsystem of a maximally entangled
through the noisy channel to Bob. The resulting state will not be maximally entangled and m
due to the noise. She repeats this with a second pair or more pairs. Alice and Bob then o
locally on their respective qubits and communicate classically~LOCC5 local operations and clas
sical communication!, thus employing a distillation protocol. One explicit protocol will be intr
duced below. Thus they create a maximally entangled state as indicated in Fig. 2~d!. This state can
now be used as a noiseless channel via teleportation.

In summary, it is an essential question to ask: Given an entangled density matrix%, can its
entanglement bedistilled?

A. A distillation protocol

The following distillation protocol for nonmaximally entangled mixed states was propose
Ref. 18. It is designed for the case that Alice and Bob share a supply of many identical enta
bipartite systems of qubits. They can always convert them by local operations to the isotropi
% iso5(12p)1/411puF1&^F1u, with 1

3,p<1.
In the first step Alice and Bob use two%’s, as illustrated in Fig. 3. Each of them applies a loc

CNOT-gate to his/her two qubits. The action of this gate is given byUCNOTua1&ua2&5ua1&u(a1

1a2)mod 2&.

FIG. 2. Providing a noiseless channel via distillation:~a! Alice wants to send the messageuc& to Bob. ~b! Bob receives%
instead, as the channel is noisy.~c! Alice sends one subsystem of a maximally entangled state through the noisy ch
to Bob, and repeats this with a second pair. They employ a distillation protocol.~d! Alice and Bob have created a
maximally entangled singlet which they can use as a noiseless teleportation channel.
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In the next step, both Alice and Bob do a measurement on their second qubit, as shown
4. They only keep the first density matrix, which had changed to some%8, if their outcomes are
identical. Otherwise the two pairs have to be discarded.

This process has increased the overlap of the new density matrix%8 with the maximally
entangled state. Thus both entanglement and purity are enhanced. The new fidelity is defi
F85^F1u%8uF1& and is plotted in Fig. 5, as a function of the original fidelityF5^F1u%uF1&
5(113p)/4. This procedure is then repeated with new pairs of the higher fidelity. In this wa
entanglement is increased in successive steps, finally being maximal when enough origina
were available. A distillation protocol is successful, i.e., enhances the entanglement, whene
curve for the new fidelity lies above the lineF85F ~dashed line in Fig. 5!.

B. Which states can be distilled ?

For the general reasons discussed at the beginning of Sec. IV it is a very fundamental q
to ask: which entangled states can be distilled? For two-qubit states the answer was given
19: all entangled two-qubit states are distillable.

In general, this question is unsolved, however. A necessary and sufficient criterion for d
ability of a given% was proved in Ref. 20:

The state % is distillable iff there exists uc2&5a1ue1&u f 1&1a2ue2&u f 2& such that
^c2u(%TA) ^ nuc2&,0 for some n.

In other words, if for a certain numbern of copies the partial transpose of the total state
a negative expectation value with some vector of Schmidt rank 2, then% can be distilled~one
says:% is n-distillable!, and vice versa. From this theorem it follows immediately that a state
a positive partial transpose cannot be distilled: if%TA>0, then (%TA) ^ n>0, and thus PPT state
are undistillable. As mentioned above, entangled PPT states are therefore called ‘‘bou
tangled.’’

It is an open question whether the reverse of the statement ‘‘PPT states are undistilla
also true, i.e., if a state is undistillable, does it have to be PPT? For the dimension 23N this is
indeed true.21 For higher dimensions there is a strong conjecture that it is false, i.e., that the
undistillable states with a nonpositive partial transpose~NPT!. A family of such states in dimen
sion N3N was discussed in Refs. 21 and 22. This family consists of a convex combinati
projectors onto the symmetric and the antisymmetric subspace, where the relative weight o
two contributions is the only free parameter. Depending on the value of this parameter, the s
PPT or NPT. The undistillability of NPT states with a certain constant finite range of this pa

FIG. 3. First step in the distillation protocol: applying local CNOT’s.

FIG. 4. Second step in the distillation protocol: measurement.
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eter was shown numerically for up to three copies in the caseN53. The problem in finding a
rigorous answer to the question of distillability for these NPT states lies in the fact that one
consider the limitn→`.

Our present understanding of how the set of all states is decomposed into separable, en
undistillable and distillable states is summarized in Fig. 6.

V. GIVEN AN ENTANGLED STATE, HOW MUCH IS IT ENTANGLED?

So far we have shown that it is still an open question how toqualify a given state as separab
versus entangled or undistillable versus distillable. How can we hope to answer the ques
quantifyingthe amount of entanglement of a given state? It is not surprising that there is no s
answer to that. We will summarize the requirements for a good entanglement measure, an
duce the reader to some important entanglement measures, without making the attempt to
all existing entanglement measures.

In Sec. V C we will explain the concept of Schmidt witnesses, which us allows to cla
entangled states in classes according to their Schmidt number. In the final two subsections
study composite systems of three qubits, showing that the question of quantification of ent
ment has to be reformulated in that case.

FIG. 5. New fidelity after one distillation step, as a function of the fidelity in the previous step.

FIG. 6. Decomposition of the set of all states into distillable and undistillable states.
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A. Requirements for entanglement measures

A good entanglement measureE has to fulfill several requirements. However, it is still a
open question whether all of these conditions are indeed necessary. In fact, some of the en
ment measures that are introduced below do not fulfill the whole list of properties~see Table I!.

~1! If % is separable, thenE(%)50.
~2! Normalization:The entanglement of a maximally entangled state of twod-dimensional sys-

tems is given by

E~P1
d !5logd. ~11!

~3! No increase under LOCC:Applying local operations to% and classically communicating
cannot increase the entanglement of%, i.e.,

E~LLOCC~% !!<E~% !. ~12!

~4! Continuity: In the limit of vanishing distance between two density matrices the differe
between their entanglement should tend to zero, i.e.,

E~%!2E~s!→0 for i%2si→0. ~13!

~5! Additivity: A certain numbern of identical copies of the state% should containn times the
entanglement of one copy,

E~%^n!5nE~%!. ~14!

~6! Subadditivity:The entanglement of the tensor product of two states% and s should not be
larger than the sum of the entanglement of each of the states,

E~%^s!<E~%!1E~s!. ~15!

~7! Convexity:The entanglement measure should be a convex function, i.e.,

E~l%1~12l!s!<lE~% !1~12l!E~s! ~16!

for 0,l,1.

B. Some important entanglement measures

For a pure bipartite stateuc& a good entanglement measure is the von Neumann entropy
reduced density matrix,S(% red)52Tr(% redlog%red). For mixed states there is no unique entang
ment measure, but all entanglement measures should coincide on pure bipartite states and
to the von Neumann entropy of the reduced density matrix~uniqueness theorem!.5 Some important
entanglement measures are defined as follows:

Entanglement cost:The entanglement cost tells us how expensive it is to create an enta
state%, i.e., what is the ratio of the number of maximally entangled input statesuF1& over the
produced output states%, minimized over all LOCC operations. In the limit of infinitely man
outputs this reads

TABLE I. Properties of entanglement measures.

EC EF ER ED

continuity ? A A ?
additivity A ? noa A
convexity A A A no ~?!b

aReference 24.
bReference 25.
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EC~% !5 inf
$LLOCC%

lim
n%→`

nuF1&
in

n%
out . ~17!

Entanglement of formation:Any state% can be decomposed as a convex combination
projectors onto pure states,%5( i pi uc i&^c i u. The entanglement of formation is the averaged v
Neumann entropy of the reduced density matrices of the pure statesuc i&, minimized over all
possible decompositions,

EF~% !5 inf
$dec%

(
i

piS~% i ,red!. ~18!

Relative entropy of entanglement:The relative entropy can be seen intuitively as the ‘‘d
tance’’ of the entangled% to the closest separable states, although it is not a distance in th
mathematical sense,

ER~% !5 inf
sPS

tr@%~ log%2 logs!#. ~19!

Distillable entanglement:The distillable entanglement tells us how much entanglement
can extract from an entangled state%, i.e., what is the ratio of the number of maximally entangl
output statesuF1& over the needed input states%, maximized over all LOCC operations. In th
limit of infinitely many inputs this reads

ED~% !5 sup
$LLOCC%

lim
n%→`

nuF1&
out

n%
in . ~20!

There are some known relations between these entanglement measures: the distilla
tanglement~entanglement cost! is a lower ~upper! bound for any entanglement measure, i.e
ED(%)<E(%)<EC(%). For any bound entangled stateED(%),EC(%) holds, but there is also an
example for a free entangled state, i.e., a distillable state, with the same property.23 It is conjec-
tured that the entanglement of formation and the entanglement cost are identical, i.e.,EF(%)

?

5EC(%).

Some known and unknown properties of the entanglement measures discussed ab
given in Table I.24,25

C. Schmidt witnesses

A slightly different question from ‘‘how much entangled is a state%?’’ can be addressed via
the generalization of entanglement witnesses to so-called Schmidt witnesses. They give an
to the question ‘‘how many degrees of freedom are entangled in%?’’ This corresponds to a fine
classification of entangled states.

The Schmidt rank for pure bipartite states, as defined in Eq.~4!, was generalized to the
so-called Schmidt numberk for mixed bipartite states in Ref. 26. For a given decomposition o%
into a convex combination of projectors onto pure states, let us call the highest occurring Sc
rank r max. The Schmidt number is the minimization of this highest Schmidt rank over all pos
decompositions:

%5(
i

pi uC i
r i&^C i

r iu, k5min
$dec%

~r max!. ~21!

The Schmidt number cannot be higher thanM , the smaller of the dimensions of the two su
systems.
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Entangled states can now be classified according to Schmidt classes:27 the Schmidt classSk is
a subset of the set of all density matrices and contains all density matrices with Schmidt n
<k. The Schmidt classes are successively embedded into each other, as visualized in
S1,S2, . . . ,SM .

A Schmidt witnessWk for the Schmidt classSk is defined as a straightforward generalizati
of the entanglement witnesses discussed in Sec. III B. A Schmidt witnessWk is a Hermitian
operator for which

'%PSk with Tr~Wk% !,0, ~22!

;%k21PSk21 : Tr~Wk%k21!>0. ~23!

Constructive methods for Schmidt witnesses have been shown; they can be optimi
analogy with entanglement witnesses, and they can be used for example as a tool to stud
erties of bound entangled states.

D. ‘‘Many’’ systems: Pure three-qubit states

So far we have only considered bipartite systems. Unfortunately, according to current k
edge one already has to call three subsystems ‘‘many.’’ Can we generalize the concepts th
introduced so far to tripartite states? Again, one can ask whether a given state is separ
entangled. But now one can also specify the kind of entanglement: is it genuine three-p
entanglement or are just two of the three subsystems entangled? Like for bipartite states, o
ask whether a given tripartite state can be distilled. This question will not be addressed
however. And, finally, does it make sense to ask ‘‘how much is a given tripartite state entang

For pure three-qubit states the situation is as follows:
A separablestate can be written as

ucS&5ufA& ^ ufB& ^ ufC&. ~24!

A biseparablestate is a state where only two out of the three systems are entangled, a
third system is a tensor product with the entangled ones, e.g., A–BC:

FIG. 7. Schmidt classes and the detection of the Schmidt number by a Schmidt witness.
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ucB&5ufA& ^ (
i 51

2

ai uei&u f i&. ~25!

The other two possible partitions for biseparable states are B–AC and C–AB.
A three-qubit correlatedstate is one with genuine entanglement of all three subsystems. I

shown in Ref. 28 that there exist two classes ofinequivalentstates:

ucGHZ&5
1

&
~ u000&1u111&), ~26!

ucW&5
1

)
~ u100&1u010&1u001&). ~27!

Any three-qubit correlated pure stateuc& can be transformed into eitherucGHZ& or ucW& by local
reversible operationsA^ B^ C.

Therefore, it is not enough to ask whether a given three-qubit state is separable or bise
or three-party entangled, but also whether a genuinely three-qubit entangled state belong
GHZ- or W-class. For mixed states, the tool of witness operators is again useful for this pu
as will be discussed in the following subsection.

E. Classification of mixed three-qubit states

Let us introduce entanglement classes for mixed three-qubit states.29 A mixed three-qubit state
% can be written as convex combination of pure states: if% can be decomposed as a sum
projectors onto pure separable statesucS&^cSu, then it belongs to the convex compact setS. If one
needs at least one biseparable stateucB&^cBu in the sum, but no genuine tripartite entangleme
then % belongs to the classB, more precisely toB\S. In the same way we define theW-class
~needs at least oneW-state in the decomposition! and the GHZ-class~at least one GHZ-state
needed!.

These sets are embedded into each other:S,B,W,GHZ. This is schematically shown in
Fig. 8. It is important to note thatW,GHZ and not the other way round: otherwise the class G
would not be compact, as can be seen by studying the most general form of aW-versus a
GHZ-state, as given in Ref. 30.

FIG. 8. Schematic structure of the set of all three-qubit states.S: separable class;B: biseparable class~convex hull of
biseparable states with respect to any partition!; W-class and GHZ-class.
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In analogy to entanglement witnesses and Schmidt witnesses one can construct tr
witnesses. A GHZ witnessWGHZ is an Hermitian operator with Tr(WGHZ%),0 for some%
PGHZ\W, and Tr(WGHZ%W)>0 for all %WPW. An example for a GHZ witness is given by

WGHZ5 3
412PGHZ, ~28!

where PGHZ is the projector ontoucGHZ&, given in ~26!. It is straightforward to show that this
operator has the desired properties, when one realizes that the maximal squared overlap
a pureW-state anducGHZ& is given by 3

4.
In a similar manner one can define aW-witness. An example for such a witness that detec

W-state, but has a positive or vanishing expectation value for all states inB, is given by

WW5 2
312PW , ~29!

wherePW is the projector ontoucW&, given in~27!, and 2
3 is the maximal squared overlap betwe

ucW& and a pure biseparable state.
Using the witness in~29!, one can show that the set of mixedW\B-states is not of measur

zero. This is contrary to the pure case, whereW-states are of measure zero.28 The idea of the proof
is to show that there is a finite ball around a state from the family

%5
12p

8
11pPW , ~30!

for a certain given parameterp, such that the ball is contained in theW-class. This is an example
where the concept of witnesses helps to answer an explicit question about the structure of
of entangled states.

Another interesting topic in this context is the properties of bound entangled states.
again the tool of witness operators, there is some evidence that bound entangled three-qub
cannot be in GHZ\W, i.e., they are at most inW.29

By studying mixed three-qubit states we have realized that in this case it is not enough
‘‘how much a given state is entangled.’’ As there are different inequivalent entanglement cl
this question makes sense only within a given classW or GHZ. For more than three qubits th
number of inequivalent classes grows fast.28

VI. SUMMARY

The section headings in this tutorial were phrased as questions. Let us summarize
answers.

What is entanglement?
There are many possible answers, maybe as many as there are researchers in this field.

Given a state%, is it separable or entangled?
This question is easy to answer for pure states, and for low dimensions~232 and 233!. It is very
difficult to answer otherwise. Several separability criteria have been explained.

Given an entangled%, is the entanglement useful?
We have discussed that states with a positive partial transpose are undistillable, most state
nonpositive partial transpose~NPT! are distillable; but some NPT states are conjectured to
undistillable.

Given an entangled%, how much is it entangled?
There are several different bipartite entanglement measures which quantify the degree of en
ment. For multipartite systems there are inequivalent entanglement classes, and theref
above question has to be rephrased accordingly.
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The uniqueness theorem for entanglement measures
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We explore and develop the mathematics of the theory of entanglement measures.
After a careful review and analysis of definitions, of preliminary results, and of
connections between conditions on entanglement measures, we prove a sharpened
version of a uniqueness theorem which gives necessary and sufficient conditions
for an entanglement measure to coincide with the reduced von Neumann entropy on
pure states. We also prove several versions of a theorem on extreme entanglement
measures in the case of mixed states. We analyze properties of the asymptotic
regularization of entanglement measures proving, for example, convexity for the
entanglement cost and for the regularized relative entropy of entangle-
ment. © 2002 American Institute of Physics.@DOI: 10.1063/1.1495917#

I. INTRODUCTION

Quantifying entanglement1–4 is one of the central topics of quantum information theory. A
function that quantifies entanglement is called an entanglement measure. Entanglement is
plex property of a state and, for arbitrary states, there is no unique definitive measure. In g
there are two ‘‘regimes’’ under which entanglement can be quantified: they may be calle
‘‘finite’’ and the ‘‘asymptotic’’ regimes. The first deals with the entanglement of a single cop
a quantum state. In the second, one is interested in how entanglement behaves when one c
tensor products of a large number of identical copies of a given state. It turns out that by stu
the asymptotic regime it is possible to obtain a clearer physical understanding of the nat
entanglement. This is seen, for example, in the so-called ‘‘uniqueness theorem’’3–6 which states
that, under appropriate conditions, all entanglement measures coincide on pure bipartite sta
are equal to the von Neumann entropy of the corresponding reduced density operator. Ho
this theorem was never rigorously proved under unified assumptions and definitions. Rathe
are various versions of the argument scattered through the literature.

In Ref. 4, the uniqueness theorem was put into a more general perspective. Namely, th
two basic measures of entanglement1—entanglement of distillation (ED) and entanglement cos
(EC)—having the following dual meanings:

~i! ED(%) is the maximal number of singlets that can be produced from the state% by means
of local quantum operations and classical communication~LQCCoperations!.

~ii ! EC(%) is the minimal number of singlets needed to produce the state% by LQCCopera-
tions.

a!Electronic mail: matthew.donald@phy.cam.ac.uk
b!Electronic mail: fizmh@univ.gda.pl
c!Author to whom correspondence should be addressed. Electronic mail: rudolph@fisicavolta.unipv.it
42520022-2488/2002/43(9)/4252/21/$19.00 © 2002 American Institute of Physics
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@More precisely~cf. Definitions 16 and 17!: ED(%) (EC(%)) is the maximal~minimal! number of
singletsper copydistillable from the state% ~needed to form%! by LQCCoperations in the
asymptotic regime ofn→` copies.# It is important here that the conversion is not required to
perfect: the transformed state needs to converge to the required state only in the limit of lan.
Now, in Ref. 4 it was shown that the two basic measures of entanglement are, respectively, a
and an upper bound for any entanglement measure satisfying appropriate postulates
asymptotic regime.7 This suggests the following clear picture: entanglement cost and entangle
of distillation are extreme measures, and provided they coincide on pure states, all other en
ment measures coincide with them on pure states as well. However, as mentioned above,
thatED andEC coincide on pure states was not proven rigorously. Moreover, it turned out tha
postulates are too strong. They include convexity, and some additivity and continuity re
ments. It is not known whether any measure exists which satisfies all the requirements.ED andEC

satisfy the additivity requirement, but it is not known whether or not they are continuous i
sense of Ref. 4. There are also indications that the entanglement of distillation is not conve8 On
the other hand, two other important measures, theentanglement of formation~denoted byEF! and
the relative entropy of entanglement~denoted byER! are continuous6,9 and convex, but there ar
problems with additivity. The relative entropy of entanglement is certainly not additive,10 and we
do not know about the entanglement of formation.

In this situation it is desirable to prove the uniqueness theorem from first principles, a
study to what extent we can relax the assumptions and still get uniqueness of entang
measures on pure states. In the present article we have solved the problem completely by
ing necessary and sufficientconditions for a measure of entanglement to be equal to the
Neumann entropy of the reduced density operator for pure states. We also show that if we re
postulate of asymptotic continuity, then any measure of entanglement~not unique any longer! for
pure states must lie between the two analogs ofED and EC corresponding toperfectfidelity of

conversion. These areẼC(c)5S0(%) andẼD(c)5S`(%), where% is the reduced density matri
of uc&, andS0 , S` are Rènyi entropies. In Refs. 11 and 12, one of us has studied entangle
measures based on cross norms and proved an alternative uniqueness theorem for entan
measures stemming from the Khinchin–Faddeev characterization of Shannon entropy.

The present article also contains further developments on the problem of extreme me
We provide two useful new versions of the theorem of Ref. 4. In one of them, we show th
any ~suitably normalized! function E for which the regularizationE`(%)5 limn→`E(% ^ n)/n ex-
ists and which is (i ) nonincreasing under local quantum operations and classical communic
~LQCCoperations! and (i i ) asymptotically continuous, the regularizationE` must lie betweenED

and EC . The theorem and its proof can easily be generalized by replacing the class ofLQCC
operations by other classes of operations, or by considering conversions between any two
Moreover, it is valid for multipartite cases. Therefore, the result will be an important too
analyzing asymptotic conversion rates between different states. In particular, it follows from
result that to establish irreversibility of conversion between two states~see Ref. 13!, one needs to
compare regularizations of asymptotically continuous entanglement measures for these st

In the other new version of the extreme measures theorem, we are able to weaken the
lates of Ref. 4, so that they are at least satisfied byEC . On the other hand, we do not have a pro
that ED is asymptotically continuous for mixed states, although there is strong evidence tha
is the case. If it is, then we would finally have a form of the theorem, in which bothED andEC

could be called extreme measures, not only in the sense provided by the inequalities we pro
also in the sense that they belong to the set described by the postulates.

To obtain our results we perform a detailed study of possible postulates for entangl
measures in the finite and the asymptotic regime. In particular, we examine which post
survive the operation of regularization. We show that if a function is convex and subadditive@i.e.,
f (% ^ s)< f (%)1 f (s)#, then its regularization is convex, too. Hence, both the regularizatio
the relative entropy of entanglement2 as well as of the entanglement of formation1 are convex.

It should be emphasized that our results are stated and proved in language access
mathematicians or mathematical physicists who have not previously been involved in qu
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information theory. This is in contrast to many papers in this field, where many implicit ass
tions are obstacles for understanding the meaning of the theorems and their proofs by nons
ists. For this reason, we devote Secs. II and III to careful statements of some essential defi
and results. In Sec. IV we present a self-contained and straightforward proof of the di
implication in Nielsen’s theorem. This is a theorem which we shall use several times. Proper
entanglement measures and relations between them are analyzed in Sec. V. The most pr
entanglement measures—entanglement of distillation, entanglement cost, entanglement of
tion and relative entropy of entanglement—are defined and studied in Sec. VI. In Sec. V
present our versions of the theorem on extreme measures. Finally, Sec. VIII contains our v
of the uniqueness theorem for entanglement measures, stating necessary and sufficient co
for a functional to coincide with the reduced von Neumann entropy on pure states.

II. PRELIMINARIES

Throughout this article, all spaces considered are assumed to be finite dimensional. The
trace class operators on a Hilbert spaceH is denoted byT~H! and the set of bounded operators
H by B~H!. A density operator~or state! is a positive trace class operator with trace one. The
of states onH is denoted byS~H! and the set of pure states bySp(H). The trace class norm on
T~H! is denoted byi•i1 . For a wavefunctionuc&PH the corresponding state will be denoted
Pc[uc&^cu. The supportof a trace class operator is the subspace spanned by its eigenv
with nonzero eigenvalues.

In the present article we restrict ourselves mainly to the situation of a composite qua
system consisting of two subsystems with Hilbert spaceH A

^ H B whereH A andH B denote the
Hilbert spaces of the subsystems. Often these systems are to be thought of as being s
separate and accessible to two independent observers, Alice and Bob.

Definition 1: LetH A and H B be Hilbert spaces. A density operator% on the tensor product
H A

^ H B is calledseparableor disentangledif there exist a sequence(r i) of positive real num-
bers, a sequence(r i

A) of density operators onH A and a sequence(r i
B) of density operators on

H B such that

%5(
i

r ir i
A

^ r i
B , ~1!

where the sum converges in trace class norm.
The Schmidt decomposition14 is of central importance in the characterization and quantifi

tion of entanglement associated with pure states.
Lemma 2: LetH A and H B be Hilbert spaces and letuc&PH A

^ H B. Then there exist a
sequence of non-negative real numbers(pi) i summing to one and orthonormal bases(uai&) i and
(ubi&) i of H A and H B, respectively, such that

uc&5(
i

Api uai ^ bi&.

j

By S(%) we will denote von Neumann entropy of the state% given by

S~% !ª2tr% log2 %. ~2!

The von Neumann reduced entropyfor a pure states on a tensor product Hilbert spac
H A

^ H B is defined as

SvN~s!ª2trA~~ trB s!log2~ trB s!!, ~3!

where trA and trB denote the partial traces overH A andH B, respectively. Fors5Pc5uc&^cu, it
is a straightforward consequence of Lemma 2 that
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2trA~~ trBPc!log2~ trBPc!!52trB~~ trAPc!log2~ trAPc!!52(
i

pi log2 pi ,

where (pi) i denotes the sequence of Schmidt coefficients ofuc&. However, for a general mixed
states, trA((trBs)log2(trBs)) may not equal trB((trAs)log2(trAs)).

III. CLASSES OF QUANTUM OPERATIONS

In quantum information theory it is important to distinguish between the class of qua
operations on a composite quantum system which can be realized by separatelocal actions on the
subsystems~i.e., separate actions by ‘‘Alice’’ and by ‘‘Bob’’! and those which cannot. The class
local quantum operations assisted by classical communication~LQCC! is of central importance in
quantum cryptography and the emerging theory of quantum entanglement.

An operation is a positive linear mapL:T(H1)→T(H2) such that tr(L(s))<1 for all s
PS(H1). Quantum operationsare operations which arecompletely positive.15,16 We shall be
interested in the trace preserving quantum operations. By the Choi–Kraus representatio15–18

these are precisely the linear mapsL:T(H1)→T(H2) which can be written in the formL(B)
5( i 51

n1n2WiBWi
† for BPT(H1) with operatorsWi :H1→H2 satisfying ( i 51

n1n2Wi
†Wi511 , where

n1[dimH1 , n2[dimH2 , and11 is the identity operator onH1 . These can also be characteriz
as precisely the linear maps which can be composed out of the following elementary oper

~O1! Adding an uncorrelated ancilla:
L1 :T(H1)→T(H1^ K1), L1(r)ªr ^ s, where H1 and K1 denote the Hilbert spaces of th
original quantum system and of the ancilla, respectively, and wheresPS(K1).

~O2! Tracing out part of the system:
L2 :T(H2^ K2)→T(H2), L2(r)ªtrK2

(r), whereH2^ K2 and K2 denote the Hilbert spaces o
the full original quantum system and of the dismissed part, respectively, and where trK2

denotes
the partial trace overK2 .

~O3! Unitary transformations:
L3 :T(H3)→T(H3), L3(r)ªUrU†, whereU is a unitary operator onH3 .

A discussion of this material with complete proofs from first principles may be found in
initial archived draft of this article.19

Defining a local operation as quantum operation on a individual subsystem, we now tu
the definition of local operations assisted by classical communication. As always in this artic
consider a quantum system consisting of two~possibly separate! subsystems A and B with~initial!
Hilbert spacesH A andH B, respectively. There are three cases: the communication between A
B can be unidirectional~in either direction! or bidirectional.

Let us first define the class of local quantum operations~LO! assisted by unidirectional clas
sical communication~operations in this class will be called one-wayLQCCoperations! with
direction from system A~Alice! to system B~Bob!. In this case, the operations performed by B
depend on Alice’s operations, but not conversely.

Definition 3: A completely positive mapL:T(H 1
A

^ H 1
B)→T(H 2

A
^ H 2

B) is called a one-way
LQCCoperation from A to B if it can be written in the form

L~s!5 (
i , j 51

K,L

~12
A

^ Wji
B !~Vi

A
^ 11

B!s~Vi
A†

^ 11
B!~12

A
^ Wji

B†! ~4!

for all sPT(H 1
A

^ H 1
B) and some sequences of operators(Vi

A :H 1
A→H 2

A) i and (Wji
B :H 1

B

→H 2
B) j i with ( i 51

K Vi
A†Vi

A511
A and ( j 51

L Wji
B†Wji

B511
B for each i, where11

A , 11
B and 12

A are the
unit operators acting on the Hilbert spacesH 1

A , H 1
B and H 2

A , respectively.
Of course, by the Choi–Kraus representation any operationL of the form

L5LA
^ I 1

B , ~5!
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whereLA:T(H 1
A)→T(H 2

A) is a completely positive trace preserving map andI 1
B is the identity

operator onT(H 1
B), is a one-wayLQCCoperation from A to B.

Let us now define local quantum operations assisted by bidirectional classical communi
~LQCCoperations!.

Definition 4: A completely positive mapL:T(H A
^ H B)→T(K A

^ K B) is called anLQCC
operation if there exist n.0 and sequences of Hilbert spaces(H k

A)k51
n11 and (H k

B)k51
n11 with

H 1
A(B)5H A(B) and H n11

A(B)5K A(B), such thatL can be written in the following form,

L~s!5 (
i 1 ,... ,i 2n51

K1 ,... ,K2n

Vi 1 ,... ,i 2n

AB sVi 1 ,... ,i 2n

AB † ~6!

for all sPT(H A
^ H B) where Vi 1 ,... ,i 2n

AB :H A
^ H B→K A

^ K B is given by

Vi 1 ,... ,i 2n

AB
ª~1n11

A
^ W2n

i 2n ,... ,i 1!~V2n21
i 2n21 ,... ,i 1^ 1n

B!~1n
A

^ W2n22
i 2n22 ,... ,i 1!¯~12

A
^ W2

i 2 ,i 1!~V1
i 1^ 11

B!

with families of operators

~V2k21
i 2k21 ,... ,i 1 :H k

A→H k11
A !k51

n , ~7a!

~W2k
i 2k ,... ,i 1 :H k

B→H k11
B !k51

n , ~7b!

such that for k50, . . . ,n21 and each sequence of indices( i 2k ,... ,i 1),

(
i 2k1151

K2k11

~V2k11
i 2k11 ,... ,i 1!†V2k11

i 2k11 ,... ,i 151k11
A , ~8a!

and for k51, . . . ,n and each sequence of indices( i 2k21 ,... ,i 1),

(
i 2k51

K2k

~W2k
i 2k ,... ,i 1!†W2k

i 2k ,... ,i 151k
B , ~8b!

where for all k.0, 1k
A and 1k

B denote the unit operator onH k
A and H k

B , respectively.
Obviously the class of one-wayLQCCoperations is a subclass of the class ofLQCCopera-

tions. There is another important class: separable operations. A separable operation is an o
of the form

L:T~H A
^ H B!→T~K A

^ K B!, L~s![(
i 51

k

~Vi ^ Wi !s~Vi ^ Wi !
†, ~9!

with ( i 51(Vi ^ Wi)
†Vi ^ Wi51AB where1AB denotes the unit operator acting onH A

^ H B. The
class of separable operations is strictly larger than theLQCCclass.20

One can also consider a small class obtained by taking the convex hullC of the set of all maps
of the form LA

^ LB. Such operations require in general one-way classical communication
they do not cover the whole class of one-wayLQCCoperations.

All the classes above are closed under tensor multiplication, convex combinations, and
position. The results of our article apply in principle to all the classes apart from the last~i.e., apart
from the class of all operations in the convex hullC of the set of all maps of the formLA

^ LB!.
For definiteness, in the sequel we will useLQCCoperations.

Finally, we conclude this section with a useful technical lemma.
Lemma 5: LetL:T(H1)→T(H2) be a positive trace-preserving map and suppose t

BPT(H1) with B5B†. TheniL(B)i1<iBi1 .
Proof: Suppose thatB has eigenvalue expansionB5( i 51

n1 b i uc i&^c i u. Then
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iL~B!i1<(
i 51

n1

ub i uiL~ uc i&^c i u!i15iBi1

as iBi15( i 51
n1 ub i u andL(uc i&^c i u) is a positive trace class operator with unit trace. j

IV. NIELSEN’S THEOREM

A beautiful and powerful result of entanglement theory is Nielsen’s theorem.21 In one direc-
tion, the proof is straightforward, and we refer to Ref. 21. The other direction is more difficult
present here an entirely self-contained, simple, and direct proof. Alternative proofs have
ously been given by Hardy22 and by Jensen and Schack.23

Before we state the theorem we need the following definition.
Definition 6: Let(pi) i 51

m1 and (qi) i 51
m2 be two probability distributions with probabilities ar

ranged in decreasing order, i.e., p1>p2>¯>pm1
and similarly for(qi) i . Then we will say that

(qi) i majorizes (pi) i @in symbols(qi) is(pi) i# if for all k<min$m1,m2% we have

(
i 51

k

qi>(
i 51

k

pi . ~10!

Theorem 7 „Nielsen…: Let H A andH B be Hilbert spaces and let(uxm&)m51
M and (ukm&)m51

M

be orthonormal bases forH A and H B, respectively. LetuC&5(m51
M Apmuxmkm& and uF&

5(m51
M Aqmuxmkm& be Schmidt decompositions of normalized vectorsuC& and uF& in

H A
^ H B with p1>p2>¯>pM and q1>q2>¯>qM . Then uC&^Cu can be converted into

uF&^Fu by LQCCoperations if and only if(qi) majorizes(pi).
Proof: ~One direction only.! Suppose that (qi) majorizes (pi). Set r[uC&^Cu and s

[uF&^Fu. We shall prove that there is a sequence (Ln)n51
N with N,M of completely positive

maps onT(H A
^ H B) of the form

Ln~v!5~Cn^ Un!v~Cn^ Un!†1~Dn^ Vn!v~Dn^ Vn!†, ~11!

where Un , VnPB(H B) are unitary andCn , DnPB(H A) satisfy Cn
†Cn1Dn

†Dn51A such that
L1+L2+¯+LN(r)5s. Note that all theLn are one-wayLQCCoperations from A to B and henc
their composition also is. As the Schmidt decomposition is symmetrical between A and B
could also use one-wayLQCC operations from B to A. Setdk[(m51

k qm2(m51
k pm for k

51,2,...,M . ThendM50. Let N5N(uC&,uF&) be the number of nonzerodk . We shall prove the
result by induction onN. uC&5uF& if and only if d15d25¯5dM2150. In this case
N(uC&,uF&)50, r5s, and the result is certainly true.

Suppose that the result holds for all pairs (uC&,uF&) satisfying the conditions of the propo
sition with N(uC&,uF&)50,...,L and that (uC&,uF&) is a pair with N(uC&,uF&)5L11. Then
there existsJ>1 such thatd15d25¯5dJ2150 and dJ.0. Settingd0ª0, we haveqj2pj

5d j 211qj2pj5d j for j 51,...,J. This implies thatpj5qj for j 51,...,J21 and thatqJ.pJ .
Suppose thatdk.0 for k5J,J11,...,K21 and thatdK50. pK2qK5pK2qK1dK5dK21 and
pK.qK . Moreover, if K,M , then qK112pK115dK1qK112pK115dK11>0. Summarizing,
we have

pJ215qJ21>qJ.pJ>pK.qK>qK11>pK11 .

Define (r m)m51
M by r mªpm for mÞJ,K and byr JªpJ1d, r KªpK2d wheredªmin$dk :k

5J,...,K21%. By constructiond.0. Now d<dJ implies qJ>r J>pJ , and d<dK21 implies pK

>r K>qK . This in turn implies thatr 1>r 2>¯>r M . Thus for k51,...,J21 and for k
5K,...,M ,
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(
m51

k

r m5 (
m51

k

pm< (
m51

k

qm .

For k5J, . . . ,K21, (m51
k r m5(m51

k pm1d and so, as 0,d<dk ,

(
m51

k

pm, (
m51

k

r m< (
m51

k

qm .

Define uJ&ª(m51
M Ar muxmkm&. ThenN(uJ&,uF&)<L so that, by the inductive hypothesis, the

is a sequence (Ln)n51
N of maps of the required form withN5N(uJ&,uF&) such that

L1+L2+¯+LN~ uJ&^Ju!5s.

Thus to complete the proof, we need only find a completely positive mapL of the required form
such that

L~ uC&^Cu!5uJ&^Ju. ~12!

To this end setPª(mÞJ,Kuxm&^xmu. Set

CªAr JpJ2r KpK

r J
22r K

2 S P1Ar J

pJ
uxJ&^xJu1Ar K

pK
uxK&^xKu D

andUª1B. Set

DªAr JpK2r KpJ

r J
22r K

2 S P1Ar K

pJ
uxK&^xJu1A r J

pK
uxJ&^xKu D

and

VªukK&^kJu1ukJ&^kKu1 (
mÞJ,K

ukm&^kmu.

Note that pJ>pK.qK>0, that r J.r K , that r JpJ.r KpK , and that r JpK2r KpJ5(pJ1d)pK

2(pK2d)pJ5d(pK1pJ).0. Note also thatr J
22r K

2 5(r J2r K)(r J1r K)5(r J2r K)(pJ1pK) so
that

r JpJ2r KpK

r J
22r K

2 1
r JpK2r KpJ

r J
22r K

2 51.

With these definitions and notes, the completion of the proof is straightforward. j

V. ENTANGLEMENT MEASURES

Definition 8: Consider a bipartite composite quantum system with Hilbert space of the
H A

^ H B whereH A[H B[Cd. Assume that isomorphisms betweenCd, H A, andH B are chosen.
For a chosen orthonormal basis(uc i&) i 51

d of Cd, we let

uC1~Cd!&[(
i 51

d
1

Ad
uc i ^ c i&PH A

^ H B.
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uC1(Cd)& is amaximally entangledwavefunction. All other maximally entangled wavefunctions
H A

^ H B can be obtained by applying a unitary operator of the form1A
^ UB to uC1(Cd)& where

UB is a unitary operator onH B. The pure state corresponding touC1(Cd)& will be denoted by
P1(Cd)[uC1(Cd)&^C1(Cd)u.

In an arbitrary bipartite composite system, we shall refer to any wavefunction with the
Schmidt coefficients asuC1(Cd)& as arepresentativeof uC1(Cd)& and to the corresponding stat
as a representativeof P1(Cd).

A. Conditions on mixed states

The degree of entanglement of a density operator on the Hilbert space of a bipartite com
quantum system can be expressed by an ‘‘entanglement measure.’’ This is a non-negativ
valued functionalE defined onS(H A

^ H B) for all finite-dimensional Hilbert spacesH A and
H B. Any of the following conditions might be imposed onE.1–4,24

~E0! If s is separable, thenE(s)50.
~E1! ~Normalization! If P1

d is any representative ofP1(Cd), then E(P1
d )5 log2 d for d

51,2,. . . .
A weaker condition is the following.
(E18) E(P1(C2))51.
~E2! ~LQCCMonotonicity! Entanglement cannot increase under procedures consisting of

operations on the two quantum systems and classical communication. IfL is anLQCCoperation,
then

E~L~s!!<E~s! ~13!

for all sPS(H A
^ H B).

A condition which, as we shall confirm below~Lemma 9!, is weaker than~E2!, is the follow-
ing.

(E28) E(L(s))5E(s) wheneversPS(H A
^ H B) andL is a strictly local operation which

is either unitary or which adds extraneous dimensions. On Alice’s side, these local operation
the form of eitherL1(%)5(UA

^ I B)%(UA
^ I B)† where UA:H A→H A is unitary or L2(%)

5(WA
^ I B)%(WA

^ I B)† where H A,K A and WA:H A→K A is the inclusion map. There ar
equivalent local operations on Bob’s side.

(E29) E(L(s))5E(s) wheneversPS(H A
^ H B) andL is a strictly local unitary operation

Without further remark, we shall always assume that all our measures satisfy (E29).
~E3! ~Continuity! Let (H n

A)nPN and (H n
B)nPN be sequences of Hilbert spaces and letHn

[H n
A

^ H n
B for all n. For all sequences (%n)nPN and (sn)nPN of states with %n ,snP

S(H n
A

^ H n
B), such thati %n2sni1→0, we require that

E~%n!2E~sn!

11 log2 dimHn
→0.

A weaker condition deals only with approximations to pure states:
(E38) Same as~E3! but with %nPSp(H n

A
^ H n

B) for all n.
Sometimes we are interested in entanglement measures which satisfy an additivity proper

~E4! ~Additivity ! For all n>1 and all%PS(H A
^ H B)

E~% ^ n!

n
5E~% !.

Here % ^ n denotes then-fold tensor product of% by itself which acts on the tensor produ
(H A) ^ n

^ (H B) ^ n.
An apparently weaker property, which as we shall see in Lemma 10 is actually equival

~E4!, is the following.
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(E48) ~Asymptotic Additivity! Given e.0 and %PS(H A
^ H B), there exists an intege

N.0 such thatn>N implies

E~% ^ n!

n
2e<E~% !<

E~% ^ n!

n
1e.

~E5! ~Subadditivity! For all %,sPS(H A
^ H B),

E~% ^ s!<E~% !1E~s!.

(E58) For all %PS(H A
^ H B) andm,n>1,

E~% ^ (m1n)!<E~% ^ m!1E~% ^ n!.

(E59) ~Existence of a regularization! For all %PS(H A
^ H B), the limit

E`~% ![ lim
n→`

E~% ^ n!

n

exists.
In Lemma 12 we shall prove the well-known result that (E58) is a sufficient condition for (E59).
When (E59) holds, we shall refer toE` as the regularization ofE. We shall discuss some gener
properties ofE` in Proposition 13.

~E6! ~Convexity! Mixing of states does not increase entanglement:

E~l%1~12l!s!<lE~% !1~12l!E~s!

for all 0<l<1 and all%,sPS(H A
^ H B).

~E6! might seem to be essential for a measure of entanglement. Nevertheless, there i
evidence that an important entanglement measure~the entanglement of distillation! which de-
scribes asymptotic properties of multiple copies of identical states may not be convex.8 A weaker
condition is to require convexity only on decompositions into pure states. We shall prove b
that this property is satisfied by the entanglement of distillation.

(E68) For any state%PS(H A
^ H B) and any decomposition%5( i pi uc i&^c i u with uc i&

PH A
^ H B, pi>0 for all i and( i pi51, we require

E~% !<(
i

piE~Pc i
!.

B. Conditions on pure states

The conditions imposed on an entanglement measure can be weakened by requiring th
only apply for pure states. Indeed, it might not even be required that the measure is defined
on pure states. Recall thatSp(H A

^ H B) denotes the set of pure states on the composite spa
~P0! If sPSp(H A

^ H B) is separable, thenE(s)50.
(P1)5(E1) ~Normalization! If P1

d is any representative ofP1(Cd), thenE(P1
d )5 log2 d for

d51,2,. . . .
(P18)5(E18) E(P1(C2))51.
~P2! Let L be an operation which can be realized by means of local operations and cla

communications. IfsPSp(H A
^ H B) is such thatL(s) is also pure, then

E~L~s!!<E~s!.

(P28) For sPSp(H A
^ H B), E(s) depends only on the nonzero coefficients of a Schm

decomposition ofs.
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By Nielsen’s theorem and the proof of Lemma 9 below,~P2! is equivalent to assuming (P28) and
that if the Schmidt coefficients of% majorize those ofs, then E(%)<E(s). Our proof of the
theorem shows that, given (P28), only local operations and operations of the specific form of
~11! need be considered for~P2! ~cf. Ref. 25!.

Below we will in particular be interested in entanglement measures satisfying the follo
additional conditions:

~P3! Let (H n
A)nPN and (H n

B)nPN be sequences of Hilbert spaces and letHn[H n
A

^ H n
B for all

n. For all sequences (%n)nPN and (sn)nPN of states with%n ,snPSp(H n
A

^ H n
B), such that

i %n2sni1→0, we require that

E~%n!2E~sn!

11 log2 dimHn
→0.

~P4! For all n>1 and all%PSp(H A
^ H B),

E~% ^ n!

n
5E~% !.

Of course, when% is pure, so is% ^ n.
(P48) Given e.0 and%PSp(H A

^ H B), there exists an integerN.0 such thatn>N im-
plies

E~% ^ n!

n
2e<E~% !<

E~% ^ n!

n
1e.

(P59) ~Existence of a regularization on pure states! For all %PSp(H A
^ H B), the limit

E`~% ![ lim
n→`

E~% ^ n!

n

exists.

C. Some connections between the conditions

Lemma 9:(E28) is implied by(E2).
Proof: By Eq. ~5!, the operations considered in (E28) areLQCC. To see this forL2 , note that

WA†WA51H A. Thus~E2! impliesE(L i(s))<E(s) for i 51,2. Unitary maps are invertible and s
E(L1(s))>E(s). On the other hand, ifH A,K A andPA is the projection ontoH A, then, for any
tAPSp(H A), the mapL3

A :S(K A)→S(H A) defined byL3
A(%)ªPA%PA†1tr(%(12PA))tA is

completely positive and trace preserving, so by Eq.~5!, the map onS(K A
^ H A) defined byL3

5L3
A

^ I B is LQCC.
L3(L2(s))5s and hence~E2! implies E(s)<E(L2(s)). j

Lemma 10:(E48) is equivalent to(E4) and (P48) is equivalent to(P4).
Proof: That ~E4! implies (E48) is immediate. Suppose (E48) and choosem, %, ande.
By (E48), there existsN such thatn>N implies uE(%)2E(% ^ n)/nu<e and uE(% ^ m)

2(E(% ^ m) ^ n)/nu<e. But, by definition, (% ^ m) ^ n5% ^ mn where the equality relates equivale
density matrices on products of isomorphic local spaces. Thusn>N implies

UE~% !2
E~% ^ m!

m U<UE~% !2
E~% ^ mn!

mn U1UE~% ^ mn!

mn
2

E~% ^ m!

m U<2e.

~E4! follows. The same proof shows the equivalence of (P48) and ~P4!. j
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Lemma 11: Let E be an entanglement measure which satisfies(P18), (P2), and (P4). Then
E satisfies(P0) and (P1). Moreover, if E is defined on mixed states and satisfies either(E2) or
(E68), then (E0) is satisfied.

Proof: First we deal with separable states.
Choosee.0. Any pair of separable pure states is interconvertible by local unitary opera

If s is such a state, then so iss ^ n, and so, by~P2!, E(s)5E(s ^ n). But ~P4! implies that
E(s)5E(s ^ n)/n and henceE(s)50. This gives~P0! and thed51 case of~P1!.

Now let %PS(H A
^ H B) be a mixed separable state. Expanding the states% i

A and% i
B of Eq.

~1! into pure components shows thats is a convex combination of pure separable statess
5( i pis i .

Thus (E68) is sufficient to go from~P0! to ~E0!. But ~E2! is also sufficient, because i
L i :T(H A

^ H B)→T(H A
^ H B) is a local operation such thatL i(s1)5s i , thenLª( i piL i is a

LQCCoperation such thatL(s1)5s and so~E2! and ~P0! yield E(s)<E(s1)50.
Now we turn to showing that, ford>2, E(P1

d )5 log2 d follows from (P18), ~P2!, and~P4!.
By (P28), E(P1

d ) is independent of the representative ofP1(Cd) considered.
Choosee.0 andd>2. ChooseN.1/e. Setw(n)[E(P1

n ).
By Nielsen’s theorem,~P2! implies thatw(d1)<w(d2) wheneverd1<d2 .

Up to local isomorphisms, (P1
d ) ^ n5P1

dn
, so that, by~P4!, w(d)5w(dn)/n for all n and, by

(P18), w(2)5w(2n)/n51.
Choosen1 ,n2.N such that 2n211>dn1>2n2. Then log2 d>n2 /n1, un2 /n12 log2 du<1/n1

,e, and, using~P4!,

uw~d!2 log2 du<uw~dn1!2n2u/n11un2 /n12 log2 du<uw~dn1!2n2w~2!u/n11e

and

uw~dn1!2n2w~2!u/n15uw~dn1!2w~2n2!u/n1<uw~2n211!2w~2n2!u/n151/n1<e.

It follows that w(d) is arbitrarily close to log2 d. j

Lemma 12:(E58) implies (E59). Indeed, (E58) implies that

E~% ^ m!/m→ inf$ E~% ^ m!/m :m>1%.

Proof: ~See Ref. 26, Theorem 4.9.! Fix k.0. Everym>1 can be writtenm5nk1r with 0
<r ,k. Then for allm.0 set f (m)ªE(% ^ m). (E58) implies that

f ~m!

m
<

n f~k!1 f ~r !

nk1r
<

n f~k!

nk
1

f ~r !

nk
5

f ~k!

k
1

f ~r !

nk
.

As m→` then n→` so lim supm→` f (m)/m< f (k)/k and thus lim supm→` f (m)/m
< infk>1 f (k)/k. Now infk>1 f (k)/k < lim infm→` f (m)/m shows that limm→` f (m)/m exists and
equals infm>1 f (m)/m . j

Proposition 13: Let E be an entanglement measure which satisfies(E59). Then we have the
following.

~1! E` satisfies(E4)
~2! If E satisfies(E0), then so does E`.
~3! If E satisfies(E1), then so does E`.
~4! If E satisfies(E2), then so does E`.
~5! If E satisfies(E5), then so does E`.
~6! If E satisfies(E5) and (E6), then so does E`.

Proof:
~1! For all m and%,
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E`~% ^ m!

m
5 lim

n→`

E~% ^ nm!

nm
5E`~% !.

~2! If s is separable, then so iss ^ n for all n.
~3! If P1

d is a representative ofP1(Cd), then (P1
d ) ^ n is a representative ofP1(Cdn

).
~4! If L is LQCC, then so isL ^ n andL(s) ^ n5L ^ n(s ^ n).
~5! For all %,s andk>1, ~E5! implies that

E~~% ^ s! ^ k!

k
<

E~% ^ k!

k
1

E~s ^ k!

k
.

~6! Suppose thatE satisfies ~E5! and ~E6!. Let %,sPS(H A
^ H B) and choosex1 ,x2

P@0,1# with x11x251. Let v5x1%1x2s. Expandingv ^ n as a sum of products, using conve
ity of E, and then using local isomorphisms to reorder the terms in each product gives

E~v ^ n!<(
k50

n S n
kD x1

kx2
n2kE~% ^ k

^ s ^ (n2k)!<(
k50

n S n
kD x1

kx2
n2k~E~% ^ k!1E~s ^ (n2k)!!,

where the second inequality is a consequence of~E5!. To complete the proof, we need th
following lemma:

Lemma 14: As n→`, (1/n) (k50
n (k

n)x1
kx2

n2kE(% ^ k)→x1E`(%) and (1/n) (k50
n (k

n)x1
kx2

n2k

3E(s ^ (n2k))→x2E`(s).
Proof: It is sufficient to prove the first limit. Setg(m)5E(% ^ m)/m andL5E`(%). Choose

e.0. By Lemma 12, there existsK such thatk>K implies ug(k)2Lu,e/2 and there is a constan
C.0 such thatug(k)2Lu,C for all k. N.K implies that

1

N (
k50

K S N
k D kx1

kx2
N2k<

K

N (
k50

N S N
k D x1

kx2
N2k5

K

N
.

Set h(x)5(x1y)n5(k50
n (k

n)xkyn2k. xh8(x)5nx(x1y)n215(k50
n (k

n)kxkyn2k. Thus x1

1x251 implies that(k50
n (k

n)kx1
kx2

n2k5nx1 .
ChooseN0.K such thatKC/N0,e/2. ThenN.N0 implies

U1

N (
k50

N S N
k D x1

kx2
N2kE~% ^ k!2x1E`~% !U5U1

N (
k50

N S N
k D kx1

kx2
N2kg~k!2x1LU

5U1

N (
k50

N S N
k D kx1

kx2
N2k~g~k!2L !U

<
1

N (
k50

K S N
k D kx1

kx2
N2kC

1
1

N (
k5K11

N S N
k D kx1

kx2
N2k~g~k!2L !

<KC/N1e/2 (
k5K11

N S N
k D x1

kx2
N2k

<e.

j

Continuity ~E3! is not mentioned in Proposition 13, although we could use Lemma 1
deduce upper-semicontinuity from~E3! and (E58), as the infimum of a family of real continuou
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functions is upper-semicontinuous. For an example which may be relevant, consider the se
of functions on@0,1# defined byf n(x)5nxn. Clearly f m1n(x)< f m(x)1 f n(x). gn(x)5xn con-
verges~pointwise! asn→` to a discontinuous but upper-semicontinuous function.

VI. EXAMPLES OF IMPORTANT ENTANGLEMENT MEASURES

In this section we will present some important entanglement measures and check which
postulates from Sec. V they satisfy.

A. Operational measures

Here we shall describe two entanglement measures,entanglement of distillationandentangle-
ment cost1 ~see also Refs. 27 and 28!, which are defined in terms of specific state conversion

Lemma 15: Let%PS(H A
^ H B) with H A[H B[H and dimH5d. Let uf&5ufA& ^ ufB&

PH A
^ H B be a separable wavefunction and P1

d be a representative of P1(Cd) on H A
^ H B.

Then there existLQCCoperationsL1 and L2 such thatL1(%)5uf&^fu and L2(P1
d )5%.

Proof: Let (c i
A) i 51

d @resp. (c i
B) i 51

d # be an orthonormal basis forH A @resp.H B] and defineL1

by

L1~s![(
j 51

d

~1A
^ ufB&^c j

Bu!S (
i 51

d

~ ufA&^c i
Au ^ 1B!s~ uc i

A&^fAu ^ 1B!D ~1A
^ uc j

B&^fBu!

5 (
i , j 51

d

ufA
^ fB&^c i

A
^ c j

Busuc i
A

^ c j
B&^fA

^ fBu5uf&tr~s!^fu5uf&^fu

for all sPS(H A
^ H B).

For L2 , we note that ifuC&^CuPS(H A
^ H B) is any pure state, then, by Nielsen’s theore

there exists anLQCCoperation mappingP1
d to uC&^Cu because the distribution (1/d) i 51

d is
majorized by any probability distribution on$1, . . . ,d%. Now, as in the proof of Lemma 11, w
can constructL2 as a convex combination of operations mappingP1

d to pure components of%.j
Given a state% on H A

^ H B, consider a sequence ofLQCC operations (Ln) with
Ln :T((H A) ^ n

^ (H B) ^ n)→T((H A) ^ n
^ (H B) ^ n). Suppose thatsn[Ln(% ^ n) satisfies

iP
1

dn2sni1→0

for some representativeP
1

dn of P1(Cdn) on (H A) ^ n
^ (H B) ^ n. We call such a sequence (Ln) an

LQCCdistillation protocol. The asymptotic ratio attainable via this protocol is then defined b

ED~~Ln!,% ![ lim sup
n→`

log2 dn

n
. ~14!

Lemma 15 shows that, for any state, a distillation protocol always exists withdn[1.
Definition 16: Thedistillable entanglementor entanglement of distillationED is defined as the

supremum of Eq. (14) over all possibleLQCCdistillation protocols:

ED~% ![sup
(Ln)

ED~~Ln!,% !. ~15!

By constructionED satisfies the properties~E2! and~E4! of entanglement measures. The pro
is analogous to the proof of Lemma 1 in Ref. 28. It is not known whetherED satisfies~E3! or ~E6!.
~Indeed, as already mentioned, there is evidence that~E6! may not be satisfied.8! We shall confirm
in Lemma 24 that~E0! and ~E1! are satisfied.

The so-calledentanglement cost EC is defined in a complementary way. Given a state%,
consider a sequence ofLQCCoperationsLn :T(Cdn^ Cdn)→T((H A) ^ n

^ (H B) ^ n) transforming a
representative ofP1(Cdn) into a statesn such that
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isn2% ^ ni1→0.

The asymptotic ratio attainable via thisformation-protocol is then given by

EC~~Ln!,% ![ lim inf
n→`

log2 dn

n
. ~16!

Once again Lemma 15 shows that, for any state, a formation protocol always exists wdn

[dn whered5max$dimH A,dimH B%.
Definition 17: Theentanglement costEC is defined as the infimum of Eq. (16) over all possib

LQCCformation protocols:

EC~% ![ inf
$Ln%

EC~~Ln!,% !. ~17!

By constructionEC satisfies property~E2!. As we shall discuss in the next section, by Ref.
and Proposition 13, it also satisfies~E0!, ~E1!, ~E2!, ~E4!, ~E5!, and~E6!. It is not known whether
it satisfies~E3!. We shall also prove below that for pure states bothED andEC are equal to the
reduced von Neumann entropy given by Eq.~3!. ~This was first realized in Ref. 29 and a rigorou
proof was sketched in Ref. 21.!

B. Abstract measures

The entanglement measures discussed in this subsection quantify entanglement mat
cally, but their definitions do not admit a direct operational interpretation in terms of entangle
manipulations. The first one is the so-calledentanglement of formation1 which is defined as
follows:

Definition 18: LetH A and H B be finite dimensional Hilbert spaces and letuc&PH A
^ H B.

Then theentanglement of formationis defined for pure states as

EF~Pc!ªSvN~Pc!, ~18a!

where SvN(Pc) @defined in Eq. (3)# is the von Neumann entropy of either of the reduced den
matrices ofuc&. For mixed states%PS(H A

^ H B) we define

EF~% !ª inf (
i

piEF~Pc i
!, ~18b!

where the infimum is taken over all possible decompositions of% of the form%5( i pi uc i&^c i u with
pi>0 for all i and ( i pi51.

The entanglement of formation satisfies~E0!–~E3!, ~E5!, and ~E6!. In particular,~E2! was
shown in Ref. 1,~E3! in Ref. 6, and~E0!, ~E1!, ~E5!, and~E6! follow directly from the definition
of EF .

The entanglement of formationEF is believed but not known to be equal to the entanglem
costEC . However, it is known that theregularizedentanglement of formationEF

` @which exists by
(E58)# is equal to the entanglement cost.28 This allows us to apply Proposition 13 toEC .

Let us now present another important measure, namely, therelative entropy of
entanglement.24,2 It is defined as follows:

ER~% ![ inf
s

Srel~%us!, ~19!

whereSrel(%us)[tr% log2 %2tr% log2 s is the quantum relative entropy, and where the infimum
taken over all separable statess. One can consider variations of the above measure, by chan
the set of states over which the infimum is taken~this set should be closed under LQC
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operations though!. Like the entanglement of formation,ER satisfies~E0!–~E3!, ~E5!, and~E6!. In
particular,~E1! and~E2! were shown in Ref. 24,~E3! in Ref. 9,~E0! follows immediately and~E5!
almost immediately from the definition ofER , and~E6! follows from the convexity of the quan
tum relative entropySrel .

The properties ofER and Proposition 13 show that theregularizedrelative entropy of en-
tanglementER

` exists and satisfies~E0!, ~E1!, ~E2!, ~E4!, ~E5!, and~E6!. It is shown in Ref. 10 that
ER doesnot satisfy ~E4!. This implies, of course, thatER andER

` are not always equal~cf. Ref.
30!.

Finally, let us note that for pure states both the entanglement of formation~by definition! and
the relative entropy of entanglement~as shown in Refs. 2 and 31! are equal to the reduced vo
Neumann entropySvN @defined in Eq.~3!#. An immediate consequence of the additivity ofSvN is
that EF

`5EC andER
` are also equal toSvN on pure states~see also Theorem 23!.

VII. ENTANGLEMENT OF DISTILLATION AND ENTANGLEMENT COST AS EXTREME
MEASURES

In this section we improve the theorem of Ref. 4 by giving precise conditions under whicED

andEC are lower and upper bounds for entanglement measures. We propose three version
theorem.

Proposition 19: Suppose that E is an entanglement measure defined on mixed states
satisfies(E1) – (E4). Then for all states%PS(H A

^ H B)

ED~% !<E~% !<EC~% !. ~20!

Proof: Choosee.0. We shall prove the result in three steps:
~I ! First we prove that, having if necessary passed to a subsequence, there exists an

N1.0 such thatn>N1 implies

E~% ^ n!

n
>ED~% !2e. ~21!

Consider a near-optimalLQCCprotocol (Ln)n . By the definition of distillable entanglement, the
exists aLQCCprotocol (Ln)n such that, after possibly passing to a subsequence,

iP
1

dn2Ln~% ^ n!i1→0 ~22a!

and

UED~% !2
log2 dn

n U<e

2
~22b!

for all n>N18 . ~E3! implies that

UE~Ln~% ^ n!!2E~P
1

dn!

11n log2 d
U→0 ~23!

asn→` whered5dimH A
^ H B. It follows that we can chooseN19.0 such thatn>N19 implies

UE~Ln~% ^ n!!

n
2

E~P
1

dn!

n
U<e

2
, ~24!

and, so, using~E2!, for n>N15max$N18 ,N19%,
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E~% ^ n!

n
>

E~Ln~% ^ n!!

n
>

E~P
1

dn!

n
2

e

2
5

log2 dn

n
2

e

2
>ED~% !2e. ~25!

~II ! As a second step, we prove that, having if necessary passed to another~perhaps disjoint!
subsequence, there exists an integerN2>N1 such thatn>N2 implies

E~% ^ n!

n
<EC~% !1e. ~26!

This is similar to the first step. Consider a near-optimal protocol (Ln)n for %. We have@after
possibly passing to a suitable subsequence of (Ln)n#, for all sufficiently largen,

E~% ^ n!

n
<

E~Ln~P
1

dn!!

n
1

e

2
<

E~P
1

dn!

n
1

e

2
5

log2 dn

n
1

e

2
<EC~% !1e. ~27!

~III ! The final step is to invoke~E4! to give

ED~% !2e<E~% !5
E~% ^ n!

n
<EC~% !1e. ~28!

j

Unfortunately, as we do not at present know of any function for which we can prove
postulates~E1!–~E4! hold for all states, it is possible that Proposition 19 may be empty. Ne
theless, by modifying the final step of the proof, we can obtain the following:

Proposition 20: Let E be an entanglement measure defined on mixed states and sat
(E1), (E2), (E3), and (E59). Then for all states%PS(H A

^ H B),

ED~% !<E`~% !<EC~% !. ~29!

Proof: Without using condition~E4! or any properties ofE` except its existence, we ca
maintain the structure of the previous proof, simply by replacingE(%) in ~28! by E`(%). j

Proposition 20 is certainly nonempty. Indeed, as mentioned in the previous section, bo
entanglement of formation and the relative entropy of entanglement satisfy all assumptions
proposition. We obtain the following corollary.

Corollary 21: The entanglement of distillation ED is less than or equal to the entangleme
cost EC for all states.

Although, in physical terms, Corollary 21 seems almost necessary, a rigorous proof re
some control both over changes in state and over changes in dimension.

Let us now consider yet another version, where we weaken the assumptions in the theo
extreme measures of Ref. 4. We impose the condition (E38), which is stronger than~P3! but
weaker than~E3!.

One mechanism for deriving condition (E38) for a given functionE might be to establish the
inequalities

f ~% !<E~% !<g~% !, ~30!

where f , g are functions satisfying (E38) which coincide on pure states. We will takef (%)
[S(%A)2S(%) andg(%)[S(%A) ~where%AªtrHB

%!. Both of these functionsf andg do satisfy
(E38). This follows immediately from two facts:

~i! Fannes inequality32,33

uS~s!2S~% !u<is2%i1 log2 dimH1h~ is2%i1!, ~31!
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which holds for any two statess and % acting on the Hilbert spaceH and satisfyingis2%i1

< 1/3; hereh(s)[2s logs andS denotes the standard von Neumann entropy as above.
~ii ! isA2%Ai1<is2%i1 , wheresA and%A are the reduced density operators of% ands,

respectively.
With the above choices forf andg one can show thatEF andER satisfy the inequalities in

~30! ~see Refs. 1, 2, 31, and 34!. Then, ER
` and EF

` also satisfy inequalities~30!, because the
additivity of the von Neumann entropy implies that bothf andg satisfy~E4!. ED also satisfies the
inequalityED<g, but we do not know whether or not it satisfies the second inequality. Howe
a stronger inequality~the so-calledhashing inequality!, which would have many interesting im
plications, was conjectured in Ref. 35. Strong evidence for this conjecture was collected th

We shall also use the weak form of convexity (E68).
Proposition 22: Let E be an entanglement measure defined on mixed states and sat

(E1), (E2), (E38), and (E68). Then for all states%PS(H A
^ H B) we have

ED~% !<E~% !<EC~% ! ~32!

if (E4) holds and

ED~% !<E`~% !<EC~% ! ~33!

if (E5) holds.
Proof: Step I of the proof of Proposition 19 goes through with (E38) replacing ~E3! in

inequality ~24!.
To replace step II, we use the estimateEC>EF

` . This follows from Proposition 20~but also,
of course, from Ref. 28, where it was shown thatEC5EF

`!. For any state% consider its finite
decompositions into pure states

%5(
i

pi uc i&^c i u

for which

EF~% !5(
i

piSvN~Pc i
!.

In Ref. 36 it was shown that such a decomposition exists.
As (E1)5(P1)⇒(P18), (E2)⇒(P2), and (E38)⇒(P3), we can apply Theorem 23~to fol-

low! to show thatE(Pc i
)5SvN(Pc i

) if E satisfies~E4! andE`(Pc i
)5SvN(Pc i

) if E satisfies~E5!.
Now (E68) implies, in the first case, thatE(%)<EF(%) ~cf. Ref. 36! and hence

E~% !5
E~% ^ n!

n
<

EF~% ^ n!

n
,

which yields the required upper bound whenn→`. For the second case, we can use the proo
part ~6! of Proposition 13 to show that (E68) holds forE`. This yieldsE`(%)<EF(%) and

E`~% !5
E`~% ^ n!

n
<

EF~% ^ n!

n
.

Again the required bound follows on takingn→`. j
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VIII. THE UNIQUENESS THEOREM FOR ENTANGLEMENT MEASURES

Theorem 23: Let E be a functional on pure states. Then the following are equivalent:

~1! E satisfies(P18), (P2), (P3), and (P48).
~2! E satisfies(P0), (P1), (P2), (P3), and (P4).
~3! E coincides with the reduced von Neumann entropy E5SvN .

On the other hand, if E satisfies(P0), (P1), (P2), and(P3), then E satisfies(P59) and, on pure
states, E`5SvN .

Proof: The equivalence of~1! and ~2! is proved in Lemmas 10 and 11.
It is clear that the reduced von Neumann entropy satisfies~P0!, ~P1!, and~P4!. ~P3! follows

from the facts (i ) and (i i ) of the previous section. Finally~P2! is a consequence of Nielsen
theorem and the fact that the von Neumann entropy is a Schur-concave function.37 Indeed, with
the inductive decomposition ofLQCCoperations introduced in our proof of Nielsen’s theorem,
can prove~P2! just by showing, in the notation of Eq.~12!, that SvN(L(uC&^Cu))<SvN(uC&
3^Cu). This amounts to proving that, forpJ>pK and suitabled,

2~pJ1d!log2~pJ1d!2~pK2d!log2~pK2d!<2pJ log2 pJ2pK log2 pK ,

and this is easily confirmed by differentiating with respect tod.
Now suppose thatE satisfies~P0!, ~P1!, ~P2!, and ~P3!. Using (P28), we may assume tha

H A[H B[H. Suppose that dimH5d and let uc&PH^ H. Write S[SvN(uc&^cu) for the von
Neumann entropy of the reduced density matrix ofuc&. Considern copies of the wavefunction
uc&: uc ^ n&PHtot[H ^ n

^ H ^ n. Let $qj : j 51, . . . ,d% be the set of eigenvalues of the reduc
density matrix ofuc& and $pi : i 51, . . . ,d2n% be the set of eigenvalues of the reduced den
matrix of uc ^ n&. Again using (P28), we may adjustd so thatqj.0 for j 51, . . . ,d. In view of
~P0!, we may also assume thatS.0. Considered as a probability distribution,$pi% is the distri-
bution for n independent trials each with distribution$qj%. Choose bases (ei),H ^ n and
( f i),H ^ n such that

uc ^ n&5(
i

Api uei& ^ u f i&.

Choosee.0. By the asymptotic equipartition theorem~Ref. 38, Theorem 3.1.2!, there exists an
integerN[N(e) such that, for alln>N, one can find a subsetTYP[TYP(n,e) of the set of

indices$ i % i 51
d2n

with the following properties:

22n(S1e)<pi<22n(S2e), for i PTYP, ~34a!

p[ (
i PTYP

pi>12e, ~34b!

#TYP<2n(S1e). ~34c!

Here #TYP denotes the number of elements inTYP.
Introduce another wavefunctionufn&PHtot given by

ufn&[
1

Ap
(

i PTYP
Api uei& ^ u f i&.

This wavefunction satisfies

u^c ^ nufn&u25p>12e ~35!
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and so

iuc ^ n&^c ^ nu2ufn&^fnui152A~12u^c ^ nufn&u2!<2Ae. ~36!

Now, the crucial observation~cf. Ref. 21! is that for e,min$1/2S, 1/2% and n sufficiently
large, there exist completely positive mapsLn andLn8 such that

Ln~ ufn&^fnu!5P1
a ~37a!

for P1
a a representative ofP1(Ca) in Htot with u (log2 a)/n2Su,e1 2/n and

Ln8~P1
b !5ufn&^fnu ~37b!

for P1
b a representative ofP1(Cb) in Htot with u (log2 b)/n2Su,e1 1/n. Indeed, to see Eq.~37a!,

set a[ bp2n(S2e)c, i.e., a is the largest integer smaller than or equal top2n(S2e). Then a
<p2n(S2e)<p/pi and we see that the distribution (pi /p) i PTYP is majorized by (1/a) i 51

a , hence
Eq. ~37a! follows from Nielsen’s theorem. Equation~37b! follows by a similar argument when w
takeb[ dp2n(S1e)e, i.e.,b is the smallest integer larger than or equal top2n(S1e). The conditions
on e and n are sufficient to go froma[ bp2n(S2e)c to u (log2 a)/n2Su,e1 2/n and from b
[ dp2n(S1e)e to u (log2 b)/n2Su,e1 1/n, ensuring, for example, thataÞ0.

Now choose a sequence (e j ) j PN of positive numbers such thate j→0 for j→`. Suppose that
(nk)kPN is a sequence of integers such thatnk→` andE(uc ^ nk&^c ^ nku)/nk →L for someL.

For eachj , choosenkj
>max$N(ej),1/e j%. We can apply the postulates~P0!–~P3! to obtain the

following estimates:

E~ uc ^ nkj&^c ^ nkju!
nkj

5

E~ uc ^ nkj&^c ^ nkju!2E~ ufnkj
&^fnkj

u!

nkj

1

E~ ufnkj
&^fnkj

u!

nkj

>
E~ uc ^ nkj&^c ^ nkju!2E~ ufnkj

&^fnkj
u!

nkj

1

E~Lnkj
~ ufnkj

&^fnkj
u!!

nkj

5

E~ uc ^ nkj&^c ^ nkju!2E~ ufnkj
&^fnkj

u!

nkj

1
E~P

1

ankj!

nkj

5

E~ uc ^ nkj&^c ^ nkju!2E~ ufnkj
&^fnkj

u!

nkj

1

log2 ankj

nkj

.

As j→`, the first term vanishes due to~P3! and the second approachesSvN(Pc) ~cf. Ref. 6!. This
implies thatL>SvN(uc&^cu). The proof of the inequalityL<SvN(uc&^cu) is similar:

E~ uc ^ nkj&^c ^ nkju!
nkj

5

E~ uc ^ nkj&^c ^ nkju!2E~ ufnkj
&^fnkj

u!

nkj

1

E~ ufnkj
&^fnkj

u!

nkj

<
E~ uc ^ nkj&^c ^ nkju!2E~ ufnkj

&^fnkj
u!

nkj

1
E~P

1

bnkj!

nkj

5

E~ uc ^ nkj&^c ^ nkju!2E~ ufnkj
&^fnkj

u!

nkj

1

log2 bnkj

nkj

.

We have now shown that every limit point of the sequenceE(uc ^ n&^c ^ nu)/n has the value
L5SvN(uc&^cu). But, by~P1!, ~P2!, and Lemma 15, this sequence is bounded, and so (P59) holds
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with E`(uc&^cu)5L5SvN(uc&^cu). This proves the final statement of the theorem. On the o
hand, if ~P4! holds, thenL5E(uc&^cu), and so we have proved that~2! implies ~3!. This com-
pletes the proof of Theorem 23. j

It is natural to wonder whether the conditions in Theorem 23 can be weakened, a
particular, whether~P3! is necessary. That it is has been noted by Vidal.3 Consider the entangle
ment measures defined on pure states byS`(s)52 log2 p1(s) wherep1(s) is the largest coeffi-
cient in a Schmidt decomposition ofs and byS0(s)5 logd(s), whered is the number of nonzero
coefficients.S0 andS` both satisfy~P0!, ~P1!, ~P2! ~by Nielsen’s theorem!, and~P4!. S` is even
trace norm continuous on Hilbert spaces of fixed dimension.~P3!, however, does not hold fo
either. This is, of course, a consequence of Theorem 23. An explicit example of the failure o~P3!
for S` is provided by the statessn[uCn&^Cnu, %n[uFn&^Fnu with Schmidt decompositions

uCn&[A1/2nuc1c1&1( i 52
4n22n11 (1/2n) uc ic i& and uFn&[( i 51

4n
(1/2n) uc ic i& for some orthonor-

mal family (uc i&) of wavefunctions. In fact, any entanglement measureE defined on pure state
and satisfying~P0!, ~P1!, ~P2!, and ~P4! will satisfy S`(s)<E(s)<S0(s) for all pure s. The
upper bound here is a consequence of Lemma 15 while, for the lower bound, we modify the
of Theorem 23 using the fact thatuc ^ n&^c ^ nu can always be converted without approximati
into P1

c wherec is the largest integer smaller than or equal to 1/p1 .
An example of a measure on pure states satisfying~P0!, ~P1!, ~P2!, and~P3!, but not~P4!, is

given byE(s)52(12p1(s))SvN(s) for p1(s)> 1/2 , E(s)5SvN(s) for p1(s)< 1/2.
Finally, let us consider entanglement of distillation and entanglement cost in the above

text. Using the maps constructed in Theorem 23, we show that they are equal toSvN . We have
already noted that forEC this also follows from Ref. 28.

Lemma 24: The entanglement of distillation ED and the entanglement cost EC both coincide
on pure states with the von Neumann reduced entropy ED(Pc)5EC(Pc)5SvN(Pc) for all uc&
PH^ H.

Proof: From Sec. VII we know thatED<EC . It suffices to show that on pure statesED

>SvN andEC<SvN . We will continue to use the notation from the proof of Theorem 23.
That EC(Pc)<SvN(Pc) follows directly from the definition ofEC , using the operations

defined by theLnj
8 which satisfy Eq.~37b! and estimate~36!.

To show thatED(Pc)>SvN(Pc), let us apply the mapLnj
from Eq. ~37a! to the state

uc ^ nj&^c ^ nj u. We only need check that the resulting stateLnj
(uc ^ nj&^c ^ nj u) approachesP1

a as
j→`. But, by Lemma 5,

iLnj
~ uc ^ nj&^c ^ nj u!2P1

a i15iLnj
~ uc ^ nj&^c ^ nj u!2Lnj

~ ufnj
&^fnj

u!i1

<iuc ^ nj&^c ^ nj u2ufnj
&^fnj

ui1

and once again estimate~36! is sufficient. j

With the results obtained in this article, we can now prove thatED is convex on pure decom
positions, i.e., we have the following Lemma.

Lemma 25:

EDS (
i

pi uc i&^c i u D<(
i

piED~ uc i&^c i u!, ~38!

where pi>0 for all i and ( i pi51.
Proof: We have seen thatEC is convex and satisfiesED<EC . Using Lemma 24 gives
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EDS (
i

pi uc i&^c i u D<ECS (
i

pi uc i&^c i u D
<(

i
piEC~ uc i&^c i u!

5(
i

piSvN~Pc i
!

5(
i

piED~ uc i&^c i u!. ~39!

j
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Global entanglement in multiparticle systems
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We define a polynomial measure of multiparticle entanglement which is scalable,
i.e., which applies to any number of spin-1

2 particles. By evaluating it for three
particle states, for eigenstates of the one dimensional Heisenberg antiferromagnet
and on quantum error correcting code subspaces, we illustrate the extent to which
it quantifies global entanglement. We also apply it to track the evolution of en-
tanglement during a quantum computation. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1497700#

Although entanglement has been recognized as a remarkable feature of quantum me
since Schro¨dinger introduced the word1 in response to Einstein, Podolsky and Rosen’s fam
paper,2 it remains only incompletely understood. In fact, for more than two particles—eve
only spin-12—there is no complete classification of entanglement. To be more precise, ameasure of
entanglementis a function on the space of states of a multiparticle system which is invariant u
local unitary operators, i.e., unitary transformations on individual particles. Thus a com
classification of entanglement for a multiparticle system is a characterization of all such func
Under the most general local operations assisted by classical communication~LOCC3!, entangle-
ment can change. A measure of entanglement which decreases under LOCC is called anentangle-
ment monotone.4

On two particle pure states, for example, all measures of entanglement are functions
eigenvalues of the reduced density matrix~obtained by tracing the density matrix for the who
system over the degrees of freedom of one of the particles!, and sums of thek smallest eigenval-
ues are entanglement monotones.5 The same information—in somewhat less familiar, but mo
algebraically convenient form—is contained in the coefficients of the characteristic polynom
the reduced density matrix. These coefficients are polynomials in the components of the
vector and their complex conjugates. They generate the ring of polynomial functions inv
under the action of local unitary transformations; thus they completely classify two particle
state entanglement.

As the number of particlesn increases, however, the number of independent invarian
measures of entanglement—grows exponentially. Complete classification rapidly becomes i
tical. Our goal in this article is more modest: we seek a measure of entanglement wh
scalable, i.e., which is defined for any number of particles; which is easily calculated; and w
provides physically relevant information. We concentrate on the case of spin-1

2 particles~qubits!
and begin by defining a family~parametrized byn) of functions on (C2) ^ n. We show that each
function is a measure of entanglement, vanishing exactly on product states. Next we evalu
measure for several example states which illustrate its properties, most importantly that i
suresglobal entanglement. This is perhaps best exemplified by its values on eigenstates
antiferromagnetic Hamiltonian, for which we show that it is maximal only on the ground stat
a less traditional context, quantum computation relies heavily on multiparticle entangled s
particularly for error correction. We show that quantum error correcting code states also ma

a!Electronic mail: dmeyer@math.ucsd.edu
b!Electronic mail: nwallach@math.ucsd.edu
42730022-2488/2002/43(9)/4273/6/$19.00 © 2002 American Institute of Physics
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our measure of entanglement. Finally, we illustrate its use in a dynamical setting, trackin
evolution of entanglement during a specific quantum computation.

The Hilbert space (C2) ^ n of n qubits has a basis labeled by the 2n n-bit strings:ub1¯bn&,
bjP$0,1%. For bP$0,1%, define

ı j~b!ub1¯bn&5dbbj
ub1¯b̂ j¯bn&,

where ˆ denotes absence. We extendı j by linearity to be a mapC2
^ (C2) ^ n→(C2) ^ n21. For

u,vP(C2) ^ n21 we can writeu5(uxux& and v5(vyuy&, where 0<x,y,2n21 are (n21)-bit
strings. Next, let

D~u,v !5(
x,y

uuxvy2uyvxu2,

the norm-squared of the wedge product ofu andv. Finally, for cP(C2) ^ n, define

Q~c!5
4

n (
j 51

n

D~ ı j~0!c,ı j~1!c!.

As we will see shortly, the 4/n factor provides a convenient normalization forQ.
Proposition 1: For each nPZ>2 , Q:(C2) ^ n→R is a measure of entanglement.
Proof: For u,vP(C2) ^ n21, D(u,v) is invariant underU(2n21). A transformation of thej th

qubit in cP(C2) ^ n multiplies thej th summand inQ by the norm squared of its determinant. Th
each summand is invariant under TSL(2)3U(2n21), where T denotes the unit scalars. The int
section of these groups for all the summands is U(2)n, i.e., the local unitary transformations.j

The most basic property that a measure of entanglement can have is to identify com
unentangled, i.e., product states.Q has this property:

Proposition 2: Q(c)50 iff c is a product state.
Proof: Two vectorsu,vP(C2) ^ n21, are linearly dependent iffD(u,v)50. ThusQ(c)50

implies the existence ofa jPC such thatı j (1)c5a j ı j (0)c for all 1< j <n. In particular,

c5u0& ^ ı1~0!c1u1& ^ ı1~1!c5~ u0&1a1u1&) ^ ı1~0!c5~g^ I !•~ u0& ^ c8)

for somegPSU(2), c8P(C2) ^ n21. By Proposition 1,Q is invariant under the local unitary
transformationg^ I , so

05Q~c!5Q~ u0& ^ c8)501(
j 52

n

D~ ı j~0!@ u0& ^ c8#,ı j~1!@ u0& ^ c8]) 5Q~c8!.

Then, by induction,c is a product state.
Conversely, ifc is a product state, then for all 1< j <n, ı j (0)c is parallel toı j (1)c. Thus

Q(c)50. j

Having demonstrated thatQ vanishes on product states, we should now calculate it for s
entangled states. First consider the EPR-Bohm2,6 state (u01&2u10&)/A2, or, equivalently,g2

5(u00&1u11&)/A2. It is straightforward to calculate:

Q~g2!52•
4

2 Fdet
1

A2
S 1 0

0 1D G 2

51.

Next, the three qubit GHZ-Mermin7,8 state isg35(u000&1u111&)/A2. Calculating the invariant
we again find
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Q~g3!53•
4

3 Fdet
1

A2
S 1 0

0 1D G 2

51.

Finally, it is now clear that for then qubit stategn5(u0¯0&1u1¯1&)/A2, Q(gn)51. These
examples demonstrate that the 4/n factor provides a natural normalization forQ.

Proposition 3: With this normalization, 0<Q<1.
Proof: SinceD(u,v) is the norm-squared of the wedge product of the two vectorsu andv, it

is bounded above byiui2ivi2, which takes its maximal value of14 when iui25ivi25 1
2 for

vectorsc5u0& ^ ı1(0)c1u1& ^ ı1(1)c with ici251. Since there aren summands inQ, it is

bounded above byn• (4/n) • 1
4 51. j

Proposition 2 and the calculations above show that these bounds are saturated on, resp
product states and the entangled statesgn . Of course,Q does take other values: Under the acti
of U(2)3U(2)3U(2), theHilbert space for three qubits,C2

^ C2
^ C2, decomposes into multiple

orbits.9–15 Representative states areu000& ~product states!, u0& ^ g25u0&(u00&1u11&)/A2 ~and
cyclic permutations!, (u100&1u010&1u001&)/A3, and g3 . By Proposition 2,Q(u000&)50. By

Proposition 2 and the calculation above,Q(u0& ^ g2)5 4
3 •

1
2 5 2

3. A straightforward calculation
gives Q((u100&1u010&1u001&)/A3)5 8

9. And we have already calculatedQ(g3)51. Thus for
three qubits our measure of entanglement behaves in the way we would want, decreasing
states we would consider successively less globally entangled~and taking different values on eac
of these states, unlike the ‘‘tangle,’’16 for example, which vanishes on all butg3!. In fact, on three
qubits Q is an entanglement monotone and numerical evidence indicates that this is tr
general.17

The traditional context in which globally entangled multiparticle states occur is lattice
systems. Consider, for example, the one-dimensional spin-1

2 Heisenberg antiferromagnet18,19 on a
lattice of sizen, with periodic boundary conditions, defined by the Hamiltonian

Hn5(
j 51

n

XjXj 111YjYj 111ZjZj 11 ,

where the subscripts are to be interpreted modn, andX, Y, Z denote the Pauli matricessx , sy ,
sz , respectively.Hn commutes withSz5(Zj , so the eigenstates ofHn can be labeled by thei
total spinSz , i.e., each eigenstate ofHn is a superposition of basis vectorsub1¯bn& with u$ j ubj

51%u5s for some fixed 0<s<n. Whens51, the translation invariance ofHn implies that the
eigenstates are plane waves

cn
(k)5

1

An
(
j 50

n21

eik j u0¯010̄ 0&,

where thej th summand has a single 1 at thej th bit and the wave numberk52pm/n for some
integer 0<m<n21. For n53 these plane waves are equivalent under local unitary transfo

tions to the state (u100&1u010&1u001&)/A3, for which we calculatedQ5 8
9 above. In fact, for

arbitraryn the entanglement of these plane waves is simply

Q~cn
(k)!5

4

n
•n•~n21!

1

n2 5
4~n21!

n2 .

For s.1 the eigenstates ofHn can be computed using the BetheAnsatz; the ground state ha
s5n/2 ~for evenn!.20 Using the translation invariance of these eigenstates we can evaluaQ
easily. The result is

Q~Sz5s eigenstate ofHn!5
4

n
•n•S n21

s D S n21
s21 D S n

sD 22

5
4s~n2s!

n2 .
                                                                                                                



mul-

error
space of

ubits:

ional—

ulate
more
duced

t that
-
uires a

in
t.

one

t

4276 J. Math. Phys., Vol. 43, No. 9, September 2002 D. A. Meyer and N. R. Wallach

                    
Notice that for the ground state this entanglement measure is maximal,Q51. This result contrasts
with O’Connor and Wootters’ calculations of the ‘‘concurrence’’C in these states:21 they find that
C is not maximal on the ground state, but rather fors/n'0.3 asn→`. This difference is due to
the fact thatC is really a measure of two particle entanglement, even when generalized to
tiparticle states, whileQ is a global measure of multiparticle entanglement.

Highly entangled multiparticle states also occur in the relatively new context of quantum
correcting codes. In fact, the code subspace for an additive code can be described as the
ground states of the Hamiltonian formed by the sum of the stabilizers.22 For example, the code
subspace for a 5 qubit code@5,1,3# encoding 1 qubit against single bit errors23,24 is the space of
ground states of the translation invariant Hamiltonian on a one-dimensional lattice of five q

H [5,1,3]5(
j 51

5

XjZj 11Zj 12Xj 13 ,

where the subscripts are to be interpreted mod 5. The space of ground states is two dimens
which is why it can encode 1 qubit. A basis is

u0&°@ u00000&2~ u11000&1cyc)1~ u10100&1cyc)2~ u11110&1cyc)]/4,

u1&°@ u11111&2~ u00111&1cyc)1~ u01011&1cyc)2~ u00001&1cyc)]/4,

where ‘‘cyc’’ indicates cyclic permutations. From these equations it is straightforward to calc
thatQ51 for all states in this code space. Here the difference from the concurrence is even
dramatic:C vanishes on the code subspace since tracing over all but two qubits leaves a re
density matrix proportional to the identity.25

Shor’s original 9 qubit code protecting 1 qubit against single qubit errors26 can also be
described as the ground state subspace of a lattice Hamiltonian—for a lattice triangulatingRP2.27

In this case a basis for the code space is

u0&°~ u000&1u111&) ^ 3/3,

u1&°~ u000&2u111&) ^ 3/3.

CalculatingQ for the states in this subspace we find that again it is maximal, despite the fac
these states decompose into products of three qubit factors. SoQ does not distinguish all subglo
bal entanglements; this is a consequence of using a single invariant. Finer resolution req
more complete set of invariants, and, in general, higher degree polynomials.9,10,12,15,28

Nevertheless, as we have seen,Q provides useful information about global entanglement
certain contexts. Furthermore, in dynamical problems,Q quantifies the evolution of entanglemen
Consider Grover’s algorithm,29 for example: GivenajP$0,1%, 1< j <n, define

Uaub1¯bn&5~21!Pdajbjub1¯bn&

and then extendUa by linearity to a map (C2) ^ n→(C2) ^ n. The goal of Grover’s algorithm is to
convert an initial state ofn qubits, sayu0¯0&, to a state with probability bounded above1

2 of
being in the stateua1¯an&, usingUa the fewest times possible. Grover showed that it can be d
with O(A2n) uses ofUa by preparing the state

1

A2n (
x50

2n21

ux&5H ^ nu0¯0&, where H5
1

A2
S 1 1

1 21D ,

and then iterating the transformationH ^ nU0H ^ nUa on this state.29 The initial state is a produc
state, as is the target stateua1¯an&, but intermediate statesc(k) are entangled fork.0 iterations.
We can evaluateQ on these states to quantify this entanglement:
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Q~c~k!!54S N

2
21D cos2 uk

N21 S sinuk2
cosuk

AN21
D 2

,

whereuk5(2k11)csc21(AN) and N52n. The results are plotted in Fig. 1 forn510: the en-
tanglement oscillates, first returning to close to 0 at

k5 b 1

2 S p

2csc21~AN!
21D e; b p

4
ANe as N→`,

whereb• e denotes ‘‘closest integer to’’; this is when the probability of measuringua1¯an& is first
close to 1.

Three qubit states, eigenstates of lattice Hamiltonians, quantum error correcting cod
spaces, and the intermediate states in Grover’s algorithm all illustrate how a measure of mu
ticle entanglement such asQ provides insight into global properties of quantum multipartic
systems. WhileQ has the satisfactory properties of Propositions 2 and 3, is an entangle
monotone on three qubits, and is a straightforwardly computable polynomial, it is in no se
unique measure of multiparticle entanglement. A more complete~but still partial! characterization
can be obtained by also using some of the other measures which have been proposed,
concurrence,21 the closely relatedn-tangle,30 the Schmidt rank,31 the negativity,32 etc. Each em-
phasizes a specific feature of multiparticle entanglement and describes a different physica
erty. We anticipate that multiparticle entanglement measures—whose current developm
largely motivated by quantum computation—will contribute to the understanding of the phys
quantum multiparticle systems more generally.33–35
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The entanglement of formation gives a necessary and sufficient condition for the
existence of a perfect quantum error correction procedure. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1497183#

I. QUANTUM ERROR CORRECTION

Suppose a composite quantum systemRQ is initially in a pure joint input stateuCRQ&. The
subsystemQ undergoes a dynamical evolution described by a trace-preserving, completely
tive ~CP! mapE. The joint output state is therefore

rRQ85I ^ E~ uCRQ&^CRQu!. ~1!

This situation describes the transmission of ‘‘quantum information’’~the entanglement betweenR
and Q! via a noisy quantum channel. For example, imagine thatRQ is a quantum computing
device. The overall state of the device is entangled. SubsystemQ is imperfectly isolated from the
environment, and thus experiences noise and distortion given byE. The problem of sending
entanglement through a channel in this way is closely related to other tasks of quantum in
tion transfer, such as the transmission of an unknown quantum state ofQ.1

We are interested in the question of whether the original input stateuCRQ& can be restored by
some possible operation onQ alone. Such a restoring operation is called a ‘‘quantum e
correction’’ procedure.2 We say thatperfectquantum error correction is possible when there ex
a trace preserving CP mapD on Q such that

uCRQ&^CRQu5I ^ D~rRQ8!. ~2!

If no suchD exists, we may still be able to doapproximatequantum error correction, in which
case we restorerRQ8 to a state close to the original.~‘‘Close’’ here is usually defined in terms o
the fidelity or some equivalent measure.! In this article, we will mostly be concerned with th
question of perfect~unit fidelity! error correction.

We first note that, if the input state ofRQ is a product state, then it is always possible
restore the input state by means of an operation onQ. Thus, the problem of error correction
only nontrivial whenuCRQ& is entangled. The entanglement of a pure state ofRQ is measured by
the entropySQ of the subsystemQ:

SQ52TrrQ logrQ. ~3!

Of course, sinceRQ is in a pure state, thenSQ5SR.
The output staterRQ8 is generally not pure. Schumacher and Nielsen3 defined the ‘‘coherent

information’’ to be

I 5SQ82SRQ8. ~4!

a!Electronic mail: schumacherb@kenyon.edu
42790022-2488/2002/43(9)/4279/7/$19.00 © 2002 American Institute of Physics
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This quantity has a number of significant properties. It is positive only if the output staterRQ8 is
entangled. Furthermore, it cannot be increased by any operation onQ alone. Since the initial
coherent information is justSQ, this means thatI<SQ after the action ofE. Furthermore, any loss
of I due to the action ofE is irreversible, i.e., cannot be reversed by any subsequent evolutio
Q. It follows that I 5SQ is a necessary condition for the existence of a perfect quantum
correction operationD.

In Ref. 3, it is shown that the conditionI 5SQ is alsosufficientfor the existence of such a
operation. In outline, we imagine a larger quantum systemRQE that includes the environmentE
with which Q interacts. The initial state of the environment is a pure stateu0E&, and the interaction
of Q andE is described by the unitary operatorUQE. ~Since the operationE is a trace-preserving
CP map, it must always be realizable in this way as a unitary evolution on a larger system! The
condition I 5SQ implies that the output state of the subsystemRE is a product state. From thi
product structure, a perfect error correction procedure can be constructed. In short, the lack
correlation betweenR and E after the evolution is sufficient to permit the restoration of t
original QE state by an error-correction operationD.

Although the error-correction operationD is constructed for a particular input entangled st
uCRQ&, the same procedure will also work for any other stateuFRQ& whose support inQ lies
within the Q-support foruCRQ&. Furthermore, if we have an ensemble of pure inputQ states
within this subspace,D will restore these states with unit average fidelity.3

II. ENTANGLEMENT OF FORMATION

The coherent informationI is a measure of the entanglement ofQ with R after it has under-
gone its noisy evolution. There are, however, many other ways to measure the entanglemen
output staterRQ8. One of the most fundamental is the ‘‘entanglement of formation,’’4 denotedE.
The entanglement of formation of a pure stateucAB& is just E5SA, the entropy of one of the
subsystems. A mixed staterAB has an entanglement of formation

E5min(
k

pkEk , ~5!

whereEk is the entanglement of the pure stateufk
AB& and the minimum is taken over all pure-sta

ensembles such thatrAB5(k pkufk
AB&^fk

ABu. E has the property that it cannot be increased
local quantum operations on, or the exchange of classical information between, the two
systems.

The entanglement of formation is related to the ‘‘entanglement resources’’ necessary to
the quantum state. However, to make this connection sharp one must define anasymptoticen-
tanglement of formation

E`~rAB!5 lim
n→`

1

n
E~~rAB! ^ n!. ~6!

E` is the asymptotic number of maximally entangled qubit pairs needed to create the staterAB by
local operations and classical communication—that is, for largen, aboutnE` pairs are required to
maken copies of the staterAB. Though the definitions ofE` andE are distinct, and we can se
that E`<E, it is not known whether or not these are actually equal in general.5 We will here use
the ‘‘single system’’ definition of the entanglement of formationE, since we are not primarily
concerned with asymptotic questions.

The coherent informationI and the entanglement of formationE of the output staterRQ8

satisfy I<E. To see this, suppose we have an ensemble ofRQ states such thatrRQ8

5(k pkrk
RQ , then
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SQ82(
k

pkSk
Q<SRQ82(

k
pkSk

RQ . ~7!

~This follows from the strong subadditivity of the entropy functional.6! For any ensemble of pure
states,Sk

RQ50 and so

SQ82SRQ8<(
k

pkSk
Q . ~8!

If we choose the pure state ensemble that minimizes the right-hand side, we obtainI<E.
For the input pure state ofRQ, both E and I are equal toSQ. For the output state, the

condition thatE5SQ is weaker than the condition thatI 5SQ, since we can haveI ,E. Thus,
E5SQ is a necessary condition for the existence of a perfect quantum error correction ope
D. Remarkably, it turns out that this is also a sufficient condition. We now show this. Suppos
E5SQ for our output staterRQ8. Our argument is based on three facts.

Fact 1: Concavity of the entropy. Suppose we write a mixed state as an ensemble of st
r5(k pkrk . Then

S>(
k

pkSk ~9!

with equality if and only if rk5r for all k with pk.0.7 In our context, the condition thatE
5SQ means that

05SR82min(
k

pkSk
R , ~10!

where the minimum is taken over all pure state ensembles forrRQ8, and where we have recalle
that SQ5SR5SR8. Equation~9! then tells us that

05SR82(
k

pkSk
R ~11!

for anypure state ensemble forrRQ8, and therefore all of the elements of such an ensemble h
rk

R5rR8. Since we can consider any mixed state to be made up of pure states, this is also t
rRQ8 ensembles that include mixed states.

Fact 2: Choice of ensemble is choice of ancilla measurement. Hughston, Jozsa and Wootter8

give a useful characterization of all the pure state ensembles that can lead to a particular
operatorrA for a systemA. We ‘‘purify’’ the state by envisioning a pure stateucAB& of a larger
composite systemAB such thatrA5TrBucAB&^cABu. A measurement on systemB will lead to an
ensemble of relative states ofA. In Ref. 8 it is shown that, given a purificationucAB& of rA, we
can realizeanyensemble forrA as an ensemble of relative states for some measurement onB. In
other words, the choice ofrA ensemble is exactly the same as the choice of measurement o
purifying systemB.

In our context, we can include the environment systemE as before, with the whole system
RQE in the pure stateuCRQE8& after the interaction ofQ andE. E purifiesRQ, so an ensemble
of RQ states corresponds to a measurement onE. From fact 1, we know that every element of a
ensemble forrRQ8 yields the same staterR8 on R alone. Thus, for any possible outcome of a
measurement onE, the relative state ofR will be rR8. This means that the probabilities of th
outcomes of possibleR-measurements are unaffected by the particular outcomes o
E-measurement.
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Fact 3: No correlation implies product state. Quantum state tomography2 allows the recon-
struction of a quantum stater from the outcome distributions of a finite number of possib
measurements on the quantum system. This procedure, when applied to a composite q
systemAB, has two important features. First, it is sufficient to consider only product mea
ments ofA andB to do tomography of the joint state. Second, if no statistical correlations ap
between the outcomes of theA andB measurements, the resulting joint state must be a pro
staterA

^ sB. Thus, a necessary and sufficient condition forA andB to be in a product state is tha
no correlations arise in any product measurement of the systems.

Since we have shown thatE5SQ implies no statistical correlations betweenE- and
R-measurements on the output state, we can conclude that the output state of the subsysteRE is
a product staterR8^ sE8. Given such a product state, we can apply the procedure in Ref. 3 to
an explicit error correction operationD that will restore the input stateuCRQ& of RQ with perfect
fidelity. Therefore, perfect quantum error correction is possible if and only ifE5SQ.

III. INTRINSIC EXPRESSIONS FOR I AND E

Both the coherent informationI and the entanglement of formationE are ‘‘intrinsic’’ quanti-
ties to the systemQ—that is, they can be expressed entirely in terms of the input staterQ of Q
alone and the trace-preserving CP mapE that describesQ’s dynamics. First, we note that the ma
E can be given an ‘‘operator sum’’ representation:2

E~rQ!5(
k

Akr
QAk

† , ~12!

where theAk operators satisfy(k Ak
†Ak51. A given E always has many different operator su

representations. Suppose we have a unitary matrixVkl , and define some operatorsBk as linear
combinations of theAk’s:

Bk5(
l

VklAl . ~13!

Then theBk’s give an alternate operator sum representation forE.
The operator sum representation is closely related to the unitary representation forE, in which

E is given via unitary evolution on a larger system that includes the environmentE. Once again,
E is taken to be initially in a pure stateu0E&, and the interaction ofQ andE is given by the unitary
operatorUQE. Let ukE& be a basis ofE states, and define the operatorAk on Q by the ‘‘partial
inner product’’

AkucQ&5^kEuUQEucQ0E&, ~14!

whereucQ0E& is shorthand forucQ& ^ u0E&. We can use theukE& basis to do a partial trace over th
E system, so that

E~rQ!5TrE@UQE~rQ
^ u0E&^0Eu!UQE†#5(

k
^kEuUQE~rQ

^ u0E&^0Eu!UQE†ukE&5(
k

Akr
QAk

† .

~15!

The unitary freedom in the operator sum representation is the same as the freedom to ch
basis for the environment systemE.

The operator sum representation ofE gives the output staterQ85E(rQ) as an ensemble ofQ
states. If we let

pk5TrAkr
QAk

† ,
                                                                                                                



same

m

um

en-
ns:

ication

stic
re-

-
tion

tion on

o

4283J. Math. Phys., Vol. 43, No. 9, September 2002 Entanglement, perfect quantum error correction

                    
rk
Q5

1

pk
~Akr

QAk
†!, ~16!

thenrQ85(k pkrk
Q . Different operator sum representations yield different ensembles for the

output state.
The entanglement of formationE of the rRQ8 state can be written

E5min(
k

pkSk
Q , ~17!

whereSk
Q is the entropy ofrk

Q ~as defined above! and the minimum is taken over all operator su
representations forE. In a similar way, the coherent informationI can be written

I 5SQ82minH~pW !, ~18!

where H(pW )52(kpk log pk and the minimum is once again taken over all operator s
representations.1 We can see why this is true by appealing to a unitary representation. Thepk’s are
the diagonal entries of the output density matrix for the environmentE, andSE85minH(pW) ~where
we minimize over basis states!. Since the global state ofRQE is pure,SE85SRQ8.

IV. GENERALIZATION

We pointed out that bothI andE were measures of entanglement of the staterRQ8, and that
I 5E5SQ for the input pure stateuCRQ&. We now consider other possible measures of the
tanglement ofrRQ8. SupposeM is such a measure, and that it satisfies the following conditio

~1! M5SQ whenRQ is in a pure state.
~2! M is additive if we have many copies ofrRQ8; that is,

M ~~rRQ8! ^ n!5nM~rRQ8!. ~19!

~3! M does not increase on average under local operations on, or classical commun
between,R andQ.

The requirement thatM be nonincreasing ‘‘on average’’ allows us to include nondetermini
operations, such as local measurements. ThoughM may increase conditionally for some measu
ment outcomes, we require that, ifM is averaged over all outcomes, then it cannot increase.

Coherent information satisfies~1! and~2! but not~3!; the asymptotic entanglement of forma
tion E` satisfies all three; it is not known whether the ‘‘single system’’ entanglement of forma
E satisfies~2! ~for this is exactly the question of whetherE5E`!. Conditions~1!–~3! are similar
to those discussed in Ref. 9.

We will now show that perfect quantum error correction is possible if and only ifM5SQ for
the output staterRQ8.

‘‘Only if’’ is easy to see. Initially,M5SQ. If M decreases under the action ofE on Q, then
this loss cannot be made up by any error correction procedure, which must be a local opera
Q. Thus, the original state can be restored only ifM5SQ after E acts.

To show thatM5SQ is sufficient to allow perfect error correction, we will show thatM
<E. Imagine that we begin withnE` maximally entangled qubit pairs, for whichMn5nE` . We
know that, ifn is large, we can use these pairs to make aboutn copies of our staterRQ8 by local
operations and classical communication. SinceM cannot increase in this process,nM<Mn , and
so M<E` . But we have seen thatE`<E, so M<E.

We know thatE<SQ. Thus, if M5SQ, thenE5SQ. As we have seen, this is sufficient t
guarantee the existence of a perfect error correction operationD for Q. M5SQ is therefore both
necessary and sufficient for the existence ofD.
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Remarkably, inequivalent entanglement measures lead to equivalent conditions for p
quantum error correction. The coherent informationI , the entanglement of formationE ~or its
asymptotic formE`!, and entanglement measuresM satisfying our properties all share the featu
that they are conserved by the evolutionE on Q only when that evolution produces no correlatio
betweenR andE.

V. REMARKS

We have assumed thatQ may interact with environment, whileR remains untouched. Suppos
instead that bothQ andR independently interact with separate parts of the environment, so

rRQ85E R
^ E Q~ uCRQ&^CRQu!. ~20!

We say in this case that perfect quantum error correction is possible if the original state ofRQ can
be restored by local operations and classical communication. It turns out that this can be d
and only if E5SQ; furthermore, if error correction is possible at all, then no classical comm
cation betweenR andQ is necessary.

Once again,E5SQ is plainly a necessary condition, and we must show that it is also s
cient. SupposeE5SQ after the operationE R

^ E Q. We can imagine that this operation occurs
two stages:

rRQ85~E R
^ I Q!+~ I R

^ E Q!~ uCRQ&^CRQu!. ~21!

After the first stage, in whichI R
^ E Q acts, we must haveE5SQ. Therefore, at this stage ther

exists an operationD Q on Q that can accomplish perfect error correction. That is,

uCRQ&^CRQu5~ I R
^ D Q!+~ I R

^ E Q!~ uCRQ&^CRQu!. ~22!

Alternately, we note that

rRQ85~ I R
^ E Q!+~E R

^ I Q!~ uCRQ&^CRQu!, ~23!

in which caseE5SQ5SR after the first operation, and an error-correction operationD R exists at
this stage:

uCRQ&^CRQu5~D R
^ I Q!+~E R

^ I Q!~ uCRQ&^CRQu!. ~24!

Now we can see thatD R
^ D Q will correct the complete operation:

~D R
^ D Q!+~E R

^ E Q!~ uCRQ&^CRQu!

5~ I R
^ D Q!+~D R

^ I Q!+~ I R
^ E Q!+~E R

^ I Q!~ uCRQ&^CRQu!

5~ I R
^ D Q!+~ I R

^ E Q!+~D R
^ I Q!+~E R

^ I Q!~ uCRQ&^CRQu!

5uCRQ&^CRQu. ~25!

Thus,E5SQ is a necessary and sufficient condition for local correction of the quantum state,
if both subsystems have experiened independent noisy evolutions.

Throughout this article, we have focused our attention on the issue ofperfecterror correction.
What aboutapproximateerror correction? We have elsewhere10 shown that, if the loss of coheren
information is small, then an operationD exists that will nearly restore the original stateuCRQ&.
To be precise, ifSQ2I ,e, then there exists an operationD on Q that will restore the input state
with fidelity F.122Ae. Is there an analogous theorem for the entanglement of formationE?
That is, supposeSQ2E,e. With what fidelity can error correction be performed? This and m
other questions remain unresolved.
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We introduce a measure of both quantum as well as classical correlations in a
quantum state, the entanglement of purification. We show that the~regularized!
entanglement of purification is equal to the entanglement cost of creating a stater
asymptotically from maximally entangled states, with negligible communication.
We prove that the classical mutual information and the quantum mutual informa-
tion divided by two are lower bounds for the regularized entanglement of purifica-
tion. We present numerical results of the entanglement of purification for Werner
states inH2^ H2 . © 2002 American Institute of Physics.
@DOI: 10.1063/1.1498001#

I. INTRODUCTION

The theory of quantum entanglement aims at quantifying and characterizing uniquely
tum correlations. It does so by analyzing how entangled quantum states can be process
transformed by quantum operations. A crucial role in the theory is played by the class of
operations and classical communication~LOCC!, since quantum entanglement is nonincreas
under these operations. Indeed, by considering this class of operations we are able to
distinguish between the quantum entanglement and the classical correlations that are prese
quantum state.

Given the success of this theory, we may be daring enough to ask whether we can sim
construct a theory of purely classical correlations in quantum states and their behavior unde
or nonlocal processing. At first sight, such an effort seems doomed to fail since merely
actions can convert quantum entanglement into classical correlations. Namely, Alice and Bo
possess an entangled stateuc&5( iAl i uai& ^ ubi& with Schmidt coefficientsl i can, by local mea-
surements, obtain a joint probability distribution with mutual information equal toH(l). Thus it
does not seem possible to separate the classical correlations from the entanglement if we t
this in an operational way. Note that it may be possible to separate quantum and classica
lations in a nonoperational way~see, for example, Ref. 1 or 2. The drawback of such an appro
is that no connection is made to the dynamical processing of quantum information, wh
precisely what has made the theory of quantum entanglement so elegant and innovati

a!Electronic mail: terhal@watson.ibm.com
42860022-2488/2002/43(9)/4286/13/$19.00 © 2002 American Institute of Physics
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operational approach to the quantification of quantum and classical correlations was re
formulated in Ref. 3.

In this article we propose to treat quantum entanglement and classical correlation in a u
framework, namely we express both correlations in units of entanglement. Such a theory o
correlations may have potential applications outside quantum information theory as wel
searchers have started to look at entanglement properties of many-particle systems for exa
~quantum! phase transitions~see, for example, Ref. 4 and references therein!. Instead of consid-
ering the entanglement of formation in these studies, one may choose to look at the behav
complete correlation measure. In this article we introduce such a measure, called the entang
of purification. We would like to emphasize that our correlation measure isnot an entanglemen
measure, but a measure of correlations expressed in terms of the entanglement of a pure

It has been the experience in~quantum! information theory that questions in the asympto
approximate regime are easier to answer than exact nonasymptotic queries. Thus we ask
create a bipartite quantum stater in the asymptotic regime, allowing approximation, from
initial supply of EPR-pairs by means oflocal operations and asymptotically vanishing commu
cation. This latter class of operations will be denoted as LOq@local operations witho(n) com-
munication in the asymptotic regime# versus the class LO for strictly local operations. We c
properly define this formation costELOq as follows:

ELOq~r!5 lim
e→0

infH m

n U ' LLOq ,D~LLOq~ uC2&^C2u ^ m!,r ^ n!<eJ . ~1!

Here uC2& is the singlet state inH2^ H2 andLLOq is a local superoperator usingo(n) quantum
communication.D is the Bures distanceD(r,r8)52A12F(r,r8) and the square-root-fidelity is
defined asF(r,r8)5Tr(Ar1/2r8r1/2).5 We could have allowed classical instead of quantum co
munication in our definition~our results will not depend on this choice!, so we may as well call all
communication quantum communication.

Before we consider this entanglement cost for mixed states, we observe that by all
asymptotically vanishing communication, we have preserved the interconvertibility result for
states.6 This is due to the fact that both the process of entanglement dilution as well as ent
ment concentration can be accomplished with no more than asymptotically vanishing amo
communication, see Ref. 7.

We see that the costELOq(r) of creating the stater is defined analogously to the entangleme
costEc(r),8,9 with the restriction that Alice and Bob can only do a negligible amount of com
nication. It is immediate thatELOq(r) will in general be larger thanEc(r). In particular, for a
separable density matrix,Ec(r)50, whereas we will show that for any correlated~i.e., not of the
form rAB5rA^ rB! density matrixELOq(r).0. The entanglement costEc was found9 to be equal
to

Ec~r!5 lim
n→`

Ef~r ^ n!

n
, ~2!

whereEf(r) is the entanglement of formation.8 We will similarly find an expression forELOq ,

ELOq5 lim
n→`

Ep~r ^ n!

n
[Ep

`~r!, ~3!

whereEp(r) is a new quantity, the entanglement of purification ofr.
Our article is organized in the following manner. We start by defining the entangleme

purification and deriving some basic properties of this new function, such as continuity
monotonicity under local operations. We will relate the entanglement of purification to the
lem of minimizing the entropy of a state under a local TCP~trace-preserving completely positive!
map. With these tools in hand, we can prove our main result, Theorem 2. Then we spend
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time proving the mutual information lower bounds forELOq(r). We also compare our correlatio
measure with the induced Holevo correlation measuresCA/B that were introduced in Ref. 1. W
prove that for Bell-diagonal states the correlation measureCA is equal to the classical capacity o
the related one-qubit Pauli channel. At the end of the article we present our numerical resu
Ep(r) wherer is a Werner state onH2^ H2 . The proofs of the lemmas and theorems in th
article are all fairly straightforward and use many basic properties of entropy and mutual
mation ~concavity, subadditivity of entropy, nonincrease of mutual information under loca
tions, etc.!.

II. ENTANGLEMENT OF PURIFICATION

We define the entanglement of purification:
Definition 1: Letr be a bipartite density matrix onHA^ HB . Let uc&PHAA8^ HBB8 . The

entanglement of purification Ep(r) is defined as

Ep~r!5 min
c:TrA8B8uc&^cu5r

Ef~ uc&^cu!, ~4!

where Ef(uc&^cu) is the entanglement ofuc& which is equal to the von Neumann entrop
S(sBB8)52TrsBB8 logsBB8 where sBB85TrAA8uc&^cu. Let $l i ,uc i&% be the eigenvalues an
eigenvectors ofrAB . The ‘‘standard purification’’ ofr is defined as

ucs&5(
i

Al i uc i&AB^ u0&A8u i &B8 . ~5!

Every purification ofr can be written asuc&5(I AB^ UA8B8)ucs& for some unitary operatorUA8B8
on A8 andB8. Therefore, Eq.~4! can be rephrased as

Ep~r!5 min
UA8B8

E~~ I AB^ UA8B8!ucs&^csu~ I AB^ UA8B8!
†! ~6!

5 min
UA8B8

S~TrAA8~ I AB^ UA8B8!ucs&^csu~ I AB^ UA8B8!
†!)

5min
LB8

S~~ I B^ LB8!~mBB8~r!!!, ~7!

where we have taken the trace overA andA8 to obtain Eq.~7!,

mBB8~r!5TrAA8ucs&^csu, ~8!

andLB8(n)[TrA8UA8B8(nB8^ u0&^0uA8)UA8B8
† . The minimization in Eq.~7! is over all possible

TCP mapsLB8 since every TCP map can be implemented by performing a unitary transform
on the system and some ancilla and tracing over the ancilla. Note that the minimizations
UA8B8 and LB8 are equivalent. Equations~6! and ~7! provide two different formulations of the
same minimization. Conceptually the first formulation is based on purifications ofr and variation
over UA8B8 . The second formulation is based on extensions ofr, sABB8 , such that TrB8sABB8
5rAB , and variation overLB8(n). Both formulations will be used throughout the article.

The idea of bipartite purifications was considered in Ref. 10 where the authors prove
every correlated state has, in our language, a nonzero entanglement of purification. If we
have included mixed states in the minimization in Eq.~4! and used the entanglement of formatio
as the entanglement measure, then the defined quantity would be equal to the entangle
formation ofr, since the optimal extension ofr is r itself.

We put some simple bounds onEp(r). Intuitively, ‘‘the amount of quantum correlation in
state is smaller than or equal to the total amount of correlation,’’ orEf(r)<Ep(r). To prove this
lower bound, letucr&5( i , j u i &A8u j &B8^ uc i j & be the purification that achieves the minimum in E
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~4!. Alice and Bob locally measure the labelsi A8 and j B8 of the stateucr& such that they obtain
uc i j & with probability pi j 5^c i j uc i j &. Since entanglement is nonincreasing under local operati
we have

Ef~r!<(
i j

pi j ES uc i j &^c i j u
pi j

D<Ep~r!. ~9!

It is immediate that we have equality between the entanglement of formation and the entang
of purification for pure states, where the optimal purification of a pure state is the pure state

An easy upper bound isEp(r)<E(ucs&^csu)5S(rA), whererA5TrB(r) is the reduced den
sity matrix inA. This corresponds toUA8B85I A8B8 or equivalentlyLB85I B8 on the rhs of Eq.~6!
or ~7!. Applying the same argument withAA8 andBB8 interchanged, we obtain

Ep~r!<min~S~rA!,S~rB!!, ~10!

where the purifications correspond to either completely purifying the state onA8 or on B8. In
general this is not the optimal purification, as we will see in Sec. V.

The entanglement of purification is neither convex nor concave, unlike the entanglem
formation. For instance, a mixture of product states, each with zero entanglement of purific
need not have zero entanglement of purification~for example, consider an equal mixture ofu00&
and u11&). On the other hand, the completely mixed state has zero entanglement of purifi
equal to zero yet it is a mixture of four Bell states, each with one ebit of entangleme
purification.

Before we present continuity bounds for the entanglement of purification, we analyz
optimization problem of Eq.~4! in more detail. We can omit doubly stochastic mapsLB8 in the
optimization in Eq.~7! since they never decrease the entropy. Furthermore, the von Neu
entropy is concave, so that the optimum in Eq.~7! can always be achieved whenLB8 is an
extremalTCP map. An extremal TCP map is a TCP map that cannot be expressed as a c
combination of other TCP maps. Choi11 has proved that an extremal TCP map with input dime
sion d has at mostd operation elements in its operator-sum representation. This result will a
us to upper bound the dimensions of the optimal purifying Hilbert spaces, as stated in the f
ing lemma.

Lemma 1: Letr act on a Hilbert space of dimension dAB5dAdB . The minimum of Eq. (4) can
always be achieved by a statec for which the dimension of A8 is dA85dAB and the dimension o
B8 is dB85dAB

2 ~or vice versa!.
Proof: We use the formulation of the entanglement of purification as an optimization of a

map in Eq.~7!. Since the density matrixmBB8(r) is on HdB
^ HdAB

, the optimal mapLB8 maps
HdAB

into a space of some unspecified dimension. The optimal mapLB8 can be assumed to b
extremal. Theorem 5 of Ref. 11 shows that an extremal TCP mapL:B(Hd1

)→B(Hd2
) ~Refs. 12

and 13! can be written with at mostd1 operations elements, that is, has the form

L~r!5(
i 51

d1

VirVi
† . ~11!

In our cased15dAB . Consider implementing the TCP map by applying a unitary operationU to
the input state with an ancilla appended. In our case, this ancilla can be taken as Alice’s pu
systemA8, andU acts onA8B8. The dimension of the ancillaA8 can always be taken to be th
number of operation elements. Thus we havedA85dAB . TheB8 dimension is equal to the outpu
dimensiond2 of the optimal mapL, which is unconstrained by the extremality condition. Ho
ever, we note that the operatorL(r) of Eq. ~11! has a rank of at mostdAB

2 . This is obtained by
observing that the range of this operator is exactly that of the vectors given by all the colum
the matricesVi for all i ~the Vi matrices haved1 columns andd2 rows!. Thus, there exists a
unitary operatorU that permits the construction of a new mapL85UL whose output is confined
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to the firstd1
2 dimensions of the output space. The operatorU may be obtained explicitly via a

Gram–Schmidt procedure applied to the column vectors of theVi matrices.L8 is also optimal,
since the entropy of Eq.~7! is not changed by a unitary operation. Since the output space oL8
has dimensiond1

2, we conclude thatdB8 can be taken to bedB85dAB
2 . h

It is interesting to note that a similar minimization problem was encountered in Ref. 14. T
the goal was to use a set of noisy states for classical information transmission and we wa
minimize the coherent information divided by the entropy of a quantum state under the act
a local map.

Theorem 1 „continuity of the entanglement of purification…: Let r and s be two density
matrices onHdA

^ HdB
with Bures distance D(r,s)<e. Then

uEp~r!2Ep~s!u<20D~r,s!logdAB2D~r,s!logD~r,s!, ~12!

for small enoughe.
Proof: Let ucs8 & and ucr8& be the purifications ofr ands which achieve the maximum5 in

F~r,s!5 max
cs ,cr

u^csucr&u. ~13!

Let ufr& and ufs& correspond to the optimal purifications ofr ands with respect toEp . There
exists a unitary transformationU relating ucr8& to ufr&, i.e., (U ^ 1)ucr8&5ufr&. We define the
~nonoptimal! purification ucs& as (U ^ 1)ucs8 &5ucs&. Now we have

Ep~s!2Ep~r!5E~ ufs&^fsu!2E~ ufr&^fru!<E~ ucs&^csu!2E~ ufr&^fru!. ~14!

We use continuity of entanglement,15,16 Lemma 1~which indicates that the pure state has supp
on a space of dimension at mostdAB

4 !, and the fact thatu^csufr&u5u^cs8 ucr8&u5F(r,s) to bound

Ep~s!2Ep~r!<5D~r,s!logdAB
4 22D~r,s!logD~r,s! ~15!

for small enoughD(r,s). We can obtain the full bound in Eq.~12! by alternatively relatingucs8 &
to the optimal purificationufs& by a unitary transformationU. h

It is fairly straightforward to prove monotonicity of the entanglement of purification fr
monotonicity of entanglement:

Lemma 2 (monotonicity of the entanglement of purification): The entanglement of purific
of a density matrixr is nonincreasing under strictly local operations. Let Alice carry out a lo
TCP mapSA on the stater. We have

Ep~~SA^ 1!~r!!<Ep~r!. ~16!

Let Alice carry out a local measurement onr through which she obtains the stater i with prob-
ability pi . We have

(
i

piEp~r i !<Ep~r!. ~17!

Let LLOq be a local operation assisted by m qubits of communication. The entangleme
purification obeys the equation

Ep~LLOq~r!!<Ep~r!1m. ~18!

Proof: Let ucr& be the optimal purification ofr. This optimal purification is related tosome
purification of (SA^ 1)(r) by a unitary transformation on Alice’s system only. Then Eq.~16!
follows from the fact that entanglement is nonincreasing under local partial traces. The
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uc i&5 Ai ^ I Buc&/A^cuAi
†Ai ^ I Buc&, whereAi corresponds to a measurement outcome of Alice

some purification ofr i . The entanglement is nonincreasing under local operations and thus

Ep~r!5E~ ucr&^cru!>(
i

piE~ uc i&^c i u!>(
i

piEp~r i !. ~19!

For the last inequality, let Alice and Bob start with the entangled stateucr& and carry out their LOq
protocol. By subadditivity of entropy, the entanglement of this state can increase by at mostm bits
when m qubits of communication are sent~back and forth!. Thus the entanglement of the fina
state which is some purification ofLLOq(r) is smaller than or equal toEp(r)1m. h

Now we are ready to prove our main theorem:
Theorem 2: The entanglement cost ofr on Hd^ Hd without classical communication equa

ELOq(r)5Ep
`(r).

Proof: The inequalityELOq(r)<Ep
`(r) uses entanglement dilution. Letk be the number of

copies ofr for which the regularized entanglement of purificationEp
` is achieved. One way o

making many (p) copies ofr ^ k out of EPR pairs ando(p)<o(pk) classical communication is to
first perform entanglement dilution on the EPR pairs so as to create~an approximation to! the
purification uc& ^ p and then trace over the additional registers to getr ^ kp. The other inequality
Ep

`(r)<ELOq(r) can be proved from monotonicity and continuity of the entanglement of pu
cation. We start withn EPR pairs which haveEp equal ton. The LOq process for creating a
approximationr̃k to r ^ k using o(k) qubits of communication increases the entanglemen
purification by at mosto(k) bits, see Lemma 2, orEp( r̃k)<n1o(k). Using the continuity of
Theorem 1 and dividing the last inequality byk and taking the limitk→` gives Ep

`(r)
<ELOq(r). h

III. MUTUAL INFORMATION LOWER BOUNDS

The entanglement costELOq is a measure of the quantum and classical correlations
quantum state. The quantum and classical mutual information of a quantum state are
measures that capture correlations in a quantum state. How do these measures relate to
correlation measure? The quantum mutual informationI q(rAB) is defined as

I q~rAB!5S~rA!1S~rB!2S~rAB!. ~20!

We define the classical mutual information of a quantum stateI c(rAB) as

I c~rAB!5 max
MA :pA ,MB :pB

H~pA!1H~pB!2H~pAB!. ~21!

Here local measurementsMA andMB give rise to local probability distributionspA andpB . The
classical mutual information of a quantum state is the maximum classical mutual informatio
can be obtained by local measurements by Alice and Bob. Both quantum as well as cl
mutual information share the important property that they are nonincreasing under local ope
~LO! by Alice and Bob. For the classical mutual information, this basically follows from
definition Eq.~21!. The definition itself as a maximum over local measurements makes sense
the classical mutual information of a probability distribution is nonincreasing under local ma
lations of the distribution. The proof of this well known fact is analogous to the proof for
quantum mutual information which we will give here for completeness.

We can write the quantum mutual information as

I q~rAB!5S~rABuurA^ rB!, ~22!

whereS(.uu.) is the relative entropy. The relative entropy is nonincreasing under any mapL ~cf.
Ref. 17!, i.e.,
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S~L~rAB!uuL~rA^ rB!!<S~rABuurA^ rB!. ~23!

When L is of a local form, i.e.,LA^ LB , the lhs of this equation equals the quantum mut
information of the state (LA^ LB)(rAB) and thus the inequalityI q((LA^ LB)(rAB))<I q(rAB) is
proved.

Proof of lower bounds

We show that the quantitiesI q(r)/2 and the regularized classical informationI c
`(r)

5 limn→` (I c(r
^ n)/n) are both lower bounds for the entanglement costELOq . The argument is

similar to the proof of theEp
` lower bound onELOq in Theorem 2.@The reasoning is in fact a

special case of Theorem 4 in Ref. 18~cf. Ref. 19! applied to the class LOq instead of the origin
LOCC.#

We start with a number, sayk, of EPR pairs which haveI q52k and I c equal tok.20 In the
limit of large n, the ratiok/n is the entanglement costELOq(r). We apply the LOq mapL which
useso(n) communication to obtain an approximationr̃n to r ^ n. Since the quantum mutua
information and the classical mutual information can only increase byo(n) by the processL
applied to the initial EPR pairs, see Lemma 3, it follows that

I q~ r̃n!<o~n!12k, ~24!

and similarly

I c~ r̃n!<o~n!1k. ~25!

The last step is to relate the mutual informations ofr̃n to the mutual information ofr ^ n. For this,
we need a continuity result of the form

uI q/c~s!2I q/c~r!u<C logdir2si11O~1! ~26!

for r, s on Hd , ir2si1 sufficiently small andC is some constant.21 Below we will prove these
desired continuity results. We can divide Eqs.~24! and~25! by n and take the limit of largen. We
use the continuity relation of Eq.~26! and the fact that in the largen limit r̃n tends tor ^ n. Thus
we have

lim
n→`

I q~r ^ n!

n
5I q~r!<2ELOq~r!, ~27!

where we used that the quantum mutual information is additive, and similarly

I c
`~r!<ELOq~r!. ~28!

What remains is to prove the continuity relations and the nonincrease moduloo(n) under LOq
operations.

Continuity of mutual information

The continuity of the quantum mutual informationI q(r) can be proved by invoking Fanne
inequality22 and Ruskai’s proof of nonincrease of the trace-distance under TCP maps.23 Let r and
s be two density matrices which are close, i.e.,ir2si15Trur2su<e for sufficiently smalle. We
have

uI q~rAB!2I q~sAB!u<uS~rA!2S~sA!u1uS~rB!2S~sB!u1uS~sAB!2S~rAB!u, ~29!

which can be bounded as

uI q~rAB!2I q~sAB!u<3 logdABirAB2sABi113h~ irAB2sABi1!, ~30!
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whereh(x)52x logx and ir2si1< 1
3.

It is not hard to prove the continuity of the classical information of a quantum state, a
using the nonincrease ofi .i1 under TCP maps. LetMA

r and MB
r be the optimal measuremen

achieving the classical mutual informationI c(r). Under this measurement the statesr and s,
which is, say, close tor, go to probability distributionspr( i , j ) andps( i , j ) which are close again
i.e., ipr2psi1<ir2si1 . We have that

I c~s!2I c~r!<I ~ps!2I ~pr!< logkipr2psi11O~1!, ~31!

where k is the number of joint outcomes in the optimal measurement (MA
r ,MB

r ) and I is the
classical mutual information of a joint probability distribution. The last inequality in Eq.~31!
could in principle be derived from Fannes’ inequality, using diagonal matrices, but it is a sta
continuity result in information theory24 as well. To finish the argument, we should argue thatk,
the number of joint measurement outcomes, is bounded. The classical mutual informationI is a
concave function of the joint probabilityp( i , j ).24 Therefore only extremal measurementsMA and
MB need to be considered in the optimization over measurements. An extremal measurem
at mostd2 outcomes when acting on a space of dimensiond ~Ref. 25! and thusk<dAB

2 . The same
argument, interchangings andr, can be used to upperboundI c(r)2I c(s).

Lemma 3 (monotonicity properties of mutual information): LetL consist of a series of loca
operations assisted by m qubits of two-way communication. The quantum mutual inform
obeys the inequality

I q~L~s!!<I q~s!12m, ~32!

for all statess. For the classical mutual information we have

I c~L~ uc&^cu!<I c~ uc&^cu!1m, ~33!

for all pure statesuc&.
Proof: Let us first consider the quantum mutual information. We can decompose the two

schemeL into a sequence of one-way schemes. It is sufficient to prove for such a one-way s
usingm qubits of communication, say from Alice to Bob, that

I q~L~s!!<I q~s!12m. ~34!

Alice’s local action can consist of adding an ancillaA8 in some state and apply a TCP map to t
systemsAA8 thus obtaining the statesAA8:B . Such an action does not increase the quantum
classical mutual information as we showed before. Now Alice sends systemA8 to Bob. We have

I q~sAB!>I q~sAA8:B!5S~AA8!1S~B!2S~AA8B!

>S~AA8!2S~A8!1S~BA8!2S~AA8B!

>S~A!22S~A8!1S~BA8!2S~AA8B!

5I q~sA:BA8!22S~A8!, ~35!

where we useduS(A)2S(B)u<S(AB)<S(A)1S(B). The quantum mutual information of th
final state isI q(sA:BA8). SinceS(A8)<m, we obtain the needed inequality. Alice could send o
a part of ancillaA8, but this does not change the bound.

Let us now consider the classical mutual information. We may convert the entire procL
into a coherent processL where all the measurements are deferred to the end; this does not c
the amount of communication that Alice and Bob carry out. Thus, prior to the measurements
and Bob have converted the pure stateuc& into some pure stateuf& whose local entropy is at mos
E1m whereE is the entanglement of the stateuc&, which is equal toI c(uc&^cu) ~see Ref. 20!.
Now Alice and Bob locally measure and/or trace out some registers which are operations t
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not increase the classical mutual information. Therefore the final stateL(uc&^cu) has a classica
mutual information that is bounded by the initial classical mutual information plusm. h

Remark:Note that Eq.~32! for the quantum mutual information applies to both pure a
mixed states while we have found mixed states that violate Eq.~33! for the classical mutua
information.

Let us state the final result once more:
Corollary 1: ELOq(r)>I q(r)/2 and ELOq>I c

`(r).
With this corollary we can show that the LOq-entanglement cost of any correlated de

matrix r is nonzero.26 Indeed, the quantum mutual informationI q(r) of a correlated density
matrix is strictly larger than zero, sinceS(rAB) is strictly less thanS(rA)1S(rB) ~equality is only
obtained whenrAB5rA^ rB! and thereforeELOq(r).0.

We present a simple example for whichELOq(r)5Ep
`(r).I q(r)/2.

Example 1 (All correlation is classical correlation): Consider the separable stater
5( i pi uai&^ai u ^ ubi&^bi u where ^ai uaj&5d i j and ^bi ubj&5d i j . In this case Iq(r)/25H(p)/2.
However, we can show that Ep(r)>H(p). We have@cf. Eq. (8)# m(r)5( i pi ubi&^bi u ^ u i &^ i u.
Under some local TCP mapL we obtain a statem85( i pi ubi&^bi u ^ r i where r i are density
matrices. The entropy ofm8 equals S(m8)5( i piS(r i)1H(p)>H(p). The entanglement of pu
rification Ep(r) may be nonadditive, so we have to consider Ep(r ^ n). We havem(r ^ n)5m ^ n

and nowm85( i 1 ,...,i n
pi 1

¯pi n
u i 1 ,...,i n&^ i 1 ,...,i nu ^ r i 1 ,...,i n

. Again the von Neumann entropy o

m8 is larger than or equal to nH(p). Note that in this example we do achieve the classical mu
information lower bound.

Here is an example where the upper and lower bounds fix the~regularized! entanglement of
purification:

Example 2: Letr be an equal mixture of the stateuC0&5 (1/&) (u00&1u11&) and uC1&
5 (1/&) (u00&2u11&). Alice and Bob can get one bit of classical mutual information by b
measuring in the$0,1% basis. Thus ELOq(r)>I c(r)51, but ELOq(r)<S(rA)<1, Eq. (10). There-
fore ELOq51.

IV. OTHER CORRELATION MEASURES: THE LOCALLY INDUCED HOLEVO
INFORMATION

In Ref. 1 the authors considered the locally induced Holevo information as a measu
classical correlations in the state. It is defined either with respect to Alice’s measurement (CA) or
Bob’s measurement (CB)

CA/B~r!5 max
MA /MB

SS (
i

pi
B/Ar i

B/AD 2(
i

pi
B/AS~r i

B/A!, ~36!

whereMA(MB) on r gives reduced density matricesr i
B(r i

A) with probability pi
B(pi

A). The clas-
sical mutual informationI c

`(r) will in general be less than these quantities, since to achieve
Holevo information one may have to do coding. In Ref. 1 it was shown thatCA/B are nonincreas-
ing under local operations. We leave it as an exercise for the reader to prove continuit
nonincrease moduloo(n) under LOq operations~applied to some pure state!, thus showing that
the regularized versions of these two quantities are also lower bounds forELOq .

Bell-diagonal states

We show that for Bell-diagonal statesrBell the quantityCA ~equal toCB by symmetry of the
Bell-diagonal states! is equal to the classical capacity of the corresponding qubit channels. B
previous arguments this give us some lower bounds on the regularized entanglement of p
tion of these states. The Bell-diagonal states are of the following form,

rBell5(
i

pi uC i&^C i u, ~37!
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whereC0...3 are the four Bell states whereuC0& is (1/&) (u00&1u11&). The corresponding chan
nel, the so called generalized depolarizing channel, or Pauli channel, is of the form

Lr~• !5(
i

pis i~• !s i , ~38!

wheres051, ands1,2,3 are the three Pauli matrices. It is known27 that all two qubit states with
maximally mixed subsystems are Bell-diagonal, up to a unitary transformationUA^ UB . From the
isomorphism between states and channels,8,11,28it follows that all unital channels are of the form
~38! ~cf. Ref. 29!, up to unitary transformations applied before and after the action of the cha
The classical one-shot capacity of the quantum channelL is given by30,31

C1~L!5 sup
$qi ,r i %

x~$qi ,L~r i !%!, ~39!

wherex is the Holevo function of the ensemble

x~$qi ,r i%!5SS (
i

qir i D 2(
i

qiS~r i !. ~40!

The optimal statesr i that achieve the capacityC1 are always pure states, moreover it can
shown29 that the ensemble$qi ,uc i&% that achievesC1 for unital one-qubit channels satisfies

(
i

qi uc i&^c i u5
1

2
1. ~41!

Let us argue thatCA(r)5C1(L) for a Bell-diagonal staterBell5(1A^ Lr)(uC0&^C0u). Al-
ice’s POVM measurement on this state commutes with the channelLr . By doing a measuremen
on uC0& she can create any pure-state-ensemble on systemB, obeying the relation Eq.~41!. This
ensemble is then sent through the channelLr . If the ensemble is optimal forC1 , then its Holevo
informationx equalsC1 and thusCA5C1 .

For unital one-qubit channelsC1 is given by29,32

C1~L!512min
c

S~L~ uc&^cu!!. ~42!

We can perform the minization in the last inequality and we obtain the following formula fo
capacity of a Pauli channel or the induced Holevo information of the Bell-diagonal states,

CA~rBell!5C1~Lr!512H~12l!, ~43!

wherel is the sum of the two largest probabilitiespi and H(.) is the binary entropy function
H(x)52x logx2(12x)log(12x). For two-qubit Werner states of the form

rW5euC0&^C0u1~12e!/3(
i 51

3

uC i&^C i u, ~44!

we obtain

CA512HS 112e

3 D for ePF1

4
,1G ,

~45!

CA512HS 222e

3 D for ePF0,
1

4G .
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It was shown by King32 that the classical capacity of unital one-qubit channels is equal to
one shot capacity, orC15C1

`[ limn→` (1/n) C1(r ^ n). ThereforeCA5CA
`5C1 , which is a lower

bound onELOq .

V. WERNER STATES

A numerical minimization based on Eq.~6! was performed for the Werner states Eq.~44! for
Ep . We plot the results as a function of theuC0& eigenvaluee in Fig. 1. We permitted various
output dimensions; The two curves shown have dim(A8)5dim(B8)52 and dim(A8)5dim(B8)
54. In the first case, the initial variable of the minimization was determined by a random34
unitary UA8B8 picked according to the Haar measure. In the second case, the initial poin
determined by a random 1634 isometry picked according to a parameterization derived from R
33. We did not explore the largest dimensions permitted by Lemma 1, which would have req
an optimization over a 6434 isometry.

It is evident from the numerics presented in the figure that theCA bound of Eq.~45! is not
achieved for the Werner states: theCA lower bound is only tight at the trivial pointse5 1

4 ande
51. Our results indicate thatEp is a very complex function, neither concave nor convex, w
several distinct regimes. In fact, we find four different regimes in our numerics:~I! In this regime
the standard purification of Eq.~5! appears to be optimal, so theU of Eq. ~6! is the identity, and
the purifying dimensions are dim(A8)51 and dim(B8)54. This regime only extends over a tin
range, approximately 0<e<0.005. ~II ! In the range 0.005<e<0.25 we find an optimal purifica-
tion of the form

AeuC0&ABuC0&A8B81A12e

3
~ uC1&ABuC1&A8B81uC2&ABuC2&A8B81uC3&ABuC3&A8B8).

~46!

In this region theEp curve is given byEp52x logx2(12x)log((12x)/3), with x5(112e
22)Ae(12e))/12. Here the purifying dimensions are dim(A8)52 and dim(B8)52. Of course
Ep drops to zero for the completely mixed state ate5 1

4. ~III ! In the range 0.25<e<0.69 we also
find purifying dimensions dim(A8)52 and dim(B8)52, but we were unable to determine th

FIG. 1. Numerical bounds onEp for Werner states. In the upper curve we restrict to dim(A8)5dim(B8)52; for the next
curve, we permit dim(A8)5dim(B8)54. The inset shows the curious behavior ofEp around the point where the eigen
value ofuC0& approaches zero. The dotted curve is theCA lower bound of Sec. IV A. The dashed curve is the entanglem

of formation lower bound which vanishes when the eigenvalue is smaller than or equal to
1
2.
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analytical form of the purifying state or ofEp . ~IV ! In the range 0.69<e<1 the purifying
dimensions were dim(A8)52 and dim(B8)53. Again, we were unable to come to any analytic
understanding of the result. Of course,Ep51 for e51, corresponding to the pure maximal
entangled state.

VI. CONCLUSION

We have shown that the entanglement costELOq(r) is equal to the regularized entangleme
of purification. It is an open question whether the entanglement of purification is additive:

Ep~r ^ r!5
?

Ep~r!1Ep~r!. ~47!

In the alternative formulation using the statem(r) the additivity question is the following. Is the
minimum in

min
LCD

S~~ I AB^ LCD!~mAC^ mBD!!, ~48!

achieved by a TCP mapLCD5S^ S? This problem is similar again to the additivity questio
encountered in Ref. 14 where a local map could possibly lower the ratio of the coherent inf
tion and the entropy of many copies of a state together.

It is interesting not only to ask the formation question with respect to this class LOq, bu
consider ‘‘the distillation’’ question. One can consider different versions. For example, how m
entanglement can we distill fromr using o(n) communication? One would expect that th
quantityDLOq(r) is always zero for states for which the entanglement costEc ~usingLOCC! is
lower than the distillable entanglementD. We do not have a proof of this statement, relati
irreversibility to a need for classical communication.

Instead of trying to convert the correlations inr back to entanglement, we may ask wh
classical correlations Alice and Bob can establish usingr. We could allow Alice and Bob to
perform an asymptotically vanishing amount of communication in this extraction process. A
bit of communication could potentially increase the classical mutual information in a qua
state by a large amount~when the classical correlation is initially ‘‘hidden’’!, thus this may not be
the best problem to pose. Researchers34,35have investigated the possibly more interesting probl
of the secretkey K that Alice and Bob can establish givenr where one allows arbitrary public
classical communication between the parties. There is again more than one version of thi
lem, one in which Eve possesses the purification of the density matrix34 and a situation in which
Eve is initially uncorrelated with the density matrix. In Ref. 36 a general framework is devel
to address these issues also in the multipartite setting.

Quite recently, entanglement properties of bipartite density matrices were studied by lo
at mixed extensions of the density matrix.37 It would be interesting to explore the connectio
between our results here on the entanglement of purification and this other approach.
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Conditional entropies and their relation
to entanglement criteria
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We discuss conditional Re´nyi and Tsallis entropies for bipartite quantum systems of
finite dimension. We investigate the relation between the positivity of conditional
entropies and entanglement properties. It is in particular shown that any state hav-
ing a negative conditional entropy with respect to any value of the entropic param-
eter is distillable since it violates the reduction criterion. Moreover, we show that
the entanglement of Werner states in odd dimensions can neither be detected by
entropic criteria nor by any other spectral criterion. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1498490#

I. INTRODUCTION

Entanglement has always been a key issue in the ongoing debate about the foundatio
interpretation of quantum mechanics since Einstein1 and Schro¨dinger2 expressed their deep dis
satisfaction about this astonishing part of quantum theory. Whereas for the long period from
to 1964, until Bell3 published his famous work, discussions about entanglement were p
meta-theoretical, nowadays quantum information theory has established entanglement as
cal resource and key ingredient for quantum computation and quantum information proce
This led to a dramatic increase of general structural knowledge about entanglement in the la
years, and the resource point of view often led to results that are reminiscent of those know
thermodynamics:free entanglementis distinguished frombound entanglement,4 irreversibility can
be observed in the process of preparing and distilling entangled states5 and entanglement itself is
defined in a way that it must not increase by means of local operations and classical com
cation~LOCC!. Moreover, there is recent effort in order to quantify quantum correlations thro
heat engines.6

Entropieslay at the heart of both theories, thermodynamics and entanglement theory.
cerning the latter it was shown that a few reasonable assumptions lead to a unique mea
entanglement7 for pure bipartite quantum states, which is just thevon Neumann entropyof the
reduced state. Hence, it is obvious that the two subsystems of a pure entangled state exhib
disorder than the system as a whole, so that the respective conditional entropy is negative.
a remarkable property of entangled states, which is impossible for classical systems~i.e., classical
random variables!.

The present article is primarily devoted to settling the relationship between the negativ
conditional Re´nyi and Tsallis entropies and other entanglement properties. We will in partic
show how the property of having a positive conditional entropy enters into the known implic
chain of entanglement, resp., separability criteria.

In the second part we will then follow the result of Nielsen and Kempe8 and give examples o
entangled states having the property that their entanglement can neither be detected by e
criteria nor by any other spectral criterion. In Sec. IV we show that this is indeed the cas
symmetricWerner states~in odd dimensions!, which play a crucial role in entanglement theory

a!Electronic mail: k.vollbrecht@tu-bs.de
b!Electronic mail: mm.wolf@tu-bs.de
42990022-2488/2002/43(9)/4299/8/$19.00 © 2002 American Institute of Physics
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II. PRELIMINARIES ON SEPARABILITY CRITERIA

To fix ideas we will start by recalling some of the basic notions and previous results con
ing separability, resp., entanglement criteria.

A bipartite quantum state described by its density matrixr acting on a Hilbert spaceH
5H (A)

^ H (B) is said to beseparable, unentangled or classically correlated if it can be written
a convex combination of tensor product states9

r5(
j

pjr j
(A)

^ r j
(B) , ~1!

where the positive weightspj sum up to one andr (A) (r (B)) describes a state onH (A) (H (B)).
This means in particular that pure states are separable if and only if they are product
Moreover, all entanglement properties of pure states, which can always be written in their Sc
form ~cf. Ref. 10! as uC&5( iAl i u i & ^ u i &, are completely determined by the eigenvalues$l i% of
the reduced staterA5trBuC&^Cu. The unique measure of entanglement for pure states is
given by thevon Neumann entropyof the reduced state:

S1~rA!52tr~rA logrA!. ~2!

For mixed quantum states, however, the situation is much more difficult and deciding wh
a state is entangled or separable is not yet feasible in general. Currently, the most e
necessary criterion for separability is the positivity of the partial transpose~PPT!, i.e., the condi-
tion that rTA has to be a positive semi-definite operator.11 The partial transpose of the state
thereby defined in terms of its matrix elements with respect to some basis by^klurTAumn&
5^mlurukn&. For the smallest nontrivial systems with 232, resp., 233, dimensional Hilbert
spaces and a few other special cases the PPT criterion also turned out to be sufficient.12 In higher
dimensional systems, however, so-calledbound entangledstates exist, which satisfy the PP
condition without being separable.4

Another well known condition is given by thereduction criterion13,14

rA^ 12r>0 and 1^ rB2r>0, ~3!

which is implied by the PPT criterion but is nevertheless an important condition since its viol
implies the possibility of recovering entanglement by distillation~which is yet unclear for PPT
violating states!. For the case of two qubits~and 233! the reduction criterion is also known to b
sufficient for separability.13,14Moreover, it was shown in Ref. 15 that Eq.~3! implies that the rank
of the reduced state has to be smaller than or equal to the rank ofr. The general line of implication
is then

r separable
⇓

rTA>0
⇓

r undistillable
⇓

rA^ 12r>0`1^ rB2r>0
⇓

max@rank~rA!,rank~rB!#<rank~r!.

~4!

The last condition we want to mention was recently derived by Nielsen and Kempe8 and is based
on majorization. However, it is yet not known how themajorization criterionenters into the above
implication chain. Since it is closely related to conditional entropies we will discuss it in m
detail in the following section.
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III. CONDITIONAL ENTROPIES

The idea to use entropic inequalities as separability, resp., entanglement, criteria for
states goes back to the mid-1990s when Cerf and Adami16 and the Horodecki family17 recognized
that certain conditional Re´nyi entropies are non-negative for separable states, and it was rec
resurrected by several groups18–23 in the form of conditional Tsallis entropies.

The quantumRényi entropydepending on the entropic parameteraPR is given by

Sa~r!5
log tr~ra!

12a
, ~5!

whereS0 ,S1 ,S` reduce to the logarithm of the rank, the von Neumann entropy and the neg
logarithm of the operator norm, respectively. For the case of separable states it was shown i
15–17 that the conditional entropy24

Sa~BuA;r!ªSa~r!2Sa~rA! ~6!

is non-negative fora50, ` andaP@1,2#.
In Refs. 18 and 20 essentially the same criterion was expressed in terms of theTsallis entropy

Ta~r!5
12tr~ra!

a21
, ~7!

which is non-negative, concave~convex! for a.0 (a,0) and becomes the von Neumann e
tropy in the limit a→1. Theconditional Tsallis entropydefined in Ref. 18 reads

Ta~BuA;r!ª
tr~rA

a!2tr~ra!

~a21!tr~rA
a!

. ~8!

Concerning positivity, however, the two conditional entropies are equivalent, i.e.,

Ta~BuA;r!>0⇔Sa~BuA;r!>0, ~9!

which is in turn equivalent to tr(rA
a)>tr(ra) for a.1, tr(rA

a)<tr(ra) for 0<a,1, and the
positivity of the conditional von Neumann entropy fora51.

Obviously, for pure states the conditional entropies are negative if and only if the sta
entangled.

A. Monotonicity counterexample

It was conjectured in Ref. 20 thatTa(BuA;r) is monotonically decreasing ina, such that it
would be sufficient to calculateT`(BuA;r) in order to decide positivity. However, monotonicit
does not hold in general and can most easily be ruled out by low rank examples like

r5
1

2
~ uF1&^F1u1u01&^01u!, uF1&5

1

&
~ u00&1u11&),

for which the reduced state has eigenvalues1
4,

3
4 and thereforeT05T`50ÞT25 1

5. We note that
similar counterexamples can be found for the monotonicity of the conditional Re´nyi entropy as
well. Fortunately, however, monotonicity is not necessary for proving the positivity of the co
tional Tsallis/Re´nyi entropies for separable states for other values thana50, `, aP@1,2#.25

B. Majorization and convex functions

Majorization turned out to be a powerful tool in the discussion of quantum state transfo
tions by means of LOCC operations~cf. Ref. 26!, and it was recently proven to yield the stronge
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separability criterion, which is based on the spectra of a state and one of its reductions.
proven in Ref. 8 that any separable stater acting onCd

^ Cd is majorized by its reduced staterA :

rAsr, i.e., ;k<d:(
i 51

k

l i
(A)>(

i 51

k

l i , ~10!

where$l i% and$l i
(A)% are the decreasingly ordered eigenvalues ofr, resp.,rA .

It is a well known result in the theory of majorization thatxsy iff tr( f (x))>tr( f (y)) for all
convex functionsf :R→R.27 Since f (x)5xa is convex fora>1 and concave onR1 for 0<a
<1 and the von Neumann entropy is concave~needed fora51!, this immediately implies~cf.
Ref. 28! the following.

Theorem 1: Let r be a bipartite quantum state, which is majorized by its reductionrAsr.
Then for everya>0 the conditional Tsallis/Re´nyi entropies ofr are non-negative, i.e.,

Sa~BuA;r!>0 and Ta~BuA;r!>0. ~11!

The result of Nielsen and Kempe implies that this holds in particular for any separable
It is yet not known how the majorization criterion~10! is related to other separability criteri

like PPT, undistillability and the reduction criterion. However, we will show in the next subsec
how the positivity of conditional entropies is related to these properties.

C. Conditional entropies and the reduction criterion

Positivity of the conditional entropies fora50 reduces to the rank criterion in the implicatio
chain~4!. The following theorem will show, however, that all the other properties stated in~4! in
turn imply positivity of the conditional entropies for every value of the entropic parametera.

Theorem 2: Let r be a bipartite quantum state satisfying the reduction criterionrA^ 1>r.
Then for everya>0 the conditional Tsallis/Re´nyi entropies are non-negative:

Sa~BuA;r!>0 and Ta~BuA;r!>0. ~12!

We note that Theorem 2 implies, in particular, that states with negative conditional entr
are distillable.

Proof: We will divide the proof into three steps depending on the value of the entr
parameter.

For a.1 the proof is essentially based on the Golden–Thompson inequality~cf. Ref. 29!
stating that

tr~eAeB!>tr~eA1B! ~13!

for Hermitian matricesA,B. Utilizing the definition of the reduced state, i.e.,

;P>0:tr~r~P^ 1!![tr~rAP!, ~14!

this leads to

tr~rA
a!5tr@r~rA

a21
^ 1!#5tr@exp~ ln r!exp~~a21!ln~rA^ 1!!#

>tr@exp~ ln~r!1~a21!ln~rA^ 1!!#. ~15!

At this point we need two monotonicity properties in order to exploit the validity of the reduc
criterion. First of all we use the fact that the logarithm is operator monotone,30 i.e.,

A>B⇒ ln A> ln B. ~16!

Thus, fora.1 the reduction criterionrA^ 1>r implies
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ln~r!1~a21!ln~rA^ 1!> ln~r!1~a21!ln~r!5a ln~r!. ~17!

In the second step we utilize the fact that the exponential function is monotone under the
This can be seen by noting that for anyA Hermitian,P>0 andB5(A1eP) with e>0:

]

]e
tr~eB!5tr~eBP!>0. ~18!

Hence tr(eB)>tr(eA) is implied byB>A. Combining~15! and ~17!, this leads to

tr~rA
a!>tr@exp~a ln r!#5tr~ra!. ~19!

For 0<a,1 the reduction criterion can immediately be applied sincef (A)5Ar is an operator
decreasing function for21<r<0, A>0 ~cf. Ref. 31! and thus

tr~rA
a!5tr@r~rA

a21
^ 1!#<tr~ra!. ~20!

For the casea51 we have to look at the conditional von Neumann entropyS1(r)
2S1(rA), for which positivity is directly implied by the reduction criterion and the opera
monotonicity of the logarithm:

S1~rA!52trrA logrA ~21!

52trr logrA^ 1 ~22!

<2trr logr ~23!

5S1~r!, ~24!

which completes the proof. h

D. Negative entropic parameters

So far we have only discussed conditional entropies for non-negative values of the en
parametera. For these cases we know that they can become negative for entangled stat
simplest examples being pure entangled states. However, fora,0 ~and states of full rank! the
sign of the conditional entropy contains no information

Theorem 3: Let r be a bipartite quantum state of full rank. Then for everya,0 the condi-
tional Tsallis/Re´nyi entropies are non-negative:

;a,0:Sa~BuA;r!>0 and Ta~BuA;r!>0. ~25!

Proof: Let $ua&% be an eigenbasis ofrA . Then

tr~rA
a!5(

a
^aurAua&a ~26!

5(
a

F(
i

^a^ i urua^ i &Ga

~27!

<(
a,i

^a^ i urua^ i &a

<tr~ra!, ~28!
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where Eqs.~27! and~28! use that (( ibi)
a<( ibi

a holds forbi>0, a<0, and the last inequality is
implied by the convexity of negative powers onR1.

IV. ISOSPECTRAL STATES

The fact that positivity of conditional entropies is implied by the reduction criterion~Theorem
2! shows already that such an entropic criterion cannot be sufficient for separability. In fact,
shown in Ref. 8 that no spectral property is capable of distinguishing any entangled state
separable ones.

We will in this section follow the idea of Ref. 8 and construct particular examples of st
such that their entanglement cannot be detected by any spectral criterion, since there exi
rable states having the same spectrum and the same reductions.

Werner states9 have always played an important and paradigmatic role in quantum info
tion theory. Their characteristic property is that they commute with all unitaries of the forU
^ U and they can be expressed as

r~p!5~12p!
P1

r 1
1p

P2

r 2
, 0<p<1, ~29!

whereP1 (P2) is the projector onto the symmetric~antisymmetric! subspace ofCd
^ Cd and r 6

5tr@P6#5 (d26d)/2 are the respective dimensions. Werner showed that these states a
tangled iff p. 1

2 independent of the dimensiond. The following shows, however, that none o
these entangled states for odd dimensiond can be detected by any separability criterion, which
based on the spectrum of the state and its reductions.

Theorem 4: Any entangled state inCd
^ Cd with maximal chaotic reductions and eigenvalu

having multiplicities, which are multiples of d, has a separable isospectral counterpart, which
locally undistinguishable as it has the same reductions.

Proof: Let us consider a special basis of maximally entangled states inCd
^ Cd:32

uC jk&5
1

Ad
(
n51

d

expS 2p i

d
jn D un,n% k&, ~30!

wherej ,k51,...,d and% means addition modulod. Any equal weight combination of all states o
the form~30!, which belong to the same value ofk, is then a projector onto a separable state si

Pk5(
j 51

d

uC jk&^C jku

5
1

d (
j ,n,m51

d

expF2p i

d
j ~n2m!G un,n% k&^m,m% ku

5 (
n51

d

un&^nu ^ un% k&^n% ku ~31!

is an equal weight combination of product states. Here we have used
(1/d) ( j 51

d exp@(2pi/d) j(n2m)#5dn,m. Moreover, the reductions of the respective statesPk /d are
maximally chaotic, i.e.,rA51/d, just as the reductions of any maximally entangled state.

If we now have a state with multiplicities being multiples ofd, we can replace the projector
onto its eigenspaces with sufficiently many projectors of the formPk . The resulting state will then
be again a convex combination of product states, i.e., separable, having the same spectr
maximal chaotic reductions. h
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For the case of Werner states we note that the unitary invariance of the stater(p) in Eq. ~29!
implies that its reductions arerA51/d. Moreover,r(p) has two eigenvalues (12p)/r 1 andp/r 2

with multiplicities r 1 , r 2 which are indeed multiples ofd in odd dimensions.
Following Proposition 2 we can now construct a state

r8~p!5
~12p!

r 1
(
k51

r 1 /d

Pk1
p

r 2
(
l 51

r 2 /d

Pl 1r 1 /d , ~32!

which has then both, the same spectrum and the same reductions asr(p). However, as a convex
combination of separable states, it is itself separable for any 0<p<1.

V. CONCLUSION

We discussed conditional Re´nyi and Tsallis entropies and the relation between their positi
and other separability properties. We showed in particular that states having a negative con
entropy are distillable since they violate the reduction criterion.

Conditional entropies are a special instance of criteria using just the spectra of a state
reductions. Concerning the detection of entanglement, it was shown in Ref. 8 that majoriza
the strongest spectral criterion, which uses the spectra of a state and just one of its reducti
relation to other separability criteria is yet not known. The present result and numerical evi
may indicate that majorization is also implied by the reduction criterion. However, the p
presented in Sec. III C does not work for arbitrary convex functions and, in fact, majorizati
not implied by the conditional entropy criteria.

Concerning separability, the most efficient criterion is still the PPT criterion, which is al
spectral criterion, however, for the partially transposed state. One interesting question
context would therefore be: how can other~easy calculable! invariants provide information abou
the separability of a state, which is not yet encoded in the smallest eigenvalue of its p
transpose?
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Parallel transport in an entangled ring
William K. Wootters
Department of Physics, Williams College, Williamstown, Massachusetts 01267

~Received 7 February 2002; accepted for publication 16 May 2002!

This article defines a notion of parallel transport in a lattice of quantum particles,
such that the transformation associated with each link of the lattice is determined
by the quantum state of the two particles joined by that link. We focus particularly
on a one-dimensional lattice—a ring—of entangledrebits, which are binary quan-
tum objects confined to areal state space. We consider states of the ring that
maximize the correlation between nearest neighbors, and show that some correla-
tion must be sacrificed in order to have nontrivial parallel transport around the ring.
An analogy is made with lattice gauge theory, in which nontrivial parallel transport
around closed loops is associated with a reduction in theprobability of the field
configuration. We discuss the possibility of extending our result to qubits and to
higher dimensional lattices. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1499207#

I. INTRODUCTION

In lattice gauge theory, the gauge field assigns to every pair of neighboring lattice s
transformation that tells how to ‘‘transport’’ a vector, representing an internal property suc
quark color, from one site to the other. That is, with every ordered pair^ j ,k& of neighboring sites,
or link, one associates a transformationU(k, j ) which is an element of the gauge group. Indee
this assignment of transformations to linksconstitutesthe configuration of the gauge field. If w
apply U(k, j ) to a vector v associated with sitej , we can interpret the image vector,v8
5U(k, j )v, as the result of movingv from site j to sitek. ~It helps to read the arguments ofU
from right to left. This notation makes sense when combined with the usual notation for
quence of operations, in which the operator on the right acts first.! This process is called paralle
transport, and the transformationU(k, j ) is sometimes called a parallel transporter.

This article is not about lattice gauge theory but about actual lattices consisting of s
quantum particles, in which each particle is correlated with its nearest neighbors. As we w
later in this work, for typical states of the lattice, one can use the state itself to specify a not
parallel transport. Our conception is distinct from the more familiar notion of quantum pa
transport~expressible in terms of gauge fields1,2!, in which a quantum particle is physically move
either in actual space or in a parameter space.2–4 In our approach there is no physical motion
evolution; rather, the transformation that we associate with a link expresses something ab
relationship between the particles joined by that link. The present work is an initial explor
into a possible analogy between the quantum state of a lattice of quantum particles a
configuration of the gauge field in a lattice gauge theory. Roughly, the analogy we are looki
would be along the following lines~it will be spelled out more precisely in later sections of t
article!.

A lattice gauge theory assigns a probability distribution to the set of possible field confi
tions, the probability density of a configurationA being proportional to exp@2S(A)# where the
real functionS(A) is the action. The action depends on the effect of parallel transport around
of the elementary plaquettes of the lattice; that is, it depends on the transformations that th
configuration associates with these elementary closed paths. The more these transformatio
from the identity, the higher the action, and therefore the lower the probability of that parti
field configuration. Let us call this effect ‘‘the probability cost of twisting.’’ I am looking f
something similar in a lattice of correlated quantum objects, but instead of a probability cost
43070022-2488/2002/43(9)/4307/19/$19.00 © 2002 American Institute of Physics
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looking for a ‘‘correlation cost.’’ We will be focusing our attention on states in which nea
neighbors are maximally correlated. The question is whether this maximal correlation mu
reduced if there is to be nontrivial parallel transport around closed loops~that is, transport whose
net effect is not null!, and, if so, whether the reduction in correlation becomes more severe a
effect of such parallel transport differs further from the identity. In other words, in an entan
lattice, is there a correlation cost of twisting?

In fact this article only begins to answer this question. Although we set up the problem
lattices of arbitrary dimension, the one concrete example we work out in detail is the cas
one-dimensional ring. Moreover, for most of the article we will restrict our attention to
simplest possible quantum object, namely, arebit, a fictitious object whose state space is a tw
dimensional vector space over thereal numbers.5 Thus we will mostly be analyzing a closed rin
of rebits. At the end of the article I discuss the generalization to qubits and to higher-dimen
lattices.

This research is related to a recent line of work on ‘‘entanglement sharing,’’ concernin
ways in which quantum entanglement can be shared among several objects. A number of
have found constraints on the sharing of entanglement that follow directly from the structu
quantum mechanics itself and not from any particular Hamiltonian. For example, it has
shown that any entanglement that might exist between a pair of qubits limits the extent to
either of them can be entangled with a third qubit.6,7 There are similar limits forn qubits all
entangled with each other.8–10Another example is an entangled ring: in a translationally invari
state of a ring of qubits, there is a certain maximum possible entanglement between n
neighbors.11 ~The measure of entanglement used in all of these studies is the entanglem
formation.12,13! In this article we are putting a different sort of condition on the quantum stat
a multipartite system—we are imposing a certain configuration of twists in the nearest-nei
correlations—and we are asking what constraint this condition places on the strength
correlations.

I hope that the results of this research will ultimately be useful in analyzing system
entangled particles on a lattice, such as magnetic systems. If there are simple laws of qu
correlations that transcend any particular Hamiltonian, then these laws might lead to the id
cation of interesting generic properties of quantum many-body systems. Arguments along
lines, particularly focusing on entanglement, have appeared recently in the literature.14–17 But at
least as much of the actual motivation for the present work comes from pure curiosity: I w
how close an analogy one can draw between the degree of correlation between particl
quantum lattice and the probability density of a field configuration in lattice gauge theor
course there are many connections between lattice gauge theory and the theory of man
systems—see, for example, Ref. 18 and references cited therein—but I am looking for an a
along the particular lines traced out above.

The reader may have noticed that in describing the work to be presented here~as opposed to
earlier work!, I have been using the word ‘‘correlation’’ rather than ‘‘entanglement.’’ Though t
are related, the two concepts are not the same. In this article I focus on correlation bec
seems natural in this context and it is easy to work with. But it would also be interesting to ex
the same questions using one of the standard measures of entanglement. I might add that t
we will primarily be concerned with are in fact highly entangled, hence the reference t
‘‘entangled ring’’ in the title.

The article is organized as follows. First we review briefly those aspects of lattice g
theory that have suggested our main question. We then define a rebit more precisely and d
our notion of parallel transport. We analyze in some detail the case of a ring of rebits
determine whether nontrivial parallel transport does indeed entail a ‘‘correlation cost.’’ Finall
ask how the problem and the results are likely to change when extended to more complex s

II. LATTICE GAUGE THEORY AND A SIMPLE ANALOGY

Ideally, lattice gauge theory is done on a four-dimensional lattice representing space
except that the fourth dimension representsimaginary time, so that it acts in many respects lik
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another spatial dimension. The results of a calculation can be interpreted in terms ofreal time by
means of analytic continuation. One consequence of the use of imaginary time is this: in co
ing the expectation value of an observable, one does not sum up complex amplitudes ass
with different histories; rather, one takes a weighted average of the observable of interes
real weights.19 As mentioned above, the weighting function is proportional to exp(2S), where the
action S is a real function of the field configuration. More precisely, in a pure gauge theor
which there are no matter fields but only the gauge field itself, the expectation value
observableB is

^B&5
1

Z E Be2S(A) )
^ j ,k&

dU~k, j !. ~1!

HereA is the configuration of the gauge field, which assigns a parallel transporterU(k, j ) to each
link ^ j ,k&. Each such transformationU is an element of the gauge group, e.g., U~1! for electro-
dynamics or SU~3! for chromodynamics. The integral in Eq.~1! is over all field configurations,
that is, over all possible parallel transporters for each link, anddU(k, j ) indicates the invariant
measure over the gauge group. In the integral, the parallel transporters for different link
independent, except thatU(k, j )5U( j ,k)21, so that only one of these two ordered pairs need
be represented in the integral. The normalizing constantZ is simply

Z5E e2S(A) )
^ j ,k&

dU~k, j !. ~2!

The actionS depends only on the results of parallel transport around plaquettes of the la
e.g., elementary squares in a cubic lattice. LetP be a plaquette, which we can think of as
sequence of lattice sites; for a cubic latticeP would consist of four sitesj ,k,l ,m. Let U(P) be the
net effect of parallel transport around plaquetteP; in the square example,U(P) would be
U( j ,m)U(m,l )U( l ,k)U(k, j ) ~the right-most operator acting first!. S is defined so that it increase
as the plaquette transformationsU(P) get farther from the identity. Various action functions wi
this property have been used in the literature; the one originally proposed by Wilson for an SN)
gauge field is20

S}2(P Re~Tr~U~P!!), ~3!

where the sum is over all plaquettes in the lattice. Note that ifP8 consists of the same set of poin
as P, but with a different starting point or with the points taken in the opposite order,
Re~Tr(U(P8)))5Re~Tr(U(P))). Thus we need include in the above sum only one ordered sP
representing each geometric plaquette.

A gauge transformation associates with each lattice pointj a group elementL( j ), and under
such a transformation each parallel transporterU(k, j ) transforms according to

U~k, j !→L~k!U~k, j !L~ j !21. ~4!

It is easy to see that, though a gauge transformation changes the field configuration, it do
change any of the plaquette transformationsU(P). Therefore, it does not affect the actionS and
so has no physical consequences.

This invariance under gauge transformations provides a simple analogy between the c
ration of a gauge field and the state of a lattice of quantum particles. Consider, for exam
lattice of qubits. Rotating each of the individual qubits separately is analogous to a gauge
formation. The state of the lattice changes under such rotations, but certain physical proper
not change. In particular, any reasonable measure of the degree ofentanglementor correlation
between two qubits does not change. So at least in this one modest respect, the degree o
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lation in a quantum lattice is similar to the action or the probability density of a field configura
in a lattice gauge theory. We want to see whether the similarity goes any further than this.

III. WHAT IS A REBIT?

As we have said, the quantum object we will mostly be concerned with in this article i
rebit. We now define this object more precisely.

A pure stateuc& of a single rebit is simply a normalized vector in a two-dimensional r
vector space. A mixed state of a rebit is a mixture of pure states:

r5(
i

pi uc i&^c i u, ~5!

where pi.0 and ( i pi51. Equivalently, a mixed state can be represented as a real, symm
232 matrix with unit trace and no negative eigenvalues.

Of course any rebit state is also a qubit state, and for our purposes it will be helpful to
of rebits simply as restricted qubits. On the Bloch sphere, the restriction to real density ma
becomes a restriction to thex-z plane. But it will be more useful to change the representation
rotating the Bloch sphere. Let us rotate all states by 90° in the left-handed sense arou
positivex axis, so that our rebit states now lie in thex-y plane. A general mixed state lying in thi
plane can be written as

r5 1
2@ I 1asx1bsy#, ~6!

where thes’s are Pauli matrices and the real numbersa andb satisfya21b2<1. Let us call this
representation of rebit states the ‘‘horizontal representation,’’ as opposed to the original
number representation.’’ Given a rebit density matrixr expressed in the horizontal representatio
we can always reexpress it as areal density matrixr real simply by reversing the rotation aroun
the x axis:

r real5UrU†, ~7!

where

U5e2 i (p/4)sx5
1

&
S 1 2 i

2 i 1 D . ~8!

Here we have written the matrix in the basis of eigenstates ofsz , $u↑&,u↓&%. Note thatUsyU
†

5sz andUsxU
†5sx .

In the real-number representation, a pure state ofn rebits is a real vector in 2n dimensions,
and a mixed state of such a system is a real, symmetric 2n32n density matrix. But again we will
usually work in the horizontal representation, in which each rebit has been rotated by 90° a
thex axis. It will be helpful to have a simple way of recognizing whether a givenn-qubit state is
a legitimaten-rebit state expressed in the horizontal representation. Conceptually, the t
straightforward: apply the above transformationU to each qubit—that is, rotate each qubit by 9
~in the right-handed sense! around the positivex axis—and see whether the resulting state has o
real components. Thus for a pure stateuC&, we insist thatU ^ nuC& be real in the standard
up–down basis. But this is the same as saying thatU ^ nuC&5(U21) ^ nuC* &, where the asterisk
indicates complex conjugation in the standard basis. Multiplying both sides of this equati
U ^ n and noting thatU252 isx , we arrive at the following criterion:

~2 isx!
^ nuC&5uC* &. ~9!
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In practice it will be simplest if we also allow ourselves to use state vectors of the
exp(ia)uC&, wherea is real anduC& satisfies Eq.~9!. Though such state vectors do not beco
real when they are transformed byU ^ n, their density matrices do become real. Allowing th
possibility leads to the following weaker condition on ann-qubit stateuC&,

sx
^ nuC&5eibuC* &, ~10!

b being any real phase. Note that the matrixsx simply interchangesu↑& and u↓&. Thus we can
recognize a puren-qubit stateuC& as a legitimate horizontal representation of ann-rebit state by
checking to see that the coefficient of each basis state, e.g.,u↑↑↓↑&, is the complex conjugate o
the coefficient of the opposite state, in this caseu↓↓↑↓&, multiplied by a phase factor that is th
same for all basis states. Let us call Eq.~10! the ‘‘rebit condition’’ for pure states. The correspon
ing test for mixed states can be obtained by a similar argument; one finds that a density mr
of n qubits is the horizontal representation of a legitimaten-rebit state if and only if

sx
^ nrsx

^ n5r* , ~11!

the complex conjugation again being in the standard basis.
We conclude this section with a word aboutrotationsof a rebit. Viewing the states of a reb

as qubit states confined to the equatorial plane of the Bloch sphere, we could take as the a
rotations all the unitary transformations that represent rotations around thez axis, that is, all
transformations of the form

R5S eia 0

0 eibD . ~12!

However, our definition of parallel transport will not be able to distinguish unitary transforma
that are different only by an overall phase factor; so we will call such transformations iden
For definiteness we pick a standard representative from each of the resulting equivalence
a rotation by an anglej around thez axis, with 0<j,2p, will be represented by the matrix

R5S 1 0

0 ei jD . ~13!

IV. PARALLEL TRANSPORT IN A LATTICE OF REBITS

We now consider a lattice of rebits, on which we want to define a notion of parallel trans
For now the structure of the lattice does not matter, as long as any two rebits are identifi
either being neighbors or not. Thus the lattice is simply a graph. The mathematical object
to be parallel transported is a pure state of a single rebit, which we can picture as a direction
horizontal plane. The parallel transporter associated with a link in the lattice will be a
rotation—represented in the form~13!—which we can identify with an element of U~1!. We want
the assignment of parallel transporters to links to be determined by the quantum state of the
itself.

We begin with the following scenario. Consider a pair of neighboring rebits labeledj andk.
They are in some joint stater ( jk), a 434 density matrix obtained from the state of the who
lattice by tracing over all the other particles. Imagine performing an arbitrary orthogonal mea
ment on particlej . In the standard von Neumann model this measurement brings particlej into a
certain pure state—one of the eigenstates of the measurement—and it also brings particlek into
some state, typically a mixed state, determined as follows. Letuc ( j )& be the eigenstate into whic
particle j is brought by the measurement. Then the postmeasurement state of particlek is the
232 density matrix
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v (k)5
1

P
^c ( j )ur ( jk)uc ( j )&, ~14!

whereP5^c ( j )uTrkr
( jk)uc ( j )& is the probability with which that particular outcome occurs. In E

~14! the matrix operations are done only in the space of particlej . To be more explicit, ifr
50,1 ands50,1 are indices associated with particlesj and k, respectively, we can write the
components ofv (k) in terms of the components ofuc ( j )& andr ( jk) as

vss8
(k)

5
1

P (
r ,r 8

c r
( j )* r rs,r 8s8

( jk) c r 8
( j ) . ~15!

We want to use this measurement scenario to associate with the two-particle stater ( jk) a
simple rotationU(k, j ). First, letM ~for ‘‘measurement’’! be the mapping defined by Eq.~14!,
which takes each pure state of particlej for which PÞ0 into a pure or mixed state of particlek;
that is,M(c ( j ))5v (k). If P50, let us say for definiteness thatM(c ( j ))5Trjr

( jk), though it will
not actually matter in what follows. For an arbitrary rebit rotationR, we define a functionF(R)
by

F~R!5
*^cuR†M~c!Ruc&Pdc

*Pdc
. ~16!

Here P is the probability given above, anddc indicates the uniform measure over the circle
pure rebit states, normalized so that*dc51. ThusF(R) is an average fidelity ofM(c), not with
respect touc& itself but with respect to a rotated version ofuc&. As we will see in the next
paragraph, depending on the density matrixr ( jk), one of the following two conditions will hold:
( i ) F(R) is independent ofR or (i i ) there is a unique rotationR5U that maximizesF(R). In
case (i ), we say that there is no correlation between particlesj andk. In case (i i ), we take the
special rotationU that maximizesF(R) to be the parallel transporter associated with the l
^ j ,k&. In a certain sense,U is the rotation that most closely approximates the action ofM.

Combining Eqs.~14! and ~16! and the definition ofP, we have

F~R!5
*~^cu ^ ^cuR†!r ( jk)~ uc& ^ Ruc&!dc

*^cuTrkr
( jk)uc&dc

. ~17!

It is not hard to show that the denominator is always1
2. Also, in the horizontal representation, th

integral in the numerator involves rotatinguc& around thez axis, so that we can rewrite Eq.~17!
as

F~R!52(^c0u ^ ^c0uR†!F 1

2p E
0

2p

eigSzr ( jk)e2 igSzdgG~ uc0& ^ Ruc0&), ~18!

whereSz5(sz
( j )1sz

(k))/2 anduc0& is some fixed reference state which for definiteness we tak
be uc0&5(u↑&1u↓&)/&. Now, a general two-particle density matrix satisfying the rebit condit
~11! is of the form

r ( jk)5S a x1 x2 x3

x1* b c x2

x2* c* b x1

x3* x2* x1* a

D , ~19!
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the representation being in the standard basis$u↑↑&,u↑↓&,u↓↑&,u↓↓&%. The average overg in Eq.
~18! has the effect of replacing thexi ’s in r ( jk) with zero and leaving the matrix elementsa, b,
andc unchanged. To evaluateF(R), we writeR explicitly as a rotation around thez axis by some
anglej:

R5S 1 0

0 ei jD . ~20!

Inserting this matrix into Eq.~18! we find that

F~R!5 1
2 @112ucucos~j2f!#, ~21!

where f is the phase of the matrix elementc; that is, c5ucueif. If c is zero, then we find
ourselves in case (i ) mentioned above:F(R) is independent ofR. OtherwiseF is maximized
when the angle of rotationj is equal to the phasef. According to our prescription, then, th
parallel transporterU(k, j ) is the rotation given in Eq.~20! with j5f.

We will take as our measure of the degree of correlation between particlesj andk the quantity
2ucu, which ranges from 0 to 1. Equation~21! makes it clear that 2ucu measures the degree o
angular correlation between the two particles. We can also interpret this quantity in terms
more standard correlation matrixtmn5Tr@r ( jk)(sm ^ sn)#, in which bothm andn take as values
the axis labels x and y. One finds that (2ucu)25@(txx1tyy)

21(txy2tyx)
2#/45@2dett

1Tr(tTt)#/4.
Note that the single complex numberc determines both the parallel transporter~through its

phase! and the degree of correlation~through its magnitude!. Typically we will be trying to
maximize the magnitude ofc for a given value of its phase. The fact that it is possible for a l
^ j ,k& to have an undefined parallel transporterU(k, j ) @case (i ) above, wherec50# will not cause
any difficulties for the problem we will be studying. We will be considering the set of all st
that are consistent with a given specification of the parallel transporters, i.e., the phases of tc’s.
If a link hasc50, then we simply say that that link is consistent with any specified phase.

Our notion of parallel transport has a particularly simple interpretation ifr ( jk) has the form
~19! with all the xi ’s equal to zero. This will happen, for example, if the state of the lattic
invariant under identical rotations of all the rebits. Ifr ( jk) has this form, then Eq.~14! yields

v (k)5pU~k, j !uc ( j )&^c ( j )uU~k, j !†1~12p!~ I /2!, ~22!

whereI is the 232 identity andp52ucu. Thus the postmeasurement state of particlek is simply
a rotated and partially depolarized version ofuc ( j )&, and the weightp of the pure rotated state i
our measure of correlation.

Let us now imagine transporting, mathematically, a rebit state around a closed loop in
dance with the above prescription. As we will see, the final state in such a process need no
same as the initial state but could be rotated by some angleu. One might ask: How does on
interpret physically this process of transport, and what is the meaning of the rotation anglu? I
regard our concept of parallel transport primarily as a mathematical notion; nothing is
physically transported. However, in the special case considered above, in which the state
lattice is rotationally invariant, one can extract from our definition a simple physical interpret
of the net rotation angle. Consider a closed loop ofn lattice sitesj 0 , j 1 ,...,j n21 . At each of the
sites j 0 ,...,j n22 , that is, at all but the last site, perform an orthogonal measurement, with
comes labeled ‘‘0’’ and ‘‘1,’’ choosing the measurement atj m so that it maximizes the probability
of getting the same outcome~0 or 1! as at sitej m21 . That is, we are trying to minimize the
expected number of flips from 0 to 1 or from 1 to 0 as we go around the loop. Now, at the las
j n21 , one is faced with a dilemma: there will be a measurement that maximizes the probabi
agreement betweenj n22 and j n21 , and there will be a~possibly different! measurement tha
maximizes the probability of agreement betweenj n21 and j 0 . The angle between these tw
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measurements, that is, between their ‘‘0’’ eigenstates, is the angleu associated with paralle
transport around the loop. We can think of this angle as measuring the net ‘‘twist’’ in the ne
neighbor correlations.

When the state of the lattice is not rotationally invariant, the angle between the two comp
optimal measurements at the last site~the two being reckoned optimal from different direction!
may depend on the choice of the initial measurement on the first particle. So the interpreta
this case is not as simple. Still, it is reasonable to think of the net rotation angle as a meas
the net twist in the correlations. In the following section where we analyze the case of a rebi
we will find that the optimal states, which are the states most relevant to our problem, are
rotationally invariant, so that the above interpretation applies.

V. ANALYSIS OF A REBIT RING

So far we have not made any assumptions about the structure of the lattice. In order to
a concrete result, we now specialize to the simplest possible lattice for which our general qu
can be addressed, namely, a closed one-dimensional ring. Let the ring consist ofn rebits withn
>2, labeled byj 50,1,...,n21; the labeling is modn, so thatj 5n is the same asj 50. Let cj be
the matrix elementc of Eq. ~19! when the two particles in question are particlesj and j 11. The
quantityK5 (2/n) ( j ucj u will be the measure of average nearest-neighbor correlation that we
be trying to maximize; note that 0<K<1. The product) j (cj /ucj u), which we will call eiu, is the
net phase factor associated with transport around the whole ring, andu ~defined only mod 2p! is
the net rotation angle. Our question is this: what is the maximum possible value ofK for a fixed
value ofu? Let us call this maximum valueKmax(u). If Kmax(u) decreases aseiu gets farther from
unity, then we can say that there is a correlation cost associated with nontrivial parallel tran

As we have stated the problem so far, the phases of the differentcj ’s, that is, the phases tha
define the individual parallel transporters, need not be the same for all links in the ring. How
for our purpose there is no loss of generality in assuming that these phases are all equal.
because if they were not equal, we could always apply local rotations to the individual
~analogous to a gauge transformation! so as to make them equal. Local rotations can cha
neither the magnitude of anycj nor the overall phase factoreiu. So the restriction to equal phase
does not eliminate any states that might change the answer to our question. That is, stat
maximalK for any givenu are still represented in the restricted set.

With this restriction, we can simplify our problem by expressing the average correlationK and
the overall phaseu in terms of creation and annihilation operators. Letaj be an operator on
particle j defined by aj u↑&5u↓& and aj u↓&50. Then for the link between thej th and the
( j 11)st rebits, we can writecj as

cj5Tr~raj 11
† aj !, ~23!

r being the density matrix of the ring. Now if we define the operatorG to be

G5
1

n (
j 50

n21

aj 11
† aj ~24!

and write^G&5TrrG, it follows ~assuming that eachcj has the same phase! that

K52u^G&u, ~25!

and that the overall phaseu ~mod 2p! is simply

u5n arg~^G&!. ~26!

G is not a Hermitian operator—so its eigenvalues may be complex and indeed must be com
u is to take any nontrivial value—butG does commute with its adjoint, which implies th
eigenvectors corresponding to distinct eigenvalues are orthogonal. Note also thatG commutes with
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the totalz component of spin; so the eigenstates ofG can be taken to be states with a defin
numberu of up spins. Our immediate goal is to find the eigenvalues ofG, from which we will be
able to determine the set of possible values of^G&, which in turn will give usKmax(u).

The a operators are not quite fermionic creation and annihilation operators, becaus
operators associated with different sites commute with each other rather than anticommute
ever, we can use a standard trick21 to define genuinely fermionic operatorsbj :

bj5expF ip(
k50

j 21

ak
†akGaj . ~27!

The operatorsbj satisfy the usual fermionic anticommutation relations:

$bj ,bk%5$bj
† ,bk

†%50; $bj ,bk
†%5d jk . ~28!

We now expressG in terms of theb’s. The expression depends on whetheru, the number of up
spins in the ring, is even or odd; that is, the expression is different in different subspaces. F
values ofu, G looks the same in terms of theb’s as it does in terms of thea’s:

G5
1

n (
j 50

n21

bj 11
† bj . ~29!

For even values ofu, there is a sign change in the last term:

G5
1

n F (
j 50

n22

bj 11
† bj2b0

†bn21G . ~30!

In either case, we can diagonalizeG and find its exact single-fermion eigenvalues. From these
can obtain the eigenvalues ofG for an arbitrary value ofu by summingu of the single-fermion
eigenvalues.

For oddu, the single-fermion eigenstates ofG are uvm&5dm
† u0&, m50, . . . ,n21, whereu0&

is the vacuum state, that is, the state with all spins down, and the creation operatordm
† is given by

dm
† 5

1

An
(
j 50

n21

e22mp i j /nbj
† . ~31!

The corresponding eigenvalues ofG are

gm5~1/n!e2mp i /n. ~32!

For evenu, the creation operators for the single-fermion eigenstates are

dm
† 5

1

An
(
j 50

n21

e2(2m11)p i j /nbj
† , m50,...,n21, ~33!

and the corresponding eigenvalues are

gm5~1/n!e(2m11)p i /n. ~34!

Regardless of the value ofu, the single-fermion eigenvalues ofG are complex numbers of lengt
1/n, with phases uniformly spaced around the complex plane.

The eigenvalues ofG corresponding to a system ofu fermions~that is,u up spins! are all the
possible sums ofu of the gm’s. That is, we can write each such eigenvalue as
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G~M !5 (
mPM

gm , ~35!

whereM is a set of exactlyu integers chosen from the set$0,...,n21%. ~We cannot use the sam
value ofm twice in this sum because no two identical fermions can be in the same state, a
the single-fermion eigenvalues are nondegenerate.!

As we will see, the most important eigenvaluesG(M ) for our purpose will be the ones with
the greatest magnitude. For even values ofn, these are the ones for whichu5n/2 and the setM
consists of a string of consecutive integers~modn!, so that the corresponding valuesgm constitute
a ‘‘fan’’ of complex numbers spread out over half of the complex plane. Performing the sum i
~35!, we find that these extreme eigenvalues are

Gr5
e2rp i /n

n sin~p/n!
, r 50,...,n21 ~even n!, ~36!

an equation that holds for all even values ofn ~even thoughu5n/2 might be even or odd!. For
odd values ofn, the eigenvalues with largest magnitude are obtained by settingu equal to either
(n11)/2 or (n21)/2, and again lettingM consist of a string of consecutive integers modn. For
either of these choices ofu, the eigenvalues thereby obtained are

Gr5
e2rp i /n

n sin~p/n!
cos~p/~2n!!, r 50,...,n21 ~odd n!. ~37!

For either even or oddn, each eigenstate corresponding to one of the eigenvaluesGr can be
written as

uV r ,u&5dm0

† dm011
†

¯dm01u21
† u0&, ~38!

wherem05r 2 bu/2c mod n. ~Here and below, addition in the subscript ofd is always modn.!
This value of m0 places exp(2rpi/n) in the center of the fan of complex eigenvalu
gm0

,...,gm01u21 . For later convenience, we define the following density matrices based on
eigenstates. For evenn,

r r5uV r ,n/2&^V r ,n/2u, ~39!

and for oddn,

r r5
1
2 @ uV r ,(n11)/2&^V r ,(n11)/2u1uV r ,(n21)/2&^V r ,(n21)/2u#. ~40!

As we will see shortly, both of these density matrices satisfy the rebit condition, even th
uV r ,(n11)/2& and uV r ,(n21)/2& do not. Note also that for both even and oddn, Tr r rG5Gr .

One can check thatr r is translationally invariant and thus is in accord with the assumption
made earlier, that the matrix elementcj has the same phase for each link of the ring. But we a
want to check thatr r is a legitimate rebit state, i.e., that it satisfies Eq.~11!. Let us do this first for
even values ofn, in which case we are dealing with a pure stateuV r ,n/2&.

We begin by noting that

sx
^ nbj

†5~21! jbjsx
^ n , ~41!

which can be seen directly from the definition ofbj . It follows that

sx
^ ndm1

†
¯dmu

† u0&5@dm11n/2¯dmu1n/2sx
^ nu0&] * , ~42!
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wherem1 ,...,mu are any distinct values chosen from the set$0,...,n21%. @The addition ofn/2 in
the subscripts on the right-hand side comes from (21) j in the preceding equation.# In general, a
state of the formdm1

†
¯dmu

† u0& will not satisfy the rebit condition, even ifu5n/2. However, for

the special case in whichm1 ,...,mu aren/2 consecutiveintegers, as they are in the definition o
uV r ,n/2&, the subscripts on the right-hand side of Eq.~42! are precisely those elements
$0,...,n21% that are not included in$m1 ,...,mu%. Therefore, when those annihilation operato
are applied to the all-up-spin statesx

^ nu0&, which within a phase factor is the same
d0

†d1
†
¯dn21

† u0&, the resulting state, again up to an overall phase factor, isdm1

†
¯dmu

† u0&. We have

thus shown that

sx
^ nuV r ,n/2&5eibuV r ,n/2* & ~43!

for some phaseb, so thatr r satisfies the rebit condition~10! for even values ofn.
Turning now to the case of oddn, one can use an argument like the one in the preced

paragraph to show that

sx
^ nuV r ,(n21)/2&^V r ,(n21)/2usx

^ n5uV r ,~n11!/2* &^V r ,~n11!/2* u, ~44!

and vice versa, so that

sx
^ nr rsx

^ n5r r* . ~45!

So r r satisfies the rebit condition for odd values ofn as well.
We are now in position to find the set—call itG—of possible values of̂G&, from which we

will be able to determineKmax(u). The complex numbersGr given by Eq.~36! or ~37!, being
values of ^G& corresponding to the legitimate rebit statesr r , are elements ofG. By taking
mixtures of these states, we can obtain other possible values of^G&. Let

r5(
r

qrr r , ~46!

where theq’s are non-negative numbers summing to 1. For this state we have

^G&5Tr rG5(
r

qrGr . ~47!

The complex numbersGr are the vertices of a regularn-gon in the complex plane, and Eq.~47!
shows that thisn-gon and its interior are contained inG.

In fact, it is easy to see thatG contains no other points. Any complex number^G& in G must
be a weighted average of eigenvalues ofG:

^G&5(
M

qMG~M !. ~48!

But one can show that each eigenvalueG(M ), regardless of the value ofu, lies on or inside the
n-gon defined by the special eigenvalues discussed above. Therefore it is impossible
average to get outside this region.

For the special casen52, the interior of the ‘‘n-gon’’ is simply a segment of the real axis
running from2 1

2 to 1 1
2. Thus the only possible phases of^G& are zero andp, so that according

to Eq.~26! the only possible value of exp(iu) is 1. ~This is because there is no real loop to traver
to return to the starting place, one has to retrace one’s steps.! For all other values ofn, all values
of u from 0 to 2p are possible. To see this, it is enough to consider a single side of then-gon; let
us take the side consisting of the line segment joining the pointG0 , on the positive real axis, with
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the pointG15e2p i /nG0 . As we travel along this segment, the phase of^G& varies from 0 to 2p/n,
so thatu varies from 0 to 2p. The range of values ofu^G&u as a function ofu is the same for each
of the other sides of then-gon.

It thus becomes a simple geometric problem to findKmax(u). For n.2, consider the line
segment just described, connectingG0 to G1 , and note that for anyu in the range 0<u<2p,
Kmax(u) is twice the magnitude of the unique point along this segment whose phase isu/n. Doing
the geometry, and using the values ofGr given in Eqs.~36! and ~37!, one finds that for evenn,

Kmax~u!5
2 cos~p/n!

n sin~p/n!cos@~p2u!/n#
, ~49!

and for oddn,

Kmax~u!5
2 cos~p/n!cos~p/~2n!!

n sin~p/n!cos@~p2u!/n#
. ~50!

It is clear both from the geometric picture and from Eqs.~49! and ~50! that Kmax is largest atu
50 andu52p and smallest atu5p. Indeed, the value ofKmax becomes smaller the moreeiu

differs from unity. In this sense there is a correlation cost of nontrivial parallel transport aroun
ring.

It is not hard to interpret the statesr r physically. The stater0 , which entails no twisting as
one goes around the ring, is the ground state, or, in the case of oddn an equal mixture of the two
degenerate ground states, of the ferromagneticXY model21 on a one-dimensional ring, whos
Hamiltonian isH52( j (aj

†aj 111aj 11
† aj )52n(G†1G). The stater r can be obtained fromr0

by rotating each rebit, the rotation angle at sitej being 2pr j /n. These rotations do not change th
strength of the nearest-neighbor correlations, but for each sitej they change the phase of th
matrix elementcj from zero to 2pr /n. Still, this does not change theoverall phase factoreiu

associated with the whole ring. When one creates a mixture of two of these differently ro
states, e.g.,r0 andr1 , the resulting matrix elementcj is an average of two complex numbers wi
different phases. It is this averaging process that allows the possibility of a nontrivial net
change around the ring.

In the case of evenn, wherer r represents the pure stateuV r ,n/2&, one could achieve the sam
averaging effect by creating coherent superpositions of eigenstates ofG rather than incoheren
mixtures. I have chosen to use mixtures because superpositions of these eigenstates are
essarily translationally invariant. However, just to demonstrate that it is possible for a transl
ally invariant pure state to have a nonzero rotation angleu associated with parallel transpo
around the ring, I offer the following example forn56:

uC&5
i

A12
@eif/2~ u↑↑↓↑↓↓&1¯ !1e2 if/2~ u↑↑↓↓↑↓&1¯)]. ~51!

Here each ellipsis stands for all possible translations of the given state.@Though we are not paying
particular attention to the overall phase factors of pure states, I have chosen the overall p
Eq. ~51! to satisfy Eq.~9!.# One finds that the matrix elementcj for each link in this ring is

( 1
6)exp(if), so that the overall rotation angle isu56f and the average correlation isK5 1

3. Thus
any value ofu can be realized with a translationally invariant pure state. But the valueK5 1

3 is not
optimal. To obtain the optimal valueKmax(u) in a translationally invariant state, one must typica
use mixed states rather than pure states.

We finish this section by giving asymptotic expressions forKmax(u) as the number of rebits in
the ring gets very large. For evenn, Eq. ~49! to order 1/n2 becomes~for 0<u<2p!

Kmax~u!5
2

p F11
1

n2 S p2

6
2pu1

u2

2 D G , ~52!
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while for oddn we have

Kmax~u!5
2

p F11
1

n2 S p2

24
2pu1

u2

2 D G . ~53!

Thus the correlation cost of nontrivial parallel transport becomes smaller as the size of th
increases.

VI. OTHER LATTICES

Let us now think about how the above problem might be generalized to a finite or in
lattice of higher dimension~still using rebits as our basic objects!. We can state the problem a
follows. As in Sec. IV, letr ( jk) be the density matrix of the pair of rebits at the neighboring s
j andk, and letcj ,k be the coefficient ofu↑↓&^↓↑u in this density matrix.~This cj ,k is analogous
to thecj of the preceding section.! Now suppose that the phases of all thec’s, for all the links
^ j ,k&, are specified. We will call this complete specificationA, since it is analogous to a field
configuration in the U~1! gauge theory. Given this specification, we have two questions: (i ) Is it
possible to find a lattice state for which the numberscj ,k are all nonzero and have the chos
phases?~One can always find a state in which all thecj ,k’s are zero, making the state consiste
with any phases, but such a state is not very interesting.! ( i i ) What is the maximum possible valu
of

K5
2

L (
^ j ,k&

ucj ,ku, ~54!

consistent with the specificationA? HereL is the number of links in the lattice. In the case of
infinite lattice, K can be defined as a limit over a sequence of finite lattices. Let us cal
maximum valueKmax(A).

For definiteness let us consider a specific lattice, namely, an infinite square lattice i
dimensions. Let us consider first the configurationA0 in which the phases of all thecj ,k’s are zero.
In this case it is again helpful to invoke the Hamiltonian of the ferromagneticXY model:

H52 (
^ j ,k&

~ak
†aj1aj

†ak!. ~55!

Here the sum is over all links in the square lattice. The optimal value ofK is the infinite-lattice
limit of ( 2E0 /L), E0 being the minimum eigenvalue of this Hamiltonian. In the thermodyna
limit, the ground state of theXY model on a square lattice breaks the SO~2! symmetry of the
problem and picks out a preferred direction of magnetization in thex-y plane,22,23 which can be
characterized by a single anglea. But if we choose to do so~in order to simplify the interpretation
of parallel transport!, we can easily generate a rotationally invariant state with the s
energy—or in our context, with the same degree of correlation—simply by averaging the g
state density matrixr(a) over all angles:r05(1/2p)*r(a)da. The ground-state energy has be
evaluated numerically,24–26 and one finds thatKmax(A0)50.549. Notice that this value is smalle
than the corresponding value for a rebit ring in the limitn→` @see Eqs.~52! and~53! or Ref. 21#,
which is 2/p50.637.

Given a different specification of the phases, it is not immediately obvious whether
exists a state that has all nonzerocj ,k’s—let us call such a state ‘‘fully connected’’—and that
also consistent with the given phases. Consider, for example, the configurationA in which all the
phases are zero except at a specific link^ j ,k&, where the phase is required to bef. Can one find
a fully connected state of the lattice consistent with these phases? The following metho
work, though it is not likely to be optimal. Start with the stater0 defined in the preceding
paragraph, in which all the phases are zero. Construct the following sum:
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r~ j ,k,f!5 1
3 @Vjr0Vj

†1Vk
†r0Vk1~Vj

†
^ Vk!r0~Vj ^ Vk

†!#, ~56!

whereVj is the matrix

Vj5S 1 0

0 ei jD ~57!

applied to particlej andVk is the same matrix applied to particlek. Herej will be a function of
f to be determined later. Because the rotations in Eq.~56! affect only particlesj andk, all links
not involving either of these particles will continue to have zero phase. Moreover, any
involving only one of the two special sites will likewise have its phase unchanged. Conside
example, the link̂ j ,l & wherelÞk. The value ofcj ,l is

cj ,l5
1

3
~c0e2 i j1c01c0ei j!5S 112 cos~j!

3 D c0 , ~58!

so that the phase has not been affected. On the other hand, the value ofc associated with the link
^ j ,k& is

cj ,k5S 2e2 i j1e2i j

3 D c0 , ~59!

which has a phase that can be made equal tof by a proper choice of the value ofj.
An even simpler strategy, which is surely not optimal, shows thatany phase configurationA

can be realized in a fully connected quantum state of the lattice. Let us imagine the two d
sions of the lattice to be horizontal and vertical. Start with a state in which each vertical co
of lattice sites is in the ground state of the ferromagneticXY model for an infinite chain. Call this
stateufV&. Now rotate each of the rebits in each of these chains so as to achieve the desired
for the vertical links. This can be done with no loss of correlation, because we are s
performing local rotations. Similarly, consider the stateufH& in which eachhorizontal row is in
the XY ground state, and rotate the rebits so as to achieve the desired phases for the ho
links. Let ufV8 & and ufH8 & be the states resulting from these rotations. Then the mixed state

r5 1
2 ~ ufV8 &^fV8 u1ufH8 &^fH8 u! ~60!

completely matches the phase configurationA. We can even compute the value ofK for the state
r: it is equal to half ofKmax for the infinite chain, independent of the configurationA. That is,
K51/p50.318. For the special configuration considered above, in which only one link
nonzero phase, this value is smaller than what one can achieve with the specialized method
~57!. Nevertheless, the method we have just described does answer our first question: all c
rationsA can be achieved without making anycj ,k vanish. Notice also that this construction giv
us a lower bound onKmax(A) for all configurationsA: Kmax(A)>1/p.

Actually findingKmax(A), even for simple configurationsA, is probably a very hard problem
If one uses strategies similar in spirit to the one given in Eq.~57!, then it would seem that the
value of Kmax(A) must decrease in order to achieve nontrivial parallel transport around a
@One can see the decrease in the values ofucj ,l u and ucj ,ku in Eqs. ~58! and ~59!.# But it is
conceivable that a completely different strategy could do much better; so we must leave this
question unanswered.
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VII. LATTICES OF QUBITS

In our definition of parallel transport for rebits, developed in Sec. III, we implicitly made
of the fact that for rebits, there exists a two-particle stater (1) such that if particlesj andk are in
this state, and if particlej is measured and found to be in the stateuc&, then particlek will always
be brought to thesamestateuc&. Mathematically,

v5
1

P
^cur (1)uc&5uc&^cu. ~61!

The stater (1) is in fact uC (1)&^C (1)u, with uC (1)&5(u↑↓&1u↓↑&)/&. So for this state, the
parallel transporter is the identity and the degree of correlation is 1. In effect, our definitio
parallel transport compares other two-particle states to this special state; when the paralle
porter U is not the identity, it is because one of the particles has been rotated~and possibly
distorted in other ways as well! compared to the standard stater (1).

For qubits, there is no two-particle state with this property. The most closely analogous
is the singlet stateuC (2)&5(u↑↓&2u↓↑&)/&. It has the property that if a measurement on one
the particles brings it to the stateuc&, the other particle will be brought to theorthogonalstate
uc̃&5syuc* &, where the complex conjugation is in the standard basis. In defining parallel t
port for qubits, we will take the singlet state as our standard state, for which the parallel
porter is defined to be the identity. All other states will then be compared with this one. A ge
parallel transporter will be a rotation of the Bloch sphere, that is, an element of SO~3!; as in the
case of rebits, our definition will not allow us to distinguish overall phases. We will usu
represent such a rotation as a 232 unitary matrix, keeping in mind that the overall phase
irrelevant.

We start again with Eq.~14!:

v (k)5
1

P
^c ( j )ur ( jk)uc ( j )&, ~62!

and again letM be the map that takesuc ( j )& to v (k). But now we define our generalized fidelit
as

F~R!5
*^c̃uR†M~c!Ruc̃&Pdc

*Pdc
, ~63!

where dc refers to the uniform measure over the surface of the Bloch sphere. Note thF

comparesM(c) with a rotated version ofuc̃& rather than a rotated version ofuc&. If there is a
unique rotationR5U ~up to an overall phase! that maximizesF(R), then we will take thisU to
be the parallel transporter for the link^ j ,k&. Thus, ifr ( jk) happens to be the singlet state, we ha
U(k, j )5I .

The fact that we base our notion of parallel transport for qubits onantiparallel states has the
following consequence when we consider a closed loop. If the loop consists of an odd num
qubits, then the expression ‘‘no net twist,’’ by our definition, implies a net reflection of the s
This is not what we intend to convey by this expression; so, I regard our definition as appro
only for loops consisting of anevennumber of qubits. In a cubic lattice, every loop is of this so
This restriction to even numbers of qubits is less than perfectly satisfying, but it is hard to se
it can be avoided, since there is no two-qubit state expressing a perfectpositivecorrelation along
every axis.

Carrying out the integrals in Eq.~63!, we find that

F~R!5 1
3 1 2

3 ^C (2)u~ I ^ R†!r ( jk)~ I ^ R!uC (2)&. ~64!
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Now, it is a fact that any maximally entangled state of two qubits can be written
(I ^ R)uC (2)&. So maximizingF(R) over all rotationsR is the same as finding the maximal
entangled state that has the greatest overlap withr ( jk). The quantity

f 5max
R

^C (2)u~ I ^ R†!r ( jk)~ I ^ R!uC (2)& ~65!

has been called the ‘‘fully entangled fraction’’ ofr ( jk).13 It ranges from1
4 ~for the completely

mixed state! to 1 ~for a maximally entangled state!.27 We will take (4f 21)/3, which ranges from
0 to 1, as our measure of the degree of correlation between particlesj andk, and defineKq ~q for
‘‘qubit’’ ! to be the average of this quantity over all the links of the lattice. As has been menti
the rotationR that achieves this maximum value, if it is unique, will be our parallel transpo
U(k, j ).28 We would like to maximizeKq for a fixed set of parallel transporters.

Our notion of parallel transport for qubits is particularly simple ifr ( jk) happens to be a
‘‘twisted Werner state,’’ that is, a state of the form29

p~ I ^ V!uC (2)&^C (2)u~ I ^ V†!1~12p!~ I /4!. ~66!

Here 0,p<1, uC (2)& is the singlet state,I is the 434 identity matrix, andV is a unitary
transformation acting on particlek. If r ( jk) is of this form, then the parallel transporterU(k, j )
works out, not surprisingly, to be the transformationV. Moreover, the weightp appearing in Eq.
~66! is none other than our measure of correlation (4f 21)/3. Thus both the parallel transporte
and the degree of correlation are particularly easy to interpret in this case. One can show t
six-rebit state of Eq.~51!, reinterpreted as the state of a six-qubit ring, has the property that
pair of nearest neighbors is of the twisted Werner form.

A more interesting example of a qubit ring exhibiting nontrivial parallel transport—but wh
pairs are not necessarily of the twisted Werner form—is given by the following state of six q

uc&5a~ u↑↑↑↓↓↓&2¯)1b@e2 i j~ u↑↓↑↓↓↑&2¯ !1ei j~ u↑↑↓↓↑↓&2¯)]

1g~ u↓↑↓↑↓↑&2u↑↓↑↓↑↓&). ~67!

Here each ellipsis indicates all the translations of the given state, but withalternatingsigns. For
example, the coefficienta multiplies

u↑↑↑↓↓↓&2u↑↑↓↓↓↑&1u↑↓↓↓↑↑&2u↓↓↓↑↑↑&1u↓↓↑↑↑↓&2u↓↑↑↑↓↓&. ~68!

The coefficientsa, b andg are real and positive; their values will be specified shortly. Note
each pair of nearest neighbors in this state has the same density matrix, so that each has t
degree of correlation and the same parallel transporter. Because the stateuc& is an eigenstate ofSz

with eigenvalue zero, the density matrix of each pair is of the form~19! with all thexi ’s equal to
zero.~It is convenient to introduce a negative sign in the off-diagonal elements since our sta
state is now the singlet.!

r ( jk)5S a 0 0 0

0 b 2c 0

0 2c* b 0

0 0 0 a

D . ~69!

Carrying out the trace ofuc&^cu over the other particles, one finds thata52a212b2, b5a2

14b21g2, andc52b@(a1g)ei j1be22i j#. The correlationKq is (4f 21)/3, where

f 5b1ucu5a214b21g212bu~a1g!ei j1be22i ju, ~70!

and the parallel transporter is
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U5S 1 0

0 eifD , ~71!

wheref is the phase ofc, that is, the phase of (a1g)ei j1be22i j. The fact thatKq depends on
the matrix elementb, while the analogous quantityK for rebits depended only onc, ultimately
comes from the fact that in Eq.~63! we average over the entire surface of the Bloch sphere and
just over the equator.

In the spirit of our main problem, we would like to choosea, b andg so as to maximizeKq .
Let us do this extremization for the special casej50, for which the parallel transporter given i
Eq. ~71! is the identity. In this case one finds that the optimal values area5(130134A13)21/2,
b5(1/2)(31A13)a, and g5(41A13)a, which satisfy the normalization condition 6a2

112b212g251. ~By no accident, the stateuc& with these values of the coefficients is the grou
state of the antiferromagnetic Heisenberg model for a ring of six qubits.! In what follows we will
assume thata, b and g have these values. One finds then that forj50, each pair of neares
neighbors is in a Werner state, and the correlationKq is (21A13)/950.623. Let us call this value
Kq

(0) .
How doKq andU for the stateuc& change asj departs from zero? Let us first look atU. To

lowest order inj, the anglef, which is the rotation angle associated with parallel transport ac
a link, is

f5arg@~a1g!~11 i j!1b~122i j!#5S a1g22b

a1g1b D j. ~72!

Note thata1g22b.0, so that this linear contribution tof does not vanish. Meanwhile, th
correlationKq diminishes by an amount proportional to the square ofj:

Kq5Kq
(0)2S 12b2~a1g!

a1g1b D j2. ~73!

Letting u56f be the net rotation associated with parallel transport around the whole ring, w
see howKq depends onu to lowest order:

Kq5Kq
(0)2S b2~a1g!~a1g1b!

3~a1g22b!2 D u250.6232~0.369!u2. ~74!

Notice that the reduction in correlation is of second order inu, whereas in the case of rebits it
of first order as seen in Eqs.~52! and~53!. Of course we have not done the thorough optimizat
for qubits that we have done for rebit rings, but this example indicates that there is a sign
difference between the two cases.

VIII. DISCUSSION

We have shown, first of all, that there is a sense in which certain quantum states e
nontrivial parallel transport around a closed loop, which is to say that the nearest-neighbor
lations exhibit a net twist as one goes around the loop. One might regard this result as som
surprising, since there is, after all, only a single quantum state for the whole loop, and one
think that the local twists would therefore have to cancel each other out. We have also show
in the case of the rebit ring, there is a loss of nearest-neighbor correlation associated wit
trivial parallel transport around the ring. For other lattices or for lattices of qubits, we do not k
whether there is such a correlation cost, though it is certainly plausible that there would be

As we have seen, there is a close relationship between our rebit problem and theXY model,
a model that has been very well studied. Studies of spin stiffness in this model~see, for example,
Ref. 26! have a certain similarity with the problem we have been considering in that in both
one enforces a twist between neighboring spins. What distinguishes the present work is t
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that we have not actually specified any Hamiltonian. Though it has been helpful for us to u
operator similar to the Hamiltonian of theXY model, we are really working with what might b
called thekinematicsof quantum mechanics. We are asking what correlation properties of q
tum states follow from certain other correlation properties—specifically, we are asking wha
can say about thestrength of correlations given some information about thetwist in the
correlations—and this question is independent of any considerations of energy.

I introduced the subject by relating it to lattice gauge theory. To what extent, then, hav
found an analogy between the state of a quantum lattice and the configuration of a lattice
field? In a qualitative sense, the reduction in correlation that we have observed in a rebit rin
be compared to the reduction in probability that one finds in a lattice gauge theory. But fo
rebit case, the analogy must be regarded as quite rough, because there is a significant
congruence in the details. In gauge theory, the initial decrease in the probability is ofsecond order
in the net rotation angleu associated with transport around a plaquette. In the U~1! theory, for
example, the function exp(2S), with S given by Eq.~3!, decreases in proportion tou2 for small
values ofu. In contrast, in the rebit ring, the average correlationK, as given by Eqs.~49! and~50!,
decreases in proportion tou itself. The second-order dependence is in fact important in lat
gauge theory for taking the continuum limit. Moreover, our first-order dependence makesKmax(u)
a nonanalytic function, since nearu50 it takes the forma2buuu. So this difference is not trivial.

On the other hand, we have just seen that thequbit correlation as we have defined it does se
to diminish quadratically inu, at least for a ring of six qubits. It is interesting to ask whether in
case of a two-dimensional or higher-dimensional lattice, the dependence ofKmax(A) is of second
order in the rotation angles. In the one relevant example we have considered for a rebit
namely, the strategy given in Eq.~57!, the value ofK decreases asf2/3, which is an even sharpe
dependence than in the rebit ring. But we have not explored at all fully the range of possible
that one might consider for these higher-dimensional lattices.

It is worth commenting on the fact that in the case of qubits, our approach makes the p
transporters elements of SO~3!, whereas one might have expected SU~2!. The nature of our
definition does not allow us to pick out a relative phase in the relation between neighboring q
For example, we cannot distinguish between the identity operation and a rotation by 2p, even
though a pure qubit state experiencing the latter rotation picks up a phase factor of21. It is
conceivable that by taking into account the density matrix of an entire loop, in addition t
density matrices of the neighboring pairs, one might be able to make sense of this distinctio
applies to thenet rotation associated with the loop as a whole.

There are other ways in which one might modify the problem we have been considering
could use a different measure of correlation or entanglement. Moreover, even if one contin
use the quantity 2ucu for rebits and the quantity (4f 21)/3 for qubits as the measure of neare
neighbor correlation, one could combine the correlations from all the links in a different way
example, in the case of a ring it would make some sense to consider theproductof the individual
correlations rather that the average; this measure has the pleasing feature that it vanishes
the links in the ring is broken.

Again, our main conclusion is this: in the one example we have worked out in detail, if
is a nontrivial twist in the nearest-neighbor correlations, that is, a twisting that cannot be u
by local rotations, then there is a corresponding reduction in the maximum possible magnit
these correlations. That is, in this one example at least, twisted correlations are weaker c
tions. This conclusion follows from the structure of the quantum state space and is true irr
tive of the system’s Hamiltonian.
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18F. Berrutȯ, G. Grignani, G. W. Semenoff, and P. Sodano, Ann. Phys.~N.Y.! 275, 254 ~1999!.
19For an introduction, see G. Mu¨nster and M. Walzl, hep-lat/0012005.
20K. G. Wilson, Phys. Rev. D10, 2445~1974!.
21E. Lieb, T. Schultz, and D. Mattis, Ann. Phys.~N.Y.! 16, 407 ~1961!.
22T. Kennedy, E. H. Lieb, and B. S. Shastry, Phys. Rev. Lett.61, 2582~1988!.
23K. Kubo and T. Kishi, Phys. Rev. Lett.61, 2585~1988!.
24C. J. Hamer, T. Ho¨velborn, and M. Bachhuber, J. Phys. A32, 51 ~1999!.
25S. Zhang and K. J. Runge, Phys. Rev. B45, 1052~1992!.
26A. W. Sandvik and C. J. Hamer, Phys. Rev. B60, 6588~1999!.
27F. Verstraete and H. Verschelde, in quant-ph/0203073, have elucidated the relationship between the fully en

fraction f of a pair of qubits and the entanglement as measured by the concurrence.
28In the case of qubits, in contrast to that of rebits, it is possible forR not to be unique even when the correlation (4f

21)/3 is not zero. For example, ifr ( jk)5(u↑↓&^↑↓u1u↓↑&^↓↑u)/2, then any rotation around thez axis maximizesF(R),
and yet the correlation (4f 21)/3 has the value

1
3. However, as in the case of rebits, this sort of ambiguity does not ca

any difficulties for the problem we are considering.
29Werner states are discussed, for example, in K. G. H. Vollbrecht and R. F. Werner, Phys. Rev. A64, 062307~2001!.
                                                                                                                



ssical
sed if

ation
ing the
-
nt being

city in

erty
ng a
using
itivity.
itrarily
g

xtreme
isted
ation

antum

ntum

f

r-
tead of

is

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 9 SEPTEMBER 2002

                    
On entanglement-assisted classical capacity
A. S. Holevoa)

Steklov Mathematical Institute, Gubkina 8, 117966 Moscow, Russia

~Received 18 October 2001; accepted for publication 16 May 2002!

We give a modified proof of the recent result of C. H. Bennett, P. W. Shor, J. A.
Smolin, and A. V. Thapliyal concerning entanglement-assisted classical capacity of
a quantum channel and discuss the relation between entanglement-assisted and
unassisted classical capacities. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1495877#

I. INTRODUCTION

The classical capacity of a quantum channel is the capacity of transmission of cla
information through the channel. It is well known that the classical capacity can be increa
there is an additional resource in the form of an entangled state shared between the inputA and the
outputB of the channel. While entanglement itself cannot serve for transmission of inform
from A to B, it may enhance the transmission provided there is a quantum channel connect
systems. If the channel is ideal~i.e., the identity map Id fromA to B!, then the entanglement
assisted capacity is twice as great as the unassisted classical capacity, the enhanceme
realized by the dense coding protocol.1

Recently C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal~BSST! studied the
effect of the shared entanglement on the classical capacity of a quantum nonideal~noisy!
channel2,3 and obtained a remarkably simple formula for the entanglement-assisted capa
terms of the maximal mutual quantum information betweenA andB. The proof, which is by no
means trivial, involves in particular a rather tricky derivation of an important continuity prop
of quantum entropy. In this article we give a modified proof of the BSST theorem, includi
more transparent proof of this property; moreover, we make further simplifications by
heavily properties of conditional quantum entropy rather than the underlying strong subadd

In Ref. 2 it was shown that the enhancement in the classical capacity can achieve arb
large values. To this end the case of ad-dimensional depolarizing channel in the limit of stron
noise (p→1) was considered; we remark that the enhancement is even greater for the e
casep5 d2/(d221). Moreover, we derive a general inequality between entanglement-ass
and unassisted capacities which may be relevant to the additivity problem in quantum inform
theory.

II. THE BSST THEOREM

We refer the reader to Refs. 4 and 5 for some basic definitions and results of qu
information theory used in this article.

Consider the following protocol for the classical information transmission through a qua
channelF. SystemsA andB of the same dimension share an entangled~pure! stateSAB . A does
some encodingi→E A

i depending on a classical signali with probabilitiesp i and sends its part o
this shared state through the channelF to B. ThusB gets the states (F ^ IdB)@SAB

i #, whereSAB
i

5(EA
i

^ IdB)@SAB#, with probabilitiesp i , andB is trying to extract the maximal classical info
mation by doing measurements on these states. This is similar to the dense coding, but ins
the ideal channel,A uses a noisy channelF. We now look for the classical capacity of th
protocol, which is called theentanglement-assisted classical capacityof the channelF.

a!Electronic mail: holevo@mi.ras.ru
43260022-2488/2002/43(9)/4326/8/$19.00 © 2002 American Institute of Physics
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The maximum over measurements ofB can be evaluated using the coding theorem for
classical capacity.6 First we have the itone-shot entanglement-assisted classical capacity

Cea
(1)~F!5 max

p i ,E A
i ,SAB

FHS (
i

p i~F ^ IdB!@SAB
i # D 2(

i
p iH~~F ^ IdB!@SAB

i # !G , ~1!

whereH(S) denotes the von Neumann entropy of the density operatorS. Using the channeln
times and allowing entangled measurements onB’s side, one gets

Cea
(n)~F!5Cea

(1)~F ^ n!. ~2!

The full entanglement-assisted classical capacity is then

Cea~F!5 lim
n→`

1

n
Cea

(1)~F ^ n!. ~3!

The following result was announced in Ref. 2, and a proof was given in Ref. 3:

Cea~F!5max
SA

I ~SA ;F!, ~4!

where

I ~SA ;F!5H~SA!1H~F~SA!!2H~SA ;F! ~5!

is the quantum mutual information, withH(SA ;F) denoting the entropy exchange~see Refs. 4
and 5!. Below we give a simplified proof of this remarkable formula.

Proof of the inequality:

Cea~F!>max
SA

I ~SA ;F!. ~6!

It is shown in Ref. 3 by generalizing the dense coding protocol that

Cea
(1)~F ^ n!>I S P

dimP
,F ^ nD ~7!

for arbitrary projectionP in H A
^ n . We give this proof for completeness here. Indeed, letP

5(k51
m uek&^eku, where$ek ;k51, . . . ,m5dimP% is an orthonormal system. Define unitary oper

tors in HA acting as

Vuek&5expS 2p ik

m D uek&, Uuek&5uek11(modm)&, k51, . . . ,m,

Wab5UaVb, a,b51, . . . ,m,

on the subspace generated by$ek%, and as the identity onto its orthogonal complement. T
operatorsWab are a finite-dimensional version of the Weyl–Segal operators for Boson sys
~see, e.g., Ref. 5!. Let

ucAB&5
1

Am
(
k51

m

uek& ^ uek&.

Then it is easy to show the following.
                                                                                                                



se

st

e

, that

e

4328 J. Math. Phys., Vol. 43, No. 9, September 2002 A. S. Holevo

                    
~1! (Wab ^ I B)ucAB&; a,b51, . . . ,m, is an orthonormal system inHA^ HB . In particular, ifm
5dimHA , it is a basis.

~2! (a,b51
m (Wab ^ I B)ucAB&^cABu(Wab ^ I B)* 5P^ P.

Thus operators$Wab ;a,b51, . . . ,m% play a role similar to Pauli matrices in the den
coding protocol for qubits.

Take the classical signal to be transmitted asi 5(a,b) with equal probabilities 1/m2, the
entangled stateucAB&^cABu, and the unitary encodingsE A

i @S#5WabSWab* . Then we have

Cea
(1)~F ^ n!>HS 1

m2 (
ab

~F ^ IdB!@SAB
ab# D 2

1

m2 (
ab

H~~F ^ IdB!@SAB
ab#!,

whereSAB
ab5(Wab ^ I B)ucAB&^cABu(Wab ^ I B)* . Then by the property~2! the first term on the

right hand side is equal toH((F ^ IdB)@P/m ^ P/m#)5H(P/m)1H(F@P/m#). SinceSAB
ab is a

purification ofP/m in HB , the entropies in the second term are all equal toH(P/m ,F). By the
expression for quantum mutual information~5! this proves~7!. For future use, note that the la
term in the quantum mutual information—the entropy exchangeH(SA ;F)—is equal to the final
environment entropyH(FE@SA#), where FE is a channel from the system spaceHA to the
environment spaceHE , the actual form of which we need not know~see Ref. 5!.

Now let SA5S be an arbitrary state inHA , and letPn,d be the typical projection of the stat
S^ n in H A

^ n . It was suggested in Ref. 2 that forarbitrary channelC from HA to possibly other
Hilbert spaceH̃

lim
d→0

lim
n→`

1

n
HS C ^ nS Pn,d

dimPn,dD D5H~C~S!!,

which would imply, by the expressions for the mutual information and the entropy exchange

lim
d→0

lim
n→`

1

n
I S Pn,d

dimPn,d ;F ^ nD5I ~S;F!, ~8!

and, hence, by~7!, the required inequality~6!. We shall prove~8! with Pn,d being thestrongly
typical projectionof the stateS^ n.

Let us fix small positived, and letl j be the eigenvalues anduej& be the eigenvectors of th
density operatorS. Then the eigenvalues and eigenvectors ofS^ n are lJ5l j 1

•¯•l j n
, ueJ&

5uej 1
& ^ ¯^ uej n

& whereJ5( j 1 , . . . ,j n). The sequenceJ is calledstrongly typical7 if the num-
bersN( j uJ) of appearance of the symbolj in J satisfy the condition

UN~ j uJ!

n
2l jU,d, j 51, . . . ,d,

andN( j uJ)50 if l j50. Let us denote the collection of all strongly typical sequences asBn,d, and
let Pn be the probability distribution given by the eigenvalueslJ . Then by the Law of Large
Numbers,Pn(Bn,d)→1 asn→`. It is shown in Ref. 7 that the size ofBn,d satisfies

2n[H(S)2Dn(d)],uBn,du,2n[H(S)1Dn(d)] , ~9!

whereH(S)52( j 51
d l j loglj , and limd→0 limn→` Dn(d)50.

For arbitrary functionf ( j ), j 51, . . . ,d, andJ5( j 1 , . . . ,j n)PBn,d, we have
                                                                                                                



ngly

ator
ument

f the

e

4329J. Math. Phys., Vol. 43, No. 9, September 2002 On entanglement-assisted classical capacity

                    
U f ~ j 1!1 ¯1 f ~ j n!

n
2(

j 51

d

l j f ~ j !U,d maxf . ~10!

In particular, any strongly typical sequence is~entropy! typical: taking f ( j )52 loglj gives

n@H~S!2d1#,2 loglJ,n@H~S!1d1#, ~11!

whered15d maxlj.0(2loglj). The converse is not true—not every typical sequence is stro
typical.

The strongly typical projector is defined as the following spectral projector ofS^ n:

Pn,d5 (
JPBn,d

ueJ&^eJu.

We denotedn,d5dimPn,d5uBn,du and S̄n,d5Pn,d/dn,d and we are going to prove that

lim
d→0

lim
n→`

1

n
H~C ^ n~S̄n,d!!5H~C~S!! ~12!

for arbitrary channelC.
We have

nH~C~S!!2H~C ^ n~S̄n,d!!5H~C~S! ^ n!2H~C ^ n~S̄n,d!!

5H~C ^ n~S̄n,d!uC ^ n~S^ n!!

1Tr logC~S! ^ n~C ^ n~S̄n,d!2C~S! ^ n!, ~13!

whereH(•u•) is relative entropy. Strictly speaking, this formula is correct if the density oper
C(S) ^ n is nondegenerate, which we assume for a moment. Later we shall show how the arg
can be modified to the general case.

For the first term we have the estimate by the fundamental property of monotonicity o
relative entropy

H~C ^ n~S̄n,d!uC ^ n~S^ n!!<H~S̄n,duS^ n!,

with the right-hand side computed explicitly as

H~S̄n,duS^ n!5 (
JPBn,d

1

dn,d
log

1

dn,dlJ
52 logdn,d2 (

JPBn,d

1

dn,d
loglJ ,

which is less than or equal ton(d11Dn(d)) by ~11! and ~9!, giving sufficient estimate.
By using the identity

logC~S! ^ n5 logC~S! ^ I ^¯^ I 1¯1I ^¯^ I ^ logC~S!,

and introducing the operatorF5C* (logC(S)) whereC* is the dual channel, we can rewrite th
second term as

nTr
~F ^ I ^¯^ I 1¯1I ^¯^ I ^ F !

n
~S̄n,d2S^ n!

5
n

dn,d
(

JPBn,d
F f ~ j 1!1¯1 f ~ j n!

n
2(

j 51

d

l j f ~ j !G ,
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where f ( j )5^ej uFuej&, which is evaluated byndmaxf via ~10!. This establishes~12! in the case
of a nondegenerateC(S).

Coming back to the general case, let us denote byPC the supporting projector ofC(S). Then
the supporting projector ofC(S) ^ n is PC

^ n , and the support ofC ^ n(S̄n,d) is contained in the
support ofC(S) ^ n5C ^ n(S^ n), because the support ofS̄n,d is contained in the support ofS^ n.
Thus the second term in~13! should be understood as

TrPC
^ n log@PC

^ nC~S! ^ nPC
^ n#PC

^ n~C ^ n~S̄n,d!2C~S! ^ n!,

where now we have log of a nondegenerate operator inPC
^ nH A

^ n . We can then repeat the argu
ment withF defined asC* (PC@ log PCC(S)PC#PC). This fulfills the proof of~8!, from which~6!
follows.

Proof of the inequality:

Cea~F!<max
SA

I ~SA ,F!. ~14!

We first prove that

Cea
(1)~F!<max

SA

I ~SA ,F!. ~15!

The proof is a modification of that from Ref. 3, using properties of conditional quantum en
which are known to follow from the strong subadditivity of the entropy~see, e.g., Refs. 8 and 4!,
rather than the strong subadditivity itself.

Let us denoteE A
i the encodings used byA. Let SAB be the pure state initially shared byA and

B. Then the state of the systemAB ~resp.A! after the encoding is

SAB
i 5~E A

i
^ IdB!@SAB#, resp. SA

i 5E A
i @SA#. ~16!

Note that the partial state ofB does not change after the encoding,SB
i 5SB . We are going to prove

that

HS (
i

p i~F ^ IdB!@SAB
i # D 2(

i
p iH~~F ^ IdB!@SAB

i # !<I S (
i

p iSA
i ;F D . ~17!

By the quantum coding theorem, the maximum of the left-hand side with respect to all po
p i ,E A

i is just Cea
(1)(F), whence~15! will follow.

By using subadditivity of quantum entropy, we can evaluate the first term on the left-hand
of ~17! as

HS (
i

p iF@SA
i # D 1H~SB!5HS FF(

i
p iSA

i G D 1(
i

p iH~SB!.

Here the first term already gives the output entropy fromI (( ip iSA
i ;F). Let us proceed with

evaluation of the remainder

(
i

p i@H~SB!2H~~F ^ IdB!@SAB
i # !#.

We first show that the term in square brackets does not exceedH(SA
i )2H((F ^ IdRi)@SARi

i
#),

whereRi is the purifying ~reference! system forSA
i , andSARi

i is the purified state. To this en
consider the unitary extension of the encodingE A

i with the environmentEi , which is initially in
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a pure state. From~16! we see that we can takeRi5BEi ~after the unitary interaction which
involves only AEi). Then, again denoting with primes the states after the application of
channelF, we have

H~SB!2H~~F ^ IdB!@SAB
i # !5H~SB!2H~SA8B

i
!52Hi~A8uB!, ~18!

where the lower indexi of the conditional entropy points out to the joint stateSA8B
i . Similarly

H~SA
i !2H~~F ^ IdRi !@SARi

i
# !5H~SRi

i
!2H~SA8Ri

i
!52Hi~A8uRi !52Hi~A8uBEi !,

which is greater than or equal to~18! by monotonicity of the conditional entropy.
Using the concavity of the functionSA→H(SA)2H((F ^ IdR)@SAR#) to be shown below, we

get

(
i

p i@H~SA
i !2H~~F ^ IdRi !@SARi

i
# !#<HS (

i
p iSA

i D 2H~~F ^ IdR!@ŜAR# !,

whereŜAR is the state purifying( ip iSA
i with a reference systemR.

To complete this proof it remains to show the above concavity. By introducing the env
mentE for the channelF, we have

H~SA!2H~~F ^ IdR!@SAR# !5H~SR!2H~SA8R!5H~SA8E8!2H~SE8!5H~A8uE8!.

The conditional entropyH(A8uE8) is a concave function ofSA8E8 . The mapSA→SA8E8 is affine
and thereforeH(A8uE8) is a concave function ofSA .

Applying the same argument to the channelF ^ n gives

Cea
(n)~F!<max

SA
n

I ~SA
n ;F ^ n!. ~19!

Then from subadditivity of quantum mutual information,9 we have

max
S12

I ~S12;F1^ F2!5max
S1

I ~S1 ;F1!1max
S2

I ~S2 ;F2!,

implying the remarkable additivity property

max
SA

n

I ~SA
n ;F ^ n!5nmax

SA

I ~SA ;F!.

Therefore, finally we obtain~14!.

III. RELATION BETWEEN ENTANGLEMENT-ASSISTED AND UNASSISTED CAPACITIES

The definition ofCea
(1)(F) and hence ofCea(F) can be formulated without explicit introduc

tion of the encoding operationsE A
i , namely,

Cea
(1)~F!5 max

p i ,$SAB
i %PSB

FHS (
i

p i~F ^ IdB!@SAB
i # D 2(

i
p iH~~F ^ IdB!@SAB

i # !G , ~20!

whereSB is the collection of families of the states$SAB
i % satisfying the condition that their partia

statesSB
i do not depend oni , SB

i 5SB . This follows from the next lemma.
Lemma:Let $SAB

i % be a family of the states satisfying the conditionSB
i 5SB . Then there exist

a pure stateSAB and encodingsE A
i such that
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SAB
i 5~E A

i
^ IdB!@SAB#. ~21!

Proof: For simplicity assume thatSB is nondegenerate. Then

SB5 (
k51

d

lkuek
B&^ek

Bu,

wherelk.0 and$uek
B&% is an orthonormal basis inHB . Let $uek

A&% be an orthonormal basis in
HA . For a vectorucA&5(k51

d ckuek
A& we denoteuc̄B&5(k51

d c̄kuek
B&. The mapucA&→uc̄B& is an

anti-isomorphism ofHA andHB . Put

ucAB&5 (
k51

d

Alkuek
A& ^ uek

B&,

so thatSAB5ucAB&^cABu and define encodings by the relation

E A
i @ ucA&^fAu#5^c̄BuSB

21/2SAB
i SB

21/2uf̄B&, ucA&,ufA&PHA .

Then one can check thatE A
i are indeed channels fulfilling the formula~21!.

In the caseSB is degenerate, the above construction should be modified by repla
SB

21/2SAB
i SB

21/2 in the formula above withASB
2SAB

i ASB
21PB

0 whereSB
2 is the generalized invers

of SB andPB
0 is the projection onto the null subspace ofSB .

We now observe an inequality relating the asymptotic entanglement-assisted and una
capacities. Apparently,

Cea
(1)~F!< max

p i ,SAB
i

FHS (
i

p i~F ^ IdB!@SAB
i # D 2(

i
p iH~~F ^ IdB!@SAB

i # !G , ~22!

whereSAB
i are already arbitrary states, not necessarily of the form~21!. The quantity on the right

hand side is nothing but the one-shot classical capacityC(1)(F ^ IdB) of the channelF ^ IdB . It
was shown in Ref. 10 thatC(1)(F ^ IdB)5C(1)(F)1C(1)(IdB)5C(1)(F)1 logd. Applying the
same argument toF ^ n instead ofF, we have

Cea
(1)~F ^ n!<C(1)~F ^ n!1n logd.

Dividing by n and taking limitn→`, we obtain

Cea~F!<C~F!1 logd.

One can expect that a similar inequality,

Cea~F!<C(1)~F!1 logd,

holds generally for the one-shot classical capacity; if it breaks for some channelF, then for this
channelC(1)(F),C(F), which would imply a negative answer to the long-standing ques
concerning additivity of the classical capacity.

It is not difficult to check that the inequality indeed holds for all unital qubit channels and
d-depolarizing channel

F@S#5~12p!S1p
I

d
TrS. ~23!

Here dimH5d and the parameterp should lie in the range 0<p< d2/(d221), as can be seen
from the Kraus representation
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F@S#5S 12p
d221

d2 DS1p
1

d2 (
a,bÞd

WabSWab* , ~24!

with Wab ;a,b51, . . . ,d built upon an arbitrary orthonormal basis inH.
The quantityCea(F) can be computed by using unitary covariance of the depolarizing c

nel and concavity of the functionS→I (S;F). It follows that it achieves the maximum at th
chaotic stateS̄5 I /d. We haveH(S̄)5H(F@S̄#)5 logd. The entropy exchangeH(S̄;F) can be
computed by as the entropy of the matrix@TrS̄Aab* Aab#, whereAab5(Ap/d)Wab ;a,bÞd;Add

5A12p @(d221)/d2# I are the Kraus operators from the representation~24!. We thus obtain

Cea~F!5 logd21S 12p
d221

d2 D logS 12p
d221

d2 D1p
d221

d2 log
p

d2 . ~25!

This should be compared with the unassisted classical capacity, which is equal to

C(1)~F!5 logd1S 12p
d21

d D logS 12p
d21

d D1p
d21

d
log

p

d
, ~26!

and is achieved for an ensemble of equiprobable pure states taken from an orthonormal basH.
One then sees as in Ref. 2 thatCea(F)/C(1)(F) →d11 in the limit of strong noisep→1. ~Note
that both capacities tend to zero!!

Moreover, taking the maximal possible valuep5 d2/(d221,) we obtain

Cea5 log
d2

d221
,

C(1)5
1

d11
log

d

d11
1

d

d11
log

d2

d221
.

Here the ratioCea /C(1) monotonically increases from the value 5.0798 ford52, approaching
tightly the asymptotic line 2(d11) asd grows to infinity.
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Additivity of the classical capacity of entanglement-
breaking quantum channels

Peter W. Shora)

AT&T Labs, Florham Park, New Jersey 07922

~Received 24 January 2002; accepted for publication 16 May 2002!

We show that for the tensor product of an entanglement-breaking quantum channel
with an arbitrary quantum channel, both the minimum entropy of an output of the
channel and the Holevo–Schumacher–Westmoreland capacity are additive. In ad-
dition, for the tensor product of two arbitrary quantum channels, we give a bound
involving entanglement of formation for the amount of subadditivity~for minimum
entropy output! or superadditivity~for classical capacity! that can occur. ©2002
American Institute of Physics.@DOI: 10.1063/1.1498000#

One of the more important open questions of quantum information theory is the determin
of the capacity of a quantum channel for carrying classical information. This question has
only partially resolved. If entanglement between multiple inputs to the channel is not allow
formula for the classical capacity of a quantum channel has indeed been discovered.1,2 This
capacity formula for a quantum channelC is

x* ~C!5max
pi ,r i

HS (
i

C~pir i ! D 2(
i

piH~C~r i !!, ~1!

whereH is the von Neumann entropyH(r)52Tr r log r, and where the maximization is ove
probability distributionspi on density matricesr i over the input space of the channel. Th
maximum can be attained because we need at mostd2 density matricesr i to achieve any attain-
able value of

x~$pi ,r i%!5HS (
i

C~pir i ! D 2(
i

piH~C~r i !! ~2!

and are thus maximizing over a compact space. The general capacity of a quantum chanC,
without feedback or prior entanglement between sender and receiver, but possibly using en
inputs, is

C~C!5 lim
n→`

1

n
x* ~C ^ n!, ~3!

i.e., the limit for largen of the capacity when we permit the input to be entangled over block
n channel uses. This limit can be shown to exist becausex* satisfies the superadditivity conditio

x* ~C ^ F!>x* ~C!1x* ~F!. ~4!

It is conjectured that equality holds, i.e., thatx* is additive, in which casex* would give the
classical capacity of a quantum channel without feedback. Substantial work has been done
conjecture,3,4 and it has been proven for several special cases. In particular, it has been p

a!Electronic mail: shor@research.att.com
43340022-2488/2002/43(9)/4334/7/$19.00 © 2002 American Institute of Physics
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when one of the channels is the identity channel,4,5 when one of the channels is what A. S. Hole
calls a c-q or q-c channel~these terms will be defined later!,6,7 and when one of the channels is
unital qubit channel.8

We will prove additivity for the special case where one of the two channels is entangle
breaking. Entanglement breaking channels are channels which destroy entanglement wit
quantum systems. That is, when the input state is entangled between the input spaceHin and
another quantum systemHref , the output of the channel is no longer entangled with the sys
Href . Both c-q and q-c channels are special cases of entanglement breaking channels
channel is a channel which can be expressed by the composition of a complete von Ne
measurement on the input space followed by an arbitrary completely positive trace-pres
~CPT! map. A q-c channel can be expressed as the composition of a CPT map followed
complete von Neumann measurement on the output space. Stated more intuitively, for c-q
the input can be treated as being classical, and for q-c maps, the output can be taken
classical. In either case, the von Neumann measurement eliminates any entanglement betw
input space and another system, so c-q and q-c maps are both special cases of entan
breaking channels. In a conversation with the author, Michal Horodecki9 gave a simple proof tha
any entanglement breaking channel can be expressed as a q-c-q channel; that is, the com
of a CPT operator followed by a complete von Neumann measurement followed by anothe
operator.~See also Ref. 10 for details of this proof.! As a consequence, the action of an entang
ment breaking channelF on a stater can always be written in the following form introduced b
Holevo:6

F~r!5(
i

Tr~Xir!u i ~5!

where$Xi% form a general POVM and$u i% are arbitrary states. For a c-q map,Xi5u i &^ i u whereu i &
form an orthonormal basis, and for a q-c mapu i5u i &^ i u.

The additivity problem for capacity is closely related to another additivity problem, that o
minimum entropy output of a channel.11 For the case of entanglement breaking channels, we
found the additivity proof for the minimum entropy output, and then discovered a straightfor
way to extend this additivity proof to cover the classical capacity. In this article, we first give
proof for additivity of minimum entropy output, as this proof contains the important ideas fo
capacity proof, but has significantly fewer technicalities.

Theorem 1: For an arbitrary quantum channelC and an entanglement breaking channelF

min
rAB

H~~C ^ F!~rAB!!5min
rA

H~C~rA!!1min
rB

H~F~rB!!. ~6!

Proof: The left-hand side is clearly at most the right-hand side, as can be seen by cho
rAB5rA^ rB . We would like to show that it is at least the right-hand side. We use the st
subadditivity property of von Neumann entropy.12 Consider the minimum obtainable value
H((C ^ F)(rAB)). BecauseF is entanglement breaking,

~ I ^ F!~rAB!5(
j

qj uaj&^aj u ^ ubj&^bj u ~7!

for someqj , uaj&PHA and ubj&PHB . Now, we apply to the state

sABC5(
j

qjC~ uaj&^aj u! ^ ubj&^bj u ^ u j &^ j u ~8!

the property of strong subadditivity in the form

H~sAB!>H~sABC!2H~sBC!1H~sB!. ~9!
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We have

sAB5(
j

qjC~ uaj&^aj u! ^ ubj&^bj u5~C ^ F!~rAB!, ~10!

the quantity for the entropy of which we would like a lower bound. Now, note that

H~sABC!2H~sBC!5H~sAC!2H~sC!5(
j

qjH~C~ uaj&^aj u!!. ~11!

The first equality above follows from the facts that theu j & form an orthonormal set andrB is in a
pure state, so thatH(sABC)5H(sAC) andH(sBC)5H(sC). The second equality follows from
the chain rule for entropy, namely,

HS (
j

qjg j ^ u j &^ j u D 2(
j

H~qj u j &^ j u!5(
j

qjH~g j !, ~12!

for a probability distributionqj , orthonormal statesu j&, and arbitrary density matricesg j . Now,
note that

sB5(
j

qj ubj&^bj u5TrA~ I ^ F!~rAB!5F~TrArAB!. ~13!

Putting the above equalities together, we see that

H~~C ^ F!~rAB!!>(
j

qjH~C~ uaj&^aj u!!1H~F~TrArAB!!. ~14!

Since( jqj51, the right-hand side is clearly at least the sum of the minimum output entropi
C and of F. We have thus shown that the minimum output entropy is additive for the te
product of two channels if one of the channels is an entanglement breaking channel. h

We now prove the corresponding additivity result for the Holevo–Schumacher–Westmor
capacityx* ; recall

x* ~C!5max
pi ,r i

HS CS (
i

pir i D D 2(
i

piH~C~r i !! ~15!

over probability distributionspi and density matricesr i .
Theorem 2: For an arbitrary quantum channelC and an entanglement breaking channelF,

x* ~C ^ F!5x* ~C!1x* ~F!. ~16!

Proof: The capacityx* is composed of two terms. We will be treating these two ter
separately. For the second term, additivity is shown in essentially the same way as in the p
additivity for minimum entropy, and, for the first term, additivity follows from the subadditivity
von Neumann entropy.

Again, we assume that we have an arbitrary quantum channelC and an entanglement break
ing channelF. We use strong subadditivity. Consider the optimal signal states forC ^ F, i.e., the
pi andr i such that

x* ~C ^ F!5H~~C ^ F!~r!!2( piH~~C ^ F!~r i !!, ~17!

wherer5(pir i . Let us consider the state (I ^ F)(r i). BecauseF is an entanglement breakin
map, this state is separable, and so
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~ I ^ F!~r i !5(
j

qi j uai j &^ai j u ^ ubi j &^bi j u ~18!

for someqi j ,uai j &, ubi j &. Now, we apply strong subadditivity to the state

sABC5(
j

qi j C~ uai j &^ai j u! ^ ubi j &^bi j u ^ u j &^ j u. ~19!

To simplify notation, we let the dependence ofs on i be implicit. Again, we apply strong
subadditivity in the form

H~sAB!>H~sABC!2H~sBC!1H~sB!. ~20!

As before,

H~sAB!5H~~C ^ F!~r i !!. ~21!

We also have that

H~sB!5H~F~TrAr i !! ~22!

and

H~sABC!2H~sBC!5(
j

qi j H~C~ uai j &^ai j u!!. ~23!

We let uai j &^ai j u5t i j . Then TrBr i5(qi j t i j . Combining the terms, we observe

H~~C ^ F!~r i !!>(
j

qi j H~C~t i j !!1H~F~TrAr i !!. ~24!

Now, let us sum over all the statesr i . We obtain

(
i

piH~~C ^ F!~r i !!>(
i , j

piqi j H~C~t i j !!1(
i

piH~F~TrAr i !!. ~25!

Using subadditivity of von Neumann entropy and the above inequality~25!, we get that

x* ~C ^ F!5H~~C ^ F!~r!!2(
i

piH~~C ^ F!~r i !!

<H~C~TrBr!!1H~F~TrAr!!2(
i , j

piqi j H~C~t i j !!2(
i

piH~F~TrAr i !!.

~26!

However, since

(
i , j

piqi j t i j 5(
i

piTrBr i5TrBr and (
i

piTrAr i5TrAr, ~27!

we see that

x* ~C ^ F!<x* ~C!1x* ~F!. ~28!

As the opposite inequality is easy, we have additivity ofx* for entanglement breaking channels.h
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We finally give a bound on the amount of superadditivity for general channels. For this
need to define the entanglement of formation of a bipartite state. This is another quantity
conjectured to be additive, but for which additivity has not been proved. Entanglement of fo
tion for a bipartite staterAB is defined

EF~rAB!5 min
pi ,r i

( i pir i5rAB

( piH~TrAr i !, ~29!

where the minimization is over probability distributionspi on rank-one density matricesr i such
that ( i pir i5rAB . The theorem is

Theorem 3: Suppose we have two quantum channels, i.e., completely positive trace pr
ing maps, C and F. Then

min
rAB

H~~C ^ F!~rAB!!>min
rA

H~C~rA!!1min
rB

H~F~rB!!2max
rAB

EF~~ I ^ F!~rAB!! ~30!

and

x* ~C ^ F!<x* ~C!1x* ~F!1max
rAB

EF~~ I ^ F!~rAB!!. ~31!

Note that the formulation of the theorem is asymmetric with respect toC andF. Thus, to bound
the amount of sub- or superadditivity, one can use either the entanglement of formati
(I ^ F)(rAB) or of (C ^ I )(rAB), whichever is smaller.

Proof: We first give the proof of the first part of Theorem 3 Let

~ I ^ F!~rAB!5(
i

qin i ~32!

be the decomposition of (I ^ F)(rAB) into pure statesn i that minimizes entanglement of forma
tion, i.e., so that( jqjH(TrAn j ) is minimum. Now, we consider

sABC5(
j

qj~C ^ I !~n j ! ^ u j &^ j u ~33!

and apply strong subadditivity to this state. We obtain

H~sAB!>~H~sABC!2H~sC!!1~H~sB!!2~H~sBC!2H~sC!!. ~34!

As in ~10!, we have

H~sAB!5H~~C ^ F!~rAB!!. ~35!

Similar to ~13!, we get

H~sB!5HS (
j

qjTrAn j D 5H~F~TrArAB!!. ~36!

Furthermore, the choice ofn j and the definition ofEF give

H~sBC!2H~sC!5EF~~ I ^ F!~rAB!!. ~37!

Finally, application of the entropy chain rule~12! gives
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H~sABC!2H~sC!5(
j

qjH~~C ^ I !~n j !!. ~38!

The expression~36! is bounded below by minr H(F(r)). The second expression~37! is bounded
above by maxr EF((I^F)(r)). The third expression~38! is bounded below by minr H((C^I)(r)),
which is known to equal minr H(C(r)). Combining these three expressions give the first par
Theorem 3.

To prove the second part of the theorem,~38! must be replaced by

H~sABC!2H~sC!>(
jk

qj r jkH~C~ uv jk&^v jku!! ~39!

for statesuv jk& and probabilitiesqjr jk such that

(
j ,k

qj r jkuv jk&^v jku5TrBn j . ~40!

We then consider the signal statesr i and the associated probabilitiespi which give the value of
x* (C ^ F) in Eq. ~1!, and let( i pir i5r. We now use expressions~36!, ~37!, and~39! with r i in
the place ofrAB . Combining these three expressions yields

H~~C ^ F!~r i !!>H~F~TrAr i !!1(
j ,k

qi j r i jkH~C~ uv i jk&^v i jk u!!2EF~~ I ^ F!~r i !!. ~41!

The second part of Theorem 3 then follows in a way entirely analogous to the proof of The
2. We use the equalities

TrBr5(
i

piTrAr i ~42!

and

TrAr5(
i , j ,k

piqi j r i jk uv i jk&^v i jk u, ~43!

and expandx* (C ^ F) similarly to Eq.~26! to obtain Eq.~31!.
We still must prove the inequality~39!. The left-hand side of~39! is

(
j

qjH~~C ^ I !~n j !!. ~44!

Now, n j is a purification of TrBn j , andH((C ^ I )(n j ))5H((C ^ I )(t)) for any quantum statet
which is a purification ofs j5TrBn j . Let s j5(kqjkuv jk&^v jku be the eigenvector decompositio
of s j . A different purification is

t j5S (
k

qjkuv jk& ^ uk& ^ uk& D S (
k

qjk^v jku ^ ^ku ^ ^ku D . ~45!

It suffices to show that

H~~C ^ I !~t j !!>H~Tr3~C ^ I !~t j !!2H~Tr12~C ^ I !~t j !! ~46!

as the first term in the above equation isH((C ^ I )(n j )), the second isH($qjk%k)
1(kqjkH(C(uv jk&^v jku)), and the third isH($qjk%k). However, the above equation follows from
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the inequalityH(r34)>H(r3)2H(r4), which is a consquence~after another purification! of the
subadditivity property of entropy.13 h
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Scalable programmable quantum gates and a new aspect
of the additivity problem for the classical capacity
of quantum channels
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We consider two apparently separated problems: in the first part of the article we
study the concept of ascalable (approximate) programmable quantum gate
~SPQG!. These are special~approximate! programmable quantum gates, with nice
properties that could have implications on the theory of universal computation.
Unfortunately, as we prove, such objects do not exist in the domain of usual quan-
tum theory. In the second part the problem of noisy dense coding~and generaliza-
tions! is addressed. We observe that the additivity problem for the classical capacity
obtained is of apparently greater generality than for the usual quantum channel
~completely positive maps!: i.e., the latter occurs as a special case of the former,
but, as we shall argue with the help of the nonexistence result of the first part, the
former cannot be reduced to an instance of the latter. We conclude by suggesting
that the additivity problem for the classical capacity of quantum channels, as posed
until now, may conceptually not be in its appropriate generality. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1498489#

I. INTRODUCTION

The present article brings together two subjects in the realm of quantum information t
that might at first glance seem far apart: the theory of universal computation in a qua
computer, and noise resistant coding of classical information in quantum channels.

The former deals with implementing arbitrary transformation of the~quantum! data in the
memory of a computer by a sequence of commands~a program! that are themselves presented
the machine as data. From the first days of the theory of quantum computation this issue
central importance, as a tool to show that there is essentially only one quantum Turing ma
and to parallel Turing’s insight of the existence of universal classical machines~see Refs. 1 and 2!.
A great deal of work has been invested into finding small universal sets of ‘‘quantum ga
acting on only a few qubits at a time, so that by concatenation any multi-qubit unitary ca
approximated arbitrarily.3–7 This concatenation~represented as a certain directed graph with
beled nodes! can be given to a machine as classical data, which then interprets it as a se
controlled actions on the quantum data.

The universality problem was studied abstractly by Nielsen and Chuang8 in the notion of
programmable quantum gate~PQG!, where one allowsarbitrary quantumdata for a program,
their results being further developed by Vidal, Masanes, and Cirac.9,10 We review these studies, a
far as they are relevant for the present purpose, in Sec. II. Then, in Sec. III, the noti
scalability is introduced, which captures the idea that a sufficiently powerful universal prog
mable quantum gate might give a universal gate if tensored with itself and fed with enta
programs. Unfortunately, it turns out that such objects do not exist, and we point out
implications for the general theory of universal computation.

Then, we switch to the apparently completely distinct problem of quantum channel codi

a!Electronic mail: winter@cs.bris.ac.uk
43410022-2488/2002/43(9)/4341/12/$19.00 © 2002 American Institute of Physics
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classical data: a quantum channel usually is modeled by a completely positive, trace pres
linear mapw:B(H1)→B(H2). We may use this channel to communicate by choosing statess i on
H1 at the sender’s side, the receiver gettingw(s i). By the result of Holevo11 and Schumacher an
Westmoreland12 the maximum rate at which classical information can be transmitted asymp
cally reliably ~the capacity! is given by

C~w!5 max
$s i ,pi %

I ~p;w~s!!, ~1!

with the Holevo mutual information

I ~p;w~s!!5HS (
i

piw~s i ! D 2(
i

piH~w~s i !!,

H being the von Neumann entropy on density operators. This holds when in the block c
~implicit in the statement! for w ^ n one is restricted to using product statess i 1

^¯^ s i n
. Strictly

speaking, we should write ‘‘sup’’ overall probability distributionsp on states, and integral
instead of finite sums. However, we restrict our attention to finite dimensional spaces, and t
is possible to show that the supremum is achieved by a finitely supported measurep ~see Ref. 12!.

Unfortunately it is unknown whether it is sufficient to restrict coding to product state
would be if the additivity conjecture

C~w ^ q!5C~w!1C~q!

is true. To show this one would need to consider input state ensembles with entangled stat
prove that the corresponding Holevo information can be achieved by an ensemble witho
tangled states, or, more directly, that a code using entangled states can be modified to an
good code~in terms of error probability and rate! without entangled states. Neither of these h
been achieved in generality so far, though there have been advances recently: see Refs.

In Sec. IV we present an example of a special classical–quantum channel as a case
dense coding in the presence of noisy entanglement, and by use of a general quantum cha
particular a noiseless one. Here, coding is done by selecting not a state of a system, to
down the channel, but by selecting an operation on a given state. This is a more general c
of coding, as we demonstrate in Sec. V. It appears that the coding of such a channel
approximated by programmable quantum gates~in this sense the new model is a special case
the old one!, but that the parallel use of these systems cannot: there will always be actions
combined space that cannot be mimicked by entangled inputs to the PQG-augmented cha

We conclude with the suggestion that the additivity problem for classical capacities of q
tum channels has not been posed until now in its appropriate generality.

II. PROGRAMMABLE QUANTUM GATES

In classical computers there is no fundamental distinction in a univeral machine’s me
between data and program. In fact, a program may modify itself during the computation~a feature
considered essential by von Neumann when he designed his computer model!. To which extent
can a quantum computer memory be used to modify other parts of the memory in a progra
fashion? More precisely~following Ref. 8!, assume that a unitary processG acts onHD ^ HP ,
with the data registerHD and theprogram registerHP :

uz& ^ uc&°G~ uz& ^ uc&).

We call uc& a program if it has the property that

;uz& G~ uz& ^ uc&)5Ucuz& ^ uc8&. ~2!
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Note that—thougha priori uc8& could also depend onuz&—for uz1&, uz2&PHD the corresponding
uc18&, uc28& are linearly dependent:

G~~auz1&1buz2&) ^ uc&)5aUcuz1& ^ uc18&1bUcuz2& ^ uc28&,

which generally is entangled unlessuc18&PCuc28&.
~We thuscan have a global phase—which we shall systematically ignore.! Henceforth, we

assume thatuc8& is independent ofuz&, just as Eq.~2! suggests. It follows thatUc is unitary,
which is encoded~via G! in the programuc&. How many unitaries can be implemented in th
way?

Theorem 1 „Nielsen and Chuang8…: If U c1
ÞgUc2

for all gPC, then uc1&'uc2&.
Proof: Let

G~ uz& ^ uc1&)5Uc1
uz& ^ uc18&,

G~ uz& ^ uc2&)5Uc2
uz& ^ uc28&.

Hence

^c1uc2&5~^zu ^ ^c1u!G* G~ uz& ^ uc2&!5^c18uc28&^zuUc1
* Uc2

uz&.

If ^c18uc28&50, also^c1uc2&50, and we are done. Else^zuUc1
* Uc2

uz& is a constant, independen

of uz&, henceUc1
* Uc2

5g1, contradicting the assumption. h

As a consequence we have only at most dimHP many essentially different programs. There
no way to encode all possible unitaries onHD by ‘‘quantum code’’ unless we allow for an
infinite-dimensionalHP .

We have already in the Introduction pointed out that it is well possible to implement arbit
good approximations to all unitaries~at the cost of ever increasing dimHP!. In Ref. 8, however,
there was proposed a more interesting solution: aprobabilistic programmable quantum gate, i.e
an encoding of unitaries in a state, and a process that performs the encoded unitary with
probability, and otherwise fails~does something else!: the process is able to report which of th
two events happened. This result was refined in subsequent work of Vidal, Masanes, and C9,10

but we will not follow this line of research here.
To fix notions, let us define our concept of approximation: a~unitary! gateG on HD ^ HP is

said to bee-approximatingif for every unitaryU on HD there is a state vectoruc&PHP ~it is
easily seen that pure state program register contents suffice! such that

;uz& iUuz&^zuU* 2TrHP
~G~ uz&^zu ^ uc&^cu!G* !i1<e.

Of course there aree-approximating gates such that the approximating induced maps

Gc~s!5TrHP
~G~s ^ uc&^cu!G* !

in the above equation all may be chosen unitary, but the present formulation has the appr
generality for the nonexistence theorem of the following section.

A sequence (G(n))nPN of programmable quantum gatesG(n) on HPn
^ HD is calledapproxi-

mating forHD if eachG(n) is en-approximating, withen→0 for n→`.

III. SCALABLE PROGRAMMABLE QUANTUM GATES

Givene.0 we can devisee-approximating quantum gatesG1 andG2 for given data registers
HD1

andHD2
, respectively, by allowing for sufficiently large program registers.
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Programming, however, is about making data act together in a potentially unlimited num
registers. In general, to approximately perform an arbitary unitary onHD1

^ HD2
it is necessary to

define a new quantum gateG.
This motivates us to the following definition: we say that two sequences (G1

(n))nPN and
(G2

(n))nPN of programmable quantum gates that are approximating forHD1
andHD2

, respectively,

arescalable, if the sequence (G1
(n)

^ G2
(n))nPN is approximating forHD1

^ HD2
.

Such approximating gate sequences thus spare us the task to find and implement ne
grammable quantum gates when we scale up our computing system.

Unfortunately, nature does not supply us with such objects:
Theorem 2: Let (G1

(n))nPN and(G2
(n))nPN be sequences of programmable quantum gates w

fixed data registersHD1
and HD2

, respectively. Assume that the unitary U onHD1
^ HD2

is

approximated arbitarily close by programsc (n)PHP1n
^ HP2n

, i.e.,

TrHP1n
^ HP2n

@G1
(n)

^ G2
(n)~ uz&^zu ^ uc~n!&^c~n!u!G1

(n)* ^ G2
(n)* #→Uuz&^zuU* ~3!

as n→`. Then U is not entangling, i.e., it is of the form U5U1^ U2 .
Proof: Consider the expressions of Eq.~3! for data of the formuz&5uz1& ^ uz2&. The first

claim is that the reduced state of the left hand side onHD1
is independent ofz2 : this becomes

clear by first tracing outHD2
^ HP2n

and thenHP2n
. Then the same applies to the limit at the rig

hand side.
So, for fixeduz1& we have

TrHD2
U~ uz1&^z1u ^ uz2&^z2u!U* 5r05(

i
l i uei&^ei u, ~4!

with a constant stater0 ~that we wrote in diagonalized form!, regardless ofuz2&.
Now assume thatU is entangling, and chooseuz1& such that there existsuz2& so thatUuz1&

^ uz2& is entangled. Thenr0 is mixed, and its diagonalization contains at least two terms. We s
derive a contradiction from this: first observe that for arbitraryuz2& the stateUuz1& ^ uz2& is a
purification ofr0 , hence, by Eq.~4! there exists an orthonormal basis$u f i&% of HD2

such that

Uuz1& ^ uz2&5(
i

Al i uei& ^ u f i&.

For uz28& orthogonal touz2& there is another such basis$u f i8&% with

Uuz1& ^ uz28&5(
i

Al i uei& ^ u f i8&.

By linearity we get thus

Uuz1& ^ ~auz2&1buz28&)5(
i

Al i uei& ^ ~au f i&1bu f i8&),

for uau21ubu251. This again must be a purification ofr0 , so the resulting$au f i&1bu f i8&% must
form an orthonormal basis: this leads quickly to the condition~for all i , j !

āb^ f i u f j8&1ab̄^ f i8u f j&50,

implying ^ f i u f j8&5^ f i8u f j&50, otherwisez and z̄ would be linearly dependent over the compl
field.
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As a consequence, to each orthonormal system ofuz2& ’s of HD2
we would get an orthonorma

system ofu f i& ’s of at least double size, contradicting the finite dimension ofHD2
. ThusU cannot

be entangling, forcingU5U1^ U2 . To see this either consult Ref. 18 or follow this simp
argument: since

s12°Us12U*

maps product states to product states, the map

T1 :s°Tr2U~s ^ uz2&^z2u!U*

maps pure states to pure states and is completely positive and trace preserving, entailing th
to be of the formT1(s)5U1sU1* , or is constant which cannot occur. HereU1 is a unitary which
cannot—except for a global phase—depend onuz2&, or else there would be entangled stat
U(s1^ s2)U* . The same applies to the second factor, yielding a unitaryU2 . In total we have that
the unitaryU1^ U2 coincides withU on the pure states, henceU5U1^ U2 ~again except for an
unimportant global phase!. h

Observe the following peculiarity of the argument: it is not true that the reduced state o
left hand side of Eq.~3! is always a product~if it is, our proof is simplified drastically!. For
example,G1 andG2 may be swapping operations, so their product may be used to swap in
entangled state! What is true, however, is that entangled states cannot occur as a result of a
action on the data registers.

This nonexistence should not be mixed up with the existence of the beautiful mod
one-way quantum computerby Raussendorf and Briegel:19 there, too, a single state is prepared a
acted on locally~even only by measurements!, to produce any given effect on the data regist
There is no contradiction, however, to our result, as there is impliedclassical communication
between the sites of these quantum operations, which we had to exclude.

In a sense, the result had to be expected: it reproduces on a somewhat different le
insight in universal computation that single qubit actions are not sufficient for universality, bu
needs interacting gates like the C–NOT gate.

We shall show in the following, however, that this nonexistence result has some beari
quantum channel coding.

IV. NOISY DENSE CODING CAPACITY

Consider the following communication scenario: a sender A and a receiver B share a star on
thedA3dB-systemHA^ HB , i.e., dimHA5dA , dimHB5dB . They have at their disposal a qua
tum channel from A to B that allows noiseless transmission of an arbitrary quantum stateH
.Cd. They want to use this channel to communicate classical information, taking advantage
correlation~or even entanglement! of r. The most general thing possible for A to do is to subje
her share of the state to an operation, and send the result through the channel. It is well
that, if r supplies only classical correlation~for instance, if

r5 (
i 50

dA21

(
j 50

dB21

pi j u i &^ i u ^ u j &^ j u,

for orthogonal bases$u i &: i 50,...,dA21% and$u j &: j 50,...,dB21% of HA andHB , respectively!,
then this is of no help at all, and the capacity is just that of the noiseless channel: logd ~in this
article log and exp are to basis 2!.

However, for entangledr the phenomenon ofdense codingarises, which was first described i
Ref. 20: theredA5dB5d52 was considered, with the joint singlet state

r5uC2&^C2u5 1
2 ~ u01&2u10&)~^01u2^10u!.
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It was demonstrated that by applying one of the three Pauli unitariessx , sy , sz , or the identity
1, A can drive the state to any of the four Bell states, hence can encode 2 bits. It is quite cle
by starting with any maximally entangled state, e.g.,

r5uF&^Fu, with uF&5
1

Ad
(
i 50

d21

u i & ^ u i &

on the systemCd
^ Cd, i.e., dA5dB5d, one can devise a scheme to transmit 2 logd5logd2 bits

~see Ref. 21 for a detailed discussion!.
It is less clear what happens if the state is not maximally entangled, or even mixed: how

since the protocol A and B have to follow depends even in the maximally mixed case on the
state, we allow them to usethe protocol optimally adapted tor. Formally, A chooses an operatio
~i.e., a completely positive, trace preserving linear map!

T:L~HA!→L~H!,

and applies it to her part ofr, after which she sends the resulting state to B. He thus receive
signal state

rT
ª~T^ id!r.

We here assume that one copy ofr is available per use of the noiseless channel. Below we
discuss the case of more or unlimited many copies per round.

Then we can compute the mutual information

I ~m;r!ªHS E dm~T!rTD2E dm~T!H~rT!,

with respect to a probability measurem on the spaceCP(HA ,H) of quantum operations~i.e.,
completely positive, trace preserving, linear maps! from B(HA) to B(H). By the quantum channe
coding theorem, Eq.~1!, of Refs. 11 and 12, thedense coding capacity

DC~d,r!ªsup
m

I ~m;r!

is the classical capacity of the channel with signal statesrT, when block coding using produc
states

rT1^¯^ rTn5~~T1^ id!r! ^¯^ ~~Tn^ id!r!5~~T1^¯^ Tn! ^ id^ n!r ^ n

is allowed.
If we impose no restriction on the block coding, i.e., all states

~T ^ id^ n!r ^ n,

with TPCP(H A
^ n ,H ^ n) are admissible, we get theultimate dense coding capacity

DC~d,r!5 lim
n→`

1

n
DC~dn,r ^ n!.

Note that the limit exists by the trivial superadditivity ofDC:

DC~d1d2 ,r ^ s!>DC~d1 ,r!1DC~d2 ,s!.

Our first task is the evaluation ofDC(d,r):
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Assume any probability distributionm on CP(HA ,H), and denote the Haar measure on t
groupU(d) of unitaries onH as dU. Then for every unitaryU we have~by unitary invariance of
entropy!

HS E dm~T!rTD5HS E dm~T!~U ^ 1!rT~U ^ 1!* D ,

H~rT!5H~~U ^ 1!rT~U ^ 1!* !,

i.e., I (m;r)5I (mU;r), with the translated measure

mU~F !5m~U* FU !, for measureableF,CP~HA ,H!.

With concavity ofH we find

I ~m;r!5E
U(d)

dUFHS E dm~T!~U ^ 1!rT~U ^ 1!* D2E dm~T!H~~U ^ 1!rT~U ^ 1!* !G
<HS E dm~T!E dU~U ^ 1!rT~U ^ 1!* D2E dm~T!H~rT!.

The latter quantity is exactlyI (m̄;r), with m̄5*dUmU.
Now it is straightforward to prove~essentially by Schur’s lemma! that

E dU~U ^ 1!rT~U ^ 1!* 5
1

d
1^ rB ,

where we observed that by definition

TrArT5TrA~~T^ id!r!5TrAr5rB .

Hence maximization yields

DC~d,r!5 logd1H~rB!2 inf
m
E dm~T!H~rT!.

This infimum in turn is achieved at the point mass on aT minimizing H(rT).
Hence we arrive at the following result.
Theorem 3: The dense coding capacity of the stater and a d-level noiseless transmissio

system, using one copy ofr per round and product states for coding, is given by

DC~d,r!5 logd1H~rB!2min
T

H~~T^ id!r!,

where the minimization is over all quantum operations T:B(HA)→B(H). h

As a consequence we obtain the following.
Theorem 4: Without the restriction on product state encoding, but still using one copyr

per round, the capacity is

DC~d,r!5 logd1H~rB!2 lim
n→`

1

n
min

T
H~~T ^ id^ n!r ^ n!,

where the minimization is over all quantum operationsT:B(H A
^ n)→B(H ^ n). h

Note that the argument describes at the same time a distribution onCP(HA ,H) that achieves the
capacity: A should apply a fixed minimizingT, followed by uniformly distributed unitary rota
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tions. The effect of the latter can be achieved equally by a uniform distribution on an ortho
basis of unitaries@with respect to the Hilbert–Schmidt inner product (A,B)5Tr A* B on opera-
tors# ~see Ref. 21!.

As applications of the theorem we can see immediately that for pure statesuc&

DC~d,uc&^cu!5 logd1E~c!5 logd1H~TrBuc&^cu!,

a result already reported in Refs. 22 and 23, and thatDC(d,r)5 logd if r is separable~later in this
work, Theorem 7, we will see that this holds true even fornondistillabler!: in the first case the
optimizing T is any unitary map, in the second case it is the projection onto any pure state@note
that DC(d,r)< logd follows from the inequalityH(sB)2H(s)<0 for separables#. This latter
choice shows that alwaysDC(d,r)> logd ~it amounts to ignoring the correlation provided byr!.

In general, however, the minimization required by the theorem seems not an easy task
Remark 5: The quantity H(sB)2H(s), s5(T^ 1)r, from Theorem 3 has appeared in an

other context before: it is thecoherent informationof Schumacher.24

Remark 6: Until now we stuck to using one copy ofr per use of the noiseless channel.
recent work by Horodecki et al.25 this restriction was lifted: unlimited many copies ofr were
assumed to be available. Of course, the theorem can be used to obtain a formula for that ca
which we give, because it interestingly differs from the one in Ref. 25 (though of cours
numbers coincide):

Assume k copies ofr may be used per round. Obviously the resulting dense coding cap
is

DC(k)~d,r!5DC~d,r ^ k!,

and for unlimited use ofr we get

DC(`)~d,r!5 lim
k→`

DC~d,r ^ k!.

Similarly, for the ultimate dense coding capacity with k copies ofr per round,

DC(k)~d,r!5DC~d,r ^ k!5 lim
n→`

1

n
DC~dn,r ^ kn!,

and with unlimited use ofr

DC(`)~d,r!5 lim
k→`

DC(k)~d,r!5 lim
k→`

lim
n→`

1

n
DC~dn,r ^ kn!

5 lim
n→`

lim
k→`

1

n
DC~dn,r ^ kn!

5 lim
n→`

1

n
DC(`)~d,r!5DC(`)~d,r!.

~The limits are exchangeable because the doublelim is actually a jointsupover n and k, because
of monotonicity.!

In Ref. 25 the differently looking expression~for the case d52!

DC~r!5sup
n

sup
T

H 11
nH~rB!2H~~T ^ id^ n!~r ^ n!!

H~T~rA
^ n!! J
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was given, thesup being over all quantum operationsT defined onB(H A
^ n). However, the

derivation in that work is sufficiently close to ours so as to see the identity of the results.
Let us comment here a bit on other related work, and the relation ofDC(d,r) to entangle-

ment:
In Refs. 26 and 27 the relation of the dense coding capacity to entanglement measur

stressed. With our results, it is easy to reproduce the observations of these papers, and go
little further:

We use the following inequality from Ref. 28: for a~two–way! nondistillable states

H~rB!2H~r!<D~ris!.

Applying T^ id to bothr ands, and invoking the monotonicity of relative entropy under co
pletely positive maps,29,30 we find

H~rB!2H~~T^ id!r!<D~~T^ id!ri~T^ id!s!<D~ris!.

Now minimize overT and nondistillables: this proves the following.
Theorem 7: For all statesr one has

DC~d,r!< logd1Ere~r!,

where Ere(r)5 infsPDD(ris) is the relative entropy of entanglement with respect to the setD of
nondistillable states. h

In particular, whenr is nondistillable,DC(d,r)5 logd ~see also Ref. 25 for this observation!.
One may wonder whether the inverse is true, too: whenr is distillable, doesDC(d,r). logd
follow?

To compare this result to the statements in Refs. 26 and 27 and the result of the re
published Ref. 31 we have to note that in these works onlyunitary encodings were considered
Hence ourDC(d,r) is typically a strict upper bound to the capacity in the cited works. S
questions raised in Refs. 26 and 27 receive answers: the conjectured capacity formulas
equalities from these works follow immediately, by the same method of Haar averagin
employed above~see also Ref. 31!.

To get a bound in the other direction is not so easy. We might try to go further on the ro
entanglement, and find an entanglement measure lower bound. For example, if we could
that

f ~r!5DC(`)~d,r!2 logd

is an entanglement measure itself, we would find the lower bound

DC(`)~d,r!> logd1ED~r!,

with the distillable entanglement ED(r): this follows from general inequalities in Ref. 32. W
leave this question, however, to another occasion.

We would like now to discuss the additivity ofD, i.e., whether for statesr, s

DC~d1d2 ,r ^ s!5DC~d1 ,r!1DC~d2 ,s!. ~5!

Note that if this is true forr and all s5r ^ n ~e.g., inductively!, it immediately follows that
DC(d,r)5DC(d,r). In particular, all ultimate capacities in Remark 6 are identical to th
‘‘unbarred’’ versions. The capacity with unlimited use ofr from Ref. 25 would then read

DC(`)~d,r!5DC(`)~d,r!5 logd1H~rB!2 inf
k

min
T

H~~T^ id^ k!r ^ k!,

where the minimization is over all quantum operationsT:B(H A
^ k)→B(H).
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By Theorem 3, the statement of Eq.~5! is equivalent to asking if

min
T12

H~~T12^ id^ 2!~r ^ s!!5min
T1

H~~T1^ id!r!1min
T2

H~~T2^ id!s!.

Obviously, and fitting with the superadditivity ofD, ‘‘ < ’’ ~subadditivity! is trivial, and the ques-
tion is if ‘‘ , ’’ can occur. Note that in this generality it is quite easy to come up with states
violate the additivity property~see the discussion below!. The problem is rather to find condition
where additivity holds.

Generalizing, one may assume not a noiseless but a noisy channelw:B(H)→B(H) between
A and B, and consider the dense coding capacities

DC~w,r!, DC~w,r!,

DC(k)~w,r!, DC(k)~w,r!,

DC(`)~w,r!, DC(`)~w,r!.

For example, we can define

DC~w,r!5sup
m

I ~m;w+r!

over all probability distributionsm on CP(HA ,H), with

I ~m;w+r!ªHS E dm~T!rw+TD2E dm~T!H~rw+T!.

Observe that our previousDC(d,r) is reproduced in the new definition asDC(idd ,r). Further,
observe that for a pure entangled stater the definition relates to the entanglement assisted clas
capacity33 of the quantum channelw: in fact, DC(`)(w,r) is this latter quantity.

Again, the superadditivity

DC~w ^ q,r ^ s!>DC~w,r!1DC~q,s! ~6!

trivially holds, and we may study conditions for equality in Eq.~6!, i.e., additivity.
Note that it is fairly easy to come up with situations~w, q, r, s! where strict superadditivity

holds. In fact, one can even have eitherw5q or r5s: e.g., consider

w5q5 idB(C2) , H r5u00&^00u(un-entangled),
s5uC2^C2u ^ 2,

or alternatively

w5 idB(C4) ,

q5 1
21 ~constant map!,J r5s5uC2&^C2u.

But with both these conditions simultaneously it seems not so easy. It may even be thaweak
additivity holds, i.e.,

DC~w ^ n,r ^ n!5nDC~w,r!,

for all channelsw and joint statesr, but we could not reach a conclusive result on this quest
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V. REDUCTIONS AMONG ADDITIVITY QUESTIONS

We have encountered two paradigms of coding in quantum channels, the first in the
lished discussion~a good overview is in Ref. 34, and some recent developments are review
Ref. 13!, the second in the previous section:

(1) State preparation: The encoder may prepare any state on the input system spaceH1 for
the quantum channelw:B(H1)→B(H2).

(2) Action on given state: On the input system a state is given in advance (possibly enta
with the receiver), and the encoder may act on it in an arbitary way, and the result is sent
the channelw.

It is quite obvious that method 1 can be reduced to method 2: the previously given state
any state not entangled with the receiver~say, a pure state!. Then by executing an appropriat
operation the encoder can drive the input into any desired state.

Less obvious, but still quite canonical, is the converse reduction: any operationT: B(HA)
→B(H1) can be implemented as a unitary

U:HA^ H8→H1^ H9,

followed by a partial trace overH9, the systemH8 being prepared initially in a null states0 . This
is a formulation of the Stinespring dilation theorem,35 and it is quite easy to see that dimH8 can be
chosen fixed and finite for all possibleT. Now pick ane-approximating quantum gateGe for
HA^ H8, with program registerHPe

: by choosingc in the program register appropriately on
obtains~using monotonicity of the trace norm under partial trace!, for all statess on HA ,

iT~s!2TrH9^ HPe
~Ge~s ^ u0&^0u ^ uc&^cu!Ge* !i1<e. ~7!

Thus every coding process by acting on the input system can be arbitrarily well approxima
coding via choice ofuc&PHPe

.
These two reductions, however, are of a very different nature, as we can see by cons

their behavior under tensor products of channels: while the reduction 1→2 scales correctly~any
entangled input state can be obtained by a suitable entangling operation on the product
initial states!, the reduction 2→1 that we proposed does not. In fact, as we have seen in The
2, on a productHA1^ HA2 of two input systems we can never implement an entangling opera
once we have chosen approximating quantum gates for each of them individually according
~7!, and tensor them.

We have seen that there are channels where classical information is encoded after m
~these are just the operationsw!, and that there are channels where it is encoded after meth
~the generalized noisy dense coding channels!. The above reductions show that the two approac
are equivalent in the sense that a channel of the one kind can be simulated to arbitary accu
one of the other kind.

However, for the additivity question of channel capacity one has to look at higher te
products of the channel at hand. By the above argument the reduction 1→2 provides a reduction
of the additivity question for channels of the first type to those of the second type. It is unk
to us if the additivity question can be reduced in the other direction: the construction a
summarized in Eq.~7!, at least does not provide this, as we have seen. On the other ha
appears to be most natural: it seems the most reasonable thing to do to associate a chann
first type to the given channel of the second type that has the same properties with res
classical information transmission, by simply enabling to emulate the effect of any enc
transformationT by a suitable input state.

VI. CONCLUSION

By studying entanglement assisted classical communication via quantum channels, at
was drawn towards channels which requireactionsfor signaling rather thanstate preparationslike
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the usual quantum dynamics, represented by completely positive maps. An attempted redu
the more general scenario to the usual one was shown to fail, because noscalable programmable
quantum gatesexist. This was taken to indicate that the new concept is strictly more gen
which leads us to conjecture that the additivity question for quantum channel capacity really
about ‘‘whether entangled inputs help,’’ but rather ‘‘whetherentanglinginputs help.’’ It must be
stressed that in the more general vista we presented, additivity is not a mere matter of ‘‘rig
‘‘false.’’ Rather, it becomes~as we demonstrated by examples! a question ofcharacterizationof
the situations where it holds. Note finally that the very occurrence of the above mentione
tinction in coding concepts is a purely quantum phenomenon.
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Counterexample to an additivity conjecture for output
purity of quantum channels

R. F. Wernera)

Institut für Mathematische Physik, TU Braunschweig, Mendelssohnstr.3,
38106 Braunschweig, Germany

A. S. Holevob)

Steklov Mathematical Institute, Gubkina 8, 117966 Moscow, Russia

~Received 4 March 2002; accepted for publication 16 May 2002!

A conjecture arising naturally in the investigation of additivity of classical infor-
mation capacity of quantum channels states that the maximal purity of outputs from
a quantum channel, as measured by thep-norm, should be multiplicative with
respect to the tensor product of channels. We disprove this conjecture forp
.4.79. The same example~with p5`! also disproves a conjecture for the multi-
plicativity of the injective norm of Hilbert space tensor products. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1498491#

I. STATEMENT OF THE PROBLEM

A. Multiplicativity of output purity

In many applications of quantum information theory the entanglement of states or the ca
of channels appear as resources, which are needed to perform a task and are used u
process. Therefore, it is natural to expect that certain entanglement or capacity measures sh
additive in the sense that preparing two pairs of entangled particles should give us twic
entanglement of one pair and, similarly, using a channel twice doubles its capacity. Howeve
additivity properties have turned out to be notoriously difficult to prove, and in some cases
conjectures claiming additivity have turned out to be wrong.

The purpose of this work is to provide a counterexample of this kind, i.e., to show th
family of quantities, which had been conjectured to be additive in an earlier paper by the p
authors,1 actually is not. The quantities considered all characterize the highest purity of the ou
of a channel. That is, ifS is a completely positive map, taking density operators on a fi
dimensional Hilbert spaceH1 to density operators on another finite dimensional Hilbert spaceH2 ,
and 1,p,`, we defined

np~S!5supiS~r!ip , ~1!

where the supremum is over all input density operators, andirip5(trurup)1/p is the standard
p-norm. The conjecture in Ref. 1 was that lognp is additive in the sense that

np~S1^ S2!5np~S1!np~S2! ~2!

for arbitrary channelsS1 ,S2 .
This conjecture was supported by some numerical evidence~the inequality ‘‘> ’’ being trivial

anyhow!, and a proof for very noisy and almost noiseless channels in Ref. 1, as well as
depolarizing channels. Further supporting evidence was given by C. King.2,3 The main application
would probably have been in the limitp→1, where it would be the additivity of ‘‘maximal purity

a!Electronic mail: r.werner@tu-bs.de
b!Electronic mail: holevo@mi.ras.ru
43530022-2488/2002/43(9)/4353/5/$19.00 © 2002 American Institute of Physics
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as measured by entropy.’’ This in turn is closely related1,3,4 to the question of additivity of classica
channel capacity, i.e., whether transmission of classical information over multiple quantum
nels can sometimes be improved by using entangled signal states.

B. Injective tensor norm for Hilbert space vectors

The casep5`, i.e., wheni•i` is the ordinary operator norm, is implied by another additiv
conjecture, namely for theinjective tensor normof Hilbert space vectors. For any vectorF
PH1^¯^ HN we define this norm as

mN~F!5supu^F,f1^¯^ fN&u, ~3!

where the supremum is over all tuples of vectorsfaPHa with ufau51. The conjectured property
for this quantity was thatmN(F ^ C)5mN(F)mN(C), where FPH1^¯^ HN and CPK1

^¯^ KN may be in differentN-fold Hilbert space tensor products, and the supremum
mN(F ^ C) is taken over unit vectorsfaPHa ^ Ka . Again, the inequality ‘‘> ’’ and the caseN
52 are trivial. The connection with the previous problem is seen by writingS in Kraus form
S(r)5(xAxrAx* . Then

^w,S~ uf&^fu!w&5(
x

u^w,Axf&u25sup
c
U(

x
cx^w,Axf&U2

, ~4!

where at the last equality we consider the^w,Axf& as the components of a Hilbert space vect
whose norm can also be written as the largest scalar product with a unit vector. According
supremum in the last line is over all unit vectorsc. Taking the supremum over the unit vectorsf
andw, too, we find that

n`~S!5m3~Ã!2, ~5!

where Ã denotes the vector in a threefold Hilbert space tensor product with compo
^hj ,Axek&, wherehj andek are orthonormal bases of the appropriate spaces. In particular,
the tensor product of channelsS corresponds to the tensor product of vectorsÃ, the conjectured
multiplicativity of m3 would imply the multiplicativity ofn` . Conversely, the counterexamp
given to the latter disproves the multiplicativity ofmN for all N>3.

II. THE COUNTEREXAMPLE

We give an explicit example of a channel violating conjecture~2! for large values ofp. It is
the channelS on thed3d-matrices defined as

S~r!5
1

d21
~ tr~r!12rT! ~6!

5
1

2~d21! (i j ~ u i &^ j u2u j &^ i u!* r~ u i &^ j u2u j &^ i u!. ~7!

HererT denotes the matrix transpose with respect to some fixed basis. In the first form it is
to verify that S is linear and trace preserving, in the second it becomes clear that it is
completely positive. The equality of the two forms is a straightforward exercise. Further inte
ing properties are thatS is Hermitian with respect to the Hilbert–Schmidt scalar prod
(A,B)°tr(A* B) on d3d-matrices, and covariant for arbitrary unitary transformations in
sense thatS+adU5adŪ+S, adU(X)5UXU* , whereŪ denotes the matrix element-wise compl
conjugate of a unitary in the fixed basis. We remark thatS is the dual of the state which provide
the counterexample to the additivity of the relative entropy of entanglement for bipartite sta
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Ref. 5, i.e., that state, the normalized projection onto the Fermi subspace ofCd
^ Cd (d>3), is

obtained by acting withS on one partner of a maximally entangled pair onCd
^ Cd.

Now r°iS(r)ip is a convex function, and hence takes its maximum on the extremal s
Therefore it suffices to take pure input states, for which

S~ uf&^fu!5
1

d21
~12uf̄&^f̄u!. ~8!

Clearly, thep-norm is the same for all pure inputs, and we get

np~S!5~d21!2(121/p). ~9!

On the other hand, let us considerS^ S acting on a pure stateF. Due to covariance we may
take F in Schmidt diagonal formF5(acauaa&. Then with the reduced density operatorr
5(aca

2 ua&^au we get

S^ S~ uF&^Fu!5
1

~d21!2 ~121^ r2r ^ 11uF&^Fu!. ~10!

We now specialize further tomaximally entangledF5Fm , i.e., all ca51/Ad andr5(1/d)1, all
terms in this expression commute, and the operator in parenthesis has one eigenvalue (22/d)
with multiplicity (d221) and a nondegenerate eigenvalue (122/d11). From this we find, for
d53,

iS^ S~ uFm&^Fmu!ip5 1
3 ~112322p!1/p. ~11!

If additivity were true, the following quantity should be negative, becoming zero upon max
zation with respect toF:

D~p,F!5 log iS^ S~ uF&^Fu!ip22lognp~S!. ~12!

However, inserting forF the maximally entangled state we get

D~p,Fm!5 log
4

3
1

1

p
logS 1

4
12122pD . ~13!

This quantity is plotted in Fig. 1. Thus additivity is violated forp.p0 , where the zerop0 is

numerically determined asp054.7823. In particular, we getD(`,Fm)5 log(4
3).0, so additivity

fails for p5`. Transcribed to the problem for injective Hilbert space norms, the counterexa

FIG. 1. D(p,Fm) over p, as explained in the text.
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is the unique antisymmetric vectorF on C3
^ C3

^ C3, tensored with itself. On the other hand, f
p→1 we haveD(p,Fm),0, so in this case, which is of main interest for classical chan
capacity, the additivity conjecture survives.

The boundary pointp0 cannot be improved by choosing another vectorF, i.e., the maximiz-
ing F in the definition ofnp(S^ S) jumps discontinuously from a product state to a maxima
entangled state, asp increases beyondp0 . This is seen by plottingD for fixed p over the Schmidt
parameters ofF. There is little difference between the plots forp54 andp55 ~see Fig. 2! except
that the global maximum switches from corners~F a product vector! to the center (F5Fm).

FIG. 2. D(p,F) for d53 over the Schmidt parametersc1
2 andc2

2 of F, for p54 ~top! and forp55 ~bottom!.
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III. CONCLUDING REMARKS

We have seen that multiplicativity of maximal purity depends crucially on how we mea
purity: if we usep-norms for largep, it fails. But the conjecture remains open for smallp, and in
particular for purity as measured by entropy. There seems to be no simple modification
example given here to improve the critical value ofp. On the other hand, it is hardly expected
be optimal.
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This article presents self-contained proofs of the strong subadditivity inequality for
von Neumann’s quantum entropy,S(r), and some related inequalities for the quan-
tum relative entropy, most notably its convexity and its monotonicity under sto-
chastic maps. Moreover, the approach presented here, which is based on Klein’s
inequality and Lieb’s theorem that the functionA→Tr eK1 log A is concave, allows
one to obtain conditions for equality. In the case of strong subadditivity, which
states thatS(r123)1S(r2)<S(r12)1S(r23) where the subscripts denote sub-
systems of a composite system, equality holds if and only if logr1235 logr12

2 logr21logr23. Using the fact that the Holevo bound on the accessible informa-
tion in a quantum ensemble can be obtained as a consequence of the monotonicity
of relative entropy, we show that equality can be attained for that bound only when
the states in the ensemble commute. The article concludes with an Appendix giving
a short description of Epstein’s elegant proof of Lieb’s theorem. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1497701#
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I. INTRODUCTION

A. Quantum entropy

Quantum information science32 is the study of the information carrying and processing pr
erties of quantum mechanical systems. Recent work in this area has generated renewed in
the properties of the quantum mechanical entropy. It is interesting to note that von Neuma45,46

introduced the notion of mixed state, represented by a density matrixr ~a positive semi-definite
operator with Trr51!, into quantum theory and defined its entropy asS(r)[2Tr(r logr) in
1927, well before the corresponding classical quantity was introduced in Shannon’s se
work41 on ‘‘The Mathematical Theory of Communication’’ in 1948.~Admittedly, von Neumann’s
motivation was the extension of the classical theory of statistical mechanics, developed by
et al. to the quantum domain rather than the development of a theory of quantum communic!
Many fundamental properties of the quantum entropy were proved in a remarkable, but
known, 1936 paper of Delbru¨ck and Molèiere.9 For further discussion of the history of quantu
entropy, see Refs. 33, 38 and 47 and the introductory remarks in Ref. 40.

One important class of inequalities relates the entropy of subsystems to that of a com
system, whose Hilbert space is a tensor productH125H1^ H2 of the Hilbert spaces for the
subsystems. When the state of the composite system is described by the density matrixr12, the
states of the subsystems are given by the reduced density matrices, e.g.,r15T2(r12), obtained by
taking the partial trace. The subadditivity inequality

S~r12!<S~r1!1S~r2! ~1!

was proved in Refs. 9 and 24.@It should not be confused with the concavity

S~xr81~12x!r9!>xS~r8!1~12x!S~r9!, ~2!

which can actually be obtainedfrom subadditivity by considering block matrices.27,28,47# In the
more complex situation in which the composite system is composed of three subsystem
following stronger inequality, known as strong subadditivity~SSA!, holds:

S~r123!1S~r2!<S~r12!1S~r23!. ~3!

This inequality was conjectured by Lanford and Robinson in Ref. 24 and proved in Refs. 2
29. In this article, we review its proof in a form that easily yields the following condition
equality.

Theorem 1: Equality holds in strong subadditivity (3) if and only if

logr1232 logr125 logr232 logr2 . ~4!

We have suppressed implicit tensor products with the identity so that, e.g., logr12 means
(logr12) ^ I 3 . Rewriting ~4! as logr1231 logr25logr121 logr23, multiplying by r123 and taking
the trace immediately establishes the sufficiency of this equality condition. In Sec. IV, we
show that it is also necessary.
                                                                                                                



d

ne

the
tive

ality in
ate-
e proof
be

m 8,

as a

crucial
trace

d
-
clude
of

bad-
com-

ssume
.

4360 J. Math. Phys., Vol. 43, No. 9, September 2002 Mary Beth Ruskai

                    
B. Relative entropy

The SSA inequality can be restated as a property of thequantum relative entropywhich is
defined as

H~r,g![Trr~ logr2 logg!. ~5!

It is usually assumed thatr, g are density matrices, although~5! is well-defined for any pair of
positive semi-definite matrices for which ker~g!,ker~r!. Strong subadditivity can now be restate
as

H~r12,r2!<H~r123,r23!, ~6!

where we again write, e.g.,r23 for I 1^ r23. More generally, the relative entropy is monoto
under completely positive, trace-preserving maps~also known as ‘‘quantum operations’’32 and
‘‘stochastic maps’’1,20 and discussed in more detail in Sec. III D!, i.e.,

H@F~r!,F~g!#<H~r,g!. ~7!

This monotonicity implies~6! whenF5T3 is the partial trace operation; perhaps surprisingly,
converse is also true.31 This, and other connections between strong subadditivity and rela
entropy, are discussed in Sec. V C.

The approach to SSA presented here can also be used to obtain conditions for equ
properties of relative entropy, including its joint convexity and monotonicity. The explicit st
ments are postponed to later sections. Since the monotonicity can be used to give a simpl
of the celebrated Holevo bound14,32 on accessible information, we show how our results can
used to recover the equality conditions in that bound. As discussed in Sec. II C, Petz33,36 has also
obtained several equality conditions in different, but equivalent, forms. However, Theore
which applies to the most general form of monotonicity, appears to be new.

C. Lieb’s convex trace functions

One of the most frequently cited approaches to strong subadditivity is to present it
consequence of the concavity of a quantity known as the Wigner–Yanase–Dyson entropy.49 This
property, conjectured by Bauman,6 is equivalent to the joint concavity inA andB of the map

~A,B!→TrAsK†B~12s!K for A,B.0, 0,s,1 ~8!

~where † is used to denote the adjoint!. Lieb’s proof26 of the concavity of the WYD function~8!
and his realization of a connection between SSA and Bauman’s concavity conjecture was a
breakthrough. However, concavity of the WYD function was only one of several concave
functions studied in Ref. 26; the following result was also established by Lieb.

Theorem 2: For any fixed self-adjoint matrix K, the function A°F(A)5Tr eK1 log A is con-
cave in A.0.

This result played a fundamental role in the original proof28,29 of SSA and the closely relate
property of joint concavity of the relative entropy.28–30Although SSA is a deep theorem, a com
plete proof is not as forbidding as is sometimes implied. Therefore, for completeness, we in
Epstein’s elegant proof11 of Theorem 2 in the Appendix, and then follow the original strategies
Lieb and Ruskai29 to show how it implies SSA.

D. Overview

Although this article grew out of questions about the conditions for equality in strong su
ditivity and related inequalities, it seems useful to present these conditions within a more
prehensive exposition. For simplicity, we confine our discussion to finite dimensions, and a
that, unless otherwise stated, the density matrices under consideration are strictly positive
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The remainder of the article is structured as follows. In Sec. II we discuss some conseq
and interpretations of the SSA equality condition. In Sec. III we summarize some mathem
results needed for the proofs in the sections that follow. Section IV, which might be regarded
heart of the paper, presents the proof of strong subadditivity in a form which easily yield
equality conditions.~A reader primarily interested in this proof can proceed directly to Sec
with a willingness to accept the results of Sec. III.! Section V presents proofs with equalit
conditions for the monotonicity of the relative entropy under partial traces, the joint convex
the relative entropy, and the general monotonicity under stochastic maps. This section als
tains a discussion of the connection between these properties, SSA and their proofs. Sec
contains the proof of the equality conditions for monotonicity of relative entropy. Section
considers bounds, most notably the Holevo bound, on the accessible information that c
extracted from an ensemble of quantum states, and the conditions under which they
attained. The article concludes with some additional historical comments in Sec. VIII.

II. IMPLICATIONS OF THE EQUALITY CONDITIONS FOR SSA

A. Classical conditions

To describe the corresponding classical inequalities, let the subsystemsA, B andC correspond
to classical random variables. One can recover the classical Shannon entropy2(ap(a)log p(a)
from the von Neumann entropy by takingr to be a diagonal matrix with elementsp(a) on the
diagonal. Employing a slight abuse of notation, we writeS@p(a)# for this quantity. Then the
classical strong subadditivity inequality can be stated as

S@p~a,b,c!#1S@p~b!#<S@p~a,b!#1S@p~b,c!#. ~9!

The classical relative entropy of the distributionq(a) with respect top(a) is H@p(a),q(a)#
5(ap(a)log p(a)/q(a). It is well-known ~see, e.g., Ref. 23! that the convexity of the function
f (x)5x logx implies thatH@p(a),q(a)#>0 and its strict convexity implies that equality holds
and only ifp(a)5q(a);a. ~The generalization of this result to quantum situations is discusse
Sec. III A.!

The classical form~9! of SSA is equivalent toH@p(a,b,c),q(a,b,c)#>0 when the second
distribution isq(a,b,c)5p(a,b)@p(b)#21p(b,c). Thus, equality holds in~9! if and only if

p~a,b,c!5p~a,b!@p~b!#21p~b,c! ;a,b,c, ~10!

which can be rewritten as

log p~a,b,c!2 log p~a,b!5 log p~b,c!2 log p~b! ;a,b,c, ~11!

which is identical to what one would obtain from Theorem 1. Usingp(cub) to denote the classica
conditional probability distribution,~11! can be rewritten as

p~cua,b!5p~cub!, ~12!

which is precisely the condition that the sequenceA→B→C forms a Markov chain.

B. Special cases of SSA equality

Some insight into equality condition~4! may be obtained by looking at special cases in wh
it is satisfied. The most obvious is whenr123 is a tensor product of its three reduced dens
matrices. However, it is readily verified that~4! also holds when eitherr1235r1^ r23 or r123

5r12^ r3 . One can generalize this slightly further. If the subsystem 2 can be partitioned fu
into two subsystems 28 and 29, then one can verify equality holds ifr1235r128^ r293 , wherer128
andr293 are states of the composite systems 1, 28 and 29, 3 respectively.
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However, such a decomposition into tensor products is not necessary; indeed, we have
seen that equality also holds for the case of classical Markov processes. Moreover, by com
to ~12! it is natural to regard~4! as a kind of quantum Markov condition. Thus, the conditions
Theorem 1 can also be viewed as a natural noncommutative analog of the conditions for e
in classical SSA. Another way of regarding~4! is as a concise statement of a subtle intertwin
condition discussed below. Unfortunately, we have not found explicit examples which sati
other than the two classes discussed above, that is, a partial decomposition into tensor pro
a classical Markov chain.

C. Petz’s conditions

Using a completely different approach, Petz33,36 gave conditions for equality in~7! whenF
can be identified with a mapping of an algebra onto a subalgebra, a situation which includ~6!.
In that case Petz’s conditions become

r12
i t r2

2 i t5r123
i t r23

2 i t . ~13!

Taking the derivative of both sides of~13! at t50 yields~4!. Although~13! appears stronger tha
~4!, it is not since, as noted above,~4! is sufficient for equality in~6!. Moreover, since~4! implies

eit log~r123!5eit @ log r122 log r121 log r23#, ~14!

our results can be combined with those of Petz to see that equality holds in SSA⇔~4!⇔~13! and
that any of these conditions suffices to imply

eit @ log r122 log r21 log r23#5eit log~r12!e2 i t log~r2!eit log~r23!. ~15!

Note that one can also relate Petz’s conditions to those for equality in classical SSA by rew
~10! asp(a,b,c)@p(b,c)#215p(a,b)@p(b)#21 and then raising to theit power.

III. FUNDAMENTAL MATHEMATICAL TOOLS

A. Klein’s inequality

The fact that the relative entropy is positive, i.e.,H(r,g)>0 when Trr5Trg, is an immediate
consequence of the following fundamental convexity result due to Klein.22,32,47

Theorem 3 „Klein’s inequality …: For A, B.0

Tr A~ logA2 logB!>Tr~A2B!, ~16!

with equality if and only if A5B.
The closely related Peierls–Bogoliubov inequality33,47 is sometimes used instead of Klein

inequality. However, the equality conditions in Theorem 3 play a critical role in the sections
follow.

B. Lieb’s golden corollary

The proofs in Sec. IV do not use Theorem 2 directly, but a related result generalizin
following inequality, which we will also need.

Theorem 4 „Golden–Thompson–Symanzik…: For self-adjoint matrices A and B, Tr eA1B

<Tr eAeB with equality if and only if A and B commute.
Although this inequality is extremely well-known, the conditions for equality do not app

explicitly in such standard references as Refs. 16, 42 and 47. However, one method of p
based on the observation that Tr@eA/2k

eB/2k
#2k

is monotone decreasing ink, yielding eA1B in the
limit as k→`. The equality conditions then follow easily from those for the Schwarz inequ
for the Hilbert–Schmidt inner product TrC†D. Indeed,k51 yields

Tr~eA/2eB/2!~eA/2eB/2!<@Tr eB/2eAeB/2#1/2@Tr eA/2eBeA/2#1/25Tr eAeB
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with C5eB/2eA/2 and D5eA/2eB/2. The equality condition thatC is a multiple of D implies
eB/2eA/25eA/2eB/2 which holds if and only ifA andB commute. One reference33 that does discuss
equality does so by making the interesting observation that~as shown in Ref. 37! Theorem 4 and
its equality conditions can be derived as a consequence of the monotonicity of relative en
Theorem 7.

The natural extension to three matrices TreA1B1C<uTr eAeBeCu, fails; see, for example
Problem 20 on pp. 512–513 of Ref. 16. Therefore, the following result of Lieb26 is particularly
noteworthy.

Theorem 5 „Lieb…: For any R,S,T.0

Tr elog R2 log S1 log T>TrE
0

`

R
1

S1uI
T

1

S1uI
du. ~17!

One might expect that equality holds if and only ifR,S,Tcommute. Although this is sufficient, i
is not necessary. One easily checks that both sides of~17! equal Trr1^ r23 when R5r1^ r2

^ I 3 , S5I 1^ r2^ I 3 , andT5I 1^ r23, even whenT does not commute withR or S.
Proof: Lieb’s proof of ~17! begins with the easily established fact39 that if F(A) is concave

and homogeneous in the senseF(xA)5xF(A), then

lim
x→0

F~A1xB!2F~A!

x
>F~B!. ~18!

Applying this to the functions in Theorem 2 withA5S, B5T, K5 logR2logS yields

Tr elog R2 log S1 log T< lim
x→0

Tr elog R2 log S1 log~S1xT!2TrR

x
. ~19!

To complete the proof, we need the well-known integral representation

log~S1xT!2 logS5E
0

` 1

S1uI
xT

1

S1xT1uI
du. ~20!

Substituting~20! into ~19! and noting that

Tr elog R1x*0
`

@1/~S1uI !#T@1/~S1xT1uI !#du5TrR1xTrRE
0

` 1

S1uI
T

1

S1uI
du1O~x2!

yields the desired result. Q.E.D

C. Purification

Araki and Lieb5,27 observed that one could obtain useful new entropy inequalities by app
what is now known as the ‘‘purification process’’ to known inequalities. Any densityr1 can be
extended to a pure state density matrixr12 on a tensor product space; moreover,S(r1)5S(r2).
Applying this to the subadditivity inequality~1!, i.e.,S(r12)<S(r1)1S(r2), yields the equivalent
resultS(r3)<S(r23)1S(r2) which can be combined with~1! to give the triangle inequality5,27

uS~r1!2S~r2!u<S~r12!<S~r1!1S~r2!. ~21!

By purifying r123 to r1234 one can similarly show that SSA~3! is equivalent to

S~r4!1S~r2!<S~r12!1S~r14!. ~22!
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D. Lindblad’s representation of stochastic maps

Stochastic maps arise naturally in quantum information as a description of the effect
subsystemA interacting with the environment in the pure stategB5ucB&^cBu via the unitary
operationUAB ,

rA→TrB~UABrA^ gBUAB
† !. ~23!

Lindblad31 used Stinespring’s representation to show that any completely positive trace-pres
mapF which maps an algebra into itself can be represented as if it arose in this way. That is,
such a mapF one can always find an auxiliary system,HB , a density matrixgB on HB , and a
unitary mapUAB on the combined systemHA^ HB ~whereA denotes the original system! such
that

F~r!5TrB~UABr ^ gBUAB
† ! ~24!

where TrB denotes the partial trace over the auxiliary system.
Using the Kraus representationF(r)5(kFkrFk

† ~and noting that the requirement thatF be
trace-preserving is equivalent to(kFk

†Fk5I !, one can give a construction equivalent to Lindbla
by initially defining UAB as

UABuc& ^ ub&[(
k

Fkuc& ^ uk&, ~25!

whereub& is a fixed normalized state of the auxiliary system, and$uk&} is some orthonormal basis
for the auxiliary system. ThenUAB is a partial isometry fromHA^ ub&^bu to HA^ HB which can
be extended to a unitary operator on all ofHA^ HB . This yields~24! with gB5ub&^bu a pure
state.

However,UAB can also be extended toHA^ HB in other ways. In particular, it can be ex
tended, instead, to the partial isometry for whichUAB

† UAB is the projection ontoHA^ ub&^bu so
thatUAB50 on the orthogonal complement ofHA^ ub&^bu. We describe this in more detail whe
F requires at mostm Kraus operatorsFk , in which case one can choose the auxiliary system to
Cm. One can also chooseuk&5uek&, andub&5ue1& with uek& the standard basis of column vecto
with elementscj5d jk . Then~25! depends only on the first column ofUAB which we denoteV and
regard as a map fromH to H^ Cm. In block form

VrV†5UABr ^ ue1&^e1uUAB
† 5S F1

F2

]

Fm

D r~F1
† F2

†
¯ Fm

† !5S F1rF1
† F1rF2

†
¯ F1rFm

†

F2rF1
† F2rF2

†
¯ F2rFm

†

] ] ]

FmrF1
†

¯ FmrFm
†

D
~26!

from which it easily follows that TrB(VrV†)5(kFkrFk
†5F(r). The requirement thatF be

trace-preserving givesV†V5(kFk
†Fk5I which again implies thatV is a partial isometry. More-

over,VrV† has the same nonzero eigenvalues as (VAr)†(VAr)5r so thatS@VrV†#5S(r).
This construction can be readily extended to situations in whichF maps operators acting o

one Hilbert spaceHA to those acting on another spaceHA8 , e.g.,F:B(HA)°B(HA8). In this
case, the Kraus operatorsFk :HA°HA8 , and UAB is a partial isometry fromHA^ ub&^bu to a
subspace ofHA8^ HB . Alternatively, V can be defined as a partial isometry fromHA to
HA8^ Cm.
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E. Measurements and their representations

A von Neumann orprojective measurementis a partition of the identityI 5(bEb into mutu-
ally orthogonal projections, i.e.,EbEc5dbcEb . A positive operator valued measurement~POVM!
is a set of positive semi-definite operatorsEb such that(bEb5I , i.e., the orthogonality condition
is dropped. It is well-known that a general POVM can be represented as a projective measu
on a tensor product space.32

In fact, by noting that the mapr°(bAEbrAEb is completely positive and trace-preservin
with Kraus operatorsFb5AEb one can use the construction above. WriteV5(bAEb^ ub& where
ub& is an orthonormal basis forCM andM is the number of measurements in the POVM, i.e.b
51,...,M . ThenVrV†5(b,cAEbrAEc^ ub&^cu. Now, if Fb5I ^ ub&^bu, then$Fb% is a projective
measurement onH^ CM and TrFb(VrV†)5TrEbr.

F. Adjoint maps

It is sometimes useful to consider the adjoint, which we denoteF̂ , of a stochastic mapF
with respect to the Hilbert–Schmidt inner product^A,B&5TrA†B. WhenF acts onn3n matri-
ces, this adjoint~or dual! is fully defined by the requirement

Tr@F~A!#†B5TrA† F̂ ~B! ~27!

for all n3n matrices,A,B. Indeed, whenF(r)5(kFkrFk
† , the adjoint is given by F̂ (r)

5(kFk
†rFk . Moreover,F is trace-preserving if and only ifF̂ is unital, i.e., F̂ (I )5I . WhenF

is the partial trace,T2 , its adjoint takesA°A^ I 2 .

IV. SUBADDITIVITY PROOFS

To understand the proof of strong subadditivity, it is instructive to first understand how Kl
inequality can be used to prove two weaker inequalities. First, we consider the subadd
inequality ~1!. SubstitutingA5r12 andB5r1^ r2 into Klein’s inequality~16! yields

2S~r12!1S~r1!1S~r2!>Tr~r122r1^ r2!50, ~28!

which is equivalent to subadditivity. Furthermore, the well-known conditions for equality in
additivity follow from the conditions for equality in Klein’s inequality, namely that equality ho
if and only if r12 is a tensor product, that is,r125r1^ r2 .

A second, more powerful subadditivity inequality was obtained by Araki and Lieb,5

S~r123!<S~r12!1S~r23! ~29!

under the constraint Trr12351. To prove this, chooseA5r123 and B5elog r121 log r23 in Klein’s
inequality to obtain

2S~r123!1S~r12!1S~r23!>12Tr elog r121 log r23. ~30!

Applying Theorem 4 to the right-hand side gives

2S~r123!1S~r12!1S~r23!>12Tr123r12r23512Tr2~r2!2>12Tr2r250,

where the last line follows from (r2)2<r2 ~which is theonly place the normalization condition
Trr12351 is needed!. Q.E.D.

The strategy for proving SSA is similar to that above, but with Theorem 4 replace
Theorem 5. LetA5r123 and chooseB so that logB5logr122 logr21logr23. Then Klein’s in-
equality implies

2S~r123!1S~r12!2S~r2!1S~r23!>Tr~r1232elog r122 log r21 log r23!. ~31!
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Applying Lieb’s result~17! to the right-hand side above, we obtain

2S~r123!1S~r12!2S~r2!1S~r23!>TrS r1232E
0

`

r12

1

r21uI
r23

1

r21uI
duD

5Tr123r1232Tr2E
0

`

r2

1

r21uI
r2

1

r21uI
du

5~Tr123r1232Tr2r2!50.

This proves SSA. Moreover, this approach allows us to easily determine the conditions for
ity, and thus complete the proof of Theorem 1. The first inequality in the derivation abo
satisfied with equality if and only ifA5B, which is just the condition~4!. Although the conditions
for equality in ~17! are more difficult to analyze, this is not necessary here. WhenA5B, it
immediately follows that TrA5TrB so that the second inequality in the above derivation au
matically becomes an equality when~4! holds.

V. INEQUALITIES FOR RELATIVE ENTROPY

A. Monotonicity under partial trace

We now show how the same strategy can be applied to obtain a proof with equality cond
for the monotonicity of relative entropy under partial trace.

Theorem 6: Whenr12,g12.0 and Trr125Trg12,

H~r2 ,g2!<H~r12,g12! ~32!

with equality if and only iflogr122 logg125 logg21logr2.
This condition should be interpreted as logr122 logg125I 1^ @ logg22logr2#. Since, as noted

in Sec. III F, whenF5T1 , the actionF̂ is preciselyI 1^ , the equality condition can be written a
logr122 logg125T̂1@ logT1(g12)2 logT1(r12)# which is a special case of the more general fo
~40! developed later.

SSA can be regarded as a special case of this monotonicity result via the correspo
r12→r123, g12→r12, and Petz’s form of the equality condition becomesr2

i tg2
2 i t5r12

i t g12
2 i t . It is

interesting to note that in Ref. 29, Lieb and Ruskai actually obtained Eq.~32! from SSA using the
convexity of the conditional entropyS(r1)2S(r12) and the inequality~18!.

Proof: Let A5r12, logB5logg122 logg21logr2. Then Klein’s inequality and~17! imply

H~r12,g12!2H~r2 ,g2!>Tr12~r122elog g122 log g21 log r2!

>Tr12S r122E
0

`

g12

1

g21uI
r2

1

g21uI
duD

5Tr12r122Tr2E
0

`

g2

1

g21uI
r2

1

g21uI
du5Tr12r122Tr2r250.

The equality condition is again precisely the conditionA5B. Q.E.D.

B. Joint convexity of the relative entropy

The joint convexity of relative entropy can be obtained directly from Theorem 6 by choo
r12 ~and similarlyg12! to be a block diagonal matrix with blockslkr

(k) ~and lkg
(k)!. We can

interpret the partial trace as a sum over blocks so thatr[r25(klkr
(k). However, it is worth

giving a direct proof of the joint convexity since it demonstrates the central role of Theorem
Theorem 7: The relative entropy is jointly convex in its arguments, i.e., ifr5(klkr

(k) and
g5(klkg

(k), then
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H~r,g!<(
k

lkH~r~k!,g~k!! ~33!

with equality if and only iflogr2logg5logr(k)2logg(k) for all k.
Proof: Let A5r (k) and logB5logr2logg1logg(k) with r5(klkr

(k) and g5(klkg
(k).

Then Klein’s inequality implies

H~r~k!,g~k!!2Trr~k!@ logr2 logg#>Tr~r2elog r2 log g1 log g~k!
!. ~34!

Multiplying this by lk with lk.0 and(klk51 yields, after summation,

(
k

lkH~r~k!,g~k!!2H~r,g!>TrS r2(
k

lke
log r2 log g1 log g~k!D

>TrS r2elog r2 log g1 log (
k

lkg~k!D
5Tr~r2elog r!50,

where the second inequality is precisely the concavity ofC→F(C)5Tr eK1 log C with K5 logr
2logg andC5(klkg

(k). Q.E.D.

C. Relationships among inequalities

We make some additional remarks about connections between SSA and various prope
relative entropy. To facilitate the discussion, we will use MONO to denote the general mo
nicity inequality ~7!, MPT to denote the special case of monotonicity under partial traces,
Theorem 6, and JC to denote the joint convexity, Theorem 7. Using the restatement of SSA
form ~6!, it is easy to see that MONO⇒MPT⇒SSA. Before Theorem 7, we showed th
MPT⇒JC. Similarly, by choosingr123 to be block diagonal with blocksr123

k one can show tha
SSA implies that the mapr12°S(r1)2S(r12) is convex. In Ref. 29 it was observed that applyi
the convexity inequality~18! to this map~with A1xB5r121xg12! yields ~32!. This shows that
SSA⇒MPT, so that we have the chain of implications

MONO ⇒MPT⇔SSA⇒JC. ~35!

One can show that JC⇒MPT by using Uhlmann’s observation43 that the partial trace can b
written as a convex combination of unitary transformations.

One can also show directly that JC⇒SSA by using the purification process described in S
III C to show that SSA is equivalent to

r41r2<r121r14. ~36!

Moreover, if r124 is pure, thenr45r12 and r25r14 so that equality holds in~36!. Since the
extreme points of the convex set of density matrices are pure states, the inequality~36! then
follows from the joint convexity, Theorem 7. Thus we have

MONO ⇒MPT⇔SSA⇔JC. ~37!

Lindblad31 completed this circuit by showing that MPT⇒MONO.
Using the representation described in Sec. III D, withV the partial isometry fromH to

H^ Cm as in ~26!, one finds
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H@F~r!,F~g!#5H@TrB~VrV†!, TrB~VgV†!#

<H@VrV†,VgV†# ~38!

5H~r,g!. ~39!

since TrVrV† log(VgV†)5Trr logg for a partial isometryV.

VI. EQUALITY IN MONOTONICITY UNDER STOCHASTIC MAPS

Conditions for equality in the general monotonicity inequality~7! may be more subtle since
is not always possible to achieve equality. Indeed, it was noted in Ref. 25
suprÞgH@F(r),F(g)#/H(r,g) can be strictly less than 1. Using the reformulation~38! above,
we prove the following result.

Theorem 8: Equality holds in (7), H@F(r),F(g)#<H(r,g), if and only if

logr2 logg5 F̂ @ logF~r!2 logF~g!# ~40!

where F̂ denotes the adjoint ofF with respect to the Hilbert–Schmidt inner product as define
in (27).

To verify sufficiency, multiply~40! by r and take the trace to obtain

H~r,g!5Trr F̂ @ logF~r!2 logF~g!#5TrF~r!@ logF~r!2 logF~g!#5H@F~r!,F~g!#.

It is tempting to follow our previous strategy and chooseA5r, logB5logg1 F̂ @logF(r)
2logF(g)#. However, we have been unable to verify that Trelog g1 F̂ @log F(r)2log F(g)#<1 as re-
quired by this approach.

Instead, we use the representation~24! or ~26!. Rather than applying the equality condition
in Theorem 6 directly to~38!, it is useful to repeat the argument for an appropriate choice oA
andB.

Proof: ChooseA5VrV†, logB5log(VgV†)1log Tr2(VrV†)2 log Tr2(VgV†) where V is
again the partial isometry as in~26! of Sec. III D. B is defined so that the last two terms in logB
are extended fromH to H^ Cm so that ker(B),ker(A). The condition for equality in~38! is then

log~VrV†!2 log~VgV†!5 log Tr2~VrV†!2 log Tr2~VgV†!5 logF~r!2 logF~g!. ~41!

We can put this into a more useful form by noting that for a partial isometryV,

log~VrV†!2 log~VgV†!5V@ logr2 logg#V†, ~42!

from which it follows that~41! is equivalent to

V@ logr2 logg#V†5 logF~r!2 logF~g!. ~43!

Multiplying by V† on the left andV on the right and using thatV†V5I , one sees that~43! implies

logr2 logg5V†@ logF~r!2 logF~g!#V. ~44!

Taking the partial trace Tr2 over the auxiliary space in~44! yields ~40! since F̂ (P)
5(kFk

†PFk5V†PV for all P in H. Q.E.D.
Another useful necessary condition for equality in~7! can be obtained by multiplying both

sides of~43! by the projectionVV†. SinceV†V5I , one finds

VV†@ logF~r!2 logF~g!#5V@ logr2 logg#V†5@ logF~r!2 logF~g!#VV†, ~45!
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i.e., the projectionVV† commutes with@ logF(r)2logF(g)#. Taking the partial trace and notin
that F(I )5Tr2VV† we can summarize this discussion in the following.

Corollary 9: If equality holds in (7), then

F~ logr2 logg!5F~ I !@ logF~r!2 logF~g!#5@ logF~r!2 logF~g!#F~ I !. ~46!

Moreover, logF(r)2logF(g) commutes with the projection VV†5(k,,uk&^,uFkF,
† where$Fk% is

a set of Kraus operators forF, i.e., F(r)5(kFkrFk
† and uk& is an orthonormal basis for the

auxiliary spaceH2 .
The results of this section also hold in the more general situation whenF:B(HA)°B(HA8 )

maps operators on one Hilbert space to those on another, in which caseFk :HA)°HA8 .

VII. THE HOLEVO BOUND

A. Background

One reason for studying conditions for equality is that other results, such as Holevo’
ebrated bound14 on the accessible information, can be obtained rather easily from SSA or
form of the monotonicity of relative entropy. However, obtaining the corresponding condition
equality is not as straightforward as one might hope because of the need to introduce an a
system. Although Holevo’s bound is quite general, it is often applied in situations wher̃ j

5F(r j ) is the output of a noisy quantum channelF with input r j . We use the tildẽ as a
reminder of this, as well as to ensure a distinction from other density matrices which arise

For any fixed POVM and density matrixg, p(b)5Tr(gEb) defines a classical probabilit
distribution whose entropy we denoteS@TrgEb#. The Holevo bound states that for any ensem
of density matricesE5$p j r̃ j% with average density matrixr̃5( jp j r̃ j , the accessible information
in the ensemble satisfies

I ~E,M![S@Trr̃Eb#2(
j

p jS@Trr̃ jEb# ~47!

<S~ r̃ !2(
j

p jS~ r̃ j ! ~48!

for any POVM M5$Eb%. If all of the r̃ j commute, then it is easy to see that equality can
achieved by choosing theEb to be the spectral projections which simultaneously diagonalize
density matricesr̃ j . We wish to show that this condition is also necessary, i.e., equality can
be achieved in~48! if all the r̃ j commute.

It is known21,50 that ~48! can be obtained from~7!. First, observe that

S~ r̃ !2(
j

p jS~ r̃ j !5(
j

p jH~ r̃ j ,r̃ !. ~49!

Now let VM be the mapVM(A)5(bub&^buTr(AEb) whereM5$Eb%. ThenVM is a stochastic
map of the special type known as a Q-C channel15 and the Holevo bound~48! follows immediately
from ~49! and

H@VM~ r̃ j !,VM~ r̃ !#<H~ r̃ j ,r̃ !. ~50!

B. Equality conditions

We will henceforth assume that$p j ,r̃ j% is a fixed ensemble and seek conditions under wh
we can find a POVM satisfying the equality requirements. SinceV̂ M(D)5(bEb^b,Db&, ap-
plying Theorem 8 yields conditions for equality in~50!. For equality in~48! these conditions mus
hold for everyj and reduce to
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log r̃ j2 log r̃5(
b

Eb log
TrEbr̃ j

TrEbr̃
; j , ~51!

where this should be interpreted as a condition on ker(r̃ j )
' in which case all terms are well

defined.~Indeed, since the condition arises from the use of Klein’s inequality and the require
A5B, the operators inB must be defined to be zero on ker(A), which reduces to ker(r̃ j ) in the
situation considered here.! If the POVM $Eb% consists of a set of mutually orthogonal projection
then it is immediate that the operatorsZj[ log r̃j2log r̃ commute, since~51! can be regarded a
the spectral decomposition ofZj . To show that ther̃ j themselves commute, observe that

15Trr̃ j5Tr elog r̃1@ log r̃ j 2 log r̃ #

<Trr̃elog r̃ j 2 log r̃

5Trr̃e(bEb log (TrEbr̃ j /TrEbr)

5Trr̃ (
b

Eb

TrEbr̃ j

TrEbr̃
5(

b
TrEbr̃ j51,

where we have used Theorem 4 withA5 log r̃, B5 log r̃j2log r̃, and the fact that for orthogona
projectionse(babEb5(beabEb . The conditions for equality in Theorem 4 then imply that logr̃j

and logr̃ commute for allj. Hencer̃ j andr̃k also commute for allj,k when the POVM consists o
mutually orthogonal projections.

Using King’s observation in the next section, one can reduce the general case to t
projective measurements. However, we prefer to use the equality conditions to show direct
the elements of the POVM must be orthogonal. Moreover, the commutativity condition invo
VV† is reminiscent of the more sophisticated Connes cocyle approach used by Petz, and
some interest.

Since the Kraus operators for the Q-C mapVM can be chosen asFkb5ub&^kuAEb whereub&
and uk& are orthonormal bases, one finds

VV†5(
b,c

(
k,,

ub&^cu^kAEbAEc,&5(
b,c

ub&^cu^fAEbAEcf&, ~52!

whereuf&5(kuk&. By ~45!, this must commute for allj with logVM( r̃ j )2 logVM( r̃ j ) which can
be written in the form(bzb jub&^bu with zb j5 log (TrEb r̃ j /TrEbr). A diagonal operator of the
form (bzbub&^bu with all zbÞ0 will commute with the projection in~52! if and only if all
off-diagonal terms are zero. This will hold if the POVM is a projective measurement, since
AEbAEc5EbEc5Ebdbc . To see that this is necessary, note that the possibility that the vectorf is
orthogonal to allEb is precluded by the condition that(bEb5I . Moreover, since the orthonorma
basis uk& is arbitrary, f can be chosen to be arbitrary. The restriction that~51! hold only on
ker(r̃ j )

' may permit somezb j50; however, for eachb there will always be at least onej for
which zb jÞ0, and this suffices. Q.E.D

One can obtain an alternate form of the equality conditions from Corollary 9. SinceF(I )
5(bub&^buTrEb , another necessary condition for equality in~48! is

TrEb@ log r̃ j2 log r̃ #5TrEb~ log TrEbr̃ j2 log TrEbr̃ ! ; j ,b. ~53!

Inserting this in~51! yields the requirement

log r̃ j2 log r̃5(
b

1

TrEb
EbTrEb@ log r̃ j2 log r̃ #, ~54!

which can be rewritten as
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Zj5(
b

uEb&
TrEb

^Eb ,Zj& ; j , ~55!

where Zj5 log r̃j2log r̃ and the bra-ket now refer to the Hilbert–Schmidt inner product. T
implies that(buEb&^Ebu/TrEb projects onto the span($Zj%). However, this alone is not sufficien
to imply that theEb form a projective measurement.

C. Other approaches

Chris King has observed19 that when the POVM is a projective measurement of the fo
Eb5ub&^bu, one can obtain the Holevo bound from the joint convexity of relative entropy.
b( r̃)5(bub&^buTrEbr̃. Then applying Theorem 7 toH@ r̃,b( r̃)# yields

2S~ r̃ !1S~TrEbr̃ !<(
j

p j@2S~ r̃ j !1S~TrEbr̃ j !# ~56!

or

S~TrEbr̃ !2(
j

p jS~TrEbr̃ j !<S~ r̃ !2(
j

p jS~ r̃ j !

with equality if and only if

log r̃2(
b

ub&^bu log TrEbr̃5 log r̃ j2(
b

ub&^bu log TrEbr̃ j ; j . ~57!

This is equivalent to~51! whenEb5ub&^bu, and the argument can be extended to more gen
projective measurements.

King also pointed out that if$Eb% is an arbitrary POVM, the construction in Sec. III E can
used to show that~48! and ~51! are equivalent to the equalities obtained whenr̃ j is replaced by
Vr̃ jV

† andEb by Fb . Since the$Fb% form a projective measurement, we can conclude from
argument above that equality implies that allVr̃ jV

† commute, which implies that allr̃ j also
commute sinceV†V5I .

It should be noted that Petz was able to use his equality conditions to find the conditio
equality in the Holevo bound and this is sketched in Ref. 34. Indeed, Petz’s analog of~57! is
r̃ i tD2 i t5 r̃ j

i tD j
2 i t; j whereD, D j denotes the diagonal parts ofr̃, r̃ j , respectively. Then

r̃ j
i t5 r̃ i tD2 i tD j

it . ~58!

Since~58! holds for all realt, as well as allj, it also impliesr̃ j
2 i t5 r̃2 i tDitD j

2 i t . However, taking
the adjoint of~58! yields r̃ j

2 i t5D j
2 i tDit r̃2 i t . Therefore,r̃2 i t commutes with the diagonal matri

DitD j
2 i t5D j

2 i tDit and must also be diagonal. This gives a simultaneous diagonalization of ar̃ j
i t

which means that allr̃ j commute.
Holevo’s original longer derivation14 of the bound~48! also concluded that commutativity wa

necessary and sufficient for equality. Some simplifications of this argument were given by F12

in his thesis.

D. Another bound on accessible information

When r is a density matrix, the mappingA°r21/2Ar21/2 and its inverse gives a dualit
between ensembles and POVMs. Hall13 observed that this duality can be used to give anot
upper bound on the accessible information~47! in terms of the POVM and average densityr, i.e.,
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I ~E,M!<S~r!2(
b

tbSS 1

tb
ArEbAr D ~59!

5(
b

tbHS 1

tb
ArEbAr,r D , ~60!

wheretb5Tr Ebr. This inequality can be obtained from the monoticity of relative entropy un
the Q-C mapVE(A)5( j u j &^ j up jr

21/2r jr
21/2 applied toH ((1/tb)ArEbAr,r) as in~50!; or as in

Ref. 21 where an equivalent bound was given. The argument in Sec. VII B can then be u
show that equality can be achieved in~59! if and only if all ArEbAr commute. Hall13 also found
this condition and noted that it implies thatr commutes with everyEb in the POVM.

One is often interested in~48! and~59! when one wants to optimize the accessible informat
after using a noisy quantum channel,F. It was observed in Ref. 21 that, since TrF(r j )Eb

5Trr j F̂ (Eb), one can regard the noise as either acting to transform pure inputsr j to mixed state
outputsF(r j ) or as acting through the adjointF̂ on the POVM with uncorrupted outputs. In th
first case, one can bound the right side of~59! by choosing theEb to be the spectral projections o
the average output stateF~r! to yield I @F(E),M#<S@F(r)# which is weaker than the corre
sponding Holevo bound. Moreover, since the optimal choice forF(r j ) need not be in the image
of F, it is not necessarily achievable even though the commutativity condition holds. H13

discussed other situations in which the bound can not be achieved despite the fact that allArEbAr
commute.

Viewing the noise as acting on the POVM, King and Ruskai21 defined

UEP~F!5sup
r,M

FS~r!2(
b

tbSS 1

tb
Ar F̂ ~Eb!Ar D G ~61!

with tb5Trr F̂ (Eb)5TrF(r)Eb . If the supremum in~61! is achieved with an average densi
and POVM for whichAr F̂ (Eb)Ar do not commute, thenUEP(F) is strictly greater than the
accessible information. The questions of whether or not~61! can actually exceed the optima
accessible information, and how it might then be interpreted, are under investigation.

VIII. CONCLUDING REMARKS

The proof presented here for each inequality, SSA, Theorem 6, Theorem 7 and the g
monotonicity~7!, is quite short—only half a page using results from Sec. III which require
than one additional pageand Theorem 2. However, as shown in the Appendix, even this re
doesnot require a long argument if one is permitted to use some powerful tools of com
analysis.

It is certainly not unusual to find that complex analysis can be extremely useful, even
the functions of interest are real-valued. Indeed, Lieb’s original proof of the concavity of W
entropy used a complex interpolation argument. In his influential book42 on trace ideals, Simon
~extracting ideas from Uhlmann44! gave a longer ‘‘elementary’’ proof using the Schwarz inequ
ity, perhaps inadvertently reinforcing the notion that any complete proof of SSA is long
forbidding. Similar ideas are implicit in Ando,3 who restates the result in terms of tensor prod
spaces and block matrices. Uhlmann44 again demonstrated the power of complex interpolation
using it to prove the monotonicity of relative entropy under trace-preserving maps which s
the slightly weaker condition of two-positivity~rather than complete positivity!. SSA then follows
immediately as a special case. However, Uhlmann’s approach, which has been exten
Petz,35,33 was developed within the framework of the relative modular operator formalism in
duced by Araki4,7,33 for much more general situations. Recently, Lesniewski and Ruskai25 ob-
served that within this relative modular operator framework, monotonicity can be estab
directly using an argument based on the Schwarz inequality.
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The approach of this review is similar to that of Wehrl47 in that we view Theorem 2 as th
‘‘essential ingredient.’’ Indeed, Uhlmann,43,47using a completely different approach, had indep
dently recognized that Theorem 2 would imply SSA. However, Wehrl’s otherwise excellent re
stated~at the end of Sec. III B! that ‘‘Unfortunately, the proof of@this# is not easy at all.’’ Later~in
Sec. III C! Wehrl again states that ‘‘...the proof is surprisingly complicated. I want to indicate
that the concavity of TreK1 log A can be obtained from Lieb’s theorem@on concavity of the WYD
entropy# through a sequence of lemmas.’’ Although aware that Epstein’s approach,11 which was
developed shortly after Lieb announced his results, permitted a ‘‘direct’’ proof of Theore
Wehrl does not seem to have fully appreciated it. The utility of Epstein’s technique may have
underestimated, in part, because he presented his results in a form which applied to t
collection of convex trace functions studied in Ref. 26. Checking Epstein’s hypotheses fo
WYD function requires some nontrivial mapping theorems. This may have obscured the ele
of the argument in Appendix A.

It is worth noting that if the concavity of WYD entropy is regarded as the key result, it is
necessary to use the long sequence of lemmas Wehrl refers to in order prove SSA. Lindblad30 gave
a direct proof of the joint convexity, Theorem 7, directly by differentiating the WYD functi
Once this is done, SSA follows via the purification argument sketched after Eq.~36! or, alterna-
tively, the variant of Uhlmann’s argument described in Refs. 42 and 47. Combining this
Lieb’s original complex interpolation proof of the concavity of the WYD function yields anot
‘‘short’’ proof of SSA, albeit one which does not appear to be well-suited to establishing co
tions for equality.

Finally, we mention that Carlen and Lieb8 obtained another proof of SSA by using Epstein
technique to prove some Minkowski type inequalities forLp trace norms. Using a differen
approach, King17,18 recently proved several additivity results for the minimal entropy and Hol
capacity of a noisy channel by usingLp inequalities in which Epstein’s technique provided
critical estimate. This suggests that connections withLp inequalities, as advocated by Amoso
Holevo and Werner,2 may be a promising avenue for studying entropy and capacity in quan
information. Despite the results mentioned above, many open conjectures remain; see Re
17, 18, and 48 for further details.
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APPENDIX: EPSTEIN’S PROOF OF CONCAVITY OF A\Tr eK¿ log A

Let f (x)5Tr eK1 log(A1xB) with A.0 strictly positive andK, B self-adjoint. For sufficiently
small x, the function f (x) is well-defined and the concavity ofF(A) in Theorem 2 follows
immediately if f 9(0),0 for all choices ofB5B* .
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Instead of dealing withf directly, Epstein considered the functiong(x)5x f(x21) which is
well-defined foruxu.m21[iA21iiBi and can be analytically continued to the upper half plane
that

g~z!5Tr eK1 log~zA1B!. ~A1!

There are a number of equivalent~when meaningful! ways of defining functions of matrices. Fo
the purposes needed here it is natural to assume that the spectrums(A) of the operatorA is
contained in the domain of an analytic functionF(z) and that

F~A!5
1

2p i R F~z!

zI2A
dz. ~A2!

One can then use the spectral mapping theorems@F(A)#,F@s(A)# for an appropriate se
quence of functions to verify that

Jz.0 ⇒ J v~zA1B! . 0

⇒ p . J v@ log~zA1B!# . 0

⇒ p . J v@K1 log~zA1B!# . 0

⇒ J v@eK1 log~zA1B!# . 0

⇒ J Tr eK1 log~zA1B! . 0,

whereJ denotes the imaginary part of a complex number andv is used to denote an arbitrar
element of the spectrum of the indicated operator. Thus,g(z) maps the upper half plane into th
upper half plane. Functions with this property have been studied extensively under various n
including, ‘‘operator monotone,’’ ‘‘Herglotz’’ or ‘‘Pick.’’~See, for example, Refs. 3, 10 and 33.! It
then follows thatg has an integral representation of the form

g~z!5a1bz1E
2m

m 1

t2z
dm~ t ! ~A3!

for some positive measurem(t). This yields~via the change of variabless5t21!

f ~x!5ax1b1E
2m

m x2

tx21
dm~ t !. ~A4!

Differentiation under the integral sign can then be used to establish thatf 9(0),0 as desired by
observingx2/(tx21)5t22@(xt11)1(xt21)21#. Q.E.D.
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9Delbrürk, M. and Molèiere, G., ‘‘Statistische quantenmechanik und thermodynamik,’’Abh. Preuss. Akad. Wissensc
1, 1–42~1936!.

10Donoghue, W.,Monotone Matrix Functions and Analytic Continuations~Springer-Verlag, New York, 1974!.
                                                                                                                



New

. Inf.

ability

.

,

. Phys.

of

ys. A

ihe

mun.

,

nels,’’

4375J. Math. Phys., Vol. 43, No. 9, September 2002 Inequalities for quantum entropy

                    
11Epstein, H., ‘‘Remarks on two theorems of E. Lieb,’’ Commun. Math. Phys.31, 317–325~1973!.
12Fuchs, C. A., ‘‘Distinguishability and Accessible Information in Quantum Theory,’’ Ph.D. thesis, University of

Mexico, Albuquerque, NM, 1996. See quant-ph/9601020.
13Hall, M. J. W., ‘‘Quantum information and correlation bounds,’’ Phys. Rev. A55, 100–112~1997!.
14Holevo, A. S., ‘‘Information theoretical aspects of quantum measurement,’’ Probl. Inf. Transm. USSR9, 31–42~1973!.
15Holevo, A. S., ‘‘Quantum coding theorem,’’ Russ. Math. Surveys53, 1295–1331~1999!; ‘‘Coding Theorems for Quan-

tum Channels,’’ preprint, lanl:quant-ph/9809023.
16Horn, R. A. and Johnson, C. R.,Topics in Matrix Analysis~Cambridge University Press, Cambridge, 1991!.
17King, C., ‘‘Maximum of capacity and p-norms for some product channels,’’ J. Math. Phys.43, 1247–1260~2002!;

quant-ph/0103086.
18King, C., ‘‘Additivity for a class of unital qubit channels,’’ J. Math. Phys.~in press!; quant-ph/0103156.
19King, C., private communication.
20King, C. and Ruskai, M. B., ‘‘Minimal entropy of states emerging from noisy quantum channels,’’ IEEE Trans

Theory47, 1–19~2001!.
21King, C. and Ruskai, M. B., ‘‘Capacity of quantum channels using product measurements,’’ J. Math. Phys.42, 87–98

~2001!; quant-ph/0004062.
22Klein, O., ‘‘Zur quantenmechanischen begru¨ndung des zweiten hauptsatzes der wa¨rmelehre,’’ Z. Phys.72, 767–775

~1931!.
23Kullback, S.,Information Theory and Statistics~Wiley, 1959; Dover, New York, 1968!.
24Lanford, O. and Robinson, D., ‘‘Mean entropy of states in quantum statistical mechanics,’’ J. Math. Phys.9, 1120–1125

~1968!.
25Lesniewski, A. and Ruskai, M. B., ‘‘Relative entropy and monotone Riemannian metrics on noncommutative prob

space,’’ J. Math. Phys.40, 5702–5724~1999!.
26Lieb, E., ‘‘Convex trace functions and the Wigner-Yanase-Dyson conjecture,’’ Adv. Math.11, 267–288~1973!.
27Lieb, E., ‘‘Some convexity and subadditivity properties of entropy,’’ Bull. Am. Math. Soc.81, 1–13~1975!.
28Lieb, E. and Ruskai, M. B., ‘‘A fundamental property of quantum mechanical entropy,’’ Phys. Rev. Lett.30, 434–436

~1973!.
29Lieb, E. and Ruskai, M. B., ‘‘Proof of the strong subadditivity of quantum mechanical entropy,’’ J. Math. Phys14,

1938–1941~1973!.
30Lindblad, G., ‘‘Expectations and entropy inequalities,’’ Commun. Math. Phys.39, 111–119~1974!.
31Lindblad, G., ‘‘Completely positive maps and entropy inequalities,’’ Commun. Math. Phys.40, 147–151~1975!.
32Nielsen, M. A., and Chuang, I. L.,Quantum Computation and Quantum Information~Cambridge University Press

Cambridge, 2000!.
33Ohya, M., and Petz, D.,Quantum Entropy and Its Use~Springer-Verlag, New York, 1993!.
34Ohya, M., Petz, D., and Watanabe, N., ‘‘On capacities of quantum channels,’’ Prob. Math. Stats.17, 170–196~1997!.
35Petz, D., ‘‘Quasi-entropies for finite quantum systems,’’ Rep. Math. Phys.23, 57–65~1986!.
36Petz, D., ‘‘Sufficient subalgebras and the relative entropy of states of a von Neumann algebra,’’ Commun. Math

105, 123–131~1986!.
37Petz, D., ‘‘A variational expression for the relative entropy,’’ Commun. Math. Phys.114, 345–349~1988!.
38Petz, D., ‘‘Entropy, von Neumann and the von Neumann Entropy,’’ inJohn von Neumann and the Foundations

Quantum Physics, edited by M. Rdei and M. Stltzner~Kluwer, Dordrecht, 2001!.
39Rockafellar, R. T.,Convex Analysis~Princeton University Press, Princeton, NJ, 1972!.
40Ruskai, M. B. and Stillinger, F. H., ‘‘Convexity inequalities for estimating free energy and relative entropy,’’ J. Ph

23, 2421–2437~1990!.
41Shannon, C., ‘‘The mathematical theory of communication,’’ Bell Syst. Tech. J.27, 379–423~1948!; 27, 623–656

~1948!.
42Simon, B.,Trace Ideals and Their Applications~Cambridge University Press, Cambridge, 1979!.
43Uhlmann, A., ‘‘Endlich dimensionale dichtmatrizen, II,’’ Wiss. Z.-Karl-Marx-Univ. Leipzig, Math.-Naturwiss. Re

22~2!, 139 ~1973!.
44Uhlmann, A., ‘‘Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory,’’ Com

Math. Phys.54, 21–32~1977!.
45von Neumann, J., ‘‘Thermodynamik quantenmechanischer gesamheiten,’’ Go¨tt. Nach.1, 273–291~1927!.
46von Neumann, J.,Matheatische Grundlagen der Quantenmechanik~Berlin, 1932!; English translation by R. T. Beyer

Mathematical Foundations of Quantum Mechanics~Princeton University Press, Princeton, NJ, 1955!.
47Wehrl, A., ‘‘General properties of entropy,’’ Rev. Mod. Phys.50, 221–260~1978!.
48Werner, R. F. and Holevo, A. S., ‘‘Counterexample to an additivity conjecture for output purity of quantum chan

J. Math. Phys.~in press!; preprint lanl:quant-ph/0203003.
49Wigner, E. P. and Yanase, M. M., ‘‘Information content of distributions,’’ Proc. Natl. Acad. Sci. U.S.A.49, 910–918

~1963!.
50Yuen, H. P. and Ozawa, M., ‘‘Ultimate information carrying limit of quantum systems,’’ Phys. Rev. Lett.70, 363–366

~1993!.
                                                                                                                



-
a
can be

on a
o mixed

e of

ations
which

nment

-

ocess.

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 9 SEPTEMBER 2002

                    
Quantum operations that cannot be implemented using
a small mixed environment
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To implement any quantum operation~a.k.a. ‘‘superoperator’’ or ‘‘CP map’’! on a
d-dimensional quantum system, it is enough to apply a suitable overall unitary
transformation to the system and ad2-dimensional environment which is initialized
in a fixed pure state. It has been suggested that ad-dimensional environment might
be enough if we could initialize the environment in a mixed state of our choosing.
In this note we show with elementary means that certain explicit quantum opera-
tions cannot be realized in this way. Our counterexamples map some pure states to
pure states, giving strong and easily manageable conditions on the overall unitary
transformation. Everything works in the more general setting of quantum opera-
tions from d-dimensional tod8-dimensional spaces, so we place our counterex-
amples within this more general framework. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1499763#

I. QUANTUM OPERATIONS

Quantum operations~see, e.g., Schumacher, 1996! are also known as ‘‘superoperators,’’ ‘‘su
perscattering operators’’ or ‘‘completely positive maps’’~‘‘CP maps’’!. They can be viewed as
generalization of unitary transformations and are the most general transformations that
applied to a quantum system in an unknown~possibly mixed! state. More precisely, quantum
operations are the most general transformations that can be implementeddeterministically, thus
excluding operations which only succeed with a certain probability, like those depending
measurement outcome. Under a quantum operation pure states are frequently mapped t
states.

All quantum operations on ad-dimensional system can be implemented as the partial trac
a unitary operator acting on the system together with an auxiliary system~the ‘‘environment’’!.
The question is how small an environment suffices to implement all possible quantum oper
on ad-dimensional system. The answer is easy, and has long been known, for the case in
the environment is initialized in a pure state. The answer is more interesting when the enviro
can be initialized in a mixed state.

II. INITIALIZING THE ENVIRONMENT IN A PURE STATE

The environment is initialized in a standard pure state~let’s call it u0&!. We apply an overall
unitary transformation to the system plus environment~which typically involves interaction be
tween the two!. Finally, we are only interested in the~now generally mixed! state of the system
alone, thus we ‘‘trace over’’ the environment. Decoherence is a typical example of such a pr
It is easy to see that quantum operations act linearly on density matrices.

a!Electronic mail: zalka@cacr.math.uwaterloo.ca
b!Electronic mail: rieffel@pal.xerox.com
43760022-2488/2002/43(9)/4376/6/$19.00 © 2002 American Institute of Physics
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We will think of quantum operations as given in the above way, as overall unitary tran
mations on a system together with an environment. For example, a quantum operation
single-qubit system can be given by the action of an overall unitary transformation on
vectors for the space consisting of the system together with the environment. As the enviro
starts out in the stateu0&, we need only to give the images of the vectorsu i &u0& ~where the first
vector corresponds to the system and the second to the environment!:

u0&u0&→u0&uc00&1u1&uc01&,

u1&u0&→u0&uc10&1u1&uc11&,

where the environment vectorsuc i j & have to be such that the two right-hand sides are orthonor
The action of the quantum operation on~density! operators is obtained by first lifting th

above overall unitary transformation to the level of density operators and then tracing ov
environment~using tr uw&^cu5^cuw&). Thus

u i &u0&^0u^ i 8u→
U

(
j j 8

u j &uc i j &^c i 8 j 8u^ j 8u →
tr env

(
j j 8

u j &^ j 8u^c i 8 j 8uc i j &.

Since only the inner product of theuc i j & matter, we may assume thatu0&5uc00&. Thus we see tha
any quantum operation on a single-qubit system can be implemented with a four-dimen
environment, as theuc i j & span at most a four-dimensional space. For ad-dimensional system we
haved2 environment vectorsuc i j &, so an environment of that dimension will always do. It is a
not hard to show that in this setting some quantum operations really need an environment
size.

A. Initializing the environment in a mixed state

While it does not matter in which pure state we initialize the environment, initializing
mixed state rather than a pure state does matter. A mixed state is not unitarily equivalent to
state, rather the unitary equivalence is characterized by the eigenvaluespi of the density matrix of
the state. The question at hand is whether we could implement any quantum operation w
environment smaller thand2 if, for each map we want to implement, we are allowed to initial
the environment in a mixed state of our choosing.

Without loss of generality we can assume the initial state of the environment to be of the
renv,initial5( i pi u i &^ i u. Because the environment now is smaller, the overall unitary transforma
has fewer parameters, but more of them matter; it is no longer sufficient to know only the a
on the subspace in which the environment is in stateu0&.

A parameter count~including the choice of thepi! suggests that an environment of the sa
dimension as the system might just be enough to implement any quantum operation we
allowed to choose the initial mixed state of the environment, thus the conjecture in Lloyd~1996
@see Eq.~2!#!. We give a more general version of the parameter count in Sec. II B 1.

It has been shown~Terhal, 1999! for the qubit case (d52) that this conjecture is not true
there are quantum operations which cannot be implemented with a mixed single-qubit en
ment. The proof in Terhal~1999! was rather ‘‘brute force,’’ as it used computer algebra to sh
that a system of equations does not have a solution. Here we give a simple proof usin
elementary means that also generalizes to arbitrary dimensions.

Thus we show the following: There are quantum operations on ad-dimensional system which
cannot be implemented using an environment which is only of the same dimension. In part
this statement remains true even if we can initialize the environment in a mixed state o
choosing.
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B. General framework

In general we consider maps between systems of~possibly! different dimensionsd andd8. We
embed the ‘‘initial’’ d-dimensional system in a larger system, apply a unitary operator, and
take the partial trace over everything except thed8-dimensional ‘‘final’’ system. Thus physically
we start with a system in some~generally mixed! state and end with a different system in som
state. Note that the dimension can increase or decrease.

When the larger system contains ad8-dimensional system and an auxiliary environme
initialized in pure states~see Fig. 1!, the same argument as in Sec. II shows that besides
d-dimensional initial system and thed8-dimensional final system, ad-dimensional environment is
enough~and in general necessary! to realize general quantum operations between the two syst

Were we to initialize the ‘‘final’’ system in a mixed state, a parameter count~misleadingly!
suggests that thed-dimensional auxiliary environment could simply be left away. We place
counterexamples in this general framework of maps from ad-dimensional ‘‘initial’’ system to a
d8-dimensional final~or ‘‘target’’ ! system initialized in a mixed state of our choosing. An over
unitary transformation is applied to the initial plus final system, and, then, as we are only
ested in the state of the final system, we ‘‘trace over’’ the initial one.~See Fig. 2.!

Note that the question we were initially interested in, of whether ad-dimensional environmen
that can be initialized in a mixed state is sufficient to implement any quantum operation
d-dimensional system, can be answered in this general framework by looking at initial and
systems of the same dimensiond and then swapping them at the end.

FIG. 1. Map fromd-dimensional ‘‘initial’’ system tod8-dimensional ‘‘final’’ system induced by unitary transformationU
acting on the two systems and an auxiliary environment. The ‘‘final’’ system and the auxiliary environment are initi
in fixed pure states.

FIG. 2. General framework: map fromd-dimensional ‘‘initial’’ system tod8-dimensional ‘‘final’’ system induced by
unitary transformationU. The ‘‘final’’ system is initialized in a mixed state.
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1. A sketch of the parameter count

Here is a sketch of the parameter count that leads to the wrong conjecture.
d8-dimensional mixed state in the standard form is given byd821 ~real! parameters. Note that i
is invariant under diagonal~special! unitary transformations~‘‘rephasings’’!. The overall~special!
unitary transformation hasd2d8221 parameters. Finally, we have to take into account that a
this overall transformation, a~special! unitary transformation just on the initial system alone do
not matter. In the end we get (d821)2(d821)1(d2d8221)2(d221)5d2(d8221) real param-
eters, which is the correct number for a quantum operationd→d8.

III. THE COUNTEREXAMPLE

A. The basic idea

We explain the basic idea behind the counterexamples in the simple setting of a map
d-dimensional system to itself induced by a unitary map on the system together w
d8-dimensional environment. Imagine we initialize thed8-dimensional environment in a mixe
state, sayr ini5pu0&^0u1(12p)u1&^1u. The resulting map~quantum operation! will be a proba-
bilistic mixture ~convex linear combination! of the two ‘‘pure-environment’’ maps we would ge
by initializing the environment either in stateu0& or u1&. A convex linear combination of quantum
operations is defined through the convex linear combination of the density matrices to whic
map. Also note that given one of these maps, the other has to fulfill certain conditions becau
come from the same overall unitary transformation.

The main idea of our counterexample is as follows: A pure state cannot be written
nontrivial mixture of two pure states. This gives us strong restrictions on maps that take c
pure system states to pure states. For example, consider a quantum operation that mu0&
→u0&. Then any ‘‘pure-environment’’ maps that make up part of a convex linear combination
gives this map must also mapu0& to u0&.

B. The counterexample

As announced, we use the general framework of a quantum operation from an ‘‘in
d-dimensional system to a ‘‘final’’d8-dimensional system~Fig. 2!. We will mark vectors in the
final system with a prime:u...&8.

In our counterexample, we require that all but one of the initial system basis states go
pure state, sayu0&8,

u i &^ i u→u0&8^0u8, i 50, . . . ,d22.

Before further specifying the counterexample, let us look at the consequences of this condi
the target system has been initialized in a~truly, thus nonpure! mixed state, sayr ini8 5pu0&8^0u8
1(12p)u1&8^1u8 with 0,p,1, we get for the overall unitary transformation

u i &u0&8→uc i&u0&8 and u i &u1&8→uj i&u0&8, i 50, . . . ,d22.

All 2( d21) states on the right-hand side have to be orthonormal, thus theuc i& anduj i& have to be
orthonormal. But ford.2 their number exceeds the dimension of the system. It is clear that
we to initialize the final system in a mixed state of rank.2, things would only be worse. I
follows that the final system cannot start out in a mixed state, thus we assume it is initialized
pure stateu0&8. ~We treat the special cased52 below.!

Without loss of generality we setuc i&5u i &. We haveu i &u0&8→u i &u0&8 for i 50, . . . ,d22. The
image of the remaining basis stateud21& can be written

ud21&u0&8→ (
i 50

d21

u i &uw i&8.
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Now we require that the image ofud21& be a truly mixed staterd218 . Furthermore, we require
that under the quantum operation,ud21& should ‘‘totally decohere’’ from the other basis statesu i &,
meaning that a superposition should go to a mixture of the individual images of the stat
(au i &1bud21&)(ā^ i u1b̄^d21u)→uau2u0&8^0u81ubu2rd218 ( i 50, . . . ,d22). But the ‘‘totally
decohere’’ condition means thatuw i&850 for all iÞd21, from which it follows that the image o
ud21& would have to be pure after all.

C. The special case d\d 8 with dÄ2

For d52 we still have to consider the case in which the final system is initialized in a m
state, although from above it is clear that it would have to be a mixed state of rank 2, t
mixture of just two different pure states. Thusr ini8 5pu0&8^0u81(12p)u1&8^1u8 with 0,p,1.
Then we have for the overall unitary transformation

u0&u0&8→u0&u0&8 and u0&u1&8→u1&u0&8.

It follows that u1&u0&8→au0&u0'&81bu1&u08'&8 where bothu0'&8 and u08'&8 are vectors or-
thogonal tou0&8 and similarly for the image ofu1&u1&8. We can now make our counterexamp
above work also ford52 by additionally requiring that the~truly mixed! image ofud21& have
some overlap withu0&8, thus we require that

^0u8rd218 u0&8Þ0.

D. Summary of the counterexample

In summary we give the counterexample map by its action on pure states:

S (
i 50

d22

a i u i &1bud21& D S (
i 50

d22

ā i^ i u1b̄^d21u D→S (
i 50

d22

ua i u2D u0&8^0u81ubu2rd218 ,

where rd218 is not a pure state. Ford52 we must additionally require that^0u8rd218 u0&8Þ0.
~Actually for d852 this is always true.!

E. The counterexample is a quantum operation

Finally we show that the counterexample is a possible quantum operation, thus that
large enough environment it can be implemented. So besides the initial and final systems w
have an environment. The map is simple, but for completeness we show it. The following o
unitary transformation implements the counterexample map~including the additional property
required for the cased52!, with a,bÞ0:

u i &u0&8u0&env→u i &u0&8u0&env, i 50, . . . ,d22,

ud21&u0&8u0&env→aud21&u0&8u0&env1bud21&u1&8u1&env.

IV. FURTHER REMARKS

A. How many counterexamples are there?

Once a single counterexample has been found, basic topological properties of the~convex! set
of all quantum operations and the~also convex! subset of those that can be realized with
d-dimensional~possibly! mixed environment imply that the set of counterexamples contains b
and thus is a set of nonzero measure. All that is needed is that the subset of maps that
realized with ad-dimensional mixed environment is closed, and that the ‘‘outer’’ set is a reg
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set, thus it is a closure of its inner points. The latter is simply because the set of all qua
operations is a ‘‘closed voluminous’’ convex set, thus one which does not happen to lie in
hyperplane.

Note that our counterexample lies on the boundary of the set of quantum operations,
must take the intersection of a ball around it with the set of quantum operations to find inner
of the set of counterexamples. Around these points there will then be balls of counterexam

Also note that the counterexample given in Terhal~1999!, for the single-qubit case (d52), is
unital and thus very different from ours.

A complete characterization of exactly which maps can be realized with ad-dimensional
mixed environment and which cannot has yet to be found even in the single-qubit case. R
~2001! gives a parameterization of the space of all quantum operations for the single-qubit
that might be useful here.

B. How big an environment is necessary?

From the counterexamples ford.2 we can see that more could be said about how larg
mixed environment has to be, but we have not investigated further.

C. Implications for simulating quantum operations „?…

It looks like our subject is mostly a mathematical challenge. In Terhal~1999! it was said that
one may want to simulate quantum operations~e.g., on a quantum computer! with as few re-
sources as possible~see also Bacon, 2001!. But Choi~1975! shows that every extremal map of th
convex set of quantum operations can be realized with ad-dimensional environment initialized in
a pure state. To achieve any mixture of such extremal maps~and thus any map! one can simply
carry out each of them with a certain probability, using a probabilistic protocol. On the other
certain extremal maps do need an environment of dimensiond, thus this probably is a necessa
resource.

D. What about ‘‘Markovian’’ quantum operations?

By ‘‘Markovian’’ quantum operations we mean those quantum operations that can be
erated’’ from ones that are infinitesimally close to the identity. Of course this notion makes
only for dimension preserving quantum operations. It is known that not all quantum operation
be generated in this way, so we may wonder whether all those maps could be implemente
a ‘‘small’’ mixed environment.
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A lower bound on the quantum capacity of channels
with correlated errors
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The highest fidelity of quantum error-correcting codes of lengthn and rateR is
proven to be lower bounded by 12exp@2nE(R)1o(n)# for some functionE(R) on
noisy quantum channels that are subject to not necessarily independent errors. The
E(R) is positive below some thresholdR0 , which impliesR0 is a lower bound on
the quantum capacity. This work is an extension of the author’s previous works@M.
Hamada, Phys. Rev. A,65, 052305~2002!; quant-ph/0109114, LANL~2001!; M.
Hamada, quant-ph/0112103, LANL~2001!#, which presented the bound for chan-
nels subject to independent errors, or channels modeled as tensor products of copies
of a completely positive linear map. The relation of the channel class treated in this
article to those in the previous works is similar to that of Markov chains to se-
quences of independent identically distributed random variables. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1495537#

I. INTRODUCTION

Quantum error-correcting codes~simply called quantum codes orcodesin this work! were
discovered by Shor1 and Steane2 as schemes that protect quantum states from decoherence d
quantum computation. Shor1 not only gave the first quantum code but also posed a problem
determining the quantum analog of Shannon’s channel capacity. In classical information t
channels with independent errors are called memoryless channels and channels with co
errors are called channels with memory,3 which will be applied to quantum channels as well in t
present work. On quantum memoryless channels, several bounds on the quantum capac
been known,1,4–7and also exponential convergence of fidelity of codes was recently proved b
present author.8,9 It is natural to ask whether such bounds and exponential convergence hol
or not on channels with memory, which will be answered affirmatively in this work.

While one of the greatest incentives to investigate quantum codes is need in quantum
puting, we are not sure which devices to use for this purpose currently. Hence, we do not
which channel models are appropriate, so that treating general channels may be among w
can proceed to now. Thus, this article analyzes the code performance on a class of qu
channels that is much wider than was treated in the literature.

In the proof of the main result below, the method of types, which is a powerful tool f
classical information theory, plays an important role.10,11 This method was exploited by the Hun
garian mathematician~information theorist! Csiszár and co-workers around 1980 to present t
strongest coding theorems such as the one showing the existence of universal channe
asymptotically as good as any codes.10,11 It has often produced results in elementary enumera
manners, which is also the case in this article.

II. MAIN RESULT FOR SIMPLE CASE

As usual, all quantum channels and decoding~state-recovery! operations in coding system
are described in terms oftrace-preserving completely positive~TPCP! linear maps.4,7,12–14Given

a!Electronic mail: mitsuru@ieee.org
43820022-2488/2002/43(9)/4382/9/$19.00 © 2002 American Institute of Physics
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a Hilbert spaceH of finite dimension, letL(H) denote the set of linear operators onH. In general,
every CP linear mapM:L(H)→L(H) has an operator-sum representationM(r)5( i PIMirMi

†

for someMiPL(H), i PI.4,12–14WhenM is specified by a set of operators$Mi% i PI in this way,
we write M;$Mi% i PI .

Hereafter,H denotes an arbitrarily fixed Hilbert space of dimensiond, which is a prime
number. A quantum channel is a sequence of TPCP linear maps$An :L(H^ n)→L(H^ n)%. We want
a large subspaceC n#H^ n, every state vector in which remains almost unchanged after the e
of a channel followed by some suitable recovery operationRn :L(H^ n)→L(H^ n). A pair (Cn ,Rn)
consisting of such a subspaceCn and a TPCP mapRn is called acodeand its performance is
evaluated in terms of minimum fidelity6,7,15

F~Cn ,RnAn!5 min
uc&PCn

^cuRnAn~ uc&^cu!uc&,

where RnAn denotes the composition ofAn and Rn . Throughout, braŝ •u and ketsu•& are
assumed normalized. A subspaceCn alone is also called a code assuming implicitly some recov
operator.

Let Fn,k
! (An) denote the supremum ofF(Cn ,RnAn) such that there exists a code (Cn ,Rn)

with logd dimCn>k, wheren is a positive integer andk is a non-negative real number. Our goal
to estimateFn,k

! (An) as precisely as possible.
First, we state the main result for an easy case, and give a more general statement later

orthonormal basis$u0&, . . . ,ud21&% of H. PutX5$0, . . . ,d21%2 andN( i , j )5XiZj for ( i , j )PX.
Here,X,ZPL(H) are Weyl’s unitaries, which could be viewed as generalized Pauli operators
are defined by

Xu j &5u~ j 21! mod d &, Zu j &5v j u j &, ~1!

wherev is a primitive dth root of unity.16–20 From theL(H) basis$N( i , j )%, we obtain a basis
Nn5$NxuxPX n% of L(H^ n), whereNx5Nx1

^¯^ Nxn
for x5(x1 , . . . ,xn)PX n. The first chan-

nel class to be considered here consists of those$An% such thatAn;$APn(x)Nx%xPX n, where we
assume thatPn are the probability distributions of a~first-order! homogeneous Markov chain, i.e
that Pn has the form

Pn~x1 , . . . ,xn!5p~x1!)
j 51

n21

P~xj 11uxj ! ~2!

with some transition probabilitiesP(vuu), u, vPX, and some initial distributionp. These are
generalizations of the so-called depolarizing channel;5,6 see Ref. 21 for a thorough analysis
memoryless channels withd52.

Given a probability distributionQ on X 2, we let Q̄ andQ% denote the two marginal distribu
tions:

Q̄~u!5 (
vPX

Q~u,v !, Q% ~u!5 (
vPX

Q~v,u!, uPX.

The classical~conditional! Kullback–Leibler information~informational divergence or relative
entropy! is denoted byD and entropy byH.10,11,22Specifically, for a probability distributionQ on
X 2, transition~or conditional! probabilitiesP(vuu), u,vPX, and a probability distributionp on
X, we defineQQ (•u•) by QQ (vuu)5Q(u,v)/Q̄(u) for Q̄(u).0, D(QiP) by

D~QiP!5 (
uPX:Q̄(u).0

(
vPX

Q~u,v !logd

QQ ~vuu!

P~vuu!
,
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andH(Pup) by

H~Pup!52 (
uPX: p(u).0

(
vPX

p~u!P~vuu!logd P~vuu!,

which is called the entropy ofP(•u•) conditional onp. We remark thatD(QiP) is a conditional
Kullback–Leibler information, so that in a more consistent notation,10 it would be denoted by
D(QQ iPuQ̄).

By convention, we assume log(a/0)5` for a.0, 0 log 050log(0/0)50. The first form of this
work’s main result is the next one.

Theorem 1: Let a channelAn;$APn(x)Nx%xPX n, n51,2,. . . , be specified by (2) with som
P(•u•) and p. Then, for0<R<1, we have

lim inf
n→`

2
1

n
logd@12Fn,Rn

! ~An!#>E~R,P!, ~3!

where

E~R,P!5 min
Q:Q̄5Q%

@D~QiP!1u12H~QQ uQ̄!2Ru1#,

uxu15max$x,0%, and the minimization with respect to Q is taken over all probability distributio

on X 2 with Q̄5Q% .

Remarks:Roughly speaking, the theorem saysFn,Rn
! (An)

.

'12expd@2nE(R,P)#. An immedi-

ate consequence of the theorem is that when the Markov chain is irreducible, the qu
capacity1,4–7 of $An% is lower bounded by 12H(Puq), whereq is the unique stationary~steady
state, or equilibrium! distribution of the Markov chain.23 To see this, observe thatE(R,P) is
positive for R,12H(Puq) due to an easily established inequalityD(QiP)>0 where equality
occurs if and only ifQ(u,v)5q(u)P(vuu) for all u,vPX under the constraintQ̄5Q% .

Example:Let us assumed52, rename the elements~0,0!,~1,0!,~0,1!,~1,1! in X as 0I , 1I , 2I , 3I ,
and defineP(vuu), u,vPX, by

P~vuu!55
12« if u50I and v50I ,

«/3 if u50I and vÞ0I ,

12g if uÞ0I and v50I ,

g/3 if uÞ0I and vÞ0I .

In this case,$An% is analogous to the channel with memory discussed by Gilbert24 in the context
of classical channel coding~see also Ref. 3, Sec. 4.6!. If we brought Gilbert’s idea into our
quantum case innocently, we might assume 0,«<g,1 and interpret 0I as ‘‘good state,’’ 1I , 2I , 3I
as ‘‘bad ones,’’ where a state means that of the Markov chain, not a quantum state, and« ~resp.,
g! as the probability of going into a ‘‘bad state’’ provided the current state be ‘‘good~resp., bad!.’’
For the above quantum channel, the lower bound 12H(Puq) becomes

12
~12g!@h~«!1« log2 3#1«@h~g!1g log2 3#

12g1«
,

where h is the binary entropy functionh(z)52z log2 z2(12z)log2(12z). Note that when«
5g, the channel becomes the depolarizing channel and the lower bound on the capacity b
the known one.5,8
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III. PROOF OF THEOREM 1

A. Codes based on symplectic geometry

The codes to be proven to have the desired performance aresymplectic (stabilizer, or additive
codes.25–27 Let us recall first the basics of symplectic codes. We can regard the index ofN( i , j )

5XiZj , (i , j )PX, as a pair of elements from the fieldF5Fd5Z/dZ, the finite field consisting of
d elements. Recall we putNx5Nx1

^¯^ Nxn
for x5(x1 , . . . ,xn)P(F2)n. We write NJ for $Nx

PNnuxPJ% whereJ#(F2)n. The index ((u1 ,v1), . . . ,(un ,vn))P(F2)n of a basis element can b
regarded as the plain 2n-dimensional vector

x5~u1 ,v1 , . . . ,un ,vn!PF2n.

We can equip the vector spaceF2n over F with a symplectic bilinear form~symplectic paring!,
which is defined by

~x,y!sp5(
i 51

n

uiv i82v iui8

for the abovex andy5(u18 ,v18 , . . . ,un8 ,vn8)PF2n.28–30 Given a subspaceL#F2n, let

L'5$xPF2nu;yPL, ~x,y!sp50%.

Lemma 1:25,27 Let a subspace L#F2n satisfy

L#L' and dim L5n2k.

In addition, let J0#F2n be a set satisfying

;x,yPJ0 , @y2xPL'⇒x5y#. ~4!

Then, there exist dk-dimensional NJ0
-correcting codes.

In fact, given a subspaceL as above, there aredk subspaces of the form

$cPH^ nu;MPNL ,Mc5t~M !c%,

with some scalarst(M ) ~eigenvalues ofMPNL!, and each of them, together with a suitab
recovery operator, serves as anNJ0

-correcting quantum code of dimensiondk. Note that the direct
sum of these subspaces is the whole spaceH^ n. The precise meaning ofNJ0

-correcting can be
found, e.g., in Ref. 15. Originally, Lemma 1 was claimed for the case whered52, and has been
generalized to the case whered is a general prime.18–20,31

By definition, for anNJ0
-correcting code (Cn ,Rn) and the channel$An% in the theorem, it

holds

12F~C!< (
x¹J0

Pn~x!, ~5!

whereF(C)5F(C,RnAn). We remark that, as is usually done in the literature, it is assumed in
article that when we speak of anNJ0

-correcting code (Cn ,Rn), the Rn indicates the one con
structed by Knill and Laflamme.15 Note thatRn is determined fromJ0 andC. The premise~4! of
Lemma 1 is restated as thatJ0 is a set of representatives of cosets ofL' in F2n. A natural choice
for J0 would be a set consisting of representatives each of which maximizes the probabilityPn(x)
in its coset27 since it is analogous to maximum likelihood decoding, which is an optimum stra
for classical coding~see Ref. 32 or any textbook of information theory!. In the proof below, we
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choose another set of representatives, the classical counterpart of which~minimum entropy de-
coding! asymptotically yields the same performance as maximum likelihood decoding.10,33

B. The method of types

The theorem can be proved along the lines of Ref. 8, which employed the meth
types.10,11,22,33In the present case, second-order~Markov! types rather than the usual types a
used. Needed technical tools from the method of types in the Markov case can be found in R
and papers cited therein. We collect here a few basic facts on this method to be used belo

For x5(x1 , . . . ,xn)PX n, n.1, define a probability distributionMx on X 2 by

Mx~u,v !5
u$ i u1< i<n21,~xi ,xi 11!5~u,v !%u

n21
, uPX,

which is called the second-ordertypeor Markov type ofx. With X and an elementuPX fixed, the
set of all possible Markov types of sequences (x1 , . . . ,xn) from X n satisfyingx15u is denoted by
Qn(X,u) or simply byQn(u), andQn stands forøuPXQn(u). For a typeQPQn(u), T Q

n (u) is
defined as$(x1 , . . . ,xn)PX nux15u and Mx5Q%, andT Q

n denotesøuPXT Q
n (u).

In what follows, we use

uT Q
n ~u!u<expd@~n21!H~QQ uQ̄!#, uPX. ~6!

Note that if x5(x1 , . . . ,xn)PX n with x15u has type Q, then Pn(x)
5p(u)) (a,b)PX2P(bua)(n21)Q(a,b)5p(u)expd$2(n21)@H(QQ uQ̄)1D(QiP)#% and, hence, ~6! is
equivalent to the latter inequality in~39! of Ref. 22, i.e.,

Pr$MX5QuX15u%<expd$2~n21!D~QiP!%, ~7!

where the sequence of random variablesX5(X1 , . . . ,Xn) represents the Markov chain in th
theorem, i.e., Pr$X15x1 , . . . ,Xn5xn%5Pn(x1 , . . . ,xn) with Pn defined in~2!. Equation~6! or
~7! is a consequence of Whittle’s formula foruT Q

n (u)u, a simple proof of which was given by
Billingsley.34 The upper bound in~6! can be proved more easily with a simple way of enumerat
~Ref. 35 or the paragraph containing~9! of Ref. 36!.

C. Proof of theorem I

The case whereR51 is trivial, so we assumeR,1 from now on. Puttingk5 dRne, we apply
Lemma 1, where we chooseJ0 as follows. Assume dimL5n2k. Then, dimL'5n1k.28,30 For
notational simplicity, we writeHc(Q) in place ofH(QQ uQ̄) for a probability distributionQ on X 2.
From each of thedn2k cosets ofL' in F2n, select a vector that minimizesHc(Mx), i.e., a vector
x satisfyingHc(Mx)<Hc(My) for anyy in the coset. This selection uses the idea of the minim
entropy decoder known in the classical information theory literature.33

Let J0(L) denote the set of thedn2k selected vectors, let

A5$L#F2nuL linear, L#L', dim L5n2k%,

and, for eachLPA, let C(L) be anNJ0(L)-correcting code, the existence of which is ensured
Lemma 1. Putting

F̄5
1

uAu (
LPA

F~C~L !!,

we will show lim infn2n21 logd(12F̄)>E(R,P), which implies that, at least, one sequence
codes has fidelity as high as promised in the theorem. Such a method for a proof is referre
random coding.10,37
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As in the proof of Theorem 1 of Ref. 8, we have

12F̄< (
xPF2n

Pn~x!
uB~x!u

uAu
, ~8!

where

B~x!5$LPAux¹J0~L !%, xPF2n.

The fractionuB(x)u/uAu is trivially bounded as

uB~x!u
uAu

<1, xPF2n. ~9!

We use the next inequality.9 Let

A~x!5$LPAuxPL'\$0%%.

Then,uA(0)u50 and

uA~x!u
uAu

5
dn1k21

d2n21
<

1

dn2k , xPF2n, xÞ0. ~10!

This is a variant of the relation established by Calderbanket al.,25 or its analog proved by Mat-
sumoto and Uyematsu38 with an explicit use of the Witt lemma28,29 from the theory of bilinear
forms.

Since B(x)#$LPAu'yPF2n,Hc(My)<Hc(Mx),y2xPL'\$0%% from the design ofJ0(L)
specified above~cf. Ref. 37!, it follows that

uB~x!u< (
yPF2n:Hc(My)<Hc(Mx), yÞx

uA~y2x!u< (
yPF2n:Hc(My)<Hc(Mx), yÞx

uAud2n1k, ~11!

where we have used~10! for the latter inequality. Combining~8!, ~9!, and ~11!, we obtain the
following chain of inequalities with the aid of the basic inequalities in~6! and ~7! as well as the
inequality min$a1b,1%<min$a,1%1min$b,1% for a,b>0:

12F̄< (
xPF2n

Pn~x! minH (
yPF2n:Hc(My)<Hc(Mx), yÞx

d2(n2k), 1J
< (

uPX
p~u! (

QPQn(u)
Pr$MX5QuX15u%minH (

Q8PQn :Hc(Q8)<Hc(Q)

uT Q8
n u

dn(12R)21 , 1J
<d3 (

uPX
p~u! (

QPQn

expd@2~n21!D~QiP!#

3 (
Q8PQn :Hc(Q8)<Hc(Q)

expd@2~n21!u12R2Hc~Q8!u1#

<d3 (
QPQn

expd@2~n21!D~QiP!#uQnu max
Q8PQn :H(Q8)<H(Q)

expd@2~n21!u12R2Hc~Q8!u1#
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<d3 (
QPQn

expd@2~n21!D~QiP!# uQnuexpd@2~n21!u12R2Hc~Q!u1#

<d3uQ nu2 expd$2~n21! min
QPQn

@D~QiP!1u12R2Hc~Q!u1#%.

SinceuQnu is polynomial inn, the remaining task is to show that

lim inf
n→`

min
QPQn

@D~QiP!1u12R2Hc~Q!u1#

is not less than

min
Q:iQ̄2Q% i50

@D~QiP!1u12R2Hc~Q!u1#,

which is E(R,P). One sees this holds immediately, noticing that anyQPQn satisfiesiQ̄2Q% i
< 1/(n21) for the normi(z1 , . . . ,zuXu)i5maxiuziu,

22 the set of all probability distributions is
compact, andD(Q)5D(QiP) is continuous in its effective domain$QuD(Q),`% ~cf. the proof
of Lemma 2 in Ref. 22!. This completes the proof.

IV. MAIN RESULT FOR GENERAL CASE

Theorem 1 actually holds for a wider class of channels. To evaluate the fidelity of codes
more general channel$An%, we first associate a sequence of probability distributions$PAn

% with
the channel$An% as in Ref. 9.

Definition 1: For each n, let An;$Ax
(n)%xPX n, expand Ax

(n) as Ax
(n)5(yPX naxyNy ,xPX n,

and define a probability distribution PAn
on X n by

PAn
~y!5(

x
uaxyu2, yPX n.

Example:Let $An% be a memoryless channelAn5A ^ n, n51,2,. . . . It is easy to see tha
PAn

(y1 , . . . ,yn)5) i 51
n PA(yi).

The case of memoryless channels as above was discussed in this author’s previous wor9 This
work claims the next.

Theorem 2: Consider a channel$An% whose$Pn5PAn
% satisfies (2) with some P(•u•) and

p. Then, again, for0<R<1, (3) in Theorem 1 holds.
The above theorem can be proved along the lines of this author’s previous work,9 which

treated general memoryless quantum channels. Namely, Theorem 1 can be generalized to T
2 in the same way as the result in Ref. 8 was strengthened in Ref. 9. Here it is briefly des
how to prove Theorem 2. First, we evaluate the minimum average fidelityFa(C), which is another
performance measure for a codeC introduced in Ref. 9, instead of the minimum fidelityF(C).
Actually, we evaluate the average ofFa(C) over the whole ensemble of quantum cod
$C(L,i )uLPA,0< i ,dn2k%, whereC(L,i ), i 50, . . . ,dn2k21, are thedn2k quantum codes asso
ciated withL as in Lemma 1; compare the proof of Theorem 1 above, where using an arbit
chosen codeC(L,i ) for eachL was enough. The average ofFa(C(L,i )) turns out to be lower
bounded by 12expd@2nE(R,P)1o(n)#. Then, at least, one codeC(L,i ) has this performance o
higher. As proved in Ref. 9, if we have a code with 12Fa(C)<G, we can choose a subcodeC8 of
half the dimension with 12F(C8)<2G, which implies Theorem 2.

The major difficulty in the analysis on general channels lies in the fact that~5! is no longer
true in the general case; this was resolved in Ref. 9 by proving that~5! holds true if we replace
F(C)5F(C(L)) by Fa(C(L,i )) averaged over 0< i ,dn2k.
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We remark that the result of this article readily extends to the case wherePn is the probability
distribution of a higher-order Markov chain. For this extension, we have only to use higher-
types instead of second-order types.11,22

V. CONCLUDING REMARKS

It should be remarked that the lower bound 12H(Puq) on the quantum capacity is not tigh
in general since there is an example of a code which slightly goes beyond the bound for som
noisy memoryless channels.6 This work, however, seems the first to demonstrate that stan
error correction schemes work reliably even in the presence of correlated errors with po
information rate for all large enough code lengths. Moreover, the established convergence
fidelity is exponential. Research in this direction is yet to be developed in quantum inform
theory, while exponent problems have already been central issues in other fields including
deviation theory39 and classical information theory.40,41
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Lower bound for the quantum capacity of a discrete
memoryless quantum channel

Ryutaroh Matsumotoa) and Tomohiko Uyematsub)
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152-8552 Japan
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We generalize the random coding argument of stabilizer codes and derive a lower
bound on the quantum capacity of an arbitrary discrete memoryless quantum chan-
nel. For the depolarizing channel, our lower bound coincides with that obtained by
Bennettet al.We also slightly improve the quantum Gilbert–Varshamov bound for
general stabilizer codes, and establish an analog of the quantum Gilbert–
Varshamov bound for linear stabilizer codes. Our proof is restricted to the binary
quantum channels, but its extension of tol -adic channels is straight
forward. © 2002 American Institute of Physics.@DOI: 10.1063/1.1497999#

I. INTRODUCTION

The quantum capacity of a quantum channel is the amount of quantum states that
reliably transmitted through the channel. It is one of the fundamental unsolved problems
quantum information theory. Except for the quantum erasure channel, we know only lowe
upper bounds for the quantum capacity of a quantum channel, and, in addition, a tight lower
is not known for a general memoryless quantum channel. In this article we shall demons
lower bound on the capacity of a general memoryless quantum channel. A quantum channe
to be memoryless if the state change of one transmitted quantum system~of the fixed degree of
freedom! is statistically independent of the state change of another.

The problem of quantum capacity has attracted great attention, and rapid progress ha
made. To be precise, the quantum capacity of a binary memoryless channelG is the maximum
numberQ(G) such that for any rateR,Q(G) and anye.0 there exists an@@n,k## quantum code
Q with k/n>R such that the fidelity between the recovered state and the original stateuw&PQ is
at least 12e for any uw&.1,2 In Refs. 1 and 2, the authors obtained the exact capacity of
quantum erasure channel, and showed lower and upper bounds for that of the quantum d
izing channel. The same lower bounds for those channels were also obtained in Ref. 3 by
random coding of the stabilizer codes introduced in Refs. 4–6. After that, DiVincenzoet al.7

improved the lower bound for a depolarizing channel by using nonrandom stabilizer code
upper bound of the depolarizing channel was improved in Refs. 8–10, and generalized to
metric depolarizing channels in Ref. 11. An apparently different definition of the quantum cap
was formalized in Ref. 12, in which an upper bound of a general memoryless quantum ch
was established by using the notion of coherent information introduced in Ref. 13. It is inform
argued in Ref. 14 that the upper bound in Ref. 12 is achieved by random coding over a g
memoryless channel. Barnumet al.15 showed that the definitions of quantum capacity in Refs
2, and 12 were equivalent.

It is the random coding that is the most commonly used technique in classical inform
theory to show that a specific rate is achieved by a code in a specific class of codes. For ex
Elias showed that the capacity of the binary symmetric channel is achieved by binary linear

a!Electronic address: ryutaroh@rmatsumoto.org; URL: http: //www.rmatsumoto.org
b!Electronic address: uyematsu@ieee.org; URL: http: //www.it.ss.titech.ac.jp
43910022-2488/2002/43(9)/4391/13/$19.00 © 2002 American Institute of Physics
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using random coding16 ~a readable proof of this fact can be found in Sec. 6.2 of Ref. 17!. A proof
by random coding usually proceeds as follows: one first calculates the average of error prob
of all codes in a specific class of codes of the same rate and the same code length, then sh
the average converges to 0 as the code length increases, and finally concludes that there
least one sequence of codes of the fixed rate with which the error probability converges to

The technique of random coding is also used in the quantum information theory. Gotte3

showed using random coding that the lower bound on the quantum capacity of the depola
channel2 can be achieved by stabilizer codes. However, his proof does not seem to extend
to the case of general memoryless channel. The aim of the present article is to derive a
bound on the quantum capacity of a general memoryless channel by using random cod
stabilizer codes. In our argument of random coding, we shall use the fidelity18,19 as a replacemen
of error probability in the classical random coding, and use the idea behind the proof o
quantum Gilbert–Varshamov bound for the stabilizer codes.4 As a byproduct, we also improve th
quantum Gilbert–Varshamov bound for stabilizer codes. Our improved bound~Remark 10! is
slightly better than the quantum Gilbert–Varshamov bound for general codes.20

As a natural consequence of the quantum Gilbert–Varshamov bound4,20 and the fidelity bound
of t-error correcting quantum codes,21–23 we can also derive lower bounds for the quantum
pacity of a general memoryless quantum channel. However, for the depolarizing chann
derived lower bounds are much smaller than that obtained in Ref. 2. In contrast to this, our
bound coincides with the bound in Ref. 2 for the depolarizing channel.

It is interesting whether the proposed lower bound is achieved by a subclass of g
stabilizer codes. We also show that the random coding of linear stabilizer codes yields the
lower bound on the quantum capacity. As a byproduct we obtain an analog of the qu
Gilbert–Varshamov bound for linear stabilizer codes~Remark 13!, which is asymptotically the
same as that for general quantum codes.20

The quantum channel considered in this article is discrete in the sense that the channel
finite-dimensional quantum systems, and we do not touch the quantum capacity of a cont
quantum channel recently studied in Refs. 24 and 25. Our proof is restricted to the binary qu
channels for the simplicity of presentation, but its extension tol -adic channels is straightforwar
for prime l .

This article is organized as follows: In Sec. II we introduce notations and review rele
research results. In Sec. III we derive a lower bound@Eq. ~16!# for the quantum capacity of an
arbitrary discrete memoryless quantum channel by random coding of stabilizer codes.

II. NOTATIONS AND PRELIMINARIES

In this section we fix notations used in this article, and review known research results th
necessary to establish our results.

A. Quantum channel and its quantum capacity

For a finite-dimensional complex Hilbert spaceH, let S~H! be the set of density operators o
H andL~H! be the set of linear operators onH. The standard description of a quantum chan
is the completely positive trace-preserving map~CP map!.26–28 Suppose that we send a stater
PS(H). The statistical ensemble of the received states is described asG~r! by a CP mapG.

Suppose that we send a staterPS(H ^ n) through a quantum channel. The quantum chan
is said to bememorylessif the received state is described asG ^ n(r) for all rPS(H ^ n) and for
some CP mapG on L~H!.

Fidelity is a measure of closeness between two quantum states. The fidelityF between a pure
stateuw&PH and a staterPS(H) is defined bŷ wuruw&.18,19 We have 0<F<1 and two states
are closer if the fidelity between them is larger.

Let H2 be the two-dimensional complex Hilbert space. Unless otherwise stated we co
the binary memoryless quantum channel, that is, when we sendrPS(H2

^ n) we receiveG ^ n(r),
whereG is a CP map onL(H2). We shall identify a binary memoryless channel with a CP map
L(H2).
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A binary @@n,k## quantum codeQ is a 2k-dimensional subspace ofH2
^ n . The rate of an

@@n,k## quantum code isk/n. The quantum capacity of a binary memoryless channelG is the
maximum numberQ(G) such that for any rateR,Q(G) and anye.0 there exists an@@n,k##
quantum codeQ with k/n>R such that the fidelity between the recovered state and the orig
stateuw&PQ is at least 12e for any uw&.1,2

B. Fidelity bound of the quantum error correction

In this subsection we review Preskill’s lower bound on the fidelity of quantum error corre
in terms of the set of uncorrectable errors of a quantum code. Let

sx5S 0 1

1 0D , sz5S 1 0

0 21D ,

andE5$w1^¯^ wn%, wherewi is eitherI , sx , sz or sxsz . For a quantum codeQ and a fixed
error correction process forQ, an operatorMPE is said to be correctable if the error correctio
process ofQ recoversM uw& to uw& for all uw&PQ. An operatorM is uncorrectable if it is not
correctable. LetEunc,E be the set of uncorrectable errors of a quantum codeQ,H2

^ n . Suppose
that we send a pure stateuw&PQ through a binary memoryless channel described by a CP mG
on L(H2). By a unitary representation of a CP map,29 there exists a finite-dimensional Hilbe
spaceHenv, a pure stateu0env&PHenv and a unitary operatorU on H2

^ n
^ Henv such that

G~r!5TrHenv
~U~r ^ u0env&^0envu!U* ! ~1!

for all rPS(H2
^ n), where TrHenv

is the partial trace overHenv. SinceE is a basis ofL(H2
^ n) we

can writeU in Eq. ~1! as

U5 (
MPE

M ^ LM ,

whereLM is a linear operator onHenv. Preskill proved the following theorem in Sec. 7.4 of Re
23.

Theorem 1: Let Q andEunc be as above. When we send a pure stateuw&PQ, the fidelity
betweenuw& and the recovered state is not less than

12 I (
MPEunc

M uw& ^ LMu0env&I 2

,

wherei•i denotes the norm of a vector.

C. Stabilizer codes and their error correction process

In this subsection we review stabilizer quantum codes introduced in Refs. 4–6. LE
5$6w1^¯^ wn%, wherewi is eitherI , sx , sz or sxsz , S is a commutative subgroup ofE, and

S85$MPE:;NPS, MN5NM%.

A stabilizer codeQ is defined as a simultaneous eigenspace of all matrices inS. If S8 has 2n1k11

elements, then dimQ52k. The set of simultaneous eigenspaces ofS is equal to$MQ: MPE%,
whereMQ5$M uw&:uw&PQ%.

We shall describe the error correction process of a stabilizer code. Suppose that we
pure stateuw&PQ and receivedrPS(H2

^ n). We measure an observable ofH2
^ n whose eigens-

paces are the same as those ofS. Then the received stater is projected to a stater8 that is an
ensemble of pure states in some eigenspaceQ8 of S. For M56w1^¯^ wnPE we define the
weight w(M ) of M by ]$ i :wiÞI %, where ] denotes the number of elements in a set. L
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MPE such thatMQ5Q8 and that, ifMQ5M 8Q for M 8PE, thenw(M )<w(M 8). We recover
r8 to M 21r8(M 21)* . With this error correction process the set of uncorrectable errors is
tained in

$MPE: there existsM 8PE such thatw~M 8!<w~M !,

M 8Q5MQ, and MSÞ6M 8S%5$MPE: there existsM 8PE such thatw~M 8!<w~M !,
~2!

M 8S85MS8, andMSÞ6M 8S%.

Hamada30 showed the following theorem based on Theorem 1.
Theorem 2: Notations as in Theorem 1. Let Q be a stabilizer code with the decoding pro

described above. Then there exists a subspace Q8,Q such thatdim Q85dim Q/2 and that for all
pure stateuw&PQ8, the fidelity betweenuw& and the recovered state is not less than

122 (
MPEunc

iLMu0env&i2. ~3!

Observe that the information rates ofQ andQ8 in Theorem 2 differ by log 2/n, which becomes
negligible asn→`. We call a subspaceQ8 as a subcode ofQ as in the classical coding theory. W
shall consider the subcodeQ8 of a stabilizer codeQ in the discussion of Sec. III.

D. Symplectic geometry

In this subsection we review the symplectic geometric interpretation of stabilizer codes
duced in Refs. 4 and 5. A symplectic geometry is a linear space with a nondegenerate sym
form.31 Let F2 be the finite field with two elements. ForaW 5(a1 ,...,an)PF2

n andbW 5(b1 ,...,bn)
PF2

n , we define (aW ubW ) by (a1 ,...,an ,b1 ,...,bn)PF2
2n and

f ~6sx
a1sz

b1^¯^ sx
ansz

bn!5~aW ubW !.

We also define the standard symplectic form of (aW ubW ) and (aW 8ubW 8)PF2
2n by

^aW ,bW 8&2^aW 8,bW &, ~4!

where^•,•& denotes the standard inner product inF2
n . For a subspaceC#F2

2n we denote byC'

the orthogonal space ofC with respect to~4!. For a subgroupS#E, S is commutative if and only
if f (S)#( f (S))', andS85 f 21(( f (S))').

E. Linear stabilizer codes and unitary geometry

Calderbanket al.5 related stabilizer codes to classical error-correcting codes and unitar
ometry, which is a linear space with a nondegenerate hermitian form.31 Let v be a primitive
element inF4 , and define

g~6sx
a1sz

b1^¯^ sx
ansz

bn!5vaW 1v2bW PF4
n .

For vectorsxW , yWPF4
n we define anF2-bilinear map

^xW2,yW &2^xW ,yW 2&, ~5!

where^,& denotes the standard inner product inF4
n andxW25(x1

2,...,xn
2). For anF2-linear subspace

C of F4
n , let C' denotes the orthogonal space ofC with respect to~5!. For a subgroupS#E, S is

commutative if and only ifg(S)#(g(S))', andS85g21((g(S))').
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For xW , yWPF4
n , we define the standard Hermitian form ofxW , yW by

t~xW ,yW !5^xW2,yW &, ~6!

which is used only in Sec. III D. IfC is anF4-linear subspace ofF4
n , C' is equal to the orthogona

space ofC with respect to~6!. A stabilizer code constructed from anF2-linear self-orthogonal
spaceC,F4

n is said to be linear ifC is F4-linear. This connection between binary stabilizer cod
and classical codes overF4 is generalized to nonbinary case in Refs. 32–34.

III. LOWER BOUND ON THE QUANTUM CAPACITY

As described in the Introduction, we have to calculate the average of fidelity over a
stabilizer codes, and show that the average converges to 1. Strictly speaking, we shall u
subcode of a stabilizer code introduced in Theorem 2. This section is organized as follows: I
III A we introduce a definition of the distance of a quantum channel from the identity chann
Sec. III B we calculate the average of fidelity over subcodes of general stabilizer codes of the
rate. In Sec. III C we deduce a sufficient condition for the rate to let the average of fid
converge to 1. In Sec. III D we indicate that a small modification of the argument in Secs.
and III C shows that the same lower bound on the capacity is obtained from the random cod
linear stabilizer codes.

A. A definition of distance of a quantum channel from the identity channel

We give a lower bound on the quantum capacity in terms of the distance of a quantum ch
from the identity channel. Let us first review a definition of the distance of a quantum ch
from the identity channel introduced in Ref. 22, then show some properties of the definition
G be a CP map onL(H2).

Definition 3: Suppose that there exist a four-dimensional space HE , ue0&PHE , and a unitary
operator U on H2^ HE such that

G~r!5TrE@U~r ^ ue0&^e0u!U* # ~7!

for all rPS(H2). Write U as

U5I ^ LI1sx^ Lx1sz^ Lz1sxsz^ Lxz ,

where LI , Lx , Lz , and Lxz are linear operators on HE . Then the distance p(G) and q(G) of the
channelG from the identity channel are defined by

q~G!5iLI ue0&i2,

p~G!5iLxue0&i21iLzue0&i21iLxzue0&i2.

It is not clear whether the values ofp(G) andq(G) are uniquely determined byG alone, that
is, whether they are independent of choice ofU and ue0& in Eq. ~7!. In order to answer this
question in Corollary 5, we shall representp(G) andq(G) using the operator-sum representati
of G induced byU and ue0&.

Proposition 4: Letue0&,...,ue3& be an orthonormal basis of HE , and

Ai5^ei uUue0&.

By Eq. (8.10) of Ref.35,

G~r!5(
i 50

3

AirAi*

for all rPS(H2). Write Ai as
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Ai5ai ,I I 1ai ,xsx1ai ,zsz1ai ,xzsxsz .

Then we have another representations of p(G) and q(G) as

p~G!5(
i 50

3

uai ,xu21uai ,zu21uai ,xzu2,

q~G!5(
i 50

3

uai ,I u2.

Proof: By definition of Ai ,

Ai5^ei uLI ue0&I 1^ei uLxue0&sx1^ei uLzue0&sz1^ei uLxzue0&sxsz .

Therefore,

ai ,I5^ei uLI ue0&, ai ,x5^ei uLxue0&, ai ,z5^ei uLzue0&, ai ,xz5^ei uLxzue0&.

Sinceue0&,...,ue3& are an orthonormal basis, we have

q~G!5iLI ue0&i25(
i 50

3

uai ,I u2.

The equality ofp(G) can be shown in a similar way. j

Corollary 5: The values of p(G) and q(G) do not depend on choice of U andue0& in Eq. (7).
Proof: Let

G~r!5(
i 50

3

BirBi*

be another operator-sum representation ofG. By Theorem 8.2 of Ref. 35, there exists a 434
unitary matrixV such that

S B0

]

B3

D 5VS A0

]

A3

D .

Write Bi as

Bi5bi ,I I 1bi ,xsx1bi ,zsz1bi ,xzsxsz ,

and defineaW I5(a0,I ,...,a3,I)
T, bW I5(b0,I ,...,b3,I)

T. SinceI , sx , sz , andsxsz are linearly inde-
pendent, we havebW I5VaW I . Since V is unitary, ibW I i5iaW I i , which shows thatq(G) does not
depend on choice of representation. The independence ofp(G) can be shown in a similar way.j

The following corollary drastically simplifies the formula for the lower bound in Eq.~16!.
Corollary 6: p(G)1q(G)51.
Proof: Notations as in Proposition 4. We have

I 5(
i 50

3

Ai* Ai .

Taking trace on the both side, we have
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Tr@ I #5(
i 50

3

Tr@Ai* Ai #

5(
i 50

3

Tr@~ai ,I I 1ai ,xsx1ai ,zsz1ai ,xzsxsz!* 3~ai ,I I 1ai ,xsx1ai ,zsz1ai ,xzsxsz!#

5Tr@ I #(
i 50

3

uai ,I u21uai ,xu21uai ,zu21uai ,xzu25Tr@ I #~p~G!1q~G!!.

j

B. Average of the fidelity over all the stabilizer codes

In this subsection we shall prove that the average fidelity of the subcodes of all@@n,bRnc##
stabilizer codes converges to 1 asn→` under the conditions~8! and~9!. The proof is proceeded
as follows:

~1! For every stabilizer code, there exists its subcode whose fidelity of error correction is
bounded by Eq.~3!. The lower bound~3! is expressed as a sum indexed by error operat
The average of the sum will be divided according to the weight of error operators in Eq.~10!.

~2! It is easy to see the part indexed by operators of larger weights converges to 0 asn→`.
~3! We shall show that the other part indexed by operators of smaller weights converges t

the fact that most of stabilizer codes can correct an error of small weight, which wi
rigorously proved in Eq.~13! from Lemma 9.

Let d andR be real numbers such that

lim
n→`

(
i 5 bdnc11

n S n
i D p~G! iq~G!n2 i50, ~8!

12 lim
n→`

log2 @ (
i 51

bdnc
~ i

n!p~G! iq~G!n2 i( j 50
i ~ j

n!3 j #

n
.R, ~9!

wherebxc denotes the largest integer<x.
Let

An5$C,F2
2n : C is linear, dimC5n2 bRnc,C#C'%.

Recall that we can construct an@@n,bRnc## stabilizer code from everyCPAn . Note thatAn is not
empty because there exists a self-orthogonal subspace of dimensionn in F2

2n .31 This subsection is
devoted to show the following.

Proposition 7: If R satisfies Eq. (9), then there exists a sequence of subcodes of sta
codes whose rates are greater than or equal to R and whose fidelity converges to 1 as n→`.

Since the information rates of the subcodeQ8 and Q in Theorem 2 are asymptotically th
same asn→`, it is sufficient to show that the average of the fidelity bound~3! of Q8 over all the
stabilizer codes inAn converges to 1 asn→`.

Let u0env&5ue0&
^ n, and forM5s i 1

^¯^ s i n
PE let

LM5Li 1
^¯^ Li n

,

wheres I5I and ue0&, LI , Lx , Lz , andLxz are as defined in Definition 3. ForCPAn we denote
the set of uncorrectable errors ofC in E by Eunc(C). The average of the fidelity bound~3! of Q8
over all the stabilizer codes inAn is not less than
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1

]An
(

CPAn
S 122 (

MPEunc(C)
iLMu0env&i2D

512
2

]An
(

CPAn S (
MPEunc(C)

1<w(M )< bdnc

iLMu0env&i21 (
MPEunc(C)
w(M ). bdnc

iLMu0env&I 2D
>12S 2

]An
(

CPAn
(

MPEunc(C)
1<w(M )< bdnc

iLMu0env&i2D 22 (
MPE

w(M ). bdnc
iLMu0env&i2. ~10!

By the same argument as Ref. 22, one can show that

(
MPE

w(M ). bdnc
iLMu0env&i< (

i 5 bdnc11

n S n
i D p~G! iq~G!n2 i ,

which converges to 0 asn→` by the condition~8!.
We shall calculate an upper bound for the second term in Eq.~10!. For MPE we define

Bn~M !5$CPAn :MPEunc~C!%.

It follows that

1

]An
(

CPAn
(

MPEunc(C)
1<w(M )< bdnc

iLMu0env&i2<
1

]An
(

MPE
1<w(M )< bdnc

]Bn~M !iLMu0env&i2. ~11!

Note that we omitted the factor 2 from Eq.~10! for simplicity, because we shall show that th
right-hand side of Eq.~11! converges to 0 and factor 2 is negligible.

We shall give an upper bound for]Bn(M ). To estimate]Bn(M ) we shall introduce Lemma
9. In the proof of Lemma 9 we use the Witt theorem, so we review it.

Theorem 8 „Witt …: Let K be a field, V1 , V2 finite-dimensional K-linear spaces, andt1 , t2

symplectic forms on V1 , V2 , respectively. An injective linear map T:V1→V2 is said to be an
isometryif

t1~x,y!5t2~Tx,Ty!.

Let W1 be a subspace of V1 . If there exists a bijective isometry from V1 to V2 and an isometry
TW1

:W1→V2 , then there exists an isometry TV1
:V1→V2 such that the restriction of TV1

to W1 is

equal to TW1
. The same result also holds whent1 ,t2 are Hermitian forms.

Proof: See Sec. 20 of Ref. 31. j

Lemma 9: For MPE2$6I %, let An(M )5$CPAn : f (M )PC'\C%. We have

]An~M !<~1/2n2 bRnc!
12222bRnc

12222n ]An,]An /2n2 bRnc.

Proof: Let Spn(F2) be the group of bijective linear maps onF2
2n preserving the symplectic

form ~4!. For every pair of spacesC1 , C2PAn , every bijective linear map fromC1 to C2 is an
isometry. Consequently, there existssPSpn(F2) such thatsC15C2 by the Witt theorem. A
similar argument shows that there existss8PSpn(F2) such thats8(aW ubW )5(aW 8ubW 8) for every pair
of nonzero vectors (aW ubW ), (aW 8ubW 8)PF2

2n .
It follows that
                                                                                                                



.

le
)

y

l

4399J. Math. Phys., Vol. 43, No. 9, September 2002 Lower bound for the quantum capacity

                    
]An~M !5]$CPAn : f ~M !PC'\C%

5]$aC1 : f ~M !P~aC1!'\aC1 ,aPSpn~F2!%

5]$aC1 :b~ f ~M !!P~aC1!'\aC1 ,aPSpn~F2!%,

whereC1 ~resp.b! is an arbitrary fixed element inAn @resp. Spn(F2)#. Therefore]An(M ) is the
same among every nonzerof (M ).

Since](C'\C)52n1 bRnc22n2 bRnc, there are (2n1 bRnc22n2 bRnc)]An pairs of ((aW ubW ),C) such
that (aW ubW )PC'\C andCPAn . Thus if MÞ6I , then

]An~M !<
2n1 bRnc22n2 bRnc

22n21
]An5~1/2n2 bRnc!

12222bRnc

12222n ]An,]An /2n2 bRnc.

j

Remark 10: From Lemma 9 we can improve the quantum Gilbert–Varshamov bound slightly
There exists an@@n,k,d## stabilizer code if

12222k

12222n •
1

2n2k (
i 51

d21

3i S n
i D,1. ~12!

The proof is as follows: For each error MPE, An(M ) is equal to the set of stabilizer codes unab
to detect M as an error. Therefore, by replacingbRnc with k in Lemma 9, we see that if Eq. (12
holds, then there is at least one stabilizer code C is able to detect all the errors M with w(M )
,d, which means that the minimum distance of C is at least d. The idea behind this proof alread
appeared in the original proof of the quantum Gilbert–Varshamov bound for stabilizer codes.4

Observe that our bound is slightly better than the quantum Gilbert–Varshamov bound for genera
codes,20 which implies that an@@n,k,d## quantum code exists if

1

2n2k (
i 50

d21

3i S n
i D,1.

By Eq. ~2!, MPE belongs toEunc(C) only if there existsM 8PE such thatw(M 8)<w(M ),
M f 21(C')5M 8 f 21(C'), andM f 21(C)ÞM 8 f 21(C). A spaceCPAn belongs toBn(M ) only if
there existsM 8PE such thatw(M 8)<w(M ) and M 21M 8P f 21(C'\C). The last condition is
equivalent toCPAn(M 21M 8). Since there are

(
j 50

w(M ) S n
j D3 j

operatorsM 8PE such thatw(M 8)<w(M ), it follows that

]Bn~M !< (
M8PE

w(M8)<w(M )

]An~M 21M 8!

< (
M8PE

w(M8)<w(M )

]An

2n2 bRnc <
]An

2n2 bRnc (
j 50

w(M ) S n
j D3 j . ~13!

An upper bound for Eq.~11! is derived as follows:
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1

]An
(

MPE
1<w(M )< bdnc

]Bn~M !iLMu0env&i2

<
1

]An
(

MPE
1<w(M )< bdnc

]An

2n2 bRnc (
j 50

w(M ) S n
j D3 j iLMu0env&i2

5
1

2n2 bRnc (
MPE

1<w(M )< bdnc
(
j 50

w(M ) S n
j D3 j iLMu0env&i2. ~14!

For an integer 0< i<n, by the same argument as Ref. 22, one can show that

(
MPE

w(M )5 i

iLMu0env&i25S n
i D p~G! iq~G!n2 i .

Therefore Eq.~14! is equal to

1

2n2 bRnc (
i 51

bdnc S n
i D p~G! iq~G!n2 i (

j 50

i S n
j D3 j ,

which converges to 0 asn→` by the condition~9!.

C. Achievable rate by general stabilizer codes

In the previous subsection, we have shown that if the rateR satisfies Eq.~9!, then there exists
at least one sequence of subcodes of stabilizer codes of the rateR such that the average of fidelit
converges to 1. In this subsection we shall simplify Eqs.~8! and ~9! with which we can easily
compute a lower bound on the capacity of the channelG.

We shall deduce a sufficient condition ford to satisfy Eq.~8!. By Appendix A of Ref. 36, for
0<e,l<1 we have

(
i 5ln

n S n
i D e i~12e!n2 i<22nD(lie),

whereD(lie) is the classical relative entropy defined by

l log2

l

e
1~12l!log2

12l

12e
.

Sincep(G)1q(G)51 by Corollary 6, the condition~8! holds if

d.p~G!. ~15!

The term inside of log2 in Eq. ~9! can be bounded as follows:
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(
i 51

bdnc S n
i D p~G! iq~G!n2 i (

j 50

i S n
j D3 j<(

i 50

n S n
i D p~G! iq~G!n2 i (

j 50

bdnc S n
j D3 j

5@p~G!1q~G!#n(
j 50

bdnc S n
j D3 j5(

j 50

bdnc S n
j D3 j ~by Corollary 6!

<~dn11!S n

bdnc D3dn

<~dn11!exp2@nHe~d!#3dn ~by Appendix B of Ref. 36!

5~dn11!exp2$n@He~d!1d log2 3#%,

whereHe is the binary entropy function.
From Proposition 7, Eq.~15!, and the observations above, we see that the capacity o

channelG is at least

12$He@p~G!#1p~G!log23%. ~16!

Note that the same lower bound on the capacity can also be obtained by the method of B
et al.,2 though they stated their result only for the depolarizing channel. However, Bennettet al.2

did not address the achievability of the bound~16! with stabilizer codes, which is the main focu
of this article.

We shall compare our bound on the capacity@Eq. ~16!# with the conventional bound for a
general memoryless channel derived from the quantum Gilbert–Varshamov bound4,20 and the
fidelity bounds for t-error-correcting codes.21,22 Suppose that we have a sequence
bdni c-error-correcting quantum codes of lengthni with lim i→` ni5`. The condition~15! is suf-
ficient in order that the fidelity of error correction bybdni c-error-correcting codes converges to
as i→`. By the quantum Gilbert–Varshamov bound the derived lower bound on the capac

12$He@2p~G!#12p~G!log2 3%,

which is always smaller than Eq.~16!.
When the channelG is the depolarizing channel of the fidelity parameterf , p(G)512 f and

q(G)5 f . The proposed lower bound@Eq. ~16!# for the capacity is

12@He~12 f !1~12 f !log2 3#,

which coincides with the lower bound given in Ref. 2. It is not clear to the authors whethe
lower bound can be improved by the method in Ref. 7.

Our analysis for the quantum capacity can be generalized to the capacity of anl -adic channel
using thel -adic stabilizer codes37,38 in a straightforward manner whenl is prime. The quantum
Gilbert–Varshamov bound forl -adic stabilizer codes can also be proved by Lemma 9.

D. Achievable rate by linear stabilizer codes

In this subsection we shall show that the achievable rate~16! by subcodes of general stabilize
codes can also be achieved by those of linear stabilizer codes, which shows the asym
optimality of linear stabilizer codes among general ones. As a byproduct we establish an an
Gilbert–Varshamov bound for linear stabilizer codes.

Let

An85$C,F4
n :C is F42 linear, dimF4

C5 b~n2Rn!/2c, C#C'%.
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Recall that we can construct an@@n,n22b(n2Rn)/2c## linear stabilizer code from everyC
PAn8 . Note thatAn8 is not empty because there exists a self-orthogonal subspace of dime
bn/2c in F4

n ~see Proposition 2.3.2 in Ref. 39!. For MPE, define

An8~M !5$CPAn8 :g~M !PC'\C%,

Bn8~M !5$CPAn8 :M is uncorrectable byC%.

By these definitions ofAn8(M ) and Bn8(M ), all the arguments except Lemma 9 in the previo
subsections can be used for showing that the rate~16! is achieved by subcodes of linear stabiliz
codes. In this subsection we prove an upper bound~Lemma 11! for ]An8(M ) that can be used a
a substitute for Lemma 9.

Lemma 11: Definet by Eq. (6). The number of nonzero vectors xWPF4
n such thatt(xW ,xW )50 is

22n211(21)n2n2121.
Proof: See the proof of Proposition 2.3.3 in Ref. 39. j

Lemma 12: Let u5 b(n2Rn)/2c. For MPE\$6I %

]An8~M !<
4n2u24u

min$22n211~21!n2n2121,22n212~21!n2n21%
]An8<

4n2u24u

22n2122n2121
]An8 .

Proof: Let GUn(F4) be the group of bijective linear maps onF4
n that preserve the value of th

Hermitian formt. For every pair of spacesC1 ,C2PAn8 , every bijective linear map fromC1 to C2

is an isometry. Thus there existssPGUn(F4) such thatsC15C2 by the Witt theorem. For a pai
of nonzero vectorsxW ,yWPF4

n with t(xW ,xW )5t(yW ,yW )50, a similar argument shows that there exis
sPGUn(F4) such thatsxW5yW .

We want to show that for a pair of vectorsxW ,yWPF4
n with t(xW ,xW )Þ0 andt(yW ,yW )Þ0, there

exists sPGUn(F4) such thatsxW5yW . Since t is a Hermitian form,t(xW ,xW )PF2 . Therefore
t(xW ,xW )5t(yW ,yW )51, and there existssPGUn(F4) such thatsxW5yW by the Witt theorem.

A similar argument to the proof of Lemma 9 shows that forMPE\$6I % we have

]An8~M !<
4n2u24u

22n211~21!n2n2121
]An8 if t~g~M !,g~M !!50,

]An8~M !<
4n2u24u

22n212~21!n2n21 ]An8 if t~g~M !,g~M !!Þ0.

j

Remark 13: From Lemma 11 we can show that there exists an@@n,k,d## linear stabilizer code
if k is even and

2~12222k!

1222n2222n11 •
1

2n2k (
i 51

d21

3i S n
i D,1,

which is asymptotically the same as the quantum Gilbert–Varshamov bound for general quantu
codes.20

Remark 14: The connection between stabilizer codes and classical codes overF4 was gener-
alized to nonbinary case in Refs. 32–34. The argument in this subsection can be extended to lin
l -adic stabilizer codes for a prime l with the following exception: In the proof of Lemma 11, t
does not always existsPGUn(Fl 2) such thatsxW5yW for a pair of vectors xW ,yWPFl 2

n with t(xW ,xW )
Þ0 and t(yW ,yW )Þ0. However, there always existssPU such thatsxW5yW , whereU is the group
generated byGUn(Fl 2) and nonzero scalar multiples of the identity map onFl 2

n .
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We study the visible compression of a sourceE5$uw i&,pi% of pure quantum signal
states or, more formally, the minimal resources per signal required to represent
arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor
is given the identity of the input state sequence as classical information. According
to the quantum source coding theorem, the optimal quantum rate is the von Neu-
mann entropyS(E) qubits per signal. We develop a refinement of this theorem in
order to analyze the situation in which the states are coded into classical and
quantum bits that are quantified separately. This leads to a trade-off curveQ* (R),
whereQ* (R) qubits per signal is the optimal quantum rate for a given classical
rate of R bits per signal. Our main result is an explicit characterization of this
trade-off function by a simple formula in terms of only single-signal, perfect fidel-
ity encodings of the source. We give a thorough discussion of many further math-
ematical properties of our formula, including an analysis of its behavior for group
covariant sources and a generalization to sources with continuously parametrized
states. We also show that our result leads to a number of corollaries characterizing
the trade-off between information gain and state disturbance for quantum sources.
In addition, we indicate how our techniques also provide a solution to the so-called
remote state preparation problem. Finally, we develop a probability-free version of
our main result which may be interpreted as an answer to the question: ‘‘How many
classical bits does a qubit cost?’’ This theorem provides a type of dual to Holevo’s
theorem, insofar as the latter characterizes the cost of coding classical bits into
qubits. © 2002 American Institute of Physics.@DOI: 10.1063/1.1497184#
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I. INTRODUCTION

When the term ‘‘quantum information’’ was first coined, it would have been hard to pre
how thorough and fruitful the analogy between quantum mechanics and classical inform
theory would ultimately prove to be. The general approach, characterized by the treatm
quantum states as resources to be manipulated, has yielded a promising collection of appli
ranging from unconditionally secure cryptographic protocols1–3 to quantum algorithms.4–6 More-
over, the analogy, which was initially unavoidably vague, has gradually been filled in by a di
variety of rigorous theorems describing achievable limits to the manipulation of quantum s
such as the characterization of the classical information capacity of quantum sources,7,8 the iden-
tification of optimal strategies for entanglement concentration and dilution9 and many more. One
of the pivotal results of the emerging theory is the quantum source coding theorem,10–12 demon-
strating that for the task of compressing quantum states, the von Neumann entropy plays
directly analogous to the Shannon entropy of classical information theory. Indeed, the qu
theorem subsumes the classical one as the special case in which all the quantum state
compressed are mutually orthogonal.

A quantum source~or ensemble! E5$uw i&,pi% is defined by a set of pure quantum signal~or
‘‘letter’’ ! statesuw i& with given prior probabilitiespi ~cf. below for precise definitions of these an
other terms used in the Introduction!. In this article we will study the so-calledvisiblecompression
of E. More specifically, we wish to characterize the minimal resources per signal that are nec
and sufficient to represent arbitrarily long strings of signals with arbitrarily high fidelity, when
compressor is given the identity of the input state sequence asclassical information ~as the
sequence of labelsi 1 ,...,i n rather than the quantum statesuw i 1

&,...,uw i n
& themselves, for example!.

According to the quantum source coding theorem the optimalquantumrate in this scenario is the
von Neumann entropyS(E) qubits per signal. We will develop a refinement of this theorem
which the states are coded into classical and quantum bits which are quantifiedseparately. This
leads to a trade-off curveQ* (R) whereQ* (R) qubits per signal is the optimal quantum rate th
suffices for a given classical rateR bits per signal. The quantum source coding theorem imp
thatQ* (0)5S(E) and evidently we also haveQ* (H(p))50 whereH(p) is the Shannon entropy
of the prior distribution of the source.@By standard classical compression, the compressor
represent the full information of the input sequence inH(p) classical bits per signal.# Thus the
trade-off curve extends between the limits 0<R<H(p).

There are various reasons why we might wish to maintain a separation between classi
quantum resources in an encoding.13 On a purely practical level it seems to be far easier
manufacture classical storage and communication devices than it is to make quantum on
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perhaps the primary reason is conceptual: classical and quantum information have quite d
fundamental characters, with classical information exhibiting special properties not shar
quantum information in general. For example, classical information is robust compared to
tum information—it may be readily stabilized and corrected by repeated measurement that
destroy quantum information. Also, unlike quantum information, it may be cloned or co
These and other singular properties indicate that for many purposes it may be useful to
classical information as a separate resource, distinct from quantum information. Classical
mation is sometimes formally regarded as a special case of quantum informationviz. the quantum
information of a fixed set of orthogonal states. While this characterization is useful for fo
analyses, it is unsatisfactory conceptually because it relies on the essentially nonphysical
precision of orthogonality. It is, therefore, desirable to view classical information as a sep
resource.

Exploring the trade-off possibilities between the two resources will lead to a better u
standing of the interrelation of these concepts and the nature of quantum information itself.
can always be represented as qubits~and indeed, by Holevo’s information bound,14 one qubit per
bit is necessary and sufficient!, what are the limitations on representing qubits as bits? Under w
conditions is it possible at all? If there is a penalty to be paid, how large is it? In this articl
will give answers to these questions.

Our main result is a simple characterization of the trade-off functionQ* (R) which may be
paraphrased as follows. Given the ensembleE5$uw i&,pi% comprisingm statesuw i& we consider
decompositions ofE into at most (m11) ensemblesEj with associated probabilitiesqj , i.e., the
ensemblesEj5$uw i&,q( i u j )% have the same states asE and their unionø jqjEj reproducesE. This
is equivalent to the condition

pi5(
j

q~ i u j !qj ~1!

on the chosen probabilitiesqj and q( i u j ) defining the decomposition. LetS̄5( jqjS(Ej ) be the
average von Neumann entropy of any such decomposition and letH( i : j ) be the classical mutua
information of the joint distributionq( i , j ). For any R let S̄min(R) be the least average vo
Neumann entropy over all decompositions that haveH( i : j )5R. Then we will prove that the
trade-off function is given byQ* (R)5S̄min(R).

The prescription of a decompositionE5ø jqjEj may be equivalently given in terms of
visible encoding mapE of the states ofE:

E~ i !5uw i&^w i u ^ (
j

p~ j u i !u j &^ j u. ~2!

Here p( j u i ) are chosen freely subject only to the condition thatH( i : j )5R and the previous
probability distributions are constructed asqj5( i p( j u i )pi and q( i u j )5p( j u i )pi /qj . Under this
map, i is encoded into a quantum register, simply containing the stateuw i& itself, and a classica
register, containing a classical mixture ofj values. Note that this is asinglesignal encoding with
perfectfidelity since the stateuw i& may be regained perfectly from the encoded version by sim
discarding the classical register. Hence our result characterizes optimal classical and q
resources in compression, in terms of very simple single-signal perfect-fidelity encodings, d
the fact that compression is defined asymptotically in terms of arbitrarily long signal string
fidelities merelytendingto 1. This is a remarkable and unexpected simplification—even in c
sical information theory it is by no means the rule that coding problems have solutions that dnot
involve asymptotics~despite a few well-known examples such as Shannon’s source and ch
coding theorems15!. The situation is even more tenuous in quantum information theory, w
seems to be plagued by further nonadditivity~or unresolved additivity questions! for some of its
basic quantities so that, at the present stage, many basic constructions require a limit ov
mization problems of exponentially growing size.
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Using our formula we will give a thorough discussion of further properties of the trade
curve including a generalization to group covariant sources and to sources with infinitely
~continuously parametrized! states. We show that our result also leads to a number of corolla
characterizing the trade-off between information gain and state disturbance for quantum s
~yielding the results of Ref. 13 on blind compression as a corollary!, and we indicate how our
techniques for characterizingQ* (R) provide a solution to the so-called remote state prepara
problem as well. Finally, we develop a probability-free version of our main result which ma
interpreted as an answer to the intuitive question: ‘‘How many classical bits does a qubit c
This may also be interpreted as a kind of dual to Holevo’s theorem, insofar as the latter c
terizes the qubit cost of coding classical information into qubits.

The presentation of these results is organized as follows. At the top level, the article is d
broadly into two parts. The first part, Secs. II–VIII, sets up a precise formulation of the b
definitions and the trade-off problem and gives the proof of the main theorem characte
Q* (R), as well as a discussion of some of its important basic properties. The second part
IX and X, then goes on to provide some further generalizations of the main result. In more
the contents of the various sections are as follows.

In Sec. II, we will define the notions of blind and visible compression, the essential differ
being that in the blind setting the encoder is given the actual quantum states, while in the
setting the encoder is given the names of the quantum states as classical data. We then
these definitions to quantum-classical trade-off coding and introduce the trade-off fun
Q* (R).

In Sec. III we will prove a lower bound to the trade-off curve in terms of the simple sin
letter formula of the ensemble decomposition construction paraphrased above. In Sec. IV w
in turn, show that the lower bound is achievable so that the trade-off curve is identical t
single-letter formula. This is our main result, Theorem 4.4.

In Sec. V we use our characterization of the trade-off curve to evaluateQ* (R) numerically for
a selection of particular ensembles, chosen to illustrate various important properties of the
off function. In Sec. VI we extend our results to a different asymptotic setting, known as
arbitrarily varying source~AVS!, in which there is no~or only limited! knowledge of the prior
probability distribution of the states to be compressed. This provides a probability-free gen
zation of our main result. In Sec. VII we show that our main result can be reinterpreted to pr
statements about the trade-off between information gain and state disturbance for blind sou
quantum states~in particular entailing a new proof of the main result of Ref. 13!. Finally, in Sec.
VIII we indicate how our techniques—developed to studyQ* (R) –can also be used to characteri
the trade-off curve for the coding problem of remote state preparation posed in Refs. 16 a

Sections IX and X treats two significant further issues. In Sec. IX we show how to appl
results in the setting of group covariant ensembles, which leads to considerable further e
simplifications. Section X is devoted to the technicalities of generalizing our main result to so
with infinitely many ~continuously parametrized! states. Finally, in the Appendix, we collec
proofs of various auxiliary propositions that have been quoted in the body of the article.

II. BLIND AND VISIBLE COMPRESSION

We begin by introducing a number of definitions that are required to give a precise stat
of the variations of quantum source coding that we will be considering in this article. We
denote an ensemble of quantum statesw i with prior probabilitiespi asE5$w i ,pi%. In turn, we will
write S(E)5S(( i piw i) for the von Neumann entropy of the average state of the ensem
S(r)52Trr logr. ~Throughout this article log and exp will denote the logarithm and expone
functionsto base2.! Starting from an ensembleE, we can consider the quantum source produc
quantum states that are sequentially drawn independently fromE. Such a source corresponds to
sequence of ensemblesE ^ n5$w I ,pI%, where

Iª i 1¯ i n , ~3!
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w Iªw i 1
^ ¯^ w i n

, ~4!

pIªpi 1
¯pi n

. ~5!

This sequence will be referred to as an independent identically distributed~i.i.d.! source and the
states ofE ^ n are called blocks of lengthn from E. In this article we will focus on sources of pur
quantum statesuw i&, often making use of the notationw i5uw i&^w i u. The measure that we will us
to determine whether two quantum states are close is the fidelityF. For two mixed statesr andv,
F is given by the formula

F~r,v!ª~TrAv1/2rv1/2!2. ~6!

~Note that some authors use the name ‘‘fidelity’’ to refer to the square-root of this quantit! If
v5uv&^vu is a pure state, then the fidelity has a particularly simple form:

F~r,v!5^vuruv&5Tr~rv!. ~7!

Finally, we will use the notationHd to denote the Hilbert space of dimensiond andBd to denote
the set of all mixed states onHd . Likewise,H d

^ n will refer to then-fold tensor product ofHd and,
in a slight abuse of notation,B d

^ n will refer to the set of density operators onH d
^ n . We are now

ready to introduce the definition ofblind quantum compression.
Definition 2.1: Ablind coding schemefor blocks of length n, to R qubits per signal and

fidelity 12e, comprises the following ingredients:
(1) a completely positive, trace-preserving (CPTP) encoding map En :B d

^ n→B 2
^ nR , and

(2) a CPTP decoding map Dn :B 2
^ nR→B d

^ n ,
such that average fidelity

(
I

pI^w I uDn~En~w I !!uw I&>12e. ~8!

We say that an i.i.d. sourceE can be blindly compressed to R qubits per signal if for alld,e
.0 and sufficiently large n there exists a blind coding scheme to R1d qubits per signal with
fidelity at least12e.

The definition of visible compression is the same except that the~CPTP! restrictions on the
encoding mapEn are relaxed; for visible compressionEn can be an arbitrary association of inp
states to output states. Equivalently,En is a mapping from thenamesof the input states to outpu
states. Thus, we writeEn(I )PB 2

^ nR . Note that blind and visible compression schemes differ o
in the set of encoding maps that are permitted. For blind~respectively visible! compression, the
input states are given as quantum~respectively classical! information. In both cases the decodin
must be CPTP. In this language, the central result on the compression of quantum informati
be expressed as follows.

Theorem 2.2 „Quantum source coding theorem10–12
…: A sourceE of pure quantum states

can be compressed toa qubits per signal if and only ifa>S(E). The result holds for both blind
and visible compression.

It is interesting to study a refinement of quantum source coding in which the states are
into classical and quantum resources which are quantified separately. Because of restrict
the manipulation of quantum states such as the no-cloning theorem,18 blind compression is typi-
cally weaker than visible. In Refs. 13 and 19, for example, it was shown that in blind compre
it is typically impossible to make use of classical storage. The same is not true in the v
setting, where it is possible to trade classical storage for quantum. In this article we stud
trade-off for visible compression but, before we begin, we need to recall some basic defin
introduced in Ref. 13.
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Consider an encoding operationEn which maps a signal stateuw I& into a joint state on a
quantum registerB and a classical registerC. If $u j &% is the classical orthonormal basis ofC, then
the most general classical state onC is a probability distribution overj values, implying that the
most general form of the encoded state can be written as

En~ I !5(
j

p~ j uI !v I , j
B

^ u j &^ j uC. ~9!

The quantum and classical storage requirements~i.e., resources! of the encoding map are simpl
the sizes of the registersB andC, respectively.

Definition 2.3: Thequantum rateof the encoding map En is defined to be

qsupp~En ,E ^ n!5
1

n
log dimHB ,

while theclassical rateof the encoding is defined to be

csupp~En ,E ^ n!5
1

n
log dimHC .

With these definitions in place, we can make precise the notion of compression with a
tum and a classical part.

Definition 2.4: A sourceE can be compressed to R classical bits per signal plus Q qubits
signal if for all e,d.0 there exists an N.0 such that for all n.N there exists an encoding
decoding scheme(En ,Dn) with fidelity 12e satisfying the inequalities

csupp~En ,E ^ n!<R1d, ~10!

qsupp~En ,E ^ n!<Q1d. ~11!

The main result of this article will be a complete characterization of the curve describin
trade-off betweenR andQ. As mentioned above, for blind encodings there is usually no trade
to be made: generically,Q>S(E), regardless of the size ofR. The reason is essentially tha
making effective use of the classical register amounts to extracting classical information f
quantum system in a reversible fashion, which is impossible unless the quantum states of
obey some orthogonality condition. The more interesting case, therefore, is to study the st
of the trade-off curve for visible encodings. As it turns out, our technique will yield the o
results for blind compression as a corollary.

Definition 2.5: For a given sourceE5$uw i&,pi%, define the function Q* (R) to be the infimum
over all values of Q for which the source can be visibly compressed to R classical bits per
and Q quantum bits per signal.

Some properties of the curveQ* (R) are immediate. For example, the endpoints of the cu
are easily found. IfR50, then the compression must be fully quantum mechanical and
quantum source coding Theorem 2.2 applies:Q* (0)5S(E). More generally, the theorem implie
that Q* (R)1R>S(E) for all R. Similarly, for R5H(p) we haveQ* (R)50, by Shannon’s
classical source coding theorem. Moreover, for intermediate values ofR, the curve is necessarily
convex because one method of compressing with classical ratel1R11l2R2 is simply to timeshare
between the optimal protocols forR1 and R2 individually, resulting in quantum rate o
l1Q* (R1)1l2Q* (R2).

Example (Parametrized BB84 ensemble):Let us consider in more detail the example of
parametrized version of the BB84 ensemble in order to see what sorts of protocols are p
beyond simple timesharing. For 0,u<p/4, let EBB(u) be the ensemble consisting of the stat
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uw1&5u0&, ~12!

uw2&5cosuu0&1sinuu1&, ~13!

uw3&5u1&, ~14!

uw4&52sinuu0&1cosuu1&, ~15!

as illustrated in Fig. 1, each occurring with probabilitypi51/4. We then haveS(E)51 and
H(p)52. From the argument above, we therefore already know two points on the (R,Q* (R))
curve, namely~0,1! and~2,0!. To get a better upper bound than the straight line joining these
points, suppose we were to partition the four states into two subsets,X15$uw1&,uw2&% and X2

5$uw3&,uw4&%. For a given input stringI 5 i 1i 2¯ i n , the classical register could be used to e
code, for eachk, whetheruw i k

&PX1 or uw i k
&PX2 . The classical rate required to do so would

1 classical bit per signal. Independent of the value of the classical register, the quantum re
required to compress the subensembles is then just the quantum resource required to com
pair of equiprobable quantum states subtended by the angleu. Therefore,

Q* ~1!<S~ 1
2uw1&^w1u1 1

2uw2&^w2u!5H2~ 1
2~11cosu!!. ~16!

By timesharing between the point corresponding to this protocol and the two endpoints
curve that we already calculated, we get a piecewise linear upper bound onQ* . As we will see
later, however, the true curve is strictly below this upper bound.~The impatient reader is allowe
to peek at Fig. 5 in Sec. V.!

With this example in mind, let us move on to our analysis of the general case.

III. SINGLE-LETTER LOWER BOUND ON Q* „R…

In this section we will prove a lower bound on the quantum-classical trade-off curv
reducing the asymptotic problem to a single-copy problem. Because compression is only p
asymptotically, however, we need to shift the emphasis away from the quantum and cla
resources towards quantum and classical mutual information quantities. In the next section w
then prove that nothing was lost by making this shift—we will show that the resulting lower b
to Q* (R) is actually achievable.

A. Mutual information and additivity

The information quantities in question will be the mutual information between the name o
state being compressed and the quantum and classical registers containing the outpu
encoding mapEn . Thus, we define the state

FIG. 1. Parametrized BB84 ensembleEBB(u).
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rABC
ª(

I , j
pI uI &^I uA^ p~ j uI !v I , j

B
^ u j &^ j uC. ~17!

The namesI are stored in orthogonal states on systemA while the quantum and classical encodin
registers are labeledB andC, respectively. We can then make the following definitions:

S~A:C!ªS~A!1S~C!2S~AC!, ~18!

S~A:BuC!ªS~AC!1S~BC!2S~ABC!2S~C!, ~19!

where, for any subsystemX, S(X) denotes the von Neumann entropy of the reduced state oX.
Note thatS(A:C) is just the classical mutual informationH(I : j ) betweenI and j . To interpret
S(A:BuC), observe that for a given classical outputj , we can write down a conditional ensemb

Ej5$v I , j ,q~ I u j !%, ~20!

whereq(I u j ) is calculated using Bayes’ rule to beq(I u j )5p( j uI )pI /qj , with qj5( I p( j uI )pI .
The conditional quantum mutual informationS(A:BuC) is just the average Holevo informationx
of the conditional ensemblesEj :

S~A:BuC!5(
j

qjx~Ej !, ~21!

wherex is defined, for an ensembleE5$rk ,pk%, as14

x~E!ªSS (
k

pkrkD 2(
k

pkS~rk!. ~22!

BecauseEj is an ensemble supported on systemB, x(Ej )<nqsupp, which implies that

nqsupp>S~A:BuC!. ~23!

Therefore, roughly speaking, we will derive a lower bound onQ* (R) by minimizing S(A:BuC)
subject to the constraintS(A:C)<nR and developing further properties of that minimum. To th
end, defineTe(E ^ n,nR) to be the set of all encoding mapsE for which S(A:C)<nR and there
exists a decoding mapD satisfying

(
I

p~ I !F~w I ,~D+E!w I !>12e. ~24!

Next defineM e(E ^ n,nR) to be the infimum ofS(A:BuC) over allEPTe(E ^ n,nR). We begin by
noting the following basic properties ofM e(E,R).

Lemma 3.1: Me(E,R) is a monotonically decreasing function of R. Moreoever, it is jointly
convex ine and R, in the sense that, for any set ofek.0 and Rk>0 as well as probabilities
(klk51,

M e~E,R!<(
k

lkM ek
~E,Rk!, ~25!

wheree5(klkek and R5(klkRk .
Proof: Monotonicity follows immediately from the definitions. IfR1<R2 andS(A:C)<R1 ,

thenS(A:C)<R2 . Thus the setTe(E,R1) is contained inTe(E,R2) andM e(E,R1)>M e(E,R2).
To prove joint convexity, letek , Rk andlk be as in the statement of the lemma and assu

thatEkPTek
(E,Rk). Furthermore, suppose that the encoding mapsEk map into orthogonal sector
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Ck of the classical registerC. We construct an encoding map with information rateR<(klkRk

and fidelitye<(klkek by applying the mapEk with probability lk . The first inequality follows
from the fact that the sectorsCk are orthogonal:

S~A:C!5(
k

lkS~A:Ck!<R. ~26!

The decoding map for the new encoding consists of first determining which sectorCk was used
and then applying the decoding map corresponding toEk . The output of the encoding-decodin
scheme will, therefore, be the average of the outputs of the individual schemes, yielding2e
>(klk(12ek) by the concavity of the fidelity. Finally, if we defineSk(A:BuC) to be the condi-
tional quantum mutual information for the encoding mapEk , then we can calculate the value fo
the new scheme,

S~A:BuC!5(
k

lkSk~A:BuC!. ~27!

SinceM e(E,R)<S(A:BuC) by definition and this inequality must hold for all encoding mapsEk ,
we can conclude thatM e(E,R)<(klkM e(E,Rk). h

The particular usefulness of theM e function derives from an additivity property with respe
to the input ensemble given in the next lemma, a property that can be converted into a singl
lower bound onQ* (R).

Lemma 3.2: For any ensembleE, numbers R,e>0 and non-negative integer n,

M e~E ^ n,nR!>nMe~E,R!. ~28!

Proof: To begin, recall thatI 5 i 1i 2 ¯ i n and decomposeA into A1A2 ¯ An , with u i k& stored
on Ak . We will frequently make use of the notationA,k5A1A2 ¯ Ak21 and the analogous
I ,k5 i 1i 2 ¯ i k21 , as well the similarA.k and I .k . For a fixedEPTe(E ^ n,nR), the chain rule
for mutual information~cf. Appendix C of Ref. 13! implies that

S~A:BuC!5 (
k51

n

S~Ak :BuC,A,k!. ~29!

The bulk of the proof will consist of definitions for the purpose of interpreting the individ
summands in the chain rule in terms of single-copy encoding maps. Consider one such
S(Ak :BuC,A,k), which we can express as

S~Ak :BuC,A,k!5 (
I ,k , j

p~ I ,k , j !x~EI ,k , j !, ~30!

whereEI ,k , j is the ensemble of states

EI ,k , j5H(
I .k

p~ I .k!v I , j ,qI ,k
~ i ku j !J , ~31!

with

qI ,k
~ i ku j !5

( I .k
p~ i k!p~ I .k!p~ j uI !

( I >k
p~ I >k!p~ j uI !

. ~32!

Now define the encoding mapEI ,k
on the ensembleE to be
                                                                                                                



uality
race,

the

ly-

4413J. Math. Phys., Vol. 43, No. 9, September 2002 Trading quantum for classical resources

                    
EI ,k
~ i k!ª(

I .k

p~ I .k!E~ I !5(
I .k

(
j

p~ I .k!p~ j uI !v I , j ^ u j &^ j u. ~33!

The output ofEI ,k
on the quantum register is described by the set of ensemblesEI ,k , j . Next,

define the decoding mapDk5TrÞk+D and the fidelity

FI ,k
ª12e I ,k

ª(
i k

p~ i k!F~r i k
,~Dk+EI ,k

!~ i k!!. ~34!

We can then calculate that

(
I ,k

p~ I ,k!FI ,k
5(

I ,k

p~ I ,k!(
i k

p~ i k!F~r i k
,~Dk+EI ,k

!~ i k!!

5(
I <k

p~ I <k!FS r i k
,TrÞkDS (

I .k

p~ I .k!E~ I ! D D
5(

I <k

p~ I <k!FS (
I .k

p~ I .k!r i k
,(
I .k

p~ I .k!~TrÞk+D+E!~ I ! D
>(

I
p~ I !F~TrÞkr I ,~TrÞk+D+E!~ I !!

>(
I

p~ I !F~r I ,~D+E!~ I !!>12e. ~35!

The first three lines are by definition and using linearity to shuffle the terms. The first ineq
comes from the joint concavity of the fidelity, the second from its monotonicity under partial t
and the last from the fidelity condition onD+E.

Therefore, if we writej (EI ,k
) for the random variable representing the classical output of

encoding map EI ,k
and RI ,k

for the corresponding mutual information, thenEI ,k

PTe I ,k
(E,RI ,k

). Defining Rkª( I ,k
p(I ,k)RI ,k

for the average classical information and app

ing the joint convexity ofM then finally yields

S~Ak :BuC,A,k!>M e~E,Rk!. ~36!

A simple calculation allows us to bound theRk from above; however,

(
k

Rk5(
k

(
I ,k

p~ I ,k!H~ i k : j ~EI ,k
!! ~37!

5(
k

S~Ak :CuA,k! ~38!

5S~A:C!<nR. ~39!

Combining Eqs.~36! and~39! with the chain rule, and applying the convexity ofM one more time
gives the simple inequality

S~A:BuC!>(
k

M e~E,Rk!>nMe~E,R!. ~40!
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Since this lower bound must hold for all encoding maps inTe(E ^ n,R), that concludes the proo
of the lemma. h

B. Perfect encodings and their properties

Within the setT0(E,R) of encoding maps withperfectfidelity decodings there is a particularl
simple subset, in terms of which we will phrase our final bound onQ* (R). Let T(E,R),T0(E,R)
be the set of all encoding mapsE of the form

E~ i !5uw i&^w i uB
^ (

j
p~ j u i !u j &^ j uC. ~41!

In other words,T(E,R) consists of the encoding maps in which a perfect copy of the state t
compressed is placed in registerB. The decoding map is simply to trace over the registerC. While
such encodings, which simply reproduce the input, are obviously useless for compressio
turn out to be quite sufficient for minimizingS(A:BuC). Indeed, let us define

M ~E,R!5 inf$S~A:BuC!:EPT~E,R!% ~42!

5 inf
p(•u•)

$S~A:BuC!:S~A:C!<R%. ~43!

By construction, this optimization is no longer over general CPTP maps but only over diff
possible conditional probability distributions on registerC.

Let us collect a few properties ofM for later use: First of all,M inherits the convexity ofM e

in the variableR. Also, it is clearly nonincreasing, andM (E,0)5S(E) is immediate from the
definition. Furthermore, for any choice ofp(•u•), we have

S~A:C!1S~A:BuC!5S~A:BC!>S~A:B!5S~E!, ~44!

from which we conclude thatR1M (E,R)>S(E). This, together with the convexity, implie
continuity in R, and the estimates

M ~E,R!>M ~E,R1d!>M ~E,R!2d. ~45!

In what follows, it will also frequently be helpful to use the following fact:
Proposition 3.3:

M ~E,R!5 inf
p(•u•)

$S~A:BuC!:S~A:C!5R%, ~46!

with an equality condition in the infimum [rather than the inequality of Eq. (43)].
The proof is given in the Appendix, Sec. 1.
In principle one might envisage a limit with larger and larger classical registerC. This would

constitute a serious obstacle to calculatingM (E,R) and carrying through our larger program
evaluatingQ* (R). Fortunately, the next proposition ensures that the range ofj ’s we need to
consider in the definition ofM (E,R) is bounded universally. Since the mutual informations
volved are continuous, the infimum in the definition ofM (E,R) can be replaced by a minimum

Proposition 3.4: In the definition of M(E,R) given in Eq. (43), it suffices to consider enco
ings of the form Eq. (41) with at most(m11) j values, where m is the number of states inE.

The proof is given in the Appendix, Sec. 2.

C. Completing the lower bound

Returning to the main argument, we are now prepared to relateM (E,R) to the trade-off curve:
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Theorem 3.5: If a sourceE can be visibly compressed to Q qubits per signal and R class
bits per signal, then Q>M (E,R). Equivalently, Q* (R)>M (E,R).

Proof: By the definition of compression and the previous lemma, we note that, for alle,d
.0, the inequalityQ* (R)>M e(E,R1d) must hold. We will give a proof thatM e is continuous at
e50, from which the stronger lower bound in terms ofM (E,R) will follow.

So, fix e,d for now and suppose thatEPTe(E,R1d). Let D be the decoding map associate
to E. As usual,

E~ i !5(
j

v i , j
B

^ p~ j u i !u j &^ j uC. ~47!

For a givenj value, the decoding map will produce the ensemble of states$s i , j ,p( i u j )% where
s i , j5D(v i , j

B
^ u j &^ j uB). Therefore, applying Markov’s inequality~cf. Lemma 6.3 of Ref. 13! and

the fidelity condition in the definition ofTe(E,R), the probability weight of thej ’s with

(
i

q~ i u j !F~w i ,s i , j !>12Ae ~48!

is at least 12Ae. In other words, for these goodj values, the output of the decoding map is clo
to Ej . Therefore, for these same goodj values, by the monotonicity and continuity ofx, we must
have

x(Ej )>SS (
i

q( i u j )uw i&^w i u D 2 f (e), ~49!

where we may choosef (e)54(A4 e logd2A4 e log(2A4 e)) ~as shown in Appendix A of Ref. 13!.
Consequently,

S(A:BuC)5(
j

qjx(Ej )>(
j

qjSS (
i

q( i u j )uw i&^w i u D 2 f ~e!. ~50!

Sincef (e)→0 ase→0 we conclude that lime↓0M e(E,R1d)5M0(E,R1d) and, moreover, in the
limit e→0 it suffices to consider encoding maps of the type

E~ i !5uw i&^w i uB
^ (

j
p~ j u i !u j &^ j uC. ~51!

Thus we obtainQ* (R)>M (E,R1d), for all d.0, which, by Eq.~45! above yields our claim.h

Remark:The estimatef (e) above may also be derived using Fannes’ inequality,20 which states
that for density operatorsr ands on ad-dimensional space,

ir2si1<e⇒uS~r!2S~s!u<dh~e/d!. ~52!

where

h~x!5H 2x logx for x< 1
4,

1
2 for x. 1

4.
~53!

We will use this inequality again later. h

D. On alternative definitions

Inspecting the proofs of Lemma 3.2 and Theorem 3.5 reveals that we do not actually ne
block-based fidelity condition
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^F&ª(
I

pIF~w I ,~D+E!~ I !!>12e ~54!

of Eq. ~8!, but only the weaker mean letterwise fidelity

^F̄&ª(
I

pI F̄ I>12e, ~55!

where

F̄ Iª
1

n F (
k51

n

F~w i k
,~TrÞk+D+E!~ I !!G . ~56!

By the monotonicity of the fidelity under partial traces, the latter is directly implied by the for
The lower bound Eq.~35! is then replaced by 12ek , with (1/n) (kek5e, and we conclude,

instead of Eq.~36!, that

S~Ak :BuC,A,k!>M ek
~E,Rk!. ~57!

The remaining argument is only altered at Eq.~40!:

S~A:BuC!>(
k51

n

M ek
~E,Rk!>nMe~E,R!, ~58!

using joint convexity once more.
Hence, we could define the functionM̄ e(E,R) in a fashion analogous toM e(E,R) but using

the fidelity functionF̄ instead ofF and Lemma 3.2 would continue to hold for the new functio
In fact, M̄ e(E,R) will be strictly additive, in the sense that

M̄ e~E ^ n,nR!5nM̄e~E,R!, ~59!

because any single-letter encoding with fidelity 12e repeatedn times gives rise to ann-block
coding with mean letterwise fidelity 12e.

We also note at this stage that we could have opted for a slightly more sophisticated defi
of the quantum resource of the encoding. In particular, if we introduce qsj

5 (1/n)log RankEj as the minimal number of qubits per signal required to support the conditi
ensembleEj , then we could have defined the quantum rate of the encoding map as

qsupp5(
j

qjqsuppj . ~60!

In this picture, the quantum resource would be the average over classicalj values of the minimal
number of qubits per signal required to support the quantum portion of the encoded stateEn(I ).
Such a definition, by treating the classical and quantum storage requirements differently,
the possibility of variable-length quantum encodings, where the length is a function of the
sical messagej . Such encodings could potentially be more powerful than the encodings
fixed-sized quantum supports used to define the original qsupp. However, becausej
>x(Ej ), the analog of Eq.~23! continues to hold.~For a more detailed investigation of th
properties of such variable-length quantum memories, see Ref. 21.! More precisely,

nqsupp>S~A:BuC!. ~61!
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Therefore, the lower bound of Theorem 3.5 on the trade-off curveQ* (R) would apply equally
well if we had definedQ* (R) usingqsupp instead of qsupp.

Thus, while replacing eitherF by F̄ or qsupp byqsupp in the definition of compression cou
potentially have reduced the resource requirements, we find that our lower bounds would a
the modified definitions. Since we will see later in the article that the lower bounds are achie
using the original, restrictive formulation of compression, we can conclude that no advantag
be gained by relaxing the definitions to useF̄ andqsupp.

IV. ACHIEVING THE LOWER BOUND M„E,R…

Recall that the trade-off functionQ* (R) gives the minimal quantum resourceQ* qubits per
letter that is sufficient to encode arbitrarily long strings with arbitrarily high fidelity 12e for any
e.0, given a classical resource ofR bits per letter. On the other hand, the lower boundM (E,R)
is defined as the minimal quantum resource for a particular kind ofsingle-letter perfectfidelity
~i.e., e50! encoding given in Eq.~51!, subject to the constraint that the classicalmutual infor-
mation S(A:C) betweeni and j is R. Hence in the latter case, the classical resource will gener
exceedR bits per letter. Thus by implementing the simple encodings of Eq.~51! we can attain
M (E,R) as the quantum resource but not generally with a classical resource bounded byR. We
now argue that, nevertheless, the classical resource can be reduced toR while retaining the
quantum resource atM (E,R) i.e., that the lower boundM (E,R), to Q* (R) is attainable, so we
must then haveQ* (R)5M (E,R).

Our strategy intuitively is the following. We think of the conditional distributionp( j u i ) with
mutual informationS(A:C) in Eq. ~51! as a noisy channel fromi to j . Then the reverse Shanno
theorem22 states that this noisy channel can be simulated with a noiseless channel of ca
S(A:C) if the receiver and sender have shared randomness, i.e., in the presence of shar
domness, the classical resource can be reduced toR5S(A:C) bits per letter. Finally, we show tha
only O(logn) bits of shared randomness suffice to provide a high fidelity encoding-deco
scheme for blocks of lengthn. Hence this amount of shared randomness can be included in
classical resource of the encoding with asymptotically vanishing cost per letter.

To make the above intuitions mathematically rigorous, we begin by recalling some basic
from the theory of typical sequences23,24 and typical subspaces12,25 in the following two subsec-
tions.

A. Typical sequences

For a sequenceI 5 i 1¯ i nPI n define thetype PI of I as its empirical distribution of letters
i.e.,

PI~ i !ª
1

n
N~ i uI !ª

1

n
u$ku i k5 i %u. ~62!

The number of types of sequences is polynomial inn: it is ( uIu21
n1uIu21)<(n11)uIu.

The type classTP of P is the set of all sequences with typeP:

TPª$I PI nuPI5P%. ~63!

Consider now any probability distributionP on I, and letd.0. Then the set oftypical sequences
~with respect to the distributionP andd! is

TP,dª$I PI:; i uPI~ i !2P~ i !u<d/An%. ~64!

Note that this set is a union of certain type classes.
The following are standard facts:23,24
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P^ n~TP,d!>12
1

d2 , ~65!

~n11!2uIu exp~n~H~P!!!<uTPu, ~66!

exp~n~H~P!!!>uTPu, ~67!

~n11!2uIu exp~n~H~P!2uIuh~d/An!!!<uTP,du, ~68!

~n11! uIu exp~n~H~P!1uIuh~d/An!!!>uTP,du. ~69!

Note that the latter two follow from the former two by the following well–known explicit estim
on the difference of two entropies23 @this being a classical case of the Fannes inequality, Eq.~52!#:
if P andQ are probability distributions on a set ofk elements, then

iP2Qi1<e⇒uH~P!2H~Q!u<khS e

kD , ~70!

where the functionh is given in Eq.~53!.
For sequencesI PI n, JPJ n, the conditional type WJuI of J ~conditional onI ! is defined as

the stochastic matrix given by

; i j P I~ i !WJuI~ j u i !5PIJ~ i j !, ~71!

wherePIJ is the joint type ofIJ5( i 1 j 1 , . . . ,i nj n). It is undetermined ifPI( i )50.
The conditional type classof W given I is defined as

TW~ I !ª$J:WJuI5W%5$J:; i j P IJ~ i j !5PI~ i !W~ j u i !%. ~72!

Let W be now an arbitrary stochastic matrix andd.0. Theset of conditionally typical sequence
of W given I is defined as

TW,d~ I !ª$J:; i j uWJuI~ j u i !2W~ j u i !u<d/AN~ i uI !%. ~73!

Again, there are a couple of standard facts:

WI~TW,d~ I !!>12
uIu
d2 , ~74!

for the product distributionWI5Wi 1
^¯^ Wi n

, and

~n11!2uIuuJu exp~nH~WuPI !!<uTW~ I !u, ~75!

exp~nH~WuPI !!>uTW~ I !u, ~76!

~n11!2uIuuJu exp~n~H~WuPI !2uIuuJuh~duIu/An!!!<uTW,d~ I !u, ~77!

~n11! uIuuJu exp~n~H~WuPI !1uIuuJuh~duIu/An!!!>uTW,d~ I !u, ~78!

whereH(WuPI) is just the conditional Shannon entropy( i PI( i )H(W(•u i )).

B. Typical subspaces

The concepts in the previous subsection translate straightforwardly to their Hilbert
versions via the following recipe:
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For a stater choose a diagonalizationr5( i PIr i uei&^ei u, with eigenvectorsuei& and eigen-
valuesr i , which define a probability distribution onI. Then we have a diagonalization ofr ^ n:

r ^ n5(
I PI

r I ueI&^eI u, ~79!

with

ueI&5uei 1
& ^¯^ uei n

&, ~80!

r I5r i 1
¯r i n

. ~81!

Now for any subsetA,I n we can define the subspace spanned by the vectors$ueI&:I PA%, which
is most conveniently described by the subspace projector

PAª(
I PA

ueI&^eI u. ~82!

In this way we can define, for any distributionP on I,

PPª (
i PTP

ueI&^eI u, ~83!

~note that this is not uniquely specified by the distributionP alone, but also requires specificatio
of the basisuei&!, and

Pr,dª (
i PTr ,d

ueI&^eI u. ~84!

Statements on the cardinality of sets translate into statements on the dimension of the corre
ing subspaces~i.e., rank, or equivalently, trace, of the projectors!.

Similarly, if we have statesWi with diagonalizationsWi5( jW( j u i )uej u i&^ej u i u, we can define,
for any subsetA,J n and I PI n,

PA~ I !ª (
JPA

ueJuI&^eJuI u. ~85!

This leads to the concept ofconditional typical subspace projector, for d>0,

PW,d~ I !ª (
JPTW,d

ueJuI&^eJuI u, ~86!

and again probability and cardinality statements about the typical sequences translate into
lent statements about certain traces.

In particular we shall use the following estimate of the rank of the conditional typical
space projector:

TrPr,d~ I !<~n11! uIud exp~n~S~ruPI !1uIudh~duIu/An!!!. ~87!

@Here we make use of the notationS(ruPI)ª( iS(Wi) in an attempt to match the statements ab
typical sequences as closely as possible.# We’ll also use the important probability estimate

Tr~WITW,d~ I !!>12
uIu
d2 . ~88!
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C. Trade-off coding

We will use the coding technique that is summarized in the following proposition. The s
ment is slightly more technical and the estimates more explicit than we would need to prov
main Theorem 4.4. This is because we will reuse it in Secs. VI and X.

Proposition 4.1: For a probability distribution p onI and a classical noisy channe
p(•u•):I→J consider the tripartite state

r5(
i

pi u i &^ i uA^ uw i&^w i uB
^ (

j
p~ j u i !u j &^ j uC.

Then there exists a visible code(E,D) such that

;I PTp,d F~ uw I&^w I u,~D+E!~ I !!>12
4uIuuJu

d2 ,

and having classical and quantum resources

nS~A:C!1nKuIuuJuh~d/An!1K8uIuuJu log~n11! classical bits,

nS~A:BuC!1n•3duIuuJuh~2duIuuJu/An!1duJu log~n11! quantum bits,

where K and K8 are absolute constants.
Proof: We design ann-block code as follows~typicality conditions throughout are with

respect to a previously fixedd!:
~a! Encoding:

~1! Given I generateJ according top(JuI ).
~2! Compress~i.e., project! the quantum stateuw I&^w I u to the conditional typical subspac

Pr̃ IJ,d(J), wherer̃ j
IJ5( iWI uJ( i u j )uw i&^w i u.

If I is typical andJ is conditionally typical, sendJ and the joint type ofI andJ as classical
data, and send the projected state onPr̃ IJ,d(J) as quantum data.

~b! Decoding:
Given J, one can isometrically embed the quantum state transmitted back into the am

Hilbert space.
The fidelity of this scheme is analyzed as follows.~We assume that if, at any point of th

above protocol, an ‘‘if’’ is not satisfied, then some fixed failure action is taken. Such would b
case when the POVM involving the above subspace projection yields an orthogonal resu
example.! With probability at least 12uIu/d2, J is conditionally typical, and in this case th
projection is successful with probability at least 12uJu/d2 @by virtue of Eq.~88!#, leaving a state
which ~cf. Ref. 12! has fidelity>122uJu/d2 to uw I&^w I u.

Looking at the classical cost of this procedure, we see that it is dominated by sendingJ, which
requires too many, namelynS(C), classical bits. Here the reverse Shannon theorem22 is invoked.
~For a precise statement, see Theorem 4.2 below.! Using this theorem we can simulate the chan
p on the typical sequencesI sendingnS(A:C)1o(n) classical bits, but at the same time needi
an amount of shared randomness. The simulation, in fact, has the property that it endows
and receiver with a commonJ, the distribution of which isuIuuJu/d2-close top(JuI ). Taking all
these points into account, we see that the fidelity of this protocol is at least 12 3uIuuJu/d2 for
every individualuw I&^w I u for which I is typical.

The analysis of the quantum resources needed is equally straightforward. By Eq.~87! the
number of qubits needed to transmit the projected state is

nS~ r̃ IJuPJ!1dnuJuh~d/An!1duJu log~n11!. ~89!

Note that the leading term is a conditional von Neumann entropy of the bipartite state
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r5(
j

r̃ j
IJ

^ PJ~ j !u j &^ j u, ~90!

which has trace norm distance at most 2duIuuJu/An from

v5(
i j

p~ i !uw i&^w i u ^ p~ j u i !u j &^ j u. ~91!

~This follows from the typicality ofI and conditional typicality ofJ.! Next, using the Fannes
inequality ~52!, we can upper bound Eq.~89! by

nS~ r̃uq!12dnuJuh~2duIuuJu/An!1dnuJuh~d/An!1duJu log~n11!, ~92!

with qj5( i P( i )p( j u i ) and r̃ j5qj
21( i P( i )p( j u i )uw i&^w i u.

We are left with one remaining feature to address: the protocol uses shared randomne~and
to a considerable extent, according to Theorem 4.2!. We shall now show that we can reduce th
requirement toO(logn) shared random bits using a technique very much like the derandomiz
argument in Ref. 26. The proof will then be complete because setting up these bits can be ab
into the classical communication with asymptotically vanishing cost per letter.~Actually, in order
to achieve high average fidelity, no random bits are needed at all, but our goal is to prove tha
fidelity can be achieved for every state in the typical subspace, a more stringent requireme
is used later in our study of arbitrarily varying sources.!

Observe that a protocol using shared randomness can be viewed as a probabilistic mix
ordinary, deterministic protocols. Index these by a variablen, accompanied by a probabilityxn .
For eachn we have a corresponding fidelityFI(n) for each individualI . Our construction shows
that for typicalI ,

(
n

xnFI~n!>12
3uIuuJu

d2 5..m. ~93!

Note that the left hand side is exactly the expectation of the random variableFI . We now choose
n1 ,...,nL independently and identically distributed~i.i.d.!, according to the probabilitiesxn . For
fixed I the FI(n l), l 51,...,L are i.i.d. as well, and in the interval@0, 1#. Thus we can apply the
Chernoff–Hoeffding bound for their arithmetic mean~Lemma 4.3 below!:

PrH 1

L (
l 51

L

FI~n l !,~12e!mJ <expS 2L
e2m

2 ln 2D . ~94!

By the union bound we can estimate the probability that the above event occurs for a single
I to be less than or equal to

expS 2L
e2m

2 ln 2D uIun. ~95!

Choosinge5uIuuJu/d2, this bound is itself less than 1 if

L.
2d4 ln 2

uIu2uJu2m
n loguIu, ~96!

in which case we can conclude that there exist valuesn1 ,...,nL such that, for all typicalI , we have

1

L (
l 51

L

FI~n l !>12
4uIuuJu

d2 .
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Therefore, a shared uniform distribution over the numbers 1,...,L is sufficient, whereL need only
satisfy Eq.~96!. This can be accomplished withO(logn) shared random bits, which is what w
wanted. h

Here are the auxiliary results we needed in the proof:
Theorem 4.2 „Reverse Shannon Theorem; see Refs. 22 and 27…: For any channel W:I

→J, distribution P onI, and 0,l,1 there exist maps

En :I n→$1,...,M %,

Dn :$1,...,M %→J n,

n51,...,N, such that

;I PTP,d

1

2 IW~ I !2
1

N (
n51

N

Dn~En~ I !!I
1

<
uIuuJu

d2 .

Moreover, with an absolute constant K,

logM<nH~P:W!1nKuIuuJuh~d/An!1KuIuuJu log~n11!,

logN<nH~WuP!1nKuIuuJuh~d/An!1KuIuuJu log~n11!.

h

Lemma 4.3 (Chernoff-Hoeffding bound.28,29) Let X1 ,...,XL be independent, identically distri
uted random variables, taking real values in the interval@0, 1#, and with expectationEXl>m.
Then, fore.0,

PrH 1

L (
l 51

L

Xl,~12e!mJ <expS 2L
e2m

2 ln 2D .

h

With this we are ready to state our main result:
Theorem 4.4:Q* (R)5M (E,R).
Proof: The inequality ‘‘>’’ is theorem 3.5. For the opposite inequality choose ap(•u•) such

that S(A:C)<R and S(A:BuC)<M (E,R)1e. Then, according to Proposition 4.1, there ex
n-block codes (E,D) with classical and quantum rates bounded byR1o(1) and M (E,R)1e
1o(1), respectively, which have fidelity 12e for all typical I. But since these carry almost all th
probability weight~say, larger than 12e! of all sequences, the fidelity of the scheme is at le
122e, regardless of what is done on nontypical sequences. Ase was arbitrary, we getQ* (R)
5M (E,R). h

Remark:The proof of Proposition 4.1, as the eventual ‘‘derandomization’’ shows, does no
the full power of the reverse Shannon theorem, but only a consequence that is actually als
in rate-distortion coding: that one can map the typical sequencesI onto exp(nH(P:W)1o(n)) many
J’s such that all the pairs (I , f (I )) are jointly typical. h

V. EXPLORING THE TRADE-OFF CURVE

In this section we use our formula for the trade-off curve to evaluateQ* (R) numerically for
a selection of particular ensembles chosen to illustrate further important properties of the tra
function.

To begin, let us consider the simplest possibility, a pair of nonorthogonal states. Figure 2
the trade-off curve for the pair$u0&,(1/&) (u0&1u1&)%, each occurring with probability12. At first
glance,Q* (R) appears to coincide with the linear upper bound given by interpolating betw

(0,S(E)) and (H2( 1
2),0). A more detailed examination, however, reveals that the curve is act
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very slightly nonlinear. Therefore, somewhat surprisingly, the simple quantum-classical c
scheme given by timesharing between fully quantum and fully classical coding is nearly op
but not completely so. As we will see below, this need not always be true.

In general, more complicated ensembles with internal structure will have trade-off c
reflecting that structure. Consider, for example, the three-state ensembleE3 illustrated in Fig. 3,
consisting of the statesuw1&5u0&, uw2&5 (1/&) (u0&1u1&) and uw3&5u2& with equal probabili-
ties. Since the set of states decomposes into two subsetsX15$uw1&,uw2&% andX25$uw3&% with
mutually orthogonal supports, it is possible to encode whether a givenuw i&PX1 or uw i&PX2

efficiently usingH2( 1
3) classical bits. Indeed, Fig. 4 plotsQ* (R) for this ensemble and we see th

the Schumacher limit is achieved for values ofR<H2(1/3). For values ofR.H2( 1
3), or once the

classical information in the ensemble has been exhausted, the trade-off curve departs fr

Schumacher lower bound to meet the point (H( 1
3,

1
3,

1
3),0).

FIG. 2. The trade-off curve for a pair of equiprobable, nonorthogonal states. The dashed line represents the lowe
Q* (R)1R>S(E) imposed by the Schumacher limit.

FIG. 3. The three-state ensembleE3 consists of the statesuw1&, uw2&, uw3& occurring with equal probabilities.
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Our third example, the parametrized BB84 ensembleEBB(u) introduced in Sec. II, is an
ensemble that, likeE3 above, decomposes naturally into subensembles. On the other hand,
for E3 , the subensembles are generally not orthogonal. The trade-off curve foru5p/8 is plotted
in Fig. 5. As usual, the dashed lower bound is the Schumacher limit. The dashed-dot line
piecewise linear upper bound constructed in Sec. II. Squeezed into the intermediate region,
that Q* (R) is typically strictly less than the upper bound and, especially in the region 0,R

,1, quite strongly curved. The point (1,H2( 1
2(11cosp/8)) provides another surprise:Q* (R) and

the upper bound coincide there. Therefore, the partitioning scheme is optimal if exactly one
classical storage is to be consumed per copy but not otherwise.

We now turn to another interesting property of the trade-off curve. Contrary to what one m
expect, the functionM (E,R) is not concave in the ensemble, violating the intuition that it should

FIG. 4. The trade-off curve for three-state ensembleE3 . The dashed line again represents the Schumacher lower bo

which in this case is achievable forR<H(
1
3).

FIG. 5. Trade-off curve for the BB84 ensembleEBB(p/8). The dashed line represents the Schumacher lower bound an
dashed-dot line represents the upper bound from partitioning into the setsX1 andX2 .
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be harder to send the mixture of two ensembles than it is to probabilistically send either one.@Note
that M (E,0), however, is just the von Neumann entropyS(E) and is, therefore, concave inE.# In
fact, counterexamples to concavity can be constructed without even making use of nonorth

states. LetE15$u i &,1
4% i 50

3 be an ensemble consisting of four equiprobable orthonormal states

let E25$u i &, 1
2% i 50

1 . We can also consider the mixture of ensembles

Eª 1
2E11 1

2E25$~ u0&,3
8!,~ u1&,3

8),~ u2&,1
8),~ u3&,1

8)%. ~97!

Since each of these ensembles is effectively classical, the Schumacher lower bound is at
and their trade-off curves are just straight lines with slope21. From there, we can also evalua
1
2(M (E1 ,R)1M (E1 ,R)) and compare it toM (E,R). This is done in Fig. 6, revealing a violatio
of concavity whenR comes close to 2.

In the same spirit, note that an analogous construction shows that, while

M ~E1^ E2,2R!<M ~E1 ,R!1M ~E2 ,R! ~98!

always holds, equality~i.e., the natural ‘‘additivity’’ property ofM under tensor products! may be
violated if the ensembles are sufficiently different from each other. More generally we hav
following.

Proposition 5.1:

M ~E1^ E2 ,R!5min$M ~E1 ,R1!1M ~E2 ,R2!:R11R25R%.

Also, while M (E,R) may not be concave in the ensembleE, it does obey a weaker conditio
analogous to Schur concavity.

Proposition 5.2: LetE5$uw i&,pi% be an ensemble. Let$ak% be a set of probabilities with
corresponding unitary operators Uk and F be the ensembleF5$Ukuw i&,piak%. Then M(E,R)
<M (F,R).

The proofs of these propositions can be found in Appendix Secs. 3 and 4, respectively
As our last example, we include the trade-off curve for the uniform~unitarily invariant!

ensemble on a single qubit as Fig. 7. Devetak and Berger30 actually calculated an explicit param
etrization of the optimal trade-off curve for a restricted class of encodings. Our lower bou

FIG. 6. Violation of concavity in the ensemble. IfQ* were concave in the ensemble, the solid line representingM (
1
2E1

1
1
2E2 ,R) would always exceed the dashed line of

1
2M (E1 ,R)1

1
2M (E2 ,R). For large values ofR we see that is not the

case in this example.
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Theorem 3.5, or, rather, its infinite source ensemble variant, Theorem 10.1, proves tha
construction is optimal within all possible quantum-classical coding strategies. Thus, we can
their result that, forlP(0,̀ ),

R5
l

el21
211 logS lel

el21D , ~99!

Q* ~R!5H2S 1

l
2

1

el21D , ~100!

gives a parametrization ofQ* (R). This curve will also play an important role when we constru
a probability-free version of our main result in Sec. VI. We will find that, in an extremely str
sense, it describes the cost of a qubit in classical bits.

VI. ARBITRARILY VARYING SOURCES

Our main result does not yet say, however, what a qubit costs in bits because it only su
the trade-off curveQ* (R) for a given set of quantum states once a set of prior probabilities h
been prescribed. Without the probabilities, the curve is undefined and the rate of exchan
tween bits and qubits cannot be uniquely identified. However, using the theory ofarbitrarily
varying sources (AVS)~see Ref. 31 for an exposition of this concept in classical informa
theory!, we can develop a probability-independent version of our trade-off curve that will e
nate the ambiguity.

Throughout this section, letE denote not an ensemble, but just a set of states, and letP,PE
be a subset of probability distributions onE. For each stringI PI n of lengthn we will consider
product distributions

pn~ I !ªp1~ i 1!¯pn~ i n!, ~101!

where eachpkPP. An AVS-code of fidelity12e is defined as a visible code, as before~see
Definition II!, only that now the fidelity condition is required to hold for all probability distrib
tions in P:

FIG. 7. Trade-off curve for the uniform qubit ensemble. Note that the curve never reaches theQ50 axis, encoding the fact
that no finite amount of classical information is sufficient to perfectly transmit an arbitrary qubit state.
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;pnPPn (
I

pn~ I !F~w I ,~D+E!~ I !!>12e. ~102!

The classical and quantum rates are exactly as in Definition 2.3 and, likewise, Definition 2
be used unchanged to characterize attainable rate pairs (R,Q). This leads to the definition of the
trade-off functionQ* (R,P) as the minimumQ such that (R,Q) is attainable.

Intuitively, the encoder-decoder pair plays a game against a clairvoyant adversary who
is to minimize their average fidelity and who can control the source mechanism so as to crea
of the distributionspnPPn. Their goal is to win by keeping the average fidelity above 12e
against arbitrary strategies of the adversary.

A special case is that ofP5PE , in which case we have no restriction on the source, so tha
possible state strings are to maintain high fidelity.

We shall use the notationM (E,p,R) to designate our earlier functionM for the ensemble
consisting of the statesE and the probabilitiesp, and define now

M ~E,P,R!ª sup
pPQ

M ~E,p,R!, ~103!

whereQªconv(P) is the convex hull ofP.
Theorem 6.1:Q* (R,P)5M (E,P,R).
Proof: The inequality ‘‘>’’ follows almost directly from Theorem 3.5: only observe that t

adversary can simulate any source ensemblepPQ, and then Theorem 3.5 applies.@More formally,
choose a probability distributions on P such thatp5(kskpk , and note that averaging Eq.~102!
over the measures^ n gives ~102! for p^ n.#

In the other direction, we only need to exhibit a covering of the union of the ‘‘probable s
of the distributionspnPPn by appropriate sets of typical sequences, and apply Proposition
This is done as follows:

For pn5p1^¯^ pnPPn observe that the set

T pnªH I :; iUN( i uI )2 (
k51

n

pk~ i !U<dAnJ ~104!

carries~by Chebyshev’s inequality! almost all the weight of the distribution:

pn~T pn!>12d22. ~105!

SinceT pn is in fact the same as the set of typical sequencesTp̄,d , for p̄5 (1/n) (kpkPQ, the
union øpnT pn is actually a union of certain type classes, and hence we may choosep̄1 ,...,p̄T ,
T<(n11)uIu, such that

Tª  
pnPPn

T pn5 
t51

T

Tp̄t ,d . ~106!

The coding is very simple: whenI PT the encoder choosest such thatI PTp̄t ,d . He then
communicatest to the decoder, and uses the protocol of Proposition 4.1.~In fact, communication
of t is not even necessary, as in the latter protocol the type ofI is communicated anyway.! When
I ¹T some fixed default choice is sent.

By construction and by Proposition 4.1, for sufficiently larged this scheme usesR1e clas-
sical bits andM (E,P,R)1e qubits per source symbol. For eachpnPPn we obtain high fidelity for
all states outside a set of arbitrarily small probability. h

In particular, for the above-mentioned case of no restrictions at all on the probabilities, w
the trade-off function
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Q* ~R,PE!5 sup
pPPE

M ~E,p,R!. ~107!

which depends only on the states ofE. For a finite ensemble it is quite easy to show th
M (E,p,R) is continuous in the distributionp. This implies that the suprema in Eqs.~103! and
~107! are, in fact,maxima~in the former case over the closure ofQ!.

VII. INFORMATION AND DISTURBANCE

The functionM (E,R), in addition to providing the quantum-classical trade-off curve, ha
number of other useful interpretations. Recall from Proposition 3.3 that

M ~E,R!5 inf
p(•u•)

$S~A:BuC!:S~A:C!5R%, ~108!

with an equality forS(A:C) rather than the inequality we usually use. By the chain rule,

S~A:C!1S~A:BuC!5S~A:BC! ~109!

andS(A:BC) is just the Holevox quantity of the ensemble

F BC
ªH w i

B
^ (

j
p( j u i )u j &^ j uC,pi J . ~110!

Therefore, if we define the functionX(E,R)ªR1M (E,R), then we can rewrite Eq.~108! as

X~E,R!5 inf
p(•u•)

$x~F BC!:S~A:C!5R%. ~111!

The quantity on the right is now perhaps more familiar than the conditional mutual inform
S(A:BuC): it is a standard measure of the distinguishability present in the ensembleF BC, mini-
mized over all possible ways of including a fixed amount of classical information about the
i in registerC. Now suppose that Alice is initially given a stateuw i& from E ~without the namei
this time! and, via a CPTP map, manages to extract an amountR of classical information abouti
without damaging any of the statesuw i&. Then her final Holevox would necessarily be at least a
large asX(E,R), by definition. Typically, however,X(E,R).S(E) @by the Schumacher lowe
bound toQ* (R)5M (E,R)#, so such an operation will be forbidden by the monotonicity ofx.
Therefore, it is impossible for Alice to extract information without disturbing the states.

The simple argument above combined with the additivity ofM e(E,R) from Sec. III A can be
used to prove interesting statements about the trade-off between information gain and sta
turbance in an asymptotic and approximate setting. In contrast to the compression problem
ever, we can make stronger statements if we use the mean letterwise fidelity measureF̄ from Sec.
III D instead of the global fidelity measureF. Therefore, we will express our results in terms
the corresponding functionM̄ e(E ^ n,nR) instead ofM e(E ^ n,nR). Recall that these functions ar
defined identically except that the first uses the mean fidelity functionF̄ and the second uses th
global fidelity F. Likewise, defineX̄e(E,R)5R1M̄ e(E,R). SinceF and F̄ are identical for a
single copy, we haveM̄ e(E,R)5M e(E,R) and similarly forX andX̄. By the discussion in Sec. II
D, we know thatM̄ e(E ^ n,nR)5nM̄e(E,R), which in turn implies

X̄e~E ^ n,nR!5nXe~E,R!. ~112!

Now, generalizing the above single copy argument, suppose that Alice is given a stateuw I& drawn
from E ^ n, which, by a CPTP mapG, she manages to convert into the state
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r I5(
j

w̃ I , j
B

^ p~ j uI !u j &^ j uC, ~113!

with a quantum and classical part such that the mutual informationH(I : j )>nR and the mean
letterwise fidelity between Alice’s initial states and her final states of systemB satisfies

F̄~E ^ n,TrC+G~E ^ n!!ª(
I

pI

1

n (
k51

n

F~w i k
,TrÞk+TrC~r I !!>12e. ~114!

Writing F BC5$G(w I),pI%, the monotonicity ofx guarantees thatnS(E)>xBC and it is easy to see
that xBC>X̄e(E ^ n,nR). By applying Eq.~112!, we then find

S~E!>Xe~E,R!, ~115!

in which, conspicuously, all dependence onn has vanished. In other words, in order to maximi
her information at a given mean letterwise fidelity, Alice should just repeat the optimal single
strategy for each position; she need not ever apply any collective operations. Summarizing
observations, we have the following.

Theorem 7.1:Suppose we have a set of statesuw I& drawn from the ensembleE ^ n represented
on system B and letG be a CPTP map from B to the joint system BC, where C is classical,
satisfying the following conditions:

~1! H(I : j )>nR, where j is the classical output on system C.
~2! The mean letterwise fidelity F(̄E ^ n,TrC+G(E ^ n))>12e.

Then, for eache.0, the inequality S(E)>Xe(E,R) holds. Moreover, the Holevo quantity of th
ensembleF BC5$G(w I),pI% satisfies the inequalityx(F BC)>nXe(E,R).

h

One application of the theorem is that it provides an alternative method for analyzin
quantum resources required for blind compression, which was the subject of Ref. 13. The
simply to think of the mapG as the compositionDn+En of the encoding and decoding maps f
blocks of sizen. ~Because classical information can be copied, we can assume without lo
generality that the decoder keeps his classical information around after the decoding sta
been completed.! Now suppose that the scheme has classical mutual informationH(I : j )>nR. If
it also has mean letterwise fidelity 12en , then, as for the visible case,

qsupp>
1

n
M̄ en

~E ^ n,nR!5M en
~E,R!. ~116!

By the previous theorem, however, we must also have the inequalityS(E)>Xen
(E,R). Moreover,

if perfect compression is possible asymptotically~using either the block or letterwise fidelit
conditions!, we get the stronger inequality

S~E!> lim
e↓0

Xe~E,R!5X0~E,R!. ~117!

~The continuity ate50 follows from the continuity ofM0 , demonstrated earlier.! Because the
ensembleE can always be recovered by tracing over theC register, the monotonicity ofx guar-
antees that the right hand side is always at least as large as the left, implyingS(E)5X0(E,R). We
are, therefore, interested in the equality conditions for monotonicity.

Recalling some terminology from Ref. 13, we say an ensembleE is reducibleif its states can
be partitioned into two nonempty sets with orthogonal supports. An ensemble is said to b
ducible if it is not reducible. Every ensemble, therefore, can be decomposed into ortho
irreducible subensembles as
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E5 ø
l 51

L

alEl , ~118!

whereal is the total probability weight of states in subensembleEl .
Proposition 7.2: LetE5ø l 51

L alEl be a decomposition of the pure-state ensembleE into irre-
ducible subensemblesEl5$uw i l &,pi u l% and letF BC5$w i l

B
^ v i l

C ,alpi u l% be a bipartite extension o
the ensembleE. Then S(E)5x(F BC) if and only if v i l 5v j l for all i , j , and l.

A proof is given in the Appendix, Sec. 5. The meaning of the proposition is essentially tha
only information that can be stored on registerC without increasingx is the classical information
already present on registerB, so thatv i l must be a function ofl alone. Therefore, in order to
satisfy Eq.~117! it is necessary thatR<H(a1 , . . . ,aL). Conversely, provided the inequality hold
it is possible to extractR bits per signal without disturbance at the encoding stage, at which p
the encoding scheme we used for visible compression can be used to achieve the quant
S(E)2R. Putting these observations together, we obtain an alternative demonstration of the
theorem of Ref. 13:

Theorem 7.3:Let E5ø l 51
L alEl be a decomposition of the ensembleE into orthogonal, irre-

ducible subensembles. Then blind compression ofE to Q qubits per signal plus auxiliary classica
storage is possible if and only if

Q>(
l

alS~El !5S~E!2H~a1 , . . . ,aL!. ~119!

h

Thus, the techniques we have introduced to analyze the visible compression problem pro
unified framework for analyzing blind compression as well. In fact, we will see in the next se
that the trade-off curve for yet another related problem—remote state preparation—can a
calculated using similar methods.

VIII. APPLICATION TO REMOTE STATE PREPARATION

Remote state preparation, introduced in Ref. 17 following a conjecture of Lo’s,16 is very
similar to what we have considered here: it is a visible coding problem for quantum s
involving classical resources, in the form of communication, and quantum resources, this t
the form of entanglement. Furthermore, these two types of resources can be traded again
other so it is natural to study the optimal trade-off curve.

Without giving formal definitions, letE* (R) be the minimum rate of entanglement sufficie
for a remote state preparation protocol with classical rateR, such that the average fidelity tends
1 with growing blocklength.

Given that entanglement can be set up using quantum communication at a cost of on
per ebit, and that, on the other hand, quantum communication can be accomplished
teleportation32 at a cost of two cbits and one ebit per qubit, it is clear that coding methods fo
one problem immediately yield~possibly suboptimal! procedures for the other.~In fact, by making
use of quantum-classical trade-off coding, this resulted in the ‘‘cap-method’’ of Ref. 17, which
further refined in Ref. 30.!

In Ref. 33 a method of remote state preparation is developed that works for visible cod
product states and is more efficient than teleportation: we really need only to useonecbit and one
ebit per qubit, asymptotically.

Theorem 8.1„See Ref. 33…: Given a finite setX of states (density operators) onK, there is a
probabilistic exact (one-shot) remote state preparation protocol working for all states inX and
with failure probability uniformlye, using a maximally entangled stateuF& on K^ K and classical
communication of a message out of
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M<11
2 ln 2

e2 log~2uXudimK!dimK.

h

This leads immediately to the following.
Theorem 8.2:For the sourceE5$uw i&,pi% of quantum states, if R>0 and Q5Q* (R), then

E* (R1Q)<Q.
As a consequence, we obtain

E* ~R!<N~E,R!ª min
p(•u•)

$S~A:BuC!:S~A:BC!<R%,

minimization over the same set of tripartite states as in the definition of M.
Proof: We apply Theorem 8.1 to the spaceK of encoded statesof an optimal trade-off coding

usingR cbits andQ qubits per source symbol, and to the set of all possible encoded states
that uXu<(uIuuJu)n.

By that result, we needQ ebits to do this, and an additionalQ1o(1) cbits to theR cbits from
the trade-off coding. h

In fact, in Ref. 33 it is shown, by methods very similar to those in Sec. III, that the ab
estimate forE* is in fact an equality, and that our AVS considerations also carry over.

Theorem 8.3:For the state setE and AVSP,

E* ~R,P!5 sup
pPQ

N~E,p,R!,

with Q5conv(P). h

For P the set of all distributions on the pure states~as indeed for any symmetric family o
distributions! we can prove symmetry results like those in the upcoming Sec. IX, and arrive a
conclusion that theabsolute trade-offbetween cbits and ebits in remote state preparation is g
by the curveN(P(H),u), whereu is the uniform~i.e., unitarily invariant! measure on the se
P(H) of all pure states onH. Devetak and Berger30 arrived at a slightly different curve as a
upper bound to the true trade-off, starting fromM (P(H),u) as we did, but employing teleporatio
instead of the newer technique in Theorem 8.1. For this reason their conjecture that their bo
tight is not correct.

IX. SYMMETRY IN THE ENSEMBLE

Our formulas for the trade-off curve, both in the known and arbitrarily varying source c
can be considerably simplified if there is symmetry in the set of states.

Assume that there is a groupG acting on the labelsi of the states by a projective unitar
representationUg ,

;gPG,i PI uwgi&^wgiu5Uguw i&^w i uUg
† . ~120!

~We will present the following arguments for a finite group, but they also apply to compact gr
in fact, we only need the existence of an invariant measure, see Ref. 34.! The action ofG on I
induces an action on the probability distributions onI in a natural way: ifpPP(I) is a distribu-
tion, thenpg( i )5p(g21i ) defines the translated distribution. Assume now further that the a
tarily varying sourceP is stable under this induced action:

;pPP pgPP. ~121!

@In the ‘‘known source’’ case,P5$p%, this simply means thatp(gi)5p( i ) for all i PI and g
PG.#

By the formula for the trade-off curve, Eq.~103!, we may assume thatP is convex. Letting
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PG
ª$pPP:;gPGpg5p%, ~122!

we can then prove the following.
Theorem 9.1:For any G-invariant state set and AVSP,

M ~E,P,R!5M ~E,PG,R!. ~123!

Proof: The lhs is by definition greater than or equal than the rhs.
For the opposite inequality we make use of the ‘‘restricted concavity’’ given in propos

5.2. For the rotationsUg applied with equal probabilities to the ensemble (E,p), we get

M S ø
g

UgEUg
† ,

1

uGu (g
pg,RD>

1

uGu
M ~UgEUg

† ,pg,R!5M ~E,p,R!. ~124!

Note that (1/uGu) (gpgPPG and, since the state set isG invariant, we haveøgUgEUg
†5E, which

proves our claim. h

If G acts transitively, this leads to a dramatic simplification of the formula for the AV
trade-off curve~Theorem 6.1!: in this case the onlyG-invariant distribution is the uniform distri-
bution, so from Theorem 6.1 we obtain the following.

Corollary 9.2: For an AVS(E,P) with transitive group action under whichP is stable, (e.g.,
for P5PE), we have

Q* ~R,P!5M ~E,u,R!,

where u is the uniform distribution onE. h

The particular example ofE being the set of all pure states onH andP being the set of all
distributions onE is arguably the setting forthe trade-off between classical and quantum bits:
trade-off coding becomes a statement solely about states, with no mention of prior probab
Of course we have not yet justified the application of our results to infinite state sets
corresponding but more involved treatment of the coding bounds will be given in Sec. X.

Given this generalization to infinite state sets, we conclude that theabsolute trade-offfor pure
states onH is given byM (P(H),u), with the uniform~i.e., unitarily invariant! measureu on the
setP(H) of all pure states. The Devetak-Berger curve introduced earlier corresponds to th
H5C2.

Remark:From the proof of Theorem 9.1, we see that we may always restrict the clas
encodingsp(•u•) to be group covariant as well, in the sense that, for eachj PJ, the distribution
q(•u j ) has the property that for eachgPG there exists aj 8 satisfying qj 85qj and q(giu j )
5q( i u j 8) for all i PI:

Define a new encodingp8 by letting

p8~ j ,gugi !ª
1

uGu
p~ j u i !. ~125!

For aG-invariant distributionp on the ensemble states this does not change the values ofS(A:C)
andS(A:BuC). However, the resulting probabilitiesqj ,g8 5qj andq8(giu j ,g)5pip( j u i )/qj ,g8 have
a useful property: there is a group action ofG on the indices (j ,g) under which the distributionq8
is invariant, and the set of conditional distributionsq8(•u j ,g) is stable. More precisely,h acts on
( j ,g) by h•( j ,g)5( j ,hg). Obviously,q8 is invariant under this, and

q8~giuh•~ j ,g!!5q8~giu j ,hg!5q8~h21hgiu j ,gh!, ~126!

saying thatq8(•uh•( j ,g))5(q8(•u j ,hg))h.
Hence, when discussing optimal codings given byqj andq(•u j ) such that( jqjq(•u j )5p, we

may always assume thatG also acts on the set ofj ’s, and that
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; j ;g qg j5qj and q~•ug j !5~q~•u j !!g. ~127!

h

We close this section by giving a bound on the size of the classical register for a
ensemble with symmetry, which sometimes improves our earlier result in Proposition 3.4:

Proposition 9.3: Let the group G act on the ensembleE5$w i ,pi% i PI in the way described a
the beginning of this section, and assume that p is G-invariant. If the group action partitionsI
into t G-orbits, then for every R there exists a classical encoding p(•u•):I→J which is covariant
in the above sense, and satisfies

uJu<uGu~ t11!, S~A:C!<R, S~A:BuC!5M ~E,R!.

In fact, J partitions into t11 G-orbits, in the sense described above.
The proof is given in the Appendix, Sec. 6
Example:Let E consist of any two states:E5$uw i&% i 51

2 . By choosing a reflection that swap
uw1& and uw2&, we get a transitiveZ2 action on the indicesi . Therefore, for the AVS (E,PE), we
haveQ* (R,P)5M (E,u,R), whereu is the uniform distributionpi5

1
2. This distribution is clearly

G-invariant, so Proposition 9.3 ensures that there is an optimal encoding for whichJ partitions
into at mostt1152 orbits, each of size either 1 or 2. h

Example:For states in the BB84 ensembleEBB(u), the groupZ23Z2 acts transitively via
reflection along theu/2 axis and rotation byp/2. Therefore, once again, the unrestricted AVS c
be reduced to the uniform ensemble, for which the optimal encoding can be assumedG-covariant,
with J partitioning into at most two orbits of length 1, 2 or 4. h

X. INFINITE SOURCE ENSEMBLES

It should be noted that, even in the technical parts of our proofs, and, indeed, in the
statements of thecoding theorems, we assumed that the sets of states under consideration
finite.

As there are interesting examples of ensembles with infinite state sets, including perhap
notably the whole manifold of pure states in a Hilbert space, we show here how a certain ap
mation technique~used in Ref. 25 to deal with coding for nonstationary quantum channels! can be
used to transfer our main results quite directly. The procedure, unfortunately, is not en
painless; we have to go through the proof of Proposition 4.1 again with a modified and
technical version of the typical subspace. That is why we have chosen to treat the infinite
case separately, confining the details to this section.

A. Formulation of information quantities and the lower bound

To be able to consider infinite ensembles and encodings, we have to reformulate our n
from Secs. II and III in terms of general measure spaces~for the background and terminology se
any textbooks on probability, such as Ref. 35, and measure theory34!:

The source ensembleE is described by a measure spaceV ~with probability measureP!, and
a measurable mapw:V→P(H),S(H) from V into the set of pure states on the Hilbert spaceH
~which is still of finite dimensiond!, mappingvPV to uwv&^wvu. We can then easily define
encoding and decoding (E,D) for blocks of lengthn:

E:Vn→S~HB!3VC , ~128!

D:B~HB! ^ B~,2~VC!!→B d
^ n , ~129!

whereE is a Markov kernel,VC is afinite set, andD is CPTP. The quantification of classical an
quantum resources we adopt unchanged, and the fidelity condition reads as follows: the co
encoding and decoding gives rise to a Markov kernel

D+E:Vn→B d
^ n , ~130!
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and, using the abbreviation

~D+E!~v1¯vn!5E
B(HB)

~D+E!~dsuv1¯vn!s, ~131!

we require that

F5E
Vn

P^ n~dv1¯vn!F~wv1¯vn
,~D+E!~v1¯vn!!>12e. ~132!

Let us denote bym the measure induced byP and this Markov kernel onV3S(HB)3VC :

m~FA3GBC!ªE
FA

P~dv!E~GBCuv!. ~133!

We denote its restrictions~marginals! to factorsVA5V, S(HB), VC by P5mA , mB , qªmC ,
respectively, and analogouslymAC , etc.

With the help of Radon–Nikodym derivatives we can always construct the Bayesian
verse’’ Markov kernel

q:VC→VA3S~HB! ~134!

that gives rise to the same joint distribution:

E
GC

mC~dj !q~FABu j !5m~FAB3GC!. ~135!

In fact, mC-almost everywhere,

q~FABu j !5
dm~FAB3$ j %!

dmC~ j !
. ~136!

To follow the procedure of Sec. III we have to define the relevant information quantities~for
their properties, see Refs. 36 and 37!:

First, S(A:C) can be expressed asD(mACimA^ mC), in terms of the relative entropy~or
Kullback–Leibler divergence! of two measures

D~mil!ªE m~dx!logS dm~x!

dl~x! D , ~137!

where dm(x)/dl(x) denotes the Radon–Nikodym derivative. If this does not existm-almost
everywhere, we defineD(mil)5`. It is a fact that in Eq.~137! the Radon–Nikodym derivative
always exists, and it can be checked that in the finite case the new definition coincides w
old.

Second,S(A:BuC)5*VC
q(dj )S(A:BuC5 j ), with S(A:BuC5 j ) denoting the quantum mu

tual information associated to the conditional probability measureq(•u j ) on VA3S(HB): for any
such distributionl, with first marginallA and Markov kernelL:VA→S(H),

Sl~A:B!5SS ES(H)
lB~ds!s D 2E

VA

lA~dv!SS ES(H)
L~dsuv!s D . ~138!

Again, it is possible to check that for discrete probability spaces we obtain the same expre
as before.
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The proofs of Lemmas 3.1 and 3.2 and of Theorem 3.5 are directly adapted to this lang
essentially replacing all sums representing probability averages by integrals.~Note that even the
‘‘continuity in e’’ part in the latter applies as the functionsf andg depend only one andd.! This
is possible since the monotonicity and convexity properties we used are still true in the in
setting.

At the end of the proof we arrive at encodings mappingvPV to uwv&^wvu ^ ( j p( j uv)u j &
3^ j u ~i.e., the corresponding Markov kernel mapsi to the point mass atuwv&^wvu times a discrete
measure onVC!. Such encodings we denote ‘‘p:VA→VC , ’’ and we get

Q* ~R!> inf
p:VA→VC ,uVCu,`

$S~A:BuC!:S~A:C!<R%. ~139!

Dropping the finiteness ofVC can only decrease the lower bound, and we arrive at
following general version of Theorem 3.5:

Theorem 10.1:For the ensembleE5(V,P,w),

Q* ~R!>M ~E,R!ª inf
p:VA→VC

$S~A:BuC!:S~A:C!<R%,

with

S~A:C!5D~miP^ q!,

S(A:BuC)5E
VC

q(dj )SS E
VA

q(dvu j )uwv&^wvu D ,

wherem is the measure onVA3VC induced by P and the Markov kernel p(•u•), q is its marginal
on VC and q(•u•) is the Bayesian Markov kernelVC→VA . h

B. Adaptation of the coding theorem

The obstacles to an application of our coding scheme, Proposition 4.1, are the pote
infinite range of the source register~V! and the classical encoding (VC). Of course, when in the
previous subsection we allowed the latter to be infinite, we only madeM smaller, and at that poin
it was not clear that this was a good move.

The purpose of the present subsection is to show that it is possible to approximate the
of an infinite encoding by a strictly finite one: finitely many possible states onH and finitely many
classical symbols. This will inevitably introduce some error, which we will have to counter
suitably adapted notion of typical subspace.

Lemma 10.2: Fore.0 there exists a partition ofS~H! into m<C(d)e2d2
Borel sets each of

which has radius at moste: in each partSi there exists a states i such that for allrPSi , ir
2s i i1<e. The constant C(d) depends only on d.

Proof: The set of states onH is affinely isomorphic to the set of positive comple
d3d-matrices with trace 1, which is contained in the set of self-adjoint complex matrices wi
d2 real and imaginary parts of entries in the interval@21,1#: this is ad2-dimensional hypercube
This can be partitioned into (2&d3)d2

e2d2
many small hypercubes of edge lengthe/(d3&). It is

easy to check that for anyr,s in the same small cube,ir2si1<e. h

For a source (V,P,w) such a partition entails a partitionZ of V into at mostm measurable
piecesZi , with v iPZi such thatuwv i

&^wv i
u5s i . ~We need only consider pieces that intersect

image ofw.! A central role will be played by the ‘‘contraction’’ of the infinite ensembleE to the
finite ensembleE85$wv i

,P̂( i )5P(Zi)% which is obtained by identifying all ofZt to the single
statewv i

.

We have already defined the set ofP̂-typical sequencesTP̂,d , and now can define the follow
ing typical set forP:
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T P,d
Z

ª ø
I PTP̄,d

Zi 1
3¯3Zi n

. ~140!

It obviously inherits the large probability property ofTp8,d :

P^ n~T P,d
Z !>12

1

d2 . ~141!

Before we can describe the coding scheme we have to introduce a variant of the cond
typical sequences and subspaces: for a channelW:I→J andd,e.0 define

T W,d
(e) ~ I !ª$J:; i j uN~ i j uIJ !2N~ i uI !W~ j u i !u<dAN~ i uI !1eN~ i uI !%. ~142!

~Our previous notion is recovered withe50, and in the sequele will be small, compared tod
which we shall choose large.! Observe that this is a union of conditional type classes. Using
~78! it is quite easy to show that

uT W,d
(e) ~ I !u<~n11! uIuuJu expS nH~WuPI !1(

i
N~ i uI !uJuh~e1dN~ i uI !21/2! D

<~n11! uIuuJu exp~nH~WuPI !1nuJuh~e!1nh~duIu/An!!, ~143!

where we have used the inequalityh(x1y)<h(x)1h(y) and concavity ofh.
Similarly, for a collection of statesWi , which we endow with fixed diagonalizationsWi

5( j 51
d W( j u i )uej u i&^ej u i u, we can define the projector

PW,d
(e) ~ I !ª (

JPT W,d
(e) (I )

ueJuI&^eJuI u, ~144!

and get from Eq.~143! the estimate

TrPW,d
(e) ~ I !<~n11!duIu exp~nH~WuPI !1ndh~e!1nh~duIu/An!!. ~145!

Its other most important property that we shall use is the following: consider a product sts
5s1^¯^ sn such that, with someI 5 i 1¯ i n ,

; i I 1

N~ i uI ! (
k: i k5 i

sk2Wi I
1

<e. ~146!

Then we claim that

Tr~sPW,d
(e) ~ I !!>12

uIu
d2 . ~147!

The proof goes as follows: the left hand side above does not change if we replacesk by sk8
ª( j uej u i k&^ej u i k

uskuej u i k&^ej u i k
u, because the projector is a sum of one-dimensional projec

ueJuI&^eJuI u. Thus we may assume thatsk has diagonal form in the chosen eigenbasis ofWi k
:

sk5( jSk( j )uej u i k&^ej u i k
u.

Note that the left hand side of Eq.~147! can be rewritten as (S1^¯^ Sn)(T W,d
(e) (I )), a

classical probability. Now it is immediate from the definition of the latter set@Eq. ~142!# and from
the condition~146! on s that

T W,d
(e) ~ I !.TS̄,d~ I !, ~148!
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with the channelS̄( j u i )5 @1/N( i uI )# (k: i k5 iSk( j ). Hence

~S1^¯^ Sn!~T W,d
(e) ~ I !!>~S1^¯^ Sn!~TS̄,d~ I !!>S 12

1

d2D uIu

>12
uIu
d2 , ~149!

the second line by Chebyshev’s inequality.
After these preparations we are ready to prove the infinite source version of Propositio
Proposition 10.3: LetE5(Va ,P,w) be a source. For a probability distribution P onV and a

Markov kernel p(•u•):VA→VC , e.0, there exists a partitionZ of VA into m21,C(d)e2d2

measurable sets, corresponding to ane-fine partition of the state space, and ford.0 a visible
code(E,D) such that

;v5~v1¯vn!PT P,d
Z F~ uwv&^wvu,~D+E!~v!!>12

4m2

d2 .

and sending

nS~A:C!1nKm2h~d/An!1K8m2 log~n11! classical bits,

nS~A:BuC!1n~3dm2h~2dm2/An!13dh~e!!1dm log~n11! quantum bits.

Proof: We can find the partition by Lemma 10.2 and the discussion thereafter.
Consider now the~measurable! coarse-graining map

T:v° i P$1,...,m21%for vPZi . ~150!

Applying T to VA @and the identity map toB(HB) and VC# leads to a new distributionm8 on
VA83B(HB)3VC , with VA85$1,...,m21%. By the data-processing inequality23,37 we have

S~A8:C!<S~A:C! and S~A8:BuC!<S~A:BuC!. ~151!

Next we change the quantum part of the encoding by collecting all the weight of a pieZi

into w iªwv i
: we can do this by a similar coarse-graining map

T̃:s°uw i&^w i u for sPZi . ~152!

The resulting distribution will be denoted bym9: it is supported on a finite setVA8 and a finite set
of statesw i ~in fact, the ‘‘contracted’’ ensembleE8 of the discussion after Lemma 10.2!. It is
generated by a Markov kernelp̂:VA8→VC , which in this case is simply a finite collection o
~conditional! distributionsp̂(•u i ) on VC . Note that this is a valid encoding in the sense of t
definition of M (E8,R), in the main section. Let us denote the corresponding conditional qua
mutual information byS(A8:B8uC).

By definition of S(A8:BuC) and the partitionZ, we have

S~A8:B8uC!<S~A8:BuC!12dh~e/d!, ~153!

using Fannes’ inequality~52! twice.
To end this step-by-step discretization, we may change the encoding to a stochastic

p8:VA8→$1,...,m%5:VC8 , by the considerations of Sec. III~see also Proposition 9.3!, such that

S~A8:B8uC8!<S~A8:B8uC! and S~A8:C8!5S~A8:C!. ~154!

So, finally, we are in a position to apply the coding method of Proposition 4.1, with the
difference that we use for the quantum encoding the projectorPp8,d

(e) (I ) instead of our previous
conditional typical projector, andI is such thatv1¯vnPZI .
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The fidelity estimate is obtained just like there, only using Eq.~147!. The classical rate
estimate we copy from Proposition 4.1, and for the quantum rate estimate, we follow its deri
in the proof, using Eq.~145! to estimate the range of the projectorsPp8,d

(e) (I ): we have to send

nS~A8:B8uC8!1n~3dm2h~2dm2/An!1dh~e!!1dm log~n11! ~155!

quantum bits, which, by Eqs.~151!–~154!, yields our desired estimate. h

This immediately leads to the result that we wanted:
Theorem 10.4:For any ensembleE5(V,P,w),

Q* ~R!5M ~E,R!.

Proof: ThatM (E,R) is a lower bound toQ* is proved by Theorem 10.1. For its achievabili
choosee.0 and a Markov kernelp such that bothS(A:C)<R andS(A:BuC)<M (E,R)1e.

Choose now a partitionZ according to Proposition 10.3, fixingm. Now choosed large
enough, so that according to that proposition a code exists which has fidelity 12e on a state set
of probability 12e, i.e., it has average fidelity 122e on the ensemble. By the proposition it ha
cbit rateS(A:C)1o(1) and qubit rate

S~A:BuC!12h~e!1o~1!<M ~E,R!12h~e!1e1o~1!, ~156!

asn→`. As e was arbitrary, our claim is proved. h

C. On the AVS in the infinite setting

With the help of the above Proposition 10.3 the case of an arbitarily varying source
infinite ensemble is dealt with easily, in much the same way as we did in the finite case~see Sec.
VI !:

Formally, of course, an arbitrarily varying source is a triple (V,P,w), whereV andw are a
measurable space and a measurable map into states, as before, andP is a set of probability
distributions onV.

With the definitions of encoding and decoding from Sec. X A we require

;PnPPnE
Vn

P^ n~dv1¯vn!F~ uwv&^wvu,~D+E!~v!!>12e. ~157!

Denoting the trade-off function asQ* (R,P), we obtain the expected result:
Theorem 10.5:Q* (R,P)5M (P,R), with

M ~P,R!5 sup
PPQ

M ~P,R!,

whereQ5conv(P) is the convex hull ofP.
Proof: The inequality ‘‘> ’’ is obvious, like in the finite case: the adversary can certai

always mock up an i.i.d. sourcePPQ, hence Theorem 10.1 applies.
For the opposite inequality, we start by choosing ane.0 and a partitionZ according to

Proposition 10.3. Every distributionP in P gives rise to a distributionP̂PPm21 , and we denote

P̂ª$P̂:PPP%. ~158!

Note that, because the mapP° P̂ is affine linear, we getQ̂5conv(P̂).
Now for d.0 we introduce again the set

Tª 
P̂PQ̂

TP̂,d , ~159!
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and it is easy to see@compare Eq.~141!# that

T Z
ª ø

I PT
Zi 1

3¯3Zi n
~160!

carries 12d22 of the probability of everyPnPPn. On the other hand, becauseT is a union of
type classes, we can find ‘‘few’’P̂1 ,...,P̂T , T<(n11)m such that the correspondingTP̂t ,d cover
T. The coding is very simple: on seeing a statewv1 ...vn

the encoder finds the indexI of the piece
ZI in the partitionZ n such thatv1¯vnPZI , and the type ofI . If I PT, he looks upt such that
I PTP̂t ,d and uses the coding scheme of Proposition 10.3 forP̂t . ~Note that he needs not even se
the type ofI as that is part of the protocol of Proposition 10.3.! Choosingd large enough this
recipe gives a code with high fidelity for everyPnPPn; by construction and Proposition 10.3,
has rates ofR1o(1) cbits andM (P,R)1 f (e)1o(1) qubits, with a functionf (e) that tends to 0
ase→0. h

To end this discussion, we would like to point out that a similar treatment of remote
preparation can be done: in fact, as we discussed in Sec. VIII, we always use the ‘‘
11 cbit per qubit’’ technique~Theorem 8.1! on top of an efficient trade-off coding. To do this fo
an infinite ensemble one only has to understand that the bound of Theorem 8.1 is strong
to allow approximation of the set of projected~compressed! product stateswv1

^¯^ wvn
, at

negligible additional classical cost.

XI. DISCUSSION AND CONCLUSIONS

Our main result is a simple formula for the trade-off between quantum and classical reso
in visible compression. The formula expresses the trade-off curveQ* (R) in terms of a single-
letter optimization over conditional probability distributions of bounded size. This unexpec
simple resolution places optimal trade-off coding into a small but growing class of problem
quantum information theory whose answers are not only known in principle but can be calc
in practice.~Another notable recent addition is the entanglement-assisted capacity of a qu
channel.22!

At a conceptual level, for any given ensembleE of quantum states,Q* (R) can be thought of
as a quantitative description of how ‘‘classical’’ the ensemble is. Any deviation from classical
captured in the trade-off curve in the form of inefficiency of the classical storage. The amou
information that can be extracted from many copies ofE while causing negligible disturbance, fo
example, can be read directly off the curve by identifying the point at which classical reso
begin to become inefficient as compared to quantum. Much more subtle indicators of class
are also available inQ* (R), however. We saw, for instance, that for the parametrized BB
ensemble,Q* (R) had a kink at the point corresponding to partitioning the ensemble into ne
orthogonal subensembles.

Going beyond the compression of ensembles, we saw that it is possible to formulate a v
of our main result in the setting of arbitrarily varying sources, corresponding to the situati
which the encoder and decoder have only partial or even no knowledge of the distribution of
states. Despite this handicap, compression is frequently still possible and we once again fi
the trade-off curve can be calculated via a tractable optimization problem. For ensemble
symmetry, the problem can even often be reduced to calculatingQ* (R) for one particular en-
semble. Thus, for any given set of pure states, including the whole manifold of states on a
Hilbert space, these tools allow us to calculate the rate of exchange from qubit storage to cl
storage. The answer is given, of course, not in terms of a single number but as the trade-off
~Like in any market, the going rate depends on supply.!

Our view thatQ* (R) encodes the balance of quantum and classical information in a g
ensemble or set of states is further bolstered by the role it was found to play in optimal re
state preparation. In this context, the minimal amount of classical communication required fo
given rate of entanglement consumption can, once again, be read directly off the qua
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classical trade-off curve. That the comparatively exotic process of remote state preparation
reduce, via Theorem 8.1, to visible compression is a tremendous simplification.

Of course, while we have seen that the results of this article resolve some basic que
about trading different types of resources in quantum information, most related questions r
open. To begin, it is possible to trade entanglement, quantum communication and classica
munication all together in a generalized type of remote state preparation. Since our resul
describe the two extremes when first entanglement and then quantum communication a
permitted, it seems likely that similar techniques could resolve the full trade-off surface.
ambitiously, one could define channel capacities for noisy quantum channels that inter
between the fully quantum and classical capacities by studying the usefulness of a chan
simultaneously sending quantum and classical information. The problem analogous to the
off question studied here would be to determine the achievableregion of quantum-classical rate
pairs. Unfortunately, given that neither the fully classical nor fully quantum extremes are
understood, it may be a long time before we develop tools capable of analyzing that probl

Therefore, to end, we offer two related open problems that are perhaps closer to the re
the tractable. First, it would be useful to have a set of rules for extracting qualitative features
trade-off curve, such as the location of any kinks and perhaps more detailed differentia
properties, from the structure of the input states~or ensemble!. Second, it would be an interestin
challenge to apply the observations of Sec. IX on symmetry to the explicit calculation o
trade-off curve for particular examples and, more generally, to find other approaches to sim
ing these calculations.
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APPENDIX: PROOFS OF AUXILIARY PROPOSITIONS

1. Proof of Proposition 3.3

Proof: Suppose the classical registerC decomposes into partsC1 andC2 with corresponding
joint density operator

rABC1C25(
i

pi u i &^ i uA
^ uw i&^w i uB^ (

j ,k
p~ i u j ,k!u j &^ j uC1^ uk&^kuC2. ~A1!

If we define the conditional ensemblesEjk andEj , then

S~A:BuC1C2!5(
jk

qjkS~Ejk!<S~A:BuC1!5(
j

qjS~Ej ! ~A2!

by the concavity of the von Neumann entropy.
Therefore, for any map withS(A:C1),R<H(p), we can always adjoin a second classic

registerC2 such thatS(A:C1C2)5R without increasing the conditional mutual information.h

2. Proof of Proposition 3.4

Proof: W.l.o.g. let i P$1,...,m%. The information quantities in the definition ofM can be
reexpressed as follows:

S(A:BuC)5(
j

qjSS (
i

q( i u j )uw i&^w i u D , ~A3!
                                                                                                                



al
.
-
e
ide

gs

ical

s are

4441J. Math. Phys., Vol. 43, No. 9, September 2002 Trading quantum for classical resources

                    
S~A:C!5H~p!2(
j

qjH~q~•u j !!, ~A4!

with qj5( i pip( j u i ) andqjq( i u j )5pip( j u i ). We readq as a probability distribution on the setPm

of all probability distributions on$1,...,m%. Thus the minimization problem in the definition ofM
can be expressed as finding the infimum of( jqjS( f (q(•u j ))) over the set

P~p,R!5H qp.d. on Pm :(
j

qjq~•u j !5p,(
j

qjH~q~•u j !!>H~p!2RJ ,

where f is an affine linear function on probability distributions, mapping the distributionp to the
quantum state( i pi uw i&^w i u.

Now we argue structurally: the setP(p,R) is convex~as a subset of an infinite dimension
probability simplex with additional linear inequality constraints!, and the aim function is linear
Hence the infimum is an infimum over the extreme points ofP(p,R), which are, by Caratheodo
ry’s theorem, distributionsq with support at mostm11, the number of inequalities that defin
P(p,R),P(Pm) ~see, e.g., Ref. 38!. In Sec. IX, Proposition 9.3 and Appendix, Sec. 6, we prov
a detailed exposition of a more general form of this result. h

3. Proof of Proposition 5.1

Proof: The ‘‘< ’’ inequality follows directly by forming the tensor product of two encodin
for E1 andE2 with classical ratesR1 andR2 respectively.

The ‘‘> ’’ inequality is shown by choosing an encoding for the tensor product with class
rate R and then using the chain rule several times for subdivisionsA5A1A2 and B5B1B2 as
follows. First observe that

R>S~A1A2 :C!5S~A1 :C!1S~A2 :CuA1!5:R11R2 ~A5!

and then

S~A1A2 :B1B2uC!5S~A1 :B1B2uC!1S~A2 :B1B2uC,A1!

>S~A1 :B1uC!1S~A2 :B2uC,A1!

>M ~E1 ,R1!1 inf$S~A2 :B2uC,A1!:S~A2 :CuA1!<R2%

>M ~E1 ,R1!1M ~E2 ,R2!

>min$M ~E1 ,R1!1M ~E2 ,R2!:R11R25R%. ~A6!

The second last line is seen as follows: in the line above it, the two mutual information
conditional onA1 , so they both can be written as averages over the values ofA1 . Hence the
inequality follows by the convexity ofM in R. h

4. Proof of Proposition 5.2

Proof: It is sufficient to verify that any encoding operator

rABC5(
ik

piaku i &^ i uA^ uk&^kuA^ Ukuw i&^w i uUk
†B

^ (
j

p~ j u i ,k!u j &^ j uC ~A7!

for F gives rise to a valid encoding operator

sABC5(
i

pi u i &^ i uA^ uw i&^w i uB
^ (

jk
p( j u i ,k)aku j &^ j uC

^ uk&^kuC ~A8!
                                                                                                                



emble

is

quality

o-

4442 J. Math. Phys., Vol. 43, No. 9, September 2002 Hayden, Jozsa, and Winter

                    
for E satisfyingSs(A:BuC)<Sr(A:BuC) andSs(A:C)<Sr(A:C). h

5. Proof of Proposition 7.2

Proof: We will first prove the proposition for irreducibleE. Using a trick introduced by
Holevo,14 we can reduce the problem further to the case of a two-state ensemble: for an ens
$r i

B
^ s i

C ,pi% of states~we assume that allpi.0! and two specific indicesk and l , define a new
index

j ~ i !ªH i i Þk,l ,

* i P$k,l %.
~A9!

~Of course, in the case we have in mind, ther i are the pure states from the ensembleE, and the
s i are commuting mixed states representing the classical information.! Then consider the multi-
partite state

V5(
i

pi u i &^ i uA1^ u j ~ i !&^ j ~ i !uA2^ r i
B

^ s i
C .

The definition ofj ( i ) and the familiar chain rule imply

S~A1 :BC!5S~A1A2 :BC!5S~A2 :BC!1S~A1 :BCuA2!. ~A10!

Note that the second term is an average over the values ofj ( i ) of Holevo quantities for the
corresponding reduced ensembles. Therefore, it has only one nonzero contribution, which

S~A1 :BCuA2!5~pk1pl !x~$r i ^ s i ,pi /~pk1pl !% i 5k,l !. ~A11!

Then, using Eq.~A10! and monotonicity ofx under partial trace repeatedly,

x~$pi ,r i ^ s i%!5S~A1 :BC!5S~A2 :BC!1S~A1 :BCuA2!

>S~A2 :B!1~pk1pl !x~$r i ^ s i ,pi /~pk1pl !% i 5k,l !

>S~A2 :B!1~pk1pl !x~$r i ,pi /~pk1pl !% i 5k,l !

5S~A2 :B!1S~A1 :BuA2!5S~A1 :B!5x~$r i ,pi%!.

Assuming that the first and the last Holevo quantities have the same value, we must have e
in the third line, implying

x~$r i ^ s i ,qi% i 5k,l !5x~$r i ,qi% i 5k,l !, ~A12!

with qi5pi /(pk1pl). Then, applying the general formula

x~$v i ,pi%!5(
i

piD~v i iv! ~A13!

to Eq.~A12!, with v5( i piv i andD the relative entropy function, and using the Lindblad mon
tonicity once more yields

D~rk^ skiqkrk^ sk1qlr l ^ s l !5D~rkiqkrk1qlr l !. ~A14!

~And likewise for l .!
With this we are almost done: invoking a result of Ohya and Petz~see Ref. 37, Theorem 9.12!

we conclude that there exists a CPTP mapR such that
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R~rk!5rk^ sk , ~A15!

R~qkrk1qlr l !5qkrk^ sk1qlr l ^ s l , ~A16!

from which it follows by linearity that

R~r l !5r l ^ s l . ~A17!

Since CPTP maps~R and TrC! cannot decrease fidelity we thus must haverk'r l or sk5s l .
In the particular case that the initial ensemble is irreducible we conclude that alls i must be

equal, or else the partial trace overC strictly decreases the Holevo quantity. If the ensembleE is
not irreducible, a simple variation on the previous argument shows that, for each of the irred
subensemblesEl , x(El) must be equal tox of the corresponding subensemble$w i l ^ s i l ,pi u l% of
F BC. Applying our conclusions to these subensembles finishes the proof of the propositionh

6. Proof of Proposition 9.3

Proof: As explained earlier in the proof of Proposition 3.4, any classical encoding map c
viewed as a probability distributionq on the setPI of probability distributions onI with bary-
centerp: p5( jqjq(•u j ).

Covariance of the encoding means invariance ofq under the natural action ofG on PI , i.e.,
g:p°pg. Hence for each distributionp in the support ofq we must have all thepg in the support
as well. On the other hand, we need far fewer conditions to obey, as it will turn out:

Assume that the covariant encoding is given by the distributions

~q~•u j !!g with probability
1

uGu
qj , gPG, j 51,....

Now choose representativesi 1 ,...,i t of the orbits, and observe that~by G-invariance!

(
j ,g

1

uGu
qj~q~•u j !!g5p ~A18!

if and only if

;t51,...,t (
j ,g

1

uGu
qjq~g21i tu j !5p~ i t!. ~A19!

Similarly, S(A:C)<R if and only if

(
j

qjH~q~•u j !!>H~p!2R, ~A20!

and, finally, our aim function reads

S(A:BuC)5(
j ,g

1

uGu
qjSS (

i
q( i u j )uwgi&^wgiu D . ~A21!

Now consider the affine linear map fromPI to Rt11 defined by

A:p°S H~p!;
1

uGu (g
p~g21i t!:t51,...,t D . ~A22!

Note that the image of this map is in a certaint-dimensional subspace because, ift21 of the
conditions~A19! are satisfied, then thetth is also, automatically. Equations~A19! and ~A20! are
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really conditions on theqj -weighted average of the imagesAj5A(q(•u j )), A5( jqjAj . By Cara-
theodory’s theorem38 the same average can be obtained by convex combination oft11 of these,
i.e., by a distributionq8 on thej ’s with support containing at mostt11 points. In fact,q is easily
seen to be expressible as a convex combination of such small support distributions, sayq8(a) with
weightsla .

To conclude, we observe that our aim function in Eq.~A21! is linear in the distributionq:
hence, it is thela–weighted sum of similar such expressions withq8(a) in place ofq. For one
value of a at least this is smaller thanS(A:BuC), the correspondingq8(a) satisfies( jq8(a)Aj

5A, and hence Eqs.~A19! and ~A20!. As explained in the remark preceding the statemen
Proposition 9.3, to obtain aG–covariant encoding we can split up eachq(•u j ) ~with j in the
support ofq8(a)) into theG translated distributions (q(•u j ))g, proving the claim. h
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Efficient discrete approximations of quantum gates
Aram W. Harrow,a) Benjamin Recht,b) and Isaac L. Chuangc)
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Quantum compiling addresses the problem of approximating an arbitrary quantum
gate with a string of gates drawn from a particular finite set. It has been shown that
this is possible for almost all choices of base sets and, furthermore, that the number
of gates required for precisione is only polynomial in log 1/e. Here we prove that
using certain sets of base gates quantum compiling requires a string length that is
linear in log 1/e, a result which matches the lower bound from counting volume up
to constant factor. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1495899#

I. INTRODUCTION

Quantum computation generalizes computer science to utilize novel quantum physic
sources as elementary building blocks for information processing.1–4 Quantum algorithms, like
their classical analogs, can be written in a number of nearly equivalent ways. While a cla
program is typically composed of a series of simple boolean functions, such asNAND andFANOUT,
a quantum algorithm is typically written as a product of unitary gates, such as the Hada
transformH, the controlled-NOT ~CNOT!, and thep/8-gateT.5 For classical computers, a commo
problem is that of compiling a program, in which one typically wishes to express the progra
as few elementary operations as possible. By analogy, we can raise the principal quest
quantum compiling: Which sets of gates can be composed to form what sorts of quantum
rithm, how many of them are necessary, and what efficient algorithms can be devised to e
quantum programs in terms of a particular set of base gates?

Mathematically, a gate onn quantum bits~qubits! is represented by a unitary transformatio
on a 2n-dimensional vector space. We will denote the set of all determinant-one unitary tran
mations of ad-dimensional vector space by SU(d). This space is a manifold and is hence para
etrized by acontinuumof real parameters; for example, the 232 unitary transforms

S eia cosu eib sinu

2e2 ib sinu e2 ia cosu D ~1!

parametrized bya, b, u represent the group SU~2! of valid single qubit gates.
In contrast, digital quantum algorithms compute with only afinite setof base gates~such as

those mentioned previously:H, T, and CNOT!. This is a reasonable restriction in real circu
implementations, since the presence of noise reduces the number of reliably distinguishabl
to a finite subset of the continuous set. Finite gate sets are also intrinsic to fault-tolerant qu
computation, the art of constructing arbitrarily reliable circuits from unreliable parts.6–9 Thus, in
general we do not desire perfect computational universality, but only the ability to approx
any quantum algorithm, preferably without using too many more gates than originally requ

A set of base gatesA,SU(d) is computationally universalif given any gateU, we can find
a string consisting of gates fromA and their inverses, such that the product of the gates in

a!Electronic mail: aram@mit.edu
b!Electronic mail: brecht@media.mit.edu
c!Electronic mail: ichuang@media.mit.edu
44450022-2488/2002/43(9)/4445/7/$19.00 © 2002 American Institute of Physics
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string approximatesU to arbitrary precision. Equivalently,A must generate a dense subgroup
SU(d).

Which sets of base gates are computationally universal? It turns out that probabilis
speaking, almost all of them are.10,11 If base gates are chosen at random, then all but a se
measure zero are computationally universal. The idea is that if the eigenvalues of the bas
have phases that are irrationally related top ~which occurs with probability one!, then taking
powers of them allows each base gate to approximate a one-parameter subgroup to a
precision, just as integer multiples of a random vector modulo a lattice will almost alway
space. Furthermore, the base gates will almost always lie on different one-parameter sub
which will generate all of SU(d) with probability one.

Given that compiling is generically possible, it is vital to determinehow short a string of base
gates is typically required to approximate a given gate to a specified precision; this is the question
we consider in this article. The construction described by Lloyd10 requires using a number of bas
gates exponential in log 1/e to achieve a precision ofe. This is an unreasonable cost for man
applications. However, Solovay12 and Kitaev13 have independently described an efficient~mean-
ing its running time is polynomial in log 1/e! algorithm for quantum compiling that produce
strings of length onlyO(logc(1/e)), wherec is a constant between 3 and 4.14 The algorithm works
by constructing successively finere-nets; finite sets of gates that can approximate any elemen
SU(d) to an accuracy ofe.

On the other hand, as we will later discuss, since a ball of radiuse in SU(d) has volume
proportional toed221, it takesO((1/e)d221) different strings of gates to approximate every e
ment of SU(d) to a precision ofe. Therefore, no algorithm will ever be able to reducec below 1.
Furthermore, it is unlikely that the successive approximation method used by the Solovay–
theorem will be able to do better thanc52.14 This still leaves open the question of whether so
other technique could establish an upper bound asymptotically smaller than the one achie
the Solovay–Kitaev theorem.

Here, our main result is that for at least some universal sets of base gates onlyO(log 1/e)
gates are sufficient to approximate any gate to a precisione ~i.e., c51!. This is within a constant
factor of the lower bound obtained from counting arguments. We say that these base gates
only computationally universal, but alsoefficiently universal, since using them for quantum com
piling requires a string length that is optimal up to a constant multiplicative factor.

We present this result as follows. The set of strings from a fixed computationally univers
of base gates covers SU(d) increasingly densely and uniformly, as the string length grows.15 First,
in Sec. II, we quantify how quickly this occurs by introducing a framework for comparing
distribution of strings with the uniform distribution. We use this formalism in Sec. III to iden
a condition on base sets that implies their efficient universality. In Sec. IV we then combin
condition with results from the literature to show that efficiently universal gate sets exis
Hilbert spaces of any finite dimension. In Sec. V we discuss lower bounds for compilation
demonstrates the optimality of the result; we conclude with open questions and further dire

II. PRELIMINARIES

We begin by developing a metric of how well strings drawn from a finite set of gates app
mate arbitrary elements of SU(d).

Let dg be the Haar measure on SU(d) normalized so that*dg51. Consider the Hilbert spac
L2(SU(d)) with norm defined by the usual inner product^c,w&[*c(g)* w(g)dg. The norm of
a linear transformation onL2(SU(d)) is given by

uM u[sup$iM f iu f PL2~SU~d!!,i f i51%. ~2!

WhenM is bounded and Hermitian, the norm is simply the supremum of its spectrum and
result,uMnu5uM un.

Define a representationU°Ũ of SU(d) on L2(SU(d)) by
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Ũ f ~x!5 f ~U21x!. ~3!

Using the right invariance of the Haar measure, we see thatŨ is unitary. For any finite set
A,SU(d), define the mixing operatorT(A) by

T~A!5
1

2uAu (
APA

Ã1Ã21. ~4!

All such T’s are Hermitian and have norm one. We will often simply writeT instead ofT(A).
These represent averaging the action of the elements ofA and their inverses on a function; whe
the function is a probability distribution on SU(d) we can think ofT as multiplying by a random
element ofA.

Applying Tn represents averaging over the action of words of lengthn. Denote the set of
words of lengthn made up of elements ofA and their inverses byWn(A), or when the setA is
understood, simplyWn . This set comprises (2uAu)n words, though as matrices there are genera
some duplicates since substrings such asAA2151 for all APA. For any positive integern,
expandingTn gives

Tn5 (
wPWn

w̃

~2uAu!n . ~5!

We want to compareTn to the integral operatorP:

P f~h!5E f ~gh!dg5E f ~g!dg. ~6!

Note thatP is the projection operator onto the set of constant functions on SU(d), and henceP
5P† andP25P. It is not hard to show thatTP5P5PT and, consequently,

~T2P!n5Tn2P. ~7!

The metric for comparingT(A) to P is given by

L~A![uT~A!2Pu. ~8!

From Eq.~7! and the Hermiticity ofT andP, it follows that

L~A!n5uTn~A!2Pu. ~9!

If one thinks ofTn as a Riemann sum thenL serves to quantify how quicklyTn converges to the
integral. It has been shown15 that if A is a computationally universal set, then all the eigenval
of T2P have absolute value strictly less than one. However, this only implies thatL(A)<1,
sinceT2P has an infinite number of eigenvalues.

The proof of the main result of our article—that efficiently universal sets of gates exis
divided in the next two sections. In Sec. III we show thatL(A),1 implies thatA is efficiently
universal and in Sec. IV we demonstrate that for anyd an efficiently universal set of gates can b
found in SU(d).

III. A CONDITION FOR EFFICIENT UNIVERSALITY

Theorem 1: For any A,SU(d) such thatL(A),1, A is efficiently universal. Specifically
there exists a constant C such that for all UPSU(d), e.0, and n.C log 1/e, there is a w
PWn(A) such thatuw2Uu,e.
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Before proving the theorem, we will need to note a fact about the geometry of SU(d). For any
d andr 0 , if V(r ) is the Haar measure of a ball of radiusr in SU(d), then there exist constantsk1

andk2 such that

k1r d221,V~r !,k2r d221 ~10!

for all r P(0,r 0). This is true because SU(d) is a d221-dimensional manifold and becauseV(r )
does not depend on the center of the ball under the Haar measure.

Now we can proceed with the proof of Theorem 1:
Proof: DefinexPL2(SU(d)) by

x~g!5H 1 for ug2I u,e/2

0 otherwise.
~11!

Let V5iPxi5ixi2 be the measure of the ball around the identity of radiuse/2. We will not
perform this integration, but recall from Eq.~10! that V.k1(e/2)d221.

Let T5T(A) andL5L(A).
First we use the Cauchy–Schwartz inequality to give

u^x,~Tn2P!Ũx&u<ixii~Tn2P!Ũxi<ixi2u~Tn2P!Ũu,LnV. ~12!

Another way to compute the same inner product is

^x,~Tn2P!Ũx&5^x,TnŨx&2V2. ~13!

Combining Eq.~12! and Eq.~13! gives thatu^x,TnŨx&2V2u,LnV. This means that there
exists C which depends only onA such that ifn.C log 1/e then Ln,V and ^x,TnŨx&.0.
Specifically, it suffices to choose

n.
d221

log~1/L!
log~1/e!1

log~2d221/k1!

log~1/L!
. ~14!

When this occurs it means that

E x~g! (
wPWn

x~wU21g!

~2uAu!n dg.0, ~15!

which implies that'gPSU(d) andwPWn such thatx(g)Þ0 andx(wU21g)Þ0. Thusug2I u
,e/2 and uwU21g2I u,e/2, implying that uw2g21Uu,e/2. Combining these and using th
triangle inequality givesuw2Uu,e. j

IV. A CLASS OF EFFICIENTLY UNIVERSAL GATE SETS

In this section we show that for eachd there exists a set of gatesGd in SU(d) such that
L(Gd),1 ~and thusGd is efficiently universal!. We begin with a result demonstrating this fo
SU~2! and then extend it to SU(d).

Lemma 2 (Lubotsky, Phillips and Sarnak): Let

V15
1

A5
S 1 2i

2i 1 D , V25
1

A5
S 1 2

22 1D ,

~16!

V35
1

A5
S 112i 0

0 122i D .
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Then l5L($V1 ,V2 ,V3%)5A5/3,1. Furthermore, for any U1 , U2 , U3PSU(2),
L($U1 ,U2 ,U3%)>l.

The proof of this Lemma is presented in Refs. 16 and 17. LetG25$V1 ,V2 ,V3%, as it is a
family of quantum gates from SU~2! for which L is strictly less than one. The optimality ofL for
this set is an interesting aside, but has little bearing on what follows.

Extending the result to SU(d) will require slightly more effort. To this end, ifI k denotes the
k3k identity matrix, then, for anyUPSU(2) and 2< j <d, defineb j

(d)(U) to be

b j
~d!~U !5S I j 22 0 0

0 U 0

0 0 I d2 j

D PSU~d!. ~17!

We will typically omit the(d) where it is understood.
Lemma 3 (Diaconis and Shahshahani): Let$Gj

i %, 1< i , j <d be a series of(2
d) independent

random matrices inSU~2! that are chosen uniformly according to a Haar measure. Then

)
i 51

d21

)
j 5 i 11

d

b j~Gj
i ! ~18!

is uniformly distributed inSU(d).
This Lemma is proved in Ref. 18. It means that if we had access to random elements of~2!

that were completely uniformly distributed, then we could generate uniformly distributed elem
of SU(d). When the elements of SU~2! are only approximately uniform, we can bound th
distance to uniformity of the words they form by using what is known as a hybrid argumen19

Lemma 4 (Bernstein and Vazirani): If U1 ,...,Um , V1 ,...,Vm are linear operators such tha
uUi u<1, uVi u<1 and uUi2Vi u,d, then uUm •••U2U12Vm •••V2V1u,md.

Proof: If we replace a singleUi in the productUm ...U1 with the correspondingVi , then the
entire product will still change by less thand sinceuABu<uAu•uBu for any operatorsA, B. Thus we
can construct a series ofm11 ‘‘hybrid’’ operators, which start withU1 •••Um , end with
V1 •••Vm , and are each separated by less thand. The proof follows from the triangle inequality.j

We now combine all of the other results in this section to demonstrate a set of gates in Sd)
for which L is strictly less than one.

Proposition 5: For any d.2, defineGd by

Gd5$b j~V!u1< j <~d21!,VPG2%. ~19!

ThenL(Gd),1.
Proof: The approach of our proof will be to approximate the uniform distribution in Lem

3, and then we show that this forcesL to be less than one. To this end, letRm,Wm(
2
d)(Gd) be the

set of all products of the form

)
i 51

d21

)
j 5 i 11

d

b j~Gj
i ! ~20!

such that theGj
i are selected fromWm(G2).

From Lemma 2 we have that;m, uT(V1 ,V2 ,V3)2Pum5lm for somel,1. There are (2
d)

terms in Eq.~18!, each of which is approximated to within an accuracy oflm by the appropriate
lengthm substring ofRm . Thus, using the hybrid argument and Lemma 3 gives that

L~Rm!5U (
wPRm

w̃2P

uRmu U<S d
2Dlm. ~21!

Now, if we let Rm8 denoteWm(
2
d)2Rm then
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L~Wm~2
d!!<

uRm8 u
uWu

L~Rm8 !1
uRmu
uWu

L~Rm!<S 12
uRmu
uWu D1

uRmu
uWu

L~Rm!512
uRmu
uWu ~12L~Rm!!.

~22!

If we choosem large enough so that (2
d)lm,1, then this last expression will be less than one, a

L(Gd),1. j

Thus, efficient quantum compiling is possible ford-dimensional systems, given the approp
ate choice of base gate set.

V. LOWER BOUNDS

This proves that sets of base gates exist which can achieve a precision ofe in O(log 1/e)
gates, but can we do any better? Ane-ball in SU(d) has measure of ordered221, so if we expect
to cover all of SU(d) with strings of lengthn, then we will require (2uAu)nk2ed221.1, or
equivalently,

n>
d221

log 2uAu
log 1/e2

logk2

log 2uAu
. ~23!

Thus the result is optimal up to a constant factor. This fact is quite general, since it follows
simple counting arguments. However, if the assumptions of the problem are relaxed to allow
gates to act in parallel, then using ancilla qubits it is possible to approximate single-qubit
with a circuit of sizepoly(log 1/e) but depthof only poly(log log 1/e).20 This construction, like
the one in this article, relies on having access to a specific set of base gates; to date, o
Solovay–Kitaev theorem applies to any computationally universal set.

In our original problem, though, eliminating the constant linear factor turns out to be im
sible. Consider any setA of l base gates that isnot computationally universal. LetB(A,d) be the
set of gates obtained by perturbing each gate inA by no more thand. ThenB(A,d) has nonzero
measure~in SU(d) l!, almost all of its elements are computationally universal and from the hy
argument, any string of lengthn drawn from gates inB(A,d) will be within nd of something in
the ~nondense! group generated byA. Since we can maked arbitrarily small, any fixed prefacto
in front of log 1/e will fail on a computationally universal set of nonzero measure for some va
of e.

Note that unlike most results about quantum compiling, this argument also holds if the
gates are parametrized; say,A1 ,...,Al are elements of the algebrasu(d) and a single operation
now has the forme6Ai t, for any t.0. The above proof demonstrates that there exist sets
nonzero measure which require arbitrarily many steps, even if the steps are continuous
measure cost not in terms of number of steps, but by the total time taken, then we have to
the argument slightly. For small values oft, ueAi t2I u is on the order oftd, but for larget the
difference never gets any higher thand. This means that no matter how many steps we take
time t, we will stay within td of some nondense subgroup and the same result holds.

These results can be obtained more simply by considering the~nonzero measure! set of gates
which are very close to the identity. If every gate does very little, then we will need a large nu
them in order to accomplish anything. The reason why universal sets that are very clo
nonuniversal sets are interesting is because of their frequent appearance in actual physical s
such as NMR under the weak coupling approximation.21

VI. CONCLUSIONS

We have found a condition that implies the efficient universality of a set of gates and
onstrated a family of gate sets in SU(d) that satisfy this condition. This means that given acc
to such a gate set, arbitrary quantum gates can be approximated to accuracye using only
O(log 1/e) gates. Such knowledge will likely be invaluable in crafting future physical implem
tations of quantum information processing systems.
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Many open questions remain, however. For example, determining or boundingL ~even nu-
merically! for a given set of base gates seems to be very difficult, though it is likely an impo
step in determining the prefactorC, which measures how effective a set of gates would be
compiling. The method used by Refs. 16 and 17 involves specialized arguments from n
theory that do not generalize easily to other sets of gates or to SU(d) for d.2. Our proof~like the
Solovay–Kitaev algorithm! also requires the ability to perform the inverse of each gate in the
set. This restriction feels unnecessary, yet very little is known in the case where invers
unavailable.

More broadly, it is also generally unknown which gate sets are efficiently universal and
L,1. Note thatL(A),1 implies thatA is efficiently universal, but the converse is not known
be true. Thus it is possible that the questions of efficient universality andL being less than one
will be settled separately.

However, if L~A! were to be a continuous function ofA ~for fixed uAu!, then the situation
would simplify considerably. In this case, it is not hard to show thatL(A),1 if and only if A is
computationally universal, so that computational universality, efficient universality andL,1
would all become equivalent conditions. We suspect that this is the case, but have been un
prove it.

Finally, the techniques used in our results do not suggest any efficient~i.e., running time
polynomial in log 1/e! algorithms for quantum compiling. The most important, and possibly m
difficult, open problem remaining is to find a polynomial time algorithm to approximate
unitary gate by a fixed efficiently universal set of base gates with a string whose length sa
the O(log 1/e) bound.
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We analyzesurface codes, the topological quantum error-correcting codes intro-
duced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on
a surface of nontrivial topology, and encoded quantum operations are associated
with nontrivial homology cycles of the surface. We formulate protocols for error
recovery, and study the efficacy of these protocols. An order-disorder phase transi-
tion occurs in this system at a nonzero critical value of the error rate; if the error
rate is below the critical value~the accuracy threshold!, encoded information can
be protected arbitrarily well in the limit of a large code block. This phase transition
can be accurately modeled by a three-dimensionalZ2 lattice gauge theory with
quenched disorder. We estimate the accuracy threshold, assuming that all quantum
gates arelocal, that qubits can be measured rapidly, and that polynomial-size clas-
sical computations can be executed instantaneously. We also devise a robust recov-
ery procedure that does not require measurement or fast classical processing; how-
ever, for this procedure the quantum gates are local only if the qubits are arranged
in four or more spatial dimensions. We discuss procedures for encoding, measure-
ment, and performing fault-tolerant universal quantum computation with surface
codes, and argue that these codes provide a promising framework for quantum
computing architectures. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1499754#

I. INTRODUCTION

The microscopic world is quantum mechanical, but the macroscopic world is classical
fundamental dichotomy arises because a coherent quantum superposition of two readily
guishable macroscopic states is highly unstable. The quantum state of a macroscopic
rapidly decoheresdue to unavoidable interactions between the system and its surroundings

Decoherence is so pervasive that it might seem to preclude subtle quantum interf
phenomena in systems with many degrees of freedom. However, recent advances in the th
quantum error correction suggest otherwise.1,2 We have learned that quantum states can be c
erly encoded so that the debilitating effects of decoherence, if not too severe, can be re
Furthermore, fault-tolerant protocols have been devised that allow an encoded quantum sta
reliably processed by a quantum computer with imperfect components.3 In principle, then, very
intricate quantum systems can be stabilized and accurately controlled.

The theory of quantum fault tolerance has shown that, even for delicate coherent qu
states, informationprocessingcan prevent informationloss. In this article, we will study a par-
ticular approach to quantum fault tolerance that has notable advantages: in this approach, b
thesurface codesintroduced in Refs. 4 and 5, the quantum processing needed to control erro
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especially nice locality properties. For this reason, we think that surface codes suggest a p
larly promising approach to quantum computing architecture.

One glittering achievement of the theory of quantum fault tolerance is thethreshold theorem,
which asserts that an arbitrarily long quantum computation can be executed with arbitrarily
reliability, provided that the error rates of the computer’s fundamental quantum gates are b
certain critical value, theaccuracy threshold.6–10The numerical value of this accuracy threshold
of great interest for future quantum technologies, as it defines a standard that should be
designers of quantum hardware. The critical error probability per gatepc has been estimated a
pc*1024; very roughly speaking, this means that robust quantum computation is possible
decoherence time of stored qubits is at least 104 times longer than the time needed to execute o
fundamental quantum gate,11 assuming that decoherence is the only source of error.

This estimate of the accuracy threshold is obtained by analyzing the efficacy of aconcat-
enated code, a hierarchy of codes within codes, and it is based on many assumptions, whic
will elaborate in Sec. II. For now, we just emphasize one of these assumptions: that a qu
gate can act on any pair of qubits, with a fidelity that is independent of the spatial separation
qubits. This assumption is clearly unrealistic; it is made because it greatly simplifies the an
Thus this estimate will be reasonable for a practical device only to the extent that the har
designer is successful in arranging that qubits that must interact are kept close to one anoth
known that the threshold theorem still applies if quantum gates are required to be local,7,12 but for
this realistic case careful estimates of the threshold have not been carried out.

We will perform a quite different estimate of the accuracy threshold, based on surface
rather than concatenated codes. This estimate applies to a device with strictly local quantum
if the device is controlled by a classical computer that is perfectly reliable, and whose clock
is much faster than the clock speed of the quantum computer. In this approach, some
nonlocality in effect is still allowed, but we demand that all the nonlocal processing be clas
Specifically, an error syndrome is extracted by performing local quantum gates and measure
then a classical computation is executed to infer what quantum gates are needed to recov
error. We will assume that this classical computation, which actually requires a time bou
above by a polynomial in the number of qubits in the quantum computer, can be execute
constant number of time steps. Under this assumption, the existence of an accuracy thresh
be established and its value can be estimated. If we assume that the classical computation
completed in a single time step, we estimate that the critical error probabilitypc per qubit and per
time step satisfiespc>1.731024. This estimate applies to the accuracy threshold for relia
storageof quantum information, rather than for reliable processing. The threshold for qua
computation is not as easy to analyze definitively, but we will argue that its numerical value
likely to be substantially different.

We believe that principles of fault tolerance will dictate the shape of future quantum com
ing architectures. In Sec. II we compile a list of hardware features that are conducive to
tolerant processing, and outline the design of a fault-tolerant quantum computer that incorp
surface coding. We review the properties of surface codes in Sec. III, emphasizing in par
that the qubits in the code block can be arranged in aplanar sheet,13,14 and that errors in the
syndrome measurement complicate the recovery procedure. The core of the article is S
where we relate recovery from errors using surface codes to a statistical-mechanical mod
local interactions. In the~unrealistic! case where syndrome measurements are perfect, this m
becomes the two-dimensional Ising model with quenched disorder, whose phase diagram h
studied by Monte Carlo simulations. These simulations indicate that if the syndrome inform
is put to optimal use, error recovery succeeds with a probability that approaches one in th
of a large code block, if and only if both phase errors and bit-flip errors occur with a proba
per qubit less than about 11%. In the more realistic case where syndrome measureme
imperfect, error recovery is modeled by a three-dimensionalZ2 gauge theory with quenche
disorder, whose phase diagram~to the best of our knowledge! has not been studied previously. Th
third dimension that arises can be interpreted as time—since the syndrome information can
trusted, we must repeat the measurement many times before we can be confident about the
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way to recover from the errors. We argue that an order-disorder phase transition of this
corresponds to the accuracy threshold for quantum storage, and, furthermore, that the
recovery procedure can be computed efficiently on a classical computer. We proceed in Se
prove a rather crude lower bound on the accuracy threshold, concluding that the error re
procedure is sure to succeed in the limit of a large code block under suitable condition
example, if in each round of syndrome measurement, qubit phase errors, qubit bit-flip error
syndrome bit errors all occur with probability below 1.14%. Tighter estimates of the accu
threshold could be obtained through numerical studies of the quenched gauge theory.

In deriving this accuracy threshold for quantum storage, we assumed that an unlimited a
of syndrome data could be deposited in a classical memory, if necessary. But in Sec. VI we
that this threshold, and a corresponding accuracy threshold for quantum computation,
intact even if the classical memory is limited to polynomial size. Then in Sec. VII we ana
quantum circuits for syndrome measurement, so that our estimate of the accuracy threshold
reexpressed as a fidelity requirement for elementary quantum gates. We conclude that our q
memory can resist decoherence if gates can be executed in parallel, and if the qubit deco
time is at least 6000 times longer than the time needed to execute a gate. In Sec. VIII we sh
encoded qubits can be accurately prepared and reliably measured. We also describe how a
code with a small block size can be built up gradually to a large block size; this procedure a
us to enter a qubit in an unknown quantum state into our quantum memory with reaso
fidelity, and then to maintain that fidelity for an indefinitely long time. We explain in Sec. IX h
a universal set of quantum gates acting on protected quantum information can be execute
tolerantly.

Most of the analysis of the accuracy threshold in this article is premised on the assum
that qubits can be measured quickly and that classical computations can be done instanta
and perfectly. In Sec. X we drop these assumptions. We devise a recovery procedure that d
require measurement or classical computation, and infer a lower bound on the accuracy thr
Unfortunately, though, the quantum processing in our procedure is not spatially local unle
dimensionality of space is at least four. Section XI contains some concluding remarks.

This article analyzes applications of surface coding to quantum memory and quantum
putation that could in principle be realized in any quantum computer that meets the criteria
computational model, whatever the details of how the local quantum gates are physically
mented. It has also been emphasized4,5 that surface codes may point the way toward realizati
of intrinsically stable quantum memories~physicalfault tolerance!. In that case, protection again
decoherence would be achieved without the need for active information processing, an
accurately the protected quantum states can be processed might depend heavily on the d
the implementation.

II. FAULT TOLERANCE AND QUANTUM ARCHITECTURE

To prove that a quantum computer with noisy gates can perform a robust quantum com
tion, we must make some assumptions about the nature of the noise and about how the co
operates. In fact, similar assumptions are needed to prove that a classical computer with
gates is robust.15 Still, it is useful to list these requirements—they should always be kept in m
when we contemplate proposed schemes for building quantum computing hardware:

~i! Constant error rate. We assume that the strength of the noise is independent of the nu
of qubits in the computer. If the noise increases as we add qubits, then we cannot red
error rate to an arbitrarily low value by increasing the size of the code block.

~ii ! Weakly correlated errors. Errors must not be too strongly correlated, either in space o
time. In particular, fault-tolerant procedures fail if errors act simultaneously on many q
in the same code block. If possible, the hardware designer should strive to keep qu
the same block isolated from one another.

~iii ! Parallel operation. We need to be able to perform many quantum gates in a single
step. Errors occur at a constant rate per unit time, and we are to control these errors t
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information processing. We could never keep up with the accumulating errors exce
doing processing in different parts of the computer at the same time.

~iv! Reusable memory. Errors introduce entropy into the computer, which must be flushed
by the error recovery procedure. Quantum processing transfers the entropy from the
that encode the protected data to ‘‘ancilla’’ qubits that can be discarded. Thus fresh a
qubits must be continually available. The ability to erase~or replace! the ancilla quickly is
an essential hardware requirement.16

In some estimates of the threshold, additional assumptions are made. While not strictl
essary to ensure the existence of a threshold, these assumptions may be useful, either beca
simplify the analysis of the threshold or because they allow us to increase its numerical
Hence these assumptions, too, should command the attention of the prospective hardw
signer:

~i! Fast measurements. It is helpful to assume that a qubit can be measured as quickly
quantum gate can be executed. For some implementations, this may not be a re
assumption—measurement requires the amplification of a microscopic quantum effe
macroscopic signal, which may take a while. But by measuring a classical error synd
for each code block, we can improve the efficiency of error recovery. Furthermore,
can measure qubits and perform quantum gates conditioned on classical measu
outcomes, then we can erase ancilla qubits by projecting onto the$u0&,u1&% basis and
flipping the qubit if the outcome isu1&.

~ii ! Fast and accurate classical processing. If classical processing is faster and more accur
than quantum processing, then it is beneficial to substitute classical processing for qu
processing when possible. In particular, if the syndrome is measured, then a cla
computation can be executed to determine how recovery should proceed. Ideally, th
sical processors that coordinate the control of the quantum computer should be inte
into the quantum hardware.

~iii ! No leakage. It is typically assumed that, though errors may damage the state of the
puter, the qubits themselves remain accessible—they do not ‘‘leak’’ out of the devic
fact, at least some types of leakage can be readily detected. If leaked qubits, once de
can be replaced easily by fresh qubits, then leakage need not badly compromise
mance. Hence, a desirable feature of hardware is that leaks are easy to detect and

~iv! Nonlocal quantum gates. Higher error rates can be tolerated, and the estimate of the th
old is simplified, if we assume that two-qubit quantum gates can act on any pair of q
with a fidelity independent of the distance between the qubits. However useful, th
sumption is not physically realistic. What the hardware designer can and should do, th
is try to arrange that qubits that will need to interact with one another are kept close t
another. In particular, the ancilla qubits that absorb entropy should be carefully integ
into the design.12

If we do insist that all quantum gates are local, then another desirable feature
following.

~v! High coordination number. A threshold theorem applies even if qubits form a on
dimensional array.7,12 But local gates are more effective if the qubits are arranged in th
dimensions, so that each qubit has more neighbors.

Suppose, then, that we are blessed with an implementation of quantum computation tha
all of our desiderata. Qubits are arranged in a three-dimensional lattice, and can be proje
measured quickly. Reasonably accurate quantum gates can be applied in parallel to single q
to neighboring pairs of qubits. Fast classical processing is integrated into the qubit array.
these conditions planar surface codes provide an especially attractive way to operate the q
computer fault-tolerantly.
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We may envision our quantum computer as a stack of planar sheets, with a protected
qubit encoded in each sheet. Adjacent to each logical sheet is an associated sheet of ancill
that are used to measure the error syndrome of that code block; after each measuremen
ancilla qubits are erased and then immediately reused. Encoded two-qubit gates can be pe
between neighboring logical sheets, and any two logical sheets in the stack can be broug
contact by performing swap gates that move the sheets through the intervening layers of
and ancilla qubits. As a quantum circuit is executed in the stack, error correction is contin
applied to each logical sheet to protect against decoherence and other errors. Portions of th
are designated as ‘‘software factories,’’ where special ancilla states are prepared and purifie
software is then consumed during the execution of certain quantum gates that cannot be
mented directly.

A notable feature of this design~or other fault-tolerant designs! is that most of the information
processing in the device is devoted to controlling errors, rather than moving the compu
forward. How accurately must the fundamental quantum gates be executed for this error con
be effective, so that our machine is computationally powerful? Our goal in this article is to ad
this question.

III. SURFACE CODES

We will study the family of quantum error-correcting codes introduced in Refs. 4 and 5. T
codes are especially well suited for fault-tolerant implementation, because the procedure fo
suring the error syndrome is highly local.

A. Toric codes

For the code originally described in Refs. 4 and 5, it is convenient to imagine that the q
are in one-to-one correspondence with the links of a square lattice drawn on a torus, or, e
lently, drawn on a square with opposite edges identified. Hence we will refer to them as
codes.’’ Toric codes can be generalized to a broader class of quantum codes, with each cod
class associated with a tessellation of a two-dimensional surface. Codes in this broader cla
be called ‘‘surface codes.’’

A surface code is a special type of ‘‘stabilizer code.’’17,18 A ~binary! stabilizer code can be
characterized as the simultaneous eigenspace with eigenvalue one of a set of mutually com
check operators~or ‘‘stabilizer generators’’!, where each generator is a ‘‘Pauli operator.’’ We u
the notation

I 5S 1 0

0 1D , X5S 0 1

1 0D , ~1!

Y5S 0 2 i

i 0 D , Z5S 1 0

0 21D ~2!

for the 232 identity and Pauli matrices; a Pauli operator acting onn qubits is one of the 22n

tensor product operators

$I ,X,Y,Z% ^ n. ~3!

For the toric code defined by theL3L square lattice on the torus, there are 2L2 links of the
lattice, and hence 2L2 qubits in the code block. Check operators are associated with each sit
with each elementary cell~or ‘‘plaquette’’! of the lattice, as shown in Fig. 1. The check opera
at sites acts nontrivially on the four links that meet at the site; it is the tensor product

Xs5 ^ l {sXl ~4!
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acting on those four qubits, times the identity acting on the remaining qubits. The check op
at plaquetteP acts nontrivially on the four links contained in the plaquette, as the tensor pro

ZP5 ^ l PPZl , ~5!

times the identity on the remaining links.
AlthoughX andZ anticommute, the check operators are mutually commuting. Obviously

operators commute with site operators, and plaquette operators with plaquette operato
operators commute with plaquette operators because a site operator and a plaquette ope
either on disjoint sets of links, or on sets whose intersection contains two links. In the former
the operators obviously commute, and in the latter case, two canceling minus signs arise w
site operator commutes through the plaquette operator. The check operators generate an
group, the code’s stabilizer.

The check operators can be simultaneously diagonalized, and the toric code is the sp
which each check operator acts trivially. Because of the periodic boundary conditions, each
plaquette operator can be expressed as the product of the otherL221 such operators; the produc
of all L2 site operators or allL2 plaquette operators is the identity, since each link operator oc
twice in the product, andX25Z25I . There are no further relations among these operators; th
fore, there are 2•(L221) independent check operators, and hence two encoded qubits~the code
subspace is four-dimensional!.

A Pauli operator that commutes with all the check operators will preserve the code sub
What operators have this property? To formulate the answer, it is convenient to recall
standard mathematical terminology. A mapping that assigns an element ofZ25$0,1% to each link
of the lattice is called a~Z2-valued! one-chain. In a harmless abuse of language, we will also u
the term one-chain~or simply chain! to refer to the set of all links that are assigned the value 1
such a mapping. The one-chains form a vector space overZ2—intuitively, the sumu1v of two
chainsu andv is a disjoint union of the links contained in the two one-chains. Similarly, ze
chains assign elements ofZ2 to lattice sites and two-chains assign elements ofZ2 to lattice
plaquettes; these also form vector spaces. A linear boundary operator] can be defined that take
two-chains to one-chains and one-chains to zero-chains: the boundary of a plaquette is the
the four links comprising the plaquette, and the boundary of a link is the sum of the two si
the ends of the link. A chain whose boundary is trivial is called acycle.

Now, any Pauli operator can be expressed as a tensor product ofX’s ~andI ’s! times a tensor
product ofZ’s ~andI ’s!. The tensor product ofZ’s andI ’s defines aZ2-valued one-chain, where

FIG. 1. Check operators of the toric code. Each plaquette operator is a tensor product ofZ’s acting on the four links
contained in the plaquette. Each site operator is a tensor product ofX’s acting on the four links that meet at the site.
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links acted on byZ are mapped to 1 and links acted on byI are mapped to 0. This operato
trivially commutes with all of the plaquette check operators, but commutes with a site opera
and only if an even number ofZ’s act on the links adjacent to the site. Thus, the correspond
one-chain must be a cycle. Similarly, the tensor product ofX’s trivially commutes with the site
operators, but commutes with a plaquette operator only if an even number ofX’s act on the links
contained in the plaquette. This condition can be more conveniently expressed if we consid
dual lattice, in which sites and plaquettes are interchanged; the links dual to those on whichX acts
form a cycle of the dual lattice. In general, then, a Pauli operator that commutes with the sta
of the code can be represented as a tensor product ofZ’s acting on a cycle of the lattice, times
tensor product ofX’s acting on a cycle of the dual lattice.

Cycles are of two distinct types. A one-cycle ishomologically trivial if it can be expressed a
the boundary of a two-chain@Fig. 2~a!#. Thus, a homologically trivial cycle on our square latti
has an interior that can be ‘‘tiled’’ by plaquettes, and a product ofZ’s acting on the links of the
cycle can be expressed as a product of the enclosed plaquette operators. This operator is t
a product of the check operators—it is contained in the code stabilizer and acts trivially o
code subspace. Similarly, a product ofX’s acting on links that comprise a homologically trivia
cycle of the dual lattice is also a product of check operators. Furthermore,any element of the
stabilizer group of the toric code~any product of the generators! can be expressed as a product
Z’s acting on a homologically trivial cycle of the lattice timesX’s acting on a homologically
trivial cycle of the dual lattice.

But a cycle could be homologically nontrivial, that is, not the boundary of anything@Fig.
2~b!#. A product of Z’s corresponding to a nontrivial cycle commutes with the code stabil
~because it is a cycle!, but is not contained in the stabilizer~because the cycle is nontrivial!.
Therefore, while this operator preserves the code subspace, it acts nontrivially on encoded
tum information. Associated with the two fundamental nontrivial cycles of the torus, then, ar
encoded operationsZ̄1 and Z̄2 acting on the two encoded qubits. Associated with the two d
cycles of the dual lattice are the corresponding encoded operationsX̄1 andX̄2 , as shown in Fig. 3.

A Pauli operator acting onn qubits is said to haveweight w if the identity I acts onn2w
qubits and nontrivial Pauli matrices act onw qubits. Thedistance dof a stabilizer code is the
weight of the minimal-weight Pauli operator that preserves the code subspace and acts non
within the code subspace. If an encoded state is damaged by the action of a Pauli operato
weight is less than half the code distance, then we can recover from the error successf
applying the minimal weight Pauli operator that returns the damaged state to the code su
~which can be determined by measuring the check operators!. For a toric code, the distance is th
number of lattice links contained in the shortest homologically nontrivial cycle on the lattic
dual lattice. Thus in the case of anL3L square lattice drawn on the torus, the code distanc
d5L.

The great virtue of the toric code is that the check operators are so simple. Measuring a

FIG. 2. Cycles on the lattice.~a! A homologically trivial cycle bounds a region that can be tiled by plaquettes.
corresponding tensor product ofZ’s lies in the stabilizer of the toric code.~b! A homologically nontrivial cycle is not a
boundary. The corresponding tensor product ofZ’s commutes with the stabilizer but is not contained in it. It is a logic
operation that acts nontrivially in the code subspace.
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operator requires a quantum computation, but because each check operator involves ju
qubits in the code block, and these qubits are situated near one another, the measuremen
executed by performing just a few quantum gates. Furthermore, the ancilla qubits used
measurement can be situated where they are needed, so that the gates act on pairs of qubit
in close proximity.

The observed values of the check operators provide a ‘‘syndrome’’ that we may use to
nose errors. If there are no errors in the code block, then every check operator takes the v
Since each check operator is associated with a definite position on the surface, a site of the
or the dual lattice, we may describe the syndrome by listing all positions where the check
tors take the value21. It is convenient to regard each such position as the location of a par
a ‘‘defect’’ in the code block.

If errors occur on a particular chain~a set of links of the lattice or dual lattice!, then defects
occur at the sites on theboundaryof the chain. Evidently, then, the syndrome is highly ambiguo
as many error chains can share the same boundary, and all generate the same syndro
example, the two chains shown in Fig. 4 end on the same two sites. If errors occur on one o

FIG. 3. Basis for the operators that act on the two encoded qubits of the toric code. The logical operatorsZ̄1 and Z̄2 are
tensor products ofZ’s associated with the fundamental nontrivial cycles of the torus constructed from links of the la

The complementary operatorsX̄1 and X̄2 are tensor products ofX’s associated with nontrivial cycles constructed fro
links of the dual lattice.

FIG. 4. The highly ambiguous syndrome of the toric code. The two site defects shown could arise from errors on eit
of the two chains shown. In general, error chains with the same boundary generate the same syndrome, and err
that are homologically equivalent act on the code space in the same way.
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chains, we might incorrectly infer that the errors actually occured on the other chain. Fortun
though, this ambiguity need not cause harm. IfZ errors occur on a particular chain, then b
applyingZ to each link ofany chain with the same boundary as the actual error chain, we
successfully remove all defects. Furthermore, as long as the chosen chain ishomologicallycorrect
~differs from the actual error chain by the one-dimensional boundary of a two-dimension
gion!, then the encoded state will be undamaged by the errors. In that event, the product
actualZ errors and theZ’s that we apply is contained in the code stabilizer and therefore
trivially on the code block.

Heuristically, an error chain can be interpreted as a physical process in which a defe
nucleates, and the two members of the pair drift apart. To recover from the errors, we lay d
‘‘recovery chain’’ bounded by the two defect positions, which we can think of as a phy
process in which the defects are brought together to reannihilate. If the defect world line con
of both the error chain and the recovery chain is homologically trivial, then the encoded qua
state is undamaged. But if the world line is homologically nontrivial~if the two members of the
pair wind around a cycle of the torus before reannihilating!, then an error afflicts the encode
quantum state.

B. Planar codes

If all check operators are to be readily measured with local gates, then the qubits of the
code need to be arranged on a topologically nontrivial surface, the torus, with the ancilla
needed for syndrome measurement arranged on an adjacent layer. In practice, the toroida
ogy is likely to be inconvenient, especially if we want qubits residing in different tori to inte
with one another in the course of a quantum computation. Fortunately, surface codes
constructed in which all check operators are local and the qubits are arranged on planar she13,14

The planar topology will be more conducive to realistic quantum computing architectures.
In the planar version of the surface code, there is a distinction between the check opera

the boundary of the surface and the check operators in the interior. Check operators in the
are four-qubit site or plaquette operators, and those at the boundary are three-qubit op
Furthermore, the boundary has two different types of edges as shown in Fig. 5. Along a ‘‘pla
edge’’ or ‘‘rough edge,’’ each check operator is a three-qubit plaquette operatorZ^ 3. Along a ‘‘site
edge’’ or ‘‘smooth edge,’’ each check operator is a three-qubit site operatorX^ 3.

As before, in order to commute with the code stabilizer, a product ofZ’s must act on an even
number of links adjacent to each site of the lattice. Now, though, the links acted upon byZ’s may
comprise anopenpath that begins and ends on a rough edge. We may then say that the one

FIG. 5. A planar quantum code.~a! At the top and bottom are the ‘‘plaquette edges’’~or ‘‘rough edges’’! where there are
three-qubit plaquette operators, and at the left and right are the ‘‘site edges’’~or ‘‘smooth edges’’! where there are

three-qubit site operators. The logical operationZ̄ for the one encoded qubit is a tensor product ofZ’s acting on a chain

running from one rough edge to the other, and the logical operationX̄ is a tensor product ofX’s acting on a chain of the
dual lattice running from one smooth edge to the other. For the lattice shown, the code’s distance isL58. ~b! Site and
plaquette defects can appear singly, rather than in pairs. An isolated site defect arises from an error chain that e
rough edge, and an isolated plaquette defect arises from a dual error chain that ends at a smooth edge.
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comprised of all links acted upon byZ is a cyclerelative to the rough edges. Similarly, a product

of X’s that commutes with the stabilizer acts on a set of links of the dual lattice that comp
cycle relative to the smooth edges.

Cycles relative to the rough edges come in two varieties. If the chain contains an even n
of the free links strung along the rough edge, then it can be tiled by plaquettes~including the
boundary plaquettes!, and so the corresponding product ofZ’s is contained in the stabilizer. We
say that the relative one-cycle is a relative boundary of a two-chain. However, a chain
stretches from one rough edge to another is not a relative boundary—it is a representativ
nontrivial relative homology class. The corresponding product ofZ’s commutes with the stabilize

but does not lie in it, and we may take it to be the logical operationZ̄ acting on an encoded logica
qubit. Similarly, cycles relative to the smooth edges also come in two varieties, and a prod
X’s associated with the nontrivial relative homology cycle of the dual lattice may be taken

the logical operationX̄ @see Fig. 5~a!#.
A code with distanceL is obtained from a square lattice, if the shortest paths from rough e

to rough edge, and from smooth edge to smooth edge, both containL links. The lattice hasL2

1(L21)2 links, L(L21) plaquettes, andL(L21) sites. Now all plaquette and site operators a
independent, which is another way to see that the number of encoded qubits isL21(L21)2

22L(L21)51.
The distinction between a rough edge and a smooth edge can also be characterized

behavior of the defects at the boundary, as shown in Fig. 5~b!. In the toric codes, defects alway
appear in pairs, because every one-chain has an even number of boundary points. But fo
codes, individual defects can appear, since a one-chain can terminate on a rough edge.
propagating site defect can reach the rough edge and disappear. But if the site defect reac
smooth edge, it persists at the boundary. Similarly, a plaquette defect can disappear at the
edge, but not at the rough edge.

Let us briefly note some generalizations of the toric codes and planar codes that we
described. First, there is no need to restrict attention to lattices that have coordination numb
each site and plaquette. Any tessellation of a surface~and its dual tessellation! can be associated
with a quantum code. Second, we may consider surfaces of higher genus. For a closed or
Riemann surface of genusg, 2g qubits can be encoded—each time a handle is added to

surface, there are two new homology cycles and hence two new logicalZ̄’s. The distance of the
code is the length of the shortest nontrivial cycle on lattice or dual lattice. For planar code
may consider a surface withe distinct rough edges separated bye distinct smooth edges. The
e21 qubits can be encoded, associated with the relative one-cycles that connect one roug
with any of the others. The distance is the length of the shortest path reaching from one
edge to another, or from one smooth edge to another on the dual lattice. Alternatively, w
increase the number of encoded qubits stored in a planar sheet by punching holes in the latt
example, if the outer boundary of the surface is a smooth edge, and there areh holes, each
bounded by a smooth edge, thenh qubits are encoded. For each hole, a cycle on the lattice

encloses the hole is associated with the corresponding logicalZ̄, and a path on the dual lattic

from the boundary of the hole to the outer boundary is associated with the logicalX̄.
If ~say! phase errors are more common than bit-flip errors, quantum information can be

more efficiently with anasymmetricplanar code, such that the distance from rough edge to ro
edge is longer than the distance from smooth edge to smooth edge. However, these asym
codes are less convenient for processing of the encoded information.

The surface codes can also be generalized to higher dimensional manifolds, with l
operations again associated with homologically nontrivial cycles. In Sec. X, we will discu
four-dimensional example.
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C. Fault-tolerant recovery

A toric code defined on a lattice of linear sizeL has block size 2L2 and distanceL. Therefore,
if the probability of error per qubit isp, the number of errors expected in a large code block is
orderpL2, and therefore much larger than the code distance.

However, the performance of a toric code is much better than would be guessed naively
on its distance. In principle,L/2 errors could suffice to cause damage to the encoded informa
But in fact this small number of errors can cause irrevocable damage only if the distribution
errors is highly atypical.

If the error probabilityp is small, then links where errors occur~‘‘error links’’ ! are dilute on
the lattice. Long connected chains of error links are quite rare, as indicated in Fig. 6. It is rela
easy to guess a way to pair up the observed defects that is homologically equivalent to the
error chain. Hence we expect that a number of errors that scaleslinearly with the block size can
be tolerated. That is, if the error probabilityp per link is small enough, we expect to be able
recover correctly with a probability that approaches one as the block size increases. We th
anticipate that there is an accuracy threshold for storage of quantum information using a
code.

Unfortunately, life is not quite so simple, because the measurement of the syndrome w
be perfect. Occasionally, a faulty measurement will indicate that a defect is present at a sit
though no defect is actually there, and sometimes an actual defect will go unobserved. He
population of real defects~which have strongly correlated positions! will be obscured by a popu
lation of phony ‘‘ghost defects’’ and ‘‘missing defects’’~which have randomly distributed pos
tions!, as in Fig. 7.

Therefore, we should execute recovery cautiously. It would be dangerous to blithely pr
by flipping qubits on a chain of links bounded by the observed defect positions. Since a
defect is typically far from the nearest genuine defect, this procedure would introduce
additional errors—what was formerly a ghost defect would become a real defect connec
another defect by a long error chain. Instead we must repeat the syndrome measurem
adequate number of times to verify its authenticity. It is subtle to formulate a robust rec
procedure that incorporates repeated measurements, since further errors accumulate as
surements are repeated and the gas of defects continues to evolve.

We know of three general strategies that can be invoked to achieve robust macroscopic

FIG. 6. Pairs of defects. If the error rate is small and errors on distinct links are uncorrelated, then connected erro
are typically short and the positions of defects are highly correlated. It is relatively easy to guess how the defects
be paired up so that each pair is the boundary of a connected chain.
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of a system that is subjected to microscopic disorder. One method is to introduce a hiera
organization in such a way that effects of noise get weaker and weaker at higher and highe
of the hierarchy. This approach is used by Ga´cs15 in his analysis of robust one-dimension
classical cellular automata, and also in concatenated quantum coding.6–10 A second method is to
introduce more spatial dimensions. A fundamental principle of statistical physics is that
systems with higher spatial dimensionality and hence higher coordination number are more
tant to the disordering effects of fluctuations. In Sec. X we will follow this strategy in devising
analyzing a topological code that has nice locality properties in four dimensions. From the
spective of block coding, the advantage of extra dimensions is that local check operators
constructed with a higher degree of redundancy, which makes it easier to reject faulty syn
information.

In the bulk of this article we will address the issue of achieving robustness through a
strategy, namely by introducing a modest amount of nonlocality into our recovery procedur
we will insist that all quantum processing is strictly local; the nonlocality will be isolated
classicalprocessing. Specifically, to decide on the appropriate recovery step, a classical c
tation will be performed whose input is an error syndrome measured at all the sites of the l
We will require that this classical computation can be executed in a time bounded by a polyn
in the number of lattice sites. For the purpose of estimating the accuracy threshold, w
imagine that the classical calculation is instantaneous and perfectly accurate.

Our approach is guided by the expectation that quantum computers will be slow and u
able while classical computers are fast and accurate. It is advantageous to replace quant
cessing by classical processing if the classical processing can accomplish the same task.

D. Surface codes and physical fault tolerance

In this article, we regard the surface codes as block quantum error-correcting code
properties that make them especially amenable to fault-tolerant quantum storage and comp
But we also remark here that because of the locality of the check operators, these code
another tempting interpretation that was emphasized in Refs. 4 and 5.

Consider a model physical system, with qubits arranged in a square lattice, and with a~local!
Hamiltonian that can be expressed as minus the sum of the check operators of a surfac
Since the check operators are mutually commuting, we can diagonalize the Hamiltonian
agonalizing each check operator separately, and its degenerate ground state is the code s
Thus, a real system that is described well enough by this model could serve as a robust q
memory.

The model system has several crucial properties. First of all, it has a mass gap, so
qualitative properties are stable with respect to generic weak local perturbations. Second

FIG. 7. Ghost defects. Since faults can occur in the measurement of the error syndrome, the measured syndrome
both genuine defects~lightly shaded! associated with actual errors and phony ‘‘ghost defects’’~darkly shaded! that arise at
randomly distributed locations. To perform recovery successfully, we need to be able to distinguish reliably betw
genuine defects and the ghost defects. The position that is shaded both lightly and darkly represents a genuine d
goes unseen due to a measurement error.
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two types of localized quasiparticle excitations, the site defects and plaquette defects. And
there is an exotic long-range interaction between a site defect and a plaquette defect.

The interaction between the two defects is exactly analogous to the Aharonov–Bohm
action between a localized magnetic fluxF and a localized electric chargeQ in two-spatial
dimensions. When a charge is adiabatically carried around a flux, the wave function of the s
is modified by a phase exp(iQF/\c) that is independent of the separation between charge and
Similarly, if a site defect is transported around a plaquette defect, the wave function of the s
is modified by the phase21 independent of the separation between the defects. Formally,
phase arises because of the anticommutation relation satisfied byX and Z. Physically, it arises
because the ground state of the system is very highly entangled and thus is able to s
very-long-range quantum correlations. The protected qubits are encoded in the Aharonov–
phases acquired by quasiparticles that travel around the fundamental nontrivial cycles
surface; these could be measured in principle in a suitable quantum interference experime

It is useful to observe that the degeneracy of the ground state of the system is a nec
consequence of the unusual interactions among the quasiparticles.19,20A unitary operatorUS,1 can
be constructed that describes a process in which a pair of site defects is created, one memb
pair propagates around a nontrivial cycleC1 of the surface, and then the pair reannihilat
Similarly a unitary operatorUP,2 can be constructed associated with a plaquette defect that p
gates around a complementary nontrivial cycleC2 that intersectsC1 once. These operators com
mute with the HamiltonianH of the system and can be simultaneously diagonalized withH, but
US,1 andUP,2 do not commute with one another. Rather, they satisfy~in an infinite system!

UP,2
21 US,1

21 UP,2 US,1521. ~6!

The nontrivial commutator arises because the process in which~1! a site defect winds aroundC1 ,
~2! a plaquette defect winds aroundC2 , ~3! the site defect winds aroundC1 in the reverse
direction, and~4! the plaquette defect winds aroundC2 in the reverse direction is topologicall
equivalent to a process in which the site defect winds once around the plaquette defect.

BecauseUS,1 andUP,2 do not commute, they cannot be simultaneously diagonalized—ind
applyingUP,2 to an eigenstate ofUS,1 flips the sign of theUS,1 eigenvalue. Physically, there ar
two distinct ground states that can be distinguished by the Aharonov–Bohm phase that is ac
when a site defect is carried aroundC1 ; we can change this phase by carrying a plaquette de
aroundC2 . Similarly, the operatorUS,2 commutes withUS,1 and UP,2 but anticommutes with
UP,1 . Therefore there are four distinct ground states, labeled by theirUS,1 andUS,2 eigenvalues.

This reasoning shows that the topological interaction between site defects and plaque
fects implies that the system on an~infinite! torus has a generic four-fold ground-state degener
The argument is easily extended to show that the generic degeneracy on a genusg Riemann
surface is 22g. By a further extension, we see that the generic degeneracy isq2g if the Aharonov–
Bohm phase associated with winding one defect around another is

exp~2p ip/q!, ~7!

wherep andq are integers with no common factor.
The same sort of argument can be applied to planar systems with a mass gap in which

defects can disappear at an edge. For example, consider an annulus in which site defe
disappear at the inner and outer edges. Then states can be classified by the Aharonov–Boh
acquired by a plaquette defect that propagates around the annulus, a phase that flips in sign
defect propagates from inner edge to outer edge. Hence there is a two-fold degeneracy
annulus. For a disc withh holes, the degeneracy is 2h if site defects can disappear at an
boundary, orqh if the Aharonov–Bohm phase of site defect winding about plaquette defe
exp(2pip/q).

These degeneracies are exact for the unperturbed model system, but will be lifted slig
a weakly perturbed system of finite size. Loosely speaking, the effect of perturbations will
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give the defects a finite effective mass, and the lifting of the degeneracy is associated
quantum tunneling processes in which a virtual defect winds around a cycle of the surfac
amplitudeA for this process has the form

A;C exp~2&~m* D!1/2L/\!, ~8!

whereL is the physical size of the shortest nontrivial~relative! cycle of the surface,m* is the
defect effective mass, andD is the minimal energy cost of creating a defect. The energy split
is proportional toA, and like A becomes negligible when the system is large compared to
characteristic lengthl[\(m* D)21/2.

In this limit, and at sufficiently low temperature, the degenerate ground state provid
reliable quantum memory. If a pair of defects is produced by a thermal fluctuation, and one
defects wanders around a nontrivial cycle before the pair reannihilates, then the encoded q
information will be damaged. These fluctuations are suppressed by the Boltzman
exp(2D/kT) at low temperature. Even if defect nucleation occurs at a non-negligible rate
could enhance the performance of the quantum memory by continually monitoring the state
defect gas. If the winding of defects around nontrivial cycles is detected and carefully reco
damage to the encoded quantum information can be controlled.

IV. THE STATISTICAL PHYSICS OF ERROR RECOVERY

One of our main objectives in this article is to invoke surface coding to establish an acc
threshold for quantum computation—how well must quantum hardware perform for qua
storage, or universal quantum computation, to be achievable with arbitrarily small probabil
error? In this section, rather than study the efficacy of a particular fault-tolerant protocol for
recovery, we will address whether the syndrome of a surface code is adequate in princip
protecting quantum information from error. Specifically, we will formulate an order paramete
distinguishes two phases of a quantum memory: an ‘‘ordered’’ phase in which reliable stor
possible, and a ‘‘disordered phase’’ in which errors unavoidably afflict the encoded qua
information. Of course, this phase boundary also provides an upper bound on the accuracy
old that can be reached by any particular protocol. The toric code and the planar surface cod
the same accuracy threshold, so we may study either to learn about the other.

A. The error model

Let us imagine that in a single time step, we will execute a measurement of each sta
operator at each site and each plaquette of the lattice. During each time step, new qubit
might occur. To be concrete and to simplify the discussion, we assume that all qubit erro
stochastic, and so can be assigned probabilities.~For example, errors that arise from decoheren
have this property.! We will also assume that the errors acting on different qubits are indepen
that bit-flip (X) errors and phase (Z) errors are uncorrelated with one another, and thatX andZ
errors are equally likely. Thus the error in each time step acting on a qubit with stater can be
represented by the quantum channel

r→~12p!2IrI 1p~12p!XrX1p~12p!ZrZ1p2YrY, ~9!

wherep denotes the probability of either anX error or aZ error. It is easy to modify our analysi
if some of these assumptions are relaxed; in particular, correlations betweenX andZ errors would
not cause much trouble, since we have separate procedures for recovery from theX errors and the
Z errors.

Faults can also occur in the syndrome measurement. We assume that these measureme
are uncorrelated. We will denote byq the probability that the measured syndrome bit is faulty
a given site or plaquette.

Aside from being uncorrelated in space, the qubit and measurement errors are also ass
be uncorrelated in time. Furthermore, the qubit and measurement errors are not correlated w
another. We assume thatp andq are known quantities—our choice of recovery algorithm depe
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on their values. In Sec. VII, we will discuss howp and q can be related to more fundament
quantities, namely the fidelities of elementary quantum gates. There we will see that the exe
of the syndrome measurement circuit can introduce correlations between errors. Fortunatel
correlations~which we ignore for now! do not have a big impact on the accuracy threshold.

B. Defects in space–time

Because syndrome measurement may be faulty, it is necessary to repeat the measure
improve our confidence in the outcome. But since new errors may arise during the rep
measurements, it is a subtle matter to formulate an effective procedure for rejecting measu
errors.

Let us suppose, for a toric block of arbitrarily large size, that we measure the error synd
once per time step, that we monitor the block for an arbitrarily long time, and that we store
the syndrome information that is collected. We want to address whether this syndrome inform
enables us to recover from errors with a probability of failure that becomes exponentially sm
the size of the toric block increases. The plaquette check operators identify bit flips and th
check operators identify phase errors; therefore we consider bit-flip and phase error re
separately.

For analyzing how the syndrome information can be used most effectively, it is quite co
nient to envision athree-dimensionalsimple cubic lattice, with the third dimension representing
integer-valuedtime. We imagine that the error operation acts at each integer-valued timet, with a
syndrome measurement taking place in between eacht andt11. Qubits in the code block can now
be associated with timelike plaquettes, those lying in thetx andty planes. A qubit error that occur
at timet is associated with a horizontal~spacelike! link that lies in the time slice labeled byt. The
outcome of the measurement of the stabilizer operatorXs5X^ 4561 at sites, performed between
time t and timet11, is marked on the vertical~timelike! link connecting sites at time t and site
s at time t11. A similar picture applies to the history of theZP stabilizer operators at eac
plaquette, but with the lattice replaced by its dual.

On some of these vertical links, the measured syndrome is erroneous. We will repe
syndrome measurementT times in succession, and the ‘‘error history’’ can be described as a s
marked links on a lattice with altogetherT time slices. The error history encompasses both e
events that damage the qubits in the code block, and faults in the syndrome measurements
initial ( t50) slice are marked all uncorrected qubit errors that are left over from previous ro
of error correction; new qubit errors that arise at a later timet (t51,2,. . . ,T21) are marked on
horizontal links on slicet. Errors in the syndrome measurement that takes place between tt
and t11 are marked on the corresponding vertical links. Errors on horizontal links occur
probability p, and errors on vertical links occur with probabilityq.

For purposes of visualization, it is helpful to consider the simpler case of a quantum repe
code, which can be used to protect coherent quantum information from bit-flip errors if the
no phase errors~or phase errors if there are no bit-flip errors!. In this case we may imagine tha
qubits reside on sites of a periodically identified one-dimensional lattice~i.e., a circle!; at each link
the stabilizer generatorZZ acts on the two neighboring sites. Then there is one encoded qubit—
two-dimensional code space is spanned by the stateu000 . . . 0& with all spins ‘‘up,’’ and the state
u111 . . .& with all spins ‘‘down.’’ In the case where the syndrome measurement is repeat
improve reliability, we may represent the syndrome’s history by associating qubits with plaq
of a two-dimensional lattice, and syndrome bits with the timelike links, as shown in Figs. 8 a
Again, bit-flip errors occur on horizontal links with probabilityp and syndrome measureme
errors occur on vertical links with probabilityq.

Of course, as already noted in Sec. III C, we may also use a two-dimensional latti
represent the error configuration of the toric code, in the case where the syndrome measu
are perfect. In that case, we can collect reliable information by measuring the syndrome
shot, and errors occur on links of the two-dimensional lattice with probabilityp.
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C. Error chains, world lines, and magnetic flux tubes

In practice, we will always want to protect quantum information for some finite time. Bu
the purpose of investigating whether error correction will work effectively in principle, i
convenient to imagine that our repeated rounds of syndrome measurement extend indefinit
the past and into the future. Qubit errors are continually occurring; as defects are created in
propagate about on the lattice, and annihilate in pairs, the world lines of the defects form
loops in space–time. Some loops are homologically trivial and some are homologically nont
Error recovery succeeds if we are able to correctly identify the homology class of each c
loop. But if a homologically nontrivial loop arises that we fail to detect, or if we mistake
believe that a homologically nontrivial loop has been generated when none has been, the

FIG. 8. The two-dimensional lattice depicting a history of the error syndrome for the quantum repetition code, wit
running upward. Each row represents the syndrome at a particular time. Qubits reside on plaquettes, and two-qu
operators are measured at each vertical link. Links where the syndrome is nontrivial are shaded.

FIG. 9. An error history shown together with the syndrome history that it generates, for the quantum repetition code
where errors occurred are darkly shaded, and links where the syndrome is nontrivial are lightly shaded. Errors
zontal links indicate where a qubit flipped between successive syndrome measurements, and errors on verti
indicate where the syndrome measurement was wrong. Vertical links that are shaded both lightly and darkly are l
where a nontrivial syndrome was found erroneously. The chain of lightly shaded links~the syndrome! and the chain of
darkly shaded links~the errors! both have the same boundary.
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recovery will fail. For now, let us consider this scenario in which we continue to measur
syndrome forever—in Sec. VI, we will consider some issues that arise when we perform
correction for a finite time.

So let us imagine a particular history extending over an indefinite number of time slices
the observed syndrome marked on each vertical link, measurement errors marking selecte
cal links, and qubit errors marking selected horizontal links. For this history we may ide
several distinct one-chains~sets of links!. We denote byS the syndrome chaincontaining all
~vertical! links at which the measured syndrome is nontrivial (Xs521). We denote byE theerror
chain containing all links where errors have occurred, including both qubit errors on horiz
links and measurement errors on vertical links. ConsiderS1E, the disjoint union ofS and E
~S1E contains the links that are in eitherS or E, but not both!. The chainS1E represents the
‘‘actual’’ world lines of the defects generated by qubit errors, as illustrated in Fig. 9. Its ver
links are those on which the syndrome would be nontrivial were it measured without erro
horizontal links are events where a defect pair is created, a pair annihilates, or an existing
propagates from one site to a neighboring site. Since the world lines never end, the chainS1E has
no boundary,](S1E)50. EquivalentlyS andE have the same boundary,]S5]E.

Hence, the measured syndromeS reveals the boundary of the error chainE; we may write
E5S1C, where C is a cycle ~a chain with no boundary!. But any other error chainE85S
1C8, whereC8 is a cycle, has the same boundary asE and therefore could have caused the sa
syndrome. To recover from error, we will use the syndrome information to make a hypot
guessing that the actual error chain wasE85S1C8. Now, E8 may not be the same chain asE,
but, as long as the cycleE1E85C1C8 is homologically trivial~the boundary of a surface!, then
recovery will be successful. IfC1C8 is homologically nontrivial, then recovery will fail. We sa
that C and C8 are in the samehomology classif C1C8 is homologically trivial. Therefore,
whether we can protect against error hinges on our ability to identify not the cycleC, but rather
the homology class ofC.

Considering the set of all possible histories, let prob(E8) denote the probability of the erro
chain E8 ~strictly speaking, we should consider the total elapsed time to be finite for this p
ability to be defined!. Then the probability that the syndromeS was caused by any error cha
E85S1C8, such thatC8 belongs to the homology classh, is

prob~huS!5
(C8Phprob~S1C8!

(C8prob~S1C8!
. ~10!

Clearly, then, given a measured syndromeS, the optimal way to recover is to guess that t
homology classh of C is the class with the highest probability according to Eq.~10!. Recovery
succeeds ifC belongs to this class, and fails otherwise.

We say that the probability of error per qubit lies below the accuracy threshold if and o
the recovery procedure fails with a probability that vanishes as the linear sizeL of the lattice
increases to infinity. Therefore, below threshold, the cycleC actually belongs to the classh that
maximizes Eq.~10! with a probability that approaches one asL→`. It is convenient to restate thi
criterion in a different way that makes no explicit reference to the syndrome chainS. We may
write the relation between the actual error chainE and the hypothetical error chainE8 as E8
5E1D, whereD is the cycle that we calledC1C8 above. Let prob@(E1D)uE# denote the
normalized conditional probability for error chainsE85E1D that have the same boundary asE.
Then, the probability of error per qubit lies below threshold if and only if, in the limitL→`,

(
E

prob~E!• (
D nontrivial

prob@~E1D !uE#50. ~11!

Equation~11! says that error chains that differ from the actual error chain by a homologic
nontrivial cycle have probability zero. Therefore, the observed syndromeS is sure to point to the
correct homology class, in the limit of an arbitrarily large code block.
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This accuracy threshold achievable with toric codes can be identified with a phase tran
in a particular statistical physics model defined on a lattice. In a sense that we will make pr
the error chains are analogous to magnetic flux tubes in a superconductor, and the boundar
of the error chains are magnetic monopoles where these flux tubes terminate. Fixing the syn
pins down the monopoles, and the ensemble of chains with a specified boundary can be re
as a thermal ensemble. As the error probability increases, the thermal fluctuations of the flux
increase, and at the critical temperature corresponding to the accuracy threshold, the flu
condense and the superconductivity is destroyed.

A similar analogy applies to the case where the syndrome is measured perfectly, and
dimensional system describes the syndrome on a single time slice. Then the error cha
analogous to domain walls in an Ising ferromagnet, and the boundary points of the error cha
‘‘Ising vortices’’ where domain walls terminate. Fixing the syndrome pins down the vortices,
the ensemble of chains with a specified boundary can be interpreted as a thermal ensemble
error probability increases, the domain walls heat up and fluctuate more vigorously. At a c
temperature corresponding to the accuracy threshold, the domain walls condense and the
becomes magnetically disordered. This two-dimensional model also characterizes the ac
threshold achievable with a quantum repetition code, if the syndrome is imperfect and the
are subjected only to bit-flip errors~or only to phase errors!.

D. Derivation of the model

Let us establish the precise connection between our error model and the corresponding
tical physics model. In the two-dimensional case, we consider a square lattice with links
senting qubits, and assume that errors arise independently on each link with probabilityp. In the
three-dimensional case, we consider a simple cubic lattice. Qubits reside on the tim
plaquettes, and qubit errors arise independently with probabilityp on spacelike links. Measure
ment errors occur independently with probabilityq on timelike links. For now, we will make the
simplifying assumption thatq5p so that the model is isotropic; the generalization toqÞp is
straightforward.

An error chainE, in either two or three dimensions, can be characterized by a functionnE( l )
that takes a link, to nE(,)P$0,1%, wherenE(,)51 for each link, that is occupied by the chain
Hence the probability that error chainE occurs is

prob~E!5)
,

~12p!12nE(,)pnE(,)5F)
,

~12p!G•)
,

S p

12pD nE(,)

, ~12!

where the product is over all links of the lattice.
Now suppose that the error chainE is fixed, and we are interested in the probability dist

bution for all chainsE8 that have the same boundary asE. Note that we may expressE85E
1C, whereC is a cycle~a chain with no boundary! and consider the probability distribution fo
C. Then if nC(,)51 andnE(,)50, the link , is occupied byE8 but not byE, an event whose
probability ~aside from an overall normalization! is

S p

12pD nC(,)

. ~13!

But if nC(,)51 andnE(,)51, then the link, is not occupied byE8, an event whose probability
~aside from an overall normalization! is

S 12p

p D nC(,)

. ~14!

Thus a chainE85E1C with the same boundary asE occurs with probability
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prob~E8uE!})
,

exp~J,u,!; ~15!

here we have defined

u,5122nC~, !P$1,21%, ~16!

and the couplingJ, assigned to link, has the form

e22J,5H p/~12p!, for ,¹E,

~12p!/p, for ,PE.
~17!

Recall that the one-chain$,uul521% is required to be acycle—it has no boundary.
It is obvious from this construction that prob(E8uE) does not depend on how the chainE is

chosen—it depends only on the boundary ofE. We will verify this explicitly below.
The cycle condition satisfied by theul ’s can be expressed as

)
,{s

u,51; ~18!

at each sites, an even number of links incident on that site haveu,521. It is convenient tosolve
this condition, expressing theu,’s in terms of unconstrained variables. To achieve this in t
dimensions, we associate with each link, a link ,* of the dual lattice. Under this duality, sites are
mapped to plaquettes, and the cycle condition becomes

)
,* PP*

u,* 51. ~19!

To solve the constraint, we introduce variabless iP$1,21% associated with each sitei of the dual
lattice, and write

ui j 5s is j ~20!

wherei and j are nearest-neighbor sites.
Our solution to the constraint is not quite the most general possible. In the langua

differential forms, we have solved the conditiondu50 ~where u is a discrete version of a
one-form, andd denotes the exterior derivative! by writing u5ds, wheres is a zero-form. Thus
our solution misses the cohomologically nontrivial closed forms, those that are not exact.
language of homology, our solution includes all and only those cycles that are homolog
trivial—that is, cycles that bound a surface.

In three dimensions, links are dual to plaquettes, and sites to cubes. The cycle con
becomes, on the dual lattice,

)
P* PC*

uP* 51; ~21!

each dual cubeC* contains an even number of dual plaquettes that are occupied by the cycl
solve this constraint by introducing variabless,* P$1,21% on the dual links, and defining

uP* 5 )
,* PP*

s,* . ~22!
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In this case, we have solved a discrete version ofdu50, whereu is a two-form, by writingu
5ds, wheres is a one-form. Once again, our solution generates only the cycles that are h
logically trivial.

We have now found that, in two dimensions, the ‘‘fluctuations’’ of the error chainsE8 that
share a boundary with the chainE are described by a statistical-mechanical model with partit
function

Z@J,h#5(
$s i %

expS J(̂
i j &

Dh i j s is j , ~23!

wheree22J5p/(12p). The sum in the exponential is over pairs of nearest neighbors on a s
lattice, andh lP$1,21% is defined by

h,5H 1, if ,¹E* ,

21, if ,PE* .
~24!

Furthermore, if the error chainsE andE8 are generated by sampling the same probability dis
bution, then theh,’s are chosen at random subject to

h,5H 1, with probability 12p,

21, with probability p.
~25!

This model is the well-known ‘‘random-bond Ising model.’’ Furthermore, the relatione22J

5p/(12p) between the coupling and the bond probability defines the ‘‘Nishimori line’’21 in the
phase diagram of the model, which has attracted substantial attention because the model is
to have enhanced symmetry properties on this line.~For a recent discussion, see Ref. 22.!

Perhaps the interpretation of this random-bond Ising model can be grasped better if we
the original lattice rather than the dual lattice, so that the Ising spins reside on plaquettes as
10. The coupling between spins on neighboring plaquettes is antiferromagnetic on the lin
longing to the chainE ~whereh,521!, meaning that it is energetically preferred for the spins
antialign at these links. At links not inE ~whereh51!, it is energetically preferred for the spin
to align. Thus a linki j is excited if h i j s is j521. We say that the excited links constitu
‘‘domain walls.’’ In the case whereh,51 on every link, a wall marks the boundary between tw
regions in which the spins point in opposite directions. Walls can never end, because the bo
of a boundary is zero.

FIG. 10. The ‘‘quenched’’ error chainE and the ‘‘fluctuating’’ error chainE8, as represented in the two-dimension
random-bond Ising model. Ising spins taking values in$61% reside on plaquettes, Ising vortices are located on the s
marked by filled circles, and the coupling between neighboring spins is antiferromagnetic along the pathE that connects
the Ising vortices. The links ofE8 comprise a domain wall connecting the vortices. The closed pathC5E1E8 encloses a
domain of spins with the value21.
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But if the h configuration is nontrivial, then the ‘‘walls’’ can end. Indeed each boundary p
of the chainE of links with h l521 is an endpoint of a wall, what we will call an ‘‘Ising vortex.
For example, for the configuration shown in Fig. 10, a domain wall occupies the chainE8 that
terminates on Ising vortices at the marked sites. The figure also illustrates that the model d
only on the boundary of the chainE, and not on other properties of the chain. To see this, imag
performing the change of variables

s i→2s i ~26!

on the shaded plaquettes of Fig. 10. A mere change of variable cannot alter the locations
excited links—rather, the effect is to shift the antiferromagnetic couplings from the chainE to a
different chainE8 with the same boundary.

In three dimensions, the fluctuations of the error chains that share a boundary with the
fied chainE are described by a model with partition function

Z@J,h#5 (
$s,%

expS J(
P

hPuPD , ~27!

whereuP5),PPs, and

hP5H 1, if P¹E* ,

21, if PPE* .
~28!

This model is a ‘‘random-plaquette’’Z2 gauge theory in three dimensions, which, as far as
know, has not been much studied previously. Again, we are interested in the ‘‘Nishimori lin
this model wheree22J5p/(12p), andp is the probability that a plaquette hashP521.

In this three-dimensional model, we say that a plaquetteP is excited if hPuP521. The
excited plaquettes constitute ‘‘magnetic flux tubes’’—these form closed loops on the or
lattice if hP51 on every plaquette. But at each boundary point of the chainE on the original
lattice ~each cube on the dual lattice that contains an odd number of plaquettes withhP521!, the
flux tubes can end. The sites of the original lattice~or cubes of the dual lattice! that contain
endpoints of magnetic flux tubes are said to be ‘‘magnetic monopoles.’’

E. Order parameters

As noted, our statistical-mechanical model includes a sum over those and only those chaE8
that arehomologically equivalentto the chainE. To determine whether errors can be correc
reliably, we want to know whether chainsE8 in a differenthomology class thanE have negligible
probability in the limit of a large lattice~or code block!. The relative likelihood of different
homology classes is determined by the free energy difference of the classes; in the ordered
we anticipate that the free energy of nontrivial classes exceeds that of the trivial classes
amount that increases linearly withL, the linear size of the lattice.

But for the purpose of finding the value of the error probability at the accuracy thresho
suffices to consider the model in an infinite volume~where there is no nontrivial homology!. In the
ordered phase where errors are correctable, large fluctuations of domain walls or flux tub
suppressed, while in the disordered phase the walls or tubes ‘‘dissolve’’ and cease to b
defined.

Thus, the phase transition corresponding to the accuracy threshold is a singularity,
infinite-volume limit, in the ‘‘quenched’’ free energy, defined as

@bF~J,h!#p[2(
$h%

Prob~h!• ln Z@J,h#, ~29!

where
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Prob~h!5)
,

~12p!12h,ph, ~30!

in two dimensions, or

Prob~h!5)
P

~12p!12hPphP ~31!

in three dimensions. The term ‘‘quenched’’ signifies that, although theh chains are generated a
random, we consider thermal fluctuations with the positions of the vortices or monopoles p
down. The inverse temperatureb is identical to the couplingJ. We use the notation@•#p to
indicate an average with respect to the quenched randomness, and we will denote by^•&b an
average over thermal fluctuations.

There are various ways to describe the phase transition in this system, and to specify a
parameter. For example, in the two-dimensional Ising system, we may consider a ‘‘disord
rameter’’F(x) that inserts a single Ising vortex at a specified positionx. To define this operator
we must consider either an infinite system or a finite system with a boundary; on the torus
vortices can only be inserted in pairs. But for a system with a boundary, we can consider a d
wall with one end at the boundary and one end in the bulk. In theferromagneticphase, the cost in
free energy of introducing an additional vortex atx is proportional toL, the distance fromx to the
boundary. Correspondingly we find

@^F~x!&b#p50 ~32!

in the limit L→`. The disorder parameter vanishes because we cannot introduce an is
vortex without creating an infinitely long domain wall. In the disordered phase, an addit
vortex can be introduced at finite free energy cost, and hence

@^F~x!&b#pÞ0. ~33!

On the torus, we may consider an operator that inserts not a semi-infinite domain wall
nating on a vortex, but instead a domain wall that winds about a cycle of the torus. Again,
ferromagnetically ordered phase, the cost in free energy of inserting the domain wall w
proportional toL, the minimal length of a cycle. Specifically, in our two-dimensional Ising s
model, consider choosing anh-chain and evaluating the corresponding partition function

Z@J,h#5exp@2bF~J,h!#. ~34!

Now choose a set of linksC of the original lattice that constitute a nontrivial cycle wound arou
the torus, and replaceh l→2h l for the corresponding links of the dual lattice,l PC* . Evaluate,
again, the partition function, obtaining

ZC@J,h#5exp@2bFC~J,h!#. ~35!

Then the free energy cost of the domain wall is given by

bFC~J,h!2bF~J,h!52 lnS ZC@J,h#

Z@J,h# D . ~36!

After averaging over$h%, this free energy cost diverges asL→` in the ordered phase, an
converges to a constant in the disordered phase.

There is also a dual order parameter that vanishes in the disordered phase—the spon
magnetization of the Ising spin system. Strictly speaking, the defining property of the non
magnetic disordered phase is that spin correlations decay with distance, so that
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lim
r→`

@^s0s r&b#p50 ~37!

in the disordered phase. Correspondingly, the mean squared magnetization per site,

m2[N22(
i , j

@^s is j&b#p , ~38!

where i , j are summed over all spins andN is the total number of spins, approaches a nonz
constant asN→` in the ordered phase, and approaches zero as a positive power of 1/N in the
disordered phase.

Similarly in our three-dimensional gauge theory, there is a disorder parameter that ins
single magnetic monopole, which we may think of as the end of a semi-infinite flux tube. A
natively, we may consider the free energy cost of inserting a flux tube that wraps around the
which is proportional toL in the magnetically ordered phase. In the three-dimensional mode
partition functionZC@J,h# in the presence of a flux tube wrapped around the nontrivial cycleC of
the original lattice is obtained by replacinghP→2hP on the plaquettes dual to the links ofC.
The magnetically ordered phase is called a ‘‘Higgs phase’’ or a ‘‘superconducting phase.
magnetically disordered phase is called a ‘‘confinement phase’’ because in this phase intro
an isolated electric charge has a infinite cost in free energy, and electric charges are confi
pairs by electric flux tubes.

An order parameter for the Higgs-confinement transition is the Wilson loop operator

W~C!5 )
,PC

s, ~39!

associated with a closed loopC of links on the lattice. This operator can be interpreted as
insertion of a charged particle source whose world line follows the pathC. In the confinement
phase, this world line becomes the boundary of the world sheet of an electric flux tube, so th
free energy cost of inserting the source is proportional to the minimal area of a surface boun
C; that is,

2 ln@^W~C!&b#p ~40!

increases like the area enclosed by the loopC in the confinement phase, while in the Higgs pha
it increases like the perimeter ofC. @A subtle point is that the relevant Wilson loop operator diffe
from that considered in Sec. 10 of Ref. 23. In that reference, the Wilson loop was modified s
the ‘‘Dirac strings’’ connecting the monopoles would be invisible. But in our case, the D
strings have a physical meaning~they comprise the chainE! and we are genuinely interested
how far the physical flux tubes~comprising the chainE8! fluctuate away from the Dirac strings!#

In the caseqÞp, our gauge theory becomes anisotropic—p controls the coupling and the
quenched disorder on the timelike plaquettes, whileq controls the coupling and the quenche
disorder on the spacelike plaquettes. The tubes of flux inE1E8 will be stretched in the time
direction forq.p and compressed in the time direction forq,p. Correspondingly, spacelike an
timelike Wilson loops will decay at different rates. Still, one expects that~for 0,q, 1

2! a single
phase boundary in thep–q plane separates the region in which both timelike and spacelike Wi
loops decay exponentially with area~confinement phase! from the region in which both timelike
and spacelike Wilson loops decay exponentially with perimeter. In the limitq→0, flux on the
spacelike plaquettes becomes completely suppressed, and the timelike plaquettes on disti
slices decouple, each described by the two-dimensional spin model described earlier. Simil
the limit p→0, the gauge theory reduces to decoupled one-dimensional spin models extend
the vertical direction, with a critical point atq5 1

2.
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F. Accuracy threshold

What accuracy threshold can be achieved by surface codes? We have found that in th
where the syndrome is measured perfectly (q50), the answer is determined by the value
critical point of the two-dimensional random-bond Ising model on the Nishimori line. This v
has been determined by numerically evaluating the domain wall free energy; recent stud
Honeckeret al.24 and Merz and Chalker25 find

pc50.109460.0002. ~41!

A surface code is a Calderbank–Shor–Steane~CSS! code, meaning that each stabilizer ge
erator is either a tensor product ofX’s or a tensor product ofZ’s.26,27If X errors andZ errors each
occur with probabilityp, then it is known that CSS codes exist with asymptotic rateR[k/n
~wheren is the block size andk is the number of encoded qubits! such that error recovery wil
succeed with probability arbitrarily close to one, where

R5122H2~p!; ~42!

hereH2(p)52p log2 p2(12p)log2(12p) is the binary Shannon entropy. This rate hits zero wh
p has the value

pc50.1100, ~43!

which marginally agrees with Eq.~41! within statistical errors. Thus the critical error probabili
is ~at least approximately! the same regardless of whether we allow arbitrary CSS codes or re
to those with a locally measurable syndrome. This result is analogous to the property th
classical repetition code achieves reliable recovery from bit-flip errors for any error proba
p, 1

2, the value for which the Shannon capacity hits zero. Note that Eq.~41! can also be inter-
preted as a threshold for the quantum repetition code, in the case where the bit-flip error ra
the measurement error rate are equal (p5q).

If measurement errors are incorporated, then the accuracy threshold achievable with
codes is determined by the critical point along the Nishimori line of the three-dimensionZ2

gauge theory with quenched randomness. In that model the measurement error probabilityq ~the
error weight for vertical links! and the bit-flip probabilityp ~the error weight for horizontal links!
are independent parameters. It seems that numerical studies of this quenched gauge theo
not been done previously, even in the isotropic case; work on this problem is in progress.

Since recovery is more difficult with imperfect syndrome information than with perfect
drome information, the numerical data on the random-bond Ising model indicate thatpc,0.11 for
any q.0. For the casep5q, we will derive the lower boundpc>0.0114 in Sec. V.

G. Free energy versus energy

In either the two-dimensional model~if q50! or the three-dimensional model~if q.0!, the
critical error probability along the Nishimori line provides a criterion for whether it is possibl
principle to perform flawless recovery from errors. In practice, we would have to execu
classical computation, with the measured syndrome as input, to determine how error re
should proceed. The defects revealed by the syndrome measurement can be brought tog
annihilate in several homologically distinct ways; the classical computation determines wh
these ‘‘recovery chains’’ should be chosen.

We can determine the right homology class by computing the free energy for each hom
class, and choosing the one with minimal free energy. In the ordered phase~error probability
below threshold! the correct sector will be separated in free energy from other sectors b
amount linear inL, the linear size of the lattice.

The computation of the free energy could be performed by, for example, the Monte
method. It should be possible to identify the homology class that minimizes the free energ
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time polynomial inL, unless the equilibration time of the system is exponentially long. Suc
long equilibration time would be associated with spin-glass behavior—the existence of a
number of metastable configurations. In the random-bond Ising model, spin glass behavior
expected in the ferromagnetically ordered phase corresponding to error probability below t
old. Thus, we expect that in the two-dimensional model the correct recovery procedure c
computed efficiently for anyp,pc . Similarly, it is also reasonable to expect that, for err
probability below threshold, the correct recovery chain can be found efficiently in the t
dimensional model that incorporates measurement errors.

In fact, some folklore concerning the random-bond Ising model suggests that we can re
successfully by finding a recovery chain that minimizesenergy rather than free energy
Nishimori28 notes that along the Nishimori line, the free energy@bF(J)#p coincides with the
entropy of frustration; that is, theShannon entropyof the distribution of Ising vortices.~He
considered the isotropic two-dimensional model, but his argument applies just as well t
three-dimensional gauge theory, or to the anisotropic model withqÞp.! Thus, the singularity of
the free energy on the Nishimori line can be regarded as a singularity of this Shannon en
which is a purely geometrical effect having nothing to do with thermal fluctuations.

On this basis, Nishimori proposed that there is a vertical phase boundary in our m
occurring at a fixed value ofp for all temperatures below the critical temperature at the Nishim
point, as indicated in Fig. 11; further support for this conclusion was later offered by Kitatan29 If
this proposal is correct, then the critical error probability can be computed by analyzing the
transition at zero temperature, where the thermal entropy of the fluctuating chains can
glected. In other words, in the ordered phase, the chain of minimal energy with the same bo
as the actual error chain will with probability one be in the same homology class as the
chain, in the infinite-volume limit. Ordinarily, minimizing free energy and energy are quite
ferent procedures that give qualitatively distinct results. What might make this case differ
that the quenched disorder~the error chainE! and the thermal fluctuations~the error chainE8! are
drawn from the same probability distribution.

Minimizing the energy has advantages. For one, the minimum energy configuration
minimum weight chain with a specified boundary, which we know can be computed in a
polynomial inL using the perfect matching algorithm of Edmonds.30,31 Kawashima and Rieger32

computed the energetic cost of introducing a domain wall at zero temperature, and foupc

.0.10460.001. It is debatable whether this result is compatible with the valuepc.0.1094
60.0002 found by Honeckeret al.24 and Merz and Chalker25 at the Nishimori point, but in any
casepc at zero temperature is reasonably close topc on the Nishimori line.

Minimizing the energy is easier to analyze than minimizing the free energy, and at the

FIG. 11. The phase diagram of the random-bond Ising model, with the temperatureb21 on the vertical axis and the
probabilityp of an antiferromagnetic bond on the horizontal axis. The solid line is the boundary between the ferroma
~ordered! phase and the paramagnetic~disordered! phase. The dotted line is the Nishimori linee22b5p/(12p), which
crosses the phase boundary at the Nishimori pointN. It has been suggested that the phase boundary isvertical from the
point N to the horizontal axis.
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least the critical value ofp at zero temperature provides alower boundon pc along the Nishimori
line. In Sec. V we will derive a rigorous bound on the accuracy threshold in our error mode
considering the efficacy of the energy minimization procedure in the three-dimensional mo

V. CHAINS OF MINIMAL WEIGHT

A. The most probable world line

As argued in Sec. IV G, an effective way use the error syndrome in our three-dimens
model is to construct an error chain that has the minimal ‘‘energy’’—that is, we select from am
all error chains that have the same boundary as the syndrome chainS, the single chainEmin that
has the highest probability. In this section, we will study the efficacy of this procedure, an
obtain a lower bound on the accuracy threshold for quantum storage.

An error chainE with H horizontal links andV vertical links occurs with probability~aside
from an overall normalization!

S p

12pD HS q

12qD V

, ~44!

wherep is the qubit error probability andq is the measurement error probability. Thus we choo
Emin to be the chain with

]Emin5]S ~45!

that has theminimal value of

H• logS 12p

p D1V• logS 12q

q D ; ~46!

we minimize the effective length~number of links! of the chain, but with horizontal and vertica
links given different linear weights forpÞq. If the minimal chain is not unique, one of th
minimal chains is selected randomly.

Given the measured syndrome, and hence its boundary]S, the minimal chainEmin can be
determined on a classical computer, using standard algorithms, in a time bounded by a poly
of the number of lattice sites.30,31 If p andq are small, so that the lattice is sparsely populated
the sites contained in]S, this algorithm typically runs quite quickly. We assume this class
computation can be performed instantaneously and flawlessly.

B. A bound on chain probabilities

Recovery succeeds if our hypothesisEmin is homologically equivalent to the actual error cha
E that generated the syndrome chainS, and fails otherwise. Hence, we wish to bound the like
hood of homologically nontrivial paths appearing inE1Emin .

Consider a particular cycle on our space–time lattice~or in fact any connected path, wheth
or not the path is closed!. Suppose that this path containsH horizontal links andV vertical links.
How likely is it that E1Emin contains this particular set of links?

For our particular path withH horizontal links andV vertical links, letHm , Vm be the number
of those links contained inEmin , and letHe , Ve be the number of those links contained inE ~cf.
Fig. 12!. These quantities obey the relations

Hm1He>H, Vm1Ve>V, ~47!

and so it follows that

S p

12pD HmS q

12qD Vm

•S p

12pD HeS q

12qD Ve

<S p

12pD HS q

12qD V

. ~48!
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Furthermore, our procedure for constructingEmin ensures that

S p

12pD HeS q

12qD Ve

<S p

12pD HmS q

12qD Vm

. ~49!

This must be so because thee links and them links share the same boundary; were Eq.~49! not
satisfied, we could replace them links in Emin by the e links and thereby increase the value
@p/(12p)#Hm@q/(12q)#Vm. Combining the inequalities~48! and ~49! we obtain

S p

12pD HeS q

12qD Ve

<F S p

12pD HS q

12qD VG1/2

. ~50!

What can we say about the probability Prob(H,V) that a particular connected path with (H,V)
horizontal and vertical links is contained inE1Emin? There are altogether 2H1V ways to distribute
errors~links contained inE! at locations on the specified chain—each link either has an erro
not. And once the error locations are specified, the probability for errors to occur at those p
lar locations is

pHe~12p!H2HeqVe~12q!V2Ve5~12p!H~12q!VS p

12pD HeS q

12qD Ve

. ~51!

But with those chosen error locations, the cycle can be inE1Emin only if Eq. ~50! is satisfied.
Combining these observations, we conclude that

Prob~H,V!<2H1V~ p̃Hq̃V!1/2, ~52!

where

p̃5p~12p!, q̃5q~12q!. ~53!

We can now bound the probability thatE1Emin contains any connected path with (H,V) links
~whether an open path or a cycle! by counting such paths. We may think of the path as a walk
the lattice~in the case of a cycle we randomly choose a point on the cycle where the walk b

FIG. 12. The error chainE ~darkly shaded! and one possible choice for the chainEmin ~lightly shaded!, illustrated for a
636 torus in two dimensions. In this caseE1Emin contains a homologically nontrivial cycle of length 8, which contai
He54 links of E andHm54 links of Emin .
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and ends!. Actually, our primary interest is not in how long the walk is~how many links it
contains!, but rather in how far it wanders—in particular we are interested in whether a cl
walk is homologically nontrivial. The walks associated with connected chains of errors visi
given link at most once, but it will suffice to restrict the walks further, to beself-avoiding walks
~SAWs!—those that visit any givensite at most once~or in the case of a cycle, revisit only th
point where the walk starts and ends!. This restriction proves adequate for our purposes, beca
given any open error walk that connects two sites, we can always obtain a SAW by elimin
some closed loops of links from that walk. Similarly, given any homologically nontrivial clo
walk, we can obtain a closed SAW~a self-avoiding polygon, or SAP! by eliminating some links.

If we wish to consider the probability of an error per unit time in the encoded state, we
confine our attention to SAWs that lie between two time slices separated by the finite timeT. @In
fact, we will explain in Sec. VI why we can safely assume thatT5O(L).# Such a SAW can begin
at any one ofL2

•T lattice sites of our three-dimensional lattice~and in the case of a SAP, we ma
arbitrarily select one site that it visits as its ‘‘starting point.’’! If nSAP(H,V) denotes the number o
SAPs with (H,V) links and a specified starting site, then the probability ProbSAP(H,V) that E
1Emin contains any SAP with (H,V) links satisfies

ProbSAP~H,V!<L2T•nSAP~H,V!•2H1V~ p̃Hq̃V!1/2. ~54!

The upper bound Eq.~54! will be the foundation of the results that follow.
The encoded quantum information is damaged ifE1Emin contains homologically nontrivia

paths. At a minimum, the homologically nontrivial~self-avoiding! path must contain at leastL
horizontal links. Hence we can bound the failure probability as

Probfail<(
V

(
H>L

ProbSAP~H,V!<L2T(
V

(
H>L

nSAP~H,V!•~4p̃!H/2~4q̃!V/2. ~55!

C. Counting anisotropic self-avoiding walks

We will obtain bounds on the accuracy threshold for reliable quantum storage with toric c
by establishing conditions under which the upper bound Eq.~55! rapidly approaches zero asL gets
large. For this analysis, we will need bounds on the number of self-avoiding polygons w
specified number of horizontal and vertical links.

One such bound is obtained if we ignore the distinction between horizontal and vertical
The first step of a SAP on a simple~hyper!cubic lattice ind dimensions can be chosen in any
2d directions, and each subsequent step in at most 2d21 directions, so for walks containing
total of , links we obtain

nSAP
(d) ~, !<2d~2d21!,21, d dimensions. ~56!

Some tighter bounds are known33,34 in the casesd52,3:

nSAP
(2) ~, !<P2~, !~m2!,, m2'2.638, ~57!

and

nSAP
(3) ~, !<P3~, !~m3!,, m3'4.684, ~58!

whereP2,3(,) are polynomials.
Since a SAP withH horizontal andV vertical links has,5H1V total links, we may invoke

Eq. ~58! together with Eq.~55! to obtain

Probfail<L2T(
V

(
H>L

P3~H1V!•~4m3
2 p̃!H/2~4m3

2 q̃!V/2. ~59!
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Provided that

p̃,~4m3
2!21, q̃,~4m3

2!21, ~60!

we have

~4m3
2 p̃!H/2

•~4m3
2 q̃!V/2<~4m3

2 p̃!L/2 ~61!

for every term appearing in the sum. Since there are altogether 2L2T horizontal links andL2T
vertical links on the lattice, the sum overH,V surely can have at most 2L4T2 terms, so that

Probfail,Q3~L,T!•~4m3
2 p̃!L/2, ~62!

whereQ3(L,T) is a polynomial. To ensure that quantum information can be stored with arbitr
good reliability, it will suffice that Probfail becomes arbitrarily small asL gets large~with T
increasing no faster than a polynomial ofL!. Thus Eq.~60! is sufficient for reliable quantum
storage. Numerically, the accuracy threshold is surely attained provided that

p̃,q̃,~87.8!2150.0113, ~63!

or

p,q,0.0114. ~64!

Not only does Eq.~62! establish a lower bound on the accuracy threshold, it also shows
below threshold, the failure probability decreases exponentially withL, the square root of the
block size of the surface code.

Equation~64! bounds the accuracy threshold in the casep5q, where the sum in Eq.~55! is
dominated by isotropic walks withV;H/2. But for q,0.0114, higher values ofp can be toler-
ated, and forq.0.0114, there is still a threshold, but the condition onp is more stringent. To
obtain stronger results than Eq.~64! from Eq. ~55!, we need better ways to count anisotrop
walks, with a specified ratio ofV to H.

One other easy case is theq→0 limit ~perfect syndrome measurement!, where the only walks
that contribute are two-dimensional SAPs confined to a single time slice. Then we have

Probfail,Q2~L,T!•~4m2
2 p̃!L/2 ~65!

@whereQ2(L,T) is a polynomial# provided that

p̃5p~12p!,~4m2
2!21'~27.8!2150.0359, ~66!

or

p,0.0373; ~67!

the threshold value ofp can be relaxed to at least 0.0373 in the case where syndrome mea
ments are always accurate.

This estimate ofpc is considerably smaller than the valuepc.0.109460.0002 quoted in Sec
IV F, obtained from the critical behavior of the random-bond Ising model. That discrepancy
a surprise, considering the crudeness of our arguments in this section. If one accepts the re
the numerical studies of the random-bond Ising model, and Nishimori’s argument that the
boundary of the model is vertical, then apparently constructing the minimum weight chain
more effective procedure than our bound indicates.

One possible way to treat the caseqÞp would be to exploit an observation due to d
Gennes,35 which relates the counting of SAPs to the partition function of a classicalO(N) spin
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model in the limitN→0. This spin model is anisotropic, with nearest-neighbor couplingsJH on
horizontal links andJV on vertical links, and its~suitably rescaled! free energy density has th
high-temperature expansion

f ~JH ,JV!5(
H,V

nSAP~H,V!~JH!H~JV!V. ~68!

This expansion converges in the disordered phase of the spin system, but diverges in the m
cally ordered phase. Thus, the phase boundary of the spin system in theJH –JV plane can be
translated into an upper bound on the storage accuracy threshold in thep–q plane, through the
relations

p̃5JH
2 /4, q̃5JV

2/4, ~69!

obtained by comparing Eqs.~68! and ~55!.
To bound the failure probability for a planar code rather than the toric code, we should

the ‘‘relative polygons’’ that stretch from one edge of the lattice to the opposite edge. This ch
has no effect on the estimate of the threshold.

VI. ERROR CORRECTION FOR A FINITE TIME INTERVAL

In estimating the threshold for reliablestorageof encoded quantum information, we hav
found it convenient to imagine that we perform error syndrome measurement forever, witho
beginning or end. ThusS1E is a cycle~whereS is the syndrome chain andE is the error chain!
containing the closed world lines of the defects. Though some of these world lines m
homologically nontrivial, resulting in damage to the encoded qubits, we can recover from
damage successfully if the chainS1E8 ~whereE8 is our estimated error chain! is homologically
equivalent toS1E. The analysis is simplified because we need to consider only the errors
have arisen during preceding rounds of syndrome measurement, and need not consider a
existing errors that were present when the round of error correction began.

However, if we wish to perform acomputationacting on encoded toric blocks, life will not b
so simple. In our analysis of the storage threshold, we have assumed that the complete sy
history of an encoded block is known. But when two blocks interact with one another in
execution of a quantum gate, the defects in each block may propagate to the other block. T
assemble a complete history of the defects in any given block, we would need to take into a
the measured syndrome of all the blocks in the ‘‘causal past’’ of the block in question. In prin
this is possible. But in practice, the required classical computation would be far too comp
perform efficiently—inT parallelized time steps, with two-qubit gates acting in each step,
conceivable that defects from as many as 2T different blocks could propagate to a given bloc
Hence, if we wish to compute fault-tolerantly using toric codes, we will need to intervene
perform recovery repeatedly. Since the syndrome measurement is imperfect and the defe
tions cannot be precisely determined, errors left over from one round of error correction may
problems in subsequent rounds.

Intuitively, it should not be necessary to store syndrome information for a very long peri
recover successfully, because correlations decay exponentially with time in our stati
mechanical model. To take advantage of this property, we must modify our recovery proce

A. Minimal-weight chains

Consider performing syndrome measurementT times in succession~starting at timet50!,
generating syndrome chainS and error chainE. Let the error chainE contain any qubit errors tha
were already present when the syndrome measurements began. Then the chainS1E consisting of
all defect world lines contains both closed loops and open paths that end on the fina
slice—we say thatS1E is closed relative to the final time slice, or] rel(S1E)50. The open
connected paths contained inS1E are of two types: pairs of defects created prior tot50 that
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have persisted untilt5T ~if the world line contains links on the initial time slice!, and pairs of
defects created aftert50 that have persisted untilt5T ~if the world line contains no links on the
initial slice!.

The syndromeS could have been caused by any error chainE8 with the samerelative
boundary asE. To reconstruct the world lines, we should choose anE8 that is likely given the
observedS. A reasonable procedure is to choose the chainE8 with ] relE85] relS that minimizes
the weight Eq.~46!.

The chainS1E8 can be projected onto the final time slice—the projected chainP(S1E8)
contains those and only those horizonal links that are contained inS1E8 on an odd number of
time slices. Of course,E8 has the same projection asS1E8; the syndrome chainS contains only
vertical links so that its projection is trivial. The projectionP(E8) is our hypothesis about which
links have errors on the final time slice. AfterP(E8) is constructed, we may performX’s or Z’s
on these links to compensate for the presumed damage. Note that, to constructE8, we do not need
to store all ofS in our ~classical! memory—only the relative boundary ofS is needed.

Actually, any homologically trivial closed loops inP(E8) are harmless and can be safe
ignored. Each homologically nontrivial world line modifies the encoded information by the lo
operationX̄ or Z̄. Thus, after the hypothetical closed world lines are reconstructed, we
compensate for the homologically nontrivial closed loops by applyingX̄ and/or Z̄ as needed.
Projecting the open world lines inE8 onto the final time slice produces a pairing of the presum
positions of surviving defects on the final slice. These defects are removed by performingZ’s or
X’s along a path connecting the pair that is homologically equivalent to the projected chai
connects them. Thus, this recovery step in effect brings the paired defects together to an
harmlessly.

Of course, our hypothesisE8 will not necessarily agree exactly with the actual error chainE.
ThusE1E8 contains open chains bounded by the final time slice. Where these open chain
the final time slice, defects remain that our recovery procedure has failed to remove.

B. Overlapping recovery method

The procedure of constructing the minimal-weight chainE8 with the samerelative boundary
asS is not as effective as the procedure in which we continue to measure the syndrome fore
the latter case, we are in effect blessed with additional information about where monopole
appear in the future, at times later thanT, and that additional information allows us to make
more accurate hypothesis about the defect world lines. However, we can do nearly as wel
use a procedure that stores the syndrome history for only a finite time, if we recognize th
older syndrome is more trustworthy than the more recent syndrome. In our statistical p
model, the fluctuating closed loops inE1E8 do not grow indefinitely large in either space or
time. Therefore, we can reconstruct anE8 that is homologically equivalent toE quasilocally in
time—to pair up the monopoles in the vicinity of a given time slice, we do not need to know
error syndrome at times that are much earlier or much later.

So, for example, imagine measuring the syndrome 2T times in succession~starting at time
t50!, and then constructingE8 with the same relative boundary asS. The chainE8 can be split
into two disjoint subchains, as indicated in Fig. 13. The first part consists of all connected c
that terminate on two monopoles, where both monopoles lie in the time interval 0<t,T; call this
part Eold8 . The rest ofE8 we call Ekeep8 . To recover, we flip the links in the projectionP(Eold8 ),
after which we may erase from memory our record of the monopoles connected byEold8 ; only
Ekeep8 ~indeed only the relative boundary ofEkeep8 ! will be needed to perform the next recovery ste

In the next step we measure the syndrome anotherT times in succession, fromt52T to t
53T21. Then we choose our newE8 to be the minimal-weight chain whose boundary relative
the new final time slice is the union of the relative boundary ofS in the interval 2T<t,3T and
the relative boundary ofEkeep8 left over from previous rounds of error correction. We call th
procedure the ‘‘overlapping recovery method’’ because the minimal-weight chains that are
structed in successive steps occupy overlapping regions of space–time.
                                                                                                                



tical
ount

t of

in

the

y a

overy
drome
ects
accept
te. But

-

n
er
nd

re

4483J. Math. Phys., Vol. 43, No. 9, September 2002 Topological quantum memory

                    
If we chooseT to be large compared to the characteristic correlation time of our statis
physics model, then only rarely will a monopole survive for more than one round, and the am
of syndrome information we need to store will surely be bounded. Furthermore, for suchT, this
overlapping recovery method will perform very nearly as well as if an indefinite amoun
information were stored.

The timeT should be chosen large enough so that connected chains inE1E8 are not likely to
extend more than a distanceT in the time direction. Arguing as in Sec. V C@and recalling that the
numbernSAW(,) of self-avoiding walks of length, differs from the numbernSAP(,) of self-
avoiding polygons of length, by a factor polynomial in,#, we see that a connected cha
containingH horizontal links andV vertical links occurs with a probability

Prob~H,V!<Q38~H,V!~4m3
2p̃!H/2~4m3

2q̃!V/2, ~70!

whereQ38(H,V) is a polynomial. Furthermore, a connected chain with temporal extentT must
have at leastV52T vertical links if both ends of the chain lie on the final time slice. Therefore
probability Prob(H,V) is small compared to the failure probability Eq.~62!, so that our procedure
with finite memory differs in efficacy from the optimal procedure with infinite memory b
negligible amount, provided that

T@
L

2
•

log~4m3
2p̃!21

log~4m3
2q̃!21 . ~71!

In particular, if the measurement error and qubit error probabilities are comparable (q.p), it
suffices to chooseT@L, whereL is the linear size of the lattice.

Thus we see that the syndrome history need not be stored indefinitely for our rec
procedure to be robust. The key to fault tolerance is that we should not overreact to syn
information that is potentially faulty. In particular, if we reconstruct the world lines of the def
and find open world lines that do not extend very far into the past, it might be dangerous to
the accuracy of these world lines and respond by bringing the defects together to annihila

FIG. 13. The ‘‘overlapping recovery’’ method, shown schematically. All monopoles~boundary points of the error syn
drome chain! are indicated as filled circles, including both monopoles left over from earlier rounds of error recovery~those
in the shaded region below the dotted line! and monopoles generated after the previous round~those in the unshaded regio
above the dotted line!. Also shown is the minimum weight chainE8 that connects each monopole to either anoth
monopole or to the current time slice. The chainE8 containsEold8 , whose boundary lies entirely in the shaded region, a
the remainderEkeep8 . In the current recovery step, errors are corrected on the horizontal links ofEold8 , and its boundary is
then erased from the recorded syndrome history. The boundary ofEkeep8 is retained in the record, to be dealt with in a futu
recovery step.
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world lines that persist for a time comparable toL are likely to be trustworthy. In our overlappin
recovery scheme, we take action to remove only these long-lived defects, leaving those o
recent vintage to be dealt with in the next recovery step.

C. Computation threshold

Our three-dimensional model describes the history of a single code block; hence its
transition identifies a threshold for reliable storage of quantum information. Analyzing the th
old for reliable quantumcomputationis more complex, because we need to consider interact
between code blocks.

When two encoded blocks interact through the execution of a gate, errors can propaga
one block to another, or potentially from one qubit in a block to another qubit in the same b
It is important to keep this error propagation under control. We will discuss in Sec. IX ho
universal set of fault-tolerant quantum gates can be executed on encoded states. For now
consider the problem of performing a circuit consisting of CNOT gates acting on pairs of enc
qubits. The encoded CNOT gate with block 1 as its control and block 2 as its target c
implementedtransversally—that is, by performing CNOT gates in parallel, each acting on a q
in block 1 and the corresponding qubit in block 2. A CNOT gate propagates bit-flip errors
control to target and phase errors from target to control. Let us first consider the case in
storage errors occur at a constant rate, but errors in the gates themselves can be neglect

Suppose that a transversal CNOT gate is executed at timet50, propagating bit-flip errors
from block 1 to block 2, and imagine that we wish to correct the bit-flip errors in block 2.
suppose that many rounds of syndrome measurement are performed in both blocks befo
after t50. Denote byS1 andS2 the syndrome chains in the two blocks, and byE1 andE2 the error
chains. Due to the error propagation, the chainS21E2 in block 2 has a nontrivial boundary at th
t50 time slice. Therefore, to diagnose the errors in block 2 we need to modify our proced

We may divide each syndrome chain and error chain into two parts, a portion lying in the
of the t50 time slice, and a portion lying in its future. Then the chain

S1,before1S2,before1S2,after1E1,before1E2,before1E2,after ~72!

has a trivial boundary. Therefore, we can estimateE1,before1E2,before1E2,after by constructing the
minimal chain with the same boundary asS1,before1S2,before1S2,after. Furthermore, because of th
error propagation, it isE1,before1E2,before1E2,after whose horizontal projection identifies the dam
aged links in block 2 aftert50.

If in each block the probability of error per qubit and per time step isp, while the probability
of a syndrome measurement error isq, then the error chainE1,before1E2,before1E2,afterhas in effect
been selected from a distribution in which the error probabilities are (2p(12p),2q(12q)) before
the gate and (p,q) after the gate. Obviously, these errors are no more damaging than if the
probabilities had been (2p(12p),2q(12q)) at all times, both before and aftert50. Therefore, if
(p,q) lies below the accuracy threshold for accurate storage, then error rates (2p(12p),2q(1
2q)) will be below the accuracy threshold for a circuit of CNOT gates.

Of course, the transversal CNOT might itself be prone to error, damaging each qubi
probabilitypCNOT, so that the probability of error is larger on thet50 slice than on earlier or late
slices. However, increasing the error probability fromp to p1pCNOT on a single slice is surely no
worse than increasing the probability of error top1pCNOT on all slices. For a givenq, there is a
threshold valuepc(q), such that forp,pc(q) a circuit of CNOTs is robust if the gates ar
flawless; then the circuit with imperfect gates is robust provided thatp1pCNOT,pc(q).

By such reasoning, we can infer that the accuracy threshold for quantum computat
comparable to the threshold for reliable storage, differing by factors of order one. Further
below threshold, the probability of error in an encoded gate decreases exponentially withL, the
linear size of the lattice. Therefore, to execute a quantum circuit that containsT gates with
reasonable fidelity, we should chooseL5O(logT), so that the block size 2L2 of the code is
O(log2 T).
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VII. QUANTUM CIRCUITS FOR SYNDROME MEASUREMENT

In our model with uncorrelated errors, in which qubit errors occur with probabilityp per time
step and measurement errors occur with probabilityq, we have seen in Sec. IV that it is possib
to identify a sharp phase boundary between values of the parameters such that error corre
sure to succeed in the limit of a large code block, and values for which error correction nee
succeed. How can we translate this accuracy threshold, expressed as a phase boundary inp–q
plane, into a statement about how well the hardware in our quantum memory must perfo
order to protect quantum states effectively? The answer really depends on many details ab
kinds of hardware that are potentially at our disposal. For purposes of illustration, we will relp
andq to the error probabilities for the fundamental gates in a particular computational mod

A. Syndrome measurement

Whenever a check operatorXs or ZP is measured, a quantum circuit is executed in which e
of the qubits occurring in the check operator interacts with an ancilla, and then the anc
measured to determine the result. Our task is to study this quantum circuit to determine h
faults in the circuit contribute top and toq. To start we must decide what circuit to study.

For many quantum codes, the design of the syndrome measurement circuit involves sub
If the circuit is badly designed, a single error in the ancilla can propagate to many qubits
code block, compromising the effectiveness of the error correction procedure. To evad
problem, Shor3 and Steane36 proposed two different methods for limiting the propagation of er
from ancilla to data in the measurement of the check operators of a stabilizer code. In
method, to extract each bit of the error syndrome, an ancilla ‘‘cat state’’ is prepared that co
as many qubits as the weight of the check operator. The ancilla interacts with the data code
and then each qubit of the ancilla is measured; the value of the check operator is the parity
measurement outcomes. In Steane’s method, the ancilla is prepared as an encoded block~contain-
ing as many qubits as the length of the code!. The ancilla interacts with the data, each qubit in t
ancilla is measured, and a classical parity check matrix is applied to the measurement outco
extract the syndrome. In either scheme, each ancilla qubit interacts with only a single qubit
data, so that errors in the ancilla cannot seriously damage the data. The price we pay
overhead involved in preparing the ancilla states and verifying that the preparation is corre

We could use the Shor method or the Steane method to measure the stabilizer of a
code, but it is best not to. We can protect against errors more effectively by using just a
ancilla qubit for the measurement of each check operator, avoiding all the trouble of preparin
verifying ancilla states. The price we pay is modest—a single error in the ancilla might prop
to become two errors in the data, but we will see that these correlated errors in the data are
damaging.

So, we imagine placing a sheet of ancilla qubits above the qubits of a planar code
Directly above the sites is the ancilla qubit that will be used to measureXs , and directly above
the center of the plaquetteP is the ancilla qubit that will be used to measureZP . We suppose tha
CNOT gates can be executed acting on a data qubit and its neighboring ancilla qubits. The
for measuring the plaquette operatorZ^ 4 and the site operatorX^ 4 are shown in Fig. 14.

We have included the Hadamard gates in the circuit for measuring the site operator to s
that the ancilla qubit is initially prepared in theX51 state, and the final measurement is

FIG. 14. Circuits for measurement of the plaquette (Z^ 4) and site (X^ 4) stabilizer operators.
                                                                                                                



pared
can

me

s
e

ticular
there
e to
te by
mally
torage
ollowed

we
te

rement
e mea-

rage
partici-
execute
in the
qubit,

ubit as

mea-

ities.
occurs

with a
plaquette
rticipate
the north,

4486 J. Math. Phys., Vol. 43, No. 9, September 2002 Dennis et al.

                    
measurement ofX, while in the case of the plaquette operator measurement the ancilla is pre
in the Z51 state andZ is measured at the end. But we will suppose that our computer
measureX as easily as it can measureZ; hence in both cases the circuit is executed in six ti
steps~including preparation and measurement!, and there is really no Hadamard gate.

B. Syndrome errors and data errors

We will assume that all errors in the circuit are stochastic~for example, they could be error
caused by decoherence!. We will consider both ‘‘storage errors’’ and ‘‘gate errors.’’ In each tim
step, the probability that a ‘‘resting’’ qubit is damaged will be denotedps . For simplicity, we will
assume that an error, when it occurs, is one of the Pauli operatorsX, Y, or Z. ~The analysis of the
circuit is easily generalized to more general models of stochastic errors.! In our analysis, we will
always make a maximally pessimistic assumption about which error occurred at a par
position in the circuit. If a gate acts on a qubit in a particular time step, we will assume that
is still a probabilityps of a storage error in that step, plus an additional probability of error du
the execution of the gate. We denote the probability of an error in the two-qubit CNOT ga
pCNOT; the error is a tensor product of Pauli operators, and again we will always make maxi
pessimistic assumptions about which error occurs at a particular position in the circuit. If a s
error and gate error occur in the same time step, we assume that the gate error acts first, f
by the storage error. When a single qubit is measured in the$u0&,u1&% basis,pm is the probability
of obtaining the incorrect outcome.~If a storage error occurs during a measurement step,
assume that the error precedes the measurement.! And when a fresh qubit is acquired in the sta
u0&, pp denotes the probability that its preparation is faulty~it is u1& instead!.

In a single cycle of syndrome measurement, each data qubit participates in the measu
of four stabilizer operators: two site operators and two plaquette operators. Each of thes
surements requires four time steps~excluding the preparation and measurement steps!, as a single
ancilla qubit is acted upon by four sequential CNOTs. But to cut down the likelihood of sto
errors, we can execute the four measurement circuits in parallel, so that every data qubit
pates in a CNOT gate in every step. For example, for each plaquette and each site, we may
CNOT gates that act on the four edges of the plaquette or the four links meeting at the site
counterclockwise order north–west–south–east. The CNOT gates that act on a given data
then, alternate between CNOTs with the data qubit as control and CNOTs with the data q
target, as indicated in Fig. 15.

For either a site check operator or a plaquette check operator, the probability that the
surement is faulty is

qsingle5pp14pCNOT16ps1pm1h. o., ~73!

where ‘‘1h. o.’’ denotes terms of higher than linear order in the fundamental error probabil
The measurement can fail if any one of the CNOT gates has an error, if a storage error
during any of the six time steps needed to execute the circuit~including the preparation and

FIG. 15. Gates acting on a given qubit in a complete round of syndrome measurement. Data qubits on links
north–south orientation participate successively in measurements of check operators at the site to the south, the
to the east, the site to the north, and the plaquette to the west. Qubits on links with an east–west orientation pa
successively in measurements of check operators at the plaquette to the south, the site to the east, the plaquette to
and the site to the west.
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measurement step!, or because of a fault in the initial preparation or final measurement of
ancilla qubit. By omitting the higher order terms we are actuallyoverestimating q. For example,
ps is the probability that a storage error occurs in the first time step, disregarding whether
additional errors occur in the circuit.

We have used the notationqsingle in Eq. ~73! to emphasize that this is an estimate of t
probability of an isolated error on a vertical~timelike! link. More troublesome are syndrom
measurement errors that are correlated with qubit errors. These arise if, say, a qubit suffeZ
error that is duly recorded in the syndrome measurement of one of the two adjoining sites b
the other. In our space–time picture, then, there is a timelike plaquette with an error on one
horizontal links and one of its vertical links. We will refer to this type of correlated error a
‘‘vertical hook’’—hook because the two links with errors meet at a 90° angle, and vertical bec
one of the links is vertical~and to contrast with the case of a horizontal hook which we w
discuss later!.

We can estimate the probability of a vertical hook on a specified timelike plaquette by
sidering the circuits in Fig. 15. The qubit in question participates in the measurement of tw
check operators, through the two CNOT gates in the circuit in which the data qubit is the tar
the CNOT. A vertical hook can arise due to a fault that occurs in either of these CNOT gates
a time in between the execution of these gates. Hence the probability of a vertical hook is

qhook53pCNOT12ps1h. o.; ~74!

faults in any of three different CNOT gates, or storage errors in either of two time steps
generate the hook. Note that the hook on the specified plaquette has a unique orientation;
of the two site operator measurements that the data qubit participated in is the one that
detect the error. Of course, the same formula forqhook applies if we are considering the measur
ment of the plaquette operators rather than the site operators.

A CNOT gate propagatesX errors from control qubit to target qubit, andZ errors from target
to control. Thus we do not have to worry about a vertical hook that arises from an error
ancilla bit that propagates to the data. For example, if we are measuring a plaquette operat
X errors in the ancilla damage the syndrome bit whileZ errors in the ancilla propagate to the da
the result is a vertical error in theX-error syndrome that is correlated with a horizontalZ-error in
the data. This correlation is not problematic because we deal withX errors andZ errors separately
However, propagation of error from ancilla to data also generates correlated horizontal erro
we need to worry about. In the measurement of, say, the plaquette operatorZP5Z^ 4, Z errors~but
not X errors! can feed back from the ancilla to the data. Feeding back fourZ’s means no error a
all, becauseZ^ 4 is in the code stabilizer, and feeding back threeZ’s generates the errorIZZZ,
which is equivalent to the singleZ errorZIII . Therefore, the only way to get a double qubit err
from a single fault in the circuit is through an error in the second or third CNOT, or throug
ancilla storage error in between the second and third CNOT.~The second CNOT might applyZ to
the ancilla but not to the data, and thatZ error in the ancilla can then feed back to two data qub
or the third CNOT could applyZ to both ancilla and data, and theZ error in the ancilla can then
feed back to one other data qubit.! Because of the order we have chosen for the execution of
CNOTs, this double error, when it occurs, afflicts the southeast corner of the plaquette~or equiva-
lently the northwest corner, which has the same boundary!. We will refer to this two-qubit error as
a ‘‘horizontal hook,’’ because the two horizontal errors meet at a 90° angle. Similarly,
propagation during the measurement of the site operatorXs can produceX errors on the north and
west links meeting at that site. One should emphasize that the only correlatedXX or ZZ errors that
occur with a probability linear in the fundamental error probabilities are these hooks. This
blessing—correlated errors affecting two collinear links would be more damaging.

Feedback from the measurement of a plaquette operator can produceZZ hooks but notXX
hooks, and feedback from the measurement of a site operator can produceXX hooks but notZZ
hooks. Thus, in each round of syndrome measurement, the probability of aZZ hook at a plaquette
or anXX hook at a site is
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phook52pCNOT1ps1h. o. ~75!

~Remember that a ‘‘hook’’ means twoZ’s or two X’s; in addition, an error in a single CNOT gat
could induce, say, anX error in the data and aZ error in the ancilla that subsequently feeds ba
but correlatedX andZ errors will not cause us any trouble.!

Now we need to count the ways in which a single error can occur in the data during a
of syndrome measurement. First suppose that we measure a single plaquette operatorZP , and
consider the scenarios that lead to a singleZ error in the data. TheZ error can arise either becaus
a gate or storage error damages the data qubit directly, or because an error in the ancilla fee
to the data. Actually, single errors occur with slightly different probabilities for different d
qubits acted on by the circuit. The worst case occurs for the first and last qubit acted on
circuit; the probability that the circuit produces a single error that acts on the first~or last! qubit is

psingle,Z
ZP,1

5psingle,Z
ZP,4

5pCNOT16ps1pCNOT1ps1h. o. ~76!

The first two terms arise from gate errors and storage errors that damage the data qubit d
For the first qubit, the last two terms arise from the case in which aZ error in the ancilla is fed
back to the data by each of the last three CNOTs—the resultingIZZZ error is equivalent to aZIII
error becauseZZZZ is in the code stabilizer. For the fourth qubit, the last two terms arise from
error fed back by the last CNOT gate in the circuit. On the other hand, for the second and
qubit acted on by the circuit, it is not possible for just a single error to feed back; e.g., if the
feeds back to the third qubit, it will feed back to the fourth as well, and the result will be a h
instead of a single error. Hence, the probability of a single error acting on the second or third
is

psingle,Z
ZP,2

5psingle,Z
ZP,3

5pCNOT16ps1h. o.; ~77!

there is no feedback term. If we are measuring a site operatorXs , thenX errors might feed back
from the ancilla to the data, butZ errors will not. Therefore, for each of the four qubits acted
by the circuit, the probability that a singleZ error results from the execution of the circuit, actin
on that particular qubit, is

psingle,Z
Xs 5pCNOT16ps1h. o.; ~78!

again there is no feedback term.
In a single round of syndrome measurement, each qubit participates in the measurem

four check operators, two site operators and two plaquette operators. For the plaquette o
measurements, depending on the orientation of the link where the qubit resides, the qubit
either the first qubit in one measurement and the third in the other, or the second in one a
fourth in the other. Either way, the total probability of a singleZ error arising that afflicts tha
qubit is

psingle54pCNOT16ps1pCNOT1ps1h. o.55pCNOT17ps1h. o., ~79!

with the 4pCNOT16ps arising from direct damage to the qubit and thepCNOT1ps from feedback
due to one of the four check operator measurements. The same equation applies to the pro
of a singleX error arising at a given qubit in a single round of syndrome measurement.

C. Error-chain combinatorics

With both single errors and hooks to contend with, it is more complicated to estimat
failure probability, but we can still obtain useful upper bounds. In fact, the hooks do not m
the estimate of the accuracy threshold as much as might have been naively expected. E
information is damaged ifE1Emin contains a homologically nontrivial~relative! cycle, which can
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wrap around the code block with either a north–south or east–west orientation. Either wa
cycle contains at leastL links all with thesameorientation, whereL is the linear size of the lattice
A horizontal hook introduces two errors withdifferent orientations, which is not as bad as tw
errors with the same orientation. Similarly, a vertical hook contains only one horizontal err

There are two other reasons why the hooks do not badly compromise the effectiveness o
correction. While single errors can occur with any orientation, horizontal hooks can appea
on the northwest corner of a plaquette~hooks on southeast corners are equivalent to hooks
northwest corners and should not be counted separately!, and vertical hooks on timelike plaquette
have a unique orientation, too. Therefore, hooks have lower ‘‘orientational entropy’’ than
single errors, which means that placing hooks on self-avoiding walks reduces the number of
of a specified length. And, finally,phook is smaller thanpsingle, andqhook is smaller thanqsingle,
which further reduces the incentive to include hooks inE1Emin .

We will suppose thatEmin is constructed by the same procedure as before, by minimizing
weight

H log psingle
21 1V logqsingle

21 . ~80!

To simplify later expressions, we have replacedp/(12p) by p here, which will weaken our uppe
bound on the failure probability by an insignificant amount. Note that our procedure finds the
probable chain under the assumption that only single errors occur~no hooks!. If phook andqhook are
assumed to be known, then in principle we could retool our recovery procedure by taking
correlated errors into account in the construction ofEmin . To keep things simple we will no
attempt to do that. Then, as before, for any connected subchain ofE1Emin with H horizontal links
andV vertical links, the numbersHe andVe of horizontal and vertical links of the subchain th
are contained inE must satisfy

psingle
He qsingle

Ve <psingle
H/2 qsingle

V/2 . ~81!

To bound the failure probability, we wish to count the number of ways in which a conne
chain with a specified number of horizontal links can occur inE1Emin , keeping in mind that the
error chainE could contain hooks as well as single errors. Notice that a hook might contr
only a single link toE1Emin , if one of the links contained in the hook is also inEmin . But since
phook,psingle and qhook,qsingle, we will obtain an upper bound on the failure probability if w
pessimistically assume that all of the errors inE1Emin are either two-link hooks occurring with
probabilitiesphook,qhook or single errors occuring with probabilitiespsingle,qsingle. If the He hori-
zontal errors on a connected chain includeHhook horizontal hooks andVhook vertical hooks, then
there areHe22Hhook2Vhook single horizontal errors andVe2Vhook single vertical errors; once th
locations of the hooks and the single errors are specified, the probability that errors occur a
locations is no larger than

~psingle!
He22Hhook2Vhook~phook!

Hhook
•~qsingle!

Ve2Vhook~qhook!
Vhook

,psingle
H/2 S phook

psingle
2 D Hhook

qsingle
V/2 S qhook

psingleqsingle
D Vhook

. ~82!

Because a horizontal hook contains two errors with different orientations, it will be conve
to distinguish between links oriented east–west and links oriented north–south. We denoteH1

the number of horizontal links in the connected chain with east–west orientation and byH2 the
number of horizontal links with north–south orientation; then clearly

Hhook<H1 , Hhook<H2 . ~83!

To estimate the threshold, we will bound the probability that our connected chain hasH1>L; of
course, the same expression bounds the probability thatH2>L.
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For a specified connected chain, suppose that altogetherHe of the horizontal links andVe of
the vertical links have errors, and that there areHhook horizontal hooks andVhook vertical hooks,
so that there areHe22Hhook2Vhook single horizontal errors andVe2Vhook single vertical errors.
In how many ways can we distribute the hooks and single errors along the path? Since
horizontal hook contains a link with north-south orientation, there are no more than (Hhook

H2 ) ways

to choose the locations of the horizontal hooks; similarly there are no more than (Vhook

V ) ways to

choose the locations of the vertical hooks.~Actually, we have given short shrift here to a slig
subtlety. Once we have decided that a vertical hook will cover a particular vertical link, there
be two ways to place the hook—it might cover either one of two adjacent horizontal l
However, for the hook to be free to occupy either position, the orientation of the second hori
link must be chosen in one of only two possible ways. Thus the freedom to place the hook
ways is more than compensated by the reduction in the orientational freedom of the othe
zontal link by a factor of25, and can be ignored. A similar remark applies to horizontal hoo!
Then there are no more than 2H11H222Hhook2Vhook ways to place the single horizontal errors amo
the remaining horizontal links, and no more than 2V2Vhook ways to place the single vertical erro
among remainingV2Vhook vertical links on the chain. Now consider counting the self-avoid
paths starting at a specified site, where the path is constructed from hooks, single errors,
links of Emin . Whenever we add a horizontal hook to the path there are at most two choices f
orientation of the hook, and whenever we add a vertical hook there are at most four choices
there are no more than 2Hhook4Vhook ways to choose the orientations of the hooks. For the remain
H11H222Hhook1V22Vhook links of the path, the orientation can be chosen in no more than
ways. Hence, the total number of paths with a specified number of horizontal links, horiz
hooks, vertical links, and vertical hooks is no more than

S H2

Hhook
D S V

Vhook
D •2H11H222Hhook2Vhook2V2Vhook

•2Hhook4Vhook
•5H11H222Hhook1V22Vhook. ~84!

Combining this counting of paths with the bound Eq.~82! on the probability of each path, w
conclude that the probability thatE1Emin contains a connected path with specified starting s
containingH1 links with east–west orientation,H2 links with north–south orientation,V vertical
links, Hhook horizontal hooks, andVhook vertical hooks, is bounded above by

S H2

Hhook
D S phook

50psingle
2 D Hhook

~100psingle!
(H11H2)/2

•S V
Vhook

D S qhook

25psingleqsingle
D Vhook

•~100qsingle!
V/2.

~85!

HereHhook can take any value from zero toH2 , andVhook can take any value from zero toV. We
can sum overHhook and Vhook, to obtain an upper bound on the probability of a chain with
unspecified number of hooks:

~100psingle!
(H11H2)/2S 11

phook

50psingle
2 D H2

•~100qsingle!
V/2S 11

qhook

25psingleqsingle
D V

. ~86!

Finally, since a path can begin at any ofL2T sites, and since there are two types of homologica
nontrivial cycles, the probability of failure Probfail satisfies the bound

Probfail,2L2T (
H1>L

~100psingle!
H1/2

• (
H2>0

F100psingleS 11
phook

50psingle
2 D 2GH2/2

• (
V>0

F100qsingleS 11
qhook

25psingleqsingle
D 2GV/2

. ~87!

This sum will be exponentially small for largeL provided that
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psingle,
1

100
, q,

1

100
,

phook,5 psingle
2 S 1

Apsingle

210D , ~88!

qhook,
5

2
psingleqsingleS 1

Aqsingle

210D .

Of course, makingpsingle andqsingle smaller can only make things better. Our conditions onphook

andqhook in Eq. ~88! are not smart enough to know this—forpsingle sufficiently small, we find that
making it still smaller gives us amore stringent condition onphook, and similarly for qhook.
Clearly, this behavior is an artifact of our approximations. Thus, for a givenpsingle andqsingle, we
are free to choose any smaller values ofpsingleandqsingle in order to obtain more liberal condition
on phook and qhook from Eq. ~88!. Our expression that boundsphook achieves its maximum for

psingle5( 3
40)

2, and for fixedpsingle, our expression that boundsqhook achieves its maximum for

qsingle5( 1
20)

2. We therefore conclude that for recovery to succeed with a probability that
proaches one as the block size increases, it suffices that

psingle,
9

1600, qsingle,
1

400,

phook,
3
32•

9
1600, qhook,

1
16•

9
1600. ~89!

Comparing to our expressions forqsingle, psingle, andphook, we see that, unlessqsingle is dominated
by preparation or measurement errors, these conditions are all satisfied provided that

qhook53pCNOT12ps,3.531024. ~90!

If the probability of a CNOT error is negligible, then we obtain a lower bound on the critical e
probability for storage errors,

~ps!c.1.731024. ~91!

In view of the crudeness of our combinatorics, we believe that this estimate is rather conser
if one accepts the assumptions of our computational model.

VIII. MEASUREMENT AND ENCODING

A. Measurement

At the conclusion of a quantum computation, we need to measure some qubits. If the
putation is being executed fault tolerantly, this means measuring an encoded block. How c
perform this measurement fault tolerantly?

Suppose we want to measure the logical operatorZ̄, that is, measure the encoded block in t
basis$u0̄&,u1̄&%. If we are willing to destroy the encoded block, we first measureZ for each qubit
in the block, projecting each onto the basis$u0&,u1&%. Were there no errors in the code block at t
time of the measurement, and were all measurements of the individual qubits performed
lessly, then we could choose any homologically nontrivial path on the lattice and evalua
parity of the outcomes for the links along that path. Even parity indicates that the encoded
is in the stateu0&̄, odd parity the stateu1&̄.

But the code blockwill contain some errors~not too many, we hope!, and some of the
measurements of the individual qubitswill be faulty. Since a single bit flip along the path cou
                                                                                                                



ure for

ch
n arise
or they

at the
asure-

in that
related

le, by
an be
s the
along a
, the
ll for

ll
pri-

ncilla

nto
bed. A

nstates

e
e

e
erators,
utcome

sists
g

could
, we

the
um

d

4492 J. Math. Phys., Vol. 43, No. 9, September 2002 Dennis et al.

                    
alter the parity of the measurement outcomes, we need to devise a fault-tolerant proced
translating the observed values of the individual qubits into a value of the encoded qubit.

One such procedure is to evaluate the parityZ^ 4 of the measurement outcomes at ea
plaquette of the lattice, determining the locations of all plaquette defects. These defects ca
either because defects were already present in the code block before the measurement,
could be introduced by the measurement itself. It is useful and important to recognize th
defects introduced by the measurement do not pose any grave difficulties. An isolated me
ment error at a single link will produce two neighboring defects on the plaquettes that conta
link. Widely separated defects can arise from the measurement only if there are many cor
measurement errors.

Therefore we can apply a suitable classical algorithm to remove the defects—for examp
choosing a chain of minimal total length that is bounded by the defect locations, which c
found in a polynomial-time classical computation. Flipping the bits on this chain correct
errors in the measurement outcomes, so that we can then proceed to evaluate the parity
nontrivial cycle. Assuming sufficiently small rates for the qubit and measurement errors
encoded qubit will be evaluated correctly, with a probability of error that is exponentially sma
large block size.

We can measureX̄ by the same procedure, by measuringX for each qubit, and evaluating a
site operatorsX^ 4 from the outcomes. After removal of the site defects by flipping bits appro

ately, X̄ is the parity along a nontrivial cycle of the dual lattice.

To measureZ̄ of a code block without destroying the encoded state, we can prepare an a

block in the encoded stateu0&̄, and perform a bitwise CNOT from the block to be measured i
the ancilla. Then we can measure the ancilla by the destructive procedure just descri

nondestructive measurement ofX̄ is executed similarly.

B. Encoding of known states

At the beginning of a quantum computation, we need to prepare encoded qubits in eige

of the encoded operations, for example the stateu0&̄ of the planar code, aZ̄51 eigenstate. If

syndrome measurement were perfectly reliable, the stateu0&̄ could be prepared quickly by th
following method: Start with the stateu0& ^ n wheren is the block size of the code. This is th
simultaneous eigenstate with eigenvalue 1 of all plaquette stabilizer operatorsZP5Z^ 4 and of the

logical operatorZ̄, but not of the site stabilizer operatorsXs5X^ 4. Then measure all the sit
operators. Since the site operators commute with the plaquette operators and the logical op
this measurement does not disturb their values. About half of the site measurements have o

Xs51 and about half have outcomeXs521; to obtain the stateu0&̄, we must remove all of the
site defects~sites whereXs521!. Thus we select an arbitrary one-chain whose boundary con
of the positions of all site defects, and we applyZ to each link of this chain, thereby imposin

Xs51 at each site. In carrying out this procedure, we might applyZ̄ to the code block by applying

Z to a homologically nontrivial path, but this has no effect since the state is aZ̄51 eigenstate.
Unfortunately, syndrome measurement is not perfectly reliable; therefore this procedure

generate longopenchains ofZ errors in the code block. To keep the open chains under control
need to repeat the measurement of both theX andZ syndromes of orderL times~whereL is the
linear size of the lattice!, and use our global recovery method. Then the initial configuration of
defects will be ‘‘forgotten’’ and the error chains in the code block will relax to the equilibri

configuration in which long open chains are highly unlikely. The probability of anX̄ error that
causes a flip of the encoded state will be exponentially small inL. We can prepare the encode

state withX̄51 by the dual procedure, starting with the state@(1/&) (u0&1u1&)] ^ n.
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C. Encoding of unknown states

Quantum error-correcting codes can protectunknowncoherent quantum states. This feature
crucial in applications to quantum computation—the operator of a quantum computer nee
‘‘monitor’’ the encoded quantum state to keep the computation on track. But to operate a qu
computer, we do not typically need toencodeunknown quantum states. It is sufficient to initializ
the computer by encoding known states, and then execute a known quantum circuit.

Still, a truly robust ‘‘quantum memory’’ should be able to receive an unknown quantum
and store it indefinitely. But given any nonzero rate of decoherence, to store an unknown st
an indefinitely long time we need to encode it using a code of indefinitely long block size.
then, can we expect to encode the state before it decoheres?

The key is to encode the state quickly, providing some measure of protection, while co
ing to build up toward larger code blocks. Concatenated codes provide one means of ach
this. We can encode, perform error correction, then encode again at the next level of conc
tion. If the error rates are small enough, encoding can outpace the errors so that we can s
unknown state in a large code block with reasonable fidelity.

The surface codes, too, allow us to build larger codes from smaller codes and so to p
unknown states effectively. The key to enlarging the code block is that a code correspond
one triangulation of a surface can be transformed into a code corresponding to another tria
tion.

For example, we can transform one surface code to another using local moves shown
16.

Links can be added to~or removed from! the triangulation in either of two ways—one wa
adds a new plaquette, the other adds a new site. Either way, the new triangulation corresp
a new code with an additional qubit in the code block and an additional stabilizer generato

When a new plaquette is added, the new code stabilizer is obtained from the old one by
the new plaquette operator

Z1Z2Z0 ~92!

and by modifying the site operators with the replacements

X1→X1X0 , X2→X2X0 . ~93!

When a new site is added, the stabilizer is modified similarly, but withX’s andZ’s interchanged:

X1X2X0 ~94!

is a new stabilizer generator, and the existing plaquette operators are modified as

Z1→Z1Z0 , Z2→Z2Z0 . ~95!

FIG. 16. Two basic moves that modify the triangulation of a surface by adding a link: splitting a plaquette, and sp
a vertex.
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To add a plaquette or a site to a stabilizer code, we prepare the additional qubit in aZ051 or
X051 eigenstate, and then execute the circuit shown in Fig. 17. We recall that, acting by c
gation, a CNOT gate changes a tensor product of Pauli operators acting on its control and
according to

IZ↔ZZ, XI↔XX; ~96!

that is, the CNOT transforms anIZ eigenstate to aZZ eigenstate and anXI eigenstate to anXX
eigenstate, while leavingZI and IX eigenstates invariant. The circuit in Fig. 17 with qubit 0
target, then, transforms the site operators as in Eq.~93! while also implementing

Z0→Z1Z2Z0 . ~97!

The initial Z051 eigenstate is transformed into a state that satisfies the plaquette parity che
the new triangulation. Similarly, the circuit in Fig. 17 with qubit 0 as control implements Eq.~95!
as well as

X0→X1X2X0 ; ~98!

the circuit transforms theX051 eigenstate into a state that satisfies the new site parity chec
Of course, these circuits are reversible; they can be used to extricate qubits from a sta

code instead of adding them.
If planar codes are used, we can lay out the qubits in a planar array. Starting with a

encoded planar block in the center, we can gradually add new qubits to the boundary us
moves shown in Fig. 18.

These moves add a new three-qubit plaquette or site operator, and can also be impleme
the circuits of Fig.~17!.

A procedure that transforms a distance-L planar code to a distance-(L11) code is shown in
Fig. 19. By adding a new row of plaquette operators, we transform what was formerly a sm
edge into a rough edge, and by adding a new row of site operators we transform a rough e
a smooth edge. We start the row of plaquettes by adding a two-qubit plaquette operator
corner via the transformations

FIG. 18. The same circuits as in Fig. 17 can also be used to build up a planar code by adding a link at the bounda
or plaquettes marked by open circles do not correspond to stabilizer operators.

FIG. 17. Circuits that implement the two basic moves of Fig. 16. The circuit with qubit 0 as the target of the CNOT
a plaquette; the circuit with qubit 0 as the control of the CNOTs adds a site.
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Z0→Z1Z0 , X1→X1X0 , ~99!

which can be implemented by a single CNOT; similarly, we start a row of sites by addi
two-qubit site operator with

X0→X1X0 , Z1→Z1Z0 . ~100!

Then a new row of boundary stabilizer operators can be ‘‘zipped’’ into place.
As is typical of encoding circuits, this procedure can propagate errors badly; a single

CNOT can produce a long row of qubit errors~a widely separated pair of defects! along the edge
of the block. To ensure fault tolerance, we must measure the boundary stabilizer operato
quently during the procedure. Examining the syndrome record, we can periodically identi
persistent errors and remove them before proceeding to add further qubits.

IX. FAULT-TOLERANT QUANTUM COMPUTATION

We will now consider how information protected by planar surface codes can be proc
fault-tolerantly. Our objective is to show that a universal set of fault-tolerant encoded qua
gates can be realized using only local quantum gates among the fundamental qubits and w
polynomial overhead. We will describe one gate set with this property.4,8 This construction suffices
to show that there is an accuracy threshold for quantum computation using surface code
gate in our set can be implemented acting on encoded states with arbitrarily good fidelity,
limit of a large code block. We have not analyzed the numerical value of this comput
threshold in detail. Better implementations of fault-tolerant quantum computation can proba
found, requiring less overhead and yielding a better threshold.

We choose the basis introduced by Shor,3 consisting of four gates. Three of these generate
‘‘symplectic’’ or ‘‘normalizer’’ group, the finite subgroup of the unitary group that, acting
conjugation, takes tensor products of Pauli operators to tensor products of Pauli operato
these three, two are single-qubit gates: the Hadamard gate

H5
1

&
S 1 1

1 21D , ~101!

which acts by conjugation on Pauli operators according to

FIG. 19. Building a distance-(L11) planar code by adding qubits to a distance-L planar code.~Here,L55.! In the first
step, new two-qubit stabilizer operators are added in the corners with single CNOTs; in subsequent steps, thr
stabilizer operators are added with double CNOTs. The last step promotes the corner operators to three-qubit op
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H:X↔Z, ~102!

and the phase gate

P[L~ i !5S 1 0

0 i D , ~103!

which acts by conjugation on Pauli operators according to

P:X→Y, Z→Z. ~104!

The third generator of the normalizer group is the two-qubit CNOT5L(X) gates, which acts by
conjugation on Pauli operators according to

CNOT: XI→XX, IX→IX,
~105!

ZI→ZI, IZ→ZZ.

Quantum computation in the normalizer group is no more powerful than clas
computation.37 To realize the full power of quantum computing we need to complete the basis
a gate outside the normalizer group. This gate can be chosen to be the three-qubit Toffo
T[L2(X), which acts on the standard three-qubit orthonormal basis$ua,b,c&% as

T:ua,b,c&→ua,b,c% ab&. ~106!

A. Normalizer gates for surface codes

1. CNOT gate

Implementing normalizer computation on planar codes is relatively simple. First of a
planar surface code is a Calderbank–Shor–Steane26,27 ~CSS! code, and as for any CSS code wi
a single encoded qubit, an encoded CNOT can be performedtransversally—in other words, if
simultaneous CNOTs are executed from each qubit in one block to the corresponding qubit
other block, the effect is to execute the encoded CNOT.38 To see this, we first need to verify tha
the transversal CNOT preserves the code space, i.e., that its action by conjugation prese
code’s stabilizer. This follows immediately from Eq.~105!, since each stabilizer generator is eith
a tensor product ofX’s or a tensor product ofZ’s. Next we need to check that CNOT^ n acts on
the encoded operationsX̄ and Z̄ as in Eq.~105!, which also follows immediately sinceZ̄ is a
tensor product ofZ’s and X̄ is a tensor product ofX’s.

2. Hadamard gate

What about the Hadamard gate? In fact, applying the bitwise operationH ^ n does not preserve
the code space; rather it maps the code space of one planar code to that of another, differen
code. If the stabilizer generators of the initial code are site operatorsXs and plaquette operator
ZP , then the action of the bitwise Hadamard is

H ^ n:Xs→Zs , ZP→XP . ~107!

Compared to the initial code, the stabilizer of the new code has sites and plaquettes interch
We may reinterpret the new code as a code withXs and ZP check operators, but defined on
lattice dual to the lattice of the original code. If the original lattice has its ‘‘rough’’ edges at
north and south, then the new lattice has its rough edges at the east and west. We will refe
two codes as the ‘‘north–south’’~NS! code and the ‘‘east–west’’~EW! code. As indicated in Fig.
20, the action ofH ^ n on the encoded operationsX̄ and Z̄ of the NS code is
                                                                                                                



e, the

will
ve the
the

re
ing to
f
s
the

s half
y
-
y the

cording
l qubit

n the

e NS
code or
ubit
NS
attice
er of

o all the
ough

4497J. Math. Phys., Vol. 43, No. 9, September 2002 Topological quantum memory

                    
H ^ n:X̄NS→Z̄EW, Z̄NS→X̄EW. ~108!

If we rigidly rotate the lattice by 90°, the EW code is transformed back to the NS code. Henc
overall effect of a bitwise Hadamard and a 90° rotation is an encoded HadamardH̄.

Of course, a physical rotation of the lattice might be inconvenient in practice! Instead, we
suppose that ‘‘peripheral’’ qubits are available at the edge of the code block, and that we ha
option of incorporating these qubits into the block or ejecting them from the block using
method described in Sec. VIII C. After applying the bitwise Hadamard, transforming theL3L NS
code to the EW code, we addL21 plaquettes to the northern edge andL21 sites to the western
edge, while removingL21 plaquettes on the east andL21 sites on the south. This procedu
transforms the block back to the NS code, but with the qubits shifted by half a lattice spac
the north and west—we will call this shifted code the NS8 code. Furthermore, this modification o
the boundary transforms the logical operationsZ̄EW and X̄EW of the EW code to the operation
Z̄NS8 andX̄NS8 of the NS8 code. The overall effect, then, of the bitwise Hadamard followed by
boundary modification is the operation

X̄NS→Z̄NS8 , Z̄NS→X̄NS8 . ~109!

In principle, we could complete the encoded Hadamard gate by physically shifting the qubit
a lattice spacing to the south and east, transforming the NS8 code back to the NS code. One wa
to execute this shift might be to swap the qubits of the NS8 with qubits located at the correspond
ing sites of the NS lattice. If we prefer to avoid the additional quantum processing required b
swaps, then what we can do instead is associate a classical flag bit with each code block, re
whether the number of Hadamard gates that have been applied in our circuit to that logica
is even or odd, and hence whether the logical qubit is encoded in the NS code or the NS8 code.
This classical bit is consulted whenever the circuit calls for a Hadamard or CNOT acting o
block. If we perform a Hadamard on a qubit that is initially encoded with the NS8 code, we add
qubits on the south and east while removing them from the north and west, returning to th
code. The CNOT gates are performed transversally between blocks that are both in the NS
both in the NS8 code; that is, each qubit in one layer interacts with the corresponding q
directly below it in the next layer. But if one block is in the NS code and the other is in the8
code, then each qubit in one layer interacts with the qubit in the next layer that is half a l
spacing to north and west. Note that the modification of the boundary requires a numb
computation steps that is linear inL.

3. Phase gate

For implementation of the phase gateP, note that if we can execute CNOT andH then we can
also construct the ‘‘controlled-(iY)’’ gate

FIG. 20. Action of the bitwise Hadamard gate on the planar code. If Hadamard gates are applied simultaneously t
qubits in the block, an ‘‘NS code’’ with rough edges at the north and south is transformed to an ‘‘EW code’’ with r

edges at the east and west; the encoded operationZ̄NS of the NS code is transformed toX̄EW of the EW code, andX̄NS is

transformed toZ̄EW .
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L~ iY!5L~ZX!5~ IH !•L~X!•~ IH !•L~X!. ~110!

Hence it suffices to be able to prepare an eigenstateu1& or u2& of Y,

Yu6&56u6&; ~111!

if we prepare an ancilla in the stateu1&, and apply a CNOT with the data as its control and t
ancilla as its target, the effect on the data is the same asL( i )5P. If the ancilla is the state
u2&, then we applyL(2 i )5P21 to the data instead.

Now, it is not obvious how to prepare a large toric block in an eigenstate of the encodY
with good fidelity. Fortunately, we can nevertheless use a CNOT and an ancilla to implemeP,
thanks to a trick that works becauseP is the only gate in our set that is not real. Consider a circ
that applies the unitary transformationU to the data if the ancilla has actually been prepared in
stateu1&. Then if u1& were replaced byu2&, this same circuit would apply the complex conj
gate unitaryU* , since eachP in the circuit would be replaced byP* .

Instead of aY eigenstate, suppose we prepare the ancilla in any encoded state we plea
example,u0&̄. And then we use this same ancilla block, and a CNOT, every time aP is to be
executed. The state of the ancilla can be expressed as a linear combinationau1&1bu2& of theY
eigenstates, and our circuit, acting on the initial stateuc& of the data, yields

au1& ^ Uuc&1bu2& ^ U* uc&. ~112!

Now, at the very end of a quantum computation, we will need to make a measurement to re
the final result. LetA denote the observable that we measure. The expectation value ofA will be

^A&5uau2^cuU†AUuc&1ubu2^cuU†ATUuc&, ~113!

whereAT denotes the transpose ofA. Without losing any computational power, we may assu
that the observableA is real (A5AT)—for example, it could be 1/2 (I 2Z) acting on one of our
encoded blocks. Then we get the same answer for the expectation value ofA as if the ancilla had
been prepared asu1& ~or u2&); hence our fault-tolerant procedure successfully simulates
desired quantum circuit.

Since there is just one ancilla block that must be used each time theP gate is executed, this
block has to be swapped into the position where it is needed, a slowdown that is linear in the
of the quantum circuit that is being simulated.

Thus we have described a way to perform fault-tolerant normalizer computation for p
surface codes. We envision, then, a quantum computer consisting of a stack of planar shee
a logical qubit residing in each sheet. Each logical sheet has associated with it an adjacent s
ancilla qubits that are used to measure the check operators of the surface code; after ea
surement, these ancilla qubits are refreshed in place and then reused. The quantum inform
one sheet can be swapped with that in the neighboring sheet through the action of local ga
perform a logical CNOT between two different logical qubits in the stack, we first use swap
to pass the qubits through the intervening sheets of logical and ancilla qubits and bring the
contact, then execute the transversal CNOT between the two layers, and then use swap
return the logical qubits to their original positions. By inserting a round of error correction
each swap or logical operation, we can execute a normalizer circuit reliably.

B. State purification and universal quantum computation

Now we need to consider how to complete our universal gate set by adding the Toffoli
As Shor observed,3 implementation of the gate can be reduced to the problem of prepari
particular three-qubit state, which may be chosen to be

uc&anc5223/2 (
a,b,cP$0,1%

~21!abcua&1ub&2uc&3 ; ~114!
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this state is the simultaneous eigenstate of three commuting symplectic operators:L(Z)1,2X3 and
its two cyclic permutations, whereL(Z) is the two-qubit conditional phase gate

L~Z!:ua,b&→~21!abua,b&. ~115!

Shor’s method for constructing this state involved the preparation and measurement of an
tectedn-qubit cat state, wheren is the block size of the code. But this method cannot be used
a toric code on a large lattice, because the cat state is too highly vulnerable to error.

Fortunately, there is an alternative procedure for constructing the needed encoded sta
high fidelity—state purification. Suppose that we have a supply of noisy copies of the stateuc&anc.
We can carry out a purification protocol to distill from our initial supply of noisy states a sm
number of states with much better fidelity.39,40 In this protocol, normalizer gates are applied to
pair of noisy copies, and then one member of the pair is measured. Based on the outcome
measurement, the other state is either kept or discarded. If the initial ensemble of states a
mates theuc&anc with adequate fidelity, then, as purification proceeds, the fidelity of the remai
ensemble converges rapidly toward one.

For this procedure to work, it is important that our initial states are nottoo noisy—there is a
purification threshold. Therefore, to apply the purification method to toric codes, we will ne
build up the size of the toric block gradually, as in the procedure for encoding unknown
described in Sec. VIII C. We start out by encodinguc&anc on a small planar sheet of qubits, wit
a fidelity below the purification threshold. Then we purify for a while to improve the fidelity,
build on the lattice to increase the size of the code block. By building and purifying as many
as necessary, we can construct a copy of the ancilla state that can be used to execute th
gate with high fidelity.

The time needed to build up the encoded blocks is quadratic inL, and the number of round
of purification needed is linear inL, if we wish to reach a fidelity that is exponentially small inL.
Thus the overhead incurred in our implementation of the Toffoli gate is polynomial in the b
size.

We have now assembled all the elements of a fault-tolerant universal quantum compute
on planar surface codes. The computer is a stack of logical qubits, and it contains ‘‘sof
factories’’ where the ancilla states needed for execution of the Toffoli gate are prepared.
prepared, these states can be transported through swapping to the position in the stack w
Toffoli gate is to be performed.

X. A LOCAL ALGORITHM IN FOUR DIMENSIONS

In our recovery procedure, we have distinguished between quantum and classical co
tion. Measurements are performed to collect syndrome information about errors that have
mulated in the code block, and then a fast and reliable classical computer processes the m
data to infer what recovery step is likely to remove most of the errors. Our procedures are
tolerant because the quantum computation needed to measure the syndrome is highly loc
the classical computation is not so local—our algorithm for constructing the chain of min
weight requires as input the syndrome history of the entire code block.

It would be preferable to replace this procedure by one in which measurements and cl
processing are eliminated, and all of the processing is local quantum processing. Can we d
stable quantum memory based on topological coding such that rapid measurements of th
drome are not necessary?

Heuristically, errors create pairs of defects in the code block, and trouble may arise if
defects diffuse apart and annihilate other defects, eventually generating homologically non
defect world lines. In principle, we could protect the encoded quantum information effective
there is a strong attractive interaction between defects that prevents them from wandering a
recovery procedure that simulates such interactions was discussed in Ref. 40. For that pro
an accuracy threshold can be established, but only if the interactions have arbitrarily long ra
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which case the order-disorder transition in the code block is analogous to the Kosterlitz–Th
transition in a two-dimensional Coulomb gas. But to simulate these infinite-range interac
nonlocal processing is still required.

A similar problem confronts the proposal5,41,42 to encode quantum information in a config
ration of widely separated nonabelian anyons. Errors create anyons in pairs, and the e
information is endangered if these ‘‘thermal anyons’’ diffuse among the anyons that encod
protected quantum state. In principle, a long-range attractive interaction among anyons
control the diffusion, but this interaction might also interfere with the exchanges of anyons n
to process the encoded state. In any case, a simulation of the long-range dynamics in
nonlocal processing.

We will now describe a procedure for recovery that, at least mathematically, requires no
nonlocal processing of quantum or classical information. With this procedure, based on ‘‘lo
available’’ quantum information, we can infer a recovery step that is more likely to remove e
than add new ones. Because the procedure is local we can dispense with measurement
degrading its performance very much—measurements followed by quantum gates conditio
measurement outcomes can be replaced by unitary transformations acting on the data qu
on nearby ancilla qubits. But since we will still need a reservoir where we can dispose the e
introduced by random errors, we will continue to assume as usual that the ancilla qubits c
regularly refreshed as needed.

Unfortunately, while our procedure is local in the mathematical sense that recovery oper
are conditioned on the state of a small number of ‘‘nearby’’ qubits, we do not know how to m
it physicallylocal in a space of fewer than four dimensions.

A. Repetition code in two dimensions

The principle underlying our local recovery procedure can be understood if we first con
the simpler case of a repetition code. We can imagine that the code block is a period
identified one-dimensional lattice of binary spins, with two codewords corresponding to the
figurations with all spins up or all spins down. To diagnose errors, we can perform a
syndrome measurement by detecting whether each pair of neighboring spins is aligned o
aligned, thus finding the locations of defects where the spin orientation flips.

To recover we need to bring these defects together in pairs to annihilate. One way to d
is to track the history of the defects for a while, assembling a recordS of the measured syndrome
and then find a minimum-weight chainE8 with the same boundary, in order to reconstruct hyp
thetical world lines of the defects. But in that case the processing required to constructE8 is
nonlocal.

The way to attain a local recovery procedure is to increase the dimensionality of the latti
two dimensions, errors will generate droplets of flipped spins~as in Fig. 21!, and the local
syndrome measurement will detect the boundary of the droplet. Thus the defects now form
dimensional closed loops, and our recovery step should be designed to reduce the total le
such defects. Local dynamical rules can easily be devised that are more likely to shrink a loo
stretch it, just as it is possible to endow strings with local dynamics~tension and dissipation! that
allow the strings to relax. Thus, in equilibrium, very long loops will be quite rare. If the error
is small enough, then the droplets of flipped spins will typically remain small, and the enc
information will be well protected.

That the two-dimensional version of the repetition code is more robust than the
dimensional version illustrates a central principle of statistical mechanics—that order is
resistant to fluctuations in higher dimensions. The code block is described by an Ising spin m
and while the one-dimensional Ising model is disordered at any nonzero temperature, th
dimensional Ising model remains ordered up to a nonvanishing critical temperature. Fro
perspective of coding theory, the advantage of the two-dimensional version is that the syndr
highly redundant. If we check each pair of nearest-neighbor spins to see if they are align
anti-aligned, we are collecting more information than is really needed to diagnose all the er
the block. Hence there is a constraint that must be satisfied by a valid syndrome, namely t
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boundary of a droplet can never end; therefore errors in the syndrome can be detected. Of
physically, the stability of the ordered state of the Ising model in more than one dimension
reason that magnetic memories are robust in Nature.

B. Toric code in four dimensions

The defects detected by the measurement of the stabilizer operators of a two-dimension
code are also pointlike objects, and error recovery is achieved by bringing the defects toge
annihilate. We can promote the annihilation by introducing an effective long-range intera
between defects, but a more local alternative procedure is to increase the dimensionality
lattice.

So consider afour-dimensionaltoric code. Qubits are associated with each plaquette. W
each link is associated the six-qubit stabilizer operatorXl5X^ 6 acting on the six plaquettes tha
contain the link, and with each cube is associated the six-qubit stabilizer operatorZC5Z^ 6 acting
on the six plaquettes contained in the cube. Thus the four-dimensional code maintains the
between phase and flip errors that we saw in two dimensions. The encodedZ̄ or X̄ operation is
constructed fromZ’s or X’s acting on a homologically nontrivial surface of the lattice or du
lattice, respectively.Z errors on a connected open surface generate a closed loop of defects
boundary of the surface, andX errors on a connected open surface of the dual lattice gene
defects on a set of cubes that form a closed loop on the dual lattice. As in the two-dimen
case, there is a ‘‘hyperplanar’’ version of the code that can be defined on a four-dimensional
with a boundary.

Now we want to devise a recovery procedure that will encourage the defect loops to s
and disappear. Assuming that syndrome measurements are employed, a possible proce
controlling phase errors can be described as follows: First, the stabilizer operatorXl is measured
at each link, and a record is stored of the outcome. We say that each link withXl521 is occupied
by a string, and each link withXl51 is unoccupied. We choose a set of nonoverlapping plaque
~with no link shared by two plaquettes in the set!, and based on the syndrome for the links of th
plaquette, decide whether or not to flip the plaquette~by applying aZ!. If three or four of the
plaquette’s links are occupied by string, we always flip the plaquette. If zero or one lin
occupied, we never flip it. And if two links are occupied, we flip the plaquette with probab

FIG. 21. Droplets of flipped qubits in the two-dimensional quantum repetition code. Qubits reside on plaquettes,
qubits that have been flipped are shaded. Thick links are locations of ‘‘defects’’ where the error syndrome is no
because neighboring qubits are anti-aligned. The defects form closed loops that enclose the droplets.
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1
2 . Then in the next time step, we again measure the syndrome, and decide whether to flip a
nonoverlapping set of plaquettes. And so on.

Naturally, we also measure the bit-flip syndrome—ZC on every cube—in each time step. Th
procedure for correcting the bit-flip errors is identical, with the lattice replaced by the dual la
andX replaced byZ.

Of course the measurement is not essential. A simple reversible computation can impr
number of string bits bounding a plaquette on ancilla qubits, and subsequent unitary gate
trolled by the ancilla can ‘‘decide’’ whether to flip the plaquette. Note that a CNOT that is ap
with probability 1

2, needed in the event that the plaquette has two string bits on its boundary
be realized by a Toffoli gate, where one of the control qubits is a member of a Bell pair so th
control takes the value 1 with probability12.

This recovery procedure has the property that, if it is perfectly executed and no further
occur during its execution, it will never increase the total length of string on the lattice, but it
sometimes reduce the length. Indeed, if it is applied repeatedly while no further errors oc
will eventually eliminate every string. We have chosen to make the procedure nondetermini
the case where there are two string bits on a plaquette, because otherwise the procedur
have closed orbits—some string configurations would oscillate indefinitely rather than conti
to shrink and annihilate. With the nondeterministic procedure, a steady state can be attaine
when all the strings have disappeared.

Actually, following the ideas of Toom,43 it is possible to deviseanisotropic deterministic
procedures that also are guaranteed to remove all strings. These procedures, in fact, rem
strings more efficiently than our nondeterministic one, but are a little more difficult to analy

Of course, the recovery procedure will not really be executed flawlessly, and further e
will continue to accumulate. Still, as error recovery is performed many times, an equilibrium
eventually be attained in which string length is being removed by recovery as often as it is
created by new errors. If the error rates are small enough, the equilibrium population of long
loops will be highly suppressed, so that the encoded quantum information will be well prote

Eventually, say at the conclusion of a computation, we will want to measure encoded q
This measurement procedure does have a nonlocal component~as the encoded information i
topological!, and for this purpose only we will assume that a reliable classical computer is a
able to help with the interpretation of the measured data. To measure the logical operatorZ̄, say,
we first measure every qubit in the code block. Then we apply a classical parity check, eval
ZC for each cube of the lattice, thereby generating a configuration of closed defect loops
dual lattice. To complete the measurement, we first eliminate the defects by applying flips to
of plaquettes bounded by each loop. Then we can evaluate the product ofZ’s associated with a
homologically nontrivial surface to find the value ofZ̄.

Of course, when we eliminate the defects, we need to make sure that we choose co
among the homologically inequivalent surfaces bounded by the observed strings. One wa
so, which is unlikely to fail when qubit and measurement error probabilities are small, is to in
the relaxation algorithm formulated above to the classical measurement outcome. Since ou
sical computer is reliable, the algorithm eventually removes all strings, and then the value ofZ̄ can
be determined.

C. Accuracy threshold

To evaluate the efficacy of the local recovery method, we need to find the equilibrium d
bution of defects. This equilibrium configuration is not so easily characterized, but it will su
to analyze a less effective algorithm that does attain a simple steady state—the heat bat
rithm. To formulate the heat bath algorithm, suppose that strings carry an energy per lattic
length that we may normalize to one, and suppose that each plaquette is in contact with a t
reservoir at inverse temperatureb. In each time step, plaquettes are updated, with the chang
the string length bounding a plaquette governed by the Boltzmann probability distribution.
survival or creation of a length-4 loop is suppressed by the factor
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Prob~0→4!

Prob~0→0!
5

Prob~4→4!

Prob~4→0!
5e24b. ~116!

Similarly, the probability of a plaquette flip when the length of bounding string is 3 or 1 sati

Prob~1→3!

Prob~1→1!
5

Prob~3→3!

Prob~3→1!
5e22b. ~117!

In the case of a plaquette with two occupied links, we again perform the flip with probability1
2. As

before, this ensures ergodicity—any initial configuration has some nonvanishing probabil
reaching any final configuration.

Damage to encoded information arises from string ‘‘world sheets’’ that are homologi
nontrivial. At low temperature, string loops are dilute and failure is unlikely, but at a cri
temperature the strings ‘‘condense,’’ and the encoded data are no longer well protecte
critical temperature is determined by a balance between Boltzmann factore2b l suppressing a
string of lengthl and the string entropy. The abundance of self-avoiding closed loops of lenl
behaves like,34

nSAW
(4) ~ l !;P4~ l !~m4! l , m4'6.77, ~118!

in d54 dimensions, whereP4( l ) is a polynomial. Thus, large loops are rare when the sum

(
l

nSAW
(4) ~ l !e2b l;(

l
P4~ l !~m4e2b! l ~119!

converges, and the system is surely ordered fore2b,m4
21. Thus the critical inverse temperatur

bc satisfies

e2bc>~m4!21. ~120!

Now, our local recovery procedure will not be precisely a heat bath algorithm. But like
heat bath algorithm it is more likely to destroy string than create it, and we can boun
performance by assigning to it an effective temperature. For example, if no new errors aris
the algorithm is perfectly executed, it will with probability one remove a length-4 string l
bounding a plaquette. In practice, though, the plaquette may not flip when the recovery com
tion is performed, either because of a fault during its execution, or because other neigh
plaquettes have flipped in the meantime. Let us denote byq4 the probability that a plaquette
occupied by four string bits at the end of the last recovery step, does not in fact flip durin
current step. Similarly, letq3 denote the probability that a plaquette with three string bits fails
flip, and letq1 , q0 denote the probabilities that plaquettes containing one or zero string bido
flip. These quantities can all be calculated, given the quantum circuit for recovery and a stoc
error model.

Now we can find a positive quantityq such that

q0 ,q4<q/~11q!,

q1 ,q3<Aq/~11Aq!. ~121!

Comparing to Eqs.~116! and ~117!, we see that our recovery algorithm is at least as effective
a heat bath algorithm with the equivalent temperature

e24b5q; ~122!
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in equilibrium strings of lengthl are therefore suppressed by a factor no larger thane2b l5ql /4.
From our estimate of the critical temperature Eq.~120!, we then obtain a lower bound on th
critical value ofq:

qc>~m4!24'4.831024. ~123!

This quantum system with local interactions has an accuracy threshold.
A local procedure that controls the errors in a quantum memory is welcome, but it is dis

ening that four spatial dimensions are required. Of course, the four-dimensional code block
projected tod,4 dimensions, but then interactions among four-dimensional neighbors be
interactions between qubits that are distanceL (42d)/d apart, whereL is the linear size of the lattice
In a three-dimensional version of the toric code, we can place qubits on plaquettes, and as
check operators with links and cubes. Thus, phase error defects are strings and bit-flip
defects are point particles, or vice versa. Then we can recover locally~without measurement o
classical computation! from either the phase errors or the bit-flip errors, but not both.

In fewer than four spatial dimensions, how might we devise an intrinsically stable qua
memory, analogous to a magnetic domain with long-range order that encodes a robust c
bit? Perhaps we can build a two-dimensional material with a topologically degenerate g
state, such that errors create point defects that have infinite-range attractive interaction
system’s quasi-long-range order at nonzero temperature could stabilize an arbitrary coher
perposition of ground states.

XI. CONCLUSIONS

In foreseeable quantum computers, the quantum gates that can be executed with good
are likely to belocal gates—only interactions between qubits that are close to one another w
accurately controllable. Therefore, it is important to contemplate the capabilities of large
quantum computers in which all gates are local in three-dimensional space. It is also reason
imagine that future quantum computers will include some kind of integrated classical proce
and that the classical processors will be much more accurate and much faster than the q
processors.

Such considerations have led us to investigate the efficacy of quantum error correctio
computational model in which all quantum gates are local, and in which classical computati
polynomial size can be done instantaneously and with perfect accuracy. We have also assum
the measurement of a qubit can be done as quickly as the execution of a quantum gate.

These conditions are ideally suited for the use of topological quantum error-correcting c
such that all quantum computations needed to extract an error syndrome have excellent
properties. Indeed, we have shown that if the two-dimensional surface codes introduced in
and 5 are used, then an accuracy threshold for quantum storage can be established, and
estimated its numerical value. This accuracy threshold can be interpreted as a critical poi
three-dimensional lattice gauge theory with quenched randomness, where the third dim
represents time. There is also an accuracy threshold for universal quantum computation,
have not calculated it carefully.

Topological codes provide a compelling framework for controlling errors in a quantum sy
via local quantum processing; for this reason, we expect these codes to figure prominently
future evolution of quantum technologies. In any case, our analysis amply illustrates that
ciples from statistical physics and topology can be fruitfully applied to the daunting tas
accurately manipulating intricate quantum states.
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Qubits as parafermions
L.-A. Wu and D. A. Lidara)

Chemical Physics Theory Group, University of Toronto,
80 St. George Street, Toronto, Ontario M5S 3H6, Canada

~Received 21 November 2001; accepted for publication 16 May 2002!

Qubits are neither fermions nor bosons. A Fock space description of qubits leads to
a mapping from qubits to parafermions: particles with a hybrid boson-fermion
quantum statistics. We study this mapping in detail, and use it to provide a classi-
fication of the algebras of operators acting on qubits. These algebras in turn classify
the universality of different classes of physically relevant qubit-qubit interaction
Hamiltonians. The mapping is further used to elucidate the connections between
qubits, bosons, and fermions. These connections allow us to share universality
results between the different particle types. Finally, we use the mapping to study the
quantum computational power of certain anisotropic exchange Hamiltonians. In
particular, we prove that the XY model with nearest-neighbor interactions only is
not computationally universal. We also generalize previous results about universal
quantum computation with encoded qubits to codes with higher rates. ©2002
American Institute of Physics.@DOI: 10.1063/1.1499208#

I. INTRODUCTION

It is an experimental fact that there are only two types offundamentalparticles in nature:
bosons and fermions. Bosons are particles whose wavefunction is unchanged under permut
two identical particles. The wavefunction of fermions is multiplied by21 under the same opera
tion. An equivalent statement is that bosons transform according to the one-dimensional, sy
ric, irreducible representation~irrep! of the permutation group, while fermions belong to t
one-dimensional antisymmetric irrep. The permutation group has only these two one-dimen
irreps. What about particles transforming according to higher-dimensional irreps of the sym
group? Much research went into studying this possibility, in the early days of the quark m
before the concept of ‘‘colored’’ quarks gained widespread acceptance.1,2 However, there are now
good reasons to believe that particles obeying such ‘‘parastatistics’’ do not exist~Ref. 3, p. 137!.
Nevertheless, as we will show below, the traditional definition of a Hilbert space of qub
inconsistent with the properties of either bosons or fermions.

The description of bosons and fermions in terms of their properties under particle per
tions uses the language of first quantization. A useful alternative description is the se
quantized formalism of Fock space.3,4 A basis state in the boson or fermion Hilbert–Fock spa
can be written asun1

a ,n2
a , . . . &, where ni

a counts how many bosons (a5b) or fermions (a
5 f ) occupy a given mode, or sitei . Note that the total number of modes does not need to
specified in the Fock-basis. Ignoring normalization, raising,a i

† ~lowering, a i! operators increase
~decrease! ni

a by 1. A consequence of the permutation properties of bosons and fermions i
their corresponding raising and lowering operators satisfy commutation and anticommutati
lations:

@bi
† ,bj

†#50, @bi ,bj
†#5d i j bosons,

$ f i
† , f j

†%50, $ f i , f j
†%5d i j fermions.

a!Electronic mail: dlidar@chem.utoronto.ca
45060022-2488/2002/43(9)/4506/20/$19.00 © 2002 American Institute of Physics
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From this follow a number of well-known facts.3,4 Let n̂i
a5a i

†a i ; this is the number operator
which is diagonal in the Fock-basisun1

a ,n2
a , . . . &, and has eigenvaluesni

a . Then we have the
following.

~i! @bi
† ,bj

†#50⇒ an arbitrary number of bosonsni
a can occupy a given modei . On the other

hand,$ f i
† , f j

†%50⇒ only ni
f50,1 is possible for fermions.

~ii ! @bi ,bj
†#5d i j ⇒ the Hilbert space of bosons has a natural tensor product structure

un1
b ,n2

b , . . . &5un1
b& ^ un2

b& ^¯ . More specifically, it is possible toindependentlyoperate on
each factor of the Hilbert space. However,

$ f i , f j
†%5d i j ⇒ f j un1

f , . . . ,nj 21
f ,1,nj 11

f , . . . &5~21!(
k51

j 21

nk
f
un1

f , . . . ,nj 21
f ,0,nj 11

f , . . . &,

which means that the outcome of operating on a mode of a multi-fermion state depends
previous modes~the order of modes is actually arbitrary!. This nonlocal property means that th
fermionic Fock space does not have a natural tensor product structure, although it can be m
onto one that does using the Jordan–Wigner transformation5 ~see Ref. 6 for a more detaile
discussion!.

What about qubits? The standard notion of what a qubit is, is the following:7

Qubit:

~i! A qubit is a vector in a two-dimensional Hilbert spaceHi5span$u0& i ,u1& i% ~like a fer-
mion!.

~ii ! An N-qubit Hilbert space has a tensor product structure:H5 ^ i 51
N Hi ~like bosons!.

It appears that a qubit is a hybrid fermion-boson particle! We conclude thatqubits do not exist
as fundamental particles. This motivates us to consider an intermediate statistics of ‘‘parafe
ons’’ in order to have a Fock space description of a qubit. We define the parafermionic co
tation relations by8,9

$ai ,ai
†%51,

~1!
@ai ,aj

†#50 if iÞ j .

Here i , j are different modes, or different qubits. The relation@ai ,aj
†#50 for iÞ j immediately

implies a tensor product structure, while$ai ,ai
†%51, which together withai u0&50 (u0& is the

vacuum state! implies

aiai5ai
†ai

†50 ~2!

in the standard~irreducible! two-dimensional representation. Therefore a double-occupation
cannot be realized, i.e., the single-particle Hilbert space is two-dimensional. These are exa
requirements for a qubit.

In fact, the notion of particles with ‘‘intermediate’’ statistics such as parafermions is
known and established in condensed matter physics, e.g., hard-core bosons, excitons, or t
per pairs of superconductivity10 ~see also Sec. VI!. Such particles are alwayscomposite, i.e., they
are not fundamental. Another way of obtaining a particle that is neither a boson nor a ferm
to simply ignore one or more degrees of freedom. This is by and large the approach ta
current proposals for the physical implementation of quantum computers. For example, a
spin-12, without the orbital component of its wavefunction, behaves exactly like a qubit. This i
case of the electron-spin qubit in quantum dots.11 Related to this, a truncated multi-level atom c
also approximate a qubit, as in the ion-trap proposal.12 What are the implications of this fo
quantum computing~QC!? In a nutshell, ‘‘ideal’’ qubits are hard to come by. If a qubit is to ex
as an approximate two-level system, or as a composite particle, or as a partial description
object with additional degrees of freedom, this means that some robustness is lost and the
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opened to decoherence. For example, the additional levels in a multi-level Hilbert space can
‘‘leakage,’’ the orbital degrees of freedom act as a bath coupled to the spin-qubit, and a com
particle may decay~e.g., the exciton-qubit13!.

The advantages of the parafermionic formalism for qubits, however, are not necessa
understanding these sources of decoherence, because this formalism ‘‘accepts’’ qubits as p
Instead, the parafermionic formalism allows us to naturally establish mappings between q
fermions, and bosons. This mapping serves to transport well-known results about one t
particle to another, which, as we show below, clarifies questions regarding the ability of sets
type of particle to act as universal simulators14 of sets of another type of particle. It also helps
connecting the Hamiltonians of condensed matter physics to standard tools of quantum co
tion.

The structure of the article is as follows. In the next section we formally introduce the se
quantization of qubits. We then classify the algebraic structure of parafemionic operators i
III. This classification, into subalgebras with different conservation properties, is very usefu
establishing which subsets of qubit operators are universal, either on the full Hilbert space, o
on a subspace. This is taken up in the next two sections, where we establish the con
between parafermions and fermions~Sec. IV! and bosons~Sec. V!. The connection to fermions
and bosons also works in the opposite direction: we are able to classify which fermioni
bosonic operator sets are universal. This has implications, e.g., for the linear optics qu
computing proposals.15,16Section VI shows how to construct parafermions out of paired fermi
and bosons, emphasizing the compound-particle aspect of qubits. With the connections b
fermions, bosons, and parafermions clarified, we explain in Sec. VII a remarkable diffe
between parafermions and the other particle types: bilinear parafermionic Hamiltonians are
cient for universal quantum computation, whereas fermionic and bosonic Hamiltonians are
Sec. VIII we briefly use the mapping to fermions to derive the thermal fluctuations of noni
acting parafermions at finite temperature. In Sec. IX we apply the classification of the va
parafermionic operator subalgebras to the problem of establishing universality of typical H
tonians encountered in solid state physics. We generalize a number of our previous results17,18 In
particular, we establish that the XY model is not universal with nearest-neighbor interactions
and, we prove universality of the XXZ model for codes with arbitrarily high rates. We conclud
Sec. X.

II. SECOND QUANTIZATION OF QUBITS

As in the cases of bosons and fermions, a parafermion number operator in modei can be
defined as

n̂i5ai
†ai ,

with eigenvaluesni50,1. The total number operator isn̂5( i n̂i . A normalized basis state in th
parafermionic Fock space is

u¯ni¯&5)
i

~ai
†!niu0&,

which we think of as representing a state with thei th qubit in the ‘‘up’’ ~‘‘down’’ ! state if thei th
parafermion is present~absent!, i.e.,ni51 ~0!. Qubit computational basis states are thus mapp
to parafermionic Fock states. Equivalently, consider the following mapping from qubits to pa
fermions:

u01¯0i 210i0i 11¯&→u0&,

u01¯0i 211i0i 11¯&→ai
†u0&,
                                                                                                                



li

system

a

ati-
s that
n of

ny

the

ather,
on/off
e

ng

he

4509J. Math. Phys., Vol. 43, No. 9, September 2002 Qubits as parafermions

                    
where on the left 0 and 1 represent the standard~first-quantized! logical states of a qubit.Qubits
can thus be identified with parafermionic operators.

The mapping of qubits to parafermions is completed by mapping the Pauli matricess i
a to

parafermionic operators:

s i
1→ai

† , s i
2→ai , s i

z→2ni21. ~3!

It is then straightforward to check that the standard sl~2! commutation relations of the Pau
matrices,

@s i
1 ,s j

2#5d i j s i
z ,

@s i
z ,s j

6#56d i j s i
6 ,

are preserved, so that we have a faithful second-quantized representation of the qubit
Hilbert space and algebra.@Of course we could also have mapped su(2)5$sx,sy,sz% to the
parafermionic operators, by appropriate linear combinations.# To illustrate the multi-qubit Hilbert–
Fock space representation, consider the case of two modes, i.e.,i , j 51,2. The space splits into
vacuum stateu00&5u0&, single-particle statesu01&5a1

†u0& and u10&5a2
†u0&, and a two-particle

stateu11&5a1
†a2

†u0&. It is important to emphasize that the parafermionic formalism is mathem
cally equivalent to the standard Pauli matrix formalism. We will be using both in the section
follow, starting with the parafermionic, as it makes particularly transparent the translatio
known results about fermions to qubits.

III. GENERAL PROPERTIES OF PARAFERMIONIC OPERATORS

N-qubit operators in QC are elements of the group U(2N). We will begin our discussion by
identifying a set of infinitesimal parafermionic generators for U(2N). Recall that with any
r -parameter Lie group there are associatedr infinitesimal generators,19 e.g., in the case of su~2!
these are, in the two-dimensional irreducible representation, the Pauli matrices$sx ,sy ,sz%. Now,
let a5$a i%,b5$b j%, wherea i , b j can be 0 or 1. In terms of parafermionic operations, a
element of U(2N) can be written as U(b)5exp(2i(a,bbabQa,b(N)), wherebab are continuous
parameters~generalized Euler angles! and the 2N32N infinitesimal group generators Qa,b(N) are
defined as follows: LetNa5( i 51

N a i , and

qa
†~Na!5~aN

† !aN
¯~a1

†!a1, qb~N2Na!5aN
bN
¯a1

b1 . ~4!

Then,

Qa,b~N!5qa
†~Na!qb~N2Na!. ~5!

The Qa,b(N) will be recognized as all possible transformations betweenN-qubit computational
basis states, e.g., forN52 the set of 16 operators is

$I ,a1
† ,a2

† ,a1 ,a2 ,a2
†a1

† ,a1a2 ,a1
†a1 ,a1

†a2 ,a2
†a1 ,a2

†a2 ,a2
†a1

†a1 ,a2
†a1

†a2 ,a1
†a1a2 ,a2

†a2a1 ,a2
†a1

†a2a1%,

where I is the identity operator. The setQa,0(N) generates all possible basis states from
vacuum state. Hermitian forms areQ1Q† and i (Q2Q†). We will turn to the Hermitian set of
generators in the discussion of applications, in Sec. IX.

Note that infinitesimal generators are not the generators one usually considers in QC. R
in QC, a gate operation is obtained by the unitary evolution generated through the turning
of a set of physically availableHamiltonians$Hm%, which are generally a small subset of th
2N32N infinitesimal generatorsQa,b(N). ‘‘Generated’’ here has the usual meaning of allowi
linear combinations and commutation of Hamiltonians. We will say thata set of Hamiltonians
$Hm% is universal with respect to a Lie groupG if it generates the Lie algebra of that group. T
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question of the dimension of the universal set of Hamiltonians with respect to U(2N) is somewhat
subtle, since it is context dependent. Lloyd showed that given two noncommuting operatorsA, B,
represented byn3n matrices, one can almost always generate U(n).20 However, it is not neces-
sarily clear how this result is related tophysically availableHamiltonians, since in practice on
may have only limited control over terms in a Hamiltonian, e.g., the standard Hamiltonian
erators for SU~4! ~two qubits! is the five-element set$s1

z ,s2
z ,s1

x ,s2
x ,s1

zs2
z%. However, the four-

element set $s1
z ,s2

z ,s1
zs2

x2s1
xs2

z ,sW 1•sW 2% also generates SU~4!, and may be physically
available.17 Another example are the following sets of, respectively, five, four, and three ge
tors: $s1

x ,s2
x ,s1

z ,s2
z ,s1

zs2
z%, $s1

x ,s2
x ,c1s1

z1c2s2
z ,s1

zs2
z%, and $s1

x ,s2
x ,c1s1

z1c2s2
z1c3s1

zs2
z%

~whereci are constants!. Which set of generators is physically available~i.e., directly controllable!
depends on the specific system used to implement the quantum computer. As we will show
this work, it is sometimes the case that a given, physically available, set of Hamiltonia
universal with respect to asubgroupof U(2N), which may be quite useful, provided the subgro
is sufficiently large~typically, still exponential inN!. This notion of universality with respect to
subgroup is what gives rise to the idea ofencoded universality:17,18,21–24,52one encodes a logica
qubit into two or more physical qubits, and studies the universality of the subgroup-gene
Hamiltonians with respect to these encoded/logical qubits.

The infinitesimal parafermionic generatorsQa,b(N) can be rearranged into certain subsets
operators with clear physical meaning, which we now detail.

~1! Local subalgebras: The tensor product structure of qubits is naturally enforce
@ai ,aj

†#50 for iÞ j . This induces a tensor product structurêi 51
N sli(2) on the subalgebra

formed by the grouping sli(2)5$ai ,ai
†,122ni%. Each sli(2) can only change states within th

same mode.
~2! SAp—Subalgebra withconserved parity: Define aparity operator as

p̂5~21! n̂.

It has eigenvalues 1 (21) for even~odd! total particle number. The operators that commute w
the parity operator form a subalgebra, which we denote by SAp. Let k ( l ) be the number ofai

†

(ai) factors inQa,b(N), i.e.,

k5( a i , l 5( b i .

SAp consists of those operators havingk2 l even, so its dimension~i.e., number of generators! is
22N/2. To see this, letQI be in SAp, and consider its action on a state with an even numbe
particles un&. Since k2 l is even, QI un&5un8& where n8 is also even. Now,p̂QI un&5 p̂un8&
51un8&, but alsoQIp̂un&5QI(1un&)5un8& so @ p̂,Q#50. For example, forN52 SAp consists
of $I ,a2

†a1
† ,a1a2 ,a1

†a1 ,a1
†a2 ,a2

†a1 ,a2
†a2 ,a2

†a1
†a2a1%.

~3! SAn—subalgebra withconserved particle number. This subalgebra, which we deno
SAn, is formed by all operators commuting with the number operatorn̂. These are the operator
for which k5 l , so its dimension is(k50

N (k
N)25(2N)!/N!N!. To see this, letQII be in SAn, and

consider its action on a stateun& with n particles.QII cannot change this number sincek5 l , but
it can transformun&: n̂QII un&5n̂un&85nun&8. However,QII n̂un&5nQII un&5nun&8, so @QII ,n̂#
50. For example, forN52 SAn consists of $I ,a1

†a1 ,a1
†a2 ,a2

†a1 ,a2
†a2 ,a2

†a1
†a2a1%. Clearly,

SAn,SAp.
~4! Subsets of bilinear operators: There are two types of bilinear operators foriÞ j : ai

†aj

~which conserve the particle number! andaiaj ,ai
†aj

† ~which conserve parity!. Let m5( i j ). Then
first

Tm
x 5aj

†ai1ai
†aj ,

~6!
Tm

z 5ni2nj ,

and Tm
y 5 i @Tm

x ,Tm
z # form an su~2! subalgebra, that we denote sum

t (2). Clearly, sum
t (2)PSAn.

Second,
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Rm
x 5aiaj1ai

†aj
† ,

~7!
Rm

z 5ni1nj21,

and Rm
y form another su~2! subalgebra, that we denote sum

r (2)PSAp. Note that
@sum

t (2),sum
r (2)#50 since any product of raising/lowering operators from these algebras con

a factor ofaiai or ai
†ai

† . Consider as an example the case ofN52 modes. Whereas the direc
product group SU1(2)^ SU2(2) yields all product states, the group SUt(2)% SUr(2) can trans-
form between states with equal particle number and states differing by two particle numbe

~5! Generators of SAn(N): The set of Hamiltonians$ai
†aj% i , j 51

N11 generates SAn(N), i.e., the
subalgebra of conserved particle number onN modes~qubits!. Proof: this set maps to the XY
model ~see Sec. IX B!. The rest follows using the method of Ref. 18. Note that$ai

†aj% i , j 51
N11 does

not generate SAn(N11), since this set cannot generaten̂1n̂2¯n̂N .
~6! Generators of SAp(N): The set of Hamiltonians$ai

†aj ,aiaj1ai
†aj

† ,i (aiaj2ai
†aj

†)% i , j 51
N

yields all states with even particle number onN modes from the vacuum state.~Proof is trivial.!
~7! Generators of SU(2N): In order to transform between states differing by an odd numbe

particles it is necessary to include the operators$ai ,ai
†% as well. The corresponding se

$ai
†aj ,aiaj ,ai

†aj
† ,ai ,ai

†% i , j 51
N generates a set of universal gates~proof is trivial!, and then by

standard universality results25,26 the entire SU(2N).
Additional structure emerges from a mapping between fermions and parafermions. This

ture helps both in simulating fermionic system using qubits, and in understanding the unive
of qubit systems.

IV. FERMIONS AND PARAFERMIONS

A general fermionic Fock state is

un1 ,n2 ,¯&F , ~8!

where ni50,1 is the occupation number of modei . As is well known,27 the fermionic
~‘‘supergroup’’19! U(2N) has infinitesimal generators

Q̃a,b
f ~N!5~ f N

† !aN
¯~ f 1

†!a1A fN
bN
¯ f 1

b1,

where

A5 ^
i 51

N

~12ni !.

This basis is equivalent by a linear transformation to the more familiar set

Qa,b
f ~N!5~ f N

† !aN
¯~ f 1

†!a1f N
bN
¯ f 1

b1,

which transforms between all possible fermionic Fock states~‘‘fermionic computational basis
state’’!. There is a group chain of this group,

U~2N!.SO~2N11!.SO~2N!.U~N! ~9!

and the generators of the subgroups are known.19

The Jordan–Wigner~JW! transformation,5 recently generalized in Ref. 28, allows one
establish an isomorphism between fermions and parafermions. Defining

Si
f[ ^

k51

i 21

~122nk
f !, Si[ ^

k51

i 21

~122nk!, ~10!
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the mapping is

ni
f→ni ,

f i→aiSi , ~11!

f i
†→ai

†Si .

The action of the fermionic operators on the state~8! is equivalent to that of the correspondin
parafermionic operators on the stateun1 ,n2 ,...&. To see this, note that@ai ,Si #50. Therefore the
effect of the JW transformation is quite simple: by commuting allSi to the left when mapping a
fermionic infinitesimal generator to a parafermionic one, we see that (i ) the parafermionicai ,ai

†

operators will yield a state with the same parafermionic occupation numbers as the corresp
fermionic state and (i i ) the action of the product ofSi ’s is to produce a phase61. ~This may
become a relative phase when acting on a state that is a superposition of computationa
states.! This allows us to study algebraic properties of one set of particles in terms of the o

Using the JW transformation we find that the same subgroup chain~9! holds for parafermions,
and we can immediately write down also the infinitesimal generators for the corresponding
fermionic subgroups. The result is given in Table I.

The significance of these subgroups for QC is in the classification of the universality pr
ties of fermionic and parafermionic Hamiltonians. For example, a Hamiltonian of nonintera
fermions, i.e., one including only bilinear terms$ f i

†f j , f i f j , f j
†f i

†%, is not by itself universal since i
merely generates SO(2N). Recent work has clarified what needs to be added to such a Ha
tonian in order to establish universality.6,29,30Regarding SO(2N11), note that one must carefull
discuss the Hermitian termsf i1 f i

† and i ( f i2 f i
†) if one wants to consider them as Hamiltonian

since it is unclear which physical process can be described by such Hamiltonians~a single fermion
creation/annihilation operator can turn an isolated fermion into a boson, a process that do
seem to occur in nature!.

A more powerful classification, from the QC viewpoint, is in terms of physically availa
Hamiltonian generators of the subgroups. An interesting restriction of the set of infinite
generators to a physically reasonable set of Hamiltonians is to consider only nearest-ne
interactions, where possible. The results known to us in this case are presented in Table I

A couple of comments are in order regarding Table II: First, note the group SO(2N11) may
be unphysical not just for fermions since its generators must contain terms likef i1 f i

† in its
Hamiltonian, but also for parafermions: it requires a nonlocal Hamiltonian due to theSi term.
Second, the corresponding fermionic generators for U(2N) given here is unphysical because

TABLE I. Infinitesimal generators~h.c.5Hermitian conjugate!.

Group Fermions Parafermions

U(2N) Qa,b
f (N) Qa,b(N)

SO(2N11) f i
†f j , f i f j , f i ,h.c. ai

†SiSjaj ,aiSiSjaj ,aiSi ,h.c.
SO(2N) f i

†f j , f i f j ,h.c. ai
†SiSjaj ,aiSiSjaj ,h.c.

U(N) f i
†f j ai

†SiSjaj

TABLE II. Hamiltonian generators.

Group Fermions Parafermions

U(2N) f iSi
f , f i

†f i 11 ,h.c. ai ,ai
†ai 11 ,h.c.

SO(2N11) f i ,h.c. aiSi ,h.c.
SO(2N) f i

†f i 11 , f i f i 11 ,h.c. ai
†ai 11 ,aiai 11 ,h.c.

SU(N) f i
†f i 11 ,h.c. ai

†ai 11 ,h.c.
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includes terms that are linear inf i and furthermore nonlocal. A physically acceptable set
$ f i

†f i 11 , f i f i 11 , f i
†f i 11

† f i f i 11 , h.c.%, but this set is not universal over the full 2N-dimensional
Hilbert space~since it conserves parity!. This means that a qubit needs to be encoded into
fermions in this case, a situation we explore further in Sec. VI. Now let us verify the claim
Table II. Our strategy is to show that in each case, we can use the Hamiltonians for genera
infinitesimal generators of the corresponding subgroup in Table I.

Consider first the subgroup SU(N): In the fermionic case, we claim that this subgroup h
nearest-neighbor Hamiltonian generatorsf i

†f i 11 and their Hermitian conjugates. For example, f
N53, if we have the four operatorsf 1

†f 2 , f 2
†f 3 and h.c., then we can generatef 1

†f 3

5@ f 1
†f 2 , f 2

†f 3# and h.c., as well asn̂i
f2n̂ j

f5@ f i
†f j , f j

†f i #. This yields a total of nine operators, eig
of which are linearly independent, that generate SU~3!. As for parafermions, we can use the J
transformation to getf i 11

† f i→ai 11
† Si 11aiSi5ai 11

† (122n̂i)ai5ai 11
† ai ~where we have used

@ai ,Si #50 and n̂iai5ai
†aiai50!. This establishes an isomorphism between the fermionic

parafermionic generators for SU(N). Hence the parafermionic subgroup SU(N) is generated by
ai

†ai 11 and h.c.
Now consider SO(2N): In the fermionic case we havef 1

†f 2
† , and using the result for U(N) we

also havef 4
†f 1 ; therefore we have@ f 4

†f 1 , f 1
†f 2

†#5 f 4
†f 2

† . Clearly, the interaction range can be e
tended to cover all generators. For the parafermionic case, using the JW transformation w
f i 11

† f i
†→ai 11

† Si 11ai
†Si5ai 11

† (122n̂i)ai
†5ai 11

† ai
† , so that we again have an isomorphism w

the fermionic case.
Next consider the~unphysical! subgroup SO(2N11): In the fermionic case it suffices to not

that 1
2@ f i , f j #5 f i f j and 1

2@ f i
† , f j #5 f i

†f j , i< j so that we can generate all infinitesimal generat
by the linear termsf i and f i

† . The parafermionic case follows by the JW transformation.
Finally, in the U(2N) case the universality of the parafermionic set$ai ,ai

†ai 11 , h.c.% follows
from that of the set of all single qubit operations together with the Hamiltonian of the nea
neighbor XY model@Eq. ~17! below#, proved in Ref. 31. The fermionic case follows by the J
transformation.

Let us recapitulate the meaning of the results presented in this section: we have shown
classify subalgebras of fermionic/parafermionic operators in terms of the groups they gen
This therefore classifies their universality properties with respect to these groups. This is p
larly important in the context of a given set of physically available Hamiltonians. Our me
employed a mapping between fermions and parafermions, which allowed us to easily tra
known results about one type of particle to the other.

V. BOSONS FROM PARAFERMIONS

A linear combination of different-mode parafermions can approximately form a boson. D

B5
1

AN
(
i 51

N

ai .

Then using Eq.~1! we have

@B,B†#5
1

N (
i 51

N

122n̂i512
2n̂

N
.

If the parafermion number is much smaller than the available number of sites/modes, i.e.,
n!N, then@B,B†#'1, which is an approximate single-mode boson commutation relation.

To get K boson modes, we can divideN into K approximately equal parts. Each part h
Na5N/K qubits and approximately represents a boson. Thekth boson isBa5(1/ANa) ( i 51

Na ai .
Then

@Ba ,Bb
† #5dabS 12

2n̂a

Na
D na!Na

'dab .
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Physically, this means that a low-energy qubit system~with most qubits in their ground state!
can macroscopically behave like a boson, or a collection of bosons. If the Hamiltonian is
bilinear form H52B†B52(1/N) (n̂1( iÞ j

N ai
†aj ), the ground state withn!N parafermions is

(B†)nu0&, i.e., n̂@(B†)nu0&]'n@(B†)nu0&].
A separate conclusion that follows from this result is that a low-energy noninteracting

system cannaturally simulate the dynamics of bosons.

VI. PARAFERMIONS FROM FERMIONS AND BOSONS

As stated in the Introduction, qubits do not exist as fundamental particles. This mean
they are either approximate descriptions~e.g., a spin in the absence of its spatial degrees
freedom! or have to be prepared by appropriately combining bosons or fermions, i.e., a qub
be encodedin terms of bosons or fermions under certain conditions~see also Ref. 32!. We
consider bosonic or fermionic systems with 2N single-particle states. Letk51,2,...,N denote all
relevant quantum numbers~including spin, if necessary!. The following three cases yield parafe
mions.

Case 1: Fermionic particle-particle pairs—Under the conditionn2k21
f 5n2k

f it can be shown
that $ f 2kf 2k21 , f 2k21

† f 2k
† %51 and @ f 2k21f 2k , f 2l 21

† f 2l
† #50 for kÞ l . Furthermore, the se

$ f 2k21 , f 2k21
† f 2k

† ,n2k21
f 1n2k

f 21% satisfies the commutation relations of sl~2!. Therefore the map-
ping ak⇔ f 2kf 2k21 , ak

†⇔ f 2k21
† f 2k

† and 2nk⇔n2k21
f 1n2k

f is a mapping to parafermions. Th
vacuum state of parafermions in this case corresponds to the vacuum stateu0& f of fermions. An
example is Cooper pairs.

Case 2: Fermionic particle-hole pairs—Under the conditionn2k21
f 1n2k

f 51 it can be shown
as in case 1 thatak⇔ f 2k

† f 2k21 , ak
†⇔ f 2k21

† f 2k and 2nk21⇔n2k21
f 2n2k

f is a mapping to parafer
mions. However, in this case the vacuum state of parafermions isu0&5 f 2N

†
¯ f 4

†f 2
†u0& f , because

thenaku0&50 for all k. This vacuum state plays the role of a Fermi level. An example is excit
In fact, all quantum computer proposals that use electrons, e.g., quantum dots,11 and electrons on
Helium,33,34 are equivalent to this case. For example,f 2

†f 1 and f 1
†f 2 can represent the transitio

operators between two spin states in the quantum dot proposal.
Case 3: Bosonic ‘‘particle-hole’’ pairs—Under the conditionn2k21

b 1n2k
b 51 it can be shown

as in case 1 thatak⇔b2k
† b2k21 , ak

†⇔b2k21
† b2k and 2nk21⇔n2k21

b 2n2k
b is a mapping to para-

fermions. However, in this case the vacuum state of parafermions isu0&
5b2N

†
¯b2k

†
¯b4

†b2
†u0&b , again because thenaku0&50 for all k. An example is dual-rail photons

in the optical quantum computer proposal.15

This classification illustrates the by-necessity compound nature of a qubit, and puts
unified context the many different proposals for constructing qubits in physical systems. No
it is possible to use more than two fermions or bosons to construct a parafermion. Further
cations, especially as related to the simulation of models of superconductivity~Case 1! on a
quantum computer, have been explored in Ref. 35.

VII. PARAFERMIONIC BILINEAR HAMILTONIANS ARE UNIVERSAL BUT FERMIONIC
AND BOSONIC ARE NOT

In this section we discuss a rather striking difference between the universality of bil
Hamiltonians acting on fermions and bosons, as compared to parafermions. Let us consider
of particle-number-conserving bilinear operators of bosons, fermions and parafermions:

bi
†bj , f i

†f j , ai
†aj .

As noted in Table I, in the fermionic case these operators generate the group U(N) whereN is the
number of particles. The same is true for bosons.19 Clearly, therefore, fermionic and boson
Hamiltonians containing only these operators are not universal with respect to an interestin~i.e.,
exponentially large! SU(2N) subgroup. On the other hand, as discussed in the previous se
these fermionic and bosonic operators can be used to define parafermionic operatorsai

†aj in
                                                                                                                



ra

versal
el, Eq.
ne
st-
t,

s and

to

of
s each

p

y
ter

as

s

e
ced

can be
w one

4515J. Math. Phys., Vol. 43, No. 9, September 2002 Qubits as parafermions

                    
two-to-one correspondence. As mentioned in Sec. III, the set$ai
†aj% i , j 51

N11 generates the subalgeb
SAn(N), with dimension (2N)!/N!N! ( .2N) @recall that the total number ofQa,b(N) operators
is 22N#. The corresponding Lie group appears to be large enough to be interesting for uni
quantum computation. This expectation is borne out, since one can construct an XY mod
~17!, using the set$ai

†aj%. As shown in Ref. 23, the XY model is by itself universal provided o
uses three physical qubits perencoded qutrit, together with nearest-neighbor and next-neare
neighbor interactions~see also Sec. IX D 1!. We discuss the XY model in detail in Sec. IX B. Firs
however, let us argue qualitatively where the difference between parafermions~qubits! and fermi-
ons and bosons originates from. An example will illuminate this. For the case of boson
fermions, @b1

†b2 ,b2
†b3#5b1

†b3 and @ f 1
†f 2 , f 2

†f 3#5 f 1
†f 3 . But for parafermions,@a1

†a2 ,a2
†a3#

5a1
†a3(122n̂2). ~An easy way to check this, without explicitly calculating the commutator, is

use the mapping to fermions:f i
†f i 11↔ai

†ai 11 and the Jordan–Wigner transformationf i→aiSi .!
Thus the difference is thatbosons and fermions preserve locality, but parafermions do not.

Similarly, we can consider additional bilinear operators. For fermions, if we also havef i f j and
f j

†f i
† , the group is SO(2N), which is too small to be interesting for QC. In fact this is a model

noninteracting fermions: there exists a canonical transformation to a sum of quadratic term
of which acts only on a single mode~see also Refs. 6, 29, 30, 32, and 36!. For bosons, if we
include bibj and bj

†bi
† , the group generated is theN(2N11)-parameter symplectic grou

Sp(2N,R) which is noncompact, implying that it has no finite dimensional irreps.19 If we further
include the set of annihilation and creation operatorsbi ,bi

† together with the identity operatorI ,
the set $I ,bi ,bi

† ,bibj ,bj
†bi

† ,bj
†bi% generates the semidirect-product groupN(N) ^ Sp(2N,R),

whereN(N) is the Heisenberg group, with (N11)(2N11) generators~Ref. 19, Chap. 20!. This
is therefore still too small to be interesting for universal QC. In fact,this is exactly the reason wh
linear optics by itself is insufficient for universal QC. The situation does not change even af
introduction of the displacement operatorsDi(a)5exp(abi

†2a*bi),
16 since Di(a)PN(N)

^ Sp(2N,R).
The way to universality@with respect to SU(2N)# is to introduce nonlinear operations such

a Kerr nonlinearity,37 self-interaction,38 or conditional measurements.15,16A Kerr nonlinearity is a
two-qubit interaction of the formni

bnj
b ~where i and j are different modes!, which directly pro-

vides a CPHASE gate. To see this, consider a dual-rail encoding:37 Suppose that one qubit i
encoded intou0&5b1

†u0&, u1&5b2
†u0&, while a second qubit is encoded intou0&5b3

†u0&, u1&
5b4

†u0& ~u0& is the vacuum state!. The two-qubit states are

u00&5b3
†b1

†u0&, u01&5b3
†b2

†u0&,

u10&5b4
†b1

†u0&, u11&5b4
†b2

†u0&.

~This is related to case 3 of Sec. VI, where we showed how to make qubits from bosons.! It is then
simple to verify that exp(2ipn2

bn4
b) acts exactly as aCPHASE gate, i.e., it is represented by th

matrix diag(1,1,1,21) in this two-qubit basis. Here we wish to point out that a recently introdu
alternative to a Kerr nonlinearity,38 namely the self-interaction (ni

b)2, is in fact closely related to
the Kerr nonlinearity. Thus methods developed to use one of these nonlinear interactions
transported to the other. Let us demonstrate this point by giving a simple circuit to show ho
interaction simulates the other. We start with the operator identity

exp~f~a†b2b†a!!b† exp~2f~a†b2b†a!!5cosfb†1sinfa†,

which can be proved directly from the Baker–Hausdorff formula

e2aABeaA5B2a@A,B#1
a2

2!
@A,@A,B##2

a3

3!
@A,@A,@A,B###1¯ . ~12!

Using the latter identity it is then simple to verify the following identity,which holds on the
two-qubit subspace above,
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exp~2 ipn2
bn4

b!5expS 2
p

4
~b2

†b42b4
†b2! DexpS 2 ip

~n2
b!21~n4

b!22n2
b2n4

b

2 D
3expS p

4
~b2

†b42b4
†b2! D .

This is an exact three-gate simulation of the KerrCPHASEgate in terms of the self-interaction. Th
simulation uses the linear bosonic operatorsbi

†bj and the local energiesni
b in order to unitarily

rotate the self-interaction terms (n2
b)21(n4

b)2 to a Kerr interaction.

VIII. FLUCTUATIONS IN PARAFERMION NUMBER AT FINITE TEMPERATURE

So far we have not really made use of the full power of the Fock space representation,
allows to consider the case of fluctuating particle number. The quantum statistics of parafe
is determined by their commutation relations, like fermions~Fermi–Dirac statistics! and bosons
~Bose–Einstein statistics!. A simple case to consider is that of noninteracting parafermions.
Fermi–Dirac distribution for an ideal Fermi gas is derived using only the restriction that no
than a single fermion can occupy a given mode.39 Hence the statistics of noninteracting parafe
mions is clearly the same as that of noninteracting fermions.

Fluctuations in particle number will be a result of interaction of the system with an exte
bath, which imposes a chemical potentialm ~essentially the gradient of the particle flow!. As a
simple example, consider the following system-bath interaction Hamiltonian:

HI5(
i 51

N

s i
z
^ Bi

z→(
i 51

N

~2n̂i21! ^ Bi
z , ~13!

whereBi
z are bath operators. To further simplify things assume the bath is treated classicall

Bi
z are positivec-numbers. With this Hamiltonian, one can study the fluctuations of paraferm

under finite temperatureT. Mapping from the well-know result for a noninteracting Fermi gas39

it then follows that the average occupation for thei th qubit site is

^ni&5
1

e(2Bi
z
2m)/kT11

,

wherek is Boltzman’s constant. This is the average value of the qubit-‘‘spin’’~whether it isu0& or
u1&!. Keeping the chemical potentialm fixed, in the limit of T→0 we find that^ni&→1 if Bi

z

,m, but ^ni&→0 if Bi
z.m. Thus, as expected, it is essential to keep the interaction with the

weak~compared tom! to prevent fluctuations in qubit ‘‘orientation’’ at low temperatures. At fin
T we find ^ni&,1, meaning that some fluctuation is unpreventable. Of course, our model is
naive, and the picture is modified when qubit interactions are taken into account. Howe
should be clear that a Fock space description of qubits, i.e., in terms of parafermions, co
valuable in studying qubit statistics at finite temperatures.

IX. UNIVERSALITY OF EXCHANGE-TYPE HAMILTONIANS

In this final section we conclude with an application of the formalism we developed earl
the study of the universality power of Hamiltonians. We have considered this question in
before for general exchange-type Hamiltonians~isotropic and anisotropic!.17,18 We first briefly
review the universality classification of various physically relevant bilinear Hamiltonians. It
be seen that while in certain cases the Hamiltonian is not sufficiently powerful to be universa
respect to U(2N), it is universal with respect to a subgroup. As mentioned in Sec. III, this re
requires the use ofencoding of physical qubits into logical qubits.21–24,52We then consider in
detail the representative example of the XY model, where we give a new proof about unive
~in fact, the lack thereof! in the case of nearest-neighbor-only interactions. We then present
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results about codes with higher rates than considered in Refs. 17 and 18. For simplicity we
when convenient to the Pauli matrix notation in this section, which is more familiar to prac
ners of QC.

A. Classification of bilinear Hamiltonians

The most general bilinear Hamiltonian for a qubit system is

H~ t ![H01V1F5(
i

1

2
« is i

z1(
i , j

Vi j 1F, ~14!

whereH0 is the qubit energy term, the interaction between qubitsi and j is

Vi j 5 (
a,b5x,y,z

Ji j
ab~ t !s i

as j
b ,

and the external single-qubit operations are

F5(
i

f i
x~ t !s i

x1 f i
y~ t !s i

y .

Recall the ‘‘standard’’ result about universal quantum computation: The group U(2N) on N qubits
can be generated using arbitrary single qubit gates and a nontrivial two-qubit entangling gat
asCNOT.25 The general HamiltonianH(t) can generate such a universal gate set, e.g., as follo
Suppose there are controllables i

z ands i
x terms. Thens i

y can be generated using Euler angles

s i
y5exp~2 ips i

z/4!s i
x exp~ ips i

z/4!.

This is an instance of a simple but extremely useful result: letA and B be anticommuting
Hermitian operators whereA25I ~I is the identity matrix!. Then, usingUeVU†5eUVU†

~U is
unitary,V is arbitrary!,

CA
w+ exp~ iuB![exp~2 iAw!exp~ iuB!exp~ iAw!5H exp~2 iuB! if w5p/2,

exp@ iu~ iAB!# if w5p/4.
~15!

One can also derive these relations for su~2! angular momentum operators, without assuming t
$A,B%50 andA25I . Let Jx and Jz be generators of su~2!. Then, using the Baker–Hausdor
relation Eq.~12!, and@Jz ,Jx#5 iJy ,

exp~2 iwJz!Jx exp~ iwJz!5Jx cosw1Jy sinw.

From here follows, usingUeVU†5eUVU†
again,

CJz

w + exp~ iuJx!5exp~ iu~Jx cosw1Jy sinw!!,

and Eq.~15! can be verified, withw→2w, andAB→@A,B#.
Different QC proposals usually have different two-qubit interactions. Typical types inc

s i
zs i 11

z ,s i
ys i 11

y ~or s i
xs i 11

x !, s i
xs i 11

x 1s i
ys i 11

y ~XY model!, andsW i•sW j ~Heisenberg model!. It is
simple to show that they can all be transformed into a common canonical forms i

zs i 11
z , using a

few unitary transformation. The terms i
zs i 11

z can be used to generateCPHASE and, from there,
CNOT.7 For example, the XY term can first be transformed intos i

xs i 11
x using Euler angle rotations

abouts i
x , which flips the sign of thes i

ys i 11
y term:
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expF iu

2
~s i

xs i 11
x 1s i

ys i 11
y !G S Cs

i
x

p/2
+ expF iu

2
~s i

xs i 11
x 1s i

ys i 11
y !G D5exp~ ius i

xs i 11
x !,

which can subsequently be transformed into the canonical form using another Euler angle ro

Cs
i
y1s

i 11
y

p/4
+s i

xs i 11
x 5s i

zs i 11
z ,

where using@s i
y ,s i 11

y #50 we have abbreviatedCs
i 11
y

p/4
+Cs

i
y

p/4
asCs

i
y1s

i 11
y

p/4
. The method of Euler

angle rotations as applied here is also known as ‘‘selective recoupling’’ in the NMR literatu40

Not all QC proposals have an interaction Hamiltonian that appears to be of the formVi j , e.g.,
the ion-trap proposal12 looks quite different since it involves interactions between ions media
by a phonon. The interaction between thei th ion and the phonon has the forms i

2b†1s i
1b. This

is nevertheless equivalent to an XY model, since

s i
xs i 11

x 1s i
ys i 11

y 5Cs
i
z2s

i 11
z

p/4
+2i @s i

2b†1s i
1b,s i 11

2 b†1s i 11
1 b#.

Therefore, in many cases it suffices to study the interactions i
zs i 11

z .
Let us now consider a number of more restricted models.

1. No external single-qubit operations

If F50, then thenearest-neighborset$s i
z ,s i

zs i 11
z ,s i

xs i 11
z ,s i 11

x s i
z% is still universal, since

s i
y5Cs

i 11
z s

i
z

p/4
+s i 11

z s i
x .

This is the case whenH0 is controllable. More physically, the set$s i
z ,sW i•sW i 11 ,(sW i3sW i 11)y

5s i
zs i 11

x 2s i 11
z s i

x% is also universal, wheresW 5(sx,sy,sz). The termsW i3sW i 11 is an anisotropic
~Dzyaloshinskii–Moriya! interaction which arises, e.g., in quantum dots in the presence of s
orbit coupling.17,41–44

2. No external single-qubit operations and H 0 uncontrollable

If F50 and H0 is not controllable, then the nearest-neighbor set$s i
zs i 11

z ,s i
xs i 11

z ,
s i

zs i 11
x ,s i

ys i 11
z ,s i

zs i 11
y % is universal, meaning that the interaction termV by itself is universal.

One way to see this is to map the set to parafermionic operators and note that it overlaps w
set that generates the parafermionic U(2N) ~Table II!.

3. Scalar anisotropic exchange-type interactions

Consider the caseJi j
ab5Ji j

a dab ~denotingV by V8!, which amounts to limiting the Hamil-
tonian to scalar anisotropic exchange-type interactions. Using Eq.~3! we then arrive at the second
quantized form

H05(
i

h ini ,

F5(
i

~ f i* ai1 f iai
†!, ~16!

V85(
i , j

D i j ~aiaj1ai
†aj

†!1Ji j ~ai
†aj1aj

†ai !14Ji j
z ninj ,

where
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h i5« i1S (
j

Ji j
z 1Jji

z D , f i5~ f i
x2 i f i

y!,

D i j 5Ji j
x 2Ji j

y , Ji j 5Ji j
x 1Ji j

y ,

and we dropped a constant energy term.
V8 is the so-called XYZ model of solid state physics. Considering the structure ofV8 and the

classification of operator algebras we carried out in Secs. III and IV, it should be clear that
immediate conclusions can be drawn about the universality power of this Hamiltonian. Th
HamiltonianH01V81F contains the generators of the parafermionicU(2N) ~Table II!, so it is
universal. On the other hand, without external single qubit operations (F50), we have@H0

1V8,p̂#50, so H01V8PSAp, i.e., preserves parity. This immediately implies that the XY
model ~even withH0! is by itself not universal. However, it can be made universal byencoding
logical qubits into several~two are in fact sufficient! physical qubits.17 The elimination of single-
qubit operations (F50) can be quite useful, since typically single- and two-qubit operati
involve very different constraints. In some cases single-qubit operations can be very diffic
implement~see Refs. 17, 18, and 22 and references therein for extensive discussions of this!.

B. XY model

Consider now the XY model, which is defined by

VXY5(
i , j

Ji j ~ai
†aj1aj

†ai !. ~17!

It is relevant to a number of proposals for quantum computing, including quantum
systems,45,46 quantum dots in microcavities,32 quantum dots coupled by exciton exchange,47 and
atoms in microcavities.48 Let us summarize what is currently known about quantum computati
universality of this model.

~i! In Ref. 31 it was shown that the XY model with nearest-neighbor interactions only, tog
with single-qubit operations, is universal.

~ii ! In Ref. 23 it was argued that the XY model is universal without single-qubit operati
provided these gates can be applied between nearest-neighbor and next-nearest-n
pairs of qubits. This involved encoding a logical qutrit into three physical qubits:u0L&
5u001&, u1L&5u010&, u2L&5u100&. We reconsider this in Sec. IX D in the context of th
XXZ model ~but using the methods of Ref. 18, the results are valid also for the XY mo!.

~iii ! In Ref. 18 we showed that the XY model is universal using only nearest- and next-ne
neighbor (Ji ,i 12) interactions, together with single-qubitsz terms. This too involved an
encoding of a logical qubit into two physical qubits:u0L&5u01&, u1L&5u10&. Two com-
ments are in order about this result: first, next-nearest-neighbor interactions can be n
neighbor in 2D~e.g., in an hexagonal array!; second, unlike Ref. 31, we did not assume t
sz terms to be controllable, i.e., there is no individual control over« i @Eq. ~14!#. A similar
model is treated in Sec. IX C.

The question now arises:Is the XY model universal with nearest-neighbor interactions on
We prove that it is not.

The nearest-neighbor XY model in its parafermionic form is

H5(
i

N

e ini1(
i

N

Ji ,i 11~ai
†ai 111ai 11

† ai !.

Consulting Table II, we see thatH can only generate SU(N), which is clearly too small even fo
encoded quantum computation.
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C. Antisymmetric XY model

To illustrate the idea of encoding for universality, let us briefly consider the ‘‘antisymm
XY model:’’

VaXY5(
i , j

Ji j
xys i

xs j
y1Ji j

yxs i
ys j

x . ~18!

HereJi j
xy andJi j

yx are real. We encode a logical qubit into pairs of nearest-neighbor physical q
Letting

D̃ i j 5Ji j
xy2Ji j

yx , J̃i j [Ji j
xy1Ji j

yx , em
6[«2m212«2m , ~19!

using the compact notation•m[•2m21,2m , and assuming that interactions are on only inside p
of qubits encoding one qubit, we find for the HamiltonianH5H01VaXY

HaXY5 (
m51

N/2

~ J̃mRm
y 1em

1Rm
z !1~D̃mTm

y 1em
2Tm

z !, ~20!

where theT andR operators were defined in Eqs.~6! and~7!. Since theT andR operators form
commuting sl~2! algebras, the Hilbert space splits into two independent computational subsp
The R operators conserve parity, so that an appropriate encoding in the axially symmetric
(D̃m50), using standard qubit notation, isu0L&5u00& and u1L&5u11&. On the other hand, theT
operators preserve particle number, so that ifJ̃m50 ~axially antisymmetric case!, the encoding is
u0L&5u01&, u1L&5u10&. In both cases control over the pair of parameters$J̃m ,em

1% ~or $D̃m ,em
2%!

is sufficient for the implementation of the single-encoded-qubit SUm(2) group~the subscriptm
refers to themth logical/encoded qubit!.

Logic operations between encoded qubits require the ‘‘encoded selective recoupling’’ m
introduced in Ref. 18. Consider the ‘‘axially antisymmetric qubit’’u0L&5u01&, u1L&5u10&. First,
note that, using Eq.~15!,

CT
12
x

p/2
+T23

x 5 is1
zs2

zT13
x . ~21!

Now assume we can controlD̃13. Then,

CT
13
x

p/4
+~CT

12
x +T23

x !5s2
z~s3

z2s1
z!/2. ~22!

Sinces1
zs2

z is constant on the code subspace it can be ignored. On the other hand,s2
zs3

z acts as
2T1

zT2
z :

u0L&1u0L&25u01&12u01&34 →
s2

zs3
z

2u01&12u01&3452u0L&1u0L&2 , ~23!

and similarly for the other three combinations:u0L&u1L&→u0L&u1L&, u1L&u0L&→u1L&u0L&,
u1L&u1L&→2u1L&u1L&, i.e., s2

zs3
z acts as an encodedsz

^ sz. This establishes universal encod
computation in the antisymmetric XY model.

D. Codes with higher rates

The encoding of one logical qubit into two physical qubits is not very efficient. Can we
better? That is, can we perform encoded universal QC on codes with a rate~no. of logical qubit to
no. of physical qubits! that is greater than12? We will show how in the case of the XXZ mode
defined asH5H01HXXZ , where
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HXXZ5(
i , j

Ji j
x ~s i

xs j
x1s i

ys j
y!1Ji j

z s i
zs j

z .

When surface and interface effects are taken into account, the XY examples o
proposals,31,45–48as well as the Heisenberg examples,11,49,50 are better described by the axial
symmetric XXZ model. Additional sources of nonzeroJi j

z in the XY examples can be second
order effects~e.g., virtual cavity-photon generation without spin-flips31!. A natural XXZ example
is that of electrons on helium.33,34

First, note that the code used in the XY model,u0L&5u01&, u1L&5u10&, is applicable here as
well: Ti j

x 5 1
2(s i

xs j
x1s i

ys j
y) preserves particle number, and serves as an encodedsx; s i

z terms from
H0 serve as encodedsz, ands i

zs i 11
z applied to physical qubits belonging to different encod

qubits acts as encodedsz
^ sz.

In the general encoding case we consider a block ofN qubits where codewords are comp
tational basis states~bitstrings of 0’s and 1’s!: $qa

†(Na)u0&%a , wherea5$a i% anda i can be 0 or
1, whileNa50, . . . ,N. A code-subspaceC(N,n) will be defined by having a fixed numbern of 1’s
~i.e., of parafermions!. Thus there are

dN,n[dim@C~N,n!#5S N
n D

codewords in a subspace. Examples are considered below. Note that these subspa
decoherence-free under the process of collective dephasing,51 and have been analyzed extensive
in this context in Ref. 52. Figure 1 in Ref. 52 provides a nice graphical illustration of theC(N,n)
subspaces. Since the decoherence-avoidance properties of the codes we consider here h
extensively discussed before,51,52 and even implemented experimentally,53,54 we do not address
this issue here. We further note that Ref. 52 provided an in-principle proof that universal en
QC is possible on all subspacesC(N,n) independently. However, this proof had several shortco
ings: (i ) it used a short-time approximation, (i i ) it did not make explicit contact with physically
realizable Hamiltonians, and (i i i ) it proceeded by induction, and thus did not explicitly provide
efficientalgorithm for universal QC. We remedy all these shortcomings here, i.e., we~i! use only
finite-time operations,~ii ! use only the XXZ Hamiltonian, and~iii ! provide an efficient algorithm
that scales polynomially inN.

We need a measure that captures how efficient aC(N,n) code is. If there ared codewords,
supported overN p-dimensional objects~p52 is the case of bits!, and information is measured i
units of q, then we define the rate of the code as

r ~d,p,q!5
logq d

logq pN .

The traditional definition for qubits is recovered by settingp5q52, i.e., the rate of a code is th
ratio of the number of logical qubits log2 d to the number of physical qubitsN, which in our case
becomes

r 5
log2 dN,n

N
→

N@1

S~e!, ~24!

wheree[k/N,

S~e!52e log2 e2~12e!log2~12e!

is the Shannon entropy, and we have used the Stirling formula logx!'x logx2x. SinceS( 1
2)51

the code has a rate that is asymptotically unity for the ‘‘symmetric subspace’’C(N,N/2), where the
number of 1’s equals the number of 0’s in each computational basis state. However, we will
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fact attempt to encode log2 dN,n logical qubits in the subspaceC(N,n), since the subspace does n
have a natural tensor product structure. Instead we will considerC(N,n) as a subspace encoding
qudit, whered5dN,n . Using the generalized definition of a rate above, and measuring inform
in units of d so that each subspace encodes one unit of information, the rate of such a cor
5 (logd d)/(logd 2N). This, however, exactly coincides withr of Eq. ~24!. Therefore we see that th
advantage of working with the symmetric subspaceC(N,N/2) in the limit of largeN is that its rate
approaches unity.

Before embarking on the general analysis, let us note that for an encoding of one logica
into N physical qubits, there is a simple construction in terms of parafermionic opera
Qa,b(N), Qa,b

† (N), and@Qa,b
† (N), Qa,b(N)# ~which is a function of parafermion number! form

an su~2! algebra in the basisu0L&5qa
†(Na)u0& andu1L&5qb

†(N2Na)u0&, e.g., forN52 there are
two cases: the sets$a1a2 ,a2

†a1
† ,n̂11n̂221% and $a1

†a2 ,a2
†a1 ,n̂12n̂2%, with corresponding base

u0L&5u0&, u1L&5a1
†a2

†u0& and u0L&5a1
†u0&, u1L&5a2

†u0&. These two encodings are universal~in
the sense of blocks ofN physical qubits! when onlyH0 andV8 are controllable@Eq. ~16!#.

Let us now move on to the general subspace case, starting with an example.

1. Encoded operations: Example

ConsiderC(3,1)5Span$u0&[u001&,u1&[u010&,u2&[u100&%, i.e., an encoding of a logica
qutrit into three physical qubits, as in Ref. 23. Let us count qubits asi 50, . . . ,N21. Our first task
is to show how to generate su~3! on this subspace. It is simple to check thatT01

x u001&50,
T01

x u010&5u100&, T01
x u100&5u010&, and in total

T01
x 5S 0 0 0

0 0 1

0 1 0
D 5u1&^2u1u2&^1u[X12,

where the notationX12 denotes asx operation between statesu1&[u010& and u2&[u100&. Simi-
larly, it is simple to check thatT12

x 5X01 andT02
x 5X02. Further, usingTi j

z [ 1
2(s i

z2s j
z), we have

T01
z 5Z12, T12

z 5Z01, andT02
z 5Z02, whereZ12 denotes asz operation between statesu1& andu2&,

etc. Therefore each pair$Ti j
x ,Ti j

z % generates an encoded su~2!. But in the sense of generating
su(N) is a sum of overlapping su~2!’s,55 so using just the nearest-neighbor interactio
$T01

x ,T01
z ,T12

x ,T12
x % we can generate all of su~3! on C(3,1). Note that@X01,X12#5 iY02, so that

su~2! between statesu0&,u2& can in fact be generated usingTi j
x ’s alone, withoutTi j

z ’s. This
conclusion clearly holds for the generation of all of su~3! onC(3,1), as first pointed out in Ref. 23

Next, we need to show how to implement encoded logical operations between twoC(3,1)
code subspaces. Let us number the qubits asi 50,1,2 for the first block andi 53,4,5 for the
second block. Consider the effect of turning onJ23

z , i.e., consider the action ofs2
zs3

z on the tensor
product spaceC(3,1)^ C(3,1). The operators2

zs3
z is represented by a nine-dimensional diago

matrix on this space, which is easily found to have the following form in the ordered basis$u0&
^ u0&,u0& ^ u1&, . . . ,u2& ^ u2&%:

s2
zs3

z5diag~21,1,1,21,1,1,1,21,21!5diag~21,1,1! ^ diag~1,1,21!,

e.g.,s2
zs3

zu2& ^ u2&5s2
zs3

zu100& ^ u100&5(1u100&) ^ (2u100&)52u2& ^ u2&, which explains the
21 in the ninth position in the diagonal matrix above. The important point is thats2

zs3
z acts as a

tensor product operator onC(3,1)^ C(3,1), whichputs a relative phasebetween the basis states
eachC(3,1) factor. This means thats2

zs3
z acts as an ‘‘su~3!-like’’ sz

^ sz on C(3,1)^ C(3,1). @It is
an ‘‘su~3!-like’’ sz

^ sz since for su~2! sz5diag(1,21) and here we have instead diag(21,1,1)
and diag(1,1,21).# It is well known7 that theCPHASEgate can be generated from the Hamiltoni
sz

^ sz. The same holds here, so that we can generate a CPHASE gate between twoC(3,1)
subspaces by simply turning on a nearest-neighbor interaction between the last qubit in t
block and the first qubit in the second block.

With this example in mind we can move on to the general case.
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2. Encoded operations: General subspace case

Let us now consider the case of a general subspaceC(N,n). We can enumerate the codewor
as$u0&, . . . ,udN,n&% whereu0&5u0, . . . ,01, . . . ,1&, etc., toudN,n&5u1, . . . ,10, . . . ,0&, where there
areN qubits in total andn 1’s in each codeword. Consider a fixed nearest-neighbor pair of qu
at positionsi ,i 11, and the action ofTi ,i 11

x ,Ti ,i 11
z . The four possibilities for qubit values at thes

positions are$00,01,10,11%. Now consider a pair of codewordsut&, ut8& such thatut& has 01 in the
i ,i 11 positions whileut8& has 10 in thei ,i 11 positions, and they are identical everywhere el
We can always find such a pair by definition ofC(N,n). The action ofTi ,i 11

x ,Ti ,i 11
z on ut&, ut8& is

to generate su~2! between them, just as shown in the case ofC(3,1) above. On the other hand, th
action of Ti ,i 11

x ,Ti ,i 11
z in the case of 00 or 11 in thei ,i 11 positions is to annihilate all corre

sponding codewords@which are anyhow outside of the givenC(N,n) subspace#. This null action
means that, when exponentiated,Ti ,i 11

x ,Ti ,i 11
z act as identity on these codewords. Therefore

action ofTi ,i 11
x ,Ti ,i 11

z is precisely to generate su~2! betweenut&, ut8&, and nothing more. Denote
this by su(2)i ,i 11

(1) . Let us now keep the 01 and 10 at positionsi ,i 11 fixed, and vary all other
N22 positions inut&, ut8&, subject to the constraint ofn 1’s, and in the same manner in bothut&,
ut8&. We then run overK5(n21

N22) codewords, andTi ,i 11
x ,Ti ,i 11

z generate su~2! between each pai
of new ut&, ut8&. Denote these by su(2)i ,i 11

(k) , k51,...,K. By further letting i 50,...,N22 we
generateN21 overlappingsu~2!’s. These su~2!’s can be connected by swaps so that we c
generate all su(2)i , j

(k) , k51,...,K, i , j . We thus have a total of (n21
N22) (2

N) su~2!’s. To generate the
entire su(dN,n) we need no more thandN,n5(n

N) overlapping su~2!’s. Since (n21
N22) (2

N)/(n
N)

5 1
2n(N2n).1, we have more than enough overlapping su~2!’s, and su(dN,n) can be generated

What is left is to show that we can perform a controlled operation between twoC(N,n)
subspaces. To do so we again use the nearest-neighbor interactionsN21

z sN
z , where the first factor

(sN21
z ) acts on the last qubit (N21) of the firstC(N,n) subspace, and the second factor (sN

z ) acts
on the first qubit (N) of the secondC(N,n) subspace. Now let us sort the codewords in the t
subspaces in an identical manner, e.g., by increasing binary value. Then consider the ac
sN21

z sN
z on the resulting ordered basis$u0& ^ u0&,u0& ^ u1&, . . . ,udN,n& ^ udN,n&%. This action gen-

erates a representation ofsN21
z sN

z by a dN,n3dN,n diagonal matrix. As in theC(3,1) case con-
sidered earlier, this matrix is actually a tensor product of an ‘‘su(dN,n)-like’’ sz

^ sz on C(N,n)
^ C(N,n). It is simple to determine the form of these two~different! sz’s. For the codewords
belonging to the leftC(N,n) factor, write down a11 (21) for each 0~1! in the Nth position.
These numbers are the diagonal entries of the left ‘‘su(dN,n)-like’’ sz factor. Similarly, for the
codewords belonging to the rightC(N,n) factor, write down a11 (21) for each 0~1! in the
(N11)th position. These numbers are the diagonal entries of the right ‘‘su(dN,n)-like’’ sz factor.
Since each such ‘‘su(dN,n)-like’’ sz puts relative phases between the basis states ofC(N,n), the
action of sN21

z sN
z is that of a generalized CPHASE between the two code subspaces. T

sufficient together with su(dN,n) on each block to perform universal quantum computation.56

X. CONCLUSIONS

The standard quantum information-theoretic approach to qubits and operations on
emphasizes qubits asvectors in a Hilbert space and operations astransformationsof these
vectors.7 This is the point of view of the first-quantized formulation of quantum mechanics
alternative, mathematically equivalent, point of view is the Fock space, second-quantized f
lation of quantum mechanics, which emphasizes the particlelike nature of quantum states
up/down states are replaced by qubit presence/absence, while rotations are replaced by o
that count or change particle occupation numbers. The mapping of qubits to parafermion
cussed in this article is a mapping between these first- and second-quantized formulati
proved to be a useful tool in studying the connection between qubits, bosons, and fermio
analyzing the algebraic structure of qubit Hamiltonians, and in studying related quantum co
tational universality questions. In particular, it allowed us to classify subalgebras of ferm
boson, and qubit operators and decide their power for quantum computational universality.
results are relevant for physical implementation of quantum computers: a physicalN-qubit system
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comes equipped with a given Hamiltonian, which generates a subalgebra of su(2N). It is important
to know whether this Hamiltonian is by itself universal or needs to be supplemented with
tional operations, or whether one needs to encode physical qubits into logical qubits in or
attain universality. Our classification settles this question for many subalgebras of physical
est.

Another potential advantage of the parafermionic approach, as a second-quantized for
for qubits, lies in its ability to naturally deal with a ‘‘qubit-field,’’ i.e., situations where the qu
number is not a conserved quantity. This is certainly a concern for optical and various solid
quantum computer implementations. We leave the study of a qubit field theory as an open a
future explorations.

ACKNOWLEDGMENTS

This material is based on research sponsored by the Defense Advanced Research
Agency under the QuIST program and managed by the Air Force Research Laboratory~AFOSR!,
under agreement F49620-01-1-0468. The U.S. Government is authorized to reproduce and
ute reprints for Governmental purposes notwithstanding any copyright notation thereon. The
and conclusions contained herein are those of the authors and should not be interpreted a
sarily representing the official policies or endorsements, either expressed or implied, of th
Force Research Laboratory or the U.S. Government. D.A.L. further gratefully acknowledg
nancial support from PREA, NSERC, PRO, and the Connaught Fund. We thank Dr. M. S. By
useful discussions.

1H. S. Green, Phys. Rev.90, 270 ~1953!.
2O. W. Greenberg, Phys. Rev. Lett.13, 598 ~1964!.
3A. Peres,Quantum Theory: Concepts and Methods~Kluwer, Dordrecht, 1998!.
4N. March, W. H. Young, and S. Sampanthar,The Many-Body Problem in Quantum Mechanics~Dover, New York, 1995!.
5P. Jordan and E. Wigner, Z. Phys.47, 631 ~1928!.
6S. Bravyi and A. Kitaev, quant-ph/0003137.
7M. A. Nielsen and I. L. Chuang,Quantum Computation and Quantum Information~Cambridge University Press, Cam
bridge, UK, 2000!.

8The mapping from qubits to parafermions was first pointed out in L.-A. Wu and D. A. Lidar, quant-ph/0103039v1
definition of a parafermion is inspired by Green1 and Greenberg,9 but differs somewhat. Like these authors we start fro
$ai ,ai

†%51 and@ai ,aj
†#50 for iÞ j . Green was the first to introduce these commutation relations, but did not nam

corresponding particles. Greenberg did not name them either, but called ‘‘parafermion’’ a particle defineda†

5S j 51
N aj

† . The commutation relation we use to define parafermions is therefore different from Greenberg’s. Ne
less we prefer to call a particle satisfying these relations a ‘‘parafermion,’’ since they emphasize the two-dime
Hilbert–Fock space of an individual particle~like fermions!. The opposite choice of commutation relations,@ai ,ai

†#

51 and$ai ,aj
†%50 for iÞ j , can be used to define ‘‘parabosons:’’ particles with unlimited occupation number per m

but without a natural tensor product structure. Finally, we note that the particle we are referring to as a parafer
also known sometimes as a ‘‘hardcore boson,’’ e.g., K. Bernardetet al., Phys. Rev. B65, 104519~2002!.

9O. W. Greenberg and K. I. Macrae, Nucl. Phys. B219, 358 ~1983!.
10G. D. Mahan,Many-Particle Physics, 3rd ed.~Kluwer Academic, New York, 2000!.
11D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 ~1998!.
12J. I. Cirac and P. Zoller, Phys. Rev. Lett.74, 4091~1995!.
13P. Chen, C. Piermarocchi, and L. J. Sham, Phys. Rev. Lett.87, 067401~2001!.
14S. Lloyd, Science273, 1073~1996!.
15E. Knill, R. Laflamme, and G. J. Milburn, Nature~London! 409, 46 ~2001!.
16T. C. Ralph, W. J. Munro, and G. J. Milburn, quant-ph/0110115.
17L.-A. Wu and D. A. Lidar, Phys. Rev. A65, 042318~2002!.
18D. A. Lidar and L.-A. Wu, Phys. Rev. Lett.88, 017905~2002!.
19B. Wybourne,Classical Groups for Physicists~Wiley, New York, 1974!.
20S. Lloyd, Phys. Rev. Lett.75, 346 ~1995!. See N. Weaver, J. Math. Phys.41, 240 ~2000! for a formal proof.
21D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, Phys. Rev. Lett.85, 1758~2000!.
22D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Nature~London! 408, 339 ~2000!.
23D. Bacon, J. Kempe, D. P. DiVincenzo, D. A. Lidar, and K. B. Whaley, inProceedings of the 1st Internationa

Conference on Experimental Implementations of Quantum Computation, Sydney, Australia, edited by R. Clark~Rinton,
Princeton, NJ, 2001!, p. 257.

24D. A. Lidar, D. Bacon, J. Kempe, and K. B. Whaley, Phys. Rev. A63, 022307~2001!.
25A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, and H. Wein

Phys. Rev. A52, 3457~1995!.
                                                                                                                



.

hys.

4525J. Math. Phys., Vol. 43, No. 9, September 2002 Qubits as parafermions

                    
26D. P. DiVincenzo, Phys. Rev. A51, 1015~1995!.
27B. Judd and J. Elliott,Topics in Atomic and Nuclear Theory~University of Canterbury, Christchurch, N.Z., 1970!.
28C. D. Batista and G. Ortiz, Phys. Rev. Lett.86, 1082~2001!.
29B. M. Terhal and D. P. DiVincenzo, Phys. Rev. A65, 032325~2002!.
30E. Knill, ‘‘Fermionic Linear Optics and Matchgates,’’ quant-ph/0108033.
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Secrecy capacity in the four-state protocol
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The process of key distillation from the quantum transmission in quantum key
distribution is reviewed, with the objective of calculating the secrecy capacity of
the four-state protocol in the presence of an individual attack in which the eaves-
dropping probe is entangled with the signal states, and states of the probe become
correlated with the states measured by the legitimate receiver. Emphasis is placed
on information leakage to the eavesdropping probe. The calculation generalizes
earlier work to include an arbitrary angle between the signal bases.
@DOI: 10.1063/1.1495072#

I. INTRODUCTION

One effective implementation of the four-state quantum-key-distribution protocol~BB84!1

uses single photons linearly polarized along one of the four basis vectors of two sets of co
orthogonal bases oriented at an angle ofp/4 relative to each other. The polarization measurem
operators in one basis do not commute with those in the other, since they correspond to
thogonal polarization states. At a fundamental level, the potential security of the key rests
fact that nonorthogonal photon polarization measurement operators do not commute, a
gives rise to quantum uncertainty in the measurement of those states by an eavesdropper
transmission of each photon, the transmitter and receiver each independently and randoml
one of the two bases. The transmitter sends a single photon with polarization chosen at r
along one of the orthogonal basis vectors in the chosen basis. The receiver makes a pola
measurement in its chosen basis. Next, the transmitter and the receiver openly compa
choices of basis, without disclosing the polarization states transmitted or received. Events in
the transmitter and the receiver choose different bases are ignored, while the remaining
ideally have completely correlated polarization states. The two orthogonal states in each of t
bases encode binary numbers 0 and 1, and thus a sequence of photons transmitted in t
establishes a random binary sequence shared by both the transmitter and the receiver and c
as the secret key, following error correction and privacy amplification. The key can then be
to encode a message, using the Vernam cipher, and the message can then be securely tra
over an open communication line and then decoded, using the shared secret key at the
end.

Privacy amplification is, of course necessary, because of the possibility of an eavesdro
attack.2–4 It is important to note at this point that the present article is not a comprehensive re
but primarily discusses the work of the author and that of Slutskyet al.5–11 In the individual
attack,5–9,12the most general possible eavesdropping probe consistent with unitarity is assum
which each individual transmitted bit is made to interact with the probe so that the carrier an
probe are left in an entangled state, and measurement by the probe, made subsequent to m
ment by the legitimate receiver, yields information about the carrier state.

To proceed first with a review of key distillation, letm bits of raw data be received by th
legitimate receiver in the four-state quantum-key-distribution protocol, and supposen bits of sifted
data remain following removal of (m2n) inconclusive bits, and suppose there areeT bits of

a!Electronic mail: hbrandt@arl.army.mil
45260022-2488/2002/43(9)/4526/5/$19.00
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erroneous data, leaving (n2eT) bits of corrected data. Corrected data includes data remai
after discarding inconclusive results and also erroneous data as determined by block che
and bisective search. Privacy amplification is the procedure for obtaining a more secur
shorter, key. This is achieved by removing from the (n2eT) bits of corrected data a numbers of
bits ~the privacy amplification compression level! that is the sum of the possible contributions
information leakage. There then remain (n2eT2s) bits, and this is the size of the final key. Th
privacy amplification compression levels is given by10,11

s5t~n,eT!1q1n1g, ~1!

whereq is the estimated information leakage during error correction,n is the estimated leakag
from any multi-photon bits,g is an extra safety margin, andt(n,eT) is the defense function. The
defense function, in general, depends on the sizen of the sifted data, and on the numbereT of
errors, and is chosen appropriately by the legitimate users, in order to effectively defend aga
eavesdropping attack. The defense functiont(n,eT) is the estimated upper bound on possib
information leakage through eavesdropping on the quantum channel. Quantitatively it is
mined by the maximum total Renyi information gainI T

R by the eavesdropping probe.~It is proved
in Ref. 5 that the optimum individual attack maximizes both the Renyi and Shannon inform
gain by the eavesdropping probe.! The maximum Renyi information gain by the eavesdroppe
based on minimizing the overlap of the measured probe states correlated with the disturbed
states of the legitimate receiver, conditional on fixed induced error rate. The compressions
must be chosen so that the probability is small thatI T

R.t(n,eT). An attack is successful if it
introduceseT errors on then bits of sifted data, and yields a Renyi informationI T

R.t(n,eT) on the
(n2eT) bits of corrected data. The probability of a successful attack must be negligible. I
presence of noise and channel losses, it is not sufficient, for the security of a quantum
distribution system, to detect eavesdropping. It must be insured that the shared data is suffi
secure.

It is well to recall the privacy amplification theorem.4 First, however, recall the definition o
the Renyi informationI R( l ) on anl bit string X having probability distributionPX(X), namely,

I R~ l !5 l 1 log2^PX~X!&5 l 1 log2 (
X

PX
2~X!, ~2!

where the bracket denotes the expectation value.@PX
2(X) is often referred to as the collisio

probability.# The privacy amplification theorem states that if the eavesdropper’s Renyi inform
gain I R( l ) on anl bit data string is less than some quantityr , namely,

I R~ l !<r , ~3!

then the eavesdropper’s Shannon informationI H( l 2s) on the reduced (l 2s) bit string, averaged
over the choice of privacy amplification hash function, is bounded above, namely,

^I H~ l 2s!&<
1

ln 2
2r 2s, ~4!

where here the brackets denote the average. By choosing the compression levels sufficiently
large, the exponent on the right-hand side of Eq.~4! becomes sufficiently negative that the avera
Shannon information can be made arbitrarily small. Thus, given an upper bound on the
dropper’s Renyi information gain, the corrected data can be subjected to the reduction pro
of privacy amplification to yield an even shorter string on which the eavesdropper’s Sha
information is arbitrarily low. The secrecy of the final key is recovered~but reduced in size! if an
upper bound can be determined on the maximum Renyi information gain by the eavesdrop
corrected data.
                                                                                                                



bits

s
e

e rate

akage
,

te.
umed
receiver
id-
ielding
. The
ation
nsmis-
ping

ping

(

4528 J. Math. Phys., Vol. 43, No. 9, September 2002 Howard E. Brandt

                    
The average secrecy capacityCs8 of a quantum cryptosystem is the number of secret
produced per bit from the transmitter, and is given by

Cs85 Lim
m→`

K n2eT2s

m L . ~5!

Here the limit of a very long transmission is understood in whichm, the number of bits of raw
data, is very large.

II. CALCULATING SECRECY CAPACITY

The numerator of Eq.~5!, (n2eT2s), is the size of the final key, wheren is the number of
bits of sifted data with the inconclusive bits removed,eT is the number of bits of erroneou
discarded data due to error correction, ands is the privacy amplification compression level. Th
average secrecy capacity, Eq.~5!, converges in distribution to10

Cs85 K n

mL S 12 K eT

n L 2
tF

n U
eT /n 5^eT /n&

2 Lim
m→`

K q

nL D . ~6!

The factor̂ n/m & in Eq. ~6! is the conclusive rate. Since the inconclusive rateR? is 1
2 for the BB84

protocol,5,10,11and remains unchanged in the presence of the individual attack, the conclusiv
must also be1

2, namely,

K n

mL 5~12R?!5S 12
1

2D5
1

2
. ~7!

Also in Eq. ~6!, ^eT /n & is the average intrinsic error rate, and^q/n & is the average information
leakage during error correction. Since the present work focuses on the information le
through eavesdropping@represented by the third term in Eq.~6!#, possible additional terms
(2^n/n&) and (2^g/n&), are dropped in Eq.~6!. @See Eq.~1!#. In the third term of Eq.~6!,
(tF /n) ueT /n 5^eT /n& is the average defense frontiertF evaluated at the average intrinsic error ra
In the individual attack, each signal is attacked individually and in the same way, and it is ass
that the signal states, errors, and measurement outcomes of the probe and the legitimate
are all independently and identically distributed.10 Multiple eavesdropping strategies are cons
ered with different induced error rates, but the attack is restricted to the set of strategies y
the greatest attainable expected Renyi information gain for a given expected error rate
defense frontiertF is, for all possible eavesdropping strategies, the upper bound on the inform
leakage through eavesdropping, based on an optimal eavesdropper in the limit of a long tra
sion. The defense frontiertF is chosen to minimize the chance of any successful eavesdrop
strategy, and, for the individual attack, it is given by10

tF~n,eT!5max
e<eT

H nS 12
e

nD I opt
R S e

n
1j D1jFn2S 12

e

nD G1/2J , ~8!

where I opt
R (E) is the maximum Renyi information gain on corrected data by the eavesdrop

probe, and conditional on fixed error rateE5(e/n); andj is defined by

j5
1

~2n!1/2erf21~12p!, ~9!

where erf21 denotes the inverse standard error function. The standard error function erfz) is
defined by
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erf~z!5
2

Ap
E

0

z

e2y2
dy. ~10!

Also in Eq.~9!, p is the probability for successful eavesdropping@ I R
T.t(n,eT)# on (n2eT) bits of

corrected data and producingeT errors; andp can be made arbitrarily small. The defense fronti
Eq. ~8!, was determined by Slutsky, Rao, Sun, Tancevski, and Fainman10 by clever use of the
central limit theorem of probability theory, and is constructed to minimize the chance of succ
eavesdropping. Using Eqs.~6!–~8!, the asymptotic secrecy capacity, in the limit of long transm
sion with m→`, n→`, andj→0, and forq50, becomes10

Cs8uq50,n→`,j→05 1
2 ~12E2 max

E8<E

~12E8!I opt
R ~E8!!, ~11!

whereE is the error rate, and (maxx8<xf(x8)) denotes the maximum value of a functionf (x8) for
x8<x. Also in Eq.~11!, I opt

R (E8) is the maximum Renyi information gain on corrected data by
eavesdropping probe, conditional on fixed error rateE8. The asymptotic secrecy capacity, E
~11!, is based on the definition of average secrecy capacity, Eq.~5!, as given in the literature,10

however it is important to emphasize that the condition of maximum Renyi information ga
the eavesdropper may be overly conservative.~See Sec. VI of Ref. 4.!

For the four-state protocol, the maximum Renyi information gainI opt
R on corrected data by the

probe, conditional on fixed error rateE, for the individual attack is given by5–9

I opt
R 5 log2~22Q2!. ~12!

HereQ is the minimum overlap of the probe states correlated with the signal states, and,
arbitrary angle between the signal bases, it is given by9

Q5H 11~122 csc2 2a!E

12E
, a<p/8,

11~122 sec22a!E

12E
, a>p/8,

~13!

with

a5
1

2 S p

2
2 û D , ~14!

where û is the angle between the nonorthogonal linear polarization states of the signa
optimization given by Eqs.~12!–~14! is over the set of probe parameters which define the gen
eavesdropping probe used in the individual attack.5–9,12 For a5p/8, corresponding to the stan
dard BB84 protocol withû5p/4, Eqs.~12! and~13! agree with Ref. 5. Substituting Eqs.~12! and
~13! in Eq. ~11!, one obtains for the asymptotic secrecy capacity:

Cs8uq50,n→`,j→055
1

2 S 12E2 max
E8<E

~12E8!log2F22S 11~122 csc2 2a!E8

12E8 D 2G D , a<
p

8

1

2 S 12E2 max
E8<E

~12E8!log2F22S 11~122 sec2 2a!E8

12E8 D 2G D , a>
p

8

.

~15!
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For a5p/8, Eq.~15! also agrees with Ref. 10. It is evident from Eqs.~12!–~15! that as a function
of a, for fixed error rate, the overlap of correlated probe states is greatest, the Renyi inform
gain by the probe is least, and the secrecy capacity is greatest fora5p/8, which corresponds to
the standard BB84 protocol1 with û5p/4.

III. SUMMARY

Following a review of the process of key distillation from the quantum transmission in q
tum key distribution, the asymptotic secrecy capacity, Eq.~15!, of the four-state protocol has bee
calculated for the case of an individual attack in which the eavesdropping probe is entangle
the signal states, and states of the probe become correlated with the states measured
legitimate receiver. The calculation generalizes earlier work to include an arbitrary angle be
the signal bases.
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A method is proposed to hide messages in arbitrary quantum data files. The mes-
sages may act as ‘‘watermarks,’’ to secure the authenticity and/or integrity of the
data. With the help of classical secret keys, they can be made unreadable by other
parties and to reveal whether thay have been tampered with. The basic idea is to
encode the data using a quantum error-correcting code and hide the message as
~correctible! errors, deliberately inserted, which can be read out from the error
syndrome. Also discussed briefly is a ‘‘reverse encoding,’’ which would involve
putting the actual data in the error syndrome, and letting the encoded qubit itself
carry the message. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1495073#

I. INTRODUCTION

Steganography is a branch of cryptography concerned with embedding ‘‘invisible’’ mes
in data files. The message, which is revealed by some appropriate decoding operation, may
information regarding the owner of the file or its date of creation, for instance. Such techn
have become of particular interest in recent years because of the proliferation of means av
to copy, legally or illegally, all sorts of data, such as images, audio, or video files.1

Although quantum information processing is still, in practice, a long way from the day w
sizable files of ‘‘quantum data’’ will be moved from one location to another, it may already b
interest to begin to explore the possibilities inherent in a quantum sort of steganography, a
ways in which this would differ from its classical counterpart. This article is intended to serv
a ~small! first step in this direction.

It should be clear from the outset, of course, that copyright protection in its most literal s
could never be an issue for quantum information, since, by the celebrated no-cloning theo
is inherently impossible to copy. Nonetheless, there are other useful purposes that could be
by a hidden message embedded in a quantum data file. It could function as a ‘‘watermark
instance, allowing one to identify the file’s owner or creator, either as protection against th
reassurance to the party receiving the data that they come, in fact, from the right source. A
will be shown below, the watermark could be embedded in such a way as to provide the rec
party with information that the file has been corrupted, either by errors upon transmission
tampering by a third party. Another potential use might be in a distributed quantum comp
environment, where packets of information are processed at some location and then sent
processors: a message could be embedded in the data to tell the receiving processor w
supposed to do with it. Again, corruption of the data could be detected at the receiving e
these means.

A large component of all of the above is, clearly, the question of data authentication, i
broadest sense of making sure both that the data have come from the right source and th
have not been tampered with or otherwise corrupted. A number of ideas have recently be
forth regarding this general issue. Buhrmanet al.2 have studied ways to associate a quant
fingerprint with a classical data string; a variation on this idea, due to Gottesman and Ch3

would allow one to attach a quantum signature to a classical message, which would se

a!Electronic mail: jgeabana@uark.edu
45310022-2488/2002/43(9)/4531/6/$19.00 © 2002 American Institute of Physics
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certify its authenticity. The general question of authenticating a single classical bit using a
qubit has been studied by Curty and Santos.4 Moving on to the problem of authenticatingquantum
data, Curtyet al.5 have shown that it is impossible to authenticate a qubit with a one-bit~or
one-qubit! key ~in all authentication schemes, the sender and receiver must share a key in ad
in order to read out the authentication information!. Nonetheless, if longer keys are allowe
schemes to authenticate arbitrary quantum data exist; for instance, in Ref. 6, Leung has pr
a scheme to authenticaten qubits given an authenticated two-way classical channel, 2r bits of
classical key, and an extra 2r qubits of quantum communication. In this scheme, forging succe
with probability no better than 22r and the fidelity of an accepted message with respect to
original is of the order of 12O(22r). Finally, Barnumet al.7 have also recently reported on
powerful general method of quantum data authentication, whose details should soon be
widely available.

In Leung’s scheme, the 2r extra qubits are simply appended to the message, as a so
authentication tag. The tag is uniquely related to the message, so that a would-be forger
simply remove it and attach it to a false message to make it pass for an authentic one. None
the tag could still be simply removed, leaving the adversary in possession of the data, w
indication as to its provenance. In this respect this scheme differs from a classical stegano
situation, where~part of! the idea is that the identification tag could not be deleted with
damaging the data.

In what follows I wish to present a simple authentication scheme which accomplishes th
purpose, and has other potential advantages~such as the fact that it is based on a conventio
quantum error correction code, and so, under some circumstances, it may function as suc
helping to protect the integrity of the data!. Perhaps it should be acknowledged from the out
that, even though the starting point draws some inspiration from classical steganography, th
result may not look much like it. The main guiding principle has been to arrange for the dat
the message~or ‘‘tag’’ ! to be inextricably linked, in such a way that somebody who does not h
the key could not alter the one without altering the other.

The approach is heuristic throughout; no attempt has been made to provide formal pro
security or optimize the resources needed. Nonetheless, it is interesting that this simple-m
approach leads in a natural way to a construction which ends up having some similarities
much more formal approach of Ref. 7. Hence, it is hoped that the present work may provide
insight into some of the issues involved in quantum data authentication.

II. EMBEDDING A MESSAGE IN A QUANTUM DATA FILE ENCODED WITH AN ERROR-
CORRECTING CODE

A. Basic concept

One conventional approach in clasical steganography is to write the hidden message
data file by replacing some of the original data’s bits, according to a certain pattern or key.
an approach, however, could not work, in general, with quantum data, which are often in co
superpositions for which the actual state of an individual qubit may simply not be defined, d
entanglement with other qubits. Arbitrarily setting the state of a random qubit to a specific
would not only destroy that qubit’s entanglement, it would also collapse the state of any
qubits entangled with it.

This means that one needs to add qubits to the original file, perhaps interspersing them
the original data qubits, and write the message in them. Then one may observe that a sys
method to add qubits to a quantum data file, in such a way that one could, at the same
introduce ‘‘errors’’ in it harmlessly, is provided by QECCs.8 Hence the simplest approach
‘‘quantum steganography’’ might be as follows: encode the original data file using a su
QECC; hide the message as ‘‘errors’’ in the encoded qubits; and read it out in theerror syndrome.

As an example of this approach, consider the following simple three-qubit code, which
tects one logical qubit against a single bit flip error~of any of the three physical qubits!:
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u0L&5u000&,
~1!

u1L&5u111&.

The stateuc& of any of the original data qubits could be encoded asuc&5au0L&1bu1L&. Then, for
each such logical qubit, a message of up to four classical bits could be encoded ‘‘in paralle
to speak, on the same three physical qubits, by acting onuc& with either the identity or one of the
three Pauli operatorss ix ~with i 51, 2, 3!. This message could be read off, for instance, by
error-diagnosing circuit shown on the left half of Fig. 1, which employs two ancillary qubita
andb. If the state of these ancillary qubits is read out after the four CNOT operations have
carried out, it is easily checked that each of the four possible operations onuc& maps to a different
joint state ofa andb, as follows:

1→u00&ab ,

s1x→u10&ab ,
~2!

s2x→u11&ab ,

s3x→u01&ab .

Thus, all four possible bit values of the two-bit classical mesage can be read and iden
without actually changing the logical qubit’s state in any way.

Of course, one problem that arises immediately is that an adversary who knew th
underlying code is the three-qubit, repetition code~1!, and wanted to erase the message, co
easily do so simply by applying error correction to the encoded qubit! There is, however, a s
way to prevent this from happening, namely, to change the code randomly, from one logica
to the next, according to a secret key~shared by the sender and the receiver!. For practical
purposes, it would be sufficient, for example, to stay with a three-qubit code but encod
message alternatively in bit-flip errors and phase errors. Protection against phase errors is p
by a code like

u0̄L&5H ^ 3u0L&5
1

23/2~ u0&1u1&)~ u0&1u1&)~ u0&1u1&),

~3!

u1̄L&5H ^ 3u1L&5
1

23/2~ u0&2u1&)~ u0&2u1&)~ u0&2u1&).

~Here,H denotes a Hadamard transform.! Now, a ‘‘0’’ in the classical key could mean that th
original qubit is to be encoded asuc&5au0L&1bu1L&, with u0L& and u1L& given by ~1!, and the

FIG. 1. A circuit to read out the error syndrome for the 3-qubit repetition code. The dashed box shows how the er
be corrected without actually having to measure the state of the ancilla qubits.
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message hidden in the error syndrome as any of the four operators identity1one of thes ix ;
whereas a ‘‘1’’ in the classical key would mean that the encoding for the original qubit use
basisu0̄L& andu1̄L& given by~3! above, and the error syndrome is encoded using thes iz operators.

If the eavesdropper does not realize that the message is now encoded as a phase erro
only cannot read it, but, moreover, he also cannot erase it properly. Suppose that bit-flip
correction is applied to a qubitau0̄L&1bu1̄L& originally encoded in the basis~3!. The result will
be a superposition of the basis states~1!; specifically, 1

4 of the time it will beau0L&1bu1L&, and
3
4 of the time it will beau1L&1bu0L&.9 Thus, attempts to erase~or, in general, alter! the message
result in changes to the data. Needless to say, the message~in the u0̄L&,u1̄L& basis! also is changed
as a result of this intervention, so if the file is eventually inspected by somebody who knows
the key and the message, he should be able to tell that it has been tampered with.

It is interesting to note that for such a user, who knows both the key and the messag
‘‘errors’’ deliberately introduced in the encoded qubits do not affect the ability of the cod
function as a QECC and protect the data against accidental~additional! errors of the type naturally
corrected by the code@e.g., bit errors for the code~1!, phase flips for the code~3!#. This can be
formally seen as follows: suppose the original~encoded! state isuc&, and we put an errors ia on
it ~wherei is the qubit index anda5x,y or z!. Then suppose another~unknown! errors j b occurs;
the resulting state is therefores j bs iauc&. Then, in order to diagnose properly the errors j b , all
we need to do is applys ia again to the state, followed by ordinary error correction, sin
s ias j bs iauc&56s j buc&. The minus sign only occurs ifi 5 j , aÞb, and, as an overall sign, it is
irrelevant. Therefore, any error that the code could initially diagnose can still be diagnose
rectly. This property alone may make this scheme attractive: if the data are going to be enco
protection against errors anyway, one might as well take advantage of this to hide a signa
the error syndrome, essentially at no extra cost.

If larger codes are used~to correct for more errors!, one can still use essentially the sam
strategy to protect the message, namely, encode the logical qubits in either the originalu0L&,u1L&,
or the conjugate,u0̄L&,u1̄L&, basis~connected by a Hadamard transform! according to the value o
a secret key. Atempts to do error correction on the encoded qubit by somebody who does no
the key will result in the state being projected onto the wrong basis half of the time.

From an authentication perspective, however, one may have to wonder about the r
possibility: could somebody who does not know the key change the data without changin
message? It turns out that this is, indeed, possible if the message is classical, as will be sh
the next subsection.

B. Inserting a quantum message

Consider again the example~1!, as illustrated in Fig. 1. Since the encoding and decoding
linear operations, a coherent superposition of errors acting on the encoded data qubituc& will, in
fact, yield a coherent superposition of the ancilla qubits; so the ‘‘message’’ does not have
classical information, it could be quantum information as well. In other words, the operatio

~g1ds1x1hs2x1es3x!~au0L&1bu1L&) ~4!

actually encodes three qubits worth of information in three physical qubits. The one-qubit
au0&1bu1& is in the ‘‘data’’ that one recovers after error correction, whereas the two-qubit st

gu00&1du10&1hu11&1eu01& ~5!

is the state of the ancilla qubits when the error syndrome is extracted as in Fig. 1. Note th
ancilla qubits will only be in a coherent superposition after error correction has been appl
qubits 1, 2, and 3~otherwise they are still entangled with them!, and only if this is done coherently
i.e., without measurements; this can always be achieved, as indicated, e.g., by the circuit
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dashed box in Fig. 1. Incidentally, since CNOT gates are their own inverses, the dashed box
1 also shows how the encoding~4! could be applied to the qubits 1, 2, 3, if one starts with t
qubitsa andb in the state~5!.

Now consider the possibility mentioned at the end of the previous subsection, that an
sary might attempt to change the data while leaving the message intact. For instance, supp
he attempts to flip an encoded qubit, by applying the operators1xs2xs3x to it. If the qubit is
encoded in the basis~1!, as in Eq.~4!, this will indeed change it toau1L&1bu0L&, while leaving
the error syndrome intact, since all thes ix commute with each other. On the other hand, if t
qubit is initially encoded in the conjugate basisu0̄L&,u1̄L& as uc&5(g1ds1z1hs2z1es3z)
3(au0̄L&1bu1̄L&), one finds

s1xs2xs3xuc&5~g2ds1z2hs2z2es3z!~au0̄L&2bu1̄L&). ~6!

So, in this basis, the data qubit is also changed~it acquires a ‘‘phase flip’’!, but now also the
syndrome is changed, providedg and at least one ofd, g or e are nonzero. That is, in order t
provide protection against this type of attack, the ‘‘message’’ encoded in the error syndrome
be a quantum superposition state: it must be quantum, not classical, information.

C. Reversing the ‘‘data’’ and ‘‘message’’ roles

The construction in the previous subsection suggests the possibility of reversing the ro
‘‘data’’ and ‘‘message:’’ with the scheme in Fig. 1, one could encode two qubits’ worth of ac
quantum data in the ‘‘error syndrome,’’ and a one-bit~or one-qubit! message in the ‘‘logical qubit’’
part of Eq.~4! ~that is, the part involvinga andb!. What one gains with this scheme is efficienc
in the sense of a greater data-to-message information ratio. This can be made even gre
going to larger codes: for instance, any@n,1# stabilizer code~encoding 1 logical qubit inton
physical qubits! hasn21 generators, and measuring them determines the error syndrome;
error syndrome can be extracted inn21 qubits. With this ‘‘reverse encoding’’ approach, therefo
one could ‘‘pack’’n21 qubits worth of data in the error syndrome of every encoded logical q
and one qubit worth of ‘‘message’’ in the actual logical qubit.

As before, security would be provided by a secret key specifying on what basis each bl
to be encoded. Since each block carries only one qubit of message, the key only has to be
as the message itself; the ratio of length of key to length of data file~in bits, or qubits! is 1/(n
21), which could be made very small by using sufficiently large codes. If the total numb
packages sent ist, the total number of possible different keys is 2t, which suggests that the
probability of successful tampering with or reading of the message is of the order of 1/2t. Clearly,
though, this suggestion does not amount to a formal proof of security, and the scheme i
mentioned to give an indication of possibilities—in particular, for greater efficiency—beyond
‘‘straightforward’’ scheme of the previous two subsections.

III. DISCUSSION AND CONCLUSIONS

The ideas proposed here provide some potentially useful ways to hide messages in q
data for a variety of applications. In all cases, the data and the message are combined so
change in one is likely to result in a change in the other. The method of Sec. II A is most u
when one is already considering using a QECC to protect the data against accidental erro
the message to be sent~a sort of ‘‘watermark’’! is previously known to all the authorized partie
then the message can ‘‘ride along’’ in the error syndrome without compromising the efficacy
code to correct errors. Note that, for data authentication purposes, the ‘‘watermark’’ shou
quantum data, in order to provide protection against certain types of attacks.

As emphasized in the Introduction, the presentation here has been heuristic; I have
tempted to study the security features of the proposed schemes, for any specific applica
detail, nor to improve their efficiency beyond the suggestion, in Sec. II C, that smaller ratios o
to data file length might be possible. Nonetheless, as also mentioned in the Introduction
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interesting that the result exhibits a number of similarities to the more formal methodolog
data authentication studied by Barnumet al.;7 in particular, the use of QECCs~which under some
circumstances could be used to provide additional protection for the data, as also remarked
7! and the idea of hiding some secret ‘‘key’’ information in the error syndrome. It appears a
careful study of the similarities and differences between the two schemes could be an enligh
and worthwhile task, but at present this must remain beyond the scope of the present man

In closing, to return, for a moment, to what constituted the original motivation for the pre
work namely, the idea of exploring the feasiblity of a sort of ‘‘quantum steganography,’’ t
results do indicate how it may be possible, in principle, to combine a given set of quantum
and a quantum message in an inextricable way. It could be argued, however, that the fina
does not look much like classical steganography, since we have ended up encrypting b
message and the data, whereas in classical steganography, instead, the ‘‘data’’ are, for th
part, openly visible~although subtly altered!, and only the message is hidden. Yet, as I ha
mentioned above, it is not obvious to me how one could only ‘‘slightly’’ alter quantum informa
in order to accomplish this goal. In fact, it is one of the most interesting results proved in R
that~unlike for classical data, where authentication and encryption are two different tasks! in order
to authenticate quantum data one must, as it turns out, encrypt them ‘‘almost perfectly.’’
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Rüdiger Schacka)

Department of Mathematics, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, United Kingdom

~Received 20 November 2001; accepted for publication 16 May 2002!

We present an elementary proof of thequantum de Finetti representation theorem,
a quantum analog of de Finetti’s classical theorem on exchangeable probability
assignments. This contrasts with the original proof of Hudson and Moody@Z.
Wahrschein. verw. Geb.33, 343 ~1976!#, which relies on advanced mathematics
and does not share the same potential for generalization. The classical de Finetti
theorem provides an operational definition of the concept of an unknown probabil-
ity in Bayesian probability theory, where probabilities are taken to be degrees of
belief instead of objective states of nature. The quantum de Finetti theorem, in a
closely analogous fashion, deals with exchangeable density-operator assignments
and provides an operational definition of the concept of an ‘‘unknown quantum
state’’ in quantum-state tomography. This result is especially important for
information-based interpretations of quantum mechanics, where quantum states,
like probabilities, are taken to be states of knowledge rather than states of nature.
We further demonstrate that the theorem fails for real Hilbert spaces and discuss the
significance of this point. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1494475#

I. INTRODUCTION

What is a quantum state? Since the earliest days of quantum theory, the predominant
has been that the quantum state is a representation of the observer’s knowledge of a sys1 In
and of itself, the quantum state has no objective reality.2 The authors hold this information-base
view quite firmly.3,4 Despite its association with the founders of quantum theory, however, ho
this view does not require a concomitant belief that there is nothing left to learn in qua
foundations. It is quite the opposite in fact: Only by pursuing a promising but incomplete pro
can one hope to learn something of lasting value. Challenges to the information-based view
regularly, and dealing with these challenges builds an understanding and a problem-solving
that reading and rereading the founders can never engender.5 With each challenge successful
resolved, one walks away with a deeper sense of the physical content of quantum theory
growing confidence for tackling questions of its interpretation and applicability. Question
fundamental and distinct as ‘‘Will a nonlinear extension of quantum mechanics be need
quantize gravity?’’6,7 and ‘‘Which physical resources actually make quantum computa
efficient?’’ 8,9 start to feel tractable~and even connected! from this perspective.

In this article, we tackle an understanding-building exercise very much in the spirit of

a!Author to whom correspondence should be addressed. Electronic mail: r.schack@rhul.ac.uk
45370022-2488/2002/43(9)/4537/23/$19.00 © 2002 American Institute of Physics
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remarks. It is motivated by an apparent conundrum arising from quantum information theory
issue is that of theunknownquantum state.

There is hardly a paper in the field of quantum information that does not make use of th
of an ‘‘unknown quantum state.’’ Unknown quantum states are teleported,10,11 protected with
quantum error correcting codes,12,13and used to check for quantum eavesdropping.14,15The list of
uses, already long, grows longer each day. Yet what can the term ‘‘unknown quantum
mean? In an information-based interpretation of quantum mechanics, the term is an oxymo
quantum states, by their very definition, are states of knowledge and not states of nature,16 then the
state isknownby someone—at the very least, by the describer himself.

This message is the main point of our article. Faced with a procedure that uses the ide
unknown quantum state in its description, a consistent information-based interpretation of
tum mechanics offers only two alternatives~see also Fig. 1!:

~i! The owner of the unknown state—a further decision-making agent or observer—mu
explicitly identified. In this case, the unknown state is merely a stand-in for the unkn
state of knowledgeof an essential player who went unrecognized in the original form
tion.

~ii ! If there is clearly no further decision-making agent or observer on the scene, then
must be found to reexpress the procedure with the term ‘‘unknown state’’ banished fro
formulation. In this case, the end-product of the effort is a single quantum state use
describing the entire procedure—namely, the state that captures the describer’s s
knowledge.

Of course, those inclined to an objectivist interpretation of quantum mechanics17—that is, an
interpretation where quantum states are more like states of nature than states of knowl
might be tempted to believe that the scarcity of existing analyses of this kind is a hint that qu
states do indeed have some sort of objective status. Why would such currency be made
unknown-state concept were it not absolutely necessary? As a rejoinder, we advise caution
objectivist: Tempting though it is to grant objective status to all the mathematical objects
physical theory, there is much to be gained by a careful delineation of the subjective and ob
parts. A case in point is provided by E. T. Jaynes’18–20 insistence that entropy is a subjectiv
quantity, a measure of ignorance about a physical system. One of the many fruits of this p
view can be found in the definitive solution21 to the long-standing Maxwell demon problem,22

where it was realized that the information collected by a demon and used by it to extract
from heat has a thermodynamic cost at least as large as the work extracted.23

FIG. 1. What can the term ‘‘unknown state’’ mean if quantum states are taken exclusively to be states of knowledg
than states of nature? When we say that a system has an unknown state, must we always imagine a further obser
state of knowledge is symbolized by someuc&, and it is the identity of the symbol that we are ignorant of?
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The example analyzed in detail in this article provides another case. Along the way, it b
to light a new and distinct point about why quantum mechanics makes use of complex H
spaces rather than real or quaternionic ones.24–27 Furthermore, the method we use to prove o
main theorem employs a novel measurement technique that might be of use in the labora

We analyze in depth a particular use of unknown states, which comes from the measu
technique known asquantum-state tomography.28–30The usual description of tomography is thi
A device of some sort, say a nonlinear optical medium driven by a laser, repeatedly prepare
instances of a quantum system, say many temporally distinct modes of the electromagneti
in a fixed quantum stater, pure or mixed. An experimentalist who wishes to characterize
operation of the device or to calibrate it for future use might be able to perform measureme
the systems it prepares even if he cannot get at the device itself. This can be useful
experimenter has some prior knowledge of the device’s operation that can be translated
probability distribution over states. Then learning about the state will also be learning abo
device. Most importantly, though, this description of tomography assumes that the preciser
is unknown. The goal of the experimenter is to perform enough measurements, and enoug
of measurements~on a large enough sample!, to estimate the identity ofr.

This is clearly an example where there is no further player on whom to pin the unknown
as a state of knowledge. Any attempt to find a player for the pin is entirely artificial: Where w
the player be placed? On the inside of the device the tomographer is trying to characterize?31 The
only available course for an information-based interpretation of quantum-state tomography
second strategy listed above—to banish completely the idea of the unknown state from th
mulation of tomography~see Fig. 2!.

To do this, we take a cue from the field of Bayesian probability theory,32–34prompted by the
realization that Bayesian probability is to probability theory in general what an information-b
interpretation is to quantum mechanics.3,35 In Bayesian theory, probabilities are not objecti
states of nature, but rather are taken explicitly to be measures of credible belief, reflecting
state of knowledge. The overarching Bayesian theme is to identify the conditions under w
set of decision-making agents can come to a common belief or probability assignment
random variable even though their initial beliefs differ.34 Following that theme is the key to
understanding tomography from the informational point of view.

The offending classical concept is an ‘‘unknown probability,’’ an oxymoron for the sa
reason as an unknown quantum state. The procedure analogous to quantum-state tomog
the estimation of an unknown probability from the results of repeated trials on ‘‘identically
pared systems,’’ all of which are said to be described by the same, but unknown probabilit
way to eliminate unknown probabilities from the discussion, introduced by Bruno de Finetti i
early 1930s,36,37is to focus on the equivalence of repeated trials, which means that the system
indistinguishable as far as probabilistic predictions are concerned and thus that a prob
assignment for multiple trials should be symmetric under permutation of the systems. Wi
classical representation theorem, de Finetti36 showed that a multi-trial probability assignment th
is permutation-symmetric for an arbitrarily large number of trials—de Finetti called such m

FIG. 2. To make sense of quantum tomography, must we go to the extreme of imagining a ‘‘man in the box’’ who
better description of the systems than we do? How contrived our usage would be if that were so!
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trial probabilitiesexchangeable—is equivalent to a probability for the ‘‘unknown probabilities
Thus the unsatisfactory concept of an unknown probability vanishes from the description in
of the fundamental idea of assigning an exchangeable probability distribution to multiple tr

This cue in hand, it is easy to see how to reword the description of quantum-state tomog
to meet our goals. What is relevant is simply a judgment on the part of the experimenter—
the essential subjective character of this ‘‘judgment’’—that there is no distinction betwee
systems the device is preparing. In operational terms, this is the judgment thatall the systems are
and will be the same as far as observational predictions are concerned. At first glance this
statement might seem to be contentless, but the important point is this: To make this stat
one need never use the notion of an unknown state—a completely operational description
enough. Putting it into technical terms, the statement is that if the experimenter judges a col
of N of the device’s outputs to have an overall quantum stater (N), he will also judge any
permutation of those outputs to have the same quantum stater (N). Moreover, he will do this no
matter how large the numberN is. This, complemented only by the consistency condition that
any N the stater (N) be derivable fromr (N11), makes for the complete story.

The words ‘‘quantum state’’ appear in this formulation, just as in the original formulatio
tomography, but there is no longer any mention ofunknownquantum states. The stater (N) is
known by the experimenter~if no one else!, for it represents his state of knowledge. Mo
importantly, the experimenter is in a position to make an unambiguous statement about the
ture of the whole sequence of statesr (N): Each of the statesr (N) has a kind of permutation
invariance over its factors. The content of thequantum de Finetti representation theorem38,39—a
new proof of which is the main technical result of this article—is that a sequence of statesr (N) can
have these properties, which are said to make it anexchangeablesequence, if and only if each
term in it can also be written in the form

r (N)5E P~r! r ^ N dr, ~1.1!

where

~1.2!

andP(r) is a fixed probability distribution over the density operators.
The interpretive import of this theorem is paramount. It alone gives a mandate to the

unknown state in the usual description of tomography. It says that the experimenter can aas if
his state of knowledger (N) comes about because he knows there is a ‘‘man in the box,’’ hid
from view, repeatedly preparing the same stater. He does not know which such state, and the b
he can say about the unknown state is captured in the probability distributionP(r).

The quantum de Finetti theorem furthermore makes a connection to the overarching the
Bayesianism stressed above. It guarantees for two independent observers—as long as the
rather minimal agreement in their initial beliefs—that the outcomes of a sufficiently informa
set of measurements will force a convergence in their state assignments for the rem
systems.40 This ‘‘minimal’’ agreement is characterized by a judgment on the part of both pa
that the sequence of systems is exchangeable, as described above, and a promise that the
are not absolutely inflexible in their opinions. Quantitatively, the latter means that thoughP(r)
might be arbitrarily close to zero, it can never vanish.

This coming to agreement works because an exchangeable density operator sequence
updated to reflect information gathered from measurements by a quantum version of Baye
for updating probabilities. Specifically, if measurements onK systems yield resultsDK , then the
state of additional systems is constructed as in Eq.~1.1!, but using an updated probability o
density operators given by
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P~ruDK!5
P~DKur!P~r!

P~DK!
. ~1.3!

HereP(DKur) is the probability to obtain the measurement resultsDK , given the stater ^ K for the
K measured systems, and

P~DK!5E P~DKur! P~r! dr ~1.4!

is the unconditional probability for the measurement results. Equation~1.3! is a kind ofquantum
Bayes rule.40 For a sufficiently informative set of measurements, asK becomes large, the update
probability P(ruDK) becomes highly peaked on a particular staterDK

dictated by the measure
ment results, regardless of the prior probabilityP(r), as long asP(r) is nonzero in a neighbor
hood of rDK

. Suppose the two observers have different initial beliefs, encapsulated in diff
priors Pi(r), i 51,2. The measurement results force them to a common state of knowled
which any numberN of additional systems are assigned the product staterDK

^ N , i.e.,

E Pi~ruDK!r ^ N dr→rDK

^ N , ~1.5!

independent ofi , for K sufficiently large.
This shifts the perspective on the purpose of quantum-state tomography: It is not

uncovering some ‘‘unknown state of nature,’’ but rather about the various observers’ com
agreement over future probabilistic predictions.41 In this connection, it is interesting to note th
the quantum de Finetti theorem and the conclusions just drawn from it work only within
framework of complex vector-space quantum mechanics. For quantum mechanics based
and quaternionic Hilbert spaces,24,25 the connection between exchangeable density operators
unknown quantum states does not hold.

The plan of the remainder of the article is as follows. In Sec. II we discuss the classic
Finetti representation theorem36,42 in the context of Bayesian probability theory. It was our fam
iarity with the classical theorem43,44 that motivated our reconsideration of quantum-state tom
raphy. In Sec. III we introduce the information-based formulation of tomography in term
exchangeable multi-system density operators, accompanied by a critical discussion of the
tivist formulation of tomography, and we state the quantum de Finetti representation the
Section IV presents an elementary proof of the quantum de Finetti theorem. There, als
introduce a novel measurement technique for tomography based upon generalized quantu
surements. Finally, in Sec. V we return to the issue of number fields in quantum mechanic
mention possible extensions of the main theorem.

II. THE CLASSICAL DE FINETTI THEOREM

As a preliminary to the quantum problem, we turn our attention to classical probability th
In doing so we follow a maxim of the late E. T. Jaynes:45

We think it unlikely that the role of probability in quantum theory will be understood until i
generally understood in classical theory ... . Indeed, our@seventy-five-year-old# bemusement ove
the notion of state reduction in@quantum theory# need not surprise us when we note that tod
in all applications of probability theory, basically the same controversy rages over whethe
probabilities represent real situations, or only incomplete human knowledge.

As Jaynes makes clear, the tension between the objectivist and informational points of v
not new with quantum mechanics. It arises already in classical probability theory in the fo
the war between ‘‘objective’’ and ‘‘subjective’’ interpretations.46 According to the subjective o
Bayesian interpretation, probabilities are measures of credible belief, reflecting an agent’s
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tial states of knowledge. On the other hand, the objective interpretations—in all their varied f
from frequency interpretations to propensity interpretations—attempt to view probabilities a
states of affairs or ‘‘states of nature.’’ Following our discussion in Sec. I, it will come as
surprise to the reader that the authors wholeheartedly adopt the Bayesian approach. For
ultimate reason is simply our own experience with this question, part of which is an apprec
that objective interpretations inevitably run into insurmountable difficulties. We will not dw
upon these difficulties here; instead, the reader can find a sampling of criticisms in Ref
32–34, and 47.

We will note briefly, however, that the game of roulette provides an illuminating exampl
the European version of the game, the possible outcomes are the numbers 0,1,...,36. For
without any privileged information, all 37 outcomes have the same probabilityp5 1

37. But suppose
that shortly after the ball is launched by the croupier, another player obtains information abo
ball’s position and velocity relative to the wheel. Using the information obtained, this other p
can make more accurate predictions than the first.48 His probability is peaked around some grou
of numbers. The probabilities are thus different for two players with different states of knowle

Whose probability is the true probability? From the Bayesian viewpoint, this questio
meaningless: There is no such thing as a true probability. All probability assignments are s
tive assignments based specifically upon one’s prior information.

For sufficiently precise data—including precise initial data on positions and velocities
probably also including other details such as surface properties of the wheel—Newtonian m
ics assures us that the outcome can be predicted with certainty. This is an important poin
determinism of classical physics provides a strong reason for adopting the subjectivist vi
probabilities.49 If the conditions of a trial are exactly specified, the outcomes are predictable
certainty, and all probabilities are 0 or 1. In a deterministic theory, all probabilities strictly gr
than 0 and less than 1 arise as a consequence of incomplete information and depend up
assigner’s state of knowledge.

Of course, we should keep in mind that our ultimate goal is to consider the status of qu
states and, by way of them, quantum probabilities. One can ask, ‘‘Does this not change the
of these considerations?’’ Since quantum mechanics is avowedlynot a theory of one’s ignorance
of a set of hidden variables,50,51 how can the probabilities be subjective? In Sec. III we argue
despite the intrinsic indeterminism of quantum mechanics, the essence of the point above
over to the quantum setting intact. Furthermore, there are specifically quantum-motivated
ments for a Bayesian interpretation of quantum probabilities.

For the present, though, let us consider in some detail the general problem of a re
experiment—spinning a roulette wheelN times is an example. As discussed briefly in Sec. I, t
allows us to make a conceptual connection to quantum-state tomography. Here the individua
are described by discrete random variablesxnP$1,2,...,k%, n51,...,N; that is to say, there areN
random variables, each of which can assumek discrete values. In an objectivist theory, such
experiment has a standard formulation in which the probability in the multi-trial hypothesis s
is given by an independent, identically distributed~i.i.d.! distribution

p~x1 ,x2 ,...,xN!5px1
px2

¯pxN
5p1

n1p2
n2
¯pk

nk. ~2.1!

The numberpj ( j 51,...,k) describes the objective, ‘‘true’’ probability that the result of a sing
experiment will bej ( j 51,...,k). The variablenj , on the other hand, is the number of tim
outcome j is listed in the outcome vector (x1 ,x2 ,...,xN). This simple description—for the
objectivist—only describes the situation from a kind of ‘‘God’s eye’’ point of view. To the exp
mentalist, the ‘‘true’’ probabilitiesp1 ,...,pk will very often beunknownat the outset. Thus, his
burden is to estimate the unknown probabilities by a statistical analysis of the experim
outcomes.

In the Bayesian approach, it does not make sense to talk about estimating a true prob
Instead, a Bayesian assigns a prior probability distributionp(x1 ,x2 ,...,xN) on the multi-trial
hypothesis space, which is generally not an i.i.d., and then uses Bayes’s theorem to upd
                                                                                                                



p is
rly
nt, the
unts to
-
hesis
eorem

t there
se, the
quiva-

rial and
metry

of
an be
nt.

tion

ex:

vari-
ics and

hat an

4543J. Math. Phys., Vol. 43, No. 9, September 2002 The quantum de Finetti representation

                    
distribution in the light of measurement results. A common criticism from the objectivist cam
that the choice of distributionp(x1 ,x2 ,...,xN) with which to start the process seems ove
arbitrary to them. On what can it be grounded, they would ask? From the Bayesian viewpoi
subjectivity of the prior is a strength rather than a weakness, because assigning a prior amo
laying bare the necessarily subjective assumptions behindanyprobabilistic argument, be it Baye
sian or objectivist. Choosing a prior among all possible distributions on the multi-trial hypot
space is, however, a daunting task. As we will now see, the de Finetti representation th
makes this task tractable.

It is very often the case that one or more features of a problem stand out so clearly tha
is no question about how to incorporate them into an initial assignment. In the present ca
key feature is contained in the assumption that an arbitrary number of repeated trials are e
lent. This means that one has no reason to believe there will be a difference between one t
the next. In this case, the prior distribution is judged to have the sort of permutation sym
discussed briefly in Sec. I, which de Finetti37 called exchangeability. The rigorous definition of
exchangeability proceeds in two stages.

A probability distributionp(x1 ,x2 ,...,xN) is said to besymmetric~or finitely exchangeable! if
it is invariant under permutations of its arguments, i.e., if

p~xp(1) ,xp(2) ,...,xp(N)!5p~x1 ,x2 ,...,xN! ~2.2!

for any permutationp of the set$1,...,N%. The distributionp(x1 ,x2 ,...,xN) is calledexchange-
able ~or infinitely exchangeable! if it is symmetric and if for any integerM.0, there is a sym-
metric distributionpN1M(x1 ,x2 ,...,xN1M) such that

p~x1 ,x2 ,...,xN!5 (
xN11 ,...,xN1M

pN1M~x1 ,...,xN ,xN11 ,...,xN1M !. ~2.3!

This last statement means the distributionp can be extended to a symmetric distribution
arbitrarily many random variables. Expressed informally, an exchangeable distribution c
thought of as arising from an infinite sequence of random variables whose order is irreleva

We now come to the main statement of this section: If a probability distribu
p(x1 ,x2 ,...,xN) is exchangeable, then it can be written uniquely in the form

p~x1 ,x2 ,...,xN!5E
Sk

P~p!px1
px2

¯pxN
dp5E

Sk

P~p!p1
n1p2

n2
¯pk

nk dp, ~2.4!

wherep5(p1 ,p2 ,...,pk), and the integral is taken over the probability simplex

Sk5H p:pj>0 for all j and (
j 51

k

pj51J . ~2.5!

Furthermore, the functionP(p)>0 is required to be a probability density function on the simpl

E
Sk

P~p!dp51. ~2.6!

Equation~2.4! comprises the classical de Finetti representation theorem for discrete random
ables. For completeness and because it deserves to be more widely familiar in the phys
mathematical physics communities, we give a simple proof~due to Heath and Sudderth42! of the
representation theorem for the binary random-variable case in the Appendix.

Let us reiterate the importance of this result for the present considerations. It says t
agent, making solely the judgment of exchangeability for a sequence of random variablesxj , can
proceedas if his state of knowledge had instead come about through ignorance of anunknown, but
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objectively existent set of probabilitiesp. His precise ignorance ofp is captured by the ‘‘prob-
ability on probabilities’’P(p). This is in direct analogy to what we desire of a solution to
problem of the unknown quantum state in quantum-state tomography.

As a final note before finally addressing the quantum problem in Sec. III, we point ou
both conditions in the definition of exchangeability are crucial for the proof of the de Fi
theorem. In particular, there are probability distributionsp(x1 ,x2 ,...,xN) that are symmetric, bu
not exchangeable. A simple example is the distributionp(x1 ,x2) of two binary random variables
x1 ,x2P$0,1%,

p~0,0!5p~1,1!50, ~2.7!

p~0,1!5p~1,0!5 1
2. ~2.8!

One can easily check thatp(x1 ,x2) cannot be written as the marginal of a symmetric distribut
of three variables, as in Eq.~2.3!. Therefore it can have no representation along the lines of
~2.4!. ~For an extended discussion of this, see Ref. 52.! Indeed, Eqs.~2.7! and~2.8! characterize a
perfect ‘‘anticorrelation’’ of the two variables, in contrast to the positive correlation implied
distributions of de Finetti form. The content of this point is that both conditions in the defin
of exchangeability~symmetry under interchange and infinite extendibility! are required to ensure
in colloquial terms, ‘‘that the future will appear much as the past,’’53 rather than, say, the opposit
of the past.

III. THE QUANTUM DE FINETTI REPRESENTATION

Let us now return to the problem of quantum-state tomography described in Sec.
consider the general situation, where there may be no further agent~or ‘‘man in the box’’! whose
~unknown! state of knowledge we are trying to determine.

In the objectivist formulation of the problem, a device repeatedly prepares copies of a s
in the same quantum stater. This is generally a mixed-state density operator on a Hilbert sp
Hd of d dimensions; we denote the space of all such density operators byDd . The joint quantum
state of theN systems prepared by the device is then given by

r ^ N5r ^ r ^¯r, ~3.1!

theN-fold tensor product ofr with itself. This, of course, is a very restricted example of a den
operator on the tensor-product Hilbert spaceH d

^ N[Hd^¯^ Hd . The experimenter who per
forms quantum-state tomography tries to determiner as precisely as possible;r is interpreted as
the ‘‘true’’ state of each of the systems.

We have already articulated our dissatisfaction with this way of stating the problem, bu
give here a further sense of why the interpretation above is untenable. In this discussion it is
to consider separately the cases of mixed and pure statesr. The arguments against regardin
mixed states as objective properties of a quantum system are essentially the same as thos
regarding probabilities as objective. In analogy to the roulette example given in the pre
section, we can say that, whenever an observer assigns a mixed state to a physical system,
think of another observer who assigns a different state based on privileged information.

The quantum argument becomes yet more compelling if the apparently nonlocal nat
quantum states is taken into consideration. Consider two parties,A and B, who are far apart in
space, say several light years apart. Each party possesses a spin-1

2 particle. Initially the joint state
of the two particles is the maximally entangled pure state (u0&u0&1u1&u1&)/&. Consequently,A
assigns the totally mixed state (u0&^0u1u1&^1u)/2 to her own particle. NowB makes a measure
ment on his particle, finds the result 0, and assigns toA’s particle the pure stateu0&. Is this now
the ‘‘true,’’ objective state ofA’s particle? At what precise time does the objective state ofA’s
particle change from totally mixed to pure? If the answer is ‘‘simultaneously withB’s measure-
ment,’’ then what frame of reference should be used to determine simultaneity? These qu
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and potential paradoxes are avoided if states are interpreted as states of knowledge. In
ample,A and B have different states of knowledge and therefore assign different states.
detailed analysis of this example, see Ref. 54; for an experimental investigation see Ref. 5

If one admits that mixed states cannot be objective properties, because another ob
possessing privileged information, can know which pure state underlies the mixed state,
becomes very tempting to regard the pure states as giving the ‘‘true’’ state of a system. Pro
ties that come from pure states would then be regarded as objective, and the probabilities f
states within an ensemble decomposition of a mixed state would be regarded as subject
pressing our ignorance of which pure state is the ‘‘true’’ state of the system. An immediate a
our view, irremediable problem with this idea is that a mixed state has infinitely many ense
decompositions into pure states,19,56,57 so the distinction between subjective and objective
comes hopelessly blurred.

This problem can be made concrete by the example of a spin-1
2 particle. Any pure state of the

particle can be written in terms of the Pauli matrices,

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D , ~3.2!

as

un&^nu5 1
2 ~ I 1n"s!5 1

2 ~ I 1n1s11n2s21n3s3!, ~3.3!

where the unit vectorn5n1e11n2e21n3e3 labels the pure state, andI denotes the unit operato
An arbitrary stater, mixed or pure, of the particle can be expressed as

r5 1
2 ~ I 1S"s!, ~3.4!

where 0<uSu<1. This representation of the states of a spin-1
2 particle is called theBloch-sphere

representation. If uSu,1, there is an infinite number of ways in whichS can be written in the form
S5( j pjnj , unj u51, with the numberspj comprising a probability distribution, and hence a
infinite number of ensemble decompositions ofr:

r5(
j

pj

1

2
~ I 1nj•s!5(

j
pj unj&^nj u. ~3.5!

Suppose for specificity that the particle’s state is a mixed state withS5 1
2 e3 . Writing S

5 3
4 e31 1

4 (2e3) gives the eigendecomposition,

r5 3
4 ue3&^e3u1 1

4 u2e3&^2e3u, ~3.6!

where we are to regard the probabilities3
4 and 1

4 as subjective expressions of ignorance ab

which eigenstate is the ‘‘true’’ state of the particle. WritingS5 1
2 n11 1

2 n2 , where n65 1
2 e3

6A3/4e1 , gives another ensemble decomposition,

r5 1
2 un1&^n1u1 1

2 un2&^n2u, ~3.7!

where we are now to regard the two probabilities of1
2 as expressing ignorance of whether t

‘‘true’’ state is un1& or un2&.
The problem becomes acute when we ask for the probability that a measurement ofz

component of spin yields spin up; this probability is given by^e3urue3&5 1
2 (11 1

2 ^e3us3ue3&)
5 3

4. The eigendecomposition gets this probability by the route
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~3.8!

Here the ‘‘objective’’ quantum probabilities, calculated from the eigenstates, report that the
ticle definitely has spin up or definitely has spin down; the overall probability of3

4 comes from
mixing these objective probabilities with the subjective probabilities for the eigenstates
decomposition~3.7! gets the same overall probability by a different route,

~3.9!

Now the quantum probabilities tell us that the ‘‘objective’’ probability for the particle to have s
up is 3

4. This simple example illustrates the folly of trying to have two kinds of probabilities
quantum mechanics. The lesson is that if a density operator is even partially a reflection o
state of knowledge, the multiplicity of ensemble decomposition means that a pure state mu
be a state of knowledge.

These problems do not arise in an information-based interpretation, according to whi
quantum states, pure or mixed, are states of knowledge. In analogy to the classical ca
quantum de Finetti representation provides an operational definition for the idea of an unk
quantum state in this case.

Let us therefore turn to the information-based formulation of the quantum-state tomog
problem. Before the tomographic measurements, the Bayesian experimenter assigns a prio
tum state to the joint system composed of theN systems, reflecting his prior state of knowledg
Just as in the classical case, this is a daunting task unless the assumption of exchangea
justified.

The definition of the quantum version of exchangeability is closely analogous to the cla
definition. Again, the definition proceeds in two stages. First, a joint stater (N) of N systems is said
to besymmetric~or finitely exchangeable! if it is invariant under any permutation of the system
To see what this means formally, first write outr (N) with respect to any orthonormal tenso
product basis onH d

^ N , sayu i 1&u i 2&¯u i N&, wherei kP$1,2,...,d% for all k. The joint state takes the
form

r (N)5 (
i 1 ,...,i N ; j 1 ,...,j N

Ri 1 ,...,i N ; j 1 ,...,j N

(N) u i 1&¯u i N&^ j 1u¯^ j Nu, ~3.10!

whereRi 1 ,...,i N ; j 1 ,...,j N

(N) is the density matrix in this representation. What we demand is that for

permutationp of the set$1,...,N%,

r (N)5 (
i 1 ,...,i N ; j 1 ,...,j N

Ri 1 ,...,i N ; j 1 ,...,j N

(N) u i p21(1)&¯u i p21(N)&^ j p21(1)u¯^ j p21(N)u

5 (
i 1 ,...,i N ; j 1 ,...,j N

Ri p(1) ,...,i p(N) ; j p(1) ,...,j p(N)

(N) u i 1&¯u i N&^ j 1u¯^ j Nu, ~3.11!

which is equivalent to

Ri p(1) ,...,i p(N) ; j p(1) ,...,j p(N)

(N) 5Ri 1 ,...,i N ; j 1 ,...,j N

(N) . ~3.12!

The stater (N) is said to beexchangeable~or infinitely exchangeable! if it is symmetric and if,
for anyM.0, there is a symmetric stater (N1M ) of N1M systems such that the marginal dens
operator forN systems isr (N), i.e.,
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r (N)5trM r (N1M ), ~3.13!

where the trace is taken over the additionalM systems. In explicit basis-dependent notation, t
requirement is

r (N)5 (
i 1 ,...,i N ; j 1 ,...,j N

S (
i N11 ,...,i N1M

Ri 1 ,...,i N ,i N11 ,...,i N1M ; j 1 ,...,j N ,i N11 ,...,i N1M

(N1M ) D
3u i 1&¯u i N&^ j 1u¯^ j Nu. ~3.14!

In analogy to the classical case, an exchangeable density operator can be thought of inform
the description of a subsystem of an infinite sequence of systems whose order is irrelevan

The precise statement of the quantum de Finetti representation theorem38,58 is that any ex-
changeable state ofN systems can be written uniquely in the form

r (N)5E
Dd

P~r! r ^ N dr. ~3.15!

HereP(r)>0 is normalized by

E
Dd

P~r! dr51, ~3.16!

with dr being a suitable measure on density operator spaceDd @e.g., for a spin-12 particle, one
could choose the standard flat measuredr5S2dS dV in the parametrization~3.4!#. The upshot of
the theorem, as already advertised, is that it makes it possible to think of an exchan
quantum-state assignmentas if it were a probabilistic mixture characterized by a probabil
densityP(r) for the product statesr ^ N.

Just as in the classical case, both components of the definition of exchangeability are
for arriving at the representation theorem of Eq.~3.15!. The reason now, however, is much mo
interesting than it was previously. In the classical case, extendibility served to exclude symm
but anticorrelated probability distributions. Here extendibility has the additional role of exclu
the possibility of Bell inequality violations for measurements on the separate systems. T
because the assumption of symmetry alone for anN-party quantum system does not exclude t
possibility of quantum entanglement, yet all states that can be written as a mixture of pr
states—Eq.~3.15! being an example—have no entanglement.59

A very simple example of this is the Greenberger–Horne–Zeilinger state of three s1
2

particles,60

uGHZ&5
1

&
~ u0&u0&u0&1u1&u1&u1&), ~3.17!

which is symmetric, but is not extendible to a symmetric state on four systems. This fo
because the only states of four particles that marginalize to a three-particle pure state, l
GHZ state, are product states of the formuGHZ&^GHZu ^ r, wherer is the state of the fourth
particle; such states clearly cannot be symmetric. These considerations show that in order
proposed theorem to be valid, it must be the case that asM increases in Eq.~3.13!, the possibilities
for entanglement in the separate systems compensatingly decrease.61

The exclusion of entangled states from the set of exchangeable states is essential if we
substitute exchangeable state assignments for the offending notion of an unknown quantum
For if an exchangeable density operator could be entangled, it would be impossible even
about the separate systems as having states of their own, unknown or otherwise. We
however, that this exclusion does not mean that the information-based view of quantum st
states of knowledge is incapable of dealing with entangled states, since the systems in
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Finetti representation could each be made up of parts that are entangled. In this case the d
representation integral~3.15! would include entangled density operators from the space of sin
system, but many-part, density operators, and the unknown quantum state could be ent
What is excluded by exchangeability is entanglement among the systems that are deeme
exchangeable.

IV. PROOF OF THE QUANTUM DE FINETTI THEOREM

To prove the quantum version of the de Finetti theorem, we rely on the classical theor
much as possible. We start from an exchangeable density operatorr (N) defined onN copies of a
system. We bring the classical theorem to our aid by imagining a sequence of identical qu
measurements on the separate systems and considering the outcome probabilities the
produce. Becauser (N) is assumed exchangeable, such identical measurements give rise
exchangeable probability distribution for the outcomes. The trick is to recover enough inform
from the exchangeable statistics of these measurements to characterize the exchangeable
operators.

With this in mind, the proof is expedited by making use of the theory of generalized qua
measurements or positive operator-valued measures~POVMs!.62,63We give a brief introduction to
that theory. The common textbook notion of a measurement—that is, a von Neu
measurement—is that any laboratory procedure counting as an observation can be identifi
a Hermitian operatorO on the Hilbert spaceHd of the system. Depending upon the presentati
the measurement outcomes are identified either with the eigenvaluesm i or with a complete set of
normalized eigenvectorsu i & for O. When the quantum state isr, the probabilities for the various
outcomes are computed from the eigenprojectorsP i5u i &^ i u via the standard Born rule,

pi5tr~rP i !5^ i uru i &. ~4.1!

This rule gives a consistent probability assignment because the eigenprojectorsP i are positive-
semidefinite operators, which makes thepi non-negative, and because the projectors form
resolution of the identity operatorI ,

(
i 51

d

P i5I , ~4.2!

which guarantees that( i pi51.
POVMs generalize the textbook notion of measurement by distilling the essential prop

that make the Born rule work. The generalized notion of measurement is this:AnysetE5$Ea% of
positive-semidefinite operators onHd that forms a resolution of the identity, i.e., that satisfies

^cuEauc&>0 for all uc&PHd ~4.3!

and

(
a

Ea5I , ~4.4!

corresponds to at least one laboratory procedure counting as a measurement. The conditi~4.3!
for positive-semidefiniteness is equivalent to requiring thatEa be Hermitian with nonnegative
eigenvalues. The outcomes of the measurement are identified with the indicesa, and the prob-
abilities of those outcomes are computed according to the generalized Born rule,

pa5tr~rEa!. ~4.5!

The setE is called a POVM, and the operatorsEa are called POVM elements. Unlike vo
Neumann measurements, there is no limitation on the number of valuesa can take, the operator
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Ea need not be rank-1, and there is no requirement that theEa be mutually orthogonal. This
definition has important content because the older notion of measurement is simply too rest
There are laboratory procedures that clearly should be called ‘‘measurements,’’ but that can
expressed in terms of the von Neumann measurement process alone.

One might wonder whether the existence of POVMs contradicts everything taught
standard measurements in the traditional graduate textbooks64 and the well-known classics.65

Fortunately it does not. The reason is that any POVM can be represented formally as a st
measurement on an ancillary system that has interacted in the past with the system o
interest. Thus, in a certain sense, von Neumann measurements capture everything that can
about quantum measurements.63 A way to think about this is that by learning something about
ancillary system through a standard measurement, one in turn learns something about the
of real interest. Indirect though this might seem, it can be a very powerful technique, some
revealing information that could not have been revealed otherwise.66

For instance, by considering POVMs, one can consider measurements with an outcom
dinality that exceeds the dimensionality of the Hilbert space. What this means is that where
statistics of a von Neumann measurement can only reveal information about thed diagonal
elements of a density operatorr, through the probabilities tr(rP i), the statistics of a POVM
generally can reveal things about the off-diagonal elements, too. It is precisely this proper
we take advantage of in our proof of the quantum de Finetti theorem.

Our problem hinges on finding a special kind of POVM, one for which any set of outc
probabilities specifies a unique operator. This boils down to a problem in pure linear algebr
space of operators onHd is itself a linear vector space of dimensiond2. The quantity tr(A†B)
serves as an inner product on that space. If the POVM elementsEa span the space of operators—
there must be at leastd2 POVM elements in the set—the measurement probabilitiespa

5tr(rEa)—now thought of asprojectionsin the directionsEa—are sufficient to specify a uniqu
operatorr. Two distinct density operatorsr ands must give rise to different measurement stat
tics. Such measurements, which might be calledinformationally complete, have been studied fo
some time.67

For our proof we need a slightly refined notion—that of aminimal informationally complete
measurement. If an informationally complete POVM has more thand2 operatorsEa , these op-
erators form an overcomplete set. This means that given a set of outcome probabilitiespa , there
is generallyno operatorA that generates them according topa5tr(AEa). Our proof requires the
existence of such an operator, so we need a POVM that has preciselyd2 linearly independent
POVM elementsEa . Such a POVM has the minimal number of POVM elements to be infor
tionally complete. Given a set of outcome probabilitiespa , there is a unique operatorA such that
pa5tr(AEa), even though, as we discuss below,A is not guaranteed to be a density operator

Do minimal informationally complete POVMs exist? The answer is yes. We give he
simple way to produce one, though there are surely more elegant ways with greater sym
Start with a complete orthonormal basisuej& on Hd , and letG jk5uej&^eku. It is easy to check tha
the following d2 rank-1 projectorsPa form a linearly independent set.

~1! For a51,...,d, let

Pa[G j j , ~4.6!

where j , too, runs over the values 1,...,d.

~2! For a5d11,...,12d(d11), let

Pa[G jk
(1)5 1

2 ~ uej&1uek&)~^ej u1^eku!5 1
2 ~G j j 1Gkk1G jk1Gk j!, ~4.7!

where j ,k.
~3! Finally, for a5 1

2d(d11)11,...,d2, let
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Pa[G jk
(2)5 1

2 ~ uej&1 i uek&)~^ej u2 i ^eku!5 1
2 ~G j j 1Gkk2 iG jk1 iGk j!, ~4.8!

where againj ,k.
All that remains is to transform these~positive-semidefinite! linearly independent operator

Pa into a proper POVM. This can be done by considering the positive semidefinite operaG
defined by

G5 (
a51

d2

Pa . ~4.9!

It is straightforward to show that̂cuGuc&.0 for all uc&Þ0, thus establishing thatG is positive
definite~i.e., Hermitian with positive eigenvalues! and hence invertible. Applying the~invertible!
linear transformationX→G21/2XG21/2 to Eq.~4.9!, we find a valid decomposition of the identity

I 5 (
a51

d2

G21/2PaG21/2. ~4.10!

The operators

Ea5G21/2PaG21/2 ~4.11!

satisfy the conditions of a POVM, Eqs.~4.3! and ~4.4!, and, moreover, they retain the rank an
linear independence of the originalPa .

With this generalized measurement~or any other one like it!, we can return to the main line o
proof. Recall we assumed that we captured our state of knowledge by an exchangeable
operatorr (N). Consequently, repeated application of the~imagined! measurementE must give rise
to an exchangeable probability distribution over theN random variablesanP$1,2,...,d2%, n
51,...,N. We now analyze these probabilities.

Quantum mechanically, it is valid to think of theN repeated measurements ofE as a single
measurement on the Hilbert spaceH d

^ N[Hd^¯^ Hd . This measurement, which we deno
E ^ N, consists ofd2N POVM elements of the formEa1

^¯^ EaN
. The probability of any par-

ticular outcome sequence of lengthN, namelya[(a1 ,...,aN), is given by the standard quantum
rule,

p(N)~a!5tr~r (N)Ea1
^¯^ EaN

!. ~4.12!

Because the distributionp(N)(a) is exchangeable, we have by the classical de Finetti theorem@see
Eq. ~2.4!# that there exists a unique probability densityP(p) on S d2 such that

p(N)~a!5E
S d2

P~p!pa1
pa2

¯paN
dp, ~4.13!

where the integral runs over the probability simplex ford2 outcomes.
It should now begin to be apparent why we chose to imagine a measurementE consisting of

preciselyd2 linearly independent elements. This allows us to assert the existence of aunique
operatorAp on Hd corresponding to each pointp in the domain of the integral. The ultimate go
here is to turn Eqs.~4.12! and ~4.13! into a single operator equation.

With that in mind, let us defineAp as the unique operator satisfying the followingd2 linear
equations:

tr~ApEa!5pa , a51,...,d2. ~4.14!
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Inserting this definition into Eq.~4.13! and manipulating it according to the algebraic rules
tensor products—namely (A^ B)(C^ D)5AC^ BD and tr(A^ B)5(trA)(trB)—we see that

p(N)~a!5E
S d2

P~p!tr~ApEa1
!¯tr~ApEaN

!dp

5E
S d2

P~p!tr~ApEa1
^¯^ ApEaN

!dp5E
S d2

P~p!tr@Ap
^ N ~Ea1

^¯^ EaN
!# dp.

~4.15!

If we further use the linearity of the trace, we can write the same expression as

p(N)~a!5trF S ES d2

P~p!Ap
^ n dpDEa1

^¯^ EaNG . ~4.16!

The identity between Eqs.~4.12! and ~4.16! must hold for all sequencesa. It follows that

r (N)5E
S d2

P~p!Ap
^ N dp. ~4.17!

This is because the operatorsEa1
^¯^ EaN

form a complete basis for the vector space of ope

tors onH d
^ N .

Equation~4.17! already looks very much like our sought after goal, but we are not there q
yet. At this stage one has no right to assert that theAp are density operators, i.e., Hermitia
operators with non-negative eigenvalues that sum to one. Indeed they generally are no
integral ~4.13! ranges over some pointsp in S d2 that cannot be generated by applying the m
surementE to any quantum state. Hence some of theAp in the integral representation are oste
sibly nonphysical. An example might be helpful. Consider any four spin-1

2 pure statesuna& on H2

for which the vectorsna in the Bloch-sphere representation~3.3! are the vertices of a regula
tetrahedron. One can check that the elementsEa5 1

2una&^nau comprise a minimal informationally
complete POVM. For this POVM, because of the factor1

2 in front of each projector, it is always
the case thatpa5tr(rEa)< 1

2. Therefore, this measurement simply cannot generate a proba

distribution likep5( 3
4,

1
8,

1
16,

1
16) from a valid density operator. Nevertheless, such probability

tributions are in the domain of the integral in Eq.~4.13!, and the correspondingAp are not valid
density operators.

The solution to this conundrum is provided by the overall requirement thatr (N) be a valid
density operator. This requirement places a significantly more stringent constraint on the di
tion P(p) than was the case in the classical representation theorem. In particular, it must
case thatP(p) vanishes whenever the correspondingAp is not a proper density operator. Let u
move toward showing that.

We first need to delineate two properties of the operatorsAp . One is that they are Hermitian
and thus have real eigenvalues. The argument is simply

tr~EaAp
†!5tr@~ApEa!†#5@ tr~ApEa!#* 5tr~ApEa!, ~4.18!

where the last step follows from Eq.~4.14!. Because theEa are a complete set of linearl
independent operators, it follows thatAp

†5Ap . The second property tells us something furth
about the eigenvalues ofAp :

15(
a

pa5trS Ap(
a

EaD 5trAp . ~4.19!
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In other words the~real! eigenvalues ofAp must sum to unity. These two properties tell us tha
Ap is not a valid density operator, then it must have at least one negative eigenvalue.

We now show that these two facts go together to imply that if there are any nonphysicAp
with positive weightP(p) in Eq. ~4.17!, then one can find a measurement for whichr (N) produces
illegal ‘‘probabilities’’ for sufficiently largeN. For instance, take a particularAq in Eq. ~4.17! that
has at least one negative eigenvalue2l,0. Let uc& be a normalized eigenvector correspondi
to that eigenvalue and consider the binary-valued POVM consisting of the elementsP̃5uc&^cu
andP5I 2P̃. Since tr(AqP̃)52l,0, it is true by Eq.~4.19! that tr(AqP)511l.1. Consider
repeating this measurement over and over. In particular, let us tabulate the probability of g
outcomeP for every single trial to the exclusion of all other outcomes.

The gist of the contradiction is most easily seen byimagining that Eq. ~4.17! is really a
discrete sum:

r (N)5P~q!Aq
^ N1 (

pÞq
P~p!Ap

^ N . ~4.20!

The probability ofN occurrences of the outcomeP is thus

tr~r (N)P ^ N!5P~q!tr~Aq
^ NP ^ N!1 (

pÞq
P~p!tr~Ap

^ NP ^ N!

5P~q!@ tr~AqP!#N1 (
pÞq

P~p!@ tr~ApP!#N

5P~q!~11l!N1 (
pÞq

P~p!@ tr~ApP!#N. ~4.21!

There are no assurances in general that the rightmost term in Eq.~4.21! is positive, but ifN is an
even number, it must be. It follows that ifP(q)>0, for sufficiently largeeven N,

tr~r (N)P ^ N!.1, ~4.22!

contradicting the assumption that it should always be a probability.
All we need to do now is transcribe the argument leading to Eq.~4.22! to the general integra

case of Eq.~4.17!. Note that by Eq.~4.14!, the quantity tr(ApP) is a ~linear! continuous function
of the parameterp. Therefore, for anye.0, there exists ad.0 such thatutr(ApP)2tr(AqP)u
<e wheneverup2qu<d, i.e., wheneverp is contained within an open ballBd(q) centered atq.
Choosee,l, and defineB̄d to be the intersection ofBd(q) with the probability simplex. Forp
PB̄d , it follows that

tr~ApP!>11l2e.1. ~4.23!

If we consider anN that is even,@ tr(ApP)#N is nonnegative in all ofS d2, and we have that the
probability of the outcomeP ^ N satisfies

tr~r (N)P ^ N!5E
S d2

P~p!@ tr~ApP!#N dp5E
S d22B̄d

P~p!@ tr~ApP!#N dp1E
B̄d

P~p!@ tr~ApP!#N dp

>E
B̄d

P~p!@ tr~ApP!#N dp>~11l2e!NE
B̄d

P~p!dp.

~4.24!

Unless
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E
B̄d

P~p!dp50, ~4.25!

the lower bound~4.24! for the probability of the outcomeP ^ N becomes arbitrarily large asN
→`. Thus we conclude that the requirement thatr (N) be a proper density operator constrai
P(p) to vanish almost everywhere inB̄d and, consequently, to vanish almost everywhere thatAp
is not a physical state.

Using Eq.~4.14!, we can trivially transform the integral representation~4.17! to one directly
over the convex set of density operatorsDd and be left with the following statement. Under th
sole assumption that the density operatorr (N) is exchangeable, there exists a unique probabi
densityP(r) such that

r (N)5E
Dd

P~r!r ^ Ndr. ~4.26!

This concludes the proof of the quantum de Finetti representation theorem.

V. OUTLOOK

Since the analysis in the previous sections concernedonly the case of quantum-state tomo
raphy, we certainly have not written the last word on unknown quantum states in the
advocated in Sec. I. There are clearly other examples that need separate analyses. For inst
use of unknown states in quantum teleportation10—where asinglerealization of an unknown stat
is ‘‘teleported’’ with the aid of previously distributed quantum entanglement and a classica
channel—has not been touched upon. The quantum de Finetti theorem, therefore, is not the
the road for detailing implications of an information-based interpretation of quantum mech
What is important, we believe, is that taking the time to think carefully about the referen
various states in a problem can lead to insights into the structure of quantum mechanic
cannot be found by other means.

For instance, one might ask, ‘‘Was this theorem not inevitable?’’ After all, is it not alre
well established that quantum theory is, in some sense, just a noncommutative generaliza
probability theory? Should not all the main theorems in classical probability theory carry ov
the quantum case?68,69 One can be skeptical in this way, of course, but then one will miss a l
part of the point. There are any number of noncommutative generalizations to probability t
that one can concoct.70 The deeper issue is, what is it in the natural world that forces quan
theory to the particular noncommutative structure it actually has?71 It is not a foregone conclusion
for instance, that every theory has a de Finetti representation theorem within it.

Some insight in this regard can be gained by considering very simple modifications of
tum theory. To give a concrete example, let us take the case of real-Hilbert-space quantu
chanics. This theory is the same as ordinary quantum mechanics in all aspectsexceptthat the
Hilbert spaces are defined over the field of real numbers rather than the complex numbers.
out that this is a case where the quantum de Finetti theorem fails. Let us start to explain w
first describing how the particular proof technique used above loses validity in the new con

In order to specify uniquely a Hermitian operatorr (N) in going from Eq.~4.16! to ~4.17!, the
proof made central use of the fact that a complete basis$E1 ,...,Ed2% for the vector space o
operators onHd can be used to generate a complete basis for the operators onH d

^ N—one just
need take thed2N operators of the formEa1

^¯^ EaN
, 1<a j<d2. ~All we actually needed was

that a basis for the real vector space of Hermitian operators onHd can be used to generate a ba
for the real vector space of Hermitian operators onH d

^ N , but since the vector space of a
operators is the complexification of the real vector space of Hermitian operators, this seem
weaker requirement is, in fact, no different.! This technique works because the dimension of
space ofdN3dN matrices is (d2)N, theNth power of the dimension of the space ofd3d matrices.
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This technique does not carry over to real Hilbert spaces. In a real Hilbert space, stat
POVM elements are represented by real symmetric matrices. The dimension of the vector s
real symmetric matrices acting on ad-dimensional real Hilbert space is1

2 d(d11), this then being
the number of elements in a minimal informationally complete POVM. The task in going from
~4.16! to ~4.17! would be to specify the real matrixr (N). WhenN>2, however, the dimension o
the space ofdN3dN real symmetric matrices is strictly greater than theNth power of the dimen-
sion of the space ofd3d real symmetric matrices, i.e.,

1
2 dN~dN11!.~ 1

2 d~d11!!N. ~5.1!

Hence, specifying Eq.~4.16! for all outcome sequencesa5(a1 ,...,aN) is not sufficient to specify
a single operatorr (N). This line of reasoning indicates that the particularproof of the quantum de
Finetti theorem presented in Sec. IV fails for real Hilbert spaces, but it does not establish th
theorem itself fails. The main point of this discussion is that it draws attention to the cr
difference between real-Hilbert-space and complex-Hilbert-space quantum mechanics—a fa
phasized previously by Araki26 and Wootters.27

To show that the theorem fails, we need a counterexample. One such example is provi
the N-system state

r (N)5 1
2r1

^ N1 1
2r2

^ N , ~5.2!

where

r15 1
2 ~ I 1s2! and r25 1

2 ~ I 2s2!, ~5.3!

and wheres2 was defined in Eq.~3.2!. In complex-Hilbert-space quantum mechanics, this
clearly a valid density operator: It corresponds to an equally weighted mixture ofN spin-up
particles andN spin-down particles in they direction. The stater (N) is clearly exchangeable, an
the decomposition in Eq.~5.2! is unique according to the quantum de Finetti theorem.

Now considerr (N) as an operator in real-Hilbert-space quantum mechanics. Despite th
parent use of the imaginary numberi in thes2 operator,r (N) remains a valid quantum state. Th
is because, upon expanding the right-hand side of Eq.~5.2!, all the terms with an odd number o
s2 operators cancel away. Yet, even though it is an exchangeable density operator, it can
written in de Finetti form of Eq.~3.15! using only real symmetric operators. This follows becau
Eq. ~5.2!, the unique de Finetti form, containss2 , which is an antisymmetric operator and cann
be written in terms of symmetric operators. Hence the de Finetti representation theorem do
hold in real-Hilbert-space quantum mechanics.

Similar considerations show that in quaternionic quantum mechanics~a theory again precisely
the same as ordinary quantum mechanics except that it uses Hilbert spaces over the quat
field25!, the connection between exchangeable density operators and decompositions of
Finetti form ~3.15! breaks down. The failure mode is, however, even more disturbing than for
Hilbert spaces. In quaternionic quantum mechanics, most operators of the de Finetti form~3.15!
do not correspond to valid quaternionic quantum states, even though the statesr in the integral are
valid quaternionic states. The reason is that tensor products of quaternionic Hermitian op
are not necessarily Hermitian.

In classical probability theory, exchangeability characterizes those situations where th
data relevant for updating a probability distribution are frequency data, i.e., the numbersnj in Eq.
~2.4! which tell how often the resultj occurred. The quantum de Finetti representation shows
the same is true in quantum mechanics: Frequency data~with respect to a sufficiently robus
measurement! are sufficient for updating an exchangeable state to the point where nothing
can be learned from sequential measurements; that is, one obtains a convergence of the for~1.5!,
so that ultimately any further measurements on the individual systems are statistically ind
dent. That there is no quantum de Finetti theorem in real Hilbert space means that the
fundamental differences between real and complex Hilbert spaces with respect to learnin
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measurement results. The ultimate reason for this is that in ordinary, complex-Hilbert-space
tum mechanics, exchangeability implies separability, i.e., the absence of entanglement am
component systems. This follows directly from the quantum de Finetti theorem, because st
the form Eq.~3.15! are not entangled. This implication does not carry over to real Hilbert spa
By the same reasoning used to show that the de Finetti theorem itself fails, the state in Eq~5.2!
cannot be written asanymixture of real product states. Interpreted as a state in real Hilbert sp
the state in Eq.~5.2! is thus not separable, but rather has entanglement among the comp
systems.72 In a real Hilbert space, exchangeable states can be entangled, and local measu
cannot reveal that.

Beyond these conceptual points, we also believe that the technical methods exhibite
might be of interest in the practical arena. Recently there has been a large literature on
classes of measurements have various advantages for tomographic purposes.73,74 To our knowl-
edge, the present work is the only one to consider tomographic reconstruction based upon m
informationally complete POVMs. One can imagine several advantages to this approach v
fact that such POVMs with rank-one elements are automatically extreme points in the conv
of all measurements.75

Furthermore, the classical de Finetti theorem is only the tip of an iceberg with respe
general questions in statistics to do with exchangeability and various generalizations
concept.76 One should expect no less of quantum exchangeability studies. In particular her
are thinking of things like the question of representation theorems for finitely exchang
distributions.52,77 Just as our method for proving the quantum de Finetti theorem was able to
heavily on the classical theorem, so one might expect similar benefits from the classical res
the case of quantum finite exchangeability—although there will certainly be new aspects
quantum case due to the possibility of entanglement in finite exchangeable states. A pr
application of such representation theorems could be their potential to contribute to the solu
some outstanding problems in constructing security proofs for various quantum key distrib
schemes.78

In general, our effort in the present article forms part of a larger program to promo
consistent information-based interpretation of quantum mechanics and to delineate its
quences. We find it encouraging that the fruits of this effort might not be restricted solely
improved understanding of quantum mechanics, but might also possess the potential to co
to practical applications.
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APPENDIX: PROOF OF THE CLASSICAL DE FINETTI THEOREM

In this Appendix we reprise the admirably simple proof of the classical de Finetti repre
tation theorem given by Heath and Sudderth42 for the case of binary variables.

Suppose we have an exchangeable probability assignment forM binary random variables
x1 ,x2 ,...,xM , taking on the values 0 and 1. Letp(n,N), N<M , be the probability forn 1s inN
trials. Exchangeability guarantees that

p~n,N!5S N
n D p~x151,...,xn51,xn1150,...,xN50!. ~A1!

We can condition the probability on the right on the occurrence ofm 1’s in all M trials:
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p~n,N!5S N
n D (

m50

M

p~x151,...,xn51,xn1150,...,xN50um,M !p~m,M !. ~A2!

Given m 1’s in M trials, exchangeability guarantees that the (m
M) sequences are equally likely

Thus the situation is identical to drawing from an urn withm 1’s on M balls, and we have that

p~x151,...,xn51,xn1150,...,xN50um,M !

5
m

M

m21

M21
¯

m2~n21!

M2~n21!

M2m

M2n

M2m21

M2n21
¯

M2m2~N2n21!

M2~N21!
5

~m!n~M2m!N2n

~M !N
,

~A3!

where

~r !q[ )
j 50

q21

~r 2 j !5r ~r 21!¯~r 2q11!5
r !

~r 2q!!
. ~A4!

The result is that

p~n,N!5S N
n D (

m50

M
~m!n~M2m!N2n

~M !N
p~m,M !. ~A5!

What remains is to take the limitM→`, which we can do because of the extendibil
property of exchangeable probabilities. We can writep(n,N) as an integral,

p~n,N!5S N
n D E

0

1 ~zM!n~~12z!M !N2n

~M !N
PM~z! dz, ~A6!

where

PM~z!5 (
m50

M

p~zM,M !d~z2m/M ! ~A7!

is a distribution concentrated at theM -trial frequenciesm/M . In the limit M→`, PM(z) con-
verges to a continuous distributionP`(z), and the other terms in the integrand go tozn(1
2z)N2n, giving

p~n,N!5S N
n D E

0

1

zn~12z!N2nP`~z! dz. ~A8!

Thus, if p(n,N) is part of an infinite exchangeable sequence, it has a de Finetti representa
terms of a ‘‘probability on probabilities’’P`(z).

To demonstrate the uniqueness ofP`(z), recall that the binomial factor in Eq.~A8!,

S N
NyD zNy~12z!N(12y), ~A9!

becomes a multiple ofd(z2y) asN goes to infinity. The constant is determined by a beta funct
integral,

E
0

1

zn~12z!N2n dz5
n! ~N2n!!

~N11!!
, ~A10!
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thus implying that

~N11!S N
NyD zNy~12z!N(12y)→d~y2z! ~A11!

asN goes to infinity. The result is that asN goes to infinity,

p~yN,N!

1/N
→P`~y!. ~A12!

What this means is that, in accordance with the first part of the proof,P`(z) dz is uniquely
determined to be the probability that the frequency of 1’s will lie betweenz and z1dz in an
infinite number of trials.

We have demonstrated the classical de Finetti representation theorem for binary variab
p(n,N) is part of an infinite exchangeable sequence, then it has a unique de Finetti represe
in terms of a ‘‘probability on probabilities’’P`(z). The proof can readily be extended to nonb
nary variables.
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Compatibility of state assignments
N. David Mermina)

Laboratory of Atomic and Solid State Physics, Cornell University,
Ithaca, New York 14853-2501

~Received 16 January 2002; accepted for publication 16 May 2002!

Rudolf Peierls raised the question of when different density matrices can charac-
terize the knowledge available to different people about one and the same physical
system. I describe counterexamples to the condition he imposed on such state
assignments, and suggest what the correct condition ought to be. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1495897#

According to Rudolph Peierls1 the answer to the question of what the quantum mechan
formalism represents is ‘‘that the wavefunction or, more generally, the density matrix repre
our knowledgeof the system we are trying to describe.’’ Heisenberg took the same position
one can argue that Bohr did, too, though I am unaware of an explicit statement to this effect
writings. But only Peierls raised and offered an answer to the next question: ‘‘Whoseknowledge?’’

Peierls noted that density matrices describing a system ‘‘may differ, as the nature and a
of knowledge may differ. People may have observed the system by different methods, with
or less accuracy; they may have seen part of the results of another physicist. However, th
limitations to the extent to which their knowledge may differ... . This limitation can be compa
and conveniently expressed by the condition that the density matrices used by the two ob
must commute with each other.’’ To this he added a second requirement that ‘‘the two obs
should not contradict each other. This means the product of the two density matrices should
zero.’’ 2

So, according to Peierls, if Alice and Bob use density matricesra andrb to encapsulate wha
each of them knows about one and the same physical system, then their density matrice
satisfy

@ra ,rb#50 ~1!

and

rarbÞ0. ~2!

While requirement~2! seems fairly straightforward, given~1!, I worried about~1! for several
years. It had a nice feel to it, but I couldn’t see why it had to hold, except in very special c
There was a time when I went around asking people why the density matrices different p
might use to describe the same system had to commute. Nobody could tell me why or
seemed particularly interested in the question, until I put it to Christopher Fuchs. He said
think about it. After I kept pestering him by e-mail, he finally wrote that the reason I cou
understand the condition was that it wasn’t true,3 and he gave me a simple counterexample: B
knows the system is in one of two nonorthogonal states, but doesn’t know which; Alice does
which. For a while I kept inventing objections that Peierls might have raised to this count
ample, but in the end I was able to cast it in a form I feel fairly sure Peierls would h
acknowledged to be valid.

a!Electronic mail: ndm4@cornell.edu
45600022-2488/2002/43(9)/4560/7/$19.00 © 2002 American Institute of Physics
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Before examining my Peierls-proof version of Fuchs’s counterexample, first consider a
where Peierls’ criterion~1! does hold. Suppose Alice and Bob start off both knowing that
qubits are in the entangled but not maximally entangled pure state

uC&5cosuu0&u0&1sinuu1&u1&, 0,u,p/4. ~3!

Both will use the same reduced density matrix for the qubit on the left:

ra5rb5Trr uC&^Cu5cos2 u u0&^0u1sin2 uu1&^1u. ~4!

If Alice now measures the qubit on the right in the computational basis$u0&,u1&%, then, depending
on the outcome, she can update her knowledge of the qubit on the left to

ra85u0&^0u or ra85u1&^1u. ~5!

If she tells Bob nothing about the result of her measurement, or even whether she m
measurement at all, then his density matrix for the qubit on the left must remainrb . In either of
the cases~5! we have@ra8 ,rb#50. Peierls’ condition~1! holds.

But now suppose that before she measures the qubit on the right Alice applies to it a u
~Hadamard! transformation changing the state~3! of the two-qubit system into

uC&85cosuu0&
1

&
~ u0&1u1&)1sinuu1&

1

&
~ u0&2u1&)

5
1

&
~cosu u0&1sinuu1&)u0&1

1

&
~cosu u0&2sinuu1&)u1&. ~6!

This by itself leaves both their reduced density matricesrb and ra for the qubit on the left
unchanged. But if Alice now measures the qubit on the right in the computational basis, depe
on the outcome, she can update her knowledge of the qubit on the left to

ra85~cosuu0&6sinuu1&)~cosu^0u6sinu^1u!5rb6cosu sinu~ u0&^1u1u1&^0u!. ~7!

Either outcome violates Peierls’ condition~1!:

@rb ,ra8#56 1
4 sin 4u~ u0&^1u2u1&^0u!Þ0. ~8!

I believe Peierls would have accepted this as a valid counterexample because all of A
actions are applied only to the qubit on the right and Bob knows nothing about those action
their outcomes, or even whether there were any actions at all. So unless one takes a ver
view of ‘‘quantum nonlocality’’~as Peierls did not!, insisting that Alice’s actions on the right hav
disrupted the qubit on the left, thereby rendering Bob’s knowledge of it obsolete, one
acknowledge that Alice did nothing to affect the validity of Bob’s knowledge of the qubit on
left. She merely took advantage of an opportunity to refine her own knowledge of that qubit
entirely noninvasive way, by acting only on the qubit on the right. Since Bob is ignorant of
Alice did to the qubit on the right or even whether she did anything at all to it, he has acquir
new information to refine his knowledge of the qubit on the left. Since nothing has been do
that qubit, he must therefore continue to describe it with the same density matrix,rb .

But although Peierls’ first requirement~1! is overly restrictive, his second requirement~2!
remains valid even in the absence of his first, in that it is equivalent to requiring that there s
be no measurement that Alice knowsmusthave a certain outcome while Bob knows that itcannot
have that same outcome.

To see this, note first that if~2! fails to hold, so thatrarb50, then since density matrices a
Hermitian we also haverbra50, sora andrb do indeed commute, and there is a basis of jo
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eigenstates. The vanishing ofrarb requires at least one ofra andrb to have zero eigenvalue fo
each eigenstate, so we can resolve the identity~not necessarily uniquely! into the sum of two
projections, 15Pa1Pb wherePa andPb project onto subspaces of eigenstates ofra andrb with
eigenvalue zero. The outcomes of any measurement that discriminates between these two o
nal subspaces will be assigned probabilities 1 or 0 by Alice, and 0 or 1 by Bob. Whatever ou
Alice knows must happen Bob knows cannot happen, and vice versa.

Conversely, and somewhat less trivially, suppose there is some measurement with som
come that Alice gives probability 0 and Bob gives probability 1. This means there is s
Hermitian operatorM with eigenvaluesm in the range4

0<m<1 ~9!

with

TrraM50, TrrbM51. ~10!

If the eigenstates ofM are uf j& with eigenvaluesmj , then expanding~10! in the basis of those
eigenstates gives

(
j

^f j urauf j&mj50, ~11!

and

(
j

^f j urbuf j&mj51, ~12!

or, since Trrb51,

(
j

^f j urbuf j&~12mj !50. ~13!

Since the diagonal matrix elements ofra andrb are non-negative and since themj satisfy~9!, we
conclude from~11! and ~13! that

^f j urauf j&50, mjÞ0, ~14!

^f j urbuf j&50, mjÞ1. ~15!

But if ^furuf&50 for a positive operatorr, thenruf&50, so ~14! and ~15! require every
eigenstateufk& of M to be an eigenstate with zero eigenvalue of eitherra or rb . It follows that

^f i urarbuf j&5(
k

^f i uraufk&^f j urbufk&* ~16!

must be zero for arbitraryi and j . Since theuf i& are a complete set, we then haverarb50.
So the existence of at least one measurement with at least one outcome that Alice’s d

matrix forbids and Bob’s requires~or vice versa! means that the product of their density matric
must vanish. Peierls’s second requirement~2! is valid even in the absence of his first requireme
~1!, as a direct expression of the condition that Alice and Bob should not uncover a lo
contradiction when they compare what their knowledge implies about the outcomes of me
ments made on one and the same systemS.

Is ~2! the only constraint implied by the requirement that their knowledge not
contradictory?5 This might appear plausible, since outright contradictions only involve proba
ties 0 or 1: if Alice assigns probability 0 to an outcome that Bob assigns any probability less
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1, the failure of the outcome to occur contradicts neither assignment. But the logical struct
quantum mechanics leads to a broader set of restrictions than~2!, provided we impose the fol-
lowing compatiblity condition on what different people know about the same systemS.6

Let us say that the knowledge Alice, Bob, Carol, Dick,... have about one and the same s
S is compatibleif there is some density matrixr that combines all their judgments about impo
sible outcomes, assigning zero probability to any outcome of any measurement that any
them assigns zero probability. In particular, under this definition the knowledge of Alice and
is incompatible if Alice knows that an outcome of a measurement has probability 0 while
knows that the same outcome of that same measurement has probability 1. For Bob the
knows that all the other possible outcomes have probability 0. So any density matrixr assigning
zero probability to all the outcomes that either one of them assigns zero probability would h
assign zero probability to all possible outcomes, which violates the requirement that Trr51.

But these are not the only conditions under which there is no density matrix that incorpo
all their judgments of impossible outcomes. To formulate the broader condition, let us say
given pure state is the outcome of a measurement if the projection operator on that s
measured and the result is 1.7 A stateuf& is forbidden by a density matrixr to be the outcome of
a measurement if̂furuf&50. Becauser is a positive operator any such forbidden state is
eigenstate ofr with zero eigenvalue, so the setN(r) of all forbidden states is a subspace of t
state space, called thenull spaceof r. The orthogonal complement ofN(r), the subspaceS(r)
spanned by all the eigenvectors ofr with nonzero eigenvalues, is called thesupportof r.

If a group of density matricesra , rb , rc ,... describe compatible knowledge of a systemS,
then there must be some density matrixr whose null spaceN(r) contains all the null space
N(ra),N(rb),N(rc),... . Since TrrÞ0, its supportS(r) cannot be empty. Any vectoruf& in S(r)
must be orthogonal to any vector inN(r) and therefore orthogonal to any vector
N(ra),N(rb),N(rc),... . It must therefore be in all the supportsS(ra),S(rb),S(rc),... . Wecon-
clude thatfor a set of density matrices to be compatible, their supports must all have at leas
state in common.

What about a converse proposition? If a set of density matrices is compatible in this sens
there be circumstances under which they actually do represent the knowledge available to
Bob, Carol,... about one and the same physical system? If the state space is finite dimen
then, if all their supports do have a state in common, such circumstances can indeed arise
this we first note the following.8

Consider an expansion of a density matrixr in orthonormal projections onto its eigenvecto
with nonzero eigenvalue:

r5(
i

r i uc i&^c i u. ~17!

If the dimension of the supportS(r) is finite, then the positiver i appearing in~17! are all bounded
away from 0 by somer 0.0, and we can define a positivesi by

si5r i2r 0 , ~18!

in terms of which

r5(
i

si uc i&^c i u1r 0P, ~19!

whereP is the projection operator ontoS(r). If uf& is any unit vector inS(r), then one can find
an orthonormal basisuh i& for S(r) with uh0&5uf&. Since

P5(
i

uh i&^h i u, ~20!
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it follows thatr has an expansion~not necessarily unique, in not necessarily orthogonal state! in
which uf& appears with nonzero weight:

r5puf&^fu1( pi uf i&^f i u, p.0, pi>0. ~21!

So if the supports ofra and rb share a common stateuf&, then Alice and Bob’s density
matrices have expansions of the form~21!,

ra5pauf&^fu1(
i>1

paiufai&^faiu,

rb5pbuf&^fu1(
i>1

pbiufbi&^fbiu, ~22!

pa ,pb ,pai ,pbi.0,

which share a common stateuf&. These density matrices can indeed represent the knowl
Alice and Bob have of one and the same systemS under the following circumstances.9

Let there be two more systems,Sa and Sb , with both Alice and Bob’s knowledge ofSa

1Sb1S initially described by the pure state

uC&}ua0&ub0&uf&1(
i>1

Apai /paua0&ubi&ufai&1(
i>1

Apbi /pbuai&ub0&ufbi&, ~23!

where$uan&% and$ubn&% are orthonormal bases forSa andSb . Alice has access only toSa and Bob
only to Sb . Each of them knows that nobody has access toS.

Suppose Alice measures onSa the nondegenerate observableA with eigenstatesua0&,ua1&,
ua2&, ... , and finds the result associated withua0&, while Bob measures an analogous observa
B, on Sb and finds the result associated withub0&, neither knowing what, if anything, the othe
did.

Alice will then assign toSb1S the state

uCa&}ub0&uf&1( Apai

pa
ubi&ufai&, ~24!

leading to the reduced density matrix forS,

pauf&^fu1( paiufai&^faiu5ra , ~25!

while Bob will assign toSa1S the state

uCb&}ua0&uf&1( Apbi

pb
uai&ufbi&, ~26!

leading to the reduced density matrix forS,

pbuf&^fu1( pbiufbi&^fbiu5rb . ~27!

In order for their reduced density matrices forS to have these desired forms, Alice and Bo
must find the appropriate outcomes for their measurements ofSa and Sb . This is not under
anybody’s control, but the probability of it happening is nonzero, ifpa and pb in ~21! are both
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nonzero. So there can be circumstances under which Alice and Bob will end up assigni
density matricesra andrb to S. The probability of such circumstances arising under this proto
will, of course, be very small if one or the other member of all possible pairs of common sta
all possible expansions~21! of ra andrb has a very small weight.

This construction generalizes to any number of observers. For Alice, Bob, and Caro
example, we can takeSa1Sb1Sc1S to be initially in the state

uC&}ua0&ub0&uc0&uf&1(
i>1

Apai /paua0&ubi&uci&ufai&1(
i>1

Apbi /pbuai&ub0&uci&ufbi&

1(
i>1

Apci /pcuai&ubi&uc0&ufci&, ~28!

and then follow the obvious generalization of the Alice–Bob protocol.
We conclude that if the supports of a group of density matrices share a common state

there can be circumstances under which each density matrix describes the knowledge ava
a particular observer of one and the same physical system. But if there is no pure state com
all the supports, then there can be no density matrix that assigns zero probability to every
surement outcome that any one of the observers assigns zero probability; the combined kno
of the individual observers cannot be reconciled with any quantum-mechanically consiste
scription of the system.

As a special case of this conclusion, note that since the support of a pure-state density
is the one-dimensional subspace spanned by that state, two pure-state density matrices a
patible in this sense only if they are identical: pure state assignments~and only pure state assign
ments! are unique. If one takes the view that pure states are objective physical properties
system they describe, this conclusion has very little content. But if, following Peierls, Heisen
and perhaps Bohr, one takes the view that a quantum state characterizes the knowledge
system available to a particular observer, then whether pure-state assignments must be
becomes a nontrivial question. From the perspective described above their uniqueness
from the fact that if some body of knowledge about a system leads to the pure stateuc&, then no
state orthogonal touc& can be the outcome of a measurement on the system. If a different s
of all the available knowledge of the system leads to the assignment of a different pure stateuc8&,
then no state orthogonal touc8& can occur as the outcome of a measurement. But the law
quantum mechanics require that any superposition of zero-probability outcomes must als
zero probability. Since the states orthogonal to two distinct states span the entire state sp
different subsets of the available knowledge justified two different pure-state assignments, n
whatever could occur as the outcome of a measurement.

One might argue that nobody can ever know with certainty that any outcome of any me
ment is strictly impossible. The support of any realistic density matrix would then be the e
Hilbert space, and all these conditions would be vacuous—any set of density matrices wo
mutually compatible, though the probability of measurement outcomes leading to such sta
signments could be minuscule. But although the quantum theory is inherently probabilisti
theory is also capable of deterministic assertions, which strictly prohibit certain measur
outcomes under ideal conditions. It is surely a significant feature of that theory that conside
of impossible outcomes leads, without any invocation of ‘‘the uncertainty principle’’ or ‘‘maxi
information,’’ to the uniqueness of pure-state assignments, as well as the more general co
on mixed-state assignments.
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Behavior of the survival probability in some
one-dimensional problems

M. Angélica Astaburuaga,a) Pablo Covian, and Claudio Fernández
Pontificia Universidad Catolica de Chile, V. Mackenna 4860 Santiago, Chile
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We study the behavior of the survival probabilityPw(t) in potential barrier prob-
lems on the half-line. We consider two cases: when the initial statew is a truncated
outgoing solution corresponding to a scattering frequency and when it is an ap-
proximate bound state. Using techniques and methods from Spectral Theory, Fou-
rier Analysis, and from Ordinary Differential Equations, we obtain approximate
exponential decay in both cases. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1500426#

I. INTRODUCTION

In the usual mathematical formalism in Quantum Mechanics, theSurvival Probability,

Pw~ t !5u^w,e2 iHtw&u2, ~1.1!

represents the probability that, at timet, the system is in its initial statew. Here,H is a self-adjoint
operator on a Hilbert spaceH andw is a state, that is, a unit vector inH.

If the operatorH is absolutely continuous then, by the Riemann–Lebesgue Lemma,Pw(t)
tends to 0 whenutu approaches̀ . The rate of decay of this quantity is relevant from a physi
point of view.

Here, we study the behavior ofPw(t) in potential barrier problems in the half-line. First w
consider an outgoing solution corresponding to a scattering frequency near the real axis. W
that if w is a truncated resonant solution, thenPw(t) has an approximate exponential behavi
This result, in this sense of theL`-norm appears in Ref. 6. In Sec. III we establish estimate
terms of theL2-norm, while in Sec. II we prove a formula for computing the spectral measure
a general potential with compact support.

In the last section, we study the following related problem. Suppose thatH is Hamiltonian in
the half-line, for a nonnegative potential with compact support. When the potential has a b
with a long width,H will be close, in a large interval, to a HamiltonianH` having a bound state
w. We prove that in this casePw(t) also behaves almost exponentially.

For the sake of completeness we recall some results for general self-adjoint operators.H is
an absolutely continuous self-adjoint operator on a Hilbert spaceH, then its spectral measureEl

can be represented as

pw~l![
d^w,Elw&

dl
5

1

p
lim

d→01

Im^w,~H2l2 id!21w&, ~1.2!

for any unit vectorw in a dense subspace ofH. The Fourier transform of this expression
precisely,

a!Electronic mail: angelica@mat.puc.cl
45710022-2488/2002/43(10)/4571/11/$19.00 © 2002 American Institute of Physics
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^w,e2 iHtw&5
1

p E
2`

`

e2 ilt Im^w,~H2l2 i0!21w&dl, ~1.3!

where we have used the notation,

Im^w,~H2l2 i0!21w&5 lim
d→01

Im^w,~H2l2 id!21w&.

Our goal is to prove that in the resonant case, the probabilityP(t)5u^w,e2 iHtw&u2 has an almost
exponential behavior. More explicitly, we shall estimate,

E
2`

`

u^w,e2 iHtw&2e2 il0te2eutuu2dt,

for adequatew, l0 , ande.
Our approach follows the ideas of Lavine,6 who proved that whenw is a normalized truncated

resonant state~see Sec. III!, then, for all timet,

u^w,e2 iHtw&2e2 il0te2eutuu<ceu ln eu,

wherel02 i e is the corresponding resonance.
The almost exponential behavior, in the sense of theL2-norm, turns out to give also an explic

estimate on the size of the sojourn timet~w!, in terms of the imaginary part of the resonance.
Lavine’s approach is time-independent and it is based on~1.3!, which establishes the fact tha

the unitary groupe2 iHt is the Fourier transform of limiting values of the resolventR(z), as z
approaches the real axis.

On the other hand,

e2 il0te2eutu5
1

p E
2`

`

e2 ilt Im~l2l02 i e!dl

5
1

p E
2`

`

e2 ilt
e

~l2l0!21e2 dl.

By Plancherel’s Theorem, we then have that

E
2`

`

u^w,e2 iHtw&2e2 il0te2eutuu2dt

5S 1

p D 2E
2`

` UIm^w,~H2l2 i0!21w&2
e

~l2l0!21e2U2

dl.

It is sufficient then to estimate theL2-norm of the difference between the imaginary part of t
resolvent in the real axis and the Lorentziane/@(l2l0)21e2#, for adequate values ofe.

As indicated by Lavine in Ref. 10, the integrand is singular inl50. In Ref. 9 he estimates th
L1-norm of this difference and in Ref. 10 he proposes to truncate the state in energy away fro
origin in order to handle theL2-norm. Here we manage to estimate it for all energyl.

We mention Refs. 3, 7, 8, and 11–13 for results on decay in presence of a resonant stat
Refs. 4–6 for a different characterization of the resonance phenomena.

II. THE SPECTRAL MEASURE

Let H0 be the~negative! Laplace operator on the half-line@0, `!, with the Dirichlet boundary
condition at the origin. Then,H0 is a self-adjoint operator onL2@0,̀ ), with domainH2ùH0

1. We
consider a perturbationH5H01V(x), where V(x) is a non-negative bounded potential wi
compact support. This operator is the total Hamiltonian for a quantum mechanical particle
half-line, moving under the influence of the potentialV(x).
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If we prescribe the Dirichlet boundary condition at the origin, thenH is also a self-adjoint
operator onL2. Moreover,H is positive and absolutely continuous, with spectrum@0, `#.

We first study the resolvent of the operatorH. To this end, given a complex numberz5l
1 id with d>0 andl.0, we consider two solutionsc1(x,z) and c2(x,z) of the homogeneus
equation,

2c91V~x!c2zc50, x>0 ~2.1!

satisfying the initial conditions,

c1~0,z!50,c18~0,z!51,

and

c2~x,z!5ceiAzx for x>R,

wherec is chosen such thatc2(0,z)51.
Here,R is such that the support ofV is contained in the interval@0,R). Also, we are choosing

the square root in such a way that ImAz.0, for d.0.
Lemma 2.1: Suppose thatd.0. GivenwPL2, the function,

c~x,z!52H c1~x,z!E
x

`

c2~y,z!w~y!dy1c2~x,z!E
0

x

c1~y,z!w~y!dyJ ~2.2!

is the solution of the problem,

2c91V~x!c2zc5w, x>0, ~2.3!

c~0!50, ~2.4!

cPL2 . ~2.5!

In other words, c is precisely the resolvent(H2z)21w.
Proof: It follows immediately from variation of parameters. h

Lemma 2.2: Suppose that z5l.0. GivenwPL1ùL2, the function,

c~x,l!52H c1~x,l!E
x

`

c2~y,l!w~y!dy1c2~x,l!E
0

x

c1~y,l!w~y!dyJ ~2.6!

is a solution of the problem,

2c91V~x!c2lc5w, x>0, ~2.7!

c~0!50, ~2.8!

cPL`. ~2.9!

Moreover, ^w,c(•,l1 id)& converges tôw,c(•,l)&, whend approaches0.
Proof: The functionc(x,l) clearly satisfies the differential equation and the initial conditi

Moreover, for reall all the solutions are bounded. The last assertion follows from the Domin
Convergence Theorem. h

The following result is straightforward:
Lemma 2.3: Suppose that0<a,b and let V1(x) be a function in L`(a,b). Assume thatw is

a solution of

2w91V1~x!w5z1w, for xP~a,b!.
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Then

W~c i~•,l!,w!ua
b5E

a

b

~V~x!2V1~x!1z12l!c i~x,l!w~x!)dx. ~2.10!

Lemma 2.4: GivenwPL1@0,̀ #ùŁ2@0,̀ #, the spectral measure of the operator H satisfie

d^w,Elw&
dl

5
1

p
Im^w,c~•,l!&, ~2.11!

wherec(•,l) is given by Lemma 2.2.
Proof: It follows from ~1.3! and Lemma 2.2. h

The above result is an explicit formula for the Radon Nikodym derivative of the spe
measure that works on a dense subset of the Hilbert space. For an explicit potentialV(x), the
integral that appears in this formula will be computed with the aid of Lemma 2.3.

III. ESTIMATES FOR RESONANT SOLUTIONS

Let k be ascattering frequencyfor 2(d2/dx2)1V(x) and letz5k25l02 i e.
This means thatc is a nontrivial outgoing@i.e. c(x)5ceikx, for x>R# solution of

2
d2

dx2 c1V~x!c5zc, 0,x, ~3.1!

c~0!50. ~3.2!

We choose the constantc in such a way thatw5x@0,R#c satisfies

E
0

R

uw~x!u2dx51.

Lemma 3.1: The spectral measure of the operator H5(2d2/dx2)1V(x) at the statew sat-
isfies

p
d^w,Elw&

dl
2

e

~l2l0!21e25
1

uz2lu2
Im W~c2 ,w!W~c1 ,w̄ !~R!. ~3.3!

Proof: By Lemma 2.4, we have that

p
d

dl
^w,Elw&52ImF E

0

`

w̄~x!c1~x!E
x

`

c2~y!w~y!dydx

1E
0

`

w̄~x!c2~x!E
0

x

c1~y!w~y!dydxG .
We call I 1 and I 2 the two expressions inside the square brackets. Sincew[0 for x.R, it

follows that

I 15E
0

R

w̄~x!c1~x!E
x

R

c2~y!w~y!dydx,

I 25E
0

R

w̄~x!c2~x!E
0

x

c1~y!w~y!dydx.
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By Lemma 2.3, we obtain

E
x

R

c2~y!w~y!dy5
1

l2z
W~c2 ,w!ux

R ,

E
0

x

c1~y!w~y!dy5
1

l2z
W~c1 ,w!uR

x ,

and substituting these expressions we obtain

I 11I 25
1

l2z E0

R

w̄~x!$c1~x!W~c2 ,w!ux
R1c2~x!W~c1 ,w!u0

x%dx.

If we call B(x) the expression in brackets, then

B~x!5c1~x!W~c2 ,w!~R!2c1~x!~c2~x!w8~x!

2c28~x!w~x!!1c2~x!~c1~x!w8~x!2c18~x!w~x!!,

sinceW(c1 ,w)(0)50. After some cancellations we get,

B~x!5c1~x!W~c2 ,w!~R!1W~c1 ,c2!~x!w~x!.

But the Wronskian ofc1 , c2 is constant,

W~c1 ,c2!~x!5W~c1 ,c2!~0!521.

Hence,

B~x!5c1~x!W~c2 ,w!~R!2w~x!

and

I 11I 25
W~c2 ,w!~R!

l2z E
0

R

w̄~x!c1~x!dx2
1

l2z
,

since*0
Ruw(x)u2dx51;

We use Lemma 2.3 again to obtain that

E
0

R

w~x!c1~x!dx5
1

z̄2l
W~c1 ,w̄ !~R!. ~3.4!

Hence,

I 11I 252
1

uz2lu2
W~c2 ,w!W~c1 ,w̄ !~R!2

1

l2z
. ~3.5!

Finally, we compute the imaginary part and obtain the desired result.
h

We again use the fact that the WronskianW(c1 ,c2) is constant to obtain that
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W~c2 ,w!W~c,w̄ !~R!5
~c2w82c28w!~c1w̄82c18w̄ !

c1c282c18c2
~R!

5uw~R!u2
S w8

w
2

c28

c2
D S w̄8

w̄
2

c18

c1
D

c28

c2
2

c18

c1

~R!. ~3.6!

Let us introduce the notation,

b5
w8~R!

w~R!

and

b15b1~l!5
c18~R!

c1~R!
.

Also, c2 is known explicitly, forR<x, therefore,

W~c2 ,w!W~c1w̄ !~R!5uw~R!u2
~b2 iAl!~b̄2b1!

iAl2b1

5uw~R!u2
~b2 iAl!~b̄2 iAl1 iAl2b1!

iAl2b1

5uw~R!u2
~b2 iAl!~2b12 iAl!

iAl2b1

1
ub2 iAlu2

iAl2b1

. ~3.7!

Theorem 3.1:Suppose that k is a scattering frequency for2(d2/dx2)1V(x). Then,

E
2`

`

u^w,e2 iHtw&2e2 il0te2eutuu2dt<ce.

Proof: Consider the function,

f ~l!5Im^w,~H2l2 i0!21w&2
e

~l2l0!21e2 .

We note that forl negative,

f ~l!5
e

~l2l0!21e2 .

Our starting point is the following pointwise estimate, which is a direct consequenc
Lemma 3.1 and the identity~3.7!
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u f ~l!u<H u iAl2b~R!u1
u iAl2b~R!u2

~b1~R!21l!1/2J uw~R!u2

~l2l0!21e2 ,

for positivel.
Also, givenl>0, c15c1(x,l) is a nontrivial real-valued solution of the eigenvalue equati

2
d2

dx2 c1V~x!c5lc, 0,x,

with c(0)50.
In this particular case the potential is supported on the interval@0,R#, henceb5 iAl02 i e.
Moreover, since,

~ Im w̄w8!85Im w̄~V2k2!w5euwu2,

we obtain, by integrating over@0, R#,

uw~R!u25
e

Im b~R!
5

e

ReAl02 i e
.

Using this, we can estimate theL2-norm of f (l), by separating the integral with respect tol
in four pieces:~2`, 0!, (0,l0/2), (l0/2,3l0/2), (3l0/2,̀ ).

For l,0,

E
2`

0

u f ~l!u2dl<
e2

3l0
3 .

On the interval (3l0/2,̀ ), we use ReAl02 i e.Al0/2 and uAl2Al02 i eu
,A@(l2l0)21e2#/l. Also neglect the termb1

2, and get

u f ~l!u<
e&

All0
S 1

A~l2l0!21e2
1

1

l D .

Thus,

E
3l0/2

`

u f ~l!u2dl<C~l0!e2.

For lP(l0/2,3l0/2),

u f ~l!u<
2e

l0
S 1

A~l2l0!21e2
1

2

l0
D .

This gives,

E
l0/2

3l0/2

u f ~l!u2dl<C1~l0!e1C2~l0!e2.

When working on the interval@0,l0/2#, we cannot neglect the term involvingb1 , because the
integrand does not belong toL2 ~it does converge inL1!. We then need a lower bound for it. Th
is given by Lemma 3.2, which after some manipulations, gives
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u f ~l!u<C
e

~l2l0!21e2 .

Then,

E
0

l0/2

u f ~l!u2dl<CE
0

l0/2S e

~l2l0!21e2D 2

dl<ce2.

By combining these four estimates, we obtain the desired result. h

Lemma 3.2: If0,l,p2/16R2, then, b1(R)>C/R,
where C5M 21 and M5max@0,p/4#(tanx/x)54/p.

Proof: The variableu5c1 /c18 is a solution of

u8511~l2V!u2<11lu2. ~3.8!

Moreover,u is real and satisfiesu(0)50 andu8(0)51.
The result follows by integration. h

IV. POTENTIAL BARRIERS

We now consider a sequence of barriers of finite height and whose supports are increa
`. Here, we shall establish some explicit estimates concerning the approximate exponen
havior in the resonant case, and, for simplicity, we only consider barriers which are step func
Explicitly, let us considerVn(x)5hx@a,a1n#(x), V`(x)5hx@a,`)(x), Hn5H01Vn , and H`

5H01V` .
The spectrum ofH` consists of a finite number of eigenvaluesl1,l2¯,h and an abso-

lutely continuous part@h, `!. On the other hand, eachHn is absolutely continuous with spectrum
@0, `!.

We consider the first eigenvaluel1 of H` with corresponding eigenvectorw. For largen, w is
‘‘almost’’ an eigenvector ofHn , indeed, one can explicitly estimatei(Hn2l1)w)i and prove that
this quantity is small sincew is exponentially decreasing at infinity. By the energy-time uncerta
principle ~see Ref. 9!, we have that the sojourn timet(w)5* u^w,e2 iH ntw&u2dt satisfies
t(H)i(Hn2l1)wi>1, hence,t~w! is large. Physically, this means thatw is a resonant state.

According to this fact, one expects that^w,e2 iH ntw& has an approximate exponential behavi
Here we prove that there exists a translation in energy bybPR and a time rescaling functionGn ,
with limn→` Gn50, such that

lim
n→`

u^w,e2 i ~Hn2l12b!~t/Gn!w&u25e2t, t.0.

We mention Refs. 1 and 2 for similar results.
Since the functionw is exponentially decaying at infinity we can use the formulas of Sec

to compute the Radon Nikodym derivativePn(l)5d/dl^w,El
nw&.

To this end, we again considerc i5c i ,n(x;l), i 51, 2, the solutions of

2c91Vnc5lc, x.0,

satisfying the boundary conditions,

c1~0!50,c18~0!51,

and

c2~0!51,c2~x!5c2~l!eiAlx, for x>a1n.
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Clearly, the WronskianW(c1 ,c2)521 andc1 is real.
Lemma 4.1: The boundary values of the resolvent satisfy

^w,~Hn2l2 i0!21w&5E
0

`

w̄~x!c~x!dx,

where

c~x!5c1~x,l!E
x

`

c2w1c2~x,l!E
0

x

c1w.

As in the previous section, we can also prove
Lemma 4.2:

W~c i ,w!ua
b5E

a

b

~V`2Vn1l2l1!wc i .

This can be used to compute*a
bc iw, for different intervals~a, b!, which allows us to obtain the

following formula for ^w,(Hn2l2 i0)21w&:
Lemma 4.3: Let s5l2l1 . Then,

^w,~H2l2 i0!21w&52
1

s E0

a1n

uwu22
1

s1h Ea1n

`

uwu2

1
h2

s2~s1h!2 W~c1 ,w!W~c2 ,w!~a1n!.

Proof: This is a straightforward application of Lemmas 4.1 and 4.2. h

We now introduce the logarithmic derivative ofc1 ,

b~l![bn~l!5
c18~a1n,l!

c1~a1n,l!
. ~4.1!

Lemma 4.4: The spectral measure,

Pn~l!5
1

p
Im^w,~H2l2 i0!21w& ~4.2!

satisfies

pPn~l!5
2All1h

~l2l1!2~l2l11h!2

•

Ah2l1

aAh2l111
e22Ah2l1n

•

~b~l!1Ah2l1!2

~b2~l!1l!
.

Proof: We know explicitlyc1 . Also, W(c1 ,c2)521. From these facts, it follows that

W~c1 ,w!W~c2 ,w!~a1n!5
~w82b~l!w!~w82b~l!w!

b~l!2 iAl
1~w82b~l!w!.

Hence,
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Im^w,~Hn2l2 i0!21w&5
h2

~l2l1!2~l2l11h!2

•

Al~w82b~l!w!2~a1n!

b2~l!1l
.

The proof follows by substituting the values of the eigenfunctionw, which are explicitly known
for largex. h

One can easily obtain the following formula for the functionb5bn :

bn~l!52Ah2l
t~l!

t~l!1t1~l!e22Ah2ln

2Ah2l,

wheret(l)5tan(aAl)1Al/(h2l) and t1(l)5tan(aAl)2Al/(h2l).
By substituting in the expression for the resolvent, we obtain,

Gn Im^w,~Hn2l12Gnl2 i0!21w&5Fn~l!Gn~l!~Hn~l!!2,

where

Fn~l!5
2l1hAl11GnlAh2l1

~Gnl1h!2~aAh2l111!
,

Gn~l!5~bn
2~l11Gnl!1l11Gnl!21,

Hn~l!52Ah2l12Gnl
t~l11Gnl!

Gnl
Rn~l!1

AGne2Ah2l1n

Ah2l12Gnl1Ah2l1

,

and

Rn~l!5
AGne2Ah2l1n

t~l11Gnl!1t1~l11Gnl!e22Ah2l12Gnlnn
.

Assuming thatGn→0, we can compute the limit of some of these terms. In order to handle a
them, we chooseGn5re22Ah2l1n.

With this choice, we have that

~i! Fn(l)→2l1
3/2Ah2l1/h(aAh2l111);

~ii ! bn(l)→Ah2l1lrt 8(l1)2t1(l1)/lrt 8(l1)1t1(l1);
~iii ! Gn(l)→((h2l1)(lrt 8(l1)2t1(l1)/lrt 8(l1)1t1(l1))21l1)21;
~iv! Hn(l)→2Ah2l1t8(l1)•Ar /t8(l1)rl1t1(l1).

But, t8(l1) and t1(l1) can be explicitly computed. Finally, with the proper choice ofr we
obtain

Theorem 4.1:For Gn5re22Ah2l1n, where

r 5
8~l1~h2l1!!3/2

h2~aAh2l111!
,

we have
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lim
n→`

Gn Im^w,~Hn2l12lGn2 i0!21w&5
1

~l2b!211
,

where

b5
h22l1

2Al1~h2l1!
.

The convergence is uniform forl in compact sets.
Remark 4.1:Uniform convergence on compact sets implies convergence inL8, since the

function in question are probability distributions~up to a factor! and this implies uniform conver
gence of the Fourier transform. Hence,

Corollary 4.1: For all positivet,

lim
n→`

^w,e2 i ~Hn2l12b!t/Gnw&5e2t.

Clearly, upon reintroducing the unscaled timet5t/Gn , one obtains that the survival prob
ability u^w,e2 iH ntw&u2 behaves asymptotically ase22Gnt, for all t.
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Reduction of the Hilbert space in strongly correlated
systems
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Defining commutation relations between symmetry operators and fundamental op-
erators, we set up the symmetry group for a many-particle Hamiltonian. Using the
irreducible representations of the symmetry group, we decompose the Hilbert
space. We discuss the advantage of this approach to find the dimensions of reduced
Hilbert spaces in numerical exact diagonalization. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1506956#

I. INTRODUCTION

Strongly correlated systems such as the Hubbard model and the Heisenberg mode
attracted renewed interest. One method to study strongly correlated systems would be
diagonalization with the Lanczo¨s algorithm. In relation with highTc superconductor, an exac
diagonalization approach to thet –J model has been used intensively by many authors.1,2 As a
strongly correlated system, the Hall effect has also been studied by the numerical method o
diagonalization.3,4

Nowadays, exact diagonalization has become more popular due to the case of acce
tremendous amount of memory in computers. However, the size of Hilbert space still g
exponentially. The remedy for the exponentially growing problem is to use symmetries th
system has. The symmetries help in reducing the numerical factor in front of the exponential
Hilbert space dimension. In fact, representation theory5 makes it possible to find the exact dime
sion of the reduced Hilbert space. It will be an advantage if one can compare the dimensi
reduced Hilbert spaces obtained analytically with the results found numerically.

In this paper, in order to find the dimension of the reduced Hilbert space, we first d
commutation relations between fundamental operators and symmetry operators, and th
representation theory. To the authors’ knowledge, no symmetry group representation can be
for any many-particle interacting system.

We can describe general processes of analytical works to find the dimensions of re
Hilbert spaces. In order to reduce the Hilbert space by using group representation theory, w
out the following program.

~1! Set up a Hamiltonian, commutation relations between fundamental operators, and an
normal basis of the corresponding Hilbert space.

~2! Define relationships between the symmetry operators and the fundamental operators
prove that the symmetry operators commute with the Hamiltonian, and also preserv
commutation relations of fundamental operators.

~3! Find how the symmetry operators commute with themselves in the Hilbert space, and
struct the corresponding symmetry group.

~4! Find irreducible representations of the group.

a!Author to whom all correspondence should be addressed; electronic mail: mhchung@hongik.ac.kr
45820022-2488/2002/43(10)/4582/10/$19.00 © 2002 American Institute of Physics
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~5! Calculate the reducible representation of the group with the basis of the Hilbert space.
~6! Decompose the Hilbert space into the irreducible components. The multiplicities in thi

composition are the dimensions of reduced Hilbert spaces.

The purpose of this paper is to emphasize this general procedure as analytical works in
diagonalization. In doing so, we treat a toy Hamiltonian, which is originated from the se
quantized Hamiltonian introduced by Yoshioka, Halperin, and Lee~YHL !6 to explain the frac-
tional quantum Hall effect.7,8 The above-mentioned procedure with the YHL Hamiltonian has b
done in Ref. 9. Here we take the same procedure with the toy Hamiltonian. Before presenti
toy model, we briefly review the YHL Hamiltonian according to the above-mentioned six st

~1! The YHL Hamiltonian is written as

H5 (
a,b50

N21

W~a,b! (
k50

N21

ck1a
† ck1b

† ck1a1bck , ~1!

where the degeneracy of the Landau level is denoted byN, and ck
†cl1clck

†5dkl , and ck1N
†

5ck
† . The couplings satisfyW(a,b)5W(6a6N,b)5W(a,6b6N). For a system ofM elec-

trons, a typical basis of the Hilbert spaceH(N,M ) is expressed by creation operators:

$ci 1
†
¯ci M

† u0&u0< i 1,¯, i M<N21%. ~2!

The dimension ofH(N,M ) is given byNCM . Using the symmetries of HamiltonianH, we study
the structure of the Hilbert spaceH(N,M ).

~2! We define two operatorsS andT, which act on the Hilbert space in such a way:

Sck
†5expS i

2p

N
kD ck

†S, Sck5expS 2 i
2p

N
kD ckS, Su0&5u0&, ~3!

Tck
†5ck11

† T, Tck5ck11T, Tu0&5u0&. ~4!

We find thatSH5HS, andTH5HT, and thatS andT are consistent withck
†cl1clck

†5dkl .
~3! Whenp andq are coprime andM /N5pG/qG5p/q with a greatest common divisorG,

the commutation relation betweenS andT in the Hilbert spaceH(qG,pG) is given by

ST5expS i2p
p

qDTS with j[expS i2p
p

qD . ~5!

Note thatSN5TN5S†S5T†T51. We now consider the symmetry group:

Gcore5$j lTaSbu l 50,...,q21; a,b50,...,qG21%, ~6!

whereST5jTS, andjT5Tj, jS5Sj.
~4! The irreducible representations,Cxts(j

lTaSb), of the group,Gcore, are found in Ref. 5.
~5! It is straightforward to calculate the reducible representation:

x~j lTaSb!5 (
i 1 ,...,i M

^0uci M
¯ci 1

j lTaSbci 1
†
¯ci M

† u0&. ~7!

~6! Using the irreducible representations and the reducible representation, we decomp
Hilbert spaceH(qG,pG) as

H~qG,pG!5 %
t,s50

G21

~Hpts!
% dts, ~8!
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whereHpts is q-dimensional, and the multiplicity,dts , is the dimension of the reduced Hilbe
space. It is remarkable that the symmetriesS and T always exist for anyW(a,b). Thus, this
structure of the Hilbert space does not depend upon detailed forms of interactions.

A detailed review onHpts is as follows. A basis of a typicalq-dimensional Hilbert spaceHpts

is given by

$ut,s;n&,Tut,s;n&,...,Tq21ut,s;n&%, ~9!

where the quantum numbern, which runs from 0 todts21, is related with energy spectrum a
Hut,s;n&5Enut,s;n&. The reference stateut,s;n& is actually a linear combination ofM creation
operators acting on the vacuum stateu0&. The operatorsTa andSb act onut,s;n& such that

Tmq1xut,s;n&5expS i
2p

G
mtDTxut,s;n&, ~10!

Slq1yut,s;n&5expS i
2p

G
lsD ut,s;n&, ~11!

wherem and l are integers, and 0<x, y<q21.
It is well known that the ground state of the YHL Hamiltonian always belongs to thet5s

50 sector ofHp00. Hence, we denote theq-fold ground state as

$u0,0;0&,Tu0,0;0&,...,Tq21u0,0;0&%. ~12!

The operators,S and T, are actually magnetic translational symmetries, which have b
studied for a long time.10–15 Using magnetic translational symmetries, Haldane16 showed that
many-particle states should have theq-fold degeneracy at rational Landau-level fillingp/q in the
fractional quantum Hall system. Our work to find the multiplicities in Ref. 9 was bey
Haldane’s analysis.

In this paper, we apply this procedure to a toy system, in order to find multiplicities i
energy spectrum. The toy system is described by the unperturbed Hamiltonian,H05(m50

D21 H (m),
and the perturbing Hamiltonian,H1 , where themth subsystem ofH (m) is exactly the quantum
Hall system. In the case where some symmetries are broken byH1 , we study the spectrum of low
energy states.

Contents are summarized as follows. In Sec. II, we present the unperturbed Hamilton
relation with the YHL Hamiltonian. Then, we discuss the symmetries of the unperturbed H
tonian. In Sec. III, we construct the symmetry group in the case of lowering symmetries wit
perturbing Hamiltonian. Using representations of the group, we find the structure of energy
trum. We propose future works, and conclude in Sec. IV.

II. DEFORMED YHL HAMILTONIAN AND SYMMETRIES

We now attempt to introduce our unperturbed HamiltonianH0 from the YHL Hamiltonian.
The first manipulation is to deform the couplingsW(a,b). In fact, we write the deformed YHL
Hamiltonian from Eq.~1! as

H̃5 (
a,b50

qG21

(
a,b50

D21

W~Da,Db! (
k50

qG21

(
k50

D21

cD(k1a)1k1a
† cD(k1b)1k1b

† cD(k1a1b)1k1a1bcDk1k ,

~13!

where we trivially rewrite the indices in aD-times bigger system,Ñ5qGD, and deform
W(Da1a,Db1b) to W(Da,Db). We notice thatH̃ still has the symmetriesS andT. The next
deformation is to transform the operators inH̃. Finally, we present the HamiltonianH0 , which is
rewritten in terms of the new operators as
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H05 (
m50

D21

D (
a,b50

qG21

W~Da,Db! (
k50

qG21

aD(k1a)1m
† aD(k1b)1m

† aD(k1a1b)1maDk1m . ~14!

It should be emphasized that replacingaDa1m
† in H0 by (1/AD) (a50

D21 exp(2i (2p/D) am)cDa1a
†

does not showH05H̃. Furthermore, after this replacement, it turns out thatH0 does not commute
with S andT. At this point,H0 has lost connection toH̃. From now on, we should treatH0 as a
starting point in the following discussion.

We adopt the periodic boundary condition for the operators:a
Ñ1k

†
5ak

† , and ak
†al1alak

†

5dkl . DenotingH05(m50
D21 H (m), we find that the HamiltonianH (m) for the mth subsystem has

the same structure as that of the original YHL Hamiltonian of Eq.~1!. This similarity is reminis-
cent of scaling. Note that the Hilbert space ofH0 is simply a direct product of the Hilbert spac
of H (m).

We define the following operators acting on the Hilbert space of the HamiltonianH0 :

SmaDk1m
† 5expS i

2p

qG
kDaDk1m

† Sm , ~15!

SmaDk1m5expS 2 i
2p

qG
kDaDk1mSm , ~16!

SmaDk1 l
† 5aDk1 l

† Sm for mÞ l , ~17!

SmaDk1 l5aDk1 lSm for mÞ l , ~18!

TmaDk1m
† 5aD(k11)1m

† Tm , ~19!

TmaDk1m5aD(k11)1mTm , ~20!

TmaDk1 l
† 5aDk1 l

† Tm for mÞ l , ~21!

TmaDk1 l5aDk1 lTm for mÞ l , ~22!

QaD j 1m
† 5aD j 1m11

† Q, ~23!

QaD j 1m5aD j 1m11Q, ~24!

PaD j 1m
† 5aD(qG212 j )1D2m

† P, ~25!

PaD j 1m5aD(qG212 j )1D2mP, ~26!

u0&5Smu0&5Tmu0&5Qu0&5Pu0&. ~27!

We find thatSmH05H0Sm , TmH05H0Tm , QH05H0Q, andPH05H0P.
We now focus on low energy states ofH0 with M̃5pGD particles. Note that the ground sta

of the HamiltonianH0 is in the special Hilbert space characterized by equal partition, that is

^
m50

D21

H (m)~qG,pG!, ~28!
                                                                                                                



rators

. The
re, the
in the

ve-
r
n,

4586 J. Math. Phys., Vol. 43, No. 10, October 2002 M.-H. Chung and J.-H. Kwon

                    
where the Hilbert spaceH (m)(qG,pG) corresponds to themth subsystem ofqG states withpG
particles. Since there is no difference betweenH (m)’s except for the dummy indexm, the ground
state of each HamiltonianH (m) lives in the subspace characterized by the valuest5s50, regard-
less ofm. As a result, the ground state ofH0 lives in

^
m50

D21

H p00
(m)[Hg . ~29!

We observe that the degeneracy of ground state forH0 is given byqD. The operatorsSm andTm

acting on the Hilbert space ofH p00
(m) satisfy Sm

q 5Tm
q 51 as seen in Eqs.~10! and ~11!. Like Eq.

~12!, a basis of the correspondingqD-dimensional Hilbert space ofHg is given by

$ucA&5T0
i 0T1

i 1
¯TD21

i D21uc0&u0< i 0 ,...,i D21<q21%, ~30!

uc0&[u0,0;0& (0)
^¯^ u0,0;0& (D21), ~31!

where the indexA runs from 0 toqD21, and the reference stateu0,0;0& (m) for themth subsystem
is a linear combination of Slater determinants written in terms of the fundamental ope
aDk1m

† :

u0,0;0& (m)5 (
k1 ,...,kpG50

qG21

C~k1 ,...,kpG!aDk11m
†

¯aDkpG1m
† u0&. ~32!

III. PERTURBATION WITH LOWERED SYMMETRIES

Symmetries play an important role in studying an energy spectrum of a Hamiltonian
power of symmetry becomes apparent, when we attempt to analyze a perturbation. He
perturbing Hamiltonian,H1 , breaks some symmetries. As a result, degenerated states split
presence ofH1 . Our aim here is to decomposeHg in the presence ofH1 .

The unperturbed Hamiltonian in Sec. II,H0 , certainly has more symmetries than the abo
given description. However, when a perturbing Hamiltonian,H1 , is involved, we need to conside
only symmetries of the total Hamiltonian,H01H1 . We assume that the perturbing Hamiltonia
H1 , has the symmetriesQ, P, andS̃, T̃, which are defined as

S̃[ )
m50

D21

Sm , T̃[ )
m50

D21

Tm . ~33!

Although we do not need to present the explicit form ofH1 in the following discussion, a
possible form ofH1 would be

H15 (
n,m50

D21

(
a,b50

q21

J~n2m;a,b!Tn
2bSn

2aSm
a Tm

b , ~34!

which can commute withS̃, T̃, Q, andP with properly chosen couplingsJ(n2m;a,b). Note that
H1 does not commute withSm andTm anymore. For this form ofH1 , the operatorsSm andTm

effectively play the role of fundamental operators. Their commutation relations inHg are given by

SmTm5jTmSm with j[expS i2p
p

qD , ~35!

SmTl5TlSm for mÞ l . ~36!
                                                                                                                



mental

p:

4587J. Math. Phys., Vol. 43, No. 10, October 2002 Reduction of the Hilbert space

                    
We calculate commutation relations between the symmetry operators and the funda
operators. In the space ofHg , the operators satisfy

S̃Sm5SmS̃, ~37!

S̃Tm5jTmS̃, ~38!

T̃Sm5j21SmT̃, ~39!

T̃Tm5TmT̃, ~40!

QSm5Sm11Q, SD[j21S0 , ~41!

QTm5Tm11Q, TD[T0 , ~42!

PSm5j21SD2m
21 P, ~43!

PTm5TD2m
21 P, ~44!

S̃uc0&5uc0&, ~45!

T̃uc0&5 )
m50

D21

Tmuc0&, ~46!

Quc0&5T0uc0&, ~47!

Puc0&5 )
m51

D21

Tm
21uc0&. ~48!

These commutation relations are verified when the operators act on a typical state of Eq.~30!. For
Eqs.~47! and ~48!, we have used the definition of Eqs.~23!, ~25!, and~31!, and the fact that the
coefficientsC(k1 ,¯ ,kpG) in Eq. ~32! are independent ofm.

We calculate commutation relations between the four symmetry operators inHg . In order to
simplify the commutation relation ofS̃Q5jQS̃, we introduce

Q̃[TaQ, ~49!

wherea is determined forQ̃ to commute withS̃, in fact, as a solution ofaD11[0 modq. The
commutation relations inHg between the four operators are given by

S̃T̃5jDT̃S̃, S̃Q̃5Q̃S̃, S̃P5j12DPS̃21, ~50!

T̃Q̃5Q̃T̃, T̃P5PT̃21, Q̃P5PQ̃21. ~51!

The orders of the symmetry operators inHg are given by

jq5S̃q5T̃q5Q̃qD5P251, ~52!

where Eqs.~37!–~48! have been used.
For simplicity, we impose thatq andD are coprime. We now consider the symmetry grou

GD
q 5$j l PnQ̃dT̃aS̃bu l ,a,b50,...,q21; n50,1; d50,...,qD21%. ~53!
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Representations ofGD
q are essential to decompose the Hilbert space ofHg .

Taking the same approach given in Ref. 9, we find that every irreducible character ofGD
q is a

component ofCxkts:

Cxkts~j l PnQ̃dT̃aS̃b!5H qxzq
xl~zqD

kd zq
ta1sb1zqD

2kdzq
2ta2sb! if n50,qxua,b,

0 otherwise,
~54!

where 0<x<q21, 0<k<qD21, 0<t, s<gcd(q,x)21, qx5q/gcd(q,x), andzy[exp(i2p/y).
In order to avoid double counting, we should note thatCxkts5Cx(qD2k)(q/qx2t)(q/qx2s) .

It is found that allCxkts are irreducible characters except forCx(aqD/2)(bq/2qx)(gq/2qx) , where
a,b,g50,1. Of course, the cases containingqD/2 or q/2qx are meaningful only when they ar
integers. We decompose the characters, and find the irreducible components,

Cx(aqD/2)(bq/2qx)(gq/2qx)5xxabg
1 1xxabg

2 . ~55!

For mathematical completeness, we show the components forx50,

x0abg
6 ~j l PnQ̃dT̃aS̃b!5~61!n~21!ad1ba1gb. ~56!

For xÞ0, we obtain that

xxa0g
6 ~j l PnQ̃dT̃aS̃qxm1b!

5zq
xl~21!ad1gm

35
qx, n50, qxua,b

6zq
xb[(qx21)/2][(a11)D21] , n51, qx[1 mod 2, S qx21

2 DbPI 1

6~21!gzq
xb[(qx21)/2][(a11)D21] , n51, qx[1 mod 2, S qx21

2 DbPI 2

6zq
2~xb/2![(a11)D21]~11~21!xq[11(a21)D] 1g!, n51, qx[b[0 mod 2,

0 otherwise,

~57!

where

xq5x/gcd~q,x!, I 15H qx11

2
,...,qx21,0J , and I 25H 1,2,...,

qx21

2 J .

We omit presentingxxa1g
6 , which is not necessary in the decomposition process.

In summary, the irreducible characters ofGD
q are given by

Cxkts with 0<x<q21, 0,k,
qD

2
, 0,t,s,

q

2qx
, ~58!

xxabg
1 , xxabg

2 with a,b,g50,1. ~59!

The reducible character of the symmetry group for the Hilbert space ofHg is calculated by
using Eqs.~30! and ~37!–~48!. We find the reducible character ofHg :
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x~j l PnQ̃dT̃aS̃b!

5 (
i 50

qD21

^c i uj l PnQ̃dT̃aS̃buc i&5zq
pl

35
qgcd(D,d), n50, qua,b

z~pb/2!(q21)[(a11)D21]q~D21!/2, n51, q[1,D[1 mod 2

z~pb/2!(q21)[(a11)D21]q~D/2! 21

@11 1
2 ~q21!~12~21!d!#, n51, q[1,D[0 mod 2

z2 ~pb/2![(a11)D21]q~D21!/22, n51, q[a[b[0 mod 2

0, otherwise.

~60!

Using the irreducible charactersCxkts, xxabg
6 , and the reducible characterx, we decompose

the Hilbert spaceHg . Note that (Cxkts,x) becomes nonzero only forx5p. Furthermore, since
0<t, s<gcd(q,p)2150, the case oft5s50 is only possible. Fixing the indices asx5p and
t5s50, we calculate the inner product, which is a multiplicity:

~Cpk00,x!5H 1

qD (
d50

D21

qgcd(D,d) cosS 2p

qD
kdD k[0 modq

0 otherwise.

~61!

Since the multiplicity is nonzero only fork[0 modq, we letk5ql with integerl .
The Hilbert spaceHg is decomposed as

Hg5 %
0< l<D/2

~Hl !
% ml, ~62!

whereml5(Cpql00,x).
The sectors (H0) % m0 and (HD/2)

% mD/2 are decomposed more as

~H0! % m05~H 0
1! % m0

1

% ~H 0
2! % m0

2

, ~63!

~HD/2!
% mD/25~HD/2

1 ! % mD/2
1

% ~HD/2
2 ! % mD/2

2

, ~64!

where the multiplicities are given by

m0
65~xp000

6 ,x!5
1

2qD (
d50

D21

qgcd(D,d)6H 1
2 q~D21!/2 D[1 mod 2

q11

4
q~D/2! 21 D[0 mod 2

, ~65!

and

mD/2
6 5~xp100

6 ,x!5
1

2qD (
d50

D21

~21!dqgcd(D,d)6
12q

4
q~D/2! 21 for D[0 mod 2. ~66!

One comment formD/2
6 is that an integerD/2 requiresD[0 mod 2, andq[1mod 2 because o

coprimeq andD.
In consequence, with coprimeq andD, the Hilbert spaceHg is decomposed as
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Hg5~H 0
1! % m0

1

% ~H 0
2! % m0

2

%
1< l<(D21)/2

~Hl !
% ml for D[1 mod 2, ~67!

Hg5~H 0
1! % m0

1

% ~H 0
2! % m0

2

%
1< l<(D22)/2

~Hl !
% ml % ~HD/2

1 ! % mD/2
1

% ~HD/2
2 ! % mD/2

2

for D[0 mod 2. ~68!

This decomposition is useful in numerical calculations, especially in the Lanczo¨s method. While
qD54 782 969 withq53 andD514, we note thatm0

1557 696.

IV. CONCLUSION

In summary, emphasizing the usefulness of group representation theory, we have consi
model Hamiltonian originated from the YHL Hamiltonian. We consider the symmetries,
construct the symmetry group. Using the representations of the group, we decompose theqD-fold
states into the irreducible components. The main point of this paper is not the model, b
method to find the dimension of the reduced Hilbert space. This method will be useful for
diagonalization in finite strongly correlated systems.

Future works are proposed as follows. We can consider the reduction of the Hilbert spa
a general system that has the symmetry group,Gt

(n)
^ Gp , whereGt

(n) is ann-dimensional trans-
lational group andGp is a point group. The symmetries ofGt

(n)
^ Gp is not new, but the corre-

sponding representations are not known.
For instance, the Hubbard model in the two-dimensionalN3N square lattice may have th

symmetry groupGt
(2)

^ C4v , whereGt
(2) has two generators,Tx andTy , and whereC4v is one of

the Schoenflies symbols. The fundamental operators with two indices satisfyci j
† 5ci 1N j

† 5ci j 1N
† .

It is crucial to define commutation relations between symmetry operators and fundamental
tors. The generators of the symmetry group are defined as

Txci j
† 5ci 11 j

† Tx , ~69!

Tyci j
† 5ci j 11

† Ty , ~70!

C4ci j
† 5c2 j i

† C4 , ~71!

sxci j
† 5ci 2 j

† sx , ~72!

syci j
† 5c2 i j

† sy , ~73!

sdci j
† 5cji

† sd , ~74!

sd8ci j
† 5c2 j 2 i

† sd8 , ~75!

u0&5Txu0&5Tyu0&5C4u0&5sxu0&5syu0&5sdu0&5sd8u0&. ~76!

This will be the starting point for the discussion on the reduction of the Hilbert space. Progr
the discussion with all crystallographic point symmetry groups is anticipated.
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We consider electrons in uniform external magnetic and electric fields which move
on a plane whose coordinates are noncommuting. Spectrum and eigenfunctions of
the related Hamiltonian are obtained. We derive the electric current whose expec-
tation value gives the Hall effect in terms of an effective magnetic field. We present
a receipt to find the action which can be utilized in path integrals for noncommuting
coordinates. In terms of this action we calculate the related Aharonov–Bohm phase
and show that it also yields the same effective magnetic field. When magnetic field
is strong enough this phase becomes independent of magnetic field. Measurement
of it may give some hints on spatial noncommutativity. The noncommutativity
parameteru can be tuned such that electrons moving in noncommutative coordi-
nates are interpreted as either leading to the fractional quantum Hall effect or
composite fermions in the usual coordinates. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1504484#

I. INTRODUCTION

To clarify the role which noncommutative coordinates may play in physics a better u
standing of quantum mechanics in noncommutative spaces would be useful. Obviously, th
plest case is to consider particles moving in two-dimensional noncommutative spaces. Ac
there exist some realistic physical systems like electrons in a uniform external magnetic
which are effectively moving in a two-dimensional space which is perpendicular to magnetic
These electrons are investigated in noncommuting coordinates1 and interesting phenomena lik
nonextensive statistics2 and orbital magnetism3 are resulted. We would like to consider electro
moving in two-dimensional noncommutative space when both uniform external magneti
electric fields are present. In the usual case this system leads to Hall effect. Indeed, we wil
that in noncommuting coordinates one obtains Hall effect in terms of an effective magnetic

Once noncommutativity is imposed coordinates behave as operators. However, we ca
in noncommutativity by keeping coordinates as commuting but requiring that composition of
functions is given by star product. After canonical quantization is performed we deal with ord
coordinates but replace ordinary product with star product. This procedure leads to an or
quantum mechanics problem in terms of an effective Hamiltonian depending on the nonco
tativity parameteru. As far as operator description of quantum mechanics is concerned
procedure suits well. However, if one deals with path integrals the suitable action should be
in terms of c-number phase space variables. One of the possibilities is to find an effective
which leads to the Green functions which are calculated in terms of operators.4 We will adopt
another method: The effective action which we use in path integrals is found by replacing d

a!Electronic mail: dayi@itu.edu.tr-dayi@gursey.gov.tr
b!Electronic mail: jellal@gursey.gov.tr-jellal@na.infn.it
45920022-2488/2002/43(10)/4592/10/$19.00 © 2002 American Institute of Physics
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tives appearing in Hamiltonian with c-number momentum variables. A similar approach is giv
Ref. 5 and a different one in Ref. 6. We will use the action obtained in this manner in
integrals to calculate the related Aharonov–Bohm phase after generalizing the action obta
symmetric gauge to embrace the other vector potentials at the first order inu.

In Sec. II we recall how one can find energy eigenvalues and eigenfunctions of an el
moving on plane in uniform external magnetic and electric fields. This serves as a guide in S
when we deal with the same system in noncommuting coordinates. In Sec. IV we pres
approach to derive the electric current in noncommutative coordinates. Then, we calcul
expectation value utilizing eigenfunctions derived in Sec. III, yielding the Hall effect in nonc
muting coordinates. This can be envisaged as the usual Hall effect in terms of an eff
magnetic field. Section V is devoted to calculate Aharonov–Bohm phase in noncommuting
dinates after presenting our receipt to obtain the action suitable to be used in path integral
phase is used to define an effective magnetic field in terms of commuting coordinates. We o
that effective magnetic fields obtained in Sec. IV and in Sec. V are the same. In the last sec
tuning the parameteru and utilizing the effective magnetic field we offer two different interpr
tations of electrons moving in noncommutative space as either leading to the fractional qu
Hall effect7 or composite fermions8 in the usual space. Moreover, we propose to measure
Aharonov–Bohm phase for large magnetic fields which may give some hints on the existe
spatial noncommutativity.

II. ELECTRON MOVING ON PLANE

An electron moving on the plane (x,y) in the uniform external electric fieldEW 52¹W f and the
uniform external magnetic fieldB which is perpendicular to the plane is described by the Ham
tonian

H5
1

2m S pW 1
e

c
AW D 2

2ef. ~1!

We neglect the spin, because taking it into account does not affect our results.
Let us adopt the symmetric gauge

AW 5S 2
B

2
y,

B

2
xD . ~2!

During the related experiments the electric fieldEW is taken in one of the two possible direction
Thus let the scalar potential be

f52Ex. ~3!

Making use of~2! and ~3! in ~1! leads to the Hamiltonian function

H~pW ,rW !5
1

2m F S px2
eB

2c
yD 2

1S py1
eB

2c
xD 2G1eEx. ~4!

As usual canonical quantization of this system is achieved by introducing the coordinat
momentum operatorsr̂ i , p̂i satisfying

@ r̂ i ,p̂ j #5 i\d i j ~5!

and dealing with the Hamiltonian operatorĤ obtained from~4! as Ĥ5H(pŴ ,rŴ).
To discuss the eigenvalue problem

ĤC5EC, ~6!
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it is convenient to perform the change of variables

ẑ5 x̂1 i ŷ , p̂z5
1
2 ~ p̂x2 i p̂y!

and introduce two sets of creation and annihilation operators:

b†522i p̂ z̄1
eB

2c
ẑ1l, b52i p̂z1

eB

2c
zC 1l, ~7!

and

d52i p̂z2
eB

2c
zC , d†522i p̂ z̄2

eB

2c
ẑ, ~8!

wherel5 mcE/B. These two sets commute with each other and satisfy the commutation rela

@b,b†#52m\v, @d†,d#52m\v, ~9!

wherev5 eB/mc is the cyclotron frequency. Now, the HamiltonianĤ can be written as

Ĥ5
1

4m
~b†b1bb†!2

l

2m
~d†1d!2

l2

2m
. ~10!

To calculate the eigenvaluesE and the eigenfunctionsC we separate~10! into two mutually
commuting parts:

Ĥ5Ĥosc2T̂,

whereĤosc denotes the harmonic oscillator part

Ĥosc5
1

4m
~b†b1bb†! ~11!

and the part linear ind andd† is given by

T̂5
l

2m
~d†1d!1

l2

2m
. ~12!

The harmonic oscillator eigenvalue equationĤoscFn5En
oscFn is easily solved:

Fn5
1

A~2m\v!nn!
~b†!nu0&,

~13!

En
osc5

\v

2
~2n11!, n50,1,2, . . .

leading to a discrete spectrum. However, the eigenvalue equationT̂f5Ef can be analyzed in
terms of the eigenvalues of the operatorsr̂ i denoted byr i as

fa5expS i (ay1 i
mv

2\
xy) D ,

~14!

Ea5
\l

m
a1

l2

2m
, aPR,
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yielding a continuous spectrum labeled bya.
Therefore, the eigenfunctions and the energy spectrum of the HamiltonianĤ are

C (n,a)5Fn^ fa[un,a&,
~15!

E(n,a)5
\v

2
~2n11!2

\l

m
a2

l2

2m
, n50,1,2,. . . , aPR,

where^ denotes the direct product.

III. ELECTRON MOVING ON NONCOMMUTATIVE PLANE

Let the coordinates of the plane be noncommuting:

@x,y#5 iu. ~16!

The parameteru is a real constant. Noncommutativity can be imposed by treating the coordi
as commuting but requiring that composition of their functions is given in terms of the star pr

![exp
iu

2
~]Q x]

W
y2]Q y]

W
x!. ~17!

Now, we deal with the commutative coordinatesx andy but replace the ordinary products with th
star product~17!. For example, instead of the commutator~16! one defines

x!y2y!x5 iu. ~18!

We would like to study the Hamiltonian~4! in terms of the noncommutative coordinates~16!. First
we quantize this system by establishing the commutation relations~5!. Then, the noncommutativ
ity of the coordinates is taken into account by defining a new operator as

Ĥ!C~rW ![ĤncC~rW !. ~19!

This definition yields the Hamiltonian operatorĤnc,

Ĥnc5
1

2m F S ~12k! p̂x2
eB

2c
ŷD 2

1S ~12k! p̂y1
eB

2c
x̂D 2G1eES x̂2

u

2\
p̂yD , ~20!

when the coordinate representation of momentump̂i52 i\] i is used andk5 euB/4\c .
The eigenvalue problem

ĤncC
nc5EncCnc ~21!

is as in ordinary quantum mechanics in spite of the fact that electron moves on noncomm
plane. The solutions of this problem can be worked out in a manner similar to the one used
II although here there exists a term linear in momentum which was not present inĤ. Then, let us
introduce two sets of operators

b̃†522i p̂̃ z̄1
eB

2c
ẑ1l2 , b̃52i p̂̃z1

eB

2c
zC1l2 , ~22!

and

d̃52i p̂̃z2
eB

2c
zC , d̃†522i p̂̃ z̄2

eB

2c
ẑ, ~23!
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wherep̂̃z5g p̂z ; g512k. The real parameterl2 will be fixed later. The sets of operators (b̃,b̃†)
and (d̃,d̃†) commute with each other. Moreover, they satisfy the commutation relations

@ b̃,b̃†#52m\ṽ, @ d̃†,d̃#52m\ṽ, ~24!

whereṽ5gv. The HamiltonianĤnc can be written as

Ĥnc5
1

4m
~ b̃†b̃1b̃b̃†!2

l1

2m
~ d̃†1d̃!2

l2
2

2m
, ~25!

where the parametersl6 are fixed to be

l65l6
emEu

4g\
. ~26!

We take into account only the values of the noncommutativity parameteruÞ4\c/eB. Otherwise,
l6 diverge. We will give a brief discussion of this fact in the last section.

Observing the similarity between the Hamiltonians~10! and ~25! the solutions of the eigen
value problem~21! can be read from~15! as

C (n,a,u)
nc [un,a,u&5

1

A~2m\ṽ!nn!
expS i (ay1

mṽ

2\
xy) D ~ b̃†!nu0&,

~27!

E(n,a,u)
nc 5

\ṽ

2
~2n11!2

\gl1

m
a2

m

2
l2

2 , n50,1,2,. . . , aPR.

We would like to emphasize that the results of Sec. II are recovered if the noncommuta
parameteru is switched off.

IV. HALL CONDUCTIVITY ON NONCOMMUTATIVE PLANE

We would like to find conductivity resulting from the HamiltonianĤnc. The first step in this
direction is to define the related current. Although the identification of derivatives with mome
operators] i5( i /\) p̂i is only valid in coordinate representation, we will use this definition

defining the current operatorJŴ on noncommutative plane as

JŴ5
ier

\
@Ĥnc,rŴ#5

egr

m S gpŴ 1
e

c
AW 1aW D , ~28!

whereaW 5(0,2 meEu/2\g) andr denotes electron density.

Now, the expectation value of the current operator^JŴ & can be calculated with respect to th
eigenstatesun,a,u& ~27! leading to

^Ĵx&50,
~29!

^Ĵy&52gS rec

B DE.

Therefore, the Hall conductivity on noncommutative plane, denoted bysH
nc, is

sH
nc52gS rec

B D . ~30!
                                                                                                                



u-

xam-
nics in
be the
ount.

ternal

4597J. Math. Phys., Vol. 43, No. 10, October 2002 Hall effect in noncommutative coordinates

                    
Recall that in the ordinary case the Hall conductivitysH and the filling factorn are given as

sH5
e2

h
n, n5

F0r

B
, ~31!

whereF05hc/e. Comparison of~30! with ~10! suggests that one can interpret the noncomm
tative case as a theory of Hall effect on commuting plane with an effective magnetic field

Beff5
B

12
euB

4\c

. ~32!

Moreover, the effective filling factor

neff5
F0r

B S 12
euB

4\cD , ~33!

can also be defined.

V. THE AHARONOV–BOHM EFFECT

We would like to calculate the Aharonov–Bohm effect on noncommutative plane by e
ining the action appearing in the related path integral. When we deal with quantum mecha
the usual spaces it is the related classical action. However, it is not clear what should
definition of action appropriate for path integrals when noncommutativity is taken into acc
Because, we define Hamiltonian operators in terms of the receipt used in~19! where we identify
] i[( i /\) p̂i . We propose to define the path integral in noncommutative space as

Z5E d2pd2r expS i

\ E dt[ pW "rẆ2Heff(rW,pW )] D , ~34!

where (rW,pW ) define the commuting phase space andHeff(rW,pW) will be obtained from the related

Hamiltonian operator in noncommutative space by replacing the operatorspŴ , rŴ with c-number
variablespW , rW.

Let us deal with the Hamiltonian operator on noncommutive plane in the constant ex
electric fieldEW 5(Ex ,Ey) and the constant magnetic fieldB in the symmetric gauge~2!:

Ĥnc8 5
1

2m F S g p̂x2
eB

2c
ŷD 2

1S g p̂y1
eB

2c
x̂D 2G1eExS x̂2

u

2\
p̂yD1eEyS ŷ1

u

2\
p̂xD . ~35!

Although the Hamiltonian operator

Ĥu[
g2

2m
pŴ 21

e2

2mc2 AW 21
eg

2mc
~pŴ "AW 1AW "pŴ !1pŴ "KW 1eEW "rŴ, ~36!

whereKW 5 (eu/2\) (2Ey ,Ex), is equivalent to~35! only when the vector potentialAW is as given
in ~2!, we assume that at least at the first order inu it is valid for any gauge potential.

The c-number effective Hamiltonian corresponding to~36! is

Heff5
g2

2m
pW 21

e2

2mc2 AW 21pW "S eg

mc
AW 1KW D1eEW "rW. ~37!

Thus, the partition function can be written as
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Znc5NE d2pd2r expS i

\ E
t1

t2
dtFpW "S rẆ2

eg

mc
AW 2KW D2

g2

2m
pW 22

e2

2mc2 AW 22eEW "rWG D , ~38!

whereN is a normalization constant. Now, we can integrate over the momentapW to obtain

Znc5
2m

g2 NE d2r expS i

\ E
t1

t2
dtF m

2g2 rẆ 22
m

g2 rẆ "S eg

mc
AW 1KW D1

e

cg
AW "KW 1

m

2g2 KW 22eEW "rWG D .

~39!

The constantK2 term is irrelevant. In terms of a new normalization constantN8 we can write

Znc5N8E d2r expS i

\
S02

im

\g2 E
t1

t2
dt rẆ"S eg

mc
AW 1KW D D , ~40!

where we defined

S05E
t1

t2
dtF m

2g2 rẆ 22eEW "rW1
e

cg
AW "KW G . ~41!

The last term in the exponent of~40! can be written as

id52
im

g2\ E
rW(t1)

rW(t2)
drW"S eg

mc
AW 1KW D . ~42!

To investigate the Aharonov–Bohm effect for noncommuting coordinates, letAW 5¹W f (rW). Then

d52
m

g2\ E
rW(t1)

rW(t2)
drW"S eg

mc
¹W f ~rW !1KW D ~43!

depends only on the pointsrW(t1), rW(t2) which are kept fixed in path integrals. Therefore, it is
phase factor. i.e., propagation with the actionS0 is changed up to the phase factor~43!.

The Aharonov–Bohm effect can now be calculated as the integral of the phase facto~43!

along a loop enclosing a magnetic flux.KW is a constant vector so that, it does not contribute to
Aharonov–Bohm phase:

R drW•KW 50. ~44!

As in the ordinary case the unique contribution is due to the gauge potential

FAB
nc 522p

BS

gF0
, ~45!

whereS denotes the surface enclosed. Obviously, whenu50 the usual Aharonov–Bohm phas
results

FAB522p
BS

F0
. ~46!

Thus we can envisage the noncommutative case as a theory in commuting coordinates
effective magnetic field
                                                                                                                



lectric
ffective
ect
mmu-

nal
plane

s of
ctor

e as

s to
ic field

ly the

in the

4599J. Math. Phys., Vol. 43, No. 10, October 2002 Hall effect in noncommutative coordinates

                    
Beff5
B

12
euB

4\c

, ~47!

which is the one obtained previously~32!.

VI. DISCUSSIONS

Electrons moving on a noncommutative plane when uniform external magnetic and e
fields are present can be envisaged as the usual motion of electrons experiencing an e
magnetic field~32!. This is one of our main results. It followed by considering either Hall eff
or Aharonov–Bohm phase in noncommuting coordinates. By tuning the value of the nonco
tativity parameteru we can offer two different interpretations of this fact.

The fractional quantum Hall effectis one of the most interesting features of low dimensio
systems.7 For electrons moving on a plane in a magnetic field which is perpendicular to the
and a uniform external electric field which is in the plane, the observed Hall conductivity is

sH5 f
e2

h
,

wheref 51/3,2/3,1/5,..., denoting the fractional quantized values of the filling factorn. We would
like to interpret this phenomena, which is known as the fractional quantum Hall effect, in term
the Hall effect on noncommutative plane. More precisely we identify the effective filling fa
~33! with the observed valuef by fixing the value ofu to beuH :

neffuu5uH
5 f . ~48!

In fact, this can be solved as

uH5
2F0

pB S 12 f
B

F0r D . ~49!

Therefore, whenu is fixed to beuH one can envisage the Hall effect on noncommutative plan
the usual fractional quantum Hall effect.

Composite fermionsare a new kind of particles appearing in condensed matter physic
provide an explanation of the behavior of electrons moving on plane when a strong magnet
B is present.8 Electrons possessing 2p; p51,2,..., flux quanta~vortices! can be thought of as
being composite fermions. One of the most important features of them is they feel effective
magnetic field

B* 5B22pF0r, ~50!

wherer is the electron density. To interpret electrons moving on noncommutative space
magnetic fieldB as the usual composite fermions we should tuneu such that

Beffuu5uc
5B* , ~51!

whereBeff is given in ~32!. We solve this to obtain

uc5
2F0

pB F12S 122p
rF0

B D 21G , ~52!

which in the limit of strong magnetic field leads to
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uc'4p
r

p S F0

B D 2

. ~53!

Thus, composite fermions can be envisaged as electrons moving in noncommutative plane
magnetic fieldB and the electric fieldE when we fixu5uc .

The Aharonov–Bohm phaseFAB
nc possesses a very interesting limit. Let us deal withuÞ0 and

the magnetic field satisfying the condition

B@
4c\

eu
. ~54!

For these values of magnetic field the Aharonov–Bohm phaseFAB
nc ~45! becomes

FAB
nc '

4c\S

euF0
, ~55!

which is independent ofB. For EW 50 the actionS0 reads

S̃0[S0uEW 505
m

2g2 E dt rẆ2,

which depends on the magnetic field asB22 when ~54! is satisfied. If the phaseFAB
nc can be

measured for the particle propagating with the actionS̃0 whenB satisfies~54! and observed tha
it is independent ofB after a certain value ofB, it may be evidence for spatial noncommutativit
Obviously, this conclusion is valid only for small values ofu. Because we assume it when w
write the action~36!. In Ref. 9 the Aharonov–Bohm effect in noncommutative coordinates
studied in terms of a field theoretical approach where an experiment to detect spatial nonc
tivity was proposed.

Critical value of u defined as

u* 5
4\c

eB
~56!

is avoided through this work. At this value ofu all of our analysis fails, becauseg51
2eBu/4\c cannot be inverted, thusl6 ~26! are not well defined. Indeed, whenu5u* the
Hamiltonian in noncommutative coordinates~20! becomes

Ĥnc~u5u* !5
mv2

8
~ x̂21 ŷ2!1eES x̂2

u*

2\
p̂yD . ~57!

i.e., the terms quadratic in momenta disappear, however a term linear in momenta su
Obviously, this system should be studied separately.

ACKNOWLEDGMENT

We would like to thank I. H. Duru for fruitful discussions on the Aharonov–Bohm effect

1L. Mezincescu, ‘‘Star operation in quantum mechanics,’’ hep-th/0007046; V. P. Nair and A. P. Polychronakos, Phy
B 505, 267 ~2001!, hep-th/0011172; J. Gamboa, M. Loewe, F. Mendez, and J. C. Rojas, ‘‘The Landau problem
noncommutative quantum mechanics,’’ hep-th/0104224; D. H. Correa, G. S. Lozano, E. F. Moreno, and F. A. S
nik, Mod. Phys. Lett. A16, 2075~2001!, hep-th/0109186;~for a review of earlier work! R. Jackiw, ‘‘Physical instances
of noncommuting coordinates,’’ hep-th/0110057.
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Wigner functions with boundaries
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We consider the general Wigner function for a particle confined to a finite interval
and subject to Dirichlet boundary conditions. We derive the boundary corrections to
the ‘‘stargenvalue’’ equation and to the time evolution equation. These corrections
can be cast in the form of a boundary potential contributing to the total Hamiltonian
which together with a subsidiary boundary condition is responsible for the discreti-
zation of the energy levels. We show that a completely analogous formulation~in
terms of boundary potentials! is also possible in standard operator quantum me-
chanics and that the Wigner and the operator formulations are also in one-to-one
correspondence in the confined case. In particular, we extend Baker’s converse
construction to bounded systems. Finally, we elaborate on the applications of the
formalism to the subject of Wigner trajectories, namely in the context of collision
processes and quantum systems displaying chaotic behavior in the classical
limit. © 2002 American Institute of Physics.@DOI: 10.1063/1.1504885#

I. INTRODUCTION

The Moyal–Wigner–Weyl quantization constitutes a phase space quantization method
native to canonical or path integral quantizations.1–13 Instead of wave functions and operators o
deals with quasidistribution~Wigner! functions and ordinary c-functions in phase space. The W
symbol associated with a general operatorÂ( x̂,p̂) is given by1,4,12

AW~x,p![
\

2p E
2`

1`

djE
2`

1`

dh Tr$Â~ x̂,p̂!ei j x̂1 ih p̂%e2 i jx2 ihp. ~1!

In this framework the average ofÂ( x̂,p̂;t) is evaluated according to the formula

^cuÂ( x̂,p̂;t)uc&5*2`
1` dx*2`

1` dp AW(x,p;0)FW(x,p;t), whereFW(x,p;t) is proportional to the
Weyl symbol of the quantum density matrix,r̂, and is known as the Wigner function of th
system.2 For a pure state,r̂5uc&^cu, the Wigner function can be shown to be of the form:

FW~x,p;t ![
1

p\ E
2`

1`

dye22ipy/\c* ~x2y;t !c~x1y;t !, ~2!

wherec(x;t) is the solution of Schro¨dinger’s equation:i\ (]c/]t) (x;t)5Ĥc(x;t). The Weyl
‘‘transform’’ establishes a biunivocal correspondence between the quantum algebraÂ of observ-
ables with standard operator product• and quantum commutator@ ,#, on the one hand, and th
‘‘classical’’ algebraA defined over the classical phase spaceT* M with a ‘‘star-product’’* and a
Moyal sine-bracket@ ,#M , on the other hand. The two latter operations are given by3,14

AW~x,p!* BW~x,p!5AW~x,p!e~ i\/2!JJBW~x,p!5AWS x,p2
i\

2
]W xDBWS x,p1

i\

2
]Q xD , ~3!

a!Electronic mail: nuno.dias@ulusofona.pt
b!Electronic mail: joao.prata@ulusofona.pt
46020022-2488/2002/43(10)/4602/26/$19.00 © 2002 American Institute of Physics
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@AW~x,p!,BW~x,p!#M5
1

i\
~AW* BW2BW* AW!5

2

\
AW~x,p!sinS \

2
JJ DBW~x,p!, ~4!

where

JJ[S ]Q

]x

]W

]p
2

]Q

]p

]W

]x
D .

One realizes immediately that in the limit\→0, the star product and the Moyal bracket beco
the ordinary product of c-numbers and the Poisson bracket, respectively. It is also easy to
that the dynamics of the Wigner function is governed by the Moyal bracket~4!:

]FW

]t
~x,p;t !5@HW~x,p!,FW~x,p;t !#M , ~5!

whereHW(x,p) is the Weyl symbol of the quantum Hamiltonian,Ĥ( x̂,p̂).
If the time-independent wave function happens to be an energy eigenstate with eigenvaE,

i.e., Ĥc(x)5Ec(x), then15–18 the Wigner functionFE
W(x,p) satisfies an equivalent* -genvalue

equation with identical* -genvalue:

HW~x,p!* FE
W~x,p!5FE

W~x,p!* HW~x,p!5EFE
W~x,p!. ~6!

More generally, to every eigenstateua& with eigenvaluea of some operatorÂ, there is one and
only one associated stargenfunctionFa

W(x,p), which is a solution of the stargenvalue equatio
AW(x,p)* Fa

W(x,p)5aFa
W(x,p).6,15,18This stargenfunction allows for the evaluation of the pro

ability of measuring the eigenvaluea:

P~A5a!5E dxE dp FW~x,p!Fa
W~x,p!. ~7!

It is important to emphasize that, in most cases, the advantage in the Wigner approach d
reside in solving specific problems. Rather, it should be regarded as a means to grasp
conceptual aspects of quantum mechanics and its connection with classical mechanics. Ne
less, in some situations it could be a better starting point for finding solutions to specific prob
The Wigner formulation is a useful tool to derive kinetic equations in particular regimes~dilute
gas, weakly interacting particles!. In nonequilibrium statistical mechanics this is a famili
approach.19 In collision processes the Wigner methods are also a useful tool.4,9 Contrary to the
standard operator approach they display the important advantage of making possible the
approximation methods similar to the ones used in the full classical treatment. Furthermo
related subject of Wigner trajectories4,5,20,21provides a pictorial and practical tool to study col
sion process and it is of similar importance in the context of quantum chaotic systems.4,13,22–24

Boundary value problems, on the other hand, are one of the cornerstones of quantum m
ics. These are much more realistic models and moreover they entail a discretization of o
ables’ spectra, which is one of the main features of quantum mechanics. They appear in v
all branches of physics, ranging from quantum mechanics to general relativity, open string
D-branes, where the noncommutative* -product and the Moyal bracket also find seve
applications.16,25,26In standard operator quantum mechanics some famous examples of bou
value problems include the Kondo problem,27 quantum Hall liquids with constriction,28 and the
Callan–Rubakov model.29 Furthermore one of the simplest collision processes is the colli
against an impenetrable boundary and some standard examples of quantum chaotic syst
bounded.4,24

In spite of the importance of boundary value problems in general and of these mod
particular, Wigner quantum mechanics does not provide a self-contained and consistent fo
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tion of confined systems. The aim of this paper is thus to provide such formulation. More pre
our aim is to generalize the two key equations of Wigner quantum mechanics@Eqs.~5! and~6!# to
the case when the original wave function is confined to an interval and satisfies Dirichlet bou
conditions.

Let us then consider a general confined system. In standard operator quantum mechan
first solve the Schro¨dinger equation in the bulk~with HamiltonianĤ), subsequently impose th
boundary conditions that pin down the physical solutions, and finally impose the wave funct
be zero beyond the bulk. Alternatively, we may be able to provide a boundary potentialV̂D that
confines the wave function and then solve the unconstrained system, with extended Hami
ĤD5Ĥ1V̂D and the original conditions at the boundaries.

To obtain the solution of the problem in terms of Wigner functions, we just have to inser
solution obtained in the Schro¨dinger formulation into the definition of the Wigner function. Th
was the method followed in Ref. 5. But the question that remains is: how do we solve the pr
within the Wigner–Weyl formulation?

The first approach cannot be easily translated into the Wigner framework because the
nonlocal character of the Wigner function produces nontrivial effects of the boundary on the
part of the Wigner function, so that the stargenvalue equation has to be altered, as we sh
@Secs. II–IV#.

The second procedure seems to be the natural starting point to derive, through the Wey
the Wigner formulation for the bounded system. However this is not an easy task, mainly be
the formulation of confined systems in terms of boundary potentials is already problematic
standard operator level. In Sec. VI we will consider this approach and~a! consistently solve the
problem at the standard operator level and~b! use the Weyl map to recover the bounded starg
value equation derived in Sec. III.

This paper is organized as follows. In Sec. II, we discuss some aspects of the bou
conditions satisfied by the Wigner function. In Secs. III–V we evaluate the boundary correc
to the * -genvalue equation~6! and the time evolution equation~5! directly from the general
formula of the confined wave function. Furthermore, we~a! extend Baker’s converse constructio
to bounded systems and~b! argue that the results obtained are compatible with the preservatio
the Wigner function’s normalization under time evolution. In Sec. VI we develop the boun
potential approach for standard operator quantum mechanics and show that through the We
this formulation yields the proper Wigner formulation of confined systems. In Sec. VII we dis
some practical applications of the formalism: the computation of Wigner trajectories for con
chaotic systems and for collision processes. Finally, in Sec. VIII we present our conclusion

II. WIGNER FUNCTION IN A FINITE INTERVAL

Let us assume that the domain of the wave function is the finite intervala,x,b with a
,b, so that the wave function vanishes outside this interval. As we now argue, quantum co
systems cannot be treated, in the Wigner formalism, through the standard procedure of so
differential equation and imposing the boundary conditions thereafter. In particular, the e
stargenfunctions for these systems do not satisfy the stargenvalue equation~6! with the Hamil-
tonian of the bulk.

As an example, consider the free particle in the infinite well, witha52b52L/2. The
stargenvalue equation would be of the form:

p2

2m * FW~x,p!5EFW~x,p!.

If we solve the corresponding Schro¨dinger equation with Dirichlet boundary conditions we get f
the fundamental state:
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2
\2

2m

]2

]x2 c~x!5Ec~x!⇒c1~x!5A2

L
cosS p

L
xD .

If we now determine the associated Wigner function using~2! we get5 that FW(x,p) is given by
Eqs.~39! and ~40!. We can easily check thatFW(x,p) does not satisfy the previous stargenval
equation and thus the only possible conclusion is that this equation has to be altered. Simila
can check that the time evolution of the system does not satisfy the Moyal equation with
Hamiltonian.

Let us start by studying the general properties of the Wigner function for a confined sy
Since the wave function vanishes outside the interval ]a,b@ , it satisfies the condition:

c* ~x2y!c~x1y!50 unless a,x2y,b and a,x1y,b.

This means that:~1! for a,x<x05(a1b)/2, we have

c* ~x2y!c~x1y!50 unless a2x,y,x2a,

similary, ~2! for x0,x,b:

c* ~x2y!c~x1y!50 unless x2b,y,b2x,

and finally,~3! for x<a or x>b:

c* ~x2y!c~x1y!50, ;y.

We conclude that the Wigner function~2! for the bounded system can be written as

FW~x,p!5
1

p\ E
2`

1`

dy e22ipy/\c* ~x2y!c~x1y!5Q1~x!F1
W~x,p!1Q2~x!F2

W~x,p!, ~8!

where

Q1~x!5u~x2a!2u~x2x0!5H 1, if a,x<x0

0, otherwise,
~9!

Q2~x!5u~x2x0!1u~b2x!215H 1, if x0,x,b

0, otherwise.

u(x) is the Heaviside’s step function:u(x)51 iff x.0 andu(x)50 otherwise, and finally:

5 F1
W~x,p!5

1

p\ E
a2x

x2a

dy e22ipy/\c* ~x2y!c~x1y!,

F2
W~x,p!5

1

p\ E
x2b

b2x

dy e22ipy/\c* ~x2y!c~x1y!.

~10!

Since the wave function or its derivatives are possibly discontinuous atx5a and x5b, and to
avoid possible misinterpretations in our future calculations, the previous integrals are defin
improper:*a2x

x2a stands for limc→a1*c2x
x2c and likewise*x2b

b2x stands for limc→b2 *x2c
c2x . Notice that

this is fully compatible with our previous results identifying the domain wherec* (x2y)c(x
1y) is not identically zero.

As a second remark let us point out that the boundary conditions onc(x) are imposed on the
bulk side of the boundary. For instance, the Dirichlet boundary conditions would be of the
lime→01 c(a1e)5 lime→01 c(b2e)50, which is not the same as requiringc(a)5c(b)50,
since these are valid independently of the boundary conditions satisfied byc(x). This is so
                                                                                                                



ow-

ation:
.

of a

it
limit

dary
e

4606 J. Math. Phys., Vol. 43, No. 10, October 2002 N. C. Dias and J. N. Prata

                    
becausec(x) is confined to the open interval ]a,b@ . It is important to realize that we could
equally choose to defined ‘‘confined’’ as ‘‘confined to the close interval@a,b# ’’ and in fact for
Dirichlet boundary conditions the two prescriptions yield exactly the same wave function. H
ever, the confinement to an open interval makes some of the future steps more natural~though
occasionally more involved! and this is why we choose to work with this prescription.

Finally, and to make our future expressions more compact, we introduce the not
f (c6)5 lime→01 f (c6e), which will be used whenever there is no risk of misunderstanding

Let us then study the boundary conditions that are satisfied by the Wigner function
confined system. From~8!–~10!, one realizes immediately that:

H FW~a1,p!5F1
W~a1,p!5F2

W~b2,p!5FW~b2,p!50,

FW~x0
2 ,p!5F1

W~x0 ,p!5F2
W~x0 ,p!5FW~x0

1 ,p!,
~11!

where, accordingly to the previous notation,FW(a1,p) stands for the limit lime→01 FW(a
1e,p) and likewise for the other expressions. SinceFW(x,p) is defined as an improper integral
already requires the evaluation of a limit. This limit will always be calculated before the
limx→a1 FW(x,p), i.e., first we evaluate the Wigner function for allx and only then do we
compute whatever limits of the Wigner function. Let us proceed: Eq.~11! means thatFW(x,p) is
continuous atx0 and obeys Dirichlet boundary conditions irrespective of the particular boun
conditions satisfied by the associated wave functionc. The boundary conditions obeyed by th
confined wave function act only on the derivatives of the Wigner function. Fora,x<x0 a
straightforward computation leads to:

]F1
W

]x
~x,p!5

1

p\ H e2 ~2ip/\!(x2a)c* ~a1!c~2x2a1!1e2 ~2ip/\!(a2x)c* ~2x2a1!c~a1!

1E
a2x

x2a

dy e22ipy/\@c8* ~x2y!c~x1y!1c* ~x2y!c8~x1y!#J , ~12!

where the prime denotes the derivative with respect to the argument. Consequently,

]FW

]x
~a1,p!5 lim

x→a1

]F1
W

]x
~x,p!5

2

p\
uc~a1!u2,

]FW

]x
~x0

2 ,p!5
]F1

W

]x
~x0 ,p!5

1

p\
@e2 ~ ip/\!(b2a)c* ~a1!c~b2!1e2 ~ ip/\!(a2b)c* ~b2!c~a1!#

1
1

p\
lim

e→01

E
~~a2b!/2! 1e

~~b2a!/2! 2e
dy e22ipy/\@c8* ~x02y!c~x01y!

1c* ~x02y!c8~x01y!#. ~13!

Similarly, from F2
W we get

]FW

]x
~b2,p!5 lim

x→b2

]F2
W

]x
~x,p!52

2

p\
uc~b2!u2,
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]FW

]x
~x0

1 ,p!5
]F2

W

]x
~x0 ,p!

52
1

p\
@e2 ~ ip/\!(b2a)c* ~a1!c~b2!1e2 ~ ip/\!(a2b)c* ~b2!c~a1!#

1
1

p\
lim

e→01

E
~~a2b!/2! 1e

~~b2a!/2! 2e
dy e22ipy/\@c8* ~x02y!c~x01y!

1c* ~x02y!c8~x01y!#. ~14!

We conclude that in general (]FW/]x) (x0
2 ,p)Þ (]FW/]x) (x0

1 ,p), except for Dirichlet boundary
conditions@i.e.,c(a1)5c* (a1)5c(b2)5c* (b2)50], in which case the Wigner function als
obeys Neumann boundary conditions: (]FW/]x) (a1,p)5 (]FW/]x) (b2,p)50. We can carry on
with this process and compute the second and third derivatives. The results concerning the
ary conditions can then be summarized as follows. All Wigner functions for bounded sys
satisfy Eq.~11!. These are consistency conditions and, given their general character, canno
countenance to the discretization of the energy spectrum. The boundary conditions satisfied
confined wave function yield subsidiary conditions on the Wigner function:

Dirichlet: c(a1)5c* (a1)5c(b2)5c* (b2)50,

]FW

]x
~a1,p!5

]FW

]x
~b2,p!50. ~15!

If a Wigner function satisfies these Neumann conditions, then itautomaticallyverifies:

5
]FW

]x
~x0

2 ,p!5
]FW

]x
~x0

1 ,p!,

]2FW

]x2 ~a1,p!5
]2FW

]x2 ~b2,p!50,

]2FW

]x2 ~x0
2 ,p!5

]2FW

]x2 ~x0
1 ,p! .

~16!

Obviously, this pattern does not continue indefinitely. For instance, (]3FW/]x3) (a1,p)
5 (8/p\) uc8(a1)u2Þ0. It is also important to emphasize that contrary to Eq.~15!, the additional
set of equations~16!, being just a consequence of Eq.~15!, do not constrainFW any further.

Neumann:c8(a1)5c8* (a1)5c8(b2)5c8* (b2)50,

5
]FW

]x
~a1,p!Þ0,

]FW

]x
~b2,p!Þ0,

]FW

]x
~x0

2 ,p!Þ
]FW

]x
~x0

1 ,p!,

]2FW

]x2 ~a1,p!5
]2FW

]x2 ~b2,p!50,

]2FW

]x2 ~x0
2 ,p!5

]2FW

]x2 ~x0
1 ,p!.

~17!

We also have: (]3FW/]x3) (a1,p)Þ0.
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The former results show that the confinement of the system and the boundary cond
satisfied by the wave function influence the Wigner function in a very nontrivial way. Furtherm
conditions~11!, ~15!, and~16! will play an important part in the derivation of the new* -genvalue
equation for bounded systems.

However, one should realize that the previous results also display some less interestin
tures: let us focus on the case in which the wave function satisfies Dirichlet boundary cond
If the system is also confined then the Wigner function will satisfy the set of conditions~11!, ~15!,
~16!. The problem is that the converse result is not valid, i.e., conditions~11!, ~15!, ~16! do not
imply the confinement of the system and it is also not clear if, in general, they imply tha
original wave function satisfy Dirichlet boundary conditions. Hence,~11!, ~15!, ~16! will not
completely pin down the Wigner transform of the confined wave function satisfying Diric
boundary conditions and thus Eqs.~11!, ~15!, ~16! fail to provide the proper translation~into the
Wigner language! of the Dirichlet boundary conditions on the wave function.

We now introduce a new set of boundary conditions for the Wigner function, which are
equivalent to Dirichlet boundary conditions on the original wave function, both for the confine
well as for the unconfined case. We call these conditionsintegral Dirichlet boundary conditions
and they can be derived as follows: if the wave function satisfies Dirichlet boundary cond
then lime→01 P(a1e)5 lime→01uc(a1e)u250 and similarly lime→01 P(b2e)5 lime→01uc(b
2e)u250 whereP(x) stands for the probability distribution. These equations can be written in
Wigner context quite straightforwardly:

5
lim

e→01

E
2`

1`

dpFW~a1e,p!50,

lim
e→01

E
2`

1`

dpFW~b2e,p!50.

~18!

Notice that the use of the limits is valid~though unnecessary! in the unconfined case~where the
wave function and its derivatives are continuous! but it is necessary if the system is confined.

From the two sets of boundary conditions satisfied by the Wigner function@Eqs. ~11!, ~15!,
~16! and Eq.~18!#, the Dirichlet integral ones are the most appealing both from the physica
the mathematical points of view: first, because they represent a physically meaningful impo
that the probability of finding the particle at the boundary is zero. Second, because they ar
equivalent to the Dirichlet boundary conditions on the wave function. From Eqs.~7! and~18!, we
get

lim
e→01

E
2`

1`

dp FW~a1e,p!50⇒ lim
e→01

uc~a1e!u250⇒ lim
e→01

c~a1e!50, ~19!

and similarly for theb-boundary. Finally, and to avoid a possible misinterpretation let us point
that Eq.~11! does not imply the satisfaction of conditions~18! given the fact that, in general, it i
not possible to interchange the order in which one evaluates the limit and the integral in~18!. For
instance, if a confined wave function satisfies Neumann conditions then the Wigner functio
satisfy ~11! but not ~18!.

III. BOUNDARY STARGENVALUE EQUATION

Let us henceforth assume that the wave function satisfies Dirichlet boundary conditio
that Eqs.~11!, ~15!, ~16!, and ~18! are valid. Furthermore, we assume thatc(x) is an energy-
eigenstate for a Hamiltonian of the form:Ĥ( x̂,p̂)5 ( p̂2/2m) 1V( x̂). If we substituteFW ~8! on
the left-hand side of Eq.~6!, we get
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HW* FW5HW* $Q1F1
W1Q2F2

W%5H p2

2m
1V~x!J * ~Q1F1

W!1H p2

2m
1V~x!J * ~Q2F2

W!. ~20!

A straightforward calculation leads to

HW* ~Q1F1
W!5Q1~HW* F1

W!2
i\p

2m
@d~x2a!2d~x2x0!#F1

W1
\2

8m
@d8~x2x0!2d8~x2a!#F1

W

1
\2

4m
@d~x2x0!2d~x2a!#

]F1
W

]x
. ~21!

Taking into account the boundary conditions atx5a, we get

HW* ~Q1F1
W!5Q1~HW* F1

W!1
i\p

2m
d~x2x0!F1

W~x0 ,p!1
\2

4m
d~x2x0!

]F1
W

]x
~x0 ,p!

1
\2

8m
d8~x2x0!F1

W~x,p!. ~22!

Similarly, we also have

HW* ~Q2F2
W!5Q2~HW* F2

W!2
i\p

2m
d~x2x0!F2

W~x0 ,p!2
\2

4m
d~x2x0!

]F2
W

]x
~x0 ,p!

2
\2

8m
d8~x2x0! F2

W~x,p!. ~23!

Adding up all contributions and taking into account the fusing conditions~11! and~16!, we obtain

HW* FW5Q1~HW* F1
W!1Q2~HW* F2

W!. ~24!

Let us then calculate the termHW* F1
W for a,x<x0 and the termHW* F2

W for x0,x,b. The
following theorem will do this.

Theorem: Let F1
W andF2

W be given by Eq.~10! wherec(x) is an energy eigenstate satisfyin
Dirichlet boundary conditions ata andb. Let HW5(p2/2m) 1V(x). We then have

H HW* F1
W~x,p!5EF1

W~x,p!1
\2

2m
d8~x2a!* F1

W~x1,p! for a,x<x0 ,

HW* F2
W~x,p!5EF2

W~x,p!2
\2

2m
d8~x2b!* F2

W~x2,p! for x0,x,b .

~25!

Proof: Let us consider the productHW* F1
W . Following the method described in Ref. 15, w

get

HW* F1
W5

1

p\ F 1

2m S p2
i\

2
]W xD 2

1V~x!G E
a2x

x2a

dy e2 ~2iy /\!(p1 ~ i\/2!]Qx)c* ~x2y!c~x1y!

5
1

p\ E
a2x

x2a

dy e2 2iyp/\V~x1y!c* ~x2y!c~x1y!

1
1

2mp\ Fp22 i\p]W x2
\2

4
]W x

2G E
a2x

x2a

dy e2 ~2iyp/\!c* ~x2y!c~x1y!, ~26!
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where ]W x acts on F1
W and ]Q x acts on HW. Taking into account thatpe2 2iyp/\5( i\/2)

3(]/]y) e2 2iyp/\ and thatc(x) is an energy eigenstate, we get after a few integrations by p

HW~x,p!* F1
W~x,p!5EF1

W~x,p!1B1~x,p!. ~27!

The extra termB1(x,p) is a boundary correction given by

B1~x,p!52
\

2pm
e2 ~2ip/\!(a2x)H 2ip

\
c* ~2x2a2!c~a1!1c8* ~2x2a2!c~a1!

1c* ~2x2a2!c8~a1!J . ~28!

For Dirichlet boundary conditions, we get

B 1
D~x,p!52

\

2pm
e2 ~2ip/\!(a2x)c* ~2x2a2!c8~a1!. ~29!

Let us now attempt to expressB 1
D(x,p) in terms of the Wigner functionF1

W(x,p). Consider
the following integral~wheree.0):

Le[E
2`

1`

dk eik(x2a)kF1
WS x1e,p2

\

2
kD

5
1

p\ E
2`

1`

dkE
a2x2e

x2a1e

dy eik(x2a1y)ke22ipy/\c* ~x1e2y!c~x1e1y!

5
2

i\ E
a2x2e

x2a1e

dyF ]

]y
d~x2a1y!Ge22ipy/\c* ~x1e2y!c~x1e1y!

52
2

i\ E
a2x2e

x2a1e

dy d~x2a1y!e22ipy/\H 2
2ip

\
c* ~x1e2y!c~x1e1y!

2c8* ~x1e2y!c~x1e1y!1c* ~x1e2y!c8~x1e1y!J
5

2i

\
exp2 ~2ip/\!(a2x)H 2

2ip

\
c* ~2x2a1e!c~a1e!2c8* ~2x2a1e!c~a1e!

1c* ~2x2a1e!c8~a1e!J . ~30!

In particular for a wave function satisfying a Dirichlet boundary condition, we conclude
lime→01 Le

D(x,p;a)5 (2i /\) e2 (2ip/\)(a2x)c* (2x2a2)c8(a1). It is straightforward to obtain
from Eq. ~29!: B 1

D(x,p)5 lime→01 ( i\2/4pm) Le
D(x,p;a). Let us now try to cast this expressio

in terms of* -products:

Le~x,p!5 (
n50

`
1

n! S 2
\

2D n ]nF1
W~x1e,p!

]pn E
2`

1`

dk eik(x2a)kn11

522ip (
n50

`
1

n! S i\

2 D n

d (n11)~x2a!
]nF1

W

]pn ~x1e,p!

522ip@d8~x2a!* F1
W~x1e,p!#. ~31!
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Taking the limite→01 of the previous expression and substituting it in~29! and ~27! yields the
first equation of ~25! directly. As a final remark we notice thatd8(x2a)* F1

W(x1,p)
5 lime→0$d8(x2a)* F1

W(x1e,p)% is not identical to d8(x2a)* $ lime→0F1
W(x1e,p)%5d8(x

2a)* F1
W(x,p). This last expression is not even well defined@cf. ~30!# since the Dirac delta

function is evaluated at a point wherec8(x) is not continuous. Hence, we should keep in mi
that in general, we cannot interchange the order in which the star product and the limite→0 are
evaluated.

Finally, we perform the analogous procedure forF2
W and get the second equation of~25!,

which concludes the proof.
Let us then return to Eq.~24!. Using Eq.~25! we get

HW~x,p!* FW~x,p!5Q1~x!H EF1
W~x,p!1

\2

2m
d8~x2a!* F1

W~x1,p!J
1Q2~x!H EF2

W~x,p!2
\2

2m
d8~x2b!* F2

W~x2,p!J . ~32!

Let us try to find the corresponding compact version forFW(x,p) @Eq. ~8!#. We notice the
following.

~1! Q1EF1
W1Q2EF2

W5E$Q1F1
W1Q2F2

W%5EFW.

~2!Q1~x!$d8~x2a!* F1
W~x1,p!%5Q1~x!H 2

1

p\
e2 ~2ip/\!(a2x)c* ~2x2a2!c8~a1!J

5Q1~x1!H 2
1

p\
e2 ~2ip/\!(a2x)c* ~2x2a2!c8~a1!J

5d8~x2a!* $Q1~x1!F1
W~x1,p!%, ~33!

where in the first step we used Eqs.~29! and ~31!; in the second step the fact thatQ1(x)
5 lime→01 Q1(x1e),;xÞa,x0 and thatc* (2x2a2) vanishes forx5a andx5x0 ; and finally
in the last step thatQ1(x1) is p-independent.

~3! Similarly, we haveQ2(x)$d8(x2b)* F2
W(x2,p)%5d8(x2b)* $Q2(x2)F2

W(x2,p)%.
~4! Finally, we also have

d8~x2b!* $Q1~x1!F1
W~x1,p!%

5Q1~x1!$d8~x2b!* F1
W~x1,p!%

5
i

2p
Q1~x1!E

2`

1`

dk eik(x2b)kF1
WS x1,p2

\

2
kD

52
1

p\
Q1~x1!u~x12x0!e2 ~2ip/\!(b2x)

3H 2
2ip

\
c* ~2x2b2!c~b1!2c8* ~2x2b2!c~b1!1c* ~2x2b2!c8~b1!J

50, ~34!

where in the third step we made the same calculation as in Eq.~30! and in the last step we use
the fact thatc(b1)5c8(b1)50, or else thatQ1(x1)50,;x>x0 andu(x12x0)50,;x,x0 .

~5! Similarly,

d8~x2a!* ~Q2~x2!F2
W~x2,p!!50. ~35!

Using these results we can rewrite Eq.~32! as
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HW* FW5EFW1
\2

2m
d8~x2a!* $Q1~x1!F1

W~x1,p!1Q2~x2!F2
W~x2,p!%

2
\2

2m
d8~x2b!* $Q1~x1!F1

W~x1,p!1Q2~x2!F2
W~x2,p!%, ~36!

from where it immediately follows:

S p2

2m
1V~x! D * FW~x,p!2

\2

2m
d8~x2a!* FW~x1,p!1

\2

2m
d8~x2b!* FW~x2,p!5EFW~x,p!.

~37!

Following the same procedure, one would also obtain

FW~x,p!* S p2

2m
1V~x! D2

\2

2m
FW~x1,p!* d8~x2a!1

\2

2m
FW~x2,p!* d8~x2b!5EFW~x,p!.

~38!

We conclude that, if the eigenfunction satisfies Dirichlet boundary conditions, then the c
sponding Wigner function does not satisfy the standard* -genvalue equation~6!, but rather a
modified equation given by~37! and~38!. Furthermore, the source of discretization of the ene
spectrum are not the Dirichlet conditions on the Wigner function but instead the subsidiary b
ary conditions~15! or ~18!.

As a simple example let us consider the free particle in the infinite potential well. We ch
as ansatz:

FW~x,p!52
a2

2pp
cos@2~b2kuxu!#•sinF2p

\ S L

2
2uxu D G1

a2

4p~p1\k!
sinF2

\
~p1\k!S L

2
2uxu D G

1
a2

4p~p2\k!
sinF2

\
~p2\k!S L

2
2uxu D G , ~39!

corresponding to the wave functionc(x)5a sin(kx1b). This function is continuous atx050 and
satisfies Dirichlet’s condition atx56L/2, in accordance with~11!. If we impose the constraints
~15! and substitute this expression in the* -genvalue equation~37! and ~38!, using the integral
form L @Eq. ~30!#, we obtain

kn5
np

L
, bn5

np

2
, En5

\2kn
2

2m
5

\2p2

2mL2 n2 ~n51,2,...!. ~40!

Finally, if we impose the normalization*a
b dx*2`

1` dp FW(x,p)51, we obtaina5A2/L. This result
is in perfect agreement with Ref. 5.

IV. BAKER’S CONVERSE CONSTRUCTION

In Sec. III we proved that if the wave function is confined to the interval ]a,b@ , satisfies the
operator eigenvalue equation and Dirichlet boundary conditions ata1 and b2 then the corre-
sponding Wigner function satisfies a modified* -genvalue equation together with integral Dirichl
boundary conditions ata1 andb2. In this section we want to prove the converse result. In
unconfined case this result is known as Baker’s converse construction.6,15 Hence, in this section
we want to extend Baker’s converse construction to the confined case, thus proving th
equivalence of the Wigner and operator formulations of quantum mechanics when boundar
present.

Let us then consider some real functionFW(x,p) satisfying the following conditions:
~i! it is a continuous function ofx andp;
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~ii ! it has an infinite number of derivatives with respect top and is twice differentiable with
respect tox;
~iii ! FW obeys integral Dirichlet boundary conditions atx5a1 andx5b2, Eq. ~18!;
~iv! it obeys the left- and right-boundary stargenvalue equations~37! and ~38! whene→01:

S p2

2m
1V~x! D * FW~x,p!2

\2

2m
d8~x2a!* FW~x1e,p!1

\2

2m
d8~x2b!* FW~x2e,p!

5FW~x,p!* S p2

2m
1V~x! D2

\2

2m
FW~x1e,p!* d8~x2a!1

\2

2m
FW~x2e,p!* d8~x2b!

5EFW~x,p!. ~41!

We will now prove that under these assumptions, there is a unique~up to a global phase factor!
normalized complex and continuous functionc, related toFW according to~2!, which obeys
Dirichlet boundary conditions atx5a1 andx5b2 and is a solution of Schro¨dinger’s equation.

It will prove useful to consider the Fourier transform ofFW:

FW~x,p!5
1

p\ E
2`

1`

dy e22ipy/\F̃~x,y!. ~42!

Substituting this expression in the left- and right-stargenvalue equations~41!, and following the
same steps as in Eq.~26!, we obtain

1

p\ E
2`

1`

dy e22ipy/\H F2
\2

2m S ]x6]y

2 D 2

1V~x6y!2EG F̃~x,y!2
\2

2m
d8~x6y2a!F̃~x1e,y!

1
\2

2m
d8~x6y2b!F̃~x2e,y!J 50. ~43!

This means thatF̃(x,y) satisfies the equations:

F2
\2

2m S ]x6]y

2 D 2

1V~x6y!G F̃~x,y!2
\2

2m
d8~x6y2a!F̃~x1e,y!1

\2

2m
d8~x6y2b!F̃~x2e,y!

5EF̃~x,y!. ~44!

From now on we will follow the steps of the standard Baker converse construction for uncon
systems.6 Introducing the functionF such thatF(x2y,x1y)5F̃(x,y) and performing the chang
of variablesu5x2y andv5x1y, we get

5
F2

\2

2m

]2

]v2 1V~v !GF~u,v !2
\2

2m
d8~v2a!F~u1e,v1e!1

\2

2m
d8~v2b!F~u2e,v2e!

5EF~u,v !,

F2
\2

2m

]2

]u2 1V~u!GF~u,v !2
\2

2m
d8~u2a!F~u1e,v1e!1

\2

2m
d8~u2b!F~u2e,v2e!

5EF~u,v !,
~45!

from where it follows thatF(u,v)5j(u)c(v) and soF̃(x,y)5j(x2y)c(x1y). Furthermore,
sinceFW(x,p) is real, Eq.~42! implies thatj5c* and soF̃(x,y)5c* (x2y)c(x1y), where the
complex functionc obeys
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2
\2

2m
c9~x!1V~x!c~x!2

\2

2m
d8~x2a!c~x1!1

\2

2m
d8~x2b!c~x2!5Ec~x!, ~46!

where we performed the limite→01. Finally, if FW(x,p) satisfies integral Dirichlet conditions a
x5a1 andx5b2 then the corresponding wave function satisfiesc(a1)5c(b2)50, Eq. ~19!.

In summary, we have shown that ifFW satisfies the above-mentioned conditions~i!–~iv! then
FW is the Wigner transform~2! of a complex functionc which ~1! is a solution of the Schro¨dinger
equation~46! and~2! obeys Dirichlet boundary condition atx5a1 andx5b2. In Sec. VI we will
show how to solve this equation and prove that its unique~up to a global phase factor! solution is
the standard solution of the corresponding eigenvalue problem in operator quantum mech

V. BOUNDARY DYNAMICS

Let us now consider the time evolution:

]FW

]t
5Q1

]F1
W

]t
1Q2

]F2
W

]t
, ~47!

and focus on the time derivative]F1
W/]t:

]F1
W

]t
5

1

p\ E
a2x

x2a

dy e22ipy/\F]c*

]t
~x2y!c~x1y!1c* ~x2y!

]c

]t
~x1y!G

5
1

ip\2 E
a2x

x2a

dy e22ipy/\H \2

2m
@c9* ~x2y!c~x1y!2c* ~x2y!c9~x1y!#1@V~x1y!

2V~x2y!#c* ~x2y!c~x1y!J , ~48!

where we used the Schro¨dinger equation. Consider the first term. After a few integrations by p
and by keeping track of the boundary contributions and Dirichlet’s condition, we obtain

1

2imp E
a2x

x2a

dy e22ipy/\c9* ~x2y!c~x1y!

5
i

2mp
$e2 ~2ip/\!(x2a)c8* ~a1!c~2x2a2!2e2 ~2ip/\!(a2x)c* ~2x2a2!c8~a1!%

1
1

2imp E
a2x

x2a

dy e22ipy/\c* ~x2y!c9~x1y!2
p

m

]F1
W

]x
. ~49!

The penultimate term exactly cancels the second term on the right-hand side of Eq.~48!. The first
two terms in Eq.~49! can be written as

2
\

4mp E
2`

1`

dk@eik(a2x)1eik(x2a)#kF1
WS x1,p2

\

2
kD

52
i\

2m
@F1

W~x1,p!* d8~x2a!2d8~x2a!* F1
W~x1,p!#

52
\2

2m
@d8~x2a!,F1

W~x1,p!#M . ~50!
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The terms involving the potentialV(x) are familiar in Wigner quantum mechanics. They yield t
contribution@V(x),F1

W(x,p)#M . After assembling all the results, we get

]F1
W

]t
~x,p;t !5F p2

2m
1V~x!,F1

W~x,p;t !G
M

2
\2

2m
@d8~x2a!,F1

W~x1,p;t !#M . ~51!

A similar calculation leads to

]F2
W

]t
~x,p;t !5F p2

2m
1V~x!,F2

W~x,p;t !G
M

1
\2

2m
@d8~x2b!,F2

W~x2,p;t !#M . ~52!

From these results we get forFW(x,p;t)5Q1(x)F1
W(x,p;t)1Q2(x)F2

W(x,p;t):

]FW

]t
~x,p;t !5F p2

2m
1V~x!,FW~x,p;t !G

M

2
\2

2m
@d8~x2a!,FW~x1,p;t !#M

1
\2

2m
@d8~x2b!,FW~x2,p;t !#M , ~53!

where we used the set of relations given by Eqs.~33!–~36!.
A straightforward consequence is that probability is conserved~as expected!:

]

]t Ea

b

dxE
2`

1`

dp FW~x,p;t !5
]

]t E2`

1`

dxE
2`

1`

dp@Q1~x!F1
W~x,p;t !1Q2~x!F2

W~x,p;t !#50.

~54!

VI. WEYL TRANSFORM OF THE STANDARD QUANTUM DESCRIPTION

The standard approach to derive the Wigner formulation of the eigenvalue problem for
fined systems would amount to applying the Weyl transform,W, Eq. ~1!, to both the eigenvalue
equation and to the boundary conditions. However, we saw in Sec. II, that this procedure do
yield the correct results. As we shall see, this is linked to the way operator quantum mec
handles confined dynamical systems. The standard procedure is to~1! solve the eigenvalue equa
tion for the unconfined wave functionf(x) and~2! impose the wave function to be zero outsi
the bulk and produce the confined statec(x)5f(x)u(x2a)u(b2x). The problem in the Wigner
formulation is thatW(uc&^cu)ÞW(uf&^fu)u(x2a)u(b2x) and thus we cannot solve the unco
fined stargenvalue equation and manipulate its solution to obtain the confined Wigner func

The reason for this apparent contradiction between the standard operator and Wigner
lations of quantum mechanics resides in the fact thatc is not a globally valid solution of the
operator eigenvalue equation. Globally,c satisfies a different eigenvalue equation which includ
boundary potentials. Given the intrinsically nonlocal character of the Wigner function this fa
crucial to derive the correct Wigner description of the bounded system.

In Secs. VI A, VI B, and VI C we will ~a! derive a globally valid eigenvalue equation fo
confined systems satisfying Dirichlet boundary conditions,~b! show that the only solution of this
equation is the confined wave function, and~c! briefly discuss the numerical implementation of t
new eigenvalue equation. It will then be trivial to realize that the Weyl transform of the
eigenvalue equation is the bounded stargenvalue equation~37! and~38!, thus recovering the usua
correspondence between standard operator and Wigner quantum mechanics.

A. Bounded eigenvalue equation

Let f be the unconfined solution of the eigenvalue equation satisfying Dirichlet boun
conditions atx5a andx5b:
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Ĥf5Ef, Ĥ5
p̂2

2m
1V~ x̂!, f~a!5f~b!50. ~55!

Notice thatf(x) is the solution of Eq.~55! everywhere, i.e., for allxPR. To obtain the confined
wave function~for instance, for a particle in a box! the standard procedure is to cut offf outside
the box and produce the new wave function:c(x)5f(x)u(x2a)u(b2x). Notice thatc satisfies
Eq. ~55! inside the box, it also satisfies it outside the box, but it does not satisfy it at
boundaries. Hence,c is not a global solution of~55!. Due to nonlocal effects the Weyl transform
of c does not satisfy the stargenvalue equation~6!, even in the bulk.

It seems quite natural to expect that if we are able to provide the global eigenvalue eq
for c then the correct stargenvalue equation would just be its Weyl transform. The aim o
section is to derive this global equation. The first step is to introduce a twice differentiable ve
of the Heaviside step function and of the confined wave functionc:

ue~x!:H PC2~R! and is nondecreasing

50, x,2e, ce~x!5f~x!ue~x2a!ue~b2x!

51, x.e, 0,e!1.
~56!

The definition of ue(x) is fully compatible with the distributionu(x) we used previously:
lime→01 ue(x)50 if x,0, lime→01 ue(x)51 if x.0 and lime→01 ue(0) remains unspecified~it
might be any number between 0 and 1 or it may not be defined at all!. The results of this section
are not dependent on the particular functionue(x) but only of the general properties given in~56!.
From ~56! the smooth versions ofd(x) andd8(x) follow immediately:de(x)5ue8(x) andde8(x)
5ue9(x). It is also clear that lime→01(de(x),de8(x),ce(x))5(d(x),d8(x),c(x)). Let us then apply
Ĥ to ce(x):

Ĥce~x!5H 2
\2

2m

]2

]x2 1V~x!J ce~x!

5H 2
\2

2m
f9~x!1V~x!f~x!J ue~x2a!ue~b2x!

2
\2

2m
$2f8~x!de~x2a!22f8~x!de~b2x!1f~x!de8~x2a!1f~x!de8~b2x!%

5Ece~x!1
\2

2m
$f~x!de8~x2a!2f~x!de8~x2b!%, ~57!

where in the last step we use the fact thatf(x) satisfies the eigenvalue equation~55! and that the
Dirichlet boundary conditions onf(x) imply for sufficiently small e: f8(x)de(x2a)5
2f(x)de8(x2a) and likewisef8(x)de(b2x)52f(x)de8(x2b). The former equation is not ye
a closed eigenvalue equation force(x) since it also evolves the wave functionf(x).

In what follows and to simplify the discussion we will consider the case of just one boun
placed ata50. The derivation of the two-boundary eigenvalue equation follows exactly the s
steps and will be written explicitly at the end. In the one boundary case Eq.~57! reduces to

Ĥce~x!5Ece~x!1
\2

2m
de8~x!f~x!, ~58!

wheref(x) satisfies Eq.~55! with Dirichlet boundary conditions atx50. The former equation
follows from applyingĤ to the statece(x)5f(x)ue(x).

To proceed we notice that forx.e the two equations~55! and~58!—for f(x) and force(x),
respectively, are identical. If we supply identical boundary conditions, for instance, atx52e we
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will get identical solutions forx.e, i.e., if f(2e)5ce(2e) and f8(2e)5ce8(2e) then f(x)
5ce(x) for all x.e. Furthermore, and sincef(x) is analytical, we also have

f~x!5f~x12e!1 (
n51

`
~22e!n

n!

]nf

]xn ~x12e!, ~59!

and for x.2e we have f(x12e)5ce(x12e) and equally (]nf/]xn) (x12e)
5 (]nce /]xn) (x12e), ;nPN. Hence,

f~x!5ce~x12e!1 (
n51

`
~22e!n

n!

]nce

]xn ~x12e!, ;x.2e. ~60!

The trick here is that whilef(x) is analyticalce(x) is not@cf. ~56!# and thus the Taylor expansio
~60! yields f(x) instead ofce(x). Substituting the former expansion in Eq.~58! we get

Ĥce~x!5Ece~x!1
\2

2m
de8~x!H ce~x12e!1 (

n51

`
~22e!n

n!

]nce

]xn ~x12e!J . ~61!

Notice that Eq.~61! is valid for all xPR becausede8(x)50 if x,2e. Finally by taking the limit
e→01 we obtain

Ĥc~x!5Ec~x!1
\2

2m
d8~x!c~x1!, ~62!

where we used the notationx1 to make it explicit that in the product ofd8 by c the two factors
are evaluated at different points. This is crucial because Eq.~61! is valid for all xPR only in this
case, i.e., in the limite→01 but not fore50. Equation~62! is the new eigenvalue equation fo
c(x). Following exactly the same procedure we can easily generalize it to the case of a d
boundary placed atx5a andx5b, (a,b). We get

Ĥc~x!5Ec~x!1
\2

2m
$d8~x2a!c~x1!2d8~x2b!c~x2!%, ~63!

which together with the boundary conditionsc(a1)5c(b2)50 provide the operator formulation
of the confined eigenvalue problem for Dirichlet boundary conditions. To finish let us poin
that: ~1! Eq. ~63! was obtained in Sec. IV from the stargenvalue equations~37! and~38!, and~2!
conversely, the Weyl transform of Eq.~63! immediately yields the stargenvalue equations~37! and
~38!.

B. Solving the new eigenvalue equation

Our next step is to solve the modified eigenvalue equation~63! and show that the confine
wave functionc(x) is its only solution. To make it simple let us consider again the one boun
example Eq.~62!.

For x.0, d(x)50 and Eq.~62! reduces to the unconfined equation~55!. The boundary
conditionsc(01)50 andc8(01)5f8(01) imposec(x)5f(x) for all x.0.

For 2s<x<s ands!1 we have
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E
2s

x

Ĥc~x8!dx85E
2s

x

Ec~x8!dx81
\2

2m E
2s

x

d8~x8!c~x8101!dx8

⇒2
\2

2m
$c8~x!2c8~2s!%1O~x1s!5EO~x1s!

1
\2

2m H @d~x8!c~x8101!#2s
x 2E

2s

x

d~x8!c8~x8101!dx8J
⇒c8~x!2c8~2s!5c8~01!u~x!1O~x1s!, ~64!

where in the first step we introduced the notationO(y) to designate an arbitrary continuou
function such that limy→0 O(y)50, and in the third step we used the fact thatc(01)50. Taking
the limits s→01 andx→01 we get

c8~01!2c8~02!5c8~01!⇒c8~02!50. ~65!

The second integration of the eigenvalue equation yields

E
2s

s

c8~x!dx2E
2s

s

c8~2s!dx5E
2s

s

c8~01!u~x!dx1E
2s

s

O~x1s!dx

⇒c~s!2c~2s!

5s$2c8~2s!1c8~01!%1O~s2!, ~66!

and in the limits→01 we havec(01)2c(02)50, which together with the original Dirichle
boundary conditions atx501 imply c(02)50.

We conclude that forx,0, c(x) satisfies Eq.~55! with boundary conditionsc(02)
5c8(02)50 and thusc(x)50, ;x,0. Hence, we are left with the original bounded wa
function: c(x)5f(x)u(x). The generalization for a system with two boundaries is straight
ward. Following exactly the same procedure we solve Eq.~63! and getc(x)5f(x)u(x2a)u(b
2x), as we should. This result concludes the proof of Baker’s converse construction initia
Sec. IV.

C. The free particle bounded eigenvalue equation: Numerical solution of a simple
example

As a simple example let us consider the case of a free particle confined to the in
] 21,1@ and subject to Dirichlet boundary conditions.

The unconfined Hamiltonian in the position representation is given byĤ52 (\2/2m)
3(]2/]x2) and the unconfined fundamental state@solution of Eq.~55!# is: f1(x)5cos((p/2) x)
with E5E15\2p2/8m. Figure 1 displays the unconfined wave function for\5m51.

We now consider a first possible approximation to the confined eigenvalue equation~63!. We
make e50.25 and use a Gaussian approximation to the Dirac delta function:d̃e(x)
5 1/(p1/2e8) exp$2(x/e8)2% wheree8 substitutese for the following reason: the functiond̃e(x) is
not identically zero forx.e or for x,2e and thus there is no functionue(x) satisfying condi-
tions ~56! and such thatd̃e(x)5ue8(x). However, if we defined̃e(x) using a sufficiently small
spreade8 ~when compared withe! then, for our numerical purposesd̃e(x) will provide a good
enough approximation toue8(x). In all future applications we will make:e850.8e. Furthermore,
and to simplify the notation we will refer tod̃e(x) as justde(x). Finally, taking into account the
considerable large value ofe we have to consider the contribution of higher order terms in
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expansion~60!, and thus we will use the two boundaries generalization of Eq.~61! as our starting
point and truncate the series at the third term. Hence, the equation we want to solve is

2
\2

2m

]2

]x2 ce~x!5Ece~x!1
\2

2m
de8~x11!$ce~x12e!22ece8~x12e!12e2ce9~x12e!%

2
\2

2m
de8~x21!$ce~x22e!12ece8~x22e!12e2ce9~x22e!%. ~67!

Figure 2 displays the numerical solution of the former equation for the boundary cond
ce(a12e520.5)5ce(b22e50.5)5f(0.5)50.707 and forE5E15p2/8, \5m51. Notice
that the wave function is not completely confined, which follows from the fact that we are
using the true Dirac delta but a~poor! Gaussian approximation of it. If we decrease the value
e the confinement will increase greatly.

Let us then consider a second approximation to the confined eigenvalue equation by m
e50.0025. Given the considerably small value ofe we can now truncate the series in the tw
boundaries generalization of Eq.~61! to zero order and numerically solve the finite version of E
~63!:

2
\2

2m

]2

]x2 ce~x!5Ece~x!1
\2

2m
$de8~x11!ce~x12e!2de8~x21!ce~x22e!%. ~68!

Figure 3 displays the numerical solution of Eq.~68! for the boundary conditionsce(a12e
520.995)5ce(b22e50.995)5f(0.995)50.008 and\5m51, E5E15p2/8.

FIG. 1. Unconfined fundamental solution of the free particle eigenvalue equation satisfying Dirichlet boundary con
at x561 and for\5m51.

FIG. 2. Numerical solution of the first approximation@Eq. ~67!# to the confined eigenvalue equation:e50.25, \5m
51, andE5p2/8.
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We will see in Sec. VII that the part of the wave function that escapes from the box c
sponds to quantum trajectories with energies much higher than the fundamental state. By
e→01 we completely confine the wave function.

VII. WIGNER TRAJECTORIES IN CONFINED SYSTEMS

In the following we briefly review the topic of Wigner trajectories,4,5,20,21where the previous
work may find some interesting applications. There are two well-known instances wher
concept plays an important role: collision processes4,9 and the study of quantum systems th
exhibit chaotic behavior in the classical limit.4,13,22–24

The Schro¨dinger and Wigner formulations of a collision process are obviously equiva
This notwithstanding, there are important practical differences between the two approach
most cases, where an exact solution to the problem is unknown, one has to devise some a
mative scheme. If certain conditions hold~concerning the interaction potential!, the Moyal equa-
tion ~5! can be truncated to a good degree of accuracy. Since it does not contain any operat
often easier to develop approximations on it than on the Schro¨dinger equation. Having compute
the Wigner function that solves this truncated version of the Moyal equation, one can subseq
evaluate quantum corrections to the classical phase space trajectories. In addition to the be
this pictorial and intuitive description in terms of trajectories there is another advantage i
approach: collision cross sections can be computed by applying the same numerical tech
used in classical collision processes.

Another situation where the Wigner trajectories play an important role is that of nonl
systems exhibiting classical chaotic behavior. In these systems the classical phase space
ries are of random nature while the Wigner trajectories are smooth paths thus showing th
chaotic behavior disappears upon quantization. A topic of current interest is that of underst
the transition from classical to quantum dynamics. Since the Wigner trajectories might be
puted as an\ order by order correction to the classical trajectories they provide a powe
pictorial tool to study this transition.

In following we will ~a! briefly review the subject of Wigner trajectories for unconfin
systems,~b! discuss the main difficulties in extending the formalism to bounded systems and
that our previous results provide a new approach in this context, and~c! illustrate these results
using the simple example of a free particle confined to an infinite square well. The reader s
be advised that our aim is not to provide a fully developed and precise formulation of these
but only to outline~and hopefully motivate! some possible lines of research.

A. Wigner trajectories

Let us then consider the Moyal equation of motion~5! associated withH5 (p2/2m)
1V(x):

FIG. 3. Numerical solution of the second approximation@Eq. ~68!# to the confined eigenvalue equation:e50.0025,\
5m51, andE5p2/8.
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]FW

]t
~x,p,t !52

p

m

]FW

]x
1

]V

]x

]FW

]p
1

~\/2i !2

3!

]3V

]x3

]3FW

]p3 1¯ . ~69!

Alternatively, we can write this equation as

]FW

]t
~x,p,t !52

p

m

]FW

]x
1E

2`

1`

dp8 J~x,p8!FW~x,p1p8,t !, ~70!

where

J~x,p!5
i

p\2 E
2`

1`

dy@V~x1y!2V~x2y!#e22ipy/\. ~71!

In the absence of a boundary and if the potentialV is at most quadratic inx, then the Moyal
equation~69! reduces to the Liouville equation:

]FW

]t
~x,p,t !52

p

m

]FW

]x
1

]V

]x

]FW

]p
. ~72!

Equation~72! means that the solutionFW(x,p,t) evolves along the classical trajectories, i.e.,

H FW~x,p,t !5FW~x~2t !,p~2t !,0!,

ẋ5
p

m
, ṗ52

]V

]x
.

~73!

This motivates the concept of Wigner trajectories. If we define an effective quantum pot
Veff(x,p,t) according to

]Veff

]x

]FW

]p
5E

2`

1`

dp8 FW~x,p1p8,t !J~x,p8!, ~74!

then we can express the Moyal equation in the form

]FW

]t
52

p

m

FW

]x
1

]Veff

]x

]FW

]p
, ~75!

which can be interpreted in analogy with~72!, by stating that the Wigner function evolves alon
the Wigner trajectories given by

ẋ5
p

m
, ṗ52

]Veff

]x
. ~76!

If an exact solution forFW is known, then we can, in principle, calculate the effective poten
from ~74! and subsequently solve~76! to obtain the Wigner trajectories. However, in general, su
is not the case. If the potentialV(x) does not deviate appreciably from a quadratic potential t
we can address the problem by iteratively evaluating order by order the quantum corrections
classical trajectories.4,20,21The zero-order approximation~i.e., the classical solution!, satisfies the
Liouville equation:

]F0
W

]t
52

p

m

]F0
W

]x
1

]V

]x

]F0
W

]p
. ~77!

The order zero trajectories correspond to the classical Hamilton equations. The order one e
is given by
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]F1
W

]t
52

p

m

]F1
W

]x
1

]V

]x

]F1
W

]p
1

~\/2i !2

3!

]3V

]x3

]3F0
W

]p3 . ~78!

If we solve this equation forF1
W and substitute in~75! and ~76!, we obtain the first-order trajec

tories:

H ẋ5
p

m
,

ṗ52
]V

]x
1

1

3! S \

2i D
2 ]3V

]x3

]3F0
W

]p3 Y ]F1
W

]p
.

~79!

The second-order approximation is

]F2
W

]t
52

p

m

]F2
W

]x
1

]V

]x

]F2
W

]p
1

~\/2i !2

3!

]3V

]x3

]3F1
W

]p3 1
~\/2i !4

5!

]5V

]x5

]5F0
W

]p5 , ~80!

and yields the second-order correction to the classical trajectories:

H ẋ5
p

m
,

ṗ52
]V

]x
1

1

3! S \

2i D
2 ]3V

]x3

]3F1
W

]p3 Y ]F2
W

]p
1

1

5! S \

2i D
4 ]5V

]x5

]5F0
W

]p5 Y ]F2
W

]p
.

~81!

This procedure can be carried on to any order in\. Its main advantage is that it transforms th
problem of solving an infinite order partial differential equation~the Moyal equation! into the
problem of solving a sequence of first-order partial differential equations. It also display
advantage of casting the transition from classical to quantum dynamics as an order-by
correction~in \! to classical mechanics. There are, however, some weak points in the proc
the most significant being perhaps that it is not always clear what is the degree of precision
approximation to a given order or if the entire scheme will converge.

B. Wigner trajectories in bounded systems

If a system has a boundary, then the former approximative scheme will obviously break
because the boundary contribution was thus far unknown. As we have seen in the pr
sections the boundary interaction has a nonlocal nature and will thus affect the Wigner traje
well inside the bulk part of the system. It therefore must equally contribute to the qua
corrections of the trajectories.

In this case one was left with a single possible approach: to solve the Schro¨dinger equation for
the confined wave function and compute the Wigner function from it. In some cases whe
exact solution of the Schro¨dinger equation is known this method can be taken to completion. T
for instance the simple example of a free particle confined to the interval ]21,1@ and subject to
Dirichlet boundary conditions.5 The fundamental state isf1(x)5cos((p/2) x) from which we can
compute the Wigner function equations~2!, ~39!, and ~40!. Since the particle is in an energ
eigenstate we have

]FW

]t
5@H,FW#M50⇒FW~q~2t !,p~2t !,0!5FW~q,p,t !5FW~q,p,0!, ~82!

and thus the Wigner function evolves along the paths where it displays a constant value, i
Wigner trajectories (q(2t),p(2t)) are the equi-Wigner curves. Figure 4 displays the Wig
trajectories for this simple system.
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For more elaborate examples we are forced to use Eq.~74! or Eq. ~75! to calculate the
effective potential from the Wigner function and then Eq.~76! to calculate the Wigner trajectories
For instance in Refs. 4 and 24 a system in a symmetric box with Dirichlet boundary condition
an external driving force was considered. The force, which is of the formF(t)5F0 cos(vt),
induces classically the appearance of resonance. Since the system has a boundary, quan
chanically, the authors were compelled to work in the context of the Schro¨dinger equation but
since an exact, analytic solution is not known the Wigner function and subsequently the W
trajectories could not be obtained exactly.

In general, the wave-function-based approach suffers from two major drawbacks: fir
some situations~as in the previous example! it is impossible to obtain an exact solution of th
Schrödinger equation, which makes it difficult to infer the degree of precision of the resu
Wigner function. Second, even if an exact solution of the Schro¨dinger equation is known, this
method only provides the exact Wigner trajectories and in some situations it is desirable th
quantum corrections to the classical trajectories might be computed order by order in\.

The results of this paper provide a new approach to determine the Wigner trajectori
bounded systems~satisfying Dirichlet boundary conditions! from an exclusive phase space~or
c-number! point of view. In fact most of the formalism for the unconfined case can now be ap
to the bounded case as well. This is certainly true for Eqs.~69!–~71! and~74!–~76! where one just
has to take into account that:~1! V(x) is no longer the bulk potential but it also encompasse
boundary contributionVD(x) which is associated with the Dirichlet boundary conditions a
given in Eq. ~53!: VD(x)5 (\2/2m) $d8(x2b)2d8(x2a)%, ~2! in the boundary corrections to
Eqs. ~69!, ~70!, and ~74! the Wigner function should be evaluated atx1 andx2 ~in the left and
right boundary correction, respectively!.

It is not so clear if the approximative scheme@Eqs. ~77!–~81!# can be also extended to th
bounded case. This is because the boundary potential deviates strongly from the harmoni
lator potential and yields contributions to the Moyal equation to all orders in\. We thus have to
worry about the magnitude of these contributions and find a suitable criterion to determin
validity of the approximation. These issues are also a problem in the general unconfined ca
are certainly not the subject of this paper. Our point here is just that the boundary po
approach is, thus far, the unique exact formulation of confined systems that only appeals to
space objects and it thus seems to be the proper framework from which the former or other
suitable, approximative scheme may be devised.

C. Wigner trajectories of a particle in an infinite potential well

In the following we ignore the issues of validity and convergence of the approxima
scheme given by Eqs.~77!–~81! and use it to compute the order by order quantum correction

FIG. 4. Exact Wigner trajectories for a particle in the fundamental state and confined to the interval ]-1,1@ .
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the classical trajectories of a free particle confined to the interval ]21,1@ . Quite remarkably, we
will see that this~in this context, very poor! approximation procedure is already able to reprodu
most of the qualitative behavior of the exact quantum trajectories.

The exact Wigner trajectories for a particle in the fundamental state are solutions of Eq~76!
with the effective potential satisfying~74! and ~75! and were displayed in Fig. 4. The zero-ord
approximation to the Moyal equation~53! is given by

]F0
W

]t
~x,p,t !52

p

m

]F0
W

]x
1

\2

2m H ]VR

]x

]F0
W

]p
~x2e,p,t !2

]VL

]x

]F0
W

]p
~x1e,p,t !J , ~83!

whereVR(x)5de8(x21) andVL(x)5de8(x11). To simplify the discussion we assume that f
sufficient smalle we have

]F0
W/]p~x2e,p,t !

]F0
W/]p~x,p,t !

5
]F0

W/]p~x1e,p,t !

]F0
W/]p~x,p,t !

51,

and use these identities to transform Eq.~83! into the Liouville equation ~77! with V
5 (\2/2m) (VR2VL). The zero-order approximation to the exact quantum trajectories are thu
solutions of Eq.~73!. They are displayed in Fig. 5, where we used the Gaussian approximati
the Dirac delta function:de(x)5ex2/e82

/e8Ap, e850.8e and madee50.25 ~notice that this ap-
proximation was used in Sec. VI to compute the numerical solution of the bounded eigen
equation, Fig. 2! andm5\51. For sufficiently smalle these would be just the classical traject
ries.

We now compute the first-order corrections@Eq. ~79!#. These are the solutions of

H ẋ5
p

m
,

ṗ5
\2

2m
$de9~x11!2de9~x21!%1

\2

48m
$de

(4)~x11!2de
(4)~x21!%,

~84!

where we again ignored the contribution of the factors that involve the~approximate! Wigner
function. We get the trajectories displayed in Fig. 6.

Finally, we compute the second-order corrections@Eq. ~81!#:

FIG. 5. Zero-order or classical approximation to the Wigner quantum trajectories:e50.25 and\5m51.
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5
ẋ5

p

m
,

ṗ5
\2

2m
$de9~x11!2de9~x21!%1

\2

48m
$de

(4)~x11!2de
(4)~x21!%

2
\4

3840m
$de

(6)~x11!2de
(6)~x21!%,

~85!

and get the trajectories displayed in Fig. 7.
Several remarks are now in order.
~a! We see that the first-order approximation already displays the deflection of the qua

trajectories toward regions of higher momentum as the particle approaches the boundarie
~b! In the second approximation the ‘‘islands’’ appear. They are not confined, as in the

case, to regions of positive or negative momentum, but they are already confined to posi
negative positions. Furthermore, the deflection to regions of high momentum is now an exc
feature~as in the exact case! of the higher momentum trajectories. The slower ones are essen
classical.

FIG. 6. First-order approximation to the Wigner quantum trajectories: numerical solution of Eq.~84! with e50.25 and
\5m51.

FIG. 7. Second-order approximation to the Wigner quantum trajectories: numerical solution of Eq.~85! with e50.25 and
\5m51.
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~c! Not all Wigner trajectories will be confined. For sufficiently high momentum they w
escape from the box. This is because we are not using the true Dirac delta but a Ga
approximation to it. The free Wigner trajectories correspond to the part of the wave functio
is outside of the box in Fig. 2.

~d! The former approximative scheme can be refined at least in three different directions
by taking into account the contributions of the factors that are proportional to the Wigner fun
Our rather simple approximative scheme is, in fact, state independent and so could not p
reproduce the exact Wigner trajectories. This step will be more demanding from the num
point of view since one will be asked to solve the partial differential equation for the approxi
Wigner function before computing each order correction to the classical trajectories. Seco
increasing the degree of approximation to the Dirac delta function, i.e., by decreasing the
e. This is mandatory if one is interested in the behavior of the quantum trajectories of h
momentum. Finally, and quite obviously, by computing higher order corrections in\.

VIII. CONCLUSIONS

In this paper we studied the Wigner–Weyl formulation of a particle confined to a fi
interval and subject to Dirichlet boundary conditions. We found that:~1! the standard procedure o
solving the unconstrained system and then imposing the boundary conditions does not work
the Wigner–Weyl formulation;~2! the boundary conditions and the confinement of the w
function determine a boundary correction to the* -genvalue equation and to the Moyal equatio
~3! Dirichlet boundary conditions on the confined wave function imply both Dirichlet and N
mann boundary conditions on the corresponding confined Wigner function.

Our main task was then the evaluation of the contributions of the boundaries to the* -genvalue
equation~6! and to the time evolution equation~5! for a wave function satisfying Dirichle
boundary conditions. These contributions were shown to have the form of boundary pote
added to the Hamiltonian, and the same potentials were obtained in the operator formula
quantum mechanics, when we derived the Schro¨dinger eigenvalue equation for the confined wa
function c(x)5f(x)u(x2a)u(b2x). Together with the boundary conditions they are resp
sible, both in the Wigner and in the Schro¨dinger formulations, for the confinement of the syste
and the consequent discretization of the energy levels. Finally, we extended Baker’s co
construction to the bounded case, proving the full equivalence between the operator-Schro¨dinger
and the Wigner formulation of the confined eigenvalue problem.

Finally, we used our previous results to approach the problem of evaluating the W
trajectories of bounded systems and ventured the possibility of applying these methods to
ear systems displaying classical chaotic behavior.

The procedure described in this work can be generalized to higher-dimensional multip
systems and also to any* -genvalue equation of the formAW(x,p)* Fa

W(x,p)5aFa
W(x,p), asso-

ciated with the eigenvalue equation:Â( x̂,p̂)ca(x)5aca(x). From a more general point of view
the results of this paper provide a first approach to the problem of solving star-equation
boundaries. This is a difficult but important problem as such equations are known to play
part in several fields of research ranging from standard topics in quantum mechanics to
important developments in M-theory.26
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In this paper, we construct the Hamiltonians of both periodic and open elliptic
quantum Gaudin models and show their relations with the elliptic quantum group,
and the boundary elliptic quantum group, respectively. We define the eigenstates of
these two models to be the Bethe vectors withh50 of the elliptic quantum group
and the boundary elliptic quantum group, respectively. Then, the Hamiltonians are
exactly diagonalized by using the algebraic Bethe ansatz method. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1505665#

I. INTRODUCTION

The Gaudin model associated with the su~2! Lie algebra was first proposed by Gaudin
1973.1–3 It is a new kind of integrable quantum models with the long range interaction. Bab
and Flume generalized it into the general Lie algebrag case, and constructed the correspond
Hamiltonian.4 They also set up the off-shell Bethe ansatz equation~OSBAE! and gave an explicit
proof for su~3!. However, they did not give the Bethe ansatz equations. In Ref. 5, Feigin, Fre
and Reshetikhin suggested a new method based on the Wakimoto realization of some
algebra at critical lever, and solved exactly the Gaudin models related to the Lie algebrag. They
also obtained the eigenvalues and the corresponding Bethe ansatz equations.

On the other hand, we can simply consider the Gaudin model as the limit of some inte
quantum chains. Sklyanin proposed that the spectrum and eigenfunctions of the spin-1/2
models with rational and trigonometric interaction could be derived from those of theXXX and
XXZ chains.6 Then in the Refs. 7–9, Sklyanin and Takebe obtained the arbitrary spinXYZGaudin
model as a quasiclassical limit of the inhomogeneous higher spin generalization of theXYZ
model. Hikami has applied Sklyanin’s method into the open Gaudin model by taking quasic
cal limit of the transfer matrix for the inhomogeneous open spin-1/2XXZ chain.10 Under the same
limit, he has also obtained the eigenvalue and the Bethe ansatz equations.

Recently, the Gaudin models are studied in many integrable systems, such as the sup
metric Gaudin models11,12 and the elliptic Gaudin models.13 In the present paper, we propose t
dynamical elliptic quantum Gaudin~DEQG! model with both periodic and open boundary con
tions. We obtain the eigenvalues of the Hamiltonians and the Bethe ansatz equations.

The framework of this paper is arranged as follows: In Sec. II we review some basic fa
the elliptic quantum groupEt,h(sl2) needed in our paper. In Sec. III we construct the DEQ
model under periodic boundary condition, and obtain the eigenvalues of Hamiltonians an
corresponding Bethe ansatz equation in Sec. IV. In Sec. V we construct the open DEQG mod
give solutions. In the last section, we give some brief conclusions.

a!Electronic mail: byhou@phy.nwu.edu.cn
b!Electronic mail: kjshi@phy.nwu.edu.cn
c!Electronic mail: yue@phy.nwu.edu.cn
d!Electronic mail: zsy@biophysics.nju.edu.cn
46280022-2488/2002/43(10)/4628/13/$19.00 © 2002 American Institute of Physics
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II. THE ELLIPTIC QUANTUM GROUP

The first part of this paper will contribute in the DEQG model with periodic boundary c
dition. This model is closely associated with the elliptic quantum groupEt,h(sl2) ~Refs. 14 and
15! which is an algebraic structure underlying the elliptic solutions of the Yang–Baxter relati
the statistical mechanics, and connected with the Knizhnik–Zamolodchikov–Bernard equat
torus. So, we first recall some basic concepts of the elliptic quantum groupEt,h(sl2).

Let h be the generator of a one-dimensional commutative Lie algebrah, and a(l,w),
b(l,w), c(l,w), d(l,w) be the elements of a matrixL(l,w). The elliptic quantum group
Et,h(sl2) is generated by meromorphic functions of the variableh and the elements ofL(l,w)
with noncommutative entries, subjects to the dynamical Yang–Baxter relations~DYBR!

R(12)~l22hh,w12!L
(1)~l,w1!L (2)~l22hh(1),w2!

5L (2)~l,w2!L (1)~l22hh(2),w1!R(12)~l,w12!, ~1!

with L (1)(l,w1)5L(l,w1) ^ 1 and L (2)(l,w2)51^ L(l,w2). The L(l,w) is a 232 matrix
whose elements are quamtum operator andh( j ) stands for diagonal matrix Diag(1,21) in j th
matrix space. For the sake of simplicity, we call the matrix space auxillary space and qu
Hilbert space the quantum space. HereR(12)(l22hh,w12) is a 434 matrix andwi j 5wi2wj .
Note that theh in R is a quantum operator acting on the same quantum Hilbert space asL operator
acts on. It is the reason that Eq.~1! is called the dynamical Yang–Baxter relation. The expli
expression ofR matrix is given by

R~l,z!5E1,1^ E1,11E21,21^ E21,21

1a~l,z!E1,1^ E21,211a~2l,z!E21,21^ E1,1

1b~l,z!E1,21^ E21,11b~2l,z!E21,1^ E1,21 ~2!

with

a~l,z!5
u~z!u~l12h!

u~z22h!u~l!
,

b~l,z!52
u~l1z!u~2h!

u~z22h!u~l!
,

u~l,t!52 (
j 52`

`

ep i ( j 1
1
2)2t12p i ( j 1

1
2)(l1 1

2).

All commutation relations of the elements ofL can be found in Ref. 14. Here we only lis
some of them to be used frequently later,

f ~l,h!g~l,h!5g~l,h! f ~l,h!,

f ~l22h,h!ã~w!5ã~w! f ~l,h!,

f ~l12h,h!d̃~w!5d̃~w! f ~l,h!, ~3!

f ~l12h,h12!b̃~w!5b̃~w! f ~l,h!,

f ~l22h,h22!c̃~w!5 c̃~w! f ~l,h!,

where we have used the notationã(w)[a(l,w) for convenience. And the others are similar.
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For complex numbersL andz, one can define an infinite dimensional complex vector sp
VL(z) of Et,h(sl2) ~evaluation Verma module!.14 Let ek , kPZ>0 be the basis ofVL(z), the action
of generators ofEt,h(sl2) are defined by

f ~h!ek5 f ~L22k!ek ,

a~l,w!ek5g~a,l,w,k!ek ,

b~l,w!ek5g~b,l,w,k!ek11 , ~4!

c~l,w!ek5g~c,l,w,k!ek21 ,

d~l,w!ek5g~d,l,w,k!ek ,

with

g~a,l,w,k!5
u~z2w1~L1122k!h!u~l12kh!

u~z2w1~L11!h!u~l!
,

g~b,l,w,k!5
u~2l1z2w1~L2122k!h!u~2h!

u~z2w1~L11!h!u~l!
,

~5!

g~c,l,w,k!5
u~2l2z1w1~L1122k!h!u~2~L112k!h!u~2kh!

u~z2w1~L11!h!u~l!u~2h!
,

g~d,l,w,k!5
u~z2w1~2L1112k!h!u~l22~L2k!h!

u~z2w1~L11!h!u~l!
.

The theorem~3! in Ref. 14 ensures the above definition to be an evaluation representati
elliptic quantumEt,h(sl2). If L5n1(m1 l )/(2h), wheren,m,l are integer,n>0, then one can
obtain an11-dimensional vector space fromVL(z). Theek can be identified with the eigenvec
tors of theh. This is similar with then11-dimensional representation of sl~2!.

For any spaceW5VL over Et,h(sl2), the transfer matrix can be defined by

t~w!5ã~w!1d̃~w!, ~6!

which preserves the spaceH5Fun(W)@0# of functions with the value in the zero weight, an
commute pairwise onH, t(w)t(u)5t(u)t(w) on H.

Let W5VL1
(z1) ^¯^ VLn

(zn) be a tensor product of evaluation spaces, and letL5L1

1¯1Ln . Then, we can obtain aT operator as the tensor product ofL operators. The precise
form of theT operator can be defined by

T~l,w!5L1S l2(
j 52

n

2hhj ,wD L2S l2(
j 53

n

2hhj ,wD¯
3Ln21~l22hhn ,w!Ln~l,w!. ~7!

By using the relation14

@h(1)1h,T~l,w!#50 ~8!

with h5( j 51
n hj , we can easily prove that theT operator also satisfies the DYBR Eq.~1!. Writing

the elements of theT operatorÂ,B̂,Ĉ, andD̂, we can rewrite the transfer matrix as
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t~w!5Â~w!1D̂~w!. ~9!

Then, the highest weight state of the spaceH, W@L#5Cv0 , obeys the following highest weigh
condition: for everyw,

Ĉ~w!v050, Â~w!v05v0 ,
~10!

D̂~w!v05
u~l22hL!

u~l! )
j 51

n
u~w2zj2~2L j11!h!

u~w2zj2~L j11!h!
v0 .

The quantum determinant of the elliptic quantum algebra is given by14

D̃~w!5
u~l!

u~l22hh!
~D̂~w12h!Â~w!2B̂~w12h!Ĉ~w!!

5
u~l!

u~l22hh!
~Â~w12h!D̂~w!2 Ĉ~w12h!B̂~w!!. ~11!

III. THE DEQG MODEL WITH PERIODIC BOUNDARY CONDITION

The Gaudin model was proposed as a new class of integrable quantum systems by Ga
this section, we propose a periodic DEQG model. For the spaceH5Fun(W)@0# with W5VL1

^¯^ VLn
, the Hamiltonian of the model is

t̂~l,w!52~A 21H 2!24nL~]lw~l!!28nLw~l!]l28nA8]l12@~A8!21~H8!2#

24~AA81HH8!18n2]l
21 (

j ,k51

n

W1~l,w,zj !W2~l,w,zk!@Ej
1Ek

21Ej
2Ek

1#,

~12!

whereA5Lw(l),A85( jL jw(zj2w),H5( jhjw(l), andH85( jhjw(zj2w) with

w~l!5
u8~l!

u~l!
,

W1[2
u8~0!

u~l!

u~2l1z2w!

u~z2w!

and

W2[2
u8~0!

u~l!

u~2l2z1w!

u~z2w!
.

Here the operatorshj and Ej
6 , which act on thej th infinite-dimensional complex vector spac

VL j
, satisfy

@hi ,Ej
6#56d i , j2Ej

6 , @Ei
1 ,Ej

2#5d i , jhj , ~13!

hjek5~L j22k!ek , ~14!

Ej
2ek5ek11 , Ej

1ek5k~L j112k!ek21 . ~15!
                                                                                                                



In
n’s
ant of

hen

e

u-

e

4632 J. Math. Phys., Vol. 43, No. 10, October 2002 Hou et al.

                    
In order to find the eigenvalue oft̂(l,w), we have to guess the form of the eigenstates.
principle, one may follow Gaudin’s method. But it is very difficult. Thanks to Sklyani
approach,6,7 this Hamiltonian can be related to the transfer matrix and the quantum determin
the periodic elliptic quantum group. We will try to find such relations.

Now, let us examine the asymptotic behavior of the operators in the preceding section wh
approaches 0. The results are as follows:

R~l,w!5112hr ~l,w!1O~h2!, ~16!

L~l,w!5112hL8~l,w!1O~h2!, ~17!

wherer (l,w) is the so-called classicalr matrix,

r ~l,w!5$w~l!1w~w!%E1,1^ E21,212$w~l!2w~w!%E21,21^ E1,1

2
u~l1z!u8~0!

u~l!u~z!
E1,21^ E21,12

u~l2z!u8~0!

u~l!u~z!
E21,1^ E1,21 , ~18!

and the elements ofL operator are tended as

a~l,w!511ha8~l,w!1O~h2!, ~19!

d~l,w!511hd8~l,w!1O~h2!, ~20!

b~l,w!5hb8~l,w!1O~h2!, ~21!

c~l,w!5hc8~l,w!1O~h2!, ~22!

~23!

and we call the operatorsa8(l,w), b8(l,w), c8(l,w), andd8(l,w) generating operators of th
DEQG model, which are defined by

a8~l,w!5~L2h!@w~l!2w~z2w!#22]l , ~24!

d8~l,w!52~L1h!@w~l!1w~z2w!#12]l , ~25!

b8~l,w!5W1~l,w,z!E1, ~26!

c8~l,w!5W2~l,w,z!E2. ~27!

For the spaceH5Fun(W)@0# with W5VL1
^¯^ VLn

, the generating operators of the Ga

din model can be defined byâ(l,w), b̂(l,w), ĉ(l,w), d̂(l,w). The concrete forms of them ar
as follows:

â~l,w![h21~Â~l,w!21!

5(
j 51

n

~L j2hj !@w~l!2w~zj2w!#22n]l1O~h!, ~28!

d̂~l,w![h21~D̂~l,w!21!

52(
j 51

n

~L j1hj !@w~l!1w~zj2w!#12n]l1O~h!, ~29!
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b̂~l,w![h21B̂~l,w!

5(
j 51

n

W1~l,w,zj !Ej
11O~h!, ~30!

ĉ~l,w![h21Ĉ~l,w!

5(
j 51

n

W2~l,w,zj !Ej
21O~h!. ~31!

Taking h→0 for Eq. ~7!, we have

T~l,w!511hT~l,w!1O~h2!. ~32!

Substituting Eqs.~28!–~31! into the transfer matrixt(l,w) and the quantum determinan
elementD̃(l,w), we can obtain

t~l,w!521htrT~l,w!1O~h2!, ~33!

D̃~l,w!5112h@ trT~l,w!12hw~l!#

1h2@22h2w (2)~l!14trT 2~l,w!

1tr~]wT~l,w!2]lT~l,w!!

12hw~l!trT~l,w!#1O~h2!. ~34!

One can easily check that trT 2(l,w) in the quantum determinant elementD̃(l,w) is equal to the
Hamiltoniant̂(l,w). Since the quantum determinant is the center of the elliptic quantum gr
and t(l,w)’s are a commutative family under zero weight condition,t̂(l,w)’s for different pa-
rametersw are also commutative family. Therefore, the DEQG model is integrable. Taking
account the zero weight condition, we can define the Hamiltonian of the periodic DEQG mod
the linear combination oft(l,w), andD̃(l,w),

t̂~l,w![tr T 2~l,w!

5
1

4h2 $D̃~l,w!2t~l,w!112h2~]w2]l!tr T~l,w!%. ~35!

Substituting Eqs.~7! and ~11! into Eq. ~35!, one can check that the Hamiltonian of the model
proven to be Eq.~12!.

Expanding the commutation relations of the operators of the elliptic quantum grouph
→0, we can obtain

@h,â~l,w!#50, @ b̂~l,w!,h#52b̂~l,w!,

â~l,w! f ~l!5F1~l!â~l,w!1F2~l!,
~36!

d̂~l,w! f ~l!5F1~l!d̂~l,w!1F2~l!,

b̂~l,w! f ~l!5 f ~l!b̂~l,w!12h f 8~l!b̂~l,w!,

where
                                                                                                                



satz for

me

4634 J. Math. Phys., Vol. 43, No. 10, October 2002 Hou et al.

                    
F1~l!5 f ~l!22h f 8~l!, F2~l!522 f 8~l!12h f 9~l!,
~37!

F1~l!5 f ~l!12h f 8~l!, F2~l!52 f 8~l!12h f 9~l!.

Applying the generating operators of the Gaudin model on the highest weight statev0 , we have

â~l,w!v050, ĉ~l,w!v050,
~38!

d̂~l,w!v05F22hw~l!12L(
j 51

n

w~w2zj !Gv0 .

IV. THE ALGEBRAIC BETHE ANSATZ FOR THE PERIODIC DEQG MODEL

In this section, we try our best to find the eigenvalues of the Hamiltoniant̂(l,w) of the
periodic DEQG model and the Bethe ansatz equations. To construct the algebraic Bethe an
the present model, as usual, we define first the vacuum state as the highest weight statev0 . And
we define the Bethe stateVs as

Vs5b̂~l,t1!b̂~l,t2!¯b̂~l,ts!g~l!v0 , g~l!Þ0. ~39!

Here we assumeL to be an integer 2s>0 in this section to ensure the zero-weight spaceW@0# is
nontrivial.

From Ref. 14, we can find the following commutation relations betweenâ(w), d̂(w), and
b̂(w) @here we abbreviateâ(l,w) asâ(w) for convenience, and the other operators are the sa#:

b̂~w!b̂~ t !5b̂~ t !b̂~w!, ~40!

â~w!b̂~ t !5 r̂ ~ t2w,l!b̂~ t !1b̂~ t !â~w!1h r̂ ~ t2w,l!b̂~ t !â~w!1 ŝ~ t2w,l!b̂~w!

1h ŝ~ t2w,l!b̂~w!â~ t !,

d̂~w!b̂~ t !5 r̂ ~w2t,l22h!b̂~ t !1b̂~ t !d̂~w!1h r̂ ~w2t,l22h!b̂~ t !d̂~w!

2 ŝ~ t2w,l!b̂~w!2h ŝ~ t2w,l!b̂~w!d̂~ t ! ~41!

with

ŝ~ t,l!5
u~ t1l!u8~0!

u~l!u~ t !
1O~h!,

r̂ ~ t,l!5w~l!2w~ t !12hH u9~ t !

u~ t !
2

u9~l!

u~l!
12~w~l!!22w~l!w~ t !J 1O~h2!.

Moving â andd̂ from the left-hand side to the right-hand side ofb̂ by using the commutation
relations, we obtain

â~w!b̂~ t1!b̂~ t2!¯b̂~ ts!5A0~w,$t i%!b̂~ t1!b̂~ t2!¯b̂~ ts!

1A1~w,$t i%!b̂~ t1!b̂~ t2!¯b̂~ ts!â~w!1Au , ~42!

d̂~w!b̂~ t1!b̂~ t2!¯b̂~ ts!5D0~w,$t i%!b̂~ t1!b̂~ t2!¯b̂~ ts!

1D1~w,$t i%!b̂~ t1!b̂~ t2!¯b̂~ ts!d̂~w!1Du , ~43!
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whereA0 , A1 , A0 , andD1 are the wanted terms andAu andDu are the unwanted terms with

A05(
j 51

s

r̂ ~ t j2w,l!12h(
j 52

s

~ j 21!]l r̂ ~ t j2w,l!

1h(
j 52

s

~ j 21!(
k51

j 21

r̂ ~ tk2w,l! r̂ ~ t j2w,l!1O~h2!, ~44!

A1511h(
j 51

s

r̂ ~ t j2w,l!1O~h2!, ~45!

Au5 (
k51

s H ŝ~ tk2w,l!1h ŝ~ tk2w,l!(
j Þk

s

r̂ ~ t j2w,l!J
3b̂~ t1!b̂~ t2!¯b̂~ tk21!b̂~w!b̂~ tk11!¯b̂~ ts!

1 (
k51

s

h ŝ~ tk2w,l!b̂~ t1!b̂~ t2!¯b̂~ tk21!b̂~w!b̂~ tk11!¯b̂~ ts!â~ tk!1O~h2!,

j 51,2,3,...,s, ~46!

D05(
j 51

s

r̂ ~w2t j ,l22h!22h(
j 51

s

~ j 21!]l r̂ ~w2t j ,l22h!

1h(
j 52

s

~ j 21!(
k51

j 21

r̂ ~w2tk ,l! r̂ ~w2t j ,l22h!1O~h2!, ~47!

D1511h(
j 51

s

r̂ ~w2t j ,l!1O~h2!, ~48!

Du5 (
k51

s H 2 ŝ~ tk2w,l!2h ŝ~ tk2w,l!(
j Þk

s

r̂ ~ t j1w,l!J
3b̂~ t1!b̂~ t2!¯b̂~ tk21!b̂~w!b̂~ tk11!¯b̂~ ts!

2 (
k51

s

h ŝ~ tk2w,l!b̂~ t1!b̂~ t2!¯b̂~ tk21!b̂~w!b̂~ tk11!¯b̂~ ts!d̂~ t1!1O~h2!,

j 51,2,...,s. ~49!

In the framework of algebraic Bethe ansatz, when the transfer matrix Eq.~33! acts on the
Bethe stateVs Eq. ~39!, the unwanted terms should cancel each other. Thus we can obtai
Bethe ansatz equations

(
j Þk

s

w~ t j2tk!1(
i 51

n

w~ tk2zi !5c, ~50!

with g(l)5us(l)e2lc, andc is a constant.
With the above restrictions of the Bethe ansatz equations, we can obtain the eigen

L(l,w) of the transfer matrix
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L~l,w!521hL (1)~l,w!1h2L (2)~l,w!1O~h3!, ~51!

where

L (1)~l,w!52(
k51

n

Lw~w2zk!,

L (2)~l,w!54c214 (
j Þk51

s

w~ t j2w!w~ tk2w!1(
j 51

s H u9~ t j2w!

u~ t j2w!
18cw~ t j2w!J

14c(
k51

n

Lw~w2zk!14(
j 51

s

(
k51

n

Lkw~ t j2w!w~w2zk!

12 (
kÞ j 51

n

LkL jw~ t j2w!w~w2zk!

1 (
k51

n H 2Lk~Lk11!~wu~w2zk!!22~Lk
211!

u9~w2zk!

u~w2zk!
J .

For the quantum determinant commutations with all elements of the generating operators
DEQG model, the quantum determinant takes the same eigenvalues on both highest weigh
v0 and the Bethe stateVs ,

D̃~w,l!5112h(
k51

n

Lkw~w2zk!1h2H (
k51

n

4Lk

u9~w2zk!u~w2zk!2~u8~w2zk!!2

u2~w2zk!

12L2
u9~l!

u~l!
12(

j 51

s

(
kÞ j 51

n

LkL jw~w2zj !w~w2zk!

1 (
k51

n S 2Lk~Lk11!~w~w2zk!!22~Lk
211!

u9~w2zk!

u~w2zk!
D

24Lw~l!(
k51

n

Lkw~w2zk!12L2
2~u8~l!!22u9~l!

u2~l! J 1O~h3!. ~52!

From Eq.~51!, we know that

tr T~l,w!5L (1)~l,w!52(
k51

n

Lk

u8~w2zk!

u~w2zk!
.

So we have

~]w2]l!tr T~l,w!52(
k51

n

Lk

u9~w2zk!u~w2zk!2~u8~w2zk!!2

u2~w2zk!
. ~53!

Thus, applying thet̂(l,w) on theVs and taking into account Eqs.~51!–~53!, we can obtain
the final eigenvalue
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t̂~l,w!Vs5H ]wF1

2 (
k51

n

Lkw~w2zk!2(
j 51

s

w~w2t j !G2Fc2(
j 51

s

w~w2t j !G2

1F (
j 51

s

w~w2t j !2cG (
k51

n

Lkw~w2zk!2Lw~l!(
k51

n

Lkw~w2zk!J Vs . ~54!

In this section, we have derived the eigenvalue and the Bethe ansatz equations of the
model by using generating operators of the model. Calculating the residues of the Hamiltoni
~12! and its eigenvalue Eq.~54! at w5zj , one can get thej th Hamiltonian and the correspondin
energy spectrum onVs . In Ref. 14, Felderet al. have given the eigenvalue and the Bethe ans
equations of the elliptic quantum group. The Bethe state in their paper is define
b̃(t1)b̃(t2)¯b̃(ts)g(l)v0 . If we apply t(l,w) and D̃(l,w) on that state, then we take theh
→0, we can also obtain the same results as Eq.~54! and the Bethe ansatz equation~50!.

V. OPEN DEQG MODEL AND ITS SOLUTION

For the spaceW5VL1
^¯^ VLn

and the parameterL5L11¯1Ln , we define the Hamil-
tonian of the open DEQG model as

H j~l,w!5d~l,zj ,j!~12hj !1 (
k51

N H 1

L j11 Fu~zi1j!u~zj1l2j!

u~zi2j!u~zj2l1j!
W1

1Ek
2Ej

1

1
u~zi2j!u~zj2l1j!

u~zi1j!u~zj1l2j!
W2

1Ek
1Ej

22w~zk1zj !~hkhj2Lk!1w~l!~2Lk2hk

2Lkhj !G J 1 (
k51,Þ j

N H 1

L j11
@W1

2Ek
2Ej

11W2
2Ek

1Ej
21w~zk2zj !~hkhj2Lk!

2w~l!~hk2Lkhj !#J , ~55!

where

d~l,zj ,j!52
1

L j11
$@21w~zj2j!1w~zj1j!#1@w~zj1l2j!1w~zj2l1j!#~h11!%,

W1
657

u~2l1zk6zj !u8~0!

u~zk6zj !u~l!
.

To obtain the eigenvalues of this Hamiltonian, we have to find a proper ansatz for eige
tors. But it is so hard that we cannot solve the present Hamiltonian directly. Fortunately, acc
to Hikami,10 the Hamiltonian of the open DEQG model can also be derived from the tran
matrix t(w) of the boundary elliptic quantum group.

The boundary elliptic quantum group is constructed by16

R21~l,w12w2!L1~l22hh(2),w1!R12~l,w11w2!L2~l22hh(1),w2!

5L2~l22hh(1),w2!R21~l,w11w2!L1~l22hh(2),w1!R12~l,w12w2!, ~56!

whereL(l,w)5T21(l,2w)K(l22hh,w)T(l,w), andK(l,w) is defined by a diagonal matrix

K~l,w!1,151, K~l,w!2,25
u~w1j!u~w1l2j!

u~w2j!u~w2l1j!
, ~57!
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wherej is an arbitrary parameter. Then, the transfer matrix of the open elliptic quantum g
takes the form

t~w!5tr~K̃~l,w!L~l,w!!. ~58!

The diagonal matrixK̃ reads

K̃1151, K̃225
u~l22h!

u~l12h!

u~w22h2 j̃ !u~w22h2l1 j̃ !

u~w22h1 j̃ !u~w22h1l2 j̃ !
. ~59!

Let j5 j̃ and take the quasiclassical limith→0 in the transfer matrix of the boundary ellipti
quantum group, we have obtained

t~l,w5zj !52S 1

L j11
1H j1O~h2! D . ~60!

Here theH j is exactly equal to the Hamiltonian of the open DEQG model defined by Eq.~55!. It
is also easy to prove@H j ,Hk#50 since the first term of Eq.~55! is only an integer. Therefore, thi
open DEQG model is a well-defined integrable model.

Since the Hamiltonian of the open DEQG model can be obtained from the transfer ma
the boundary elliptic quantum group by taking the quasiclassical limit, we can also get the
value of the Hamiltonian by same procedure. In Ref. 16, the eigenstates oft(w) are defined by
applyingB(t1)¯B(tm)v0 on the highest weight statev0 and the eigenvalue is

e~w!5)
i 51

m
u~w1t i !u~w2t i12h!

u~w2t i !u~w1t i22h!
1H)

i 51

m
u~w1t i24h!u~w2t i22h!

u~w2t i !u~w1t i22h! J
3

u~w22h2 j̃ !u~w22h2l1 j̃ !

u~w1 j̃ !u~w1l2 j̃ !

u~2w!u~w2j1l22~L11!h!u~w1j22h!

u~2w24h!u~w1j2l12Lh!u~w2j!

3H )
j 51

n
u~zj1w1~L j21!h!u~zj2w2~L j21!h!

u~zj1w2~L j11!h!u~zj2w1~L j11!h! J . ~61!

The parameterst j are governed by the Bethe ansatz equations

15)
i 51

m
u~ tk2t i22h!u~ tk1t i24h!

u~ tk1t i !u~ tk2t i12h!

u~ tk22h2 j̃ !u~ tk22h2l1 j̃ !

u~ tk2l2 j̃ !u~ tk1 j̃ !

3
u~ tk2j1l22~L11!h!u~ tk1j22h!

u~ tk2j!u~ tk1j2l12Lh!

3)
j 51

n H u~zj1tk1~L j21!h!u~zj2tk2~L j21!h!

u~zj1tk2~L j11!h!u~zj2tk1~L j11!h!J , k51,2,...,m. ~62!

Taking the quasiclassical limit of Eqs.~61! and ~62!, we can obtain the eigenvalues of th
open DEQG model

e~l,w5zj !52S 1

L j11
1 ê~zj !1O~h2! D , ~63!

where
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ê~zj !5
2L j

11L j
(
i 51

m

@w~zj1t i !1w~zj2t i !#1
12L j

11L j
H (

l 51

n

L lw~zl1zj !2(
l 61

n

L lw~zl2zj !

2~L11!w~zj1l2j!2~L11!w~zj2l1j!12w~2zj !2w~zj2j!2w~zj1j!J
~64!

and the Bethe ansatz equations change into

22 (
i 51,Þk

m

@w~ tk2t i !1w~ tk1t i !#1(
j 51

n

L j@w~zj1tk!2w~zj2tk!#

5w~ tk2j!1w~ tk1j!1~L11!@w~ tk2j1l!1w~ tk1j2l!#. ~65!

We have also investigated carefully the eigenstates of the open DEQG model. They c
written as the rescaled Bethe vectors through the quasiclassical limit

f[ )
a51

m
dB~ ta!

dh U
h50

v0 . ~66!

In fact, when deriving the eigenvalue Eq.~64! and the Bethe ansatz equations~65!, we have
applied thet(w) on f and found

t~w!f5e~w!f1ûf, ~67!

whereû is the unwanted terms. The vanishing condition of the unwanted terms gives out the
ansatz equations~65! which can be considered as the quasiclassical limit of Eq.~62!

VI. SUMMARY

In this paper, we have defined integrable periodic and open DEQG models. We proved t
the periodic case, the Hamiltonian can also be obtained from the transfer matrix and the qu
determinant of the elliptic quantum group. Expanding the transfer matrix of the boundary e
quantum group aroundh50, we can also obtain the Hamiltonian of open DEQG model.
periodic DEQG model, we defined the Bethe vector by setting the generating operator
DEQG model on the highest weight vector. Then, we obtain eigenvalues of the Hamiltonia
the Bethe ansatz equations. For the open DEQG model, we obtained the eigenvalues of
tonian by taking quasiclassical limith→0 in the eigenvalues of the boundary elliptic quantu
group. We can also define the Bethe vectors of open DEQG model by rescaling the Bethe
of the boundary quantum group aroundh50. With the rescaled Bethe vectors we obtained
eigenvalues of the Hamiltonian of open DEQG model and the Bethe ansatz equations.

The DEQG models defined in present paper is related to su~2!. One interesting problem is how
to generalize it to the su(n) case and how to find the solution of the generalized models. One
apply the same approach in this paper. But, it is not the unique method for solving the G
model. With the Wakimoto construction,5 the rational Gaudin model based on Lie algebrag was
solved. In this method, one can avoid using quasiclassical limit. We expect that the DEQG m
given in present paper can be treated in terms of the Wakimoto construction. In fact, we
succeeded in constructing general DEQG models related to the Lie algebrag and finding their
solutions,17 which will appear in another paper. Furthermore, it is well known that the Knizhn
Zamolodchikov–Bernard equation also play an important role in the integrable system.18–20It has
been shown that the solutions of integrable Knizhnik–Zamolodchikov–Bernard equations c
constructed by using the results of Gaudin models.10,21 So, in our forthcoming paper,22 we will
study them for our present models.
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Additivity for unital qubit channels
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Department of Mathematics, Northeastern University Boston, Massachusetts 02115
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Additivity of the Holevo capacity is proved for product channels, under the condi-
tion that one of the channels is a unital qubit channel, with the other completely
arbitrary. As a byproduct this proves that the Holevo bound is the classical infor-
mation capacity of such qubit channels, and provides an explicit formula for this
classical capacity. Additivity of minimal entropy and multiplicativity ofp-norms
are also proved under the same assumptions. The proof relies on a new bound for
thep-norm of an output state from the half-noisy phase-damping channel. ©2002
American Institute of Physics.@DOI: 10.1063/1.1500791#

I. INTRODUCTION AND STATEMENT OF RESULTS

There are several outstanding conjectures concerning product channels. These all invo
question of finding the ‘‘best’’ state or set of states to transmit through a product channel,
some measure of performance at the output to determine ‘‘best.’’ In this article we will con
three well-known measures of performance: the Holevo quantityx* , which measures the chan
nel’s capacity to transmit classical information; the minimal entropy of an output state; an
maximal p-norm of an output state~this was introduced by Amosov, Holevo, and Werner,2 who
called it the ‘‘maximal output purity’’ of the channel!. An obvious candidate for the ‘‘best’’ set o
states in each case is constructed by taking the product of the corresponding best states
individual channels. For the first two performance measures described above, the outst
conjecture is that this procedure indeed produces the optimal state. That is, the ‘‘best’’ sta
send through the channel are always product states—there is no advantage in using en
states. As a consequence, it would follow that the minimal entropy and the Holevo quanti
additive for product channels. Until recently it was conjectured that the maximalp-norm is also
multiplicative for product channels; however, Werner recently discovered counterexamplesp
>5, in dimension three and higher.17 The multiplicative conjecture for the maximalp-norms is
still open for small values ofp, in particular for values between 1 and 2. At this time, it seems
to say that there is no good understanding of why these conjectures should be true.

The conjectures have been verified numerically for products of low dimensional chan
However, numerical testing becomes difficult when the dimensions of the state spaces are la
part, this is because the allowed input states for the product channel include all entangled s
addition to the product states. So it seems to be necessary to develop an analytical me
investigate the conjectures, and that is the overall goal of the work reported in this article.

Recall that a channelF on a Hilbert spaceH is a completely positive, trace-preserving m
on the algebra of observables onH. WhenH5C2 we will call F a qubit channel. Qubit channels
play an important role in quantum information theory, because many applications involv
manipulation and entanglement of qubit states. If the channel satisfiesF(I )5I , so that it maps the
identity to itself, thenF is aunital channel. Examples of unital qubit channels are the depolari
channel, the phase-damping channel, and the two-Pauli channel of Bennett, Fuchs, and S3

The unital qubit channels provide a very useful laboratory for testing analytical approaches
conjectures. This is because they are parametrized by three real numbers~up to unitary equiva-
lence!, and the geometry of this set of parameters is well understood. In this article we wi

a!Electronic mail: king@neu.edu
46410022-2488/2002/43(10)/4641/13/$19.00 © 2002 American Institute of Physics

                                                                                                                



of the
w to

ribed
channel.
e
ubit
s con-

l
ls
for the
in Ref.

n

hannel

results

4642 J. Math. Phys., Vol. 43, No. 10, October 2002 Christopher King

                    
detailed properties of this class of channels to derive some new bounds which lead to proofs
conjectures for unital qubit channels. Hopefully these results will provide clues about ho
proceed in the general case.

The results in this article concern product channelsV ^ F whereF is aunital qubit channel,
andV is completely arbitrary. For such channels we are able to establish the conjectures desc
above, namely that the three performance measures are optimized on product states of the
The main ingredient in the proof is a new inequality for thep-norm of an output state from th
half-noisy channelI ^ F. The proof of this bound uses details of the classification of unital q
channels,11 and does not obviously extend to other classes of channels. In essence, it use
vexity and symmetry arguments to reduce the bound to the case of thephase-damping channe.
The phase-damping channel@defined later in~20!# is a one-parameter family of unital channe
which has been used as a model for decoherence in a two-state system. The inequality
phase-damping channel can be proved using the method of Lieb and Ruskai which appears
10, although in this article we prove it using a result of Epstein5 concerning concavity of a certai
trace function.

Before stating precisely our results we review the three performance measures for a c
that are used here. First, for anyp>1 the maximalp-norm of the channelF is defined to be

np~F!5sup
r

iF~r!ip , ~1!

where the sup runs over states and where thep-norm of a positive matrixA is defined by

iAip5~TrAp!1/p. ~2!

Second, the minimal entropy of the channelF is defined by

Smin~F!5 inf
r

S~F~r!!, ~3!

whereS(r)52Trr logr is the von Neumann entropy of the stater.
Third, the Holevo capacity ofF is defined by

x* ~F!5 sup
p i ,r i

FSS ( p iF~r i ! D2( p iS~F~r i !!G , ~4!

where the sup runs over all probability distributions$p i% and collections of states$r i% on H.
Theorem 1: Let F be a unital qubit channel. Then for any channelV,

np~V ^ F!5np~V! np~F!, f or any p>1, ~5!

Smin~V ^ F!5Smin~V!1Smin~F!, ~6!

x* ~V ^ F!5x* ~V!1x* ~F!. ~7!

Results related to Theorem 1 have been proven before. Several authors have proven the
for the half-noisy channelV ^ I .2,6,15 Holevo proved~7! when bothV and F are QC or CQ
channels.9 In Ref. 10, ~5!–~7! were proven for any channelV, when F is either a QC or CQ
channel. Brusset al.proved~7! when bothV andF are depolarizing qubit channels.4 Amosov and
Holevo proved~5! for integer values ofp when bothV and F are products of depolarizing
channels.1 King and Ruskai presented strong evidence for~7! when bothV andF are unital qubit
channels.11 In Ref. 10 it was shown that~5! holds for anyV whenp is integer andF is a unital
qubit map, or whenp52 andF is any qubit map. Recently Shor has proven~6! and ~7! for any
channelV whenF is an entanglement breaking channel.16
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It turns out that for a unital qubit channel all of the performance measures are determin
one number, the maximal output norm, which we define now.

Definition 2: LetF be a unital qubit channel. The maximal output norm ofF is defined to be

MF5sup
r

iF~r!i5sup
r,t

Tr~F~r!t!. ~8!

A qubit channelF can be viewed as a map on the Bloch sphere, and the image is an elli
which lies inside the Bloch sphere. For a unital map, this image ellipsoid is centered at the
and the numberMF is its semi-major axis. Define the functions

mp~x!5@xp1~12x!p#1/p ~9!

and

h~x!52x logx2~12x!log~12x!. ~10!

Then it is easy to see that for a unital qubit channelF,

np~F!5mp~MF!,

Smin~F!5h~MF!, ~11!

x* ~F!5 log 22h~MF!.

The third line in~11! follows because the sup in~4! is attained withp15p25 1
2, and with both

r1 andr2 states of minimal entropy which map to opposite ends of the major axis of the ellip
so thatr5(p ir i5I /2.

The well-known Holevo–Schumacher–Westmoreland theorem8,14 shows thatx* (F) is the
best rate for transmission of classical information through the channelF when product states ar
used at the input~and possibly entangled measurements are used at the output!. As a consequence
the ultimate capacity of a quantum channelF for faithful transmission of classical informatio
~without prior entanglement between sender and receiver, and without a back-channel fr
ceiver to sender! is given by

Cult~F!5 lim
n→`

1

n
x* ~F ^ n!. ~12!

By taking V5F ^ (n21) in ~7! and using induction onn we deduce that

x* ~F ^ n!5nx* ~F!. ~13!

This allows us to compute the limit in~12! and we now state this result as a separate theore
Theorem 3: Let F be a unital qubit channel. Then the classical capacity of the channel

Cult~F!5x* ~F!5 log 22h~MF!. ~14!

The article is organized as follows. Sections II and III contain the proof of Theorem 1 for
special channels. Section II covers the case of the depolarizing channel. All the main estima
introduced in this section, and the reader should be able to grasp the essential ideas with
additional complications that arise for a general unital qubit channel. Section III does the sa
the two-Pauli channel introduced by Bennett, Fuchs and Smolin. Section IV completes the
for the general case, by reducing it to the two special cases covered in Secs. II and III. Sec
contains the proof of the main estimate used, which bounds thep-norm of an output state from th
half-noisy phase-damping channel.
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II. PROOF FOR THE DEPOLARIZING CHANNEL

The depolarizing channelDl is defined by

Dl~r!5lr1
~12l!

2
Tr~r!I , ~15!

where2 1
3<l<1 andI is the 232 identity matrix~the asymmetric bounds on the range ofl are

required for the map to be completely positive11!. The image of the Bloch sphere under this m
is the sphere with radiusulu centered at the origin. It follows that the maximal output no
@defined in~2!# is given by

MDl
5

11ulu
2

, ~16!

and hence the maximal output purity and the minimal entropy are respectively

np~Dl!5mpS 11l

2 D , Smin~Dl!5hS 11l

2 D , ~17!

and the Holevo quantity is

x* ~Dl!5 log 22hS 11l

2 D . ~18!

One special feature of the depolarizing channel is its invariance under unitary conjug
that is,

Dl~U r U* !5U Dl~r! U* ~19!

for all 232 unitary matricesU, and all statesr. This symmetry property will play a crucial role
in the argument.

The proof of additivity for the depolarizing channel proceeds by writing it as a con
combination of a special class of unital channels called the phase-damping channels. Thes
nels are defined by

Cl
( i )~r!5

~11l!

2
r1

~12l!

2
s irs i , ~20!

wherei 51,2,3, wheres i are the Pauli matrices, and where21<l<1. The term ‘‘phase-damping
channel’’ usually refers only to the casei 53, but we use it here fori 51,2 also.

The depolarizing channel can be rewritten in Kraus form as

Dl~r!5
113l

4
r1

12l

4 (
i 51

3

s i r s i . ~21!

It follows by straightforward calculation that

Dl5
113l

414l
@Cl

(1)1Cl
(2)#1

12l

414l
@s3Cl

(1)s31s3Cl
(2)s3#. ~22!

The convex decomposition~22! can be checked directly by substitution from~21! and ~20!.
However, it can be derived much more easily using the geometric representation of unita
channels which will be explained in Sec. IV.
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The main technical result behind the proof of Theorem 1 is the next estimate for thep-norm
of an output state from the half-noisy phase-damping channel. In order to state this bound, lr be
a state onCK

^ C2 for someK. Thenr can be written in the form

r5X^ I 1(
i 51

3

Yi ^ s i5S X1Y3 Y12 iY2

Y11 iY2 X2Y3
D , ~23!

whereX,Yi areK3K Hermitian matrices, with TrX5 1
2. Also the positivity ofr implies that

X6Yi>0, i 51,2,3. ~24!

Theorem 4: Let r be a state onCK
^ C2 for some K>1, written in the form~23!. Then for all

p>1, and for i51,2,3,

i~ I ^ Cl
( i )!~r!ip<2 mpS 11l

2 D F1

2
Tr~X1Yi !

p1
1

2
Tr~X2Yi !

pG1/p

. ~25!

The estimate~25! will be derived in Sec. V, using a result from convex analysis due
Epstein.5 By taking its derivative atp51, we can obtain a lower bound for the entropy of a
output state from the half-noisy channel (I ^ Cl

( i )), namely,

S~~ I ^ Cl
( i )!~r!!>hS 11l

2 D1h~ai !2 log21aiS~a i !1~12ai !S~b i !, ~26!

whereai5Tr(X1Yi), 12ai5Tr(X2Yi) anda i5(X1Yi)/ai , b i5(X2Yi)/(12ai). The author
does not know any way to derive this useful entropy bound directly, without first deriving
p-norm bound~25!.

The proof of~5! for the depolarizing channel follows by combining the symmetry prope
~19! with the convex decomposition~22!, and using the bound~25!. Indeed, by~17! it is sufficient
to prove that for any bipartite stater12

i~V ^ Dl!~r12!ip<np~V! mpS 11l

2 D , ~27!

since equality can be achieved with product states. Furthermore, using the symmetry prope~19!
we may assume that the reduced density matrixr25Tr1r12 is diagonal. This is because we ma
replacer12 by (I ^ U)r12(I ^ U* ), whereU is any 232 unitary matrix, without changing the lef
side of~27!, andU may be chosen so thatr2 is diagonal. When the stater12 is written in the form
~23!, this means that

TrY15TrY250. ~28!

Furthermore, applyingV ^ I to r12 and using~23! gives

~V ^ I !~r12!5S V~X1Y3! V~Y12 iY2!

V~Y11 iY2! V~X2Y3!
D . ~29!

Now we return to the convex decomposition~22!. This implies a corresponding decompos
tion for (V ^ Dl)(r12), in terms of (V ^ Cl

(1))(r12), (V ^ Cl
(2))(r12), etc. Therefore, it is suffi-

cient to prove the bound for each term in this decomposition, namely,

i~V ^ Cl
( i )!~r12!ip<np~V! mpS 11l

2 D , ~30!

wherei 51,2 and wherer2 is assumed to be diagonal.
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Now we apply~25! and ~29! to deduce

i~V ^ Cl
( i )!~r12!ip<2 mpS 11l

2 D F1

2
Tr~V~X1Yi !!p1

1

2
Tr~V~X2Yi !!pG1/p

. ~31!

Using ~28! and the definition ofnp(V) it follows that

Tr~V~X6Yi !!p<np~V!p ~Tr~X6Yi !!p5np~V!p ~TrX!p ~32!

for i 51,2. Sincer12 is a state it follows that TrX5 1
2 and hence the bound~32! becomes

Tr~V~X6Yi !!p<22pnp~V!p. ~33!

Substituting~33! into ~31! gives

i~V ^ Cl
( i )!~r12!ip<2 mpS 11l

2 D S 1

2
np~V! D5np~V! mpS 11l

2 D , ~34!

which is exactly the desired bound~30!. So this proves the result~5! for the depolarizing channel
Turning now to the minimal entropy equality~6!, this follows immediately from~5! by taking

the derivative atp51, since from the easily established relation

d

dp
~ irip!p5152S~r! ~35!

it follows that for any channelV

d

dp
~np~V!!p5152Smin~V!. ~36!

Next we turn to the additivity of the Holevo capacity~7!. To establish this we use th
representation of Ohya, Petz and Watanabe13 and Schumacher–Westmoreland~OPWSW!,15 and
follow the method described in Ref. 10. Denote the relative entropy of statesv andr by

H~v ,r!5Trv~ logv2 logr!. ~37!

Then the OPWSW representation is

x* ~V!5 inf
r

sup
v

H~V~v!,V~r!!. ~38!

The state that achieves the infimum in~38! is the optimal average output state from the channeV,
and we denote this byrV . For any unital qubit channel, and in particular for the depolariz
channelDl , the optimal average output state is the noisiest stateI /2. Evaluating~38! for the
depolarizing channelDl with optimal output stateI /2 gives~18!.

Our goal is to show that

x* ~V ^ Dl!<x* ~V!1x* ~Dl!5x* ~V!1 log22hS 11l

2 D , ~39!

since the inequality in the other direction is easy. SincerV ^ I /2 is a valid output state from the
channelV ^ Dl , it follows from ~38! that

x* ~V ^ Dl!<sup
t12

H~~V ^ Dl!~t12! , rV ^ I /2!, ~40!
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and hence to prove~39! it is sufficient to prove that for any entangled statet12,

H~~V ^ Dl!~t12! , rV ^ I /2!<x* ~V!1x* ~Dl!. ~41!

Denote the reduced density matrix oft12 by

t15Tr2~t12!, ~42!

where Tr2 is the trace over the second factor. From~37! it follows that

H~~V ^ Dl!~t12!,rV ^ I /2!52S~~V ^ Dl!~t12!!2TrV~t1!logrV1 log 2. ~43!

Using ~18! and ~43! reduces~41! to the inequality

S~~V ^ Dl!~t12!!>hS 11l

2 D2Tr V~t1!log~rV!2x* ~V!. ~44!

Using again the convex decomposition~22! and the symmetry property~19!, it follows that it
is sufficient to prove the bound

S~~V ^ Cl
( i )!~t12!!>hS 11l

2 D2Tr V~t1!log~rV!2x* ~V! ~45!

for i 51,2 under the assumption thatt1 is diagonal. Referring to~26! the condition thatt1 is
diagonal means thatai5

1
2 for i 51,2, and hence the bound~26! becomes

S~~V ^ Cl
( i )!~t12!!>hS 11l

2 D1
1

2
S~2V~X1Yi !!1

1

2
S~2V~X2Yi !!. ~46!

Furthermore, we can writet152X in the form

t15 1
2 @~2X12Yi !1~2X22Yi !#, ~47!

and so it follows that

2 1
2S~2V~X1Yi !!2 1

2S~2V~X2Yi !!2TrV~t1!log~rV!

5 1
2 H~V~2X12Yi !,rV!1 1

2 H~V~2X22Yi !,rV!. ~48!

Now sincerV is the optimal average output state for the channelV, it is also the state which
achieves the infimum in the OPWSW representation~38!. Hence~38! implies

H~V~2X62Yi !,rV!<x* ~V!, ~49!

and therefore from~48!

1
2S~2V~X1Yi !!1 1

2S~2V~X2Yi !!1TrV~t1!log~rV! ~50!

>2x* ~V!. ~51!

Combining~46! and ~50! yields the required bound~45!, and this proves additivity for the depo
larizing channel.

III. PROOF FOR THE TWO-PAULI CHANNEL

The two-Pauli channel was introduced by Bennett, Fuchs, and Smolin3 who presented it as an
example of a channel which benefits from the use of entangled inputs, in the sense of mini
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measurement errors over two uses of the channel. For this reason it is particularly interes
prove the additivity result for this channel, as it implies a significant difference between the
of entanglement in the channel capacity and the error–minimization problems.

The two-Pauli channel is a one-parameter unital qubit channelQl , defined by

Ql~r!5lr1
12l

2
s1rs11

12l

2
s2rs2 , ~52!

where 0<l<1. The maximal output puritynp(Ql) is attained on the input state (I 1s1)/2 for
l> 1

3, and on the state (I 1s3)/2 for 0<l< 1
3, and so is given by

np~Ql!5H mp~~11l!/2! for 1
3<l<1,

mp~12l! for 0<l< 1
3 .

~53!

When l5 1
3 the channel is unitarily equivalent to the depolarizing channelD1/3 . We will prove

additivity here only for the range of parameters1
3<l<1. The rest of the parameter range will b

covered in the following section on the general unital qubit channel.
It will be necessary to consider two related two-Pauli channels, which are defined usin

other choices of Pauli matrices in~52!. So, for convenience, we will rename the channel defin
in ~52! asQl

(3) , and define the three channels together by

Ql
(1)~r!5lr1

12l

2
s2rs21

12l

2
s3rs3 ,

Ql
(2)~r!5lr1

12l

2
s3rs31

12l

2
s1rs1 , ~54!

Ql
(3)~r!5lr1

12l

2
s1rs11

12l

2
s2rs2 .

The key result in the proof for the depolarizing channel was the fact that for any channV
and for any entangled stater12, there was a convex decomposition of the form

~V ^ Dl!~r12!5(
k

ck ~V ^ Uk Cl
( i k) Uk* !~r128 !, ~55!

where(ck51, andi k51,2. The 232 matricesUk are unitary, and we writeUCU* to denote the
channel that acts on a stater by

U C U* ~r!5U C~r! U* , ~56!

that is, the matrixU conjugates the stateafter C acts. The stater128 is unitarily equivalent tor12,
and has the property thatr285Tr1(r128 ) is diagonal. The decomposition~55! allowed the bound
~25! to be used and this in turn led to the additivity result. In order for this to work, it was cru
that the phase-damping channel on the right side of~55! produced the factormp((11l)/2), which
was the correct bound for the channelDl .

The strategy of proof for the two-Pauli channel is similar, that is, we will produce a con
decomposition of the same form as~55!, involving phase-damping channels with the same par
eterl. This decomposition is stated next as Theorem 5. This allows us to use the bound~25!, and
so produce the factormp((11l)/2)np(V) again. By~53! this equalsnp(Ql

( i )) np(V) for 1
3<l

<1, and hence the result will be proved for this range of values. Again the crucial part is th
matricesX6Yi appearing on the right side of the bound~25!, must satisfy Tr(X6Yi)5 1

2, and this
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must be arranged before applying the convex decomposition, by using symmetry properties
channel to rotate the stater12. Once this has been done, the rest of the additivity proof proce
verbatim, and does not need to be repeated.

Theorem 5: Let r12 be a state onCK
^ C2 for some K>1, written in the form (23), and letV

be any channel acting onCK. Then for i51,2,3

~V ^ Ql
( i )!~r12!5(

k
ck ~V ^ Uk Cl

( i k) Uk* !~r12
(k)!, ~57!

where(ck51, the matrices Uk are unitary, and ik51,2,3.Furthermore, ifr12
(k) is written in the

block form (23), then TrYi k50.

Notice that the same indexi k appears inCl
( i k) and in the condition TrYi k

50 on the stater12
(k) .

This means that all the arguments of Sec. II can be repeated using the decomposition~57! in place
of ~55!, and the additivity results follow. So the proof for the two-Pauli channel reduce
establishing~57!.

The crucial ingredient in getting this decomposition is the following symmetry property o
channel: for anydiagonalunitary matrixU and any stater we have

Ql
(3)~UrU* !5UQl

(3)~r!U* . ~58!

The identity~58! follows easily from the Kraus representation~52! using the Pauli matrix relations
s is352s3s i for i 51,2. This is because any diagonal unitary matrix can be written in the f
U5aI 1bs3 with ua6bu251, and such matrices clearly commute with the action ofQl

(3) .
Similar identities hold forQl

(1) andQl
(2) , which commute respectively with matrices of the for

aI 1bs1 andaI 1bs2 .
We now prove Theorem 5 fori 53, that is for the case (V ^ Ql

(3))(r12). The proofs for the
casesi 51,2 are identical. We use a two-step construction to reach the result. First, we ha
following convex decomposition:

Ql
(3)5

3l21

2l
Cl

(2)1
12l

2l
s1Ql

(2)s1 . ~59!

It is elementary to check that this relation holds, and the geometrical picture of Sec. IV will m
it easy to derive. However, before applying the decomposition~59! to an entangled state (V
^ Ql

(3))(r12), we will use the symmetry property~58! to rotate the reduced density matrixr2

51/2(I 1w1s11w2s21w3s3) into the formr2851/2(I 1w18s11w38s3). That is, we conjugate
by a diagonal unitary matrix which removes the component in the direction ofs2—equivalently,
the density matrix is made real by conjugation with a diagonal unitary matrix. When the ro
stater128 is written in the 232 block form ~23!, this means that

Tr Y2850. ~60!

So the first step is to write

~V ^ Ql
(3)!~r12!5~V ^ UQl

(3)U* !~r128 !, ~61!

whereU is the diagonal unitary matrix that produces the rotation. Now~59! is used. The first term
on the right side of~59! produces (V ^ UCl

(2)U* )(r128 ) where the reduced density matrixr28 is
real, and this has exactly the form required in Theorem 5.

We now continue to the second step, and use another convex decomposition for the
term on the right side of~59!, namely

Ql
(2)5

2l

11l
Cl

(3)1
12l

11l
s1Cl

(2)s1 . ~62!
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Before applying~62!, we use the symmetry of the channelQl
(2) to rotate the stater128 by a unitary

matrix of the formI ^ V whereV5aI 1bs2 , and obtain the rotated stater129 . Since the reduced
density matrixr2851/2(I 1w18s11w38s3) has no component in thes2 direction, the matrixV may
be chosen so that after the second rotation the reduced matrixr2951/2(I 1w19 s1) has no compo-
nents in either thes2 or thes3 directions. As a result, the second term on the right side of~59! is
transformed as follows:

~V ^ Us1Ql
(2)s1U* !~r128 !5~V ^ WQl

(2)W* !~r129 ! ~63!

whereW5Us1V. Having done this rotation, the decomposition~62! can be applied, yielding a
convex combination of (V ^ WCl

(2)W* )(r129 ) and (V ^ WCl
(3)W* )(r129 ), and both of these have

the form required on the right side of~57!. So this completes the proof for the two-Pauli channe

IV. THE GENERAL CASE

The basic idea is that any unital qubit channelF is unitarily equivalent to a convex comb
nation of depolarizing channels and two-Pauli channels, which all share the same values ofnp and
Smin . Additivity in the general case then follows from additivity for the depolarizing and two-P
channels, combined with the convexity of thep-norm, and the concavity of the entropy.

We first review the classification of unital qubit maps which was developed in Ref. 11.
unital qubit mapF can be represented by a real 333 matrix with respect to the basiss1 ,s2 ,s3 .
In Ref. 11 it was explained that by using independent unitary transformations in its domai
range, this matrix can be put into the following diagonal form:

F5S l1 0 0

0 l2 0

0 0 l3

D . ~64!

The diagonal entries satisfyul i u<1, as well as other conditions implied by complete positivi
These conditions were analyzed in Ref. 11~and also in Ref. 7!, and it was shown that the allowe
diagonal entries ofF in ~64! comprise the tetrahedron with corners at the points

~1,1,1!, ~1,21,21!, ~21,21,1!, ~21,1,21!. ~65!

The corner~1,1,1! corresponds to the identity channel. The corner (1,21,21) corresponds to
conjugation bys1 , and so is unitarily equivalent to the identity channel, and similarly for
corners (21,21,1) and (21,1,21). The top edge of the tetrahedron~l,l,1! is the phase-damping
channelCl

(3) . The bottom edge (l,2l,21) is the channels1Cl
(3)s1 . The other edges are

obtained by permutation of the coordinates and conjugation with the Pauli matrices, and
spond to the channelsCl

(1) andCl
(2) .

The depolarizing channels~l,l,l! correspond to an interior line of the tetrahedron, dra
from a corner to the middle of the opposite side. The point (2 1

3,2
1
3,2

1
3) lies on the face of the

tetrahedron, sol52 1
3 is the smallest allowed value in~15!.

Finally, the two-Pauli channelsQl
(3) correspond to the points (l,l,2l21). These points lie

on a face of the tetrahedron, on a line connecting a corner to the middle of the opposite s
The maximal output norm of the channel~64! @as defined in~8!# is

MF5 1
2~max$ul1u,ul2u,ul3u%11!. ~66!

Furthermore, the signs of any two of the parametersl1 ,l2 ,l3 can be simultaneously flipped wit
a unitary transformation in the domain ofF ~for example, conjugation bys1 in the domain ofF
switches the signs ofl2 andl3 without any other changes!. Also, the coordinates can be cyclical
permuted using unitary transformations. So without loss of generality, we will assume henc
that the parameters satisfy
                                                                                                                



rive

t the

el, either

s-

value

x hull.
g
II
at the

4651J. Math. Phys., Vol. 43, No. 10, October 2002 Additivity for unital qubit channels

                    
1>l3>max~ ul1u,ul2u!, MF5
11l3

2
. ~67!

We will say thatF is in standard formif it is diagonal in the basiss1 ,s2 ,s3 and its diagonal
entries satisfy~67!.

Now assume thatF is in standard form, and let

l5l35max~ ul i u!. ~68!

Then the quantitiesnp , Smin andx* are determined byMF according to~11!, and their values are
unchanged by unitary transformations in the domain and the range. Hence, using~68! we get

np~F!5mpS 11l

2 D ,

Smin~F!5hS 11l

2 D ,

x* ~F!5 log22hS 11l

2 D .

Armed with the geometric picture of the unital qubit channels, it is quite easy to de
relations like~22!, ~59!, and~62!. For example, we get~22! by taking a horizontal slice through
the tetrahedron at heightl. This cross-section of the tetrahedron is a rectangle with corners a
four points

~1,l,l!, ~l,1,l!, ~21,2l,l!, ~2l,21,l!. ~69!

Furthermore, each of the maps corresponding to these corners is a phase-damping chann
Cl

( i ) or s3Cl
( i )s3 , with i 51,2. The depolarizing channel sits at~l,l,l!, and clearly there are

many ways to write it as a convex combination of the four corners. The relation~22! is one such
choice.

Now suppose thatF is a general unital qubit channel in standard form, so thatl35l.0.
Then F corresponds to a point in the cross-section of the tetrahedron with corners at~69!.
Furthermore, the condition~67!, namelyl5l35max(uliu), selects a convex subset of this cros
section. For1

3<l<1 this subset is the convex hull of the six points

~l,l,l!, ~2l21,l,l!, ~l,2l21,l!,
~70!

~2l,2l,l!, ~122l,2l,l!, ~2l,122l,l!,

and for 0<l< 1
3 this subset is the convex hull of the four points

~l,l,l!, ~2l,l,l!, ~l,2l,l!, ~2l,2l,l!. ~71!

It is important to note that every map in the convex hull of~70! has thesamevalues fornp and
Smin , since these are determined only by the maximal output norm, and this has the same
(11l)/2 for each of these channels and similarly for all the channels in the convex hull of~71!.
Therefore, by convexity, it is sufficient to prove the additivity and multiplicativity results~5!–~7!
for these corner maps, since this will imply the same bounds for all the maps in the conve
However, we recognize that the corner maps in~70! are unitarily equivalent to either depolarizin
channels or two-Pauli channels with the same parameterl. Hence the results of Secs. II and I
imply the bounds for these corner maps, and hence for all maps in the convex hull. Notice th
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results of Sec. III for the two-Pauli channel in the range1
3<l<1 are sufficient to get the result fo

the channels~70!. Similarly the maps arising in~71! are unitarily equivalent to depolarizin
channels, and so Sec. II can be again applied to deduce the result.

V. PROOF OF THEOREM 4

This theorem is a variant of the bound obtained by Lieb and Ruskai, which appeared
Appendix in Ref. 10, and it can be proved by the same method. That method uses the
Thirring bound,12 which in turn was proved using one of Epstein’s concavity results.5 Since
Theorem 3 can be obtained directly from Epstein’s result, we present that argument here.

Let r be a matrix of the form~23!. The condition thatr be positive means thatY12 iY2

5AX1Y3RAX2Y3 where R is a contraction. Every contraction is a convex combination
unitaries, so it is sufficient to assume that

Y12 iY25AX1Y3 V AX2Y3, VV* 5I . ~72!

We have the factorization

~ I ^ Cl!~r!5F1/2G F1/2, ~73!

where

F5S X1Y3 0

0 X2Y3
D , G5S I lV

lV* I D . ~74!

From the identity

S I lV

lV* I D 5U S ~11l!I 0

0 ~12l!I
DU* , ~75!

where

U5
1

&
S I V

V* 2I D , UU* 5I , ~76!

it follows that for all p>1

Gp5S aI bV

bV* aI D ~77!

with

a5 1
2 @~11l!p1~12l!p#, b5 1

2 @~11l!p2~12l!p#. ~78!

We can write

Tr~~ I ^ Cl!~r!!p5Tr~F1/2~Gp!1/p F1/2!p. ~79!

Now we use Epstein’s concavity result,5 which states that for any positive matrixB and any
p>1, the map

A→Tr~B ~A!1/p B!p ~80!
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is concave on the set of positive matrices.~In fact Epstein states the result only for integer valu
of p, but his proof applies to all real valuesp>1.! The left side of~79! is an even function ofl,
and therefore the right side is unchanged ifb is replaced by2b in ~77!. Also note that

1
2 S aI bV

bV* aI D 1 1
2 S aI 2bV

2bV* aI D 5S aI 0

0 aI D . ~81!

Therefore the concavity result~80! implies that the right side of~79! is bounded above by its valu
whenb is set equal to zero in~77!. Furthermore, whenb50, the right side of~79! becomes

Tr~F1/2~aI !1/pF1/2!p5aTrFp52a@ 1
2Tr~X1Y3!p1 1

2Tr~X2Y3!p#. ~82!

Comparing with~9! we see that 2a52p mp((11l)/2)p, and this proves the theorem.
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A method of solving the Bloch equation with infinite relaxation times is given.
Applying this method we have found unknown analytic solutions as well as the
well-known solutions. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1504887#

I. INTRODUCTION

Since the Bloch equation1 was proposed in 1946, various workers have tried to solv
analytically and only a few analytic solutions are well known. Among the various attempts
spinor approaches by spinorizing the Bloch equation in nuclear magnetic resonance2 were paid
attention to. The reason is due to the fact that there exists a 232 unitary evolution matrix. By this
unitary transformation the length of the spinor is conserved. The equivalence between vecto
spinors is also well known.3 Keeping this point in mind, we develop our approach to solving
vector Bloch equation in this paper.

We give a method of solving the homogeneous Bloch equation in Sec. II. Then in Sec.
apply this method to finding analytic solutions. In Sec. IV we state conclusions.

II. SCENARIO

The homogeneous Bloch equation for magnetization with infinite relaxation times is give

MẆ 1gBW 3MW 50, ~1!

where a dot means differentiation with respect to time. Hereg is the gyromagnetic ratio andBW is
the applied magnetic field.

Taking the scalar product ofMW with Eq. ~1! yields

d

dt
~MW •MW !50. ~2!

This turns out to be the magnitude of the magnetic vector being independent of time. This su
that rotations play a fundamental role. We introduce a time-dependent linear transformation
magnetic vector as

MW 85AMW . ~3!

By using components of Eq.~3!, we have

Mi85ai j M j , ~ i 51,2,3!, ~4!

with

~A! i j 5ai j , ~ i , j 51,2,3!. ~5!

a!Electronic mail: masanori@cc.gifu-u.ac.jp
46540022-2488/2002/43(10)/4654/14/$19.00 © 2002 American Institute of Physics
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Here the repeated indices mean summation over the index running from 1 to 3. Under the
formation ~3!, we require

MW 8"MW 85MW "MW . ~6!

Thus the transformation is restricted such that

aikajk5d i j . ~7!

In the matrix form we have

AAT5ATA51, ~8!

with

detA561. ~9!

This transformation is called the orthogonal transformation. Here we choose proper ortho
transformations, i.e., rotations in the three-dimensional Euclidean space,

detA511. ~10!

In general a rotation can be expressed in terms of the Eulerian angles~w,u,c! displayed in Fig.
1 as

A5eiwT3eiuT2eicT3, ~11!

whereTi( i 51,2,3) is the generator of rotation around thei axis and given by

~Ti !kl52 i ekli . ~12!

A straightforward calculation using Eq.~12! shows that an orthogonal evolution matrix becom

FIG. 1. Definition of the Eulerian angles.
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A5S cosw cosu cosc2sinw sinc cosw cosu sinc1sinw cosc 2cosw sinu

2sinw cosu cosc2cosw sinc 2sinw cosu sinc1cosw cosc sinw sinu

sinu cosc sinu sinc cosu
D .

~13!

By differentiating Eq.~8! with respect to time we have

~ȦAT! i j 52~ȦAT! j i . ~14!

Thus we can writevW by

~ȦAT! i j 5e i jkvk . ~15!

A tedious but straightforward calculation yields

v15 u̇ sinw2ċ sinu cosw, ~16!

v25 u̇ cosw1ċ sinu sinw, ~17!

and

v35ẇ1ċ cosu, ~18!

wherev i is the angular velocity around thei -axis.
The Bloch equation in the rotated system turns out to be

MẆ 81gBW 8ÃMW 850, ~19!

where

BW 85ABW 1
1

g
vW . ~20!

Here use has been made of the relationship;

ai j e jklBkMl5e i jnajkanlBkMl , ~21!

which is derived from the definition of detA, i.e.,

ali am janke lmn5e i jk detA. ~22!

A method of solving the Bloch equation~1! is given as follows.
First we solve the rotated Bloch equation~19! for MW 8 by rotating the coordinate system int

one with the 3-axis being the direction of the applied magnetic field. Thus we find

ABW 5~0, 0, uBW u!, ~23!

where

BW 5~ uBW usinu cosc,uBW usinusinc, uBW ucosu!. ~24!

Second we try to solve Eq.~19! by choosing

ẇ52g uBW u. ~25!
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This choice has limitations from the beginning. The case ofẇ50 is excluded. This case will be
discussed later. This allows us a case of having the magnitude of the magnetic vector bein
dependent. From this choiceBW 8 reduces to

BW 85
1

g
~v1 , v2 , v38!, ~26!

where

v385ċ cosu. ~27!

By solving Eqs.~16! and ~17! for u̇ and ċ sinu, we have

u̇5v1 sinw1v2 cosw5Av1
21v2

2 sin~w1d!, ~28!

and

ċ sinu52v1 cosw1v2 sinw52Av1
21v2

2 cos~w1d!, ~29!

where

d5cos21
v1

Av1
21v2

2
5sin21

v2

Av1
21v2

2
5tan21

v2

v1

. ~30!

Winding up Eqs.~27!, ~28!, and~29!, we find

~ u̇ !21~ ċ !25~v8!2, ~31!

~ ċ !25~v8!22v0
2 sin2~w1d!, ~32!

and

tanu52
v0

v38
cos~w1d!, ~33!

where

v85Av1
21v2

21~v38!2, ~34!

and

vo5Av1
21v2

2. ~35!

Third we look for analytic solutions by combining Eq.~26! with Eqs. ~27!–~29!. We find a
solution such that

MW 85QMW 08 , ~36!

whereMW 08 is an initial value ofMW 8. Moreover we have

MW 085A0MW 0 , ~37!

whereA0 andMW 0 are initial values ofA andMW , respectively. Thus we find a solution:
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MW 5~ATA0!~A0
TQA0!MW 0 . ~38!

Notice thatQ is a solution of the rotated Bloch equation~19! with Eq. ~26! in the matrix form.

III. EXAMPLES OF ANALYTIC SOLUTIONS

Using the senario developed in Sec. II, we study two cases in the following.

A. v1Äv2Ä0

Equations~28! and ~29! yield

u̇5ċ sinu50. ~39!

1. uÄ0

From Eq.~27! we have

v385ċ. ~40!

The exact solution is obtained by choosing the constant of integration as

E
0

t

v38 dt5c2c~0!1dc , ~41!

with

dc5c~0!50. ~42!

Thus we find

Q5S cosc sinc 0

2sinc cosc 0

0 0 1
D , ~43!

and

A051. ~44!

Here we have chosen

w~0!50. ~45!

The solution is

ATQ5S cosw 2sinw 0

sinw cosw 0

0 0 1
D , ~46!

with

w52gE
0

t

uBW udt. ~47!

This is the well-known solution.
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2. u̇ÄċÄ0

In this case we have from Eq.~27!

v3850. ~48!

Thus we find

Q51. ~49!

This case corresponds to the applied magnetic field having a fixed direction.
To get a compact expression of solution we useê defined by

ê5S B1

uBW u
,

B2

uBW u
,

B3

uBW u
D 5~sinu cosc, sinu sinc, cosu!, ~50!

with

ê35cosu, sinu5ê05Aê1
21ê2

2, ~51!

and

ê1

ê0
5cosc, sinc5

ê2

ê0
. ~52!

The rotation matrix~13! is given by

A5S ê3ê1

ê0
cosw2

ê2

ê0
sinw

ê2ê3

ê0
cosw1

ê1

ê0
sinw 2ê0 cosw

2
ê3ê1

ê0
sinw2

ê2

ê0
cosw 2

ê2ê3

ê0
sinw1

ê1

ê0
cosw ê0 sinw

ê1 ê2 ê3

D . ~53!

Thus we find

A05S ê3ê1

ê0

ê2ê3

ê0
2ê0

2
ê2

ê0

ê1

ê0
0

ê1 ê2 ê3

D , ~54!

and

~ATA0! i j 5coswd i j 1~12cosw!êi êj1sinwe ik j êk , ~55!

where

w52gE
0

t

uBW udt. ~56!
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B. v̇1Äv̇2Äv̇83Ä0

By differentiating Eq.~33! with respect to time we find the key relationship:

u̇F ẇ2
1

v38
~ ċ !2G50. ~57!

Here we have used Eqs.~27! and ~28!.

1. u̇Ä0

Winding up Eqs.~27!, ~28!, and~29!, we find

v15v250, ~58!

u50, ~59!

and

c5v38t. ~60!

Thus this case is included in Sec. III A 1.

2. ẇÄ
1

v38
„ċ…

2

Using Eq.~32!, we have

ẇ52guBW u5
v8

e3
@12e0

2 sin2~w1d!#, ~61!

where we have definedeW by

eW5S v1

v8
,
v2

v8
,
v38

v8
D , ~62!

and

e05Ae1
21e2

25
v0

v8
. ~63!

a. ẅ50. Before going into details we comment on the case ofuBW u being independent of time
In this case Eq.~61! yields

v15v250, ~64!

v3852guBW u5ċ, ~65!

and

u50. ~66!

Here we have made the combined use of Eqs.~27! and~32!. Thus this case is also included in Se
III A 1.

b. ẅÞ0. Solving the differential equation of first order~61! for w, we find

w52d1tan21F 1

e3
tan~v8t1dC!G , ~67!
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wheredC is the constant of integration. The magnitude of the applied magnetic field is obtain
differentiating Eq.~67! with respect to time,

2guBW u5
v8e3

12e0
2 cos2~v8t1dC!

~e3,0!. ~68!

Again using Eq.~61! we find

ċ5
v8e3

A12e0
2 cos2~v8t1dC!

. ~69!

By substituting Eq.~69! back into Eq.~31!, we have

u̇52
v8e0 sin~v8t1dC!

A12e0
2 cos2~v8t1dC!

. ~70!

Equation~69! yields

c5e3F~t, e0!1dc , ~71!

with

t5sin21F sin~v8t1dC!

A12e0
2 cos2~v8t1dC!

G , ~72!

whereF(x,p) is the elliptic integral of the first kind and given by

F~x,p!5E
x0

x dx

A12p2 sin2 x
~p2,1!. ~73!

Also Eq. ~70! yields

u5sin21@e0 cos~v8t1dC!#1du . ~74!

Heredc anddu are the constants of integration.
Having chosen the constants of integration as

dC5tan21~e3 tand!, ~75!

dc52e3F~t0 , e0!50, ~76!

with

t05sin21S sindC

A12e0
2 cos2 dC

D 52d, ~77!

and

du50, ~78!

we find
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w~0!5c~0!50, ~79!

and

u05u~0!5sin21~e0 cosdC!5sin21S e0 cosd

A12e0
2 sin2 d

D . ~80!

In this case the solution of the rotated Bloch equation is well known and given by

~Q! i j 5cos~v8t !d i j 1@12cos~v8t !#eiej2sin~v8t !e ik j ek , ~81!

and

A05S cosu0 0 2sinu0

0 1 0

sinu0 0 cosu0

D 5
1

A12e2
2 S 2e3 0 2e1

0 A12e2
2 0

e1 0 2e3

D . ~82!

Here we have used Eqs.~79! and ~80!.
Let us introduce the matricesEi , (i 51,2) given by

~E1! i j 5eiej , ~83!

and

~E2! i j 52e ik jek , ~84!

we find

A0
TQA05cos~v8t !11@12cos~v8t !#Q11sin~v8t !Q2 , ~85!

where

Q15A0
TE1A05S 0 0 0

0 e2
2

2e2A12e2
2

0 2e2A12e2
2 12e2

2
D , ~86!

and

Q25A0
TE2A05S 0 2A12e2

2 2e2

A12e2
2 0 0

e2 0 0
D . ~87!

Thus we find

~ATA0!~A0
TQA0!5cos~v8t !ATA01@12cos~v8t !#ATA0Q11sin~v8t !ATA0Q2 . ~88!

Having written Eq.~88! out, we list here in components ofATA0 , ATA0Q1 , andATA0Q2 :

~ATA0! i j 5~AT! ik~A0!k j5~A!ki~A0!k j , ~89!

where
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~ATA0!115
1

A12e2
2

@2e3~cosw cosu cosc2sinw sinc!1e1 sinu cosc#,

~ATA0!1252sinw cosu cosc2cosw sinc,

~ATA0!135
1

A12e2
2

@2e1~cosw cosu cosc2sinw sinc!2e3 sinu cosc#,

~ATA0!215
1

A12e2
2

@2e3~cosw cosu sinc1sinw cosc!1e1 sinu sinc#,

~ATA0!2252sinw cosu sinc1cosw cosc,

~ATA0!235
1

A12e2
2

@2e1~cosw cosu sinc1sinw cosc!2e3 sinu sinc#,

~ATA0!315
1

A12e2
2
~e3 cosw sinu1e1 cosu!,

~ATA0!325sinw sinu,

and

~ATA0!335
1

A12e2
2
~e1 cosw sinu2e3 cosu!,

~ATA0Q1! i j 5~ATA0! ik~Q1!k j , ~90!

where

~ATA0Q1!125e2@~e1 cosw2e2 sinw!cosu cosc2~e2 cosw1e1 sinw!sinc1e3 sinu cosc#,

~ATA0Q1!1352A12e2
2@~e1 cosw2e2 sinw!cosu cosc2~e2 cosw1e1 sinw!sinc

1e3 sinu cosc#,

~ATA0Q1!225e2@~e1 cosw2e2 sinw!cosu sinc1~e2 cosw1e1 sinw!cosc1e3 sinu sinc#,

~ATA0Q1!2352A12e2
2@~e1 cosw2e2 cosw!cosu sinc1~e2 cosw1e1 sinw!cosc

1e3 sinu sinc#,

~ATA0Q1!3252e2@~e1 cosw2e2 sinw!sinu2e3 cosu#,

~ATA0Q1!335A12e2
2@~e1 cosw2e2 sinw!sinu2e3 cosu#,

and
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~ATA0Q1! i150, ~ i 51,2,3!,

~ATA0Q2! i j 5~ATA0! ik~Q2!k j , ~91!

where

~ATA0Q2!1152
1

A12e2
2
$@e1e2 cosw1~12e2

2!sinw#cosu cosc

1@~12e2
2!cosw2e1e2 sinw#sinc1e2e3 sinu cosc%,

~ATA0Q2!125e3~cosw cosu cosc2sinw sinc!2e1 sinu cosc,

~ATA0Q2!135
e2

A12e2
2

@e3~cosw cosu cosc2sinw sinc!2e1 sinu cosc#,

~ATA0Q2!2152
1

A12e2
2
$@e1e2 cosw1~12e2

2!sinw#cosu sinc

2@~12e2
2!cosw2e1e2 sinw#cosc1e2e3 sinu sinc%,

~ATA0Q2!225e3~cosw cosu sinc1sinw cosc!2e1 sinu sinc,

~ATA0Q2!235
e2

A12e2
2

@e3~cosw cosu sinc1sinw cosc!2e1 sinu sinc#,

~ATA0Q2!315
1

A12e2
2
$@e1e2 cosw1~12e2

2!sinw#sinu2e2e3 cosu%,

~ATA0Q2!3252~e3 cosw sinu1e1 cosu!,

and

~ATA0Q2!3352
e2

A12e2
2 ~e3 cosw sinu1e1 cosu!.

The Eulerian angles~w,u,c! are given by

w1d5tan21F 1

e3

tan~v8t1dC!G5cos21F2
e3 cos~v8t1dC!

A12e0
2 cos2~v8t1dC!

G
5sin21F2

sin~v8t1dC!

A12e0
2 cos2~v8t1dC!

G , ~92!

u5sin21@e0 cos~v8t1dC!#5cos21@A12e0
2 cos2~v8t1dC!#, ~93!

and

c5e3F~t,e0!, t5sin21F sin~v8t1dC!

A12e0
2 cos2~v8t1dC!

G , ~94!
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with

d5cos21
e1

e0
5sin21

e2

e0
5tan21

e2

e1
, ~95!

and

dC5tan21~e3 tand!5cos21S cosd

A12e0
2 sin2 d

D 5sin21S e3 sind

A12e0
2 sin2 d

D . ~96!

This solution is a general solution under the condition that the modified angular velo
(v1 ,v2 ,v38) are independent of time. The rotated coordinate system moves according to
~92!–~94! together with Eq.~68!.

3. ẇÄ0

As was mentioned before, the choice of Eq.~25! does not make sense for the case ofẇ50.
Instead of the choice~25! we can impose onw being independent of time such that

w52d, ~97!

whered is given by Eq.~30!. From this choice Eqs.~27!–~29! together with Eqs.~32! and ~33!
yield

c5v8t, ~98!

and

u5tan21S 2
v0

v38
D 5cos21S v38

v8
D 5sin21S 2

v0

v8D . ~99!

We can solve the rotated Bloch equation~19! under the condition

uBẆ u50. ~100!

Then we have to redefineeW by

eW5
1

v
~v1 ,v2 ,guBW u1v38!, ~101!

with

v5Av0
21~guBW u1v38!2, ~102!

v05Av1
21v2

25ve0 . ~103!

Note that

BW 5@ uBW usinu cos~v8t !,uBW usinu sin~v8t !,uBW ucosu#. ~104!

The solution is given by

~Q! i j 5cos~vt !d i j 1@12cos~vt !#eiej2sin~vt !e ik jek , ~105!

where we have used Eq.~101!, and
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A05S cosdcosu 2sind 2cosd sinu

sind cosu cosd 2sind sinu

sinu 0 cosu
D . ~106!

Here we have usedA as

A5S cosd cosu cos~v8t!1sind sin~v8t! cosd cosu sin~v8t!2sind cos~v8t! 2cosd sinu

sind cosu cos~v8t!2cosd sin~v8t! sind cosu sin~v8t!1cosd cos~v8t! 2sind sinu

sinu cos~v8t! sinu sin~v8t! cosu
D .

~107!

Thus we find

ATA05S cos~v8t ! 2sin~v8t ! 0

sin~v8t ! cos~v8t ! 0

0 0 1
D , ~108!

and

A0
TQA05cos~vt !11@12cos~vt !#Q11sin~vt !Q2 , ~109!

where

Q15A0
TE1A0

5S ~e0 cosu1e3 sinu!2 0 ~e0 cosu1e3 sinu!~e3 cosu2e0 sinu!

0 0 0

~e0 cosu1e3 sinu!~e3 cosu2e0 sinu! 0 ~e3 cosu2e0 sinu!2
D ,

~110!

and

Q25A0
TE2A05S 0 e3 cosu2e0 sinu 0

2~e3 cosu2e0 sinu! 0 e0 cosu1e3 sinu

0 2~e0 cosu1e3 sinu! 0
D ,

~111!

with

e0 cosu1e3 sinu52
1

v
guBW u

v0

v8
, ~112!

and

e3 cosu2e0 sinu5
1

v S v81guBW u
v38

v8
D . ~113!

HereE1 andE2 are given by Eqs.~83! and ~84!, respectively. Thus we find

~ATA0!~A0
TQA0!5cos~vt !~ATA0!1@12cos~vt !#~ATA0!Q11sin~vt !~ATA0!Q2 , ~114!

where Eq.~108! yields ATA0 being the rotation matrix around the 3-axis.
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This example is well known as a circularly polarized rf field. Resonance occurrs whev38

52guBW u.

IV. CONCLUSIONS

We have found an unknown solution for the case in Sec. III B 2 b in which the applied
magnetic vector behaves as the bounded oscillation in time. All the well-known solutions
been contained in our approach. And even in the well-known case of Sec. III A 2, we allow
case of having the magnitude of the magnetic vector being time dependent.
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Semiclassical generalization of the Darboux–Christoffel
formula
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The Darboux–Christoffel formula is a closed-form expression for the kernel of the
operator that projects onto the firstN of a system of one-dimensional polynomials,
orthonormal with respect to some weighting function. It is a key element in the
theory of Gaussian integration and in the theory of discrete variable representation
or Lagrangian mesh methods for diagonalizing quantum Hamiltonians of a few
degrees of freedom. The one-dimensional Darboux–Christoffel formula turns out to
have a generalization that is valid in a semiclassical or asymptotic sense for a wider
class of orthonormal functions than orthonormal polynomials. This class consists of
the bound eigenfunctions of one-dimensional Hamiltonians with time-reversal in-
variance, such as kinetic-plus-potential Hamiltonians. It also has certain generali-
zations involving the unbound eigenfunctions of such Hamiltonians. ©2002
American Institute of Physics.@DOI: 10.1063/1.1489071#

I. INTRODUCTION

This paper concerns the Darboux–Christoffel formula, a standard result in the theo
one-dimensional orthonormal polynomials.1,2 The formula is the following. Let$qn(x),n
50,1,...% be a set of real polynomials, whereqn(x) is of degreen. Let the polynomials be
orthonormal on an interval@a,b# with respect to weighting functionr(x).0, so that
*a

bdx r(x)qn(x)qm(x)5dnm . Let fn(x)5Ar(x)qn(x), so that the functions$fn(x)% are ortho-
normal with respect to the measure dx. Then the Darboux–Christoffel formula is

(
n50

N21

fn~x!fn~y!5^xuPNuy&5aN

fN~x!fN21~y!2fN21~x!fN~y!

x2y
, ~1.1!

wherePN is the projection operator onto the firstN eigenfunctions,

PN5 (
n50

N21

ufn&^fnu, ~1.2!

and where

aN5^fNuxufN21&5E
a

b

dx fN~x!xfN21~x!. ~1.3!

Here and in the following we use Dirac notation, withufn& representingfn(x). The Darboux–
Christoffel formula has a generalization to systems of orthogonal polynomials in more tha
variable,3 which we shall discuss in the following, but most of this paper is concerned with
one-dimensional case.

This paper presents a semiclassical generalization of the Darboux–Christoffel formula, t
a generalization that applies to systems of orthogonal functions that are not necessarily orth

a!Electronic mail: robert@wigner.berkeley.edu
46680022-2488/2002/43(10)/4668/13/$19.00 © 2002 American Institute of Physics
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polynomials, but one that is valid only in a semiclassical or asymptotic sense. Our interest
Darboux–Christoffel formula is an outgrowth of our recent attempts4–8 to construct multidimen-
sional generalizations of ‘‘Lagrangian mesh’’ or ‘‘discrete variable representation’’~LM/DVR !
basis functions, which are localized functions useful for diagonalizing Hamiltonians of few
grees of freedom. In the remainder of this section we shall explain what LM/DVR functions
what their relation to the Darboux–Christoffel formula is, and the reasoning that led us to co
a semiclassical generalization of that formula. In subsequent sections we shall present our
tion of that generalization and a discussion of the result.

The following is a bare outline of one approach to LM/DVR functions. Standard refere
include Harriset al.,9 Dickinson and Certain,10 and Baye and Heenan.11 A review of the applica-
tion of these functions in chemical physics has recently been given by Light and Carrington,12 and
we have presented our own approach in Ref. 4. A sampling of articles showing the develo
and the history of the applications of these functions includes Refs. 13–34. These referenc
be consulted for more details.

Let M be a manifold~possibly multidimensonal! with a metric, letS be a subspace ofL2(M )
of dimensionN ~possibly infinite!, and let P be the orthogonal projector ontoS. Let $xa ,a
50, . . . ,N21% be a collection ofN distinct ‘‘grid points’’ in M . Let Da(x)5P@d(x2xa)# be the
d function at grid pointxa , projected ontoS. This will be written in Dirac notation asuDa&
5Puxa&. Then a simple theorem states that^DauDb&5Db(xa)5Da(xb)* . Finally, we define a
LM/DVR setas the combination ofP plus $xa% such that

Da~xb!5Kadab ~1.4!

with Ka.0. In view of the theorem just quoted, this implies that the projectedd-functions are
orthogonal. In this case, we shall writeFa(x)5(1/AKa)Da(x) for the orthonormalized version
of these functions. In the case of finiteN, the LM/DVR functions$Fa(x)% are linearly indepen-
dent and form an orthonormal basis inS; the same is normally true in the infinite-dimensional ca
as well.

The LM/DVR functionsDa(x) or Fa(x) are typically localized about their associated g
point xa , with diffraction-like oscillations that decay slowly as one moves away from the
point. See Ref. 4 for some plots of these functions. Their virtues in applications to qua
mechanics follow from their orthonormality and the fact that they diagonalize the proble
interpolating on the spaceS relative to the grid points$xa% @that is, the matrixDa(xb) diagonal#.
The theory of LM/DVR functions is closely related to that of Gaussian quadratures. The pra
advantages of LM/DVR basis functions are the following. First, a simple diagonal approxim
is available for the matrix elements of the potential energy in a LM/DVR basis, namely,

^FauVuFb&5V~xa!dab . ~1.5!

As it stands, this approximation is not very accurate, but~somewhat paradoxically! its use leads to
errors in the computed, low-lying eigenvalues and eigenfunctions of a Hamiltonian that are
nentially small in the size of the matrix, that is, much smaller than the errors in the m
elements themselves.4 Second, in applications of LM/DVR functions the basis functions ass
ated with grid points where the wave function is known to be small~for example, deep in a
classically forbidden region! can be thrown away, thereby effecting a reduction~or contraction! in
the size of the basis. Third, in multidimensional problems with bases that are tensor produ
one-dimensional LM/DVR bases, the matrix for the Hamiltonian is sparse, and suitable for
tive algorithms that require the repetitive multiplication of the Hamiltonian matrix times a ve
Fourth, the method of ‘‘sequential diagonalization and truncation,’’ in which one diagonaliz
Hamiltonian on sections of increasing dimensionality before finally diagonalizing the full Ha
tonian in the full configuration space, is particularly simple when the basis functions in the
coordinate is a LM/DVR basis.12

An important class of LM/DVR functions is associated with real orthonormal polynomia
one dimension. A LM/DVR set requires a projection operator and a set of grid points. Le
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projection operator bePN of Eq. ~1.2!, and let the grid points$xa% be the~necessarily simple!
zeroes offN(x), the first polynomial omitted from the sum~1.2!. Then by the Darboux–
Christoffel formula~1.1!, the projectedd-functions are

Da~x!5aNfN21~xa!
fN~x!

x2xa
. ~1.6!

These clearly vanish at each other’s grid points but not at their own, that is, they satisfy Eq~1.4!
with

Ka5aNfN21~xa!fN8 ~xa!, ~1.7!

and therefore form a LM/DVR set. Note that there is actually a different LM/DVR set for e
value ofN; in practice, one increases the value ofN ~the size of the basis! to obtain convergence
in a quantum calculation.

On the other hand, a LM/DVR set does not exist on most subspacesS of functions, that is,
given S ~or equivalently, the projection operatorP that projects ontoS! there does not exist, in
general, any set of grid points such that the LM/DVR conditions~1.4! are satisfied. This point is
discussed more fully in Refs. 5 and 8, but the basic idea is that givenS, Eq. ~1.4! can be regarded
as a set ofN(N21)/2 equations inNd unknowns, where the unknowns are the coordinates of
N grid points andd is the dimensionality ofM . Thus, except possibly for smallN the number of
equations exceeds the number of unknowns, and, unless the equations are dependent,
likely that a solution exists. In fact, in the case of subspaces spanned by orthogonal polyno
the equations are dependent, since the product of two polynomials is another polynomial.
dimension, this reduces the number of independent equations below the number of unknow
a solution in fact exists, as shown explicitly in the previous paragraph with the aid o
Darboux–Christoffel formula. The same logic does not work, however, for orthogonal polyn
als in more than one dimension~see Ref. 8 and the following comments!.

Thus there arises the question of what is the most general subspaceS of functions such that
grid points exist such that Eq.~1.4! is satisfied. We do not know the answer, but certainly
easiest case is that of one-dimensional, orthogonal polynomials. There also exist certain
dimensional subspaces of functions in one dimension that are limiting cases of orthogona
nomials, with their associated LM/DVR basis functions. These include one-dimensiona
functions4 and related functions of the Bessel6 and Airy7 types. There are also systematic class
of LM/DVR functions in Rn that are not obviously limiting cases of orthogonal polynomia5

these are generalizations of sinc functions in one dimension. There are also other exam
LM/DVR sets on manifolds such asS2,8 but these seem to be isolated cases, not member
systematic families.

The case of multidimensional orthogonal polynomials is one about which much can be
To be specific, consider two-dimensional polynomials in (x,y), defined over some region of th
plane and orthogonal with respect to some weighting function, and letPN be the projector onto the
subspace spanned by all the orthogonal polynomials of degree less thanN. This subspace ha
dimensionN(N11)/2. Unlike the case of one-dimensional orthogonal polynomials, the exist
of a LM/DVR set on this subspace is not automatic; it only follows when there exists a ‘‘Gau
cubature formula,’’ in the terminolgy of Dunkl and Xu3 ~that is, it only holds for special region
and weighting functions!. Those authors give several equivalent conditions for the existence
Gaussian cubature formula; one is that theN11 polynomials of degreeN have N(N11)/2
common roots, and another is that the projected coordinate operators,PNxPN andPNyPN , com-
mute. These facts follow from the multidimensional version of the Darboux–Christoffel form
There are not many examples known in which these conditions are satisfied, and those ex
do not seem useful for quantum mechanical applications.

Thus, while LM/DVR sets could be useful in applications, especially on multidimensi
spaces, it does not seem to be easy to find them~the case of one-dimensional orthogonal polyn
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mials being an exception!. This is the reason for our interest in the Darboux–Christoffel formu
since generalizations could be useful in finding larger classes of LM/DVR sets. The follo
considerations led us to consider semiclassical generalizations.

In the case of one-dimensional orthogonal polynomials, the orthogonal polynomials
selves~times the square root of the weighting function! $fn(x)% form an orthonormal basis onS,
while another orthonormal basis is afforded by the LM/DVR functions$Fa(x)%. The projection
operatorPN corresponds semiclassically to a region of phase space,35 and the two orthonorma
bases correspond to a division of this region into Planck cells of area 2p\ in two different ways
~these are two different ‘‘polarizations,’’ in the language of geometric quantization36!. In particular,
as argued in Ref. 4, the LM/DVR basis corresponds semiclassically to dividing the region of
space corresponding toPN into vertical strips of constant area~see Fig. 5 of Ref. 4 for the case o
Hermite polynomials!. These strips are centered on the grid points, which are otherwise the
of fN(x). The grid points are not uniformly spaced, in general, since the height of the strips~the
momentum cutoff determined by the region of phase space! depends onx. Indeed, to leading orde
in 1/N, the spacing of the roots offN(x) is precisely that needed to obtain vertical strips in ph
space of constant area. This in a sense ‘‘explains’’ the spacing rule for the grid points o
LM/DVR set.

On the other hand, there is nothing in this constant area rule that requires that the pro
operator and the region of phase space associated with it should be spanned by orthogon
nomial functions. Thus, the suggestion arises that something like the Darboux–Christoffel fo
might be valid, at least in a semiclassical sense, for more general classes of functions th
orthogonal polynomial functionsfn(x) introduced previously. This turns out to be true, as
shall now show.

II. DERIVATION OF THE SEMICLASSICAL DARBOUX–CHRISTOFFEL FORMULA

Consider a one-dimensional Hamiltonian,H5p2/2m1V(x), with eigenfunctionscn(x) and
eigenvaluesEn , Hcn5Encn . The Hamiltonian is invariant under time reversal, so we m
choose the eigenfunctions to be real. It is possible to treat more general Hamiltonians~for ex-
ample, those with fourth powers of the momentum!, but time-reversal invariance seems to
necessary for the following derivation. We do not assume that the eigenfunctionscn(x) have any
necessary relationship to orthogonal polynomials, although in some special cases~for example, the
harmonic oscillator! they may. We shall assume that the classical energy level setsH(x,p)5E are
topological circles in phase space, at least in some energy range of interest, or, if the lev
consist of more than one disconnected topological circle, that tunneling between the discon
pieces can be neglected. For example, a single potential well such asV(x)5x4 satisifes these
assumptions.

The projector onto the firstN eigenstates isPN5(n50
N21ucn&^cnu, with kernel

^xuPNuy&5 (
n50

N21

cn~x!cn~y!. ~2.1!

We would like to find a semiclassical expression for this sum, analogous to the Darb
Christoffel formula~1.1!. Rather than using the semiclassical expressions for the eigenfunc
cn directly, it will be advantageous to work with the Green’s functionG(x,y,E), since this is
defined for all energiesE ~not just energy eigenvalues!, and at a certain point we shall want t
replace the sum in Eq.~2.1! with an integral. Our treatment of the Green’s function and
asymptotics follows techniques used by Gutzwiller in his periodic orbit theory,37–40but is simpler
because we are only dealing with the one-dimensional case. We have also called on tec
demonstrated by Berry and Tabor41–43 in their classic studies of integrable systems.

The Green’s operatorG(z)51/(z2H) is a function of the complexified energy variablez
5E1 i e. The corresponding kernel is the Green’s function,G(x,y,z)5^xuG(z)uy&. The Green’s
operator satisfies
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d~E2H !5
i

2p
lim
e→0

@G~E1 i e!2G~E2 i e!#, ~2.2!

or, in terms of kernels,

^xud~E2H !uy&5 (
n50

`

cn~x!cn~y!d~E2En!

5
i

2p
lim
e→0

@G~x,y,E1 i e!2G~x,y,E2 i e!#

52
1

p
lim
e→0

Im G~x,y,E1 i e!, ~2.3!

where we have used the time-reversal invariance ofH in the last step to replaceG(x,y,E2 i e) by
G(x,y,E1 i e)* . Now let E be some energy such thatEN21,E,EN , so that

E
2`

E

dE8^xud~E82H !uy&5 (
n50

N21

cn~x!cn~y!. ~2.4!

Our stategy will be to use the semiclassical expression for the Green’s function in Eq.~2.3! to
obtain the kernel ofd(E2H), which we shall then substitute into Eq.~2.4! to obtain the kernel of
the projection operator.

The Green’s function satisfies an inhomogeneous Schro¨dinger equation in the variablex,

FE1
\2

2m

]2

]x2 2V~x!GG~x,y,E!5d~x2y!. ~2.5!

This equation is valid as it stands for realE whenE does not belong to the spectrum~continuous
or discrete! of H, and otherwiseE should be given a small imaginary part. SinceG satisfies a
homogeneous Schro¨dinger equation both forx,y and x.y, we can use ordinary semiclassic
theory44 in these regions. To be specific, supposeE lies between two discrete eigenvalues ofH, so
that E is an an energy at which a classical orbit~a topological circle in phase space, symmet
about thex-axis! exists. Then there are two classical turning pointsx0 ~left! and x1 ~right!.
Suppose also thatx0,x,y,x1 ~x andy are in the classically allowed region!. Then the semiclas-
sical solutions to Eq.~2.5! in the two regions are

G~x,y,E!5
1

Ap~x!
3 H A cos@S~x0 ,x,I !/\2p/4#,x,y

B cos@S~x1 ,x,I !/\1p/4#,x.y, ~2.6!

where I 5(1/2p)rp dx is the classical action of an orbit of energyE, S(a,b,I )5*a
b p dx is the

action integral along orbit of actionI , p5p(x)5A2m@E2V(x)# is the positive branch of the
local momentum, andA and B are constants. The connection between the two branches o
semiclassical solution at the left or right turning points has been made in such a way that the
function is decaying exponentially in the classically forbidden region. Equation~2.6! is valid only
to leading order in\.

The constantsA andB are determined by matching the two solutions atx5y. At this point the
Green’s function is continuous, but its first derivative is discontinuous, as we find by integr
Eq. ~2.5! betweeny2h andy1h. This gives

lim
h→0

\2

2m F S ]G

]x D
x5y1h

2S ]G

]x D
x5y2h

G51. ~2.7!
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The conditions onG and]G/]x at x5y give two equations that can be solved forA andB. In
computing]G/]x from Eq.~2.6!, we only retain terms of leading order in\. Solving forA andB
and substituting into Eq.~2.6!, we find finally

G~x,y,E!52
2m

\Ap~x!p~y!

1

cos~pI /\!

3 H cos@S~x0 ,x,I !/\2p/4#cos@S~x1 ,y,I !/\1p/4#,x,y
cos@S~x0 ,y,I !/\2p/4#cos@S~x1 ,x,I !/\1p/4#,x.y. ~2.8!

This is the semiclassical solution for the Green’s function, valid under the stated conditionsE,
x, and y. If either x or y or both lie in a classically forbidden region, or ifE is less than the
classical energy at the bottom of the well~in which case there is no classically allowed regio!,
then other semiclassical expressions apply, involving exponentially decaying solutions. We
not write these down. IfE coincides with a semiclassical eigenvalueEn , that is, whenI 5I n

5(n11/2)\, then the denominator cos(pI/\) vanishes, giving the expected pole in the Gree
function. In this case we may replaceE by E1 i e to obtain a finite result, in which case the actio
I 5I n is replaced byI n1 i e/v, wherev5]E/]I is the frequency of the classical motion at acti
I n .

In the case of kinetic-plus-potential Hamiltonians,]2S(xi ,x,I )/]x]I 5]p(x)/]I 5mv/p(x),
wherexi5x0 or x1 , so the prefactor in Eq.~2.8! can be replaced by

2
2m

\Ap~x!p~y!
52

2

\v F]2S~x0 ,x,I !

]x]I

]2S~x1 ,y,I !

]y]I G1/2

52
p

\v
A~x,I !A~y,I !, ~2.9!

where the final expression serves to define the amplitude factorsA(x,I ), A(y,I ). With this sub-
stitution ~that is, with the ampltitudes expressed in terms of the actions!, Eq. ~2.8! is actually valid
for any one-dimensional, time-reversal invariant Hamiltonian satisfying the stated assumptio
the topology of the orbits in phase space. Moreover, when we extract the residue of~2.8! at the
pole E5En , we find the expected semiclassical eigenfunctions,

cn~x!5A~x,I n!cos@S~x0 ,x,I n!2p/4#. ~2.10!

This expression for the eigenfunctions may be analytically continued to values ofI or E other than
the quantized values, but the result does not decay exponentially in the classically forb
region. It is for this reason that we do not simply use these semiclassical eigenfunctions
~2.1!. In contrast, the Green’s function decays exponentially outside the classically allowe
gions for all values ofE.

Now we replaceE by E1 i e in Eq. ~2.8! and take the imaginary part, as in Eq.~2.3!. Only the
factor 1/cos(pI/\) gives a nonzero contribution, according to the formula, limy→0 Im@1/(x1 iy)#
52pd(x). Summing the contributions from the poles, we have

2
1

p
lim
e→0

Im
1

cos@pI ~E1 i e!/\#
52 (

n50

`

~21!n
\v

p
d~E2En!52

\

p (
n50

`

~21!nd~ I 2I n!,

~2.11!

and

^xud~E2H !uy&5
1

v
A~x,I !A~y,I ! (

n50

`

~21!nd~ I 2I n!F0~y,I !F1~x,I !, ~2.12!

where for now we consider only the casex.y and where
                                                                                                                



bit

r
t

nen-

at the

use a

ts of
c
of four
d.
than
d the
ses, for

n

xpo-

p
ich is

4674 J. Math. Phys., Vol. 43, No. 10, October 2002 R. G. Littlejohn and P. Wright

                    
F0~y,I !5cos@S~x0 ,y,I !/\2p/4#5cos@S~y,I !/\2p/4#,
~2.13!

F1~x,I !5cos@S~x1 ,x,I !/\1p/4#5cos@S~x,I !/\2pI /\1p/4#.

Here and henceforth we write simplyS(x,I ) for S(x0 ,x,I ), that is, the left turning point is taken
as the origin of the action unless otherwise specified. We have also usedS(x0 ,x1 ,I )5pI . We
recall that we have assumed thatx andy are in the classically allowed region for the classical or
of actionI . Thed-functions in Eq.~2.12! suggest that we replaceI in F0 andF1 in that equation
by I n , but we must worry that the givenx andy will not be in the classically allowed regions fo
all values ofI n . In particular, since the orbits shrink asI decreases, we may in general expecx
andy to lie outside the classically allowed region for some values ofI n less thanI . We fix this
worry by regarding Eq.~2.13! as the definitions ofF0 , F1 only whenx andy are in the classically
allowed regions for the givenI ; otherwise they are to be replaced by the corresponding expo
tially decaying semiclassical formulas~which we do not write down!. With this understanding,I
can be freely exchanged withI n in F0 andF1 in Eq. ~2.12!.

Next we argue that the sum in Eq.~2.12! can be extended downward ton52`, since the
corresponding actions represent complex classical orbits of energy less that the energy
bottom of the well. These are all in the classically forbidden region~in energy!, and the corre-
sponding semiclassical wave functions are exponentially small. With this change we may
version of the Poisson sum formula to write

(
nPZ

~21!nd~ I 2I n!5
1

\ (
nPZ

~21!nd~n2n!5
1

\ (
kPZ

eipn(2k11), ~2.14!

where we have written

I 5~n11/2!\, ~2.15!

effectively makingn a continuous version of the quantum numbern.
The use of the Poisson sum formula converts expression~2.12! into an orbit sum, much as in

Gutzwiller’s work,37–40 that is, the sum can be reorganized into a sum over classical orbi
energyE that connect initial pointy and final pointx in positive time. The orbits are not periodi
orbits, as in Gutzwiller’s work, because we are not taking the trace, but they are composed
distinct finite orbits connectingy to x, to which an arbitrary number of periodic orbits are glue
Indeed, we could have derived the resulting expression from Gutzwiller’s theory rather
working through the semiclassical expressions for the Green’s function directly. We preferre
latter procedure, however, because in parallel studies we are interested in tunneling proces
which the periodic orbit approach is more difficult.

We now carry out the integral on Eq.~2.12! as in Eq.~2.4!, where the upper limitE satisfies
EN21,E,EN , that is,I N21,I ,I N or N21,n,N. We also change the variable of integratio
to n, using

E
2`

E dE8

\v
5E

2`

n

dn8. ~2.16!

The product of the two cosine factors gives four terms when written in terms of complex e
nentials, which we express in terms ofn. For example, one of these four terms is

T15
1

4 (
kPZ

E
2`

n

dn8 A~x,I 8!A~y,I 8!ei [2pkn81S(y,I 8)/\1S(x,I 8)/\2p/2]. ~2.17!

By integrating the exponential by parts, an asymptotic series in\ is generated, of which we kee
just the first term. The integrand is considered to vanish at the lower limit of integration, wh
deep in the classically forbidden region. For example, for the first term this gives
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T152
1

4
A~x,I !A~y,I !ei [S(x,I )1S(y,I )]/\(

kPZ

e2p ikn

u~x,I !1u~y,I !12pk
, ~2.18!

where u5]S/]I is the classical angle variable, here measured with respect to the left tu
point. Next, the Fourier series in this expression can be summed,

(
kPZ

e2p ikn

u~x,I !1u~y,I !12pk
5 i

e2 i (ux1uy)frac n

12e2 i (ux1uy) , ~2.19!

whereux5u(x,I ), uy5u(y,I ), and then exponents may be combined according to

S~x,I !

\
2u~x,I !fracn5

S~x,I N21!

\
1O~\!, ~2.20!

where we use Eq.~2.15! andn5N211fracn. Thus we obtain

T152
i

4
A~x,I !A~y,I !

ei [SN21(x)1SN21(y)]/\

12e2 i (ux1uy) , ~2.21!

whereSN21(x)5S(x,I N21), etc. The actionsI in the amplitude factors or in the denominator c
be replaced by eitherI N21 or I N with only O(\) errors~which we are neglecting!.

Treating the other three terms similarly, we obtain

(
n50

N21

cn~x!cn~y!5
1

4
A~x,I !A~y,I !

3H ei [SN21(x)1SN21(y)]/\2 ip/2

12e2 i (ux1uy) 1
ei [SN21(y)2SN21(x)]/\

12e2 i (uy2ux) 1c.c.J . ~2.22!

By combining denominators this can be transformed into

A~x,I !A~y,I !

8@cosu~y,I !2cosu~x,I !#
$ei [SN21(x)1SN(y)]/\2 ip/22ei [SN(x)1SN21(y)]/\2 ip/2

1ei [SN(y)2SN21(x)]/\2ei [SN21(y)2SN(x)]/\1c.c%, ~2.23!

where we have usedSN21(x)/\1u(x,I )5SN(x)/\1O(\), etc. This in turn can be written as

A~x!A~y!

2@cosu~x,I !2cosu~y,I !#
$cos@SN~x!/\2p/4#cos@SN21~y!/\2p/4#

2cos@SN21~x!/\2p/4#cos@SN~y!/\2p/4#%. ~2.24!

Finally, using Eq.~2.10!, we find

(
n50

N21

cn~x!cn~y!5
1

2

cN~x!cN21~y!2cN21~x!cN~y!

cosu~x,I !2cosu~y,I !
. ~2.25!

This is the semiclassical Darboux–Christoffel formula, and it is one of the main results o
paper. The derivation was carried out for the casex.y, but the casex,y gives the same result
The formula has corrections of order\, or, equivalently, 1/N. Within corrections of this order, the
actionI in the denominator can be replaced byI N21 or I N or anything in between. This semiclas
sical approximation may be compared to its~exact! counterpart, Eq.~1.1!, for the case of orthogo-
nal polynomials.
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III. DISCUSSION AND LIMITING CASES

A simple limit of Eq. ~2.25! is y→x, which produces the total particle density of a system
N fermions at zero temeprature. To leading order in\, this turns out to be

(
n50

N21

ucn~x!u25
p~x,I N!

p\
. ~3.1!

To leading order in\, this is the classical result, since a uniform distrubition ofN particles in
phase space out to orbitI N produces a particle density in configuration space that
Np(x,I N)/(pI N), and sinceI N5(N11/2)\. The 1/2 is not accounted for in this calculation, sin
it is lost in the higher order terms in Eq.~2.25! that we have not computed.

Equation~2.25! can also be used to construct approximate LM/DVR functions in the s
way as the exact Darboux–Christoffel formula. That is, let the subspaceS be defined by the first
N eigenfunctions$cn(x),n50,...,N21% of H, let PN be the projector ontoS, and let the grid
points$xa% be the zeroes ofcN(x). Then, to within errors of order\, the projectedd-functions are

Da~x!5
1

2

cN~x!cN21~xa!

cosu~x,I !2cosua
, ~3.2!

whereua5u(xa ,I ). These functions vanish at each others’ grid points but not at their own,
is, they satisfy Eq.~1.4!, to within errors of order\. In the semiclassical approximation, the roo
of cN(x) occur at

S~xa ,I N!5~a13/4!p\. ~3.3!

By taking the limitx→xa in Eq. ~3.2! and using Eq.~2.10! we obtain the normalization,

Ka5
p~xa ,I N!

p\
, ~3.4!

where p5]S/]x. Notice that 1/Ka is approximately the spacing between zeros ofcN(x) at x
5xa . Finally, we obtain the normalized~and approximately orthonormal! LM/DVR functions,

Fa~x!5~21!a sinuaA \

2pa

]2S~xa ,I N!

]x]I

cN~x!

cosu~x,I N!2cosua
. ~3.5!

The functionFa(x) has a main lobe centered on the grid pointxa , with a height of order\21/2.
Near this grid point, the function behaves like a sinc function, as we see if we writex5xa1j in
Eq. ~3.5! and expand to first order inj. This gives

Fa~xa1j!5
Aa

p

sin~pj/a!

j
, ~3.6!

wherea5p\/pa is the local distance between the roots ofcN(x). Sinc functions are a standar
example of one-dimensional LM/DVR functions.4,5

The semiclassical Darboux–Christoffel formula, Eq.~2.25!, may be tested in some cases f
which the answer is exactly known. For example, in the case of the harmonic oscillatH
5p2/21x2/2 we havex52A2I cosu andaN5(N/2)1/2 ~in units wherem5\5v51!, so if the
denominator in Eq.~2.25! is evaluated atI 5I N5N11/2, then the semiclassical and exa
Darboux–Christoffel formulas do agree to order 1/N. In fact, if the denominator is evaluated
I 5N instead ofI 5N11/2, the correct value ofaN comes out exactly. This amounts to using
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orbit half-way between the (N21)st andNth quantizing orbits for evaluating the denominat
~the average of the two numbers which appear in the numerator!. This may be the best choice fo
evaluating the denominator in all cases.

The semiclassical Darboux–Christoffel formula, Eq.~2.25!, can be generalized to the case
the continuous spectrum. Let us hold the energyE and the left turning pointx0 fixed, but other-
wise deform the potential well so that the right turning point recedes to infinity. The bottom o
potential well may flatten out at some finite value of energy belowE, or it may drop down to2`.
In any case, the spectrum becomes continuous in this limit, and the eigenstates become sc
states that come in from the right and bounce off the left wall of the potential. Then it is ea
take the corresponding limit in Eq.~2.25!. If we denote the continuum eigenstates byc(x,E)
5^xuE& and normalize them according to^EuE8&5d(E2E8), then the semiclassical Darboux
Christoffel formula turns out to be

^xuPuy&5\2
c~x,E!@]c~y,E!/]E#2@]c~x,E!/]E#c~y,E!

T~x,E!22T~y,E!2 , ~3.7!

whereT(x,E) is the time required for a classical particle with energyE to go from the~left!
turning point to positionx, and where the projection operator is defined by

P5E
E0

E

dE8uE8&^E8u. ~3.8!

HereE0 is the energy at the bottom of the well.
Equation~3.7! is exact in the case of Bessel and Airy functions, if the wave functions in

numerator are interpreted as the exact wave functions and not their semiclassical approxim
Bessel functions of integer order are free particle solutions in the plane of a definite an
momentum, projected onto the radial half-line. The LM/DVR functions associated with B
functions have been explored in Ref. 6. The radial Hamiltonian has the form,

H5
pr

2

2M
1

m2\221/4

2Mr 2 , ~3.9!

whereM is the mass andm the angular momentum quantum number, and where (r ,pr) play the
role of (x,p) in the above-presented discussion. ForE.0, the potential~actually only the cen-
trifugal potential! has one~left! turning point, exactly as described in the limit leading to Eq.~3.7!.
The quantityT(r ,E) is the time required for a classical particle of energyE to travel from the
turning pointr 0 to point r . Computing this is a problem in classical mechanics that is most e
solved by viewing the~free! particle motion in the plane. The radial turning pointr 0 is the
minimum radius for the straight line orbit, and the distancer from the origin at later timet is
Ar 0

21v2t2, wherev is the velocity. ThusT(r ,E)5Ar 22r 0
2/v, and the denominator in Eq.~3.7! is

T~r ,E!22T~r 8,E!25~r 22r 82!/v2. ~3.10!

In fact, Bessel functions satisfy the identity

E
0

K

k dk Jn~kr !Jn~kr8!5
K

r 22r 82 @r 8Jn~Kr !Jn8~Kr 8!2rJn~Kr 8!Jn8~Kr !#, ~3.11!

whereK is the wave number corresponding to energyE5\2K2/2M . When details such as th
continuum normalization are worked out, Eq.~3.11! is seen to agree precisely with Eq.~3.7!. In
this case the potential well flattens out atE50, hence the lower limit on the integral.

Similarly, in the case of the Airy functions the Hamiltonian~in dimensionless units! is H
5p21x, so that the potential has only one turning point and all energy eigenfunctions are
continuum. The LM/DVR functions associated with Airy functions were studied in Ref. 6. He
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suffices to takeE50 due to the translational invariance of the problem, and the energy a
bottom of the well isE52`. The turning point~in this case, the right one! is at x50, and the
time required to reach position2x under the classical motion is proportional toA2x ~this is
motion in a uniform gravitational field!. Thus we expect the denominator in the Darbou
Christoffel formula to be proportional tox2y. In fact, Airy functions satisfy the identity

E
2`

0

dE Ai ~x2E!Ai ~y2E!5
Ai ~x!Ai 8~y!2Ai 8~x!Ai ~y!

x2y
, ~3.12!

which is proved in Ref. 6. Once again, when details such as the normalization and the fact t
are working with a right turning point are taken into account, this identity is seen to be an
version of Eq.~3.7!.

Finally, we report on a numerical test of the semiclassical Darboux–Christoffel form
~2.25!. We used the potentialV(x)5x4, for which the eigenfunctions cannot be expressed in te
of orthogonal polynomials. We computed numerically the eigenfunctionscn(x) in this potential
for different values of\, carrying the calculation out to the first eigenfunctionn5N whose energy
EN exceeds 10. We then computed the projectedd-functions,Da(x)5^xuPNuxa&, using the nu-
merically computed rootsxa of the cN(x) and the exact expression~2.1! for the projection
operator~not the semiclassical approximation!. Then we computed the exact norms of the
functions usingKa5Da(xa) @not the semiclassical approximation~3.4!#, and from these the
functionsFa(x)5Da(x)/AKa. Thus, the overlap matrix of the functions$Fa(x)% is given by

^FauFb&5
Db~xa!

AKaKb

, ~3.13!

and^FauFa&51 exactly. As for the off-diagonal elements, the semiclassical Darboux–Christ
formula, Eq.~2.25!, predicts thatDa(xb)5O(\), and Eq.~3.4! predicts thatKa5O(1/\). Thus,
if the semiclassical expressions we have derived are correct, we expect

FIG. 1. The rms off-diagonal element in one column of the matrix^FauFb& is plotted as a function of\. The column
chosen was the one for which the rootxa was closest tox50. Also plotted is a straight line of slope 2, passing through
data point at the smallest value of\. The theory predicts a slope of 2, which is well verified by the data.
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^FauFb&5H 1, a5b

O~\2!, aÞb.
~3.14!

We tested these predictions for the off-diagonal elements by computing the matrix^FauFb&
for various values of\. We found that the off-diagonal elements were all approximately of
same order of magnitude, and all much less than the diagonal elements~which are exactly unity!
when\ is small. Figure 1 contains a log–log plot of the rms value of the off-diagonal elemen
this matrix in a central column~nearx50!, as a function of\. According to Eq.~3.14!, this value
should scale as\2, that is, the curve should be a straight line with a slope of 2 on the plot. A
shown in Fig. 1 is a straight line passing through the point at the smallest value of\ with a slope
of exactly 2. It will be seen that this straight line provides a good fit to the data, confirming
predicted dependence of the off-diagonal elements of the matix on\.

There is the question of whether the approximate LM/DVR functions that are construct
the methods we have described can be useful in practice. In this regard we point out the w
Lado,45 Johnson,46 and Lemoine,26 in which approximate LM/DVR functions are constructed fro
the radial eigenfunctions of a particle in a spherical box. These eigenfunctions are not orth
polynomials~times the square root of any weighting function!, so LM/DVR functions in the usua
sense do not exist. But these authors note that a certain matrix, which in the language of thi
is Una5^cnuFa&, is approximately orthogonal, a fact that is equivalent to the approximate o
normality of the functionsFa(x) as indicated by Eq.~3.14!. The functionsFa(x) then turn out to
be useful in an approximately unitary, discretized version of the Hankel transform.

IV. CONCLUSIONS

In summary, we have explained the importance of the Darboux–Christoffel formula fo
theory of ‘‘Lagrangian mesh’’ or ‘‘discrete variable representation’’~LM/DVR ! basis sets and we
have outlined a semiclassical area rule that suggests that a semiclassical generalization
Darboux–Christoffel formula should exist. We have then used Green’s functions and semicla
techniques to derive that generalization, which involves the eigenfunctions of one-dimens
time-reversal invariant systems for which tunneling can be ignored. The result differs in part
the exact Darboux–Christoffel formula by replacing thex2y denominator by cosu(x)
2cosu(y), in which u is the classical angle variable, measured with respect to the left tur
point. We have shown how semiclassical approximations to LM/DVR basis functions ca
created. We have also taken the continuum limit of the semiclassical Darboux–Christoffe
mula, and outlined how it is equivalent to certain exact relations that hold for Bessel and
functions. Finally, we have carried out numerical calculations that confirm the expected\ depen-
dence of certain quantities~the off-diagonal elements of the overlap matrix of the approxim
LM/DVR functions!.
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The two-dimensional hydrogen atom revisited
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The bound-state energy eigenvalues for the two-dimensional Kepler problem are
found to be degenerate. This ‘‘accidental’’ degeneracy is due to the existence of a
two-dimensional analog of the quantum-mechanical Runge–Lenz vector. Reformu-
lating the problem in momentum space leads to an integral form of the Schro¨dinger
equation. This equation is solved by projecting the two-dimensional momentum
space onto the surface of a three-dimensional sphere. The eigenfunctions are then
expanded in terms of spherical harmonics, and this leads to an integral relation in
terms of special functions which has not previously been tabulated. The dynamical
symmetry of the problem is also considered, and it is shown that the two compo-
nents of the Runge–Lenz vector in real space correspond to the generators of
infinitesimal rotations about the respective coordinate axes in momentum space.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1503868#

I. INTRODUCTION

A semiconductor quantum well under illumination is a quasi-two-dimensional system
which photoexcited electrons and holes are essentially confined to a plane. The mutual Co
interaction leads to electron–hole bound states known as excitons, which are extremely im
for the optical properties of the quantum well. The relative in-plane motion of the electron
hole can be described by a two-dimensional Schro¨dinger equation for a single particle with
reduced mass. This is a physical realization of the two-dimensional hydrogenic problem,
originated as a purely theoretical construction.1 An important similarity with the three-dimensiona
hydrogen atom is the ‘‘accidental’’ degeneracy of the bound-state energy levels. This dege
is due to the existence of the quantum-mechanical Runge–Lenz vector, first introduced by2

in three dimensions, and indicates the presence of a dynamical symmetry of the system.
The most important study relating to the hidden symmetry of the hydrogen atom was th

Fock in 1935.3 He considered the Schro¨dinger equation in momentum space, which led to
integral equation. Considering negative-energy~bound-state! solutions, he projected the three
dimensional momentum space onto the surface of a four-dimensional hypersphere. After a s
transformation of the wavefunction, the resulting integral equation was seen to be invariant
rotations in four-dimensional momentum space. Fock deduced that the dynamical symmetry
hydrogen atom is described by the four-dimensional rotation group SO~4!, which contains the
geometrical symmetry SO~3! as a subgroup. He related this hidden symmetry to the obse
degeneracy of the energy eigenvalues.

Shortly afterwards, Bargmann4 made the connection between Pauli’s quantum mechan
Runge–Lenz vector and Fock’s discovery of invariance under rotations in four-dimensiona
mentum space. Fock’s method was also extended by Alliluev5 to the case ofd dimensions (d
>2). A comprehensive review concerning the symmetry of the hydrogen atom was later giv
Bander and Itzykson,6,7 including a detailed group-theoretical treatment and extension to sca
ing states.

Improvements in semiconductor growth techniques over the subsequent decades, wh
abled the manufacture of effectively two-dimensional structures, led to a resurgence of inte

a!Also at A.F. Ioffe Physico-Technical Institute, St. Petersburg, Russia. Electronic mail: m.e.portnoi@ex.ac.uk
46810022-2488/2002/43(10)/4681/11/$19.00 © 2002 American Institute of Physics
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the two-dimensional hydrogen atom. The Runge–Lenz vector for this case was defined for t
time,8 and real-space solutions of the Schro¨dinger equation were applied to problems of atom
physics in two dimensions.9

Recent studies have focused on diverse aspects of the hydrogenic problem. Thed-dimensional
case has been reconsidered, leading to a generalized Runge–Lenz vector~see Ref. 10 and refer
ences therein!. The algebraic basis of the dynamical symmetry has also been given a tho
mathematical treatment.11,12

In the present work we return to the two-dimensional problem, and use the method of F
obtain a new integral relation in terms of special functions. The dynamical symmetry of the s
is also considered, and a new interpretation of the two-dimensional Runge–Lenz vector
sented.

II. PROBLEM FORMULATION

A. Preliminaries

The relative in-plane motion of an electron and hole, with effective massesme and mh ,
respectively, may be treated as that of a single particle with reduced massm5memh /(me1mh)
and energyE, moving in a Coulomb potentialV(r). The wavefunction of the particle satisfies th
stationary Schro¨dinger equation

ĤC~r!5F2
1

r

]

]r S r
]

]r D2
1

r2

]2

]f2 1V~r!GC~r!5EC~r!, ~1!

where~r,f! are plane polar coordinates. Note that excitonic Rydberg units are used throu
this article, which leads to a potential of the formV(r)522/r.

The eigenfunctions of Eq.~1! are derived in Appendix A. It is well known that the bound-sta
energy levels are of the form1

E52
1

~n1 1
2!

2
, n50,1,2,..., ~2!

wheren is the principal quantum number. Notably, Eq.~2! does not contain explicitly the azi
muthal quantum numberm, which enters the radial equation@see Appendix A, Eq.~A4!#. Each
energy level is (2n11)-fold degenerate, the so-called accidental degeneracy.

It is convenient to introduce a vector operator corresponding to thez-projection of the angular
momentum,L̂ z5ezL̂z , whereez is a unit vector normal to the plane of motion of the electron a
hole. We now introduce the two-dimensional analog of the quantum-mechanical Runge
vector as the dimensionless operator

Â5~ q̂3L̂ z2L̂ z3q̂!2
2

r
r, ~3!

where q̂52 i¹ is the momentum operator. Note thatÂ lies in the plane and has Cartesia
componentsÂx and Ây .

L̂z , Âx , andÂy represent conserved quantities and therefore commute with the Hamilto

@Ĥ,L̂z#5@Ĥ,Âx#5@Ĥ,Ây#50. ~4!

They also satisfy the following commutation relations:

@ L̂z ,Âx#5 iÂy , ~5!

@ L̂z ,Ây#52 iÂx , ~6!
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@Âx ,Ây#524i L̂ zĤ. ~7!

B. Derivation of energy eigenvalues from Â

The existence of the noncommuting operatorsÂx and Ây , representing conserved physic
quantities, implies that the Runge–Lenz vector is related to the accidental degeneracy
energy levels in two dimensions.13 We now present a simple interpretation of the hidden symm
underlying this degeneracy.

For eigenfunctions of the Hamiltonian we can replaceĤ by the energyE, and defining

Â85
Â

2A2E
, ~8!

we obtain the new commutation relations:

@ L̂z ,Âx8#5 iÂy8 , ~9!

@ L̂z ,Ây8#52 iÂx8 , ~10!

@Âx8 ,Ây8#5 i L̂ z . ~11!

If we now construct a three-dimensional vector operator

Ĵ5Â81L̂ z , ~12!

then the components ofĴ satisfy the commutation rules of ordinary angular momentum:

@ Ĵ j ,Ĵk#5 i e jkl Ĵl , ~13!

wheree jkl is the Levi-Civita symbol.
Noting thatÂ8•L̂ z5L̂ z•Â850, we have

Ĵ25~Â81L̂ z!
25Â821L̂ z

2, ~14!

where the operatorĴ2 has eigenvaluesj ( j 11) and commutes with the Hamiltonian.
We now make use of a special expression relatingÂ2 andL̂ z

2, the derivation of which is given
in Appendix B:

Â25Ĥ~4L̂ z
211!14. ~15!

Substituting in Eq.~14! and again replacingĤ with E, we obtain

Ĵ252
1

4E
@E~4L̂ z

211!14#1L̂ z
2. ~16!

Because@Ĥ,Ĵ2#50, an eigenfunction of the Hamiltonian will also be an eigenfunction ofĴ2.
Operating with both sides of Eq.~16! on an eigenfunction of the Hamiltonian, we obtain for t
eigenvalues ofĴ2:

j ~ j 11!52S 1

4
1

1

ED . ~17!

Rearranging, and identifyingj with the principal quantum numbern, we obtain the correct expres
sion for the energy eigenvalues:
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E52
1

~n1 1
2!

2
, n50,1,2,... . ~18!

Note that thez-component ofĴ is simply L̂z . Recalling that the eigenvalues ofL̂z are denoted
by m, there are (2j 11) values ofm for a givenj. However, asj 5n, we see that there are (2n
11) values ofm for a given energy, which corresponds to the observed (2n11)-fold degeneracy.

III. FOCK’S METHOD IN TWO DIMENSIONS

A. Stereographic projection

The method of Fock,3 in which a three-dimensional momentum space is projected onto
surface of a four-dimensional hypersphere, may be applied to our two-dimensional proble
begin by defining a pair of two-dimensional Fourier transforms between real space and mom
space:

F~q!5E C~r!eiq"r dr, ~19!

C~r!5
1

~2p!2 E F~q!e2 iq"r dq. ~20!

We shall restrict our interest to bound states, and hence the energyE52q0
2 will be negative.

Substitution of Eq.~20! in Eq. ~1! yields the following integral equation forF~q!:

~q21q0
2!F~q!5

1

p E F~q8! dq8

uq2q8u
. ~21!

The two-dimensional momentum space is now projected onto the surface of a
dimensional unit sphere centered at the origin, and so it is natural to scale the in-plane mom
by q0 . Each point on a unit sphere is completely defined by two polar angles,u andf, and the
Cartesian coordinates of a point on the unit sphere are given by

ux5sinu cosf5
2q0qx

q21q0
2 , ~22!

uy5sinu sinf5
2q0qy

q21q0
2 , ~23!

uz5cosu5
q22q0

2

q21q0
2 . ~24!

An element of surface area on the unit sphere is given by

dV5sinu du df5S 2q0

q21q0
2D 2

dq, ~25!

and the distance between two points transforms as

uu2u8u5
2q0

~q21q0
2!1/2~q821q0

2!1/2 uq2q8u. ~26!

If the wavefunction on the sphere is expressed as
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x~u!5
1

Aq0
S q21q0

2

2q0
D 3/2

F~q!, ~27!

then Eq.~21! reduces to the simple form

x~u!5
1

2pq0
E x~u8! dV8

uu2u8u
. ~28!

B. Expansion in spherical harmonics

Any function on a sphere can be expressed in terms of spherical harmonics, so forx~u! we
have

x~u!5(
l 50

`

(
m52 l

l

AlmYl
m~u,f!, ~29!

whereYl
m(u,f) are basically defined as in Ref. 14:

Yl
m~u,f!5clmA2l 11

4p

~ l 2umu!!
~ l 1umu!!

Pl
umu~cosu!eimf, ~30!

wherePn
umu(cosu) is an associated Legendre function as defined in Ref. 15. The constantclm is an

arbitrary ‘‘phase factor.’’ As long asuclmu251 we are free to chooseclm , and for reasons which
will become clear we set

clm5~2 i ! umu. ~31!

The kernel of the integral in Eq.~28! can also be expanded in this basis as16

1

uu2u8u
5 (

l50

`

(
m52l

l
4p

2l11
Yl

m~u,f!Yl
m* ~u8,f8!. ~32!

Substituting Eqs.~29! and ~32! into Eq. ~28! we have

(
l 50

`

(
m52 l

l

AlmYl
m~u,f!5

2

q0
(

l 150

`

(
l 250

`

(
m152 l 1

l 1

(
m252 l 2

l 2 E 1

2l 211
Al 1m1

Yl 1

m1~u8,f8!

3Yl 2

m2~u,f!Yl 2

m2* ~u8,f8! dV8. ~33!

We now make use of the orthogonality property of spherical harmonics to reduce Eq.~33! to
the following:

(
l 50

`

(
m52 l

l

AlmYl
m~u,f!5

2

q0
(

l 150

`

(
m152 l 1

l 1 1

2l 111
Al 1m1

Yl 1

m1~u,f!. ~34!

Multiplying both sides of Eq.~34! by Yn
m8* (u,f) and integrating overdV gives

Anm85
2

q0~2n11!
Anm8 , ~35!

where we have again used the orthogonality relation for spherical harmonics. The final ste
rearrange forq0 and identify the indexn with the principal quantum number. This enables us
find an expression for the energy in excitonic Rydbergs:
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E52q0
252

1

~n1 1
2!

2
, n50,1,2,... . ~36!

This is seen to be identical to Eq.~2!.
For a particular value ofn, the general solution of Eq.~28! can be expressed as

xn~u!5 (
m52n

n

AnmYn
m~u,f!. ~37!

Each of the functions entering the sum in Eq.~37! satisfies Eq.~28! separately. So, for each valu
of n we have (2n11) linearly independent solutions, and this explains the observed (2n11)-fold
degeneracy.

We are free to choose any linear combination of spherical harmonics for our eigenfunc
but for convenience we simply choose

xnm~u!5AnmYn
m~u,f!. ~38!

If we also require our eigenfunctions to be normalized as follows:

1

~2p!2 E ux~u!u2 dV5
1

~2p!2 E q21q0
2

2q0
2 uF~q!u2 dq5E uC~r!u2 dr51, ~39!

then Eq.~38! reduces to

xnm~u!52pYn
m~u,f!. ~40!

Applying the transformation in Eq.~27!, we can obtain an explicit expression for the orth
normal eigenfunctions of Eq.~21!:

Fnm~q!5cnmA2p
~n2umu!!
~n1umu!! S 2q0

q21q0
2D 3/2

Pn
umu~cosu!eimf, ~41!

where we have used the fact thatq05(n1 1
2)

21, andu andf are defined by Eqs.~22!–~24!.

C. New integral relations

To obtain the real-space eigenfunctionsC~r! we make an inverse Fourier transform:

C~r!5
1

~2p!2 E F~q!e2 iq"r dq5
1

~2p!2 E
0

2pE
0

`

F~q!e2 iqr cosf8q dq df8, ~42!

wheref8 is the azimuthal angle between the vectorsr andq. However, if we now substitute Eq
~41! into this expression, we have to be careful with our notation. The angle labeledf in Eq. ~41!
is actually related tof8 via

f5f81fr , ~43!

wherefr is the azimuthal angle of the vectorr, which can be treated as constant for the purpo
of our integration.

Taking this into account, the substitution of Eq.~41! into Eq. ~42! yields

C~r!5
cnm

~2p!3/2A~n2umu!!
~n1umu!!

eimfrE
0

2pE
0

`S 2q0

q21q0
2D 3/2

Pn
umu~cosu!ei ~mf82qr cosf8!q dq df8.

~44!
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From Eq.~24! we obtain

Pn
umu~cosu!5Pn

umuS q22q0
2

q21q0
2D , ~45!

and we use the following form of Bessel’s integral:16

E
0

2p

ei ~mf82qr cosf8! df852p~2 i !mJm~qr!, ~46!

whereJm(qr) is a Bessel function of the first kind of orderm. Substituting Eqs.~45! and~46! into
Eq. ~44! leads to

C~r!5
cnm~2 i !m

A2p
A~n2umu!!

~n1umu!!
eimfrE

0

`S 2q0

q21q0
2D 3/2

Pn
umuS q22q0

2

q21q0
2D Jm~qr!q dq. ~47!

We now make a change of variables,x5q0r andy5q2/q0
2, so that Eq.~47! becomes

C~r!5cnm~21!n1m~2 i !mAq0~n2umu!!
p~n1umu!!

eimfrE
0

`

Pn
umuS 12y

11yD Jm~xAy!

~11y!3/2 dy, ~48!

where we have used the fact that16

Pn
umuS y21

y11D5~21!n1mPn
umuS 12y

11yD . ~49!

If we now equate the expression forC~r! in Eq. ~48! with that derived in Appendix A, we
obtain the following:

cnm~21!n1m~2 i !mE
0

`

Pn
umuS 12y

11yD Jm~xAy!

~11y!3/2 dy5
~2x! umue2x

n11/2
Ln2umu

2umu ~2x!. ~50!

The value ofcnm chosen earlier in Eq.~31! ensures that both sides of Eq.~50! are numerically
equal. If we restrict our interest tom>0, then the relation simplifies to

E
0

`

Pn
mS 12y

11yD Jm~xAy!

~11y!3/2 dy5
~21!n~2x!me2x

n11/2
Ln2m

2m ~2x!, n,m50,1,2,...; m<n. ~51!

As far as we can ascertain, this integral relation between special functions has not prev
been tabulated. Forn,m50 we recover the known integral relation15

E
0

` J0~xAy!

~11y!3/2dy52e2x. ~52!

IV. DYNAMICAL SYMMETRY

A. Infinitesimal generators

Consider now a vectoru from the origin to a point on the three-dimensional unit sph
defined in Sec. III A. If this vector is rotated through an infinitesimal anglea in the (uxuz) plane,
we have a new vector

u85u1du, ~53!
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where the components ofu are given in Eqs.~22!–~24!, and

du5aey3u. ~54!

This rotation on the sphere corresponds to a change in the two-dimensional momentum froq to
q8. The Cartesian components of Eq.~53! are then found to be

ux85
2q0qx8

q821q0
2 5

2q0qx

q21q0
2 1a

q22q0
2

q21q0
2 , ~55!

uy85
2q0qy8

q821q0
2 5

2q0qy

q21q0
2 , ~56!

uz85
q822q0

2

q821q0
2 5

q22q0
2

q21q0
22a

2q0qx

q21q0
2 , ~57!

whereq25qx
21qy

2.
After some manipulation we can also find the components ofdq5q82q:

dqx5a
q22q0

222qx
2

2q0
, ~58!

dqy52a
qxqy

q0
. ~59!

The corresponding change inF~q! is given by

dF~q!5
a

~q21q0
2!3/2 S q22q0

222qx
2

2q0

]

]qx
2

qxqy

q0

]

]qy
D @~q21q0

2!3/2F~q!#. ~60!

We can write this as

dF~q!52
i

2q0
aÂxF~q!, ~61!

where the infinitesimal generator is given by

Âx5
i

~q21q0
2!3/2F ~q22q0

222qx
2!

]

]qx
22qxqy

]

]qy
G~q21q0

2!3/2. ~62!

We now make use of the following operator expression in the momentum representatio

r̂5exx̂1eyŷ5 i¹q , ~63!

and the commutation relation

@ r̂, f ~q!#5 i¹qf , ~64!

to derive a more compact expression forÂx :

Âx5~q22q0
2!x̂22qx~q"r̂!23iqx . ~65!

By considering an infinitesimal rotation in the (uyuz) plane we can obtain a similar expressio
for Ây :
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Ây5~q22q0
2!ŷ22qy~q"r̂!23iqy . ~66!

These expressions operate on a particular energy eigenfunction with eigenvalue2q0
2. If we

move the constant2q0
2 to the right and replace it with the Hamiltonian in momentum space,Ĥ,

Âx5q2x̂1 x̂Ĥ22qx~q"r̂!23iqx , ~67!

Ây5q2ŷ1 ŷĤ22qy~q"r̂!23iqy , ~68!

thenÂx andÂy can operate on any linear combination of eigenfunctions.

B. Relation to Runge–Lenz vector

Recall the definition of the two-dimensional Runge–Lenz vector in real space:

Â5~ q̂3L̂ z2L̂ z3q̂!2
2

r
r. ~69!

Using L̂ z5r3q̂, and the following identity for the triple product of three vectors:

a3~b3c!5~a"c!b2~a"b!c, ~70!

we can apply the commutation relation@r,q̂#5 i to rewrite Eq.~69! in the form:

Â5q̂2r1rS q̂22
2

r D22q̂~ q̂"r!23i q̂. ~71!

If we now return to the expression for the real-space Hamiltonian in Eq.~1!, it is apparent that
we may substitute

q̂22
2

r
5Ĥ ~72!

in Eq. ~71! to yield

Â5q̂2r1rĤ22q̂~ q̂"r!23i q̂. ~73!

Comparing this with Eqs.~67! and~68!, it is evident that the two components of the Runge–Le
vector in real space correspond to the generators of infinitesimal rotations in the (uxuz) and (uyuz)
planes.

V. CONCLUSION

We have shown that the accidental degeneracy in the energy eigenvalues of the
dimensional Kepler problem may be explained by the existence of a planar analog of the fa
three-dimensional Runge–Lenz vector. By moving into momentum space and making a s
graphic projection onto a three-dimensional sphere, a new integral relation in terms of s
functions has been obtained, which to our knowledge has not previously been tabulated. W
also demonstrated explicitly that the components of the two-dimensional Runge–Lenz ve
real space are intimately related to infinitesimal rotations in three-dimensional momentum

APPENDIX A: SOLUTION OF REAL-SPACE SCHRÖ DINGER EQUATION

We apply the method of separation of variables to Eq.~1!, making the substitution

C~r!5R~r!F~f!. ~A1!
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Introducing a separation constantm2, we can obtain the angular equation

d2F

df2 1m2F50, ~A2!

with the solution

F~f!5
1

A2p
eimf. ~A3!

The corresponding radial equation~with E52q0
2) is

d2R

dr2 1
1

r

dR

dr
1S 2

r
2q0

22
m2

r2 DR50. ~A4!

We make the substitution

R~r!5Cr umue2q0rw~r!, ~A5!

whereC is a normalization constant. This leads to the equation

r
d2w

dr2 1~2umu1122q0r!
dw

dr
1~222umuq02q0!w50. ~A6!

Making a final change of variablesb52q0r, we obtain

b
d2w

db2 1~2umu112b!
dw

db
1S 1

q0
2umu2

1

2Dw50. ~A7!

This is the confluent hypergeometric equation,15 which has two linearly independent solutions.
we choose the solution which is regular at the origin, then this becomes a polynomial of
degree ifq05(n1 1

2)
21 with n50,1,2,... . Equation~A7! then becomes the associated Lague

equation,16 the solutions of which are the associated Laguerre polynomials:

w5Ln2umu
2umu ~b!5Ln2umu

2umu ~2q0r!. ~A8!

We can now write the real-space wavefunction in the form

Cnm~r!5
C

2p
r umue2q0rLn2umu

2umu ~2q0r!eimfr, ~A9!

where the reason for the subscript onf is explained in Sec. III C.
To normalize this wavefunction we need to make use of the integral16

E
0

`

e22q0r~2q0r!2umu11Ln2umu
2umu ~2q0r!Ln2umu

2umu ~2q0r! d~2q0r!5
~n1umu!!
~n2umu!! ~2n11!. ~A10!

The normalized wavefunctions are therefore

Cnm~r!5Aq0
3~n2umu!!

p~n1umu!! ~2q0r! umue2q0rLn2umu
2umu ~2q0r!eimfr, ~A11!

satisfying the following orthogonality condition:
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E Cn1m1
* ~r!Cn2m2

~r! dr5dn1n2
dm1m2

. ~A12!

APPENDIX B: DERIVATION OF EQ. „15…

From Eq.~3! we have

Â25F ~ q̂3L̂ z2L̂ z3q̂!2
2

r
rG2

5@2~ q̂3L̂ z!2 i q̂#22
2

r
r•@2~ q̂3L̂ z!2 i q̂#

2
2

r
@2~ q̂3L̂ z!2 i q̂#•r14. ~B1!

We further expand as follows:

@2~ q̂3L̂ z!2 i q̂#254~ q̂3L̂ z!
222i q̂•~ q̂3L̂ z!22i ~ q̂3L̂ z!•q̂2q̂2

54q̂2L̂ z
212q̂22q̂25q̂2~4L̂ z

211!, ~B2!

and

2
2

r
r•@2~ q̂3L̂ z!2 i q̂#2

2

r
@2~ q̂3L̂ z!2 i q̂#•r52

2

r
~4L̂ z

211!. ~B3!

Substituting Eqs.~B2! and ~B3! into Eq. ~B1! gives

Â25q̂2~4L̂ z
211!2

2

r
~4L̂ z

211!14, ~B4!

which, from Eq.~72!, is just

Â25Ĥ~4L̂ z
211!14. ~B5!
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Unification of the Jaynes–Cummings model and Planck’s
radiation law

A. J. van Wonderena)

Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65,
NL-1018 XE Amsterdam, The Netherlands

K. Lendi
Physikalisch-chemisches Institut der Universita¨t Zürich, Winterthurerstrasse 190,
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By combining iterative methods with Laplace transformation, we construct the
solution of a dissipative Jaynes–Cummings model. The dissipative part of the
model is based on the standard Markovian master equation for a harmonic oscilla-
tor that is coupled to a heat bath of nonzero temperature. Besides photon loss, we
also take into account frequency detuning between atom and field. Before com-
mencing the iteration, we subject the matrix elements of the density operator to a
transformation that depends on temperature. As a result, the pole structure of all
Laplace transformed matrix elements is improved. It becomes manifest which poles
do not contribute to the asymptotic behavior of the density operator. In proving that
our iterative process yields convergent results, we assume upper bounds on: the
matrix elements of the density operator, the matrix elements of the initial density
operator, the damping parameter of the heat bath, and the temperature of the heat
bath. All of these bounds are physically acceptable. The photon field may start from
a coherent state or a number state. For experiments in a microwave cavity, tem-
peratures of the order of 0.1@K# are allowed. As an application, the evolution of the
atomic density matrix is studied. We propose a limit for which this matrix con-
verges to the state of maximum von Neumann entropy. The time, the cubed initial
energy density, and the inverse of the damping parameter must tend to infinity
equally fast. The photon field is assumed to be in a number state at time zero,
whereas the initial state of the atom can be chosen freely. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1504503#

I. INTRODUCTION

A. Motivation

Some 20 years ago, the field of quantum optics witnessed fast developments. Owing
arrival of new laser sources, atomic states of high quantum number became experim
accessible.1 Transitions between these Rydberg states are accompanied by large electric
moments, so couplings to the electromagnetic radiation field are quite strong. Being also
lived, the Rydberg states could be successfully exploited to perform experimental tests
Jaynes–Cummings model.2

Proposed back in 1963,3 this analytically solvable model describes the interaction betwee
two-level atom and a single privileged mode of the quantized electromagnetic radiation field
model relies on various simplifications, for instance, the electric-dipole and rotating-wave ap
mations. Its dynamics4 exhibits such challenging features as collapse and revival of R
oscillations.5 In various disciplines, especially quantum statistical mechanics6,7 and quantum
computing,8 the model is a prime reference.

a!Electronic mail: vanwonderen@planet.nl
46920022-2488/2002/43(10)/4692/29/$19.00 © 2002 American Institute of Physics
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In an experimental setup the mode selector is a microwave cavity of high quality. Event
all of the initial energy leaks away from the cavity. Hence, the Jaynes–Cummings intera
cannot be observed for an unlimited amount of time. To deal properly with the damping phe
ena, further theoretical efforts are indispensable. Such efforts were indeed made,9 although exact
extensions of the Jaynes–Cummings model became available only after some delay.10,11 The
cavity temperature was always set equal to zero. The attempt12 to capture the effects of finite
temperature on the basis of matrix continued fractions has a strictly formal character.

In this paper we intend to solve an extended version of the Jaynes–Cummings mod
respects Planck’s law for large times. Use is made of a Markovian master equation, which
nates from a weak-coupling procedure.13 As the temperature of the cavity is nonzero, one m
expect good agreement with experiment for all evolutionary stages. We allow for frequ
detuning of atom and field, but ignore the possibility that the atom may spontaneously e
photon into electromagnetic modes other than the privileged one.

A sound mathematical treatment of the temperature effects requires considerable vigila
one plainly mimicks techniques from the zero-temperature case, then one quickly runs in
pleasant surprises. For example, the evolution of the photon field toward the thermal state m
safeguarded from the very outset. Before constructing any solutions, one should perform
perature transformation of the master equation. Omission of this preparatory step confronts
summations that do not converge uniformly in time. Their asymptotic behavior cannot be fou
making the time infinitely large behind a summation sign.

The temperature transformation ensures that our solution converges uniformly in time. A
shall prove, all summations are dominated by a geometric series. The latter is convergen
average number of thermal photons inside the cavity is sufficiently small. Consequently, we
set a bound on the temperature. In a strict sense, this paper is silent about the case of ar
high temperature.

In Sec. I B we review the Jaynes–Cummings model with cavity damping, whereas in Se
we introduce some handy notations. A summary can be found in Sec. II. It serves the read
wishes to get a good impression of this paper through a modest effort. We present ou
assumptions~i!–~iv!, as well as the two limits that will be proved. All material can be eas
understood by anyone having some experience in iterative techniques.

In Sec. III we construct our solution. We only perform a finite number of iterations. Hence
ensuing identities are equivalent to our point of departure, the master equation for the d
operator. The issue of convergence turns up in Sec. IV, as the order of iteration is taken to in
Sections IV A, IV B, IV C, and IV D each contain one building block of the convergence pr
Use is made of basic linear algebra and function theory.

As an application of the newly established solution, we propose in Sec. V a limit for whic
atom reaches the state of maximum entropy. A similar limit was already presented for the
temperature case.11 In contrast to Secs. III and IV, we do not pursue mathematical rigor in Se
Our conclusions appear in Sec. VI. Finally, this paper includes four appendices. In each
Appendices B, C, and D we prove a result, which is needed in the main text. Appendix A do
include any proofs, but describes a possible approach for extending our mathematical fram
to the case of weak damping.

B. The model

The Jaynes–Cummings interaction between a two-level atomA and a single privileged mode
of the quantized electromagnetic radiation fieldF is described by the HamiltonianH01\gH1 .
The constituentsH0 andH1 , which act on the product Hilbert spaceC2

^ HF , are given by

H05\vF@ 1
2 ~ i 12 i 2! ^ 1112^ a†a#,

H15D~ i 12 i 2! ^ 11s1 ^ a1s2 ^ a†.
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The excited stateb̂15(1,0)T of energye2 and the ground stateb̂25(0,1)T of energye1 span the
atomic Hilbert spaceC2. Hence, all atomic operators linearly depend on the matrices

i 15S 1 0

0 0D , i 25S 0 0

0 1D , s15S 0 1

0 0D , s25S 0 0

1 0D .

The privileged mode of frequencyvF has ladder operatorsa anda†, the commutator@a,a†# being
equal to unity. They act on the Hilbert spaceHF , which is spanned by the orthonormal photo
number states$un&%n50

` , with un&5(n!) 21/2(a†)nu0& andau0& identical to the zero element. Th
detuning parameterD5(e22e12\vF)/(2\g) measures the difference between the atomic
field frequencies in units of the interaction strengthg.

To account for photon loss, we couple the field mode to a thermal reservoir of in
temperatureb. Then the evolution of the density operatorr(t) for atom and field is governed b
the master equation

d

dt
r~ t !52 i @H1 ,r~ t !#1

k

11n̄
L@r~ t !#. ~1!

We have moved to the interaction picture, and divided byg, so the timet and the damping
constantk are dimensionless. Although general expressions for the damping operatorL are
available,14 we assume that the damping process is driven by a quantum dynamical semi
The standard13 weak-coupling procedure leads to

L@r#52~12^ a!r~12^ a†!2~12^ a†a!r2r~12^ a†a!12n̄@~12^ a†!r~12^ a!

1~12^ a!r~12^ a†!2~12^ a†a!r2r~12^ aa†!#, ~2!

where n̄ stands for the average number of thermal photons in the privileged mode. Trace
adjointness, and positivity of the density operator are conserved.

As t becomes large, the density operator is expected to converge to a thermal state

lim
t→`

ir~ t !2exp~2bH0!/Tr @exp~2bH0!#i50, ~3!

in trace norm. This state is a fixed point of the dynamics~1! if the condition

exp~2b\vF!5
n̄

11n̄
[l

is satisfied. Simply stated, Planck’s radiation law must be valid. Finally, note that~3! is invariant
under backtransformation to the Schro¨dinger picture.

C. Notation

The direct product̂ of two matrices, sometimes called the right Kronecker product
defined as usual.15 To avoid heavily burdened formulas, we introduce for any integern the theta
symbol

un5H 0 if n<21

1 if n>0,

and for any integerk>21 the matrix product

H )
s50

k

M ~s!J 5M ~0!M ~1!¯M ~k!, H )
s50

21

M ~s!J 51.
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We shall stick to the use of curly braces. Our Laplace transform reads

f̃ ~z!52 i E
0

`

dt eiztf ~ t !,

with Im z positive. In the sequel, we shall work forn integer with the function

c~a,b;n!5an1~b/n!n,

wherea andb are positive. We shall also need the matrices

I ~n!5S un 0

0 un11
D , W~n!5S n1/2un21 0

0 ~n11!1/2un
D ,

B~n!5S ~2kn2kln2kl!un 2 i ~n11!1/2un

2 i ~n11!1/2un ~2kn2k2kln22kl12iD!un11
D .

The eigenvalues and normalized eigenvectors of the matrixB(n;l50) are found as

mh~n!5@2k~n11/2!1 iD2 ihu~n!#un12iDdn,21 ,

q̂h~n!5nh
21~n!S ~n11!1/2

hu~n!2 ik/22D
D un1S 0

1D dn,21 .

We have abbreviated

nh~n!5@n111uhu~n!2 ik/22Du2#1/2,

u~n!5~n111D22k2/41 ikD!1/2un ,

with h561. We shall derive bounds on matrices and vectors by making use of the sup nor
the Euclidean norm, respectively. The dyadic productêi êj represents the~434! matrix, the i j
element of which equals unity; all other matrix elements equal zero. The set$êj% j 51

4 contains the
Cartesian unit vectors in four dimensions.

II. SOLUTION IN SHORT

In Sec. III we get the iterative process going, but keep the order of iteration finite. Sectio
is devoted to our convergence proofs.

Section III A shows in three steps how the primal master equation~1! can be converted to an
algebraic c-number equation in four dimensions. As a first step, we take matrix elements or(t)
with the help of the product states$ub̂1^ n&,ub̂2^ n&%n50

` , and group these in the following way

v8~ t;m,n!5@^b̂1^ mur~ t !ub̂1^ n&, ^b̂2^ ~m11!ur~ t !ub̂1^ n&,

^b̂1^ mur~ t !ub̂2^ ~n11!&, ^b̂2^ ~m11!ur~ t !ub̂2^ ~n11!&] T, ~4!

with m,n521,0,1,2,... . We use the convention that a matrix element^b̂i ^ mur(t)ub̂j ^ n& be
identical to zero for negative photon numberm or n. The choice~4! ensures that in the c-numbe
equation forv8 the photon numbers (m,n) only couple to their neighbors (m11,n11) and (m
21,n21).

The second step is made up by the transformation

v~ t;m,n!5v8~ t;m,n!,
~5!

v~ t;n,n!5~unQ11dn,21Q2!v8~ t;n,n!2lunQ2v8~ t;n21,n21!,
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with m,n>21 andmÞn. The matricesQ1 andQ2 are chosen such that, in case limit~3! holds
true, the new vectorv(t;n,n) vanishes forn>0 andt→`. Consequently, the fixed point in~3! is
mapped to its zero-temperature counterpart.

A further constraint onQ1 and Q2 is that no new couplings between photon numbers
introduced. One then arrives at the equation of motion

d

dt
v~ t;m,n!5A~m,n!v~ t;m,n!12kS~m,n!v~ t;m11,n11!12klT~m,n!v~ t;m21,n21!,

~6!

with m,n>21. The matricesA, S, andT are defined in Sec. III A. We emphasize the equivalen
between the master equation~1! and the differential equation~6!.

Laplace transformation of~6! constitutes the third and final step of the conversion. T
transformed vectorṽ(z;m,n) satisfies an algebraic equation. By carrying out a matrix invers
we arrive at a recursion relation of second order in the photon numbers (m,n).

In Sec. III B theNth-order iterative solution of~6! is constructed. Upon iterating our recursio
relationN times and performing inverse Laplace transformation, we obtain

v~ t;m,n!5v~ t;N;m,n!1r ~ t;N;m,n!, ~7!

v~ t;N;m,n!5 (
p50

N21

(
k52min(m,n)21

N2p21

lpK~ t;k,p;m,n!v~ t50;m1k,n1k! ~8!

for m,n>21 andN>1. The termr (t;N;m,n) is a remainder, which still depends onv(t;m,n).
The kernelK(t;k,p;m,n) is a (434) matrix, which possesses the properties

K~ t50;k,p;m,n!5I ~n! ^ I ~m!dk,0dp,0 ,
~9!

K~ t50;k,p;21,21!5ê2ê2dk,0dp,0 ,

with m,n>21, and the choicem5n521 forbidden. We have taken care to arrange the itera
such that the temperature makes its appearance through a power series inl.

In Sec. IV we investigate what happens to identity~7! if the order of iterationN is taken to
infinity. The treatment rests on the following four assumptions.

~i! For all non-negative times one may employ the inequalities

iv~ t;m,n!i<c1e2c2kt~m/21n/212!3c~c3l/k,c4 ;m/21n/211!,
~10!

iv~ t;21,21!2~12l!~11l!21ê2i<c1e2c2kt.

In the upper line the choicem5n521 is forbidden. The functionc is defined in Sec. I C. The
positive constants$ci% are specified in Sec. IV.

As v(t;m,n) is composed of matrix elements ofr(t), the inequalities~10! determine the class
of density operators to which we confine ourselves. This class does not include density op
that do not comply with the thermal limit~3!.

~ii ! The initial density operatorr(t50) is chosen such that for allm andn the inequality

iv~ t50;m,n!i<c5F ~m12!~n12!

~m11!! ~n11!! G
1/2

c6
m1n12um11un11 ~11!

holds true. The constantsc5 andc6 are positive. Note that fort50 andl.0 the constraint~10! is
weaker than~11!.

The bound~11! is physically acceptable, because it is possible to make two familiar cho
for the initial density operator, namely
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r~ t50!5rA^ ua&^au, r~ t50!5rA^ uq&^qu, ~12!

whererA denotes any density operator in two dimensions,ua&5exp(2uau2/21aa†)u0& stands for
a coherent state, witha complex, anduq& stands for a photon-number state, withq a non-negative
integer. The constantc6 must be set equal to max~1,uau! if one works with the coherent state.

~iii ! On the damping parameter the restriction

0,k,2

is imposed. Earlier findings for a reservoir of zero temperature7 tell us that the overdamped cas
k>2 is of no physical interest at all. The same goes for the choicek50, which decouples the
reservoir from the Jaynes–Cummings interaction.

~iv! The inequality

0<l,l0,1

is indispensable. The temperature of the reservoir is assumed to stay below a certain lev
scribed by the constantl0 . In Sec. VI we calculate what order of magnitude the temperature
have for experiments in a microwave cavity.

Making use of assumptions~ii !–~iv!, we prove in Sec. IV the existence of a vect
v(t;`;m,n) such that

lim
N→`

sup
0<t,`

iv~ t;`;m,n!2v~ t;N;m,n!i50 ~13!

for m,n>21. The properties~9! guarantee that for smallt the new vectorv(t;`;m,n) converges
to the initial vectorv(t50;m,n).

The proof of~13! consists of three steps. In Sec. IV A we derive bounds on the matrices
which the kernelK is built up. This task being accomplished, we can derive in Sec. IV B a bo
on K itself. Last, by invoking the Cauchy theorem on the existence of a limit, we prove in
IV C the statement~13!. We also check that the limiting vectorv(t;`;m,n) fulfills the conditions
~10!. It thus respects the thermal limit~3!.

Assumptions~i!–~iv!, with the boundl0 replaced byl08,l0 , allow us to prove in Sec. IV D
the limit

lim
N→`

sup
0<t,`

iv~ t;m,n!2v~ t;N;m,n!i50 ~14!

for m,n>21. The proof starts by employing~7! on the left-hand side of~14!. To cope with the
dependence of the remainderr (t;N;m,n) on the vectorv(t;m,n), we must estimate the norm o
the latter. At this point assumption~i! comes in.

By means of a triangle inequality we deduce from~13! and ~14! the identity

v~ t;m,n!5v~ t;`;m,n!, ~15!

with m,n>21. Therefore, the limiting vectorv(t;`;m,n) may be viewed as the solution of th
dissipative Jaynes–Cummings model. In principle,l must remain smaller thanl08 . However, we
can exchange the boundl08 for l0 by applying analytic continuation inl to the limiting vector.

In Sec. V we utilize our solution to examine the evolution ofrA(t), the density matrix
describing the two-level atom. We argue that, besides the thermal state, the state of ma
entropy may also be operative as an attractor in atomic phase space. This observation is b
the limit

lim
t→`,k→0,q→`

;

rA~ t !5 1
2 12 . ~16!
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The tilde denotes that the productskt andkq3 must be kept constant. The full density opera
starts from the stater(0)5rA^ uq&^qu, with rA free anduq& a photon-number state. The temper
ture may have any fixed value within its interval of convergence. A completely rigorous pro
~16! falls outside the scope of our treatment, because it forces us to tighten the bound~10! on the
limiting vector v(t;`;m,n). The factor ofk21 should be removed from the first argument ofc.
In Appendix A we outline a possible method to achieve this.

III. CONSTRUCTION OF THE SOLUTION

We now take on the job of devising the iterative process that generates the solution
dissipative Jaynes–Cummings model. Convergence proofs are not yet required, because t
of iteration is kept finite. In Sec. III A we replace the master equation~1! by a c-number recursion
relation in four dimensions. In Sec. III B we construct theNth-order iterative solution of this
recursion relation.

A. Toward an algebraic equation

We employ the product states$ub̂1^ n&,ub̂2^ n&%n50
` to cast the master equation~1! into

c-number shape. For negative photon numberm or n the matrix element̂ b̂i ^ mur(t)ub̂j ^ n&
vanishes by definition. In terms of vector~4! the c-number equation can be represented as

d

dt
v8~ t;m,n!5A8~m,n!v8~ t;m,n!12kS8~m,n!v8~ t;m11,n11!

12klT8~m,n!v8~ t;m21,n21!, ~17!

with m,n>21. For the matrices we find

A8~m,n!5I ~n! ^ B~m!1B~n!†
^ I ~m!,

S8~m,n!5T8~m11,n11!, T8~m,n!5W~n! ^ W~m!,

where we refer to the notation of Sec. I C.
According to~3!, the vector~4! is expected to behave for large times as

lim
t→`

v8~ t;m,n!5dm,n~12l!~11l!21ln11~ ê1un1ê4un11!.

We want to set up a one-to-one transformation that maps the limiting vector on the right-han
to zero, form5n non-negative. Moreover, the transformed equation~17! should not contain any
additional couplings between photon numbers. A transformation meeting these constraints i
by ~5!, with the matrices

Q15S 1 0 0 21

0 0 0 1

0 1 21 0

0 1 1 0

D , Q25ê2ê4 .

The inverse reads

v8~ t;n,n!5@unQ1
211dn,21ê4ê2#v~ t;n,n!1un(

k51

n11

lkQ1
21Q2Q1

21v~ t;n2k,n2k!.

Transformation of~17! brings us to~6!. The transformed matrices come out as
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A~n,n!5Q1A8~n,n!Q1
2112kl~2ê1ê21ê2ê2!,

S~n,n!5Q1S8~n,n!Q1
21,

T~n,n!5Q1T8~n,n!Q1
211ê1ê22ê2ê22 in1/2~2k!21ê2ê3 ,

A~21,21!5T~21,21!50, S~21,21!5ê2ê2 ,

with n non-negative. Note thatT(0,0) equals zero. Of course, formÞn the transformed matrice
are identical to their primed counterparts.

To stay in complete control of temperature dependencies, we head for a power series
parameterl. We make the split

A~m,n!5A0~m,n!12klA1~m,n!,

with

A0~n,n!5Q1A8~n,n;l50!Q1
21un , A0~m,n!5A8~m,n;l50! ~18!

for mÞn, and

A1~m,n!52 1
2 @ I ~n! ^ W2~m11!1W2~n11! ^ I ~m!#1ê4ê4dm,21dn,211 1

2 ~ ê2ê21ê4ê4!dm,nun ,

for all m,n>21. The matrixA1(21,21) equals zero.
Laplace transformation of~6! yields

ṽ~z;m,n!5R~z;m,n!@v~ t50;m,n!12ikS~m,n!ṽ~z;m11,n11!

12iklT~m,n!ṽ~z;m21,n21!12iklA1~m,n!ṽ~z;m,n!#, ~19!

with m,n>21. The resolvents are given by

R~z;21,21!5ê2ê2 /z, R~z;n,n!5@z142 iA0~n,n!#21,

for n>0, and

R~z;m,n!5I ~n! ^ I ~m!@z142 iA0~m,n!#21I ~n! ^ I ~m!,

for m,n>21 andm5n forbidden. The projectorI (n) ^ I (m) comes in because of the propert

I ~n! ^ I ~m!v8~ t;m,n!5v8~ t;m,n!.

It reflects the convention that matrix elements of the density operator disappear if a photon n
becomes negative.

The simple polez50 of R(z;21,21) determines the asymptotic behavior of our solutio
because the poles of all other resolvents lie below the real axis of the complexz plane. Their
location can be deduced from the eigenvalue equation

A8~m,n;l50!q̂h2
* ~n! ^ q̂h1

~m!5@mh1
~m!1mh2

* ~n!#q̂h2
* ~n! ^ q̂h1

~m!, ~20!

with h1 ,h2561. Definitions of eigenvectors and eigenvalues appear in Sec. I C. Note tha
eitherm521, n>0 or m>0, n521 the resolventR(z;m,n) has two instead of four poles.

B. Iteration

The recursion~19! is solved in two steps. First, we iterate in the parameterk, and subse-
quently, in the parameterkl. This route leads to a power series inl, as planned.
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The outcome of the first iteration can be expressed as

ṽ~z;m,n!5R~z;m,n! (
k50

N21

~2ik!kD1~z;k;m,n!v~ t50;m1k,n1k!

1lR~z;m,n!(
k50

N

~2ik!kD2~z;N;k;m,n!ṽ~z;m1k21,n1k21!1 r̃1~z;N;m,n!,

~21!

with N>1 and the remainder

r̃1~z;N;m,n!5~2ik!NR~z;m,n!D1~z;N21;m,n!S~m1N21,n1N21!ṽ~z;m1N,n1N!.

We have introduced the matrices

D1~z;k;m,n!5H )
s50

k21

S~m1s,n1s!R~z;m1s11,n1s11!J ,

D2~z;N;k;m,n!5uN2k212ikD1~z;k;m,n!T~m1k,n1k!

1uk21D1~z;k21;m,n!A1~m1k21,n1k21!,

where forD1 the notation of Sec. I C has been employed.
Next, we iterate~21! to arrive at the following schematic result:

ṽ~z;m,n!5 (
p50

N21

(
k52min(m,n)21

N2p21

lpK̃~z;k,p;m,n!v~ t50;m1k,n1k!1(
j 51

4

r̃ j~z;N;m,n!, ~22!

with m,n>21 andN>1. The kernel can be written as

K̃~z;k,p;m,n!5uk1p~2ik!k1p (
l 050

(
l 15 l 021

k1p21

(
l 25 l 121

k1p22

¯ (
l p5 l p2121

k

R~z;m,n!

3H )
s51

p

D2~z;`; l s2 l s2111;m1 l s21 ,n1 l s21!R~z;m1 l s ,n1 l s!J
3D1~z;k2 l p ;m1 l p ,n1 l p!.

It is essential to be aware of the condition

l s>2min~m,n!211dm,n ~23!

for 1<s<p. It is imposed on the summand ofK̃ by the matricesA1 andT figuring in D2 . Note
that the above-given summation overl 0 consists of one term only, for whichl 0 equals zero.

The remainders in~22! are byproducts of the iteration process. As shown in Sec. IV D, t
can be made small by makingN large. We thus need the precise expressions for the se
remainder

r̃2~z;N;m,n!5 (
p51

N21

(
l 050

(
l 15 l 021

N1 l 021

(
l 25 l 121

N1 l 121

¯ (
l p5 l p2121

N1 l p2121

lp~2ik! l p1pR~z;m,n!

3H )
s51

p21

D2~z;N; l s2 l s2111;m1 l s21 ,n1 l s21!R~z;m1 l s ,n1 l s!J
3D2~z;N; l p2 l p2111;m1 l p21 ,n1 l p21! r̃1~z;N;m1 l p ,n1 l p!,
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the third remainder

r̃3~z;N;m,n!5 (
l 050

(
l 15 l 021

N1 l 021

(
l 25 l 121

N1 l 121

¯ (
l N5 l N2121

N1 l N2121

lN~2ik! l N1NR~z;m,n!

3H )
s51

N21

D2~z;N; l s2 l s2111;m1 l s21 ,n1 l s21!R~z;m1 l s ,n1 l s!J
3D2~z;N; l N2 l N2111;m1 l N21 ,n1 l N21!ṽ~z;m1 l N ,n1 l N!,

and, finally, the fourth remainder,

r̃4~z;N;m,n!5 (
p51

N21

(
k5N2p

(p11)(N21)

(
l 050

(
l 15 l 021

k1p21

(
l 25 l 121

k1p22

¯ (
l p5 l p2121

k

lp~2ik!k1pR~z;m,n!

3H )
s51

p

D2~z;N; l s2 l s2111;m1 l s21 ,n1 l s21!R~z;m1 l s ,n1 l s!J
3D1~z;k2 l p ;m1 l p ,n1 l p!v~ t50;m1k,n1k!

3)
s51

p

uN1 l s212 l s21u l s2k1(N21)(p2s11) .

With these expressions in hand, we can readily verify that the identity~22! is equivalent to the
recursion~19!.

Inverse Laplace transformation of~22! confirms Eqs.~7! and~8!. Moreover, it gives rise to the
following correspondences:

K~ t;k,p;m,n!5 R dz

2p i
e2 iztK̃~z;k,p;m,n!, ~24!

r ~ t;N;m,n!5 i (
j 51

4 E
C

dz

2p
e2 izt r̃ j~z;N;m,n!. ~25!

The kernelK̃ is meromorphic inz, so in ~24! the contour has been closed on account of Jorda
lemma. It encircles all poles of the integrand counterclockwise. In~25! the contourC is a straight
line with Imz fixed and positive, and Rez running from2` to 1`.

The initial conditions~9! directly relate to the structure of~24!, as can be demonstrated wit
the help of a standard technique.16 For t50 the contour~24! can be deformed into a circleuzu
5R. The radiusR is chosen sufficiently large, so that each resolvent may be expanded i
Neumann series. Since these uniformly converge on the deformed contour, one may integra
by term, and hence, invoke the identity

R dz

2p i
z2n5dn,1 , ~26!

for any integern. One immediately recovers the right-hand sides of~9!.

IV. CONVERGENCE OF THE SOLUTION

We set out to prove statements~13! and ~14!. Making use of assumption~iii !, we derive in
Sec. IV A bounds on the matrices that generate the kernelK. In Sec. IV B we prove the inequality
~40!, which provides us with a bound on the kernel itself. The proof of~13! is presented in Sec
IV C. The bound~40! is needed, as well as assumptions~ii ! and~iv!. In Sec. IV D we turn to the
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proof of the key result~14!. We appeal to all assumptions~i!–~iv!, with l0 replaced byl08
,l0 . In view of the possibility of analytic continuation, we do not bother about the precise v
of l08 .

A. Basic bounds

Consider a complex (d3d) matrix M and assume that it satisfies the eigenvalue equa
M v̂( j )5l j v̂

( j ), where the right eigenvectors$v̂( j )% j 51
d are normalized and linearly independen

The set of eigenvalues$l j% j 51
d may contain degeneracies. An arbitrary vectorv can be decom-

posed asv5( j 51
d cj (v) v̂( j ), where the objects$cj (v)% j 51

d are complex coefficients. They can b
expressed ascj (v)5(k51

d cj (ŵ
(k))ŵ(k)

•v, if the set$ŵ( j )% j 51
d is orthonormal. Hence, we have th

inequality ucj (v)u<ivi@(k51
d ucj (ŵ

(k))u2#1/2 at our disposal. For the sup norm ofM we can put
forth the bound

iM i<(
j 51

d

ul j uS (
k51

d

ucj~ŵ(k)!u2D 1/2

. ~27!

The coefficients on the right-hand side can be evaluated by means of matrix inversion

ŵ( j )
• v̂(k)[D jk , ck~ŵ( j )!5Dk j

21, ~28!

with j ,k51,2,3,...,d.
We apply~27! to our resolvents. The eigenvalues and eigenvectors$l j ,v̂( j )% j 51

4 are those of
Eq. ~20!. As orthonormal basis$ŵ( j )% j 51

4 we take

$q̂h2
* ~n;k50! ^ q̂h1

~m;k50!%h1 ,h2561 .

Solution of~28! comes down to inversion of a direct product of~232! matrices form,n>0, and
a single~232! matrix otherwise. The root in~27! can be elaborated with the help of the ident

n1
2 ~n!n2

2 ~n!5~n11!@n1
2 ~n!1n2

2 ~n!#.

The result is smaller than the constant

j5iQ1iiQ1
21i~12k2/4!21.

We thus obtain the estimate

iR~z;m,n!i<j (
h1 ,h2561

uz2 imh1
~m!2 imh2

* ~n!u21, ~29!

for m,n>21. By assumption~iii !, the right-hand side is positive and finite.
For the other matrices figuring in the kernel one derives the bounds

iS~m,n!i<2~m12!1/2~n12!1/2um11un11 ,

iT~m,n!i<5k21@~m11!1/2~n11!1/22dm,0dn,0#umun , ~30!

iA1~m,n!i<2~m1n1422dm,21dn,21!um11un11 .

The factor ofk21, contained in the bound forT, is due to transformation~5!. This factor lives on
all the way to the first argument ofc in the estimate~10! for the limiting vector. No problems arise
as long ask is kept fixed and finite. In Appendix A we sketch what measures must be take
order to create estimates that do not blow up for small damping parameter.
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B. Bound on the kernel

We are now in a position to construct a bound on the kernel. Let us start by fixing the co
on the right-hand side of~24!. From the auxiliary inequalities

c2[ 1
4 @12uDu/uReu~0!u#.0, uReu~m!u.uReu~n!u, ~31!

valid for m.n>0, one learns that the poles of the integrand of~24! are contained within the
following rectangle:

2uReu~m1k1p!u2uReu~n1k1p!u2uDu<Rez<uReu~m1k1p!u1uReu~n1k1p!u1uDu,

2k~m1n12k12p12!<Im z<22kc2 ,

the pole atz50 excepted. The latter pertains to the casem5n521, which will be handled later
on.

The contour of our choice is specified by

z5kw2 ikc2 ,

w5x, 2r<x<r ~C1!, ~32!

w5r exp~ if!, 2p<f<0 ~C2!.

If the radius of the closing arcC2 is taken asr(m/21n/21k1p), with the definition

r~ l !512k21~ l 121uDu1D2!,

then surely all of the poles are covered.
Having fixed the contour~32!, we can refine the bounds on resolvents. From~29! and~31! we

infer the inequalities

iR~kw2 iky;m,n!i<4jk21~mum1nun1c2!21,
~33!

iR~kw2 iky;m,n!i<jk21 (
h1 ,h2561

ux1Im@mh1
~m!2mh2

~n!#/k1 ic2u21,

with wPC1 , and

iR~kw2 iky;m1s,n1s!i<8j@kr~m/21n/21k1p!#21, ~34!

with wPC2 . The conditionsy<c2 and 2min(m,n)21<s<k1p must be satisfied, whereas th
choice m5n521 is forbidden. Combination of~30! with ~33! and ~34! brings us for
2min(m,n)21<s<k1p21 andy<c2 to the comfortable estimate

iS~m1s,n1s!iiR~kw2 iky;m1s11,n1s11!i<8j~kc2!21, ~35!

which is valid forwPC1øC2 . Use has been made of the fact that the geometric mean (mn)1/2 is
smaller than the arithmetic mean (m1n)/2.

Special attention must be paid to the zero-temperature casep50, because one must distin
guish between the choicesk50 and k>1. For k50 the kernel has one resolvent only. Th
inequality

I R dz

2p i
e2 iztR~z;m,n!I<4je2c2kt,
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can be applied. For the proof, one evaluates all residues on the left-hand side. The result
estimated with the help of~29!.

The choicek>1 allows for employment of~32!, because one meets two resolvents at le
For the contoursC1 and C2 we control the two resolvents with photon numbers (m,n) and (m
11,n11) through~33! and ~34!, respectively. The otherk21 resolvents are estimated with th
help of ~35!. Upon extending the boundaries of the integral overx to infinity, we arrive at

iK~ t;k,p50;m,n!i<4je2c2ktdk,01j2~16j/c2!k21e2c2ktiS~m,n!i

3F S (
h1 ,h2 ,h3 ,h4561

J~a,b!/p D 164@r~m/21n/21k!#21Guk21 ,

where the integral

J~a,b!5E
2`

`

dxux1a1 ic2u21ux1b1 ic2u21,10/c2

appears. The inequality is valid for all reala and b. These parameters must be taken
Im@mh1

(m)2mh2
(n)#/k and Im@mh3

(m11)2mh4
(n11)#/k, respectively.

Insertion of the bound onJ gives 160/(pc2), which is larger than the form containingr, at
least, ifk,2. Therefore, by adding an overall factor of 2, we can drop the latter term. We use~30!
to finalize the bound as follows:

iK~ t;k,p50;m,n!i<16j~16j/c2!k~m12!1/2~n12!1/2e2c2ktuk , ~36!

where the choicem5n521 is forbidden.
Next, we consider the kernel forp>1, making use of~32! for all k. From the resolvents with

photon numbers (m,n) and (m1 l p ,n1 l p) we create an integralJ in the same vein as previously
Owing to condition~23! on the summation indices$ l s%, the inequality~35! can furnish bounds on
the D1 matrices. Processing the resolvents that are left with the aid of~33! and ~34!, we find

iK~ t;k,p;m,n!i<
1

2
~2k!k~8j!p11e2c2ktuk1p

3 (
l 050

(
l 15 l 021

k1p21

(
l 25 l 121

k1p22

¯ (
l p5 l p2121

k F S (
h1 ,h2 ,h3 ,h4561

J~a,b!/~32p! D
3 )

s51

p21

@~m1 l s!um1 l s
1~n1 l s!un1 l s

1c2#211@r~m/21n/21k1p!/2#2pG
3)

s51

p

@ iT~m1 l s11,n1 l s11!i1iA1~m1 l s ,n1 l s!i #S 8j

kc2
D k2 l p

3)
s51

p F2kS 8j

kc2
D l s2 l s2111

1u l s2 l s21S 8j

kc2
D l s2 l s21G ,

with p>1. The parametera need not be modified, butb must be chosen now as Im@mh3
(m1lp)

2mh4
(n1lp)#/k.

Again, we replaceJ by its upper bound, and omit the term containingr in exchange for an
overall factor of 2. This enables us to appeal to the inequality

iT~m11,n11!i1iA1~m,n!i
mum1nun1c2

<2c2
21~415/k!, ~37!
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which follows from~30!. For s5p the denominator of~37! lacks, so that another inequality mu
be employed, namely

iT~m1 l p11,n1 l p11!i1iA1~m1 l p ,n1 l p!i<~415/k!~m/21n/21 l p12!, ~38!

wherel p is put equal to its maximum value ofk.
Having disposed of all dependencies on the dummies$ l s%, we can perform the correspondin

summations by the rule

(
l 150

p

(
l 25 l 1

p

(
l 35 l 2

p

¯ (
l q5 l q21

p

5S p1q
q D , ~39!

with p>0 andq>1. In final form, the bound on the kernel reads

iK~ t;k,p;m,n!i<16jS 16j

c2
D k1pS 11

16j

c2
D pS 41

5

k D pS 2p1k
p D ~m/21n/21k12!e2c2ktuk1p,

~40!

with m,n>21, the choicem5n521 forbidden, andp>0; note that forp50 the above-
mentioned bound exceeds~36!. As pointed out already, the factor ofk21 stems from~30!. In
Appendix A we discuss how this factor can be suppressed.

C. Taking the order of iteration to infinity

Assumption~ii ! and Eq.~40! supply us with bounds on the components generating the s
tion vector. Hence, we are ready to examine the distanceiv(t;N;m,n)2v(t;N8;m,n)i for large
iteration orders. The involved sums can be rearranged as

(
p50

N21

(
k52min(m,n)21

N2p21

2 (
p50

N821

(
k52min(m,n)21

N82p21

5 (
p50

N21

(
k5N82p

N2p21

umin(m,n)1N82p

1 (
p5N8

N21

(
k52min(m,n)21

N82p21

umin(m,n)1N82p

1 (
p50

N21

(
k52min(m,n)21

N2p21

up2min(m,n)2N821 ,

with N>N8>1. We shiftk→k2p, and interchange the sums overk andp.
Next, we use assumption~ii ! and Eq.~40!, as well as the inequalities

~k1p!!

k!
<~k1pmax!

p,
~@m/21n/211# !!

@~m11!! ~n11!! #1/2<1,

wherem,n>21 andpmax denotes the maximum ofp in a given sum. By~11!, we may setpmax

equal tok1min(m,n)11. This paves the way for applying the binomial theorem. One encoun
the factors

F11
2l

c6
2 S 11

16j

c2
D S 41

5

k D @k1min~m,n!11#G k1m/21n/211

,

and 1/(@m/21n/211#1k)!, the entire function@¯# rendering the argument of the factorial int
ger. To modify these factors, we let us be guided by the inequalities (a1b)k<(2a)k1(2b)k and
1/k!<exp(k11)/(k11)k. We then obtain the result
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iv~ t;N;m,n!2v~ t;N8;m,n!i<c1~N,N8!e2c2kt~m/21n/212!3c~c3l/k,c4 ;m/21n/211!,
~41!

with N>N8>min(m,n)12 and the choicem5n521 forbidden. The constants are found as

c1~N,N8!5256ejc5 (
k5N82min(m,n)21

N21

uk21k3S 16j

c2
D k

c~c3l/k,c4 ;k!,

c354e~4k15!~1116j/c2!, c452ec6
2.

The constantsc2 , c5 , andc6 appear in~11! and ~31!.
From ~41! we conclude thatv(t;N;m,n) may be regarded as a Cauchy sequence inN.

Consequently, a vectorv(t;`;m,n) exists such that~13! is true. The upper bound belonging
assumption~iv! comes out as

0<l,l05
c2k

16jc3
. ~42!

Repetition of the foregoing proof forN850 shows that forc15c1(`,0) the limiting vector
v(t;`,m,n) satisfies the inequality~10!. Note that the choicem5n521 is still forbidden.

Hence, the proof must be repeated for the casem5n521 as well. By severing the pole a
z50 from the contour~24!, we can cast~8! into the form

v~ t;N;21,21!5vss~N!1e2c2ktvfl~ t;N!.

The steady-state~ss! term and fluctuating~fl! term are given by

vss~N!5 (
p50

N21

(
k50

N2p21

lp lim
z→0

zK̃~z;k,p;21,21!v~ t50;k21,k21!,

vfl~ t;N!5k (
p50

N21

(
k50

N2p21

lp R dw

2p i
e2 iktwK̃~kw2 ikc2 ;k,p;21,21!v~ t50;k21,k21!.

In the lower line one may work with contour~32!, so for k5p50 the result is vanishing. The
radius ofC2 is taken asr(k1p).

For the fluctuating term we can establish a counterpart of~41! along the same lines as befor
The factor ofux2 ic2u21 pertaining toC1 is included in the integralJ. Owing to condition~23!,
employment of~33!–~35! is permitted. One is led to the assertion

ivfl~ t;N!2vfl~ t;N8!i<8ec5 (
k5N8

N21

k2S 16j

c2
D k

c~c3l/k,c4 ;k!, ~43!

for N>N8>1.
To deal with the steady-state term, one should recognize that the matrix

K0~k,p!5 lim
z→0

zK̃~z;k,p;21,21!

obeys the recursion

K0~k11,p11!522k@K0~k,p11!S~k21,k21!1K0~k12,p!T~k11,k11!

1K0~k11,p!A1~k,k!#A0
21~k,k!,
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with k>0, p>21, andK0(k,21)50 by definition. The initial conditionK0(0,p)5ê2ê2dp,0 gives
the solution

K0~k,p!5ê2ê2dk,0dp,02ê2ê1uk21dp,012~21!p~ ê2ê11ê2ê2!uk21 .

The constraint Trr(t50)51 is equivalent to

(
k521

` S uk ,
2

12l
2dk,21,0,0D "v~ t50;k,k!51.

Combination of the last two results yields

ivss~N!2~12l!~11l!21ê2i<14c5 (
k5N22

` c6
2k12

k!
18c5 (

k50

N23

lN2k21
c6

2k12

k!
.

Together with~43!, this statement completes the proof of~13! and shows that the limiting vecto
v(t;`;21,21) satisfies the inequality~10!.

D. Controlling the remainders

We aim at proving that all of our remainders tend to zero for large iteration order. Again
casem5n521 asks for a separate effort. The argument makes use of assumption~i!. Hence, the
Laplace transform of the unknown vectorv(t;m,n) can be estimated as

i ṽ~z;m,n!i<
c1~m/21n/212!3

Im z1c2k
c~c3l/k,c4 ;m/21n/211!,

with Im z.2c2k and the choicem5n521 forbidden. The inequality fixes the half space
which the Laplace transform is analytic.

For the first remainder of~25! we may shift the contour downward to the level Imz
52c2k/2. Next, we call upon the inequalities~33! and~35!, with y set equal toc2/2. By copying
previously explained techniques, we reach the result

I E
C
dz e2 izt r̃1~z;N;m,n!I<c1~10N!4~16j/c2!N~m/21n/211!5

3c~c3l/k,c4 ;m/21n/21N11!.

By assumption~iv!, the right-hand side tends to zero for largeN.
As they do not differ much, the second and third remainders can be treated on a pa

contour is laid out as above. In building integralJ, we select the resolvents with photon numbe
(m,n),(m1 l p ,n1 l p) and (m,n),(m1 l N21 ,n1 l N21) for the second and third remainder, respe
tively. We employ~30! for the matrixS(m1N1 l p21,n1N1 l p21) of the second remainder. W
also make use of~38!; for the second remainder as it stands, for the third one with the rep
mentsp→N andp→N21 made. All other matrix norms are taken care of by~35! and~37!. We
now arrive at the intermediate inequalities
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I E
C
dz e2 izt r̃2~z;N;m,n!I<20c1 (

p51

N21

(
l 050

(
l 15 l 021

N1 l 021

(
l 25 l 121

N1 l 121

¯ (
l p5 l p2121

N1 l p2121 S 16j

c2
D N1 l p1pS c3l

4ek D p

3~m/21n/21N1 l p12!5c~c3l/k,c4 ;m/21n/21N1 l p11!

3)
s51

p

u l s1min(m,n)11 ,

and

I E
C
dz e2 iztr̃3~z;N;m,n!I<10c1 (

l 050
(

l 15 l 021

N1 l 021

(
l 25 l 121

N1 l 121

¯ (
l N5 l N2121

N1 l N2121 S 16j

c2
D N1 l NS c3l

4ek D N

3~m/21n/21 l N13!5c~c3l/k,c4 ;m/21n/21 l N11!

3)
s51

N

u l s1min(m,n)11 .

As for ~23!, the conditions on the dummies$ l s% originate from~30!.
In elaborating the bound on the second remainder, we takeN such thatc4 /N<c3l/k; con-

sequently, thec4 term in c can be dropped at the cost of a factor of 2. In treating the fa
(m/21n/21N1 l p11)5, the inequalityl p<N2 is helpful. Upon omitting the conditions on$ l s%,
transforming these dummies asl s2 l s2111→ l s , and extending their upper boundaries to infini
we meet a product ofp identical sums. Problems with convergence do not occur as long asl stays
sufficiently small.

In elaborating the bound on the third remainder, we once more use the inequalityl N<N2, and
subsequently extend the upper boundaries of all sums to infinity. We then must face the foll
form:

x~x1 ,x2 ;p,q!5 (
l 05p

(
l 15 l 021

`

(
l 25 l 121

`

¯ (
l q5 l q2121

` S x1
l q1

x2
l q

l q!
D )

s51

q

u l s
,

with x1516jc3l/(kc2),1, x2516jc4 /c2 , p5min(m,n)11, and q5N. In Appendix B it is
demonstrated that

x~x1 ,x2 ;p,q!<@4/~12x1!#q14q exp@x2~p1q!#, ~44!

for 0<x1,1, x2>0, andp,q>0. We can finish the treatment of the second and third remain
through the estimate

(
j 52,3

I E
C
dz e2 izt r̃ j~z;N;m,n!I<c1~m/21n/212!5c7

m/21n/211~10N!11S 16jc3l

c2k D N

3F S 12
16jc3l

c2k D 2N

1expS 16jc4N

c2
D G ,

where constantc7 need not be specified.
The right-hand side of the above-given inequality tends to zero forN→` andl,l08 , with l08

sufficiently small. The new condition onl does not have any physical significance. The repla
ment of l0 by l08 , necessary for eliminating the remainders, can be annulled. For the so
vector one should perform analytic continuation inl.

The fourth remainder does not pose any new difficulties. The integralJ is constructed on the
basis of the resolvents with photon numbers (m,n) and (m1 l p ,n1 l p). All matrix norms can be
dealt with through use of~33!, ~35!, ~37!, and~38!. Of course, for the initial vector the bound~11!
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must be substituted. Rule~39! can be applied to the$ l s% sums. Upon performing the shiftk→k
2p, and computing the sum overp by the binomial theorem, we end up with

I E
C
dz e2 izt r̃4~z;N;m,n!I<104c5j~m/21n/212!3c7

m/21n/211

3 (
k5N

`

k3~16j/c2!kc~c3l/k,c4 ;k!.

Again, the right-hand side does not survive the limitN→`.
With the above-noted material available, it is straightforward to prove that also for the

m5n521 one can get rid of the remainders by making the iteration order large. As before
pole atz50 must be severed from the contour. The ensuing residues must be handled sep
Altogether, we reach the satisfactory conclusion that the important limit~14! holds true.

V. A LIMIT OF MAXIMUM ENTROPY

From here onwards, we adopt as the initial density operator the factorized form~12!, with the
field in a photon-number stateuq&, and q positive. We are going to take a closer look at t
evolution of the~232! density matrixrA(t)5TrF@r(t)# describing the atom. A limit will be
proposed, for which this matrix converges to the so-called central state12/2. Then the von Neu-
mann entropy of the atom, which is proportional to the trace2Tr(rA logrA), attains its maximum
value.

For the given initial condition the atomic density matrix can be computed from

rA~ t !22512rA~ t !115d~ t;q!"~ ê1rA,112ê2lrA,22!1d~ t;q21!"~ ê22ê1!rA,22,

rA~ t !125rA~ t !21* 5 (
p50

`

(
n50

q1p

lpê3"K~ t;q2n,p;n,n21!"ê3rA,12, ~45!

d~ t;q!5~12l!21(
p50

`

(
n521

p1q

lpê2"K~ t;q2n,p;n,n!"~ ê1ê11ê2ê2!, ~46!

where the notationsrA(t) i j 5b̂i "rA(t)"b̂j andrA5rA(t50) appear.
In contrast to Sec. IV, we do not conduct the argument in a completely rigorous manner.

working out~45! and~46! for smallk, we operate directly in the summands, without investigat
whether the interchange of limit and sum is allowed. Unfortunately, completion of this job i
from immediate, because it necessitates us to strengthen the bounds~10! on the limiting vector
v(t;`,m,n). In the first argument ofc the factor ofk21 must be removed. Appendix A presen
a possible strategy. Still, in Appendix D we carry out an important consistency check. We
sure that for large times the weak-damping version ofrA(t) neatly converges to the thermal stat
Other behavior would be physically unacceptable.

Let us set the detuningD equal to zero, and investigate the atomic density matrix in the li
of k→0, t→`, q→`, under the constraint thatkt andkq3 be constant. Thus the time scales
the Jaynes–Cummings interaction and the process of photon loss become separated. O
that, during the time lag ofk21 that photon losses are modest, the field can maximally fuel
atom. Indeed, for the undamped Jaynes–Cummings model one already observes that a
high energy drives the atom toward the central state.7 But perpetual oscillations ofrA(t) inhibit
convergence.

We examine the behavior of~24! for m5n positive. The kernel falls apart into two terms: on
pertaining to the poles of orderk, and another to those of order unity. Ifz remains finite, a
resolventR(z;n,n) cannot diverge, so the latter term is of orderkk1p for k small. Consequently
only the casek1p50 contributes. Condition~23! causes the closed contour ofK to be confined
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to the half space Imz,2k(2n22p11)un2p . Hence, in each residue a factor of exp@2kt(2n22p
11)un2p# is contained. It explicitly appears if the transformationz5y2 ik(2n22p11)un2p is
made.

Altogether, for smallk andn>0 we can write

K~ t;k,p;n,n!5K1~ t;k,p;n,n!1K2~ t;k,p;n,n!,

K1~ t;k,p;n,n!5 R dy

2p
ektykK̃~ iky;k,p;n,n!,

K2~ t;k,p;n,n!5dk1p,0e
2kt(2n22p11) R dy

2p i
e2 iytK̃~y2 ik~2n22p11!;k,p;n,n!. ~47!

In K1 we have transformedz5 iky, so that for smallk all poles are of order unity. One can furthe
simplify the termK2 by recognizing that forp>2 andy finite, the product

H )
s51

p

2ikT~n2s11,n2s11!R~y;n2s,n2s!J
is of orderk at least. Therefore,K2 makes a contribution to~46! that decays as exp(22ktq) for q
large.

In working outK1 , we must realize that now factors ofk21 are generated by the resolvent
For all k1p>0 finite contributions occur. On the other hand, we still may neglect terms of o
k against terms of order unity. This offers us the possibility to replace matrices as

2ikR~ iky;n,n!5~ ê2ê112ê2ê212ê4ê4!~y12n11!21,

2ikT~n11,n11!R~ iky;n,n!5@2yê2ê1/21ê2ê2~2n11!#~y12n11!21

12ê4ê4~n11!1/2~n12!1/2~y12n11!21,

for k small,n>0, andy finite. From inspection of the left-hand sides one sees that contribu
of order kn5/2 have been dropped. Surelyn can become of orderq, so as soon asq tends to
infinity the constraintkq35constant becomes important. Note that the product withT has the
structure

~k21T01T1!~R01kR1!5T1R01T0R11¯ ,

whereT0R0 vanishes. Generally speaking, if the leading term of a matrix expansion is nonin
ible, then the next-to-leading term may contribute to the final result. In the present caseT1 indeed
does so.

In view of ~46!, the above-given replacements, and the blocked shape ofA1(n,n) andS(n,n),
we can retreat to the subspace spanned by (1,0)T and (0,1)T. Accordingly, for each (434) matrix
we only retain the upper left block by carrying out the substitution

M→S M11 M12

M21 M22
D . ~48!

This gives rise for example to the identity
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H )
s50

m

S~n1s,n1s!S 0 0

1 2D J 5~2n13!21 )
s51

m11

~2n12s11!

3F S 2~n12! 2

2~n12! 21D dm,211S 21 22

n12 2~n12!
D G ,

with m>21 and n>0. In the sequel, the correction term with the Kronecker delta plays
important role.

The foregoing material safely guides us through the evaluation of theK1 kernel for weak
damping. The final expression reads

K1~ t;k,p;n,n!5uk1p R dy

4p i

ekty

~2n11!~2n13! )
s50

k1n
2s11

y12s11 )
s50

n21
y12s11

2s11

3S 0 0

1 2DD3~y;k1n,p;n!. ~49!

We have imposedn>0, p>0, k small, andkt constant. We have defined the matrix

D3~y;q,p;n!5 (
l 05n

(
l 15 l 021

q1p21

(
l 25 l 121

q1p22

¯ (
l p5 l p2121

q

)
s51

p

u l s)s51

p

@~y12l s11!(y12l s13!(2l s13)]21

3H )
s51

p

V~y; l s ,l s21!J F S 2~q12! 2

2~q12! 21D d l p ,q1S 21 22

l p12 2~ l p12!
D uq2 l pG ,

whereV stands for

V~y;k,l !5~2k13!~2k15!S 0 0

2y/2 2k11D dk,l 212~k11!~y12k13!S 2 4

21 22D dk,l

22S 21 21

l 12 l 12D S 0 0

y~4k15!/21~2k13!~k11! 2y~k11!12k13D uk2 l .

One should remember that~48! has been practiced, soK1 is indeed a (232) matrix.
For a full computation of~46! the kernel must be specified forn521 as well. TheK2 part

disappears, because fork5p50 there are no finite poles. In elaborating theK1 part, the identity
R(z;21,21)5ê2ê2 /z must be employed. For smallk one ends up with

K1~ t;k,p;21,21!5 R dy

2p i

ekty

y )
s50

k21
2s11

y12s11 S 0 0

0 1DD3~y;k21,p;21!, ~50!

wherek>1 andp>0 must be respected.
We are ready to calculate~46! for k small,kt constant, andkq3 constant. As pointed out, th

K2 term may be completely ignored. InK1 the power series( j 50
` (kty) j / j ! is inserted for the

exponential factor. By invoking~26!, we can readily find out how thej 50 term contributes to
~46!. In Appendix C we show that the terms with 1< j <p1q do not produce anything at all
These findings bring us to the relation
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d~ t;q!2
1

2 S 1 ,
2

12l D5
1

12l (
p50

`

lp R dy

2p i (
j 5p1q11

`
~kty! j

j ! )
s50

q
2s11

y12s11

3F1

2 (
n50

p1q

)
s50

n21
y12s11

2s11

~1,2!•D3~y;q,p;n!

~2n11!~2n13!

1y21~0,1!•D3~y;q,p;21!G , ~51!

with k small,kt constant, andq>1. For largeq the productkq3 must remain constant.
The only task left consists of investigating how~51! behaves asq tends to infinity. To that end

the contoury54(p1q11)exp(if), with 0<f<2p, is employed. Combination of the estimat

iV~y;k,l !i<16~2k13!~ l 13!~ uyu1k11!

with ~39! leads to

iD3~y;q,p;n!i<6~n13!40pS q12p2n
p D ,

for n>21. In setting a bound on~51!, the term containingy21 may be dropped in exchange fo
an overall factor of 2.

Next, we can profit from the assertions

)
s5n

p1q U 2s11

y12s11U<1, )
s5q11

p1q Uy12s11

2s11 U< 3p~p1q11!pq!

~p1q!!
,

and substitute for the sum overn the largest term, which is the one withn50, multiplied by the
number of terms, which amounts top1q11. We can finalize the bound on~51! with the help of
the results

~2p1q!!q!

@~p1q!! #2 <4p, (
j 5n

`
~an! j

j !
<

exp@n~11 loga!#

12a
,

where 0<a,1 must be valid. The desired inequality reads

Id~ t;q!2
1

2 S 1 ,
2

12l D I<c8q2 exp$@11960l1 log~4kt !#q%, ~52!

wherec8 does not depend onq. For l,1/(960e) the constantc8 is finite. Moreover, if we take
kt,@4 exp(111/e)#21, then for largeq the right-hand side falls off exponentially.

To learn what becomes of the matrix elementrA(t)12, one has to analyze the kern
K(t;k,p;n,n21) for k small. All poles turn out to be of order unity. Hence, only fork1p50
nonzero contributions occur. As the matrixT(n,n21) is regular for smallk, the choicep50 is
also necessary. The contour is confined to the half space Imz,22kn, so in each residue a facto
of exp(22ktn) is contained. It causes exponential decay for largeq, because in~45! only theq
5n term differs from zero. Together with~52!, this recognition directly implies the validity of the
limit ~16!.

VI. CONCLUSION

The Jaynes–Cummings model owes much of its popularity to the experimental progr
quantum optics that dates back to the early 1980s.1,2 Remarkable predictions, such as collapse a
revival of Rabi oscillations,5 were experimentally confirmed.2 Nevertheless, the predictive powe
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of the Jaynes–Cummings model is limited. For sufficiently large times one is confronted w
departure from experimental reality. Due to contact with the outside world, the photon
evolves to a thermal state, slowly but irreversibly. Planck’s radiation law gains control ove
dynamics.

In this paper we solve an extended Jaynes–Cummings model, for which the photon fi
coupled to a large thermal reservoir. This modification secures the validity of Planck’s law
large times. Although the Hilbert space is of infinite dimension, the mathematical problem at
can be posed in terms of a four-dimensional vector. The composition of this solution v
reflects the fact that energy is conserved in absence of the reservoir.

Our method for evaluating the solution vector is based on Laplace transformation, follow
iteration. To settle the question of convergence, we make use of four assumptions. Th
discussed in Sec. II. Assumptions~i! and ~ii ! impose confinement to a certain class of dens
operators. Besides this standard measure, there is a second and more subtle point to pay
to.

For the extended Jaynes–Cummings model, the thermal state exp(2bH0)/Tr@exp(2bH0)# is a
fixed point of the dynamics. A transformation can be devised that maps the thermal state
zero-temperature counterpart. If the solution vector is subjected to the same transformatio
the analytical properties of its Laplace transform change in an advantageous manner.
transformation, all of the poles generate damped residues. Ambiguity arises if it comes to se
the poles that describe the evolution to the thermal state. After transformation, one simpl
emerges at the origin. The corresponding residue, which of course does not depend o
produces the transformed thermal state, as desired.

In spite of the above-noted precautions, the temperature keeps causing problems. The s
vector is constructed as a perturbative series in the Boltzmann factor that determines the a
number of thermal photons inside the microwave cavity. In proving convergence, we are for
set the bound~42! on this factor. It is uncertain whether assumption~iv! can be eliminated by
means of analytic continuation of the solution.

If our method of solution is applied to the case of a cold resonator, i.e., no atom presen
a temperature constraint is also necessary. However, it has no physical meaning; by startin
a partial differential equation for a characteristic function, one can represent the solution as
sum.17 Unfortunately, ordering problems for matrices make it improbable that the same ca
achieved for the present model.

In Appendix A our bounds on vectors and matrices are judged to be rather crude. At the
time, assumption~iv! is physically acceptable. Let us takek50.1 andD50. For higher values of
k the Rabi oscillations scarcely exhibit any revivals.7 With the help of the identityiQ1iiQ1

21i
5(3151/2)/2,16 one finds that the boundl0 amounts to 631028. One may set the Boltzman
factor exp(2b\vF) equal to this number. In experiments, the atomic transition has a waveleng
the order of 1@cm#.2 We thus arrive at a cavity temperature of the order of 0.1@K#, which is
feasible.

The unification of the Jaynes–Cummings model and Planck’s radiation law has one imp
drawback: the mathematical structure of the solution becomes much less transparent. An in
exploration of the dynamics surely demands a numerical effort. For the case of zero temp
such an effort was already made.7 In preparation for the numerical work, all contour integrals we
expressed as sums of residues. If one chooses the same approach for finite temperature,
should carefully handle the poles of higher order. One may employ the identity

)
j 51

M

@z1a~nj !#
215 )

s5minj nj

maxj nj

@z1a~s!#2n(s),

where the integer

n~s!5(
j 51

M

ds,nj
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has been defined.
Owing to the numerical work for zero temperature, the central state12/2 can be identified as

an attractor in atomic phase space.7 For weak damping, preferablyk smaller than 1023, and high
average photon number, initially not less than 25, all trajectories in atomic phase space con
the central state. There they stay for a time of at least 103 @g21#, whereafter they all take the
Markovian path toi 2 , the atomic ground state. Ifk is increased, the central state abandons
special role; the trajectories meet each other at the ground state. This course of even
analytically confirmed by a limit of maximum entropy,11 still for zero temperature.

For the standard configuration of an atom in contact with a heat bath, the thermal state
attractor in phase space. This immediately follows from the principle of maximum entropy.18 The
von Neumann entropy is maximized under the conditions that TrrA and TrrAHA be constant,
where HA denotes the atomic Hamiltonian. Apparently, for the present configuration we
deactivate the latter condition by making suitable parameter choices. In other words, the ex
Jaynes–Cummings model allows us to manipulate the conditions accompanying the princ
maximum entropy. The thermal state can be exchanged for the central state.

The foregoing interpretation supposes that the limit of maximum entropy, proposed in Re
is not a zero-temperature artifact. The limit should persist as the temperature becomes fi
Sec. V we utilize our solution of the extended Jaynes–Cummings model to argue that this
happens. To evade a great amount of technical work, we assume that the field starts
photon-number state. For the same reason, we do not present a rigorous proof. The extend
is given in~16!, where the conditionskt,@4 exp(111/e)#21 andl,1/(960e) have been omitted
The first one is not violated for the times that are of interest. The second condition is weake
~42!, becausek takes on low values.

The main message of this paper can be phrased as follows: the dissipative Jaynes–Cu
model displays an unexpectedly rich dynamics, which is worthy of further examination.
instance, one may wonder what the consequences are of modifying the damping mechan
assuming entanglement of atom and field at time zero. These questions will be address
forthcoming publication.
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APPENDIX A: BOUNDS FOR WEAK DAMPING

For smallk the bound~10! on the limiting vectorv(t;`;m,n) diverges. This can be ascribe
to the fact that in the 23 element ofT(n,n) a factor ofk21 figures. Our rescuing move is inspire
by the material of Sec. V, where all divergencies were mastered. One should recognize
products such asT(n11,n11)R(z;n,n), the divergency ofT ceases to exist. In reconsiderin
~24!, we concentrate on theC1 part of the contour. TheC2 part causes no problems for smallk;
the radiusr( l ) includes a factor ofk21, which compensates the divergency inT.

Explicit evaluation of the third row of the resolvent cannot be avoided. One has

ê3"R~kx2 ikc2 ;n,n!5k2 )
h1 ,h2561

@kx2 ikc22 imh1
~n!2 imh2

* ~n!#21~2~n11!1/2@x1 ia~n!#

3@x1 ia~n!1 i #, 4i ~n11!1/2@x1 ia~n!#,

k@x1 ia~n!#31k@x1 ia~n!#, 22D@x1 ia~n!#222D),

with n>0 anda(n)52n112c2 . Employment of the inequalities

~n11!1/2uReu~n!u21<~12k2/4!21/2, uDu,uReu~n!u,
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and

)
h1 ,h2561

ukx2 ikc22 imh1
~n!2 imh2

* ~n!u21<k22u2 Reu~n!u21ux1 ia~n!u21ux1 ia~n!

1 i ~4c221!u21ukuxu12uReu~n!u1 ika~n!u21

3F11U x

uxu22uReu~n!u/k1 ia~n!
UG ,

leads to the proposition

iT~n11,n11!R~kx2 ikc2 ;n,n!i<
10j

kc2
F11U x

uxu22uReu~n!u/k1 ia~n!
UG , ~A1!

with n>0. The right-hand side is of orderk21, but compensation is available in the kern
Therefore, we can lift the singularity in~10! at the cost of a space-dependent factor. It is w
behaved under extension of the contour to the interval2`,x,`. After replacement ofT(n
11,n11) by A1(n,n), the result~A1! may still be employed.

In ~24! we utilize ~33! for controlling the resolvents with photon numbers (n,n) and (h,h).
The integerh will not be specified. In principle,h depends on all summation dummies, so that
bounds are merely given by 1<h<k1n1p. The accompanying matrixS(h21,h21) is domi-
nated by 2(k1n1p11). Use of~35! and ~A1! now gives

iK~ t;k,p;n,n!i<
c2j

8p
e2c2kt~k1n1p11!~16j/c2!k~20j/c2!p~1116j/c2!p

3uk1p (
l 05n

(
l 15 l 021

k1n1p21

(
l 25 l 121

k1n1p22

¯ (
l p5 l p2121

k1n

)
s51

p

u l s
I~n,p;$ l s%,h!1B2 ,

with the integral

I~n,p;$ l s%,h!5E
2`

`

dx (
h1 ,h2 ,h3 ,h4561

ux1Im mh1
~n!/k2Im mh2

~n!/k1 ic2u21ux

1Im mh3
~h!/k2Im mh4

~h!/k1 ic2u21)
s51

p F11U x

uxu22uReu~ l s!u/k1 ia~ l s!
UG .

We have assumed that bothk1n and p are greater than zero. We remark once more that
behavior ofB2 , which denotes the contribution from the arcC2 , is regular fork small.

It is possible to establish for integralI a bound that does not depend onk. The integration axis
must be divided into intervals, which are centered around the singular points. These are
mined by setting the real parts of all denominators equal to zero. However, one cannot circu
the restriction that all of the dummies$ l s% must differ from each other. To treat the terms th
remain, one is obliged to extend~A1! to larger matrix products. The new bounds must furn
additional factors ofk, so as to cancel the higher-order singularities that are brought about b
coincidences among the dummies$ l s%. Inevitably, the derivation of an improved bound~10! on
the limiting vectorv(t;`;m,n) degenerates into a rather technical affair.

APPENDIX B: CONTROLLING THE SUM x

We set out to prove inequality~44! for the sumx(x1 ,x2 ;p,q), with 0<x1,1, x2>0, andp,q
non-negative. The proof relies on the following auxiliary result:
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x~x1 ,x2 ;p,q!< (
l 50

q21

a~ l ,q!Fx1
max(p2q1 l ,0)

~12x1! l 11 1
ex2( l 11)x2

max(p2q1 l ,0)

max~p2q1 l ,0!! G , ~B1!

where the choice of the coefficientsa( l ,q) is postponed. Verification of the inequality happens
applying induction inq to the recursion relation

x~x1 ,x2 ;p,q11!5 (
k5max(p21,0)

`

x~x1 ,x2 ;k,q!.

On the right we employ the induction assumption~B1!. The sum overk can be done on the bas
of the results

(
k5max(p21,0)

`

x1
max(k1 l 2q,0)5 (

k5 l

q21

x1
max(k1p2q21,0)1

x1
max(p21,0)

12x1
,

(
k5max(p21,0)

` x2
max(k1 l 2q,0)

max~k1 l 2q,0!!
< (

k5 l

q21 x2
max(k1p2q21,0)

max~k1p2q21,0!!
1

ex2x2
max(p21,0)

max~p21,0!!
,

with q> l>0. We interchange summations, and reproduce the induction assumption forq11 by
operating with the inequalities (12x1)21>1 and exp(x2)>1 in a suitable manner. It turns out tha
the coefficientsa( l ,q) are determined by the recursion

a~ l ,q11!5 (
k50

l

a~k,q!uq2k21 ,

for 0< l<q. The initial condition is given bya( l ,q51)51.
From our auxiliary result we deduce

x~x1 ,x2 ;p,q!<@~12x1!2q1ex2(p1q)# (
l 50

q21

a~ l ,q!,

whereas from an identity similar to~39! we infer

(
l 50

q21

a~ l ,q!<S 2q21

q D<4q.

This completes the proof.

APPENDIX C: CUT-OFF FOR THE kt EXPANSION

In deriving representation~51! for vectord(t;q), we expanded the exponential factor exp(kty)
into a power series. The expansion yields a sum overj running from zero to infinity. Forj 50 the
summand can be evaluated on the basis of~26!. The answer is given by the time-independe
vector on the left-hand side of~51!. We intend to show that for 1< j <p1q the summand is
identical to zero. As far as the term includingD3(y;q,p;21) is concerned, this claim is a
immediate consequence of~26!. We thus focus on the term includingD3(y;q,p;n).

Upon exploiting the identities

~1, 2!M S 2a 2

2a 21D 5~1, 2!•M•S 2
21D ~a, 1!,
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~1, 2!M S 21 22

b 2b D 5~1, 2!•M•S 21
b D ~1, 2!,

with M any ~232! matrix, we see that thej th expansion coefficient is proportional to the form

1

j ! F f~ j ,p,q!•S 2
21D ~q12, 1!1g~ j ,p,q!~1, 2!G .

We have defined the vector

f~ j ,p,q!5 (
n50

q1p

(
l 05n

(
l 15 l 021

q1p21

(
l 25 l 121

q1p22

¯ (
l p5 l p2121

q

)
s51

p

u l s R dy

2p i

y j

~2n11!~2n13!

3)
s50

q
2s11

y12s11 )
s50

n21
y12s11

2s11 )
s51

p

@~y12l s11!~y12l s13!~2l s13!#21

3~1,2!•H )
s51

p

V~y; l s ,l s21!J d l p ,q ,

and the scalar

g~ j ,p,q!5 (
n50

q1p

(
l 05n

(
l 15 l 021

q1p21

(
l 25 l 121

q1p22

¯ (
l p5 l p2121

q

)
s51

p

u l s R dy

2p i

y j

~2n11!~2n13!

3)
s50

q
2s11

y12s11 )
s50

n21
y12s11

2s11 )
s51

p

@~y12l s11!~y12l s13!~2l s13!#21

3~1,2!•H )
s51

p

V~y; l s ,l s21!J •S 21
l p12D uq2 l p

,

for j , p, andq non-negative.
The following recursion relations will be of service to us

g~ j 11,p,q!5~2q11!Fg~ j ,p,q21!uq212g~ j ,p,q!1f~ j ,p,q!•S 21
q12D G1f~ j 11,p,q!•S 21

q12D ,

~2q13!@ f~ j 11,p11,q!1~2q11!f~ j ,p11,q!#

5~2q11!~2q15!f~ j ,p,q11!•S 0
1D ~0,1!2

1

2
~2q15!f~ j 11,p,q11!

•S 0
1D ~1,0!2~q11!f~ j ,p,q!•S 2

21D ~1,2!2~2q13!21g~ j 11,p,q11!~4q15,4q14!

22g~ j ,p,q11!~q11,1!1~2q13!21f~ j 11,p,q11!•S 21
q13D ~4q15,4q14!

12f~ j ,p,q11!•S 21
q13D ~q11,1!,

with j , p, and q non-negative again. To check the first recursion, one should perform forg( j
11,p,q) the reductionj 11→ j by writing y5y12q112(2q11). The casesl p5q and l p<q
21 must be processed separately. To check the second recursion, one should performf( j
11,p11,q)1(2q11)f( j ,p11,q) the reductionp11→p by substituting forV(y;q,l p) the rep-
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resentation out of Sec. V. In the second contribution ofV the Kronecker deltadq,l p
is contained.

It causes the upper boundaries of all sums to decrease by one, and hence, generates the
q11→q. To reshape the third contribution ofV, the above-mentioned identities for matrixM
should be employed. The sum overl p must be extended tol p5q11; the ensuing correction term
can be converted to two vectors of typef.

We first solve the above-mentioned recursions forp50. From ~26! we learn thatf( j 50,p
50,q)5(2q13)21(1,2) andg( j 50,p50,q)51 make up the initial conditions. Furthermore, o
hasf( j 11,p50,q)1(2q11)f( j ,p50,q)50, because the left-hand side gives rise to an anal
integrand. From the first recursion we now infer

f~ j ,p50,q!5~21! j~2q13!21~2q11! j~1,2!, g~ j ,p50,q!5d j ,0 .

On the result forg the constraint 0< j <q must be imposed. Forp50 and 1< j <q the j th
coefficient of thekt expansion is indeed identical to zero.

Moving on to the casep>1, we deduce from the representation ofV and ~26!

f~ j 50,p,q!52dp,1~2q13!21~1,0!, g~ j 50,p,q!5dp,1~2q13!21,

with p>1 andq>0. Let us make in the first and second recursion the choicep51 andp50,
respectively. With the help of the findings for the casep50 the solutions come out as

f~ j ,p51,q!5~21! j~2q13!21~2q11! j 21~1,2!, g~ j ,p51,q!50,

where the inequality 1< j <q11 must be respected. Also forp51 our truncation of thekt
expansion is permitted.

Next, we set in the first and second recursionp52 and p51, respectively. The above
mentioned results for the casep51 provide us with the following solutions:

f~ j ,p52,q!5g~ j ,p52,q!50,

with q non-negative and the condition 0< j <q12 to be fulfilled. Induction inp shows that the
last statement is true for allp>2 and 0< j <p1q. This completes our proof.

APPENDIX D: CONVERGENCE TO THE THERMAL STATE FOR WEAK DAMPING

We are going to carry out the consistency check that was announced in the main text. Th
is to demonstrate that the interchange of limit and sum, as practiced in Sec. V, does not ha
limit ~3!. The atomic density operator still converges to the thermal state for large times.

It is sufficient to prove that

lim
t→`

K~ t;q2n,p;n,n!5F S 0 0

1 2D dp,012~21!pS 0 0

1 1D up21Gdn,21 ,

with q>0, p>0, n>21, andp1q>n. Owing to ~48!, we can work in two dimensions. For th
kernel on the left-hand side the weak-damping expression of Sec. V must be substituted.

For n positive the foregoing statement is a consequence of~47! and ~49!, whereas forn
521 it reduces to

f8~p,q!"S 2
21D ~q12,1!1g8~p,q!~1,2!5S 1

2
,1D dp,01~1,1!up21 , ~D1!

wherep andq are non-negative, and~50! has been used. We have introduced a vector
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f8~p,q!5
1

2 (
l 0521

(
l 15 l 021

q1p21

(
l 25 l 121

q1p22

¯ (
l p5 l p2121

q

)
s51

p

u l s
d l p ,q~0, 1!•H )

s51

p

V8~ l s ,l s21!J ,

a scalar

g8~p,q!5
1

2 (
l 0521

(
l 15 l 021

q1p21

(
l 25 l 121

q1p22

¯ (
l p5 l p2121

q

)
s51

p

u l s
~0,1!•H )

s51

p

V8~ l s ,l s21!J •S 21
l p12D ,

and a matrix

V8~k,l !5~2k11!21~2k13!21F2~2k11!~2k15!S 0 0

0 1D dk,l 21

1~k11!S 2 4

21 22D dk,l12S 21 21

l 12 l 12D S 0 0

k11 1D uk2 l G .
From these expressions we see that forp50 the condition~D1! is trivial.

To cope with the casep>1, one should exploit the recursions

f8~p11,q!52
2q15

2q13
f8~p,q11!•S 0

1D ~0,1!1
q11

~2q11!~2q13!
f8~p.q!•S 2

21D ~1,2!

1
2g8~p,q!

~2q11!~2q13!
~q11,1!,

g8~p11,q!52
~q12!~2q15!

~2q13!
f8~p,q11!•S 0

1D13f8~p,0!•S 0
1D2

2~q12!

2q13
g8~p,q!,

with p>1 andq>0. In deriving these, one must use the identity

(
l 51

m

~2l 21!21~2l 11!215m~2m11!21,

with m non-negative. Forp51 the solution forf8 and g8 can be calculated from the definin
expressions. Forp>2 the above-given recursions come into play. One is led to

f8~p,q!5
~q11,1!

~2q11!~2q13!
, g8~p,q!5

q11

2q13
,

for p>1. Constraint~D1! turns out to be true, so our consistency check is successful.
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On the invariance of residues of Feynman graphs
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We use simple iterated one-loop graphs in massless Yukawa theory and QED to
pose the following question: what are the symmetries of the residues of a graph
under a permutation of places to insert subdivergences. The investigation confirms
partial invariance of the residue under such permutations: the highest weight tran-
scendental is invariant under such a permutation. For QED this result is gauge
invariant, i.e., the permutation invariance holds for any gauge. Computations are
done making use of the Hopf algebra structure of graphs and employing GiNaC to
automate the calculations. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1502926#

I. INTRODUCTION

This paper serves three purposes:~i! it employs GiNaC1 in Feynman diagram calculations an
provides algorithms which automate the renormalization process, very much in the spirit of R
~ii ! it investigates symmetries of short distance singularities under permutations of places wh
insert subdivergences in a graph;~iii ! it once more confirms the presence or absence of trans
dental coefficients of short-distance singularity in accordance with the topology of a graph

Our laboratory of investigation are simple one-loop Feynman graphs in massless Yu
theory or QED, inserted into each other in tree-like hierarchies. Thus, the combinatorics of
malization boils down to the Hopf algebra of decorated rooted trees with only a small numb
decorations and the analytical challenge posed by those decorations reduces to expan
G-functions near unit argument. The question we can ask is for the distribution of the Rie
z-function over the various poles in the Laurent series of graphs of that form.

In contrast to Ref. 2 and subsequent papers,3 where the renormalization problem was aut
mated in a similar context optimized for speed and efficiency, we have developed algo
which allow for nontrivial spin-structures and an easy generalization to arbitrary decoration
primitive decorations can be inserted as arguments so that the algorithm can handle a
primitive graphs when their analytic structure becomes known.

We work in the context of dimensional regularization, so that any Feynman graph beco
Laurent series ine5(42D)/2, the deviation of the dimension from its integer value four, and
pole terms reflect the short distance singularities in the theory. The first-order pole is deno
the residue of a graph. Its significance lies in the fact that higher pole terms can be redu
polynomials in residues,4 and in the fact that the residue of a primitive graph is an invariant un
diffeomorphisms of external parameters of the graph~diffeomorphisms of external momenta an
masses! as well as an invariant under variations of renormalization schemes. Such a residu
motivic number then in some modern mathematic parlance. The question as to which class
numbers is sufficient to describe the residues of a given quantum field theory is ope
fascinating.5

We only study two much more basic questions, motivated by previous and ongoing in

a!Electronic mail: bierenbaum@thep.physik.uni-mainz.de
b!Electronic mail: richard.kreckel@uni-mainz.de
c!Electronic mail: dkreimer@bu.edu
47210022-2488/2002/43(10)/4721/20/$19.00 © 2002 American Institute of Physics
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gations into the analytic structure of pole terms and residues in particular.
The first is the independence of the appearance of transcendentals under variations

quantum field theory which realizes a graph with a given topology. To specify the topology
one-particle irreducible Feynman graphG, let us consider the adjacency matrixM (G) of G. If G
hasn vertices, this matrix is ann3n matrix. We take for its nonzero entries pairs~propagator
type, powercounting weight !, i.e., each nonzero entryM (G) i j specifies that vertexi is
connected to vertexj by a propagator of some type, which has a certain powercounting weigh
the cases studied here, the possible entries are

~ fermion,1 !, ~photon,2 !, ~scalar boson,2 !.

The listing of the powercounting weight is redundant, as it is determined by the type o
propagator. We list it just for easy reference. Additionally, we can state the types of the verti
the diagonal entries of the matrix~no vertex is connected to itself by a propagator!.

The graphs of QED and Yukawa theory which we will compare always have adjac
matrices which agree in all their zero entries,

M ~GQED! i j 50⇔M ~GYuk! i j 50

and agree for each nonzero entry in the powercounting degree of the corresponding edge. It
the nature of the edges which changes from the spin one vector boson propagator—th
photon—to the spin zero scalar boson propagator in Yukawa theory. Note that the struct
short distance singularity then remains fixed in the transition of one theory to the other. We
expect and confirm that rational numbers can vary in the transition from one theory to the
while the transcendentals we see remain invariant and specific for the chosen topology. H
topology is uniquely described by considering in such an adjacency matrix all nonzero entr
equal. So it just gives information about how vertices are connected, but forgets about the
of the propagators establishing that connection. To find nonrational numbers, we have to go
four loops at least in the simple class of Feynman graphs which we consider. There it is the
cheese topology of Fig. 1~a! in which we expect to see a residue;z~3!, while the ladder topology
of Fig. 1~b! is known to have only rational residues.6

The second question is of different nature: for a log-divergent vertex graph which is prim
under the coproduct, it is evident that its residue has the above-mentioned invariances. Th
algebra structure immediately allows one to prove that in a vertex graph which is not prim
under the coproduct such that the graph contains divergent subgraphs, the coefficient
highest order pole still has these symmetries and is given by an easy calculable product of r
with a combinatorial factor, determined by the scattering type formula of Ref. 4, which inco
rates the ’t Hooft relations between higher pole terms in graphs.

What we call here the ’t Hooft relations in accordance with Ref. 4 is the simple fact
higher order poles in a graphG with UV-divergent subgraphsg can be calculated from products o
lower order poles of these subgraphsg and their complementsG/g. This is well known and a
necessary requirement to make the renormalization group work: theZ-factor for a given physical
quantity is an invertible~it starts with 1! formal series over counterterms of graphs such tha
logarithmic derivative with respect to the variation of the renormalization scalen, d log(Z)/dn2, is
finite. This finiteness establishes relations between pole terms which, for the case of dimen

FIG. 1. ‘‘Swiss cheese’’ and ‘‘ladder’’ master topology.~a! ‘‘Swiss cheese’’ topology,~b! ‘‘ladder’’ topology.
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regularization, were, it seems, first explored by ’t Hooft. These relations are a direct conseq
of the mathematical structure of the Hopf algebra underlying renormalization, and its
parameter group of automorphisms.4

Let us now consider the residue of such a graph which does have divergent subg
Typically, this residue will be a number which can be decomposed in terms of transcen
weight: it will contain contributions ranging from rational numbers to monomials inz( j ) of up to
transcendental weight,21, where, is the bidegree of the graph, calculated from its coprodu7

For all graphs considered here, this bidegree simply agrees with the number of loops in Y
theory, or can be shifted in the case of QED as explained later in the text. We cannot exp
whole residue to be invariant under the above-mentioned symmetries, as rational numbers
will vary freely. But here we report a remarkable partial symmetry observed in our rather rest
lab of iterated one-loop graphs: the highest weight transcendental in the residue is invarian
permutations of external momentum as described in the following. We confirm this by emp
calculation to high loop orders. We finally prove the result in the context of the simple ite
one-loop graphs considered here. One has an almost elementary proof in this context and
discuss the difficulties which arise in the general case. The nature of this result fits nicely
structural investigation of Dyson–Schwinger equations.8 Note again that changing the momentu
flow but maintaining the topology corresponds to alterations of the type of nonzero entrie
suitable adjacency matrix, as Fig. 2 clearly exhibits. Again, the degree of powercountin
hence the structure of short distance singularities, as well as the topology, remain unchan

To understand the type of symmetry we want to investigate, let us consider the one
vertex function. IfG(p1 ,p2 ,p3) is a vertex correction with momentump1 for the external boson
p2 for the incoming fermion, andp35p11p2 for the outgoing fermion, then we will compar
G1

ªG(0,p,p) with G2
ªG(p,p,0) at the one-loop level. It is a single permutation of the flow

an external momentum for a vertex function at zero momentum transfer, which distinguish
two one-loop functions. Locality of counterterms ensures that the counterterm for a verte
rection graph is invariant under this permutation for any graph. So nothing exciting can be le
from just changing the momentum flow in a given vertex graph. Now let us start with
one-loop vertex corrections and let us insert more one-loop vertex corrections always at the
of zero momentum transfer~zmt!, which indeed changes under the above-mentioned permuta
This gives the topological equivalent Feynman graphsG1, G2, with permuted types of propaga
tors, of Fig. 2. They indeed have adjacency matrices such that again

M ~G1! i j 50⇔M ~G2! i j 50.

Note that it is the requirement to maintain the same topology which forces us to conside
different looking graphs. For them, the usual field theoretic requirements only demand th
coefficients of the highest order poles are identical. All nonleading pole terms ine do not have to
and indeed do not agree.

But a closer investigation will establish a remaining partial symmetry between those gr
such that the highest weight transcendental in the residue is invariant. Such symmetries
great interest. Feynman graphs with subdivergences can be built by using the pre-Lie struc
graphs, which results from underlying insertion operads.5 The question to what extent the perm
tation group acts trivially under such insertions is a natural question in operad theory which

FIG. 2. The two types of vertex corrections.~a! Vertex correction of type one.~b! Vertex correction of type two.
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to be answered to understand these operads. It directly leads to the questions studied h
simplified context. We regard the results reported here as a first step in a detailed anal
actions of the permutation group in this context.

With regard to the first question, we remind the reader that for a massless Yukawa
represented as a Laurent-series ine, it was already shown in Ref. 9 that graphs with the sw
cheese topology of Fig. 1~a! possess az(n) in their counterterm, whereas graphs with a ladd
topology like in Fig. 1~b! just evaluate to rational coefficients. Similar results were obtaine
QED and other theories for vertex functions of typeG(0,p,p) and self-energies, in Refs. 2, 3, an
6.

Our first aim is now to find out if this remains true in massless QED for both type
momentum flow and if there are any symmetries in the coefficients of thez-functions in both
theories, under the permutation between the two types of vertex functionsG1 andG2. Therefore
we will rebuild the scheme given in Ref. 9 for the massless Yukawa theory with an extens
vertex corrections that carry a different flow of momentum in the above-described sens
similarly for QED using the matrix calculus of Ref. 10. The resulting algorithm is impleme
using the GiNaC library and will be described in Sec. V. With the help of this program, we
calculate the antipode of graphs that represent the different topologies given previously an
pare them.

II. CALCULATIONS

Consider a one-loop contribution to the fermionic propagator:

where the subscript ‘‘@0, 0#’’ will soon serve to give the number of one-loop subdivergences to
inserted inside the diagram at the fermionic or bosonic line. All integrals considered in this
can be reduced to integralsFa,b ~Ref. 11! in D-dimensional Euclidean space:

I ~q;a,b![
1

~n2!2« E dDk
1

@k2#a@~q2k!2#b

5..
1

~n2!2« @q2#~22~a1b!2«!Fa,b ~1!

with

Fa,b[Fb,aª
G~22a2«!G~22b2«!G~a1b221«!

G~a!G~b!G~42a2b22«!
, ~2!

and D5422«. n is the renormalization scale that we set equal to ‘‘1’’ in the following. W
typically need these integrals fora5n11n2«, b5m11m2«, for integersn1 , n2 , m1 , m2 . Note
that

Fa,2n5F2n,b50, nPN0. ~3!

Accordingly, in our conventions

S@0,0#~q2!5@q2#2« 1
2F1,1q”5..@q2#2«S0,0q” . ~4!

This reduces the identification of nonrationals~transcendentals, we dare say in the following! to an
expansion of theG-function near unit argument, as promised, given by the formula:
                                                                                                                



ntary
h

o mo-

ines.

ertex

e zmt

x of

ctions
ay:

e

r
we

4725J. Math. Phys., Vol. 43, No. 10, October 2002 On the invariance of residues of Feynman graphs

                    
G~11«!5exp~2g«!expS (
n52

`
z~n!

n
~2«!nD , u«u,1.

Internally, GiNaC follows a different approach. It computes the derivativesG8(x)5G(x)c(x) and
(dn/dxn)c(x)5cn(x) in terms of polygamma functionscm(x) and ‘‘knows’’ how to evaluate
polygamma functions at integer arguments, e.g.,c(1)52g andcn(1)5(2)n11n! z(n11).

A. Yukawa theory

The study of iterated one-loop integrals reduces to the study of the following eleme
functions, which we will callcharacterizing functions: The one-loop fermion self-energy wit
insertions at its two internal propagators demands knowledge of

S i , jª
1
2@Fi«,11 j «1F11 i«,11 j «2F11 i«, j «#. ~5!

The one-loop boson self-energy with insertions at its two internal edges is given byP i , j and the
two one-loop vertex functions at zero momentum transfer with insertions at either the zer
mentum vertex, or internal lines, need knowledge of functionsG i , j for the vertex corrections,

P i , j /@ tr~1!#ª2 1
2@Fi«,11 j «2F11 i«,11 j «1F11 i«, j «#, ~6!

G i , j
1
ªF11 i«,11 j « , ~7!

G i , j
2
ª

1
2@F21 i«, j «2F21 i«,11 j «1F11 i«,11 j «#. ~8!

Here, we have divided the boson self-energy by the trace of the unit matrix tr(1) ~trace over
spinorial indices! for easier comparison of insertions of subgraphs into boson and fermion l

The functionsG1 andG2 represent the two types of vertex corrections shown in Fig. 2.
The indicesi and j give the number of subdivergences at different lines:

S i , j : i 5number of subdivergences at the fermion line,
j 5number of subdivergences at the boson line.

P i , j : i 5number of subdivergences at the lower fermion line,
j 5number of subdivergences at the upper fermion line.

G i , j
1 : i 5number of fermion self-energies and vertex corrections plugged into the zmt v

and the internal edges connected to it,
j 5number of subdivergences at the boson line not connected to this vertex.

G i , j
2 : i 5number of fermion or boson self-energies and vertex corrections plugged into th

vertex and the internal edges connected to it,
j 5number of fermion self-energies at the fermion line not connected to the verte
zmt.

To denote complete graphs, we introduce additional functionsS@ i , j # , P@ i , j # , andG@ i , j ,k# which
state the different kinds of subdivergences@cf. S@0,0# in ~4!#. The indices count forS@ i , j # andP@ i , j #

as the indices in their corresponding characterizing functions given earlier. For vertex corre
of type one and two, the notationG@ i , j ,k# denotes the three types of insertions in the following w
i insertions of self-energies at the edges connected to the zero momentum vertex,j insertions of
self-energies at the edge not connected to that vertex, andk insertions of vertex corrections at th
zmt vertex. Table I gives examples.

B. QED

The main difference stems from the presence of a gauge parameterj in the photon propagato
and from the2 iegm vertex which make the calculations more difficult. In fact, as we will see,
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will have to deal with matrices for the vertex corrections.10 Nevertheless, the structure for th
translation of a graph to an analytical result will be similar to what we had in Yukawa the
Hence we will mainly give the results and just list the relevant changes.

1. Vacuum polarization

We will only consider one-loop photon self-energies, vacuum polarizations, as in ou
stricted class of Feynman graphs we cannot construct a gauge invariant set of vacuum po
tions at higher loop orders.

2. Fermion self-energy

The fermionic propagator in QED with insertions at the fermionic and photonic lines dem

S̃:

S̃ i , j5
1
2@~22D !F11 i«, j «2~32D !Fi«,11 j «2~32D !F11 i«,11 j «

1F211 i«,21 j «22Fi«,21 j «1F11 i«,21 j «#~12d0,j !

1@~22D !S i ,01jS i ,08 #d0,j , ~9!

with

TABLE I. Some examples how self-energy and vacuum polarization graphs are built up in Yukawa theory.
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S i ,05
1
2@F11 i«,11Fi«,1#, ~10!

S i ,08 5 1
2@F211 i«,222Fi«,22Fi«,11F11 i«,22F11 i«,1#. ~11!

The appearance of the Kroneckerd0,j is obvious from the fact that the presence of one-lo
vacuum polarizations in the internal photon line forces transversality of that propagation.

3. Vertex corrections

The most important difference to the Yukawa theory occurs in this part of the calcula
Consider the one-loop vertex correction in QED for vertex graphs as shown in Fig. 3.

The external structure of the vertex consists of two form factors: One forgm and one for
qmq” /q2, asGm(0,q,q)5F1(q2)gm1F2(q2)(qmq” /q2). In the previous calculations, every subd
vergence just caused a change in the exponent of various momenta in denominators of th
grals, resulting in nonintegral exponents in Eq.~1!. Now the result has two form factorsF1 , F2

that emerge through the evaluation of a subgraph in a ‘‘bigger’’ graph. We will administer the
form factors in a matrix notation in accordance with Ref. 10. We will need two-by-two matr
The four entries determine four functionsDa,b

( i , j ) . Here,a, bP$1,2% and~i, j! count the number of
internal insertions as before. The caseb51 corresponds to an internal vertexgm , the case
b52 corresponds to an internal vertexqmq” /q2 ~whereq, say, is the momentum flowing throug
this zero-momentum transfer vertex!, while the indexa enumerates the two possible form facto
in the result. The result for the one-loop graph of Fig. 3 is then

FD1,1
~0,0!gm1D2,1

~0,0!
qmq”

q2 G@q2#2«.

For the two-loop graph shown in Fig. 4 we find

G@0,0,1#5F ~D11
~0,0!D11

~1,0!1D21
~0,0!D12

~1,0!!gm1~D11
~0,0!D21

~1,0!1D21
~0,0!D22

~1,0!!
qmq”

q2 G@q2#22«. ~12!

FIG. 3. One-loop contribution to the vertex correction.

FIG. 4. Two-loop contribution to the vertex correction.
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The multiplication of theDkl
( i , j ) can be reformulated as a matrix multiplication. We define

general matrix~the upper index refers to the two cases of vertex corrections which we con
we omit that index for simplicity in the matrix entries!:

Mi , j
1
ªS D11

~ i , j ! D12
~ i , j !

D21
~ i , j ! D22

~ i , j !D .

To each part of a graph which has the form of a vertex correction we assign a matrix. In thi
of vertex corrections of type one, as in Fig. 2~a!, the indexi is the total number of subdivergence
at the fermionic line~with no difference if it is of the formS or G! and j the number of subdi-
vergences at the photon line, as in Yukawa theory. One multiplies the matrices for the dif
divergent parts of a graph, starting from the innermost vertex correction which contains the
of zmt, and the corresponding matrix has zero entries in the second column obviously.

Let us make this clear with the help of our example of the two-loop vertex correction a
For the graph of Fig. 4 this means that we begin with the inner vertex correction marked w
box:

and then multiply this with the matrix for the outer vertex correction, which has one ve
correction as a subdivergence:

~13!

Multiplying ~13! with (1,0)T@q2#22e, we get the result as the column vector

S ~D11
~1,0!D11

~0,0!1D12
~1,0!D21

~0,0!!@q2#22e

~D21
~1,0!D11

~0,0!1D22
~1,0!D21

~0,0!!@q2#22eD ,

where in general the ‘‘upper’’ entry of this vector is the form factorF1(q2) belonging togm and
the ‘‘lower’’ one the form factorF2(q2) belonging toqmq” /q2.

Subdivergences that arenot vertex corrections given byS i , j and P i , j are multiplied with a
unit matrix and inserted in the string of matrices in front of the matrix of the vertex correc
which they are part of. They increase subscriptsi,j accordingly in that matrix.
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As an example we get for the following graph:

As already mentioned, the indicesi and j count for QED vertex corrections of type on
G@ i , j ,k#

1 , analogous to the ones defined for Yukawa vertex corrections of this type. Similarly
indices for the type two vertex correctionsG@ i , j ,k#

2 in QED count as in Yukawa type two. And th
above-described matrix multiplication stays the same apart from different entries for the ma
which can be readily calculated in terms of functionsFa,b . We do not list the two sets of fou
functionsDa,b

( i , j ) in terms ofFc,d functions explicitly, but the interested reader can find them fr
our publicly available programs.12 Table II shows some examples of how graphs are built in QE

III. RENORMALIZATION

Renormalization employs a simple principle of multiplicative subtraction, making use o
underlying Hopf algebra structure of Feynman graphs:14,4 the coproduct

D~G!5G ^ 111^ G1 (
g,G

g ^ G/g

and antipode

S~G!52G2 (
g,G

gG/g

are the structure maps which allow the construction of counterterms and renormalized qua
One employs Feynman rulesf:H→V as an element in the group of characters of the H
algebraH, with target spaceV ~a suitable ring or algebra! and makes the target space into a Bax
algebra (V,R) by choosing a renormalization mapR such thatR(ab)1R(a)R(b)5R(aR(b))
1R(R(a)b). One then has the counterterm

SR
f~G!52RFf~G!1 (

g,G
SR

f~g!f~G/g!G
and a further recursion delivers the renormalized result

SR
f!f~G!5SR

f~G!1f~G!1 (
g,G

SR
f~g!f~G/g!.
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The countertermSR
f is in the image ofR, while f(G)1(g,G SR

f(g)f(G/g) is the result of

Bogoliubov’s famousR̄(G) operation onG which eliminates subdivergences inG.13

Under suitable conditions on the behavior ofR, in this ratio of characters short distanc
singularities drop out.14,15

Before we comment on the renormalization scheme chosen for our calculations, let us
duce the bidegree of a Feynman graph. This standard notion can be introduced for any
algebra which is reduced to scalars7,4 by the counitē with

ē~q1!5q, ē~X!50, else.

If we decomposeH5H0% Haug, with Haugbeing the augmentation ideal as the kernel ofē we can
investigate, for any positive integerk and Hopf algebra elementX,

XkªDk21~X!ùHaug
^ k .

TABLE II. Some examples of how self-energy and vacuum polarization graphs are built up in QED.
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For sufficiently largek this will necessarily vanish. We define the bidegree bid(X) as the largestk
such thatXkÞ0. Elements inH0 have bidegree zero. Note that Hopf algebra elements of
bidegree are precisely the primitive elementsXPHaug in the Hopf algebra, with

D~X!5X^ 111^ X¹Hauĝ Haug.

Having introduced this standard notion we introduce the renormalization scheme for whi
choose minimal subtraction~MS!. Each application of the scheme is given by a projection onto
pole-part of the considered Laurent series and is symbolized with brackets ‘‘^ &:’’

K (
jª2r

1`

cje
j L 5 (

jª2r

21

cje
j .

The reader should convince him/herself that this map makes the ring of Laurent series with
of finite order into a Baxter algebra,

^ab&1^a&^b&5^a^b&&1^^a&b&.

Note that the degreer of the pole terms in a Laurent series assigned to a graph by the Fey
rules in dimensional regularization is in general majorized by the bidegreer<bid(G) and equals
the bidegree in our simple applications.

We expect to encounterz(n) inside the coefficients of the Laurent series in the regulariza
parametere emerging from a series expansion of the functionsFa,b .

In QED we have to take our matrix-calculus into account. The renormalization of such m
expressions is now given by inserting a diagonal matrixR, which consists of the renormalizatio
map as entries:

RªS RMS 0

0 RMS
D .

Inside a string of matrices, this matrix has to be inserted wherever the renormalization m
applied. It acts on expressions on the right.

IV. ROOTED TREES

Before we build up graphs and calculate their counterterms, i.e., their antipodes, let u
mention that in our simplified context, the Hopf algebra of Feynman graphs is isomorphic
Hopf algebra of rooted trees with a very small set of decorations given by our one-loop gr

In the class of graphs to which we have restricted ourselves one-particle irreducible sub
are either nested in each other, or disjoint. They hence form tree-like hierarchies, and one
translates graphs in rooted trees,15 with a one-to-one correspondence between one-particle
ducible subgraphs and vertices in the rooted tree~the map from graphs to rooted trees is one-
many for overlapping divergent graphs, and can be systematically constructed!:16

The translation from a Feynman diagram to a rooted tree has to be done in the following
Set a box around the subdivergences of a Feynman graphG and mark the upper horizontal line
with a dot (. vertex). Dots of nested boxes, that is boxes where one of them is contained ins
other, are connected with a line (. edge) (see Fig. 5).

Each vertex of a tree then represents a divergent subgraph of the diagram. The antip
such a tree is a sum over allfull cuts or, recursively, iterates over admissible cuts using
coproduct. This easy-to-implement2 coproduct

D~T!5T^ 111^ T1 (
admissible cutsc

Pc~T! ^ Rc~T!
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is by now a standard combinatorial tool~see, e.g., Ref. 15!. Using it, the counterterm is a recursiv
construct

SMS~T!52K T~G!1 (
admissible cutsc

SMS~Pc~T!!Rc~T!L ,

where an evaluation of the graph corresponding to the tree using the Feynman rules is und
before applying the projection̂& for minimal subtraction~MS!, in accordance with the genera
formula given for graphs.

V. IMPLEMENTATION

We briefly describe an implementation of our scheme in a computer program. This imple
tation is not entirely self-contained in the sense that given a Feynman diagram, it would co
the antipode. Instead, its input is a decorated rooted tree in list notation such as~G~P!~S!!. The
actual construction of that rooted tree from the diagram, as described in Sec. IV, is left to th
~see also Fig. 5!.

Our implementation uses the GiNaC system for symbolic computation in the C11 program-
ming language.1 GiNaC provides efficient implementations for handling Laurent series as ne
in dimensional regularization. From C11, all the linguistic instruments for object-oriented pr
gramming are borrowed and available to us. We follow a traditional approach for representa
our rooted trees where there exists a container class callednode that may or may not have sever
children of the same class. In addition, each vertex in an object of classnode contains an object
of the abstract and polymorphic classdecoration . From the abstractdecoration class a
number of concrete classes likeSigma , Gammaand Vacuum are derived, corresponding t
primitive Feynman diagramsS, G, and P, as well as some additional classes that allow us
distinguish between the position of a subgraph inside its supergraph.

FIG. 5. Translation of Feynman diagrams into rooted trees. Here we are dealing with decorated rooted trees, w
subdivergences are written next to the vertex to which they belong. In the last column one can see another way to
the structure of the trees in the form of nested lists~Ref. 14!: The entries are again the divergent parts of a Feynm
diagram and the formation of the parentheses gives the structure of the tree, beginning with the vertices ‘‘at the e
tree up to the root.
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The trees under consideration are not ordered with respect to their children, i.e., the
~G~S!~P!! and ~G~P!~S!! are equivalent. Therefore the children form a multiset where only
multiplicity of occurrences is relevant.

A template classmultiset is part of the C11 Standard Template Library~STL!. It has the
additional advantage that the elements are always automatically sorted with respect to
specified ordering. This turns out to be useful for convenient identification of equivalent node
also to establish an order relation on them. The state of the edges leading to the children of
~either ‘‘cut’’ or ‘‘uncut’’ ! needs to be taken into account as well, so the multiset is really on
pairs of nodes and boolean variables. We chose to delegate methods from classnode to the
corresponding class derived fromdecoration using dynamic type-dispatch. Hence, the dec
ration must be stored as a pointer, calling for some hand-made memory management i
node . A completely realistic layout of our classnode is then:
1 class node $
2 public :
3 // constructors, destructors, delegators ,
4 // etc...
5 private :
6 decoration *deco ;
7 multiset, pair, node, bool. . children;
8 %;

Note that anode can be either the entire tree, or a subtree or a single~atomic! leaf. The layout
of classdecoration holds a pair of indices and in the case of QED a GiNaC expression~class
ex ! for the gauge. An object of classex is entirely sufficient, since it may contain either
numerical value~integer or fractional! or a symbol~like j! ~or even more complex expressions,
need should arise!.

Knowledge of how to manipulate the indicesi andj, depending on the type of decoration an
on the state of the edges, is built into the classes of typedecoration . They are automatically
adjusted when the tree is constructed. Furthermore, the state of the edges is also irrelevan
user of the program since we need all possible combinations of cuts. If there aren vertices inside
a tree, then there aren21 edges and we have to construct all possible 2n21 combinations.

Once all the trees have been created we call a method calledevaluate in each of them that
traverses the tree in a top-down fashion: In each node, the expression in terms ofFa1 i«,b1 j « is
dispatched and expanded as a series in the regularization parameter« beforeevaluate is called
on the multiset of children. The resulting 2n21 Laurent series are then added together and
coefficients are expanded. This procedure yields the antipode.

Here is an example how the programs are used in practice:
1 $ ./qed1 ‘ ‘(((Sigma[0])(Sigma[xi])Gamma[−1])Gamma[xi])’ ’
2 After decoration the tree has these indices :
3 (Gamma[3,0][xi](Gamma[2,0][−1](Sigma[0,0] [0])(Sigma[0,0][xi])))
4 1 # 1 # 1 # 1 # 1 #

1 #
5 The antipode of this tree is :
6
7 ( 21/4 21/4 * xiˆ 221/2 * xi ) * xˆ ( 23)
8 1(7/24 11/24 * xiˆ 211/3 * xi ) * xˆ ( 22)
9 1( 25/16 213/48 * xiˆ 227/12 * xi ) * xˆ ( 21)

The graph to be computed is passed in tree form as a string on the command line, to
with the gauge parameter. Note how the indicesi andj are then set up automatically in line 3. Th
next line is a simple progress bar, useful when computations become longer. The result
printed as a power series in the regularization parameter, calledx instead of« in order to please
the computer.

Computationally, the results are always quite small~cf. Sec. VI! but there is a huge swell o
intermediate expressions. After all, the Laurent series arise from expanding products and s
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lots of G-functions and so carry Euler–Mascheroni constants. But these have to vanish by c
lations, a fact that is conveniently used as a consistency check for the result. In practice, an
of nine-loop graphs in massless QED are still computationally feasible but may require s
hours and hundreds of megabytes memory. This emphasizes the drastic loss of efficie
comparison with Refs. 2 and 3, which is compensated by a gain in flexibility to handle diff
decorations at any step in the recursion.

The programs developed herein are written in plain ISO C11 ~Ref. 17! and will run on any
system where the GiNaC library has been ported to. Note that porting to a new platform
require porting CLN18 to that platform first, since GiNaC depends on CLN for its arbitra
precision arithmetic.

VI. COMPUTATIONAL RESULTS

In a first step, to examine the appearance ofz-functions, we will now calculate the antipode o
different graphs given in Figs. 6 and 7 that represent the two topologies of Fig. 1. In Yu
theory the graphsG@1,1,1#

1 and G@1,1,1#
2 of Fig. 6 are representations of the ladder topology

Fig. 1~b!, the graphsG@2,0,1#
1 andG@2,0,1#

2 of the swiss cheese topology in Fig. 1~a!. The same holds
for QED with @1,1,1# replaced by@1,1,2# and @2,0,1# by @2,0,2#.

FIG. 6. Graphs in Yukawa theory and their decorated rooted trees.
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The graphs for the Yukawa theory, together with their expressions in characterizing func
are given in Fig. 6. Figure 6 also contains the decorated rooted trees we get from them to ca
the antipode. One can see that except for the decorations they all belong to the same root
and hence have the same structure as far as their short distance singularities go, as adve
Sec. I.

In QED, the considered graphs in Fig. 7 possess one more vertex correction compared
graphs in Yukawa theory. This additional photon line is necessary because the short d
singularity structure is actually determined by the bidegree, i.e., the number of subdive
graphs. It so happens in QED that the one-loop fermion self-energy and one-loop vertex c
tions ~with divergent subgraphs! are overall finite if the internal photon is transversal. In our ca
we thus find that the insertion of a one-loop vacuum polarization into the internal photon lin
vertex results in a convergent vertex correction. We have to plug the whole function into one
vertex corrections to get to the next level in the bidegree. And indeed, we need an add
vertex correction, compared to Yukawa theory, to obtain thez~3! in the pole-terms: gauge sym
metry delays the appearance of transcendentals.19 Also let us mention that we can easily compa
graphs which have an internal vacuum polarization with graphs which have an internal fe

FIG. 7. Graphs in QED and their decorated rooted trees.
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self-energy by using the before-mentioned elimination of the trace in the vacuum polariz
using

P0,05tr~1! 1
2F1,15tr~1!S0,0.

Furthermore,G@1,1,2#
2 and G@2,0,2#

2 in QED do not have this extra shift between loop number a
bidegree by themselves, as there the desire to maintain the same topology never forces u
a vacuum polarization as a subgraph: all one-loop subdivergences are fermion self-energ
vertex corrections. However, we use the same gauges in these graphs as in the graphsG@1,1,2#

1 and
G@2,0,2#

1 to compare the results directly~see the following!, and therefore obtain the same differen
between loop-number and bidegree.

Finally, in our results, we are only interested in residues of counterterms, poles of first
All interesting relations between transcendental degree and topology will appear there. Th
tering type formula4 will make sure that parts of these relations will then resurface in the pole
higher order in the counterterm, but they contain no new information. So in the following
solely exhibit the residues of the counterterms for our selected class of graphs. We den
res~G! this coefficient of the pole of first order in the MS counterterm in dimensional regula
tion of a graphG. Assorted results for these residues are as follows.

Yukawa theory:

res~G@1,1,1#
1 !5 5

48,

res~G@1,1,1#
2 !5 1

24,

res~G@2,0,1#
1 !5~ 5

482
1
8z~3!!,

res~G@2,0,1#
2 !5~ 1

122
1
8z~3!!.

QED:

res~G@1,1,2#
1 !52~ 1

480~3011143j2170j2!,!

res~G@1,1,2#
2 !52~ 1

960~5841659j159j2!!,

res~G@2,0,2#
1 !52~ 1

480~5211309j2236j2!1 3
10z~3!~11j!2!,

res~G@2,0,2#
2 !52~ 1

960~8321879j131j2!1 3
10z~3!~11j!2!.

We see that in Yukawa theory the graphsG@2,0,1#
1 andG@2,0,1#

2 with the swiss cheese topolog
have a residue involvingz~3!, while G@1,1,1#

1 andG@1,1,1#
2 realizing the ladder topology just have

rational residue, as expected. A similar result holds in QED: the graphsG@2,0,2#
1 andG@2,0,2#

2 with the
swiss cheese topology again have a residue involvingz~3!, while G@1,1,2#

1 andG@1,1,2#
2 realizing the

ladder topology just have a rational residue.
Those residues are in general a linear combination of terms of varying transcendental w

This weight vanishes for a rational number, and in accordance with standard practice in the
of multiple zeta values the transcendental weightw of a monomial) iz( j i) is

wS)
i

z~ j i ! D 5(
i

j i .
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Then, the above-given results confirm that the coefficient of the highest weight transcende
the transition from res(G@2,0,1#

1 ) to res(G@2,0,1#
2 ) (res(G@2,0,2#

1 ) to res(G@2,0,2#
2 ) for QED! is invariant.

This is the partial symmetry announced in Sec. I. It holds for any gauge in the QED case and
in general, if we increase the loop number as for example in Fig. 8.

In Yukawa theory we get:

res~G@2,0,1#
1 !5~ 5

482
1
8z~3!!,

res~G@2,0,1#
2 !5~ 1

122
1
8z~3!!,

res~G@2,0,2#
1 !5~ 1

202
9

40z~3!2 3
80z~4!!,

res~G@2,0,2#
2 !5~ 1

2402
1

20z~3!2 3
80z~4!!,

res~G@2,0,3#
1 !52~ 23

901
9

20z~3!1 7
80z~3!1 7

240z~5!!,

res~G@2,0,3#
2 !52~2 1

2401
1
6z~3!1 1

80z~4!1 7
240z~5!!,

res~G@2,0,4#
1 !52~ 919

6301
71
70z~3!1 111

560z~4!1 1
12z~5!1 1

560z~3!21 1
112z~6!!,

res~G@2,0,4#
2 !52~ 65

2241
11

140z~3!1 1
16z~4!1 1

120z~5!1 1
560z~3!21 1

112z~6!!,

res~G@2,0,5#
1 !52~ 6481

11201
33 613
13 440z~3!1 2133

4480z~4!1 101
480z~5!

1 27
4480z~3!21 27

896z~6!1 3
4480z~3!z~4!1 7

1920z~7!!,

res~G@2,0,5#
2 !52~ 863

33601
61

160z~3!1 27
1120z~4!1 7

120z~5!1 1
2240z~3!2

1 1
448z~6!1 3

4480z~3!z~4!1 7
1920z~7!!.

Similarly, for QED we find:

res~G@2,0,2#
1 !52 1

480~5211309j2236j2!2 3
10~11j!2z~3!,

res~G@2,0,2#
2 !52 1

960~8321879131j2!2 3
10~11j!2z~3!,

res~G@2,0,3#
1 !52 1

5760~13 377116 773j112 091j219463j3!

1 1
30~11j!2~23817j!z~3!2 3

40~11j!3z~4!,

res~G@2,0,3#
2 !52 1

5760~13 327132 578j126 038j216811j3!

2 1
60~11j!2~3114j!z~3!2 3

40~11j!3z~4!,

FIG. 8. Iterated vertex corrections.
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res~G@2,0,4#
1 !52 1

40 320~427 68111 048 812j1889 375j21130 774j32145 630j4!

2 1
840~11j!2~25511425j1736j2!z~3!

1 1
280~11j!3~2121123j!z~4!2 1

20~11j!4z~5!,

res~G@2,0,4#
2 !52 1

161 280~1 357 76414 016 396j14 028 301j211 438 370j3168 749j4!

2 1
1680~11j!2~144812365j1836j2!z~3!

2 1
140~11j!3~2912j!z~4!2 1

20~11j!4z~5!,

res~G@2,0,5#
1 !5 1

430 295 040~219 150 607 85225 5087 254 529j255 376 777 218j2

224 306 202 368j3210 014 576 786j425 440 770 359j5!

1 1
4480~11j!2~239 057240 975j219 389j216061j3!z~3!

2 3
4480~11j!3~2031111j1446j2!z~4!1 1

960~11j!4~2347167j!z~5!

2 3
1120~11j!5z~3!22 3

224~11j!5z~6!,

res~G@2,0,5#
2 !52 1

1290240~29 658 5561111 493 999j1161 539 373j21112 812 993j3

138 688 379j415 579 364j5!2 1
26 880~11j!2~80 7701155 550j179 521j2

13472j3!z~3!2 1
8960~11j!3~325413919j11340j2!z~4!2 1

960~11j!4~179

18j!z~5!2 3
1120~11j!5z~3!22 3

224~11j!5z~6!.

The reader will note that in QED our residues are polynomials in the gauge paramete
degree reduced by two steps from what one might expect, to enable comparison between c
rations with insertions of self-energies into photon or fermion lines. The corresponding fer
self-energy was for that purpose evaluated in the Feynman gauge, and in the Landau gauge
affected photon propagator. If one only compares cases with self-energy insertions at fer
lines, one can abandon these restrictions and we did confirm that the reported invariance h
expected with coefficients which are polynomials in the gauge parameter of degree equal
number of photon lines.

VII. DISCUSSION AND PROOF

Actually, results of the form reported in the previous sections can be derived from the an
structure of the functionsFa,b and some basic field theoretic arguments.

Let us reconsider the situation. The simplicity of Feynman graphs considered here ma
itself computationally by the fact that they factorize in a unique manner. Each divergent sub
g depends only on a single external momentumq say ~that is the reason why we only consid
vertex subgraphs at zmt!, such that its evaluation in dimensional regularization gives a result o
form

f~g!~«!5@q2#2n~g!«(
i

Fi~«!ci~q!.

Here, n(g) is the number of loops ing, and Fi(«) are q-independent form factors, and th
dimensionlessci(q) are
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c1(q)5gm , c2(q)5qmq” /q2 for the QED ver-
tex ~the only case here in which the sum has
more than one term!,
c1(q)51 for the vertex correction in Yukawa
theory,
c1(q)5q” for any fermion self-energy,
c1(q)5(gmn2qmqn /q2)•q2 for the photon,
c1(q)5q2 for the scalar boson.

Insertions of such graphsg in another graphG only raises powers of the scalar part of som
propagator ofG:

1

q2 → 1

@q2#11n~g!« .

We can keep track of this by notating these loop numbersn(g) in the entriesM (G) i j for the
corresponding propagator in the adjacency matrixM (G).

Let us now assume thatG is some primitive vertex correction, i.e., free of divergent su
graphs, and let us write as beforeG1 andG2 for two distinct choices of zmt.

Consider a bunch of 1PI graphsX5P i 51
k g i each dependent on a sole external momentum

described previously. Letk5bid(X) be the bidegree ofX, so thatX has a highest pole in« of
degreek with coefficient ck

X . Let now GX be chosen gluing data such thatGXªG!GX
X is

obtained from insertingX at specified vertices and propagators intoG, with bid(G)51 without
loss of generality.~Any 1PI graph can be written in the formG!GX

X for such appropriateG,
X,14,16,4 in generalization of the closed Hochschild one cocycleB1 of undecorated rooted trees!.
Further, eachX allows for an expansion

f~X!5
ck

X

«k ~11T~X!~«!!

and similarly, let

f~G!5
res~G!

«
~11T~G!~«!!.

Now assume that the Taylor series@11T(X)(«)#@11T(G)(«)#511( j 51
` cj«

j is such that the
transcendental weightw(cj ) of cj increases withj:

w~cj !,w~cj 11!,

; j >k21. Here, we define the transcendental weight of an expression which is a sum of te
the highest transcendental weight appearing in its terms. The question as to how to defi
transcendental weight in a context which exceeds the Riemannz-functions or MZVs19 we do not
have to answer here. Also, the attentive reader might have noticed that we set the transce
weight of the gauge parameter to be zero for the QED results, treating it as an indep
variable.

Proposition 1: The counterterm is the same forGX
1 and GX

2, and hence their residues ar
equal.

Proof: Elementary, asG12G2 is UV convergent, and henceGX
1 and GX

2 generate the sam
counterterm. h

In particular, we also note that in the above,GX
12GX

2, when inserted into another grap
produces a result with a bidegree reduced by one unit compared to the insertion of eitherGX

1 or GX
2

alone.
                                                                                                                



other.
extra

ion

g such

e for

-
ons of
ppear-
oint
e two

l will be
ation

nd

. D

aphs

4740 J. Math. Phys., Vol. 43, No. 10, October 2002 Bierenbaum, Kreckel, and Kreimer

                    
This is not yet the desired result, as in our case we have to compareGX1

1 with GX2

2 , whereX1

is a collection of subgraphs in which all vertex subgraphs are of typeG1, and X2 is the same
collection of subgraphs apart from the replacementG1→G2 for all vertex subgraphs.

Any graph of typeGX1

1 or GX2

2 , which itself can contain subgraphsXi of these varying types

of vertex corrections plus self-energy subgraphs, can now be expressed in terms of the
Similarly, this holds for these vertex subgraphs of either type, at the expense of generating
terms of reduced bidegree

bid~GX1

1 2GX2

2 !,bid~GX1

1 !5bid~GX2

2 !,

which involve differencesGXi

1 2GXi

2 for appropriateXi . Hence, under the above-noted assumpt

of monotonic increase of the transcendental weight with the bidegree, we get upon iteratin
insertions

Proposition 2: The coefficient of the term of maximal transcendental weight is the sam
res(GX1

1 ) and res(GX2

2 ).

Here,X1 , X2 are related, as above.
This immediately explains our results as a look at the functionsFa,b , and hence the corre

sponding evaluations of our subdivergent graphs show that they fulfill the required assumpti
monotonic increase of transcendental weight, which was completely determined from the a
ance of the Riemannz-function in our simple examples. Note that the factorizations into two-p
functions and the absence of all other primitive graphs apart from one-loop functions were th
main simplifications which enabled us to satisfy the assumption.

The study to what extent a sensible transcendental weight can be established in genera
a topic of future work. Any sensible answer we will expect to deliver the same permut
invariance of the residue as reported here.
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Chronon corrections to the Dirac equation
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The Dirac equation is not semisimple. We therefore regard it as a contraction of a
simpler decontracted theory. The decontracted theory is necessarily purely alge-
braic and nonlocal. In one simple model the algebra is a Clifford algebra with 6N
generators. The quantum imaginary\ i is the contraction of a dynamical variable
whose backreaction provides the Dirac mass. The simplified Dirac equation is
exactly Lorentz invariant but its symmetry group is SO~3, 3!, a decontraction of the
Poincare´ group, and it has a slight but fundamental nonlocality beyond that of the
usual Dirac equation. On operational grounds the nonlocality is;10225 s in size
and the associated mass is about the Higgs mass. There is a nonstandard small bu
unique spin–orbit coupling;1/N, whose observation would be some evidence for
the simpler theory. All the fields of the standard model call for similar nonlocal
simplification. © 2002 American Institute of Physics.@DOI: 10.1063/1.1505666#

I. INTRODUCTION

We begin with basic concepts.
A simpletheory is one with simple~irreducible! dynamical and symmetry groups. What is n

simple or semisimple we callcompound. A contractionof a theory is a deformation of the theor
in which some physical scale parameter, called thesimplifier, approaches a singular limit, taken
be 0 with no loss of generality. The contraction of a simple theory is in general compound.1–3 By
simplificationwe mean the more creative, nonunique inverse process, finding a simple theo
contracts to a given compound theory and agrees better with experiment. The main revolut
physics of the 20th century were simplifications with simplifiersc, G, \.

One sign of a compound theory is a breakdown of reciprocity, the principle that every
pling works both ways. The classic example is Galilean relativity. There reciprocity between
and time breaks down; boosts couple time into space and there is no reciprocal coupling. S
relativity established reciprocity by replacing the compound Galilean bundle of space fibers
the time base by the simple Minkowski space–time. Had Galileo insisted on simplicity
reciprocity he could have formulated special relativity in the 17th century@unless he were to
choose SO~4! instead of SO~1, 3!#. Every bundle theory violates reciprocity as much as Galile
The bundle group couples the base to the fiber but not conversely. Every bundle theory cr
for simplification.

This now requires us to establish reciprocity between space–time~base coordinates! xm and
energy-momenta~fiber coordinates! pm . ~Segal1 postulatedx↔p symmetry exactly on grounds o
algebraic simplicity; his work stimulated that of Ino¨nü and Wigner, and ours. Born4 postulated
x↔p reciprocity, on the grounds that it is impossible in principle to measure the usual
dimensional interval of two events within an atom. We see no law against measuring space
coordinates and intervals at that gross scale. We use his term ‘‘reciprocity’’ in a broader sen
includes his.!

Einstein’s gravity theory and the standard model of the other forces are bundle theories
field space as fiber and space–time as base. Therefore these theories are ripe for simplifi5

Here we simplify a spinor theory, guided by criteria of experimental adequacy, operation
causality, and finity.

a!Electronic mail: gt1570a@prism.gatech.edu
47410022-2488/2002/43(10)/4741/12/$19.00 © 2002 American Institute of Physics
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Classical field theory is but a singular limit of quantum field theory; it suffices to simplify
quantum field theory. Quantum field theory in turn we regard as many-quantum theory. Its
variables all arise from spin variables of single quanta. Byquantificationwe mean the transition
from the one-body to the many-body theory, converting yes-or-no predicates about an indi
into how-many predicates about an aggregate of isomorphic individuals; as distinct from q
zation. For example, a spinor field theory arises by quantifying the theory of a single quant
spin 1/2.

To unify field with space–time in quantum field theory, it suffices to unify spin with spa
time in the one-quantum theory, and to quantify the resulting theory. We unify in this pape
quantify in a sequel.

Some unification programs concern themselves with simplifying just the internal symm
group of the elementary particles, ignoring the fracture between the internal and external var
They attempt to unify~say! the hypercharge, isospin and color variables, separate from the sp
time variables. Here we close the greatest wound first, expecting that the internal variable
unite with each other when they unite with the external variables; as uniting space with
incidentally unified the electric and magnetic fields. We represent space–time variablesxm andpm

as approximate descriptions of many spin variables, in one quantum-spin-space–time st
described in a higher-dimensional spin algebra. This relativizes the split between field and s
time, as Einstein relativized the split between space and time.

The resulting quantum atomistic space–time consists of many small exactly Lorentz-inv
isomorphic quantum bits, qubits which we callchronons. @Feynman, Penrose, and Weizsa¨cker
attempted to atomize space or space–time into quantum spins. Feynman wrote a spac
vector as the sum of a great many Dirac spin-operator vectors,6 xm;(n gm(n), Penrose dissecte
the sphereS2 into a spin network;7 his work inspired this program. Weizsa¨cker8 attempted a
cosmology of spin-1/2 urs. The respective groups are Feynman’s SO~3, 1!, Penrose’s SO~3!,
Weizsäckers SU~2!, and our SO(3N,3N) (N@1).]

Simplifying a physical theory generally detaches us from a supporting condensate.~For Ga-
lileo and Kepler, the condensate was the Earth’s crust, and to detach from it they moved in th
to a ship or the moon, respectively.9,10! In the present situation of physics the prime condensat
the ambient vacuum. Atomizing space–time enables us to present the vacuum as a conde
a simple system, and to detach from it in thought by a phase transition, a space–time melt

Chronons carry a fundamental time-unitx, one of our simplifiers. We have argued thatx is
much greater than the Planck time and is on the order of the Higgs time\/MHc2. ~In an earlier
effort to dissect space–time, assuming multiple Fermi–Dirac statistics for the elements.11,12 This
false start led us eventually to the Clifford–Wilczek statistics;13–17 an example of Clifford–
Wilczek statistics is unwittingly developed in chap. 16 of Ref. 12.! We now replace the classica
Maxwell–Boltzmann statistics of space–time events with the simple Clifford–Wilczek stati
appropriate for distinguishable isomorphic units. This enormously reduces the problem of fo
a theory.

We single out two main quantifications in field theories like gravitation and the stan
model:

A classical quantification assembles a space–time from individual space–time points.
A separate quantification constructs a many-quantum theory or quantum field theory f

one-quantum theory on that space-time.
In the standard physics the space–time quantification tacitly assumes Maxwell–Boltz

statistics for the elements of space–time, and the field quantification uses Fermi–Dirac or
Einstein statistics. The simplified theory we propose uses one Clifford quantification for a
these purposes.

In this paper we work only with one-quantum processes ofN@1 chronons. To describe
several quanta and their interactions, getting closer to field theory and experiment, will requ
further quantification, but only additional internal combinatory structure that is readily accom
dated within the one Clifford–Wilczek quantification.

Each physical theory defines at least three algebras that should be simple: the asso
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operator algebra of the system,12,18 the kinematical Lie algebra consisting of possible Hamil
nians, and the symmetry Lie algebra of one preferred Hamiltonian.

There is no second quantization. But there is a second simplification; and a third, and
all of different kinds with different simplifiers. Each of the historic revolutions that guide us
introduced a simplifier, small on the scale of previous experience and therefore long overlo
into the multiplication table and basis elements of one or more of these algebras, and so de
a compound algebra into a simpler algebra that works better. Among these simplifiers arec, G,
and\.

Here we simplify the free Dirac equation and its underlyingDirac–Heisenberg~real unital
associative! algebra

ADH5AD ^ AH , ~1!

the tensor product of the Dirac and the relativistic Heisenberg algebras, in turn defined as fo
Relativistic Heisenberg algebra. AH5A@ i ,p̂,x̂# is generated by the imaginary uniti and the

space–time and energy–momentum translation generatorsp̂nª ipn[2\]/]xn andx̂m
ª ixm, sub-

ject to the relations

@ p̂m,x̂n#52 i\gmn,

@ p̂m,p̂n#50,

@ x̂m,x̂n#50,
~2!

@ i ,p̂m#50,

@ i ,x̂m#50,

i 2521.

Heregmn is the Minkowski metric, held fixed in this paper. The carets~on p̂, for example! indicate
that a factori has been absorbed to make the operator anti-Hermitian.19 The algebraAH has both
the usual associative product and the Lie commutator product. As a real Lie algebraAH is com-
pound, Segal emphasized, containing the nontrivial ideal generated by the uniti.

The orbital Lorentz-group generators are

Ômn
ª iOmn52 i ~ x̂mp̂n2 x̂np̂m!. ~3!

These automatically obey the usual relations

@Ômn,Ôlk#5\~gmlÔnk2gnlÔmk2gmkÔnl1gnkÔml!,

@ x̂m,Ônl#5\~gmnx̂l2gmlx̂n!,
~4!

@ p̂m,Ônl#5\~gmnp̂l2gmlp̂n!,

@ i ,Ômn#50.

Dirac algebra. AD5A@gm# is generated by Dirac–Clifford unitsgm subject to the familiar
relations

$gn ,gm%52gnm . ~5!

As usual we writegmn¯ for the antisymmetric part of the tensorgmgn¯ .
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Statistics. One may define thestatisticsof an ~actual, not virtual! aggregate by defining how
the aggregate transforms under permutations of its units. That is, to describeN units with given
unit mode spaceV1 ~Refs. 12 and 18! we give, first, the mode spaceVN of the aggregate quantum
system and, second, a simple representationRN :SN→EndVN of the permutation groupSN on the
given N units by linear operators onVN . This also defines the quantification that converts y
or-no questions about the individual into how-many questions about a crowd.

In Clifford statisticsEndVN is a Clifford algebraC5Cliff( V1), and soVN is a spinor space
for that Clifford algebra, withC5EndVN . We write C1 for the first-degree subspace ofC. A
Clifford statistics is defined by a projective~double-valued! representationRC :SN→C1,C of the
permutation groupSN by first-grade Clifford elements over the unit mode spaceV1 .17 To define
RC we associate with thenth unit ~for all n51,...,N) a Clifford unit gn , and we represent ever
swap~transposition or two-cycle! ~mn! of two distinct units by the difference6(gn2gm)PC1 of
the associated Clifford units.

For a free Clifford statistics the unitsgn are independent and the metricgmn is Euclidean. This
representation has dimension 2N/2 and is reducible. The irreducible representations h
dimension20

2dN21/2e51,1,2,2,4,4,8,8,16,...

for Dim V15N50,1,2,3,4,5,6,7,8,.... ~6!

Some useful terms:
A cliffordon is a quantum with Clifford statistics.
A squadronis a quantum aggregate of cliffordons.
A sib is a quantum aggregate of bosons.
A setof quanta is an aggregate of fermions.
A sequenceof quanta is an aggregate of Maxwell–Boltzmann quanta with a given seque

order.11

RC can be extended to a spinor representation of SO(N).SN on the same spinor spaceS(N).
The symmetry groupGU of the quantum kinematics for a universeU of NU chronons is an

orthogonal group

GU5SO~NU1 ,NU2!,
~7!

NU5NU11NU2 .

The algebra of observables ofU is the simple finite-dimensional real Clifford algebra

CU5Cliff ~V1!5Cliff @1,g~1!,...,g~NU!# ~8!

generated by theNU Clifford units g(n), n51,...,NU representing exchanges. The Clifford un
g(n) span a vector spaceV1>C1 of first-grade elements ofCU .

Within CU we shall construct a simplified Dirac–Heisenberg algebra

ĂDH5A@ ĭ ,p̆,x̆,g̃ #,C~V1! ~9!

whose commutator Lie algebra is simple and which contracts to the usual Dirac–Heise
algebraADH in the continuum limit. We factorĂDH into the Clifford product

ĂDH5Cliff ~N60!5Cliff ~~N21!60!qCliff ~60! ~10!

of two Clifford algebras, an ‘‘internal’’ algebra from the last hexad and an ‘‘external’’ algebra f
all the others.
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We designate our proposed simplifications ofg and i, p̂, x̂, andÔ by g̃ and ĭ , p̆, x̆, andŎ.
In the limit x→0 the tildes (̃ ) disappear and the breves (˘) become hats (ˆ).

We use the following quadratic spaces:
NRªR% ...% R ~with N terms! 5 % 1

NR is the positive-definiteN-dimensional real quantum
mode space.

2NR is the corresponding negative-definite space.
M is Minkowski space with signature 123.
2M is the same space with the opposite signature 321.
Also,

XUYªX% ~2Y!,

1ªR,

21ª2R,

3ª3R,
~11!

23ª23R,

Mª1U3,

2Mª3U1,

60ª3U3.

M and2M are tangent spaces to Minkowski space–times and support natural representat
the Lorentz group.

II. SIMPLIFICATION OF THE RELATIVISTIC HEISENBERG ALGEBRA

As already mentioned, field theory employs a compound field-space–time bundle with s
time for base and field space for fiber; just as Galilean space–time is a four-dimensional b
with R3 for base andR1 for fiber. The prototype is the covector field, where the fiber is
cotangent space to space–time, with coordinates that we designate bypm .

We assume that in experiments of sufficiently high resolution the space–time tangent b
~or the Dirac–Heisenberg algebra! manifests itself as a simple quantum-field-space–time syn
sis. The space–time variablesxm and the tangent space variablespm unite into one simple con-
struct, as space and time have already united. Now, however, the simplification requires an
zation, because the field variable actually derives from an atomic spin.

We first split the space–time tangent bundle into quantum cells. The minimum numb
elements in a cell for our simplification is six: four for space–time and two for a comple
symplectic plane. We provisionally adopt the hexadic cell. Earlier work, done before our pr
stringent simplicity standard, assumed a pentadic cell.16 This provided no natural corresponde
for the energy–momentum operators.

N hexads define a unit mode spaceV15N60 . Each term60 has a Clifford algebra Cliff~3, 3!
whose spinors have eight real components, forming an80 . @Eight-component spinors have als
been used in physics by Penrose,7 Robson and Staudte,21 and Lunsford;22 though not to unify spin
with space–time.# The spinors ofV form the spinor space

^
1

N

80580
N .
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We do not deal with empty space–time. We explore space–time with one relativistic qua
spin-12 probe of rest massm;1/x. We express the usual spin operatorsgm, space–time position
operatorsxm, and energy–momentum operatorspm of this probe as contractions of operators in t
Clifford algebra Cliff(3N,3N).

We write the dynamics of the usual contracted, compound Dirac theory in manifestly co
ant form, with a Poincare´-scalar Dirac operator

D5gmpm2mc. ~12!

D belongs to the algebra of operators on spinor-valued functionsc(xm) on space–time. Any
physical spinorc(xm) is to obey the dynamical equation

Dc50. ~13!

We simplify the dynamical operatorD, preserving the form of the dynamical equation~13!.
The compound symmetry group for the Dirac equation is the covering group of the Poi´

group ISO~M!. We represent this as the contraction of a simple group SO~3, 3! acting on the spinor
pseudo-Hilbert~ket! space of 6N Clifford generatorsgv(n) (v50,...,5; n51,...,N) of the or-
thogonal group SO(3N,3N). The size of the experiment fixes the parameterN.

We first simplify the anti-Hermitian space–time and energy–momentum translation gene
p̂m and x̂n, not the associated Hermitian observablespm , xn. Then we simplify the Hermitian
operators by multiplying the anti-Hermitian ones by a suitably simplifiedi and symmetrizing the
product.

As in Dirac one-electron theory, we use the spinor representation Spin~M! of SO~M! to de-
scribe the contracted generatorsŜmn of rotations and boosts. The spin generators are represe
by second-degree elements

Ŝmn
ª

\

4
@gm,gn#[

\

2
gmn, m,n50,...,3 ~14!

of the Clifford algebra Cliff~1, 3!.
We simplify ISO~M! within Spin(N60) by representing the simplified space–time symme

generators of the probe by second degree elements of CliffV1 . We associate the position an
momentum axes with theg4 andg5 elements of the hexad, respectively, so that an infinitesi
orthogonal transformation in the 45-plane couples momentum into position. This accounts f
symplectic symmetry of classical mechanics and thei of quantum mechanics.

We therefore define the simplifiedĭ , x̆m, and p̆n of the probe by

ĭ [
1

N21 (
n51

N21

ĭ ~n!ª
1

N21 (
n51

N21

g45~n!,

x̆m[ (
n51

N21

x̆m~n!ª2x (
n51

N21

gm4~n!, ~15!

p̆n[ (
n51

N21

p̆n~n!ªf (
n51

N21

gn5~n!,

wherex, f, andN are simplifiers of our theory, and

grs~n!ª 1
2@gr~n!,gs~n!#. ~16!

To support this choice for the expanded generators we form the following commut
relations among them~cf. Refs. 23, 1, and 24!:
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@ p̆m,x̆n#522fx~N21!gmn ĭ ,

@ p̆m,p̆n#52
4f2

\
L̆mn,

@ x̆,x̆n#52
4x2

\
L̆mn, ~17!

@ ĭ ,p̆m#52
2f

x~N21!
x̆n,

@ ĭ ,x̆m#51
2x

f~N21!
p̆m.

In ~17!,

L̆mn
ª

\

2 (
n51

N21

gmn~n!,

~18!

J̆mn
ª

\

2 (
n51

N

gmn~n![Lmn1Smn.

whereS̆mn is the Dirac spin operator@cf. ~29!#.
Equation~17! incorporates two decontractions: one leading to finite commutators betw

coordinates of the Snyder type, and one leading to finite commutators between\ i and the coor-
dinates and momenta of the Segal type. Both are necessary for simplicity.

The Snyder decontraction makes the theory more nonlocal than the Dirac equation.
contracted theory, the coordinatesx,y,zcommute. This means that in principle one can produce
single quantum at a definite place and register it at a definite place. To be sure, to do so w
positive and negative energy levels. In the more physical many-quantum theory, a pair w
created in these processes. Nevertheless, in the standard interpretation of the quantum the
still possible in principle to precisely determine the operatorsx,y,zwith arbitrary precision at one
instant, before the pair separates.

In the decontracted theory, any one of the operatorsx,y,zcan be determined with arbitrar
precision, sayz. Its spectrum will then be discrete. The operatorsx,y will then have fundamenta
indeterminacies, depending on the magnitude ofLz and the constantx. Thus the single quantum
can no longer be localized in principle. This nonlocality is intrinsic to the space–tim
momentum–energy–spin unification that makes the theory simpler.

Jmn obeys the Lorentz-group commutation relations:

@ J̆mn,J̆lk#5\~gmlJ̆nk2gnlJ̆mk2gmkJ̆nl1gnkJ̆ml!, ~19!

and generates a total Lorentz transformation of the variablesxm, pm , i andSmn:

@ x̆m,J̆nl#5\~gmnx̆l2gmlx̆n!,

@ p̆m,J̆nl#5\~gmnp̆l2gmlp̆n!,
~20!

@ ĭ ,J̆mn#50,

@S̆mn,J̆lk#50.
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There is a mock orbital angular momentum generator of familiar appearance,

Ŏmn
ª2 ĭ ~ x̆mp̆n2 x̆np̆m!. ~21!

Ŏ too obeys the Lorent group commutation relations. We relateL̆mn andŎmn in Sec. III.

Since the usual complex uniti is central and the simplifiedĭ is not, we suppose that th
contraction process includes a projection that restricts the probe to one of the two-dimen

invariant subspaces ofĭ , associated with the maximum negative eigenvalue21 of ĭ 2. This rep-
resents a condensation that aligns all the mutually commuting hexad spinsg45(n) with each other,
so that

g45~n!g45~n8!→21 ~22!

for any n andn8. We call this the condensation ofi.
Projection onto a sharp value ofi kills i-changing variables likexm and pm . Only SO~2!-

invariant combinations likex2p21f2x2 should survive. Nonetheless one observes position
momentum separately. This is a spontaneous symmetry-breaking by the vacuum cond
analogous to the fact that a crystal in its ground state, with spherically symmetric Hamiltonia
have a nonzero internal magnetization.

Under Wigner time-reversal,t→2t and i→2 i . Since the variablet is chosen by the experi
menter, not the system, we must suppose thati too is mainly fixed by the experimenter, not th
system. But since the boundary between system and experimenter is somewhat arbitrary, w
therefore suppose that the entire universe contributes uniformly toi; it is simply that the system is
much smaller than the experimenter, and influencesi less. This fits with an earlier theory ofi as a
Stückelberg–Higgs variable that imparts mass to some otherwise massless gauge
bosons.25–28

Then the momentum variablespm that we usually attribute to the system, for example,
actually i-invariant bilinear combinationsP@m#

rs Jrs of experimenter standardsP@m#
rs and the system

tensorJrs . As creatures of the space–time condensate we do not experience the symmetry
dynamics that produced it, but only its residual symmetries. The spontaneously broken symm
reappear when the condensate melts down.

To recover the canonical commutation relations forx̆m and p̆m we must impose

xf~N21![
\

2
~23!

and assume that

x→0,

f→0, ~24!

N→`.

Then the relations~17! reduce to the commutation relations~2! of the relativistic Heisenberg
algebraAH as required.

The three parametersx, f, 1/N are subject to one constraintxf(N21)5\/2 leaving two
independent simplifiers.N is not a physical constant like\ andc, but depends on the scope of th
experiment, and is under the experimenter’s control.N-dependent effects might appear as curio
boundary effects. We set a cosmological limitN&NMax in the following.

This leaves oneN-independent physical constant with the dimensions of time. We can
sider two contractions,x→0 with N constant, andN→` with x constant. They combine into th
continuum limitx→0, N→`. We fix one simplifierx in Sec. IV by supposing that the mass of
probe approaches a finite limit asN→`.
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III. ORBITAL, SPIN, AND TOTAL ANGULAR MOMENTUM

As was shown in Sec. II, three sets of operators obeying Lorentz-group commutation rel
appear in our theory.L̆mn represents the simplifiedorbital angular momentumgenerators,S̆mn

represents thespinangular momentum, andJ̆mn represents the simplifiedtotal angular momentum

generators. There is a mock orbital angular momentumŎmn ~21!.
In this section we show thatÔ→L̂ in the contraction limit.
ConsiderŎmn. By definition,

Ŏmn52~ x̆mp̆n2 x̆np̆m! ĭ

51
xf

N21 S (
n51

N21

gm4~n! (
n851

N21

gm5~n8!2 (
n51

N21

gn4~n! (
n851

N21

gm5~n8!D (
m51

N21

g45~m!

51
xf

N21 (
n

~gm4~n!gn5~n!2gn4~n!gm5~n!!(
m

g45~m!

1
xf

N21 (
nÞn8

~gm4~n!gn5~n8!2gn4~n!gm5~n8!

1gm4~n8!gn5~n!2gn4~n8!gm5~n!!~g45~n!1g45~n8!!

1
xf

N21 (
nÞn8

~gm4~n!gn5~n8!2gn4~n!gm5~n8!1gm4~n8!gn5~n!

2gn4~n8!gm5~n!! (
mÞn,mÞn8

g45~m!

52
2xf

N21 (
n

gmn~n!g45~n!(
m

g45~m!

1
xf

N21 (
nÞn8

~gm4~n!gn5~n8!2gn4~n!gm5~n8!

1gm4~n8!gn5~n!2gn4~n8!gm5~n!! (
mÞn,mÞn8

g45~m!. ~25!

Thus, in the contraction limit~22!–~24! when condensation singles out the eigenspace
g45(n)g45(n8) with eigenvalue21,

Ômn→ Ĵmn2Ŝmn[L̂mn, ~26!

as asserted.

IV. SIMPLIFIED DIRAC DYNAMICS

Dirac’s one-bodytheory in real~Majorana! form uses the operator algebraADH acting on a
vector space

V1ªS2M ~27!

of spinor-valued wave functions, mapping the space–time to the spinor spaceS5S~2M! over
the Minkowski space–time2M. This exhibits part of the compound structure we must simplify
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decontraction, the split between spin spaceS and space–timeM. We construct the new spac
entirely from spins, replacing the infinite-dimensional function spaceV1 by a spinor space of high
but finite dimensionality.

To simplify Dirac’s spin-12 dynamics, we regard the position of the probe as the resultantN
quantum steps, each represented by one hexad of chronons. We identify the spin variable
probe with those of the last hexad in~10!, the growing tip of the world line of the probe.

We thereby simplify the Dirac–Heisenberg algebraADH to ĂDHªCliff( N60), the Clifford
algebra of a large squadron of cliffordons.

To construct the contraction fromĂDH to ADH , we group the generators of Cliff(3N,3N) into
N hexadsgv(n) (v50,...,5;n51,...,N). Each hexad algebra acts on eight-component real spi
in 80 . HexadN will be used for the spin of the quantum. The remainingN21 hexads provide the
space–time variables.

We identify the usual Dirac gammasgm for m50,...,3 of Cliff~2M! with second-degree
elements of the last hexad:

gm>g̃m
ªgm5~N!. ~28!

Dirac’s spin generatorsŜmn ~14! simplify to the corresponding 16 components of the tens

S̆vr
ª

\

2
gvr~N!, ~29!

wherev, r50,...,5 andm, n50,...,3.
It is now straightforward to simplify the Dirac equationDc50 of ~13!. The internal degrees

of freedom will be seen to contribute a rest mass termmx5\/2xc, and for simplicity we take this
to be the entire rest mass of the Dirac equation, omitting any bare mass term inD̃. We simplify
D→D̃ and extend the internal symmetry group from SO~1, 3! to the group SO~3, 3! of a hexad by
setting

D̃ª

2f

\2 S̆vrL̆vr , ~30!

where@cf. ~18!#

L̆vrª
\

2 (
n51

N21

gvr~n!. ~31!

Our proposed dynamical operator is invariant under a conformal group SO~3, 3! whose con-
traction includes the Poincare´ group.@Our symmetry group SO~3, 3! incorporates and extends th
SO~3, 2! symmetry possessed by Dirac’s dynamics for an electron in de-Sitter space–time.29 That
dynamics has the form

D85
1

\R
ŜvrÔvr2mc,

whereŜvr andÔvr are the five-dimensional spinorial and orbital angular momentum gener
and R is the radius of the de-Sitter universe. Its group is still compound, not simple, unif
translations, rotations, and boosts, but not symplectic transformations.#

A complete set of commuting generators for the Poincare´ group ISO~1, 3! consists of the time
translation generatorp̂0 , the rotation generatorL̂12, and the boost generatorL̂03. In the present
context, we adjoin the imaginary uniti. In the proposed simplification ISO~1, 3!3SO~2!

←SO~3, 3! these simplify according top̂0←L̆04, L̂12←L̆12, L̂03←L̆03, i←L̆45. A commuting set
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cannot contain bothL̆04 and L̆45. Since varying energy is more familiar than varyingi, in a first

treatment we holdL̆45 constant and couple different masses in one representation.

V. REDUCTION TO THE POINCARÉ GROUP

We now assume a condensation that reduces SO~3, 3! to its subgroup SO(1, 3)3SO(2).
Relative to this reduction, theD̃ of ~30! breaks up into

D̃5
f

2
gvr~N!(

n
gvr~n! ~v,r50,1,...,5!

5fgm5~N!(
n

gm5~n!1fgm4~N!(
n

gm4~n!1fgmn~N!(
n

gmn~n!1fg45~N!(
n

g45~n!

5gm5p̆m2
f

x
gm4x̆m1

2f

\
gmnL̆mn1~N21!fg45ĭ . ~32!

In the condensate all the operatorsg45(n)g45(n8) attain their minimum eigenvalue21. Then

~N21!fg45ĭ →2
\

2x
~33!

and the dynamics becomes

D̃5gm5p̆m2
f

x
gm4x̆m1

2f

\
gmnL̆mn2mxc, ~34!

with rest mass

mx5
\

2xc
. ~35!

For sufficiently largeN this reduces to the usual Dirac dynamics.
We identify the massmx with the N-independent massm of the Dirac equation for the mos

massive individual quanta that the condensate can propagate without melt-down, on the o
the top quark or Higgs masses:

mx;102 GeV, x;10225 s. ~36!

The universe is;1010 years old. This leads to an upper bound

Nmax;1041. ~37!

This implies thatx is independent ofN asN→` and thatf;1/N→0 asN→` even for finite
x. In experiments near the Higgs energy,p;\/x. If we also determineN by settingx;Nx then
all four terms in~34! are of the same order of magnitude.

To estimate experimental effects, however, we must take gauge transformations into ac
These transform the second term away in the continuum limit. This refinement of the theory
in progress.

VI. CONCLUSIONS

Like classical Newtonian mechanics, the Dirac equation has a compound~nonsemisimple!
invariance group. Its variables break up into three mutually commuting sets: the space–
energy–momentum variables (xm,pm), the spin variablesgm, and the imaginary uniti.
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To unify them we replace the space–time continuum by an aggregate ofM,` finite ele-
ments, chronons, described by spinors with;2M /2 components. Chronons have Clifford–Wilcze
statistics, whose simple operator algebra is generated by unitsgm, m51,...,M. We express all the
variablesxm, pm , gm and i as polynomials in thegm. We group theM56N chronons intoN
hexads for this purpose, corresponding to tangent spaces; the hexad is the least cell that
for this simplification. There are three simplifiersx, f, 1/N, all approaching 0 in the continuum
limit, subject to the constraintxf(N21)5\/2 for all N.

In the continuum limit the Dirac mass becomes infinite. In our theory, the finite Dirac ma
in nature are consequences of a finite atomistic quantum space–time structure withx.0.

The theory predicts a certain spin–orbit couplinggmnLmn not found in the standard mode
and vanishing only in the continuum limit. The experimental observation of this spin–orbit
pling would further indicate the existence of a chronon.

In this theory, the spin we see in nature is a manifestation of the~Clifford! statistics of atomic
elements of space-time, as Brownian motion is of the atomic elements of matter. As we im
our theory we will interpret better other indications of chronon structure that we already have
as we improve our measuring techniques we shall meet more such signs.
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Complex velocity transformations and the
Bisognano–Wichmann theorem for quantum fields
acting on Krein spaces

Hanno Gottschalka)

Institut für angewandte Mathematik, Rheinische Friedrich-Wilhelms-Universita¨t,
Wegelerstr. 6, D-53115 Bonn, Germany
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It is proven that in indefinite metric quantum field theory there exists a dense set of
analytic vectors for the generator of the one parameter group ofx0–x1 velocity
transformations. This makes it possible to define complex velocity transformations
also for the indefinite metric case. In combination with the results of Bros, Epstein,
and Moschella@Commun. Math. Phys.196, 535–570~1998!#, proving Bisognano–
Wichmann~BW! analyticity within the linear program, one then obtains a suitable
generalization of the BW theorem for local, relativistic quantum fields acting on
Krein spaces~‘‘quantum fields with indefinite metric’’!. © 2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1503151#

I. INTRODUCTION

The connection of the Unruh effect39 describing the Hawking radiation seen by a uniform
accelerated observer in local quantum field theory~QFT! with the Tomita–Takesaki modula
theory11,38of v. Neumann algebras has been one of the most fascinating achievements in the
of the general structure of QFT, cf. Refs. 10 and 18 for an overview. In the Wightmanian fo
lation of QFT this connection is given by the Bisognano–Wichmann theorem6 which, under a few
additional assumptions, can then be extended to localized v. Neumann algebras associated
algebras of unbounded Wightman fields, see, e.g., Refs. 5, 6, and 24.

The present work attempts to adapt the Bisognano–Wichmann theorem6 to the case of quan
tum fields with indefinite metric in the framework of Morchio and Strocchi.26,34,36That this should
in fact be possible was proven by J. Bros, H. Epstein and U. Moschella in Ref. 12. In
reference the authors show that the KMS condition for the algebra localized in the right w
WR5$xPRd:x1.ux0u% w.r.t. the one parameter group of Lorentz boosts in thex0–x1 direction
follows from the analyticity properties of Wightman functions from solely the linear program,
without using positivity. In contrast to this, the original proof of Ref. 6 uses functional calculu
the generators of the Lorentz boosts, and thus positivity, to establish that property.

Quantum fields with indefinite metric have been introduced in the Wightmanian formul
of QFT in order to deal also with gauge fields in local and covariant gauges. Such fields c
be fields with positive metric.35–37 Quantum fields with indefinite metric surely have to be co
sidered to be artificial and ‘‘nonphysical’’~at least as long as the related physical Hilbert sp
with positive metric and the algebra of gauge invariant fields acting on that space have no
constructed!, but still some motivation can be found to consider the BW theorem also in
framework:

~i! QFT with indefinite metric is close to perturbation theorywhere local and covariant gauge
are needed for technical reasons~see Refs. 32 and 36!.

~ii ! There are nontrivial examplesin arbitrary space–time dimension.1–3,29,30,31,32

a!Electronic mail: gottscha@wiener.iam.uni-bonn.de
47530022-2488/2002/43(10)/4753/17/$19.00 © 2002 American Institute of Physics
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~iii ! The BW theorem might be important to develop a bounded operator approachfor quantum
fields with indefinite metric defining wedge algebras as weak commutants in the sty
Refs. 6 and 24.

~iv! The BW theorem can be seen as a first step towards studying the influence of cons
~gauge! to wedge-duality.

~v! It is an interesting technical exercise to develop a suitable substitutefor functional calculus
in the case of quantum fields with indefinite metric.

This article is organized as follows: In Sec. II we collect the basic tools for the formulatio
QFT with indefinite metric.

In Sec. III we prove a crucial continuity property for GNS-like representations on max
inner product spaces~Krein spaces4,7! and we recall basic properties of the field algebra as
Reeh–Schlieder property. As the vacuum plays a special role in modular theory, we clari
status of the vacuum as the only translation invariant state for QFTs with indefinite metric
mass gap—this then also implies the irreducibility of the field algebra~see also Ref. 26!. In
particular we show that the occurrence of theta-vacua, in the description of G. Morchio a
Strocchi,26 and reducibility of the field algebra due to classical long range fluctuations13 are strictly
linked to mass zero phenomena, as of course suggested by these references.

In Sec. IV we define the complex velocity transformations for the case of quantum fields
indefinite metric using the continuity properties established in Sec. III in connection with f
tional calculus on the Borchers algebra. Rather than using functional calculus forh-symmetric
operators, see, e.g., Refs. 4 and 19 and references therein, we follow a ‘‘pedestian’s approa
prove the existence of a dense set of entire analytic vectors for the generator of the Lorentz

In Sect. V we recall the result of Bisognano–Wichmann~BW! analyticity within the linear
program as proven by Bros–Epstein–Moschella12 and derive a version of the BW theorem fo
quantum fields with indefinite metric. In particular, we identify the ‘‘modular objects:’’ The a
unitary implementation of the reflectionQ0,1:(x0,x1,x2,...,xd21)→(2x0,2x1,x2,...,xd21) is the
‘‘modular conjugation’’ and velocity transformations at imaginary boost parameterip are Tomita’s
modular operatorD1/2. For space–time dimensiond54 the modular conjugation thus coincide
with the rotation arounde15(0,1,0,...,0) by an anglep times the PCT-operatorQ:x→2x, which
is the description given in Ref. 6. Here, of course, no answer is given to what extent To
Takesaki theory can be generalized toh- v.Neumann algebras acting on Krein spaces and thu
what extent the ‘‘modular objects’’ defined here really can be related to some extensi
Tomita–Takesaki theory. This might, however, be an interesting question for the future. At
Tomita–Takesaki theory on the Pontryagin spaceP1 has been established in Ref. 25.

II. QFT WITH INDEFINITE METRIC

Here some notation is introduced and basic results on the GNS construction on maxima
product spaces~Krein spaces! are recalled~see, however, Refs. 21, 26 and 40 for more details!. We
only consider Bosonic, scalar and chargeless QFTs over ad-dimensional Minkowski space–tim
(Rd,•). Generalization to arbitrary spin, charge and statistics is straightforward. The asso
Borchers algebra8,9 is the free, unital, involutive, topological tensor algebra overS15S(Rd,C), the
space of complex Schwartz test functions overRd. In more explicit terms, we set

SI 5 % n50
` Sn , Sn5S~Rdn,C!, S05C, ~1!

with fI1hI 5( f 01h0 , f 11h1 ,...), fI ^ hI given by (fI ^ hI )n5( j ,l 50
j 1 l 5n

`
f j ^ hl ;nPN0 , 15(1,0,....)

and fI* 5( f 0* ,...,f n* ,0...) with f l* (x1 ,...,xl)5 f l(xl ,...,x1). Here the bar denotes complex conj
gation and the product always exists as forfIPSI only finitely manyf lPSl are different from zero.

The canonic actiona:P1
↑ →Aut(Sl) of the orthochronous, proper Poincare´ group onSl , l

PN, induces a representationaI :P1
↑ →Aut(SI ) by continuous*-algebra homomorphisms onSI .

The spectral idealI sp,SI is the left-ideal generated by elements of the form
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gI 5gI ~ fI ,h!5E
Rd

aI $1,a%~ fI !h~a!daPSI ~2!

for suppĥùV̄0
15B wherehPS1 , ĥ(k)5*Rdeik•ah(a)da andV̄0

15$kPRd,k0>0,k•k>0% is the
closed forward light cone. The related left-idealI sp

m where in the definition ofI sp V̄0
1 is replaced by

$0%øV̄m
15$0%ø$kPRd,k0>0,k•k>m2%, m.0, is called spectral ideal with mass-gapm.

A further useful ideal inSI is the two-sided ideal generated by (0,0,@ f 1 ,h1#,0,...) with
f 1 ,h1PS1 and suppf 1 , supph1 space-like separated, i.e., (x2y)•(x2y),0 ;xPsupp f 1 ,y
Psupph1 . It is called the ideal of locality.

We recall thatSI is endowed with the strongest topology, such that the relative topology oSn

in SI is the Schwartz topology~direct sum topology!. Let SI 85SI 8(Rd,C) be the topological dua
space ofSI . ThenRI PSI 8 is of the formRI 5(R0 ,R1 ,R2 ,...) with R0PC,RnPSn8 ,nPN. Further-
more, any such sequence defines uniquely an element ofSI 8. An elementWI PSI 8 is called a
Wightman functional if it fulfills the following set of conditions, which are also called the mo
fied Wightman axioms, cf. Refs. 26 and 40:

Axioms 2.1:~A1! Temperedness and normalization:WI PSI 8 andW051.
~A2! Poincare´ invariance:WI (aI $L,a%( fI ))5WI ( fI ) ;$L,a%P P̃1

↑ , fIPSI .
~A3! Spectral property: LetI sp be the spectral~left! ideal in SI . ThenI sp#kernelWI .
~A4! Locality: Let I loc be the~two-sided! ideal of locality inSI . ThenI loc#kernelWI .
~A5! Hilbert space structure condition~HSSC!: There exists a Hilbert seminormpI on SI s.t.

uWI ( fI* ^ gI )u<pI ( fI )pI (gI ); fI ,gI PSI .
~A6! Cluster property: limt→`WI ( fI ^ aI $1,ta%(gI ))5WI ( fI ) WI (hI ) ; fI ,gI PSI ,aPRd space like.
~A7! Hermiticity: WI ( fI* )5WI ( fI ) ; fIPSI .
We say that the Hilbert seminormpI in ~A5! is of Sobolev type, if

pI ~ fI !5(
l 50

`

pn~ f n!; fIPSI ~3!

s.t. pn defined onSn up to multiplication with a positive constant is given by a Hilbert norm
Sobolev type,17

pn~ f n!25c2E
Rdn

U)
l 51

n

~11uxl u2!N/2~12Dxl
!L/2f n~x1 ,...,xn!U2

dx1¯dxn , ~4!

for some possiblyn-dependentL,NPN0 andc.0 with Dxl
5( l 51

n ]2/(]xl)
2. pI is called Sobolev

dominated, if there exists a Hilbert normpI 8 of Sobolev type s.t.pI <pI 8 or, in other words, ifpI is
continuous with respect to~w.r.t.! the SI -topology.

If I sp in ~A3! can be replaced with some biggerI sp
m , m.0, then we say thatWI fulfills the

strong spectral condition. One can show by explicit calculations that the axioms~A1!–~A4!, ~A6!
and~A7! are equivalent to the usual Wightman axioms,33 whereas positivity has been replaced
the weaker assumption~A5!. Nevertheless,~A5! is enough to get an analog of the Wightma
reconstruction theorem on maximal, non degenerate inner product spaces as follows:

A metric operatorh:H→H by definition is a self-adjoint operator on a complex separa
Hilbert space~H,~.,.!! with h251. h induces a second, in general indefinite, inner product onH
via ^.,.&5~.,h.! and h then gives a fundamental decomposition ofH into intrinsically complete
subspacesH5H 1

% H 2 s.t. ^.,.& restricted toH 6 is positive/negative definite. Hence~H,^.,.&! is
a Krein space.4,7 It should be mentioned that~.,.!, h and the fundamental decompositionH 6 are
not unique given~H,^.,.&!; h, for example, can be replaced byhC5sign(uCu22h) for a bounded,
continuously invertible operator onH leading to an in general different, but topologically equiv
lent, (.,.)C5(.,uCu2uuCu22hu.) and also a new fundamental decomposition according tohC .
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Let D be a dense and linear subspace ofH. The set of~possibly unbounded! Hilbert space
operatorsL:D→D with ~restricted! h-adjoint L@* #5hL* huD :D→D is denoted withOh(D).
Clearly, Oh(D) is an unital algebra with involution@* #. The canonical topology onOh(D) is
generated by the seminormsL→u^C1 ,LC2&u, C1 ,C2PD. We then have the following theorem

Theorem 2.2: Let WI PSI be a Wightman functional which fulfills Axioms 2.1. Then we h
the following.

(i) There is a Hilbert space(H,(.,.)) with a distinguished normalized vectorVPH called the
vacuum, a metric operatorh with hV5V inducing a nondegenerate inner product^.,.&
5~.,h.! and a continuous* -algebra representationf:SI→Oh(D) with D5f(SI )V which is
connected to the Wightman functional WI via WI ( fI )5^V,f( fI )V&; fIPSI .

(ii) There is a h-unitary continuous representationU: P̃1
↑ →Oh(D) (U@* #5U21) such that

U(L,a)f( fI )U(L,a)215f(aI $L,a%( fI )); fIPSI ,$L,a%P P̃1
↑ andV is invariant under the ac-

tion of U.
(iii) f fulfills the spectral conditionf(I sp)V50.
(iv) f is a local representation in the sense that Iloc#kernelf.
(v) For C1 ,C2PD and aPRd space like, we getlimt→`^C1 ,U(1,ta)C2&5^C1 ,V&^V,C2&.

A quadruple((H,^.,.&,V),h,U,f) is called a local relativistic QFT in indefinite metric.
Conversely, let((H,^.,.&,V),h,U,f) be a local relativistic QFT in indefinite metric. The

WI ( fI )5^V,f( fI )V&; fIPSI defines a Wightman functional WI PSI 8 which fulfills Axioms 2.1.
As we will come back to some details of the proof of Theorem 2.2 in the next section

recall these points here while for the rest of the proof we refer to Refs. 26, 40 and 21.
Sketch of Proof:Without loss of generality one can assume thatpI is a Hilbert norm. IfpI is

only a Hilbert seminorm we can replace it by the Hilbert normpI 85ApI 21pI 1
2 wherepI 1 is a Hilbert

norm onSI which not necessarily dominatesWI . SuchpI 1 can, e.g., be chosen as a direct sum
Sobolev norms onSn .

Then,H15SI pI defines the Hilbert space completion ofD15SI w.r.t. pI . The Hermitian inner
product^ fI ,gI &5WI ( fI* ^ gI ) defined for fI ,gI PD1 is continuous and thus extends uniquely toH1 .
By the Riesz representation theorem there exists a self-adjoint operatorh1 bounded by one s.t
^.,.&5(.,h1 .)1 . The algebraSI acts via the identical representationf1 by multiplication from the
left on D1#H1 . Likewise, ah1-unitary continuous representationU1 :P1

↑ →Oh1
(D1) is defined

by the action ofaI on D1 .
Let K05$vPH1 :^w,v&50;wPH1% andSI 05$ fI :WI (gI ^ fI )50;gPSI %. Then,K0 is a closed

subspace ofH1 . Let H25H1 /K0 be quotient Hilbert space ofH1 and K0 with scalar product
(.,.)2 . By Hermiticity, linearity and definition ofK0 , ^.,.& is also defined on the quotient spa
H2 . Let p:H1→H2 be the quotient map. Then, by the definition ofK0 , (p( fI ),p(gI ))2 still
dominates ^.,.&. Thus, there exists a self-adjoint operatorh2 bounded by one s.t.̂ .,.&
5(.,h2 .)2 . Furthermore, we setD5p(D1)>SI /SI 0 asD1ùK05f1(S0). As SI 0 is a left ideal and
is taken into itself by the action ofaI , f5p+f1 andU5p+U1 define a left-representation ofSI and
P̃1

↑ , respectively, inOh2
(D).

Let (.,.)5(.,uh2u.)2 . Then, the metric operatorh defined by^.,.&5(.,h.) is h5sign(h2).
Thus, also(.,.) dominateŝ .,.& and obviouslyi .i<i .i2 . We can now setH to be the completion
of D w.r.t. i .i , and extendh and ^.,.& to H in order to obtain a Krein space representation,
described by the assertion of the theorem. The representationsf andU in Oh(D) then fulfill the
requirements (i ) – (v), as proven in Refs. 26, 21, 33, 40~see also Ref. 16!. For the fact thath can
be chosen s.t.hV5V, V5p(1,0,...), cf. Ref. 21. j

Let Q0,1 be the antilinear PCT-like transformation given by the actiona$Q0,1,0%( f n)

3(x1 ,...,xn)5 f n(Q0,1x1 ,...,Q0,1xn) for f nPSn , Q0,1x as in the Introduction, andaI $Q0,1,0% the
related action onSI . From the proof of Theorem 2.2 one immediately~cf. Ref. 36! obtains the
following.

Corollary 2.3: Let pI in (A5) be such that pI (aI $L,0%( fI ))5pI ( fI ) ; fIPSI and LPG#L, with G
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generated by rotations (in a given frame of reference) and the PCT-like transformationQ0,1.
Then, U extends to all G andU(G) commutes with the metric operatorh constructed in the Proof
of Theorem 2.2. In particular, U(G) is represented by (anti-) unitary, and hence bounded, ope
tors onH.

Proof: By the PCT-theorem ind space–time dimensions, which does not require positi
~here we assumed the standard connection of spin and statistics, which is required for th
theorem—in theories with indefinite metric where also ghost fields are included, the results
article on the BW theorem do not apply!, WI is invariant under the antilinear PCT-like transfo
mation Q0,1,12,33 and thusU(G) is ~anti-!h-unitarily represented. AspI is invariant under the
action ofG, h1 commutes withU1(G). Since the construction ofH consists of twice changing th
operatorsh1 andh2 by functions of these operators,U(G) also commutes withh. ~Anti-! unitarity
of U(G) now follows fromh251. j

It is demonstrated in Ref. 28, Theorem 3.1, that Sobolev dominated Hilbert norms whi
not fulfill the condition of Corollary 2.3 can be replaced by equivalent norms which fulfill
condition. It is automatically fulfilled by Hilbert norms of Sobolev type.

To close this section we would like to address two points concerning the usefulne
Theorem 2.2 to describe the physics of quantum fields with indefinite metric. The first point i
the construction ofH depends not only onWI but possibly depends also on the auxilary Hilbe
seminormpI . In fact, unless the fundamental decompositionH 6 of H given byh has eitherH 1

or H 2 intrinsically complete, i.e., complete w.r.t. the topology generated by the restriction of^.,.&
to H 6, recent results prove that there are infinitely many topologically inequivalent max
Hilbert space structures.15,22,23In the generic situation in QFT the fundamental decompositionH 6

can not be expected to have an intrinsically complete component. On the other hand it is
in Refs. 27 and 28 that exactly this nonuniqueness can be exploited for the construction of c
states in certain infrared representations~depending on the space–time splitting! and thus is a
necessary feature of gauge QFT. Another application involving an adequate choice of the c
of local states is, e.g., bosonization in low-dimensional QFT, cf. Ref. 36. The present article
with this issue in the way that we prove our results forall such maximal Hilbert space structure
which originate from Sobolev dominatedpI .

The second point, which has recently been expressed by O. Steinmann, is that m
Hilbert topologies on the space~s! H might have little to do with the topology on the space
physical states, as in the case of quantum electrodynamics it is not possible to construct c
states for the Maxwell~Gauss! charge in a physical Hilbert space constructed fromH with the
help of an abstract Gupta–Bleuler formalism in the spirit of Ref. 26, cf. Theorem 7.3 of Re
Instead, Steinmann proposes to work with the inner product spaceD5SI /SI 0 and to avoid a
~possibly nonunique! maximal Hilbert closure. EndowingD with a suitable quotient topology, th
arguments of the present article can also be formulated without reference to maximal Hilbert
closures ofD. This will in fact be the main strategy of this article. As the results which t
reference to Hilbert space structures are mathematically slightly stronger and it might
interest to compare them with results on functional calculus on Krein spaces,4,19 here we use the
language of Krein spaces and do not restrict the analysis toD.

Remark 2.4:Section 5 of Ref. 27 states that charged, physical statescan beconstructed in a
closure of the local states. Theorem 7.3 of Ref. 32 is just the opposite of this statement. As
I can see, this contradiction can be traced back to different assumptions in Refs. 27 and 32.
32 it is assumed that the local states are in the domain of definition of the Maxwell chargeQ. This
assumption leaves open a kind of loophole asQ resulting from a closure of the Maxwell charg
defined on states of the type of Eq.~86! of Ref. 27 might not contain all local states in its doma

On the other hand, the construction of the metric operator in Ref. 27 according to cond
A2) for the ‘‘in’’-field and Eq. ~70!, leading to the construction of charged physical states, co
also be problematic: The vacuum expectation values of local and ‘‘in’’-fields, which ca
calculated from the local theory, partially fix the action of the metric operator on the ‘‘in’’-fie
as, e.g., sequences of states converging in the ‘‘in’’-space must have finite inner product w
local states. In a hypothetic, nonperturbative QEDA2) and Eq.~70! of Ref. 27 might not match
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with this a priori requirement on the metric operator. In a related situation~again not exactly the
same as in Ref. 27!, Steinmann gives evidence from perturbation theory that there could in fa
a problem, cf. Chap. 12.4 of Ref. 32. But the Hilbert space of an interacting theory usua
singular to the Hilbert space of the free theory, on which perturbation theory is carried out
perturbative arguments on the states of the interacting theory are not fully conclusive. j

III. SOME PROPERTIES OF THE FIELD ALGEBRA

The reason why we went through the well-known construction in the proof of Theorem 2
that the continuityf:SI→Oh(D) for most applications is insufficient, as the topology onOh(D) is
very weak. From the above construction we get, however, that

if~ fI !Vi<pI ~ fI !–; fIPSI , ~5!

and we thus get the following lemma, which gives sufficient continuity properties of the re
sentationf to effectively control certain constructions onH.

Lemma 3.1: Suppose WI fulfills the HSSC (A5) with pI Sobolev dominated. Then,f is strongly
continuous in the sense fI n→ fI in SI ⇒f( fI n)V→f( fI )V strongly inH.

Proof: As SI carries the direct sum topology,fI n→ fI implies the convergence of any compone
in Sn and the existence of a maximalN s.t. the components offI n in Sl , l .N, are equal to zero
;nPN. As the topology onSn is generated by Sobolev dominated norms and convergenceSn

thus implies the convergence in any specific Sobolev norm, we get 0<pI ( fIn2 fI )<pI 8( fI n2 fI )
→0, asn→`, for pI 8 a seminorm of Sobolev type dominatingpI . Together with~5! this gives
if( fI n)V2f( fI )Vi5if( fI n2 fI )Vi→0. j

From now on we assume that the maximal Hilbert spaceH with metric operatorh has been
constructed from a Sobolev dominated Hilbert normpI . That such apI exists can be checke
explicitly using the following sufficient condition, which has been verified in Refs. 1 and 3
models of QFT with indefinite metric and nontrivial scattering matrix. It should be no m
problem to verify the condition of Theorem 3.2 also for the truncated Wightman functions onth
order perturbation theory of Refs. 30–32 and the conformally invariant Wightman functio
classified by Nikolov and Todorov.29

Theorem 3.2: Let i .i be a Schwartz norm onS1 . If the truncated Wightman functions Wn
T

associated with WI [cf. (8) below] are continuous w.r.t.i .i ^ n ;nPN, then WI fulfills the HSSC
with respect to a Hilbert norm pI of Sobolev type. (AsS1 is a nuclear space, the tensor product
norms exists, cf. e.g., Ref. 20.)

For the proof see Refs. 3 and 20. Here we only recall that the Schwarz normsi .i5i .iL,N ,
L,NPN0 , on S1 are given by

i f iL,N5 sup
xPRd,ubu<L

u~11uxu2!N/2]b f ~x!u, ~6!

where b is a multiindex and]b5) l 50
d21] ub l u/(]xl)b l. The topology generated by the family o

Schwartz norms is equivalent to the topology generated by the Sobolev norms, which als
erate the Schwartz topology. For concrete estimates it is often more convenient to work
Schwartz norms, therefore Theorem 3.2 is formulated for such norms.

For A#Oh(D) the weak commutant ofA is given by

A85$CPB~H!:^C1 ,CLC2&5^L@* #C1 ,CC2& ;C1 ,C2PD,LPA%. ~7!

HereB(H) is the set of bounded operators onH. A is called irreducible ifA85C1H .
For O#Rd we defineSI (O) to be the unital* -algebra of thosefIPSI which have components

f n , suppf n#O 3n. We setP(O)5f(SI (O)) and we call this set the polynomial field algeb
localized in O. Furthermore, we letE05(V,.)VPOh(D) be the projection operator onto th
vacuum. One then gets the Reeh–Schlieder property of the field in analogy to the positive
case~the proof essentially is due to Refs. 26 and 34!:
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Theorem 3.3:

(i) For O#Rd open and not empty,V is cyclic w.r.t.P(O)
(ii) For O as in (i), the set of operators$P(O),E0% is irreducible.
(iii) For O as in ( i ) s.t.O85$xPRd,(x2y)•(x2y),0;yPO% has nonempty open interior,V is
standard (i.e., cyclic and separating) forP(O).

Proof: (i) By Lemma 3.1,SI { fI→^C1 ,f( fI )V& defines a functional inSI 8 for arbitrary C1

PH. This step has been used also in Refs. 34 and 26 without being explicitly mentioned. F
standard Wightman axioms it follows from positivity, cf. Ref. 33. As in Ref. 33 we may n
conclude that then-point functions associated to such Wightman functionals are boundary v
of analytic functions and thus vanish everywhere, if they vanish inO. Now suppose thatC is
perpendicular~w.r.t. (.,.)) toP(O)V. This implies forC15hC, using the above argument, th
^C1 ,f( fI )V&50; fIPSI . ThusC150 andC5hC150.

(ii) We have to show that for anyCPB(H)

^C1 ,Cf~ fI !C2&5^f~ fI* !C1 ,CC2& ; fIPSI ~O!, C1 ,C2PD,

and CE05E0C implies C5c1H for some cPC. Let C1PD and C2PP(O)V, i.e., C2

5f( fI )V for somefIPSI (O). We get in analogy to Eqs.~4–16! of Ref. 33:

^C1 ,CC2&5^f~ fI* !C1 ,CV&5^f~ fI* !C1 ,CE0V&5~f~ fI* !C1 ,hE0CV!5~f~ fI* !C1 ,hV!

3~V,CV!5^f~ fI* !C1 ,V&~V,CV!5^C1 ,C2&~V,CV!.

SinceP(O)V is dense inH by (i ), this impliesC5(V,CV)1H .
(iii) Follows from property (i ) for P(O) andP(O8) since locality implies that these algebra

commute and thus cyclicity ofV for P(O8) implies separability ofV for P(O). j

We want to adapt further results of positive metric QFT to the case of indefinite metric
namely the irreducibility of the field algebra and the uniqueness of the vacuum. The proofs
positive metric case use the spectral resolution of the translation group—something which is
disposal in ‘‘indefinite metric.’’ Instead we use a smooth cut-off function to separate the va
from the remaining states and we have to restrict ourselves to the case of QFTs with a ma
m.0.

SinceU is only densely defined, one callsṼPH invariant under the action of the translatio
groupU(1,a) if ^Ṽ,U(1,a)C1&5^Ṽ,C1&;aPRd,C1PD, cf. Ref. 36.

Theorem 3.4:Suppose that WI fulfills the strong spectral condition with mass gap m.0. Then

(i) P(Rd) is irreducible, and
(ii) the vacuumV is the unique translation invariant state inH (up to multiplication with a

constant).

Related results have been proven by Morchio and Strocchi:26 ( i i ) has been verified for nonmaxi
mal Hilbert spaces of Sobolev type and (i ) has been deduced from the assumption of~essential!
uniqueness of the vacuum. Here we extend these results also to maximal Hilbert closures
nating from a Sobolev dominated HSSC and we prove that such closures do not conta
theta-vacua,26 provided the strong spectral condition holds. That this statement can not be ob
in the mass-zero case is proven in Ref. 26 by explicit examples. These examples, however
fulfill the cluster property, which in Ref. 26 is not included in the modified Wightman axio
Such a statement fits nicely into the picture that there is a connection of symmetry breakin
the presence of massless fields.14 Also, (i ) shows that a potential reducibility of the algebra
local fields can occur in the mass-zero case only. For massless gauge theories reducibility
representation can be expected resulting from classical long range fluctuations, see Ref. 13
example of QED. For nontrivial examples of massive theories, see Ref. 1.

The proof of Theorem 3.4 starts with some technical preparations: LetfIPSI andhPS1 and

gI 5gI ( fI ,h) be defined as in~2!. We assume that suppf̂ n is compact;nPN with f̂ n the Fourier
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transform of f n in all arguments, suppĥ#(m/3,̀ )3Rd21 and ĥ51 on the set$k5k11¯

1kn :(k1 ,...,kn)Psupp f̂ n ,nPN%ùV̄m/2
1 . We denote the vector space of all suchgI which are

obtained in this way bySI 1.
Let l l5(l l

1 ,...,l l
j )#(1,...,n) where the inclusion means thatl l is a subset of$1,...,n% and

the natural order of (1,...,n) is preserved. LetP(1,...,n) denote the collection of all partitions o
(1,...,n) into disjoint setsl l , i.e., for lPP(1,...,n) we havel5$l1 ,...,l r% for somer where
l l#(1,...,n), l lùl l 85B for lÞ l 8 and ø l 51

r l l5$1,...,n%. Given a Wightman functionalWI
PSI 8 andl l5(l l

1 ,...,l l
j ), we setW(l l)5Wj (xl

l
1,...,xl

l
j).

With this definition at hand we can recursively define the truncated Wightman funct
WI TPSI 8 associated toWI PSI 8 via W0

T50 and

W~1,...,n!5 (
lPP(1,...,n)

)
l 51

ulu

WT~l l !,nPN, ~8!

where ulu is the number of setsl l in l. We also recall that the translation invariance ofWI ,
clustering and the strong spectral property imply suppŴn

T(k1 ,...,kn)#$(k1 ,...,kn)
PRdn:( l 51

n kl50,( l 5 j
n klPV̄m

1 , j 52,...,n%.
Lemma 3.5: In a QFT with indefinite metric which fulfills the strong spectral condit,

f(SI 1)V is orthogonal [w.r.t.(.,.)] to V and is dense in the orthogonal complement ofV.
Proof: We consider the following equation forgI PSI 1 with fI andh as above:

05ĥ~0!^V,f~ fI !V&5E
Rd

^V,f~aI $1,a%~ fI !!V&h~a!da5^V,f~gI !V&5~V,hf~gI !V!. ~9!

Thus,hf(gI )V is perpendicular toV w.r.t. (.,.). SincehV5V andh is self adjoint, the same
applies toh2f(gI )V5f(gI )V.

It remains to show that vectors of the formf(gI )V are dense in the orthogonal compleme
@w.r.t. (.,.)] of V in H. By Lemma 3.1, the span of states of the form (12E0)f( fI )V with fI
5(0,0,...,f r ,0...), with supp f̂ r compact, is dense in the orthogonal complement ofV. We want to
show that for such states

~12E0!f~ fI !V5f~gI !V ~10!

for somegI 5gI ( fI ,h)PSI 1, h as above. To prove this, it is sufficient to show that the expecta
values~w.r.t. ^.,.&) of both sides coincide for a set of vectors which span a dense set inH, namely
f(qI )V with qI 5(0,0,...,qj ,0,...). Taking this expectation value for the left hand side of~10! we
get

^f~qI !V,~12E0!f~ fI !V&5^V,f~qI * ^ fI !V&2^V,f~qI * !V&^V,f~ fI !V&,

where we used thathV5V. Expanding the right hand side into truncated Wightman functi
according to Eq.~8! and Fourier transforming we get forn5r 1 j

...5~2p!2dnE
Rdn (

lPP(1,...,n)

8
)
l 51

ulu

Ŵul l u
T ~kl

l
1,...,kl

l

ul l u!q̂* ~k1 ,...,kj ! f̂ ~kj 11 ,...,kn!dk1¯dkn ,

where the reduced sum(8 runs over all partitionsl s.t. there is at least one setl lPl with
l lù(1,...,j )ÞB andl lù( j 11,...,n)ÞB.

For (k1 ,...,kn)Psupp) l 51
ulu ŴT(l l) with l in the range of the sum, we obtain thatk5kj 11

1¯1knPV̄m
1 by the strong spectral condition fulfilled byŴulu

T . @In fact, k is a sum of zero
vectors and vectors fromV̄m

1 . Sincel is in the range of the reduced sum, there must be at l
one vector from V̄m

1 due to the support properties ofŴT(l l).# Thus, we can replace
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f̂ r(kj 11 ,...,kn) by ĥ(k) f̂ r(kj 11 ,...,kn) which does not changef̂ r on the support of) l 51
ulu ŴT(l l).

Furthermore, we can then drop the restriction of the sum and sum up over all partitions, sin
terms which do not belong to the restricted sum give zero contribution if evaluate
q̂* (k1 ,...,kj )ĥ(k) f̂ (kj 11 ,...,kn) ~on the support of such terms we havek50).

If we now Fourier transform back, we get the^.,.&-inner product off(qI )V with right hand
side of Eq.~10!. j

Proof of Theorem 3.4: (i)We have to make sure that forCPB(H)

^C1 ,Cf~ fI !C2&5^f~ fI* !C1 ,CC2&; fIPSI ,C1 ,C2PD

impliesC5c1H . Applying the above equation togI * wheregI PSI 1 andC15C25V we get that

^f~gI !V,CV&5^V,Cf~gI * !V&50

sincegI * 5*RdaI $1,a%( fI* )h̄(a)daPI sp by the support properties ofĥ.
Since f(SI 1)V is dense in the orthogonal complement ofV, we have thus obtainedCV

5cV. For C1 ,C2PD,C25f( fI )V for somefIPSI we obtain

^C1 ,CC2&5^f~ fI* !C1 ,CV&5c^C1 ,C2&

and thusC5c1H .
(ii) SupposeṼ is translation invariant. We note that in Eq.~9! we can replace the vectorV in

the first argument of̂.,.& and (.,.)respectively byṼ without changing the rest of the calculatio
Thus, Ṽ is perpendicular@w.r.t. (.,.)] to hf(SI 1)V. By Lemma 3.5f(SI 1)V is dense in the
orthogonal complement ofV. Sinceh self-adjoint andhV5V, this is also true forhf(SI 1)V.
ThusṼ5cV. j

IV. COMPLEX VELOCITY TRANSFORMATIONS FOR THE INDEFINITE METRIC CASE

In this section we prove the existence of a dense set of entire analytic vectors for the gen
of the velocity transformations~Lorentz boosts! in x0–x1 direction. This will then allow us to
define the complex velocity transformations, which are needed in the BW theorem to expre
‘‘modular operator,’’ on this domain. In this way we avoid the use of functional calculus whic
general is not available on Krein spaces. The strategy is as follows: One first defines ‘‘Ga
spectral cut-offs’’ for the Lorentz boosts on the Borchers algebra and thereby obtains an a
action of the velocity transformations on a dense sub-* -algebraSI analof the Borchers algebra. The
one uses Lemma 3.1 to derive the existence of a dense set of analytic vectorsD anal$f(SI anal)V.

We start with the definition of Gaussian mollifiers and their complex extension. Let
zPC,

ce~z!5~A2pe!21e2z2/2e, e.0, ~11!

such thatce(t) for tPR is the centered Gaussian bell curve with~variation! parametere.0. We
also note thatce* ce8(t)5ce1e8(t) where* means convolution int, i.e., thece form a convolution
semigroup. Ase↓0, ce(t)→d(t) in the following sense:

Lemma 4.1: Let F(t) be a continuous and exponentially bounded function, i.e., ' C,M.0 s.t.
uF(t)u<CeM utu ;tPR. Then*RF(t)ce(t)dt→F(0) ase↓0.

Proof: If F is continuous and has compact support, the statement is well-known. Us
partition of unity we can representF5F11F2 as a sum of a functionF1 with compact support
and a functionF2 which is zero on@21,1#, thus F(0)5F1(0). It remains to show that the
integral*RF2(t)ce(t)dt vanishes ase↓0. This is true by the theorem of dominated convergence
F2(t)ce(t) converge to zero pointwisely;tPR and this function, fore,1, is dominated by the
integrable functionuF2(t)uc1(t). j

Let a t5a$L(t),0% with
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L~ t !5L0,1~ t !5S cosht sinht 0 ¯ 0

sinht cosht 0 ¯ 0

0 0 1 � ]

] � � 0

0 ¯ 0 1

D , ~12!

the velocity transformation inx0–x1 direction. By uL(t)u we denote the maximum norm of th
matrix L(t) and we note that this is an exponentially bounded function.

For f PS1 ande.0 we set

f e5E
R
a t~ f !ce~ t !dt ~13!

and we obtain the following lemma:
Lemma 4.2: Let fPS1 . Then

(i) f ePS1 ;e.0, and
(ii) f e→ f in S1 as e↓0.

Proof: ( i ) Recall thatS1 is the projective limitùL,N>0SL,N of L-time continuously differen-
tiable functions onRd with finite Schwartz normi .iL,N . It is thus sufficient to prove thatf e for all
e.0 andL,N>0 has finitei .iL,N norm:

i f eiL,N<E
R

ia t~ f !iL,N ce~ t !dt<E
R
~11uL~ t !u2!(N1L)/2ce~ t !dti f iL,N , ~14!

and we note that the integral on the right hand side is finite due to the Gaussian decay ofce(t) and
the only exponential increase ofuL(t)u. Here we used the estimate

ia t~ f !iL,N< sup
xPRd,ubu,L

u~11uL~2t !xu2!N/2uL~ t !u ubu]b f ~x!u<~11uL~ t !u2!(L1N)/2i f iL,N .

~15!

(ii) As *Rce(t)dt51,

i f e2 f iL,N<E
R

ia t~ f !2 f iL,Nce~ t !dt.

Note that by~15! F(t)5ia t( f )2 f iL,N is exponentially bounded int. F(t) is also continuous.
Thus, by Lemma 4.1, we get for arbitraryL,NPN0 that the right hand side of the above estima
converges toF(0)50 for e↓0. As the family of Schwartz norms$i .iL,N%L,NPN0

generates the
Schwartz topology, the statement follows. j

Remark 4.3:If we do not deal with a scalar theory, Lemma 4.2 and all other construction
this work can be generalized to representationsa$L,0% whereL acts on the spin components via
finite-dimensional linear representationt s.t. the matrix elements oft(L(t)) are exponentially
bounded. This follows fromt(L(t)) being additive and continuous intPR. j

Clearly, ~13! can be interpreted as a Gaussian cut-offĉe(q)5e2euqu2 of the spectrum of the
generator of the velocity transformations onS 1#L2(Rd,C). Lemma 4.2 then proves that suc
cut-offs ~in contrast to a simpleL2-projection to a compact spectral set! takeS1 to itself and can
also be removed without leavingS1 . We next show that such cut-offs give the required analytic
on S1 :

Proposition 4.4: Let fPS1 ande.0. The functiona t( f e) from R to S1 has an entire analytic
continuationaz( f e) from C to S1 .
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Proof: We first note that forf PS1 , e.0, a t( f e)5*Ras( f )ce(s2t)ds and thus the natura
extention ofa t , tPR, to complex parameters is given by

az~ f e!5E
R
as~ f !ce~s2z!ds, zPC. ~16!

Sincece(z2s)5e2(z222sz)/2ece(s) ande2(z222sz)/2e for zPC fixed is exponentially bounded ins,
one can show thataz( f e)PS1 ;zPC in analogy to the proof of Lemma 4.2 (i ).

Next we have to prove thataz( f e) is entire analytic inz, henceaz( f e)5( l 50
` zl f l for zPC.

Complex differentiability of az( f e) then holds automatically and we getf l

5(1/l !)dlaz( f e)/dzl uz50 . For notational convenience we prove this statement forãz( f e)
5ez2/2eaz( f e) which is equivalent. Note that by an argument as in the proof of Lemma 4.2i )
*Ras( f )ce(s)sldsPS1 . What we have to show is thus that forL,NPN0

I ãz~ f e!2(
l 50

n
~z/e! l

l ! E
R
as~ f !ce~s!sldsI

L,N

< (
l 5n11

`
~ uzu/e! l

l ! E
R

ias~ f !iL,Nce~s!usu lds

→0 as n→`. ~17!

We also note that by a calculation as~15! for l even

E
R

ias~ f !iL,Nce~s!usu lds<E
R
ce~s!usu l~11uL~s!u2!(N1L)/2dsi f iL,N .

Let 0,e,e8. Then there exists a constantC.0 depending onL,N ande,e8 such that the integra
on the right hand side of the above estimate is smaller thanC*Rce8(s)usu lds. Since

(
l 50

`
Rl

l ! ER
ce8~s!usu lds5E

R
ce8~s!eRusuds,`

for all R.0, ~17! follows. j

We now defineS 1
anal to be theC-linear span of$az( f e): f PS1 ,e.0,zPC%. Some properties of

this space are listed in the following lemma:
Lemma 4.5:

(i) S 1
anal is a vector space which is closed under taking the complex conjugate.

(ii) S 1
anal#S1 is dense inS1 .

(iii) The mappingaz :S 1
anal→S 1

anal is well-defined for zPC.
(iv) C{z→az( f )PS 1

anal, f PS 1
anal, is additive in z, i.e., az1

(az2
( f ))5az11z2

( f ) ;z1 ,z2PC,
and az( f )* 5a z̄( f * ).

(v) The mappingC{z→az( f )PS 1
anal for f PS 1

anal is entire analytic [here we admit the coeffi
cients for the expansion ofaz( f ), f PS 1

anal, in z to be inS1 , not necessarily inS 1
anal] in z.

Proof:

(i) Closedness under taking the complex conjugation is obvious, cf.~13!.
(ii) This follows from Lemma 4.2(i) and (ii).
(iii) We first have to show that forgPS 1

anal, g5az1
( f e1

)5az2
(he2

), f ,hPS1 , e1 ,e2.0, z1 ,z2

PC, az(g)5az(az1
( f e1

))5az1z1
( f e1

)5az1z2
(he2

)5az(az2
(he2

)) is not ambiguous. Note
that this holds for realz. By entire analyticity inz, cf. Proposition 4.4,az(az2

( f e1
))

5az(az2
(he2

)) then extends to allzPC.
(iv) That az is additive inz andaz( f )* 5a z̄( f * ) follows from Eq.~16!.
(v) is an immediate consequence of (i i i ) and Proposition 4.4. j
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Let SI anal be the free, unital,* -algebra generated byS 1
anal, i.e.,

SI anal5 % n51
` S n

anal, S n
anal5S 1

anal̂ n , n>1, S 0
anal5C. ~18!

By Lemma 4.5 (i ) this is well defined. ThenSI 1
anal is a dense, unital sub-* -algebra ofSI , cf. Lemma

4.5 (i i ).
Proposition 4.6:

(i) aI z :SI anal→SI anal is a well defined unital algebra automorphism for zPC. It behaves under
taking the involution asaI z( fI )* 5aI z̄( fI* ) and is entire analytic and additive in zPC.

(ii) Let WI PSI 8 be Poincare´ invariant [cf. (A2)] andSI 0
anal5$ fIPSI anal:WI (gI ^ fI )50;gI PSI %. Then

aI z(SI 0
anal)#SI 0

anal.

Proof: (i) It is sufficient to prove this for the restriction ofaI z to S n
anal. By Lemma 4.5, the

statement holds for elementsaz1
( f 1) ^¯^ azn

( f n), f lPS 1
anal, zlPC, l 51,...,n in each of the

componentsazl
( f l). The claim now follows from going to the diagonalz5z15¯5zn .

(ii) Let fIPSI 0
anal. ThenWI (gI ^ az( fI ))50 for all realz. By (i ) andWI PSI 8, WI (gI ^ az( fI )) is

an analytic function inz and thus vanishes identically. j

We now want to use Lemma 3.1 in order to show that the results of Proposition 4.6 carry
to the Krein space representation onH. We first give some definitions:

Definition 4.7: Let(H,h) be a Krein space with fundamental decompositionh and letU:R
→Oh(D) be a one parameter group ofh-unitary operatorsU(t):D→D.

( i ) Let

D~A!5H CPD: lim
t→0,tÞ0

U~ t !21

i t
C converges strongly inHJ .

Then A5(A,D(A)), AC5 limt→0,tÞ0( i t )21(U(t)21)C, CPD(A), is called the generator o
$U(t)% tPR .

(ii) A vector CPD(A) is called analytic forA if ;nPN AnCPD(A) and'R.0 such that
;zPC, uzu,R, (n50

` (zn/n!)AnC converges strongly inH. If this holds for allR.0, C is called
entire analytic.

(iii) By D anal5D anal(A) we denote the set of all entire analytic vectors ofA. j

By standard methods one shows thatA is h-symmetric onD(A). By these very definitions we
get U(z)5(n50

` (( iz)n/n!)An:D anal→H is well-defined and additive forzPC and U(z)C, C
PD anal, is entire analytic inzPC in the strong topology onH.

We now get as the main theorem of this section:
Theorem 4.8:Let WI PS8 fulfill the Axioms 2.1 with Sobolev dominated Hilbert seminormI

and let((H,^.,.&,V),h,U,f) be the associated QFT with indefinite metric, cf. Theorem 2.2.
furthermore, U(t)5U($L(t),0%), tPR and A be the generator of the one parameterh-unitary
group $U(t)% tPR .

ThenA has a dense domainD anal of entire analytic vectors. In particular, $U(t)% tPR on D anal

has a well-defined additive extension toU(z), zPC, given by U(z)5(n50
` (( iz)n/n!)An and

U(z) @* #5U(2 z̄) holds on this domain.
Proof: As SI anal is dense inSI , it follows from Lemma 3.1 and the fact thatf(SI )V is dense in

H that alsof(SI anal)V is dense inH.
It therefore suffices to show thatf(SI anal)V#D anal. Let CPf(SI anal)V, C5f( fI )V, fI

PSI anal. By Proposition 4.6 (i i ), U(z)C5f(aI z( fI ))V is well-defined. Furthermore, by Propos
tion 4.6' fI nPSI such thataI z( fI )5( l 50

` (( iz)n/n!) fI n . Hence, limt→0,tÞ0( i t )21(aI t( fI )2 fI )5 fI 1 in
SI . By Lemma 3.1 this implies

f~ fI 1!V5fS lim
t→0,tÞ0

a t~ fI !2 fI
i t DV5 lim

t→0,tÞ0

U~ t !21

i t
C.
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Thus CPD(A) and AC5f( fI 1)V. Repeating this argumentn times we get thatAn21C
PD(A) and AnC5f( fI n)V. Again by Lemma 3.1 we get that the following chain of equati
holds:

U~z!C5f~aI z~ fI !!V5fS lim
N→`

(
n50

N
~ iz!n

n!
fI nD V5 lim

N→`

fS (
n50

N
~ iz!n

n!
fI nDV5 lim

N→`
(
n50

N
~ iz!n

n!
AnC,

where the convergence is strong convergence inH and zPC is arbitrary. This, by definition of
D anal, just means thatCPD anal. j

Let us briefly discuss the relation of Therorem 4.8 with functional calculus on Krein sp
SettingC5$j:C→C,j(z)5( l 51

` alz
l alPC s.t. 'R.0,C.0, ual u,CRl / l ! ; l PN%, we get by the

same methods as in the proof of Proposition 4.4 and Theorem 4.8 that (F(A),f(SI anal)V) is
well-defined for allF in the algebraC. This defines a restricted functional calculus forA. But this
algebra of entire analytic functions of course does not contain any characteristic sets~‘‘spectral
projections’’!.

If one would try to use the approach of this article to define spectral projections, one e
tially has to continuously extend the Wightman functionalWI to a bigger algebra generated b
elements

E
R
a t~ f !c[a,b]~ t !dt, f PS1 , ~19!

wherec[a,b] is the inverse Fourier transform of the characteristic function of the set@a,b#. While
it is easy to show that this defines a function onRd2$xPRd:ux0u5ux1u%, the estimates of the
proof of Lemma 4.2 obviously fail asc[a,b] (t) falls to zero no faster than 1/t as t→`. One thus
would have to restrict to Wightman functionalsWI with Wightman functions being rather function
of sufficiently fast decay than just distributions. This, however, is not a physical assumptio
e.g., the two-point function of a scalar field in the physical space–timed54 has singularities on
the light cone;1/x2 and thus is not a locally integrable function and due to Lorentz invarianc
constant along the orbits of the Lorentz group. This forced us in~13! to work with the Gaussian
cut-offs giving a less sharp localization of the spectrum. Of course, spectral projections in
cases could be defined using different methods.

Remark 4.9:On an informal level, spectral calculus can also be defined using Gau
localization of the spectrumĉa,e(A)5Ae/pe2eua2Au2, aPR,e.0. Informally, lime↑`ĉa,e(A)
5dE(2`,a] /da whereE(2`,a]5 ĉ(2`,a] (A) is the spectral projection ofA on (2`,a#. Thus one
gets the following heuristic formula,

F~A!59E
R
F~a!dE(2`,a]95 lim

e↑`
E

R
F~a!ĉa,e~A!da, ~20!

and one could study the existence of this limit depending on the choice ofF and suitable domains
in order to extend the choice of admissibleF beyondC. j

V. ON THE BW THEOREM FOR QFTs WITH INDEFINITE METRIC

In this section we combine the existence of complex velocity transformations establish
the previous section with a theorem of J. Bros, H. Epstein, and U. Moschella which show
Bisognano–Wichmann analyticity~in particular, the KMS condition! does not depend on positiv
ity. We first recall this result, which is the crucial step towards the BW theorem for QFT
indefinite metric. HereWR5$xPRd:x1.ux0u%, WL52WR . We also note thataI t takes the
* -algebrasSI (WR/L) into themselves. We only formulate our statements for the right wedge—
related statement for the left wedge can be derived analogously.
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Theorem 5.1:12 Let WI PSI 8 fulfill temperedness, locality and the spectral condition [cf. (A
(A3) and (A4) of Axioms 2.1]. Then we have the following.

( i ) The ‘‘dynamical system’’(SI (WR),aI t ,WI ) fulfills the KMS condition with temperatur
1/2p, i.e., ; fI ,gI PSI (WR) ' a holomorphic function F(z) on the stripR1 i (0,2p) which continu-
ously extends toR1 i @0,2p# such that

F~ t !5WI ~ fI ^ aI t~gI !!, and F~ t1 i2p!5WI ~aI t~gI ! ^ fI !, tPR.

(ii) For F as in ( i ), the Bisognano–Wichmann relation is fulfilled:

F~ ip!5WI ~ fI ^ aI $Q0,1,0%~gI * !!.

Remark 5.2:The proof for this theorem, based on analytic completion along the orbits o
group of complex Lorentz boosts, has been formulated for the case of de Sitter space–time,
same proof also holds for Minkowski space–time, cf. Ref. 12. Here, up to different notatio(i)
corresponds to Eq.~45! of Ref. 12 and (i i ) is the special casel521 of Eq.~46! of that reference
wherel5ez, z being the argument ofF.

It should also be remarked that the statement of Ref. 12 has been formulated for the c
test functions with compact support. Nevertheless, the proof of the crucial Lemma 2 o
reference is based on the estimate~67! which guarantees in~69! of Ref. 12 boundary values inS8,
see Theorem 2-10 of Ref. 33. But in the Minkowski case,~67! follows automatically from the
assumption of temperedness Theorem 2-10 of Ref. 33@see also~17! of Ref. 12#. Hence the
statement of Theorem 5.1 also holds for Schwartz test functions. j

If we re-write (i i ) of Theorem 5.1 for a Wightman functionalWI associated to some quantu
field theory with indefinite metric, cf. Theorem 2.2, we find

^f~ fI* !V,U~ ip!f~gI !V&5^f~ fI* !V,Jf~gI * !V&, J5U~$Q0,1,0%!, ~21!

where fI ,gI PSI (WR). J is a h-antiunitary and antiunitary~cf. Corollary 2.3! operator andJ251.
Equation~21! is, however, only symbolic as it is not clear whether one can make sense out
expressionU( ip)f(gI )V for all gI PSI (WR). We therefore have to consider a wedge algebra wh
is smaller thanPR5f(SI (WR)) and mapsV to D anal. At the same time, such a smaller wed
algebra must not be too small as important properties, e.g., the Reeh–Schlieder property,
be preserved and the weak commutant should coincide with the wedge algebra. Here we
the following solution:

Let SI anal(WR/L)5SI analùSI (WR/L) andPR/L
anal5f(SI anal(WR/L)). By definitionPR/L

anal#Oh(D)
andP R/L

analV#D anal.
The following properties ofP R/L

anal show that these algebras can be seen as legitimate su
tutes for the wedge algebrasPR/L :

Proposition 5.3: LetP L/R
anal be defined as above. Then,

(i) V is standard (cyclic and separating) forP R/L
anal;

(ii) P R/L
anal is dense inPR/L w.r.t. the separating normPR/L{L→iLVi ; and

(iii) the weak commutants ofPR/L and P R/L
anal coincide.

Proof:

~i! By Theorem 3.3V is cyclic and separating forPR/L . As PR/L
anal#PR/L , V is separating for

PR/L
anal. It remains to show thatV is also cyclic. Note thatS1(WL/R) is mapped into itself by

the action of a t . Thus, as in Lemma 4.2 (i i ), one can show thatS 1
anal(WR/L)

5S 1
analùS1(WR/L) is dense inS1(WR/L). Thus,SI anal(WR/L) is dense inSI (WR/L). Conse-

quently, by Lemma 3.1, any vectorC5f( fI )V, fIPSI (WR/L), can be approximated in th
strong sense by a sequence of vectorsCn5f( fI n)V, fI nPSI anal(WR/L).

~ii ! As we only have to show that any vectorC5LV, LPPR/L , can be approximated in th
strong topology by vectors in$LV:LPP R/L

anal%, the same argument as in (i ) can be used.
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~iii ! ObviouslyPR/L8 #P R/L
anal8 . We have to show the opposite inclusion. LetCPP R/L

anal8 . Then, by
Lemma 3.1, we get forC1 ,C2PD, C15f( fI )V, C25f(hI )V, fI ,hI PSI and LPPR/L ,
L5f(gI ), gI PSI (WR/L),

^C1 ,CLC2&5^f~ fI !V,Cf~gI !f~hI !V&5^f~ fI !V,Cf~gI ^ hI !V&5 lim
n→`

^f~ fI !V,Cf~gI n^ hI !V&

5 lim
n→`

^C1 ,CLnC2&5 lim
n→`

^Ln
@* #C1 ,CC2&5^L@* #C1 ,CC2&,

where in the last step one has to repeat the argument of the first four steps in reverse orde
that the equality follows from Lemma 3.1. Here we used that there exists a sequengI n

PSI anal(WR/L) such thatgI n→gI in SI asn→` @cf. the proof of (i )# andLn5f(gI n)PPR/L
anal. j

We define the domainD R
anal5P R

analV. By Proposition 5.3,D R
anal is dense inH and

SR :D R
anal→D R

anal#H, SR :LV°L@* #V, LPP R
anal ~22!

densely defines an antilinear operatorSR . Note thatV is separating forP R
anal, hence~22! is not

ambiguous. Also, (SR
@* # ,D R

anal@* #)$(SL ,D L
anal), with SL defined in analogy to~22! for the right

wedge replaced by the left wedge. This implies thatSR is closable.
We can now collect the pieces and formulate a version of the Bisognano–Wichmann th

for quantum fields acting on Krein spaces:
Theorem 5.4:Let PR/L

anal be the analytic right/left wedge algebras associated with some qu
tum field theory with indefinite metric and letJ andSR be defined as in Eqs.~21! and ~22!. Then,

(i) @P R
anal,P L

anal#50 on D;
(ii) JP R

analJ5P L
anal and JP L

analJ5P R
anal;

(iii) U(t)PR/L
analU(t)215PR/L

anal;
(iv) SR5JU( ip)uD

R
anal;

(v) (P R
anal,U(t),V) fulfill the KMS condition (w.r.t.̂ .,.&).

Proof: ~i! holds by locality.~ii ! This is a simple consequence of

aI $Q0,1,0%~SI anal!5SI anal and aI $Q0,1,0%~SI ~WR/L!!5SI ~WL/R!.

~iii ! Similar as in(ii) , this point follows from

aI t~SI anal!5SI anal and aI t~SI ~WR/L!!5SI ~WR/L!.

~iv! We note that forfI ,gI PSI anal(WR), F̃(z)5^f( fI* )V,U(z)f(gI )V& defines an entire ana

lytic function in z, cf. Theorem 4.8. This functionF̃(z) coincides for realz with the continuation
of the analytic functionF(z) of Theorem 5.1 (i ). By the edge of the wedge theorem,F̃(z) is thus
an analytic continuation ofF(z) to all C. We identify these two functions. Forz5 ip we then get
by Theorem 5.1 (i i ) that ~21! holds rigorously. Thus,

^C1 ,U~ ip!LV&5^C1 ,JL@* #V&, ;C1PD R
anal, LPP R

anal.

V is cyclic for P R
anal, cf. Proposition 5.3 (i ), henceD R

anal is dense inH and one gets from the
above equation thatU( ip)C5JSRC ;CPD R

anal. The assertion now follows by multiplication o
both sides withJ usingJ251.

(v) Like in ( iv) one shows that the functionF(z) for suitable choice offI ,gI PSI anal(WR)
coincides with^V,L1U(z)L2V&, L1 ,L2PP R

anal and one then gets the KMS condition

^V,L1U~ t1 i2p!L2V&5^V,L2U~2t !L1V&

from Theorem 5.1 (i ). j
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Twistor representation of null two-surfaces
Kostyantin Ilyenkoa)

Institute for Radiophysics and Electronics, NAS of Ukraine,
12 Acad. Proskura Street, Kharkiv 61085, Ukraine

~Received 9 November 2001; accepted for publication 3 May 2002!

We present a twistor description for null two-surfaces~null strings! in four-
dimensional Minkowski space–time. The Lagrangian density for a variational prin-
ciple is taken as a surface-forming null bivector. The proposed formulation is
reparametrization invariant and free of any algebraic and differential constraints.
The spinor formalism of Cartan–Penrose allows us to derive a nonlinear evolution
equation for the world-sheet coordinatexa(t,s). An example of null two-surface
given by the two-dimensional self-intersection~caustic! of a null hypersurface is
studied. © 2002 American Institute of Physics.@DOI: 10.1063/1.1501166#

I. INTRODUCTION

The study of massless~null! objects in four-dimensional~4D! Minkowski and curved space–
times has drawn considerable attention in recent years.1–8 These investigations are concerned n
only with physical implications stemming from the theory of massless particles and string t
but also with the geometrical entities which found a convenient representation as extende
objects. The research is mainly confined to one-dimensional null objects~massless particles an
superparticles!1,9–12and to the null hypersurfaces because of their relevance in relativity.8,13–16It
is surprising that a study of generic null two-dimensional surfaces is quite rare~see, however,
Refs. 17 and 18!. This situation is rather unfortunate because a generic null two-surface c
sponds to the notion of a tensionless string, which plays an important role in the current re
on the string theory.5,6,19,20 Besides, null two-surfaces can naturally arise as two-dimensi
caustics of null hypersurfaces and the availability of such a description could provide addi
insights into the geometry of the latter ones. Finally, our understanding of the geometry of th
submanifolds in space–times of special and general relativity is certainly incomplete with
satisfactory description of the null two-surfaces.

Initially, the notion of a null two-surface was put forward by Schild21 in the form of a geodesic
null string, i.e., a two-dimensional degenerate submanifold of 4D Minkowski or curved sp
time ruled by null geodesics. The degenerate property of the induced metric can be written
form

ẋ2x́22~ ẋx́!250. ~1.1!

Herexa(t,s) is the world-sheet coordinate,ẋx́ stands forẋax́a , etc. The dots and primes deno
differentiation with respect tot ands, respectively. It is worth noting that the degenerate prope
~1.1! is manifestly reparametrization invariant while the Schild’s variational principle does
possess this feature.

In Ref. 3 Bandos and Zheltukhin proposed a spinor version of the null string action funct
A study of null string dynamics in external fields in three-dimensional and 4D Minkowski spa
times was undertaken in Refs. 22–25. In Refs. 23 and 24 Ilyenko and Zheltukhin showe
interaction with antisymmetric tensor gauge field may lead to the violation of the geodesic
erty of the resulting null two-dimensional submanifold of the 4D Minkowski space–time.

a!Electronic mail: kost@ire.kharkov.ua
47700022-2488/2002/43(10)/4770/20/$19.00 © 2002 American Institute of Physics
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A different approach was employed in Refs. 5 and 26. The idea was to use an algebr
special differential two-form obeying certain integrability conditions. In Ref. 26 Sta¨chel took a
null bivector fieldpab(x) ~pab52pba , pab* pab50, pabp

ab50 andpa[b¹cpde]50; the asterisk
denotes dualization! as the Lagrangian density and showed that Schild’s null string could
treated in this way. Recently, Gusev and Zheltukhin5 have used a fundamental result of spin
calculus on the representation of a real null bivector in 4D Minkowski space–time to cas
variational principle in the form

S5E ~p̄Ap̄BeA8B81pA8pB8eAB!dxAA8∧dxBB8.

They proved the degenerate property of the resulting two-dimensional manifold and treat
case of geodesic null string.

In the present article we show that the above-mentioned variational principle admits a n
twistor form. The corresponding Euler–Lagrange equations possess solutions not only in th
of ruled null two-surfaces~geodesic null strings! but also generic~i.e., nongeodesic, cf. Ref. 24!
null strings. A nonlinear counterpart of the geodesic evolution equation for a generic null str
derived.

An outline of the paper is as follows. In Sec. II we propose a twistor variational principle
null two-surfaces in 4D Minkowski space–time. Section III is devoted to a study of the c
sponding equations of motion. An evolution equation for a generic nongeodesic null two-su
is derived in Sec. IV. Section V contains an example of nongeodesic null two-surface as a
dimensional caustic of a wave front. Discussion and outlook are presented in Sec. VI.

The conventions are those of Penrose–Rindler.13

II. VARIATIONAL PRINCIPLE

We begin with the Sta¨chel’s variational principle. By definition, a bivectorpab(x)5
2pba(x) is simple if the condition det(pab)50 holds. In 4D Minkowski space–time one can sho
that det(pab)5(1/16)(pab* pab)2 @see Ref. 13, Vol. 1#, where * pab5(1/2!)«abcdpcd («012352«0123

51) is the dual ofpab . This means that there exists a pair of vector fieldsua(x) andvb(x) which
obey the identitypab5u[avb] . The null propertypabp

ab50 gives

uaua50, vava,0

and without loss of generality we will assume that they are normalized by the conditions

uava50, vava522. ~2.1!

Let the spinorsp̄A and h̄A constitute a normalized Newman–Penrose dyad~spin-frame! and
spinorp̄A be chosen so as to represent the coincident principal null directions of the null biv
pab . Then, one can write the following representation forua andvb :

ua5p̄ApA8 , vb5p̄BhB81pB8h̄B . ~2.2!

Introducing a null twistorZa5def(v̄A,pA8) and its complex conjugateZ̄a5(p̄A ,vA8), where
v̄A is given by the usual definitionv̄A5 ixAA8pA8 , we obtain

iua dxa5 i p̄ApA8dxAA85Z̄adZa.

The null property of the twistorZa corresponds to the Hermitian property ofxAA8 and reflects the
reality condition imposed on the points of 4D Minkowski space–time.

Next we consider another one-form
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ivbdxb5 i ~p̄BhB81pB8h̄B!dxBB85
i

2
@~p̄B1h̄B!~pB81hB8!2~p̄B2h̄B!~pB82hB8!#dxBB8

~2.3!

and introduce a second null twistorWb5def( j̄B,hB8) and its complex conjugateW̄b5(h̄B ,jB8).
Calculating d(j̄B6v̄B)5 i (pB86hB8)dxBB81 ixBB8d(pB86hB8), we find

i ~p̄B1h̄B!~pB81hB8!dxBB85~p̄B1h̄B!d~ j̄B1v̄B!1~jB81vB8!d~pB81hB8!,

i ~p̄B2h̄B!~pB82hB8!dxBB852~p̄B2h̄B!d~ j̄B2v̄B!2~jB82vB8!d~pB82hB8!.

Subtracting these two equations and using~2.3! we obtain

ivbdxb5Z̄bdWb1W̄bdZb.

Since

pabdxa∧dxb5u[avb]dxa∧dxb5uadxa∧vbdxb, ~2.4!

we can take the following expression:

S5E Z̄adZa∧~ Z̄bdWb1W̄bdZb! ~2.5!

as a twistor variational principle for the null two-surfaces. The two-form in~2.5! is understood to
be restricted to a two-dimensional submanifold of 4D Minkowski space–time parametrizedt
ands. The null property of the twistorsZa andWa leads to the following identities:

Z̄aZa5W̄aWa5Z̄aWa5W̄aZa50.

The Lagrangian density of the twistor action functional~2.5! is multiplied by the factorq2 under
the gauge transformations of the form

Za→qZa, Wa→q21Wa1pZa.

Here q(t,s) is a nowhere-vanishing real-valued function andp(t,s) is an arbitrary complex-
valued function. This is an admissible freedom for a differential form representing a surfac27 It
gives rise to the invariance of the Euler–Lagrange equations under the above-mentioned tr
mations. The invariance corresponds to the possibility of rescaling with real multiples of the e
of the null direction tangent to the null two-surface and to addition of any real multiple of the
direction to the space-like tangent direction

p̄A→qp̄A, h̄A→q21h̄A1pp̄A. ~2.6!

These transformations comprise the null-rotations and boost-rotations~cf. Ref. 28!.

III. EQUATIONS OF MOTION

A. Euler–Lagrange equations

The Lagrangian of the twistor variational principle derived in Sec. II has the form

L5«mn]mZaZ̄a~ Z̄b]nWb1W̄b]nZb!, ~3.1!
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where the indicesm,n run over t, s and «ts52«st51. We also write ]m5]/]jm

5(]/]t,]/]s) and extensively use the shorthand notations ‘‘" ’ ’ 5]t and ‘‘8’ ’ 5]s . The Euler–
Lagrange equations are

]L
]Yu 2

]

]jm F ]L
]~]mYu!G50.

Here Yu5$Za,Wa,Z̄a ,W̄a% are the dynamical quantities. The substitution of the Lagrang
density~3.1! into the equations yields

«mn~ Z̄a]mZ̄b]nWb1]mZ̄aZ̄b]nWb1Z̄a]mW̄b]nZb1]mZ̄aW̄b]nZb2W̄a]mZ̄b]nZb

2]mW̄aZ̄b]nZb!50,

«mn~]mZaZ̄b]nWb1]mZaW̄b]nZb2]mWaZ̄b]nZb!50, ~3.2!

«mn~ Z̄a]mZ̄b1]mZ̄aZ̄b!]nZb50, «mn]mZaZ̄b]nZb50.

We can rewrite these equations in terms of the spinor fieldsp̄A and h̄A and the world-shee
derivatives ofxAA8 employing the definitions of the null twistorsZa andWa. In what follows it
will be also convenient to take advantage of the identities

p̄ApA8h̄B2~p̄AhA81pA8h̄A!p̄B5pA8eAB2hA8p̄Ap̄B,
~3.3!

ẋAA8x́BB82 x́AA8ẋBB85fABeA8B81f̄A8B8eAB.

Here we use the normalization condition

«AB5p̄Ah̄B2h̄Ap̄B ~3.4!

and the symmetric spin-tensorfAB is given by the expressionfAB5 ẋ(A
C8x́

B)C8.
Let us consider the first equation in the system~3.2!. Utilizing the above-presented formula

we obtain that this equation is equivalent to the following system:

ẋBB8@xAA8~pB8eAB1hB8p̄Ap̄B!#82 x́BB8@xAA8~pB8eAB1hB8p̄Ap̄B!#•50,
~3.5!

ẋBB8~pB8eAB1hB8p̄Ap̄B!82 x́~pB8eAB1hB8p̄Ap̄B!•50.

Substituting the second equation in~3.5! into the first one and using the second identity in~3.3!,
we can represent the first equation in~3.2! in the form

ẋBB8@h̄Ap̄BpB82p̄A~p̄BhB81h̄BpB8!#82 x́BB8@h̄Ap̄BpB82p̄A~p̄BhB81h̄BpB8!#
•50,

~3.6!
2f̄A8B8pB81hA8~fABp̄Ap̄B!50.

The second equation in the system~3.2! yields

ẋBB8@~xAA8hA8!8p̄BpB82~xAA8pA8!8~p̄BhB81h̄BpB8!#2 x́BB8@~xAA8hA8!
•p̄BpB8

2~xAA8pA8!
•~p̄BhB81h̄BpB8!#50,

ẋBB8@h́A8p̄BpB82ṕA8~p̄BhB81h̄BpB8!#2 x́BB8@ḣA8p̄BpB82ṗA8~p̄BhB81h̄BpB8!#50.
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Substituting the second equation in this system into the first and using~3.3! again, we find that the
second equation in~3.2! results in

ẋBB8@h́A8p̄BpB82ṕA8~p̄BhB81h̄BpB8!#2 x́BB8@ḣA8p̄BpB82ṗA8~p̄BhB81h̄BpB8!#50,
~3.7!

2fABp̄B1h̄A~f̄A8B8pA8pB8!50.

We incidentally observe that the second equations in the systems~3.6! and ~3.7! are complex
conjugates of one another. We next consider the third equation of the system~3.2!. It can be
represented as follows:

ẋBB8~xAA8p̄Ap̄BpB8!82 x́BB8~xAA8p̄Ap̄BpB8!
•50,

ẋBB8~p̄Ap̄BpB8!82 x́BB8~p̄Ap̄BpB8!
•50.

The substitution of the second equation above into the first and the use of~3.3! allow us to write
this pair of equations in the form

ẋBB8~p̄Ap̄BpB8!82 x́BB8~p̄Ap̄BpB8!
•50,

~3.8!
fABp̄Ap̄B50.

The fourth equation in~3.2! gives

@ ẋBB8~xAA8pA8!82 x́BB8~xAA8pA8!
•#p̄BpB850,

~3.9!
~ ẋBB8ṕA82 x́BB8ṗA8!p̄BpB850.

The second equation in~3.9! can be used to rewrite the two equations~3.8! as follows:

~ ẋBB8ṕA82 x́BB8ṗA8!p̄BpB850,
~3.10!

f̄A8B8pA8pB850.

We also find that the second equation in~3.8! is a complex conjugate of the second equation
~3.10!.

Let us use the first equation in~3.7! to simplify the first equation in the system~3.6!. The
calculation gives

@ ẋBB8~p̄BhB81h̄BpB8!82 x́BB8~p̄BhB81h̄BpB8!
•#p̄A2@ ẋBB8~p̄BpB8!82 x́BB8~p̄BpB8!

•#h̄A50.
~3.11!

Sincep̄A andh̄A constitute a normalized basis for the two-dimensional vector spaceC2, Eq.~3.11!
is equivalent to the following pair:

ẋAA8~p̄AhA81h̄ApA8!82 x́AA8~p̄AhA81h̄ApA8!
•50,

~3.12!
ẋAA8~p̄ApA8!82 x́AA8~p̄ApA8!

•50.

Performing the same procedure with the first equations in~3.8! and ~3.10!, we derive

ẋAA8~p̄ApA8!82 x́AA8~p̄ApA8!
•50.

It coincides with the second equation in the system~3.12!.
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Finally, for the purposes of the future analysis, we divide the independent Euler–Lag
equations in the following three pairs:

~ ẋAA8ṕ̄B2 x́AA8pG B!~p̄AhA81pA8h̄A!2~ ẋAA8h́̄B2 x́AA8hG B!p̄ApA850,
~3.13!

ẋAA8~p̄AhA81pA8h̄A!82 x́AA8~p̄AhA81pA8h̄A!•50;

ẋAA8~p̄ApA8!82 x́AA8~p̄ApA8!
•50,

~3.14!
~ ẋAA8ṕ̄B2 x́AA8pG B!p̄ApA850;

2f̄A8B8pA81~fABp̄Ap̄B!hB850,
~3.15!

fABp̄Ap̄B50.

Here we made substitutions of dummy indices, where appropriate, and presented complex
gate versions of some equations.

B. Preliminary analysis

Now we will establish a few auxiliary results.
The third pair of the equations of motion~3.15! givesfABp̄B50, which means that

2fAB5vp̄Ap̄B ~3.16!

for some complex-valued functionv(t,s).
Let us substitute the representation~3.16! into the second equation of~3.3!,

2~ ẋAA8x́BB82 x́AA8ẋBB8!5vp̄Ap̄BeA8B81 v̄pA8pB8eAB.

Multiplying both sides of this equation byẋBB8 we obtain

2@ ẋ2x́AA82~ ẋx́!ẋAA8#5vp̄Ap̄BẋBA81 v̄pA8pB8ẋ
AB8. ~3.17!

Following Ref. 5 we calculate

2ẋA
C8x́

BC852ẋ(A
C8x́

B)C812ẋ[A
C8x́

B]C852fAB1~ ẋx́!eAB5vp̄Ap̄B1~ ẋx́!eAB.

Using this result one obtains

2ẋA
C8x́

BC8ẋAD8x́B
D85~ ẋx́!2. ~3.18!

On the other hand,

ẋA
D8x́

BC8ẋAC8x́B
D852 ẋA

C8ẋAD8x́
BC8x́B

D8

and this fact can be used to show that the left-hand side of Eq.~3.18! is also given by

2ẋA
C8x́

BC8ẋAD8x́B
D85~ ẋA

C8ẋAD82 ẋA
D8ẋAC8!x́

BC8x́B
D852ẋA

[C8ẋuAuD8] x́
BC8x́B

D85 ẋ2x́2.
~3.19!

Equations~3.18! and ~3.19! result in identity~1.1!. The left-hand side of~1.1! is the determinant
of the induced metric on the null string world-sheet, or equivalently, on a two-dimensiona
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null submanifold of 4D Minkowski space–time, and this equation shows that it vanishes id
cally. The vanishing property of the determinant of the induced metric is invariant under the
of nondegenerate diffeomorphisms of the null string world-sheet

t→ f ~t,s!, s→w~t,s!. ~3.20!

According to the second Noether theorem,29,30 the reparametrization invariance~3.20! of the
twistor action functional implies that the equations of motion contain two arbitrary real-va
functions. Then, without loss of generality, we can choose one of them in such a way as to
that ẋ250. Taking into account~1.1!, this entails

ẋ250, ẋx́50. ~3.21!

Having fixed the orthogonal gauge~3.21!, we restrict the group of diffeomorphisms of the nu
string world-sheet to the following subgroup of transformations:

t→ f ~t,s!, s→w~s!. ~3.22!

It, therefore, follows from~3.17! and ~3.21! that

vp̄AẋBA8p̄B1 v̄pB8ẋ
AB8pA850,

and projection of this equation on the elements of the spin-tensor basisp̄ApA8 , p̄AhA8 , pA8h̄A8
and h̄AhA8 yields

v ẋAA8p̄AhA81 v̄ ẋAA8h̄ApA850,
~3.23!

ẋAA8p̄ApA850.

The second equation in the system~3.23!, together with the null property~3.21! of the vector field
ẋa, gives rise to the representation for this vector field in the form

ẋAA85r p̄ApA8, ~3.24!

wherer (t,s) is a real-valued function. This representation for one of the two vector fields tan
to the null string world-sheet automatically solves the first equation of the system~3.23!. The
result ~3.24! and the second equation in~3.21! imply

x́AA8p̄ApA850.

Now x́AA8 can be written as

x́AA85 z̄p̄AhA81zh̄ApA81gp̄ApA8,

where z~t,s! and g(t,s) are complex- and real-valued functions, respectively. Therefore,
representation for two linearly independent vector fields tangent to the null string world-
which obey constraints~3.21! is

ẋAA85r p̄ApA8, x́AA85 z̄p̄AhA81zh̄ApA81gp̄ApA8. ~3.25!

The substitution of the representation~3.25! into the first equation of the system~3.13! gives

pG A~z1 z̄ !50. ~3.26!
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The situation in whichpG A vanishes corresponds to the geodesic property of the null s
world-sheets and it has been considered in Ref. 5. Unfortunately, the authors of that artic
overlooked the other possibility, given by the vanishing of the expression in parentheses
~3.26!, and had not paid any attention to nongeodesic null strings. The remainder of this pap
be devoted to the analysis of the nongeodesic case, which corresponds, as we will see
situation where the functionz~t,s! is purely imaginary.

It is convenient to redefine the functionz to be a real-valued function in the null string motio
equations and in the representations for the vector fieldsẋAA8 and x́AA8 by means of the substitu
tion z→2 i z. Taking into account~3.25!, we can reduce the remainder of the motion equati
~3.13!–~3.14! to the system

r ~p̄Aṕ̄A1pA8ṕA8!52i z~pA8ḣA82p̄AhG A!1g~p̄ApG A1pA8ṗA8!,

p̄ApG A2pA8ṗA850.

Finally, we obtain the motion equations of the null string in the form

ẋAA85r p̄ApA8, x́AA85 i z~p̄AhA82h̄ApA8!1gp̄ApA8, p̄ApG A2pA8ṗA850,
~3.27!

r ~p̄Aṕ̄A1pA8ṕA8!52i z~pA8ḣA82p̄AhG A!1g~p̄ApG A1pA8ṗA8!,

wherer (t,s) andz~t,s! are arbitrary real-valued functions.
Let us briefly explore the effects of the gauge transformations~2.6! and the null string world-

sheet reparametrizations~3.22! on the equations of motion. The gauge transformations~2.6! leave
the null string motion equations~3.27! invariant and result in simple redefinitions of the functio
r andg,

r→q2r , g→q2g2 iq~p2 p̄!z.

Under the world-sheet reparametrizations~3.22!

ẋa→ ḟ 21ẋa, x́a→ẃ21x́a2~ ẃ ḟ !21 f́ ẋa.

We then observe that the reparametrizations~3.22! preserve the form of the null string motio
equations~3.27! while leading to the following redifinitions of the functionsr , g, andz:

r→ ḟ 21r , g→ẃ21g2~ ẃ ḟ !21 f́ r , z→ẃ21z.

One can make sure that the null property of the vector fieldẋa and the orthogonal character of th
vector fieldsẋa and x́a are preserved with respect to both transformations.

The invariant property of the twistor action functional with respect to either of those tr
formations can be used in order to eliminate the null component,gp̄ApA8, of the space-like vector
field x́AA8 from the null string equations of motion~3.27!. This can be achieved by performing th
transformations~2.6! with the parameters

q51, i ~p2 p̄!5z21g,

where the real part of the functionp may remain arbitrary. Then, the null string equations
motion take the reduced form

ẋAA85r p̄ApA8, x́AA85 i z~p̄AhA82h̄ApA8!, p̄ApG A2pA8ṗA850,
~3.28!

r ~p̄Aṕ̄A1pA8ṕA8!52i z~pA8ḣA82p̄AhG A!.
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They are invariant under the gauge transformations~2.6! with real functionsp(t,s). These re-
stricted gauge transformations result in trivial rescaling of the functionr (t,s) in the null string
motion equations~3.28!,

r→q2r ,

and reflect the freedom inherent in the choice of the extent of the null direction represented
vector field ẋa. This restriction of the admissible gauge transformations to those with reap’s
further reduces the reparametrization freedom of the null string world-sheet. The invariance
null string equations of motion in the form~3.28! requires that the functionf entering the rep-
arametrization transformations~3.22! is a function oft alone, thereby restricting the reparamet
zation freedom to the following transformations:

t→ f ~t!, s→w~s!. ~3.29!

In the above-given equations the functionr defines the extent of the flagpole directionl a

[p̄ApA8 tangent to the null string world-sheet. We also note that unrestricted gauge transf
tions ~2.6! preserve the associated flag plane represented by the space-like vector fiema

[p̄AhA81pA8h̄A. This vector is orthogonal to the space-like vector fieldqa[ i (p̄AhA8

2h̄ApA8) tangent to the null string world-sheet. The vector fieldsl a, ma, andqa together with the
second null vector fieldna[h̄AhA8 define a~non-normalized! Newman–Penrose tetrad for 4
Minkowski space–time. Here the vector fieldsma andqa can be expressed in terms of the usu
complex elements of the tetrad as follows:

ma5ma1m̄a, qa5 i ~ma2m̄a!.

C. Integrability conditions

The representations forẋAA8 and x́AA8 in ~3.28! must satisfy the compatibility conditions

~ ẋAA8!85~ x́AA8!•. ~3.30!

In turn, this leads to some compatibility conditions on thet- ands-derivatives of the basis spino
fields p̄A and h̄A. It will have proven to be interesting to explore the geometrical significanc
the compatibility conditions~3.30!.

Using the definitions of the vector fieldsl a andqa we find

]

]t
5

]xa

]t

]

]xa [ ẋa¹a5rl a¹a ,

~3.31!
]

]s
5

]xa

]s

]

]xa [ x́a¹a5zqa¹a .

We next calculate the Lie derivative of the vector field]s along]t ,

£rl ~zqa!5ãl a1b̃qa1r z£lh
a,

where we have definedã52zqa¹ar and b̃5rl a¹az. In the derivation we have used the fact th
in 4D Minkowski space–time the derivatives¹a commute. Now, the geometrical meaning of t
condition~3.30! becomes apparent, it requires the Lie derivative of the connecting vector fieqa

along the vector fieldl a to be contained in the subspace spanned by those vector fields

£lh
a5ala1bqa. ~3.32!
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Herea52r 21qa¹ar andb5z21l a¹az are some real-valued functions oft ands. This equation
can be recognized as the Frobenius integrability condition applied to the vector fieldsl a andqa.
We note in passing that the vector fieldzqa plays the role of the Jacobi field along the nu
congruence given by the vector fieldrl a and, therefore, is simply a Lie-dragged vector field. T
condition can be phrased in a yet another form by observing that~3.32! entails that the projections
of the vector field £lh

a on the elementsl a andma of the Newman–Penrose tetrad must vanis

l a£lq
a50, ma£lq

a50. ~3.33!

Having established the geometrical meaning of the compatibility conditions~3.30!, or equiva-
lently ~3.33!, we can proceed with their analysis. The first equation in~3.33! gives

l al b¹bqa2 l aqb¹bl a50.

Noting that the second term on the left-hand side vanishes identically and using the ortho
property of the vector fieldsl a andqa we obtain

qal b¹bl a50 ~3.34!

as the first integrability condition. The second equation in~3.33! yields

maqb¹bl a2mal b¹bqa50. ~3.35!

Summarizing, the Frobenius integrability conditions for the two-dimensional submanifold o
Minkowski space–time representing the null string world-sheet are given by the formulas~3.34!
and ~3.35!. A straightforward calculation shows that these equations are invariant under th
stricted to realq’s andp’s gauge transformations of the form~2.6!.

At this point we can compare the different forms of the integrability conditions, namely
differential condition for the null bivectorpab(x) stated in Sec. I and~3.32!. For this purpose, we
note that the null bivector can be written in the form

2pab5p̄Ap̄BeA8B81pA8pB8eAB . ~3.36!

Here we have used the definitions~2.4! and~2.2! for the null bivector and the vector fieldsua and
va, the normalization conditions~2.1! and identity~3.4!. The above-mentioned integrability con
dition is equivalent to

pab¹cpdee
bcde50, ~3.37!

where the totally antisymmetric tensor densityebcde is given by the expression13 ~Vol. 1!,

ebcde5 i ~eBDeCEeB8E8eC8D82eBEeCDeB8D8eC8E8!.

First, we write

2¹cpde5p̄EeD8E8¹CC8p̄D1p̄DeD8E8¹CC8p̄E1pE8eDE¹CC8pD81pD8eDE¹CC8pE8 .

Second, we calculate

ebcde¹cpde5 i ~p̄B¹CB8p̄C2pB8¹BC8pC81p̄C¹CB8p̄B2pC8¹
BC8pB8!.

Finally, we obtain

2pab¹cpdee
bcde5 i @p̄Ap̄BpB8¹BB8pA82pA8p̄

BpB8¹BB8p̄A1pA8p
B8pC8¹AC8pB8

2p̄Ap̄Bp̄C¹CA8p̄B1p̄ApA8~p̄B¹BB8p
B82pB8¹BB8p̄B!#. ~3.38!
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Then, the desired result follows from equating the right-hand side of the formula~3.38! to zero.
Since Eq.~3.37! is equivalent to its projections on the spin-tensor basis elementsp̄ApA8, p̄AhA8,
h̄ApA8, andh̄AhA8, we derive the results which are presented in the following. First, the pro
tion of Eq. ~3.37! on p̄ApA8 vanishes identically. Second, its projections on the spin–tensor b
elementsp̄AhA8 andh̄ApA8 are the complex conjugates of one another and can be represen
the form

p̄Ap̄BpB8¹BB8p̄A2pA8p̄BpB8¹BB8pA850. ~3.39!

Finally, the projection of~3.37! on the remaining element of the spin-tensor basis,h̄AhA8, is given
by

2~p̄Ap̄BpB8¹BB8h̄A2pA8p̄BpB8¹BB8hA8!1pA8p̄BhB8¹BB8pA82pA8h̄BpB8¹BB8pA8

2p̄Ah̄BpB8¹BB8p̄A1p̄Ap̄BhB8¹BB8p̄A50. ~3.40!

The substitution of the definitions for the vector fieldsl a, qa andma through the spinorsp̄A and
h̄A into ~3.39! and~3.40! reduces those equations to the system~3.34! and~3.35!. This concludes
our demonstration of the equivalence of the integrability conditions~3.37! and ~3.32!.

Using ~3.31! we can rewrite formulas~3.39! and ~3.40! as

r ~p̄Aṕ̄A1pA8ṕA8!52i z~pA8ḣA82p̄AhG A!,
~3.41!

p̄ApG A2pA8ṗA850.

We find that the integrability conditions~3.41! coincide with the null string equations of motion i
the system~3.28!.

The conclusion of the subsection is that the integrability conditions do not contribute
tional constraints to the null string equations of motion~3.28!. Moreover, the complete system o
the null string equations of motion consists of the spinor representations forẋa and x́a in ~3.28!
together with their compatibility conditions~3.30!.

It is easy to show that nongeodesic null string equations of motion derived in Ref. 24 c
cast into the form~3.28!. This proves that the two variational formulations are equivalent on
classical level. All the results on the properties of those equations also hold in our case. Fo
details we refer an interested reader to that paper. It is also remarkable that the present form
is free of the pair of artificial auxiliary world-sheet quantities,rm, in the action principle, which
was proposed by Bandos and Zheltukhin in Ref. 3 and studied by Zheltukhin and Ilyenko in
22–25. The action principle of Ref. 24 contains eight arbitrary functions oft ands, namely, two
rm’s and six components of the external antisymmetric gauge fieldBab(x). Nevertheless, as we
showed there, only two gauge invariant combinations of the field strength components ofBab(x)
enter the equations of motion. This means that only four functions define generic null
dynamics in 4D Minkowski space–time, as is the case with the present formulation.

To summarize, in this section we have shown that the twistor action functional~2.5! describes
a two-dimensional submanifold of 4D Minkowski space–time with a degenerate induced m
The twistor action also gives the equations of motion for a generic null string in 4D Minko
space–time.

IV. EVOLUTION EQUATION

A. Preliminary results

The invariance of the null string equations of motion under the restricted gauge transf
tions of the form~2.6! with real functionsq andp enables us to impose one more gauge condit
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on the functions entering the complete equations of motion of a null string. It will prove co
nient in the nongeodesic case to fix the extents of the null directions tangent to the null
world-sheet by imposing the so-called natural parametrization

pG Ap̄A51. ~4.1!

This amounts to takingr 5k21, wherek is the spin-coefficient, whose nonvanishing prope
shows that a null congruence is non-geodesic@cf. Ref. 13~Vol. 2!#. The resulting equations ar
invariant under the residual gauge transformations

p̄A→p̄A, h̄A→h̄A1pp̄A. ~4.2!

Here p is a real-valued function oft ands. The gauge transformations of the form~4.2! corre-
spond to the freedom inherent in the definition of the flag planes, which are associated w
flagpole directionsl a tangent to the null string world-sheet. The condition~4.1! fixes natural
parameter,t, along the integral curves of the vector fieldl a, thus restricting the reparametrizatio
invariance~3.29! to trivial transformations

t→t, s→w~s!.

Under these transformations the flagpole extent,k21, remains invariant, whereasz changes to
ẃ21z.

The condition for the natural parametrization~4.1! leads to the identity

pJ Ap̄A50.

It follows that pJ A is proportional top̄A. Using the definition of the spin-coefficientsk, «, andt8
and noting thatD[ l a¹a , we obtain

pJ A5@k21D~«k21!1k22~«21kt8!#p̄A. ~4.3!

In what follows, we will denote the expression in square brackets in Eq.~4.3! asU. The natural
parametrization~4.1! also gives that

h̄A52pG A ~4.4!

up to addition of real multiples ofp̄A.

B. Derivation of equation

We use the spinor representations in~3.28! for the vector fieldsẋa and x́a to find a nonlinear
evolution equation satisfied by the coordinate,xa(t,s), of the null string world-sheet. Since th
analysis here is applicable only to the nongeodesic case, we will restrict our derivation
situation in which the natural parametrization is applied.

Let us substitute~4.4! andr 5k21 into the definitions ofẋa and x́a in ~3.28!, the result reads

ẋa5k21p̄ApA8, x́a5 i z~pG ApA82p̄AṗA8!. ~4.5!

First, taking thet-derivative ofx́a, we calculate with the aid of~4.3!:

ẋ8a5 i ż~pG ApA82p̄AṗA8!1 i z~U2Ū !p̄ApA8. ~4.6!

Second, taking thet-derivative ofẋa, we obtain

ẍa52k22k̇p̄ApA81k21~pG ApA81p̄AṗA8!, ẍ2522k22. ~4.7!

One can also find that
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x́2522z2, x́ẋ8522zż, ẍẍ852k23ḱ. ~4.8!

Here we have made use of the identity (ẍ2)852ẍẍ8. In order to obtain thes derivative ofk we
can employ the compatibility conditions of Sec. III C with the necessary substitutionh̄A°
2pG A. Taking thes-derivative ofẋa and using~4.5!, we derive

ẋ8A52k22ḱp̄ApA81k21~ ṕ̄ApA81p̄AṕA8!.

Since (ẋa)8 equals to (x́a)•, we must also havepG AṗA8( x́
AA8)•5pG AṗA8( ẋ

AA8)8. This entails

2k22ḱ1k21~pG Aṕ̄A1ṗA8ṕ
A8!5 i z~U2Ū !, ~4.9!

where we used the normalization condition~4.1!. Employing the same normalization conditio
again we find

pG Aṕ̄A2p̄Aṗ̄8A50. ~4.10!

On the other hand, taking into account~4.3!, the first motion equation in~3.28! gives

p̄Aṕ̄A1pA8ṕ
A850.

Differentiating this equation with respect tot and making the use of~4.10! we obtain

2~pG Aṕ̄A1ṗA8ṕ
A8!5~p̄Aṕ̄A1pA8ṕ

A8!•50.

The substitution of this result into Eq.~4.9! finally yields

ḱ52 ik2z~U2Ū !. ~4.11!

In a generic situation of a nongeodesic case neitherk nor z are equal to zero. Let us the
multiply Eq. ~4.6! by k22z2; the results~4.5!, ~4.7!, ~4.8!, and~4.11! can be used to show that th
evolution equation has the form

ẍ2@ x́2ẋ8a2~ x́ẋ8!x́a#2 x́2~ ẍẍ8!ẋa50. ~4.12!

This equation is accompanied by the two constraints~3.21!. A straightforward but tedious calcu
lation shows that the evolution equation and the constraints are invariant under the world
reparametrizations of the form~3.29!.

The evolution equation~4.12!, satisfied by the coordinatexa(t,s) of the nongeodesic nul
string world-sheet, is a nonlinear counterpart of the free~geodesic! null string evolution equation

ẍa50.

V. WAVE-FRONT CAUSTIC

Here we present an example of a nongeodesic null two-surface and explore its conne
with the null string interpretation of such surfaces in 4D Minkowski space–time and the evol
equation derived for the nongeodesic null two-surfaces in Sec. IV. We will construct this exa
as a two-dimensional caustic of a suitable null hypersurface in 4D Minkowski space–time.
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A. Null hypersurface

Let us start with considering the hypersurface given parametrically:

xa~u,v,w!5
a

4F u
~112 sin2 v1u!cosv cosw
~112 sin2 v1u!cosv sinw

~322 sin2 v2u!sinv
G . ~5.1!

Herea is a constant with the dimension of length. Taking advantage of an axial symmetry pr
in our example, we schematically draw the hypersurface using coordinates (r5Ax21y2,z,ct) in
Fig. 1. Denotingxu

a5]xa/]u, xv
a5]xa/]v, andxw

a 5]xa/]w, we can calculate the vector field
spanning the tangent space to this hypersurface. The result reads

xu
a5

a

4
@1,cosv cosw,cosv sinw,2sinv#,

FIG. 1. The null hypersurface~5.1!. One dimension is suppressed. The dark solid and dashed lines show its
dimensional null caustic surface.
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xv
a5

a

4
~3 cos 2v2u!@0,sinv cosw,sinv sinw,cosv#, ~5.2!

xw
a 5

a

4
~u122cos 2v !cosv@0,2sinw,cosw,0#.

For the Lorentz norms of the vector fields we have

xu
250, xv

252
a2

16
~u23 cos 2v !2, xw

2 52
a2

16
cos2 v~u122cos 2v !2.

One can also check the orthogonal property of these vector fields in the Lorentz normxuxv
5xuxw5xvxw50. The above-mentioned equations show that the hypersurface~5.1! is null. We
can also write the necessarily degenerate induced metric,Gmn . Here the subscript indicesm and
n run overu, v, andw. By definition, it is given byGmn5]mxa]nxa . Writing Gmn as a three by
three matrix we obtain

Gmn52
a2

16
diag@0,~u23 cos 2v !2,cos2 v~u122cos 2v !2#.

This matrix has the rank of two everywhere with the exception of the following parameter va

u53 cos 2v, cosv50 or u5cos 2v22. ~5.3!

It is of rank one matrix there excluding two pointsxa5(23a/4,0,0,6a), where the induced
metric is of zero rank. One can show that parameter values cosv50 determine two null straigh
lines

ct5
a

4
6z, x5y50

and the parameter values given by the last equality in~5.3! correspond to the segmentuzu<a
contained by the null plain curve

ct52
1

4a
~2z21a2!.

On the contrary, the first equality in~5.3! defines a two-dimensional surface. Substitutingu
53 cos 2v into ~5.1!, we find for the space–time points belonging to it:

x̃a5a@ 3
4 cos 2v,cos3 v cosw,cos3 v sinw,sin3 v#. ~5.4!

By construction, this is a caustic two-surface for the null hypersurface~5.1! and the tangent plains
to the two-surface span the null hypersurface. Accounting to the axial symmetry of our exa
the caustic null two-surface is shown by thick solid and dashed lines in Fig. 1.

The new tangent fields at the two-surface are

x̃v
a52 3

2a sin 2v@1,cosv cosw,cosv sinw,2sinv#, x̃w
a 5a cos3 v@0,2sinw,cosw,0#.

The latter new tangent field coincides with the field obtained as a result of substitutiu
53 cos 2v in the expression forxw

a in ~5.2!, while the former one is only a multiple of the nu
vector fieldxu

a in ~5.2!. For this reason and to simplify subsequent calculations, we can equall
the null vector fieldxu

a in order to find the spinor corresponding to the null direction tangent to
two-surface. Since the first tangent vector fieldx̃v

a has a zero Lorentz norm and the second tang
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vector fieldx̃w
a is space-like at the points given by Eq.~5.4!, we infer that the two-surface is a nu

two-surface in 4D Minkowski space–time. The parametric representation~5.4! also provides a
representation for this surface as an intersection of two hypersurfaces:

x21y21z25
a2

4 F113S 4ct

3a D 2G , x21y22z25
a2

4 S 4ct

3a D F31S 4ct

3a D 2G . ~5.5!

Hereu4ct/3au<1. Eliminating 4ct/3a from the equations in~5.5!, we observe that in a particula
reference frame the projection of this null two-surface in a hyperplane of constant time
astroid of revolution with the parametera given by

@x21y21z22a2#3127a2@x21y2#z250

~see Fig. 2!.

FIG. 2. Null string interpretation of the two-dimensional caustic surface.~a! A section of the two-surface by a hyperplan
of constant time~one space dimension is not shown!. ~b! The space picture of the null strings dynamics.
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As is well known, a compact space-like two-surface in 4D Minkowski space–time ca
represented as an intersection of two null hypersurfaces. Somewhat analogous to that si
two-dimensional self-intersections~caustics! of null hypersurfaces provide examples of nonge
desic null two-surfaces in 4D Minkowski space–time.

In order to make a connection with the description of the previous sections, we nee
spin-tensor expressions of various vector field quantities. As mentioned previously, the null
field xu

a can be employed to obtain the spinor field describing the null directions tangent to th
two-surface. First, we explicitly calculate

xu
AA85xu

a~sa!AA85
a

4&
F 12sinv cosveiw

cosve2 iw 11sinvG . ~5.6!

Here (sa)AA8 are the Pauli matrices. Since the vector fieldxu
a is real-valued and null, the dete

minant of the matrix in~5.6! vanishes and we must havexu
AA8}p̄ApA8. The components of the

spinor p̄A can be taken as follows:

p̄A52 i&F cosS v
2

2
p

4 De2 iw/2

sinS v
2

2
p

4 Deiw/2
G . ~5.7!

B. Nongeodesic null string

Now we are in a position to explore connections between the example null two-surface
nongeodesic null string world-sheet in 4D Minkowski space–time.24 Changing the parameter
(v,w) to ~t, s! we can rewrite the parametric representation~5.4! for the null two-surface asxa

5a@(3/4)cos 2t, cos3 t coss, cos3 t sins, sin3 t#. The range of the parameters istP@p/2,p# and
sP@0,2p#. This corresponds to a closed null string with the parametert playing the role of a time
variable. The results~5.6! and ~5.7! allow us to write

ẋAA85
3a

2&
sin 2tp̄ApA8. ~5.8!

Here p̄A is given by formula~5.7! with the necessary change of (v,w) to ~t, s!. Next, we
introduce a second spinor fieldh̄A:

h̄A5
i

& F cosS t

2
2

p

4 Deis/2

sinS t

2
2

p

4 De2 is/2
G . ~5.9!

which, together withp̄A , constitutes a normalized Newman–Penrose dyad~spin-frame! for all
admissible values of the parameterst ands. Making use of~5.7! and ~5.9! we obtain

x́AA852 i
a

&
cos3 t ~p̄AhA82h̄ApA8!. ~5.10!

The vector fieldsẋa and x́a tangent to the null two-surface vanish at two space–time poi

ct52
3a

4
, x5y50, z56a ~5.11!
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and, in addition, the vector fieldẋa vanishes on the circle

ct5
3a

4
, x21y25a2, z50. ~5.12!

Comparing the results~5.8! and ~5.10! with the first two equations in the system~3.28!, we
can identify the functionsr andz as follows:

r 5
3a

2&
sin 2t, z52

a

&
cos3 t.

The expressions forp̄A and h̄A can be used to obtain the functions (v2 lnuzu)• andc of the Ref.
24 directly. The result reads:

~v2 lnuzu!•50, c5
a

4&
. ~5.13!

This knowledge is important for relating Rev̇ andc with the quantities which represent the fie
strength of the gauge fieldBab(x) of Ref. 24 Thus, we obtain

c52 3
4æa2 sin 2t cos3 t~rt!21f,

~5.14!
2 Rev̇52 3

2æa2 sin 2t cos3 t~rt!21 Ren1~ lnucos6 t~rt!21u!•.

Substituting the result~5.13! in these equations we have

f52rt@3&æasin 2t cos3 t#21, Ren52rt@ 3
2æa2 sin 2t cos3 t#21~ lnucos6 t~rt!21u!•.

The above-mentioned formulas show that the quantityf, which represents the only physica
degree of freedom of the field strength, diverges at the space–time points~5.11! and on the circle
~5.12!.

Therefore, in a particular reference frame, Fig. 2, one can interpret the null two-surface o
section as a pair of circular null strings which appear with zero radius att523a/4c at spatial
points (x,y,z)5(0,0,6a). They then expand until the timet53a/4c, when they disappear havin
the circumference of 2pa. The null strings are the sections of the caustic two-surface in Fig.
the hyperplanes of constant time. Projection of the world-sheets of the null strings into a par
reference frame constitutes the astroid of revolution described earlier in this section.

C. Evolution equation

It is also interesting to make connections of this example with the evolution equatio
nongeodesic null strings derived in the previous section. The parametric expressions forp̄A and
h̄A, together with the results~5.8! and ~5.10!, can be utilized to verify the equality~4.4!. Noting
that k5r 21, we find

ḱ50, ż5
3a

2&
sin 2t cost, and U2Ū50.

Then, we haveẋ8a5z21ż x́a. Next, the formulas~4.7! and ~4.8! yield

x́252a2 cos6 t, ẍẍ850,

x́ẋ85 3
2a

2 sin 2t cos4 t, ẍ252 9
4a

2 sin2 2t.
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Finally, with the aid of the above-obtained results, we observe that the evolution equation~4.12!
holds.

VI. DISCUSSION AND OUTLOOK

First, the method employed in this paper to obtain a variational principle,~2.5!, for a null
two-surface can be, in principle, used to design a twistor variational principle for time-like
surfaces~conventional strings! and space-like two-surfaces. The idea is to take a simple bive
field pab(x) and impose one of the algebraic conditionspabp

ab51 or pabp
ab521. The latter

condition would single out the string~compare with the last part of Ref. 5!, while the former
would correspond to a space-like two-surface. It is easy to see that such a procedure unique
the symmetric second rank spin-tensor fieldfAB(x) in the standard decomposition of an antisym
metric 4D Minkowski space–time tensor fieldpab(x)5fAB(x)«A8B81f̄A8B8(x)«AB . Then, the
variational principle

S5
1

2! E @fAB~x!«A8B81f̄A8B8~x!«AB#dxAA8∧dxBB8

would define a two-surface subject to the differential constraint stated in Sec. I@see Eq.~3.36!#. It
is hoped that the use of spinor decomposition forpab(x), consistent with either of the formulate
algebraic constraints, would provide equations of motion, which automatically incorporat
differential constraints formulated in Sec. I. Such an assertion is supported by the success
procedure for the null two-surfaces~null strings! presented in the current contribution. It may we
be possible to derive the analogs of the evolution equation~4.12! for generic~interacting! strings
in 4D Minkowski space–time and curved space–times of general relativity, where exist ex
spinor and twistor constructions@cf. Ref. 31—Eq.~16! and Ref. 32—Eqs.~3.6!–~3.11!#. In the
same way it should be possible to build twistor action functionals in the both cases for ge
time-like and space-like two-surfaces of 4D Minkowski space–time.

Second, if one employs Feber’s definition of a SU(2,2uN) supertwistor,33 ~s!he could con-
struct a description of null strings with spin in the physical dimensions of space-time. Its an
presumably would follow the standard pass outlined in the works of Shirafuji10 and Bengtsson
et al.34
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The peculiarity of a negative coordinate axis in dyonic
solutions of noncommutative NÄ4 super Yang–Mills
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We show that in the neighborhood of a negative coordinate axis, the U~1! sector of
the static dyonic solutions to the noncommutative U~4! N54 super Yang–Mills
~SYM! can be consistently decoupled from the SU~4! to all orders in the noncom-
mutativity parameter. We show the above decoupling in two ways. First, we show
the noncommutative dyon being the same as the commutative dyon, is a consistent
solution to noncommutative equations of motion in the abovementioned region of
noncommutative space. Second, as an example of decoupling of a non-null U~1!
sector, we also obtain a family of solutions with nontrivial U~1! components for all
components of the gauge field in the same region of noncommutative space. In both
cases, the SU~4! and U~1! components separately satisfy the equations of
motion. © 2002 American Institute of Physics.@DOI: 10.1063/1.1500773#

I. INTRODUCTION

Nonperturbative solutions in super Yang–Mills~SYM! theories have been an important ar
of work. More recently, static dyonic solutions in SU(N),N>3, 4 N54 SYM corresponding to
planar and nonplanar~respectively! string junctions have been obtained in Refs. 1 and 2~see also
references therein!. Also, solitonic solutions in noncommutative SYM have been considered
others before~see Refs. 3, 4, and references therein!. Now, the gauge group SU(N), in general is
not allowed in noncommutative gauge theories.5 @See Ref. 6 though, where the gauge paramete
noncommutative gauge tranformations is allowed to depend on the usual SU(N) gauge paramate
and gauge fields. The explicit form of the map to all orders in the noncommutativity param
~which is what we are interested in, in this paper! is quite involved and has not been worked ou#
One of the questions that we address in this work is whether it is possible to construct solut
the equations of motion of a noncommutative supersymmetric gauge theory in which on
decouple the U~1! components from the SU components of the fields at least in some region o
noncommutative space,to all orders in the noncommutativity parameter. There are the following
two additional motivations for this work. The equality of the angular momentum and~null!
quadrupole moment of the commutative and noncommutative monopoles of~S!U~2! N52 SYM
up to O(u2) was shown in Ref. 13 and in all of space. This makes it natural to pose the follo
question: Is it possible to construct solutions of a noncommutative supersymmetric gauge
that are characterized by quantities that receive no noncommutativity correctionsto all orders in
the noncommutativity parameter? Finally, it is of obvious interest to construct solutions that a
valid up to all orders in the noncommutativity paramater.

In this paper, we show that for noncommutative U~4! N54 SYM, the static dyonic solutions
in the neighborhood of a negative coordinate axis of the noncommutative space, are such t
can decouple the U~1! from the SU~4!, and construct a 6-parameter family of noncommutat
dyonic solutions@for a non-null U~1! decoupling#. Even though, the decoupling has been sho
for a very limited region of the noncommutative space, the reason the solutions are of inte
because they have the same electric and magnetic charges as and energy differing infinite
from the commutative dyonic solutions of Ref. 1,to all orders in the noncommutativity paramete.

a!Electronic mail: aalok@mri.ernet.in
47900022-2488/2002/43(10)/4790/11/$19.00 © 2002 American Institute of Physics
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This points to the peculiar nature of the negativex3 axis when constructing dyonic solutions
noncommutativeN54 SYM, which requires further investigation.

The paper is organized as follows: In Sec. II, we discuss the basics needed for getting
dyonic solutions in commutativeN54 super Yang–Mills~SYM!. In Sec. III, we discuss the
modifications in the techniques of Sec. II to get static dyonic solutions of noncommutativeN54
SYM. It has two subsections:~a short! 3.1 on decoupling of a null U~1! from the SU~4!, and 3.2
on decoupling of a non-null U~1! from the SU~4!. In Sec. IV, we give a summary of and
discussion on the results obtained in the paper, and indicate possible future directions for

II. BASICS

In this section, we give a brief review of the techniques given in Ref. 1 to obtain dy
solutions in commutative SU~4! N54 SYM.

It is advisable to write the equations of motion as if one were working in curved space–
The reason is that for solutions of the equations of motion, it is convenient to go to the s
graphic coordinate system~see Fig. 1,z5eif tanu/2! in which the metric is not constant. Th
equations of motion for commutative SU~4! N54 SYM are given by

Di~Aggii 1gj j 1Fi 1 j 1
!5 iAg(

J
@D jFJ,FJ#,

Di~Aggi j D jF
J!5Ag@F I ,@F I ,FJ##. ~1!

The component-form of the above equations is given in Ref. 1 which we will not be repe
here. Following the close parallel with Skyrme models,7 one uses the harmonic-map anzatz
solve the equations of motion; the Higgs and gauge fields are assumed to have the following

Az5Az
aTa52~11c12c22c0!~r !~]P0!P0

1~c22c1!~r !@P1 ,]P1#1~12c2~r !!@P2 ,]P2#, Ar50,

F I5F I ,aTa5~b2
I 1b0

I 1b1
I !~r !~P02 1

4 14!

1~b2
I 1b1

I !~r !~P12 1
4 14!1b2

I ~r !~P22 1
4 14!, ~2!

FIG. 1. The stereographic coordinate system.
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Ta being the generators of SU~4!, I indexing the number of scalars that are turned on, and for
paper taking values 1, 2, and 3,c0,1,2(r ) andb0,1,2

I (r ) being the ‘‘profile functions’’ of the gauge
field and Higgs, respectively, andPi the orthogonal set ofCP3 sigma model projectors defined a

P05
f f †

f †f
,

Pj5
~D j f !~D j f !†

uD j f u2
, j 51,2, ~3!

where

D f [] f 2 f
f †] f

u f u2 ,

f [~1,)z,)z2,z3! t, ~4!

andD2f 5D(D f ). They can be thought of as Hermitian maps fromS2 to CP3. The explicit forms
of the projectorsPis can be worked out using Mathematica or Maple.

The substitution of the harmonic map anzatz into the equations of motion~written in compo-
nents! either results in an equation of motion being identically satisfied, or a system of non
second-order coupled differential equations involving the Higgs and gauge field profile func
that can be solved using techniques referred to in Ref. 1. The solutions correspond
~non-!planar string networks~for nonplanar, assuming an infinitesimal nonplanarity correspond
to an infinitesimal deformation from the BPS nature of the planar solution! were then obtained in
Ref. 1.

III. NONCOMMUTATIVE DYONIC SOLUTIONS

In this section we derive a class of static noncommutative dyonic solutions assumingr –z and
r – z̄ noncommutativity only. Thus, the star product of two functionsf (r ,z,z̄) andh(r ,z,z̄) will be

f ~r ,z,z̄!* h~r ,z,z̄!

5e~ i /2![Qrz(]r
1]22]r

2]1)1Qrz̄(]r
1]̄22]r

2]̄1)] f ~r 1 ,z1 ,z̄1!h~r 2 ,z2 ,z̄2!u152 . ~5!

We show that using stereogrpahic coordinates, in the neighborhood of the South Pole, or e
lently the neighborhood of the negativex3 axis, one can consistently decouple in the equation
motion, the U~1! from the SU~4! components of the Higgs and the gauge fields.

The noncommutative equations of motion are given by

D̂ i* ~Ag* gii 1* gj j 1* F̂ i 1 j 1
!5 iAg* (

J
@D̂ j* F̂J,F̂J#* ,

D̂ i* ~Ag* gi j * D̂ j* F̂J!5Ag* @F̂ I ,@F̂ I ,F̂J#* #* . ~6!

As we are considering onlyr –z,r – z̄-noncommutativity, the projectors of Ref. 1 are still val
here. We assume the following anzatz for the gauge fieldÂz , Âr , and the Higgs fieldF̂ I ,

Âz5Âz
aTa1 i eFz~Q!gz~r !Â z

014 ,

Âr5 i eFr~Q!gr~r !Â r
014 ,

F̂ I5F̂ I ,aTa1 i eFF~Q!gF
I ~r !f̂014 , ~7!
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whereFz,r ,F(Q) are functions of the noncommutativity parameterQ which vanish asQ is set to
zero and are bounded asQ→`, and

Âz
aTa52~11c12c22c0!~r !* ~]P0!P0

1~c22c1!~r !* @P1 ,]P1#1~12c2~r !!* @P2 ,]P2#,

F̂ I ,aTa5~b2
I 1b0

I 1b1
I !~r !* ~P02 1

4 14!1~b2
I 1b1

I !~r !* ~P12 1
4 14!1b2

I ~r !* ~P22 1
4 14!, ~8!

c0,1,2(r ) andb0,1,2
I (r ) being the ‘‘profile functions’’ of the gauge field and Higgs, respectively,

in ~2!. We have thus taken an anzatz in which the U~4! fields have infinitesimal U~1! components.
We will work up to O(e). Hence, the noncommutative U~1! field strengths are the same as t
commutative U~1! field strengths. There is no star product in the anzatz~7! in the U~1! compo-
nents of the fields because as argued below, the star products can be dropped in the neigh
of the South Pole in the SU~4!-components of the fields, and we assume similar behavior for
U~1! and SU~4! components. The anzatz for the U~1! components that we choose in~10! below, is
such that if one were to put in a star product between the radial and angular functions, then~the
star product! cannot be dropped in the neighborhood of the South Pole.

As expanding the star product in (8) will involve taking derivatives of(])Pi , using the
explicit forms of the projectors that can be worked out using Mathematica or Maple, one see
one can drop(])]Pi relative to(])Pi as one approaches the neighborhood of the South Pole, as
the former is suppressed relative to the latter by terms of O(1/uzum),m.0 that vanish asuzu→`

~i.e., in the neighborhood of the South Pole!. One thus has for the SU part of Aˆ
z ,F̂ the same

expression as in Ref. 1. One can argue similarly that the* products in~6! can also be dropped~in
the neighborhood of the South Pole!. We now discuss the decoupling from SU~4!, of a null U~1!
in Sec. III A and non-null U~1! in Sec. III B.

A. Decoupling of null U „1…

Using ~7!, for null U~1! components, one can require consistently that the SU~4! and U~1!
components, separately, satisfy the equations of motion, and one can show there is no
between the SU~4! and U~1! sectors. Hence, one can consistently set the U~1! components to zero
The entire analysis of Ref. 1 to show the connection between~non-!planar stable~non-!BPS string
junctions and dyon solutions, then goes through even in the neighborhood of the South Pole
abovementioned noncommutative space if one notices and uses the following transformati
takes one from the North Pole to the South Pole@and is also a symmetry of the equations
motion of the SU~4! part of the solutions, as given in Ref. 2 of Ref. 1#,

c0↔c2 ; b0
I ↔b2

I . ~9!

One also uses the fact that ifF̂ is a solution then2F̂ is also a solution to the equations of motio

B. Decoupling of non-null U „1…

Here we discuss in detail, the decoupling of non-null U~1! components of the Higgs and th
gauge fields from their SU~4! components in the neighborhood of the South Pole of the nonc
mutative space. To show the decoupling of a non-null U~1! from SU~4!, we choose the following
anzatz for the U~1! components~of the Higgs and gauge fields!:

f̂0,Â z
05det@~P02aF,z14!~P12MF,z!~P22MF,z!#1c.c.,

Âr
05z det@~P02ar14!~P12Mr !~P22Mr !#1c.c., ~10!

where
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Mi5S 0 bi 0 0

ci 0 0 0

0 0 0 ei

0 0 f i 0

D , ~11!

where i[r ,z,F, and the parametersai ,bi ,ci ,ei , and f i have been introduced to get nonze
determinants using the projectors and some constant matrices; the parameters get constrain
We now assume that one approaches the South Pole along any path very closef
([azimuthal angle)5p/2. This implies that Rez is finite, but Imz approaches infinity. Hence, on
sees that]]̄Â r

0 @as shown in~A5!# and (]2 ]̄)(f̂0,Â z
0) @as shown in~A8!# are real. If

bi5 f i , ci5ei , ~12!

then ]((11uzu2)2(]1 ]̄)(f̂0,Â z
0)) @as shown in~A9!# will be finite and real as Imz→`. These

considerations become useful when one solves the equations of motion for the U~1! components as
done in~19! and ~20! in the neighborhood of the South Pole.

From power~of uzu or Imz! counting arguments using expressions given in the Appendix,
can require consistently that the SU~4! and U~1! components, separately, satisfy the equations
motion, and one can show there is no mixing between the SU~4! and U~1! sectors. As the decou
pling for non-null U~1! is nontrivial, to illustrate the point, we consider the example ofF̂rz . We
see that up to O(e),

F̂rz
U(4)5F̂rz

SU(4)1F̂rz
U(1)2 i @Âr

U(1) ,Âz
SU(4)#* . ~13!

Now,

@Âr
U(1) ,Âz

SU(4)#* 5 iQ rz~] r Âr
U(1)]Âz

SU(4)2]Âr
U(1)] r Âz

SU(4)!1 iQ rz̄~] r Âr
U(1)]̄Âz

SU(4)

2 ]̄Âr
U(1)] r Âz

SU(4)!1O~Q2!. ~14!

Using expressions in the Appendix, one sees that

] r Âr
U(1)[O~1!, ]Âr

U(1) ,]̄Âr
U(1)[O~1!,

]Âz
SU(4)[OS 1

uzu3D3M , ]̄Âz
SU(4)[OS 1

uzu4D314 ,

] r Âz
SU(4)[OS 1

uzu2D3M ,

] r Âz
U(1)[O~1!, ]Âz

U(1) ,

]̄Âz
U(1)[OS 1

uzu2D $relevant for @Âr
U(1) ,Âz

U(1)#* %, ~15!

where

M[S 0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

D . ~16!
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Thus

F̂rz
U(1)[O~1!; F̂rz

SU(4)[OS 1

uzu2D3M , ~17!

and in Table I, we show which terms can be dropped relative to which terms as Imz→`. Similar
reasoning can be used to argue that terms of higher order inQ, can also be dropped relative to th
commutative counterparts. Hence, as Imz→`,

F̂rz
U(4);F̂rz

SU(4)1F̂rz
U(1) , ~18!

showing the stated decoupling.
By requiring that the SU components of the Higgs and gauge fields still satisfy the com

tative equations of motion~having dropped the star product at the South pole!, the U~1! compo-
nents should satisfy these equations,

dgz

dr
~]2 ]̄ !Â z

022gr]]̄Â r
050,

d2gz

dr2 Â z
02gr]Â r

01
gz

2r 2 ]~~11uzu2!2~]1 ]̄ !Âz!50,

1

r 2

d

dr S r 2
dgF

I

dr D f̂01
~11uzu2!2

r 2 gF
I ]]̄f̂050. ~19!

The* product has been dropped as it will generate O(1/uzum)-corrections@relative to O~1!#, which
can be dropped in the neighborhood of the South Pole. We now discuss a family of d
solutions to~19!.

One gets~settingcr5er andbr5 f r for convenience!,

dgz

dr
12gr

@~brcr !
3~2cr2br !#

~bzcz!
3~cz2bz!

50,

2
d2gz

dr2 ~211az!az
3~bzcz!

42gr~211ar !ar
3~brcr !

4

1
gz

r 2 ~3~211az!az
3bz

2cz
2~bz2cz!

2!50,

2
1

r 2

d

dr S r 2
dgF

I

dr D ~211aF!aF
3 ~bFcF!4,

2
6

r 2 uzu2gF
I ~211aF,z!aF

3 ~cF
4 bF

2 1bF
4 cF

2 !50. ~20!

TABLE I. Consequences of power counting done in~15!.

Term that can be dropped Relative to

] r Âr
U(1)]Âz

SU(4) F̂ rz
SU(4)

]Âr
U(1)] r Âz

SU(4) F̂ rz
SU(4)

] r Âr
U(1)]̄Âz

SU(4) F̂ rz
U(1)

]̄Âr
U(1)] r Âz

SU(4) F̂ rz
SU(4)
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By eliminating Â r
0 from the first two equations, one gets the following differential equation

gz :

d2gz

dr2 1
dgr

dr

~211ar !ar
3~brcr !

4)~211az!az
3@~bzcz!

3~cz2bz!#

4~211az!
2az

6~bzcz!
4@br

3cr
3)~2cr2br !#

1
gz

r 2 S 3~211az!az
3 ~bz2cz!

2

2bz
2cz

2 D 50. ~21!

Equation~21! is of the form,

r 2y9~r !1ar 2y8~r !1by~r !50, ~22!

the solution to which~using maple! is given by

y~r !5C1ArI 1/2A124b~ 1
2 ar !e2 ~1/2!ar1C2ArI 2 1/2A124b~ 1

2 ar !e2 ~1/2!ar , ~23!

for 1
2A124b¹Z and

y~r !5C18ArI 1/2A124b~ 1
2 ar !e2 ~1/2!ar1C28ArK 1/2A124b~ 1

2 ar !e2 ~1/2!ar , ~24!

for 1
2A124bPZ. Let us consider the two cases separately.
For the former, to make sure that the solution goes to zero asr→`, one sets

C152C2 . ~25!

Even though this is a singular solution~at r 50!, as we shall see, it is a finite energy solution.
The derivative of the solution involvingI 6n(ar ) is given by

d

dr S e2 ar /2Ar S I 1/2A124bS ar

2 D2I 2 1/2A124bS ar

2 D D D
5

e~2ar /2!

4Ar
S arI 211 1/2A124bS ar

2 D1arI 11 1/2A124bS ar

2 D
12~211ar !I 2 1/2A124b S ar

2 D
2arI 212 1/2A124bS ar

2 D2arI 12 1/2A124bS ar

2 D22~211ar !I 1/2A124bS ar

2 D D .

~26!

For the purpose of getting finite energy, as we will very shortly see, one is required to impos
r 2(dy(r )/dr)2→0 as r→`, and that it is finite atr 50. Using the series expansions aroundr
50 and the asymptotic expansions forI n(r ), the former is satisfied identically, and the latter
satisfied if one imposes

A124b,1⇔0,b, 1
4 . ~27!

The solution forgF
I (r ) that one gets is

gF
I ~r !50. ~28!

Hence, the final result for the U~1! components of the Higgs and gauge fields, in the neighborh
of the South Pole~approaching it alongf close top/2! are
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Âz
0~r ,z!5 i e f z~Q!Are2 ~1/2! ar~ I 1/2A124b~ 1

2 ar !2I 2 1/2A124b~ 1
2 ar !!

3det@~P02az14!~P12Mr !~P22Mr !#1c.c.);

Âr
05 i e f r~Q!

e~2ar /2!

4Ar
S arI 211 1/2A124bS ar

2 D1arI 11 1/2A124bS ar

2 D
12~211ar !I 2 1/2A124bS ar

2 D2arI 212 1/2A124bS ar

2 D2arI 12 1/2A124bS ar

2 D
22~211ar !I 1/2A124bS ar

2 D D ~z det@~P02az14!~P12Mr !~P22Mr !#1c.c.!;

F̂050, ~29!

where

b[S 3~211az!az
3 ~bz2cz!

2

2bz
2cz

2 D ,0;

a[
~211ar !ar

3~brcr !
4)~211az!az

3@~bzez!
3~cz2bz!#

4~211az!
2az

6~bzcz!
4@br

3cr
3)~2cr2br !#

;

0,az,1; cz,r5ez,r ; bz,r5 f z,r . ~30!

Let us consider the energy of the above solution. It is given by~we follow the conventions of
Ref. 1!,

E52
1

4p E r 2dr
dzdz̄

~11uzu2!2 TrF ~D̂ i* F̂!21
1

2
~ F̂ i j !

2
* G5ESU(4)1EU(1) . ~31!

But, in the neighborhood of the South Pole, where one can drop the* product,

EU(1)52E r 2dr
dzdz̄

~11uzu2!2 @~] rÂ z
02]Â r

0!21~] rÂ z
01 ]̄Â r

0!21~~]1 ]̄ !Â z
0!2#>0. ~32!

Hence, in the neighborhood of the South Pole, even though one is dealing with non-BPS sol
one gets the following inequality:

EU(4)>ESU(4) , ~33!

with saturation of the inequality occuring for the null U~1! component. Substituting~29! in the
Im z→` limit into ~32!, and integrating in the neighborhood of the South Pole as described ea
i.e., aroundf5 p/2 anduP@p2e,p#, lime→0 , one gets an infinitesimal result, provided one g
a finite result from ther integration. Ther -integral should converge to get a finite-energy soluti
One sees that one has to evaluate
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EU(1);E
0

`

drr 2
e2ar

16r S arI 211 1/2A124bS ar

2 D1arI 11 1/2A124bS ar

2 D
12~211ar !I 2 1/2A124bS ar

2 D2arI 212 1/2A124bS ar

2 D2arI 12 1/2A124bS ar

2 D
22~211ar !I 1/2A124bS ar

2 D D 2

. ~34!

We have not been able to evaluate the above integral. But the integrand for 0,b, 1
4 is analytic for

all values ofr P@0,̀ ), and it vanishes atr 50 andr→`. We hence assume that it is converge
corresponding to a finite energy solution. We have verified the same numerically using
ematica for several values ofb, 1

4.
Let us now consider the case1

2A124bPZ. In that case in order to get a solution that vanish
as r→`, one setsC1850 in ~24!.

One then requires

EU(1);E
0

`

drr 2
e2ar

16r S 2arK 211 1/2A124bS ar

2 D
22~211ar !K1/2A124bS ar

2 D2arK 11 1/2A124bS ar

2 D D 2

,`. ~35!

By using the series expansion ofKn(x) aboutx50 ~see Ref. 8!, one sees that one cannot find

b: 1
2A124bPZ that will satisfy ~35! because of the singular nature of the integrand atr 50.
Now, let us turn to calculating the commutative Higgs and gauge field:F I ,Ar ,z,z̄ . As we have

thus far continued working to all orders in the noncommutativity parameterQ, one hence requires
an all-order~in Q! Seiberg–Witten map.9–11There is a conjecture for that as given in Ref. 10. W
will not explicitly construct the SW map, but conjecture that in the neighborhood of the neg
x3 axis ~or the neighborhood of the South Pole of the Riemann Sphere, approaching it th
described in the paper!, the noncommutative hatted fields are the same as the commutative u
ted fields. Noting that as Imz→`, Âz,z̄

SU(4) ,],]̄F̂SU(4),]Âz
U(1) , ]2Âr

U(1)→0, and dropping terms o

O(e2) in Âr ,z
U(1) in Eqs.~3.3!, ~3.4!, and~3.7! for the Higgs and Eqs.~A3!, ~A6!, and~A8! for the

gauge field of Ref. 12, the conjecture can be explicitly verified to O(Q2). Hence, in the neigh-
borhood of the South Pole, approaching it along an azimuthal angle close top/2,

F̂5F̂aTa5FaTa;

Âi5Âi
aTa1Âi

0145Ai
aTa1Ai

014 . ~36!

The electric charge is then the same as that given in Ref. 1. The magnetic charge will rec
U~1! contribution proportional to (]1 ]̄)Az(z,z̄,r→`), which using~29!, vanishes. Hence, the
noncommutative dyon in the neighborhood of the South Pole, carries the same electric an
netic charges as the commutative dyon of Ref. 1. Their energy will be more than that o
commutative dyons in the neighborhood of the South Pole, though by an infinitesimal amou
the equality of the commutative and noncommutative electric and magnetic charges is vali
in the neighborhood of the South Pole, these noncommutative dyonic solutions are likely
stable.
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IV. SUMMARY AND DISCUSSION

To summarize, we have shown that noncommutative~with r 2z andr 2 z̄ noncommutativity!
U~4! SYM possesses static dyonic solutions in the neighborhood of the South Pole of the Rie
sphere or equivalently the negativex3 axis, that either are the same as the static commuta
SU~4! dyonic solutions of Ref. 1@corresponding todecoupling of a null U(1) from the SU(4)# or,
have the same electric and magnetic charges as the commutative dyons and differ infinite
in their energy@corresponding todecoupling of a non-null U(1) from the SU(4)#, to all orders in
the noncommutativity parameter. We have thus shown the decoupling of the U~1! sector, both for
null and infinitesimal U~1! components in the neighborhood of the negativex3 axis. This decou-
pling to O(Q) for the whole of space, was also seen in the context of noncommutative mon
solutions in SYM in Ref. 3. The noncommutative hatted fields are the same as the commu
unhatted fields@we conjecture to all orders in the noncommutativity parameter and show expl
up to O(Q2)#. Thus, we see that the neighborhood of the negativex3 axis, acts as ‘‘denoncom
mutatifier.’’ It will be interesting to study the same problem using noncommutative ADH
construction~see Ref. 14 and references therein!, and to be able to establish the existence of su
solutions using techniques of Ref. 15 using Morse theory. Also, finding similar solutions withz– z̄
noncommutativity will be nice.
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APPENDIX

In this Appendix, we summarize the asymptotic~w.r.t. to z! expressions forAr ,z
U(1) and some

expressions involving them necessary to obtain the U~1! components of the gauge field and Higg
We have used mathematica for arriving at the expressions given in this Appendix.

Using ~10!, one can explicity write out the expressions forf 0̂, Az
0̂5det@(P02aF,z14)(P1

2MF,z)•(P22MF,z)#1c.c. andAr
0̂5z det@(P02ar14)(P12Mr)•(P22Mr)#1c.c., using Math-

ematica, but because of the length of the expressions, we will give only their asymptotic fo
One gets as Imz→`,

f̂0,Âz
0;2~211aF,z!aF,z

3 ~bF,zcF,zeF,zf F,z!
2. ~A1!

Simlarly, asz→`, one gets

Âr
0;2~211ar !ar

3~brcrer f r !
2 Rez. ~A2!

Hence, we see that ifz→` asz5(Rez)01i`, where (Rez)0 is finite, thenÂr is nonsingular, else
it is singular.

One sees that asz→`,

]Â r
0;~211ar !ar

3~brercr f r !
2. ~A3!

For the purpose of calculation of energy and imposing it to be finite, one requires to cal
]̄Âr

0 , and its asymptotic expression is given by

]̄Âr
0;~211ar !ar

3br
2cr

2er
2f r

2. ~A4!

One also needs to evaluate]]̄Â r
0 asz→`, and is given by

]]̄Â r
0;~211ar !ar

3
br

2crer
2f r~)cr2) f r !z̄

21)~brercr !
2f rz

2

uzu4 . ~A5!
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Also, one one sees that

]]̄~f̂0,Az
0̂!;26~211aF,z!aF,z

3

3
„~cF,zeF,z!

2bF,zf F,z1~bF,zf F,z!
2cF,zeF,z…

uzu2 . ~A6!

For the purpose of solving for the U~1! components of the gauge field, and for getting t
magnetic charge of the dyon, one needs to evaluate (]1 ]̄)A z

0 , and asz→`, one gets

~]1]̄!Â z
0;

bzcz
2ezf z

2~)bz2)ez!z̄
21„czf zbz

2~2ezf z)ez1czez)ez!23czf zbzezczez…z
2

uzu4
.

~A7!

Two other quantities that one needs to calculate are (]2 ]̄)(F̂,Âz) and ]((11uzu2)2(]1 ]̄)
3(F̂,Âz)). The former asz→`, is given by

~]2]̄!~f̂0,Â z
0!

;
)~211ai !ai

3@~biei !
2ci f i~ci2 f i !z̄1„2bici

2ei
2f i~ f i2bi !1eibi

2ci f i
2~ci2ei !…z#~z2 z̄!

uzu4
,

~A8!

The latter asz→` is given by

]~~11uzu2!2~]1 ]̄ !~ f̂0,Â z
0!!

;22~211ai !ai
3S)@ci

2ei
2bi f i~2 f i1bi !1bi

2f i
2ciei~ci2ei !#z

2~3bi f i~ciei !
213ciei~bi f i !

2!1
3biciei f i~biei1ci f i !z̄

4

uzu4 D . ~A9!
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Becchi–Rouet–Stora–Tyutin quantization of histories
electrodynamics

Duncan Noltingka)

Blackett Laboratory, Imperial College,
Prince Consort Road, London SW7 2BZ, United Kingdom

~Received 3 January 2002; accepted for publication 5 April 2002!

This article is a continuation of earlier work where a classical history theory of pure
electrodynamics was developed in which the history fields havefive components.
The extra component is associated with an extra constraint, thus enlarging the
gauge group of histories electrodynamics. In this article we quantize the classical
theory developed previously by two methods. First we quantize the reduced clas-
sical history space to obtain a reduced quantum history theory. Second we quantize
the classical BRST-extended history space, and use the Becchi–Rouet–Stora–
Tyutin charge to define a ‘‘cohomological’’ quantum history theory. Finally, we
show that the reduced history theory is isomorphic~as a history theory! to the
cohomological history theory. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1503867#

I. INTRODUCTION

The history projection operator~HPO! approach to consistent histories was inspired
Isham,1 and developed by Isham and collaborators.2,3An HPO theory is concerned with projectio
operators on the quantum history Hilbert spaceE which represent propositions about the ent
historyof the system under consideration. This should be contrasted with standard quantum
which is concerned with propositions about the system at a particular instant of time. The qu
history theories with which this article will be concerned are described by a pair (P(E),D) where
P(E) is the lattice of projection operators on the Hilbert spaceE, andD is the space of decoher
ence functionals. A decoherence functional is a mapd:P(E)3P(E)→C that satisfies the following
conditions:

~1! Hermiticity: d(a,b)5d(b,a)* for all a,bPP(E).
~2! Positivity: d(a,a)>0 for all aPP(E).
~3! Null triviality: d (0,a)50 for all aPP(E).
~4! Additivity: if a'b, thend(a % b,g)5d(a,g)1d(b,g), for all gPP(E).
~5! Normalization: d(1,1)51.

The off-diagonal components of the decoherence functional represent the ‘‘quantum in
ence’’ between histories, while the diagonal components are interpreted as the probability
particular history ‘‘occurs.’’

In this article we construct a quantum history theory of pure electrodynamics by two met
In Sec. II we quantize the reduced classical history space to obtain a reduced history
(P(E red),dred). In Sec. III we augment the history fields with ghost fields and quantize
extended theory to obtain a representation of the extended algebra on the Becchi–Rouet–
Tyutin- ~BRST! extended history spaceE. We then defineH* (V), the projection operator coho
mology, and show that it has a natural lattice structure. In Sec. IV we defineDg f , the space of
gauge-fixed decoherence functionals, and show that each gauge-fixed decoherence funct

a!Electronic mail: d.noltingk@ic.ac.uk
48010022-2488/2002/43(10)/4801/18/$19.00 © 2002 American Institute of Physics
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duces a functionald̃ on H* (V). Our main result is to show that the cohomological history the
(H* (V),d̃) is isomorphic~as a history theory! to the reduced history theory (P(E red),dred).

II. RADIATION GAUGE QUANTIZATION
A. Preliminaries

The quantum history space arises as the representation space of a certain Lie gro
history group, and the associated Lie algebra is the histories analog of the canonical commu
relations. In the histories approach to scalar field theory proposed by Savvidou,4 there is an
inequivalent representation of the history group for each Lorentzian foliation of space–time
Lorentzian foliation of space–time we mean a foliation in which each leaf is a spacelike h
plane. TheSchrödinger picture fields satisfy thecovarianthistory algebra

@f̂n~X!,f̂n~X8!#50, ~1!

@p̂n~X!,p̂n~X8!#50, ~2!

@f̂n~X!,p̂n~X8!#5 i\d (4)~X2X8!, ~3!

wheren is a future pointing timelike unit vector labeling a particular Lorentzian foliation. T
fields are genuine space–time fields under the action of a representation of the Poincare4

This Poincare group acts as

f̂n~X!°f̂Ln~LX! ~4!

and generates changes in the space–time foliation. Heisenberg picture fields can be define
the time-averaged Hamiltonian which is also foliation dependent. These Heisenberg picture
are of the formf̂n(X,s), and there is a second representation of the Poincare group in whic
boosts act in the ‘‘internal’’ time directions, and leave the foliation fixed.

In a previous paper5 we considered the extension of the classical analog of the above th
to the case of electrodynamics. It was argued that in order to preserve the two representa
the Poincare group, the history fields should havefive components as opposed to the usual fo
The extra component is associated with the internal time direction. It is important to note th
theory is not covariant under the action of the SO(3,2) isometry group of the space–time ma
M3R, but only under the internal and external SO(3,1) subgroups. It was also shown in R
how the extra component leads to an extra constraint, and thus to an enlarged gauge gro

The theory in Ref. 5 is concerned with history configuration fieldsAM
n (X), and their canonical

momentaEn
M(X). The indexM runs from 0 to 4,X is a four-vector andn is a future-pointing

timelike unit vector which labels a particular foliation of space–time. These fields can be co
ered as vectors tangent to the space of embeddings ofM into N.M3R. The history fields
satisfy the Poisson algebra

$AM
n ~X!,AN

n ~Y!%50, ~5!

$En
M~X!,En

N~Y!%50, ~6!

$AM
n ~X!,En

N~Y!%5dM
N d (4)~X2Y!. ~7!

The four-vectorn can be embedded inN, resulting in a five-vectorñM given in coordinates by
(n,0). We also have the five-vectorẽM given by~0,1!, and we use these vectors to decompose
fields into their temporal components

At
n~X!ªñMAM

n ~X!, As
n~X!ªẽMAM

n ~X!, ~8!

and similarly for the momentum field. Then-spatial projection tensor is defined as
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nPN
M5dN

M2ẽMẽN2ñMñN , ~9!

and can be used to decompose fields on the five-dimensional space-time into their ‘‘n-spatial’’
components

nAM~X!ªnPM
N AN

n ~X!. ~10!

We define ‘‘n-spatial tensors’’ in a similar way, e.g.,

nFMN~X!ªnPM
R nPN

SFRS
n ~X!. ~11!

The first-class constraints can now be written as

En
s~X!'0, ~12!

En
t ~X!'0, ~13!

nEi
M~X!'0, ~14!

where the longitudinal component of the electric field is defined by

nEi~X!ªn]M
nEM~X!. ~15!

B. Reduced state space

We now augment the constraints with the histories radiation gauge conditions:

As
n~X!50, ~16!

At
n~X!50, ~17!

nAi~X!50, ~18!

where

nAi~X!ª
n]M nAM~X!

Dn
~19!

and Dn5n]M
n]M. The six equations~12!–~14! and ~16!–~18! form a second class set of con

straints and we can follow the usual procedure to find the Dirac brackets of the reduced h
spaceCn . In terms of the transverse fields

nAM
' ~X!ªnAM~X!2n]M

nAi~X!, ~20!

nE'
M~X!ªnEM~X!2n]M

nEi~X!

Dn
, ~21!

they turn out to be

$nAM
' ~X!, nAN

'~Y!%D50, ~22!

$nE'
M~X!, nE'

N~Y!%D50, ~23!

$nAM
' ~X!, nE'

N~Y!%D5~nPM
N 2Dn

21 n]M
n]N!d (4)~X2Y!. ~24!
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The right hand side of this algebra has become explicitly foliation dependent with the
covariant gauge choice. In the radiation gauge the time-averaged Hamiltonian is

Hn
05E d4XS 1

2
nEM

' nE'
M1

1

4
nFMN

nFMND , ~25!

whereFMN
n 52] [ MAN]

n andnFMN is the correspondingn-spatial tensor@cf. Eq. ~11!#.

C. Quantization

We wish to find an irreducible representation of the commutator algebra

@nÂM
' ~X!, nÂN

'~Y!#50, ~26!

@nÊ'
M~X!, nÊ'

N~Y!#50, ~27!

@nÂM
' ~X!, nÊ'

N~Y!#5 i\~nPM
N 2Dn

21 n]M
n]N!d (4)~X2Y! ~28!

on a Hilbert space such that the radiation gauge quantum Hamiltonian is represented byself-
adjoint operator. The self-adjointness condition is required to select one of the infinitely m
unitarily inequivalent representations of the infinite dimensional algebra~26!–~28!. Such a repre-
sentation exists on the bosonic Fock spaceE red

ªFB@L2(R4)# ^ FB@L2(R4)#. This space is asso
ciated with annihilation and creation operators which obey the following algebra

@ âa~X!,âb~X8!#50, ~29!

@ âa~X!,âb
†~X8!#5\dabd

(4)~X2X8!, ~30!

for a51,2. Using the Fourier transformed operators

âa
†~K !5

1

~2p!2 E d4Xâa
†~X!eiK •X, ~31!

âa~K !5
1

~2p!2 E d4Xâa~X!e2 iK •X, ~32!

we define field operators satisfying the algebra~26!–~28! in the following way:

nÂM
' ~X!5

1

~2p!2 (
a51

2 E d4K

A2vn~K !
neM

a ~K !@ âa~K !e2 iK •X1âa
†~K !eiK •X#, ~33!

nÊ'
M~X!5

1

i ~2p!2 (
a51

2 E d4KAvn~K !

2
nea

M~K !@ âa~K !e2 iK •X2âa
†~K !eiK •X#. ~34!

In the above expressions,K is a four-vector representing the four-momentum of a photon
vn(K) is the modulus of then-spatial four vector (dn

m2nmnn)Kn with respect to the Minkowski
metric. For eachK, we define the five-vectorK̃ to be the embedding ofK into the five-
dimensional space–timeN. In coordinates (X,s) the vectorK̃ can be written as (K,0). The
five-vectorsnea

M(K) are a pair of mutually orthogonal,n-spatial unit vectors which are in additio
orthogonal to the vectornK̃M5nPN

MK̃N. These vectors satisfy the following completeness relat

(
a51

2

neM
a ~K !nea

N~K !5nPM
N 2

nK̃M
nK̃N

vn~K !2 . ~35!
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This property ensures that the algebra defined by Eqs.~26!–~28! is satisfied. Using the fact that th
polarization vectors are orthonormal,

nea
M~K !neM

b ~K !5da
b , ~36!

the normal-ordered time-averaged Hamiltonian can be written

Ĥn
05 (

a51

2 E d4Kvn~K !âa
†~K !âa~K !. ~37!

This Hamiltonian generates translations in internal time, and it is easy to see that

e2 isĤn
0/\âa~K !eisĤn

0/\5eisvn(K)âa~K !. ~38!

Following the argument in Ref. 3, these transformations are unitarily implementable an
conclude thatĤn

R exists as a self-adjoint operator in this representation. Therefore, for ean,
there exists a unitarily inequivalent representation of the radiation gauge history algebra
Fock spaceE red.

D. The decoherence functional

In the case when history propositions are realized as the lattice of projection operator
Hilbert spaceV, every decoherence functionald can be written in the form6

d~a,b!5TrV^ V~a ^ bQd!, ~39!

where Qd is an operator onV^ V. In fact Qd must satisfy certain conditions ford to be a
decoherence functional.6 In the case of the scalar field, the operatorQ is dependent on the
foliation, and can be written4,12

Qn5^0ur2`u0&~SU!n
†

^ ~SU!n . ~40!

The quantum history space for the scalar field is the bosonic Fock spaceFB@L2(R4)#. To each
operatorO, on the base spaceL2(R4), there is an associated operator onFB@L2(R4)# defined by

G~O!5O% ~O^ O! %¯ . ~41!

Using this construction, the operator (SU)n can be written

~SU!n5G~11 isn!, ~42!

wheresn5nm]m1(2Dn1m2)1/2 is an operator on the base Hilbert spaceL2(R4). The operator
sn is related to the canonical history actionSn in the following simple way:4

eisSn5G~eissn!. ~43!

Equation~43! can be used todefinethe decoherence functional corresponding to a given ac
operatorS on a Fock spaceF5FB@H#. First S definess, the ‘‘generator’’ of the decoherenc
functional, which is the operator onH given by

eisS5G~eiss!. ~44!

Now the decoherence functional is defined by the operator onF^ F given by

QS5^0ur2`u0&G~11 is!†
^ G~11 is!. ~45!

The reduced canonical history action of electrodynamics in the radiation gauge is
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Sn
red5E d4X~nÊ'

M]n
t nÂM

' 2Ĥn
0!, ~46!

where ]n
t
ªñM]M . The corresponding generator of the decoherence functional is the ope

sn
red , defined on vectors of the formf ^ g in the base Hilbert spaceH red5L2(R4) ^ L2(R4) by

sn
red~ f ^ g!5~nm]m2Dn

1/2! f ^ ~nm]m2Dn
1/2!g, ~47!

and extended to an operator onH red by linearity. The associated decoherence functional is
noteddn

red . The pair (P(E red),dn
red) is the reduced history theory of pure quantum electrodyna

ics with respect to the foliationn.

III. BRST COHOMOLOGY

As shown in the previous section, electrodynamics can be quantized starting from the re
state space. This is because the reduced state space has a simple structure, in particular it i
space. This is not the case for other constrained field theories such as Yang–Mills theo
gravity. For such theories another, more general, approach is needed. The BRST formal7 is
a powerful approach to the quantization of constrained systems, and can be formulated
rigorous operator methods. Motivated by these considerations we develop the BRST appro
the quantum theory of histories electrodynamics. In this section we follow closely the notati
Ref. 7.

A. Classical BRST cohomology

The central idea in the BRST formalism is to extend the state space by including ferm
‘‘ghost’’ fields. The extended state space maintains manifest covariance and locality, unlik
reduced state space approach. The BRST charge is constructed from the ghost fields
constraints and, in the classical case, is a functional on the extended state space. The BRS
generatesnilpotentcanonical transformations on the extended state space. The physical deg
freedom are identified with the corresponding set of cohomology classes. The idea is that th
fields cancel out the gauge fields in the cohomology.

We begin by briefly recalling the BRST approach to the standard classical theory of el
dynamics as given in Chap. 19 of Ref. 7. We have fieldsEm(xI ) andAm(xI ) satisfying the algebra

$Am~xI !,En~xI 8!%5dm
n d (3)~xI 2xI 8!, ~48!

and a pair of constraintsE0(xI )'0 and] iE
i(xI )'0. Corresponding to the first constraint we add

ghost pairh(xI ),P(xI ) with

$P~xI !,h~xI 8!%52d (3)~xI 2xI 8!, ~49!

where the bracket issymmetricrepresenting the fact that the ghost fields are fermionic.
Lagrange multiplier fieldA0(xI ) and its conjugate momentum are associated with an antighost
C̄(xI ) and conjugate momentumr(xI ) satisfying

$r~xI !,C̄~xI 8!%52d (3)~xI 2xI 8!. ~50!

The BRST charge is

V5E d3xI @2 irE01h] iE
i #, ~51!

andV generatesnilpotentcanonical transformations which are explicitly given in Ref. 7, and
denote byt, that ist(F)ª$V,F%. A functionalF is said to be BRST-closed if and only if
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t~F !50, ~52!

and a functionalG is said to be BRST-exact if and only if

G5t~G8!, ~53!

for some functionalG8. By the nilpotency oft closed functionals are exact, but the converse is
necessarily true, and the set of functionals which are closed but not exact is isomorphic to
of functionals on the reduced state space. In addition,7 there is a natural Poisson algebra defined
the set of cohomology classes which is a Poisson subalgebra of the extended Poisson alge
is isomorphic to the Poisson algebra of the reduced classical history space.

This analysis is easy to extend to the classical history theory of electrodynamics. Corres
ing to the constraintnEi(X)'0 we introduce a pair of fermionic, scalar ghost history fieldshn

1(X)
andP n

1(X) which satisfy the algebra

$P n
1~X!,hn

1~X8!%52d (4)~X2X8!. ~54!

In addition we have two Lagrange multipliers in the history theory so we add two antighost
Ca

n(X) (aP$1,2%), along with their conjugate momentarn
a(X). These fields satisfy

$rn
a~X!,Cb

n~X8!%52db
ad (4)~X2X8!. ~55!

In this way the ring of functions on the extended classical history space is given the struct
a graded Lie algebra. The history BRST chargeVn8 is defined as

Vn85E d4X@2 irn
1En

t 2 irn
2En

s1hn
1 nEi#, ~56!

and generates canonical transformations denoted bytn. The transformations are

tn~nAi!5hn
1 , tn~hn

1!50, tn~P n
1!5nEi, tn~nEi!50, ~57!

tn~As
n!52 irn

1 , tn~At
n!52 irn

2 , tn~rn
1!50, tn~rn

2!50, ~58!

tn~Cn
1!5 iEn

s , tn~Cn
2!5 iEn

t , tn~En
s!50, tn~En

t !50, ~59!

tn~nA'!50, tn~nE'!50. ~60!

From these transformations it is clear thattn is nilpotent, and thus defines a cohomology on
space of functionals on the BRST-extended classical history space. The classical history
cohomology,Hcl* (Vn8), is defined to be the space of equivalence classes of BRST-closed fun
als modulo BRST-exact ones. The only fields which are closed but not exact arenA' andnE' , and
so the cohomology classes are in bijective correspondence with functionals of the transverse
ThusHcl* (Vn8) is isomorphic to the space of functionals on the reduced classical history spa

B. Operator quantization

The BRST operator quantization of standard electrodynamics proceeds by expandi
quantum fields in terms of operators which satisfy the algebra of creation and annihilation o
tors, thus defining a representation of the field algebra on a Fock space. Then, using the q
BRST chargeV̂, which is the operator corresponding to the functional in Eq.~51!, a cohomology
can be defined on operators on the quantum Hilbert space as follows. An operatorÔ is defined to
be BRST-closedif and only if

@V̂,Ô#50, ~61!
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and an operatorQ̂ is BRST-exactif and only if

Q̂5@V̂,Ŵ# ~62!

for some operatorŴ. BecauseV̂ generates nilpotent transformations and the commutator sati
the graded Jacobi identity, a BRST-exact operator is necessarily BRST-closed. Howev
converse is not true and two BRST-closed operatorsÔ andÔ8 are defined to be BRST-equivalen
if Ô85Ô1Q̂ for some BRST-exact operatorQ̂. The operator cohomologyof V̂, Hop* (V̂), is
defined to be the set of equivalence classes of closed operators modulo this equivalence r
The expansion of the fields in terms of creation and annihilation operators is given in Ref. 7
it follows that the quantum BRST charge can be written in the form

V̂5E d3kI @ ĉ†~kI !â~kI !1â†~kI !ĉ~kI !#. ~63!

Now the nonphysical field modes ‘‘cancel out’’ the ghost modes in the cohomology or,
precisely, the operator cohomology is isomorphic to the set of operators on the reduced qu
Hilbert space. This is a consequence of a general result known as the ‘‘quartet mechan7

which applies to any quantum theory in which the BRST operator is the sum of terms of the
~63!.

C. Quantum history theory in quartet form

For the Fock space quantization of a BRST-extended theory it is necessary that the con
come in pairs allowing the definition of creation and annihilation operators as complex l
combinations of pairs of fields. In the history theory there are three constraints which cann
grouped in pairs for the Fock space quantization. To proceed we include an extra Lag
multiplier along with the associated momenta and ghosts. More precisely, we introduce a b
scalar fieldl̂n(X), the Lagrange multiplier corresponding to the constraintÊn

s(X)'0. Its canoni-
cal momentum is denotedB̂n(X) and is constrained to vanish

B̂n~X!'0. ~64!

The associated ghost pair is (ĥn
2 ,P̂n

2). Now the fields do form ‘‘quartets,’’ and the results of Re
7 can be applied. The detailed transformations of the fields into the ‘‘quartet’’ form have
relegated to the Appendix. The important result is that the bosonic fields can be defined in
of six pairs of bosonic creation and annihilation operators:

@ âa~K !,b̂b
†~K8!#52\dabd

(4)~K2K8!, ~65!

@ b̂a~K !,âb
†~K8!#52\dabd

(4)~K2K8!, ~66!

@'âa~K !, 'âb
†~K8!#5\dabd

(4)~K2K8!, ~67!

for a,bP$1,2%. So we have a representation of the bosonic part of the BRST-extended h
algebra on the Fock spaceE B which is defined as the tensor product of six copies of the bos
Fock spaceFB@L2(R4)#. Similarly, the fermionic fields can be expanded in terms of four pairs
fermionic creation and annihilation operators, which satisfy the anti-commutators

@ ĉa~K !,êb
†~K8!#52\dabd

(4)~K2K8!, ~68!

@ êa~K !,ĉb
†~K8!#52\dabd

(4)~K2K8!, ~69!
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where a,bP$1,2%. In this way we have a representation of the fermionic part of the BR
extended history algebra on the Fock spaceE F, which is defined as the tensor product of fo
copies of the fermionic Fock spaceFF@L2(R4)#. The whole algebra is represented on the sp
E5E B

^ E F, which we call the BRST-extended quantum history space.

D. Quantum operator cohomology

The extended BRST charge is

V̂n5E d4X@2 i r̂n
1Ên

s1ĥn
1 nÊi2 i r̂n

2Ên
t 1ĥn

2B̂n#, ~70!

and in terms of oscillators it takes then-independent form

V̂5 (
a51

2 E d4K@ ĉa
†~K !âa~K !1âa

†~K !ĉa~K !#. ~71!

The anti-Hermitian ghost number operatorĜ is defined in terms of oscillators as

Ĝ5(
a
E d4K~ ĉa

†~K !êa~K !2êa~K !†ĉa~K !!. ~72!

Any operatorÔ on E can be decomposed in components of definite ghost number

Ô5(
g

Ôg , @ Ĝ,Ôg#5gÔg , gPZ. ~73!

It follows from these definitions that all bosonic fields are of ghost number zero, the fieldsĥa and
r̂a are of ghost number11, andP̂a and Ĉa are of ghost number21. Vectors in the nonzero
eigenspaces ofĜ have an ill-defined scalar product, therefore a ghost number zero conditi
often imposed on the physical states. However, in the Fock space quantization the ghost n
zero condition is automatically satisfied in the cohomology classes.

From Eq. ~70! it is clear that for the case of histories electrodynamics the opera
ĥn

a ,r̂n
a , nÊi ,Ên

s ,Ên
t ,B̂n , nÂ', nÊ' are closed. Similarly, the operatorsĥn

a ,r̂n
a , nÊi ,Ên

s ,Ên
t ,B̂n are

exact; for example, the smeared ghost field can be written

ĥn
1~ f !5@V̂,Ân

i
~ f !#. ~74!

The transverse field operators are closed but not exact.

E. Projection operator cohomology

In a history theory it is projection operators that appear in the decoherence functiona
operators which are not projectors lack a direct physical interpretation. In the equivalence c
of Hop* (V̂), projection operators are identified with operators which are not projection opera
This identification is unnatural from the histories perspective, so in this subsection we defi
equivalence relation directly on the lattice of projectors. We then use this equivalence rela
define H* (V̂), the projection operator cohomologyassociated withV̂. Finally we show that
H* (V̂) can be given the structure of a lattice, and that this lattice is isomorphic to the latti
projection operators on the reduced quantum history space.

Definition 3.5.1: Given two closed projectorsa and b, we say that ‘‘a is an exact fine-
graining of b,’’ written adb, if and only if b5a1g for some projection operatorg which is

exact~i.e., g5@V̂,Q̂# for some operator Qˆ ) and disjoint toa.
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The relationd is a partial order. Theprimitive part of a is denoteda0 and is defined as the
limit of exact fine-grainings ofa. A uniquea0 exists for each closeda becaused is a partial
order. Ifa is exact, thena0 is the zero projector. Ifa is closed but not exact, thena0 projects onto
the spectrum of a closed but not exact field operator. For histories electrodynamics we hav
that the closed but not exact field operators are the transverse field operators, and so
primitive projectors are in bijective correspondence with elements ofP(E red).

Definition 3.5.2: Two BRST-closed projection operatorsa and b are said to beBRST-
equivalentif and only if a05b0 .

The projection operator cohomologyH* (V̂) is defined as the space of closed projecti
operators modulo this equivalence relation, and elements ofH* (V̂) are identified withphysical
propositions. Given a primitive projection operatora0 , the equivalence class containinga0 is the
collection of all exact coarse-grainings ofa0 . The statement ‘‘a is anexact fine-grainingof b’’ is
equivalent to the statement ‘‘b is anexact coarse-grainingof a.’’ Let @a# denote the equivalenc
class containing the closed projectora. The mapp:@a#°a0 is well-defined onH* (V̂), and is in
fact an isomorphism betweenH* (V̂) and P(E red); the inverse is given byp21:a0°@a0#. In
order to giveH* (V̂) the structure of a lattice, we need to examine the geometry of the li
subspaces associated to closed and exact projection operators.

Definition 3.5.3: A BRST-closed subspace L,E is a topologically closed linear subspace
Ker(V̂).

Proposition 3.5.4: BRST-closed projection operators are in bijective correspondence
BRST-closed subspaces ofE.

Proof: Each projection operatora is associated with a topologically closed linear subsp
La,E. If a is a BRST-closed projection operator, i.e.,@V̂,a#50, then by writinga in Dirac
notation as

a5(
i

u l i&^ l i u, ~75!

where u l i& is a basis ofLa , it follows from the independence of the basis vectors and
Hermiticity of V̂ that V̂u l &50 for all u l &PLa . ThereforeLa,Ker(V̂).

Conversely, each BRST-closed subspace is associated with a BRST-closed projection o
becauseV̂ is self-adjoint. h

In the case of histories electrodynamics BRST-closed subspaces are spanned by vect
ated by the operators'âa

† ,âa
† ,ĉa

† acting on the cyclic vacuum state.
Definition 3.5.5: A BRST-exact subspace M,E is a topologically closed linear subspace

Im(V̂).
Proposition 3.5.6: BRST-exact projection operators are in bijective correspondence

BRST-exact subspaces ofE.
Proof: A BRST-exact projection operator can be written in the formg5@V̂,Q̂# for some

operatorQ̂. g is closed, and so is associated with a BRST-closed subspaceMg,E. Now

gum&5@V̂,Q̂#um&5V̂~Q̂um&) ;um&PMg ~76!

becauseV̂um&50. However,gum&5um& for any um&PMg so

um&5V̂~Q̂um&) ;um&PMg , ~77!

and henceMg,Im(V̂).
Conversely, each BRST-exact subspaceM with basisumi& is associated with an exact proje

tion operatorg,
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g5(
i

umi&^mi u5F V̂,(
i

uumi
&^mi uG , ~78!

whereuumi
& is any vector such thatV̂uumi

&5umi&. h

In the case of histories electrodynamics BRST-exact subspaces are spanned by vectors
by the operatorsâa

† ,ĉa
† on the vacuum state.

Definition 3.5.7: A primitive subspace R,E is a BRST-closed subspace with no BRST-ex
proper subspaces. The closure of the union of all primitive subspaces is denotedE0 .

Proposition 3.5.8: Primitive projection operators are in bijective correspondence with pr
tive subspaces ofE.

Proof: Let a0 be a primitive projector. Then the only exact fine graining ofa0 is a0 itself.
This implies that the linear subspace associated witha0 has no BRST-exact proper subspaces

Conversely, because a primitive subspace has no BRST-exact proper subspaces it follo
the corresponding projection operator must be a limit of exact fine-grainings, and thus primith

In the case of histories electrodynamics primitive subspaces are spanned by vectors cre
the action of the transverse creation operators'âa

† on the vacuum state.
From the above discussion it follows thatE0 and Im(V̂) are disjoint, and that the closure o

E0øIm(V̂) is Ker(V̂). Therefore every exact projector is disjoint to every primitive projector,
id01 idIm5idKer , where id0 ,idIm and idKer are the identity operators onE0 ,Im(V̂) and Ker(V̂),
respectively. These results can be used to prove the following theorem.

Theorem 3.5.9:(i) The lattice P(Ker(V̂)) induces a lattice structure on H* (V̂) by

@a#∧@b#ª@a∧b#, ~79!

@a#∨@b#ª@a∨b#, ~80!

¬@a#ª@¬a#. ~81!

(ii) The mapp is a lattice isomorphism ofH* (V̂) andP(E red).
Proof:

~i! We have to show that the definitions give the same results when evaluated on dif
members of an equivalence class. We define the maximal exact part ofa to be the unique
exact projectorga such thata5a01ga . Every exact subspace is orthogonal to eve
primitive subspace soa∧b5a0∧b01ga∧gb . The intersection of two exact subspaces
exact soga∧gb is exact, and@a∧b#5@a0∧b0#. In a similar way we have@a∨b#
5@a0∨b0#. Finally, consider¬a5 idKer2(a01ga) which can be written¬a5(id0

2a0)1(idIm2ga). Now idIm2ga is exact, so@¬a#5@ id02a0#. Similarly we have¬a0

5(id02a0)1 idIm so @¬a0#5@ id02a0#5@¬a#.
~ii ! It is straightforward to check that

~a! p(@a#∧@b#)5p@a#∧p@b#,
~b! p(@a#∨@b#)5p@a#∨p@b#, and
~c! p(¬@a#)5¬p@a#,
where the lattice operations on the right hand side of the above equations are defi
P(E red). h

Thus the projection operator cohomology is isomorphic to the lattice of projection oper
on the reduced history space. In order to show that the corresponding history theories ar
same’’ we first investigate the space of decoherence functionals on the BRST-extended qu
history space.
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IV. GAUGE-FIXED DECOHERENCE FUNCTIONALS

To each gauge-fixed action operator onE, there corresponds a gauge-fixed decoherence f
tional. The gauge-fixed decoherence functionals assign nontrivial values to propositions reg
the gauge and ghost fields. However, as we shall see, each gauge-fixed decoherence fu
induces a well-defined functional onH* (V̂) in such a way that the resulting history theory
equivalent to the reduced quantum history theory.

A. Radiation and Feynman gauges

We begin by giving two explicit examples of gauge-fixed decoherence functionals. The
tion gauge corresponds to the following canonical action

Ŝn
R5V̂n2Ĥn

0 , ~82!

where the Louiville operator is the sum of three parts:
~1! a gauge-invariant partV̂n

0,

V̂n
05E d4X nÊ'

M]n
t nÂM

' , ~83!

~2! a ghost part

V̂n
gh5E d4X(

a51

2

~P̂n
a]n

t ĥn
a1 r̂n

a]n
t Ĉn

a!, ~84!

~3! a gauge part

V̂n
ga5E d4X~Ên

t ]n
t Ât

n1Ên
s]n

t Âs
n1nÊi

M]n
t nÂM

i
1B̂n]n

t l̂n!. ~85!

The gauge-invariant HamiltonianĤn
0 is given by

Ĥn
05E d4XS 1

2
nÊM

' nÊ'
M1

1

4
nF̂MN

nF̂MND . ~86!

Using an argument similar to that in Sec. II, it follows that the normal ordered Hamiltonian e
as a self-adjoint operator onE. The Louiville operator also exists, and therefore so does
radiation gauge actionŜn

R . If the gauge and ghost fields vanish initially, then they vanish ide
cally on the extrema of this action. However, note that the extrema of this action satisf
constraints if and only if the constraints are satisfied initially.

Let H 0.L2(R4) ^ L2(R4) denote the base Hilbert space of the primitive Fock spaceE0 , i.e.,
E05FB@H0#. Then the generator of the decoherence functional associated with the rad
gauge action acts on vectorsf ^ gPH0 as

sn
R~ f ^ g!5~nm]m2Dn

1/2! f ^~nm]m2Dn
1/2!g, ~87!

and is extended to an operator onH0 by linearity. The radiation gauge Hamiltonian commut
with the gauge and ghost fields. Therefore, as argued in Ref. 9, projectors onto the gauge an
fields form a canonical consistent set and the probabilities assigned to these projectors are
probability in the initial state. This implies that if eithere or k is a projector onto subspaces of th
orthogonal complement ofE0 , and the initial density matrix contains no gauge or ghost mod
then

dR~e,k!50. ~88!
                                                                                                                



ed on

con-

t
e

tesimal

the

n op-
i-

tor,

erence

4813J. Math. Phys., Vol. 43, No. 10, October 2002 BRST quantization of histories electrodynamics

                    
This completes the definition ofdR.
In the ‘‘Feynman gauge’’ all fields satisfy the wave equation internally. LetH denote the base

Hilbert space of the BRST-extended quantum history spaceE. A vector inH is a linear combina-
tion of homogeneous vectors of the form

v5 ^ i 51
10 v i , ~89!

wherev iPL2(R4). The generator of the Feynman gauge decoherence functional is defin
homogeneous vectors by

sn
Fv5 ^ i 51

10 ~nm]m2Dn
1/2!v i , ~90!

and is extended to an operator onH by linearity.

B. Gauge transformations

In this subsection we investigate gauge transformations. For simplicity we consider the
straint Ên

t '0, but analogous remarks apply to the other three constraints.
In the operator cohomology, the constraintÊn

t '0 is identified with operators of the form

D̂n
t 5Ên

t 1@V̂,Q̂#. ~91!

The operatorD̂n
t generates gauge transformations in the gauge fieldÂt

n , and also in the ghos
fields. We require that the the ghost number zero eigenspace ofĜ is mapped into itself under gaug
transformations, which implies that@ Ĝ,D̂n

t #50. As V̂ is a ghost number 1 operator, the operatorQ̂

must be of ghost number21. In addition we chooseQ̂ to be self-adjoint, so thatD̂n
t generates

unitary transformations.
D̂n

t is exact, and can be written as@V̂,Ĝn# whereĜn5Ĉn
11Q̂. It follows from the Jacobi

identity that

@D̂n
t ,Ô#5@@V̂,Ĝn#,Ô#5@@Ĝn ,Ô#,V̂#, ~92!

if Ô is a closed operator. Thus closed operators are mapped into exact operators by infini
gauge transformations. Under finite gauge transformations, closed operators transform as

Ô°ÛÔÛ†5Ô1@V̂,Ŵ#, ~93!

whereŴ is a ghost number21 operator. Therefore, gauge transformations act trivially on
equivalence classes of the operator cohomology.

As the gauge transformations are unitary, they map projection operators onto projectio
erators and, becauseE0 and Im(V̂) are disjoint, exact self-adjoint operators commute with prim
tive projectors. Therefore, the action of a gauge transformation on a BRST-closed projeca
5a01ga , is

a°ÛaÛ†5a01ÛgaÛ†. ~94!

This shows that the gauge group acts trivially onH* (V̂), and that primitive projectors aregauge
invariant.

There is also a natural unitary action of the gauge transformations on the space of decoh
functionals. The decoherence functionald is associated with an operator onE^ E, denotedQd .
Gauge transformations act onQd asQd°Qd8 whereQd85U ^ UQdU†

^ U†. As shown in Ref. 8,
the operatorQd8 is indeed associated with abone fidedecoherence functionald8. We say that the
decoherence functionalsd andd8 are related by the gauge transformation U.
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Definition 4.2.1: The collection of all decoherence functionals related to the radiation ga
decoherence functional, dR, by a gauge transformation is denotedDg f and called the space o
gauge-fixed decoherence functionals.

V. GAUGE INVARIANCE

We now fix a particular foliation, drop then-label, and use coordinates adapted to the fo
tion. LetD denote the space of decoherence functionals associated with the quantum history
E. A physical symmetry of ahistory quantum theory~PSHQT! realized on the Hilbert spaceE is
defined in Ref. 8 as an affine one-to-one map

P~E! ^ P~E!3D→P~E! ^ P~E!3D, ~95!

~@a ^ b#,Q!°~@a ^ b#8,Q8!, ~96!

that preserves the pairing between history propositions and operators associated with deco
functionals, i.e.,

tr E^ E~@a ^ b#Q!5tr E^ E~@a ^ b#8Q8!. ~97!

Schreckenberg8 proved the following histories analogue of Wigners theorem:
Theorem 5.0.1:Every PSHQT can be induced by a unitary or antiunitary operator Uˆ on E in

the sense that each PSHQT can be written as

@a ^ b#°Û ^ Û@a ^ b#Û†
^ Û†, ~98!

Q°Û ^ ÛQÛ†
^ Û†, ~99!

for some unitary or antiunitary operator Uˆ . Conversely, every transformation of the form (98) a

(99) for unitary or antiunitary Ûinduces a PSHQT.
We have seen that gauge transformations act unitarily on projection operators and on th

of decoherence functionals. Therefore gauge transformations induce a PSHQT and we can
histories analog of Wigner’s theorem. The following is an immediate consequence:

Proposition 5.0.2.: For any gauge-fixed decoherence functional dPDg f , and any two primi-
tive projectorsa0 ,b0PP(E0),

d~a0 ,b0!5dred~a0 ,b0!. ~100!

Proof: SincedPDg f , it is related todR by a gauge transformation. We denote the unit
operator associated with this gauge transformation byÛd . The primitive projectorsa0 and b0

satisfy Ûda0Ûd
†5a0 and Ûdb0Ûd

†5b0 . Now Eq. ~97! implies d(a0 ,b0)5dR(a0 ,b0). Finally,
from the definition ofdR it follows that dR(a0 ,b0)5dred(a0 ,b0). h

This shows that gauge-fixed decoherence functionals ensure the following.

~i! The probabilitiesassigned to gauge-invariant propositions are gauge invariant.
~ii ! The quantum interferencebetween gauge-invariant propositions is gauge invariant.

We have the following lemma:
Lemma 5.0.3: For any gauge-fixed decoherence functional dPDg f , any projector a

PP(E), and any exact projectorg,

d~a,g!50. ~101!

Proof: We act ond(a,g) with Ûd , the gauge transformation that mapsd into dR. Under the
action ofÛd , a andg transform toadªÛdaÛd

† andgdªÛdgÛd
† . Now using Eq.~97! we have
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d~a,g!5dR~ad ,gd!, ~102!

which is equal to zero by Eq.~88! becausegd is exact. h

Corollary 5.0.4: Letg and d be exact propositions. Then d(g,d)50 for any gauge-fixed
decoherence functional dPDg f .

Proof: Immediate. h

This implies that there is no interference between exact projectors, and that exact propo
are assigned a probability of zero by any gauge-fixed decoherence functional. Projectors o
spectrum of the constraint fields are exact, so a special case of this result is that any gaug
decoherence functional assigns a probability of zero to any propositions that are not com
with the constraints.

Theorem 5.0.5:Any gauge-fixed decoherence functional dPDg f reduces to a well-defined

functional d̃:H* (V̂)3H* (V̂)→C defined by

d̃~@a#,@b#!ªd~a,b!. ~103!

In addition,

d̃~@a#,@b#!5dred~a0 ,b0!, ~104!

for all @a#,@b#PH* (V̂), wherea0 and b0 are the primitive parts ofa and b, respectively.
Proof: We use the additivity axiom of the space of decoherence functionals,

d~a,b!5d~a01ga ,b!5d~a0 ,b!1d~ga ,b!, ~105!

becausea0 andga are disjoint. Now becausega is exact, Lemma~5.0.3! along with the Hermi-
ticity of d implies thatd(ga ,b)50. This means that

d~a,b!5d~a0 ,b!. ~106!

Repeating this for the other argument ofd, we have

d~a,b!5d~a0 ,b0!, ~107!

for any gauge-fixed decoherence functionald. This shows that every gauge-fixed decoheren
functional reduces to a well-defined functionald̃:H* (V̂)3H* (V̂)→C defined byd̃(@a#,@b#)
ªd(a,b). Now Proposition~5.0.2! proves the theorem. h

Theorem~5.0.5! shows that the cohomological history theory (H* (V̂),d̃) is ‘‘the same’’ as
the reduced history theory (P(E red),dred). More precisely, we have the following.

Definition 5.0.6: Two quantum history theories(P1 ,D1) and (P2 ,D2) are defined to be
isomorphic if there exists (i) an isomorphism of latticesl:P1→P2 , and (ii) a bijective map
q:D1→D2 , such that

d~a,b!5q~d!~l~a!,l~b!!, ~108!

for all a,bPP1 and all dPD1 .
Proposition 5.0.7:(H* (V̂),d̃) is isomorphic to(P(E red),dred).
Proof: The mapp:@a#°a0 provides the required lattice isomorphism betweenH* (V̂) and

P(E red). Now defineq by q(d̃)5dred, and Eq.~104! states precisely that the two history theori
are isomorphic. h

VI. CONCLUSION

We have constructed two concrete models of history quantum electrodynamics on Fock
First, we quantized the classical reduced history space by finding an inequivalent representa
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the reduced history algebra onE red for each foliation. We then defined the decoherence functio
using the canonical history action on the reduced history space. This results in the reduced
theory (P(E red),dred).

Second, we extended the history algebra by including ghost fields, and found represen
of the extended history algebra on the extended quantum history spaceE. Using the BRST charge
V, we definedH* (V), the projection operator cohomology ofV, and showed thatH* (V) is
isomorphic~as a lattice! to P(E red). Finally, we defined the space of gauge-fixed decohere
functionals and showed that, for each gauge-fixed decoherence functionald, (H* (V),d̃) is iso-
morphic to (P(E red),dred).

Although the construction of quantum history electrodynamics is interesting in itself,
hoped that the results obtained here will be useful in a wider context. Given a general B
extended quantum history space and a nilpotent BRST charge, Sec. III provides a definition
corresponding projection operator cohomology, and shows that it is isomorphic to the latt
projection operators on the reduced history space. In addition, the discussion of the sp
gauge-fixed decoherence functionals is relevant to any gauge theory. It would be interes
apply the histories BRST formalism developed here to mini-superspace models, or to topo
quantum field theory. These examples are of particular importance in light of the recent inte
diffeomorphism invariance in history theories.10,11
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APPENDIX

First, we consider the bosonic part of the BRST-extended commutator algebra:

@ l̂n~X!,B̂n~X8!#5 i\d (4)~X2X8!, ~A1!

@ÂM
n ~X!,Ên

N~X8!#5 i\dM
N d (4)~X2X8!, ~A2!

where all unwritten commutators vanish. We expand the configuration fields as

l̂n~X!5
1

~2p!2 E d4K

A2vn~K !
@ d̂~K !eiK •X1d̂†~K !e2 iK •X#, ~A3!

Âs
n~X!5

1

~2p!2 E d4K

A2vn~K !
@ d̂s~K !eiK •X1d̂s

†~K !e2 iK •X#, ~A4!

Ât
n~X!5

1

~2p!2 E d4K

A2vn~K !
@ d̂t~K !eiK •X1d̂t

†~K !e2 iK •X#, ~A5!

nÂM~X!5
1

~2p!2 (
i 51

3 E d4K

A2vn~K !
, ~A6!

@ d̂i~K !neM
i ~K !eiK •X1d̂i

†~K !neM
i ~K !e2 iK •X#. ~A7!

The five-vectorsneM
a (K) for a51,2 are defined as in Sec. II, andneM

3 (K) is the unit vector
pointing in the direction ofnK̃. Now the momentum fields are expanded as
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B̂n~X!5
1

i ~2p!2 E d4KAvn~K !

2
~A8!

@~ d̂~K !1d̂s~K !!eiK •X2~ d̂†~K !1d̂s
†~K !!e2 iK •X#, ~A9!

Ên
s~X!5

1

i ~2p!2 E d4KAvn~K !

2
@~ d̂s~K !1d̂~K !!eiK •X ~A10!

2~ d̂s
†~K !1d̂†~K !!e2 iK •X], ~A11!

Ên
t ~X!5

1

i ~2p!2 E d4KAvn~K !

2
@~ d̂t~K !1d̂3~K !!eiK •X ~A12!

2~ d̂t
†~K !1d̂3

†~K !!e2 iK •X], ~A13!

nÊM~X!5
1

i ~2p!2 (
i 51

3 E d4KAvn~K !

2
~A14!

@~ d̂i~K !neM
i ~K !1d̂t~K !ne3

M~K !!eiK •X ~A15!

2~ d̂i
†~K !ne i

M~K !1d̂t
†~K !ne3

M~K !!e2 iK •X]. ~A16!

Defining

â1~K !5
1

A2
~ d̂t~K !1d̂3~K !!, ~A17!

b̂1~K !5
1

A2
~ d̂t~K !2d̂3~K !!, ~A18!

â2~K !5
1

A2
~ d̂s~K !1d̂~K !!, ~A19!

b̂2~K !5
1

A2
~ d̂s~K !2d̂~K !!, ~A20!

we obtain the commutators~65!–~67! in which d̂a has been written'âa for aP$1,2%.
The fermionic part of the BRST-extended quantum history algebra is

@ĥn
a~X!,P̂n

b~X8!#5\dabd (4)~X2X8!, ~A21!

@C̄n
a~X!,r̂n

b~X8!#5\dabd (4)~X2X8!, ~A22!

where on fermionic fields square brackets represent anti-commutators. We write the ghost fi

ĥn
1~X!52

1

~2p!2 E d4K

2vn~K !3/2@c1~K !eiK •X1c1
†~K !e2 iK •X#, ~A23!
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P̂n
1~X!5

i

~2p!2 E d4Kvn~K !3/2@ c̄1~K !eiK •X1 c̄1
†~K !e2 iK •X#, ~A24!

r̂n
1~X!52

1

~2p!2 E d4K

2vn~K !1/2@c1~K !eiK •X2c1
†~K !e2 iK •X#, ~A25!

C̄n
1~X!5

1

i ~2p!2 E d4Kvn~K !1/2@ c̄1~K !eiK •X1 c̄1
†~K !e2 iK •X#, ~A26!

ĥn
2~X!52

1

~2p!2 E d4K

2vn~K !1/2@c2~K !eiK •X1c2
†~K !e2 iK •X#, ~A27!

P̂n
2~X!5

i

~2p!2 E d4Kvn~K !1/2@ c̄2~K !eiK •X1 c̄2
†~K !e2 iK •X#, ~A28!

r̂n
2~X!52

1

~2p!2 E d4K

2vn~K !1/2@c2~K !eiK •X2c2
†~K !e2 iK •X#, ~A29!

C̄n
2~X!5

1

i ~2p!2 E d4Kvn~K !1/2@ c̄2~K !eiK •X1 c̄2
†~K !e2 iK •X#, ~A30!

and the algebra~A21! and ~A22! implies the anti-commutators in Eqs.~68! and ~69!.
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Chiral superconducting strings and Nambu–Goto strings
in arbitrary dimensions

Xavier Siemensa) and Ken D. Olum
Institute of Cosmology, Department of Physics and Astronomy, Tufts University,
Medford, Massachusetts 02155

~Received 22 April 2002; accepted for publication 3 May 2002!

We present general solutions to the equations of motion for a superconducting
relativistic chiral string that satisfy the unit magnitude constraint in terms of prod-
ucts of rotations. From this result we show how to construct a general family of odd
harmonic superconducting chiral loops. We further generalize the product of rota-
tions to an arbitrary number of dimensions. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1501169#

I. PRELIMINARIES

Particle physics models where symmetry breaking is involved predict, in many case
existence of topological defects, which are formed when the topology of the vacuum manif
the low energy theory is nontrivial.1 Cosmic strings, in particular, are linelike objects that a
formed when the the vacuum manifold contains unshrinkable loops. For a review, see Ref

In Ref. 3 it was shown that cosmic strings can be superconducting. In the case wh
charge carriers on the string are not coupled to a gauge field, the action for the string a
current can be taken to be

S5E d2jA2gS 2m1
1

2
gabf ,af ,bD , ~1!

wherem is the mass per unit length of the string,gab is the induced metric on the string worldshe
andf is the field of the charge carriers living on the string. These strings were shown in R
and 5 to have solutions in the case whengabf ,af ,b50 of the form

x5 1
2 @a~u!1b~v !# ~2!

for the string position and

f5 1
2 f ~v ! ~3!

for the field living on the string with the constraints

a8251 ~4!

and

b821 f 8251, ~5!

whereu5s2t andv5s1t ands andt are spacelike and timelike parameters, respectively,
parametrize the string world-sheet. These strings are called chiral because the current only
in one direction on the string.

a!Electronic mail: siemens@cosmos.phy.tufts.edu
48190022-2488/2002/43(10)/4819/9/$19.00 © 2002 American Institute of Physics
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Comparing this to the usual Nambu–Goto case, one can see thatf (v) acts like a fourth
component of the three-vectorb(v), making chiral superconducting strings behave like Namb
Goto ones with chiral excitations in an extra fifth dimension. Indeed, this property was us
Ref. 6 in an investigation of the properties of superconducting cosmic string cusps.

The right- and left-moving excitations,a8 and b8, on a regular Nambu–Goto string i
Minkowski space–time are arbitrary functions that satisfy the unit magnitude constraintua8u
5ub8u51. Expressions for these functions are often given as Fourier sums and the unit mag
constraint generally gives a nonlinear set of equations involving the vector coefficients o
Fourier expansion. As a result, parametrizing strings beyond the first few harmonics proves
a difficult task. Fortunately, in that case, there exists a method to generate strings inv
products of rotation matrices7 that act on a starting unit vector so that the unit magnitude c
straint is satisfied trivially.

In a recent study of the properties of chiral cosmic strings8 it was assumed that the current
constant. The work in Ref. 9 assumed that the current takes a very simple nonconstant fo
was pointed out in the latter work, one could expect to have loops with varying currents
loops are formed by intersections involving different strings or if different segments of the lo
string were at some point in causally disconnected regions. For long strings this is always th
and we therefore expect varying chiral currents to be generic.

The purpose of this work is to generalize the work in Ref. 7 for generating three-dimens
unit vectors to four-dimensional ones that include the current as a fourth component ob(s
1t). We start by casting the method somewhat differently and generalize it to four dimen
From this result we construct a family of chiral superconducting odd-harmonic loops. We fu
generalize the product of rotations to an arbitrary number of dimensions.

In Sec. II we show how to construct an arbitraryN harmonic unit vector in four and thre
dimensions. In Sec. III we use these results to construct arbitrary chiral current carrying
conducting odd harmonic loops. In Sec. IV we generalize the arguments in Sec. II to an ar
number of dimensions and we conclude in Sec. V.

II. SOLUTION TO THE UNIT MAGNITUDE CONSTRAINT IN TERMS OF PRODUCTS OF
ROTATIONS

We can think of the Euclidean four-vector

b̃85S bw8

bx8

by8

bz8

D ~6!

as having unit magnitude according to~5! with bw5 f . Consider the vectorb̃N8 , which can be
constructed from a finite sum of Fourier components,

b̃N8 ~v !5Z1 (
n51

N

$An cosnv1Bn sinnv%. ~7!

The Fourier coefficients satisfy the set of 4N11 nonlinear relations derived in Ref. 7,

(
n5m2N

N

~an•am2n2bn•bm2n!54dm0 ~8!

with m50,1,. . . ,2N,

(
n5m2N

N

~an•bm2n2bn•am2n!50 ~9!
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with m51, . . . ,2N,

an5a2n5An , bn52b2n5Bn , nÞ0, ~10!

and

a052Z, b050. ~11!

These equations can be obtained from the constraint equation~5!. The total number of degrees o
freedom in the coefficients in~7! is 8N14, so the remaining number of degrees of freedom a
satisfying the constraint is 4N13. Below we show how to construct~7! from a product of rotation
matrices by generalizing a modified version of the three-dimensional method presented in
to four dimensions.

The constraint equations~8! and ~9! for m52N andm52N21 are

AN
2 5BN

2 , AN•BN50, ~12!

and

AN•AN212BN•BN2150,
~13!

AN•BN211BN•AN2150,

respectively. It follows from~12! that the highest harmonic is a circle that lives on some arbitr
plane. Clearly, we can introduce coordinates such thatAN andBN lie on thew andx axes,

AN5aŵ, BN5ax̂, ~14!

making the highest harmonic a circle of radiusa on thew-x plane. This puts the vectorb̃N8 into the
so-called standard form.7 Let Rwx(u) be a matrix that rotates thew-x plane by an angleu. Acting
on b̃N8 with Rwx(2v) in these coordinates lowers the highest harmonic term of~7!,

Rwx~2v !S a cosNv
a sinNv

0
0

D 5S a cos~N21!v
a sin~N21!v

0
0

D . ~15!

This is not sufficient to verify that the overall harmonic content has been lowered becau
N21 terms of~7! could still give us anN harmonic through trigonometric identities. We no
show, however, that this is not the case.

The constraint equations form52N21 in ~13! give us, using~14!, the conditions on the
coefficients,

~AN21!w5~BN21!x , ~AN21!x52~BN21!w . ~16!

It is not too difficult to see that using the conditions~16! when acting withRwx(2v) on theN
21 terms of~7! does not lead to the creation ofN harmonic terms,

Rwx~2v !@AN21 cos~N21!v1BN21 sin~N21!v#

5S ~AN21!w cos~N22!v2~AN21!x sin~N22!v
~AN21!x cos~N22!v1~AN21!w sin~N22!v
~AN21!y cos~N21!v1~BN21!y sin~N21!v
~AN21!z cos~N21!v1~BN21!z sin~N21!v

D . ~17!

Clearly, theN22 terms will not yield anN harmonic term when acted on byRwx(2v).
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We now have a string in the form of~7! with N→N21. Its highest harmonic is therefore als
a circle of some other radius living on some other arbitrary plane. Armed with this knowledg
can see that the unit magnitude constraints are such that, in general, we can write

b̃N8 5RPN
~v !b̃N218 , ~18!

whereRPN
(v) is a rotation by an anglev on the planePN where the highest harmonic lives. B

induction it must be that

b̃N8 5)
i 5N

1

RPi
~v !b̃08 , ~19!

where theRPi
(v) are rotations by an anglev on arbitrary planesPi andb̃08 is an arbitrary constan

unit vector in four dimensions.
To specify a plane in four dimensions one needs to specify a direction on the plane~three

angles!, a linearly independent direction~two angles!, but now the plane is overspecified b
internal rotations~21 angle!, giving a total of four degrees of freedom for the matricesRPi

(v).
For anN harmonic vector, one therefore has 4N parameters in the rotators and three parameter
the constant unit vectorb̃08 giving a total of 4N13 parameters which checks perfectly with 8N
14 vector coefficients in~7! minus the 4N11 constraints~8! and ~9!.

The form of theRPi
(v) matrices is quite simple. Generally, if we want to transform, sa

rotation by an anglev on thew-x plane to one on an arbitrary plane, we will need to perform
transformation of the type

RPi
~v !5EiRwx~v !Ei

T . ~20!

For the purpose of finding the form of the rotatorsEi it is easiest to envision the inverse proce
to the one we are seeking, namely the rotation of an arbitrary oriented plane to lie on thw-x
plane. Let us consider first the projection of the four-dimensional arbitrary plane onto the (x,y,z)
subspace. We can perform a rotation by some anglea about thez axis @Rxy(a)# until the vector
perpendicular to the projected plane lies on they-z plane and perform a further rotation by a
angleb about thex axis @Ryz(b)# until that vector lies on thez axis. At this stage the projecte
plane lies wholly on thex-y plane. The ranges of botha and b from 0 to p are sufficient to
perform these transformations. After performing these two rotations, our original four dimens
plane lies entirely in the (w,x,y) subspace and we can repeat an analogous process to th
above to rotate it into thew-x plane. A rotation by an angleg about they axis @Rwx(g)# puts the
vector perpendicular to the plane on thex-y plane and a rotation by an angled aboutw @Rxy(d)#
makes that vector parallel with they axis. For the first of these rotations a range ofg from 0 top
is sufficient, for the second rotation, however, matters are slightly different. If the plane we
trying to rotate was featureless, it would be enough for the range ofd to be from 0 top. In fact,
this is not the case. The plane contains a circle inv which can be oriented clockwise or counte
clockwise on thew-x plane and therefore the final rotation on thex-y plane in general requires a
angle that ranges from 0 to 2p.

Keeping in mind these considerations, we can quite generally write

Ei5Rxy~a i !Ryz~b i !Rwx~g i !Rxy~d i !, ~21!

wherea i , b i , g i range from 0 top andd i ranges from 0 to 2p. Then

b̃N8 ~v !5)
i 5N

1

EiRwx~v !Ei
Tb̃08 . ~22!
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In order to construct the entire chiral string, we also need to find the form ofa(u) in ~2!. The
constraints~4! can be satisfied using a product of rotations that can be found from analo
arguments to the ones in the preceding section. ForM harmonics this yields

aM8 ~u!5 )
i 5M

1

DiRxy~u!Di
Ta08 ~23!

with the rotator

Di5Rxy~f i !Ryz~u i ! ~24!

where the anglesu i range from 0 top, the anglesf i from 0 to 2p andR are the three dimensiona
rotation matrices.

III. AN APPLICATION: A FAMILY OF ODD HARMONIC SUPERCONDUCTING CHIRAL
LOOPS

A. Overall orientation freedom

Both expressions for the oppositely moving excitations on the string~22! and ~23! include
overall orientation freedom. In some applications, for instance self-intersection or gravita
radiation analyses, only the shape of a loop, and not its orientation, is important. In this ca
inclusion of overall orientation freedom of the right- and left-moving excitations separate
unnecessary: All that matters is the relative orientation betweena8 and the spatial part ofb̃8.

Overall orientation freedom of the loop is set by an Euler matrixQ that acts only ona8 and
the spatial components ofb̃8 and contains three angles. We can use this freedom to standardiz
vectors in some way. We will choose the plane of the last rotation ina8 and b̃8 to contain some
coordinate axis~this will enable us in the following subsection to use the arbitrariness in the o
of u andv to eliminate more parameters!.

The four-dimensional circle that constitutes the highest harmonic ofb̃8 projected onto three-
dimensional space typically looks like an ellipse. We can perform ordinary three-dimens
rotations on it to put it in some convenient form. In particular, we can rotate the ellipse on thx-y
plane until its major axis, say, lies on they-z plane and further rotate on they-z plane until it lies
entirely on thez axis. We still have one more rotation left inQ which we choose to be a rotatio
on thex-y plane. This leaves the major axis of the ellipse on thez-axis but orients the circle of the
highest harmonic ina8 such that it contains thex-axis.

We now construct a four-dimensional planar rotator that contains thez-axis but is otherwise
arbitrary. Starting withRwz(v), we see that we can perform an arbitrary planar rotation on it in
(w,x,y) subspace that preserves thez-axis. This requires only two rotations. Therefore, to rot
about a plane that contains thez-axis but is otherwise arbitrary we can use

Rxy~g!Rwx~d!Rwz~v !Rwx~2d!Rxy~2g! ~25!

whered ranges from 0 top andg from 0 to 2p. This procedure eliminates two of the paramete
in the last planar rotation ofb̃8.

In three dimensions, to rotate by an angleu on a plane that contains thex-axis, but is
otherwise arbitrary, we may use

Ryz~u!Rxy~u!Ryz~2u! ~26!

whereu ranges from 0 to 2p. This procedure eliminates one of the parameters in the last pl
rotation ofa8.

This leavesa8 and b̃8 in the form
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b̃N8 ~v !5R̃PN

b ~v ! )
i 5N21

1

EiRwx~v !Ei
Tb̃08 ~27!

with

R̃PN

b ~v !5Rwx~g!Rxy~d!Rwz~v !Rxy~2d!Rwx~2g! ~28!

and

aM8 ~u!5R̃PM

a ~u! )
i 5M21

1

DiRxy~u!Di
Ta08 ~29!

with

R̃PM

a ~u!5Ryz~u!Rxy~u!Ryz~2u!. ~30!

B. The origin of u and v

The conditions on the coefficients of the highest harmonics~12! only specify the planar
rotation up to a phase so that generally we can takeR̃N

b (v1b) and R̃M
a (u1a) in ~27! and ~29!.

We consider the action of this extra planar rotation matrix onb̃N8 (v). It can be verified to be

b̃N8 ~v !5R̃PN

b ~v ! )
i 5N21

1

RP
i8
~v !R̃PN

b ~b!b̃08 , ~31!

where

RP
i8
~v !5R̃PN

b ~b!RPi
~v !R̃PN

b ~2b! ~32!

with analogous expressions foraM8 (u). It is important to note that the effect of replacingRPi
(v)

with RP
i8
(v) is to make the same transformation on each of the planes of rotation, in other w

to rotate on some other set of planes. Since we can express any rotation on a plane usin~21!,
however, the effect of the matricesR̃PN

b (b) and R̃PM

a (a) on the rotators can be ignored.

Since the planar rotationsR̃PN

b andR̃PM

a both contain one of the coordinate axes we can cho

b anda so that thez component ofb̃08 and thex componenta08 vanish. This leaves them in th
form

R̃PN

b ~b!b̃085S cosub

cosfb sinub

sinfb sinub

0
D 5Rxy~fb!Rwx~ub!ŵ ~33!

and

R̃PM

a ~a!a085S 0
cosua

sinua

D 5Ryz~ua!ŷ, ~34!

wherefb andua range from 0 to 2p andub ranges from 0 top. This means we can writea8 and
b̃8 as
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aM8 ~u!5R̃PM

a ~u! )
i 5M21

1

RPi
~u!Ryz~ua!ŷ ~35!

and

b̃N8 ~v !5R̃PN

b ~v ! )
i 5N21

1

RPi
~v !Rxy~fb!Rwx~ub!ŵ. ~36!

C. The center of mass constraint

In order to construct string loops, apart from solving the unit magnitude constraint, we ne
satisfy the center of mass constraint, namely that the loop should be closed and that we w
work in the rest frame of the loop. These constraints imply that the center of mass term
vanish,Z50 in ~7!, for botha8 andb̃8. In general this is an intractable problem because the ce
of mass termZ is a nonlinear function of the angles in the rotation matrices. We can, how
solve this problem in an analogous way to that introduced in Ref. 10. The guiding principle b
such a construction is to set the starting center of mass terms to zero, and to apply further r
matrices in such a way as to ensure that trigonometric identities never lead to the productio
zero harmonic. In practice this was done by using odd harmonics only and choosing some
eters so that the starting center of mass term is zero. Here we will proceed along similar l

Generally, if the starting unit vector lies somewhere on the plane of the first rotation,i 51 in
~35! and~36!, no center of mass term will be generated. Since our starting unit vectors are
by ~33! and ~34! we need to choose the first planes of rotation appropriately.

Earlier we established that if we want a rotation by an angleu on a plane that contains th
x-axis, we can use~26!. If we want an arbitrary rotation that contains they-axis, instead we may
use

Rxz~f!Rxy~u!Rxz~2f!. ~37!

If we now decide we want a rotation byu on a plane that contains a vector lying somewhere
the y-z plane, it is sufficient rotate this last matrix~37! on they-z plane by whatever angle th
vector makes with they-axis. This is precisely the situation in~34!. We therefore write the first
rotation, i 51 in ~35!, as

RP1
~u!5Ryz~ua!Rxz~f1!Rxy~u!Rxz~2f1!Ryz~2ua! ~38!

wheref1 ranges from 0 to 2p.
To find the first rotator in~35! we proceed analogously. We want to find a rotation by an an

v on a plane that contains a vector lying somewhere in the (w,x,y) subspace, but is otherwis
arbitrary, because this is the situation of~33!. If we start with a rotator that contains thew-axis but
is otherwise arbitrary, taking say,

Ryz~g1!Rxy~d1!Rwx~v !Rxy~2d1!Ryz~2g1!, ~39!

whered1 ranges from 0 top andg1 ranges from 0 to 2p, it is not hard to see that the first rotato
in ~35! must be

RP1
~v !5Rxy~ub!Rwx~fb!Ryz~g1!Rxy~d1!Rwx~v !Rxy~2d1!Ryz~2g1!Rwx~2fb!Rxy~2ub!.

~40!

Further rotations should be by 2u and 2v to avoid the production of center of mass term
through trigonometric identities. These considerations yield
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b̃2N218 ~v !5R̃PN

b ~2v ! )
i 5N21

2

EiRwx~2v !Ei
TRxy~ub!Rwx~fb!Rxz~g1!Rxy~d1!Rwx~v !ŵ ~41!

and

a2M218 ~u!5R̃PM

a ~2u! )
i 5M

2

DiRxy~2u!Di
TRxy~ua!Ryz~f1!Rxy~u!ŷ. ~42!

IV. GENERALIZATION TO HIGHER DIMENSIONS

Here we show the straightforward generalization of our four-dimensional argument in S
to a unit vector living in arbitrary dimensions. The constraint equations~8! and~9! as well as the
argument leading to~19! and~20! are independent of the number of dimensions the vector live
The only thing that changes with the number of dimensions is the parametrization ofE, the rotator
that takes an arbitrary oriented plane to the plane of the first two coordinates. In the followin
label our spatial coordinates by the numbers 1 throughd.

If we consider the projection of the plane onto the subspace given by the last three coord
(d22,d21,d), one can see that a rotation byad about thed axis @Rd22,d21(ad)# until the vector
perpendicular to the projected plane lies in thed-d21 plane followed by a rotation by an anglebd

about thed22 axis @Rd21,d(bd)# is sufficient to rotate the projected plane out of thed axis. To
perform these transformations it is sufficient for the angles to range from 0 top. We can repeat
this procedure by moving upd22 times in the coordinates until the plane lies entirely in the
plane as desired, ensuring that the range of the angle in the very last rotationR2,3(b3) is from 0
to 2p to account for the fact that we are dealing with an oriented plane. We can then writ
rotator as

E5Rd22,d21~ad!Rd21,d~bd!¯R1,2~a3!R2,3~b3!. ~43!

The number of parameters introduced by such a product is 2(d22) per harmonic plus (d21)
parameters to specify the initial unit vector, giving a total of 2N(d22)1d21 which checks with
d(2N11) degrees of freedom in the vector coefficients of the Fourier series minus 4N11 con-
straints.

In the case of Nambu–Goto strings in an arbitrary number of dimensionsd one would span
both right- and left-moving excitations according to

aN8 ~u!5)
i 5N

1

EiR1,2~u!Ei
Ta08 ~44!

and

bN8 ~v !5)
i 5N

1

EiR1,2~v !Ei
Tb08 ~45!

with the Ei given by the choice of~43! appropriate to the desired number of dimensions.

V. CONCLUSIONS

We have generalized the solution to the unit magnitude constraint presented in Ref. 7
three to four dimensions, casting it somewhat differently, in an effort to arrive at a ge
parametrization of chiral superconducting strings with a finite number of harmonics. We
further shown how to construct loop solutions that satisfy the center of mass constrain
exclude overall orientation freedom. This result is useful because in studies of the proper
chiral loops, such as self-intersection and gravitational radiation properties, overall orientat
the loop is unimportant.
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Studies of chiral cosmic string loops with constant currents8 and simple varying currents9 have
been performed. Generally, however, we expect the current to be arbitrarily varying when
are formed by intersections involving different strings or if different segments of the loop or s
were at some point in causally disconnected regions. This is a fairly generic situation and a
of the properties of more general chiral loops should account for these variations.

Along the way, we have found that our modification of the method lends itself readily
generalization to arbitrary dimensions. We use such a generalization to present solutions tha
be useful in the investigation of classical relativistic strings in higher dimensions as well as s
in 311 Minkowski space with currents and charges induced by Kaluza–Klein compactifica11

when the back-reaction from the gauge fields can be considered negligible.
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On three-dimensional coupled bosons
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In this work we study two complex scalar fields coupled through a quadratic inter-
action in 211 dimensions using the method of bilinears as suggested by Rajeev
@Int. J. Mod. Phys. A9, 5583~1994!#. The resulting theory can be formulated as a
classical theory. We study the linear approximation, and show that there is a pos-
sible bound state in a range of coupling constants. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1501167#

I. INTRODUCTION

Quantum field theory has been an essential tool for the modeling of various physical ph
ena. One of the major problems in field theory is the understanding of relativistic bound s
The standard way to look at field theories is via perturbation theory around the free theor
bound state problems are difficult to formulate in this approach. The most common way is
a Bethe–Salpeter approach for the four-point function~for two particle bound states! and find a
self-consistency condition for the bound state solution. Typically this requires various appro
tions which may break down in the highly relativistic cases.

One of the most successful applications of this approach is within the large-Nc approximation:
In his classic paper, ’t Hooft obtained a bound state equation for mesons in two dimensions
large-Nc whereNc refers to the color for the non-Abelian SU(Nc) gauge theory.1 This leads to a
singular integral equation for the possible masses of the mesonic excitations. This equa
expressed in terms of the wave function of the meson given as a function of the frac
light-cone momentum. The analysis of this integral equation in Ref. 2 shows that there ar
bound states corresponding to positive eigenvalues with finite multiplicity, and these eigen
tend to infinity. The scalar version of this model is worked out in Ref. 3 using the orig
approach of ’t Hooft and in Ref. 4 via a Hamiltonian approach to the large-Nc limit. These
relativistic equations behave in a very similar way to the standard ’t Hooft equation. In
dimensions we can generalize the Yang–Mills Lagrangian, since the gauge fields are not d
cal, by means of a nondynamical scalar field. The large-Nc limit meson bound state equation o
these models have some other interesting features.5 In Ref. 6, Aoki has generalized these bou
state equations for bosons and fermions coupled via SU(Nc) gauge theory. A good presentation
many two-dimensional models using the bilocal fields in the path integral formalism within
large-Nc limit is given in Ref. 7. In this article several interesting bound state equations
derived, and further references are given.

In Ref. 8 Rajeev has formulated the large-Nc model as a classical field theory using col
invariant bilinears, and he has shown that the phase space of the theory is the restricted
mannian. The knowledge of the phase space allows one to make a variational ansatz
baryons in this theory, which correspond to the large fluctuations of the field~see Ref. 9!. Further
details of this approach are given in Ref. 10. Toprak and the author of this paper have ex
this work to SO(Nc) gauge theory of bosons and fermions and obtained variants of the ’t H
equation for these cases.11,12 The adjoint matter fields in the large-Nc limit yields again singular
integral equations for possible mesonic strings, they exhibit a very similar bound state struc

a!Electronic mail: turgutte@boun.edu.tr
48280022-2488/2002/43(10)/4828/11/$19.00 © 2002 American Institute of Physics
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the original model, but these equations are more complicated due to the fact that mesons a
color invariant strings of operators.13–16

The two-dimensional Yukawa model is analyzed within the light-cone method in Refs. 17
These models are more complicated due to nonlocal renormalization effects; it is possible to
integral equation for bound states using some further approximations. A four-dimensional
sion of these ideas is given in Ref. 20. The common feature of all these bound state equa
that they are singular integral equations. In the gauge theory cases these singular integral eq
are rather restrictive in that they only allow for a discrete spectrum. In the other cases this
necessarily true. There is usually a finite number~typically one! bound state. There are investig
tions in three dimensional QCD for the bound state equations of mesons~see the recent article—
Ref. 21!. Four-dimensional realistic theories are very complicated since one has to dea
renormalization. The author is not knowledgeable enough about these realistic bound stat
tions, however some information can be found in Ref. 22~see also Ref. 23 for a review o
renormalization in the light-front point of view and some nonperturbative applications in
formalism!.

In this article we will apply a certain kind of mean field theory, which is a large-Nf limit to
two coupled complex bosons~we call it flavor symmetry to emphasize that it is not gauged!. This
theory is simple since it does not require coupling constant and wave function renormaliza
the perturbation theory. Defining the scalar field around the free field theory may not b
interesting from a physical point of view, but we regard this as an interesting toy model. The
approximation yields a bound state for the composite of two bosons. We will apply the metho
Rajeev10 and formulate it as a classical field theory of bilinears. In this case~unlike the gauge
theory case! this is only an approximation since the theory does not have to be restricted t
flavor invariant sector. To avoid repetitions we sometimes refer to our work on complex bos
Ref. 24. There is an interesting Bethe–Salpeter treatment of bound states in the broken p
f4 theory in Ref. 25, in some sense this is similar to the model we work with.

II. THE MODEL IN THE LIGHT-CONE AND LARGE- Nf LIMIT

We write down aU(Nf) invariant action for two complex scalarsfa andfb ,

S5E d3xS ]mfa
†]mfa1]mfb

†]mfb2ma
2fa

†fa2mb
2fb

†fb

2
l

4
@~fa

†fa!21~fb
†fb!222~fa

†fb!~fb
†fa!# D . ~1!

We introduced a common couplingl, for the two complex fieldsfaa andfba . We assume tha
the internal indexa takes the values 1,...,Nf . If we do not have the last term which couples t
two fields the action would have aU(Nf)3U(Nf) symmetry, and the interaction term explicitl
breaks this. The interaction may look discomforting, but it is easy to see that it is always po
The classical ground state of the massive theory is when both fields are set to zero. This
that we can quantize the theory around its classical minimum by introducing creation–annih
operators for the Fourier modes, as we will see in the following. Note that this theory in
dimensions is super-renormalizable from a perturbative point of view, so we do not expec
multiplicative renormalizations~whenl,0 the theory is unstable, it can be defined by a per
bation theory analysis, but we restrict ourselves to positive values!.

Perturbatively, there is only one type of divergence after normal ordering which we
comment on later.26 To apply the methods developed by Rajeev, we will use the light-c
coordinates, introducex15(1/&) (x01x2) and x25(1/&) (x02x2), and x1 remains as the
transverse coordinate. We choosex1 as time~that is our evolution variable!. A good review of
light-front methods is given in Ref. 27; a good discussion of the scalar field in the light-fro
also given in Refs. 28 and 29. The three-dimensional scalar field theory has been investigate
different points of view in Refs. 26, 30–32.
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We basically use the same conventions as in our previous work,24,33

S5E dx1 dx2dx1S 1

2
fa

†~22]2!]1fa1
1

2
fb

†~22]2!]1fb2fa
†~ma

22]1
2!fa2fb

†~mb
22]1

2!fb

2
l

4
@~fa

†fa!21~fb
†fb!222~fa

†fb!~fb
†fa!# D .

The action is first order in timex1, which means that we are already in the Hamiltonian form
ism. The Hamiltonian can be read off directly,

H5E dx2 dx1S fa
†~2]1

21ma
2!fa1fb

†~2]1
21mb

2!fb

1
l

4
@~fa

†fa!21~fb
†fb!222~fa

†fb!~fb
†fa!# D . ~2!

The quantization at equal time following Dirac gives

@f̂a
a†~x2,x1!,f̂ab~y2,y1!#52

i

4
db

a sgn~x22y2!d~x12y1!, ~3!

and the same rule applies forfb . We recall that the field can be expanded in terms of creatio
annihilation operators at initial light-front time~since the classical minimum is the zero config
ration for the fields!,

f̂aa~x2,x1!5E @dp2dp1#

A2up2u
aa~p2 ,p1!e2 ip2x22p1x1

,

f̂ba~x2,x1!5E @dp2dp1#

A2up2u
ba~p2 ,p1!e2 ip2x22p1x1

,

where we use@dp#5 dp/2p. ~To properly define everything we should assume that this expan
is given for (2`,2e0#ø@e0 ,`) at the end we takee0→0 limit.!

The creation and annihilation operators now satisfy

@aa~p2 ,p1!,ab†~q2 ,q1!#5sgn~p2!da
bd@p22q2#d@p12q1#,

@ba~p2 ,p1!,bb†~q2 ,q1!#5sgn~p2!da
bd@p22q2#d@p12q1#.

Since the fields are complex valued, annihilation and creation operators are not relate
introduce a vacuum stateu0& for the Fock space construction,

aa~p2 ,p1!u0&50 for p2.0, aa†~p2 ,p1!u0&50 for p2,0,

ba~p2 ,p1!u0&50 for p2.0, ba†~p2 ,p1!u0&50 for p2,0.

It is important to keep in mind that the operatoraa(p2 ,p1) for p2,0, creates an antiparticle of
momentum(2p2 ,2p1) and similarly forba ~which one can see by rewriting the above-giv
expansions in a more conventional way, by separating particle and antiparticle operator!. We
define normal ordering rules with respect to this vacuum as usual and denote it by a
:fa . . . fa :, for the computations we will use the following relation:
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:aa†~p2 ,p1!ab~q2 ,q1!ªaa†~p2 ,p1!ab~q2 ,q1!2
db

a

2
~12sgn~p2!!d@p22q2#d@p12q1#,

~4!

and exactly the same forb quanta.
We have the following Hamiltonian in the quantized theory:

Ĥ5E dx1 dx2S :f̂a
†~ma

22]1
2!f̂a :1:f̂b

†~mb
22]1

2!f̂b :

1
l

4
@ :~f̂a

†f̂a!2:1:~f̂b
†f̂b!2:22:~f̂a

†f̂b!~f̂b
†f̂a!:# D .

As it stands the Hamiltonian would not be a well-defined operator for finiteNf theory. We need to
introduce mass renormalization terms which correspond in the diagramatic language to the s
sun diagrams.26,30,31When we take the large-Nf limit these counterterms become of smaller ord
therefore the Hamiltonian as written will have a well-defined limit.

We now define as an approximation a large-Nf limit and restrict the theory to the flavo
invariant sector. This is to be taken as an approximation to the full quantum theory. We intr
a set of flavor invariant operators, which are directly written in the momentum representatio
to simplify notation we writep to denote p2 ,p1 collectively, and d@p2q#5d@p22q2#
3d@p12q1#,

N̂a~p,q!5
2

Nf
:aa†~p2 ,p1!aa~q2 ,q1!:,

N̂b~p,q!5
2

Nf
:ba†~p2 ,p1!ba~q2 ,q1!:,

Ĉ~p,q!5
2

Nf
aa†~p2 ,p1!ba~q2 ,q1!,

CC ~p,q!5
2

Nf
ba†~p2 ,p1!aa~q2 ,q1!. ~5!

Note thatĈ andCC are just Hermitian conjugates of each other.
The idea behind Refs. 8 and 10 is that when we take the large-Nf limit the flavor invariant

operators have smaller and smaller fluctuations, and if we compute their commutator, for ex
for Na with itself, we get

@N̂a~p,q!,N̂a~s,t !#5
2

Nf
~N̂a~p,s!sgn~p2!d@q2r #2N̂a~r ,q!sgn~p2!d@p2s#2~sgn~p2!

2sgn~q2!!d@p2s#d@q2r # !.

We assume that when we letNf→` there are proper large-Nf limits for these bilinears restricted
to the flavor invariant states. As a result the theory becomes classical, and the expectation
of flavor invariant operators factorize asNf→`.10,34 Thus we may postulate a set of Poiss
brackets for theseclassicalvariables:

$Na~p,q!,Na~s,t !%522i ~Na~p,s!sgn~p2!d@q2r #2Na~r ,q!sgn~p2!d@p2s#2~sgn~p2!

2sgn~q2!!d@p2s#d@q2r # !,
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$Nb~p,q!,Nb~s,t !%522i ~Nb~p,s!sgn~p2!d@q2r #2Nb~r ,q!sgn~p2!d@p2s#

2~sgn~p2!2sgn~q2!!d@p2s#d@q2r # !,

$C~p,q!,C̄~s,t !%522i ~Na~p,t !sgn~q2!d@q2s#2Nb~s,q!sgn~ t2!d@p2t#

2~sgn~p2!2sgn~q2!!d@p2t#d@q2s# !,

$Na~p,q!,C~s,t !%522i sgn~q2!d@q2s#C~p,t !,

$Nb~p,q!,C~s,t !%52i sgn~q2!d@p2t#C~s,q!,

$Na~p,q!,C̄~s,t !%52i sgn~p2!d@p2t#C̄~s,q!,

$Nb~p,q!,C̄~s,t !%522i sgn~q2!d@q2s#C̄~p,t !,

all other Poisson brackets being zero.
There are constraints coming from theU(Nf) invariance, if we restrict the theory to the flavo

invariant sector. They are very similar to the ones found in Ref. 24,

~eNa1e!21eCeC†51,

~eNb1e!21eC†eC51,

NaeC1CeNb1eC1Ce50,

and the Hermitian conjugate of the last equation. These conditions are derived using tech
similar to Refs. 33 and 24. Here we are usinge(p,q)5sgn(p2)d@p22q2#d@p12q1#, 1(p,q)
5d@p2q#, and a shorthand for the operator products, for example,NaC means

~NaC!~p,s!5E @dq2dq1#Na~p2 ,p1 ;q2 ,q1!C~q2 ,q1 ;s2 ,s1!, ~6!

and similarly for the others.
We will have further convergence conditions coming from the super-renormalizability. T

should be regarded as sufficiently restrictive conditions to keep the system’s evolution in
space. The Hamiltonian puts more stringent conditions on the admissible class of observabl
believe its domain should be dense inside the phase space. Correct normalization should
found using the Hamiltonian as a quadratic form on the space of these variables and dem
this form to be finite for all physical states. To state our conditions we recall that the one-pa
Hilbert spaces of bosons are divided into positive and negative energy subspaces accor
sgn(p2). We assume that the operators which act between positive and negative energy sub
will be Hilbert–Schmidt, whereas the operators acting between the same subspaces will b
class.35 We write explicitly the one forC: C(u2 ,u1 ;v2 ,v1) is trace class foru2v2.0, and
Hilbert–Schmidt foru2v2,0, and the same for the other variables. Note that these are cons
with the constraints on the system, which defines the geometry of the phase space. The con
and the convergence conditions can be cast into a coherent geometric picture: it defines a
geneous manifold ofU1((Ha% Hb)1 ,(Ha% Hb)2), but we will not use it in this work.

We can rewrite the large-Nf Hamiltonian in terms of these variables,
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H5
1

4 E @dp#
ma

21p1
2

up2u
Na~p,p!1

1

4 E @dp#
mb

21p1
2

up2u
Nb~p,p!

1
l

64E @dp dq ds dt#
d@p2q1s2t#

Aup2q2s2t2u
@Na~p,q!Na~s,t !1Nb~p,q!Nb~s,t !

22C~p,q!C̄~s,t !#.

This defines our large-Nf approximation, and in principle we can calculate the equation
motion of the basic observables by

]O~u,v !

]x1 5$O~u,v !,H%, ~7!

where O refers to any one ofNa , Nb , C, C̄. The resulting equations are nonlinear integ
equations and we also have the constraint to satisfy. It would be interesting to study this s
using a variational ansatz. We will leave the analysis of the full system to a future work and
at a linearized version.

III. LINEARIZATION AND A POSSIBLE BOUND STATE

To get a better feeling about the system we can start with a linear approximation. This m
we should linearize the constraint as well as the equations of motion. The linearization
constraint gives us, for our basic variables,

~11sgn~u2!sgn~v2!!Na~u2 ,u1 ;v2 ,v1!50, ~11sgn~u2!sgn~v2!!Nb~u2 ,u1 ;v2 ,v1!50,
~8!

~sgn~u2!1sgn~v2!!C~u2 ,u1 ,v2 ,v1!50.

We will be using the last one in our computations, it says that the light-cone momenta sho
opposite to each other:C(u2 ,u1 ;v2 ,v1)50 if u2v2.0, and nonzero ifu2v2,0. The same
conditions hold forNa andNb as well. In the linear approximation we will search for a possi
bound state ofa andb particles. In principle we can compute the linearized equations for all
other variables, but they will not lead to a solution for the bound state or a solution
resonance: they only have scattering states. Therefore we work only with the compositeC(u,v),
let us chooseu2.0, v2,0. The equations of motion ofC(u,v) for u2.0, v2,0, in the linear
approximation become

]C~u,v !

]x1 5$C~u,v !,H%

5
i

2 Fma
21u1

2

u2
2

mb
21v1

2

v2
GC~u,v !

2 i
l

8p E @dp dq#

Aup2q2u2v2u
d@p22q21v22u2#d@p12q11v12u1#C~u,v !.

Let us make an ansatz, in the light-front direction we make a ‘t Hooft-like choice with res
to the relative momentum variablez5u2 /(u22v2). This variable now satisfies 0,z,1, and
we setC(u2 ,u1 ;v2 ,v1)5 f̃ (z;u1 ,v1)eiP1x1

. Notice thatP25u22v2.0, and we introduce a
relativistically invariant mass variablem252P1uu22v2u2(u11(2v1))2, which will be the
mass of the bound state@recall that the momentumv1 denotes an antiparticle with momentu
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2v1 , thusu11(2v1) is the total transversal momentum of the two particle state#. After some
manipulations, similar to the ones in Refs. 8 and 11, this gives us an eigenvalue equation
invariant mass:

m2 f̃ ~z;u1 ,v1!5Fma
21~u12z~u11~2v1!!!2

z
1

mb
21~v12~12z!~u11~2v1!!!2

12z G f̃ ~z;u1 ,v1!

2
l

8p E
0

1

dhE
2`

` @dp1dq1# f̃ ~h;p1 ,q1!

Ah~12h!z~12z!
d@p12q12~u11~2v1!!#.

~Note that this form reduces tom5ma1mb if we setl50, and choose the functionf̃ properly.!
We may equivalently use a new set of variables,R5u12z(u11(2v1)) andu11(2v1), relative
transversal light-front momentum and transversal total momentum, respectively, instead
above-mentioned variables. If we write everything in terms of these new set of variables w

m2 f̃ ~z;R,u11~2v1!!5Fma
21R2

z
1

mb
21~2R!2

12z G f̃ ~z;R,u11~2v1!!

2
l

8p E
0

1

dhE
2`

` @dQ#@d~p12q1!# f̃ ~h;Q,p11~2q1!!

Ah~12h!z~12z!

3d@p12q12~u11~2v1!!#.

~The Jacobian of this transformation in the integral is one.! The total momentum integral can b
done due to the delta function and we end up with

m2 f̃ ~z;R,u11~2v1!!5Fma
21R2

z
1

mb
21~2R!2

12z G f̃ ~z;R,u11~2v1!!

2
l

8p E
0

1

dhE
2`

` @dQ# f̃ ~h;Q,u11~2v1!!

Ah~12h!z~12z!
.

We see that the total momentumu11(2v1) is conserved, thus we can factor out the transve
center of mass motion by assumingf̃ (z;u1 ,v1)5 f (z,R)g(u11(2v1)):

m2f ~z,R!5Fma
21R2

z
1

mb
21R2

12z G f ~z,R!2
l

16p2 E
2`

`

dQE
0

1

dh
f ~h,Q!

Ah~12h!z~12z!
. ~9!

We can reduce this again to a functional equation for the unknown eigenvalue, by usin
standard techniques,

l

16p2 E
2`

` E
0

1 dh dQ

Q21ma
21m2h21~mb

22ma
22m2!h

51. ~10!

The integrand will have no poles if the quadratic expression involvingh has no real roots, or if it
has a double root. This is the case if we can assume thatuma2mbu<m<ma1mb . The last
inequality is clear, the bound state mass cannot be bigger than the sum of its constituent’s m
The other inequality says that the fundamental quanta should be stable against decay
example,ma.mb , then it would be favorable to havema decaying intom andmb . Then we can
evaluate the integral in any way we want. First we take theQ integral, this gives us
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E
0

1 dh

Am2h21~mb
22ma

22m2!h1ma
2

5
16p

l
. ~11!

The next integral can be done and simplified into

1

m
lnFma1mb1m

ma1mb2mG5
16p

l
, ~12!

which is valid whenuma2mbu<m<ma1mb . We may study the small coupling limit of thi
expression. In this case we expect that the bound state mass becomes very close to the tw
treshold, then we can write

ma1mb2m

ma1mb1m
'e216p(ma1mb)/l, m'~ma1mb!~122e216p(ma1mb)/l!, ~13!

which is consistent if we takel/(ma1mb)!1. The other extreme is interesting as we
m'ma2mb ~assuminga is the heavier particle!. This implies a critical couplinglc beyond which
our methods break down, due to the appearance of a tachyon,

16p

lc
5

1

ma2mb
lnFma

mb
G

or

lc5
16p

lnFma

mb
G ~ma2mb!. ~14!

This critical coupling is pushed to higher and higher values ifb becomes lighter and lighter with
respect to thea particle. For any given value of the coupling constant in the interval (0,lc#, there
is a solution for the bound state energy. Hence we see that there is a composite bound s
these values of the coupling constants. It is not clear what happens beyond this value. It is p
that the linear approximation breaks down. It is also possible that the large-Nf limit is not a good
approximation beyond a certain value. The other possibility is that the naive vacuum is not
vacuum of the quantum theory and we should redefine the vacuum of the system. We are n
to analyze these possiblities at the moment.

Let us compare this with the results we would have found if we looked at a 111-dimensional
version of the same model. Then the bound state equation could be written in terms
fractional light-cone momentumz only. There is no transversal component and we have only
integral to compute. As a result we find the equation that should be satisfied by the eigenvm
~with the conditionuma2mbu<m<ma1mb),

1

A4ma
2mb

22z2 FarctanS 2mb
21z

A4ma
2mb

22z2D 1arctanS 2ma
21z

A4ma
2mb

22z2D G5
8p

l2 , ~15!

wherem25ma
21mb

21z and we wrotel2 for the coupling constant since it has dimensions ma
squared. To analyze the behavior it is more natural to define the dimensionless variabz̃

5z/2mamb , ands5ma /mb , and rescale the couplingl̃25l2/mamb ,

1

A12 z̃2 FarctanS s1 z̃

A12 z̃2D 1arctanS 1/s1 z̃

A12 z̃2D G5
16p

l̃2
. ~16!
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Note that now z̃ satisfies 21, z̃,1. If we take the limit z̃→211, this corresponds to
m→uma2mbu1 and the other limit z̃→12 corresponds tom→(ma1mb)2. If we assume
z̃'12 we see that the bound states satisfy the relation

z̃'12
l̃4

128

or

m'~ma1mb!F12
l4

128mamb~ma1mb!2G , ~17!

and if we takel̃ sufficiently small this is consistent. Notice that in 211 dimensions we have a
exponential behavior in the inverse coupling, which is nonanalytic in the coupling con
~around zero!, as opposed to this power law change. If we look at the other extreme we se
there is a finite limit forz̃→211, in fact it is equal to 1. This implies a critical coupling agai
beyond which our methods predict a tachyonic state,

l̃c
2516p

or

lc
2516pmamb . ~18!

This is to be compared with the result in Eq.~14!, which is sensitive to the mass difference.
Let us comment on the convergence conditions in this context. Since we are looking

normalizable solution it looks natural to demand

E
0

1

dzE
2`

`

@dR#u f ~z,R!u2,`. ~19!

In fact this is right, and we could see this from our Hilbert–Schmidt condition,

E
u2v2,0

@du2dv2#@du1dv1#uC~u2 ,u1 ;v2 ,v1!u2,`. ~20!

If we now make the above change of variables by callingu22v25P2 we have

1

p E
0

1

dzE
01

`

P2@dP2#E @d~u11~2v1!!dR#uC~P2 ,z;R,~u11~2v1!!!u2,`. ~21!

In our case we are restrictingP2 to the surface 2P2P15m21(u11(2v1))2 ~for fixed m,P1),
this means we should reinterpret the above-mentioned normalization as

E
0

1

dzE @dR#u f ~z,R!u2E m21~u11~2v1!!2

2P1
ug~u11~2v1!!u2@d~u11~2v1!!#,` ~22!

~notice thatP1 is not allowed to be zero!, which means two separate conditions,

E
0

1

dzE @dR#u f ~z,R!u2,` E m21~u11~2v1!!2

2P1
ug~u11~2v1!!u2@d~u11~2v1!!#,`.

~23!
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The second one simply is a Sobolev-type condition, which states that the energy of the tran
center of momentum component should also be finite. We see that our solution actually sat
stronger condition for equations of motion to make sense.
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1Õr -potential without charge
K. Buchnera)

Energiepolitischer Sprecher der o¨dp Straßbergerstr. 16, D-80809 Mu¨nchen, Germany

~Received 7 September 2000; accepted for publication 8 January 2001!

In order to get geodesically complete Reißner–Nordstrøm space–times, it is nec-
essary to identify pairs of singular points. This can be done in such a way that
‘‘wormholes’’ are created which generate electric field lines without any charge.
Finally, it is shown that it is possible to glue this space–time not in the singularities
r 50, but at somer .0. The surface energy generated by this gluing is exotic, but
tends to zero in the limitr→0. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1362285#

I. INTRODUCTION

More than 40 years ago, Archibald Wheeler realized1,2 that nontrivial electric fields can be
generated whose field lines do not end in electric charges. Instead some domain of the spac
out, in which the charge would be expected. To this ‘‘hole,’’ a channel~‘‘wormhole’’ ! is attached,
through which the field lines pass to some other place such that the divergence of the fiel
vanishes. So no charges are needed—they are replaced by special topological structures.

For the realization of this idea, one starts from the Reißner–Nordstrøm solution3,4 to Ein-
stein’s equations. It contains an electric field proportional to 1/r 2. Visser has cut out the region
r ,e from two Reißner–Nordstrøm space–times and has glued together the remaining part
the subspacesr 5e.5,6 He wanted to obtain a ‘‘transversable’’ wormhole. Therefore he chose
larger than the outer horizonr 1 . But this causes some problems.

The geodesics passing through the subspacer 5e are notC2. ~Trivially, they can be made
continuously differentiable everywhere.! This means that freely falling particles get ad-like kick
at r 5e. Second, the Ricci tensor contains a singularity proportional tod(r 2e). Therefore the
energy-momentum tensorT has surface terms. They violate the ‘‘average null ene
condition’’ 6,7

gi j ġ
i~t!ġ j~t!50⇒E Ti j ġ

i~t!ġ j~t!dt>0,

~1!
t: generalized affine parameter

for some curvest→g(t), i.e., the surface matter is ‘‘exotic.’’ This is true for all spherical
symmetric transversable wormholes, whatever the specific assumptions are. A good survey
literature on this subject is given in Ref. 6.

In the present work, we want to develop a model for the topological generation of charg
wormholes. This is done for the specific example of electric charge, but, of course, the idea a
to all kinds of charge. For this purpose, it is not necessary to have transversable wormholes:
not need information from the ‘‘other part of the world.’’ In addition, we cannot even expect to
transversable wormholes, because in the Reißner–Nordstrøm solution withM2.Q2, the mass and
charge are hidden by two horizons. So it would be very surprising, if one could avoid all hor
by introducing wormholes and leave the rest of physics unchanged.

The most natural way to reach our goal is to identify singularitiesr 50 in the maximal
analytic extension of the Reißner–Nordstrøm solution. Then in the caseM2.Q2, no changes of

a!Electronic mail: buchner@mathematik.tu-muenchen.de
48390022-2488/2002/43(10)/4839/10/$19.00 © 2002 American Institute of Physics
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space–time outside the horizons are needed. By this identification, the topology be
nontrivial—a fact which is to be expected: Einstein’s equations determine only the local geom
but in most cases give little information about the global structure of space–time. It has
determined by other requirements.

In order that this identification makes sense, one needs a precise definition of singula
This is still an open problem. But here, we are not interested in the most general situation. In
one can start from the maximal analytical extension and use some theory defining the nec
geometric quantities in the singularity. The details of such a theory are irrelevant in this co
tion, because all functions are uniquely determined by their behavior near the singularity.
present work, the Reißner–Nordstrøm solution together with its singularities is considere
d-space.8,9 This is almost identical to the differential space of Refs. 10 and 11. For the discu
of differential equations on these spaces, the results of Ref. 12 are used. But as remarked
most other generalizations of differential manifolds will lead to the same results. This is tr
particular for the differential spaces described in Refs. 10 and 11.

In addition, gluing of two Reißner–Nordstrøm solutions at somer 5e.0 will be discussed.
Here, exotic surface matter appears. But the energy of the electromagnetic field risesr ,
whereas the contribution of the surface matter tends to zero fore→0. Therefore, by an appropriat
choice ofe, the ratio of the surface energy to the electric energy can be made arbitrarily sm

Gluing at r 50 has the advantage that all geodesics are everywhereC3. On the other hand
gluing at somee.0 avoids the singularities in the metric and the electric field, but entails sur
matter.

II. THE GLOBAL STRUCTURE OF THE REIßNER–NORDSTRØM SOLUTION

The Reißner–Nordstrøm solution3,4 to Einstein’s equations

Rik2
1

2
Rgik5

8pG

c2 Tik , G: Newton’s gravitational constant,

describes a static spherically symmetric object with electric and magnetic fields. It is given b
metric

ds25
D

r 2 dt22
r 2

D
dr22r 2dV2 ~2!

with the abbreviations

D5r 222Mr 1Q2

and

dV25dq21sin2 q dw2.

Here M and Q are constants determined by the massm, the electric chargeq and the magnetic
chargeqm , respectively, of the object:

M5
2Gm

c2 ; Q25
G

4pe0c4 ~q21qm
2 !.

So, the Reißner–Nordstrøm solution may also contain a magnetic monopole. But in the follo
we will set qm50, unless the contrary is stated explicitly.

We shall restrict ourselves to the caseM2.Q2. For elementary particles, this condition
violated by many orders of magnitude. On the other hand, all ‘‘elementary’’ objects, i.e., q
and leptons, have spin. Therefore the Reißner–Nordstrøm solution does not apply to the
matter whetherM2.Q2 or M2,Q2.
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The construction of the maximal analytic extention starts from the three regions

A: 0,r ,r 2 ,

B: r 2,r ,r 1 ,

C: r 1,r ,`.

Here r 1 and r 2 are the zeros ofD:

r 1ªM1AM22Q2, ~3!

r 2ªM2AM22Q2. ~4!

It is convenient to introduce new coordinatesu,v by

A and C: uªt2r * , vªt1r * , ~5!

B: uªt1r * , vªr * 2t, ~6!

with the abbreviation

r *ªE r 2

D
dr5r 1

r 1
2

r 12r 2
lnur 2r 1u2

r 2
2

r 12r 2
lnur 2r 2u. ~7!

Next, one constructs the new regionsA8, B8 andC8 from A, B andC, respectively, by replacing
u°2u; u°2v in ~5! and~6!. These six regions are composed to a periodic ‘‘ladder’’ accord
to Fig. 1 ~see, e.g., Refs. 7 and 13!. The transformations

An :Uªarctg~2e2au!1~n11!p,

Vªarctg~eav!1np,

Bn :Uªarctg~eau!1np,

Vªarctg~eav!1np,

Cn :Uªarctg~2e2au!1np,

Vªarctg~eav!1np,

An8 :Uªarctg~2e2au!1~n2 1
2!p,

Vªarctg~eav!1~n2 1
2!p,

Bn8 :Uªarctg~eau!1~n2 1
2!p,

Vªarctg~eav!1~n2 1
2!p,

Cn8 :Uªarctg~2e2au!1~n1 1
2!p,

Vªarctg~eav!1~n2 1
2!p,

aª~r 12r 2!/~2r 1
2 ! ~8!
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FIG. 1. Maximal analytic extension of the Reißner–Nordstrøm space–time. Dashed lines:r 5const. The solid line with
arrows shows a photon starting inCn and passing toCn118 through a singularity.
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define global parameters (U,V,q,w). Here U1V may be interpreted as ‘‘time,’’ andU2V as
‘‘radius.’’ With these coordinates, the line element~2! becomes

ds252
4

a2r 2

ur 2r 1uur 2r 2u
sin~2U !sin~2V!

dUdV2r 2dV2. ~9!

It can be seen from Fig. 1 that this maximal analytic extension is not geodesically com
because all radial spacelike and lightlike geodesics end in the singularities. This sugge
identify the singularities inAn with those inAm8 for suitable pairsm, n. But, of course, the metric
~9! and its derivatives are not defined inr 50. So it is not possible to apply here the usual rules14,15

for gluing spaces in general relativity, i.e., to require that the metric~9! is at leastC2 in the
tangential directions andC1 in the normal direction. Instead, one considers the geodesics pa
through the singularities. By definition, they need to beC2-functions of their parameters. And i
order to define ‘‘geodesic’’ coordinates, it is necessary,16 that their limits forr→0 are at leastC3

in AnøAm8 . But in general it is not possible to work with affine parameters, as the metr
singular atr 50.

The first step is to generalize differential manifolds in such a way that the singularities c
included. For this, the d-spaces of Refs. 8 and 9 will be used, which have been very useful
discussion of Schwarzschild’s metric, the radiation filled Friedmann universe and some
exotic space–times.17,18 The basic idea is to replace the coordinate functions in the definitio
differential manifolds by a more general setC of functions. In particular, no compatibility condi
tions between different charts are needed. The only requirement is that one can add, subst
multiply the functions inC. This leads to the following definition:

Let M be a topological space. The pair~M, C! is called d-space, ifC is a sheaf of continuous
real-valued functions onM which form an algebra w.r.t. pointwise operation.

For these d-spaces, it is simple to construct the tangent vectors as ‘‘directional derivat
Let ~M, C! be a d-space andCx the stalk atxPM . A map

V:Cx→R

is called tangent vector to~M, C! in x, if for all nPN, all f 1 ,...,f nPCx , and all germsa of
C1(Rn,R) at yª( f 1(x),...,f n(x))PRn, the equation

V~a+~ f 1~x!,...,f n~x!!!5(
i 51

n

~] ia!•V~ f i !

holds, provideda+( f 1 ,...,f n)PCx . Here ] ia denotes the partial derivative ofa w.r.t. the i th
argument.

For the construction of geodesics, it is necessary to have some theory of differential equ
In general, such a theory does not exist. But in the case under discussion, the regular po
dense in the d-space. Here the results of Ref. 12 guarantee existence and uniquenes
solutions.

In such a theory it is possible to glue the singular points inAn to those inAm8 . It is natural to
requirem5n11 and to identify points with equal ‘‘local times’’t or with equal ‘‘global times’’
U1V. We choose the latter possibility: If the points (r 50, t)PAn are identified with the points
(r 50, t)PAn118 , there exist causal geodesics, which come arbitrarily close to themselves. T
this, regard the lines in Fig. 1 withU5n1p/2 orV5n1p/2. A lightlike geodesic just below such
a line would be continued to a geodesic just above that line.

Gluing points withr 50 and equal values ofU1V entails a time reflexion, i.e., an identifi
cation of the points (r 50, t) in An with the points (r 50, 2t) in An118 .
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III. THE GEODESICS IN rÄ0

The geodesics are most easily computed in the local coordinates (r ,q,w,t). The method is
similar to that used for Schwarzschild’s solution: Because of spherical symmetry, it is possi
put q5p/25const. In this way, the equations are considerably simplified, and the first inte
are easily obtained. The results for spacelike geodesics are13

dw

dt
5

L

r 2 , ~10!

dt

dt
5E

r 2

D
, ~11!

S dr

dt D 2

5E21
D

r 2 S 12
L2

r 2 D . ~12!

HereE andL are constants of integration. It can be seen from~12! that spacelike geodesics inAn

and in Am8 reach the valuer 50, if and only if L50 ~radial geodesics!. In the limit r→0, Eqs.
~10!–~12! yield for L50

d

dt
~r ~t!,q~t!,w~t!,t~t!!→S 6

Q

r
,0,0,E

r 2

Q2D ~13!

or

~r ~t!,q~t!,w~t!,t~t!!→S 6A2uQtu,
p

2
,w0 ,sign~t!

E

uQu
t21t0D . ~14!

These equations show that the radial spacelike geodesics can be continued through the s
ties such that they are~at least! C3 in the sense of d-spaces. This includes the fact that they
three times continuously differentiable onAnøAn118 2$(r 50, t)utPR%. But this is only true, if
suitable curve parameterss ~not the arc lengtht, but, e.g.,sªt/r ! and appropriate constants o
integration are chosen@positive sign in~14! and positive~resp. negative! sign in ~13! for Qt
.0 ~resp.,0!; E and t0 change their sign int50#. Notice that ins50 bothdr/ds and t(s)
have to change sign. Otherwise, the geodesics are notC3. A general discussion of the gluin
conditions can be found in Ref. 16.

Of course, the arc lengtht is not a good parameter nearr 50, because the metric is singula
andt is not well defined. If the tangent points in ther-direction, i.e., ifE50, Eq. ~12! yields

dr

dt
56AD

r 2 ~15!

with the solution~remember thatD>0 holds inA andA8!

AD1M ln~M2r 2AD!56t1t0 .

Here t0 is a constant of integration. This implicit equation forr (t) shows that ther-lines are
geodesics which can be continued through the singularities.

In addition to the spacelike geodesics, also the radial lightlike geodesics reach the sing
Their equations can be derived as in the spacelike case.13 With an affine parametert they read

dr

dt
56E,
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dt

dt
5

Er2

D
, ~16!

dq

dt
5

dw

dt
50.

This yields

dr

dt
56

D

r 2

with the solution

t56r * 1const

@cf. ~7!#. It is convenient to choose the parametert such thatr (0)50 holds. If in addition the
constantE changes sign inr 50, then these geodesics are of classC` in r 50 @in the local
coordinatesU andV modulop/2; cf. ~8! and Ref. 19#.

IV. THE CHARGE IN THE REIßNER–NORDSTRØM SOLUTION

The electromagnetic field tensor of the Reißner–Nordstrøm solution is6

F5
1

4pe0
S q

r 2

]

]t
`

]

]r
1

qm

r 4 sinq

]

]q
`

]

]w D . ~17!

From this, the componentsj i of the four current can be computed:

j i5F ;k
ik . ~18!

Here the semicolon denotes the covariant derivative. Forr .0, it follows immediately from~20!
that the componentsj 1 and j 2 vanish. The other components are

j 35
21

4pe0
F d

dq S qm

r 4 sinq D1
qm

r 4 sinq
cotqG50

and

j 45
q

4pe0
S 2

r 32
2

r 3D50.

At r 50, Eq. ~18! cannot be used, asF diverges. But it is possible to compute the exter
derivative by Gauß’s theorem. This means to discuss the electric field lines nearr 50. In our
coordinates, these are ther-lines. It has been shown in the last section that they pass throug
singularities. Therefore the divergence of the electric field vanishes: After gluing the space
thee-neighborhoodV of the pointsr 50 consists of two balls with center atr 50: one inAn , and
one inAn118 . Consider

E
V
J5E

V
dF* 5E

V
d~e i jkl F

kldxi`dxj !5E
]V

e i jkl F
kldxi`dxj ~19!

with qm50. Then only the components (k,l )5(1,4) contribute. As the field lines crossing th
sphere inAn pass it from outside to inside, while they pass the sphere inAn118 in the opposite
direction, the total surface integral over]V vanishes. This is even true, ifqmÞ0: The termF23 in
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~19! is present only in integrals in thex1- andx4-directions. But in thex1-integration, the contri-
bution fromAn cancels that fromAn118 . So also this integral vanishes, and we finally get

E
V
J50.

V. ENERGY AND MOMENTUM

In this section, we glue the space–time not in the singularityr 50, but at finite values ofr. For
this, we choose somee satisfying 0,e,r 2 @see~4!# and delete all points withr ,e. Then we
identify the points (r 5e, t) in An with the points (r 5e, 2t) in An118 in a similar way as we did
before. The stability of such surfacesr 5e between two parts of Reißner–Nordstrøm space–tim
has been discussed by Visser.5,6

The r-lines are geodesics perpendicular to the boundaryr 5e. If one follows such a line, the
r-values first decrease, until the boundaryr 5e is reached. Then they increase again. But,
course, at the boundarydr/dtÞ0 @cf. ~15!#. Therefore the derivatives of the metric in the dire
tion of t are discontinuous and the Einstein tensor gets additional terms proportional tod(r
2e).14,15The existence of such terms can also be seen from a simple consideration: If they
be absent, the radial lightlike geodesics would go on to the singularityr 50. But at r 5e, they
have to change their direction towards increasingr-values. Therefore some interaction is need
which forces them to do this.

In the coordinates (r ,q,w,t), the only nonvanishing Christoffel symbols are

G11
1 5

1

2

22M /r 212Q2/r 3

122M /r 1Q2/r 2 ,

G22
1 52S 12

2M

r
1

Q2

r 2 D •r ,

G33
1 52S 12

2M

r
1

Q2

r 2 D •r sin2 q,

G44
1 52

1

2 S 12
2M

r
1

Q2

r 2 D S 2
2M

r 2 1
2Q2

r 3 D ,

G12
2 5G21

2 5
1

r
, ~20!

G33
2 52sinq cosq,

G13
3 5G31

3 5
1

r
,

G23
3 5G32

3 5cotq,

G14
4 5G41

4 52
1

2

22M /r 212Q2/r 3

122M /r 1Q2/r 2 .

The normal to the boundary, pointing away from the regionA, resp.A8, has the components

~ni !5S 21

A122M /e1Q2/e2
,0,0,0D ; nini521. ~21!
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The second fundamental formK of the boundary is defined by

Ki j 52 1
2~~¹ i n! j1~¹ j n! i !; i , j 52,3,4.

Together with~20!, this yields in the limitr→e, r ,e,

K225eA122M /e1Q2/e2,

K335e sin2 qA122M /e1Q2/e2, ~22!

K4452~M /e22Q2/e3!A122M /e1Q2/e2.

All other components ofK vanish. Therefore the energy-momentum tensorT gets the additional
terms from the boundary6

Zi j 5
c2

4pG
d~r 2e!~2Ki j 1Kr

rgi j !; i , j ,r 52,3,4.

For Kr
r , ~22! yields

Kr
r5

2213M /e2Q2/e2

eA122M /e1Q2/e2
.

In the limit e→0, the leading terms inKr
r are2uQu/e2. So one obtains

Z44→
2c2d~r 2e!

4pG

2uQu3

e4 . ~23!

The additional energy due to the gluing is

E5
1

6 E urZr
i e i jkl dxjdxkdxl ,

wheree i jkl is defined as

e i jkl 5AudetguH 11
0

21

andu is the four-velocity of an observer at rest:

~ur !5S 0,0,0,
1

A122M /e1Q2/e2D .

Equation~23! shows that the additional energyE is negative and tends to zero, ife goes to zero.
Therefore there is exotic matter~i.e., matter violating the average null energy condition! on the
surfacer 5e, but its contribution to the total energy can be made arbitrarily small: Remembe
the componentsTj

(em) i of the electromagnetic energy-momentum tensor are proportional toe4

@see~17!#. So we obtain the well-known result that the electromagnetic energyE8 is proportional
to 1/e, i.e., the ratio between the electromagnetic energy and the surface energy become
trarily large. Therefore also the stability of the system is completely determined by the el
magnetic self-energy.

To sum up, we have the following results: Gluing the two parts of the Reißner–Nords
solution at some smallr 5e.0 avoids the infinite self-energy of a point charge and the sin
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larities in the metric. Furthermore, although there exists exotic surface matter, its contribut
the total energy can be made arbitrarily small, ife tends to zero. On the other hand, if the two pa
of the Reißner–Nordstrøm solution are glued together in the singularityr 50, there is no surface
energy.
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Inhomogeneous M-theory cosmologies
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We study a class of inhomogeneous and anisotropicG2 string cosmological mod-
els. In the case of separableG2 models we show that the governing equations
reduce to a system of ordinary differential equations. We focus on a class of sepa-
rable G2 M-theory cosmological models, and study their qualitative behavior~a
class of models with time-reversed dynamics is also possible!. We find that generi-
cally these inhomogeneous M-theory cosmologies evolve from a spatially inhomo-
geneous and negatively curved model with a nontrivial form field toward spatially
flat and spatially homogeneous dilaton-moduli-vacuum solutions with trivial form
fields. The late time behavior is the same as that of spatially homogeneous models
previously studied. However, the inhomogeneities are not dynamically insignificant
at early times in these models. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1504886#

I. STRING COSMOLOGY

Nonperturbative M-theory encompasses and unifies all five anomaly free, perturbative
string theories1 and corresponds to eleven-dimensional supergravity in the low-energy limit2 In
particular, the compactification of M-theory on a circle,S1, leads to the type IIA superstring. A
study of the qualitative cosmological effects that can arise in M-theory is therefore of conside
importance. To lowest order~in the inverse string tension!, the tree-level effective action fo
massless fields contains a dilaton, a form field~which in four-dimensions is dynamically dual t
pseudoscalar axion field! and~a! stringy cosmological constant~s!. Even in this approximation the
one-loop string equations of motion for inhomogeneous backgrounds are very difficult to
and it is a useful first step to consider models in which the homogeneity is broken only in
spatial direction. Metrics that admit two commuting~orthogonally transitive! space-like Killing
vectors are referred to asG2 space–times.

String models admitting an Abelian group,G2 , of isometries have a number of importa
physical applications. The spatially homogeneous Bianchi types I–VIIh and locally rotationally
symmetric~LRS! types VIII and IX admit aG2 group of isometries3 and so theG2 cosmologies
can be considered as inhomogeneous generalizations of these Bianchi models. Nonlinear i
geneities in the dilaton and axion fields can be investigated and, in principle, this allows d
perturbations in string-inspired inflationary models such as the pre-big bang scenario
studied.4,5 Given the potential importance of this scenario it is important to study its gener
with respect to inhomogeneities as well with respect to anisotropies. The general effects o
inhomogeneities and anisotropies have been studied by Veneziano.4

In general relativity~GR! the generic singularity is neither spatially homogeneous nor iso
pic. Hence it is of interest to study more general models. In particular, it has been conjecture
G2 metrics represent a first approximation to the general solution of Einstein gravity in the vic

a!Electronic mail: aac@mscs.dal.ca
b!Electronic mail: rvandenh@stfx.ca
48490022-2488/2002/43(10)/4849/12/$19.00 © 2002 American Institute of Physics
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of a curvature singularity.6–9 The high curvature regime is precisely the regime where stri
deviations from GR are expected to be significant. TheG2 models studied here may therefo
provide insight into the generic behavior of cosmologies at very early times.

A number of exact inhomogeneous and anisotropicG2 string cosmologies have been foun
Barrow and Kunze studied an inhomogeneous generalization of the Bianchi type I
cosmology10 and Feinstein, Lazkoz, and Vazquez-Mozo derived a closed, inhomogeneous
by applying duality transformations on the LRS Bianchi type IX cosmology.11 Clancyet al. have
found inhomogeneous generalizations of the Bianchi type VIh universe and have studied the
asymptotic behavior.12

In general, the field equations reduce to a system of coupled, partial differential equati
two variables when spatial homogeneity is broken along a single direction. Unfortunately,
equations are still very complicated. However, solutions can be found due to the nonco
global symmetries of the string effective action. When the metric admits two commuting s
like Killing vectors, there exists an infinite-dimensional symmetry on the space of solutions
may be identified infinitesimally with the O~2,2! current algebra.13–15 This symmetry reduces to
the Geroch group, corresponding to the SL(2,R) current algebra, when the dilaton and two-for
potential are trivial,16 and includes the global SL(2,R) S-duality of the action.

New inhomogeneousG2 string cosmologies containing a nontrivial two-form potential m
be generated by an application of both theS- and T-duality symmetries from simpler~dilaton-
vacuum! seed solutions. Lidseyet al.17 discuss the noncompact, global symmetries of the str
effective action in a variety of settings and review various methods for solving the Einstein-s
field equations utilizing generating techniques~from solutions with a minimally coupled, massle
scalar field from a vacuum,G2 cosmology!. In particular, Feinstein, Lazkoz, and Va´zquez-Mozo11

present an algorithm which permits the construction of inhomogeneous string solutions b
ploying a Buscher transformation, inverse scattering techniques,7,8 followed by the generating
technique of Wainwright, Ince, and Marshman.18 Feinsteinet al.employ this algorithm to generat
a closed, inhomogeneous string cosmology withS3 topology from a LRS Bianchi type IX
solution.11,19 However, this algorithm involves a number of nontrivial operations, and an alte
tive and more straightforward approach is to apply an O~2,2! transformation directly to the see
cosmology.17

In this paper we shall consider a class of separable string cosmological models whos
erning equations reduce to ordinary differential equations~ODE! which can be studied by quali
tative methods. In particular, we shall focus on a class of M-theory cosmological models.

II. STRING ACTION

We consider the general string action in the form20

S5E d4xA2gH e2FFR1~¹F!226~¹b!22
1

2
e2F~¹s!222L G2

1

2
Q2e26b2LMJ , ~2.1!

in terms of the pseudoscalar axion field,s, the four-dimensional dilaton fieldF, and the modulus
field b, whereL andLM represent cosmological constant terms andQ2 may be interpreted as
zero-form field strength. This is a phenomenological action representing the bosonic sector
effective supergravity action for the low-energy limit of M-theory and encompasses other
theories.20 We are particularly interested in the class of four-dimensional cosmologies de
from the type IIA string and M-theory effective actions and which include a nontrivial Ramo
Ramond~RR! sector.21 In these models a specific compactification from eleven to four dimens
was considered, where the topology of the internal dimensions was assumed to be a produ
consisting of a circle and an isotropic six-torus;21 this is dynamically equivalent to compactifica
tions on a Calabi–Yau threefold.22 The FRW models in this class of cosmologies was studied
Ref. 21.

Defining
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LM523e2F~¹b!22
1

4
eF~¹s!22Le2F2

1

4
Q2e26b2

1

2
LM ; Tab[gabLM22

]LM

]gab ,

the Euler–Lagrange equations then lead to the field equations~FE!23

Gmn52¹m¹nF16¹mb¹nb1 1
2 e2F¹ms¹ns2 1

2 gmn@~¹F!216~¹b!21 1
2 e2F~¹s!212L

1 1
2 Q2eF26b1LMeF22hF#, ~2.2a!

hF5 1
2 ~¹F!213~¹b!22 1

4 e2F~¹s!21L2 1
2 R, ~2.2b!

hb5¹mF¹mb2 1
4 Q2eF26b, ~2.2c!

hs52¹mF¹ms. ~2.2d!

In Eqs. ~2.2a!–~2.2d!, greek indices take on values 0, 1, 2, 3, and units are chosen so
16pĜ51.

III. G2 COSMOLOGIES

Let us examine~2.2! within the context ofG2 cosmological models described by the lin
element

ds25e2F~2dt21dz2!1eG~eq dx21e2q dy2!, ~3.1!

where the metric functions$F,G,q% and the string functions$F,b,s% are all functions oft andz
only. For anyq(t,z), we defineq̇[ ]q/]t , q8[ ]q/]z, andD2q[q̈2q9. The local behavior of
these models is determined by the gradientBm[]mG, and cosmological solutions arise ifBm is
globally time-like.

Also, the Ricci scalar is given by

R5 1
2 e22F@4D2G14D2F13~Ġ22G82!1~ q̇22q82!#. ~3.2!

Using these expressions, and defining the modified dilaton field,

w[F2F2G, ~3.3!

the field equations become

D2w5 1
2 @~ ẇ1Ḟ !22~w81F8!2#1 1

4 ~Ġ22G82!1 1
4 ~ q̇22q82!13~ ḃ22b82!

2 1
4 e2w12F12G~ ṡ22s82!2Le2F, ~3.4a!

D2b5@~ ẇ1Ḟ !ḃ2~w81F8!b8#1 1
4 Q2ew13F1G26b, ~3.4b!

D2s52@~ ẇ1Ḟ12Ġ!ṡ2~w81F812G8!s8#, ~3.4c!

D2q5@~ ẇ1Ḟ !q̇2~w81F8!q8#, ~3.4d!

D2F5 1
2 ~ ẇ1Ḟ !22 1

2 ~w81F8!22 1
4 ~Ġ22G82!2 1

4 ~ q̇22q82!23~ ḃ22b82!

1 1
4 e2w12F12G~ ṡ22s82!2Le2F2 1

2 Q2ew13F1G26b2LMew13F1G, ~3.4e!
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D2G5@~ ẇ1Ḟ !Ġ2~w81F8!G8#1~ ṡ22s82!e2w12F12G2 1
2 Q2ew13F1G26b2LMew13F1G,

~3.4f!

~ ẇ1Ḟ !•1~w81F8!852~ ẇ1Ḟ !Ḟ12~w81F8!F81 1
2 ~Ġ21G82!1 1

2 ~ q̇21q82!16~ ḃ21b82!

1 1
2 ~ ṡ21s82!e2w12F12G, ~3.4g!

~ ẇ1Ḟ !85 1
2ĠG81 1

2q̇q816ḃb81F8~ ẇ1Ḟ !1Ḟ~w81F8!1 1
2 e2w12F12Gṡs8. ~3.4h!

These equations reduce to those in Refs. 20 and 21 in the appropriate limits.

IV. SEPARABLE G2 STRING COSMOLOGIES

A. General case

Let us assume separability of the metric functions of the form

F~ t,z![F~ t !1 f ~z!, G~ t,z![G~ t !1g~z!, q~ t,z![q~ t !1n~z!,

and appropriate separability conditions on the matter fieldsF(t,z), b(t,z), s(t,z). Then the Ricci
scalar is given by

R5 1
2 e22F22 f@4G̈14F̈13Ġ21q̇22~4g914 f 913g821n82!#.

If

4g914 f 913g821n825C, ~4.1!

whereC is a constant, then we obtain a condition which constrains the spatial dependence
metric. The Ricci scalar is then given by

R5 1
2 e22F22 f@4G̈14F̈13Ġ21q̇22C#.

Putting this expression for the Ricci scalar into the action~2.1!, the spatial dependence of th
geometrical terms can be eliminated~by integration over the spatial coordinates in the actio!.
After applying any further separability conditions~on the matter fields!, the resulting FE will be a
system of ODEs. Note that the effect of the spatial dependence is to add a further contributioC)
to the cosmological constantL in the action.

B. Specific example: Linear dependence in z

In an attempt to remove thez dependence, let us assume separability of the form

F~ t,z![F~ t !1 1
2 cz, G~ t,z![G~ t !, q~ t,z![q~ t !1az,

F~ t,z![F~ t !1mz, b~ t,z![b~ t !1nz,

s~ t,z![s~ t !1 lz,

wherea, c, l , m, n are constants@a2 is equivalent to the constantC in Eq. ~4.1!#, and therefore

w~ t,z!5F~ t !2F~ t !2G~ t !1~m2 1
2 c!z[w~ t !1~m2 1

2 c!z.
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With the above-given assumptions, the metric becomes an extension of the inhomogeneous
field G2 solutions found by Feinstein and Ibanez24 to M-theoretical models. In addition, fo
particular values of the parameters, the metric reduces to spatially homogeneous Bianchi I,
VI0 models. Hence,

ẅ5 1
2 ~ ẇ1Ḟ !21 1

4Ġ
21 1

4q̇
213ḃ22 1

4 e2w12F12G12mz~ ṡ22 l 2!2Le2F1cz2 1
4 ~a212m2112n2!,

~4.2a!

b̈5~ ẇ1Ḟ !ḃ1 1
4 Q2e[w13F1G26b1(c1m26n)z]2mn, ~4.2b!

s̈52~ ẇ1Ḟ12Ġ!ṡ1ml, ~4.2c!

q̈5~ ẇ1Ḟ !q̇2ma, ~4.2d!

F̈5 1
2 ~ ẇ1Ḟ !22 1

4Ġ
22 1

4q̇
223ḃ21 1

4 e2w12F12G12mz~ ṡ22 l !2Le2F1cz

2 1
2 Q2e[w13F1G26b1(c1m26n)z]2LMew13F1G1(c1m)z1 1

4 ~a222m2112n2!, ~4.2e!

G̈5~ ẇ1Ḟ !Ġ1~ ṡ22 l 2!e2w12F12G12mz2 1
2 Q2e[w13F1G26b1(c1m26n)z]2LMew13F1G1(c1m)z,

~4.2f!

~ F̈1ẅ !52~ Ḟ1ẇ1m!~ Ḟ1 1
2 c!1 1

2Ġ
21 1

2 ~ q̇1a!216~ ḃ1n!21 1
2 ~ ṡ1 l !2e2w12F12G12mz.

~4.2g!

Note that the constraint equation can be rewritten as

05~ Ḟ1m!22ẇ21c~ Ḟ1ẇ1m!1 1
2Ġ

21 1
2 ~ q̇1a!216~ ḃ1n!21 1

2 ~ ṡ1 l !2e2w12F12G12mz

1Le2F1cz1 1
2 Q2e[w13F1G26b1(c1m26n)z]1LMew13F1G1(c1m)z. ~4.3!

In order for the FE to be independent ofz, it is necessary thatm50 and that eitherc50 or
c56n. Furthermore ifc50 then we have that eithern50 or Q50. In thec56n case, we have
thatL5LM50. It is the latter case that is of interest to us here. From here forth we shall as
that c56n and thatL5LM50. This particular subcase, which is of relevence in M-the
cosmology, is of special physical interest.~The resulting FE in the remaining cases are displa
in Ref. 23.!

V. INHOMOGENEOUS M-THEORY COSMOLOGICAL MODELS

Substitutingc56n, m50, L50, LM50 into ~3.4!, ~4.3! ~and taking the linear combinatio
@~4.2g!–~4.2e!–~4.2a!#! we obtain the following system of ODE with two constraints:

ẅ5 1
4 ~ q̇21Ġ22a212~ ẇ1Ḟ !2112ḃ2212n21e2w12F12G~ l 22ṡ2!!, ~5.1a!

b̈5ḃ~ ẇ1Ḟ !1 1
4 Q2e26b1w13F1G, ~5.1b!

s̈52ṡ~ ẇ1Ḟ12Ġ!, ~5.1c!

q̈5q̇~ ẇ1Ḟ !, ~5.1d!

F̈5 1
4 ~3a21q̇21Ġ2136n2112ḃ21e2w12F12G~ l 213ṡ2!22~ ẇ2Ḟ !218Ḟ2!, ~5.1e!

G̈5Ġ~ ẇ1Ḟ !2e2w12F12G~ l 22ṡ2!2 1
2 Q2e26b1w13F1G, ~5.1f!
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052ẇ22Ġ22q̇2212ḃ222Ḟ2212n22a22e2w12F12G~ l 21ṡ2!2Q2e26b1w13F1G,
~5.1g!

05aq̇1 le2w12F12Gṡ16n~ ẇ1Ḟ12ḃ !. ~5.1h!

From Eq. ~5.1g! we are able solve for and make a global substitution for the quan
Q2e26b1w13F1G. Making this substitution we have the following system of ODEs:

ẅ5 1
4 ~ q̇21Ġ22a212~ ẇ1Ḟ !2112ḃ2212n21e2w12F12G~ l 22ṡ2!!, ~5.2a!

b̈5 1
4 ~2ẇ22Ġ22q̇2212ḃ222Ḟ2212n22a22e2w12F12G~ l 21ṡ2!!1ḃ~ ẇ1Ḟ !, ~5.2b!

s̈52ṡ~ ẇ1Ḟ12Ġ!, ~5.2c!

q̈5q̇~ ẇ1Ḟ !, ~5.2d!

F̈5 1
4 ~3a21q̇21Ġ2136n2112ḃ21e2w12F12G~ l 213ṡ2!22~ ẇ2Ḟ !218Ḟ2!, ~5.2e!

G̈5Ġ~ ẇ1Ḟ !2e2w12F12G~ l 22ṡ2!2 1
2 ~2ẇ22Ġ22q̇2212ḃ222Ḟ2212n22a2

2e2w12F12G~ l 21ṡ2!!, ~5.2f!

05aq̇1 le2w12F12Gṡ16n~ ẇ1Ḟ12ḃ !. ~5.2g!

From the constraint~5.1g! we see that ifẇ50, then all of the other state variables must
simultaneously zero, which can only occur at an equilibrium point of the system. Henceẇ must be
positive~or negative! throughout the physical phase space. Here we shall assumeẇ.0 ~the case
ẇ,0 can be obtained by a time reversal—see the following!.

We define new variables of the form

F̃5
Ḟ

ẇ
, G̃5

1

&

Ġ

ẇ
, q̃5

1

&

q̇

ẇ
, s̃5

1

&
ew1F1G

ṡ

ẇ
,

b̃5A6
ḃ

ẇ
, C̃15Aa2112n2

2

1

ẇ
, C̃25

1

&
ew1F1G

l

ẇ

and a new time variable

dt

dt
5

1

ẇ
. ~5.3!

The variables are chosen so that the transformed dynamical system has a compactifie
space. This property comes from the fact thatQ2e26b1w13F1G>0 which implies that Eq.~5.1g!
yields

1>F̃21G̃21q̃21s̃21b̃21C̃1
21C̃2

2. ~5.4!

The dynamical system~5.2! becomes

dF̃

dt
5F̃~2F̃2 r̃ !1

1

2
~ q̃21G̃21b̃213s̃213C̃1

21C̃2
22~12F̃ !2!, ~5.5a!
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dG̃

dt
5G̃~11F̃2 r̃ !2

1

&
~12F̃22G̃22q̃223s̃22b̃22C̃1

21C̃2
2!, ~5.5b!

dq̃

dt
5q̃~11F̃2 r̃ !, ~5.5c!

ds̃

dt
52s̃~&G̃1 r̃ !, ~5.5d!

db̃

dt
5b̃~11F̃2 r̃ !1

A6

2
~12F̃22G̃22q̃22s̃22b̃22C̃1

22C̃2
2!, ~5.5e!

dC̃1

dt
52C̃1r̃ , ~5.5f!

dC̃2

dt
5C̃2~11F̃1&G̃2 r̃ !, ~5.5g!

and

r̃ 5 1
2 @~11F̃ !21G̃21q̃21b̃21C̃2

22C̃1
22s̃2#,

where the constraint equation becomes

05A 2

a2112n2C̃1F&aq̃16nS 11F̃1
2

A6
b̃ D G12C̃2s̃. ~5.6!

There exists a first integral in the physical phase space (q̃Þ0,C̃1Þ0) for this system. The
function

M5
s̃C̃2

q̃C̃1

is constant, i.e.,M 850. This implies a first integral for the original system of ordinary differen
equations~5.2!

q̇5Cṡe2w12F12G,

whereC is a constant.

A. Invariant sets, monotonic functions

We first recall that the phase space for this dynamical system is the interior and bound
the compact set given by

1>F̃21G̃21q̃21s̃21b̃21C̃1
21C̃2

2. ~5.7!

Various hyperplanes divide the phase space into a number of different regions, they areq̃50, s̃

50, C̃150, and C̃250 hyperplanes. We note thatC̃150 divides the phase space into tw
distinct regionsC̃1,0 andC̃1.0. The dynamics in the invariant setC̃1,0 is the time reversa
of the dynamics in the invariant setC̃1.0 @see~5.3!#.

Consider the function
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M15
s̃2C̃2

2

q̃4

and its derivative

dM1

dt
522M1~11F̃ !.

We easily see that this function is monotonically decreasing in the invariant setq̃Þ0,s̃Þ0,
C̃2Þ0. Therefore, we can conclude that there are no closed or periodic orbits in the s
dimensional phase space, except possibly on the lower dimensional boundaries of this
dimensional invariant set.

We restrict ourselves now to the invariant sets̃50. Consider the function

M25
C̃1

2

q̃2

and its derivative

dM2

dt
522M2~11F̃ !.

We easily see that this function is monotonically decreasing in the invariant setq̃Þ0,C̃1Þ0.
Therefore, we can conclude that there are no closed or periodic orbits in this six-dimen
phase space, except possibly on the lower dimensional boundaries of this six-dimensional
ant set.

In the six-dimensional invariant setC̃250, the function

M35
C̃1

2

q̃2

has the derivative

dM3

dt
522M3~11F̃ !

which is monotonically decreasing in the setC̃250,q̃Þ0,C̃1Þ0. Therefore we conclude tha
there are no closed or periodic orbits in this six-dimensional invariant set.

In the six-dimensional invariant setq̃50, the function

M45
s̃2C̃2

2

C̃1
4

has the derivative

dM4

dt
52M4~11F̃ !,

which is monotonically increasing in the setq̃50,s̃Þ0,C̃2Þ0. Therefore we can conclude tha
there are no closed or periodic orbits in this six-dimensional set.
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With the existence of these monotonic functionsM1 , M2 , M3 , andM4 , we can conclude tha
there are no closed or periodic orbits in the physical six-dimensional phase space@except possibly
on lower dimensional~less than 5! invariant sets#.

The zero-curvature spatially homogeneous and isotropic space–times are contained in
q̃5C̃15C̃25G̃2&F̃50 union q̃5C̃15s̃5G2̃&F̃50.

The matter fields in~2.1! satisfy various energy conditions. For example, the positivity of
kinetic energy of the pseudoaxion scalar field,s, demands thatṡ22 l 2>0 ~i.e., s̃22C̃2

2>0).
However, we note thats̃22C̃2

250 is not an invariant set.

B. Equilibrium points and exact solutions

There are two equilibrium points and one three-dimensional equilibrium set.
The three-dimensional equilibrium set is given by

$F̃21G̃21q̃21b̃251,s̃50,C̃150,C̃250%.

Note that since bothC̃150 andC̃250 we necessarily have thata5n5 l 50. At this point the
value of r̃ 511F̃0 . The exact solution is then

w~ t !5h12
1

r̃
ln~ r̃ t1h0!,

F~ t !5F0S h12
1

r̃
ln~ r̃ t1h0! D1F1 ,

G~ t !5&G0S h12
1

r̃
ln~ r̃ t1h0! D1G1 ,

q~ t !5&q0S h12
1

r̃
ln~ r̃ t1h0! D1q1 ,

s~ t !5s1 ,

b~ t !5
1

A6
b0S h12

1

r̃
ln~ r̃ t1h0! D1b1 ,

whereF0
21G0

21q0
21b0

251 and whereF1 , G1 , q1 , s1 , b1 , h1, andh0 are integration constants
Since a5n5 l 50, this metric is spatially homogeneous~and flat!. Since s̃50 and Q50

~which follows from the other conditions!, this equilibrium set represents spatially flat solutio
where the form-fields~the axion field and the four-form field strength! are trivial and only the
dilaton and moduli fields are dynamically important. These solutions are known as the ‘‘dil
moduli-vacuum’’ solutions~and their analytical form is given in Ref. 25!.

Recall that the dynamics of these models is restricted by the constraint given by Eq.~5.6!. At
these equilibrium points we are able to locally solve for the value ofC̃1 and substitute into the
remaining equations. The eigenvalues in the six-dimensional constraint surface are

0,0,0,&G̃,2&G̃212F̃,211F̃1&G̃2A6b̃.

The three zero eigenvalues correspond to the fact that this equilibrium set is three-dimensi
is clear that a subset of this equilibrium set will act as saddles of varying degree of stability,
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another subset will act as sinks. Consequently, a subset of these dilaton-moduli-vacuum so
with trivial form fields are sinks in the physical phase space, even in the presence of~negative!
spatial curvature, and are thus generic attracting solutions.

A second equilibrium point is

H F̃52
2

3
,G̃50,q̃50,b̃52

1

A6
,s̃56

&

6
,C̃15

&

3
,C̃250J .

Note that sinceC̃250 we necessarily have thatl 50. At this point the value ofr̃ 50. @Note, since
the dynamical system~5.5! is invariant under the transformation (C̃1 ,C̃2)→(2C̃1 ,2C̃2) there
exists a corresponding equilibrium point with aC̃152&/3.] The exact solution is then

w~ t !5h0t1h1 , F~ t !52 2
3 ~h0t1h1!1F1 , G~ t !5G1 ,

q~ t !5q1 , s~ t !57e21/3(h0t1h1)2(F11G1)1s1 , b~ t !52 1
6 ~h0t1h1!1b1 ,

where h05 3
2Aa2112n2, Q25 1

2(a
2112n2)e6b123F12G1, and F1 , G1 , q1 , s1 , b1 , h1 are all

constants. In this situation the variableq̃ can be eliminated. The eigenvalues restricted to
constraint surface are

1
3 , 1

3 , 1
6 ~16A1518& i !, 1

6 ~16A1528& i !.

This point represents a past attractor or a source. This corresponds to a spatially nonv
inhomogeneous model with a diagonal Einstein tensor, having negative curvature.

The line element corresponding to this solution~after a few coordinate redefinitions! is

ds25C2e22Aa2112n2t16nz~2dt21dz2!1~eaz dx21e2az dy2!. ~5.8!

The third equilibrium point is

H F̃52
5

7
,G̃5

&

7
,q̃50,b̃52

A6

7
,s̃50,C̃15

2)

7
,C̃250J .

Note that sinceC̃250 we necessarily have thatl 50. At this point the value ofr̃ 50. @Note, since
the dynamical system~5.5! is invariant under the transformation (C̃1 ,C̃2)→(2C̃1 ,2C̃2) there
exists a corresponding equilibrium point with aC̃1522)/7.] The exact solution is then

w~ t !5h0t1h1 , F~ t !52 5
7 ~h0t1h1!1F1 , G~ t !5 2

7 ~h0t1h1!1G1 ,

q~ t !5q1 , s~ t !5s1 , b~ t !52 1
2 ~h0t1h1!1b1 ,

whereh05(7/2))Aa2112n2, Q25 1
3(a

2112n2)e6b123F12G1, andF1 , G1 , q1 , s1 , b1 , h1 are
all constants. This solution is a curved inhomogeneous model with a trivial axion field. In
situation the variableq̃ can be eliminated. The eigenvalues restricted to the constraint surfac

2
7 , 2

7 , 4
7 ,2 2

7 , 1
7 ~16A23i !.

This point is always a saddle.

VI. DISCUSSION

We have studied several classes of inhomogeneous string models whose governing eq
reduce to ODE. In particular, we have found that generically solutions of the class of separaG2
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inhomogeneous M-theory cosmologies studied evolve from a spatially inhomogeneous and
tively curved model with a nontrivial form fields toward~a subset! of spatially flat and spatially
homogeneous dilaton-moduli-vacuum solutions where the form-fields~the axion field and the
four-form field strength! are trivial and only the dilaton and moduli fields are dynamically imp
tant. This late time behavior is the same as that of the spatially homogeneous models
previously. However, in these models the inhomogeneities are not dynamically insignifica
early times, and the models asymptote~in the past! toward a new class of inhomogeneous co
mological models.

As noted earlier, the time-reversed dynamics of theẇ.0 models we have considered thus f
is equivalent to the dynamics of the case whereẇ,0. This follows by redefining the time variabl
according to dt/dt 52 1/ẇ and appropriate definitions of the other state variables. The evolu
equations will have an ‘‘overall’’ change in sign, and hence the equilibrium points are identic
both cases, but the eigenvalues have opposite signs. Consequently, the dynamics of thẇ,0
models is the time reversal of theẇ.0 models and the time-reversed dynamics of the above c
of models is deduced by interchanging the sources and sinks and reinterpreting expandin
tions in terms of contracting ones, and vice versa.

Although at late times~in the ẇ.0 models! the inhomogeneities decay, the inhomogeneit
are important at intermediate times and, in particular, at early times. Thus the qualitative fe
of the models are quite different to those of spatially homogeneous models studied previous
example, in a study of FRW models21 it was found that all negatively curved FRW models evol
from the solution corresponding to a global source in which the curvature is~negative and!
dynamically important ~but with a trivial axion field! toward the dilaton-moduli-vacuum
solutions,25 even in the presence of spatial curvature. The physical interpretation of these m
where both the NS–NS two-form potential and RR three-form potential are dynamically si
cant, was discussed in Ref. 21, with particular emphasis on the fact that the RR field cau
universe to collapse, but the NS–NS field has the opposite effect, whereby the interplay be
these two fields leads to the models undergoing bounces. In the models under investigatio
orbits in the full phase space~with ẇ monotone! approach the dilaton-moduli-vacuum solution o
the zero-curvature boundary~at late times! and again exhibit a ‘‘bouncing’’ behavior; this bounc
ing behavior is the result of the orbits shadowing orbits in the boundary that are constantly
redirected to saddle points of the same or higher stability until it reaches a stable equilibriu
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A topological method for geodesic connectedness
of space–times: Outer Kerr space–time

José Luis Floresa) and Miguel Sánchezb)

Departamento Geometrı´a y Topologı´a, Facultad de Ciencias, Universidad de Granada,
Avenida Fuentenueva s/n, 18071-Granada, Spain

~Received 14 January 2002; accepted for publication 24 June 2002!

The geodesic connectedness of outer Kerr space–time is proven by using a topo-
logical method. The proof is based on arguments about Brouwer’s degree for the
solutions of functional equations. The applicability of these topological arguments
for dealing with geodesics in space–times is stressed. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1506403#

I. INTRODUCTION

For a space–time, the question whether two causally related points can be joined by me
a causal geodesic has a clear physical meaning. More geometrically, geodesic connectedn~the
possibility of joining any two points by a geodesic of any causal type! is a basic property. Some
techniques introduced to study geodesic connectedness are appliable to related problems o
cal interest, such as the gravitational lensing effect, or the connectedness of two submanif
a causal geodesic~see, e.g., Refs. 1–5!.

Different tools have been introduced to study geodesic connectedness of Lorentzian
folds. The first nontrivial examples were spaceforms, which become specially relevant fro
geometrical viewpoint.6 A complete positive Lorentzian spaceform is geodesically connecte
and only if it is not time-orientable. In particular, de Sitter space–timeS1

n is not geodesically
connected; this happens in spite of the fact that it is globally hyperbolic and, thus, eac
causally related points inS1

n can be joined by a causal geodesic.7,8 The results about geodes
connectedness of manifolds endowed with an affine connection9 ~see also Refs. 10–12! are po-
tentially appliable to any manifold endowed with a nondegenerate metric. Geodesics of Lore
tori provide interesting examples related to connectedness.13–15

But the systematic study of the geodesic connectedness of physically relevant space
was carried out after the introduction of some variational methods in Lorentzian geometry.16 These
methods permit one to prove the geodesic connectedness of stationary and splitting type ma
under reasonable conditions~see the book—Ref. 17 or the survey—Ref. 18!. Moreover, with
different improvements, they ensure the connectedness of outer Schwarzschild space–tim19 in-
termediate Reissner–Nordstro¨m,20 Gödel type,21 and other space–times. Recently, the auth
have obtained the necessary and sufficient condition for the connectedness of gene
Robertson–Walker space–times.22 Moreover, topological arguments have been developed w
prove the connectedness of multiwarped space–times, under sufficient conditions which ar
to necessary conditions23 ~see also Refs. 24 and 25!. In particular, not only space–times a
Schwarzschild black hole are shown to be geodesically connected,23 but also new proofs of the
geodesic connectedness of space–times such as intermediate Reissner–No¨rdstrom23 and outer
Schwarzschild26 are obtained.

Significantly, geodesic connectedness of outer Kerr space–time has not been studied27 It
is not difficult to prove that the stationary part of Kerr space–time is not geodesically conne
moreover, fast rotating Kerr space–time~i.e., Kerr space–time with parametersa2.m2) is not
geodesically connected.26 On the other hand, for values of the parametera close to 0, the hyper-

a!Electronic mail: jflores@ugr.es
b!Electronic mail: sanchezm@ugr.es
48610022-2488/2002/43(10)/4861/25/$19.00 © 2002 American Institute of Physics
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surface between the stationary part and the ergosphere has some good properties from a va
viewpoint ~it is time and light-convex, essentially!. This ensures some properties of causal geo
sics, such as the multiplicity of connecting timelike or lightlike geodesics for big time-separ
~Ref. 17, Theorem 7.2.4!.

Nevertheless, the inexistence of a privileged time function or timelike Killing vector field
the ergosphere introduces difficulties for its study. In fact, the following result holds.26 Let r1 be
the outer radius which determines the first event horizon of Kerr space–time. For anyn.0 the
region r.r 11n is not geodesically connected. In this article, we show that the topologica
arguments introduced by the authors in Ref. 23 are applicable to study geodesic connected
Kerr space–time, and prove that the whole regionr .r 1 is geodesically connected. Even thoug
our study is restricted to Kerr space–time for simplicity, the method would work for some d
ent generalizations of this space–time.

This article is organized as follows.
In Sec. II Kerr space–time is briefly recalled. In Sec. III we give a general overview of

proof, which may serve as a guide for the following sections. The importance of the topolo
arguments first introduced in Ref. 23~for the rather different class of multiwarped space–times! is
stressed. In Sec. IV general properties of the geodesics of Kerr space–time are recalled, an
geodesics relevant under our approach are selected. Then, we reduce the problem of g
connectedness to an analytic problem~Lemma 4.3!, among other technical results.

In Secs. V and VI geodesic connectedness is proven for the slow rotating Kerra2,m2. In
Sec. V the case when one of the two points to be connected lies in the symmetry axisz, is solved.
Otherwise, the problem is technically more complicated, and solved in Sec. VI. Some conc
remarks are given in Sec. VII.28

II. KERR SPACE–TIME

Kerr space–time is the standard relativistic model of the gravitational field of a rotat
massive object. The simplest description of the Kerr metric tensor is in terms of the time c
natet on R and spherical coordinatesr , u, w on R3 ~u denotes colatitude andw longitude!, which
are called Boyer–Lindquist coordinates. Following Ref. 31, Sec. 1.1 we treat the coordinatw as
circular, so the coordinate systemu, w covers all of the sphere except its north and south po
(0,0,61). The coordinate functionw is undefined at the poles, but its coordinate vector field]w is
well-defined and smooth on the entire sphere and is zero at the poles. Definingu(0,0,11)50 and
u(0,0,21)5p extends the functionu to the entire sphere with 0<u<p. At the poles,u is only
continuous, but cosu and sinu are smooth~indeed, analytic! everywhere.

Let m.0 anda be two constants, such thatm represents the mass of the object andma the
angular momentum as measured from infinity. In previous coordinates, Kerr metric takes the

ds25gt,tdt21gr ,rdr 21gu,udu21gw,wdw212gw,tdw dt ~2.1!

with

gr ,r5
l~r ,u!

D~r !
, gw,w5F r 21a21

2mra2 sin2 u

l~r ,u! Gsin2 u, gt,t5211
2mr

l~r ,u!
,

gu,u5l~r ,u!, gw,t52
2mra sin2 u

l~r ,u!

and using

l~r ,u!5r 21a2 cos2 u, D~r !5r 222mr1a2.

Halting the rotation by settinga50, Kerr space–time becomes Schwarzschild space–time
then, the mass is removed (m50) only ~empty! Minkowski space–time remains.
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In this article we only consider the case 0,a2,m2, we mean,slow rotating Kerr space–time.
Fast Kerr space–time is simpler; its~non!geodesic connectedness is studied in Ref. 26. Note
the above-given formulas show that Kerr metric fails when eitherl(r ,u)50 or D(r )50. The
function D(r ) has the zeroesr 15m1Am22a2 and r 25m2Am22a2 and

D~r !5~r 2r 2!~r 2r 1!. ~2.2!

So the hypersurfacesR3$xPR3:r 5r 1% and R3$xPR3:r 5r 2% are singular for~2.1! and are
event horizons. From now on, we will consider theexterior Kerr space–time K, we mean the
region without singularities in the metric tensor defined by imposingr .r 1 . Recall that the region
between the two event horizons has a strange physical behavior: matter might disappear i
proper time, or suddenly appear from nowhere. Beyond the second event horizon, the ring
larity appears with its associated time machine.

III. OVERVIEW

The relation between geodesic connectedness and our topological arguments can b
intuitively as follows. Consider two pointsp0Þp1 of a Lorentzian manifoldM , and fix a topo-
logical sphere of the tangent space top0 , S,Tp0

M , such that the vector 0 is included in th
interior of S. Consider now the subset expp0

sS,sPR, yielded by the geodesics emanating atp0

(expp0
is the exponential map atp0). Initially, for small s, p1 is outside expp0

sS, but for some
biggers, p1 may lie inside expp0

sS. This topological change~from being outside to being insid
the exponential of a sphere! reflects thatp0 andp1 can be connected by a geodesic.

In order to be more precise mathematically, let us see a variation of this idea. Assume tM
is an open subset ofRk, and consider the function

F:D,Tp0
M[Rk→Rk, F~v !5gv~1!2p1 , ~3.1!

wheregv is the unique geodesic starting atp0 satisfyinggv8(0)5v, for anyvPTp0
M , andgv is

defined at 1 for allv in the domainD. Now, the zeroes of the functionF correspond with
geodesics connectingp0 and p1 . If F satisfies certain conditions at the boundary ofD then
topological arguments may imply the existence of a zero. In dimensionk51 these conditions will
be quite trivial: if @a,b#,D and F(a)•F(b),0 thenF will have a zero. Fork52, and, say,
@a,b#3@a8,b8#,D, F5(F1(x,y),F2(x,y)), if F1(a,y)•F1(b,y),0,;yP@a8,b8#, F2(x,a8)
•F2(x,b8),0,;xP@a,b#, then the degree ofF will be Þ0, and F will have a zero; natural
extensions of these conditions will be needed fork>3. More exactly, we will need a variation o
this argument. We will consider a sequence of increasing intervals@an ,bn#, @an8 ,bn8#. Under the
condition forF1, F1(an ,y)•F1(bn ,y),0,;yP@an8 ,bn8#, a connected setCn of zeroes ofF1 which
joins the horizontal linesy5an8 ,y5bn8 can be found. Then, we will look for a zero ofF2 in Cn for
n big enough.

Clearly, a crucial step in this procedure is to ensure the boundary conditions onF. Thus, it is
important to have a partial integration of the geodesic equations, as in most classical space

For Kerr space–timeK, the geodesic equations admit four independent first integrals@see
~4.1!#. But the problem is still complicated, and previous arguments will be used by inclu
some subtleties and technical computations. Our approach can be summarized in the fo
steps.

~1! In order to connect two given pointsp05(t0 ,r 0 ,u0 ,w0),p15(t1 ,r 1 ,u1 ,w1), we will
consider all the geodesics emanating fromp0 . Each geodesicg(s) is determined by its initial
velocity g8(s0). In Kerr space–time, this initial velocity is essentially characterized bythe con-
stants of motion q,K,L,E ~see Sec. IV!. More precisely,g8(s0) yields naturallyq,K,L,E, and
fixing the values ofq,K,L,E, one obtainst8(s0),r 8(s0)2,u8(s0)2,w8(s0) @see Eq.~4.1!#. The sign
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of r 8(s0),u8(s0) will be canonically fixed (r 8(s0)<0,u8(s0)>0) for the geodesics which ar
relevant under our approach. Recall that there are restrictions for the possible values ofq,K,L,E
becauser 8(s0)2,u8(s0)2 calculated from~4.1! cannot be negative.

Geodesics withL50,E50 will be used to connect points in the simple caset05t1 and either
p0 or p1 lying in the z axis. In what follows we will consider geodesics withE21L2.0. More-
over, we will also assume for simplicityr 0<r 1 , t0<t1 ~see Remark 4.5!. Among geodesics with
LÞ0 those normalized withL51 will always be chosen; ifL50 the chosen normalization will be
E51. These last geodesics will be useful when at least one of the pointsp0 ,p1 lies in thez axis;
otherwise, geodesics withL51 will be enough.

Summing up, we havethree degrees of freedomfor geodesics starting atp0 , corresponding to
the set of directions in the tangent space top0 , which will be described either by paramete
(q,K,L51,E) or by (q,K,L50,E51).

~2! The dimension of the manifold is four and, thus, there are four geodesic equa
nevertheless, the reparametrization of the geodesics is not relevant for geodesic connected
one of the equations will be dropped.

Concretely, we will prove thatp0 ,p1 can be geodesically connected by using geodesics
r 8(s)Þ0 for all s in the domain ofg except at a points* such thatr * 5r (s* ) satisfiesr 1,r *
,r 0 . Thus, taking into account this singular pointr * , any such geodesicg(s)
5(t(s),r (s),u(s),w(s)) @characterized by its initial conditions as explained in step~1!# will be
reparametrized with r, that is, asg(r )[g(s(r ))5(t(r ),r ,u(r ),w(r )) for r .r * .

The other two steps depend on if at least one of the pointsp0 ,p1 lies in thez axis or not. The
first case is simpler; assume that, say,p1 lies in thez axis.

(3A) Because of the importance of the returning pointr * the initial parameters q,K (L

50,E51) will be changed by other parameters, (r * ,S) in a domainD̂[(r 1 ,r 0)3(0,̀ ) @param-
eterS will also be related with properties ofr * , see formula~5.2!#.

Given a value (r * ,S)PD̂ we can recover the values ofq andK @Eq. ~5.3!#. Nevertheless, the

domainD̂ will be restricted to a subsetD5(r 1 ,r L* #3(0,̀ ),D̂. The value ofr L* (P(r 1 ,r 0)),
which characterizesD, is calculated to ensure the following properties:

(3AI ) As commented in step~1!, the values ofq,K have some restrictions to characteri
g8(s0). When (r * ,S) belongs toD, these restrictions are satisfied for the correspondingq,K. @In
fact, h(r 0) in Eq. ~5.1! will be positive, and Eq.~5.6! will hold; thus, from~4.1! we will be able
to chooser 8(s0),0, u8(s0).0].

(3AII ) As commented in step~2!, the behavior ofr (s) for the relevant geodesics will be: firs
r (s0)5r 0 then r (s) decreases untilr 5r * and finally r (s) increases untilr 1 . This behavior is
ensured inD by the characterization ofr L* in ~5.4!. @This can be checked because Eq.~4.10! with
~5.1! will be satisfied whenr * P(r 1 ,r L* #.]

(3AIII ) The componentu(s) of any geodesicg in D will satisfy u8(s)Þ0 out of thez-axis
~see~4.1!, ~5.6!!; in particular, from~1!, u8(s).0 initially.

Only geodesics with (r * ,S)PD will be used for connectedness.
(4A) Now, for each (r * ,S)PD we have a reparametrized geodesicg(r ) with the parameterr

going fromr 0 to r * and, finally, tor 1 . When this parameter arrives atr 1 , the coordinatest,u, and
w will have incrementsDt,Du, andDw on g. The incrementDw will not be relevant in this case
becausep1 lies in thez axis. But, in order to connectp0 and p1 , we have to find one of such
geodesics withDt5t12t0 andDu5u12u0 . Moreover, for the increment ofu the following trick
will be useful. LetDuuu be the increment in the coordinateu where it is regarded as a ‘‘circula
coordinate,’’ that is, as ifu increased even after crossing thez axis. Then, it is enough foru:
Duuu5u12u012np, for some integern>0.

Topological arguments will be relevant now. If we study howDt varies with parameterS, we
will find that ~5.7! holds ~see Fig. 1!. Thus, applications of Brouwer’s topological degree yie
connected setsCm , mPN of values of the parameters (r * ,S) such that:

~i! for all (r * ,S)PCm , Dt5t12t0 , and
~ii ! the projection of the points inCm on ther * axis @that is, the image of the map (r * ,S)
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→r* for (r * ,S)PCm] is equal to the whole interval@r 11 1/m ,r L* #. Now, the behavior ofDuuu on
Cm can be studied, finding:~a! the value ofDuuu on the points ofCm in the liner * 5r L* admit an
upper bound independent ofm, and ~b! the value ofDuuu on the points ofCm in the line r *
5r 11 1/m becomes arbitrarily big. Thus, obviously, there exists at least one point in somCm

such thatDuuu5u12u012np, for some integern>0 @in addition toDt5t12t0 , satisfied by~i!#.
So, the required geodesic is found.

Let us see what happens if neitherp0 nor p1 belongs to thez axis. Now, we will consider
always geodesics withL51 ~in particular, they do not cross thez axis!.

(3B) Analogously to case (3A), parameters (q,K,E) will be changed by parameter

(r * ,S,E)PD̂[(r 1 ,r 0)3(0,̀ )2, more closely related to the ‘‘returning point’’ of the geodes
Analogously, the domainD̂ of (r * ,S,E) will be restricted to a subsetD to solve the following
similar problems to (3AI ), (3AII ), (3AIII ):

(3BI ) The values ofq,K,E have some restrictions to characterizeg8(s0). Given (r * ,S,E),
parametersq,K,E are directly computed@formula ~6.1!#, but perhaps the restrictions are n
satisfied and, thus, they are not associated with any geodesic.

(3BII ) Again, the behavior ofr (s) must be as in (3AII ). First, r (s0)5r 0 thenr (s) decrease
until r 5r * and finally r (s) increase untilr 1 . To achieve this, Eq.~4.10! @with ~4.5!# must be
satisfied.

(3BIII ) In (3AIII ) the found connecting geodesic might cross thez axis many times@because
of ~5.6!#. But now, we are considering geodesics which do not cross thez axis. In fact, for any
geodesic withL51, an angleuLP(0,p/2# will exist such that ifuL<u0<p2uL then the com-
ponentu(s) of the geodesic varies betweenuL andp2uL . Thus,uL can be regarded as a lim
angle foru(s) ~see Definition 4.1 and Remark 4.2!. Recall that, if alsouL<u1<p2uL , u(s) will
find no obstruction to crossu0 andu1 .

(3BIV) Technical conditions@Eq. ~6.4!, Remark 6.4# will be required forD in order to apply
topological arguments.

In case 3A a value ofr L* is found such that the corresponding problems 3AI – 3AIII for the
parameters (r * ,S) are solved ifr * P(r 1 ,r L* #. Unfortunately, this is not sufficient now. The be

FIG. 1. When the behavior ofDt(r * ,S) is as in formulas~5.7! then a connected setCm of zeros ofDt2t11t0 which
connectr * 5r 11 1/m and r * 5r L* can be found.
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we can find is some domainD, with restrictions not only forr * but also for S, such that
restrictions 3BI – 3BIV are satisfied when (r * ,S,E)PD ~see Lemma 6.2 and Remark 6.4!. More
precisely, fixed ū.0 let S(r * ,E)>0 be the minimum non-negative number such th
uL(r * ,S,E)<ū if S.S(r * ,E) ~see Definition 4.1 and Lemma 6.3!. S(r * ,E) is a continuous
function with finite supremumS, but it will vanish for some (r * ,E) ~this must be taken into
account noticing thatS.0 for the elements ofD̂). Then there existr L* P(r 1 ,r 0) and ū

P(0,p/2) such thatD[$(r * ,S,E)PD̂:r * P(r 1 ,r L* #,EP(0,̀ ),SP@S(r * ,E),`)% is the required
domain.

(4B) Now, for each (r * ,S,E)PD we have a reparametrized geodesicg(r ) with the parameter
r going fromr 0 to r * and, finally, tor 1 . As in case (4A), when this parameter arrives atr 1 , the
coordinatest,u, andw will have incrementsDt,Du, andDw on g, but now the incrementDw is
also relevant. In order to connectp0 and p1 , it is sufficient to find one of such geodesics wi
Dt5t12t0 , Du5u12u0 , andDw5w12w0 . Moreover, we will denote byDuuu the increment in
the coordinateu computed as if it were positive beyond any rebound ofu(s) at uL or p2uL ; for
example, ifu(s) increases fromu(s0) to p2uL and then decreases tou(s1) we defineDuuu
5u(p2uL)2u(s0)u1u(p2uL)2u(s1)u. Thus, it is sufficient for u: Duuu5u12u012n(p
22uL), for some integern>0. Finally, asw will be regarded as a circular coordinate it is enou
Dw5w12w012n8p, for some integern8>0. Thetopological argumentsare now subtler.

First we will find connected setsCn of parameters such that the associated geodesics
exactlyDt5t12t0 , Duuu5u12u012n(p22uL).

(4BI ) Consider the functionsT5Dt2(t12t0) andQn5Duuu2(u12u0)22n(p22uL) with
domainD, for some integern>0. Given $S̄n%n diverging, there exist$en%n , en.0, en↘0, and
$dn%n , dn.0, dn↘0 such that functionsT and Qn satisfy the boundary conditions~6.34! in a
domainDn ~Fig. 2!, for n big enough~Proposition 6.7!.

(4BII ) Taking into account that in some pointsS(r * ,E) vanishes, a natural compact subs
D n

m,D can be defined@see~6.35!# where connected setsC n
m of simultaneous zeroes ofT andQn

will be found. In order to obtainC n
m , recall that a homeomorphismzn

m mapsD n
m to a cube as in

Fig. 3. Thus, topological arguments imply the existence of a connected setzn
m(C n

m) of zeroes of the
two functions T+(zn

m)21, Qn+(zn
m)21 connecting the upper and the lower faces of the cu

~Lemma 6.9!.
(4BIII ) Using Whyburn arguments on the setsC n

m we construct a new connected setCn,D̄n

~depicted in Fig. 4!. We will prove:

~i! Cn,Dn and thus, points inCn are zeroes ofT andQn , and
~ii ! eachCn has a point withS5S̄n and a point withS5S(r * ,E).0 ~and, thusuL5 ū) for all

n ~Lemma 6.10 and comments above!.

FIG. 2. Domain Dn in ~6.32!: A5(r 11en ,S̄n ,dn), C5(r 11en ,S̄n , 1/dn), D5(r L* ,S̄n , 1/dn), G5(r 11en ,S(r 1

1en ,dn),dn), Behavior ofT,Qn from Lemma 6.3 and~6.34! in Proposition 6.7:T,0 on (AFJG)ø(FF8J8J); T.0 on
(CHID)ø(D8DII 8); Qn.0 on (ACHG); Qn,0 on (F8D8I 8J8). Lower face: graph ofS5S(r * ,E)(>0).
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Now, geodesics associated to each (r * ,S,E)PCn have the required value ofDt, Duuu, but we
have not controlled the value ofDw yet. Our aim will be to find two points in a connected setCn

for some~big! n, whose difference inDw is greater than 2p. Thus, some point inCn will satisfy
Dw5w12w012pn8, n8>0, which concludes the proof. In fact, we prove the existence o

FIG. 3. ~1! Homeomorphismzn
m betweenD n

m in ~6.35! and the cube@0,1#3. The dashed region (F8D8I m8 Jm8 ) corresponds
by the homeomorphism.~2! Brouwer’s topological degree applied toT+(zn

m)21 and Q+(zn
m)21 yields a simultaneous

connected set of zeroesĈn
m5zn

m(C n
m) joining the upper and lower faces of the cube@0,1#3.

FIG. 4. Taking limsupm on C n
m a connected setCn is obtained, satisfying:~a! all the points inDnùCn are zeroes ofT and

Qn , ~b! Cn touches the upper and the lower faces, the latter in a point withS.0 ~Lemma 6.10; in particular,Cn,Dn), and
~c! for big n, functionDwuCn

covers an interval of length greater than 2p ~Lemmas 6.11 and 6.12!.
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choice of$S̄n%n such that points (r n* ,S̄n ,En)PCn obtained in~ii ! satisfy:

2np2~Dw!~r n* ,S̄n ,En!,n•e ~3.2!

for everye.0 andn big enough~Lemma 6.11!. On the other hand, again from~ii ! we can take a
sequence of points (r n* 8 ,Sn8 ,En8)PCn with uL(r n* 8 ,Sn8 ,En8)5 ū.0 for all n which, from Lemma
6.12, implies

2np2~Dw!~r n* 8 ,Sn8 ,En8!.n•e0 ~3.3!

for somee0.0. The result follows then from~3.2! and ~3.3!.

IV. GENERAL BEHAVIOR OF THE GEODESICS

Let g:J→R4, g(s)5(t(s),r (s),u(s),w(s)) be a~smooth! curve on the intervalJ. The first
integrals of the geodesics equations of Kerr space–time are

l~r ,u!t85aD~u!1~r 21a2!
P~r !

D~r !
,

l~r ,u!2r 825D~r !~qr22K !1P2~r !,
~4.1!

l~r ,u!2u825K1qa2 cos2 u2
D2~u!

sin2 u
,

l~r ,u!w85
D~u!

sin2 u
1a

P~r !

D~r !
,

where

D~u!5L2Ea sin2 u,
~4.2!

P~r !5~r 21a2!E2La

andq ~normalization of the geodesic; rest mass!, K ~Carter constant!, L ~angular momentum!, and
E ~energy measured by observers in] t) are constants; we follow essentially the notation in R
31, Chap. 4. So, if we assumer 8(s0)<0, u8(s0)>0 every geodesic is fixed by an initial pointp0

@i.e., g(s0)5p0] and the constantsq, K, L, andE. Moreover, from the third equation in~4.1!, if
g reaches thez axis then, necessarilyL50; recall that whenLÞ0 we can normalizeL51.

Let s(r ) be the inverse function~where it exists! of r (s) in ~4.1!; usingr as the parameter in
the other three equations in~4.1!:

dt

dr
5e

aD~u!1~r 21a2!
P~r !

D~r !

AD~r !~qr22K !1P2~r !
,

du

dr
5e8

AK1qa2 cos2 u2
D2~u!

sin2 u

AD~r !~qr22K !1P2~r !
, ~4.3!

dw

dr
5e

D~u!

sin2 u
1a

P~r !

D~r !

AD~r !~qr22K !1P2~r !
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on a certain domain, beinge,e8P$61%. Equation ~4.3! will be used to prove the geodes
connectedness of outer Kerr space–timeK. But, previously, we need the following definitio
related to the expression ofu8.

Definition 4.1: For any(q,K,L,E)PR4 we defineuL[uL(q,K,L,E) as the smaller angle in
@0,p/2# satisfying

K1qa2 cos2 u2
D2~u!

sin2 u
.0, ;uP S uL ,

p

2 G , ~4.4!

with D(u)[D(u,L,E) given in (4.2).
@Recall that if for some (q,K,L,E) the left-hand side of inequality~4.4! is nonpositive atu

5 p/2 thenuL5p/2].
Remark 4.2: Assume that (q,K,L,E) corresponds to a geodesic withg(s0)5p0

[(t0 ,r 0 ,u0 ,w0) anduL<u0<p2uL . If L51 thenuL can be seen as a limit angle foru(s) as
explained in (3BIII ); in fact, it is clear from~4.1! that u(s) takes values in@uL ,p2uL# being
u8(s)50 only whenu(s)P$uL ,p2uL%.

If one consider geodesics withr 8Þ0 at any point, then the geodesic can be reparametr
by29 r and the incrementsDt, Du, andDw can be calculated integrating in~4.3!. Nevertheless, in
this article we are going to see that two arbitrary pointsp05(t0 ,r 0 ,u0 ,w0), p15(t1 ,r 1 ,u1 ,w1) in
K with r 0<r 1 can be always joined with a geodesic such thatr 8(s) vanishes exactly at one poin
s* , and r * 5r (s* ) satisfiesr 1,r * ,r 0 . Recall that, for these geodesics the denominato
formula ~4.3!, that is

h~r !5D~r !~qr22K !1P2~r !, ~4.5!

will vanish atr * . As r (s) will go from r 0 to r * then necessarilyh8(r * ).0; in fact, this implies
us(r * )2s(r 0)u,` ~see Ref. 29!. As later onr (s) will go from r * to r 1 , thenh(r ).0 if r * ,r
,r 1 ; we will consider geodesics withh(r 1).0 too. Thus, the increment in the variablet will be

Dt5E
r*

r 0
aD~u!1~r 21a2!

P~r !

D~r !

Ah~r !
dr 1E

r*

r 1
aD~u!1~r 21a2!

P~r !

D~r !

Ah~r !
dr . ~4.6!

For the coordinateu, if L51 we will assume thatu(s) will go from u0 to u1 with u8(s) only
vanishing at an even number of pointssi , i 51,...,2n, such thatu(si) is equal either to the limit
angleuL or to p2uL , Remark 4.2. IfL50, we will choose always geodesics such thatq, K, E
make the left-hand side of~4.4! positive for allu and thus,uL50; that is,u8(s)Þ0 always except
at the pointssi , i 51,...,2n, whereg reaches thez axis @at these pointsu(s) is not differentiable
and the sign ofu8(s) changes#. In particular,

uL<u0 , u1<p2uL if L51,
~4.7!

uL50 and ~4.4! holds strictly at uL if L50.

As explained in (4A) and (4B) we will defineDuuu considering the increments as positive beyo
the pointssi . That is, we define

Duuu5E
r*

r 0
AK1qa2 cos2 u2

D2~u!

sin2 u

Ah~r !
dr 1E

r*

r 1
AK1qa2 cos2 u2

D2~u!

sin2 u

Ah~r !
dr . ~4.8!

Finally, the circular coordinatew will have an increment
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Dw5E
r*

r 0

D~u!

sin2 u
1a

P~r !

D~r !

Ah~r !
dr 1E

r*

r 1

D~u!

sin2 u
1a

P~r !

D~r !

Ah~r !
dr . ~4.9!

Recall that this increment also represents a certain numbern8 of turns around thez axis ~if
2n8p<Dw,2(n811)p). Summing up:

Lemma 4.3: Let p05(t0 ,r 0 ,u0 ,w0), p15(t1 ,r 1 ,u1 ,w1) be two points inK with r0<r 1 , such
that sinu0Þ0Þsinu1 ~respectively, one or both points in the z axis!. Assume that there exist q, K,
and E as well as r* P(r 1 ,r 0) such that (4.7) and the following relations (4.10) and (4.11) h
with L51 ~respectively, L50):

h~r * !50, h8~r * !.0, h~r !.0 on ~r * ,r 1#; ~4.10!

H Dt5t12t0 ,
Duuu5u12u012n~p22uL!,

Dw5w12w012pn8
~4.11!

for some integers n,n8>0 @for the case L50, without the restriction onDw in (4.11)#. Then, there
exists s1.s0 such that the geodesicg:@s0 ,s1#→K, g(s0)5p0 with constants L51 ~respectively,
L50), q, K and E, satisfiesg(s1)5p1 .

Remark 4.4:Recall that the restriction onDw in ~4.11! is not imposed whenL50 because if
sinu150 ~as we assumed in the overview! then the coordinatew becomes irrelevant. If sinu050
Þsinu1 then Lemma 4.3 yields a geodesicg(s)5(t(s),r (s),u(s),w(s)) with the appropiate val-
ues ofDt, Duuu. Thenḡ(s)5(t(s),r (s),u(s),w(s)1w̄) with w̄5w12w(s1) is the required geo-
desic.

Remark 4.5: In order to prove the connectedness of two arbitrary pointsp0

5(t0 ,r 0 ,u0 ,w0), p15(t1 ,r 1 ,u1 ,w1) we will assumet0<t1 and r 0<r 1 . In fact, if this last in-
equality does not hold, Lemma 4.3 can be obviously modified takingr * P(r 1 ,r 1).

The following simple technical result will be useful in the following sections~see Ref. 26 for
a detailed proof!:

Lemma 4.6: Let$ f n(x)%n be a sequence of continuous functions on@an ,bn#,R, an→a, bn

→b, a,b satisfying0,c< f n(x)<C for all n, and let $pn(x)%n be a sequence of polynomia
with degree bounded in n satisfying for all n: pn(an)50, pn8(an)5Rn.0 and pn

(k)(an)>0 for
k>2.

( i ) If Rn→`, then

E
an

bn f n~x!

Apn~x!
dx→0.

( i i ) If Rn→0 and pn
(k)(an) admits an upper bound for k>2 and for all n, then

E
an

bn f n~x!

Apn~x!
dx→`.

V. GEODESIC CONNECTEDNESS WITH THE z AXIS

In this section we prove that there exists a geodesic joining two arbitrary points when, at
one of them lies in thez axis. From Remark 4.5, it suffices:

Theorem 5.1:Given two points p05(t0 ,r 0 ,u0 ,w0), p15(t1 ,r 1 ,u1 ,w1) in K, at least one of
them in the z axis, with r0<r 1 , t0<t1 , there exists a geodesicg:@s0 ,s1#→K such thatg(s0)
5p0 , g(s1)5p1 .

Proof: Taking into account Lemma 4.3 it is sufficient to prove that there exist constantsq, K,
andE as well asr * P(r 1 ,r 0) satisfying~4.7!, ~4.10!, and~4.11! for L50.
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First, consider the caset0,t1 and chooseE51; so ~4.5! becomes

h~r !5~r 2r 2!~r 2r 1!~qr22K !1~r 21a2!2. ~5.1!

If we look for r * such that

h~r * !50, h8~r * !5S.0 ~5.2!

then the following two relations for the constantsq andK are obtained:

qr* 22K52
~r * 21a2!2

~r * 2r 2!~r * 2r 1!
,

~5.3!

q5
~r * 21a2!2

2r * ~r * 2r 2!2~r * 2r 1!
1

~r * 21a2!2

2r * ~r * 2r 2!~r * 2r 1!2

2
2~r * 21a2!

~r * 2r 2!~r * 2r 1!
1

S

2r * ~r * 2r 2!~r * 2r 1!
.

Taking into account the dependencies ofq on (r * 2r 1) in the second equation in~5.3!, there
existsr L* P(r 1 ,r 0) near enough tor 1 such that ifr * P(r 1 ,r L* # then

r 1
2 q~r * ,S!.a2, ;S.0 ~⇒K~r * ,S!.a2, ;S.0!. ~5.4!

Moreover, derivating in~5.1! in order to apply Lemma 4.6,

h(2)~r * !54qr* ~r * 2r 1!14qr* ~r * 2r 2!12~qr* 22K !12q~r * 2r 2!~r * 2r 1!112r * 214a2,

h(3)~r * !56q~r * 2r 1!16q~r * 2r 2!1~12q124!r * , ~5.5!

h(4)~r * !524q124.

Clearly h(3)(r * ), h(4)(r * ).0. Moreover,r L* can be chosen such that the sum of the second
third terms in the expression ofq in ~5.3! is positive and thus,h(2)(r * ).0. In particular,h(r )
.0 if r .r * . On the other hand, from~5.4!

K1qa2 cos2 u2
D2~u!

sin2 u
5K1~qa21a2!cos2 u2a2.0 ~5.6!

for all u @in particular,~4.7! is satisfied withL50]. Summing up, because of Lemma 4.3 it
sufficient to find an element ofD[$(r * ,S):r * P(r 1 ,r L* #,SP(0,̀ )% such that the correspondin
(q,K) given from ~5.3! and the functionh(r )[h(r ,q,K) in ~5.1! satisfy the first two equalities
~4.11! with Dt, Duuu as in ~4.6! and ~4.8! ~andL50, E51).

Fix sequences$Sn%n→`, $r n* %n→r * P(r 1 ,r L* #, and put

f n~r ![aD~un~r !!1~r 21a2!
P~r !

D~r !
, pn~r ![hn~r !

with hn(r )[h(r ,q(r n* ,Sn),K(r n* ,Sn)) andun(r ) computed with (r n* ,Sn) from the second equa
tion in ~4.3! @recall ~5.6!#. Using ~5.2! and the positiveness of~5.5!, hypotheses of Lemma 4.6~i!
clearly hold on the interval@an ,bn#5@r n* ,r 1#. Therefore,

~Dt !n5E
r n*

r 0 f n~r !

Apn~r !
dr 1E

r n*

r 1 f n~r !

Apn~r !
dr→0.
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Analogously, if we consider$Sn%n→0 then, from~5.5! and ~5.3!, hn
(k)(r n* ) admits an upper

bound fork>2 and alln thus, from Lemma 4.6~ii !, (Dt)n→`. In conclusion, there exists$em%m ,
em.0, em↘0, such that

Dt~r * ,S!,t12t0 when ~r * ,S!PF r 11
1

m
,r L* G3F 1

em
,` D ,

~5.7!

Dt~r * ,S!.t12t0 when ~r * ,S!PF r 11
1

m
,r L* G3~0,em#

~see Fig. 1!. This is a typical situation where Brouwer’s topological degree ensures, for eacm,
the existence of a connected setCm of zeroes ofDt2t11t0 connecting the extreme vertical line
More precisely,

Lemma 5.2: There exists a connected subsetCm of zeroes of T(r * ,S)5Dt2t11t0 such that

CmùS H r 11
1

mJ 3S em ,
1

em
D DÞB and CmùS $r L* %3S em ,

1

em
D DÞB

for every mPN.
~For a detailed proof, see Ref. 26 Lemma 2.! Therefore, for these subsets~i! and~ii ! in (4A)

holds. So, we only need to prove that among the found zeroes ofT there is a (r * ,S)PD such that
Duuu satisfies~4.11!, for somen.

Let (r m* ,Sm)PCm be with r m* 5r 11 1/m, and take in Lemma 4.6~ii !

f m~r ![
AKm1qma2 cos2 um~r !2a2 sin2 um~r !

Aqm

and pm~r ![
hm~r !

qm

with Km , qm obtained from~5.3!, um(r ) from ~4.3!. From ~5.3!, qm will grow at least asm2 and,
from ~5.4! and ~5.5! one checks that the hypotheses of this lemma hold on the inte
@am ,bm#5@r m* ,r 1#, obtaining

~Duuu!m5E
r m*

r 0 f m~r !

Apm~r !
dr 1E

r m*

r 1 f m~r !

Apm~r !
dr→`. ~5.8!

On the other hand, from~5.7! the points inCm with r * 5r L* haveSP(e1 , 1/e1), thusq, K is upper
bounded for these points and allm @see~5.3!# and so isDuuu. This fact,~5.8! and the connected
ness of eachCm imply for some bigm the existence of (r * ,S)PCm such that the second equalit
~4.11! also holds, as required.

Finally, consider the caset05t1 . ChooseE50 and, thus,T50 automatically. Now~4.5!
becomes

h~r ![~r 2r 2!~r 2r 1!~qr22K !.

By imposingh(r * )50 andh8(r * )51 we obtain the following values for the constantsq andK:
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qr* 22K50,
~5.9!

q5
1

2r * ~r * 2r 2!~r * 2r 1!
.

If we take $r m* %m→r 1 , ~5.9! and formulas analogous to~5.5! imply that Lemma 4.6~ii ! can be
applied to the functions

f m~r ![
AKm1qma2 cos2 um~r !

Aqm

, pm~r ![
hm~r !

qm
,

on the intervals@am ,bm#5@r m* ,r 1#. Thus, we obtain~5.8! and, so, (Duuu)m[Duuu(r m* )→`.
Therefore, a required value forr * can be found in@r m* ,r L* # for some bigm. h

VI. GEODESIC CONNECTEDNESS BETWEEN POINTS OUT OF THE z AXIS

In this section we conclude the proof of the geodesic connectedness ofK by proving that there
exists a geodesic joining two arbitrary points out of thez axis. Recalling again Remark 4.5, w
will prove:

Theorem 6.1: Given two points p05(t0 ,r 0 ,u0 ,w0), p15(t1 ,r 1 ,u1 ,w1) in K, sinu0Þ0
Þsinu1, r 0<r 1 , t0<t1 , there exists a geodesicg:@s0 ,s1#→K such thatg(s0)5p0 , g(s1)
5p1 .

Taking into account Lemma 4.3, it is sufficient to prove that there exist constantsq, K, andE
as well asr * P(r 1 ,r 0) satisfying~4.7!, ~4.10!, and~4.11! with L51.

We will again user * such that~5.2! holds. Then the following two relations for the constan
q andK are obtained from~4.5!:

qr* 22K52
@~r * 21a2!E2a#2

~r * 2r 2!~r * 2r 1!
,

~6.1!

q5
@~r * 21a2!E2a#2

2r * ~r * 2r 2!2~r * 2r 1!
1

@~r * 21a2!E2a#2

2r * ~r * 2r 2!~r * 2r 1!2

2
2@~r * 21a2!E2a#E

~r * 2r 2!~r * 2r 1!
1

S

2r * ~r * 2r 2!~r * 2r 1!
.

Moreover,

h(2)~r * !54qr* ~r * 2r 1!14qr* ~r * 2r 2!12~qr* 22K !

12q~r * 2r 2!~r * 2r 1!14E@~r * 21a2!E2a#18r * 2E2,

h(3)~r * !512qr* 16q~r * 2r 1!16q~r * 2r 2!124E2r * , ~6.2!

h(4)~r * !524q124E2.

From ~6.1!, given (r * ,S,E)PD̂[(r 1 ,r 0)3(0,̀ )2 we obtain (q(r * ,S,E),K(r * ,S,E), E). So,
we can defineuL[uL(r * ,S,E)([uL(q,K,E)), Definition 4.1, and write the following result:

Lemma 6.2: There exist rL* P(r 1 ,r 0) close to r1 and ūP(0,p/2) close to 0 withū,u0 ,u1

,p2 ū such that for all(r * ,S,E) with r1,r * <r L* and uL(r * ,S,E)<ū we have:
(i)

q>m1.0 for somem1 , ~6.3!

(ii) derivatives in (6.2) are greater than 0@in particular, h(r ).0 if r .r * ], and
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(iii)

E
uL

p/2 1

AK

q
1a2 cos2 u2

D2~u!

q sin2 u

du ~6.4!

is upper bounded.
Proof of Lemma 6.2:From Definition 4.1 and formula~4.2!,

1

sin2 uL
5K12Ea2E2a21~qa21E2a2!cos2 uL<K12Ea1qa2 cos2 uL ; ~6.5!

thus taking into account the different terms in~6.1!, there existai ,bi ,ci.0, i 51,...,4 andn.0
such that:

1

sin2 uL
,Fa1

~~r * 21a2!E2a!2

~r * 2r 1!2 2a2

u~r * 21a2!E2auE
~r * 2r 1! G1a3

S

~r * 2r 1!
1a4 , ~6.6!

nq.4qr* ~r * 2r 2!.4qr* ~r * 2r 2!12~qr* 22K !

.Fb1

~~r * 21a2!E2a!2

~r * 2r 1!2 2b2

u~r * 21a2!E2auE
~r * 2r 1! G1b3

S

~r * 2r 1!
, ~6.7!

K

2
2E2a2.Fc1

~~r * 21a2!E2a!2

~r * 2r 1!2 2c2

u~r * 21a2!E2auE
~r * 2r 1! G1c3

S

~r * 2r 1!
2c4 ~6.8!

for any (r * ,S,E)PD̂.
Now, we claim that for somer L* P(r 1 ,r 0) and ū.0 small, if r * P(r 1 ,r L* # and

uL(r * ,S,E)<ū then

4qr* ~r * 2r 2!12~qr* 22K !.m0 , ~6.9!

K

2
2E2a2.0 ~6.10!

for somem0.0; in particular, from~6.7! and ~6.9!, we obtain~i! with m15m0 /n. In fact, if E
.1/a then for somer L* .r 1 if r * P(r 1 ,r L* #:

~r * 21a2!E2a

~r * 2r 1!
.d•E, d5maxH a2

a1
,
b2

b1
,
c2

c1
J 11. ~6.11!

Therefore, the square brackets in~6.6!, ~6.7!, and~6.8! are positive. Thus, from~6.6! if ū is small,
then either@(r * 21a2)E2a#/(r * 2r 1) or S/(r * 2r 1) are big, and~6.9!, ~6.10! are a conse-
quence of~6.7!, ~6.8!, respectively. IfE< 1/a, some square brackets in~6.6!, ~6.7!, ~6.8! might be
negative. But if this happens, then instead of~6.11! one has

u~r * 21a2!E2au
~r * 2r 1!

<
d

a
. ~6.12!

As a consequence, ifū is chosen small enough then, from~6.6!, S/(r * 2r 1) is big. Thus,~6.9!
and ~6.10! are again a consequence of~6.7! and ~6.8!. Moreover, we can also prove:
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;M.0 ' ū.0: q~r * ,S,E!.M if uL~r * ,S,E!<ū, r * P~r 1 ,r L* #. ~6.13!

From ~6.3!, h(3)(r * ),h(4)(r * ).0 and, from~6.9!, h(2)(r * ).0 too and, thus,~ii ! is obtained.
In order to prove~iii !, put

Lq,K,E~u!5
K

q
1a2 cos2 u2

D2~u!

q sin2 u
, uPFuL ,

p

2 G . ~6.14!

When the integral~6.4! is carried out,Lq,K,E(u) vanishes just inuL . It is sufficient to prove that,
whenLq,K,E(u) is smaller than, say,r 1

2 /4 the contribution to the integral~6.4! is bounded. So, we
need just to findū such that, for the correspondingq,K,E with uL<ū:

if Lq,K,E~u!<
r 1

2

4
with uPFuL ,

p

2 G then
d

du
Lq,K,E~u!>1. ~6.15!

Using ~6.3! and ~6.10! it is easy to check:

Lq,K,E~u!.
K

2q
2

1

q sin2 u
. ~6.16!

Therefore, asK/q.r 1
2 @from the first Eq.~6.1!#, we have

if Lq,K,E~u!<
r 1

2

4
then

1

q sin2 u
.

K

4q
~6.17!

and, again using~6.10!, we obtain

1

q sin2 u
.M~E,q!ªmaxH r 1

2

4
,
E2a2

2q J . ~6.18!

On the other hand, from~6.14!

d

du
Lq,K,E~u!52S 11

E2

q Da2 sin 2u1
2 cosu

q sin3 u
~6.19!

which, from ~6.18!, imply

d

du
Lq,K,E~u!.2a2 sin 2u12M~E,q!S 2sin 2u1

cosu

sinu D . ~6.20!

In conclusion, from~6.13! if ū is small the anglesu satisfying~6.18! are small too and, thus, th
right-hand side in~6.20! is greater than 1. h

From ~6.1!, limS→`q(r * ,S,E)5 limS→`K(r * ,S,E)5` and, thus, using ~6.5!:
limS→`uL(r * ,S,E)50. So, fixed ū and r L* in Lemma 6.2 we can defineS(r * ,E)5Inf$S
.0:uL(r * ,S̄,E)<ū,;S̄.S%>0 for all (r * ,E)P(r 1 ,r L* #3(0,̀ ). Recall thatuL(r * ,S,E) is dif-
ferentiable@use (d/du) Lq,K,E(uL)Þ0 because of~6.15! and, thusuL(q,K,E) is differentiable#;
moreover,S(r * ,E) is continuous@whenuL(r * ,S,E)5 ū from ~6.5! and~6.1! ]uL /]S.0]. Recall
also thatS(r * ,E) has a finite supremumS. In fact, from~6.11! and~6.12! the square brackets in
~6.8! are lower bounded. So, for some big valueS0 of S, the expressionK/22E2a2 can be made
arbitrarily big. Thus, from~6.5! and ~6.3!, uL(r * ,S,E) will be less thanū, independently of
(r * ,E), andS(r * ,E),S0 as required. Define now:

D5$~r * ,S,E!PD̂:r * P~r 1 ,r L* #,SP@S~r * ,E!,`!,EP~0,̀ !%. ~6.21!
                                                                                                                



-
f

4876 J. Math. Phys., Vol. 43, No. 10, October 2002 J. L. Flores and M. Sánchez

                    
Lemma 6.3: Consider the continuous function T(r * ,S,E)5Dt2(t12t0) defined onD. There
exist positive constants M1(r * ), M2(r * ) and m(r * ) such that

E<m~r * !⇒T~r * ,S,E!,0,
~6.22!

M1~r * !•AS1M2~r * !<E⇒T~r * ,S,E!.0.

Moreover, these constants can be chosen such that if either m(r n* )→0 or M1(r n* )→` or
M2(r n* )→` for some sequence$r n* %n then, necessarily, r n* →r 1 .

Proof of Lemma 6.3:Fix (r * ,S,E)PD, recalling the expression ofDt in ~4.6! put:

aD~u~r !!1~r 21a2!
P~r !

D~r !
5F ~r 21a2!2

~r 2r 2!~r 2r 1!
2a2 sin2 u~r !GE2F a~r 21a2!

~r 2r 2!~r 2r 1!
2aG

~6.23!

being u(r ) computed from the second equation in~4.3! with constants
(q(r * ,S,E),K(r * ,S,E),E). But each term on the right-hand side of~6.23! will be bounded, say:

0,r 1
2 ,

~r 21a2!2

~r 2r 2!~r 2r 1!
2a2 sin2 u~r !,

~r 1
21a2!2

~r * 2r 1!2 , r P@r * ,r 1#, ~6.24!

and

0,
a3

r 1
2,

a~r 21a2!

~r 2r 2!~r 2r 1!
2a,

a~r 1
21a2!

~r * 2r 1!2 , r P@r * ,r 1#. ~6.25!

Now, put:

m~r * !5
1

2
•

a3~r * 2r 1!2

r 1
2~r 1

21a2!2 . ~6.26!

Thus, if E<m(r * ) then ~6.23! is less than 0 and (Dt)(r * ,S,E),0<t12t0 , thus T(r * ,S,E)
,0 @see~4.6!#. Let

M1~r * !5supDH E

AS
:T~r * ,S,E!<0,S>1J ,

M2~r * !5supD$E:T~r * ,S,E!<0,S~r * ,E!<S,1%11.

To prove~6.22! it is sufficient to proveM1(r * ),`, M2(r * ),`. But, if some of these inequali
ties do not hold then there exists a sequence of points$(r * ,Sn ,En)%n,D satisfying hypotheses o
Lemma 4.6~ii ! for the functions

f n~r !5
1

En
FaDn~un~r !!1~r 21a2!

Pn~r !

D~r ! G , pn~r !5
hn~r !

En
2 ~6.27!

with hn(r )[h(r ,q(r * ,Sn ,En),K(r * ,Sn ,En),En) in @r * ,r 1# and thusRn5Sn /En
2 @see ~6.24!,

~6.25!, ~6.1!, and~6.2!#. Thus, the conclusion of Lemma 4.6~ii ! contradictsT(r * ,Sn ,En)<0 for
all n @see~4.6!#.

For the last assertion, it is clear thatm(r n* )→0 implies r n* →r 1 @see~6.26!#. Even more, if
eitherM1(r n* ) or M2(r n* ) go to` and, up to a subsequence,r n* >r 11e0 , e0.0 then there exists
a sequence of points$(r n* ,Sn ,En)%n,D with T(r n* ,Sn ,En)<0 and eitherSn /En

2 →0 and Sn

>1 or 1/En
2 →0 andS(r n* ,En)<Sn<1. Then, by applying Lemma 4.6~ii ! to ~6.27! as before but,

now, with the sequence$(r n* ,Sn ,En)%n,D we obtain a contradiction again. h
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Remark 6.4:Notice that we can chooseū in Lemma 6.2 small enough such thatD in ~6.21!
satisfies, additionally:

~i! the componentS of the points (r * ,S,E)PD with r * 5r L* and m(r L* )<E<M1(r L* )
1M2(r L* ) admits a positive lower bound@from ~6.5! if uL is small then eitherq or K is big
and, from~6.1! S will be big too#, and

~ii ! if ( r * ,S,E)PD andS/(r * 2r 1) <1 then

U ~r*21a2!E2a

~r*2r2!~r*2r1!
U. 2a

r1
2 1a2

@use~6.6!#.
From now on we will assume thatD is the domain fixed by this new value ofū, and Lemma

6.2 with Remark 6.4 will ensure that none of the problems 3BI – 3BIV explained in Sec. III.
Summing up, it is sufficient to find an element ofD such that the corresponding (q,K,E) given
from ~6.1! and the functionh(r )[h(r ,q,K,E) in ~4.5! satisfy the equalities~4.11! with Dt, Duuu
and Dw as in ~4.6!, ~4.8!, and ~4.9!, and with L51. For this aim, we establish the next tw
technical Lemmas. First, taking into account Lemma 6.3 define the subset

B5$~r L* ,S,E!PD:0,m~r L* !<E<M1~r L* !•AS1M2~r L* !%. ~6.28!

Lemma 6.5:( i ) For (r * ,S,E)PD then ((r * 21a2)E2a)2/q and E2/q are upper bounded.
( i i ) If also (r L* ,S,E)PB then

~Duuu!~r L* ,S,E!5E
r L*

r 0 ALq,K,E~u~r !!

Ah~r !

q

dr 1E
r L*

r 1 ALq,K,E~u~r !!

Ah~r !

q

dr

is upper bounded too.
Proof of Lemma 6.5:~i! If E< 1/a these terms are obviously bounded from~6.3!; otherwise,

first use~6.7! and ~6.11! to prove

nq.b1

E~~r * 21a2!E2a!

~r * 2r 1!
.

~ii ! From Remark 6.4~i! the componentS of the points inB admits a positive lower bound~see
pointsJ8, I 8 in Fig. 2!. Then, there existsL0.0 such that

h8~r L* !

q
5

S

q
.L0 ~6.29!

for all (r L* ,S,E)PB @see~6.1!#. But taking into account~6.1!, ~6.14! and ~i! there existsC0.0
such that

ALq,K,E~u~s!!,C0 ~6.30!

along the geodesicg(s) corresponding to each (r L* ,S,E)PB. Summing up, inequalities~6.29!,
~6.30! joined with h(k)(r L* )/q >0 for k>2 ~see Lemma 6.2! imply that
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~Duuu!~r L* ,S,E!5E
r L*

r 0 ALq,K,E~u~r !!

Ah~r !

q

dr 1E
r L*

r 1 ALq,K,E~u~r !!

Ah~r !

q

dr

is upper bounded onB. h

Lemma 6.6: For any sequence$(r n* ,Sn ,En)%n,D satisfying either rn* ↘r 1 or Sn↘0 then
(Duuu)(r n* ,Sn ,En)→`.

Proof of Lemma 6.6:This result is a consequence of the following two steps:
Step 1. For any such sequence$(r n* ,Sn ,En)%n,D, the polynomialspn(r )5 hn(r )/qn satisfy

hypotheses in Lemma 4.6~ii ! in @r n* ,r 1#. In fact,pn8(r n* )5 Sn /qn →0 @use that the square bracke
in ~6.7! is lower bounded and~6.3!# and, from ~6.2! and Lemma 6.5~i!, derivativespn

(k)(r n* )
(>0) admit an upper bound fork>2.

Step 2. For any sequence$(r n* ,Sn ,En)%n,D such that the polynomialspn(r )5 hn(r )/qn

satisfy hypotheses in Lemma 4.6~ii ! in @r n* ,r 1# then (Duuu)(r n* ,Sn ,En)→`. Otherwise,~Duuu!
(r n* ,Sn ,En) is bounded up to a subsequence. Using~6.14! and~4.5!, the second equation in~4.3!
is rewritten as

e8
Aqndr

Ahn~r !
5

du

ALqn ,Kn ,En
~u!

,

and using that (Duuu)(r n* ,Sn ,En) is bounded:

E
r n*

r 0 Aqn

Ahn~r !
dr 1E

r n*

r 1 Aqn

Ahn~r !
dr<E

u0

u1 1

ALqn ,Kn ,En
~u!

du12n0E
uL,n

p2uL,n 1

ALqn ,Kn ,En
~u!

du

~6.31!

for some integern0.0. As $(r n* ,Sn ,En)%n,D for all n, Lemma 6.2 implies that the secon
member of~6.31! is upper bounded. This contradicts Lemma 4.6~ii ! applied to the functions
f n(r )[1 andpn(r )5 hn(r )/qn in @r n* ,r 1#. h

Next, consider the continuous functions onD, Qn5Duuu2(u12u0)22n(p22uL), n>0.
Then, the following result on boundary conditions ofT andQn on D holds.

Proposition 6.7: Let$S̄n%n be a sequence with Sn̄.S([Sup$S(r * ,E):(r * ,E)P(r 1 ,r 0)
3(0,̀ )%) for all n. There exists$en%n , en.0, en↘0 and $dn%n , dn.0, dn↘0, such that if

Dn5H ~r * ,S,E!PD̂:r * P@r 11en ,r L* #,SP@S~r * ,E!,S̄n#,EPFdn ,
1

dn
G J ~6.32!

then

Bù$~r * ,S,E!PDn :r * 5r L* %#H ~r * ,S,E!PDn :r * 5r L* ,EPS dn ,
1

dn
D J ~6.33!

@for B in ~6.28!#, and

T.0 on S r * ,S,
1

dn
DPDn ,

T,0 on ~r * ,S,dn!PDn ,
~6.34!

Qn.0 on ~r 11en ,S,E!PDn ,
                                                                                                                



ma

fact,

e

4879J. Math. Phys., Vol. 43, No. 10, October 2002 A topological method for geodesic connectedness

                    
Qn,0 on ~r * ,S,E!PBù$~r * ,S,E!PDn :r * 5r L* %

for n big enough (see Fig. 2).
Proof of Proposition 6.7:From Lemma 6.5~ii !, Duuu is upper bounded onB and, thus,Qn

,0 on B for n big enough.
On the other hand, there exists a sequence$en%n , en.0, en↘0 such thatQn.0 whenr *

5r 11en . In fact, otherwise we obtain a sequence of points$(r l* ,Sl ,El)% l,D, r l* ,r 11 1/l
with Qn(r l* ,Sl ,El)<0 for all l . But these last inequalities contradict the conclusion of Lem
6.6.

Finally, the sequence$dn%n is obtained from Lemma 6.3 applied tor * P@r 11en ,r L* #. h

Remark 6.8:The choice of$en%n in Proposition 6.7 does not depend on the sequence$S̄n%n .
Nevertheless,$dn%n does depend on$en%n and$S̄n%n .

Following step (4BII ) ~Sec. III!, if we define the sequence of homeomorphisms$zn
m%m ,

zn
m :D n

m→@0,1#3 with

D n
m5H ~r * ,S,E!PDn :S>S~r * ,E!1

1

mJ ~6.35!

as depicted in Fig. 3 then, from~6.34! and Lemma 6.3, the functionsT+(zn
m)21, Qn+(zn

m)21 satisfy

T+~zn
m!21.0 on ~r * ,S,E!P@0,1#23$1%,

T+~zn
m!21,0 on ~r * ,S,E!P@0,1#23$0%,

~6.36!
Qn+~zn

m!21.0 on ~r * ,S,E!P$0%3@0,1#2,

Qn+~zn
m!21,0 on ~r * ,S,E!P$1%3@0,1#2.

Now, we are in conditions to apply topological arguments based on Brouwer’s degree. In
Lemma 6.9: There exists a connected subset zn

m(C n
m) of zeroes of T+(zn

m)21 and Qn+(zn
m)21

such that

zn
m~C n

m!ù~@0,1#3$0%3@0,1# !ÞB and zn
m~C n

m!ù~@0,1#3$1%3@0,1# !ÞB

for every mPN.
Proof of Lemma 6.9:Consider the function

F n
m : ~0,1!3@0,1#3~0,1!→X[R2,

~r * ,S,E!°~Qn+~zn
m!21~r * ,S,E!,T+~zn

m!21~r * ,S,E!!1~r * ,E!

and putF n,0
m (r * ,E)5F n

m(r * ,0,E), G5(0,1)2. By Ref. 32, Lemma 3.4 it is sufficient to prov
that, because of~6.36!:

deg~ Id2F n,0
m ,G,0!Þ0,

where deg(Id2F n,0
m ,G,0) is the degree of the function Id2Fn,0

m in the open subsetG with respect
to the value 0.30 But the affine map

F̂ m: ~0,1!2→R2,

~r * ,E!°~122r * ,2112E!1~r * ,E!
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has obviously deg(Id2F̂ m,G,0)Þ0, and deg(Id2F n,0
m ,G,0)5deg(Id2F̂ m,G,0) @the map

l°Id2F n,0
m 1l(F n,0

m 2F̂ m), lP@0,1# is a homotopy from Id2F n,0
m to Id2F̂ m without zeroes

on the boundary from~6.36!# which concludes the proof. h

Up to a subsequence, liminf mC n
mÞB and, thus,Cn5 limsupmC n

m,D̄n is connected~see Ref.
33 Chap. I, Theorem 9.1!. By continuityT5Qn50 in CnùDn and

Cnù$~r * ,S,E!PD̄n :S5S~r * ,E!%ÞB and Cnù$~r * ,S,E!PDn :S5S̄n%ÞB.

~see Fig. 4!. This joined with the following result implies~i! and ~ii ! in (4BIII ):
Lemma 6.10: If(r * ,S,E)PCn then S.0 ~in particular, Cn,Dn).
Proof of Lemma 6.10:Otherwise, there exists a sequence$(r l* ,Sl ,El)% l,Dn,D in Cn such

that Sl→0. Then, from Lemma 6.6, we obtain a contradiction withQn50 in CnùDn . h

Finally, asDt andDuuu satisfy~4.11! for geodesics in eachCn we only have to prove that on
of such geodesics satisfies the required value forDw. This will be straightforward from the
following two lemmas:

Lemma 6.11: There exists a choice of the sequence$S̄n%n in Proposition 6.7 such that for any

e.0 points (r n* ,S̄n ,En)PCn satisfy:

2np2~Dw!~r n* ,S̄n ,En!,n•e ~6.37!

for n big enough.
Proof of Lemma 6.11: First, we will prove that for any sequence$S̄n%n diverging fast enough

there exists a constantd.0 such that

~Dw!~r n* ,S̄n ,En!1d.E
r n*

r 0

1

sin2 un~r !

Ahn~r !
dr 1E

r n*

r 1

1

sin2 un~r !

Ahn~r !
dr . ~6.38!

Thus, the right-hand side in~6.38! can replace (Dw)(r n* ,S̄n,En) in order to prove~6.37!. To prove
~6.38! note, taking into account~4.9!:

Pn~r ![
Dn~un~r !!

sin2 un~r !
1a

Pn~r !

D~r !
2

1

sin2 un~r !
5EnS a~r 21a2!

~r 2r 2!~r 2r 1!
2aD2

a2

~r 2r 2!~r 2r 1!
.

~6.39!

If En.1/a then ~6.39! is positive. In the caseEn< 1/a note first that, from Remark 6.8, point
(r n* ,S̄n ,En)PCn satisfyr n* .r 11en , independently ofS̄n . Thus, for everyn there existsS̄n big
enough such that

E
r n*

r 0 Pn~r !

Ahn~r !
dr 1E

r n*

r 1 Pn~r !

Ahn~r !
dr .2d,

and ~6.38! is obtained.
Using the second equation in~4.3!, the variable of integrationr in ~6.38! can be substituted by

u. Then, as (Duuu)n5u12u012n(p22uL,n), ~6.38! can be written

~Dw!n1d.E
u0

u1
Vn~u!du12n•E

uL,n

p2uL,n
Vn~u!du, ~6.40!

where
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Vn~u!5

1

sin2 u

AKn1qna2 cos2 u2
Dn

2~u!

sin2 u

. ~6.41!

Therefore, from~6.40! and the symmetry of the integrals

E
uL,n

p/2

Vn~u!du, E
p/2

p2QL,n
Vn~u!du

it is sufficient to prove

lim infn→`E
uL,n

p/2

Vn~u!du>
p

2
. ~6.42!

In fact, from an elemental integration:

E
uL,n

p/2

1

sin2 u

A 1

sin2 uL,n
2

1

sin2 u

du5
p

2
, ~6.43!

for all n. But from the equality in~6.5!

1

sin2 uL,n
5Kn12Ena2En

2a21~qna21En
2a2!cos2 uL,n

>Kn12Ena2En
2a21~qna21En

2a2!cos2 u

5
1

sin2 u
1Kn1qna2 cos2 u2

Dn
2~u!

sin2 u
~6.44!

if uP@uL,n , p/2#. Thus~6.42! is a consequence of~6.43! and ~6.44!. h

As explained in (4BIII ), eachCn contains a point withuL5 ū. Thus, the following result will
be appliable:

Lemma 6.12: Let$(r n* 8 ,Sn8 ,En8)%n be a sequence of points, each one in the correspondinCn

with uL,n5uL(r n* 8 ,Sn8 ,En8)5 ū.0. Then, there existse0.0 such that

2np2~Dw!~r n* 8 ,Sn8 ,En8!.n•e0 ~6.45!

for n big enough.
Proof of Lemma 6.12:First, we will prove

hn8~r n* 8!5Sn8→0 ~6.46!

and then the limits:

r n* 8→r 1 , En8→
a

r 1
2 1a2 , qn8→q8, Kn8→q8r 1

2 , ~6.47!

where
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q85
r 1

2 1a2 cos2 ū

~r 1
2 1a2!2 sin2 ū

.

In order to prove~6.46! and taking into account thatQn50 on Cn we have that

~Duuu!~r n* 8 ,Sn8 ,En8!5u12u012n~p22ū !→` when n→`. ~6.48!

By using~6.44! with uL,n[ū the numerator in~4.8! is upper bounded by 1/sinū in our sequence,
thus from~6.48!

E
r n*

8

r 0 1

Ahn~r !
dr 1E

r n* 8

r 1 1

Ahn~r !
dr→`, ~6.49!

which implies ~6.46! ~recall that from Lemma 6.2 the remainder of the derivatives ofhn are
positive!. Notice that we also obtainEn8< 1/a for big n. In fact, otherwise computing directly from
~4.2!:

aDn~un~r !!1~r 21a2!
Pn~r !

D~r !
>a1

r 1
2

a
.0,

thus, from ~4.6! and ~6.49! we have (Dt)n→`.t12t0 , in contradiction with (r n* 8 ,Sn8 ,En8)
PCn . In order to prove the first limit in~6.47! assume, by contradiction,r n* 8>r 11d0 for some
d0.0 up to a subsequence. Then, from~6.46! we have

Sn8

~r n* 82r 1!
→0.

This joined with Remark 6.4~ii ! allows us to assume

U ~r n* 821a2!En82a

~r n* 82r 2!~r n* 82r 1!
U. 2a

r 1
2 1a2 ~6.50!

for n big enough. Even more, we can extend the lower bound in~6.50! through r n* 8 . More
precisely, forEn8P(0,1/a# and r P@r 11d0 ,r 0# function

r °
~r 21a2!En82a

~r 2r 2!~r 2r 1!

has a derivative which admits a bound independent ofEn8 . Thus, there existsd̄0.0 such that

U ~r 21a2!En82a

~r 2r 2!~r 2r 1!
U.

3a

2~r 1
2 1a2!

, ;r P@r n* 8 ,r n* 81 d̄0#;

therefore

UaDn~un~r !!1~r 21a2!
Pn~r !

D~r !
U> a

2
, ;r P@r n* 8 ,r n* 81 d̄0#. ~6.51!

We will prove that~6.51! implies the contradictionu(Dt)nu→`.ut12t0u and, thus,r n* 8→r 1 . In
fact, assumingd̄0,r 02r L* Lemma 4.6~ii ! is applicable to the expression ofuDt(r n* 8 ,Sn8 ,En8)u in
~4.6! when the integrals are carried out in@r n* 8 ,r n* 81 d̄0# @use~6.51!, ~6.46!, and the facts that
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En8< 1/a and r n* 8>r 11d0 , with ~6.2!, ~6.1!#. As the integrals of the expression o
Dt(r n* 8 ,Sn8 ,En8) in @r n* 81d0,r 0# and@r n* 81d0,r 1# are bounded@the numerator is bounded and th
derivativesh(k)(r n* 8) are positive withh(4)(r n* 8).24m1.0], the contradiction is obtained, an
r n* 8→r 1 .

For the convergence ofEn8 in ~6.47!, recall that

U~r n* 821a2!En82a

~r n* 82r 1!
U ~6.52!

is bounded. In fact, otherwiseqn8 andKn8/22E8n
2a2 go to `, up to a subsequence@see~6.7! and

~6.8!#; this and~6.5! contradict thatuL,n5 ū for all n. Therefore, asr n* 8→r 1 , the second limit in
~6.47! is obtained. Finally, for the other two limits, the boundedness of~6.52! and the convergence
of En8 imply that qn8r n* 822Kn8→0 @see the first equation in~6.1!# which, joined to the fact that
uL,n5 ū for all n, implies the two required limits@use the equality in~6.5!#.

In order to prove~6.45! notice that the second limit in~6.47! implies

E
r n* 8

r 0 12En8a sin2 un~r !

Ahn~r !
dr 1E

r n* 8

r 1 12En8a sin2 un~r !

Ahn~r !
dr

>
r 1

2

2~r 1
2 1a2! S Er n* 8

r 0 1

Ahn~r !
dr 1E

r n* 8

r 1 1

Ahn~r !
dr D , ~6.53!

which goes tò by ~6.49!. But (Dt)n5t12t0 for all n, thus from~6.53!, ~4.6! and the expression
of D(u) @formula ~4.2! with L51]

E
r n* 8

r 0
~r 21a2!

Pn~r !

D~r !

Ahn~r !
dr 1E

r n* 8

r 1
~r 21a2!

Pn~r !

D~r !

Ahn~r !
dr→2`. ~6.54!

Obviously, from~6.54! and ~4.9!

~Dw!n,E
r n* 8

r 0

12En8a sin2 un~r !

sin2 un~r !

Ahn~r !
dr 1E

r n* 8

r 1

12En8a sin2 un~r !

sin2 un~r !

Ahn~r !
dr . ~6.55!

If the variable of integrationr in ~6.55! is changed byu ~as in Lemma 6.11! and taking into
account that now (Duuu)n5u12u012n(p22ū), ~6.55! can be written

~Dw!n,E
u0

u1
Wn~u!du12n•E

ū

p2 ū
Wn~u!du, ~6.56!

where

Wn~u!5

1

sin2 u

AKn81qn8a
2 cos2 u

~12En8a sin2 u!2
2

1

sin2 u

.

Then, taking the limitW(u) of $Wn(u)%n we have from~6.47!:
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W~u!5 limn→` Wn~u!5

1

sin2 u

Aq8
~r 1

2 1a2!2

r 1
2 1a2 cos2 u

2
1

sin2 u

. ~6.57!

Notice that

d

du

~r 1
2 1a2!2

r 1
2 1a2 cos2 u

5
a2~r 1

2 1a2!2 sin 2u

~r 1
2 1a2 cos2 u!2 H >0, uPS 0,

p

2 G
<0, uPFp2 ,p D .

~6.58!

and the denominator of~6.57! vanishes just inū, p2 ū. As $Wn%n is a sequence of dominate

functions, limn*
ū

p2 ū
Wn(u)du5*

ū

p2 ū
W(u)du, and from~6.56!:

~Dw!n,~2n11!E
ū

p2 ū
W~u!du, ~6.59!

for n big enough. But from~6.58!, if cosu is replaced by cosū in ~6.57!:

E
ū

p2 ū
W~u!du,E

ū

p2 ū

1

sin2 u

Aq8
~r 1

2 1a2!2

r 1
2 1a2 cos2 ū

2
1

sin2 u

du5p.

Thus, the proof concludes putting*
ū

p2 ū
W(u)du5p2e0 in ~6.59!. h

From Lemmas 6.11 and 6.12, there exist two points in aCn for some~big! n whose difference
in Dw is greater than 2p, which implies the existence of (r * ,S,E)PCn such that~4.11! holds, as
required.

VII. CONCLUSION

We have proven a relevant geometric property of outer Kerr space–timeK (a2,m2), the
geodesic connectedness. The proof uses essentially topological arguments. These argum
appliable to most of the classical relativistic space–times~Schwarzschild, Robertson–Walke
Reissner–Nordstro¨m, etc.!.

The difficulty to studyK seems to arise from the following facts:
~1! No Killing vector field of K is timelike; otherwise, the problem would be reducible to

‘‘Riemannian’’ problem, where variational methods yields very precise results.
~2! K can be seen as a splitting type manifold such as those studied by using varia

methods and Rabinowitz’s saddle point theorem in Ref. 34. These results are especially app
to study globally hyperbolic space–times under a splitting with complete Cauchy hypersu
t5constant. But no clear choice of the time functiont seems to be natural to apply such tec
niques forK.

~3! At any case, the role of the event horizonr 5r 1 seems to be unavoidable~recall that,
under our approach, geodesics approaching the event horizon play an essential role!. It is known
that the convexity of the boundary of a semi-Riemannian manifold sometimes yields the ge
connectedness of the manifold, especially in the Riemannian case.18 The boundaryr 5r 1 of K is
singular, and the approaching hypersurfacesr 5r 11n,n.0, are not convex~regionsr .r 11n
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are not geodesically connected!. In the Riemannian case, there are techniques to measure
lack of convexity goes to zero, whenn→0, yielding geodesic connectedness.35 In the static case,
some of these techniques are translatable,36 and geodesic connectedness of some space–times
singular boundary, including outer Schwarzschild, have been proven.19 But none of these tech
niques seem applicable to a nonstationary situation.

Thus, our method circumvents previous difficulties.
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Embedding of the brane into six dimensions
Merab Gogberashvilia)

Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 380077, Georgia

~Received 18 February 2002; accepted for publication 6 May 2002!

Embedding of the brane metric into Euclidean (214)-space is found. Brane ge-
ometry can be visualized as the surface of the hypersphere in six dimensions which
‘‘radius’’ is governed by the cosmological constant. Minkowski space in this picture
is placed on the intersection of this surface with the plane formed by the extra
space-like and time-like coordinates. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1505650#

There has been great interest in recent years in models with extended extra dime
Ordinary gravity can be recovered if the observable universe is represented by a brane em
in a higher-dimensional space with a nonfactorizable geometry.1

A useful method to study brane models can be the embedding theory.2 It is well known that
n-dimensional space–time can be embedded intoN-dimensional pseudo-Euclidean space withn
<N<n(n11)/2.2,3 Thus, no more than ten dimensions are required to embed any
dimensional solution of Einstein’s equations with arbitrary energy–momentum tensor. Ther
exists Campbell’s theorem,4 which implies that any solution ofn-dimensional Einstein’s equation
can be embedded, at least locally, in a space–time that is itself a solution of (n11)-dimensional,
vacuum Einstein’s equations.5 Several authors tried to interpret the embedding as producin
effective stress–energy tensor in low dimensions.6

The embedding procedure is also interesting from a purely mathematical point of vie
allows invariant classification of known solutions of Einstein’s equations to be made.7 Further-
more, the embedding method may lead to new solutions. For example, the maximal a
extension of Schwarzschild’s solution was independently found in this way.8

Embedding of the space–time with the coordinatesxa and metricgan into pseudo-Euclidean
space with the coordinatesXA and with the flat metrichAB is given by

ds25gandxa dxn5hAB]aXA]nXBdxa dxn5hABdXA dXB. ~1!

For example, it is well known9 that the Schwarzschild metric

ds25S 12
2m

r Ddt22
dr 2

~122m/r !
2r 2 dV2 ~2!

admits isometric embedding of class 2 into Euclidean (214)-space. Embedding functions in th
case are

X15A12
2m

r
cost, X25A12

2m

r
sint, X35 f ~r !,

~3!
X45r sinu cosw, X55r sinu sinw, X65r cosu,

where f (r ) is solution of

f 825~m2/r 412m/r !/~122m/r !. ~4!

a!Electronic mail: gogber@hotmail.com
48860022-2488/2002/43(10)/4886/3/$19.00 © 2002 American Institute of Physics
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In this paper we consider embedding of the brane metric~which was introduced in Ref. 1! into
six-dimensional pseudo-Euclidean space with the same signature (214) as for the Schwarzschild
case. The necessity of two time directions for embedding ofP- andM -branes was shown in Ref
10.

We are looking for the functionsXA which fulfill the relation

ds25e2ajdl 22dj25dX0
22dX1

22dX2
22dX3

21dXt
22dXk

2 . ~5!

Here

l 5At22x22y22z2 ~6!

is the length in four-dimensional Minkowski space–time,j is the fifth coordinate orthogonal to th
brane, anda is the parameter connected with the five-dimensional cosmological constant6L. For
simplicity on the brane we consider the Minkowski metric. The Ricci tensor of the fi
dimensional space–time where the cosmological constantL appears is not zero,1 while we assume
bulk (214)-space to be pseudo-Euclidean again. This can be interpreted as a kind of geom
introduction of the cosmological constant.

It can be checked that the embedding~5! is done by the functions

Xa5eajxa , Xt5S l 22
1

4Deaj2
1

a2 e2aj, Xk5S l 21
1

4Deaj2
1

a2 e2aj, ~7!

wherexa are coordinates of Minkowski space–time and the indexa runs over 0, 1, 2, 3.
The inverse expression of five-dimensional coordinates by the embedding functions h

form

xa5
Xa

2~Xk2Xt!
, j5

1

a
ln@2~Xk2Xt!#. ~8!

The geometry of the five-dimensional metric~5! can be visualized as the surface of t
hypersphere in six dimensions, since

X0
22X1

22X2
22X3

21Xt
22Xk

25
1

a2 . ~9!

The radius of this ‘‘sphere’’ is 1/uau and thus governed by the value of the five-dimensio
cosmological constant6L. In this picture four-dimensional Minkowski space–time is the int
section of this hypersphere with the plane

Xk2Xt5 1
2 , ~10!

where Xk and Xt are, respectively, extra space-like and time-like coordinates of the
dimensional space–time.

Possibly here we have correlations with the situation of the linearization of conformal g
the symmetry group of the main equations of physics in zero-mass limit. A long time ago i
discovered that the nonlinear 15-parameter conformal transformations can be written as a
Lorentz-type transformation in a (214)-space. For this case the intersection of the null six-c
with the null five-plane formed by the extra time-like and space-like coordinates has ind
metric of the Minkowski form~for these subjects see, e.g., Ref. 11! and formulas of this embed
ding are similar to~8!–~10! we have in the branes case.

At the end of the paper we want to note that (214)-space is the object of interest fo
Kaluza–Klein models. For compact extra dimensions this space was studied in Ref. 12 and
context of brane models with nonfactorizable geometry in Ref. 13.
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Anisotropic geodesic fluid spheres in general relativity
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It is shown that unlike the perfect fluid case, anisotropic fluids~principal stresses
unequal! may be geodesic, without this implying the vanishing of~spatial! pressure
gradients. Then the condition of vanishing four acceleration is integrated in nonco-
moving coordinates. The resulting models are necessarily dynamic, and the mass
function is expressed in terms of the fluid velocity as measured by a locally
Minkowskian observer. An explicit example is worked out. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1505985#

I. INTRODUCTION

As is well known, the vanishing of four acceleration~geodesic condition! implies for a perfect
fluid that pressure gradients vanish. In the case of spherical bounded~nondissipative! configura-
tion, the vanishing of pressure at the boundary surface implies in turn the vanishing of pr
everywhere within the distribution~dust!.

Indeed, for a perfect fluid the equation of motion reads

~r1p!aa5hanp,n ~1!

with

hm
a[dm

a2uaum , ~2!

am5unu;n
m , ~3!

where the colon and semicolon denote partial and covariant derivatives, and as usualam, um, r,
and p stand for the four acceleration, the four velocity, the energy density, and the pre
respectively.

From the above it becomes evident that the geodesic condition implies the vanish
pressure gradients. From purely physics considerations this conclusion is also obvious: th
ishing of four-acceleration means that only gravitational forces are acting on any fluid ele
thereby implying that pressure gradients~the only hydrodynamic force in a perfect fluid! vanish.
However in the case of anisotropic fluids, an additional force term appears besides the p
gradient~see Sec. II!. Therefore it is in principle possible to have a fluid distribution, such t
both terms cancel each other, leading to a geodesic fluid with nonvanishing pressure grad

Since the original Lemaitre paper1 and particularly since the work of Bowers and Lian2

anisotropic fluids have attracted the attention of many researchers in relativity and relat
astrophysics~see Ref. 3, and references therein!, due to the conspicuous role played by loc
anisotropy of pressure in the structure and evolution of self–gravitating objects. It is the pu

a!Postal address: Apartado 80793, Caracas 1080 A, Venezuela; electronic mail: laherrera@telcet.net.ve
b!Electronic mail: chmm@usal.es
48890022-2488/2002/43(10)/4889/9/$19.00 © 2002 American Institute of Physics
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of this work to present further models of anisotropic spheres, based on the geodesic con
Besides the natural interest of such models in general relativity, the presented models ar
esting because they represent the generalization of Tolman–Bondi4 models to anisotropic fluids, in
noncomoving coordinates. Incidentally, it is worth noticing that in the classical paper by Op
heimer and Snyder on dust collapse,5 they start their study, using the same kind of coordinates
use here, and then switch to comoving ones, in order to integrate the field equations.

The plan of the paper is as follows. In Sec. II we define the conventions and give the
equations and expressions for the kinematic variables we shall need, in noncomoving coord
The geodesic condition is explicitly integrated in Sec. III. In Sec. IV we work out an exam
Finally a discussion of results is presented in Sec. V.

II. RELEVANT EQUATIONS AND CONVENTIONS

We consider spherically symmetric distributions of collapsing anisotropic fluid, which
assume to evolve adiabatically~without dissipation!, bounded by a spherical surfaceS. The line
element is given in Schwarzschild-type coordinates by

ds25en dt22el dr 22r 2~du21sin2 u df2!, ~4!

where n(t,r ) and l(t,r ) are functions of their arguments. We number the coordinates:x05t;
x15r ; x25u; x35f.

The metric~4! has to satisfy Einstein field equations

Gm
n 528pTm

n , ~5!

which in our case read:6

28pT0
052

1

r 2 1e2lS 1

r 2 2
l8

r D , ~6!

28pT1
152

1

r 2 1e2lS 1

r 2 1
n8

r D , ~7!

28pT2
2528pT3

352
e2n

4
~2l̈1l̇~ l̇2 ṅ !!1

e2l

4 S 2n91n822l8n812
n82l8

r D , ~8!

28pT0152
l̇

r
, ~9!

where dots and primes stand for partial differentiation with respect tot and r , respectively.
In order to give physical significance to theTn

m components we apply the Bondi approach6

Thus, following Bondi, let us introduce purely locally Minkowski coordinates (t,x,y,z) ~al-
ternatively one may introduce a tetrad field associated with locally Minkowskian observers!:

dt5en/2 dt, dx5el/2 dr , dy5r du, dz5r sinu df.

Then, denoting the Minkowski components of the energy tensor by a bar, we have

T̄0
05T0

0, T̄1
15T1

1, T̄2
25T2

2, T̄3
35T3

3, T̄015e2(n1l)/2T01.

Next, we suppose that when viewed by an observer moving relative to these coordinate
proper velocityv(t,r ) in the radial direction, the physical content of space consists of an a
tropic fluid of energy densityr, radial pressurePr , and tangential pressureP' . Thus, when
viewed by this moving observer the covariant tensor in Minkowski coordinates is
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S r 0 0 0

0 Pr 0 0

0 0 P' 0

0 0 0 P'

D .

Then a Lorentz transformation readily shows that

T0
05T̄0

05
r1Prv

2

12v2 , ~10!

T1
15T̄1

152
Pr1rv2

12v2 , ~11!

T2
25T3

35T̄2
25T̄3

352P' , ~12!

T015e(n1l)/2T̄0152
~r1Pr !ve(n1l)/2

12v2 . ~13!

Note that the coordinate velocity in the (t,r ,u,f) system, dr /dt, is related tov by

v~ t,r !5
dr

dt
e(l2n)/2. ~14!

Feeding back~10!–~13! into ~6!–~9!, we get the field equations in the form

r1Prv
2

12v2 52
1

8p H 2
1

r 2 1e2lS 1

r 2 2
l8

r D J , ~15!

Pr1rv2

12v2 52
1

8p H 1

r 2 2e2lS 1

r 2 1
n8

r D J , ~16!

P'52
1

8p H e2n

4
~2l̈1l̇~ l̇2 ṅ !!2

e2l

4 S 2n91n822l8n812
n82l8

r D J , ~17!

~r1Pr !ve(n1l)/2

12v2 52
l̇

8pr
. ~18!

At the outside of the fluid distribution, the space–time is that of Schwarzschild, given b

ds25S 12
2M

r Ddt22S 12
2M

r D 21

dr 22r 2~du21sin2 u df2!, ~19!

As is well known, in order to match smoothly the two metrics above on the boundary su
r 5r S(t), we must require the continuity of the first and the second fundamental form acros
surface. In our notation this implies

enS512
2M

r S
, ~20!

e2lS512
2M

r S
. ~21!
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and

@Pr #S50, ~22!

where, from now on, subscriptS indicates that the quantity is evaluated at the boundary surfacS.
Equations~20!–~22! are the necessary and sufficient conditions for a smooth matching o

two metrics~4! and ~19! on S.
Next, let us write the energy momentum tensor in the form

Tmn5~r1P'!umun2P'gmn1~Pr2P'!smsn ~23!

with

um5S e2n/2

~12v2!1/2,
ve2l/2

~12v2!1/2,0,0D , ~24!

sm5S ve2n/2

~12v2!1/2,
e2l/2

~12v2!1/2,0,0D , ~25!

whereum denotes the four velocity of the fluid andsm is a radially directed space-like vecto
orthogonal toum. Then the radial component of the conservation law

Tn;m
m 50 ~26!

may be written as

~28pT1
1!85

16p

r
~T1

12T2
2!14pn8~T1

12T0
0!1

e2n

r
S l̈1

l̇2

2
2

l̇ ṅ

2
D , ~27!

which in the static case becomes

Pr852
n8

2
~r1Pr !1

2~P'2Pr !

r
, ~28!

representing the generalization of the Tolman–Oppenheimer–Volkof equation for aniso
fluids.2 Thus, as mentioned before, local anisotropy introduces an extra term in this ‘‘fo
equation, besides the usual pressure gradient term.

Finally, for the two nonvanishing components of the four acceleration, we easily find

a05
1

12v2 F S vv̇

12v2 1
v2l̇

2
D 1en/2e2l/2S vn8

2
1

v2v8

12v2D G , ~29!

a152
1

12v2 F S vv8

12v2 1
n8

2 D1e2n/2el/2S vl̇

2
1

v̇

12v2D G . ~30!

III. INTEGRATING THE GEODESIC CONDITION

Let us now integrate the geodesic condition. First, observe that from the field equations~15!,
~16!, and~18!, one obtains after simple manipulations

ve(n2l)/2~l81n8!1~11v2!l̇50. ~31!

Next, it follows at once from~29! and ~30! that

va152a0e(l2n)/2. ~32!
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Therefore the vanishing four-acceleration condition amounts to

S vv8

12v2 1
n8

2 D1e2n/2el/2S vl̇

2
1

v̇

12v2D 50. ~33!

Then, replacingn8 by its expression from~31!, into ~33!, this last equation becomes

ve(n2l)/2S l82
2vv8

12v2D1l̇2
2vv̇

12v2 50, ~34!

or, using~14!

ḟ dt1f8 dr 50, ~35!

whose solution is

f5 ln~12v2!1l5constant. ~36!

Finally, from the fact thatv(t,0)50 we obtain

e2l512v2. ~37!

Introducing the mass function as usual,

e2l512
2m

r
, ~38!

we have

m5
v2r

2
. ~39!

In all the above we have assumedvÞ0, since from simple physical considerations we sho
not expect static solutions to exist.

Indeed, if we assume staticity (v50) then the geodesic condition impliesn850, which in
turn, using~16! and ~38!, leads to

8pPr52
2m

r 3 . ~40!

Then junction condition~22! would lead tomS5M50.
There is however one possible case of static geodesic solution, which appears if we re

condition of continuity of the second fundamental form~implying the continuity of radial pres-
sure! across the boundary surface, and assume the existence of a surface layer.7

In this specific case, it follows from~40!, the geodesic condition and field equations~15! and
~17! that

r1Pr12P'50, ~41!

implying that the active gravitational mass~Tolman8! defined for anyr ,r S as

mT54pE
0

r

r 2e(n1l)/2~T0
02T1

122T2
2!dr , ~42!

vanishes inside the sphere.
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We shall not consider here these kinds of solutions and accordingly all our models w
dynamic (vÞ0) and satisfy all junction conditions.

Now, from ~14! evaluated at the boundary surface, and~20! and ~21!, we obtain

vS5
ṙ S

122M /r S
. ~43!

On the other hand, from~39! evaluated at the boundary surface, we have

vS56A2M

r S
, ~44!

where the1 (2) refers to the expansion~contraction! of the surface~from now on we shall only
consider the contracting case!. Feeding back~44! into ~43!, we get

vS5
ṙ S

12vS
2 . ~45!

Then equating~45! and ~44! we have

ṙ S5S 2M

r S
D 3/2

2S 2M

r S
D 1/2

. ~46!

This equation may be integrated to give

t

2M
52 tanh21A2M

r S
2

2@116M /r S#

3~2M /r S!3/2 ~47!

giving the evolution of the boundary surface. Unfortunately Eq.~47! cannot be inverted~at least
we were unable to do that! to obtain the explicit formr 5r S(t). Accordingly we have also
integrated~46! numerically, in order to exhibit the evolution ofr S , see Fig. 1.

So far we have found all consequences derived from the geodesic condition which, obv
are valid in the pure dust case as well as in the anisotropic case. In Sec. IV we shall work
explicit example by imposing an ‘‘equation of state’’ for the physical variables.

IV. A MODEL

The purpose of this section is not to model any specific physical system, but just to illu
the consequences derived from the geodesic condition. Thus, somehow inspired by the
pressible fluid model, let us assume

T0
05 f ~ t !. ~48!

FIG. 1. y5r S/2M as function oft/M for the inital valuey(0)530.
                                                                                                                



4895J. Math. Phys., Vol. 43, No. 10, October 2002 Anisotropic geodesic fluid spheres

                    
Then from~39! and the fact that

m854pr 2T0
0 ~49!

one obtains

v52rA8p

3
f ~ t !, ~50!

where

f ~ t !5
3M

4pr S
3 . ~51!

Observe from~50! that the evolution in this model is homologous.
Next, introducing the dimensionless variables

x[
r

r S
, y[

r S

2M
, ~52!

we have

e2l512
x2

y
, ~53!

v52
x

Ay
. ~54!

Finally, from the field equations the following relations follow:

ry1Prx
25

3~y2x2!

32pM2y3 , ~55!

Pry1rx25
~y2x2!

8p F S 12
x2

y D S 1

4M2x2y2 1
]n

]x

1

4M2xy2D2
1

4M2x2y2G , ~56!

r1Pr52
3ẏ~y2x2!1/2e2n/2

8p~2My3!
. ~57!

FIG. 2. vS as function oft/M for the same initial data as in Fig. 1.
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Then from~55! and ~56! we obtainr1Pr as function of]n/]x , x andy. Feeding back this
expression into~57!, this equation may be solved forn, which in turn allows one to express a
physical variables~r, Pr , andP') in terms ofx andy which are given by~47! or alternatively by
the numerical solution of~46!.

V. CONCLUSIONS

We have seen that the geodesic condition, which for anisotropic fluids is compatible wi
presence of pressure gradients, can be integrated, giving the explicit form of the evolution
boundary surface. Resulting models may be regarded as generalizations of Tolman–Bond
tions, to anisotropic fluids. In order to obtain the evolution of all physical variables for diffe
pieces of matter, additional information has to be given. In the above-presented model w
assumed condition~48!, which in turn leads to the homology condition~50!. Parenthetically, this
last condition is widely used by astrophysicists in their modeling of stellar structure
evolution.9

Figures 1 and 2 display the behavior of the radius and the evolution ofvS in the contracting
case. As expected, as the boundary surface approaches the horizon, its coordinate velocṙ S)
stalls, whereas the velocityvS measured by the locally Minkowskian observer, tends to li
velocity. Figure 3 shows the sensitivity of the pattern evolution with respect to the compactn
the initial configuration. As expected more compact configurations collapse faster. The
behavior ofr andpr is easily deduced from~55! to ~57!.
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Schwinger terms in gravitation in two dimensions
as a consequence of the gravitational anomaly

Emmanuel Kohlpratha)

Theoretical Physics Division, CERN, CH-1211 Geneva 23, Switzerland

~Received 6 May 2002; accepted for publication 17 June 2002!

We compute the Schwinger term in the gravitational constraints in two dimensions,
starting from the path integral in Hamiltonian form and the Einstein
anomaly. © 2002 American Institute of Physics.@DOI: 10.1063/1.1505127#

I. INTRODUCTION

A Yang–Mills theory with a non-Abelian anomaly~gauge anomaly! leads to Schwinger term
~central charges! in the constraint algebra~the Gauss law operators! as well as in the algebra o
currents~see, e.g., Refs. 1 and 2!. Theories of gravitation and matter that have a gravitatio
anomaly ~Einstein or Lorentz! also lead to Schwinger terms in the constraints and curr
~energy-momentum tensors!. As we will see later, in the tensor theory of Einstein in two dime
sions, the gravitational constraints reduce to the energy-momentum tensor and therefore
Schwinger terms are equivalent. This case has been considered in Refs. 3–6. The Schwing
in the constraints of a scalar-tensor theory are discussed in Refs. 7–10.

In Ref. 11, Faddeevet al. found the following method to compute the Schwinger term in
algebra of the Gauss law operators in a Yang–Mills theory: starting with the path integ
Hamiltonian form, they make a gauge transformation and include the non-Abelian anomaly.
the Ward identity in second order in the gauge parameter, one can then extract the Schwing
by acting with a suitable operator. Our goal is to generalize this to gravitation.

II. GRAVITATION AS A CONSTRAINED HAMILTONIAN SYSTEM

We start with Einstein’s theory of gravitation and a massless chiral fermion, which ar
scribed by the action@we have eitherP1c50 or P2c50 with P65 1

2(16g5)]

S5E dx eFR1
i

2
eamc̄ga¹JmcG . ~1!

This action can also be written as a constrained Hamiltonian system~see, e.g., Refs. 12–14! ~in
d-dimensionsi runs from 1 tod21):

S5E dxFpa
i ėi

a1 i (3)g1/2c̄G'ċ2NH̃'2NiH̃i2
1

2
v0

abJabG , ~2!

where (3)gi j is the induced metric andpa
i is the canonical momentum toei

a defined bypi j

5 1
4(pa

i (3)ea j1pa
j (3)e ai), where the canonical momentum togi j is expressed in terms of th

extrinsic curvatureKi j ,

pi j 5 (3)g1/2~Ki j 2K (3)gi j !. ~3!

The Lagrangian multipliers are the lapseN, the shiftNi , Ni5 (3)gi j Nj , and the 0-component o
the spin connectionv0

ab . The constraints are

a!Electronic-mail address: emmanuel.kohlprath@cern.ch
48980022-2488/2002/43(10)/4898/6/$19.00 © 2002 American Institute of Physics
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H̃'5H'1]kJ
'k2 i (3)g1/2c̄G iDic, ~4!

H̃i5Hi1
1
2 gi j ]kJ

k j1KikJ'k1 i @ (3)g1/2c̄G'Dic2 1
4 ]k~

(3)g1/2c̄@G i ,Gk#G'c!#, ~5!

Jab5pa
i ebi2pb

i eai2
i

4
(3)g1/2c̄~G'gaG i2G igaG'!ebi1

i

4
(3)g1/2c̄~G'gbG i2G igbG'!eai ,

~6!

G i5 (3)gi j ej
aga5 (3)eaiga , G'52naga . ~7!

Remember that the gravitational Hamiltonian is vanishing.

III. THE GRAVITATIONAL PATH INTEGRAL

The general coordinate transformations are the gauge transformations of gravitation. To
a well behaved path integral, we choose the gauge fixinge0

a5d0
a and introduce the coordinat

ghosts using the Faddeev–Popov method. Under infinitesimal active coordinate transform
~Einstein transformations! the vielbein transforms as

dj
cem

a ~x!5em8
a~x!2em

a ~x!5jn]nem
a ~x!1en

a~x!]mjn. ~8!

This leads to the ghost action

SGH5E dxdye~x!v̄n~x!ean~x!
dj

c~e0
a2d0

a!

djm~y!
U

j50

vm~y!

5E dxe~x!v̄n~x!~ea
n~x!]me0

a~x!vm~x!1]0vn~x!!. ~9!

We find the path integral in Hamiltonian form for gravitation and a chiral fermion:

Z5
1

N E dpa
i dei

ade0
adc̄dcdv̄advad~e0

a2d0
a!

3expH i E dx Fpa
i ėi

a1 i (3)g1/2c̄G'ċ2NmH̃m2
1

2
v0

abJab1ev̄n~ea
n]me0

avm1]0vn!G J .

~10!

The inclusion of powers ofe as weights in the fermionic measure, as it is explained in Refs
and 16, would be no problem but we will not need it.

IV. SCHWINGER TERMS IN GRAVITATION IN TWO DIMENSIONS

In two dimensions the Einstein–Hilbert action is proportional to the Euler number of
two-dimensional manifold~see, e.g., Ref 17!. We choose a manifold where the Euler numb
vanishes. So in two dimensions there are no dynamical degrees of freedom for gravity i
stein’s theory. From~3! we see that the conjugate momentapa

1 identically vanish. Using
e1

ae1
b@ga ,gb#50 andgbg0ga2gag0gb50 the constraints reduce to

H̃'52 i (1)g1/2c̄G1]1c, ~11!

H̃15 i (1)g1/2c̄G']1c, ~12!

Jab50. ~13!

We have
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G15 (1)ea1ga5~g11!
21e1

aga5ea1ga2
N1

N
naga , ~14!

G'5N'ea0ga52naga , ~15!

e5ugu1/25 (1)g1/2N, ~16!

so that

NmHm52 ie c̄ea1ga]1c. ~17!

The path integral~10! reduces to

Z5
1

N E dpa
1de1

ade0
adc̄dcdv̄advad~e0

a2d0
a!

3expH i E dx@pa
1ė1

a1 ie c̄ea0ga]0c1 ie c̄ea1ga]1c1ev̄n(ea
n]me0

avm1]0vn)#J . ~18!

We relabel all fields,em
a (x)→em8

a(x), as for the other fields. We interpret this as an active co
dinate transformation and use the invariance of the classical action and the bosonic measur
coordinate transformations. The fermionic measure gives us the Einstein anomalyG@L,G#, and
we are left with

Z5
1

N E dpa
1de1

ade08
adc̄dcdv̄advad~e08

a2d0
a!

3expH i E dx[pa
1ė1

a1 iec̄ea0ga]0c1 ie c̄ea1ga]1c1ev̄n~ea
n]me0

avm1]0vn!] J G@L,G#

~19!

with the explicit expression~see, e.g., Ref. 18!

G@L,G#5expH 6
i

96p F1

3 EG1
tr~dLL21!31E

M2

tr~dLL21G!G J , ~20!

whereGb
a is the Christoffel connexion one-form,Lb

a is the ‘‘gauge’’ element and]G15M2 . For
a general coordinate transformationx85x8(x) we define the ‘‘gauge’’ parameterj by

x8a5xa2ja~x!, ~21!

~L21!b
a5

]x8a

]xb 5db
a2]bja~x!, ~22!

so that, in second order inj, we have

xa5x8a1ja~x8!1jl]lja~x8!1O~j3!, ~23!

Lb
a5

]xa

]x8b 5db
a1]bja~x!1]bjl]lja~x!1O~j3!. ~24!

The zweibein transforms under passive coordinate transformations as

em8
a~x8!5Lm

n en
a~x!5em

a ~x!1]mjnen
a~x!1]mjl]ljnen

a~x!1O~j3! ~25!

and under active coordinate tranformations~Einstein transformations! as
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em8
a~x!5em

a ~x!1]mjnen
a~x!1ja]aem

a ~x!1]mjl]ljnen
a~x!1ja]a]mjnen

a~x!

1ja]mjn]aen
a~x!1ja]ajb]bem

a ~x!1 1
2 jajb]a]bem

a ~x!1O~j3!. ~26!

The gauge fixinge08
a(x)5d0

a leads to a second order differential equation fore0
a . If we are in two

dimensions and choosej150, then we find

d0
a5@11]0j01j0]01]0j0]0j01j0]0]0j012j0]0j0]01 1

2 j0j0]0]0#e0
a . ~27!

Its solution is

e0
a5~12]0j0!d0

a1O~j3!. ~28!

Using ~28! we express everything up to second order inj, in terms ofe1
0 ande1

1. For the Einstein
anomaly~20! we find

G@j,G#5expH 6
i

48p E dx@]0]0j0]1]0j0~e1
0!2~e1

1!221]1]0j0]1]1j0~e1
1!22

22]1]0j0]1]0j0e1
0~e1

1!221@~]0]0j012]0]0j0]0j0!~e1
0!2~e1

1!2222~]1]0j0

1]1]0j0]0j0!e1
0~e1

1!221]1]1j0~e1
1!22#]0e1

01@2~]0]0j012]0]0j0]0j0!e1
0~e1

1!21

1~]1]0j01]1]0j0]0j0!~e1
1!21#]0e1

1#J 1O~j3!, ~29!

where we use the convention«0151. As can be seen from~19!, the momentumpa
1 is no longer

conjugate toe1
a , since there are terms in~29! proportional to]0e1

0 and]0e1
1. Therefore we make

a shift inpa
1 to absorb these terms. The functional determinant is simply 1 and its effect is t

all terms proportional to]0e1
0 and]0e1

1 in ~29!. Using

LGH5ev̄n~ea
n]me0

avm1]0vn!5ev̄n]0vn1e1
1]me0

0v̄0vm, ~30!

eea0ga52~e1
1g01e1

0g1!, eea1ga5e~e1
1!21g1 , ~31!

we find the generating functional in second order in the gauge parameter

Z5
1

N E dpa
1de1

adc̄dcdv̄adva expH i E dxFpa
1ė1

a2 i c̄~e1
1g01e1

0g1!]0c1~12]0j0!i c̄g1]1c

1~12]0j0!e1
1v̄n]0vn2]m]0j0e1

1v̄0vm6
1

48p
@]0]0j0]1]0j0~e1

0!2~e1
1!22

22]1]0j0]1]0j0e1
0~e1

1!221]1]0j0]1]1j0~e1
1!22#G J 1O~j3!. ~32!

In O((j0)2) we find the following Ward identity:

05 K 6
i

48p E dx@]0]0j0]1]0j0~e1
0!2~e1

1!2222]1]0j0]1]0j0e1
0~e1

1!221]1]0j0]1]1j0~e1
1!22#

1
1

2 F E dx@]0j0c̄g1]1c2 i ]0j0e1
1vn]0vn2 i ]m]0j0e1

1v̄0vm#G2L . ~33!

Acting with d2/dj0(x)dj0(y) on ~33! we arrive at
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05 K 6
i

48p
[(2]1

y]0
y]0

y]0
yd(x2y)13]1

y]0
y]0

yd(x2y)]0
y1]0

y]0
y]0

yd(x2y)]1
y1]0

y]0
yd(x2y)]1

y]0
y

1]1
y]0

yd(x2y)]0
y]0

y)((e1
0)2(e1

1)22)24(]1
y]1

y]0
y]0

yd(x2y)1]1
y]1

y]0
yd(x2y)]0

y

1]1
y]0

y]0
yd(x2y)]1

y1]1
y]0

yd(x2y)]1
y]0

y)(e1
0(e1

1)22)1(2]1
y]1

y]1
y]0

yd(x2y)1]1
y]1

y]1
yd(x2y)]0

y

13]1
y]1

y]0
yd(x2y)]1

y1]1
y]1

yd(x2y)]1
y]0

y1]1
y]0

yd(x2y)]1
y]1

y)(e1
1)22] &1]0

x]0
y^~2c̄g1]1c~x!

1 ie1
1v̄n]0vn~x!1 i ]m

x ~e1
1v̄0vm~x!!!3~2c̄g1]1c~y!1 ie1

1v̄n]0vn~y!1 i ]m
y ~e1

1v̄0vm~y!!!L .

~34!

The last two lines give the commutator times]0
yd(x02y0):

]0
yd~x2y!@c̄g1]1c~x!,c̄g1]1c~y!#, ~35!

plus terms that are proportional tod(x02y0) or regular asy0→x0. Next we apply

lim
~p02q0!→`

p02q0

p0q0
3 E dx0dy0eip0x01 iq0y0

~36!

on ~34! to project onto terms proportional to]0
y]0

y]0
yd(x2y) and we find

056
i

48p
^~2]1

yd~x12y1!1d~x12y1!]1
y!~~e1

0!2~e1
1!22!&. ~37!

Using this, we apply

lim
~p02q0!→`

p02q0

p0q0
2 E dx0dy0eip0x01 iq0y0

~38!

on ~34! to project onto terms proportional to]0
y]0

yd(x2y). We obtain

05 K 6
i

48p
@]1

yd~x12y1!]0
y~~e1

0!2~e1
1!22!24~]1

y]1
yd~x12y1!1]1

yd~x12y1!]1
y!~e1

0~e1
1!22!#L .

~39!

Using this and finally applying

lim
~p02q0!→`

p02q0

p0q0
E dx0dy0eip0x01 iq0y0

~40!

on ~34! to project onto terms proportional to]0
yd(x2y), we arrive at

^@2 i c̄g1]1c~x!,2 i c̄g1]1c~y!#&

56
i

48p
^@2]1

y]1
y]1

yd~x12y1!13]1
y]1

yd~x12y1!]1
y1]1

yd~x12y1!]1
y]1

y#~e1
1!22&.

~41!

From the fermionic part of the action~1! we find the energy-momentum tensor
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Tmn52
i

4
@c̄gm¹Jnc1c̄gn¹Jmc#1gmn

i

2
c̄gl¹Jlc. ~42!

For flat space, we havee1
050,e1

151, and we find the Schwinger term in the energy–moment
tensor

^@T00~x!,T00~y!#ET&56
i

24p
]1

y]1
y]1

yd~x12y1!. ~43!

This indeed agrees with Refs. 3–6.

V. CONCLUSION

From ~17! we see that we found an elegant way to compute the Schwinger term in
gravitational constraints in two dimensions, which emphasizes its relation to the gravita
anomaly. The gravitational anomaly contributes in 4k1252,6,10, . . . dimensions, and we expe
that this method could be generalized to these higher dimensions. However, the calculatio
become more complicated there.
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background radiation
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We study a time-dependent and spherically symmetric solution with a starlike
source. We show that this solution can be interpreted as an exterior solution of a
contracting star which has a decreasing temperature and is immersed in a homog-
enous and isotropic background radiation. Distribution of the temperature in the
fields and close-to-Schwarzschild approximation of the solution are studied. By
identifying the radiation with the cosmic background one, we find that the close-
to-Schwarzschild approximate solution is valid in a wide range in our solar system.
Possible experimental tests of the solution are discussed briefly. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1503147#

I. INTRODUCTION

It is well known that spherically symmetric sources such as stars can be modeled
simplest way by the interior and exterior Schwarzschild solutions. But to include the rad
outside a star, more complicated solutions are required.1 These include the Vaidya metric whic
uses a retarded time coordinate to describe a radiating atmosphere,2 the metrics of Herrera and
co-workers wherein spheres of matter are matched to exterior space–times,3–5 and the metrics of
Glass and Krisch which extend the Vaidya solution to include both a radiation field and a
fluid.6 Recently, Liu and Wesson presented a new kind of solution in which the metric is
dependent~but not of the Vaidya form! and the energy-momentum tensor is of the form o
perfect fluid for radiation plus a radial heat flow.7 Clearly, this solution describes sources whi
are time-dependent and spherically symmetric. However, we wish to know specifically wha
of sources the solution represents. In this article we will show that it can describeexterior fields
of a contracting~or expanding! star immersed in a homogenous and isotropic background ra
tion.

II. 4D SOLUTION DERIVED FROM 5D SOLUTIONS

Campbell’s theorem says that any 4D Einstein solution with a source can be locally emb
in a 5D manifoldwithout sources whose field equations in terms of the Ricci tensor areRAB

50.8 ~Here and elsewhere lower case Greek letter run 0,123 and uppercase Latin letters
123, 4, and we use unitsc51.) A major application of Campbell’s theorem is to study embeddi
of known 4D Einstein solutions in 5D Ricci flat manifolds.9 Another application of the theorem i
to generate new 4D solutions from known 5D Ricci flat solutions.7,10 In the following we will
show briefly how a new 4D solution is generated in Ref. 7. For the purpose of convenience
of the equations and notations in Ref. 7 will be reexpressed.

In Ref. 7, Liu and Wesson presented a class of 5D solutions. This class of solutio
time-dependent in 5D and spherically symmetric in 3D with the 5D metric being

dS25B~r !dt22~12lt !2@A~r !dr21r 2~du21sin2 udw2!#2~12lt !24dy2, ~1!

a!Electronic mail: hyliu@dlut.edu.cn
49040022-2488/2002/43(10)/4904/5/$19.00 © 2002 American Institute of Physics
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wherel is a constant and the two functionsB andA are determined by

B8

B
53l2r

A

B
1

A21

r
, ~2!

A8

A
53l2r

A

B
2

A21

r
, ~3!

where a prime denotes derivative with respect tor . Clearly, ~2! and ~3! can be solved, at leas
numerically, by imposing boundary conditions onB(r ) andA(r ). This 5D solution satisfies the
5D equationsRAB50 and therefore is 5D empty. However, the 4D part of the 5D metric~1!,
together with the two equations~2! and ~3!, defines a 4D solution as shown in the following:7

ds25B~r !dt22~12lt !2@A~r !dr21r 2~du21sin2 udw2!# , ~4!

B8

B
53l2r

A

B
1

A21

r
, ~5!

A8

A
53l2r

A

B
2

A21

r
, ~6!

8pGTab[Gab , ~7!

whereTab is an effective or induced energy-momentum tensor with

8pGT0
05

6l2

B~12lt !2 , ~8!

8pGT1
158pGT2

258pGT3
352

2l2

B~12lt !2 , ~9!

8pGT0
15

lB8

AB~12lt !3 . ~10!

It was also shown in Ref. 7 that thisTab can be modeled as a perfect fluid plus a radial heat fl

Tab5~r1p!uaub2pgab1qaub1uaqb , ~11!

where r is the mass density,p is the pressure,ua5(u0,0,0,0) is the four-velocity,qa

5(0,q1,0,0) is the heat-flux vector, andua and qa obey the orthogonality conditionqaua50.
Then Eqs.~8!–~10! yield

r53p5
3l2

4pGB~12lt !2 , ~12!

q15
lB8

8pGAB3/2~12lt !3 . ~13!

Equations~4!–~13! constitute a complete set of the 4D solution, from which we see that
equation of state of the 4D fluid isr53p, so it represents a radiation or extra-relativistic partic
accompanied by a radial heat flow.
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III. HEAT FLOW AND TEMPERATURE OF THE FIELDS

The induced 4D energy-momentum tensor~11! describes a thermodynamical system in whi
the radial heat currentqa implies a radial temperature gradient. Now we wish to calculate
temperature distribution over the fields. The generalized relativistic relation between heat c
and temperature gradient can be found in Refs. 11 and 12 with

qa52k~T,m2u̇mT!ham, u̇m[um;nun, ~14!

wherek is the coefficient of the thermal conductivity andham is the projection tensor,

hab5uaub2gab. ~15!

To calculate Eqs.~14!, we calculateu̇m first. With use of~4!, we find the only nonvanishingu̇m

being u̇152B8/(2B). Furthermore, we assumeT5T(t,r ). Then Eqs.~14! reduce toq05q2

5q350 and

q152
k

A~12lt !2 S T,11
B8

2B
TD . ~16!

Combining~13! and ~16!, we get

2kS T,11
B8

2B
TD5

lB8

8pG~12lt !B3/2. ~17!

We find that this equation can be integrated, giving an exact solution

AB~r !T~ t,r !5ABRTR~ t !1
l

8pGk~12lt !
ln

BR

B~r !
, ~18!

whereR is a constant radius, andBR andTR(t) are values ofB(r ) andT(t,r ) at r 5R, respec-
tively. From~13! we see thatl50 corresponds to thermal equilibriumqa50. Then, from~18!, if
l50, we getABT5const. Thus we recover the conclusion that thermal equilibrium corresp
not to constant temperature, but to the redshifted temperature distributionAg00T5const.11 Gen-
erally we havelÞ0 and the exact solution~18! determines both the space distribution and
time variation of the temperatureT over the fields.

IV. CLOSE-TO-SCHWARZSCHILD APPROXIMATION

The close-to-Schwarzschild approximation of the solution~4! was given in Ref. 7. We find
that it can be reexpressed in the following form:

ds25B~r !dt22~12lt !2@A~r !dr21r 2~du21sin2 udw2!#, ~19!

B512
2GM

r
12l2r 21O~«3!, ~20!

A21512
2GM

r
2l2r 21O~«3!. ~21!

Here« is a small quantity of the order of the Newtonian potentialGM/r , O(«3) are terms of the
order of«3 or higher, and we have assumed, for practical usage, thatlr is also a small quantity
of the order«, i.e.,

ulur;GM/r;«!1. ~22!
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To verify the accuracy of this solution, one can calculateB8/B andA8/A first, and then substitute
them into the two equations~2! and ~3!. Thus the approximate solutions~19!–~21! are correct in
the range~22!, or, equivalently, in

GM!r !ulu21. ~23!

We also conclude that~19!–~21! are accurate up to the second order of« and give back to the
Schwarzschild solution ifl50. So generally we can interpret the solution as an exterior solu
of a starlike source. We will show, in the next section, that in a wide range in our solar syste
condition ~22!, or, equivalently,~23!, is satisfied.

Consider now the equation~12!, which, by ~20!, reduces to

r53p5
3l2

4pG~12lt !2 F11
2GM

r
1O~«2!G . ~24!

Herer andp constitute a perfect fluid with the equation of stater53p, implying a property for
radiation or ultra-relativistic particles. From~24! we see that neglecting higher-order terms in t
square bracket on the rhs of~24!, the densitiesr and p are homogenous and isotropic. Thus w
find that one can not interpret the fluid as a radiating atmosphere of a star such as in the
metric.2 Apparently, we can interpret it as to describe a star immersed in a homogenou
isotropic background radiation.

The existence of the heat flow term in the energy-momentum tensor~11! implies that there
must be a temperature gradient in the field and a heat interchanges between the star
background radiation. Using~20! and ~21! in ~18! gives

AB~r !T~ t,r !2ABRTR~ t !5
lM

4pk~12lt ! S 1

r
2

1

RD @11O~«!#. ~25!

If we chooseR as the radius of the star, then in the exteriorr .R, Eq. ~25! implies that if l
.0, then AB(r )T(t,r ),ABRTR(t). Be aware that the thermal equilibrium corresponds
AB(r )T(t,r )5ABRTR(t) for which there is no heat flow.11 So we conclude that the heat flow
outwards ifl.0 and inwards ifl,0. This agrees with the original relation~13! in which q1

.0 for l.0 andq1,0 for l,0 sinceB8.0 according to~20!. Meanwhile, from the metric~19!
and the result~24! we also see that ifl.0, then as the timet increases, the 3D space contracts a
the energy density of the outside fluid increases. All these properties are physically reason

V. DISCUSSION

We have concluded in Sec. IV that the 4D solution discussed in this article can be inter
as an exterior solution of a spherical source such as a star which has a nonzero temperatur
immersed in a homogenous and isotropic background radiation. A natural candidate for thi
of radiation is the cosmic background radiation, for which the temperature is aboutT0'2.7 K at
present days with an energy density aroundrb'4.0310213 erg cm23. Thus, by using~12!, we
determine the constantl as

ulu21'A 3c4

4pGrb
'2.731030 cm'1.831017 AU. ~26!

So,l is of the order of the Hubble constant. Now we wish to know if the close-to-Schwarzs
solution given in~19!–~21! can describe our solar system. That is, we need to calculate
compare orders of the two termsGM/r andl2r 2 appearing in~20! and~21!. The average distanc
between the Sun and the nearest planet Mercury is about 0.387 AU. So, we have
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GM(

RMercc
2 '2.5531028, uluRMerc'2310218. ~27!

The average distance between the Sun and the Pluto is about 39.53 AU. So,

GM(

RPlutoc
2 '2.5310210, uluRPluto'2310216. ~28!

Therefore, we conclude that in a wide range in our solar system, we haveulur !GM/r . So,l2r 2

is of an order higher than the post-Newtonian order. This implies that the contributions o
cosmic background radiation to all of the known solar system experiments13 are negligible. How-
ever, there may be other ways to detect possible new effects of the solution. For example, a
ing to the time-dependent metric~19! and the value ofl in ~26!, the radius of the central sta
should be contracting or expanding, depending on whetherl is positive or negative, with a relative
rate at present time being

S Ṙ

R
D

0

52lc'23.5310213 yer21 for l.0. ~29!

It is worthwhile to study whether this kind of effect is observable.
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Separation of variables and exact solution of the
Klein–Gordon and Dirac equations in an open universe
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We solve the Klein–Gordon and Dirac equations in an open cosmological universe
with a partially horn topology in the presence of a time dependent magnetic field.
Since the exact solution cannot be obtained explicitly for arbitrary time dependence
of the field, we discuss the asymptotic behavior of the solutions with the help of the
relativistic Hamilton–Jacobi equation. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1501445#

I. INTRODUCTION

During the last years a large amount of observational data has been reported showing t
universe is almost isotropic and homogeneous. The study of the structure of the cosmic micr
radiation leads us to conclude that the ratio of the total density to the critical density o
universeV0 is likely to be close to one,1–3 favoring a spatially flat Robertson–Walker metric ov
other topologies.

It is well known that general relativity is a local metrical theory and, therefore, the co
sponding Einstein field equations do not fix the global topology of space–time and, conseq
the universe may have compact spatial sections with a nontrivial topology.4,5 Then the observa-
tional data does not rule out the possibility that our universe possesses a hyperbolic topolo4,6–8

The study of cosmological models with nonstandard topologies is not new and goes b
the works by Zelmanov,9,10 showing that, upon different coordinate transformations, spati
closed or flat sections can be transformed into hyperbolic sections and vice versa.

The line element associated with a spatially open Friedman universe has the form

ds25a2~h!@2dh21dr21sinh2~du21sin2udf2!#. ~1!

Making the coordinate transformation5

e2z5coshr 2sinhr cosu, e2zx5sinu cosf sinhr , e2zy5sinu sinf sinhr , ~2!

the metric~1! becomes

a22~h!ds252dh21dz21e22z~dx21dy2!. ~3!

The topology is induced by identifying points periodically alongx and y by (x,y)5(x1b,y
1h), whereb andh are constant, to create a two dimensional torus. The torus is stretched b
factor e22z along thez axis to create a toroidal horn. The comoving proper area of the toru
e22zbh and depends on location along thez axis. The global topology induces global inhomog
neity as well as global anisotropy.4

a!Alexander von Humboldt Fellow. On leave from Centro de Fı´sica, Instituto Venezolano de Investigaciones Cientı´ficas,
IVIC Apdo 21827, Caracas 1020-A, Venezuela. Electronic mail: villalba@th.physik.uni-frankfurt.de

b!Electronic mail: eisasi@fis.usb.ve
49090022-2488/2002/43(10)/4909/12/$19.00 © 2002 American Institute of Physics
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The study of quantum effects in cosmological universes with a nontrivial topology allow
a deeper understanding of the properties of different scenarios and which of them can descr
universe. In this direction the metric~3! represents a very interesting scenario in order to disc
particle production and propagation of perturbations in cosmology.

After the publication of the pioneering article by Schro¨dinger,11 discussing particle production
in a deSitter universe, many articles have been published on the problem of quantum eff
cosmological scenarios,12–14 most of them dealing with a Robertson–Walker line element w
spatially flat topology. This particularly simple line element, which is the most used in inflatio
models, permits one to compute the Green function as well as to solve the relativistic
equations.15–17

In order to study quantum processes in curved space–times one has to fulfill a prelim
step which consists in having a description of the single-mode solution of the relativistic par
or perturbations in those background fields, i.e., exact solution of the relativistic scalar and
wave equations. In the literature we have at our disposal different methods for solving relat
wave equations in curved spaces and in curvilinear coordinates; among them, the met
separation of variables is one of the most widely used.18–21

It is the purpose of the present article to solve the Klein–Gordon and Dirac equations
Friedman universe associated with the metric~3! in the presence of a time dependent magne
field. In order to solve the Dirac equation we apply the algebraic method of separatio
variables.20–24 We compare the solutions with those of obtained after solving the relativ
Hamilton Jacobi equation. The article is structured as follows: In Sec. II we solve the relati
Hamilton–Jacobi equation in an open cosmological universe with a horn topology. In Sec.
separate variables and solve the Klein–Gordon equation. In Sec IV, using the algebraic me
separation of variables, we reduce the Dirac equation to a system of first order coupled diffe
equations that we solve in terms of special functions. Finally, in Sec. V we briefly discus
results reported in this article.

II. SOLUTION OF THE HAMILTON–JACOBI EQUATION

The covariant generalization of the Hamilton–Jacobi equation has the form25

gabS ]S

]xa 2eAaD S ]S

]xb 2eAbD1M250, ~4!

wheregab is the contravariant metric,Aa is the vector potential andM is the mass of the particle
Here and elsewhere we adopt the conventionc5\51.

Let us introduce an electromagnetic field associated with the vector potential

Am5A1~y!d1
m , ~5!

where the indexm50 is associated with the evolution parameterh andm51,2,3 correspond to
the space coordinatesx,y,z, respectively. Looking at the relativistic invariants

1

2
FmnFmn5B22E25

e4z

a~h!4 S dA1~y!

dy D 2

, ~6!

FmnFmn* 50, ~7!

and taking into account that onlyF23 is different from zero, we notice that~5! corresponds to a
nonconstant magnetic fieldB, directed along thez axis, with strength

B5
e2z

a~h!2 UdA1~y!

dy U, ~8!
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whose value is inversely proportional to the expansion factora(h)2.
The line element~3! is a Stäckel space,26 and the Hamilton–Jacobi equation~4! is completely

separable in~3! in the presence of the vector potential~5!, therefore we can look for a solution i
the form

S5kx1Sy~y!1Sz~z!1Sh~h!. ~9!

Substituting~9! into Eq. ~4! we obtain

~kx2A1~y!!2

e22z 1
1

e22z S dSy

dy D 2

1S dSz

dz D 2

2S dSh

dh D 2

2M2a~h!250. ~10!

Equation~10! reduces to the following system of differential equations:

S dSz

dz D 2

1kxy
2 e2z5kz

2 , ~11!

S dSh

dh D 2

1M2a~h!25kz
2 , ~12!

~kx2A1~y!!21S dSy

dy D 2

5kxy
2 , ~13!

wherekxy
2 andkz

2 are separation constants.
In the absence of electromagnetic interaction, we have thatA1(y)50 and the solution of Eq.

~13! takes the form

Sy56Akxy
2 2kx

2y56kyy, ~14!

where we have introduced the constantky . Equation~14! can also be derived looking at th
symmetry between the torus coordinatesx and y in the line element~3! and Eq. ~10! when
A1(y)50.

When the vector potential has the simple formA1(y)5A1y, the magnetic field readsB
5 @e2z/a(h)2# uA1u and the functionSy(y) is

Sy~y!52
kx2A1y

2A1
Akxy

2 2~kx2A1y!21
kxy

2

2A1
arctan

Ayy2kx

Akxy
2 2~kx2A1y!2

. ~15!

The solution of Eq.~11! can be expressed in terms of elementary functions as follows:

Sz5Akz
22kxy

2 exp~2z!2kz tanh21Akz
22kxy

2 exp~2z!

kz
2 . ~16!

The solution of Eq.~12! can be written as

Sh56E Akz
22M2a~h!2dh, ~17!

whose explicit form in terms of elementary functions will depend on a particular choice o
expansion functiona(h).

Since we have been able to solve the Hamilton–Jacobi equation in the Sta¨ckel space given by
~4!, we can construct the quasiclassical modes of the relativistic wave equations throug
identification
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F→eiS5e6 i *Akz
2
2M2a(h)2dheikxxeiSyeiSz, ~18!

whereSz andSy take the following values at the asymptotes:

Sz(`)→ ikxye
z, Sz(2`)→kzz, ~19!

Sy(`)→7 i
~kx2A1y!2

2A1
. ~20!

When the electromagnetic interaction is not present we have thatSy5exp(ikyy).

III. SOLUTION OF THE KLEIN–GORDON EQUATION

The covariant generalization of the Klein–Gordon equation in curved space–time ha
form12

gab~¹a2 ieAa!~¹b2 ieAb!F2~M21jR!F50, ~21!

where¹a is the covariant derivative,R is the curvature scalar andj is a scalar dimensionles
coupling constant which takes the valuej5 1

6 in the conformal case andj50 when a minimal
coupling is considered. The value of theR for the metric~3! is

R56
2a~h!1 ~d2a~h!/dh2!

a~h!3 . ~22!

Substituting the metric associated with the line element~3! into the Klein–Gordon equation~21!
one obtains

e2z
]2F

]x2 1e2z
]2F

]y2 22
]F

]z
1

]2F

]z2 22
]F

]h

da

dh

1

a3 2e2zA1~y!2F22ie2z
]F

]x
A1~y!2M2a2F50,

~23!

where we have chosen to work with a minimal couplingj50. The Klein–Gordon equation~21! is
completely separable in~3!, therefore we look for its solution in the form

F5H~h!Z~z!Y~y!eikxx. ~24!

Substituting~24! into Eq. ~21! we reduce the problem of solving the Klein–Gordon equation
that of finding solutions of the following set of ordinary differential equations

d2Y

dy2 2~~kx2A1~y!!22k2!Y50, ~25!

d2Z

dz2 22
dZ

dz
2~l21k2e2z!Z50, ~26!

d2H

dh2 12
dH

dh

da

dh
1~a2~h!M22l2!H50, ~27!

with l2 andk2 as separation constants. ForA(y)5A1y the solution of Eq.~25! can be expressed
in terms of Whittaker functions27 as follows:

Y5C1v21/2Mk2/4A1 , 1/4~v2!1C2v21/2Wk2/4A1 , 1/4~v2!, ~28!

where
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v5
A1y2kx

AA1

, ~29!

andC1 andC2 are arbitrary constants. In the absence of electromagnetic field the solution o
~25! reduces to

Y5C1e6 iAk22kx
2y5C1e6 ikyy. ~30!

The solution of Eq.~26! is28

Z5C3ezHA11l2
(1)

~ ikez!1C4ezHA11l2
(2)

~ ikez!, ~31!

whereHn
(1)(z) andHn

(2)(z) are the Hankel functions andC3 andC4 are arbitrary constants. W
can also express the solution of~26! in terms of Bessel functionsJn(z) as

Z5D3ezJA11l2~ ikez!1D4ezJ2A11l2~ ikez!, ~32!

whereD3 andD4 are arbitrary constants.
After introducing the functionh(h),

H~h!5
h~h!

a~h!
, ~33!

Eq. ~27! reduces to

d2h

dh2 1S a2~h!M22l22
d2a~h!

dh2 Dh50. ~34!

In order to analyze the asymptotic behavior of the solutions of the Klein–Gordon equation~21! we
make use of the asymptotic behavior of the Hankel functions,27

Hn
(1)~z!→S 2

pzD
1/2

ei (z2pn/22p/4), Hn
(2)~z!→S 2

pzD
1/2

e2 i (z2pn/22p/4), ~35!

asz→`, and the behavior ofJn(z) asz→0 ~Ref. 28!,

Jn~z!→
S z

2D n

G~11n!
~36!

The asymptotic behavior of the Whittaker functionWk,m(z) for large values ofz is28

Wk,m~z!→e2z/2zk, ~37!

and the functionMk,m(z) has the following asymptotic behavior asz→0:

Mk,m~z!→e2z/2zm1 ~1/2!. ~38!

An approximate solution of Eq.~34! can be obtained provided that the expansion parametera(h)
satisfies the conditions of validity of the adiabatic approximation. In this case one has thath(h)
has the form29–31

h~h!5
1

A2W~h!
expS 6 i Eh

W~h8!dh8D , ~39!
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with

W~h!25v~h!2@11d2~h!v221¯#, ~40!

where the functionv(h) has the form

v~h!25a2~h!M22l22
d2a~h!

dh2 , ~41!

dn(h) is a function ofv(h) and its derivatives ath up throughv (n)(h) anddn(h) is bounded as
v→`. The solution of the Klein–Gordon equation~21! can be written as

F5
exp~6 i *Aa2~h!M22l22 ~d2a~h!/dh2! dh

&a~h!3/2
Z~z!Y~y!eikxx. ~42!

Let us analyze the asymptotic behavior of~42! as y→` and z→2`. Using ~19! and ~36! we
obtain that, when the electromagnetic interaction is switched off, the mode solutions of Eq~21!
take the asymptotic form

F→ exp~6 i *Aa2~h!M22l22 ~d2a~h!/dh2! dh

&a~h!3/2
e7 ikyyeikxxe(7A11l211)z. ~43!

Analogously, we have that in the presence of the electromagnetic potential the mode solut
Eq. ~21! take the following asymptotic form:

F→ exp~6 i *Aa2~h!M22l22 ~d2a~h!/dh2! dh

&a~h!3/2
e(6A11l211)znk2/2A1e2n2/2eikxx. ~44!

For large positive values ofz we have that the asymptotic behavior ofF is

F→ exp~6 i *Aa2~h!M22l22 ~d2a~h!/dh2! dh

&a~h!3/2
e7e2kez

ez/2nk2/2A1e2n2/2eikxx. ~45!

From Eq.~44! we can identify the quasiclassical modes asy→` andz→2` as

Fclass(z→2`)5
h~h!

a~h!
ezJ6A11l2~ ikez!v21/2Wk2/4A1 , 1/4~v2!eikxx. ~46!

Analogously, from Eq.~45! we have that the quasiclassical modes asy→` andz→` are

Fclass(z→`)5
h~h!

a~h!
ezH

6A11l2
(1,2)

~ ikez!v21/2Wk2/4A1 , 1/4~v2!eikxx. ~47!

IV. SOLUTION OF THE DIRAC EQUATION

The Dirac equation is a system of coupled partial differential equations which is separa
a very restricted set of metrics. Among the space–times where the separability of the K
Gordon and Dirac equations has been studied one can mention the Sta¨ckel spaces,26 which are
those metrics where the Hamilton–Jacobi equation is separable. Nevertheless, recently it h
shown that this condition is neither necessary nor sufficient in order to guarantee a com
separability of variables in the Dirac equation~see Ref. 32 and references therein!. A systematic
                                                                                                                



e help

trad

4915J. Math. Phys., Vol. 43, No. 10, October 2002 Klein–Gordon, Dirac equations in an open universe

                    
classification of the gravitational backgrounds where the Dirac equation is separable with th
of the algebraic method is presented in Ref. 20 The line element~3! belongs to this family and,
consequently, one can apply the algebraic method of separation.

The covariant generalization of the Dirac equation in curved space–time is12,33

g̃a~]a2Ga2 ieAa!C̃1MC̃50, ~48!

where the curved Dirac matricesg̃a satisfy the commutation relation

$g̃a,g̃b%52gab, ~49!

andGa are the spin connections33

Ga5
1

4
gmlF S ]bn

b

]xa Dab
l2Gna

l Gsmn, ~50!

where

smn5 1
2 ~ g̃mg̃n2g̃ng̃m!, ~51!

and the matricesbm
a , ab

m establish the connection between the Dirac matricesg̃m on a curved
space–time and the flat Dirac matricesgm as follows:

g̃m5bm
aga , g̃m5ab

mgb. ~52!

Since the line element~3! is associated with a diagonal metric, we can work in the diagonal te
gauge forg̃m:

g̃05
g0

a~h!
, g̃15

g1

a~h!e2z , g̃25
g2

a~h!e2z , g̃35
g0

a~h!
. ~53!

Substituting~53! into ~50! we obtain that the spinor connections are

G152
1

2

e2z

a~h! H 2a~h!g1g31
da~h!

dh
g1g4J , ~54!

G252
1

2

e2z

a~h! H 2a~h!g2g31
da~h!

dh
g2g4J , ~55!

G352
1

2

da~h!

dh

1

a~h!
g3g4, G450. ~56!

Substituting~53!–~56! into ~48! we find that the Dirac equation takes the simple form

H g0
]

]h
1g1ezS ]

]x
2A1~y! D1g2ez

]

]y
1g3

]

]z
1Ma~h!J C50, ~57!

where we have introduced the spinorC,

C̃5a~h!23/2ezC. ~58!

Regarding Eq.~57!, we should mention that it does exhibit a nonfactorizable structure.22,34 In
order to solve Eq.~57! we apply the algebraic method of separation of variables.20–24The method
consists in rewriting the Dirac equation~57! as a sum of two first order differential operatorsK̂1 ,
K̂2 satisfying the relation
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@K̂1 ,K̂2#250, $K̂11K̂2%F50, ~59!

with

g3g0C5F ~60!

and

K̂1~x,y!F5H g2
]

]y
1g1S ]

]x
2 iA1~y! D J g3g0F5 ikF, ~61!

K̂2~z,h!F5ezH g0
]

]h
1g3

]

]z
1Ma~h!J g3g0F52 ikF. ~62!

It should be noticed that, using the pairwise scheme of separation, one has been able to red
problem of solving the Dirac equation to finding solutions of the decoupled system of Eqs~61!
and ~62!. A further problem arises when we try to separate variables in Eq.~62!. Here it is not
possible to reduce the problem to a set of two commuting first order differential operators. In
to separate variables in Eq.~62!, we rewrite it in the following form:22,35

~ L̂1g3g01L̂2!F50, ~63!

whereL̂1 and L̂2 are two commuting differential operators given by the expressions

L̂15g0
]

]h
1Ma~h!, ~64!

L̂25g0
]

]z
1 ikez. ~65!

In order to separate variables in Eq.~63!, we introduce the auxiliary spinorY,

~ L̂1g3g01L̃2!Y5F, ~66!

where the differential operatorL̃2 is given by the expression

L̃25g0
]

]z
2 ikez. ~67!

Substituting~66! into ~63! we obtain thatY satisfies the following equation:

$M̂11M̂2%Y50, ~68!

with @M̂1 ,M̂2#50, and

~M̂11l̃ !Y5S 2
]2

]z2 2 ig0kez1k2e2z1l̃ DY50, ~69!

~M̂22l̃ !Y5S ]2

]h2 1g0M
da~h!

dh
1M2a2~h!2l̃ DY50, ~70!

wherel̃ is a separation constant. Introducing the new variableu52kez, we have that Eq.~69! can
be written as
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S ]2

]u2 1
i

2u
g02

1

4
1S 1

4
2l D 1

u2DS50, ~71!

where

u21/2S5Y. ~72!

Choosing the following representation of the Dirac matrices,36

g05S 2 i 0

0 i D , g j5S 0 s j

s j 0 D , 1< j <3, ~73!

we readily obtain that the spinorF has the following structure:

Fs1

]

]y
2 is2~kx2A1~y!!GF15 ikF2 , ~74!

F2s1

]

]y
1 is2~kx2A1~y!!GF25 ikF1 , ~75!

F5S F1

F2
D5S f~y!

Fs3f~y! Dexp~ ikxx!, ~76!

where

f~y!5S A~y!

B~y! D . ~77!

Using the representation~73! we obtain that the solution of Eq.~71! can be written in terms of
Whittaker functions

S1,25D1W21/2,Al~u!1D2M 21/2,Al~u!, S3,45D3W1/2,Al~u!1D4M1/2,Al~u!, ~78!

whereD1 , D2 , D3 , D4 do not depend on the variableu. Looking at~70! and~71!, we have that,
for regular solutions atu50, the spinorY has the following structure:

Y5S a~y!c1~h!u21/2M 1 1/2 ,Al~u!

b~y!c1~h!u21/2M 1 1/2 ,Al~u!

c~y!c2~h!u21/2M 2 1/2 ,Al~u!

d~y!c2~h!u21/2M 2 1/2 ,Al~u!

D exp~ ikxx!. ~79!

Substituting~79! into ~66! and noticing that Eq.~70! is equivalent to the following system o
equations,

S ]

]h
2 iM a~h! D c1~h!5Al̃c2~h!, ~80!

S ]

]h
1 iM a~h! D c2~h!5Al̃c1~h!, ~81!

we obtain that the spinorF has the following structure
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F5S A~v !c1~h!e2z/2M 2 1/2 ,Al̃~2kez!

B~v !c1~h!e2z/2M 2 1/2 ,Al̃~2kez!

iA~v !c2~h!e2z/2M1/2 ,Al̃~2kez!

2 iB~v !c2~h!e2z/2M1/2 ,Al̃~2kez!

D exp~ ikxx!, ~82!

whereA(v) andB(v) satisfy the system coupled system of equations

S d

dy
2~kx2A1~y!! DB5 ikA, ~83!

S d

dy
1~kx2A1~y!! DA5 ikB, ~84!

wherev was defined in Eq.~29!.
The corresponding solution of Eq.~59! in terms of the Whittaker functionsWk,m(z) has the

form

F5S Al̃ iA~v !c1~h!e2z/2W2 1/2 ,Al̃~2kez!

2 iAl̃B~v !c1~h!e2z/2W2 1/2 ,Al̃~2kez!

A~v !c2~h!e2z/2W1/2 ,Al̃~2kez!

B~v !c2~h!e2z/2W1/2 ,Al̃~2kez!

D exp~ ikxx!. ~85!

Let us look for solutions of the system~83! and ~84! when the electromagnetic potential has t
simple functional dependenceA1(y)5A1y. In this case one can obtain exact solutions forA(v)
and B(v) in terms of hypergeometric functions. After making the change of variable~29! and
using the recurrence relations27

~b21!M ~a,b21,z!5~b21!M ~a,b,z!1z
dM~a,b,z!

dz
, ~86!

1

a

dM~a,b,z!

dz
1M ~a,b,z!5M ~a11,b,z!, ~87!

dU~a,b,z!

dz
2U~a,b,z!52U~a,b11,z!, ~88!

we find that the general solution of the system of equations~83! and ~84! reads

A5
A2A1

ik
e2 ~1/2! v2S C1M S 2

k2

4A1
1

1

2
,
1

2
,v2D1C2US 2

k2

4A1
1

1

2
,
1

2
,v2D D , ~89!

B5e2 ~1/2! v2
vS C1M S 2

k2

4A1
1

1

2
,
3

2
,v2D2C2US 2

k2

4A1
1

1

2
,
3

2
,v2D D . ~90!

The exact solution of the system of equations~83! and ~84! in the absence of electromagnet
interaction has the form

A5C1eiAk22kx
2y1C2e2 iAk22kx

2y, ~91!

B5
Ak22kx

22 ikx

k
C1eiAk22kx

2y2
Ak22kx

21 ikx

k
C2e2 iAk22kx

2y, ~92!
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where C1 and C2 are arbitrary constants. The solutions of the Dirac equations~82! and ~85!
exhibit an asymptotic behavior which can be identified with the quasiclassical solutions o
Hamilton–Jacobi equation~4!. With the help of the asymptotic expressions~38!, we find that the
Dirac spinorF asz→2`, andy→` takes the form

Fz→2`5S A2A1

ik
c1~h!

2vc1~h!

2
A2A1

k
c2~h!

ivc2~h!

D e2kez
e
Al̃ze2 v2/2v ~k2/2A1! 21 exp~ ikxx!, ~93!

where the functionsc1(h) andc2(h) satisfy the system of equations~80! and ~81!. For asymp-
totically large values ofz we have that the spinorF takes the form

Fz→`5S Al̃
A2A1

k
c1~h!e2z

iAl̃vc1~h!e2z

2 i2A2A1c2~h!

22kvc2~h!

D e2kez
e2 v2/2vk2/2A1 exp~ ikxx!. ~94!

Looking at the solution of the Hamilton–Jacobi equation, we can identify~82! and ~85! as the
corresponding quasiclassical modes asz→2` andz→`, respectively. An approximate expre
sion for the time dependence of the spinorF can be obtained with the help of the WKB approx
mation. In this case we obtain

c2~h!;c10exp~ iv~h!!, ~95!

c1~h!;2 i
c10

v~h!1Ma~h!
exp~ iv~h!!, ~96!

wherec10 is a normalization constant andv(h)5AiM (da/dh) 1M2a22l̃. Looking at ~95!,
~96! and ~93! we readily see that, for large values ofh we obtain c1(h)→
2 i @c10/2Ma(h)# exp(iv(h)). Analytic solutions of the system of equations~95! and~96! can be
obtained for some particular expansion parametera(h).22,35

V. CONCLUDING REMARKS

In this article, we have solved the Klein–Gordon and Dirac equations in an open cosmol
universe with partially horn topology. The solutions of the relativistic wave equations are
pressed in terms of special functions. In Sec. IV we have shown that the algebraic meth
separation22–24,35permits one a complete separation of variables of the Dirac equation in the
element associated with a horn topology. The identification of the quasiclassical modes w
help of the relativistic Hamilton–Jacobi equation shows that this method is a very useful to
the study of quantum effects in curved spaces.

As a final remark, we should mention that the introduction of nonstandard topologies in
to describe the large scale structure of the space–time also opens new possibilities to
quantum effects in globally inhomogeneous and anisotropic backgrounds in the presence
trivial electromagnetic interactions.
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A bidirectional Kaup–Kupershmidt equation
and directionally dependent solitons
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Exact multisoliton solutions are obtained for the bidirectional Kaup–Kupershmidt
equation that was reported in a recent paper@J. Math. Phys.42, 2567~2001!#—this
fills the gap that was left in the prior study. These solutions are found to possess the
same remarkable, and unusual, property as the solitary-wave solution; namely,their
wave profiles are directionally dependent. In particular, solitons are presented
which describe multiple ‘‘head-on’’ collisions betweensingle- anddouble-humped
solitary waves. Explicit expressions are given for the first few multisoliton solu-
tions and a procedure is described for constucting the generalN-soliton by iteration
on the solitons of lower order. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1503866#

I. INTRODUCTION

In a recent paper,1 we constructed two fifth-order nonlinear evolution equations~NEEs! of
‘‘Boussinesq’’-type which govern wave propagation in two opposite directions. The first of t
equations can be written in the nonlocal form

5]x
21utt15uxxt215uut215ux]x

21ut245u2ux1
75

2
uxuxx115uu3x2u5x50, ~1!

and may be considered abidirectional version of the well-known Kaup–Kupershmidt~KK !
equation2,3

ut145u2ux2
75

2
uxuxx215uu3x1u5x50. ~2!

In Ref. 1, we designated Eq.~1! thebidirectional Kaup–Kupershmidt~or bKK! equation—it is the
main interest of the present study.

The second equation studied in Ref. 1—and of equal relevance here—is

5]x
21utt15uxxt215uut215ux]x

21ut245u2ux115uxuxx115uu3x2u5x50; ~3!

it was formulated there as a bidirectional generalization of the Sawada–Kotera~SK! equation4,5

ut145u2ux215uxuxx215uu3x1u5x50. ~4!

By constructing its bilinear form,1 we were able to identify thebidirectional Sawada–Kotera
~bSK! equation~3! with the well-known Ramani equation6 @Eq. ~9!#. In this study, we shall refer
to Eq. ~3! as the ‘‘bSK-Ramani’’ equation so as to emphasize itsbidirectional character and
genealogy with the SK equation~4! while, at the same time, signaling its equivalence to Rama
bilinear equation~9!.

The KK and SK equations~2! and~4! have been studied extensively in the literature and th
complete integrability is now firmly established~see, e.g., Refs. 2 and 6–11 and Refs. 2, 4, 5,

a!Author to whom correspondence should be addressed; electronic mail: allen.parker@newcastle.ac.uk
49210022-2488/2002/43(10)/4921/29/$19.00 © 2002 American Institute of Physics
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and 13, respectively!. Further, the intimate connection between these twounidirectional NEEs has
long been known;2,10–12,14,15nevertheless, Eqs.~2! and ~4! are fundamentally different.14 Indeed,
the equations belong to quite distinct integrable hierarchies;7,16 the KK Eq. ~2! appears as a
reduction in the so-called CKP system~KP hierarchy of C-type!, while the SK Eq.~4! can be
found in the BKP hierarchy.

The bSK-Ramani equation, Eq.~3!, has likewise received considerable attention over the
two decades,6,17–19 though it should be said, primarily in the guise of the bilinear form Eq.~9!.
However, we recently pointed to its bidirectional nature and relation to the SK Eq.~4! through the
normal form~3!.1 The mathematical properties that assure the complete integrability of the b
Ramani equation have largely been established.6,7,16–19In Ref. 1 we were able to construct a La
pair directly, along with an infinite number of conserved densities; we remark that the fo
associates Eq.~3! with a fifth-order scattering problem. In view of its connection with the S
equation, we might anticipate that the bSK-Ramani equation will also belong to the BKP h
chy. This is indeed the case; yet, the equation appears in Ref. 16 neither in its normal form~3! nor
in the form of Ramani’s Eq.~9!, but, rather, as the coupled bilinear form~8!.

In contrast to the bSK-Ramani equation, it appears that very little of detail is known abou
bKK Eq. ~1!. In Ref. 1 we formulated this NEE specifically as a bidirectional counterpart of
KK Eq. ~2!. Not surprisingly, then, the bKK equation is listed in Ref. 16 as a reduction of the C
hierarchy and is given there in the normal form~1!. The Lax pair reported by us in Ref
1—together with an infinity of conservation laws—would seem to confirm its integrable s
and, moreover, associates the bKK equation with afifth-order spectral operator. Yet, arguably, th
chief distinguishing property of any completely integrable equation is the existence of an in
sequence of soliton solutions which describe the ‘‘elastic’’ interaction of multiple soli
waves.20–23In the previous study1 we were able to derive the solitary wave of the bKK Eq.~1!, but
no further soliton solutions. This ‘‘anomalous’’ solitary wave possesses a remarkable pro
namely,its profile is dependent on the direction of travel~see Fig. 1!. This type of soliton behavior
would seem to be quite unusual and, to our knowledge, had not been reported before then

The aim of the present article is to obtain explicit multisoliton solutions of the bidirectio
Kaup–Kupershmidt equation~1!, and so fill the gap that was left in Ref. 1. To do so, we sh
build on the results of our prior work;1 we showed there that the ‘‘anomalous’’ character of the
solitons arises quite naturally within Hirota’s bilinear formalism.24,25 Consequently, we were abl
to predict the structure—though not the precise analytical form—of theN-soliton solution of the
bKK Eq. ~1!. In this regard, we will follow the strategy pursued by one of us~AP! to obtain the
soliton solutions of its unidirectional cousin, the KK Eq.~2!.11 However, the current problem
differs from that for the KK equation in one important respect—for the bKK equation we m
additionally take account of its bidirectionality. Thus, in the case of the KK Eq.~2!, one is able to

FIG. 1. Solitary-wave solutions of the bKK equation:~a! a right-traveling single-humped wave,~b! a left-traveling
double-humped pulse.
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take advantage of its unidirectional character; this endows the solitons with a large meas
symmetry that facilitates the analysis greatly.11 But, as we shall see, the soliton solutions of t
bKK equation inherit the property ofdirectional dependencefrom their constituent ‘‘solitary’’
waves. As a result, much, though by no means all, of the symmetry possessed by their un
tional counterparts of the KK equation is lost. This makes the results for the bKK equation
much more complicated, though, by the same token, that much more interesting. This sc
differs markedly from that for its near relative, the bSK-Ramani Eq.~3!. It too admits solitons
which describe counter-propagating solitary waves, but its purely left- and right-traveling so
are simply mirror images of one another! In short—and to the best of our knowledge—the
tional dependence of the multisoliton solutions presented here distinguishes the bKK Eq.~1! from
other bidirectional NEEs and makes it worthy of study.

Notwithstanding our comments above regarding the extra complications encountered he
parallels with the solution procedure adopted in Ref. 11 for deriving soliton solutions of the
equation are evident and illuminating. For example, we shall find that the analytic descript
the N-soliton of the bKK equation requires the introduction of a ‘‘new’’ parameter at each o
N; computing this parameter may be considered the central problem of the present work.
quite unlike the bSK-Ramani equation whoseN-soliton solution is given by Hirota’s well-known
ansatz24 and is described by essentially a single parameter@see Eq.~10!#. We will also exploit the
duality between the bKK and bSK-Ramani equations that is evident from Eqs.~1! and ~3!. This
mirrors the deep connection between their unidirectional cousins, the KK and SK Eqs.~2! and~4!,
which was used to good effect in Ref. 11. We formulate the first three multisolitons of the
equation explicitly, and describe an iterative procedure for generating its soliton solutions t
order.

II. BILINEAR FORMS AND DIRECTIONALLY DEPENDENT SOLITARY WAVES

In the earlier study,1 we introduced the change of dependent variable

u~x,t !5a]x
2 ln f ~x,t !, ~5!

wherea is a constant~and]x
n denoted thenth partial derivative with respect tox). Then, following

Hirota’s direct method,24,25 we showed that, under the transformation~5!, the bKK Eq.~1! admits
two possible bilinear forms:1 with a521, we obtain

~80Dt
2120Dx

3Dt2Dx
6! f • f 2120DxDt f •g130Dx

2f •h50, ~6a!

Dx
2f • f 12 f •g50, ~6b!

Dx
4f • f 12 f •h50, ~6c!

where the Hirota derivatives Dx ,Dt are defined by25

DxDta~x,t !•b~x,t !5~]x2]x8!~] t2] t8!a~x,t !b~x8,t8!ux85x, t85t .

The second bilinear form hasa522 and reads

4~5Dt
215Dx

3Dt2Dx
6! f • f 215Dx

4f •g115Dx
2f •h50,

Dx
2f • f 12 f •g50, ~7!

Dx
4f • f 12 f •h50.

The derivations of Eqs.~6! and ~7!, in which g(x,t) and h(x,t) are auxiliary functions, can be
found in Ref. 1.
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Similarly, with u and f related by Eq.~5!, the bSK-Ramani Eq.~3! has precisely two bilinear
representations:1 with a521, we get

~80Dt
2120Dx

3Dt2Dx
6! f • f 130~4DxDt2Dx

4! f •g50, ~8a!

Dx
2f • f 22 f •g50, ~8b!

whereg(x,t) is again some auxiliary function. On the other hand, whena522 we obtain the
single bilinear equation

~5Dt
215Dx

3Dt2Dx
6! f • f 50, ~9!

which identifies the bidirectional Sawada–Kotera Eq.~3! with the eponymous Ramani equation6

A cursory comparison of the bilinear forms~6! and~8! ~with u52]x
2 ln f ), and, more particularly,

Eqs. ~7! and ~9! ~for which u522]x
2 ln f ), underlines the duality of the bKK and bSK-Rama

equations that is apparent from Eqs.~1! and ~3!, and will be of some importance to the ana
ysis that follows.@We remark that the choice of transformation~5! and the admissible value
a521 or 22 are no accident, but derive from the deeper structural form of the solutions to
~1! and ~3!; see the Appendix and the further comments at the end of this section.#

Obtaining multisoliton solutions of the bSK-Ramani equation is relatively straightforw
since we can choose to solve the single~Ramani! bilinear form~9!, rather than the coupled syste
~8a! and ~8b!. TheN-soliton solution of Eq.~9! is given by Hirota’s celebrated formula24

f ~x,t !5 (
m50,1

expF(
i 51

N

m iu i1 (
1< i , j <N

m im j ln Ai j G , ~10!

whereu i5pix1v i t1h i ( i 51, . . . ,N) andpi , v i ,h i are constant~possibly complex! parameters.
In the remainder of this article we will refer to the generic expression~10! as simply theregular
N-soliton. Significantly, it is described by essentially a single interaction coefficient,Ai j , that
measures the mutual phase shift following the collision of thei th and j th ‘‘solitary’’ waves. For
the bSK-Ramani equation, one easily shows that

Ai j 52
5~v i2v j !

215~v i2v j !~pi2pj !
32~pi2pj !

6

5~v i1v j !
215~v i1v j !~pi1pj !

32~pi1pj !
6 , 1< i , j <N, ~11!

wherev i(pi) is given by the quadratic dispersion law

5v i
215v i pi

32pi
650, i 51, . . . ,N. ~12!

The explicitN-soliton solutionu(x,t) of the bSK-Ramani Eq.~3! is then obtained from~10! and
the relationu522]x

2 ln f: we will say more about this solution later. For now, we note that
solitary wave is given by settingN51 in Eq. ~10! and leads to the familiar sech2 pulse1

u~x,t !52
1

2
p2 sech2

1

2
~px1vt1h!. ~13!

For our part, the important feature of this solitary wave is that it propagates either to the l
right with thesamebell-shaped profile.

For the bKK equation, however, things are not quite so simple. Neither of the two altern
bilinear forms~6! and ~7! can be reduced to a single bilinear equation of the typeF(Dx ,Dt) f • f
50, akin to Ramani’s Eq.~9!. We therefore have to solve one or the other of thecoupledbilinear
systems~6! or ~7! for which no prescribed solution is available analagous to the Hirota an
~10!! In fact, we will later formulate and work with a simpler version of the bilinear form~6!; but,
for now, we pursue the argument set down in Ref. 1. There we were able to exploit the
connection between the bKK and bSK-Ramani equations and argued as follows: Becau
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bilinear forms~8! and~9! of the bSK-Ramani equation are equivalent under the mappingf 2↔ f ,1

we can immediately infer that theN-soliton solution of the coupled system~8a! and~8b! is given
by squaring the regularN-soliton ~10!. But, then, the duality of the bilinear forms~6! and ~8!
strongly suggests that theN-soliton solution of the bKK equation will mimic its bSK-Raman
counterpart. Applying this argument to the regular solitary wave@setN51 in ~10!#, we find that1

f ~x,t !511eu1 1
16 a2e2u, u5px1vt1h, ~14!

solves Eq.~6! if

a25
4v2p3

v2p3 ~a.0! ~15!

andv(p) satisfies the~bSK-Ramani! dispersion law@Eq. ~12!#

5v215vp32p650. ~16!

Then, usingu52]x
2 ln f, we obtain the ‘‘anomalous’’ solitary wave of the bKK Eq.~1!,

u~x,t !52ap2
a12 coshu

~a coshu12!2 ; ~17!

this solution was first reported by us in Ref. 1.~The detailed computations, along with th
expressions for the auxiliary functionsg andh, are given in Ref. 1.! The most compelling feature
of the bKK solitary wave~17! is that its profile depends on the direction of propagation. The
right-traveling solitary wave is a single-humped pulse shown in Fig. 1~a!, while the left-going
solitary wave has the symmetrical double-humped shape in Fig. 1~b!. The left (2) and right
(1) running waves are distinguished by solving the dispersion relation~16! for its two ~real! roots

v52V6p3, V65
1

2 S 16
3

A5
D , ~18!

which, in turn, givea(V6)5 1
2(A561).

Extending this reasoning to theN-soliton of the bKK Eq.~6!, we postulate that it has th
structure—though not the exact analytical form—of asquaredregular soliton~10!. We shall
exploit this duality argument—which was formulated in Ref. 1 , but used there only to derive th
solitary wave~17!—to obtain higher-order soliton solutions of the bKK equation. In short,
elect to solve the coupled bilinear form~6! rather than the alternative Eq.~7!. This makes good
sense for, as we show in the Appendix, the Hirota ansatzf of Eq. ~6! is anentire function, whereas
that for Eq.~7! is not entire.

Before proceeding, there is a further preliminary consideration which will assist our ana
Were we to employ the bKK bilinear form~6! as it stands—as we did in the previous study1—the
calculations very soon become prohibitively complex and unwieldy~as the order of theN-soliton
increases!. The reason for this is simple: just as for the solitary wave,1 the auxiliary functionsg
and h in Eqs. ~6b! and ~6c! turn out to be irreducible quotients@and this makes the subseque
solution of the third bilinear Eq.~6a! extremely difficult, even for lower-order solitons#. More
precisely, Eq.~6! is not a ‘‘good’’ bilinear form in the sense thatg andh arenot in general entire
functions, notwithstanding that the ansatzf is entire ~see the Appendix!. This suggests that we
should first recast the bilinear form~6! so that any auxiliary function is also entire. To this end,
first substitute forg andh from Eqs.~6b! and ~6c! into Eq. ~6a! to obtain

~80Dt
2120Dx

3Dt2Dx
6! f • f 115Dx

2F f •
~4DxDt2Dx

4! f • f

f G50.
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We now introduce a ‘‘new’’ auxiliary variableg̃(x,t) so as to obtain the coupled equations

~80Dt
2120Dx

3Dt2Dx
6! f • f 130Dx

2f •g̃50, ~19a!

~4DxDt2Dx
4! f • f 22 f •g̃50. ~19b!

A singularity analysis of the solutions to the bKK Eq.~1! shows that the auxiliary functiong̃ in the
simplified bilinear form~19! is entire.~A brief outline of this Painleve´ analysis is presented in th
Appendix!. Henceforth, we will use this ‘‘good’’ bilinear form of the bKK equation in preferen
to Eq. ~6! as it justifies expandingg̃ in terms of exponentials@Eq. ~27!# and leads to considerabl
computational simplification. The similarity of the bilinear forms~8! and ~19! is striking, and
provides further evidence of the duality between the bSK-Ramani and bKK equations.

III. TWO-SOLITON SOLUTION OF THE BIDIRECTIONAL KAUP–KUPERSHMIDT
EQUATION

To generate the regular two-soliton solution of the bSK-Ramani equation, Eq.~9!, we setN
52 in Eqs.~10!–~12!: this gives

f ~x,t !511eu11eu21A12e
u11u2, u i5pix1v i t1h i , i 51,2, ~20!

with v i satisfying the the dispersion law~12! and

A1252
5~v12v2!215~v12v2!~p12p2!32~p12p2!6

5~v11v2!215~v11v2!~p11p2!32~p11p2!6 . ~21!

The two-soliton solution of the bSK-Ramani Eq.~3! is then obtained via the relatio
u522]x

2 ln f. Now, following our argument in Sec. II, the two-soliton solution of the bKK E
~19! mimics the structure off 2. Accordingly, we seek a two-soliton solution of the biline
equations~19a! and ~19b! in the form

f ~x,t !511eu11eu21a1e2u11a2e2u21b12e
u11u21c1e2u11u21c2eu112u21Be2(u11u2),

~22!

whereu i5pix1v i t1h i , i 51,2, anda1 , a2 , b12, c1 , c2 andB are constants. The expressio
~22! warrants further comment: to begin with, it has beennormalizedby setting the coefficients o
the terms eu1 and eu2 to unity ~which is always possible sinceh1 , h2 are arbitrary!. Further, f
must be a symmetrical function of the two phase variablesu1 andu2 . This means that, in effect
there are just four unknown coefficients which are either symmetrical (b12,B) or invertible
(a i ,ci) under the transformation (p1 ,v1)↔(p2 ,v2).

Although we could proceed to solve Eqs.~19a! and~19b! with f given by~22!, some further
simplification is possible. Since the bKK Eq.~1! is deemed to be completely integrable,1 its soliton
solutions should exhibit the characteristic ‘‘elastic’’ interaction property of colliding solit
waves.21,22 If we apply this principle to~22!—which ~asymptotically! separates into a pair o
‘‘solitary’’ waves—and compare the results to the bKK solitary wave~14!, we find that

f ~x,t !511eu11eu21
1

16
a1

2e2u11
1

16
a2

2e2u21b12e
u11u21

A

16
~a1

2e2u11u21a2
2eu112u2!

1S A

16D
2

a1
2a2

2e2(u11u2), ~23!

where@cf. Eq. ~15!#
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ai
25

4v i2pi
3

v i2pi
3 , i 51,2, ~24!

andv i satisfies the~bSK-Ramani! dispersion law~12!. The parameter ‘‘A’’ in Eq. ~23 ! arises quite
naturally in the asymptotic analysis as a measure of the post-interaction phase shifts. It th
plays the same role in the putative bKK two-soliton~23! as the interaction coefficient ‘‘A12’’ in the
bSK-Ramani two-soliton~20!. Thus, it only remains to determine the unknown parametersb12 and
A in Eq. ~23!.

To proceed, we shall make use of the fundamental result25

F~Dx ,Dt!e
u1
•eu25F~p12p2!eu11u2, u i5pix1v i t1h i , i 51,2, ~25!

whereF(Dx ,Dt)is a general bilinear operator, and we writeF(p)5F(p,v). Then, withf given by
Eq. ~23!, it is straightforward to show that

F~Dx ,Dt! f • f 52H F~p1!eu11F~p2!eu21
1

16
a1

2F~2p1!e2u11
1

16
a2

2F~2p2!e2u21@b12F~p11p2!

1F~p12p2!#eu11u21F 1

16
a1

2@AF~2p11p2!1F~2p12p2!#1b12F~p2!Ge2u11u2

1F 1

16
a2

2@AF~p112p2!1F~p122p2!#1b12F~p1!Geu112u21
1

16
a1

2F~p1!e3u1

1
1

16
a2

2F~p2!e3u21F 1

16
A@a1

2F~2p1!1a2
2F~2p2!#1

1

162 a1
2a2

2@A2F~2p112p2!

1F~2p122p2!#Ge2(u11u2)1
1

16
@AF~p11p2!1b12F~p12p2!#

3~a1
2e3u11u21a2

2eu113u2!1
1

162 a1
4AF~p2!e4u11u21

1

162 a2
4AF~p1!eu114u2

1
1

16
a1

2AF 1

16
a2

2@AF~p112p2!1F~p122p2!#1b12F~p1!Ge3u112u2

1
1

16
a2

2AF 1

16
a1

2@AF~2p11p2!1F~2p12p2!#1b12F~p2!Ge2u113u2

1
1

163 a1
2a2

2A2@a1
2F~2p2!e4u112u21a2

2F~2p1!e2u114u2#

1
1

162 a1
2a2

2A2@b12F~p11p2!1F~p12p2!#e3(u11u2)

1
1

163 a1
2a2

2A3@a1
2F~p2!e4u113u21a2

2F~p1!e3u114u2#J ~26!

whenever the bilinear operatorF is even andF(0)50. With the aid of~26!, we are now in a
position to solve the bKK bilinear form~19!.

We begin by rewriting Eq.~19b! as F2f • f 52 f g̃, with F2(Dx ,Dt)54DxDt2Dx
4 . Now, in

view of ~23! and~26!—and recalling thatg̃ is entire—the left and right sides of this equation wi
be consistent if the auxiliary functiong̃ has the form

g̃5b1eu11b2 eu21m eu11u21n1e2u11u21n2 eu112u2 ~27!
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for some constantsb1 , b2 , m, n1 , n2 @with the implied symmetry inp15(p1 ,v1) and p2

5(p2 ,v2)]. Substituting~23 !, ~26! ~with F→F2) and~27! into Eq.~19b!, and equating terms on
both sides, we obtain

b i5F2~pi !5pi~4v i2pi
3!, ~28a!

n15
1

16
a1

2b2A, ~28b!

n25
1

16
a2

2b1A, ~28c!

and

m1b11b25b12F2~p11p2!1F2~p12p2!, ~29a!

m1A~b11b2!5A F2~p11p2!1b12F2~p12p2!, ~29b!

m1
1

16
a1

2b2~A11!5
1

16
a1

2@AF2~2p11p2!1F2~2p12p2!#2b12~b12b2!, ~29c!

m1
1

16
a2

2b1~A11!5
1

16
a2

2@AF2~p112p2!1F2~p122p2!#1b12~b12b2!, ~29d!

mb121
1

8
A~a1

2b21a2
2b1!5

1

162 a1
2a2

2@A2F2~2p112p2!1F2~2p122p2!#1A~b11b2!,

~29e!

where ai
2 , i 51,2, is given in Eq.~24!. Equations~29a!–~29e! are an overdetermining set o

equations for the unknownsA, b12, andm which bear comparison with the corresponding set
equations obtained in11 for the KK Eq. ~2!. However, rather than solve these equations dire
and, at the same time, ensure their compatibility—which was the path taken in Ref. 11—w
follow a different route here and consider next the bilinear equation~19a!.

We substitute forf and g̃, Eqs.~23! and~27!, into ~19a! and once again use the basic resu
~25! ~with F5Dx

2) and ~26! with F→F1580Dt
2120Dx

3Dt2Dx
6 . This yields the further set o

equations@the routine calculations—which additionally make use of the dispersion rela
~12!—are omitted#

b12F1~p11p2!1F1~p12p2!115@m~p11p2!21~b11b2!~p12p2!2#50, ~30a!

AF1~p11p2!1b12F1~p12p2!115@m~p12p2!21A~b11b2!~p11p2!2#50, ~30b!

1

16
a1

2@AF1~2p11p2!1F1~2p12p2!#115b12p2
2~b12b2!

115Fmp2
21

1

16
a1

2b2@A~2p11p2!21~2p12p2!2#G50, ~30c!

1

16
a2

2@AF1~p112p2!1F1~p122p2!#215b12p1
2~b12b2!

115Fmp1
21

1

16
a2

2b1@A~p112p2!21~p122p2!2#G50, ~30d!
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1

162 a1
2a2

2@A2F1~2p112p2!1F1~2p122p2!#1
15

2
A~a1

2b2p1
21a2

2b1p2
2!50. ~30e!

We notice that these last equations bear more than a passing resemblance to Eqs.~29a!–~29e!.
Ostensibly, we have ten equations for just three unknowns—they should therefore conceal
measure of redundancy. For example, it is evident that Eqs.~29c! and~29d!—and, similarly, Eqs.
~30c! and ~30d!—are essentially the same equation under the symmetry requirementp1↔p2 . To
make further progress, we need some additional notation and results.

The key to solving the bKK equation is its duality with the bSK-Ramani equation:
intimacy is already apparent through the shared dispersion law~12! ~both for the solitary wave1

and now the two-soliton solution!. To reinforce this connection, we introduce the bSK-Ram
~strictly Ramani! bilinear operator@see Eq.~9!#

FR~Dx ,Dt!55Dt
215Dx

3Dt2Dx
6 , ~31!

so that the dispersion law~12! readsFR(pi)50. The equally important interaction coefficientAi j ,
Eq. ~11!, can now be written as

Ai j 52
FR~pi2pj !

FR~pi1pj !
52

Di j
2

Di j
, 1< i , j <N, ~32!

whereDi j
2(pi ,pj )5Di j (pi ,2pj ) and

Di j ~pi ,pj !5FR~pi1pj !55~v i1v j !
215~v i1v j !~pi1pj !

32~pi1pj !
6. ~33!

However, with the help of the dispersion law~12!, we may recastDi j as

Di j 510v iv j15v i pj~3pi
213pipj1pj

2!15v j pi~pi
213pipj13pj

2!2pipj~6pi
4115pi

3pj

120pi
2pj

2115pipj
316pj

4!. ~34!

The dispersion relation~12!—which here effects the replacement of the termsv i
2 in ~33!—will

become indispensable to our development as it will be used repeatedly to remove powersv i .
Now, since the wave numberspi( i 51,2)are entirely arbitrary—and bearing in mind the d

persion formula~18!—all our equations must remain valid under the parity transformationpi

→2pi . But, if we letp2→2p2 in Eqs.~29a! and~30a!, and combine the resulting equations wi
~29b! and ~30b!, then we readily deduce the following useful transformations:

~35a!A→ 1

A
,

b12→
1

A
b12,

m→ 1

A
m,

6 if p2→2p2 . ~35b!

~35c!

One immediate consequence of these results is to show that Eqs.~29a! and~29b!, and also~30a!
and ~30b!, are equivalent. This means that we have effectively reduced each of the sy
~29a!–~29e! and ~30a!–~30e! to three equations. We could, of course, elect to solve one of t
two sets of equations forA, b12 and m, and then ensure the compatibility of the other set~the
approach, incidentally, adopted in Ref. 11!. However, as our intention is to solve these equatio
as efficiently as posssible, we will solve Eqs.~29! and ~30! simultaneously. Before doing so, w
wish to emphasize our use of the vector argument (p1 ,p2) for all parameters: this is essential if w
are to capture the bidirectionality of the solutions that stems from the choice ofv in Eq. ~18!.

Eliminating m between Eqs.~29a! and ~30a!, we get
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b125
60p1p2~b11b2!2@F1~p12p2!115~p11p2!2F2~p12p2!#

@F1~p11p2!115~p11p2!2F2~p11p2!#
.

But, if we substitute for b i from ~28a!—and note the identity F1(p)115p2F2(p)
516FR(p)—then we obtain the compact result

b125
D12

2D12
, ~36!

where

D12520v1v2110v1p2~3p1
21p2

2!110v2p1~p1
213p2

2!2p1p2~12p1
425p1

2p2
2112p2

4! ~37!

andD12 is defined in Eq.~33!. The similarity betweenD12 andD12, Eq. ~34!, is striking. Both are
homogeneous polynomials inp1 ,p2 of total degree six@sincev i}pi

3 ; see Eq.~18!#, which implies
thatb12 is a parameter of, effectively, degree zero. The key difference is that the numeratorD12 is
of odddegree in each of the wave numberspi , so thatD12(p1 ,2p2)52D12(p1 ,p2). Combining
this with the parity transformation forb12, Eq. ~35b!, and Eq.~36!, yields @by way of Eq.~32!#

A5
b12~p1 ,p2!

b12~p1 ,2p2!
52

D12
2

D12
5A12. ~38!

Although it is not needed to computef , Eq. ~23!, for completeness, we easily calculate t
remaining unknown quantitym: using Eqs.~28a!, ~29a! and ~36!, we find that

m5
C12

2D12
, C125D12F2~p11p2!12D12@F2~p12p2!2F2~p1!2F2~p2!#. ~39!

The numeratorC12 is readily expanded in terms ofp1 , p2 and is~homogeneous! of total degree
ten~so thatm has net degree four!. Bearing in mind our earlier comments, it only remains to che
that Eqs.~29c!, ~29e!, ~30c! and~30e! are satisfied identically. This is a routine exercise, althou
in view of the lengthy expressions involved, it is best carried out using a symbolic manipu
program~we used Mathematica!.

Combining these results with Eq.~23!, we finally obtain the solution of the bKK bilinear form
~19a! and ~19b!,

f ~x,t !511eu11eu21
1

16
a1

2e2u11
1

16
a2

2e2u21b12e
u11u21

A12

16
~a1

2e2u11u21a2
2eu112u2!

1S A12

16 D 2

a1
2a2

2e2(u11u2), ~40!

with the auxiliary functiong̃ given by inserting~28a!–~28c!, ~38! and~39! into ~27!. The explicit
two-soliton solutionu(x,t) of the bKK Eq. ~1! follows immediately from~40! and the relation
u52]x

2 ln f @Eq. ~5! with a521]. Figures 2–4 illustrate various two-soliton interactions@where
here, and in all subsequent figures, we graph the physical wave2u(x,t)]. Figure 2 pictures a
two-soliton comprising a pair of double-humped ‘‘solitary’’ waves propagating to the left: t
cally, it shows the taller, faster pulse catching and then colliding with the shorter, slower so
wave, only for each wave to emerge unscathed from the interaction~except for a phase shift!.
Figure 3 shows perhaps the most interesting of the bKK two-soliton interactions, the he
collision of a pair of counter-propagating ‘‘solitary’’ waves. Here, we illustrate the case in w
the right-going single-peaked pulse is taller than the left-running twin-peaked wave. Figure
perspective view~in time! of the same two-soliton solutions in which the phase shifts are cle
visible.

It is important to emphasize the difference between the two-soliton solutions of the bKK
bSK-Ramani equations. The bKK two-soliton isdirectionally dependent, a property that it inherits
from the solitary wave~17!. This means that there arethree quite distinct versions of this two
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soliton interaction. On the other hand, the bSK-Ramani solitary wave~13! has the same sech2

profile irrespective of its direction of travel. Consequently, the bSK-Ramani equation admits
two variants of the two-soliton solution because those comprised of two left-running or
right-running solitary waves are essentially mirror images of one another. To our knowledg

FIG. 2. A two-soliton solution of the bKK equation comprising two left-traveling double-humped solitary wavesp1

51.5, p252.0.

FIG. 3. A bKK two-soliton solution showing the head-on collision of a right-going single-peaked solitary wavep1

51.2) and a left-running double-peaked pulse (p251.4).
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directional dependence that is exhibited here by the bKK two-soliton solution has not bee
served before now, and sets it apart from previously known multisoliton interactions.

The expression forf , Eq. ~40!, deserves further scrutiny. Equation~38! shows that the bKK
and bSK-Ramani two-solitons have a common interaction coefficient,A12, which underlines the
duality between the equations. Thus, in spite of appearances, the solutions~20! and~40! share the
same wave dynamics; in particular, their colliding solitary waves undergo identical phase
after separation that are completely determined byA12, Eq. ~21!. Another notable feature of~40!
is the additional parameterb12, Eq. ~36!, that is required to formulatef explicitly ~although,
unlike A12, it would appear to have no obvious dynamical interpretation!. We stress thatb12 is a
‘‘new’’ parameter in the sense that it cannot be expressed solely in terms ofA12 @cf. the bSK-
Ramani two-soliton solution~20!#. Furthermore,b12 is given in Eq.~36! in its simplest possible
form; even so, this expression is far more complicated than its counterpart for the two-solit
the unidirectional KK Eq.~2! ~see Ref. 11!. Finally, if one uses Eqs.~35a! and ~35b! ~with A
→A12), it is easy to show that the two-soliton solutionu(x,t) is invariant under the parity
transformationpi→2pi ( i 51,2). It follows that, without loss of generality, we need only co
sider wave numberspi.0.

Before we continue, it is instructive to examine the key parameterb12 a little more carefully.
In view of the duality argument that led to the putative bKK two-soliton~22!, we might conjecture
that b12 will mimic the corresponding coefficient~of eu11u2) in the squared regular two-soliton
solution of the bSK-Ramani equation. This is, in fact, the case: squaringf in Eq. ~20!, and
normalizing, leads to

b12
R 5

1

2
~A1211!5

D12
R

2D12
,

with

D12
R 520v1v2110v1p2~3p1

21p2
2!110v2p1~p1

213p2
2!2p1p2~12p1

4140p1
2p2

2112p2
4!.

Hence, the parameterb12 differs from b12
R in just thep1

3 p2
3 term of its numeratorD12, Eq. ~37!.

With hindsight, we may extend the duality argument—which at present provides only the ge
structure of the bKK solitons—to include a more precise formulation of this key coefficient.
further insight will prove helpful when we seek bKK solitons of higher order.

FIG. 4. Perspective views of the bKK two-soliton:~a! the interaction of two left-traveling twin-peaked solitary wave
(p151.5, p252.0), ~b! the head-on collision of a single-humped (p251.2) and double-humped pulse (p251.4).
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IV. FURTHER SOLITON SOLUTIONS OF THE BIDIRECTIONAL KAUP–KUPERSHMIDT
EQUATION

It is apparent from the results of the preceding section that we cannot write down the e
three-soliton solution of the bKK equation—much less any higher-order solitons—based on
knowledge of the two-soliton~40!. For, unlike the~regular! N-soliton solution of the bSK-Raman
equation—which depends on a single generic parameter and is entirely predictable@Eqs. ~10!–
~12!#—we can expect its bKK counterpart to include an additional parameter~akin tob12) at every
order N. @Coincidentally, this is analogous to the structure that was found for theN-soliton
solution of the related KK Eq.~2!.11# The remainder of this study is bound up with computing t
extra parameter.

A. The three-soliton solution

Our starting point is the regular three-soliton@put N53 in Eq.~10!# which, after squaring and
normalizing, yields the putative three-soliton solution of the bKK equation

f ~x,t !511eu11eu21eu31
1

16
~a1

2e2u11a2
2e2u21a3

2e2u3!1b1eu11u21b2eu11u31b3eu21u3

1c1e2u11u21c2eu112u21c3e2u11u31c4eu112u31c5e2u21u31c6eu212u31b123e
u11u21u3

1d1e2(u11u2)1d2e2(u11u3)1d3e2(u21u3)1k1e2u11u21u31k2eu112u21u31k3eu11u212u3

1m1e2(u11u2)1u31m2e2u11u212u31m3eu112(u21u3)1Ke2(u11u21u3), ~41!

in which the undetermined coefficients are consonant with the symmetry in the phase va
u i5pix1v i t1h i , i 51, 2, 3. Once again, we have used the requirement that~41! separates~as-
ymptotically! into three ‘‘solitary’’ waves to fix the coefficients of the terms e2u i and the dispersion
laws v i(pi), Eq. ~12!.

There are two ways we can proceed. We could attempt to solve the coupled bilinear
~19a! and~19b! for the auxiliary variableg̃ and the unknown coefficients in~41!, just as we did for
the two-soliton solution in the previous section. But this avenue will more than likely inv
some extremely lengthy, possibly intractable, algebraic computation~and almost certainly prove
impossible for higher-order solitons!; moreover, we do not needg̃ in order to computeu(x,t).
Instead, we adopt the alternative route which proceeds by iteration on the solitons of lower
@a technique that was first presented in Ref. 11 to solve the related KK Eq.~2!#. Thus, after
reducing f to a two-soliton solution—which arises~asymptotically ast→6`) when the third
solitary wave is well-separated from the remaining two—and comparing the results to the
two-soliton ~40!, the three-soliton~41! becomes

f 511(
i 51

3

eu i1
1

16(
i 51

3

ai
2e2u i1 (

1< i , j <3
bi j e

u i1u j1
1

16 (
1< i , j <3

Ai j ~ai
2e2u i1u j1aj

2eu i12u j !

1b123e
u11u21u31

1

162 (
1< i , j <3

ai
2aj

2Ai j
2 e2(u i1u j )1

1

16
@a1

2b23A12A13e
2u11u21u3

1a2
2b13A12A23e

u112u21u31a3
2b12A13A23e

u11u212u3#1
1

162 A12A13A23@a1
2a2

2A12e
2(u11u2)1u3

1a1
2a3

2A13e
2u11u212u31a2

2a3
2A23e

u112(u21u3)#1
1

163 a1
2a2

2a3
2A12

2 A13
2 A23

2 e2(u11u21u3), ~42!

in which all but one of the coefficients have been determined@and b13,b23 generalizeb12, Eq.
~36!, in the obvious way#. The remaining unknown coefficientb123 is a ‘‘new’’ parameter that
cannot be found by reducingf to a lower-order soliton. Nevertheless, we are still able to ded
three useful reductions ofb123 in this way:
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b123~p1 ,p2 ,0!5b12~p1 ,p2!, ~43a!

b123~p1 ,0,0!5b23~0,0!, ~43b!

b123~p1 ,p2 ,p2!5
1

18
a2

2A12. ~43c!

Some care is required when using the first two reductions which must be interpreted in the li
sensepi5(pi ,v i)→0.

We now invoke the further premise that the parameterb123 will mimic its counterpartb123
R in

the three-soliton solution of the bSK-Ramani equation. After squaring and normalizing the re
three-soliton, Eq.~10!, and extracting the coefficient of eu11u21u3, we discover that

b123
R 5

1

4
~A12A13A231A121A131A23!5

D123
R

4D12D13D23
~44!

with

D123
R 52108@18̂ ^pi

10pj
6pk

2&&160̂ ^pi
10pj

4pk
4&&130̂ ^pi

8pj
8pk

2&&220̂ ^pi
8pj

6pk
4&&172p1

6p2
6p3

6

290̂ ^v i pi
7pj

6pk
2&&275̂ ^v i pi

5pj
8pk

2&&245̂ ^v i pi
3pj

10pk
2&&2300̂^v i pi

7pj
4pk

4&&210̂ ^v i pi
5pj

6pk
4&&

150̂ ^v i pi
3pj

8pk
4&&160̂ ^v i pi

3pj
6pk

6&&215̂ ^v i pipj
10pk

4&&225̂ ^v i pipj
8pk

6&&1225̂^v iv j pi
7pj

3pk
2&&

175̂ ^v iv j pi
7pj pk

4&&1120̂^v iv j pi
5pj

5pk
2&&2200̂^v iv j pi

5pj
3pk

4&&155̂ ^v iv j pi
5pj pk

6&&

2300̂^v iv j pi
3pj

3pk
6&&250̂ ^v iv j pi

3pj pk
8&&230̂ ^v iv j pipj pk

10&&1150̂^v iv jvkpi
7pj pk&&

1200̂^v iv jvkpi
5pj

3pk&&#. ~45!

The symbol̂ ^ && in ~45! denotes the sum over all distinct permutations of~1,2,3! assigned to the
subscripts (i , j ,k) of the enclosed product. The expression~45! has been simplified by using th
dispersion laws~12! to remove any powers ofv i ; this is essential if we are to useb123

R as a
template for the parameterb123. The derivation ofD123

R from Eq. ~44!—and its subsequen
simplification—requires some lengthy~albeit routine! algebraic manipulation that is best carrie
out using symbolic computation.~Henceforth, we shall make use of Mathematica to perfo
algebraic computations whenever it is necessary or convenient, and without further mentio! We
observe that@modulo the dispersion relationsv i}pi

3 , Eq. ~18!# D123
R is homogeneous of tota

degree 18 andevenin each of the wave numberspi( i 51,2,3).
We therefore write

b1235
D123

4D123
, D1235 )

1< i , j <3
Di j , ~46!

analogous to Eq.~44!, and take

D123518̂ ^pi
2pj

2pk
2~5v i22pi

3!~5v j22pj
3!D i j &&1H123, ~47!

where

H1235a1^̂ pi
10pj

4pk
4&&1a2^̂ pi

8pj
6pk

4&&1a3p1
6p2

6p3
61b1^̂ v i pi

7pj
4pk

4&&1b2^̂ v i pi
5pj

6pk
4&&

1b3^̂ v i pi
3pj

8pk
4&&1b4^̂ v i pi

3pj
6pk

6&&1b5^̂ v i pipj
10pk

4&&1b6^̂ v i pipj
8pk

6&&1g1^̂ v iv j pi
7pj pk

4&&

1g2^̂ v iv j pi
5pj

3pk
4&&1g3^̂ v iv j pi

5pj pk
6&&1g4^̂ v iv j pi

3pj
3pk

6&&1g5^̂ v iv j pi
3pj pk

8&&
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1g6^̂ v iv j pipj pk
10&&1d1^̂ v iv jvkpi

7pj pk&&1d2^̂ v iv jvkpi
5pj

3pk&&1d3v1v2v3p1
3p2

3p3
3

~48!

andD13, D23 generalizeD12, Eq.~37!. The formulation ofD123 requires some further explanation
Like its counterpartD123

R , every term in the expression~47! is evenin eachpi and is of~total!
degree 18~recall thatD i j is odd and of degree six!. This means that, just likeai

2 , Ai j andbi j , the
parameterb123 has effectively degreezero. The coefficients in the first term of Eq.~47! are fixed
by virtue of the reduction~43a! ~and symmetry!. To see this, we letp3→0 in Eq. ~46! and
substitute the result into Eq.~43a!: this shows that

D123518p1
2p2

2p3
2~5v12p1

3!~5v22p2
3!D121O~p3

4! as p3→0 , ~49!

~where we usev3}p3
3). In other words, thê̂ && term in ~47! contains the leading order terms a

pi→0 (i 51,2,3)—these correspond to the terms inD123
R , Eq. ~45!, of lowest degree (pi

2) in any
one of the wave numbers.@Of course, it now makes no sense to remove thev i

2 terms from this
sum, as we did in~45!.# The remaining terms inH123, Eq. ~48!, follow directly: each term is even
and of minimum degree four in each wave number, and of~total! degree 18. However, we must b
sure to include inH123 all possible combinations of such product terms; these have been co
niently grouped according to type by the four sets of coefficients (a i), (b j ), (gk) and (dm).
Significantly, these terms do not duplicate exactly the terms inD123

R of the same type—observ
that the final symmetrical term in~48! is absent from~45!! Hence, notwithstanding that we hav
usedD123

R as a template, we cannot rely on it to provide all the terms that are needed to con
D123. We shall return to the formulation of the parameterD123 later.

To determine the 18 unknown constants in~48!, we proceed as follows. We first letp2 , p3

→0 in b123 andb23, and make use of the second reduction~43b!: to leading order, this yields

a15810, b1524050, b551620, g1528100, g653240, d15216200. ~50!

We now substitute the constants~50! into ~47! and setp35p2 in b123, Eq.~46!. Then, inserting the
result in the final reduction~43c!—taking care to remove any powers ofv i via the dispersion
relation ~12!—we obtain just ten independent equations for the remaining 12 coefficients. T
can be solved in terms of two of the coefficients~we choseg5 andd3) to give

a252
1

5
g5 , a35

6

5
g51324, b25

1

30
d313105, b35g52

1

30
d322700,

b4522g52
1

15
d327830, b65

1

30
d312700, g25g524050, ~51!

g352g52
1

6
d3212 690, g4522g51

1

3
d3143 200, d252

1

6
d3221 600.

Unfortunately, the reductions~43a!–~43c! are insufficient to fix all the coefficients inD123. This
scenario differs markedly from that for the sister KK Eq.~2!. There, the soliton solutions posse
a greater degree of symmetry so that just two reductions@comparable to Eqs.~43a! and~43c!# are
needed to compute the equivalent KK parameter.11 But for the bKK Eq.~1!, much of this sym-
metry is lost because of the bidirectional nature of its solitons. We are therefore oblig
introduce a larger number of unknown coefficients inD123 to allow for the directional dependenc
of the constituent ‘‘solitary’’ waves. Regrettably, the additional unknowns cannot be matche
further soliton reductions that capture thehead-oncollisions of solitary waves. Put another wa
information is wanting because we are unable to reduce a bKK soliton to one of lower ord
coalescing a single-humped pulse with a double-humped solitary wave~because the latter wav
profile is immutable1!.

To complete the derivation of the three-soliton, we revert back to the bilinear form of the
equation, Eqs.~19a! and~19b!. Fortunately, for this final step we need only take a truncated fo
of the ansatz~42!,
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f̂ 511(
i 51

3

eu i1 (
1< i , j <3

bi j e
u i1u j1b123e

u11u21u3, ~52!

since no other terms off contribute to the eu11u21u3 terms in which the desired parameterb123

first appears. We substitutef̂ , and a similarly truncated expansion forg̃ @cf. Eq. ~27!#,

ĝ5(
i 51

3

r ie
u i1 (

1< i , j <3
m i j e

u i1u j1leu11u21u3, ~53!

into the bilinear equations~19a! and~19b! ~retaining terms only as far as eu11u21u3). The resulting
equations~omitted here! are solved forb123 which is then equated with~46!. This leads to an
equation forD123 which, after substituting the expression~47! along with the known coefficients
~50! and ~51!, is satisfied identically if

g550, d35281 000. ~54!

Then, using Eq.~51!, we get

a250, a35324, b25405, b350, b4522430,
~55!

b650, g2524050, g35810, g4516 200, d2528100,

so thatD123, and henceb123, is fully determined.
The derivation off , Eq. ~42!, is now complete: the explicit three-soliton solution of the bK

Eq. ~1! is given by u52]x
2 ln f. The additional parameterb123 in Eq. ~42! is essential to the

formulation of the three-soliton solution, but it cannot be expressed solely in terms of the
action parametersA12, A13, A23 that characterize the pairwise collisions between the three c
stituent ‘‘solitary’’ waves. Figures 5–7 illustrate two of thefour possible versions of the three

FIG. 5. A bKK three-soliton solution comprised of three left-traveling double-humped solitary waves:p151.0,
p251.25,p351.5.
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soliton in both transverse and perspective views~this compares with justtwo for the bSK-Ramani
equation!. Figure 5 pictures a typical bKK three-soliton that consists of a triplet of double-hum
‘‘solitary’’ waves all propagating to the left. Figure 6 shows a three-soliton solution depicting
head-on interaction of a right-traveling single-peaked soliton with a counter-propagating p
twin-peaked pulses. Figure 7 shows these same two three-solitons in perspective view
exhibit the familiar ‘‘elastic’’ interaction property whereby the three individual solitons retain th
identities, save for a cumulative phase shift.

Before we move on, let us return to the formulation of the key parameterD123. We recall that
D123 is of even degree in eachpi ( i 51,2,3), whereasD12 is odd: this is no coincidence. If we le
p3→2p3 in Eq. ~46!, and use Eq.~32!, then we obtain the parity transformation

FIG. 6. A bKK three-soliton showing the head-on collision of a right-going single-peaked solitary wave (p150.4) with a
pair of left-running double-humped pulses (p251.0, p351.25).

FIG. 7. Perspective views of the bKK three-soliton:~a! three left-travelling twin-peaked pulses (p151.0, p251.25, p3

51.5), ~b! the head-on interaction of a right-running single-peaked wave (p150.4) with a pair of counter-propagating
double-humped pulses (p251.0, p351.25).
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b123→
1

A13A23
b123 if p3→2p3 , ~56!

which should be compared with Eq.~35b! ~with A→A12). This result ensures that, like th
lower-order solitons~14! and ~40!, the bKK three-soliton solutionu(x,t) is invariant under the
parity transformationpi→2pi( i 51,2,3) and we may assume thatpi.0, without loss of gener-
ality. But the even parity ofD123 has yet a further important consequence. Barring the first~and
quantifiable! term ofD123, Eq.~47!, it is evident that the key term iŝ̂pi

10 pj
4 pk

4&& in the expression
for H123, Eq. ~48!: it can be fixed by the degree and parity property ofD123. Once thisprincipal
term is known, the remaining terms ofH123 follow immediately by cascading down the~even!
powers ofpi and successively replacingpi

3→v i @according to the dispersion relation~18!#. It
follows that we may formulateD123 without relying on its bSK-Ramani counterpartD123

R : these
observations will assist us when we seek solitons of higher order.

B. The four-soliton solution

We follow the solution strategy of the preceding section, except that now we iterate on th
three bKK solitons. Starting with a squared regular four-soliton@setN54 in ~10!#, and applying
the soliton reduction procedure~we omit the routine details!, we arrive at the bKK four-soliton
solution

f ~x,t !511(
i 51

4

eu i1
1

16(
i 51

4

ai
2e2u i1 (

1< i , j <4
bi j e

u i1u j1
1

16 (
1< i , j <4

Ai j @ai
2e2u i1u j1aj

2eu i12u j #

1 (
1< i , j ,k<4

bi jkeu i1u j 1uk1
1

162 (
1< i , j <4

ai
2aj

2Ai j
2 e2(u i1u j )1b1234e

u11u21u31u4

1
1

16 (
1< i , j ,k<4

@ai
2bjkAi j Aike2u i1u j 1uk1aj

2bikAi j Ajkeu i12u j 1uk

1ak
2bi j AikAjkeu i1u j 12uk#1

1

16
@a1

2b234A12A13A14e
2u11u21u31u4

1a2
2b134A12A23A24e

u112u21u31u41a3
2b124A13A23A34e

u11u212u31u4

1a4
2b123A14A24A34e

u11u21u312u4#1
1

162 (
1< i , j ,k<4

Ai j AikAjk@ai
2aj

2Ai j e
2(u i1u j )1uk

1ai
2ak

2Aike2u i1u j 12uk1aj
2ak

2Ajkeu i12(u j 1uk)#

1
1

162 @a1
2a2

2b34A12
2 A13A14A23A24e

2(u11u2)1u31u4

1a1
2a3

2b24A12A13
2 A14A23A34e

2u11u212u31u41a1
2a4

2b23A12A13A14
2 A24A34e

2u11u21u312u4

1a2
2a3

2b14A12A13A23
2 A24A34e

u112(u21u3)1u41a2
2a4

2b13A12A14A23A24
2 A34e

u112u21u312u4

1a3
2a4

2b12A13A14A23A24A34
2 eu11u212(u31u4)#

1
1

163 (
1< i , j ,k<4

ai
2aj

2ak
2Ai j

2 Aik
2 Ajk

2 e2(u i1u j 1uk)1
1

163 A12A13A14A23A24A34

3@a1
2a2

2a3
2A12A13A23e

2(u11u21u3)1u41a1
2a2

2a4
2A12A14A24e

2(u11u2)1u312u4

1a1
2a3

2a4
2A13A14A34e

2u11u212(u31u4)1a2
2a3

2a4
2A23A24A34e

u112(u21u31u4)#

1
1

164 a1
2a2

2a3
2a4

2A12
2 A13

2 A14
2 A23

2 A24
2 A34

2 e2(u11u21u31u4), ~57!
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whereu i5pix1v i t1h i , i 51,2,3,4, andv i(pi) are the usual~bSK-Ramani! dispersion laws, Eq.
~12!. The parametersb124, b134, b234 in ~57! generalizeb123, Eq. ~46!, in the obvious manner. All
but one of the coefficients in~57! have been obtained by reducingf to a three-soliton solution o
the form~42!—the only remaining unknown is the ‘‘new’’ parameterb1234. Althoughb1234cannot
be determined completely by further reducing~57! to solitons of lower order, we do obtain th
reductions

b1234~p1 ,p2 ,p3 ,0!5b123~p1 ,p2 ,p3!, ~58a!

b1234~p1 ,p2 ,0,0!5b12~p1 ,p2!b34~0,0!, ~58b!

b1234~p1 ,0,0,0!5b234~0,0,0!, ~58c!

b1234~p1 ,p2 ,p3 ,p3!5
1

8
a3

2b12A13A23; ~58d!

once again, the reductions~58a!–~58c! must be treated as limits (pi→0). In addition, we have the
parity transformation@cf. Eq. ~56!#

b1234→
1

A14A24A34
b1234 if p4→2p4 , ~59!

which follows by virtue of the fact thatpi is arbitrary in~57! and by noting the gauge invarianc
of the solutionu52]x

2 ln f. As before, this last result ensures that the four-solitonu is parity
invariant underpi→2pi .

Following our observations in Sec. IV A, we can now formulateb1234 without reference to the
bSK-Ramani equation. Thus, Eqs.~36! and ~46! generalize to

b12345
D1234

8D1234
, D12345 )

1< i , j <4
Di j , ~60!

with Di j defined in Eq.~34!. It only remains to find the numeratorD1234which is homogeneous in
pi @modulov i}pi

3 , Eq. ~18!# of total degree 36~equal to that of the denominatorD1234). But, if
we make use of the parity transformation~59!, one easily shows thatD1234 is of odddegree in each
of the wave numberspi ~as expected!. From this we immediately infer that

D1234554̂ ^pi
2pj

2pk
2pl

3~5v i22pi
3!~5v j22pj

3!~5vk22pk
3!D i jk&&1 H1234 ~61!

with

H12345a1^̂ pi
15pj

11pk
5pl

5&&1a2^̂ pi
15pj

9pk
7pl

5&&1a3^̂ pi
15pj

7pk
7pl

7&&1a4^̂ pi
13pj

13pk
5pl

5&&

1a5^̂ pi
13pj

11pk
7pl

5&&1a6^̂ pi
13pj

9pk
9pl

5&&1a7^̂ pi
13pj

9pk
7pl

7&&1a8^̂ pi
11pj

11pk
9pl

5&&

1a9^̂ pi
11pj

11pk
7pl

7&&1a10̂ ^pi
11pj

9pk
9pl

7&&1a11p1
9p2

9p3
9p4

91b1^̂ v i pi
12pj

11pk
5pl

5&&

1b2^̂ v i pi
12pj

9pk
7pl

5&&1b3^̂ v i pi
12pj

7pk
7pl

7&&1b4^̂ v i pi
10pj

13pk
5pl

5&&1b5^̂ v i pi
10pj

11pk
7pl

5&&

1b6^̂ v i pi
10pj

9pk
9pl

5&&1b7^̂ v i pi
10pj

9pk
7pl

7&&1b8^̂ v i pi
8pj

15pk
5pl

5&&1b9^̂ v i pi
8pj

13pk
7pl

5&&

1b10̂ ^v i pi
8pj

11pk
9pl

5&&1b11̂ ^v i pi
8pj

11pk
7pl

7&&1b12̂ ^v i pi
8pj

9pk
9pl

7&&1b13̂ ^v i pi
6pj

15pk
7pl

5&&

1b14̂ ^v i pi
6pj

13pk
9pl

5&&1b15̂ ^v i pi
6pj

13pk
7pl

7&&1b16̂ ^v i pi
6pj

11pk
11pl

5&&1b17̂ ^v i pi
6pj

11pk
9pl

7&&
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1b18̂ ^v i pi
6pj

9pk
9pl

9&&1b19̂ ^v i pi
4pj

15pk
9pl

5&&1b20̂ ^v i pi
4pj

15pk
7pl

7&&1b21̂ ^v i pi
4pj

13pk
11pl

5&&

1b22̂ ^v i pi
4pj

13pk
9pl

7&&1b23̂ ^v i pi
4pj

11pk
11pl

7&&1b24̂ ^v i pi
4pj

11pk
9pl

9&&1b25̂ ^v i pi
2pj

15pk
11pl

5&&

1b26̂ ^v i pi
2pj

15pk
9pl

7&&1b27̂ ^v i pi
2pj

13pk
13pl

5&&1b28̂ ^v i pi
2pj

13pk
11pl

7&&1b29̂ ^v i pi
2pj

13pk
9pl

9&&

1b30̂ ^v i pi
2pj

11pk
11pl

9&&1g1^̂ v iv j pi
12pj

8pk
5pl

5&&1g2^̂ v iv j pi
12pj

6pk
7pl

5&&

1g3^̂ v iv j pi
12pj

4pk
9pl

5&&1g4^̂ v iv j pi
12pj

4pk
7pl

7&&1g5^̂ v iv j pi
12pj

2pk
11pl

5&&

1g6^̂ v iv j pi
12pj

2pk
9pl

7&&1g7^̂ v iv j pi
10pj

10pk
5pl

5&&1g8^̂ v iv j pi
10pj

8pk
7pl

5&&

1g9^̂ v iv j pi
10pj

6pk
9pl

5&&1g10̂ ^v iv j pi
10pj

6pk
7pl

7&&1g11̂ ^v iv j pi
10pj

4pk
11pl

5&&

1g12̂ ^v iv j pi
10pj

4pk
9pl

7&&1g13̂ ^v iv j pi
10pj

2pk
13pl

5&&1g14̂ ^v iv j pi
10pj

2pk
11pl

7&&

1g15̂ ^v iv j pi
10pj

2pk
9pl

9&&1g16̂ ^v iv j pi
8pj

8pk
9pl

5&&1g17̂ ^v iv j pi
8pj

8pk
7pl

7&&

1g18̂ ^v iv j pi
8pj

6pk
11pl

5&&1g19̂ ^v iv j pi
8pj

6pk
9pl

7&&1g20̂ ^v iv j pi
8pj

4pk
13pl

5&&

1g21̂ ^v iv j pi
8pj

4pk
11pl

7&&1g22̂ ^v iv j pi
8pj

4pk
9pl

9&&1g23̂ ^v iv j pi
8pj

2pk
15pl

5&&

1g24̂ ^v iv j pi
8pj

2pk
13pl

7&&1g25̂ ^v iv j pi
8pj

2pk
11pl

9&&1g26̂ ^v iv j pi
6pj

6pk
13pl

5&&

1g27̂ ^v iv j pi
6pj

6pk
11pl

7&&1g28̂ ^v iv j pi
6pj

6pk
9pl

9&&1g29̂ ^v iv j pi
6pj

4pk
15pl

5&&

1g30̂ ^v iv j pi
6pj

4pk
13pl

7&&1g31̂ ^v iv j pi
6pj

4pk
11pl

9&&1g32̂ ^v iv j pi
6pj

2pk
15pl

7&&

1g33̂ ^v iv j pi
6pj

2pk
13pl

9&&1g34̂ ^v iv j pi
6pj

2pk
11pl

11&&1g35̂ ^v iv j pi
4pj

4pk
15pl

7&&

1g36̂ ^v iv j pi
4pj

4pk
13pl

9&&1g37̂ ^v iv j pi
4pj

4pk
11pl

11&&1g38̂ ^v iv j pi
4pj

2pk
15pl

9&&

1g39̂ ^v iv j pi
4pj

2pk
13pl

11&&1 g40̂ ^v iv j pi
2pj

2pk
15pl

11&&1g41̂ ^v iv j pi
2pj

2pk
13pl

13&&

1d1^̂ v iv jvkpi
12pj

8pk
2pl

5&&1d2^̂ v iv jvkpi
12pj

6pk
4pl

5&&1d3^̂ v iv jvkpi
12pj

6pk
2pl

7&&

1d4^̂ v iv jvkpi
12pj

4pk
4pl

7&&1d5^̂ v iv jvkpi
12pj

4pk
2pl

9&&1d6^̂ v iv jvkpi
12pj

2pk
2pl

11&&

1d7^̂ v iv jvkpi
10pj

10pk
2pl

5&&1 d8^̂ v iv jvkpi
10pj

8pk
4pl

5&&1d9^̂ v iv jvkpi
10pj

8pk
2pl

7&&

1d10̂ ^v iv jvkpi
10pj

6pk
6pl

5&&1d11̂ ^v iv jvkpi
10pj

6pk
4pl

7&&1d12̂ ^v iv jvkpi
10pj

6pk
2pl

9&&

1d13̂ ^v iv jvkpi
10pj

4pk
4pl

9&&1d14̂ ^v iv jvkpi
10pj

4pk
2pl

11&&1d15̂ ^v iv jvkpi
10pj

2pk
2pl

13&&

1d16̂ ^v iv jvkpi
8pj

8pk
6pl

5&&1d17̂ ^v iv jvkpi
8pj

8pk
4pl

7&&1d18̂ ^v iv jvkpi
8pj

8pk
2pl

9&&

1d19̂ ^v iv jvkpi
8pj

6pk
6pl

7&&1d20̂ ^v iv jvkpi
8pj

6pk
4pl

9&&1d21̂ ^v iv jvkpi
8pj

6pk
2pl

11&&

1d22̂ ^v iv jvkpi
8pj

4pk
4pl

11&&1d23̂ ^v iv jvkpi
8pj

4pk
2pl

13&&1d24̂ ^v iv jvkpi
8pj

2pk
2pl

15&&

1d25̂ ^v iv jvkpi
6pj

6pk
6pl

9&&1d26̂ ^v iv jvkpi
6pj

6pk
4pl

11&&1d27̂ ^v iv jvkpi
6pj

6pk
2pl

13&&

1d28̂ ^v iv jvkpi
6pj

4pk
4pl

13&&1d29̂ ^v iv jvkpi
6pj

4pk
2pl

15&&1d30̂ ^v iv jvkpi
4pj

4pk
4pl

15&&

1e1^̂ v iv jvkv l pi
12pj

8pk
2pl

2&&1e2^̂ v iv jvkv l pi
12pj

6pk
4pl

2&&1e3^̂ v iv jvkv l pi
12pj

4pk
4pl

4&&

1e4^̂ v iv jvkv l pi
10pj

10pk
2pl

2&&1e5^̂ v iv jvkv l pi
10pj

8pk
4pl

2&&1e6^̂ v iv jvkv l pi
10pj

6pk
6pl

2&&

1e7^̂ v iv jvkv l pi
10pj

6pk
4pl

4&&1e8^̂ v iv jvkv l pi
8pj

8pk
6pl

2&&1e9^̂ v iv jvkv l pi
8pj

8pk
4pl

4&&

1e10̂ ^v iv jvkv l pi
8pj

6pk
6pl

4&&1e11v1v2v3v4p1
6p2

6p3
6p4

6 , ~62!
                                                                                                                



um

ents

4941J. Math. Phys., Vol. 43, No. 10, October 2002 Bidirectional Kaup–Kupershmidt solitons

                    
where the symbol̂̂ && now denotes the sum over all distinct permutations of~1,2,3,4!. The in-
creased complexity in stepping fromN53 to N54 is evident: the expressionH1234 contains 123
unknown coefficients and a total of 2000 terms~whereasH123 has just 18 and 80, respectively!.
The first term ofD1234, Eq. ~61!, is fixed by the reduction~58a! and symmetry@in just the same
way as for the three-soliton; cf. Eq.~49!#. It contains the leading order termspl

3 as pl→0 (l
51,2,3,4); this implies thatH1234 is comprised of products ofat leastdegree five in each of the
wave numbers. To determine the principal term ofH1234 we argue as follows: Settingp45p3 in
Eq. ~60!, and using the reduction~58d!, we find that

D1234up45p3
530p3

3~4v32p3
3!D12D13D23D13

2 D23
2 . ~63!

We see that the right-hand side of Eq.~63! has a maximum degree of 15 inp1 @refer to Eqs.~34!
and~37!, and recall thatDi j

25Di j (pi ,2pj )]. But since this reduction leaves the wave numberp1

untouched, it follows that the maximum degree ofanyone of the wave numberspi in D1234, and
hence inH1234, must also be 15. Combining this with the total degree of 36—and a minim
degree of five in eachpi—yields the principal term̂^pi

15pj
11pk

5pl
5&& ~and not^̂ pi

21pj
5pk

5pl
5&&!). The

remaining terms in~62! are then obtained by systematically reducing the~odd! powers ofpi

and successively replacingpi
3→v i @via the dispersion relation~18!# to accommodate the

bidirectionality.
Now, lettingp3 , p4→0 in b1234 and making use of the reduction~58b!, we obtain~to leading

order! the 21 coefficients

a1522 755 620, a45328 050, b1515 746 400, b4522 296 350,

b8513 778 100, b25525 511 240, b275656 100, g15278 732 000,

g5531 492 800, g7516 074 450, g13524 592 700, g23527 556 200,
~64!

g405211 022 480, g4151 312 200, d152157 464 000, d6562 985 600,

d7532 148 900, d15529 185 400, d24555 112 400,

e152314 928 000, e4564 297 800.

Next, we invoke the reduction~58c!: balancing the leading order terms asp2 , p3 , p4→0 leads to
the further 24 coefficients:

a250, a3521 102 248, b250, b356 298 560, b13521 377 810,

b1950, b2058 266 860, b2650, g257 873 200, g350,

g45247 239 200, g650, g29513 778 100, g32522 755 620,
~65!

g355255 112 400, g3850, d25278 732 000, d3515 746 400,

d45314 928 000, d550, d29527 556 200, d305275 562 000,

e252157 464 000, e3521 574 640 000.

To obtain the remaining coefficients inH1234, we first use the reduction~58d!. After substi-
tuting the constants~64! and~65! into D1234, Eq.~61!, and settingp45p3 , we insert the result into
Eq. ~63! ~being sure to remove any powers ofv i as usual!. This gives 69 equations~we do not list
them here! which may be solved in terms of any nine of the remaining 78 unknown coeffici
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~we choseb6 , b7 , b9 , b18, b24, b29, b30, g9 and e8). As anticipated, the reductions~58a!–
~58d! are not sufficient to fix all the coefficients inH1234 and we therefore return to the bilinea
form ~19! to complete the derivation of the bKK four-soliton.

We substitute truncated expansions forf and g̃ @cf. Eqs. ~52! and ~53!#—consistent with
extracting just the terms in eu11u21u31u4—into the bilinear equations~19a! and~19b!. Solving for
b1234and equating with Eq.~60!, we obtain an equation forD1234which, after inserting~61! along
with all the coefficients so far determined, is satisfied identically if

a55131 220, a650, a75262 440, a8521 574 640,

a95209 952, a1052787 320, a1150, b552918 540, b650,

b7521 837 080, b952820 125, b1058 857 350, b11521 312 200,

b1253 936 600, b145492 075, b15521 837 080, b16511 022 480,

b1755 117 580, b1850, b21521 312 200, b22521 640 250,

b23522 099 520, b2451 968 300, b285262 440, b2950,

b30523 149 280, g855 740 875, g9523 444 525, g10512 859 560,

g1159 185 400, g12511 481 750, g14521 837 080, g1550,

g165249 207 500, g1758 201 250, g185262 001 450, g195225 095 825,

g2058 201 250, g21513 122 000, g22529 841 500, g24521 640 250,
~66!

g25517 714 700, g26526 889 050, g275233 067 440, g2852 952 450,

g30511 481 750, g31529 841 500, g335984 150, g34522 044 960,

g3656 561 000, g37520 995 200, g39522 624 400, d85257 408 750,

d9511 481 750, d10548 223 350, d115280 372 250, d12526 889 050,

d135245 927 000, d14518 370 800, d165344 452 500, d175282 012 500,

d185298 415 000, d195158 448 150, d20544 286 750, d2152124 002 900,

d2252131 220 000, d23516 402 500, d255262 001 450, d26541 334 300,

d275213 778 100, d285245 927 000, e552114 817 500, e6596 446 700,

e75321 489 000, e85688 905 000, e95820 125 000,

e1052137 781 000, e115868 020 300.

We reiterate that the routine~but lengthy! algebra needed to extract these coefficients has b
performed with the assistance of Mathematica.

With the formulation ofb1234, and hencef , now complete, the four-soliton solutionu(x,t) of
the bKK Eq. ~1! follows directly from Eq.~57! and u52]x

2 ln f. There arefive variants of the
four-soliton interaction, dependent on the direction of propagation of the constituent so
waves~compared with justthreefor the bSK-Ramani equation!. Several of these are illustrated i
Figs. 8–11; in each case, we see that the four solitons emerge from the mutual collisi
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characteristic fashion with their profiles unchanged.@Note that, because of the scaling, in Fig. 9~a!
the incoming single-peaked soliton lies far to the left and so is absent; similarly in Fig. 9~e! where
it is now far to the right.# Particularly noteworthy are the unusually large, almost resonant
amplitude spikes that can be seen in Figs. 9~c! and 10~c! when at least three left-traveling double

FIG. 8. A four-soliton solution of the bKK equation comprised of two right-running single-humped solitary wavesp1

50.5, p250.75) and a pair of left-going double-humped pulses (p351.5, p451.75).

FIG. 9. A bKK four-soliton showing the head-on collision of a right-moving single-peaked pulse (p150.75) with a triplet
of left-traveling twin-peaked pulses (p250.8, p350.85, p450.9).
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peaked ‘‘solitary’’ waves are present. Here we content ourselves with just two perspective vie
the bKK four-soliton, Figs. 11~a! and 11~b!. Bearing in mind the length and complexity of th
expressions forf , Eq. ~57!, and its coefficients—particularly that ofb1234—it is clear that the
computational demands of plotting these last two figures are considerable.

C. An iteration procedure for higher-order solitons

We are now in a position to outline an iterative method for constructing—at leas
principle—the generalN-soliton solution of the bKK equation by generalising the procedure of
preceding section for the four-soliton. Following our now well-rehearsed argument, we beg
writing down the general form of the solution. Accordingly, we square and normalize the re

FIG. 10. A bKK four-soliton interaction comprised of four leftward propagating double-peaked solitary wavesp1

51.0, p251.25, p351.5, p451.75).

FIG. 11. Perspective views of the bKK four-soliton:~a! three single-peaked pulses (p151.25, p251.5, p351.75) col-
liding head-on with a double-humped solitary wave (p451.0), ~b! head-on collision of a pair of single-humped (p1

50.5, p250.75) and a doublet of twin-peaked (p351.5, p451.75) pulses.
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N-soliton ~10!, introducing arbitrary coefficients consonant with the symmetry in the phase
ablesu i5pix1v i t1h i , i 51, . . . ,N. This gives the putativeN-soliton solution f (x,t) of the
bKK bilinear form ~19a! and ~19b!.

We now use the soliton reduction procedure,11 to reducef (x,t) to a soliton of orderN21 ~in
the limits t→6`). Then comparison with theknownbKK (N21)-soliton fixes the dispersion
relationsv i(pi), Eq. ~12!, and all but one of the coefficients in the expression forf . The only
unknown is the coefficientb12 . . .N of the term eu11u21¯1uN, a ‘‘new’’ parameter that cannot be
determined by reducingf to lower order. Nevertheless, we can deduce reductions ofb12 . . .N of the
type ~58! in this way: this givesN conditions of which we note the two key results~for N>4)

b12 . . .N~p1 ,...,pN21 ,0!5b12 . . .N21~p1 ,...,pN21!; ~67!

b12 . . .N~p1 ,...,pN21 ,pN21!5
1

8
aN21

2 b12 . . .N22 )
i 51

N22

Ai ,N21 . ~68!

Now, generalizing the expressions~36!, ~46! and ~60!, we have

b12 . . .N5
1

2N21

D12 . . .N

D12 . . .N
, D12 . . .N5 )

1< i , j <N
Di j , ~69!

with Di j given in Eq.~34!. It only remains to determine the numeratorD12 . . .N in Eq. ~69! which
is a homogeneous polynomial inpi @modulo the dispersion relationsv i}pi

3 , Eq. ~18!# of total
degree 3N(N21), equal to that ofD12 . . .N . Further, one easily verifies the parity transformati

b12 . . .N~p1 ,...,pN21 ,2pN!5
b12 . . .N~p1 ,...,pN!

A1NA2N¯AN21,N
,

which implies thatD12 . . .N is of even/odd degree in each of the wave numbers ifN is odd/even.
To deduce the functional form ofD12 . . .N , we first make use of the reduction~67! which

shows that

D12 . . .N;2. 3N21p1
2p2

2
¯pN21

2 pN
N21D12 . . .N21 )

i 51

N21

~5v i22pi
3! as pN→0.

Allowing for symmetry, we may therefore write@cf. Eqs.~47 ! and ~61!#

D12 . . .N52. 3N21K K pi 1
2 pi 2

2
¯pi N21

2 pi N
N21D i 1i 2 . . . i N21 )k51

N21

~5v i k
22pi k

3 !L L 1H12 . . .N, ~70!

where^̂ && denotes the sum over all distinct permutations of (1,2,. . . ,N) assigned to the subscript
( i 1 ,i 2 , . . . ,i N) of the enclosed product. Thus, the^̂ && term in ~70! contains the terms of lowes
degreepi

N21 in any of the wave numbers; but then the even/odd parity ofD12 . . .N implies that
H12 . . .N is comprised of terms having minimum degreeN11 in each wave number. To obtain th
principal term of H12 . . .N we use the reduction~68! and maximum degree argument. Puttin
pN5pN21 in Eq. ~69! and equating with~68!, we find that@cf. Eq. ~63!#

D12 . . .NupN5pN21
5~21!N2230pN21

3 ~4vN212pN21
3 !D12 . . .N22 )

i 51

N22

Di ,N21Di ,N21
2 . ~71!

We note that the right-hand side of Eq.~71! has maximum degreeTN5TN22110 in p1 with T2

55 andT3510, whereuponTN55(N21), N>2. But since this reduction leavesp1 untouched,
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the maximum degree ofany pi in D12 . . .N , and hence inH12 . . .N , must also be 5(N21). If we
combine this result with the total degree 3N(N21), and minimum degreeN11 in eachpi , we
are able to formulate the principal term ofH12 . . .N as

^̂ pi 1
5(N21)pi 2

5(N21)
¯pi k

5(N21)
¯pi N2 l 11

N11
¯pi N21

N11pi N
N11&&.

The precise numberk and l of terms with maximum and minimum degree, respectively—and
consequent intermediary terms of decreasing degree—will depend onN @cf. Eqs.~48! and ~62!#.
The remaining terms that make upH12 . . .N follow by systematically cascading the powers ofpi

and successively replacingpi
3→v i @via the dispersion relation~18!#, just as we did in Eq.~62! for

N54. We can now formulateH12 . . .N as a linear combination of these terms, fixing as many
the coefficients as possible by using the otherN22 reductions of the type~67!,
b12 . . .N(p1 ,...,pk ,0,...,0), 1<k<N22, and the reduction~68!. However, these reductions wi
not be sufficient to determine all the coefficients inH12 . . .N and we return to bilinear form~19! to
complete the derivation of theN-soliton. We substitutetruncatedversions off andg̃ @cf. Eqs.~52!
and ~53!#—consistent with extracting only the terms in eu11u21¯1uN—into the bilinear equa-
tions ~19a! and ~19b!. This yields an equation forD12 . . .N which is equated with~70! to find
the remaining unknown coefficients inH12 . . .N . With D12 . . .N , and henceb12 . . .N and f (x,t),
now completely determined, we obtain the explicitN-soliton solution of the bKK Eq.~1! using
u52]x

2 ln f.

V. DISCUSSION

In this sequel to a recent study,1 we have presented a direct method for obtaining expl
multisoliton solutions of the bidirectional Kaup–Kupershmidt equation~1!. Not surprisingly, these
solitons possess the remarkable property that their wave profiles aredirectionally dependent, a
property that is inherited from the constituent solitary waves.1 To our knowledge, this type o
soliton interaction is quite unusual and is reported here for the first time. In particular, so
solutions are presented that describe multiple head-on collisions ofsingle- and double-humped
‘‘solitary’’ waves.

The ‘‘anomalous’’ character of the bKK solitons arises quite naturally within Hirota’s bilin
formalism24,25 in the guise of asquaredregularN-soliton.1 This canonical form, which derives
from the duality of the bKK and bSK-Ramani equations, provides the basis for the iter
procedure that we have developed to obtain higher-order solitons. Significantly, the express
the bKK N-soliton—like its unidirectional counterpart for the sister KK Eq.~2!11—requires the
introduction of a new parameterb12 . . .N , Eq. ~69!, at every orderN; we therefore cannot write
down an explicit formula for this solution akin to Hirota’s generic form~10!. This is in marked
contrast to the bSK–Ramani equation whoseN-soliton solution~10! is described by the single
parameterAi j , Eq. ~11!. Nevertheless, our formulation of the bKK solitons—couched in term
the common interaction parameterAi j and shared dispersion laws~12!—would seem to be a
natural one, for it makes explicit the dynamical duality of the soliton solutions of the bKK
bSK-Ramani equations and points to the deep connection between these two fundamenta
ferent integrable bidirectional equations. This mirrors the intimacy between their better k
unidirectional cousins, the KK Eq.~2! and SK Eq.~4!, respectively.2,11,14

Although we have sought to describe the iterative procedure in some detail~Sec. IV C!, a few
salutary remarks are in order. Compared with the iteration method that was used to obta
multisoliton solutions of the sister KK Eq.~2!,11 the procedure given here for the bKK equation
less definitive. The reason for this is clear. The unidirectional KK solitons possess a high d
of symmetry which permits a precise description of the iterative steps.11 For the bKK equation,
much, though by no means all, of this symmetry is lost due to the need to account fo
bidirectionality. In particular, there is insufficienta priori information available to completely
determine the ‘‘new’’ parameterb12 . . .N that is pivotal to formulating the bKKN-soliton @whereas
just two reductions, comparable to Eqs.~67! and ~68!, were required to compute the equivale
KK parameter#. This lack of information stems from the fact that a bKK soliton cannot be redu
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to one of lower order by coalescing a single- and a double-humped solitary wave~the reason for
this is given in Ref. 11!. Consequently, it is necessary to revert to the bilinear form of the b
equation to complete the derivation ofb12 . . .N and, thereby, theN-soliton solution. Notwithstand-
ing this ‘‘extra’’ step, we stress that the above iteration procedure yields the key parameterb12 . . .N

in its simplest possible form since the quotient expression~69! is irreducible. Indeed, it is this
simple and repetitive structure that makes an iterative approach viable. Were we to atte
obtain this parameter by solving the bilinear equations directly, the algebraic demands woul
become intractable~as the orderN increases! and lie beyond the competence of symbolic softwa
~even with the necessary computational resources!. To give a measure of the complexity one face
even forN54, direct substitution into the bilinear form yields a coefficient of eu11u21u31u4 with
in excess ofhalf a million terms. Moreover, it is extremely unlikely that the compact express
~69! could be obtained in this way. In part, this is because of the immense difficulty in identif
the ‘‘correct’’ factors that are needed to effect the simplification. But here the task is compou
by the option of using the dispersion relations~12! which enable us to recast an expression
removing~or inserting! powers ofv i ~a facility that has been been crucial to our analysis!.

The simplification that derives from our direct approach—and from the structured proc
described in Sec. IV C—makes the computations manageable and should not be underes
Nevertheless, at some point, the length and complexity of the algebraic expressions involv
still be such that they will almost certainly breach the limit of available computational reso
~though not the competence of algebraic software such as Mathematica!. That said, the synergy
between mathematical analysis and the power of symbolic computation to manage lengt
otherwise routine, algebraic manipulation is evident in this study. We have been able to explo
synergy to elicit—and display—multisoliton solutions of the bKK equation which might otherw
be inaccessible. Naturally, it is interesting to speculate whether there are other bidirectiona
linear evolution equations that possess directionally dependent solitons: to date, they appe
unique to the bKK Eq.~1!.
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APPENDIX: SINGULARITY ANALYSIS FOR THE BKK EQUATION

We briefly describe a singularity analysis for solutions of the bidirectional Kaup–Kupersh
~bKK! equation~1!. The results show that the bKK equation passes the Painleve´ test for partial
differential equations due to Weiss, Tabor and Carnevale~WTC!.26 @The full analysis for both this
equation and the bSK-Ramani Eq.~3! will be presented elsewhere.# Using the results of the WTC
analysis, we then examine the singularity properties of the functions that appear in the v
bilinear forms of the bKK equation given in Sec. II. Judged from this perspective, we con
that the coupled system~19! is a ‘‘good’’ Hirota bilinear form whereas the alternative biline
equations~6! and ~7! are not.

1. Painlevé analysis

To proceed with the singularity analysis, it is convenient to write the bKK Eq.~1! in its
conservative form withu5vx :

5v tt15vxxxt215vxvxt215vxxv t245vx
2vxx1

75

2
vxxv3x115vxv4x2v6x50. ~A1!

Following the WTC method,26 we seek a Laurent expansion

v~x,t !5f2r(
k50

`

vk~x,t !fk ~v0Ó0!, ~A2!
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wheref(x,t), vk(x,t) are analytic functions in the neighborhood of an arbitrary~noncharacteris-
tic! singular manifoldf(x,t)50 (fx , f tÞ0). Substituting the series~A2! into ~A1!, the balance
of leading order terms inf27 yields r51 and the two choices

v052fx , v0528fx . ~A3!

Inserting the series~A2! with r51 into ~A1!, and collecting terms infk27, we obtain a recur-
rence relation forvk (k>1):

~k21!~k26!fx
4@~k22!~k23!~k24!~k25!fx

2115~k228k118!fxv0145v0
2#vk5Fk ,

~A4!

with Fk5Fk(v0 ,v1 , . . . ,vk21 ;fx ,f t , . . . ). Thechoices~A3! lead to the resonance families

k521, 1, 3, 5, 6, 7; ~A5!

k527,21, 1, 6, 10, 12, ~A6!

respectively. To simplify the succeeding analysis, we introduce the Kruskal manifold ansat27

f~x,t !5x2x0~ t !, ~A7!

where x0(t) and vk(t) are analytic functions oft only. It can be shown that all compatibility
conditions are satisfied for both resonant sets~A5! and ~A6!. It follows that Eq.~A1!, and hence
the bKK Eq.~1!, has the Painleve´ property.26,28

We observe that only the first family~A5! has a full complement of positive resonances a
for our purposes, we need consider only this principal branch. In this case, the Laurent
~A2! provides a local representation of the general solution of Eq.~A1! in which x0 , v1 , v3 , v5 ,
v6 , v7 are arbitrary functions oft. Using the recurrence relation~A4! with v052fx521, one
finds that

v~x,t !52
1

x2x0
1v11

1

3
x08~x2x0!1v3~x2x0!21

1

9
~2x08

223v18!~x2x0!31¯ , ~A8!

where a prime denotes the derivative with respect tot. Hence,v(x,t) has a simple pole on the
movable singular manifold pathx5x0(t). The Laurent expansion foru5vx follows directly from
~A8! as

u~x,t !5
1

~x2x0!2 1
1

3
x0812v3~x2x0!1

1

3
~2x08

223v18!~x2x0!21¯ . ~A9!

Thus, solutions of the bKK Eq.~1! have, at worst, a polelike behavior of order 2 in the neighb
hood of the singular manifoldx5x0(t).

2. Hirota bilinear transform

We consider the consequences of the Painleve´ analysis for the bilinearization of the bKK
equation. From Eq.~5! we havev5a]x ln f: after equating this with~A8 ! and integrating with
respect tox, we have

f ~x,t !5~x2x0!21/a expH 1

a Fc1v1~x2x0!1
1

6
x08~x2x0!21

1

3
v3~x2x0!31¯G J , ~A10!

where c5c(t) is an arbitrary function. Equation~A10! shows that, for the bKK Eq.~1!, the
appropriate choice isa521 since it leads to an Hirota functionf (x,t) which is entire. This
accords with our choice of dependent variable transformationu52]x

2 ln f and justifies expanding
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f as a finite polynomial of exponentials. We note that the alternative choicea522 in ~A10!
yields an ansatzf in the bilinear form~7! having a square-root branch singularity—it does n
therefore lead to a ‘‘good’’ Hirota form.@Incidentally, a similar Painleve´ analysis for the bSK-
Ramnai Eq.~3! shows that the choicea522 in ~5! leads to entiref in the Ramani bilinear form
~9! as expected.#

We are left to consider the two possible bilinear forms~6! and ~19! of the bKK equation
corresponding toa521 ~with f entire!. Then ~A10! shows thatf ;(x2x0) near a pole singu-
larity of v(x,t). Now, substituting the Laurent expansion~A8! into Eq. ~6b!, one readily obtains

g~x,t !5
1

x2x0
1O~x2x0!,

while Eq. ~6c! gives

h~x,t !52
4x08

x2x0
1O~1!,

nearx0(t). Hence, the auxiliary functionsg andh in the bilinear form~6! arenot entire since each
has a simple pole singularity in the vicinity of a zero off . On the other hand, from~19b! we
deduce that

g̃~x,t !5224v316~v182x08
2!~x2x0!1O~x2x0!2,

which shows thatg̃ is an entire function. We conclude that~19! is a ‘‘good’’ Hirota bilinear form
and should therefore be used instead of the alternate bilinear system~6! which is not.
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A nonconfocal involutive system and constrained flows
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By symmetry constraints, new finite-dimensional integrable systems are deduced
from a Lax representation of the MKdV2 equation, whose two terms containing
spatial derivatives have the same sign. Lax representations are presented for the
resulting finite-dimensional integrable systems and anr -matrix formulation is es-
tablished for the corresponding Lax operator. From the Lax operator, a nonconfocal
involutive system of functionally independent polynomial functions is constructed.
Solutions of the MKdV2 can be obtained by the method of separation of
variables. ©2002 American Institute of Physics.@DOI: 10.1063/1.1506202#

I. INTRODUCTION

The technique of symmetry constraints of soliton equations is a powerful tool to gener
11 dimensional soliton equations from 211 dimensional soliton equations1,2 and finite-
dimensional integrable systems~FDISs! from 111 dimensional soliton equations.3 Various FDISs
have been presented starting from the Lax representations~or zero curvature equation represen
tions! of 111 dimensional soliton equations,3–13 by using that symmetry constraint technique~or
direct nonlinearization of Lax systems4–8!. The resulting FDISs have many nice mathemati
properties. For example, they possess Lax representations and their Lax operators satisfyr -matrix
relations. Following a procedure of Sklyanin,15 one can define separated variables for most of
resulting FDISs, which serve for constructing the Jacobi inversion problems.

In recent years, the study of separation of variables of soliton equations in 111 dimensions
~or 211 dimensions! has attracted an increasing attention.15–20 It has been shown that solito
equations in 111 dimensions possessing Lax representations can be separated into two co
ing FDISs (x-part andt-part of constrained flows! by symmetry constraints. Then, one can g
solutions of soliton equations by solving the correspondingx-part andt-part of constrained flows
This process together with separating variables for the constrained flows constitutes separ
variables for soliton equations.18

The method of separation of variables has been used to construct solutions of soliton
tions associated with the ZS-AKNS spectral problem.18,21 It is well known that from the ZS-
AKNS spectral problem, under the potential reductionsr 51q and r 52q, one obtains the
MKdV equations

qt2qxxx16q2qx50

and

qt1qxxx16q2qx50,

a!Electronic mail: ysli@ustc.edu.cn
b!Electronic mail: mawx@math.usf.edu
49500022-2488/2002/43(10)/4950/13/$19.00 © 2002 American Institute of Physics
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respectively. They are called the MKdV1 and MKdV2 equations, respectively. The MKdV1

equation has different signs but the MKdV2 equation has the same sign for the two terms c
taining spatial derivatives of the dependent variableq. Starting from other two specific spectra
problems, the FDISs associated with the MKdV1 equation have been obtained by symme
constraints~Bargmann type!,22–25and the associatedr -matrices are different from ther -matrix in
the case of the ZS-AKNS spectral problem.24,25 However, there is no result on symmetry co
straints of the MKdV2 equation, although there exists some analysis on symmetry constrain
the MKdV1 equation.23,24

In this paper, we would like to start from a new, convenient spectral problem to deriv
MKdV2 hierarchy and consider the corresponding problem of symmetry constraints fo
MKdV2 equation. It is known that all important 232 matrix spectral problems associated w
soliton equations are exhausted. However, the classification task of constrained flows
presents problems. To our surprise, the resultingr -matrices in the case of the MKdV2 equation are
very different from the existingr -matrices in the case of the MKdV1 equation,24,25 and the type
of the Lie algebra generated from the Lax operator associated with the resulting constrained
has not been seen so far in the study of constrained flows. More importantly, an involutive s
being nonconfocal can be presented. It is absolutely not easy to get nonconfocal involutiv
tems of polynomial functions, starting from 232 matrix spectral problems. Almost all example
established in the theory of constrained flows are confocal. Moreover, through the diffe
between two Lie algebras associated with two Lax operators, we will see different solution
for the MKdV1 equations and the MKdV2 equation.

The paper is organized as follows. In Sec. II, starting from a new, specific spectral pro
we derive a soliton hierarchy of the MKdV2 equations. In Sec. III, we construct the constrain
flows of the MKdV2 equation by the Bargmann symmetry constraints and decompose
MKdV2 equation into two FDISs, thex-part andt-part of the constrained flows. In Sec. IV, w
deduce ther -matrix formulation, present a nonconfocal involutive system of functionally in
pendent polynomial functions and show the Liouville integrability of the constrained flows
Sec. V, we construct action-angle variables and the Jacobi inversion problems for the re
constrained flows of the MKdV2 equation. Some concluding remarks are given in Sec.
Finally, in the Appendix, we show that the different spectral problems appearing in the liter
associated with the MKdV1 equation and the MKdV2 equation are gauge equivalent to ea
other, respectively.

II. MKdVÀ SOLITON HIERARCHY

Let us consider a specific spectral problem

S f1

f2
D

x

5U~q,l!S f1

f2
D , U~q,l!5S 0 l1q

l2q 0 D , ~1!

wherel is a spectral parameter andq5q(x,t) is the potential. We solve the adjoint equation

Vx5@U,V#[UV2VU, ~2!

by assuming

V5S A B

C 2AD 5(
j 50

` S aj bj

cj 2aj
D l2 j . ~3!

The components of the adjoint equation~2! read as

Ax5~l1q!C2B~l2q!, Bx522A~l1q!, Cx52A~l2q!. ~4!

Upon introducing
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E5B1C, F5C2B, or C5
E1F

2
, B5

E2F

2
, ~5!

the conditions~4! can be written as follows:

Ax5lF1qE, Ex524Aq, Fx54lA.

It is direct to obtain the recursion relation

LF5l2F, L5
1

4
]x

21q]x
21q]x , ]x5

]

]x
. ~6!

Assuming that

E5(
j 50

`

ejl
2 j , F5(

j 50

`

f jl
2 j , ~7!

if we takea05 f 05a150, e0521, then we find

f 2n5a2n115e2n1150, n51,2, . . .

and

f 15q, f 2n115L f 2n21 , a2n5 1
4 f 2n21,x , e2n52]x

21q]xf 2n21 , n51,2, . . . . ~8!

The first few of the above functions read as

f 35 1
4 qxx1

1
2 q3, a25 1

4 qx , e252 1
2 q2;

f 55 1
16 qxxxx1

5
8 q2qxx1

5
8 qqx

21 3
8 q5, a45 1

8 qxxx1
3
4 q2qx , e452 1

4 q2qxx1
1
8 qqx

22 3
8 q5.

Let us associate the spectral problem~1! with the auxiliary spectral problem

S f1

f2
D

tn

5V(n)~q,l!S f1

f2
D5V(n)S f1

f2
D , ~9!

with V(n) being chosen as

V(n)5V(n)~q,l!5~l2n21V!1 , n>0, ~10!

where the plus symbol1 denotes taking the terms of non-negative powers ofl. The zero curvature
equations

Utn
2Vx

(n)1@U,V(n)#50, n>1, ~11!

lead to the following soliton hierarchy of MKdV2 equations

qtn
1 1

2 ]xf 2n2150, n51,2,. . . , ~12!

which whenn52, gives the MKdV2 equation

qt2
1 1

8 qxxx1
3
4 q2qx50, ~13!

where the constants can be rescaled to the previous one in the introduction.
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III. CONSTRAINED MKdV À FLOWS

It is direct to find that for the spectral problem~1!, we have

E
2`

`

@l8@K#~f1
22f2

2!2K~f1
21f2

2!#dx50,

and thus we obtain the variatial derivative of the spectral parameterl ~up to a constant factor!

dl

dq
5f1

21f2
2 . ~14!

There are also the following relations for the spectral problem~1!:

~f1
21f2

2!x54lf1f2 , ~f1
21f2

2!xx54l~f2
21f1

2!14l~f2
22f1

2!, ~f2
22f1

2!x524f1f2q,
~15!

and thus under zero boundary conditions off1 andf2 , we can show that

L
dl

dq
5l2

dl

dq
, ~16!

which implies that the operatorL has an eigenvaluel2.
We takeN copies of the spectral problem~1! with N distinct l j

S f1 j

f2 j
D

x

5U~q,l j !S f1 j

f2 j
D , j 51,2,. . . ,N. ~17!

From ~14!, we have~up to a constant factor!

dl j

dq
5f1 j

2 1f2 j
2 , j 51,2,. . . ,N.

Now, we take the Bargmann symmetry constraint3

a25(
j 51

N
1

4
]x

dl j

dq
, i.e., q5^F1 ,F1&1^F2 ,F2&, ~18!

where^.,.& denotes the standard inner product inRN and

F j5~f j 1 , . . . ,f jN!T, j 51,2. ~19!

From ~8!, ~15!, and~16!, we have

f̃ 15^F1 ,F1&1^F2 ,F2&, f̃ 2n115^L2nF1 ,F1&1^L2nF2 ,F2&,

ã2n5^L2n21F1 ,F2&, ẽ2n5^L2n21F2 ,F2&2^L2n21F1 ,F1&,
~20!

where ãi , ẽi , and f̃ i denote the constrained expressions under the constraint~18! and zero
boundary conditions off i j , and the matrixL is defined by

L5diag~l1 , . . . ,lN!. ~21!

Under the symmetry constraint~18!, the N copies of the spectral problem~1! are nonlinear-
ized into a system of ordinary differential equations

F1x5~L1^F1 ,F1&1^F2 ,F2&!F2 , F2x5~L2^F1 ,F1&2^F2 ,F2&!F1 , ~22!
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which can be transformed into a Hamiltonian system in the symplectic space (R2n,dF2∧dF1)

F1x5
]H1

]F2
, F2x52

]H1

]F1
, ~23!

with the HamiltonianH1 being defined by

H15 1
4 ~^F1 ,F1&1^F2 ,F2&!21 1

2 ^LF2 ,F2&2 1
2 ^LF1 ,F1&.

From ~5! and ~20!, we have

A~l!5(
j 51

N
l jf1 jf2 j

l22l j
2 , F~l!5(

j 51

N
l~f1 j

2 1f2 j
2 !

l22l j
2 , E~l!5211(

j 51

N
l j~f2 j

2 2f1 j
2 !

l22l j
2 ,

~24!

and then we define a Lax operator as

L~l![S A~l! B~l!

C~l! 2A~l!
D

[S A~l!
E~l!2F~l!

2

E~l!1F~l!

2
2A~l!

D
5

1

2 S 0 21

21 0 D 1
1

2 (
j 51

N S 2l jf1 jf2 j

l22l j
2

l j~f2 j
2 2f1 j

2 !2l~f1 j
2 1f2 j

2 !

l22l j
2

l j~f2 j
2 2f1 j

2 !1l~f1 j
2 1f2 j

2 !

l22l j
2

22l jf1 jf2 j

l22l j
2

D .

~25!

Now, by a direct computation, we have the following theorem.
Theorem 1.The spectral constrained MKdV2 flow (23) admits the Lax representation

~L~l!!x5@Ũ,L~l!#, ~26!

where Ũ is given by

Ũ5S 0 l1^F1 ,F1&1^F2 ,F2&

l2^F1 ,F1&2^F2 ,F2& 0 D . ~27!

Under the symmetry constraint~18! and the control of thex-constrained flow~22!, the
t2-constrained flow obtained fromN copies of the temporal spectral problem~9! and ~10! for N
distinct l j reads as follows:

F1 j ,t2
5l j Āf1 j1

1
2 ~2l j

32B̄l j
21C̄l j2D̄ !f2 j ,

f2 j ,t2
5 1

2 ~2l j
31B̄l j

21C̄l j1D̄ !f1 j2l j Āf2 j ,
~28!

where j 51,2,. . . ,N, and
                                                                                                                



4955J. Math. Phys., Vol. 43, No. 10, October 2002 A nonconfocal involutive system

                    
Ā5^LF1 ,F2&, B̄5^F1 ,F1&1^F2 ,F2&, C̄52 1
2 ~^F1 ,F1&1^F2 ,F2&!2,

~29!
D̄5^L2F1 ,F1&1^L2F2 ,F2&1~^F1 ,F1&1^F2 ,F2&!~^LF2 ,F2&2^LF1 ,F1&!

1 1
2 ~^F1 ,F1&1^F2 ,F2&!3.

By a direct computation, this system can be rewritten in Hamiltonian form

F1,t2
5

]H2

]F2
, F2,t2

52
]H2

]F1
, ~30!

with H2 being defined by

H25 1
2 ^LF1 ,F2&

22 1
4 ~^L3F2 ,F2&2^L3F1 ,F1&!2 1

4 ~^F1 ,F1&1^F2 ,F2&!~^L2F1 ,F1&

1^L2F2 ,F2&!2 1
8 ~^F1 ,F1&1^F2 ,F2&!2~^LF2 ,F2&2^LF1 ,F1&!

2 1
16 ~^F1 ,F1&1^F2 ,F2&!4.

Therefore, we have the following theorem.
Theorem 2.The temporal constrained MKdV2 flow (30) admits the Lax representation

Lt2
5@Ṽ(2),L#, ~31!

where Ṽ(2) is given by

Ṽ(2)5
1

2 S 2Āl 2l32B̄l21C̄l2D̄

2l31B̄l21C̄l1D̄ 22Āl
D , ~32!

with Ā, B̄, C̄, andD̄ being defined by (29).
Proof. By using~26!, the zero curvature equation and the Jacobi identity,

Ũtn
2Ṽx

(2)1@Ũ,Ṽ(2)#50,

@@Ṽ(2),Ũ#,L#1@@L,Ṽ(2)#,Ũ#1@@Ũ,L#,Ṽ(2)#50,

we can proveṼx5@Ũ,Ṽ#, whereṼ5Lt2
2@Ṽ(2),L#. Note thatṼuf i j 5050 (i 51,2, j 51, . . . ,N).

It follows from Ṽx5@Ũ,Ṽ# that Ṽ[0. Thus we have the Lax representation~31!. The Theorem is
proved.

IV. A NONCONFOCAL INVOLUTIVE SYSTEM AND COMPLETE INTEGRABILITY OF THE
CONSTRAINED FLOWS

In this section, we use ther -matrix theory to prove that the constrained MKdV2 flows ~23!
and ~30! are completely integrable Hamiltonian systems in the sense of Liouville.14

Under the standard Poisson bracket inR2n

$ f ,g%5(
j 51

N S ] f

]f1 j

]g

]f2 j
2

] f

]f2 j

]g

]f1 j
D , ~33!

a direct computation can give rise to
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$A~l!,A~m!%5$E~l!,E~m!%5$F~l!,F~m!%50,

$A~l!,E~m!%5
2~lF~l!2mF~m!!

m22l2 ,

$A~l!,F~m!%5
2m~E~l!2E~m!!

m22l2 ,

$E~l!,F~m!%5
28m~A~l!2A~m!!

m22l2 .

~34!

Therefore, we can obtain an important Lie algebra

$A~l!,A~m!%50,

$B~l!,B~m!%5
2

l1m
~A~l!2A~m!!,

$C~l!,C~m!%5
2

l1m
~A~l!2A~m!!,

$A~l!,B~m!%5
1

l2m
B~l!2

1

l1m
C~l!2

2m

l22m2 B~m!,

$A~l!,C~m!%5
1

l1m
B~l!2

1

l2m
C~l!1

2m

l22m2 C~m!,

$B~l!,C~m!%5
2

l2m
~A~l!2A~m!!.

~35!

These commutator relations show us a specific characteristic for the resulting MKdV2 hierarchy.
Usually, $A(l),B(m)% is a linear combination ofA andB, and$A(l),C(m)% is a linear combi-
nation ofA andC. But in ~35!, the situation is different. The commutator relations~35! are of new
type among examples of Lax operators appearing in the study of constrained flows.

Now as usual, assume that

L1~l!5L~l! ^ I , L2~m!5I ^ L~m!, ~36!

and $L1(l) ^, L2(m)% is the fundamental Poisson bracket. A tactful search can present the
lowing r -matrix formulation for the Lax operatorL(l).

Theorem 3.Let L(l) be defined by (25). Then we have the r-matrix formulation

$L1~l! ^, L2~m!%5@L1~l!,r 12~l,m!#1@r 21~l,m!,L2~m!#, ~37!

where the r matrices are given by

r 12~l,m!5S l

l22m2 0 0
1

l1m

0
l

m22l2

1

l2m
0

0
1

l2m

l

m22l2 0

1

l1m
0 0

l

l22m2

D , r 21~l,m!5r 12~m,l!. ~38!
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The integrals of motion of two constrained flows can be obtained from expanding1
2trL

2(l)
52detL(l). We observe that

2detL~l!5A2~l!1B~l!C~l!5A2~l!1
1

4
~E2~l!2F2~l!!5

1

4
1(

j 51

N
l j I j

l22l j
2 ,

where theI j are defined by

I j52
1

2
~f2 j

2 2f1 j
2 !2

1

4l j
~f2 j

2 1f1 j
2 !21 (

kÞ j ,k51

N
lkBjk2l jAjk

l j
22lk

2 , ~39!

with Ai j andBi j being defined by

Ai j 5Aji 5~f2 j
2 1f1 j

2 !~f2i
2 1f1i

2 !, Bi j 5Bji 5~f1if1 j1f2if2 j !
22~f1if2 j2f1 jf2i !

2.

Alternatively, expanding2det(A) in powers ofl22, based on~20! and ~24!, we have

(
n50

`

Fnl22n
ªA21

1

4
~E22F2!5S (

j 51

`
ã2 j

l2 j D 2

1
1

4 F S 211(
j 51

`
ẽ2 j

l2 j D 2

2S (
j 51

`
f̃ 2 j 21

l2 j 21D 2G
5

1

4
1S 2

1

2
ẽ21

1

4
f̃ 1

2D 1

l2 1 (
n52

` S (
k1 l 5n

ã2l ã2n2
1

2
ẽ2n

1
1

4 (
k1 l 5n

ẽ2kẽ2l2
1

4 (
l 1k5n21

f̃ 2l 11 f̃ 2k11D 1

l2n .

Therefore, the integrals of motionFn read as

F05
1

4
, F152

1

2
ẽ22

1

4
f̃ 1

252H1 ,

Fn5 (
k1 l 5n

ã2l ã2n2
1

2
ẽ2n1

1

4 (
k1 l 5n

ẽ2kẽ2l2
1

4 (
k1 l 5n21

f̃ 2l 11 f̃ 2k11 , n>2. ~40!

From ther -matrix formulation~37! or a direct computation of

$A2~l!1B~l!C~l!,A2~m!1B~m!C~m!%50,

it follows that:

$I i~l!,I j~m!%50 or $Fi~l!,F j~m!%50. ~41!

This means that the integrals of motion are involution in pair. The involutive system o
polynomial functionsI j , j 51,2,. . . ,N, is completely different from the confocal system,7 and
actually it is nonconfocal.

To show the complete integrability of the constrained flows~23! and ~30! we need only to
prove that the integrals of motionFn , n51,2,. . . ,N, are functionally independent over som
open subset ofR2N.

To the end, we use the e-technique proposed in Ref. 26. Letp0

5(f11, . . . ,f1N ,f21, . . . ,f2N) be a point ofR2N satisfying f j l 5e, j 51,2, l 51,2,. . . ,N,
wheree is a small parameter. From the expressions ofFn defined by~40! and~20!, it follows that:

]Fn

]f j l
U

p0

52~21! jl l
2n21e1O~e3!.
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Therefore,

S ]F1

]f11

]F2

]f11
¯

]FN

]f11

] ] � ]

]F1

]f1N

]F2

]f1N
¯

]FN

]f1N

DU
p0

5S l1 l1
3

¯ l1
2N21

] ] � ]

lN lN
3

¯ lN
2N21

D eN1O~e3N!

5eN)
j 51

N

l j )
1< i , j <N

~l j
22l i

2!1O~e3N!.

This implies that when

l jÞ0, j 51,2,. . . ,N, l i
22l j

2Þ0, 1< iÞ j <N, ~42!

the functionsFn , n51,2,. . . ,N, are functionally independent over some dense open subs
R2N and so are the functionsI j , j 51,2,. . . ,N.

Theorem 4. Assume that (42) holds. Then the Hamiltonian systems (23) and (30) ha
functionally independent integrals of motion Fn , n51,2,. . . ,N, which are in involution in pair,
and thus the systems (23) and (30) are completely integrable systems in the sense of Liou.

V. ACTION-ANGLE VARIABLES AND THE JACOB INVERSION PROBLEMS

We present action-angle variables for the finite-dimensional integrable systems~23! and~30!.
Let us introduce

Ã~l!5
iF ~l!

2
, B̃~l!5A~l!1

iE~l!

2
, C̃~l!5A~l!2

iE~l!

2
. ~43!

By using the relations~34!, we have

$Ã~l!,Ã~m!%50, $B̃~l!,B̃~m!%50, $C̃~l!,C̃~m!%50,

$Ã~l!,B̃~m!%5
l

m22l2 ~B̃~m!2B̃~l!!,

$Ã~l!,C̃~m!%5
l

m22l2 ~C̃~l!2C̃~m!!,

$B̃~l!,C̃~m!%5
2

m22l2 ~mÃ~m!2lÃ~l!!.

~44!

These relations are just the same as the relations~33! in Ref. 25, and thus we can use the sam
process as that in Ref. 25 to present action-angle variables as follows. Note that ifuk is a zero
point of B̃(l), then so is2uk , and thus we have

B̃~6uk!50, k51,2,. . . ,N. ~45!

We assume that the choice ofl1 , . . . ,lN , makes all zero points ofB(l) simple. But note that not
all these zero points are real, sinceB̃(l) is complex. In the case of the MKdV1 equation,B̃(l) is
real.

The otherN variables are chosen to be
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vk5Ã~uk!5(
j 51

N uk~ if1 j
2 1 if2 j

2 !

uk
22l j

2 , k51,2,. . . ,N. ~46!

A similar deduction as in Ref. 25 yields thatuk andvk , k51,2,. . . ,N, are canonically conjugated
variables, i.e.,

$ui ,uj%5$v i ,v j%50, $ui ,v j%5d i j , i , j 51,2,. . . ,N. ~47!

We denote

detL~l!5
P~l!

K~l!
, K~l!5)

j 51

N

~l22l j
2!, ~48!

andP(l) is a 2Nth-order polynomial ofl:

P~l!5PNl2N1PN21l2N221¯ 1P05(
j 50

N

Pjl
2 j ,

PN5 1
4 , PN2152H12 1

4 a1 , PN2252H21a1~2PN212 1
4 a1!1 1

4 a2 , ~49!

a15(
j 51

N

l j
2 , a25 (

1< j , l<N
l j

2l l
2 .

All Pj can be expressed byI 1 , . . . ,I N or F1 , . . . ,FN , and thus thePi ’s are integrals of motion of
~23! and ~30!, and we have

$Pi ,Pj%50, i , j 51,2,. . . ,N. ~50!

We observe that

detL~uk!52 1
4 F2~uk!5Ã2~uk!5vk

2 ,

which leads to

P~uk!5K~uk!vk
2 , k51,2,. . . ,N. ~51!

Therefore,uk andvk , k51,2,. . . ,N, constitute a set of separated variables for~23! and~30!. To
obtain the Hamilton–Jacobi equation, we replace the canonical momentum componentsvk in ~51!
by the partial derivativesvk5]S/]uk . The function S can be separated asS(u1 , . . . ,uN)
5(k51

N Sk(uk), where

F]Sk~uk!

]uk
G2

5
P~uk!

K~uk!
, k51,2,. . . ,N. ~52!

Therefore, we have

S~u1 , . . . ,uN!5 (
k51

N Euk P~l!

AP~l!K~l!
dl,

which gives rise to the linearization coordinates

Qk5
]S

]Pk
5

1

2 (
k51

N Euk l2kdl

AP~l!K~l!
, k50, . . . ,N21. ~53!
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These angle variablesQk , k51,2,. . . ,N, constitute the whole set of action-angle variables
gether with the action variablesPk , k51,2 . . . ,N.

Now based on~49!, the linear flow defined by~23! is then given by

Qi5ci1
]H1

]Pi
x5ci2xd i ,N21 , i 50,1,. . . ,N21, ~54!

where theci ’s are independent oft2 , and the linear flow defined by~30! is then given by

Qi5 c̄i1
]H2

]Pi
t25 c̄i1

1

2
~d i ,N221a id i ,N21!t2 , i 50,1,. . . ,N21, ~55!

where thec̄i ’s are independent ofx. These two linear flows together with~53! yield the Jacobi
inversion problems for~23! and ~30!

1

2 (
k51

N Euk l2kdl

AP~l!K~l!
5ci2xd i ,N21 , k50, . . . ,N21,

1

2 (
k51

N Euk l2kdl

AP~l!K~l!
5 c̄i1

1

2
~d i ,N221a id i ,N21!t2 , k50, . . . ,N21,

respectively. Then by using the Jacobi inversion technique, one can find solutions of the M2

equation~13! in terms of Riemann theta functions.

VI. CONCLUSIONS AND REMARKS

By the Bargmann symmetry constraints, two commuting finite-dimensional integrable H
tonian systems were presented from the constrained flows of a specific spectral problem
MKdV2 equation. The Lax pairs of those two finite-dimensional systems were given, an
r -matrix formulation was established for the corresponding common Lax operator. We po
that the resultingr -matrices are of new type and the Lax operator leads to a nonconfocal in
tive system of polynomial functions, which is a good supplement to the existing theory of
metry constraints.

Moreover, we presented action-angle variables and the Jacobi inversion problems for
two finite-dimensional integrable systems. Then the solutions of the MKdV2 equation can be
obtained by the method of separation of variables and solving the resulting Jacobi inv
problems. The difference from the deduction in the case of the MKdV1 equation25 is that not all
the separated variables are real. Therefore, the MKdV1 equation and the MKdV2 equation have
different type solutions. This is also reflected by a Ba¨cklund transformationq1( ix,i t )
5q2(x,t), whereq6 are solutions of the MKdV1 equation and the MKdV2 equation, respec-
tively.

Finally in the Appendix, we show that a couple of different spectral problems appearing
literature associated with the MKdV1 equation and the MKdV2 equation are gauge equivalent
each other, respectively.
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APPENDIX A

By the reductionsr 56q, the ZS-AKNS spectral problem~1! becomes

MKdV1 : Cx5S 2l q

q l
DC[U1C, ~A1!

MKdV2 : Cx5S 2l q

2q l
DC[U2C, ~A2!

which generate the MKdV1 and MKdV2 hierarchies, respectively. The MKdV1 equation also can
be associated with the spectral problem22

F̄x5S 2q l2

1 q D F̄[M̄F̄, ~A3!

and the spectral problem22,25

Fx5S 2q l

l qDF[MF. ~A4!

By using the gauge transformations

F̄5T1F, T15S l 0

0 1D ,

we have

M̄5T1MT1
21 .

By using the gauge transformation

F5T3C, T35
1

&
S 1 1

21 1D ,

and noting

T3
215

1

&
S 1 21

1 1 D ,

we have

M5T3U1T3
21

and

U5T3U2T3
21 ,

whereU is defined by~1!. Therefore, for the MKdV1 equation, the spectral problems~A1!, ~A3!
and ~A4! are gauge equivalent to each other, and for the MKdV2 equation, the spectral problem
~1! is gauge equivalent to the spectral problem~A2!.

The MKdV1 equation discussed here is also related to the spectral problem23,24
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F̂x5S q l2

21 2qD F̂5M̂F̂. ~A5!

We takeil to replacel, thenM̂ is transformed into

S q 2l2

21 2q D 52M̄ .

The zero curvature equation associated with~A3! reads as

M̄ tn
2Vx1M̄V2VM̄50, ~A6!

and the zero curvature equation associated with~A5!

2M̄ tn
2Wx2M̄W1WM̄50. ~A7!

Interestingly, if we take2x to replacex, then ~A6! and ~A7! are transformed into each othe
Therefore, the MKdV1 equation obtained in Refs. 23 and 24 is equivalent to the MKdV1 equation
discussed in this paper.
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For a given differentiable map (x,y)→(X(x,y),Y(x,y)), which has an inverse, we
show that there exists a Hamiltonian flow in whichx plays the role of the time
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Let us consider a differentiable map

~x,y!→~X~x,y!,Y~x,y!!, ~1!

and assume that it has an inverse

~X,Y!→~x,y!. ~2!

A small change of (x,y) causes a variation of (X,Y). They are governed by

S ]x

]y
D5J S ]X

]Y
D , JªS JxX JxY

JyX JyY
D , ~3!

where]xª]/]x, JxXª]X/]x, etc., or

S ]X

]Y
D5J21S ]x

]y
D . ~4!

To be specific we consider the case in whichy is fixed whilex is changed. We introduce th
notation

Q~x!ªX~x,y!, P~x!ªY~x,y!.

Then from~3! the variations of (Q,P) are given by

a!Electronic mail: saito@phys.metro-u.ac.jp
b!Electronic mail: shudo@phys.metro-u.ac.jp
c!Electronic mail: yjunichi@phys.metro-u.ac.jp
d!Electronic mail: yoshida@kiso.phys.metro-u.ac.jp
49630022-2488/2002/43(10)/4963/3/$19.00 © 2002 American Institute of Physics
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dQ

dx
5JxX ,

dP

dx
5JxY . ~5!

We can prove the following:
Proposition 1: Let H be a function of(Q,P) which is given by

H~Q,P!5Ey(Q,P)

~detJ!dy, ~6!

and satisfies

]H

]x
50.

Then the following system of Hamilton’s equations holds:

dQ

dx
5

]H

]P
,

dP

dx
52

]H

]Q
. ~7!

Conversely, if H(Q,P) satisfies Hamilton’s equations, then it must be of the above form.
Note that the valuex plays the role of time variable of this system. The proof is straight

ward. Applying~4! to H yields

S ]QH
]PH D5J21S ]xH

]yH
D . ~8!

If we impose the condition thatH satisfies

J21S ]xH
]yH

D5S 2JxY

JxX
D , ~9!

and compare with~5!, the Hamilton equations~7! follow. To solve~9! for H, we multiply J from
the left and obtain

S ]xH
]yH

D5JS 2JxY

JxX
D5S 0

]X

]x

]Y

]y
2

]X

]y

]Y

]x
D ,

hence

]xH50, ]yH5
]X

]x

]Y

]y
2

]X

]y

]Y

]x
5detJ.

Therefore~6! is obtained.~QED!
This article is motivated by an observation found by one of the authors~AS! during the study

of the quantized He´non map,1 and generalizes the result to a wide class of maps. Before closin
us present the case of the He´non map, which is defined by

S X
YD5S x22y1c

x D , S x
yD5S Y

Y22X1cD , J5S 2x 1

21 0D . ~10!

Since detJ51, we have simplyH5y1const, hence

H~Q,P!5P22Q1c. ~11!
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Hamiltonian structures on foliations
Izu Vaismana)

Department of Mathematics, University of Haifa, Haifa, Israel

~Received 30 April 2002; accepted for publication 26 May 2002!

We discuss Hamiltonian structures of the Gelfand–Dorfman complex of projectable
vector fields and differential forms on a foliated manifold. Such a structure defines
a Poisson structure on the algebra of foliated functions, and embeds the given
foliation into a larger, generalized foliation with presymplectic leaves. In a so-
called tame case, the structure is induced by a Poisson structure of the manifold.
Cohomology spaces and classes relevant to geometric quantization are also
considered. ©2002 American Institute of Physics.@DOI: 10.1063/1.1502928#

I. PRELIMINARIES

Let S be a moving body with supplementary physical characteristics, expressed by
parameters, which have no impact on the motion but depend on the latter. For instanc
temperature of a rigid body which moves with high friction.

The mathematical model of such a system will consist of aconfiguration spacewhich is an
s-dimensional differentiable manifoldN endowed with ap-dimensional foliationG such that the
supplementary parameters are the coordinates along the leaves ofG, and the position coordinate
are constant along these leaves. Then, thephase spaceof S will be the total spaceM of the
annihilator bundlen* G#T* N of the tangent bundleTG, andM is endowed with the natural liftF
of G, which is such that the leaves ofF are covering spaces of the leaves ofG ~see, e.g., see Ref
7!.

Since the motion does not depend on the supplementary parameters, the Hamiltonian f
H of the system will be anF-foliated functionon M , i.e., a function which is constant along th
leaves ofF. On the other hand, since we want the motion to determine the time evolution o
supplementary parameters, we should be able to define the Hamiltonian vector field ofH as a
foliated vector field on the phase space ofS.

Therefore, (M ,F) should be endowed with ageneralized Hamiltonian structurethat pre-
scribes foliated Hamiltonian vector fields to foliated functions. The aim of this paper is to in
the study of such Hamiltonian structures.

The generalized Hamiltonian structures we need may be defined within the general Ge
Dorfman scheme of Hamiltonian structures on complexes over a Lie algebra.1,2 For convenience,
we refer to such complexes asGelfand–Dorfman complexes,13 and recall their definition in the
following.

Definition 1.1:A Gelfand–Dorfman complexconsists of:
~i! a real Lie algebra (x,@ , #);
~ii ! a cochain complex of real vector spaces

C5S %
k50

`

Vk, d:Vk→Vk11, d250D ;

~iii ! mappingsX° i (X)PLR(Vk,Vk21), ~V21
ª0; ª denotes a definition!, defined for allX

a!Electronic mail: vaisman@math.haifa.ac.il
49660022-2488/2002/43(10)/4966/12/$19.00 © 2002 American Institute of Physics
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Px andk50,1,2,..., such that
~a! if aPV1 and i (X)a50 for all XPx thena50;
~b! if LXªdi(X)1 i (X)d then

i ~X!i ~Y!1 i ~Y!i ~X!50, i ~@X,Y# !5LXi ~Y!2 i ~Y!LX . ~1!

Usually, one says thatC is a complex overx, and the mappingX° i (X) encountered in
Definition 1.1 may be seen as arepresentation ofx on C. This mapping also defines a pairing

^a,X&5^X,a&ª i ~X!a, XPx,aPV1,

and, in particular, one denotesX fª^df ,X&, f PV0,XPx.
A linear mappingHPLR(V1,x) is said to beskew symmetricif

^a,Hb&52^b,Ha&, ;a,bPV1. ~2!

The Hamiltonian structures of a Gelfand–Dorfman complex are defined by generalizin
notion of a Poisson bivector~e.g., Ref. 11!. For this purpose, one notices that the formula1,2

@H,K#~a,b,g!ª (
Cycl(a,b,g)

$^KLHab,g&1^HLKab,g&%, ~3!

whereH, KPLR(V1,x) are skew symmetric anda, b, gPV1, may be seen as defining a brack

@H,K#PLalt,R~~V1!3,V0!,

which is a generalization of the Schouten–Nijenhuis bracket of bivector fields on manifold
call bracket~3! the Gelfand–Dorfman bracket. Then, one defines

Definition 1.2:A skew-symmetric homomorphismHPLR(V1,x) which satisfies thePoisson
condition @H,H#50 is called aHamiltonian structureon the Gelfand–Dorfman complex~x, C!.

For a Hamiltonian structure one defines the following generalizations of classical notio
~i! ; f PV0, XfªH(df )Px is theHamiltonian vectorof f ;
~ii ! ; f ,gPV0, $ f ,g%ªXfg is thePoisson bracket; this bracket is skew-symmetric because of~2!,
and it satisfies the Jacobi identity because~3! yields

@H,H#~df ,dg,dh!52 (
Cycl( f ,g,h)

$$ f ,g%,h%;

~iii ! ;a,bPV1, one has aV1-bracket

$a,b%ªLHab2LHba2d^Ha,b&, ~4!

with the particular case

$df ,dg%5d$ f ,g%. ~5!

The V1-bracket~4! may be defined for any skew-symmetric mappingHPLR(V1,x), and it
satisfies the following fundamental identities:4,12

^g,H$a,b%&5^g,@Ha,Hb#&1 1
2 @H,H#~a,b,g!, ~6!

(
Cycl(a,b,g)

^$$a,b%,g%,X&5@H,LXH#~a,b,g!1
1

2 (
Cycl(a,b,g)

@H,H#~a,b,d^g,X&!, ~7!

wherea, b, gPV1, XPx, and
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LXH~a!ª@X,Ha#2H~LXa!. ~8!

In the Hamiltonian case@H,H#50, it follows from ~7! that theV1-bracket is a Lie algebra
bracket. Furthermore, under the supplementaryregularity hypothesis: if ;aPV1 ^a,X&50 then
X50 (XPx), H is a homomorphism of Lie algebras, i.e.,

H$a,b%5@Ha,Hb#. ~9!

On the other hand, even without the regularity hypothesis,~6! shows that if we askH
PLR(V1,x) to be skew symmetric and satisfy~9!, H is a Hamiltonian structure.

II. HAMILTONIAN STRUCTURES OF FOLIATIONS

With the motivation of Sec. I in mind, let us consider an arbitraryn-dimensional differentiable
manifold M ~in the present paper ‘‘everything’’ is of differentiability classC`! endowed with a
p-dimensional foliationF. An object ofM that projects to the space of the leaves ofF is called
eitherprojectableor foliated. We refer the reader to Ref. 7 for all the notions of foliation theo
which we are going to use.

The Lie algebraxF of theF-foliated vector fields and the complex of projectable differen
forms VF5 % k51

q VF
k (qªn2p), with the usual exterior differential and contraction operat

i (X), XPxF , define a Gelfand–Dorfman complex associated with the pair (M ,F). One might
consider general Hamiltonian structures on this complex, but, such a structure may have
local character. We avoid nonlocality by

Definition 2.1:A Hamiltonian structureon ~or of! the foliationF is a vector bundle morphism
h:n* F→TM ~nF5TM/TF is the transversal bundle ofF! such that the induced map of cros
sectionsH:VF

1→x(M ) @x(M ) is the space of all the tangent vector fields ofM # is a Hamiltonian
structure of the Gelfand–Dorfman complex of (M ,F).

In particular, Definition 2.1 implies that the morphismh is skew symmetric@i.e., it satisfies~2!
pointwisely#, and that the values of the mappingH are inxF .

Example 2.1:Any skew symmetrichPLR(n* F,TF) may be seen as a trivial Hamiltonia
structure of the foliationF. Indeed, formula~3! shows that@H,H#50 if the values ofH are vector
fields tangent toF

Example 2.2:Let P be a Poisson bivector field on the foliated manifold (M ,F), such that for
any foliated functionf PVF

0 the Hamiltonian vector fieldXf
P is a foliated vector field. Define

]P :T* M→TM by ^]Pa,b&ªP(a,b). Then,hª]Pun* F defines a Hamiltonian structure of th
foliation F.

Example 2.3:A bivector fieldP is called atransversal Poisson structureof F if the bracket

$ f ,g%ªP~df ,dg! ~ f ,gPC`~M !!

makesVF
0 a Poisson algebra.6 In this case, again,hª]Pun* F is a Hamiltonian structure ofF.

Moreover, for any Hamiltonian structureh of F and any choice of a decompositionTM5E
% TF, the bivector fieldP defined by

]PuE* 'n* F5h, ]PuT* F50

is a transversal Poisson structure ofF.
We also show how to express Hamiltonian structures of a foliationF by means ofadapted

local coordinates(xa,yu), wherea51,...,q; u5q11,...,n, andxa5const are the local equation
of F. In order to get an expression by tensors, we fix a decompositionTM5E% TF where8

E5spanH Xaª
]

]xa 2ta
u ]

]yuJ , TF5spanH ]

]yuJ , ~10!
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for some local coefficientsta
u and with the Einstein summation convention. The local bases ofTM

defined by~10! have the dual co-bases

dxa, uu
ªdyu1ta

u dxa, ~11!

andn* F5span$dxa%.
Then, a skew-symmetric morphismh:n* F→TM has local equations

h~dxa!5habXb1kau
]

]yu . ~12!

The componentshab define a global cross sectionW of ∧2E, therefore, a global cross section
∧2nF, which is independent of the choice ofE, and the componentskau define a global cross
section ofE^ TF. The following assertion is obvious.

Proposition 2.1: The morphism h defined by (12) is a Hamiltonian structure ofF iff the cross
section W with local components hab is foliated and defines a structure of Poisson algebra onVF

0 .
The Poisson bracket defined byW on VF

0 is of the local type, and it has the followin
interpretation. LetU be an open neighborhood ofM such that the manifoldN of the slices ofF
in U exists, and letp:U→N be the natural projection~constant along the slices ofF in U!. Then
hN(p(x))ªp* (x)+(huU(x))+p* (p(x)), xPU, is the morphism]PN

of a well-defined Poisson
bivector fieldPN on N, which defines the same local Poisson brackets asW. ~hN is well defined
since the values of the mappingH defined byh are foliated vector fields.!

Furthermore, any Poisson algebra structure of local type onVF
0 is defined by a family

of Hamiltonian structures onF. Indeed, the required structure is equivalent to a foliated sectioW
of ∧2n(F), which satisfies the Poisson condition@W,W#50. Choose a decompositionTM
5E% TF, and,;aPn* F, defineh(a) to be the unique vector ofE with projection]Wa on nF.
Since by~3!

@H,H#~a,b,g!5@W,W#~a,b,g! ~a,b,gPVF
1 !,

h is a Hamiltonian structure ofF, andh inducesW.
More exactly, ifh0 is one of the Hamiltonian structures which defineW, the whole family

which definesW is h01k, wherekPLR(n* F,TF) is skew symmetric. This holds since for an
Hamiltonian structureh of F and any skew symmetrickPLR(n* F,TF), the corresponding mor
phismsH, K of global cross sections satisfy the relation@H,K#50 @see~3!#.

Proposition 2.2: For any Hamiltonian structure h on a foliationF, the generalized distribu-
tion HªTF1H0 (H0ª im h) is a projectable, completely integrable distribution, and its leav
are presymplectic manifolds with kernel TF. Furthermore, h(annH)5H0ùTF ~anndenotes the
annihilator of a vector space or bundle!.

Proof: We continue to use the previous notation. Letx0PU#M whereU is a neighborhood
such thatFuU has aq-dimensional, transversal submanifoldN. Since the projectionp is a sub-
mersion, if Lp(x0) is the symplectic leaf of the Poisson structurePN through p(x0)PN, L̃x0

ªp21(Lx0
) is an integral submanifold ofH throughx0 . The existence of these integral subma

folds shows the complete integrability ofH. Projectability follows from the fact thatH0 is
spanned by the projectable vector fieldsH(a), aPVF

1 , and H projects onto the symplectic
distribution of PN . The lift of the symplectic form ofLp(x0) by p* yields the required presym
plectic form of the corresponding leaf ofH. Finally, notice thataPannH iff a5p* (l) for some
lPker]PN

, and thenp* h(a)50. This implies h(annH)#H0ùTF. On the other hand, if
h(a)PTF, we must havea5p* (l) wherelPker]PN

, and this justifies the converse inclusio
~All these also follow immediately from the local equations~12! of h.! Q.E.D.

The distributionH will be called thecharacteristic distributionof the Hamiltonian structure
h, and its leaves constitute thepresymplectic foliation. The Hamiltonian structureh of the folia-
tion F on M will be called transitive if the characteristic distribution isH5TM. In this case,
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Proposition 2.2 tells us thatM is a presymplectic manifold with the kernel foliationF, and that
TM5H0% TF. The latter equality also shows that the corresponding local Poisson structurPN

are the symplectic reduction of the presymplectic form ofM . Conversely, ifM is a presymplectic
manifold with the presymplectic two-forms, and if E is a complementary distribution of th
kernel foliationF of s, there exists a well-defined, transitive, Hamiltonian structureh of F such
that H05E and the local Poisson structuresPN are the symplectic reductions ofs.

Example 2.4:Let H be a coisotropic foliation of dimensionn1k(k<n) of a symplectic
manifoldM of dimension 2n, with the symplectic formv. It is well known that thev-orthogonal
distribution of H is tangent to a foliationF, and that,;xPM , there exist local coordinate
(xa,xu,yi) aroundx such thata51,...,pªn2k, u5p11,...,n, i 51,...,n, xa5const are the loca
equations ofH, and the symplectic form has the canonical expression

v5 (
a51

p

dxa∧dya1 (
u5p11

n

dxu∧dyu. ~13!

~This result is a theorem due to Lie.5! The local equations of the foliationF are xa5const,xu

5const, yu5const, and the computation of the Hamiltonian vector fieldXf
v of an F-foliated

function @via ~13!# shows thatXf
v is anF-foliated vector field tangent to the leaves ofH. There-

fore, hª2[v
21un* F is a Hamiltonian structure of the foliationF with the presymplectic foliation

H. Moreover, in this case we haveTF#H0 .
Example 2.5:Example 2.4 can be generalized as follows. Let (M ,v) be an almost symplectic

manifold ~i.e., we askv to be nondegenerate but not necessarily closed!, and letH be a coiso-
tropic foliation such that the pullback ofv to every leaf ofH is closed on the leaf. Then formul
~13! is to be replaced by

v5 (
a51

p

dxa∧Ãa1 (
u5p11

n

dxu∧dyu, ~14!

where Ãa are linearly independent, local, one-forms which contain only the differentialsya.
Now, we obtain the foliationF and its Hamiltonian structureh in the same way as in the
symplectic case.

We finish this section with a remark about the chosen definition of the notion of a Hamilto
structure on a foliation.

If we start with the physical motivation of Sec. I, and do not think of Gelfand–Dorfm
complexesa priori, the natural definition of a generalized Hamiltonian structure~ghs! that suites
the problem is that of anR-linear morphism of sheaves

F:VF
0→x, f °Xf , ~15!

~underlining means passing to germs of the corresponding type of objects!, such that the bracke
defined by

$ f ,g%5Xfg, f ,gPVF
0 , ~16!

makesVF
0 a Poisson algebra sheaf.

In particular, the action of a Hamiltonian vector fieldXf on foliated functionsgPVF
0 depends

only on the first jetj 1f . This is not enough to ensure that the ghs has local type. A na
condition for the latter property is to askXf50 for all f PVF

0 such thatj x
1f 50 at each pointx

PM . If the ghs structureF satisfies this locality condition,F is completely defined by loca
vector fields

Xxa5habXb1kau
]

]yu , ~17!
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that satisfy the conditions of Proposition 2.1.
Therefore, the generalized Hamiltonian structures of local type are exactly the Hamilt

structures of foliations which we defined earlier.

III. TAME HAMILTONIAN STRUCTURES

The Gelfand–Dorfman complex of a foliation does not satisfy the regularity hypothesis
mulated at the end of Sec. I. The equality^a,X&50, ;aPVF

1 , only impliesXPGTF ~G denotes
the space of global cross sections!. Therefore,~9!, or the equivalent property

X$ f ,g%5@Xf ,Xg#, ; f ,gPVF
0 , ~18!

obtained by takinga5df , b5dg, f , gPVF
0 in ~9!, may not hold, and we shall define

Definition 3.1:A skew symmetric morphismh:n* F→TM which satisfies condition~18! is a
strong Hamiltonian structureon F.

Remark 3.1:If h is a strong Hamiltonian structure, the sheafn* F has a natural structure of
sheaf of twisted Lie algebras3 over (R,VF

0 ), with the action of germsaPn* F defined as the
action ofH(a).

Formula ~6! shows that a strong Hamiltonian structure is Hamiltonian. The Hamilton
structures indicated in Examples 2.2 and 2.4 are strong but this is not necessarily true f
amples 2.3 and 2.5. Ifh is a strong Hamiltonian structure, the generalized distributionH0

5 im h is involutive. Conversely, ifH0 is involutive and ifH0ùTF50, h is a strong Hamiltonian
structure@use~6!#. These facts suggest

Definition 3.2:A Hamiltonian structureh of a foliationF is transversal~to F! if there exists
a differentiable complementary distributionE of TF (E% TF5TM) such thatH0#E. The dis-
tribution E will be called animage extensionof h. ~It is possible to have more than one ima
extension.! A transversal Hamiltonian structure ofF is a tame structure if all the brackets o
differentiable vector fields that belong toH0 are contained in an image extensionE. ~In the tame
case, only such image extensions will be used.!

A tame Hamiltonian structure is strong@see~6!#, and a transversal, strong Hamiltonian stru
ture is tame. The conditionH0ùTF50, which is implicit in the definition of transversality, i
equivalent toh(annH)50 and also to the fact that the rank of the morphismh is equal to the rank
of the Poisson structures induced byh on the manifolds of local slices ofF. @See Proposition 2.2
and formula~12!# This condition is not enough for transversality. Indeed, there always exis
smallest regular distributionH̄0 which contains the generalized distributionH0 but, we may have
H̄0ùTFÞ0.

Example 3.1:Let TM5F % F8 be a locally product structure on the manifoldM , andF the
foliation tangent toF. Assume that one has a Poisson algebra structure of the local type onVF

0 .
Then, the Hamiltonian structureh which induces the former and has its Hamiltonian vector fi
in F8 is tame. Indeed,F8 is an image extension ofh of the kind required for tame structure
Notice also that a transitive, tame, Hamiltonian structure must be of the locally product
shown in the example.

Proposition 3.1: Let h be a transversal Hamiltonian structure of the foliationF with image
extension E. Then h is tame with image extension E iff the Nijenhuis tensor NE of the projection
pE :TM→TM of TM5E% TF onto E satisfies the condition

NE~ha,hb!50, ;a,bPnx* F, ;xPM . ~19!

Proof: Following the general definition of a Nijenhuis tensor, e.g., Refs. 4 and 13 and
pE

25pE , for X,YPGTM, one has

NE~X,Y!5@pEX,pEY#2pE@pEX,Y#2pE@X,pEY#1pE@X,Y#. ~20!
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Consider the local equations~12! of h using an image extensionE, which implies thatkau50.
Then,h is tame iff

H~dhab!5@H~dxa!,H~dxb!#,

which is equivalent to

hachbetce
u 50, tce

u
ª

]tc
u

]xe 2
]te

u

]xc 1tc
v

]te
u

]yv 2te
v

]tc
u

]yv . ~21!

The invariant meaning of~21! is exactly~19!. Q.e.d.
In the case of a transversal Hamiltonian structureh on a foliated manifold (M ,F) it is

possible to extend the Hamiltonian formalism in a way similar to what was done for presymp
manifolds in Ref. 9.

Let us recall that, if (M ,F) is a foliated manifold and ifE is a complementary distribution o
TF, the use of the local bases~10!, ~11! yields a bigrading of tensor fields and differential form
with the convention that the first degree is theE-degree and the second is theTF-degree.8 For
instance, a differentialk-form is of bidegree (s,t) if its local expressions contains forms dxa and
t forms uu (s1t5k). Then, one has a decomposition

d5d(1,0)8 1d(0,1)9 1] (2,21) , ~22!

andd250 is equivalent to

d9250, ]250, d821d9]1]d950,
~23!

d8d91d9d850, ]d81d8]50.

Now, we return to the transversal Hamiltonian structureh of F, and fix an image extensionE
of h. Then the corresponding section mappingH is well defined for any differential forma
PV (1,0)(M ) of bidegree~1,0!, andHaPGE. For any differentiable functionf PC`(M ), we can
define the Hamiltonian vector fieldXf8PGE by

Xf85H~d8 f ! ~24!

and; f ,gPC`(M ) we get anextended Poisson bracket

$ f ,g%8ªXf8g5^Hd8 f ,dg&5^Hd8 f ,d8g&52$g, f %8. ~25!

Furthermore, ifXPGE andaPV (1,0)(M ), ~22! leads to

LXa5LX8a1LX9a, ~26!

where

LX85 i ~X!d81d8i ~X!, LX95 i ~X!d91d9i ~X!. ~27!

Accordingly, it is possible to extend the Gelfand–Dorfman bracket~3! to arbitrary~1,0!-forms
a,b,g by

@H,K#8~a,b,g!ª (
Cycl(a,b,g)

$^KLHa8 b,g&1^HLKa8 b,g&%, ~28!

whereH,K are defined by skew symmetric morphismsh,k:n* F→E. A straightforward compu-
tation shows that the extended bracket is trilinear overC`(M ), and for a Hamiltonian structureh
we have@H,H#8(a,b,g)50 for anya,b,gPV (1,0)(M ).
                                                                                                                



n
s

.2 are

ed

ace of

4973J. Math. Phys., Vol. 43, No. 10, October 2002 Hamiltonian structures on foliations

                    
In particular, using~25! and ~27!, one gets

@H,H#8~d8 f ,d8g,d8k!52 (
Cycl( f ,g,k)

@$$ f ,g%8,k%81d82f ~Xg8 ,Xk8!#50. ~29!

Proposition 3.2: If h is a tame Hamiltonian structure on(M ,F) the Poisson bracket$,%8
defines a Poisson structure on the manifold M.

Proof: For any foliation and any choice of a complementary distributionE one gets

d82f ~X,Y!5^d9 f ,NE~X,Y!&, ; f PC`~M !, ;X,YPGE, ~30!

whereNE is the Nijenhuis tensor~20!. Indeed, ifX,YPGE, ~20! yields

NE~X,Y!5pTF@X,Y#, ~31!

wherepTF denotes the projection onto the second term of the decompositionTM5E% TF. On
the other hand,

d82f ~X,Y!5d~d8 f !~X,Y!5XY f2YX f2^d8 f ,@X,Y#&5@X,Y# f 2~pE@X,Y# ! f

5^d f ,pTF@X,Y#&5^d9 f ,pTF@X,Y#&.

Thus, ~30! is justified, and the conclusion follows from the characterization~19! of the tame
Hamiltonian structures and formula~29!. Q.E.D.

Proposition 3.2 tells us that a tame Hamiltonian structureh is defined by a usual Poisso
structureP on the foliated manifold (M ,F). The Hamiltonian vector fields of foliated function
with respect toh coincide with those with respect toP, ]PuE* 5h and]PuT* F50. Thus, the tame
Hamiltonian structures are included in Example 2.2. But, not all the structures of Example 2
tame.

Similarly, it is possible to extend the bracket~4! of foliated one-forms to anya,b
PV (1,0)(M ) by

$a,b%8ªLHa8 b2LHb8 a2d8^Ha,b&. ~32!

From ~32!, it follows that ; f ,gPC`(M ) one has

$ f a,gb%85 f g$a,b%81 f ~H~a!g!b2g~H~b! f !a. ~33!

In particular, we see that the bracket~32! is skew symmetric because it is such for foliat
one-forms, where it reduces to~4!.

Let us also evaluate the bracket~32! on an argumentXPGE. First we defineLX8H
PLR(V (1,0)(M ),GE) by

LX8H~a!ªpE@X,H~a!#2H~LX8a!. ~34!

Taking the derivative of~2! in directionX, and with the decomposition~26!, we see thatLX8H is
skew symmetric. Then, if the derivativesL8 of ~32! are replaced byL2L9 one gets

$a,b%8~X!5H~a!i ~X!b2H~b!i ~X!a2^a,LX8H~b!&. ~35!

In particular, ifa5d8 f , b5d8g, ~35! yields

$d8 f ,d8g%85d8$ f ,g%81LX
g8
d9 f 2LX

f8
d9g. ~36!

The result follows by an easy computation which takes into account the fact that the sp
~1,0!-forms is the annihilator ofE.
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We will say thatf PC`(M ) is a distinguished function9 if ~a! d8 f is a foliated one-form, and
~b! H#kerd82f , and we will denote byVd

0 the space of distinguished functions. Any foliate
function is distinguished, but not conversely. Formula~29! shows that the extended Poisso
bracket of distinguished functions satisfies the Jacobi identity, and~a! implies that$ f ,g%8PVF

0 ,
; f , gPVd

0 . Therefore,Vd
0 is a Poisson algebra andVF

0 is an ideal of the former. Furthermore,
f ,gPVF

0 , one getsLX
g8
d9 f 50, and~36! implies

$d8 f ,d8g%85d8$ f ,g%8, ; f ,gPVd
0 . ~37!

Then, if we takef ,gPVd
0 ,kPC`(M ) in ~29! and use~31!, we get

X$ f ,g%8
8 5pE@Xf8 ,Xg8#, f ,gPVd

0 . ~38!

Proposition 3.3: Let h be a tame Hamiltonian structure of the foliationF, E an image
extension of h, and P the Poisson structure defined by the brackets$,%8. Then, the triple
(n* F,$,%8,h), with the bracket~32!, is a Lie subalgebroid of the cotangent Lie algebro
(T* M ,$,%P ,]P).

Proof: The bracket$,%P is given by~4! with H replaced by]P , and, since]PuE* 5h, we have
;a,bPVF

1 ,

$a,b%P5$a,b%5$a,b%8.

Then,~33! implies

$ f a,gb%P5$ f a,gb%8, ; f ,gPC`~M !,;a,bPVF
1 .

Q.E.D.

Now, let us notice that there exist an inclusion and a splitting morphism of Lie algebro

i:n* F�T* M ,p5pE* :T* M→n* F ~p+i5 id !, ~39!

wherepE* is the projection ontoE* in the decompositionT* M5E* % T* F.
Proposition 3.4: Under the hypotheses of Proposition 3.3, the projectionp induces an injec-

tion p* of the de Rham cohomology of the Lie subalgebroidn* F into the Lichnerowicz–Poisson
cohomology of(M ,P). For any complex vector bundle S over M, the Lichnerowicz–Poisson
Chern classes ck

LP(S) belong to the image of the injectionp* .
Proof: For the definition of the de Rham cohomology of Lie algebroids, see Ref. 4;

Lichnerowicz–Poisson cohomology is the de Rham cohomology of the cotangent Lie alge
T* M of the Poisson manifold (M ,P) ~e.g., Ref. 11!. These definitions show the existence
homomorphisms

Hde Rham* ~M !→
j 1*

HLP* ~M ,P!→
i*

H* ~n* F!,

Hde Rham* ~M !→
j 2*

H* ~n* F!→
p*

HLP* ~M ,P!,

where the morphisms are naturally induced byj 15]P , j 25h,i,p. @For instance, at the level o
cochains we define

~ j 2* l!~a1 , . . . ,ak!5l~Ha1 , . . . ,Hak!,~lPVk~M !,a1 , . . . ,akPGE* !,

etc.# The following relations are obvious:i* ° j 1* 5 j 2* , p* ° j 2* 5 j 1* , i* °p* 5 id. The last one
shows thatp* is injective; the others were mentioned for a later utilization.

Now, we recall that the Lichnerowicz–Poisson Chern classes are thej 1* -image of the real
Chern classes. Representatives ofck

LP(S) are obtained by evaluating Chern–Weil polynomials
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the curvature of an arbitrary contravariant derivativePD on S ~i.e., a connection of the Lie
algebroidT* M on S! like in the usual Chern–Weil theory.11 In particular, ifhD is a connection of
the Lie algebroidn* F on S then

PDas5hDpas ~40!

is a contravariant derivative onS, and, if C denotes curvatures, one has

CPD 5p* ChD, ~41!

wherep* is used at the level of cochains. Now, the same procedure of evaluating Chern
polynomials on curvature applied toChD yields Chern classesck

h(S)PH2k(n* F), which are the
j 2* -images of the real Chern classes. Furthermore,~41! shows thatck

LP(S)5p* ck
h(S). Q.E.D.

Corollary 3.1: Let h be a tame Hamiltonian structure and let P be the bivector field of
Poisson brackets$,%8. Then, there exists a prequantization bundle of the h-Poisson bracket iff
i* @P#P j 2* (H2(M ,Z)).

Proof: @P#PHLP
2 (M ,P) is the cohomology class defined by the cocycleP. We refer the

reader to Ref. 11 for the geometric quantization theory involved in the corollary. SinceP defines
the same Poisson brackets ash, the existence of a prequantization bundle implies@P#5 j 1* (z) for
somezPH2(M ,Z), which impliesi* @P#5 j 2* (z). Conversely, if this condition is satisfied, and
@as a consequence of~40!# we see the Kostant–Souriau prequantization formula as

f̂ ~s!5hDd8 fs12pA21 f s, sPGK, ~42!

where K is the required prequantization bundle, the Dirac quantization principle implies
c1

h(K)5i* @P#. Since we assumed thati* @P# is an integral cohomology class,K exists. Q.e.d.
Now, let us consider the case of a transversal Hamiltonian structureh on (M ,F), and fix an

image extensionE. In this case, we may still see the cross sections of`kE as a kind of gener-
alized cochains with a coboundaryd (k)5d defined by

~dQ!~a0 , . . . ,ak!5(
i 50

k

~21! iH~a i !~Q~a0 , . . . ,â i , . . . ,ak!!

1 (
i , j 51

k

~21! i 1 jQ~$a i ,a j%8,a0 , . . . ,â i , . . . ,â j , . . . ,ak!, ~43!

whereQP`kE, a iPGE* ( i 50, . . . ,k), and the caret denotes the absence of the correspon
argument.

If we denoted25d (k11)+d (k), a straightforward computation yields

~d2Q!~a0 , . . . ,ak11!

5 (
i , j 51

k11

~21! i 1 jDh~a i ,a j !~Q~a0 , . . . ,â i , . . . ,â j , . . . ,ak11!!

1 (
i , j ,k52

k11

~21! i 1 j 1kQS (
Cycl(i , j ,k)

$ak ,$a i ,a j%8%8,a0 , . . . ,â i , . . . ,â j , . . . ,âk , . . . ,ak11D ,

~44!

where

Dh~a i ,a j !ªH~$a i ,a j%8!2@H~a i !,H~a j !#. ~45!

Sinced2Þ0, we can only define thetwisted cohomology spaces~e.g., Ref. 10!
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Htw
k ~h!ª

kerd (k)

Im d (k21)ùkerd (k) . ~46!

For instance, by straightforward computations one gets

Htw
0 ~h!5$ f PC`~M !/Xf850%, Htw

1 ~h!5
$QPGE/LQ8 H50%

$Xf8/ f PC`~M !,LX
f8

8 50%
.

But, if we defineW8PG`2E by W8(d8 f ,d8g)5$ f ,g%8, we do not get a cocycle since

~dW8!~d8 f ,d8g,d8k!522 (
Cycl(i , j ,k)

$$ f ,g%8,k%8,

and the Jacobi identity may not hold.
Several interpretations of twisted cohomology as a usual cohomology exist~e.g., Ref. 10!. For

instance, the subspacesC̃k(h)5ker(d (k11)+d (k)) with the coboundaryd constitute a usual cochai
complexC̃(h), andHtw

k (h) are the usual cohomology spaces ofC̃(h).
On the other hand, since the Poisson bracket$,%8 defines a representation of the Lie–Poiss

algebraVd
0 of distinguished functions on the spaceVF

0 of foliated functions, we get correspondin
cohomology spacesHd* (h)ªH* (Vd

0 ,VF
0 ). Then, the cochains

c~ f 1 , . . . ,f k!5Q~d8 f 1 , . . . ,d8 f k!, QPG`kE, f 1 ,...,f kPVF
0 ,

with values inVF
0 and the coboundary~43! define the cochain complex of projectable cro

sections of̀ E with the Lichnerowicz-like coboundary~see Ref. 11! dQ52pG`k11E@W,Q# ~p
denotes the projection!, whereW defines theh-Poisson bracket of foliated functions, and@ ,# is the
Schouten–Nijenhuis bracket. We may say that the cohomology spaces, sayHLPb* (h), of this
complex are thebasic Lichnerowicz–Poisson cohomology spacesof h. The restriction of the
cochainW8 to distinguished functions isW, and we have afundamental class@W#PHLPb

2 (h).
Now, remember that a foliated manifold also hasbasic de Rham cohomology spac

Hb* (M ,F),7 defined as the cohomology spaces of the complex (VF* ,d), and there exist natura
homomorphisms

w:Hb* ~M ,F!→Hde Rham* ~M !,c:Hb* ~M ,F!→HLPb* ~h!,

induced by inclusion andh, respectively.
These facts have the following consequences for geometric quantization. Assume tha@W#

5c@F# wherew@F# is an integral de Rham cohomology class. ThenFPVF
2 is a closed two-form

with integral periods, such that

$ f ,g%85F~Xf8 ,Xg8!, ; f ,gPVd
0 . ~47!

Accordingly, there exists a Hermitian line bundleK over M with a connection¹ of curvature
2pA21F, and the Kostant–Souriau formula

f̂ s5¹X
f8
s12pA21 f s ~48!

provides a prequantization such that the Dirac principle holds for distinguished functions
generally, not for arbitrary functions@use~47!#. The transitive case, i.e., presymplectic manifold
was discussed in Ref. 9.

1Dorfman, I.,Dirac Structures and Integrability of Nonlinear Evolution Equations~Wiley, New York, 1993!.
2Gelfand, I. M. and Dorfman, I. Ya., ‘‘The Schouten bracket and Hamiltonian operators,’’ Funkt. Anal. Prilozhen.14, 71
~1980!.
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A family of new integrable couplings with two arbitrary
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Seeking new integrable couplings of the known integrable hierarchies of evolution
equations is a quite new interesting aspect and is of great significance in soliton
theory. In this paper, a loop algebraP̃ and its basis are first presented. Second, a
new isospectral problem with four potentials in the loop algebraP̃ is considered to
construct integrable couplings of the well-known TC hierarchy by the zero-
curvature equation such that a family of new integrable couplings including two
arbitrary functions are obtained. In particular, when we set two arbitrary functions
to be zero, a special integrable couplings of the generalized Korteweg–de Vries
equation is also given. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1501165#

I. INTRODUCTION

It is of important significance in the field of soliton theory and dynamical integrable syste
find more new hierarchies evolution equations and to further consider their algebraic prop
and geometrical structures, such as Hamiltonian structure, conserved density, symmetry, an
ville integrable property.1–7 In 1989, Tu5 presented a so-called loop algebra scheme to gener
hierarchy of Lax integrable evolution equations and used a trace identity to construct their H
tonian structures from an eigenvalue problem. This approach has been applied to find ma
important nonlinear evolution equations hierarchies~AKNS, TA, TB, TC, BTP, Kaup-Newell,
WKI, etc.! and the corresponding Hamiltonian structures.

A natural problem is how to extend these known integrable systems from small to larg
from simple to complicated. Recently, Fuchssteiner8 presented the notion of ‘‘integrable cou
plings.’’ It originates from an investigation on centerless Virasoro symmetry algebras of integ
systems or soliton equations. Some papers about integrable couplings have been publishe8–13

Mathematically, a system of integrable coupling means that it is a nontrivial system of
lution equations which is still integrable and includes the known integrable system of evo
equationsut5F(u) as a subsystem. Simply, for a given integrable system of evolution equa

ut5F~u!5F~u,ux ,uxx , . . . ! ~1!

if we can find the following new bigger integrable system of evolution equations:

ut5F~u!,
wt5C~u,w!, ~2!

a!Electronic mail: zhenya_yan@yahoo.com
49780022-2488/2002/43(10)/4978/9/$19.00 © 2002 American Institute of Physics
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with the condition]C/]@u# Þ0, then system~2! is called the system of integrable couplings
system~1!, where@u# denotes a vector consisting of all derivatives ofu with respect to a space
variable.13

The symmetry approach,8 the perturbation system method,9–11 and a direct method12 have
been used to construct integrable couplings of evolution equations. Recently, Ma13 presented the
general theory by perturbations and was used to study the problems of integrable couplings
Korteweg–de Vries~KdV! hierarchy, but the approach is complex to calculate. Finding a m
powerful approach to construct integrable couplings of evolution equations is still an impo
subject.

In this paper, based on the idea in Ref. 12, we would like to present a loop algebraP̃ and
construct its basis$h1(n),h2(n),h3(n),h4(n),h5(n)% such that by using the zero-curvature equ
tion a new isospectral problem in loop algebraP̃ is used to construct integrable couplings of t
known TC hierarchy,5,14

utn
5S q

r D
tn

5JLn21S 0

1

2
br D , J5S ] ]

q

r

q

r
] ]

D , L52
1

4 S 2]21q] 2]21r ]

2r 2]
q

r
] 2q2]2D , ~3!

whose associated isospectral problem is

fx5Uf, U5S 0 11
q1r

2l

l1
q2r

2
0

D , f5S f1

f2
D , u5S q

r D , ~4!

whereq and r are two scalar potentials,l being a constant spectral parameter.
This paper is organized as follows. In Sec. II, we give a simply general approach to con

integrable couplings by use of a loop algebra and some properties of its basis. In Sec. III, w
give a loop algebraP̃ and its new basis$hi(n)u i 51,2,3,4,5%. And then the TC hierarchy is chose
to illustrate the general theory determined by the loop algebraP̃ by using a new isopsectra
problem such that a new integrable coupling with two arbitrary functions of TC hierarch
obtained. In addition, a special integrable coupling of the generalized KdV equation is also
Finally, some summaries and conclusions are given in Sec. IV.

II. A SIMPLY GENERAL THEORY TO CONSTRUCT INTEGRABLE COUPLINGS

For the given isospectral problem~4!, taking a basis of loop algebraÃ1 as

h~n!5S 1
2 ln 0

0 2 1
2 lnD , e1~n!5S 0 1

2 ln21,
1
2 ln 0 D , e2~n!5S 0 1

2 ln21

2 1
2 ln 0 D ,

dege6~n!52n21, degh~n!52n, ~5!

which has the relations

@h~m!,e6~n!#5e7~m1n!, @e2~m!,e1~n!#5h~m1n21!, ~6!

Eq. ~1! becomes

fx5Uf, U52e1~1!1qe1~0!1re2~0!. ~7!
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In order to deduce TC hierarchy of evolution equations from~1!, we consider the auxiliary
problem of~1!, namely

f tn
5V(n)f5V(n)~l,u!f,

~8!

V(n)5~lnV!11Dn5(
i 50

n

~aih~n2 i !1bie1~n2 i !1cie2~n2 i !!1Fq

r
cn2bnGe1~0!.

Therefore it is easy to prove that the compatibility conditionfxt5f tx of ~7! and~8! generates the
zero curvature equationUtn

2Vx
(n)1@U,V(n)#50, namely,

ut5S qtn

r tn
D 5J0S 2bn

cn
D5J0L0

n21S 0

1

2
br D ~9!

with b as a constant and

J05S ] ]
q

rq

r
] ] D , L052

1

4 S 2]21q] 2]21r ]

2r 2]
q

r
] 2q2]2D . ~10!

In order to use the zero curvature equation to consider the integrable couplings of TC h
chy ~9!, we need to seek a bigger loop algebraP̃ and to construct its basis$hi(n)( i
51,2,..,m)%.12

If P̃15$h1(n),h2(n),h3(n)% and P̃25$h4(n),h5(n), . . . ,hm(n)% satisfy

@ P̃1 ,P̃1#, P̃1 , @ P̃1 ,P̃2#, P̃2 , @ P̃2 ,P̃2#, P̃2 ~11!

and P̃1 is isomorphic toÃ1 , then for the isospectral problem

fx5Uf, U52h2~1!1qh2~0!1rh3~0!1 (
i 53

m21

uihi 11~0!

and its properly chosen auxiliary problem

f tn
5V(n)f5V(n)~l,u!f, V(n)P P̃.

It is easy to prove that the compatibility conditionfxt5f tx of the above two equations, i.e.,

fxt5Utf1Uf t5Utf1UV(n)f5f tx5Vx
(n)f1V(n)fx5Vx

(n)f1V(n)Ufx ,

gives rise to the zero curvature equation

Utn
2Vx

(n)1@U,V(n)#50,

which will be the integrable couplings of TC hierarchy we would like to obtain.
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III. APPLICATIONS AND INTEGRABLE COUPLINGS OF TC HIERARCHY

According to the above-mentioned simply general theory, in order to deduce integrable
plings of TC hierarchy~9!, we need introduce a new loop algebraP̃ and its basis.

We easily know that whenm53 only trivial integrable couplings of TC hierarchy are o
tained. More recently we find that whenm54, we can also obtain some nontrivial integrab
couplings of TC hierarchy.15 But the obtained integrable couplings of TC hierarchy are simp
than the integrable couplings~25! obtained under the casem55. We guess that whenm.5, we
may find some more complex integrable couplings of TC hierarchy. In what follows we cho
more complex case, i.e.,m55, to illustrate the theory. We take its basis, sa
$h1(n),h2(n),h3(n),h4(n),h5(n)%, which is different from the one in Ref. 12 and satisfies t
commutative relation

@h1~m!,h2~n!#5h3~m1n!, @h1~m!,h3~n!#5h2~m1n!,

@h1~m!,h4~n!#50, @h1~m!,h5~n!#50,

@h2~m!,h3~n!#52h1~m1n21!, @h2~m!,h4~n!#5h5~m1n!,

@h2~m!,h5~n!#5h4~m1n!, @h3~m!,h4~n!#5h5~m1n!,

@h3~m!,h5~n!#5h4~m1n!, @h4~m!,h5~n!#50,

degh1~n!52n, degh2~n!5degh3~n!5degh4~n!5degh5~n!52n21

~12!

and set

P̃15$h1~n!,h2~n!,h3~n!%, P̃25$h4~n!,h5~n!%, ~13!

and we easily know thatP̃1 is isomorphic toÃ1 and @ P̃,P̃2#, P̃2 .
Remark 1:For a give basis of a loop algebraP̃ with m55, the corresponding commutativ

relation can be determined, which is similar to the loop algebraÃ1 used by Tu.5 To seek integrable
couplings of TC hierarchy~9!, we choose one of all possible bases ofP̃ with m55 and its
corresponding commutative relation~12! here. Of course we can also choose other bases an
corresponding commutation relation. But one key condition is that the basis must satisfy~11!, ~13!

and P̃1 is isomorphic toÃ1 .
In what follows, we would like to choose an isospectral problem in the loop algebraP̃ with

m55 in order to construct integrable couplings of TC hierarchy~9!.
Choose the following proper isospectral problem (l t50):

fx5Uf, U52h2~1!1u1h2~0!1u2h3~0!1u3h4~0!1u4h5~0!. ~14!

It is clear that the adjoint equation of~14! can be written as

Vx5@U,V#[UV2VU, ~15!

where

V5V~l,u!5 (
m50

`

@amh1~2m!1bmh2~2m!1cmh3~2m!1dmh4~2m!1emh5~2m!,

wheream , bm , cm , dm , em(m50,1,2,. . . ) are allfunctions ofui( i 51,2,3,4,5) to be determine
later. Equation~15! leads to
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am,x52u1cm211u2bm2122cm ,

bm,x52u2am ,

cm,x52u1am22am11 ,

dm,x52em111~u11u2!em2u4~bm1cm!,

em,x52dm111~u11u2!dm2u3~bm1cm!.

~16!

The following recursion formulas are obtained from~16!:

S 2bn11

cn11

dn11

en11

D 5LS 2bn

cn

dn

en

D , ~17!

L5S 2 1
2 ]21u1] 2 1

2 ]21u2] 0 0

2 1
2 u21 1

4 ]
u1

u2
] 2 1

2 u11 1
4 ]2 0 0

2 1
2 u3

1
2 u3 2 1

2 ~u11u2! 1
2 ]

2 1
2 u4

1
2 u4

1
2 ] 2 1

2 ~u11u2!

D , ~18!

where]5]/]x, ]]215]21]51. If we take the initial valuesa050, b05b5const,c05d05e0

50. Then,~17! and ~18! imply the following results:

a150, b150, c15 1
2 bu2 , d15 1

2 bu3 , e15 1
2 bu4 ,

a252 1
4 bu2x , b25 1

8 bu2
2 , c25 1

8 ~u2,xx22u1u2!,

d25 1
4 bu4x2 1

4 bu1u3 , e25 1
4 bu3x2 1

4 bu1u4 ,¯ .

Set

~lnV!15 (
m50

n

@amh1~n2m!1bmh2~n2m!1cmh3~n2m!1dmh4~n2m!1emh5~n2m!,

~19!

~lnV!25lnV2~lnV!1 .

Therefore we from~15! and ~19! have

2~lnV!1,x1@U,~lnV!1#5~lnV!2,x2@U,~lnV!2#. ~20!

It is clear to know that the terms on the left-hand side of~20! are of degree<22, while the terms
on the right-hand side of~20! are of degree>21. Therefore both sides of~20! are of degree21
and22, that is

2~lnV!1,x1@U,~lnV!1#5~u2bn2u1cn!h1~21!2~bn,x1u2an!h2~0!2~cnx1u1an!h3~0!

1@2dnx1u1en1u2en2u4~bn1cn!#h4~0!

1@2enx1u1dn1u2dn2u3~bn1cn!#h5~0!. ~21!
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In order to cancel the term (u2bn2u1cn)h1(21), we introduce the term

Dn5Fu1

u2
cn2bnGh2~0!1d1nh4~0!1d2nh5~0!, ~22!

whered1n andd2n are arbitrary functions ofui( i 51,2,3,4,5) Thus it is clear to know that if we s

V(n)5~lnV!11Dn , ~23!

then we get

2~lnV!1,x1@U,~lnV!1#5S bn2
u1

u2
cnD

x

h2~0!2S cnx2
u1

u2
bnxDh3~0!

1F2dnx2d1nx1~u11u2!~en1d2n!2u4S 11
u1

u2
D cnGh4~0!

1F2enx2d2nx1~u11u2!~dn1d1n!2u3S 11
u1

u2
D cnGh5~0!.

~24!

Therefore according to the zero curvature equation, we have the following Lax integrable h
chy of evolution equations with two arbitrary functions:

utn
5S u1

u2

u3

u4

D
tn

521
S bn2

u1

u2
cnD

x

2S cnx2
u1

u2
bnxD

2dnx2d1nx1~u11u2!~en1d2n!2u4S 11
u1

u2
D cn

2enx2d2nx1~u11u2!~dn1d1n!2u3S 11
u1

u2
D cn

2 , ~25!

which has the Lax pair

fx5Uf, f tn
5V(n)f, ~26!

whereU andV(n) satisfy ~14! and ~23!, respectively.
Remark 2:In particular, when takingd1n5d2n50, from ~17! and ~25!, we have
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utn
5S u1

u2

u3

u4

D
tn

521
S bn2

u1

u2
cnD

x

2S cnx2
u1

u2
bnxD

2dnx1~u11u2!en2u4S 11
u1

u2
D cn

2enx1~u11u2!dn2u3S 11
u1

u2
D cn

2
5S ] ]

u1

u2
0 0

u1

u2
] ] 0 0

0 u41
u1u4

u2
] 2~u11u2!

0 u31
u1u3

u2
2~u11u2! ]

D S 2bn

cn

dn

en

D

5JS 2bn

cn

dn

en

D 5JLn21S 2b1

c1

dn

e1

D 5JLn21S 0
1
2 bu2

1
2 bu3

1
2 bu4

D . ~27!

Set

wtn
5S u1

u2
D

tn

, v tn
5S u3

u4
D

tn

.

Then the hierarchy of evolution equations~27! can be rewritten as

wtn
5S u1

u2
D

tn

5Fn~w!5S ] ]
u1

u2
0 0

u1

u2
] ] 0 0

D S 2bn

cn

dn

en

D
5J0S 2bn

cn
D5J0L0

n21S 0
1
2 bu2

D , ~28!

v tn
5S u3

u4
D

tn

5Cn~w,v !5S 0 u41
u1u4

u2
] 2~u11u2!

0 u31
u1u3

u2
2~u11u2! ]

D S 2bn

cn

dn

en

D .

If we setu15q, u25r , then it is clear to see that the first one of system~28! is just the TC
hierarchy~9!.

Remark 3:In particular, whenn52, b58, system~28! becomes
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wt2
5S u1

u2
D

t2

5F2~w!5S S u1

u2
u2,xx22u1

22u2
2D

x

u2,xxx22u1xu224u1u2x

D ,

v t2
5S u3

u4
D

t2

5C2~w,v ! ~29!

5S 2u4,xx22u1xu322u2u3x1u4S 11
u1

u2
D ~u2xx22u1u2!1u1u4~u11u2!

2u3,xx22u1xu422u2u4x1u3S 11
u1

u2
D ~u2,xx22u1u2!1u1u3~u11u2!

D .

If we set u15q, u25r , then the first system of~29! is just ~20! in Ref. 5. Whenq56r , the
system of equations reduces to the celebrated KdV equation. It is clear to know
]C2(w,v)/]@w# Þ0. In addition because the hierarchy~28! possesses Lax pair, it is Lax inte
grable. Therefore according to the notion of integrable couplings,8 we know that the hierarchy o
evolution equations~28! is the integrable couplings of TC hierarchy~9!.

IV. SUMMARY AND CONCLUSIONS

In summary, we have obtained integrable couplings of the well-known TC hierarch
considering a new isospectral problem in a new loop algebraP̃. This denotes that the approach
powerful to obtain new integrable couplings. The obtained integrable couplings contain two
trary functions of old potentials (u1 ,u2) and new potentials (u3 ,u4) which are different from the
results which do not contain arbitrary functions.8–13 In the loop algebraP̃, other new isopsectra
problems may be used to construct many integrable couplings of other many known hierarc
evolution equations. As is well known, there exist two integrable forms:~1! Lax integrable;~2!
Liouville integrable. In this paper, we use the zero curvature equation~Lax pair! to construct
integrable couplings. It is clear to see that TC hierarchy is both Lax integrable and Liou
integrable. Recently many authors have devoted efforts to seeking symplectic structures o
Lax pair systems~seem Ref. 16, and references therein!.

Therefore some natural open problems are as follows:~1! whether the integrable coupling
~28! are shown also to be Liouville integrable according to the methods used in Ref. 16
therein?~2! Can Backlund transformation of the hierarchy~28! be obtained?~3! Can the hierarchy
~28! pass the Painleve test?, etc. These need to be further studied.
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Exponential factors and Darbouxian first integrals of the
Lorenz system
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In this article we characterize all the exponential factors and the Darbouxian first
integrals for the Lorenz systemẋ5s(y2x), ẏ5rx2y2xz, ż52bz1xy. In the
proofs, we use the weight homogeneous polynomials and the method of character-
istic curves for solving linear partial differential equations. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1503152#

I. INTRODUCTION AND DEFINITIONS

We consider the Lorenz system

ẋ5s~y2x!5j~x,y,z!,

ẏ5rx2y2xz5h~x,y,z!, ~1!

ż52bz1xy5z~x,y,z!,

wherex,y and z are real variables, ands,r and b are real parameters. This system is a famo
dynamic model@see, for instance, Lorenz~1963! and Sparrow~1982!#. From the point of view of
integrability, it was intensively studied using different theory of integrability~for example, Cairo´
and Hua, 1993; Giacominiet al., 1991, 1997; Gupta, 1993; Ku´s, 1983; Segur, 1982; Strelcyn an
Wojciechowski, 1988!. Recently, using the weight homogeneous polynomials and the metho
characteristic curves, Llibre and Zhang~2002! characterized all the irreducible invariant algebra
surfaces, the invariants, the rational first integrals and the algebraic integrability for the L
system. In this article, applying the method given in Llibre and Zhang~2002! to the Lorenz
system, we obtain all the exponential factors and provide the necessary and sufficient con
for the Lorenz system to have a Darbouxian first integral.

The Darboux theory of integrability is classical. It mainly received contributions from D
boux ~1878!, who gave a link between the algebraic geometry and the search of first integral
showed how to construct the first integral of a planar polynomial vector field having suffi
number of Darboux polynomials. Poincare´ ~1891! noticed the difficulty in obtaining an algorithm
to compute Darboux polynomials. Singer~1992! proved that a polynomial differential system h
a Liouvillian first integral if and only if it has a Darbouxian integrating factor~see also Camacho
and Sca´rdua, 2001!. For three dimensional dynamic systems, Labrunie~1996! and Moulin Olla-
gnier ~1997! characterized independently all the polynomial first integrals of the (a,b,c) Lotka-
Volterra systems, and Moulin Ollagnier~1999! investigated its rational first integrals. Llibre an
Zhang ~2000! obtained all the Darboux polynomials, the polynomial first integrals, the ratio
first integrals and the algebraic integrability for the Rikitake system.

For presenting our main results, we first recall some definitions.
A polynomial f (x,y,z)PC@x,y,z# is called aDarboux polynomialof the Lorenz system if

a!Electronic mail: xzhang@mail.sjtu.edu.cn
49870022-2488/2002/43(10)/4987/15/$19.00 © 2002 American Institute of Physics
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j~x,y,z!
] f

]x
1h~x,y,z!

] f

]y
1z~x,y,z!

] f

]z
5k~x,y,z! f , ~2!

for some polynomialk(x,y,z)PC@x,y,z#, which is called acofactor of f . As usual,C@x,y,z#
denotes the ring of polynomials with complex coefficients in the variablesx,y andz.

An exponential factor F(x,y,z) of the Lorenz system is an exponential function of the fo
exp(g/h) with g,hPC@x,y,z# coprime, denoted by (g,h)51, and satisfying

j~x,y,z!
]F

]x
1h~x,y,z!

]F

]y
1z~x,y,z!

]F

]z
5 l ~x,y,z!F, ~3!

for somel (x,y,z)PC@x,y,z# a polynomial of degree at most one. The polynomiall is called a
cofactorof F.

We say that a real functionH(x,y,z,t):R33R→R, is afirst integralof the Lorenz system, if
H(x(t),y(t),z(t), t)[const for all values oft for which the solution (x(t),y(t),z(t)) of the
Lorenz system is defined. A first integralH of the Lorenz system is calledDarbouxianif it has the
form

H5 f 1
l1
¯ f p

lpS expS h1

g1
n1D D m1

¯S expS hq

gq
nqD D mq

,

wheref i , gj andhj are polynomials inC@x,y,z#, f i andgj are irreducible, the polynomialsgj and
hj are coprime, andl i andm j are real or complex numbers appearing together with their co
gates. Obviously, polynomial first integrals and rational first integrals are Darboux first inte

A polynomialg(x,y,z) is said to beweight homogeneousif there exists5(s1 ,s2 ,s3) with si

natural numbers fori 51,2,3, andmPN such that for allaPR\$0% we have

g~as1x,as2y,as3z!5amg~x,y,z!,

whereN is the set of natural numbers. We shall refer tos as theweightof g, andm as theweight
degree.

This article is organized as follows. In Sec. II we state our main result. Its proof is give
Sec. III.

II. STATEMENT OF THE MAIN RESULT

Theorem 1: For the Lorenz system, if sÞ0, then the following statements hold.

(a) The generator of exponential factors of the Lorenz system is F5exp(x/s) with the cofactor
l 5y2x.

(b) The Lorenz system has a Darbouxian first integral if and only if b51, s5 1
2 and r50. In this

case the first integral is(y21z2)/(x22z)2.

We remark that whens50, the Lorenz system has always the Darbouxian first integraH
5x, and then on each planex5const the system becomes linear.

For proving this theorem, we need the following two results. The first one is given in L
and Zhang~2002!.

Theorem 2: When sÞ0, a set of generators for the set of all Darboux polynomials of
Lorenz system consists of the following six ones:
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Darboux polynomial Cofactor Parameters

x222sz 22s b52s

x4 1 4
3 x2z2 4

9 y22 8
9 xy1 4

3 rx2 2 4
3 b50, s5 1

3

y21z2 22 b51, r 50
x424x2z24y218xy24rx2216(12r )z 24 b54, s51
y21z22rx2 22 b51, s51
x424sx2z24s2y214s(4s22)xy2(4s22)2x2 24s b56s22, r 52s21

The next result is related to the Darboux theory of integrability~see for instance, Darboux
1878; Joualonou, 1979; Chavarrigaet al., 1997, Christopher and Llibre, 1999, 2000!.

Theorem 3: (Darboux theory of integrability) Suppose that a polynomial vector field
defined inRn admits p Darboux polynomials fi with cofactors Ki for i 51,...,p, and q exponential
factors Fj5exp(gj /hj) with cofactors Lj for j 51,...,q. If there existl i ,m jPC not all zero such
that

(
i 51

p

l iKi1(
j 51

q

m jL j50, ~4!

then the following real (multi-valued) function of Darbouxian type

f 1
l1
¯ f p

lpF1
m1
¯Fq

mq , ~5!

substituting fi
l i by u f i ul i if l iPR, is a first integral of the vector fieldX.

It is clear that condition~4! is also necessary for function~5! to be a Darbouxian first integra
of the vector fieldX.

In Theorem 3 we said that function~5! is real. It follows from the following fact. Since the
vector fieldX is real, it is well known that if a complex Darboux polynomial or exponential fac
appears, then its conjugate must appear simultaneously. If among the Darboux polynomiaX
a complex conjugate pairf and f̄ occur, the first integral~5! has a real factor of the formf l f̄ l̄,
which is the multi-valued real function

@~Ref !21~ Im f !2#Rel expS 22 Iml arctanS Im f

Ref D D ,

if Im l Im fÓ0. If among the exponential factors ofX a complex conjugate pairF5exp(h/g) and
F̄5exp(h̄/ḡ) occur, the first integral~5! has a real factor of the form

S expS h

gD D mS expS h̄

ḡ
D D m̄

5expS 2 ReS m
h

gD D .

III. PROOF OF THEOREM I

Proof of statement (a):Let F5exp(g/h) be an exponential factor of the Lorenz system with
cofactor l , whereg, hPC@x,y,z# with (g,h)51. Then from the definition of the exponentia
factor we get that

hS j
]g

]x
1h

]g

]y
1z

]g

]zD2gS j
]h

]x
1h

]h

]y
1z

]h

]zD5 lh2. ~6!

If h[const, without loss of generality we seth51. Then Eq.~6! becomes
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j~x,y,z!
]g

]x
1h~x,y,z!

]g

]y
1z~x,y,z!

]g

]z
5 l ~x,y,z!. ~7!

If hÓconst, since (g,h)51, there exists a polynomialkPC@x,y,z# such that

j~x,y,z!
]h

]x
1h~x,y,z!

]h

]y
1z~x,y,z!

]h

]z
5kh, ~8!

i.e., h is a Darboux polynomial with the cofactork. Then Eq.~6! becomes

j~x,y,z!
]g

]x
1h~x,y,z!

]g

]y
1z~x,y,z!

]g

]z
5kg1 lh. ~9!

In order to simplify the computations we introduce the weight change of the variables

x5a21X, y5a22Y, z5a22Z, t5aT. ~10!

The Lorenz system is transformed to

X85s~Y2aX!5P~X,Y,Z!,

Y852XZ2aY1a2rX5Q~X,Y,Z!, ~11!

Z85XY2abZ5R~X,Y,Z!,

where the prime denotes the derivative of the dependent variables with respect toT. Set

l ~x,y,z!5 l 01 l 1x1 l 2y1 l 3z,

G~X,Y,Z!5amg~a21X,a22Y,a22Z!5G0~X,Y,Z!1aG1~X,Y,Z!1¯1amGm~X,Y,Z!,

wherem is the highest weight degree in the weight homogeneous components ofg associated with
the weights5(1,2,2), andGi has the weight degreem2 i . Obviously, we haveg5Gua51 .

Depending on whetherh is constant or not, we separate the following proofs into two pa

A. g satisfies Eq. „7…

Since an exponential factor multiplicative with a constant is also an exponential factor,
out loss of generality, we assume thatGm50. Using the weight change~10!, we get from~7! and
~11! that G satisfies

P~X,Y,Z!
]G

]X
1Q~X,Y,Z!

]G

]Y
1R~X,Y,Z!

]G

]Z
5am11l ~x,y,z!.

It can be written as

~sy2asx! (
i 50

m21

a i
]Gi

]x
1~2xz2ay1a2rx ! (

i 50

m21

a i
]Gi

]y
1~xy2abz! (

i 50

m21

a i
]Gi

]z

5am21~ l 2y1 l 3z!1aml 1x1am11l 0 , ~12!

where we usex,y,z to denoteX,Y,Z.
Case 1: m51. Then we can assume thatG5G05ax. An easy computation shows thatl 0

5 l 350, l 21 l 150 anda5 l 2 /s. So, we haveg5 ( l 2 /s) x and l 5 l 2(y2x). This verifies that the
Lorenz system has always the exponential factorF5exp((l2 /s) x) with the cofactorl 5 l 2(y2x),
wherel 2 is an arbitrary nonzero constant.
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Case 2: m52. Comparing the terms with the same degree ina of ~12!, we get that

L@G0#50,
~13!

L@G1#5sx
]G0

]x
1y

]G0

]y
1bz

]G0

]z
1 l 2y1 l 3z,

whereL is the linear partial differential operator

L5sy
]

]x
2xz

]

]y
1xy

]

]z
.

We now use the method of characteristic curves for solving linear partial differential equatio
solve Eqs.~13! ~see for instance, Bleecker and Csordas, 1992!. The characteristic equation ass
ciated with the linear operatorL is

dx

dz
5

sy

xy
,

dy

dz
52

xz

xy
.

It has general solutions

x222sz5d1 , y21z25d2 ,

whered1 andd2 are arbitrary constants. We make the change of the variables

u5x222sz, v5y21z2, w5z. ~14!

Its inverse change is

x56Au12sw, y56Av2w2, z5w. ~15!

In the following we only consider the positive case. The negative one can be proved simila
From the last two transformations, and applying the method of characteristic curves to th

equation of~13!, we obtain the following ordinary differential equation~for fixed u andv).

dḠ0

dw
50.

Here and after, we always useĀ(u,v,w) to denoteA(x,y,z) written in terms ofu,v andw. The
above equation has a general solutionḠ0(u,v,w)5G0* (u,v), whereG0* is an arbitrary function in
u and v. SinceG0 is a weight homogeneous polynomial of weight degree 2, we should
G0(x,y,z)5G0* (u,v)5a0(x222sz) with a0PC.

SubstitutingG0 into the second equation of~13! and using the changes~14! and ~15!, we
obtain the following ordinary differential equation:

Au12swAv2w2
dḠ1

dw
52su1 l 2Av2w21~4s222sb1 l 3!w.

It has a general solution

Ḡ15
l 2

s
Au12sw12suE dw

Au12swAv2w2
1~4s222sb1 l 3!E wdw

Au12swAv2w2
.
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From integrating formulas~A1! to ~A3! of the Appendix, in order thatG1(x,y,z)5Ḡ1(u,v,w) is
a polynomial, we should haves50. It is in contradiction with the assumptionsÞ0. So, the Lorenz
system does not have exponential factors of the given form.

Case 3: m>3. Then from~12! we get thatL@G0#50 and

L@G1#5sx
]G0

]x
1y

]G0

]y
1bz

]G0

]z
. ~16!

Working in a similar way to the proof of case 2, we can prove thatG0(x,y,z)5Ḡ1(u,v,w)
5G0* (u,v)5G0* (x222sz,y21z2). Since G0 is a weight homogeneous polynomial with th
weight degreem, we must havem54n or m54n22 for nPN. Hence,G0 has the form

G05(
i 50

n

ai~x222sz!2i~y21z2!n2 i , m54n, ~17!

or

G05(
i 51

n

ai~x222sz!2i 21~y21z2!n2 i , m54n22. ~18!

If G0 has form~17!, then from Eq.~16! and using the method of characteristic curves, we
prove that

Ḡ1~u,v,w!5(
i 50

n
1

s
@4si12~n2 i !#aiu

2ivn2 i 21Au12swAv2w2

1 (
i 50

n21 H 1

s
@4si12~n2 i !#ai14s~2s2b!~ i 11!ai 11J

3u2i 11vn2 i 21E wdw

Au12swAv2w2
14nanu2n11v21

1 (
i 50

n21

@12si12~b12!~n2 i !#aiu
2ivn2 i 21E w2dw

Au12swAv2w2
.

Using formulas~A2! and ~A3! of the Appendix and the fact thatG1 is a polynomial, we get
that nan50, and

@4si12~n2 i !#ai14s2~2s2b!~ i 11!ai 1150,

@6si1~b12!~n2 i !#ai50,

for i 50,1,...,n21. It implies thatai50 for i 50,1,...,n. So, we haveG0(x,y,z)[0.
If G0 has form~18!, we can prove that
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Ḡ1~u,v,w!5(
i 51

n
1

s
@2~2i 21!s12~n2 i !#aiu

2i 21vn2 i 21Au12swAv2w2

1(
i 50

n H 1

s
@2~2i 21!s12~n2 i !#ai1~4s222sb!~2i 11!ai 11J

3u2ivn2 i 21E wdw

Au12swAv2w2

1(
i 51

n

@6~2i 21!s1~2b14!~n2 i !#aiu
2i 21vn2 i 21E w2dw

Au12swAv2w2
.

Hence, we have

~2s22sb!~2i 11!ai 111
1

s
@~2i 21!s1~n2 i !#ai50, i 50,1,...,n,

@3~2i 21!s1~b12!~n2 i !#ai50, i 51,...,n.

This verifies thatai50 for i 51,•••,n. So, we also haveG0(x,y,z)[0.
This proves that the Lorenz system does not have the exponential factors of the given

B. g satisfies Eq. „9…

Using the weight change~10!, we get from~11! that G satisfies

P~X,Y,Z!
]G

]X
1Q~X,Y,Z!

]G

]Y
1R~X,Y,Z!

]G

]Z
5akG1am11l ~x,y,z!h~x,y,z!,

i.e.,

~sY2asX!(
i 50

m

a i
]Gi

]X
1~2XZ2aY1a2rX !(

i 50

m

a i
]Gi

]Y
1~XY2abZ!(

i 50

m

a i
]Gi

]Z

5ak(
i 50

m

a iGi1am21~ l 2Y1 l 3Z1a l 1X1a2l 0!h~x,y,z!. ~19!

In what follows we need the following result@for a proof, see, for instance Christopher a
Llibre ~2000!#.

Lemma 4: Assume that f is a polynomial and that f5 f 1
m1
¯ f l

ml is the irreducible factorization
with ( f i , f j )51 for iÞ j . Then f is a Darboux polynomial of a polynomial vector filedX with a
cofactor k if and only if f1 ,...,f l are Darboux polynomials of the vector filedX with cofactors
k1 ,...,kl . Moreover, we have k5m1k11¯1mlkl .

Sinceh is a Darboux polynomial, by Theorem 2, depending on the different conditions fo
Lorenz system to have a Darboux polynomial, we separate the following proofs into five c

Case 1. b52s. Then f 5x222sz is the generator of Darboux polynomials of the Lore
system. The corresponding cofactor is22s. From Lemma 4 we assume thath5(x222sz)m with
the cofactork522sm, wheremPN. Now Eq. ~19! becomes

~sy2asx!(
i 50

m

a i
]Gi

]x
1~2xz2ay1a2rx !(

i 50

m

a i
]Gi

]y
1~xy2abz!(

i 50

m

a i
]Gi

]z

5a~22sm!(
i 50

m

a iGi1am2122m~ l 2y11 l 3z1a l 1x1a2l 0!~x222sz!m, ~20!
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where we first use the weight change~10!, and then usex,y,z to denoteX,Y,Z.
We claim thatm>2m11. Otherwise, in what follows we can prove thatl 50. So g is a

Darboux polynomial with the cofactor22sm. From the proof of Llibre and Zhang~2002!, we
obtain that g5a(x222sz)m, where a is an arbitrary constant. Hence, we have (g,h)5(x2

22sz)m. It is in contradiction with the assumption (g,h)51.
We now prove the claim. Ifm2122m,22, from ~20! it is easy to check thatl 25 l 35 l 1

5 l 050. Hence we havel 50.
If m2122m522, Eq. ~20! shows thatl 25 l 35 l 150 and

L@G0#5 l 0~x222sz!m.

Applying the method of characteristic curves to this equation, we obtain that

G0~x,y,z!5Ḡ0~u,v,w!5 l 0umE dw

Au12swAv2w2
.

SinceG0 is a polynomial, from integrating formulas~A1!–~A3! of the Appendix we should have
l 050. This verifies thatl 50.

If m2122m521, then from~20! we get thatl 25 l 350, and

L@G0#5 l 1x~x222sz!m,
~21!

L@G1#5D1@G0#1 l 0~x222sz!m,

whereD1 is the linear partial differential operator

D15sx
]

]x
1y

]

]y
1bz

]

]z
22sm.

Since the operatorsL andD1 are linear, we separateGi into Gi5Gi
(0)1Gi

(1) for i 50,1. Then
Eq. ~21! can be written as

L@G0
~0!#50, L@G0

~1!#5 l 1x~x222sz!m, ~22!

L@G1
~0!#5D1@G0

~0!#, L@G1
~1!#5D1@G0

~1!#1 l 0~x222sz!m, ~23!

where we require that in the process to solve the above equations,Gi
(1) , for i 50,1, do not contain

integrating constants.
From the proof of Llibre and Zhang~2002! we get thatL@G0

(0)#50 andL@G1
(0)#5D1@G0

(0)#
always have polynomial solutions. The second equation of~22! has the solution

G0
~1!~x,y,z!5Ḡ0

~1!~u,v,w!5 l 1um arcsin
w

Av
.

So we must havel 150, and henceG0
(1)50. Solving the second equation of~23! we get that

G1
~1!~x,y,z!5Ḡ1

~1!~u,v,w!5 l 0umE dw

Au12swAv2w2
.

This verifies thatl 050, and so we havel 50. This proves the claim.
We assume thatm52m111n for somenPNø$0%. Then from~20! we obtain that
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L@Gn2 i #5D1@Gn2 i 21#2rx
]Gn2 i 22

]y
, i 51,...,n,

L@Gn#5D1@Gn21#2rx
]Gn22

]y
1~ l 2y1 l 3z!~x222sz!m,

L@Gn11#5D1@Gn#2rx
]Gn21

]y
1 l 1x~x222sz!m, ~24!

L@Gn12#5D1@Gn11#2rx
]Gn

]y
1 l 0~x222sz!m,

L@Gj #5D1@Gj 21#2rx
]Gj 22

]y
, j 5n13,...,2m1n13,

whereGi50 for i ,0 or i .2m111n.
We write Gi5Gi

(0)1Gi
(1) such that

L@Gi
~0!#5D1@Gi 21

~0! #2rx
]Gi 22

~0!

]y
, i 50,1,...,2m1n13, ~25!

L@Gn2 i
~1! #50, i 51,...,n, ~26!

L@Gn
~1!#5~ l 2y1 l 3z!~x222sz!m, ~27!

L@Gn11
~1! #5D1@Gn

~1!#2rx
]Gn21

~1!

]y
1 l 1x~x222sz!m, ~28!

L@Gn12
~1! #5D1@Gn11

~1! #2rx
]Gn

~1!

]y
1 l 0~x222sz!m, ~29!

L@Gj
~1!#5D1@Gj 21

~1! #2rx
]Gj 22

~1!

]y
, j 5n13,...,2m1n13. ~30!

Moreover, we require that in the process to solveGi
( l ) for i 50,1,...,m andl 50,1, the polynomials

Gi
(1) do not contain integrating constants. SetG(0)5( i 50

m a iGi
(0) andG(1)5( i 50

m a iGi
(1) . Then we

haveG5G(0)1G(1).
From ~25! and working in a similar way to the proof of Llibre and Zhang~2002!, we obtain

that g(0)5G(0)ua515( i 50
m Gi

(0) is a Darboux polynomial of the Lorenz system with the cofac
22sm. So, we should haveg(0)5a(x222sz)m, wherea is an arbitrary constant.

Under the assumptions onGi
(1) , we obtain that Eqs.~26! have the unique solutionsGn2 i

(1)

50 for i 51,...,n. From Eq.~27! we get that

Gn
~1!~x,y,z!5Ḡn

~1!~u,v,w!5
l 2

s
umAu12sw1 l 3umE wdw

Au12swAv2w2
.

SinceGn
(1) is a polynomial, using formula~A2! we obtain thatl 350 and

Gn
~1!5

l 2

s
x~x222sz!m.
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This implies thatm52m11, i.e.,n50.
SubstitutingGn

(1) into Eq. ~28!, we can prove that

Gn11
~1! ~x,y,z!5Ḡn11

~1! ~u,v,w!5~ l 11 l 2!um arcsin
w

Av
.

Hence, we should havel 11 l 250 andGn11
(1) 50.

IntroducingGn
(1) and Gn11

(1) into ~29! and in a similar way to the proof of the casem22m
521, we get thatl 050 andGn12

(1) 50. Furthermore, using the assumptions onGi
(1) we can prove

that Eqs.~30! have only the solutionsGj
(1)50 for j 5n13,...,m. This proves that

g5~G~0!1G~1!!ua515
l 2

s
x~x222sz!m1a~x222sz!m,

with l 5 l 2(y2x). But (g,h)5(x222sz)m. It is in contradiction with the assumption (g,h)51.
Case 2. b51 and r 50. The Darboux polynomial ish5(y21z2)m with the cofactork5

22m, wheremPN. Working in a similar way to the proof of case 1, we can prove that

g5
l 2

s
x~y21z2!m1a~y21z2!m,

with l 5 l 2(y2x).
Case 3. b51 ands51. Then the Darboux polynomial ish5(y21z22rx2)m with the cofactor

k522m. Equation~19! becomes

~y2ax!(
i 50

m

a i
]Gi

]x
1~2xz2ay1a2rx !(

i 50

m

a i
]Gi

]y
1~xy2az!(

i 50

m

a i
]Gi

]z

522am(
i 50

m

a iGi1am2124m~ l 2y1 l 3z1a l 1x1a2l 0!~y21z22a2rx !m, ~31!

where we first use the weight change~10!, and then usex,y,z to denoteX,Y,Z. Similar to the
proof of case 1, we can assume thatm54m111n for somenPNø$0%.

Consider the following equations:

L@Gi
~0!#5D2@Gi 21

~0! #2rx
]Gi 22

~0!

]y
, i 50,1,...,m12, ~32!

L@Gn2 i
~1! #50, i 51,...,n ~33!

L@Gn12k
~1! #5D2@Gn12k21

~1! #2rx
]Gn12k22

~1!

]y
1~ l 2y1 l 3z!S m

k D ~y21z2!m2k~2rx2!k

1 l 0S m
k21D ~y21z2!m2k11~2rx2!k21, k50,...,m11, ~34!

L@Gn12k11
~1! #5D2@Gn12k

~1! #2rx
]Gn12k21

~1!

]y
1 l 1xS m

k D ~y21z2!m2k~2rx2!k, k50,...,m,

~35!

L@Gn1 j
~1! #5D2@Gn1 j 21

~1! #2rx
]Gn1 j 22

~1!

]y
, j 52m13,...,4m11, ~36!
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whereGi
( l )50 with l 50,1 for i ,0 or i .m, (k

m)50 for k,0 or k.m, and

D25x
]

]x
1y

]

]y
1z

]

]z
22m.

We can prove thatG5( i 50
m a iGi satisfies~31! if and only if there exists a decomposition o

Gi into Gi5Gi
(0)1Gi

(1) such thatGi
(0) and Gi

(1) are weight homogeneous polynomials of t
weight degrees same as those ofGi , and thatGi

(0) satisfy ~32!, andGi
(1) satisfy ~33!–~36!. As

before, we require that in the process to solveGi
(1) , the integration constants are always equa

zero.
From Eqs.~32! and using the method given in Llibre and Zhang~2002!, we can prove that

g(0)5G(0)ua515( i 50
m Gi

(0)5a(y21z22rx2)m, where a is an arbitrary constant. Using the a
sumptions onGi

(1) , we obtain that Eqs.~33! have only the solutionsGn2 i
(1) 50 for i 51,...,n. Then

Eq. ~34! with k50 becomes

L@Gn
~1!#5~ l 2y1 l 3z!~y21z2!m.

Working in a similar way to solve~27! we can prove thatl 350 and

Gn
~1!5 l 2x~y21z2!m.

Moreover, from Eq.~35! with k50, we get thatl 21 l 150 andGn11
(1) 50.

Now, Eq. ~34! with k51 becomes

L@Gn12
~1! #5 l 0~y21z2!m23rl 2mx2y~y21z2!m21.

Solving this equation givesl 050 and

Gn12
~1! 5 l 2xS m

1 D ~y21z2!m21~2rx2!.

Introducing Gn11
(1) and Gn12

(1) into ~35! with k51, we obtain thatL@Gn13
(1) #50. So, we have

Gn13
(1) 50.

By induction we assume that

Gn12k21
~1! 50, Gn12k

~1! 5 l 2xS m
k D ~y21z2!m2k~2rx2!k.

Then, Eq.~35! can be simplified to

L@Gn12k11
~1! #5~ l 21 l 1!xS m

k D ~y21z2!m2k~2rx2!k50.

Hence, we haveGn12k11
(1) 50. Now Eq.~34! becomes

L@Gn12k12
~1! #5~2r !k11l 2S m

k11D ~2k13!~y21z2!m2k21x2k12y.

Applying the method of characteristic curves to this equation, we obtain that

Gn12k12
~1! 5 l 2xS m

k11D ~y21z2!m2k21~2rx2!k11.

Therefore, we have
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g~1!5G~1!ua515(
i 50

m

Gi
~1!5 l 2x(

i 50

m S m
i D ~y21z2!m2 i~2rx2! i5 l 2x~y21z22rx2!m.

Moreover, from the above proof we get thatm54m11, and

g5g~0!1g~1!5 l 2x~y21z22rx2!m1a~y21z22rx2!m.

It is in contradiction with the assumption (g,h)51.
Case 4. b56s22 and r 52s21. The Darboux polynomial ish5@x424sx2z24s2y2

14s(4s22)xy2(4s22)2x2#m with the cofactork524sm. Equation~19! becomes

~sy2asx!(
i 50

m

a i
]Gi

]x
1@2xz2ay1a2~2s21!x!](

i 50

m

a i
]Gi

]y
1@xy2a~6s22!z#(

i 50

m

a i
]Gi

]z

524asm(
i 50

m

a iGi1am2124m~ l 2y1 l 3z1a l 1x1a2l 0!

3@x424sx2z24s2y214as~4s22!xy2a2~4s22!2x2#m. ~37!

Working in a similar way to the proof of cases 1 and 3, we can prove thatm54m11 andG
5G(0)1G(1) with G(0)ua515ah(x,y,z), andG(1)5( i 50

m a iGi
(1) , whereGi

(1) satisfy

L@G0
~1!#5~ l 2y1 l 3z!~x424sx2z24s2y2!m, ~38!

L@G1
~1!#5sx

]G0
~1!

]x
1y

]G0
~1!

]y
1~6s22!z

]G0
~1!

]z
24smG01~ l 2y1 l 3z!S m

1 D
3~x424sx2z24s2y2!m214s~4s22!xy1 l 1x~x424sx2z24s2y2!m. ~39!

We still assume that the solutionsG0
(1) and G1

(1) of ~38! and ~39! do not contain integrating
constants.

Solving Eq.~38!, we obtain thatl 350 and

G0
(1)5

l 2

s
x~x424sx2z24s2y2!m.

Then Eq.~39! becomes

L@G1
(1)#5~ l 21 l 1!x~x424sx2z24s2y2!m1m l 2x~x424sx2z24s2y2!m21

3@24~4s22!~x222sz!z216s~4s22!z218s~4s22!~y21z2!#.

Applying the method of characteristic curves to this equation, we obtain that

G1
(1)5Ḡ1

(1)5~ l 21 l 1!~u224s2v !m arcsin
w

Av
1m l 2~u224s2v !m21

3F4~4s22!uAv2w2116s~4s22!E Av2w2dw28s~4s22!v arcsin
w

Av
G .

If sÞ 1
2, we must havel 21 l 150 andl 250. So, we get thatG0

(1)5G0
(2)50. Moreover, we have

L@G2
(1)#5 l 0~x424sx2z24s2y2!m.
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Solving this equation yieldsl 050 andG2
(1)50. This proves thatl 50. Hence, we haveg5g(0)

5ah(x,y,z). This means that the Lorenz system does not have exponential factors of the
form.

If s5 1
2, thenb51 andr 50. The functionH5(x22z)2/(y21z2) is a rational first integral of

the Lorenz system. The Darboux polynomial of the Lorenz system has a general form

h~x,y,z!5)
i 51

m1

f i
m i)

j 51

m2

gj
n j ,

where f i5(x22z)22ci
(1)(y21z2) and gj5(y21z2)2cj

(2)(x22z)2, with ci
(1) and cj

(2) arbitrary
constants, are Darboux polynomials. The polynomialh has the weight degree 4(( i 51

m1 m i

1( j 51
m2 n j ). Working in a similar way to the proof of case 1 of this section, we can prove thg

5(( l 2 /s) x1a)h(x,y,z), wherea is an arbitrary constant. It is also in contradiction with t
assumption (g,h)51.

Case 5. b50, s5 1
3; or b54, s51. The Darboux polynomial of the Lorenz system ish

5(x42 4
3 x2z2 4

9 y22 8
9 xy1 4

3 rx2)m with the cofactork52 4
3 m, or h5@x424x2z24y218xy

24rx2216(12r )z#m with the cofactork524m, wheremPN. Doing some similar computa
tions as those in case 4, we may obtain thatg5ah(x,y,z), wherea is an arbitrary constant. So
the Lorenz system does not have the exponential factor of the given form.

Summing up the above five cases, we have proved that the Lorenz system does no
exponential factors of the form exp(g(x,y,z)/h(x,y,z)) with (g,h)51. This proves statement~a!.

Proof of statement (b):From Theorem 3 the Lorenz system has a Darbouxian first integr
and only if there existm i ,n jPC not all zero such that

(
i 51

m1

m iki1(
j 51

m2

n j l j50, ~40!

wherem1 andm2 are the numbers of Darboux polynomials and exponential factors, respect
and ki and l j are the cofactors of Darboux polynomials and exponential factors, respect
Theorem 2 shows that the cofactors of Darboux polynomials are constants. Statement~a! of
Theorem 1 gives that the cofactors of exponential factors are of the forml j5cj (y2x), wherecj

are constants. So, Eq.~40! is equivalent to( i 51
m1 m iki50 and( j 51

m2 n j l j50. This last equation is

equivalent to ( j 51
m2 n j cj50. Corresponding to the cofactorl j , the exponential factor isF j

5exp((cj /s) x). Hence, we have) j 51
m2 F j

n j5exp((j51
m2 (njcj /s) x)51. Thus, from Theorem 3 we ob

tain that the Lorenz system has a Darbouxian first integralH if and only if H(x,y,z)5) i 51
m1 f i

m i

with

(
i 51

m1

m iki50, ~41!

wherem iPC are not all equal to zero, and eachf i is a Darboux polynomial with the cofactorki .
From Theorem 2 we get that the Lorenz system has Darboux polynomials such tha

cofactorski satisfy ~41! if and only if b51, r 50 ands5 1
2. Under these conditions the Loren

system has the two independent Darboux polynomialsf 15x22z and f 25y21z2 with the cofac-
tors k1521 andk2522, respectively. Hence, the Lorenz system has a Darbouxian first int

H5~x22z!22m~y21z2!m.

Of course, the Lorenz system may have other forms of Darbouxian first integrals, but the
dependent onH. This proves statement~b!.

We have finished the proof of the theorem.
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APPENDIX

The following formulas are used in the proof of Theorem 1.

E dw

Au12swAv2w2
5

1

sv
Au12swAv2w21

u

sv E wdw

Au12swAv2w2

1
3

v E w2dw

Au12swAv2w2
. ~A1!

The following two integrating formulas are obtained by using the changew5Av sinu for u
P@2p/2,p/2) and Formulas 2.571.2 and 2.571.3 of Gradshteyn and Ryzhik~1980!.

E wdw

Au12swAv2w2
5E Av sinu

Au12sAv sinu
du

5

¦

u

sAu12sAv
W~d,g!2

Au12sAv

s
E~d,g!,

for u.2sAv.0,2
p

2
<u,

p

2
,

AvA 1

sAv
FWS b,

1

g
D 22ES b,

1

g
D G ,

for 0,uuu,2sAv,2arcsin
u

2sAv
,u,

p

2
,

~A2!

E w2dw

Au12swAv2w2
5vE sin2 u

Au12sAv sinu
du

5

¦

uAu12sAv

3s2 E~d,g!2
u212s2v

3s2Au12sAv
W~d,g!

2
1

3s
Av2w2Au12sw,

for u.2sAv.0,2
p

2
<u,

p

2
,

A 1

sAv
F2uAv

3s
ES b,

1

g
D 2

Av~u1sAv !

3s
WS b,

1

g
D G

2
1

3s
Av2w2Au12sw,

for 0,uuu,2sAv,2arcsin
u

2sAv
,u,

p

2

~A3!
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where

b5arcsinA2sAv~12sinu!

u12sAv
5arcsinA2s~Av2w!

u12sAv
,

g5A 4sAv

u12sAv
, d5arcsinA12sinu

2
5arcsinAAv2w

2Av
,

and

W~f,k!5E
0

f dz

A12k2 sin2 z
5E

0

sin f dx

A~12x2!~12k2x2!
,

E~f,k!5E
0

f
A12k2 sin2 zdz5E

0

sin f A12k2x2

A12x2
dx

are elliptic integrals of the first and second kind in the Legendre normal form@see, for instance
Formulas 8.111.2 and 8.111.3 of Gradshteyn and Ryzhik~1980!#.
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Liouville integrability of the finite dimensional Hamiltonian
systems derived from principal chiral field
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For finite dimensional Hamiltonian systems derived from 111 dimensional inte-
grable systems, if they have Lax representations, then the Lax operator creates a set
of conserved integrals. When these conserved integrals are in involution, it is be-
lieved quite popularly that there will be enough functionally independent ones
among them to guarantee the Liouville integrability of the Hamiltonian systems, at
least for those derived from physical problems. In this article, we give a counter-
example based on theU(2) principal chiral field. It is proved that the finite dimen-
sional Hamiltonian systems derived from theU(2) principal chiral field are Liou-
ville integrable. Moreover, their Lax operator gives a set of involutive conserved
integrals, but they are not enough to guarantee the integrability of the Hamiltonian
systems. ©2002 American Institute of Physics.@DOI: 10.1063/1.1501446#

I. INTRODUCTION

For many 111 dimensional integrable systems, the nonlinearization method can be appl
get finite dimensional~110 dimensional! Hamiltonian systems.1 Usually these Hamiltonian sys
tems have Lax representations so that the involutive conserved integrals can be obtained
way the original nonlinear partial differential equations are changed to systems of non
ordinary differential equations.2–8 Many interesting exact solutions, especially quasi-periodic
lutions, were obtained in this way.

For a finite dimensional Hamiltonian system, if it can be written in the Lax form as

d

dt
L~l!5@M ~l!,L~l!#, ~1.1!

then the conserved integrals are easily derived from the coefficients of tr(Lk(l))’s (k>1) when
they are expanded as Laurent series ofl. Usually the number of these coefficients is infinite. It
believed quite popularly that when these conserved integrals are in involution, there w
enough functionally independent ones among them to guarantee the Liouville integrability
Hamiltonian systems. Indeed, this is the case for most known physically interesting systems
as the equations in the AKNS system, Kaup–Newell system and many other examples inc
those derived from 211 dimensional integrable systems.3,4,7,9–11

However, we will give a counterexample in this article to show that this is not always t
This counterexample is based on a well-known physical model–theU(n) principal chiral field

@or, mathematically, the harmonic map fromR1,1 to U(n)]. 12–16 In this article, the equation o
U(n) principal chiral field can be first reduced to a set of Hamiltonian systems by the sta
procedure of the nonlinearization method. This will be done in Secs. II and III. Then, in Se
we show that there are not enough conserved integrals in those given by tr(Lk(l))’s to guarantee
the Liouville integrability of the systems. In Sec. V, it is proved that these Hamiltonian system
actually Liouville integrable forn52. That is, they still have a full set of involutive and indepe
dent conserved integrals. These conserved integrals are obtained from trLk(l) and other obvious

a!Electronic mail: zxzhou@guomai.sh.cn
50020022-2488/2002/43(10)/5002/11/$19.00 © 2002 American Institute of Physics
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conserved integrals. Whenn.2, it is still open whether one can find enough involutive a
independent conserved integrals by adding some obvious ones to trLk(l)’s. Therefore, at least for
n52, the Hamiltonian systems derived from theU(2) principal chiral field are Liouville inte-
grable, but their conserved integrals for Liouville integrability can not be fully obtained f
trLk(l).

II. HAMILTONIAN SYSTEMS DERIVED FROM U„n … PRINCIPAL CHIRAL FIELD

The equation for theU(n) principal chiral field is

~gxg
21! t1~gtg

21!x50, ~2.1!

where the fieldg(x,t)PU(n). Write

P5gxg
21, Q5gtg

21. ~2.2!

ThenP,QPu(n) ~i.e., P* 1P50, Q* 1Q50! and ~2.1! becomes

Pt1Qx50, Pt2Qx1@P,Q#50. ~2.3!

Here the second equation is the integrability condition of~2.2!.
It is known that~2.3! has a Lax pair

Fx5
1

12l
PF, F t5

1

11l
QF, ~2.4!

wherel is a complex spectral parameter.
Now we write down the corresponding finite dimensional Hamiltonian systems and thei

operators.
Let l1 ,...,lN beN distinct real constants withl jÞ61 ( j 51,...,N), and let (f1a ,...,fna)T

be an arbitrary solution of the Lax pair~2.4! with l5la , L5diag(l1,...,lN), F j

5(f j 1 ,...,f jN)T. Let

L5 (
a51

N
1

l2la S f̄1af1a f̄2af1a ¯ f̄naf1a

] ] � ]

f̄1afna f̄2afna ¯ f̄nafna

D . ~2.5!

ExpandL to power series of 12l and 11l, respectively:

L5L (1)5 (
k51

`

~12l!k21S ^F1 ,~12L!2kF1& ¯ ^Fn ,~12L!2kF1&

] � ]

^F1 ,~12L!2kFn& ¯ ^Fn ,~12L!2kFn&
D ,

~2.6!

L5L (2)52 (
k51

`

~11l!k21S ^F1 ,~11L!2kF1& ¯ ^Fn ,~11L!2kF1&

] � ]

^F1 ,~11L!2kFn& ¯ ^Fn ,~11L!2kFn&
D ,

where the inner product̂V1 ,V2& of two vectors is defined asV1* V2 . The first series converge
when ul21u, min

1<a<N
ula21u and the second one converges whenul11u, min

1<a<N
ula11u.

Lemma 1:If

Pjk5 i^Fk ,~12L!21F j&, Qjk5 i^Fk ,~11L!21F j&, ~2.7!
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then

Lx5
1

12l
@P,L#, Lt5

1

11l
@Q,L#, ~2.8!

and (P,Q) gives a solution of (2.3).
Proof: Let fa5(f1a ,...,fna)T. Then

L5 (
a51

N
1

l2la
fafa* . ~2.9!

SinceP* 52P andla’s are real,

Lx5 (
a51

N
1

l2la
S fa

1

12la
fa* P* 1

1

12la
Pfafa* D

5 (
a51

N
1

l2la

1

12la
@P,fafa* #

5 (
a51

N S 1

l2la

1

12l
2

1

12la

1

12l D @P,fafa* #5
1

12l
@P,L#. ~2.10!

The last equality holds due to~2.7!. The equation forLt in ~2.8! is derived similarly. Finally, by
computing the integrability conditionLxt5Ltx from ~2.8! or substituting~2.7! into ~2.3! directly,
we know that (P,Q) satisfies~2.3!. The lemma is proved.

Now we always suppose~2.7! holds for theU(n) principal chiral field, which gives the
nonlinear constraints. Substituting~2.7! into ~2.4!, we get a system of partial differential equatio

F j ,x5 i~12L!21(
k51

n

^Fk ,~12L!21F j&Fk ,

~2.11!

F j ,t5 i~11L!21(
k51

n

^Fk ,~11L!21F j&Fk ,

which can be studied as two systems of ordinary differential equations whent andx are consid-
ered as constants, respectively.

Now f11,f12,...,f1N ,...,fn1 ,fn2 ,...,fnN and their complex conjugations form the com
plex coordinates ofR2nN. In this R2nN, let v be the standard symplectic form

v52(
j 51

n

(
a51

N

d Im~f j a!`d Re~f j a!5 i(
j 51

n

(
a51

N

df̄ j a`df j a . ~2.12!

Then the corresponding Poisson bracket for two functionsf andg is

$ f ,g%5
1

i (
j 51

n

(
a51

N S ] f

]f j a

]g

]f̄ j a

2
]g

]f j a

] f

]f̄ j a
D . ~2.13!

From ~2.8!, the coefficients of (12l) j ( j 50,1,2,...) in tr(L (1))k (k51,2,...) and thecoeffi-
cients of (11l) j ( j 50,1,2,...) in tr(L (2))k (k51,2,...) are allconserved. Suppose

tr~L (1)!m5 (
k51

`

~12l!k21E mk
(1) , tr~L (2)!m5~21!m(

k51

`

~11l!k21E mk
(2) . ~2.14!

Since trP5 iE 11
(1) and trQ5 iE 11

(2) , both trP and trQ are conserved. On the other hand, t
Hamiltonians for Eqs.~2.11! are given byE 21

(1) and E 21
(2) according to the following lemma
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Moreover, direct computation shows that they commute with each other under the Poisson b
~2.13! ~this can also be derived directly from Lemma 3 in Sec. III!.

Lemma 2: The Hamiltonians for the x-equation and the t-equation of (2.11) are given by

Hx52 1
2 E 21

(1)52 1
2 (

j ,k51

n

^Fk ,~12L!21F j&^F j ,~12L!21Fk&,

~2.15!

Ht52 1
2 E 21

(2)52 1
2 (

j ,k51

n

^Fk ,~11L!21F j&^F j ,~11L!21Fk&,

respectively. That is, (2.11) is equivalent to the Hamiltonian equations

if j a,x5
]Hx

]f̄ j a

, 2 if̄ j a,x5
]Hx

]f j a
, if j a,t5

]Ht

]f̄ j a

, 2 if̄ j a,t5
]Ht

]f j a
. ~2.16!

Moreover, $Hx,Ht%50.
Remark 1: The above procedure can also be used for the harmonic map fromR2 to U(n). In

this case, the equation is

~gzg
21! z̄1~gz̄g

21!z50, ~2.17!

where z is the complex coordinate ofR2, g(z,z̄)PU(n). The Lax pair is

Fz5
1

12 il
gzg

21F, F z̄5
1

11 il
gz̄g

21F, ~2.18!

wherel is a complex spectral parameter. Using the same method in this section, we can al
finite dimensional Hamiltonian systems whose Lax operator is completely the same as (2..

III. CONSERVED INTEGRALS

Lemma 3: With the Poisson bracket (2.13), the following two conclusions hold.
(1) For any two complex numbersl, m and two positive integers k, l ,

$trLk~l!,trLl~m!%50. ~3.1!

(2) For any complex numberl and integers j, k, l with 1< j ,k<n,

$^F j ,Fk&,trL
l~l!%50. ~3.2!

This can be verified by direct computation of the Poisson brackets and was given in Re
Suppose the eigenvalues ofL(l) aren1(l), n2(l),...,nn(l). Then

trLk~l!5n1
k~l!1¯1nn

k~l!, ~k51,2,...!,
~3.3!

det~m2L~l!!5mn2p1~l!mn211¯1~21!npn~l!,

for any complex numberm where

pk~l!5 (
1< j 1,¯, j k<n

n j 1
~l!¯n j k

~l! ~3.4!

is the sum of all the determinants of the principal submatrices ofL(l) of orderk. Hence trLk(l)
(k51,2,...) areuniquely determined bypk(l) (k51,2,...,n) and vise versa. Moreover, tr(L (1))k

and tr(L (2))k in ~2.14! can all be uniquely determined bypk(l) (k51,2,...,n).
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Eachpk(l) is a holomorphic function ofl nearl5`. Let

pm~l!5 (
k50

`

Ek
(m)l2k2m. ~3.5!

Then

Ek
(m)5 (

1< i 1,¯, i m<n
(

r 11¯1r m5k
r 1 , ¯ ,r m>0

U ^F i 1
,L r 1F i 1

& ^F i 2
,L r 2F i 1

& ¯ ^F i m
,L r mF i 1

&

^F i 1
,L r 1F i 2

& ^F i 2
,L r 2F i 2

& ¯ ^F i m
,L r mF i 2

&

A A � A

^F i 1
,L r 1F i m

& ^F i 2
,L r 2F i m

& ¯ ^F i m
,L r mF i m

&

U
5 (

1< i 1,¯, i m<n
(

r 11¯1r m5k
r 1 , ¯ ,r m>0

(
a1 , ¯ ,am51

aaÞab for aÞb

N

la1

r 1
¯lam

r m

3U f̄ i 1a1
f i 1a1

f̄ i 2a2
f i 1a2

¯ f̄ i mam
f i 1am

f̄ i 1a1
f i 2a1

f̄ i 2a2
f i 2a2

¯ f̄ i mam
f i 2am

A A � A

f̄ i 1a1
f i ma1

f̄ i 2a2
f i ma2

¯ f̄ i mam
f i mam

U . ~3.6!

In the last summation, the condition ‘‘aaÞab for aÞb’’ is added since the determinants wit
aa5ab (aÞb) are all zero.

Remark 2: When m>N11, the last summation in (3.6) for‘‘1 <a1 ,...,am<N with aa

Þab for aÞb’’ is empty. This means that Ek
(m)[0 for m>N11.

According to~2.8!, all Ek
(m)’s are conserved.

From the first part of Lemma 3, allEk
(m)’s are in involution. The second part of Lemma

implies that all^F j ,Fk& ’s commute withEk
(m)’s. However, thesêF j ,Fk& ’s may not commute

with each other.
Remark 3: For the Heisenberg ferromagnetic equation, the x-equation of its Lax pair is

similar to that of the U(2) principal chiral field. The nonlinearization for this equation was de
with in Ref. 2 and a set of involutive conserved integrals was obtained there.

Remark 4: SincetrP, trQ are conserved, if(P,Q) is a solution of (2.3) in u(n), then

P85P2
1

n
trP, Q85Q2

1

n
trQ ~3.7!

gives a solution of the same equation (2.3) in su(n).

IV. DEPENDENCE OF CONSERVED INTEGRALS

In order to consider the integrability of the Hamiltonian systems, we should find a full s
involutive and independent conserved integrals. Unlike many other cases, here we cannot g
set of independent conserved integrals simply from trLk(l)’s.

For further discussion, we need the following lemma.
Lemma 4: Suppose k, m are two integers with k>0 and m>2, and m1 ,...,mm are distinct

complex numbers. Then
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(
j 51

m

m j
k)
r 51
rÞ j

m

~m j2m r !
215H 0 if k,m21,

(
p11¯1pm5k2m11

p1 , ¯ ,pm>0

m1
p1
¯mm

pm if k>m21. ~4.1!

Proof: Let

f ~z!5zk)
r 51

m

~z2m r !
21. ~4.2!

Then f (z) is a meromorphic function ofz with polesm1 ,...,mm . Let CR be a circle with radius
R, center 0 and positive orientation. Then, whenR.max1<j<mumju,

1

2p i ECR

f ~z!dz5(
j 51

m

Res
z5m j

f ~z!5(
j 51

m

m j
k)
r 51
rÞ j

m

~m j2m r !
21. ~4.3!

On the other hand, letj5z21. Then

1

2p i ECR

f ~z!dz5 lim
R→`

1

2p i EC1/R

jm2k22)
r 51

m

~12m rj!21dj

5H 0 if k2m11,0,

(
p11¯1pm5k2m11

p1 , ¯ ,pm>0

m1
p1
¯mm

pm if k2m11>0 ~4.4!

by expanding all the terms (12m jj)21 at j50. The lemma is proved.
Theorem 1:For 1<m<n, there are at mostmax(0,N2m11) linearly independent functions

in Ek
(m) (k50,1,2,...). Therefore, the number of linearly independent functions in Ek

(m) ~m
51,2,...,n; k50,1,2,...! cannot exceed nN2 1

2n(n21) if N>n or 1
2N(N11) if N,n.

Proof: According to Remark 2,Ek
(m)[0 for m>N11. Hence we always supposem<N.

By definition, L5diag(l1,...,lN), l jÞlk ( j Þk). Clearly, for any non-negative integer
(k1 ,...,kl) with kiÞkj ( iÞ j ) and l>N11, Ek1

(1) ,...,Ekl

(1) are linearly dependent. On the oth

hand, since the Van de Monde determinant ofl1 ,...,lN is not zero, there are exactlyN indepen-
dent functions inEk

(1) (k50,1,2,...).
For m>2, we show that there are at mostN2m11 independent functions inEk

(m) (k
50,1,2,...) for fixed m.

Let k1 ,...,kN be N arbitrary distinct non-negative integers. For fixeds with 0<s<m22, let
(g1

(s) , ...,gN
(s)) be a solution of the linear algebraic system

(
j 51

N

la
kj 1m21g j

(s)5la
s ~a51,2,...,N!. ~4.5!

Since the coefficient matrix in~4.5! is (la
kj 1m11)a, j 51,...,N which is invertible, (g1

(s) , ...,gN
(s))

exists uniquely.
Let

Fs
(m)5(

j 51

N

g j
(s)Ekj

(m) ~s50,1,...,m22!. ~4.6!

Then
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Fs
(m)5(

j 51

N

(
1< i 1,¯, i m<n

(
r 11¯1r m5kj
r 1 , ¯ ,r m>0

(
a1 , ¯ ,am51

aaÞab for aÞb

N

g j
(s)la1

r 1
¯lam

r m

3U f̄ i 1a1
f i 1a1

f̄ i 2a2
f i 1a2

¯ f̄ i mam
f i 1am

f̄ i 1a1
f i 2a1

f̄ i 2a2
f i 2a2

¯ f̄ i mam
f i 2am

] ] � ]

f̄ i 1a1
f i ma1

f̄ i 2a2
f i ma2

¯ f̄ i mam
f i mam

U . ~4.7!

For fixed i 1 ,...,i m , a1 ,...,am ands with 0<s<m22, let

D5(
j 51

N

(
r 11...1r m5kj

r 1 ,...,r m>0

g j
(s)la1

r 1
¯lam

r m . ~4.8!

Then

D5(
j 51

N

g j
(s) (

a51

m

laa

kj 1m21)
r 51
rÞa

m

~laa
2lar

!21 ~4.9!

by Lemma 4. The relations~4.5! imply

D5 (
a51

m

laa

s )
r 51
rÞa

m

~laa
2lar

!21. ~4.10!

Using Lemma 4 again, we getD50 for s50,1,2,...,m22. Hence

F0
(m)5F1

(m)5¯5Fm22
(m) 50. ~4.11!

By ~4.5!, the matrix (g j
(s))1< j <N; 0<s<m22 has rankm21. HenceEkj

(m) ~j 51,2,...,N) satisfy m

21 independent linear relations for fixedm. This means that there are at mostN2m11 inde-
pendent functions inN functionsEkj

(m) for fixed m.

Sincek1 ,...,kN are arbitrary, there are at mostN2m11 independent functions inEk
(m) (k

50,1,2,...).
The total number of possible linearly independent functions inEk

(m) ~m51,2,...,n; k
50,1,2,...! is

(
m51

n

~N2m11!5nN2 1
2 n~n21! ~4.12!

for N>n and

(
m51

N

~N2m11!5 1
2 N~N11! ~4.13!

for N,n. The theorem is proved.
A completely integrable Hamiltonian system inR2nN needsnN independent involutive con

served integrals. Hence the above theorem shows that it is not possible to find enough con
integrals only fromEk

(m)’s for Liouville integrability.
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V. LIOUVILLE INTEGRABILITY OF THE HAMILTONIAN SYSTEMS

In general, we have not been able to determine whether the Hamiltonian systems for theU(n)
principal chiral field are Liouville integrable or not. However, whenn52, the answer is positive

Hereafter, we supposen52. Therefore, we want to find 2N independent conserved integra
for the Hamiltonian systems inR4N.

If N51, let

Ẽ0
(1)5E0

(1)5^F1 ,F1&1^F2 ,F2&,
~5.1!

Ẽ0
(2)5^F1 ,F2&1^F2 ,F1&.

If N>2, let

Ẽk
(1)5Ek

(1)5^F1 ,LkF1&1^F2 ,LkF2& ~k50,1,...,N21!,
~5.2!

Ẽk
(2)5Ek

(2)5(
j 50

k U^F1 ,L jF1& ^F2 ,Lk2 jF1&

^F1 ,L jF2& ^F2 ,Lk2 jF2&
U ~k50,1,...,N22!,

ẼN21
(2) 5^F1 ,F2&1^F2 ,F1&.

Here the last one is chosen to be^F1 ,F2&1^F2 ,F1& because all the conserved integrals sho
take real value.

Theorem 2: When n52, Ẽk
(m) (m51,2;k50,1,...,N21) are in involution and are function-

ally independent in a dense open subset ofR4N.
Proof: By Lemma 3,Ẽk

(m) (m51,2;k50,1,...,N21) are in involution.
It is obvious that they are independent forN51. Hence we supposeN>2. Let a1a (a

51,2,...,N) be N nonzero real numbers,

a2a5a1a
21 )

b51
bÞa

N

~la2lb!21 ~a51,2,...,N!. ~5.3!

Then Lemma 4 implies

(
b51

N

lb
k ā2ba1b50 ~k50,1,...,N22!,

~5.4!

(
b51

N

lb
N21ā2ba1b51.

Let P0PR4N be given byf1b5a1b , f2b5ea2b (b51,2,...,N). Heree is a nonzero small
real constant to be determined. Then, atP0 ,

]Ẽk
(1)

]f̄1a

5la
k f1a ,

]Ẽk
(1)

]f̄2a

5la
k f2a ~k50,1,...,N21!,

]Ẽk
(2)

]f̄1a

5(
j 50

k Ula
j f1a (

b51

N

lb
k2 j f̄2bf1b

la
j f2a (

b51

N

lb
k2 j uf2bu2

U5(
j 50

k

r 2,k2 jla
j f1a , ~5.5!
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]Ẽk
(2)

]f̄2a

5(
j 50

k U (
b51

N

lb
k2 j uf1bu2 la

j f1a

(
b51

N

lb
k2 j f̄1bf2b la

j f2a
U5(

j 50

k

r 1,k2 jla
j f2a ~k50,1,...,N22!,

]ẼN21
(2)

]f̄1a

5f2a,

]ẼN21
(2)

]f̄2a

5f1a

by using~5.4! where

r jk5 (
b51

N

lb
k uf j bu2. ~5.6!

Let J be the Jacobian matrix

J5
]~Ẽ0

(1) ,...,ẼN21
(1) ,Ẽ0

(2) ,...,ẼN21
(2) !

]~f̄11,...,f̄1N ,f̄21,...,f̄2N!
U

P0

. ~5.7!

Denote ROWj to be thej th row of J. Take the elementary transformations for the rows oJ
as follows:

~1! k from 1 to N21:

ROWN1k2 (
j 50

k21

r 2,k212 jROWj 11→ROWN1k ,

~2! k from 2 to N21:

ROWN1k2 (
j 51

k21
r 1 j2r 2 j

r 102r 20
ROWN1k2 j→ROWN1k ,

~5.8!

~3! k from 1 to N21:

~r 102r 20!
21ROWN1k→ROWN1k ,

~4! k from 1 to N21:

ROWk2ROWN1k→ROWk .

ThenJ is transformed to
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J̃51
f11 f12 ¯ f1N 0 0 ¯ 0

l1f11 l2f12 ¯ lNf1N 0 0 ¯ 0

A A � A A A � A

l1
N22f11 l2

N22f12 ¯ lN
N22f1N 0 0 ¯ 0

l1
N21f11 l2

N21f12 ¯ lN
N21f1N l1

N21f21 l2
N21f22 ¯ lN

N21f2N

0 0 ¯ 0 f21 f22 ¯ f2N

0 0 ¯ 0 l1f21 l2f22 ¯ lNf2N

A A � A A A � A

0 0 ¯ 0 l1
N22f21 l2

N22f22 ¯ lN
N22f2N

f21 f22 ¯ f2N f11 f12 ¯ f1N

2 .

~5.9!

Let

T5S T2

T1
D , ~5.10!

where

Tj5S l1
N21f̄ j 1 l1

N22f̄ j 1 ¯ f̄ j 1

l2
N21f̄ j 2 l2

N22f̄ j 2 ¯ f̄ j 2

A A � A

lN
N21f̄ jN lN

N22f̄ jN ¯ f̄ jN

DU
P0

~ j 51,2!. ~5.11!

Then

detT5 )
1<a,b<N

~la2lb!2)
g51

N

f̄1gf̄2guP0
Þ0. ~5.12!

Using the relations~5.4!, we have, atP0 ,

J̃T51
r 0 ¯ 0 0 0 0 ¯ 0 0

* r ¯ 0 0 0 0 ¯ 0 0

A A A A A A A A

* * ¯ r 0 0 0 ¯ 0 0

* * ¯ * r * * ¯ * r̄

0 0 ¯ 0 0 r 0 ¯ 0 0

0 0 ¯ 0 0 * r ¯ 0 0

A A A A A A A A

0 0 ¯ 0 0 * * ¯ r 0

* * ¯ * (
j 51

N

uf2 j u2 * * ¯ * (
j 51

N

uf1 j u2

2 , ~5.13!

where
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r5 (
b51

N

lb
N21f̄2bf1bU

P0

5eÞ0 ~5.14!

and* represents the entries which may not be zero.
Hence, atP0 ,

~r 102r 20!
2N11 det~JT!5det~ J̃T!5r2N22S r(

j 51

N

uf1 j u22 r̄(
j 51

N

uf2 j u2D
5e2N21S (

j 51

N

a1 j
2 2e2(

j 51

N

a2 j
2 D . ~5.15!

It is not zero whene is small enough. Since detJ is a real analytical function onR4N, detJ is not
zero in a dense open subset ofR4N. The theorem is proved.

Remark 5: Although the constraint here is of Bargmann type, the proof of the independe
the conserved integrals is not so simple as in the AKNS system. In that case, P0 is simply chosen
as a point near0. However, here L(l) is homogeneous to allF j ’s so the choice of P0 near0 does
not have any effect on the simplification of the computation on J.

The Liouville integrability of theU(2) principal chiral field follows from Lemma 2 and
Theorem 2. It is given by the following theorem.

Theorem 3: When n52, the Hamiltonian systems given by~2.15! are completely integrable in
the Liouville sense. Each solution of the Hamiltonian systems~2.15! gives a solution(P,Q) of
~2.3!, the equation of the U(2) principal chiral field, and(P2 1

2trP,Q2 1
2trQ) is a solution of the

SU(2) principal chiral field.
Remark 6: Theorem 1 implies that one needs at least n(n11)/2 extra conserved integrals

together with Ek
(m)’ s to form a full set of conserved integrals for the complete integrability of

Hamiltonian systems. According to Lemma 3, all^Fk ,F j& ’ s commute with Ek
(m) . However, two

elements in$^Fk ,F j&% may not commute with each other. Therefore, it is not obvious how to
at least n(n11)/2 extra conserved integrals to Ek

(m) in general.
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A time-dependent completely integrable Hamiltonian system is quantized with re-
spect to time-dependent action-angle variables near an instantly compact regular
invariant manifold. Its Hamiltonian depends only on action variables, and has a
time-independent countable energy spectrum. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1502927#

I. INTRODUCTION

A time-dependent Hamiltonian system ofm degrees of freedom is called a completely in
grable system~CIS! if it admits m independent first integrals in involution. Choosing appropri
dynamic variables, one may hope to quantize a time-dependent CIS so that its quantum
tonian and first integral operators possess time-independent spectra.1 The time-dependent action
angle variables introduced in the following are of this type. Written relative to these variab
Hamiltonian of a time-dependent CIS is a function only of the action coordinates. It follows
if time-dependent action-angle coordinates hold fixed, a time-dependent CIS can be quantiz
as an autonomous one, and its energy spectrum is time-independent.

In order to introduce time-dependent action-angle variables, we use the fact that a
dependent CIS ofm degrees of freedom can be extended to an autonomous one ofm11 degrees
of freedom where the time is regarded as a dynamic variable.2–4 By virtue of the classical Arnold–
Liouville theorem,5,6 an autonomous CIS admits the action-angle coordinates around a re
connected compact invariant manifold. The problem is that invariant manifolds of a
dependent CIS are not compact because of the time axis. Therefore, we first general
above-mentioned theorem to noncompact invariant manifolds. Then we show that, if a r
connected invariant manifoldN of a time-dependent CIS is compact at each instant, it admit
open neighborhood in the ambient momentum phase space which is isomorphic to the pro

W5R3Tm3V ~1!

of the time axisR, an m-dimensional torusTm, and an open domainV,Rm. This product is
equipped with the coordinates

~ t,f i ,I i !, i 51,...,m, ~2!

a!Electronic mail: fiorani@mat.unimi.it
b!Electronic mail: giachetta@campus.unicam.it
c!Electronic mail: sard@grav.phys.msu.su; URL: http://webcenter.ru/;sardan/
50130022-2488/2002/43(10)/5013/13/$19.00 © 2002 American Institute of Physics
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wheret is the Cartesian coordinate onR andf i are cyclic coordinates onTm. Written with respect
to these coordinates, a Hamiltonian and first integrals of a time-dependent CIS are function
of action coordinatesI i . The corresponding Hamilton equation onW reads

İ i50, ḟ i5] iH~ I j !.

A glance at this equation shows that, given action-angle coordinates~2!, a time-dependent CIS
can be seen as an autonomous CIS on the symplectic annulus

P5V3Tm, ~3!

equipped with the action-angle coordinates (f i ,I i) and provided with the symplectic form

VP5dI i∧df i . ~4!

Therefore, we can quantize a time-dependent CIS with respect to action-angle variables si
to that of an autonomous CIS. Of course, the choice of time-dependent action-angle coordin
no means is unique. They are changed by canonical transformations. Therefore, we emp
geometric quantization technique7–9 which remains equivalent under such kind transformatio
At the same time, geometric quantization essentially depends on the choice of polarization10,11

Geometric quantization of an autonomous CIS has been studied with respect to polar
spanned by Hamiltonian vector fields of first integrals.12 In fact, the Simms quantization of th
harmonic oscillator9 is also of this type. The problem is that the associated quantum alg
includes functions which are not defined on the whole momentum phase space, and elem
the carrier space fail to be smooth sections of the quantum bundle. Indeed, written with res
the action-angle variables, this quantum algebra consists of functions which are affine in
coordinates.

We choose a different polarization spanned by almost-Hamiltonian vector fields]k of angle
variables. The associated quantum algebraA consists of smooth functions which are affine
action variables. Note that this quantization of the symplectic annulusP ~3! is equivalent to
geometric quantization of the cotangent bundleT* Tm of the torusTm with respect to the familiar
vertical polarization. As is well known, the vertical polarization of a cotangent bundle leads
Schrödinger quantization. We show thatA possesses a set of nonequivalent representations i
separable pre-Hilbert spaceC`(Tm) of smooth complex functions onTm. In particular, the action
operators read

Î k52 i ]k2lk , ~5!

wherelk are real numbers which specify different representations ofA. By virtue of the multi-
dimensional Fourier theorem, an orthonormal basis forC`(Tm) consists of functions

c (nr )
5exp@ i ~nrf

r !#, ~nr !5~n1 ,...,nm!PZm. ~6!

With respect to this basis, the action operators~5! are countable diagonal matrices

Î kc (nr )
5~nk2lk!c (nr )

. ~7!

Given the representation~5!, any polynomial HamiltonianH(I k) of a CIS is uniquely quantized a
a Hermitian elementĤ(I k)5H( Î k) of the enveloping algebraĀ of A. It has the countable
time-independent spectrum

Ĥ~ I k!c (nr )
5E(nr )

c (nr )
, E(nr )

5H~nk2lk!, nkP~nr !. ~8!
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Similarly, polynomial first integrals are quantized. SinceÎ k are diagonal, one can also quanti
HamiltoniansH(I j ) and first integralsF(I j ) which are analytic functions onRm.

Note that, because geometric quantization is equivalent under canonical transform
quantization of a time-dependent CIS with respect to action-angle variables induces its qu
tion with respect to initial variables near an invariant manifold in the ambient momentum p
space. However, its Hamiltonian need not be represented in terms of first integrals and ne
belong to the quantum algebraĀ because it fails to be a scalar under time-dependent transfo
tions. Moreover, this induced quantization cannot be in general extended to the whole mom
phase space because of the topological obstructions to the existence of global action
coordinates.13,14

For instance, one usually mentions a harmonic oscillator as the simplest CIS whose q
zation in the action-angle variables looks notoriously difficult.15 However, a harmonic oscillato
written relative to action-angle coordinates (f,I ) is located in the momentum phase spaceR2\$0%,
but it is not the standard oscillator onR2. Namely, there is a monomorphism, but not an isom
phism of the Poisson algebra of smooth complex functions onR2 to that onR2\$0%. In particular,
the angle polarization onR2\$0% is not extended toR2. As a consequence, the quantum alge
associated with this polarization is not extended toR2, and so is its carrier spaceC`(Tm).

In conclusion, let us remark that, since Hamiltonians depend only on action variable
possess time-independent countable spectra, quantum CISs look especially promising fo
nomic quantum computation, based on driving degenerate eigenstates of a Hamiltonian
parameter space.16–18 We will construct the corresponding quantum control operator.

II. CLASSICAL COMPLETELY INTEGRABLE SYSTEMS

Recall that the configuration space of time-dependent mechanics is a fiber bundleQ→R over
the time axisR equipped with the bundle coordinates (t,qk), k51,...,m. The corresponding
momentum phase space is the vertical cotangent bundleV* Q of Q→R endowed with holonomic
coordinates (t,qk,pk).

19,20 The cotangent bundleT* Q, coordinated by (ql,pl)5(t,qk,p0 ,pk),
plays a role of the homogeneous momentum phase space. It is provided with the can
Liouville form J5pldql, the symplectic formV5dJ, and the corresponding Poisson brack

$ f , f 8%T5]l f ]l f 82]l f ]l f 8, f , f 8PC`~T* Q!. ~9!

There is the one-dimensional trivial affine bundle

z:T* Q→V* Q. ~10!

Given its global sectionh, one can equipT* Q with the global bundle coordinater 5p02h.
The fiber bundle~10! provides the vertical cotangent bundleV* Q with the canonical Poisson

structure$,%V such that

z* $ f , f 8%V5$z* f ,z* f 8%T , ; f , f 8PC`~V* Q!, ~11!

$ f , f 8%V5]kf ]kf 82]kf ]kf 8. ~12!

Its characteristic symplectic foliation coincides with the fibrationV* Q→R. However, the Poisson
structure~12! fails to set any dynamic equation on the momentum phase spaceV* Q because
Hamiltonian vector fields

q f5]kf ]k2]kf ]k, q f cdf 85$ f , f 8%V , f , f 8PC`~V* Q!,

of functions onV* Q are vertical.
A Hamiltonian of time-dependent mechanics is defined as a global section

h:V* Q→T* Q, p0+h52H~ t,qj ,pj !,
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of the affine bundlez ~10!.19,20 It yields the pull-back Hamiltonian form

H5h* J5pkdqk2H dt ~13!

on V* Q. Then there exists a unique vector fieldgH on V* Q such that

gHcdt51, gHcdH50,
~14!

gH5] t1]kH]k2]kH]k.

Its trajectories obey the Hamilton equation

q̇k5]kH, ṗk52]kH. ~15!

A first integral of the Hamilton equation~15! is a smooth real functionF on V* Q whose Lie
derivative

LgH
F5gHcdF5] tF1$H,F%V

along the vector fieldgH ~14! vanishes, i.e.,F is constant on trajectories ofgH . A time-dependent
Hamiltonian system (V* Q,H) is said to be completely integrable if the Hamilton equation~15!
admitsm first integralsFk which are in involution with respect to the Poisson bracket$,%V ~12!
and whose differentials dFk are linearly independent almost everywhere, i.e., the set of po
where this condition fails is nowhere dense inV* Q. One can associate to this system an auto
mous CIS onT* Q as follows.

Let us consider the pull-backz* H of the Hamiltonian formH ~13! onto the cotangent bundl
T* Q. It is readily observed that

H* 5] tc~J2z* h* J!5p01H ~16!

is a function onT* Q. Let us regardH* as a Hamiltonian of an autonomous Hamiltonian syst
on the symplectic manifold (T* Q,V). Its Hamiltonian vector field

gT5] t2] tH]01]kH]k2]kH]k ~17!

is projected onto the vector fieldgH ~14! on V* Q so that

z* ~LgH
f !5$H* ,z* f %T , ; f PC`~V* Q!.

An immediate consequence of this relation is the following:
Proposition 1:~i! Given a time-dependent CIS (V* Q,H;Fk) on V* Q, the Hamiltonian sys-

tem (T* Q;H* ,z* Fk) on T* Q is completely integrable.~ii ! Let N be a connected regular invar
ant manifold of (V* Q,H;Fk). Thenh(N),T* Q is a connected regular invariant manifold of th
autonomous CIS (T* Q;H* ,z* Fk).

Hereafter, the vector fieldgH ~14! is assumed to be complete. In this case, the Hami
equation~15! admits a unique global solution through each point of the momentum phase
V* Q, and trajectories ofgH define a trivial bundleV* Q→Vt* Q over any fiberVt* Q of V* Q
→R. Without loss of generality, one can choose the fiberi 0 : V0* Q→V* Q at t50. SinceN is an
invariant manifold, the fibration

j:V* Q→V0* Q ~18!

also yields the fibration ofN onto N05NùV0* Q such thatN>R3N0 is a trivial bundle.
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III. TIME-DEPENDENT ACTION-ANGLE COORDINATES

Let us introduce the action-angle coordinates around an invariant manifoldN of a time-
dependent CIS onV* Q by use of the action-angle coordinates around the invariant manifoldh(N)
of the autonomous CIS onT* Q in Proposition 1. SinceN and, consequently,h(N) are noncom-
pact, we first prove the following:

Proposition 2: Let M be a connected invariant manifold of an autonomous CIS$Fl%, l
51,...,n, on a symplectic manifold (Z,VZ), and let the Hamiltonian vector fields of the fir
integralsFa on M be complete. LetU be a neighborhood ofM such that$Fl% have no critical
points inU and the submersion3Fl :U→Rn is a trivial bundle of Lagrangian invariant manifold
over a domainV8,Rn. ThenU is isomorphic to the symplectic annulus

W85Rn2m3Tm3V8 ~19!

provided with the generalized action-angle coordinates

~x1,...,xn2m,fn2m11,...,fn,I 1 ,...,I n! ~20!

such that the symplectic form onW8 reads

VZ5dI a∧dxa1dI k∧dfk,

and the first integralsFl depend only on the action coordinates (I a).
Proof: In accordance with the well-known theorem,5,21 the invariant manifoldM is diffeo-

morphic to the productRn2m3Tm, provided with coordinates (yl)5(sa,w i), wherew i are linear
functions of parameterssl along the integral curves of Hamiltonian vector fields of first integr
Fl on M . Let (Jl) be coordinates onV8 which are values of first integralsFl . SinceW8→V8 is
a trivial bundle, (yl,Jl) are bundle coordinates on the annulusW8 ~19!. It should be emphasized
that, since group parameters are given up to a shift, the coordinatesyl on W8 are determined up
to a shift by functions of coordinatesJl . Written relative to these coordinates, the symplectic fo
VZ on W8 reads

VZ5VabdJa∧dJb1Vb
adJa∧dyb. ~21!

By the definition of coordinates (yl), the Hamiltonian vector fieldsql of first integrals take the
coordinate formql5ql

a(Jm)]a where

qa5]a1qa
i ~Jl!] i , q i5q i

k~Jl!]k , ~22!

and they obey the relations

qlcVZ52dJl , Vb
aql

b5dl
a . ~23!

It follows that Vb
a is a nondegenerate matrix andql

a5(V21)l
a , i.e., the matrix functionsVb

a

depend only on coordinatesJl . In Appendix A, we obtain the desired coordinates

xa5sa, fa~sb,w i ,Jl!, I a5Ja , I i~Jk!. ~24!

Note that, ifM is a compact invariant manifold, the conditions of Proposition 2 always ho6

Of course, the generalized action-angle coordinates~20! by no means are unique. For instanc
let Fa , a51,...,n2m be an arbitrary smooth function onRm. Let us consider the canonica
coordinate transformation

x8a5xa, f8 i5f i1xa] iFa~ I j !, I a85I a2Fa~ I j !, I k85I k . ~25!
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Then (x8a,f8k,I a8 ,I k8) also generalized action-angle coordinates on the symplectic annulus w
differs from W8 ~19! in another trivialization.

Now, we apply Proposition 2 to the CISs in Proposition 1.
Proposition 3: Let N be a connected regular invariant manifold of a time-dependent

(V* Q,H;Fk), and let the imageN0 of its projection j ~18! be compact. Then the invarian
manifold h(N) of the autonomous CIS (T* Q;H* ,z* Fk) has an open neighborhoodU obeying
the condition of Proposition 2.

The proof is in Appendix B. In accordance with Proposition 2, the open neighborhoodU of
the invariant manifoldh(N) in Proposition 3 is isomorphic to the symplectic annulus

W85R3Tm3V8, ~26!

provided with the generalized action-angle coordinates (t,f1,...,fm,I 0 ,...,I m) such that the sym-
plectic form onW8 reads

V85dI 0∧dt1dI k∧dfk.

A glance at the Hamiltonian vector fieldq05gT ~17! and relations~23! and ~24! shows thatI 0

5J05H* and the corresponding generalized angle coordinate isx05t, while the first integrals
Jk5z* Fk depend only on the action coordinatesI i .

Since the action coordinatesI i are independent of the coordinateJ0 , the symplectic annulus
W8 ~26! inherits the fibration~10! which reads

z:W8{~ t,f i ,I 0 ,I i !→~ t,f i ,I i !PW5R3Tm3V.

By the relation similar to~11!, the productW is provided with the Poisson structure

$ f , f 8%W5] i f ] i f 82] i f ]
i f 8, f , f 8PC`~W!. ~27!

Therefore, one can regardW with coordinates (t,f i ,I i) as the momentum phase space of t
time-dependent CIS in question around its invariant manifoldN.

It is readily observed that the Hamiltonian vector fieldgT of the autonomous Hamiltonian
H* 5I 0 is gT5] t , and so is its projectiongH ~14! on W. Consequently, the Hamilton equatio
~15! with respect to the action-angle coordinates takes the formİ i50, ḟ i50. Hence, (t,f i ,I i) are
the initial date coordinates. One can introduce such coordinates as follows. Given the fibraj

~18!, let us provideN03V,V0* Q in Proposition 3 with action-angle coordinates (f̄ i , Ī i) for the
CIS $ i 0* Fk% on the symplectic leafV0* Q. Then, it is readily observed that (t,f̄ i , Ī i) are time-
dependent action-angle coordinates onW ~1! such that the HamiltonianH( Ī j ) of a time-dependen
CIS relative to these coordinates vanishes, i.e.,H* 5 Ī 0 . Using the canonical transformations~25!,
one can consider time-dependent action-angle coordinates besides the initial date ones.
smooth functionH on Rm, let us further provideW with the action-angle coordinates

f i5f̄ i1t] iH~ Ī j !, I 05 Ī 02H~ Ī j !, I i5 Ī i

such thatH(I i) is the Hamiltonian.
Thus, action-angle coordinates for a time-dependent CIS provide a particular solution

problem of a representation of its Hamiltonian in terms of first integrals.22,23 However, this rep-
resentation need not hold with respect to the initial bundle coordinates onV* Q because a Hamil-
tonian fails to be a scalar under time-dependent transformations.

IV. QUANTUM COMPLETELY INTEGRABLE SYSTEMS

In order to quantize a time-dependent CIS on the Poisson manifold (W,$,%W), one may follow
the general procedure of instantwise geometric quantization of time-dependent Hamiltonia
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tems in Ref. 24. As was mentioned previously, it however can be quantized as an autonomo
on the symplectic annulus (P,VP) ~3! with respect to fixed time-dependent action-angle coo
nates.

In accordance with the standard geometric quantization procedure,7,8 since the symplectic
form VP ~4! is exact, the prequantum bundle is defined as a trivial complex line bundleC overP.
Since the action-angle coordinates are canonical for the symplectic form~4!, the prequantum
bundleC needs no metaplectic correction. Let its trivialization

C>P3C ~28!

hold fixed. Any other trivialization leads to equivalent quantization ofP. Given the associated
bundle coordinates (fk,I k ,c), cPC, on C ~28!, one can treat its sections as smooth comp
functions onP.

The Konstant–Souriau prequantization formula associates to each smooth real funcf
PC`(P) on P the first-order differential operator

f̂ 52 i¹q f
1 f ~29!

on sections ofC, whereq f5]kf ]k2]kf ]k is the Hamiltonian vector field off and ¹ is the
covariant differential with respect to a suitableU(1)-principal connection onC. This connection
preserves the Hermitian metricg(c,c8)5cc̄8 on C, and its curvature form obeys the prequan
zation conditionR5 iVP . It reads

A5A01 icI kdfk
^ ]c , ~30!

whereA0 is a flatU(1)-principal connection onC→P. The equivalence classes of flat princip
connections onC are indexed by the setRm/Zm of homomorphisms of the de Rham cohomolo
group

H1~P!5H1~Tm!5Rm

of P to the cycle groupU(1).9 We choose their representatives of the form

A0@~lk!#5dI k^ ]k1dfk
^ ~]k1 ilkc]c!, lkP@0,1!.

Then the connection~30! up to gauge transformations reads

A@~lk!#5dI k^ ]k1dfk
^ ~]k1 i ~ I k1lk!c]c!. ~31!

For the sake of simplicity, we will assume that the numberslk in expression~31! belong toR, but
will bear in mind that connectionsA@(lk)# andA@(lk8)# with lk2lk8PZ are gauge conjugated
Given a connection~31!, the prequantization operators~29! read

f̂ 52 iq f1~ f 2~ I k1lk!]
kf !. ~32!

Let us choose the above-mentioned angle polarizationVp which is the vertical tangent bundl
of the fibrationp:P→Tm, and is spanned by the vectors]k. It is readily observed that the
corresponding quantum algebraA,C`(P) consists of affine functions

f 5ak~f j !I k1b~f j ! ~33!

of action coordinatesI k . The carrier space of its representation by operators~32! is defined as the
spaceE of sectionsr of the prequantum bundleC of compact support which obey the conditio
¹qr50 for any Hamiltonian vector fieldq subordinate to the distributionVp. This condition
reads
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]kf ]kr50, ; f PC`~Tm!.

It follows that elements ofE are independent of action variables and, consequently, fail to b
compact support, unlessr50. This well-known problem of Schro¨dinger geometric quantization i
solved as follows:24,25

Fix a slicei T :Tm→Tm3V. Let CT5 i T* C be the pull-back of the prequantum bundleC ~28!
over the torusTm. It is a trivial complex line bundleCT5Tm3C provided with the pull-back
Hermitian metricg(c,c8)5cc̄8. Its sections are smooth complex functions onTm. Let

Ā5 i T* A5dfk
^ ~]k1 i ~ I k1lk!c]c!

be the pull-back of the connectionA ~31! onto CT . Let D be a metalinear bundle of comple
half-forms on the torusTm. It admits the canonical lift of any vector fieldt on Tm, and the
corresponding Lie derivative of its sections reads

L t5tk]k1 1
2 ]kt

k.

Let us consider the tensor product

Y5CT^ D→Tm. ~34!

Since the Hamiltonian vector fields

q f5ak]k2~ I r]ka
r1]kb!]k

of functions f ~33! are projectable ontoTm, one can associate to each elementf of the quantum
algebraA the first-order differential operator

f̂ 5~2 i ¹̄pq f
1 f ! ^ Id1Id^ Lpq f

52 iak]k2
i

2
]ka

k2aklk1b ~35!

on sections ofY. A direct computation shows that the operators~35! obey the Dirac condition

@ f̂ , f̂ 8#52 i $ f , f̂ 8%.

SectionsrT of the quantum bundleY→Tm ~34! constitute a pre-Hilbert spaceET with respect to
the nondegenerate Hermitian form

^rTurT8&5S 1

2p D mE
Tm

rTr̄T8 , rT ,rT8PET .

Then it is readily observed thatf̂ ~35! are Hermitian operators inET . In particular, the action
operators take the form~5!.

Of course, the above-noted quantization depends on the choice of a connectionA@(lk)# ~31!
and a metalinear bundleD. The latter need not be trivial. IfD is trivial, sections of the quantum
bundleY→Tm ~34! obey the transformation rule

rT~fk12p!5rT~fk!

for all indicesk. They are naturally complex smooth functions onTm. In this case,ET is the
above-mentioned pre-Hilbert spaceC`(Tm) of complex smooth functions onTm whose basis
consists of functions~6!. The action operatorsÎ ~5! with respect to this basis are represented
countable diagonal matrices~7!, while functionsa(f) are decomposed into the pull-back fun
tions c (nr )

which act onC`(Tm) by multiplications
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c (nr )
c (n

r8)5c (nr )
c (n

r8)5c (nr1n
r8) . ~36!

If D is a nontrivial metalinear bundle, sections of the quantum bundleY→Tm ~34! obey the
transformation rule

rT~f j12p!52rT~f j ! ~37!

for some indicesj . In this case, the orthonormal basis of the pre-Hilbert spaceET can be repre-
sented by double-valued complex functions

c (ni ,nj )
5exp@ i ~nif

i1~nj1
1
2!f

j !# ~38!

on Tm. They are eigenvectors

Î ic (ni ,nj )
5~ni2l i !c (ni ,nj )

, Î jc (ni ,nj )
5~nj2l j1

1
2!c (ni ,nj )

of the operatorsÎ k ~5!, and the functionsa(f) act on the basis~38! by the above-given law~36!.
It follows that the representation ofA determined by the connectionA@(lk)# ~31! in the space of
sections~37! of a nontrivial quantum bundleY ~34! is equivalent to its representation determin
by the connectionA@(l i ,l j2

1
2)# in the spaceC`(Tm) of smooth complex functions onTm.

Therefore, one can restrict the study of representations of the quantum algebraA to its
representations inC`(Tm) associated to different connections~31!. These representations are no
equivalent, unlesslk2lk8PZ for all indicesk.

Now, in order to quantize the Poisson manifold (W,$,%W), one can simply replace function
on Tm with those onR3Tm.7,24 Let us choose the angle polarization ofW spanned by the vector
]k. The corresponding quantum algebraA W,C`(W) consists of affine functions

f 5ak~ t,f j !I k1b~ t,f j ! ~39!

of action coordinatesI k , represented by the operators~35! in the spaceC`(R3Tm) of smooth
complex functions onR3Tm. This space is provided with the structure of the pre-Hilb
C`(R)-module with respect to the nondegenerateC`(R)-bilinear form

^cuc8&5S 1

2p D mE
Tm

cc̄8, c,c8PC`~R3Tm!.

Its basis consists of the pull-backs ontoR3Tm of the functionsc (nr )
~6!.

Since the Poisson structure~27! defines no dynamics on the momentum phase spaceW ~1!, we
should quantize the homogeneous momentum phase spaceW8 ~26! in order to describe evolution
of a quantum time-dependent CIS. Following the general scheme in Refs. 25 and 26, o
provide the relevant geometric quantization of the symplectic annulus (W8,V8). The correspond-
ing quantum algebraAW8,C`(W8) consists of affine functions

f 5al~ t,f j !I l1b~ t,f j !

of action coordinatesI l . It suffices to consider its subalgebra consisting of the elementsf and
I 01 f for all f PAW ~39!. They are represented by the operatorsf̂ ~35! and I 052 i ] t in the
pre-Hilbert moduleC`(R3Tm). If a HamiltonianH(I j ) of the time-dependent CIS is a polyno
mial ~or analytic! function in action variables, the HamiltonianH* of the associated autonomou
CIS is quantized as

Ĥ* 52 i ] t1H~ Î j !.

Then we obtain the Schro¨dinger equation
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Ĥ* c52 i ] tc1H~2 i ]k2lk!c50, cPC`~R3Tm!.

Its solutions are the series

c5(
(nr )

B(nr )
exp@2 iE (nr )

t#c (nr )
, B(nr )

PC,

whereE(nr )
are the eigenvalues~8! of the HamiltonianĤ.

In conclusion, bearing in mind applications to holonomic quantum computation, let us ch
action-angle coordinates such that a HamiltonianH of a CIS is independent of action variablesI a

(a,b,c51,...,l ). Then its eigenvalues are countably degenerate. Let us consider the per
Hamiltonian

H85D~sm,fb,I a!1H~ I j !,

where the perturbation termD depends on the action-angle coordinates with the above-menti
indicesa,b,c,... and onsome time-dependent parameterssm(t) by the law

D5Lb
a~sm,fb!] ts

bI a . ~40!

The HamiltonianH8 characterizes a CIS with time-dependent parameters.20,26,27Being affine in
action variables, the perturbation termD ~40! is represented by the operator

D̂52S iLb
a]a1

i

2
]aLb

a1laLb
a D ] ts

b.

Since the operatorsD̂ andĤ mutually commute, the total quantum evolution operator falls into
product

T expF2 i E
0

t

Ĥ8dt8G5T expF2 i E
0

t

Ĥ dt8G +T expF2 i E
0

t

D̂ dt8G .
The first factor in this product is the dynamic evolution operator of the quantum CIS. The se
one acts in the eigenspaces of the dynamic HamiltonianĤ and reads

T expF E
0

t

$2Lb
a~fb,sm~ t8!!]a2 1

2 ]aLb
a~fb,sm~ t8!!1 ilaLb

a~fb,sm~ t8!!%] ts
b dt8G

5T expF E
s([0,t])

$2Lb
a~fb,sm!]a2 1

2 ]aLb
a~fb,sm!1 ilaLb

a~fb,sm!%dsbG . ~41!

It is readily observed that this operator depends on the curves(@0,1#),S in the parameter spac
S. One can treat it as an operator of parallel displacement along the curves.26–28For instance, if
s(@0,1#) is a loop inS, the operator~41! is the geometric Berry factor, and it can be treated a
holonomy control operator.26,29

APPENDIX A

In order to complete the proof of Proposition 2, let us first apply relation~23! to the Hamil-
tonian vector fieldsqa andq i ~22!. We obtain

Vb
a5db

a , qa
lVl

i 50, ~A1!

q i
kVk

j 5d i
j , q i

kVk
a50. ~A2!
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The first of the equalities~A2! shows that the matrixVk
j is nondegenerate, and so isq i

k . Then the
second one results inVk

a50.
Using the well-known Ku¨nneth formula for the de Rham cohomology of a product, one

easily justify that the closed formVZ on W8 ~19! is exact. Moreover,VZ5dJ whereJ takes the
form

J5Ja~Jl ,yl!dJa1J i~Jl!dw i .

Of course,J is determined up to an exact form. Using the fact that components of dJ5VZ are
independent ofyl and obey equalities~A1! and ~A2!, we obtain the following.

~i! V i
a52] iJ

a1]aJ i50. It follows that] iJ
a is independent ofw, i.e.,Ja is affine inw and,

consequently, is independent ofw sincew is a cyclic coordinate. Hence,]aJ i50, i.e.,J i

is a function only of coordinatesJj .
~ii ! V i

k52] iJ
k1]kJ i . Similarly, one shows thatJk is independent ofw andV i

k5]kJ i , i.e.,
]kJ i is a nondegenerate matrix.

~iii ! Vb
a52]bJa5db

a . Hence,Ja5Da(Jl)1sa.
~iv! Vb

i 52]bJ i , i.e., J i is affine insa.

In view of items~i!–~iv!, the Liouville formJ reads

J5xa dJa1@Di~Jl!1Ba
i ~Jl!sa#dJi1J i~Jj !dw i ,

wherexa5sa1Da(Jl). Since the matrix]kJ i is nondegenerate, one can introduce new coo
natesI i5J i(Jj ), I a5Ja . We obtain

J5xa dI a1@D8 i~ I l!1Ba8
i~ I l!sa#dI i1I idw i .

Finally, put

f i5w i2@D8 i~ I l!1Ba8
i~ I l!sa#

in order to obtain the desired coordinates~24!.

APPENDIX B

In order to prove Proposition 3, we first show that functionsi 0* Fk make up a CIS on the
symplectic leaf (V0* Q,V0) and N0 is its invariant manifold without critical points. Clearly, th
functionsi 0* Fk are in involution, andN0 is their connected invariant manifold. Let us show th
the set of critical points of$ i 0* Fk% is nowhere dense inV0* Q andN0 has none of these points. Le
V0* Q be equipped with some coordinates (q̄k,p̄k). Then the trivial bundlej ~18! is provided with
the bundle coordinates (t,q̄k,p̄k) which play a role of the initial date coordinates on the mom
tum phase spaceV* Q. Written with respect to these coordinates, the first integralsFk become
time-independent. It follows that

dFk~y!5di 0* Fk~j~y!! ~B1!

for any pointyPV* Q. In particular, ify0PV0* Q is a critical point of$ i 0* Fk%, then the trajectory
j21(y0) is a critical set for the first integrals$Fk%. The desired statement at once follows from th
result.

SinceN0 is compact and regular, there is an open neighborhood ofN0 in V0* Q isomorphic to
N03V whereV,Rm is a domain, andN03$v%, vPV, are also invariant manifolds inV0* Q.6

Then

W95j21~N03V!>N3V ~B2!
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is an open neighborhood inV* Q of the invariant manifoldN foliated by invariant manifolds
j21(N03$v%), vPV, of the time-dependent CIS onV* Q. By virtue of the equality~B1!, the first
integrals$Fk% have no critical points inW9. For any real numberr P(2«,«), let us consider a
section

hr :V* Q→T* Q, p0+hr52H~ t,qj ,pj !1r ,

of the affine bundlez ~10!. Then the imageshr(W9) of W9 ~B2! make up an open neighborhoo
U of h(N) in T* Q. Becausez(U)5W9, the pull-backsz* Fk of first integralsFk are free from
critical points inU, and so is the functionH* ~16!. Since the coordinater 5p02h provides a
trivialization of the affine bundlez, the open neighborhoodU of h(N) is diffeomorphic to the
product

h~W9!3~2«,«!>h~N!3V3~2«,«!,

which is a trivialization of the fibration

H* 3~3z* Fk!:U→V3~2«,«!.

It remains to prove that the Hamiltonian vector fields ofH* andz* Fk on U are complete. It
is readily observed that the Hamiltonian vector fieldgT ~17! of H* is tangent to the manifolds
hr(W9), and is the imagegT5Thr+gH+z of the vector fieldgH ~14!. The latter is complete onW9,
and so isgT on U. Similarly, the Hamiltonian vector field

gk52] tFk]
01] iFk] i2] iFk]

i

of the functionz* Fk on T* Q with respect to the Poisson bracket$,%T ~9! is tangent to the
manifoldshr(W9), and is the imagegk5Thr+qk+z of the Hamiltonian vector fieldqk of the first
integralFk on W9 with respect to the Poisson bracket$,%V ~12!. The vector fieldsqk on W9 are
vertical relative to the fibrationW9→R, and are tangent to compact manifolds. Therefore, they
complete, and so are the vector fieldsgk on U. Thus,U is the desired open neighborhood of th
invariant manifoldh(N).
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A family of solutions with radiation reaction and retarded
interactions for two charges in classical
electrodynamics

R. Riveraa)

Universidad Cato´lica de Valparaı´so, Av. Brasil 2950, Valparaı´so, Chile

D. Villarroel
Av. Tobalaba 3696, Puente Alto, Santiago, Chile

~Received 4 December 2001; accepted for publication 7 May 2002!

A family of solutions of the Lorentz–Dirac equation is constructed. It consists in
the motion of two chargese1 and e2 of massesm1 and m2 in two coplanar and
concentric circles of radiia andb. The charges rotate with constant angular veloc-
ity, and have an angular separationc. The radiation reaction forces and the retarded
interactions between the charges are taken into account. The external electromag-
netic field that allows the motion consists of a tangential time-independent electric
field that takes a fixed value on each orbit, and a homogeneous time-independent
magnetic field perpendicular to the plane of the motion. For all the solutions energy
conservation is rigorously demonstrated by evaluating the energy radiated, with
independence of the equation of motion, through the calculation of the instanta-
neous energy flux across a sphere of an infinitely large radius. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1500792#

I. INTRODUCTION

Classical electrodynamics is one of the most fundamental and successful framewo
physics. However, one of its most fundamental aspects, namely, the equation of motion of a
charge that takes into account the effect of radiation reaction, still remains in an unsatisf
state. The equation of motion, derived by Dirac1 in 1938 and known as the Lorentz–Dirac equ
tion, has been objected because it presents some inconsistencies such as runaway solut
violation of causality.

Although electromagnetic phenomena are properly described by quantum theory, cla
electrodynamics is of interest not only because of its wide range of applicability and the
variety of physical phenomena it successfully describes, but also because both theorie
common basic problems, not completely understood yet, as for instance the electron mass
malization. The mass renormalization procedure was introduced by Dirac1 in his derivation of the
equation of motion in order to deal with the infinite self-energy associated to the electroma
field of a point electron. In spite of the fact that the derivation of the Lorentz–Dirac equati
based on the conservation equation of the energy-momentum tensor, the manipulation
infinite self-energy of the electron makes obscure the conservation of the energy in the equa
motion. The existence of runaway solutions, where the electron accelerates even in the abs
an external field, is a clear illustration of this aspect.

The energy radiated away by a system of charges plays a fundamental role in the study
consistency of the equation of motion with the energy conservation law. This problem is
pletely solved, in the case of only one charge, by Rohrlich’s radiation criterion,2 since with its help
it is easy to identify the term in the Lorentz–Dirac equation that describes the radiation
escapes to infinity. Unfortunately, in the case of more than one charge it is in general impo
mainly due to the complications introduced by the retarded effects, to identify the rate of rad
that escapes to infinity starting from the equations of motion of the charges. In this context

a!Electronic mail: rodrigo.rivera.c@mail.ucv.cl
50260022-2488/2002/43(10)/5026/19/$19.00 © 2002 American Institute of Physics
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recall that in Dirac’s derivation of the equations of motion the retarded field includes both the
and the far fields, whereas the energy radiated that escapes to infinity is determined exclusi
the far fields. Therefore the connection between these two ways of describing the radiation
no means immediate, a point that was first emphasized by Comay.3

The construction of exact solutions of the equation of motion for more than one charge
interest both from a mathematical and from a physical point of view. In fact, the equatio
motion for several charges have a rich mathematical structure, since they constitute a
nonlinear third order differential equations that are coupled by means of the retarded intera
between the different charges. On the other hand, the construction of exact solutions const
powerful tool in order to clarify the description of the radiation by the equations of motion an
consistence of them with the conservation of the energy.

Recently, the first exact solution of the Lorentz–Dirac equation for more than one charge4 was
constructed. It corresponds to the motion of two identical charges that rotate at constant a
velocity at opposite ends of a diameter. The external fields that make possible this motion c
of a static homogeneous magnetic field perpendicular to the plane of the motion and a
independent electric field of fixed magnitude over the orbit and tangent to it. In this case i
demonstrated that the Lorentz–Dirac equation satisfies energy conservation, since the
supplied by the external electric field to the two charges turns out to be exactly equal to the
that escapes to infinity. In this article a family of solutions of the Lorentz–Dirac equations wit
same external fields is constructed in the case of two electrical chargese1 ande2 of massesm1 and
m2 that move in a plane in two concentric circumferences of radiia andb with constant angular
velocity, and where the angular separation of chargee2 with respect to chargee1 is c, as shown
in Fig. 1. The Lorentz–Dirac equation imposes, of course, restrictions in the values of the dif
parameters that make possible the motion, that is, the charges, masses, radii, angular velo
angular separationc; but in general continuous ranges are admissible for the variation of t
parameters. The exact solution of Ref. 4 constitutes a very special case within the fam
solutions that we present in this article.

The simple mathematical structure of the external fields plays a determinant role i
construction of the analytical solution of the Lorentz–Dirac equation given below. Howeve
order to obtain an external field that is an exact analytical solution of Maxwell’s equations an
also has a simple mathematical structure it is necessary to use idealized sources. The case
unbounded sheet in which a current flows with constant density and direction everywher
which gives rise to an homogeneous magnetic field, is a well-known example.5 Our source for the
electric field is also an idealized one, and consists of an infinitely long solenoid fed with a de
of current that increases linearly with time. Of course, from a practical point of view, an idea
source like this can be implemented only in an approximate way; but this work is focused o

FIG. 1. The positions at timet of chargese1 ande2 moving with constant angular velocityv in concentric circles of radius
a andb, respectively.
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study of the solutions of the Lorentz–Dirac equation from a fundamental point of view,
practical or experimental aspects are out of the scope of this article.

The radiation that escapes to infinity is studied independently of the equation of motio
calculating explicitly the energy flux across the surface of a sphere of infinite radius that en
the charges’ orbit. The result splits into the Larmor formulas for the radiation rate of each c
and an interference rate of radiation that mixes the fields of the particles. The calculat
somewhat elaborate due to the complications that the retardation condition introduces. Fortu
the equation that defines the retarded times is formally equal to the one that appears in K
problem, and therefore the formalism developed by Bessel and Watson for Kepler’s proble
be applied here. This technique conducts to a Fourier series in anglec for the interference rate o
radiation, series that turns out to be identical to the one that is obtained from the solution
Lorentz–Dirac equation, where the fields appear evaluated not at infinity, but at the re
positions of the charges.

The family of solutions found here expands considerably the set of solutions of the Lor
Dirac equation and corroborates its consistency with the basic principle of energy conserv

II. THE SOLUTIONS

Figure 1 shows the motion under consideration, which consists in chargese1 ande2 moving
in the x-y plane with constant angular velocityv in concentric circular orbits of radiia andb,
respectively. The angular separation of chargee2 with respect toe1 , measured in the direction o
the motion, is denoted byc. The charges move in the electric field generated by an infinitely l
solenoid whose axis is thez-axis and whose radius isr0,b. The current density that flows aroun
the solenoid is given, for any timet, by

J52atd~r2r0!ŵ, ~1!

where a is a positive number,d is the usual Dirac delta function,r is the radial cylindrical
coordinate andŵ is the unit vector associated with the cylindrical coordinatew. The current
density~1!, together with a charge density that vanishes everywhere, gives rise to the follo
electric and magnetic fields, expressed in terms of their Cartesian coordinates:

Ex52~2par0
2/c2!

y

x21y2 ,

Ey51~2par0
2/c2!

x

x21y2 ,

~2!Ez50,

Bx5By5Bz50

outside the solenoid, and

Ex52~2pa/c2!y,

Ey51~2pa/c2!x,
~3!Ez50,

Bx5By50, Bz524pat/c

inside it. The fields~2! and ~3! satisfy the source-free Maxwell equations, and since they
satisfy the corresponding boundary conditions at the solenoid’s surface, they are indeed a
solution of Maxwell’s equations. We will need these fields only in the regionr.r0 , where their
values in cylindrical coordinates are given by

E5
2par0

2

c2

1

r
ŵ, ~4!
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B50. ~5!

The magnitude of the electric field~4! can be adjusted by choosing an appropriate value of
parametera. In order for the motion of Fig. 1 to be a solution of the Lorentz–Dirac equation
external homogeneous time-independent magnetic fieldBext will be also necessary.

The Lorentz–Dirac equation for particle 1 is

m1a1
m5~e1 /c!Fext

mav1a1~e1 /c!~F2ret
ma !v1a1~2e1

2/3c3!~ ȧ1
m2~1/c2!a1

lal
1v1

m!, ~6!

wherev1
m anda1

m denote the four-velocity and four-acceleration of chargee1 , respectively,c is the
velocity of light andȧ1

m is the proper time derivative ofa1
m . Greek indices range from 0 to 3 an

the diagonal metric of Minkowski space is (21,11,11,11). The equation for particle 2 can b
obtained from Eq.~6! by interchanging the indices 1 and 2.

The tensorFext
ma in the first term of Eq.~6! contains the external fields in which particle

moves, and gives rise to the associated Lorentz-force term. In a similar way, the tensoF2ret
ma

contains the retarded fields exerted by particle 2 at the position of particle 1, and gives rise
retarded Lorentz force. Finally, the last term in Eq.~6! arises from the self-field of the charge an
is known as the Abraham four-vector. For the circular motion under consideration, it gives r
a radiation reaction force that is tangential to the particle’s orbit.

As it is usually done, we will study the solutions of Eq.~6! in a specific Lorentz frame
namely the ‘‘laboratory frame,’’ where the infinitely long solenoid is at rest. Because of
relativistic invariance of both the Maxwell equations and the Lorentz–Dirac equation, the
tions of Eq.~6! in any Lorentz frame can be obtained by simply carrying out the correspon
Lorentz transformation.

We will study solutions of the equations of motion for the external fields

Eext5Et
extŵ5

D

r
ŵ,

~7!
Bext52Bextẑ.

The orientation of the coordinate axes will be chosen such that particle 1 is on thex-axis at t
50. Thus, the trajectory of particle 1 is given byx15a cos(vt), y15a sin(vt), z150, and similar
equations hold for the trajectory of particle 2. From these equations it follows that the compo
with m53 of the equations of motion of both particles are identically satisfied by the exte
fields ~7!. On the other hand, the equations withm51 and m52 can be combined into on
tangential and one radial equation for each particle. These equations can be simultaneous
fied only for certain range of values of the parameters of the system. It is convenient to intr
the following ones:

x5b/a,1,

b15va/c,1,

b25vb/c5xb1 , ~8!

l5e2 /e1 ,

s5m2 /m1 ,

which make it possible to obtain the orbit’s radius, speed, charge and mass of particle 2
corresponding values of particle 1 are known.

The retarded fields that appear in the equations of motion can be computed by usi
Liénard–Wiechert formula6
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E~x,t !5eF ~ n̂2b!~12b2!

k3R2 G1
e

c
F n̂3$~ n̂2b!3ḃ%

k3R
G ,

~9!

B~x,t !5n̂3E~x,t !,

wheren̂ is the unit vector that points from the retarded positionr (t8) of the charge that produce
the field to the pointx where the field is being considered at timet; R is the distance from the
retarded position of the charge to pointx, that is,R5ux2r (t8)u; b and ḃ are defined by (1/c)
3(dr (t8)/dt8) anddb/dt8, respectively, and are both evaluated at the retarded timet8, which is
implicitly defined byt2t85ux2r (t8)u/c; andk is the positive number

k512b•n̂. ~10!

In these formulas the observation pointx will be the position at timet of one of the charges
Then, the retarded electromagnetic fields produced by particlek (k51,2) result to be a function o
the retarded angleak , which is defined as the angle between the retarded position of the pa
that generates the field and the actual position of the particle that experiences the retarde
The retarded angle is measured starting from the retarded position of particlek in the sense of
motion in the casek51, and opposite to the sense of motion in the casek52. In Fig. 2 we show
the actual position of particle 2 and the retarded position of particle 1. We also show the re
distanceR1 between those positions, the tangential unit vectort̂2 at the actual position of particle
2 and the angled that particle 1 travels from its retarded time to the laboratory time.

These quantities are related by

a15c1d,
~11!

R15a$11x222x cosa1%
1/2,

and therefore the retardation conditionR1 /c5d/v is

a12b1$11x222x cosa1%
1/25c. ~12!

By using Eq.~9! the following result for the tangential component of the retarded electric fi
exerted by particle 1 on particle 2 is obtained:

FIG. 2. The locations at timet50 of chargese1 ~position A! ande2 ~position B! and the retarded position of chargee1

~position C! associated to the actual position of chargee2 . We also show the retarded anglea1 , the retarded distanceR1 ,

the tangential unit vectort̂2 at the actual position of chargee2 and the angled that particle 1 travels from its retarded tim
to the actual time.
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E12t5E12• t̂25
e1

k1
3R1

2 H ~12b1
2!S sina1

$11x222x cosa1%
1/22b1 cosa1D1b1

2~cosa12x!

3S x sina1

$11x222x cosa1%
1/22b1D J , ~13!

where, according to Eq.~10!, k1 is given by

k1512
b1x sina1

$11x222x cosa1%
1/2. ~14!

In the same way, in the case of the field exerted by particle 2 on particle 1, we have

R25a$11x222x cosa2%
1/2, ~15!

and anglea2 satisfies now the retardation condition

a21b1$11x222x cosa2%
1/25c. ~16!

The factork2 is given by

k2511
b2 sina2

$11x222x cosa2%
1/2, ~17!

and the tangential component of the retarded electric field exerted by particle 2 on particle

E21t5
e2

k2
3R2

2 H 2~12b2
2!S x sina2

$11x222x cosa2%
1/21b2 cosa2D1

b2
2

x
~12x cosa2!

3S sina2

$11x222x cosa2%
1/21b2D J . ~18!

The tangential equations of motion for particles 1 and 2 obtained from the Lorentz–
equation are given by

e1Et
ext~r5a!1e1E21t5

2e1
2b1

3g1
4

3a2 ,

~19!

e2Et
ext~r5b!1e2E12t5

2e2
2b2

3g2
4

3b2 ,

where g is the usual relativistic parameterg5(12b2)21/2. These equations can be simult
neously solved for the constantD in the external electric field of Eq.~7! and for the paramete
l5e2 /e1 . The following results are obtained:

l5
2b1

3g1
4/31x~a2/e1!E12t

2x2b1
3g2

4/31~a2/e2!E21t
, ~20!

D5rEt
ext5S e1

a D H 4x2b1
6g1

4g2
4/92x~a2/e1!~a2/e2!E12tE21t

2x2b1
3g2

4/31~a2/e2!E21t
J . ~21!

Thus, for a given value of the chargee1 , Eq. ~20! determines the value of the chargee2 for
which it is possible to simultaneously balance the radiation reaction and retarded intera
acting on each charge, while Eq.~21! fixes the magnitude of the external electric field that ma
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this possible. From Eqs.~11!, ~13!, ~15! and ~18! it follows that (a2/e1)E12t and (a2/e2)E21t are
independent of the orbit’s radiusa for given values ofb1 andx, and thereforel is also indepen-
dent ofa. On the other hand, the constantD does depend ona, and therefore a given value ofa
fixes the value of the parametera in Eq. ~4!.

Equations~20! and ~21! depend implicitly on the angular separationc, since from the retar-
dation conditions~12! and ~16! we obtain]a1 /]c51/k1.0 and]a2 /]c51/k2.0, and there-
fore for fixed values ofb1 and x the retarded anglesa1 and a2 are uniquely determined a
functions of c. In Fig. 3 we illustrate the dependence onc of the dimensionless combinatio
(a2/e2)E21t and ofl, in the caseb150.6 andx50.4.

The dimensionless quantity (a2/e2)E21t , associated to the retarded field exerted by particl
on particle 1, depends qualitatively onc as one expects. Note in particular that (a2/e2)E21t takes
positive and negative values in two ranges of values ofc which correspond roughly top,c
,2p and 0,c,p, with one maximum absolute value in each zone.

The behavior of (a2/e1)E12t is similar to the one sketched above, and since 2b1
3g1

4/3 is
usually smaller than the maximum absolute value ofx(a2/e1)E12t , due to the factorb1

3, there
exist two values ofc for which the numerator in Eq.~20! vanishes. In this case we havee250 and
the only solution of the Lorentz–Dirac equation corresponds to the one-particle solution in w
particle 1 moves in a circular orbit of radiusa with velocity b1 . Similarly, there exist two values
of c, which we will denote byc1 andc2 , located nearc5p andc52p, for which the denomi-
nator of Eq.~20! vanishes. Since the equations of motion only determine the ratio of chargl,
this is the same situation as above and it means that for a given value ofe2 the only solution of the
Lorentz–Dirac equations whenc5c1 or c5c2 is the one-particle solution in which particle
moves in a circular orbit of radiusb5xa and velocityb25xb1 . Finally, from Eq.~20! it follows
that for any given value ofx there exists a threshold valueb0 such thatl does not vanish ifb1

.b0 .
Of course, the details of the general behavior that we have sketched above depend

FIG. 3. The dimensionless quantity (a2/e2)E21t and the ratio of chargesl5e2 /e1 as a function of the anglec in the case
b150.6 andx50.4. The dot-dashed line in the first graph corresponds to the value22x2b1

3g2
4/3 for which the denomi-

nator of Eq.~20! vanishes.
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specific values ofb1 andx chosen. Thus, the valuec1 , which is a little less thanp for b1→0,
shifts to lower values with increasingb1 for a fixedx. For instance, for the casex50.4, c1 is
approximately 1.4 forb1→1. On the other hand,c2 is a little less than 2p for b1→0 and shifts
only very slightly to lower values whenb1→1 for any fixed value ofx.

The above discussion shows that for any given values ofb1 andx it is always possible~with
exception of at most four values ofc for which one of the charges vanishes! to adjust the externa
electric field in Eq.~7! and the charge of particle 2 so that the tangential equations of motio
both particles are satisfied. We will see below that the radial equations of motion obtained fro
Lorentz–Dirac equation determine the mass of particle 2 in a more restrictive way. They are
by

2m1b1
2c2g1 /a5e1E21r1e1b1B21z2e1b1Bext,

~22!

2m2b2
2c2g2 /b5e2E12r1e2b2B12z2e2b2Bext,

whereEi jr denotes the radial component of the retarded electric field exerted by particlei on
particle j , andBi jz denotes thez component of the retarded magnetic field exerted by particlei on
particle j . By using Eq.~9! the following expressions follow:

E12r5
e1

k1
3R1

2 H ~12b1
2!S x2cosa1

$11x222x cosa1%
1/22b1 sina1D

1b1
2 sina1S x sina1

$11x222x cosa1%
1/22b1D J , ~23!

E21r5
e2

k2
3R2

2 H ~12b2
2!S 12x cosa2

$11x222x cosa2%
1/21b2 sina2D

1b2
2 sina2S sina2

$11x222x cosa2%
1/21b2D J , ~24!

B12z5
x2cosa1

$11x222x cosa1%
1/2E12t2

sina1

$11x222x cosa1%
1/2E12r , ~25!

B21z5
12x cosa2

$11x222x cosa2%
1/2E21t1

x sina2

$11x222x cosa2%
1/2E21r . ~26!

Equations~22! can be simultaneously solved for the ratio of massess5m2 /m1 and for the
external magnetic fieldBext in Eq. ~7!. We obtain

s5
l

g2
H g11

~r 1 /a!F

b1
Jª l

g2
s r , ~27!

Bext5S e1b1g1

r 1a D1
12x cosa2

$11x222x cosa2%
1/2E21t1S 1

b1
1

x sina2

$11x222x cosa2%
1/2DE21r , ~28!

wherer 1 is the classical radius of particle 1,r 15e1
2/(m1c2), andF is the combination of retarded

fields:
                                                                                                                



t
e term

has

.
. 4,
of

5034 J. Math. Phys., Vol. 43, No. 10, October 2002 R. Rivera and D. Villarroel

                    
F5lH ~12x cosa2!~a2/e2!E21t

$11x222x cosa2%
1/2 1S 1

b1
1

x sina2

$11x222x cosa2%
1/2D ~a2/e2!E21r J

2
~x2cosa1!~a2/e1!E12t

$11x222x cosa1%
1/2 2S 1

b2
2

sina1

$11x222x cosa1%
1/2D ~a2/e1!E12r . ~29!

The first terms on the right hand sides of Eqs.~27! and ~28! correspond to the results tha
would have been obtained if there were no retarded interactions between the charges. Th
that depends on the retarded fields in Eq.~27! is proportional to the dimensionless numberr 1 /a,
which is usually a very small number. However, it will be shown below that this term
qualitative implications.

The physical solutions of the Lorentz–Dirac equations are those withs.0. The behavior of
s as a function ofc arises from the behavior of bothl and the quantity in curly brackets in Eq
~27!, which we have calleds r . The typical behavior of these quantities is sketched in Fig
where for simplicity we have chosen the case in whichl does not become zero for any value
c.

The behavior ofs r in Fig. 4 follows from Eq.~27!, since the smallness ofr 1 /a implies that
s r does not differ appreciably fromg1 for most values ofc. However, Eq.~29! shows that the first

FIG. 4. Schematic behavior of the ratio of massess5m2 /m1 as a function of angular separationc. We also show the
behavior ofs r defined in Eq.~27! and of the ratio of chargesl.
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two terms ofF are proportional tol, and therefores r is singular at pointsc5c1 andc5c2 . A
detailed analysis shows that the expression inside the curly brackets in Eq.~29! is positive for any
b andx, and therefores r→6` whenl→6`. Therefore, sinces r has the same sign thatl near
c5c1 andc5c2 , s in Eq. ~27! is positive at both sides of those points. Besides,s r must take
the value zero for somec5c0,c1 as it goes down towards2`, thus makings50 at that point.
Therefore the physical solutions aroundc5c1 consist of a narrow intervalc0,c,c1 for which
l,0, followed by a range of solutions withl.0 which extends up toc5c2 in Fig. 4. The
pattern of solutions aroundc5c2 is similar.

The features sketched in Fig. 4 are valid in general, except of course whenb1 is very small,
of the order ofr 1 /a, case in which the behavior ofF as a function ofc is relevant. A similar
analysis can be performed in this case and it shows that again ranges of solutions exist
c5c1 and c5c2 with both l.0 and l,0, but this time the solutions that exist in a sma
angular interval are the ones withl.0.

III. STUDY OF ENERGY CONSERVATION

For all the solutions that we have built it is possible to obtain an energy balance equ
starting directly from the tangential equations of motion. By multiplying the first equation in~19!
by v15b1c and the second one byv25b2c and adding the results, it follows that

e1Eext"v11e2Eext"v25
2e1

2c

3a2 b1
4g1

41
2e2

2c

3b2 b2
4g2

42e1E21"v12e2E12"v2. ~30!

The left hand side of Eq.~30! corresponds to the energy provided by the external field to
charges. Since the kinetic energy of the charges and the total energy stored in the fie
time-independent, consistency with energy conservation demands the right hand side of E~30!
to be equal to the energy that escapes to infinity. Thus, in order to have a conclusive pr
energy conservation, it is necessary to calculate with independence of the equations of mo
energy that escapes to infinity, using only the far fields of the charges. To this end the total
of radiation at timet will be evaluated by computing the surface integral

c

4p E
Sr

~EÃB!•dS, ~31!

whereS r is the surface of a sphere of very large radius, centered at the orbit’s center, andE, B are
the retarded electric and magnetic fields generated by the charges, which are evaluated ovS r at
time t.

The fields in~31! correspond to the superposition of the retarded electric fieldsE1 andE2 and
retarded magnetic fieldsB1 andB2 generated by chargese1 ande2 , respectively. Therefore the
integral in ~31! splits into three parts:

c

4p E
Sr

~E13B1!•dS1
c

4p E
Sr

~E23B2!•dS1
c

4p E
Sr

~E13B21E23B1!•dS. ~32!

Each of the first two integrals in~32! deals with the fields of only one of the charges, and
evaluation gives the total power of radiation of a monoenergetic electron in circular mo

namely7 ( 2
3)(e1

2c/a2)b1
4g1

4 for chargee1 and (2
3)(e2

2c/b2)b2
4g2

4 for chargee2 . Therefore, from the
comparison of~32! and the right hand side of~30! it is seen that energy conservation requires
equality of the last term in~32! and the negative of the retarded interaction powerW, defined by

W5e1E21tb1c1e2E12tb2c, ~33!

whereE21t andE12t are given by Eqs.~13! and ~18!, respectively.
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The last integral in~32! represents the radiation rate associated with the interference o
fields of the two charges, and involves only the far fields of both charges. This situation con
with the definition ofW in Eq. ~33!, where the exact fields are involved, that is, both the far
the near fields. In what follows the explicit calculation of the interference rate of radiation a
W will be performed.

A. The interference rate of radiation

If we denote by~u,w! the usual spherical angles, the last integral in Eq.~32! can be performed
by considering first the contribution of the ribbon parallel to the orbit plane defined betwee
anglesu andu1du. Even though the electric and magnetic fields at a fixed point of the ribbon
changing with time, the instantaneous energy flux across the ribbon is time-independent. Th
because of the symmetry of the charge’s motion, which makes different positions of the sys
charges to appear as completely equivalent for the ribbon as a whole. This property of
independence of the instantaneous energy flux across the ribbon is of course valid for any
of S r , and therefore the instantaneous energy flux overS r is time-independent.

The surface element on the sphereS r is dS5r 2 sinududwr̂ , where the unit normal to the
sphere,r̂ , is given byr̂5sinu coswx̂1sinu sinwŷ1cosu ẑ. The detection pointx on the surface
of the sphere isx5r sinu coswx̂1r sinu sinwŷ1r cosu ẑ, and therefore the retarded timest18 and
t28 of chargese1 ande2 associated to the pointx at time t satisfy

t2t185
1

c
$r 21a222ar sinu cos~w2vt18!%1/2, ~34!

t2t285
1

c
$r 21b222br sinu cos~w2vt282c!%1/2. ~35!

It turns out convenient to introduce the variablesx andy defined by

x5w2vt18 , ~36!

y5w2vt282c, ~37!

which, according to Eqs.~34! and ~35!, are linked by

y2x1c5
vr

c
@$11~a/r !222~a/r !sinu cosx%1/22$11~b/r !222~b/r !sinu cosy%1/2#.

~38!

This equation defines a one-to-one correspondence between variablesx andy for any ribbon
on the sphere of radiusr . In fact, from Eq.~38! it follows that

dy

dx
5

k1

k2
.0, ~39!

where, according to~10!, we have

k1512
b1 sinu sinx

$11~a/r !222~a/r !sinu cosx%1/2, ~40!

k2512
b2 sinu siny

$11~b/r !222~b/r !sinu cosy%1/2. ~41!
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In a similar way, Eq.~34! determinest18 as a function of the anglew over the ribbon and
therefore variablex defined by Eq.~36! has a unique value for eachw in the interval 0,w
<2p. In fact, taking the derivative with respect tow of Eqs.~34! and ~36! and combining them
we obtain

dw

dx
5k1.0,

and therefore the surface integral over the ribbon

c

4p E
0

2p

~E13B21E23B1!• r̂dw ~42!

can be written as an integral over variablex,

c

4p E
a

2p1a

~E13B21E23B1!• r̂k1dx, ~43!

where variabley is determined as a function ofx through Eq.~38!, and where parametera is
given bya52vt28(w50)52vt28(w52p). When we explicitly evaluate the integrand of~43!, it
turns out that it depends onx and y only through the functions cosx, cosy, sinx and siny.
Moreover, from Eq.~38! it follows that y is a periodic function ofx of period 2p, and therefore
the integrand of~43! is a periodic function ofx, of period 2p. Thus,~43! does not depend on th
value ofa and we can seta50. The instantaneous energy flux over the sphereS r is therefore

P5
c

4p
r 2E

0

p

sinuduE
0

2p

~E13B21E23B1!• r̂k1dx. ~44!

In the limit when the radius of the spherer tends to infinity we obtain the following explici
expression,

P5
e1e2cb1

2b2
2

2pab E
0

p

sinuduE $%

k1
2k2

3 dx, ~45!

where

$%5cos2 u cosx cosy1sinx siny2b1 sinu siny2b2 sinu sinx1b1b2 sin2 u, ~46!

and where Eqs.~40! and ~41! simplify to

k1512b1 sinu sinx, ~47!

k2512b2 sinu siny. ~48!

Similarly, the retardation condition~38! becomes

y2x1c5sinu$b1 cosx2b2 cosy%. ~49!

The expression~45! is an exact formula for the part of the radiation rate associated with
interference between the charge’s fields.

The retardation condition~49! is a functional relation similar to that studied by Watson in h
well known book,8 and it makes it possible to perform thex-integration. To this end it is useful to
shift thex andy variables to

x̄5x2p/2,

ȳ5y2p/2
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to write «15b1 sinu, «25b2 sinu and to introduce the combination

u5 x̄2«1 sinx̄2c, ~50!

in terms of which Eq.~49! becomes

ȳ2«2 sin ȳ5u, ~51!

which is essentially the same relation studied by Watson. Equations~50! and~51! determinex̄ and
ȳ respectively as functions of the independent variablesu,c,«1 and«2 . For fixed values ofc,«1

and «2 , both x̄ and ȳ are uniquely determined byu, since dx̄/du51/(12«1 cosx̄).0 and
dȳ/du51/(12«2 cosȳ).0. Besides, ifx̄→ x̄12p in Eq. ~50! or ȳ→ ȳ12p in Eq. ~51!, we have
u→u12p, and thereforex̄ and ȳ are periodic functions ofu of period 2p. Also, it can be seen
that ȳ is an odd function of u.

In terms of the new variables,~45! can be written

P5
e1e2cb1

2b2
2

2pab E
0

p

sinuduE
0

2p cos2 u sinx̄ sin ȳ1~cosx̄2«1!~cosȳ2«2!

~12«1 cosx̄!3~12«2 cosȳ!3 du. ~52!

The integrand of~52! can be rewritten by using the following identities,

sinx̄

~12«1 cosx̄!3 52
1

«1

]

]u S 1

k1
D ,

sin ȳ

~12«2 cosȳ!3 52
1

«2

]

]u S 1

k2
D ,

~53!
~cosx̄2«1!

~12«1 cosx̄!3 5
]

]«1
S 1

k1
D ,

cosȳ2«2

~12«2 cosȳ!3 5
]

]«2
S 1

k2
D ,

where 1/k1 and 1/k2 are periodic functions ofu, and therefore can be expanded in Fourier se
by using the techniques developed by Watson.8 The results are

1

k1
5

1

12«1 cosx̄
5112(

n51
$2sin~nc!Jn~n«1!sin~nu!1cos~nc!Jn~n«1!cos~nu!%,

~54!
1

k2
5

1

12«2 cosȳ
5112(

n51
Jn~n«2!•cos~nu!.

Replacing Eqs.~53! and~54! in ~52! and performing theu-integration, which now is trivial,~52!
becomes

P5
e1e2cb1

2b2
2

2ab E
0

p

sinu (
n51

`

cos~nc!H n2 cos2 uJn~n«1!Jn~n«2!

«1«2
1n2Jn8~n«1!Jn8~n«2!J du.

~55!

The angular integration in~55! is performed by using the series representation of the Be
function
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Jn~z!5 (
p50

`
~21!pzn12p

2n12pp! ~n1p!!

and its derivative, evaluated atz15n«15nb1 sinu and z25n«25nb2 sinu, and by using the
result

E
0

p

~sinu!2 j 21du5
p1/2G~ j !

G~ j 1 1
2!

,

whereG(z) is the Gamma function. Then, the interference rate of radiation can be written

P5
2e1e2cb1

2

a2 (
n51

`

cos~nc!~n2b1b2!n (
p,q50

`
~21!p1qn2p12q~n1p1q!! ~n1p1q21!!

p!q! ~n1p!! ~n1q!! ~2n12p12q!!

3H n2

~2n12p12q11!
1~n12p!~n12q!J b1

2pb2
2q . ~56!

According to the discussion after Eq.~32!, Eq. ~56! for the interference rate of radiation shou
equal the negative of the rate of workW defined in Eq.~33!. In order to compareP and2W, in
what follows we will explicitly calculate the right hand side of~33!, expressing it as a doubl
series inb1 andb2 .

B. The rate of work

The retardation conditions~12! and~16! determine implicitlya1 anda2 as functions ofb1 ,x
and c, which will be chosen as independent parameters. For fixedx and b1 , a1 and a2 are
uniquely determined as functions ofc, since

]a1 /]c51/k1.0, ~57!

]a2 /]c51/k2.0, ~58!

wherek1 and k2 are given by Eqs.~14! and ~17!. Besides, ifa1→a112p in Eq. ~12! or a2

→a212p in Eq. ~16!, we havec→c12p, and thereforea1 anda2 are periodic functions ofc
of period 2p.

From Eqs.~12! and ~16! it follows that

]a1

]b1
5

$11x222x cosa1%
1/2

k1
.0,

~59!
]a2

]b1
52

$11x222x cosa2%
1/2

k2
,0.

By using these results it is easily verified that expressions~13! and ~18! for the tangential
components of the retarded electric fields can be written as

E12t/e1 52
1

x S 12
b1

2

2
2

b1
2x2

2 D ]

]b1
S 1

k1R1
2D 2

b1
2

2a2x

]

]b1
S 1

k1
D ,

~60!

E21t/e2 5S 211
b1

2

2
1

b1
2x2

2 D ]

]b1
S 1

k2R2
2D 2

b1
2

2a2

]

]b1
S 1

k2
D ,

and therefore the retarded interaction powerW in Eq. ~33! can be expressed as
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W5e1e2cH S 211
b1

2

2
1

b1
2x2

2 Db1

]

]b1
S 1

k1R1
2 1

1

k2R2
2D 2

b1
3

2a2

]

]b1
S 1

k1
1

1

k2
D J . ~61!

W will be now expanded as a Fourier series in anglec, by doing the corresponding expan
sions of the factors containingk1 andk2 in Eq. ~61!. These factors are even functions ofc, as can
be seen from the following symmetry of the retardation conditions, Eqs.~12! and ~16!. If a2

satisfies Eq.~16! for the anglec, thena152a2 satisfies Eq.~12! for the angle2c. Also, if a1

satisfies Eq.~12! for the anglec, thena252a1 satisfies Eq.~16! for the angle2c. That is, when
c→2c, a1→2a2 and a2→2a1 , which in turn implies thatk1→k2 , k2→k1 , R1→R2 and
R2→R1 . Therefore, 1/k111/k2 and 1/(k1R1

2)11/(k2R2
2) remain unchanged whenc→2c.

Thus, it follows

1

k1
1

1

k2
5(

n
An cosnc,

where

An5
1

p E
2p

p cosnc

k1
dc1

1

p E
2p

p cosnc

k2
dc. ~62!

Using Eqs.~57! and ~58! to change the variable of integration, we have

An5
1

p E
2p

p

cos~na12nb1$11x222x cosa1%
1/2!da11

1

p E
2p

p

cos~na21nb1$11x2

22x cosa2%
1/2!da25

4

p E
0

p

cos~na!cos~nb1$11x222x cosa%1/2!da. ~63!

In the same way we obtain

1

k1R1
2 1

1

k2R2
2 5

1

a2 (
n

Bn cosnc, ~64!

where

Bn5
4

p E
0

p cos~na!cos~nb1$11x222x cosa%1/2!

11x222x cosa
da. ~65!

Replacing Eqs.~62!–~65! in Eq. ~61!, we obtain

W52
e1e2cb1

2a2 (
n

cosncH ~22b1
22x2b1

2!
]Bn

]b1
1b1

2 ]An

]b1
J . ~66!

The coefficientsAn and Bn can be expressed as power series inb1 by expanding the factor
cos(nb1$11x222x cosa%1/2) in Eqs.~63! and ~65!. For instance,

An5
4

p (
m50

`
~21!m~nb1!2m

~2m!! E
0

p

cos~na!~11x222x cosa!mda. ~67!

Writing 11x222x cosa5c2dcosa, with parametersc andd given by

c511x2,
~68!

d52x,
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and using the binomial theorem, Eq.~67! becomes

An5
4

p (
m50

`
~21!m~nb1!2m

~2m!! (
k50

m S m
k D ~21!kcm2kdkE

0

p

cos~na!~cosa!kda. ~69!

The result of the integration is9

E
0

p

cosna~cosa!kda5H 0 if k,n or k5n12i 21, i .0,

p

2k S k
i D if k5n12i , i .0.

~70!

Therefore, the terms withm,n on the right hand side of Eq.~69! vanish. Puttingm5n1 j , and
since onlyk5n12i gives a nonvanishing result, Eq.~69! becomes

An54(
j 50

`
~21!n1 j~nb1!2n12 j

~2n12 j !! (
k5n

n1 j S n1 j
k D S k

i D ~21!k
cn1 j 2kdk

2k

54(
j 50

`
~21!n1 j~nb1!2n12 j

~2n12 j !! (
i 50

[ j /2] S n1 j
n12i D S n12i

i D ~21!n12i
cj 22idn12i

2n12i , ~71!

where@x# represents the integer part ofx. From Eq.~71! it is immediate that

]An

]b1
54(

j 50

`

~21! j
n2n12 jb1

2n12 j 21

~2n12 j 21!! (
i 50

[ j /2] S n1 j
n12i D S n12i

i D cj 22idn12i

2n12i . ~72!

The dependence of Eq.~72! on x andb1 can be changed to a dependence onb25xb1 andb1

by using Eq.~68! and by regrouping factors as follows:

dn12i

2n12i b1
n12i5~b1

2x!n12i5~b1b2!n12i ,

cj 22ib1
2 j 24i5~b1

2~11x2!! j 22i5~b1
21b2

2! j 22i5 (
,50

j 22i S j 22i
, Db1

2 j 24i 22,b2
2, ,

which, when replaced in Eq.~72!, give

]An

]b1
54(

j 50

`
~21! jn2 j 12n~b1b2!nb1

21

~2n12 j 21!!
3 (

i 50

[ j /2]

(
,50

j 22i S n1 j
n12i D S n12i

i D S j 22i
, Db1

2 j 22i 22,b2
2i 12, .

~73!

In the same way, it is readily obtained that

]Bn

]b1
54(

j 50

`
~21! j 11n2n12 j 12~b1b2!nb1

~2n12 j 11!!
3 (

i 50

[ j /2]

(
,50

j 22i S n1 j
n12i D S n12i

i D S j 22i
, Db1

2 j 22i 22,b2
2i 12, .

~74!

Replacing Eqs.~73! and ~74! in Eq. ~66! we obtain

W52
2e1e2cb1

2

a2 (
n50

`

cos~nc!~n2b1b2!n(
j 50

`
n2 j~21! j 11

~2n12 j 11!!
3$n2~22b1

22b2
2!

2~2n12 j !~2n12 j 11!%S~n, j !, ~75!
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where

S~n, j !5 (
i 50

[ j /2]

(
,50

j 22i S n1 j
n12i D S n12i

i D S j 22i
, Db1

2 j 22i 22,b2
2i 12, . ~76!

Equation~75! would have the same structure as the retarded interference rateP in Eq. ~56! if
one of the sums in Eq.~76! could be performed. To this end, it turns out convenient to col
terms in~76! with a fixed value of,1 iªq. In order to see more clearly how to arrange the ter
of the double sum in Eq.~76! according to the new variablesq andi , it is useful to plot in the,2 i
plane the values that, and i take in Eq.~76!.

In Fig. 5 we assume for simplicity thatj is odd, that is,j 52s11. From Eq.~76! it follows
that the possible values ofi and, are located inside the triangular region delimited by the posi
coordinate axes and the slope22 straight line,5 j 22i . In this plot the combinations of value
of , and i that have a constant value ofq5,1 i are located on straight lines of slope21.
Therefore,q takes values in the range 0→ j . From Fig. 5 we see that the values taken byi for a
given value ofq depend on whetherq<s or q.s. If q<s, then the straight linei 1,5q joins
both catets of the triangular allowed region, and thereforei takes values 0,1,...,q. On the other
hand, ifq.s, the straight linei 1,5q joins thei 50 axis with the straight line,5 j 22i . In this
case the maximum value thati takes is the one corresponding to the intersection point of b
straight lines, that is,i 5 j 2q. Therefore, the value ofS in the casej 52s11 is

S~n, j !5 (
q50

s

(
i 50

q S n1 j
n12i D S n12i

i D S j 22i
q2 i Db1

2 j 22qb2
2q1 (

q5s11

j

(
i 50

j 2q S n1 j
n12i D S n12i

i D
3S j 22i

q2 i Db1
2 j 22qb2

2q . ~77!

Making the change of dummy indexq5 j 2v in the second term of Eq.~77!, and using the
symmetry of the binomial coefficient

S j 22i
j 2v2 i D5S j 22i

v2 i D ,

FIG. 5. The values of, and i that occur in the double sumS are located inside the triangular region delimited by t
straight line,5 j 22i and the coordinate axes. The points located on the segmented lines have a constant valueq5,
1 i .
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Eq. ~77! can be rewritten as

S~n, j !5 (
q50

s

(
i 50

q S n1 j
n12i D S n12i

i D S j 22i
q2 i D ~b1

2 j 22qb2
2q1b1

2qb2
2 j 22q!. ~78!

The sum over the indexi in Eq. ~78! can be carried out by noting that it corresponds to
hypergeometric series. In effect, the ratio of consecutive terms of the sum is

ai 11

ai
5

~ i 2q!~ i 2~ j 2q!!

~ i 1n11!~ i 11!
,

and, therefore, from the definition of the hypergeometric series we have

A~n, j ,q!ª(
i 50

q S n1 j
n12i D S n12i

i D S j 22i
q2 i D5

~ j 1n!!

n!q! ~ j 2q!! 2F1~2q,2~ j 2q!,n11;1!. ~79!

Using the well known relation

2F1~a,b,c;1!5
G~c2a2b!G~c!

G~c2a!G~c2b!
,

it follows that

A~n, j ,q!5
@~ j 1n!! #2

q! ~ j 2q!! ~ j 1n2q!! ~q1n!!
, ~80!

a result that is invariant under the interchange ofq and j 2q.
The analysis can be repeated for the case of evenj , that is, for j 52s, and the final result is

exactly the same. Thus, for anyj we have

S~n, j !5 (
q50

j

A~n, j ,q!b1
2 j 22qb2

2q , ~81!

whereA(n, j ,q) is given by Eq.~80!. Replacing Eqs.~81! and~80! in Eq. ~75!, changing the index
j in the sums for the new dummy indexp5 j 2q, and using the identity for absolutely converge
series

(
j 50

`

(
q50

j

aq, j5 (
q50

`

(
p50

`

aq,p1q , ~82!

the following expression forW is obtained:

W5
2e1e2cb1

2

a2 (
n50

`

cos~nc!~n2b1b2!n(
p50

`

(
q50

`

$ap,q~22b1
22b2

2!2bp,q%b1
2pb2

2q , ~83!

where the coefficientsap,q andbp,q are given by

ap,q5
~21!p1qn2p12q12@~n1p1q!! #2

~2n12p12q11!! p!q! ~n1p!! ~n1q!!
,

~84!

bp,q5
~21!p1qn2p12q~2n12p12q!~2n12p12q11!@~n1p1q!! #2

~2n12p12q11!! p!q! ~n1p!! ~n1q!!
.
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Note that Eq.~56! for the interference rate of radiationP can be written in terms of the
coefficientap,q in ~84!. The resulting expression is

P5
2e1e2cb1

2

a2 (
n50

`

cos~nc!~n2b1b2!n (
p,q50

`
ap,q

n2~n1p1q!

3$n21~2n12p12q11!~n12p!~n12q!%b1
2pb2

2q . ~85!

On the other hand, Eq.~83! for the rate of retarded workW is not still in its final form as a
double power series inb1 andb2 , due to the factor (22b1

22b2
2) in the numerator. Equation~83!

can be rewritten in the form

W5
2e1e2cb1

2

a2 (
n50

`

cos~nc!~n2b1b2!n (
p,q50

`

$2ap,q2bp,q2ap21,q2ap,q21%b1
2pb2

2q , ~86!

where the coefficientsap521,q and ap,q521 are defined to be zero. Introducing in~86! the fol-
lowing relations between the different coefficients,

bp,q5
~2n12p12q!~2n12p12q11!

n2 ap,q ,

ap21,q52
2p~n1p!~2n12p12q11!

n2~n1p1q!
ap,q , ~87!

ap,q2152
2q~n1q!~2n12p12q11!

n2~n1p1q!
ap,q ,

and comparing with Eq.~85! it is readily seen that2W reduces to the interference rate of radiati
P, thus showing the consistency of the Lorentz–Dirac equation with energy conservation.
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Wave front layer stripping approach to inverse scattering
for the wave equation

Vaughan H. Weston
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395
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Division of Electromagnetic Theory, Alfve´n Laboratory, Royal Institute of Technology,
SE-100 44 Stockholm, Sweden
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The inverse problem involving a point pulse source exterior to a scattering medium,
where the velocityc(x) is continuous, is considered. The layer stripping approach
is applied to thin curvilinear layers whose surfaces are the primary wave fronts
@with c(x) continuous, the reflected wave fronts will be secondary, i.e., of lower
order singularity#. It is shown that the layer stripping approach can be used in the
time-domain inverse problem without employing the added complexity of having
to perform wave splitting. Furthermore the procedure to determine the normal
derivative ofc from the asymptotic short time behavior of the field quantities on an
adjacent wave front surface has been simplified compared to earlier wave splitting
methods. Uniqueness results are given. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1504502#

I. INTRODUCTION

Wave splitting in the time domain for one-dimensional inverse problems involving the w
equation was employed by Corones and Kreuger1,2 and subsequently extended to more comp
cated one-dimensional equations, like viscoelastic equations, Karlsson,3 etc. In three dimensions
Fishman,4,5 used the pseudodifferential operator resulting from the planar splitting to obtain
way propagation in the frequency domain. Planar wave splitting was formulated for the
dimensional wave equation in the time domain by Weston,6,7 and applied to the inverse problem
for the telegraph equation by Weston and He.8 Working in a sector of the complex Laplac
transform plane of the wave equation, de Hoop9,10 was able to get rigorous results for planar wa
splitting and the resulting Bremmer series, etc. A comprehensive review and bibliograp
time-domain wave splitting for the wave equation and Maxwells equation is given in the boo
He, Ström, and Weston.11

Nonplanar wave splitting in time-domain was introduced by Weston12 for the three-
dimensional wave equation. This formulation proved useful in obtaining the appropriate abs
boundary condition for the wave equation. Here the procedure of the layer stripping proce
curved surfaces is given for the case when the curved surfaces are the wave fronts associa
a particular scattering problem.

An alternative approach to inverse scattering in an inhomogeneous medium is to u
Bremmer series. In this connection, some very fast algorithms have been developed for t
culation of the Bremmer series. They are the Generalized Screen method13 and the rational ap-
proximation method.14

a!Present address: Department of Mathematics, University of Toronto, Ontario M5S 3G3, Canada; electroni
ljonsson@math.toronto.edu
50450022-2488/2002/43(10)/5045/15/$19.00 © 2002 American Institute of Physics
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II. OVERVIEW OF THE WAVE FRONT CONNECTION TO THE INVERSE PROBLEM

Consider the scattering problem where there is a point impulse source atx0, which is exterior
to a scatterer whose domain is characterized by the support of (c(x)2c0) wherec0 is the free
space value of the velocityc(x) ~see Fig. 1!. The total fieldu(x,t) satisfies the wave equation

1

c2~x!

]2u

]t2 2Du5d~x2x0!H~ t !, x0,xPR3, ~1!

where, initially, it will be assumed thatc(x) is a continuous function ofx.
The incident field portion,ui(x,t), in free space, ofu(x,t) will have the form

ui~x,t !5
1

4pR
HS t2

R

c0
D , R5ux2x0u. ~2!

Let t(x,x0) be the travel time from the source pointx0 to the observation pointx, then the wave
front surface at timet is given by

t~x,x0!5t, ~3!

with t(x,x0) satisfying the Eikonal equation

u¹tu25
1

uc~x!u2 . ~4!

The rays~the trajectories orthogonal to the wave front surfaces! emanating from the source poin
in the direction of the unit vector

n5~sinu cosf,sinu sinf,cosu!, ~5!

can be represented in terms of the two parameter family of curves

xj5Xj~t,u,f!, 0<u<p, 0<f,2p, 0<t, j 51,2,3, ~6!

with the parametersu andf being the angles associated with a local spherical coordinate sy
centered at the source pointx0. The rays satisfy the following differential equation.15

]

]t S 1

c2

]X

]t D5c¹S 1

cD . ~7!

FIG. 1. Scattering geometry.
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Note that the ray coordinate system (t,u,f), is an orthogonal system which maps, in an 1
fashion, the domain 0<t<t* , 0<u<p, 0<f,2p into a simply connected domain containin
the source pointx0, provided thatt* is restricted so that no caustics appear.

Let the timet5t0.0 be such that the incident wave front has not impinged on the scatt
and letS0 be the wave front surface at that time.S0 will then be a spherical surface with a radiu
c0t0 and centered atx0; see Fig. 2. At a later timetk,T, when the incident wave has impinged o
the scatterer, let the corresponding wave front surface beSk where

Sk5$xPR3:t~x,x0!5tk%. ~8!

Let the open domain between the two surfacesS0 andSk be denotedV1 , and the region exterior
to Sk be denotedV2 ; see Fig. 2. Then it follows that the total field satisfies the following init
conditions in the domainsV1 andV2 , respectively:

u5ut50, xPV1 , t5t0 , ~9!

u5ut50, xPV2 , t5tk . ~10!

The inverse problem can now be stated. Assume that the total fieldu and its normal derivative
]nu are known onS0 , for 0<t<T, either through direct measurements or through indir
measurements and calculations. For the latter case if the incident field is known and the sc
field ur ~which vanishes onS0 for t,t0) is measured onS0 for times 0<t<T, one can compute
the normal component of each, especially that of the scattered wave component by us
ingoing and outgoing wave conditions on the spherical surfaceS0 ,12 and identifying the outgoing
and incoming wave components, respectively, withui andur .

In the layer stripping process as applied to wave front surfaces, one has a set of nested~wave
front! surfaces S0,S1,S2,¯,Sk , each corresponding to the wave fronts at tim
t0 ,t1 ,t2 , . . . ,tk , wheretk5t01kD t , and whereD t is a very small time interval.

When the initial wave front surfaceS0 is known, one can compute in succession each w
front surface$Sn%n50

k , using the ray equation~7!. If xk5Xk(t,u0 ,f0) is a point on the surfaceSk

FIG. 2. Wave front geometry.
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associated with the ray (u0 ,f0) then, upon integrating Eq.~7!, one can show that the pointxk11 ,
on the wave front surfaceSk11 associated with the same ray (u0 ,f0), is given by

xk115xk1D tcknk1~D t!
2~2 1

2 ck~¹c!k1ck~n"¹c!knk!1¯, ~11!

where nk is the unit normal to the wave front surfaceSk at the pointxk and ck , (¹c)k are
evaluated at the pointxk . Thus to determine the wave front surfaceSk11 from the wave front
surfaceSk to order (D t)

2, one needs only the values ofc and its normal derivative]nc on Sk .
On the surfaceS0 , as mentioned previously,u and]nu are known for 0<t<T as well asc

and]nc (c5c0 and]nc50). From knowledge ofc and]nc on S0 , one can find the wave fron
surfaceS1 by using expression~11! and also obtain an estimate for the value ofc on S1 . Using
this value ofc in the first layer and knowledge ofu and]nu on S0 one wants to obtain the value
of u and]nu on S0 for 0<t<T. This is discussed in Sec. III. Then from the asymptotic~leading
time! behavior ofu and]nu on S1 , one wants to obtain]nc on Sk . This is investigated in Sec. IV
Finally these steps are repeated, layer by layer. The above-mentioned analysis holds for
period where there are no caustics. The effect of caustics is discussed in Sec. V.

To investigate the mathematics behind the layer stripping process, thekth step will be con-
sidered starting with the knowledge or estimate ofc(x) in thekth layer bounded bySk21 andSk ,
but instead of working with the knowledge ofu and]nu on Sk21 for 0<t<T, and working in the
kth layer, the domainV1 bounded by the surfacesS0 and Sk will be used together with the
knowledge ofu and]nu on S0 . This will then shed light on the influence of thedata u and]nu
on S0 upon the determination ofu and]nu on Sk .

Note that althoughc(x) is assumed to be continuous throughout, its derivatives may or
not be continuous. In the typical numerical procedure for layer stripping,c(x) and its first deriva-
tives are continuous in each layer, but the normal derivative may have a jump discontinuity
each surface of the layer.

III. DETERMINATION OF u AND nu ON Sk FROM KNOWLEDGE OF u AND nu ON S0

Given, the continuous velocity,c(x), in V̄1 , the problem is to determineu and]nu on Sk for
an appropriate time interval~to be determined! from knowledge ofu and ]nu on S0 for 0<t
<T. Both quantities vanish onS0 for 0<t,t0 .

The problem of determiningu(x,t) in V̄1 for 0<t<tk , from knowledge of eitheru(x,t) or
]nu(x,t) on S0 , is well-posed, and can be found in many ways. This fact will be used to
determine the leading~short time! term for u(x,t) and]nu(x,t) on Sk as follows. Since the data
on S0 @the surfaceux2x0u5c0t0 , wherec0 is the free space value ofc(x)] have the leading
asymptotic terms

u~x,t !5
1

4pux2x0u
HS t2

ux2x0u
c0

D1¯ , xPS0 , ~12!

]u~x,t !

]n
52

1

4pc0ux2x0u
dS t2

ux2x0u
c0

D1 . . . , xPS0 , ~13!

the leading term ofu(x,t) in V̄1 for 0<t<tk is given by

u~x,t !5U0~x!H~ t2t~x,x0!!1¯ . ~14!

The surfacesS0 and Sk are given by the wave front surfacest(x,x0)5ux2x0u/c05t0 and
t(x,x0)5tk , respectively. Thus, since the problem is well-posed for 0<t<tk , andc(x) is con-
tinuous, the value ofU0(x) on the surface can be determined. Since the normal to the wave
is in the direction of the gradient oft(x,x0), it follows that the leading formV0(x) to ]nu on Sk

as given in the following:
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]u~x,t !

]n
5V0~x!d~ t2tk!1¯ , tk5t~x,x0! ~15!

is given in terms ofU0(x) by

V0~x!52
]t

]n
U0~x!52

1

c~x!
U0~x!. ~16!

Hence the leading termV0(x) can be found.
The problem now is to determine the remaining portion ofu(x,t) and]nu(x,t) on Sk for a

time interval~to be specified!.
The fundamental solution~or Green’s function! E(x,y,t) of the wave equation will be intro-

duced. It satisfies the system for fixedx,

1

c2~y!

]2E
]t2 2DE5d~x2y!d~ t !, x,yPR3, ~17!

E~x,y,t !50 for t,0. ~18!

Sincec(x) is continuous, the fundamental solution will have the leading asymptotic behavi

E~x,y,t !;
1

r~x,y!
d~ t2t~x,y!!1¯ , ~19!

wheret(x,y) is the travel time from pointx to pointy and vice verse. Ifc(x) is differentiable, the
amplitude factorr(x,y) can be found by solving the transport equation. Further details are g
in Sec. IV, but are not needed here, other than thatr(x,y) has the asymptotic valuer(x,y)
;4pux2yu asy→x.

Let EN(x,y,t) be the Neumann Green’s function for the domainV1 , satisfying the Neumann
boundary conditions

]EN~x,y,t !

]ny
50, for xPV1 and yPS0øSk . ~20!

Using this Green’s function one can write down the solutionu(x,t) to the scattering problem
which satisfies initial conditionsu(x,0)5ut(x,0)50 in V̄1 , and Neumann data onS0 andSk . We
have

u~x,t !5E
0

t

dsE
Sk

dsyEN~x,y,t2s!
]u~y,s!

]ny
2E

0

t

dsE
S0

dsyEN~x,y,t2s!
]u~y,s!

]ny
, xPV1 ,

~21!

where the normal derivative on both surfaces is taken in the direction of wave front propag
see Fig. 2. Note that]nu on S0 vanishes for 0<t,t0 , and onSk for 0<t,tk .

An alternative to expression~21! can be obtained by the usual approach for solving a ho
geneous partial differential equation with nonhomogeneous boundary conditions, and tha
replace the solutionu(x,t) by the sumw(x,t)1q(x,t) whereq(x,t) is a known function that
satisfies the initial conditionsq(x,0)5qt(x,0)50, and nonhomogeneous Neumann boundary c
ditions ]nu5]nq on S0 andSk . Thenw(x,t) satisfies homogeneous boundary and initial con
tions and the nonhomogeneous equation

1

c2~x!

]2w

]t2 2¹2w5¹2q2
1

c2~x!

]2q

]t2 5F~x,t !. ~22!
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The solution16 for w(x,t) can then be found in terms of the orthonormal set of eigenfunct
$fm%m50

` satisfying

2c2~x!¹2fm5wm
2 fm , xPV1 ,

~23!
]fm

]n
50, xPS0 and Sk ,

wherew0 is the zero eigenvalue, and the inner product is given by

~fn ,fm!5E
V1

fn~x!fm~y!

c2~x!
dx. ~24!

Using this approach, one can show that the resulting solution can be expressed in the form
by Eq. ~21! with

EN~x,y,t !5 (
m50

`
sin~wmt !

wm
fm~x!fm~y!, ~25!

where the convergence of the series~25! is in the sense of distributions. The eigenfuncti
representation is useful when]nu is known. For the present case]nu on Sk is unknown. To obtain
an equation to determine]nu on Sk ~apart from the leading term which is already determined!, let
the xPV1 in expression~21! approach a point on the surfaceS0 . One obtains the following
integral equation of the first kind for]nu on Sk :

u~x,t !5E
0

t

dsE
Sk

dsy EN~x,y,t2s!
]u~y,s!

]ny
2E

0

t

dsE
S0

dsy EN~x,y,t2s!
]u~y,s!

]ny
,

xPS0 , 2tk2t0<x<T. ~26!

In taking the limit of the second integral on the right-hand side of Eq.~26!, one uses the loca
behavior ofEN(x,y,t),

EN~x,y,t !;
d~ t2ux2yu/c~x!!

2pux2yu
, ~27!

for y on the smooth surfaceS0 andx on S0 , very close toy.
From Eq.~26! it is seen that the values of the measured datau(x,t) wherexPS0 , 2tk2t0

<t<T and]nu(x,t), xPS0 for t0<t<T, can be used to obtain the values of]nu ~apart from the
leading term which is already known! on Sk for tk,t<T2tk2t0 . This implies that whentk

.(T2t0)/2, the nonzero values of]nu cannot be deduced, hence in the inverse problem
cannot obtain the value ofc(x) in the region beyond the surfacet(x,x0)5(T2t0)/2.

The problem of obtaining]nu on Sk , for tk,t<T2tk2t0 , from Eq.~26! is not well-posed.
It will require some regularization method or an optimization approach. This will not be pur
here. The question of uniqueness will be examined next.

Let M be the class of functionsw(y,t), yPSk , 0<t<T2tk2t0 , such that
~i! w(y,0)50, 0<t,tk ;
and if K is the operator

u~x,t !5Kw5E
0

tE
Sk

EN~x,y,t2s!w~y,s! dsy ds, ~28!

then:
~ii ! u(x,t)PC(V̄1);
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~iii ! u(x,t) is a generalized solution of the system

1

c2~x!

]2u

]t2 2¹2u50, xPV1 , 0,t,

~29!
u~x,t !50, xPV̄1 , 0<t,tk .

~iv! If n1 is the unit normal~pointing intoV1) at x1PSk , the normal derivative ofu at x1 is
given by

]u~x1,t !

]n1
5 lim

xPV1→x1

n1"¹xKw

5w~x1,t !1E
0

tE
Sk

]EN
]n1

~x1,y,t2s!w~y,s!dsyds5w~x1,t !, x1PSk , ~30!

where use is made of the fact that the normal derivative of the Green’s function vanishes
surface.

~v! If n1 is the unit normal to~pointing intoV1) at a pointx1, on S0 , then

]u~x1,t !

]n1
5 lim

xPV1→x1

n1"¹xu50, x1PS0 . ~31!

Remark:For condition~30! to hold the surfaceSk must be sufficiently smooth andw(y,t)
must be at least Ho¨lder continuous.@A similar result involving the Green’s functionE(x,y,t) is
examined in detail in Sec. IV, where sharper results are required.#

One can now examine the uniqueness of the solution to Eq.~26!. If ]nu1 and]nu2 are two
solutions, letv(y,t) be their difference. It follows from Eq.~26! that

Kv50, xPS0 , 0<t<T. ~32!

Hence ifv(y,t) belongs to classM, then it follows thatu5Kv satisfies system~iv!, and boundary
conditions

u1Kv50,
]u

]n
5v, xPSk , 0<t<T2tk2t0 , ~33!

u50,
]u

]n
50, xPS0 , 0<t<T. ~34!

Conditions~33! imply thatv(y,t) generates an incoming wave across the surfaceSk ~produced by
sources inV2). Conditions~34! imply that the surfaceS0 is both a hard and soft surface, whic
in general are incompatible, unlessv[0. This suggests that Eq.~26! is unique in the class o
functionsM.

Once]nu is known onSk , thenu(x,t) for xPSk and 0<t<T2tk2t0 can be obtained from
the following:

u~x,t !5E
0

t

dsE
Sk

dsy EN~x,y,t2s!
]u~y,s!

]ny
2E

0

tE
S0

dsy EN~x,y,t2s!
]u~y,s!

]ny
,

xPSk , tk<t<T2tk2t0 , ~35!

which is derived from Eq.~21! by lettingxPV1 approach the surfaceSk . As a result,u(x,t) and
]nu(x,t) on the surfaceSk can be found from Eqs.~26! and ~35!.
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IV. OUTGOING WAVE CONDITION AND DETERMINATION OF nc ON Sk

Once the values ofu and ]nu ~or at least the leading asymptotic short-time behavior! are
known onSk , the next step is to develop a condition that utilizes this information onSk , to infer
values ofc(x), in particular]nc.

The leading asymptotic terms foru and]nu on Sk will be given as follows:

u~x,t !5H~ t2tk!@U0~x!1~ t2tk!U1~x!1¯#, xPSk , ~36!

]u~x,t !

]n
5d~ t2tk!V0~x!1H~ t2tk!@V1~x!1¯#, xPSk , ~37!

where, as will be seen,U0(x) andV0(x) are not independent, sinceSk is the wave front at time
t5tk . For the present purposes it will be assumed thatU0(x), U1(x) and V1(x) are at least
Hölder continuous, andV0(x) is a Hölder differentiable function ofx on Sk .

It will be assumed that the surface isC2. In particular, if x1 is a point on the surface an
(y1 ,y2 ,y3) is a local Cartesian coordinate system centered atx1 so thatx15(0,0,0), with they3

pointing into the domainV2 in a direction normal to the surface atx1, then the surface will be
described locally by

y35a1y1
21a3y2

21¯ , ~38!

where they1 andy2 axes are along the directions of principal curvature.
Let E(x,y,t) be the fundamental solution of the wave equation for pointsx,yPV̄2 . Hence if

xPV2 , the solutionu(x,t) of the wave equation inV2 , which satisfies the initial condition
u(x,0)5ut(x,0)50 in V̄2 , can be expressed in terms of the Dirichlet and Neumann data onSk by
the relation

u~x,t !52E
0

tE
Sk

E~x,y,t2s!
]u~y,s!

]ny
dsy ds1E

0

tE
Sk

]E~x,y,t2s!

]ny
u~y,s!dsy ds, ~39!

where the normal toSk points intoV2 .
Next, the resulting equation obtained from~39! whenxPV2 approaches a pointx ~sayx1) on

Sk will be sought. Then, this will be used to obtain the relationship between the coefficients
short-time behavior ofu and]nu as expressed by Eqs.~36! and ~37!. This means that the short
time behavior ofE(x,y,t) for a pointx in V2 close to or onSk , and point ay on Sk close tox will
be needed.

Since in the derivation of Eq.~39! only the domainV2 ~but notV1) is involved, the value of
c(x) in V1 is not specified and is free to be chosen. With this in mind, it will be assumed th
order to get the short-time behavior ofE(x,y,t) with x close toyPSk , thatc(x) is defined to be
locally extended intoV1 as aC2 function.

The Green’s function will take the form

E~x,y,t !5
d~ t2t~x,y!!

r~x,y!
1p~x,y,t !, ~40!

wheret(x,y) satisfies the Eikonal equation

u¹t~x,y!u251/uc~x!u2. ~41!

It can be shown that it has the form for small (x,y),

t~x,y!5
ux2yu

Ac~x!c~y!
@12q~x,y!1O~ ux2yu!3#, ~42!
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q~x,y!52
ux2yu2

12 S u¹c~x!u
c~x! D 2

1
1

6 (
j 5k51

3

~yj2xj !~yk2xk!S 1

c

]2c

]xj]xk
D . ~43!

The amplitude factor (1/r) satisfies the transport equation

2¹t"¹r2r¹2t50, ~44!

and is given for smallux2yu, by

r~x,y!54pux2yu@11Qux2yu21¯#, ~45!

whereQ, the term of orderux2yu2 in expression~45!, depends upon the first and second par
derivatives ofc(x), as well as the direction cosines of the vectory2x.

The second term in expression~40! satisfies the system

1

c2~y!

]2p

]t2 2¹2p5d~ t2t~x,y!!¹2S 1

r
2

1

4pux2yu D , ~46!

p~x,y,t !50, t,0. ~47!

Since the term in the Laplacian on the right-hand side of~46! behaves like

S 1

r
2

1

4pux2yu D;2
1

4p
Qux2yu1¯ , ~48!

for ux2yu small, the Laplacian of this quantity has at most a singularity of orderux2yu21 as y
→x. From this it can be deduced that, besides vanishing fort.t(x,y), p(x,y,t) is bounded asy
approachesx.

For y a point onSk , it follows from ~40! that

]E~x,y,t !

]ny
52

d8~ t2t~x,y!!

r~x,y!

]t~x,y!

]ny
2

d~ t2t~x,y!!

@r~x,y!#2

]r~x,y!

]ny
1

]p~x,y,t !

]ny
. ~49!

In terms of local coordinates centered atx15(0,0,0) on Sk and with x5(0,0,x3) and y
5(y1 ,y2 ,y3) a point onSk wherey3 is given by Eq.~38!, it can be shown that

1

r~x,y!

]t~x,y!

]ny
dsy52

F( j 51
2 yj

2S aj1
1

2
a3D1x3S 12

1

2
( j 51

2 a j y j1a3x3D G
4pc~x!@y1

21y2
21~x32a1y1

22a2y2
2!2#

dy1dy2 , ~50!

where cubic and higher order terms are neglected in the numerator, and

a j5
1

c~x!

]c~x!

]xj
, j 51,2,3. ~51!

Similarly it can be shown to the same order that

1

@r~x,y!#2

]r~x,y!

]ny
dsy52

@a1y1
21a2y2

21x3#dy1dy2

4p@y1
21y2

21~x32a1y1
22a2y2

2!2#3/2. ~52!

One is now in a position to letx3 approach zero, and thus obtain the equation correspon
to ~39!, whenx is now onSk . The approach that is employed is the usual procedure that is
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for a double layer potential.16 Because of this, the only modification that is needed is due to
leading step function behavior ofu(x,t) when t approachestk , as is indicated by Eq.~36!. The
critical term in Eq.~39! is the integral

2E
Sk

u~x,t2t~x,y!

@r~x,y!#2

]r~x,y!

]ny
dsy , ~53!

which arises when expression~49! is inserted into~39!. In particular, the portion of]ny
r that is

critical is the component in Eq.~52! involving x3 in the numerator. One first integrates this porti
over a small disk of radiuse and centered at (0,0) in the (y1 ,y2) plane, and then letsx3 approach
zero~through positive values!. Finally the limit e→0 is taken. The integral under consideration
thus

x3E
0

2pE
0

e H~ t2tk2t~x,y!!U0~y!

4p~r 21x3
2!3/2 r dr du, ~54!

where the leading term ofu(y,t) is taken, and polar coordinates (r ,u)

y15r cosu, y25r sinu, ~55!

are introduced. One needs to consider the integral~54! in the time interval 0,c(x)(t2tk)<e.
With t(x,y) given approximately byAr 21x3

2/c(x), U0(y)H(t2tk2t(x,y)) is expanded abou
the pointx15(0,0,0) as follows:

@H~ t2tk2t~x,y!!2H~ t2tk!#U0~x1!1H~ t2tk2t~x,y!!@U0~y!2U0~x1!#1H~ t2tk!U0~x1!.

~56!

Since U0(y) is differentiableuU0(y)2U0(x1)u< constant•r , so that the second term in~56!
poses no problem. The last term in~56! inserted into~54! yields, on lettingx3→0,

E
0

2pE
0

e x3H~ t2tk!U0~x1!

4p~r 21x3
2!3/2 r dr du5

H~ t2tk!U0~x1!

2 F12
x3

Ae21x3
2G→ 1

2
H~ t2tk!U0~x1!,

~57!

as is expected. Insertion of the first term of~56! into ~54! yields the limit, asx3→0,

2
1

4p E
0

2pE
r 0

e x3U0~x1!

~r 21x3
2!3/2r dr du→0, 0,c~x!~ t2tk!<e, ~58!

wherer 0
21x3

25(t2tk)
2c2(x) and the approximationt(x,y)5(r 21x3

2)1/2/c(x) is used.
Thus one obtains the usual result asxPV2→x1 on Sk , namely that the limit of expression

~53! asx→x1 is given by

1

2
u~x1,t !2E

Sk

u~y,t2t~x1,y!

@r~x1,y!#2

]r~x1,y!

]ny
dy, t.tk . ~59!

Henceforth the superscript one forx on Sk will be dropped. The resulting equation corr
sponding to Eq.~39! whenxPSk is

u~x,t !522E
0

tE
Sk

E~x,y,t2s!
]u~y,s!

]ny
dsy ds12E

0

tE
Sk

]E~x,y,t2s!

]ny
u~y,s!dsy ds ~60!
                                                                                                                



n
nction
’s

ding

5055J. Math. Phys., Vol. 43, No. 10, October 2002 Wave front layer stripping approach

                    
for t.tk . Whent,tk , both sides are zero. When bothu(x,t) and]nu(x,t) are known onSk for
tk<t<T2tk2t0 , Eq. ~60! constitutes a nonlinear equation to determinec(x) in V̄2 . A numerical
method could be used to solve this nonlinear equation forc(x).

As an example of how Eq.~60! can be used to determine the normal derivative ofc(x), we
will use an asymptotic expansion approach here. We assume thatc(x) has sufficient smoothness i
a small neighborhood of the boundary, such that the asymptotic expansion of the Green’s fu
in the form ~40! is valid. We notice that Eq.~60! only uses the exterior values of the Green
function, and hence is independent of the velocity in the interior regionV1 , and hence we can
assume thatc(x) is sufficiently smooth over the boundary. We assume that only the lea
coefficients,U0 , U1 , V0 , andV1 of u(x,t) and ]nu(x,t) @as given by Eqs.~36! and ~37!# are
known.

Let x be the point (0,0,0) onSk andy the point (r cosu,r sinu,r2(a1 cos2 u1a2 cos2 u)1¯) on
Sk , where the polar coordinates Eq.~55! are used. It then follows from Eqs.~42!, ~45!, ~50!, and
~51! with x350, that

c~x!t~x,y!5r F12
r

2
~a1 cosu1a2 sinu!1¯G , ~61!

1

r~x,y!
dsy5

1

4p
@11O~r 2!# dr du, ~62!

1

S ]t

]r D 5c~x!@11r ~a1 cosu1a2 sinu!1¯#, ~63!

1

r~x,y!

]t~x,y!

]ny
dsy52

@~a11 1
2 a3!cos2 u1~a21 1

2 a3!sin2 u#r dr du

4pc~x!
, ~64!

1

@r~x,y!#2

]r~x,y!

]ny
dsy52

1

4p
~a1 cos2 u1a2 sin2 u! dr du . ~65!

To obtain the asymptotic results the following result,

E
0

`

d~ t2t~x,y!!r ndr5H~ t !S r nS ]t

]r D
t5t

21 D
5c~x!H~ t !@c~x!t#nF11S n

2
11D c~x!t~a1 cosu1a2 sinu!1O~ t2!G ,

~66!

will be used.
The leading asymptotic form~for small t2tk) of the integral

22E
0

tE
Sk

E~x,y,t2s!
]u~y,s!

]ny
dsy ds ~67!

is obtained by replacing]nu in Eq. ~67! by the asymptotic expression~for small s2tk)

]u~y,s!

]ny
5d~s2tk!FV0~x!1r S ]V0

]x1
cosu1

]V0

]x2
sinu D1O~r 2!G1H~s2tk!@V1~x!1¯ ,

~68!
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and neglecting the contribution toE(x,y,t2s) of p(x,y,t2s) which, since it is bounded and
vanishes fort2s,t(x,y), produces a term ofO(t2tk)

2 in the resulting expression for th
integral ~67!. Thus the leading terms of the integral~67! is given by

2
1

2p E
0

tE
0

2pE
0

`

d~ t2s2t~x,y!!d~s2tk!FV0~x!1r S ]V0

]x1
cosu1

]V0

]x2
cosu D1¯G r dr du ds

2
1

2p E
0

tE
0

2pE
0

`

d~ t2s2t~x,y!!H~s2tk!@V1~x!1¯# dr du ds. ~69!

This can be evaluated using~66!, to give

2c~x!H~ t2tk!@V0~x!1~ t2tk!V1~x!1O~ t2tk!
2#. ~70!

The second integral on the right-hand side of Eq.~60! @on using Eq.~49!# has the explicit form

22
]

]t E0

tE
Sk

d~ t2s2t~x,y!

r~x,y!

]t

]ny
~x,y!u~y,s! dsy ds

22E
0

tE
Sk
H d~ t2s2t~x,y!!

@r~x,y!#2

]r~x,y!

]ny
2

]p~x,y,t2s!

]ny
J u~y,s! dsy ds . ~71!

Replacingu(y,s) by H(s2tk)@U0(x)1O(s2tk)# the leading terms of expression~71! are
given by

1

2pc~x!

]

]t Etk

t E
0

2pE
0

`

d~ t2s2t~x,y!!F S a11
1

2
a3D cos2 u1S a21

1

2
a3D sin2 uGU0~x!r dr du ds

1
1

2p E
tk

t E
0

2pE
0

`

d~ t2s2t~x,y!!@a1 cos2 u1a2 sin2 u#U0~x! dr du ds

which, on using relation~66!, reduces to

c~x!

4

]

]t
$H~ t2tk!~ t2tk!

2@U0~x!~a11a21a3!1O~ t2tk!
3#%

1
1

2
c~x!H~ t2tk!@~ t2tk!U0~x!~a11a2!1O~ t2tk!

2#

5H~ t2tk!F ~ t2tk!c~x!S a11a21
1

2
a3DU0~x!1O~ t2tk!

2G . ~72!

Thus inserting the results of Eqs.~70! and ~72! into the right-hand side of Eq.~60! and Eq.
~36! into the left-hand side of Eq.~60!, one has the following asymptotic result:

H~ t2tk!@U0~x!1~ t2tk!U1~x!1¯#52H~ t2tk!@c~x!V0~x!1~ t2tk!c~x!~V1~x!

2~a11a21 1
2a3!U0~x!!#. ~73!

Equating coefficients oft2tk , one obtains

U0~x!52c~x!V0~x!, ~74!

which is to be expected sinceSk is a wave front att5tk . Equating the coefficients o
(t2tk)H(t2tk) one obtains
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U1~x!52c~x!@V1~x!2~a11a21 1
2 a3!U0~x!#, ~75!

whereU1(x), U0(x), V1(x), c(x), a1 , anda2 are known at the pointx on Sk . Since

a35 lim
xPV2→xPSk

1

c~x!

]c

]x3
, ~76!

it follows that from Eq.~75! one can determine

lim
xPV2→xPSk

]c

]n
, ~77!

at the pointx on Sk . In the practical use of layer stripping one assumes thatc(x), ]nc are known
at the bottom of each layer and using a model ofc(x) which is linear in the direction normal to th
bottom surface, one uses the results of condition~75! to determine]nc at the bottom of the nex
layer @i.e., c(x) is piecewise differentiable in the direction normal to the wave front#.

The process is strongly dependent on good estimates of the wave front surfacesSk , k
51,2,..., which depend upon the value ofc, ]nc on each surfaceSk21 . However one can use a
iterative Newton process to improve the value ofc, ]nc on Sk by using both the values ofc, ]nc
on Sk21 and the derived values ofc, ]nc on Sk .

V. EFFECT OF CAUSTICS

The procedure developed in the previous sections has to be modified considerably
caustics appear. The approach in these sections stresses the formulation of the problem p
in terms of wave fronts at the expense of the rays. However when rays intersect to form ca
the rays must be emphazised instead of the wave fronts. Thus one has to use the Hamilton
system for the bicharacteristics@the rays being the projection ontox5(x1 ,x2 ,x3)] given as fol-
lows:

]xj

]s
5pj ,

]pj

]s
5

1

c

]c21

]xj
, j 51,2,3, ~78!

where the ray parameters is related to the travel time parametert by the relation

c2 dt5ds. ~79!

Even though global ray coordinates (s,u,f) can be used to specify points on the rays, also
caustics and beyond, the local coordinates (x1 ,x2 ,x3) cannot be used to specify the rays
caustics and instead one must use one of the sets (xi ,xj ,pk), (xi ,pj ,pk), or (p1 ,p2 ,p3), where
i , j ,k are distinct numbers belonging to the set 1,2,3, choosing the set of local coordinate
yield a unique point for the rays. This choice depends upon the local structure of the ca
Thus, at a caustic and beyond, one cannot use the asymptotic formulation~36! of the wave
equation that was used in Sec. IV. In addition, once the initial wave front has passed throu
caustic one may end up with multiple wave fronts. This means that the simple formulati
global nested wave front layers cannot be used at caustics and beyond and has to be mo

Because the procedure in Sec. IV involves local analysis in time and space, the bas
behind the method used in Sec. IV to determine the value of the normal derivative ofc, namely
]nc, on a local portion of an adjacent wave front surface, can still be employed. A pos
approach is to use the Maslov Lagrangian formulation,17,18 to determine the asymptotic nature
the field in a neighborhood of the caustic. To get the short-time behavior of the field, one
take the Fourier transform with respect to the time variable,~mapping thet-line into thev-line!
and on setting
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k5v/c0 ,
v2

c2 5k2e~x!, ~80!

reducing the wave equation to the form

¹2u1k2e~x!u50. ~81!

Then one can look for asymptotic solutions of Eq.~81! for large v or k, using the Maslov
precanonical operatorK. In the neighborhood of a caustic point, taken as origin, the asymp
form of the solutionu(x,k) of Eq. ~81! will have the various forms

u~x,k!5E
R
f~x2 ,x3 ,p1!eik(6p1

3
2x1p1)dp1 ,

u~x,k!5E
R
f~x2 ,x3 ,p1!eik(6p1

4
1x2p1

2
2x1p1)dp1 ,

u~x,k!5E
R
f~x2 ,x3 ,p1!eik(6p1

5
1x3p1

3
1x2p1

2
2x1p1)dp1 ,

u~x,k!5E
R2

f~x3 ,p1 ,p2!eik(6p1
2p26p2

3
1x3p2

2
2x2p22x1p1)dp1 dp2 ,

the choice of which depends upon which local coordinate system that can be used to spec
rays in the neighborhood of the caustic. By Fourier transforming back to the time domai
using the result that the near wave front time behaviort can be obtained from the asymptot
behavior for largev or k, one can obtain the proper local small time asymptotic behavior of
wave field u(x,t) that can be used in Eq.~60! of Sec. IV. As can be seen there will be
considerable amount of analysis to estimate the integrals in these expressions. The details a
analysis will be pursued in future work.

VI. SUMMARY

It has been demonstrated in the inverse problem that one can do layer stripping followi
wave front until caustics appear, without resorting to wave splitting. The procedure for obta
the values ofu and ]nu on the surfaceSk ~wave front at timet5tk) from knowledge of the
corresponding values on the surfaceSk21 ~wave front at timet5tk21), has been examined from
a theoretical viewpoint in Sec. III, in order to determine what limitations there are. In ord
investigate how far into the interior of the scattering object one can determinec(x) when the
initial data were measured on the surfaceS0 for a restricted timeT, the actual analysis wa
performed for the regionS0 andSk instead of the curvilinear slab betweenSk21 andSk . By using
the value ofc and ]nc on the bottom surfaceSk21 of the curvilinear slab, one can obtain a
estimate for the value ofc(x) for the top surfaceSk of the curvilinear slab. Then the results of Se
IV can be used to obtain the value of]nc on the top surfaceSk .

In Sec. V an approach is briefly outlined as how to extend the method to the region i
beyond a neighborhood of a caustic. This will require future work to pursue.

One of the advantages of wave-front layer stripping as opposed to planar wave stripp
that it is a more natural numerical procedure in that rays are used to follow the propagat
singularities~the wave front!. Also the procedure to determine the normal derivative ofc from the
asymptotic short-time behavior of the field quantities on an adjacent wave front surface is
simpler.

The procedure to determineu and ]nu on the top surfaceSk from the data on the bottom
surfacesSk21 of the curvilinear slabs needs to be examined further to develop a better num
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approach to the problem. First, Eqs.~26! and ~25! must be modified by taking as the spati
domain of the second integrals, the surfaceSk21 ~instead ofS0) and by replacingt0 by tk21 in the
corresponding time intervals. In additionx in Eq. ~26! must lie onSk21 ~instead ofS0). The
normal derivative of the Green’s function]nE vanishes onSk and Sk21 . @Note that the latter
condition can be relaxed by requiring that the normal derivative only vanishes onSk . In this case,
Eqs.~26! and ~25! would have to be modified accordingly.# Since the equation corresponding
Eq. ~26! is an integral equation of the first kind for the unknown]nu, it should be replaced by a
regularized version for numerical stability.

As a first step in determiningu and]nu on the surfaceSk from knowledge of their values on
the surfaceSk21 , together with knowledge ofc(x) between the two surfacesSk and Sk21 , it
should be noted that their leading termsU0 andV0 in expansions~36! and ~37! are immediately
obtained through ray theory.

In order to determine the remaining portions of the unknownsu and]nu on Sk , it should be
noted that the layer between the surfacesSk andSk21 is very thin, and this allows some approx
mations to be made to simplify the calculations. For a short-time interval beginning with timtk

~the time the wave front inpinges on the surfaceSk), a local parallel plane approximation to th
domain between the two surfaces, and hence, a local expansion for the Green’s function
used.~An even simpler representation is achieved if one uses the formulation where the n
derivative of the Green’s function vanishes onSk only, as mentioned previously!. It may be
possible to extend the results for a longer time interval by including the local curvature o
surfaces.

Even for times much greater thantk the local approximation may give a good approximati
to u and]nu at a pointx on Sk , provided that the values of the data u and]nu on Sk21 are not
too small in a small neighborhood ofx, and at the same time their values outside the neighborh
are not too large. All this has to be quantized by the appropiate analysis. For cases whe
approach is invalid, other methods have to be investigated and employed.
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Direct calculation of thermodynamic quantities
for the Heisenberg model

Go Katoa) and Miki Wadatib)

Department of Physics, Graduate School of Science, University of Tokyo,
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan

~Received 11 September 2001; accepted for publication 15 May 2002!

The XXX Heisenberg model is studied at finite temperature. The free energy is
derived without recourse to thermal Bethe ansatz method and quantum transfer
matrix method. The result perfectly agrees with the free energy derived by thermal
Bethe ansatz method. An explicit expression of the cluster expansion coefficient in
arbitrary order is presented for the first time. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1501444#

I. INTRODUCTION

In a pioneer work,1 Bethe solved the XXX Heisenberg model. The Hamiltonian of the mo
is written as

H~J,h!52J(
j 51

N

~Sj
xSj 11

x 1Sj
ySj 11

y 1Sj
zSj 11

z !12h(
j 51

N

Sj
x1 constant , ~1.1!

whereJ is the coupling constant andh is the external field. The energy of the system is given

EM52hM1(
j 51

M
2J

xj
211

, ~1.2!

whereM is the number of up-spins and the variablesxj are required to satisfy the Bethe ansa
~BA! equation,

S xj1 i

xj2 i D
N

5 )
j 8Þ j

xj2xj 812i

xj2xj 822i
. ~1.3!

It was shown1 that every eigenstate of this model corresponds to a solution of this simultan
equation.

The XXX Heisenberg model is the quantum integrable system. The thermal Bethe a
method~TBA!2 and quantum transfer matrix method~QTM!3–7 are the well-known methods to
derive thermodynamic quantities for quantum integrable systems. TBA was originated by
and Yang,2 who derived the thermodynamics of repulsived-function Bose gas system. Then, o
the assumption of the so-called string hypothesis, Takahashi8 applied TBA to the Heisenberg
model. Recently, some analytical results of thermodynamic quantities using QTM were pre
by Klümper.9,10 Many pieces of the concept with respect to QTM had been introduced before
The equivalence of the results using TBA and QTM was proved by several researchers.9,11–13

Our purpose is to derive the free energy of this system independent of TBA and QTM. I
paper, we use a method which we call a direct method. We start from the string hypothesis.
are no other mathematical assumptions except for the string hypothesis. In other words, us

a!Electronic mail: kato@monet.phys.s.u-tokyo.ac.jp
b!Electronic mail: wadati@phys.s.u-tokyo.ac.jp
50600022-2488/2002/43(10)/5060/19/$19.00 © 2002 American Institute of Physics
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direct method, a problem based on the string hypothesis is solved. On the other hand, TB
method to solve the problem using a definition of nonequilibrium state entropy. As a main
of this paper, the direct method justifies TBA.

The direct method was used for thed-function Bose system.14–17We apply the method to the
Heisenberg model here. We definez andb asz[e22bh andb[1/kBT. The direct method enable
us to express the cluster expansion coefficientsbn in arbitrary order explicitly,

log@zN/2Tr e2bH~J,h!#[ (
n51

`

bnzn, ~1.4!

and, the free energy,

1

N
log@Tr e2bH~J,h!#, ~1.5!

by use of a function which is a solution of a nonlinear integral equation. Thus, we can show
the expression of the free energy perfectly agrees with the results of TBA.11

The outline of this paper is the following. In Sec. II, we derive an explicit expressio
cluster expansion coefficients in all orders. In Sec. III, we prove that the free energy c
expressed in terms of a solution of a nonlinear integral equation. Section IV is devoted
concluding remarks. Technical details of calculations are summarized in Appendices A–H.

II. THE CLUSTER EXPANSION

The string hypothesis is formulated as follows. In the thermodynamic limit, the energy o
Heisenberg model~1.1! can be written as

EM~J,h!52hM1(
n,a

2Jn

~xa
n !21n2 . ~2.1!

Here, the variablesxa
n are determined by

S xa
n1ni

xa
n2ni D

N

5 )
~m,b!Þ~n,a!

Enm~xa
n2xb

m!, ~2.2!

where

Enm~x!5
~x2~n1m!i !~x2un2mu i !
~x1~n1m!i !~x1un2mu i ! )

l 50

min~n,m! S x1~n1m22l !i

x2~n1m22l !i D
2

. ~2.3!

Equation~2.2! is referred to as string center equation. Every eigenstate corresponds to a so
of these simultaneous equations. Taking a logarithm of both sides of~2.2!, we obtain

2N tan21S xa
n

n D 52pI a
n1 (

~m,b!Þ~n,a!
Dn,m~xa

n2xb
m!, ~2.4!

where

Dn,m~x!522 tan21S x

n1mD22~11dnm!tan21S x

un2mu D1 (
l 50

min~n,m!

4 tan21S x

n1m22l D .

~2.5!

From now on, we call~2.4! modified Bethe ansatz~mBA! equation.
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The string hypothesis indicates that the partition function is a sum of the Boltzmann we
with respect to integers~or half integers! $I a

n% which define the energy of the system,

zN/2Tr e2bH~J,h!5(
M

(
$I a

n %

e2bEM~J,h!. ~2.6!

When we take the thermodynamic limit, we can replace the summations over discrete variab
integral,

(
M

E e2bEM~J,h!) dIa
n . ~2.7!

There are some points which we have to consider carefully. The Fermi statistics must be tak
account in this integral. In this case, the exclusion property leads to the conditions thatxa

nÞxb
n and

that a state specified by$xa
n% and a state specified by$xa8

n% which satisfiesxa8
n5xp(a)

n are the same,
wherep is a permutation.

To express a concrete form of~2.7!, we prepare three symbols.
Definition 1: NA denotes the number of elements in a setA.
Definition 2: Q(A) denotes all the patterns of division of a setA. A pattern of division is

represented as a set having elements each of which is a cluster. The cluster is one of the pie
which a setA is divided, and the cluster is regarded as a set. For example, forA5$a,b,c%, Q(A)
means

Q~$a,b,c%!5$$a%,$b%,$c%%,$$a%,$b,c%%,

$$b%,$c,a%%,$$c%,$a,b%%,$$a,b,c%%. ~2.8!

On condition that the domain ofQ(n) is the natural number,nPN, Q(n) is interpreted as
Q($1,2,...,n%).

Definition 3: Q̄(B) denotes all the patterns of division of a setB, when each element ofB is
a set and each pattern of division satisfies the following condition—all the sets which are inc
in each cluster have the same number of elements. For example, we can show fors15$a,b%,
s25$c%, s35$d%,

Q̄~$s1 ,s2 ,s3%!5$$s1%,$s2%,$s3%%,$$s1%,$s2 ,s3%%. ~2.9!

Using the above given symbols, the integral~2.7! can be written explicitly in the following form:

zN/2Tr e2bH~J,h!511 (
n51

`
zn

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821~Nu821!! G
3E U]I

]xU
N,z

e2bE~z! )
u8Pz

dxu8 . ~2.10!

We explain functions,u]I /]xuN,z andE(z) used in this equation, wherezPQ̄(u) anduPQ(n).
The Jacobianu]I /]xuN,z is constructed as follows. First, we consideru uniquely determined by the
condition zPQ̄(u). Second, we make correspondence between each elements of u and two
suffixes (n,a) for the variablesI a

n and xa
n introduced in the string hypothesis. In this case,

conditionNs5n is required. Third, we consider the mBA equation for the variables$I a
n%, $xa

n%,
which are constructed out ofu. Fourth, we introducexu8 , I u8 , whereu8 is an element ofz. Here,
we have constraining conditions;xu85xa

n and I u85I a
n , where (n,a) corresponds tosPu8. Fi-

nally, u]I /]xuN,z is the Jacobian between$xu8% and $I u8% which satisfy, respectively, the mBA
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equation made fromu and the constraining conditions made fromz. Explicit expression of such
Jacobian matrix is given in Eq.~A1!. We show the above-given procedure by an example. For
case,

z5$u1 ,u2%, u15$$1,2%%, u25$$3%,$4%%, ~2.11!

we have

u5$$1,2%,$3%,$4%%, zPQ̄~u!,

2N tan21S xu1

2
D 52pI u1

12D2,1~xu1
2xu2

!,

2N tan21~xu2
!52pI u2

1D1,2~xu2
2xu1

!,

~2p!2U]I

]xU
N,z

5
4N

xu1

2 14

2N

xu2

2 11
2

4N

xu1

2 14 S 2

~xu1
2xu2

!211
1

6

~xu1
2xu2

!219D
22

2N

xu2

2 11 S 2

~xu2
2xu1

!211
1

6

~xu2
2xu1

!219D . ~2.12!

The energyE(z) is expressed in terms of$xa
n% made fromu,

E~z!5(
n,a

2Jn

~xa
n !21n2 . ~2.13!

For the case~2.11!, E(z) is given by

E~z!5
2J32

xu1

2 14
12

2J

xu2

2 11
. ~2.14!

Note that the constraining conditions made fromz have been used.
Now, we show how~2.10! is derived. We notice two important facts. One is that we m

exclude unphysical states from the sum, when the sum is represented as the integral in~2.7!. The
unphysical state means the state corresponding to$xa

n% where some two elements of$xa
n% coincide,

xa
n5xb

n . Those states should be excluded because the norm of the state constructed out$xa
n%

satisfying such a condition is zero. In Eq.~2.10!,

)
u8Pz

~21!Nu821~Nu821!! ~2.15!

are factors which exclude the unphysical states. In expression~2.10!, we add unphysical states i
some terms of series and subtract them in some other terms. Then, the sum of positive ter
negative terms is zero with respect to unphysical states. This mathematical manipulation e
us to write the free energy explicitly like~2.10!. Let us explain this manipulation for the case
z in ~2.11! in detail. The states corresponding toz in ~2.11! are unphysical states. We definez8
5$$1,2%%, $$3%%, $$4%%. z8 corresponds to the results of a string center equation~2.2! which defines
one two-stringx1,2 and two one-stringsx3 x4 . On the other hand,z5$$1,2%%, $$3%, $4%% in ~2.11!
corresponds to the results of the string center equation which satisfyx35x4 . Therefore, the results
corresponding toz are part of the results corresponding toz8. Here, in the sum with respect t
elements inQ̄ ~2.10!, bothz andz8 are summed up. And, the sum of coordinates~2.15! of terms
corresponding to bothz and z8 is zero. Therefore, unphysical states corresponding toz do not
affect the sum in~2.10!. The other important fact is that we must divide the sum by the numbe
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the symmetry. Here, the symmetry means that when$xa
n% is a solution of the mBA equation,$xa8

n%
which satisfies the relationxa8

n5xp(a)
n is also a solution of the mBA equation. In this case, it

necessary to divide the sum by the number of the symmetry because$xa
n% and$xa8

n% correspond to
the same state. In Eq.~2.10!,

F )
sPu

Ns! G Y n! ~2.16!

is a factor for the correction of the sum which takes such symmetry into account.
We have met similar correction factors in the analysis of thed-function Bose gas system. Th

reason for the appearance of the correction factors is common. A detailed proof for thed-function
bose gas system case is given in Sec. 3.1 of Ref. 15.

In order to express the Jacobianu]I /]xuN,z explicitly, we further define three symbols.
Definition 4: MB denotes a number of elements in one of the sets. Here, all the element

set B are sets, and all sets inB have the same number of elements. Then,MB is defined as the
number of elements in one of the sets,

M u5Ns , ~2.17!

wheresPuPzPQ̄(u8) andu8PQ(n).
Definition 5: L(A) denotes all the patterns of connection of a setA. Here, what we call a

pattern of connection satisfies the following two conditions.~1! Any two elements ofA are
connected or not. In other words, there is no multiple connection.~2! There is no closed path in th
connections. Then, a pattern of connection is represented as a set of elements each o
corresponds to a connection. Here, an element corresponding to a connection is a se
consists of two elements connected by the connection. For example, we have

L~$a,b,c%!5B,$$b,c%%,$$c,a%%,$$a,b%%,

$$a,b%,$a,c%%,$$b,a%,$b,c%%,$$c,a%,$c,b%%. ~2.18!

Definition 6: G(@l,A#) is an element ofQ(A), wherelPL(A). In other words,G(@l,A#) is
a pattern of division ofA. The pattern of divisionu satisfies the following conditions;~1! any two
connected elements are in the same set inu, and ~2! elements ofu are larger in number than
elements of any otheru8PQ(A) satisfying~1!. For example, we can show that

G~@$$a,b%%,$a,b,c%#!5$$a,b%,$c%%. ~2.19!

By use of the above three symbols, the Jacobian can be expressed as

~2p!NzU]I

]xU
N,z

5F )
uPz

NuG21

(
lPL~z!

F )
$u,u8%Pl

2NuNu8KMu ,Mu8
~xu2xu8!G

3 )
z8PG~@l,z#!

F (
uPz8

2NuM uN

M u
21xu

2 G , ~2.20!

whereKn,m(x)[dDn,m(x)/dx. A proof of Eq. ~2.20! is given in Appendix A.
At last, we show the explicit expression of the cluster expansion. Taking a logarithm of

sides of~2.10! and rewriting the right-hand side, we get
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log@zN/2Tr e2bH~J,h!#5 (
n51

`
zn

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821~Nu821!! G
3E U]I

]xU
cN,z

e2bE~z! )
u8Pz

dxu8 . ~2.21!

A proof is given in Appendix B. Here,u]I /]xucN,z is the first-order term ofu]I /]xuN,z regarded as
a polynomial with respect to the number of spins,N. From expression~2.21!, the cluster expansion
coefficientbn is given by

bn5
1

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821~Nu821!! G E U]I

]xU
cN,z

e2bE~z! )
u8Pz

dxu8 ,

~2.22!

where the explicit form ofu]I /]xucN,z is

~2p!NzU]I

]xU
cN,z

5F )
uPz

NuG21

(
lPLc~z!

F )
$u,u8%Pl

2NuNu8KMu ,Mu8
~xu2xu8!G (uPz

2NuM uN

M u
21xu

2 .

~2.23!

The symbolLc(A) is defined as follows.
Definition 7:Lc(A) is a subset ofL(A), where any elementlPLc(A) satisfies the condition

NG@l,A#51. For example, we can show that

Lc~$a,b,c%!5$$a,b%,$a,c%%,$$b,a%,$b,c%%,$$c,a%,$c,b%%. ~2.24!

A derivation of the expressionu]I /]xucN,z in ~2.23! is given in Appendix C.

III. THE FREE ENERGY

From Eqs.~2.10! and ~2.21!, we can easily show that

z1/2@Tr e2bH~J,h!#1/N511 (
n51

`
zn

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821~Nu821!! G
3E U]I

]xU
1,z

e2bE~z! )
u8Pz

dxu8 , ~3.1!

whereu]I /]xu1,z meansu]I /]xuN,z in which N is replaced with 1.
Now, we introduce a functionu(x),

u~x![11 (
n51

`

znun~x!, ~3.2!

whereun(x) is given by

un~x![
1

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821~Nu821!! G
3E U]I

]xU
1,z

~x!e2bE~z! )
u8Pz

dxu8 ~3.3!

with the modified Jacobianu]I /]xu1,z(y) defined as
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~2p!NzU]I

]xU
1,z

~y![F )
uPz

NuG21

(
lPL~z!

F )
$u,u8%Pl

2NuNu8KMu ,Mu8
~xu2xu8!G

3 )
z8PG~@l,z#!

F (
uPz8

2NuM u

M u
21~xu2y!2G . ~3.4!

Comparing this definition with~2.20!, it is readily seen thatu]I /]xu1,z5u]I /]xu1,z(0). Then, it is
clear that we can get a relation

@Tr e2bH~J,h!#1/N5u~0!z21/2. ~3.5!

It can be shown~see Appendix D for a proof! that the functionun(x) satisfies the following
recursion relation;

un11~x!5 R
01

F expS 2
2Jb

~y1 i !211D
x2y22i

1

expS 2
2Jb

~y2 i !211D
x2y12i

G
3 (

uPQ~n!

Nu!

n! F )
sPu

2Ns!uNs
~y!G dy

2p i
, ~3.6!

u1~x!511 R
01

F expS 2
2Jb

~y1 i !211D
x2y22i

1

expS 2
2Jb

~y2 i !211D
x2y12i

G dy

2p i
, ~3.7!

wheren is the natural number. Using this recursion relation we obtain a relation

u~x!5z111 R
01

F expS 2
2Jb

~y1 i !211D
x2y22i

1

expS 2
2Jb

~y2 i !211D
x2y12i

G z

u~y!

dy

2p i
. ~3.8!

These results,~3.5! and~3.8!, are the same as those of Ref. 11 in the XXX Heisenberg model li

IV. CONCLUSION

We have shown a method, which we call the direct method, to derive the free energy
XXX Heisenberg model using the BA equation. The cluster expansion coefficient in arb
order is given for the first time. The expression of the free energy perfectly agrees with th
TBA. It is remarkable that the free energy is obtained without recourse to TBA and QTM. O
other hand, there remains a problem. We have started from the string hypothesis in this
Therefore, it is still a challenging problem to derive each cluster expansion coefficient only
the BA equation. This problem is under investigation.

We think, however, that these results have theoretical significance. What we have done
calculate a certain summation using combinatorial argument with mathematical justification
summation may contain a problem which comes from the string hypothesis. On the contrary
solves this problem as follows. We define a nonequilibrium entropy, and minimize the free e
using such entropy. Then, the condition of minimization gives the summation. In other w
TBA entirely relies on the physical definition of the entropy. In this paper, it is proved that the
results by TBA and by the direct method are the same. Therefore, in addition to thed-function
Bose gas, for the XXX Heisenberg model, the direct method gives the mathematical justifi
of TBA. To summarize, it is suggested that TBA can be systematically proved for many
integrable systems using the combinatorial argument presented here.
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APPENDIX A: EXPLICIT FORM OF JACOBIAN zIÕx zN,z

In this appendix, we prove~2.20!. Recall that u]I /]xuN,z is the Jacobian defined forz
PQ̄(u), whereuPQ(n). The Jacobian matrix can be rewritten as follows: the Jacobian m
has the orderNz3Nz , and each element of the matrix is

2p
]I u8
]xu

5H 2M uN

M u
21xu

22 (
u9Þu

Nu9KMu ,Mu9
~xu2xu9! if u5u8

NuKMuMu8
~xu2xu8! if uÞu8,

~A1!

whereu, u8, u9Pz andKn,m(x)[dDn,m(x)/dx.
Here, we generalize the setting of the problem. We defineN3N matrix

An,m5H en2 (
kÞn

ckan,k if n5m

cnan,m if nÞm,

~A2!

where$an,m%, $cn%, and$en% are arbitrary series andan,m is symmetric,an,m5am,n . This matrix
is a generalized form of the Jacobian matrix~A1!. Therefore, what we have to prove becomes t
the determinant ofAn,m is

uAn,mu5F )
n51

N

cnG21

(
lPL~$1,...,N%!

F )
$n,m%Pl

2cncman,mG )
sPG~@l,$1,...,N%#!

F (
nPs

cnenG . ~A3!

First, we prove that each term of the determinantuAn,mu can be considered as a pattern
connectionlPL($1,...,N%). When we regard the determinant as a multi-variable polynomial w
respect to$an,m% and regardan,m as a connection betweenn andm, we can consider each term o
the polynomial as a pattern of connectionl. In other words, we can prove the following two fact
First, there is no multiple connection. That is to say, there is noan,m to the power of 2 or more in
any term of the polynomial. Second, there is no closed path made from connections. That is
there is no productap(1),p(2)ap(2),p(3)¯ap(M21),p(M )ap(M ),p(1) in any term, wherep is a permu-
tation.

To prove these two facts, we use the method of false position. We assume there is a te
has at least one closed path throughM connections. Without loss of generality, the abov
mentioned assumption can be rewritten that there is a producta1,2a2,3¯aM21,MaM ,1 in any term.
Then, we introduce a matrixAn,m8 such that

An,m8 55
2 (

kÞn
ckan,k if n5m<M

en2 (
kÞn

ckan,k if n5m.M

0 if n<M,m or m<M,n

cnan,m other.

~A4!

Now, we regarduAn,m8 u as a multi-variable polynomial with respect to$an,m%. From the definition
of determinant, it is easily shown that the term with a producta1,2a2,3¯aM21,MaM ,1 in uAn,mu has
the same coefficient as a term with such product inuAn,m8 u. However, uAn,m8 u is identically 0
because the matrixAn,m8 is linearly dependent. Therefore, there is no term containing a pro
a1,2a2,3¯aM21,MaM ,1 . Substituting 2 forM, we can prove that there is noan,m to the power of 2
or more in any term of the polynomial. Then, we can consider each term of the matrixuAn,mu as
a pattern of connectionl.
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Second, we find where a term considered as a pattern of connection is formed. Fro
definition, we can write the determinantuAn,mu as

uAn,mu5 (
pPPN

sgnp•)
n51

N

An,p~n! , ~A5!

wherePN is a permutation group with respect to$1,...,N%. It can be shown that any term consid
ered as a pattern of connection is in an expansion of a product only in the case wherep is the
identity permutation. The following is a proof of the fact by the method of false position. If th
is such term in the case wherep is not the identity permutation, there existn0 andl 0 which satisfy
pl 0(n0)5n0 , pl(n0)Þn0 and l 0Þ0, wherel 0. l and pm(n) means thatp operates onn for m
times,p(p(¯p(n)¯)). Therefore, we can rewrite)n51

N An,p(n) as

F )
l 50

l 021

cpl ~n0!apl ~n0! ,pl 11~n0!G )
nÞpl ~n0!

An,p~n! . ~A6!

This term clearly has a closed path, and conflict with the definition of thep.
Finally, we can rewriteuAn,mu as follows. We expand

)
n51

N

An,n , ~A7!

and regard it as a multivariable polynomial with respect to$an,m%. uAn,mu is a sum of terms which
are in this polynomial and can be considered as a pattern of connection. This means that th
has no multiple connection and no closed path. This sum means the right-hand side of~A3!.

APPENDIX B: A PROOF OF „2.21…

In this appendix, we prove~2.21! from ~2.10!.
We defineZn by

zN/2Tr e2bH~J,h![11 (
n51

`

Znzn. ~B1!

From ~2.10! we get

Zn5
1

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821~Nu821!! G E U]I

]xU
N,z

e2bE~z! )
u8Pz

dxu8 ,

~B2!

whereu]I /]xuN,z is the Jacobian defined forz. It is convenient to introducef (z) as

f ~z![E U]I

]xU
cN,z

e2bE~z! )
u8Pz

dxu8 . ~B3!

Using this function and relation~C1! proved in Appendix C, we can rewriteZn as

Zn5
1

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821~Nu821!! G (
jPQ~z!

)
z8Pj

f ~z8!. ~B4!

We also definebn by
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logF11 (
n51

`

ZnznG[ (
n51

`

bnzn. ~B5!

We can easily show the following relation betweenbn andZn :

bn5
1

n! (
uPQ~n!

~Nu21!! ~21!Nu21 (
sPu

Ns!ZNs
. ~B6!

Substituting~B4! for Zn in ~B6!, we get

bn5
1

n! (
uPQ~n!

~Nu21!! ~21!Nu21 )
sPu F (

u8PQ~s!
F )

s8Pu8
Ns8! G

3 (
zPQ̄~u8!

F )
u9Pz

~21!Nu921~Nu921!! G (
jPQ~z!

)
z8Pj

f ~z8!G
5

1

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821~Nu821!! G
3 (

jPQ~z!
F )

z8Pj

f ~z8!G (
hPQ~j!

~Nh21!! ~21!Nh21

5
1

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821~Nu821!! G f ~z!. ~B7!

In the first equality, we have only performed the substitution. In the second equality, we have
the following manipulation. We regard each side of the equality as the sum with respe
elements in a set which satisfies some conditions. Therefore, we may change the order
sums. Here, we show a simple example of ‘‘change of order,’’

(
n51

N

(
m51

n

f ~$n,m%!5 (
m51

N

(
n5m

N

f ~$n,m%!. ~B8!

Similar to this example, both sides of the second equality are the sum of the same functio
respect to elements in the same set. In the third equality, we have simplified the last term
left-hand side using a relation,

(
uPQ~s!

~Nu21!! ~21!Nu215dNs,1 . ~B9!

Finally, combining~B1!, ~B3!, ~B5!, and~B7! we arrive at Eq.~2.21!.

APPENDIX C: THE STRUCTURE OF THE JACOBIAN zIÕx zN,z

In this appendix, we prove

U]I

]xU
N,z

5 (
jPQ~z!

)
z8Pj

U]I

]xU
cN,z8

~C1!

and Eq.~2.23! from Eq.~2.20!. We here repeat thatu]I /]xucN,z is the first-order term ofu]I /]xuN,z

with respect toN.
Equation~2.20! can be rewritten as
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~2p!NzU]I

]xU
N,z

5 (
jPQ~z!

)
z8Pj

F F )
uPz8

NuG21

3 (
lPLc~z8!

F )
$u,u8%Pl

2NuNu8KMu ,Mu8
~xu2xu8!G (

uPz8N

2NuM u

M u
21xu

2G . ~C2!

In this equality, we have changed the order of the sums. We can easily show the relation~2.23!
from this expression. Then, Eqs.~C2! and ~2.23! prove ~C1!.

APPENDIX D: A PROOF OF „3.6… AND „3.7…

In this appendix, using the mathematical induction we prove the relations with respe
un(x), ~3.6! and ~3.7!. The definition ofun(x) is given in Eq.~3.3!.

We can change the right-hand side of~3.7! into

E 2

11~x2y!2 expS 2
2Jb

y211D dy

2p i
. ~D1!

This is the same as the definition ofu1(x). Thus, we have shown the relation~3.7!.
We suppose~3.6! and~3.7! hold for 1<n,n0 , wheren0 is a natural number. For simplicity

n0 is merely written asn in what follows. Then, the functionum(x) has poles only atx562i , and
satisfies limuxu→`um(x)5dm,1 , where 1<m<n. By use of these two properties, the right-ha
side of ~3.6! becomes

R
01

F expS 2
2Jb

~y1 i !211D
x2y22i

1

expS 2
2Jb

~y2 i !211D
x2y12i

G (
uPQ~n!

Nu!

n! F )
sPu

2Ns!uNs
~y!G dy

2p i

5 (
uPQ~n!

Nu!

n! E
2`

` F)sPu2Ns!uNs
~y2 i !

x2y2 i
2

)sPu2Ns!uNs
~y1 i !

x2y1 i
GexpS 2

2Jb

y211D dy

2p i

2 (
uPQ~n!

Nu!

n! E
C1

)sPu2Ns!uNs
~y!

x2y22i
expS 2

2Jb

~y1 i !211D dy

2p i

1 (
uPQ~n!

Nu!

n! E
C2

)sPu2Ns!uNs
~y!

x2y12i
expS 2

2Jb

~y2 i !211D dy

2p i
. ~D2!

In this equality we have changed the path of integration. BothC1 and C2 are the paths of
integration which counterclockwise surround the regionIy.0. When these paths are in th
neighborhood of real axis,C1 passes above the real axis andC2 passes below the real axis. W
separate~D2! into two parts, and calculate them separately.

First, we consider the first term of~D2! which is rewritten as

(
uPQ~n!

Nu!

n! E
2`

`

(
s561

s)sPu2Ns!uNs
~y2si!

s2~y2x!i
expS 2

2Jb

y211D dy

2p
. ~D3!

The integral diverges in cases that we do not sum up with respect tos. However, the sum turns ou
not to play an important role in the following calculation. Hence, to shorten the expression
symbol Ss561 is omitted for a while. Now, by use of relation~E1! proved in Appendix E, Eq.
~D3! is rewritten as
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1

n! E2`1sd i

`1sd i dy

2p (
uPQ~n!

)
sPu

F 2 (
u8PQ~s!

F )
s8Pu8

Ns8! G (
zPQ̄~u8!

F )
u9Pz

~21!Nu921
~Nu921!!

Nu9
G

3F )
u9Pz

E
2`

` dxu9
2p G (

lPLc~z!
F )

$u9,u-%Pl

2Nu9Nu-KMu9 ,Mu-
~xu92xu-!G

3 (
u9Pz

2Nu9M u9

M u9
2

1~xu92y1si!2

s expS 2bS 2J

y211
1E~z! D D

s2~y2x!i
G . ~D4!

On condition that we take a limitd→0 andM u51, 1/(M u
21(xu2y1si)2) yields a pole on the

real axis with respect to the variabley. To detour the pole on the real axis and symmetrize
integral paths, we use the relation~F1! proved in Appendix F. Then,~D4! becomes

1

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u1$n11%!

F )
u8Pz

~21!Nu821
~Nu821!!

Nu8
G Nun11

~Nun11
21!!

3F (
z8PQ~Nun11

21!

BNz8 )
u8Pz8

~Nu821!! G Esym
F )

u8Pz

dxu8
2p G (

lPLc~z!

se2bE~z!

s2~xun11
2x!i

3F )
$u8,u9%Pl, u8,u9Þun11

C~u8,u9!GF )
$un11 ,u8%Pl

E~un11 ,u8!G . ~D5!

Here, we assume the relation$n11%Psn11Pun11Pz. We also use this symbol in the same sen
as in~D12!, ~D19!, and~D20!. The constantBn in ~D5! is known as the Bernoulli number and
determined by

(
n50

`
Bn

n!
xn[

x

12e2x . ~D6!

For example, the first fewBn’s are

B051, B15 1
2, B25 1

6, B350, B452 1
30, ¯ . ~D7!

The symbol*sym in ~D5! indicates that each path of integration symmetrically avoids poles on
real axis. Because all the poles on the real axis have the form 1/(xu2xu8), we can explicitly write
*sym as

E
sym

)
n51

N

dxn[
1

N! (
$pPPN%

)
n51

N F E
2`1nd i

`1nd i

dxp~n!G . ~D8!

The functionsC(u,u8) andE(u,u8) are defined by

C~u,u8![2Nu ,Nu8KMu ,Mu8
~xu2xu8!, ~D9!

E~u,u8![2~Nu21!Nu8KMu ,Mu8
~xu2xu8!2Nu8KMu21,Mu8

~xu2xu82si!

2
2Nu8M u8

M u8
2

1~xu2xu81s~M u22!i !2 . ~D10!
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Note here that the second term of~D10! is 0 for E(u,u8) used in~D5! because of the relation
M un11

51. Then, by use of the relation

(
uPQ~n!

BNu )sPu
~Ns21!! 5

n!

n11
, ~D11!

which is easily shown,~D5! becomes

1

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u1$n11%!

F )
u8Pz

~21!Nu821
~Nu821!!

Nu8
G 1

Nun11

E
sym

F )
u8Pz

dxu8
2p G

3 (
lPLc~z!

sNun11
e2bE~z!

s2~xun11
2x!i F )

$u8,u9%Pl,u8,u9Þun11

C~u8,u9!GF )
$un11 ,u8%Pl

E~un11 ,u8!G .

~D12!

Changing the order of the sums, this expression becomes

1

~n11!! (
uPQ~n11!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821
~Nu821!!

Nu8
G E

sym
F )

u8Pz

dxu8
2p G

3 (
lPLc~z!

(
u0Pz,Mu0

51

sNu0
e2bE~z!

s2~xu0
2x!i F )

$u8,u9%Pl,u8,u9Þu0

C~u8,u9!GF )
$u0 ,u8%Pl

E~u0 ,u8!G .

~D13!

Thus, using the above-given relations we have shown that~D3! is expressed as~D13!.
Second, we write the sum of the second and third terms of~D2!,

2 (
s561

s (
uPQ~n!

Nu!

n! E
Cs

)sPu2Ns!uNs
~y!

2s2~y2x!i
expS 2

2Jb

~y1si!211D dy

2p
, ~D14!

whereC61 meansC6 . In the following change of the expressions, the sum with respect tos does
not play an important role. This situation is similar to the one for~D3!. Then, the symbolSs561

will be also omitted for a while. Using relation~E1!, we have from~D14!,

2
1

n! ECs

dy

2p (
uPQ~n!

)
sPu

F 2 (
u8PQ~s!

F )
sPu8

Ns8! G (
zPQ̄~u!8

F )
u9Pz

~21!Nu921
~Nu921!!

Nu9
G

3F )
u9Pz

E
2`

` dxu9
2p G (

lPLc~z!
F )

$u9,u-%Pl

2Nu9Nu-KMu9 ,Mu-
~xu92xu-!G

3 (
u9Pz

2Nu9M u9

M u9
2

1~xu92y!2

s expS 2bS 2J

~y1si!211
1E~z! D D

2s2~y2x!i
G . ~D15!

We use a relation,
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E
Cs

dy f~y! )
sPu

F E
2`

` dxs

2p

2Ns f s~xs!

Ns
21~y2xs!2G

5E
Cs

dy f~y1msi! )
sPu

F E
2`

` dxs

2p

2Ns f s~xs!

Ns
21~y2xs1msi!2G1 (

n51

m21 E
Cs

dy f~y1nsi!

3F )
sPu

E
2`

` dxs

2p

f s~xs!

Ns
21~y2xs1nsi!22 )

sPu
F E

2`

` dxs

2p

2Ns f s~xs!

Ns
21~y2xs1nsi!2

2d~n11, Ns! f s~y2si!G G , ~D16!

wheref s(x) and f (x) are analytic functions in the regions21,Ix<0 and 0,Ix<m in case of
s51 ~0<Ix,1 and 2m<Ix,0 in case ofs521! respectively, and maxsPuNs5m. Then,
~D15! becomes

1

n! (
uPQ~n!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821
~Nu821!!

Nu8
G (

u8Pz

Nu8~21!Nu821

~Nu821!!

3F (
u9PQ~Nu8!

)
s9Pu9

~21!Ns921~Ns921!! G E
Cs

dxu8
2p F )

u9Pz,u9Þu8
E

2`

` dxu9
2p G

3 (
lPLc~z!

s expF2bS E~z!1
2J

~xu81sMu8i !
211

1
2JMu8

~xu82si!21M u8
2 2

2JMu8

xu8
2

1M u8
2 D G

~M u811!s2~xu82x!i

3F )
$u9,u-%Pl,u9,u-Þu8

C~u9,u-!G )
$u8,u9%Pl

F2Nu8Nu9KMu8 ,Mu9
~xu82xu92si!

2
2Nu9M u9

M u9
2

1~xu82xu91s~M u821!i !2G . ~D17!

We point out that in this case the first term of the right-hand side in~D16! is 0 because there is n
pole inside~outside! the path of integrationC1 (C2) with respect toy including the pointuyu
5`. Then, using a simple relation(uPQn

)sPu(2)Ns21(Ns21)!5dn,1 , we get from~D17!,

1

n! (
uPQ~n!

F )
sPu

Ns! G (
s0Pu

(
zPQ̄~u2s0!

F )
u8Pz

~21!Nu821
~Nu821!!

Nu8
G E

2`1sd i

`1sd i dxu0

2p

3F )
u8Pz

E
2`

` dxu8
2p G (

lPLc~z1u0!
1

s expF2bS E~z!1
2J~M u0

11!

xs0

2 1~M u0
11!22

2JMu0

xs0

2 1M u0

2 D G
~M u0

11!s2~xs0
2x!i

3F )
$u8,u9%Pl,u8,u9Þu0

C~u8,u9!G
3 )

$u0 ,u8%Pl
F2Nu8KMu0

,Mu8
~xu0

2xu82si!2
2Nu8M u8

M u8
2

1~xu0
2xu81s~M u0

21!i !2G . ~D18!
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where u0[$s0%. Here, we have changed the path of integration fromCs to 2`1sd i→`
1sd i , because there is no pole atuxu0

u→`. In Eq. ~D18!, when we take a limitd→0 andM u

5M u0
11, the last term contains a pole on the real axis with respect toxu . Symmetrizing by use

of ~F1! the integral paths which avoid the pole on the real axis, we obtain from~D18!,

1

n! (
uPQ~n11!,Nsn11

Þ1
F )

sPs
Ns! G (

zPQ̄~u!
F )

u8Pz

~21!Nu821
~Nu821!!

Nu8
G Nun11

Nsn11
~Nun11

21!!

3F (
u8PQ~Nun11

21!

BNu8 )
s8Pu8

~Ns821!! G Esym
F )

u8Pz

dxu8
2p G (

lPLc~z!

seE~z!

M un11
s2~xun11

2x!i

3F )
$u8,u9%Pl, u8,u9Þun11

C~u8,u9!GF )
$un11 ,u8%Pl

E~un11 ,u8!G . ~D19!

By use of~D11!, ~D19! is written as

1

n! (
uPQ~n11!,Nsn11

Þ1
F )

sPu
Ns! G (

zPQ̄~u!
F )

u8Pz

~21!Nu821
~Nu821!!

Nu8
G 1

Nsn11
Nun11

3E
sym

F )
u8Pz

dxu8
2p G (

lPLc~z!

sNun11
eE~z!

M un11
s2~xun11

2x!i

3F )
$u8,u9%Pl,u8,u9Þun11

C~u8,u9!GF )
$un11 ,u8%Pl

E~un11 ,u8!G . ~D20!

Changing the order of the summations, this expression becomes

1

~n11!! (
uPQ~n11!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821
~Nu821!!

Nu8
G E

sym
F )

u8Pz

dxu8
2p G

3 (
lPLc~z!

(
u0Pz,Mu0Þ1

sNu0
eE~z!

M u0
s2~xu0

2x!i F )
$u8,u9%Pl,u8,u9Þu0

C~u8,u9!GF )
$u0u8%Pl

E~u0 ,u8!G .

~D21!

From the above-mentioned relations we see that~D14! is equal to~D21!.
Both parts of the right-hand side of~D2! are replaced with~D12! and ~D21!. Then, the

right-hand side of~D2! is expressed as

1

~n11!! (
uPQ~n11!

F )
sPu

Ns! G (
zPQ̄~u!

F )
u8Pz

~21!Nu821
~Nu821!!

Nu8
G E

sym
F )

u8Pz

dxu8
2p G

3 (
lPLc~z!

(
u0Pz

(
s561

sNu0
eE~z!

M u0
s2~xu0

2x!i F )
$u8u9%Pl,u8,u9Þu0

C~u8,u9!GF )
$u0u8%Pl

E~u0 ,u8!G .

~D22!

Using Eq.~G1! proved in Appendix G, we can confirm the definition ofun11(x), which is the
right-hand side of~3.6!.
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APPENDIX E: AN EXPRESSION OF u n„x …

In this appendix, we prove the following expression ofun(x),

(
uPQ~n!

Nu!

n! )
sPu

2Ns!uNs
~y!

5
1

n! (
uPQ~n!

)
sPu F2 (

u8PQ~s!
F )

s8Pu8
Ns8! G (

zPQ̄~u8!
F )

u9Pz

~21!Nu921~Nu921!! G
3E U]I

]xU
c1,z

~y!e2bE~z! )
u8Pz

dxu8G . ~E1!

Here, the definition ofun(x) is ~3.3!, and the definition ofu]I /]xuc1,z(y) is

~2p!NzU]I

]xU
c1,z

~y![F )
uPz

NuG21

(
lPLc~z!

F )
$u,u8%Pl

2NuNu8KMu ,Mu8
~xu2xu8!G

3 (
uPz

2NuM u

M u
21~xu2y!2 . ~E2!

Substituting~3.3! for uNs(y) on the left-hand side of~E1! and using a relation

U]I

]xU
1,z

~y!5 (
jPQ~z!

)
z8Pj

U]I

]xU
c1,z8

~y!, ~E3!

which is proved in the same way as~C1!, we can show that the left-hand side of~E1! is calculated
as

(
uPQ~n!

Nu!

n! )
sPu F2 (

u8PQ~s!
F )

s8Pu8
Ns8! G (

zPQ̄~u8!
F )

u9Pz

~21!Nu921~Ns921!! G
3 (

jPQ~z!
F )

z8Pj
E U]I

]xU
c1,z8

~y!e2bE~z8! )
u8Pz

dxu8G G
5

1

n! (
uPQ~n!

F (
u8PQ~Nu!

Nu8! ~21!Nu8G )
sPu F (

u8PQ~s!
F )

s8Pu8
Ns8! G

3 (
zPQ̄~u8!

F )
u9Pz

~21!Nu921~Nu921!! G E U]I

]xU
c1,z

~y!e2bE~z! )
u8Pz

dxu8G . ~E4!

In this equality, we have changed the order of the sums. Using a relation

(
uPQ~n!

Nu! ~21!Nu5~21!n ~E5!

for simplification of the first term of~E4!, we obtain the right-hand side of~E1!.
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APPENDIX F: SYMMETRIZATION OF THE PATHS OF INTEGRALS

In this appendix, we prove a relation,

E
2`1d i

`1d i

dx f0~x!)
n51

N F E
2`

` dyn

2p i

1

yn2x
f n~yn!G

5 (
s#$1,...,N%

BNs
E

sym
f 0~x!F )

nPs
f n~x!GF )

nP$1,...,N%2s

1

yn2x
f n~yn!

dyn

2p i Gdx. ~F1!

Here, the definitions ofBn and*sym are in~D6! and~D8!, respectively, and we assume thatf n(x)
is an analytic function on the real axis.

The paths of integrations on the right-hand side of~F1! are changed into ones on the left-ha
side of~F1!. In other words, symmetrical paths of integrations are changed into ones which
the relationIyn,Ix. Then, the right-hand side of~F1! becomes

(
s#$1,...,N%

F (
m50

Ns

~21!Ns2m
Ns!

~Ns2m!!m! F (
l 50

N2Ns ~ l 1Ns2m!!

l !

~N2Ns!!

~N2m11!! GBmG
3E

2`1d i

`1d i

dx f0~x!F )
nPs

f n~x!G )
nP$1,...,N%2s

F E
2`

` dyn

2p i

1

yn2x
f n~yn!G . ~F2!

Using the following two relations which are easily shown,

(
l 50

n
~ l 1m!!

l !
5

~n1m11!!

n! ~m11!
, ~F3!

(
m50

n

~21!n2m
n!

~n2m11!!m!
Bm5dn,0 ~F4!

for ~F2!, we obtain the the left-hand side of~F1!.

APPENDIX G: ALTERNATIVE REPRESENTATION OF THE MODIFIED JACOBIAN

In this appendix, we show that

~2p!NzU]I

]xU
1,z

~y!5F )
uPz

NuG21

(
lPLc~z!

(
uPz

(
s51,21

sNu

sMu2~xu2y!i

3F )
$u8,u9%Pl u8,u9Þu

C~u8,u9!GF )
$u,u8%Pl

E~u,u8!G ~G1!

is an alternative representation of the modified Jacobian~3.4!. Here,C(u,u8) and E(u,u8) are
defined in~D9! and ~D10!, respectively.

We can rewrite~3.4! as
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~2p!NzU]I

]xU
1,z

~y!5F )
uPz

NuG21

(
lPLc~z!

(
uPz F )

$u8,u9%Pl u8,u9Þu

C~u8,u9!G 2NuM u

M u
21~xu2y!2

3 (
z8#$u8u$u,u8%Pl%

1

Nz811 F )
u8P$u8u$u,u8%Pl%2z8

C~u,u8!G
3F )

u8Pz8

2Nu8M u8

M u8
2

1~xu82y!2G
5F )

uPz
NuG21

(
lPLc~z!

(
uPz

(
s51,21

sNu

sMu2~xu2y!i F )
$u8,u9%Pl u8,u9Þ0

C~u8,u9!G
3 )

$u,u8%Pl
FC~u,u8!1

2Nu8M u8

M u8
2

1~xu82xu2sMu!2G . ~G2!

In the first equality, we have changed the order of the sums. In the second equality, we hav
the relation~H1! proved in Appendix H. Applying a relation

KMu ,Mu8
~xu2xu8!2

2M u8

M u8
2

1~xu82xu2sMui !2 5KMu21,Mu8
~xu2xu82si!

1
2M u8

M u8
2

1~xu2xu81s~M u22!i !2 ~G3!

to ~G2!, we obtain the right-hand-side of~G1!. In relation~G3!, it is supposed thats is 61.

APPENDIX H: A PROOF OF A FRACTIONAL RELATION

In this appendix, we prove

(
n51

N

(
s#$1,...,N%2$n%

1

N2Ns
F )

mPs
cmGF )

mP$1,...,N%2s

2amdm

am
2 1~y2xm!2G

5 (
s561

(
n51

N
sdn

san2~xn2y!i )
mÞn

Fcm1
2amdm

am
2 1~xm2xn2sani !2G , ~H1!

wherean , cn, dn, xn , andy are arbitrary numbers.
We first prove a relation

15 (
n51

N

)
mÞn

smam2~xm2y!i

~smam2snan!2~xm2xn!i
. ~H2!

We regard the right-hand side as a polynomial of degreeN21 with respect toy. It is clear that this
relation holds on theN pointsy5xn1snani . Therefore, this equation is nothing but an identic
equation. Dividing both sides of this identical equation byPn@an2sn(xn2y) i #dn

21, we get

)
n

sndn

snan2~xn2y!i
5 (

n51

N
sndn

snan2~xn2y!i )
mÞn

smdm

~smam2snan!2~xm2xn!i
. ~H3!

Here, we restrict thatsn is 61. The sum of each side of this equation with respect to$sn% gives
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)
n

2andn

an
21~y2xn!2 5 (

s561
(
n51

N
2dn

san2~xn2y!i )
mÞn

2amdm

am
2 1~xm2xn2sani !2 . ~H4!

We are in a position to prove the main issue of this appendix. Using~H4! for the left-hand side of
~H1!, we get

(
s561

(
n51

N
sdn

san2~xn2y!i (
s#$1,...,N%2$n%

F )
mPs

cmGF )
m#$1,...,N%2$n%2s

2amdm

am
2 1~xm2xn2sani !2G .

~H5!

Expanding the right-hand side of~H1!, we also get~H5!. This completes a proof of~H1!.
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10A. Klümper, Z. Phys. B: Condens. Matter91, 507 ~1993!.
11M. Takahashi, preprint cond-mat/0010486 and ISSP Technical Report No. A3579, 2000.
12M. Takahashi, M. Shiroishi, and A. Klu¨mper, J. Phys. A34, L187 ~2001!.
13A. Kuniba, K. Sakai, and J. Suzuki, Nucl. Phys. B525, 597 ~1998!.
14G. Kato and M. Wadati, Phys. Rev. E63, 036106~2001!.
15G. Kato and M. Wadati, J. Math. Phys.42, 4883~2001!.
16G. Kato and M. Wadati, Chaos, Solitons Fractals12, 993 ~2001!.
17M. Wadati and G. Kato, J. Phys. Soc. Jpn.70, 1924~2001!.
                                                                                                                



ility

stems
-
many-

namic
this

tistics

elated

rities
lized

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 10 OCTOBER 2002

                    
Extensive form of equilibrium nonextensive statistics
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It is argued that, in nonextensive statistical mechanics with Tsallis entropy, the
factorization of compound probability over subsystems is a consequence of the
existence of thermodynamic equilibrium in the composite system and should be
respected by all exact calculations concerning equilibrium subsystems. Using non-
additive energy satisfying this factorization, we propose an additive formalism of
nonextensive statistical mechanics with additiveq-deformed physical quantities
and exponential distributions. This formalism leads to exact quantum gas distribu-
tions different from those given by factorization approximation with additive en-
ergy. The fermion distribution of the present work shows similar characteristics to
the distribution of strongly correlated electrons given by numerical analysis with
the Kondo t-J model. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1500424#

I. INTRODUCTION

In this paper we will discuss some problems of nonextensive statistical mechanics~NSM!
relevant to the factorization of compound probability into the product of single body probab

r5 )
n51

N

rn , ~1!

whereN is the number of subsystems in the system of interest,r is theq-exponential distribution
~QED!: r}@12(12q)bH#1/(12q) (@ .#>0), as given by the maximization of Tsallis entropySq

52Tr(r2rq)/(12q) ~Boltzmann constantkB51 and q.0! under some constraints.1–3 This
factorization Eq.~1! has been viewed as a result of the independence of noninteracting subsy
having additive energy, just as in Boltzmann–Gibbs statistics~BGS! supposing short-range inter
actions, and caused confusion in some theoretical studies of NSM and its applications to
body problems. On the basis of a new idea relating Eq.~1! to thermodynamic equilibrium, we will
argue that the confusion can be avoided if we introduce suitable nonadditive thermody
variables satisfying Eq.~1!. Some theoretical consequences for quantum distributions of
‘‘equilibrium version’’ of NSM will be studied.

Due to the necessity of defining additive average value of some extensiveq-deformed ther-
modynamic variables, the discussions will be made within the formalism of incomplete sta
~IS! with Tr rq51 and normalized averagex̄5Tr rqx.3 The reader will find that the quantum
distributions of IS indeed show some particular properties already noticed with strongly corr
electrons.

II. ABOUT INCOMPLETE NORMALIZATION

IS as an alternative version of NSM was originally motivated by some theoretical peculia
in the last Tsallis version of NSM based on the conventional normalization and unnorma
expectations.3

a!Electronic mail: awang@ismans.univ-lemans.fr
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The basic assumption of IS is that our knowledge about physical systems is in general i
plete due to unknown space–time correlations or the effects of known interactions which c
be exactly described. In this case, probability distributions are incomplete, i.e., Trr5QÞ14 ~or
( i 51

w pi5Q wherew is only the number of accessible states in phase space!. One can only write
Tr F(r)51 whereF is a certain function ofr. In the case of complete or approximately comple
distribution ~such as in BGS!, F is an identity function. Recently, in order to overcome some
the theoretical difficulties of NSM in keeping the framework prescribed by Tsallis entropy
proposed3 F(r)5rq so that

Tr rq51, ~2!

whereq is incompleteness index.3 Sincer,1, we have to setqP@0,̀ #. q50 should be avoided
because it leads tor50 for all states. We note that Eq.~2! has been successfully employed
deduce some power laws based on Re´nyi’s entropy.5 This kind of incomplete normalizationis
possible whenever the phase space is partially known or accessible. With a fractal or chaotic
space, e.g., a complete calculation of probability becomes, in general, impossible. In this s
plausible justification of Eq.~2! may be inspired by a work of Tsallis6 discussing nonadditive
energy and probability distributions on fractal supports, although at that stage the work w
connected to anomalous normalization like Eq.~2!. In that work, considering some simple se
similar fractal structures~e.g., Cantor set!, one can obtain

(
i 51

W FVi~k!

V~0! G
df /d

51, ~3!

whereVi(k) may be seen as the segments of the fractal structure at a given iteration of ork,
V(0) a characteristic volume of the fractal structure embedded in ad-dimension Euclidean space
df5 ln n/ln m is the fractal dimension,n the number of segments replacing a segment of
precedent iteration,m the scale factor of the iterations, andW5nk the total number of segment
at thekth iteration. If we suppose that the fractal structure withk→` is a phase space containin
homogeneously distributed points, theexact microcanonical probability distributionof the kth
iteration can be defined as

pi5
Vi~k!

V
5

Vi~k!

( i
W Vi~k!

whereV is the total volume of the phase space. This distribution obviously sums to one
problem is thatV is an indefinite volume ask→` and impertinent for exact probability definition
In addition,V is not differentiable and contains inaccessible points. Thus exact summationV
would be impossible. Now if we definepi5Vi(k)/V0 as a physical or effective distribution, the
we have( i 51

W pi
df /d

@V0 /V(0)#df /d51, whereV0 is a completely accessible and infinitely diffe
entiable supporton which the calculation ofpi is possible. If we chooseV05V(0), we canwrite
Eq. ~2! with q5df /d. The conventional normalization( i 51

W pi51 can be recovered whendf

5d.
The above-given example is only a case of equiprobable distribution on simple fractal

ture, but it illustrates very well the possibility that, in complex cases, a physical probability
not sum to one and may sum to unity only through a kind of power normalization, which, pert
and useful for incomplete distributions, is consistent with the discussions of Ref. 6 on the
calculation and the information consideration in porous structures.

III. FACTORIZATION OF COMPOUND PROBABILITY AND THERMODYNAMIC
EQUILIBRIUM

In NSM, there are two major problems connected tightly to the factorization of comp
probability. The first concerns the application of NSM to many-body systems via one-body
tribution. NSM is originally intended to describe complex systems with long-range interactio
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fractal structure of space–time showing nonextensive phenomena. So from the beginning
theory, Eq.~1! is supposed for composite systems containingN statistically independent sub-
systems in order to elicit the nonextensive character by the following relation:

ln@11~12q!Sq#5 (
n51

N

ln@11~12q!Sq~n!#. ~4!

For N52, Sq5Sq(1)1Sq(2)1(12q)Sq(1)Sq(2) as one often finds in the literature. Due to th
independence, it has been believed by many that exact calculations within NSM should us
additive HamiltonianH05(n51

N Hn , whereHn is the Hamiltonian ofnth subsystem.2,7–11 How-
ever, this Hamiltonian is not compatible with either Eq.~1! or Eq.~4! since these equations applie
to QED mean:1,12,13

H5 (
n51

N

Hn1 (
k52

N

@~q21!b#k21 (
n1,n2,¯,nk

N

)
j 51

k

Hnj
5H01Hc , ~5!

whereb is the inverse temperature. In order to reconcileH0 and Eq.~1!, a so-calledfactorization
approximationis proposed14 by neglecting the second term on the right-hand side of Eq.~5!. This
approximation has been, explicitly or not, employed in most of the applications of NSM13–18 via
one-body QED. These applications certainly show the usefulness of one-body QED, b
approximation neglecting the correlation energy by supposing sometimes weak interacting
particles19 is not a reassuring basis. Indeed, some recent works show that the correlation
(Hc) given by the second term of Eq.~5! is in general not negligible12 and that the partition
function given by using additive energy is completely different from that given by using Eq~5!
whenN is large.11 So a doubt arises about the connection between independence of subs
and additive energy. Recently, an interesting idea is forwarded to define a ‘‘quasi-independ
according to nonadditive energy Eq.~5! in order to apply NSM to turbulence flow problems.19 As
a matter of fact, this proposal implies rejection of classical independence for Eq.~1!.

The second problem connected with probability factorization is the establishment of z
law and the definition of temperature for NSM. It was believed that the zeroth law of therm
namics was absent within NSM20 due to the paradox between Eq.~1! and the additive energy
Recently, a series of works have been published on this issue21 claiming the establishment o
zeroth law and the definition of a generalized temperature on the basis of additive HamiltoniH0

and Eq.~4! by neglectingHc . It is evident that the above-mentioned paradox persists behind
approximate zeroth law.

The central question is as follows. Equation~1! certainly implies independence of noninte
acting systems for BGS, but does it mean the same thing for NSM? Very recently, Abe22 proposed
a general pseudoadditivity for entropy required by the existence of thermal equilibrium in
posite nonextensive systems. For a system containingN subsystems, the pseudoadditivity is

ln@11lSf ~S!#5 (
n51

N

ln@11lSf ~Sn!#, ~6!

where f is certain differentiable function satisfyingf (0)50 andlS a constant depending on th
nature of the system of interest. On the other hand, Eq.~6! applied to Tsallis entropy mean
f (S)5S and lS512q,22 which directly leads to ln Trrq5( i 51

N ln Tr r i
q or Eq. ~1! ~i.e., with

classical probabilitypi of the statei , (pipj )
q5pi j

q meanspipj5pi j !. So Eq.~1! has nothing to do
with statistical independence of subsystems. It is a consequence of the existence of thermo
equilibrium and must be rigorously respected by all exact calculations. Equilibrium energy
been proved23 to satisfy the same kind of pseudoadditivity as Eq.~6! ~S is replaced byH!. If we
choosef (H)5H andlH5(q21)b, we get
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ln@11~q21!bH#5 (
n51

N

ln@11~q21!bHn#, ~7!

which is just Eq.~5! satisfying Eq.~1!. In this way, the zeroth law becomes evident and
temperature can be straightforwardly defined at maximum entropy and minimum energy.3,12

IV. ADDITIVE FORMALISM OF NSM

A. Information measure

The g-logarithmic information measure

I n5
~1/r!n21

n
~8!

is a nonadditive generalization of Hartley formulaI 5 ln(1/r) and can be employed to deduc
Tsallis entropy.1,3,24 I g or I is the information needed to specify at which state the system
localized.n equals 12q or q21, depending on the normalization procedures ofr.25 Using Eq.~1!,
we get

ln~11nI n!5 (
n51

N

ln~11nI n
(n)!, ~9!

whereI n
(n) is the information needed to specify thenth subsystem. This pseudoadditivity is evide

if we recast the generalized Hartley formula, Eq.~8!, as follows

I n5
e2n ln r21

n
5

enI21

n
, ~10!

where

I 5 ln
1

r
5

ln~11nI n!

n
~11!

can be referred to asq-deformed information measure and is additive supposed Eq.~1!. It is
noteworthy that thisI is not the quantity of Hartley information ifr is a nonextensive distribution
for nÞ0.

B. Canonical ensemble

Now let us define an additive entropyS as follows:

S5Tr rq ln
1

r
~12!

and an additiveq-deformed ‘‘Hamiltonian’’

h5
ln@11~q21!bH#

~q21!b
. ~13!

So Eq.~7! becomes

h5 (
n51

N

hn . ~14!
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This means the following transformations:

H5
e(q21)bh21

~q21!b
, Hn5

e(q21)bhn21

~q21!b
~15!

and

r5
1

Z
@11~q21!bH#1/(12q)5

1

Z
e2bh, ~16!

whereZq5Tr e2qbh.3 It should be noticed that, when addressing a system ofN particles, we have
to write Hn5pn

2/2m1Vn for a single particle so that

hn5

lnF11~q21!bS pn
2

2m
1VnD G

~q21!b

wherepn
2/2m is the classical kinetic energy andVn is the potential energy. It is clear thatHn ,

instead ofhn , is the physical energy. Whenq51 (Hc50), we recoverHn5hn and H5h
5(n51

N pn
2/2m. Theq-deformed internal energyu is defined as follows:

u5Tr rqh. ~17!

We can easily show that the distribution Eq.~16! can be yielded by the maximum of the additiv
‘‘entropy’’ S ~which surely exists due to the monotonic relation betweenI and I n) under the
constraints of Eq.~17! and incomplete normalization Trrq51. It is easy to verify thatS5 ln Z
1bu and, via the zeroth law,]S/]u 5b51/T. The ‘‘first law’’ is given by du5T dS2pdV where
p is q-deformed pressure andV the volume of the system which is chosen to be additive here.
q-deformed Helmholtz free energyf is defined asf 5u2TS52T ln Z and can be connected t
the nonadditive one

Fq52T
Z12q21

12q

~Refs. 1 and 3! as follows:

f 5
ln@11~q21!bFq#

~q21!b
. ~18!

So p52(] f /]V)T5P/Z12q where P52(]Fq /]V)T is the real pressure. In this scenario, t
thermodynamic equilibrium of a systemC containing two equilibrium systemsA andB satisfying
V(C)5V(A)1V(B) corresponds tob(A)5b(B) and p(A)5p(B). This implies thatP(A)
ÞP(B) if Z(A)ÞZ(B). This is because we have supposed nonadditive energy and ad
volume. As a matter of fact, in this formalism, if we wantP(A)5P(B) at equilibrium, we must
accept nonadditive volume and additiveq-deformed volumev with which the first law becomes
du5T dS2P dv. This means:P52(]Fq /]V)T52(] f /]v)T . This relation can help to deduc
the v –V relation. We also havev5(]g/]P)T where theq-deformed Gibbs energy is given b
g5 f 1Pv. Sincev is additive,V will be nonadditive ifv is not a linear function ofV. We will
come back to this issue later in this paper.

C. Grand canonical ensemble

It is known that the grand canonical ensemble QED has been given by1,9,14

r}@12~12q!b~H2mN!#1/~12q! ~19!
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for N identical particle systems, wherem is chemical potential. This distribution has been wide
used for quantum particle systems.14–16,26But the zeroth law has never been rigorously establis
for this ensemble. In a previous work,26 one of the authors of present paper~Q.A.W.! deduced
exact quantum distributions on the basis of Eq.~19! and the following relation suggested by E
~1!:

r}@12~12q!b~Hn2m!#N/~12q!. ~20!

In the framework of IS,3,26 the exact distributions are given by

n̄k5
1

@11~q21!b~ek2m!#q/~q21!61
, ~21!

whereek is the energy of the one-particle statek and ‘‘1 ’’ and ‘‘ 2 ’’ correspond to fermions and
bosons, respectively. Now we show that this distribution can be written in exponential form ju
for conventional noninteracting quantum gases and that the zeroth law can be rigorously v

Let us suppose b5 b8/@11(q21)b8m# 5b8@12(q21)b8m8# ~or b85 b/@12(q
21)bm#! and m5 m8/@11(12q)b8m8# ~or m85 m/@11(q21)b8m# 5m@12(q21)bm#!
which imply b8m85bm. Equation~20! can be recast as

r5
1

Z
@12~12q!b8Hn#N/~12q!@11~12q!b8m8#N/~12q!5

1

Z
e2Nb(hn2v), ~22!

where

v5
ln@11~12q!b8m8#

~12q!b8
, hn5

ln@11~q21!b8Hn#

~q21!b8
.

Zq5Tr@12(12q)b(H2mN)#q/(12q)5$Tr@12(12q)b8Hn#q/(12q)@11(12q)b8m8#q/(12q)%N

5(Tr e2qb(hn2v))N5zN and wherez is one-particle partition function. Just as for the canoni
ensemble, this exponential distribution can be shown to be the result of the maximizationS

under the constraintN̄5Tr rqN in addition to Eq.~17! and incomplete normalization. Now Eq
~21! can be written as

n̄k5Tr rqnk5
1

eqb8(ek2v)61
5

1

@11~q21!b8ek#
q/~q21!@12~q21!b8m8#q/~q21!61

, ~23!

whereek is the eigenvalue ofhn . From Eq.~21!, we see that, for free particles~in the sense that
we do not write the energy of interaction between particles in the Hamiltonian and let
‘‘absorbed’’ in the nonextensive part of energy Hc and related to q different from unity!, we have
to setq,1 to ensure positive@11(q21)b(Hn2m)# for fermions whenT→0. This means that
at low temperatures, there will be few fermions beyond Fermi energy. For bosons withm,0, we
have to putq.1.

It is straightforward to writeS5 ln Z1b8u1b8vN̄ and, with the method employed in Refs.
and 12 to show that, for a systemC containing two equilibrium systemsA and B satisfying
N̄(C)5N̄(A)1N̄(B), b8(A)5b8(B), andv(A)5v(B) thusm8(A)5m8(B), m(A)5m(B) and
b(A)5b(B) or T(A)5T(B). The zeroth law is verified. One may ask why we identifyb, instead
of b8, to real temperature. The possible reasons are the following:~1! b is the Lagrange multiplier
of the constraint on real energy in entropy maximization;~2! if b8 is inverse temperature, thenm8
must be chemical potential, which makes it impossible to get distribution Eq.~22! by real entropy
maximization with the constraint onN̄; ~3! ef would be different from the chemical potentialm8
and equal tom8/@11(12q)b8m8# which inevitably drops to zero whenT→0.
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Now we will focus the discussion on two-dimensional fermion distribution. According to
~21! the Fermi energyef 0

at T50 is given byef 0
5 2p\2s/m wheres is the particle density and

\ Planck constant.

WhenT.0, the summationN̄5(k n̄k cannot be calculated for arbitraryq to give an explicit
expression ofef . So we have recourse to numerical calculation ofq-dependence ofef for given
temperatures~Fig. 1! andT dependence for givenq values~Fig. 2!. We see that, for the approxi
mate distributions functions~ADF! nk51/$@11(q21)b(ek2m)#1/(q21)11% deduced from Eq.
~19! with factorization approximation and additive energy,14 ef depends only slightly onq. On the
other hand, theef of IS in the present work shows a strong increase with decreasingq up to two
times ef 0

of conventional Fermi–Dirac distribution~CFD!. This ef increase has indeed bee

noticed through numerical calculations for strongly correlated heavy electrons on the bas
tight-binding Kondo lattice model.27,28 In Fig. 2, we show thatef of IS does not monotonically
decrease with increasing temperature, in contrast with theef behavior of CFD. This kind of
nonmonotonic temperature evolution ofef was also seen through numerical work for correla
electrons in the two-dimensionalt2J model.29

The IS distribution given by Eq.~21! is plotted in Fig. 3 forT5100 K. The particle density
s is chosen to giveef 0

51 eV. As expected, the distribution changes drastically withq. Whenq

decreases, we notice a flattening of the distribution always with a sharp drop of occupation n
n at ef which increases. This flattening is also noticed in numerical calculations for strong
pling electrons.27,28

The grand canonical partition functionZ can be calculated to give theq-deformed grand
potential v̄52T8 ln Z5 (T8/q) (k ln(12n̄k) as usual, whereT851/b85T1(12q)m. The grand
potential is given by

FIG. 1. q-dependence of Fermi energyef of IS quantum distribution in the present work and of ADF given by t
factorization approximation with additive energy. The fermion densitys is chosen to giveef

051 eV for CFD distribution
at T50. IS ef shows strong increase with decreasingq up to two timesef 0

. But ADF ef depends only slightly onq. We
also notice that theT-dependence of ISef is not monotonic as shown in Fig. 2.
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V5
e(q21)b8v̄21

~q21!b
5T

)k~12n̄k!
~q21!/q21

~q21!
. ~24!

In this q-deformed extensive formalism, Euler theorem applies just as in BGS. So we
g5vN̄5u1pV2T8S. Compare this withS5 ln Z1b8u2b8vN̄ to obtain the following equations
of state:

pV5T8 ln Z5
T8

q (
k

ln~12n̄k!. ~25!

V. DISCUSSION AND CONCLUSION

The formalism of NSM presented here is required by the existence of thermodynamic
librium or by Eq. ~1! for nonextensive systems described by Tsallis entropy. Theoretically
formalism is self-consistent. Experimental or numerical evidence is needed to verify the th
dynamic relations. In this framework, all the successful applications of NSM conforming with
~1! are still valid. But the approximate applications carried out for many-body systems
additive energy as exact Hamiltonian~not consistent with the existence of thermodynamic eq
librium! should be carefully reviewed.

As mentioned previously, we have noticed similar properties between the IS fermion d
bution and that of strongly correlated electrons.27,28 This similarity shows the merit of NSM in
describing strong interacting systems. On the other hand, we noticed that a flattening ofn drop at
ef with increasing correlation, observed experimentally and numerically with weakly corre

FIG. 2. T-dependence of Fermi energyef of IS quantum distribution in present work. The fermion densitys is chosen to
give ef

051 eV for CFD distribution atT50. TheT-dependence ofef is in general not monotonic, in contrast with th
classical decreasing behavior ofef with increasing temperature. We notice that, at low temperature,ef shows an increase
with increasingT.
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electrons,27,28,30–32is absent within NSM fermion distributions which always show very sharn
drop atef at low temperatures. A detailed study of this problem will be presented in another
of ours.

It is worth mentioning that, in the present work, energy is nonadditive to satisfy the req
ment of thermodynamic equilibrium. Nonadditive energy can happen if interaction is no long
short-range and not localized only between the containing walls of subsystems. But in the
ture, there are rarely explicit expressions of nonadditive energy. One of explicit examples
long-range Ising model33 where the internal energyU(N,T) may be proportional toNc ~c is a
constant!, instead ofN, the number of spins in the system. This energy can be shown to sa
Abe’s pseudoadditivity for energy23 if we choosef (U) to be proportional, e.g., toN ~with lH

50! or to eN21 ~with lH51!.
Indeed, theoretically, nonadditive physical quantities~energy, volume, . . .! are not evident

within the statistics with complete distributions because all possible states~all points in phase
space! are counted and summed here. But from the viewpoint of incomplete statistics, non
tivity may be interpreted as a consequence of incomplete summation of state points in phas
due to the incompleteness of our knowledge about the physical systems.3

Nevertheless, the fact that the correlation energyHc of NSM depends on temperature, a
shown in Eq.~5! or Eq.~7!, is not an easy aspect to be understood. A possible interpretation is
these nonadditive equations are required or prescribed by thermal equilibrium with Tsallis e
and so naturally change with temperature. This implies that the effect of correlations may d
on temperature.

Summing up, within the framework ofincomplete statistics, it is argued that the nonextensiv
thermostatistics should be based on the factorization of compound probability suggested,
‘‘independence’’ of noninteracting systems, but byexistence of thermodynamic equilibrium
interacting systems having Tsallis entropy. So this factorization must be viewed as a fundamen
hypothesis of NSM and rigorously satisfied by all exact calculations relative to equilibrium

FIG. 3. Fermion distributions of ADF and of IS in the present work. ADF distribution is only slightly different from
at q51 ~CFD one! even withq very different from unity. The IS distribution of the present work changes drastically w
decreasingq. As q→0, the occupation number tends to 1/2 for all states belowef which increases up to 2 timesef 0

.
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tems. On this basis, we have elaborated an additive formalism of NSM based on the maxim
of an additive deformed entropy subject to constraints on additive particle number and ad
q-deformed energy. The IS quantum distributions of this formalism are compared with the
butions previously obtained by using complete probability and additive energy in factoriz
approximation and also with numerical results for strongly correlated electrons. It is show
some effects of strong correlations—the flattening of the fermion distribution and the sharp
of occupation number atef which shows strong increase with increasing interaction—can
observed in IS fermion distribution with decreasingq value.
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The analytic and asymptotic properties of the spherically symmetricd-dimensional
Lévy stable probability density function,pa

d(r ), are discussed in detail. These
isotropic stable probability density functions~pdfs! are analogous to the one-
dimensional symmetric Le´vy stable pdfs previously studied by the present authors
@J. Math. Phys.43, 2670~2002!#. We construct a hypergeometric representation of
pa

d(r ) when a is rational, and find a number of new representations ofpa
d(r ) in

terms of special functions for various values ofd and a. A recursion relation is
found betweenpa

d(r ) and pa
d12(r ), which, in particular, implies there exists a

simple map betweenpa
1(r ) and pa

3(r ). As in our previous paper, we discuss the
properties ofpa

d(r ) for both the casesa<2 anda.2. We demonstrate the existence
of intricate exponentially small series in the larger asymptotics ofpa

d(r ) whena is
an integer, which are dominant whena is even. We explicitly construct this beyond
all orders expansion ofpa

d(r ) for arbitrary integrala and d. © 2002 American
Institute of Physics.@DOI: 10.1063/1.1500423#

I. INTRODUCTION

Applications of the Le´vy stable probability density function~pdf! abound, in disciplines as
diverse as physics, biology, and finance, as a mechanism for constructing stochastic model
possess no characteristic scale.1 In d spatial dimensions, isotropic Le´vy stable pdfs, denoted
pa

d(r ), display larger asymptotic behavior of the formpa
d(r )→r 2d2a, where the paramete

0,a<2 is referred to as the order of the given pdf.2 This asymptotic power law behavior leads
the divergence of all momentŝur un& for n.a. Random flights whose steps are chosen via
isotropic pdf displayingr 2d2a larger behavior have been used to model widely varied pheno
ena from the paths followed by animals searching for food,3 to classical problems in statistica
mechanics, e.g., Ref. 4. It has recently been argued5,6 that the drip paintings of Jackson Polloc
involve paint trajectories displayingr 2d2a behavior. The Le´vy walk1,7 model, which is a continu-
ous time random walk whose step pdf is asymptotic tor 2d2a, and its generalizations,8 are popular
methods for modeling systems displaying anomalous diffusion.9–11

A number of interesting mathematical questions concerningd-dimensional random flights
whose steps are chosen via isotropic Le´vy stable pdfs have been addressed recently, e.g., Ref
and 13. However, the mathematical treatises on the analytic properties of the Le´vy stable pdf are
largely restricted to one dimension.14,15 We recently demonstrated that the one-dimensional s
metric Lévy stable pdfs of rational order can be expressed in terms of hypergeometric func
and listed a number of new representations for various values ofa in terms of special functions.16

We also discussed the utility of the symmetric stable densities when the order is larger tha
In such casespa

1(r ) fails to satisfy the non-negativity condition required of a pdf despite be
stable in every sense, but does however display remarkably intricate and interesting expo
asymptotic behavior whena is an even integer. A link betweenp4

1(r ) and Pearcey’s integral wa
demonstrated. In this work we investigate in detail the analytic and asymptotic properti
pa

d(r ). These functions are the natural generalization to higher dimensions of the symm
one-dimensional Le´vy stable pdfs studied in Ref. 16, and it is found that analogs of virtually

a!Electronic mail: frankel@physics.unimelb.edu.au
50900022-2488/2002/43(10)/5090/18/$19.00 © 2002 American Institute of Physics
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results obtained in that work can be carried through to thed-dimensional case.
The isotropicd-dimensional Le´vy stable pdf can be defined in an identical way to the o

dimensional case. LetX1 andX2 be independent randomd vectors with the same pdfpa
d(r ), then

pa
d(r ) is defined to be Le´vy stable17,18if it is a solution to the following, for all positivec1 andc2 :

c1X11c2X25cX, ~1.1!

whereX has the same pdf asX1 andX2 .
The isotropic solutions of this equation have characteristic functions of the form17,18

p̃a
d~q!5exp~2uqua!, ~1.2!

which is identical to the characteristic function of the one-dimensional symmetric Le´vy stable pdfs
~with the domain considered asR>0 rather thanRd!. It is interesting to note that pdfs with
characteristic functions of the form~1.2! are stable for all positivea, includinga.2, as stressed
by Bouchaud.1 Due to the form of~1.2!, the onlyd dependence appears via the inverse Fou
transform that yields the pdf. The isotropy ofp̃a

d(q) implies that itsd-dimensional Fourier trans
form decomposes into one integral over the radial variable,

pa
d~r !5

1

~2p!d E
Rd

ddqe2 i r "q exp~2uqua!, ~1.3!

pa
d~r !5

r

~2pr !d/2 E
0

`

dq J~d/2!21~qr !qd/2e2qa
, ~1.4!

J(d/2)21(qr) is a Bessel function.
An interesting property of~1.4! that we will make use of later is the following recursio

relation linkingpa
d(r ) to pa

d12(r ):

21

2pr

]

]r
pa

d~r !5pa
d12~r !. ~1.5!

The proof of this relation is straightforward, and relies only on the identity (2d/dz) @z2nJn(z)#
5z2n21Jn11(z).19 As such,~1.5! is just a special case of a general relation that holds between
d-dimensional andd12-dimensional Fourier transforms of any isotropic functionf (q)5 f (q). An
important consequence of~1.5! is that it allows us to construct the three-dimensional analog o
the one-dimensional results in Ref. 16, in particular the analogs of the special function rep
tations ofpa

1(r ) for variousa.
It is the analytic and asymptotic properties of~1.4! that we shall study in detail in this work

both when 0,a<2 and pa
d(r ) defines a pdf, and also whena.2. We begin by displaying a

number of special functions representations ofpa
d(r ) for variousa in both two and three dimen

sions, using the dimensional recursion relation~1.5!. The large and smallr power series ofpa
d(r )

are constructed using standard Mellin transform techniques, and we then utilize these repr
tions to construct hypergeometric representations ofpa

d(r ) whena is rational. The similarities and
differences between this and the one-dimensional result16 are discussed. We go on to demonstra
that as in the one-dimensional casepa

d(r ) displays intricate exponential asymptotic behavior wh
aPZ>3 , which deserves attention for its own intrinsic interest despite the fact thatpa

d(r ) does not
define a pdf whena.2. We obtain the complete asymptotic expansion ofpa

d(r ) for generald, and
arbitraryaPZ>3 . This not only generalizes the asymptotic results in Ref. 16 from one dimen
to d dimensions, but it also generalizes from the specific cases ofa considered in Ref. 16 to
arbitrary integrala>3. Finally, we calculate the absolute moments forpa

d(r ), whose convergence
or divergence is intimately linked to the question of whether the dominant behavior of the lar
asymptotics is exponential or algebraic.
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II. ISOTROPIC STABLE PDFS vs LÉ VY FLIGHTS

Before beginning our investigation of~1.4!, we think it useful to clarify a distinction betwee
pa

d(r ) and a related pdf which is often referred to in the literature.
Any isotropic pdfp(r ) can be written in the form17

p~r !5
1

Sdur ud21 w~r !, ~2.1!

whereSd is the surface area of the unitd-sphere, and we refer tow(r ) as thestep lengthpdf.
Recastingpa

d(r ) into this form we obtain

pa
d~r !5

1

Sdur ud21 wa
d~r !, ~2.2!

wa
d~r !5

2

GS d

2D E0

`

dqSAqr

2 D d

J~d/2!21~qr !e2qa
. ~2.3!

In physical applications3,4,9,10,13,20the pdf underlyingr 2d2a asymptotic behavior appears t
be generally regarded as an isotropic pdf with a stablestep lengthpdf. Such a pdf, which we
denotema

d(r ), has the form

ma
d~r !5

1

Sdur ud21 2pa
1~ ur u!5

1

Sdur ud21 wa
1~r !. ~2.4!

Despite being constructed from a stable pdf,ma
d(r ) itself is not stable~except trivially when

d51!. This is easily observed by taking its Fourier transform and noting that one does not o
~1.2!. The difference betweenma

d(r ) and pa
d(r ) is clearly that thestep lengthpdf of pa

d(r ) is
highly d dependent, which is how it manages to satisfy stability for arbitraryd, whereas thestep
lengthpdf for ma

d(r ) is independent ofd. There appears to be no advantage in takingma
d(r ) as the

ansatz for pdfs displayingr 2d2a asymptotic behavior. As we demonstrate,pa
d(r ) is no more

complicated to handle thanpa
1(r ). Stability is especially useful in the simple case of ann step

random flight, because by definition stability of the step pdf implies that the pdf for the positi
the walker aftern steps is simply the step pdf rescaled.

III. SOME SPECIAL FUNCTION REPRESENTATIONS

A number of special function representations for the case ofd51 are listed in Ref. 16. We
find here the three-dimensional analogs of these results, by utilizing the dimensional rec
relation,~1.5!, or via more direct methods where appropriate. The case ofd52 is more compli-
cated since we cannot generate any of the two-dimensional results from the known
dimensional results. We will construct however a hitherto unknown representation ofp1/2

2 (r ) in
terms of Bessel functions. We begin this section by listing the simple known cases ofp2

d(r ) and
p1

d(r ), which correspond to thed-dimensional Gaussian and Cauchy pdfs, respectively. Thes
the only known cases where~1.4! can be simplified for arbitraryd.

Starting with~1.3! it is trivial to obtain

p2
d~r !5

e2 r 2/4

~A4p!d
. ~3.1!

The Cauchy result can be recovered from~1.4!, since whena51 this is a known integral21
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p1
d~r !5

GS d11

2 D
p~d11!/2

1

~11r 2!~d11!/2 . ~3.2!

A. Three dimensions

Representations ofpa
3(r ) in the cases ofa53, 1

3, and 2
3 can all be generated in a straightfo

ward fashion from the results in Ref. 16 via~1.5!, and we find that

p2/3
3 ~r !5

5

24/335/2p3/2r 2 8/3CS 5

6
,
2

3
;

4

27r 2D2
5

21/3311/2p3/2r 2 14/3CS 11

6
,
5

3
;

4

27r 2D , ~3.3!

p1/3
3 ~r !5

5e2 ~p/4! i

18)p2
S0,1/3S 2e~p/4! i

3A3r
D 1

5e~p/4! i

18)p2
S0,1/3S 2e2 ~p/4! i

3A3r
D

2
2

81p2r 4 S21,4/3S 2e~p/4! i

3A3r
D 2

2

81p2r 4 S21,4/3S 2e2 ~p/4! i

3A3r
D , ~3.4!

p3
3~r !5

e2 ~3p/4! i

6)p2r 3/2
S0,1/3F2e~3p/4! i S r

3D 3/2G1
e~3p/4! i

6)p2r 3/2
S0,1/3F2e2 ~3p/4! i S r

3D 3/2G
2

2

27p2 S21,4/3F2e~3p/4! i S r

3D 3/2G2
2

27p2 S21,4/3F2e2 ~3p/4! i S r

3D 3/2G , ~3.5!

where C(z) is the Tricomi confluent hypergeometric function,22 and Sm,n(z) is a Lommel
function.22

Recalling thatJ1/2(z)5(2/pz)sin(z), the integral representation ofp1/2
3 (r ) can be found di-

rectly in Ref. 23 in terms of a sum of parabolic cylinder functions,D24(z),

p1/2
3 ~r !5

1

2rp2 E
0

`

dt e2Att sin~rt ! ~3.6!

5
3

4p2r 3 FexpS i

2Fp1
1

4r G DD24S ei ~p/4!

A2r
D 1expS 2

i

2Fp1
1

4r G DD24S e2 i ~p/4!

A2r
D G .

~3.7!

B. Two dimensions

Finding special function representations forpa
2(r ) is more time consuming than the thre

dimensional case since we do not have a stock pile of zero-dimensional results with wh
apply the dimensional recursion relation~1.5!. We note however that in generalpa

0(r ), defined via
~1.4!, is a simpler object thanpa

2(r ), and in factp1/2
0 (r ) is listed in Ref. 22 in terms of paraboli

cylinder functions. Hence the dimensional recursion relation leads to

p1/2
2 ~r !52

1

2pr

]

]r

1

A2r
D2 1/2S e~p/4! i

A2r
D D2 1/2S e2 ~p/4! i

A2r
D , ~3.8!
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p1/2
2 ~r !52

1

2pr

]

]r

p3

16r FJ1/4
2 S 1

8r D1Y1/4
2 S 1

8r D G , ~3.9!

whereY1/4(1/8r ) is a Neumann function. In obtaining this last step we have used the fact
D2 1/2(z)5A(pz/2)K1/4(z

2/4), where K1/4(z
2/4) is a modified Bessel function of the thir

kind.22–24

IV. POWER SERIES REPRESENTATIONS FOR p a
d
„r …

We now construct the convergent series, and asymptotic power series representat
pa

d(r ), since we shall have need to employ these expansions in later discussions. This pro
a straightforward generalization of that employed in the construction of the series represen
of pa

1(r ).16,17 One can easily construct the Mellin–Barnes integral representation ofpa
d(r ) by

simply calculating its Mellin transform and then using the inverse Mellin transform formula.
Mellin transform ofpa

d(r ) is listed in Ref. 23,

pa
d~r !5

1

a~2Ap!d

1

2p i Ec2 i`

c1 i`

dsS r

2D 2s GS s

2DGS d2s

a D
GS d2s

2 D ~4.1!

5
1

a~2Ap!d
H1,2

1,1F r

2 U
S 12

d

a
,
1

a D
S 0,

1

2D ; S 12
d

2
,

1

2D G , ~4.2!

where 0,c,min((d11)/2 ,d), and we have observed that~4.1! defines a FoxH function23 for all
values ofd anda. We also mention here that ifa is rational the ratio of gamma functions in~4.1!
can be so massaged that each gamma function has the formG(6s1stuff), and we can hence
identify this result with a Meijer G-function. We shall return to this point in Sec. V when
obtain the hypergeometric representation ofpp/q

d (r ) via a slightly different, yet equivalent rout
using the smallr power series representation ofpa

d(r ). This expansion is found from~4.1! by
simply closing the contour to the left,

pa
d~r !5

1

2d21apd/2 (
k50

`
~21!k

k!

GS 2k1d

a D
GS k1

d

2D S r

2D 2k

, ;r , a.1,

pa
d~r !;

1

2d21apd/2 (
k50

`
~21!k

k!

GS 2k1d

a D
GS k1

d

2D S r

2D 2k

, r→0, a,1. ~4.3!

Applying the ratio test it can be shown that~4.3! is absolutely convergent for allr whena.1. The
gamma function structure of~4.3! should be compared to that of thed51 result discussed in Ref
16, which we list here for ease of comparison,
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pa
1~r !5

1

aAp
(
k50

` ~21!kGF2k11

a G
ApG@2k11#

r 2k, ;r , a.1. ~4.4!

Note in particular that~4.4! contains only one gamma function in the denominator, whereas~4.3!
contains two. Via the duplication formula we see that~4.3! with d51 is equivalent to~4.4! since

22kG(k11)G(k1 1
2)5ApG(2k11). For generald however,k!G(k1d/2) cannot be reduced to

single gamma function. The essence of the difference is that the duplication formula provid

a relation of the formG(z)G(z1 1
2)}G(2z), but the objects that we see for generald are of the

form G(z)G(z1 d/2), for which no similar simplification is known. This observation will b
important when we identify~4.3! as a sum of hypergeometric functions in Sec. V. Similar beha
is again present in the larger power series for generald, which we construct by closing the
contour to the right,

pa
d~r !5

1

p~Apr !d (
k51

`
~21!k11

k!
sinS kap

2 DGS ka

2
11DGS ka

2
1

d

2D S 2

r D ak

, r .0, a,1,

pa
d~r !;

1

p~Apr !d (
k51

`
~21!k11

k!
sinS kap

2 DGS ka

2
11DGS ka

2
1

d

2D S 2

r D ak

, r→`, a.1.

~4.5!

It is readily verified that~4.5! is absolutely convergent whena,1. For a.1 ~4.5! provides the
asymptotic power series forpa

d(r ), but as we shall show later there exist interesting cases in w
this expansion is not complete, precisely as was found whend51.16 For a53,4,5,6,7 we found in
Ref. 16 that there exist series of exponentially small terms lying beyond all orders of the lar
asymptotic power series ofpa

1(r ). We will show that this same behavior arises for generald,
;aPZ>3 . It was also noted in Ref. 16 that whena is an even integer that the larger power series
expansion ofpa

1(r ) vanishes identically, and from~4.5! we see that this is true also for generald.
In the case ofa52 in which pa

d(r ) simplifies to thed-dimensional Gaussian, (4p)2 d/2e2 ur u2/4,
this simply expresses the fact that the larger asymptotic behavior of a Gaussian is smaller th
any power. Whena.2 and an even integer we see that these exponentially small series occ
in the larger expansions ofpa

d(r ) again become dominant precisely as they did forpa
1(r ). The

explicit construction of these exponentially small series will be studied in detail, but first we
show how to obtain hypergeometric representations forpp/q

d (r ). These representations are inte
esting in their own right, and will be the starting point for our asymptotic work.

V. HYPERGEOMETRIC REPRESENTATION OF p a
d
„r …

We demonstrated in Ref. 16 that withp,q integers,pp/q
1 (r ) can be identified with a finite sum

of generalized hypergeometric functions, or Meijer G-functions. We now show that essentia
same procedure can be utilized to make a similar identification forpp/q

d (r ). We begin with~4.3!
which, as mentioned previously, is convergent fora.1. As discussed in Refs. 16 and 25, we c
still identify pp/q

d (r ) with ~4.3! for p/q,1, and utilize Borel summation26 where necessary.
The series representation for the generalized hypergeometric function is

aFbS a1 ,a2 , . . . ,aa

b1 ,b2 , . . . ,bb
UzD5 (

m50

`
zm

m!

Ph51
a ~ah!m

Ph51
b ~bh!m

, ~5.1!

where (a)m is Pochhammer’s symbol,
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~a!m5
G~a1m!

G~a!
. ~5.2!

As in thed51 case16 we begin by making the change of summation indexk5mp1 l in ~4.3!,
with the goal of transforming the ratio of gamma functions into the form required by~5.1! and
~5.2!. We obtain

pp/q
d ~r !5

q

2d21pd/2p (
l 50

p21

~21! l S r

2D 2l

(
m50

` F ~21!pS r

2D 2pGm GF2qm1
2ql

p
1

dq

p G
G@pm1 l 11#GFpm1 l 1

d

2G .

~5.3!

We now apply Gauss’ multiplication formula,

G~mz!}Ph50
m21GS z1

h

mD ,

to the gamma functions in~5.3!,

GF2mq1
2ql

p
1

dq

p G
G@pm1 l 11#GFpm1 l 1

d

2G 5S ~2p!p2q2 1/2~2q!qd/p 2 1/2

pd/2 D

3S F ~2q!2q

p2p G l /p Ph51
2q21GF l 1

d

2

p
1

h

2q
G

Ph51
p21GF l 1

d

2
1h

p
GPh51

p GF l 1h

p G D
3S F ~2q!2q

p2p Gm
Ph51

2q21S l 1
d

2

p
1

h

2q
D

m

Ph51
p21S l 1

d

2
1h

p
D

m

Ph51
p S l 1h

p D
m

D . ~5.4!

Inserting ~5.4! into ~5.3!, and comparing with~5.1! we can immediately make the followin
identification:
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pp/q
d ~r !5

~2q!dq/p 1 1/2

pd/2112d/2~2p!~d11!/2 1q2p (
l 50

p21

~21! lF ~2q!2qr 2p

~2p!2p G l /p

3

Ph51
2q21GS l 1

d

2

p
1

h

2q
D

Ph51
p21GS l 1

d

2
1h

p
D Ph51

p GS l 1h

p D

32qF2p21S 1,

l 1
d

2

p
1

1

2q
,

l 1
d

2

p
1

2

2q
, . . . ,

l 1
d

2

p
1

2q21

2q

l 1
d

2
11

p
,

l 1
d

2
12

p
, . . . ,

l 1
d

2
1p21

p
,
l 11

p
,
l 12

p
, . . . ,

l 1p

p

U ~21!p
~2q!2qr 2p

~2p!2p D .

~5.5!

We can also use the relationship between the generalized hypergeometric function and the
G-function27 to exhibit ~5.5! in the following form:

pp/q
d ~r !5

~2q!dq/p 1 1/2

pd/2112d/2~2p!~d11!/21q2p (
l 50

p21 F ~2q!2qr 2p

~2p!2p G l /p

3G2q,2p
1,2q S ~21!p11

~2q!2qr 2p

~2p!2p U 0,
1

2q
2

l 1
d

2

p
,

2

2q
2

l 1
d

2

p
, . . . ,

2q21

2q
2

l 1
d

2

p

0,

12 l 2
d

2

p
,

22 l 2
d

2

p
, . . .

p212 l 2
d

2

p
,2

l

p
,
12 l

p
,
22 l

p
, . . . ,

p212 l

p

D .

~5.6!

As discussed in Sec. IV this result could equivalently have been obtained by performing s
manipulations on the ratio of gamma functions in~4.1! and we could then have obtained th
hypergeometric functions from the Meijer G-functions.

Comparing~5.5! to thed51 result given in Ref. 16 we note that in the generald case we have
only half as many hypergeometric functions in the sum, but that each one has twice as
parameters as in thed51 case. We shall again make use of the notation used in Ref.
f (6z)1[ f (z)1 f (2z) for some functionf , and we refer tof (6z)1 as a symmetrized pair. In
the d51 case it is possible to expresspp/q

d (r ) in terms of a sum of symmetrized pairs of gene
alized hypergeometric functions, since we can utilize the duplication formula to simplify
product of the two gamma functions in the denominator of~4.3!. By making such a simplification
we are able in thed51 case to make a second change of summation index to~5.3!, s52m, before
using the multiplication formula. The effect of this is to simultaneously introduce the factor

F11~21!s

2 G ,
which accounts for the appearance of the symmetrized pairs, and also to halve the number
numerator and denominator parameters. Such a process is not possible for generald for all p,q. It
is useful to have representations ofpp/q

d (r ) with the smallest number of parameters possible, a
to this end we ask the question ‘‘whendÞ1, are there any values ofp/q for which we can
symmetrize~5.5!?’’ Observing the form of~5.3! we see that whenp is even we can indeed mak
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the change of summation indexs52m before using Gauss’ multiplication formula and therefo
halve the number of parameters appearing in~5.5!, at the cost of replacing the single hyperge
metric functions in the sum by symmetrized pairs,

pp/q
d ~r !5

~2p!~p2q212d!/2qdq/p 1 1/2

pd/211 (
l 50

p21

~21! l S qqr p

pp D 2l /p

3

Ph51
q21GS 2l 1d

p
1

h

qD
Ph51

p/2 21GS 2l 1d12h

p DPh50
p/2 21GS 2l 1212h

p D

3qFp21S 1,
2l 1d

p
1

1

q
,
2l 1d

p
1

2

q
, . . . ,

2l 1d

p
1

q21

q
2l 1d12

p
,
2l 1d14

p
, . . . ,

2l 1d1p22

p
,
2l 12

p
,
2l 14

p
, . . . ,

2l 1p

p

U6
qqr p

pp D 1

, pPNeven.

~5.7!

We see therefore that whenp is even the structure of the hypergeometric representation
generald is much closer to thed51 case,16 with pp/q

d (r ) a sum of symmetrizedqFp21 functions
with d-dependent parameters. Compare this to the oddp case where we have a sum over sing

2qF2p21 functions whendÞ1. Thus for evenp, extrapolating from Ref. 1 tod.1 essentially just
generalizes the parameters, but whenp is odd thed.1 generalization changes the structure of t
hypergeometric representation. It is instructive to observe that the explicit structure ofp2n

d (r ) can
be simplified still further by noticing some drastic cancellations which occur between the< l
<n21 terms and then< l<2n21 terms of~5.7!,

p2n
d ~r !5

2~2p!(p222d)/2

pd/211 (
l 50

n21

~21! l S r p

ppD l /n 1

Ph51
n21GS d

2
1 l 1h

n
D Ph51

n GS l 1h

n D
30Fp22S H d

2n
1

l 1h

n UhP$1, . . . ,n21%JøH l 1h

n UhP$1, . . . ,n%\$n2 l %J U~21!nS r p

ppDD. ~5.8!

From this representation ofp2n
d (r ) we gain a new perspective on whyp2n

d (r ) has no algebraic
terms in its larger asymptotic expansion, since it is known27 that generalized hypergeometr
functions with no numerator parameters always display purely transcendental asymptotic be

VI. ASYMPTOTICS BEYOND ALL ORDERS

We now turn our attention to the asymptotic properties ofpp
d(r ), wherep>3 is an integer.

The treatment here is not only a generalization of the results in Ref. 16 to generald, but also to
general p; in Ref. 16 we listed thed51 complete asymptotic expansions forp53,4,5,6,7,
whereas we now proceed to construct the complete asymptotic expansions for arbitrary va
p and d. We demonstrated in Sec. V that the hypergeometric representation ofp2n

d (r ) can be
written in a much simplified form that is of precisely the same structure as the analogous
dimensional case. Forp an odd integer such a simplification is only possible whend51. As we
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shall see however, the structure of the asymptotic expansion ofpp
d(r ) is only weakly dependent on

d, and for both odd and evenp the expansions for generald are surprisingly similar in appearanc
to the one-dimensional results discussed in Ref. 16.

Our starting point is the following hypergeometric representation forpp
d(r ):

pp
d~r !5fp

d (
l 50

p21

~2 ! lzl /p

GS l

p
1

d

2p
1

1

2D
)h51

p21GS d

2p
1

l 1h

p D )h51
p GS l 1h

p D
31F2p22S S l

p
1

d

2p
1

1

2D ;H d

2p
1

l 1h

p UhP$1, . . . ,p21%J øH l 1h

p UhP$1, . . . ,p%\$p2 l %J ;~2 !pzD
~6.1!

with

z[
22(12p)

p2p r 2pPR>0 , fp
d[

2d/p 1p2d21

pd/211pd/21 3/22p .

The complete larger asymptotic expansions ofpp
d(r ) will be derived by applying the genera

results in Ref. 27 for the complete asymptotic expansions of the generalized hypergeo
functions to~6.1!.

From Ref. 27 we have in general, whenb5b112a.3PZeven ,

)h51
a G~ah!

)h51
b G~rh! aFbS a1 ,a2 , . . . ,aa

r1 ,r2 , . . . ,rb
U2zD;La,b~z!

1 (
k50

b/2 21

@Gb11
1,a ~k!Ka,b~ze2 ip(2k11)!1Ḡb11

1,a ~k!Ka,b~zeip(2k11)!#, ~6.2!

Ka,b~z!5
~2p!~12b!/2

Ab
ebz1/b

zg (
m50

`

Nmz2 m/b, ~6.3!

g5
~b21!

2b
1

1

b (
h51

a

ah2
1

b (
h51

b

rh , ~6.4!

arg~z!P@d22p,2p2d#, d.0. ~6.5!

La,b(z) is the power series contribution to the complete asymptotic expansion ofaFb , and van-
ishes identically whena50. This implies that the asymptotic expansions ofp2n

d (r ) will be purely
transcendental. For oddp not all theLa,b(z) will vanish, but their sum merely produces the lar
r asymptotic power series derived in Sec. IV so we need not focus on them in this section. In
follows it is to be understood that the power series is to be appended to the beyond all
asymptotic expansions here constructed, in order to yield the complete expansions.

The Nm andGb11
1,a are found recursively, and their construction is discussed in depth in

27.
We now apply these general results to~6.1!,

b52p22.3, g52
l

p
2

~p22!

4p~p21!
d, ~6.6!
                                                                                                                



f this

dd

e
lt is

he fol-

5100 J. Math. Phys., Vol. 43, No. 10, October 2002 T. M. Garoni and N. E. Frankel

                    
pp
d~r !;fp

d(
l 50

p21

~2 ! lzl /p(
k50

p22

G2p21
1,1 ~k!K1,2p22@~2 !p11ze2 ip(2k11)#

1fp
d(

l 50

p21

~2 ! lzl /p(
k50

p22

Ḡ2p21
1,1 ~k!K1,2p22@~2 !p11zeip(2k11)#, ~6.7!

G2p21
1,1 ~2m!5G2p21

1,1 ~2m11!5(
j 50

m

expS 22 j
(2l 1d)p i

p D , mPH 0,1,2,. . . ,Fp21

2 G J ,

~6.8!

where @n# represents the integer part ofn. The derivation of theG2p21
1,1 is discussed in an

Appendix. To avoid notational clutter we shall drop the subscripts and superscripts on theG2p21
1,1

andK1,2p22 in what follows; since no gamma functions are encountered for the remainder o
section no confusion should arise.

It is straight forward to show using Ref. 27 that theNm for all choices ofl are the same; thus
Nm depends only onm, and onp andd. The recursion relation is as follows:

Nk5 (
s51

2(p21)

(
r 50

2(p21)2s S p

2~p21!
~r 1s2k!2~p21!1

dp

4~p21! D
p21

3S p

2~p21!
~r 1s2k!2~p21!2

~p22!d

4~p21! D
p

3
~2 !s1r@2~p21!#2p2s22

r ! @2~p21!2s2r #! p2p21k
Nk2s ,

~6.9!

Ns50, s,0, N051. ~6.10!

We list the first four values ofNk for d51,2,3 anda53,4,5,6, in Tables I–IV
According to~6.5! we have the following restriction on arg@(2)p11z#:

~2 !p11z5H z if p is odd

e6 ipz if p is even.
~6.11!

Thus our choice of phase depends on the parity ofp, but we can get around this and treat both o
and evenp cases simultaneously by introducing

s5H 0 if p is odd

1 if p is even
~2 !p11z5esp iz. ~6.12!

Notice that we have chosen (2)p11z5eipz for the even p case; substituting the choic
(2)p11z5e2 ipz into ~6.7! merely results in the conjugate expression, but since our final resu
real this introduces nothing new. Inserting~6.12! into ~6.7!, and massaging suitably results in

pp
d~r !;fp

d (
l 50

`

~2 ! lzl /p (
k5s

p221s

@G~k!K~ze2 ip(2k112s)!1Ḡ~k2s!K~zeip(2k112s)!#

1fp
d (

l 50

`

~2 ! lzl /pds,1@K~z!2G~p21!K~ze2 ip2(p21)!#, ~6.13!

wheredn,m is the Kronecker delta.
It is convenient to simplify the two terms of~6.13! multiplied byds,1 using~6.3! and~6.8! at

this stage before proceeding to tackle the remaining piece. First however, we introduce t
lowing convenient notation:
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t52pfp
d ~2p!@122(p21)#/2

A2~p21!
z2 d@(p22)#/@4p(p21)# 5

2

A~p21!~A2p~pr (p22)!1/~p21!!d
, ~6.14!

∧
m50

`

5t (
m50

`

Nmz2 m/@2(p21)#5
2

A~p21!~A2p~pr (p22)!1/~p21!!d (
m50

`

2mNmS p

r D mp/~p21!

.

~6.15!

We observe that theds,1K(z) term vanishes identically since

fp
d (

l 50

p21

~2 ! lzl /pds,1K~z!5
ebz1/b

2p
∧
m50

`

ds,1 (
l 50

p21

~2 ! l50 ~6.16!

and the sum overl vanishes whenp is even (s51).
The last term in~6.13! is only nonzero for certain values ofp; by inserting the explicit form

of G(p21) and massaging this term becomes

e2bz1/b

2p
∧
m50

`

~2 !m (
j 50

p/2 21

expF2dp i

p S j 2
~p22!

4 D Gds,1 (
l 50

p21

~2 ! l expS 2 l
[4 j 22(p21)]p i

p D .

~6.17!

For evenp this l sum is only nonvanishing when@4 j 22(p21)#/p is an odd integer which is only
possible forj 5 (p22)/4, which in turn is only possible whenp[2(mod 4). We see then from
this analysis of the last two terms in~6.13! that thel sum acts as a powerful selection rule, and th
this selection rule introduces a structure into the expansion ofpp

d(r ) that depends on a simpl
arithmetic property ofp, namely on the residue ofp modulo 4. We now investigate the remainin
terms in ~6.13! and we shall see shortly that both of these phenomena arise again. In or
substitute the explicit forms ofG(k) and Ḡ(k2s) from ~6.8! into ~6.13! we need to write thek
sum in terms of its even and odd terms separately,

pp
d~r !;fp

d (
l 50

p21

~2 ! lzl /p (
k5s

[ p/2]21

(
j 50

k FexpS 6
(2l 1d)p i

p
2 j DK~ze6 ip(4k112s)!G1

1fp
d (

l 50

p21

~2 ! lzl /p (
k50

[ p/2]21

(
j 50

k FexpS 6
(2l 1d)p i

p
2 j DK~ze6 ip(4k132s)!G1

2
ds,2

2
∧
m50

`

~2 !me2bz1/b
2ds,1fp

d (
l 50

p21

~2 ! lzl /p (
k5s

[ p/2]21

expS (2l 1d)p i

p
2kDK~zeip4k!.

~6.18!

If we insert the explicit form forK@zeip4k# from ~6.3! into the last term of Eq.~6.18! we find that
the l sum vanishes for evenp and so this term is identically zero. We now need only to simp
the first two terms in~6.18!. To do this it is expedient to observe the following result which i
straightforward consequence of~6.3!,

@e6 i eKp,q~ye6mp i !#15ei eKp,q~yemp i !1e2 i eKp,q~ye2mp i !

52
~2p!~12b!/2

Ab
yg (

r 50

`

Nry
2 r /b expS by1/b cosFmp

b G D
3cosS by1/b sinFmp

b G1gmp1e2
rpm

b D . ~6.19!
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We apply this to~6.18!,

pp
d~r !; ∧

m50

`

(
k5s

[ p/2]21

(
j 50

k

exp~bh12sz1/b!
1

p (
l 50

p21

cosS u12s~ j !2
lp

p
~4k24 j 112s! D

1 ∧
m50

`

(
k50

[ p/2]21

(
j 50

k

exp~bh32sz1/b!
1

p (
l 50

p21

cosS u32s~ j !2
lp

p
~4k24 j 132s! D

2
ds,2

2
∧
m50

`

~2 !mexp~2bz1/b!, ~6.20!

u t~ j !52~p21!sinF ~4k1t !p

2~p21! Gz1/@2~p21!#2
mp~4k1t !

2~p21!
1

dp

p F2 j 2
~p22!

4~p21!
~4k1t !G ,

~6.21!

h t5cosF ~4k1t !p

2~p21! G . ~6.22!

We now have the first two terms of~6.20! in a form where we can easily utilize the selection ru
properties of thel sum. It is a simple matter to verify the following identity:

(
l 50

n21

~2 ! lcosS f1
mp l

n D5H 0 if
m

n
¹Zodd

n cos~f! if
m

n
PZodd

~6.23!

with m, nPZ, and providingm andn have the same parity.
From this result we see that the only terms in~6.20! which can survive are those for whic

(4k24 j 1 f 2s)/p is an odd integer, wheref 51,3 in the first and second pieces of~6.20!,
respectively. By analyzing the summation limits onk and j it can be seen that (4k24 j 1 f
2s)/p can only be an odd integer when (4k24 j 1 f 2s)/p 51. Hence it is only thej 5k
2(@p2( f 2s)#/4) components that result in a nonvanishing contribution. Butj is an integer, so
it is only those terms for whichp[( f 2s)(mod 4) that can survive. So thef 51 term only
survives for the specificp values whenp[(12s)(mod 4), i.e., whenp[s(mod 4) with s
50,1. Likewise thef 53 term only survives whenp[s(mod 4) withs52,3. So for any choice of
p, only one of the first two pieces of~6.20! will be nonzero. Further, sincej >0, only thek
>@p2( f 2s)#/4 components of thek sum will contribute. Utilizing all these observations we c
write the beyond all orders contribution of the complete asymptotic expansion ofpp

d(r ) in a rather
simple form, which depends in an essential way on the parameters which is defined as the
arithmetic residue ofp modulo 4,

pp
d~r !; ∧

m50

`

(
k5 ~p2s!/4

[ p/2]21

exp~bz1/bhs!cosFusS k2
~p2s!

4 D G
2

ds,2

2
∧
m50

`

~2 !mexp~22(p21)z1/2(p21)!, ~6.24!
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pp
d~r !;

2

A~p21!~A2p~pr (p22)!1/~p21!!d (
m50

`

2mNmS p

r D mp/~p21!

3 (
k5 ~p2s!/4

[ p/2]21

expS ~p21!cosF ~4k1s!p

2~p21! G S r

pD p/~p21!D
3cosS ~p21!sinF ~4k1s!p

2~p21! G S r

pD p/~p21!

2
mp~4k1s!

2~p21!
1

dkp

~p21!
2

@2p2~s12!#dp

4~p21! D
2

ds,2

A~p21!~A2p~pr (p22)!1/~p21!!d (m50

`

2mNmS p

r D mp/~p21!

~2!mexpS2~p21!S r

pD p/~p21!D .

~6.25!

This general expression should be compared to the specific results listed in Ref. 16, in pa
note the increasing number of different exponentially decaying oscillatory series asp increases,
which verifies our conjecture in Ref. 16 that such behavior should be expected. It is also in
ing to note that although increasingp increases the number of series in the transcendental ex
sion, increasingd has no such effect. We see then from this result, and from the asymptotic p
series of Sec. IV, that the asymptotics ofpp

d(r ) is only weakly dependent ond. The number of
exponentially decaying oscillatory series depends only ona, and the power series vanishes on
whena is an even integer, regardless ofd. The structure of the complete asymptotic expansion
pp

d(r ) is affected by the introduction of generald only in so far asd appears as a factor or an
index in certain places.

VII. MOMENTS

Consider any isotropic pdf of ad-dimensional random walker, call itp(r ), then if p(r )
possess finite absolute moments the characteristic function will possess a power series ex
of the form

p̃~q!5 (
k50

`
~2 !k

k!

^ur u2k&
22k~d/2!k

q2k, ~7.1!

where we define the absolute moments ofp(r ) in the usual way via

^ur un&5E
Rd

ddrp~r !ur un ~7.2!

5
2pd/2

G~d/2!
E

0

`

ddrp~r !r n1d21. ~7.3!

Thus the analyticity of the characteristic function and the existence of the even absolute mo
of the pdf are mutually implicative. From this result we can deduce that sincep̃a

d(q)5e2qa
is only

analytic whena is an even integer, thatpa
d(r ) can possess finite absolute moments to all ord

only when a is an even integer. This is completely in agreement with what we found in
asymptotic results since it is only whena is even that the algebraic terms in the asympto
expansion ofpa

d(r ) vanish, which implies the existence of a characteristic scale. This chara
istic scale is provided by the finite moments whena is even. In this section we list the absolu
moments ofpa

d(r ) when they exist, or describe how they diverge when they do not, in orde
fully elucidate the connections between moments, exponential asymptotics ofpa

d(r ), and analyt-
icity of p̃a

d(q).
                                                                                                                



5104 J. Math. Phys., Vol. 43, No. 10, October 2002 T. M. Garoni and N. E. Frankel

                    
TABLE I. Numerical values ofNm(a53,d).

m Nm(a53,d51) Nm(a53,d52) Nm(a53,d53)

1 5

288

1

144
2

7

288
2 385

165 888

1

41 472
2

455

165 888
3 85 085

143 327 232
2

3203

17 915 904
2

95 095

143 327 232
4 37 182 145

165 112 971 264
2

1 412 495

10 319 560 704
2

40 415 375

165 112 971 264

TABLE II. Numerical values ofNm(a54,d).

m Nm(a54,d51) Nm(a54,d52) Nm(a54,d53)

1 7

288

1

72
2

5

288
2 385

165 888

1

10 368
2

455

165 888
3 39 655

143 327 232
2

575

2 239 488
2

85 085

143 327 232
4 665 665

165 112 971 264
2

86 975

644 972 544
2

24 079 055

165 112 971 264

TABLE III. Numerical values ofNm(a55,d).

m Nm(a55,d51) Nm(a55,d52) Nm(a55,d53)

1 9

320

3

160
2

3

320
2 441

204 800

9

51 200
2

99

40 960
3 30 303

327 680 000
2

11 679

40 960 000
2

172 557

327 680 000
4

2
25 162 137

419 430 400 000
2

3 026 313

26 214 400 000
2

41 162 121

419 430 400 000

TABLE IV. Numerical values ofNm(a56,d).

m Nm(a56,d51) Nm(a56,d52) Nm(a56,d53)

1 11

360

1

45
2

1

360
2 517

259 200

1

4050
2

539

259 200
3

2
22 253

1 399 680 000
2

407

1 366 875

673 673

1 399 680 000
4

2
158 440 051

2 015 539 200 000
2

6089

61 509 375
2

147 758 611

2 015 539 200 000
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To ascertain the divergence or values of the moments for variousa it is convenient to conside
a slightly generalized integral,̂ur un&l , in which we insert the factore2lr into the integrand,
which tends tô ur un& asl→0. The Mellin Barnes representation of^ur un&l is easily shown to be

^ur un&l5
21

2p i Es2 i`

s1 i`

ds
2s11

aG~d/2!
GS 2s

a DGS d1s

2 D G~n22!

GS 2s

2 D ls2n2d,s,2
~d21!

2
. ~7.4!

By inspecting the smalll behavior of this well behaved integral we can determine whether
2mth moment diverges for a givena, and if this moment is finite we can calculate its numeric
value by takingl→0. The smalll expansion of̂ ur un&l is obtained by closing the contour to th
right. We find that the pole structure of~7.4! is identical to that of the analogousd51 result
examined in Ref. 16. Hence whether^ur un& diverges, vanishes, or converges to a finite va
depends only ona and not ond. As noted in Ref. 16, the moments may become negative w
a.2 since thenpa

d(r ) can take on negative values. The only effect that leavingd arbitrary has on
the calculation is to generalize the finite nonzero moments whena is an even integer. This is to b
expected since the existence or otherwise of the asymptotic power series is determined by t
of a alone, as is the analyticity of the characteristic functionp̃a

d(q). Following the procedure in
Ref. 16 we arrive at the following results for the 2mth absolute moment ofpa

d(r ) for generald:

^ur u2m&55
~21!m1 j22m~d/2!m

~m!!

j !
, a52

m

j
P$2,4,6, . . .%

1`, 2m.aPøk50
` ~4k,4k12!

2`, 2m.aPøk50
` ~4k12,4k14!

0, otherwise.

~7.5!

VIII. DISCUSSION

As Pólya28 generalized Rayleigh’s29 work on Pearson’s original random walk problem, fro
specific dimensions to arbitrary, so we, humbly, have now generalized our first investigation~Ref.
16! on the properties of the symmetric Le´vy stable pdfs. The analytic results forpa

d(r ), i.e., the
dimensional recursion relation and the identification ofpa

d(r ) with certain special functions fo
variousa and d will no doubt be of use in the diverse applications to random phenomena
pa

d(r ) enjoys whena<2 and it defines a pdf. Equally as exciting is the intricate exponenti
small asymptotic behavior ofpa

d(r ) which occurs for integrala>3, and which is dominant when
a is even. By constructing this asymptotic expansion for arbitrary integrala and d we have
exhibited a family of functions displaying dominant asymptotics beyond all orders, which
vides a detailed case study for the exciting new field of asymptotics beyond all orders. A
cussed in Ref. 16 we feel for this reason thatpa

d(r ) for a.2 will in time find interesting physical
applications. A final interesting observation involves a number theoretic series which we re
to in Ref. 16 as the generalized Euler Jacobi series.25 As discussed therein, there is a direct lin
betweenpa

1(r ) and the generalized Euler Jacobi series. As a consequence of the asym
analysis undertaken herein the general expression for the asymptotics of this series is now
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APPENDIX: CALCULATING G2pÀ1
1,1

„k …

Proposition 1:

G2p21
1,1 ~2m!5G2p21

1,1 ~2m11!5(
j 50

m

expS 22 j
(2l 1d)p i

p D , mPH 0,1,2,. . . ,Fp21

2 G J ,

~A1!

where@n# represents the integer part of n.
The proof of Proposition 1 begins with the following two recursion relations which we ded

from the general result 5.11.1~16! on page 197 of Ref. 27.

2mG2p21
1,1 ~2m!5 (

r 50

m21 F112 expS 2
2(r 11)(2l 1d)p i

p D GG2p21
1,1 @2~m2r 21!#

1 (
r 50

m21

G2p21
1,1 @2~m2r 21!11# mPH 1,2,. . . ,Fp

2G J , ~A2!

~2m11!G2p21
1,1 ~2m11!5 (

r 50

m21 F112 expS 2
2(r 11)(2l 1d)p i

p D GG2p21
1,1 @2~m2r 21!11#

1(
r 50

m

G2p21
1,1 @2~m2r !#, mPH 0,1,2,. . . ,Fp21

2 G J . ~A3!

Next we observe the validity of the following two lemmas, the second being a consequence
first

Lemma 1:

(
r 50

m21

(
j 50

m2r 21

u2 j1 (
r 50

m21

@112u2(r 11)# (
j 50

m2r 21

u2 j5~2m!(
j 50

m

u2 j , ;mPZ.0 . ~A4!

Lemma 2:

(
r 50

m

(
j 50

m2r

u2 j1 (
r 50

m21

@112u2(r 11)# (
j 50

m2r 21

u2 j5~2m11!(
j 50

m

u2 j , ;mPZ>0 , ~A5!

Gq11
1,p (0)51 always, so from~A2! and ~A3! we obtain

Gq11
1,p ~0!5G2p21

1,1 ~1!51, G2p21
1,1 ~2!5G2p21

1,1 ~3!511expS 22
(2l 1d)p i

p D , ~A6!

etc., which suggests the form

G2p21
1,1 ~2s!5G2p21

1,1 ~2s11!5(
j 50

s

expS 22 j
(2l 1d)p i

p D . ~A7!

If we assume that all theGq11
1,p @2(m2r 21)# andGq11

1,p @2(m2r 21)11# in ~A2! are of the form
~A7! then by applying Lemma 1 we induce that

G2p21
1,1 ~2m!5(

j 50

m

expS 22 j
(2l 1d)p i

p D , mPH 1,2,. . . ,Fp

2G J . ~A8!

Similarly, applying Lemma 2 to~A3! we induce
                                                                                                                



tic

anley,

.

3 as

-
,

5107J. Math. Phys., Vol. 43, No. 10, October 2002 d-dimensional Lévy flights: Exact and asymptotic

                    
G2p21
1,1 ~2m11!5(

j 50

m

expS 22 j
(2l 1d)p i

p D , mPH 0,1,2,. . . ,Fp21

2 G J , ~A9!

which proves Proposition 1.
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22A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,Higher Transcendental Functions~McGraw–Hill, New

York, 1953!.
23A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev,Integrals and Series~Gordon and Breach, New York, 1992!.
24Both the expressions forp1/2

0 (r ) in terms of Bessel functions and parabolic cylinder functions are listed in Ref. 2
entries 2.12.9~5! and 2.12.9~6!, respectively, however 2.12.9~5! is incorrect by a factor ofp2.

25V. Kowalenko, N. E. Frankel, M. L. Glasser, and T. Taucher,Generalised Euler–Jacobi Inversion Formula and Asymp
totics Beyond All Orders, London Mathematical Society Lecture Note Series No. 214~Cambridge University Press
Cambridge, 1995!.

26G. H. Hardy,Divergent Series~Clarendon, Oxford, 1963!.
27Y. L. Luke, The Special Functions and Their Approximations~Academic, New York, 1969!.
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A new parametrization and all integral realizations
of the Lorentz group

James D. Loucka)

Los Alamos National Laboratory, Los Alamos, New Mexico 87545
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A simple linear transformation of the biquaternionic parametersa and b of the
group SL~2, C!, which is two-to-one homomorphic to the restricted Lorentz group
L, is used to express each element of SL~2, C! andL in terms of the first column
of an element ofL and the quaternionic parametersa. This parametrization is
shown to bring the determination of the integral realizations of the restricted Lor-
entz group under the purview of classical Diophantine analysis, involving the ex-
pression of a given pair of integers, respectively, as a sum of three squares and a
sum of four squares. These solutions are further constrained by the condition that a
set of four integers, which is linear in the solution of the three squares problem and
in the solution of the four squares problem, have a common factor. These are all
classical problems addressed and solved by Euclid, Euler, Fermat, Gauss, Jacobi,
and others. The corresponding realizations of SL~2, C! fall into three distinct
classes: those in which the elements of the matrix are Gaussian integers, Gaussian
integers divided by&, and Gaussian half-odd integers. These results apply also to
the principal subgroups of SL~2, C!. @DOI: 10.1063/1.1505124#

I. INTRODUCTION

P. A. M. Dirac1 pointed out in 1972 the interesting structure possessed by the Gaussian i
and half-odd integer realizations of the group SL~2, C!, which leads through the two-to-on
homomorphism of this group onto the restricted Lorentz groupL5SO(3,1) to integral realizations
of L. He gave a parametrization of SL~2, C! in terms of biquaternionic parameters which
suggested was useful for such studies, but did not go very far in determining such intege
izations, nor was he specific about the applications he had in mind. Schild2 earlier had studied
such integer realizations ofL with the purpose of using them to model a discrete space–
viewpoint of the physical world. Lorente3 has used the Cayley parametrization, which is ess
tially the same as the biquaternionic parametrization, of the classical groups in a series of
~see References in Ref. 3!, and more recently in collaborations with Kramer,4–7 and applied
integral realizations of the Lorentz group to physical law formulated on a lattice. Balazset al.8,9

use integer representations of the Lorentz group in their construction of a relativistic l
dynamics for modeling the dynamics of points of a relativistic fluid.

Lorente and Kramer,6,7 using a set of generators attributed to Coxeter by Schild~Ref. 2. p. 47!
and a result of Kac,10 give a general expression for all integral representations ofL in terms of
these generators~see Remark 2 in Sec. VIII!. Knowing a set of generators of a group, whi
eloquently specifying uniquely the group, is not always the easiest way to characterize the
elements themselves, and we shall proceed differently.

The author,11 in a paper presenting a unified viewpoint of the role of the quantum mecha
rotation group SU~2! in its action in Euclidean three-spaceR3 and in spin space, used the metho
of Cartan12 and Wigner,13 and the paper of Dirac,1 to derive the following formula relating the
elementsZPSL(2,C) to the elementsLPL:

a!Electronic mail: jimlouck@aol.com
51080022-2488/2002/43(10)/5108/27/$19.00
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L5A0
†~Z^ Z* !A0 , ~1.1!

where^ denotes the Kronecker product, andA is the numerical unitary matrix given by

A05
1

& S 1 0 0 1

0 1 2 i 0

0 1 i 0

1 0 0 21

D . ~1.2!

The real matrixL is defined so as to leave invariant the quadratic formxTGx, G5diag(1,21,
21,21), x5col(x0,x1,x2,x3) (T denotes matrix transposition! under the linear transformatio
x°Lx. Thus, the matrixL5(L)0<m,n<3 satisfiesLTGL5G, and may be shown also to satis
detL51, L00>1. Thus,L is an element of the restricted Lorentz group.

Relation~1.1! is not only quite easy to solve forZ in terms ofL, but is especially useful for
relating the biquaternionic parametrization of SL~2, C! to that ofL. This relationship can then b
used in an obvious manner to parametrize all matrices inZPSL(2,C) andLPL in terms of the
first column of L and one set of the biquaternionic parameters. This parametrization, in
brings the problem of determining all integral realizations ofL within the purview of classical
methods in number theory, known and solved since the time of Euclid, Euler, Fermat, G
Jacobi, and others. These methods are all described in the elementary and readable b
Uspensky and Heaslet.14

The purpose of this article is to effect the steps described above. A principal featur
emerges is the existence of a 384 element finite group, which acts in the biquaternionic par
space to effect signed permutations of these parameters, that is, permutations as well as6 signs on
the permuted quantities, and the transfer of this action to that of a second finite group w
elements, which acts on the elements of the Lorentz matrix to effect signed permutations o
elements. It is this structure, together with the classical number theory mentioned above, tha
to algorithms for the construction of all integralL, and to the elements ofZ that are homomorphic
to the integralL. A somewhat unexpected feature is that the matrices in SL~2, C! mapping to
integral matrices inL fall into the two classes with elements given by Gaussian integers
Gaussian half-odd integers, as pointed out by Dirac,1 and a third class with elements given b
(Gaussian integers)/&.

The plan of the article is as follows: In the Introduction, we continue with the review of
biquaternionic parametrization of SL~2, C!, deriving quite easily from Eq.~1.1! a result given by
MacFarlane.15 It is quite tedious to obtain the form given by Eqs.~1.12!–~1.14! from MacFar-
lane’s result, despite its eloquent compactness. In Sec. II, we introduce a finite group wit
elements, denotedH4 , of signed permutations, which is a finite symmetry group of the Lore
group, where the action of the groupH4 is defined on the biquaternionic parameters. A seco
finite group with 48 elements, denotedH3 , of signed permutations is also introduced, and
action defined on the elements of a given Lorentz matrixL. In Sec. III, we establish an eight-to
one homomorphism between the groupsH4 andH3 . In Sec. IV, we give the explicit parametri
zation of each matrixLPL in terms of its first column, as well as the corresponding eleme
ZPSL(2,C). In Sec. V, we apply these results to the four principal subgroups of SL~2, C!. In Sec.
VI, this general parametrization in terms of the first column leads easily to the integral realiz
of the Lorentz groupL, and the corresponding elements of SL~2, C!, falling into the three classe
mentioned above. Explicit algorithms are given for constructing these three classes using c
number theory for a pair of Diophantine equations expressing a given pair of integers, re
tively, as the sum of three squares and the sum four squares, and the Euclidean algorit
determining the greatest common divisor of a related set of four integers.

We now continue in this Introduction with solving relation~1.1! for the matrixZ in terms of
L. We write Eq.~1.1! in the form
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A0LA0
†5Z^ Z* 5Kronecker product ofZ and Z* 5S z11Z* z12Z*

z21Z* z22Z* D . ~1.3!

We work out the left-hand side of this relation and write it in the 232 block form

A0LA0
†5

1

2 S M11 M12

M21 M22.D , ~1.4!

where

M115S L001L331L031L30 L011L311 i ~L021L32!

L101L132 i ~L201L23! L111L221 i ~L122L21!
D ,

M125S L011L312 i ~L021L32! L001L332L031L30

L112L222 i ~L211L12! L102L132 i ~L202L23!
D ,

~1.5!

M215S L101L131 i ~L201L23) L112L221 i (L211L12)

L002L331L032L30 L012L311 i (L022L32)
D ,

M225S L111L221 i ~L212L12! L002L131 i ~L202L23!

L012L312 i ~L022L32! L001L332L032L30
D .

Here we writeL in the following form with elementsLmn ,0<m,n<3:

L5S L00 L01 L02 L03

L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33

D . ~1.6!

We next solve forZ, noting the several other relations that come from the present appro
We first have from Eqs.~1.2! and ~1.3! that

zi j Z* 5 1
2 Mi j , i , j 51,2. ~1.7!

Moreover, we have from Eq.~1.3! that

tr L5tr Z tr Z* 5utr Zu2, ~1.8!

while from ~1.7! we have

zi j tr Z* 5 1
2 tr Mi j , zi j

2 5 1
4 detMi j . ~1.9!

If tr LÞ0, we obtain immediately from these relations and detZ51 that

Z5
1

2 trZ*
A5

A

AdetA
, for tr LÞ0, ~1.10!

where

A5S tr M11 tr M12

tr M21 tr M22
D , ~1.11!
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tr M115tr L1~L031L30!1 i ~L122L21!,

tr M125~L011L10!2~L132L31!1 i ~2L022L201L232L32!,
~1.12!

tr M215~L011L10!1~L132L31!2 i ~2L022L202L231L32!,

tr M225tr L2~L031L30!2 i ~L122L21!.

In general, detA is complex in Eq.~1.10!, and this must be taken into account in extracting
square root. Moreover, if the singular case detL50 holds, then one appeals directly to the seco
of Eqs.~1.9! for the solution.

The result given by Eqs.~1.10!–~1.12! is the same as that obtained from MacFarlane’s15 Eq.
~69! with L005L0

0 , L0i52Li
0 , Li052L0

i , Li j 5L j
i , i , j 51,2,3. This is accounted for by the fac

that MacFarlane’s homomorphism of SL~2, C! ontoL is related to the one given by relation~1.1!
as follows: ForZ8°L8 in the MacFarlane homomorphism, thenZ°L5GL8G in the homomor-
phism ~1.1!, whereG5diag(1,21,21,21). @See also relation~1.19!#.

The parametrization ofZ in terms of biquaternionic parameters~see Refs. 1 and 11! is given
as follows:

Z5Z~a,b!5S a02 ia3 2 ia12a2

2 ia11a2 a01 ia3
D 1 i S b02 ib3 2 ib12b2

2 ib11b2 b01 ib3
D

5S a01b32 i ~a32b0! 2a21b12 i ~a11b2!

a21b12 i ~a12b2! a02b31 i ~a31b0!
D , ~1.13!

where the condition thatZPSL(2,C) is expressed by

a22b251, a•b5a0b01a1b11a2b21a3b350,

in which

a5~a0 ,a1 ,a2 ,a3!, b5~b0 ,b1 ,b2 ,b3!

are real points. These parameters are given in terms ofZ by

a01 ib05
1

2
~z111z22!, a11 ib15

i

2
~z121z21!,

~1.14!

a21 ib25
21

2
~z122z21!, a31 ib35

i

2
~z112z22!,

which show that eachZPSL(2,C) defines a unique set of real parametersa and b. These real
parameters are also given in terms ofL by

a01 ib05
tr L

AdetA
, a11 ib15

L322L231 i ~L011L10!

AdetA
,

~1.15!

a21 ib25
L132L311 i ~L021L20!

AdetA
, a31 ib35

L212L121 i ~L031L30!

AdetA
.

Recall that in general detA is complex, and this must be accounted for in solving these relat
for a andb. The biquaternion parametersa andb are related to the Cayley parameters used
Lorente3 by a5(m,2q,p,2n),b5(2l,2r ,s,2t).
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The expression of the matrixLPL in terms of the quaternionic parametersa and b is
obtained directly from Eqs.~1.1! and ~1.13!. For a concise expression of this result, it is conv
nient to writeL(a,b) in the form

L~a,b!5S y0~a,b! x1~a,b! x2~a,b! x3~a,b!

y1~a,b! w1~a,b! u3~a,b! v2~a,b!

y2~a,b! v3~a,b! w2~a,b! u1~a,b!

y3~a,b! u2~a,b! v1~a,b! w3~a,b!

D , ~1.16!

where

y0~a,b!5a21b252~a0
21a1

21a2
21a3

2!21,

yi~a,b!52~a0b i2a ib01a jbk2akb j !,

xi~a,b!52~a0b i2a ib02a jbk1akb j !,

ui~a,b!52~2a0a i1a jak2b0b i1b jbk!, ~1.17!

v i~a,b!52~a0a i1a jak1b0b i1b jbk!,

wi~a,b!52~a0
21b0

21a i
21b i

2!2~a21b2!52~a0
21a i

22b j
22bk

2!21,

~ i , j ,k! is cyclic in 1,2,3.

The two-to-one homomorphism SL(2,C)→L is expressed in terms of the parametersa andb
by

Z~a,b!°L~a,b!, Z~2a,2b!52Z~a,b!°L~a,b!. ~1.18!

We also note that the MacFarlane homomorphism SL(2,C)→L is given by

Z8~a,b!5Z~2a0 ,a1 ,a2 ,a3 ;2b0 ,b1 ,b2 ,b3!. ~1.19!

Observe that Eqs.~1.17! show explicitly thatL00>1 and also imply the following:Every Gaussian
integer element ofSL~2, C! maps to a real integer element ofL.

II. DISCRETE SYMMETRIES IN THE PARAMETERS a AND b

Let Sn denote the group of permutations of the integers (1,2,...,n) with action on an arbitrary
sequencex5(x1 ,x2 ,...,xn) defined by

p:x°p~x1 ,x2 ,...,x4!5~xp1
,xp2

,...,xpn
!, for p5S 1 2 ... n

p1 p2 ... pn
D . ~2.1!

Thus, the action of the permutationp is a substitution of the subscripts (1,2,...,n) by
(p1 ,p2 ,...,pn). The parity of a permutation is even or odd if it takes an even or odd numb
transpositions to restore the sequence (p1 ,p2 ,...,pn) to the order (1,2,...,n).

Let Sn denote the set of sequences defined by

Sn5$s5~s1 ,s2 ,...,sn!u each s i561%. ~2.2!

The setSn is an Abelian group under component-wise multiplication of sequences, which
realization of the direct product groupS23S23¯3S2 .
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The direct product groupHn5Sn3Sn is the group of order 2nn! of signed permutationswith
elements given by the ordered pairs~s,p! with multiplication rule

~s83p8!~s3p!5~s8s!3~p8p!, ~2.3!

and action onx defined by

x→~s,p!x5~s1xp1
,s2xp2

,...,snxpn
!. ~2.4!

We define the sequences5(s1 ,s2 ,...,sn) to haveeven parityif s1s2¯sn51 andodd parityif
s1s2¯sn521.

We chooseS4 to be the group of permutations on~0,1,2,3! for application to the pair of
sequencesa5(a0 ,a1 ,a2 ,a3) and b5(b0 ,b1 ,b2 ,b3). The action ofS4 on the pair~a,b! of
sequences is to effect the same permutation on each sequence:

p:~a,b!°~p~a!,p~b!!,

p~a!5~ap0
,ap1

,ap2
,ap3

!, p~b!5~bp0
,bp1

,bp2
,bp3

!, ~2.5!

p5S 0 1 2 3

p0 p1 p2 p3
D .

For symmetry of notation, we also denote the elements ofS4 by (s0 ,s1 ,s2 ,s3).
The significance of the groupH45S43S4 of signed substitutions is that detZ(a,b)5a2

2b212ia•b is invariant under the simultaneous transformations

a°h~a!5~s0ap0
,s1ap1

,s2ap2
,s3ap3

!,

~2.6!
b°h~b!5~s0bp0

,s1bp1
,s2bp2

,s3bp3
!,

where the action ofhPH4 on Z(a,b) is defined by

h:Z~a,b!°Z~h~a!,h~b!!. ~2.7!

For the group SL~2, C!, where a22b251 and a•b50, the groupH45S43S4 can be
enlarged by adjoining the two element groupS25$(1,1),(1,21)% to form the direct product
group

H2,45S23H45S23~S43S4! ~2.8!

with elements~t,s,p! having action on the pair~a,b! given by

~t,s,p!:~a,b!→~t,s,p!~a,b!5~t1h~a!,t2h~b!!. ~2.9!

The groupH2,4 is a symmetry group of SL~2, C! of order 776, that is,

Z~h8~a,b!!PSL~2,C!, each h8PH2,4. ~2.10!

Since the extra symmetry

Z~2a,b!5Z~a,b!52Z~a,b! ~2.11!

originated from the groupH2,4 is easily taken into account, we restrict our attention to the gr
H4 , which is a normal subgroup ofH2,4, andS2 is the factor groupH2,4/H4 .

Let us note that the mappingh:SL(2,C)→SL(2,C) is an inner automorphism if and only i
one can write
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Z~h~a,b!!5AhZ~a,b!Ah
21 ,AhPSL~2,C!; ~2.12!

otherwise the mapping is an outer automorphism. We have not determined which elementsH4

are inner and which are outer automorphisms.
For eachhPH4 , we have the mapping of elements of SL~2, C! to elements ofL given by

Z~h~a,b!!°L~h~a,b!!. ~2.13!

Thus, in the general case, 384 distinct matrices in SL~2, C! map to matrices inL. But, as we shall
show, at most 48 distinct matrices inL can arise, and these correspond to signed permutation
the elements ofL. This result is an easy consequence of the explicit results we give below.

No ambiguity will arise if we write the ordered pair of elements in Eq.~2.3! in juxtaposition:

h~s,p!5~s0 ,s1 ,s2 ,s3! S 0 1 2 3

p0 p1 p2 p3
D . ~2.14!

Observing the permutational symmetry of the elements in column 1 ofL(a,b) given by Eq.
~1.17!, especially the distinguished position ofa0 , we are led to enumerate the set of 384 sign
permutations inH4 by the following notation:

hs0

(0)~t,r!5~s0 ,s0t1 ,s0t2 ,s0t3! S 0 1 2 3

0 r1 r2 r3
D ,

hs1

(1)~t,r!5~2s1t1 ,s1 ,s1t3 ,2s1t2! S 0 1 2 3

r1 0 r3 r2
D ,

~2.15!

hs2

(2)~t,r!5~2s2t2 ,2s2t3 ,s2 ,s2t1! S 0 1 2 3

r2 r3 0 r1
D ,

hs3

(3)~t,r!5~2s3t3 ,s3t2 ,2s3t1 ,s3! S 0 1 2 3

r3 r2 r1 0D ,

wheretPS3 and

S 1 2 3

r1 r2 r3
D PS3 .

Thus, introducing the notation

p~t,r!5~t1 ,t2 ,t3!S 1 2 3

r1 r2 r3
D ~2.16!

for an element ofH3 , we have partitioned the groupH4 into 48 subsetsS(t,r), each containing
eight elements, and defined by

S~t,r!5$hsk

(k)~t,r!uk50,1,2,3; eachsk561, p~t,r!PH3%. ~2.17!

The actions of the group elementshsk

(k)(t,r)PH4 are implemented directly on the elements

the Lorentz matrixL(a,b) by applying

h:Lm,n~a,b!°Lm,n~h~a!,h~b!!, each hPH4 . ~2.18!
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The group elementsp(t,r)PH3 act on the indices of an arbitrary sequence (z1 ,z2 ,z3) is to
effect the signed permutation (t1zr1

,t2xr2
,t3zr3

). It is the case that action of eachhPH4 effects
a signed permutationp(t,s) of the elements inL(a,b). For a concise description of this latte
action, it is notationally convenient to suppress the parametersa andb and writeL(a,b) in the
form

L~a,b!5S y0 x1 x2 x3

y1 w1 u3 v2

y2 v3 w2 u1

y3 u2 v1 w3

D , ~2.19!

wherey05L0,0 and

xi5L0,i~a,b!,yi5Li ,0~a,b!,wi5Li ,i~a,b!, for i 51,2,3

ui5L j ,k~a,b!,v i5Lk, j~a,b!, ~2.20!

~ i , j ,k! an even permutation of~1,2,3!.

The explicit calculations given in Eqs.~4.14!–~4.17! in Sec. IV show thatthe action of the
group H4 is transferred to the action of the group H3 on the elements (x1 ,x2 ,x3),
(y1 ,y2 ,y3), (ul ,u2 ,u3), (v1 ,v2 ,v3), (w1 ,w2 ,w3) of L(a,b) in accordance with the rule

hsk

(k)~t,r!:~z1 ,z2 ,z3!°p~t8,r!~z1 ,z2 ,z3!, k50,1,2,3, sk561, ~2.21!

where the sequencet8 depends only on the indexk, and the identification of (z1 ,z2 ,z3) with one
of (x1 ,x2 ,x3), (y1 ,y2 ,y3), (ul ,u2 ,u3), (v1 ,v2 ,v3), (w1 ,w2 ,w3).

The complete set of group actions is given in Eqs.~4.14!–~4.17! in Sec. IV, after we develop
the properties of the groupsH4 andH3 .

III. RELATIONSHIP BETWEEN THE GROUPS H4 AND H3

We can obtain the relationship between the groupsH4 andH3 by determining thelittle group
~also called the stabilizer! that leaves the column sequence (y1 ,y2 ,y3) fixed. This group is found
from Eqs.~1.17! and definitions~2.15! to be the groupS containing eight elements:

S5S~~1,1,1!,~123!!5$Ss0

(0) ,Ss1

(1) ,Ss2

(2) ,Ss3

(3)u each sk561%, ~3.1!

where

Ss0

(0)5s0~1,1,1,1!•~0!~1!)~2!~3!, Ss1

(1)5s1~21,1,1,21!•~01!~23!,

~3.2!
Ss2

(2)5s2~21,21,1,1!•~02!~13!, Ss3

(3)5s3~21,1,21,1!•~03!~12!,

where the cycle notation for permutations is used, and a• is placed between elements ofS4 and
elements ofS4 for clarity. The four even elements$~0!~1!~2!~3!,~01!~23!,~02!~13!,~03!~12!% consti-
tute a normal subgroup ofS4 , andS is a normal subgroup of the direct product groupH45S4

3S4 .
The above result establishes an eight-to-one homomorphism between the groupsH4 andH3

given by

S~t,r!°~t1 ,t2 ,t3!S 1 2 3

r1 r2 r3
D 5p~t,r!. ~3.3!
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SinceS is a normal subgroup ofH4 , left cosets and right cosets are equal. Representative
the 48 cosets, or equivalently of the factor groupH4 /S, may be chosen as follows. Define th
following elements ofS4 , using cycle notation:

s15~0!~1!~2!~3!, s25~0!~123!, s35~1!~023!, even elements,
~3.4!

s45~01!~2!~3!, s55~02!~1!~3!, s65~03!~1!~2!, odd elements.

Define the following representative elements of the factor groupH4 /S:

f m~s1 ,s2 ,s3!5~1,s1 ,s2 ,s3!sm , m51,2,...,6; eachs i561. ~3.5!

The cosets ofS in H4 are given by

$S fm~s1 ,s2 ,s3!um51,2,...,6; eachs i561%. ~3.6!

The results given in this section are important for enumerating the symmetries of the
parametrization of the restricted Lorentz group given in the next section.

IV. PARAMETRIZATION OF L IN TERMS OF ITS FIRST COLUMN AND THE
QUATERNIONIC PARAMETERS a

In this section, we make a transformation of parametersa and b such that every Lorentz
matrix L(a,b) as given by Eqs.~1.16! and ~1.17! is expressed in terms of its first colum
(y0 ,y1 ,y2 ,y3) and the parametersa alone. The resulting new Lorentz matrix, which we denote
(yua), is given explicitly in relations~4.6! and Eqs.~4.11! and ~4.12!.

Let us first mention some general features of this new parametrization. The elements
first column ofL satisfy

y1
21y2

21y3
25y0

221, ~4.1!

and the parameters (a0 ,a1 ,a2 ,a3) satisfy

a0
21a1

21a2
21a3

25
y011

2
. ~4.2!

We define the sphereSn(r ) of radiusr to be the set of real pointsx as follows:

Sn~r !5$x5~x1 ,x2 ,...,xn!ux1
21x2

21...1xn
25r 2!%. ~4.3!

Thus, the first column of the Lorentz matrixZ is any point (y1 ,y2 ,y3)PS3(r 1), r 1
25y0

221, y0

>1. The quaternionic parameter sequence (a0 ,a1 ,a2 ,a3) is any point aPS4(r 2), r 2
25(1

1y0)/2. From a given pair of points solving Eqs.~4.1! and ~4.2!, we obtain a set of new point
that are signed partitions of the old ones by applying the group elements ofH3 andH4 , respec-
tively, namely,p(t8,r8)y andhsk

(k)(t,r)a.

By adjoining the relationa•b50 to the three relations forL10(a,b), L20(a,b), L30(a,b)
given by Eqs.~1.17!, and writingb5col(b0 ,b1 ,b2 ,b3) and ŷ5col(y1 ,y2 ,y3,0), we obtain

AT~a!b5
1

2
ŷ, A~a!5A~a0 ,a1 ,a2 ,a3!5S 2a1 2a2 2a3 a0

a0 a3 2a2 a1

2a3 a0 a1 a2

a2 2a1 a0 a3

D . ~4.4!

Noting thatA(a)AT(a)5(a0
21a1

21a2
21a3

2)I 45 @(y011)/2# I 4 , we thus obtain
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b5b~y,a!5
1

11y0
g~y,a!, g~y,a!5A~a!ŷ. ~4.5!

The gm are given by

g0~y,a!52a1y12a2y22a3y3 , g1~y,a!5a0y11a3y22a2y3 ,
~4.6!

g2~y,a!52a3y11a0y21a1y3 , g3~y,a!5a2y12a1y21a0y3 .

One verifies directly that the following relations are satisfied:

b0
21b1

21b2
21b3

25
y021

2
, a22b251, a•b50. ~4.7!

We now eliminate the parametersb from L(a,b) by using relation~4.5!. We denote the
corresponding Lorentz matrix by (yua), suppressingL00, but regaining it through (yua)005L00

5y0 . The elements of this matrix are denoted by (yua)m n , 0<m, n<3.
We summarize the results for this new parametrization of the Lorentz matrices inL:
For each point yPS3(r 1),R3 and for each pointaPS4(r 2),R4, that is,

y1
21y2

21y3
25y0

221, a0
21a1

21a2
21a3

25
y011

2
, ~4.8!

the set of restricted Lorentz matricesL is given by

~yua!5LS a,
1

11y0
g~y,a! D , g~y,a!5A~a!ŷ. ~4.9!

The homomorphism ofSL~2, C! onto L is given by

Z~yua!5Z~a,b~y,a!!°~yua!, ~4.10!

where

~yua!5S y0 x1~y,a! x2~y,a! x3~y,a!

y1 w1~y,a! u3~y,a! v2~y,a!

y2 v3~y,a! w2~y,a! u1~y,a!

y3 u2~y,a! v1~y,a! w3~y,a!

D , ~4.11!

xi~y,a!5~yua!0,i5
2

11y0
@a0g i~y,a!2a ig0~y,a!2a jgk~y,a!1akg j~y,a!#,

ui~y,a!5~yua! j ,k52~2a0a i1a jak!1
2

~11y0!2 @2g0~y,a!g i~y,a!1g j~y,a!gk~y,a!#,

v i~y,a!5~yua!k, j52~a0a i1a jak!1
2

~11y0!2 @g0~y,a!g i~y,a!1g j~y,a!gk~y,a!#,

~4.12!

wi~y,a!52~a0
21a i

2!212
2

~11y0!2 @g j
2~y,a!1gk

2~y,a!#,

~ i , j ,k! is a cyclic permutation of~1,2,3!.
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The homomorphism ofSL~2, C! onto the restricted Lorentz groupL is now given by

~4.13!

By construction, we have thatdetZ(yua)51 for all yPS3(r 1) and all aPS4(r 2). The property
Z(yu2a)52Z(yua)°(yu2a)5(yua) is exhibited directly by the mapping (4.13).

We now give explicitly the transfer of the action of the groupH4 on the parametersa to the
action of the groupH3 on the parametersy,x,u,v,w in terms of the notation in Eq.~4.11! for the
Lorentz matrix (yua):

hs0

(0)~t,r!: ~y1 ,y2 ,y3!°p~t,r!~y1 ,y2 ,y3!,

~x1 ,x2 ,x3!°p~t,r!~x1 ,x2 ,x3!,

~u1 ,u2 ,u3!°p~t,r!~u1 ,u2 ,u3!,

~v1 ,v2 ,v3!°p~t,r!~v1 ,v2 ,v3!,

for parity of ~t,r! ~even,even! or ~odd,odd!;

~y1 ,y2 ,y3!°p~t,r!~x1 ,x2 ,x3!, ~4.14!

~x1 ,x2 ,x3!°p~t,r!~y1 ,y2 ,y3!,

~u1 ,u2 ,u3!°p~2t,r!~v1 ,v2 ,v3!,

~v1 ,v2 ,v3!°p~2t,r!~u1 ,u2 ,u3!,

for parity of ~t,r! ~even,odd! or ~odd,even!;

~w1 ,w2 ,w3!°p~~1,1,1!,r!~w1 ,w2 ,w3!.

hs1

(1)~t,r!: ~y1 ,y2 ,y3!°p~~t1 ,t2 ,t3!,r!~y1 ,y2 ,y3!,

~x1 ,x2 ,x3!°p~~t1 ,2t2 ,2t3!,r!~x1 ,x2 ,x3!,

~u1 ,u2 ,u3!°p~~2t1 ,t2 ,2t3!,r!~u1 ,u2 ,u3!,

~v1 ,v2 ,v3!°p~~2t1 ,2t2 ,t3!,r!~v1 ,v2 ,v3!,

for parity of ~t,r! ~even,even! or ~odd,odd!;
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~y1 ,y2 ,y3!°p~~t1 ,t2 ,t3!,r!~x1 ,x2 ,x3!, ~4.15!

~x1 ,x2 ,x3!°p~~t1 ,2t2 ,2t3!,r!~y1 ,y2 ,y3!,

~u1 ,u2 ,u3!°p~~t1 ,2t2 ,t3!,r!~v1 ,v2 ,v3!,

~v1 ,v2 ,v3!°p~~t1 ,t2 ,2t3!r!~u1 ,u2 ,u3!,

for parity of ~t,r! ~even,odd! or ~odd,even!;

~w1 ,w2 ,w3!°p~~1,21,21!,r!~w1 ,w2 ,w3!.

hs2

(2)~t,r!: ~y1 ,y2 ,y3!°p~~t1 ,t2 ,t3!,r!~y1 ,y2 ,y3!,

~x1 ,x2 ,x3!°p~~2t1 ,t2 ,2t3!,r!~x1 ,x2 ,x3!,

~u1 ,u2 ,u3!°p~~2t1 ,2t2 ,t3!,r!~u1 ,u2 ,u3!,

~v1 ,v2 ,v3!°p~~t1 ,2t2 ,2t3!,r!~v1 ,v2 ,v3!,

for parity of ~t,r! ~even,even! or ~odd,odd!;

~y1 ,y2 ,y3!°p~~t1 ,t2 ,t3!,r!~x1 ,x2 ,x3!, ~4.16!

~x1 ,x2 ,x3!°p~~2t1 ,t2 ,2t3!,r!~y1 ,y2 ,y3!,

~u1 ,u2 ,u3!°p~~t1 ,t2 ,2t3!,r!~v1 ,v2 ,v3!,

~v1 ,v2 ,v3!°p~~2t1 ,t2 ,t3!r!~u1 ,u2 ,u3!,

for parity of ~t,r! ~even,odd! or ~odd,even!;

~w1 ,w2 ,w3!°p~21,1,21!,r)~w1 ,w2 ,w3!.

hs3

(3)~t,r!: ~y1 ,y2 ,y3!°p~~t1 ,t2 ,t3!,r!~y1 ,y2 ,y3!,

~x1 ,x2 ,x3!°p~~2t1 ,2t2 ,t3!,r!~x1 ,x2 ,x3!,

~u1 ,u2 ,u3!°p~~t1 ,2t2 ,2t3!,r!~u1 ,u2 ,u3!,

~v1 ,v2 ,v3!°p~~2t1 ,t2 ,2t3!,r!~v1 ,v2 ,v3!,

for parity of ~t,r! ~even,even! or ~odd,odd!;

~y1 ,y2 ,y3!°p~~t1 ,t2 ,t3!,r!~x1 ,x2 ,x3!, ~4.17!

~x1 ,x2 ,x3!°p~~2t1 ,2t2 ,t3!,r!~y1 ,y2 ,y3!,

~u1 ,u2 ,u3!°p~~2t1 ,t2 ,t3!,r!~v1 ,v2 ,v3!,

~v1 ,v2 ,v3!°p~~t1 ,2t2 ,t3!r!~u1 ,u2 ,u3!,

for parity of ~t,r! ~even,odd! or ~odd,even!;
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~w1 ,w2 ,w3!°p~21,21,1!,r)~w1 ,w2 ,w3!.

For the application of the above results to integral realizations in Sec. VI, it is usef
formulate them in a coset presentation. Thus, we first write out the special case of the
transformations for the eight group elements in the normal subgroupS, and then replacea by
h(a),hPH4 to obtain the following relations:

Z~yu~Ss0

(0)h!~a!!°S y0 x1~y,h~a!! x2~y,h~a!! x3~y,h~a!!

y1 w1~y,h~a!! u3~y,h~a!! v2~y,h~a!!

y2 v3~y,h~a!! w2~y,h~a!! u1~y,h~a!!

y3 u2~y,h~a!! v1~y,h~a!! w3~y,h~a!!

D ,

Z~yu~Ss1

(1)h!~a!!°S y0 x1~y,h~a!! 2x2~y,h~a!! 2x3~y,h~a!!

y1 w1~y,h~a!! 2u3~y,h~a!! 2v2~y,h~a!!

y2 v3~y,h~a!! 2w2~y,h~a!! 2u1~y,h~a!!

y3 u2~y,h~a!! 2v1~y,h~a!! 2w3~y,h~a!!

D ,

~4.18!

Z~yu~Ss2

(2)h!~a!!°S y0 2x1~y,h~a!! x2~y,h~a!! 2x3~y,h~a!!

y1 2w1~y,h~a!! u3~y,h~a!! 2v2~y,h~a!!

y2 2v3~y,h~a!! w2~y,h~a!! 2u1~y,h~a!!

y3 2u2~y,h~a!! v1~y,h~a!! 2w3~y,h~a!!

D ,

Z~yu~Ss3

(3)h!~a!!°S y0 2x1~y,h~a!! 2x2~y,h~a!! x3~y,h~a!!

y1 2w1~y,h~a!! 2u3~y,h~a!! v2~y,h~a!!

y2 2v3~y,h~a!! 2w2~y,h~a!! u1~y,h~a!!

y3 2u2~y,h~a!! 2v1~y,h~a!! w3~y,h~a!!

D .

The cosets ofH4 are enumerated by taking

hP$S fm~s1 ,s2 ,s3!um51,2,...,6; eachs i561%,

where the set of factor group representatives is defined by Eq.~3.6!. The elements

x~y,h~a!!,u~y,h~a!!,v~y,h~a!!,w~y,h~a!! ~4.19!

of the Lorentz matrices in Eq.~4.18! are, of course, signed permutations ofx(y,a), u(y,a),
v(y,a), w(y,a), which may be obtained explicitly from Eqs.~4.14!–~4.17!. The forms given by
Eqs.~4.18! are needed in Sec. VI. The cosets ofS in H4 partition the set of signed permutation
of the parametersa into orbits under the action of the normal subgroupS, as given by

@h~a!#5$~sh!~a!usPS,h5any coset representative ofH4 /S%. ~4.20!

For general sequencesa having distinct, nonzero components, the 384 signed permutationsa
are partitioned into 48 distinct orbits with eight sequences in each orbit. If, however, one ch
sequences such as (a1 ,a2 ,0,0),a1Þa2 , there are only six distinct orbits. In the extreme case
a sequence (a1 ,0,0,0), all orbits coincide with@(a1 ,0,0,)#. One can, of course, enumerate a
such degenerate cases.

The results given in this section for the restricted Lorentz group extend to the full Lo
group ~see Ref. 13! by adjoining the operations of space inversionS5G, time inversionQ
52G, and their product, thus obtaining the full Lorentz group$LI 4 ,LS,LQ,LSQ% of which L
is a normal subgroup, and$I 4 ,S,Q,SQ% are the elements of the factor group. Thus, writing t
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matrix L5(yua)PL given by Eq. ~4.11! in terms of its columns, (yua)
5(L0(y),L1(y,a),L2(y,a),L3(y,a)), we obtain the full Lorentz group by adjoining the elemen
of the cosets, which are, respectively,

LS5~2L0~y!,L1~y,a!,L2~y,a!,L3~y,a!!,

LQ5~L0~y!,2L1~y,a!,2L2~y,a!,2L3~y,a!!, ~4.21!

LSQ5~2L0~y!,2L1~y,a!,2L2~y,a!,2L3~y,a!!.

V. PRINCIPAL SUBGROUPS

In this section, we given the two-to-one homomorphisms between several subgroups of~2,
C! to subgroups of the restricted Lorentz group in the (yua) parametrization. The development o
the integral realizations of (yua) given in the next section then applies, as well, to the results g
below. In order to give a uniform presentation of the SL(2,R), SU(1,1), andK subgroup cases
below, it is convenient to introduce the indicated notational changes.

~1! Subgroup SU(2),SL(2,C). This is the casey051, y5(0,0,0), where the pointa be-
longs to the unit sphere inR4:a0

21a1
21a2

21a3
251. The two-to-one correspondence of the gro

SU(2) onto the special Lorentz matrices ((0,0,0)ua) is given by

Z~~0,0,0!ua!5S a02 ia3 2 ia12a2

2 ia11a2 a01 ia3
D °~~0,0,0!ua!5S 1 0 0 0

0
0 R~a!

0
D , ~5.1!

whereR(a)PSO(3,R) is the proper orthogonal matrix given by

R5S 2~a0
21a1

2!21 2~a1a22a0a3! 2~a1a31a0a2!

2~a2a11a0a3! 2~a0
21a2

2!21 2~a2a32a0a1!

2~a3a12a0a2! 2~a3a21a0a1! 2~a0
21a3

2!21
D . ~5.2!

The b parameters are

b050, b150, b250, b350. ~5.3!

~2! Subgroup SL(2,R),SL(2,C). Notation: y05l, (y1 ,y2 ,y3)5(x,0,y), a5(v,0,u,0).
These parameters then satisfy

x21y25l221, u21v25
11l

2
. ~5.4!

The two-to-one correspondence of SL~2, R! onto the special Lorentz matrices ((x,0,y)u(v,0,u,0))
is given by

S v1
ux1vy

11l
2u1

vx2uy

11l

u1
vx2uy

11l
v2

ux1vy

11l

D °S l x1 0 x3

x w1 0 v2

0 0 1 0

y u2 0 w3

D , ~5.5!

where
                                                                                                                



5122 J. Math. Phys., Vol. 43, No. 10, October 2002 James D. Louck

                    
x15x2
4u~ux1vy!

11l
, x35y1

4u~vx2uy!

11l
,

w152v22122S ux1vy

11l D 2

, v252uv1
2~ux1vy!~vx2uy!

~11l!2 , ~5.6!

u2522uv1
2~ux1vy!~vx2uy!

~11l!2 , w352v22122S vx2uy

11l D 2

.

~3! Subgroup SU(1,1),SL(2,C). Notation: y05l, (y1 ,y2 ,y3)5(x,y,0)), a5(u,0,0,v).
These parameters then satisfy

x21y25l221, u21v25
11l

2
. ~5.7!

The two-to-one correspondence of SU~1,1! onto the special Lorentz matrices ((x,y,0)u(u,0,0,v))
is given by

S u2 iv
~u1 iv !~x2 iy !

11l

~u2 iv !~x1 iy !

11l
u1 iv

D °S l x1 x2 0

x w1 u3 0

y v3 w2 0

0 0 0 1

D , ~5.8!

where

x152x1
4u~ux1vy!

11l
, x252y2

4u~vx2uy!

11l
,

w152u22122S vx2uy

11l D 2

, u3522uv2
2~ux1vy!~vx2uy!

~11l!2 , ~5.9!

v352uv2
2~ux1vy!~vx2uy!

~11l!2 , w252u22122S ux1vy

11l D 2

.

~4! SubgroupK,SL(2,C). Notation:y05l, (y1 ,y2 ,y3)5(0,x,y), a5(u,v,0,0). These pa-
rameters then satisfy

x21y25l221, u21v25
11l

2
. ~5.10!

The two-to-one correspondence ofK onto the special Lorentz matrices ((0,x,y)u(u,v,0,0)) is
given by

S u2
vx2uy

11l
2 i S v1

ux1vy

11l D
2 i S v2

ux1vy

11l D u1
vx2uy

11l

D °S l 0 x2 x3

0 1 0 0

x 0 w2 u1

y 0 v1 w3

D , ~5.11!

where

x252x1
4u~ux1vy!

11l
, x352y2

4u~vx2uy!

11l
,
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w252u22122S vx2uy

11l D 2

, u1522uv2
2~ux1vy!~vx2uy!

~11l!2 , ~5.12!

v152uv2
2~ux1vy!~vx2uy!

~11l!2 , w352u22122S ux1vy

11l D 2

.

While the subgroups SL(2,R), SU(1,1), andK have distinct structures, they are paramet
ized in a uniform way in that the parameters satisfy the same relations~5.4!, ~5.7!, and~5.10!, and
the elements of the matrix have the same factorsux1vy andvx2uy. This is important in Sec.
VII for integral realizations.

VI. ALGORITHMS FOR THE CONSTRUCTION OF ALL INTEGRAL LORENTZ MATRICES

We have given in Sec. IV a parametrization that is not only suitable for obtaining al
integral realizations of the Lorentz group, but which also casts the problem in a form that b
it within the purview of classical number theory, known since the time of Euclid, Fermat,
Gauss. In this section, we apply these results to the determination of all integral realizations
restricted Lorentz group, which we denote byI (L) with elementsI (yua).

Necessary and sufficient conditions that a matrix (yua)PI (L) are that the following set of
conditions be true:

Condition I: Fory05mP$1,2,...%, the first column solves, in integers,

y1
21y2

21y3
25m221, ~6.1!

Condition II: The integerm11 divides each of the quantities

g0~y,a!52a1y12a2y22a3y3 , g1~y,a!5a0y11a3y22a2y3 ,
~6.2!

g2~y,a!52a3y11a0y21a1y3 , g3~y,a!5a2y12a1y21a0y3 .

Condition III: The parametersa5(a0 ,a1 ,a2 ,a3) satisfy

a0
21a1

21a2
21a3

25
m11

2
,

2~a0
21a i

2!5niP$0,1,...%, 22a0a i12a jak5 integer, ~6.3!

2a0a i12a jak5 integer, ~ i , j ,k! cyclic in ~1,2,3!.

It follows from 2(a0
21a i

2)5ni5 non-negative integer anda0
21a1

21a2
21a3

25(m11)/2 that
4a0

21m115n11n21n3 , hence, 4a0
25 non-negative integer. There are three distinct possib

ties: a05 integer, a05(integer)/&, a05(odd integer)/2. It then follows from 2a i
25ni22a0

2

that the sequence (a0 ,a1 ,a2 ,a3) is either all integral, all ( integer)/&, or all (odd integer)/2. All
cases satisfy the criteria in Condition III that the entries in (yua) be integral.

The three classes of integral matricesI (yua)PI (L) are given explicitly as follows:
Class I.y05m52k11, theam are all integers, andy5(y1 ,y2 ,y3) anda5(a0 ,a1 ,a2 ,a3)

satisfy

y1
21y2

21y3
254k~k11!,

~6.4!
a0

21a1
21a2

21a3
25k11.
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Class II. y05m5k, am5am /& , where theam are all integers, andy5(y1 ,y2 ,y3) and a
5(a0 ,a1 ,a2 ,a3) satisfy

y1
21y2

21y3
25k221,

~6.5!
a0

21a1
21a2

21a3
25k11.

Class III. y05m5k, am5bm/2 , where thebm are all odd integers, andy5(y1 ,y2 ,y3) and
b5(b0 ,b1 ,b2 ,b3) satisfy

y1
21y2

21y3
25k221,

~6.6!
b0

21b1
21b2

21b3
252k12, each bm odd.

The problems posed in each of these three classes are all classical number theoretic pr
and were considered by Euclid, Euler, Fermat, and Gauss, and others~see Ref. 14!. Two relevant
results are the following:

~1! Each positive integer, except those of the form 4s(8N17),s,NP$0,1,2,...%, can be expressed
as the sum of at most three squares.

~2! Each positive integer can be expressed as the sum of at most four squares.

Note that the condition given in~1! excludes certaink in each of the three classes. For examp
there are no integer solutionsy of ~6.4! for k512, since (4)(12)(13)54(156)5(42)(39)
54@(8)(4)17#, and none fork54 of ~6.5! and ~6.6!, since 422151558(1)17.

We mention that methods for solving Diophantine equations of the type occurring in the
classes above are developed in Refs. 16 and 17. Also, Uspensky and Heaslet14 is a very readable
book on number theory that introduces basic concepts and proves statements~1! and ~2!. The
general problem of solving, in non-negative integers, the pair of relations

n11n21¯nk5n, n1
21n2

21¯1nk
25m, ~n,m! positive integers ~6.7!

is considered in Refs. 16 and 17, where these relations are treated in the context of the n
theoretic degeneracy of the energy levels of ann-dimensional perturbed isotropic quantum ha
monic oscillator. The main idea is to transform these relations to ‘‘center-of-mass’’ coordinat
particular forn53, this leads to barycentric or Mo¨bius coordinates familiar from the eightfol
way in particle physics. One is then able to classify the solutions in terms of finite multi
consisting of sets of lattice points lying on cirlces in the Mo¨bius plane. Forn.3, one loses the
elegance of the Mo¨bius plane construction, but nonetheless still has a classification in term
finite multiplets.17 There are, of course, no closed forms for the set of all solutions of s
Diophantine equations. We refer to these references and Ref. 14 for these procedures, and
the Diophantine problems for Eqs.~6.4!–~6.6! as solved for the purpose of the discussion t
follows.

In each of the three classes, the main problem is to determine the first column sequy
5(y1 ,y2 ,y3) and integral parameters (a0 ,a1 ,a2 ,a3),(a0 ,a1 ,a2 ,a3), and (b0 ,b1 ,b2 ,b3), re-
spectively, such that the factorm11 divides the sequence

g~y,d!5~g0~y,d!,g1~y,d!,g2~y,d!,g3~y,d!!,
~6.8!

d5a, d5a/&5a, d5a/25b,

defined in relation~6.2!, where to unify the discussion of the three classes we let the sequed
run over the three sequences that occur in the three classes.

The determination of a common factor in a sequence of integers is a classic number theo
problem solved, in principle, by Euclid’s algorithm. One can see how the general result goes
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a single example~see Ref. 14 for a proof of the general method!: Find the greatest common diviso
~gcd! of the integers 19332 and 1368: We perform the successive divisions given by

19332514•13681180, 136857•1801108, 18051•72136, 7252•36,

thus arriving at 36, which is the gcd of the pair~19332, 1368!. Then, every divisor of this pair is
a divisor of36, namely, 1, 2, 3, 4, 6, 9, 12, 18, 36.

The determination of the gcdD of a finite sequence ofn12, n>1, integers (d1 ,d2 ,...,dn12)
is as follows. One calculates successively

D15gcd~d1 ,d2!, D25gcd~D1 ,d3!, D35gcd~D2 ,d4!, ..., Dn115gcd~Dn ,dn12!,

and finds that

D5gcd~d1 ,d2 ,...,dn12!5Dn11 .

Finally, each divisor of the sequence (d1 ,d2 ,...,dn12) is a divisor ofD.
For our problem and the three classes introduced above, we haven52, andy0115m11

must be a factor ofD5gcd(g(y,d)).
We have found no way to implement Euclid’s algorithm such that for each (y,d),d5a,a,b

solving Eqs.~6.4!–~6.6!, respectively, one obtains algebraic constraints on the sequence of
gersd such that the sequenceg(y,d) has divisorm11. There are, however, several properties
the sequenceg(y,d) that reduce the labor involved in implementing Condition II. Three obvi
properties are

g~2y,d!52g~y,d!, g~y,2d!52g~y,d!,g~2y,2d!5g~y,d!, ~6.9!

which are also consequences of the factor groupS2 introduced in Eq.~2.8!. There is also a
simplification originating from the transfer of the action of the groupH4 on the parametersd @see
Eq. ~6.8!# to the action of the groupH3 on the parametersy. To describe this, we introduce th
little group H3(y),H3 that leavesy fixed:

H3~y!5$p~t,r!up~t,r!~y!5y,p~t,r!PH3%. ~6.10!

This, in turn, leads us to introduce theset H4(y),H4 defined by

H4~y!5$hsk

(k)~t,r!up~t,r!PH3~y!,kP$0,1,2,3%,skP$1,21%%. ~6.11!

We then have the identity

g~y,hy~d!!5g~y,d!, each hyPH4~y!. ~6.12!

We conclude from relations~6.9! and~6.12! that, if the pair of sequences(y,d) satisfies Condition
II given by Eq. (6.2), then so do all the pairs of sequences given by

~2y,d!,~y,2d!,~2y,2d!,$~y,hy~d!!u each hyPH4~y!%. ~6.13!

The normal subgroupS of H4 satisfiesS,H4(y). It follows then that everyhyPH4(y)
belongs to a coset ofS, that is,hy(d) is in one of the coset orbits of the normal subgroupS. It now
follows from Eq.~6.12! that for sequences in the same coset orbit ofS, either all or none satisfy
Condition II.

We now give the details of the algorithms for constructing all integral Lorentz matricesL
and the corresponding matrices SL~2, C! in three subsections. One easily extends these resul
obtain all integral realizations of the full Lorentz group by adjoining the additional signed
ments originating from relations~4.21!.
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A. Class I: Integral Gaussian matrices in SL „2, C… mapping to I„L…

It is evident from Eq.~6.4! that we must have

~y1 ,y2 ,y2!52~z1 ,z2 ,z3!. ~6.14!

The above results for Class I may be summarized in the following algorithm for calculatin
integral realizationsI (2zua) of the restricted Lorentz groupL together with the Gaussian intege
matrices6Z(2zua) of SL~2, C! corresponding toI (2zua).

Algorithm I.
(1) Fix a solution z of

z1
21z2

21z3
25k~k11!. ~6.15!

(2) Classify all solutions of

a0
21a1

21a2
21a3

25k11 ~6.16!

into disjoint coset orbits with respect to the normal subgroup S, defining the orbit@a# by

@a#5S~a!5$6~a0 ,a1 ,a2 ,a3!,6~a1 ,2a0 ,a3 ,2a2!,

6~2a2 ,2a3 ,a0 ,a1!,6~2a3 ,a2 ,2a1 ,a0!%. ~6.17!

(3) Select ana-sequence in each of the orbits obtained in (2). If the selected sequence sa
the conditions that the integer k11 divides each of the quantities

g0~z,a!52a1z12a2z22a3z3 ,g1~z,a!5a0z11a3z22a2z3 ,
~6.18!

g2~z,a!52a3z11a0z21a1z3 , g3~z,a!5a2z12a1z21a0z3 ,

retain all sequences in the orbit, but otherwise reject the orbit, denoting the retained orbi
@a (1)#,@a (2)#,... . Then, the integer Lorentz matrices with fixed column sequence(y1 ,y2 ,y3)
5(2z1 ,2z2 ,2z3) are those in the set

$I ~2zua!uaP@a (1)#, aP@a (2)#,...%. ~6.19!

The two-to-one homomorphism from Gaussian integer matrices inSL~2, C! to I (L) is given by

6Z~2zua!°I ~2zua!, aP@a (1)#, aP@a (2)#,... ~6.20!

In selecting a solution of Eq.~6.15!, in consequence of Eq.~6.17!, it is only necessary to
consider those solutionsy that have parity~even,even! and ~even,odd! with respect toH3 . The
Lorentz matricesI (2zua) given by this algorithm are obtained from relations~4.11! and~4.12! or
~4.18! for y052k11, y5(2z1 ,2z2 ,2z3), where the sequencesh(a)P@a (1)#,h(a)P@a (2)#,...,
andZ(2zua) is obtained from Eq.~4.13!.

An example is useful for illustrating the algorithm. Choosek58, so that we must find solu
tions, in integers, of the two equations

z1
21z2

21z3
2572, ~6.21!

a0
21a1

21a2
21a3

259, ~6.22!
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subject to the condition that the integer 9 must divide each of the four quantities given b
~6.18!.

We also fixuz1u1uz2u1uz3u512, and apply the methods of Refs. 14 and 16 for solving E
~6.21! and~6.22! ~or by inspection!. The solutions of Eq.~6.21! are~6,6,0!,~8,2,2!, and all signed
permutations of these sequences. The solutions of Eq.~6.22! are~3,0,0,0!,~2,2,1,0!, and all signed
permutations of these sequences.

We consider two subcases:
~1! Fix z5(6,6,0). There are eight signed permutations of~3,0,0,0! They must therefore al

fall in the normal subgroup orbit@~3,0,0,0!#, and all other coset orbits are equal to this on
Conditions~6.18! are satisfied by~3,0,0,0!, giving g5(0,18,18,0), hence, by all sequences in t
orbit @~3,0,0,0!#. Thus, we have the following results from Eq.~4.18!:

6S 3 2~11 i !

2~12 i ! 3 D→S 17 12 12 0

12 9 8 0

12 8 9 0

0 0 0 1

D ,

6S 2~11 i ! 3i

3i 2~211 i !
D→S 17 12 212 0

12 9 28 0

12 8 29 0

0 0 0 21

D ,

6S 2~12 i ! 23

3 22~11 i !
D→S 17 212 12 0

12 29 8 0

12 28 9 0

0 0 0 21

D ,

6S 23i 2~11 i !

2~12 i ! 3i D→S 17 212 212 0

12 29 28 0

12 28 29 0

0 0 0 1

D .

There are 96 signed permutations of~2,2,1,0!. They must, therefore, be distributed into 12 disjo
coset orbits, which may be taken to be the orbit@~2,2,1,0!# and all orbits obtained from the 1
permutations of the integers~2,2,1,0!, that is,@~2,2,0,1!#,@~2,1,2,0!#, etc. From conditions~6.18!,
we haveg0526(a11a2), g156(a01a3). Sincea01a11a21a355, the integersg0 andg1

are divisible by 9 if and only if botha11a253 and a01a353, which is impossible. We
conclude there are no solutions of Eqs.~6.18!, ~6.21!, and~6.22!.

~2! Fix z5(8,2,2). As in~1!, all signed permutations of~3,0,0,0! fall in the normal subgroup
orbit @~3,0,0,0!#. But now conditions~6.18! fail for ~3,0,0,0!, and we obtain no solutions of Eqs
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~6.18!, ~6.21!, and~6.22!. There are 96 signed permutations of~2,2,1,0!. They must, therefore, be
distributed into 12 disjoint coset orbits, just as in case 1. Conditions~6.18! now read:

g0528a122a222a3 , g158a022a212a3 ,

g252a012a128a3 , g352a022a118a2 .

The form ofg0 shows that no sequence witha150 can occur, and the form ofg2 shows that no
sequence witha350 can occur. Checking each of the remaining six candidates in which e
a050 or a250, we find that only the sequence~2,2,0,1! gives a solution, hence, all eight se
quences in the orbit

@~2,2,0,1!#5$6~2,2,0,1!,6~22,2,1,0!,6~0,21,2,2!,6~21,0,22,2!%

give solutions of relations~6.18!. We have the following results from Eq.~4.18!:

6S 223i 2~12 i !

2~12 i ! 22 i D °S 17 16 24 4

16 15 24 4

4 4 21 0

4 4 0 1

D ,

6S 2~11 i ! 312i

112i 2~11 i !
D °S 17 16 4 24

16 15 4 24

4 4 1 0

4 4 0 21

D ,

6S 2~12 i ! 2213i

22 i 22~12 i !
D °S 17 216 24 24

16 215 24 24

4 24 21 0

4 24 0 21

D ,

6S 2322i 2~11 i !

22~11 i ! 112i D °S 17 216 4 4

16 215 4 4

4 24 1 0

4 24 0 1

D .
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B. Class II: „Integral Gaussian ÕA2… matrices in SL „2, C… mapping to I„L…

We have the following results:

y1
21y2

21y3
25k221,

~6.23!
a0

21a1
21a2

21a3
25k11.

~6.24!

xi~y,a!5~yua!0,i5
1

k11
@a0g i~y,a!2aig0~y,a!2ajgk~y,a!1akg j~y,a!#,

ui~y,a!5~yua! j ,k52a0ai1ajak1
1

~k11!2 @2g0~y,a!g i~y,a!1g j~y,a!gk~y,a!#,

v i~y,a!5~yua!k, j5a0ai1ajak1
1

~k11!2 @g0~y,a!g i~y,a!1g j~y,a!gk~y,a!#, ~6.25!

wi~y,a!5~yua! i ,i5a0
21ai

2212
1

~k11!2 @g j
2~y,a!1gk

2~y,a!#,

~ i , j ,k! is a cyclic permutation of~1,2,3!;

g0~y,a!52a1y12a2y22a3y3 , g1~y,a!5a0y11a3y22a2y3 ,
~6.26!

g2~y,a!52a3y11a0y21a1y3 , g3~y,a!5a2y12a1y21a0y3 .

It is important to note that for general Lorentz matrices, the scaling above gives no
results, since it just changes how one describes the parameter domain. However, for i
realizations, this scaling transformation introduces an entirely new class of integral Lorent
trices, now corresponding to matrices in SL~2, C! that have Gaussian integers divided by& as
elements.

The modification of Algorithm I for Class II solutions is the following.
Algorithm II. In Algorithm I, replace Eqs.~6.15! and~6.16! by Eqs.~6.23!, the sequence 2z by

the sequencey, and the sequencea by the sequencea, using now relations~6.24!–~6.26! to obtain
the explicit results for the mapping of (Gaussian integers)/& in SL~2, C! to integral matrices in
I (L). @One can also use the obvious modification of Eq.~4.18!.#
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C. Class III: Gaussian half-odd integral matrices in SL „2, C… mapping to I„L…

We have the following results:

y1
21y2

21y3
25k221,

~6.27!
b0

21b1
21b2

21b3
252k12, each bm odd.

~6.28!

xi~y,b!5~yub!0,i5
1

2~k11!
@b0g i~y,b!2big0~y,b!2bjgk~y,b!1bkg j~y,b!#,

ui~y,b!5~yub! j ,k5
2b0bi1bjbk

2
1

1

2~k11!2 @2g0~y,b!g i~y,b!1g j~y,b!gk~y,b!#,

v i~y,b!5~yub!k, j5
b0bi1bjbk

2
1

1

2~k11!2 @g0~y,b!g i~y,b!1g j~y,b!gk~y,b!#, ~6.29!

wi~y,b!5~yub! i ,i5
b0

21bi
2

2
212

1

2~k11!2 @g j
2~y,b!1gk

2~y,b!#,

~ i , j ,k! is a cyclic permutation of~1,2,3!;

g0~y,b!52b1y12b2y22b3y3 , g1~y,b!5b0y11b3y22b2y3 ,
~6.30!

g2~y,b!52b3y11b0y21b1y3 , g3~y,b!5b2y12b1y21b0y3 .

The modification of Algorithm I for Class III solutions is as follows.
Algorithm III. In Algorithm I, replace Eqs.~6.15! and~6.16! by Eqs.~6.27!, the sequence 2z

by the sequencey, and the sequencea by the sequenceb, using now relations~6.28!–~6.30! to
obtain the explicit results for the mapping of~Gaussian integers!/2 in SL~2, C! to integral matrices
in I (L). @One can also use the obvious modification of Eq.~4.18!.#

We note that the denominator factork11 in relations~6.29! is removed because, by constru
tion, k11 divides the factorsgm(y,b); the denominator factor 2 is removed by the property t
the bm are odd integers, which results in only integers appearing in (yub).
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VII. INTEGRAL REALIZATIONS OF THE PRINCIPAL SUBGROUPS

As a by-product of the above construction of the integral realizations of the restricted Lo
group, we also obtain all the integral realizations of the principal subgroups given in Sec.

A. Integral realizations of the orthogonal group SO „3, R…

In this case, we turn the situation around and identify first the integral representations of~3,
R!, and then the matrices in SL~2, C! corresponding to them. The integral realizations of
proper orthogonal group can only be permutations of the columns of the matrix (6e1 ,6e2 ,
6e3), whereei is a unit column vector. Since we must have detR51, we can have zero or two
minus signs and all even column permutations, or one or three minus signs and all odd c
permutations, thus obtaining a group of 24 discrete orthogonal matrices with unit determ
This is the group of rotations that carries the cube with vertices at~1,1,1!, (21,1,1), (21,
21,1), (1,21,1), (1,1,21), (21,1,21), (21,21,21), (1,21,21) into itself, or, equivalently,
the octahedron with vertices at~1,0,0!, ~0,1,0!, ~0,0,1!, (21,0,0), (0,21,0), (0,0,21). The cor-
responding subgroup of SU~2! is the so-called double covering group with 48 elements.
interesting point is that the elements of SU~2! that are Gaussian integers divided by& already
make their appearance. For example, we have

6
1

&
S 1 1

21 1D °S 0 0 21

0 1 0

1 0 0
D , 6

i

&
S 1 1

1 21D °S 0 0 1

0 21 0

1 0 0
D ,

6 i S 0 1

1 0D °S 1 0 0

0 21 0

0 0 21
D , 6S 0 1

21 0D °S 21 0 0

0 1 0

0 0 21
D ,

6 i S 1 0

0 21D °S 21 0 0

0 21 0

0 0 1
D , etc.

It is interesting to note that the half-odd integral realizations of SL~2, C!, which are allowed
in the general theory, are excluded here because there is no solution, by four odd integers
relationb0

21b1
21b2

21b3
252.

B. Gaussian integer realizations of SL „2,R…, SU„1,1…, and K

We have already noted at the end of Sec. V that these subgroups can be parametriz
uniform manner. For integral realizations this transcribes to the following special cases, re
tively, of Algorithms I, II, and III:

Algorithm I8:
(1) Set x52s, y52t. Select and fix a solution(s,t) of

s21t25k~k11!. ~7.1!

(2) Select any solution(u,v) with non-negative components of

u21v25k11. ~7.2!

(3) The mappings given by Eqs. (5.5), (5.8), and (5.11) for the integer pair(u,v), and by each
of the substitutions(u,v)→(2u,2v), (u,v)→(2v,u), (u,v)→(v,2u), all give mappings of
Gaussian integer realizations of the respective subgroups to the corresponding integral reali
of the Lorentz group if and only if k11 is a divisor ofgcd(us1vt,vs2ut). The mappings given
by Eqs. (5.5), (5.8), and (5.11) for the integer pair(v,u), and by each of the substitution
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(v,u)→(2v,2u),(v,u)→(2u,v),(v,u)→(u,2v), all give mappings of Gaussian integer re
alizations of the respective subgroups to the corresponding integral realization of the Lo
group if and only if k11 is a divisor ofgcd(vs1ut,us2vt).

Algorithm II8:
(1) Select and fix a solution(x,y) of

x21y25k221. ~7.3!

(2) Select a non-negative solution(u,v)

u21v25k11. ~7.4!

(3) The mappings given by Eqs. (5.5), (5.8), and (5.11) for the integer pair(u,v), and by each
of the substitutions(u,v)→(2u,2v),(u,v)→(2v,u),(u,v)→(v,2u), all give mappings of
(Gaussian integer)/& realizations of the respective subgroups to the corresponding integra
alization of the Lorentz group if and only if k11 is a divisor of gcd(ux1vy,vx2uy). The
mappings given by Eqs. (5.5), (5.8), and (5.11) for the integer pair(v,u), and by each of the
substitutions (v,u)→(2v,2u),(v,u)→(2u,v),(v,u)→(u,2v), all give mappings of
(Gaussian integer)/& realizations of the respective subgroups to the corresponding integra
alization of the Lorentz group if and only if k11 is a divisor ofgcd(vx1uy,ux2vy).

Algorithm III8:
(1) Select and fix a solution(x,y) of

x21y25k221. ~7.5!

(2) Select a non-negative solution(u,v)5(odd,odd)

u21v252~k11!. ~7.6!

(3) The mappings given by Eqs. (5.5), (5.8), and (5.11) for the integer pair(u,v), and by each
of the substitutions(u,v)→(2u,2v),(u,v)→(2v,u),(u,v)→(v,2u), all give mappings of
(Gaussian integer)/& realizations of the respective subgroups to the corresponding integra
alization of the Lorentz group if and only if k11 is a divisor of gcd(ux1vy,vx2uy). The
mappings given by Eqs. (5.5), (5.8), and (5.11) for the integer pair(v,u), and by each of the
substitutions(v,u)→(2v,2u),(v,u)→(2u,v),(v,u)→(u,2v), all give mappings of (Gauss
ian odd integer)/2 realizations of the respective subgroups to the corresponding integral re
tion of the Lorentz group if and only if k11 is a divisor ofgcd(vx1uy,ux2vy).

A comprehensive theory, using Algorithms I8– III 8, can now be used to construct all Gauss
integer, (Gaussian integer)/&, and~Gaussian odd integer!/2 realizations of the subgroups SL~2,
R!, SU~1,1!, andK from classical results of number theory~see Ref. 14!. We close our discussion
by noting examples showing interesting aspects of such solutions:

Algorithm I8: Choose ~x,y!5~2au,2av !, where u21v25a211.

Algorithm II8: Choose ~x,y!5~bu,bv !, where u21v25b212.

In particular, ifa2115prime number is of form 4r 11, or if b212 is of this same form, then the
solution (u,v) is unique, up to signed permutations, for each suchr , and the integersu andv are
relatively prime. On the other hand, ifu5v, we obtain, respectively, Pell equations,a222u2

521 andb222u2522, which have infinitely many solutions given by
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S a
uD5S 3 4

2 3D
mS 1

1D , m50,1,2,...,

S b
uD5S 3 4

2 3D
mS 0

1D , m50,1,2,... .

Pell’s equation has fascinating applications to the determination of zeros of 3j and 6j coef-
ficients that arise in the theory of angular momentum@the group SU~2!#. An elementary example
is given in Ref. 18, and a brief summary of papers on such zeros is given in Ref. 19.

VIII. CONCLUDING REMARKS

~1! Using the biquaternionic parameters~a, b! introduced by Dirac~equivalent to the Cayley
parameters! to parametrize the group SL~2, C!, we have obtained a corresponding parametriza
of the restricted Lorentz groupL in terms of the first column of an element ofL and the
quaternionic parametersa. It is this parametrization that is used to address the problem of d
mining all integral realizations of the restricted Lorentz group. This leads to the proble
solving simultaneously three classical Diophantine problems, as follows: One is given a
(n1 ,n2) of positive integers, the first expressed as a quadractic function of a positive integerk and
the second linear ink. One must then expressn1 as a sum of three squares;n2 as a sum of four
squares, and then select from the set of solutions of the three-squares problem and the
solutions of the four-squares problem those particular pairs of solutions such that four new
gers, each linear in the three-squares solution and in the four-squares solution, possess a
factor. It is the interrelations between the solutions of these three classical Diophantine pro
that makes the general determination of the integer representations of the restricted Lorent
difficult. The algorithmic character of the procedure may, however, make computer calcul
quite tractable. In any case, the recognition of the underlying classical Diophantine structure
problem is intriguing and interesting. That there are three classes of SL~2, C! matrices, Gaussian
integral, half-odd Gaussian integral, and Gaussian integral/&, each class giving integral restricte
Lorentz matrices, is a bonus of addressing the problem through the homomorphism betwe
groups, from which one also obtains corresponding results for the principal subgroups ofL.

~2! The method presented here, as summarized in~1!, is to be contrasted with the generat
method described by Lorente and Kramer,6,7 and attributed to Coxeter and Kac,10 which asserts the
following. All integral Lorentz transformationsL of the point (x0 ,x1 ,x2 ,x3) that leave the uppe
half of the light cone invariant are generated by the four transformations

S15S 1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

D , S25S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D ,

S35S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 21

D , S45S 2 1 1 1

21 0 21 21

21 21 0 21

21 21 21 0

D .

Based on this result, Lorente and Kramer6,7 give a polynomial form in these four generators for t
general integral transformationL. It is a rather unwieldy appearing expression, but the authors
it effectively to present various classes of special matrices. Moreover, in Ref. 7, they also
their results to matrices in SL~2, C!.
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~3! In consequence of the observations made in~1! and ~2!, it must be the case that one ca
transform the results obtained in this article into generator expressions. This poses the inte
question as to how the generator method solves the three interrelated classical Diophantin
lems presented here.
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We present a method to calculate integrals over monomials of matrix elements with
invariant measures in terms of Wick contractions. The method gives exact results
for monomials of low order. For higher-order monomials, it leads to an error of
order 1/Na, whereN is the dimension of the matrix and wherea is independent of
the degree of the monomial. We give a lower bound on the integera and show how
a can be increased systematically. The method is particularly suited for symbolic
computer calculation. Explicit results are given for O(N), U(N), and for the cir-
cular orthogonal ensemble. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1506955#

I. INTRODUCTION

The calculation of group integrals of monomials of matrix elements for compact Lie gr
has a long tradition going back to Ullah and Porter.1 Their results were later extended2 to the space
of symmetric unitary matrices endowed with Dyson’s invariant measure.3 The problem was nearly
dormant for some years but was recently solved completely for the orthogonal grou
recursion.4 Unfortunately, it seems that there is no easy generalization of this method to
groups. The method proposed in Ref. 2, on the other hand, is quite general but soon be
rather cumbersome. Moreover, that method is not suited for computer-supported analytica

Aside from their immanent group-theoretical significance, group integrals over monomia
matrix elements for compact Lie groups are important in many applications. This is true no
of random-matrix theory which has seen an explosive growth over the last decade and has b
an important tool in a great variety of fields in physics, chemistry, and related areas.5 The state-
ment applies likewise to a number of mathematical fields where integrals of the Itzykson–Z
type appear. Such integrals typically extend over the Haar measure of some group. As exa
we mention the Itzykson–Zuber model itself,6 the Bessel functions associated with Ja
polynomials,7 or multivariate analysis.8 The wide occurrence of such group integrals then le
further urgency to the evaluation of the above-mentioned group integrals.

In this paper, we present and analyze a novel approach to the problem. We encounte
problem in the study of a random-matrix model for a class of chaotic systems~the semiseparable
systems!.9 We found that we could use the invariants of the orthogonal group to construct a w
function. With the help of this function, it was possible to evaluate the group integrals in que
by simple Wick contractions. We implemented the scheme on the computer and found that b
the expected exact results for low-order monomials, monomials of higher order were also

a!Electronic mail: prosen@fiz.uni-lj.si
51350022-2488/2002/43(10)/5135/10/$19.00 © 2002 American Institute of Physics
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lated correctly up to and including the subleading order in 1/N, whereN is the dimension of the
matrices under consideration. We conjectured that this statement holds for monomials
order. It is the purpose of the present paper to extend and prove the conjecture and to exp
scope of its validity beyond the orthogonal group.

The group integrals extend over a compact matrix space with a measure which is un
determined by the underlying symmetry group. In order to reduce the computation to
contractions, we consider an extended matrix space where all matrix elements are indep
Gaussian variables. In this space, all integrations trivially reduce to Wick contractions an
easily be implemented in many programming languages. The constraints due to the group s
are then introduced in an approximate fashion through a weight functionw appearing as factor in
the integrand. This function is chosen in such a way that the integrals yield the exact values
lowest-order invariants of the group. It turns out thatw is not always positive and, thus, not
measure. This, however, is not a significant obstacle.

Candidates for our spaces are the orthogonal group O(N), the unitary group U(N)
5CUE(N), also known as the circular unitary ensemble, the circular orthogonal ensemb
symmetric unitary matrices COE(N), and the circular symplectic ensemble which is isomorphic
the unitary symplectic group CSE(N)5USP(2N). We note that COE(N) is not a group—for all
other cases we can use the Haar measure, while in this case we have to use Dyson’s in
measure.

We first present our arguments for the case of the orthogonal group. In Sec. II we constr
weight functionw from the invariants of the orthogonal group. We show that the defining e
tions for w always have a unique solution. We give explicit expressions forw in the simplest
cases. We show that low-order monomials are calculated exactly using Wick contraction. I
III, we show that monomials of higher order are evaluated correctly by Wick contraction, up
error of orderN2a. We establish a lower bound for the exponenta. In Sec. IV we extend our
arguments to other matrix spaces. We give explicit expressions for the weight functions forN)
and for COE(N). The more involved and less important case of CSE is only touched upon

II. THE WEIGHT FUNCTION FOR O„N…

As explained in Sec. I, we start with a space of real matricesM . The elements are taken a
independent Gaussian-distributed variables with zero mean and identical variances. In
words, our measure dmg for integration is the product of the differentials of all matrix eleme
timesN exp$2N tr(MMT)% whereN is a normalization factor. We recall thatN is the dimension
of the matricesM . We are interested in values ofN@1. The measure is invariant under right
left multiplication of M with any orthogonal matrix. To restrict the integration to the orthogo
group, we could think of multiplying dmg with a set of delta functions expressing all the co
straints due to orthonormality. This is clearly impractical. Instead, we modify the measu
multiplying dmg with a weight functionwk . This function is chosen in such a way that a
orthogonal invariants up to and including order 2k are exactly reproduced when we usewk as a
weight function under the integrals overM . We note in passing that our present notation diffe
from that of Ref. 9. Our indexk equals half of the even indexk used there.

To determinewk , we consider all invariantsI j (O) up to order 2k in the matrix elementsO
of the orthogonal group. Here,j is a running index. We recall that all such invariants are even
the O’s. In every invariantI j (O), we replaceO by M to obtainI j (M ). We writewk as a linear
combination of all theI j (M )’s up to order 2k in M . The coefficients of the linear combination a
determined by the requirement that the average of everyI j (M ), calculated by integration over dmg

with weight functionwk , yields the same result as integration ofI j (O) over the orthogonal group
We recall that withn a positive integer, the invariants of the orthogonal group are given
expressions of the form tr$(OOT)n%, or by products of such expressions. We accordingly write
quantitiesI j (M ) in the form
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I k
(k)~M !5)

ki

tr$~MMT!ki%. ~1!

Here 2k denotes the degree ofI in M , andk5(k1 ,k2 ,...) is apartition ofk into positive integers
ki>1 with k11k21¯5k. Without loss of generality we require thatk1>k2>¯ . The weight
function wk is now written as

wk~M !5a0
(k)1 (

k51

k

(
k

ak
(k)I k

(k)~M !. ~2!

The sum on the right-hand side of Eq.~2! extends over a complete set of linearly independ
invariants up to order 2k in M .

We determine the coefficientsak
(k) from the conditions of orthonormality. More precisely, w

require that the relations

E dmgwk~M !51,

E dmgwk~M !~MMT! i 1 j 1
5d i 1 , j 1

,

E dmgwk~M !~MMT! i 1 j 1
~MMT! i 2 j 2

5d i 1 , j 1
d i 2 , j 2

, ~3!

¯

E dmgwk~M !~MMT! i 1 j 1
~MMT! i 2 j 2

¯~MMT! i k j k
5d i 1 , j 1

d i 2 , j 2
3¯3d i k , j k

be fulfilled identically. Relations of the form~3! hold for any value ofk for the orthogonal group
but must be imposed for the integration over the matricesM .

Equation~3! determines the coefficientsak
(k) uniquely. To show this, we take traces over the

equations in such a way that the integrals on the left-hand sides take the
* dmgwk(M )I k

(k)(M ). The resulting set of equations has the form

E dmgwk~M !I k
(k)~M !5Bk

(k) , ~4!

where the coefficientsBk
(k) are given by powers ofN, with N the dimension of the matricesM .

Recalling Eq.~2!, we see that Eq.~4! constitutes a set of linear equations for the coefficientsak
(k) .

There are obviously as many equations as there are coefficientsak
(k) . We conclude that Eq.~4!

possesses a unique solution unless the determinant of the matrixC with elementsCk1k2

(k1k2)

5*dmgI k1

(k1)I k2

(k2) vanishes. But if det(Ck1k2

(k1k2))50, there exists a nontrivial solutionbk2

(k2) of the

homogeneous equation(k2k2
Ck1k2

(k1k2)bk2

(k2)
50. The existence of this solution implies that we al

have(k1k2
(k1k2

bk1

(k1)Ck1k2

(k1k2)bk2

(k2)
50. Recalling the definition of the matrixC, we observe that the

last relation can be written as*dmgu(k1k1
I k1

(k1)bk1

(k1)u250. But the integrand in the last expression

positive semidefinite and does not vanish identically. Therefore, it is not possible that det(Ck1k2

(k1k2))

vanishes, and the solution of Eq.~4! exists and is unique. This solution also solves Eq.~3!. To see
this, let us assume the contrary and focus attention on the second equation of~3!. @The argument
is easily extended to the entire set of equations~3!.# Inserting the solution of~4! into the left-hand
side of that equation yields on the right-hand side the termsd i 1 j 1

1Ai 1 j 1
where the matrixA is both
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traceless and invariant under every orthogonal transformation. This impliesA50, in contradiction
to the assumption that we did not find a solution of the second equation of~3!.

Equation~3! implies that the integrals over all polynomials of degreen<2k in M are equal
to the corresponding expressions for O(N). To see this, it suffices to consider the integral over
arbitrary monomial of degreen. It is obvious that the integral vanishes unlessn is even,n
52k. We write the monomial asM (n)5Mi 1 j 1

Mi 2 j 2
¯Mi nj n

. The integral overM (n) is obviously
invariant under right or left multiplication with any orthogonal transformation. Therefore,
integral overM (n) must be a linear combination of invariants multiplied by a suitable se
Kronecker deltas in the indicesi 1 ,...,i n and j 1 ,...,j n . By construction the invariants have th
same values as in O(N).

Inspection shows that the weight functionw051 fulfills the second equation of~3! automati-
cally. Thus,w15w0 and, therefore,a0

(1)51, a1
(1)50. The first nontrivial condition is, therefore, th

one appearing in line 3 of~3!. This condition~and all that follow below it! is violated byw0 . We
now give the explicit results for the first few weight functionswk . These were obtained with th
help of theMATHEMATICA program. Fork52, we find

a0
(2)512

N2

4
,

a1
(2)5

N

2
,

~5!

a2
(2)52

N3

4~211N!~21N!
,

a11
(2)5

N2

4~211N!~21N!
.

For k53, we have

a0
(3)512

7N2

12
,

a1
(3)5

3N

2
,

a2
(3)52

5N3

4~211N!~21N!
,

a11
(3)5

5N2

4~211N!~21N!
, ~6!

a3
(3)5

N5

3~221N!~211N!~21N!~41N!
,

a21
(3)52

N4

~221N!~211N!~21N!~41N!
,

a111
(3)5

2N3

3~221N!~211N!~21N!~41N!
.

For k54, we have
                                                                                                                



ients

r

on

5139J. Math. Phys., Vol. 43, No. 10, October 2002 Matrix spaces with unique invariant measures

                    
a0
(4)512

23 N2

24
1

N4

32
,

a1
(4)53 N2

N3

8
,

a2
(4)5

260 N31N5

16~211N!~21N!
,

a11
(4)5

56 N212 N31N4

16~211N!~21N!
,

a3
(4)5

7 N5

3~221N!~211N!~21N!~41N!
,

a21
(4)5

248 N422 N52N6

8~221N!~211N!~21N!~41N!
,

~7!

a111
(4)5

88 N316 N413 N5

24 ~221N!~211N!~21N!~41N!
,

a4
(4)52

N7 ~615 N!

8~231N!~221N!~211N!~11N!~21N!~41N!~61N!
,

a31
(4)5

N6 ~615 N!

2~231N!~221N!~211N!~11N!~21N!~41N!~61N!
,

a22
(4)5

N7 ~1815 N1N2!

32 ~231N!~221N!~211N!~11N!~21N!~41N!~61N!
,

a211
(4)52

N5 ~72178 N15 N21N3!

16 ~231N! ~221N!~211N!~11N!~21N!~41N!~61N!
,

a1111
(4) 5

N4 ~72178 N15 N21N3!

32 ~231N!~221N!~211N!~11N!~21N!~41N!~61N!.

We note that with increasingk, the expressions become rather involved. Moreover, the coeffic
ak

(k) with the same lower indicesk change withk.

III. MONOMIALS OF HIGHER ORDER FOR O „N…: THE 1ÕN EXPANSION

We have seen that integrals over all polynomials of degreen<2k have the same values as fo
O(N). What about polynomials of higher order? Again, it suffices to consider monomialsM (2) of
even degree 2k with k.k. We show that the integral overM (2) coincides with the result for
O(N) up to terms of orderN2a where the integer exponenta is positive and independent ofk.
More precisely, we show that fork.k, we have

NkE dmgwk~M !)
n51

2k

M i n j n
5NkE dhO(N) )

n51

2k

Oi n j n
1O~1/Na! where a>@k/2#11. ~8!

Here @k/2# indicates the integer part ofk/2, and dhO(N) denotes the Haar measure for integrati
over O(N). We note that the factorsNk in front of the integrals normalize theN dependence so
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that these terms are~at most! of order 1. Another equivalent form of Eq.~8! is obtained by
summing over pairs of indicesj 15 j 2 , j 35 j 4 ,... . This removes the factorsNk and yields

E dmgwk~M !)
n51

k

~MMT! i n l n
5E dhO(N) )

n51

k

~OOT! i n l n
1O~1/Na! where a>@k/2#11.

~9!

The equivalence of Eq.~8! and Eq.~9! follows from the fact the matrixC discussed previously, if
defined with respect to properly scaled monomials, does not depend onN. The remainder of this
section is devoted to proving Eq.~9!.

It is useful to introduce a few auxiliary concepts. We consider Gaussian integrals over m
mials of M without the weight functionwk . We write for brevity

E dmg)
n51

k

~MMT! i n l n
5^~MMT!k&g , ~10!

where the indexg indicates the purely Gaussian integration. To define the completely corre
part of this expression, we consider first the casek52. We use Wick contraction and have

^~MMT!2&g5^~MMT!&g^~MMT!&g1^~MMT!2&gc . ~11!

The last term on the right-hand side of Eq.~11! is the completely correlated term. For the gene
case of arbitrary order 2k, we define the correlated part^(MMT)k&gc as that contribution to
^(MMT)k&g which cannot be written in the form of products of two or more factors, each of w
is a complete Wick contraction of powers ofMMT. It is easy to see that

^~MMT!k&gc5O~1/Nk21!. ~12!

The linear increase withk in inverse powers ofN in Eq. ~12! is due to the fact that every Wick
contraction which connects twoM ’s appearing in different factorsMMT suppresses one summ
tion index. Therefore, the correlated part^(MMT)k&gc contributes the highest-order terms in 1/N
to ^(MMT)k&g .

We now consider integrals involving the weight functionwk and use the same notation,

E dmgwk )
n51

k

~MMT! i n l n
5^wk~MMT!k&g . ~13!

Again using Wick contraction, we define the correlated part^wk(MMT)k&gc of this expression as
that part which cannot be written as the product of two or more factors, each of which
complete Wick contraction of powers ofMMT and/orwk .

We proceed to show that in the equations relating the integral^wk(MMT)k&g to the integral
over the Haar measure, the leading correction term~lowest order in 1/N) which does not cancel is
given by

^wk~MMT!k&gc5O~1/N[(k11)/2]! for 1,k<k. ~14!

This relation is based upon the assumption that there is no accidental cancellation among th
contributing to lowest order in 1/N. Therefore,@(k11)#/2 actually constitutes a lower bound o
the exponent of 1/N.

To prove relation~14!, we rewrite the defining equations forwk , Eq. ~3!, as follows. We
consider the expression̂wk(MMT)k&g with k integer andk<k. We decompose this expressio
into correlated contributions. These originate from all partitionsk5(k1 ,k2 ,...) of k with ki

>ki 11 and( iki5k. We denote byi 0 the smallest index for which allki with i . i 0 are equal to
one. Then, we have
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^wk~MMT!k&g5(
k

)
i

^~MMT!ki&gc1 (
kÞ1k

(
i

i 0

^wk~MMT!ki&gc)
j Þ i

^~MMT!kj&gc . ~15!

In the first term on the right-hand side, we have used that^wk&g51. In the second term, we hav
used that̂ wk(MMT)&gc50. Trivially, the second sum on the right-hand side of Eq.~15! does not
extend over the partition1k5(1,1,1,...) (k terms unity!. According to~3!, the expression in Eq
~15! equals (̂ (MMT)&g)k. This equals the contribution from the first sum on the right-hand s
for the partition1k. The remaining terms must vanish,

(
kÞ1k

)
i

^~MMT!ki&gc1 (
kÞ1k

(
i

i 0

^wk~MMT!ki&gc)
j Þ i

^~MMT!kj&gc50. ~16!

Equation~16! must hold for all values ofk with k<k. To proceed, we observe that the partitio
of k can be grouped into classes as follows: Partitions within the same class carry the
numberp of ki ’s that have value unity. The classes are labeled byp, namelyCp . For instance, for
k56, classC2 contains the partitions~4,1,1! and~2,2,1,1!. In Eq.~16!, we order the sum overk by
grouping together all partitions which belong to the same class. We show presently that eac
contribution must vanish separately. Then, we have for everyp50,1,...,k22 that

(
kÞ1k,kPCp

) ^~MMT!ki&gc1 (
kPCp

(
i

i 0

^wk~MMT!ki&gc)
j Þ i

^~MMT!kj&gc50. ~17!

Equation ~17! follows directly from the facts that Eq.~16! holds for all k<k, and that the
contributions from classCp to a partition ofk are the same as the contributions of classC0 to a
partition of k2p, except for a string of Kronecker delta’s due to the factors (^(MMT)&g)p.

We are now in the position to prove relation~14!. We observe that in~17!, the term
^wk(MMT)k&gc appears only in the classC0 . Therefore, we have

^wk~MMT!k&gc52 (
kPC0

)
i

^~MMT!ki&gc2 (
kPC0 ,kÞ(k)

(
i

^wk~MMT!ki&gc)
j Þ i

^~MMT!kj&gc .

~18!

Using complete induction, i.e., assuming that relation~14! holds for all values ofk8 with k8
,k, and using Eq.~12!, we conclude from Eq.~18! that relation~14! also holds fork8115k. The
terms of lowest order in 1/N originate from partitions which have either the form~2,2,2,...! ~for
evenk) or ~3,2,2,2,...! ~for odd k). Again, we cannot rule out the occurrence of accidental c
cellations which would increase the power@(k11)#/2 in relation~14!.

Having established relation~14!, we turn to the center piece of this section, Eq.~9!. We first
consider the casek5k11 and decompose the integral into correlated terms with contribut
from all partitions ofk11. For these partitions, we writeK¿15(k1 ,k2 ,...) with k11k21¯

5k11 andk1>k2>¯ . We use the notation introduced previously. Then,

^wk~MMT!k11&g5(
p

(
(K¿1)PCp

)
i

^~MMT!ki&gc

1(
p

(
(K¿1)PCp

(
i

i 0

^wk~MMT!ki&gc)
j Þ i

^~MMT!kj&gc . ~19!

Equation~17! implies that all terms withpÞ0 andpÞk11 vanish, and we are left with
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^wk~MMT!k11&g5~^~MMT!&g!k111 (
(K¿1)PC0

)
i

^~MMT!ki&gc

1 (
(K¿1)PC0

(
i

^wk~MMT!ki&gc)
j Þ i

^~MMT!kj&gc . ~20!

We use the same argument as in the previous paragraph and the result~14! and Eq.~12!. We
conclude that the contributions of lowest order in 1/N result from the partitions~2,2,2,...! or
~3,2,2,2,...!, respectively, and arrive at Eq.~9!. The exponenta has the valuea>@k/2#11. In
writing the inequality sign, we again allow for the possibility that an accidental cancellatio
contributions from these partitions occurs.

We finally have to consider the case wherek2k5n.1. Decomposing the expressio
^wk(MMT)k1n&g as in Eq.~19!, we easily see that the terms of lowest nonvanishing order inN
stem from the partitions in classCn21 . But these give exactly the same contributions as those
k5k11 that were estimated in the last paragraph. This completes the proof of Eq.~9!.

IV. THE UNITARY GROUP AND OTHER UNITARY ENSEMBLES

In this section, we primarily address integrals over momomials of unitary matricesU with
respect to the Haar measure of the unitary group. We start with Gaussian integrals over co
matricesM . The real and imaginary parts of the matrix elements are independent and Gau
distributed. The integrals are again worked out using Wick contractions. For the weight fun
wk

u , we write in analogy to Eq.~2!

wk
u~M !5b0

(k)1 (
k51

k

(
k

bk
(k)I k

(k)~M !. ~21!

The invariants are defined as in Eq.~1! with MMT replaced byMM† where a dagger stands fo
Hermitean conjugation. The upper indexu refers to the unitary case. The values of the coefficie
bk

k are, of course, not the same as for the orthogonal case. The arguments for the existen
uniqueness of the solutions carry over without change, and again computer programs are a
to perform the contractions and calculate the coefficientsbk

k . For w2
u andw4

u we find

b0
2512

N2

2
,

b1
25N,

~22!

b2
252

N3

2~N21!~N11!
,

b11
2 5

N2

2~N21!~N11!
,

and

b0
45

24246 N213 N4

24
,

b1
45

2~N~2121N2!!

2
,
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b2
45

N3 ~2301N2!

4~211N!~11N!
,

b11
4 5

N2 ~281N2!

4~211N!~11N!
,

b3
45

14 N5

3~221N!~211N!~11N!~21N!
,

b21
4 5

2N4 ~241N2!

2~221N!~211N!~11N!~21N!
,

~23!

b111
4 5

N3 ~4413N2!

6~221N!~211N!~11N!~21N!
,

b4
45

25N7

4~231N!~221N!~211N!~11N!~21N!~31N!
,

b31
4 5

5 N6

~231N!~221N!~211N!~11N!~21N!~31N!
,

b22
4 5

N6 ~61N2!

8~231N!~221N!~211N!~11N!~21N!~31N!
,

b211
4 5

2N5 ~361N2!

4~231N!~221N!~211N!~11N!~21N!~31N!
,

b1111
4 5

N4 ~361N2!

8~231N!~221N!~211N!~11N!~21N!~31N!
.

The arguments determining the leading contribution to the 1/N expansion are the same ones
for the orthogonal group. Thus, we have to increasek by two to improve the error by one order i
1/N in the calculation of monomials of high order. This is the reason for our not givingw3

u but
only w4

u which yields correct values for the integrals up to order 1/N2.
For COE and CSE, the situation is slightly more complicated. The constraints on the ma

are not expressible in a simple way in terms of products as done in~3!. It seems, therefore, mos
convenient to limit the space of independent matrix elements from the outset. In the case
COE this is fairly simple: The symmetry reduces the number of independent complex m
elements toN(N11)/2. Therefore, we consider Gaussian averages in the space of com
symmetric matricesS5ST. We accordingly have a contraction rule with two terms,

E dmg~S!Si j* Skl5
1

N
~d ikd j l 1d i l d jk!. ~24!

The invariants are now defined in terms ofSS* . Introducing the rule~24! into our program we can
again calculatewk

c . As an example we compute the coefficientsck
2 for w2

c ,

c0
2512

N~N11!

4
,
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c1
25

N11

2
,

~25!

c2
252

~N11!3

4N~N13!
,

c11
2 5

~N11!2

4N~N13!
.

In addition, the following subtle point must be considered. In Sec. II we have used
invariance of the Haar measure to justify that contraction withwk gives exact results for al
polynomials up to order 2k in the matrix elements. In the present case we have no invari
group and by consequence no Haar measure. On the other hand Dyson’s measure with re
which we integrate is also totally defined by an invariance group albeit a smaller one than t
U(N). The important point is that again the measure is uniquely defined by a linear gro
transformations. The orthogonality conditions resulting from the unitarity of the matrices ar
same and symmetry is taken into account explicitly in the contractions. Therefore all argu
again go through and indeed inspection of the results obtained by our code with those obta
Ref. 2 shows agreement.

The case of CSE is simpler because it involves an invariance group, but more comp
because the matrices are symplectic. Two ways seem open to address this case. We migh
the symplectic property from the outset in the contraction rules, or we might introduce
property as a constraint in the expression for the weight function. While both ways seem po
it is not clear which one is easier to follow. In view of the fact that CSE is of minor importa
for practical applications, we have left this problem open. It is clear, however, that it ca
tackled along the same lines.

V. CONCLUSIONS

We have presented a systematic way to calculate integrals over monomials of matrix ele
for compact matrix groups and for other matrix ensembles whose measure is defined uniqu
an invariance group, such as the circular orthogonal ensemble of unitary symmetric matrice
method gives exact results for monomials of low order. For higher-order monomials, it leads
error of order 1/Na which is independent of the degree of the monomial. We have given a lo
bound on the integera, and we have shown howa can be increased systematically. The meth
is particularly suited for symbolic computer calculation. Codes are available for O(N), U(N) as
well as for the circular orthogonal ensemble inMATHEMATICA and in C from one of the authors
~T.P.!.
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Finite-dimensional Lie algebras of order F
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F-Lie algebras are natural generalizations of Lie algebras (F51) and Lie superal-
gebras (F52). WhenF.2 not many finite-dimensional examples are known. In
this article we construct finite-dimensionalF-Lie algebrasF.2 by an inductive
process starting from Lie algebras and Lie superalgebras. Matrix realizations of
F-Lie algebras constructed in this way fromsu(n),sp(2n) so(n) and sl(num),
osp(2um) are given. We obtain nontrivial extensions of the Poincare´ algebra by
Inönü–Wigner contraction of certainF-Lie algebras withF.2. © 2002 American
Institute of Physics.@DOI: 10.1063/1.1503148#

I. INTRODUCTION

The classification of algebraic objects satisfying certain axioms may be considered a
mental objective on purely mathematical grounds. If, in addition, these objects turn out to
relevant for the description of the possible symmetries of a physical system, such a classifi
takes on a whole new meaning. The main question is, of course, what are the mathem
structures which are useful in describing the laws of physics? Simple complex finite-dimen
Lie algebras were classified at the end of the 19th century by W. Killing and E. Cartan well b
any physical applications were known. Since then, Lie algebras have become essential
description of space–time symmetries and fundamental interactions. On the other hand, it w
discovery of supersymmetry in relativistic quantum field theory or as a possible extensi
Poincare´ invariance1 which gave rise to the concept of Lie superalgebras and their subse
classification.2,3

It is generally accepted that because of the theorems of Coleman and Mandula4 and Haag,
Lopuszanski, and Sohnius,5 one cannot go beyond supersymmetry. However, if one weaken
hypotheses of these two theorems, one can imagine symmetries which go b
supersymmetry,6–28 the idea being that then the generators of the Poincare´ algebra can be obtaine
as an appropriate product of more than two fundamental additional symmetries. These ne
erators are in a representation of the Lorentz algebra which is neither bosonic nor fermionic
kinds of representations are generally taken: parafermionic representations,29 or infinite-
dimensional representations~Verma module!.30

Fractional supersymmetry~FSUSY!9–28 is among the possible extensions of supersymme
which have been studied in the literature. Basically, in such extensions, the generators
Poincare´ algebra are obtained asF-fold (FPN!) symmetric products of more fundamental ge
erators. A natural generalization of Lie~super!algebras which is relevant for the algebraic descr
tion of FSUSY was defined in Ref. 24 and 28 and called anF-Lie algebra. AnF-Lie algebra
admits aZF-gradation, the zero-graded part being a Lie algebra. AnF-fold symmetric product
~playing the role of the anticommutator in the caseF52) expresses the zero-graded part in ter
of the non-zero-graded part.

a!Electronic mail: rausch@lpt1.u-strasbg.fr
51450022-2488/2002/43(10)/5145/16/$19.00 © 2002 American Institute of Physics
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The purpose of this article is to show how one can construct many examples of fi
dimensionalF-Lie algebras by an inductive process starting from Lie algebras and Lie sup
gebras. Some preliminary results is this direction were given in Ref. 28. Two types of fi
dimensionalF-Lie algebras will be constructed. The first family of examples, which we
trivial, are obtained by taking the direct sum of a Lie~super!algebra with the trivial representation
The second family is more interesting: by an inductive procedure we show how one can gi
underlying vector space of any Lie algebra or any classical Lie superalgebra the structure
F-Lie algebra. This procedure involves Casimir operators in the case of Lie algebras and inv
symmetric forms on the odd part of the algebra in the case of Lie superalgebras.

The article is organized as follows. In Sec. II we recall the definition of anF-Lie algebra and
show how one can construct anF-Lie algebra of orderF11F2 from an F-Lie algebra of order
F1>2 and an invariant symmetric form of orderF2 on its non-zero-graded part~c.f. Theorem
II.6!. In Sec. III we introduce the notion of a graded 1-Lie algebra in order to prove a versio
Theorem II.6 whenF151 ~Theorem III.6!, and give some explicit examples ofF-Lie algebras
associated to Lie algebras. In Sec. IV we give explicit examples ofF-Lie algebras associated t
Lie superalgebras. In Sec. V we obtain FSUSY extensions of the Poincare´ algebra by Ino¨nü–
Wigner contraction of certainF-Lie algebras constructed in the two previous sections. In Sec
we define a notion of simplicity forF-Lie algebras and give examples of simple and non-sim
F-Lie algebras. Finally, in Sec. VII we give finite-dimensional matrix realizations of theF-Lie
algebras of Sec. IV induced fromsl(mun) and osp(2u2n) and a quadratic form. Using finite
dimensional matrices, we also show that the underlying vector spaces of the graded 1-Lie a
su(n) % su(n),so(n) % so(n) and sp(2n) % sp(2n) can be givenF-Lie algebra structures which
cannot be obtained by our inductive process.

II. F-LIE ALGEBRAS

A. Definition of F-Lie algebras

In this section, we recall briefly the definition ofF-Lie algebras given in Refs. 24 and 28. L
F be a positive integer and letq5e2p i /F. We considerS a complex vector space and« an
automorphism ofS satisfying«F51. We setAk5Sqk,1<k<F21, andB5S1 ~Sqk is the eigens-
pace corresponding to the eigenvalueqk of «!. Then we haveS5B% k51

F21Ak .
Definition II.1: S5B% k51

F21Ak is called a (complex) F-Lie algebra if it is endowed with the
following structure:

(1) B is a (complex) Lie algebra andAk ,1<k<F21, are representations ofB. If @ ,# denotes the
bracket on B and the action ofB on S, it is clear that ;bPB,;sPS,@«(b),«(s)#
5«(@b,s#).

(2) There exist multilinearB-equivariant maps$,...,%: S F(Ak)→B, whereS F(D) denotes the
F-fold symmetric product of D. It is easy to see that $«(a1),...,«(aF)%
5«($a1 ,...,aF%),;a1 ,...,aFPAk .

(3) For biPB and ajPAk the following ‘‘Jacobi identities’’ hold:

@@b1,b2#,b3#1@@b2,b3#,b1#1@@b3,b1#,b2#50,

@@b1 ,b2#,a3#1@@b2 ,a3#,b1#1@@a3 ,b1#,b2#50,

@b,$a1 , . . . ,aF%#5$@b,a1#, . . . ,aF%1¯1$a1 , . . . ,@b,aF#%,

(
i 51

F11

@ai ,$a1 , . . . ,ai 21 ,ai 11 , . . . ,aF11%#50. ~J4!

Note that the three first identities are automatic, but the fourth, which we will refer to asJ4 , is an
extra constraint.

Remark II.2: An F-Lie algebra is more than a Lie algebrag0 , a representationg1 of g0 and
a g0-valuedg0-equivariant symmetric form ong1 . Indeed, although the three first Jacobi identiti
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are manifest in this situation, the fourth is not necessarily true. As an example, considg0

5sl(2,C) and g15S2k11 , kPN (the irreducible representation of dimension2k12). From the
decompositionS 2(S2k11)5S4k12% S4k22%¯% S2 one has ansl(2,C)-equivariant mapping from
S 2(S2k11)→S2→sl(2,C). But g5sl(2,C) % S2k11 is not a Lie superalgebra (the fourth Jacob
identity is not satisfied) except when k50 where it reduces toosp(1u2).

Remark II.3: A1-Lie algebra is a Lie algebra, and a2-Lie algebra is a Lie superalgebra. W
will also refer to these objects as F-Lie algebras of order1 and 2, respectively.

Remark II.4: Notice that$a1 ,...,aF% is only defined if the ai are in the sameAk and that
;k51,...,F21, the spaces Sk5B% Ak are F-Lie algebras.
From now on, we consider onlyF-Lie algebras S5B% A such that A is an eigenspace of«.

Remark II.5: Ifh,B is a Cartan subalgebra and Fl1
,...,FlF

PF are respectively of weigh

l1 ,...,lF , then $Fl1
,...,FlF

%PB is of weightl11¯1lF . In particular, if l11¯1lFÞ0 is

not a root ofB, this bracket is zero.
This structure can be seen as a possible generalization of Lie algebras (F51) or Lie super-

algebras (F52) and can be compared, in some sense, to the ternary algebras (F53) considered
in Ref. 31, and to then-ary algebras (F5n) introduced in Ref. 32 but in a different context. W
have shown24,28 that all examples of FSUSY considered in the literature can be described w
the framework ofF-Lie algebras.

B. An inductive construction of F-Lie algebras

Let g be a complex Lie algebra and letr,r8 be representations ofg such that there is a
g-equivariant mapmF :SF(r)→r8. We set

S5B% A15~g% r8! % r.

Then,B5g% r8 is a Lie algebra as the semi-direct product ofg andr8 ~the latter with the trivial
bracket!. We can extend the action ofg on r to an action ofB on r by letting r8 act trivially on r.
This defines the bracket@ ,# on S. For the map$¯% we takemF . The first three Jacobi identitie
are clearly satisfied, and the fourth is also satisfied as each term in the expression on the lhJ4

vanishes. HenceS is anF-Lie algebra. There are two essentially opposite ways of giving exp
examples ofF-Lie algebras of this type. One can either start fromg and r8 and extract an
‘‘ F-root’’ of r8, or one can decomposeS F(r) into irreducible summands and project onto one
them.24 The first approach is the more difficult since, in general, it involves infinite-dimensi
representation theory. For example, if one starts withr85Dm1

, the vector representation o
so(1,d21) of highest weightm1 , the representationr5Dm1 /F of highest weightm1 /F is not
exponentializable~see, e.g., Ref. 33! and does not define a representation of the Lie gro
SO(1,d21), except whend53 where such representations describe relativistic anyons.34 The
second approach, on the other hand, will always give finite-dimensionalF-Lie algebras if one
starts from finite-dimensional representations.

The following theorem gives an inductive procedure for constructing finite-dimensionalF-Lie
algebras.

Theorem II.6: Let g0 be a Lie algebra andg1 a representation ofg0 such that

(i) S15g0% g1 is an F-Lie algebra of order F1.1;
(ii) g1 admits ag0-equivariant symmetric formm2 of order F2>1.

Then S5g0% g1 admits an F-Lie algebra structure of order F11F2 , which we call the F-Lie
algebra induced from S1 and m2 .

Proof: By hypothesis, there existg0-equivariant mapsm1 :S F1(g1)→g0 and m2 :S F2(g1)
→C. Now, considerm:S F11F2(g1)→g0^ C>g0 defined by
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m~ f 1 ,...,f F11F2
!5

1

F1!

1

F2! (
sPSF11F2

m1~ f s(1) ,...,f s( f F1
)! ^ m2~ f s( f F111) ,...,f s( f F11F2

)!,

~2.1!

where f 1 ,...,f F11F2
Pg1 andSF11F2

is the group of permutations onF11F2 elements. By con-
struction, this is ag0-equivariant map fromS F11F2(g1)→g0 , thus the three first Jacobi identitie
are satisfied. The last Jacobi identityJ4 , is more difficult to check and is a consequence ofJ4 for
the F-Lie algebraS1 and a factorization property. Indeed, settingF5F11F2 , the identityJ4 for
the terms in

(
i 50

F

@ f i ,m~ f 1 , . . . ,f i 21 , f i 11 , . . . ,f F!#,

of the formm1( f s(1) ,...,f s( f F1
)) ^ m2( f s( f F111) ,...,f s( f F11F2

) with sPSF11F211 , reduces to

(
i 50

F1

@ f s( i ) ,m1~ f s(1) ,...,f s( i 21) , f s( i 11) ,...,f s( f F1
)!# ^ m2~ f s( f F111) ,...,f s( f F11F2

)!50,

using m2( f s( f F111) ,...,f s( f F11F2
))PC. But the lhs vanishes byJ4 for the F-Lie algebraS1 . A

similar argument works for the other terms and henceJ4 is satisfied andS is anF-Lie algebra of
orderF11F2 . Q.E.D.

Remark II.7: Theorem II.6 is equivalent to the fact that the product of twog0-equivariant
symmetric forms satisfying J4 also satisfies J4 if one of them is scalar-valued.

III. FINITE-DIMENSIONAL F-LIE ALGEBRAS ASSOCIATED TO LIE ALGEBRAS

In this section we first introduce the notion of a graded 1-Lie algebra in order to ha
version of Theorem II.6 whenF151.

A. Graded 1-Lie algebras

Definition III.1: A graded1-Lie algebra is aZ2-graded vector space S5B% F such that
~1! B is a Lie algebra;
~2! F is a representation ofB;
~3! there is aB-equivariant mapm:F→B; and
~4! @m( f 1), f 2#1@m( f 2), f 1#50,; f 1 , f 2PF.
Example III.2: Letg be a Lie algebra. SetB5g, F5adg and S5B% F. If m:F→B is the

identity, then(S,m) is a graded1-Lie algebra.
Remark III.3: A graded1-Lie algebra is not a priori a Lie algebra but it easy to see that,

fact, it has a natural graded Lie algebra structure.
Remark III.4: Kerm is a B-invariant subspace ofF and Imm is a B-invariant subspace ofB.

In particular, if B is simple, F irreducible, andm nontrivial, then m defines aB-equivariant
isomorphism betweenF and B.

A graded 1-Lie algebra is a graded Lie algebra in the usual sense. In general, howe
graded Lie algebra is not a graded 1-Lie algebra since there is no preferred map from the
the even part.

Proposition III.5: Let g5g1 % g2 be a graded Lie algebra, and letm:g→g be an odd
g1-equivariant map ofg such thatm is injective on@g1 ,g2#. Then (g,m) is a graded1-Lie
algebra.

Proof: One only has to check Definition III.1~4!. One has; f 1 , f 2Pg2 , m(@m( f 1), f 2#
1@m( f 2), f 1#)5@m( f 1),m( f 2)#1@m( f 2),m( f 1)#50. Sincem is injective on@g1 ,g2# this implies
Definition III.1~4!. Q.E.D.
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Theorem III.6 „II.6-bis…: Let g0 be a Lie algebra andg1 a representation ofg0 such that

(i) S15g0% g1 is a graded1-Lie algebraand
(ii) g1 admits ag0-equivariant symmetricm2 form of order F2>1.

Then S5g0% g1 admits an F-Lie algebra structure of order11F2 which we call the F-Lie
algebra induced from S1 and m2 .

Proof: Analogous to Theorem II.6. Q.E.D

B. Trivial and induced F-Lie algebras

Consider the graded 1-Lie algebraS5g0% g1 where g0 is a Lie algebra,g1 is the adjoint
representation ofg0 and m:g1→g0 is the identity. LetJ1 ,...,Jdimg0

be a basis ofg0 , and
A1 ,...,Adimg0

be the corresponding basis ofg1 . The graded 1-Lie algebra structure onS is then

@Ja ,Jb#5 f ab
cJc , @Ja ,Ab#5 f ab

cAc , m~Aa!5Ja , ~3.1!

where f ab
c are the structure constant ofg0 , Two types ofF-Lie algebras associated toS will be

defined.
The first type ofF-Lie algebra associated toS will be called trivial and is constructed a

follows:
Theorem III.7: Let g0 be a Lie algebra and let F>1 be an integer. Then S5g0% (g1% C) can

be given the structure of an F-Lie algebra (graded1-Lie algebra if F51) whereg1 is the adjoint
representation ofg0 and C is the trivial representation.

Proof: The map m:S F(g1% C)→g0 is given by projection ong1 in the decomposition
S F(g1% C)5S F(g1) % S F21(g1) %¯% S 2(g1) % g1% C, followed by the identification ofg1 with
g0 .

With the notations of~3.1! the brackets are

$l,...,l%50

$l,...,l,Aa %5Ja

]

~3.2!
$l,...,l,Aa1

,...,Aak
%50, 1,k<F

]

$Aa1
,...,AaF

%50

with Aa ,Pg1 ,lPC, andJaPg0 .
It is easy to check that the four Jacobi identities are satisfied. Q.
The second type ofF-Lie algebras associated toS are those induced fromS and Casimir

operators ofg0 ~see Theorem III.6!. It is well known that the invariant tensors ong0
! are generated

by primitive invariant tensors which are either fully symmetric or fully antisymmetric.35 By
duality, symmetric invariant tensors are related to the Casimir operators ofg0 , and it is well
known that for a rankr Lie algebra one can findr independent primitive Casimir operators.

Theorem III.8: Let g0 be a simple (complex) Lie algebra andg1 be the adjoint representation
of g0 . Then a Casimir operator ofg0 of order m induces the structure of an F-Lie algebra of order
m11 on Sm115g0% g1 .

Proof: By Example III.2g0% g1 is a graded 1-Lie algebra and the result follows from Theor
III.6. Q.E.D.

Remark III.9: One can give explicit formulas for the bracket of these F-Lie algebras as
follows. Let Ja ,a51,...,dim(g0) and let Aa ,a51,...,dim(g0) be bases as at the beginning of th
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section. Let ha1¯am
be a Casimir operator of order m [for m52, the Killing form gab

5Tr(AaAb) is a primitive Casimir of order2]. Then, the F-bracket of the F-Lie algebra is

$Aa1
,Aa2

,...,Aam11
%5 (

l 51

m11

ha1¯al 21al 11¯am11
Jal

. ~3.3!

For the Killing form this gives

$Aa ,Ab ,Ac%5gabJc1gacJb1gbcJa . ~3.4!

If g05sl(2), theF-Lie algebra of order 3 induced from the Killing form is theF-Lie algebra
of Ref. 36.

IV. FINITE-DIMENSIONAL F-LIE ALGEBRAS ASSOCIATED TO LIE SUPERALGEBRAS

In this section we will consider someF-Lie algebras which can be associated to Lie supe
gebras using Theorem II.6.

A. Lie superalgebras

We first recall some basic results on simple complex Lie superalgebras~for more details, see
Ref. 37 and 38!. Simple Lie superalgebras can be divided into two types: classical and C
type. Classical Lie superalgebras can be further divided into two families: basic and stran
basic Lie superalgebrag5g0% g1 is said to be respectively of type I or type II depending
whether theg0-moduleg1 is respectively reducible or irreducible. Here is the complete list
simple classical Lie superalgebras.2,3 In the statement of 1~i! the symbol (m11,n11)1

% (m
11,n11)2 denotes (Cm11!

^ Cn11
^ C) % (Cm11

^ Cn11!
^ C!), whereCm11 is the fundamental

representation ofsl(m11), Cm11! is its dual representation andC is the standard one-dimension
representation ofgl(1). In therest of the theorem we use analogous notation.

Theorem IV.1: Let g5g0% g1 be a classical simple complex Lie superalgebra. Theng is
isomorphic to one of the following:

~1! Basic of type I:

(i) A(m,n):m.n>0,g05sl(m11)% sl(n11)% gl(1),g15(m11,n11)1
% (m11,n11)2.

(ii) A (n,n):n>1,g05sl(n11)% sl(n11),g15(n11,n11) % (n11,n11).
(iii) C (n11):n>1,g05sp(2n) % gl(1),g152n1

% 2n2.

~2! Basic of type II:

(i) B(m,n):m>0,n>1,g05so(2m11)% sp(2n),g15(2m11,2n).
(ii) D (m,n):m>2,n>1,mÞn11,g05so(2m) % sp(2n),g15(2m,2n).
(iii) D (n11,n):g05so(2(n11))% sp(2n),g15(2(n11),2n).
(iv) D(2,1;a):aPC2$0,21%,g05sl(2)% sl(2)% sl(2),g15(2,2,2).
(v) F(4):g05sl(2)% so(7),g15(2,8).
(vi) G(3):g05sl(2)% G2 ,g15(2,7).

~3! (Strange):

(i) Q(n):n.1g05sl(n),g15ad(sl(n)), with ad the adjoint representation.
(ii) P (n):n.1g05sl(n),g15@2# % @1n22#, where @2# denotesS 2(Cn) the twofold symmetric

representation and@1n22# denotesLn22(Cn) the (n22)-fold antisymmetric representation.

[The superscript in 1(i) and 1(iii) indicates thegl(1) charge.]
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B. Symmetric invariant forms

By Theorem II.6 one can construct anF-Lie algebra from a Lie superalgebrag5g0% g1 and
a g0-invariant symmetric form ong1 . In general determiningall invariant symmetric forms on a
given representation of a given Lie algebra is very difficult. However, for the Lie superalge
given in the above list we will show how one can construct many invariant symmetric forms
key observation is that for each basic Lie superalgebra in the list, the odd partg1 is either a tensor
product~type II! or a sum of two dual tensor products~type I! as a representation ofg0 . Thus, to
find g0-invariant symmetric forms ong1 , one can use the following well known isomorphisms
representations of GL(A)3GL(B):39

S p~A% B!5 (
k50

p

S k~A! ^ S p2k~B!, ~4.1!

S p~A^ B!5(
G

$G~A! ^ $G~B!, ~4.2!

where the second sum is taken over all Young diagramsG of length p and $G(A) denotes the
irreducible representation of GL(A) corresponding to the Young symmetrizer ofG.

1. Type I

We consider the Lie superalgebraA(m,n). The case of the other basic type I Lie superalg
bras is similar. Theng05sl(m11)% sl(n11)% gl(1) and g15(Cm11!

^ Cn11
^ C) % (Cm11!

^ Cn11
^ C)!. Using the formulas~4.1! and~4.2!, one sees thatS p(g1) is a direct sum of terms o

the form

$G~Cm11!! ^ $G8~Cm11! ^ $G~Cn11! ^ $G8~Cn11!! ^ CuGu2uG8u, ~4.3!

whereuGu is the length ofG anduGu1uG8u5p. If this term contains the trivial representation, th
n must be even anduGu5uG8u. Furthermore, the dimension of the vector space ofg0 invariants is
then

I G,G85dim Homsl(m11)~$G8~Cm11!,$G~Cm11!!3dim Homsl(n11)~$G8~Cn11!,$G~Cn11!!,
~4.4!

where Homsl(m11) denotes homomorphisms which aresl(n11) equivariant. One can calculate th
dimensions of these spaces using well known results.39 If G5G8, then I G,G8

>1; if G5G8 and
uGu5uG8u51, then I G,G8

51 and the invariant quadratic form corresponds to the tautolog
metric ong1 . In Ref. 28F-Lie algebras were constructed using this symmetric form.

2. Type II

All basic type II Lie superalgebras except (iv) haveg05g08% g09 andg15D 8^ D 9, whereD 8
andD 9 are irreducible self-dual representations of respectivelyg08 andg09 . Therefore,S p(g1) is
the direct sum of terms of the form

$G~D 8! ^ $G~D 9!, ~4.5!

whereuGu5p. The dimension of the vector space ofg0 invariants is

I G5dim$G~D 8!g083dim$G~D 9!g09, ~4.6!

where $G(D 8)g08 denotes the space ofg08 invariant vectors in $G(D 8). Although the respective
factors in the product~4.5! are irreducible for GL(D 8) and GL(D 9), they may become reducibl
for g08 , g09 . For example the representations associated to the Young diagram� are reducible for
both g085so(m) andg095sp(2n).
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3. The strange superalgebra Q „n …

Up to dualityS !(g1) ~the symmetric algebra ong1) is generated by the Casimir operators
sl(n) ~see Sec. III!.

4. The strange superalgebra P „n …

In this caseS !(g1) is a direct sum of terms of the form

S k~S 2~Cn!! ^ S p2k~Ln22~Cn!!. ~4.7!

This representation is in general reducible, but we do not know of a simple general formula f
dimension ofsl(n) invariants.

C. Trivial and induced F-Lie algebras

In this sectionF-Lie algebras associated to Lie superalgebras will be constructed explicitl
fix our notations, considerg5g0% g1 a classical Lie superalgebra. LetJa ,1<a<dim g0 , be a
basis ofg0 andFa ,1<a<dim g1 , be a basis ofg1 . The structure constants ofg are given by

@Ja ,Jb#5 f ab
cJc ,

@Ja ,Fa#5~Ra!a
bFb , ~4.8!

$Fa ,Fb%5Eab5Sab
a Ja .

The structure constants are given, e.g., in Ref. 38 for particular choices of bases.
The first type ofF-Lie algebra associated tog will be called trivial and are constructed a

follows:
Theorem IV.2: Let g5g0% g1 be a Lie superalgebra and let F>1 be an integer. Then S

5g0% (g1% C) (with C the trivial representation ofg0) can be given the structure of an F-Lie
algebra.

Proof: The proof is analogous to the proof of Theorem III.7. Q.E.
The second type ofF-Lie algebra associated tog are those induced fromg and symmetric

forms ong1 . Let g5g0% g1 be one of the classical Lie superalgebras in the statement of The
IV.1 and letg be ag0 invariant symmetric form of orderm on g1 . The bracket of the associate
F-Lie algebra of orderm12 in the above basis is given by~2.1!:

$Fa1
,¯ ,Fam12

%5
1

m! (i , j
ga1¯a i 21a i 11¯a j 21a j 11¯am12

Ea ia j
. ~4.9!

Example IV.3: We denote by S the F-Lie algebra of order4 induced from the Lie superalgebra

A~m21,n21!5~sl~m! % sl~n! % gl~1!! % ~Cm
^ Cn!

^ C! % ~Cm
^ Cn!

^ C!!,

and the tautological quadratic form on(Cm
^ Cn!

^ C) % (Cm
^ Cn!

^ C)!. Let $EIJ%
1<J<m
1<I<m and

$EIJ%
m11<J<m1n
m11<I<m1n be the standard bases ofgl(m) and gl(n), respectively. Let$FIJ%

m11<J<m1n
1<I<m and

$FIJ%
1<J<m
m11<I<m1n be bases of(m̄,n)1 and (m,n̄)2, respectively.

Then the four brackets of S have the following simple form:

$FI 1J1
,FI 2J2

,FI 3J3
,FI 4J4

%5d I 1I 2
dJ1J2

~d I 3J4
EJ3I 4

1dJ3I 4
EI 3J4

!1d I 1I 3
dJ1J3

~d I 2J4
EJ2I 4

1dJ2I 4
EI 2J4

!

1d I 1I 4
dJ1J4

~d I 2J3
EJ2I 3

1dJ2I 3
EI 2J3

!1d I 2I 3
dJ2J3

~d I 1J4
EJ1I 4

1dJ1I 4
EI 1J4

!1d I 2I 4
dJ2J4

~d I 1J3
EJ1I 3

1dJ1I 3
EI 1J3

!
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1d I 3I 4
dJ3J4

~d I 1J2
EJ1I 2

1dJ1I 2
EI 1J2

!. ~4.10!

The fact that the rhs is insl(m) % sl(n) % gl(1) is a consequence of Theorem II.6.
Example IV.4: We denote by S the F-Lie algebra of order4 induced from the Lie superalgebr

osp~2u2m!5~so~2! % sp~2m!! % C2
^ C2m,

and the quadratic form g5« ^ V, where« is the invariant symplectic form onC2 and V is the
invariant symplectic form onC2m. Let $Sab5Sba%

1<b<2m
1<a<2m be a basis ofsp(2m) and$h% be a basis

of so(2). Let $Fqa%
1<a<2m
q561 be a basis ofC2

^ C2m. Then the four brackets of S take the followin

form:

$Fq1a1
,Fq2a2

,Fq3a3
,Fq4a4

%5«q1q2
Va1a2

~dq31q4
Sa3a4

1«q31q4
Va3a4

h!

1«q1q3
Va1a3

~dq21q4
Sa2a4

1«q21q4
Va2a4

h!

1«q1q4
Va1a4

~dq21q3
Sa2a3

1«q21q3
Va2a3

h!

1«q2q3
Va2a3

~dq11q4
Sa1a4

1«q11q4
Va1a4

h!

1«q2q4
Va2a4

~dq11q3
Sa1a3

1«q11q3
Va1a3

h!

1«q3q4
Va3a4

~dq11q2
Sa1a2

1«q11q2
Va1a2

h!. ~4.11!

Other extensions of Lie superalgebras have been considered in the literature. For in
extensions of the orthosymplectic superalgebraosp(1u4) or the unitarysl(4u1) were constructed
by means of parafermions and parabosons.40 The first example of anF-Lie algebra was considere
in Refs. 20 and 21 as a possible extension of the Virasoro algebra. In Ref. 36 an examp
‘‘trivial’’ F-Lie algebra, related to the superalgebraosp(1u2), was constructed.

Remark IV.5: By repeated application of Theorem II.6 one can construct F-Lie algebras of
higher and higher order.

V. FINITE-DIMENSIONAL FSUSY EXTENSIONS OF THE POINCARÉ ALGEBRA

It is well known that supersymmetric extensions of the Poincare´ algebra can be obtained b
Inönü–Wigner contraction of certain Lie superalgebras. In fact, one can also obtain FS
extensions of the Poincare´ algebra by Ino¨nü–Wigner contraction of certainF-Lie algebras as we
now show with two examples.

For the first example, we letS35sp(4)% adsp(4) be the realF-Lie algebra of order 3~see
Remark III.9! induced from the real graded 1-Lie algebraS15sp(4)% adsp(4) ~see Example
III.2! and the Killing form on adsp(4). Using vector indices ofso(1,3) coming from the inclusion
so(1,3),so(2,3)>sp(4), thebosonic part ofS3 is generated byMmn ,Mm4 , with m,n50,1,2,3,
and the graded part byJmn ,J4m . Letting l→0 after the Ino¨nü–Wigner contraction,

Mmn→Lmn , Mm4→
1

l
Pm

~5.1!

Jmn→
1

A3 l
Qmn , J4m→ 1

A3 l
Qm ,

one sees thatLmn and Pm generate the (113)D Poincare´ algebra and thatQmn ,Qm are the
fractional supercharges in respectively the adjoint and vector representations ofso(1,3). This
F-Lie algebra of order 3 is therefore a nontrivial extension of the Poincare´ algebra where trans
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lations are cubes of more fundamental generators. The subspace generated byLmn ,Pm ,Qm is also
an F-Lie algebra of order 3 extending the Poincare´ algebra in which the trilinear symmetri
brackets have the simple form

$Qm ,Qn ,Qr%5hmnPr1hmrPn1hrnPm , ~5.2!

wherehmn is the Minkowski metric. This algebra should be compared to the algebra rec
obtained in a different context, where a ‘‘trilinear’’ extension of the Poincare´ algebra involving
‘‘supercharges’’ in the vector representation was constructed.41

For the second example, we letS45(so(2)% sp(4))% 2^ 4 be the realF-Lie algebra of order
four induced fromosp(2u4) and the symmetric form« ^ V, whereV is the symplectic form on4
and « the antisymmetric two-form on2. Using spinor indices coming fromsl(2,C)
>so(1,3),so(2,3) the bosonic part is generated byEab ,Eȧḃ ,Eȧb and the fermionic part by
Fa

6 ,F̄ ȧ
6 ,a,b51,2 andȧ,ḃ51̇,2̇. Letting l→0 after the Ino¨nü–Wigner contraction

Eab→Lab , Eȧḃ→L ȧḃ , Eaȧ→ 1

l
Paȧ , h→ 1

l
Z, Fa

6→ 1

A4 l
Qa

6 , F̄ ȧ
6→ 1

A4 l
Q̄ȧ

6 ,

~5.3!

one sees thatLab ,L ȧḃ andPaȧ generate the (113)D Poincare´ algebra, thatZ is central and that
Qa

6 ,Q̄ȧ
6 are the fractional supercharges in the spinor representations ofso(1,3). This F-Lie

algebra of order 4 is therefore a nontrivial extension of the Poincare´ algebra where translations ar
fourth powers of more fundamental generators. The four bracket can be expressed simpl
introduce the following notation:saȧ

m ,s̄mȧa are the Dirac matrices, andsab
mn , s̄

ȧḃ

mn
andPm are the

Poincare´ generators~for details, e.g., Ref. 42!. One then has

$Qa1

q1 ,Qa2

q2 ,Qa3

q3 ,Qa4

q4%52«q1q2«q3q4«a1a2
«a3a4

Z12«q1q4«q2q3«a1a4
«a2a3

Z

12«q1q3«q2q4«a1a3
«a2a4

Z,

$Qa1

q1 ,Qa2

q2 ,Qa3

q3 ,Q̄
ȧ4

q4%5dq11q4«q2q3«a2a3
sa1ȧ4

m Pm1dq21q4«q1q3«a1a3
sa2ȧ4

m Pm

1dq31q4«q1q2«a1a2
sa3ȧ4

m Pm , ~5.4!

$Qa1

q1 ,Qa2

q2 ,Q̄
ȧ3

q3 ,Q̄
ȧ4

q4%50,

together with similar relations involving$Qa1

q1 ,Q̄
ȧ2

q2 ,Q̄
ȧ3

q3 ,Q̄
ȧ4

q4% and$Q̄ȧ1

q1 ,Q̄
ȧ2

q2 ,Q̄
ȧ3

q3 ,Q̄
ȧ4

q4%.

Analogous constructions lead to FSUSY extensions of the Poincare´ algebra in any space–tim
dimensions.

VI. SIMPLE F-LIE ALGEBRAS

By analogy with the case of Lie~super!algebras we define ideals and the notion of simplic
for F-Lie algebras.

Definition VI.1: Let S5B% F be an F-Lie algebra, or a graded1-Lie algebra. ThenI5B 8
% F 8 is an ideal of S if and only if

(i) ; f 18PF 8,; f 2 ,...,f FPF:$ f 18 , f 2 ,...,f F%PB 8.
(ii) B 8 is an ideal ofB(;b8PB 8,;bPB,@b,b8#PB 8).
(iii) ;bPB,; f 8PF 8@b, f 8#PF 8.
(iv) ;b8PB 8,; f PF@b8, f #PF 8.
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Remark VI.2: For a graded1-Lie algebra S5B% F, denotingm the map fromF to B, the
property (i) of Theorem VI.1 becomesIm m,B 8.

Remark VI.3: By Theorem VI.1, Im m%F is an ideal of S [m denotes theB-equivariant map
from S F(F)→B] .

Remark VI.4: In the case of Lie algebras and Lie superalgebras, this is the usual definiti
the case of a graded1-Lie algebra S5B% F, S85B 8% F 8 is an ideal if and only if it is a
Z2-graded ideal for the natural Lie bracket on S~cf. Remark III.3!.

Definition VI.5: An F-Lie algebra S is said to be simple if and only if its only ideals are S a
$0%, and m:S F(F)→B is nonzero.

Remark VI.6: Let S5B% F be a graded1-Lie algebra such thatm:F→B is nonzero. Then, S
is simple if and only ifB is a simple Lie algebra andF is an irreducible representation ofB.

Remark VI.7: Ifg is a simple Lie algebra, and S5g% adg is the graded1-Lie algebra of
Example III.2, then S is simple as a graded1-Lie algebra but is not simple as a Lie algebra, wi
respect to the natural Lie bracket III.3.

Proposition VI.8: Let S5B% F be an F-Lie algebra such that (i)B is semi-simple, (ii) the
mapm:S F(F)→B is a surjection and (iii) no nonzero ideal ofB has nonzero fixed points inF.
Then

(a) S is simple and
(b) the F-Lie algebra of order(F12) induced from aB-equivariant nondegenerate quadrat

form onF (see II.6–III.6) also satisfies (i) and (ii).

Proof: Let I5B 8% F 8 be a nontrivial ideal ofS. ThenB 8 is an ideal ofB and@B 8,F#,F 8.
But if F5F 8% F 9 asB 8-modules, then@B 8,F 9#50, and, therefore,F 95$0% since by hypoth-
esisB 8 does not admit nonzero fixed points. This proves~a!.
To prove ~b! it is enough to prove that the induced (F12)-bracket is surjective. Since th
F-bracketm:S F(F)→B is surjective, by diagonalizing the quadratic form, it is easy to see tha
(F12)-bracket~2.1! is also surjective. Q.E.D

Remark VI.9: Ifg is a simple Lie algebra, the graded1-Lie algebrasg% adg satisfies (i), (ii)
and (iii) above. As one can check, the Lie superalgebras in the list IV.1 also satisfy (i), (ii)
(iii). Thus the induced F-Lie algebras associated to nondegenerate quadratic forms and t
graded1-Lie algebras or Lie superalgebras are always simple.

The trivial F-Lie algebras associated to graded 1-Lie algebras or Lie superalgebras III.7
are not simple since in both casesg0% g1 is an ideal ofS. In particular, whenF52, the trivial Lie
superalgebras associated to graded 1-Lie algebras are not simple. The direct sum of two
F-Lie algebras of the same order is clearly not simple. These two kinds of examples of nons
F-Lie algebras indicate that probably, as for Lie superalgebras, there are different inequi
ways to define semi-simpleF-Lie algebras.

VII. REPRESENTATIONS

Definition VII.1: A representation of an F-Lie algebra S is a linear mapr:S→End(H) and an
automorphism«̂ such that«̂F51 which satisfy

r~@x,y# !5r~x!r~y!2r~y!r~x!, ~7.1a!

r$a1 , ...,aF%5(sPSF
r~as(1)!...r~as(F)!, ~7.1b!

«̂r~s!«̂215r~«~s!! ~7.1c!

(SF being the group of permutations of F elements).
As a consequence of these properties, since the eigenvalues of«̂ areFth roots of unity, we

have the following decomposition,
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H5 %
k50

F21

Hk ,

whereHk5$uh&PH: «̂uh&5qkuh&%. The operatorNPEnd(H) defined byNuh&5kuh& if uh&PHk

is the ‘‘number operator’’~obviously qN5 «̂). Since «̂r(b)5r(b) «̂,;bPB eachHk provides a
representation of the Lie algebraB. Furthermore, foraPAl , «̂r(a)5ql r(a) «̂, and so we have
r(a).Hk#Hk1l (mod F).

Example VII.2: Let X,Y,Z be n3n ~resp.2n32n) matrices inso(n) @resp.sp(2n)#. Then, it
is easy to see that$X,Y,Z% is also inso(n) @resp.sp(2n)#. Consequently, S5so(n) % so(n) @resp.
S5sp(2n) % sp(2n)# is an F-Lie algebra of order 3@the only nontrivial point to be checked is th
Jacobi identity (J4) in Definition II.1#. A similar property is true for any odd number of matrice
We will calculate the structure constants in the case ofso(n), the calculation forsp(2n) being
analogous. If Xa ,1<a<dim so(n), is a basis ofso(n), then the three-bracket of S is given b

$Xa ,Xb ,Xc%5kabc
d Xd . ~7.2!

Writing $Xa ,Xb ,Xc ,Xd%5($Xa ,Xb ,Xc%Xd1$Xa ,Xb ,Xd%Xc1$Xa ,Xc ,Xd%Xb1$Xb ,Xc ,Xd%Xa)
and taking the trace using (7.2), we get4kabc

dtr (XdXe)5Tr($Xa ,Xb ,Xc ,Xe%). Since the trace
defines a metric onso(n) this gives kabc

d5 1
4Tr$Xa ,Xb ,Xc ,Xd%g

de.
This F-Lie algebra of order 3 is not induced from the graded1-Lie algebraso(n) % so(n) and

the Killing form: if this were the case we would have$Xa ,Xb ,Xc%5Tr(XaXb)Xc1Tr(XaXc)Xb

1Tr(XbXc)Xa , which is clearly false if a5b5c. However, by Proposition VI.8, S is simple.
We can construct a representation of S inCn

^ C3 as follows: definer:S→End(Cn
^ C3) by

r~X!5H X^ Id if X is in the first so~n!,

X^ Q if X is in the secondso~n!,
~7.3!

where Q:C3→C3 is any linear map whose minimal polynomial isl321 (i.e., Q35Id and Q has
three distinct eigenvalues).

Related results were obtained forso(n) and sp(2n) in Ref. 43.
Example VII.3: Let X,Y,Z be three n3n matrices inu(n). Then, it is easy to see tha

$X,Y,Z% is also inu(n). As in the previous example, this simple observation enables us to
u(n) % u(n) or u(n) % su(n) the structure of an F-Lie algebra of order 3.

Example VII.4: Let A(m21,n21), nÞm, be the Lie superalgebra of(n1m)3(n1m)
matrices,3,38

M5S Emm Fmn

Fnm Enn
D ,

of supertrace zero (i.e., sTrM5trEmm2trEnn50).
If Ji 1

,...,Ji 2F
are arbitrary matrices, then

$Ji 1
,...,Ji 2F

%5 (
a,b51

aÞb

F

$$Ji a
,Ji b

%,$Ĵi a
,Ĵi b

,Ji 1
,...,Ji 2F

%%. ~7.4!

Applying this formula to2F odd matrices in A(m21,n21), one sees by an induction that th
supertrace of the2F-bracket (7.4) vanishes. Using theZ2 graduation of A(m21,n21) one sees
that this bracket belongs to the even part of the algebra and hence defines the structure
F-Lie algebra of order2F on the underlying vector space of A(m21,n21). For F54 this is just
the F-Lie algebra of order 4 induced by the tautological quadratic form of Example IV.3. Ind
let V5C!n

^ Cm
^ C and let g05sl(n) % sl(m) % gl(1). Then, comparinggl(1) charges, we have

Homg0
(S 4(V% V!),g0)5Homg0

(S 2(V) ^ S 2(V!),g0). Since
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S 2~V! ^ S 2~V!!>~S 2~C!n! ^ S 2~Cm! % L2~C!n! ^ L2~Cm!! ^ ~S 2~Cn! ^ S 2~C!m! % L2~Cn!

^ L2~C!m!!

and since the representations1 and sl(n) occur exactly once inS 2(Cn) ^ S 2(C!n) and not at all
in L2(Cn) ^ L2(C!n), we deduce thatHomg0

(S 4(V% V!),g0) is of dimension one.
By definition, the fundamental(n1m)3(n1m) matrix representation of the Lie superalge

bra A(m21,n21) is also a representation of the F-Lie algebra of order2F constructed above
In general, this is not true: for instance, if m52,n51, one can check that the six-dimension
representation of A(2,1) is not a representation of the associated F-Lie algebra of order4.

Example VII.5: Let S be the set of all matrices of the form

M5S q 0 F1

0 2q F2

2VF2
t 2 iVF1

t S
D , ~7.5!

where q is a complex number, F6 are two132n matrices, V is the standard2n32n symplectic
form onC2n and S is a2n32n matrix in sp(2n), i.e., St5VSV. Let

B5H S q 0 0

0 2q 0

0 0 S
D ,qPC,SPsp~2n!J >so~2! % sp~2n!

and let

F5H S 0 0 F1

0 0 F2

2VF2
t 2 iVF1

t 0
D ,F6PM1,2n~C!J .

If one now takes

Fa15S 0 0 Fa1

0 0 0

0 2 iVFa1
t 0

D ,Fa25S 0 0 0

0 0 Fa2

2VFa2
t 0 0

D ,

and Fa5Fa11Fa2 , we get

$Fa ,Fb%5S aab 0 0

0 2 iaab 0

0 0 Aab

D ,

where Aab52VFa2
t Fb12 iVFa1

t Fb22VFb2
t Fa12 iVFb1

t Fa2 and whereaab52Fa1VFb2
t

2Fb1VFa2
t . This shows thatB% F is not closed under the superbracket. From the form

$Fa1
,Fa2

,Fa3
,Fa4

% 5 $$Fa1
,Fa2

%,$Fa3
,Fa4

%% 1 $$Fa1
,Fa3

%,$Fa2
,Fa4

%% 1 $$Fa1
,Fa4

%, $Fa2
,Fa3

%%,
observing that$Fa1 ,Fb1%5$Fa2 ,Fb2%50, the four-bracket$Fa1q1

,Fa2q2
,Fa3q3

,Fa4q4
%50 if

q11q21q31q4Þ0. We then calculate four-brackets for q15q252q352q451 and obtain

$Fa1 ,Fb1 ,Fc2 ,Fd2%5S q 0 0

0 2q 0

0 0 S
D ,
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q52~Fa1VFc2
t !~Fb1VFd2

t !12~Fa1VFd2
t !~Fb1VFc2

t ! ~7.6!

S5Fa1VFd2
t ~VFc2

t Fb11VFb1
t Fc2!1Fa1VFc2

t ~VFd2
t Fb11VFb1

t Fd2!

1Fb1VFd2
t ~VFc2

t Fa11VFa1
t Fc2!1Fb1VFc2

t ~VFd2
t Fa11VFa1

t Fd2!.

This shows thatB% F is an F-Lie algebra of order4 since St5VSV.
In fact, the matrices ofB% F define a representation of the F-Lie algebra of order4 induced

from osp(2u2m) and « ^ V (see Example IV.4). Indeed, setting

F̄a15S 0 0 Fa1

0 0 0

0 2VFa1
t 0

D ,F̄a25S 0 0 0

0 0 Fa2

2VFa2
t 0 0

D ,

we see that B% F̄>osp(2u2m) and that $Fa1 ,Fb1 ,Fc2 ,Fd2%5^F̄a1 ,F̄c2&$F̄b1 ,F̄d2%
1^F̄b1 ,F̄d2&$F̄a1 ,F̄c2%1^F̄a1 ,F̄d2&$F̄b1 ,F̄c2%1^F̄b1 ,F̄c2&$F̄a1 ,F̄d2% where ^F̄a1 ,F̄c2&
denotes the« ^ V invariant form.

Given anF-Lie algebraS5B% F one can define the universal enveloping algebraU(S) by
taking the quotient of the tensor algebraT(S) by the two-sided ideal generated by~see Definition
II.1!

(sPSF
as(1)^¯^ as(F)2$a1 ,...,aF%,

b1^ b22b2^ b12@b1 ,b2#, ~7.7!

b1^ a22a2^ b12@b1 ,a2#,

with a1 ,...,aFPA1 ,b1 ,b2PB. It is not necessary to impose the Jacobi identity~J4! since it is true
in T(S).

The natural filtration ofT(S) factors to a filtration ofU(S) and, denoting the associated grad
algebra by gr(U(S)), we conjecture the following:

~1! gr(U(S)) is isomorphic toT(S)/ Ī , where Ī is the two-sided ideal generated by

(sPSF
as(1)^¯^ as(F) ,

b1^ b22b2^ b1 ,

b1^ a22a2^ b1 .

@This would then imply that gr(U(S))>S(B) ^ LF(F), whereS(B) is the symmetric algebra onB
andLF(F) is theF-exterior algebra onF.44#

~2! The natural mapp:U(S)→gr(U(S)) is a linear isomorphism.~This would be an analog o
the Poincare´–Birkhoff–Witt theorem.!

In the usual way, the representations ofS are in bijective correspondence with the repres
tations of the associative algebraU(S). Consequently, ifI,U(S) is a two-sided ideal, then the
quotientU(S)/I gives a representation ofS. It would be very convenient to have a theory
‘‘Cartan sub-algebras,’’ ‘‘roots’’ and ‘‘weights’’ forS. However, even for simple Lie superalgebr
this kind of theory only works well for basic Lie superalgebras.38 One might expectF-Lie algebras
induced from basic Lie superalgebras to be amenable to this approach. This seems not to
case. Indeed, recall that ifS is a basic Lie superalgebra with Borel decompositionS5h% n1

% n2 andlPh! is a dominant weight, thenVl5U/Im ~whereIl is the ideal corresponding tol)
is (i ) generated by the action ofn1 on the vacuum and (i i ) has a unique quotientDl on which the
action ofn1 is nilpotent and which is therefore finite-dimensional. However, ifSg is the F-Lie
                                                                                                                



f
al

en the
of the

men-

nd the

of

metric
s are
incare

arks.

.

d Y.

e

i,

5159J. Math. Phys., Vol. 43, No. 10, October 2002 Finite-dimensional Lie algebras of order F

                    
algebra induced fromS and a symmetric formg, the quotientV l85U(Sg)/I l8 is (i ) not generated
by the action ofn1 on the vacuum and (i i ) the nilpotence of the action ofn1 in a quotient does
not guarantee finite-dimensionality. This means that in finite-dimensional representations oS, as
in the examples of Sec. VII, the elements ofn1 are not only nilpotent but also satisfy addition
relations.

VIII. CONCLUSION

The mathematical structure underlying supersymmetry is that of a Lie superalgebra. Giv
classification of Lie superalgebras, one can list the possible supersymmetric extensions
Poincare´ algebra. These extensions have had a wide range of applications in physics.

Fractional supersymmetries were first studied in the early 1990s in relation with low di
sional physics (D<3) where fields which are neither bosonic nor fermionic34 do exist. It was
understood a few years later that FSUSY can be considered in arbitrary dimensions a
definition of anF-Lie algebra, the underlying mathematical structure, was given.24 However,
when F.2, most of the examples ofF-Lie algebras which have been found since then are
infinite dimensions. In this article, we show how one can construct many finite-dimensionalF-Lie
algebras starting from Lie algebras or Lie superalgebras equipped with appropriate sym
forms. We define a notion of simplicity in this context and show that some of our example
simple. Furthermore, we construct the first finite-dimensional FSUSY extensions of the Po´
algebra by Ino¨nü–Wigner contraction of certainF-Lie algebras.

These results can be seen as a first step in classifyingF-Lie algebras.
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The main aim of the present paper is using a Chernoff theorem~i.e., the Chernoff
formula! to formulate and to prove some rigorous results on representations for
solutions of Schro¨dinger equations by the Hamiltonian Feynman path integrals
~5Feynman integrals over trajectories in the phase space!. The corresponding theo-
rem is related to the original~Feynman! approach to Feynman path integrals over
trajectories in the phase space in much the same way as the famous theorem of
Nelson is related to the Feynman approach to the Feynman path integral over
trajectories in the configuration space. We also give a representation for solutions of
some Schro¨dinger equations by a series which represents an integral with respect to
the complex Poisson measure on trajectories in the phase space. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1500422#

I. INTRODUCTION

The Hamiltonian Feynman map~pseudomeasure! is a linear functional~its precise definition
in our frame is given in the following! on a vector space of functionals whose common domai
a ~vector! space of functions defined on a segment@0,t#, t.0 and taking values in the phase spa
E5Q3P of a classical Hamiltonian system. The valueF(F) which the Feynman mapF takes on
a functionalF is called the Hamiltonian Feynman path integral, or Feynman integral over tr
tories in the phase space, ofF; the numberF(F) is often denoted by

E F~q~• !,p~• !!expS i E
0

t

p(t)q8(t)dt D)
0

t

dq~t!dp~t!

and coincides with~can even be defined as! the limit of a suitable sequence of finite dimension
integrals of functions which are finite dimensional approximations forF. Such a definition can be
traced back to Feynman himself;1,2 there also exist some other definitions~see Refs. 3–8!; in
particular a definition of the Hamiltonian Feynman map by an analytical continuation of a G
ian measure, which refutes a claim of Berezin,9 was suggested in 19854,5 ~see also Ref. 10!.

If H is a classical Hamiltonian~i.e., a number valued function on the phase space! then one
can show~under some additional assumptions! that the function

~ t,z!°E expS 2 i E
0

t

H(q(t)1z,p(t))dt1 i E
0

t

p(t)q8(t)dt Df0~q~0!1z!)
0

t

dq~t!dp~t!

gives a solution~in a proper space! to the Cauchy problem for the Schro¨dinger equationif8(t)

a!Electronic mail:a.tokarev@swansea.ac.uk
51610022-2488/2002/43(10)/5161/11/$19.00 © 2002 American Institute of Physics
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5Ĥf(t), whereĤ is a pseudodifferential operator~PDO! with the symbol~e.g., in the sense o
Weyl! H. If Ĥ is a self-adjoint operator in a suitable domain then this formula gives an exp

representation of the one parameter unitary groupe2 i tĤ , tPR.
The main aim of the present paper is to formulate and to prove some rigorous versio

these assertions using a Chernoff theorem11 ~i.e., the Chernoff formula!. The corresponding Theo
rem 1 in the following is related to the original~Feynman! approach to Feynman path integra
over trajectories in the phase space in much the same way as the famous theorem from th
~Ref. 12! of Nelson is related to the Feynman approach to the Feynman path integral over
tories in the configuration space.

We give also a representation for solutions of some Schro¨dinger equations by a series whic
represents an integral with respect to the complex Poisson measure on trajectories in the
space~Refs. 3–5; see also Refs. 13–16 for the case of configuration space!. The corresponding
result~in the proof of which we again use the Chernoff formula! is an improvement of a theorem
from Ref. 3~cf. Ref. 17!.

Let E be a~real! vector space and for anyxPE and any linear functionalg on E let fg(x)
5eig(x). If FE is a locally convex space~LCS! of some complex valued functions onE, G is a
vector space of some linear functionals onE distinguishing elements ofE and, for anygPG,
fgPFE then the Fourier (G-)transform of any elementhPFE* is the function onG which is
denoted byh̃ or by Fh and is defined byh̃(g)([Fh(g))5h(fg). If the set$fg :gPG% is total
in FE ~that means that the linear span of$fg :gPG% is dense inFE! then the elementh ~which
can be called in this respect anFE-distribution, or a distribution onE! is uniquely defined by its
Fourier transform. In the following sometimes we do not define explicitly the spaceFE and even
drop the symbolFE .

If b is a quadratic functional onE* , aPE andaPC then the Feynmana-pseudomeasure o
E, with the correlation functionalb and mean valuea, is the distributionFb,a,a on E whose
Fourier transform is defined by

FFb,a,a~g!5expH ab~g!

2
1 ig~a!J .

Let E5Q3P, whereQ and P are LCS,Q5P* , P5Q* ~as vector spaces!; the spaceG
5P3Q is identified with a space of linear functionals onE @for any g5(pg ,qg)PG and x
5(q,p)PE g(x)5pg(q)1p(qg)#. Then the Hamiltonian~or symplectic! Feynman pseudomea
sure onE is any Feynmani -pseudomeasure onE with the correlational functionalb defined by
b(pg ,qg)52pg(qg). The Hamiltonian Feynman pseudomeasure which we use in the followin
a so-called sequential Feynman pseudomeasure.

The sequential Feynman pseudomeasure onE is defined as follows~now we only define what
one can call a sequential Feynman pseudomeasure with the zero mean value but the gene
is quite similar!. Let $En :nPN% be an increasing sequence of finite dimensional vector subsp
of E(5Q3P) such that, for anynPN, En5Qn3Pn , whereQn andPn are vector subspaces o
Q andP, respectively. Then the value of the sequential Feynman pseudomeasureF$En% , associ-
ated with the sequence$En :nPN%, on a function f :E→C @this value is called a sequentia
Feynman~path! integral of f # is defined by

F$En%~ f !5 limS E
En

ei ^p,q&dq dpD 21E
En

f ~q,p!ei ^p,q&dq dp

@where^p,q&5p(q)# if this limit exists. So the fact that a function belongs to the domain ofF$En%

depends only on its restrictions toEn . In the preceding formula we used some regularized in
grals whose definition is given in the following.
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A locally integrable in the sense of Bochner functiong on Rn taking values in a Banach spac
is called integrable if there exists the limit lime→0 *Rng(s)e2eusu2ds (e.0); then the integral
*Rng(s)ds is defined by*Rng(s)ds5 lime→0 *Rng(s)e2eusu2ds, e.0.

If f (•,•):Rm3Rk→C is a measurable function then we define the integral*Rkf (q,u)du as
follows. We assume that*Rke2euuu2u f (q,u)udu,` for almost allqPRm and for alle.0. We also
assume that the functionI e which is defined byI e(q)5*Rke2euuu2f (q,u)du belongs toL2(Rm) and
I e converges inL2(Rm) whene→0. Finally we put*Rkf (•,u)du5 lime→0 I e(•), where the limit is
taken inL2(Rm).

One could also define*g(s)ds to be equal to the limit lime→0 *g(s)f(es)ds where f
PD(Rn), f(0)51 if this limit exists for any suchf ~then it does not depend on the choice off!.
We have chosen the above-formulated more restricted definition for the sake of simplicity.

In what follows the spacesQ andP will be spaces of some functions defined on subsets of
real line and taking values in finite dimensional vector spaces~in applications they are configu
ration and momentum spaces of some Hamiltonian systems!.

Namely for any Banach spaceT and anya.0 let Cg(@0,a#,T) be the vector space of a
functions on@0,a# taking values inT whose distributional derivatives are measures with fin
supports and letCg

0(@0,a#,T) ~respectively,Cg
1(@0,a#,T)! denote the vector space of all righ

continuous~respectively, left continuous! functions from Cg(@0,a#,T). For any tP(0,1) let
Cg

t(@0,a#,T) be the collection of functionsf having the form f 5(12t)gf
01tgf

1 , where gf
0

PCg
0(@0,a#,T), gf

1PCg
1(@0,a#,T) and distributional derivatives ofgf

0 andgf
1 coincide.

Let Q, P be finite dimensional Euclidean spaces and for anyt.0, tP@0,1# let Qt be the
image ofCg

0(@0,t#,Q) in L2(@0,t#,Q), Pt
t5Cp

t (@0,t#,P), Et
t5Qt3Pt

t . The spacesQt andPt
t are

taken in duality by the form (q(•),p(•))°*0
t p(s)q8(s)ds whereq8(s)ds denotes the measur

which is the distributional derivative ofq(•). We will consider elements ofEt
t as functions taking

values inQ3P.
Now we will define a sequence$En% of subspaces ofEt

t to which we associate the sequent
Feynman pseudomeasure. Lett050 and, for anynPN and anykPN,k<2n let tk5k22nt. We
define En to be equal to the collection of functions fromEt

t the restrictions of which to any
interval ((k21)22n,k22n)(kPN) are constant functions. Iff is a function onEt

t then the se-
quential Feynman integral over this space, off , denoted by

E
Et

t
f ~q~• !,p~• !!expS i E

0

t

p(s)q8(s)dsD)
0

t

dq~s!dp~s!,

is defined to be equal toF$En%( f ) ~for the sake of simplicity we assume thatz50!. One can check
immediately that for anytP@0,1# the sequential Feynman integral defines a Hamiltonian Fe
man pseudomeasureFt on Et

t : Ft( f )5*E
t
t f (q(•),p(•))exp(i*0

t p(s)q8(s)ds))0
t dq(s)dp(s).

The main result of the paper, about the representation of solutions to the Schro¨dinger equation
by the Feynman integral over trajectories in the phase space, is based on the observation
f (q,p)5exp(2i*0

t H(q(t),p(t))dt)f0(q(0)) then the finite dimensional integrals which were us

above to define the sequential Feynman pseudomeasure coincide with@(e2 i (t/n) Ĥ)nf0#(0); then
one can use the Chernoff theorem according to which

e2 i tĤf5 lim
n→`

~e2 i ~ t/n! Ĥ!nf,

where the caret means the PDO with the correspondingt-symbol. It is worth mentioning that jus
the representation of the latter limit as a Feynman path integral allows are to discover its v
connections with stochastic analysis.

Now we would like to mention some related results about Feynman path integrals
trajectories in the phase space. Actually there exists a surprisingly small number of mathem
papers devoted to such Feynman path integrals; even in the very recent book—Ref. 18—t
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actually no information on the subject. Nevertheless one can point out some mathematical t
the problem. In particular in papers Refs. 19 and 20 the authors proved a convergence o
approximations to Feynman path integrals over trajectories in the phase space using the me
finite differences. A similar convergence was proved in Ref. 21 using some direct calculation
the other hand in Refs. 4 and 5~cf. Refs. 8, 22, and 23! an analytical continuation and Parsev
equality ~i.e., Fourier transform! were suggested to investigate Feynman path integrals over
jectories in the phase space; the latter approach uses a Poisson-type measure on the traje
the phase space and can be considered as an extension to the phase space of the ap
Albeverio–Hoegh–Krohn–Maslov–Chebotarev, which was originally applied only to Feyn
integrals over trajectories either in the configuration or in the momentum space. Both
approaches—for Hamiltonian Feynman path integrals—were developed in some detail in R
in particular using an integration over a Poisson-type measure some decompositions of so
to Schrödinger equations were obtained~for an approach via analytical continuation to Feynm
integrals for the Dirac equation see Ref. 24!.

The main novelty in the approach which we use in the present paper is the direct appli
of the Chernoff formula~see Ref. 17! rather than the Trotter formula; besides we use the sa
Chernoff formula in order to improve some results from Ref. 3~cf. Refs. 17 and 25! about
representations of solutions of Schro¨dinger equations by Feynman integrals over Poisson-t
measures. In both cases the more direct approach allows us to get representation theorems
classes of Hamiltonians.

Notations and terminology of Refs. 26 and 27 are usually used without explanations. Fo
topological spaceX the symbolB(X) denotes thes algebra of its Borel subsets; the symboldx

denotes the Dirac measure concentrated at the pointxPX; if m is a measure on (X,B(X)) andh
is a (B(Y),B(X)) measurable mapping ofX into a topological spaceY thenmh21 is the image of
m with respect to this mapping;v(m) is the total variation ofm. Besidesm ^ n is the product of
measuresm andn, n ^ n is thenth product power of the measuren.

If X andY are real Banach spaces, thenM (X) is the space of all complex-valueds-additive
measures on (X,B(X)); we assume thatM (X) is equipped with the normv(•). For m,n
PM (X) let m* n be the convolution of measuresm andn; n* n—thenth convolution power of the
measuren, n* 05d0 . For anypPX let np be the shift of the measuren with respect to the vecto
pPX: np(A)5n(A1p), APB(X).

Any measuremPM (X) is considered as anFX-distribution for a properFX ; if ^•,•&:X3Y
→R is a duality betweenX and Y then for the FourierY-transform ofm the following identity
holds: m̃(z)(5Fm)5*Xei ^z,x&m(dx). In a similar way if fPL2(Rn) then f̃(z)
5*Rnei (z,x)Rnf(x)dx ~the signs under the exponents depend on agreements!.

The paper is organized as follows. In Sec. II we formulate a theorem which is an~easy!
generalization of the Chernoff theorem; in Sec. III we apply this theorem to obtain some r
sentations of solutions for Schro¨dinger equations. We call our main formula here a Feynm
formula. What is done in Sec. IV can be described as obtaining representations of solutio
Schrödinger equations by integrals over Poisson-type complex measures on trajectories
phase space. As was already mentioned, we again use the Chernoff theorem in the proof.

II. THE CHERNOFF THEOREM

Let X be a Banach space,L(X)—the space of all bounded linear operators inX equipped, if
otherwise not mentioned, with the topology of pointwise convergence~strong operator topology!,
i•i—the operator norm onL(X), I—the identity operator inX. For any linear operatorA in X let
D(A) be the domain ofA.

The ~strong! derivative at zero of a functionF:@0,̀ )→L(X) is a linear operator
F8(0):D(F8(0))→X defined byF8(0)f5 limh→0 h21(F(h)f2F(0)f), whereD(F8(0)) is the
space of allfPX such that the limit exists.

In this paper the following theorem is called the Chernoff theorem~this theorem is an imme
diate generalization of the theorem proved in Ref. 11!.
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Theorem 1: Let X be a Banach space. Let F:@0,̀ )→L(X) be a strongly continuous mappin
such that F(0)5I , iF(t)i<exp(at) for some aPR, D be a linear subspace in D(F8(0)) and the
restriction of F8(0) to D be a closable operator whose closure we denote by C. If C is the
generator of a strongly continuous semigroupexp(tC), then F(t/n)n converges toexp(tC) as n
→` in the strong operator topology uniformly with respect to tP@0,T# for each T.0.

III. THE FEYNMAN FORMULA VIA THE CHERNOFF THEOREM

Let the caret be a mapping from a space of functions onRN3RN into the space of linear
operators inL2(RN), ˆ :H→Ĥ ~then one can say thatH is a symbol ofĤ!. We say that the
Feynman formula is valid for an operatorĤuL which is the restriction ofĤ to a domainL,D(Ĥ)

if D(e2 i (t/n) Ĥ)5L2(RN) for any nPN and tP@0,̀ ), there exists the closureĤc of the operator
ĤuL and2 iĤ c is the generator of a strongly continuous semigroup exp(2itĤc), tP@0,̀ ),

e2 i tĤ c
f5 lim

n→`

(e2 i ~ t/n! Ĥ)nf, ~1!

for all fPL2(RN) and tP@0,̀ ). Of course, ifĤc is self-adjoint,e2 i tĤ c
is a unitary group.

For a functionc:V→C and a.0 define c̄a :V→C by c̄a(v)5c(v) if uc(v)u<a and
c̄a(v)50 if uc(v)u.a.

Let H:RN3RN→C be a measurable function andtP@0,1#. We define the operatorĤ:D(Ĥ)
→L2(RN) by

~Ĥf!~q!5 lim
a→`

~2p!2NE
RN
E

RN
H̄a~~12t!q1tq8,p!eip(q2q8)f~q8!dq8 dp, ~2!

where the limit is taken inL2(RN). We assume thatD(Ĥ) is the set of allfPL2(RN) such that
(Ĥf)(•) exists. We say that the functionH(•,•) is thet-symbol of the pseudodifferential operato
Ĥ and the mapping caret is thet-quantization.

Note that the zero-quantization is theqp-quantization, the one-quantization is th
pq-quantization and the one-half-quantization is the Weyl quantization.

Lemma 2: LetmPM (RN3RN), h5m̃, F:RN→C be a bounded measurable functio,
H(q,p)5h(q,p)F(p) and the caret be thet-quantization(tP@0,1#). Then D(Ĥ)5L2(RN),

Ĥf5FE
RN3RN

F~•2~12t!y!ei (•2(12t)y)x@F 21f#~•2y!m~dy,dx!, ~3!

for all fPL2(RN) and iĤi<iFi`v(m). In particular, ĥPL(L2(RN)) and i ĥi<v(m).
Proof: Let fPL2(RN), e.0 and (Pe(H)f)(q)5(2p)2N*RN*RN exp(2eupu22euq8u2)H((1

2t)q1tq8,p)eip(q2q8)f(q8)dq8 dp. Using the Fubini theorem we get

~Pe~H !f!~q!5~2p!2NE
RN3RNS ERN

E
RN

F~p!

3e2eupu22euq8u2ei (12t)qy1 i tq8y1 ipxeip(q2q8)f~q8!dq8 dpDm~dy,dx!

5FF E
RN3RN

f e~y,x;• !m~dy,dx!G~q!, ~4!
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where f e(y,x;p)5F(p2(12t)y)xe(p2(12t)y)ei (p2(12t)y)x@F 21xef#(p2y) and xe(•)
5e2eu•u2.

The latter integral in~4! is the Bochner integral of the functionge :RN3RN→L2(RN),
ge(y,x)(•)5 f e(y,x;•) with respect to the measurem. We observe that ige(y,x)i
<iF 21iifiL2iFi` and that lime→` ge(y,x)5g(y,x) in L2(RN), where g(y,x)5F(•2(1
2t)y)ei (•2(12t)y)x@F 21f#(•2y). Applying Lebesgue’s dominated convergence theorem to
Bochner integral we see thatP(H)f5 lime→0 Pe(H)f5F*RN3RNg(y,x)m(dy,dx)PL2(RN

3RN). SinceH is a bounded function we see thatH̄a5H for sufficiently largea.0. From this it
follows that Ĥf is defined for allfPL2(RN) and Ĥf5P(H)f. Thus ~3! is valid. From~3! it
follows that iĤi<iFi`v(m). The lemma is proved.

Corollary 3: Let mPM (RN3RN), h5m̃, b:RN→C be a measurable function such th
Im b<Cb for some CbPR, B,H:RN3RN→C, B(q,p)5b(p), H(q,p)5b(p)1h(q,p), the caret

be at-quantization(tP@0,1#), f t(q,p)5exp(2itH(q,p)) and A(t)5 f̂ t . Then A(t)PL(L2(RN))
for tP@0,̀ ), A(0)5I , iA(t)i<eta for some aPR, the function A:@0,̀ )→L(L2(RN)) is strongly

continuous, A8(0)52 iB̂2 i ĥ and D(A8(0))5D(B̂).
Proof: For kPN and tP@0,̀ ) define operator Ak(t):L

2(RN)→L2(RN), Ak(t)f
5F*RN3RNe2 i tb(•2(12t)y)ei (•2(12t)y)x@F 21f#(•2y)m* k(dy,dx). Sinceie2 i tbi`<etCb we have
iAk(t)fi<etCbifiL2v(m)k. ThereforeiAk(t)i<etCbv(m)k.

Since exp(2ith)5ñ for n5d01(k51
` ((2 i t )k/k!)m* k from Lemma 2 it follows that

D(A(t))5L2(RN) and we haveA(t)f5e2 i tB̂f1(k51
` ((2 i t )k/k!)Ak(t)f for fPL2(RN).

Therefore iA(t)i<etCb1(k51
` etCbv(m)ktk/k! 5et(Cb1v(m)). It is clear that A(0)5I . Since

Ak(•):@0,̀ )→L(L2(RN)) is strongly continuous we see thatA(•) is strongly continuous.
Note that A1(0)f5 limt→0 A1(t)f5ĥf for fPL2(RN) ~see Lemma 2!. Therefore

limt→0 (k51
` (2 i t )kAk(t)f/k! t52 i ĥf1(k52

` (2 i )k limt→0 tk21Ak(t)f/k! 52 i ĥf for all f

PL2(RN). ThusA8(0)52 iB̂2 i ĥ andD(A8(0))5D(B̂). The corollary is proved.
Lemma 4: LetmPM (RN3RN), h5m̃, the caret be the qp- or pq-quantization, kPL2(RN

3RN) be a real function, H5h1k, gt(q,p)5exp(2itH(q,p)) and V(t)5ĝt , t>0. Then

(a) ĤPL(L2(RN)) and iĤi<v(m)1¸ikiL2 for some¸.0,
(b) V(t)PL(L2(RN)), V(0)5I , iV(t)i<exp(at) for some aPR, the function V:@0,̀ )

→L(L2(RN)) is strongly continuous and V8(0)52 iĤ , D(V8(0))5L2(RN).
(c) Let F0 ,G0 :RN→C be bounded measurable functions and F:RN3RN→C. Let F(q,p)

5F0(p), G(q,p)5G0(q). If the caret is the qp-quantization then FGĝ t5ĜĝtF̂. If the caret is

the pq-quantization then FGĝ t5F̂ĝtĜ.
Proof: We give the proof only in the case when the caret is theqp-quantization. For the

pq-quantization the proof is analogous. LetsPL2(RN3RN). Define operatorU(s):L2(RN)
→L2(RN), @U(s)f#(q)5*RNs(q,p)eipqf(p)dp. Note that u*RNs(q,p)eipqf(p)dpu
<(*RNus(q,p)u2dp)1/2ifiL2 for all sPL2(RN3RN) andfPL2(RN); henceU(s)PL(L2(RN))
and iU(s)i<isiL2 for all sPL2(RN3RN).

For e,a.0 let (Pe,af)(q)5(2p)2N*RN*RNe2eupu22euq8u2s̄a(q,p)eip(q2q8)f(q8)dq8 dp.
ThenPe,af5U(s̄a)CeF 21Cef, whereCe is the multiplication operator by the functione2eu•u2.
HencePaf5 lime→0 Pe,af5U(s̄a)F 21f. Since s̄a→s as a→` in L2(RN3RN) we get ŝf
5 lima→` Paf5U(s)F 21f. Thus ŝPL(L2(RN)) and iŝi<isiL2iF 21i . Since kPL2(RN

3RN) and H5h1k, in view of Lemma 2 we getĤ5ĥ1 k̂, ĤPL(L2(RN)) and iĤi<v(m)
1¸ikiL2 for some¸.0.

Let f t(q,p)5e2 i th(q,p), A(t)5 f̂ t and

wt~q,p!5~e2 i tk(q,p)211 i tk~q,p!!e2 i th(q,p), ut~q,p!52 i tk~q,p!e2 i th(q,p).

For xPR we haveuexp(2ix)211ixu5uxu«(x), where the function«(•) is bounded and«(x)→0 as
uxu→0. Therefore wtPL2(RN3RN). Hence ŵtPL(L2(RN)) and iŵti<¸iwtiL2
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<t¸ exp(tM)ik«(tk)iL25t«1(t) and«1(t)→0 ast→0, whereM5supq,puh(q,p)u. This implies that
if B(t)5ŵt thenB8(0)50. SinceutPL2(RN3RN) we haveûtPL(L2(RN)). From Corollary 3 it
follows that f̂ tPL(L2(RN)) and we see thatV(t)5A(t)1ût1ŵt . HenceV(t)PL(L2(RN)). By
Corollary 3 we getA8(0)52 i ĥ andD(A8(0))5L2(RN). Direct calculations show that ifE(t)
5ût then E8(0)52 i k̂ and D(E8(0))5L2(RN). Thus V8(0)52 i ĥ2 i k̂52 iĤ and D(V8(0))
5L2(RN). Since i ûti<bt exp(tM) and iŵti<ct exp(tM) for some b,c.0 we obtain iV(t)i
<exp(t(v(m)1b1c1M)). From the fact that for allt0P@0,̀ ) iut2ut0

iL2→0 and iwt2wt0
iL2

→0 ast→t0 it follows that i ût2ût0
i→0 andiŵt2ŵt0

i→0 ast→t0 . By virtue of Corollary 3
the mappingA:@0,̀ )→L(L2(RN)) is strongly continuous. Hence the mappingV(•) is strongly
continuous. It is clear thatV(0)5I .

To prove ~c! we note that for allsPL2(RN3RN) we haveFGsPL2(RN3RN) and FGŝ

5U(FGs)F 215ĜU(s)F 21F̂5ĜŝF̂. If s5 ñ for somenPM (RN3RN) then it follows from
~3! that Fŝ5ŝF̂. SinceF,G,s are bounded functions, from~2! it follows that FGŝ5ĜFŝ.
HenceFGŝ5ĜŝF̂. Thus FG f̂t5Ĝ f̂ tF̂. Therefore sincewt ,utPL2(RN3RN) and gt5 f t1wt

1ut we getFGĝt5ĜĝtF̂. The lemma is proved.
In the next theorem we assume that measurable functionsf 0 ,g0 :RN→C satisfy the following

conditions. We assume that Imf0<c̃ and Img0<c̃ for somec̃PR. Let f ,g:RN3RN→C, f (q,p)
5 f 0(p), g(q,p)5g0(q). Suppose that there exists the closureA of the operatorf̂ 1ĝuL defined
on a subspaceL,D( f̂ )ùD(ĝ). We assume that2 iA is the generator of a strongly continuou
semigroup. For example in the case ofR3 real functionsf 0(p)5p2, pPR3 and g0PL2(R3)
1L`(R3) satisfy the introduced condition~see Ref. 28 Chap. X,2, Theorem X.15!.

Theorem 5: Let the caret be the qp- or pq-quantization, mPM (RN3RN), h5m̃, k
PL2(RN3RN) be a real function, H(q,p)5 f 0(p)1g0(q)1h(q,p)1k(q,p). Then the Feynman

formula is valid for the operator Hˆ uL .
Proof: We give a proof only when the caret is theqp-quantization. For the case o

pq-quantization the proof is analogous. It is sufficient to apply the Chernoff theorem to
function F(t)5e2 i tĤ choosingD5L(,D( f̂ )ùD(ĝ)). According to Lemma 4~c! we getF(t)

5e2 i t ĝe2 i t (h1k)̂e2 i t f̂ 5e2 i t ĝe2 i t (h1k)̂e2 i t f̂ . In view of Lemma 4~b! the restrictionF8(0)uD of the
strong derivativeF8(0) to D(5L) coincides with 2 i ( f̂ 1ĝ1ĥ1 k̂) on D. Hence F8(0)uD
5ĤuL . By Lemma 4~a! we haveĥ1 k̂PL(L2(RN)). Therefore the closureĤc of ĤuL exists and
is equal to2 i (A1ĥ1 k̂) with D(Ĥc)5D(A). From the theorem on perturbations of generators
semigroups~Ref. 26, Chap. VIII,1, Theorem 19! it follows that2 iĤ c is the generator of a strongl
continuous semigroup exp(2itĤc). Using Lemma 4 one can verify the other conditions of The
rem 1. The theorem is proved.

Direct application of Theorem 1 and Corollary 3 gives a proof of Theorem 6.
Theorem 6: Let the caret be at-quantization(tP@0,1#), f :RN→C be a measurable function

such that Im f<Cf for some CfPR, h5m̃, where mPM (RN3RN), and H(q,p)5 f (p)
1h(q,p). Then the Feynman formula is valid for Hˆ defined on D(Ĥ).

We expect that a similar approach can be used to extend Theorems 5 and 6 to a more
situation. In order to do that it is of course necessary to generalize properly the Chernoff the

The Feynman formula~1! gives a representation of solutions of the Schro¨dinger equation
idf/dt5Ĥf. One can prove statements similar to Theorems 5 and 6 for the ‘‘heat equa
df/dt5Ĥf if one substitutes hypotheses of Theorem 5 by some additional proper conditio
particular: the operatorsf̂ , ĝ and the closureC of the operator (f̂ 1ĝ)uL defined on a subspac
L,D( f̂ )ùD(ĝ) are the generators of strongly continuous semigroups.

IV. THE SERIES REPRESENTATIONS OF SOLUTIONS

Let Dm(t)5$(t1 ,...,tm)u0<tm<¯<t1<t% for t>0 and Dm
0 (t)5$(t1 ,...,tm)u0,tm,...

,t1,t%. Let lm be the Lebesgue measure onRm, lm,n
t be the measure onDm(t) concentrated on
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the set of elementsyPDm(t) such that yjPTn , Tn5$ ( l t /n) u l 51,...,n% and lm,n
t ($y%)

5(t/n)m/k1!¯kn!, where 0!51 andkl is the number of components ofy equal to l t /n,1< l
<n.

Lemma 7:lm(Dm(t))5v(lm,n
t )5tm/m!. If f :Dm(t)→R is a bounded function such that th

restriction of f to Dm
0 (t) is continuous then*Dm(t) f dlm,n

t →*Dm(t) f dlm as n→`.
Proof: Fix t.0, mPN and for y5(y1 , . . . ,ym)P(Tn)mùDm(t), nPN we define the set

Cn,y5$xPRmuyj21/n<xj<yj , j 51, . . . ,m%ùDm(t). The direct calculation shows tha
lm(Cn,y)5lm,n

t ($y%), yP(Tn)mùDm(t). Thus we getv(lm,n
t )5lm(Dm(t)). Direct calculations

show thatlm(Dm(t))5tm/m!.
Let Rn( f )5( f (y)lm(Cn,y), where the sum is taken over allyP(Tn)mùDm(t). ThenRn( f )

is a Riemannian sum for the integral*RmF dlm , whereF(x)5 f (x) for xPDm(t) andF(x)50
for x¹Dm(t). Since the set of points where the functionF is discontinuous belongs to th
boundary ]Dm(t) of Dm(t) and lm(]Dm(t))50 we get limn→` Rn( f )5*RmF dlm

5*Dm(t) f dlm . The lemma is proved.
Actually the following theorem is an improvement of the Smolyanov–Shavgul

formula.17,25

Theorem 8: Let the caret denote the qp-quantization, P5Q5RN, a:P→C be a measurable
function such thatIm a<Ca for some CaPR, h:Q3P→C be the Fourier transform of a measur
nPM (P3Q). For tP@0,̀ ), m50,1,... define functions Ut

m :RN3RN→C, Ut
0(q,p)5e2 i ta(p)

and

Ut
m~q,p!5~2 i !mE

0

t

dt1E
0

t1
dt2 ...E

0

tm21
dtm

3E
(P3Q)m

expS i K q,(
l 51

m

pl L 2 iaS p1(
l 51

m

pl D (t2t1)

2 i (
k52

m

aS p1(
l 5k

m

pl D (tk212tk)2 ia(p)tmD
3expS i (

k51

m21 K qk ,p1 (
l 5k11

m

pl L 1 i ^qm ,p& D n~dp1 ,dq1!...n~dpm ,dqm!. ~5!

Then(m50
` uUt

m(q,p)u,` and if Ut(q,p)5(m50
` Ut

m(q,p) then ÛtPL(L2(Q)) and t°Ût is

a strongly continuous semigroup in L2(Q) with the generator2 iĤ , where H(q,p)5a(p)
1h(q,p). Moreover Ût

mPL(L2(Q)) and Ût5(m50
` Ût

m , where the sum converges in the un
form operator topology inL(L2(Q)).

Proof: Let A(q,p)5a(p). Note thatÂ is the generator of the strongly continuous semigro
B(t)5 f̂ t , f t5exp(2itA). Sincegt5exp(2ith)5¸̃t for ¸ t5d01(k51

` ((2 i t )k/k!)n* k, by Lemma
2 we get ĝt5(k50

` ((2 i t )k/k!)hk̂. From this it follows that the functionF(t)5ĝt exp(2itÂ)
satisfies the conditions of Theorem 1. In particularF8(0)52 i (Â1ĥ)52 iĤ and D5D(Â).
Since by Lemma 2ĥPL(L2(RN)), from the theorem on perturbation of generators of stron
continuous semigroups~see Ref. 26, Chap. VIII, 1, Theorem 19!, it follows that 2 iĤ 52 i (Â
1ĥ) is the generator of a semigroupVt5exp(2itĤ). Thus by Theorem 1 we get

e2 i tĤf5 lim
n→`

~e2 i ~ t/n! ĥe2 i ~ t/n! Â!nf

for all fPL2(Q).
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Define the measuresnnPM (P3Q), nn5d01(k51
` ((2 i t )k/k!nk)n* k, nPN. Then exp

(2ith/n)5ñn . DenoteVn,t5(e2 i (t/n) ĥe2 i (t/n) Â)n. Using Lemma 2~with t50 and F[1! and
direct calculations we get

Vn,tf5FE
(P3Q)n

exp~ i (k51
n ^qk ,•2(m51

k pm&!expS 2 i
t

n (
k51

n

a(•2(m51
k pm) D

3@F 21f#~•2p12¯2pn!nn~dp1 ,dq1!¯nn~dpn ,dqn!.

Let (t1 ,...,t r ,(p1 ,q1),...,(pr ,qr))PDr(t)3(P3Q) r . Let r̄ be the number of different ele
ments in the set$t1 ,...,t r% and j 050, 1< j 1,¯, j r̄5r be such thattm5t j k

for j k21,m< j k

(m51,...,r ) and t j k
Þt j l

for kÞ l . For 1<k< r̄ we put q̄k5( j k21,m< j k
qm and p̄k5( j k21,m< j k

pm .
Let A05F @e2 i ta(•)F 21f#. Direct calculations show that

Vn,tf5A01(
r 51

`

~2 i !rFE
Dr (t)

E
(P3Q)r

exp~ i (k51
r̄ ^q̄k ,•2(m51

k p̄m&!3exp~2 ia(•)(t2t1)

2 i (k52
r a(•2(m51

k21 pm)(tk212tk)2 ia(•2(m51
r pm)t r !@F 21f#~•2p12 . . . 2pr !dl r ,n

t

^ n ^ r5A01(
r 51

`

~2 i !rFE
Dr (t)

E
(P3Q)r

z r ,fdl r ,n
t

^ n ^ r , ~6!

where z r ,f :Dr(t)3(P3Q) r→L2(RN), z r ,f(t1 , . . . ,t r ,(p1 ,q1), . . . ,(pr ,qr))5exp(i(k51
r̄ ^q̄k ,•

2(m51
k p̄m&2 ia(•) (t2 t1)2 i(k52

r a (•2(m51
k21 pm) (tk212tk) 2ia(•2(m51

r pm) tr) @F 21f # (•2 p1

2 . . . 2pr). Note thatiz r ,fi`<etCaifiL2iF 21i .
For fPL2(Q) let Ar ,nf5(2 i ) rF*Dr (t)

* (P3Q)rz r ,fdl r ,n
t

^ n ^ r and Arf5

(2 i ) rF*Dr (t)
* (P3Q)rz r ,fdl r ^ n ^ r , r PN. Let h r ,n((p1 ,q1), . . . ,(pr ,qr))5*Dr (t)

z r ,f(t1 , . . . ,

t r ,(p1 ,q1), . . . ,(pr ,qr))dl r ,n
t and h r((p1 ,q1), . . . ,(pr ,qr))5*Dr (t)

z r ,f(t1 , . . . ,t r ,(p1 ,q1),
. . . ,(pr ,qr))dl r .

Since for all fixedq1 , . . . ,qr ,p1 , . . . ,pr the functionz r ,f is bounded on the setDr(t) and
continuous on the setDr

0(t) from Lemma 7 it follows that limn→` h r ,n((p1 ,q1), . . . ,(pr ,qr))
5 limn→` *Dr (t)

z r ,f(t1 , . . . ,t r ,(p1 ,q1), . . . ,(pr ,qr))dl r ,n
t 5*Dr (t)

z r ,f(t1 , . . . ,t r ,(p1 ,q1),
. . . ,(pr ,qr))dl r5h r((p1 ,q1), . . . ,(pr ,qr)).

Using Lemma 7 we get ih r ,ni`<iz r ,fi`v(l r ,n
t )<etCatr ifiL2iF 21i /r ! and ih r i`

<iz r ,fi`l r(Dr(t))5etCatr ifiL2iF 21i /r !. Thus by the Lebesgue theorem on the domina
convergence we get limn→` Ar ,nf5 limn→`(2 i ) rF* (P3Q)rh r ,n((p1 ,q1), . . . ,(pr ,qr))dn ^ r

5(2 i ) rF* (P3Q)rh r((p1 ,q1), . . . ,(pr ,qr))dn ^ r5Arf.
Note that iAr ,nfiL2<ih r ,ni`unur iFi<etCaifiL2unur t r /r ! and iArfiL2<ih r ,ni`unur iFi

<etCaunur ifiL2t r /r !. From this it follows that Ar ,n , ArPL(L2(Q)) and that Vtf
5 limn→` Vn,tf5 limn→`(A0f1( r 51

` Ar ,nf)5A0f1( r 51
` limn→`Ar ,nf5( r 50

` Arf.
Let fPL2(Q), e.0 and f̄e5xeF 21xef, wherexe is the multiplication operator by the

function e2eu•u2. For r PN let (Ût,e
r f)(q)5(2p)2N*RN*RNUt

r(q,p)eip(q2q8)e2eupu22euq8u2

3f(q8)dq8dp. Then (Ût,e
r f)(q)5*RNUt

r(q,p)ei ^p,q&f̄e(p)dp and by Fubini’s theorem we get

~Ût,e
r f!~q!5~2 i !rE

RN
dpE

0

t

dt1E
0

t1
dt2¯E

0

tr 21
dt rE

(P3Q)r
exp~ i ^q,( l 51

r pl&

2 ia(p1( l 51
r pl)(t2t1)2 i (k52

r a(p1( l 5k
r pl)(tk212tk)2 ia(p)t r !

3exp~ i (k51
r 21^qk ,p1( l 5k11

r pl&1 i ^qr ,p&!ei ^p,q&f̄e~p!n~dp1 ,dq1!¯n~dpr ,dqr !.
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Changing the variablep→p2p12¯2pr we get

~Ût,e
r f!~q!5~2 i !rE

RN
dpE

0

t

dt1E
0

t1
dt2¯E

0

tr 21
dt rE

(P3Q)r
exp~ i (k51

r ^qk ,p2(m51
k pm&!

3exp~2 ia(p)(t2t1)2 i (k52
r a(p2(m51

k21 pm)(tk212tk)

2 ia(p2(m51
r pm)t r !e

i ^p,q&3f̄e~p2p12 . . . 2pr !n~dp1 ,dq1! ¯ n~dpr ,dqr !

5ArFf̄e~q!.

Therefore we get the Bochner integral

Ût,e
r f5~2 i !rFE

0

t

dt1E
0

t1
dt2¯E

0

tr 21
dt rE

(P3Q)r
exp~ i (k51

r ^qk ,•2(m51
k pm&!

3exp~2 ia(•)(t2t1)2 i (k52
r a(•2(m51

k21 pm)(tk212tk)2 ia(•2(m51
r pm)t r !

3f̄e~•2p12¯2pr !n~dp1 ,dq1!¯n~dpr ,dqr !

5ArFf̄e .

Since lime→0 f̄e5F 21f by the Lebesgue theorem on dominated convergence we obtain
lime→0Ût,e

r f5Arf. Therefore from the fact thatUt
r(•,•) is a bounded function we getÛt

rf

5Arf. From this it follows thatÛt
rPL(L2(RN)), iÛt

r i5iAr i<etCaunur t r /r ! and the series
( r 50

` Ût
r converges in the uniform operator topology. SinceÛt

05A0 we see thatVt5( r 50
` Ût

r .
Note that uUt

r(q,p)u<etCaunurl r(Dr(t))5etCaunur t r /r !. From this it follows that
(m50

` uUt
m(q,p)u,` and uUt(q,p)u<etCa1unut. For e.0 let (Ût,ef)(q)

5(2p)2N*RNUt(q,p)exp(2eupu22euq8u2)eip(q2q8)f(q8)dq8dp. Then (Ût,ef)(•)5F@e2 i ta(•)f̄e

(•)#1( r 51
` (Ût,e

r f)(•). Since Ût,e
r f5ArFf̄e we get iÛt,e

r fiL2<ifiL2unuretCatr /r !. Therefore
lime→0 Ût,ef5 lime→0(F@e2 i ta(•)f̄e(•)#1( r 51

` Ût,e
r f)5Ût

0f1( r 51
` lime→0 Ût,e

r f5Ût
0f

1( r 51
` Ût

rf in L2(Q). SinceUt(•,•) is bounded we obtainÛtf5Ût
0f1( r 51

` Ût
rf. From this it

follows that ÛtPL(L2(Q)) and Ût5Vt .
The theorem is proved.
Let us notice that if the conditions of Theorem 8 are valid then from the representation

symbol Ut(q,p) of the propagator for the Schro¨dinger equationidu/dt5Ĥu, where H(q,p)
5a(p)1h(q,p), one can get the following identity for representation of a solution for
equation:

u~ t,z!5E u0~q~0!1z!expS 2 i E
0

t

a(p(t))dt2 i E
0

t

h(q(t)1z,p(t))dt DFa2~dq,dp!,

where the symbol on the right-hand side denotes the functional integral~corresponding to the
quadratic forma2! defined with the help of the Parseval equality~see Ref. 3, Chap. 3, Sec. 2!.
Therefore as a corollary of Theorem 8 we again get a theorem on the representation of so
for the Schro¨dinger equation by the Feynman path integral over trajectories in the phase sp

It is also worth noticing that similar considerations can be also applied topq, Weyl and other
types of symbols. We plan to do this in the next paper.
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Multipole expansion of a plane wave
G. F. Torres del Castilloa)

Departamento de Fı´sica Matema´tica, Instituto de Ciencias de la Universidad Auto´noma
de Puebla, Apartado Postal 1152, 72001 Puebla, Puebla, Me´xico

F. J. Hernández-Moreno
Facultad de Ciencias Fı´sico Matema´ticas, Universidad Auto´noma de Puebla,
Apartado Postal 1152, 72001 Puebla, Puebla, Me´xico

~Received 25 March 2002; accepted for publication 22 April 2002!

The spherical components of the multipole expansion of a plane wave with arbi-
trary spin are obtained in terms of spin-weighted spherical harmonics. It is shown
that the expansion coefficients are essentially spin-weighted spherical harmonics
evaluated at the direction of propagation of the wave. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1500425#

I. INTRODUCTION

In the standard treatment of the multipole expansion of nonscalar fields a huge vari
vector, tensor, or spinor fields is employed~see, e.g., Refs. 1–3! with widely variable notations
and conventions. A uniform formalism applicable to fields of any spin is based on the u
two-component spinors and spin-weighted spherical harmonics.4–7 The fact that, in a three-
dimensional space, the spinor indices take two values only~as in the case of the two-compone
spinors employed in general relativity! leads to many simplifications in the algebraic manipu
tions.

The spin-weighted spherical harmonics appear in the solution by separation of variab
spherical coordinates of linear partial differential equations for nonscalar fields, when the
tions are written in terms of quantities with a well-defined spin weight~see, e.g., Refs. 5 and 7!.
Each spin-weighted spherical harmonic,sYjm , is an eigenfunction of the square of the to
angular momentum,J2, and of thez component of the total angular momentum,Jz . As shown in
the following, the expansion of a plane wave of any spin in terms of spin-weighted sph
harmonics can be easily obtained and the coefficients of the expansion are essentiall
weighted spherical harmonics evaluated in the direction of propagation of the wave.

In Sec. II some basic notions about the two-component spinor formalism are summarize
some useful expressions for the spin-weighted spherical harmonics are given which are em
in Sec. III to find the expression of a plane wave in terms of spin-weighted spherical harm

II. SPINORS AND SPIN-WEIGHTED SPHERICAL HARMONICS

The components of a field with arbitrary spin in Euclidean three-dimensional space c
expressed in a unified way using two-component spinors, which are well known from the
ment of electron’s spin in nonrelativistic quantum mechanics. The two-component spinor fo
ism in three-dimensional space is relatively simple because, among other things, a single n
one-index spinor gives rise to bases for tensors or spinors of any rank. IfcA (A,B,...51,2) are the
components of a spinor field and the mate ofcA, denoted byĉA, is defined by

ĉA5cA

or

a!Electronic mail: gtorres@fismat1.fcfm.buap.mx
51720022-2488/2002/43(10)/5172/7/$19.00 © 2002 American Institute of Physics

                                                                                                                



raised

5173J. Math. Phys., Vol. 43, No. 10, October 2002 Multipole expansion of a plane wave

                    
ĉA52cA, ~1!

where the bar denotes complex conjugation, then at each point wherecA does not vanish,$cA,ĉA%
is linearly independent and, hence, a basis for the one-index spinors. The spinor indices are
or lowered following the rules

cA5«ABcB, cA52«ABcB , ~2!

where

~«AB!5S 0 1

21 0D 5~«AB!. ~3!

Therefore,cAfA52cAfA andcAcA50.
A symmetric two-index spinor,vAB5vBA , corresponds to a~possibly complex! vector v i

( i , j ,...51,2,3) with Cartesian components

v i52
1

&
s i

ABvAB , ~4!

where the connection symbolss iAB satisfy

s iAB5s iBA ~5!

and

s iABs j
AB522d i j . ~6!

The connection symbols can be chosen as

~s1AB!5S 1 0

0 21D , ~s2AB!5S i 0

0 i D , ~s3AB!5S 0 21

21 0 D , ~7!

which satisfy the condition

s iAB52s i
AB. ~8!

Thus, a symmetric two-index spinorvAB corresponds to a real vector if and only ifvAB

52vAB. @The matrices~7! are the products of («AB) by the usual Pauli matrices.#
Making use of the relation

s i
ABs iCD52~«AC«BD1«AD«BC!, ~9!

which follows from Eq.~6!, one finds that Eq.~4! is equivalent to

vAB5
1

&
s i

ABv i . ~10!

~The tensor indices are raised or lowered by means ofd i j and d i j .! More generally, the spinor
equivalent of a tensort i j ¯k is defined by

tABCD¯EF5
1

&
s i

AB

1

&
s j

CD¯
1

&
sk

EFt i j ¯k . ~11!
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ThentABCD¯EF is totally symmetric if and only ift i j ¯k is symmetric and trace free. A spin-S field
(S51/2,1,3/2,...) corresponds to a 2S-index totally symmetric spinor field~or, as in the case o
the Dirac equation, to several 2S-index totally symmetric spinor fields!.

Starting from a one-index spinor fieldcA one can construct the real vector field

Ri52s iABcAĉB ~12!

and the complex vector field

Mi5s iABcAcB, ~13!

which, according to Eq.~9!, satisfy

RiR
i52~«AC«BD1«AD«BC!cAĉBcCĉD5~cAĉA!2,

MiM
i5~«AC«BD1«AD«BC!ĉAĉBcCcD52~cAĉA!2,

and, similarly,RiM
i50, MiM

i50; hence,Ri , ReMi , Im Mi are orthogonal to each other an
have the magnitudecAĉA . ~Note that for any one-index spinorfA, fAf̂A5uf1u21uf2u2, which
is always real and non-negative.!

In what follows we will make use of the spinor fieldoA, with components

S o1

o2D5S e2 iw/2 cos~u/2!

eiw/2 sin~u/2! D , ~14!

whereu andw are the usual polar and azimuth angles associated with the spherical coord
The spinor fieldoA satisfiesoAôA51 and the three mutually orthogonal vectors defined byoA

form the orthonormal basis,$er ,eu ,ew%, induced by the spherical coordinatesr ,u,w, i.e.,

~er ! j52s jABoAôB, ~eu1 iew! j5s jABoAoB. ~15!

In terms ofoA and ôA the spherical harmonics are given by

~16!

where the parentheses denote symmetrization on the indices enclosed. Since the numberoA’s
and of ôA’s appearing in~16! coincide, the spherical harmonics~16! are invariant under the
transformation

oA°eia/2oA ~17!

~which implies thatôA°e2 ia/2ôA). A quantity h has spin weights if under the transformation
~17! transforms according toh°eisah.4 Thus, the ordinary spherical harmonics have s
weight 0.

The spherical components of a totally symmetric 2S-index spinor field,fAB¯D , are obtained
by contracting all its indices withoA’s and ôA’s. For s52S,2S11,...,S, the spherical compo-
nent offAB¯D ,

~18!

has spin weights. For instance, the three spherical components of a spin-1 field~which is just a
possibly complex vector field! are @see Eqs.~10! and ~15!#
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1f5fABoAoB5
1

&
f"~eu1 iew!,

0f5fABoAôB52
1

&
f"er , ~19!

21f5fABôAôB52
1

&
f"~eu2 iew!,

where f is the vector field with Cartesian componentsf i52(1/&)s iABfAB @see Eq.~4!#.
Hence, f5221f (1/&)(eu1 iew)11f (1/&)(eu2 iew)20f&er . Similarly, any one-index
spinor field,fA, can be expressed asfA5(fBoB)ôA2(fBôB)oA51/2f ôA221/2f oA.

The spin-weighted spherical harmonics,4–6
sYjm , can also be expressed in terms ofo and ô

as7

~20!

with j 50,1/2,1,..., m52 j ,2 j 11,...,j , s52 j ,2 j 11,...,j . Thus,Yjm50Yjm andsYjm has spin
weight s. The spin-weighted spherical harmonics are related to the WignerD functions by5,7

Dm8m
l

~w,u,x!5~21!2mA 4p

2l 11 2mYlm8~u,w!eimx, ~21!

wherew,u,x are Euler angles; therefore, from8,9

Dms
j ~w,u,x!Dm8s8

j 8 ~w,u,x!5 (
J,M ,S

^ j j 8;mm8u j j 8;JM& ^ j j 8;ss8u j j 8;JS& DMS
J ~w,u,x!,

where thê j j 8;mm8u j j 8;JM& denote the Clebsch–Gordan coefficients, it follows that

sYjm~u,w! s8Yj 8m8~u,w!5 (
J,M ,S

~21! j 1 j 82JA~2 j 11!~2 j 811!

4p~2J11!
^ j j 8;mm8u j j 8;JM&

3^ j j 8;ss8u j j 8;JS& SYJM~u,w!. ~22!

III. PLANE WAVES

The totally symmetric 2S-index spinor field

fAB¯D5xAB¯Dei (k"r2vt), ~23!

wherexAB¯D is a constanttotally symmetric spinor, corresponds to a spin-S plane wave propa-
gating in the direction of the wave vectork. The Cartesian components ofk can be written in
terms of the constant one-index spinor

S k1

k2D 5S e2 iw8/2 cos~u8/2!

eiw8/2 sin~u8/2!
D , ~24!

whereu8 and w8 are the polar and azimuth angles of the wave vectork @cf. Eq. ~14!#, which
satisfieskAk̂A51, according to
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ki52uku s iABkAk̂B ~25!

@cf. Eq. ~12!#. Then the spinorxAB¯D can be expressed as a linear combination~with constant
coefficients! of the 2S11 symmetrized productskAkB¯kD , k̂ (AkB¯kD) , k̂ (Ak̂B¯kD) , ...,
k̂Ak̂B¯k̂D ; therefore, it suffices to consider plane waves of the form

~26!

The parameters8 corresponds to the helicity3 of the wave.
The allowed values ofs8 depend on the equations satisfied by the field under considera

For instance, the equations for a massless free field are

& ]R
(AfB¯D)R56

1

c

]

]t
fAB¯D , ~27!

and

]ABfAB¯D50, ~28!

where]AB5(1/&)s i
AB(]/]xi), fAB¯D is a 2S-index totally symmetric spinor and the sign o

the right-hand side of Eq.~27! depends on the helicity of the field. Substituting Eq.~23! into Eqs.
~27! and ~28!, assumingv.0, one finds thatxAB¯D must be equal tokAkB¯kD or to
k̂Ak̂B¯k̂D , according to whether the sign on the right-hand side of Eq.~27! is plus or minus,
respectively. Thus,s8 only takes the valuesS and2S. In the case of the Weyl equation for th
~massless! neutrino the only possible value ofs8 is 21/2.

According to Eq.~18!, the spherical~or spin-weighted! components of the plane wave~26! are

~29!

Making use of Eq.~20! one finds that

~30!

From this last relation, takingkA5oA, one obtains the formula

(
m52S

S

sYSm~u,w! s8YSm~u,w!5
2S11

4p
dss8 ,

which also follows from Eq.~21! using the fact that the Wigner functions are the matrix eleme
of a representation of the rotation group.7

Using now Eqs.~22! and ~30!, the expansion

eik"r54p(
l 50

`

(
m52 l

l

i l j l~kr !Ylm~u,w! Ylm~u8,w8!, ~31!
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and the properties of the Clebsch–Gordan coefficients we find that the componentsf, defined by
Eq. ~29!, has the expansion

sf5~21!S1s84pF ~S1s!! ~S2s!!

~2S!!

~S1s8!! ~S2s8!!

~2S!! G1/2

(
J,M

2s8YJM~u8,w8!

3F (
l 5uJ2Su

J1S
2l 11

2J11
^ lS;Jsu lS;0s& ^ lS;0,2s8u lS;J,2s8& i l j l~kr !G sYJM~u,w!e2 ivt,

~32!

which expresses each spherical component of the helicity-s8 plane wave~26! as a superposition o
eigenfunctions of the square of the total angular momentum and of thez component of the tota
angular momentum.

For example, according to Eq.~32!, the multipole expansion of the Weyl neutrino fieldfA

5k̂Aei (k"r2vt), is given by

S 1/2f

2 1/2f
D52p(

J,M
1/2YJM~u8,w8!i J21/2S ~ j J21/2~kr !1 i j J1 1/2~kr !!1/2YJM~u,w!

~ j J2 1/2~kr !2 i j J1 1/2~kr !!21/2YJM~u,w! De2 ivt.

~33!

Similarly, for the spin-3/2 fieldfABC5k̂Ak̂Bk̂Cei (k"r2vt) one readily obtains

S 3/2f

1/2f

2 1/2f

2 3/2f
D 5

p

2 (
J,M

3/2YJM~u8,w8!i J23/2S f J
1~kr !3/2YJM~u,w!

gJ
1~kr !1/2YJM~u,w!

gJ
2~kr !2 1/2YJM~u,w!

f J
2~kr !23/2YJM~u,w!

D e2 ivt, ~34!

where

f J
6~x![

1

J~J11! F ~J11!S J1
3

2D j J2 3/2~x!63iJS J1
3

2D j J2 1/2~x!23S J2
1

2D ~J11! j J11/2~x!

7 iJS J2
1

2D j J1 3/2~x!G ,
gJ

6~x![
A~J2 1

2!~J1 3
2!

J~J11!
@~J11! j J23/2~x!6 iJ j J2 1/2~x!1~J11! j J1 1/2~x!7 iJ j J13/2~x!#.

It may be remarked that the fields

S 3/2f

1/2f

2 1/2f

2 3/2f
D 5S f J

1~kr !3/2YJM~u,w!

gJ
1~kr !1/2YJM~u,w!

gJ
2~kr !21/2YJM~u,w!

f J
2~kr !23/2YJM~u,w!

D e2 ivt,

appearing in Eq.~34!, are separable solutions in spherical coordinates of Eqs.~27! and~28! with
S53/2, s8523/2, and Eq.~34! is the relation between two different bases of the solutions
these equations, with3/2YJM(u8,w8) being essentially the matrix elements of this relation. Sim
larly, Eqs.~31!–~33! correspond to changes of bases and, in all cases, the matrix elements o
~unitary! transformations are proportional to2s8YJM(u8,w8).
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Remarks on the connection between the additive
separation of the Hamilton–Jacobi equation and the
multiplicative separation of the Schro ¨ dinger equation.
I. The completeness and Robertson conditions

S. Benenti,a) C. Chanu, and G. Rastelli
Department of Mathematics, University of Turin, 10123 Torino, Italy

~Received 1 March 2002; accepted 27 June 2002!

The fundamental elements of the variable separation theory are revisited, including
the Eisenhart and Robertson theorems, Kalnins–Miller theory, and the intrinsic
characterization of the separation of the Hamilton–Jacobi equation, in a unitary and
geometrical perspective. The general notion of complete integrability of first-order
normal systems of PDEs leads in a natural way to completeness conditions for
separated solutions of the Schro¨dinger equation and to the Robertson condition.
Two general types of multiplicative separation for the Schro¨dinger equation are
defined and analyzed: they are called ‘‘free’’ and ‘‘reduced’’ separation, respec-
tively. In the free separation the coordinates are necessarily orthogonal, while the
reduced separation may occur in nonorthogonal coordinates, but only in the pres-
ence of symmetries~Killing vectors!. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1506180#

I. INTRODUCTION

With a smooth real functionV ~potential energy! on a Riemannian manifold (Qn ,g) ~configu-
ration manifold! we associate two differential equations, the time-independent Hamilton–J
equation

1
2¹W•¹W1V5E, ~1.1!

and the corresponding steady-state Schro¨dinger equation

2
\2

2
Dc1~V2E!c50. ~1.2!

In these equations,E is a constant parameter~the energy constant!, ¹ is the gradient operator

~¹W! i5gi j ] jW,

andD is the Laplace–Beltrami operator

Dc5gi j ¹i¹jc,

where¹i is the covariant derivative with respect to the Levi-Civita connection. Besides the
known physical connection between these two equations~we consider here the time-independe
case only!, there is an interesting mathematical connection due to the phenomenon of thesepa-
ration of variables.

It is well known that, in many interesting cases, these equations admitlocal separated solu-
tions of the form

a!Electronic mail: benenti@dm.unito.it
51830022-2488/2002/43(11)/5183/40/$19.00 © 2002 American Institute of Physics
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W~qI ,cI !5(
i 51

n

Wi~qi ,cI ! ~1.3!

for the Hamilton–Jacobi equation, and of the form

c~qI ,cI !5)
i 51

n

c i~qi ,cI !, ~1.4!

or

c~qI ,cI !5eR~qI !)
i 51

n

c i~qi ,cI !, ~1.5!

for the Schro¨dinger equation, whereqI 5(qi) is a suitable coordinate system onQ, andcI denotes
a set of constant parameters, whose number depends on an appropriate definition ofseparation.
Note that in~1.5! the functionR(qI ) does not depend on the constant parameters: this kin
separation is calledR-separation.

It happens that for solutions of this kind, Eqs.~1.1! and~1.2! become equivalent to a syste
of ordinary differentialseparated equations, each one involving a single coordinate. The intere
ing fact is that, in most cases, the separation of variables occurs simultaneously for both eq
and in the same coordinate system. Although this fact is easy to illustrate for basic imp
examples, its general description and motivation is rather difficult and subtle to understand.
consider, for instance, the particular case of the orthogonal separation, wheregi j 50 for iÞ j . For
this kind of separation we usually refer to three classical theorems of Sta¨ckel, Robertson, and
Eisenhart.1–3

Theorem 1.1: ~Stäckel, 1893! The Hamilton–Jacobi equation is separable in orthogon
coordinates qI if and only if the diagonal components gii of the metric tensor and the potential V
have the form

gii 5w~n!
i , V5f ig

ii 5f iw~n!
i , ~1.6!

where w (n)
i is the last row of the inverse@w ( j )

i # of an n3n Stäckel matrix @w i
( j )# and f i are

functions of the coordinate corresponding to the index only.
A Stäckel matrixis a regularn3n matrix whose componentsw i

( j )(qi) are functions depending
on the coordinate corresponding to the lower index only. A functionV of the kind ~1.6! is then
called aStäckel multiplier.

Theorem 1.2: ~Robertson, 1927! The Schro¨dinger equation is separable in orthogonal coo
dinates qI if and only if in these coordinates the Hamilton–Jacobi equation is separable (i.e., th
Stäckel requirements are satisfied) and moreover, the following condition is satisfied

A) i 51
n gii det~w i

~ j !!5) i 51
n f i~qi !, ~1.7!

where fi(q
i) are functions of the corresponding coordinate only.

This additional requirement is called theRobertson condition. It has a meaningful geometrica
interpretation:

Theorem 1.3: ~Eisenhart, 1934! The Robertson condition is satisfied if and only if the Ri
tensor is diagonal:

Ri j 50, iÞ j .

However, while it can be easily seen that requirements~1.6! and ~1.7! are sufficient for
reducing the Schro¨dinger equation to separated equations, the proof given by Robertson~and
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accepted by Eisenhart! that they are also necessary for the separation is not satisfactory. T
due to the fact that for the separability of the Schro¨dinger equation these authors assumed~appar-
ently! the existence of a single solution of the kind

c~qI !5) i 51
n c i~qi !,

without any reference to the presence and to the role of constant~real or complex! parameters@as
is done in analytical mechanics for a complete solution of the Hamilton–Jacobi~HJ! equation#.
Indeed, as we shall see in the following, the existence of a single separated solution
Schrödinger equation does not imply the separation of the HJ equation for the same reason t
existence of a single solution of a first-order differential system does not imply, in genera
complete integrability. In other words, while for the HJ equation one looks for a separated so
~1.3! containingn constant parameterscI 5(ci) satisfying thecompleteness condition

detF ]2W

]qi]cj
G5detF]pi

]cj
GÞ0, pi5Wi8 , ~1.8!

a similar requirement for a separated solution~1.4! of the Schro¨dinger equation does not appe
explicitly either in the celebrated works cited previously or in many other standard refe
books.4,5 In fact, also for the Schro¨dinger equation we are not interested in a single separ
solution, but in a parametrized family of local solutions, in order to build up a global one s
fying suitable boundary or normalization conditions. In conclusion: the statements of Robe
and Eisenhart~Theorems 1.2 and 1.3! are meaningless without a proper definition ofseparationof
the Schro¨dinger equation.

A first ‘‘precise’’ definition of separation has been proposed by Koornwinder6 within a rather
general context, and strongly related to the basic properties of the Sta¨ckel matrices. However, the
systematic use of these matrices hides many interesting intrinsic features of the separatio
nected, for instance, with the existence of Killing tensors and of second-order symmetries
Schrödinger equation. Other definitions of separation have been introduced by Olevsky7 and more
recently by Zhdanov and Zhalij8 ~both for the casen53).

A crucial contribution to this matter is due to Kalnins and Miller.9,10 Their approach is base
on a definition ofregular additive separation of a generalized Hamilton–Jacobi equation of
order, which is equivalent to the complete integrability of a suitable first-order differential sys
In such a way they give an extension of the classical Levi-Civita separability conditions.11 As a
second step, they relate the definition of multiplicative separation of the Schro¨dinger equation to
the additive separation of a suitable second-order Hamilton–Jacobi equation. A similar ap
has been followed earlier by Agostinelli.12 Kalnins and Miller begin their analysis of the separ
tion of the Schro¨dinger equation by assuming that the coordinates are orthogonal, while in
stinelli’s paper~as well as in that of Koornwinder! it is shown that for the regular separation of th
Schrödinger equation~in the sense of Kalnins and Miller! the coordinates are in fact necessar
orthogonal. Furthermore, Agostinelli shows that the nonorthogonal separation occurs when
of the separated factorsc i in ~1.4! are of a special kind and the corresponding coordinates
ignorable. However, Agostinelli’s approach is heavily coordinate dependent and somehow
isfactory, since at that time the geometrical theory of the variable separation of the Ham
Jacobi equation was not yet developed.

These remarks show that a revisitation and a resetting of all this matter is needed, fro
very beginning, in light of the recent developments of the separability theory. The crucial que
for a correct definition of separation for the Schro¨dinger equation is, as we said previously, ho
many constant parameters should enter a multiplicative separated solution and which con
should they satisfy; in other words, as well as for the Hamilton–Jacobi equation, we n
completeness conditionfor a solution of the Schro¨dinger equation.

In the present paper it is shown that a completeness condition follows necessarily an
‘‘natural’’ way ~i.e., without any consideration concerning the particular kind of equation we
                                                                                                                



of
usly
roach
chro
ti-

satisfy

onse-
onal and

meters
ch
s-
alf of

with
nt pa-
these
spite

on of
ntary
al to a
ls and

ial is
atter is

al dif-

al

h
nates

i-
l

5186 J. Math. Phys., Vol. 43, No. 11, November 2002 Benenti, Chanu, and Rastelli

                    
dealing with! from the general theory of the first-order normal differential systems~recalled in
Sec. II, from a geometrical view point! applied to the general theory of the additive separation
Kalnins and Miller. The resulting definition of separation is quite different from those previo
proposed in Refs. 6–8. First of all because it is not unique. Indeed, following our general app
we are led, again in a ‘‘natural’’ way, to consider at least two types of separation for the S¨-
dinger equation, which we have calledfree andconstrained, respectively. These terms are mo
vated by the fact that one can impose ‘‘constraints’’ on some of the factorsc i(q

i) of a separated
solution; in other words, one can assume that some of these factors have a special form or
a special kind of equations. One can, for instance, impose thatn2m factors have the formca

5exp(caqa), for a5m11,...,n, whereca are arbitrary constants~see Refs. 12 and 13!. We call
reduced separationa constrained separation of this type. The remarkable fact is that, as a c
quence of these assumptions, in the free separation the coordinates are necessarily orthog
the number of essential parameters entering the completeness condition is 2n, while the reduced
separation may occur in nonorthogonal coordinates and the number of the essential para
reduces tom1n,2n, including (ca). This is apparently in contrast to a common ‘‘ansatz’’ whi
considers onlyn parameters in a separated solution.6,13,14 In fact, as we shall see, up to a tran
formation of the 2n parameters entering the completeness condition for the free separation, h
them are true ‘‘separation constants’’ corresponding to constants of motion~first integrals!, while
the remainingn are integration constants. This is quite reasonable since we are dealing
second-order equations. For a correct definition of ‘‘completeness’’ both groups of consta
rameters are jointly involved, but in the process of integration by separation of variables all
essential constants automatically find their own place. This explains the curious fact that, in
of the absence of the notion of ‘‘complete separable solution,’’ the method of separati
variables in the Schro¨dinger equation has been applied with success, at least in the eleme
cases. Thus, the content of the present paper is essentially theoretical and propedeutic
further analysis of remaining topics on the separation: the relationship between first integra
symmetry operators, theR-separation, the extensions to the case in which a vector potent
present, and to the case of a Lorentzian metric. As we shall see, a conspicuous and rich m
hidden behind the usual approach to the separation of the Schro¨dinger equation.

II. FIRST-ORDER DIFFERENTIAL SYSTEMS AND THE GENERAL DEFINITION OF
SEPARATION

Let us recall some classical basic facts concerning normal systems of first-order parti
ferential equations, from a geometrical viewpoint and in a way suitable for our purposes.

Let us consider a trivial fibrationp:M5Q3Z→Q, whereZ is anN-dimensional linear space
~over C or R! with coordinateszI5(zA) ~capital indicesA,B,... will run from 1 toN! andQ is an
n-dimensional real differentiable manifold, with local coordinatesqI 5(qi) ~latin indicesh,i,j,...
will run from 1 to n!. A connectionover this fibration is a regular distributionC over the tangent
bundleTZ transversal and complementary to the fibers ofp. This means thatC is a subbundle of
TM such that at each pointxPM the setCx5CùTxM is ann-dimensional subspace transvers
to the fiber at the pointz. A vector fieldD overM is horizontal if D(M ),C i.e., if D(x)PCx for
eachxPM . A vector fieldV over M is vertical if it is tangent to the fibers. The only field whic
is simultaneously vertical and horizontal is the zero-vector field. If we consider local coordi
(qI ,zI )5(qi ,zA) of M, then the distributionC is locally spanned by the followingn horizontal
vector fields~interpreted as derivations!:

Di5
]

]qi 1CiA

]

]zA
, ~2.1!

calledgeneratorsof C. The functionsCiA are thecoefficientsof the connection in these coord
nates. It can be seen that the Lie brackets of two generators~as well as of any two horizonta
vector fields! are vertical. Hence, by the Frobenius theorem, the distributionC is completely
integrable~i.e., the connectionC is flat! if and only if the generators commute,
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@Di ,D j #50. ~2.2!

The complete integrability ofC means that there exists a foliation of integral manifo
transversal to the fibers and locally represented by equations of the kind

zA5 f A~qI ,cI !, ~2.3!

where theN functions f A depend onN constant parameterscI 5(cA) which must be uniquely
determined by assigning at any fixed pointq0PQ ~belonging to the domain of the coordinate!
any arbitrary set of values ofzI . This means that the functions~2.3! satisfy thecompleteness
condition

detF ]zI

]cI GÞ0. ~2.4!

Moreover, since the integral manifolds are tangent to the generators, equations

Di~zA2 f A~qI ,cI !!50

must be identically satisfied. Due to~2.1!, these equations are equivalent to

] izA5CiA~qI ,zI !. ~2.5!

This proves that
Theorem 2.1: A first-order differential system in thenormal form ~2.5! is completely inte-

grable,i.e., it admits a localcomplete solution~2.3! satisfying the completeness condition~2.4! if
and only if the generators Di commute, @Di ,D j #50.

On the basis of these general considerations, we can reformulate the definition of separa
Kalnins and Miller9,10 as follows. Let us consider a partial differential equation

H~qI ,u,ui ,ui j ,...,ui j ¯h!5E, ~2.6!

in the independent variablesqI 5(qi) and in the unknown functionu(qI ). Hereui j ¯h denote the
partial derivatives ofu with respect to these variables,E is a constant parameter, andH is a
smooth real function of the variablesqI , u and its partial derivatives up to a degreel. A separable
solutionof this equation is a solution of the form

u5(
i 51

n

Si~qi ,E!, ~2.7!

i.e., a sum of functions depending on a single variable. For separable solutions all the
partial derivatives~corresponding to distinct indices! vanish identically, so that Eq.~2.6! gets the
simpler form

Hs~qI ,u,uI ~1!,uI ~2!,...,uI ~ l !!5E, ~2.8!

whereuI (1)5(ui
(1))5(ui), uI (2)5(ui

(2))5(uii ), etc., andHs is the function we get by replacing
ui¯ j50 in H, for at least two distinct indices. Note thatHs in ~2.8! is in general a function
different fromH in ~2.6!. However, for the sake of simplicity, in the following discussion we sh
use the same symbolH. Since for any solution of this equation the left-hand side of~2.8! reduces
to a constant, the total derivatives ofH with respect to the coordinates must vanish identicall

]H
]qi 1

]H
]u

ui1
]H
]ui

ui
~2!1

]H
]ui

~2! ui
~3!1¯1

]H
]ui

~ l ! ui
~ l 11!50. ~2.9!
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Hence, for

]H
]ui

~ l ! Þ0

we can define the function

Ri~qI ,u,uI ~1!,uI ~2!,...,uI ~ l !!52S ]H
]ui

~ l !D 21

3S ]H
]qi 1

]H
]u

ui
~1!1

]H
]ui

ui
~2!1

]H
]ui

~2! ui
~3!1¯1

]H
]ui

~ l 21! ui
~ l !D ,

~2.10!

so that Eq.~2.9! becomes

ui
~ l 11!5Ri~qI ,u,uI ~1!,uI ~2!,...,uI ~ l !!.

Now, let us consider the following first-order differential system wherej Þ i and] i5
]

]qi
:

] iu5ui
~1!,

] iui
~1!5ui

~2! , ] iuj
~1!50,

] iui
~2!5ui

~3! , ] iuj
~2!50, ~2.11!

¯ ¯

] iui
~ l !5Ri , ] iuj

~ l !50.

This is a normal system of the kind~2.5! in the unknownN5n• l 11 functions

zI5~zA!5~u,uI ~1!,uI ~2!,...,uI ~ l !!.

The comparison with~2.1! and ~2.5! shows that the corresponding generators are

Di5] i1ui
~1!

]

]u
1ui

~2!
]

]ui
~1! 1ui

~3!
]

]ui
~2! 1¯1Ri

]

]ui
~ l ! . ~2.12!

We remark that a separable solution~2.7! corresponds to a solution of this system. Due to Th
rem 2.1 we can introduce the following

Definition 2.2:We say that Eq.~2.6! is separablein the coordinatesqI if it admits acomplete
separablesolution, i.e., a solution of the form

u5(
i 51

n

Si~qi ,cI ! ~2.13!

depending onN5nl11 constant parameterscI 5(cA) and satisfying thecompleteness condition

detF ]zI

]cI G5detF ]u

]cA
U ]ui

]cA
U]ui

~2!

]cA
U¯U]ui

~ l !

]cA
GÞ0. ~2.14!

It follows that
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Theorem 2.3:Equation (2.6) is separable (i.e., it admits a complete separable solution) in
coordinates qI if and only if the first-order system (2.11) is completely integrable, i.e., if and
if the separability conditions

@Di ,D j #50 ~2.15!

are identically satisfied for Di defined by (2.12) and Ri defined by (2.10).
Remark 2.4:In the following applications we shall deal with equations of the kind~2.6! or

~2.8! whereH does not depend onu. In this case the dependent variables are

zI5~zA!5~uI ~1!,uI ~2!,...,uI ~ l !!,

and the first line of system~2.11! disappears, as well as the term]/]u in the generators~2.12!.
Moreover, the number of the constantscI 5(cA) entering a complete solution~2.13! is n• l , and the
completeness condition~2.14! reduces to

detF ]zI

]cI G5detF ]ui

]cA
U]ui

~2!

]cA
U¯u

]ui
~ l !

]cA
GÞ0. ~2.16!

Remark 2.5:The case in which the complete integrability conditions~2.15! are identically
satisfied corresponds to the case ofregular separationof Kalnins and Miller.9 They call non-
regular a type of separation in which these conditions are nonidentically satisfied and, c
quently, separable solutions may exist, but depending on a reduced number of constants. H
the meaning of this non-regular separation is rather obscure. As we shall see~Sec. V!, in dealing
with the Schro¨dinger equation we are led to introduce, in natural way, an alternative definitio
the regular separation: the reduced separation.

Remark 2.6:Definition 2.2 and Theorem 2.3 are the basic statements for the theory of va
separation~additive, multiplicative, or any other kind! provided the kind of separation we ar
dealing with can be transformed, by a suitable transformation, into an additive separation. T
in fact the case of the multiplicative separation: the transformation isu5 ln c.

III. THE LEVI-CIVITA SEPARABILITY CONDITIONS AND THEIR CONSEQUENCES

Let us apply the general theory illustrated in Sec. II to the case of the Hamilton–J
equation corresponding to a HamiltonianH:T* Q→R over a cotangent bundleT* Q. In this case
we deal with the cotangent fibrationp:M5T* Q→Q of a configuration manifoldQ. This is ~in
general! a nontrivial fibration, but our previous considerations can be applied, since they h
local character.

The differential equation~2.6! is now

H~qI ,uI ~1!!5E, ~3.1!

with H5H and, according to the standard notation,

u5W, uI ~1!5~ui !5~pi !5~] iW!.

Now l 51 andzI5(uI (1))5(pi). In a complete solution we have exactlyn constantscI 5(ci)
and the completeness condition~2.16! takes the form~1.8!,

detF]pi

]cj
GÞ0. ~3.2!

The differential system~2.11! reads

] i pi5Ri , ] i pj50 ~ j Þ i !, ~3.3!
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where the functionsRi ~2.10! are

Ri52
] iH

] iH S ] i5
]

]qi ,] i5
]

]pi
D .

Since the generatorsDi ~2.14! are

Di5] i1Ri]
i ,

the separability conditions@Di ,D j #50 ~2.15! are equivalent to the well-knownLevi-Civita sepa-
rability conditions

] i] jH] iH] jH1] i] jH] iH] jH2] i] jH] iH] jH2] i]
jH] iH] jH50, iÞ j , n.s., ~3.4!

where ‘‘n.s.’’ means that there is no summation over the repeated indices. As a conseq
Theorem 2.3 reduces to the celebratedLevi-Civita theorem,

Theorem 3.1: The Hamilton–Jacobi equation (3.1) is separable in the coordinates qI 5(qi)
i.e., it admits a solution of the kind (2.3) satisfying the completeness condition (3.2), if and o
(3.4) are identically satisfied.

This theorem holds for any kind of Hamiltonian. We can apply it to anatural Hamiltonian

H5G1V5 1
2g

i j ~qI !pipj1V~qI !,

whereG is the geodesic Hamiltonian,V:Q→R a potential energy. The corresponding Hamilton
Jacobi equation is now Eq.~1.1!, which in any local canonical coordinate system becomes

1
2g

i j ] iW] jW1V5E.

Moreover, we can consider two special types of coordinates:orthogonalandstandardcoordinates
~Definition 3.3!. It is straightforward to prove that

Proposition 3.2: If the coordinates are orthogonal(gi j 50 for iÞ j ), then the Levi-Civita
separability conditions are equivalent to

gii gj j ] i] jg
hh2gii ] ig

j j ] jg
hh2gj j ] jg

ii ] ig
hh50,

gii gj j ] i] jV2gii ] ig
j j ] jV2gj j ] jg

ii ] iV50, iÞ j , n.s. ~3.5!

These equations do not involve the momentapI . An equivalent form of these equations were fi
established by Eisenhart.3 It can be shown that their general solutions have the Sta¨ckel form
~1.6!.15 It follows that the Hamilton–Jacobi equations split into separated equations of the f

1
2pi

25w i
~ j !cj2f i ,

wherecI 5(cj ) are arbitrary constants satisfying the completeness condition. Equation~3.5! can
also be written in the form

] i] jg
hh2] i ln gj j ] jg

hh2] j ln gii ] ig
hh50,

] i] jV2] i ln gj j ] jV2] j ln gii ] iV50, iÞ j , n.s. ~3.58!

Note that the first equations~3.58! characterize the orthogonal separation of the pure geod
Hamiltonian.

Definition 3.3:A standard coordinate systemis a coordinate system (qi)5(qa,qa) with a
51,...,m and a5m11,...,n, such that~i! the metric tensor assumes the semidiagonalstandard
form

G5gaa]a^ ]a1gab]a ^ ]b , ~3.6!
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and ~ii ! the coordinates (qa) are ignorable,

]agi j 50, ]aV50. ~3.7!

We call essentialthe coordinates (qa).
It is straightforward to prove that

Proposition 3.4: In standard coordinates the Levi-Civita separability conditions are equ
lent to the following:

gaagbb]a]bgcc2gaa]agbb]bgcc2gbb]bgaa]agcc50,

gaagbb]a]bgab2gaa]agbb]bgab2gbb]bgaa]agab50, ~3.8!

gaagbb]a]bV2gaa]agbb]bV2gbb]bgaa]aV50,

with aÞb not summed.
These equations can be written in the equivalent form

]a]bgcc2]a ln gbb]bgcc2]b ln gaa]agcc50,

]a]bgab2]a ln gbb]bgab2]b ln gaa]agab50, ~3.88!

]a]bV2]a ln gbb]bV2]b ln gaa]aV50.

Their general solutions are still of Sta¨ckel type, but involving anm3m Stäckel matrix @wa
(b)# of

functions depending on the essential coordinates only,

gaa5w~m!
a , gab5fa

abgaa, V5fagaa, ~3.9!

with functions (fa
ab ,fa) depending on the essential coordinate corresponding to the lower i

only. Then the Hamilton–Jacobi equation splits into separated equations of the kind

pa5ca , 1
2pa

25wa
~b!cb2fa

abcacb2fa ,

wherec5(ci)5(ca ,ca) aren arbitrary constants.
Remark 3.5:The above-given definition of standard coordinates needs some comments~i! In

a given standard coordinate system (qi) the distinction between ‘‘ignorable’’ and ‘‘essential
coordinates is in general not univocal. Indeed, an ignorable coordinate may be orthogonal
other ones and considered as essential; conversely, an essential coordinate may be ignora
it may satisfy ~3.7!. However, in the process of integration by separation of variables of
Hamilton–Jacobi equation it is useless to consider an ignorable coordinate as ‘‘essential,’’ s
corresponds to a linear homogeneous first integral and thus to a trivial separated equation.~ii ! The
distinction between ignorable and essential coordinates becomes univocal and assume
meaning when related to a given separable Killing web,16,17that is when related to the geometric
characterization of the separation~see Sec. VII!.

Remark 3.6:It is known that there is no loss of generality in considering separable stan
coordinates. Indeed, the analysis of the Levi-Civita separability conditions shows that any
rable coordinate system admits an equivalent standard system (qa,qa) where the number of
essential coordinates is minimalized, i.e., it coincides with the number of second-class coord
according to the classification of Levi-Civita. This number is invariant within an equivalence
of separable coordinates. A standard coordinate system in which the essential coordinates (qa) are
exactly those of second class has been callednormal.17 For our present purposes we do not ne
to take into account the classification of Levi-Civita and the subtle distinction between ‘‘nor
and ‘‘standard’’ coordinates. We need only to refer to the above-given definition of stan
coordinates and to the corresponding separability conditions~3.8! or ~3.88!.
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Definition 3.7:We say that a symmetric two-tensorK5(Ki j ) has astandard formor that it is
a standard tensorwith respect to a standard coordinate system if it assumes the form

K5Kaa]a^ ]a1Kab]a ^ ]b5lagaa]a^ ]a1Kab]a ^ ]b , ~3.10!

where (la) andKab do not depend on the ignorable coordinates (qa). Then the matrix@Ki j # has
a form similar to~3.6!.

Note that a tensor may be simultaneously in standard form with respect to nonequi
separable standard coordinate systems.

IV. THE FREE SEPARATION OF THE SCHRÖDINGER EQUATION

In this section we shall show that a convenient and precise ‘‘ansatz’’ for the multiplica
separation of the Schro¨dinger equation~1.2! is given by the following

Definition 4.1:A complete separated solutionof the Schro¨dinger equation is a solution of th
form c(qI ,cI )5P i

n c i(q
i ,cI ), depending on 2n parameterscI 5(cI) satisfying thecompleteness

condition

detF ]ui

]cI

]v i

]cI

GÞ0, ui5
c i8

c i
, v i5

c i9

c i
. ~4.1!

When such a solution exists we say that the Schro¨dinger equation isseparable~or freely sepa-
rable! in the coordinatesqI 5(qi).

The completeness condition~4.1! means that the 2n constants (cI) can be uniquely deter
mined by assigning arbitrary values to the 2n ratios (uI ,vI ), at any fixed point. Hence, no restric
tion is imposed on the values that the functions (c i ,c i8 ,c i9) can assume at any given point of th
domain of the coordinates, forcÞ0. For this reason we call this kind of separationfree. As we
shall see in Sec. V, we can in fact consider another kind of separation in which such a ‘‘free
is lost. As we shall see in the following~Remark 4.8!, the 2n parameters appearing in a fre
separated solution have a different role: in the process of integrationn of them are related to
constants of motion in involution or, equivalently, to second-order commuting symmetries o
Schrödinger operator, so that they can be interpreted as ‘‘separation constants,’’ while the re
ing n parameters arise as ‘‘integration constants.’’
By assuming Definition 4.1 we shall prove

Theorem 4.2: The Schro¨dinger equation is freely separable in a coordinate system qI if and
only if: (i) these coordinates are orthogonal, (ii) the corresponding Hamilton–Jacobi equation is
separable, (iii) the following conditions are satisfied:

] iG j50 ~ iÞ j !, ~4.2!

where

G i5gh jGh j ,i , Gh j ,i5
1
2~]hgji 1] jgih2] igh j!. ~4.3!

SinceGh j ,i are the Christoffel symbols of the Levi-Civita connection, we call the functionsG i the
contracted Christoffel symbols, associated with the coordinatesqI . From their definition~4.3! it
follows that

G i5
1
2] i ln det@gh j#2gik]hghk. ~4.4!

We call the whole set of equations~4.2! theRobertson condition for the free separationof the
Schrödinger equation. In this form the Robertson condition means that each contracted Chri
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symbolG i is a function of the corresponding coordinateqi only ~see Remark 4.7!. As we know, an
equivalent form of the Robertson condition is the diagonalization of the Ricci tensor. We
discuss this equivalence in Sec. VI.

In order to justify all the above-given statements, let us start from the local coordinat
pression of the Schro¨dinger equation~1.2!,

gi j ] i] jc2Gk]kc1
2

\2 ~E2V!c50, Gk5gkiG i . ~4.5!

Since the constant factor 2/\2 is inessential for our consideration, from now on we shall repl
(2/\2)V with V and (2/\2)E by E.

For a separated solution of the kind~1.4! we have

] ic5
c i8

c i
c, ] i] jc5

c i8

c i

c j8

c j
c ~ iÞ j !, ] i] ic5

c i9

c i
c. ~4.6!

Here the prime denotes the derivative operator on a function of a single variable. We rema
in these formulas the fractionc/c i is the productc1¯ĉ i¯cn , without the factorc i . Thus,
expressions~4.6! also hold at the points wherec i50. If we setu5 ln c, then

ui5] iu5
] ic

c
5

c i8

c i
~4.7!

are functions of the corresponding variableqi and moreover,

] ic5cui ,

] i] jc5cuiuj ~ iÞ j !,

] i] ic5c~ui
21ui

~2!!, ui
~2!5uii 5] i] iu.

It follows that for a separated solution Eq.~4.5! assumes the form

~gi j uiuj1gii ui
~2!2G iui1E2V!c50, ~4.8!

where the sum over the repeated indices is understood. Thus, forcÞ0 we get a partial differentia
equation of the kind~2.8! with l 52,

S~qI ,uI ~1!,uI ~2!!52E,

by setting~see Ref. 12!

S~qI ,uI ~1!,uI ~2!!5gi j uiuj1gii ui
~2!2G iui2V,

~4.9!
uI ~1!5~ui !, uI ~2!5~uii !.

As a consequence, by applying Definition 2.2 to the present case and Theorem 2.3 rel
the general equation~2.8!, taking into account Remark 2.4, the completeness condition~2.16!, and
expression~4.7!, we are led to the following definition and theorem.

Definition 4.3:A complete separated solution of the Schro¨dinger equation~4.5! is a solution of
the form~1.4! depending on 2n constant parameterscI 5(cI) satisfying the completeness conditio
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detF ]ui

]cI

]ui
~2!

]cI

GÞ0, ui5
c i8

c i
, ui

~2!5uii 5S c i8

c i
D 8

. ~4.10!

Theorem 4.4:The Schro¨dinger equation (4.5) is separable in the coordinates qI if and only if
the following first-order differential system is completely integrable

] iui
~1!5ui

~2! ,

] iui
~2!5Ri ,

] iuj
~1!50,

] iuj
~2!50,

~ iÞ j !, ~4.11!

where

Ri~qI ,uI ~1!,uI ~2!!52S ]S
]ui

~2!D 21S ]S
]qi 1

]S
]ui

ui
~2!D , ~4.12!

S being defined as in (4.9) i.e., if and only if the commutation relations

@Di ,D j #50, ~4.13!

are identically satisfied for

Di5] i1ui
~2!

]

]ui
1Ri

]

]ui
~2! .

Remark 4.5:If we replace the 2n variables (uI (1),uI (2)) with the variables

~uI ,vI !5~ui ,v i !

where

v i5ui
~2!1ui

25
c i9

c i
, ~4.14!

then the completeness condition~4.10! becomes equivalent to~4.1!, so that Definition 4.3 is
equivalent to Definition 4.1.

This transformation of dependent variables turns out to be convenient for the analysis
integrability ~or separability! conditions~4.13!. We note first of all that

]S
]ui

~2! 5gii ,

so that the definition~4.12! becomes

Ri~qI ,uI ~1!,uI ~2!!52~gii !21S ]S
]qi 1

]S
]ui

ui
~2!D .

In the new variables we have

S~qI ,uI ,vI !5gi j uiuj1gii ~v i2ui
2!2G iui2V,

Ri~qI ,uI ,vI !52
1

gii S ]S
]qi 1~v i2ui

2!
]S
]ui

D , ~4.15!
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Di5] i1~v i2ui
2!

]

]ui
1Ri

]

]v i
,

and system~4.11! becomes equivalent to

] iui5v i2ui
2,

] iv i5Ri ,
] iuj50,
] iv j50, ~ iÞ j !. ~4.16!

Using ~4.15!, a straightforward calculation shows that

@Di ,D j #5S ~v i2ui
2!

]Rj

]ui
1Ri

]Rj

]v i
1

]Rj

]qi D ]

]v j
2S ~v j2uj

2!
]Ri

]uj
1Rj

]Ri

]v j
1

]Ri

]qj D ]

]v i
.

Hence, the integrability conditions~4.13! become equivalent to

~v i2ui
2!

]Rj

]ui
1Ri

]Rj

]v i
1

]Rj

]qi 50 ~ iÞ j !. ~4.17!

Because of~4.15!,

]Ri

]qi 52
1

gj j ] ig
j j Rj2

1

gj j F] i] jS1
]2S

]qi]uj
~v j2uj

2!G
and, for iÞ j ,

]Rj

]v i
52

1

gj j F ]2S
]qj]v i

1
]2S

]v i]uj
~v j2uj

2!G52
1

gj j ] jg
ii ~ iÞ j !.

Moreover,

]S
]ui

52gikuk22gii ui2G i .

Thus,

]2S
]ui]uj

52gi j ~ iÞ j !.

It follows that

]Rj

]ui
52

1

gj j F ]2S
]ui]qj 12gi j ~v j2uj

2!G ~ iÞ j !.

Due to these last equations, the integrability conditions~4.17! become equivalent to

2gi j ~v i2ui
2!~v j2uj

2!1
]2S

]qi]uj
~v j2uj

2!1
]2S

]qj]ui
~v i2ui

2!1] i] jS1Ri] jg
ii 1Rj] ig

j j 50

~ iÞ j !. ~4.18!

Note that in this form they are symmetric in the distinct indices~i,j!. We remark that these ar
algebraic equations in the variables (uI ,vI ) and that they must be identically satisfied for all valu
of these variables, due to the completeness condition. A closer analysis of expressions~4.15!
shows that~4.18! are of second degree invI , and that the corresponding second-degree homo
neous polynomial is given by the first termgi j v iv j , with iÞ j not summed. This implies
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gi j 50 ~ iÞ j ! ~4.19!

and shows that
Proposition 4.6: In the free separation of the Schro¨dinger equation the coordinates are ne

essarily orthogonal.
In orthogonal coordinates, Eqs.~4.18! and ~4.15! assume the simpler form

]2S
]qi]uj

~v j2uj
2!1

]2S
]qj]ui

~v i2ui
2!1] i] jS1Ri] jg

ii 1Rj] ig
j j 50 ~ iÞ j ! ~4.20!

and

S5gii v i2G iui2V, Ri5
1

gii @G i~v i2ui
2!2] iS#. ~4.21!

It follows that

Ri5
1

2gii @2G i~v i2ui
2!2] ig

kkvk1] iG
kuk1] iV#.

By inserting this last expression ofRi into ~4.20! we conclude that the integrability conditions o
system~4.16! are equivalent to the orthogonality conditions~4.19! and to the following:

2~uj
22v j !~] iG

j2G j] i ln gj j !12~ui
22v i !~] jG

i2G i] j ln gii !

1vk~] i] jg
kk2] i ln gj j ] jg

kk2] j ln gii ] ig
kk!2uk~] i] jG

k2] i ln gj j ] jG
k2] j ln gii ] iG

k!

2~] i] jV2] i ln gj j ] jV2] j ln gii ] iV!50 ~ iÞ j !. ~4.22!

Since these last equations are polynomial in the variables (uI ,vI ), they are identically satisfied i
and only if all the coefficients vanish, namely:

] i] jg
kk2] i ln gj j ] jg

kk2] j ln gii ] ig
kk50,

] i] jV2] i ln gj j ] jV2] j ln gii ] iV50,
] jG

i2G i] j ln gii 50,
] i] jG

k2] i ln gj j ] jG
k2] j ln gii ] iG

k50.

~ iÞ j ! ~4.23!

These equations are in fact redundant. Indeed, it can be seen that due to the first an
equations, the last equation is identically satisfied. Moreover, the third equation is equivale

] jG i50 ~ iÞ j !,

where, in orthogonal coordinates,

G i5gii G
i5 1

2 (kÞ i] i ln gkk2 1
2 ] i ln gii 5] i ln~giiA)kg

kk!. ~4.24!

Finally, we recognize in the first two equations of~4.23! the necessary and sufficient conditio
~3.5’! for the orthogonal separation of the Hamilton–Jacobi equation. Thus, due to Theorem
Theorem 4.2 is proved.

Remark 4.7:After Theorem 4.2, the integration of the Schro¨dinger equation by separation o
variables is accomplished as follows. Due to the Sta¨ckel form ~1.6! of the metric tensor compo
nents and of the potential, the Schro¨dinger equation~4.8! takes the form

w~n!
i ~ui81ui

22G iui2f i !52E, ui5
c i8

c i
.
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This equation is interpreted as the last one of a system ofn equations involving all the remaining
rows of the matrix@w ( j )

i # andn constantsaI 5(ai),

w~ j !
i ~ui81ui

22G iui2f i !52aj , an5E, ~4.25!

which is equivalent to the following system of separated equations:

ui81ui
22G iui2f i1w i

~ j !aj50. ~4.26!

These are first-order Riccati equations in the unknown functionsui(q
i), depending on then

constant parametersaI 5(aj ). Their integration yields functions

ui5ui~qi ,aI ,bi !, ~4.27!

each one depending on a further constantbi . The complete separated solution is then given, up
an inessential constant factor, by

c5expE ui dqi . ~4.28!

We note that~as happens for any Riccati equation! ~4.26! are equivalent to the linear second-ord
equations

c i92G ic i82~f i2w i
~ j !aj !c i50 ~4.29!

in the original unknown functionsc i .
Remark 4.8:The 2n constantscI 5(cI)5(aI ,bI )5(ai ,bi), appearing in a separated solutio

~4.28! as a result of the process of integration by separation of variables illustrated previously
a different role. WhilebI arise as integration constants from the integration of the first-order Ric
equations~4.26!, or of the second-order linear equations~4.29!, the constantsaI have two inter-
pretations.~i! They are the constant values taken by the quadratic first integrals in invol
related to the separation of the Hamilton–Jacobi equation~see Theorem 7.14!, whose expressions
in orthogonal separable coordinates are

H j5
1
2 w~ j !

i ~pi
212f i !. ~4.30!

~ii ! They are the eigenvalues of the second-order symmetry operators of the Schro¨dinger equation
corresponding toH j ,

Ĥ jc5c~ j !
i ~2] i

2c1G i] ic1f ic!. ~4.31!

The link betweenH j andĤ j will be discussed in a following paper.18 If we apply these operator
to a separated solution~1.4! then, due to~4.6!, ~4.7! and ~4.14!, we get

Ĥ jc5w~ j !
i ~G iui2v i1f i !c, ~4.32!

which shows that the eigenvalues are

aj5w~ j !
i ~G iui2v i1f i !. ~4.33!

Remark 4.9:The values of the constantsaI are determined through~4.25!, which are equiva-
lent to ~4.33!, by the initial values at a pointq0 of (ui ,ui8) i.e., by the initial values of
(c i ,c i8 ,c i9), for c i(q0)Þ0. The values ofbI are then determined by reversing~4.27! at the initial
point q0 : ui(q0)5ui(q0

i ,aI ,bi). If instead of the first-order equations~4.26! we consider the
equivalent second-order equations~4.29!, the resulting integration constants are 2n, but only half
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of them are essential, since the functionsc i are determined up to a constant factor. Thus, also
this case we reduce ton essential constants (bi). See Sec. IX for an example.

V. THE REDUCED SEPARATION OF THE SCHRÖDINGER EQUATION

In Sec. IV we have considered a kind of multiplicative separation of the Schro¨dinger equation
involving 2n constant parameterscI which can be uniquely determined by assigning the values
any chosen point, of the functionsui5c i8/c i andv i5c i9/c i . This means that we have no restri
tion on the values that the functions (c i ,c i8 ,c i9) can assume at any given point of the domain
the coordinates, forcÞ0. As we have seen, this freedom implies the orthogonality of the s
rable coordinates.

However, we can think of a kind of separation in whichconstraintsare ‘‘a priori’’ imposed on
some of the factorsc i .

Although it is not interpreted in this sense, a usual constraint appearing in the literat
represented by the following supplementary conditions~see for instance Refs. 9, 10, and 12!:

ca85kaca , a5m11,...,n, ~5.1!

where (ka) are arbitrary~real or complex! constants. This means that, up to an inessential m
tiplicative constant,

ca~qa!5exp~kaqa!. ~5.2!

In this way we define a kind ofconstrained separation, which we callreduced separation. As we
shall see, for this separation the coordinates are not necessarily orthogonal and the num
essential constants appearing in a separated solution isn1m,2n ~the casem5n corresponds to
the free separation!. We base our approach on a definition similar to Definition 4.1.

Definition 5.1:A reduced separated solutionof the Schro¨dinger equation is a solution~1.4!
where the factorsca are of the type~5.2! for a5m11,...,n and where all factorsca depend on
further 2m parameterscI 5(cA) (A51,...,2m) satisfying thecompleteness condition

detF ]ua

]cA

]va

]cA

GÞ0, ua5
ca8

ca
, va5

ca9

ca
~a51,...,m!. ~5.3!

When such a solution exists we say that the Schro¨dinger equation isreductively separablein the
coordinates (qa,qa). The coordinates (qa) and (qa) are calledconstrainedand free coordinates,
respectively.

The completeness condition~5.3! means that the 2m constant parameters (cA) can be
uniquely determined by assigning arbitrary values of the 2m ratios (ua ,va) at any given point.
Hence, we have no restriction on the values that the functions (ca ,ca8 ,ca9) can assume at an
given point of the domain of the coordinates, forcÞ0. Moreover, we remark that the total numb
of constant parameters in a reduced separated solution ism1n. Indeed, besides the 2m constants
(cA), also then2m constants (ka) are present, although they are not involved in the compl
ness condition.

In this section we shall prove the following theorem~analogous to Theorem 4.2!.
Theorem 5.2: The Schro¨dinger equation is reductively separable in a coordinate systemI

5(qa,qa) if and only if: (i) the constrained coordinates(qa) are ignorable,

]agi j 50, ]aV50,

(ii) the free coordinates(qa) are orthogonal,
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gab50, aÞb,

(iii) there exists a coordinate transformation leaving the coordinates(qa) invariant, preserving the
constraints and the separation, in which the metric tensor assumes the standard form (3.
such that (iv) the Hamilton–Jacobi equation is separable and (v) the following conditions
satisfied:

]aGb50 ~aÞb!, Ga5gi j G i j ,a . ~5.4!

We call Eq. ~5.4! the Robertson condition for the reduced separationof the Schro¨dinger
equation. As will be discussed in Sec. VI, this is in fact equivalent toRab50 for aÞb.

In order to justify Definition 5.1 and prove Theorem 5.2 we begin by observing that
constraints~5.1! imply that the functionsui , defined as in~4.7! and labeled with Greek indice
~running fromm11 to n! are constant

ua5
ca8

ca
5ka , ua

~2!50,

so that, for such a separated solution, Eq.~4.8! becomes equivalent~for cÞ0) to

gabuaub1gaaua
~2!12gaauaka1gabkakb2Gaua2Gaka2V1E50,

with summation over the repeated indicesa, b51,...,m anda, b5m11,...,n. This equation can
be written in the form

S~qI ,uI ~1!,uI ~2!,ka!52E, ~5.5!

by setting

S~qI ,uI ~1!,uI ~2!,ka!5gabuaub1gaaua
~2!12gaauaka1gabkakb2Gaua2Gaka2V,

~5.6!

uI ~1!5~ua!, uI ~2!5~uaa!.

Equation~5.5! is of the type~2.8!. The constants (ka) play the role of independent consta
parameters and the relevant dependent variables arezI5(uI (1),uI (2))5(ua ,uaa). Their number is
2m. By applying the method of Sec. II, we have for a solution of this equation

(
a51

m S ]S
]qi 1

]S
]ua

~1!

]ua
~1!

]qi 1
]S

]ua
~2!

]ua
~2!

]qi D 50,

thus ~no sum over the indexa!

]S
]qa 1

]S
]ua

~1!

]ua
~2!

]qa 1
]S

]ua
~2!

]ua
~2!

]qa 50,
]S
]qa 50.

As a consequence, by adapting Definition 2.2 to the present case, we are led to the follow
Definition 5.3:A reduced separable solutionof the Schro¨dinger equation is a solution of th

form ~1.4!–~5.2!, depending on 2m parameterscI 5(cA) (A51,...,2m) satisfying the completenes
condition
                                                                                                                



q

s

r-

s

5200 J. Math. Phys., Vol. 43, No. 11, November 2002 Benenti, Chanu, and Rastelli

                    
detF ]ua

]cA

]ua
~2!

]cA

GÞ0, ua5
ca8

ca
, ua

~2!5uaa5S ca8

ca
D 8

. ~5.7!

Hence, by applying Theorem 2.3 and recalling~2.5! and ~2.2!, we get
Proposition 5.4: The Schro¨dinger equation is reductively separable in the coordinatesI

5(qa,qa) if and only if

]aS50, ~5.8!

S being defined as in (5.6), and the first-order differential system

]aua
~ i !5ua

~2! ,

]aua
~2!5Ra ,

] iua
~1!50,

] iua
~2!50,

~ iÞa! ~5.9!

is completely integrable for

Ra~qI ,uI ~1!,uI ~2!!52S ]S
]ua

~2!D 21S ]S
]qa 1

]S
]ua

ua
~2!D .

The complete integrability conditions for this system are

@Di ,D j #50, H Da5]a1ua
~2!

]

]ua
1Ra

]

]ua
~2! ,

Da5]a .

~5.10!

From ~5.8! and ~5.6! it follows that

]agi j 50, ]aG i50, ]aV50,

since S is a polynomial function in the variables (uI ,uI (2),ka) assuming arbitrary values. Thi
proves that

Proposition 5.5: In the reduced separation of the Schro¨dinger equation the constrained coo
dinates(qa) are ignorable.

It follows that the significant part of the integrability conditions~5.10! is that related to the
free ~and nonignorable! coordinates,@Da ,Db#50 ~for aÞb). For examining these conditions, a
in the case of the free separation, it is convenient to deal with the new 2m variables

~uI ,vI !5~ua ,va!, va5uaa1ua
25

ca9

ca
.

Remark 5.6:Under such a transformation the completeness condition~5.7! is equivalent to
~5.3!, so that Definition 5.3 is equivalent to Definition 5.1.

Furthermore, the differential system~5.9! becomes equivalent to

] iua50,
] iva50,

]aua5va2ua
2,

]ava5Ra ,

~ iÞa51,...,m!, ~5.11!

where
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Ra52
1

gaa S ]S
]qa 1

]S
]ua

~va2ua
2! D ,

S~qI ,uI ,vI !5gaa~va2ua
2!1gabuaub12gaauaka1gabkakb2Gaua2Gaka2V,

Da5]a1~va2ua
2!

]

]ua
1Ra

]

]va
,

Da5]a .

The complete integrability conditions@Da ,Db#50 of system~5.11! are then equivalent to equa
tions similar to~4.17!,

~va2ua
2!

]Rb

]ua
1Ra

]Rb

]va
1

]Rb

]qa 50 ~aÞb!.

A calculation similar to that of Sec. IV shows that
Proposition 5.7: In a reduced separation the free coordinates are orthogonal,

gab50, aÞb,

and the integrability conditions of system (5.11) are equivalent to

]2S
]qa]ub

~vb2ub
2!1

]2S
]qb]ua

~va2ua
2!1]a]bS1Ra]bgaa1Rb]agbb50 ~aÞb!, ~5.12!

where

S5gaava12gaauaka1gabkakb2Gaua2Gaka2V,
~5.13!

Ra5
1

gaa ~~Ga22gaaka!~va2ua
2!2]aS!.

From these last equations we can derive the following
Proposition 5.8: The reduced separation of the Schro¨dinger equation always occurs in

standard coordinate system(qi)5(qa,qa), for which (3.6) and (3.7) hold, and such that th
following equations are satisfied for aÞb:

]a]bgcc2]b ln gaa]agcc2]a ln gbb]bgcc50,

]a]bgab2]b ln gaa]agab2]a ln gbb]bgab50,
~5.14!

]a]bV2]b ln gaa]aV2]a ln gbb]bV50,

]bGa50,

where

Ga5gaaG
a5

1

2 (
cÞa

]c ln gcc2
1

2
]a ln gaa1

1

2
]a ln det@gab#. ~5.15!

Proof: By setting

Ĝa5Ga22gaaka , V̂5V1Gaka2gabkakb ,
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~5.13! assume the form

S5gaava2Ĝaua2V̂, Ra5
1

gaa ~~ Ĝa~va2ua
2!2]aS!, ~5.16!

so that the integrability conditions~5.12! become

2~ub
22vb!~]aĜb2Ĝb]a ln gbb!12~ua

22va!~]bĜa2Ĝa]b ln gaa!1vc~]a]bgcc2]a ln gbb]bgcc

2]b ln gaa]agcc!2uc~]a]bĜc2]a ln gbb]bĜc2]b ln gaa]aĜc!

2~]a]bV̂2]a ln gbb]bV̂2]b ln gaa]aV̂!50. ~5.17!

We remark that~5.12! and ~5.16! are similar to~4.20! and ~4.21!, so that~5.17! are similar to
~4.22! and, since (ua ,va) can assume arbitrary values, we get equations similar to~4.23!,

]a]bgcc2]a ln gbb]bgcc2]b ln gaa]agcc50,

]a]bV̂2]a ln gbb]bV̂2]b ln gaa]aV̂50,
~5.18!

]aĜb2Ĝb]a ln gbb50,

]a]bĜc2]a ln gbb]bĜc2]b ln gaa]aĜc50.

The first equations are just the first equations in~5.14!. Since also the constant parameters (ka)
assume arbitrary values, the fourth equations~5.18! are equivalent to

]a]bGc2]a ln gbb]bGc2]b ln gaa]aGc50,
~5.19!

]a]bgca2]a ln gbb]bgca2]b ln gaa]agca50,

while the second equations~5.18! are equivalent to the second and third equations of~5.14! and

]a]bGa2]a ln gbb]bGa2]b ln gaa]aGa50. ~5.20!

Finally, the third equations~5.18! are equivalent to

]aGb2Gb]a ln gbb50, ]agba2gba]a ln gbb50,

which can be written in the form

]aS Gb

gbbD50, ]aS gba

gbbD50, aÞb. ~5.21!

These last equations show that

Ga5gaaf a , gaa5gaaf a
a , ~5.22!

where (f a , f a
a) are functions of the coordinate corresponding to the lower index only. As a

sequence, due to the first equations~5.18!, ~5.19! are identically satisfied and do not add furth
information. But~5.22! have another important consequence which allows a remarkable sim
cation of our analysis~a similar argument has been used in Refs. 15, 17 in the discussion o
separation of the HJ equations!. Indeed, let us consider a coordinate transformation of the ki

dxa5dqa, dxa5dqa2 f a
a dqa. ~5.23!
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For the componentsgx
i j 5dxi

•dxj of the metric tensor in the new coordinates (xi)5(xa,xa) we
havegx

ab5gab and

gx
aa5dxa

•dxa5dqa
•~dqa2 f b

adqb!5gaa2 f b
agab5gaa2 f a

agaa50.

This coordinate transformation is compatible with the separation, in the sense that in th
coordinates the solution of the Schro¨dinger equation is still separable and the constraint equat
~5.1! hold ~with the same constantska). Indeed, the essential coordinates remain unchan
(xa5qa up to inessential additive constants! and moreover,

dca

dxa 5
]ca

]qb

]qb

]xa 5
dca

dqa

dqa

dxa 5
dca

dqa .

Hence,without loss of generalitywe can assume

gaa50, ~5.24!

so that the metric tensor takes the standard form~3.6!, with ignorable coordinates (qa). For a
metric of this kind,

Ga5gaiG
i5gaaG

a5~gaa!21Ga.

Thus, the first equations~5.21! are equivalent to the fourth equations~5.14!. Moreover,Ga50 ~see
Sec. VI! so that~5.20! are identically satisfied. We conclude that the integrability conditions~5.12!
of system~5.11!, up to a coordinate transformation preserving the separation and reducin
metric tensor in the standard form, are equivalent to~5.14!. j

We recognize in the first three lines of system~5.14! the necessary and sufficient conditio
~3.88! for the separation of the Hamilton–Jacobi equation in standard coordinates. Hence, w
proved the following

Proposition 5.9: Up to a coordinate transformation of the kind (5.23), the reduced separ
of the Schro¨dinger equation always occurs in standard separable coordinates qI 5(qa,qa) (a
51,...,m,a5m11,...,n) for which ]bGa50 for aÞb.

As a conclusion, from Propositions 5.5, 5.7, 5.8, and 5.9, we derive Theorem 5.2.
Remark 5.10:Let us see how the integration by separation of variables is performed whe

items in Theorem 5.2 are satisfied~this will give a further proof of the sufficiency of these item
for the separation! and how them1n constants arise in a reduced separated solution. Due to
factorization

c5)a51
m ca•)a5m11

n ca ,

and to the constraints~5.1!, sinceGa50, the Schro¨dinger equation~4.5! becomes equivalent to th
following reduced Schro¨dinger equation:

gaa]a
2c̃1Ga]ac̃1~E2V1gabkakb!c̃50, c̃5)a51

m ca . ~5.25!

The additional condition]bGa50 for aÞb means that the contracted Christoffel symbolsGa

~with indices a51,...,m) are functions of the corresponding coordinateqa only. By a method
similar to that illustrated in Remark 4.7, due to expressions~3.9!, the integration of the Schro¨-
dinger equation is reduced to the integration ofm separated Riccati equations,

ua81ua
22Gaua2fa1fa

abkakb1wa
~b!ãb50 ~5.26!

parametrized byn constants (ãb ,ka), with ãm5E. Its solutionsua5ua(qa;ãb ,ka ,b̃a) give rise,
separately, to otherm constants (b̃a) and generate, by a further integration, the reduced separ
solution ~summation over the indices!
                                                                                                                



plete

n lead-

rves

ution
dinates

5204 J. Math. Phys., Vol. 43, No. 11, November 2002 Benenti, Chanu, and Rastelli

                    
c5expS kaqa1E ua dqaD5)a51
m ca•)a5m11

n ca .

Equations~5.26! are equivalent to them linear second-order equations

ca92Gaca81~fa
abkakb1wa

~b!ãb2fa!ca50 ~5.27!

in the functionsca . In the reduced separation the number of the constants appearing in a com
solution ~1.4!, as a result of this process of integration, ism1n,2n, but only the 2m constants
(ãa ,b̃a) are involved in the completeness condition.

Remark 5.11:A coordinate transformation of the kind

qa5q̄a, qa5(
i

Fi
a~ q̄i !5(

a
Fa

a~qa!1(
b

Fb
a~ q̄b!,

with

det@ f b
a#Þ0, f b

a5~Fb
a!8,

composed by any transformation over single coordinates, is the most general transformatio
ing to nonstandard separable coordinates (q̄a,q̄a) for the Hamilton–Jacobi equation.15,17The same
transformation applied to standard separable coordinates, in general, does not preserve~5.24!,
gaaÞ0, and the coordinates (q̄a) are no longer ignorable. However, this transformation prese
the multiplicative separation of the Schro¨dinger equation. Indeed, the factorsca(qa) remain
unchanged, while the factorsca(qa) are transformed as follows:

ca~qa!5exp~kaqa!5exp~kaFb
a~ q̄b!!• exp~kaFa

a~qa!!5)
b

c̃b~ q̄b!•)
a

c̃a~qa!,

where

c̃b~ q̄b!5exp~kaFb
a~ q̄b!!, c̃a~qa!5exp~kaFa

a~qa!!,

and we finally get a solution of the kind

c5)
b

c̃b~ q̄b!)
a

ca~qa!c̃a~qa!.

We observe that

c̃b85ka f b
a~ q̄b!c̃b ,

where f 5F8. This shows that a constraint of the kind~5.1! is still satisfied if and only iff b
a

5db
acb8 with arbitrary constants (cb8 ). It shows also that a constraint of the kind

cb85ka f b
a~qb!cb , det@ f b

a#Þ0

could be considered, but that it is equivalent to~5.1!.
Remark 5.12:A remark analogous to Remark 4.8 is in order. The constantsãb have two

interpretations:~i! They are the constant values taken by the quadratic first integrals in invol
related to the nonorthogonal separation of the Hamilton–Jacobi equation in standard coor
~cf. Theorem 7.25! whose expressions are

Ha5 1
2w~a!

b ~pb
21fa

abpapb1fa!. ~5.28!
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~ii ! They are the eigenvalues of the second-order symmetry operators corresponding toHa of the
reduced Schro¨dinger equation~5.25!:

Ĥbc̃5w~b!
a ~2]a

2c̃1Ga]ac̃1~fa2fa
abkakb!c!. ~5.29!

About the constantska introduced in the constraint equations~5.1!, we observe that they
correspond to the eigenvalues of the first-order symmetry operators of the Schro¨dinger equation

Ĥac52 i\]ac. ~5.30!

Indeed, from~5.1! it follows that

]ac5kac.

Thus,

Ĥac52 i\kac. ~5.31!

As will be shown in Ref. 18, these operators are related to the linear first integrals

Ha5pa ~5.32!

corresponding to the ignorable coordinates and thus to the Killing vectors characterizin
separation in standard coordinates~see Sec. VII!. From ~5.31! we observe thatka must be pure
imaginary, since the operatorsĤa are self-adjoint. This is in agreement with the fact that
choice of the constraint equations~5.2! does not change the state represented byc.

VI. THE ROBERTSON CONDITION

In this section we analyze the Robertson condition in a standard separable coordinate s
We shall extend to the reduced separation the analysis on the Robertson condition do
Eisenhart3 in the case of the orthogonal separation. This extension has already been discu
Ref. 19; here we give an improved and simplified version.

For a metric tensor in the standard form~3.6!, where (qa) are ignorable, the nonvanishin
Christoffel symbols are

Gaba52 1
2]agab , Gab

a 52 1
2g

aa]a]ab ,

Gaab5 1
2]agab , Gaa

b 5 1
2(

g
gbg]agag ,

~6.1!
Gaba5

1
2]bgaa , Gac

a 5 1
2g

aa]cgaa ,

Gaab52 1
2]bgaa ~aÞb!, Gaa

b 52 1
2g

bb]bgaa ~aÞb!.

It follows that

Ga5gi j G i j
a 50, G ia

i 50, ~6.2!

and from~4.3!,

Ga5gaaG
a52]a ln gaa1 1

2]a ln det@gi j #52]a ln gaa1 1
2]a ln det@gab#1 1

2(
c51

m

]a ln gcc.

~6.3!
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Moreover,

G ia
i 5Gba

b 1Gaa
a 5 1

2g
bb]agbb1 1

2g
ab]agab ,

so that

G ia
i 52 1

2]a ln det@gi j #52Ga2]a ln gaa. ~6.4!

Let us consider the Riemann tensor and the Ricci tensor defined as follows:

Ri jk
l 5] iG jk

l 2] jG ik
l 1G jk

r G ir
l 2G ik

r G j r
l , Rjk5Rl jk

l .

By a straightforward calculation it can be seen that the Riemann tensor components whi
needed for the computation of the nondiagonal Ricci tensor components,Rab , aÞb, have the
following expressions:

Rcab
c 5 3

4]a]b ln gcc2 1
4gcc~]a]bgcc2]b ln gaa]agcc2]a ln gbb]bgcc! ~cÞa,b;c n.s.!,

Raab
a 50, ~6.5!

Raab
a 5 3

4]a~gab]bgab!2 1
4gab~]a]bgab2]b ln gaa]agab2]a ln gbb]bgab! ~a n.s.!

and that

Raa50. ~6.6!

A remarkable fact is that, due to the separability conditions~3.88!, expressions~6.5! reduce to

Rcab
c 5 3

4]a]b ln gcc, Raab
a 5 3

4]a~gab]bgab!,

so that

Rab5
3

4
]a]bS (

cÞa,b
ln gcc1 ln det@gab# D ~aÞb!. ~6.7!

For the casem5n the second term on the right-hand side of~6.7! disappears and we find
formula first stated by Eisenhart20 and related to the orthogonal separation.

Another remarkable fact is that forc5a the first equation~3.88! is equivalent to

]a]b ln gaa5]a ln gbb]b ln gaa ~aÞb!,

so that, due to the symmetry in the indices of the right-hand side of this equation, we can

]a]b ln gaa5 1
2~]a]b ln gaa1]a]b ln gbb!,

and from~6.3! we get

]bGa5
1

2
]a]bS (

cÞa,b
ln gcc1 ln det@gab# D . ~6.8!

Formula~6.6! and the comparison between~6.8! and ~6.7! show that
Theorem 6.1: (i) In standard separable coordinates(qa,qa),

Rab5 3
2]bGa ~aÞb!, Raa50. ~6.9!

(ii) In orthogonal separable coordinates,
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Ri j 5
3
2] jG i , iÞ j . ~6.10!

This last equation is simply the reduction of~6.9! to the casem5n ~no greek indices!. Thus,
Theorem 6.2:The Robertson condition in orthogonal separable coordinates] iG j50 (iÞ j ) is

equivalent to

Ri j 50 ~ iÞ j !.

The Robertson condition in standard separable coordinates]aGb50 (aÞb) is equivalent to

Rab50 ~aÞb!.

Remark 6.3:Theorem 6.2 gives a geometrical meaning of the Robertson condition for the
and the reduced separation. For the reduced separation we take the standard coordinate
quired by Proposition 5.8.

SinceRaa50, it is proved that
Theorem 6.4: The Robertson condition in standard coordinates is fulfilled if and only if

Ricci tensor assumes the standard form.
Remark 6.5:The Robertson condition is identically satisfied, so that there is a simultan

separation of the Schro¨dinger and Hamilton–Jacobi equations, for Einstein manifolds, where
Ricci tensor is proportional to the metric tensor,R5aG ~thus, in particular, for constant curvatur
manifolds and Ricci-flat manifolds!.

VII. THE EISENHART–KILLING EQUATIONS AND THE INTRINSIC CHARACTERIZATION
OF THE SEPARATION

As has been illustrated in the preceding sections, the separation of variables is appar
strictly ‘‘coordinate dependent’’ matter. This is perhaps the reason why for long it has not
recognized as a ‘‘modern’’ theory. However, as we know today, the existence of separable
dinates for the Hamilton–Jacobi and Schro¨dinger equations requires the presence on the unde
ing Riemannian manifold of a rich intrinsic~coordinate independent! structure, described by
algebraic or geometrical objects: Killing vectors, Killing tensors, and webs~sets of foliations!.

The first fundamental contibution to the intrinsic theory of the variable separation dates
to Levi-Civita.11 He pointed out first, that the separation of the geodesic Hamiltonian is a n
sary condition for the separation of all the associated natural Hamiltonians with scalar and
potentials.21 This gives a prominent role to the separation of the geodesic Hamilton–Jacobi
tion. Second, he proposed a classification of the separable coordinates into two classes
using his methods of ‘‘calcolo differenziale assoluto,’’ developed together with Ricci22 a few years
earlier, he proved that when all the coordinates are of first class then the manifold is nece
locally flat. This result was later extended to the general case by Agostinelli,23 who proved that the
separation associated withr first-class coordinates corresponds to the existence of a foliatio
r-dimensional locally flat submanifolds. These pioneering results have recently been incorp
within a general geometrical framework of the geodesic separation, based on the notion osepa-
rable Killing web.16 However, a milestone in this way is represented by the contribution
Eisenhart,3 which we shall revisit in the present section, with suitable modifications and ex
sions.

We recall that a contravariant symmetric tensorK5(Ki¯ j ) is said to be aKilling tensor if its
components satisfy theKilling equation

¹ (hKi¯ j )50,

where ¹ denotes the covariant derivative with respect to the Levi-Civita connection and
parentheses~...! denote the symmetrization of the indices. There is however an alternative eq
lent definition of Killing tensor, which is not related to the covariant derivative but to the cano
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symplectic structure of a cotangent bundle. This definition is based on the one-to-one corr
dence between the contravariant symmetric tensors and the homogeneous polynomial func
T* Q,

P~K !5PK5Ki¯ j pi¯pj .

We say that two tensorsK andK 8 arein involution if the corresponding polynomial function
are in involution, i.e., if their Poisson bracket vanishes identically:

$P~K !,P~K 8!%50.

Then a tensorK is a Killing tensor if and only ifP(K ) is a first integral of the geodesic flow, i.e
it is in involution with the geodesic HamiltonianG5 1

2PG :

$PK ,G%50. ~7.1!

Also this definition does not depend on the choice of the coordinates. Let us call~7.1! the
Poisson–Killing equation.

In the theory of the separation of variables a fundamental role is played by Killing vec
corresponding to linear first integrals and to one-parameter groups of isometries, and by
two-tensors, interpreted as symmetric linear operators on one-forms or vector fields. Thus,
following discussion by ‘‘Killing tensor’’ we mean ‘‘Killing two-tensor.’’

Remark 7.1:We shall use the following notation. IfK5(Ki j ) is a contravariant two-tenso
and X5(Xi) a vector field, then byKX we denote the vector field image ofX by K ~as linear
operator! whose components are

~KX ! i5Ki j gjhXh5K
• j
i •Xj ,

and byKw the one-form image byK of the one-formw5w idqi whose components are

~Kw! i5gihKh jw j5Ki •
• jw j .

If K andL are two such tensors then byLK we mean their composition as linear operators. I
a contravariant two-tensor whose components are

~LK ! i j 5LihghkK
k j5L

•k
i • Kk j5LihKh•

• j .

We begin by considering the orthogonal separation. The link between the orthogonal sep
and the existence of Killing tensors is based on the following statement due to Eisenhart:20

Proposition 7.2: LetK be a symmetric tensor on a Riemannian manifold(Q,g) which is
diagonalized in an orthogonal coordinate system qI 5(qi). ThenK is a Killing tensor if and only
if its eigenvalues(l i) satisfy

] il
j5~l i2l j !] i ln gj j . ~7.2!

Proof: In the coordinatesqI the components ofK are

Kii 5l igii , Ki j 50 ~ iÞ j !,

so thatP(K )5l igii pi
2. A straightforward calculation shows that~7.1! are equivalent to~7.2!. j

We call ~7.2! the Eisenhart–Killing equations. These equations can be interpreted as a lin
normal first-order differential system in the unknown functions (l i), of the kind considered in
Sec. II. It is a crucial fact that its complete integrability conditions~as shown by a straightforwar
calculation! are

~l i2l j !Si j
k 50 ~ iÞ j , n.s.!, ~7.3!
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where

Si j
k 5] i] jg

kk2] i ln gj j ] jg
kk2] j ln gii ] ig

kk

are just the left-hand sides of the first separability conditions~3.5!.
Remark 7.3:The orthogonal separability theory lies in the following rather surprising circu

stance: there are three ‘‘different’’ first-order differential systems with the ‘‘same’’ complete
grability conditions,Si j

k 50 (iÞ j ). They are:~i! system~3.3!, with

Ri~qI ,pI !52
] iG

] iG
, G5

1

2
gii pi

2,

related to the orthogonal separation of the geodesic Hamilton–Jacobi equation;~ii ! system~4.11!
with

Ri~qI ,uI ~1!,uI ~2!!52S ]S
]ui

~2!D 21S ]S
]qi 1

]S
]ui

ui
~2!D , S~qI ,uI ~1!,uI ~2!!5gi j uiuj1gii ui

~2!2G iui ,

related to the free~thus, orthogonal! separation of the geodesic Schro¨dinger equation (V50); ~iii !
system~7.2! related to the existence of Killing tensors diagonalized in orthogonal coordin
Actually, as we have seen, the complete integrability of the second system requires an add
condition: the Robertson conditionRi j 50 for iÞ j . The same remarkable property holds for
nonconstant potentialV.

According to this remark, it is convenient to introduce the following
Definition 7.4:We call Killing –Stäckel algebraan n-dimensional linear spaceK of Killing

tensors which are~i! simultaneously diagonalized in orthogonal coordinates, or equivalently~ii !
with n common normal~i.e., orthogonally integrable or surface forming! eigenvectors.

Item ~ii ! in this definition is a coordinate-free translation of item~i!. Thus, we can affirm tha
Theorem 7.5: The orthogonal separation of the geodesic Hamilton–Jacobi equation is

equivalent to the complete integrability of the Eisenhart–Killing equations i.e., to the existence o
a Killing–Stäckel algebra.

This is a synthetic and simplified version of the classical theorem of Eisenhart on ‘‘sepa
systems of Sta¨ckel.’’3

Remark 7.6:The submanifolds of codimension 1 orthogonal to the normal eigenvectors
Killing–Stäckel algebra form anorthogonal separable web. A coordinate systemqI is called
adaptedto this web if the corresponding coordinate hypersurfaces belong to the web. Any
dinate system adapted to a separable web is orthogonal and separable. It follows that:an orthogo-
nal web is separable if and only if its leaves are orthogonal to the eigenvectors of a Kill–
Stäckel algebra.

Remark 7.7:A Killing–Stäckel algebra, as well as a separable orthogonal web, may no
defined on the whole configuration manifoldQ. The points ofQ where the requirements o
Definition 7.4 are not fulfilled~or where the manifolds orthogonal to the normal eigenvectors
not defined! form thesingular setof the algebra~or of the web!.

Due to Theorem 7.5, the analysis of the orthogonal separation is now related to the anal
the Killing–Stäckel algebras. Going back to Definition 7.4, we observe that:~i! when the
Eisenhart–Killing equations are completely integrable, we can always find, locally, a solution
that l iÞl j for iÞ j ; ~ii ! as shown by a straightforward calculation, two functionsP(K ) and
P(K 8) corresponding to two solutions of system~7.2! are in involution;~iii ! l i51 is a trivial
solution. Thus,

Theorem 7.8: (i) A Killing –Stäckel algebra admits locally a Killing tensor with pointwis
distinct eigenvalues. (ii) All Killing tensors in a Killing–Stäckel algebra are in involution. (iii) The
metric tensorG belongs to any Killing–Stäckel algebra.

Furthermore, the presence of the terml i2l j in ~7.3! implies that if there exists a Killing
tensor which is diagonalized in orthogonal coordinates and with pointwise simple eigenv
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l iÞl j , then allSi j
k ( iÞ j ) vanish identically~these are functions of the coordinates only!, so that

the Eisenhart–Killing equations are completely integrable.24 This proves that
Theorem 7.9: A Killing–Stäckel algebra is uniquely determined by a Killing tensor w

normal eigenvectors and pointwise simple eigenvalues.
Remark 7.10:The ‘‘uniqueness’’ in this last statement has a local meaning. It means thatK

andK8 are two Killing–Stäckel algebras both containing a Killing tensorK with simple eigen-
values, thenK5K8 at least in the domain of definition ofK . Then we say thatK is a character-
istic tensorof the Killing–Stäckel algebraK. Note that it is not uniquely determined inK. We also
remark that there are cases in which a Killing–Sta¨ckel algebra does not admit a ‘‘global’’ char
acteristic Killing tensor. An example is the parabolic translational web in the Euclidean t
space~see Ref. 25 for a description of this web!.

Remark 7.11:As a consequence of the preceding remarks and statements, we have at le
ways for characterizing intrinsically the orthogonal separation of a geodesic Hamilton–J
equation:~A! by means of a Killing–Sta¨ckel algebraK, or ~B! by means of a characteristic Killing
tensorK , i.e., a Killing tensor with simple eigenvalues and normal eigenvectors. This se
characterization seems to be more effective that the first one, since it involves only one K
tensorK .24 But difficulties could arise in checking if first, this tensor has simple eigenvalues~via
the analysis of the discriminant of the corresponding characteristic equation! and second, if its
eigenvectors are normal. Of course, analogous problems arise in dealing with a whole Ki
Stäckel algebra~i.e., with n independent Killing tensors! at least as it is defined in Definition 7.4
item ~ii !: we still have the algebraic problem of checking ifn independent tensors have comm
eigenvectors, and the differential problem of checking if these eigenvectors are normal. Ho
these problems can be simultaneously solved by using the following characterization of a Ki
Stäckel algebra:

Theorem 7.12:An n-dimensional spaceK of Killing tensors is a Killing–Stäckel algebra if
and only if its elements (i) commute as linear operators,

K1K22K2K150, ;K1 ,K2PK, ~7.4!

and (ii) are in involution,

$P~K1!,P~K2!%50, ;K1 ,K2PK. ~7.5!

We postpone the proof of this theorem to Sec. VIII. What is important in this characterizati
that, ~i! as first pointed out by Kalnins and Miller,26 if n independent Killing tensors haven
common eigenvectors and are in involution, then the eigenvectors are necessarily normal~ii ! if
they commute as linear operators, then they have necessarily the same eigenvectors~this holds,
however, only in a positive-definite metric!; ~iii ! both conditions~7.4! and ~7.5! require simple
calculations, of algebraic and differential character, respectively.

Going back to Remark 7.11, we emphasize the advantage of dealing with a single cha
istic tensor in the nongeodesic case, i.e., when a potentialV is present. Indeed, it can be proved24

that
Theorem 7.13: The Hamilton–Jacobi equation associated with a natural Hamiltonian

5G1V is orthogonally separable if and only if (i) there exists a first integral

HK5 1
2PK1U5 1

2K
i j pipj1U,

whereK is a tensor with pointwise simple eigenvalues and normal eigenvectors, or equival
(ii) if and only if there exists a Killing tensorK with pointwise simple eigenvalues and norm
eigenvectors such that the one-form image ofdV by K is closed:

d~KdV!50. ~7.6!

In fact, the equivalence of items~i! and ~ii ! is only ‘‘local.’’ Indeed, a functionHK is in
involution with H5G1V if and only if
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$G,PK%50, dU5K dV.

The first equation is the Poisson–Killing equation, while the second one implies~7.6! and is
implied by~7.6! only locally. However, in most of the applications this equivalence turns out t
global ~that is, the closed one-formK dV is exact! at least on the manifoldQ deprived of the
singular set of the Killing tensorK ~where the eigenvalues are not simple!.

Equation~7.6! has been called thecharacteristic equation of a separable potential. Indeed, for
checking if a potentialV is separable in an orthogonal separable web~thus, in any orthogona
coordinate system adapted to this web! it is sufficient to apply this equation to a single charact
istic Killing tensor, and not to all elements of a basis of the corresponding Killing–Sta¨ckel
algebra. In fact, it can be proved that24

Theorem 7.14:If the characteristic equation is satisfied by a characteristic Killing tensorK ,
then it is satisfied by all elements of the Killing–Stäckel algebraK generated byK , and the
functions on T* Q,

HK5 1
2PK1VK , dVK5K dV, ;KPK, ~7.7!

form an n-dimensional space of quadratic first integrals in involution. A basis(H j ) of this space
is expressed in terms of Sta¨ckel matrices by formula (4.30).

By combining Theorem 7.12 and Theorems 7.13, 7.14, we get a further characterization
separation, which usesn Killing tensors~the metric tensorG may be included! but which avoids
the use of eigenvectors and their normality conditions:

Theorem 7.15: The Hamilton–Jacobi equation associated with a natural Hamiltonian
5G1V is orthogonally separable if and only if there exist n pointwise independent Ki
tensors(K j ) one other (i) commuting as linear operators, (ii) in involution and such that (iii)

d~K jdV!50

or equivalently, such that (iii8)

d~KdV!50

for a suitable linear combinationK5cjK j , cjPR, with simple eigenvalues.
After Theorem 7.13, we can give an intrinsic translation of Theorem 4.2 by applying The

6.2:
Theorem 7.16: The Schro¨dinger equation is freely separable if and only if there exists

Killing tensor K with simple eigenvalues and normal eigenvectors, satisfying the characte
equation (7.6) and commuting with the Ricci tensor

KR2RK50. ~7.8!

Indeed, sinceK has simple eigenvalues, the commutation relation~7.8! means thatR has the same
eigenvectors ofK .

For a general treatment of the separation~orthogonal or nonorthogonal! we follow a similar
way, starting from a suitable extension of the Eisenhart equations, that is from the follo
extension of Proposition 7.1, which can be easily proved by using the Poisson–Killing equ
~7.1!:

Theorem 7.17:Let K be a symmetric tensor on a Riemannian manifold. Assume that
coordinate system(qa,qa) both the contravariant metric tensorG and K assume the standard
form (3.6) and (3.10), with(qa) ignorable for both tensors, so that

G5gaa]a^ ]a1gab]a ^ ]b , K5lagaa]a^ ]a1Kab]a ^ ]b ,

where(la) are the eigenvalues ofK corresponding to the eigenforms(dqa). ThenK is a Killing
tensor if and only if
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]alb5~la2lb!]a ln gbb, ]aKab5la]agab. ~7.9!

These equations can be interpreted as a linear normal first-order differential system in t
known functions (la,Kab). The complete integrability conditions assume the form

~la2lb!Sab
cc50, ~la2lb!Sab

ab50 ~aÞb, n.s!,

where

Sab
hk5]a]bghk2]a ln gbb]bghk2]b ln gaa]aghk ~aÞb, n.s.!

are just the left-hand sides of the first two separability conditions~3.88!.
Thus, remarks and theorems similar to those illustrated for the orthogonal separation

order. The only difference is that now Eqs.~7.9!, when completely integrable, generates a spacK
of Killing tensors of dimensionm,n. The lost dimensions are replaced by a linear spaceD of
Killing vectors. The resulting structure is a pair (D,K) having the properties listed in the follow
ing

Definition 7.18: We call separable Killing algebraa pair (D,K) where ~I! D is an
r-dimensional linear space of commuting Killing vectors,~II ! K is aD-invariantn2r -dimensional
linear space of Killing two-tensors withm5n2r normal eigenvectors in common and orthogon
to D. We call these eigenvectorsessential.

As has been proved in Ref. 16,
Theorem 7.19:The separation of the geodesic Hamilton–Jacobi equation is equivalent to th

existence of a separable Killing algebra.
Remark 7.20:Them orthogonal foliationsSa of the one-codimensional submanifolds orthog

nal to the essential eigenvectors ofK ~thus tangent toD and containing the orbits ofD! form a
geometrical structure calledseparable Killing web. A standard coordinate system (qa,qa) is re-
lated to such a structure in the following way:~i! (dqa) are common~local! eigenforms of all
elements ofK corresponding to the common essential eigenvectors, or equivalently, their co
nate hypersurfaces belong to the webSa, ~ii ! the partial derivatives (]a), interpreted as vecto
fields, are commuting Killing vectors and form a local basis ofD.

Furthermore, by a straightforward analysis of system~7.9! we can prove the following two
statements:16

Theorem 7.21: In a separable Killing algebra: (i) there are Killing tensors with distin
eigenvalues corresponding to the essential eigenvectors, (ii) all Killing tensors are in involu
(iii) the metric tensor is included, (iv) D is normal (i.e., orthogonally integrable).

Theorem 7.22:A separable Killing algebra is uniquely determined by a characteristic Killi
pair (D,K ) where D is an r-dimensional space of Killing vectors in involution andK is a
D-invariant Killing tensor with m5n2r normal eigenvectors orthogonal to D and correspondi
to pointwise distinct eigenvalues.

Remark 7.23:Also for the general separation we have two equivalent intrinsic characte
tions: ~A! by means of a separable Killing algebra (D,K) or, ~B! by a characteristic Killing pair
(D,K ), and what has been said in Remark 7.11 can be adapted to this case.

The use of a separable Killing algebra is made more effective by the following the
analogous to Theorem 7.12~see Sec. VIII for the proof!.

Theorem 7.24: A pair (D,K), where D is an r-dimensional space of Killing vectors
involution andK is an m-dimensional space of D-invariant Killing tensors, is a separable Kill
algebra if and only if: (i) the distributionD' orthogonal to D is invariant under the elements
K interpreted as linear operators, (ii) the restrictions toD' of the elements ofK form at each
point an m-dimensional space and commute; (iii) the elements ofK are in involution.

Finally, it can be proved16 that
Theorem 7.25: The Hamilton–Jacobi equation associated with a natural Hamiltonian

5G1V is separable if and only if there exists a characteristic Killing pair(D,K ) such that V is
D-invariant and the characteristic equation (7.6) is satisfied. In this case the functions
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HK5 1
2PK1VK , dVK5K dV, KPK,

HX5PX , XPD,

form an n-dimensional space of first integrals in involution. A basis(Ha ,Ha) of this space is
expressed in terms of Sta¨ckel matrices by formulas (5.28) and (5.32).

Hence, the corresponding Hamiltonian system is integrable in the Arnold–Liouville s
This theorem shows that the existence ofm quadratic andn2m linear first integrals in involution
is a necessary condition for the separation.

Remark 7.26:It is important to remark that the use of a characteristic Killing pair (D,K )
provides a finer classification of the orthogonal separation. Indeed, an orthogonal web could
two ~or more! different characteristic Killing pairs, thus two~or more! different classes of sepa
rable potentials. This is the case, for instance, of the translational or rotational webs
Euclidean three-space, as described in Ref. 25, where an orthogonal coordinate system
interpreted in more than one way as a standard separable coordinate system~see the examples in
Ref. 21!.

As a consequence of Theorem 7.25, we get the following intrinsic translation of Theorem
and 6.4 related to the reduced separation of the Schro¨dinger equation. We observe that,K andR
being in standard form, the tangent subspaces orthogonal toD are invariant subspaces for both

Theorem 7.27:The Schro¨dinger equation is reductively separable if and only if there exist
characteristic Killing pair(D,K ) such that: (i) the potential V is D-invariant; (ii) the character
istic equation (7.6) is satisfied; (iii) the spaces orthogonal to D are invariant under the R
tensor R, interpreted as a linear operator, and the restrictions to these spaces ofR and K
commute or equivalently, (iii8) the essential eigenvectors are eigenvectors of the Ricci tensR
(i.e., ‘‘Ricci principal directions’’).

Remark 7.28:Let Q̃ be the quotient of the manifoldQ by the orbits ofD ~that is the set of the
orbits ofD!. At least locally, it is anm-dimensionalreduced Riemannian manifold, whosereduced

metric tensorG̃5(gab) is the result of the projection ofG by the (n2m)-dimensional group of
isometries associated withD. Due to theD-invariance, the separable Killing algebra (D,K) is
projectable onto anm-dimensionalreduced Killing–Stäckel algebraK̃, and a characteristic Killing
tensorK5(Ki j ) onto areduced characteristic Killing tensorK̃5(Kab). Then, thereduced Schro¨-
dinger equation~5.25! is just the Schro¨dinger equation written on the reduced manifold, but w
respect to thereduced potential

Ṽ5V2gabkakb .

For this reduced equation we have a free separation.
Remark 7.29:All the preceding discussion and statements hold for pseudo-Riemannian

folds, by excluding the case of null~or isotropic! coordinates, i.e., under the assumptiongii Þ0 for
the free separation andgaaÞ0 for the reduced separation.

VIII. INTEGRABILITY OF FRAMES

As mentioned in Sec. VII,n independent Killing tensors in involution and commuting
linear operators have common and normal eigenvectors. This remarkable fact, discove
Kalnins and Miller,27 reduces the number of sufficient conditions for the geodesic separation
in the original version of the Eisenhart theorem,3 as well as in the version given by Woodhouse28

We illustrate in this section a detailed proof of this property, showing that in fact it lies in b
properties of frames in pure differential manifolds, apart from any Riemannian structure, w
plays a role only at the very end.

A frame~a ‘‘moving frame’’ in the classical literature! on a differentiable manifoldQn is a set
of n pointwise independent vector fields (X i). In general, frames exist only locally. A manifoldQ
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admits global frames if and only if it is parallelizable, that isTQ5Q3Rn. Two frames (X i) and
(X i8) are said to beequivalent if there are~nowhere vanishing! functions (f i) such thatX i8
5 f iX i .

Definition 8.1:A frame is integrable if for each indexi 51,...,n the distributionD ı̂ of rank
n21 spanned by all vectors of the frame with the exception ofX i is completely integrable.

Remark 8.2:The integrability is an invariant property within a class of equivalent frames
We have two equivalent definitions of integrability, illustrated in the two following propo

tions.
Proposition 8.3: A frame is integrable if and only if there exist local coordinate systems(qi)

such that the frame is equivalent to(] i),

] i5 f iX i .

Proof: ~i! Assume that the frame is integrable. Let us consider the distributionD 1̂ spanned by
(X2 ,...,Xn). The corresponding foliation can be locally parametrized by a regular functionq1;
dq1Þ0 is a characteristic one-form, so that^X i ,dq1&50 for iÞ1. Moreover,̂ X1 ,dq1&5g1Þ0,
otherwise dq150. Thus,^ f 1X1 ,dq1&51, with f 151/g1 . By the same procedure applied to a
distributionsD ı̂ we get a system of functions (qi) such that^ f iX i ,dqj&5d i

j . Hence, (qi) are
independent functions forming a coordinate system such that] i5 f iX i . ~ii !. The natural frame (] i)
associated with coordinates is obviously integrable; hence the equivalent frame (X i) is integrable
~Remark 8.2!. j

Proposition 8.4: A frame is integrable if and only if for each pair of indices iÞ j the distri-
bution D i j spanned by the two vectors(X i ,X j ) is completely integrable.

Proof: With each frame (X i) we can always associate aco-frame(j i) made of independen
one-forms such that̂X i ,j j&5d i

j . Thenj i is a characteristic form of the distributionD ı̂, that is
^D ı̂,j

i&50. As we know, this distribution is completely integrable if and only if dj i∧j i50.
Moreover, each distributionD i j is characterized by then22 forms (ja), aÞ i , j , and for instance,
D12 is completely integrable if and only if(†)dja∧j3∧¯∧jn50 for a53,...,n. ~i! Assume that
the frame (X i) is integrable: allD ı̂ are completely integrable, thus dj i∧j i50 for all i. Then~†! is
satisfied, as well as the similar equations associated with all pairs of distinct indices.~ii ! Assume
that allD i j are completely integrable. Then, by the Frobenius theorem each Lie bracket@X i ,X j # is
a linear combination of the same vectors (X i ,X j ). This is enough for the complete integrability o
any distribution~of any rank! spanned by any choice of the vectors of the frame. j

Remark 8.5:There is a geometrical~and intuitive! proof of this proposition.~i! If the frame is
integrable, let us consider the integral foliationsSı̂ of D ı̂. They are made of submanifolds o
codimension 1. Submanifolds belonging to different foliations are transversal. For any cho
iÞ j the foliation given by the intersection of allSk̂ with kÞ i , j is made of submanifolds o
dimension 2 which are tangent to (X i ,X j ). Hence,D i j is integrable.~ii ! Conversely, assume tha
all D i j are integrable and let us consider the corresponding foliationsSi j made of submanifolds o
dimension 2. For any fixedi, let us consider the foliationSı̂ given by the union of the foliations
Sjk with j ,kÞ i . This is a foliation of submanifolds of codimension 1 tangent toD ı̂; then this
distribution is integrable.

We base our discussion on the following general considerations. As we have seen in Se
we have a one-to-one correspondence between contravariant symmetric tensors of any oK
5(Ki¯ j ) on Q and homogeneous polynomial functionsP(K )5Ki¯ j pi¯pj on T* Q. For a func-
tion f ~zero-order tensor! on Q, P( f ) is by definition the canonical lift toT* Q ~constant along the
fibers!, which we denote by the same symbolf, so that

P~ f !5 f .

By this correspondence we define two operations over symmetric tensors.~i! The symmetric
tensor product(,

P~K(L !5P~K !P~L !.
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This product is comutative and associative. In particular, for vector fieldsX andY,

X(Y5 1
2~X^ Y1Y^ X!.

~ii ! The Lie–Nijenhuis bracket@•,•#,

P~@K ,L # !5$P~K !,P~L !%,

where$,% is the canonical Poisson–Lie bracket of functions onT* Q, defined in local canonica
coordinates (qi ,pi) by

$E,F%5] iE] iF2] iF] iE, ] i5
]

]qi , ] i5
]

]pi
.

In particular, for vector fieldsX andY,

$P~X!,P~Y!%5P~@X,Y# !,

where@,# is the ordinary Lie bracket, and

$P~X!,P~ f !%5@X, f #5^X,df &.

This bracket is anticommutative, bilinear, and obeys the Jacobi rule. Since the Poisson bra
a bi-derivation, the Leibnitz rule holds,

@K ,L(M #5@K ,L #(M1@K ,M #(L .

Moreover, two tensors are said to be in involution if@K ,L #50, i.e.,$P(K ),P(L )%50.
Let (X i) be a frame onQ. Let us set

@X i ,X j #5V i j
hXh , V i j

h52V j i
h,

and use the notation

P~X i !5xi , ~8.1!

so that

$xi , f %5^X i ,df &, $xi ,xj%5P~@X i ,X j # !5V i j
hxh .

Let us consider two contravariant symmetric two-tensorsK and L . Suppose that they ar
diagonalized in the frame, i.e.,

K5KiX i(X i , L5LiX i(X i .

By using the previous formulas, it is straightforward to compute the Poisson bracket o
corresponding quadratic functions:

$P~K !,P~L !%5$P~KiX i(X i !,P~LhXh(Xh!%

5$Kixi
2,Lhxh

2%

5KiLh$xi
2,xh

2%1Ki$xi
2,Lh%xh

21Lh$Ki ,xh
2%xi

2

54KiLhV ih
jxixhxj12~Ki^X i ,dLh&2Li^X i ,dKh&!xixh

2

52~2KiLhV ih
j1~Ki^X i ,dLk&2Li^X i ,dKk&!dk

hdk
j !xixhxj . ~8.2!

By using this formula we can prove
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Theorem 8.6:Suppose that n contravariant two-tensors(Ka) are (i) pointwise independent
(ii) in involution, and (iii) simultaneously diagonalized in a frame(X i). Then the distributionsD i j

spanned by pairs of vectors(X i ,X j ) are completely integrable.
Proof: By assumption~iii !, Ka5Ka

i X i(X i , and the independence of the tensors is equiva
to

det@Ka
i #Þ0.

Due to ~8.2!, equation$P(Ka),P(Kb)%50 is equivalent to

~2Ka
i Kb

hV ih
j1~Ka

i ^X i ,dKb
k&2Kb

i ^X i ,dKa
k&!dk

hdk
j !xixhxj50.

This is a homogeneous polynomial equation which must be identically satisfied for all valu
the variables (pk), thus for all values of the variables (xi), sincexi5P(X i)5Xi

kpk , and det@Xi
k#

Þ0. Thus, all coefficients vanish. In particular, the coefficient ofx1 x2 x3 ~as well as for all
possible choice of three distinct indices! gives rise to

Ka
1Kb

2V12
31Ka

1Kb
3V13

21Ka
2Kb

3V23
11Ka

2Kb
1V21

31Ka
3Kb

1V31
21Ka

3Kb
2V32

150,

i.e., due to the skew-symmetry ofV,

V12
3~Ka

1Kb
22Ka

2Kb
1!1V23

1~Ka
2Kb

32Ka
3Kb

2!1V31
2~Ka

3Kb
12Ka

1Kb
3!50.

This equation can be represented in the form

detFV23
1 V31

2 V12
3

Ka
1 Ka

2 Ka
3

Kb
1 Kb

2 Kb
3
G50.

This means that the three vectors ofR3,

v5~V23
1,V31

2,V12
3!, ka5~Ka

1,Ka
2,Ka

3!, kb5~Kb
1,Kb

2,Kb
3!

are linearly dependent~i.e., coplanar!. Assume thatvÞ0. It follows that all vectors (k1 ,...,kn)
belong to a same three-plane~containingv!. This means that, for any choice of three distin
indices (a,b,c), we have

detF Ka
1 Ka

2 Ka
3

Kb
1 Kb

2 Kb
3

Kc
1 Kc

2 Kc
3
G50.

As a consequence, by applying the Laplace rule to the lines~1,2,3! of the matrix @Ka
i # for the

calculus of its determinant, we get det@Ka
i #50: absurd. Thusv50. This means thatV23

15V31
2

5V12
350. So, we have proved thatV i j

h50 for any choice of distinct indices. This means th
@X i ,X j # is a linear combination ofX i andX j only. Due to Frobenius’ theorem, the statement
proved. j

Due to Propositions 8.3 and 8.4 it follows that
Theorem 8.7:Under the same assumptions of Theorem 8.6, the frame(X i) is integrable and

there are coordinates(qi) in which all tensors are simultaneously diagonalized: Ka
i j 50 for

iÞ j .
We remark that the preceding statements hold in a pure differential framework; they d

involve a metric at all. When a metric tensorG is present, we can consider the case in which
frame is orthogonal and made of common eigenvectors ofn independent symmetric two-tenso
~not necessarily Killing tensors! (Ka). Then we can write
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Ka5la
i « iX i(X i , X i•X j50, iÞ j ,

wherela
i is the eigenvalue ofKa corresponding to the eigenvectorX i ,

KaX i5la
i X i ,

and

« i5« i
21, « i5X i•X i .

Thus, we can assert that
Theorem 8.8:An orthogonal frame made of common eigenvectors of n independent sym

ric two-tensors in involution is integrable and the tensors are simultaneously diagonalzed
orthogonal coordinate system.

Note that the metric tensorG may be one of the tensors considered in this statement~as it
happens in a Killing–Sta¨ckel algebra!. Then all the two-tensors are Killing tensors. This prov
Theorem 7.12, by remarking that item~i! is equivalent to the existence of common eigenvecto
according to the following

Proposition 8.9: Let(Ka) be a set of n pointwise independent symmetric two-tensors
Riemannian manifold. If they commute as linear operators then they generate locally a u
orthogonal frame (up to an equivalence) made of common eigenvectors.

This is a pure algebraic property, which follows from the spectral theorem of self-ad
linear operators~see for instance Ref. 29, Secs. 79, 84!. However, for the sake of completenes
here we give direct proof based on the following

Proposition 8.10: LetK andL be two symmetric linear operators over an n-dimensional r
Euclidean vector spaceEn . If they commute, then they have n common eigenvectors.

Proof: Let us denote byu"v5g(u,v) the scalar product of vectors ofEn , defined by a
positive-definite metric tensorg. A linear operatorK :En→En is, by definition, symmetric if
v"Ku5u"Kv for each pair of vectors. It is well known that, for a metric tensor of any signat
~i! eigenvectors corresponding to distinct eigenvalues are orthogonal:

Ku5lu, Ku 85l8u8, lÞl8⇔u"u850.

~ii ! An eigenvaluel determines a maximal invariant linear subspaceS(l)#En of eigenvectors; if
l is complex, then also the conjugatel* is an eigenvalue~with the same multiplicity! and the
dimension ofS(l) is even.~iii ! am(l)>gm(l), where am~l! is thealgebraic multiplicityof l as
root of the characteristic equation, and gm~l! is its geometric multiplicity, which is the dimension
of S(l), if l is real, or half of this dimension if complex. However, in a positive definite me
the eigenvalues are real and am(l)5gm(l)5dimS(l). It follows that if all the eigenvalues are
simple, dimS(l)51 and the eigenvectors form~up to factors! a canonical basis. LetL be a linear
operator commuting withK . Then

vPS~l!⇔Kv5lv⇒LKv 5lLv⇒KLv 5lLv⇒LvPS~l!.

This means thatS(l) is an invariant space ofL . If l is a simple root ofK , then v is also an
eigenvector ofL . It follows that the spaceEn is decomposed into a direct sum

En5V1%¯% Vk% W1%¯% Wl ,

of mutually orthogonal subspaces, where (V1 ,...,Vk) are one-dimensional subspaces of comm
eigenvectors generated by simple eigenvalues ofK and L , and (W1 ,...,Wk) are subspaces o
dimension>2 made of simultaneous eigevectors ofK andL . By choosing an orthogonal basis o
each of these subspaces we find a basis made of orthogonal common eigenvectors. j

If, instead of two operators, we consider a set ofn commuting symmetric operators (Ka) we
find again a direct-sum decomposition as previously and an orthogonal basis made of co
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eigenvectors. But if these operators are independent, the spacesW are not present and the basis
uniquely determined up to constant factors. Indeed, if (X i) is a basis of common eigenvector
thenKaX i5la

i X i and the independence of (Ka) is equivalent to det@la
i #Þ0. It follows that we can

always find a linear combination of (Ka) which has all distinct eigenvalues. This proves Prop
sition 8.9.

Finally, we prove Theorem 7.24.
Proof: Conditions~i!–~ii !–~iii ! are obviously necessary. To prove that they are also suffic

let us apply Proposition 8.9 to the restrictionsK' of K to the orthogonal distributionD'; it
follows that they define, in a unique way up to an equivalence, asubframe(Xa) (a51,...,m) of
eigenvectors ofK. SinceK is D-invariant, this subframe can be chosen to beD-invariant. If (Xa)
(a5m11,...,n) is a ~local! basis ofD, then (Xa ,Xa) form a frame such that@Xa ,Xa#50, and
two elements ofK can be written in the form

K5KaXa(Xa1KabXa(Xb , L5LaXa(Xa1LabXa(Xb ,

where all the components areD-invariant. Recalling notation~8.1! we have

$xa ,xa%50, $xa ,xb%50, $xa ,xb%5Vab
c xc1Vab

a ,xa ,

whereV’s areD-invariant. A calculation similar to that in the proof of Theorem 8.6, shows that
involutivity of a basis (Ka) of K implies that allV’s with distinct indices vanish. Then we appl
Proposition 8.4. j

The second part of this proof can be replaced by the following geometrical~and intuitive!
reasoning. We can consider~at least locally! the reduced manifoldQ̃ ~see Remark 7.28!. Due to
theD-invariance ofK, the vector fieldsXa can be chosen~up to factors! to be projectable onto an
orthogonal frameX̃a of Q̃ and the orthogonal components of the elements ofK onto the
m-dimensional reduced Killing–Sta¨ckel algebraK̃. Then we can apply to this algebra the abov
given results related to Killing–Sta¨ckel algebras, remarking that the involutivity ofK implies the
involutivity of K̃. It follows that the frame (X̃a) is integrable. Pulling back the integral orthogon
manifolds, we get submanifolds of dimensionm21 whose unions with the orbits ofD are mani-
folds of dimensionn21 orthogonal to the (Xa). Thus, these vectors are normal.

IX. AN ILLUSTRATIVE EXAMPLE: THE COMPARISON BETWEEN THE FREE AND THE
REDUCED SEPARATION

Let us consider in the Euclidean three-spaceQ5E3 the Hamilton–Jacobi equation of th
Kepler problem,V52k/r ,

1

2
upu22

k

r
2E50,

wherer is the distance from the origin, and the corresponding Schro¨dinger equation of the ‘‘hy-
drogen atom’’~as usual, see Sec. IV, we replace (2/\2)V and (2/\2)E with V andE!

Dc1S E1
k

r Dc50.

It is known that the Kepler problem is separable with respect to four separable webs: sph
spherical conical, parabolic, all centered at the origin, and prolate spheroidal centered at an
with focus at the origin~see Ref. 30 for a group-theoretical approach and Ref. 31 for a geome
and tensorial approach!. SinceR50, the Schro¨dinger equation is separable in all possible co
dinate systems associated with these webs. In order to analyze the different features betw
free and the reduced separation, let us consider the spherical web, which is orthogona~thus
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allowing the free separation! and rotational~thus allowing the reduced separation!. This web can
be parametrized by the usual spherical coordinates (q1,q2,q3)5(r ,u,w).

Free separation. The Killing–Stäckel algebraK3 associated with the spherical web has t
following basis:

K15]u ^ ]u1
1

sin2 u
]w ^ ]w ,

K25]w ^ ]w , ~9.1!

G5] r ^ ] r1
1

r 2 ]u ^ ]u1
1

r 2 sin2 u
]w ^ ]w .

The ~diagonal! components of these tensors form the inverse matrix

@w~ j !
i #5F 0 1

1

sin2 u

0 0 1

1
1

r 2

1

r 2 sin2 u

G ~9.2!

of the Stäckel matrix

@w i
~ j !#5F 2

1

r 2 1 0

0 2
1

sin2 u
1

1 0 0

G .

The last line of matrix~9.2! represents the diagonal componentsgii of the metric tensor. The
contracted Christoffel symbols~4.3! are

G152
2

r
, G252

1

tanu
, G350. ~9.3!

Looking at the expression of the Newtonian potential energy, written as a Sta¨ckel multiplier ~1.6!,

V52
k

r
5f ig

ii 5f iw~3!
i 5f1~r !1f2~u!

1

r 2 1f3~w!
1

r 2 sin2 u
,

we get~at least! two solutions,

f152
k

r
2

c

r 2 , f25cPR, f350,

or

f152
k

r
, f252

c

sin2 u
, f35cPR.

However, for our purposes, there is no loss of generality in choosingc50, so that they coincide
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f152
k

r
, f250, f350. ~9.4!

In the free separation the Killing tensors of the spherical Killing–Sta¨ckel algebra correspond to th
constants of motiona5(aj ) entering Eqs.~4.32!,

w~ j !
i S c i9

c i
2G i

c i8

c i
2f i D 1aj50.

Due to ~9.3! and ~9.4!, these equations are equivalent to the well-known separated ord
differential equations of the kind~4.29!,

c191
2

r
c181S a32

1

r 2 a11
k

r Dc150 ~a35E!,

c291cotuc281S a12
1

sin2 u
a2Dc250, ~9.5!

c391a2c350,

in the unknown functionsc1(r ), c2(u), c3(w). The general solution of the first equation~9.5!
can be written

c15c1F11c2F2

whereF1(a1 ,a3 ;r ) andF2(a1 ,a3 ;r ) are two independent confluent hypergeometric function32

and (c1 ,c2) arbitrary constants. Since anyc i can be determined up to an inessential multiplicat
constant, we can choose the solution

c15F11b1F2 , b1PR.

In a similar way, for the second equation~9.5! we consider the solution

c25S1~a1 ,a2 ;u!1b2S2~a1 ,a2 ;u!,

whereS1 andS2 are independent spherical harmonics.32 For the last equation~9.5! we can con-
sider the solution

c35e2A2a2w1b3eA2a2w.

Thus, the resulting separated solutionc5c1c2c3 depends on 2n56 constants (ai ,bi). However,
in order to get solutionsc5c1c2c3 with a physical meaning, the constant paramet
(a1 ,a2 ,a3), corresponding to the constants of motion, must verify further well known~quantiza-
tion! conditions, assuring for instance, the summability ofc1 andc2 , and the periodicity ofc3 .
These are the results of the free separation, as explained in Remarks 4.7, 4.8, and 4.9.

Reduced separation. Since the spherical web is rotational, so thatw is ignorable, we can
consider the reduced separation according to Definition 5.1 and Theorem 5.2, by setting~being
a53)

c35ek3w. ~9.6!

Now the Sta¨ckel matrix and its inverse are the 232 matrices
                                                                                                                



nsors
bra

ed

the

n

Re-

5221J. Math. Phys., Vol. 43, No. 11, November 2002 Remarks on the connection . . . I.

                    
@wb
~a!#5F 2

1

r 2 1

1 0
G , @w~a!

b #5F 0 1

1
1

r 2
G ,

respectively. The other two functionsc1(r ) andc2(u) must satisfy the separated equations~5.27!.
In the present case, from the general expressions~3.9!, wherea5b53, we derive

g335
1

r 2 sin2 u
5f1

331f2
33 1

r 2 ,

thus,

f1
335

c

r 2 , f2
335

1

sin2 u
2c, cPR,

andf1 , f2 , G1 , andG2 are as above. Forc50 ~5.27! become

c191
2

r
c181S ã22

1

r 2 ã11
k

r Dc150 ~ ã25E!,

c291cotuc281S ã11
1

sin2 u
k3

2Dc250.

Up to the transformation of the constant parameters,

ã15a1 , ã25a3 , k3
252a2 ,

these equations coincide with the first two equations~9.5!, andc3 given by the constraint~9.1! is
a solution of the third equation~9.5!. Finally, we observe that the Killing–Sta¨ckel algebraK3

associated with the free separation in the spherical web is determined by the Killing te
(G,K1 ,K2) given in ~9.1!. With the same web we associate the separable Killing alge
(D1 ,K2), with K25span(G,K1) andD5span(]w). This geometrical structure can be interpret
in two different ways.~i! We can use]w for constructingK25]w ^ ]w , by interpretingw as an
essential coordinate~this is possible since the web is orthogonal!. In this way we reconstruct the
Killing–Stäckel algebraK3 , associated with the free separation.~ii ! We can associate withD the
solution ~9.6!, by interpretingw as an ignorable coordinate, and we reduce the problem of
separation to the remaining two essential coordinates: this is the reduced separation.
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Remarks on the connection between the additive
separation of the Hamilton–Jacobi equation and the
multiplicative separation of the Schro ¨ dinger equation.
II. First integrals and symmetry operators

S. Benenti,a) C. Chanu, and G. Rastelli
Department of Mathematics, University of Turin, 10123 Torino, Italy

~Received 1 March 2002; accepted 27 June 2002!

The commutation relations of the first-order and second-order operators associated
with the first integrals in involution of a Hamiltonian separable system are exam-
ined. It is shown that these operators commute if and only if a ‘‘pre-Robertson
condition’’ is satisfied. This condition involves the Ricci tensor of the configuration
manifold and it is implied by the Robertson condition, which is necessary and
sufficient for the separability of the Schro¨dinger equation. ©2002 American In-
stitute of Physics.@DOI: 10.1063/1.1506181#

I. INTRODUCTION

The connection between the additive separation of the Hamilton–Jacobi equation a
multiplicative separation of the corresponding Schro¨dinger equation has been examined in pa
1.1 Two different kinds of separation have been introduced for the Schro¨dinger equation, called
‘‘free’’ and ‘‘reduced separation,’’ respectively, related to two suitable completeness condition
a separated solution and geometrically characterized in terms of ‘‘Killing–Sta¨ckel algebras’’ and
of ‘‘separable Killing algebras.’’ These are linear spaces of Killing tensors and Killing vec
which generate complete systems of first integrals in involution, and which characterize the
ration of the Hamilton–Jacobi equation in orthogonal and in standard coordinates, respec
The corresponding Schro¨dinger equation is then separable in the same coordinate system i
only if a ‘‘Robertson condition’’ is satisfied. This condition involves the Ricci tensor of
configuration manifold and it is fulfilled in the most common applications of the theory~for
instance, on Einstein manifolds!.

In the present paper we revisit the matter relating the separation of the Schro¨dinger equation
to the existence of ‘‘symmetry operators,’’2 i.e., to the existence of linear second-order opera
on wave functions which commute with the Schro¨dinger operator. These operators are in one
one correspondence with the quadratic first integrals associated with the separation. We sha
that the ‘‘quantization problem,’’ i.e., the problem of defining a correspondence between cla
observables and linear operators preserving the commutation relations,3 is solvable for the invo-
lutive algebra of first integrals associated with the separation of the Hamilton–Jacobi eq
provided a ‘‘pre-Robertson’’ condition is satisfied. This condition is implied by the Rober
condition, so that the quantization problem for a classical natural Hamiltonian system is so
if the corresponding Schro¨dinger equation is separable. The main theorems and remarks are
in Secs. III and VI in the case of the orthogonal and general separation, respectively. The
are given in Secs. V and VIII, after general considerations about Killing tensors in orthogona
standard form illustrated in Secs. IV and VII.

a!Electronic mail: benenti@dm.unito.it
52230022-2488/2002/43(11)/5223/31/$19.00 © 2002 American Institute of Physics
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II. GENERAL COMMUTATION RELATIONS FOR SECOND-ORDER DIFFERENTIAL
LINEAR OPERATORS

By the ‘‘quantization problem’’3 we mean the problem of defining a correspondenceF°F̂
between classical and quantum observables, i.e., between smooth real functions on the co
bundle T* Q ~the ‘‘phase space’’! of the configuration manifold of a mechanical system a
self-adjoint linear operators on a suitable ‘‘state-space’’ of complex-valued functions~or distribu-
tions! on Q. This correspondence is required to beR-linear and preserving the Lie-algebra stru
ture of classical and quantum observables:

~F1G!ˆ5F̂1Ĝ, ~cF!ˆ5cF̂ ~cPR!, $F,G%ˆ5g@ F̂,Ĝ#.

Here,$F,G% denotes the canonical Poisson bracket of functions,g is a universal constant, and

@ F̂,Ĝ#5F̂Ĝ2ĜF̂

is the commutator of linear operators.
The quantization problem is not solvable on the whole set of observables of a phase sp4–6

~see Ref. 3 for details, comments, and references!. In accordance with Schwinger~Ref. 7, Sec. 2.4!
we can say not only that ‘‘it is a convenient fiction to assert that every Hermitian ope
symbolizes a physical quantity@...#’’ but also that it is a ‘‘convenient fiction’’ to assert that wit
every classical observable we can associate an Hermitian operator~i.e., a quantum observable!.
However, as we shall see, the quantization problem is solvable for the classical obser
involved in the separation of variables of a natural Hamiltonian system, which are polynomi
second degree in the momenta (pi).

We consider as a starting point the following assumptions:~i! The universal constantg is a
positive-imaginary number:g5 i /h, \PR1 . ~ii ! The operatorf̂ corresponding to a functionf on
Q, interpreted as a function onT* Q constant on the fibers, is defined by

f̂ c5 f •c.

As usual, the operatorf̂ will be simply denoted byf. ~iii ! The operatorP̂X corresponding to a
first-degree homogeneous polynomial

PX5Xipi

associated with a vector fieldX on Q, is defined by

P̂Xc5
1

g
^X,dc&52 i\^X,dc&.

~iv! The operatorP̂K corresponding to a second-degree homogeneous polynomial

PK5Ki j pipj

associated with a symmetric contravariant two-tensorK on Q, is defined by

P̂Kc52\2DKc52\2¹i~Ki j ¹jc!,

whereDK is thepseudo-Laplacianoperator defined by

DKc5¹i~Ki j ¹jc! ~2.1!

~by ¹i we denote the covariant derivative with respect to the Levi-Civita connection!. For K
5G ~the contravariant metric tensor! we find the Laplace–Beltrami operatorDG5D,
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Dc5gi j ¹i¹jc.

We shall use theco-differential or divergence operatord on contravariant skew-symmetric tenso
A, defined by

~dA! j¯k5¹iA
i j ¯k.

For a function~zero-tensor!, d f 50. It follows thatd250.
According to the notation used in Ref. 1, Remark 7.1, we shall identify a~contravariant!

two-tensorK5(Ki j ) with the corresponding linear endomorphisms on vectors and one-form
that we shall denote byK¹c the vector field image of the gradient¹c ~whose components ar
Ki j ] jc) and by K dc the one-form image of the differential dc ~whose components ar
gihKh j] jc). With this notation, the coordinate independent definition of the pseudo-Lapla
~2.1! is

DKc5d~K¹c!.

We shall deal with quadratic classical observables of the kind

HK5 1
2PK1VK , VK :Q→R,

and with the corresponding second-order operators

ĤK5
1

2
P̂K1VK52

\2

2
DK1VK . ~2.2!

For K5G we find theHamiltonianand theSchrödinger operator,

H5HG5
1

2
PG1V, Ĥ5

1

2
P̂G1V52

\2

2
D1V.

A classical observableF in involution with H, $F,H%50, is afirst integral ~or constant of motion!

of the Hamiltonian system generated byH. A linear operatorF̂ commuting withĤ,

@ F̂,Ĥ#50,

is called asymmetry operatorof the Schro¨dinger equation. The following commutation rules ho
for these classical observables,

$HK1
,HK2

%5$PK1
,PK2

%1PK1¹VK2
2PK2¹VK1

,

~2.3!
$HK ,H%5$PK ,PG%1PK¹V2P¹VK

.

We recall that aKilling tensor is a symmetric tensor~of any order! satisfying one of the
following two equivalent conditions:

$PK ,PG%50 ⇔ ¹ ( iK j¯k)50, ~2.4!

wherePK5Ki j ¯kpipj ...pk and the brackets~¯! denote the symmetrization of the indices. T
first equation~2.4! means thatPK is a first integral of the godesic flow.

In the second equation~2.3! the term$PK ,PG% is a third-degree homogeneous polynomial
the momenta (pi), while the remaining term is of first degree. This shows that

Theorem 2.1:The quadratic function HK is a first integral of the Hamiltonian flow generate
by H if and only if K is a Killing tensor andK dV5dVK i.e., the following conditions are
equivalent
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$HK ,H%50 ⇔ $PK ,PG%50 ~K Killing tensor!,
¹VK5K¹V. ~2.5!

For the related operators we have
Theorem 2.2:The following conditions are equivalent

@ĤK ,Ĥ#50 ⇔
$PK ,GG%50 ~K Killing tensor!,

K¹V2¹VK1
\2

6
dC50,

⇔ $HK ,H%52
\2

6
PdC , ~2.6!

where

C5KR2RK , Ci j 5KihRh
j 2RihKh

j 5KihghkR
k j2RihghkK

k j, Ci j 52Cji ,

and R is the Ricci tensor:
Proof: In accordance with the above-given definitions we have

ĤĤKc52
\2

2
DS 2

\2

2
DKc1VKc D1VS 2

\2

2
DKc1VKc D

5
\4

4
DDKc2

\2

2
~D~VKc!1VDKc!1VVKc,

ĤKĤc5
\4

4
DKDc2

\2

2
~DK~Vc!1VKDc!1VKVc,

DK~Vc!5cDKV12K ~dV,dc!1VDKc,

D~VKc!5cDVK12G~dVK ,dc!1VKDc.

Hence,

@Ĥ,ĤK#c5
\4

4
@D,DK#c1

\2

2
~cDKV12K ~dV,dc!2cDVK22G~dVK ,dc!!

5
\4

4
@D,DK#c1\2~K¹V2¹VK !•¹c1

\2

2
~DKV2DVK !c. ~2.7!

Now we use a formula due to Carter8 which gives an explicit expression of the commutator
a pseudo-Laplacian with the ordinary Laplacian,

@D,DK#c52¹hKi j ¹( i¹j¹h)c13¹h¹ (hKi j )¹( i¹j )c

1¹j~
1
2 ghk~¹ j¹ ( iKhk)2¹ i¹ ( jKhk)!1 4

3Kh
[ jRi ]h!¹ic, ~2.8!

where the brackets@¯# denote the skew-symmetrization of the indices. Gathering together
equating to zero the terms of third, first-, and zero-order derivatives ofc on the right-hand side o
~2.7! we get the following equations, respectively,

¹ (hKi j )50 ~K is a Killing tensor!,

K¹V2¹VK1
\2

6
d~KR2RK !50, ~2.9!

DKV2DVK50.
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The second-order terms in~2.7! disappear because of the first equation~2.9!. The last equation
~2.9! can be writtend(K¹V2¹VK)50, so that it becomes a consequence of the second equa
sinceC5KR2RK is skew-symmetric andd250. This proves the first equivalence~2.6!. The
second equivalence follows from the last equation~2.3!, since$PK ,PG% is a homogeneous poly
nomial of third degree in (pi), while PK¹V2P¹VK

andPdC are of first degree. j

The following three propositions are a consequence of Theorem 2.2 and of theCarter formula
~2.8!.

Proposition 2.3: IfK5(Ki j ) is a symmetric tensor, then@ P̂K ,P̂G#50 if and only if K is a
Killing tensor and

dC5d~KR2RK !50. ~2.10!

Proof: This is a special case of the first equivalence~2.6!, for V50 andVK50. j

We call ~2.10! the Carter condition. Note that@ P̂K ,P̂G#50 is equivalent to@DK ,D#50.
Proposition 2.4: IfK is a Killing tensor, then

$H,HK%50 ⇒ @Ĥ,ĤK#c5
\4

6
dC"¹c. ~2.11!

Proof: For a Killing tensor the Carter formula~2.8! reduces to

@D,DK#c5 2
3dC"¹c

so that~2.7! becomes

@Ĥ,ĤK#c5
\4

6
dC•¹c1\2~K¹V2¹VK !1

\2

2
d~K¹V2¹VK !.

Because of the equivalence~2.5!, we get the second equation~2.11!. j

Proposition 2.5: Let HK5 1
2PK1VK be a quadratic first integral i.e., $HK ,H%50. Then,

@ĤK ,Ĥ#50 if and only if the Carter condition (2.10) is satisfied.
Proof: If ~2.10! holds, then@ĤK ,Ĥ#50 because of the implication~2.11!. Conversely, the

simultaneous conditions@ĤK ,Ĥ#50 and$HK ,H%50 imply dC50 because of the equivalenc
~2.6! j

As a corollary of Theorem 2.2 we have
Theorem 2.6: If R5kG, then

$HK ,H%50 ⇔ @ĤK ,Ĥ#50.

This shows that on Einstein manifolds~in particular, on manifolds with constant curvature, on fl
manifolds, on Ricci-flat manifolds, etc.! a quadratic functionHK5 1

2PK1VK is a first integral if
and only if the corresponding operatorĤK , defined according to~2.1! and~2.2!, is a symmetry of
the Schro¨dinger equation.

For a first-order operatorP̂X we have a similar equivalence, but without any condition~like
the Carter condition! involving the Ricci tensor:

Theorem 2.7: The operator Pˆ X commutes with the Laplacian if and only ifX is a Killing
vector,

@ P̂X ,D#50 ⇔ $PX ,PG%50.
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Proof: This follows from three basic facts.~i! A vector field is a Killing vector if and only if
its covariant components satisfy equation

¹iXj1¹jXi50. ~2.12!

This is in accordance with~2.4!. ~ii ! If X5(Xi) is a Killing vector, then9

DXi1Rj
i Xj50, ~2.13!

whereRi j is the Ricci tensor. This follows from the general commutation rule

¹l¹kXi2¹k¹lXi5XmR
• ikl
m , ~2.14!

whereR
• ikl
m are the components of the Riemann tensor. Indeed, by settinggil R

• ikl
m 5Rk

m , we get

gil ~¹l¹kXi2¹k¹lXi !5Rk
mXm .

For a Killing vector,¹kXi is skew-symmetric due to~2.12! thus,

2gil ¹l¹iXk5Rk
mXm ,

and this equation is equivalent to~2.13!. ~iii ! For any vector fieldX, the general commutation
relation

@X,D#c52~DXl1XiRi
l !¹lc22¹hXi¹h¹ic, ~2.15!

holds, whereX(c)5Xi¹ic. Indeed,

@X,D#c5@Xi¹i ,ghk¹h¹k#c

5Xighk¹i¹h¹kc2ghk¹h¹k~Xi¹ic!

5ghk~Xi¹i¹h¹kc2Xi¹h¹k¹ic2¹h¹kX
i¹ic2¹kX

i¹h¹ic2¹hXi¹k¹ic! ~2.16!

However, because of~2.14!,

¹i¹h¹kc5¹h¹i¹kc5¹jcR
•khi
j 5¹h¹k¹ic1¹jcR

•khi
j ,

since¹i¹kc is symmetric. Thus, the last expression~2.16! becomes

@X,D#c5ghkXiR
•khi
j ¹jc2DXi¹ic22¹hXi¹h¹ic

and~2.15! is proved. Assume thatX is a Killing vector. Then the first term on the right-hand si
of ~2.15! vanishes because of~2.13!, as well as the second term, since¹hXi is skew-symmetric
because of~2.12!. Conversely, assume that~2.15! is satisfied for all functionsc. Then the coeffi-
cients of the first and second derivatives ofc must vanish separately. The coefficients of t
second derivatives yield equation¹hXi]h] ic50, which shows that¹hXi is skew-symmetric.
Thus,X is a Killing vector according to~2.12!, and the first-order terms vanish due to~2.13!. j

From Theorem 2.7 it follows that
Theorem 2.8:The operator Pˆ X commutes with the Schro¨dinger operator Ĥif and only if X

is a Killing vector and^X,dV&50 i.e.,

@ P̂X ,Ĥ#50⇔$PX ,H%50. ~2.17!

Proof: Since

@ P̂X , 1
2P̂G1V#c5 1

2@ P̂X ,P̂G#c1 P̂X~Vc!2VP̂Xc5 1
2@ P̂X ,P̂G#c1 P̂X~V!c,
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the first commutation relation~2.17! is equivalent to

@ P̂X ,D#50, P̂X~V!50.

Moreover,

$PX , 1
2PG1V%5 1

2$PX ,PG%1$PX ,V%5 1
2$PX ,PG%1^X,dV&,

and the second commutation relation~2.17! is equivalent to

$PX ,PG%50, ^X,dV&50.

Thus, the two commutation relations are equivalent due to Theorem 2.7. j

III. SYMMETRY OPERATORS ASSOCIATED WITH THE ORTHOGONAL SEPARATION OF
THE HAMILTON–JACOBI EQUATION

A Killing –Stäckel algebrais an n-dimensional linear spaceK of Killing two-tensors with
common normal eigenvectors.1 It can be proved thatGPK and that all functionsPK , KPK, are
in involution. The Hamilton–Jacobi equation associated with a natural Hamiltonian

H5 1
2PG1V5 1

2g
i j ~qI !pipj1V~qI !

is separable~i.e., integrable by separation of variables! in orthogonal coordinates if and only i
there exists a Killing–Sta¨ckel algebra such that equation d(K dV)50 is satisfied for allKPK, or
for a single Killing tensorK with simple eigenvalues~such a tensor is called acharacteristic
tensorof K!. Then: ~i! The separation occurs in any coordinate system (qi) such that dqi are
~common! eigenforms of the elements ofK. In these coordinates all elements ofK are diagonal-
ized,

K5Kii ] i ^ ] i5l igii ] i ^ ] i , ~3.1!

l i being the eigenvalues ofK ~for K5G we havel i51). ~ii ! There are local functionsVK on Q
such that dVK5K dV or

¹VK5K¹V ~3.2!

for all KPK. It follows that the functions

HK5 1
2PK1VK , KPK,

are first integrals in involution,

$HK1
,HK2

%50, ;K1 ,K2PK.

We denote by

H5~K,V!

the n-dimensional space of these first integrals determined by a Killing-Sta¨ckel algebraK and by
a potentialV satisfying~3.2!.

In general, the linear operatorsĤK ~2.2! corresponding to these quadratic first integrals do
commute, as shown by the following

Theorem 3.1:Let H5(K,V) be the space of first integrals in involution associated with
orthogonal separation of the Hamilton–Jacobi equation. Then the following conditions a
equivalent
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~a! @ĤK ,Ĥ#50, ;KPK,

~b! d~KR2RK !50, ;KPK,

~c! ] iRi j 2G iRi j 50, iÞ j , i n.s., ~3.3!

~d! @ĤK1
,ĤK2

#50, ;K1 ,K2 ,PK,

~e! d~K1RK22K2RK1!50, ;K1 ,K2 ,PK,

whereR is the Ricci tensor, Ri j are its components in any orthogonal separable coordinate sys
and G i are the contracted Christoffel symbols, G i5gh jGh j ,i .

The proof will be given in Sec. V. In Sec. VI, a theorem analogous to Theorem 3.1 wi
stated for the general nonorthogonal separation of the Hamilton–Jacobi equation, where th
ing tensors involved are in ‘‘standard form.’’ For the proofs of these theorems we need prelim
general results about Killing tensors and second-order operators. Indeed, since we do no
how to extend the Carter formula to two arbitrary symmetric tensors, we are able to stud
commutator@ĤK1

,ĤK2
# only for Killing tensors in orthogonal form~Secs. IV and V! or in stan-

dard form~Secs. VII and VIII!.
Remark 3.2:Note that conditions~b!, ~c!, and~e! in ~3.3! do not involve the potentialsVK .
Remark 3.3:SinceGPK, equation~3.3a! is an obvious consequence of~3.3d!, while ~3.3b! is

a consequence of~3.3e!. Moreover, the equivalence of~3.3a! and ~3.3b! follows from Theorems
2.1 and 2.2. We call condition~3.3b!,

d~KR2RK !50, ;KPK

the pre-Robertson condition. It means that the Carter condition~2.10! is satisfied by all elements
of the Killing–Stäckel algebra. Theorem 3.1 shows that Eq.~3.3c!,

] iRi j 2G iRi j 50 ~ iÞ j , i n.s.!

is the coordinate expression of the pre-Robertson condition. The pre-Robertson condition~3.3b! is
an obvious consequence of theRobertson condition1

KR2RK50, ;KPK,

whose coordinate expression is

Ri j 50, iÞ j . ~3.4!

Note that both conditions are fulfilled whenR5kG. We know1 that in separable orthogona
coordinates

] iG j5
2
3Ri j , iÞ j , ~3.5!

and that the Schro¨dinger equation is freely separable if and only if the Hamilton–Jacobi equa
is orthogonally separable and the Robertson condition holds. Hence,

Theorem 3.4: If the Schro¨dinger equation associated with an orthogonal separable Ham

tonian system is freely separable, then all the operators Hˆ
K corresponding to the quadratic firs

integrals in involution HKPH commute.
In particular, they commute with the Schro¨dinger operatorĤ5ĤG . From Theorem 3.1 we

derive an extension of Theorem 2.6,
Theorem 3.5:On Einstein manifolds all operators Hˆ

K , KPK, associated with the quadratic
first integrals of an orthogonal separable system commute.
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Remark 3.6:In orthogonal separable coordinates the components of the Killing tensors
the potential functions assume theStäckel form

gii 5w~n!
i , V5f i~qi !w~n!

i , K j
ii 5w~ j !

i , VK j
5f i~qi !w~ j !

i ,

where (K j ) is a local basis ofK, with Kn5G. Thus, in terms of Sta¨ckel matrices, a local basis o
H is given by

H j5
1
2w~ j !

i ~pi
212f i !.

As it will be shown~Remark 5.2!, the corresponding operators assume the form

Ĥ jc52
\2

2
w~ j !

i S ] i
2c2G i] ic2

2

\2 f ic D . ~3.6!

The Robertson condition is equivalent to] jG i50 for iÞ j . This means that the contracted Chris
offel symbolsG i are functions of the corresponding coordinateqi only.

IV. KILLING TENSORS DIAGONALIZED IN ORTHOGONAL COORDINATES

In the next section we shall analyze the commutation relations of the second-order ope
assuming that all the tensorsK involved, including the metric tensorG, are simultaneously
diagonalized in orthogonal coordinates (qi), so that they assume theorthogonal form~3.1!. This
is equivalent to assume that all these tensors have common normal eigenvectors~or closed eigen-
forms!. For this purpose we need some preliminary theorems about Killing tensors diagonali
orthogonal coordinates. For such a Killing tensor the following equations hold:

] il
j5~l i2l j !] i ln gj j

] il
i50

] i~l jgj j !5l i] ig
j j

] i
2~l jgj j !5l i] i

2gj j .

~ i , j n.s.! ~4.1!

We call Eisenhart–Killing equationsthe first equations~4.1!.10 They characterize a Killing
tensor and imply the remaining equations.

In orthogonal coordinates, the nonvanishing Christoffel symbols are

G i j
j 5G j i

j 52 1
2 ] i ln gj j , i n.s.,

~4.2!
G j j

i 52 1
2g

ii ] igj j , iÞ j .

It follows that

G i5
1

2
] i(

k
ln gkk2] i ln gii , ~4.3!

and

(
i

G ih
i 52Gh2]h ln ghh. ~4.4!

Proposition 4.1: If(qi) are orthogonal coordinates in which a Killing tensorK is diagonal-
ized, then

~l i2l j !~] iG j2] jG i !50 ~ i , j n.s.!. ~4.5!
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Proof: For l i5l j Eq. ~4.5! is obviously satisfied. Assumel iÞl j . Because of~4.3! and~4.1!,

] iG j2] jG i52] i] j ln gj j 1] j] i ln gii

5] i] j ln gii 2] j] i ln gj j 5] i

] jl
i

l j2l i2] j

] il
j

l i2l j

5
1

~l i2l j !2 @] i] jl
i~l j2l i !2] jl

i] i~l j2l i !2] j] il
j~l i2l j !1] il

j] j~l i2l j !#50,

since] il
i50. j

Proposition 4.2: LetK I , I 51, 2, be two Killing tensors simultaneously diagonalized
orthogonal coordinates. Then,

~l1
i l2

j 2l2
i l1

j !~] iG j2] jG i !50 ~ iÞ j n.s.!. ~4.6!

Proof: Because of~4.5!,

~l1
i 2l1

j !~] iG j2] jG i !50, ~l2
i 2l2

j !~] iG j2] jG i !50. ~4.7!

Assumel I
jÞ0. If we multiply the first equation~4.7! by l2

j , the second one byl1
j and subtract the

two resulting equations, then we get~4.6!. If l2
j 50, then the second equation~4.7! becomes

l2
i (] iG j2] jG i)50 and~4.6! is satisfied. Similarly forl1

j 50. j

Proposition 4.3: LetK I5(KI
i j ), I 51, 2,be two Killing tensors simultaneously diagonalized

orthogonal coordinates. Let us define

C5K1DK22K2DK1 , Ci j 5K1
ihDhkK2

k j2K2
ihDhkK1

k j , ~4.8!

whereD5(Di j ) is a geometrical object. Then,

Ci j 5gii gj j ~l1
i l2

j 2l2
i l1

j !Di j , Cj
i 5C

• j
i 5gii ~l1

i l2
j 2l2

i l1
j !Di j ~4.9!

and

¹iCj
i 5(

i
gii ~l1

i l2
j 2l2

i l1
j !S ] iDi j 2G iDi j 1

1

2
] i ln gj j ~D ji 2Di j ! D . ~4.10!

Proof: In orthogonal coordinates

Ci j 5K1
i i Di j K2

j j 2K2
i i Di j K1

j j

and ~4.9! follow from KI
ii 5l I

i gii . Moreover, by definition of covariant derivative,

¹iCj
i 5] iCj

i 1G ih
i Cj

h2G i j
h Ch

i . ~4.11!

We compute these three terms separately by using Eqs.~4.1!. For the first term,

] iCj
i 5] ig

ii ~l1
i l2

j 2l2
i l1

j !Di j 1gii Di j ~l1
i ] il2

j 2l2
i ] il1

j !1gii ~l1
i l2

j 2l2
i l1

j !] iDi j

5gii ~l1
i l2

j 2l2
i l1

j !~Di j ] i ln gii 1] iDi j !1gii Di j ~l1
i ~l2

i 2l2
j !2l2

i ~l1
i 2l1

j !!] i ln gj j

5gii ~l1
i l2

j 2l2
i l1

j !@~] i ln gii 2] i ln gj j !Di j 1] iDi j #. ~4.12!

To compute the second term we use formula~4.4!,

G ih
i Cj

h52gii ~l1
i l2

j 2l2
i l1

j !~G i1] i ln gii !Di j . ~4.13!
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To compute the third term we use formulas~4.2!,

(
i ,h

G i j
h Ch

i 5(
hÞ j

G j j
h Ch

j 1(
iÞ j

(
h

G i j
h Ch

i 5¯ .

SinceCi
i50 ~i n.s.!,

¯5(
h

G j j
h Ch

j 1(
iÞ j

G i j
i Ci

i1(
iÞ j

(
hÞ i

G i j
h Ch

i

5(
i

G j j
i Ci

j1(
iÞ j

G i j
j Cj

i

52
1

2 (
i

gii ~l1
i l2

j 2l2
i l1

j !@2] igj j g
j j D ji 1] i ln gj j Di j #

52
1

2 (
i

gii ~l1
i l2

j 2l2
i l1

j !] i ln gj j ~Di j 1D ji !. ~4.14!

Thus,~4.10! follows from (4.12)1(4.13)2(4.14). j

Remark 4.4:From the first equations~4.9!, it follows that: ~i! Cii 50, ~ii ! the diagonal com-
ponentsDii are not involved in the definition~4.8! of C, ~iii ! if D is symmetric,Di j 5D ji , then
Ci j 1Cji 50 andC is skew-symmetric.

Remark 4.5:For Di j 5] iG j , due to~4.6!, Eq. ~4.10! becomes

¹iCj
i 5(

i
gii ~l1

i l2
j 2l2

i l1
j !~] i

2G j2G i] iG j !, ~4.15!

and, due to the first equations~4.9!, Ci j 1Cji 50. Hence,C is skew-symmetric and~4.15! gives the
components ofdC. It follows that

dC50 ⇔ (
i

gii ~l1
i l2

j 2l2
i l1

j !~] i
2G j2G i] iG j !50. ~4.16!

Remark 4.6:For K15K andK25G, the definition~4.8! and equations~4.9! become

C5KD2DK , Ci j 5gii gj j ~l i2l j !Di j , Cj
i 5gii ~l i2l j !Di j ,

and ~4.10! reduces to

¹iCj
i 5(

i
gii ~l i2l j !~] iDi j 2G iDi j 1

1
2] i ln gj j ~D ji 2Di j !!.

For Di j 5] iG j , because of~4.5!, we have

¹iCj
i 5(

i
gii ~l i2l j !~] i

2G j2G i] iG j !. ~4.17!

C is skew-symmetric and~4.17! gives the components ofdC. Thus,

dC50 ⇔ (
i

gii ~l i2l j !~] i
2G j2G i] iG j !50. ~4.18!
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Remark 4.7:If the Killing tensorK in Proposition 4.1 has simple eigenvalues,l iÞl j for i
Þ j , then~4.5! implies

] iG j5] jG i . ~4.19!

This is the case of a characteristic Killing tensor associated with the orthogonal separation
proves

Proposition 4.8: Equation (4.19) holds for any separable orthogonal coordinate system.
This property has some interesting consequences. First, from~4.19! and ~4.3! it follows that
Proposition 4.9: In any orthogonal separable coordinate system

] i] j ln gii 5] i] j ln gj j , iÞ j .

A second consequence is concerned with the eigenvalues of a characteristic Killing tensor
Proposition 4.10: For the eigenvalues(l i) of a characteristic Killing tensor of a Killing–

Stäckel algebra the following equations hold:

] i] j ln gii 52
] jl

i] il
j

~l i2l j !2 , iÞ j , ~4.20!

Proof: For l iÞl j , the first equations~4.1! can be written

] j ln gii 5
] jl

i

l j2l i .

If we apply the partial derivative] i to this formula, and use again~4.1!, then we get Eq.~4.20!.j
A third consequence is concerned with the Robertson and the pre-Roberston condition
Proposition 4.11: For any orthogonal separable coordinate system qI 5(qi) there are local

functions F(qI ) such that

G i5] iF.

The Robertson condition (3.3c) is equivalent to

] i] jF50, iÞ j , ~4.21!

and the pre-Robertson condition (3.4) is equivalent to

] j@] i
2F2 1

2~] iF !2#50, iÞ j . ~4.22!

Equation~4.21! means that the functionF is a sum of functions depending on a single coordin
i.e., of functions constant on the leaves of the web:F5( i Fi(q

i). Equation~4.22! means that each
function] i

2F21/2(] iF)2 is a function of the coordinate corresponding to the index only. A furt
interpretation of the pre-Robertson condition is expressed by the following

Proposition 4.12: The pre-Robertson condition is equivalent to

] iQi j 50, iÞ j n.s.,

where

Qi j 5e2FRi j . ~4.23!

Proof: ] iQi j 5e2F(] iRi j 2] iFRi j ). j

Remark 4.13:Let qI 5(qi) and qI 85(qi 8) be two equivalent and equioriented orthogon
separable coordinate systems. Let us set
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Ai
i 85

]qi 8

]qi , Ai 8
i

5
]qi

]qi 8
, A5det@Ai

i 8#5)
i

Ai
i 8 ,

~4.24!

G5det@gi j #5)
i

gii , G85det@gi 8 j 8#5)
i 8

gi 8 i 8.

Note thatAi
j 850 for iÞ j and thatA.0. The link between functionsF andF8 corresponding to

these coordinates is

F85F2 ln A1const.

i.e.,

e2F85cAe2F. ~4.25!

Indeed, the relationship between the contracted Christoffel symbols is

G i 85Ai 8
i

~G i2] i ln Ai
i 8!5Ai 8

i
~G i2] i ln A!. ~4.26!

To prove~4.26! we observe that, sinceAi
i 8 is a function ofqi only,

] i ln A5] i ln )
j

Aj
j 85] i ln Ai

i 8 .

Moreover, sinceA.0, from ~4.24! it follows that

AG85AAG,

] i 8 ln AG85Ai 8
i

~] i ln A1] i ln AG!, ~4.27!

] i 8 ln gi 8 i 85Ai 8
i

~2] i ln Ai
i 81] i ln gii !.

By ~4.3! and ~4.27! we get

G i 85] i 8 ln AG82] i 8 ln gi 8 i 8

5Ai 8
i

~] i ln A1] i ln AG22] i ln Ai
i 82] i ln gii !

5Ai 8
i

~G i1] i ln A22] i ln Ai
i 8!,

which implies both equations~4.26!. Finally, we observe that the objectQi j is defined by~4.23! up
to a multiplicative constant, sinceF is defined up to an additive constant. From~4.23!, ~4.25! and
the first equation~4.27! it follows that

Qi 8 j 85e2F8Ri 8 j 85cAe2FAi 8
i Aj 8

j Ri j 5cAAi 8
i Aj 8

j Qi j .

Thus,

1

AG8
Qi 8 j 85

c

AG
Ai 8

i Aj 8
j Qi j .
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V. COMMUTATION RELATIONS IN ORTHOGONAL COORDINATES

Proposition 5.1: If a symmetric tensorK5(Ki j ) is diagonalized in orthogonal coordinates
then the corresponding pseudo-Laplacian assumes the form

DKc5Ai] i
2c1Bi] ic, Ai5Kii 5l igii , Bi5gii ~] il

i2l iG i !. ~5.1!

Proof: By definition ~2.1! and formula~4.4!,

DKc5¹i~Ki j ] jc!

5] i~Ki j ] jc!1G ih
i Kh j] jc

5] i~Kii ] ic!1G ih
i Khh]hc

5Kii ] i
2c1~]hKhh1G ih

i Khh!]hc

5l igii ] i
2c1~]h~lhghh!2lhghh~Gh1]h ln ghh!!]hc

5l igii ] i
2c1ghh~]hlh2lhGh!]hc.

j

Remark 5.2:For the ordinary Laplacian,Kii 5gii , l i51, andBi52gii G i , so that

Dc5gii @] i
2c2G i] ic#.

A second-order operator~2.12! assumes the form

ĤKc5
\2

2
~Ai] i

2c1Bi] ic!1VKc5
\2

2
gii ~l i] i

2c1~] il
i2l iG i !] ic!1VKc. ~5.2!

For a Killing tensorK Eqs.~4.1! hold, so that

DKc5gii l i@] i
2c2G i] ic#.

For a basis (K j ) of a Killing–Stäckel algebra we havew ( j )
i 5l j

i gii ~Remark 3.6! and we find
expressions~3.6! of the corresponding operatorsĤ j .

Proposition 5.3: The commutator of two second-order operators of the kind (5.2) ha
following expression:

@ĤK1
,ĤK2

#c5
\4

2
~A1

i ] iA2
j 2A2

i ] iA1
j !] i] j

2c1
\4

4
~A1

i ] i
2A2

j 2A2
i ] i

2A1
j 1B1

i ] iA2
j 2B2

i ] iA1
j !] j

2c

1
\4

2
~A1

i ] iB2
j 2A2

i ] iB1
j !] i] jc1S \4

4
~A1

i ] i
2B2

j 1B1
i ] iB2

j 2A2
i ] i

2B1
j 2B2

i ] iB1
j !

2\2~A1
j ] jVK2

2A2
j ] jVK1

! D ] jc2
\2

2
~DK1

VK2
2DK2

VK1
!c. ~5.3!

Proof: For two second-order operators~2.2!,
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@ĤK1
,ĤK2

#5F1

2
P̂K1

1VK1
,
1

2
P̂K2

1VK2G
5

1

4
@ P̂K1

,P̂K2
#1

1

2
@ P̂K1

,VK2
#2

1

2
@ P̂K2

,VK1
#

5
\4

4
@DK1

,DK2
#2

\2

2
@DK1

,VK2
#1

\2

2
@DK2

,VK1
#.

Since

d~ f X!5X"¹ f 1 f dX,

we have

@DK ,V#c5DK~Vc!2VDKc

5d~K¹~Vc!!2VDKc

5d~~K¹V!c1~K¹c!V!2VDKc

5cDKV12K ~¹c,¹V!

5DKVc12Ai] iV] ic.

Hence,

@ĤK1
,ĤK2

#c5
\4

4
@DK1

,DK2
#c1

\2

2
~DK2

VK1
2DK1

VK2
!c1\2~K2¹VK1

2K1¹VK2
!•¹c,

~5.4!

Because of~5.1!,

DK1
DK2

c5A1
i ] i

2~A2
j ] j

2c1B2
j ] jc!1B1

i ] i~A2
j ] j

2c1B2
j ] jc!

5A1
i ~] i

2A2
j ] j

2c12] iA2
j ] i] j

2c1A2
j ] i

2] j
2c1] i

2B2
j ] jc12] iB2

j ] i] jc1B2
j ] i

2] jc!

1B1
i ~] iA2

j ] j
2c1A2

j ] i] j
2c1] iB2

j ] jc1B2
j ] i] jc!

5A1
i A2

j ] i
2] j

2c1~2A1
i ] iA2

j 1B1
i A2

j 1A1
j B2

i !] i] j
2c1~A1

i ] i
2A2

j 1B1
i ] iA2

j !] j
2c

1~2A1
i ] iB2

j 1B1
i B2

j !] i] jc1~A1
i ] i

2B2
j 1B1

i ] iB2
j !] jc,

so that,

@DK1
,DK2

#c5DK1
DK2

c2DK2
DK1

c

52~A1
i ] iA2

j 2A2
i ] iA1

j !] i] j
2c1~A1

i ] i
2A2

j 2A2
i ] i

2A1
j 1B1

i ] iA2
j 2B2

i ] iA1
j !] j

2c

12~A1
i ] iB2

j 2A2
i ] iB1

j !] i] jc1~A1
i ] i

2B2
j 1B1

i ] iB2
j 2A2

i ] i
2B1

j 2B2
i ] iB1

j !] jc.

Thus, from~5.4! we derive~5.3!. j

Proposition 5.4: LetK1 andK2 be symmetric tensors simultaneously diagonalized in ortho

nal coordinates. Then, @ĤK1
,ĤK2

#50 if and only if

A1
i ] iA2

j 2A2
i ] iA1

j 50 ~ i n.s.!, ~5.5a!
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(
i

~A1
i ] i

2A2
j 2A2

i ] i
2A1

j 1B1
i ] iA2

j 2B2
i ] iA1

j !12~A1
j ] jB2

j 2A2
j ] jB1

j !50, ~5.5b!

A1
i ] iB2

j 2A2
i ] iB1

j 1A1
j ] jB2

i 2A2
j ] jB1

j 50 ~ iÞ j n.s.!, ~5.5c!

\2

4 (
i

~A1
i ] i

2B2
j 1B1

i ] iB2
j 2A2

i ] i
2B1

j 2B2
i ] iB1

j !2A1
j ] jVK2

1A2
j ] jVK1

50 ~ j n.s.!, ~5.5d!

DK1
VK2

2DK2
VK1

50. ~5.5e!

Proof: ~i! Assume that~5.3! vanishes identically for all functionsc. For c51 we get~5.5e!
and the last term in~5.3! disappears. Forc5qj we get~5.5d!, so that also the fourth term in~5.3!
disappears. As a consequence, forc5(qj )2 we get~5.5b! and we reduce the vanishing of~5.3! to

(
i , j

~A1
i ] iA2

j 2A2
i ] iA1

j !] i] j
2c1 (

i , j Þ
~A1

i ] iB2
j 2A2

i ] iB1
j !] i] jc50. ~5.6!

For c5q1q2, we have] i] jc5d j
1d i

21d i
1d j

2, thus we get~5.5c! for distinct indices and moreover
~5.6! reduces to

(
i , j

~A1
i ] iA2

j 2A2
i ] iA1

j !] i] j
2c50. ~5.7!

Finally, for c5q1(q2)2 we have ] j
2] ic5] j

2(d i
1(q2)212q1q2d i

2)52d i
1d j

214d j
1d j

2d i
2

52d i
1d j

2. Thus, we get~5.5a! for distinct indices~and no summation!, so that~5.7! reduces to

(
j

~A1
j ] jA2

j 2A2
j ] jA1

j !] j
3c50.

This shows that~5.5a! also holds fori 5 j . ~ii ! Conversely, assume that~5.5! hold. Then, due to
~5.5a,d,e!, Eq. ~5.3! reduces to

@ĤK1
,ĤK2

#c5
\4

4
~A1

i ] i
2A2

j 2A2
i ] i

2A1
j 1B1

i ] iA2
j 2B2

i ] iA1
j !] j

2c1
\4

2
~A1

i ] iB2
j 2A2

i ] iB1
j !] i] jc

and, because of~5.5b!, we obtain

@ĤK1
,ĤK2

#c5
\4

2 (
i , j Þ

~A1
i ] iB2

j 2A2
i ] iB1

j !] i] jc.

But this last expression vanishes identically because of the skew-symmetry of Eq.~5.5c!. j

Remark 5.5:Since

$PK1
,PK2

%5$A1
i pi

2,A2
j pj

2%52pipj
2~A1

i ] iA2
j 2A2

i ] iA1
j !, ~5.8!

Eq. ~5.5a! is equivalent to$PK1
,PK2

%50. Thus,

@ĤK1
,ĤK2

#50 ⇒ $PK1
,PK2

%50. ~5.9!

Theorem 5.6:Let K be a symmetric tensor diagonalized in orthogonal coordinates. Then
following conditions are equivalent:
                                                                                                                



ions

d

ation

5239J. Math. Phys., Vol. 43, No. 11, November 2002 Remarks on the connection . . . II.

                    
@ĤK ,Ĥ#50 ⇔
$PK ,PG%50 ~K Killing tensor!

\2

4
dC1K¹V2¹VK50

⇔ $HK ,H%52
\2

4
PdC , ~5.10!

where

C5KD2DK , D5~Di j !5~] iG j !.

Proof: We use~5.5! of Proposition 5.4 for the case

K15K
K25G⇔l1

i 5l i

l2
i 51

⇔
A1

i 5l igii , B1
i 5gii ~] il

i2l iG i !

A2
i 5gii , B2

i 52gii G i
.

Assume@ĤK ,ĤG#50. From~5.9! it follows that K is a Killing tensor. Then we use~4.1! and in
~5.5! we consider

B1
i 52gii l iG i , B2

i 52gii G i , ~5.11!

and

] iA1
j 5l i] ig

j j , ] iB1
j 52] i~gj j l jG j !52l i] ig

j j G j2gj j l j] iG j ,

] iA2
j 5] ig

j j , ] iB2
j 52] i~gj j G j !52] ig

j j G j2gj j ] iG j ,
~5.12!

] i
2A1

j 5l i] i
2gj j , ] i

2B1
j 52l i] i

2gj j G j22l i] ig
j j ] iG j2gj j l j] i

2G j ,

] i
2A2

j 5] i
2gj j , ] i

2B2
j 52] i

2gj j G j22] ig
j j ] iG j2gj j ] i

2G j ,

Equations~5.5a! and ~5.5b! are then identically satisfied, while the remaining three equat
become

~l i2l j !~] iG j2] jG i !50 ~ iÞ j n.s.!,

\2

4 (
i

gii ~l i2l j !~] i
2G j2G i] iG j !1l j] jV2] jVK50 ~ j n.s.!, ~5.13!

d~K¹V2¹VK !50.

Due to~4.5!, the first equation is identically satisfied. According to Remark 4.6 and Eq.~4.17!,
the second equation~5.13! is equivalent to

\2

4
dC1K¹V2¹VK50,

whereC is skew-symmetric. Sinced2C50, the last equation~5.13! is a consequence of the secon
equation ~5.13!. The above-given reasoning is reversible, and the first equivalence~5.10! is
proved. The second equivalence follows from last equation~2.3!. j

Remark 5.7:The comparison between Theorem 2.2, proved by using the Carter formula~2.8!
without any special assumption onK , and Theorem 5.6, proved under the assumption thatK is
diagonalized in orthogonal coordinates, shows that for such a Killing tensor the following equ
holds:

d~KD2DK !5 2
3d~KR2RK !, ~5.14!
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where D5(] iG j ). Note that the componentsDii are not involved in the definition ofC5KD
2DK ~Remark 4.4!. This is in accordance with formula~3.5!, which holds in separable orthogon
coordinates.
Now we apply Proposition 5.4 to the case of two Killing tensors.

Theorem 5.8: Let K1 and K2 be Killing tensors simultaneously diagonalized in orthogon
coordinates. Then$PK1

,PK2
%50 and the following conditions are equivalent:

@ĤK1
,ĤK2

#50 ⇔ \2

4
dC1K1¹VK2

2K2¹VK1
50 ⇔ $HK1

,HK2
%52

\2

4
PdC , ~5.15!

where

C5K1DK22K2DK1 , D5~] iG j !. ~5.16!

Proof: The components ofC defined in~5.16! are @recall ~4.8! and ~4.9!#

Ci j 5gii gj j ~l1
i l2

j 2l2
i l1

j !] iG j , Cj
i 5C

• j
i •5gii ~l1

i l2
j 2l2

i l1
j !] iG j .

The involutivity condition$PK1
,PK2

%50 follows from ~5.8!, ~5.1!, and~4.1!. We use~5.5!. Ac-
cording to~5.1!, ~5.11!, and~5.12!, for a Killing tensorK I (I 51,2) we have

AI
i 5l I

i gii , BI
i 52AI

i G i ,

] iAI
j5AI

i ] ig
j j 5l I

i ] ig
j j ,

] i
2AI

j5AI
i ] i

2gj j 5l I
i ] i

2gj j ~5.17!

] iBI
j52] i~AI

jG j !52] iAI
jG j2AI

j] iG j ,

] i
2BI

j52] i
2AI

jG j22] iAI
j] iG j2AI

j] i
2G j .

Because of the first two equations~5.17!, Eq. ~5.5a! is identically satisfied and the sum of the fir
two terms in Eq.~5.5b! vanishes, so that this equation reduces to

(
i

G i@A1
i ] iA2

j 2A2
i ] iA1

j #12@A1
j ] j~A2

j G j !2A2
j ] j~A1

j G j !#50.

But all the terms in this sum vanish because of~5.5a!. Thus, also~5.5b! is identically satisfied.
Equation~5.5c! becomes

A1
i ] i~A2

j G j !2A2
i ] i~A1

j G j !1A1
j ] j~A2

i G i !2A2
j ] j~A1

i G i !50.

Because of~5.5a! it reduces to

~A1
i A2

j 2A2
i A1

j !~] iG j2] jG i !50 ~ iÞ j , n.s.!,

that is~up to a factorgii gj j ) to ~4.6!, which is identically satisfied. Due to the last two equatio
~5.17!, Eq. ~5.5d! becomes

\2

4 (
i

@A1
i ] i

2~A2
j G j !2A1

i G i] i~A2
j G j !2A2

i ] i
2~A1

j G j !1A2
i G i] i~A1

j G j !#1A1
j ] jVK2

2A2
j ] jVK1

50,

thus,
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\2

4 (
i

@~A1
i A2

j 2A2
i A1

j !] i
2G j #1

\2

4 (
i

@A1
i G j] i

2A2
j 2A2

i G j] i
2A1

j 12A1
i ] iA2

j ] iG j22A2
i ] iA1

j ] iG j #

2
\2

4 (
i

G i@A1
i ] i~A2

i G j !2A2
i ] i~A1

j G j !#1A1
j ] jVK2

2A2
j ] jVK1

50.

Because of the second equation~5.17! and~5.5a!, the second sum vanishes identically and t
equation reduces to

\2

4 (
i

@~A1
i A2

j 2A2
i A1

j !] i
2G j #2

\2

4 (
i

@G i~A1
i A2

j 2A2
i A1

j !] iG j #1A1
j ] jVK2

2A2
j ] jVK1

50,

which is equivalent to

\2

4 (
i

@gii ~l1
i l2

j 2l2
i l1

j !~] i
2G j2G i] iG j !#1l1

j ] jVK2
2l2

j ] jVK1
50. ~5.18!

Due to ~4.15! this equation is equivalent to the second equation in~5.15!. So, the first com-
mutation relation~5.15! is equivalent to the second equation~5.15! plus the last equation~5.5!.
However,C is skew-symmetric~Remark 4.5!, so that the second equation~5.15! implies equation
d(K1¹VK2

2K2¹VK1
)50, that is ~5.5e!. This proves the first equivalence~5.15!. The second

equivalence follows from the first equation~2.3!, which now reads$HK1
,HK2

%5P(K1¹VK2

2K2¹VK1
).

Proposition 5.9: LetK1 andK2 be Killing tensors simultaneously diagonalized in orthogon
coordinates. Then

@ĤK1
,Ĥ#50, @ĤK2

,Ĥ#50⇒@ĤK1
,ĤK2

#50. ~5.19!

Proof: Since$PK1
,PG%50, due to Theorem 5.6 the first two conditions~5.19! are equivalent

to

\2

4
dC1K I¹V2¹VK I

50, I 51,2.

Because of~4.17!, Remark 4.6, these equations are equivalent to

\2

4 (
i

gii ~l1
i 2l1

j !~] i
2G j2G i] iG j !1l1

j ] jV2] jVK1
50,

~5.20!
\2

4 (
i

gii ~l2
i 2l2

j !~] i
2G j2G i] iG j !1l2

j ] jV2] jVK2
50.

As we have done above, if we multiply the first equation byl2
j Þ0, the second one byl1

j Þ0 and
subtract the two resulting equations, then we get~5.18!, which is equivalent to the first equatio
~5.15!. For l2

j 50, Eq. ~5.18! follows from the first equation~5.20! multiplied by l1
j Þ0. For l1

j

5l2
j 50, ~5.18! is obviously satisfied. j

Now we are able to prove Theorem 3.1 by applying the preceding results to the spaH
5(K,V) of the first integrals in involution associated with the orthogonal separation of
Hamilton–Jacobi equation~Sec. III!. First, we prove the equivalence of the first three conditio
~3.3!.
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Proposition 5.10: LetH5(K,V) be the space of quadratic first integrals in involution ass
ciated with the orthogonal separation of the Hamilton–Jacobi equation. Then the following con
ditions are equivalent:

@ĤK ,Ĥ#50, ;KPK,

d~KR2RK !50, ;KPK, ~5.21!

] iRi j 2G iRi j 50, ~ iÞ j n.s.!.

Proof: Let us use Theorem 5.6. Since$HK ,H%50, the first equation~5.21!, coinciding with
the first equation~5.10!, is equivalent todC50 for C5KD2DK andDi j 5] iG j . However, since
the componentsDii are not involved in this definition ofC ~Remark 4.4!, we can replaceD with
2
3 R, in agreement with~5.14!. This proves the equivalence of the first two conditions~5.21!. From
the equivalence~4.18! it follows that the coordinate expression of the second equation~5.21! is

(
i

gii ~l i2l j !~] iRi j 2G iRi j !50, ~5.22!

where only the nondiagonal covariant components ofR are involved. If we introduce the vector

X j5~Xj
i !5~gii ~] iRi j 2G iRi j !!, Y j5~Yj

i !5~l i2l j !,

then equation~5.22! can be written

X j•Y j50. ~5.23!

Let us consider a basis (Ka)5(Ka
ii )5(la

i gii ) of K, a51,...,n, with Kn5G. We have
det@la

i #Þ0 andln
i 51. Let us chose a value of the indexj, say j 51. Then then21 vectorsY1a

5(la
i 2la

1), a51,2,...,n21, are independent vectors in the (n21)-spaceP1 orthogonal to the
vector ~1, 0,..., 0!. Indeed, the rank of then3(n21) matrix @la

i 2la
1# is maximal. According to

the second equation~5.21!, Eq. ~5.23! must be satisfied by all these vectors:

X1•Y1a50.

This means thatX1 is orthogonal toP1 , i.e., thatX1
i 50 for iÞ1. In a similar way we prove tha

Xj
i 50 for j Þ i . Thus, the second equation~5.21! implies the third one. The converse is obviousj

Proposition 5.11: LetH5(K,V) be the space of quadratic first integrals in involution ass
ciated with the orthogonal separation of the Hamilton–Jacobi equation. Then the following con
ditions are equivalent,

@ĤK1
,ĤK2

#50, ;K1 ,K2 ,PK,

d~K1RK22K2RK1!50, ;K1 ,K2 ,PK, ~5.24!

] iRi j 2G iRi j 50, iÞ j .

Proof: The first condition is equivalent todC50, because of the second equivalence~5.15!
~Theorem 5.8!, with C defined in~5.16!. However, in definition~5.16! D can be replaced byR,
due to~5.14! and Remark 4.4~ii !. Thus, the first two conditions~5.24! are equivalent. The secon
equation~5.24! implies the second equation~5.21!, since GPK, and the last equation~5.24!
because of Proposition 5.10. The last condition~5.24! implies the second condition~5.24! because
of ~4.16!. j

The last condition~5.24! appears also in~5.21!. Thus, all the conditions~5.24! and~5.21! are
equivalent. This proves Theorem 3.1.
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VI. SYMMETRY OPERATORS ASSOCIATED WITH THE GENERAL SEPARATION OF
THE HAMILTON–JACOBI EQUATION

A separable Killing algebra1 is a pair (D,K) whereD is an r-dimensional linear space o
commuting Killing vectors andK is a D-invariant (n2r )-dimensional linear space of Killing
two-tensors withm5n2r normal eigenvectors orthogonal toD. These eigenvectors are calle
essential eigenvectors. The eigenvalues of aKPK corresponding to essential eigenvectors
called essential eigenvalues. It can be proved that:~i! D is normal, i.e., the distributionD'

orthogonal to the vectors ofD is completely integrable,~ii ! K contains the metric tensorG and
Killing tensors with distinct essential eigenvalues~calledcharacteristic Killing tensors!; ~iii ! all
functionsPX and PK , with XPD andKPK are in involution;~iv! there existstandard coordi-
nates(qa,qa) such that dqa are eigenforms ofK corresponding to the essential eigenvectors a
]a form a local basis ofD, so that (qa) are ignorable;~v! these coordinates are separable for
geodesic flow;~vi! in these coordinates all elements ofK assume thestandard form

K5Kaa]a^ ]a1Kab]a ^ ]b5lagaa]a^ ]a1Kab]a ^ ]b , ~6.1!

where la are the essential eigenvalues ofK and the coordinates (qa) are ignorable;~vii ! the
natural HamiltonianH5 1

2PG1V is separable if and only if there exists a separable Killing alge
such thatDV50 and thecharacteristic equationd(KdV)50 is satisfied for a single characterist
Killing tensor of K. It follows that ~viii ! the characteristic equation is satisfied for allKPK and
that there are localD-invariant functionsVK such that dVK5KdV, i.e.,

¹VK5K¹V, DVK50;

~ix! the functions

PX , XPD,

HK5 1
2PK1VK , KPK

are first integrals in involution. We denote by

H5~K,V!

the m-dimensional linear space of the quadratic first integralsHK .
For the first- and second-order operators corresponding to these first integrals in involuti

commutation relations

@ P̂X1
,P̂X2

#50, @ P̂X ,ĤK#50, ;X1 ,X2 ,XPD, ;KPK,

hold. This follows from the fact thatXPD are commuting Killing vectors and the elements ofH
areD-invariant. However, in general the operatorsĤK do not commute one other. Indeed, we ha
a theorem similar to Theorem 3.1,

Theorem 6.1:Let H5(K,V) be the space of quadratic first integrals in involution associa
with the separation of the Hamilton–Jacobi equation. Then the following conditions are equiv
lent:

@ĤK ,Ĥ#50, ;KPK, ~6.2a!

d~KR2RK !50, ;KPK, ~6.2b!

]aRab2GaRab50, aÞb n.s., ~6.2c!

@ĤK1
,ĤK2

#50, ;K1 ,K2 ,PK, ~6.2d!
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d~K1RK22K2RK1!50, ;K1 ,K2 ,PK, ~6.2e!

where Rab5R(]a ,]b) are the essential covariant components of the Ricci tensorR ~correspond-
ing to essential separable coordinates(qa)) andGa5gi j G i j ,a are the essential contracted Chris
offel symbols.

The proof of this theorem will be given in Sec. VIII.
Remark 6.2:Formulas~6.2! are formally identical to formulas~3.3! concerning the orthogona

separation, and a remark similar to Remark 3.2 also holds in the present case. The only dif
is that now the coordinate expression of the pre-Robertson condition~6.2c! involves only the
essential componentsRab of the Ricci tensor. In standard separable coordinates the Ricci tensR
assume the form~cf. Ref. 1, Sec. VI!

R5Rab]a^ ]b1Rab]a ^ ]b , ~6.3!

and moreover,

]aGb5 2
3Rab , aÞb. ~6.4!

It assumes the standard form, i.e.,

Rab50, aÞb, ~6.5!

if and only if the Schro¨dinger equation is separable in the reduced sense~Robertson condition!.
The Robertson condition~6.5! obviously implies the pre-Robertson condition~6.3!. Hence,

Theorem 6.3: If the Schro¨dinger equation associated with a separable Hamiltonian is red

tively separable, then all operators Pˆ
X and ĤK corresponding to the linear and quadratic firs

integrals in involution commute.
In particular they commute with the Schro¨dinger operatorĤ5ĤG . The Robertson and pre

Robertson conditions are obviously satisfied forR5kG. Hence,
Theorem 6.4: On Einstein manifolds all operators Pˆ

X and ĤK corresponding to the first
integrals in involution of a separable Hamiltonian system commute.

Remark 6.5:An algebraic form of the Robertson condition is expressed by the commuta
of the Ricci tensorR with a characteristic tensor~thus, with all the Killing tensors! KPK,
interpreted as linear operators, when restricted to the distributionD' orthogonal toD,

~KR2RK !uD'50, ;KPK. ~6.6!

Indeed, this distribution is invariant with respect to these linear operators. If we denote byR8 and
K 8 the restrictions toD', cf. ~7.1!, then~6.6! is equivalent to

K 8R2RK 850, ~6.7!

or to KR 82R8K5K 8R82R8K 850. Condition~6.7! obviously implies

d~K 8R2RK 8!50. ~6.8!

As we shall see in Sec. VIII, the fact that~6.8! is equivalent to~6.2b! is remarkable.
Remark 6.6:In standard separable coordinates the components of the elements ofK and the

potential functions assume the form

gaa5w~m!
a , gab5fa

ab~qa!w~m!
a , V5fa~qa!w~m!

a ,

Kb
aa5w~b!

a , Kb
ab5fa

ab~qa!w~b!
a , VKb

5fa~qa!w~b!
a ,

where (Kb) is a local basis ofK, with Km5G. Then, a local basis ofH is
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Hb5 1
2w~b!

a ~pa
21fa

abpapb12fa!.

The corresponding operators assume the form~see Remark 8.2 and Ref. 1, Sec. V!.

Ĥbc̃52
\2

2
w~b!

a S ]a
2c̃2Ga]ac̃1S fa

abkakb2
2

\2 faD c̃ D ,

wherec5c̃•Paekaqa
, c̃5Paca(qa). The Robertson condition in standard separable coordin

is equivalent to]bGa50 for aÞb. This means thatGa5Ga(qa).

VII. KILLING TENSORS IN STANDARD FORM

In the next section we shall analyze the commutation relations of the second-order ope
assuming that all the tensorsK involved, including the metric tensorG, are simultaneously in
standard form~6.1! with respect to a given standard coordinate system (qi)5(qa,qa). We shall
use the decomposition

K5K 81K 9,

K 85Kaa]a^ ]a5lagaa]a^ ]a , ~7.1!

K 95Kab]a ^ ]b .

In analogy with Sec. IV, in this section we state some general properties concerning K
tensors. For a Killing tensor in standard form the following equations hold:

]alb5~la2lb!]a ln gbb

]aKab5la]agab

]ala50

]a~lbgbb!5la]agbb

]a
2~lbgbb!5la]a

2gbb

]a
2Kab5la]a

2gab

~a,b n.s.!. ~7.2!

We call the two first equations~7.2! the extended Eisenhart–Killing equations. They characterize
the Killing tensors in standard form and imply the remaining equations.

Proposition 7.1: If(qa,qa) are standard coordinates in which a Killing tensorK assumes the
standard form (6.1), then

~la2lb!~]aGb2]bGa!50 ~a,b n.s.!. ~7.3!

Proof: The proof follows the same pattern of the proof of Proposition 4.1. The only differe
is that ~4.3! is replaced by~cf. Ref. 1, Sec. VI!

Ga5 1
2]a(

c
ln gcc2]a ln gaa1 1

2]a ln det@gab#,

but the last term does not give any contribution to the difference]aGb2]bGa . j

In a similar way we can prove
Proposition 7.2: LetK I , I 51,2, be two Killing tensors in standard form (6.1). Then
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~l1
al2

b2l2
al1

b!~]aGb2]bGa!50 ~aÞb n.s.!. ~7.4!

Proposition 7.3: LetK I , I 51,2, be two Killing tensors in standard form (6.1). If

C5K18DK282K28DK18 , Ci j 5~K18! ihDhk~K28!k j2~K28! ihDhk~K18!k j, ~7.5!

whereD5(Di j ) is a geometrical object, then

Cab5gaagbb~l1
al2

b2l2
al1

b!Dab , Caa5Caa5Cab50,
~7.6!

Cb
a5C

•b
a 5gaa~l1

al2
b2l2

al1
b!Dab , Ca

a5Ca
a5Ca

b50,

and

¹iCa
i 50, ¹iCb

i 5(
a

gaa~l1
al2

b2l2
al1

b!~]aDab2GaDab1 1
2]a ln gbb~Dba2Dab!!. ~7.7!

Proof: Equations~7.6! are a direct consequence of definitions~7.5! and ~7.1!. In standard
coordinates~cf. Ref. 1, Sec. VI!

G ia
i 50, G ia

i 52 1
2]a~ ln det@gi j # !52]a ln gaa2Ga , ~7.8!

and formula~4.11! reduces to

¹iCj
i 5]aCj

a1G ia
i Cj

a2G i j
h Ch

i .

It follows that ¹iCa
i 50 and

¹iCb
i 5]aCb

a2~Ga1]a ln gaa!Cb
a2Gab

c Cc
a .

The development of this last expression follows the same pattern of the proof of Propositionj

Remark 7.4:From ~7.6! it follows that: ~i! Cii 50, ~ii ! only the nondiagonal componentsDab ,
aÞb, are involved in the definition~7.5! of C, ~iii ! if the essential components ofD are symmet-
ric, Dab5Dba , thenC is skew-symmetric.

Remark 7.5:Let us apply Proposition 7.3 to the casesDi j 5] iG j . In standard coordinate
Ga50 and]aGa50. Thus,Dab5Daa5Daa50 andC defined in~7.5! is equal to

C5K1DK22K2DK1 , D5~] iG j !.

Equations~7.6! hold with Dab replaced by]aGb ,

Cab5gaagbb~l1
al2

b2l2
al1

b!]aGb , Cb
a5gaa~l1

al2
b2l2

al1
b!]aGb , ~7.9!

and, due to~7.4!, equations~7.7! become

¹iCa
i 50, ¹iCb

i 5(
a

gaa~l1
al2

b2l2
al1

b!~]a
2Gb2Ga]aGb!. ~7.10!

From ~7.4! and~7.9! it follows thatCi j 1Cji 50. Hence,C is skew-symmetric and~7.10! give the
components ofdC. Thus,

dC50⇔(
a

gaa~l1
al2

b2l2
al1

b!~]a
2Gb2Ga]aGb!50.

Remark 7.6:For K25G andK15K , definition ~7.5! and equations~7.6! become
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C5K 8D2DK 8, Cab5gaagbb~la2lb!Dab , Cb
a5gaa~la2lb!Dab , ~7.11!

the remaining components being identically zero. Equations~7.7! become

¹iCa
i 50, ¹iCb

i 5(
a

gaa~la2lb!~]aDab2GaDab1 1
2]a ln gbb~Dba2Dab!!.

For Di j 5] iG j the definition~7.11! is equivalent to

C5KD2DK

and

¹iCa
i 50, ¹iCb

i 5(
a

gaa~la2lb!~]a
2Gb2Ga]aGb!. ~7.12!

C is skew-symmetric and~7.12! give the components ofdC. Thus,

dC50 ⇔ (
a

gaa~la2lb!~]a
2Gb2Ga]aGb!50. ~7.13!

Remarks and propositions similar to Remarks 4.6, 4.7, 4.13, 4.14 and Propositions 4.8–12
the present case, with obvious modifications.

VIII. COMMUTATION RELATIONS IN STANDARD COORDINATES

Proposition 8.1: IfK is a symmetric tensor in standard form (6.1), then the correspond
pseudo-Laplacian assumes the form

DKc5Aa]a
2c1Ba]ac1Kab]a]bc,

Aa5Kaa5lagaa, ~8.1!

Ba5gaa~]ala2laGa!.

Proof:

DKc5] i~Ki j ] jc!1G ih
i Kh j] jc5] iK

i j ] jc1Ki j ] i] jc1G ia
i Ka j] jc

5]aKaa]ac1Kaa]a
2c1Kab]a]bc1G ia

i Kaa]ac.

Then ~8.1! follow from ~7.8! andKaa5lagaa. j

Remark 8.2:For a pseudo-Laplacian we use the decomposition

DK5DK8 1DK9 ,

DK8 c5Aa]a
2c1Ba]ac5gaa~la]a

2c1~]ala2laGa!]ac!,

DK9 c5Kab]a]bc.

Note that, in accordance with the decomposition~7.1!, we have

DK8 5DK8 .

For a Killing tensor,
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DK8 5lagaa~]a
2c2Ga]ac!.

For a second-order operator~2.12! we use the decomposition

ĤK5ĤK8 1ĤK9 , ĤK8 52
\2

2
DK8 1VK , ĤK9 52

\2

2
DK9 ,

so that

ĤKc52
\2

2
~DK8 1DK9 !c1VKc

52
\2

2
~Aa]a

2c1Ba]ac1Kab]a]bc!1VKc

52
\2

2
@gaa~la]a

2c1~]ala2laGa!]ac!1Kab]a]bc#1VKc. ~8.2!

For a Killing tensor,

ĤKc52
\2

2
@lagaa~]a

2c2Ga]ac!1Kab]a]bc#1VKc.

In all the above-given expressions the coordinates (qa) are ignorable.
Proposition 8.3: The commutator of two second-order operators of the kind (8.2) ha

following expression:

@ĤK1
,ĤK2

#c5@ĤK1
8 ,ĤK2

8 #c1
\4

2
~A1

a]a
2K2

ab2A2
a]a

2K1
ab1B1

a]aK2
ab2B2

a]aK1
ab!]abc

1\4~A1
a]aK2

ab2A2
a]aK1

ab!]a]a]bc, ~8.3!

where

@ĤK1
8 ,ĤK2

8 #c5
\4

4
@DK1

8 ,DK2
8 #c2\2~A1

a]aVK2
2A2

a]aVK1
!]ac2

\2

2
~DK1

8 VK2
2DK2

8 VK1
!c.

~8.4!

Proof: Since

DK1
8 DK2

8 c5A1
b]b

2~A2
a]a

2c1B2
a]ac!1B1

b]b~A2
a]a

2c1B2
a]ac!

5A1
bA2

a]b
2]a

2c1A1
b]b

2A2
a]a

2c12A1
b]bA2

a]b]a
2c1A1

b]b
2B2

a]ac1A1
bB2

a]b
2]ac

12A1
b]bB2

a]a]bc1B1
bA2

a]b]a
2c1B1

b]bA2
a]a

2c1B1
bB2

a]b]ac1B1
b]bB2

a]ac,

we have

@DK1
8 ,DK2

8 #52~A1
a]aA2

b2A2
a]aA1

b!]a]b
2c1~A1

a]a
2A2

b2A2
a]a

2A1
b1B1

a]aA2
b2B2

a]aA1
b!]b

2c

12~A1
a]aB2

b2A2
a]aB1

b!]a]bc1~A1
a]a

2B2
b1B1

a]aB2
b2A2

a]a
2B1

b2B2
a]aB1

b!]bc.

Since

DK1
9 ,DK2

9 c5K1
abK2

mn]abmnc,
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we have

@DK1
9 ,DK2

9 #50, @ĤK1
9 ,ĤK2

9 #50.

Thus,

@ĤK1
,ĤK2

#5@ĤK1
8 ,ĤK2

8 #1@ĤK1
8 ,ĤK2

9 #1@ĤK1
9 ,ĤK2

8 #.

A straightforward calculation shows that

@ĤK1
8 ,ĤK2

8 #c5
\4

2
~A1

a]a
2K2

ab1B1
a]aK2

ab!]a]bc1\4A1
a]aK2

ab]a]a]bc.

These two last equations prove~8.3! and ~8.4!. j

Proposition 8.4: LetK1 and K2 be symmetric tensors in standard form. Then@ĤK1
,ĤK2

#

50 if and only if

A1
a]aA2

b2A2
a]aA1

b50 ~a, n.s.!, ~8.5a!

(
a

~A1
a]a

2A2
b2A2

a]a
2A1

b1B1
a]aA2

b2B2
a]aA1

b!12~A1
b]bB2

b2A2
b]bB1

b!50, ~8.5b!

A1
a]aB2

b2A2
a]aB1

b1A1
b]bB2

a2A2
b]bB1

a50 ~aÞb n.s.!, ~8.5c!

\2

4 (
a

~A1
a]a

2B2
b1B1

a]aB2
b2A2

a]a
2B1

b2B2
a]aB1

b!2A1
b]bVK2

1A2
b]bVK1

50 ~b n.s.!,

~8.5d!

DK1
8 VK2

2DK2
8 VK1

50, ~8.5e!

and

A1
a]a

2K2
ab2A2

a]a
2K1

ab1B1
a]aK2

ab2B2
a]aK1

ab50, ~8.6a!

A1
a]aK2

ab2A2
a]aK1

ab50. ~8.6b!

Proof: Equations~8.6! follow from the second and third term in~8.3! i.e., from the vanishing
of the coefficients of]a]bc and of ]a]a]bc. The first term~8.3! involves only the partial
derivatives]a and a factor ofc, and it is similar~with an obvious change of indices! to ~5.3!.
Thus,~8.5! are similar to~5.5!.

Remark 8.5:Since,

$PK1
,PK2

%52~A1
a]1

aA2
b2A2

a]aA1
b!papb

212~A1
a]aK2

ab2A2
a]aK1

ab!papapb , ~8.7!

Eqs.~8.5a! and ~8.6a! are equivalent to$PK1
,PK2

%50. Thus,

@ĤK1
,ĤK2

#50 ⇒ $PK1
,PK2

%50. ~8.8!

Theorem 8.6: Let K be a symmetric tensor in standard form. Then the following conditi
are equivalent:
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@ĤK ,Ĥ#50 ⇔
$PK ,PG%50 ~K Killing tensor!,

\2

4
dC1K¹V2¹VK50

⇔ $HK ,H%52
\2

4
PdC , ~8.9!

where

C5KD2DK5K 8D2DK 8, D5~] iG j !. ~8.10!

Proof: The equivalence of the two definitions~8.10! of C follows from Remarks 7.5 and 7.6
We use~8.5!, Proposition 8.4, forK15K andK25G. Assume@ĤK ,Ĥ#50. From~8.8! it follows
thatK is a Killing tensor. For a Killing tensor in standard form we have formulas similar to~5.11!
and ~5.12!, with indices~a,b!. Equations~8.5a, b! and ~8.6b! are then identically satisfied. Th
remaining equations are similar to~5.13!,

~la2lb!~]aGb2]bGa!50,

\2

4 (
a

gaa~la2lb!~]a
2Gb2Ga]aGb!1lb]bV2]bVK50 ~b n.s.!, ~8.11!

d~K¹V2¹VK !50.

Due to~7.3!, the first equation is identically satisfied. According to Remark 7.6 and Eq.~7.12!,
the second equation~8.11! is equivalent to

\2

4
dC1K¹V2¹VK50,

whereC is skew-symmetric. Sinced2C50, the last equation~8.11! is a consequence of the secon
equation~8.11!. The above-noted reasoning is reversible, and the first equivalence~8.9! is proved.
The second equivalence follows from the last equation~2.3!. j

Theorem 8.7:Let K1 and K2 be Killing tensors in standard form. Then$PK1
,PK2

%50, and

the following conditions are equivalent:

@ĤK1
,ĤK2

#50 ⇔ \2

4
dC1K1¹VK2

2K2¹VK1
50 ⇔ $HK1

,HK2
%52

\2

4
PdC , ~8.12!

where

C5K1DK22K2DK15K18DK282K28DK18 , D5~] iG j !. ~8.13!

Proof: The equivalence of the two definitions ofC in ~8.13! follows from Remark 7.5. The
components ofC are given in~7.9!. The involutivity condition$PK1

,PK2
%50 follow from ~8.7!,

~8.5a!, ~8.6b!, and~7.2!. We use Eqs.~8.5! and~8.6!. For Killing tensorsK I (I 51,2) in standard
form we have, cf.~8.1! and ~7.2!,

A1
a5l I

agaa, BI
a52gaal I

aGa ,

]aKI
ab5l I

a]agab, ]a
2Kab5l I

a]a
2gab.

Thus,~8.6! are identically satisfied. Moreover, formulas similar to~5.17! hold with indices (a,b),
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AI
a5l I

agaa, BI
a52AI

aGa ,

]aAI
b5AI

a]agbb5l I
a]agbb,

]a
2AI

b5AI
a]a

2gbb5l I
a]a

2gbb,

]aBI
b52]a~AI

bGb!52]aAI
bGb2AI

b]aGb ,

]a
2BI

b52]a
2AI

bGb22]aAI
b]aGb2AI

b]a
2Gb .

Since the coordinatesqa are ignorable and no greek index is involved in~8.5! the proof of the first
equivalence~8.12! is similar to that of the first equivalence~5.15! in Theorem 5.8. The secon
equivalence~8.12! follows from the first equation~2.3! ~cf. the end of the proof of Theorem
5.8!. j

Proposition 8.8: LetK1 and K2 be Killing tensors in standard form. Then

@ĤK1
,Ĥ#50, @ĤK2

,Ĥ#50 ⇒ @ĤK1
,ĤK2

#50.

Proof: This implication is similar to~5.19! of Proposition 5.9. The proof follows the sam
pattern. j

Propositions similar to Propositions 5.10 and 5.11 hold.
Proposition 8.9: LetH5(K,V) be the space of quadratic first integrals in involution asso

ated with the separation of the Hamilton–Jacobi equation. Then the following conditions a
equivalent:

@ĤK ,Ĥ#50, ;KPK,

d~K 8R2RK 8!50, ;KPK, ~8.14!

]aRab2GaRab50, ~aÞb n.s.!.

Proof: We apply the equivalence of the first and last conditions~8.9! in Theorem 8.6. Since
HK are first integrals, the commutation relation@ĤK ,Ĥ#50 is equivalent todC50 with C
5KD2DK5K 8D2DK 8 and D5(] iG j ). If we considerC5K 8D2DK 8 then only the compo-
nentsDab5]aGb with aÞb are involved and, since the coordinates are separable, we can re
D by 2

3R, because of~8.13! and ~6.4!. This proves the equivalence of the first two conditio
~8.14!. On the other hand, due to Remark 7.5 and~6.4!, in the equivalence~7.13! we can replace
]aGb by Rab , since only the indicesaÞb are involved. This proves the equivalence betwe
dC50 and the last condition~8.14!. j

Proposition 8.10: LetH5(K,V) be the space of quadratic first integrals in involution ass
ciated with the separation of the Hamilton–Jacobi equation. Then the following conditions a
equivalent:

@ĤK1
,ĤK2

#50, ;K1 ,K2 ,PK,

d~K18RK282K28RK18!50, ;K1 ,K2 ,PK, ~8.15!

]aRab2GaRab50, aÞb.

The proof is similar to that of Proposition 5.11. The last condition~8.15! also appears in~8.14!.
Thus all these conditions are equivalent. For proving Theorem 6.1 it remains to prove that

d~K 8R2RK 8!5d~KR2RK ! ~8.16!
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and

d~K18RK282K28RK18!5d~K1RK22K2RK1!. ~8.17!

These equalities can be proved by the following general considerations on the tensors inprestan-
dard form. We say that a contravariant two-tensorT5(Ti j ) has a prestandard form with respect
a standard coordinate system (qi)5(qa,qa) if Taa5Taa50 and all the remaining components d
not depend on the ignorable coordinates (qa).

Proposition 8.11: For a tensor in prestandard form¹iT
ia50.

Proof: Since (qa) are ignorable,] iT
ia5]aTaa50 and we have

¹iT
ia5] iT

ia1G i l
i Tla1G i l

aTil 5G ib
i Tba1G i l

aTil .

However, in standard coordinatesG ib
i 50 andG i l

a are all vanishing except for (i ,l )5(a,b) or
(b,a). j

Proposition 8.12: If T1 and T2 are in prestandard form, then also the commutatorC
5T1T22T2T1 is in prestandard form.

Proof: By definition of commutator,

Ci j 5T1
i l glmT2

m j2T2
i l glmT1

m j5T1
icgcdT2

d j1T1
imgmnT2

n j2T2
icgcdT1

d j2T2
imgmnT1

n j ,

so that

Cab5T1
acgcdT2

db2T2
acgcdT1

db5T1
acgccT2

cb2T2
acgccT1

cb ,

Caa5Caa50, ~8.18!

Cab5T1
amgmnT2

nb2T2
amgmnT1

nb .
j

For a tensor in a prestandard form let us use the decomposition

T5T81T95Tab]a^ ]b1Tab]a ^ ]b .

By settingT1
ab50 or T2

ab50 in ~8.18! we get

T18T22T2T185T1T282T28T15T18T282T28T185C8.

Proposition 8.13: IfC is a skew-symmetric tensor in prestandard form thendC5dC8.
Proof: Since alsoC8 is in prestandard form, due to Proposition 8.11 we have¹iC

ia

5¹iC8 ia50. Moreover,¹iC
ia5] iC

ia1G i l
i Cla1G i l

aCil 5]bCba1G ib
i Cba, sinceG ia

i 50, G i l
a 5G l i

a

and Cil 52Cli . In this last expression the componentsCab are not involved. Thus,¹iC
ia

5¹iC8 ia. j

Proposition 8.14: IfT1 and T2 are symmetric tensors in prestandard form, then

d~T18T22T2T18!5d~T1T22T2T1!.

Proof: The commutatorC5T1T22T2T1 is skew-symmetric and in prestandard form~Propo-
sition 8.12!. The same forT18T22T2T185C8. Then we apply Proposition 8.13. j

For T15K ~which is in standard form! and T25R ~which is in prestandard form! we get
~8.16!.

Proposition 8.15: IfT, T1 , and T2 are symmetric tensors in prestandard form, then

d~T18TT282T28TT18!5d~T1TT22T2TT1!.

Proof: The components ofC5T1TT22T2TT1 are
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Ci j 5T1
i l TlmT2

m j2T2
i l TlmT1

m j5T1
icTcdT2

d j1T1
imTmnT2

n j2T2
icTcdT1

d j2T2
imTmnT1

n j ,

so that

Cab5T1
acTcdT2

db2T2
acTcdT1

db ,

Caa5Caa50,

Cab5T1
amTmnT2

nb2T2
amTmnT1

nb .

This shows thatC is skew-symmetric and in prestandard form. By settingT1
ab5T2

ab50 we get
Cab50. This shows thatT18TT282T28TT185C8. Then we apply Proposition 8.13. j

For T15K1 , T25K2 , andT5R we get~8.17!. This completes the proof of Theorem 6.1.

IX. FINAL REMARKS

In this paper we have considered the symmetry operators corresponding to the separa
the Schro¨dinger equation, but deeper and wider research on this topic still has to be done. In
we have not included here a revisitation of theR-separation, leading to a different development
the separation of variables for both Schro¨dinger and Hamilton–Jacobi equations. This will be t
subject of a future paper. A further topic to be investigated is the link between the commu
relations of second-order polynomial observablesHK and the associated second-order opera
ĤK , for generic two-tensorsK on Riemannian manifolds. This matter is concerned mainly w
integrability of systems with quadratic first integrals, and the separability appears only as a s
case.
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Efficient simulation of quantum state reduction
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The energy-based stochastic extension of the Schro¨dinger equation is a rather spe-
cial nonlinear stochastic differential equation on Hilbert space, involving a single
free parameter, that has been shown to be very useful for modeling the phenom-
enon of quantum state reduction. Here we construct a general closed form solution
to this equation, for any given initial condition, in terms of a random variable
representing the terminal value of the energy and an independent Brownian motion.
The solution is essentially algebraic in character, involving no integration, and is
thus suitable as a basis for efficient simulation studies of state reduction in complex
systems. ©2002 American Institute of Physics.@DOI: 10.1063/1.1512975#

The standard energy-based stochastic extension of the Schro¨dinger equation is given by the
following stochastic differential equation:

duc t&52 iĤuc t&dt2 1
8 s2~Ĥ2Ht!

2uc t&dt1 1
2s~Ĥ2Ht!uc t&dWt , ~1!

with initial condition uc0&. Hereuc t& is the state vector at timet, Ĥ is the Hamiltonian operator
Wt denotes a one-dimensional Brownian motion, and

Ht5
^c tuĤuc t&

^c tuc t&
~2!

is the expectation ofĤ in the state uc t&. The parameters, which has the unitss
;@energy#21@ time#21/2, governs the characteristic timescaletR associated with the collapse o
the wave function induced by~1!. This is given bytR51/s2V0 , whereV0 is the initial value of
the squared energy uncertainty, which at timet is

Vt5
^c tu~Ĥ2Ht!

2uc t&

^c tuc t&
. ~3!

The stochastic equation~1! is perhaps the simplest known dynamic model for state reduc
in quantum mechanics consistent with both the Born probability rules and the principle of e
conservation. Although the mathematical and phenomenological properties of~1! have been stud-
ied extensively,1–4 it has hitherto been necessary to resort to numerical methods to solve dy
cal equations of this type,5 and exact solutions have been unavailable except in very simple c
The purpose of this article is to present a general analytic solution for the dynamics ofuc t&.

We begin with a brief overview of the stochastic framework implicit in the extended Sc¨-
dinger dynamics given by Eq.~1!, following a line of argument developed in Ref. 4. Specifical

a!Electronic mail: dorje@ic.ac.uk
b!Electronic mail: lane.hughston@kcl.ac.uk
52540022-2488/2002/43(11)/5254/8/$19.00 © 2002 American Institute of Physics
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we introduce the key notions of filtration, conditional expectation, martingale, and superm
gale, and show how these concepts can be used effectively to characterize the reductive pr
of ~1!. We then proceed to establish, by novel use of anonlinear filtering technique, that the
energy expectation process~2! can be expressed as the conditional expectation of a ran
variable representing the terminal value of the energy. As a consequence, we are led to
analytic expressions for the energy~20! and the state vector~33! in terms of a pair of independen
state variables. These results open up the possibility of efficiently simulating the reduction p
for a variety of models. Finally, we illustrate the practical advantages of our method by anal
the timescale associated with the reduction process in the case of a two-state system.

The dynamics ofuc t& are defined on a probability space~V, F, P! with filtration $Ft% (0
<t,`). Here V is the sample space over whichF is a s-field of open sets upon which th
probability measureP is defined.

The filtration determines for eacht>0 the information available at that time. More speci
cally, the filtration consists of a family$Ft% of s-subfields ofF such thats<t implies Fs,Ft .
Given a random variableX on ~V, F, P!, we writeE@XuFt# for the conditional expectationof X
with respect to thes-subfieldFt,F. Intuitively, conditioning with respect toFt means giving all
the information available up to timet. The nestingFs,Ft for s<t thus embodies a notion o
causality. For convenience, we use the abbreviationEt@X#5E@XuFt#, and we note that the con
ditional expectation satisfies the tower propertyEs@Et@X##5Es@X# for s<t. If Et@X#5X, we say
that X is Ft-measurable.

The conditional expectation operation allows us to introduce the concept of a martinga
stochastic analog of a conserved quantity. A processXt is said to be an$Ft%-martingale if
E@ uXtu#,` andEs@Xt#5Xs for all 0<s<t,`. In other words,Xt is an $Ft%-martingale if it is
integrable and if its conditional expectation, given information up to times, is the valueXs of the
process at that time.

For a concise mathematical representation of the state reduction process, we also req
concept of a supermartingale. A processXt is an $Ft%-supermartingaleif E@ uXtu#,` and
Es@Xt#<Xs for all 0<s<t,`. Intuitively, a supermartingale is on average a nonincreasing
cess.

The filtration $Ft% with respect to which the state vectoruc t& evolves is generated in
standard way by the Wiener processWt . We signify this by writing$Ft%5$Ft

W%. It is straight-
forward to verify that the energy processHt is an$Ft

W%-martingale, and that the variance proce
Vt is an$Ft

W%-supermartingale. That is to say,

Es@Ht#5Hs , ~4!

and

Es@Vt#<Vs . ~5!

These relations can be deduced by applying Ito’s lemma to~2! and~3!, from which we infer that

dHt5sVtdWt , ~6!

and that

dVt52s2Vt
2dt1sb tdWt , ~7!

where

b t5
^c tu~Ĥ2Ht!

3uc t&

^c tuc t&
~8!

is theskewnessof the energy distribution at timet. The fact that~6! has no drift shows thatHt is
a martingale, and the fact that the drift in~7! is negative shows thatVt is a supermartingale.
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In the case of the ordinary Schro¨dinger equation with a time-independent Hamiltonian, t
energy process~2! is constant. This is usually interpreted as the quantum mechanical express
an energy conservation law. However, if a system is in an indefinite state of energy, then it
immediately evident what is meant by energy conservation. The martingale conditionEs@Ht#
5Hs can be interpreted as ageneralized energy conservation lawapplicable if a system is in an
indefinite state of energy. In particular, it implies that once state reduction has occurre
probabilistic average of the outcome for the energy must equal the initial expectation.

The supermartingale property satisfied byVt is the essence of what is meant by areduction
process. In fact, it follows from Eq.~7! that the asymptotic behavior ofVt is given by

lim
t→`

E@Vt#50, ~9!

which signifies the collapse of the wave function. A positive supermartingale with the pro
that its expectation vanishes in the limit ast goes to infinity is called apotentialprocess. Writing
H` for the random terminal value of the energy, one can then prove as a consequence of~6! and
~7! that

Ht5Et@H`# ~10!

and that

Vt5Et@~H`2Ht!
2#. ~11!

That is to say, the processesHt andVt are respectively theFt
W-conditional mean and variance o

H` .
With these facts in hand, we now present a method for solving the stochastic equation~1!. Our

approach is based on the theory of nonlinear filtering.6 Filtering techniques have been shown to
useful in quantum optics in connection with the theory of continuous observations, and in
situations phenomenological equations similar to~1! for the a posterioridynamics of a continu-
ously observed system can be derived.7 We shall, however, regard the dynamics ofuc t& as being
given, and use the filtering methodology with a different end in view: namely, to construc
solutionof ~1!.

The setup is as follows. We denote byEi ( i 51,2,...) the eigenvalues of the Hamiltonian of
given quantum system, and write

p i5
u^c0uc i&u2

^c0uc0&^c i uc i&
~12!

for the transition probability from the given initial stateuc0& to the eigenstateuc i& with energyEi .
If the spectrum ofĤ is degenerate, thenuc i& denotes the Lu¨ders state, i.e., the projection ofuc0&
onto the linear subspace of states corresponding to the eigenvalueEi .

Now let the probability space~V, F, P! be given, and on it specify a random variableH that
takes the valuesEi with probabilitiesp i . We assume that~V, F, P! comes equipped with a
filtration $Gt% with respect to which a standard Brownian motionBt is specified, and thatH andBt

are independent. We assign noa priori physical significance toH andBt , which are introduced
here simply as an ansatz for obtaining a solution for~1!. Next we define the process

j t5sHt1Bt . ~13!

Intuitively, we can think ofj t as giving us a ‘‘noisy’’ representation of the information encoded
the random variableH.

We let $Ft
j% denote the filtration generated by the processj t , i.e., the information generate

by j t as time progresses, and consider the conditional expectation
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Ht5E@HuFt
j#. ~14!

Clearly,Ft
j,Gt since knowledge ofH together with the path$Bs%0<s<t implies knowledge of the

path$js%0<s<t , although the converse is not the case.
It follows from the tower property thatHt is an $Ft

j%-martingale. One can think ofHt as
representing an estimate for the value ofH given the history of the processjs from time 0 up to
time t. More precisely, an$Ft

j%-measurable random variableHt minimizes the expectation of th
squared deviation ofH from Ht , given the history ofjs from time 0 to timet, if and only if ~14!
holds. This can be seen by varying the expressionE@(H2Ht)

2uFt
j# with respect toHt .

We shall now establish the remarkable fact that theprocess Ht defined by (14) is statistically
indistinguishable from the energy process (2) associated with the stochastic extension
Schrödinger equation (1).

The argument goes as follows. First, becausej t is a Markov process satisfying

lim
t→`

t21j t5sH, ~15!

we can replace~14! with the simpler relationHt5E@Huj t#. In other words, to determine th
conditional expectation ofH given the path$js%0<s<t , it suffices to condition on the valuej t of
the process at the end of the path.

To calculateE@Huj t#, we require a version of the Bayes formula applicable when we cons
the probability of a discrete random variable conditioned on the value of a continuous ra
variable. This is given by

P~H5Ei uj t!5
p ir~j tuH5Ei !

( ip ir~j tuH5Ei !
, ~16!

where

p i5P~H5Ei !. ~17!

Herer(j tuH5Ei) denotes the conditional probability density for the continuous random vari
j t given thatH5Ei . SinceBt is a standard Brownian motion, the conditional density forj t is

r~j tuH5Ei !5
1

A2pt
expS 2

1

2t
~j t2sEit !

2D . ~18!

It follows from the Bayes law~16! that the conditional probability for the random variableH is

P~H5Ei uj t!5
p i exp~sEij t2

1
2s

2Ei
2t !

( ip i exp~sEij t2
1
2s

2Ei
2t !

. ~19!

Therefore, multiplying each side of~19! by Ei and summing overi, we deduce that the conditiona
expectation of the random variableH given j t is

Ht5
( ip iEi exp~sEij t2

1
2s

2Ei
2t !

( ip i exp~sEij t2
1
2s

2Ei
2t !

. ~20!

In order to show thatHt is the energy process associated with~1!, one further key result is
required: namely, thatthe process Wt defined by

Wt5j t2sE
0

t

Hs ds ~21!
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is an $Ft
j%-Brownian motion. To verify this, it suffices, by virtue of Le´vy’s characterization of

Brownian motion,6 to demonstrate~a! that (dWt)
25dt and ~b! that Wt is an$Ft

j%-martingale. To
verify ~a! we note that~13! implies

dj t5sHdt1dBt , ~22!

and thus (dj t)
25dt. On the other hand,~21! implies that dWt5dj t2sHtdt, and hence (dWt)

2

5(dj t)
2. To establish~b!, let ~20! define a functionH(j,t) of two variables such thatHt

5H(j t ,t):

H~j,t !5
( ip iEi exp~sEij2 1

2s
2Ei

2t !

( ip i exp~sEij2 1
2s

2Ei
2t !

. ~23!

Then applying Ito’s lemma and using the relation (dj t)
25dt, we obtain

dHt5~] tH~j t ,t !1 1
2]j

2H~j t ,t !!dt1]jH~j t ,t !dj t , ~24!

where] tH(j t ,t) denotes]H(j,t)/]t valued atj5j t , and so on. A calculation making use o
~21!, ~23!, and~24! then shows that

dHt5sV~j t ,t !dWt , ~25!

where the functionV(j,t) is

V~j,t !5
( ip i~Ei2H~j,t !!2 exp~sEij2 1

2s
2Ei

2t !

( ip i exp~sEij2 1
2s

2Ei
2t !

. ~26!

BecauseHt is an $Ft
j%-martingale, we conclude thatWt is also an$Ft

j%-martingale, and that
establishes~b!. We thus deduce thatWt is an$Ft

j%-Brownian motion, with respect to whichj t is
a diffusion process satisfying

dj t5sH~j t ,t !dt1dWt . ~27!

Now let uc0& be the initial normalized state vector of the quantum system, and letP̂i denote
for each value ofi the projection operator onto the Hilbert subspace corresponding to the e
eigenvalueEi . We let

uc i&5p i
21/2P̂i uc0& ~28!

denote the Lu¨ders state corresponding toEi , and write

P i t5P~H5Ei uj t! ~29!

for the process defined by~19!. Then we can establish our main result, that

uc t&5(
i

e2 iEi tP i t
1/2uc i& ~30!

satisfies the stochastic extension of the Schro¨dinger equation~1! with the given initial condition.
In particular, by applying Ito’s lemma to~19! and using~27! we obtain

dP i t5s~Ei2Ht!P i tdWt . ~31!

With another application of Ito’s lemma we deduce that
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dP i t
1/252 1

8s
2~Ei2Ht!

2P i t
1/2dt1 1

2s~Ei2Ht!P i t
1/2dWt . ~32!

A short calculation then shows that~30! satisfies the stochastic equation~1!, and that the expec
tation of the operatorĤ in the stateuc t& is the process~20!.

In summary, the stochastic equation~1! can be solved as follows. We letH be a random
variable taking the valuesEi with the probabilitiesp i defined by~12!. Letting Bt denote an
independent Brownian motion, we definej t as in ~13!. The solution of~1! is then given by

uc t&5
( iAp i exp~2 iEit1

1
2sEij t2

1
4s

2Ei
2t !uc i&

~( ip i exp~sEij t2
1
2s

2Ei
2t !!1/2

, ~33!

where the$Ft
j%-Brownian motionWt driving uc t& in ~1! is given by~21!. Expression~20! for Ht

follows at once from~33! since^c i uĤuc j&5Eid i j , and for the variance of the energy we dedu
that Vt5V(j t ,t). To obtain a realization of the processuc t&, i.e., to carry out a simulation, we
simply choose a value forH in accordance with the given probability law, and then letBt run its
course.

The fact that~20! is indeed a reduction process can be verified directly as follows. Supp
in a particular realization of the processHt , the random variableH takes the valueEj for some
choice of the indexj. Writing v i j 5Ei2Ej and setingj t5sEjt1Bt , we obtain

Ht5
p jEj1( i ~Þ j !p iEi exp~sv i j Bt2

1
2s

2v i j
2 t !

p j1( i ~Þ j !p i exp~sv i j Bt2
1
2s

2v i j
2 t !

, ~34!

for the corresponding realization ofHt . However, the exponential martingaleMi jt defined fori
Þ j by

Mi jt 5exp~sv i j Bt2
1
2s

2v i j
2 t ! ~35!

that appears in expression~34! has the property

lim
t→`

P~Mi jt .0!50. ~36!

Given that

Ht5
p jEj1( i ~Þ j !p iEiM i jt

p j1( i ~Þ j !p iM i jt
, ~37!

we see thatHt converges to the valueEj with probability one. A similar argument shows that
H5Ej , then for each value ofi we have limt→` P i t50 unlessi 5 j , which allows us to verify that
uc t& converges to the Lu¨ders state corresponding to the energy eigenvalueEj with probability
one.4

Therefore, we see that the random variableH can be identified with the terminal valueH` of
the energy process. The fact thatH is notFt

W-measurable fort,` indicates that the ‘‘true value’’
of H is ‘‘hidden’’ until the reduction process is complete. On a related point we note tha
stochastic models for state reduction it is sometimes assumed that the driving processWt is in
some way ‘‘external’’ to the quantum system. This assumption, however, is unnecessar
filtrations associated withWt , j t , Ht , anduc t& all coincide, and it is thus consistent to regard t
innovation processWt as being endogenous.

The advantage of expressions~20! and~33! from a computational point of view is thatHt and
uc t& are expressedalgebraically in terms of the underlying random variableH and the Brownian
motionBt . These quantities can be thought of as representing independentstate variablesfor the
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reduction dynamics. As a consequence, we are able to investigate properties of the proc~1!
directly without having to resort to numerical integration. In particular, by use of~33!, a numerical
simulation of the state reduction of complex systems is feasible, including cases for whic
Hamiltonian has a nondiscrete spectrum. It should be emphasized that in our simulation m
ology there is no need at any stage for the introduction of a change of probability measure

In conclusion we present a probabilistic analysis of the timescale associated with the red
process, in the case of a two-state system with energiesE1 andE2 . The initial state is given by
uc0&, and the transition probabilities to the energy eigenstatesuE1& anduE2& are given byp1 and
p2 .

Suppose a measurement of the energy is made, and we condition on the outcome
measurement beingE1 . In that case, according to~37!, we have

Ht5
p1E11p2E2M21t

p11p2M21t
, ~38!

where

M21t5exp~sv21Bt2
1
2s

2v21
2 t !. ~39!

Writing b5 1
4s

2v21
2 for the parameter that determines the characteristic rate of reduction, w

work out the probability thatM21t,e2n for some value ofn. SinceBt is normally distributed with
zero mean and variancet, we find

P~M21t,e2n!5N~~bt !1/22 1
2n~bt !21/2!, ~40!

where N(x) is the standard normal distribution function. Therefore, for example, we see
providedt.5tR , we have

P~M21t,e210!. 1
2, ~41!

wheretR51/b. In particular, asHt draws nearE1 we have the relation

Ht2E1;
p2

p1
~E22E1!M21t . ~42!

Thus, after only a relatively few multiples of the characteristic reduction timescale, the amou
which Ht differs from E1 will with high probability be reduced to a tiny fraction of the energ
differenceE22E1 .
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The Schwinger SU „3… construction. I. Multiplicity problem
and relation to induced representations
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The Schwinger oscillator operator representation of SU~3! is analyzed with particu-
lar reference to the problem of multiplicity of irreducible representations. It is
shown that with the use of an Sp(2,R) unitary representation commuting with the
SU~3! representation, the infinity of occurrences of each SU~3! irreducible repre-
sentation can be handled in complete detail. A natural ‘‘generating representation’’
for SU~3!, containing each irreducible representation exactly once, is identified
within a subspace of the Schwinger construction, and this is shown to be equivalent
to an induced representation of SU~3!. © 2002 American Institute of Physics.
@DOI: 10.1063/1.1508810#

I. INTRODUCTION

The well known Schwinger representation of the Lie algebra of SU~2!,1 constructed using the
annihilation and creation operators of two independent quantum mechanical harmonic osci
has played an important role in many widely differing contexts. Within the quantum theo
angular momentum it has made the calculation of various quantities somewhat easier than b
methods. Beyond this, it has been very effectively exploited in the physics of strongly corre
systems,2 in quantum optics of two mode radiation fields,3 and in the study of certain classes
partially coherent optical beams,4 namely to obtain the coherent mode decomposition of an
tropic Gaussian Schell model beams. It arises quite naturally in the context of a classical d
tion of particles with non-Abelian charges5 and has also been used in a recent investigation of
Pauli spin-statistics theorem.6

Bargmann has presented an entire function Hilbert space analog of the Schwinger co
tion, which is extremely elegant and possesses special merits of its own.7 This may be viewed as
a counterpart to the Fock space description of quantum mechanical oscillator systems.

Certain specially attractive features of the Schwinger SU~2! construction should be men
tioned. It leads upon exponentiation to a unitary representation~UR! of SU~2! in which each
unitary irreducible representation~UIR!, labeled as usual by the spin quantum numberj with

possible values 0,1
2,1,..., appears exactly once. In other words, it is complete in the sense th

UIR of SU~2! is missed, and also economical in the sense of being multiplicity free. T
reflecting these two features, it may be regarded as a ‘‘generating representation’’ for SU~2!, a
concept that has been effectively used in understanding the structures of various kinds of Cl
Gordan series for UIRs of the noncompact group SU~1,1!.8 In addition, of course, the use of boso
operator methods makes many operator and state vector calculations relatively easy to ca

It is of considerable interest to extend the Schwinger construction to other compac
groups, the next natural case after SU~2! being SU~3!. The aims behind any such attempt would

a!Electronic mail: scsp@uohyd.ernet.in
b!Honorary Professor, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064. E

mail: nmukunda@cts.iisc.ernet.in
52620022-2488/2002/43(11)/5262/16/$19.00 © 2002 American Institute of Physics
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to preserve the simplicity of the boson calculus, to cover all UIRs of the concerned group, a
do it in a multiplicity free manner.

The case of SU~3! has been studied by several authors since the work of Moshinsky.9 The aim
of the present article is somewhat different from previous studies, being motivated by the p
lar points of view mentioned above. In particular our aim is to see to what extent the attra
features of the SU~2! construction survive when we consider SU~3!, and which ones have to b
given up.

A brief overview of this article is as follows. In Sec. II we collect together some relevant f
regarding unitary representations of compact Lie groups with special attention to SU~3!. In par-
ticular, we highlight the fact that the theory of induced representations leads to a unitary
sentation of SU~3! which has all the properties becoming of a ‘‘generating representation
SU~3! in that it contains all the UIRs of SU~3! exactly once each. The Hilbert space carrying t
unitary representation turns out to be the Hilbert space of functions on unit sphere inC3. In Sec.
III, we turn to the Schwinger oscillator construction for SU~3! and show that a naive extension
the Schwinger SU~2!-construction making use of six oscillators leads to a very ‘‘fat’’ UR of SU~3!
containing each UIR of SU~3! infinitely many times. We then show how the group Sp(2,R)
enables us to completely handle this multiplicity and also neatly isolate from this rather
space a subspace carrying a UR of SU~3! of a ‘‘generating representation’’ type. At this stage, w
have two ‘‘generating representations’’ of SU~3!, one based on the Hilbert space of functions o
unit sphere inC3 and the other based on the Fock space of six oscillators, and a natural qu
to ask is how the two are related. To this end, in Sec. IV, we make use of the Bargmann
sentation, to transcribe the Fock space description into a description based on a Hilbert s
square integrable functions in six complex variables satisfying certain conditions. This tran
tion enables us to establish an equivalence map between the Hilbert spaces supporting
incarnations of the ‘‘generating representation’’ for SU~3!, details of which are given in Secs. V
and VI. Section VII contains concluding remarks and further outlook, and an appendix give
details of the construction of SU(3)3Sp(2,R) basis states.

II. UNITARY REPRESENTATIONS OF COMPACT LIE GROUPS, THE SU „3… CASE

It is useful to first recall some basic facts concerning the representation theory of any co
simple Lie groupG. The basic building blocks are the UIRs ofG. Each UIR carries certain
identifying labels~eigenvalues of Casimir operators!, such asj for SU~2!. It is of a characteristic
dimension, such as 2j 11 for SU~2!. In addition, we may set up some convenient orthonorm
basis in the space of the UIR, as simultaneous eigenvectors of some complete commuting
Hermitian operators. The eigenvalue sets labeling the basis vectors are generalizations
single magnetic quantum numberm for SU~2!.

A general UR ofG is reducible into UIRs, each occurring with some multiplicity. Thus t
UR as a whole is in principle completely determined upto equivalence by these multiplic
However, certain URs have special significance, reflecting the way they are constructed,
deserve special attention. We consider two cases—the regular representation, and represe
induced from various Lie subgroups ofG.

The Hilbert space carrying the regular representation ofG is the spaceL2(G) of all complex
square integrable functions onG, the integration being with respect to the~left and right! trans-
lation invariant volume element onG. On this space there are in fact two~mutually commuting!
regular representations ofG, the left and the right regular representations. Upon reduction
UIRs each of these contains every UIR ofG without exception, the multiplicity of occurrence o
a particular UIR is just its dimension. Thus the regular representations possess the compl
property of the Schwinger SU~2! construction, but not its economy.

Next we look at the family of induced URs ofG.10 Let H be some Lie subgroup ofG, and let
D(h), hPH, be the operators of a UIR ofH on some Hilbert spaceV. Then a certain unique UR
of G, with operatorsD H

(ind,D)(g) for gPG, can be constructed. As the labels indicate, this UR
induced from the UIRD(•) of H. The Hilbert spaceH H

(ind,D) of this UR consists of functions on
                                                                                                                



ts

s

s

itian

orre-
m
m

e
UIR

or
y

5264 J. Math. Phys., Vol. 43, No. 11, November 2002 S. Chaturvedi and N. Mukunda

                    
G with values inV obeying a covariance condition and having finite norm:

cPH H
(ind,D) : c~g!PV,gPG,

c~gh!5D~h21!c~g!,hPH, ~2.1!

ici25E
G

dg~c~g!,c~g!!V,`.

Here dg is the ~suitably normalized! invariant volume element onG, and the integrand is the
squared norm ofc(g)PV. The covariance condition means thatc(g) is essentially a function on
the coset spaceG/H, in the sense that the ‘‘values’’ ofc(g) all over a coset are determined by i
‘‘value’’ at any one representative point. Correspondingly, due to unitarity ofD(h), (c(g),c(g))V
is constant over each coset; so, the expression forici2 can be simplified and expressed in term
of a G-invariant volume element onG/H. The action ofD H

(ind,D)(g) on c is then given by

gPG:D H
(ind,D)~g!c5c8,

~2.2!
c8~g8!5c~g21g8!.

It is clear thatG action preserves the covariance condition, and we have a UR ofG on H H
(ind,D) .

WhereasD(•) was assumed to be a UIR ofH, D H
(ind,D)(•) is in general reducible; so it is a

direct sum of the various UIRs ofG, each occurring with some multiplicity. These multiplicitie
are determined by the reciprocity theorem:10 Each UIRD(•) of G appears inD H

(ind,D)(•) as often
asD(•) containsD(•) upon restriction fromG to H.

With this general background we now take up the specific case of SU~3!. The defining
representation of this group is

SU~3!5$A5333 complex matrixuA†A5I 333 ,detA51%, ~2.3!

with the group operation given by matrix multiplication. In this representation the eight Herm
generators are12la , a51,2,...,8, where the matricesla and the structure constantsf abg occur-
ring in the commutation relations

@la ,lb#52i f abglg , a,b,g51,2,...,8, ~2.4!

are all very well known.11

A general UIR of SU~3! is determined by two independent nonnegative integersp andq, so
it may be denoted as (p,q). It is of dimensiond(p,q)5 1

2(p11)(q11)(p1q12). The defining
three-dimensional UIR in~2.3! is ~1,0!, while the inequivalent complex conjugate UIR is~0,1!. In
general the complex conjugate of (p,q) is (q,p), and the adjoint UIR is~1,1! of dimension eight.
Various choices of ‘‘magnetic quantum numbers’’ within a UIR may be made. The one c
sponding to the canonical subgroup SU(2)3U(1)/Z25U(2),SU(3) leads to the three quantu
numbersI , M , Y in standard notation. HereI and M are the isospin and magnetic quantu
number labels for a general UIR of SU~2!, while Y is the eigenvalue of the~suitably normalized!
U~1! or hypercharge generator. The subgroups SU~2! and U~1! commute, and for definiteness w
take SU~2! to be the one acting on the first two dimensions of the three dimensions in the
~1,0!. The spectrum of ‘‘I 2Y’’ multiplets present in the UIR (p,q) can be described thus:

I 5 1
2 ~r 1s!, Y5r 2s1 2

3 ~q2p!, 0<r<p, 0<s<q. ~2.5!

Thus for each pair of integers (r ,s) in the above ranges, we have oneI 2Y multiplet, with M
going over the usual 2I 11 valuesI ,I 21,...,2I 11,2I . Then the orthonormal basis vectors f
the UIR (p,q) of SU~3! may be written asup,q;IMY&. This UIR can be realized via suitabl
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constructed irreducible tensors. A tensorT with p indices belonging to the UIR~1,0! andq indices
to the UIR ~0,1! is a collection of complex componentsTk1¯kq

j 1¯ j p , j and k51,2,3, transforming

underAPSU(3) by the rule

T8k1¯kq

j 1¯ j p 5Al 1

j 1
¯Al p

j pAm1

k1*
¯Amq

kq* Tm1¯mq

l 1¯ l p . ~2.6!

If in addition T is completely symmetric separately in the superscripts and in the subscripts
is traceless, i.e., contraction of any upper index with any lower index leads to zero, then all
properties are maintained under SU~3! action andT is an irreducible tensor. It then has precise
d(p,q) independent components~in the complex sense!, and the space of all such tensors carr
the UIR (p,q). The explicit transition from the tensor componentsTk1¯kq

j 1¯ j p to the canonical com-

ponentsTIMY
(p,q) may be found in Ref. 12

The regular representations of SU~3! act on the spaceL2(SU(3)), and ineach of them the
UIR (p,q) appearsd(p,q) times. We shall not be concerned with this UR of SU~3! in our work.
Instead we give now the UIR contents of some selected induced URs of SU~3!. For illustrative
purposes we consider the following four subgroups:

U~1!3U~1!5$A5diag~ei (u11u2),ei (u12u2),e22iu1!u0<u1 ,u2<2p%; ~2.7a!

SU~2!5H A5S a 0

0 1D UaPSU~2!J ; ~2.7b!

U~2!5H A5S u 0

0 ~detu!21D UuPU~2!J ; ~2.7c!

SO~3!5$APSU~3!uA* 5A%. ~2.7d!

In each case, we look at the induced UR of SU~3! arising from the trivial one-dimensional UIR o
the subgroup. In the first two cases, in order to apply the reciprocity theorem, we can u
information in~2.5! giving the SU(2)3U(1)/Z2 content of the UIR (p,q) of SU~3!. Defining by
a zero in the superscript the trivial UIR of the relevant subgroup, we have the results:

DU(1)3U(1)
(ind,0) 5 (

p,q50,1,̄
p5qmod3

`

% np,q~p,q!, np,q5min~p11,q11!; ~2.8a!

DSU(2)
(ind,0)5 (

p,q50,1,̄

`

% ~p,q!; ~2.8b!

DU(2)
(ind,0)5 (

p50,1,̄

`

% ~p,p!. ~2.8c!

The real dimensions of the corresponding coset spaces SU(3)/U(1)3U(1), SU(3)/SU(2)
and SU(3)/U(2) are 6, 5 and 4,respectively. In the case of induction from the trivial UIR
SO~3!, we need to use the fact that the UIR (p,q) of SU~3! does not contain an SO~3! invariant
state if eitherp or q or both are odd, while it contains one such state if bothp andq are even.
Then we arrive at the reduction

DSO(3)
(ind,0)5 (

r ,s50,1,̄

`

% ~2r ,2s!, ~2.9!

with SU(3)/SO(3)being of real dimension 5.
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From the above discussion we see that the induced URDSU(2)
(ind,0) of SU~3! is particularly

interesting in that it captures both the completeness and the economy properties of the Sch
SU~2! construction: each UIR of SU~3! is present, exactly once. Thus we may call this a gen
ating representation of SU~3!; it is much leaner than the regular representations.

III. THE MINIMAL SU „3… SCHWINGER OSCILLATOR CONSTRUCTION

An elementary oscillator operator construction of the SU~3! generators is based on thre
independent pairs of annihilation and creation operatorsâ j , â j

† obeying

@ â j ,âk
†#5d jk , @ â j ,âk#5@ â j

† ,âk
†#50, j ,k51,2,3. ~3.1!

We writeH (a) for the Hilbert space on which these operators act irreducibly. The individual
total number operators are

N̂1
(a)5â1

†â1 , N̂2
(a)5â2

†â2 , N̂3
(a)5â3

†â3 , N̂(a)5â j
†â j . ~3.2!

If we now define the bilinear operators

Qa
(a)5 1

2â
†laâ, a51,2,...,8, ~3.3!

eachQa
(a) is Hermitian, and they obey the SU~3! Lie algebra commutation relations

@Qa
(a) ,Qb

(a)#5 i f abgQg
(a) . ~3.4!

In addition they conserve the total number operator:

@Qa
(a) ,N̂(a)#50. ~3.5!

Upon exponentiation of these generators we obtain a particular UR,U (a)(A) say, of SU~3! acting
on H (a), under which the creation~annihilation! operatorsâ j

† (â j ) transform via the UIR~1,0!
~~0,1!!:

U (a)~A!â j
†U (a)~A!215Aj

kâk
† ,

~3.6!
U (a)~A!â jU (a)~A!215Aj

k* âk .

However, upon reduction,U (a)(A) contains only the ‘‘triangular’’ UIRs (p,0) of SU~3!, once each.
In that sense this UR may be regarded as the ‘‘generating representation’’ for this subset of
For any givenp>0, the UIR (p,0) is realized on that subspaceH (p,0) of H (a) over which the total
number operatorN̂(a) takes the eigenvaluep; and the connection between the tensor and the F
space descriptions is given in this manner:

$Tj 1¯ j p%→uT&5Tj 1¯ j pâ j 1

†
¯â j p

† u0I &PH (p,0),H (a),

â j u0I &50;
~3.7!

U (a)~A!uT&5uT8&,

T8 j 1¯ j p5Al 1

j 1
¯Al p

j pTl 1¯ l p.

Therefore we have the~orthogonal! direct sum decompositions
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H (a)5 (
p50,1,̄

`

% H (p,0),

H (p,0)5Sp$â j 1

†
¯â j p

† u0I &%, ~3.8!

U (a)5 (
p50,1,̄

`

% ~p,0!.

To be able to obtain the other UIRs as well, we bring in another independent tripl
oscillator operatorsb̂ j andb̂ j

† obeying the same commutation relations~3.1! and commuting with
â’s and â†’s:

@ b̂ j ,b̂k
†#5d jk , @ b̂ j ,b̂k#5@ b̂ j

† ,b̂k
†#50, j ,k51,2,3,

~3.9!
@ â j or â j

† , b̂k or b̂k
†#50.

The corresponding Hilbert space isH (b), and theb-type number operators are

N̂1
(b)5b̂1

†b̂1 , N̂2
(b)5b̂2

†b̂2 , N̂3
(b)5b̂3

†b̂3 , N̂(b)5b̂ j
†b̂ j . ~3.10!

We define theb-type SU~3! generators as

Qa
(b)52 1

2b̂
†la* b̂, a51,2,...,8, ~3.11!

and they obey

@Qa
(b) ,Qb

(b)#5 i f abgQg
(b) ,

~3.12!
@Qa

(b) ,N̂(b)#50.

Exponentiation of these generators leads to a URU (b)(A) acting onH (b), under which the
creation~annihilation! operatorsb̂ j

† (b̂ j ) transform via the UIR~0,1! ~~1,0!!:

U (b)~A!b̂ j
†U (b)~A!215Aj

k* b̂k
† ,

~3.13!
U (b)~A!b̂ jU (b)~A!215Aj

kb̂k .

Now this UR of SU~3! contains each of the triangular UIRs (0,q) for q>0 once each, so it is a
generating representation for this family of UIRs. For eachq>0, the UIR (0,q) is realized on that
subspaceH (0,q) of H (b) over which the total number operatorN̂(b) takes the eigenvalueq.
Analogous to~3.7!, the tensor-Fock space connection is now

$Tk1¯kq
%→uT&5Tk1¯kq

b̂k1

†
¯b̂kq

† u0I &PH (0,q),H (b),

b̂ku0I &50;
~3.14!

U (b)~A!uT&5uT8&,

T8k1¯kq
5Am1

k1*
¯Amq

kq* Tm1¯mq
.
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@The use of a common symbolu0I & for the Fock ground states inH (a) andH (b), anduT& in ~3.7!
and~3.14!, should cause no confusion as the meanings are always clear from the context.# In place
of ~3.8! we now have

H (b)5 (
q50,1,̄

`

% H (0,q),

H (0,q)5Sp$b̂k1

†
¯b̂kq

† u0I &%, ~3.15!

U (b)5 (
q50,1,̄

`

% ~0,q!.

From these considerations it is clear that if we want to obtain all the UIRs (p,q) of SU~3!,
missing none, the minimal scheme is to use all six independent oscillatorsâj , â j

† , b̂ j , b̂ j
† and

define the SU~3! generators13

Qa5Qa
(a)1Qa

(b) . ~3.16!

They act on the product Hilbert spaceH5H (a)3H (b), of course obey the SU~3! commutation
relations, and upon exponentiation lead to the URU(A)5U (a)(A)3U (b)(A). However, as we see
in a moment, while each UIR (p,q) is certainly present inU(A), it occurs infinitely many times.
A systematic group theoretic procedure to handle this multiplicity, based on the noncompact
Sp(2,R), will be set up below. The tensor-Fock space connection is now given as follows. T
irreducible tensorTk1¯kq

j 1¯ j p which is symmetric and traceless and so ‘‘belongs’’ to the UIR (p,q) we

associate the vectoruT&PH by

uT&5Tk1¯kq

j 1¯ j p â j 1

†
¯â j p

† b̂k1

†
¯b̂kq

† u0I ,0I &PH (p,0)3H (0,q),H,

â j u0I ,0I &5b̂ j u0I ,0I &50, ~3.17!

U~A!uT&5uT8&,

the components ofT8 being given by~2.6!. While this vectoruT& is certainly a simultaneous
eigenvector of the two number operatorsN̂(a), N̂(b) with eigenvaluesp, q, respectively, the
tracelessness of the tensorTk1¯kq

j 1¯ j p implies that~unless at least one ofp andq vanishes! we do not

get all such independent vectors inH. This aspect is further clarified below. On the other hand
we drop the tracelessness condition and retain only symmetry, we do span all ofH (p,0)3H (0,q) via
~3.17!.

The decomposition ofU(A) into UIRs, and the counting of multiplicities, is accomplished
appealing to the Clebsch–Gordan series for the product of two triangular UIRs (p,0) and (0,q):14

~p,0!3~0,q!5~p,q! % ~p21,q21! % ~p22,q22! % ...% ~p2r ,q2r !, r 5min~p,q!.
~3.18!

Therefore, at the Hilbert space level one has the orthogonal subspace decomposition

H5H (a)3H (b)5S (
p50,1,̄

`

% H (p,0)D 3S (
q50,1,̄

`

% H (0,q)D 5 (
p,q50,1,̄

`

% H (p,0)3H (0,q),

~3.19!

H (p,0)3H (0,q)5 (
r50,1,̄

r

% H (p2r,q2r;r), r 5min~p,q!.
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Here H (p2r,q2r;r) is that unique subspace ofH (p,0)3H (0,q) carrying the UIR (p2r,q2r)
present on the right hand side of~3.18!. All vectors inH (p2r,q2r;r) are eigenvectors ofN̂(a) and
N̂(b) with eigenvaluesp and q, respectively; and if the tensorT in ~3.17! is assumed traceless
only vectors inH (p,q;0),H (p,0)3H (0,q) are obtained on the right in that equation.

Focusing on a given UIR (p,q), we see that it appears once each inH (p,0)

3H (0,q),H (p11,0)3H (0,q11),..., in the respective irreducible subspacesH (p,q;0),H (p,q;1),... .
Thus it is the leading piece inH (p,0)3H (0,q), the next to the leading piece inH (p11,0)

3H (0,q11), and so on. Therefore, the decomposition~3.19! of H can be presented in the altern
tive manner

H5 (
p,q50,1.̄

`

% (
r50,1.̄

`

% H (p,q;r),H (p,q;r),H (p1r,0)3H (0,q1r), ~3.20!

eachH (p,q;r) carrying the same UIR (p,q). Thus the indexr is an~orthogonal! multiplicity label
with an infinite number of values. ForrÞr8, H (p,q;r8) andH (p,q;r) are mutually orthogonal. This
is also evident asN̂(a)5p1r8, N̂(b)5q1r8 in the former andN̂(a)5p1r, N̂(b)5q1r in the
latter.

We now introduce the group Sp(2,R) to handle in a systematic way the multiplicity indexr.
The Hermitian generators of Sp(2,R) and their commutation relations are15

J05 1
2 ~N̂(a)1N̂(b)13!,

K15 1
2 ~ â j

†b̂ j
†1â j b̂ j !,

~3.21!

K252
i

2
~ â j

†b̂ j
†2â j b̂ j !;

@J0 ,K1#5 iK 2 , @J0 ,K2#52 iK 1 , @K1 ,K2#52 iJ0 .

Using the raising and lowering combinationsK65K16 iK 2 we have

K15â j
†b̂ j

† , K25K1
† 5â j b̂ j ;

~3.22!
@J0 ,K6#56K6 , @K1 ,K2#522J0 .

The significance of this construction is that the two groups SU~3! and Sp(2,R), both acting
unitarily on H, commute with one another:

@J0 or K1 or K2 ,Qa#50. ~3.23!

It is this that helps us handle the multiplicity of occurrences of each SU~3! UIR (p,q) in H:r
becoming a ‘‘magnetic quantum number’’ within a suitable UIR of Sp(2,R).

The family of ~infinite dimensional! UIRs of Sp(2,R) relevant here is the positive discre
family Dk

(1) , labeled byk5 1
2,1,32,2,2... .~Actually we encounter onlyk> 3

2.) Within the UIRDk
(1)

we have an orthonormal basisuk,m& on which the generators act as follows:16

J0uk,m&5muk,m&, m5k,k11,k12,...,
~3.24!

K6uk,m&5A~m6k!~m7k61!uk,m61&.

From these follow the useful results

K1
21K2

22J0
25k~12k!, ~3.25a!
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uk,m&5A ~2k21!!

~m2k!! ~m1k21!!
K1

m2kuk,k&, ~3.25b!

K1
m2kK2

m2kuk,m&5
~m2k!! ~m1k21!!

~2k21!!
uk,m&. ~3.25c!

Going back to the generators~3.21! it is clear that on all ofH (p,0)3H (0,q), and so on each
H (p2r,q2r;r), J0 has the eigenvalue12(p1q13); therefore onH (p,q;r) it has the eigenvalue
1
2(p1q13)1r. It is also clear that action byK6 on H (p,0)3H (0,q) leads to a subspace o
H (p61,0)3H (0,q61). Therefore, because of~3.23!, we see thatK6 acting on H (p,q;r) yield
H (p,q;r61). Of courseH (p,q;0) is annihilated byK2 .

Reflecting all this we see that an orthonormal basis forH can be set up labeled as follows

up,q;IMY;m&:p,q50,1,2,...;

m5k,k11,k12,...,
~3.26!

k5 1
2 ~p1q13!;

N(a)5p1m2k, N(b)5q1m2k.

Sincek is determined in terms ofp andq, we do not include it as an additional label in the ba
kets above.@The ranges forI , M , Y within the SU~3! UIR (p,q) are given in~2.5!.# The SU~3!
UIR labelsp, q determinek and so the associated UIRDk

(1) of Sp(2,R). For fixedp, q asI , M ,
Y, m vary we get a set of states carrying the UIR (p,q)3Dk

(1) of SU(3)3Sp(2,R). We can now
appreciate the following relationships:

H (p,q;r)5Sp$up,q;IMY;k1r&uIMY varying%,

r50,1,2,...; ~3.27a!

H (p,q;r)5K1
r H (p,q;0); ~3.27b!

K2H (p,q;0)50. ~3.27c!

Therefore, the null space ofK2 within H is the subspace

H05 (
p,q50,1,...

`

% H (p,q;0)5Sp$up,q;IMY;k&up,q,IMY varying%, ~3.28!

and we see that the URU(A) of SU~3! on H when restricted toH0 gives a URD0 which is
multiplicity free and includes every UIR of SU~3!. It is thus identical in structure to the induce
representationDSU(2)

(ind,0) in ~2.8b!. We see how the use of Sp(2,R) helps us isolateH0 in a neat
manner.

In addition to the subspacesH (p,q;r), H0 of H defined above, it is also useful to define t
series of mutually orthogonal infinite dimensional subspaces

H (p,q)5 (
r50

`

% H (p,q;r)5Sp$up,q;IMY;m&uIMYm varying%,

p,q50,1,2,... . ~3.29!

Thus the infinity of occurrences of the SU~3! UIR (p,q) are collected together inH (p,q).
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In the Appendix we give explicit formulas for the state vectorsup,q;IMY;m& as functions of
the operatorsâ j

† , b̂ j
† acting on the Fock vacuumu0I ,0I &.

IV. THE BARGMANN REPRESENTATION

For some purposes the use of the Bargmann representation of the canonical comm
relations is more convenient than the Fock space description.17 We outline the definitions ofH and
the SU~3! UR U(A)5U (a)(A)3U (b)(A) in this language, and then turn to the problem of isolat
the subspaceH0 in H.

Vectors inH correspond to entire functionsf (zI ,wI ) in six independent complex variableszI
5(zj ), wI 5(wj ), j 51,2,3, with the squared norm defined as

i f i25E )
j 51

3 S d2zj

p D S d2wj

p De2z†z2w†wu f ~zI ,wI !u2. ~4.1!

Any such f (zI ,wI ) has a unique Taylor series expansion

f ~zI ,wI !5 (
p,q50,1,̄

`

f k1¯kq

j 1¯ j p zj 1
¯zj p

wk1
¯wkq

, ~4.2!

involving the tensor componentsf k1¯kq

j 1¯ j p separately symmetric in the superscripts and the s

scripts. In terms of these the squared norm is

i f i25 (
p,q50,1,̄

`

p!q! f k1¯kq

j 1¯ j p* f k1¯kq

j 1¯ j p . ~4.3!

The operatorsâj , â j
† , b̂ j , b̂ j

† act on f (zI ,wI ) as follows:

â j→
]

]zj
, â j

†→zj , b̂ j→
]

]wj
, b̂ j

†→wj . ~4.4!

The URU(A) of SU~3! acts very simply via point transformations:

~U~A! f !~zI ,wI !5 f ~A21zI ,A21* wI !. ~4.5!

The Sp(2,R) generators are particularly simple:

J05
1

2 S zj

]

]zj
1wj

]

]wj
13D ,

K15zjwj[zI•wI , ~4.6!

K25
]2

]zj]wj
[

]

]zI
•

]

]wI
.

We will use these below.
It is clear that the terms in~4.2! and ~4.3! for fixed p and q are contributions fromH (p,0)

3H (0,q). The action byK1 obeys

f ~zI ,wI !PH (p,0)3H (0,q)→K1 f ~zI ,wI !5zI•wI f ~zI ,wI !PH (p11,0)3H (0,q11). ~4.7!

On the other hand, action byK2 is the analytic equivalent of taking the trace: starting with~4.2!
we get
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K2 f ~zI ,wI !5 (
p,q50,1,̄

`

pq fjk1¯kq21

j j 1¯ j p21 zj 1
¯zj p21

wk1
¯wkq21

. ~4.8!

From these and earlier remarks we can see that the correspondences between~symmetric, trace-
less! tensors, entire functions, and subspaces ofH are

H (p,0)3H (0,q)↔$ f k1¯kq

j 1¯ j p %↔ f ~zI ,wI !:

~4.9a!
f ~lzI ,mwI !5lpmqf ~zI ,wI !;

f ~zI ,wI !PH (p,q;r)⇔ f ~zI ,wI !5~zI•wI !r f 0~zI ,wI !, f 0~zI ,wI !PH (p,q;0),H (p,0)3H (0,q),
~4.9b!

]

]zI
•

]

]wI
f 0~zI ,wI !50.

Thus traceless symmetric tensors of type (p,q) are in correspondence with entire functio
f 0(zI ,wI ) of degrees of homogeneityp andq, respectively, obeying the partial differential equati
~4.9b!. Alternatively, given any f (zI ,wI )PH (p,0)3H (0,q), there is a unique ‘‘traceless’’ par
f 0(zI ,wI ) belonging to the leading subspaceH (p,q;0) and annihilated byK2 . Thus ‘‘trace removal’’
can be accomplished by analytical means. We now give the procedure to pass fromf (zI ,wI ) to
f 0(zI ,wI ).

For any f (zI ,wI )PH (p,0)3H (0,q) we can easily establish the general formula

K2$~zI•wI !nK2
n f ~zI ,wI !%5n~p1q122n!~zI•wI !n21K2

n f ~zI ,wI !1~zI•wI !nK2
n11f ~zI ,wI !.

~4.10!

We try for f 0(zI ,wI ) the expression

f 0~zI ,wI !5 f ~zI ,wI !2 (
n51,2,̄

an~zI•wI !nK2
n f ~zI ,wI !, ~4.11!

and get, using~4.10! ~and omitting the argumentszI ,wI ),

K2 f 05K2 f 2~p1q11!a1K2 f 2 (
n51,2,̄

$an1~n11!~p1q112n!an11%~zI•wI !nK2
n11f .

~4.12!

We can therefore attainK2 f 050 by choosing

an5~21!n21
~p1q112n!!

n! ~p1q11!!
, n51,2,... . ~4.13!

Therefore, for any~bihomogeneous! polynomial f (zI ,wI )PH (p,0)3H (0,q) the leading traceless pa
annihilated byK2 is an elementf 0(zI ,wI ) in H (p,q;0):

f 0~zI ,wI !5 f ~zI ,wI !2 (
n51,2,̄

~21!n21
~p1q112n!!

n! ~p1q11!!
~zI•wI !nK2

n f ~zI ,wI !. ~4.14!

This result can be extended and expressed in the Fock space language. Anyuc&PH (p,0)

3H (0,q) has a unique orthogonal decomposition into various parts belonging to various UI
SU~3!; using ~3.25c! this reads

uc&PH (p,0)3H (0,q)5H (p,q;0)% H (p21,q21;1)% H (p22,q22;2)% ¯ :
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uc&5uc0&1uc1&1uc2&1¯ ,

uc0&PH (p,q;0), K2uc0&50;

uc1&5K1uf1&PH (p21,q21;1),

uf1&5
~p1q!!

1!~p1q11!!
K2uc1&PH (p21,q21;0), ~4.15!

K2
2 uc1&50;

uc2&5K1
2 uf2&PH (p22,q22;2),

uf2&5
~p1q22!!

2!~p1q!!
K2

2 uc2&PH (p22,q22;0),

K2
3 uc2&50;¯ .

The ‘‘leading’’ piece inuc& is thus

uc0&5uc&2uc1&2uc2&2¯5uc&2aÎ †
•bÎ †uf&,

~4.16!
uf&5uf1&1aÎ †

•bÎ †uf2&1¯PH (p21,0)3H (0,q21).

We can now infer that if to begin with we haduc&5aÎ †
•bÎ †uf& for some fPH (p21,0)

3H (0,q21), thenuc0& necessarily vanishes:

uc&5aÎ †
•bÎ †uf&⇔uc0&50. ~4.17!

In the Bargmann description this means in terms of~4.14!

f ~zI ,wI !5zI•wI g~zI ,wI !⇔ f 0~zI ,wI !50, ~4.18!

a result which can be directly verified with some effort.
The subspaceH0,H identified in~3.28! is describable in the Bargmann language as follow

H05H f ~zI ,wI !PHU ]

]zI
•

]

]wI
f ~zI ,wI !50J . ~4.19!

In the Taylor series expansion~4.2! for such f (zI ,wI ), the tensorsf k1¯kq

j 1¯ j p are traceless and vic

versa. The squared norm and SU~3! action are given forH0 by ~4.3! and ~4.5!, respectively.

V. THE UR DSU„2…
„IND,0… OF SU„3…

The Hilbert spaceHSU(2)
(ind,0) carrying the URDSU(2)

(ind,0) of SU~3! consists of single componen
~scalar! complex functions on the coset space SU~3!/SU~2!. This coset space is the unit sphere
three-dimensional complex spaceC3, with the natural norm and SU~3! action. Temporarily omit-
ting the superscript zero and subscript SU~2! for simplicity, we have

H (ind)5H c~jI !PC,jI PC3Uici25E )
j 51

3 S d2j j

p D d~j†j21!uc~jI !u2J ,

~5.1!
~D (ind)~A!c!~jI !5c~A21jI !.
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Clearly only the values ofc(jI ) for j†j51 are relevant. For a generalc(jI ) with a Taylor series
expansion we write

c~jI !5 (
p,q50,1,̄

`

ck1¯kq

j 1¯ j p j j 1
¯j j p

jk1
* ¯jkq

* . ~5.2!

@Strictly speaking, such an expansion holds only forc(jI ) in some dense subset ofH (ind).] We
note that herec(jI ) is not an entire function ofj j , and sincej†j51, the tensor component

ck1¯kq

j 1¯ j p may be assumed to be traceless apart from being symmetric. Then they determinec(jI )

uniquely and vice versa.
To express the inner product~f, c! for generalf, cPH (ind) in terms of their tensor compo

nents, we need to evaluate

I j¯m¯

k¯ l¯ 5E )
j 51

3 S d2j j

p D d~j†j21!j j 1
¯j j p

~jk1
¯jkq

!* ~j l 1
¯j l p8

!* ~jm1
¯jmq8

!, ~5.3!

for generalp, q, p8, q8 and indicesj , k, l , m. Using SU~3! invariance and symmetry, we see th
the result must be expressible in terms of products of Kronecker deltas. Combining this wi
tracelessness of the tensor components off andc, we can check first that we need only consid
the casep5p8, q5q8, and next that

I j¯m¯

k¯ l¯ 5N (
PPSp

(
QPSq

d j 1

l P(1)
¯d j p

l P(p)dmQ(1)

k1
¯dmQ(q)

kq 1¯ . ~5.4!

HereN is a normalizing factor, and the dots denote terms with factorsd j
k or d l

m or both. Again the
latter can be ignored. The factorN can be computed say by setting allj 5 l 51 and allk5m
52:

N5
1

~p1q12!!
. ~5.5!

We then get the result for anyf, cPH (ind):

~f,c!5 (
p,q50,1,̄

p!q!

~p1q12!!
fk1¯kq

j 1¯ j p* ck1¯kq

j 1¯ j p . ~5.6!

With these results, all details of the induced URDSU(2)
(ind,0) of SU~3! are in hand: the Hilbert spac

HSU(2)
(ind,0) in ~5.1!, the expression~5.6! for inner products, and the SU~3! action as in~5.1!.

VI. EQUIVALENCE MAP

The full equivalence of the two UR’s of SU~3!, one on the subspaceH0,H based on the six
oscillator Schwinger construction of Sec. III, and the other the induced representationDSU(2)

(ind,0) , can
now be set up. The tensor component expressions~4.2! and~5.2! for vectors, and~4.3! and~5.6!
for inner products, determine the one-to-one map to achieve this in full detail:

f ~zI ,wI !5$ f k1¯kq

j 1¯ j p %PH0↔c~jI !5$ck1¯kq

j 1¯ j p %PH (ind):

ck1¯kq

j 1¯ j p 5A~p1q12!! f k1¯kq

j 1¯ j p ,p,q50,1,... . ~6.1!

The two inner products then match, and the SU~3! actions given in~4.5! and~5.1! on f (zI ,wI ) and
c(jI ) also match.
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It is worth emphasizing here the two different arguments leading to the tracelessness
symmetric tensors on the two sides of~6.1!. In the case of the left hand side, the reason is that
argument ofc(jI ) obeys the constraintj†j51. As for the right hand side, it happens becau
entire functionsf (zI ,wI )PH0 obey the partial differential equation in~4.19!. In both cases trace
lessness leads to the UR being multiplicity free, apart from being complete in the sense t
SU~3! UIR’s do appear.

VII. CONCLUDING REMARKS

To conclude, we have brought out the difficulties one encounters in naively extendin
Schwinger SU~2! construction to SU~3! particularly if one wishes to retain the simplicity an
economy intrinsic to the SU~2! case. We have shown how these difficulties can be overcom
exploiting the group Sp(2,R) to obtain a ‘‘generating representation’’ of SU~3! based on six
bosonic oscillators. This UR of SU~3! contains all the representations of SU~3! exactly once.~It
has been drawn to our attention by the referee that this result of ours is a special case o
general results available in mathematics literature.18,19! Further, we have shown how this ‘‘gene
ating representation’’ for SU~3! can also be constructed using the theory of induced representa
and have constructively established the equivalence between the two by making use of the
mann representation. It is hoped that the construction presented here will have useful appli
in various branches of physics much the same way as the SU~2! construction has. Indeed, the wor
presented here has direct relevance to SU~3! coherent states as will be shown in a succeed
publication.
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APPENDIX: BOSON OPERATOR CONSTRUCTION OF SU„3…ÃSp„2,R… BASIS STATES

We give here the explicit construction of the orthonormal basis statesup,q;IMY;m& for H
introduced in Eq.~3.26!. We deal first with the statesup,q;IIY ;k&PH (p,q;0),H (p,q)ùH0 having
highest SU~2! weight; then by repeated use of the Sp(2,R) raising operatorK15aÎ †

•bÎ † with
up,q;IIY ;m&PH (p,q;m2k),H (p,q); and finally with the general stateup,q;IMY;m& using the
SU~2! lowering operator. At each stage the normalization will be ensured.

As is well known, the boson operatorsâ j
† , b̂ j

† carry the following U~2! quantum numbers:11

I M Y

â1
† ,â2

† 1
2 6 1

2
1
3

â3
† 0 0 2 2

3

b̂2
† ,2b̂1

† 1
2 6 1

2 2 1
3

b̂3
† 0 0 2

3

. ~A1!

Therefore,âa
† b̂a

†[â1
†b̂1

†1â2
†b̂2

† , â3
† and b̂3

† are SU~2! scalars. The I-Y multiplets present in th
SU~3! UIR (p,q) are listed in Eq.~2.5!, and are parametrized by two integersr , s. The state
up,q;IIY ;k&PH0 involvesp factorsâ† andq factorsb̂† acting on the Fock vacuumu0I ,0I &, and in
addition it is annihilated byK25aÎ •bÎ . We therefore start with the expression@guided by~A1!#:
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up,q;IIY ;k&5~ â1
†!r~ b̂2

†!s (
n50,1,...

(p2r ,q2s),

Cn~ âa
† b̂a

† !n~ â3
†!p2r 2n~ b̂3

†!q2s2nu0I ,0I &,

~A2!

r 5I 1
Y

2
1

1

3
~p2q!, s5I 2

Y

2
1

1

3
~q2p!.

The condition

K2up,q;IIY ;k&50 ~A3!

gives the recursion relation

n~r 1s1n11!Cn52~p2r 2n11!~q2s2n11!Cn21 , n51,2,..., ~A4!

with the solution

Cn5
~21!n

n!

~p2r !! ~q2s!! ~r 1s11!!

~p2r 2n!! ~q2s2n!! ~r 1s1n11!!
C0 , n51,2,... . ~A5!

Using this in Eq.~A2!, and after some algebra, the normalized state is found to be

up,q;IIY ;k&5NpqIY

~ â1
†!r

r !

~ b̂2
†!s

s!

3 (
n50,1,...

(p2r ,q2s), ~21!n

~r 1s1n11!!

~ âa
† b̂a

† !n

n!

~ â3
†!p2r 2n

~p2r 2n!!

~ b̂3
†!q2s2n

~q2s2n!!
u0I ,0I &PH (p,q;0),

~A6!
NpqIY5$r !s! ~r 1s11!! ~p2r !! ~q2s!! ~p1s11!! ~q1r 11!!/ ~p1q11!! %1/2.

From Eq.~3.27a! we know that vectors inH (p,q;m2k) for m.k are obtained from vectors in
H (p,q;0) by applying K1

m2k . Further, the normalization is controlled by Eq.~3.25b!. We thus
obtain

up,q;IIY ;m&5$~2k21!!/ ~m2k!! ~m1k21!! %1/2~aÎ †
•bÎ †!m2kup,q;IIY ;k&PH (p,q;m2k).

~A7!

The last step is to reach a general valueM<I for the SU~2! magnetic quantum number. Fo
this we apply the SU~2! lowering operatorJ25â2

†â12b̂1
†b̂2(I 2M ) times to the state~A7!, keep-

ing track of normalization. This leads to the result

up,q;IMY;m&5$~ I 1M !!/2I ! ~ I 2M !! %1/2~ â2
†â12b̂1

†b̂2! I 2Mup,q;IIY ;m&. ~A8!

If we combine Eqs.~A6! to ~A8! we get the complete expression

up,q;IMY;m&5NpqIY$~2k21!! ~ I 1M !! ~ I 2M !!/ ~m2k!! ~m1k21!!2I ! %1/2

3~aÎ †
•bÎ †!m2k (

L50

I 2M

(
n50

(p2r ,q2s), ~21!n1I 2M2L

~r 1s1n11!!
•

~ âa
† b̂a

† !n

n!

3
~ â3

†!p2r 2n

~p2r 2n!!

~ b̂3
†!q2s2n

~q2s2n!!

~ â1
†!r 2L

~r 2L !!

~ â2
†!L

L!

~ b̂2
†!s2I 1M1L

~s2I 1M1L !!

~ b̂1
†! I 2M2L

~ I 2M2L !!
u0I ,0I &.

~A9!

We thus have explicit expressions for all the normalized basis statesup,q;IMY;m& of H.
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The Schwinger SU „3… construction. II. Relations between
Heisenberg–Weyl and SU „3… coherent states

S. Chaturvedia)

School of Physics, University of Hyderabad, Hyderabad 500046, India

N. Mukundab)
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The Schwinger oscillator operator representation of SU~3!, studied in a previous
paper from the representation theory point of view, is analyzed to discuss the
intimate relationships between standard oscillator coherent state systems and sys-
tems of SU~3! coherent states. Both SU~3! standard coherent states, based on
choice of highest weight vector as fiducial vector, and certain other specific systems
of generalized coherent states, are found to be relevant. A complete analysis is
presented, covering all the oscillator coherent states without exception, and
amounting to SU~3! harmonic analysis of these states. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1508811#

I. INTRODUCTION

In a previous paper1 we have presented an analysis of the reducible unitary repres
tion~UR! of SU~3! that is obtained by a generalization of the well-known Schwinger oscill
operator construction in the case of SU~2!.2 This construction, based on six independent pairs
oscillator operators, is a minimal one in the sense that all unitary irreducible represent
~UIRs! of SU~3! are obtained without exception. However, in contrast to the SU~2! case, there is
an unavoidable multiplicity in that each UIR occurs a denumerably infinite number of time
systematic way to handle this multiplicity, based on the use of the noncompact group Sp(2,R), has
been developed; its salient features are recapitulated in the next section.

The aim of the present article is to extend this study and discuss various properties of co
states in this framework. The use of oscillator operators automatically brings in the Heisen
Weyl ~H-W! group with a dimension appropriate to the number of independent oscillato
degrees of freedom. And it is indeed in the context of this group that the standard coheren
in quantum mechanics were originally defined and applied to a very large number of prob3

On the other hand, the basic kinematic relations for any system of independent oscillator op
have a well-defined covariance group associated with them—a group of linear inhomoge
transformations on the oscillator operators which leave their commutation relations invarian
homogeneous part of this covariance group is the metaplectic group of appropriate dime
containing a unitary group as its maximal compact subgroup. Thus forn oscillators orn canonical
pairs of degrees of freedom, we encounter the groups Mp(2n), U(n) and SU(n), and certain of
their URs, in a natural way.4

Now the original concept of coherent states has been generalized from the H-W cas
general Lie group, and it consists of the orbit of a chosen fiducial vector under group action
UIR of the group.5 The usual coherent states arise by the action of the elements of the H-W
on the Fock vacuum. Given all this, it is natural and to be expected that via the Schwinge
construction we have an intricate interplay between the familiar H-W coherent states, and

a!Electronic mail: scsp@uohyd.ernet.in
b!Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064. E

mail: nmukunda@cts.iisc.ernet.in
52780022-2488/2002/43(11)/5278/32/$19.00 © 2002 American Institute of Physics
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systems of coherent states associated with the groups Mp(2n), U(n) and SU(n).
In passing we may also mention that with this generalization, even for the H-W group we

not only the originally defined coherent states, which may be called standard coherent
~SCSs!, but other systems of generalized coherent states~GCSs!.6 These are based on choices
states other than the Fock vacuum as the fiducial state. Similarly, for the unitary group Sn),
within any given UIR the SCSs are obtained when the highest weight state is used as the fi
state, while for other choices we have systems of GCSs.7 It is therefore of interest to see how the
various systems of coherent states for different groups get interconnected via the Sch
construction. This is the main aim of the present work, in the particular case of the H-W grou
six oscillators, and SU~3!.

A brief outline of this work is as follows. Our earlier work1 has shown how in a natura
manner we can identify and isolate a subspaceH0 carrying a complete and multiplicity-free UR o
SU~3! @a ‘‘generating representation’’ for SU~3!#, within the full Schwinger representation cha
acterized by infinite multiplicity. As this decomposition, in which the compact generatorJ0 of
Sp(2,R) plays a crucial role, provides the starting point of the present work, to set the notatio
to make the article reasonably self-contained, we briefly recapitulate the relevant details of
in Sec. II. In Sec. III, we recall the largely familiar interconnections between H-W and U~1! and
SU~2! coherent states, to highlight some special features of the Klauder resolution of the id
and its modifications. This helps set the stage for a unified analysis of the relations betwe
appropriate H-W SCS and SU~3! SCSs and GCSs carried out in detail in Secs. IV–VI. Section
contains a detailed classification of the orbits of H-W SCSs, under SU~3! action; we identify both
generic orbits of maximal dimension, and nongeneric lower order ones. The rest of Sec. IV c
out the SU~3! harmonic analysis of generic orbits lying in the subspaceH0 . In Sec. V we examine
the remaining generic orbits, lying in subspacesHk which are generalizations ofH0 and are
labeled by a complex parameterk. Some calculational details pertaining to this section are
together in an appendix. Section VI contains an analysis of the SU~3! content of a family of H-W
SCSs belonging to a nongeneric orbit under SU~3! action. Some concluding remarks are presen
in Sec. VII.

II. REVIEW OF SCHWINGER CONSTRUCTION FOR SU„3…

This construction uses six independent sets of oscillator creation and annihilation ope
â j

† ,b̂ j
† ,â j ,b̂ j , j 51,2,3, among which the only nonvanishing commutators are

@ â j ,âk
†#5@ b̂ j ,b̂k

†#5d jk , j ,k51,2,3. ~2.1!

The Hilbert spaceH carrying an irreducible representation of these operators is the te
productH5H (a)3H (b), whereH (a) andH (b) are the individual Hilbert spaces carrying irredu
ible representations of the independent setsâ j ,â j

† andb̂ j ,b̂ j
† , respectively. The Schwinger UR o

SU~3! acts onH, and its Hermitian generators are1

Qa5Qa
(a)1Qa

(b) ,
~2.2!

Qa
(a)5 1

2â
†laâ, Qa

(b)52 1
2b̂

†la* b̂, a51,2,....,8.

Here 1
2la are the eight Hermitian traceless 333 matrices generating the defining UIR~1,0! of

SU~3!.8 @For ease in writing, the UIRs of SU~3! will be denoted by (p,q) wherep,q50,1,2,...,
independently, instead of the more elaborate notationD (p,q). ]

The independent mutually commuting generatorsQa
(a) ,Qa

(b) lead to specific multiplicity-free
URsU (a)(A),U (b)(A) of SU~3! on H (a),H (b), respectively. HereA is a general matrix in the UIR
~1,0!. The UR U (a)(A) is a direct sum of the ‘‘triangular’’ UIRs (p,0) of SU~3!, for p
50,1,2,..., andsimilarly U (b)(A) is a direct sum of the conjugate ‘‘triangular’’ UIRs (0,q). We
indicate this by
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U (a)5 (
p50,1,...

`

% ~p,0!,

~2.3!

U (b)5 (
q50,1,...

`

% ~0,q!.

The total generatorsQa defined in Eq.~2.2! then generate the product URU(A)5U (a)(A)
3U (b)(A) on H, and this is the Schwinger UR of SU~3!. It does contain every UIR (p,q) of
SU~3!, but each one occurs an infinite number of times. This can be seen from the Cle
Gordan decomposition of the direct product (p,0)3(0,q) of two triangular UIRs:9

~p,0!3~0,q!5 (
r50,1,...

r

% ~p2r,q2r!, r 5min~p,q!, ~2.4!

which is multiplicity-free. Applying this to each pair in the productU (a)3U (b) we easily reach the
stated conclusion.

An efficient way to handle this infinite multiplicity is based on the use of the semi-sim
noncompact Lie group Sp(2,R), more specifically some of its UIRs belonging to the positi
discrete class.10 In the present context the Hermitian Sp(2,R) generators and their commutatio
relations are

J05 1
2 ~ â j

†â j1b̂ j
†b̂ j13!,

K15 1
2 ~ â j

†b̂ j
†1â j b̂ j !, ~2.5a!

K25
2 i

2
~ â j

†b̂ j
†2â j b̂ j !;

@J0 ,K1#5 i K 2 , @J0 ,K2#52 i K 1 , @K1 ,K2#52 i J0 . ~2.5b!

The crucial property is that the SU~3! and the Sp(2,R) generators mutually commute:

@J0 or K1 or K2 , Qa#50. ~2.6!

Thus the two URs commute as well, and Sp(2,R) is just large enough to be able to completely l
the degeneracy or multiplicity of SU~3! UIRs. In other words, the UIRs of the product grou
SU(3)3Sp(2,R) that occur inH do so in a multiplicity-free manner. This is reflected at t
Hilbert space level in the following manner. We first decompose the individual Hilbert sp
H (a),H (b) into mutually orthogonal subspaces reflecting the decompositions~2.3!:

H (a)5 (
p50,1,...

`

% H (p,0),

~2.7!

H (b)5 (
q50,1,...

`

% H (0,q).

The subspaceH (p,0),H (a) is of dimensiond(p,0)5 1
2(p11)(p12), consists of all eigenvector

in H (a) of the totala-type number operatorâ j
†â j with eigenvaluep, and carries the UIR (p,0) of

SU~3!. Similarly the subspaceH (0,q),H (b) is of dimensiond(0,q)5 1
2(q11)(q12), consists of

all eigenvectors inH (b) of the totalb-type number operatorb̂ j
†b̂ j with eigenvalueq, and carries
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the UIR (0,q) of SU~3!. After forming the direct productH (a)3H (b), using Eq.~2.7! and the
Clebsch–Gordan decomposition~2.4!, we arrive at an orthogonal subspace decomposition foH
5H (a)3H (b):

H5 (
p,q50,1,...

`

% H (p,0)3H (0,q)5 (
p,q50,1,...

`

(
r50,1,...

`

% H (p,q;r),

~2.8!
H (p,q;r),H (p1r,0)3H (0,q1r).

For eachr,H (p,q;r) is of dimensiond(p,q)5 1
2(p11)(q11)(p1q12) and carries therth oc-

currence of the UIR (p,q) of SU~3!. For r8Þr,H (p,q;r8) andH (p,q;r) are mutually orthogona
subspaces; and ifp8Þp and/orq8Þq, againH (p8,q8;r) andH (p,q;r) are mutually orthogonal. An
orthonormal basis forH consists of vectors labeled as follows:

up,q; I ,M ,Y;m&:

p,q50,1,2,...,
~2.9!

m5k,k11,k12,...,

k5 1
2 ~p1q13!5 3

2,2,52 ,... .

Here I ,M ,Y are ‘‘magnetic quantum numbers’’ within the UIR (p,q) of SU~3!, with well-known
ranges,11 andm is the eigenvalue of the Sp(2,R) generatorJ0 . The total numbers ofa-type quanta
and ofb-type quanta in the state displayed in Eq.~2.9! are

Na5eigenvalue ofâ j
†â j5p1m2k,

~2.10!
Nb5eigenvalue ofb̂ j

†b̂ j5q1m2k.

For fixed p,q andm, as I ,M ,Y vary within the UIR (p,q) of SU~3!, we obtain an orthonorma
basis forH (p,q;m2k). Switching tor5m2k we can say

H (p,q;r)5Sp$up,q;I ,M ,Y;k1r&up,q,r fixed,I ,M ,Y varying%, ~2.11!

where Sp$•% stands for the linear span of the set of vectors$•%. On the other hand, if we kee
p,q,I ,M ,Y fixed and letm vary, we get an orthonormal basis for a subspace ofH carrying the
infinite dimensional positive discrete class UIRDk

(1) of Sp(2,R).10 In other words, each of thes
UIRs Dk

(1) of Sp(2,R) occursd(2k23,0)1d(2k24,1)1¯1d(1,2k24)1d(2k23) times, be-
ing the sum of the dimensions of the SU~3! UIRs (2k23,0),(2k24,1),...,(1,2k24),(0,2k
23). ~The range of 2k is 3,4,5,... .! Since our main interest is in URs and UIRs of SU~3!, and we
wish to use UIRs of Sp(2,R) mainly to keep track of the multiplicities of the former, we do n
introduce special notations for the subspaces ofH carrying the various Sp(2,R) UIRs. However,
we do note that, as stated earlier, each of the UIRs (p,q)3D (1/2)(p1q13)

(1) of SU(3)3Sp(2,R)
appears just once inH, for p,q50,1,2,... .

At the generator level we can say that when the SU~3! generatorsQa act onup,q;I ,M ,Y;m&,
they alter only the quantum numbersI ,M ,Y in a manner known from the representation theory
SU~3!,12 while the actions by the Sp(2,R) generatorsJ0 ,K1 ,K2 lead only to changes in the
quantum numberm according to the UIRDk

(1) .10

It is in this manner that the Sp(2,R) structure helps us handle the multiplicity problem of UIR
of SU~3! which is an unavoidable feature of the Schwinger construction. One can now look
natural subspace ofH,H0 say, such that it carries every UIR (p,q) of SU~3! exactly once. This
can be done if we restrict ourselves to the ‘‘ground state’’ within each Sp(2,R) UIR Dk

(1) , namely
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if we setm5k. This amounts to picking up the ‘‘first’’ occurrence of each UIR (p,q) of SU~3!
corresponding tor50, or to the ‘‘leading piece’’ in the reduction of each tensor productH (p,0)

3H (0,q):

H05 (
p,q50,1,...

`

% H (p,q;0)5Sp$up,q;I ,M ,Y;k&up,q,I ,M ,Y varying%

5$uc&PHu~K12 iK 2!uc&50%. ~2.12!

The UR of SU~3! carried byH0 , D0 say, may be called a generating representation for this gr
in the sense that each UIR is present, and exactly once:

D05 (
p,q50,1,...

`

% ~p,q!. ~2.13!

It now turns out that just this property is also present in the URDSU(2)
(ind,0) of SU~3! induced from

the trivial one-dimensional UIR of the canonical SU~2! subgroup.13 The corresponding Hilber
space is denoted byHSU(2)

(ind,0) . @Hereafter, for simplicity, the superscript zero and the subscript SU~2!
will be omitted.# We can set up a one-to-one mapping betweenH0 andH (ind) preserving scalar
products and SU~3! actions, thus realizing the equivalence ofD0 andD (ind). First we describeH0

and D0 more explicitly. Denote byu0I ,0I & the Fock vacuum inH annihilated byâ j and b̂ j , j
51,2,3. Then a general vector inH0 is a collection of symmetric traceless tensors with respec
SU~3!, one for each UIR (p,q):

uc&PH0 :

uc&5 (
p,q50,1,...

`

ck1 ...kq

j 1 ...j p â j 1

† ...â j p

† b̂k1

† ...b̂kq

† u0I ,0I &; ~2.14a!

ckQ(1) ...kQ(q)

j P(1) ...j P(p) 5ck1 ...kq

j 1 ...j p , PPSp , QPSq ; ~2.14b!

c j k2 ...kq

j j 2 ...j p 50, ~2.14c!

^cuc&5ici25 (
p,q50,1,...

`

p!q!ck1 ...kq

j 1 ...j p * ck1 ...kq

j 1 ...j p ; ~2.14d!

D0~A!uc&5uc8&,
~2.14e!

ck1 ...kq
8 j 1 ...j p5Aj 1

l 1
...Aj p

l p
Ak1

m1
* ...Akq

mq
* ...cm1 ...mq

l 1 ...l p .

HereSp andSq are the permutation groups onp and onq objects, respectively. Turning toH (ind)

andD (ind), the former consists of complex square integrable functions on the coset space~3!/
SU~2!, namely the unit sphere inC 3:14

H (ind)5H c~jI !PC,jI PC 3uici25E )
j 51

3 S d2j j

p D d~jI
†jI 21!uc~jI !u2J . ~2.15!

The group action is by change of argument:

D (ind)~A!c5c8,
~2.16!

c8~jI !5c~A21jI !.
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Then the one-to-one mapping betweenH0 and H (ind) consistent with the two norm definition
~2.14d! and ~2.15! and the two group actions~2.14e! and ~2.16! is

uc&5$ck1 ...kq

j 1 ...j p %PH0↔

c~jI !5 (
p,q50,1,...

`

A~p1q12!!ck1 ...kq

j 1 ...j p j j 1
...j j p

jk1
* ...jkq

* PH (ind). ~2.17!

The fact thatc(jI )PH (ind) is expressible in this way in terms of traceless symmetric tensors
consequence of the constraintjI

†jI 51.
In this way we see how the Schwinger URU(A) of SU~3! contains within it a multiplicity-free

UR D0 including every UIR of SU~3!, which is also accessible by the method of induced rep
sentations. We will see later that in fact there is a continuously infinite family of subsp
Hk,H, labeled by a complex numberk, such that eachHk is SU~3! invariant and carries a UR
Dk of SU~3! which, like D0 , is multiplicity-free and contains each UIR (p,q) without exception.

III. INTERPLAY BETWEEN HEISENBERG–WEYL AND UNITARY GROUP COHERENT
STATES—ONE AND TWO DEGREES OF FREEDOM

We now turn to an examination of the interconnections between H-W coherent state
unitary group coherent states. In each case there are both standard and generalized cohe
systems. In this section we look at the cases ofn51 andn52 degrees of freedom, the releva
unitary groups being U~1! and SU~2! and there being no multiplicity problems. We review briefl
some known material, but highlight some special aspects. This material is then used as gu
when we take up in the next section the casen56 and the Schwinger SU~3! construction.

A. One degree of freedom

It is convenient to be able to switch between the use of non-Hermitian creation and a
lation operatorsâ†, â and their Hermitian position and momentum componentsq̂, p̂:

â5
1

&
~ q̂1 i p̂ !, â†5

1

&
~ q̂2 i p̂ !. ~3.1!

For one degree of freedom, the canonical commutation relation,

@ â,â†#51,
~3.2!

@ q̂,p̂#5 i ,

is preserved under the linear inhomogeneous transformation

S q̂
p̂D→S q̂8

p̂8 D5SS q̂
p̂D1S q0

p0
D ;

~3.3!

S5S a b

c dD , ad2bc51; q0 ,p0PR.

HereS is an element of Sp(2,R)5SL(2,R), and these transformations constitute the semi-dir
product of Sp(2,R) with the two-dimensional Abelian group of phase-space translations. How
as is well known, these transformations are realized on the Hilbert spaceH, on whichâ†, â or q̂,
p̂ act irreducibly, by unitary transformations forming a faithful UIR of a groupG(1) which is the
semi-direct product of the metaplectic group Mp~2! with the H-W group:15

G(1)5Mp~2!3$H-W group%. ~3.4!
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Each factor here is a three parameter Lie group, soG(1) is a six-parameter Lie group. The H-W
group is the invariant subgroup; it is non-Abelian because of the nonzero right hand sides
commutators~3.2!. Its generators areq̂, p̂ and the unit operator onH. The homogeneous par
Mp~2! is a double cover of Sp(2,R); its generators are Hermitian quadratic expressions inâ† and
â, or in q̂ and p̂.16 In particular, the U~1! generator is1

2(â
†â1 1

2), and this is the analog ofJ0 in
the Sp(2,R) Lie algebra~2.5!.

As stated above,H carries a particular UIR ofG(1). Upon restriction to the H-W subgroup
this representation remains irreducible; it is the result of exponentiating the well-known u
Stone–von Neumann representation of the commutation relations~3.2!.17 On the other hand, upon
restriction to the Mp~2! subgroup, we get a direct sum of two UIRs of the positive discrete cl
namelyD1/4

(1) and D3/4
(1) .18 These act on the subspacesH (6) of H consisting of even/odd parity

states or Schrodinger wave functions. The nontrivial H-W generatorsq̂ andp̂ intertwine these two
UIRs of Mp~2!.

With this background, we collect some remarks regarding various systems of coherent
As bothG(1) and the H-W group are represented irreducibly onH, for any choice of a~normal-
ized! fiducial vectorc0PH we can build up a family ofG(1)—GCSs or a family of H-W GCSs.5

These are the orbits ofc0 underG(1) action and under H-W action, respectively, and the la
orbit is a subset of the former. In the case of Mp~2!, we can construct systems of GCS separat
in H (1) and inH (2), associated with any choices of fiducial vectors in these subspaces. Exa
are the single mode squeezed coherent states and their variations.18

Now let us limit ourselves to H-W coherent states, and to their behaviors under the ma
compact U~1! subgroup of Mp~2!. As mentioned earlier, the generator of this U~1! is 1

2(â
†â

1 1
2). However, for simplicity we shall work with

Ū~a!5e2 iaâ†â, 0<a,2p. ~3.5!

Conjugation byŪ(a) has these effects onâ, â†, and the unitary phase space displacem
operatorsD(z) which represent elements of the H-W group:

Ū~a!âŪ~a!215eiaâ,

Ū~a!â†Ū~a!215e2 iaâ†;
~3.6!

D~z!5exp~zâ†2z* â!,

Ū~a!D~z!Ū~a!215D~e2 iaz!.

The H-W SCSs correspond to the choice of the Fock vacuumu0& as the fiducial vector:3

uz&5D~z!u0&, zPC. ~3.7!

Invariance ofu0& underŪ(a) action then leads to the behavior

Ū~a!uz&5ue2 iaz&. ~3.8!

These states enjoy the well-known Klauder formula for resolution of the identity operator:

E
C

d2z

p
uz&^zu51 on H. ~3.9!

This can be viewed as a consequence of the Schur lemma and the square integrability
Stone–von Neumann UIR of the H-W group,19 since the uniform integration measure on t
complex plane in~3.9! is essentially the invariant measure on the H-W group.
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We now examine two variations of these familiar results. By Eq.~3.8!, the left hand side of
Eq. ~3.9! is explicitly U~1!-invariant. We can consider including some nontrivial functionf (z* z)
inside the integral, which would maintain U~1! invariance, and define the operator

A~ f !5E
C

d2z

p
f ~z* z! uz&^zu. ~3.10!

As long as f (z* z) is not a constant, the integration measure here is no longer the inva
measure on the H-W group, so the Schur lemma is not available. Formally,

f ~z* z!Þconst⇔D~z!A~ f !ÞA~ f !D~z!, ~3.11!

so there is no reason to expectA( f ) to be a multiple of the identity. However, U~1! invariance,

Ū~a!A~ f !5A~ f !Ū~a!, ~3.12!

implies thatA( f ) is a linear combination of projections on to the various Fock states, and in
we find

A~ f !5 (
n50

` E
0

`

dx f~x!xne2x
•

un&^nu
n!

. ~3.13!

Clearly the only choice off leading to the Klauder formula~3.9! is f 51. On the other hand, if we
choosef (z* z)5d(z* z2r 0

2) for some real positiver 0 , we are limiting ourselves to a subset
H-W SCSs lying on a circle in the complex plane. This is essentially the U~1! group manifold;
and, if r 051, we have exactly the manifoldS1, that is, we have a U~1!-worth of H-W SCSs. In
this case, we find

f ~x!5d~x2r 0
2!:

A~ f !5E d2z

p
d~z* z2r 0

2!uz&^zu

5E
0

2p du

2p
ur 0eiu&^r 0eiuu

5 (
n50

`

e2r 0
2 r 0

2n

n!
un&^nu

5e2r 0
2
•r 0

2N̂/N̂!, ~3.14!

N̂5â†â.

This means that even though the subset of H-W SCSs$ur 0eiu&,0<u,2p% lying on a circle in the
complex plane is ‘‘total,’’20 and each Fock stateun& can be projected out of this subset as

un&5er 0
2/2
•An! r 0

2n
•E

0

2p du

2p
•e2 inu

•ur 0eiu&, ~3.15!

we cannot obtain a Klauder-type resolution of the identity using them. Thus this U~1!-worth of
SCSs does not form a system of GCSs in the Klauder sense.

The next variation we consider is replacing the Fock vacuumu0& by a generic unit vector
uc0&P H as fiducial vector. We then get a family of H-W GCSs:21
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uz;c0&5D~z!uc0&, zPC. ~3.16!

Once again, the Schur lemma leads to the Klauder resolution of the identity,

E d2z

p
uz;c0&^z;c0u5c.1, ~3.17!

for some constantc, and square integrability ensures thatc is finite. If in the manner of Eq.~3.10!
we next define

A~ f ;c0!5E d2z

p
f ~z* z!uz;c0&^z;c0u, ~3.18!

then, on the one hand, we do not expectA( f ;c0) to be a multiple of the unit operator since w
lose Schur lemma; and, on the other hand, we do not even expectA( f ;c0) to commute with
Ū(a). That is, in generalA( f ;c0) is not a linear combination of the projectionsun&^nu on to the
Fock states. The exceptions are whenuc0& is an eigenstate ofâ†â, i.e., a Fock stateun0& for some
integern0 . This possibility arises because U~1! is Abelian, and its UIRs are all one-dimensiona
In that case we find22

uc0&5un0&:

Ū~a!uz;n0&5e2 ian0ue2 iaz;n0&,

Ū~a!A~ f ;n0!5A~ f ;n0!Ū~a!;
~3.19!

A~ f ;n0!5 (
n50

`

Cn,n0
~ f !un&^nu,

Cn,n0
~ f !5

n,!

n.! E0

`

dx f~x!xun2n0ue2x~Ln,

un2n0u
~x!!2,

n.5max~n,n0!,n,5min~n,n0!.

When n050 we recover Eq.~3.13!. If we next choosef (z* z)5d(z* z2r 0
2), thus limiting our-

selves to a U~1!-worth of H-W GCSs, we find, in place of Eq.~3.14!,

f ~x!5d~x2r 0
2!:

~3.20!

A~ f ;n0!5E d2z

p
d~z* z2r 0

2!uz;n0&^z;n0u

5E
0

2p du

2p
ur 0eiu;n0&^r 0eiu;n0u

5 (
n50

`

e2r 0
2
r 0

2n~Ln,

un2n0u
~r 0

2!!2
n,!

n.!
un&^nu.

The main result of these considerations is that with SCSs or GCSs for the H-W group fo
degree of freedom, we can get a Klauder-type resolution of the identity only if we use the inv
measure on the group, but understandably not if we limit ourselves to a subset amountin
U~1!-worth of these states.
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B. Two degrees of freedom

Here we are interested in the interplay between coherent state systems for the releva
parameter H-W group, and the unitary groups U~2! and SU~2! which were the subject of the
original Schwinger construction.

The nonvanishing commutators in non-Hermitian and Hermitian forms are

@ âr ,âs
†#5d rs ,

~3.21!
@ q̂r ,p̂s#5 id rs , r ,s51,2.

There is no cause for confusion if again we writeH for the Hilbert space carrying the irreducib
Stone–von Neumann representation of these relations. The largest natural invariance gro
acts on the fourq̂’s and p̂’s as follows:

S q̂r

p̂r
D→S q̂r8

p̂r8
D 5SS q̂r

p̂r
D1S qr ,0

pr ,0
D . ~3.22!

Here SPSp(4,R) is a four-dimensional real symplectic matrix, andqr ,0 ,pr ,0 denote an Abelian
phase space translation.23 These 14 parameter transformations preserve~3.21!. They make up the
semi-direct product of Sp(4,R), which is ten-dimensional, with the four-dimensional Abeli
translations. On the spaceH, however, these transformations are realized as a faithful UIR of
fifteen-parameter semi-direct product

G(2)5Mp~4!3$H-W group%. ~3.23!

Here the invariant subgroup is the five-parameter non-Abelian H-W group appropriate fo
degrees of freedom, while the homogeneous part is the metaplectic group Mp~4!, a double cover
of Sp(4,R). The generators of the former areq̂r ,p̂r and the unit operator, while those of the latt
are Hermitian symmetrized quadratics inq̂r ,p̂r .

The Hilbert spaceH carries a UIR ofG(2), which remains irreducible when restricted to t
H-W group. On the other hand, Mp~4! is represented by the direct sum of two UIRs, one each
the subspaces of even and odd parity states inH. The general statements that can be made ab
GCS with respect toG(2), Mp(4) and the H-W group are similar to those in the one degree
freedom case. Once again, our main interest is in the connections between H-W and~2!
coherent state systems.

The maximal compact subgroup of Mp~4! is U~2!. The SU~2! part of U~2! has the generator
and commutation relations~Schwinger construction!

Jj5
1
2â

†s j â,
~3.24!

@Jj ,Jk#5 i e jkl Jl , j ,k51,2,3.

The U~1! part of U~2! has as generator the total number operator

N̂5N̂11N̂2 ,

N̂r5âr
†âr , ~3.25!

@Jj ,N̂#50.

For generaluPU(2), we write Ū(u) for the corresponding unitary operator onH, generated by
Jj ,N̂. Then, in place of Eq.~3.6!, we now have
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Ū~u!âŪ~u!215u21â,

Ū~u!â†Ū~u!215â†u;
~3.26!

D~zI !5exp~ â†zI2zI†â!,

Ū~u!D~zI !Ū~u!215D~uzI !.

Here zI5(z1 ,z2)T is a complex two-component column vector, whileâ and â† are written as
column and row vectors, respectively.

The reduction of Ū(u) into UIRs is accomplished by the break-up ofH into the mutually

orthogonal eigenspacesH ( j ) of N̂ with eigenvalues 2j , wherej 50,1
2,1,... . The orthonormal Fock

basis forH is made up of the simultaneous eigenvectors ofN̂1 and N̂2 :

un1 ,n2&5
~ â1

†!n1~ â2
†!n2

An1!n2!
u0,0&,

~3.27!
N̂r un1 ,n2&5nr un1 ,n2&, r 51,2.

For the purposes of reduction of U,̄ with no danger of confusion we use vectors labeledu j ,m& and
defined in terms of these Fock states by

u j ,m&5un1 ,n2&,

n15 1
2 ~ j 1m!, n25 1

2 ~ j 2m!, ~3.28!

j 50,1
2,1,..., m5 j , j 21,...,2 j .

Then the subspacesH ( j ) are given by

H ( j )5Sp$u j ,m&u j fixed, m5 j , j 21,...,2 j %,
~3.29!

j 50,1
2,1,... .

The operators Ū(u) leave eachH ( j ), of dimension (2j 11), invariant, and reduce thereon to th
spin j UIR of SU~2!, along with the value 2j for the U~1! generatorN̂. This is the known
multiplicity-free reduction of the SU~2! Schwinger construction.2 The projection operatorPj onto
the subspaceH ( j ), which will be needed later, is

Pj5 (
m52 j

1 j

u j ,m&^ j ,mu5d N̂,2j . ~3.30!

The H-W SCSs use the Fock vacuumu0,0& as the fiducial vector:

uzI &5D~zI !u0,0&, ~3.31!

and, on account of Eq.~3.26!, they have the U~2! behavior

Ū~u!uzI &5uuzI &. ~3.32!

This is becauseu0,0& is invariant under U~2! action; in fact, it is the only such vector inH.
Therefore, the general H-W SCSuzI & is obtainable by suitable U~2! action from a SCS for the firs
degree of freedom alone:
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uzI &5Ū~u!uzI (0)&, suitable uPU~2!,

zI (0)5r S 1
0D , ~3.33!

r 25zI†zI , 0<r ,`.

To bring out the connection between these H-W SCSs and SU~2! SCSs~identified below! in
the clearest possible manner, we parametrizezI and define elementsA(u,f)PSU(2) in a coordi-
nated manner:

zI5eiaA~u,f!zI (0),

A~u,f!5e~2 i /2! fs3e~2 i /2! us2PSU~2!,
~3.34!

0<u<p, 0<a, f<2p;

z15r eiae2 if/2 cosu/2, z25r eiaeif/2 sinu/2.

We view u, f as spherical polar angles onS2. Then Eq.~3.33! assumes the more detailed form

uzI &5eiaN̂Ū~A~u,f!!uzI (0)&,
~3.35!

uzI (0)&5er (â1
†
2â1)u0,0&5e2 ~1/2!r 2

(
j 50,1/2,1,...

`
r 2 j

A2 j !
u j , j &.

The component ofuzI (0)& within H ( j ) is a multiple ofu j , j &, the highest weight vector in the spinj
UIR of SU~2!. By definition, the SU~2! SCSs in any UIR are based on the choice of highest we
vector@or any SU~2! transform of it# as fiducial vector.24 This vector is the eigenvector ofJ3 with
maximum eigenvaluej , so any SU~2! transform of it is an eigenvector of a suitable combinati
of Jk with the same~maximum! eigenvalue. These remarks lead to the following notations
SU~2! SCS:

Ū~A~u,f!!u j , j &[u j ,n̂~u,f!&5 (
m52 j

j A 2 j !

~ j 1m!! ~ j 2m!!
e2 imf~cosu/2! j 1m~sinu/2! j 2mu j ,m&,

n̂~u,f!•JW u j ,n̂~u,f!&5 j u j ,n̂~u,f!&, ~3.36!

n̂~u,f!5~sinu cosf,sinu sinf,cosu!5
1

r 2 zI †sI zIPS2.

Thus the family of SU~2! SCSs in the spinj UIR is $u j ,n̂(u,f)&%, one for each point onS2 which
is the coset space SU~2!/U~1!. For these states we have the well-known properties

^ j ,n̂~u8,f8!u j ,n̂~u,f!&5~cosu8/2 cosu/2ei (f82f)/21sinu8/2 sinu/2ei (f2f8)/2!2 j ,
~3.37a!

APSU~2!:Ū~A!u j ,n̂&5eiv(A;n̂)u j , R~A!n̂&, ~3.37b!

whereR(A)PSO(3) is the image ofAPSU(2) under the SU(2)→SO(3) homomorphism, and
v(A;n̂) is a ~Wigner! phase angle.25 Combining Eqs.~3.35! and ~3.36! we get the connection
between H-W and SU~2! SCSs:
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uzI &5e2 ~1/2!r 2

(
j 50,1/2,1,...

`
~r eia!2 j

A2 j !
u j ,n̂~u,f!&. ~3.38!

We trace this direct connection to the simple U~2! action~3.32!, and the expansion~3.35! of uzI (0)&
in terms of SU~2! highest weight states.

We now look at the Klauder resolution of unity for the H-W SCS, highlighting the SU~2! SCS
structure. Using the parametrization~3.34! for zI we find

E d2z1

p

d2z2

p
uzI &^zI u5

1

4p2 E
0

`

r 3drE
0

2p

daE
S2

dV~u,f!uzI &^zI u

5
1

4p2 E r 3drdadV~u,f! (
j , j 850,1/2,1,...

`

e2r 2
r 2( j 1 j 8)e2ia( j 2 j 8)

3u j ,n̂~u,f!&^ j 8,n̂~u,f!u/A2 j !2j 8!

5
1

2p
(

j 50,1/2,1,...

` 1

2 j !
E

0

`

r 3dre2r 2
r 4 jE

S2
dV~u,f!u j ,n̂~u,f!&^ j ,n̂~u,f!u.

~3.39!

HeredV(u,f) is the element of solid angle onS2. Using Eq.~3.37b! we see that the integral ove
S2 results in an operator invariant under the spinj UIR of SU~2! appearing onH ( j ), therefore by
Schur lemma for this UIR we have

E
S2

dV~u,f!u j ,n̂~u,f!&^ j ,n̂~u,f!u5
4p

2 j 11
Pj . ~3.40!

Substituting this in Eq.~3.39! we get

E d2z1

p

d2z2

p
uzI &^zI u52 (

j 50,1/2,1,...

`
1

~2 j 11!! E0

`

r 3dre2r 2
•r 4 j

•Pj5 (
j 50,1/2,1,...

`

Pj51 on H.

~3.41!

This is known and expected on account of the Schur lemma for the H-W UIR, since the integ
measure is the invariant one on the H-W group. At the same time we can immediately tra
consequences of modifying the measure in a U~2!-invariant way, when we lose the possibility o
using the lemma for the H-W UIR:

A~ f !5E d2z1

p

d2z2

p
f ~zI†zI !uzI &^zI u5 (

j 50,1/2,1,...

` E
0

`

dx f~x!x2 j 11e2x
Pj

~2 j 11!!
,

~3.42!

f Þconst⇔D~zI !A~ f !ÞA~ f !D~zI !.

With the particular choicef (x)5d(x2r 0
2) for real positiver 0 , we limit ourselves to an ‘‘SU~2!-

worth’’ of H-W SCS, and in that case we have
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f ~x!5d~x2r 0
2!:

A~ f !5E d2z1

p

d2z2

p
d~zI†zI2r 0

2!uzI &^zI u

5r 0
2E

0

2p da

2p
•E

S2

dV~u,f!

4p
•UeiaA~u,f!S r 0

0 D L K eiaA~u,f!S r 0

0 DU
5 (

j 50,1/2,1,...

`

e2r 0
2
•

~r 0
2!2 j 11

~2 j 11!!
Pj . ~3.43!

The structure of these results~3.42! and ~3.43! is as expected sinceA( f ) does commute with
Ū(u).

Lastly we consider briefly some aspects of H-W GCS in the case of two degrees of fre
These arise by replacing the Fock vacuumu0,0& by some other~normalized! vector uc0&PH as
fiducial vector:

uzI ;c0&5D~zI !uc0&. ~3.44!

The Schur lemma and square integrability of the H-W UIR ensure the Klauder formula

E d2z1

p

d2z2

p
uzI ;c0&^zI ;c0u5c.1, ~3.45!

for some finite constantc. However, ifuc0&Þu0,0&, we never have any simple behavior for the
GCSs under U~2! action. This is in contrast to Eq.~3.19! in the case of one degree of freedom. T
reason is that the only one-dimensional UIR of SU~2! is the trivial UIR, all others are of dimensio
two or greater. This can be traced to the non-Abelian nature of SU~2!, in contrast to U~1!. For this
reason we are unable to obtainuzI ;c0& for generalzI from some specially chosen and simpler sta
uzI (0);c0& via U~2! action; so, the possibility of relating H-W GCS to some sequence of SU~2!
GCSs within each subspaceH ( j ) is also lost. Going one step further, if we consider a modifi
U~2!-invariant measure in place of the translation invariant one in Eq.~3.45!, but for a GCS
system, and if we define

A~ f ;c0!5E d2z1

p

d2z2

p
f ~zI†zI !uzI ;c0&^zI ;c0u, ~3.46!

for uc0&Þu0,0&, this will not commute with Ū(u) and will not reduce to a linear combination o
the projectionsPj .

IV. RELATION BETWEEN H-W AND SU „3… SCS, RESTRICTION TOH0

Now that we have explored the relationships between H-W SCS and unitary group SC
one and two degrees of freedom, we proceed to the SU~3! Schwinger construction recalled in Se
II, and the corresponding H-W SCS for six oscillators. Here we invert the order of developme
compared to the previous section. We recall first the definition of SU~3! SCS within each UIR,
then proceed to the H-W system. The specific new feature is the multiplicity problem,
handled using Sp(2,R).

A. SU„3… standard coherent states

The familiar orthonormal basis states within the UIR (p,q) of SU~3!, corresponding to the
canonical subgroup chain U(1),U(2),SU(3), consist of a set of isospin-hypercharge multiple
@cf. Eqs.~2.9! and ~2.11!#:26
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up,q;IMY&,

I 5 1
2 ~r 1s!, Y5 2

3 ~q2p!1r 2s,

~4.1!
M5I ,I 21,..., 2I 11,2I ,

0<r<p, 0<s<q.

The highest weight state is the one with maximum possible value ofM :

up,q; 1
2 ~p1q!, 1

2 ~p1q!, 1
3 ~p2q!&. ~4.2!

In terms of the realization of the UIR (p,q) via irreducible tensorsT5$Tk1 ...kq

j 1 ...j p %, this state

corresponds to the component

T22...2
11...1. ~4.3!

From this one can see that the stability group~upto phase factors! of the state~4.2! is a subgroup
H,SU(3) dependent onp andq. Disregarding the trivial UIR~0,0!, we have

p>1,q50:H5U~2! on dimensions 2,3; ~4.4a!

p50,q>1:H5U~2! on dimensions 1,3; ~4.4b!

p,q>1:H5diagonal subgroup of SU~3! . ~4.4c!

@Here the dimensions 1,2,3 refer to the space of the defining UIR~1,0!.# In Eq. ~4.4a! @Eq. ~4.4b!#,
a U~2! transformation on dimensions 2 and 3~1 and 3! is to be accompanied by a phase change
dimension 1~2! to preserve unimodularity of the SU~3! transformation. The dimensionalities o
these three stability groups are four, four and two, respectively.

The SU~3! SCSs within the UIR (p,q) are the states obtained by acting with all SU~3!
elements on the highest weight state~4.2!. They may be written asup,q;A&, APSU(3):

up,q;A&5Ū~A!up,q; 1
2 ~p1q!, 1

2 ~p1q!, 1
3 ~p2q!&. ~4.5!

Therefore in the UIRs (p,0) and (0,q), they form four-parameter continuous families of norm
ized states, while in (p,q) with p,q>1 we have six-parameter continuous families. Referring
Eq. ~4.4! we have

hP H:up,q;Ah&5eiw(h)up,q;A&, ~4.6!

for some phasew(h).
These SU~3! SCSs have been studied in detail in Ref. 27, individually within each UIR. As

see below, the Schwinger construction helps us generate them collectively and explore s
their properties in an efficient manner, just as in Eq.~3.38! we have a construction of the SU~2!
SCS in all its UIRs at one stroke.

If within the UIR (p,q) we choose as fiducial vector some vector other than the hig
weight vector~4.2! or any SU~3! transform of it, then we obtain a family of SU~3! GCSs. For the
present we consider only SCSs, turning to particular GCSs in subsequent sections.

In the Hilbert spaceH of the SU~3! Schwinger construction the ‘‘first’’ occurrence of the UI
(p,q) is in the subspaceH (p,q;0),H0 which is annihilated byK2 . The corresponding highes
weight state~4.2!, using the complete notation of Eq.~2.9! and recalling Eq.~4.3!, is
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up,q; 1
2 ~p1q!, 1

2 ~p1q!, 1
3 ~p2q!; 1

2 ~p1q13!&5
~ â1

†!p~ b̂2
†!q

Ap!q!
u0I ,0I &PH (p,q;0),H0 . ~4.7!

It follows that all these highest weight states, one for each UIR (p,q), are generated by the speci
H-W SCS

uz1,0,0;0,w2,0&5D~z1,0,0,0,w2,0!u0I ,0I &PH0 ,

D~zI ,wI !5exp~zI•aÎ †2zI* •aÎ 1wI •bÎ †2wI * •bÎ !5exp~2 1
2zI

†zI2 1
2wI

†wI 1zI•aÎ †1wI •bÎ †!. ~4.8!

HerezI andwI are independent complex three-vectors, andD(zI ,wI ) are the displacement operato
for the six-oscillator system of the Schwinger construction. Indeed we have:

uz1 ,0,0;0,w2 ,0&5e2 ~1/2! uz1u22 ~1/2! uw2u2 (
p,q50

` z1
pw2

q

Ap!q!

3up,q; 1
2 ~p1q!, 1

2 ~p1q!, 1
3 ~p2q!; 1

2 ~p1q13!&, ~4.9!

which is analogous to the second of Eqs.~3.35!. We will use this below.

B. SU„3… analysis of the H-W SCS

For the six-oscillator system used in the Schwinger SU~3! construction the H-W SCSs ar
labeled by two complex three-dimensional vectorszI andwI , thus the pair (zI ,wI ) is a point inC 6.
They are obtained by applying the displacement operatorsD(zI ,wI ) to the Fock vacuumu0I ,0I & as
fiducial vector:

uzI ,wI &5D~zI ,wI !u0I ,0I &. ~4.10!

We see from Eq.~2.5! that they are eigenstates of the Sp(2,R) lowering operatorK25K1

2 iK 2 :

â j uzI ,wI &5zj uzI ,wI &,

b̂ j uzI ,wI &5wj uzI ,wI &, ~4.11!

K2uzI ,wI &5zITwI uzI ,wI &.

Therefore only those SCSsuzI ,wI & for which zITwI 50 belong toH0 . The complete set of SCS
obeys the Klauder resolution of the identity,

E
C 6)j 51

3 S d2zj

p

d2wj

p D uzI ,wI &^zI ,wI u51 on H, ~4.12!

the integration measure being the invariant one on the H-W group.
We now explore the behavior of these SCSs under SU~3! action. From the manner in which

the generatorsQa are constructed in Eq.~2.2! we have

APSU~3!:U~A!D~zI ,wI !U~A!215D~AzI ,A* wI !, ~4.13!

from which it follows that

U~A!uzI ,wI &5uAzI ,A* wI &. ~4.14!
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The independent invariants under this action arezI†zI , wI †wI andzITwI , the last being the eigenvalu
of K2 . We describe them using four real independent parametersu, v, x, y as

zI†zI5u2, wI †wI 5v2, zITwI 5uv~x1 iy !,
~4.15!

u,v>0, 0<x21y2<1.

The upper bound onx21y2 is an expression of the Cauchy–Schwarz inequality. For each s
values of (u,v,x,y), the SCSuzI ,wI & form an orbit under SU~3! action. On each orbit we can
choose a convenient representative point (zI (0),wI (0)), with any other point (zI ,wI ) on the orbit
arising from (zI (0),wI (0)) via suitable SU~3! action as (AzI (0),A* wI (0)). The complete list of orbits,
representative points, stability subgroupsH(zI (0),wI (0)),SU(3) and orbit dimensions are as fo
lows ~with x, y omitted when irrelevant!:

~a! q15$u,vuu5v50%,~zI (0),wI (0)!5~0I ,0I !,H5SU~3!,dimension 0;

~b! q25$u,vuu&0,v50%,zI (0)5u~1,0,0!T,wI (0)50I ,H5SU~2!, dimension 5;

~c! q35$u,vuu50,v&0%,zI (0)50I ,wI (0)5v~0,1,0!T,H5SU~2!, dimension 5;

~d! q45$u,v,x,yuu,v&0,0<x21y2,1%, ~4.16!

zI (0)5u~1,0,0!T,wI (0)5v~x1 iy ,A12x22y2,0!T,H5$e%, dimension 8;

~e! q55$u,v,x,yuu,v&0,x21y251%,

zI (0)5u~0,0,1!T,wI (0)5v~x1 iy !~0,0,1!T,H5SU~2!, dimension 5.

We add some comments: Class~a! comprises just the Fock vacuumu0I ,0I &, invariant under SU~3!
and forming a trivial orbit by itself. Classes~b! and~c! form collections of orbits with one ofzI and
wI vanishing identically, so these are simply SCSs for systems of three oscillators. Class~d! is a
four-parameter family consisting of generic orbits. Each orbit in this class is eight-dimensiona
is essentially the SU~3! group manifold. Class~e! is a limiting form, asx21y2→1, of class~d!; in
these orbits,wI is a complex multiple ofzI* . However, the limit is a singular one, as is evident fro
the rise in the dimension ofH from zero to three, and the drop in orbit dimension from eight
five. This is why we have listed class~e! separately. Moreover, the representative point (z(0),w(0))
in this class has been chosen so that the stability group SU~2! acts on dimensions 1 and 2, thu
coinciding with the subgroup relevant for the canonical basis~4.21!. Disregarding class~a!, and
recalling thatC 6 is of real dimension 12, we see that classes~b!, ~c!, ~d!, and~e! are nonoverlap-
ping regions inC 6 of real dimensions 6, 6, 12, and 8, respectively. Thus almost all ofC 6 is covered
by orbits of class~d!.

Based on this orbit structure, we now express the Klauder resolution of the identity
~4.12!, in a manner similar to Eq.~3.39!, namely as an integration over the SU~3! manifold
followed by an integration over the invariants~4.15!. @The difference compared to the case of tw
degrees of freedom is that here we integrate over the whole of SU~3!, not just over a coset spac
such as SU(2)/U(1)5S2 in Eq. ~3.39!.# In this process we can limit ourselves to class~d! orbits
which are generic, as long as we do not at any later stage alter the integrand of Eq.~4.12! by
inserting a Dirac delta function with support in one of the exceptional orbits in Eq.~4.16!. To
obtain a general pair (zI ,wI ) from (zI (0),wI (0)) in Eq. ~4.16! class~d!, we need to parametrize~almost
all! elements of SU~3! in a convenient manner. Here we use the fact that, except on a s
vanishing measure, eachAPSU(3) is uniquely determined by a pair (hÎ ,zÎ ), wherehÎ is a complex

three-component unit vector andzÎ is a complex two-component unit vector:28
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hÎ 5~ ĥ1 ,ĥ2 ,ĥ3!T, zÎ 5~ ẑ2 ,ẑ3!T,

~4.17!
hÎ

†hÎ 5zÎ
†zÎ 51.

Then we have

APSU~3!⇔A5A~hÎ ,zÎ 5A3~hÎ !A2~zÎ !,

A3~ ĥ !5S ĥ1 r1 0

ĥ2 2ĥ2ĥ1* /r1 ĥ3* /r1

ĥ3 2ĥ3ĥ1* /r1 2ĥ2* /r1

D PSU~3!,

~4.18!
r15~12uĥ1u2!1/2;

A2~zÎ !5S 1 0 0

0 ẑ2 2 ẑ3*

0 ẑ3 ẑ2*
D PSU~2!,SU~3!.

For eachhÎ ~provideduĥ1u^1), A3(hÎ ) is a particular SU~3! element completely determined by i

first column which ishÎ ; and for eachzÎ , A2(zÎ ) is an element in the SU~2! subgroup leavingzI (0)

invariant. We can picturehÎ and zÎ as representing points onS5,R 6 andS3,R 4, respectively.
Then the normalized invariant volume element on SU~3! is a numerical factor times the product o
the solid angle elements onS5 andS3:

dA~hÎ ,zÎ !5~2p5!21dV5~hÎ !dV3~zÎ !,

~4.19!

E
SU(3)

dA51.

The expressions for (zI ,wI ) in terms ofA(hÎ ,zÎ ) and (zI (0),wI (0)) are

zI5A~hÎ ,zÎ !zI (0)~u!5uhÎ ,

~4.20!

wI 5A~hÎ ,zÎ !* wI (0)~v,x,y!5vA3~hÎ !* S x1 iy

A12x22y2 ẑ2*

A12x22y2 ẑ3*
D .

These are the generalizations of Eq.~3.34!. Straightforward computations of the Jacobians yie

)
j 51

3

~d2zj d2wj !5u5v5~12x22y2!du dv dx dy dV5~hÎ ! dV3~zÎ !. ~4.21!

We can now rewrite the Klauder result~4.12! as

2

p E
0

`

u5duE
0

`

v5dvE
x21y2<1

~12x22y2!dx dyE
SU(3)

dAU~A!uzI (0)~u!,wI (0)~v,x,y!&

3^zI (0)~u!,wI (0)~v,x,y!uU~A!2151 on H. ~4.22!
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This is the analog of~the initial form of! Eq. ~3.39!.
In the spirit of Eqs.~3.10! and ~3.42! we can now consider modifications of Eq.~4.22! by

including in the integrand a function of the SU~3! invariants. Thus we define

A~ f !5E )
j 51

3 S d2zj

p

d2wj

p D f ~u,v,x,y!uzI ,wI &^zI ,wI u

5
2

p E
0

`

u5duE
0

`

v5dvE
x21y2<1

~12x22y2!dx dy f~u,v,x,y!

3E
SU(3)

dAU~A!uzI (0)~u!,wI (0)~v,x,y!&^zI (0)~u!,wI (0)~v,x,y!uU~A!21. ~4.23!

Such an operator definitely obeys

U~A!A~ f !5A~ f !U~A!, all APSU~3!. ~4.24!

However, as long asf (u,v,x,y) is nontrivial, the measure in Eq.~4.23! is not the invariant one on
the H-W group, we do not have recourse to the Schur lemma for the UIR of this group, andA( f )
is not proportional to the identity operator onH. The presence of~infinite!! multiplicity in the
reduction ofU(A) on H into UIRs of SU~3! means, furthermore, that we do not immediately g
for A( f ) a simple combination of SU~3!-invariant projections as we did in Eqs.~3.42! and~3.43!
with SU~2!.

C. The restriction to H0

Now we limit ourselves to the SCSuzI ,wI & belonging toH0,H, as in this subspace th
multiplicity problem is avoided. As noted following Eq.~4.11!, the conditionzITwI 50 ensures
uzI ,wI &PH0 . This happens in classes~a!–~c! of Eq. ~4.16! in a trivial manner, and in class~d! when
x5y50. The former can be disregarded as being sets of vanishing measure.

We deal first with vector level relations inH0 , then look at modifications ofA( f ) in Eq.
~4.23!. We begin with Eq.~4.9!. For the highest weight states of SU~3! UIRs occurring there, we
introduce a simpler notation:

up,q; 1
2 ~p1q!, 1

2 ~p1q!; 1
3 ~p2q!; 1

2 ~p1q13!&

[up,q; 1
2 ~p1q!, 1

2 ~p1q!; 1
3 ~p2q!&0PH (p,q;0),H0 . ~4.25!

We have omitted the Sp(2,R) quantum numberm as it is superfluous withinH0 . Then Eq.~4.9!
takes the form

zI (0)~u!5u~1,0,0!T,wI (0)~v,0,0!5v~0,1,0!T:

uzI (0)~u!,wI (0)~v,0,0!&5e2 ~1/2!(u21v2) (
p,q50

`
upvq

Ap!q!
~4.26!

up,q; 1
2 ~p1q!, 1

2 ~p1q!, 1
3 ~p2q!&0PH0 .

In place of Eq.~4.5!, the SU~3! SCS within each UIR (p,q) contained inH0 can be written as

APSU~3!:up,q;A&05U~A!up,q; 1
2 ~p1q!, 1

2 ~p1q!, 1
3 ~p2q!&0PH (p,q;0). ~4.27!

Applying U(A) for generalAPSU(3) to both sides of Eq.~4.26! we get a result linking those
H-W SCSs that lie inH0 , and the SU~3! SCS~4.27! within each UIR (p,q) in H0 :
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APSU~3!, zI5AzI (0)~u!, wI 5A* wI (0)~v,0,0!:
~4.28!

uzI ,wI &5e2 ~1/2!(u21v2) (
p,q50

`
upvq

Ap!q!
up,q;A&0PH0 .

This is the SU~3! analog to the SU~2! relation ~3.38!.
Now we turn to the operatorA( f ) in Eq. ~4.23! and make the choice

f ~u,v,x,y!5 f 0~u,v !d~x!d~y!. ~4.29!

This leads to

A~ f 0!5
2

p E
0

`

u5duE
0

`

v5dv f 0~u,v !E
SU(3)

dAU~A!

uzI (0)~u!,wI (0)~v,0,0!&^zI (0)~u!,wI (0)~v,0,0!uU~A!21. ~4.30!

Such an operator obeys the following:

cPH 0
' :A~ f 0!c50;

cPH0 :A~ f 0!cPH0 ; ~4.31!

APSU~3!:U~A!A~ f 0!5A~ f 0!U~A!.

ThereforeA( f 0) must be a linear combination of the projection operatorsP(p,q;0) onto the sub-
spacesH (p,q;0),H0 ; it is here that we exploit the multiplicity-free reduction of the SU~3! UR D0

onH0 . To getA( f 0) explicitly, we use the following immediate consequences of the Schur lem
applied to SU~3!, the multiplicity-free nature ofD0 , and the orthogonality of inequivalent UIRs

E
SU(3)

dAup,q;A&0 0^p8,q8;Au5dp8pdq8qP(p,q;0)/d~p,q!. ~4.32!

Then a combination of Eqs.~4.30!, ~4.26!, ~4.27!, and~4.32! immediately gives

A~ f 0!5 (
p,q50

`

C~ f 0 ;p,q!P(p,q;0),

C~ f 0 ;p,q!5$p!q!d~p,q!%21
•

2

p
•E

0

`

u5duE
0

`

v5dv f 0~u,v !u2pv2qe2(u21v2). ~4.33!

This is an SU~3! analog of the SU~2! result~3.42!, but it is valid only after the restriction toH0 .
On account of the freedom still remaining in Eqs.~4.30! and ~4.33! in the choice of the function
f 0(u,v), we see that the H-W SCSs occurring there are overcomplete inH0 . If we wish to limit
ourselves to an exact ‘‘SU~3!-worth’’ of H-W SCSs withinH0 , then we have the analogue to E
~3.43!:
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f 0~u,v !5d~u2u0!d~v2v0!:
~4.34!

A~ f 0!5E )
j 51

3 S d2zj

p

d2wj

p D d~u2u0!d~v2v0!d~x!d~y!uzI ,wI &^zI ,wI u

5e2(u0
2
1v0

2)
•

2

p (
p,q50

`

u0
2p15v0

2q15P(p,q;0)/p!q!d~p,q!.

The point to be emphasized is how far this result departs from being the identity operator iH0 ,
leave alone inH, but understandably so.

D. Description in H „ ind …

As recalled in Sec. II, and established in detail in Sec. I, the multiplicity-free URD0 of SU~3!
on H0 is equivalent to an induced URD (ind) of SU~3!, namely the one arising from the trivia
representation of an SU~2! subgroup of SU~3!. The isomorphism betweenH0 andH (ind) carrying
D (ind), consistent with the two group actions, is given in Eq.~2.17!. It is of interest to see wha
wave functionsc(jI )PH (ind) one obtains for the various vectors inH0 that have played a role
earlier in this section. We now give these wave functions and comment briefly on them.

For the highest weight state in the SU~3! UIR (p,q) on H (p,q;0), and the associated SU~3!
SCS, we find the following wavefunctions inH (ind):

up,q; 1
2 ~p1q!, 1

2 ~p1q!, 1
3 ~p2q!&0→A~p1q12!!

p!q!
~j1!p~j2* !q;

~4.35!

up,q;A&05U~A!up,q; 1
2 ~p1q!, 1

2 ~p1q!, 1
3 ~p2q!&0→A~p1q12!!

p!q!
~Aj 1* j j !

p~Ak2jk* !q.

For the H-W SCS inH0 generating these states within each UIR we have

uzI (0)~u!,wI (0)~v,0,0!&→e2 ~1/2!(u21v2) (
p,q50

`

A~p1q12!!
~uj1!p

p!

~vj2* !q

q!
;

~4.36!

uzI ,wI &5U~A!uzI (0~u!,wI (0)~v,0,0!&→e2 ~1/2!(u21v2) (
p,q50

`

A~p1q12!!
~uAj 1* j j !

p

p!

~vAk2jk* !q

q!
.

The principal comment we may make is that these particular H-W SCS do not have wave
tions inH (ind) in the form of any simple expressions involving exponential functions. The re
for this can be traced to the factorial in Eq.~2.17! as compared to Eq.~2.14a!. Another way of
understanding this situation is to realize thatH0 ~and soH (ind) as well! is too small to carry a
representation of the H-W system used in the Schwinger SU~3! construction; in addition the
argumentjI in c(jI ) is a complex unit vector in three dimensions rather than a variable in all ofC 3.

V. GENERAL EIGENSPACES Hk OF KÀ

The subspaceH0,H carrying the multiplicity-free URD0 of SU~3!, the focus of analysis in
the preceding section, is spanned by those H-W SCSsuzI ,wI & for which zITwI 50, and belonging to
a particular collection of orbits under class~d! of Eq. ~4.16!:

H05Sp$uzI ,wI &uzI ,wI PC 3,zITwI 50%. ~5.1!

As noted earlier, these SCS are actually overcomplete withinH0 . Since, by Eq.~4.11!, zITwI is the
eigenvalue of the SU~3! invariant Sp(2,R) lowering operatorK2 , this means thatH0 is spanned
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by those H-W SCSs that are eigenvectors ofK2 with eigenvalue zero. Moreover, Eqs.~4.26! and
~4.28! show that these H-W SCSs are directly connected to the SU~3! SCSs within each SU~3!
UIR (p,q), carried byH (p,q;0),H0 .

It now turns out that a somewhat similar situation exists involving eigenvectors ofK2 corre-
sponding to nonzero eigenvalues as well, but with one major difference: we encounter c
specific SU~3! GCS systems. This also connects up with a certain class of coherent states
the UIRsDk

(1) of Sp(2,R). We analyze these matters in this section. It turns out that H-W S
of both classes~d! and ~e! are involved.

We begin by generalizing Eq.~5.1! and defining a subspaceHk,H, for any complex number
k, as consisting of eigenvectors ofK2 with eigenvaluek; equally well it is the span of all those
H-W SCSs which obey this condition:

Hk5$uc&PHuK2uc&5kuc&%5Sp$uzI ,wI &uzI ,wI PC 3,zITwI 5k%,H. ~5.2!

These H-W SCSs comprise a particular subset of class~d! orbits in Eq.~4.16!; for k50 we get
backH0 . It is important to remark that even thoughk varies over a continuum, eachHk consists
of bona fide~i.e., normalizable! vectors inH; and for k8Þk, H k8 and Hk are not mutually
orthogonal. As in the case of the oscillator annihilation operator, these are consequencesK2

being non-Hermitian. SinceK2 is SU~3! invariant, eachHk is SU~3! invariant as well:

APSU~3!,uc&PHk⇒U~A!uc&PHk . ~5.3!

Therefore the URU(A) of SU~3! on H, when restricted toHk , leads to a URDk acting onHk .
We will see that this UR contains each UIR (p,q) exactly once, just likeD0 onH0 . Thus it is also
multiplicity-free and complete.

To exhibit these properties, we first recall the construction of eigenvectors ofK2 in any
discrete class UIRDk

(1) of Sp(2,R).29 ~Though the following results are valid for all realk.0, we
require only the casesk5 3

2,2,52... .) As in Eqs.~I.3.24! and~I.3.25!, denote the eigenvectors ofJ0

in Dk
(1) by uk,m&. Then we have the well-known results

uk,k&5~0F1~2k;uku2!!21/2(
m5k

`

~G~2k!/~m2k!!G~m1k!!1/2km2kuk,m&,

~5.4a!
K2uk,k&5kuk,k&,kPC;

^k,k8uk,k&50F1~2k;k8* k!/$0F1~2k;uk8u2!0F1~2k;uku2!%1/2; ~5.4b!

E
C

d2k

p
s~ uku2!uk,k&^k,ku51,

~5.4c!

s~ uku2!5
2

G~2k! 0F1~2k;uku2!uku2k21K1/22k~2uku!,

whereKn(z) denotes modified Bessel function of the third kind.~For simplicity thek-dependence
of the weight functions is omitted.! We note that even though these statesuk,k& within Dk

(1) do
not form an Sp(2,R) orbit, they do furnish a Klauder-type resolution of the identity.

We now exploit this construction in the present context. We begin with two facts:~a! the
vectorsup,q;IMY;m&, as all labels vary, form an orthonormal basis for the total Hilbert spaceH;
and ~b! if we keepp,q,IMY fixed and allow onlym to vary, we get an orthonormal basis for
subspace carrying just the UIRDk

(1) of Sp(2,R). Therefore, in view of the construction~5.4!,
within each such subspace we can define and have
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up,q;IMY&k5$0F1~2k;uku2!%21/2(
m5k

`

~~2k21!!/ ~m2k!! ~m1k21!! !1/2km2kup,q;IMY;m&,

K2up,q;IMY&k5kup,q;IMY&k ; ~5.5!

k8^p8,q8;I 8M 8Y8up,q;IMY&k5dp8pdq8qd I 8IdM8MdY8Y

30F1~2k;k8* k!/$0F1~2k;uk8u2!0F1~2k;uku2!%1/2.

@For fixedp,q,IMY we also have a resolution of the appropriate identity in the form of Eq.~5.4c!,
but we omit it.# For k50 we recover the orthonormal basis forH0 . However, forkÞ0, these
vectors are not eigenvectors of the totala- and b-type number operatorsN̂(a),N̂(b). It is now
evident that if we keepk fixed, allow pqIMY to vary, and recall that the rangeC of k is
k-independent, we get an orthonormal basis forHk :

Hk5Sp$up,q;IMY&kuk fixed,pqIMY varying%,
~5.6!

k^p8,q8;I 8M 8Y8up,q;IMY&k5dp8pdq8qd I 8IdM8MdY8Y .

It is also clear that each UIR (p,q) of SU~3!, carried by thed(p,q) vectorsup,q;IMY&kPHk as
IMY alone vary, appears exactly once inHk . In other words,Dk is multiplicity-free. In Eqs.~5.2!
and ~5.6! we have three equally good ways of identifying the subspaceHk,H.

We next relate the orthonormal basis vectors~5.6! for Hk to the corresponding ones forH0 in
Eq. ~2.12!, in a compact manner. For this we use Eq.~I.3.25b! valid within each UIRDk

(1) of
Sp(2,R), along withK15aÎ †

•bÎ †:

up,q;IMY;m&5~~2k21!!/ ~m2k!! ~m1k21!! !1/2~aÎ †
•bÎ †!m2kup,q;IMY;k&;

up,q;IMY&k5$0F1~2k;uku2!%21/2(
m5k

`
~2k21!!

~m2k!! ~m1k21!!
~kaÎ †

•bÎ †!m2kup,q;IMY;k&

5Ak,k
† up,q;IMY&0 , ~5.7!

Ak,k
† 5$0F1~2k;uku2!%21/2(

m5k

`
~2k21!!

~m2k!! ~m1k21!!
~kaÎ †

•bÎ †!m2k

50F1~2k;kaÎ †
•bÎ †!/$0F1~2k;uku2!%1/2.

It is important to notice that there is a dependence onk5 1
2(p1q13) in the operatorAk,k

† ; so the
basis vectorsup,q;IMY&k for Hk do not arise from the basis vectorsup,q;IMY&0 for H0 by
application of a single operator dependent onk alone. In spite of this, we will see below th
usefulness of the connection~5.7!.

We now obtain an expansion of the H-W SCSuzI ,wI & with zITwI 5k, in the orthonormal basis
~5.6! for Hk . Thus we seek analog to Eqs.~4.26! and~4.28!, as well as to Eqs.~4.27! and~4.32!,
in the case ofH0 . Given uzI ,wI &PHk , by a suitable SU~3! transformation we can relate it to
standard stateuzI (0)(u),wI (0)(v,x,y)& on its orbit. We parametrize the latter as in Eq.~4.16! class
~d! ~assume here for definiteness thatx21y2,1, the possibilityx21y251 which is of vanishing
measure being handled in the next section!:

zI (0)~u!5u~1,0,0!T,

wI (0)~v,x,y!5v~x1 iy ,A12x22y2,0!T, ~5.8!

uv~x1 iy !5k.
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We develop first the replacement for Eq.~4.26!. The point of interest is to see which vector with
each UIR (p,q) in Dk appears, in place of the higher weight vector present in Eq.~4.26!. Thanks
to Eq. ~5.7!, the relevant overlap simplifies to a calculation inH0 :

k^p,q;IMYuzI (0)~u!,wI (0)~v,x,y!&50^p,q;IMYuAk,kuzI (0)~u!,wI (0)~v,x,y!&

5$0F1~2k;uku2!%1/2^p,q;IMY;kuzI (0)~u!,wI (0)~v,x,y!&.

~5.9!

Here the bra vector, inH0 , is an eigenvector ofN̂(a),N̂(b) with eigenvaluesp,q, respectively. This
leads to further simplification:

^p,q;IMY;kuzI (0)~u!,wI (0)~v,x,y!&5e2 ~1/2!(u21v2)
up

p!

vq

q!
^p,q;IMY;ku~ â1

†!p~~x1 iy !b̂1
†

1A12x22y2b̂2
†!qu0I ,0I &. ~5.10!

The ket vector here has hypercharge1
3(p2q), as does the highest weight state in (p,q), so this

overlap is nonzero only ifY5 1
3(p2q). This then determines the possible values ofI :

I 5I 0 ,I 021,..., 1
2 up2qu,

~5.11!
I 05 1

2 ~p1q!.

Notice thatI 0 is the highest possible value ofI in the UIR (p,q). For the bra vector in Eq.~5.10!
we have the explicit expression@Eq. ~I.A9!#:

^p,q;IMY;ku5NpqIY~~ I 1M !! ~ I 2M !!/2I ! !1/2 (
n50

(p2r ,q2s),

(
L50

I 2M
~21!n1I 2M2L

~r 1s1n11!!

3^0I ,0I u
~ âab̂a!n

n!

â1
r 2L

~r 2L !!

â2
L

L!

3
b̂1

I 2M2L

~ I 2M2L !!

b̂2
s2I 1M1L

~s2I 1M1L !!

â3
p2r 2n

~p2r 2n!!

b̂3
q2s2n

~q2s2n!!
,

âab̂a5â1b̂11â2b̂2 ,

NpqIY5$r !s! ~r 1s11!! ~p2r !! ~q2s!! ~p1s11!! ~q1r 11!!/ ~p1q11!! %1/2,

r 5I 1
Y

2
1

1

3
~p2q!,S5I 2

Y

2
1

1

3
~q2p!. ~5.12!

Here, as before, (p,q), stands for smaller of the two integersp,q.
Use of this in Eq.~5.10! leads to further simplifications. The conditionY5 1

3(p2q) gives

r 5I 1M0 , s5I 2M0 ,

p2r 5q2s5I 02I , ~5.13!

M05 1
2 ~p2q!.

Then, in the sums overn andL in Eq. ~5.12!, only the termsn5p2r 5q2s andL50 survive.
Using all this, the scalar product in Eq.~5.9! can be explicitly computed:
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k^p,q;IMYuzI (0)~u!,wI (0)~v,x,y!&5$0F1~2k;uku2!%1/2
•e2 ~1/2!(u21v2)

•upvq

3dY, ~1/3!(p2q)

~21! I 02M

~M2M0!!
$~2I 11!~ I 1M !! ~ I 2M0!!/

~2I 011!! ~ I 2M !! ~ I 1M0!! %1/2

3~x1 iy ! I 02M~12x22y2!~1/2!(M2M0),
~5.14!

uv~x1 iy !5k.

We see that, providedY5 1
3(p2q) andM>M0 , this overlap is nonzero for all values ofI in the

range~5.11!. This shows how far the projection ofuzI (0)(u),wI (0)(v,x,y)& onto the subspace ofHk

carrying the UIR (p,q) differs from the highest weight state.
We can now obtain the replacement for the previous Eq.~4.26!. It is unavoidably somewha

more complicated. Using Eq.~5.14! and withk5uv(x1 iy), we have

uzI (0)~u!,wI (0)~v,x,y!&5e2 ~1/2!(u21v2) (
p,q50

`

upvq$0F1~2k;uku2!/~p1q11!! %1/2

3N 8~p,q;uku/uv !up,q;k/uv&k ,

N 8~p,q;uku/uv !up,q;k/uv&k5 (
I 5uM0u

I 0

(
M5M0

I
~21! I 02M

~M2M0!!
~k/uv ! I 02M

3S 12
uku2

u2v2D ~1/2!(M2M0)

$~2I 11!~ I 2M0!! ~ I 1M !!/

~ I 1M0!! ~ I 2M !! %1/2up,q;I ,M , 1
3 ~p2q!&k ,

~5.15!

N 8~p,q;uku/uv !5H (
I 5uM0u

I 0

(
M5M0

I
~2I 11!~ I 2M0!! ~ I 1M !!

~ I 1M0!! ~ I 2M !! ~M2M0!! 2 ~ uku/uv !2(I 02M )

3S 12
uku2

u2v2D M2M0J 1/2

,

which, as shown in the Appendix, can be compactly written as

N 8~p,q;uku/uv !5$~ I 02uM0u11!~ I 01uM0u11!2F1~2~ I 02uM0u!,2~ I 01uM0u!,2,1

2uku2/~u2v2!!%1/2. ~5.16!

The normalization factorN 8(p,q;uku/uv) has been defined so as to make the vectorup,q;k/uv&k

have unit norm; this vector lies in the subspace ofHk carrying the~single occurrence of the! UIR
(p,q) in Dk . Now we applyU(A) to both sides of Eq.~5.15! and get the replacements for Eq
~4.27! and ~4.28!:

APSU~3!,zI5AzI (0)~u!,wI 5A* wI (0)~v,x,y!,zITwI 5k:

uzI ,wI &5e2 ~1/2!(u21v2) (
p,q50

`

upvq$0F1~2k;uku2!/~p1q11!! %1/2N 8~p,q;uku/uv !

3up,q;k/uv;A&k , ~5.17!

up,q;k/uv;A&k5U~A!up,q;k/uv&k .
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We see that for (zI ,wI )PC 6 with given u,v,k, corresponding to class~d! in Eq. ~4.16!, the H-W
SCSuzI ,wI & is expressible in terms of a sequence of SU~3! GCS, all contained inHk . The SU~3!
GCSs within the UIR (p,q) useup,q;k/uv&k as the fiducial vector, and this is very different fro
the highest weight vector. For this family of SU~3! GCSs we have in place of Eq.~4.32!

E
SU(3)

dAup,q;k/uv;A&kk^p8,q8;k/uv;Au5dp8pdq8q

P(p,q;k)

d~p,q!
, ~5.18!

whereP(p,q;k) is the projection operator onto the subspace ofHk carrying the UIR (p,q). This
follows from the Schur lemma for SU~3! UIRs, and the fact thatDk is multiplicity-free.

With these replacements for Eqs.~4.26!–~4.28! and~4.32! in hand, we can study the analog o
the operatorA( f 0) in Eq. ~4.30!. We begin with the general definition~4.23! of A( f ) and choose

f ~u,v,x,y!5 f 0~u,v !d (2)~x1 iy2k/uv !5 f 0~u,v !d~x2Rek/uv !d/y2Im k/uv). ~5.19!

This achieves the restriction toHk . We then define

A~ f 0!5E )
j 51

3 S d2zj

p

d2wj

p D f 0~u,v !d (2)~x1 iy2k/uv !uzI ,wI &^zI ,wI u

5
2

p E
0

`

u5duE
0

`

v5dv f 0~u,v !u~uv2uku!S 12
uku2

u2v2D
3E

SU(3)
dAU~A!uzI (0)~u!,wI (0)~v,x,y!&^zI (0)~u!,wI (0)~v,x,y!uU~A!21, ~5.20!

it being understood in the last expression thatx1 iy5k/uv. We can now use Eqs.~5.17! and
~5.18! here and get the final result replacing Eq.~4.33!:

A~ f 0!5 (
p,q50

`

C~ f 0 ;p,q;k!P(p,q;k),

C~ f 0 ;p,q;k!5
2

p
$0F1~2k;uku2!/~p1q11!!d~p,q!%E

0

`

u5duE
0

`

v5dv f 0~u,v !

3u~uv2uku!S U2 uku2

u2v2De2(u21v2)u2pv2q$N 8~p,q;uku/uv !%2. ~5.21!

The freedom remaining in the choice off 0(u,v) displays the overcompleteness, withinHk , of the
H-W SCS belonging toHk . To limit ourselves to an exact ‘‘SU~3!-worth’’ of these states, we
choosef 0(u,v) to be the product of two delta functions. Then we get a generalization of
~4.34!:

f 0~u,v !5d~u2u0!d~v2v0!, u0v0.uku:
~5.22!

A~ f 0!5E )
j 51

3 S d2zj

p

d2wj

p D d~u2u0!d~v2v0!d (2)S x1 iy2
k

uv D uzI ,wI &^zI ,wI u

5
2

p
•e2(u0

2
1v0

2) (
p,q50

`

$0F1~2k;uku2!/~p1q11!!d~p,q!%

3u0
2p15v0

2q15S 12
uku2

u0
2v0

2D $N 8~p,q;uku/u0v0!%2P(p,q;k).
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In this manner all the results found in the preceeding section for the subspaceH0,H, the null
space ofK2 , generalize to a general eigenspaceHk,H of K2 . Here again, limiting oneself to an
exact ‘‘SU~3!-worth’’ of H-W SCSs does give us a total set of vectors, but they do not obey
Klauder resolution of the identity withinHk

VI. H-W SCSs OF CLASS „e… AND THEIR SU„3… CONTENT

In the listing of SU~3! orbits of H-W SCSs given in Eq.~4.16!, it was pointed out that only
classes~d! and ~e! involve all six oscillators of the Schwinger SU~3! construction in a nontrivial
manner. Furthermore, of these, only the former are generic. As we have seen, class~d! orbits form
a four-parameter continuous family, each orbit being of dimension eight. In contrast, cla~e!
orbits are a three-parameter family, with each orbit of dimension five. Another characteristic
each H-W SCSuzI ,wI & in class~d! is such that the complex three-vectorszI* and wI are linearly
independent; on the other hand, ifuzI ,wI & is in class~e!, thenwI is a ~complex! multiple of zI* .

In Secs. IV and V we have analyzed in detail the SU~3! structure and representation content
H-W SCSs on all class~d! orbits, for zITwI 50 andzITwI 5kÞ0, respectively. Now we turn to a
similar analysis of the class~e! orbits.30 There is, however, a difficulty in handling this case
starting with the Klauder resolution of the identity, Eq.~4.12!, and then modifying the integran
by inserting some function of the SU~3! invariants with the aim of restricting the integration to
chosen subset of orbits. We are unable to use the methods of Secs. IV and V here. The re
that in terms of the SU~3! invariant parametersu,v,x,y in Eq. ~4.15!, class~e! corresponds to
x21y251, while in the volume element~4.21! on the H-W group there is an explicit factor (
2x22y2). For this reason, we handle class~e! orbits more directly, guided, however, by th
results in class~d!.

A convenient representative point on a general class~e! orbit is given by the pair of complex
three-vectors

zI (0)~u!5u~0,0,1!T, u.0,

wI (0)~veia!5veia~0,0,1!T, v.0, 0<a,2p, ~6.1!

zI (0)~u!TwI (0)~veia!5uveia.

@As mentioned earlier in Sec. IV, the reason for choosing this configuration is that the corres
ing stability group is the SU~2! subgroup acting on dimensions 1 and 2 in the defining repre
tation ~1,0!, and it is just this subgroup that is involved in the canonical basis vectorsup,q;IMY&
in a general SU~3! UIR (p,q).] Acting with a generalAPSU(3), wereach a general point (zI ,wI )
on the orbit given by

zI5AzI (0)~u!,

wI 5A* wI (0)~veia!5S veia

u D zI* , ~6.2!

zITwI 5uveia5eia~zI†zIwI †wI !1/2.

The H-W SCSuzI (0)(u),wI (0)(veia)& is of course given by

uzI (0)~u!,wI (0)~veia!&5e2 ~1/2!(u21v2)1uâ3
†
1veiab̂3

†
u0I ,0I &. ~6.3!

We can expand this in the orthonormal basisup,q;IMY;m& for H, recognizing that the only state
that appear haveI 5M50,Y5 2

3(q2p) for various (p,q). We need the results~I.A6! and~I.A7!:
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up,q;0,0,23 ~q2p!;k&5p!q! $~p11!~q11!/~p1q11!! %1/2

3 (
n50

(p,q), ~21!n

~n11!!

~ âa
† b̂a

† !n

n!

~ â3
†!p2n

~p2n!!

~ b̂3
†!q2n

~q2n!!
u0I ,0I &,

~6.4a!

âa
† b̂a

†5â1
†b̂1

†1â2
†b̂2

† ;

up,q;0,0,23 ~q2p!;m&5$~2k21!!/ ~m2k!! ~m1k21!! %1/2
•~aÎ †

•bÎ †!m2kup,q;0,0,23 ~q2p!;k&.
~6.4b!

We can now easily compute the desired overlap:

^p,q;0,0,23 ~q2p!;muzI (0)~u!,wI (0)~veia!&

5$~2k21!!/ ~m2k!! ~m1k21!! %1/23~uveia!m2k^p,q;0,0,23 ~q2p!;kuzI (0)~u!,wI (0)~veia!&

5$~2k21!!/ ~m2k!! ~m1k21!! %1/2~uveia!m2k
•p!q! $~p11!~q11!/

~p1q11!! %1/2^0I ,0I u
â3

p

p!

b̂3
q

q!
uzI (0)~u!,wI (0)~veia!&

5$~p11!~q11!~2k21!!/ ~p1q11!! ~m2k!! ~m1k21!! %1/2~uveia!m2k

3e2 ~1/2!(u21v2)up~veia!q. ~6.5!

In the second step here, when using the expansion~6.4a!, only the termn50 contributes. We
therefore have the expansion of the representative class~e! H-W SCS in the SU(3)3Sp(2,R)
basis:

uzI (0)~u!,wI (0)~veia!&5e2 ~1/2!(u21v2) (
p,q50

`

$~p11!~q11!/~p1q11!! %1/2up~veia!q

3 (
m5k

`

$~2k21!!/~m2k!!~m1k21!!%1/2~uveia!m2kup,q;0,0,23 ~q2p!;m&

5e2 ~1/2!(u21v2) (
p,q50

`

$~p11!~q11/~p1q11!! %1/2up~veia!q

3$0F1~2k;u2v2!%1/2up,q;0,0,23 ~q2p!!uveia. ~6.6!

As we would expect, this expansion involves just theK2 eigenstate defined in Eq.~5.5!, namely
the I 5M50, Y52/3(q2p) member of the orthonormal basis$up,q;IMY&uveia% for H uveia. As
in the case of the SU~3! SCS, where the fiducial vector within the UIR (p,q) is the single highest
weight vectorup,q;1/2(p1q),1/2(p1q),1/3(p2q)&, here too a single vector of the canonic
basis appears as fiducial vector, but it is of course not the highest weight state.

Now within each UIR (p,q) contained in the URD uveia on H uveia, we define the family of
SU~3! GCSs:

APSU~3!:up,q;0,0,23 ~q2p!;A&uveia5U~A!up,q;0,0,23 ~q2p!&uveia. ~6.7!

Then, applyingU(A) to both sides of Eq.~6.6!, we have the general connection between class~e!
H-W SCS and the SU~3! GCS ~6.7!:
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uAzI (0)~u!, A* wI (0)~veia!&5e2 ~1/2!(u21v2) (
p,q50

`

$~p11!~q11!/~p1q11!! %1/2

3up~veia!q$0F1~2k;u2v2!%1/2up,q;0,0,23 ~q2p!;A&uveia.

~6.8!

We recognize that Eqs.~6.6!–~6.8! are replacements for Eqs.~4.26!–~4.28! and Eqs.~5.15! and
~5.17! of class~d!.

Keepinguveia fixed, the SU~3! GCSs~6.7! all belong toH uveia, and from the Schur lemma
they obey the analogs to Eqs.~4.32! and ~5.18!:

E
SU(3)

dAup,q;0,0,23 ~q2p!;A&uveiauveia^p8,q8;0,0,23 ~q82p8!;Au5dp8pdq8q

P(p,q;uveia)

d~p,q!
.

~6.9!

Here, of course, we exploit the multiplicity-free reduction ofD uveia. It follows that for the H-W
SCS~6.8! we have

E
SU(3)

dAuAzI (0)~u!,A* wI (0)~veia!&^AzI (0)~u!,A* wI (0)~veia!u

52e2(u21v2) (
p,q50

`

u2pv2q
0F1~2k;u2v2!P(p,q;uveia)/~p1q12!! ~6.10!

The integration over SU~3! here is in effect only over the five-dimensional coset space SU~3!/
SU~2!, in contrast to Eqs.~4.32! and ~5.18! in class~d!.

If we write k5uveia and allowu andv to vary reciprocally, and also keepa fixed so thatk
stays fixed, we never leave the subspaceH uveia and the projection operatorsP(p,q;uveia). There-
fore we can multiply both sides of Eq.~6.10! by any function

f ~u,v !5 f 0~u!d~uv2uku!, ~6.11!

and integrate over bothu andv to get results similar to Eqs.~4.33! and~5.21!. Here f 0(u) is free.
This then shows that for each fixedk, the class~e! H-W SCSsuzI ,wI & with zITwI 5k are overcom-
plete inHk .

VII. CONCLUDING REMARKS

To conclude, we have given a unified analysis of the interconnections betwee
Heisenberg–Weyl standard coherent states and the standard coherent states as well a
generalized coherent states of SU~3!. The specific family of SU~3! coherent states to be used
dependent on the type of orbit of the H-W SCSs belong to. This situation is describable in
as follows. In terms of the SU~3! invariant parametersx andy, at x5y50 we have those generi
class ~d! orbits which lie entirely within the subspaceH0 . For these H-W SCSs, the SU~3!
harmonic analysis involves precisely the SU~3! SCS within each UIR. For 0,x21y2,1 we deal
with the subspacesHk,H which generalizeH0 ; the corresponding orbits consist of H-W SC
whose SU~3! content brings in the SU~3! GCS studied in Sec. V. The fiducial vectors here a
rather complicated, at any rate in the canonical basis for SU~3! UIRs. In the limitx21y251, we
have the class~e! orbits. These H-W SCS involve yet another family of SU~3! GCSs, though now
the fiducial vectors are the unique SU~2! scalar states within each SU~3! UIR, and their properties
are studied in Sec. VI. In this entire development the group Sp(2,R) plays a particularly helpful
role and so does the Schur lemma wherever it is available. Indeed we have used this lem
UIRs of the H-W group wherever possible, and, after modifications of the completeness id
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used it for UIRs of SU~3!. This systematic use of the Schur lemma makes several computa
much easier than they would otherwise be. It must be emphasized that all the Heisenberg s
coherent states have been included in our study in the spirit of SU~3! harmonic analysis, so tha
there is a satisfactory completeness in our analysis. The significant property of the discrete
UIRs of Sp(2,R), which we have exploited, is worth mention. It is that while the spectrum of
compact generatorJ0 depends onk, hence on the UIR, the ‘‘spectrum’’ of the non-Hermitia
lowering operatorK2 is the entire complex plane, thus being UIR independent. The calcula
in Sec. V clearly show the importance of these facts.

APPENDIX

We outline here the steps involved in going from~5.15! to ~5.16!. Equation~5.15!,

N 8~p,q;uku/uv !5H (
I 5uM0u

I 0

(
M5M0

I
~2I 11!~ I 2M0!! ~ I 1M !!

~ I 1M0!! ~ I 2M !! ~M2M0!! 2

3~ uku/uv !2(I 02M )S 12
uku2

u2v2D M2M0J 1/2

, ~A1!

can be written in terms of the Jacobi polynomials

Pn
(a,b)~x![

G~a1n11!

n!G~a1b1n11! (
m50

n S n
mD G~a1b1n1m11!

2mG~a1m11!
~x21!m, ~A2!

as

N 8~p,q;uku/uv !5H (
I 5uM0u

I 0

~2I 11!S uku
uv D 2(I 02M0)

PI 2M0

(0,2M0)S 2u2v2

uku2 21D J 1/2

~A3!

Using the fact thatPn
(a,b) can also be written as

Pn
(a,b)~x!5

1

2n (
m50

n S n1a
m D S n1b

n2mD ~x21!n2m~x11!m, ~A4!

one can show that

xM0PI 2M0

(0,2M0)
~2x21!5x2M0PI 1M0

(0,22M0)
~2x21!, ~A5!

which implies thatN 8 depends onM0 only through its magnitudeuM0u. ReplacingM0 on the rhs
of ~A1! by uM0u and rewriting it as a polynomial in (12uku2/u2v2), we obtain

N 8~p,q;uku/uv !5H (
k50

I 02uM0u

akS 12
uku2

u2v2D kJ 1/2

, ~A6!

where

ak5 (
M50

k

(
I 5M

I 02uM0u

~2I 12uM0u11!S I 12uM0u1M
M D S I

M D S I 2uM0u2M
k2M D ~21!k2M, ~A7!

which, after some rearrangement, can be written as
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ak5 (
M50

k

~21!MS I 02uM0u1M2k
M D • (

I 50

I 02uM0u2k1M

~2I 12k12uM0u22M11!S I 1k2M
I D

3S I 12k12uM0u22M
k2M D . ~A8!

Using the identities

(
I 50

I 02uM0u2k1M

~2I 12k12uM0u22M11!S I 1k2M
I D S I 12k12uM0u22M

k2M D
5~ I 02uM0u11!S I 01uM0u1k2M11

I 01uM0u D S I 02uM0u
k2M D ~A9!

and

(
M50

k

~21!MS I 02uM0u1M2k
M D S I 01uM0u1k2M11

I 01uM0u D S I 02uM0u
k2M D

5S I 01uM0u11
k11 D S I 02uM0u

k D , ~A10!

we obtain

ak5~k11!S I 01uM0u11
k11 D S I 02uM0u11

k11 D . ~A11!

Substituting this in~A6! we finally obtain the result~5.16!.
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New classes of quasi-solvable potentials, their exactly
solvable limit, and related orthogonal polynomials
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We have generated, using an sl~2,R! Lie-algebraic formalism, several new classes
of quasi-solvable elliptic potentials, which in the appropriate limit go over to the
exactly solvable forms. We have obtained exact solutions of the corresponding
spectral problem for some real values of the potential parameters. We have also
given explicit expressions of the families of associated orthogonal polynomials in
the energy variable. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1509852#

I. INTRODUCTION

In recent times elliptic potentials have proved to be an important addition1–3 to the class of
solvable4,5 and quasi-solvable6–8 potentials in quantum mechanics. In particular, within the sl~2,R!
algebra, exact solutions of Lame´ and associated Lame´ equation have been obtained9–12 for various
ranges of the potential parameters. Indeed a handful of theorems relating to the proper
elliptic potentials are known for a long time13–16 including the study of the properties of th
corresponding wavefunctions.14 The solutions of associated Lame´ equation have also bee
obtained17 by using these theorems which, however, do not use the sl~2,R! technique. Note that
some new elliptic models based on Weierstrass` function have recently been proposed18 wherein
it is shown that the corresponding Hamiltonians possess the so-called energy-refl
symmetry.19

By the term quasi-exactly solvable~QES! periodic potentials we mean potentials consisting
finite number of allowed bands and expressible as doubly periodic elliptic functions whic
either Jacobian elliptic functionssnx[sn(x,k), cnx[cn(x,k), dnx[dn(x,k) of real elliptic
modulus parameterk(0,k2,1) or Weierstrass̀ function. This is in sharp contrast with th
ordinary ES periodic potentials with a single period.

There is an intriguing relation between ES and QES class. In fact, an sl~2! based construction
with an n-dimensional finite space representation gives (n11) levels for a Hamiltonian desig
nated as a QES model. It was pointed out in Ref. 8 that if one can construct a Hamiltonian h
no explicit dependence onn, then in the limitn→` the ES models are recovered. This provid
a sufficient reason to believe that corresponding to every ES model there ought to exist
model which in the proper limit goes over to the former.

In this article we show that the elliptic parameterk can be used for passage from QES to
in the periodic models. We derive three new QES periodic potentials involving Jacobian e
functions. The elliptic functions having real and imaginary period reduce to ordinary per
functions, namely hyperbolic~imaginary period! and trigonometric~real period! functions as the
modulus parameterk goes to 1 and 0. We exploit this interesting property of elliptic functions
show that our QES models are connected with some well known ES periodic class. Note t
do not intend to take the limitn→` and as such we cannot expect to recover the whole spec
for ES models. Rather we show that the limitk→1 and 0 correctly map the few lower states of t
QES and ES periodic potentials.

a!Electronic mail: asish@cucc.ernet.in
53100022-2488/2002/43(11)/5310/15/$19.00 © 2002 American Institute of Physics
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The plan of this article is as follows. In Sec. II we briefly review the basics of the sl~2,R!
Lie-algebraic formalism and generate type I, II and III models within this framework. The me
of construction of the related orthogonal polynomials is also sketched here. Specific examp
constructed in Sec. III for each of them based on some real values of the potential parame
Sec. IV we systematically analyze the ES limit of our results to show how this limit can repro
the ES results. Finally we present our conclusions in Sec. V.

II. NEW QES POTENTIALS FROM sl „2,R… AND RELATED ORTHOGONAL POLYNOMIALS

To start with, let us adopt the following differential realization of the sl~2,R! generators

T15j2]j2nj, T05j]j2 1
2 n, T25]j , ~2.1!

obeying commutation relations

@T1,T2#522T0, @T0,T6#56T6, ~2.2!

wheren is a non-negative integer. The gauged Hamiltonian is taken as the standard homog
quadratic combination of sl~2,R! generators along with linear terms:

HG52C11T12
2C00T

02
2C22T22

2C1T12C0T02C2T22d, ~2.3!

whereCii , Cj ( i , j 50,6) are numerical parameters andd is a suitably chosen constant taken
function of Cj . Note thatd plays the role of an overall shift in the energy scale. This pse
degree of freedom allows us to obtain QES models in the desired form.

Substitution of~2.1! into ~2.3! yields

HG~j!52~C11j41C00j
21C22!]j

2

2@2~12n!C11j31C1j21$~12n!C001C0%j1C2#]j

2Fn~n21!C11j22nC1j1
n2

4
C002

n

2
C01d G , ~2.4!

which after a coordinate transformation

x~j!5E j

dt/AC11t41C00t
21C22, ~2.5!

convertsHG into the form

HG~x!52]x
21

2nC11j3~x!2C1j2~x!1~nC002C0!j~x!2C2

AC11j4~x!1C00j
2~x!1C22

]x

2Fn~n21!C11j2~x!2nC1j~x!1
n2

4
C002

n

2
C01d G , ~2.6!

wherej5j(x) is determined by~2.5!.
Let us now consider the Schro¨dinger equation with the potentialV(x)

H~x!c~x![@2]x
21V~x!#c~x!5Ec~x!. ~2.7!

Writing c(x) in the form

c~x!5m~x!x~x!, ~2.8!
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we obtain

HG~x!x~x![F2]x
222S m8

m D ]x2S m8

m D 2

2S m8

m D 8
1VGx~x!5Ex~x!. ~2.9!

Comparing~2.6! and ~2.9! we find for the potentialV(x) and the gauge factorm(x) the
following relationships

V~x!5S m8

m D 2

1S m8

m D 8
2Fn~n21!C11j22nC1j1

n2

4
C002

n

2
C01dG , ~2.10!

m~x!5@C11j41C00j
21C22#2 n/4 expF E j C1t21C0t1C2

2~C11t41C00t
21C22!

dtG . ~2.11!

Note that the choice of numerical parametersCii must be such that Eq.~2.5! may be invertible
in terms ofj5j(x). For our purposej(x) needs to be expressed in terms of Jacobian elli
functions. In Ref. 12 we gave an almost exhaustive list of the choice ofCii leading to various new
classes of elliptic potentials. Here we consider the following three types of combinatio
parameters, namely,

type I: C1152k2, C0052k221, C225k82, ~2.12!

type II: C115k2, C0052~11k2!, C2251, ~2.13!

type III: C115k82, C00511k82, C2251, ~2.14!

wherek2P(0,1) andk82512k2. Each of the above types defines different coordinate trans
mations through~2.5!. These give respectivelyj52cnx, 2cnx/dnx andsnx/cnx for the three
types mentioned above.

In this way we are then led to the following new classes of elliptic potentials:

type I: V~x!5@B21A~A11!#
dn2x

sn2x
22BS A1

1

2D cnx

sn2x
, xP~0,2K !, ~2.15!

type II: V~x!5B~B11!
dn2x

sn2x
2A~A11!dn2x, xP~0,2K !, ~2.16!

type III: V~x!5@B22A~A11!#k2cn2x12Bk2~A1 1
2!snxcnx, xP~2`,`!, ~2.17!

where K5*0
p/2da/A12k2sin2 a is the complete elliptic integral of the first kind. Note that

~2.15!–~2.17! the potential parametersA,BPR and the choices ofCj and the spin parametern in
~2.10! in terms ofA,B are given in Table I. The constantd is chosen as

type I: d5
C0

4
$C024k82~n11!%1

C1

2k2 ~k2C22k82C1!1
n~n12!

2
k82, ~2.18!

type II: d5S C1

2k D 2

2
C0

2
~n11!1

n~n12!

4
~11k2!, ~2.19!

type III: d5
1

4 F S C1

k8 D 2

2n~n12!~22k2!22C0~n11!G . ~2.20!
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Note that while the type III potential is defined over the entirex-axis, type I and II potentials
are singular atx50,2K and so defined over an open domain (0,2K). It follows from the oscilla-
tion theorem that we need to find the periodic solutions@of period 4K~or 8K!# for 4K-periodic
potential of type I and periodic solutions@of period 2K~or 4K!# for 2K-periodic potentials of types
II and III at E5Ej . The monotonic increasing sequence$Ej%, where E0,E1<E2,E3

<E4 . . . , gives the characteristic values of the energy parameter.
Following the analysis made in Ref. 12 we can find the effective combinations of the pot

parametersA,B. We see that the type I and III potentials are invariant under the transla
A,B→A8, B8 whereA852A21, B852B and type II potential is invariant underA,B→A8, B8
where A852A21, B852B21. Further, due to the periodic relationssn(x12K)52snx,
cn(x12K)52cnx, dn(x12K)5dnx, it results that the effective regions in theA–B plane for
type I-III models are bounded by the constraintsA>2 1

2, B>0; A, B>2 1
2 and A>2 1

2,BPR,
respectively. It may be pointed out that the eigenstates and spectra of type I potential forB,0 can
be obtained from those forB.0 under the coordinate translationx→x12K.

Before concluding this section let us briefly describe the method of construction of famili
orthogonal polynomials12,20,21generated by the eigenstates of a QES Hamiltonian. Let us con
a gauged eigenvalue equation

HG~j!x~j!5Ex~j!, ~2.21!

where we identifyx(j(x))[x(x) as given in~2.8!. We now expand the gauged eigenfuncti
x~j! in the form

x~j!5S j22j

j12j2
D n

(
j 50

`
Pj~E!

j ! S j12j

j22j D j

, ~2.22!

wherej1 , j2 are two distinct roots of the coeffecient of]j
2 in ~2.4!. Now a suitable choice ofj1 ,

j2 ~note thatj1 , j2 can be chosen in six ways! gives us a three-term recursion relation satisfied
$Pj (E)%,

TABLE I. Different algebraizations for type I–III potentials are given. Last column gives restrictions on potential pa
eters to keepn to a non-negative integer.

Classification
Solution

no. n C1 C2 C0

Restrictions
on A, B

1.1 A 2k2B 2k82B A APN21, BPR
1.2 A21 2k2B 2k82B A11 APN, BPR

Type I 1.3 B21 2k2(A1
1
2)2 ikk8 2k82(A1

1
2)1 ikk8 B APR, BPN

1.4 A2
1
2

2k2B2 ikk8 2k82B1 ikk8 A1
1
2 APN2

1
2, BPR

1.5 B2
1
2 2k2(A1

1
2) 2k82(A1

1
2) B2

1
2 APR, BPN2

1
2

1.6 B2
3
2 2k2(A1

1
2) 2k82(A1

1
2) B1

1
2 APR, BPN1

1
2

Type II 2.1 A2
1
2 22k2(B1

1
2) 2(B1

1
2) 2k82(A1

1
2) APN2

1
2, BPR

2.2 A2
1
2 2k2(B1

1
2) 22(B1

1
2) 2k82(A1

1
2) APN2

1
2, BPR

3.1 A 22k82B 22B 2Ak2 APN21,BPR
Type III 3.2 A21 22k82B 22B 2(A11)k2 APN, BPR

3.3 A2
1
2

22k82B1 ik8 22B1 ik8 2(A1
1
2)k2 APN2

1
2, BPR
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2@~2 j 2n11!Ĉ021Ĉ2#Pj 11

5FE1d11Ĉ0S j 2
n

2D1Ĉ00S j 2
n

2D 2GPj

1 j ~ j 212n!@~2 j 2n21!Ĉ101Ĉ1#Pj 21 , ~ j >0!, ~2.23!

whereĈi j are determined from the relations

Ĉ1052
1

~j12j2!2 @2j1j2
3C111j2~j11j2!C0012C22#,

Ĉ005
1

~j12j2!2 @6j1
2j2

2C111~j1
21j2

214j1j2!C0016C22#, ~2.24!

Ĉ0252
1

~j12j2!2 @2j1
3j2C111j1~j11j2!C0012C22#,

and Ĉj , d1 are given by

Ĉ15
1

j12j2
@j2

2C11j2C01C2#,

Ĉ052
1

j12j2
@2j1j2C11~j11j2!C012C2#,

~2.25!

Ĉ25
1

j12j2
@j1

2C11j1C01C2#,

d15d1
n~n12!

12
~C002Ĉ00!.

From Eq.~2.23!–~2.25! it transpires that the eigenstates of type I–III Hamiltonians gener
in general, different orthogonal family of polynomials in the energy variable correspondin
each algebraization of Table I provided

~2 j 2n11!Ĉ021Ĉ2Þ0, ; j >0. ~2.26!

The family $Pj (E)% can be expressed in terms of monic polynomials$P̃j (E)% satisfying the
recurrence relation

P̃j 115~E2l j !P̃j2r j P̃ j 21 , ~2.27!

P̃j5v j Pj , j >0, ~2.28!

where P̃215P1[0 and P̃05P0[1. It is now straightforward to write down the expression
eigenfunctions from~2.8! and ~2.22!. It follows from Eq. ~2.23! that r050 andrn1150; so the
infinite power series expansion in~2.22! truncates after the (n11)-th term since the coeffecient
Pj (Ei) vanishes forj .n, whereEi( i 50,1,...,n) are the zeros of the critical polynomialP̃n11(E).
This points to the fact that type I–III potentials belong to QES class having (n11) levels for each
algebraization. The final expression of the band-edge eigenfunctions may be written in the
                                                                                                                



TABLE II. The coeffecientsr j , l j , v choice of rootsj1 ,j2 and the overall restrictions on potential parameters are also provided for each
algebraization.

Solution
no. n v j (j1 ,j2)

Overall restrictions
on A, B

1.1 A ~
1
2!2j~ j21 ~

1
2! j

)r50
[B]2A1j~2B22A12j2122r!

)r50
[B]2A~2B22A2122r!

(21,1)
AP N21, BP R,
B2A>0.

1.2 A21 ~
1
2!2j~ j2A 1!# ’’ ’’

AP N, BP R,
B2A>0.

1.3 B21 ~
1
2!2j~ j2B ~

21
2 ! j )r50

j ~2j1122r! Sik8

k
,

2ik8

k D AP R, BP N,
A2B11>0.

1.4 A2
1
2 ~

1
2!2j~2j2

A13!# ’’ ’’ AP N2
1
2, BP R,

B2A>0.

1.5 B2
1
2 ~

1
2!2j~ j1A 13!# ~

1
2! j

)r50
[A2B]1j~2A22B12j22r11!

)r50
[A2B]~2A22B22r11!

(21,1) AP R, BP N2
1
2,

A2B11>0.

1.6 B2
3
2 ~

1
2!2j~2j2 15!# ’’ ’’ AP R, BP N1

1
2,

A2B11>0
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j of the recurrence relation~2.26! and ~2.27! are given for type I model. The

r j l j

2A!~2j12B21!~2B22A12j21!
122k2

2
@A~A11!1~A22j!~2B2A12j!#

!~2j12B11!~2B22A12j21!
122k2

2
@A~A11!1~A2122j!~2B12j2A1

!~2j11!~2j22B11!

122k2

4
@2B22112~B2122j!~2j2B12!#

1
1
2ikk8(2A11)(2B22A24 j 23)

2A21!~ j2A!~2j11!

122k2

8
@4A~A11!211~2A24j21!~4j22

12Bikk8(A22 j 21)

!~2j22B21!~2A22B12j11!
122k2

8
@4B2211~2B24j21!~4j14A22B

2B11!~ j1A11!~2A22B12j11!
122k2

8
@4B2211~2B24j23!~4j14A22B
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cEi
~x!5m~x!~j~x!2j2!n(

j 50

n
Pj~Ei !

j ! S j~x!2j1

j~x!2j2
D j

, ~ i 50,1,,...,n!, ~2.29!

wherem(x) is determined from~2.11! for each of the three types given by~2.12!–~2.14! and the
band-edge eigenvalues areE0 , E1 ,...,En . Note thatn is to be computed for each of the alg
braization in Table I.

III. EIGENSTATES AND SPECTRA OF TYPE I–III MODELS FOR SOME REAL VALUES
OF THE POTENTIAL PARAMETERS

In this section we construct some examples based upon the general results obtained
previous section. It may be useful to collect the following identities and differential relat
among the Jacobian elliptic functions which will be frequently used:

sn2x1cn2x51, dn2x1k2sn2x51,

sn8x5cnxdnx, cn8x52snxdnx, dn8x52k2snxcnx.

In the following examples we denote the eigenstates@spectra# by f r(x)@er # whenever ordering
is possible. Otherwise we denote them bycEi

@Ei #, andcE
i8
@Ei8#, indicating different algebraiza

tions.

A. Type I model †defined on the domain „0,2K…‡

We have got six algebraizations~see the solution 1.1–1.6 of Table I! for type I Hamiltonian
~2.15!. For each of them the corresponding eigenstates generate an orthogonal family of p
mials satisfying the recurrence relation~2.26!. The explicit expressions ofr j ,l j ,v j together with
the choice ofj1 ,j2 and the overall restrictions on potential parameters are given in Table II

It is clear that the algebraic solutions are obtained for the following two cases:

Case 1:AP(N21)ø(N2 1
2),BPR

Here B is any real parameter and for each real values ofB, A is allowed to take

0,1
2,1,3

2,...,L<B ~L is an integer or half-integer!. For integer values ofA, from the algebraizations
1.1–1.2 we get (2A11) band edge eigenstates and eigenvalues. Also for half-integer valuesA
the algebraization 1.4 gives (A1 1

2) solutions of the Schro¨dinger equation.

Case 2:BPNøN2 1
2 ,APR

HereA is any real number andB is allowed to take values12,1,32,...,L<A11 ~L is integer or
half-integer!. It is to be noted that algebraization 1.3 is considered for integer values ofB and
1.5–1.6 for half-integerB.

We now consider some specific examples when both ofA andB are integer or half-integer.

1. AÄ0, BÄ 1
2

V~x!5
1

4

dn2x

sn2x
2

1

2

cnx

sn2x
,

~3.1!

f0~x!5A snx

11cnx
, e050.

2. AÄ0, BÄ 3
2

V~x!5
9

4

dn2x

sn2x
2

3

2

cnx

sn2x
,

~3.2!
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f0~x!5S snx

11cnxD
3/2

, e050.

3. AÄ 1
2, BÄ1

V~x!5
7

4

dn2x

sn2x
22

cnx

sn2x
,

~3.3!

f0~x!5
Asnxdnx

11cnx
expS 2

i

2
tan21

kcnx

k8 D , e05
122k2

4
2 ikk8.

4. AÄ 1
2, BÄ2

V~x!5
19

4

dn2x

sn2x
24

cnx

sn2x
,

~3.4!

f0~x!5
Adnxsn3/2x

~11cnx!2 expS 2
i

2
tan21

kcnx

k8 D , e05
122k2

4
22ikk8.

5. AÄ1, BÄ 3
2

V~x!5
17

4

dn2x

sn2x
2

9

2

cnx

sn2x
.

For 0, k2 , 1
2,

f0,1~x!5
Asnx

~11cnx!5/2@g7~k!cn2x14cnx142g7~k!#, e0,15124k21
1

2
g7~k!, ~3.5!

f2~x!5
dnxAsnx

~11cnx!3/2, e25122k2, ~3.6!

whereg6(k)56k2216A1236k2k82.
For 1

2 , k2 , 1, the suffixes 0,1,2 have to be replaced by 1,2,0, respectively.
Proceeding in the same fashion, we can find the eigenstates and spectra for higher valuA

andB.

B. Type II model †defined on the domain „0,2K…‡

Here two algebraizations are obtained~see the solution 2.1–2.2 of Table I!. The related
orthogonal polynomials are determined by the entries 2.1–2.2 of Table III. Note that both
braizations are valid providedA is restricted to positive half-integer values only while the oth
parameterB is arbitrary.

Some examples are furnished below.

1. AÄ 1
2

V~x!5B~B11!
dn2x

sn2x
2

3

4
dn2x,

~3.7!

f0~x!5
snB11x

~cnx1dnx!B11/2, e052
k82

2
2

k2

4
~2B11!2.

For B<0, the following degenerated state is found:
                                                                                                                



TABLE III. The coeffecientsr j , l j , v the overall restrictions on potential parameters are provided for type II~first two rows! and type III
models.

Solution
no. n v j (j1 ,j2)

Overall restrictions
on A, B

2.1 A2
1
2 Sk82

2 D2

j~2j2 Sk82

2 D j )r50
j1[B]~2j12B22r11!

)r50
[B] ~2B22r11!

(21,1) AP N2
1
2, BP R.

2.2 A2
1
2 Sk82

2 D2

j~2j2 Sk82

2 D j )r50
j ~2j22B22r21!

22B21
(21,1) AP N2

1
2, BP R,

B< 0.

3.1 A Sk2

2 D2

j~ j2A Sk2

2 D j )r50
j ~2j2122r!

~21!
S i

k8
,
2i

k8
D AP N21, BP R.

3.2 A21 Sk2

2 D2

j~ j2A Sk2

2 D j

)r50
j ~2j1122r! ’’ AP N, BP R.

3.3 A2
1
2

’’ ’’ AP N2
1
2, BP R.
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j of the recurrence relation~2.26! and~2.27! together with the choice ofj1 ,j2 and

r j l j

2A21!~ j2A1B!~2j12B11!
2

k2

4
~2B11!22

k82

8
~2A11!21

11k2

8
3(2A24 j 21)(4B22A14 j 13)

2A21!~ j2A2B21!~2j22B21!
2

k2

4
~2B11!22

k82

8
~2A11!21

11k2

8
3(2A24 j 21)(4j 22A24B21)

21!~2j21!~2j22A21!
2j2A

2
@~2j2A!~22k2!14Bik8#

2B2k822A(A11)k2/2

!~2j22A21!~2j11!

2j2A11

2
@~2j2A11!~22k2!14Bik8#

2B2k822A(A11)k2/2

’’ S112Bik8

2 D2

2
k2

8
~2A11!21

1
8~2A24j21!

3@(k222)(4j 22A13)28Bik8#
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c0~x!5~cnx1dnx!B11/2/snBx.

2. AÄ 3
2

V~x!5B~B11!
dn2x

sn2x
2

15

4
dn2x,

f0,1~x!5
snB11x

~cnx1dnx!B13/2F H ~11k2!S B1
3

2D1h7~k!J cn2x

12S B1
3

2D cnxdnx1k82S B1
3

2D2h7~k!G , ~3.8!

e0,15
6k22102k2~2B11!2

4
7A2~11k4!S B1

1

2D 2

2k84,

where

h6~k!52~11k2!S B1
1

2D6A2~11k4!S B1
1

2D 2

2k84 .

For B<0, two other degenerated states are obtained:

c0,1~x!5
~cnx1dnx!B21/2

snBx F H ~11k2!S B1
3

2D1h7~k!J cn2x

1~122B!cnxdnx2k82S B2
1

2D2~11k2!~2B11!2h7~k!G .
C. Type III model †defined on the entire real line ‡

This corresponds to three algebraizations~see the solution 3.1–3.3 of Table I!, the first two of
which are for an integerA while the third one is for a half-integerA. As before, the eigenstate
generate an orthogonal family of polynomials in the energy variable for each algebraization
recurrence relation~2.26! is determined by the entries 3.1–3.3 of Table III. The other parametB
takes arbitrary values.

We now consider some examples.

1. AÄ0

V~x!5B2k2cn2x1Bk2snxcnx,
~3.9!

f0~x!5expS 2B tan21
snx

cnxD , e052B2k82.

2. AÄ 1
2

V~x!5~B22 3
4!k

2cn2x12Bk2snxcnx,

f0~x!5AdnxexpF2B tan21S snx

cnxD1
i

2
tan21S k8snx

cnx D G , ~3.10!

e052
k2

2
1S 112Bik8

2 D 2

.
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3. AÄ1

V~x!5~B222!k2cn2x13Bk2snxcnx,

f0~x!5dnxexpS 2B tan21
snx

cnxD , e052B2k822k2, ~3.11!

f1,2
( i )~x!5@~k27Ak4216k82B2!snx14Bcnx#expS 2B tan21

snx

cnxD ,

f1,2
( i i )~x!5@4Bk82snx1~k26Ak4216k82B2!cnx#expS 2B tan21

snx

cnxD ,

e1,2512 3
2 k22B2k827 1

2Ak4216k82B2,

where the superscripts in the eigenstates indicate their double-degeneracy.

IV. ES LIMIT OF QES MODELS

We have so far constructed three new classes of QES potentials and explicitly obtaine
eigenstates and spectra. Our purpose in this section is to show that corresponding to ea
there is associated an ES class potential. It is useful to write down the following results of t
limit:

sn~x,k! →
k→0

k→1H tanhx
sinx , cn~x,k! →

k→0

k→1H sechx
cosx , dn~x,k! →

k→0

k→1H sechx
1 . ~4.1!

Each of the three types of potentials are doubly periodic, one is real and the other imag
As k→1 ~or 0! we get an ES potential having an imaginary~or real! period.

A. ES classes associated to type I model

We have already shown that the type I model@cf. Eq. ~2.15!# belongs to the QES periodi
class. The potential has a real period 4K and imaginary period 4K8, whereK8[K(k8). Using the
relation ~4.1! and the relation

K@K8# →
k→0

k→1H` @p/2#
p/2 @`#

, ~4.2!

we see that the QES model is also exactly solvable when the modulus parameterk→1 and 0. The
associated ES classes are given by

k→1:V1~x!5@B21A~A11!#cosech2 x22B~A1 1
2!cosechx cothx, xP~0,̀ !, ~4.3!

k→0:V2~x!5@B21A~A11!#cosec2 x22B~A1 1
2!cosecx cotx, xP~0,p!, ~4.4!

whose eigenstates and spectra are4

c r
(1)~x!5~coshx21!~B2A!/2~coshx11!2 ~B1A!/2Pr

(B2A2 1/2 ,2B2A2 1/2)~coshx!,
~4.5!

c r
(2)~x!5~12cosx!~B2A!/2~11cosx!2 ~B1A!/2Pr

(B2A2 1/2 ,2B2A2 1/2)~cosx!,

Er
(1)52~A2r !2, Er

(2)5~A2r !2, ~r 50,1,2,...!, ~4.6!
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where Pr
(a,b)(x) is the Jacobi polynomial and the superscripts 1 and 2 indicate the pote

V1(x) and V2(x), respectively. Note that we have solved the type I spectral problem~see Sec.
III A ! when at least one of the parametersA,B is an integer or a half-integer. Thus the ES resu
~4.5! and ~4.6! can be reproduced from the associated QES results for this restricted dom
potential parameters only.

We now consider the ES limits of the examples given in Sec. III A@see Eqs.~3.1!–~3.5!#. In
the following the superscripts in the eigenstates indicate whether they correspond to the po
V1(x) andV2(x).

1. AÄ0, BÄ 1
2

V1~x!5 1
4 cosech2 x2 1

2 cosechx cothx, ~4.7!

V2~x!5 1
4 cosec2x2 1

2 cosecx cotx, ~4.8!

f0
(1)~x!5Atanh

x

2
, f0

(2)~x!5Atan
x

2
, e0

(1)5e0
(2)50.

From~4.5! and~4.6! it follows that we can reproduce the ground states for the two ES cla

2. AÄ0, BÄ 3
2

V1~x!5 9
4 cosech2 x2 3

2 cosechx cothx, ~4.9!

V2~x!5 9
4 cosec2 x2 3

2 cosecx cotx, ~4.10!

f0
(1)~x!5tanh3/2

x

2
, f0

(2)~x!5tan3/2
x

2
, e0

(1)5e0
(2)50.

Again ground levels for two ES potentials~4.9! and ~4.10! are reproduced.

3. AÄ 1
2, BÄ1

V1~x!5 7
4 cosech2 x22 cosechx cothx, ~4.11!

V2~x!5 7
4 cosec2 x22 cosecx cotx, ~4.12!

f0
(1)~x!5

Asechx tanhx

11sechx
, f0

(2)~x!5
Asinx

11cosx
, e0

(1)52
1

4
52e0

(2) .

These are the ground states for the ES classes.

4. AÄ 1
2, BÄ2

V1~x!5 19
4 cosech2 x24 cosechx cothx, ~4.13!

V2~x!5 19
4 cosec2 x24 cosecx cotx, ~4.14!

f0
(1)~x!5

sinh3/2x

~11coshx!2 , f0
(2)~x!5

sin3/2x

~11cosx!2 , e0
(1)52

1

4
52e0

(2) .

These are the ground levels for ES potentials.
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5. AÄ1, BÄ 3
2

V1~x!5 17
4 cosech2 x2 9

2 cosechx cothx, ~4.15!

V2~x!5 17
4 cosec2 x2 9

2 cosecx cotx, ~4.16!

f0
(1)~x!5

Asinhx

~11coshx!3/2, f1
(2)~x!5

Asinx

~11cosx!3/2, e0
(1)52152e1

(2) ,

f1
(1)~x!5

Asinhx~coshx23!

~11coshx!3/2 , f0
(2)~x!5

Asinx~cosx23!

~11cosx!3/2 , e1
(1)505e0

(2) .

Here two ES levels are reproduced.

B. ES class associated to type II model

Using as before the relations~4.1! and ~4.2!, we see that in the limitk→1 type II potential
~2.16! goes over to the following ES class known as the generalized Po¨schl–Teller potential:

V3~x!5B~B11! cosech2 x2A~A11! sech2 x, ~4.17!

its eigenstates and spectra being given by

c r
(3)~x!5~cosh 2x21!2B/2~cosh 2x11!2A/2Pr

(2B2 1/2 ,2A2 1/2)~cosh 2x!,
~4.18!

Er
(3)52~A1B22r !2 ~r 50,1,2,...!,

where the superscripts indicate correspondance withV3(x).
We recall that the QES levels for the type II model are obtained for half-integer valuesA.

Let us now take the ES limit of the examples given in Sec III B@see Eqs.~3.6! and ~3.7!#. The
other parameterB is taken as negative real number.

1. AÄ 1
2

V3~x!5B~B11!cosech2 x2 3
4 sech2 x,

~4.19!

c0
(3)~x!5cosechB xAsechx, e0

(3)52
~2B11!2

4
.

Herec0
(3) , e0

(3) are ground level for the ES potentialV3(x).

2. AÄ 3
2

V3~x!5B~B11! cosech2 x2 15
4 sech2 x,

c0
(3)~x!5sinh2B x cosh23/2x, e0

(3)52~B1 3
2!

2, ~4.20!

c1
(3)~x!5

sinh2B x

cosh3/2x
@~2B11! cosh2 x22#, e1

(3)52~B2 1
2!

2.

Herec0,1
(3) , e0,1

(3) are two levels for the ES potential~4.20!.
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C. ES class associated to type III model

The type III potential~2.17! is defined on the entire real line. This is a QES periodic poten
having a real period 2K and an imaginary period 4K8. The algebraic sector is determined for a
integer or a half-integerA, while B is arbitrary real parameter. In the limitk→1, this potential
coincides to the following ES class:

V4~x!5@B22A~A11!#sech2 x12B~A1 1
2!sechx tanhx. ~4.21!

The eigenstates and spectra of the potential~4.21! are

c r
(4)~x!5sechA x exp@2B tan21~sinhx!#Pr

(2 iB2A2 1/2 ,iB2A2 1/2)~ i sinhx!,

Er
(4)52~A2r !2 ~r 50,1,2,...!. ~4.22!

We now take the ES limit~herek→1 only! of the examples given in Sec III C. Note that th
limit k→0 gives a free particle motion.

1. AÄ0

V4~x!5B2 sech2 x1B sechx tanhx,
~4.23!

f0
(4)~x!5exp~2B tan21 sinhx!, e0

(4)50.

Clearly, the ground state for~4.23! agrees with the general results~4.22! for A50.

2. AÄ 1
2

V4~x!5~B22 3
4!sech2 x12B sechx tanhx,

~4.24!
f0

(4)~x!5Asechx exp@2B tan21~sinhx!#, e0
(4)52 1

4.

This is also in agreement with~4.22! for A5 1
2.

3. AÄ1

V4~x!5~B222!sech2 x13B sechx tanhx,

f0
(4)~x!5sechx exp~2B tan21 sinhx!5f1

(4)~x!, e0
(4)5215e1

(4) , ~4.25!

f2
(4)~x!5sechx~sinhx12B!exp~2B tan21 sinhx!, e2

(4)50.

Thus two ES levels are reproduced from the corresponding QES levels.
Hence we have shown that corresponding to three QES models types I, II and III, th

associated some definite ES classes namelyV1 , V2 ~for type I!,V3 ~for type II! andV4 ~for type
III !, respectively. In the ES limit we can reproduce some ES levels from the corresponding
levels as well.

V. CONCLUSION

To conclude, we have constructed three new QES elliptic potentials types I–III usin
sl~2,R! Lie-algebraic scheme and obtained their algebraic levels analytically. Further, we
shown that the eigenstates of QES Hamiltonians generate an orthogonal family of polynom
the energy variable. The interesting point is that the elliptic parameterk(0,k2,1) in the models
                                                                                                                



of its
can be

5324 J. Math. Phys., Vol. 43, No. 11, November 2002 Asish Ganguly

                    
turns out to be responsible for QES class and, when it touches the end-points 0 and 1
domain, the ES classes are revealed. We have explicitly shown that some ES levels
reproduced on a restricted domain of potential parameters.
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Density and current of a dissipative Schro ¨ dinger operator
Hans-Christoph Kaiser,a) Hagen Neidhardt,b) and Joachim Rehbergc)

Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstrasse 39, D-10117 Berlin, Germany

~Received 29 May 2002; accepted 10 July 2002!

We regard a current flow through an open one-dimensional quantum system which
is determined by a dissipative Schro¨dinger operator. The imaginary part of the
corresponding form originates from Robin boundary conditions with certain com-
plex valued coefficients imposed on Schro¨dinger’s equation. This dissipative
Schrödinger operator can be regarded as a pseudo-Hamiltonian of the correspond-
ing open quantum system. The dilation of the dissipative operator provides a~self-
adjoint! quasi-Hamiltonian of the system, more precisely, the Hamiltonian of the
minimal closed system which contains the open one is used to define physical
quantities such as density and current for the open quantum system. The carrier
density turns out to be an expression in the generalized eigenstates of the dilation
while the current density is related to the characteristic function of the dissipative
operator. Finally a rigorous setup of a dissipative Schro¨dinger–Poisson system is
outlined. © 2002 American Institute of Physics.@DOI: 10.1063/1.1507825#

I. INTRODUCTION

Quantum wells are an important feature of many optoelectronic devices, e.g., semicon
quantum well lasers. While the drift-diffusion and energy models in general provide an ade
description, see, e.g., Refs. 1 and 2, the optical active zones and their environment require
refined modeling because genuine quantum effects come to bear.3

A comprehensive model reflecting both the necessity of quantum mechanical simulation
their restriction for technical and economic reasons will combine some quantum mech
model for the optical active zone and a drift-diffusion or energy model elsewhere. The
conceptual problem in matching macroscopic and quantum mechanical quantities, see, e.g
4 and 5, is to obtain some form of current continuity all over the device. The main idea
postulate the continuity of the the normal components of the currents at the model interface
poses a variety of problems on both sides—the macroscopic model and the quantum mec
one. In particular many quantum mechanical models for the active zone such as the sta
Kohn–Sham system, see, e.g., Refs. 6 and 7, are closed systems and thus, the flow v
identically all over the system. This assumption is not justified in the intended combined mo
view of the electric flow through the interface. Hence, one has to pass to open quantum sy
and here the first difficulty consists in defining particle densities and currents at all. The aim o
paper is a rigorous definition of these physical quantities with respect to the dissipative S¨-
dinger operator related to an open quantum system which might serve as a quantum mec
model for one-dimensional semiconductor nanostructures, as quantum wells or multi-qu
wells.

Let us first have a look at the case of a closed quantum system situated in a bo
one-dimensional spatial domainV5@a,b#. We regard Schro¨dinger’s equation

a!Electronic mail: kaiser@wias-berlin.de
b!Electronic mail: neidhard@wias-berlin.de
c!Electronic mail: rehberg@wias-berlin.de
53250022-2488/2002/43(11)/5325/26/$19.00 © 2002 American Institute of Physics

                                                                                                                



nt
ary

the
in the

the

t, in

5326 J. Math. Phys., Vol. 43, No. 11, November 2002 Kaiser, Neidhardt, and Rehberg

                    
2
1

2

d

dx S 1

m~x!

dc~x!

dx D1V~x!c~x!5lc~x!, xP@a,b# ~1.1!

with a real valued potentialV and a positive functionm, which represents the position-depende
effective mass multiplied by 1/\2. If we impose homogeneous Neumann or Dirichlet bound
conditions ata and b, then the corresponding operatorH on the Hilbert spaceL2(@a,b#) of
complex valued, square integrable functions on@a,b# becomes a self-adjoint one. For that case
formalism of quantum mechanics is well developed and one obtains the carrier density
following way: H is an operator with compact resolvent. Let us denote by$E l% l 51

` and$c l% l 51
` the

sequence of eigenvalues and eigenfunctions counting multiplicities and let%̂ª$% l% l 51
` be a se-

quence of occupation numbers which add up to the total numberN of carriers in the system

Nª(
l 51

`

% l . ~1.2!

The carrier density is given by

u%̂~x!5(
l 51

`

% l uc l~x!u2, xP@a,b#. ~1.3!

Usually, the sequence%̂ is expressed in terms of an equilibrium distribution functionf which is
non-negative and decreasing:

% l ª f ~El !, l 51,2, . . . . ~1.4!

Thus, the operator

%ª f ~H ! ~1.5!

is self-adjoint and non-negative. If the equilibrium distribution functionf (l) tends to zero suffi-
ciently fast asl→1`, then% is nuclear. Moreover, there isN5tr(%)5tr( f (H)). Non-negative,
self-adjoint, nuclear operators are density matrices. Since% commutes withH the density matrix
% remains unchanged in time, i.e.,% is a steady state. If the density matrix is given, then
number of carriersN%(v) in the setv#@a,b# can be expressed by

N%~v!5tr~%xv!, ~1.6!

wherexv(•) is the indicator function of the subsetv. It turns out that~1.6! defines an absolutely
continuous measure~with respect to the Lebesgue measure!. One verifies that its Radon–Nikodym
derivativeu% coincides with the carrier density defined by~1.3!, i.e., u%̂5u% .

The system described byH is closed. Hence, there is no interaction with the environmen
particular, no carrier exchange. Consequently, the current densityj %̂(x) defined by

j %̂~x!ª(
l 51

`

% l j l~x!, xP@a,b#, ~1.7!

is identical zero, where in accordance with Ref. 8 the current densityj l(x) of the eigenstatec l is
given by

j l~x!ªImS 1

m~x!
c l8~x!c l~x! D , xP@a,b#, l 51,2,... . ~1.8!
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This consequence is unacceptable, if we want to model a net current flow through the b
ary of the system. To that end we devised non-self-adjoint boundary conditions for Schro¨dinger’s
equation, see Refs. 6, 7, and 5, i.e., we regard the Schro¨dinger operatorH with the domain

dom~H !55
1

m~x!
g8~x!PW1,2~@a,b# !,

gPW1,2~@a,b# !:
1

2m~a!
g8~a!52kag~a!,

1

2m~b!
g8~b!5kbg~b!

6 , ~1.9!

whereka ,kbPC. If at least one of the imaginary parts is different from zero, then the operatH
is non-self-adjoint. However, this non-self-adjointness implies several complications. In parti
the notion of carrier density becomes unclear.

This situation can be handled if we restrict ourselves to dissipative operators. Let us reca
an operator is called dissipative if the imaginary part of its associated quadratic form is
positive. In the present case the operatorH is dissipative ifka ,kbPC1ª$zPC:Im(z).0%. More-
over, under this assumption the operatorH becomes maximal dissipative, i.e., it admits no prop
dissipative extension, see Ref. 5. The main technical tool to overcome the difficulties
dilation theory for maximal dissipative operators. In Ref. 9 the minimal self-adjoint dilationK of
H was explicitly constructed and analyzed in detail. From the physical point of view the min
self-adjoint dilation plays the role of the Hamiltonian of a larger closed system which contain
original system described by the pseudo-HamiltonianH, i.e., it acts as a quasi-Hamiltonian of th
open system, cf. Ref. 5. Using this fact one defines steady states, carrier densities and
densities of the dissipative quantum system by means of the corresponding quantities derive
the quasi-HamiltonianK. In this paper we aim at expressing these quantities in terms of
pseudo-HamiltonianH itself. Indeed, the carrier and current densities are expectation values
corresponding observables which are composites ofH. In particular, the current density obser
able is related to the characteristic function of the operatorH. It turns out that the current densit
is independent ofxP@a,b# and, in general, different from zero. So we have a constant cur
through@a,b#.

This formal approach to the net current flow problem fits into scattering models, see
Refs. 10–12 and in particular the concept of transparent boundary conditions,~see e.g., Refs. 13
and 14!, which has been extended to the multi dimensional case in Refs. 15 and 16. In
models one replaces the maximal dissipative operatorH by a family of maximal dissipative
operators$H(z)%zPC1

defined onL2(@a,b#). If a50, b51, andm(x)[1/2, thenH(z) is given by

dom~H~z!!ª HgPW2,2~@0,1# !:
g8~1!5k1~z!g~1!

g8~0!52k0~z!g~0!,J ,

~1.10!

~H~z!g!~x!ª2
d2

dx2 g~x!1V~x!g~x!, gPdom~H~z!!,

with

k1~z!ª iAz and k0~z!ª iAz2V2, zPC1, ~1.11!

see Ref. 10, where the cut of the square root is along@0,̀ ) and Im(Az)>0 for zPC1 . Let us
consider the self-adjoint Schro¨dinger operatorK,
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dom~K !ªW2,2~R!,
~1.12!

~K f !~x!ª2
d2

dx2 f ~x!1VKL~x! f ~x!, f Pdom~K !,

on the Hilbert spaceL2(R) whose potentialVKLPC(R) looks like

VKL5H V2 : xPR2

V : xP@0,1#
0 : xP~1,1`!

, ~1.13!

whereV2.0,

V~0!5V2 and V~1!50. ~1.14!

Operators of this type have been investigated in Ref. 17. It turns out that

P~K2z!21uL2([0,1])5~H~z!2z!21, zPC1 , ~1.15!

whereP is the orthogonal projector fromL2(R) onto L2(@0,1#). This means that the operatorK
can be regarded as a self-adjoint dilation of the family$H(z)%zPC1

. Moreover,

∨
zPC\R

~K2z!21L2~@0,1# !5L2~R!, ~1.16!

i.e., K is a minimal self-adjoint dilation, hence, uniquely determined up to an isomorphism. T
if we want to compute quantities which are related to the subspaceL2(@0,1#), for instance, carrier
densities on the interval@0,1#, we can do this using either the self-adjoint operatorK or the family
$H(l)%lPR of maximal dissipative operators. Moreover, if we are only interested in quan
with respect to a small energy interval around the energyl0PR ~in the limit only quantities for
the energyl0), then it suffices to consider the maximal dissipative operatorH(l0) which leads to
a model described at the beginning.

The paper is organized as follows. In Sec. II we rigorously define Schro¨dinger-type operators
and briefly recall their properties, see Ref. 5. Moreover, we introduce the important notion
characteristic functionQH(z) and briefly describe the minimal self-adjoint dilationK of H.
Further we state its generalized eigenfunction expansion following Ref. 9. In Sec. III we intro
generalized steady states and define carrier densities. In Sec. IV we define the current den
express it in terms of the characteristic function. In particular, it turns out that if the steady
is given by%5 f (K), then the current density is zero. In Sec. V we comment on the result
particular, we clarify the relation to the Lax–Phillips scattering theory and verify the contin
equation. Finally, we give a rigorous setting of dissipative Schro¨dinger–Poisson systems whic
have the advantage that their current densities are different from zero for suitably chosen
states.

II. SCHRÖDINGER-TYPE OPERATORS

Following the proposal of Ref. 6 we consider the non-self-adjoint Schro¨dinger-type operator
H on the Hilbert spaceh5L2(@a,b#) given by the domain~1.9! and

~Hg!~x!5~ l ~g!!~x!, gPdom~H !, ~2.1!

where

~ l ~g!!~x!ª2
1

2

d

dx

1

m~x!

d

dx
g~x!1V~x!g~x!, ~2.2!
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and VPL2(@a,b#) is a real potential, the effective massm(x).0 obeys m(x)1 1/m(x)
PL`(@a,b#) andka , kbPC1 . The operatorH is maximal dissipative and completely non-se
adjoint, see Ref. 5. The spectrum ofH consists of isolated eigenvalues in the lower half-plane w
the only accumulation point at infinity. Since the operatorH is completely non-self-adjoint ther
do not exist real eigenvalues. To analyze the operatorH it is useful to introduce the elementar
solutionsva(x,z) andvb(x,z),

l ~va~x,z!!2zva~x,z!50, va~a,z!51,
1

2m~a!
va8~a,z!52ka , ~2.3!

l ~vb~x,z!!2zvb~x,z!50, vb~b,z!51,
1

2m~b!
vb8~b,z!5kb , ~2.4!

xP@a,b#, zPC, which always exist. The WronskianW(z) of va(x,z) andvb(x,z) is defined by

W~z!5va~x,z!
1

2m~x!
vb8~x,z!2vb~x,z!

1

2m~x!
va8~x,z!. ~2.5!

We note that the Wronskian does not depend onx. Similarly, the functionsv* a(x,z) and
v* b(x,z),

v* a~x,z!ªva~x,z̄! and v* b~x,z!ªvb~x,z̄!, zPC, ~2.6!

xP@a,b#, zPC, are elementary solutions of

l ~v* a~x,z!!2zv* a~x,z!50, v* a~a,z!51,
1

2m~a!
v

* a8 ~a,z!52ka, ~2.7!

l ~v* b~x,z!!2zv* b~x,z!50, v* b~b,z!51,
1

2m~b!
v

* b8 ~b,z!5kb, ~2.8!

xP@a,b#. The Wronskian ofv* a(x,z) andv* b(x,z) is denoted byW* (z) and is also independen
of x. By these elementary solutions one gets for the resolvents the representations

~~H2z!21f !~x!52
vb~x,z!

W~z!
E

a

x

dy va~y,z! f ~y!2
va~x,z!

W~z!
E

x

b

dy vb~y,z! f ~y!, ~2.9!

for zP%(H), f PL2(@a,b#) and

~~H* 2z!21f !~x!52
v* b~x,z!

W* ~z!
E

a

x

dy v* a~y,z! f ~y!2
v* a~x,z!

W* ~z!
E

x

b

dy v* b~y,z! f ~y!,

~2.10!

for zP%(H* ) and f PL2(@a,b#), see Ref. 9.
SinceH is completely non-self-adjoint the maximal dissipative operatorH can be completely

characterized by its characteristic functionQH(z), zP%(H)ù%(H* ), cf. Ref. 18. The definition
of the characteristic function relies on the so-called boundary operatorsT(z):h→C2, zP%(H) and
T* (z):h→C2, zP%(H* ), which are defined in Ref. 9. Writing

ka5qa1
i

2
aa

2 and kb5qb1
i

2
ab

2 , aa ,ab.0, ~2.11!

the boundary operators are defined by
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T~z! fªS ab~~H2z!21f !~b!

2aa~~H2z!21f !~a!
D ~2.12!

and

T* ~z! fªS ab~~H* 2z!21f !~b!

2aa~~H* 2z!21f !~a!
D , ~2.13!

f PL2(@a,b#). Using the resolvent representations~2.9! and ~2.10! we obtain

T~z! f 5
1

W~z! S 2abE
a

b

dy va~y,z! f ~y!

aaE
a

b

dy vb~y,z! f ~y!
D ~2.14!

and

T* ~z! f 5
1

W* ~z! S 2abE
a

b

dy v* a~y,z! f ~y!

abE
a

b

dy v* b~y,z! f ~y!
D , ~2.15!

f PL2(@a,b#). The adjoint operators are given by

~T~z!* j!~x!5
1

W~z!
~2abva~x,z!,aavb~x,z!!j5

1

W* ~ z̄!
~2abv* a~x,z̄!,aav* b~x,z̄!!j,

~2.16!

and

~T* ~z!* j!~x!5
1

W* ~z!
~2abv* a~x,z!,aav* b~x,z!!j5

1

W~ z̄!
~2abva~x,z̄!,aavb~x,z̄!!j,

~2.17!

where

j5S jb

jaDPC2. ~2.18!

The characteristic functionQH of the maximal dissipative operatorH is a two-by-two matrix-
valued function which satisfies

QH~z!T~z! f 5T* ~z! f , zP%~H !ù%~H* !, ~2.19!

f PL2(@a,b#). It depends meromorphically onzP%(H)ù%(H* ) and is contractive inC2 , i.e.,

iQH~z!i<1 for zPC2 . ~2.20!

Using the elementary solutions the characteristic functionQH takes the form

QH~z!5I C21 i
1

W* ~z! S ab
2v* a~b,z! 2abaa

2abaa aa
2v* b~a,z!

D . ~2.21!
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for zP%(H)ù%(H* ), cf. Ref. 9.
SinceH is a maximal dissipative operator there is a larger Hilbert spacek$h and a self-

adjoint operatorK on k such that

Ph
k~K2z!21uh5~H2z!21, Im~z!.0, ~2.22!

see Ref. 18. The operatorK is called a self-adjoint dilation of the maximal dissipative operatorH.
Obviously, from the condition~2.22! one gets

Ph
k~K2z!21uh5~H* 2z!21, Im~z!,0. ~2.23!

K is called a minimal self-adjoint dilation ofH if the condition

∨
zPC\ R

~K2z!21h5k ~2.24!

is satisfied. Minimal self-adjoint dilations of maximal dissipative operators are determined u
certain isomorphism, in particular, all minimal self-adjoint dilations are unitarily equivalent.

In the present case the minimal self-adjoint dilation of the maximal dissipative operatorH can
be constructed in an explicit manner. Following Ref. 9 we introduce the larger Hilbert spac

k5D2 % h% D1 , ~2.25!

whereD6ªL2(R6 ,C2). Introducing the graphV̂,

one can write the Hilbert spacek asL2(V̂). Furthermore, we define

gWªg2 % g% g1 , ~2.26!

where

g2~x!ªS g2
b ~x!

g2
a ~x! D and g1~x!ªS g1

b ~x!

g1
a ~x! D , ~2.27!

for xPR2 andxPR1 , respectively. Let the matricesK6
a andK6

b given by

K2
a
ª

1

aa
S 0 0

1 ka
D and K1

a
ª

1

aa
S 0 0

1 ka
D ~2.28!

as well as

K2
b
ª

1

ab
S 1 2kb

0 0 D and K1
b
ª

1

ab
S 1 2kb

0 0
D . ~2.29!

Using these notations the self-adjoint dilationK is defined by
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dom~K !ª5 gW Pk:

g6PW1,2~R6 ,C2!

g,
1

m
g8PW1,2~@a,b# !

K2
a ga1K2

b gb5g2~0!

K1
a ga1K1

b gb5g1~0!
6 ~2.30!

and

KgWª2 i
d

dx
g2 % l ~g! % 2 i

d

dx
g1 , gW Pdom~K !, ~2.31!

where

ga5S 1

2m~a!
g8~a!

g~a!
D and gb5S 1

2m~b!
g8~b!

g~b!
D . ~2.32!

With respect to a graph picture the operatorK looks like

The self-adjoint operatorK is absolutely continuous and its spectrum coincides with the real a
i.e., s(K)5R. The multiplicity of its spectrum is two. The resolvent ofK admits the representa
tion

~K2z!21~ f 2 % f % f 1!5 i E
2`

x

dy ei (x2y)zf 2~y! % ~H2z!21f 1 iT* ~ z̄!* E
2`

0

dy e2 iyzf 2~y!

% i E
0

x

dy ei (x2y)zf 1~y!1 ieizxT~z! f 1 iQH~ z̄!* E
2`

0

dy ei (x2y)zf 2~y!

~2.33!

for Im(z).0 and

~K2z!21~ f 2 % f % f 1!52 i E
x

0

dy ei (x2y)zf 2~y!2 ieizxT* ~z! f 2 iQH~z!E
0

`

dy ei (x2y)zf 1~y!

% ~H* 2z!21f 2 iT~ z̄!* E
0

`

dy e2 iyzf 1~y! % 2 i E
x

`

dy ei (x2y)zf 1~y!

~2.34!

for Im(z),0. The generalized eigenfunctionscW 2(•,l,t), lPR, t5a,b, of K are given by
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cW 2~x,l,t!ªc2
2~x,l,t! % c2~x,l,t! % c1

2~x,l,t!

5
1

A2p
eixlet %

1

A2p
~T* ~l!* et!~x! %

1

A2p
eixlQH~l!* et , ~2.35!

where

ebªS 1
0D and eaªS 0

1D . ~2.36!

The functions are mutually orthogonal, i.e., one has

~cW 2~•,l,t!,cW 2~•,l8,t8!!L2(V̂)5d~l2l8!dtt8 , ~2.37!

in the sense of distribution forl,l8PR, t,t85a,b. Moreover, elements of the form

E
R
dl (

t5a,b
cW 2~•,l,t!ĝt~l! ~2.38!

whereĝt(•), t5a,b, are smooth functions with compact support, are dense ink. We note that the
generalized eigenfunctionscW 2(•,l,t) are usually called the incoming eigenfunctions. Using
incoming eigenfunctions one defines a transformationF2 :k→ k̂5L2(R,C2),

~F2gW !~l!5:ĝ~l!5S ĝb~l!

ĝa~l! D , ~2.39!

where

ĝt~l!ªE
V̂

dx ~gW ~x!,cW 2~x,l,t!!, t5a,b. ~2.40!

F2 is unitary and called the incoming Fourier transformation. The inverse incoming Fo
transformationF2

21 is given by

~F2
21ĝ!~x!5E

R
dl (

t5a,b
cW 2~x,l,t!ĝt~l!, ĝPL2~R,C2!. ~2.41!

We note that

F2KF2
215M , ~2.42!

whereM is the multiplication operator by the independent variablel on k̂, i.e.,

dom~M !ª$ĝPL2~R,C2!:lĝ~l!PL2~R,C2!%,
~2.43!

~Mĝ!~l!ªlĝ~l!, ĝPdom~M !.

The representation~2.43! induced byF2 is called the incoming spectral representation ofK.
Finally, we note that each bounded self-adjoint operatorG on k, which commutes withK,

corresponds to a measurable family$G(l)%lPR of two-by-two matrices, which are uniformly
bounded, i.e.,G(•)PL`(R,B(C2)), such that the multiplication operatorĜ on L2(R,C2) defined
by
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dom~Ĝ!ª$ĝPL2~R,C2!:G~l!ĝ~l!PL2~R,C2!%,
~2.44!

~Ĝĝ!~l!ªG~l!ĝ~l!, ĝPdom~Ĝ~• !!

is unitarily equivalent toG, i.e.,

F2GF2
215Ĝ. ~2.45!

Indeed, ifG commutes withK, thenĜ commutes withM . Applying Theorem VII.2.3 of Ref. 19
one immediately gets thatĜ is a multiplication operator of type~2.44!. The representation~2.44!
is called the incoming spectral representation ofG.

III. CARRIER DENSITY

In the following we call an operator%:k→k a density matrix if% is a bounded, non-negativ
operator. The operator% is called a steady state if% commutes withK. Obviously, a steady stat
does not change in time. If% is a steady state, then there is a measurable matrix-valued fun
%(•)PL`(R,B(C2)) such that the multiplication operator%̂ on L2(R,C2) generated by%(•) is
unitarily equivalent to%, i.e.,

%5F2
21%̂F2 , ~3.1!

see above. Obviously, the measurable function%(•) takes the form

%~l!5S %bb~l! %ba~l!

%ab~l! %aa~l!
D , ~3.2!

where%tn(•)PL`(R), t,n5a,b. Since%>0 one gets that%(l)>0 a.e.~with respect to the
Lebesgue measure!.

Definition 3.1:A bounded self-adjoint operatorA on k is called an observable. We say th
observableA

~i! is admissible with respect to% if %A is a nuclear operator onk, i.e., %APL1(k),
~ii ! is admissible with respect toK if EK(D)APL1(k) for each bounded intervalD#R where

EK(•) denotes the spectral measure ofK.

If the observableA is admissible with respect to%, then its expectation valueE%(A) with respect
to the density matrix% is defined by

E%~A!ªtr~%A!. ~3.3!

In the following we show that the admissibility ofA with respect toK leads to a certain local
ization in the incoming spectral representation:

Proposition 3.2: Assume m1 1/mPL`(@a,b#), VPL2(@a,b#) and ka ,kbPC1 . If the ob-
servable A is admissible with respect to K, then there exists a measurable matrix-valued funct
A(•)PLloc

1 (R,B(C2)), such that A(l)5A(l)* for a.e.lPR and

tr~%AEK~D!!5E
D
dl trC2~%~l!A~l!! ~3.4!

for any bounded Borel setD#R and any steady state% of K. The measurable function A(•) is
uniquely defined up to a Borel set of Lebesgue measure zero.

If the observable A is in addition admissible with respect to the steady state%, then
trC2(%(•)A(•))PL1(R) and the representation
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tr~%A!5E
R
dl trC2~%~l!A~l!! ~3.5!

holds.
Proof: Notice that the spectral measureEK(•) of K is absolutely continuous with respect

the Lebesgue measure. Hence, the set function

m%,A~D!ªtr~%AEK~D!!, ~3.6!

whereD is bounded Borel set ofR, is in fact a Lebesgue absolutely continuous measure.
dmr,A /dl denote its Radon–Nikodym derivative and define

TA~ %̂ !ª
dm%,A

dl
. ~3.7!

ThenTA(•) mapsL`(R,B(C2)) continuously intoL loc
1 (R) ~the latter in its canonic Fre´chet topol-

ogy! and, additionally, one has

tr~%AEK~D!!5E
D
dl

dm%,A

dl
~l!5E

D
dl TA~ %̂ !~l! ~3.8!

for any bounded Borel setD,R. It is not hard to see that~3.8! implies the equality

TA~xD%̂ !5xDTA~ %̂ ! ~3.9!

for any bounded Borel setD#R wherexD denotes its indicator function. We put

ebbªS 1 0

0 0D , ebaªS 0 1

0 0D , eabªS 0 0

1 0D , eaaªS 0 0

0 1D ~3.10!

and define for anyhPL`(R),

Ai j ~h!ªTA~h•eji !, i , j 5a,b. ~3.11!

Clearly, each of the mappingsAi j (•) then mapsL`(R) continuously intoL loc
1 (R) and ~3.11!

implies

Ai j ~xDh!5xDAi j ~h! ~3.12!

for any hPL`(R) and any Borel setD. Taking in particularh[1, this yields

Ai j ~xD!5xDAi j ~1!. ~3.13!

Obviously, by the linearity of the mappingsAi j (•), this last equation remains true ifxD is there
replaced by any~finite! linear combination of indicator functions. Because the set of finite lin
combinations of indicator functions is dense inL`(R), one gets for allhPL`(R)

Ai j ~h!5h•Ai j ~1!. ~3.14!

Since

%~• !5%bb~• !ebb1%ba~• !eba1%ab~• !eab1%aa~• !eaa ~3.15!

one gets
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tr~%AEK~D!!5E
D
dl TA~ %̂ !~l!5 (

i , j 5a,b
E

D
dl Ai j ~%

i j !~l!

5 (
i , j 5a,b

E
D
dl % i j ~l!Aji ~1!~l!. ~3.16!

Setting

A~• !ªS Abb~1!~• ! Aba~1!~• !

Aab~1!~• ! Aaa~1!~• !
D ~3.17!

we finally obtain~3.4! for any bounded Borel setD,R and any steady state% of K.
Assume thatÃ(•) obeys also the conditions of the proposition. SettingG(l)ªA(l)

2Ã(l), lPR, one gets that

E
D
trC2~%~l!G~l!!50 ~3.18!

for any bounded Borel setD and any steady state%. Hence trC2(%(l)G(l))50 for a.e.l and any
steady state% which immediately yieldsG(l)50 or A(l)5Ã(l) for a.e.lPR.

If % is admissible with respect toA, thenutr(%AEK(D)u,i%AiL1
for any Borel setD#R. By

~3.4! this implies that tr(%(•)A(•))PL1(R). Since one has limD↑Rtr(%AEK(D))5tr(%A) we
obtain from~3.4! the equality~3.5!. h

Proposition 3.2 says that the averaging procedure localizes with respect to the inc
spectral representation. Indeed, the quantity tr(%(l)A(l)) can be regarded as the local average
the observableA(l) with respect to the density matrix%(l) at energylPR, i.e.,

E%(l)~A~l!!ªtr~%~l!A~l!!. ~3.19!

Formula ~3.5! has the meaning that the total averageE%(A) is the sum of the local average
E%(l)(A(l)), i.e.,

E%~A!5E
R
dl E%(l)~A~l!!. ~3.20!

Proposition 3.2 gives rise to the following
Definition 3.3:Let A be an observable which is admissible with respect toK. An element

A(•)PL loc
1 (R,B(C2)) is called a localizer ofA with respect toK if A(l)* 5A(l) for a.e.lPR

and

tr~%AEK~D!!5E
D
dl tr~%~l!A~l!! ~3.21!

holds for any bounded Borel subsetD#R and any steady state%.
Proposition 3.2 says that an observable which is admissible with respect toK has always a

unique localizer.
To calculate the carrier density we consider the observableU(v), v#V, given by

~U~v! fW !~x!50% xv~x! f ~x! % 0, fWPL2~V̂ !, ~3.22!

for any Borel subsetv#V. We note that the observableU(v) is a projection onk with
ran(U(v))#h. Loosely speaking, the projection acts in fact only on the subspaceh#k.
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Lemma 3.4: Assume m1 1/mPL`(@a,b#), VPL2(@a,b#) and ka ,kbPC1 . Then for any
Borel set v#V the observable U(v) is admissible with respect to the minimal self-adjo
dilation K of the maximal dissipative operator H. If the steady state% satisfies the condition

C%̂ª sup
lPR

Al211i%~l!iB(C2),`, ~3.23!

then for any Borel setv#V the observable U(v) is admissible with respect to%.
Proof: Relation~2.33! implies

U~v!~K2z!21fW50% xv~H2z!21f 1 ixvT* ~ z̄!* E
2`

0

dy e2 iyzf 2~y! % 0 ~3.24!

for fWPk andzPC1 . By Theorem 3.1 of Ref. 5 one gets that (H2z)21 is a trace class operator fo
eachzPC1 . HenceU(v)(H2z)21 is a trace class operator for eachv#V. Since the operator
T* ( z̄)* acts from the two-dimensional Hilbert spaceC2 into h one easily gets that the secon
addend of~3.24! is a trace class operator, too. HenceU(v)(K2z)21PL1(k) for each Borel set
v#V andzPC1 . Using the representation

U~v!EK~D!5U~v!~K2z!21~K2z!EK~D!, zPC1 , ~3.25!

we find thatU(v)EK(D) is a trace class operator for each Borel setsv#V and each bounded
interval D#R. Hence, the observableU(v) is admissible with respect toK for each Borel set
v#V.

Moreover, taking into account~3.23! and the representation

U~v!%5U~v!~K2 i !21~K2 i !% ~3.26!

one immediately gets thatU(v) % is a trace class operator for eachv#V, because (K2 i )% is
bounded. Hence,% U(v) is a trace class operator for each Borel setv#V which yields that
U(v) % is admissible with respect to%. h

SinceU(v) is admissible with respect toK for any Borel setv#V by Proposition 3.2 there
is a unique localizerU(v)(•):R→B(C2). We are going to calculate this localizer.

Proposition 3.5: Assume m1 1/mPL`(@a,b#), VPL2(@a,b#) andka ,kbPC1 . Then for any
Borel setv#V the localizer of U(v)(•) of the observable U(v) is given by

U~v!~l!5E
v
dx D~x,l!, ~3.27!

where

D~x,l!ªS uc2~x,l,b!u2 c2~x,l,a!c2~x,l,b!

c2~x,l,b!c2~x,l,a! uc2~x,l,a!u2 D ~3.28!

xPV, lPR.
If the steady state% satisfies the condition (3.23), then

E%~U~v!!5E
R
dl trC2~%~l!U~v!~l!! ~3.29!

for any Borel subsetv#V.
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Proof: By Lemma 3.4 the observableU(v) is admissible for any Borel setv#V. By Propo-
sition 3.2 there is a unique localizerU(v)(•)PL loc

1 (R,B(C2)) such that~3.21! is satisfied for any
bounded Borel setD#R and any steady state%. Following the proof of Proposition 3.2 we
consider the measure

m%,U(v)~D!5tr~%U~v!EK~D!! ~3.30!

for any bounded Borel setD#R. We set

Û~v!ªF2U~v!F2
21, ÛD~v!ªEM~D!ÛEM~D!,

whereM5F2KF2
21, see~2.42!. By Lemma 3.4 the operatorÛD(v) is nuclear. Hence, we find

m%,U(v)~D!5tr~ %̂ÛD~v!!. ~3.31!

Let us calculate the kernel ofÛD(v). To this end we consider the scalar product (ÛD(v)ĝ, f̂ ),
ĝ, f̂ PL2(D,C2). Using ~2.41! one has

~ÛD~v!ĝ, f̂ !5E
v
dxE

D
dl (

t5a,b
c2~x,l,t!ĝt~l!E

D
dm (

j5a,b
c2~x,m,j! f̂ j~m!. ~3.32!

Setting

UD
tj~v!~m,l!ªE

v
dx c2~x,l,j!c2~x,m,t!, t,j5a,b, ~3.33!

we get

~ÛD~v!ĝ, f̂ !5E
D
dmS E

D
dlS UD

bb~v!~m,l! UD
ba~v!~m,l!

UD
ab~v!~m,l! UD

aa~v!~m,l!
D S ĝb~l!

ĝa~l! D ,S f̂ b~m!

f̂ a~m!
D D ,

~3.34!

which shows that

UD~v!~m,l!ªS UD
bb~v!~m,l! UD

ba~v!~m,l!

UD
ab~v!~m,l! UD

aa~v!~m,l!
D ~3.35!

is the kernel of the integral operatorÛD(v). Setting

D~x,m,l!ªS c2~x,l,b!c2~x,m,b! c2~x,l,a!c2~x,m,b!

c2~x,l,b!c2~x,m,a! c2~x,l,a!c2~x,m,a!
D ~3.36!

we obtain the representation

UD~v!~m,l!5E
v
dx D~x,m,l!, m,lPD. ~3.37!

Since UD(v)(m,l)5UD8(v)(m,l) for m,lPD#D8 it makes sense to defineU(v)(m,l)
ª limD↑RUD(v)(m,l), m,lPR. HenceUD(v)(m,l)5U(v)(m,l) for m,lPD and

U~v!~m,l!5E
v
dx D~x,m,l!, m,lPD. ~3.38!
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Since the kernel depends continuously onm andl one gets that

tr~ %̂ÛD~v!!5E
D
dl trC2~%~l!U~v!~l,l!! ~3.39!

for any bounded Borel setD#R and any steady state%. From ~3.38! we find thatU(v)(l,l)*
5U(v)(l,l) for lPR. Since the eigenfunctionsc2(x,l,b) and c2(x,l,a) are bounded on
compact sets ofx andl we obtain thatU(v)(l,l)PLloc

1 (R,B(C2)). By ~3.39! the matrix-valued
function U(v)(l)ªU(v)(l,l), lPR, is the unique localizer of the observableU(v). By
condition~3.23! the observableU(v) is admissible with respect to%. Applying Proposition 3.2 we
verify ~3.29!.

It remains to verify~3.27! and ~3.28!. From ~3.38! and ~3.39! we obtain the representation

tr~ %̂ ÛD~v!!5E
D
dl E

v
dx trC2~%~l!D~x,l,l!!. ~3.40!

SettingD(x,l)ªD(x,l,l), xPV, lPR, we immediately obtain~3.27! and ~3.28!. h

We set

u%̂~x,l!ªtrC2~%~l!D~x,l!! ~3.41!

for xPV and lPR. A simple computation shows that the eigenvalues ofD(x,l) are equal to
uc2(x,l,b)u2 and uc2(x,l,a)u2, which shows that the matrixD(x,l) is non-negative for each
xPV and lPR. Since for a.e.lPR the matrix %(l) is non-negative, too, one gets th
u%̂(x,l)>0 for xPV and a.e.lPR. This fact can also be verified taking into account t
representation

u%̂~x,l!5 K% t~l!S c2~x,l,b!

c2~x,l,a! D ,S c2~x,l,b!

c2~x,l,a! D L , ~3.42!

where% t(l) is the transposed matrix to~3.2!. Moreover, if condition~3.23! is satisfied, then from
Proposition~3.5! we obtain the representation

E%~U~v!!5E
R
dl E

v
dx u%̂~x,l! ~3.43!

for Borel setsv#V. Taking into account Fubini’s theorem we find that

E%~U~v!!5E
v
dx u%̂~x!, ~3.44!

where

u%̂~x!ªE
R
dl u%̂~x,l!>0, xPV, ~3.45!

andu%̂PL1(V). The representation~3.44! shows thatE%(U(•)) defines a measure onV which is
absolutely continuous with respect to the Lebesgue measure. Since the expectation
E%(U(v)) has the meaning of the number of carriers inv#V its Radon–Nikodym derivative can
be interpreted as the carrier density of the system described byK and mutatis mutandis byH.

Definition 3.6:Assumem1 1/mPL`(@a,b#), VPL2(@a,b#) andka ,kbPC1 . Then the ma-
trix D(x,l), xPV, and the valueu%̂(x,l) are called carrier density observable and carrier den
at xPV and at energylPR of the system described byH, respectively.
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This definition is justified by the fact that by~3.41! the carrier densityu%̂(x,l) is the expec-
tation value of the carrier density observableD(x,l), i.e.,u%̂(x,l)5E%(l)(D(x,l)) at xPV and
at lPR. Moreover, we note that~3.45! can be written as

u%̂~x!5E
R
dl E%(l)~D~x,l!!, xPV, ~3.46!

i.e, the carrier density atxPV is the sum of expectation values of the carrier density observ
at xPV over all energies.

On the Hilbert spacek5L2(V̂) we consider the multiplication operatorM (h),

~M ~h! fW !~x!50% h~x! f ~x! % 0, xPV, ~3.47!

for real functionshPL`(V). We note thatM (xv)5U(v) for any Borel setv#V. In particular,
one hasM (xV)5U(V)5Ph

k . Obviously, the representation

%M ~h!5%U~V!M ~h!, hPL`~V! ~3.48!

is valid. Since the observableU(V) is admissible with respect to% the product%U(V) is a
nuclear operator onk which yields that%M (h) is a nuclear operator onk, i.e., the observable
M (h) is admissible with respect to%.

Proposition 3.7: Assume m1 1/mPL`(@a,b#), VPL2(@a,b#) andka ,kbPC1 . If the steady
state % satisfies the condition (3.23), then the carrier density u%̂ defined by (3.45) is a non
negative L1-function such that

tr~%M ~h!!5E
V

dx u%̂~x!h~x! ~3.49!

for real functions hPL`(V). In particular, one has

iu%̂iL1(v)5tr~% U~v!!<C%̂i~K2 i !21Ph
k iL1(k) ~3.50!

for each Borel setv#V.
Proof: Settingv5V we obtain from~3.44! that u%̂PL1(V). We chooseh5xv , v#V. By

~3.44! we get

tr~%M ~xv!!5E
V

dx u%̂~x!xv~x!. ~3.51!

By linearity this equation extends to

tr~%M ~h!!5E
V

dx u%̂~x!h~x!, ~3.52!

whereh is an arbitrary step function onV. Sinceu%̂ is from L1(V) and %U(V) is a nuclear
operator both sides of~3.52! admit a continuation toL`-functions which verifies~3.49!.

It remains to show the estimate~3.50!. From ~3.44! we immediately get

E
V

dx ug~x!5tr~%U~V!!5tr~%~K2 i !~K2 i !21U~V!!. ~3.53!

SinceU(V)(K2 i )21PL1(k) and%(K2 i ) is a bounded operator which norm can be estima
by C%̂ we obtain
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tr~%~K2 i !~K2 i !21U~v!!<C%̂i~K2 i !21Ph
k iL1(k) , ~3.54!

which verifies~3.50!. h

Obviously, the relation~3.49! takes the form

tr~%M ~h!!5^u%̂ ,h&L1 ~3.55!

where by^•,h&L1, hPL`(V), we denote the linear functionals onL1(V).
We conclude this section with some considerations which we need in the following se

Since$%(l)%lPR is a measurable family of non-negative self-adjoint operators there is a me
able family$V(l)%lPR of unitary operators onC2 such that

%~l!5V~l!S mb~l! 0

0 ma~l!
DV~l!* ~3.56!

for a.e.lPR wheremb(l) andma(l) are the non-negative eigenvalues of%(l). From~3.56! we
get that

% t~l!5Vt~l!* S mb~l! 0

0 ma~l!
DVt~l! ~3.57!

for a.e.lPR whereVt(l) is the transposed matrix toV(l). Inserting~3.57! into ~3.42! we obtain

u%̂~x,l!5K S mb~l! 0

0 ma~l!
DVt~l!S c2~x,l,b!

c2~x,l,a! D ,Vt~l!S c2~x,l,b!

c2~x,l,a! D L . ~3.58!

Let us introduce the unit vectorset(l),

et~l!5V~l!et , t5b,a ~3.59!

which perform an orthonormal basis inC2. We set

cW ~x,l,et~l!!ªc2~x,l,et~l!! % c~x,l,et~l!! % c1~x,l,et~l!!

5
1

A2p
eixlet~l! %

1

A2p
~T* ~l!* et~l!!~x! %

1

A2p
eixlQH~l!* et~l!.

~3.60!

Obviously, the system$cW (x,l,et(l))%t5b,a performs an orthonormal basis of generalized eig
functions. Moreover, a straightforward computation shows that

Vt~l!S c2~x,l,b!

c2~x,l,a! D5S c~x,l,eb~l!!

c~x,l,ea~l!! D , ~3.61!

which leads to

u%̂~x,l!5mb~l!uc~x,l,eb~l!!u21ma~l!uc~x,l,ea~l!!u2 ~3.62!

for xPV andlPR.
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IV. CURRENT DENSITY

In accordance with~1.8! the current densityj %̂(x,l) for the energylPR is defined by

j %̂~x,l!ªmb~l!ImS 1

m~x!
c~x,l,eb~l!!8c~x,l,eb~l!! D

1ma~l!ImS 1

m~x!
c~x,l,ea~l!!8c~x,l,ea~l!! D , ~4.1!

xPV, where the eigenfunctionsc(x,l,et(l)), t5a,b, are defined by~3.61!. We are going to
relate the current density to the characteristic function of the maximal dissipative operatorH.

Proposition 4.1: Assume m1 1/mPL`(@a,b#), VPL2(@a,b#) and ka ,kbPC1 . Further, let
% be a steady state. Then the current density j%̂(x,l), xPV, lPR, is independent of x and
admits the representation

j %̂~l!5trC2~%~l!C~l!! ~4.2!

where

C~l!ª2
1

2p i

aaab

W~l!
EQH~l!* 5

1

2p i

abaa

W~l!
QH~l!E, ~4.3!

lPR. Moreover, iftrC2(%(•))PL1(R), then the total current j%̂ ,

j %̂ªE
R
dl j %̂~l!, ~4.4!

is finite and satisfies the estimate

u j %̂u<
1

2p E
R
dl trC2~%~l!!. ~4.5!

Proof: From the definition~4.2! one gets that

j %̂~x,l!5ImS K S mb~l! 0

0 ma~l!
D S 1

m~x!
c~x,l,eb~l!!8

1

m~x!
c~x,l,ea~l!!8

D ,S c~x,l,eb~l!!

c~x,l,ea~l!! D L D .

~4.6!

Taking into account~3.57! and ~3.61! we get

j %̂~x,l!5ImS K % t~l!S 1

m~x!
c2~x,l,b!8

1

m~x!
c2~x,l,a!8

D ,S c2~x,l,b!

c2~x,l,a! D L D ~4.7!

which can be expressed by

j %̂~x,l!5trC2~%~l!C~x,l!!, ~4.8!

where
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C~x,l!ªImS S 1

m~x!
c2~x,l,b!8c2~x,l,b!

1

m~x!
c2~x,l,a!8c2~x,l,b!

1

m~x!
c2~x,l,b!8c2~x,l,a!

1

m~x!
c2~x,l,a!8c2~x,l,a!

D D .

~4.9!

We note that

C~x,l!5
1

i S W~c2~x,l,b!,c2~x,l,b!! W~c2~x,l,b!,c2~x,l,a!!

W~c2~x,l,a!,c2~x,l,b!! W~c2~x,l,a!,c2~x,l,a!!
D ~4.10!

whereW(•,•) is the Wronskian defined by~2.5!. Since

W~c2~x,l,b!,c2~x,l,b!!52
i

2p

ab
2aa

2

uW~l!u2
, ~4.11!

W~c2~x,l,a!,c2~x,l,b!!5
1

2p

abaa

uW~l!u2 $W~l!2 iab
2va~b,l!%, ~4.12!

W~c2~x,l,b!,c2~x,l,a!!52
1

2p

abaa

uW~l!u2 $W~l!2 iaa
2vb~a,l!%, ~4.13!

W~c2~x,l,a!,c2~x,l,a!!5
i

2p

aa
2ab

2

uW~l!u2 , ~4.14!

we find

C~x,l!5
1

2p i

abaa

uW~l!u2 S 2 iabaa 2~W~l!2 iaa
2vb~a,l!!

W~l!2 iab
2va~b,l! iaaab

D . ~4.15!

This yields

C~x,l!52
1

2p i

abaa

uW~l!u2 S 0 1

21 0D S W~l!2 iab
2va~b,l! iabaa

iabaa W~l!2 iaa
2vb~a,l!

D . ~4.16!

From ~2.21! we obtain

QH~l!* 5
1

W~l! S W~l!2 iab
2va~b,l! iabaa

iabaa W~l!2 iaa
2vb~a,l!

D . ~4.17!

Hence, one has

C~x,l!52
1

2p i

abaa

W~l!
EQH~l!* , ~4.18!

where

EªS 0 1

21 0D . ~4.19!

This shows thatC(x,l) is actually independent ofxPV. By ~4.8! this leads to the representatio
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j %̂~x,l!52
1

2p i

abaa

W~l!
trC2~%~l!EQH~l!* !, ~4.20!

which shows that the current density is also independent ofxPV. Thus it makes sense to deno
C(x,l) and j %̂(x,l) by C(l) and j %̂(l), respectively. Hence, we have proved one part of
assertion~4.2! and ~4.3!. Taking into account the identity

1

W~l!
EQH~l!* 52

1

W~l!
QH~l!E ~4.21!

we verify the other part.
It remains to show~4.4! and ~4.5!. To this end we note that from~4.17! one gets

JQH~l!* 5J1
i

W~l! S abaa 2aa
2vb~a,l!

2ab
2va~b,l! abaa

D , ~4.22!

where

JªS 0 1

1 0D . ~4.23!

Hence we find

trC2~JQH~l!* !52i
abaa

W~l!
, ~4.24!

which yields

1

2p i

abaa

W~l!
52

1

4p
trC2~JQH~l!* !. ~4.25!

Using the definition~4.3! we finally obtain

j %̂~l!52
1

4p
trC2~JQH~l!* ! trC2~%~l!QH~l!E!. ~4.26!

This leads to the estimate

u j %̂~l!u<
1

4p
iQH~l!* iL1(C2)i%~l!iL1(C2) . ~4.27!

SinceiQH(l)* iL1(C2)<2 andi%(l)iL1(C2)5trC2(%(l)) we find

u j %̂~l!u<
1

2p
trC2~%~l!!, ~4.28!

which immediately proves~4.5!. h

In correspondence to the carrier density it seems to be useful to introduce the follo
definition.

Definition 4.2:Assumem1 1/mPL`(@a,b#), VPL2(@a,b#) andka ,kbPC1 . Then the ma-
trix C(l) and the valuej %(l) are called the current density observable and the current dens
energylPR of the system described byH, respectively.
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The definition is again justified by the fact that the current density at energylPR is the
expectation value of the current density observable at energylPR, i.e., j %̂(l)5E%(l)(C(l)) for
lPR. Using this notation formula~4.4! takes the form

j %̂5E
R
dl E%(l)~C~l!!. ~4.29!

In the following corollary we consider the case that the steady state% is a function ofK, i.e.,

%5 f ~K !, ~4.30!

where, of course,f (•)PL`(R) and f (l)>0 for a.e.lPR and. In this case the density matrix%
belongs to the bicommutant ofK.

Corollary 4.3: Assume m1 1/mPL`(@a,b#), VPL2(@a,b#) and ka ,kbPC1 . If the steady
state% is given by (4.30) with a non-negative function f(•)PL`(R), then j%̂(l)50 for a.e. l
PR.

Proof: In this case one has

%~l!5 f ~l!I C2, lPR. ~4.31!

which gives

j %̂~l!5 f ~l!tr~C~l!!52
1

2p i
f ~l!

abaa

W~l!
trC2~EQH~l!* !. ~4.32!

By ~4.17! we immediately get that trC2(EQH(l)* )50 for lPR. h

If the steady state% has the form

%~l!5S %bb~l! 0

0 %aa~l!
D , ~4.33!

then the current density is given by

j %̂~l!52
1

2p

aa
2ab

2

uW~l!u2 ~%bb~l!2%aa~l!!. ~4.34!

This current density is different from zero if%bb(l)Þ%aa(l) at least for a set of positive Le
besgue measure. So a current density different from zero arises only if we have an occu
disparity between the two eigenstatesc2(x,l,b) andc2(x,l,a). This is the case if the stead
state% belongs to the commutant ofK but not to the bicommutant. In other words, the dens
matrix ~1.5! used for self-adjoint boundary conditions and generalized by~4.30! to the dissipative
case leads to a zero current density.

V. CONCLUDING REMARKS

A. Density and current

The carrier densityu%̂(•) defined by~3.41! and ~3.44! is a straightforward generalization o
the corresponding definition~1.3! of the carrier density in the self-adjoint case. Indeed, t
correspondence relies on the replacements
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l↔$a,b,l%,

$c l% l 51
` ↔$cW ~•,l,t!%lPR,t5a,b ,

~5.1!

(
l 51

`

↔E
lPR

dl (
t5a,b

% l↔%~l!.

The same holds true for the current density defined by~4.1! which is a straightforward generali
zation of ~1.8!. However, in contrast to the self-adjoint case the current density now is
necessarily zero.

B. Lax–Phillips scattering theory

There is consensus in the conviction that scattering states are responsible for the curre
usually leads to a a relation between current density and scattering matrix. Actually, the same
place here. Formulas~4.2! and~4.3! relate the current densityj %̂(l) with the characteristic func-
tion QH* (l) of H* . It turns out that the characteristic functionQH* (l) of H* can be regarded a
the scattering matrix of an associated scattering system. Indeed, with the self-adjoint dilaK
one can associate a Lax–Phillips scattering theory.20,21 To this end one introduces the Hilbe
spacek0 ,

k0ªL2~R,C2!5D2 % D1#k. ~5.2!

and the identification operatorsJ6 :k0→k,

fW5J2 fªPD2

k0 f % 0% 0, f Pk0 ,

~5.3!
fW5J1 fª0% 0% PD1

k0 f , f Pk0 .

The subspacesD2 and D1 are called incoming and outgoing subspaces, respectively. On
Hilbert spacek0 one defines the self-adjoint operatorK0 ,

~K0f !~x!52 i
d

dx
f ~x! ~5.4!

with the domain dom(K0)ªW1,2(R,C2). The Lax–Phillips wave operators

W65s2 lim
t→6`

eitKJ6e2 i tK 0 ~5.5!

exist and are complete, i.e., ran(W6)5k. The corresponding Lax–Phillips scattering operatoS

5W1* W2 :k0→ k̂, is unitary and commutes with the self-adjoint operatorK0 . By F:k0→ k̂ we
denote the Fourier transform

~Ff !~l!5 f̂ ~l!ª
1

A2p
E

R
dx e2 ilxf ~x!, f Pk0 , lPR. ~5.6!

We note thatFK0F 215M whereM is defined by~2.43!. SinceS commutes withK0 the operator
Ŝ5FSF 21: k̂→ k̂ commutes withM . HenceŜ is a multiplication operator given by

~Ŝf̂ !~l!5S~l! f̂ ~l!, f̂ P k̂, lPR, ~5.7!
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where $S(l)%lPR is a measurable family of unitary operators which is called the Lax–Phi
scattering matrix. A rather involved computation shows that

S~l!5QH* ~l! ~5.8!

for a.e.lPR, see, e.g., Ref. 22. By the way one has

F25FW1* , F15FW2* , ~5.9!

where isF2 is the incoming Fourier transformation, cf.~2.41! and~2.42!, andF1 is the so-called
outgoing Fourier transform which was introduced in Ref. 9.

C. Continuity equation

As mentioned above the quantityN%(v),

N%~v!ªiu%̂iL1(v)5E
v
dx u%̂~x!, ~5.10!

has the meaning of the number of carriers on the Borel set subsetv#V5@a,b#. By ~3.44! one
has the representation

N%~v!5tr~%U~v!!. ~5.11!

Obviously NªN%(V) is the total number of carriers on the interval@a,b#. We note that under
condition ~3.23! by Proposition 3.7 the total number of carriers inV is always finite.

In accordance with Ref. 8 the time evolution of the density matrix% is given by

%~ t !5e2 i tK%eitK , tPR. ~5.12!

Hence, the number of particles at timetPR on v is given by

N%(t)~v!ªtr~%~ t !U~v!!, tPR. ~5.13!

Since% commutes withK one has%(t)5% andN%(t)(v)5N%(v) or

d

dt
N%(t)~v!50, v#V, tPR. ~5.14!

If the condition

C%̂ª sup
lPR

~11l2!i%~l!iB(C2),` ~5.15!

is satisfied, then

d

dt
N%(t)~v!52 i tr~K%~ t !U~v!!1 i tr~%~ t !KU~v!!

52 i tr~K%U~v!!1 i tr~%KU~v!!

52 i E
R
dlE

v
dx l trC2~%~l!D~x,l!!1 i E

R
dl E

v
dx l trC2~%~l!D~x,l!!.

~5.16!

By formula ~3.42! we find
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E
v
dx lS trC2~%~l!D~x,l!!5E

v
dx l K% t~l!S c2~x,l,b!

c2~x,l,a! D ,S c2~x,l,b!

c2~x,l,a! D L . ~5.17!

Sincel (c2(x,l,t))5lc2(x,l,t) one gets

E
v
dx lS trC2~%~l!D~x,l!!5E

v
dxK% t~l!S l ~c2~x,l,b!!

l ~c2~x,l,a!! D ,S c2~x,l,b!

c2~x,l,a! D L . ~5.18!

Hence

d

dt
N%(t)~v!52 i E

R
dlE

v
dxK% t~l!S l ~c2~x,l,b!!

l ~c2~x,l,a!! D ,S c2~x,l,b!

c2~x,l,a! D L
1 i E

R
dlE

v
dxK% t~l!S c2~x,l,b!

c2~x,l,a! D ,S l ~c2~x,l,b!!

l ~c2~x,l,a!! D L . ~5.19!

Let v5@c,d##@a,b#. Integrating by parts and taking into account formula~4.7! we get

d

dt
N%(t)~v!5E

R
dl$ j %̂~c,l!2 j %̂~d,l!%. ~5.20!

The total currentj %̂(x) at the pointxP@a,b# is defined by

j %̂~x!ªE
R
dl j %̂~x,l!. ~5.21!

This yields

d

dt
N%(t)~v!5 j %̂~c!2 j %̂~d! ~5.22!

which shows that the change of the number of carriers in the set@c,d# is equal to the difference
between the incoming currentj %̂(c) at pointc and the outgoing currentj %̂(d) at pointd which
very well corresponds to the physical intuition. Since by Proposition 4.1 the current de
j %̂(x,l) does not depend onxP@a,b# one getsj %̂(d)5 j %̂(c) which again verifies~5.14!. Relation
~5.22! is the integral form of the continuity equation which has the differential form

]

]t
u%̂(t)~x!1

]

]x
j %̂(t)~x!50, tPR, xPV, ~5.23!

whereu%̂(t)(x) is the carrier density at timetPR and j %̂(t)(x) is the current density at timet given
by ~5.21!. Sinceu%̂(t)(x)5u%̂(x) is independent oft and j %̂(t)(x) is independent ofx the conti-
nuity equation~5.23! obviously holds in the present situation.

D. Schrö dinger–Poisson systems

Schrödinger–Poisson systems are of great interest in semiconductor physics, see, e.g.,
In the following we are interested in a Schro¨dinger–Poisson system on the intervalV5@a,b# of
the real axisR. Systems of this type were considered in Ref. 6. Byw we denote the electrostati
potential onV which is determined by Poisson’s equation

2
d

dx
e~x!

d

dx
w5q~C~x!1u12u2!, xPV, ~5.24!
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whereu1 andu2 are the densities of holes and electrons, respectively,q is the magnitude of the
elementary charge,C(•) is a given concentration of ionized dopants, ande5e(x).0 denotes the
dielectric permittivity which satisfies the condition

e~• !1
1

e~• !
PL`~@a,b# !. ~5.25!

The Poisson equation~5.24! is completed by the boundary conditions

w~a!5wa , and w~b!5wb . ~5.26!

Next we have to specify Schro¨dinger-operators of the type~2.1! for different species of particles—
holes and electrons indexed by6, respectively. We assume that for these species the effe
massesm6 , external potentialsV0

6 , and coefficientska
6 ,kb

6PC1 are given. For each species th
leads to different dissipative Schro¨dinger operatorsH6(V6) defined in accordance with~1.9!,
~2.1!, and~2.2!. The potentialV entering into the definition of the Schro¨dinger operators has th
form

V6ªV0
66w~u!, ~5.27!

where the electrostatic potentialw is a solution of the Poisson equation~5.24! with boundary
condition ~5.26!. The carrier densitiesu6 entering into Poisson’s equation are obtained from
dissipative Schro¨dinger operatorsH6(V6) in accordance with Sec. III. To this end we assume t
the families of matrices$%6(l)%lPR , which obey

C%̂6
ªsuplPRAl211i%6~l!iB(C2),`, ~5.28!

are given. IfD6(V6)(x) are the carrier density observables atxPV and at energylPR, then the
carrier densities are computed by

u%̂6

6 ~V6!~x!5E
R
dlu%̂6

6 ~V6!~x,l!, xPV, ~5.29!

where

u%̂6

6 ~V6!~x,l!5trC2~%6~l!D6~V6!~x,l!!, xPV, lPR. ~5.30!

Moreover, if trC2(%6(•))PL1(R) is valid, then the current densitiesj %̂6

6 ,

j %̂6

6 5E
R
dl j %̂6

6 ~V6!~l! ~5.31!

are also well-defined and finite, cf. Sec. IV. The so described system is called a dissi
Schrödinger–Poisson system. We note that the total number of carriersN6(V6) is given by

N6~V6!5E
V

dxu%̂6

6 ~V6!~x! ~5.32!

and is not fixed.
In a forthcoming paper23 we show that under suitable conditions one(•), C(•), m6(•),

V0
6(•), kb

6 , ka
6 and %6 this dissipative Schro¨dinger–Poisson system always admits a se

consistent solution.
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SU„N… coherent states
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We generalize Schwinger boson representation of SU~2! algebra to SU(N) and
define coherent states of SU(N) using 2(2N2121) bosonic harmonic oscillator
creation and annihilation operators. We give an explicit construction of all (N-1)
Casimirs of SU(N) in terms of these creation and annihilation operators. The
SU(N) coherent states belonging to any irreducible representations of SU(N) are
labeled by the eigenvalues of the Casimir operators and are characterized by (N-1)
complex orthonormal vectors describing the SU(N) manifold. The coherent states
provide a resolution of identity, satisfy the continuity property, and possess a vari-
ety of group theoretic properties. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1513651#

I. INTRODUCTION

The idea of a coherent state for a quantum system was realized by Schro¨dinger1 way back in
1926 in the context of quantum state of classical motion for a harmonic oscillators. This sim
coherent state construction is associated with the Heisenberg–Weyl group whose Lie alg
given in terms of a harmonic oscillator creation and annihilation operators. These states hav
widely used in physics.2–4 Later, coherent states associated with an arbitrary Lie group in a g
representation were constructed5 by applying group operators to a weight vector in that particu
representation. In the special case of the SU~2! group, another equivalent way of constructing t
coherent states was by exploiting the Schwinger representation of the SU~2! algebra.6 This repre-
sentation involves a doublet of harmonic oscillator creation annihilation operators in term
which one generalizes the simplest Heisenberg–Weyl coherent state construction to the~2!
group. In Ref. 7, using the Schwinger representation of SU~3! algebra, we had constructed cohe
ent states belonging to an arbitrary representation of SU~3!. The motivation of the present work is
~a! to further generalize this Schwinger representation of SU~3! to SU(N) Lie algebra for arbitrary
N, ~b! exploit it to construct coherent states belonging to arbitrary irreducible representatio
SU(N). We also give an explicit characterization of the SU(N) coherent states in terms of (N-1)
complex N-plets describing the SU(N) manifold. In Ref. 8, SU(N) coherent states were con
structed by applying the standard procedure of applying SU(N) group operator on the highes
weight state of a SU(N) representation.

The organization of the paper is as follows. In Sec. II we will briefly describe the Heisenb
Weyl and SU~2! coherent states in terms of harmonic oscillators. Sec. II is not only for the sa
completeness but also for setting up notation and language in a simpler setting before dealin
the larger SU(N) groups. This section also emphasizes the common spirit between them an
SU(N) coherent state formalism. However, with these groups being too simple, many featu
larger SU(N) groups become redundant and hence this section fails to bring out a technique
can be generalized to SU(N). Therefore, in Sec. III, we briefly mention the SU~3! coherent state
construction in a framework which is equivalent to the one in Ref. 7 but can be easily gener
to SU(N). In Sec. IV, we generalize this SU~3! procedure and explicitly construct SU(N) coherent
states for arbitraryN.

a!Electronic mail: manu@bose.res.in
b!Electronic mail: hsmani@bose.res.in
53510022-2488/2002/43(11)/5351/14/$19.00 © 2002 American Institute of Physics
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II. HEISENBERG–WEYL AND SU „2… COHERENT STATES

Given a groupG and its manifoldM, the coherent states in a given representationR are
functions ofq parameters denoted by$z1,z2, . . .,zq% describingM, and are defined as

uzW&R[TR~g~zW !! u0&R . ~1!

HereTR(g(zW)) is a group element in the representationR, andu0&R is a fixed vector belonging to
R. In the simplest example of the Heisenberg–Weyl group, the Lie algebra contains three g
tors. It is defined in terms of creation–annihilation operators (a,a†) satisfying

@a,a†#5I, @a,I#50, @a†,I#50. ~2!

This algebra has only one infinite dimensional irreducible representation which can be cha
ized by occupation number states

un&[
~a†!n

An!
u0&

with n50,1,2, . . . . A generic group element in Eq.~1! can be characterized byT(g)5exp(iaI
1za†2 z̄a) with an anglea and a complex parameterz. Therefore,

ua,z&`5exp~ ia! uz&` ,
~3!

uz&`5exp~za†2 z̄a! u0&5 (
n50

`

Fn~z! un&,

where the sum runs over all the basis vectors of the infinite dimensional representation, a

Fn~z!5
zn

An!
~4!

are the coherent state expansion coefficients. This feature, i.e., an expansion of the cohere
in terms of basis vectors of a given representation with analytic functions of complex vari
(Fn(z)) as coefficients, will also be present in the case of SU(N) groups. It is easy to see that E
~3! provides a resolution of identity with the measure dm(z)5dz dz̄ exp(2uzu2/2).

We now briefly review the next simplest example, i.e., the Schwinger representation of S~2!
Lie algebra and the associated coherent states. The Lie algebra is

@Ja,Jb#5 i eabcJc. ~5!

The algebra~5! can be realized in terms of a doublet of harmonic oscillator creation and an
lation operatorsa[(a1,a2) and aW †[(a1

† ,a2
†), respectively.6 They satisfy the simpler bosoni

commutation relation@ai ,aj
†#5d j

i with i , j 51,2. The vacuum state isu0,0&. In terms of these
operators,

Qa[ 1
2ai

†~sa! j
i aj , ~6!

wheresa denote the Pauli matrices.~We will generally use the convention that repeated indi
are summed over.! It is easy to check that the operators in~6! satisfy the SU~2! Lie algebra

@Qa,Qb#5 i eabcQc. ~7!

We also note that
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@Qa,ai
†#5aj

† 1
2 ~sa! i

j . ~8!

Equation~8! implies that (a1
† ,a2

†) transform like a SU~2! doublet. This fundamental represe
tation of SU~2! will be denoted by the Young diagramS [1] , which is a single box. Therefore, w
can realize all SU~2! irreducible representations on the Hilbert space of harmonic oscilla
created by creation operators acting on the vacuum which is a direct product of the vacuum
for a1 anda2 . The SU~2! Casimir operator is given by

C5(
i 51

2

ai
†
•ai[a†

•a. ~9!

The eigenvalues of the CasimirC will be denoted byC. The various irreducible representations
SU~2! are characterized by the eigenvalues of the Casimir~or occupation number operator! in ~9!.
We also know that any irreducible representation of SU~2! can also be defined by its Youn
diagram, which is obtained by arranging a certain number of boxes in a row. It is easy to se
C just counts this number. The basis vectors of the SU~2! irreducible representation withC5C are
given by

i i 1i 2¯ i C&[ai 1
† ai 2

†
¯ai C

† u0&. ~10!

The dimension of the above-given irreducible representation is (C11). With the harmonic
oscillator creation and annihilation operators, SU~2! coherent states can be obtained by direc
generalizing~3!. We define a doublet of complex numbers (z1,z2) with the constraint:

uzu2[uz1u21uz2u251. ~11!

The above-given constraint gives three independent real compact parameters which defi
sphereM5S3. The SU~2! coherent state in the representationC is now defined as

uz&C[uz1,z2&C5exp~zW•aW †!u0,0&uaW †
•aW 5C •5Fi 1i 2¯ i Cai 1

† ai 2
†
¯ai C

† u0&5Fi 1i 2¯ i Ci i 1i 2¯ i C&,
~12!

where

Fi 1i 2¯ i C5
1

C!
zi 1zi 2

¯zi C. ~13!

Note thatF in ~13! are analytic functions ofz1 andz2. Under SU~2! transformations:

zi→z8 i5expi S ua
sa

2 D
j

i

zj . ~14!

Thus the constraint~11! remains invariant under the SU~2! transformations~14!. Therefore, the
coherent statesuz&[uz1 , z2& transform amongst themselves onS3. It is easy to check the resolu
tion of identity:

E d2z1d2z2d~ uz1u21uz2u221!uz&CC^zu5
1

11C (
i 1, ,..,i C51

2

i i 1i 2 ...i C&^ i 1i 2¯ i Ci . ~15!

III. THE SCHWINGER SU„3… REPRESENTATION

The basic technique behind the construction of SU(N) coherent states is to generalize t
Schwinger representation of SU~3! Lie algebra7 to SU(N) Lie algebra. We will, therefore, briefly
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describe the construction of SU~3! Lie algebra in terms of harmonic oscillators here in a n
framework which is equivalent to that in Ref. 7 but is directly generalizable to SU(N).

The rank of the SU~3! group is 2 and therefore it has two fundamental representations:
SU~3! irreducible representation can be built up from the two fundamental representatio
triplet 3 and an anti-triplet 3̄. The latter is an antisymmetric combination of the two triplets. T
two fundamental representations will be associated with the two~fundamental! Young diagrams
S [1,0] , for the triplet representation andS [0,1] , for its conjugate~anti-triplet! representation. The
Young diagramS [1,0] is one box andS [0,1] is two boxes arranged vertically. We will also label th
fundamental representations by the Greek indices@a#,@b# taking values 1 and 2. The componen
of any irreducible tensorT transforming according toS [1,0](S [0,1]) will be denoted byT@a
51# i 1

(T@a52# i 1i 2
[2Ti 1i 2

,(i 1 ,i 251,2,3)). ~The components of the complex conjugate of the
tensors will be denoted byT* @1# j 1T* @2# j 1 j 2.) Further, the eight representation matrices cor
sponding to these two fundamental representations will be denoted byla@a#. ~Note that

la@2# j 1 j 2

i 1i 2 [ 1
2 e i 1i 2ke j 1 j 2l(2l* a@1#)k

l .) If Qa are the generators of SU~3! then under the SU~3!

they transform as

@Qa,T@1# i 1
#5T@1# j 1

la@1# i 1

j 1,

~16!
@Qa,T@2# i 1i 2

#5T@2# j 1 j 2
la@2# i 1i 2

j 1 j 2.

The matrices on the right-hand side of~16! are the matrices belonging to the fundamental rep
sentations of SU~3! and satisfy the SU~3! Lie algebra:

@la@1#,lb@1##5 i f abclc@1#,
~17!

@la@2#,lb@2##5 i f abclc@2#.

The direct product of these two tensors~representations! span the whole SU~3! representation
space. In fact, any irreducible tensor can be obtained by taking direct products ofC1 of T@1# and
C2 of T@2# tensors. The corresponding Young diagram is represented by arrangingC2 of S@2#
Young diagrams andC1 of S@1# diagrams from left to right side by side. Following Schwinge
representation of SU~2! Lie algebra, we introduce two sets of creation–annihilation opera
a@a#,a†@a#,a51,2. The seta@a51# represents three annihilation operators denoted byai 1@1#
[(a@1#1,a@1#2,a@1#3) and a@a52# represents another set of three annihilation operat
a@2# i 1i 252a@2# i 2i 1 having three independent components (a@2#12,a@2#23,a@2#31). ~In Ref. 7, we
had chosenb15a@2#23,b25a@2#31,b35a@2#12.) We impose the following commutation relation
on them:

@a@1# i 1,a†@1# j 1
#5d j 1

i 1, @ai 1@1#,ai 2@1##50,

@a@2# i 1i 2,a†@2# j 1 j 2
#5d j 1

i 1d j 2

i 22d j 2

i 1d j 1

i 2, @a@2# i 1i 2,a@2# j 1 j 2#50, ~18!

@a@1# i 1,a@2# i 2i 3#50, @a†@1# i 1
,a@2# i 2i 3#50.

We now define the SU~3! generators in the Hilbert space of Harmonic oscillators as:

Qa5a†@1# i 1
la@1# i 2

i 1a@1# i 21
1

2!
a†@2# i 1i 2

la@2# j 1 j 2

i 1i 2 a@2# j 1 j 2. ~19!

Using ~18!, it is easy to check that

@Qa,Qb#5 i f abcQc. ~20!
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Further,

@Qa,a†@1# i 1
#5a†@1# j 1

la@1# i 1

j 1,

~21!
@Qa,a†@2# i 1i 2

#5a†@2# j 1 j 2
la@2# i 1i 2

j 1 j 2.

Equation ~21! implies that a†@1# and a†@2# transform like S [1,0] and S [0,1] fundamental
representations, respectively. Therefore, all the irreducible representations of~20! can be realized
on the Hilbert space created by creation operatorsa†@1# i 1

anda†@2# i 1i 2 acting on the vacuum stat
u0&, which is direct product of vacuum states associated with each of the six harmonic oscil
Further, the two Casimir operators of SU~3! in this generalization of Schwinger representation
given by

C @1#5 (
i 151

3

ai 1
† @1#ai 1@1#,

~22!

C @2#5 (
i 1 ,i 251

3

ai 1i 2
† @2#ai 1i 2@2#.

The eigenvalues of the two Casimirs in~22! will be denoted byC1 andC2 , respectively.

A. Irreducible representations of SU „3…

The eigenvalues of Casimirs (C1 ,C2) characterize all the irreducible representations
SU~3!. On the other hand, we can also define irreducible representations by its Young dia
which is built up by arranging certain numbers ofS [1,0] followed byS [0,1] horizonally from right
to left. It is easy to see thatC1 and C2 just count these numbers. Therefore, we will denot
general SU~3! Young diagram byS [C1 ,C2] which containsC1 of S [1,0] andC2 of S [2] put together
from from right to left. Therefore, a general basis vector inS [C1 ,C2] can be written as

i i 1
1i 1

2
¯ i 1

C21C1 ; i 2
1i 2

2
¯ i 2

C2&S [C1 ,C2]

[~eS [C1 ,C2]
!a†@2# i

1
1i

2
1a†@2# i

1
2i

2
2¯a†@2# i

1

C2i
2

C2@2#a†@1# i
1

C211a@1#
i
1

C212
†

¯a†@1# i
1

C21C1u0&.

~23!

In ~23!, we have characterized the basis vectors ofS [C1 ,C2] representation by the various bo

indices appearing in the Young TableauS [C1 ,C2] . More explicitly, the indexi r
c represents the

index corresponding to the box appearing in ther th row andcth column.eS [C1 ,C2]
is the idempo-

tent associated with the Young tableauS [C1 ,C2] . In general, it is an element of group algeb
corresponding to the permutation groupS(C112C2). It is defined as the product of the tw
symmetrizersS1 ~symmetrizing the indices in the first row (i 1

1 ,i 1
2 , . . . ,i 1

C11C2), S2 ~symmetrizing

the indices in the second row (i 2
1 ,i 2

2 , . . . ,i 2
C11C2), and C2 antisymmetrizers~acting on theC2

columns indices ((i 1
1 ,i 2

1),(i 1
2 ,i 2

2),...,(i 1
C2 ,i 2

C2)). In fact, the idempotent for a particular Youn
tableau can be constructed in two different ways, first symmetrizing the indices in each ro
then antisymmetrizing the indices in each column or first antisymmetrizing the indices in
column followed by symmetrizing the indices of each row. Both procedures lead to equiv
results. Here, since the column indices are already antisymmetric, we choose the latter alte
and need to consider only the two symmetry operations along the two rows ofS [C1 ,C2]
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respectively:

S@1#5 (
pPSC21C1

p, ~24!

S@2#5 (
pPSC2

p. ~25!

~In ~24! and~25!, pPSn is an element of the permutation groupSn and it denotes the permutatio
(p1

1
p2

2
. . .pN

. . .N ) element of the permutation groupSN . Henceforth, we follow this notation throughou

the paper.! The idempotent is just the product of~24! and ~25! and is given by

eS [C1 ,C2]
5S@1# [ i ]S@2# [ j ] . ~26!

One can easily see that:

C@1#u i 1
1i 1

2
¯ i 1

C21C1 ; i 2
1i 2

2 ...i 2
C2&5C1u i 1

1i 1
2
¯ i 1

C21C1 ; i 2
1i 2

2
¯ i 2

C2&,

~27!
C@2#u i 1

1i 1
2
¯ i 1

C21C1 ; i 2
1i 2

2
¯ i 2

C2&5C2u i 1
1i 1

2
¯ i 1

C21C1 ; i 2
1i 2

2
¯ i 2

C2&.

Thus all the irreducible representations are eigenvectors of the two casimirsC@1# andC@2#. As an
example we considerC15C251 corresponding to the octet representation of SU~3!. For this
representation,S@1#5(e1( i 1

1 ,i 1
2)) and S@2#5e. Therefore,~1,1! representation is given by

i i 1
1 ,i 1

2 ; i 2
1&S [1,1]

5@a†@2# i
1
1i

2
1a†@1# i

1
21a†@2# i

1
2i

2
1a†@1# i

1
1#u0&.

In Ref. 9 similar results as in this section have been obtained by using Bargmann’s tech
for SU~3!. More recently, SU~3! multiplicity problem has been analyzed by exploiting the abo
given Schwinger construction and a mutually commuting Sp(2,R) group.10

B. The SU „3… coherent states

We consider two triplets of complex numbersz@a#(5z1@a#,z2@a#,z3@a#),a51,2 describing
the Euclidean manifoldR6

^ R6. We impose the orthonormality conditions:

z̄@a#•z@b#[(
i 51

3

zi* @a#zi@b#5da,b . ~28!

We now define another vectorz@1,2# transforming asS [0,1] with components:

zi 1i 2@12#[A1

2
~z@1# i 1z@2# i 22z@2# i 1z@1# i 1!5A1

2
ea1a2z@a1# i 1z@a2# i 2. ~29!

Using ~28!, we find:

z@1,2#•z@1,2#* [zi 1i 2@@12#zi 1i 2
* @12#51,

~30!
z̃@12#•z@1#[e i 1i 2i 3

zi 1i 2@12#zi 3@1#50, z̃@12#•z@2#[e i 1i 2i 3
zi 1i 2@12#zi 3@2#50.

We can now construct any 333 SU~3! matrix U3 in terms ofz@1# andz@2#:

U35S z@1#1 z@1#2 z@1#3

z@2#1 z@2#2 z@2#3

zD @12#1 zD @12#2 zD @12#3

D . ~31!
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Thus we immediately see thatz@1# and z@2# with ~28! and ~30! completely describe the SU~3!
manifold. At this stage we define the SU~3! coherent states generating function as

uz@1#,z@2#&C1 ,C2
[exp~z@1# i 1a†@1# i 1

1z@1,2# i 1i 2a†@2# i 1i 2
!u0&u

a†[2] •a[2] 5C2

a†[1] •a[1] 5C1 . ~32!

One can see that in the expansion of~32!, due to the constraints~28! and ~30!, each irreducible
representation occursonce and only once. We will now show that~32! indeed generates all th
coherent states of SU~3!. The constraints on the right-hand side of~32!, (a†@1#•a@1#5C1 and
a†@2#•a@2#5C2), select different possible irreducible representations of SU~3!. Note that the
states in~32! are characterized by the continuous parameters (z@1#,z@2#) on the SU~3! manifold.
It is easy to check the SU~3! transformation properties ofz@1# andz@1,2#,

z@1# i 1→z8@1# i 15~expiuala@1# ! i 2

i 1z@1# i 2,

~33!
z@1,2# i 1i 2→z8@12# i 1i 25~expiuala@12# ! j 1 j 2

i 1i 2 z@1,2# j 1 j 2.

In ~33! ua are the eight transformations associated with the SU~3! group transformation. There
fore, under SU~3! transformations bothz@1# and z@2# transform like a triplet and the orthonor
mality conditions~28! and~30! remain invariant under the SU~3! transformations and the state
~32! defined at a point (z@1#,z@2#) transforms to the coherent state at (z8@1#,z8@2#) on the SU~3!
manifold.

From the generating function~32! we find:

uz@1#,z@2#&C1 ,C2
5Fi 1

1
¯ i

1

C11C2 ; i 2
1
¯ i

2

C2
a@2# i

1
1i

2
1

†
¯a†@2# i

1

C2i
2

C2a†@1# i
1

C211
¯a†@1# i

1

C21C1u0&, ~34!

where

C1!C2!F~z@1#,z@2# ! i 1
1
¯ i

1

C11C2 ; i 2
1
¯ i

2

C2

5z@1,2# i 1
1i 2

1
z@1,2# i 1

2i 2
2
¯z@1,2# i

1

C2i
2

C2
z@1# i

1

C211

z@1# i
1

C212

¯z@1# i
1

C21C1

5P2z@1# i 1
1
z@1# i 1

2
¯z@1# i

1

C2
z@1# i

1

C211

¯z@1# i
1

C21C1
z@2# i 2

1
z@2# i 2

2
¯z@2# i

2

C2
. ~35!

In the second step in~35!, we have used the antisymmetry properties ofa†@2#8s under the
interchange of its two indices leading toP25(2!)C2/2. Equation~35! clearly illustrates the fol-
lowing two important properties of the tensorF(z@1#,z@2#).

~1! It is an analytic function of (z@1#, z@2#) which describes the SU~3! manifold.
~2! It has exactly the same symmetry as that ofeS [C1 ,C2]

, i.e.,

F~z@1#,z@2# ! i 1
1
¯ i

1

C11C2 ; i 2
1
¯ i

2

C2
5F~z@1#,z@2# ! i 1

1
¯ i

1

C11C2 ; i 2
1
¯ i

2

C2
eS [C1 ,C2]

. ~36!

Therefore, we can write~34! as

uz@1#,z@2#&C1 ,C2
5Fi 1¯ i C11C2

j 1¯ j C2eS [C1 ,C2]
a@2# i 1 j 1

†
¯a†@2# i C2

j C2
a@1# i C211

†
¯a@1# i C21C1

† u0&

5Fi 1¯ i C11C2
j 1¯ j C2i i 1 j 1 ,i 2 j 2¯ i C2

j C2
i C211 ,i C212¯ i C21C1

& [C1 ,C2] . ~37!

All these features are similar to Heisenberg–Weyl and SU~2! Schwinger coherent states of th
previous section and are discussed in detail in Ref. 7.

We now check the resolution of identity. The Haar measure on SU~3! manifold is given by
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E dm~z![S E )
a51

2

dz@a# D S)
a,b

d~z@a#•z* @b#2da,b!. ~38!

We construct an operatorO[3] :

O3[E dm~z!uz@1#,z@2#&C1 ,C2 C1 ,C2
^z@1#,z@2#u . ~39!

Under SU~3! transformations~33!, O[3] remains invariant. Therefore,

@Qa,O[3] #50, ;a51,2,. . . ,8. ~40!

Schur’s Lemma implies:

O[3]5KI [C1 ,C2] . ~41!

In ~41!, K is a constant andI [C1 ,C2] is the identity operator in theS [C1 ,C2] irreducible represen-
tation subspace. Thus we finally get:

E dm~z@1#,z@2# !uz@1#,z@2#&C1 ,C2C1 ,C2
^z@1#,z@2#u

5E d6z@1#d6z@2# )
a,b51

2

d~z* @a#•z@b#

2da,b!Fi 1¯ i C11C2
j 1¯ j C2F* k1¯kC11C2l 1¯ l C2

u i 1 j 1¯ i C2
j C2

; i C2
11¯ i C21C1

& [C1 ,C2] [ C1 ,C2]

3^k1l 1¯kC2
l C2

;kC211¯kC21C1u

5Ku i 1 j 1 ,i 2 j 2¯ i C2
j C2

; i C211¯ i C21C1
& [C1 ,C2] [ C1 ,C2]^

i 1 j 1 ,i 2 j 2¯ i C2
j C2

; i C211¯ i C21C1u[KI [C1 ,C2] .

~42!

IV. THE SCHWINGER SU„N… REPRESENTATION

We now generalize the ideas developed in Sec. III in the case of SU~3! to the group SU(N) for
arbitrary N. The rank of the SU(N) group is (N-1). Therefore, there are (N-1) fundamental
representations denoted by the Young diagrams with 1,2, . . . ., (N-1) vertical boxes, respectively
Any irreducible representation of SU(N) can be built by taking direct products of the abov
mentioned (N-1) fundamental representations. Following SU~2! and SU~3!, we introduce (N-1)
sets of creation–annihilations operators (a@1# i 1,a†@1# i 1

);(a@2# i 1i 2,a†@2# i 1i 2
); . . . ;(a@N

21# i 1i 2¯ i N21,a†@N21# i 1i 2¯ i N21
), which can be written in a compact form a

(a@a# i 1i 2¯ i a,a†@a# i 1i 2¯ i a
),a51,2̄ (N21). The commutation relations are straightforward ge

eralizations of~18! and are given by

@a@a# i 1i 2¯ i a,a†@b# j 1 j 2¯ j b
#5da,b (

pPSa

~2 ! upud j p1

i 1 d j p2

i 2
¯d j pa

i a ,

~43!
@a@a# i 1i 2¯ i a,a@b# j 1 j 2¯ j b#50, @a†@a# i 1i 2¯ i a

,a†@b# j 1 j 2¯ j b
#50.

In ~43!, upu50 if p is an even permutation andupu51 if it is an odd permutation. We denote th
(N-1) generators belonging to (N-1) fundamental representation of SU(N) by la@a#, a
51,2,.....,(N221). They satisfy the SU(N) algebra:

@la@a#,lb@a##5 i f abclc@a#, a51,2 ,. . . .,~N21!. ~44!
                                                                                                                



c

the

e

he
ke the

r-

5359J. Math. Phys., Vol. 43, No. 11, November 2002 SU(N) coherent states

                    
In ~44! f abc are the SU(N) structure constants. The SU~3! generators in terms of harmoni
oscillators are given by

Qa5a†@1# i 1
@1#la@1# i 2

i 1a@1# i 21
1

2!
a†@2# i 1i 2

la@2# j 1 j 2

i 1i 2 a@2# j 1 j 21¯

1
1

~N21!!
a†@N21# i 1i 2¯ i N21

la@N21# j 1¯ j N21

i 1¯ i N21 a@N21# j 1 j 2¯ j N21

5 (
a51

N21
1

a!
a†@a# i 1 ,i 2¯ i a

la@a# j 1 j 2¯ j a

i 1i 2¯ i a a@a# j 1 j 2¯ j a. ~45!

The commutation relations~43! imply

@Qa,Qb#5 i f abcQc. ~46!

It is easy to verify that under SU~3! transformations the various creation operators belonging to
ath representation transform amongst themselves as

@Qa,ai 1i 2¯ i a
† @a##5aj 1 j 2¯ j a

† @a#~la! i 1i 2¯ i a

j 1 j 2¯ j a@a#. ~47!

This implies that all the irreducible representations of SU(N) can be realized on the Hilbert spac
created by the above-given creation operators acting on the vacuum. Further, the (N-1) Casimir
operators are just the (N-1) number operators corresponding to (N-1) types of creation–
annihilation operators and are given by

C@1#5 (
i 151

N

a†@1# i 1
a@1# i 1,

C@2#5
1

2! (
i 1 ,i 251

N

a†@2# i 1i 2
a@2# i 1i 2,

~48!
¯

C@N21#5
1

~N21!! (
i 1 ,i 2 , . . . ,i N2151

N

a†@N21# i 1i 2¯ i N21
a@N21# i 1i 2¯ i N21.

It is easy to check that the (N-1) Casimir operators in~48! commute with all the (N221) SU(N)
generators in~45!.

A. The irreducible representations of SU „N…

All irreducible representations of SU(N) can be constructed by taking direct products of t
(N-1) fundamental representations and then applying appropriate projection operators. Li
SU~3! case in the previous section, we now consider the most general SU(N) irreducible repre-
sentationS [C1 ,C2¯CN21] containingCa copies of theath fundamental representations. We fo
mally write:

uC1 ,C2 ,...,CN21&[eS [C1¯CN21]
~a†@1# !C1~a†@2# !C2~a†@3# !C3

¯~a†@N21# !CN21u0&. ~49!
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~The explicit form of these basis vectors are given at the end of Sec. IV B—~64! and~65!.! Just as
in the case of SU~3! in the previous sections, all the creation operators being completely anti
metric in their indices, the idempotenteS [C1¯CN21

] in ~49! is constructed by multiplying all (N-1)

symmetrizers:

eS [C1¯CN21]
5S1S2¯SN21 , ~50!

whereS1 ,S2¯SN21 are the elements of permutation group algebras associated with the p
tation groupsSC11¯1CN21

,SC21¯1CN21
, . . . ,SCN21

, respectively,

S1[
1

~C11¯1CN21!! (
pPSC11¯1CN21

p,

S2[
1

~C21¯1CN21!! (
pPSC21¯1CN21

p,

~51!
¯

SN21[
1

~CN21!! (
pPSCN21

p.

Again, as in the case of SU~3!, it is easy to verify:

CauC1 ,C2 ,..,CN21&5CauC1 ,C2 ,..,CN21&. ~52!

Therefore, the Casimir operatorCa acting on an irreducible representation generated by
basis vectorsCauC1 ,C2 ,...,CN21& just counts the number of times theath fundamental represen
tation appears in it. This is again similar to the SU~3! case in the previous section. We now explo
this feature to construct the SU(N) coherent states.

B. The SU „N… coherent states

We consider (N-1) N-plets of complex numbersz@a#(5z1@a#,z2@a#, . . . ,zN@a#),a
51,2,...,N21 describing the Eucledian manifold which is a direct product of (N-1) R2N. We
impose the orthonormality conditions:

z* @a#•z@b#5da,b . ~53!

We now define another vectorz@1,N21# with components:

zi 1i 2¯ i N21@1,N21#[A 1

~N21!! (
pPSN21

~2 ! upu~z@1# i p1z@2# i p2¯z@N21# i pN21!

5A 1

~N21!!
ea1a2¯aN21z@a1# i 1z@a2# i 2

¯z@aN21#. ~54!

Using ~53!, we find:

z@1,N21#•z@1,N21#* [zi 1i 2¯ i N21@1,N21#z* i 1i 2¯ i N21
@1,N21#51,

~55!
z̃@1,N21#•z@a#[e i 1i 2¯ i N

zi 1i 2¯ i N21@1,N21#zi N@a#50.

We can now construct anyN3N SU(N) matrix UN in terms ofz@1#, z@2#, . . . ,z@N21#:
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UN5S z@1#1 z@1#2 ... z@1#N

z@2#1 z@2#2 ... z@2#N

]

]

z@N21#1 z@N21#2 ...z@N21#N

zD @1¯N21#1 zD @1¯N21#2 zD @1¯N21#N

D . ~56!

Thus we immediately see thatz@1#, z@2#, . . . ,z@N21# with ~55! describe SU(N) manifold. We
will now exploit this simple characterization of SU(N) manifold to construct coherent state
belonging to all the irreducible representations of SU(N) group. For this purpose, we construct
new set of (N-1) parameters:

z@1,1# i 1[z@1# i 1,

z@1,2# i 1i 2[A 1

2! (
pPS2

~2 ! upuz@1# i p1z@2# i p2,

z@1,3# i 1i 2i 3[A 1

3! (
pPS3

~2 ! upuz@1# i p1z@2# i p2z@3# i p3, ~57!

¯

z@1,N21# i 1i 2¯ i N21[A 1

~N21!! (
pPSN21

~2 ! upuz@1# i p1z@2# i p2¯z@N21# i pN21.

We now define the SU(N) coherent states generating function as:

uz@1#,z@2#,...,z@N21#&C1 ,C2¯CN21

[expS (
b51

N21

z@1,b#•a†@b# D u0&ua†[a] •a[a] 5Ca

[exp~z@1# i 1
1
a†@1# i

1
11z@1,2# i 1

2i 2
2
a†@2# i

1
2i

2
2

1¯1z@1,N21# i 1
N21i 2

N21
¯ i N21

N21
a†@N21# i

1
N21i

2
N21

¯ i
N21
N21!u0&ua†[a] •a[a] 5Ca

. ~58!

The constraints on the right-hand side of the generating function~58! ensure that we only generat
the states which are eigenstates of all the (N-1) Casimir operators and thus selecting all possi
irreducible representations of SU(N), i.e.,

C@a#uz@1#,z@2#,...,z@N21#&C1 ,C2¯CN21
5C@a#uz@1#,z@2#,...,z@N21#&C1 ,C2¯CN21

~59!

for a51,2,...,(N21). We will now show that the states thus obtained are the coherent state
states in ~58! are defined continuously over the SU(N) manifold parametrized by
(z@1#,z@2#, . . . ,z@N21#). It is easy to check the SU(N) transformation properties ofz@1,a#,a
51,2,...(N21),

z@1,a# i 1¯ i a→z8@1,a# i 1¯ i a5S expi (
a51

N221

uala@a# D
i 1¯ j a

j 11¯ i a

z@1,a# j 1¯ j a. ~60!
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In ~60! ua are (N221) parameters describing a point on the SU(N) manifold. Equation~60!
implies that allz@a# (a51,2,...,N21) transform asN-plets of SU(N), i.e.,

z@a#→z8@a#5S expi (
a51

N221

uala@1# D
j 1

i 1

z@a# j 1. ~61!

We see that the orthonormality conditions~53! remain invariant under the SU(N) transformations.
The coherent states defined at a point (z@1#,z@2#,...,z@1,N21#) transform to the coherent state
at (z8@1#,z8@2#,•z8@1,N21#) of the SU(N) manifold.

Expanding the exponential we find:

uz@1#,...,z@N21#&C1 ,...,CN21

5PF )
h51

hmax

)
v51

(Ch1Ch11¯1CN21)

zi h
v
@h#GF )

v(1)51

CN21

a†@N21# i
1
v(1)i

2
v(1)

¯ i
N21
v(1) G

3F )
v(2)5CN2111

CN211CN22

a†@N22# i
1
v(2)i

2
v(2)

¯ i
N22
v(2) G¯F )

v(N21)5CN211¯1C211

CN211¯1C1

a†@1# i
1
v(N21)G u0&.

~62!

In ~62!, we have chosen those terms in the expansion which are eigenvectors of the C
operatorsCb with eigenvaluesCb and hmax is the maximum value ofb such thatCbÞ0. P
5@)a51

N21 Pa# with Pa5(a!) Ca/2. ~In ~62! h51,2̄ hmax counts the horizontal rows andv is used
to count the vertical columns ofS [C1 ,...,CN21] . Note that it is the maximum number of horizont
rows in the Young diagram.! We note the following important symmetry and anti-symme
properties of~62!:

~1! The (z@1#,z@2#, . . . ,z@N21#) dependent part of~62! has inbuilt invariance under inter
change of any two indices along a row of the Young tableauS [C1 ,C2 , . . . ,CN21] , i.e., it is invariant
under all the symmetry operations given in~51!,

S )
h51

hmax

)
v51

(Ch1Ch11¯1CN21)

zi h
v
@h# DSa5S )

h51

hmax

)
v51

(Ch1Ch11¯1CN21)

zi h
v
@h# D . ~63!

~2! The harmonic oscillator dependent part of~62! has inbuilt antisymmetric properties alon
any column indices of the Young tableauS [C1 ,C2 , . . . ,CN21] .

Therefore, we can write~62! as:

uz@1#,...,z@N21#&C1 ,...,CN21
5 )

h51

hmax

)
v51

(Ch1Ch11¯1CN21)

zi h
v
@h# eS [C1 ,C2 , ... ,CN21]

3 )
v(1)51

CN21

a†@N21# i
1
v(1)i

2
v(1)

¯ i
N21
v(1) )

v(2)5CN2111

CN211CN22

a†@N

22# i
1
v(2)i

2
v(2)

¯ i
N22
v(2)¯ )

v(N21)5CN211¯C211

CN211¯1C1

a†@1# i
1
v(N21)u0&.

~64!

In ~64!, eS [C1 ,C2 , . . . ,CN21]
is defined by Eq.~50!. In fact, these are exactly basis vectors of t

irreducible representationS [C1 ,C2 ,. . . ,CN21] . We denote them by
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i~ i 1
1i 1

2
¯ i 1

C11¯1CN21!;~ i 2
1i 2

2
¯ i 2

C21¯1CN21!;...;~ i N21
1 i N21

2
¯ i N21

C21¯1CN21!&S [C1 ,C2 , ... ,CN21]

[eS [C1 ,C2 ,...,CN21] )
v(1)51

CN21

a†@N21# i
1
v(1)i

2
v(1)

¯ i
N21
v(1) )

v(2)5CN2111

CN211CN22

a†@N22# i
1
v(2)i

2
v(2)

¯ i
N22
v(2)

¯ )
v(N21)5CN211¯C211

CN211¯1C1

a†@1# i
1
v(N21)u0&. ~65!

Thus the states belonging toS [C1 ,...,CN21] in ~58! irreducible representations are given by

uz@1#,z@2#,...,z@N21#&C1 ,C2•CN21

5S )
h51

hmax

)
v51

(Ch1Ch11¯1CN21)

zi h
v
@h# D i~ i 1

1i 1
2
¯ i 1

C11¯1CN21!;~ i 2
1i 2

2
¯ i 2

C21¯1CN21!; . . .;

3~ i N21
1 i N21

2
¯ i N21

C21¯1CN21!&S [C1 ,C2 , ..... ,CN21]
. ~66!

We now check the resolution of identity. This is similar to the SU~3! case in the previous section
The SU(N) Haar measure is

E dm~z![S E )
a51

N21

dz@a# D S)
a,b

d~z@a#•z* @b#2da,b! D . ~67!

We construct an operatorO[N] :

ON[S E dm~z!Uz@1#,z@2#,...,z@N21# L
C1 ,C2¯CN21 C1 ,C2¯CN21

^z@1#,z@2#,...,z@N21#u.

~68!

Under SU(N) transformations~60!, O[3] remains invariant. Therefore,

@Qa,O[N] #50, ;a51,2,. . . ,N221 ~69!

The Schur’s Lemma implies

O[N]5KI [C1 ,C2 , . . . ,CN21] . ~70!

In ~70!, K is a constant andI [C1 ,...,CN21] is the identity operator in theS [C1 ,...,CN21] irreducible
representation subspace. Therefore, the states in~66! are indeed the coherent states. We have t
constructed all the SU(N) coherent states belonging to different irreducible representation
SU(N).

V. SUMMARY AND DISCUSSION

We have generalized Schwinger representation of SU~2! algebra in terms of harmonic osci
lators to the group SU(N). We have exploited this construction to construct SU(N) coherent states
and characterized SU(N) manifold in terms of complex vectors. In this sense our SU(N) coherent
states definition is analogous to that of Heisenberg–Weyl coherent states. This method i
general and can be generalized to other Lie groups and their manifolds. We feel our appro
more useful for practical calculations compared to the standard group theoretical approach a
be applied to various problems. In condensed matter physics, coherent states for the Lie
SU(2) have been very useful for studying Heisenberg spin systems using the path in
formalism.11–15These studies have been generalized to systems with SU(N) symmetry, although
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such studies have usually been restricted to the completely symmetric representations.12,16 There-
fore, our formulation can be used to write down the field theory for the SU(N) Heisenberg mode
and study its spectrum and topological aspects as in the SU(2) case.17 Using the techniques
discussed in the paper, one can also construct SU(N) coherent states with fixed values of Cart
diagonal generators. The special cases of SU~2! coherent states with fixed charge and SU~3!
nonlinear coherent states with fixed charge and hypercharge were constructed in Refs. 18
respectively.
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On bound states for systems of weakly coupled
Schrö dinger equations in one space dimension
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We establish the Birman–Schwinger relation for a class of Schro¨dinger operators
2d2/dx2

^ 1H1V on L2(R,H), whereH is an auxiliary Hilbert space andV is an
operator-valued potential. As an application we give an asymptotic formula for the
bound states which may arise for a weakly coupled Schro¨dinger operator with a
matrix potential~having one or more thresholds!. In addition, for a two-channel
system with eigenvalues embedded in the continuous spectrum we show that, under
a small perturbation, such eigenvalues turn into resonances. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1510175#

I. INTRODUCTION

In a recent paper22 ~see also Ref. 21! we studied spectral and scattering theory for the tw
channel Schro¨dinger operator

H5H̃01V5S 2
d2

dx2 0

0 2
d2

dx2 11
D 1S V11 V12

V21 V22
D ~1.1!

on the Hilbert spaceL2(R) % L2(R). In the low-energy limit, where the spectral parameter tend
the boundary point of the continuous spectrum ofH, viz. the point zero, we deduced asympto
expansions for the resolvent ofH and, as an application, we obtained asymptotic expansions
the scattering matrix associated with the pair (H,H̃0) as the energy parameter tends to ze
Besides being interesting from the mathematical point of view, the study of spectral and sca
theory for H, having thresholds at 0 and 1, also works as a useful exercise towards ana
investigations for various multichannel quantum system with more than one threshold~see, e.g.,
Ref. 23! because it describes many actual physical phenomena to a good approximation.

If we replaceH̃0 in ~1.1! by H052d2/dx2
^ 1CN and V by an N3N matrix potential, we

obtain the~usual! matrix Schro¨dinger operator onL2(R,CN) having a single threshold at 0. Th
latter, of course, has attracted a lot of attention during the years. Among recent results we m
low-energy asymptotics for the corresponding scattering matrix,2,3 Levinson’s theorem,14 Lieb–
Thirring inequalities4,20 and quantum design.7

A natural question, which seems not to have been addressed in the literature, concer
negative energy levels may arise in a system of weakly coupled Schro¨dinger equations. In the
scalar-valued setting, weakly coupled bound states for Schro¨dinger operators have been inves
gated in various dimensions~see Ref. 19, Chapter VI, and Refs. 31, 15, and 16!.

In this work we generalize the scalar-valued result obtained by Simon in dimension on31 to
the analogous matrix-valued setting.

We begin in the more abstract framework of Schro¨dinger operators with operator-value
potentials given formally byH52d2/dx2

^ 1H1V on L2(R,H), whereH is an auxiliary Hilbert

a!Electronic mail: melgaard@math.chalmers.se
53650022-2488/2002/43(11)/5365/21/$19.00 © 2002 American Institute of Physics
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space and the potentialV is aB(H)-valued, measurable function onR such thatV(x) is symmetric
for almost allx. In Sec. III we define the HamiltonianH by means of quadratic forms~Proposition
3.1! and in Sec. IV we establish the celebrated Birman–Schwinger relation~Proposition 4.2!,
which transforms the eigenvalue problem forH into an eigenvalue problem for a compact ope
tor; the so-called Birman–Schwinger operator.

Equipped with the Birman–Schwinger relation we study weakly coupled bound states in
V. We restrict our attention to Schro¨dinger operators with matrix-valued potentials. In Sec. V A
consider two-channel Hamiltonians with one and two thresholds, respectively. First we co
H(g)52d2/dx2

^ 1C21gV(x), whereV is a 232 matrix potential. Theorem 5.2 reveals ho
nonpositive eigenvalues of an auxiliary matrixS, defined in~5.2!, give rise to negative eigenvalue
Ei j of H(g) providedg is small enough. The eigenvaluesEi j satisfy an asymptotic perturbatio
formula in which we derive the first few coefficients explicitly@see~5.3!#. Second, we consider th
above-mentioned Hamiltonian~1.1!, henceforth denotedH̃(g), having thresholds at 0 and 1. I
Theorem 5.6 we show how a negative eigenvalue of an auxiliary matrixS̃, defined in~5.9!,
generates a negative eigenvalue ofH̃(g). However, if one compares the proofs of Theorems
and 5.6~in particular, the expressions for the matricesT0 andT̃0), it seems that the argument use
in the proof of Theorem 5.2 (i i ) cannot be modified in order to treat the situation where zero is
eigenvalue ofS̃. Thus, it remains an attractive open problem to show that the zero eigenval
S̃ ~may! gives rise to a negative eigenvalue ofH̃(g). In Sec. V B we state the generalization
Theorem 5.2 to theN-channel Hamiltonian2d2/dx2

^ 1CN1V(x), whereV is an N3N matrix
potential.

Having studied how negative eigenvalues arise for multichannel Hamiltonians under
coupling, it is natural to address the problem of perturbation of embedded eigenvalues
multichannel Schro¨dinger operator with a matrix-valued potential. In Sec. VI we consider a t
channel Hamiltonian having eigenvalues embedded in its continuous spectrum. When pe
by a ‘‘short range’’ potential, we show that such eigenvalues move into the complex plan
become resonances. In particular, we verify Fermi’s golden rule~see, e.g., Refs. 27 and 32!.

There is a vast literature on 232 operator-valued matrices, e.g., in system theory~see, e.g.,
Ref. 8! and in semigroup theory~see, e.g., Ref. 11!. Most notably in this context is the substanti
number of questions of a general nature which have been answered on spectral theory r
see, e.g., the survey in Ref. 33. However, the methods therein are not related to ours a
some of the questions addressed clearly are, e.g., the appearance of resonances disc
Mennicken and Motovilov.24

II. PRELIMINARIES

A. Vector-valued functions

Let H be a separable Hilbert space with scalar product and norm denoted by^•,•&H and
i•iH . Then a functionc(x) from R to H is measurable if the scalar-valued functions^c(x),f&H
are measurable, wheref denotes an arbitrary vector ofH. If c(x) is such a measurable function
then ic(x)iH is also measurable~as a function with non-negative values!. Thus Lp(R,H) is
defined as the set of equivalence classes of measurable functionsc(x) from R to H, which satisfy
that *Ric(x)iH

p dx is finite if p,` and ici`5ess supic(x)iH,` if p5`. The measuredx is
the Lebesgue measure. For anyp the Lp(R,H) space is a Banach space with normi•ip5(*R
i•iH

p dx)1/p. In the casep52, L2(R,H) is a complex and separable Hilbert space with sca
product ^f,c&25*R^f,c&Hdx and corresponding normici25^c,c&2

1/2. For nPN, 1<p,`,
the Sobolev spaceWn,p(R,H) is defined as the space of thosecPLp(R,H), for which all deriva-
tives ~weak sense! up to ordern are inLp(R,H). If p52, Wn,2(R,H) is a separable Hilbert spac
denoted byHn(R,H) with scalar product̂ f,c&Hn(R,H)5*R(a50

n ^(d/dx)af,(d/dx)ac&H and
norm denoted byiciHn(R,H) .
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B. Operators

Below H, H1 , H2 are separable Hilbert spaces. For a linear operatorT, the notationsD(T),
Ran(T), Ker(T), T* , T̄, s(T), r(T) are standard~see, for example, Ref. 25!. By I we denote the
identity operator. The resolvent of a self-adjoint operatorT is denoted byR(T,z)5(T2zI)21. By
B(H1 ,H2) and S̀ (H1 ,H2) we denote respectively the sets of bounded and compact oper
acting fromH1 into H2 . With the usual operator normB(H1 ,H2) is a Banach space. We se
B(H)ªB(H,H) and S̀ (H)ªS̀ (H,H).

C. Trace classes of compact operators

If TPS̀ (H), then the nonzero eigenvalues ofuTu5AT* T are called the singular numbers o
s-numbers ofT. Let $sj (T)% denote the~possibly finite! nonincreasing sequence of the singu
numbers ofT; every number counted according to its multiplicity as an eigenvalue ofuTu. For
0,p,` the von Neumann–Schatten classSp(H1 ,H2) is the set ofTPS̀ (H1 ,H2) for which the
functional

iTiSp(H1 ,H2)
p

ª(
j

@sj~T!#p

is finite. The functionali•iSp(H1 ,H2) is a norm forp>1 and the normed spaceSp(H1 ,H2) is a
Banach space. Forp,1 the functional is a quasinorm. For additional properties of the spaceSp

of compact operators we refer to Ref. 5, Chap. 11. The setsS1(H1 ,H2) andS2(H1 ,H2) are called
the trace class and Hilbert–Schmidt class, respectively.

D. Operator-valued functions

Let H1 andH2 be two separable Hilbert spaces. From above, a functionR{x→c(x)PH is
measurable if and only if all the functionsR{x→^c(x),f&HPC are measurable. As a result o
the Pettis measurability theorem~see, e.g., Ref. 10 Theorem II.1.2! the following properties are
equivalent for aB(H1 ,H2)-valued functionR{x°T(x):

~i! ;fPH2 , ;cPH1 , R{x→^f,T(x)c&H2
PC is measurable, and

~ii ! ;cPH1 , R{x→T(x)cPH2 is measurable.

We say that a functionR{x°T(x)PB(H1 ,H2) is measurable if it satisfies any one of the abo
properties (i ) – (i i ). In the affirmative case,iT(x)iB(H1 ,H2) is also measurable because

iT~x!iB(H1 ,H2)5 sup
cPD1

~ iT~x!ciH2
/iciH1

!,

whereD1 is a countable dense subset ofH1 . Moreover, we can defineLp(R,B(H1 ,H2)) as the
linear space of~equivalence classes of! measurable functionsT:R→B(H1 ,H2) such that
iT(•)iB(H1 ,H2)PLp(R).

For the functional calculus for self-adjoint operators we recall the following result which
be found in, e.g., Ref. 6, Proposition V.1.2.

Proposition 2.1: If for each xPR, T(x) is a self-adjoint operator onH and
$ET(x)(A);ABorel set ofR% denotes its resolution of the identity, the following three properties
equivalent:

(i) R{x→ET(x)(A)PB(H) is measurable for all Borel sets A,
(ii) R{x→e2 i tT(x)PB(H) is measurable for all tPR, and
(iii) R{x→(T(x)2z)21PB(H) is measurable for allzPC\R.
                                                                                                                



o a

to

s

tor

-

n-
r

l
ve,

5368 J. Math. Phys., Vol. 43, No. 11, November 2002 Michael Melgaard

                    
E. Fourier transform

Suppose cPL1(Rd,H). Then we define its Fourier transform (Fc)(j)5ĉ(j)
ª(2p)21/2*Reixjc(x) dx which is an element ofL`(R,H). If cPL1(R,H)ùL2(R,H), then ĉ

PL2(R,H) with iĉiL25iciL2. The Fourier transform can then be extended by continuity t
unitary mapping of the Hilbert spaceL2(R,H) into itself.

We have the following criterion.
Lemma 2.2: Let T be an operator on L2(R,H) defined by

~Tf!~x!5E
R
t~x,j!f~j! dj, ~2.1!

where t(x,j)PB(H) for each(x,j). Then T is a Hilbert–Schmidt operator on L2(R,H) if and
only if

E
Rx

E
Rj

trH@ t~x,j!* t~x,j!# djdx,`.

In this case,

iTiS2(L2(R,H))
2

5E
Rx

E
Rj

trH@ t~x,j!* t~x,j!# djdx.

Proof: The Hilbert spaceH is isomorphic to someL2(Y) space and therefore it suffices
establish the statement for an operatorT on L2(R,L2(Y)) defined by~2.1! for some t(x,j)
PB(L2(Y)). Since L2(R,L2(Y)) is isomorphic toL2(R3Y), the rephrased assertion follow
immediately from Ref. 25, Theorem VI.23. h

III. THE HAMILTONIAN HÄH0¿V

As in the scalar-valued case the quadratic form

h0@c,c#ªE
R

i~d/dx!c~x!iH
2 dx ~3.1!

is closed inL2(R,H) on the domainH1(R,H). Thus, this form generates a self-adjoint opera
H0 on L2(R,H). The free HamiltonianH0 corresponds to the ‘‘Laplacian’’2d2/dx2

^ 1H on
L2(R,H).

A potentialV is aB(H)-valued, measurable function onR. Assume thatV(x) is symmetric for
almost allx, i.e., V(x)* 5V(x) for almost allx. The operatorV(x)PB(H) has a unique repre
sentation in the formV(x)5U(x)uV(x)u, where uV(x)u is the modulus ofV(x) defined by
uV(x)u5(V(x)* V(x))1/25(V(x)V(x))1/2. ~The representation is not unique if the potential va
ishes on a set of positive measure.! We have thatuV(x)u is a non-negative, self-adjoint operato
belonging toB(H) and, moreover,iuV(x)uiB(H)5iV(x)iB(H) . The operatorU(x) is a partial
isometry with initial domainRanuV(x)u, final domainRanV(x) and KerU(x)5KerV(x). Ob-
serve thatU(x)* U(x)5PRanuV(x)u andU(x)U(x)* 5PRanV(x) , wherePM denotes the orthogona
projection onto a closed subspaceM . The modulusuV(x)u possesses exactly one non-negati
self-adjoint square-rootuV(x)u1/2PB(H). The square-rootuV(x)u1/2 commutes with every
bounded operator which commutes withuV(x)u. We may defineV(x)1/25U(x)uV(x)u1/2 such that
V(x)5V(x)1/2uV(x)u1/2. Moreover,V(x)1/2PB(H) with iV(x)1/2iB(H)5@ iV(x)iB(H)#

1/2 and ad-
joint (V(x)1/2)* 5uV(x)u1/2U(x)* . From Proposition 2.1 it follows thatuVu, uVu1/2 and V1/2 are
B(H)-valued measurable functions onR.

We want to establish the following result.
Proposition 3.1:
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(i) If V PL1(R,B(H)), then the real-valued quadratic form

v@c,c#ªE
R
^V~x!1/2c~x!,uV~x!u1/2c~x!&H dx

is H0 form-bounded with relative bound zero.
(ii) If V PL1(R,S2(H)), thenv is H0 form-compact.
It follows from Proposition 3.1 (i ) and the KLMN theorem~Ref. 26, Theorem X.17! that the

form sum

h@c,c#ªh0@c,c#1v@c,c#

is closed and semi-bounded from below onH1(Rd,H) and thus generates a self-adjoint opera
H5H01V on L2(R,H). From Proposition 3.1 (i i ) and Weyl’s essential spectrum theorem
follows thatsess(H)5sess(H0)5@0,̀ ).

Proof of Proposition 3.1:The ‘‘kernel’’ of the resolvent ofH0 is given by~see, e.g., Ref. 28
Theorem 9.5.2!

Q~x2y; AuEu!5
e2AuEuux2yu

2AuEu
, E,0. ~3.2!

~i! To show that the formv is infinitesimallyH0 form-bounded, it suffices to show that the for

w@f#5^uVu1/2~H02E!21/2f,V1/2~H02E!21/2f&L2(R,H)

is bounded onL2(R,H) and that its norm

iwiª inf
fPL2(R,H)

u^uVu1/2~H02E!21/2f,V1/2~H02E!21/2f&u
ifi2

tends to zero asE→2`. By the definition ofiwi , and sinceU in V1/25UuVu1/2 is a partial
isometry, we have that

iwi<iuVu1/2~H02E!21/2iB(L2(R,H))
2 . ~3.3!

Therefore, it is enough to show that the right-hand side of the latter tends to zero asE→2`.
We consider firstVPL`(R,B(H)). For suchV we have that

iuVu1/2~H02E!21/2iB(L2)
2

5iuVu1/2~H02E!21uVu1/2iB(L2) . ~3.4!

Let a5AuEu andfPL2(R,H). Then Hölder’s inequality yields that

i@ uVu1/2~H01a2!21uVu1/2f#~x!iH<
1

2a
iV~x!iB(H)

1/2 iViL1(R,B(H))ifiL2(R,H) .

The latter implies that

iuVu1/2~H01a2!21uVu1/2fiL2(R,H)
2 <E

R

1

4a2 iV~x!iB(H)iViL1(R,B(H))
2 ifiL2(R,H)

2 dx

<
1

4a2 iViL1(R,B(H))
3 ifiL2(R,H)

2 .
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In conjunction with~3.4!, the latter shows that the right-hand side of~3.3! tends to zero asE
→2`, which establishes assertion (i ) for VPL`(R,H). A standard approximation argumen
yields the assertion for generalV.
( i i ) It suffices to show that the form

w@f#5^uVu1/2~H02E!21/2f,V1/2~H02E!21/2f&

defines a compact operator inL2(R,H). Under the assumption in (i ) we already know thatw
generates a bounded, self-adjoint operatorW in L2(R,H). Let us show thatW is a Hilbert–
Schmidt operator. From

trL2~W* W!5tr~V1/2~H02E!21~V1/2!* uVu1/2~H02E!21~ uVu1/2!* !,

we see that it is enough to show thatW15uVu1/2(H02E)21(uVu1/2)* and W25V1/2(H0

2E)21(V1/2)* are Hilbert–-Schmidt operators onL2(R,H). It is enough to show it forW2 ; the
proof for W1 is similar. The operatorW2 has integral ‘‘kernel’’

KW2
~x2y;a!5V~x!1/2~2a!21e2aux2yu~V~y!1/2!* , a5A2E.0.

Using the criterion in Lemma 2.2 and the assumption in (i i ), we estimate as follows:

E
R
E

R
trH@KW2

~x2y;a!* KW2
~x2y;a!# dxdy

5E
R
E

R
S e2aux2yu

2a D 2

trH@~V~y!1/2!** ~V~x!1/2!* V~x!1/2~V~y!1/2!* # dxdy

5E
R
E

R
S e2aux2yu

2a D 2

trH@V~y!1/2uV~x!u1/2U~x!* U~x!uV~x!u1/2~V~y!1/2!* # dxdy

5E
R
E

R
S e2aux2yu

2a D 2

trH@ uV~x!uuV~y!u# dxdy

<
1

4a2 E
R

iV~x!iS2(H) dxE
R

iV~y!iS2(H) dy.

This shows thatW2 is a Hilbert–Schmidt operator inL2(R,H). h

We note thatVPL1(R,B(H)) implies thatuVuPL1(R,B(H)) and, in view of Proposition 3.1
( i ), uVu is infinitesimallyH0 form-bounded. Consequently, the following mappings are bound

V,uVu: H1~R,H!→H21~R,H!, ~3.5!

uVu1/2,V1/2: H1~R,H!→L2~R,H!, ~3.6!

uVu1/2,V1/2: L2~R,H!→H21~R,H!. ~3.7!

The qualitative behavior of any possible negative eigenvalues ofH01gV as g→0 is de-
scribed by the following simple result.

Proposition 3.2: If VPL1(R,B(H)), then any negative eigenvalues of H01gV approach zero
as g tends to zero.

Proof: Following Ref. 31 it suffices to show that there are positive constantsg0 andC such
that H01gV>2Cg for all g0.g.0.

Let F denote the Fourier transform of vector-valued functions inL2(R,H) ~see Sec. II E!. We
observe that, as for scalar-valued functions, a functionf whose Fourier transform is integrable
bounded and continuous with the usual estimate
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if~x!iH<
1

A2p
E

R
iFf~j!iH dj. ~3.8!

For an arbitraryg.0, Hölder’s inequality yields that

S E
R

iFf~j!iH dj D 2

<S E
R
~j21g2!21 dj D S E

R
~j21g2!iFf~j!iH

2 dj D
5

p

g
i~2 i j1g!FfiL2(R,H)

2

5
p

g
i~H0

1/21g!fiL2(R,H)
2

<
2p

g
$iH0

1/2fiL2(R,H)
2

1igfiL2(R,H)
2 %. ~3.9!

Let d5max$1/g,1%. Then~3.8! and ~3.9! imply that

if~x!iH<d$iH0
1/2fiL2(R,H)

2
1ifiL2(R,H)

2 % ~3.10!

for any fPD(H0
1/2)5H1(R,H). The Sobolev type inequality~3.10! implies that

hg@f#>iH0
1/2iL2(R,H)

2
2gE

R
iV~x!iB(H)if~x!iH

2 dx>~12gd1!iH0
1/2iL2(R,H)

2
2gd1ifiL2(R,H)

2 ,

whered15diViL1(R,B(H))
2 . When we takeC5d1 , g05d1

21 and 0,g,g0 , we arrive athg@f#
>2Cg as desired. h

IV. THE BIRMAN–SCHWINGER RELATION

The Birman–Schwinger relation has been established rigorously for various classes of
tors in the scalar-valued setting~see, e.g., Ref. 30, 31, and 17!. It asserts thatE is a negative
eigenvalue of H52d2/dx21V if and only if 21 is an eigenvalue of the operato
V1/2(2d2/dx22E)21uVu1/2. Formally this is obvious sincef5V1/2c is a solution to V1/2

(2d2/dx22E)21uVu1/2f52f.
Here we provide a simple proof of the Birman–Schwinger relation in our concrete ope

valued setting. For this purpose we introduce the Birman–Schwinger operatorKE(V)5V1/2(H0

2E)21uVu1/2, E,0, whereH0 is the non-negative, self-adjoint operator associated with the
dratic formh0 in ~3.1!. Settinga252E, its integral ‘‘kernel’’ is given by

Ka~x,y!5V~x!1/2~2a!21e2aux2yuuV~y!u1/2, a.0.

We have the following result.
Lemma 4.1: If VPL1(R,S2(H)), then the Birman–Schwinger operator KE(V), E,0, is a

Hilbert–Schmidt operator on L2(R,H); in particular KE(V) is a compact operator. Moreover,
iKE(V)iB(L2(R,H))→0 as E→2`.

Proof: We argue as for the operatorW2 in the proof of Proposition 3.1 (i i ). We omit the
details. h

Having introduced the compact Birman–Schwinger operator we may formulate the Birm
Schwinger relation.

Proposition 4.2:Let VPL1(R,S2(H)). Then E,0 is an eigenvalue of H5H01V (defined by
a quadratic form) having multiplicity̧ if and only if 21 is an eigenvalue of KE(V) having
geometric multiplicity̧ .
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To establish Proposition 4.2 we need the following two results.
Lemma 4.3: If VPL1(R,B(H)), then for E,0 the operatorsuVu1/23(H02E)21/2 and

V1/2(H02E)21/2 are bounded on L2(R,H).
Proof: SinceV is H0 form-bounded, it follows immediately from~3.6! and~3.7! in conjunc-

tion with the fact that the operator (H02E)21/2 is a bounded map from the domainL2(R,H) to
the rangeH1(R,H). h

Lemma 4.4: Let S and T be bounded operators on the Hilbert spaceK. Thens(ST)\$0%
5s(TS)\$0%. Moreover, lÞ0 is an eigenvalue of ST having geometric multiplicity m if and o
if l is an eigenvalue of TS having geometric multiplicity m.

Proof: This is a simplified version of Theorem 2 (i ) in Ref. 9. h

Proof Proposition 4.2:Let h0 be the form ofH0 , let v be the form ofV and leth5h01v be
their form sum. According to Lemma 4.3 the operatorsuVu1/2(H02E)21/2 and V1/2(H02E)21/2

are bounded onL2(R,H) and, consequently, the operatorI 1@ uVu1/2(H02E)21/2#* V1/2 (H0

2E)21/2 is bounded onL2(R,H). Moreover, the operatorA215(H02E)1/2 has domainH1(R,H)
and rangeL2(R,H). Thus, we may introduce an auxiliary sesquilinear forma defined on the form
domainH1(R,H)3H1(R,H) by

a@f,c#5^@ I 1~ uVu1/2A!* V1/2A#A21f,A21c&. ~4.1!

We rewritea and find that

Clearly,

a1@f,c#5h0@f,c#2E^f,c& ~4.3!

and, sinceuVu1/2A is bounded onL2(R,H),

a2@f,c#5^V1/2AA21f,@ uVu1/2A#** A21c&5^V1/2f,uVu1/2AA21c&5v@f,c#. ~4.4!

Hence,~4.2!–~4.4! shows that the formsa andh2E are identical.
Suppose thatE,0 is an eigenvalue ofH5H01V, i.e., there exists an eigenfunctionc

PD(H), cÞ0, such that (H2E)c50. This is equivalent to (h2E)@c,f#50 for all f
PH1(R,H). Since the formsh anda are identical, we may introduceu5A21f and deduce tha

05a@c,f#5^@ I 1~ uVu1/2A!* V1/2A#A21c,A21f&, ;fPH1~R,H!,

5^@ I 1~ uVu1/2A!* V1/2A#A21c,u&, ;fPL2~R,H!,

because u runs through L2(R,H) as f runs through H1(R,H). Consequently, (I
1@ uVu1/2A#* V1/2A)v50, wherev5A21c5(H02E)1/2c, so 21Psp(@ uVu1/2A#* V1/2A). By re-
versing the arguments leading to the latter conclusion, we infer that

EPsp~H01V! if and only if 21Psp~@ uVu1/2A#* V1/2A!. ~4.5!

Since (H02E)1/2 is injective from the domainL2(R,H) to the rangeH1(R,H), the arguments
above also show that the multiplicities of the eigenvaluesE and 21 must be equal. In view of
Lemma 4.4 and the definition ofA, ~4.5! implies that

EPsp~H01V! if and only if 21Psp~V1/2~H02E!21/2@ uVu1/2~H02E!21/2#* ! ~4.6!
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and the multiplicities ofE and21 are equal. But@ uVu1/2(H02E)21/2#* 5(H02E)21/2uVu1/2 and,
therefore, in view of the definition ofKE(V), ~4.6! yields thatEPsp(H01V) if and only if
21Psp(KE(V)). h

If g is fixed andl~a! is an eigenvalue ofKa(V), then the Birman–Schwinger relation asse
that any solutionag.0 of

gl~ag!521 ~4.7!

is associated to the eigenvalueE(g)52ag
2 of H(g). The latter equation plays a crucial role

Sec. V.
Define the operatorsLa andMa by their ‘‘kernels:’’

La~x,y!5
1

2a
V~x!1/2uV~y!u1/2, ~4.8!

Ma~x,y!5
1

2a
V~x!1/2@@e2aux2yu21#uV~y!u1/2. ~4.9!

Moreover, we introduce the operatorM0 with ‘‘kernel’’

M0~x,y!52 1
2 V~x!1/2ux2yuuV~y!u1/2. ~4.10!

Imitating Ref. 31 we obtain the following result.
Lemma 4.5: If*R(11uxu2)iV(x)iS2(H) dx,`, then the following assertions are valid:

(i) The operator M0 is Hilbert–Schmidt on L2(R,H).
(ii) As a↓0, the operator Ma converges to M0 in the Hilbert–Schmidt norm on L2(R,H).
(iii) The Birman–Schwinger operator gKa(V) has eigenvalue21 if and only if the same is true
for g(11gMa)21La .

Proof:
~i! It follows from the estimate

E
R
E

R
trH@M0~x,y!* M0~x,y!# dxdy<

1

2 E E ~ uxu21uyu2!iuV~x!uiS2(H)iuV~y!uiS2(H) dxdy,`.

~ii ! We want to show that

E E trH @~Ma2M0!~x,y!* ~Ma2M0!~x,y!# dxdy→0 ~4.11!

asa↓0. Now,

trH @~Ma2M0!~x,y!* ~Ma2M0!~x,y!#5U 1

2a
~e2aux2yu21!1

1

2
ux2yuU2

trH @ uV~x!uuV~y!u#,

and sinceu (1/2a) (e2aux2yu21)1(1/2)ux2yuu→0 asa↓0, we have the pointwise convergenc

trH @~Ma2M0!~x,y!* ~Ma2M0!~x,y!#→0 as a↓0. ~4.12!

Moreover,
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trH@Ma~x,y!* Ma~x,y!#5U 1

2a
~e2aux2yu21!U2

trH @ uV~x!uuV~y!u#

<u 1
2ux2yuu2trH @ uV~x!uuV~y!u#

5trH@M0~x,y!* M0~x,y!#. ~4.13!

It follows from (i ) and~4.12! and~4.13! in conjunction with Lebesgue’s dominated convergen
theorem that~4.11! holds.

( i i i ) It follows from ~4.13! that iMaiB(L2(R,H))<iMaiHS<iM0iHS . Hence,iMaiB(L2(R,H)) is
bounded independentlyof aP(0,a0# for some a0.0. Therefore, for g small enough,
igMaiB(L2(R,H)),1 and, consequently, (11gMa)21 exists and is bounded for theseg anda. In
particular, we may write 11gKa(V)5(11gMa)@11g(11gMa)21La# from which the asser-
tion follows. h

V. WEAKLY COUPLED BOUND STATES

Throughout this section operators~resp. vectors! are denoted by boldface capital~resp. small!
letters to emphasize their matrix~resp. vector! structure.

A. Two-channel Hamiltonians with matrix-valued potentials

We consider the case where the potential is a 232 matrix-valued potentialV(x) with mea-
surable functionsVi j on R as entries. The Euclidean inner product and norm inC2 are denoted by
^•,•&C2 and i•iC2, respectively.

Assumption 5.1:
~a! V(x) is symmetric, i.e.,Vji 5Vi j .

~b! E
R
~11uxu2!iV~x!iB(C2) dx,`.

~c! The functionsVi j are real-valued.

1. Two-channel Hamiltonian with a single threshold

First we consider the HamiltonianH(g)5H01gV(x) in L2(R,C2), defined in Proposition 3.1
by means of forms. Formally, we may write the Hamiltonian as

H~g!5H01gV5S 2
d2

dx2 0

0 2
d2

dx2

D 1gS V11 V12

V21 V22
D ~5.1!

in L2(R,C2)5L2(R) % L2(R). Under Assumption 5.1 we know that its essential spectrum eq
the half-axis starting at the~threshold! point zero.

Define the matricesS andT by

S5E
R
V~x! dx, T052

1

2 ER
E

R
V~x!ux2yuV~y! dydx. ~5.2!

We establish the following result.
Theorem 5.2: Let V obey Assumption 5.1 (a) and (b) and letH(g)5H01gV(x) be the

self-adjoint Hamiltonian on L2(R,C2) defined in Proposition 3.1 by means of forms.
(i) Assume that the matrixS, defined in (5.2), has n(<2) negative eigenvalues, denoted by si ,

with multiplicities¸ i . Then, for a small enough g, the two-channel HamiltonianH(g) has pre-
cisely( i 51

n ¸ i negative eigenvalues (taking into account multiplicity) Ei j satisfying the formulas
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~2Ei j ~g!!1/252
g

2
si1

g2

2
^vi j ,T0vi j &C21O~g3!,

~5.3!
i 51,...,n, j 51,... ,̧ i ,

whereT0 is defined in (5.2) andvi j are the eigenvectors corresponding to the eigenvalue si of S.
(ii) Suppose thatV obey Assumption 5.1(c) and that the matrixS has n nonpositive eigenval

ues, denoted by si , with multiplicities¸ i . If the eigenvectorsv0 j , j 51,... ,̧ i , associated with the
eigenvalue zero ofS satisfy^v0 j ,T0v0 j&C2Þ0, then the conclusion of part (i) remains valid.

Proof: According to the Birman–Schwinger relation formulated in Proposition 4.2,E(g),0
is an eigenvalue ofH(g) if and only if 21 is an eigenvalue ofgKa(V) with a252E(g).
Furthermore, in view of Lemma 4.5(i i i ), the operatorgKa(V) has eigenvalue21 if and only if
the same is true forg(11gMa)21La . Now let us denote the~unknown! eigenvalues and eigen
functions of (11gMa)21La by mk(g,a) andCk(x;g,a), respectively, viz.

~11gMa!21LaCk~x;g,a!5mk~g,a!Ck~x;g,a!. ~5.4!

Let ukPC2 be a constant vector. We insert

Ck~x;g,a!5
1

2a
~11gMa!21uV~x!u1/2uk

into ~5.4! and obtain

Rguk5mk~g,a!uk , ~5.5!

whereRg is the matrix

Rg5
1

2a E
R
V1/2~x!@~11gMa!21uVu1/2#~x! dx.

DefineS as in ~5.2! and, moreover, define

T~a!5E
R
V1/2~x!@MauVu1/2#~x! dx.

Then we have that

Rg5
1

2a
S2

g

2a
T~a!1O~g2!

for small g.
~i! By assumption the matrixS hasn negative eigenvalues, denoted bysk . For simplicity we

assume that the eigenvaluessk are simple. The corresponding eigenvectors are denoted byvk . We
apply the regular perturbation theory to the eigenvalue problem~5.5! and we find that

mk~g,a!5
1

2a
sk2

g

2a
^vk ,T~a!vk&C21O~g2!.

Define the matrixT0 as in ~5.2! and

T15
1

4 ER
E

R
V~x!ux2yu2V~y! dxdy.
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Then we have thatT(a)5T01aT11O(a2). In this way we find that the eigenvalues associa
with the eigenvalue problem~5.5! are

mk~g,a!5
1

2a
sk2

g

2a
^vk ,T0vk&C21O~g2!.

Together with the comments following the proof of Proposition 4.2, the latter implies tha
solution to~4.7! is

ag52
g

2
sk1

g2

2
^vk ,T0vk&C21O~g2!. ~5.6!

Clearly, ~5.6! implies that each negative eigenvaluesk of S gives rise to precisely one negativ
eigenvalueEk(g) of H(g) obeying the asymptotic formula

~2Ek~g!!1/252
g

2
sk1

g2

2
^vk ,T0vk&C21O~g3!.

~ii ! We investigate the situation where zero is an eigenvalue ofS ~as above we restric
ourselves to the case where zero is simple!. Let Sv050 for somev0Þ0. Taylor’s formula yields

K v0 ,E
R
E

R
V~x!

e2aux2yu

2a
V~y! dx dyv0L

C2

5
1

2a
^v0 ,S2v0&C22

1

2 K v0 ,E
R
E

R
V~x!ux2yuV~y! dx dyv0L

C2

1aK v0 ,E
R
E

R
V~x!O~ ux2yu2!V~y! dx dyv0L

C2

.

SinceSv050 by assumption, the first term equals zero. Asa↓0, we obtain that

^v0 ,T0v0&C25 lim
a↓0

K v0 ,E E V~x!
e2aux2yu

2a
V~y! dxdyv0L

C2

5 lim
a↓0

(
i , j ,k

E E e2aux2yu

2a
Vik~x!Vk j~y!~v0! i~v0! j dxdy. ~5.7!

Let F denote the one-dimensional Fourier transform and let~FV!~j! denote the matrix with
elements (FV) i j (j)5(FVi j )(j) satisfyingFVi j 5FVji becauseV is symmetric andVi j are real-
valued. Using the latter in conjunction with the Fourier transform of (1/2a)e2auxu, which equals
1/(j21a2), we find that

rhs of ~5.7!5 lim
a↓0

(
i , j ,k

E 1

j21a2 ~FVik!~j!~FVk j!~j!~v0! i~v0! j dj

5E 1

j2 ^v0 ,~FV!* ~j!~FV!~j!v0&C2 dj

5E 1

j2 i~FV!~j!v0iC2
2 dj>0, ~5.8!
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By assumption,̂v0 ,T0v0&C2Þ0 and therefore~5.8! implies that there is also a negative eigenva
of H(g) associated with the eigenvalue zero ofS. h

Remark 5.3:The reasoning in the proof of Theorem 5.2(i i ) requires that the entriesVi j in the
potential V are real-valued. A substantial improvement would be to establish the resu
complex-valued entries.

Example 5.4 (Square-well potentials):Let x [0,1] denote the characteristic function associa
with the interval@0,1#. Choose the following entries ofV:

V11~x!525x [0,1]~x!, V22~x!523x [0,1]~x!,

V12~x!5V21~x!523ax [0,1]~x!, a.0.

Then the matrixS equals

S5S 25 23a

23a 23 D
and it has two real eigenvalues given by246A119a2. Thus the following cases are possibl

~1! If a.A 5
3, there is exactly one negative eigenvalue ofS, namely242A119a2. ~2! If a

,A 5
3 there are two negative eigenvalues ofS, namely246A119a2. ~3! If a5A 5

3, there are two
nonpositive eigenvalues ofS, namely242A119a2 and 0.

2. Two-channel Hamiltonian with two thresholds

As an example of a Hamiltonian with more than one threshold, we consider the one in~1.1!,
having thresholds at 0 and 1. Henceforth, its free Hamiltonian is denoted byH̃0 . The essential
spectrum ofH̃0 is the union of the half-axes starting at the thresholds, i.e.,sess(H̃0)5@0,̀ ). The
resolvent ofH̃0 is given by

~H̃01a2!215S ~2d2/dx21a2!21 0

0 ~2d2/dx21a211!21D , a.0,

where the entries have the integral kernels

1

2a
e2aux2yu and

1

2Aa211
e2Aa211ux2yu.

It is easy to show that the assertions of Proposition 3.1 are valid if one replacesH0 by H̃0 . In this
way we obtain a self-adjoint realization of the formal HamiltonianH̃01gV in L2(R,C2). More-
over, the Birman–Schwinger relation in Proposition 4.2 holds forH̃(g)5H̃01gV.

Define the operatorsL̃a andM̃a by their ‘‘kernels’’

L̃a~x,y!5
1

2a
V~x!1/2S 1 0

0 0D uV~y!u1/2,

M̃a~x,y!5V~x!1/2S 1

2a
@e2aux2yu21# 0

0
e2Aa211ux2yu

2Aa211

D uV~y!u1/2.

Moreover, we introduce the operatorM̃0 by its kernel
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M̃0~x,y!5V~x!1/2S 2 1
2 ux2yu 0

0 1
2e

2ux2yu D uV~y!u1/2.

By making a few obvious changes to the proof of Lemma 4.5 we obtain the following resu
Lemma 5.5: Assume that*R(11uxu2)iV(x)iB(C2) dx,`. If K a , La , Ma and M0 in Lemma

4.5 are replaced byK̃a , L̃a , M̃a and M̃0 , then the assertions (i)–(iii) of Lemma 4.5 are still
valid.

Define the matrices

S̃5S E
R
V11~x! dx E

R
V12~x! dx

0 0
D , ~5.9!

T̃05E
R
E

R
S 1 0

0 0DV~x!S 2 1
2ux2yu 0

0
e2ux2yu

2
D V~y! dxdy. ~5.10!

For the HamiltonianH̃(g) we are able to derive an analog of part (i ) in Theorem 5.2.
Theorem 5.6: Let V obey Assumption 5.1(a)–(c) and let H̃(g)5H̃01gV(x) be the self-

adjoint Hamiltonian on L2(R,C2) defined in Proposition 3.1 by means of forms.
Assume that the matrixS̃, defined in (5.9), has a negative eigenvalue s˜ (such an eigenvalue is

simple if it exists). Then, for a small enough coupling constant g, the eigenvalue s˜ of S̃ gives rise

to exactly one negative eigenvalue E˜ of the two-channel HamiltonianH̃(g). The negative eigen

value Ẽsatisfies the formula

~2Ẽ~g!!1/252
g

2
s̃1

g2

2
^ṽ,T̃0ṽ&C21O~g3!, ~5.11!

whereT̃0 is defined in (5.10) andṽ is the eigenvector corresponding to the eigenvalue s˜ of S̃.
Proof: Imitating the proof of Theorem 5.2 we arrive at the eigenvalue problem

R̃guk5mk~g,a!uk , ~5.12!

whereR̃g is the matrix

R̃g5
1

2a E
R
S 1 0

0 0DV1/2~x!@~11gM̃a!21uVu1/2#~x! dx.

Define the matrixS̃ as in ~5.9! and, moreover, define

T̃~a!5E
R
S 1 0

0 0DV1/2~x!@M̃auVu1/2#~x! dx.

Then we may write

R̃g5
1

2a
S̃2

g

2a
T̃~a!1O~g2!

for small g. From here on everything depends on the possible eigenvalues ofS̃. Let
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a5E
R
V11~x! dx.

The following cases may occur:~I! If aÞ0, then there are two subcases.~I.1! If a.0, thenS̃ has
the eigenvalue zero and the positive eigenvaluea, each of multiplicity one.~I.2! If a,0, thenS̃
has the eigenvalue zero and the negative eigenvaluea, each having multiplicity one.~II ! If a

50, thenS̃ has the eigenvalue zero with multiplicity one.
Repeating the reasoning in the first part of the proof of Theorem 5.2 we show that a ne

eigenvalue ofS̃ @from ~I.2! it has multiplicity one# generates exactly one negative eigenvalue
H̃(g) providedg is small enough. h

Remark 5.7:The matrix S̃ always has the eigenvalue zero. It remains an open problem
settle whether or not the latter gives rise to a negative eigenvalue ofH̃(g) for a sufficiently small
g.

B. N-channel Hamiltonian with matrix-valued potentials

In this section we consider the case where the potential is aN3N matrix-valued potential
V(x) with measurable functionsVi j on R as entries.

Assumption 5.8:
~a! V(x) is symmetric, i.e.,Vji 5Vi j .
~b!

E
R
~11uxu2!iV~x!iB(CN) dx,`.

~c! The functionsVi j are real-valued.
Define the matricesS andT0 by

S5E
R
V~x! dx, T052

1

2 ER
E

R
V~x!ux2yuV~y! dydx. ~5.13!

We have the following result.
Theorem 5.9: Let V obey Assumption 5.8 (a) and (b) and letH(g)5H01gV(x) be the

self-adjoint Hamiltonian on L2(R,C2) defined in Proposition 3.1 by means of forms.
(i) Assume that the matrixS, defined in (5.13), has n negative eigenvalues, denoted by si , with

multiplicities ¸ i . Then, for a small enough g, the N-channel HamiltonianH(g) has precisely
( i 51

n ¸ i negative eigenvalues (taking into account multiplicity) Ei j satisfying the formulas

~2Ei j ~g!!1/252
g

2
si1

g2

2
^vi j ,T0vi j &CN1O~g3!, ~5.14!

i 51,...,n, j 51,... ,̧ i ,

whereT0 is defined in (5.13) andvi j are the eigenvectors corresponding to the eigenvalue si of S.
(ii) Suppose thatV obey Assumption 5.8(c) and that the matrixS has n nonpositive eigenval

ues, denoted by si , with multiplicities¸ i . If the eigenvectorsv0 j , j 51,... ,̧ i , associated with the
eigenvalue zero ofS satisfy^v0 j ,T0v0 j&CNÞ0, then the conclusion of part (i) remains valid.

Proof: The proof is a straightforward generalization of the proof of Theorem 5.2. h

Remark 5.10:One of the referees pointed out that Theorem 5.9 was proven in Sˇeba.29 Therein,
however, Theorem 3 is incorrect because the quantity*R(1/p2)(a0 ,F(V)2(p)a0)n dp ~in Šeba’s
notation! is not necessarily different from zero. Moreover, the Birman–Schwinger relation~in the
matrix-valued setting! is stated without proof.
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VI. PERTURBATION OF EMBEDDED EIGENVALUES

For the sake of completeness we consider perturbation of two-channel diagonal Hamilt
with one-dimensional Schro¨dinger operators as component Hamiltonians, having eigenvalues
bedded in its continuous spectrum.

A. Two-channel Hamiltonians

Consider the formal expression

H~g!5H~0!1gV5S H11 0

0 H22
D 1gS V11~x! V12~x!

V21~x! V22~x!
D ~6.1!

in H5L2(R) % L2(R), where

H1152
d2

dx2 1W11~x! and H2252
d2

dx2 111W22~x!. ~6.2!

We impose the following assumptions on the potentialsWj j , j 51,2.
Assumption 6.1:Suppose that the real-valued, measurable functionsWj j , j 51,2, satisfy the

following.
~a! Wj j Þ0.
~b! The bound

uWj j ~x!u<C ~11uxu2!212d ~6.3!

holds for someC,d.0 and allx.
~c! *RWj j (x) dx<0.
~d! Wj j extends to a function analytic in the sector

Aa0
5$ zPC:uargzu<a0 %

for somea0.0. Moreover, the bound~6.3! holds in this sector.
Under Assumption 6.1~a!–~c! the operatorH1152 d2/dx2 1W11(x) is self-adjoint inL2(R)

and s(H11)5sd(H11)øsess(H11)5sd(H11)ø@0,̀ ) with a nonempty discrete spectrumm1

,m2,¯,mN,0, which is simple and finite.31 The corresponding normalized eigenfunctio
fn , n51,2,...,N, are exponentially decaying. The analyticity requirement in Assumption 6.1~d! is
convenient to adopt for analyzing the resonance behavior. Similarly, the operatorH22

52 d2/dx2 111W22(x) is self-adjoint in L2(R) and s(H22)5sd(H22)øsess(H22)
5sd(H22)ø@1,̀ ) with a nonempty discrete spectrumn1,n2,¯,nM,1 which is simple and
finite. The corresponding normalized eigenfunctionsxm , m51,2,...,M , are exponentially decay
ing.

Consider the unperturbed HamiltonianH(0)5diag (H11,H22). Assumption 6.1 ensures that

sc~H~0!!5sess~H~0!!5sess~H11!øsess~H22!5@0,̀ !ø@1,̀ !5@0,̀ !.

Thus, the continuous spectrum ofH~0! is the union of the two halflines starting at 0 and 1. Th
motivates the definition of the threshold setT5$0,1%. Furthermore, sp(H(0))
5sp(H11)øsp(H22). Among this~finite! set of eigenvalues, a~finite! subset is isolated or situ
ated at the threshold 0, while the rest satisfying the condition 0,nm,1 is embedded in the
continuous spectrum ofH(0). For thesake of simplicity we make the following assumption.

Assumption 6.2:Suppose that none of the embedded eigenvaluesnm of H~0! coincide with the
threshold 0.

We impose the following conditions on the components of the perturbationV.
Assumption 6.3:Suppose that the real-valued, measurable functionsVi j , i , j 51,2, satisfy the

following.
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~a! The bound

uVi j ~x!u<C ~11uxu2!212d ~6.4!

holds for someC,d.0 and allx.
~b! Vi j extends to a function analytic in the sectorAa0

@see Assumption 6.1~d!# for some
a0.0. Moreover, the bound~6.4! holds in this sector.

B. Complex dilation

We use a complex deformation. Foru real defineSu on L2(R) by the unitary operator

~Suc!5eu/2c~eux!, cPL2~R!. ~6.5!

Su is a one-parameter unitary group onL2(R). It is easy to see thatSu leave D(2d2/dx2)
5H2(R) invariant and that

H11,uªSuH11Su
2152e22u

d2

dx2 1W11,u~x!52e22u
d2

dx2 1W11~eux!.

Let A05$u:uIm uu<min$a0,p/4% @cf. Assumption 6.1~d!#. Under Assumption 6.1,H11,u obviously
has a continuation to a type~A! family of m-sectorial operators analytic in the sense of Kato13 for
uPA0 . Likewise,

H22,uªSuH22Su
2152e22u

d2

dx2 111W22,u~x!52e22u
d2

dx2 111W22~eux!

has a continuation to a type~A! analytic family of operators onA0 . From standard Aguilar–
Combes theory1 we determine the spectra ofH11,u andH22,u :

s~H11,u!5$m1 ,m2 ,...,mN%ø$e22ul:lP@0,̀ ! %,

s~H22,u!5$n1 ,n2 ,...,nM%ø$e22ul11:lP@0,̀ ! %.

Having extendedSu in ~6.5! analytically toA0 we may define

SuC5S Su 0

0 Su
D S c1

c2
D , CPH.

Due to its diagonal structure, the Hamiltonian

Hu~0!ªSuH~0!Su
215S H11,u 0

0 H22,u
D

has a continuation to a type~A! analytic family of operators in the sectorA0 . Furthermore,

s~Hu~0!!5s~H11,u!øs~H22,u!5$m1 ,m2 ,...,mN%ø$n1 ,n2 ,...,nM%

ø$e22ul:lP@0,̀ ! %ø$e22ul11:lP@0,̀ ! %.

In particular, the eigenvalues embedded ins(H(0)) are discrete eigenvalues ofHu(0) for u
nonreal.

HenceforthE0 denotes any of the embedded eigenvaluesnm of H~0!. Let R0(u;z) denote the
resolvent ofHu(0). SinceE0 is an isolated eigenvalue ofHu(0), we maychoose a contourG
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aroundE0 such thatG belongs to the resolvent set ofHu(0) andE0 is the only eigenvalue of
Hu(0) contained inside ofG. Moreover, letPu denote the eigenprojection associated with
eigenvalueE0 and put

Su
(p)
ª

1

2p i EG

R0~u;z!

~E02z!p dz, p>1. ~6.6!

ThenPu52Su
(0) and R̂0(u;z)ªSu

(1) is the reduced resolvent ofHu(0) at the pointz. Define

Vu5SuVSu
215S V11,u V12,u

V21,u V22,u
D with Vi j ,u~x!5Vi j ~eux!.

Then we have the following result.
Lemma 6.4: Let Assumptions 6.1 and 6.3 hold. LetG be the contour described above and l

Su
(p) be defined in (6.6).

(i) If Im uP(0,a0) then there exists a constant Cu.0 such that

max
zPG

igVuR~u;z!i<Cuugu. ~6.7!

If z is replaced byz05min$m1,n1%21, then the constant in (6.7) is independent ofu and the
estimate holds for alluIm uu,a0.

(ii) For p>0 there exists a constant Cu.0 such that

igVuSu
(p)i<Cu

uGu
2p

ugu
@dist~E0 ,G!#p .

Proof: The contourG is by assumption contained in the resolvent ofHu(0). SinceR0(u;•) is
bounded and continuous andG is compact, there exists a constantC̃u such that
maxzPGiR0(u;z)i<C̃u .

Thus, maxzPGiVuR0(u;z)i<C̃uCV , whereCV denotes a bound on the norm ofVu , which is
independent ofu by Assumption 6.3~b!. This shows the first claim. Moreover,z0 is to the left of
the numerical rangeQ(Hu(0)) of Hu(0) at the unit distance. HenceiR0(u;z0)i
51/@dist(z0 ,Q(Hu(0)))#51. Therefore the constantC̃u in the above estimate may be replaced
1. This verifies (i ). The assertion (i i ) follows immediately. h

Hence, providedg is small enough, it follows from Lemma 6.4(i ) thatgVu is Hu(0)-compact.
The latter, in conjunction with Ref. 27, Lemma 1, p. 16, implies that the perturbed oper
Hu(g)5Hu(0)1gVu are a type~A! analytic family of operators foruPA0 and suitable smallg.
SinceE0 is an isolated, simple eigenvalue ofHu(0), theanalyticity of Hu(g) allows us to apply
regular perturbation theory. The next section is devoted to this task.

C. Perturbation series and Fermi’s golden rule

Following Kato~Ref. 13, Secs. II.2 and VII.1! and using Lemma 6.4 we infer thatHu(g) has
an eigenvalue nearE0 given by a convergent power series ing. The convergent series is given b

E~g!5E01(
j 51

`

Ej~g!, ~6.8!

where

Ej~g!5 (
p11¯1pj 5 j 21

~21! j

j
tr )

i 51

j

gVuSu
(pi ) . ~6.9!
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In view of Lemma 6.4(i i ), we see thatEj (g)5O(gj ).
Let us compute the lowest-order terms of the series~6.8!. Since RankPu51, Pu can be

represented as

Pu5 K •,S 0
xm

u D L S 0
xm

u D
with xm

u
ªSuxm , wherexm is the eigenfunction associated with the eigenvalueE0 of H22. Indeed,

H22,u5xm
u 5SuH22Su

21Suxm5E0Suxm5E0xm
u and, consequently,

Hu~0!S 0
xm

u D5S H11,u 0

0 H22,u
D S 0

xm
u D5E0S 0

xm
u D .

We computeE1(g):

E1~g!5tr~gVuPu!5gK S 0
xm

u D , VuS 0
xm

u D L
H

5gK S 0
xm

D ,VS 0
xm

D L
H

5g^xm ,V22xm&L2(R) .

~6.10!

We see that the first-order term is real and does not contribute to the resonance width. Ne
considerE2(g). According to~6.9!,

E2~g!52g2tr ~P0VuR̂0~u;E02 i0!VuP0!.

Due to the standard constancy-in-u argument~see, e.g., Ref. 27, pp. 55–56!, we may take the limit
Im u→0 and in this way we arrive at

E2~g!52g2tr ~P0VR̂0~0;E02 i0!VP0!

52g2K S 0
xm

D , VR̂0~0;E02 i0!VS 0
xm

D L
H

52g2^xm ,V21@~H112E01 i0!21#ˆV12xm&L22g2^xm ,V22@~H222E01 i0!21#ˆV22xm&L2

52g2^V12xm ,@~H112E01 i0!21#ˆV12xm&L22g2^V22xm ,@~H222E01 i0!21#ˆV22xm&L2,

~6.11!

where the notation@(H j j 2E01 i0)21#ˆ refers to the reduced resolvent ofH j j , j 51,2.
We restrict our focus to the imaginary part ofE2(g), which determines the resonance width

leading order. For this purpose we introduce

Rk5~~2d2/dx21Wkk~x!2E01tk2 i0!21!ˆ, k51,2,

wheret150 andt251 are the thresholds. Clearly,

Im E2~g!52g2(
k51

2

^Vk2xm~ Im Rk!Vk2xm&L2(R) . ~6.12!

Now, for E.0, the resolvent equation yields that

Im ~2d2/dx21Wkk~x!2E2 i0!215tk~E1 i0!* Im ~2d2/dx22E2 i0!21tk~E1 i0!,
~6.13!

where
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tk~z!5@ I 1uWkku1/2~2]x
22z!21uWkku1/2Sgn~Wkk!#

21.

The quantitiestk(E1 i0) are well-defined in view of Assumption 6.1. Furthermore, again foE
.0,

Im ~2d2/dx22E2 i0!215
p

2AE
(

s56
~gE

s!* gE
s , ~6.14!

wheregE
s : H1→C is the trace operator which acts on the first Sobolev spaceH1(R) as follows

~see, e.g., Ref. 18, Sec. IV.1!,

gE
sfªf̂~sAE!, s56, E.0.

Here, as usual,f̂ denotes the Fourier transform off. Using ~6.13! and~6.14! we can rewrite the
expression~6.12! in the following way:

Im E2~g!52g2(
k51

2

^Vk2xm ,~ Im Rk!Vk2xm&L2

52g2(
k51

2

^Vk2xm ,tk~E02tk1 i0!*

3Im ~2d2/dx22E01tk2 i0!21tk~E02tk1 i0!Vk2xm&L2

52g2(
k51

2

^tk~E02tk1 i0!Vk2xm ,Im ~2d2/dx22E01tk2 i0!21

3tk~E02tk1 i0!Vk2xm&L2

52g2(
k51

2

(
s56

p

2AE02tk

^gE02tk

s tk~E02tk1 i0!Vk2xm ,gE02tk

s

3tk~E02tk1 i0!Vk2xm&C

52g2(
k51

2

(
s56

p

2AE02tk

ugE02tk

s tk~E02tk1 i0!Vk2xmu2. ~6.15!

In this way we have established the following result.
Theorem 6.5: Let Assumptions 6.1 and 6.3 hold. Letnm be a simple eigenvalue of th

operator H22 defined in (6.2) giving rise to the eigenvalue E05nm embedded in the continuou
spectrum ofH(0). Let E0 satisfy Assumption 6.2. For a small enough coupling constant g, the
eigenvalue E0 of H~0! turns into a resonance, i.e., E0¹s(H(g)). The coordinates of its corre
sponding pole is given by (6.9)–(6.11). In particular, Fermi’s golden rule takes the explicit for
(6.15).

Remark 6.6:If Assumption 6.2 is not fulfilled, i.e., we have an eigenvalue ofH22 at the
threshold point 0 of the continuous spectrum ofH~0!, complex dilation breaks down. An insigh
into this problem was established in Ref. 12. For abstract HamiltoniansH(g) having the structure
found in ~6.1!, it was shown that under small off-diagonal perturbations this eigenvalue n
moves into the continuous spectrum.
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Scattering into cones and flux across surfaces in quantum
mechanics: A pathwise probabilistic approach
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We show how the scattering-into-cones and flux-across-surfaces theorems in quan-
tum mechanics have very intuitive pathwise probabilistic versions based on some
results by Carlen about large time behavior of paths of Nelson’s diffusions. The
quantum mechanical results can then be recovered by taking expectations in our
pathwise statements. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1504884#

I. INTRODUCTION

The problem of finding the basic mathematical relationships between theoretical prev
and experimental observable quantities has been, for a long time, an open problem in qu
theory of scattering.

In this direction there exists two relevant theorems. The first one is due to Dollard~1969! and
states that the probability of asympotically observing the particle in some coneC,R3 with vertex
in the scattering center is equal to the probability of finding its asymptotic momentum exac
the same cone, i.e.,

lim
t↑`

E
C
dxuc t~x!u25 lim

t↑`
E

CùBR
c
dxuc t~x!u25E

C
dk uĉout~k!u2, ~1.1!

whereBR
c is the complement ofBR , the ball of radiusR, ĉout denotes the Fourier transform of th

outgoing statecoutªV1* c0, V1 being the wave operator. It is well known that the different
cross section for the time-independent scattering theory can be derived from the right-hand
~1.1!. Nevertheless the importance of~1.1! is primarily conceptual since the probability of obse
vation which it refers to is a time-asymptotic one.

Instead, in the usual experimental situation, the detector being sufficiently far away fro
scattering center, one actually measures the probability that the particle crosses the active
of the detectorCùSR (SR denoting the sphere of radiusR) at some random time. The theore
which takes care of this experimental setting is the so-called flux-across-surfaces theorem.
conjectured in 1975 by Combes, Newton, and Shtokhamer under the form of the following
tion:

lim
R↑`

E
t0

1`

dt E
CùSR

ds~x! Jc t~x!•n~x!5E
C
dkuĉout~k!u2, ~1.2!

where Jc t
ªIm ct*¹ct is the quantum probability current density,n denotes the outward uni

normal vector alongCùSR , ands is the surface measure.

a!Electronic mail: andreap@uninsubria.it
b!Electronic mail: ugolini@mat.unimi.it
53860022-2488/2002/43(11)/5386/14/$19.00 © 2002 American Institute of Physics
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No rigorous proof of this conjecture was known until 1996 when Daumer, Du¨rr, Goldstein,
and Zanghı` proved the flux-across-surfaces theorem in the free case. Successively the res
been extended to the interacting case by Amrein and Zuleta~1997! and by Teufel, Du¨rr, and
Münch-Berndl~1999! for short-range potentials, and by Amrein and Pearson~1997! for long-
range potentials. The case with zero-energy resonances or eigenvalues has been tre
Dell’Antonio and Panati~2001! in and the case with a delta interaction by Panati and Teta~2000!.

In view of our approach, the most interesting proof is the one given in Amrein and Pe
~1997!. From such a paper one can extract the following clarifying scheme:

Integrating with respect to time the equation of continuity for quantum probability dens

]

]t
uc tu21¹Jc t50 ~1.3!

and inserting the result into relation~1.1! given by Dollard’s theorem one obtains

E
C
dkuĉout~k!u25E

CùBR
c
dxuc t0

~x!u22 lim
t↑`

E
t0

t

dsE
CùBR

c
dx ¹Jcs~x!.

Then by taking the limitR↑` and by Gauss–Green divergence theorem one has

E
C
dkuĉout~k!u25 lim

R↑`

lim
t↑`

E
t0

t

dsE
(CùSR)ø(]CùBR

c )
ds~x! n~x!•Jcs~x!,

and so the flux-across-surfaces theorem is a consequence of the scattering-into-cones theo
the condition

lim
R↑`

lim
t↑`

E
t0

t

dsE
]CùBR

c
ds~x! n~x!•Jcs~x!50, ~1.4!

i.e., the flux across the lateral boundary of the cone asymptotically vanishes.
In this paper we give a pathwise formulation of scattering-into-cones and flux-across-su

theorems following in some way the pathwise analog of the above-given analytic argumen
has the advantage of giving a pictorial view of the scattering behavior. In doing that we explo
relevant results, obtained by Carlen~1985!, about potential scattering in stochastic mechanics

It is known that stochastic mechanics, introduced by Nelson in 1966@see also Nelson~1967!
and ~1985!#, allows a pathwise approach to quantum mechanics by providing a suitable cla
diffusion processes. Indeed to a solutionc t of the Schro¨dinger equation there is associated
well-defined~see Theorem 1! diffusion processXt solution of the stochastic differential equatio

dXt5b~ t,Xt!dt1dBt ,

whereBt is a Brownian motion and the drift vector fieldbt(x)[b(t,x) is given by

bt5uc tu22~¹uc tu21Jc t!.

Moreover the probability density of the processXt is given byuc tu2 and it satisfies the continuity
~or Fokker–Planck! equation~1.3!. In connection with the problem of potential scattering, Car
studied the time evolution of the process (1/t) Xt proving the following~see Theorem 3!.

~1! The scattering diffusions~i.e., the ones associated with the scattering states of the c
sponding Schro¨dinger equation! are such that the limit

lim
t↑`

1

t
Xt5p1
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exists almost surely.
~2! The random variablep1 is square integrable and has the same distribution as doe

quantum mechanical final momentum.
These facts imply that almost surely the diffusion paths are definitively inside or outsid

coneC, a pathwise analog of~1.4!. Then the following pathwise version of Dollard’s theore
immediately follows:

lim
t↑`

xC~Xt!5 lim
t↑`

xCùB
R
c ~Xt!5xC~p1!,

xD denoting the characteristic function of the setD; the usual quantum mechanical version is th
obtained by taking expectations~see Theorems 4 and 5!.

As regards the flux-across-surfaces theorem the situation is almost equally simple. IfNCùSR

were finite, where

NCùSR
ªNCùSR

1 2NCùSR

2 ,

NCùSR

1 (g) @respectively,NCùSR

2 (g)] denoting the number of outward~respectively, inward! cross-

ing by the patht°g(t) of CùSR , then, again by~1! and~2! noted previously, one would obtai
the following pathwise version of the flux-across-surfaces theorem:

lim
R↑`

NCùSR
5xC~p1!. ~1.5!

Let us remark here that the relevance ofNCùSR
for the flux-across-surfaces theorem was alrea

pointed out~in the framework of Bohmian mechanics! in Daumeret al. ~1997!. The problem here
is that almost surely the diffusionXt intersectsCùSR on a set of times that has no isolated po
and is uncountable. Therefore the above-given definition ofNCùSR

makes no sense in genera
However, by a suitable redefinition ofNCùSR

as the total mass of an almost surely compac
supported random distribution~see Sec. III for details!, ~1.5! can be made rigorous~see Theorem
6!. After showing~see Theorem 7! how to explicitly compute, by using the continuity equatio
~1.3!, the expectation ofNCùSR

in terms of the quantum probability current densityJc t, the
flux-across-surfaces theorem then follows by taking expectation in~1.5! ~see Theorem 9!.

In our opinion these results show how the probabilistic approach we use is very fruitfu
extremely intuitive from the physical point of view.

As regards the analytical hypotheses we impose, our proofs of the pathwise results
beside the existence of the asymptotic velocity~see Hypotheses 3 and 4 in definition 2!, the
following condition on the quantum evolution:

E
t0

1` dt

t I S P2
Q

t Dc tI
L2

,1`, t0.0, ~1.6!

wherePc(x)ª2 i¹c(x) andQc(x)5xf(x) denote the usual momentum and position opera
of quantum mechanics in Schro¨dinger representation. Let us remark that the original results
Carlen were obtained by requiring the existence and completeness of wave operators, wh
hypothesis stronger than our Hypotheses 3 and 4. It is not clear to us if our weaker hypo
together with~1.6! in any case imply the existence and completeness of wave operators. The
it could be interesting to find examples~if any! of cases in which the pathwise scattering-int
cones and flux-across-surfaces theorems hold true notwithstanding there are no wave ope

In order to obtain then the quantum mechanical results by taking expectations,~1.6! is still
sufficient to get Dollard’s theorem, whereas the flux-across-surfaces theorem requires th
property of paths being definitively always inside or outside coneC holds not only pathwise bu
in the mean, i.e, as we already know,~1.4! must be true. This condition is a consequence of
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E
t0

1`

dt iu~Q!c tiH1I S P2
Q

t Dc tI
H1

,1`, ~1.7!

whereuPCb
2(R3;C), u51 on a neighborhood of]CùBR

c for someR.0, andHs(R3) denotes the
Sobolev space of tempered distributions with a Fourier transform which is integrable with re
to the measure with density (11uxu2)s.

Conditions~1.6! and ~1.7! both follow from propagation estimates onc t . This is a well-
known topic in mathematical physics and much literature exists on them. Thus by using k
results on time-decay of the solutions of the Schro¨dinger equation it is possible to deduce~1.6! and
~1.7! from explicit conditions imposed on the initial statec0 and on the potentialV, which are the
natural prescriptions for a physicist. In particular, beside some technical condition on the
statec0 , ~1.6! holds true with potential functions decaying at infinity likeixi2e, e.0, whereas
~1.7! requires potentials decaying faster thatixi22/3 ~see Sec. V for more details!. These condi-
tions onc0 andV also lead to the existence and completeness of~modified! wave operators.

Our probabilistic proof remains unchanged in the case of the presence either of a
dependent potential or of a magnetic field, the only difference being, ifA denotes the magneti
potential, the replacement ofP by P2A and of Jc t by Jc t2uc tu2A. We plan to work out the
details in a future work.

Finally let us remark that all our results hold true every time we can find a stochastic pr
Xt havinguc tu2 as its density and for which Theorem 3 can be proven. By Theorem 1 we rea
such a process as a Nelson diffusion, but this is not the only possible choice. Another one is
by Bohmian mechanics~see Durr, Goldstein, and Zanghı` ~1992! for a thorough introduction to the
subject#, where one considers the stochastic processX̃t , solution of the ordinary differentia
equation (d/dt) X̃t5uc t(X̃t)u22Jc t(X̃t) with a random initial condition with densityuc0u2. Also in
this case, under the same hypotheses plus the technical conditionc t0

PC`(R3) @the Bohmian
analog of Theorem 1, see Berndlet al. ~1995!, needs more regularity#, Theorem 3 holds true, the
proof being essentially the same, and so all our results can be stated in a Bohmian conte
decided to work with Nelson’s stochastic mechanics since it does not necessarily need the¨-
dinger equation in its formulation. Indeed it can be derived either from a stochastic anal
Newton’s law@see Nelson~1966, 1967!# or from a stochastic variational principle@see Guerra and
Morato ~1983!; Nelson~1985!#.

II. POTENTIAL SCATTERING IN STOCHASTIC MECHANICS

At first let us recall that, by Nelson’s stochastic mechanics@see Nelson~1966, 1967, 1985!#,
it is possible to associate to a solutionc t of the Schro¨dinger equation a diffusion process whic
hasuc tu2 as its density. More precisely one has the following@in Carlen~1984! V is a Rellich-class
potential but the results obtained there can be extended to the more general potentials used
proceeding as in Dell’Antonio and Posilicano~1991!, Theorem 2.1#:

Theorem 1: Let V5V11V2 , with V1 bounded from below and V2 (2D)-form-bounded with
relative bound smaller than one. Let H52 1

2 D1V be defined as a sum of quadratic forms, and
c0 be a normalized state in its form domainQ(H)5H1(R3)ùQ(V1). If c tªe2 i tHc0 , then
define

b~ t,x!ªbt~x!, btªuc tu22~¹uc tu21Jc t!.

Consider the measurable space(V,F), with V5C(@ t0 ,1`);Rd), t0>0, F the Borels-algebra,
and let (V,F,Ft ,Xt) be the evaluation stochastic process Xt(g)ªg(t), with Ft5s(Xs ,t0<s
<t) the natural filtration. Then there exists a unique Borel probability measureP on (V,F) such
that:

(a) (V,F,Ft ,Xt ,P) is a Markov process;
(b) the image ofP under Xt has densityuc tu2;
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(c) BtªXt2Xt0
2* t0

t ds b(s,Xs) is a (P,Ft)-Brownian motion, i.e., P is a weak solution of the

stochastic differential equationdXt5b(t,Xt) dt1dBt with initial density uc t0
u2.

From now on we will assumet0.0 andd53.
Definition 2: With the same notation and hypotheses as in Theorem 1, let us call the c

(c0 ,V) weakly admissibleif
Hypothesis 1:c0 is in Hc , the spectral subspace corresponding to the continuous spectru

H.
Hypothesis 2:

E
t0

1` dt

t I S P2
Q

t Dc tI
L2

,1`.

Hypothesis 3:The asymptotic velocity exists in the following sense:

; gPCc
`~R3!, w-lim

t↑`

Pc eitH gS Q

t D e2 i tHPc5Pc g~P1! Pc ,

where w-lim means the limit in the weak operator norm topology,Pc denotes the projection ont
Hc , andP1 is a vector of commuting self-adjoint operators;

A weakly admissible couple (c0 ,V) is then calledadmissibleif:
Hypothesis 4:c0 is in the spectral subspace corresponding to the absolutely contin

spectrum ofP1 .
Remark:If the ~modified! wave operatorsV6 exist and are complete then

P1Pc5V1PV1* Pc

and, givenc0PHc ,

^c0 ,xA~P1!c0&5^c0 ,V1xA~P!V1* c0&5E
A
uĉout~k!u2 dk.

Thus in this case Hypothesis 4 holds true for allc0PHc . Therefore Hypothesis 3 and 4 can b
interpreted as a weaker substitute for existence and completeness of wave operators.

For explicit conditions onc0 andV ensuring admissibility the reader is referred to Sec. V
The above-given definitions permit us to extend~with the same proof! Carlen’s results@see

Carlen~1985!, the free caseV50 was already studied in Shucker~1980!# to the case where the
hypothesis of existence of the wave operators is replaced by the weaker Hypothesis 3.

Theorem 3: Let (c0 ,V) be weakly admissible and let(V,F,Ft ,Xt ,P) be as in Theorem 1
Then

lim
t↑`

1

t
Xt5p1 , P-a.s., ~2.1!

for some random variable p1 . Moreover p1 is P-square integrable and it has, underP, the same
distribution as does the quantum mechanical final momentum P1 , i.e., for every Borel set A one
has

E~xA~p1!!5^c0 ,xA~P1!c0&,

whereE denotes expectation with respect toP.
Proof: The existence of the limit limt↑`(1/t) Xt is proven in Carlen~1985!, lemma 1. For the

convenience of the reader we reproduce here the main steps of such a proof. Defining t
chastic processp tª(1/t) Xt , one has the following stochastic differential equation:
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dp t5
1

t
~b~ t,Xt!2p t! dt1

1

t
dBt .

This implies

PS sup
t.T

ip t2pTi.e D<PS E
T

1` dt

t
i~b~ t,Xt!2p t!i.e D 1PS sup

t.T
I E

T

t 1

t
dBtI.e D .

By Doob’s martingale maximal inequality and the Chebychev inequality the second term o
right-hand side can be estimated by 2e22T21. As regards the first term, by the definition ofb one
has

PS E
T

1` 1

t
i~b~ t,Xt!2p t!idt.e D<

1

e ET

1` 1

t
E~ i~b~ t,Xt!2p t!i ! dt

<
1

e ET

1` 1

t
E~ i~b~ t,Xt!2p t!i2!1/2dt

<
&

e E
T

1` I S 2P2
Q

t Dc tI
L2

dt

t
.

The above-given estimates and Hypothesis 2 say that we can find aTn large enough that

PS ø
s,t.Tn

H Ip t2psI.
1

nJ D ,
1

2n .

Then, by the Borel–Cantelli lemma, one has

PS ù
m51

`

ù
n.m

ø
s,t.Tn

H Ip t2psI.
1

nJ D 50,

which exactly means that limt↑` p t existsP-a.s.
By a density argumentp1 has the same distribution as does the quantum mechanical

momentumP1 if E(g(p1))5^c0 ,g(P1)c0& for all gPCc
`(R3). By Hypothesis 3 there follows

E~g~p1!!5 lim
t↑`

E~g~p t!!5 lim
t↑`

^c t ,g~Q/t !c t&5^c0 ,g~P1!c0&,

and the proof is done. h

Remark:The proof of the above-given theorem shows that

Hypothesis 2⇒ 1

t
Xt→p1 almost surely,

Hypothesis 3⇔ 1

t
Xt→p1 in distribution.

Remark:Under the stronger Hypothesis 2.1

E
t0

1` I S P2
Q

t Dc tI
L2

2

dt,1`

it is possible to prove@see Carlen~1986!# that the random variablep1 generates the tails-algebra
                                                                                                                



bserv-
re.
r:

ion of

r

5392 J. Math. Phys., Vol. 43, No. 11, November 2002 A. Posilicano and S. Ugolini

                    
Tªù
t.t0

s~Xs , s>t !.

This is the probabilistic analog of the fact that in quantum mechanics the only scattering o
ables are functions of the final momentumP1 . However we will not need such a nice result he

Under Hypothesis 2.1, according to Carlen~1986!, the proof of Theorem 3 becomes simple
Let P̃ be the weak solution of the simple stochastic differential equation

dXt5
1

t
Xt dt1dB̃t .

Therefore

dS 1

t
XtD52

1

t2 Xt dt1
1

t
dXt5

1

t
B̃t

and so

1

t
Xt5

1

t0
Xt0

1E
t0

t 1

s
dB̃s .

Since

ẼS E
t0

1` 1

s
dB̃sD 2

5E
t0

1` ds

s2 ,1`,

by Doob’s martingale convergence theorem one getsP̃-a.s. convergence of (1/t) Xt . Thus the
proof of Theorem 3 is then concluded by observing that Hypothesis 2.1 implies

ES E
t0

1`

dtib~ t,Xt!2Xt /ti2D ,1`

and so, by Ershov~1972!—Proposition 2.11,P is absolutely continuous with respect toP̃.

III. THE PATHWISE SCATTERING-INTO-CONES AND FLUX-ACROSS-SURFACES
THEOREMS

From now on by an open coneC we will mean a set of the kind

$lxPR3 : xPS, l.0%,

whereS is an open subset of the unit sphere with]S a finite union ofC1 manifolds.
In the framework of stochastic mechanics, thanks to Theorem 3, the pathwise vers

Dollard’s scattering-into-cones theorem@see Dollard~1969!# is obvious:
Theorem 4: Let (c0 ,V) be admissible and let(V,F,Ft ,Xt ,P) be as in Theorem 1. Then fo

every open cone C and for every ball BR of radius R one has

lim
t↑`

xCùB
R
c ~Xt!5 lim

t↑`

xC~Xt!5xC~p1!, P-a.s.

Proof: By Theorem 3 and Hypothesis 4p1¹]C, P-a.s.. Thus by~2.1! Xt is P-a.s. definitively
either in C or in C̄c for every open coneC. Moreover, by~2.1! again, beingp1Þ0 P-a.s. by
Hypothesis 4, we have
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lim
t↑`

iXti51`, P-a.s. ~3.1!

Therefore

lim
t↑`

xCùB
R
c ~Xt!5 lim

t↑`

xC~Xt!5 lim
t↑`

xCS 1

t
XtD5xC~p1!, P-a.s.

h

Let us now come to the flux-across-surfaces theorem.
We would like to define the function

NCùSR
~g!ªNCùSR

1 ~g!2NCùSR

2 ~g!,

whereNCùSR

1 (g) @respectively,NCùSR

2 (g)] denotes the number of outward~respectively, inward!

crossing by@ t0 ,1`){t°g(t) of CùSR , the intersection of the coneC with SR , the sphere of
radius R. The problem is that the above-given definition makes no sense sinceP-a.s. the set
$t:XtPCùSR% has no isolated point and is uncountable. Therefore we are forced to proceed
alternative way:

Let us observe that if #$t:g(t)PCùSR%,1` thenNCùSR
(g) is the total mass of the random

distribution

(
tP$s:g(s)PCùSR%

c~ t ! d t ,

wherec(t)511 if t corresponds to an outward crossing andc(t)521 if t corresponds to an
inward crossing. Sincet°g(t) is definitively either inC or in C̄c by Hypothesis 4 and~2.1!, if R
is sufficiently large~then we will consider the limitR↑`) one has

(
tP$s:g(s)PCùSR%

c~ t ! d t5 (
tP$s:g(s)P(CùSR)ø(]CùBR

c )%

c~ t ! d t5
d

dt
xCùB̄

R
c ~g~ t !!,

where the derivative has to be intended in distributional sense. The advantage of this rewr
that for every pathg the distribution (d/dt)xCùB̄

R
c (g(t)) is well defined.

Definition: Given an open domainD, we define the random distribution

mD :V→D8~R!

by

mD~g!ª
d

dt
xD~ g̃~ t !!, g̃~ t !ªH g~ t ! for t>t0

g~ t0! for t,t0 ,

i.e., for every test functionfPD(R)[Cc
`(R),

^mD~g!,f&ª2xD~g~ t0!!f~ t0!2E
t0

1`

dt xD~g~ t !!ḟ~ t !.

Note that supp@mD(g)#5g21(]D). In the casemD(g)PE8(R), i.e., it has compact support, w
define as usual its mass by

MD~g!ª^mD~g!,fg&,
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wherefg is a test function such thatfg51 on a neighborhood of supp@mD(g)#.
By the previous definition and by Theorem 3 we then have the following pathwise versi

the flux-across-surfaces theorem:
Theorem 5: Let (c0 ,V) be admissible and let(V,F,Ft ,Xt ,P) be as in Theorem 1. Then

mCùB̄
R
c PE8~R!, P-a.s.

and, defining NCùSR
ªMCùB̄

R
c , one has

lim
R↑`

NCùSR
5xC~p1!, P-a.s.

Proof: Let

tR~g!ªsup$tPR:Xt~g!P]~CùB̄R
c !%.

By ~3.1! and sinceXt is P-a.s. definitively either inC or in C̄c by Hypothesis 4 and Theorem 3
one hastR,1`, P-a.s. ThusmCùB̄

R
c PE8(R), P-a.s., being supp@mCùB̄

R
c ##@ t0 ,tR(g)#.

Let fgPD(R) such thatfg51 on a neighborhood of@ t0 ,tR(g)#. By the definition ofmCùB̄
R
c

one has

^mCùB̄
R
c ~g!,fg&52xCùB̄

R
c ~g~ t0!!2xC~p1~g!!E

tR(g)

1`

dt ḟg~ t !

52xCùB̄
R
c ~g~ t0!!1xC~p1~g!!,

and the thesis then immediately follows by taking the limitR↑`. h

IV. THE SCATTERING-INTO-CONES AND FLUX-ACROSS-SURFACES THEOREMS IN
QUANTUM MECHANICS

By taking expectations in Theorem 4 and by dominated convergence theorem one im
ately obtains Dollard’s theorem:

Theorem 6: For every open cone C, every ball BR of radius R, and for every admissible
couple(c0 ,V), one has

lim
t↑`

E
CùBR

c
dxuc t~x!u25 lim

t↑`
E

C
dxuc t~x!u25^c0 ,xC~P1!c0&.

In order to prove the flux-across-surfaces theorem we need now to compute the expecta
mCùB̄

R
c . To this end we state the following:

Theorem 7: Let c t and P be as in Theorem 1, withc0PH2(R3) and V a
(2D)-operator-bounded potential, with relative bound smaller than one. For every open do
D, with ]D a finite union of C1 manifolds, and for every test functionf one has

E~^mD ,f&!52E
t0

1`

dt f~ t !E
]D

ds~x! Jc t~x!•n~x!,

where n denotes the outward unit normal vector along]D and s is the surface measure.
Proof: Sinceuc tu2 is the density ofXt underP,

E^mD ,f&52f~ t0!E
D

dxuc t0
~x!u22E

t0

1`

dt ḟ~ t !E
D

dxuc~ t,x!u2.
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Sincec t solves the Schro¨dinger equation, one has@see, e.g., Carlen~1984!# for all f PCb
1(R3) and

for a.e.t, the continuity equation

d

dt ER3
dxuc t~x!u2 f ~x!5E

R3
dx Jc t~x!•¹ f ~x!.

Sincec tPH2(R3) by our hypotheses onc0 andV, ¹Jc t is an integrable function. Therefore on
has, integrating by parts, for allf PCb

1(R3),

E
t0

1`

dt ḟ~ t !E
R3

dxuc t~x!u2 f ~x!52f~ t0!E
R3

dxuc t0
~x!u2f ~x!1E

t0

1`

dt f~ t !E
R3

dx ¹Jc t~x! f ~x!.

Taking now a uniformly bounded sequence$ f n%1
`,Cb

1(R3), pointwise converging toxD , by the
dominated convergence theorem one obtains

E
t0

1`

dt ḟ~ t !E
D

dxuc t~x!u252f~ t0!E
D

dxuc t0
~x!u21E

t0

1`

dt f~ t !E
D

dx ¹Jc t~x!.

Sincec tPH2(R3), one has¹c tPH1(R3), so that bothc t and¹c t have traces inL2(]D) @see,
e.g., Burenkov~1998!#. ThusJc t has a trace inL1(]D) by

iJc tiL1(]D)<ic tiL2(]D)i¹c tiL2(]D)<c ic tiH1(D)i¹c tiH1(D) ,

and the proof is then concluded by the Gauss–Green theorem. h

Definition 8: The admissible couple (c0 ,V) is said to bestrongly admissibleif
Hypothesis 5:c0PH2(R3), V is a (2D)-operator-bounded potential and

E
t0

`

dtiu~Q!c tiH1I S P2
Q

t Dc tI
H1

,1`

whereuPCb
2(R3;C) such thatu51 on a neighborhood of]CùBR

c for someR.0.
In the next section we will give explicit conditions onc0 andV ensuring strong admissibility
By combining Theorems 5 and 7 the flux-across-surfaces theorem now follows:
Theorem 9: For every open cone C and for every strongly admissible couple(c0 ,V) one has

lim
R↑`

lim
T↑`

E
t0

T

dtE
CùSR

ds~x! Jc t~x!•n~x!5^c0 ,xC~P1!c0&.

Proof: By pointwise approximating, on the compact interval@ t0 ,tR(g)#, t°g(t) with a
sequence of polynomials paths, the wildly oscillating functiont°xCùB̄

R
c (g(t)) can be pointwise

approximated with a sequence$xn%1
` of characteristic functions of finite unionsøk50

m(n)@sk
(n) ,tk

(n)# of
disjoint intervals. Therefore one obtains

u^mCùB̄
R
c ~g!,f&u<xCùB̄

R
c ~g~ t0!!uf~ t0!u1 lim

n↑`
(
k50

m(n) U E
sk
(n)

tk
(n)

dt ḟ~ t !U
5xCùB̄

R
c ~g~ t0!!uf~ t0!u1 lim

n↑`
(
k50

m(n)

uf~ tk
(n)!2f~sk

(n)!u

<xCùB̄
R
c ~g~ t0!!uf~ t0!u1var~f!.

Now let us note that in Theorem 5 we can alternatively defineNCùSR
by
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NCùSR
~g!ª lim

n↑`

lim
m↑`

^mCùB̄
R
c ~g!,fn,m&,

where $fn,m%n,m>1 is a double sequence of test functions such thatfn,m51 on @ t0 ,n#, fn,m

→x [ t0 ,n] pointwise. Then if we choose such test functionsfn,m in such a way that their variation
is bounded uniformly inn andm, by the dominated convergence theorem and by Theorem 5
has

^c0 ,xC~P1!c0&5E~xC~p1!!

5 lim
R↑`

lim
n↑`

lim
m↑`

E~^mCùB
R
c ,fn,m&!

5 lim
R↑`

lim
n↑`

E
t0

n

dtE
(CùSR)ø(]CùBR

c )
ds~x! Jc t~x!•n~x!.

The proof is then conlcuded by proving that

lim
R↑`

lim
n↑`

E
t0

n

dtE
]CùBR

c
ds~x! Jc t~x!•n~x!50. ~4.1!

Sincen•x50 on ]C and iJc ti<ic t* ¹c ti5ic tPc ti , one has

U E
t1

n

dtE
]CùBR

c
ds~x!Jc t~x!•n~x!U<E

t1

n

dtE
]CùBR

c
ds~x! ic t~x!Pc t~x!i

5E
t1

n

dtE
]CùBR

c
ds~x!Ic t~x!S P2

Q

t Dc t~x!I .

Thus, sincec tPc tPL1(]C), by the monotone convergence theorem,~4.1! follows from

E
t0

`

dtE
]CùBR

c
ds~x!Ic t~x!S P2

Q

t Dc t~x!I,1` ~4.2!

for someR.0. By trace estimates on functions inH1(R3) of the kind

i•iL2(]C)<ci•iH1(R3) ,

~see, e.g., Burenkov 1998, Chap. 5! one has

E
]CùBR

c
ds~x!Ic t~x!S P2

Q

t Dc t~x!I S E
]CùBR

c
ds~x!uu~x!c t~x!u2D 1/2

3S E
]CùBR

c
ds~x!I S P2

Q

t Dc t~x!I 2D 1/2

<ciu~Q!c tiH1I S P2
Q

t Dc tI
H1

,

so that~4.2! is a consequence of Hypothesis 5. h

V. ON THE ADMISSIBILITY CONDITIONS

WhenV50, c0PH2(R3), anduQuc0PL2(R3), by the explicit espression foreitDc0 one has

I S P2
1

t
QDc tI

L2

5
1

t
iQc0iL2,
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and therefore the free case satisfies the admissibility Hypotheses 2–4~with P15P).
Now we come to the interacting case. Hypothesis 3 gives no trouble: it follows from f

general hypotheses on the potential functionV. Indeed by Derezinski@~1997!—Theorem 4.1#

V~2D11!21 is compact ~5.1!

and

E
1

1`

dRI ~2D11!21¹V x [1,1`) S iQi
R D ~2D11!21I

L2,L2

,1`, ~5.2!

imply ~a stronger version of! Hypothesis 3. By Hilsop and Sigal@~1996!, Theorem 14.9#, if for all
e.0 we can decomposeV5V11V2 with V1PL2(R3) and V2PL`(R3), with iV2i`,e, then
~5.1! holds true. If, outside some ball,V is differentiable with its first derivatives decaying
infinity faster thanixi21 then condition~5.2! follows.

As regards Hypothesis 2, by the proof of Carlen@~1985!, lemma 4# one has

I S P2
Q

t Dc tI
L2

<
1

t
i~P2Q!c1iL21

1

t E1

t

ds sics¹ViL2.

By ~5.1! V is infinitesimally (2D)-operator-bounded@see, e.g., Hilsop and Sigal~1996!, Theorem
14.2# and so@see Carlen~1984!, Theorem 2.1~iv!# i(2P2Q)c tiL2,1` for all t if

c0PH2~R3!, uQuc0PL2~R3!.

Therefore Hypothesis 2 follows from

ic t¹ViL2<c~11utu!2s, s.1. ~5.3!

We introduce the notationŝx& for the function (11ixi2)1/2 and ^Q& for the corresponding
multiplication operator.

In the casê Q&s¹VPL`(R3) and ^Q&sc0PL2(R3) for somes, ~5.3! then follows from

i^Q&2se2 i tH^Q&2siL2,L2<c~11utu!2s. ~5.4!

Such a kind of estimates were obtained in many papers about propagation estimates for sol
Schrödinger equations@see e.g., Amreinet al. ~1987!; Cycon and Perry~1984!; Jensen and Kato
~1979!; Jensen, Mourre, and Perry~1984!; and Journe´, Soffer, and Sogge~1991!#. For example, by
Cycon and Perry@~1984!, Theorem 1#, one obtains that Hypothesis 2 holds true under the follo
ing hypotheses:

c0PH2~R3!, ^Q&sc0PL2~R3!, f~H !c05c0 , ~5.5!

V5VS1VL , VSPC1~R3!, VLPCk13~R3!, ~5.6!

iDaVS~x!i<c^x&22k2uau2e, uau<1, ~5.7!

iDaVL~x!i<c^x&2uau2e, uau<k11, ~5.8!

wherefPC`(0,1`) is equal to zero on a~arbitrarily small! neighborhood of zero and

e.0, k>3, 1,s<k, sS 12
1

kD.1 ~5.9!

@s(121/k).3/2 gives Hypothesis 2.1#.
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Note that under these conditions~5.1! and ~5.2! hold true. Moreover, by Hilsop and Siga
@~1996!, Theorem 1# there are no strictly positive eigenvalues and, by Derezin´ski and Gerard
@~1997!, Theorem 4.7.1#, one also has the existence and completeness of the~modified! wave
operators, so that, for every Borel setA,

^c0 ,xA~P1!c0&5E
A
dkuĉout~k!u2.

Thus Hypothesis 4 holds true and in conclusion

~5.5!2~5.9!⇒admissibility.

Remark:By Jensen and Kato@~1979!, Theorem 10.3# the low energy cutoff hypothesis can b
removed when 0 is neither an eigenvalue nor a resonance,e.3 and s.5/2. If 0 is not an
eigenvalue but is a resonance thenc0 has to be orthogonal to the function corresponding to
resonance, otherwise in~5.4! one hass51/2, see Jensen and Kato@~1979!, Theorem 10.5#.

As regards strong admissibility, i.e., Hypothesis 5, the main point in the paper by Amrein
Pearson~1997! was just to find the conditions onc0 and V leading to such an hypothesis. B
using again~5.4! and commutator estimates, by Amrein and Pearson@~1997!, Lemmas 5–8# one
obtains

~5.5!–~5.9! with s.5/3 and e.2/3⇒strong admissibility.

In Amrein and Pearson@~1997!, Sec. 6# it is then shown how to avoid regularity hypotheses on
short-range component ofV. However in this situation the hypotheses on the initial statec0

become less transparent. Indeed there one requiresW1* c05w(H1)W1* c0 , ^Q&sW1* c0PL2(R3),
s.2, wPCc(0,1`), H1ª2D1V1 , V1 the smooth part ofV, W1 the relative wave operato
W1ª limt↑`e2 i tHeitH 1.

We conclude the section by listing the conditions on the couple (c0 ,V) used in other papers
~beside those of Amrein and Pearson! already quoted in order to obtain the flux-across-surfa
theorem@S(R3) denoting the space of functions of rapid decrease#:

~1! In Daumeret al. ~1996! is it assumed thatV50 andc0PS(R3).
~2! In Amrein and Zuleta~1997! it is assumed that̂ Q&scoutPL2(R3), s.5/2, cout5w

(2D)cout, wPCc
`(0,1`), V either has local singularities and decays faster thanixi22 at infinity

or is in C4(R3) and decays faster thanixi21 ~in this caseĉout has to be inCc
4(R3\$0%)). By

Jensen and Nakamura~1992!, when V is smooth, the condition on the outgoing statecout is
implied by a similar one~with s.7/2) onc0 .

~3! In Teufel, Dürr, and Münch-Berndl ~1999! it is assumed thatcoutPS(R3), that V
PL2(R3) is locally Hölder continuous except at a finite number of points and is decaying fa
thanixi24, and that 0 is neither an eigenvalue nor a resonance. No energy cutoff conditionc0

is required.
~4! In Dell’Antonio and Panati~2001! and the results in Teufel, Du¨rr, and Münch-Berndl

~1999! are extended to the case in which 0 is either a zero-energy eigenvalue or resonance
it is assumed thatc0PS(R3), VPL2(R3) is locally Hölder continuous except at a finite numb
of points and is decaying faster thanixi2n for all nPN, ĉoutPC5(R3\$0%) and iDaĉout(k)i
<c^k&232uau2e, uau<5, e.0, iki>Ka.0.

~5! In Panati and Teta~2000! and Dell’Antonio and Panati~2001! the flux-across-surface
theorem is proven in the case in whichc0PS(R3) andH is the self-adjoint operator describing th
Laplacean with a delta point interaction.
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Coherent state triplets and their inner products
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It is shown that ifH is a Hilbert space for a representation of a groupG, then there
are triplets of spaces (FH ,H,F H), in which F H is a space of coherent state or
vector coherent state wave functions andFH is its dual relative to a conveniently
defined measure. It is shown also that there is a sequence of mapsFH→H→F H

which facilitates the construction of the corresponding inner products. After
completion if necessary, the spaces (FH ,H,F H) become isomorphic Hilbert spaces.
It is shown that the inner product forH is often easier to evaluate inFH than inF H.
Thus, we obtain integral expressions for the inner products of coherent state and
vector coherent state representations. These expressions are equivalent to the alge
braic expressions of K-matrix theory, but they are frequently more efficient to
apply. The construction is illustrated by many examples. ©2002 American Insti-
tute of Physics.@DOI: 10.1063/1.1509851#

I. INTRODUCTION

Coherent state representations provide a unification of the various constructions for ind
representations of groups and Lie algebras. The method of induced representations, know
nally as the ‘‘Frobenius method,’’ was introduced into physics by Wigner in two classic pape
the first1 he considered the vibrational spectra of molecules and, in the second,2 he constructed all
the irreducible unitary representations of the Poincare´ group for positive mass particles. Th
theory of induced representations became an important tool in mathematics and physics fol
the developments of Mackey.3 Other inducing constructions4 are given by the Borel–Weil theorem
and Harish-Chandra’s constructions5 of holomorphic discrete series representations.

Coherent states were first defined by Schro¨dinger6 in 1926 as minimal uncertainty wav
packets and used to exhibit the classical behavior of harmonic oscillators within the framew
quantum mechanics. Such applications has been particularly effective in quantum optics.7 They
were given general group-theoretic definitions by Klauder,8 Perelomov,9 and Gilmore.10 Coherent
state representations were introduced by Bargmann11 and Segal12 and defined more generally b
Perelomov13 and Onofri.14 They were subsequently extended to vector-valued representation15,16

It is now known that the inducing constructions are expressed naturally as coherent sta
vector coherent state, representations.17 Moreover, the coherent state perspective adds new insi
and has the advantage of being physically intuitive and easy to apply. In particular, it revea
correspondence between the unitary representations of quantum mechanics and the no
representations of classical mechanics and is closely related to the methods of geo
quantization.18 Thus, coherent state representation theory is of considerable practical and
gogic value.

A scalar coherent state representation is a representation of a group~or Lie algebra! on a space
of complex-valued functions on a coset space. It is a representation induced from a
dimensional representation of a subgroup. The prototype is the well-known Bargmann–
representation11,12of the Heisenberg–Weyl group on a Hilbert space of entire analytic function

a!Electronic mail: rowe@physics.utoronto.ca
54000022-2488/2002/43(11)/5400/39/$19.00 © 2002 American Institute of Physics
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vector coherent state~VCS! representation is a representation of a group~or Lie algebra! on a
space of vector-valued functions. It is a representation induced from a multi-dimensional
sentation of a subgroup. Such representations have been used widely in the construction of
representations of Lie algebras and Lie groups,19–22 in the construction of shift tensors,23 and for
the computation of Clebsch–Gordan coefficients for reducing tensor product representatio24,25

In constructing a coherent state representation, one needs to identify the space of wav
tions and an appropriate inner product. When the group is compact or when it is noncompa
the representation belongs to the discrete series, there are standard methods for determ
suitable volume element relative to which the coherent state wave functions are square inte
and the coherent state representation unitary. The methods are summarized for the holom
representations in the book of Perelomov13 and generalized to VCS representations, by the m
ods of Rowe, Rosensteel and Gilmore.16

Central to the standard construction is the so-called ‘‘resolution of the identity.’’ IfT denotes
a UIR ~unitary irreducible representation! on a Hilbert spaceH of a Lie groupG with invariant
measure dm, then, if u0& is any state inH, it follows by Schur’s lemma that the operator

Î 5E T†~g!u0&^0uT~g!dm~g!, ~1!

when defined, is a multiple of the identity. Thus, with a suitable normalization of the inva
measure, the inner product of two states ofH is expressed

^cuw&5E
G

C* ~g!F~g!dm~g!, ~2!

whereF, defined by

F~g!5^0uT~g!uw&, ~3!

is a coherent state wave function for the stateuw&. In particular situations, these expressio
simplify. For example, ifH is the isotropy subgroup

H5$hPGuT~h!u0&5u0&x~h!%, ~4!

wherex(h) is a phase factor, and ifK is a set of coset representives forH\G so that any elemen
gPG can be factoredh5hk, with hPH andkPK, then the coherent state wave functions can
restricted toK and their inner products defined by

^cuw&5E
K
C* ~k!F~k!dm~k!, ~5!

where dm(k) is the measure onK inherited from the invariant measure onG.
A problem encountered in the practical application of such methods is that the integra

difficult to evaluate and in some cases may not converge. For this reason, an alternative K-
theory has been developed15,20,17 which provides numerically tractable recursive algorithms
constructing orthonormal bases for coherent state and VCS representations. Such bases, w
needed for the explicit construction of the matrices of Lie algebra representations, have
determined by K- matrix methods~reviewed in Ref. 26! for representatives of all the classic
series of Lie algebras.15,19,20This approach works well for the matrices of Lie algebra repres
tations. However, for other purposes, particularly when working at the group level, it is impo
to have explicit integral expressions for inner products. Thus, we consider here integral e
sions for the results of K-matrix theory and show that they are generally easier to derive a
than the standard methods. In this article, we consider coherent state triplets for scalar co
state representations. VCS triplets will be considered in a following paper.
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The new method makes use of overlap kernels such as

S~g1 ,g2!5^0uT~g1!T†~g2!u0&. ~6!

Thus, if a stateuw&PH is represented by a wave functionw defined overG such that

uw&5E T†~g!u0&w~g!dv~g!, ~7!

where dv is any convenient measure on the group, then the inner product of states is give

^cuw&5E E c* ~g1!S~g1 ,g2!w~g2!dv~g1!dv~g2!. ~8!

Likewise, matrix elements of the representation are given by

^cuT~g!uw&5E E c* ~g1!S~g1g,g2!w~g2!dv~g1!dv~g2!. ~9!

The new and old methods are related as follows. From Eqs.~3! and ~7!, it is seen that the
coherent state wave functionF for the stateuw& is related tow by

F~g!5E S~g,g2!w~g2!dv~g2!. ~10!

Moreover, the inner product of two statesuc& and uw& is given by

^cuw&5E c* ~g!F~g!dv~g!. ~11!

Thus, the wave functionsw and F are dual to one another relative to the volume dv. The
advantage of using the space of functions dual to the coherent state wave functions with
product given by Eq.~8! is the freedom to choose the volume dv such that the integrals are eas
to define and evaluate. It will be shown in the following, in a number of representative exam
that there are natural choices in given situations.

The new techniques greatly facilitate the use of algebraic and group structures in the so
of physical problems. Indeed, they were developed following the discovery, while comp
SU~3! Clebsch–Gordan coefficients,25 that it is generally very much easier to compute inn
products by means of Eq.~8! than by using the coherent state inner product~5! directly.

II. SCALAR COHERENT STATE TRIPLETS

A. Finite-dimensional representations

Let T be a unitary irrep~irreducible represesentation! of a real algebraic Lie groupG on a
finite dimensional Hilbert spaceH with inner product of two vectorsuc& and uw& denoted by
^cuw&. Assume there is an extension to a representation ofGc, the complex extension ofG, which
is compatible with the natural complex extension of its Lie algebra. Letu0& be a fixed vector inH
and letN be a subset ofGc, such that the states

$T†~z!u0&;zPN% ~12!

spanH. Then, any stateuc&PH is uniquely defined by the overlaps

C~z!5^0uT~z!uc&, zPN. ~13!
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The complex functionC on N is a coherent-state wave function for the stateuc& and the spaceF H

of such coherent-state wave functions carries a representationG of G isomorphic toT and defined
by

@G~g!C#~z!5^0uT~z!T~g!uc&, gPG. ~14!

For example, ifP,Gc is the isotropy subgroup

P5$pPGcu^0uT~p!uc&5x~p!^0uc&, ;uc&PH%, ~15!

wherex is a character of a one-dimensional irrep ofP, thenN is often chosen to be a set ofP\Gc

coset representatives or some subgroup ofGc complementary toP such that any elementgPG
can be factored asg5pz for somezPN and somepPP.

To identify the spaceF H of coherent state wave functions, consider first a spaceF
5L 2(N,dv), defined by a convenient volume element dv such that the map

F→H:w→uw&5E dv~z!T†~z!u0&w~z! ~16!

is well-defined and surjective ontoH. There is then a sequence of mapsF→H→F H defined by

c→uc&→C5Ŝc, ~17!

with

uc&5E T†~x!u0&c~x!dv~x! ~18!

and

C~z!5^0uT~z!uc&5E S~z,x!c~x!dv~x!5@ Ŝc#~z!, ~19!

where

S~z,x!5^0uT~z!T†~x!u0&. ~20!

Thus, if

F05$wPFu^wuw&50% ~21!

denotes the kernel of the mapF→H andFH is the quotient spaceF/F0 , it follows that the spaces
FH andF H are dual to one another relative to the volume element dv, i.e.,

^wuc&5E w* ~z!~ Ŝc!~z!dv~z!5E w* ~z!C~z!dv~z!. ~22!

It also follows that matrix elements of the representationT are given by

^wuT~g!uc&5E w* ~z!@G~g!Ŝc#~z!dv~z!] 5E w* ~z!@G~g!C#~z!dv~z!. ~23!

We refer to the triple of spaces (FH ,H,F H) as acoherent state triplet.
The spaceF H of coherent state wave functions is clearly a Hilbert space with respect t

inner product inherited fromH. Thus, if the spaceFH is equipped with the inner product
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~w,c!5^wuc&5E E dv~z!w* ~z!S~z,x!c~x!dv~x!, ~24!

the three spaces (FH ,H,F H) become isomorphic to one another. One can then use which
gives the simplest expression in any situation. Examples will be given in the following in w
it is easiest to evaluate inner products inFH . One can then construct an orthonormal basis forFH
and corresponding orthornormal bases forH andF H, e.g., if$cn% is an orthonormal basis forFH ,
then$Fn5Ŝcn% is an orthonormal basis forF H.

The relationship of the above to K-matrix theory26 is obtained by noting that, sinceŜ is a
positive definite operator onFH , it can be factored

Ŝ5K̂K̂†, ~25!

and the inner product forFH expressed

^wuc&5E ~K̂†w!* ~z!~K̂†c!~z!dv~z!. ~26!

Thus, if $cn% is an orthonormal basis forFH , the functions$wn5K̂†cn% satisfy the equation

E wm* ~z!wn~z!dv~z!5dmn , ~27!

and the corresponding orthonormal coherent state basis is given by$Cn5K̂K̂†cn5K̂wn%. Hence,
if $wn% is an orthonormal basis forF, the operatorK̂ maps this basis to an orthonormal bas

$Cn5K̂wn% for F H by annihilating the unwanted states ofF.
The above construction of coherent state wave functions and their inner products has

erful and, for practical applications, very significant attribute of facilitating the constructio
representations in bases which reduce some desired subgroupH,G. Basically what has to be
done is to choose a measure dv for F such that the restriction of the action ofG to the subgroup
H,G is unitary onF. Then,S becomesH-invariant, in the sense that

S~zh,xh!5^0uT~z!T~h!T†~h!T†~x!u0&5S~z,x!, ~28!

andŜ block diagonal in a basis forF that reduces the unitary representation ofH. Specifically, if
F5(akF ak is a decomposition ofF as a direct sum of irreducibleH-invariant subspaces, wher
k labels an irrep ofH anda distinguishes equivalent irreps, and if$wakn% is an orthonormal basis
for F ak, then

^wakmuwbk8n&5E E wakm* ~z!S~z,x!wbk8n~x!dv~z!dv~x!5dkk8dmnSakb . ~29!

It then follows that an orthonormal basis$wakn% for F which diagonalizes the matrixSk , i.e., for
which Sakb5dabKak

2 , defines a corresponding orthonormal basis$Cakn5Kakwakn% of coherent
state wave functions. It is shown explicitly how this is done in the following examples.

The above definitions can be generalized in several ways. For example, the conditionH
should be irreducible can be relaxed. The representationG is then isomorphic to a subrepresent
tion of T. Moreover, if u0& belongs to an irreducible subspace ofH, then the space spanned b
$T†(z)u0&;zPN%, as well as the corresponding coherent state representation, is irreducible

B. Infinite-dimensional representations

The above construction extends easily to infinite-dimensional representations. Howev
though the extension is natural in most situations, there are technical constraints that m
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respected in the choice of stateu0& and subsetN,Gc to ensure that the operators$^0uT(z),z
PN% are well defined and have the properties required to define a coherent state represe
For simplicity, it will be assumed here that the representationT is irreducible and unitary. One
concern is that an infinite-dimensional irrepT of a real groupG on a Hilbert spaceH does not
automatically extend to a representation of the complex groupGc. For, whereas a real Lie algebr
g has a natural extension togc by linearity,

T~z^ X!5zT~X!, for XPg,zPC, ~30!

it can happen, for example, that ifX̂5T(X) is the operator representing an elementXPgc, then

the action of the associated group elementeX̂5T(eX) on a stateuc&PH may not converge to a

normalizable stateeX̂uc&PH. Nevertheless, as we show by examples in the following, it is
quently possible to choose a functional^0u and a subsetN,Gc so that the techniques describe
above can be generalized. In doing this, it is not possible to expect that the representationT can
be extended so thatN acts on all ofH, or that the functional̂0u will be normalizable. Both these
difficulties can be handled by working with a dense subspace ofH. A good example to keep in
mind is the delta function, which is not defined on all ofL 2(R), but does make sense on the den
subspace of continuous functions inL 2(R).

Specifically, what is required is a dense subspaceHD,H of the Hilbert space; a subse
N,Gc; an extension of the representationT from G to operatorsT(z), zPN, which are defined
on HD ; and a linear functional̂0u on the space spanned by$T(z)uc&:uc&PHD ,zPN%. The
extension ofT to N must be compatible at the level of the Lie algebra with Eq.~30! and have the
property that

$^0uT~z!;zPN% ~31!

are well-defined functionals onHD and are asufficient set, in the sense that anyuc&PHD is
uniquely defined by the overlaps

C~z!5^0uT~z!uc&, zPN. ~32!

The complex functionC on N is then a coherent-state wave function for the stateuc&. When the
subspaceHD is invariant under the~real! group action, then the spaceF HD of all such coherent-
state wave functions carries a representationG of G, isomorphic toT, defined by

@G~g!C#~z!5^0uT~z!T~g!uc&, gPG. ~33!

However, sometimes it will be convenient to choose a dense subspace that is notG-invariant. The
group action, defined by Eq.~33!, is then extended to theG-invariant completion of the space o
coherent state wave functions relative to the inner product inherited fromH.

The final step is to generalize the map~16!. Since^0u is in general not an element ofH ~i.e.,
not normalizable!, it is necessary to choose the measure and the space of functions car
Specifically, what is required is a spaceF of functions onN and a measure dv on N such that, for
everywPF, the integral

E dv~z!w~z!* ^0uT~z! ~34!

converges to an element ofHD* , the dual of the dense subspaceHD of H for which coherent state
wave functions are defined. This integral then gives a map

F→HD* :w→^wu5E dv~z!w~z!* ^0uT~z! ~35!
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which is well-defined for all elements ofF. We also require that the image of this map conta
HD and writeFD for the space of all elements ofF which the map takes to elements ofHD .

There is now a sequence of mapsFD→HD→F HD for which

c→uc&→C5Ŝc, ~36!

with

uc&5E T†~x!u0&c~x!dv~x! ~37!

and

C~z!5@ Ŝc#~z!5E S~z,x!c~x!dv~x!, ~38!

where

S~z,x!c~x!5^0uT~z!T†~x!u0&. ~39!

Let

F05$wPFu^wuw&50% ~40!

denote the kernel of the mapF→HD* given in~35!, i.e.,F0 is the set of all functions inF that map
to functionals that are zero on all ofHD , and defineFH to be the completion of the spaceFD /F0 ,
relative to the inner product

~w,c!5^wuc&5E E dv~z!w* ~z!S~z,x!c~x!dv~x!, ~41!

where

S~z,x!5^0uT~z!T†~x!u0&. ~42!

ThenFH is a Hilbert space isomorphic toH and, ifF H is the completion of the space of cohere
state wave functions relative to the inner product inherited fromH, it too is isomorphic toH.

Finally observe that, if the mapF→HD* takesw→^wu and if a stateuc&PHD has coherent
state wave functionCPF HD, then

^wuc&5E w* ~z!~ Ŝc!~z!dv~z!5E w~z!* C~z!dv~z!. ~43!

It follows that FH andF H are in duality relative to the volume element dv. It also follows that
matrix elements of the representationT are given by

^wuT~g!uc&5E w* ~z!@G~g!Ŝc#~z!dv~z!] 5E w* ~z!@G~g!C#~z!dv~z!. ~44!

We again refer to the triple of spaces (FH ,H,F H) as acoherent state triplet.

III. SIMPLE EXAMPLES

The following well-known examples are developed in some detail as prototypes of
classes of application of the triplets method: holomorphic representations of compact an
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compact semisimple Lie groups; nonholomorphic representations induced from a noncan
subgroup; and Mackey type representations3 of a semidirect product group induced from a
Abelian normal subgroup.

A. SU„2…

Let $J0 ,J1 ,J2% with commutation relations

@J1 ,J2#52J0 , @J0 ,J6#56J6 , ~45!

be a standard basis for the Lie algebrasu(2)c. Let Tj :Jk→ Ĵk be a UIR ~unitary irreducible
representation! of SU~2! of angular momentumj on a ~finite-dimensional! Hilbert spaceHj with
~normalized! highest weight stateu j j & satisfying

Ĵ1u j j &50, Ĵ0u j j &5 j u j j &. ~46!

With fixed stateu0& set equal to the highest weight stateu j j &, a natural choice ofN,SU(2)c

is the nilpotent subgroup

N5$ezJ1;zPC%, ~47!

and a convenient measure dv on N is the Bargmann measure, relative to which the polynom
functions$wn%, with wn(z)5zn/An!, satisfy the orthogonality relationship

E wm* ~z!wn~z!dv~z!5dmn . ~48!

The spaceF5L 2(N,dv) is then the Bargmann space11 of entire analytic functions ofz that are
square integrable relative to dv.

The overlap kernel,S(z,x)5^0uezĴ1ex* Ĵ2u0&, is evaluated by noting that almost any SL(2,C)
matrix has Gauss factorization

S a b

c dD 5S 1 0

x 1D S a 0

0 a21D S 1 z

0 1D 5exJ2a2J0ezJ1 ~49!

with z5b/a andx5c/a. It follows that, as elements of SL(2,C),

ezJ1ex* J25S 11zx* z

x* 1D 5eax* J2~11zx* !2J0eazJ1, ~50!

with a5(11zx* )21. Thus, the overlap kernel is given by

S~z,x!5^0u~11zx* !2Ĵ0u0&5~11zx* !2 j ~51!

and has expansion

S~z,x!5 (
n50

2 j
~2 j !!

~2 j 2n!!n!
~zx* !n5 (

n50

2 j

Kn
2wn~z!wn* ~x!, ~52!

with

Kn
25

~2 j !!

~2 j 2n!!
. ~53!
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The spaceFj is now defined as the Hilbert space of holomorphic functions of a com
variablez with inner product

^wuc&5E E c* ~z!S~z,x!w~x!dv~z!dv~x!. ~54!

With respect to thisFj inner product, the overlaps of the functions$wn% are given by

^wmuwn&5dmn3H Kn
2 for n<2 j ,

0 for n.2 j .
~55!

Thus, with the substitutionn5 j 2m ~to conform to convention!, and choosing the positive squa
root of Kn

2 , an orthonormal basis forFj is given by the set of holomorphic functions

H c jm~z!5
1

K j 2m
w j 2m~z!5A ~ j 1m!!

~2 j !! ~ j 2m!!
zj 2m;m52 j ,...,j J . ~56!

The mapFj→Hj , in which

c jm→u jm&5E ez* Ĵ2u0&c jm~z!dv~z!, ~57!

and the coherent-state mapHj→F j , given by

u jm&→C jm~z!5^0uezĴ1u jm&5E ^0uezĴ1ex* Ĵ2u0&c jm~x!dv~x!, ~58!

are isomorphisms. Thus, orthonormal bases forHj andF j , corresponding to the basis~56! for Fj ,
are given by

H u jm&5
1

K j 2m
uw j 2m&5A ~ j 1m!!

~2 j !! ~ j 2m!!
~ Ĵ2! j 2mu0&; m52 j ,...,j J , ~59!

H C jm~z!5K j 2mw j 2m~z!5A ~2 j !!

~ j 1m!! ~ j 2m!!
zj 2m; m52 j ,...,j J , ~60!

respectively.
The coherent state representationG j of SU~2! on F j is defined by

@G j~g!C#~z!5^0uezĴ1Tj~g!uc& ~61!

@cf. Eq. ~14!#. From the identity

ezJ1S a b

2b* a* D 5S a2zb* b1za*

2b* a* D 5e2ab* J2~a2b* z!2J0ea(b1a* z)J1 ~62!

with a5(a2b* z)21, the action ofG j (g) is determined to be

@G j~g!C#~z!5~a2b* z!2 jC~z•g!, ~63!

with

g5S a b

2b* a* D , z•g5
b1a* z

a2b* z
. ~64!
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Finally, since the inner product can be written in the form^cuw&5*c* (z)F(z)dv(z), matrix
elements of the representationT are given by

^cuTj~g!uw&5E c* ~z!@G j~g!F#~z!dv~z!, ~65!

where w, uw&, and F are related by theFj→Hj→F j maps given by Eqs.~57! and ~58!. For
example, settingc5cosb/2 ands5sinb/2 and

g5S c 2s

s c D , ~66!

one obtains, from Eq.~65!, an expression for the Wigner function

dmn
j ~b!5^ jmuTj~g!u jn&5E c j 2m* ~z!@G j~g!C j 2n#~z!dv~z!

5
K j 2n

K j 2m
E w j 2m* ~z!@G j~g!w j 2n#~z!dv~z!

5
K j 2n

K j 2m
E w j 2m* ~z!~c1sz! j 1nw j 2n~2s1cz!dv~z!, ~67!

which integrates to the standard result.
The coherent state representation of thesu(2) Lie algebra, defined by

@G j~Jk!C#~z!5^ j j uezĴ1Ĵkuc&, ~68!

yields the known expressions

G j~J1!5
d

dz
, G j~J0!5 j 2z

d

dz
, G j~J2!52 jz2z2

d

dz
. ~69!

Acting on the orthonormal coherent state basis wave functions of Eq.~60!, they give the expected
results

G j~J0!C jm5mC jm ,
~70!

G j~J6!C jm5A~ j 7m!~ j 6m11!C j ,m61 .

The above expressions may be compared to those of the standard holomorphic represe
of SU~2!. The latter are identical to the coherent state representations but specify the inner p
for the Hilbert spaceF j by

^cuw&5
2 j 11

p E C* ~z!F~z!

~11uzu2!2 j 12 d2z, ~71!

where the integral is over the complex plane with d2z5dxdy andz5x1 iy ; cf. Ref. 13 and the
Appendix. Thus, whereasF j is a space of holomorphic functions with norm defined by this in
product, the spaceFj , isomorphic toF j , is the space of holomorphic functions with inner produ

^cuw&5E E c* ~z!~11zx* !2 jw~x!dv~z!dv~x!. ~72!
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The latter integrals are easier to evaluate and by regardingFj andF j as mutual duals, we have th
still simpler hybrid expression

^cuw&5E c* ~z!F~z!dv~z!. ~73!

B. SU„1,1…

Let $J0 ,J1 ,J2% with commutation relations

@J2 ,J1#52J0 , @J0 ,J6#56J6 , ~74!

be a standard basis for the Lie algebrasu(1,1)c. Let Tl be a UIR~unitary irreducible represen
tation! of SU~1,1! of lowest weightl on an infinite-dimensional Hilbert spaceHl, wherel is a
positive integer, defined such that, ifu0& is the lowest weight state, then

Ĵ2u0&50, 2Ĵ0u0&5lu0&, ~75!

whereĴk5Tl(Jk).
Gauss factorization of almost any SL(2,C) matrix gives

S a b

c dD 5S 1 x

0 1D S d21 0

0 dD S 1 0

z 1D 5e2xJ1~d!22J0ezJ2, ~76!

with x5b/d andz5c/d. This implies that, ifg is the SU~1,1! matrix

g5S a b

b* a* D with aa* 2bb* 51, ~77!

thenTl(g) can be expanded

Tl~g!5e2xĴ1~a* !22Ĵ0ezĴ2 ~78!

and

^0uTl~g!uc&5~a* !2l^0uezĴ2uc&, ~79!

with x5b/a* and z5b* /a* . Thus, a natural choice ofN,SU(1,1)c>SL(2,R)c is the Borel
subgroup

N5$ezJ2;zPC%. ~80!

With this choice ofN, the functionals

$^0uezĴ2;zPC% ~81!

are well-defined on the dense subspaceHD of finite linear combinations of the weight vectors~the
so-calledK-finite vectors!. Thus, a coherent state wave function for a stateuc&PHD is defined by

C~z!5^0uezĴ2uc&. ~82!

These coherent state wave functions are polynomials inz.
Let F denote the Bargmann Hilbert space of holomorphic functions overC with orthonormal

~polynomial! basis$wn ;n50,1,2,...%, wherewn(z)5zn/An!. Now observe that the map
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w→^wu5E dv~z!w~z!* ^0uezĴ2 ~83!

takes any functionwPF to a well-defined functional onHD . The image of thisF→HD* map
containsHD . Moreover,FD,F is identified as the dense subspace of finite polynomials. Thu
F l5F HD is the space of coherent state wave functions for states inHD , then composition of the
mapsFD→HD andHD→F HD gives the map

Ŝ:FD→F HD;c°C5Ŝc, ~84!

with

C~z!5E S~z,x!c~x!dv~x!, ~85!

and

S~z,x!5^0uezĴ2ex* Ĵ1u0&. ~86!

Claim: The overlap integralS(z,x) is the distribution onFD ,

S~z,x!5(
n

`

Kn
2wn~z!wn* ~x!, ~87!

with

Kn
25

~l1n21!!

~l21!!
. ~88!

Proof: First observe that, from its definition~86!, S(z,x) is holomorphic inz andx* . Thus, it
is sufficient to prove the claim forz and x* lying in some open domain ofC. In fact, the
SU(1,1)c5SL(2,C) expansion

ezJ2ex* J15S 1 0

z 1D S 1 2x*

0 1 D 5S 1 2x*

z 12zx* D ~89!

5eax* J1~a!2J0eazJ2, ~90!

with a5(12zx* )21, together with the assumption that

Tl~eax* J1~12zx* !22J0eazJ2!5eax* Ĵ1~12zx* !22Ĵ0eazĴ2, ~91!

gives the correct result foruzx* u,1:

S~z,x!5^0u~12zx* !22Ĵ0u0&5~12zx* !2l5(
n

`

Kn
2wn~z!wn* ~x!, for uzx* u,1. ~92!

However, this result could be questioned because the representationTl of SU~1,1! does not in
general extend to all of SL(2,C), so applying it to elements of the complex group is not,
general, justified; an infinite-dimensional irrep of SL(2,C) does not remain irreducible on restric
tion to SU~1,1!. Nevertheless, Eq.~92! is valid for uzu2,1 and uxu2,1, because there exis
matrices
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Z1~z* !5S a21 az*

0 a D , Z2~x!5S b21 0

2b* x bD , ~93!

with uau25(12uzu2)21 and ubu25(12uxu2)21, such that

Z1~z* !ezJ25S a21 a* z*

0 a D S 1 0

z 1D 5S a* a* z*

az a D , ~94!

ex* J1Z2~x!5S 1 2x*

0 1 D S b21 0

2b* x bD 5S b* 2bx*

2b* x b D ~95!

are elements of the real Lie group SU~1,1!. Factorization of the product of real SU~1,1! group
elements

Z1~z* !ezJ2ex* J1Z2~x!5Z1~z* !eax* J1~a!2J0eazJ2Z2~x!, ~96!

with a5(12zx* )21, then gives the result~92! and confirms the validity of the claim. Q.E.D
For polynomial functionsc, w, the inner product

^cuw&5E E c* ~z!S~z,x!w~x!dv~z!dv~x!5(
n

Kn
2E c* ~z!wn~z!dv~z!E wn* ~x!w~x!dv~x!

~97!

is now well-defined. In particular, the wave functions$wn% have inner productŝ wmuwn&
5dmnKn

2 and norms that are nonvanishing for all integersn>0. Thus, the Hilbert spaceFl ,
isomorphic toHl, is the completion of the space of holomorphic polynomials with respect to
inner product~97!. Relative to this inner product, the normalized functions

H cln~z!5
1

Kn
wn~z!5A ~l21!!

~l1n21!!n!
zn; n50,1,2,...J ~98!

form an orthonormal basis forFl .
The ~densely defined! mapFl→Hl, with

cln→uln&5E ez* Ĵ1u0&cln~z!dv~z!, ~99!

and the coherent state mapHl→F l;uln&→Cln , with

Cln~z!5^0uezĴ2uln&5E ^0uezĴ2ex* Ĵ1u0&cln~x!dv~x!5E S~z,x!cln~x!dv~x!, ~100!

define corresponding orthonormal bases

H uln&5
1

Kn
uwn&5A ~l21!!

~l1n21!!n!
~ Ĵ1!nu0&; n50,1,2,...J , ~101!

H Cln~z!5Knwn~z!5A~l1n21!!

~l21!!n!
zn; n50,1,2,...J , ~102!

for Hl andF l, respectively.
Proceeding as for SU~2!, we find that the coherent state representationGl of SU~1,1! acts on

C(z)PF l by
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@Gl~g!C#~z!5~a* 1bz!2lC~z•g!, ~103!

with

g5S a b

b* a* D , z•g5
b* 1az

a* 1bz
. ~104!

Matrices of the representationGl are easily evaluated in the basis~101!. For example, for

g5S c s

s cD , c5coshb/2, s5sinhb/2, ~105!

an SU~1,1! Wigner function is given by

^lmuTl~g!uln&5E clm* ~z!@Gl~g!Cln#~z!dv~z!

5
Kn

Km
E wm* ~z!@Gl~g!wn#~z!dv~z!

5A ~l1n21!!

~l1m21!!m!n! E ~z* !m~s1cz!n~c1sz!2(l1n)dv~z!

5A m!n!

~l1m21!! ~l1n21!! (
n50

m

~21!n
~l1n1n21!!

~n2m1n!! ~m2n!!n!

3~coshb/2!m2n2l22n~sinhb/2!n2m12n, ~106!

cf. expressions obtained by Dunne27 and Ui.28

Coherent state representations of thesu(1,1) Lie algebra have the known expressions

Gl~J1!5lz1z2
d

dz
, Gl~J0!5

1

2
l1z

d

dz
, Gl~J2!5

d

dz
. ~107!

Acting on the orthonormal basis wave functions of Eq.~102!, they give

Gl~J0!Cln5 1
2 ~l12n!Cln ,

Gl~J1!Cln5A~l1n!~n11! Cl,n11 , ~108!

Gl~J2!Cl,n5A~l1n21!n Cl,n21 .

The inner product forF l is known to be given, for a holomorphic discrete series repres
tation ~for which l is an integer greater than 1!, by

^cuw&5
l21

p E
uzu,1

C* ~z!F~z!~12uzu2!l22d2z, ~109!

whereC5Ŝc, F5Ŝw and the integral is over the interior of the unit disk.27 When l.1, this
inner product is identical to that given forFl by Eq.~97!. However, the latter is easier to evaluat
Moreover, unlike the integral of Eq.~109!, it is defined for all non-negative values ofl and gives
results, not only for SU~1,1!, but also for its universal covering group.
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C. The semidirect product group †R6
‡SO„3…

Let G be the semidirect product@R6#SO(3) of an Abelian normal subgroupR6, isomorphic to
the additive group of real symmetric 333 matrices, and the rotation group SO~3!. Elements of
@R6#SO(3) are pairs of group elements,$(Q,V);QPR6,VPSO(3)% with product

~Q,V!+~Q8,V8!5~Q1VQ8Ṽ,VV8!, ~110!

whereṼ5V21 is the transpose ofV. With Q expressed as a sumQ5( i j Qi j Ii j , where$Ii j % is a
basis of real symmetric matrices, this group is interpreted as the dynamical group of a ro
which the corresponding Lie algebra is spanned by moments$Ii j % of an inertia tensorI and
components$Lk% of angular momentum@infinitesimal generators of SO~3!#.

Let T be a UIR ofG on a Hilbert spaceH. The coherent-state construction of such an irr
mimics Mackey’s induction.3 The construction starts with a one-dimensional unitary irrep of
R6 subalgebra defined by a so-calledintrinsic inertia tensorĪ which assigns numerical valuesĪi j

to the moments of inertiaIi j ; i.e.,

Ī:Ii j →Īi j 5d i j Īi . ~111!

A corresponding one-dimensional unitary irrep of theR6 group is then defined by

Q→x Ī~Q!5eiTr(QĪ). ~112!

Now let

D5$vPSO~3!uvĪṽ5Ī%, ~113!

with (vĪṽ) i j 5(klv ikĪklv j l , denote the isotropy subgroup of rotations that leave the intri
moments of inertia invariant. To be specific, we take the intrinsic moments of inertia (Ī1 ,Ī2 ,Ī3)
to be positive and distinct. ThenD is the discrete groupD2 comprising the four rotations~param-
etrized in terms of Euler angles!:

v1;~0,0,0!, v2;~0,p,0!, v3;~p,0,0!, v45v3v2;~p,p,0!. ~114!

This group has four irreps, all of which are one-dimensional. Thus, an irrepr Ī,« of @R6#D2 is
defined by

~Q,v i !→r Ī,«~Q,v i !5x Ī~Q!«~v i !, i 51,...,4, ~115!

with «(v1)51, «(v2)561, «(v3)561 and«(v4)5«(v2)«(v3).
Let ^Ī,«u be a functional on a suitably defined dense subspaceHD of H which picks outa

particular irrep of the subgroup@R6#D2,@R6#SO(3) in the sense that

^Ī,«uT~Q,v!uc&5x Ī~Q!«~v!^Ī,«uc&, ;uc&PHD , ;vPD2 . ~116!

A suitable dense subspaceHD is the SO~3!-invariant space ofK-finite vectors inH comprising all
states that are finite linear combinations of vectors from a multiplicity of SO~3! irreps. A coherent
state wave functionC for a vectoruc&PHD is then defined by

C~V!5^Ī,«uR̂~V!uc&. ~117!

The space of such wave functions,F HD, carries a representation of@R6#SO(3) defined by

@G~Q,V!C#~V8!5^Ī,«uT~V8QṼ8,V8V!uc&5x Ī~V8QṼ8!C~V8V!. ~118!
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The action ofG defined by Eq.~118! is unitary onL 2(SO(3)).Thus, we infer from Eq.~116! that
the coherent state representation is realized on an irreducible subspace ofL 2(SO(3)) that satisfies
the constraint

C~vV!5«~v!C~V!, ;vPD2 . ~119!

To construct the triplet, we start with an orthonormal basis for the spaceF5L 2(SO(3))given
by functions

wKLM5A2L11

8p2 D KM
L , ~120!

whereD KM
L is an SO~3! Wigner function. Consider the mapF* →HD* which sends

wKLM* °^KLM u5A2L11

8p2 E dVD KM
L ~V!* ^Ī,«uR~V!. ~121!

As a functional onHD , ^KLM u is nonzero on the finite-dimensional subspace consisting of co
of the SO~3! irrep with angular momentumL, but it is zero on the orthogonal complement of th
space. In particular, it can be regarded as a linear functional on a finite-dimensional spac
must actually be given by a vector in that space. The inner products of such vectors inH are then
expressed

^K8L8M 8uKLM &5dL8LdM8M

2L11

8p2 E E D K8M
L

~V8!* ^Ī,«uR̂~V8V21!uĪ,«&D KM
L ~V!dVdV8

5dL8LdM8ME D K8K
L

~V!* ^Ī,«uR̂~V!uĪ,«&dV. ~122!

Thus, we obtain a densely defined sequence of mapsFD→HD→F HD in which
wKLM°uKLM &°FKLM , where the coherent state wave functionFKLM for the stateuKLM & is
given by

FKLM~V!5^Ī,«uR̂~V!uKLM &5E S~VṼ8!wKLM~V8!dV8 ~123!

andS is the functional onF given by

S~V!5^Ī,«uR̂~V!uĪ,«&. ~124!

Thus, the inner product forH is expressed in terms of the$uKLM &% basis,

^K8L8M 8uKLM &5E wK8L8M8
* ~V!FKLM~V!dV. ~125!

Clearly the functionswKLM andFKLM are dual representations of the state vectoruKLM & relative
to the measure dV.

The norm of the functional̂Ī,«u, and hence ofS, is arbitrary. The essential requirement
that the coherent state functions$FKLM% obtained from all basis functions$wKLM% of F should
satisfy the constraint condition of Eq.~119!. Thus,S must satisfy the equation

S~vV!5«~v!S~V!, ;vPD2. ~126!

From its definition, Eq.~124!, S also satisfies the equation
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~VĪṼ!S~V!5ĪS~V!, ;VPSO~3!. ~127!

Thus, to within an arbitrary norm factor, it has the unique solution

S~V!5
1

4 (
vPD2

«~v!d~V,v!. ~128!

With this normalization,

FKLM~V!5A2L11

8p2 E dV8S~VṼ8!D KM
L ~V8!

5A2L11

8p2

~11~21!K«3!

4
~D KM

L ~V!1~21!L1K«2D 2K,M
L ~V!!, ~129!

where«25«(v2) and«35«(v3).
It is seen that the states$uKLM &% are not all linearly independent. In particular, the wa

functions FKLM with (21)K«(v3)521 vanish as do those withK50 and (21)L«2521.
Moreover, the wave functionsF6KLM differ by only a phase factor. Thus, it is appropriate
restrict to labelsKLM with K>0 and nonvanishing wave functionsFKLM . The subspace ofF
spanned by the corresponding restricted basis functions$wKLM% is then isomorphic, as a vecto
space, to the space obtained by factoring out the kernel of the mapF→H.

With uKLM & restricted in this way, the overlaps are given by

^K8L8M 8uKLM &5E wK8L8M8
* ~V!FKLM~V!dV5

1

2
~11dK,0!dL8LdM8MdK8K . ~130!

The triplet of Hilbert spacesFH;H;F H is then defined with orthornormal bases given, resp
tively, by

H cKLM5A 2L11

4p2~11dK,0!
D KM

L ; K>0J ,

HA 2

~11dK,0!
uKLM &; K>0J , ~131!

H CKLM5A 2L11

16p2~11dK,0!
@D KM

L 1«2~21!L1KD 2K,M
L #; K>0J ,

with K restricted to even or odd integer values according as«3561 and withL restricted to even
or odd integer values whenK50 according as«2561.

These wave functions satisfy the orthogonality relations

E cKLM* ~V!cK8L8M8dV5dLL8dKK8dMM8 . ~132!

In addition, with the chosen norm forS(V), the coherent state wave functions on their own a
satisfy

E CKLM* ~V!cK8L8M8dV5dLL8dKK8dMM8 . ~133!

This is a special case that arises because the appropriate volume element for the Hilbert s
coherent-state wave functions for the rotor group happens to be the SO~3!-invariant volume. A
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similar result occurs for the Heisenberg–Weyl group with the Bargmann measure. It is nev
less useful to see this special case in the context of the general construction which can be
when the end results are less easily anticipated. The following derivation of SU~3! irreps in an
SO~3! basis is an example for which the construction is used with considerable advantage

D. SU„3…¤SO„3…

Let ulm& denote a highest weight state for an SU~3! irrep T(lm) of highest weight~l,m! with
respect to the diagonal Cartan subgroup. It is known that the Hilbert spaceH(lm) for such an irrep
is spanned by the set of states generated by rotating the stateulm& with the elements of the
subgroup SO(3),SU(3).29 Thus, we may takeN to be SO~3! and consider the coherent sta
representation in which a vectoruc&PH(lm) is represented by a wave function over SO~3! with
values

C~V!5^lmuR̂~V!uc&, VPSO~3!, ~134!

whereR̂ is the restriction ofT(lm) to the SO(3),SU(3) subgroup.
Let F5L 2(SO(3)) be thesquare integrable functions on SO~3! relative to its invariant

measure dV. The mapF→H(lm) is then

w→uw&5E R̂~V21!ulm&w~V!dV ~135!

and the spaceF(lm) isomorphic toH(lm) is defined by the inner product

~c,w!5^cuw&5E E c* ~V8!S~V8Ṽ!w~V!dV8dV, ~136!

where

S~V!5^lmuR̂~V!ulm&. ~137!

The overlap kernelS is easily evaluated by considering a realization of the SU~3! irrep in a
Bargmann space11 in which the highest weight stateulm& is represented by the wave functionflm

with values

flm~r ,r 8!}zlYm, ~138!

where z is a component of a complex vectorr[(x,y,z) and Y is a component ofr3r 8
[(X,Y,Z). Thus, with

@R̂~V!flm#~r ,r 8!5flm~rV,r 8V!, ~139!

andV[(a,b,g) parametrized by Euler angles,S is given by30

S~V!5^lmuR̂~V!ulm&5~cosb!l~cosa cosg2sina cosb sing!m. ~140!

From the Bargmann representation, it is also apparent that the stateulm& spans a one-
dimensional representation of theD2 subgroup of SO~3! in which, in the notations of Eq.~114!,

R̂~v!ulm&5«~v!ulm&, vPD2 , ~141!

with

«~v2!5~21!l, «~v3!5~21!m. ~142!
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Thus, the SU~3! coherent state wave functions satisfy the symmetry property

C~vV!5«~v!C~V!, vPD2 . ~143!

According to the Peter–Weyl theorem,31 a basis forF5L 2(SO(3)) isgiven by the functions

wKLM5A2L11

8p2 D KM
L , ~144!

whereD KM
L is an SO~3! Wigner ~matrix coefficient! function. These functions satisfy

E wKLM* ~V!wK8L8M8~V!dV5dLL8dKK8dMM8 . ~145!

The mapF→H(lm) then gives

wKLM→uKLM &5A2L11

8p2 E R̂~V21!ulm&D KM
L ~V!dV. ~146!

A maximal linearly independent subset of the states$uKLM &% comprises a so-calledElliott
basisfor H(lm). From Eq.~136!, the overlaps of Elliott states are given by

^K8L8M 8uKLM &5dL8LdM8M

2L11

8p2 E E D K8M
L

~V8!* S~V8Ṽ!D KM
L ~V!dV8dV

5dL8LdM8ME D K8K
L

~V!* S~V!dV. ~147!

Let S L be the SO~3!-invariant matrix of overlaps with elements

S K8K
L

5^K8LM uKLM &5E D K8K
L

~V!* S~V!dV. ~148!

From the symmetry property~143!, it follows that

S K8K
L

5~21!m1K8S K8K
L

5~21!m1KS K8K
L

5~21!l1L1K8S 2K8,K
L

5~21!l1L1KS K8,2K
L .

~149!

Thus,S K8K
L is zero unless (21)K85(21)K5(21)m and, forK or K850, unless (21)l1L51.

Then, with $uKLM &% restricted to a maximal linearly independent set of states with non
norms, the matrixS L is Hermitian positive definite and can be expressed as a producS L

5K(L)K †(L); i.e.,

S K8K
L

5(
g

KK8g~L !KKg* ~L !. ~150!

Now, if we defineK̄(L) to be the inverse of the matrixK †(L), so that

(
K>0

KKb* ~L !K̄Ka~L !5dab , ~151!

then the transformed basis states,

uaLM &5(
K

uKLM &K̄Ka~L !, ~152!
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satisfy

^bL8M 8uaLM &5dLL8dMM8 (
K8Kg

K̄K8b
* ~L !KK8g~L !KKg* ~L !K̄Ka~L !5dLL8dMM8dba ~153!

and form an orthonormal basis.
Coherent state wave functions corresponding to the nonorthonormal$uKLM &% states are given

by

FKLM~V8!5@ ŜwKLM#~V8!5E S~V8Ṽ!wKLM~V!dV. ~154!

Therefore, the coefficients in the expansion

FKLM~V!5(
K8

aK8~KL !D K8M
L

~V! ~155!

are given by

aK8~KL !5
2L11

8p2 E D K8M
L

~V!* FKLM~V!dV5A2L11

8p2 E D K8K
L

~V!* S~V!dV. ~156!

It follows that

aK8~KL !5A2L11

8p2 S K8K
L ,

~157!
a2K8~KL !5~21!l1L1K8aK8~KL !,

and

FKLM~V!5 (
K8>0

A2L11

8p2 @D K8M
L

~V!1~21!l1L1K8D 2K8M
L

~V!#
1

11dK80
S K8K

L . ~158!

Because of the symmetries of theS matrix, given by Eq.~149!, these wave functions vanish unle
(21)m1K51 and, forK50, unless (21)l1L51. Furthermore, the wave functionsF6KLM differ
by only a phase factor. Thus, withL andK restricted to a subset of values such that the matr
S L are positive definite~so that no linear combinations of the wave functionsFKLM vanish!, an
orthornormal basis forFlm is given by wave functions

cKLM~V!5 (
K>0

K̄Ka~L !wKLM~V!5A2L11

8p2 (
K>0

K̄Ka~L !D KM
L ~V! ~159!

and a corresponding orthonormal basis of coherent state wave functions is given by

CaLM~V!5 (
K>0

K̄Ka~L !FKLM~V!

5 (
K>0

A2L11

8p2

KKa~L !

11dK0
@D KM

L ~V!1~21!l1L1KD 2KM
L ~V!#. ~160!

These expressions are in agreement with known results.32,25An explicit expression for the overlap
kernelS K8K

L is given in Ref. 25.
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For a multiplicity-free representation, theK matrices reduce to simple numbers. For examp
for an irrep of highest weight (l,m50),

uK~L !u25^LM uLM &54p2E
0

p

d00
L ~b!~cosb!l sinbdb. ~161!

The identity

E
0

p

d00
L ~b!~cosb!l sinbdb5E

0

1

PL~x!xldx5
l!

~l2L !!! ~l1L11!!!
, ~162!

inferrred from Eq. 8.14.15 of Abramowitz and Stegun,33 then gives

uK~L !u254p2
l!

~l2L !!! ~l1L11!!!
@11~21!l1L#. ~163!

The corresponding ratios

U K~L !

K~L22!
U2

5
l2L12

l1L11
~164!

agree with those derived previously32 by requiring the representation to be unitary.
The coherent state representation of the su~3! Lie algbra is relatively simple and given ex

plicitly in Ref. 32. The action of a group elementgPSU(3) on a coherent state wave functionC,
defined by

@G~g!C#~V!5^lmuTlm~Vg!uc&, VPSO~3!,SU~3!, ~165!

is more complicated. It can be obtained from the generalized Iwasawa factorization for wh

g5Z~g!v~g!, ~166!

whereZ(g) is a lower triangular matrix of the form

Z~g!5S z11~g! 0 0

z21~g! z22~g! 0

z31~g! z32~g! z33~g!
D ~167!

andv(g)PSO(3,C) is a complex orthogonal matrix. It follows that

@G~g!C#~V!5~z11~Vg!!l1m~z22~Vg!!mC~v~Vg!!, ~168!

where

z11
2 ~g!5(

i
g1i

2 ,

~169!

z11
2 ~g!z22

2 ~g!5(
i

g1i
2 (

j
g2 j

2 2(
i

~g1ig2i !
2.

The above techniques for constructing orthornormal bases were used effectively in Ref.
computing SU~3! Clebsch-Gordan in an SO~3!-coupled basis.
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IV. SCALAR COHERENT-STATE REPRESENTATIONS OF SEMISIMPLE LIE GROUPS

There are four classes of scalar holomorphic discrete series representations of semisim
groups all of which are expressible as coherent state representations over classical domain
are constructed when a coherent-state representation of a semisimple Lie groupG is induced from
a one-dimensional irrepr of a subgroupK,G for which G/K is a Hermitian symmetric space
These spaces have been studied in depth by Helgason.34 The classical domains which we discu
here were identified by Cartan.35 The associated coherent state representations have been su
rized by Hua36 and Perelomov.13

Hermitian symmetric spaces34 are easily identified at the Lie algebra level. IfG is semisimple
and H is a reductive subgroup ofG, thenG/H is a Hermitian symmetric space if the comple
extensiongc of the Lie algebra ofG has decomposition

gc5hc1n11n2 , ~170!

such thatgc andhc have a Cartan subalgebra in common,n6 are Abelian, and

@C,A#Pn1 , @C,B#Pn2 , @A,B#Phc, ~171!

for all APn1 , BPn2 , andCPhc. There are then holomorphic representations ofG with highest
weight states which carry one-dimensional irreps ofH. These representations have simple expr
sions as scalar coherent state representations.

A. SU„p¿q … and SU „p ,q …

The Lie algebras of SU(p1q) and SU(p,q) have a common complex extensionsu(n)c

;An215sl(n,C) with n5p1q. The latter is spanned by traceless linear combinations of
matrices$Cab%, whereCab is ann3n matrix with entries (Cab) i j 5da idb j .

Let Ts denote an irrep ofAn21 , with Ts(Cab)5Ĉab , on a Hilbert spaceHs having highest
weight stateu0& and highest weight (s...s;0...0) defined by

Ĉinu0&5Ĉi j u0&5Ĉmnu0&50,
~172!

Ĉii u0&5su0&, Ĉnnu0&50, i , j ,m,n,

wherei and j run over the range 1,...,p andm andn run over the rangep11,...,n5p1q. If l is
a positive integer, then, whens51l, this irrep integrates to a unitary irrep of SU(p1q); it
integrates to a unitary irrep of SU(p,q) whens52l. In both cases, the subgroup of elemen
that leave the highest weight stateu0& invariant ~to within a phase factor! is the subgroup of
U(p)3U(q) matrices

S@U~p!3U~q!#5H S a 0

0 bD UaPU~p!,bPU~q!,detb5@deta#21J . ~173!

It follows that the highest weight stateu0& is a single basis vector for the one-dimensional irreprs

of S@U(p)3U(q)# for which

rsS a 0

0 bD 5@deta#s. ~174!

Let HD#Hs be the space of ‘‘K-finite vectors,’’ that is, the vectors obtained by applyin
polynomials in the lowering operators to the stateu0&. For G5SU(p1q), whereHs is finite-
dimensional, this will be all ofHs, but for G5SU(p,q), it is a dense subspace.

Gauss factorization of almost any SL(p1q,C) matrix gives
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g5S a b

c dD 5S I p 0

x Iq
D S a 0

0 d2czD S I p z

0 I q
D ~175!

with z5a21b, x5ca21, and withI p the p3p identity matrix. It follows that, for an irrepTs of
G5SU(p1q) or G5SU(p,q) with highest weight stateu0& and highest weight (s...s;0...0), the
coherent state wave functions satisfy

^0uTs~g!uc&5@deta#s^0ueẑuc&, g5S a b

c dD PG, ~176!

where ẑ5( inzinĈin , for any uc&PHD . Accordingly, a suitable choice ofN,SU(p1q)c is the
subgroup of upper triangular matrices

N5H S I p z

0 I q
D ;zPCp3qJ . ~177!

A coherent state wave functionC for a stateuc&PHD is then defined by

C~z!5^0ueẑuc& ~178!

and is seen to be a polynomial in the matrix coefficients ofz.
The coherent state actionG(g) of a matrix

g5S a b

c dD PG, ~179!

defined forcPHD by

@G~g!C#~z!5^0ueẑTs~g!uc&, ~180!

is determined by the generalized Gauss factorization of the product

S I p z

0 I q
D S a b

c dD 5S I p 0

x Iq
D S a 0

0 b D S I p y

0 I q
D , ~181!

with

a5a1zc, y5~a1zc!21~b1zd!. ~182!

This gives

^0ueẑT~g!uc&5@deta#s^0ueŷuc& ~183!

and

@G~g!C#~z!5@det~a1zc!#sC~~a1zc!21~b1zd!!. ~184!

The spaceF H of coherent state wave functions is identified in the standard way. LetF be the
Bargmann space of entire analytic functions in thez variables, i.e.,F is the spaceL 2(Cp3q,dv),
where dv is the Bargmann measure onCp3q. The map of Eq.~35!

F* →HD* ;w* °^wu5E dv~z!w* ~z!^0uTs~z! ~185!
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then takes a polynomialw* PF* to a vector^0uw(Ĉ)† in H* >H, wherew(Ĉ) is the operator
obtained by replacing everyzin in w(z) by the corresponding operatorĈin . It follows that the
dense subspaceFD of polynomials inF maps onto the dense subspaceHD,H as required. Thus
the Hilbert spaceFH is a space of holomorphic functions with inner product

^wuc&5E w* ~z!S s~z,x!c~x!dv~z!dv~x!, ~186!

whereS s(z,x) is the overlap kernel

S s~z,x!5^0ueẑex̂†
u0&. ~187!

Let $cn% denote an orthonormal polynomial basis forFH . An orthonormal basis$un&% for H is then
defined by the map

FD→HD ;cn°un& ~188!

and a corresponding orthonormal basis$Cn% of coherent state wave functions forF H is defined by

Cn~z!5E S s~z,x!cn~x!dv~x!. ~189!

These bases forFH andF H are in duality relative to the inner product defined by dv, i.e.,

^mun&5E cm* ~z!Cn~z!dv~z!, ~190!

and matrix elements of the representation are given by

^muT~g!un&5E cm* ~z!@G~g!Cn#~z!dv~z!. ~191!

For a finite-dimensional irrep, the raising and lowering operators satisfy the Hermitian a
relationship

Ĉin
† 5Ĉn i . ~192!

Therefore, the overlap kernel for a unitary irrep of SU(p1q), derived as for SU~2!, is given by

S s5l~z,x!5^0ueẑex̂†
u0&5@det~ I p1zx†!#l. ~193!

For an infinite-dimensional unitary representation of SU(p,q), for which Ĉin
† 52Ĉn i , the overlap

kernel is calculated in a manner analogous to that used to find Eq.~92! for SU~1,1!; the result is
given formally by

S s52l~z,x!5^0ueẑex̂†
u0&5@det~ I p2zx†!#2l. ~194!

This expression does not converge foruzx†u>1. However, it is well-defined as a distribution ov
the polynomial functions ofFD with the understanding thatŜ2lc is defined by the integral

@ Ŝ2lc#~z!5E Taylor~S 2l~z,x!!c~x!dv~x!, ~195!

where Taylor (S 2l(z,x)) is an expansion ofS 2l(z,x) as a Taylor series inzx† and the integra-
tion is performed term by term.
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It is useful to note that, for bothG5SU(p1q) and G5SU(p,q), the above construction
leads naturally to irreps in bases that reduce the subgroup S@U(p)3U(q)#,G. First observe that
the action onF of an element

h5S a 0

0 dD PS@U~p!3U~q!#, ~196!

given by Eq.~184!, i.e.,

@G~h!w#~x!5@deta#sw~a†xd!, ~197!

is unitary. This follows from the observation that the inner product forF, which is expressible in
the form

E c* ~x!w~x!dv~x!5@c~]/]x!w~x!#x50 , ~198!

satisfies the identity

E c* ~a†xd!w~a†xd!dv~x!5E c* ~x!w~x!dv~x!, ~199!

and is manifestly S@U(p)3U(q)# invariant. Thus, if $wkn% is an orthonormal
S@U(p)3U(q)#-coupled basis forF, thenŜs is diagonal andS s(z,x) is expressible

S s~z,x!5(
kn

Kk
2wkn~z!wkn* ~x!, ~200!

where

Kk
25E E wkn* ~z!S s~z,x!wkn~x!dv~z!dv~x!, ~201!

is independent ofn.
It is now relatively straightforward to construct an orthonormal S@U(p)3U(q)# basis for the

Bargmann spaceF and to map it to orthonormal bases forFH andF H. First observe that, in the
coherent state representation, the U(p) and U(q) operators are given, respectively, by

G~Ci j !5sd i j 2(
n

zj n] in , ~202!

G~Cmn!5(
i

zim] in , ~203!

where

] in5
]

]zin
. ~204!

To simplify the notation, relabel thez indices such thatzp112 i ,p1n becomeszin . The vari-
ables$zin% are then ordered by their weights withzim being of higher weight thanzj n if i , j or if
i 5 j and m,n. The spaceF is now seen to be a direct sum of irreducible S@U(p)3U(q)#
subspaces spanned by homogeneous polynomials in the$zin% variables. Consider the polynomia
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wkk~z!5NkZ1
k12k2~z!Z2

k22k3~z!¯Zm
km~z!, ~205!

indexed by a sequencek5(k1 ,k2 ,...,km) of m positive integers, satisfying the inequalities

k1>k2>¯km>0, m<min~p,q!, ~206!

with (Z1(z),Z3(z),Z3(z),...) thesequence of determinants

Z1~z!5z11, Z2~z!5Uz11 z12

z21 z22
U, Z3~z!5Uz11 z12 z13

z21 z22 z23

z31 z32 z33

U , ... ; ~207!

Nk is a normalization factor. The polynomialwkk(z) is seen from Eqs.~202! and ~203! to be of
U(p) ^ U(q) weight

~s,...,s2km ,...s2k1! ^ ~k1 ,...,km ,...,0!. ~208!

Thus, it is the highest weight polynomial of an irreducible S@U(p)3U(q)# invariant subspaceF k

of F. Let $wkt% denote an orthonormal basis forF k.
The norm factorNk is determined by the requirement that

E wkk* ~z!wkk~z!dv~z!5@wkk* ~¹!wkk~z!#z5051, ~209!

where

wkk* ~¹!5Nk* ¹1
k12k2¹2

k22k3
¯¹m

km ~210!

with

¹15]11, ¹25U]11 ]12

]21 ]22
U, ¹35U]11 ]12 ]13

]21 ]22 ]23

]31 ]32 ]33

U ,... . ~211!

The overlap integral~209! is evaluated by use of the Capelli identity37

¹nZn~z!5Un1z1•]1 z1•]2 z1•]3 ¯ ¯ z1•]n

z2•]1 n211z2•]2 z2•]3 ¯ ¯ z2•]n

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

zn•]1 1zn•]2 zn•]3 ¯ ¯ 11zn•]n

U , ~212!

where

zi•] j5(
n

zin] j n ~213!

and it is understood that a determinant of noncommuting operators is ordered by columns

UA B

C D
U5AD2CB. ~214!

Thus, when acting on a highest weight polynomialwkk for which knÞ0 but kn1150,
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¹nZn~z!wkk5~n1k1!~n211k2!¯~11kn!wkk . ~215!

By repeated use of this identity we obtain the expression for the norm factors

Nk
25

) i , j~k i2k j1 j 2 i !

) i 51
m ~k i1m2 i !!

. ~216!

It is interesting to note that this norm factor is related to the dimensionality of an irrep oSN

labeled by a partitionk of N5( ik i as follows:

dim k5N!Nk
2. ~217!

The overlap kernel for SU(p1q), given by Eq.~193!, is

S l~z,x!5U11z1•x1* z1•x2* z1•x3* ¯ ¯ z1•xp*

z2•x1* 11z2•x2* z2•x3* ¯ ¯ z2•xp*

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

zp•x1* zp•x2* zp•x3* ¯ ¯ 11zp•xp*

U l

, ~218!

where

zi•xj* 5(
n

zinxj n* . ~219!

Thus, S l is the l power of a sum of diagonal minors of a determinant, i.e., determinant
submatrices obtained by deleting some number of rows and corresponding columns. Mo
sincewkk is a highest weight polynomial, it follows that

E S l~z,x!wkkdv~x!5E S 11 (
n51

min(p,q)

Ln~z,x!D l

wkk~x!dv~x!, ~220!

where

Ln~z,x!5Uz1•x1* z1•x2* ¯ z1•xn*

¯ ¯ ¯ ¯

zn•x1* zn•x2* ¯ zn•xn*
U5Zn~z!Zn* ~x!. ~221!

We conclude that

E S l~z,x!wkkdv~x!5S l

~k12k2!~k22k3!...kp
DNk

22 wkk~z!, ~222!

where ( ) is a multinomial coefficient, and that

S l~z,x!5(
kn

Kk
2 wkn~z!wkn* ~x!, ~223!

with

Kk
25

l!

~l2k1!! ~k12k2!! ~k22k3!!...kp!
Nk

22. ~224!
                                                                                                                



in

5427J. Math. Phys., Vol. 43, No. 11, November 2002 Coherent state triplets and their inner products

                    
For SU(p,q), instead of Eq.~220!, we have

E S 2l~z,x!wkk~x!dv~x!5S 12 (
n51

p

Ln~z,x!D 2l

wkk~z!. ~225!

Thus, for SU(p,q), S 2l(z,x) is again of the form

S 2l~z,x!5(
kn

Kk
2 wkn~z!wkn* ~x!, ~226!

but now with

Kk
25

~l1k121!!

~l2k1!! ~k12k2!! ~k22k3!!...kp!
Nk

22. ~227!

B. Sp „n ,R… and Sp „n …

The compact symplectic group Sp(n) is isomorphic to the subgroup of unitary matrices
Sp(n,C); it is isomorphic to

Sp~n!>Sp~n,C!ùU~2n!, ~228!

which means that an element of Sp(n) is a 2n32n matrix of the form

g5S a 2b

b* a* D ~229!

with

aa†1bb†5I n , ab̃5bã, ~230!

whereI n is then3n identity matrix andb̃ is the transpose ofb. Similarly Sp(n,R) is given by the
isomorphism

Sp~n,R!>Sp~n,C!ùU~n,n! ~231!

and an element of Sp(n,R) is a 2n32n matrix of the form

g5S a b

b* a* D ~232!

with

aa†2bb†5I n , ab̃5bã. ~233!

The Lie algebras of the groups Sp(n,R) and Sp(n) have a common complex extensionCn .
Let Ei j denote the matrix with entries (Ei j )kl5d ikd j l . Then the complex Lie algebraCn is
spanned by the matrices

Ci j 5S Ei j 0

0 2Eji
D , i , j 51,...,n, ~234!

Ai j 5Aji 5S 0 2Ei j 2Eji

0 0 D , i , j 51,...,n, ~235!
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Bi j 5Bji 5S 0 0

Ei j 1Eji 0D , i , j 51,...,n, ~236!

which generate the group elements

g~x,y!5exp(
i j

@xi j Ci j 1yi j Ai j 1yi j* Bi j # PSp~n!, ~237!

g~x,y!5exp(
i j

@xi j Ci j 1yi j Ai j 2yi j* Bi j # PSp~n,R!, ~238!

with x skew Hermitian~i.e., xi j 52xji* ).
Let T denote an irrep ofCn with lowest weight in which the matricesAi j , Bi j , andCi j are

mapped to linear operatorsÂi j , B̂i j , andĈi j on a Hilbert spaceH. We consider an irrepT defined
by an integers for which the lowest weight state satisfies

B̂i j u0&50, Ĉi j u0&5d i j su0&. ~239!

Whens,0, T integrates to a unitary irrep of Sp(n) for which

Âi j
† 52B̂i j , Ĉi j

† 5Ĉj i . ~240!

And whens.0, it integrates to a unitary irrep of Sp(n,R) for which

Âi j
† 5B̂i j , Ĉi j

† 5Ĉj i . ~241!

The special cases50 is the trivial identity representation. Note that one also obtains irreps oCn

whens is a positive half-odd integer. These restrict to irreps of sp(n,R) that integrate to unitary
irreps of the metaplectic double cover of the group Sp(n,R). In all nontrivial cases, the subgrou
of elements that leave the lowest-weight state invariant is U(n).

As in the previous example, letHD be the space ofK-finite vectors. LetD denote the vector
space of complex symmetricn3n matrices and letN be the group

N5H S I n 0

z In
D ;zPDJ . ~242!

An element ofN is then represented by the operatorẑ5exp@1/2 ( i j zi j B̂i j # on HD and a coherent
state wave functionC for a stateuc&PHD is defined by

C~z!5^0ueẑuc&. ~243!

Again, these coherent state wave functions are polynomials in the matrix coefficients ofz.
The coherent state actionG(g) of an Sp(n,R) or Sp(n) matrix

g5S a b

b* a* D , b56b, ~244!

defined by

@G~g!C#~z!5^0ueẑT~g!uc&, ~245!

is determined by the generalized Gauss~Harish-Chandra! factorization of the product
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S I 0

z I D S a b

b* a* D 5S I x

0 I D S a 0

0 ã21D S I 0

y I D , zPD, ~246!

with

a5~a†1b̃z!21, x5b~a* 1zb!21, y5~a* 1zb!21~b* 1za!. ~247!

This gives

^0ueẑT~g!uc&5@deta#s^0ueŷuc& ~248!

and

@G~g!C#~z!5@det~a†1b̃z!#2sC~~a* 1zb!21~b* 1za!!. ~249!

For a unitary irrep of Sp(n), for which B̂i j
† 52Âi j , we derive the overlap kernel

S s52l~z,x†!5^0ueẑex̂†
u0&5@det~ I n1zx†!#l, ~250!

wherex̂†52 1/2( i j xi j* Âi j . The Hilbert spaceFH is then the space of holomorphic functions
the matrix coefficients ofz with inner product

^wuc&5E E w* ~z!@det~ I n1zx†!#lc~x!dv~z!dv~x!, ~251!

where the integral is overD, which can be identified with then(n11)/2-dimensional complex
plane and the measure dv is the corresponding Bargmann measure.

For a unitary representation of Sp(n,R), for which B̂i j
† 5Âi j ,

S s5l~z,x†!5^0ueẑex̂†
u0&5@det~ I n2zx†!#2l, ~252!

when det(In2zx†).0, andFH is the Hilbert space of holomorphic functions obtained by comp
ing the space of polynomials with the inner product

^wuc&5E E w* ~z!c~x! Taylor~@det~ I n2zx†!#2l!dv~z!dv~x!, ~253!

where the integral is again over the wholen(n11)/2-dimensional complex plane with the unde
standing that Taylor (@det(In2zx†)#2l) is an expansion of@det(In2zx†)#2l as a Taylor series inzx†

and the integration is performed term by term.
In both cases, if the mapFH→H sendsw→uw& and the mapH→F H sendsuc&→C, then the

inner product of the two states is the overlap

^wuc&5E w* ~z!C~z!dv~z!. ~254!

Thus, as usual, the spacesFH andF H are in duality with respect to the measure dv and matrix
elements of the representation are given by

^wuT~g!uc&5E w* ~z!@G~g!C#~z!dv~z!. ~255!

An orthonormal U(n) basis$wkn% for the Bargmann spaceF can be constructed following th
techniques given in Sec. IV A albeit using a generalization of the Capelli identity.38 Similarly, by
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an expansion of the overlap kernels as in Eq.~200!, one can determine the renormalization facto
$Kk% which map this basis forF to orthonormal bases$ckn5Kk

21wkn% and$Ckn5Kkwkn% for FH
andF H, respectively.

C. SO„2n … and SO* „2n …

The real orthogonal group SO(2n) is isomorphic to the subgroup of unitary matrices in t
complex orthogonal group SO(2n,C);

SO~2n!>SO~2n,C!ùU~2n!. ~256!

Thus, if SO(2n,C) is realized as the group of matrices

SO~2n,C!5$MPSL~2n,C!uMJM̃5J%, ~257!

where

J5S 0 I n

I n 0 D , ~258!

then an elementgPSO(2n) is a 2n32n matrix of the form

g5S a b

b* a* D ~259!

with

aa†1bb†5I n , ab̃1bã50. ~260!

Similarly, SO* (2n) is given by the isomorphism

SO* ~2n!>SO~2n,C!ùU~n,n! ~261!

and an element of SO* (2n) is a 2n32n matrix of the form

g5S a b

2b* a* D ~262!

with

aa†2bb†5I n , ab̃1bã50. ~263!

The Lie algebras of the groups SO(2n) and SO* (2n) have common complex extensionDn .
Let Ei j denote the matrix with entries (Ei j )kl5d ikd j l . Then the complex Lie algebraDn is
spanned by the matrices

Ci j 5S Ei j 0

0 2Eji
D , i , j 51,...,n, ~264!

Ai j 5S 0 Ei j 2Eji

0 0 D 52Aji , i , j 51,...,n, ~265!

Bi j 5S 0 0

Ei j 2Eji 0D 52Bji , i , j 51,...,n, ~266!
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which generate the group elements

g~x,y!5exp(
i j

@xi j Ci j 1yi j Ai j 1yi j* Bi j # PSO~2n!, ~267!

g~x,y!5exp(
i j

@xi j Ci j 1yi j Ai j 2yi j* Bi j # PSO* ~2n!, ~268!

with x skew Hermitian~i.e., xi j 52xji* ).
Let T denote an irrep ofDn with lowest weight in which the matricesAi j , Bi j , andCi j are

mapped to linear operatorsÂi j , B̂i j , andĈi j on a Hilbert spaceH. We consider an irrepT defined
by an integers for which the lowest weight state satisfies

B̂i j u0&50,

Ĉi j u0&5d i j su0&. ~269!

For s<0 this Dn irrep integrates to a unitary irrep of SO(2n) for which

Âi j
† 52B̂i j , Ĉi j

† 5Ĉj i . ~270!

For s.0 it integrates to a unitary irrep of SO* (2n) and

Âi j
† 5B̂i j , Ĉi j

† 5Ĉj i . ~271!

The special cases50 is the trivial identity representation. One also obtains spinor irreps whes
is a half-odd integer. In all nontrivial cases, the subgroup of elements that leave the lowest-
state invariant is U(n).

Let HD be the subspace ofK-finite vectors inH. Let D denote the vector space of comple
symmetricn3n matrices and letN be the group of lower triangular matrices

N5H S I n 0

z In
D ;zPDJ . ~272!

An element ofN is then represented by the operatoreẑ with ẑ5 1/2( i j zi j B̂i j onHD and a coherent
state wave functionC for a stateuc&PHD is defined by

C~z!5^0ueẑuc&. ~273!

Again, these coherent state wave functions are polynomials in the matrix coefficients ofz.
The coherent state actionG(g) of an SO(2n) or SO* (2n) matrix

g5S a b

b* a* D , b56b, ~274!

defined by

@G~g!C#~z!5^0ueẑT~g!uc&, ~275!

is determined by the generalized Gauss~Harish-Chandra! factorization of the product

S I 0

z I D S a b

b* a* D 5S I x

0 I D S a 0

0 ã21D S I 0

y I D , zPD, ~276!
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with

x5b~a* 1zb!21, a5~a†2b̃z!21, y5~a* 1zb!21~b* 1za!. ~277!

This gives

^0ueẑT~g!uc&5@deta#s^0ueŷuc& ~278!

and

@G~g!C#~z!5@det~a†2b̃z!#2sC~~a* 1zb!21~b* 1za!!. ~279!

For a unitary irrep of SO(2n), the overlap kernel is

S s52l~z,x†!5^0ue~1/2! (zi j B̂i j e2 ~1/2! (xi j* Âi j u0&5@det~ I 1zx†!#l ~280!

and the inner product is defined by

^cuw&5E E c* ~z!@det~ I 1x†z!#lw~x!dv~z!dv~x!, ~281!

where the integral is overD, which can be identified with then(n21)/2-dimensional complex
plane, and the measure dv is the corresponding Bargmann measure. For a unitary representat
SO* (2n),

S s5l~z,x†!5^0ue~1/2! (zi j B̂i j e~1/2! (xi j* Âi j u0&5@det~ I 2zx†!#2l, ~282!

when det(I2zx†).0, and the inner product is

^cuw&5E E c* ~z! Taylor~@det~ I 2x†z!#2l!w~x!dv~z!dv~x!, ~283!

where the integral is again over then(n21)/2-dimensional complex plane with the understand
that Taylor (@det(In2zx†)#2l) is an expansion of@det(In2zx†)#2l as a Taylor series inzx† and the
integration is performed term by term.

D. SO„p¿2… and SO „p ,2…

The groups SO(p12) and SO(p,2) are defined by

SO~p12!5$MPSL~p12,R!uMJp12
1 M̃5Jp12

1 %, ~284!

SO~p,2!5$MPSL~p12,R!uMJp12
2 M̃5Jp12

2 %, ~285!

where

Jp12
6 5S 6I 2 0

0 I p
D ; ~286!

I p and I 2 are, respectively, thep3p and 232 identity matrices.
Let

Lab52 i ~Eab2Eba!, a,b51,...,p12, ~287!

denote the infinitesimal generators~angular momenta! of SO(p12); they satisfy the commutation
relations
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@Lab ,Lgd#52 i ~dbgLad2dbdLag1dadLbg2dagLbd!. ~288!

The common complex extension of the Lie algebras SO(p12) and SO(p,2) is then spanned by
the matrices

L12 infinitesimal generator of SO~2!,

Lab a,b53,...,p12,
~289!

Aa5L1a1 iL 2a a53,...,p12,

Ba5L1a2 iL 2a a53,...,p12.

For example,L12 is the matrix of block form

L125S l 12 0

0 0D , l 125S 0 2 i

i 0 D . ~290!

Group elements are then expressed in terms of this basis by

g~w,u,x!5expi FwL121(
ab

uabLab1(
a

~xaAa1xa* Ba!G PSO~p12!, ~291!

g~w,u,x!5expi FwL121(
ab

uabLab1(
a

~xaAa2xa* Ba!G PSO~p,2!, ~292!

wherew is real,uab is real and antisymmetric, andxa is complex.
By Gauss factorization, an SO(p12) or SO(p,2) matrixg is expressed as a product

g5ez•AS a 0

0 dD ex* •B, ~293!

with aPSO(2,C) and dPSO(p,C), where z5(z3 ,...,zp12) and x* 5(x3* ,...,xp12* ) are
p-component complex vectors, and

z•A5(
a

zaAa , x* •B5(
a

xa* Ba . ~294!

Therefore, as matrices,

z•A5S 0 ez

2 z̃ẽ 0 D , ez•A5S I 22
1

2
~z•z!eẽ ez

2 z̃ẽ I p

D , ~295!

x* •B5S 0 2e* x*

x†e† 0 D , ex* •B5S I 22
1

2
~x* •x* !e* e† 2e* x*

x†e† I p

D , ~296!

wherez̃ denotes the transpose~column vector! of z, ande, e* , ẽ, ande† are the vectors

e5S 2 i
1 D , e* 5S i

1D , ẽ5~2 i ,1!, e†5~ i ,1!. ~297!

The matrixa is expressible as a function of a complex parameterf in the form
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a~f!5efL125S coshf 2 i sinhf

i sinhf coshf D . ~298!

It has the useful property that

e†a~f!5efe†, a~f!e5efe. ~299!

We now consider a representationT with highest weight stateu0&, which mapsLab→L̂ab ,
etc., and which, for integer values ofs, satisfies the equations

Âau0&50, L̂12u0&5su0&, L̂abu0&50. ~300!

For s>0, this irrep is finite dimensional and integrates to a unitary irrep of SO(p12) for which

Âa
†5B̂a . ~301!

For s,0, it is infinite dimensional and integrates to a unitary irrep of SO(p,2) with

Âa
†52B̂a . ~302!

The special cases50 is the trivial identity representation. The highest weight stateu0& is seen to
span a one-dimensional irrep of the subgroup SO(2,C)3SO(p,C) with

TS a~f! 0

0 dD u0&5efL̂12u0&5esfu0&. ~303!

A vector uc& in the space ofK-finite vectors has holomorphic coherent state wave function

C~z!5^0uez•Âuc&. ~304!

The action of a group element on coherent state wave functions is obtained by consideri
actions of each of the factors in the Gauss factorization. One obtains immediately

@G~ez•A!C#~z8!5^0uez8•Âez•Âuc&5C~z81z!. ~305!

And, from the identity

ez•ÂS a~f! 0

0 dD 5S a~f! 0

0 dD e(e2fzd)•Â, ~306!

it follows that

F FGS a~f! 0

0 dDCG~z!5esfC~e2fzd!. ~307!

The action

@G~ex* •B!C#~z!5^0uez•Âex* •Buc& ~308!

is determined by Gauss factorization of the product

ez•Aex* •B5eX* •BS a~f! 0

0 dD eZ•A. ~309!
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This (p12)3(p12) matrix identity is equivalent to the four matrix equations

@ I 22 1
2 ~X* •X* !e* e†#a@ I 22 1

2 ~Z•Z!eẽ#1~X* dZ̃!e* ẽ

5@ I 22 1
2 ~z•z!eẽ#@ I 22 ~x* •x* !e* e†#1~z•x* !ee†, ~310!

efeZ2ef~X* •X* !e* Z2e* X* d5ez2e* x* 1~z•z!ex* , ~311!

efX†e†2ef~Z•Z!X†ẽ2dZ̃ẽ5x†e†2 z̃ẽ1~x* •x* !z̃e†, ~312!

2efX†Z1d5I p12z̃x†, ~313!

where we have used Eq.~299!. The 232 matrix Eq.~310! is equivalent to the four equations

ef511~x* •x* !~z•z!12~x* •z!, ~314!

ef~Z•Z!5z•z, ~315!

ef~X* •X* !5x* •x* , ~316!

efX* dZ5x* •z, ~317!

and the 23p matrix Eq.~311! is equivalent to the two equations

efZ1ef~X* •X* !Z1X* d5z1x* 1~z•z!x* , ~318!

efZ2ef~X* •X* !Z2X* d5z2x* 1~z•z!x* . ~319!

Thus, we obtain

Z5e2f@z1~z•z!x* #. ~320!

These results imply that

@G~ex* •B)C#~z!5esfC~e2f@z1~z•z!x* # ! ~321!

with ef given by Eq.~314!.
Equations~305!, ~308!, and~321! are all special cases of the general expression

@G~g!C#~z!5esf(g)C~zg!, ~322!

where, for

g5S A B

C DD , ~323!

ef~g!5 1
2 ~e†2z•zẽ!Ae1zCe, ~324!

zg5e2f$ 1
2 ~e†2z•zẽ!B1zD%. ~325!

For s5l.0 @unitary irrep of O(p12)], theoverlap integral

S l~z,x!5^0uez•Aex* •Bu0& ~326!

is determined, from Eqs.~308! and ~321!, to be given by
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S l~z,x!5@11~z•z!~x* •x* !12z•x* #l. ~327!

This expression is well-defined for allz and x* in the p-dimensional complex plane. Fors
52l,0 @unitary irrep of O(p,2)],

S 2l~z,x!5^0uez•Ae2x* •Bu0&5@11~z•z!~x* •x* !22z•x* #2l ~328!

for all z andx* in the domain

D5$zPCpu11uz•zu222z* •z.0%. ~329!

BecauseS 2l(z,x) is holomorphic in the components ofz andx†, it is now defined by Eq.~328!
for all z andx by the Taylor series expansion

S 2l~z,x!5Taylor@11~z•z!~x* •x* !22z•x* #2l, ~330!

as in~87! for SU~1,1!. The integral expression given below for the inner product then makes s
for all polynomials; for any polynomialsc, w, only finitely many terms in the series make nonze
contributions.

In both cases, the inner products are given by

^cuw&5E E c* ~z!S s~z,x!w~x!dv~z!dv~x!, ~331!

where the integrals are with respect to the Bargmann measure over the wholep-dimensional
complex plane.

V. CONCLUDING REMARKS

The above examples show that the coherent state method is very versatile and gives
standard irreps induced from one-dimensional subgroups. Moreover, it does so in a wa
considerably simplifies the evaluation of inner products. Such simplification is invaluable in
tical applications of the inducing construction, e.g., to problems in physics. For example
analysis of Sec. IV C has recently been used effectively for the calculation of SU~3! Clebsch–
Gordan coefficients in an SO~3! basis,25 coefficients that are used widely, for example, in nucle
physics.

The above techniques become even more powerful and much more general in their ex
to the vector coherent state induction of irreps from multi-dimensional irreps of a subg
Applications of the triplets method to VCS representations will be given in a sequel to the pr
article.

APPENDIX: INNER PRODUCTS FOR STANDARD HOLOMORPHIC REPRESENTATIONS

Let T be an irrep of SU~2! on a Hilbert spaceH with highest weight stateu0&. The standard
method of finding the inner product of coherent state wave functions for this representa13

makes use of the resolution of the identity

Î 5E
G0

T†~g!u0&^0uT~g!dm~g!, ~A1!

where dm is a right-invariant measure for the groupG. Substituting the Gauss factorization for a
SU~2! matrix

S a 2b*

b a* D 5S 1 0

b/a 1D S a 0

0 1/aD S 1 2b* /a

0 1 D 5eb/a J2a2J0e~2b* /a! J1, ~A2!
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and settingz52b* /a with the constraintuau25(11uzu2)21, we then have

Î 5E T†~z!u0&^0uT~z!~11uzu2!22 j ds~z!, ~A3!

where ds(z) is the ~suitably normalized! right G-invariant measure forN5$ezJ1;zPC%. Taking
matrix elements between states ofH gives the inner product

^cuw&5E C* ~z!F~z!~11uzu2!22 jds~z!, ~A4!

in terms of coherent state wave functions. The SU~2!-invariant measure ds for N is determined by
considering the right translations ofN by SU~2!. The appropriate SU~2!: N→N;z°z•g action is
obtained by observing that

S 1 z

0 1D S a 2b*

b a* D 5S 1 0

b

bz1a
1D S bz1a 0

0
1

bz1a
D S 1

a* z2b*

bz1a

0 1
D , ~A5!

which implies that

z•g5
a* z2b*

bz1a
. ~A6!

By computing the Jacobian of thez→z•g transformation, one determines the invariant volu
element

ds~z!}~11uzu2!22dxdy ~A7!

with z5x1 iy ; the factor (11uzu2)22 which gives an SU~2!-invariant volume in terms of the
corresponding Euclidean volume is known as a Bergman kernel.36 Finally, the normalization
constant is fixed by requiring the coherent-state wave function for the highest weight state
normalized to unity. Thus, one obtains the inner product

^cuw&5
2 j 11

p E E C* ~z!F~z!

~11uzu2!2 j 12dxdy. ~A8!
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Weak pseudo-Hermiticity and antilinear commutant
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We inquire into some properties of diagonalizable pseudo-Hermitian operators,
showing that their definition can be relaxed and that the pseudo-Hermiticity prop-
erty is strictly connected with the existence of an antilinear symmetry. This result is
then illustrated by considering the particular case of the complex Morse
potential. © 2002 American Institute of Physics.@DOI: 10.1063/1.1504485#

I. INTRODUCTION

In the last several years the study of some non-Hermitian Hamiltonians with a real spe
and the conjecture on the connection between the reality of the spectrum and the PT-invaria
these Hamiltonians due to Bender and Boettcher,1 have given rise to a growing interest in th
literature.2 Indeed, the above-mentioned Hamiltonians form a subclass of the class of ‘‘ps
Hermitian’’ operators, i.e., those operators which satisfy

A†5hAh21 ~1!

with

h5h†. ~2!

Pseudo-Hermitian operators were introduced in the early 1940s by Dirac3 and Pauli4 in order
to overcome some divergence difficulties in physics by using an indefinite metric associate
h, and were later resumed by Lee and Wick5 ~who first, to the best of our knowledge, used t
term ‘‘pseudo-Hermiticity’’!. More recently, many interesting properties of such operators h
been examined and their spectrum has been suitably characterized.6,7

In the present paper we aim to point out further properties of pseudo-Hermitian operato
are relevant from a physical viewpoint. To this end, we introduce in Sec. II the possibly br
class ofweaklypseudo-Hermitian operators, i.e., those operators which satisfy Eq.~1! without any
constraint on the~linear, invertible! operatorh, and show that, whenever one considers o
diagonalizable operators, this class actually coincides with the class of all pseudo-Her
operators. Hence the condition in Eq.~2! can be dropped when defining~diagonalizable! pseudo-
Hermitian operators, which is useful from several viewpoints@in particular, it simplifies checking
Eq. ~1!#. Moreover, we show in Sec. III that a diagonalizable operatorH is ~weakly! pseudo-
Hermitian if and only if an antilinear involutory operator exists which commutes with it. T
result has a number of relevant consequences; in particular, in every theory which ad
time-reversal invariance, or a CPT-invariance, the Hamiltonian must necessarily be a~weakly!
pseudo-Hermitian operator. Furthermore, the above-mentioned result is strictly intertwined w
old theorem8 of group representation theory, according to which a set of operators admi
involutory antilinear mapping that commutes with it if and only if all the operators in the set
assume conjointly a real form in a suitable basis. Indeed, by using this theorem together w
above-given results, we conclude in Sec. IV that for any diagonalizable~weakly! pseudo-

a!Electronic mail: luigi.solombrino@le.infn.it
54390022-2488/2002/43(11)/5439/7/$19.00 © 2002 American Institute of Physics
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Hermitian operatorH a basis exists in whichH has a real form. If this basis coincides with th
eigenbasis ofH, thenH also has a real spectrum. Finally, we illustrate our results by means
example, considering the special case of the complex Morse potential9 in Sec. V.

II. THE SPECTRA OF WEAKLY PSEUDO-HERMITIAN OPERATORS

As we wrote in Sec. I, here we introduce a new class of operators, whose properties w
studied in the following.

Definition 1: A linear operator A is said to beweakly pseudo-Hermitianif a linear, invertible
operatorh exists such that

hAh215A†. ~3!

The above-given definition generalizes the definition of pseudo-Hermitian operators sin
do not assumeh5h† as is required in the standard definition of pseudo-Hermitian operator5,6

As in Refs. 6 and 7, here we consider only diagonalizable operators; moreover, for the s
simplicity, we consider only discrete spectra~see, however, Sec. V, where a potential with
continuous spectrum is explicitly studied!. WheneverH is a diagonalizable operator with a dis
crete spectrum, a complete biorthonormal eigenbasis$ucn ,a&,ufn ,a&% exists,10 i.e., a basis such
that

Hucn ,a&5Enucn ,a&, H†ufn ,a&5En* ufn ,a&, ~4!

^fm ,bucn ,a&5dmndab , ~5!

(
n

(
a51

dn

ufn ,a&^cn ,au5(
n

(
a51

dn

ucn ,a&^fn ,au51, ~6!

wheredn denotes the degeneracy ofEn , anda andb are degeneracy labels.
The operatorH can then be written in the form

H5(
n

(
a51

dn

ucn ,a&En^fn ,au.

For the sake of brevity we also write the above-given basis$ucm&,ufm&% in the following, with an
obvious meaning of symbols. ThenH can also be written in the form

H5(
m

ucm&Em^fmu

~where it may occur thatEm5Em8 even if mÞm8). Furthermore, if$um% is any complete, ortho-
normal basis in our space, we put in the following:

O5(
m

ucm&^umu. ~7!

By using Eq.~6!, we get

O215(
m

uum&^fmu

and

O21HO5(
m

uum&^fmu(
m8

ucm8&Em8^fm8u(
m9

ucm9&^um9u5(
m

uum&Em^umu.
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Moreover,

~OO†!H†~OO†!215(
m

ucm&Em* ^fmu. ~8!

We can now state the following proposition, which embodies some results in Ref.
pseudo-Hermitian operators.

Proposition 1: Let H be a diagonalizable operator with a discrete spectrum. Then, the
lowing conditions are equivalent:

(i) H is weakly pseudo-Hermitian;
(ii) the eigenvalues of H occur in complex conjugate pairs, and for each pair the multiplic
of both the eigenvalues are the same;
(iii) H is pseudo-Hermitian.

Proof: The implication(iii) ⇒(ii) is proven in Proposition 7 of Ref. 6. By observing that on
the invertibility of h is used in this proof, in order to show thath21 maps the eigensubspace ofH†

associated withEn to that of H associated withEn* , and both the subspaces have the sa
dimension, one immediately transforms this proof into a proof of the implication(i)⇒(ii).

The implication(ii)⇒(iii) is also proven in Ref. 6. We provide here, however, a somew
different proof of it, which produces a useful decomposition ofh @see Eq.~12!#.

Let us therefore assume that condition (i i ) holds, and use~whenever it is necessary! the
subscript ‘‘0’’ to denote real eigenvalues and the corresponding eigenvectors, and the sub
‘‘ 6’’ to denote the complex eigenvalues with positive or negative imaginary part, respectively
the corresponding eigenvectors.

Then, let us consider the involutory operatorT, defined as follows:

Tucn6
,a&5ucn7

,a&, hence, Tucn0
,a&5ucn0

,a&. ~9!

The explicit form ofT is

T5TS (
n0

(
a51

dn0

ucn0
,a&^fn0

,au1(
n1

(
a51

dn1

ucn1
,a&^fn1

,au1(
n2

(
a51

dn2

ucn2
,a&^fn2

,au D
5 (

n0 ,a
ucn0

,a&^fn0
,au1 (

n1 ,n2 ,a
~ ucn2

,a&^fn1
,au1ucn1

,a&^fn2
,au!.

The action ofT on the braŝ fn6
,au easily follows from the above-given expression:

^fn6
,auT5^fn7

,au, hence, ^fn0
,auT5^fn0

,au. ~10!

Then, by simple calculations, one has

THT5(
m

ucm&Em* ^fmu, ~11!

and finally, comparing Eqs.~8! and ~11!, it follows

THT5~OO†!H†~OO†!21,
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hence condition(iii) follows at once, with

h5~OO†!21T5 (
n0 ,a

ufn0
,a&^fn0

,au1 (
n1 ,n2 ,a

~ ufn1
,a&^fn2

,au1ufn2
,a&^fn1

,au!5h†.

~12!

Finally, the proof of the Proposition can be completed by observing that the implication~iii !⇒~i!
is obvious. j

The introduction of the operatorT on the above-given proof and the decompositionh
5(OO†)21T in Eq. ~12! allows one to obtain immediately the characterization of the case of
spectrum. Indeed, noting thatT51 if and only if the spectrum ofH is real, the following state-
ment holds~see also the Theorem in Ref. 7!.

Proposition 2: The spectrum of a diagonalizable weakly pseudo-Hermitian (hence, of a
onalizable pseudo-Hermitian) operator H is real if and only if an operatorh exists such thath
5(OO†)21.

Furthermore, the existence of an Hermitian operatorh wheneverH is weakly pseudo-
Hermitian implies that also in this case one can introduce an Hermitian, indefinite
product4–6,11which is invariant under the time translation generated byH.

III. WEAKLY PSEUDO-HERMITIAN OPERATORS AND ANTILINEAR SYMMETRIES

In order to properly discuss the next argument, we state the following definition.
Definition 2 (Ref. 8): Given the biorthonormal basisE5$ucm&,ufm&% in a Hilbert space, we

call conjugationassociated with it the involutory antilinear operator

QE5(
m

ucm&K^fmu, ~13!

where the operator K acts transforming each complex number on the right into its com
conjugate.

Let us discuss now the connection between the~weak! pseudo-Hermiticity condition and th
antilinear commutant8 of H ~i.e., the set of the antilinear, invertible operators which commute w
it!. This connection was already acknowledged in Ref. 7, where the author shows thatH
commutes with an antilinear operatorA, then condition (i i ) of Proposition 1 holds, and that
Hamiltonian with an antilinear symmetryA has a real spectrum if and only if the symmetry
exact7 ~i.e., its eigenvectors are invariant under the action ofA). The latter statement can b
rephrased, using Definition 2, by saying thatthe spectrum of H is real if and only if@H,QE#
50.

However, the above-given results enlighten only partially the key role of the antilinear
mutant ofH. Indeed, the following, more complete proposition holds.

Proposition 3: Let H be a diagonalizable operator with a discrete spectrum. Then, the
lowing conditions are equivalent:

(i) an antilinear, invertible operatorV exists such that@H,V#50;
(ii) H is (weakly) pseudo-Hermitian;
(iii) an antilinear, involutory operatorV̂ exists such that@H,V̂#50.
Proof: ( i )⇒( i i ). Let V exist. Then, the linear operator

h5~OO†!21QEV

@whereE is the biorthonormal basis associated withH, andO andQE are defined as in Eqs.~7!
and ~13!, respectively# fulfils the condition stated by Eq.~3!, henceH is ~weakly! pseudo-
Hermitian. Indeed,
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QEHQE
215QEHQE5(

m
ucm&Em* ^fmu, ~14!

so that, recalling Eq.~8!,

hHh215~OO†!21QEVHV21QE~OO†!5~OO†!21QEHQE~OO†!5H†.

( i i )⇒( i i i ). If H is ~weakly! pseudo-Hermitian, the eigenvalues ofH occur in complex conjugate
pairs, and for each pair the multiplicities of both the eigenvalues are the same~Proposition 1!.
Then, one easily sees, recalling the definition of the operatorT provided in the proof of Proposi
tion 1 and Eq.~11!, that

QEHQE5THT.

Hence the antilinear operator

V̂5QET5 (
n0 ,a

ucn0
,a&K^fn0

,au1 (
n1 ,n2 ,a

~ ucn1
,a&K^fn2

,au1ucn2
,a&K^fn1

,au! ~15!

commutes withH. Finally, V̂ is involutory, ~i.e., V̂251) as one can immediately verify by usin
the explicit expression ofV̂ in Eq. ~15!.

( i i i )⇒( i ). Obvious. j

Proposition 3 has an interesting physical interpretation, as we have emphasized in
Indeed, wheneverH is the Hamiltonian of some physical system, it establishes a link betwee
properties ofH ~and of its spectrum! and the symmetries of the physical system described b
For, the time-reversal symmetry is associated, in complex quantum mechanics, with an an
operator. Hence, whenever a physical system admits such a symmetry~or else, more generally, i
is invariant under the combined action of the time-reversal operator times a linear one! the
antilinear commutant of its Hamiltonian must be nonvoid, henceH is a ~weakly! pseudo-
Hermitian operator. Conversely, any~weakly! pseudo-Hermitian Hamiltonian admits an antiline
~involutory! symmetry.

Finally, since in the case of real spectrum the operatorT defined in the proof of Proposition 1
is such thatT51, henceV̂5QE , one obtains the following proposition.

Proposition 4: A diagonalizable, weakly pseudo-Hermitian operator H has a real spectru
and only if it commutes with the conjugation associated with its eigenbasis.

Remark:While we were writing the final version of this paper, some similar results have
obtained by other authors12 @in particular, having in mind the equivalence(i)⇔(iii) in our Propo-
sition 1, Theorem 2 of Ref. 12 essentially states the equivalence(i)⇔(ii) of our Proposition 3#.
Nevertheless, our presentation is rather different and embodies the new condition(iii) in Propo-
sition 3, which has a number of interesting consequences, which we are going to explore
IV.

IV. REAL FORM OF THE „WEAKLY … PSEUDO-HERMITIAN OPERATORS

According to Proposition 3, for any~weakly! pseudo-Hermitian operatorH, at least one
involutory antilinear operator exists which commutes with it. Then, it has been proven elsew8

that any involutory antilinear operatorV̂ is a conjugation in some suitable basis; moreover, in
basis associated withV̂, any operator commuting withV̂ has a real form.

The proof of the latter statement can be sketched as follows. If we denote byS the linear part
of V̂, i.e., V̂5SK ~where K is the complex conjugation operator, see Sec. III!, then V̂251
implies SS* 51 and this is possible if and only if anU exists such thatS5UU* 21. Then
@H,V̂#50 impliesHUU* 215UU* 21H* , hence
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U21HU5~U* 21H* U* !5~U21HU !* .

Referring to the notation introduced in the present paper, letF5$uvm&,uwm&% be the bior-
thonormal basis associated, in the above-given sense, to the conjugationV̂ which commutes with
H ~of course,F may be an orthonormal basis, which occurs if and only if, for allm, uvm&
5uwm&), and let us consider the matrix elements ofH in such basis. It is easy to verify that the
are real; indeed, on one hand,

^wi uHuvk&5^wi u(
n

ucn&En^fnuvk&

and, on the other hand

^wi uV̂HV̂uvk&5^wi u(
m

uvm&K^wmu(
n

ucn&En^fnu(
m8

uvm8&K^wm8uvk&

5 (
m,m8,n

d imK^wmucn&En^fnuvm8&Kdm8,k

5^vku(
n

ufn&En* ^cnuwi&

5S ^wi u(
n

ucn&En^fnuvk& D *
.

Since, trivially, every operator which assumes a real form in some basisB commutes with the
conjugation associated withB, we have thus proven the following proposition.

Proposition 5: An operator H is (weakly) pseudo-Hermitian if and only if a basis exist
which it assumes a real form.

The results in Propositions 1, 3, and 5 can be collected together, obtaining a set
equivalent conditions which can be useful in order to characterize the Hamiltonians that w
considering. In particular, the statement in Proposition 5 can be used to write a~weakly! pseudo-
Hermitian operator in a more manageable form~an example of basis transformation which puts
particular Hamiltonian in real form is given in Sec. V!.

V. AN EXAMPLE: THE COMPLEX MORSE POTENTIAL

Let us verify the results obtained in the previous sections in the special case of the co
Morse potential.9 This was extensively studied, for instance, in Ref. 9, and its spectrum
predicted to be real by means of group theoretic techniques.13

The Morse potential is given by

V~x!5~A1 iB !2e22x2~A1 iB !~2C11!e2x ~A,B,CPR!. ~16!

Puttingr5AA21B2,u5arctan (2B/A) ,k52C11, we get

V~x!5r2e22x1 iu2kre2x1 iu/2. ~17!

Following Ref. 9, let us introduce the~Hermitian! operator e2up(uPR,p52 i (d/dx)).
Hence, we obtain9

e2upV~x!eup5V~x1 iu!5V* ~x!. ~18!

Equation~18! shows thatV is a pseudo-Hermitian~but non-PT-symmetric! operator. Let us put
now V̂5SK5eupK. By using Eq.~18! one gets
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V̂V5VV̂,

which agrees with Proposition 3. Then, a straightforward calculation shows thatS* 5e2up

5S21, henceV̂ is involutory, which also agrees with Proposition 3. Moreover, one gets
inspection that

S5eup/2~eup/2!* 215UU* 21.

Thus, finally,

U21VU5e2up/2Veup/25V~x1 iu/2!5r2e22x2kre2x5~U21VU!*

which agrees with Proposition 5.
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Structures of quantum Fokker–Planck equations are characterized with respect to
the properties of complete positivity, covariance under symmetry transformations
and satisfaction of equipartition, referring to recent mathematical work on struc-
tures of unbounded generators of covariant quantum dynamical semigroups. In
particular the quantum optical master equation and the quantum Brownian motion
master equation are shown to be associated to U~1! and R symmetry, respectively.
Considering the motion of a Brownian particle, where the expression of the quan-
tum Fokker–Planck equation is not completely fixed by the aforementioned re-
quirements, a recently introduced microphysical kinetic model is briefly recalled,
where a quantum generalization of the linear Boltzmann equation in the small
energy and momentum transfer limit straightforwardly leads to quantum Brownian
motion. © 2002 American Institute of Physics.@DOI: 10.1063/1.1505126#

I. INTRODUCTION

A theory of quantum dissipation, even restricted to the Markovian case, is a subject of
interest for many different scientific communities, ranging from mathematicians to physicist
chemists, according to various perspectives. Among these in first line experimental applicat
phenomena where spontaneous emission, decoherence and dissipation play an important
also theoretical studies regarding the connection between quantum and classical descrip
dynamics, since, thanks to the lack of simple quantization recipes, such as the correspo
principle, dissipative systems become a fruitful working area where typical quantum stru
may emerge. This interest has led to a huge number of proposals of Markovian master eq
for the description of such dissipative phenomena, based on microphysical, phenomenolog
purely mathematical approaches~see references in Refs. 1–3!, not always accompanied by clea
statements with regard to obeyed physical and mathematical properties, thus often lead
amendments of these models in view of some missing desired feature. This is in particula
with respect to the property of positivity or complete positivity,4 proper distinction between
Hamiltonian and dissipative part,5 translational invariance,6,7 and decoherence effects.8

As a result some efforts have been made to compare and characterize the different pr
in view of relevant mathematical and physical properties: preservation of the positivity o
statistical operator, existence of a suitable canonical stationary state, and transl
invariance.9–11,2,12The main starting point for this research work was the result of Lindblad for
most general structure of bounded generator of a completely positive quantum dyna
semigroup,13 together with his paper on quantum Brownian motion,14 in which some of these
issues were already considered. Complete positivity, actually equivalent to positivity for the
sidered Markovian quasi-free systems,15 ensures that the statistical operator preserves posit
during the time evolution, and has emerged as a typical quantum feature, corresponding
requirement that positivity of the time evolution is preserved under entanglement. It is in fa

a!Electronic mail: bassano.vacchini@mi.infn.it
54460022-2488/2002/43(11)/5446/13/$19.00 © 2002 American Institute of Physics
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now an essential property in the realm of quantum communication,16 even though its origins lie in
the theory of quantum measurement.17 The result of Lindblad rigorously holds for bounded o
erators, though it is usually exploited as a starting point also for unbounded operators, leav
this case the task open, to show that the considered structure is a proper generator of a com
positive quantum dynamical semigroup.

In this article we will try to further clarify the situation, showing that if besides compl
positivity and equipartition, i.e., existence of a suitable canonical stationary solution, prope
variance properties of the generator of the dynamics, reflecting the relevant symmetries
reservoir~and therefore not necessarily only translational invariance!, are taken into account,
suitable characterization of two different classes of master equations can be given in a ve
way. In particular, with the two one-dimensional Lie groups U~1! and R two distinct type of
master equations are associated, describing respectively the damped harmonic oscillator~the so-
called quantum optical master equation! and the motion of a Brownian particle~the so-called
quantum Brownian motion master equation!, which, despite the fact that their physical realm
validity is essentially well-understood,18 are sometimes mixed up,7 their characterization in con
nection to underlying symmetry of the reservoir being usually neglected.18 Recent work on com-
pletely positive quantum dynamical semigroups has shown that, asking for suitable cova
properties, a characterization of generators of such semigroups can be given also in the
unbounded operators, where very few results are available,19 so that one can check whether
proposed formal Lindblad structure is indeed a proper generator of a quantum dynamical
group. The room left by these mathematical and physical requirements should be cove
microphysical approaches, determining their relevance and predictive power. It turns out th
quantum optical master equation is in essence fixed by these requirements, while in the q
Brownian motion case there is a nontrivial freedom left, thus explaining the huge, some
contradictory, literature devoted to the quantum Brownian motion master equation. In this
nection a recently obtained20–22microphysical model for the quantum description of the motion
a Brownian particle is presented, derived from a quantum version of the linear Boltz
equation,23,24 extending previous phenomenological models25 where dissipation effects leading t
the correct stationary solution could not be accounted for. For further work relying on symm
properties in the case of a fermionic oscillator, see Ref. 26.

The article is organized as follows: in Sec. II we recall the most general Lindblad stru
corresponding to a quantum Fokker–Planck equation, further showing the expressions tha
out asking for shift-covariance or translation-covariance; in Sec. III we outline the results
microphysical model for the description of quantum Brownian motion, obtained from a qua
linear Boltzmann equation expressed in terms of the operator-valued dynamic structure fa
the reservoir; in Sec. IV we briefly comment on our results, indicating possible future exten

II. GENERAL EXPRESSION OF THE QUANTUM FOKKER–PLANCK EQUATION WITH A
LINDBLAD STRUCTURE

In order to give a quantum description of dissipative phenomena which at the classica
are described by second-order Fokker–Planck equations, we first concentrate on generaliza
the quantum Liouville equation which preserve trace and positivity of the statistical operator
possibly accounting for friction effects. This can be done considering the most general expr
of generator of a completely positive quantum dynamical semigroup~complete positivity being for
these Markovian quasi-free systems necessary in order to preserve positivity15!, given by a Lind-
blad structure in which position and momentum operator for the microsystem~respectivelyx̂ and
p̂) appear restricted to bilinear expressions, according to the classical approximations leadi
friction term proportional to velocity. The general expression of a Markovian quantum Fok
Planck equation preserving the positivity of the statistical operator is thus given, in the
dimensional case to which we will restrict for simplicity, by14,27,10
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Mx̂p̂@ r̂#52
i

\ FH0~ x̂,p̂!1
m

2
$x̂,p̂%,r̂G1(

i 51

2 F V̂i r̂V̂i
†2

1

2
$V̂i

†V̂i ,r̂%G ,
~1!

V̂i5a i p̂1b i x̂, a i ,b iPC, mPR,

whereH0 is a self-adjoint operator given by a quadratic expression inx̂ andp̂ describing the free
system, and the added Hamiltonian term proportional tom has been introduced for later conv
nience. For the sake of comparison with classical Fokker–Planck equations, in order to ma
intuitive physical meaning of the different contributions clear,~1! is usually conveniently written
in the following form using nested commutators and anticommutators:10

Lx̂p̂@ r̂#52
i

\
@H0~ x̂,p̂!,r̂ #2

i

\

~m2g!

2
@$x̂,p̂%,r̂ #2

i

\
g@ x̂,$p̂,r̂%#2

Dpp

\2 @ x̂,@ x̂,r̂ ##

2
Dxx

\2 @ p̂,@ p̂,r̂ ##1
Dpx

\2 @ x̂,@ p̂,r̂ ##1
Dxp

\2 @ p̂,@ x̂,r̂ ##, ~2!

where due to@ p̂,@ x̂,•##5@ x̂,@ p̂,•## actuallyDxp5Dpx and the new coefficients are related toa i

andb i through the equations

Dxx5
\

2 (
i 51

2

ua i u2, Dpp5
\

2 (
i 51

2

ub i u2, Dpx52
\

2
R(

i 51

2

a i* b i , g5
\

2
I(

i 51

2

a i* b i ,

so that the following inequalities hold,

Dxx>0, Dpp>0, DxxDpp2Dpx
2 >

g2\2

4
, ~3!

which are necessary and sufficient conditions for an expression of the form~2! to be cast in
Lindblad form, corresponding to the requirement that the matrix of coefficients27

D5S Dxx Dpx1 i
\

2
g

Dpx2 i
\

2
g Dpp

D ~4!

has a non-negative determinant.
An alternative but equivalent expression for~2! can be given introducing, with the aid of

length l , whose physical meaning and expression will depend on the system to be desc
creation and annihilation operatorsâ and â†:

â5
1

l&
S x̂1

i

\
l 2p̂D â†5

1

l&
S x̂2

i

\
l 2p̂D , ~5!

satisfying the commutation relation@ â,â†#51. One thus obtains the expression

Lââ†@ r̂#52
i

\
@H0~ â,â†!,r̂ #2

~m2g!

2
@ â22â†2,r̂ #

2
g

2
@@ â,$â,r̂%#2@ â,$â†,r̂%##1h.c.

2
1

2 S Dxx

l 2 1
Dppl

2

\2 D @ â†,@ â,r̂ ##1
1

2 S Dxx

l 2 2
Dppl

2

\2 22i
Dpx

\ D @ â,@ â,r̂ ##1h.c.,

or, equivalently, collecting terms as in~1!,
                                                                                                                



in the

metry

n

vari-
etimes

evant
ple, a

ially

t

5449J. Math. Phys., Vol. 43, No. 11, November 2002 Symmetry properties of master equations

                    
M ââ†@ r̂#52
i

\
@H0~ â,â†!,r̂ #2

m

2
@ â22â†2,r̂ #

1S Dxx

l 2 1
Dppl

2

\2 1g D F âr̂â†2
1

2
$r̂,â†â%G

1S Dxx

l 2 1
Dppl

2

\2 2g D F â†r̂â2
1

2
$r̂,ââ†%G

2S Dxx

l 2 2
Dppl

2

\2 22i
Dpx

\ D F âr̂â2
1

2
$r̂,â2%G1h.c. ~6!

The recalled expressions essentially give the possible Lindblad structures at most bilinear
operatorsx̂ and p̂ or â and â†.

A. Shift-covariance

We now analyze the behavior of the considered expressions with respect to suitable sym
transformations. Consider a locally compact groupG and a unitary representationÛ(g), with g
PG, on the Hilbert space of the system: following Ref. 28 we say that a mappingF in the
Schrödinger picture isG-covariant if it commutes with the mappingUg@•#5Û(g)•Û†(g) for all
gPG:

F @Ug@•##5Ug@F @•##. ~7!

Let us now consider the following unitary representation of the group U~1!,

Ûf5eifN̂,

whereN̂5â†â is the number operator andfP@0,2p#. If we now ask for the general expressio
~6! invariance under the action of the group U~1!, i.e., shift-covariance according to29

M ââ†@eifN̂
•e2 ifN̂#5eifN̂M ââ†@•#e2 ifN̂, ~8!

then the Hamiltonian has to be a function of the generator of the transformationN̂, and the
following stringent requirements appear:

Dxx5Dpp

l 4

\2 , Dpx50, m50.

Note that the conditionm50 appears here as a necessary condition for shift-covariance or in
ance under the relevant symmetry group and not as a natural or most simple choice as som
advocated.2 From a physical point of view the master equation is expected to reflect the rel
symmetry of the reservoir the microscopic system is interacting with. Considering, for exam
single mode~harmonic oscillator! interacting with the electro-magnetic field, one has a U~1!
symmetry and condition~8! is actually equivalent to the rotating wave approximation, essent
saying that the master equation is invariant under the transformation

â→âe2 iu, â†→â†e1 iu,

or, equivalently, in terms ofx̂ and p̂,

x̂→ x̂ cosu1p̂ sinu, p̂→2 x̂ sinu1p̂ cosu. ~9!

The rotating wave approximation is therefore strictly linked to a U~1! symmetry and one canno
expect or try to obtain translational invariance in this case.7
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If now one further makes the choiceH0(N̂)5\v(N̂1 1
2) corresponding to a single mod

~harmonic oscillator! and asks that an operator with the canonical structurer̂05e2bH0(N̂) be a
stationary solution, i.e.,M ââ†@ r̂0#50, a further connection between the coefficients of the ma
equation appears,10

2
Dppl

2

\2 5g cothS 1

2
b\v D ,

whereb is the inverse temperature characterizing the thermal electromagnetic field the m
interacting with. The requirements of complete positivity, shift-covariance and existence o
expected canonical stationary solution then fix the quantum Fokker–Planck equation to be
form

M ââ†
QO

@ r̂#52
i

\
@H0~N̂!,r̂ #

1gFcothS 1

2
b\v D11GF âr̂â†2

1

2
$r̂,â†â%G

1gFcothS 1

2
b\v D21GF â†r̂â2

1

2
$r̂,ââ†%G , ~10!

or in terms of the average of the number operator over a thermal distribution,

Nb~v!5
1

eb\v21
5

1

2 FcothS 1

2
b\v D21G ,

settingh52g,

M ââ†
QO

@ r̂#52
i

\
@H0~N̂!,r̂ #1h~Nb~v!11!F âr̂â†2

1

2
$r̂,â†â%G1hNb~v!F â†r̂â2

1

2
$r̂,ââ†%G ,

i.e., the well-known quantum optical master equation for the description of a damped har
oscillator~for a recent review, see Ref. 30!, where the only free parameter is the decay rateh and
a further freedom appears in the commutator term, where a function ofN̂ corresponding to a
frequency shift may be considered. The quantum optical master equation is therefore ess
fixed by formal requirements, well in accordance with its stability with respect to microphy
derivations, which are in fact predictive in so far as they give explicit expressions forh and the
energy shift. As a last step, using as natural length of the probleml 5A\/Mv, ~10! may be written
in terms ofx̂ and p̂ as

M x̂p̂
QO@ r̂#52

i

\ F p̂2

2M
1

1

2
Mv2x̂2,r̂G2

i

\

g

2
~@ x̂,$p̂,r̂%#2@ p̂,$x̂,r̂%# !

2
1

\

g

2
cothS 1

2
b\v D S Mv@ x̂,@ x̂,r̂ ##1

1

Mv
@ p̂,@ p̂,r̂ ## D ,

where invariance under~9! can be easily checked.
That U~1! symmetry or shift-covariance may lead, under suitable restrictions, to the qua

optical master equation can also be seen considering the recently obtained most general s
of a proper generator of a shift-covariant completely positive quantum dynamical semigroup
in Ref. 29, where also the unboundedness of the operators appearing in the formal Lin
structure has been taken in due account, using the notion of form-generator. The formal o
expression associated to the form-generator is
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L@ r̂#52
i

\
@H~N̂!,r̂ #1FA0~N̂!r̂A0

†~N̂!2
1

2
$r̂,A0

†~N̂!A0~N̂!%G
1 (

m51

` FŴ†mA2m~N̂!r̂A2m
† ~N̂!Ŵm2

1

2
$r̂,A2m

† ~N̂!ŴmŴ†mA2m~N̂!%G
1 (

m51

` FŴmAm~N̂!r̂Am
† ~N̂!Ŵ†m2

1

2
$r̂,Am

† ~N̂!Am~N̂!%G , ~11!

whereH(•)5H* (•), Ai(•) are functions of the number operator, andŴ5(n50
` un11&^nu it the

so-called shift-operator.31 Recalling the polar decompositionsâ†5ŴAN̂11 andâ5Ŵ†AN̂, for
the following simple choice of functions,

H~n!5H0~n!5\vS n1
1

2D ,

Am~n!50, m50, umu.1,

A1~n!5Ag~b!An11,

A21~n!5eb/2Ag~b!An,

where

g~b!5gFcothS 1

2
b\v D21G ,

one recovers from~11! the quantum optical master equation.
It is interesting to observe that complete positivity, shift-covariance and the requiremen

canonical stationary solution also allow as a proper generator of a quantum dynamical sem
the following expression:

L@ r̂#52
i

\
@H0~N̂!,r̂ #2g0@N̂,@N̂,r̂ ##

1 (
m51

`

gmH FcothS 1

2
b\v D11GmF âmr̂â†m2

1

2
$r̂,â†mâm%G

1FcothS 1

2
b\v D21GmF â†mr̂âm2

1

2
$r̂,âmâ†m%G J , ~12!

corresponding to the functions

A0~n!5Ag0n,

Am~n!5Agm~b!A~n1m!!

n!
,

A2m~n!5emb/2Agm~b!A n!

~n2m!!
,

where

gm~b!5gmFcothS 1

2
b\v D21Gm

.
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Equation~12! provides a generalization of the quantum optical master equation in which
phase-diffusion, related to the coefficientg0 , and m-photon processes with decay rateshm

52mgm , which should quickly approach zero in order to allow for nonexplosion of the assoc
Markov process, can be considered. Thus far we have dealt with the case of shift-cova
corresponding to U~1! symmetry of the system with many degrees of freedom acting as rese
and determining the non-Hamiltonian dynamics of the microsystem.

B. Translation-covariance

We now consider the case in which the relevant symmetry is invariance under transla
corresponding to a homogeneous reservoir. Given the unitary representation of the tran
group

Û~b!5e2 ~ i /\! bp̂,

wherep̂ is the momentum operator of the microsystem andbPR, translation-covariance accord
ing to Ref. 32 amounts to the requirement

Lx̂p̂@e2 ~ i /\! bp̂
•e1 ~ i /\! bp̂#5e2 ~ i /\! bp̂Lx̂p̂@•#e1 ~ i /\! bp̂. ~13!

Invariance under the group R of translations thus implies for the structure of the quantum Fo
Planck equation that the Hamiltonian has to be a function of the generator of the transformap̂
and the following simple requirement in the coefficients appearing in~2!:

m5g.

Considering, for example, a free particle interacting with a homogeneous reservoir, one
symmetry corresponding to invariance under translations, which is reflected by the fact th
cording to~13! the master equation is invariant under the transformation

x̂→ x̂1b, p̂→p̂,

or, equivalently, in terms ofâ and â†,

â→â1
1

&

b

l
, â†→â†1

1

&

b

l
.

Further, making the obvious choiceH0(p̂)5 p̂2/2M , corresponding to a free particle of massM
and asking that an operator with the canonical structurer̂05e2bH0(p̂) be a stationary solution, i.e.
Lx̂p̂@ r̂0#50, one has the condition

Dpp5g
2M

b
,

with b the inverse temperature of the homogeneous reservoir. The requirement, of com
positivity, translation-covariance and existence of the expected stationary solution thus co
the quantum Fokker–Planck equation to be of the form

L x̂p̂
QBM@ r̂#52

i

\
@H0~ p̂!,r̂ #2

i

\
g@ x̂,$p̂,r̂%#2g

2M

b\2 @ x̂,@ x̂,r̂ ##2
Dxx

\2 @ p̂,@ p̂,r̂ ##12
Dpx

\2 @ x̂,@ p̂,r̂ ##,

~14!

i.e., the typical structure one finds in the extensive physical literature aiming at the descript
quantum Brownian motion~see Refs. 1 and 3 for a review!. With respect to the case of th
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quantum optical master equation~10!, the remaining freedom in the structure is much bigger: ap
from the friction coefficientg and a real function ofp̂ correcting the Hamiltonian, the coefficien
Dxx andDpx are undetermined except for the relation

g
2M

b
Dxx2Dpx

2 >
g2\2

4

stemming from~3!. This is reflected by the fact that a much wider literature has been devot
the subject, looking for microphysical derivations of the quantum Brownian motion master
tion, in order to obtain expressions for the undetermined parameters.

We now compare the result~14! with the general structure of a proper generator o
translation-covariant quantum dynamical semigroup, given in Ref. 32, where also the case
unbounded generator has been considered, introducing the notion of form-generator and s
ing a suitable domain for the mapping. Restricting to the continuous component of the gen
corresponding to a quantum Fokker–Planck equation describing friction and diffusion, one h
the formal operator expression associated to the form-generator the following result:

L@ r̂#52
i

\
@b x̂1H~ p̂!,r̂ #1aV̂r̂V̂†2K̂r̂2 r̂K̂†, bPR, a>0,

~15!

V̂5 x̂1L~ p̂!, K̂5
a

2
@ x̂212x̂L~ p̂!1L†~ p̂!L~ p̂!#,

H(•)5H* (•), L(•) being functions of the momentum operatorp̂, and bÞ0 implying, e.g., a
constant gravitational or electric field. According to~15! one has a single operator of the for
V̂5 x̂1L(p̂) ~or one for each Cartesian coordinate considering higher dimensions! instead of two
as considered in~1!. Expressing~15! in terms of nested commutators and anticommutators a
~2!, restricting to the case in whichL(•) is a linear function, according to the fact that we a
considering friction effects at most linear in the velocity, the inequalities in~3!, corresponding to
the fact that the determinant of the matrix given in~4! be zero or positive, now become mo
restrictive:

Dxx>0, Dpp>0, DxxDpp2Dpx
2 5

g2\2

4
,

corresponding to detD50. Coming back to~14!, this implies the further restriction

Dxx5g
b\2

8M
1

b

2gM
Dpx

2 ,

so that apart from the overall multiplying coefficientg only another coefficientDpx is left free,
and one has

L x̂p̂
QBM@ r̂#52

i

\
@H0~ p̂!,r̂ #2

i

\
g@ x̂,$p̂,r̂%#2g

2M

b\2 @ x̂,@ x̂,r̂ ##2g
b

8M
@ p̂,@ p̂,r̂ ##

2
b

2gM

Dpx
2

\2 @ p̂,@ p̂,r̂ ##12
Dpx

\2 @ p̂,@ x̂,r̂ ##. ~16!

Therefore, a predictive microphysical model of quantum Brownian motion essentially h
indicate an explicit expression for the coefficientsg andDpx .

It is interesting to express~16! in terms of the creation and annihilation operators given in~5!.
Setting b\2/4M 5l th

2 , the square of the thermal wavelength of the microsystem underg
Brownian motion, one has
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L ââ†
QBM

@ r̂#52
i

\
@H0~ â,â†!,r̂ #2

g

2
@ â22â†2,r̂ #

1Fg

2 S l th
2

l 2 1
l 2

l th
2 12D 1

1

g

2

\2

l th
2

l 2 Dpx
2 G F âr̂â†2

1

2
$r̂,â†â%G

1Fg

2 S l th
2

l 2 1
l 2

l th
2 22D 1

1

g

2

\2

l th
2

l 2 Dpx
2 G F â†r̂â2

1

2
$r̂,ââ†%G

2Fg

2 S l th
2

l 2 2
l 2

l th
2 D 12

Dpx

\ S 1

g

l th
2

l 2

Dpx

\
2 i D GF âr̂â2

1

2
$r̂,â2%G1h.c. ~17!

Equation~17! strongly simplifies if one takes for the lengthl , used in order to introduce th
operatorsâ and â† in terms of the operator position and momentum of the particle, the vall
5l th5Ab\2/4M , naturally suggested by the underlying physics. Withl the thermal de Broglie
wavelength~17! reduces to

L ââ†
QBM

@ r̂#52
i

\
@H0~ â,â†!,r̂ #2

g

2
@ â22â†2,r̂ #12gF âr̂â†2

1

2
$r̂,â†â%G

1
2

g

Dpx
2

\2 F âr̂â†2
1

2
$r̂,â†â%1â†r̂â2

1

2
$r̂,ââ†%G

22
Dpx

\ S 1

g

Dpx

\
2 i D F âr̂â2

1

2
$r̂,â2%G1h.c., ~18!

where the last three contributions can only vanish if the real coefficientDpx is equal to zero,
corresponding toL(•)52L* (•) in ~15!. Equation~16! or equivalently~18! expresses the genera
structure of a quantum Fokker–Planck equation which is invariant under translation, warran
existence of the expected canonical expression as a stationary solution, thus recovering e
tition, and is furthermore a proper generator of a completely positive quantum dynamical
group.

C. Covariance and uniqueness of the stationary solution

In recent work2,12 aiming at comparing and clarifying different approaches to quantum d
pation, which relies on14 but neglects the more recent and thorough results of Refs. 32 and 2
statement can be found thatno Markovian theory can satisfy all three criteria of positivit
translational invariance, and asymptotic approach to the canonical equilibrium state e2bH0,
except in special cases. This statement is always correct in view of the last observation, and t
simple exceptional cases, which are usually not spelled out, can be read in~11!: the microsystem
has to be a free particle apart from an effective correction to the Hamiltonian, given by a
function of p̂ describing, for example, an effective mass, and a potential term depending lin
on position~such as, e.g., a constant gravitational or electric field!. These cases are often n
glected, having in mind that translational invariance, mainly seen as an abstract property
than the expression of homogeneity of the reservoir, should be always asked for. In this
translational invariance, i.e., R symmetry, is asked for also for the damped harmonic oscill

The three physical requirements one can reasonably ask together for Markovian system
weak-coupling limit are complete positivity, existence of the stationary solution predicte
equipartition, and invariance under the relevant symmetry, not necessarily translational inva
Having translational invariance apart from the potential term is not physically significant sinc
potential term actually breaks this invariance, and would furthermore lead to high nonuniqu
of the stationary state, as argued below. The dynamics of the microsystem is driven by bo
potential term~which could also arise as a mean field effect! and the contributions describin
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decoherence and dissipation, so that a physically relevant symmetry should pertain to the
as a whole. Let us in fact consider a mappingF covariant with respect to a given symmetry gro
G according to~7!, which admits a stationary solutionr̂0 , i.e.,F@ r̂0#50. If the operatorr̂0 is not
invariant under the unitary representationUg of G, so that

r̂g5Ug@ r̂0#

is linearly independent fromr̂0 at least for someg in G, due to theG-covariance ofF, r̂g still is
a stationary solution

F @ r̂g#5F@Ug@ r̂0##5Ug@F @ r̂0##50,

so that one cannot have the expected uniqueness of the solution. In the case of th
dimensional Lie groups considered in Sec. II, for example, a stationary solution can be u
only if it commutes with the generator of the group. Note that this simple argument is indepe
on whether the mappingF ensures complete positivity of the time evolution or not, so that
clash between the requirement of translation invariance and the existence of the correct sta
state corresponding to equipartition is not due to the requirement of complete positivity of the
evolution mapping.

III. QUANTUM FOKKER–PLANCK EQUATION FOR THE MOTION OF A BROWNIAN
PARTICLE

As we have shown in Sec. II A, in the case of an underlying U~1! symmetry formal require-
ments are enough to essentially fix structure and coefficients of the quantum Fokker–P
equation, apart from an energy shift and an overall coefficient. The same is not true in the c
R symmetry describing translational invariance. In this paragraph we therefore quickly re
recently proposed quantum Fokker–Planck equation for the description of the motion of a
Brownian particle interacting through collisions with a homogeneous fluid made up of m
lighter particles~see Refs. 20, 21, and 23 for details!. This result has been obtained within
kinetic approach, where the dynamics is driven by single events described as collisions in
one generally has momentum and energy transfer, alternative to the Zwanzig Caldeira L
approach,33 recently criticized in Ref. 34, where one describes the reservoir as a collectio
harmonic oscillators coupled to the microsystem through its position, usually performing ca
tions in terms of path-integral techniques.

In the aforementioned approach one obtains in the first instance a kinetic equation f
statistical operator analogous to the classical linear Boltzmann equation given by the s
expression

L@ r̂#52
i

\
@H0~ p̂!,r̂ #1

2p

\
~2p\!3nE

R3
d3q u t̃ ~q!u2Fe~ i /\! q• x̂AS~q,p̂!r̂AS~q,p̂!e2 ~ i /\! q• x̂

2
1

2
$S~q,p̂!,r̂%G , ~19!

wheret̃ (q) is the Fourier transform of the T-matrix describing the microphysical collisions and
function S(q,p) appearing operator-valued in~19! is a positive two-point correlation function
known in the physical community as dynamic structure factor,35 usually expressed as a function
momentum and energy transfer,q andE, according to

S~q,p![S~q,E!, E~q,p!5
~p1q!2

2M
2

p2

2M
,

with M the mass of the Brownian particle. The dynamic structure factorS(q,E) is the Fourier
transform of the two-point time dependent density autocorrelation function of the fluid
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S~q,E!5
1

2p\ E
R
dtE

R3
d3x e~ i /\![E(q,p)t2q•x]

1

N E
R3

d3y ^N~y!N~y1x,t !&, ~20!

and is always positive since it is proportional to the energy dependent scattering cross-sec
a microscopic probe off a macroscopic sample,36 giving the spectrum of its spontaneous fluctu
tions. Equation~19! also has the three properties of complete positivity, translational invari
and canonical stationary solution, and it actually gives a physical example of the general str
of generator of a translation-covariant quantum dynamical semigroup,32 going beyond the diffu-
sive case considered in~11!. In order to recover from the general integral kinetic Eq.~19! a
quantum Fokker–Planck equation for the description of the Brownian motion of a heavy pa
one has to consider the limit of small momentum transfer and small energy transfer~corresponding
to the Brownian limit in which the mass of the test particle is much heavier than the particl
the fluid!. Considering a gas of free particles obeying Maxwell–Boltzmann statistics, due to

SMB~q,p!5
1

~2p\!3

2pm2

nbq
z expF2

b

8m

~2mE~q,p!1q2!2

q2 G ~21!

one has23

L@ r̂#52
i

\
@H0~ p̂!,r̂ #2

i

\
g(

i 51

3

@ x̂i ,$p̂i ,r̂%#2
Dpp

\2 (
i 51

3

@ x̂i ,@ x̂i ,r̂ ##2
Dxx

\2 (
i 51

3

@ p̂i ,@ p̂i ,r̂ ##.

~22!

In this kinetic case the free parameters in~16! are now determined as

Dpx50, g5
1

3
z

p2m2

b\ E
R3

d3q u t̃ ~q!u2qe2~b/8m! q2

with z5ebm the fugacity of the gas,37 while Dxx andDpp are expressed in terms ofg as can be
read in~16!:

Dxx5
b\2

8M
g, Dpp5

2M

b
g.

Also the expression of~22! in terms of the operatorsâi andâi
† according to~18! takes in this case

a particularly simple form

L@ r̂#52
i

\
@H0~ âi ,âi

†!,r̂ #2
g

2 (
i 51

3

@ âi
22âi

†2,r̂ #12g(
i 51

3 F âi r̂âi
†2

1

2
$r̂,âi

†âi%G , ~23!

so that one has a singleâi5A2M /b\2( x̂i1 i (b\2/4M )p̂i) operator for each Cartesian coordina

IV. CONCLUSIONS AND OUTLOOK

The main scope of this article was to show how relevant symmetries can be in the de
nation of structures of quantum Fokker–Planck equation. While in the literature only transla
invariance is considered and asked for also in the case of the damped harmonic oscillator,
to no go statements regarding the possibility of having quantum Fokker–Planck equations w
the physically relevant features~complete positivity, covariance and equipartition!, we here con-
sidered both one-dimensional Lie groups U~1! and R, showing that they are connected to tw
distinct classes of quantum Fokker–Planck equations: the quantum optical master equatio
ciated to shift-covariance and the quantum Brownian motion master equation associa
translation-covariance. That these two classes of models actually correspond to different p
can also be seen in connection with recent studies on their properties with respect to decohe8
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In particular, independently of complete positivity of the time evolution, it has been shown
covariance properties put severe restrictions on the structure of the stationary solution, pr
uniqueness is asked for.

In the case of shift-covariance a generalization of the quantum optical master equatio
been proposed, in which alsom-photon processes can be considered. Moreover, recent mathe
cal results by Holevo have been considered, concerning the structure of generators of com
positive quantum dynamical semigroups and leading to further restrictions in the quantum B
ian motion case. For the Brownian motion of a test particle in a fluid, where formal requirem
are not enough to essentially fix the structure of the quantum Fokker–Planck equation des
the phenomenon, a recent microphysical approach has been briefly recalled, based on sc
theory, where the quantum Fokker–Planck equation is obtained as the small momentu
energy transfer limit of a quantum generalization of the classical linear Boltzmann equ
Covariance properties with respect to some physically relevant group, typically reflecting a
metry under certain transformations of the given reservoir, can therefore be a most useful r
ment in the determination of structures of quantum Fokker–Planck equations or more gener
linear kinetic equations.

An interesting extension of this work would entail the study of generators of the dynami
systems in which one has an important correlation between internal and translational deg
freedom, both coupled through different interactions to some reservoir, a problem recently
sidered in Ref. 38, where the translational degrees of freedom are treated in a classica
assuming decoherence is strong enough. Such models could be of interest for the impleme
of quantum computing, where indeed some experimental scheme actually relies on a co
between internal and center of mass degrees of freedom.39
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Quantum group covariance and the braided structure
of deformed oscillators

A. Yildiza)

Feza Gu¨rsey Institute, P.O. Box 6, 81220, C¸ engelko¨y, Istanbul, Turkey

~Received 25 January 2002; accepted 12 July 2002!

The connection between braided Hopf algebra structure and quantum group cova-
riance of the deformed oscillators is constructed explicitly. In this context we pro-
vide deformations of the Hopf algebra of functions on SU~1,1!. Quantum sub-
groups and their representations are also discussed. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1509088#

I. INTRODUCTION

The covariance of the oscillator algebras attracted a lot of attention and is discuss
different contexts.1 The covariance of an algebra under the action of a noncommutative alg
deforms the notion of defining identical copies in the transformed algebra and this leads
deformation of the usual tensor product namely braided tensor product. The Hopf algebra a
are replaced by the braided Hopf algebra axioms.2 Hence braided group theory~self-contained
reviews can be found in Ref. 3! unifies the notions of symmetry and statistics. Recently, we fo
the general braided Hopf algebra solutions of the generalized oscillators.4 In this work we show
that some of these solutions are connected with the quantum group covariance and we finR
matrices controlling the braiding structure and the quantum group. We also discuss the rep
tations of quantum subgroups.

II. THE GENERALIZED OSCILLATOR, ITS COVARIANCE AND BRAIDED HOPF
STRUCTURE

Suppose that the generalized oscillator algebra

aa* 2Q1a* a5q2N,

aqN5qqNa, ~1!

qNa* 5qa* qN

is covariant under the transformation

~a!85aK11qNK21a* K3 ,

~a* !85a* K1* 1qNK2* 1aK3* , ~2!

~qN!85aL11qNL21a* L1* ,

where the deformation parametersQ1 andq are positive and with the*-structure (a* )* 5a and
(qN)* 5qN. The elementsK1 , K1* , K2 , K2* , K3 , K3* , L1 , L1* , andL2 (L2* 5L2) generate some
algebra. Our aim is to find that algebra if the transformation is a quantum group transform
We write the above transformation as a co-vector transformation

a!Electronic mail: yildiz@gursey.gov.tr
54590022-2488/2002/43(11)/5459/11/$19.00 © 2002 American Institute of Physics
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x85xt, ~3!

where

x5~a a* qN! and t5S K1 K3* L1

K3 K1* L1*

K2 K2* L2

D . ~4!

The matrixt is a quantum matrix satisfying

Rt1t25t2t1R ~5!

andR satisfies QYBE

R12R13R235R23R13R12. ~6!

To find theR matrix and hence the quantum group, we write the oscillator algebra as a co-v
algebra

x1x25x2x1R, ~7!

where

x1x25~a2 aa* aqN a* a ~a* !2 a* qN qNa qNa* q2N!, ~8!

x2x15~a2 a* a qNa aa* ~a* !2 qNa* aqN a* qN q2N!, ~9!

and the general form of theR matrix

R51
1 0 0 0 0 0 0 0 0

0 A1 0 A6 0 0 0 0 A15

0 0 A4 0 0 0 A11 0 0

0 A2 0 A7 0 0 0 0 A16

0 0 0 0 1 0 0 0 0

0 0 0 0 0 A9 0 A13 0

0 0 A5 0 0 0 A12 0 0

0 0 0 0 0 A10 0 A14 0

0 A3 0 A8 0 0 0 0 A17

2 . ~10!

The constants (Ai) appearing in theR matrix is to be determined from the consistency of~7! with
the oscillator relations~1! and from~6!. The covariance of a co-vector algebra under the action
a quantum group induces a braided Hopf algebra structure whose axioms are collectively gi

m+~ id ^ m!5m+~m^ id !,

m+~ id ^ h!5m+~h ^ id !5 id,

~ id ^ D!+D5~D ^ id !+D,

~e ^ id !+D5~ id ^ e!+D5 id,

m+~ id ^ S!+D5m+~S^ id !+D5h+e,
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c+~m^ id !5~ id ^ m!+~c ^ id !+~ id ^ c!,

c+~ id ^ m!5~m^ id !+~ id ^ c!+~c ^ id !,
~11!

~ id ^ D!+c5~c ^ id !+~ id ^ c!+~D ^ id !,

~D ^ id !+c5~ id ^ c!~c ^ id !+~ id ^ D!,

D+m5~m^ m!~ id ^ c ^ id !+~D ^ D!,

S+m5m+c+~S^ S!,

D+S5~S^ S!+c+D,

e+m5e ^ e,

~c ^ id !+~ id ^ c!+~c ^ id !5~ id ^ c!+~c ^ id !+~ id ^ c!.

The *-structure for a braided algebraB is different from the nonbraided one such that

D+* 5p+~* ^ * !+D,

S+* 5* +S, ~12!

~a^ b!* 5b* ^ a* , ;a,bPB.

The braided co-vector algebra has a braided Hopf algebra structure

D~x!5x^ 111^ x, e~x!50, S~x!52x ~13!

with the braiding relations

c~x1^ x2!5x2^ x1R8, i.e., c~xi ^ xj !5xb^ xaRi j8
ab . ~14!

The matrixR8 which controls the braiding relations should satisfy the following conditions:

R128 R138 R238 5R238 R138 R128 ,

R128 R138 R235R23R138 R128 ,

R12R138 R238 5R238 R138 R12,

~PR811!~PR21!50,

R218 R5R21R, ~15!
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whereP is the permutation matrix. Hence the problem of finding the quantum group leavin
generalized oscillator algebra covariant and the braidings induced by the quantum group
duced to finding the matricesR andR8.

The general form of the matrixR8 can be written as

R851
C1 0 0 0 0 0 0 0 0

0 C2 0 C7 0 0 0 0 C12

0 0 C5 0 0 0 C11 0 0

0 C3 0 C8 0 0 0 0 C13

0 0 0 0 C1 0 0 0 0

0 0 0 0 0 C10 0 C6 0

0 0 C6 0 0 0 C10 0 0

0 0 0 0 0 C11 0 C5 0

0 C4 0 C9 0 0 0 0 C14

2 ~16!

which gives the general form of the braiding relations.
For the three deformation parametersQ1 andq free, it turns out that there is a unique solutio

for the matricesR andR8, namely,

R5

¨

1 0 0 0 0 0 0 0 0

0
Q1

2

q2 0 0 0 0 0 0 0

0 0
Q1

q
0 0 0 0 0 0

0
~q22Q1!

q2 0
1

Q1
0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0
1

q
0

~q22Q1!

q2 0

0 0
~q22Q1!

q2 0 0 0
1

q
0 0

0 0 0 0 0 0 0
Q1

q
0

0
Q1

q2 0 2
1

Q1
0 0 0 0 1

©
~17!

and
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R85

¨

q2

Q1
0 0 0 0 0 0 0 0

0 Q1 0 0 0 0 0 0 0

0 0 q 0 0 0 0 0 0

0
q22Q1

Q1
0

q2

Q1
2 0 0 0 0 0

0 0 0 0
q2

Q1
0 0 0 0

0 0 0 0 0
q

Q1
0

q22Q1

Q1
0

0 0
q22Q1

Q1
0 0 0

q

Q1
0 0

0 0 0 0 0 0 0 q 0

0 1 0 2
q2

Q1
2 0 0 0 0

q2

Q1

©
. ~18!

Similar to theR matrix of SUq(2) the matrixR8 is proportional toR (R85q2Q1
21R). The entries

of the quantum matrix~4! generate the algebra

K1K1* 5K1* K11q2Q1
22L1* L11q22Q1~q22Q1!K3* K3 ,

K1K25qQ1
21K2K1 ,

K1K2* 5q21Q1K2* K11qQ1
21L2L11q22Q1~q22Q1!K3* K2 ,

K1K35q2Q1
22K3K1 ,

K1K3* 5Q1K3* K11L1
2,

K1L15qL1K1 ,

K1L1* 5qQ1
21L1* K11q21~q22Q1!L1K3 ,

K1L25L2K11q21~q22Q1!L1K2 ,

K2K2* 5Q1K2* K21q22Q1
2K3* K32K1* K11L2

2,

K2K35qQ1
21K3K2 ,

~19!
K2K3* 5q21Q1

2K3* K21L2L1 ,

K2L15Q1L1K2 ,

K2L1* 5L1* K21q21~q22Q1!L2K3 ,

K2L25qL2K22qQ1
21L1* K11q21Q1L1K3),

K3K3* 5q22Q1
3K3* K31L1* L1 ,
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K3L15q21Q1
2L1K3 ,

K3L1* 5qL1* K3 ,

K3L25Q1L2K3 ,

L1L1* 5q2Q1
22L1* L1 ,

L1L25qQ1
21L2L1 .

The Hopf algebra structure is given by the group Hopf algebra

D~ t!5t^ t, e~ t!51, S~ t!5t21, ~20!

where the inverse matrix is given by

t215S L2K1* 2qQ1
21L1* K2* 2Q1

22L2K3* 1q21Q1
21L1K2* qQ1

22L1* K3* 2q21L1K1*

2Q1
2L2K31qQ1L1* K2 L2K12q21Q1L1K2 q21Q1

2L1K32qL1* K1

q2Q1
21K3K2* 2qK2K1* q22Q1K3* K22q21K2* K1 K1* K12q22Q1

2K3* K3

D d21.

~21!

The elementd which is defined to be

d[L2K1* K12q22Q1
2L2K3* K31L1K3K2* 1L1* K3* K22qQ1

21L1* K2* K12q21Q1L1K2K1*
~22!

has grouplike Hopf algebra structure

D~d!5d ^ d, e~d!51, S~d!5d21 ~23!

and satisfies

K1d5dK1 , K2d5q21Q1
2dK2 , K3d5q22Q1

4dK3 , L1d5qQ1
22dL1 , L2d5dL2 ~24!

and their* -conjugates withd* 5d.
The braided Hopf algebra structure of the generalized oscillator~1! implied by the quantum

group covariance is given by the co-products

D~qN!5qN
^ 111^ qN, D~a!5a^ 111^ a, D~a* !5a* ^ 111^ a* , ~25!

the co-units

e~qN!5e~a!5e~a* !50, ~26!

the antipodes

S~qN!52qN, S~a!52a, S~a* !52a* ~27!

and the braidings implied by~18!,

c~qN
^ qN!5q2Q1

21qN
^ qN,

c~qN
^ a!5qQ1

21a^ qN,

c~a* ^ qN!5qQ1
21qN

^ a* ,
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c~qN
^ a* !5qa* ^ qN1Q1

21~q22Q1!qN
^ a* ,

c~a^ qN!5qqN
^ a1Q1

21~q22Q1!a^ qN, ~28!

c~a^ a!5q2Q1
21a^ a,

c~a* ^ a* !5q2Q1
21a* ^ a* ,

c~a^ a* !5Q1
21~q22Q1!a^ a* 1Q1a* ^ a1qN

^ qN,

c~a* ^ a!52q2Q1
22qN

^ qN1q2Q1
22a^ a* .

In contrast to the three parameter deformed case where there is a unique solution for the br
the two parameter deformed caseQ15q2 has three more solutions apart from the solution o
tained by substitutingQ15q2 into ~28!. These solutions are as follows:

sol1,

C151, C25q2, C350, C450, C55q, C650, C750,
~29!

C85q22, C950, C105q21, C1150, C1250, C1350, C14521;

sol2,

C151, C25q2, C350, C452, C55q, C650, C750,
~30!

C85q22, C950, C105q21, C1150, C1250, C1350, C1451;

sol3

C151, C25q2, C350, C450, C55q, C650, C750,
~31!

C85q22, C9522q22, C105q21, C1150, C1250, C1350, C1451.

TheQ15q2 case is special not only because there are three more solutions for the bra
but also theR matrix is triangular (R12

215R21) andS25 id is satisfied for the quantum group. W
also note that in the general braided Hopf algebra solutions given in Ref. 4, only the solutio
give in this section are related with the quantum group covariance.

We should also note that whenL15L1* 5K25K2* 50 andL251 the transformation matrix is
an element of SU~1,1! in the q5Q151 limit. Hence the group we define can be interpreted
deformations of SU~1,1!.

III. SUBGROUPS AND REPRESENTATIONS

In the general form of the transformation of the generalized oscillator, the invariance qua
group is a nine-parameter quantum group with three deformation parameters. This quantum
has seven and five parameter subgroups which we discuss.

~A! The seven parameter subgroup can be obtained by settingL15L1* 50 in ~19!. Then the
consistency of the relations requiresQ15q2, i.e., for the oscillator

aa* 2q2a* a5q2N,

aqN5qqNa, ~32!

qNa* 5qa* qN

the transformation
                                                                                                                



ting on

5466 J. Math. Phys., Vol. 43, No. 11, November 2002 A. Yildiz

                    
~a a* qN!85~a a* qN!S K1 K3* 0

K3 K1* 0

K2 K2* L2

D ~33!

leaves the algebra covariant where the entries of the quantum matrix satisfy

K1K1* 5K1* K1 ,

K1K25q21K2K1 ,

K1K2* 5qK2* K1 ,

K1K35q22K3K1 ,

K1K3* 5q2K3* K1 ,

K1L25L2K1 ,
~34!

K2K2* 5q2K2* K21q2K3* K32K1* K11L2
2 ,

K2K35q21K3K2 ,

K2K3* 5q3K3* K2 ,

K2L25qL2K2 ,

K3K3* 5q4K3* K3 ,

K3L25q2L2K3 .

The Hopf algebra structure is given by the group Hopf algebra, i.e.,

D~ t!5t^ t, e~ t!51, S~ t!5t21 ~35!

and the matrix inverse is

t215S L2K1* 2q24L2K3* 0

2q4L2K3 L2K1 0

K3K2* 2qK2K1* K3* K22q21K2* K1 K1* K12q2K3* K3

D d21, ~36!

where the element

d[L2~K1* K12q2K3* K3! ~37!

is grouplike

D~d!5d ^ d, e~d!51, S~d!5d21 ~38!

and satisfies

K1d5dK1 , K2d5q3dK2 , K3d5q6dK3 , L2d5dL2 , d* 5d. ~39!

To construct the representation, we take the generators of this algebra as operators ac
some space. We first find the simultaneously diagonalizible operators: the operatorsL2 , K1 , and
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K1* commute among themselves and taking into account thatL2* 5L2 we can take these operato
as diagonal operators. We take the eigenvalue of the Hermitian operator as

L2un&5Aqnun&, ~40!

whereA is a real constant. The relations of the algebra suggest that

K2un&;un21&, K3un&;un22& ~41!

and hence we take the actions of the generators as

K1un&5k1,nun&, K2un&5k2,nun21&, K3un&5k3,nun22&,
~42!

K1* un&5k1,n* un&, K2* un&5k2,n11* un11&, K3* un&5k3,n12* un12&.

Substituting these into~34! we obtain

k1,n5Bqn, k2,n5Cqn, k3,n5Dqn, ~43!

whereB, C, andD are complex constants satisfying

uBu25A21q2uDu2. ~44!

We note that the representation is infinite dimensional.
~B! The five parameter subgroup can be obtained by settingL15L1* 5K35K3* 50 in the

transformation~2!, i.e., for the algebra

aa* 2Q1a* a5q2N,

aqN5qqNa,

qNa* 5qa* qN, ~45!

the transformation

~a a* qN!85~a a* qN!S K1 0 0

0 K1* 0

K2 K2* L2

D ~46!

leaves the algebra covariant where the entries of the quantum matrix satisfy

K1K1* 5K1* K1 ,

K1K25qQ1
21K2K1 ,

K1K2* 5q21Q1K2* K1 ,
~47!

K1L25L2K1 ,

K2K2* 5Q1K2* K22K1* K11L2
2,

K2L25qL2K2 .

The Hopf algebra structure is given by the group Hopf algebra

D~ t!5t^ t, e~ t!51, S~ t!5t21. ~48!
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The inverse matrix is

t215S L2K1* 0 0

0 L2K1 0

2qK2K1* 2q21K2* K1 K1* K1

D d21, ~49!

where

d[L2K1* K1 ~50!

is grouplike,

D~d!5d ^ d, e~d!51, S~d!5d21, ~51!

and satisfies

K1d5dK1 , K2d5q21Q1
2dK2 , L2d5dL2 . ~52!

Similar to the construction of the representation of the seven parameter subgroup, th
mentsL2 andK1 can be taken as diagonal operators andK2 andK2* can be taken as lowering an
raising operators, respectively. We take the eigenvalue of the Hermitian operator as

L2un&5Aqnun& ~53!

and for the other operators we take

K1un&5k1,nun&, K2un&5k2,nun21&,
~54!

K1* un&5k1,n* un&, K2* un&5k2,n11* un11&.

Substituting these into~47! we obtain

k1,n5BS Q1

q D n

, uk2,nu25A2
Q1

n2q2n

Q12q2 2uBu2
Q1

n2S Q1

q D 2n

Q12S Q1

q D 2 , ~55!

whereA is real andB is complex. The quadratic Casimir of the algebra which is found to be

C5K1* K11~q2221!K2* K21q22L2
2 ~56!

has the eigenvalue

Cun&5~A21q22uBu2!un&. ~57!

In the algebra~47!, when we identify

L2[qH, K15K1* [q2H, K2[~q2q21!1/2X2 , K2* [~q2q21!1/2X1 , Q151, ~58!

the algebra turns out to be

qHX65q61X6qH, X1X22X2X15
q2H2q22H

q2q21 , ~59!

which generatesUq(su(2)) with the * -structure
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~qH!* 5qH, ~X6!* 5X7 . ~60!

The transformation

~a a* qN!85~a a* qN!S q2H 0 0

0 q2H 0

X2 X1 qH
D ~61!

leaves the commutation relations betweena, a* , and qN invariant. The matrix multiplication
gives the co-multiplication of the generators of the algebra

D~qH!5qH
^ qH, D~q2H!5q2H

^ q2H, D~X6!5X6 ^ q2H1qH
^ X6 ~62!

and the co-unit map

e~q6H!51, e~X6!50 ~63!

is a map to the identity of the quantum group. The antipodes

S~q6H!5q7H, S~X6!52q71X6 ~64!

give the inverse of the transformation matrix.

IV. CONCLUSION

At the level of a single oscillator, the deformation of the oscillator results in a noncomm
tivity in the algebra whose co-action leaves the oscillator algebra covariant. At the level of tw~or
more! oscillators, this induces a noncommutativity~called outer noncommutativity! between in-
dependent copies. This noncommutativity is described by the braiding relations. The discus
the n-fold braided tensor product forq-Heisenberg algebra is done in Ref. 5. Hence we give
only a generalization of the oscillator algebra but also the interaction pattern of these osci
among themselves via the quantum group covariance. This may contribute to understa
possible connections between quantum groups and nonextensive statistical mechanics.6 In this
work we use real deformation parameters, however, the fractional supersymmetric structu
quire at least one of the deformation parameters to be a root of unity7 as the generalization of th
(21) factor in the fermionic case. One more thing which deserves a separate study is the
pling of the oscillators or the unbraiding transformations.8

The braided co-vector algebras covariant under quantum groups are also covariant un
braided groups obtained from quantum groups by a transmutation process.3 The main ingredient of
this construction is theR matrix. Hence theR matrix we found defines a new braided group whi
we do not consider here.
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The global existence in the Cauchy problem of the
Maxwell–Chern–Simons–Higgs system

Dongho Chaea) and Myeongju Chaeb)

School of Mathematical Sciences, Seoul National University, Seoul 151-742, Korea

~Received 29 October 2001; accepted 6 June 2002!

In this article we prove the global existence of solution of the classical Maxwell–
Chern–Simons–Higgs equations in (211)-dimensional Minkowski space–time in
the Lorentz gauge. We also prove that the topological solution of the Maxwell–
Chern–Simons–Higgs system converges to that of Maxwell–Higgs system as the
Chern–Simons constantk goes to zero, reproducing the classical result by Mon-
crief @J. Math. Phys.21, 2291 ~1980!# on the global existence of the Maxwell–
Klein–Gordon system in (211)-dimension. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1507609#

I. INTRODUCTION

The Maxwell–Chern–Simons–Higgs model in (211)-space–time was proposed to constru
a self-dual system having both the Maxwell and the Chern–Simons terms.1 The Lagrangian is

L52
1

4
FmnFmn1

k

4
emnrFmnAr1DmfDmf1

1

2
]mN]mN2

1

2
~eufu21kN2ev2!22e2N2ufu2,

~1!

wheregmn5diag(1,21,21) is the (211)-dimensional Minkowskian metric inR3, f is a com-
plex scalar field,N is a real scalar field,A5(A0 ,A1 ,A2) is a gauge field,Fmn5]mAn2]nAm ,
Dm5]m2 ieAm , e is the charge of the electron, andk.0 is the Chern–Simons constant. We a
using the summation convention for Greek indices ranging 0,1,2 and for Latin indices rangin
We raise and lower the tensor indices bygmn5(gmn)215diag(1,21,21) andgmn , respectively.
The corresponding Euler–Lagrange equations via variation of the action taken with resp
(A,f,N) are

]lFlr1
k

2
emnrFmn12eIm~fDrf!50,

DmDmf1U f̄~ ufu2,N!50, ~2!

]m]mN1UN50,

where

U~ ufu2,N!5 1
2 ~eufu21kN2ev2!21e2N2ufu2,

andU f̄ , UN are formal derivations ofU(ufu2,N) with respect tof̄, N:

U f̄~ ufu2,N!5~eufu21kN2ev2!f1e2N2ufu2,

a!Electronic mail: dhchae@math.snu.ac.kr
b!Electronic mail: mjchae@math.snu.ac.kr
54700022-2488/2002/43(11)/5470/13/$19.00 © 2002 American Institute of Physics
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UN~ ufu2,N!5k~eufu21kN2ev2!12e2Nufu2.

Settingr50 in the first equation of~2!, we obtain the Gauss–Law constraint

] jF j 02kF1222e Im~fD0f!50. ~3!

The energy functional for the system is

E5E
R2

F1

2
F0i

2 1
1

2
F12

2 1uDmfu21u]mNu21U~ ufu2,N!Gdx. ~4!

We note that, if (A,f,N) is a solution that makesE finite, then either

f→0 and N→ ev2

k
, ~5!

or

ufu2→v2 and N→0 ~6!

as uxu→`. The former is called nontopological boundary condition, and the latter is called t
logical boundary condition. In the static case, integrating by parts and using~3!, we can rewrite the
energy functional~4! as

E5E u~D16 iD 2!fu21uD0f7 iefNu21
1

2
uF126~eufu21kN2e!u2dx6eE F12dx.

This implies the following lower bound for the energy:

E>eU E F12dxU. ~7!

The lower bound is achieved if

~D16 iD 2!f50,

D07 iefN50, ~8!

F126~eufu21kN2e!50.

The above system~8! together with~3! is called the self-dual Maxwell–Chern–Simons–Hig
system. The self-dual system was studied extensively under each of the two conditions~5! and~6!
by D. Chaeet al.,2,3 and on a periodic boundary condition, by Tarantello.4 They also verified the
unifying feature of Maxwell–Chern–Simons–Higgs which was heuristically described in Re

On the Cauchy problem to the Maxwell–Chern–Simons–Higgs, to the authors’ know
there is no previous result in the literature. As a related one, Moncrief has shown the
existence of solutions for the Maxwell–Klein–Gordon equations using the Lorentz gauge
11)-space–time.5 The Lagrangian of the Maxwell–Klein–Gordon system is

L52 1
4 FmnFmn1DmfDmf2m2ufu2.

He proved the global existence of solutions by showing that a suitably defined higher order e
though not strictly conserved, does not blow up in a finite time. In this article, we prove the g
existence of Maxwell–Chern–Simons–Higgs in both nontopological and topological cases
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Lorentz gauge, and prove that our topological solution converges to that of the Maxwell–
system in the limit,k→0. We remark that a similar convergence problem was considered fo
static cases in Refs. 2 and 4.

In Sec. II we drive sets of equations for Maxwell–Chern–Simons–Higgs from~2! in the
Lorentz gauge, and obtain the local existence result by the standard contraction mapping
ment. In Sec. III we define the higher order energy and prove that it does not blow up in a
time. From this result, we show that theH23H1 norm of a solution can not blow up in an
bounded interval of time, which completes the global existence proof. We remark that we
obtain the global boundedness ofH23H1 norm for a solution without introducing the Coulom
transform used in Ref. 5, instead we use the covariant Sobolev inequality which was alread
in Ref. 6. Finally, in Sec. IV we verify that the topological solution of Maxwell–Chern–Simo
Higgs converges to that of Maxwell–Higgs which is identified with the Maxwell–Klein–Gor
system by settingv50.

II. THE LOCAL EXISTENCE

The unknowns for the Maxwell–Chern–Simons–Higgs system consist of a vector pot
A, a complex scalar fieldf and a neutral scalar fieldN. The Lagrangian~1! is invariant through
the gauge transformation,

Ai85Ai1] il,

f85exp~ il!f.

In this article, we fix the gauge by giving the Lorentz gauge condition]mAm50 to the system~2!.
Using the relationFmn5]mAn2]nAm , the Euler–Lagrange equations~2! are rewritten in terms of
(A,f,N) in the Lorentz gauge by

hA052kF1222e Im~fD0f!,

hAi52ke i j F0 j22e Im~fDif!,
~9!

hf52ieA0]0f22ieAj] jf2e2Aj
2f1e2A0

2f2U f̄ ,

hN52UN ,

with given initial dataAm(0,x), f(0,x), N(0,x), ]0Am(0,x), ]0f(0,x), ]0N(0,x) satisfying

]mAm50,
~10!

DA02] j]0Aj2kF1222e Im~fD0f!50.

We write the Maxwell–Chern–Simons–Higgs equations in first order form as follows. Le
introduce the new unknowns (Pm ,cm ,Vm) defined by

Pm5] tAm , cm5Dmf, Vm5]mN.

In terms of those unknowns, the Maxwell–Chern–Simons–Higgs system in the Lorentz ga
written as follows:

]0A05P0 ,

]0P05DA02kF1222e Im~fc 0̄!,

]0Aj5Pj ,
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]0Pj5DAj2ke j i F0i22e Im~fc j̄ !,

]0f5c01 ieA0f,
~11!

]0c05D jc j1 ieA0c02U c̄ ,

]0c j5D jc02 ieA0c j2 ieF0 jf,

]0N5V0 ,

]0V05] jV j2UN ,

]0V j5] jV0 ,

supplemented by constraints~10!.
IntroduceÑ satisfying Ñ1 ev2/k 5N for the nontopological boundary condition. Then w

have

~A,f,Ñ!→0 as uxu→`.

In this case the system~11! changes harmlessly~i.e., UN→UÑ). For the topological case we ma
assume limuxu→` f5l for a complex scalarl with ulu5v. Introducingw satisfyingw1l5f, we
also have

~A,w,N!→0 as uxu→`.

Let us remark on notations. If no confusion arises, we denoteu5(A,f,Ñ) or (A,w,N), where
A5(A0 ,A1 ,A2). Then we denote

iu~ t !iHs5iA~ t !iHs1if~ t !iHs1iÑ~ t !iHs,

in the nontopological case, while

iu~ t !iHs5iA~ t !iHs1iw~ t !iHs1iN~ t !iHs

in the topological case. We also denote

iu~ t !iHs3Hs215iu~ t !iHs1i]0u~ t !iHs21.

Let u05u(0,•). Theniu0iH23H15iu(0)iH21i]0u(0)iH1.
The following is our local existence result for the Maxwell–Chern–Simons–Higgs syst
Theorem 2.1: Consider the Maxwell–Chern–Simons–Higgs system (9) with Lorentz gaug

constraints (10). Given a data set u0PH23H1 satisfying ~10! and either nontopological or
topological boundary conditions, there exists a unique local solution u of the Maxwell–Chern–
Simons–Higgs system (9) and (10) such that

uPC~@0,T#;H2~R2!!ùC1~@0,T#;H1~R2!!.

The existence time interval@0,T# depends only oniu0iH23H1.
Proof: We present the local existence proof for the nontopological case only. The topolo

case is completely similar. We set

XT5C~@0,T!;H2~R2!!ùC1~@0,T!;H1~R2!!.
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Given T.0, we introduce the normi•iXT
by i f iXT

5sup0<t<Ti f (t)iH23H1. We seek constantsT
andD0 so that the equation~9! induces a contraction mappingF on the closed ball

B5$~u,]0u!PC~@0,T#;H23H1!:iuiXT
<D0%,

subject to the given initial data (uo ,]0u0)PH23H1. We define the mappingF:XT→XT as fol-
lows: (A,f,Ñ)5F(A8,f8,Ñ8) solves the following linear wave equations:

hA052k~]1A282]2A18!22e Im~f8D08f8!,

hAi52ke i j ~]0Aj82] jA08!22e Im~f8Di8f8!,
~12!

hf52ieA08]0f822ieAj8] jf82e2Aj8
2f81e2A08

2f82U
f 8̄
8 ,

hÑ52UÑ8 .

Let iu0iH23H15d. Applying the standard energy estimates to~12!, we have

iA~ t !iH23H1<d1CE
0

t

i]A8~s!iH11i~ Im f8D8f8!iH1ds,

if~ t !iH23H1<d1CE
0

t

i~A8]f8!~s!iH11i~A82f8!~s!iH11iU
f 8̄
8 ~s!iH1ds,

iN~ t !iH23H1<d1CE
0

t

iU
Ñ
8 8~s!iH1,

where the symbol] represents a space–time derivative,]0 or ] j , andD representsD0 or D j , and
C depends onk, e. We use the Nirenberg–Gagliardo inequality,iuiL4<iuiL2

1/2
( j 51

2 i] juiL2
1/2, and

the Sobolev embedding,iuiL`<CiuiH2, to estimate the terms in the time integral. The high
order terms are estimated by

iA8]f8iH1<iA8]f8iL21(
j 51

2

~ i] jA8]f8iL21iA8] j]f8iL2!

<CiA8iH2i]f8iL21 (
i , j ,k51

2

i] jA8iL2
1/2i]f8iL2

1/2i] i] jA8iL2
1/2i]k]f8iL2

1/2

1CiA8iH2if8iH23H1<Ciu8iH23H1,

and, similarly,

if8D8f8iH1<Ciu8iH23H1.

Then we find easily

iu~ t !iH23H1<d1CE
0

t

~11iu8~s!iH23H1
2

! ds.

Using iu8iXT
<D0 , we have

iu~ t !iH23H1<d1C~11D0
2!t
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for 0<t<T. Therefore, takingD05d11 andT,1/C(11(d11)2) , we obtainiuiXT
<D0 , i.e.,

we find F:B→B. Using this, we compute easily that

i~F~u8!2F~v8!!~ t !iH23H1<CE
0

t

~11D0
2!i~u82v8!~s!iH23H1ds

for 0<t<T. ChoosingT small so that

C~11D0
2!T< 1

2 , ~13!

we deduce that the mappingF:B→B is a contraction mapping. We can apply the fixed po
argument to obtain the unique solution of~9! with uPC(@0,T#;H2(R2))ùC1(@0,T#;H1(R2)). To
show continuous dependence on the initial data of the solution, we letu,v be each solution to the
initial datau0 ,v0 . If iu0iH2,iv0iH2<d, we find that

iu2viXT
<iu02v0iH21C~11d2!Tiu2viXT

similarly. ChoosingT so small as toT satisfying~13!, we obtain

iu2viXT
<2iu02v0iXT

.

Next, we show that the constraint equations~10! are propagated by the evolution equatio
following the argument in Ref. 5. We write

U[P02] iAi ,
~14!

V[] i~] iA02]0Ai !2kF1222e Im fD0f,

and compute, using~11!,

d

dt S U
V D5S 0 I

D 0D S U
V D .

We note from the expression~14! that UPH2 and VPH1 wheneveru(t)PH33H2. Since the
linear wave equation has a unique global solution onH23H1, it follows U(t), V(t) vanish
throughout the interval of existence ofu. For initial datau0PH23H1, we obtain the desired
result by the standard density argument. h

III. THE GLOBAL EXISTENCE

In this section we estimate various gauge invariant quantities constructed from (Fmn ,f,c).
The conserved, gauge invariant energyE0(t) for Maxwell–Chern–Simons–Higgs is

E0~ t !5E
R2

F1

2
F0i

2 1
1

2
F12

2 1uDmfu21u]mNu21U~ ufu2,N!Gdx. ~15!

Following Ref. 5 we introduce the pseudo-energyE1(t) defined by

E1~ t !5E
R2

F1

2
~] lF0i !

21
1

2
~] lF12!

21uDlcmu21~] lVm!2Gdx

wherecm5Dmf, Vm5]mN.
The global existence result will be established after several lemmas.
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Lemma 3.1: Let uPC(@0,T#;H2(R2))ùC1(@0,T#;H1(R2)) be the solution of systems (9) an
(10) with initial data given either nontopological or topological boundary conditions. T
iu(t)iL2 is estimated in terms of the initial data for all tP@0,T#.

Proof: We first need to boundiA(t)iL2 by the initial data. To derive this, consider the integ

iA~ t !iL2
2

5E
R2

A0
21Ai

2dx.

Taking the time derivative of this integral and using the Lorentz gauge condition, we obtain

d

dt
iA~ t !iL2

2
52E

R2
2AiF0i dx<2E0

1/2iA~ t !iL2,

whereE0 is the conserved energy of the solution considered. It follows that, fort>0,

iA~ t !iL2<iA~0!iL212E0
1/2t. ~16!

In a similar way, we obtain the bounds for (f,Ñ) and (w,N):

d

dt
if~ t !iL2

2
52 ReE

R2
f̄]0f52 ReE

R2
f̄D0fdx<2E0

1/2if~ t !iL2,

d

dt
iÑ~ t !iL2

2
52E

R2
Ñ]0N dx<2E0

1/2iÑ~ t !iL2,

d

dt
iN~ t !iL2

2
52E

R2
N]0N dx<2E0

1/2iN~ t !iL2.

To obtain the bound foriw(t)iL2, recallw5f2l. Then we have

iD0w~ t !iL2<iD0f~ t !iL21ev2iA~ t !iL2<E0
1/21ev~ iA~0!iL212E0

1/2t ! by ~16!,

from which we obtain

d

dt
iw~ t !iL2

2 <2 ReE
R2

w̄D0wdx<2iw~ t !iL2~E0
1/21ev~ iA~0!iL212E0

1/2t !!.

The above inequalities imply that

iu~ t !iL2<Ciu0iL21~112t !E0
1/2 ~17!

for both u5(A,f,Ñ) and (A,w,N). h

Now consider the gauge invariant pseudo-energyE1(t). We shall show thatE1(t) does not
blow up in a finite time.

Lemma 3.2: Let uPC(@0,T#;H2(R2))ùC1(@0,T#;H1(R2)) be the solution of the systems (
and (10) with an initial data given either nontopological or topological boundary conditions. T

( i ) E1(t) is differentiable in time and

d

dt
E1~ t !5E

R2
22e] jF0i Im~c ic j̄ !22e] jUN] jV0 dx12 ReE

R2
D jc0•~ ieFi j c i1 ieFj 0c0

2D jU f̄! dx12 ReE
R2

D jc i•~ ieFi j c02F0ic j1 ieFj 0c i ! dx. ~18!

(ii) E 1(t) is estimated in terms of the initial data for all tP@0,T#.
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We will use the following covariant Sobolev inequality.
Lemma 3.3:6 Let 1<q,r<` and lets and p satisfy0<s<1, 1<p<`, and

1

p
5

~12s!

r
1sS 1

q
2

1

nD .

If p5`, then r,` ands,1. Let Dj5] j2 ieAj . Then there exists a constant C, depending only
on n, p, q, r , such that, for any uPLr for which ] juPLq and AjuPLq, j 51, . . . ,n, the
following inequality holds:

iuip<Ciui r
12sS (

j 51,2
iD juiqD s

.

Proof: See PropositionA.1 in Ref. 6. h

In casen52, r 52, we have in particular

iuiLp<CiuiL2
2/p S (

j 51,2
iD juiL2D 12 2/p

, 2,p,`. ~19!

Proof of Lemma 3.2:( i ) Let us assume an initial datau0 in H33H2. By the local existence
result, we obtain u, the solution of systems ~9! and ~10! in C(@0,T#;
H3(R2))ùC1(@0,T#;H2(R2)). We freely differentiateE1(t), the pseudo-energy ofu, and com-
pute ~18! using the equations of motion~11!. For an initial datau0 in H23H1, chooseu0

n in
H33H2 sou0

n→u0 in theH23H1 sense. Letun be the local solution evolving fromu0
n andE1

n(t)
be the corresponding pseudo-energy. Noting that continuous dependence on initial data
solution assures the uniform existence time interval@0,T# of $un%, we obtainE1

n(t)→E1(t) since
un→u in C(@0,T#;H23H1(R2)) by passing ton→`. Therefore we obtain the desired result.

( i i ) We may express the right hand side of~18!, ignoring subscripts, as

E
R2

]F•c21]UN•]V1Dc•c•F1Dc•DU f̄dx. ~20!

We will show that each term of~20! is estimated to be at most linear with respect toE1(t).
Let us begin with the nontopological case. From~19! we have

ifiLp<CifiL2
2/p iciL2

12 2/p <C~ iu0iL21tE0
1/2!2/pE0

~1/2!(12 2/p), 2,p,`,

iciL4<CiciL2
1/2iDciL2

1/2<CE0
1/4E1

1/4~ t !.

Note that any power ofifiLp (2,p,`) is estimated by the initial data sinceE0 is conserved. We
get

E
R2

]F•c2dx<i]FiL2iciL4
2 <CE1

1/2~ t !ic~ t !iL2iDc~ t !iL2<CE0
1/2E1~ t !,

and

E
R2

DF•c•Fdx<ic~ t !F~ t !)iL2iDciL2

<CiF~ t !iL4ic~ t !iL4E1
1/2~ t !

<Cic~ t !iL2
1/2iDc~ t !iL2

1/2iF~ t !iL2
1/2i]F~ t !iL2

1/2E1
1/2~ t !<CE0

1/2E1~ t !.
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Next, we estimate]UN•]V, Dc•DU f̄ . Note that]UN , DU f̄ are expressed by gauge invaria
terms using] l ufu252 Re(f̄Dlf):

]UN52k~2e Recf̄1kV!12ek2S Vufu212S Ñ1
ev2

k DRecf̄ D , ~21!

DU f̄5cufu212f Recf̄1k~fV1Ñc!1ek2S Ñ1
ev2

k D S 2Vf1S Ñ1
ev2

k Dc D . ~22!

Let us pick upcfÑ in ~21!. We may consider]V•cfÑ term only since other terms of]UN

•]V, Dc•DU f̄ are to be estimated in a completely analogous way. First we get

E
R2

cfÑ]V dx<i~cÑf!~ t !iL2i]ViL2

<iÑ~ t !iL`ic~ t !iL4if~ t !iL4E1
1/2~ t !

<iÑiL2(12a)/a
12a i]2ÑiL2

a iciL2
1/2iDciL2

1/2ifiL2
1/2iciL2

1/2E1
1/2~ t !, 0,a,1,

where we use the usual Nirenberg–Gagliardo inequality toiÑiL` and the covariant Sobole
inequality toiciL4, ifiL4. Applying the Nirenberg–Gagliardo inequality again toiÑiL2(12a)/a, we
get

E
R2

cfÑ]Vdx<iÑ~ t !iL2
a i]Ñ~ t !iL2

122ai]2Ñ~ t !iL2
a if~ t !iL2

1/2E0
1/2E1

3/4~ t !

<Ciu~ t !iL2
a1 1/2E0

12aE1
3/41 a/2 ~ t !, 0,a, 1

2.

Now, choosinga51/4, we obtain the estimate we want.
Summing up all the estimations of the above, we arrive at

d

dt
E1~ t !<C~ iu0iL21~112t2!E0

1/2!E0
3/4~11E1~ t !! ~23!

with C depending onk, e, v and the conserved energyE0 of the solution considered. Finally, from
Gronwall’s inequality, it follows that

E1~ t !<C1~ t !E1~0!1C2~ t !,

whereC1(t), C2(t) are smooth functions depending onk, e, v, E0 andiu(0)iL2. We also prove
that for the topological solution (d/dt) E1(t) is bounded as~23!, by applying the covariant Sobo
lev inequality tow instead off in this case. Letc̃ j5D jw. Then

c̃ j5c j2 ielAj .

Applying ~19! with respect tow, we find

iwiLp<iwiL2
2/p ic̃iL2

12 2/p<CiwiL2
2/p

~ iciL2
12 2/p

1eliAiL2
12 2/p

!<C~E0 ,iu0iL2!~ iciL2
12 2/p

11!.

The last inequality follows from Lemma 3.1. The remaining estimates can be done similarly
nontopological case. Observe that the Chern–Simons coupling parameterk appears only on esti
mating ]UN•]V, Dc•DU f̄ with them depending onk by polynomial order. ThusE1(t) is
continuously increasing with respect tok. We also see thatE0 for the topological case behaves
the same way. This fact will be used in Sec. IV. h
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The following is our main theorem of this section.
Theorem 3.4. „Global existence of smooth solutions…: Consider the Maxwell–Chern–

Simons–Higgs system. Then any given initial data(u0 ,]0u0)PH23H1 satisfying (10) admits a
unique, global solution in the Lorentz gauge such that

~A,f,Ñ!PC~@0,̀ !;H2~R2!!ùC1~@0,̀ !;H1~R2!!

in the nontopological case, and

~A,w,N!PC~@0,̀ !;Hs~R2!!ùC1~@0,̀ !;H1~R2!!

in the topological case.
Proof: In order to extend our local solution globally, we show thatiu(t)iH23H1 is uniformly

bounded on any finite interval@0,T#. It is sufficient to verify the nontopological case. Consider t
Maxwell equations in~9!,

hA052kF1222e Im~fD0f![J0 ,
~24!

hAi52ke i j F0 j22e Im~fDif![Ji .

We compute the spatial derivatives ofJ0 , Ji as

] jJ052k] jF1222e Im~c jc 0̄1fD jc0!,

] jJi52ke ik] jF0k22e Im~c jc ī1fD jc i !.

Then applying energy estimates to~24! with subscripts ignored, we have

iA~ t !iH23H1<iu0iH23H11E
0

t

iJmiL21i] jJm~s!iL2ds

<iu0iH23H11C~k,e!E
0

t

iFiL21ifciL21i]FiL21ic2iL21ifDcFiL2ds

<iu0iH23H11C~k,e!E
0

t

E0
1/21ifiL4iciL4

2
1E1

1/2~s!1iciL41ifiL`E1
1/2~s!ds.

Applying the covariant Sobolev inequality~19! repeatedly, we get

ifiL`<CifiL2
e iciL2

122eiDciL2
e , 0,e, 1

2 .

Thus, if e51/4,

iA~ t !iH23H1<iu0iH23H11C~k,e!E
0

t

E0
1/21ifiL2

1/2E0
1/2Ea

1/4~s!1E1
1/21E0

1/2E1
1/2~s!

1ifiL2
e E0

~122e!/2E1
~11e!/2 ~s!ds

<iu0iH23H11C~k,e!E
0

t

~11iuiL2!~11E0
1/2!~11E1

1/2~s!!ds.

From Lemmas 3.1 and 3.3, we find thatiA(t)iH23H1 does not blow up in any finite time. Next w
considerifiH23H1. We begin by rewriting

u]mfu25uDmfu21 ieAmDmf2 ieAmfm̄Dmf1e2Am
2 ufu2 ~25!
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5ucu21 ieAmcm̄2 ieAmfm̄cm1e2Am
2 ufu2, ~26!

and

u] j]mfu25uD jcm1 ieAjcm1 ie] jAm•f1 ieAmf j2e2AmAjfu2. ~27!

Each term in~26!, ~27! are shown to beL2(R2! and estimated byiA(t)iH23H1 andE0 , E1(t). We
present here one of those estimations

E
R2

Ac•]A•f<iAiL`i]AiL2ifciL2

<CiAiH23H1
2 ifiL4iciL4

<iAiH23H1
2 ifiL2

1/2iciL2iDciL2
1/2<CiAiH23H1

2 ifiL2
1/2E0

1/2E1
1/4~ t !.

Then from the previous result oniA(t)iH23H1 and Lemmas 3.1, and 3.3, we find thatifiH23H1

is uniformly bounded in any finite time. Note that we estimateiÑ(t)iH23H1 by tE0 and E1(0)
directly from Lemmas 3.1 and 3.3. We are done. h

IV. THE MAXWELL–HIGGS LIMIT

We recall the Lagrangian of Maxwell–Chern–Simons–Higgs system is

L52
1

4
FmnFmn1

k

4
emnrFmnAr1DmfDmf1

1

2
]mN]mN2

1

2
~eufu21kN2ev2!22e2N2ufu2,

~28!

and observe that settingN50, k50 into the above formally,~28! becomes the Lagrangian of th
well-known Maxwell–Higgs model,

L52 1
4 FmnFmn1DmfDmf2 1

2 e2~ ufu22v2!2,

as was mentioned in Sec. I. We rigorously verify this connection between the two mode
proving the convergence result as follows. In the casek50, the Euler–Lagrange equations of~28!
are written by

hA0522e Im~fD0f!,

hAi522e Im~fDif!,
~29!

hf52ieA0]0f22ieAj] jf2e2Aj
2f1e2A0

2f2~eufu22ev2!f2eN2f,

hN522e2Nufu2,

with given initial dataAm(0,x), f(0,x), N(0,x), ]0Am(0,x), ]0f(0,x), ]0N(0,x) satisfying

]mAm50,
~30!

DA02] j]0Aj22e Im~fD0f!50.

In particular, if we setN(0,x)5]0N(0,x)50, we have

iN~ t !iH23H1<E
0

t

C~s!iN~s!iH1ds,
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applying the energy estimate to the equation forN of ~29!, where we useiu(t)iH23H1<C(t).
Then, by Gronwall’s inequality we obtainN(t)50 in any finite time.

Theorem 4.1 „Maxwell–Higgs limit …: Consider the topological case of Maxwell–Chern–
Simons–Higgs systems. Let uk be the global solution of (9) with coupling constantk of H2

3H1 initial data u0
k and let u be the global solution of (29) of H23H1 initial data u0 . Let us

suppose that u0
k→u0 in H23H1. Then, iuk(t)2u(t)iH23H1→0 as k→0 uniformly on any finite

time interval.
Proof: From ~9! and ~29! we write the equations satisfied byuk2u in the form

h~A0
k2A0!52kF12

k 22e Im~fkD0fk2fD0f!,

h~Ai
k2Ai !5ke i j F0 j

k 22e Im~fkDif
k2fDif!,

~31!
h~wk2w!52ie~A0

k]0fk2A0]0f!22ie~Aj
k] jf

k2Aj] jf!2e2~~Aj
k!2fk2Aj

2f!2~Ufk
1̄U f̄!,

h~Nk2N!52UNk1UN .

Let Dku denoteuk2u. Then, ignoring subscripts, we get from first two equations of~31!,

iDkA~ t !iH23H1<iDku0iH23H11CE
0

t

kiFkiH11ifkDkciL21icDkfiH1ds.

Noting

Dkf5Dkw,

Dkc5DDkw5]Dkw1ADkw,

]Dkc5]2Dkw1]A•Dkw1A]Dkw,

we obtain

iDkfiL4<iDkuiH1,
~32!

iDkciL4<iDkuiL41iAiL`iuiL4<iuiH21iuiH2iDkuiH1.

We already know that sup0<k<1iuk(t)iH23H1 is bounded by a smooth function oft in the proof of
Theorem 3.4. Replacing alliuk(t)iH2 terms withC(t) and using~32!, we get

iDkAiH23H1<iDku0iH23H11C~ t !S k1E
0

t

iDku~s!iH2dsD .

Similarly, we estimateiDkwiH23H1, iDkNiH23H1. Thus we have

iDku~ t !iH23H1<iDku0iH23H11C~ t !S k1E
0

t

iDku~s!iH2dsD . ~33!

Applying Gronwall’s inequality to the above, we obtain

i~uk2u!~ t !iH23H1<kC~ t !1iu0
k2u0iH23H1, ~34!

thus

i~uk2u!~ t !iH23H1→0 uniformly with respect tot ~35!
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as k→0. If we set u05(A,w,0),]0u05(]0A,]0w,0), we deduce from~35! that (Ak,wk,Nk)
converges to (A,w,0) such that (A,w1l) is the finite energy solution of the Maxwell–Higg
system with

~A,w!PC~@0,̀ !;Hs~R2!!ùC1~@0,̀ !;H1~R2!!.

We complete the proof of Theorem 4.1. h

ACKNOWLEDGMENTS

This research is partially supported by Grant No. 2000-2-10200-002-5 from the basic re
program of KOSEF, and Research Institute of Mathematics.

1C. Lee, K. Lee, and H. Min, Phys. Lett. B252, 79 ~1990!.
2D. Chae and N. Kim, J. Diff. Eqns.134, 154 ~1997!.
3D. Chae and O. Imanuvilov, J. Funct. Anal.~to appear!.
4G. Tarantello and T. Ricciardi, Commun. Pure Appl. Math.53, 811 ~2000!.
5V. Moncrief, J. Math. Phys.21, 2291~1980!.
6J. Ginibre and G. Velo, Commun. Math. Phys.82, 1 ~1981!.
                                                                                                                



he
eld

ing
we
nd for
lation
ional

scale
ary

be
to
al

c

ted

thod

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 11 NOVEMBER 2002

                    
Scale invariant Euclidean field theory in any dimension
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Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw,
Plac Maxa Borna 9, Poland

~Received 4 June 2002; accepted 17 July 2002!

We discuss aD-dimensional scalar field interacting with a metric field. The metric
depends ond-dimensional coordinates~whered,D). We choose formal Gaussian
scale invariant correlation functions for the metric field. By a projection to a lower
dimensional subspace we obtain a scale invariant non-Gaussian model of Euclidean
quantum field theory inD2d or d dimensions. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1510971#

I. INTRODUCTION

We consider a new method of a construction of Euclidean fields. A scalar field inD dimen-
sions is interacting with a metric depending ond-dimensional coordinates. An averaging over t
metric and a projection of the scalar field to ans-dimensional subspace leads to a scalar fi
which is Euclidean invariant inRs ~we considers5D2d ands5d). If the metric field is scale
invariant with a scaling dimension 2g, then the scalar field is also scale invariant with a scal
dimension depending ong. We discuss two models for the random metric. In the first model
consider a square of a Gaussian random field. We are unable to derive an upper bou
correlation functions in this model. Then, we consider formal scale invariant Gaussian corre
functions for the metric field. Such correlation functions do not arise from any rigorous funct
integral. We treat the Gaussian averaging as a tool for constructing models. We obtain
invariant correlation functions of a scalar field with explicit upper and lower bounds. Our prim
interest in this class of models1,2 comes from quantum gravity. However, the method may
useful for a construction of relativistic quantum fields~although at the moment we are unable
prove the crucial Osterwalder–Schrader positivity3!. The model can be interesting for statistic
physics as a continuum version of spin glass models.4

II. D-DIMENSIONAL SCALAR FIELDS

We consider a complex scalar matter fieldF in D dimensions interacting with a metri
varying only on ad-dimensional submanifold. We split the coordinates asx5(X,x) with x
PRd. Without a self-interaction theFF* correlation function averaged over the metric is deno
by

^A 21~x,y!&, ~1!

where

2A5
1

2 (
m50,n50

D2d21

gmn~x!]m]n1
1

2 (
k5D2d

D21

]k
2. ~2!

In Eq. ~2! 22A is the Laplace–Beltrami operator on aD-dimensional manifold with a trivial unit
metric on thed-dimensional submanifold. In order to calculate the average~1! we repeat some
steps of Refs. 1 and 2. We represent the Green’s function by means of the proper time me

a!Electronic mail: zhab@ift.uni.wroc.pl
54830022-2488/2002/43(11)/5483/10/$19.00 © 2002 American Institute of Physics
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A 21~x,y!5E
0

`

dt~exp~2tA!!~x,y!. ~3!

For a calculation of (exp(tA))(x,y) we apply the functional integral

Kt~x,y!5~exp~2tA!!~x,y!

5E DxexpS 2
1

2 E dx

dt

dx

dt
2

1

2 E gmn~x!
dXm

dt

dXn

dt D d~x~0!2x!d~x~t!2y!. ~4!

In the functional integral~4! we make a change of variables (x→b) determined by Stratonovitch
stochastic differential equations5

dxV~s!5eA
V~x~s!!dbA~s!, ~5!

where forV50,1,. . . ,D2d21,

ea
mea

n5gmn

andeA
V5dA

V if V.D2d21.
After such a change of variables the functional integral in Eq.~4! becomes Gaussian. In fac

this is the standard Wiener integral andbA(t) for eachA are independent Brownian motions

E@bA~ t !bC~s!#5dACmin~s,t !.

The solutionqt of Eq. ~5! consists of two vectors~Q,q! where

q~t,x!5x1b~t! ~6!

andQ has the components~for m50, . . . ,D2d21)

Qm~t,X!5Xm1E
0

t

ea
m~q~s,x!!dBa~s!. ~7!

The kernel is

Kt~x,y!5E@d~y2qt~x!!#5EFd~y2x2b~t!!)
m

d~Ym2Qm~t,X!!G .
Using Eq.~7! and the Fourier representation of thed-function we write the kernelKt in the form

Kt~x,y!5~2p!2D1dE dPexp~ iP~Y2X!!

~8!

3EFd~y2x2b~t!!expS 2 i E Pmea
m~q~s,x!!dBa~s! D G .

We may choose a Gaussian field as a model for the tetrad in order to perform the averaging
~1! ~as we did in Ref. 1!:

^ea
m~x!eb

n~y!&5Gab
mn~x2y!5aab

mnux2yu22g, ~9!

wherea is a scale invariant tensor. Then
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^Kt~x,y!&5~2p!2D1dE dPexp~ iP~Y2X!!

3EFd~y2x2Atb~1!!expS 2t12gPmPnE
0

1

dBa~s!E
0

s

dBc~s8!Gac
mn~b~s!2b~s8!! D G ,

~10!

where we have changed the times→ts, and used the equivalenceb(ts)5Atb(s) and the scale
invariant form of the two-point function~9!. Moreover, we renormalized the kernelKt removing
from it the term~see Refs. 1 and 6!

exp~2 1
2 tGaa

mn~0!PmPn!.

It can be seen that this procedure is equivalent to the normal ordering of the metric as a sq
the tetrad

gmn~x!5ea
m~x!ea

n~x!→:ea
m~x!ea

n~x!ªea
m~x!ea

n~x!2^ea
m~x!ea

n~x!&. ~11!

We can prove that the double stochastic integral in Eq.~10! is a finite square integrable rando
variable if 2g,1. However, it remains unclear whether the momentum integral in Eq.~10! is
finite.

We can work without the stochastic integrals~8! if we explicitly integrate overB. The random
variablesb andBa are independent. Hence, using the formula5

EFexpi E f a~q!dBaG5EFexpS 2
1

2 E f af adsD G ,
we can rewrite Eq.~8! solely in terms of the metric tensor

Kt~x,y!5~2p!2D1dE dPexp~ iP~Y2X!!

3EFd~y2x2b~t!!expS 2
1

2 E0

t

Pmgmn~q~s,x!!PndsD G . ~12!

Let J be the characteristic function ofgmn

J~h!5^exp~2 1
2 g~h!!& ~13!

Then, the mean value of the kernel~12! can be expressed in the form

^Kt~x,y!&5~2p!2D1dE dPexp~ iP~Y2X!!

3E@d~y2x2b~t!!J~h!# ~14!

whereg(h)5*dzgmn(z)hmn(z) and

hmn~z!5PmPnE
0

t

d~z2x2b~s!!ds.

If ea
m is Gaussian, thenJ can be calculated explicitly

^exp~2 1
2 g~h!!&5det~11hG!2 1/2, ~15!

where on the rhs the renormalization of the determinant@through a multiplication by exp(1
2Tr(Gh))

defining det2, see Ref. 7 is equivalent to the normal ordering~11! @and subsequently to th
renormalization of the kernel~10!#.
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We consider next another model where the averaging is performed under the assumpti
the metric is described by a formal Gaussian field with the two-point correlation function

^gmn~x!gsr~y!&522Dmn;sr~x2y!52Cmn;sruy2xu24g, ~16!

whereC ~a scale invariant operator! must be positive definite if the momentum integrals in t
final formula are to exist. This requirement is not satisfied in a linearized Einstein gravity8 @e.g., in
the transverse-traceless gaugepVpGgVG(x) would be zero in a covariantD-dimensional gravity;
however our gravity isd-dimensional#. Moreover, the averaging cannot be considered as a w
defined functional integral. Concerning the choice of the tensorCmn;sr, let us mention that the
conformally flat metricCmn;sr5dmndsr would be a satisfactory model for our purposes.

The average overg in Eq. ~12! can be calculated

^Kt~x,y!&5~2p!2D1dE dPexp~ iP~Y2X!!

3EFd~y2x2Atb~1!!expS 2
1

4
t222gE

0

1

PmPsPnPrDmn;sr~b~s!2b~s8!!dsds8D G
~17!

@as in Eq.~10! we have changed the times→ts]. By a scaling of momenta we can bring th
propagator of Eq.~3! to the form

^A 21~x,y!&5E
0

`

dtt2 d/2 2(D2d)(12g)/2F2~t2 1/2~y2x!,t2 1/21 g/2~Y2X!!. ~18!

III. A PROJECTION TO DÀd DIMENSIONS

The two-point function~18! has a different scaling behavior inx andX directions. We obtain
a fixed scaling behavior settingx5y50. Then, we have

^A 21~x,y!&5RuX2Yu2D122 @g/~12g!#(d22), ~19!

whereR is a positive constant. Hence, if all the correlation functions are scale invariant, th

F~0,X!.l~D22!/2 1 @g/~12g!#~d22!/2F~0,lX!, ~20!

where the equivalence means that both sides have the same correlation functions.
In order to prove thatR is finite and not zero we need upper and lower bounds for

Gaussian model~17!. We show first that the bilinear form (f j ,^A 21& f l) is finite and nonzero on
a dense set of functionsf . For this purpose we choose

f k~X!5~2pa!2 d/2expS 2
a

2
X21 ikX D ,

Then ~we keepxÞy in order to show that the model of Sec. 2 is nontrivial; for a scale invar
model of this sectionx5y50),

~ f k ,^A 21& f k8!5~2p!2D1dE
0

`

dtt2 d/2E dP

3EFd~ t2 1/2~y2x!2b~1!!

3expS 2
1

2a
~P2k!22

1

2a
~P2k8!2

2
1

4
t222gE

0

1

PmPsPnPrDmn;sr~b~s!2b~s8!!dsds8D G . ~21!
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In our estimates we apply Jensen inequalities in the form~for real functionsA and f )

E@expA#>expE@A# ~22!

and

EFexpS 2E
0

1

dsds8 f ~s,s8! D G<E
0

1

dsds8E@exp~2 f ~s,s8!!#. ~23!

An upper bound can be obtained by means of the Jensen inequality~23! expressed in the form

~ f k ,^A 21& f k8!<2E
0

`

dtE
0

1

dsE
0

s

ds8E du1du2dPt2 d/2

3expS 2
1

2a
~P2k!22

1

2a
~P2k8!2D p~s8,u1!p~s2s8,u22u1!

3p~12s,t2 1/2~y2x!2u2!expS 2
t222g

4
PmPsPnPrDmn;sr~u12u2! D ,

~24!

wherep(s,u)5(2ps)2 d/2 exp(2u2/2s). We can convince ourselves by means of explicit cal
lations~using a proper change of variables! that the integral on the rhs of Eq.~24! is finite. For the
lower bound it will be useful to introduce the Brownian bridge9 starting from0 and ending inu
defined on the time interval@0,1#

a~u,s!5us1c~s!,

wherec is the Gaussian process starting from0 and ending in0 with mean equal zero and th
covariance

E@cj~s8!ck~s!#5d jks8~12s!

for s8<s. Then, thed function in Eq. ~21! determines the Brownian bridge and the Jens
inequality ~22! takes the form

~ f k ,^A 21& f k8!>~2p!2D1dE
0

`

dtt2 d/2 E dP

3expS 2
1

2a
~P2k!22

1

2a
~P2k8!2

2
1

4
t222g E

0

1

PmPsPnPrE@Dmn;sr~a~t2 1/2y2t2 1/2x,s!2a~t2 1/2y

2t2 1/2x,s8!!dsds8# D , ~25!

where the expectation value in the exponential on the rhs of Eq.~25! is equal to

E duE dsE
0

s

ds8~2pv~s,s8!!2 d/2 expS 2
1

2v~s,s8!
u2D

3uu2t2 1/2s~y2x!1t2 1/2s8~y2x!u24g, ~26!
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wherev(s,s8)5(s2s8)(12s1s8). It is finite if g, 1
2 @the form ~16! of the graviton two-point

function is assumed#.
We compute now higher order correlation functions in the Gaussian model,

^F~x!F~x8!F* ~y!F* ~y8!&

5^A 21~x,y!A 21~x8,y8!&1~x→x8!

5~2p!22D12dE dt1dt2E dPdP8exp~ iP~Y2X!1 iP8~Y82X8!!

3EFd~y2x2b~t1!!d~y82x82b8~t2!!

3expS 2
1

4 E0

t1E
0

t1
PmPsPnPrDmn;sr~b~s!2b~s8!!dsds8

2
1

4 E0

t2E
0

t2
Pm8 Ps8 Pn8Pr8D

mn;sr~b8~s!2b8~s8!!dsds8

2
1

2 E0

t1E
0

t2
PmPnPr8Ps8Dmn;sr~x2x81b~s!2b8~s8!!dsds8D G1~x→x8!, ~27!

where (x→x8) means the same expression in whichx is exchanged withx8. The fourlinear form
~27! calculated on the basisf reads

^F~ f k1
!F~ f k3

!F* ~ f k2
!F* ~ f k4

!&

5~2p!22D12dE dt1dt2E dPdP8EFd~y2x2b~t1!!d~y82x82b8~t2!!

3expS 2
1

2a
~P2k1!22

1

2a
~P2k2!22

1

2a
~P82k3!22

1

2a
~P82k4!2D

3expS 2
1

4 E0

t1E
0

t1
PmPsPnPrDmn;sr~b~s!2b~s8!!dsds8

2
1

4 E0

t2E
0

t2
Pm8 Ps8 Pn8Pr8D

mn;sr~b8~s!2b8~s8!!dsds8

2
1

2 E0

t1E
0

t2
PmPnPr8Ps8Dmn;sr~x2x81b~s!2b8~s8!!dsds8D G

1~1,2→3,4!, ~28!

where the last term means the same expression with exchanged wave numbers. We introd
spherical coordinates on the (t1 ,t2)-planet15r cosu andt25r sinu. Let us rescale the moment
k5pAr , k85p8Ar , K5Pr 1/22 g/2 and K 85P8r 1/22 g/2. Then, we can see that the four-poi
function ~27! takes the form
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^F~x!F~x8!F* ~y!F* ~y8!&5E dudrrr 2d2(12g)(D2d)F4~u,r 2 1/2~x2y!,r 2 1/2~x82y8!,

r 2 1/2~x82x!,r 2 1/2~x82y!,r 2 1/2~y82x!,

r 2 1/21 g/2~X2Y!,r 2 1/21 g/2~X82Y8!,r 2 1/21 g/2~X82Y!,

r 2 1/21 g/2~X2Y8!!. ~29!

It follows just by scaling of coordinates@the r -integral scales as twice thet-integral in Eq.~18!#
that atx5x85y5y850 the correlations are scale invariant with the same scaling dimension
Eq. ~20!.

It is clear from Eq.~28! that in the same way as we did it in Eqs.~24! and~25! we can obtain
finite upper and lower bounds on the correlation functions~28! by means of the Jensen inequa
ties.

We could continue with higher order correlation functions. Again through an introductio
spherical coordinates in the (t1 , . . . ,t3) space we can show that

^F~x1! . . . F~x3!F* ~y1! . . .F* ~y3!& ~30!

scales with the same dimension as in Eq.~20!. The scaling of higher order correlation functions
now evident. We introduce the spherical coordinates for thet-integrals. The resulting scaling is
consequence of the fact that thet-volume andP integrals have the scaling dimensions proportio
to the order of the correlation function.

IV. A PROJECTION TO d DIMENSIONS

There is still another option that we let allX5Y50. In such a case

^Kt~x,y!&5~2p!2D1dE dPEFd~y2x2Atb~1!!

3expS 2
1

4
t222gE

0

1

PmPsPnPrDmn;sr~b~s!2b~s8!!dsds8D G . ~31!

By a scaling of momenta we can bring the propagator of Eq.~3! to the form

^A 21~x,y!&5E
0

`

dtt2 d/2 2(D2d)(12g)/2F2~t2 1/2~y2x!!. ~32!

Hence

^A 21~x,y!&5Rux2yu2d122(D2d)(12g), ~33!

whereR is a positive constant. Hence, if all the correlation functions are scale invariant, th

F~x,0!.l~d22!/2 1 (D2d)(12g)/2F~lx,0!. ~34!

We can prove all the inequalities of Sec. III in this model. So, the upper bound for the two-
function reads
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u^A 21~x,y!&u<2E
0

`

dtE
0

1

dsE
0

s

ds8E du1du2dPt2 d/2p~s8,u1!p~s2s8,u22u1!

3p~12s,t2 1/2~y2x!2u2!expS 2
t222g

4
PmPsPnPrDmn;sr~u12u2! D .

~35!

The lower bound takes the form

u^A 21~x,y!&u>~2p!2D1dE
0

`

dtt2 d/2E dP

3expS 2
1

4
t222gE

0

1

PmPsPnPrE@Dmn;sr~a~t2 1/2y2t2 1/2x,s!

2a~t2 1/2y2t2 1/2x,s8!!dsds8# D , ~36!

where the expectation value in the exponential on the rhs of Eq.~36! is equal to

E duE dsE
0

s

ds8~2pv~s,s8!!2 d/2expS 2
1

2v~s,s8!
u2D

3uu2t2 1/2s~y2x!1t2 1/2s8~y2x!u24g, ~37!

wherev(s,s8)5(s2s8)(12s1s8). It is finite if g, 1
2. The bounds~35! and~36! in fact have the

form

R1<ux2yud221(D2d)(12g)^A 21~x,y!&<R2 ~38!

with certain positiveR1 andR2 .
The inequalities~38! can be proved from the inequlities~35! and ~36! just by rescaling of

variables. It is more tedious to show that the constantsR1 andR2 are finite and not zero~but the
estimates reduce to finite dimensional integrals and are straightforward!.

We can project now toRd higher order correlation functions:

^F~x!F~x8!F* ~y!F* ~y8!&5^A 21~x,y!A 21~x8,y8!&1~x→x8!

5~2p!22D12dE dt1dt2E dPdP8EFd~y2x2b~t1!!d~y82x8

2b8~t2!!expS 2
1

4 E0

t1E
0

t1
PmPsPnPrDmn;sr~b~s!

2b~s8!!dsds82
1

4 E0

t2E
0

t2
Pm8 Ps8 Pn8Pr8D

mn;sr~b8~s!

2b8~s8!!dsds82
1

2 E0

t1E
0

t2
PmPnPr8Ps8Dmn;sr~x2x81b~s!

2b8~s8!!dsds8D G1~x→x8!, ~39!

where (x→x8) means the same expression in whichx is exchanged withx8. We introduce the
spherical coordinates on the (t1 ,t2)-planet15r cosu, t25r sinu and we rescale the momen
k5pAr , k85p8Ar , K5Pr 1/22 g/2. Then, we can see that the four-point function~39! takes the
form
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^F~x!F~x8!F* ~y!F* ~y8!&5E dudrrr 2d2(12g)(D2d)F4~u,r 2 1/2~x2y!,r 2
1
2~x82y8!,

r 2 1/2~x82x!,r 2 1/2~x82y!,r 2 1/2~y82x!!. ~40!

The upper bound now reads

u^F~x!F~x8!F* ~y!F* ~y8!&u

<2~2p!22D12dE dt1dt2E
0

1

dsE
0

s

ds8E dPdP8EFd~y2x2At1b~1!!

3d~y82x82At2b8~1!!

3expS 2
t1

2

4
PmPsPnPrDmn;sr~At1b~s!2At1b~s8!!

2
t2

2

4
Pm8 Ps8 Pn8Pr8D

mn;sr~At2b8~s!2At2b8~s8!!

2
t1t2

2
PmPnPr8Ps8Dmn;sr~x2x81At1b~s!2At2b8~s8!! D G

1~x→x8!. ~41!

The expectation value~41! can be expressed by the transition functions~as usual for the Wiene
process!. The bound is scale invariant and the scale invariant function on the rhs could be
lated explicitly. The lower bound takes the form

^F~x!F~x8!F* ~y!F* ~y8!&

>~2p!22D12dE dt1dt2E dPdP8

3expS 2EF1

4 E0

t1E
0

t1
PmPsPnPrDmn;sr~a~s!2a~s8!!dsds8

1
1

4 E0

t2E
0

t2
Pm8 Ps8 Pn8Pr8D

mn;sr~a8~s!2a8~s8!!dsds8

1
1

2 E0

t1E
0

t2
PmPnPr8Ps8Dmn;sr~a~s!2a8~s8!!dsds8G D 1~x→x8!. ~42!

Here

a~s!5x1~y2x!
s

t1
1At1cS s

t1
D

and

a8~s!5x81~y82x8!
s

t2
1At2c8S s

t2
D .

In the exponential of the formula~42! we have the expectation over three Gaussian processes
first is with the mean (y2x)(s2s8)/t1 and the covariance (s2s8)(t12s1s8)/t1 , the second has
the mean (y82x8)(s2s8)/t2 and the covariance (s2s8)(t22s1s8)/t2 , and the third has the
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meanx2x81(y2x)s/t12(y82x8)s8/t2 and the covariances(t12s)/t11s8(t22s8)/t2 . The
lower bound can be explicitly calculated and is given by a scale invariant function. It is clear
to calculate the higher order scale invariant functions and their scale invariant lower and
bounds.

V. DISCUSSION

The model discussed in Sec. III is invariant under Euclidean rotations inD2d dimensions.
Euclidean fields with the Osterwalder–Schrader positivity cannot be more regular than th
field ~this follows from the Ka¨llen–Lehman representation!. In D dimensions the short distanc
behavior of the correlation functions~18! is more regular than the one of the free fields. Howev
after setting allx50, the behavior is more singular than the canonical one inD2d dimensions.
For the model~11! where the metric is a square of a Gaussian field we can suggest a lattice
whose formal continuum limit coincides with the scale invariant Euclidean field theory.
simplest possibility is to take the conformally flat metric placed on a sublattice just betwee
lattice sites of the scalar field~as the gauge fields in Ref. 10!. The model~11! could be reflection
positive~reflection positivity of lattice spin models is discussed in Ref. 11, reflection positivit
lattice versions of generalized free fields is shown in Ref. 12!. However, models of the type~11!
require the Wick normal ordering. After this renormalization the finiteness of thet-integral~3! and
theP integral~10! is doubtful. However,~if finite! the continuum limit and the subsequent analy
continuation to Minkowski space would give a model of relativistic quantum field theory sat
ing all Wightman axioms. The Wick square of a Gaussian field is an example of an infin
divisible field.13 An infinitely divisible field can take non-negative values. Its characteristic fu
tion has an explicit integral representation. Such a field can be a good candidate for a r
metric.

The models of Sec. IV are more promising. The lattice version of the Lagrangian

L5gmn~x!
]

]Xm F
]

]Xn F* 1¹xF¹xF*

will have the form2L5F1uF1MuM whereu is the reflection in the plane perpendicular
one of the coordinatesx ~which will be chosen as time!. This representation holds true because
random metric does not mix the temporal coordinates in¹xF¹xF* . Then, the reflection positivity
results ~see Ref. 11!. In the lattice approximation we have to replace the~formal! Gaussian
measure with a negative definite covariance~16! by a non-Gaussian measure on the metrics wh
has a formal Gaussian limit~e.g., replacing1

2x
2 by 12cosx). There remains to be proven that su

a lattice approximation is convergent to the continuum. Without such a proof the Gaussian
aging discussed in this article must be considered solely as a formal tool for a construction o
invariant Euclidean field theories whose relevance for a quantum field theory in the Minko
space remains obscure.
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The foliation operator in history quantum field theory
C. J. Ishama) and K. Savvidoub)
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South Kensington, London SW7 2BZ, United Kingdom
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As a preliminary to discussing the quantization of the foliation in a history form of
general relativity, we show how the discussion in an earlier work@J. Math. Phys.
43, 3053 ~2002!# of a history version of free, scalar quantum field theory can be
augmented in such a way as to include the quantization of the unit-length, timelike
vector that determines a Lorentzian foliation of Minkowski space–time. We em-
ploy a Hilbert bundle construction that is motivated by~i! discussing the role of the
external Lorentz group in the existing history quantum field theory@J. Math. Phys.
43, 3053 ~2002!# and ~ii ! considering a specific representation of the extended
history algebra obtained from the multi-symplectic representation of scalar field
theory. © 2002 American Institute of Physics.@DOI: 10.1063/1.1507605#

I. INTRODUCTION

The goal of the present article is to extend the discussion in Ref. 1 of the construction
history version of quantum scalar field theory in Minkowski space–time. In particular, we
show how the formalism can be developed to include the quantization of the four-vectorn that
determines the space–time foliation that plays a central role in the theory. The motivation fo
a step, and the relevant background information, is as follows.

The ‘‘consistent-histories’’ approach to quantum theory was originally introduced to prov
novel way of reinterpreting standard quantum theory, particularly in regard to the role play
measurement. However, because of the novel way in which time is handled, consistent-
theory also has the potential for providing new and powerful ways of studying quantum the
of gravity. Most recently, in Ref. 2 the formalism was applied to construct a history version o
canonical form of classical general relativity. The possibility also arises to use this formalis
the context of generalized ideas of time and space: for example, in models where space–
not represented by a differentiable manifold.

A first step in developing the framework with this goal in mind was taken in Ref. 3 whe
new mathematical formalism—the ‘‘History Projection Operator’’~HPO! method—was intro-
duced. This places emphasis on the idea of ‘‘quantum temporal logic,’’ and potentially a
substantial generalizations of the notion of time. The heart of this formalism is the idea
propositions about thetemporal historyof a system should be represented by projection opera
on a ‘‘history’’ Hilbert space.~This is to be contrasted with the situation in standard quan
theory in which projection operators represent propositions about the system at asingle time.! In
the case of simple, Newtonian time, and histories labeled by a finite set of discrete time poin
history Hilbert space is a tensor product of a copy of the standard canonical Hilbert space fo
such time point.

The idea of representing history propositions by projection operators lead in turn to the n
of a ‘‘history group.’’ This is the history analog of the Weyl group and its associated canon
commutation relations; in particular, the spectral projectors of the history operators in th
algebra of the history group represent propositions about the associated history quantities

The introduction of a history group is particularly useful in the context of histories wi

a!Electronic mail: c.isham@ic.ac.uk
b!Electronic mail: k.savvidou@ic.ac.uk
54930022-2488/2002/43(11)/5493/21/$19.00 © 2002 American Institute of Physics
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continuoustime label, since it is by no means a trivial matter to define the continuous analog
tensor product. Instead, one finds the history Hilbert space by looking for representations
appropriate history algebra.

For example, for the case of a point particle moving in one dimension, the history algeb
histories labeled with a continuous time parametert is4,5

@ x̂t ,x̂t8#50 ~1.1!

@ p̂t ,p̂t8#50, ~1.2!

@ x̂t ,p̂t8#5 i\td~ t2t8!, ~1.3!

and the basic history propositions in the theory refer to the value of time-averaged quantitie
as (1/t)*dtxt f (t) and (1/t)*dtpth(t) where f and h are smearing functions. Note that, in E
~1.3!, t is a new constant in the theory with the dimension of time. The role of this consta
discussed in more detail~following a private communication from Tulsi Dass! in Ref. 6; from now
on we shall choose units so thatt51.

In Eqs.~1.1!–~1.3!, the labelt on the operatorsx̂t and p̂t refers to the time at which propo
sitions about the system are asserted—the time of ‘‘temporal logic.’’ It was to include i
explicit way such a time of temporal logic that the HPO formalism was originally develo
However, a clear notion of dynamics was not implemented for the naturally time-averaged
cal quantities of the theory.

A major advance in the HPO formalism took place when time was introduced in a comp
new way.6,7 It was realized that it is natural to consider time in a twofold manner: the ‘‘time
being’’—the time at which events ‘‘happen’’@and from this perspective, the time labelt in Eqs.
~1.1!–~1.3! and in Eq.~1.4! can be regarded as such#, and the ‘‘time of becoming’’—the time of
dynamical change, represented by a time labels. This secondtime appears in the history analo
x̂t(s) of the Heisenberg picture, which is defined as

x̂t~s!ªeisĤ/\x̂te
2 isĤ/\ ~1.4!

where Ĥª*dtĤt is the history quantity that represents the time average of the energy o
system. The notion of time evolution is now recovered for the time-averaged physical quan
for example,

x̂f~s!ªeisĤ/\x̂fe
2 isĤ/\, ~1.5!

where f (t) is a smearing function.
Associated with these two manifestations of the concept of time are two types of time

formation: the ‘‘external’’ translation

x̂t~s!° x̂t1t8~s!, ~1.6!

and the ‘‘internal’’ translation

x̂t~s!° x̂t~s1s8!. ~1.7!

The external time translation is generated by the ‘‘Liouville’’ operator7

V̂ªE dtp̂t

dx̂t

dt
, ~1.8!

whereas the internal time translation is generated by the time-averaged energy operatorĤ.
                                                                                                                



PO

ction

been
o

is
–time

story
n
ra

ce

ote
e
-

e
d

s

5495J. Math. Phys., Vol. 43, No. 11, November 2002 Foliation operator in history quantum field theory

                    
More importantly, it was shown in Ref. 7 that the generator of time translation in the H
theory is the ‘‘action’’ operatorŜ defined as

ŜªE dtp̂t

dx̂t

dt
2Ĥ5V̂2Ĥ. ~1.9!

Hence the action operator is the generator ofboth types of time translation

x̂t~s!° x̂t1t8~s1s8!. ~1.10!

It is a very striking result that in the HPO theory the quantum analog of the classical a
functional is an actual operator in the formalism, and is the generator of time translations.7

The idea of ‘‘two times’’—and the associated two types of time translation—has recently
generalized to relativistic field theory1 where, in particular, it is shown that the analog of the tw
types of time translation is the existence of twoPoincarégroups. The goal of the present article
to develop the ideas in Ref. 1 in one particular respect: namely, the way in which space
foliations enter the theory.

That the idea of a Lorentzian space–time foliation should play an important role in a hi
quantum field theory is understandable.~By ‘‘Lorentzian’’ we mean that each leaf of the foliatio
is a hyperplane in the Minkowski space–time.! Indeed, the obvious analog of the history algeb
Eqs. ~1.1!–~1.3! for a quantum scalar field theory is~choosing units from now on such thatt
51)

@nf̂~ t,xI !, nf̂~ t8,xI 8!#50, ~1.11!

@np̂~ t,xI !, np̂~ t8,xI 8# !] 50, ~1.12!

@nf̂~ t,xI !, np̂~ t8,xI 8!#5 i\d~ t2t8!d3~xI 2xI 8!, ~1.13!

where, for eachtPR, the fieldsnf̂(t,xI ) and np̂(t,xI ) are defined on the spacelike hypersurfa
characterized by the unit length timelike vectorn, and by the foliation parametert. In particular,
the three-vectorxI in nf̂(t,xI ) or in np̂(t,xI ) denotes a vector in this spacelike hypersurface. N
that the pair (t,xI ) can be used to identify a unique pointX in space–time, and hence to writ
nf̂(t,xI ) asnf̂(X). The history algebra Eqs.~1.11!–~1.13! can then be written in the more cova
riant looking form

@f̂~X!,f̂~X8!#50, ~1.14!

@p̂~X!,p̂~X!#50, ~1.15!

@f̂~X!,p̂~X8!#5 i\d4~X2X8!, ~1.16!

where we have dropped then superscript on the fields since the algebra itself isn-independent. Of
course, this does not stop individualrepresentationsfrom depending on the foliation vectorn;
indeed, as we shall see below, this is precisely what happens.

In what follows we shall denote byH1ª$nPM un•n51,n0.0% the set of all unit length,
forward pointing timelike vectors on Minkowski space–timeM. We are using a metrichmn on M
with the signature~1, 2, 2, 2!; also we use the notationa•bªambnhmn for any four-vectorsa
andb in M.

It was shown in Ref. 1 that for each fixedn in H1 it is possible to find a representation of th
history algebra Eqs.~1.11!–~1.13! on a Hilbert spaceHn with the property that the time-average
energy exists as a well-defined self-adjoint operatornĤ ~this is the history analog of an old
theorem of Araki in the context of canonical quantum field theory8!. This operator generate
                                                                                                                



. 1.

to
or

the
s
the
f

ented
a

al

ght

5496 J. Math. Phys., Vol. 43, No. 11, November 2002 C. J. Isham and K. Savvidou

                    
translations along the timelike directionn and, as such, is one of the generators of theinternal
Poincare´ group that exists for eachn: full expressions for all these generators are given in Ref

One of the key questions for our present purposes is how the external Poincare´ group acts for
each fixed choice of the foliation vectorn. The translation part should obviously act in analog
Eq. ~1.6! by taking nf̂(X) to nf̂(X1a) for any four-vectorn. Thus there should be an operat
Û(a) such that

Û~a!nf̂~X!Û~a!215nf̂~X1a!, ~1.17!

with a similar action onnp̂(X).
The Lorentz subgroup of the Poincare´ group is more interesting since as well as acting on

space–time points, it might also be expected to act on the foliation vectorn, and hence to take u
out of the Hilbert spaceHn . In Ref. 1 this problem is solved by showing that even though
representations of the field algebra~1.11!–~1.13! are unitarily inequivalent for different choices o
n, it is nevertheless possible to construct the fields for alln on acommonFock spaceF ~see Sec.
II of the present article for details!. Hence it is meaningful to look for a unitary operatorÛ(L)
such that, for all Lorentz transformationsL,

Û~L!nf̂~X!Û~L!215Lnf̂~LX!, ~1.18!

and similarly fornp̂(X), where the operators are all defined onF. Of course, the operatorsÛ(L)
are expected to form a unitary representation of the Lorentz group in the sense that

Û~L8!Û~L!5Û~L8L!. ~1.19!

In the present article we shall extend this formalism by quantizing the foliation vectorn itself.
The main motivation for this step is our belief—following the conjecture by one of us2—that,
when constructing the quantum history theory of general relativity,2 it will be necessary to include
the space–time foliation as a genuine ‘‘history variable,’’ and which must therefore be repres
by operators in the corresponding quantum theory.~In Ref. 9 also, the analog of the foliation is
part of the postulated history group, this time in the context of the Bosonic string.! In the context
of our present discussion, the vectorn is the Minkowskian analog of a foliation of a gener
space–time: hence an investigation into what is meant by quantizingn is a valuable precursor to
the study of the quantization of foliations of a general space–time.

As an introduction to the quantization ofn, it is useful to return to the idea that, for eachn, the
theory is defined on a Hilbert spaceHn , and to ask again how the external Lorentz group mi
act. In these circumstances, Eq.~1.18! is not meaningful since the operatorsnf̂(X) andLnf̂(LX)
are defined on different Hilbert spaces (Hn andHLn , respectively!. The natural thing instead is to
seek a family of unitary intertwining operatorsÛ(n;L):Hn→HLn with the property that

Û~n;L!nf̂~X!5Lnf̂~LX!Û~n;L!, ~1.20!

Û~n;L!np̂~X!5Lnp̂~LX!Û~n;L!, ~1.21!

which can usefully be represented by the commutative diagram

Hn ——→
Û~n;L!

HLn

↓nf̂~X! ↓Lnf̂~LX! ~1.22!

Hn ——→
Û~n;L!

HLn
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and similarly for the operatornp̂(X).
These operatorsÛ(n;L):Hn→HLn are expected to give a type of ‘‘representation’’ of th

external Lorentz group in the sense that, for allnPH1 and for all Lorentz transformationsL, we
have

Û~Ln;L8!Û~n;L!5Û~n;L8L!, ~1.23!

which is the appropriate analog of the genuine representation Eq.~1.19!. The specific form of Eq.
~1.23! follows by considering the commutative diagram

Hn ——→
Û~n;L!

HLn ——→
Û~Ln,L8!

HL8Ln

↓nf̂~X! ↓Lnf̂~LX! ↓L8Lnf̂~L8LX! ~1.24!

Hn ——→
Û~n;L!

HLn ——→
Û~Ln,L8!

HL8Ln

whose outer square should equal the diagram

Hn ——→
Û~n;L8L!

HL8Ln

↓nf̂~X! ↓L8Lnf̂~L8LX!. ~1.25!

Hn ——→
Û~n;L8L!

HL8Ln

We note that Eq.~1.23! is the type of relation that occurs naturally whenever we have a gr
G that acts on someG-setX, together with a family of operatorsUx(g), xPX, defined on vector
spacesVx , xPX, and satisfying the equation@cf. Eq. ~1.23!#

Û~gx,g8!Û~x,g!5Û~x,g8g! ~1.26!

for all xPX andg, g8PG. There is also a version of Eq.~1.26! that uses a multiplier, but we sha
not need that here.

Mathematically speaking, the appropriate picture@for the specific case of Eq.~1.23!# is a
bundle of Hilbert spacesHn , nPH1 , with base spaceH1 , in which the actionn°Ln of the
external Lorentz group SO~3, 1! on H1 is lifted to the bundle by the mapsÛ(n,L):Hn→HLn ;
note that Eq.~1.23! is precisely the statement that the operatorsÛ(n,L) ‘‘cover’’ the action of
SO~3, 1! on the base spaceH1 .

Under these circumstances, it is natural to consider the new Hilbert space formed b
cross-sectionsof this vector bundle. However, this Hilbert space is quite different from the in
vidual spacesHn , nPH1 : in particular, the foliation vector itself becomes an operator under
natural action on a sectionC as

$n̂mC%~n!ªnmC~n! ~1.27!

for all nPH1 .
All this will be discussed properly in Sec. III, but for the moment it suffices to summarize

remarks above by saying that the mathematical formalism for a history quantum field t
developed in Ref. 1 itself suggests a natural way in which the foliation vector could beco
quantum operator.

Such a step is also understandable from a more conceptual perspective, for we shoul
that the consistent history theory deals with ‘‘beables’’~albeit contextualized by the choice of
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particular consistent set of histories! not observables. Thus, in quantizingn, we are not saying tha
the foliation is something that is determined by nature—in particular, something that mu
observed—but rather that the existing history QFT formalism depends on the choice ofn in such
an intrinsic way that it is natural to formulate propositions about things in the context of speci
n. ~This also suggests that a topos approach could be useful: we shall make a few remark
this later on in the article.! And, as we have seen, one way of doing this in a form that is cohe
with respect to the action of the external Lorentz group is to letn become a quantum operator.

The challenge now arises of finding a proper theory of a quantized foliation vector,
thereby justifying the rather heuristic ideas presented above. In particular, in the spirit o
approach to history theories, we must find the correct extension of the history field alge
include an operatorn̂m and its conjugate variables.

We will address this issue in Sec. III A by considering themulti-symplecticapproach to a
scalar field theory. There is a relation between multi-symplectic structures and history th
and—as we shall see—in the case of a scalar field, attempting to quantize the corresp
multi-symplectic structure leads naturally to a quantized foliation vector in the context of a hi
group whose Lie algebra generators includen and an appropriate set of conjugate variables.

The plan of the article is as follows. We start in Sec. II by summarizing the results in R
for constructing the quantum history theory of a free scalar field. Then in Sec. III we stud
main problem of quantizing the foliation vector. We base the first few steps in constructin
appropriate history algebra on the discussion in Sec. III A of the multi-symplectic formalis
applied to the relativistic scalar field. The quantization of this formalism is discussed in Sec.
and this is completed in Sec. III C, where we apply group-theoretical quantization technique
classical system whose configuration space is the setH1 of all foliation vectors. Then in Sec. IV
we discuss the representations of this algebra, and show how a particularly simple one repr
the heuristic ideas of a Hilbert bundle sketched above.

II. THE QUANTUM HISTORY THEORY OF A SCALAR FIELD

A. The field operators

The starting point for the construction in Ref. 1 of a quantum history version of a free, s
field is a Fock spaceF defined via annihilation and creation operators,b̂(X) and b̂†(X), respec-
tively, that satisfy the commutation relations:

@ b̂~X!,b̂~X8!#50, ~2.1!

@ b̂†~X!,b̂†~X8!#50, ~2.2!

@ b̂~X!,b̂†~X8!#5\d4~X2X8!. ~2.3!

This bosonic Fock space has~generalized! basis vectorsuX1 ,X2 ,...,Xk& defined by

uX1 ,X2 ,...,Xk&ªb̂†~X1!b̂†~X2!¯b̂†~Xk!u0& ~2.4!

whereu0& is the cyclic ‘‘vacuum’’ state of the Fock space.
On this Fock spaceF, field operators for eachnPH1 can be defined as

nf̂~X!ª
1

&
nG21/4~ b̂~X!1b̂†~X!! ~2.5!

np̂~X!ª
1

i&
nG1/4~ b̂~X!2b̂†~X!!, ~2.6!

wherenG is the elliptic, partial differential operator onL2(R4) defined as
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nGª~hmn2nmnn!]m]n1m2, ~2.7!

wherem is the mass parameter in the theory. It is easy to check that, for each foliation vecn

PH1 , the fieldsnf̂(X) andnp̂(X) defined in Eqs.~2.5! and~2.6! satisfy the history algebra Eqs
~1.14!–~1.16!. We note that, as promised, these fields are all defined on thesamespaceF even
though the associated representations of the history algebra are unitarily inequivalent for di
choices ofnPH1 .

The time-averaged energy for eachn is represented by the operator

nĤ5
1

2
:E d4X$np̂~X!21nf̂~X! nG nf̂~X!%: ~2.8!

5E d4Xb̂†~X!AnGb̂~X!, ~2.9!

which is a well-defined self-adjoint operator. It is to guarantee the existence of these operat
all nPH1 that the basic fieldsnf̂(X) andnp̂(X) are defined as they are in Eqs.~2.5! and ~2.6!;
see Refs. 5, 6 and 1 for more information on these matters.

B. The external Poincare ´ group

There is a natural unitary representation of the ‘‘external’’ Poincare´ group on the Fock spac
F. This is defined in the obvious way on the basic vectorsuX1 ,X2 ,...,Xk& as

Û~L!u0&ªu0&, ~2.10!

Û~L!uX1 ,X2 ,...,Xk&ªuLX1 ,LX2 ,...,LXk&, ~2.11!

Û~a!u0&ªu0&, ~2.12!

Û~a!uX1 ,X2 ,...,Xk&ªuX11a,X21a,...,Xk1a&. ~2.13!

This induces the action on the annihilation operators of

Û~L!b̂~X!Û~L!215b̂~LX!, ~2.14!

Û~a!b̂~X!Û~a!215b̂~X1a!. ~2.15!

and similarly for the creation operatorsb̂†(X). It is straightforward to show that, as anticipate
the basic field operatorsnf̂(X) andnp̂(X) transform as

Û~L!nf̂~X!Û~L!215Lnf̂~LX!, ~2.16!

Û~L!np̂~X!Û~L!215Lnp̂~LX!, ~2.17!

Û~a!nf̂~X!Û~a!215nf̂~X1a!, ~2.18!

Û~a!np̂~X!Û~a!215np̂~X1a!. ~2.19!

We note that it is possible to define another set of fields by

F̂~X!ª
1

&
~ b̂~X!1b̂†~X!!, ~2.20!
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P̂~X!ª
1

i&
~ b̂~X!2b̂†~X!!, ~2.21!

which satisfy the basic history field algebra Eqs.~1.14!–~1.16!. Under the action of the externa
Poincare´ group, we have

Û~L!F̂~X!Û~L!215F̂~LX!, ~2.22!

Û~a!F̂~X!Û~a!215F̂~X1a!, ~2.23!

and similarly for the conjugate variableP̂(X).

The role of these ‘‘covariant’’ fields in the theory is intriguing. The relation ofF̂(X) to the
fields nf̂(X) suggests strongly that the former should be thought of as the history analog
Newton–Wignerfield ~which, in standard quantum field theory, creates and annihilates loca

particle states!. However, we note that—in the history theory—F̂(X) is a genuine scalar field
whereas in standard quantum field theory the Newton–Wigner field transforms in a non-cov
way.

The formal explanation of this difference lies in the way the internal and external t

interface with each other in the history theory. In particular, the history fieldF̂(X) is a ‘‘Schrö-
dinger picture’’ object in the sense that it does not carry any dynamical information. On the
hand, the remarks above about the standard Newton–Wigner field apply in the Heisenberg p
in the history case, this would involve invoking the second, internal time.

III. QUANTIZING THE FOLIATION VECTOR

A. The multi-symplectic formalism for a scalar field

One might be tempted to construct the classical history theory for a scalar field by positin
Poisson bracket algebra@cf. Eqs.~1.14!–~1.16!#:

$f~X!,f~X8!%50, ~3.1!

$p~X!,p~X8!%50, ~3.2!

$f~X!,p~X8!%5d4~X2X8!, ~3.3!

which has the advantage of appearing to be manifestly covariant under the action of the e
Poincare´ group ~on the assumption thatf and p are scalar fields!. However, this covariance is
deceptive in the sense that the conjugate variablep(X) has no clearphysicalmeaning; not least
because the actual field momentum for a physical system is manifestly foliation dependent:
means the momentum along some specified timelike directionn.

This problem is circumscribed in the approach summarized in Sec. II since therepresentations
of the quantum algebra Eqs.~1.14!–~1.16! are manifestlyn-dependent, and indeed an explic
n-label becomes attached to both the scalar field and its conjugate momentum via Eqs.~2.5! and
~2.6!. However, these explicit forms are chosen so that thequantumaverage-energy operatornĤ
exists, and to some extent therefore this leaves open the question of the structure of the und
classicalhistory theory. We shall now address this issue with the aid of some ideas drawn fro
apparently, quite different scheme: namely, the multi-symplectic formalism.

The multi-symplectic formalism arose from attempts to modify the standard classicalcanoni-
cal formalism so that it would be manifestly covariant under the appropriate group of space
transformations.10 In the case of a scalar field on Minkowski space–timeM, the idea is to intro-
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duce a pair of space–time fieldsf(X) andpm(X) where, physically, for any vectorV, Vmpm(X)
can be interpreted as the field momentum along the space–time directionVm. Then, for each
choice of foliation vectorn, there is defined the Poisson bracket

$F,G%n~f,p!ªE
M

d4XS dF

df~X!

dG

dpm~X!
2

dG

df~X!

dF

dpm~X! Dnm , ~3.4!

whereF and G are functionals off and p. By this means, a family of symplectic structures
introduced, and the whole system is manifestly covariant under an action of the Poincare´ group in
which ~i! f and pm transform as genuine space–time objects in the obvious way; and~ii ! the
symplectic structure labeled by a foliation vectorn is transformed into that labeled byLn for all
Lorentz transformationsL.

The nature of this covariance is particularly clear if we look at the basic Poisson bracke
follow from Eq. ~3.4!:

$f~X!,f~X8!%n50, ~3.5!

$pm~X!,pn~X8!%n50, ~3.6!

$f~X!,pm~X8!%n5nmd4~X2X8!, ~3.7!

whereX andX8 are points in Minkowski space–timeM.
As remarked above, the multi-symplectic formalism was developed in the context of sta

canonical theory. However—in so far as they are space–time objects—we could clearly thinf
andpm as classicalhistory fields, and try to develop a history theory based on Eqs.~3.5!–~3.7!
instead of Eqs.~3.1!–~3.3!. As a mathematical possibility, this makes good sense. However
should emphasize that, physically speaking, the history interpretation of the multi-symp
formalism is quite different from the standard one.

For example, a frequent comment in the literature on the multi-symplectic formalism is
the basic Poisson brackets Eqs.~3.5!–~3.7! are not compatible with the equations of motion. B
viewed as a history theory, this is no longer the case since the equations of motion are now
associated with the introduction of the ‘‘internal’’ time label. This is closely related to the fact
from a history perspective, the fieldsf andpm are the classical analogue ofSchrödinger picture
objects, and are used in a temporal logic sense as the carriers of propositions about the hi
the system; they arenot dynamical fields.

B. First steps to the quantum history algebra

We must now address the question of the quantum analog of the parametrized~by n! family of
Poisson brackets given in Eqs.~3.5!–~3.7!. It is noteworthy that very little has been said in th
literature on the multi-symplectic formalism about quantizing such Poisson bracket relation
by hindsight we can understand why: it is only in the context of a quantumhistory theory—for
example, the consistent history theory—that the quantization makes any physical sense.

If we approach quantization in the traditional way of replacing Poisson brackets with ope
commutators, then the first issue is how to handle then-subscript that appears on the left hand s
of the equations~3.5!–~3.7!. Attaching a subscript to an operator commutator does not have aa
priori meaning other than, perhaps, to indicate different representations of an algebra, and
tempted therefore to postulate the simple algebra~from now on we set\51)

@f̂~X!,f̂~X8!#50, ~3.8!

@p̂m~X!,p̂n~X8!#50, ~3.9!

@f̂~X!,p̂m~X8!#5 inmd4~X2X8!, ~3.10!
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with the understanding that the physically appropriate representation may depend onn.
However, the quantitynm now appears as a fixedc-number, and the manifest Poincare´ cova-

riance is lost. For example, one would like to postulate an action of the external Lorentz gro
the form

Û~L!f̂~X!Û~L!215f̂~LX!, ~3.11!

Û~L!p̂m~X!Û~L!215Lm
n p̂n~LX!, ~3.12!

but this is incompatible with the right-hand side of Eq.~3.10! because, sincenm is ac-number, we
haveÛ(L)nmÛ(L)215nm . The obvious resolution of this problem is to makenm itself into an
operatorwith modified form

@f̂~X!,f̂~X8!#50, ~3.13!

@p̂m~X!,p̂n~X8!#50, ~3.14!

@f̂~X!,p̂m~X8!#5 i n̂md4~X2X8! ~3.15!

of the algebra in Eqs.~3.8!–~3.10!, and then to augment the transformations Eqs.~3.11! and~3.12!
with

Û~L!n̂mÛ~L!215Lm
n n̂n ~3.16!

so that the whole set is now compatible.
We now have four main tasks:

~1! Extend Eqs.~3.13!–~3.15! to a complete history theory; in particular we must discuss the fo
of the conjugate variables to the quantized foliation vectorn̂m .

~2! Find a physically appropriate representation of the extended algebra.
~3! Show how dynamics is implemented in this scheme. In particular, how the idea arise

second, ‘‘internal’’ time and associated internal Poincare´ group.
~4! Give a physical interpretation of the algebra.

Of course, these different issues are closely related. For example, the average-energy o
for the system could be anticipated to be

Ĥ5
1

2
:E d4X$~ n̂mp̂m~X!!21~ n̂mn̂n2hmn!]mf̂~X!]nf̂~X!1m2f̂~X!2%: ~3.17!

which should be compared with the expression in Eq.~2.8! for a fixedn-vector. Note that there is
no longer ann-superscript onĤ: there is now just a single operator. It is natural, therefore, to s
to fix the representation of the final history algebra by requiring that the expression in Eq.~3.17!
exists as a genuine~essentially! self-adjoint operator.

C. Completing the history algebra

1. The conjugate variables to n

The next step is to consider the conjugate variables for the foliation vector. The key ob
tion in this context is that, before quantization, the vectorn is timelike, and is of unit length in the
sense that

n•nªnmnnhmn51. ~3.18!
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It seems appropriate that the quantization ofn should preserve these constraints, but this requ
ment is incompatible with the obvious commutator algebra

@ p̂m,n̂n#52 idn
m ~3.19!

since the conjugatep̂m would then generate translations inn̂m , and these do not preserve th
constraints.

What we are faced with is the quantization of a system whose classical configuration sp
not a vector space but rather the hyperboloidH1ª$nPR4unmnm51,n0.0% in R4, which can be
viewed as a noncompact version of the three-sphereS3. The quantization of systems whos
configuration spaces are not vector spaces was discussed at length in Ref. 11 which, in pa
contains a detailed description of the quantization of a system whose classical configuration
is ann-sphere. The conclusion was that the appropriate canonical group is not the standar
group~that is associated with the normal canonical commutation relations! but rather the euclidean
group SO(n11)©Rn11 where © denotes the semi-direct product.

The same general discussion applies in the present case with the hyperboloidH1 as configu-
ration space. The result is that the appropriate history group for the foliation variable i
semi-direct product SO(3,1)©R4, with the Lie algebra relations

@ n̂a ,n̂b#50, ~3.20!

@ p̂ab,p̂gd#5 i ~hagp̂bd2hbgp̂ad1hbdp̂ag2hadp̂bg!, ~3.21!

@ n̂a ,p̂bg#5 i ~da
bn̂g2da

g n̂b!, ~3.22!

wherep̂ab52 p̂ba.
We note the following.

~i! Equation~3.20! shows that the variablesn̂a span the Lie algebra of the abelian groupR4.
~ii ! Equation ~3.21! shows that the conjugate variablesp̂ab satisfy the Lie algebra of the

Lorentz group SO~3,1!.
~iii ! Equation~3.22! reflects the semi-direct structure given by the action of SO~3,1! on R4.

This group-theoretic scheme works becausehmnn̂mn̂n is a Casimir operator for the algebra in Eq
~3.20!–~3.22!. Hence it is meaningful to look for a representation in whichhmnn̂mn̂n has the
constant value 1, thus maintaining compatibility with the classical constraint in Eq.~3.18!.

Of course SO(3,1)©R4 is nothing but the familiar Poincare´ group. But this should not be
confused with either the internal or the external Poincare´ groups to which we have referred earlie
the present group has arisen as a direct result of quantizing the foliation vectornm .

2. Completing the history algebra

We must now try to complete the history algebra by considering the cross commu
between the pairf̂(X), p̂m(X), and the pairn̂m , p̂ab. As a first step we take the commutator
both sides of Eq.~3.15! with p̂ab, then use the Jacobi identity on the left-hand side, and
commutator Eq.~3.22! on the right-hand side, to give

@f̂~X!,@ p̂ab,p̂m~X8!##1@p̂m~X8!,@f̂~X!,p̂ab##5~dm
a n̂b2dm

b n̂a!d4~X2X8!. ~3.23!

It is natural to think off̂(X) and n̂m as disjoint configuration variables, which suggests t

@f̂~X!,n̂m#505@p̂a~X!,n̂m#, ~3.24!

and for this reason it is arguably also natural to assume that@f̂(X),p̂ab#50. We note that a more
general possibility is
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@f̂~X!,p̂ab#5 ia~ n̂ap̂b~X!2n̂bp̂a~X!! ~3.25!

for some real constanta. However, this is rather ugly in the sense that the right-hand side of
~3.25! is a nonlinear function of our basic fields, and from now on we shall assume thata50.

We note that, by virtue of Eq.~3.14! and the assumption in Eq.~3.24!, even if the commutator
in Eq. ~3.25! is nonzero, it does not contribute to the left-hand side of Eq.~3.23!. Thus, even if
aÞ0, the obvious choice for the commutator@ p̂ab,p̂m(X)# is

@ p̂ab,p̂m~X!#52 i ~dm
ap̂b~X!2dm

bp̂a~X!!. ~3.26!

In summary, the entire history algebra is postulated to be as follows:

@f̂~X!,f̂~X8!#50, ~3.27!

@p̂m~X!,p̂n~X8!#50, ~3.28!

@f̂~X!,p̂m~X8!#5 i n̂md4~X2X8!, ~3.29!

@ n̂a ,n̂b#50, ~3.30!

@ p̂ab,p̂gd#5 i ~hagp̂bd2hbgp̂ad1hbdp̂ag2hadp̂bg!, ~3.31!

@ n̂a ,p̂bg#5 i ~da
bn̂g2da

g n̂b!, ~3.32!

@f̂~X!,n̂a#50, ~3.33!

@p̂m~X!,n̂a#50, ~3.34!

@f̂~X!,p̂ab#50, ~3.35!

@p̂m~X!,p̂ab#5 i ~dm
ap̂b~X!2dm

bp̂a~X!!. ~3.36!

It is easy to check that the Jacobi identities are satisfied for this algebra.

3. An ansatz for the operator p̂m„X…

At this point we note that Eqs.~3.29! and ~3.33! imply that

@f̂~X!,p̂m~X8!2n̂mn̂np̂n~X8!#50 ~3.37!

in a representation in whichn̂•n̂51. For an arbitrary value of this Casimir operator we ha
instead

@f̂~X!,n̂•n̂p̂m~X8!2n̂mn̂np̂n~X8!#50. ~3.38!

Because of Eq.~3.27!, Eq. ~3.37! suggests thatp̂m(X)2n̂mn̂np̂n(X) might be a function of
f̂(X), although from Eq.~3.33! it could also be a function ofn̂m . In any event, clearly one natura
possibility is to set

p̂m~X!2n̂mn̂np̂n~X!50, ~3.39!

which suggests thatp̂m(X) can be defined using a single ‘‘master’’ fieldÃ̂(X) as

p̂m~X!ªn̂mÃ̂~X!. ~3.40!
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We shall discuss this option at some length below. Note that it is compatible with the sup
commutator@p̂m(X),p̂n(X8)#50 if we postulate that@Ã̂(X),Ã̂(X8)#50. It is also compatible
with the remaining commutators in Eqs.~3.27!–~3.36! that involvep̂m(X).

A natural generalization of the definition Eq.~3.40! of the operatorp̂m(X) in terms of a single
Ã̂(X) is

p̂m~X!ªn̂mÃ̂~X!1b~]mf̂~X!2n̂mn̂•]f̂~X!! ~3.41!

for some real constantb. Bearing in mind that~assuming thatn̂•n̂51)

n̂m~]mf̂~X!2n̂mn̂•]f̂~X!![0, ~3.42!

we see that Eq.~3.41! can be viewed as the decomposition ofp̂m(X) into a ‘‘longitudinal’’ part
n̂mÃ̂(X) and a ‘‘transverse part’’]mf̂(X)2n̂mn̂•]f̂(X), with the implication in particular that the
transverse part is essentially the spatial derivatives of the fieldf̂(X). There are several attractiv
features to assuming Eq.~3.41!. However, it does have the implication that

@p̂m~X!,p̂n~X8!#52ib~ n̂(n]m)2n̂mn̂nn̂•]!d4~X2X8!, ~3.43!

where the partial derivatives on the right-hand side are with respect to theX label. This would
mean making a change in the postulated commutator in Eq.~3.28!.

D. The external and internal Poincare ´ groups

1. The action of the external Poincare ´ group

There is a natural automorphism of the complete history algebra Eqs.~3.27!–~3.36! by the
external Poincare´ group, which we might hope could be unitarily implemented as an extensio
Eqs.~3.11!, ~3.12! and ~3.16!:

Û~L!f̂~X!Û~L!215f̂~LX!, ~3.44!

Û~L!p̂mÛ~X!Û~L!215Lm
n p̂n~LX!, ~3.45!

Û~L!n̂mÛ~L!215Lm
n n̂n , ~3.46!

Û~L! p̂abÛ~L!215La
mLb

np̂mn, ~3.47!

and with the translations acting as

Û~a!f̂~X!Û~a!215f̂~X1a!, ~3.48!

Û~a!p̂m~X!Û~a!215p̂m~X1a!, ~3.49!

Û~a!n̂mÛ~a!215n̂m , ~3.50!

Û~a!p̂abÛ~a!215 p̂ab. ~3.51!

2. The internal Poincare ´ group

The situation with the internal Poincare´ group is interesting. As remarked above, we exp
the average-energy operator of the system to be

Ĥ5
1

2
:E d4X$~ n̂mp̂m~X!!21~ n̂mn̂n2hmn!]mf̂~X!]nf̂~X!1m2f̂~X!2%:. ~3.52!
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However, in this situation,Ĥ is not defined with respect to anyparticular foliation @unlike, for
example, the time-averaged energy in Eq.~2.8!#, and hence it cannot be identified as the timeli
component of a four-vectorP̂m in any obvious way.

The resolution of this issue is as follows. In the original form of history quantum field the
summarized in Sec. II, there is a four-vector operatornP̂m that is related to the associated tim
averaged energy operatornĤ by

nP̂mªnm
nĤ1E d4X~]m

nf̂~X!2nmn•] nf̂~X!! np̂~X!, ~3.53!

and where we note that

nmE d4X~]m
nf̂~X!2nmn•] nf̂~X!!np̂~X![0. ~3.54!

Thus the ‘‘n-longitudinal’’ part of nP̂m is nĤ[nm nP̂m , whereas the ‘‘n-transverse’’ part is
*d4X(]mf̂(X)2nmn•]f̂(X))np̂(X).

In the present case, wheren is quantized, the expression in Eq.~3.53! suggests that we defin
the translation generators of the internal Poincare´ group by

intP̂mªn̂mĤ1E d4X~]mf̂~X!2n̂mn̂•]f̂~X!!n̂mp̂m~X!, ~3.55!

whereĤ is defined in Eq.~3.52!. The remaining generators of the internal Poincare´ group can be
defined in a similar way using the expressions given in Ref. 1 where the foliation vectorn is fixed.

We note that, according to Eqs.~3.44! and ~3.45!, under the action of the external Loren
group, the generators of the translations of the internal Poincare´ group transform as

Û~L! intP̂mÛ~L!215Lm
n intP̂n , ~3.56!

whereas, for a fixedn, we have

Û~L!nP̂mÛ~L!215Lm
n LnP̂n . ~3.57!

3. The internal time

In the context of the discussion above of the internal Poincare´ group, it is clear that one way
in which a second, internal time variables could enter the formalism is by the definition of
‘‘Heisenberg picture’’ fieldf̂(X;s) as

f̂~X;s!ªeisĤf̂~X!e2 isĤ. ~3.58!

We see that, in this approach, there is now asingle extra time variables—for each choice of a
foliation vectorn—and this is not associated with any particular foliation vector. However,
still true that the interpretation of the formalism should be such thats automatically has the correc
meaning in the correct context.~See Ref. 7 for a detailed discussion of the interpretation of
time variables.!

However, this is not the only option. For example, it is arguably more natural to ha
separate internal time variables(n) for each value ofnPH1 , and such thats(n)>0 for all n. In
the quantum case, an operators(n̂) can be defined using the spectral theorem for the self-adj
operatorn̂, and then we can define@cf. Eq. ~3.52!#

Ĥ@s#ª
1

2
:E d4Xs~ n̂!$~ n̂mp̂m~X!!21~ n̂mn̂n2hmn!]mf̂~X!]nf̂~X!1m2f̂~X!2%:. ~3.59!
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This suggests defining an associated ‘‘generalized Heisenberg picture’’ objectf̂(X;s# @cf. Eq.
~3.58!# as

f̂~X;s#ªeiĤ @s#f̂~X!e2 iĤ @s#, ~3.60!

where the brackets inf̂(X;s# serve to remind us thatf̂ is a function of the space–time pointX,
but a functionalof the functions:H1→$0%øR1 .

IV. REPRESENTATIONS OF THE HISTORY ALGEBRA

A. The Hilbert bundle construction

From what has been said above, it is clear that one way of satisfying the history algebr
~3.27!–~3.36! would be to have a single ‘‘master’’ momentum fieldÃ̂(X), and then to define

p̂m~X!ªn̂mÃ̂~X! ~4.1!

with the assumption thatn̂m commutes withÃ̂(X) so that there are no operator-ordering problem
This gives us the simpler algebra

@f̂~X!,f̂~X8!#50, ~4.2!

@Ã̂~X!,Ã̂~X8!#50, ~4.3!

@f̂~X!,Ã̂~X8!#5 id4~X2X8!, ~4.4!

@ n̂a ,n̂b#50, ~4.5!

@ p̂ab,p̂gd#5 i ~hagp̂bd2hbgp̂ad1hbdp̂ag2hadp̂bg!, ~4.6!

@ n̂a ,p̂bg#5 i ~da
bn̂g2da

g n̂b!, ~4.7!

with all other commutators vanishing. Of course, this is just the direct sum of the field algebra
~4.2!–~4.4! with the algebra Eqs.~4.5!–~4.7!. Note that the commutator@p̂m(X),p̂ab#
5 i (dm

ap̂b(X)2dm
bp̂a(X)) in Eq. ~3.36! need no longer be assumed since it is implied now by

commutation relation@ n̂a ,p̂bg#5 i (da
bn̂g2da

g n̂b) in Eq. ~4.7!.
We anticipate that the key average-energy operator~that will eventually be associated wit

translations along the internal time direction! is @cf. Eq. ~3.52!#

Ĥª

1

2
:E d4X$Ã̂~X!21~ n̂mn̂n2hmn!]mf̂~X!]nf̂~X!1m2f̂~X!2%:, ~4.8!

in which case the main task is to find a representation of the history algebra Eqs.~4.2!–~4.7! in
which Eq.~4.8! exists as a genuine self-adjoint operator.

We proceed as follows. For eachnPH1 we construct the Hilbert spaceHn that carries
operatorsnf̂(X), np̂(X) that satisfy the history algebra Eqs.~1.14!–~1.16!:

@nf̂~X!, nf̂~X8!#50, ~4.9!

@np̂~X!, np̂~X!#50, ~4.10!

@nf̂~X!, np̂~X8!#5 id4~X2X8!, ~4.11!

and with the property that the average-energy operator in Eq.~2.8!,
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nĤª

1

2
:E d4X$np̂~X!21~nmnn2hmn!]m

nf̂~X!]n
nf̂~X!1m2 nf̂~X!2%:, ~4.12!

exists as a genuine self-adjoint operator. Then-superscripts on the fields in Eqs.~4.9!–~4.11! serve
to indicate that we have chosen the representation of the abstract history algebra Eqs.~1.14!–
~1.16! in which this operatornĤ exists. In fact, as we know from the work in Ref. 1, for alln
PH1 these fields can be constructed on the same abstract Fock space even though the cor
ing representations of the history field algebra are unitarily inequivalent for differentn. However,
for our present purposes, it is clearer if we continue to refer to the Hilbert space on whicnĤ
exists asHn .

We now link up with the heuristic ideas in the Introduction by constructing a Hilbert bu
whose base space is the hyperboloidH1 , and in which the fiber over eachnPH1 is defined to be
the Hilbert spaceHn . @We note that the SO~3, 1! subgroup of the history group~i.e., the part
associated with then̂m variables! acts transitively onH1 with stability group SO~3!, so thatH1

.SO(3,1)/SO(3).Thus we have the principle bundle

SO~3!→SO~3,1!→SO~3,1!/SO~3!.H1ª$nPR4un•n51,n0.0%. ~4.13!

This suggests that we could try using a nontrivial representation of SO~3! to ‘‘twist’’ the fibers of
the Hilbert bundle. However, we shall not explore that option here.# The Hilbert space of our
history theory is then defined to be the direct integral

HªE
H1

%

Hndm~n!. ~4.14!

Heredm(n) is the usual SO~3,1!-invariant measure on the hyperboloidH1 : it is just the standard
measure used in normal quantum field theory, but now applied ton-space rather than momentu
space.

The vectors in this direct-integral Hilbert spaceH are defined to be the cross-sections of t
Hilbert bundle: i.e., mapsC:H1→ønPH1

Hn with the property thatC(n)PHn for all nPH1 .
The inner product between a pair of such cross-sectionsC1 andC2 is defined as

^C1 ,C2&ªE
H1

dm~n!^C1~n!,C2~n!&Hn
, ~4.15!

where^,&Hn
denotes the inner product in the Hilbert space fiberHn .

Of course, if we make the specific identification of each Hilbert spaceHn with the Fock space
F, as summarized in Sec. II, then the new Hilbert spaceH can be viewed as the vector space
all measurable functionsC:H1→F with the inner product

^C1 ,C2&ªE
H1

dm~n!^C1~n!,C2~n!&F . ~4.16!

Note that there is a natural cyclic ‘‘ground’’ state which is defined to be the cross-sectionV such
that, for allnPH1 ,

V~n!ªu0&n , ~4.17!

whereu0&n is the ground state of the average-energy operatornĤ in the Hilbert-spaceHn .
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B. The field and foliation operators

1. The field operators

The next step is to define the history field operatorsf̂(X) andÃ̂(X) on Hª*H1

% Hndm(n) as

follows:

$f̂~X!C%~n!ªnf̂~X!C~n!, ~4.18!

$Ã̂~X!C%~n!ªnp̂~X!C~n! ~4.19!

for all nPH1 . These equations are meaningful since the vectorsC(n), nPH1 , on the right-
hand sides belong to the Hilbert spaceHn on which the field operatorsnf̂(X) and np̂(X) are
defined. In other words, the mapsn°nf̂(X) and n°np̂(X) define fields of operators over th
base spaceH1 , and are hence well-defined operators on the direct integral*H1

% Hndm(n). ~Of

course, to do this rigorously one needs to discuss the domains of the various operators con
but we shall not dwell on such niceties here.!

It is clear that the operators defined by Eqs.~4.18! and~4.19! satisfy the history algebra Eqs
~4.2!–~4.4!. For example,

$f̂~X!Ã̂~X8!C%~n!5nf̂~X!$Ã̂~X8!C%~n!5nf̂~X! np̂~X8!C~n! ~4.20!

and similarly

$Ã̂~X8!f̂~X!C%~n!5np̂~X8!$f̂~X!C%~n!5np̂~X8! nf̂~X!C~n!, ~4.21!

so that, for allnPH1 ,

$@f̂~X!,Ã̂~X8!#C%~n!5@nf̂~X!, np̂~X8!#C~n!5 id4~X2X8!C~n!, ~4.22!

which means that~modulo subtleties about domains! we have the basic history field commutat

@f̂(X),Ã̂(X8)#5 id4(X2X8).
Note that, if we exploit the fact that the Hilbert spaces can all be identified with the same

spaceF, then using the definitions in Eqs.~2.5! and ~2.6!, we can further write

$f̂~X!C%~n!ªnf̂~X!C~n!5
1

&
nG21/4~ b̂~X!1b̂†~X!!C~n!, ~4.23!

$Ã̂~X!C%~n!ªnp̂~X!C~n!5
1

i&
nG1/4~ b̂~X!2b̂†~X!!C~n!. ~4.24!

Here the operatorb̂(X) @and similarly forb̂†(X)] is defined as the constant field of operators ov
H1 obtained by identifying each fiber of the Hilbert bundle with the Fock spaceF.

2. The foliation operators

The operators that represent the foliation vector are easy to define in the Hilbert
*H1

% Hndm(n). Specifically,

$n̂mC%~n!ªnmC~n! ~4.25!

and
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$ p̂abC%~n!ª i H na

]

]nb
2nb

]

]na
J C~n!. ~4.26!

Note that, strictly speaking, if the history states are considered as sections of the Hilbert b
then the right-hand side of Eq.~4.26! involves taking the difference between vectors belonging
different Hilbert-space fibers, and hence it is only meaningful if there is aconnectionin the
bundle. However, this is not a problem in our case since the fibersHn , nPH1 , can all be
identified with the basic Fock spaceF, and this is assumed to have been done when writing
~4.26!.

3. The time-averaged energy operator

The natural way of defining a time-averaged energy operator is to exploit the fact that, on
Hilbert space fiberHn , nPH1 , the operatornĤ defined in Eq.~4.12! exists, and represents th
time-averaged value of the energy for that particular foliation. Thus we can define an operaĤ
by

$ĤC%~n!ªnĤC~n! ~4.27!

for all nPH1 . ~As usual, to be fully rigorous we should worry about domains of essen
self-adjointness for these operators.! Note that, as anticipated in Eq.~4.8!, the operator thus
defined can be written in terms of the basic history fields as

Ĥª

1

2
:E d4X$Ã̂~X!21~ n̂mn̂n2hmn!]mf̂~X!]nf̂~X!1m2f̂~X!2%:. ~4.28!

The remaining generators of the internal Poicare´ group can be defined in an analogous way.

4. The internal time function

If an internal time function is introduced as in Eq.~3.59!, then the action of the operatorĤ@s#
on a sectionC of the Hilbert bundle is

$Ĥ@s#C%~n!ªs~n! nĤC~n!, ~4.29!

which shows clearly the sense in whichs(n) is the internal time associated with the foliatio
vectorn.

This suggests an interesting application of the ideas discussed in Ref. 12 of possible u
topos theory in quantum gravity and quantum theory. In particular, one might try to view
construction above as being, rather than of a bundle, instead of a sheaf of Hilbert spaces o
base spaceH1 , which is now construed as the category of ‘‘contexts’’ in which assertions a
the history system are to be made.

By viewing our construction as an object in the topos of sheaves overH1 , we can exploit the
existence in any topos of both external and internal views: ‘‘external’’ in the sense of how t
look from the perspective of normal mathematics, and ‘‘internal’’ in the sense of how things
from the perspective of the mathematical structure based on the topos itself. In particular,
viewed externally, the time functionn°s(n) appears precisely as that: i.e., a function. On
other hand, when viewed internally, it corresponds to a real number in the topos of sheave
H1 . Thus what we have called the ‘‘internal timefunction’’ is just a real numberwhen viewed
internally in the topos. We intend to devote a future paper to the general question of the w
which topos ideas can be productively applied to history theory.
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C. The external Poincare ´ group

The key step in constructing a representation of the external Lorentz group in the H
spaceH of cross-sections is to have a family of intertwining operatorsÛ(n;L):Hn→HLn that
satisfy the conditions given in Eq.~1.23!:

Û~Ln;L8!Û~n;L!5Û~n;L8L!. ~4.30!

Indeed, the conditions in Eq.~4.30! mean precisely that the intertwining operatorsÛ(n;L)
‘‘cover’’ ~i.e., act coherently with respect to! the action of SO~3,1! on the base spaceH1 of the
Hilbert bundle.

In these circumstances, for eachLPSO(3,1), we can define an operatorŴ(L):H→H by

$Ŵ~L!C%~n!ªÛ~L21n;L!C~L21n! ~4.31!

for all nPH1 . This is clearly unitary since

^Ŵ~L!C,Ŵ~L!C&H5E
H1

dm~n!^$Ŵ~L!C%~n!,$Ŵ~L!C%~n!&Hn

5E
H1

dm~n!^Û~L21n;L!C~L21n!,Û~L21n;L!C~L21n!&Hn

5E
H1

dm~n!^C~L21n!,C~L21n!&HL21n

5E
H1

dm~n!^C~n!,C~n!&Hn
5^C,C&H , ~4.32!

where have used~i! the assumed unitarity of the intertwining operatorsÛ(n;L):Hn→HLn , and
~ii ! the invariance of the measuredm on H1 under the action of SO~3,1!.

To see thatŴ(L) defined in Eq.~4.31! satisfies the group law we compute as follows:

$Ŵ~L2!Ŵ~L1!C%~n!5Û~L2
21n;L2!~$Ŵ~L1!C%~L2

21n!!

5Û~L2
21n;L2!Û~L1

21L2
21n;L1!C~L1

21L2
21n!. ~4.33!

But, from Eq.~4.30! we have

Û~L2
21n;L2!Û~L1

21L2
21n;L1!5Û~L1

21L2
21n;L2L1!5Û~~L2L1!21n;L2L1!, ~4.34!

and, hence, for allnPH1 ,

$Ŵ~L2!Ŵ~L1!C%~n!5Û~~L2L1!21n;L2L1!C~~L2L1!21n!5$Ŵ~L2L2!C%~n!
~4.35!

as is required to give a representation of the Lorentz group.
As was mentioned earlier, in our particular case, the existence of intertwining ope

Û(n;L):Hn→HLn satisfying Eq.~4.30! is demonstrated rather easily by exploiting the fact t
the Hilbert spacesHn , nPH1 , can all be identified naturally with the same Fock space gener
by creation and annihilation operatorsb̂(X)† andb̂(X). Indeed, as discussed earlier, we simply g
operatorsÛ(L):F→F which in themselves give a representation of the external Lorentz gr
and which satisfy Eqs.~2.16! and ~2.17!.
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The translation subgroup of the external Poincare´ group is easier to define since the trans
tions do not act onH1 . Thus we have the simple definition

$Ŵ~a!C%~n!ªnÛ~a!C~n! ;nPH1 , ~4.36!

wherenÛ(a) denotes the operators of the translation subgroup of the external Poincare´ group in
Hn .

V. CONCLUSIONS

We have shown how the discussion in Ref. 1 of a history version of scalar quantum
theory can be augmented in such a way as to include the quantization of the unit-length, ti
vector n that determines the Lorentzian foliation of Minkowski space–time. The Hilbert bu
construction that we employed was motivated by~i! a heuristic discussion of the role of th
external Lorentz group in the existing history quantum field theory,1 and ~ii ! a more technical
discussion of a specific representation of the extended history algebra obtained from the
symplectic representation of classical scalar field theory. In the latter context it should be rem
that there exist representations of this algebra other than the simple one given here—the
cance of such representations is a subject for future research.

The construction of a Hilbert bundle overH1ª$nPM un•n51,n0.0% is a natural idea at a
technical level, but it is also interesting from a conceptual perspective. For example, the
integral representation of the history Hilbert space—together with the postulated nondepen
of the average energy operator on the variables conjugate ton̂m—suggests that we have a type
history analog of what, in ordinary quantum theory, would be regarded as a system with co
ous super-selection sectors labeled bynPH1 . But in a ‘neo-realist’ theory such as consiste
histories, the role of super-selection sectors is somewhat different from that which arises
instrumentalist theory such as standard quantum mechanics.

The specific form of the quantization of the foliation vector presented in this paper is d
mined by the reduction of the full history algebra Eqs.~3.27!–~3.36! to the simplified algebra Eqs
~4.2!–~4.7! via the ansatz Eq.~4.1!. In this situation, we would not expect the quantization ofn to
generate any physical results that are different from those of the original paper.1 Of course, it may
be possible to find representations of the full history algebra that arenot generated by represen
tations of the simplified algebra, and it would then be important to see if these have any ph
implications. In particular, this would give some physical meaning to the multi-symplectic
malism from which we derived the full history algebra. These issues are a matter for fu
research.

However, the main motivation behind the present article is to present certain mathem
techniques that can be proved useful when quantizing the space–time foliations that are ex
to arise in a history version of general relativity. This important issue in the history approa
quantum gravity is something to which we shall return in a later paper.
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Microlocal analysis of quantum fields on curved
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We show in this article that the Reeh–Schlieder property holds for states of quan-
tum fields on real analytic curved space–times if they satisfy an analytic microlocal
spectrum condition. This result holds in the setting of general quantum field theory,
i.e., without assuming the quantum field to obey a specific equation of motion.
Moreover, quasifree states of the Klein–Gordon field are further investigated in the
present work and the~analytic! microlocal spectrum condition is shown to be
equivalent to simpler conditions. We also prove that any quasifree ground or KMS
state of the Klein–Gordon field on a stationary real analytic space–time fulfills the
analytic microlocal spectrum condition. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1506381#

I. INTRODUCTION

One of the remarkable features of quantum field theory is the ubiquity of fluctuations
connected with that, the generic appearance of long-range correlations. What is even m
markable is the fact that, using suitable selective operations and applying them, say, in an a
space–time region to the vacuum, one may produce in this way any given state in any
causally separated space–time region up to arbitrary precision. This is known as the
Schlieder theorem.40 Let us recall its statement in the setting of the operator-algebraic approa
quantum field theory. Suppose that we are given a space–time manifold (M ,g) ~i.e., M is a
smooth,n-dimensional manifold, andg is a Lorentzian metric onM ) and a family~‘‘local net’’ !
$A(O)%O,M of von Neumann algebras, all acting on a Hilbert-spaceH; the family is indexed by
the open, relatively compact subsets ofM , and is subject to the conditions of isotony and locali

O1,O⇒A~O1!,A~O! and O1,O'⇒A~O1!,A~O!8.

Here,O' denotes the causal complement ofO, i.e., the set of all points inM which cannot be
connected toO by any causal curve, andA(O)8 denotes the commutant algebra ofA(O) in
B(H). These conditions are the minimal assumptions in order that$A(O)%O,M may be viewed as
a net of local observable algebras of a~relativistic! physical system situated inM , see Ref. 2 for
discussion. One now says that a unit vectorVPH satisfies theReeh–Schlieder property with
respect to the regionO,M if V is cyclic for the algebraA(O) of observables localized inO, that
is, the set of vectorsA(O)V5$AV:APA(O)% is dense inH. Moreover, one says thatV has the

a!Current address: Mathematisches Institut, Universita¨t Bonn, Beringstr. 1, D-53115 Bonn, Germany. Electronic ma
strohmai@math.uni-bonn.de

b!Electronic mail: verch@theorie.physik.uni-goettingen.de
55140022-2488/2002/43(11)/5514/17/$19.00 © 2002 American Institute of Physics
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Reeh–Schlieder property ifV is cyclic for A(O) for eachO,M which is open, nonvoid, and
relatively compact. By the locality assumption, this then implies thatV is also separating for al
local algebrasA(O) ~as long asO' contains a nonvoid open set! and this means thatAV
50⇒A50 for all APA(O). ~A vectorVPH which is cyclic and separating for all local algebr
A(O) is sometimes also called a standard vector for the family$A(O)%O,M .)

The generic occurrence of the Reeh–Schlieder property for large sets of physical sta
quantum field theory—as so far known in quantum field theory on manifolds possessing su
groups of isometries1,3–9—is a mathematically precise way of expressing that long-range cor
tions are a fundamental feature of quantum field theory. Furthermore, the Reeh–Schlieder p
plays a very important role in analyzing the mathematical structure of quantum field theor
instance, it is being used at some stages in the development of charge superselection the~see
Refs. 4 and 10, and references cited there!. Another very important aspect of the Reeh–Schlie
property is that one may naturally associate with each von Neumann algebra together with a
and separating vector the so-called Tomita–Takesaki modular objects.11 In the seminal work of
Bisognano and Wichmann12,13 it has been shown that the Tomita–Takesaki modular objects a
ciated with the vacuum-vector and the von Neumann algebraA(W) of a ‘‘wedge-region’’~which
is actually infinitely extended! in a Wightman-type quantum field theory on Minkowski spac
time have a specific geometric significance. This insight has initiated considerable progress
mathematical development of general quantum field theory on which the recent revie
Borchers14 reports exhaustively; therefore we refer the reader to that reference for further d
sion. We limit ourselves to mentioning that quite promising generalized forms of such a ‘
metric modular action’’ that are applicable to quantum field theories on curved space–time
been suggested and investigated more recently.15,16 The Reeh–Schlieder property is also respo
sible for ~maximal! violations of Bell’s inequalities in quantum field theory,17 and more recently,
Reeh–Schlieder properties have been found to imply various forms of long-range entanglem
states in relativistic quantum field theory;18–20see also Refs. 21 and 22 for related discussions
possible significance of Reeh–Schlieder properties for questions related to cosmology ha
proposed in Ref. 23.

As indicated previously, Reeh–Schlieder properties have, either in the model-indepe
approach or for concrete quantum field models, so far only been established under the assu
that the space–time in which the quantum system is situated possesses a sufficient am
space–time symmetries. This constitutes a considerable limitation, and the question is if
Schlieder-like properties can also be established for quantum field theories on space–tim
admitting any isometries. This is feasible since the main mathematical argument leading
Reeh–Schlieder theorem in the case where there are sufficiently many space–time symm
an analytical argument of the type of the edge-of-the-wedge-theorem3 or Schwartz’ reflection
principle in order to derive a certain global property of a quantum state from local informa
and these arguments do not use space–time symmetries~in particular, timelike isometry groups!
directly. On the other hand, commonly the analytic properties of correlation functions in qua
field theory are consequences of the relativistic spectrum condition whose formulation requ
form of time-translation symmetry. Time-translation symmetry is also required in order to fo
late conditions of thermal equilibrium in relativistic quantum field theory from which Re
Schlieder properties may also be deduced.6

At any rate, certain analytical properties of correlation functions are prerequisite in ord
establish Reeh–Schlieder theorems in quantum field theory and the question arises how to
alize the analyticity properties known to hold, e.g., for ground states or thermal equilibrium
with respect to a time-symmetry group to more general situations. A way to proceed in
general situations may be to follow, and to refine, the approach pioneered by Radzikows24,25

who proved that, for a free scalar quantum field on generic curved space–times, the conditi
a quasifree state be a Hadamard state can equivalently be expressed as a condition on t
front set of the two-point function of that state~see also Refs. 26–28 for related work!. Since it
can convincingly be argued that Hadamard states are most likely candidates for physical s
quantum fields obeying linear wave-equations,29 it appears natural to sharpen the condition on
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two-point function of a physical state by demanding that it applies to the analytic wave fron
and not only, as in most previous considerations, to theC` wave front set. In order that this make
sense independently of particular coordinates, the underlying space-time manifold ought to
analytic.

Thus, we will propose a stricter form of the wave front set spectrum condition formulate
Ref. 24, or of the microlocal spectrum condition,30 for the n-point functions of a generic scala
quantum field on a real analytic space–time in terms of their analytic wave front sets, and w
show that such states possess the Reeh–Schlieder property. In doing so, we will present
scription of the~analytic! microlocal spectrum condition for a two-point function as a condition
the wave front set of a certain Hilbert-space valued distribution. It turns out that working
wave front sets of Hilbert-space valued distributions has several advantages. One of those
in terms of Hilbert-space valued distributions the~analytic! microlocal spectrum condition~for
two-point functions of free fields! assumes a very simple and elegant form which is, in fact, m
reminiscent of the usual spectrum condition in quantum field theory in Minkowski space–
Part of this analysis appears already in Ref. 31 for the case of theC` wave front set where the
calculus of Hilbert space valued distributions is used for the definition of Wick products of
fields. This appeared motivation enough to discuss several aspects of microlocal anal
Hilbert-space valued distributions more systematically, and that discussion thus forms the fir
of the present article in Sec. II.

In Sec. III we summarize some basics on the description of general scalar quantum fie
curved space–times, together with the example of the free scalar Klein–Gordon field.

We recapitulate the definition of the microlocal spectrum condition~‘‘ mSC’’!, referring to the
C` wave front sets ofn-point functions of quantum fields on manifolds, according to Ref. 30
Sec. IV. In the same section, we introduce our analytic microlocal spectrum condition~‘‘amSC’’!
which will be defined similarly tomSC but now using analytic wave front sets ofn-point functions
of quantum fields on real analytic manifolds.~We should note that Hollands and Wald32 have
recently also introduced a similar concept of analytic microlocal spectrum condition which r
to a whole class of states, and is used in a different context.!

In Sec. V we will present our main result, which is a Reeh–Schlieder theorem for qua
field states fulfilling the amSC. Here, we draw on results of Sec. II, and also on a microlo
version of the edge-of-the-wedge theorem, which appears as Theorem 8.5.68 in Ref. 33.

Finally, in Sec. VI we present the characterization of amSC and ofmSC for two-point func-
tions of a free scalar field on a manifold in terms of a simple conic form of the wave front s
certain Hilbert-space valued distributions. Moreover, we prove that ground and KMS states
free scalar field on a real analytic stationary space–time obey the amSC. This shows in particula
that the Hartle–Hawking state on the Schwarzschild space–time satisfies the amSC.

II. MICROLOCAL ANALYSIS FOR HILBERT SPACE VALUED DISTRIBUTIONS

Assume we are given a Hilbert spaceH and a smooth manifoldM which is second countable
and Hausdorff. The spaceD8(M ,H) of H valued distributions is defined to be the set of
weakly continuous linear maps

C0
`~M !→H.

Note that due to the nuclearity ofC0
`(M ) these maps are automatically strongly continuous

X,Rn is an open subset a linear mapc:C0
`(X)→H is in D8(X,H) if and only if for each compact

subsetK,X there are constantsC.0 andaPN0 such that

ic~ f !i,C (
uku<a

sup
x

u~]kf !~x!u, ~1!
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for all f PC0
`(K). If a can be chosen independently ofK, then we say thatc is of ordera and

write cPD8a(X,H). The set ofcPD8(X,H) with compact support inX will be denoted by
E8(X,H). If c has compact support then one can easily extendc to a linear mapC`(X)→H and
we have for all compact setsK which contain supp(c),

ic~ f !i,C (
uku<a

sup
xPK

u~]kf !~x!u, ; f PC`~X!, ~2!

for someC.0,aPN0 . Conversely, if there exists a compact setK such that for a given linear ma
c:C`(X)→H the inequality~2! holds for someC anda, thenc is a distribution with support in
K. Therefore,E8(X,H) can be identified with the set of strongly continuous mapsC`(X)→H. If
a subsetL of E8(X,H) is bounded then~2! holds for allcPL and f PC`(X) with constantsC and
a independent ofc. We define E8a(X,H)ªE8(X,H)ùD8a(X,H) and obviously E8(X,H)
5øaE8a(X,H).

If cPE8(Rn,H) one may define the Fourier transformĉ in the same way as this is done fo
ordinary distributions. Namely, the Fourier transformĉ is theH valued function onRn given by
ĉ(k)ªc(e2 ik•).

Definition 2.1: Let X be open inRn and let c be in D8(X,H). Then a point(x,k)PX
3(Rn\$0%) is called regular directed forc if the following holds: There exists a function
PC0

`(X) with f(x)51 and an open conic neighborhoodG of k such that for each NPN there
exists a constant CN with

sup
lPG

~11ulu!Ni f ĉ~l!i,CN . ~3!

The set of regular directed points is open. Its complement in X3(Rn\$0%) is called the wave front
setWF~c! of c.

The following proposition shows that microlocal analysis of Hilbert space valued distribu
is analogous to the case of ordinary distributions. See also Ref. 31 for related discussion.

Proposition 2.2: Let X be open inRn and letcPD8(X,H) be a Hilbert space valued distri
bution.

(1) If ~3! holds for fPC0
`(X) then it also holds with f replaced by g f for any gPC`(X).

(2) If c has compact support thenĉ is polynomially bounded in the norm, i.e., there is
constant C and an integer M, such that

iĉ~k!i,C~11uku!M. ~4!

If moreover a subset LPE8(X,H) is bounded then~4! holds for all cPL with C and M
independent ofc.

(3) If WF(c) is empty thenc is smooth in the norm.
(4) If we define the distribution wPD8(X3X) by w( f ,g)5^c( f̄ ),c(g)&, then

~x,k!PWF~c!⇔~~x,2k!,~x,k!!PWF~w!, ~5!

and moreover, if(x,k)¹WF(c) with kÞ0, then

~~x,2k!,~x1 ,k1!!¹WF~w! and ~~x1 ,k1!,~x,k!!¹WF~w!, ~6!

for arbitrary (x1 ,k1)PX3Rn.
(5) Under change of coordinatesWF(c) transforms as a subset of the cotangent bund

Hence, WF(f) may be defined for distributionsfPD8(M ,H), for a smooth manifold M and
WF(f),T* M \0. Here T* M \0 is the cotangent bundle with zero section removed.

Proof: The first statement is proved in the same manner as for ordinary distributions~cf. Ref.
33, Lemma 8.1.1!. The inequality~2! immediately gives the second statement iff (x)5e2 ikx. To
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see that~3! holds we first note that WF(c)5B implies that for each pointxPX there is aC0
`

function with f (x)51 such thati f ĉi is rapidly decreasing. The same arguments as in the com
valued case show thatf c can be represented by the inverse Fourier transform off ĉ, which is a
smooth function, i.e., all derivatives in the norm sense exist and are given byDa( f c)(x)52p

((2 ik)a f ĉ(k)(2x). ~5! is a simple consequence of~4! and it remains to show~4!. Assume first
that (x,2k,x,k) is regular directed forw. Then there is a functionf 1PC0

`(X3X) such thatf 1ŵ
decays rapidly in a conic neighborhood of (x,2k,x,k). Because of~1! we may choosef 1 to be of
the form f ^ f , where f PC0

`(X) is a positive function. Since

i f ĉ~k!i25~~ f ^ f̂ !w~2k,k!, ~7!

(x,k) is regular directed forc. Suppose conversely we knew that (x,k) is regular directed forc.
By the Cauchy inequality we have

u~~ f ^ ĝ!w~k1 ,k2!u<ic~ f̄ ~• !eik1•!i•ic~g~• !e2 ik2•!i . ~8!

By assumption there is agPC0
`(X) with g(x)51 such that in a conic neighborhood ofk the

second factor is rapidly decreasing. Since the other is polynomially bounded for anyf PC0
`(X),

(x1 ,k1 ,x,k) is a regular directed point forw for any (x1 ,k1). In the same way one shows th
(x,2k,x1 ,k1) is regular directed. This concludes the proof. h

The fourth statement in the above-given proposition allows one to take over many r
known for ordinary distributions.

Proposition 2.3: If P:C`(M )→C`(M ) is a differential operator andcPD8(M ,H) such that
c+P* 50, where P* is the formal adjoint of P, then

WF~c!,char~P!.

Here char(P) is the characteristic set of P, i.e., the set of points(x,k) in T* M \0 on which the
principal symbolsP of P vanishes.

Proof: We definew as in Proposition 2.2. Note that ((x,2k),(x,k)) is in the characteristic se
of the operatorLª P̄^ P if and only if (x,k) is in the characteristic set ofP. Moreover,Lw
50. The result follows now from the fourth statement in Proposition 2.2. h

One may also define the analytic wave front set of a Hilbert space valued distribution
follow the definition in Ref. 33~Definition 8.4.3!.

Definition 2.4: Let X be an open subset ofRn and cPD8(X,H). We denote byWFA(c) the
complement in X3(Rn\$0%) of the set of points(x0 ,k0) such that there is a neighborhood U,X
of x0 , a conic neighborhoodG of k0 and a bounded sequencecN of distributions with compact
support which is equal toc in U, such that there exists a constant C with

iukuNĉN~k!i<C~C~N11!!N, ~9!

for all kPG.
The bounded sequencecN can always be chosen to be the productf Nc, where f N is a

sequence of smooth functions. One has
Lemma 2.5: LetcPD8(X,H), K a compact subset of X, and let F be a closed cone inRn

such thatWFA(c)ù(K3F)5B. If f NPC0
`(K) and for all a

uDa1b f Nu<Ca~Ca~N11!! ubu, ubu<N51,2,..., ~10!

then fNc is a bounded sequence and we have

iukuNĉN~k!i<C~C~N11!!N, ~11!
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for all kPF. Moreover, if x is a point in the interior of K, there always exists a neighborhoodU
of x and a sequence of functions fN such that (10) is satisfied and fN51 on U.

Proof: The proof of this statement is the same as for ordinary distributions~see Ref. 33,
Lemma 8.4.4!. h

Proposition 2.6: Let X be an open set inRn and letcPD8(X,H) be a Hilbert space valued
distribution.

(1) If WFA(c) is empty thenc is strongly real analytic.
(2) If we define the distribution wPD8(X3X) by w( f ,g)5^c( f̄ ),c(g)&, then

~x,k!PWFA~c!⇔~~x,2k!,~x,k!!PWFA~w!, ~12!

and moreover, if(x,k)¹WFA(c) with kÞ0, then

~~x,2k!,~x1 ,k1!!¹WFA~w! and ~~x1 ,k1!,~x,k!!¹WFA~w!, ~13!

for arbitrary (x1 ,k1)PX3Rn.
(3) Under analytic change of coordinatesWFA(c) transforms as a subset of the cotange

bundle. Hence, WFA(f) may be defined for distributionsfPD8(M ,H), for a smooth real ana-
lytic manifold M andWFA(f),T* M \0.

Proof: We start with ~2!. Assume that (x,2k,x,k)¹WFA(w). We choose a sequence o
functions f N in C0

`(X) which satisfies the inequality~10! and which is equal to 1 in a neighbo
hood of x. Then the sequencegNª f̄ N^ f NPC0

`(X3X) also satisfies an inequality of the form
~10!, and hence

u~2k1 ,k1!uNu~gNw!̂~2k1 ,k1!u<C~C~N11!!N, ~14!

for some constantC.0 and allk1 in a conic neighborhood ofk. We have

i f Nĉ~k1!i25~gNw!̂~2k1 ,k1!, ~15!

and a quick estimate shows that for allk1 in a conic neighborhood ofk we have

iuk1uN~ f Nc!̂~k1!i<C̃~C̃~N11!!N, ~16!

for some constantC̃. Therefore, (x,k)¹WFA(c). Suppose conversely that (x1 ,k1)¹WFA(c).
Hence, there is a sequencecN bounded inE8(X,H) and equal toc in a neighborhood ofx1 such
that the inequality~9! holds in a conic neighborhood ofk1 . Choose another functiong which is
equal to 1 in a neighborhood of a pointx2 . Then the distributionwN defined bywN(h1 ,h2)
ª^c(g•h̄1),cN(h2)& is bounded inE8(X3X). Moreover, an application of the Cauchy inequal
shows that

uŵN~k2 ,k!u<ic~geik2•!i•icN~e2 ik•!i . ~17!

The first factor is bounded byCM(11uk2u)M for someMPN and a simple estimate show
that for all k2 there is a conic neighborhoodG of (k2 ,k1) and aC.0 with

u~k28 ,k!uN
•uŵN1M~k28 ,k!u<C~C~N11!!N, ~18!

for all (k28 ,k)PG. SincewN is equal tow in a neighborhood of (x2 ,x1), we get

~~x2 ,k2!,~x1 ,k1!!¹WFA~w!.

In the same way one shows that

~~x1 ,2k1!,~x2 ,k2!!¹WFA~w!.
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Statement~3! is an immediate consequence of~2! since the analytic wave front set of an ordina
distribution transforms as a subset of the cotangent bundle. The first statement can be show
same way as for ordinary distributions~see Ref. 33, Theorem 8.4.5!. This concludes the proof.h

Proposition 2.7: If P:C`(M )→C`(M ) is a differential operator with real analytic coeffi
cients on a real analytic manifold M andcPD8(M ,H) such thatc+P* 50, where P* is the
formal adjoint of P, then

WFA~c!,char~P!,

wherechar(P) is the characteristic set of P.
Proof: Analogous to the proof of Proposition 2.3. h

Theorem 2.8:Let X,Rn be an open subset and assumecPD8(X,H). Assume that there is
a smoothH-valued function G:I 3X→H, with I5(0,e), such that

limt→0G(t,•)5c in the sense of distributions,
(] tG)(t,x1 ,...,xn)5 i( ]x1

G)(t,x1 ,...,xn).
ThenWFA(c),$(x1 ,...,xn)3(y1 ,...,yn)PX3Rn\$0%;y1>0%.

Proof: The proof is a variation of the proof of Theorem 8.4.8 in Ref. 33. Since the state
is local we can assume without loss of generality thatX5X13¯3Xn and thatc. First note that
for each givengPC0

`(X23...3Xn) the function

H~x1 iy!ªE
X23¯3Xn

G~y,x,y2 ,...,yn!g~y2 ,...,yn!dy2¯dyn ~19!

is defined on the stripX11 iI and is holomorphic. Moreover, it has a distributional boundary va
c(•^ g). We will slightly vary the proof of Theorem 3.1.14 in Ref. 33 to show that the follow
bound holds:

iH~x1 iy!i<C8y2m21 ~20!

if ( x,y)PX̃13I /2 and clo(X̃1),X1 for somem.0. Let f PC0
`(X13I ) be a function with support

in K3I , whereK is a compact subset ofX1 , such thatf is equal to 1 in a neighborhood ofZ̄,
whereZªX̃13I /2. Cauchy’s integral formula applied tof H in the setIz.I(z/2) shows that if
z5j1 ihPZ,

H~z!52p21E E
y.h/2

H~x1 iy!] f ~x,y!/] z̄~z2z!21dx dy

1~2p i!21E f ~x,h/2!~x2j2 ih/2!21H~x1 ih/2!dx. ~21!

An application of the uniform boundedness principle~Banach–Steinhaus theorem! shows that
i*X1

H(x1 iy)h(x)dxi<C(a<msupu]ahu for all hPC0
`(K) with constantsC andm independent

of y ~cf. Ref. 33, Theorem 2.1.8!. Therefore, the last integral in~21! can be estimated in the norm
by

C1 (
a<m

supu]x
a~x,h/2!~x2j2 ih/2!21u<C2uhu2m21. ~22!

The first integral in~21! is bounded and this proves the inequality~20!.
Since the statement of the theorem is local we can always replaceX1 by X̃1 andI by I /2 and

we can therefore assume without loss of generality that the bound~20! holds in X13I . From
Stokes integral formula one gets fory, YPR1 and NPN such thaty1Y,e/2 the following
formula ~compare 3.1.19 in Ref. 33! for any f̃PC0

`(X) with f̃5f ^ g:
                                                                                                                



5521J. Math. Phys., Vol. 43, No. 11, November 2002 Microlocal analysis of quantum fields

                    
E
X
f̃~x!G~y,x!dx5E

X1

Q~x,Y!H~x1 iy1 iY!dx

1~N11!E
X1

dxE
0,t,1

dt H~x1 itY1 iy!~]Nf!~x!
~ iY!N

N!
tN, ~23!

where

Q~x,y!ª(
j 50

N

] jf~x!~ iy! j / j !. ~24!

Because of the bound~20! the integrand under the double integral in~23! is uniformly bounded by
an integrable function ifN.(m11) and the first term even converges uniformly asy→0. There-
fore, we have forN.(m11),

c~f̃!5E
X1

Q~x,Y!H~x1 iY!dx1~N11!E
X1

dxE
0,t,1

dt H~x1 itY!~]Nf!~x!
~ iY!N

N!
tN.

~25!

Now let x85(x18 ,...,xn8) be a point inX and letfn be a sequence of functions onX1 which are all
equal to 1 in a common neighborhood ofx18 such that

u]afnu<~C1~n11!!a, a<n11. ~26!

Assume thatg is equal to 1 in a neighborhood of (x28 ,...,xn8). With

Qn~x,y!ª(
j 50

n

] jfn~x!~ iy! j / j ! ~27!

we get from~25! for n.(m11),

~fn ^ ĝ!c~k!5E
X
G~Y,x!Qn~x1 ,Y!g~x2 ,...,xn!e2 i(x1 iY,k)dx

1~n11!E
X
dxE

0,t,1
dtG~ tY,x!e2 i(x1 itY,k)

•~]nfn!~x1!g~x2 ,...,xn!
~ iY!n

n!
tn.

~28!

Here we used the notationsx5(x1 ,...,xn) and Y5(Y,0,...,0). With C252eC1Y we have
uQn(x,Y)u<C2

n11 and because of the bound~20! we get

i~fn ^ g!c~k!i<C3
n11~e(Y,k)1~n2m21!! ~2Y,k!m2n!, ~Y,k!,0. ~29!

We definecnª(fm1n ^ g)c and if (Y,k),2cuku for a fixedc, we obtain for someC4 ,

iĉn~k!i<C4
n11n! uku2n, ~30!

sincee2cuku<n!(cuku)2n. If we chosefn bounded inC0
` , thencn is bounded inE8(X,H). We

have shown that

WFA~c!,X3$k,~Y,k!>0%.

h

An immediate corollary of this theorem is
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Corollary 2.9: Let X,Rn be an open subset. Suppose that V is an open cone inRn\$0% and
Z is an open neighborhood of0 in Rn. Denote by V° the dual cone. (The dual cone V° of an open
cone V is defined as the set V°5$jPRn:^v,j&>0; vPV%, where^ . , . & denotes the Euclidean
scalar product onRn.) If cPD8(X,H) is the boundary value in the sense of distributions o
function G which is analytic in X3(VùZ), thenWFA(c),X3V°.

III. QUANTUM FIELD THEORY ON CURVED SPACE–TIMES

By a space–time we mean in the following a connected smooth manifold of dimensn
>2 which is second countable and Hausdorff and which is endowed with a Lorentzian meg
such thatM is both oriented and time-oriented. A spacelike hypersurfaceC in a space–timeM is
called Cauchy surface if each inextendible causal curve intersectsC exactly once. In case ther
exists a Cauchy surface the space–timeM is said to be globally hyperbolic~see, e.g., Refs. 34 an
35 for further discussion!.

A. Scalar fields on curved space–times

The Borchers–Uhlmann algebraB of a manifoldM is defined to be the topological tenso
algebra

BªC% %
m51

`

^
mC0

`~M ! ~31!

endowed with a star defined by (f 1^¯^ f k)* 5 f̄ k^¯^ f̄ 1 . A state v over B determines a
sequence of distributionsvmPD8(Mm), the so-calledm-point functions, by

vm~ f 1 ,...,f m!ªv~ f 1^¯^ f m!. ~32!

If H is a Hilbert space andD a dense subset we denote byL D
1 the set of~possibly unbounded!

operatorsA on H with the properties

dom~A!5D, AD,D, dom~A* !.D, A* D,D. ~33!

The involutionA1
ªA* uD and the locally convex topology defined by the seminormspf,c(A)

ªu^f,Ac&u, f, cPD turn L D
1 into a locally convex topological* -algebra.

Each state over the Borchers–Uhlmann algebraB determines, by the GNS construction,
Hilbert spaceH with a dense domainD and an* -representationp:B→L D

1 with cyclic vector
VPD such thatp(B)V5D. If M5R4 is the Minkowski space it is well known that Wightma
fields can be constructed from states over the Borchers–Uhlmann algebra which satisfy
requirements like translation invariance or the spectrum condition. The field is, in this cas
operator valued distributionf °F( f )ªp(0% f % 0%¯). We will think of a quantum field on a
curved space–time in the same way, i.e., a quantum field can be defined by a state o
Borchers–Uhlmann algebra of test functions on the underlying space–time. A state is
quasifree if all the oddm-point functions vanish and the evenm-point functions can be expresse
by

vm~ f 1 ,...,f m!5(
P

)
r

v2~ f (r ,1) , f (r ,2)!, ~34!

whereP denotes a partition of the set$1,...,m% into subsets which are pairings of points label
by r .

For quantum fields on Minkowski space–time one usually requires the properties of Po´
covariance, spectrum condition, existence of an invariant vacuum vector as well as local co
tativity ~for observable fields! to hold ~see, e.g., Refs. 3 and 2!. Due to the lack of an analog of th
Poincare´ group, only the last requirement can straightforwardly be generalized to curved sp
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times. However, as will be seen in Sec. IV, there is a microlocal version of the spectrum con
which can be stated independently of the coordinate system and hence can be applied to q
fields on curved space–times.

For a fieldF(•) defined by a statev over the Borchers–Uhlmann algebra we can associa
net of von Neumann algebras$A(O)%O,M in the following way. Let as previouslyD be the dense
domainp(B)V arising by the GNS construction fromv. For a subsetS,L D

1 the weak commu-
tant Sw8 of S is defined to be the set of bounded operatorsA on H such that

^B* f,Ac&5^A* f,Bc&, ; BPS, f,cPD. ~35!

A net of von Neumann algebras$A(O)%O,M is then defined by

A~O!ª~$F~ f !; supp~ f !,O%w8 !8. ~36!

The requirement of local commutativity may now be formulated by demanding that the
Neumann algebras associated with causally separated regions commute, i.e.,

A~O1!,A~O!8 if O1,O'.

This is a strong form of local commutativity which is to be seen as a selective constraint o
Hilbert-space representationp of the Borchers–Uhlmann algebraB induced by the statev, and
hence as a constraint onv itself. It implies in particular spacelike commutativity of field operato
@F( f ),F(h)#50 whenever the supports off andh are causally separated.

B. The Klein–Gordon field on curved space–times

Since the construction of free fields relies heavily on the presence of a Cauchy s
~time-zero formalism! we restrict our considerations of quantum fields on curved space–tim
the globally hyperbolic case. The evolution of the free scalar field of massm and with couplingk
on a globally hyperbolic space–time is described by the Klein–Gordon equation

Pfª~hg1m21kR!f50, fPC`~M !. ~37!

Herehg is the Laplace operator with respect to the metric andR is the scalar curvature ofM . The
operatorP is a differential operator of second order acting on the smooth functions onM . It has
unique advanced and retarded fundamental solutions~see Refs. 36 and 37! E6:C0

`(M )
→C`(M ) satisfying

PE65E6P5 id on C0
`~M !,

supp~E6 f !,J6~supp~ f !!,

whereJ6(O) denotes the causal future/past of a setO, i.e., the set of points which can be reach
by future/past directed causal curves emanating fromO. The differenceEªE12E2 is the so-
called commutator function. It mapsC0

`(M ) onto the space of smooth solutions to the Klein
Gordon equation which have compactly supported restriction to all Cauchy surfaces. Th
E:C0

`(M )→C`(M ) is continuous and hence has a distributional kernel inD8(M3M ) which we
also denote byE, i.e., E( f ,h)5*M f (Eh) where integration is taken with respect to the Lore
zian metric-volume form. The field algebraF of the Klein–Gordon field is defined to be the unit
* -algebra generated by the symbolsf( f ), f PC0

`(M ) and the relations

~1! f °f( f ) is complex linear,
~2! f( f )* 5f( f̄ ),
~3! f(P f )50,
~4! @f( f 1),f( f 2)#5 iE( f 1 , f 2).
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Clearly, each statev over F with the further property that thev(f(•)¯f(•)) are distributions
defines a stateṽ over the Borchers–Uhlmann algebra by

ṽ~ f 1^¯^ f m!ªv~f~ f 1!¯f~ f m!!. ~38!

The corresponding quantum fieldF:C0
`(M )→L D

1 satisfies the Klein–Gordon equation

F~P• !50, ~39!

and the canonical commutation relations

@F~ f 1!,F~ f 2!#5 iE~ f 1 , f 2!IuD . ~40!

Since the commutator functionE vanishes for spacelike separation of the arguments the
satisfies the requirement of local commutativity, i.e.,@F( f ),F(h)#50 if the supports off andh
are spacelike separated. For many states, among them the quasifree states, also the
requirement of local commutativity at the level of the net of von Neumann algebras$A(O)%O,M

in their GNS-representations described previously is fulfilled. In the following we call states
the Borchers–Uhlmann algebra arising in this way states for the Klein–Gordon field.

IV. THE MICROLOCAL SPECTRUM CONDITION

In the investigation of the Klein–Gordon field a crucial role is played by the so-called H
amard states~see, e.g., Refs. 38–40!. They are thought of as the appropriate counterpart of
vacuum in Minkowski space and are characterized by the short distance behavior of thei
point function. The investigation of such states is partially motivated by the result of Wald29 that
the expectation value of the energy momentum tensorTmn with respect to a Hadamard state can
made sense of in a satisfactory way. This is a very important feature of Hadamard states,
is this expectation value that appears in the Einstein equations in the semiclassical the
gravity coupled to the Klein–Gordon field. We will not give the original definition of Hadam
states here, since such states can as well be characterized by the wave front set of their tw
function. This was shown by Radzikowski24,25 and relies heavily on the work of Duistermaat a
Hörmander41,42on Fourier integral operators. We first would like to note that the wave front s
the commutator distributionE for the wave operatorP on a globally hyperbolic space–time wit
metric g is given by

WF~E!5$~~x1 ,2k1!,~x2 ,k2!!;~x1 ,k1!;~x2 ,k2!

~41!
and gmn~k1!m~k1!n5gmn~k2!m~k2!n50%,

where (x1 ,k1);(x2 ,k2) means that there is a lightlike geodesicg connectingx1 andx2 such that
k1 is coparallel to the tangent vector of the curve atx1 andk2 is the parallel transport ofk1 from
x1 to x2 . Radzikowski’s result is that a quasifree statev for the Klein–Gordon field is a Hadamar
state if and only if the wave front set of its two-point functionv2 is given by

WF~v2!5$~~x1 ,2k1!,~x2 ,k2!!PWF~E!;~k2!0.0%, ~42!

where (k2)0.0 is shorthand for ‘‘k2 is future-pointing.’’
The microlocal characterization of Hadamard states has meanwhile led to a rich theo

fact, it turned out that quasifree Hadamard states allow for a construction of Wick polynomi
field operators30,32and a perturbative construction of interacting fields on curved space–times31,43

It was shown in Ref. 44 that such states are locally quasiequivalent and therefore~at least locally!
distinguish a single folium of states. A passive state for a free quantum field theory on a stat
space–time is always a Hadamard state~see Refs. 45 and 46 for the statement in its full gene
ity!. The Hadamard condition can also be formulated almost without change for arbitrary
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quantum fields. Radzikowski’s result is known to hold also in these cases.28 Adiabatic vacuum
states satisfy a similar condition with the wave front set replaced by an appropriate Sobolev
front set as shown in Ref. 47.

Motivated by the observations just mentioned, a microlocal spectrum condition~mSC! that
applies to general quantum fields on curved space–times was introduced by Brunetti, F
hagen, and Ko¨hler;30 we shall now summarize its definition. We denote byGk the set of all finite
graphs with vertices$1,...,k% such that for every elementGPGk all edges occur in both admis
sible directions. We writes(e) and r (e) for the source and the target of an edge, respectiv
Following Ref. 30 we define an immersion of a graphGPGk into a space–timeM an assignment
of the verticesn of G to pointsx(n) in M , and of edgese of G to piecewise smooth curvesg(e)
in M with sources(g(e))5x(s(e)) and ranger (g(e))5x(r (e)), together with a covariantly
constant causal covector fieldke on g such that

~1! If e21 denotes the edge with opposite direction ase, then the corresponding curveg(e21) is
the inverse ofg(e).

~2! For every edgee the covector fieldke is directed toward the future whenevers(e),r (e).
~3! ke2152ke .

Definition 4.1~mSC, Ref. 30!: A statev over the Borchers–Uhlmann algebraB is said to
satisfy the microlocal spectrum condition iff its m-point functionsvmPD8(Mm) satisfy

WF~vm!,$~x1 ,k1 ;...;xm ,km!PT* Mm\0; 'GPGm

and an immersion~x,g,k! of G in, such that

xi5x~ i ! ; i 51,...,m and

ki52 (
e, s(e)5 i

ke~xi !%5Gm .

We note here that quasifree Hadamard states of the Klein–Gordon field satisfy the micr
spectrum condition. For a motivation of this definition and further properties of states satis
themSC we refer the reader to Ref. 30. For later purposes we will need the following prope
the setsGm which is Lemma 4.2 in Ref. 30.

Proposition 4.2: The setsGm are stable under addition, i.e., Gm1Gm,Gm . Moreover, if
(x,k)PGm then (x,2k)¹Gm .

V. THE ANALYTIC MICROLOCAL SPECTRUM CONDITION AND THE REEH–SCHLIEDER
PROPERTY

In the following we restrict our consideration to the case whenM is a real analytic space–
time, i.e.,M is real analytic as a manifold and the metricg is analytic. Passing from the smoot
to the analytic category it seems reasonable to require that the state satisfies a microlocal s
condition with the wave front set WF replaced by the analytic wave front set WFA . ~See Ref. 32
for a related concept.!

Definition 5.1~amSC!: A statev over the Borchers–Uhlmann algebra is said to satisfy th
analytic microlocal spectrum condition~amSC! iff its m-point functions satisfy

WFA~vm!,Gm ,

where the notations of Definition 4.1 are used.
For Wightman fields in Minkowski space–time the spectrum condition is equivalent to

requirement that them-point functions are boundary values of functions which are analytic in
tube
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Tmª$~z1 ,...,zm!; I~zj 112zj !PV1 , j 51,...,m21%, ~43!

whereV1 is the forward lightcone.
Theorem 5.2:Suppose that M is the n-dimensional Minkowski space–time (n>2) and letv

be a state over the Borchers–Uhlmann algebra such that its m-point functions are boundary
values in the sense of distributions of functions that are analytic in TmùZ, where Z is a complex
neighborhood of(Rn)m,(Cn)m. Thenv satisfiesamSC.

Proof: Clearly, Tm is of the form Tm5(Rn)m1 iC, where the coneC is defined byC
5$(k1 ,...,km); kj 112kjPV1%. The dual coneC ° can easily be calculated and the result is

C °5H ~k1 ,...,km!; km ,km211km ,...,(
j 52

m

kjPV̄1 , (
j 51

m

kj50J . ~44!

Hence, by Corollary 2.9, the set WFA(vm) is contained in (Rn)m3C °. The set

H ~x1 ,k1 ;...;xm ,km!; km ,km211km ,...,(
j 52

m

kjPV̄1 , (
j 51

m

kj50J
is contained inGm ~see, e.g., the proof of Theorem 4.6 in Ref. 30! which concludes the proof.h

This theorem applies to the vacuum state of Wightman fields in Minkowski space–time
provided that the invariant domain of all field operators includes, e.g., theC`-vectors for the
energy, it applies also to vector states which are analytic in the energy~in vacuum representation
see, e.g., Chap. 12 in Ref. 4!; moreover, it applies also to states which satisfy the relativistic K
condition proposed by Buchholz and Bros.48,49Quasifree states for the Klein–Gordon field on t
de Sitter space–time that satisfy the weak spectral condition50–52 can also be shown to satisf
amSC.

Let as before (p,V,D,H) be the GNS-representation of the statev and denote byF the
corresponding quantum field. We will now show that a state that satisfies amSC has the Reeh–
Schlieder property, i.e., the set$F( f 1)¯F( f n)V; supp(f i),O,mPN% is total in H for each
nonvoid open setO,M .

The main technical tool for proving this is a microlocal version of theedge of the wedge
theorem~Theorem 8.5.6’ in Ref. 33!.

Proposition 5.3: Let M be a real analytic connected manifold and uPD8(M ) a distribution
with the property thatWFA(u)ù2WFA(u)5B. Then the following conclusion holds for eac
nonvoid open subset OPM :

uuO50⇒u50.

Proof: For a closed subsetX,M the exterior normal setNe(X),T* M\0 is defined to be the
set of all (x,k) such thatxPX and there is a real valued functionf PC2(M ) with df (x)5k
Þ50 andf (y)< f (x) for all yPX. The normal setN(X) is the unionNe(X)ø2Ne(X). Theorem
8.5.6’ in Ref. 33 states thatN(supp(u)),WFA(u) and sinceN(supp(u))52N(supp(u)) the
assumption implies thatN(supp(u))5B. Consequently,Ne(supp(u))5B. Proposition 8.5.8 in
Ref. 33 states that the projection ofNe(X) in M is dense in]X. Therefore,](supp(u))5B. Since
M is connected this implies that either supp(u)5B or supp(u)5M . The latter is excluded by
uuO50. h

Our main result is stated in the following theorem.
Theorem 5.4: Let v be a state over the Borchers–Uhlmann algebra on a real analytic

space–time and suppose furthermore thatv satisfiesamSC. Denote by(p,V,D,H) its GNS-
representation and byF the associated quantum field. Then the set

$V%ø$F~ f 1!¯F~ f m!V; supp~ f i !,O, mPN%

is total in H for each nonvoid open set O,M .
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Proof: We define a Hilbert space valued distributioncmPD8(Mm,H) by

cm~ f 1 ,...,f m!ªF~ f 1!¯F~ f m!V. ~45!

Note that due to Proposition 2.6 a point (x,k)PT* Mm\0 is in WFA(cm) if and only if (x,
2k;x,k)PWFA(w2m), where the distributionw2mPD8(M2m) is defined by

w2m~ f 1 ,...,f m ,g1 ,...,gm!ªv2m~ f m ,...,f 1 ,g1 ,...,gm!. ~46!

Proposition 4.2 implies that WFA(w2m)ù2WFA(w2m)5B and therefore WFA(cm)
ù2WFA(cm)5B.

Suppose now thatfPH is orthogonal to the set

$V%ø$F~ f 1!¯F~ f m!V; supp~ f i !,O, mPN%. ~47!

Then the distributionsvm(•)5^f,cm(•)&PD8(Mm) vanish on Om and satisfy WFA(vm)
ù2WFA(vm)5B. By Proposition 5.3 we conclude thatvm50 for all m. Therefore,f is even
orthogonal to the set

$V%ø$F~ f 1!¯F~ f m!V; f iPC0
`~M !, mPN%, ~48!

which is total inH. We conclude thatf50 which proves the theorem. h

An immediate corollary is the Reeh–Schlieder property of the associated net of local alg
Corollary 5.5: Let the assumptions of Theorem 5.4 be fulfilled and denote by$A(O)%O,M the

associated local net of von Neumann algebras. ThenA(O)V is dense inH for each nonvoid open
set O.

Remark 5.6: (a) Clearly, the conclusion of Theorem 5.4 also holds if we impose the w
conditionWFA(v2m)ù2WFA(v2m)5B on the state instead of the analytic microlocal spectru
condition. Our result is therefore insensitive to the precise form of analytic microlocal spec
condition as long as an analog of Proposition 4.2 holds.

(b) The same method works for fields with values in an analytic vector bundle. Note that
commutativity is not an assumption of Theorem 5.4 and therefore it applies to fermionic fie
well.

(c) The existence of states fulfillingamSC on generic, real analytic, globally hyperboli
space–times remains an open problem, even for free field theories. See our comments at t
of this article on this point.

VI. QUASIFREE STATES AND THE KLEIN–GORDON FIELD

As indicated in Sec. I the microlocal spectrum condition can be simplified for quasifree s
of the Klein–Gordon field using microlocal analysis of Hilbert space valued distributions.
will allow us to give a rather simple proof of the fact that quasifree ground and KMS states fo
Klein–Gordon field on~analytic! stationary spacetimes are~analytic! Hadamard states.

Proposition 6.1: Let M be a globally hyperbolic space–time and letv be a quasifree state fo
the Klein–Gordon field on M. Let F and V be as in Sec. V and denote byc the Hilbert space
valued distributionF(•)V. Then the following statements are equivalent.

(1) v satisfiesmSC.
(2) WF(c),V̄1 .
(3) WF(c)5N1 .
(4) v is a Hadamard state.
HereV̄1 denotes the set of future directed causal covectors (x,k) andN1 is the set of future

directed non-zero null-covectors.
Proof: We first show that (1)⇒(2). Suppose that (x,k)PWF(c). Then by Proposition 2.2 we

get (x,2k;x,k)PWF(v2). By mSC the covector (x,k) must be inV̄1 . (2)⇒(3) is a simple
consequence of the fact thatc solves the Klein–Gordon equation and Proposition 2.3. The im
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cation (4)⇒(1) is Proposition 4.3 in Ref. 30 and it remains to show (3)⇒(4). By Proposition 2.2
we conclude that if (x1 ,k1 ;x2 ,k2)PWF(v2) then k2PV̄1 and k1PV̄2 . Therefore,
WF(ṽ2)ùWF(v2)5B with ṽ2( f 1 , f 2)ªv2( f 2 , f 1). Note that ṽ22v2 is proportional to the
commutator functionE and consequently WF(v2)øWF(ṽ2)5WF(E). This implies Eq.~42! and
thus concludes the proof. h

Remark 6.2: It was shown in Ref. 31 that a vectorV inducing a quasifree Hadamard state
contained in the microlocal domain of smoothness (introduced in the same article), which im
the conclusion(4)⇒(3). Proposition 6.1 shows that the microlocal domain of smoothness c
cides with the set of vectors inducing quasifree Hadamard states.

A completely analogous statement holds in the analytic category.
Proposition 6.3: Let M be a globally hyperbolic analytic space–time and letv be a quasifree

state for the Klein–Gordon field on M. With the same notation as in Theorem 6.1 the follow
statements are equivalent.

(1) v satisfiesamSC.
(2) WFA(c),V̄1 .
(3) WFA(c)5N1 .
(4) v is an analytic Hadamard state, meaning that (42) is satisfied withWF replaced byWFA .
Proof: Taking into account Propositions 2.6 and 2.7 the proof is identical to that of Propos

6.1 with WF replaced by WFA .
A space–timeM with metric tensorg is called stationary if there exists a one-parameter gr

ht of isometries ofM with timelike orbits whose Killing vector fields are~by convention! future
pointing. This one-parameter group can be understood as a group of time-translations a
therefore interesting to investigate passive states with respect to this group action as state
are physically reasonable replacements for the vacuum. For example the Schwarzschild
time is stationary and the Hartle–Hawking state for the Klein–Gordon field is a KMS state
respect to the group of time translations. Other examples are the Rindler wedge and wed
regions in the de Sitter space. We investigate in the following ground and KMS states fo
Klein–Gordon field on a stationary space–time. Let us first fix some notation. The push-fo
ht* defined by (ht* f )(x)ª f (h2tx) acts on the spaceC0

`(M ) and this action lifts uniquely to an
action a t on the Borchers–Uhlmann algebraB by *-automorphisms. A statev over B is called
ground state if the functiont°v(Aa tB) is bounded for allA,BPB and

E
2`

1`

f̂ ~ t !v~Aa t~B!!dt50, ~49!

holds for all f PC0
`((2`,0)). A statev is called KMS state at inverse temperatureb.0 if the

function t→v(Aa tB) is bounded for allA,BPB and

E
2`

1`

f̂ ~ t !v~Aa t~B!!dt5E
2`

1`

f̂ ~ t1 ib!v~a t~B!A!dt, ~50!

for all f PC0
`(R). Note that ground and KMS states are necessarily invariant, i.e.v(a t(•))

5v(•).
Theorem 6.4:Let M be a globally hyperbolic stationary space–time and suppose thatv is a

quasifree KMS- or ground-state for the Klein–Gordon field. Thenv satisfies the microlocal spec
trum condition. If moreover M is real analytic (as a space–time) and the flowR3M→M induced
by ht is analytic, thenv satisfies the analytic microlocal spectrum condition.

Proof: Let (p,V,H,D) be the GNS representation ofv. Let F(•) be the associated field an
definec(•)ªF(•)V. Sincev is invariant there exists a strongly continuous one-parameter g
U(t)5eitH on H, such thatU(t)c(•)5c(ht•) andU(t)V5V. If v is a b-KMS state it follows
from the KMS condition that the vectorsc( f ) are in the domain ofe2 (b/2) H5U(ib/2) for all
f PC0

`(M ). If v is a ground state this is even true for allb.0. Therefore, we may define th
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distribution GPD8((0,b/2)3M ,H) by G(t,x)5U(it)c(x). We use a local coordinate syste
(x0 ,...,xn21) such that the vector field]x0

generates locally the flowht . Then G satisfies the
system of equations

~] t
21]x0

2 !G50, ~51!

~ id^ P!G50. ~52!

This system is elliptic and thereforeG is indeed a smooth function satisfying the conditions
Theorem 2.8. It follows that WFA(c) is a subset of the set$(x,k)PT* M ;k(]x0

(x)).0% in this
coordinate system. Sincec solves the Klein–Gordon equation WF(c) is confined to the forward
light cone. IfM is real analytic and the flowR3M→M induced byht is analytic we can choose
the local coordinate system to be analytic and therefore WFA(c),V̄1 . h

The part of Theorem 6.4 stating that ground and KMS states on smooth stationary s
times are Hadamard states was shown before in Ref. 46, cf. also Ref. 45. The method we
our proof is however rather different from the methods employed there. The advantage
approach is that it applies to the analytic case without any changes.

As a simple consequence of Theorem 6.4 the Hartle–Hawking state on the Schwarz
space–time is an analytic Hadamard state. On the de Sitter space–time the so-called E
vacuum state~also called Bunch–Davies vacuum! is known to be a KMS state when restricted
certain stationary wedge-like regions~see, e.g., Refs. 53 and 54, and references therein!. As a
consequence this state satisfies the amSC. One can also conclude this more directly from the f
that the two-point function of this state is the boundary value of a function holomorphic
certain complex tuboid.54

Whereas the existence of Hadamard states for the Klein–Gordon field on an arbitrary gl
hyperbolic space–time is well established a general construction of analytic Hadamard
seems to be a rather difficult task. In the literature there exist two methods of construct
Hadamard states that apply to generic space–time manifolds. The method used by Fullinget al.45

takes advantage of the fact that any globally hyperbolic space–time can be deformed to a
time that is static in the past of a given Cauchy surface and coincides with the original space
in its future. Such aC`-deformation, however, destroys the analyticity of the metric and thus
method cannot be exploited for the construction of analytic Hadamard states. Another const
of Hadamard states is due to Junker~Ref. 55!. His method relies heavily on the calculus
~smooth! pseudodifferential operators and we are so far not aware of a calculus that would
it to carry over that method to the analytic case.
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Covariant Hamiltonian boundary conditions in General
Relativity for spatially bounded space–time regions
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We investigate the covariant Hamiltonian symplectic structure of General Relativ-
ity for spatially bounded regions of space–time with a fixed time-flow vector. For
existence of a well-defined Hamiltonian variational principle taking into account a
spatial boundary, it is necessary to modify the standard Arnowitt–Deser–Misner
Hamiltonian by adding a boundary term whose form depends on the spatial bound-
ary conditions for the gravitational field. The most general mathematically allowed
boundary conditions and corresponding boundary terms are shown to be deter-
mined by solving a certain equation obtained from the symplectic current pulled
back to the hypersurface boundary of the space–time region. A main result is that
we obtain a covariant derivation of Dirichlet, Neumann, and mixed type boundary
conditions on the gravitational field at a fixed boundary hypersurface, together with
the associated Hamiltonian boundary terms. As well, we establish uniqueness of
these boundary conditions under certain assumptions motivated by the form of the
symplectic current. Our analysis uses a Noether charge method which extends and
unifies several results developed in recent literature for General Relativity. As an
illustration of the method, we apply it to the Maxwell field equations to derive
allowed boundary conditions and boundary terms for the existence of a well-
defined Hamiltonian variational principle for an electromagnetic field in a fixed
spatially bounded region of Minkowski space–time. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1505984#

I. INTRODUCTION

The mathematical structure of General Relativity as a Hamiltonian field theory is w
understood for asymptotically flat space–times. As first shown by Regge and Teitelboim,1 with
asymptotic falloff conditions on the metric, there is a modification of the standard Arnow
Deser–Misner~ADM ! Hamiltonian2 whose field equations obtained from the Hamiltonian var
tional principle yield a 311 split of the Einstein equations. The ADM Hamiltonian itself yiel
the 311 Einstein equations only if compact support variations of the metric are used in
variational principle. For metric variations satisfying asymptotic falloff conditions, the AD
Hamiltonian does not give a well-defined variational principle since its variation prod
asymptotic boundary terms that do not vanish. However, the boundary terms can be canc
the addition of a surface integral term at spatial infinity to the ADM Hamiltonian. The resu
Regge–Teitelboim Hamiltonian yields a well-defined variational principle for the Einstein e
tions with asymptotic falloff conditions on the metric. On solutions of the Einstein equation
Hamiltonian reduces to a surface integral expresssion over spatial infinity, which turns out to

a!Electronic mail: sanco@brocku.ca
b!Electronic mail: rohtung@phy.ncu.edu.tw
55310022-2488/2002/43(11)/5531/36/$19.00 © 2002 American Institute of Physics
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the physically important ADM definition of total energy, momentum, and angular momentum
asymptotically flat space–times. Various modern, covariant formulations of this Hamilto
structure are known.3–7

A natural question to investigate is whether this Hamiltonian structure can be extend
spatially bounded regions of space–time. An important motivation is astrophysical applic
where asymptotically flat boundary conditions are not appropriate, e.g., collapse to a black
mergers of binary stars, or collision of black holes. Another important application is for nume
solution methods of the Einstein equations. In these situations the spatial boundary is not an
physical boundary in space–time, but rather is viewed as a mathematically defined timelik
persurface whose boundary conditions effectively replace the dynamics of the gravitational fi
the exterior region.

In this paper and a sequel,8 we work out the covariant Hamiltonian structure of Gene
Relativity for arbitrary spatially compact regions of space–timeS3R whose spacelike slicesS
prossess a closed two-surface boundary]S, with a fixed time-flow vector tangent to the timelik
boundary hypersurface]S3R. Rather than start with given boundary conditions on the me
we instead seek to determine both the most general surface integral term necessary to be a
the ADM Hamiltonian in covariant form together with the most general corresponding boun
conditions on the metric at]S such that the modified Hamiltonian has well-defined variatio
derivatives. This would yield the most general mathematically allowed variational principle fo
Einstein equations with spatial boundary conditions on the metric. To carry out the analys
employ the covariant Hamiltonian formalism~referred to as the Noether charge method! devel-
oped in Refs. 4, 9, and 10.

The main results are that we find Dirichlet and Neumann type boundary conditions fo
metric at a spatial boundary two-surface and obtain the associated Hamiltonian surface in
Under some natural assumptions motivated by the symplectic structure arising from the
Hamiltonian, the most general allowed boundary conditions are shown to be certain typ
mixtures of the Dirichlet and Neumann ones. We also investigate the geometrical structure
Dirichlet and Neumann covariant Hamiltonians. These each turn out to involve an unde
‘‘energy-momentum’’ vector at each point in the tangent space of the space–time at the
surface. In the Dirichlet case, this vector depends only on the extrinsic geometry of the s
boundary two-surface. Most strikingly, when the vector is decomposed into tangential and n
parts with respect to the two-surface, the normal part yields a direction in which the two-su
has zero expansion in the spacetime.

In Sec. II we first apply the Noether charge formalism to investigate, as an illustrative
ample, the covariant Hamiltonian structure of the free Maxwell equations on spatially com
regions of Minkowski space–time. We show that this analysis leads to Dirichlet and Neu
type boundary conditions on the electromagnetic field, corresponding to conductor and ins
type boundaries, as well as mixed type boundary conditions which are linear combinations
Dirichlet and Neumann ones. We also investigate more general boundary conditions whic
rise to a well-defined Hamiltonian variational principle for the Maxwell equations, and we o
a uniqueness result for the mixed and pure type Dirichlet and Neumann boundary conditions
some assumptions. The associated Dirichlet and Neumann Hamiltonians are shown to re
expressions for the total energy of the electromagnetic field, including contributions from su
electric charge and current due to the boundary conditions.

In Sec. III we carry out the corresponding analysis of the covariant Hamiltonian structu
General Relativity for arbitrary spatially compact regions of space–time with a closed two-su
boundary, without matter fields. We make some concluding remarks in Sec. IV. In an Append
develop the Noether charge method for general Lagrangian field theories with a time sym
This approach extends and unifies some aspects of the covariant Hamiltonian formalism
duced in recent literature.4,9–11 ~Throughout we use the notation and conventions of Ref. 12.!

Inclusion of matter fields and analysis of the geometrical properties of the resulting Diri
and Neumann Hamiltonians for General Relativity will be investigated in Ref. 8. It is also le
that paper to discuss the relation between these Hamiltonians and the Regge–Teitelboim
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tonian in the case when the two-surface boundary is taken in a limit to be spatial infinity
asymptotically flat space–time.

II. ELECTRODYNAMICS

To illustrate our basic approach and the covariant Hamiltonian~Noether charge! formalism,
we consider the free Maxwell field theory in four-dimensional Minkowski space–time (R4,hab).

We use the standard electromagnetic field Lagrangian, where the field variable is the e
magnetic potential one-formAa , with the field strength two-form defined asFab5] [aAb] . The
Lagrangian four-form for the fieldAa is given by

Labcd~A!5 1
2eabcdFmnF

mn53F [ab* Fcd] , ~2.1!

where* Fab5eab
cdFcd is the dual field strength two-form defined using the volume formeabcd. A

variation of this Lagrangian gives

dLabcd~A!5] [aQbcd]~A,dA!16dA[a~]b* Fcd] !, ~2.2!

where

Qbcd~A,dA!56dA[b* Fcd] ~2.3!

defines the symplectic potential three-form. From Eq.~2.2!, one obtains the field equations

Ebcd~A!56] [b* Fcd]50, ~2.4!

or equivalently, after contraction with the volume form,

]aFab5]a] [aAb]50 ~2.5!

which is the source-free Maxwell equations forAa .
Let ja5(]/]t)a be a timelike isometry of the Minkowski metric, with unit normalizatio

jajbhab521, and letS be a region contained in a spacelike hyperplanet50 orthogonal toja

with the boundary of the region being a closed two-surface]S. Denote the unit outward spacelik
normal to ]S in S by sa, and denote the metric and volume form on]S by sab5hab2sasb

1jajb andeab5eabcds
cjd. Let S t and]S t be the images ofS and]S under the one-paramete

diffeomorphism generated byja on Minkowski space–time. Denote the metric compatible deri
tive operator on]S by Da . Let

LjAa5je]eAa1Ae]aje52je] [eAa]1]a~jeAe!, ~2.6!

which is the Lie derivative ofAa with respect toje.
The Noether current three-form associated withja is given by

Jabc~j,A!5Qabc~A,LjA!14jdLabcd~A!56* F [bcLjAa]112jdF [ab* Fcd] , ~2.7!

which simplifies to

Jabc~j,A!56] [a~* Fbc]j
dAd!12jeeabcd~de

dFmnF
mn24FenF

dn!2jeAeEabc~A! ~2.8!

after use of Eqs.~2.4! and ~2.6!. Hence, one obtains the Noether current on solutionsAa ,

Jabc~j,A!56] [a~* Fbc]j
dAd!12jeeabcd~de

dFmnF
mn24FenF

dn!. ~2.9!

~Note, one easily sees that this three-formJabc(j,A) is closed but is not exact, i.e., there does n
exist a Noether current potentialQbc(j,A) satisfyingJabc(j,A)53] [aQbc] (j,A).! Correspond-
ingly, the Noether charge on solutionsAa is given by
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QS~j!5E
S
Jabc~j;A!5E

S
eabcdj

e~28FenF
dn12de

dFmnF
mn!1 R

]S
2* Fbcj

dAd . ~2.10!

This expression simplifies in terms of the electromagnetic stress-energy tensor defined by

Te
d~F !52FenF

dn2 1
2de

dFmnF
mn. ~2.11!

Thus,

1
4 VS~j!5E

S
jejdTde~F !d3x1 R

]S
jaAajdseFdedS, ~2.12!

where d3x and dS denote the coordinate volume elements onS and]S obtained from the volume
forms eabcdj

d andebc , respectively.

A. Covariant Hamiltonian formulation

The symplectic current, defined by the antisymmetrized variation ofQbcd(A,dA), is given by
the three-form

1
6vbcd~d1A,d2A!5d1A[bd2* Fcd]2d2A[bd1* Fcd] . ~2.13!

Then the presymplectic form onS is given by

VS~d1A,d2A!5E
S
vbcd~d1A,d2A!. ~2.14!

A Hamiltonian conjugate toj on S is a functionHS(j;A)5*SHabc(j;A) for some locally con-
structed three-formHabc(j;A) such that

dHS~j;A![HS8 ~j;A,dA!5VS~dA,LjA! ~2.15!

for arbitrary variationsdAa away from solutionsAa .
From the expression~2.7! for the Noether current, the presymplectic form yields

VS~dA,LjA!5E
S
dJabc~j,A!14jddA[dEabc]~A!2 R

]S
jcQabc~A,dA!. ~2.16!

Hence, for compact support variationsdAa away from solutionsAa , the Noether current gives
Hamiltonian~2.15! with Habc(j;A)5Jabc(j,A), up to an inessential boundary term. The simp
fied expression~2.8! for Jabc(j,A) thereby yields the Hamiltonian

H~j;A!54E
S
jejd~Tde~F !1Ae]

cFcd!d
3x. ~2.17!

On solutionsAa , this Hamiltonian is equal to the total electromagnetic field energy onS,
H(j;A)54*SjejdTde(F)d3x.

To define a Hamiltonian~2.15! for variationsdAa without compact support, it follows that th
term jcQabc(A,dA) in Eq. ~2.16! needs to be a total variation at the boundary]S, i.e. there must
exist a locally constructed three-formB̃abc(A) such that one has

jcQabc~A,dA!u]S5~jcdB̃abc~A!1] [aab]~j;A,dA!!u]S , ~2.18!

whereab(j;A,dA) is a locally constructed one-form. This equation holds if and only if, by tak
an antisymmetrized variation,10 one has
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ebcjavabc~d1A,d2A!u]S5Dcb̃
c~j;d1A,d2A!u]S , ~2.19!

where

b̃c~j;d1A,d2A!5ecbd1ab~j;A,d2A!2ecbd2ab~j;A,d1A! ~2.20!

is a locally constructed vector, inT(]S), which is skew bilinear ind1A, d2A. The term involving
the symplectic current is given by

ebcjavabc~d1A,d2A!58schde~d1Aed2Fcd2d2Aed1Fcd! ~2.21!

with hab5hab2sasb5sab2jajb . Given a solution of Eq.~2.19!, one can then determin
B̃abc(A) from Eq. ~2.18! by

eabjcB̃abc~A!5eab~jcQabc~A,dA!2]aab~j;A,dA!!58schdeFcddAe2Daãa~j;A,dA!,
~2.22!

where

ãa~j;A,dA!5eabab~j;A,dA!. ~2.23!

This leads to the following main result.
Proposition 2.1: A Hamiltonian conjugate toja on S exists for variationsdAa with support on

]S if and only if

8hbcsa~d1Ab] [ad2Ac]2d2Ab] [ad1Ac] u]S5Dcb̃
c~j;d1A,d2A! ~2.24!

for some locally constructed vectorb̃a(j,d1A,d2A), in T(]S), which is skew bilinear ind1A,
d2A. The solutions of Eq. (2.24) of the formdFa(A)u]S50 give the allowed boundary condition
Fa(A)u]S for a Hamiltonian formulation of the Maxwell equations in the local space–time region
S t , t>0. For each boundary condition, there is a corresponding Hamiltonian given by
Noether charge plus a boundary term

HS~j;A!5E
S
Jabc~j,A!2 R

]S
jaB̃abc~A![H~j;A!1HB~j;A!, ~2.25!

with

H~j;A!54E
S
jejd~Tde~F !1Ae]

cFcd!d
3x, ~2.26!

HB~j;A!5 R
]S

ja~4AajdseFde2
1
2 B̃a~A!!dS, ~2.27!

where B̃a(A)5ebcB̃abc(A) is determined from

~jaB̃a~A!28schdeFcddAe!u]S5Daãa~j;A,dA!u]S ~2.28!

with ãa(j;A,dA) given by Eqs. (2.20) and (2.23). Note, B̃a(A) is unique up to addition of an
arbitrary covector function of the fixed boundary dataFa(A).

The results in Proposition 2.1 take a more familiar form when expressed in terms o
electric and magnetic fields onS defined byEa52jbFab , Ba5jb* Fab , which are vectors in
T(S) ~i.e., jaEa5jaBa50). A convenient notation now is to write vectors inT(S) using an
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overarrow, and for tensors onM, to denote tangential and normal components with respect toS by
subscriptsi and', and denote components orthogonal toS t by a subscript 0. Then we have

EW 5]WA02]0AW , BW 5]WÃAW . ~2.29!

In this notation, the presymplectic form~2.14! and the Hamiltonian~2.25! reduce to the expres
sions

1
4 VS~d1A,d2A!5E

S
~d2AW "d1EW 2d1AW "d2EW !d3x

5E
S
~d1AW "~]0d2AW 2]Wd2A0!2d2AW "~]0d1AW 2]Wd1A0!!d3x ~2.30!

and

1
2 HS~j;A!5E

S

1
2 ~EW 21BW 2!1A0]W•EW'd3x2 R

]S
A0E'1 1

4 B̃0~A!dS. ~2.31!

Note that the Hamiltonian field equations obtained fromHS(j;A) are given by the variationa
principle

HS8 ~j;A,dA!5VS~dA,LjA! ~2.32!

for arbitrary variationsdAauS . These field equations split into dynamical equations and const
equations, corresponding to a decomposition ofAa into dynamical and nondynamical componen
respectively,AW and A0 , determined by4 the degeneracy of the presymplectic form~2.30!. In
particular, this yields the Gauss-law constraint equation

]W "EW 5DA02]0]W "AW 50 ~2.33!

obtained fromHS8 (j;A,dA0)50 through variation ofA0 , and the dynamical Maxwell evolution
equation

]0EW 2]WÃBW 5~2]0
21D!AW 1]W~]0A02]W "AW !50 ~2.34!

obtained fromHS8 (j;A,dAW )5VS(dAW ,LjA) through variation ofAW , whereD5]W•]W is the Laplac-
ian onS. Thus, the Noether charge~covariant Hamiltonian! formalism here is equivalent to th
standard canonical formulation12 of the Maxwell equations.

B. Dirichlet and Neumann boundary conditions

Two immediate solutions of the determining equation~2.24! with b̃a50 are boundary condi-
tions associated with fixing components ofAa or Fbc5] [bAc] at ]S t for t>0.

Consider

~D! sb
adAau]S t

50, jadAau]S t
50, t>0, ~2.35!

or equivalentlydAW i5dA050, for t>0, called Dirichlet boundary conditions, i.e.,

F a
D~A!5ha

bAb ; ~2.36!

~N! sb
ascdFacu]S t

50, sajcdFacu]S t
50, t>0, ~2.37!
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or equivalently]W'ÃdAW i2]W iÃdAW'5]W'dA02]0dAW'50, for t>0, called Neumann boundary con
ditions, i.e.,

Fa
N~A!5ha

bscFbc . ~2.38!

Theorem 2.2:For the boundary conditions~D! or ~N!, a Hamiltonian conjugate toja on S,
evaluated on solutions Aa , is given by

1
2 HD~j;A!52E

S
edabc~2jeFenF

dn2 1
2 jdFmnF

mn!12 R
]S

ebcj
aAajdseFde ~2.39!

5 1
2 E

S
EW 21BW 2d3x2 R

]S
A0E'dS, ~2.40!

1
2 HN~j;A!52E

S
edabc~2jeFenF

dn2 1
2 jdFmnF

mn!12 R
]S

ebcs
bdAbseFde ~2.41!

5 1
2 E

S
EW 21BW 2d3x2 R

]S
~AW ÃBW !'dS. ~2.42!

Proof: For ~D!, one has

ebcjaQabc~A,LjA!56ebcjadA[a* Fbc]58~jadAajdseFde2saddAaseFde!50 ~2.43!

and henceB̃abc(A)50, so thusjaB̃a(A)50. For ~N!, one has

ebcjaQabc~A,LjA!56ebcja~dA[a* Fbc]56ebcja~d~A[a* Fbc] !2A[ad* Fbc] !

5d~6ebcjaA[a* Fbc] !18~2jaAajdsedFde1AasadsedFde!

5d~ebcjaB̃abc! ~2.44!

with B̃abc(A)56A[a* Fbc] . Thus,

jaB̃a~A!56ebcjaA[a* Fbc]58sdAeF
de. ~2.45!

h

Note that for both boundary conditions~D! and ~N!, the surface integral terms in the Hami
tonian take the form

HB~j;A!54 R
]S

jaPa~A!dS, ~2.46!

where

Pa
D~A!5AajbscFbc , ~2.47!

Pa
N~A!52jasdsbcAbFcd . ~2.48!

There is simple physical interpretation of the~D! and ~N! boundary conditions:~D! involves
fixing A0 andAW i at ]S t for t>0, which means

EW i5]W iA02]0AW i , BW'5]W i3AW i ~2.49!
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are specified data at the boundary surface~analogous to a conductor! as a function of time. Note
consequently,EW' andBW i are left free by the boundary condition~D! and therefore are induced da
for solutionsA0 , AW of the Hamiltonian field equations;~N! reverses the role of the induced an
fixed data at the boundary surface, so nowEW' andBW i are specified as a function of time~analo-
gous to an insulator!, while the induced data for solutionsA0 , AW of the Hamiltonian field equa-
tions areEW i and BW' . Note the fixed data here are gauge-equivalent to specifying the no
derivative ofA0 andAW i at ]S t in S t for t>0,

EW'5]W'~A02]0x!, BW i5]W'3~AW i2]W ix!, ~2.50!

wherex is given by]W'x5AW' .
Moreover, the Hamiltonians~2.40! and ~2.42! on solutionsA0 , AW have the interpretation a

expressions for the total energy of the electromagnetic fields, with the surface integral
representing the energy contribution13 from an effective~fictitious! surface charge density in th
case~D!, and effective~fictitious! surface current density in the case~N!, associated with the
specified data at the boundary surface. In particular, effective surface charges and curren
respectively, whenEW' or AW i are left free13 on the boundary surface.

We remark that similar boundary terms arise in the asymptotic case when the bou
surface is taken to be a two-sphere at spatial infinity onS ~see Ref. 14!.

C. Determination of allowed boundary conditions

The symplectic current componentebcjavabc(d1A,d2A) involves only the field variations
ha

bdAb , ha
bsc] [bdAc] . We refer to the componentssb

cAc , jcAc , sb
csaFac , jcsaFac , or

equivalentlyAW i , A0 , BW i , EW' , assymplectic boundary dataat ]S. Hence, in solving the deter
mining equation~2.24! for the allowed boundary conditions onAa , it is then natural to restrict
attention to boundary conditions involving only this data.~Some remarks on more general boun
ary conditions are made at the end of this section.! To proceed, we suppose that the possi
boundary conditions are linear, homogeneous functions of the symplectic boundary data
coefficients locally constructed out of the geometrical quantitiesja, sa, sbc , ebc at the boundary
surface. We call this type of boundary condition asymplecticboundary condition.

Theorem 2.3:The most general allowed symplectic boundary conditions

Fb~hc
dAd ,hc

dseFde ;jc,sc,sde ,ede! ~2.51!

for existence of a Hamiltonian conjugate toja on S are given by

Fb5b0sb
cAc1a0sb

csaFac1b1jbjcAc1a1jbjcsaFca , ~2.52!

or equivalently,

sb
c~b0dAc1a0sadFac!u]S t

50, t>0, ~2.53!

jc~b1dAc1a1sadFac!u]S t
50, t>0 ~2.54!

for any constants a0 , b0 (not both zero), a1 , b1 (not both zero).
Proof: First, we show thatb̃a50 without loss of generality in the determining equation~2.24!

for boundary conditions of the form~2.51!. Note that the left-hand side of Eq.~2.24! is algebraic
in dAa , dFab5] [adAb] . Since the right-hand side necessarily involves at least one derivativ
dAa , we must have

b̃a5d1Abd2Acb
abc ~2.55!
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for some tensor

babc5se
abe@bc#. ~2.56!

We substitute expression~2.55! into Eq. ~2.24! and collect all terms that do not involve just th
symplectic boundary data, namelyscAc , jcsd

aFac , sb
csd

aFac , and] (aAb) . The coefficients of
these terms yield algebraic equations

scb
(ab)c50, scb

[ab]c50, s[dbab]c50. ~2.57!

Then, sincebabc has the form~2.56!, we find that the solution of the equations in~2.57! is

babc50 ~2.58!

and sob̃a50.
Hence, the determining equation~2.24! reduces to

hbcsa~d1Ab] [ad2Ac]2d1Ab] [a]1Ac] !u]S50, ~2.59!

which we are now free to solve as a purely algebraic equation in terms of the variablesdAb and
dFac5] [adAc] , i.e.,

hbcsa~d1Abd2Fac2d1Abd2Fac!50. ~2.60!

It is straightforward to show from the form of Eq.~2.60! that the only solution which is linear
homogeneous in the previous variables is given by

P1b
cdAc5P2b

csadFac , ~2.61!

whereP1
bc andP2

bc are some symmetric tensors orthogonal tosa, such that Eq.~2.61! can be
solved for eitherjbdAb or jbsadFab , and eithersc

bdAb or sc
bsadFab . Since we require the

coefficients in the boundary conditions under consideration to be locally constructed out ofja, sa,
sbc , ebc , we see that

P1
bc5b0sbc1b1jbjc, P2

bc5a0sbc1a1jbjc, ~2.62!

for some constantsa0 , a1 , b0 , b1 with a0Þ0 or b0Þ0, anda1Þ0 or b1Þ0. This yields the
general solution~2.53! and ~2.54! given in the Theorem. h

The boundary conditions given by Theorem 2.3 comprise the following separate types:~i! for
a05a150 or b05b150, one obtains, respectively, Dirichlet~2.35! and Neumann~2.37! bound-
ary conditions;~ii ! for b050(a0Þ0), b1Þ0, the boundary conditions yield a one-parame
a1 /b1[c1 family of the form

sb
csadFacu]S t

50, jcdAcu]S t
52c1sajcdFacu]S t

, t>0, ~2.63!

or equivalently,dBW i5sWdA01c1
1
2dEW'50, for t>0; ~iii ! similarly, for b150(a1Þ0), b0Þ0, the

boundary conditions yield another one-parametera0 /b0[c0 family of the form

sb
cdAcu]S t

52c0sadFabu]S t
, jcsadFacu]S t

50, t>0, ~2.64!

or equivalently,sW3dAW i1c0
1
2dBW i5dEW'50, for t>0; ~iv! finally, for b0Þ0, b1Þ0(a0Þ0,a1

Þ0), we obtain a two-parametera1 /b1[c1 anda0 /b0[c0 family of the boundary conditions

sb
cdAcu]S t

52c0sadFabu]S t
, jcdAcu]S t

52c1sajcdFacu]S t
, t>0, ~2.65!
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or equivalently,sW3dAW i1c0
1
2dBW i5sWdA01c1

1
2dEW'50, for t>0.

The fixed data for these boundary conditions~2.63!–~2.65! correspond to specifying, respec
tively, the field components

sWA01c1
1
2EW' , BW i , c1Þ0, ~2.66!

EW' , sWÃAW i1c0
1
2BW i , c0Þ0, ~2.67!

sWA01c1
1
2EW' , sWÃAW i1c0

1
2BW i , c0Þ0,c1Þ0, ~2.68!

at the boundary surfaceS t for t>0. From Proposition 2.1, we readily obtain the Hamiltoni
boundary terms corresponding to these boundary conditions~by a proof similar to that for Theo-
rem 2.2!.

Theorem 2.4: For boundary conditions (2.63)–(2.65), there is a respective Hamiltonia
(2.25) conjugate toja on S, with boundary terms given by

HB~j;A!54 R
]S

ebc~jaAajdseFde1sadAaseFde2c1~jdseFde!
2!

52 R
]S

2~AW ÃBW !'1c1EW'
2 dS, ~2.69!

HB~j;A!54 R
]S

ebcc0sdesaFads
mFme5 R

]S
c0BW i

2dS, ~2.70!

HB~j;A!54 R
]S

ebc~jaAajdseFde2c1~jdseFde!
21c0sdesmFmds

nFne!

52 R
]S

2A0EW'1c1E'
22c0BW i

2dS. ~2.71!

Interestingly, among the allowed boundary conditions given by Theorem 2.3, we observ
the Hamiltonian boundary terms vanish identically in one~and only one! case, whenc050 in
boundary condition~2.64!, i.e.,

sb
cdAcu]S t

50, jcsadFacu]S t
50, t>0, ~2.72!

or equivalently,dAW i5dEW'50, for t>0. The resulting Hamiltonian~2.25! reduces, on solutions
Aa , simply to the expression for the total energy of the electromagnetic fields,H(j;A)
54*SjejdTde(F)d3x5*SEW 21BW 2d3x. The fixed data corresponding to the boundary condit
~2.72! areAW i andEW' , which means that the normal components of the electric and magnetic
at ]S are specified fort>0,

BW'5]W iÃAW i , EW'5]W'A02]0AW' . ~2.73!

SinceAW i andEW' are fixed, there are no effective charges and currents associated with the b
ary surface. Thus, the total electromagnetic energy involves no surface integral contributi
this case.

D. Remarks

We conclude with some short remarks on the uniqueness of the boundary conditions ob
in Theorem 2.3.
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Note that the symplectic boundary conditions~2.53! and~2.54! are linear combinations of the
tangential and normal parts of the Dirichlet and Neumann boundary conditions, referred
mixed boundary conditions. In physical terms, they correspond to specifyingb0sb

cAc

1a0sasb
cFac and b1jcAc1a1jcsaFca as boundary data at]S t for t>0. Theorem 2.3 gives a

uniqueness result for these mixed boundary conditions under the natural assumption~2.51! about
the general type of boundary condition considered on the fields at the boundary surface.
assumption is loosened, then there exist additional boundary conditions allowed by the det
ing equation~2.24!.

In particular, one can trade off some of the mixed boundary conditions on the symp
boundary data for boundary conditions involving the symmetrized derivatives ofAa at ]S. For
example, an allowed boundary condition satisfying Eq.~2.24! is given by F(A)
5(jaAa ,sab]aAb ,sabsc] (bAc)), or equivalently

jadAau]S t
50, sab]adAbu]S t

50, sabsc] (bdAc)u]S t
50, t>0, ~2.74!

with aa58ea
bAbscdAc . From Eq.~2.28! one obtains

1
8j

aB̃a5sescd~Ac] (dAe)2Ae]cAd!2 1
2AdAeDdse, ~2.75!

whereDdse5sd
mse

n]msn is the extrinsic curvature of]S in S. Hence the corresponding bound
ary term in the Hamiltonian is given by Eq.~2.46! with

Pa~A!5AasdjeFde2sescd~Ac] (dAe)2Ae]cAd!1 1
2AdAeDdse. ~2.76!

III. ANALYSIS OF GENERAL RELATIVITY

We now apply the Noether charge analysis to General Relativity, specifically to the va
Einstein equations for the gravitational field in a spatially bounded space–time region with a
time-flow vector field. It is straightforward to also include matter fields, as we discuss in R

For General Relativity without matter sources, the starting point is the standard Lagra
formulation of the Einstein equations with the space–time metric as the field variable. It turn
however, that the analysis is considerably simplified by introduction of a tetrad~orthonormal
frame!. Moreover, taking into account local rotations and boosts of the tetrad, the bou
conditions and resulting Hamiltonians that arise in the tetrad formulation are equivalent to
obtained purely using the metric formulation, up to a boundary term in the presymplectic f

After setting up some preliminary notation and results in Sec. III A, we will first consid
Dirichlet boundary condition as explained in Sec. III B. Then we will carry out details of
Noether charge analysis with the Dirichlet boundary condition using the tetrad formulatio
General Relativity in Sec. III C. The resulting covariant Dirichlet Hamiltonian for General R
tivity is summarized in Sec. III D where we will discuss the equivalence between the metri
tetrad formulations. In Sec. III E we will investigate a Neumann boundary condition and c
sponding Hamiltonian, along with more general boundary conditions and Hamiltonians. The
result will be to establish uniqueness of mixed Dirichlet–Neumann boundary conditions fo
existence of a Hamiltonian formulation of General Relativity. Finally, in Sec. III F we will brie
discuss the form of the Dirichlet and Neumann covariant Hamiltonians, and relate these
analysis of boundary terms for the ADM Hamiltonian using the standard~noncovariant! ADM
canonical variables.

A. Preliminaries

On a given smooth orientable four-dimensional space–time manifoldM, let gab be the space–
time metric tensor,eabcd(g) be the volume form normalized with respect to the metric, andg¹a be
the covariant~torsion-free! derivative operator determined by the metric.

Now, let ja be a complete, smooth timelike vector field onM, and letS be a region contained
in a spacelike hypersurface with the boundary of the region being a closed orientable two-s
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]S. Let sa denote the unit outward spacelike normal to]S orthogonal toja, let ta denote the unit
future timelike normal to]S orthogonal tosa. Denote the metric tensor and volume form on]S
by

sab5gab2sasb1tatb , ~3.1!

eab5eabcd~g!sctd. ~3.2!

This yields the decompositions

gab5sab1sasb2tatb , ~3.3!

eabcd~g!512t [asbecd] . ~3.4!

Note that one has

ja5Nta1Na, Nasa5jasa50 ~3.5!

for some scalar functionN and vector functionNa on ]S. It is convenient to extend the previou
structures off]S as follows. LetV be the space–time region foliated by the images ofS under a
one-parameter diffeomorphism onM generated byja, and letB be the timelike boundary ofV
foliated by the images of]S. Fix a time functiont which is constant on each of the spacelike slic
diffeomorphic toS underja in V and which is normalized byja]at51, such thatt50 corre-
sponds toS. ThenB is a timelike hypersurface inM whose intersection with spacelike hypersu
facesS t given by t5const in V consists of spacelike two-surfaces]S t diffeomorphic to]S.
Finally, let sa, ta, sab , eab , N, Na be extended to]S t , and letna denote the unit future timelike
normal toS t parallel to]at.

Note that, by construction,sa is hypersurface orthogonal toB and hence

s[c]bsa]50. ~3.6!

If ta is expressed as a linear combination ofsa , ]at, then since]at obviously is hypersurface
orthogonal to]S t , it follows that

s[dtc]bta]50. ~3.7!

In addition, note thatsa]at measures the extent to whichS t fails to be orthogonal toB.
Let (P]S)a

b and (Pt)a
b be coordinate projection operators onto the respective tangent sp

of the two-surface]S t and the integral curve ofta, and let (PB)a
b5(P]S)a

b1(Pt)a
b, which is the

projection operator onto the tangent space of the timelike hypersurfaceB. Note that these opera
tors are independent of the space–time metric, as they involve only the manifold structureB
and]S t in local coordinates inM.

Hereafter we work in terms of an orthonormal frameua
m ~i.e., tetrad! for gab on M. The frame

components ofsa, ta, na, sab , eab , gab , eabcd(g) are given by

sm5saua
m , tm5taua

m , nm5naua
m , ~3.8!

smn5sabua
mub

n , emn5eabua
mub

n , ~3.9!

hmn5gabua
mub

n , eabmn5eabcd~g!ua
aub

buc
muc

n , ~3.10!

where hmn5smn1smsn2tmtn5diag(21,1,1,1) is the Minkowski frame-metric, withsmn

5diag(0,0,1,1). This leads to an orthonormal frame for the metricsab , given by

sa
m5sa

bub
m ~3.11!
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satisfying

smsa
m5tmsa

m50. ~3.12!

Let the inverse orthonormal frame forgab and forsab be denoted by

um
a 5gabub

m , sm
a5sabsb

m. ~3.13!

Then, one has the decompositions

ua
m5sa

m1sasm2tatm, um
a 5sm

a1sasm2tatm . ~3.14!

For later use, we will partially fix the SO~3,1! local gauge freedom inum
a by choosing the

coefficientssm , tm in the frame decomposition~3.14! to be fixed functions onM, so that under a
variationdgab ,

dsm5dtm5dsmn50 ~3.15!

and hence, correspondingly,

dsa5smdua
m , dta5tmdua

m , ~3.16!

dsab52smnu (a
m dub)

n 52s (a
mdsb)m . ~3.17!

Similarly, one then also has

deabcd~u!54eabmnu [a
a ub

buc
mdud]

n 5eabcd~u!um
c duc

m , ~3.18!

deab52emnu [a
m dub]

n 5eabsm
cdsc

m, ~3.19!

and thus

demn5deabmn50. ~3.20!

Consequently, some useful identities are given by

dua
m5dsa

m1smdsa2tmdta , ~3.21!

dum
a 52un

aum
c duc

n5dsm
a1smdsa2tmdta. ~3.22!

Now, a variation of the space–time metricdgab can be decomposed into the parts

dgab5dsab12s(adsb)22t (adtb) . ~3.23!

By hypersurface orthogonality, one has the identities

dsa5sasbdsb , dta5sasbdtb2tatbdtb ~3.24!

and

dsab5sa
csb

ddscd1sa
csbsddscd2sa

ctbtddscd . ~3.25!

Then, from the relation

dgab5dsab12s(adsb)22t (adtb)52gacgbddgcd , ~3.26!

it straightforwardly follows that
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dsab52sacsbddscd , ~3.27!

dsa5sb
adsb1sasbdsb2tatbdsb, ~3.28!

dta5sb
adtb2tatbdtb, ~3.29!

where

sabdsb52sbdsab , sabdtb52tbdsab , ~3.30!

sbdsb52sbdsb , tbdsb52tbdsb , tbdtb52tbdtb , ~3.31!

and again by hypersurface orthogonality,

sadsab5tadsab50, sadta50. ~3.32!

Thus, the linearly independent parts ofdua
m , or equivalently ofdum

a , are given by

dsm
a,sb

adsb, sb
adtb, sbdsb, tbdsb, tbdtb. ~3.33!

Throughout, the time-flow vector fieldja is taken to be fixed,dja50, under variations ofgab.

B. Dirichlet boundary condition

There is a natural motivation for a Dirichlet boundary condition on the gravitational fiel
the Einstein equations in analogy with the Maxwell equations where the tangential compone
the electromagnetic field potentialAa are specified at the boundary. For General Relativity, si
larly, one can introduce a Dirichlet boundary condition given by specifying the tangential
ponents of the space–time metricgab at the two-surfaces]S t . This boundary condition is ex
pressed equivalently by conditions on the variation of the metric tensor

dsabu]S t
50, dtau]S t

50, t>0. ~3.34!

Geometrically, this means that the metric given by

hab5sab2tatb ~3.35!

on the timelike boundary hypersurfaceB is specified data, so it is held fixed under variations
gab ,

dhab50 on B. ~3.36!

The geometrical form~3.36! of the Dirichlet boundary condition is often introduced when o
considers an action principle for General Relativity on a spacetime manifold with a fixed g
timelike boundary hypersurface.12,15–17We will see in Sec. III C that this boundary condition
the form~3.34! emerges naturally from the Noether charge analysis for the existence of a H
tonian formulation of General Relatively for a spatially bounded local space-time region.

Note that, from the relations~3.27! to ~3.31!, one can decompose the Dirichlet bounda
condition ~3.34! into an intrinsic part

dhabu]S t
52hachbddhcdu]S t

50, t>0 ~3.37!

and an extrinsic part

habdsbu]S t
52sbdhabu]S t

50, t>0 ~3.38!
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with respect to the timelike hypersurfaceB. The intrinsic part corresponds to fixing just the met
PBhab restricted to the tangent space ofB, where the projectionPB removes components of th
hypersurface metric proportional tosa . Correspondingly, note that the volume form

eabc~h!5eabcd~g!sd53e [abtc] ~3.39!

on this surface is also fixed,deabc(h)50 on B, since

deabc~h!5 1
2eabc~h!hmndhmn52 1

2eabc~h!hmndhmn. ~3.40!

The Dirichlet boundary condition has a simple formulation in terms of the orthonormal fr
ua

m . It is convenient to introduce a frame for the metrichab by

ha
m5ha

bub
m5sa

m2tatm, ~3.41!

and inverse frame

ham5habhb
m. ~3.42!

Then the Dirichlet boundary condition~3.34! is equivalent to

dha
mu]S t

50, t>0, ~3.43!

with intrinsic part

dhamu]S t
50, t>0, ~3.44!

which is equivalent to Eq.~3.37!. These equivalences are immediate consequences of the iden
hab5ha

mhb
nhmn andhab5hm

ahn
bhmn. From these identities, one also has

dhab52h(a
mdhb)m , ~3.45!

deabc~h!5hm
ddhd

m. ~3.46!

An additional useful identity is given by

dha
c52~scdsa1sadsc!52sahb

cdsb ~3.47!

and thereforePBdha
c50.

Finally, note that the intrinsic part of the Dirichlet boundary condition on the frame dec
poses into

dsamu]S t
50, dtau]S t

50, t>0. ~3.48!

The full, extrinsic Dirichlet boundary condition is necessary and sufficient fordha
cu]S t

50, t

>0.

C. Noether charge analysis

We consider the standard tetrad formulation of General Relativity, using an orthonormal
ua

m for gab and a frame-connection

Ga
mn~u!5ubm g¹aub

n52ub[m] [aub]
n]2ubmucnuaa] [buc]

a . ~3.49!

Here the expression in the second equality is obtained from the relation

u [b
n Ga]n

m~u!5g¹[aub]
n 5] [aub]

m . ~3.50!
                                                                                                                



ce–

-

5546 J. Math. Phys., Vol. 43, No. 11, November 2002 S. C. Anco and R. S. Tung

                    
The curvature of this connection~3.49! is given by

Rab
mn~u!52] [aGb]

mn~u!12G [a
ms~u!Gb]s

n~u!5Rabcd~g!ucmudn, ~3.51!

related to the Riemann curvature tensorRabcd(g) of gab .
With ua

m as the field variable, the Lagrangian four-form for General Relativity~without matter
sources! is given by

Labcd~u!5eabcd~u!R~u!56u [a
m ub

nR̃cd]mn~u!, ~3.52!

where

R̃cd
mn~u!5Rcdab~u!eabmn52] [aG̃b]

mn2G [a
s[m~u!G̃b]s

n]~u! ~3.53!

in terms ofG̃amn(u)5Ga
ab(u)eabmn . Then the variation ofLabcd(u) gives, after integration by

parts and use of the connection equation~3.50!,

1
6dLabcd~u!52du [a

m ~ub
nR̃cd]mn~u!!1 1

6] [aQbcd]~u,du!, ~3.54!

where

Qbcd~u,du!512u [c
m ud

ndG̃b]mn~u! ~3.55!

defines the symplectic potential three-form. The field equations forua
m , obtained from the coef-

ficient of dua
m in Eq. ~3.54!, are given by

Ebcd
m ~u!512u [b

n R̃cd]mn~u!58ebcda~u!~Ram~u!2 1
2u

amR~u!!50. ~3.56!

Thusua
m satisfiesRam(u)50, which is equivalent to the vacuum Einstein equations for the spa

time metric

Rab~g!50 ~3.57!

arising as the stationary points of the action functionalS(g)5*M eabcd(g)R(g) under compact
support variations ofgab .

The Noether current associated withja is given by the three-form

Jabc~j,u!5Qabc~u,Lju!14jdLabcd~u!512u [b
m uc

nLjG̃a]mn~u!124jdu [c
m ud

nR̃ab]mn~u!
~3.58!

with the first term obtained from the variation of the frame connection~3.49! after replacement of
dua

m by the Lie derivativeLjua
m5je]eua

m1ue
m]aje and use of the fact that Lie derivatives com

mute with exterior~skew! derivatives. We now simplify the first term in Eq.~3.58! as follows.
First we express

LjGa
mn~u!5]a~jeGe

mn~u!!1je~Rea
mn~u!22G [e

ms~u!Ga]s
n~u!!. ~3.59!

Hence we obtain

12u [b
m uc

nLjG̃a]mn~u!5] [a~12ub
muc]

n jeG̃emn~u!!212jeu [b
m uc

nR̃a]emn~u! ~3.60!

through use of the identity~3.53!. Next we combine the second terms in both Eqs.~3.58! and
~3.60! to get

212jeu [b
m uc

nR̃a]emn~u!124jdu [c
m ud

nR̃ab]mn~u!5jeeabcd~g!~4de
dR~g!28Re

d~g!!. ~3.61!
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Thus, one obtains the Noether current

Jabc~j;u!53] [aQbc]~j;u!2jeuemEabc
m ~u!, ~3.62!

where

Qbc~j;u!54jdG̃dmn~u!ub
muc

n ~3.63!

is the Noether current potential two-form.
On vacuum solutionsua

m , the Noether current reduces to an exact three-form

Jabc~j;u!53] [aQbc]~j;u!. ~3.64!

Therefore, the Noether charge for vacuum solutions is given by the boundary two-surface in

QS~j!5E
S
Jabc~j;u!5E

]S
ebc4jdG̃dmn~u!emn5E

]S
8jdGdmn~u!tmsndS, ~3.65!

where dS is the volume element on]S corresponding to the volume formebc in local coordinates.
Now the symplectic current, defined by the antisymmetrized variation ofQbcd(u,du), is

given by the three-form

1
24vbcd~u,d1u,d2u!5u [c

m d1ud
nd2G̃b]mn~u!2u [c

m d2ud
nd1G̃b]mn~u!. ~3.66!

Then the presymplectic form onS is defined by

VS~u,d1u,d2u!5E
S
vbcd~u,d1u,d2u!524E

S
u [c

m d1ud
nd2G̃b]mn~u!2u [c

m d2ud
nd1G̃b]mn~u!.

~3.67!

A Hamiltonian conjugate toj on S is a functionHS(j;u)5*SHabc(j;u) for some locally con-
structed three-formHabc(j;u) such that

dHS~j;u![HS8 ~j;u,du!5VS~du,Lju! ~3.68!

holds for arbitrary variationsdua
m away from vacuum solutionsua

m .
In terms of the Noether current~3.62!, the presymplectic form onS yields

VS~u,du,Lju!5E
S
Jabc~j;u!24jdE[abc

m ~u!dud]m2E
]S

jcQabc~u,du!. ~3.69!

Consequently, for variationsdua
m with compact support on the interior ofS, the Noether current

defines a Hamiltonian conjugate toja,

H~j;u!5E
S
Jabc~j;u!58E

S
jeuemEabc

m ~u!1E
]S

Qab~j;u!, ~3.70!

which is equal to the Noether charge~3.65! whenua
m is a vacuum solution. Explicitly, from Eqs

~3.56! and ~3.63!, one has

H~j;u!58E
S
edabc~jeum

d Re
m~u!2 1

2 jdR~u!!14E
]S

ebcj
dG̃dmn~u!emn

58E
S
jenm~Re

m~u!2 1
2 ue

mR~u!!dS18E
]S

jdGdmn~u!tmsn dS, ~3.71!
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where dS is the coordinate volume element onS obtained from the volume formeabcdn
d.

To define a HamiltonianHS(j;u) for variationsdua
m without compact support, it follows tha

the termjcQabc(u,du) in Eq. ~3.69! needs to be a total variation at the boundary]S, i.e., there
must exist a locally constructed three-formB̃abc(u) such that one has

jcQabc~u,du!u]S5~jcdB̃abc~u!1] [aab]~j;u,du!!u]S , ~3.72!

whereab(j;u,du) is a locally constructed one-form. This equation is equivalent to

eabjcQabc~u,du!u]S5eabjcdB̃abc~u,du!u]S1sc
d]dãc~j;u,du!u]S , ~3.73!

whereãc(j;u,du)5ecbab(j;u,du) and the symplectic potential term is given by

eabjcQabc~u,du!532jct [asn]uc
aum

a dGa
mn~u!. ~3.74!

Hence we now have the following result.
Proposition 3.1: A Hamiltonian conjugate toja on S exists for variationsdua

m with support on
]S if and only if

eabjcdB̃abc~u!u]S532~jct [asn]uc
aum

a dGa
mn~u!!u]S2sc

d]dãc~j;u,du!u]S ~3.75!

for some locally constructed three-form B˜
abc(u) in T* (S) and locally constructed vecto

ãc(j;u,du) in T(]S). The Hamiltonian is given by the Noether charge plus an additional bou
ary term

HS~j;u!5E
S
Jabc~j;u!2E

]S
jcB̃abc~u!

58E
S
jeuemEabc

m ~u!1E
]S

Qab~j;u!2jcB̃abc~u!

58E
S
jenm~Re

m~u!2 1
2 ue

mR~u!!dS1E
]S

jd~8Gdmn~u!tmsn2 1
2 B̃d~u!!dS ~3.76!

with B̃d(u)5ebcB̃bcd(u).
We now show that equation~3.75! for the existence of a Hamiltonian~3.76! is satisfied for the

intrinsic Dirichlet boundary condition onua
m ,

dhamu]S t
50, t>0, ~3.77!

and then we derive the corresponding Hamiltonian boundary term. Henceforth we takeua
m to

satisfy the gauge conditions~3.15!–~3.17! naturally associated with the boundary hypersurfaceB.
Consider the left-hand side of Eq.~3.75!. The boundary condition~3.77! yields dsamu]S50

and hence, from Eq.~3.19!, deab5eabscmdscmu]S50. Thus, we have

eabjcdB̃abc~u!u]S5d~eabjcB̃abc~u!!u]S . ~3.78!

Next consider the right-hand side of Eq.~3.75!. We integrate by parts with respect to the variati
in the first term to get

jct [asn]uc
aum

a dGa
mn~u!5d~jct [asn]uc

aum
a Ga

mn~u!!2jct [asn]Ga
mn~u!~um

a duc
a1uc

adum
a !.

~3.79!

Then, using orthogonality relations~3.5! and ~3.24!, we find that the second term in Eq.~3.79!
vanishes as follows. First,
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jct [asn]duc
a5 1

2j
c~sndtc2tndsc!52snjctctbdtb50 ~3.80!

sincedtbu]S50 by the boundary condition~3.77!. In addition,

jct [asn]uc
adum

a 5 1
2j

ctcsn~dhm
a1smdsa!52 1

2Nsnsmdsa. ~3.81!

Hence, the second term in Eq.~3.79! reduces to

1
2NsnsmGa

mn~u!dsa50 ~3.82!

sinceGa
(mn)(u)50.

Consequently, returning to Eq.~3.75!, we obtain

d~jcB̃c~u!232t [asn]j
cuc

aum
a Ga

mn~u!!u]S52sc
d]dãc~j;u,du!u]S , ~3.83!

which obviously is satisfied by

jcB̃c~u!532t [asn]j
cuc

aum
d Gd

mn~u! ~3.84!

andãc(j;u,du)50. This verifies Proposition 3.1 using the intrinsic Dirichlet boundary condit
~3.77!.

Finally, from expressions~3.84! for jcB̃c(u) and ~3.63! for Qbc(j,u), we obtain a Hamil-
tonian ~3.76! with the boundary term given by

HB~j,u!5E
]S

Qab~j,u!2jcB̃abc~u,du!58E
]S

eabj
c~ tmsnGc

mn~u!22t [asn]uc
aum

d Gd
mn~u!!.

~3.85!

Hence, the Hamiltonian boundary term takes the form

HB~j,u!58E
]S

jcPc~u!dS, ~3.86!

where Pc(u)5tmsnGc
mn(u)2tcsnum

a Ga
mn(u)1sctnum

a Ga
mn(u). This expression is simplified by

the identities~3.3! and ~3.14!, which yield

Pc~u!5tasnsc
d g¹dua

n2tcsnsbd g¹bud
n1sctnsbd g¹bud

n . ~3.87!

Thus, we have the following main result.
Theorem 3.2:For the intrinsic Dirichlet boundary condition (3.77), a Hamiltonian conjuga

to ja on S is given by

HS~j;u!58E
S
jenm~Re

m~u!2 1
2 ue

mR~u!!dS18E
]S

jcPc~u!dS. ~3.88!

On vacuum solutionsua
m , the Hamiltonian reduces to the surface integral (3.86), (3.87).

Note, this Hamiltonian is unique up to adding an arbitrary covector function of the Diric
boundary datahm

a to Pc(u).

D. Dirichlet Hamiltonian

On vacuum solutions of the Einstein equations, the Hamiltonian~3.88! with the Dirichlet
boundary condition~3.77! holding on the timelike hypersurfaceB bounding a local space–tim
regionV takes a simple form if the frameua

m is adapted to the boundary two-surfaces]S t andja.
Let
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qa
05ta , qa

15sa , q [a
2 qb]

3 5eab , qa
25ea

bqb
3, ~3.89!

which defines a preferred orthonormal frameqa
m . It follows that

tn5taqa
n52d0

n , sn5saqa
n5d1

n . ~3.90!

This choice of frame is unique up to rotations ofqa
2, qa

3.
Theorem 3.3:For the Dirichlet boundary condition (3.77), the Hamiltonian (3.88) conjug

to ja on S, evaluated in the orthonormal frame (3.89) for vacuum solutionsqa
m , is given by the

surface integral

HD~j;q!58E
]S

jcPc
D~q!dS, ~3.91!

where

Pc
D~q!5tasc

d g¹dsa2tcs
bd g¹bsd1scs

bd g¹btd . ~3.92!

We refer toHD(j;q) as theDirichlet Hamiltonian for the gravitational field in the loca
space–time regionV, andPc

D(q) as theDirichlet symplectic vectorassociated with the boundar
two-surfaces]S t . Note that sinceja lies in B, only the first two terms inPc

D(q) contribute to
HD(j;q). The significance of the full expression forPc

D(q) and its resulting geometrical prope
ties are discussed in Ref. 8.

The general form of the Hamiltonian boundary term~3.86! and~3.87! differs from the special
form ~3.91! and ~3.92! when evaluated in an orthonormal frame not adapted to]S t and ja. In
particular, we obtain the relation

Pc~u!5Pc
D~q!2sc

dtn]dsn1tcs
bn]bsn2scs

bn]btn ~3.93!

and so the general form of the symplectic vectorPc(u) differs from Pc
D(q) by various gradient

terms. These terms can be understood by considering a change of orthonormal frame

ua
m→Um

nua
n , ~3.94!

whereUm
n is a SO~3,1! transformation acting in the frame bundle of the space–time~M,g! at ]S t .

Such transformations are defined byU21m
n5Ua

bhanhmb and det(U)51, whereU21m
n is the

inverse ofUm
n, given byU21m

nUn
a5da

m5Um
nU21n

a .
The transformations~3.94! are a gauge symmetry of the tetrad formulation for General R

tivity. Under the change of orthonormal frame, one has

Gam
n~u!5um

b g¹aub
n→Gam

n~Uu!5U21a
mua

b~Un
bub

b!

5U21a
mUn

bGaa
b~u!1U21a

m]aUn
a , ~3.95!

and so, through substitution of the transformation~3.95! into the curvature~3.51!,

Rabm
n~u!→Rabm

n~Uu!5U21a
mUn

bRaba
b~u! ~3.96!

after cancellations of terms. Hence the Lagrangian~3.52! for the field variableua
m is gauge

invariant. As a consequence, it is straightforward to see that the symplectic structure given
symplectic potential~3.55! and current~3.66! must be gauge invariant. In particular, note that o
hasdGam

n(Uu)5U21a
mUn

bdGaa
b(u) where the gradient term from Eq.~3.95! drops out of the

variation since it has no dependence onua
m . This explicitly establishes the gauge invariance

Qabc(u,du) and hence ofvabc(u,d1u,d2u).
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However, the Noether charge~3.63! fails to be gauge invariant due to its explicit dependen
on the frame connection. Consequently, it follows that the gradient terms in the symplectic
~3.93! originate from a gauge transformation on the frame connection under~3.94! as given by a
transformation relating the adapted orthonormal frame to a general orthonormal framua

m

5Um
0ta1Um

1sa
11Um

2sa
21Um

4sa .
The gauge invariance of the symplectic structure arising from the tetrad formulation o

Lagrangian means that the symplectic potential~3.55! and current~3.66! are equivalent to mani-
festly gauge-invariant expressions derived using the metric formulation of General Relativity
gab as the field variable. It can be shown that one has

Qabc~g,dg!5Qabc~u,du!16] [ccab]~g,dg!, ~3.97!

wherecab(g,dg) is a locally constructed two-form, and so the symplectic potentials are eq
lent to within an exact three-form. This contributes a boundary term to the presymplectic
obtained from the metric LagrangianLabcd(g)5eabcd(g)R(g),

VS~g,dg,Ljg!5VS~u,du,Lju!1E
]S

eab~dcab~g,Ljg!2Ljcab~g,dg!!dS. ~3.98!

Correspondingly, the Noether charge two-formQab(j,g) arising in the metric formulation differs
from Qab(j,u) in the tetrad formulation by the term 2cab(g,Ljg). Explicitly, using the metric
Lagrangian, one finds that11

1
4e

abQab~j,g!524t [csd]
g¹cjd54jdtc g¹csd22~scLjtc1tcLjsc!. ~3.99!

Here the first term in Eq.~3.99! is simply the Noether charge~3.63! evaluated in the adapte
orthonormal frame~3.89!,

eabQab~j,q!54jcGc
mn~q!eabeabmn~g!qm

mqn
n516jctmsnqbm g¹cqb

n516jctd g¹csd
~3.100!

sincePB(g¹[csd] )50 by hypersurface orthogonality ofsd . The second term in Eq.~3.99! simpli-
fies through the hypersurface orthogonality relations~3.6! and ~3.7!, leading to

tcLjsc5tc~2jb g¹[bsc]1]c~jbsb!!50 ~3.101!

and

scLjtc52ja
N

a
]ab, ~3.102!

wherea, b, N are scalar functions defined by

sa5a]as, ta52N~]at1b]as! ~3.103!

with

Ljt5je]et51, Ljs5je]es50. ~3.104!

Hence we obtain the relation

eabQab~j,g!5eabQab~j,q!18ja
N

a
]ab. ~3.105!

A similar relation can be shown to hold between the respective symplectic vectors aris
the tetrad and metric Hamiltonian formulations of General Relativity. In particular, by d
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calculation withgab as the field variable, one finds that the full Dirichlet boundary condit
~3.34! yields a Hamiltonian conjugate toja on S whose boundary term is given by

HD~j;g!58E
]S

jcPc
D~g!dS, ~3.106!

where

Pc
D~g!5Pc

D~q!1
N

a
]cb. ~3.107!

This differs from the symplectic vector in the tetrad formulation by the same gradient
occurring in the Noether charges~3.105!. The extrinsic part~3.38! of the Dirichlet boundary
condition is necessary in obtaining this Hamiltonian, because of the boundary term in the pr
plectic form ~3.98!. Interestingly, in the case whenja is orthogonal toS t , thenb50, and one
finds that the weaker, intrinsic Dirichlet boundary condition~3.37! is sufficient for existence of the
metric Hamiltonian~3.106! and~3.107!. Moreover, in this case the presymplectic form~3.98! and
symplectic vector~3.107! are exactly the same as those obtained in the tetrad formulation u
the adapted orthonormal frame~3.89!.

An expression for the Dirichlet Hamiltonian boundary term~3.106! in terms of the standard
ADM canonical variables associated withS, and its relation to quasilocal quantities of Brown a
York,16,17 will be derived in Sec. III F.

E. Determination of allowed boundary conditions

A necessary and sufficient condition10 on variationsdua
m for the existence of a Hamiltonian

~3.76! conjugate toja on S is given by the antisymmetrized variation of the equation~3.72! for the
boundary term. This yields

eabjcvabc~u,d1u,d2u!u]S5sa
b]bb̃a~j,g;d1u,d2u!u]S ~3.108!

with

b̃a~j,u;d1u,d2u!5eabd1ab~j,u;d2u!2eabd2ab~j,u;d1u!. ~3.109!

To begin, we simplify the expression~3.66! for vabc(u,d1u,d2u). First, using Eq.~3.74! for
Uabc(u,du) and taking into account the orthogonalityjasa50, we have

1
16e

abjcUabc~u,du!5jctchm
ad~snhbmg¹aub

n! ~3.110!

through the frame decomposition~3.41! and the relationGa
mn(u)5ucm g¹auc

n52ucn g¹auc
m . Now

we substitute the identityg¹aub
n5ha

c g¹cub
n2sasc g¹cub

n and then use the relationshamdsa

50, hamsa50 to simplify the term

hm
ad~snsahbmsc g¹cub

n!50. ~3.111!

Thus, Eq.~3.110! becomes

1
16e

abjcUabc~u,du!5jctch
amd~snhm

bha
c g¹cub

n!. ~3.112!

Finally, we substitutejctc5 1
2e

abjceabc(h).
Hence, we obtain

PBUabc~u,du!58eabc~h!hm
ddKd

m, ~3.113!

where we define
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Ka
m5snhbmha

c g¹cub
n5snha

cGc
mn~u!. ~3.114!

Note thatsaKa
m50 andsmKa

m50. From Eq.~3.113!, by taking an antisymmetric variation an
then using Eq.~3.46! for the variation ofeabc(h), we have

PBvabc~u,d1u,d2u!58eabc~h!~~d1hm
d2hm

dhe
nd1hn

e!d2Kd
m2~d2hm

d2hm
dhe

nd2hn
e!d1Kd

m!.

~3.115!

Substitution of this expression into Eq.~3.108! yields the following result.
Theorem 3.4:A Hamiltonian conjugate toja on S exists for variationsdua

m with support on
]S if and only if

~~d1hm
d2hm

dhe
nd1hn

e!d2Kd
m2~d2hm

d2hm
dhe

nd2hn
e!d1Kd

m!u]S

5
1

16N
sa

b]bb̃a~j,u;d1u,d2u!u]S ~3.116!

for someb̃a(j,u;d1u,d2u) of the form (3.109). The Hamiltonian is given by

HS~j;u!58E
S
jenm~Re

m~u!2 1
2 ue

mR~u!!dS1HB~j;u! ~3.117!

with boundary term

HB~j,u!5E
]S

Qab~j,u!2jcB̃abc~u!, ~3.118!

where B̃abc(u) is determined from

jc~PBdB̃abc~u!28eabc~h!hm
ddKd

m!5PB] [aab] (j,u;du). ~3.119!

Thus, equation~3.116! determines the allowed boundary conditions on variationsdua
m for the

existence of a Hamiltonian formulation~3.117! for the vacuum Einstein equations. To proceed,
now parallel the analysis of the similar boundary condition determining equation for the Ma
equations in Sec. II C.

Two obvious solutions of the determining equation~3.116! with b̃a(j,u;d1u,d2u)50 are
given bydhm

au]S t
50, t>0, which is the Dirichlet boundary condition~3.77! already considered

and by

dKa
mu]S t

50, t>0, ~3.120!

which we call theNeumann boundary condition. For the boundary condition~3.120!, it follows
from Eqs.~3.76! and ~3.119! that the corresponding Hamiltonian boundary term is given by

HN~j;u!58E
]S

jcPc
N~u!dS, ~3.121!

where

Pc
N~u!5tmsnGc

mn~u!5tasn
g¹cua

n ~3.122!

by a derivation similar to Eq.~3.87!. In the orthonormal frame~3.89! adapted to the boundar
two-surfaces]S t , we have
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Pc
N~q!5tag¹csa . ~3.123!

We refer to this as theNeumann symplectic vectorassociated with the boundary two-surfaces]S t .
Moreover, in this frame the Neumann boundary condition~3.120! becomes

dKa
mu]S t

5d~hbmKab!u]S t
50, t>0 ~3.124!

in terms of

Kab5ha
chb

d¹csd , ~3.125!

which is the extrinsic curvature of the timelike boundary hypersurfaceB in ~M,g!. Thus, geometri-
cally, the Neumann boundary condition corresponds to fixing the frame components of the b
ary hypersurface extrinsic curvature,

d~hbmha
c g¹csb!50 on B. ~3.126!

These components measure the rotation and boost of the hypersurface normalsa with respect to
the frameha

m under displacement onB.
We now investigate more general boundary conditions. Note that, on the left-hand side

determining equation~3.116!, eabjcvabc(u,d1u,d2u) involves only the field variationsPBdhm
a

and PBdKa
m5PBd(snha

cGa
mn(u)). We call hm

a and Ka
m the symplectic boundary dataat ]S t

and consider boundary conditions of the form

dFa
m~hc

n ,Kc
n!u]S t

50, t>0, ~3.127!

whereF a
m(hc

n ,Kc
n) is locally constructed as an algebraic expression in terms of the sympl

boundary data and fixed quantities~including the space–time coordinates!. We call ~3.127! a
mixed Dirichlet–Neumannboundary condition ifFa

m(hc
n ,Kc

n) is a constant-coefficient linea
combination of the partsP]Sha

m , Ptha
m , P]SKa

m , PtKa
m of the Dirichlet and Neumann bound

ary data in~3.77! and ~3.120!. Here the projections with respect toP]S and Pt remove all
components proportional tosa .

An analysis of the boundary condition determining equation~3.116!, given later, leads to the
following main results.

Theorem 3.5: The only allowed mixed Dirichlet–Neumann boundary conditions for the e
istence of a Hamiltonian (3.76) conjugate toja on S are given by

PB~a0dKa
m1b0dha

m!u]S t
50, t>0, ~3.128!

or equivalently

Fa
m~hc

n ,Kc
n!5a0Ka

m1b0ha
m ~3.129!

for constants a0 , b0 (and ba50 in Eq. (3.116)). In the cases a050 or b050, respectively
Dirichlet or Neumann boundary conditions, the corresponding Hamiltonian boundary term
given by Eqs. (3.91) and (3.87), and Eqs. (3.121) and (3.122). In the case a0Þ0, b0Þ0, the
corresponding Hamiltonian boundary term is given by

HDN~j;u!58E
]S

jcPc~u!dS ~3.130!

where, now,
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Pc~u!5Pc
N~u!16

b0

a0
tc . ~3.131!

(Note, the boundary terms here are unique up to adding an arbitrary covector function o
boundary data (3.129) to Pc(u).)

A similar covariant derivation of the pure Dirichlet and Neumann boundary terms is pres
in Refs. 18 and 19 from a different perspective. In Theorem 3.5, note that Eq.~3.128! represents
a one-parametera0 /b0 family of boundary conditions. In particular, in contrast to the tw
parameter family of analogous mixed Dirichlet–Neumann boundary conditions~2.52! allowed for
the Maxwell equations, here decompositions of the symplectic boundary data with respectP]S

andPj do not yield boundary conditions satisfying the determining equation~3.116!.
The form of the mixed Dirichlet–Neumann boundary condition~3.128! suggests we also

consider boundary conditions specified by a trace part and trace-free part with respect
boundary hypersurface frameha

m :

dF̂~hc
n,Kc

n!u]S t
50, dF̂a

m~hc
n,Kc

n!u]S t
50, t>0 ~3.132!

with hm
aF̂a

m(hc
n,Kc

n)50. Taking the trace of the symplectic boundary data variations yields

hm
adKa

m5dK1hm
bhn

aKa
mdhb

n ~3.133!

and

hm
adha

m5d lnuhu , ~3.134!

whereK5hm
aKa

m is the trace ofKa
m andh5det(ha

m) is the determinant of the frame componen
ha

m in local coordinates.
Theorem 3.6:Allowed boundary conditions (3.132) for the existence of a Hamiltonian (3

conjugate toja on S are given by

PBd~Ka
m2 1

3ha
mK !u]S t

50, t>0, ~3.135!

~a0dK1b0d lnuhu!u]S t
50, t>0, ~3.136!

or equivalently

F̂~h,K !5a0K1b0 lnuhu, F̂a
m~hc

n,Kc
n!5PB~Ka

m2 1
3ha

mK ! ~3.137!

for constants a0 , b0 (and ba50 in Eq. (3.116)). The corresponding Hamiltonian boundary te
is given by

HB~j,u!58E
]S

jcS 1

3
Pc

D~u!1
2

3
Pc

N~u!14
b0

a0
tcDdS ~3.138!

(which is unique up to adding a term depending on an arbitrary covector function of the boun
data (3.137)).

Finally, we remark that the mixed boundary conditions in Theorems 3.5 and 3.6 adm
following two generalizations.

First,

F̂a
m~hc

n,Kc
n!5a~x,K, lnuhu!PB~Ka

m2 1
3ha

mK !, ~3.139!

F̂~h,K !5b~x,K, lnuhu!, ]KbÞ0 ~3.140!
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for arbitrary functionsa(x,K, ln uhu), b(x,K, ln uhu).
Second,

Fa
m~hc

n,Kc
n!5a~x,K, lnuhu!PB~Ka

m1b~x,K, lnuhu!ha
m!, bÞ2 1

3K ~3.141!

for an arbitrary functionb(x,K, ln uhu), with the functiona(x,K, ln uhu) now satisfying the linear
partial differential equation

~]Kb̂!] lnuhua1~ b̂1] lnuhub̂!]Ka5 2
9~2113]Kb̂!a, b̂5b1 1

3K ~3.142!

obtained from the determining equation~3.116!. The general form ofa is given by solving the
characteristic ordinary differential equations

d lnuhu

]Kb̂
5

dK

b̂1] lnuhub̂
5

da

2
9 ~2113]Kb̂!a

~3.143!

in terms of the variables lnuhu, K, a. For instance, ifb is taken to be linear homogeneous inK, then
one hasb5lK, a5 f (x,lK lnuhu)uhu(2/3)l/(3l21), wherel5const andf is an arbitrary function.

Proofs of Theorems:Since any boundary condition locally constructed from the symple
boundary data is linear homogeneous inPBdha

m and PBdKa
m , we begin by finding all such

solutions of the determining equation~3.116!.
First we show thatb̃a50. The right-hand side of Eq.~3.116! necessarily involves terms with

at least one derivative ondua
m , while only first-order derivatives ofdua

m appear on the left-hand
side of Eq.~3.116! through

PBdKa
m5snha

cdGc
mn~u! ~3.144!

due to Eqs.~3.114! and ~3.47!. Thus, for a balance in numbers of derivatives, we must have

aa5aam
b ~u!dub

m ~3.145!

for someaam
b (u) locally constructed out ofua

m and fixed quantities. This yields, for the antisym
metrized variation ofaa ,

ba5aamn
bc ~u!d1ub

md2uc
n ~3.146!

whereaamn
bc (u)52aanm

cb (u) is the curl ofaam
b (u) with respect touc

n . Then, using Eqs.~3.109! and
~3.50!, we collect all the terms on the left-hand side of Eq.~3.116! linearly independent ofdha

m,
dKa

m. Through Eqs.~3.144! and ~3.49!, the coefficients of these terms yield

scã mn
~be!c~u!50, sbã mn

@be#c~u!50, scã mn
@be#c~u!50, ~3.147!

where

ã mn
ebc~u!5eaeaamn

bc ~u!52ã nm
ecb~u!. ~3.148!

These algebraic equations are straightforward to solve, leading to

a mn
abc~u!5t [ba1mn

c]a~u!1a2mn
abc~u!1tbtca3mn

a ~u!1t (ba4mn
c)a~u! ~3.149!

for some

a1mn
ca 5sb

csd
aa1~mn!

bd , a2mn
abc52se

asd
bs f

ca2nm
ed f ,

~3.150!
a3mn

a 5se
aa3@mn#

e , a4mn
ca 5sb

csd
aa4@mn#

bd .
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Then, returning to Eq.~3.145!, we note thataam
b (u)5ua

aub
bama

b for someama
b that is locally

constructed only from fixed quantities since it is a scalar expression. Thus we immediately

a mn
abc~u!5ub

bug
cuaa~anm

b da
g2amn

g da
b2aam

g dn
b1aam

b dn
g!. ~3.151!

By equating expressions~3.149! and ~3.151!, we find that after some algebraic analysis

anm
g 5dn

ga0m ~3.152!

for somea0m. Now, substitution of expression~3.152! back into Eqs.~3.149! and ~3.151! easily
leads to the result

a1mn
ca 5a2mn

abc5a3mn
a 5a4mn

ca 50. ~3.153!

Hence, from Eq.~3.149!, we haveaamn
bc (u)50 and soba50. This establishes thatb̃a50.

Consequently, the determining equation~3.116! reduces to

~d1hm
d2hm

dhe
nd1hn

e!d2Kd
m2~d2hm

d2hm
dhe

nd2hn
e!d1Kd

m50, ~3.154!

which is equivalent to

h[n
dhm]

e~d1he
nd2Kd

m2d2he
nd1Kd

m!50. ~3.155!

Then the algebraic solution of Eq.~3.155! in terms ofPBdhe
n andPBdKd

m has the form

P1an
mbPBdhb

n1P2an
mbPBdKb

n50 ~3.156!

for some coefficient tensorsPan
mb such that

Pan
mbh[a

ahm]
c5Paa

mch[n
ahm]

b. ~3.157!

It is straightforward to show that Eq.~3.157! holds iff

Pan
mb5P̂an

mb2ha
mP̂n

b1hn
bP̂a

m , ~3.158!

whereP̂an
mbha

ahm
c5P̂aa

mchn
ahm

b is the symmetric part ofPan
mb in the index pairs (a,m) and (b,n),

and whereP̂n
b5hm

aP̂an
mb , P̂a

m5hb
nP̂an

mb is the trace part ofPan
mb in the frameha

m. Thus, we have
established the following result.

Lemma 3.7: All solutions of the determining equation (3.116) for allowed boundary condi
that are linear homogeneous inPBdha

m andPBdKa
m have the form (3.156) where the coefficie

tensors are given by Eq. (3.158).
Now, for mixed Dirichlet–Neumann boundary conditions, we take

P1an

mb5a1~P]S!a
bsn

m1a0~Pt!a
btntm, ~3.159!

P2an
mb5b1~P]S!a

bsn
m1b0~Pt!a

btntm, ~3.160!

wherea0 , a1 , b0 , b1 are constants. Then the requirement~3.158! leads directly to

a05a1 , b05b1 . ~3.161!

Substitution of Eqs.~3.159!–~3.161! into Eq.~3.156! yields the mixed Dirichlet–Neumann bound
ary conditions~3.128!.

Finally, the other boundary conditions~3.135! and ~3.136! arise from
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P1an
mb5

1

2

b0

a0
ha

mhn
b2

1

3
Khd

ehn
m, ~3.162!

P2an
mb5ha

bhn
m, ~3.163!

which are easily verified to satisfy the requirement~3.158!.
This completes the proofs of Theorems 3.5 and 3.6. h

As a concluding remark, we note that Lemma 3.7 yields the following necessary and suf
determining equations for finding all boundary conditions~3.127!.

Lemma 3.8: All allowed boundary conditions of the formFa
m(hc

n,Kc
n)u]S50 for the existence

of a Hamiltonian conjugate toja on S are given by the solutions of

]Fa
m

]hb
n h[a

ahm]
c5

]Fa
m

]hc
a h[n

ahm]
b, ~3.164!

]Fa
m

]Kb
n h[a

ahm]
c5

]Fa
m

]Kc
a h[n

ahm]
b. ~3.165!

We will leave a general analysis of the boundary condition determining equations~3.164! and
~3.165! for elsewhere.

F. Relation between covariant and canonical Hamiltonians and boundary terms

To conclude this section, we first give a brief discussion of the Hamiltonian field equation
General Relativity using the covariant symplectic structure and Noether charge Hamilton
Sec. III C. Then we discuss the boundary terms in the Dirichlet and Neumann Hamilto
expressed in standard ADM canonical variables.

For a Hamiltonian~3.76! conjugate toja on S, the associated field equations are obtain
through the presymplectic form~3.69! by the variational principle

VS~u,du,Lju!2HS8 ~j;u,du!5E
S
8jdnd~Rm

e~u!2 1
2 um

e !due
mdS50 ~3.166!

for arbitrary variationsdue
muS . These field equations split into evolution equations and constr

equations with respect toS corresponding to a decomposition ofua
m into dynamical and nondy-

namical components determined by4 the degeneracy of

VS~u,d1u,d2u!5E
S
vabc~u,d1u,d2u!5E

S

1
6 eabcdndvabc~u,d1u,d2u!dS. ~3.167!

For this purpose, it is convenient to partially fix the SO~3,1! local gauge freedom inue
m analo-

gously to conditions~3.15!–~3.17! by choosing the frame componentsnm5naua
m to be fixed

constants onM. Then, through a simplification of the symplectic current here similar to
~3.115!, we obtain

1
48e

abcdndvabc~u,d1u,d2u!52~d1qm
d2qm

dqe
nd1qn

e!d2pd
m1~d2qm

d2qm
dqe

nd2qn
e!d1pd

m,

~3.168!

where we define

qa
m5ua

m1nanm, pa
m5nnqbmqa

c g¹cub
n5nnqa

cGc
mn~u! ~3.169!

with qab5gab1nanb , which are counterparts ofha
m, Ka

m associated with the spacelike hype
surfaceS. ~Geometrically,qa

m is a frame for the hypersurface metricqab5qa
mqb

nhmn , while pa
m
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represents the frame components of the hypersurface extrinsic curvatureKab5qa
mpb

nhmn

5qa
c g¹cnb .) Hence, the degeneracy directions of the presymplectic form~3.167! are given by

variationsdua
m satisfying

d~qa
m/uqu!5dpa

m50, ~3.170!

where uqu5det(qa
m) and d ln uqu5qn

bdqb
n. This immediately leads to the following result, anal

gous to the discussion in Sec. II A for the Maxwell equations.
Proposition 3.9: For a Hamiltonian HS(j;u) conjugate toja on S, let uker v denote the field

components ofua
m andGa

mn(u) invariant under the symplectic degeneracy directions (3.170),
let uv denote the remaining field components modulouker v . Then there is corresponding decom
position of the Hamiltonian field equations given by HS8 (j;u,duker v)50 and HS8 (j;u,duv)
5VS(u,duv ,Lju), which, respectively, yield

naRa
m~u!2 1

2n
mR~u!50, ~3.171!

qa
bRb

m~u!50. ~3.172!

These field equations arise equivalently by variation ofPnua
m52nanm and PSua

m5qa
m in the

Lagrangian (3.52).
Equations~3.171! and ~3.172! are the frame components of the standard 311 split of the

vacuum Einstein equations12 into constraint equations and time-evolution equations for the hy
surface metricqab . Thus, the Hamiltonian field equations given by the variational princ
~3.166! constitute a covariant formulation of the standard ADM Hamiltonian equations for Ge
Relativity.

With respect to the spacelike hypersurfaceS, one has a decomposition ofja into normal and
tangential parts

ja5Nna1Na, ~3.173!

whereNa5PS(ja) andN52jana define the lapse and shift of the time flow vector fieldja. By
use of the Gauss–Codacci equations, we straightforwardly see that the volume part of a
tonian ~3.76! conjugate toja on S is given by the ‘‘pure constraint form’’11

H~j;u!54E
S
N~R1K22KabKab!12Nc~DbKbc2DcK!dS, ~3.174!

whereRab and Kab are the Ricci curvature and extrinsic curvature of the metricPSgab
5qab ,

R5Ra
a andK5Ka

a are the corresponding scalar curvatures, andDa is the derivative operato
associated withqab. ~An analogous result holds more generally for any diffeomorphism covar
Lagrangian field theory.4! This demonstrates, explicitly, that our covariant analysis of allow
boundary conditions and corresponding boundary terms for General Relativity in Secs. III
III E is equivalent to a canonical analysis of the ADM Hamiltonian.

Now, consider Dirichlet or Neumann boundary conditions imposed at the two-surfaces]S t ,
for t>0. On solutions of the Hamiltonian field equations, the total HamiltonianHS(j;u) reduces,
respectively, to the Dirichlet and Neumann boundary terms~3.91! and~3.121!. Let ua denote the
outward unit normal to]S t in S t . Let q̃a

m be an orthonormal frame adapted toS t given by

q̃a
05na ,q̃a

15ua ,q̃ [a
2 q̃b]

3 5eab ,q̃a
25ea

bq̃b
3, ~3.175!

which is related to the frameqa
m adapted toB by a boost in the normal spaceT'(]S t) to the

boundary two-surface]S t ,

ta5na coshx1ua sinhx, sa5ua coshx1na sinhx. ~3.176!
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Through the corresponding boost relation~3.95! applied to the symplectic vectors~3.92! and
~3.123!, the Hamiltonian boundary terms take the respective form

jcPc
D~q̃ !5jc~nasc

d g¹dua2ncs
bd g¹bud1ucs

bd g¹bnd2sc
d g¹dx!, ~3.177!

jcPc
N~q̃ !5jc~na g¹cua2g¹cx!. ~3.178!

These expressions can be simplified in terms of the hypersurface metricqab , extrinsic curvature
Kab , and accelerationab5neg¹enb . We find that

jcPc
D~q̃ !5Nk2N aubKab2N i

a]ax, ~3.179!

jcPc
N~q̃ !52Nubab2N aubKab2N] tx2N'ua]ax2N i

a]ax, ~3.180!

whereNi
a5P]S(Na), N'5uaNa are the tangential and normal parts of the shift with respec

]S t , andk5sab g¹aub is the mean extrinsic curvature of]S t in S t .
We note that this form of the Dirichlet and Neumann boundary terms~3.179! and ~3.180!

agrees with the canonical analysis of boundary terms for the ADM Hamiltonian carried o
Refs. 16 and 17. Moreover, in the case whenS t is orthogonal toB, i.e.,x50, the surface integra
*]S jcPc

D(q̃)dS for suitable choice ofjc reproduces Brown and York’s expressions for quasilo
energy, normal momentum, and tangential momentum quantities~respectively,N51, Na50; N
50, Ni

a50, N'51; N5N'50, Ni
aÞ0). Further discussion of quasilocal quantities associa

with the Dirichlet and Neumann symplectic vectors~3.92! and~3.123! will be left for elsewhere.

IV. CONCLUDING REMARKS

In this paper we have given a mathematical investigation of boundary conditions o
gravitational field required for the existence of a well-defined covariant Hamiltonian variat
principle for General Relativity when spatial boundaries are considered, with a fixed time
vector field. In particular, a main result is that we obtain a covariant derivation of Diric
Neumann, and mixed type boundary conditions for the gravitational field in any fixed spa
bounded region of space–time. We show that the resulting Dirichlet and Neumann Hamilto
lead to covariant Hamiltonian field equations which are equivalent to the standard 311 split of the
Einstein equations into constraint equations and time-evolution equations. In addition, we ob
uniqueness result for the allowed boundary conditions based on the covariant symplectic st
associated with the Einstein equations.

However, we do not address the purely analytical issue of whether the boundary-initial
problem for the Einstein equations is well-posed with these boundary conditions~i.e., do there
exist solutions of the Einstein equations satisfying the boundary conditions, initial conditions
constraints!. For work in that direction, see e.g. Ref. 20.

A further interesting generalization of our results would be to treat a space–time region w
spatial boundary is dynamical, e.g., a black-hole horizon or Cauchy boundary. We not
boundary conditions for this situation may be investigated by allowing the time-flow vector
to depend on the space–time metric instead of being a fixed quantity. This analysis will be p
elsewhere.
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APPENDIX: NOETHER CHARGE METHOD

First of all, consider inn space–time dimensions a general Lagrangian field theory for a s
fields denoted collectively byf. It will be assumed that these fields are defined as sections
vector bundleE over the space–time manifoldM, using local coordinates onM andE. The theory
                                                                                                                



e
if

d to

ntly,

by

5561J. Math. Phys., Vol. 43, No. 11, November 2002 Covariant Hamiltonian boundary conditions

                    
will be assumed to be described by a Lagrangiann-form L(f) that is locally constructed out of th
fieldsf and their partial derivatives]kf to some finite orderk ~and fixed background structure,
any, onM andE!.

The LagrangianL(f) provides a variational principle

S~f!5E
M

L~f!, ~A1!

which yields the field equationsE(f)50 obtained as the stationary points ofS(f),

dS~f!5E
M

dL~f!5E
M

E~f!df50, ~A2!

under variationsdf of f with compact support onM. For arbitrary variationsdf, which are not
restricted to have compact support, one then has a variational identity

L8~f,df![dL~f!5E~f!df1dQ~f,df!, ~A3!

whereQ(f,df) is an (n21)-form, called thesymplectic potential, derived through formal inte-
gration by parts. This yields a well-defined locally constructed formula forE~f! andQ~f,df! in
terms off, df, and their partial derivatives to a finite order. The symplectic potential is use
define thepresymplectic formon a fixed hypersurfaceS,

VS~f,d1f,d2f![E
S
v~f,d1f,d2f! ~A4!

in terms of thesymplectic current(n21)-form v given by

v~f,d1f,d2f![d1Q~f,d2f!2d2Q~f,d1f!. ~A5!

The symplectic current satisfies dv(f,d1f,d2f)5E8(f,d2f)d1f2E8(f,d1f)d2f with
E8(f,df)[dE(f). Hence,v(f,d1f,d2f) is closed for variations on solutions,

dv~F,d1F,d2F!50, ~A6!

where F denotesf restricted to satisfyE(f)50, and dF denotesdf restricted to satisfy
E8(F,df)50, i.e.,dF is, formally, a tangent vector field on the space of solutions. Conseque
VS(f,d1f,d2f) is unchanged by deformations of the spacelike surfaceS in any compact region
of M.

In the previous constructions, a change of coordinates onM or E leavesE~f! unchanged,21

while Q~f,df! changes in general by an exact locally constructed (n21)-form dn~f,df!. How-
ever, one can show that4 if the LagrangianL(f) is at most second order in partial derivatives]kf
(k<2) of f, thenQ~f,df! is independent of the choice of coordinates onM andE and thus the
presymplectic formVS(f,d1f,d2f) is then coordinate invariant. Moreover, note thatL(f) can
be freely changed by addition of a locally constructed exact form dm~f!, without affecting the
field equationsE~f!. This changesQ~f,df! by addition of a locally constructed (n21)-form
ddm~f!, but leavesVS(f,d1f,d2f) unchanged. Therefore, up to its dependence onS, the sym-
plectic structureVS(f,d1f,d2f) is uniquely determined byE~f! in this situation.

Now consider a complete, nowhere vanishing vector fieldj onM. It will be assumed that there
exists a well-defined Lie derivative acting onf associated with the diffeomorphism generated
j on M. Let S be a connected region contained in a fixed hypersurface inM with a closed
boundary]S. ~Note, if S is simply connected,]S is a closedn22-surface inM boundingS. If S
is multiply connected, then]S is a disjoint union of closedn22-surfaces. Also, ifS extends to
‘‘infinity,’’ then ]S contains a corresponding ‘‘asymptotic boundary’’n22-surface.!
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Definition A.1: A Hamiltonian conjugate toj on S is a function HS(j;f)5*SH(j;f) for
some locally constructed(n21)-form H~j;f! such that, on solutionsF,

HS8 ~j;F,df!5VS~F,df,LjF!, ~A7!

whereLj denotes the Lie derivative, and HS8 (j;f,df)[dHS(j;f).
This is a covariant formulation of the standard Hamiltonian symplectic structure, with

‘‘time’’ direction defined byj, called thetime flowvector field.~In particular, Ref. 4 outlines a
construction of a standard phase space and Hamiltonian equations of motion determined fr
covariant structure.! Note that a Hamiltonian, if it exists, is automatically conserved alongj for
solutionsF, i.e.,LjHS(j;F)50. It will now be shown that whenj is a ‘‘time symmetry’’ of the
LagrangianL(f), then a Hamiltonian conjugate toj exists and is simply given by the Noethe
charge associated toj.

Given any vector fieldz on M, consider the variationdzf[Lzf. If this is a symmetry of the
Lagrangian, so that

dzL~f!5L8~f,Lzf!5d~ i zL~f!!5LzL~f! ~A8!

by means of the identityLzL(f)5d(i zL(f)), then one can define a conservedNoether current
(n21)-form J(z;f) by

J~z;f!5Q~f,Lzf!2 i zL~f!, ~A9!

wherei z is the interior product. Conservation of this current simply means that, on solutionF,
J(z;f) is closed

dJ~z;F!5dQ~F,LzF!2d~ i zL~F!!5L8~F,dF!2LzL~F!50 ~A10!

through the symmetry condition~A8!. The integral ofJ(z;F) over S defines theNoether charge

QS~z!5E
S
J~z;F!. ~A11!

One finds that the ‘‘time’’ derivative of this charge with respect toj is given by

LjQS~z!5E
S
LjJ~z;F!5E

S
i jdJ~z;F!1d~ i jJ~z;F!!5 R

]S
i jJ~z;F!, ~A12!

wherei jJ(z;f) is called theflux of the Noether current. Hence, if the flux vanishes on]S, then
the charge is conserved for solutionsF.

Examples of field theories which admit a symmetrydzf5Lzf are~i! any generally covarian
theory on a fixed, background space–time~M,g! with an isometry vector fieldz ~i.e., Lzg50),
where L(f) is purely a function ofg, f and its metric-covariant derivatives¹f; ~ii ! any
diffeomorphism-covariant theory, whose field variablesf include the space–time metricg, where
L(f) is purely a function off, curvature tensor ofg, and their metric-covariant derivatives.

For a diffeomorphism-covariant theory,dzf is a symmetry for all vector fieldsz. Conse-
quently, sinceJ(z;f) is locally constructed out ofz, one can show that in this case4

J~z;F!5dQ~z;F! ~A13!

for some locally constructed (n22)-form Q(z;f), called theNoether current potential. Then the
Noether charge reduces to a surface integral

QS~z!5E
S
J~z;f!5 R

]S
Q~z;f!. ~A14!
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In contrast, for a generally covariant theory,J(z;F) is related to the conserved stress-ene
tensorT(f) defined by considering variations ofg,

* dgL~f!52 1
2 T~f!dg1* dQ~f,dg!. ~A15!

One can show that,9 on solutionsF,

J~z;F!5* i zT~F!1dt~z;F! ~A16!

for some locally constructed (n22)-form t~z;f!.
Proposition A2: For any symmetrydzf5Lzf admitted by a Lagrangian L(f), the field

equations and symplectic potential satisfy

dzE~f!5LzE~f!, ~A17!

dzQ~f,df!5LzQ~f,df!1dc~z;f,df! , ~A18!

wherec~z;f,df! is some locally constructed(n22)-form.
Proof: Consider an arbitrary variation of the Lagrangian symmetry condition~A8!,

05d~dzL~f!2LzL~f!!5dzdL~f!2LzdL~f!. ~A19!

From Eq.~A3!, one has

Lz~dL~f!!5Lz~E~f!df!1LzdQ~f,df!5~LzE~f!!df1E~f!dLzf1dLzQ~f,df!,
~A20!

and similarly

dz~dL~f!!5~dzE~f!!df1E~f!dLzf1ddzQ~f,df!, ~A21!

sincedzf5Lzf. Hence, Eq.~A19! yields

~dzE~f!2LzE~f!!df5d~LzQ~f,df!2dzQ~f,df!! ~A22!

holding for alldf. By takingdf to have compact support and integrating Eq.~A22! over M, one
obtains *M(dzE(f)2LzE(f))df50, which immediately yields Eq.~A17!. Then Eq. ~A22!
shows thatLzQ(f,df)2dzQ(f,df) is a closed (n21)-form holding for all f. Since this
expression is locally constructed in terms off, it follows that21,22 Eq. ~A18! holds. h

From these results, one finds that the variation of the Noether current is given by

J8~z;f,df![dJ~z;f!5dQ~f,Lzf!2 i zdL~f!

5v~f,df,Lzf!1dzQ~f,df!2 i z~dQ~f,df!1E~f!df!

5v~f,df,Lzf!2 i z~E~f!df!1d~ i zQ~f,df!1c~z;f,df!!

~A23!

using the identityi z(dQ(f,df))5LzQ(f,df)2d(i zQ(f,df)).
Lemma A.3: On solutionsF,

VS~F,LzF,df!52E
S
J8~z;F,df!1 R

]S
i zQ~F,df!1c~z;F,df!. ~A24!

Thus, for variationsdf with compact support in the interior ofS, i.e., dfu]S50,
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VS~F,LzF,df!52E
S
J8~z;F,df!. ~A25!

One can then apply this result to the time flow vector fieldz5j to obtain a Hamiltonian.
Theorem A.4: The Noether current J(j;f) yields a Hamiltonian conjugate toj on S given by

HS(j;f)5*SJ(j;f) under compact support variationsdf. For solutions F, HS(j;F)
5QS(j) is the conserved Noether charge associated withj.

For variationsdf without compact support, there exists a Hamiltonian if and only if one
find a locally constructed (n22)-form B(j;f) such that

R
]S

B8~j;F,df!2 i jQ~F,df!2c~j;F,df!50, ~A26!

where B8(j;f,df)[dB(j;f). If one restricts to variationsdf5dF, then by considering a
second variation and antisymmetrizing in this equation, one obtains the necessary conditio

R
]S

d1~ i jQ~F,d2F!1c~j;F,d2F!!2d2~ i jQ~F,d1F!1c~j;F,d1F!!50 ~A27!

for existence ofB(j;f). This condition can also be shown to be sufficient.10

Definition A.5: An allowed boundary condition onf is a set of field componentsF(f)u]S

locally constructed fromf, partial derivatives]kf, and space–time quantities associated withj,
S, ]S, such that for all variationsdf satisfyingF 8(f,df)u]S50, whereF 8(f,df)[dF(f),
there exists a Hamiltonian HS(j;f) conjugate toj on S.

One now has the following main result.
Theorem A.6: A Hamiltonian conjugate toj on S exists under variationsdf without compact

support if and only if

R
]S

i jv~F,d1F,d2F!5 R
]S

c8~j;F,d1F,d2F! ~A28!

on solutionsF, wherec8(j;f,d1f,d2f)[d1c(j;f,d2c)2d2c(j;f,d1f). This determines the
allowed boundary conditionsF(f)u]S for the field equations to admit a covariant Hamiltonia
formulation. Then the Hamiltonian is

HS~j;f!5E
S
J~j;f!2dB~j;f! ~A29!

with B(j;f) given by Eq. (A26) up to an arbitrary function of the boundary dataF~f! and j.
Furthermore, under the allowed boundary conditions, the Hamiltonian and symplectic stru
are independent of choice ofS.

The surface integralr]Si jv(F,d1F,d2F) will be referred to as thesymplectic fluxthrough
]S.

For a diffeomorphism-covariant theory, or a generally covariant theory on a backgr
space–time, one can show thatc(j;f,df)[0. Hence the necessary and sufficient condition
existence of a Hamiltonian becomes

R
]S

i jv~F,d1F,d2F!50 ~A30!

and, furthermore, from relation~A26! betweenQ~F,df! andB(j;f), it follows that one has

B~j;f!u]S5~ i jB̃~f!!u]S , ~A31!
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whereB̃(f) is a locally constructed (n21)-form. Then on solutionsF the Hamiltonian takes the
following form: in the case of a diffeomorphism-covariant theory,

HB~j;F!5 R
]S

Q~j;F!2 i jB̃~F!, ~A32!

which is a surface integral; and in the case of a generally covariant theory,

H~j;F!1HB~j;F!5E
S
* i zT~F!1 R

]S
t~j;F!2 i jB̃~F!, ~A33!

whereH(j;F)5*S* i zT(F) is the canonical energy associated withF on S, andHB(j;F) is the
surface integral term.

To conclude, some further features of the Noether charge Hamiltonian will now be devel
Definition A.7: The coefficient of an arbitrary compact support variationdfuS in the equation

E
S
VS~f,df,Ljf!2HS8 ~j;f,df![E

S
EH~j;f!df50 ~A34!

yields the Hamiltonian field equations forf, EH(j;f)50.
Theorem A.8: The Hamiltonian field equationsEH(j;f)50 are equivalent to the Lagrangian

field equationsE(f)50.
Proof: The Hamiltonian~A29! satisfies the variational identity

VS~f,df,Ljf!2HS8 ~j;f,df!5E
S
i j~E~f!df! ~A35!

derived from Eqs.~A23! and ~A26!. Hence, for arbitrary compact support variationsdfuS ,
E(f)50 holds if and only iff satisfiesEH(j;f)50. h

A field variation, denoted bydfN , is a symplectic degeneracy directionif VS(f,df,dfN)
50 holds for arbitrary compact support variationsdf. Such degeneracies arise whenever
LagrangianL(f) admits a gauge symmetry~i.e., a symmetrydxf that is locally constructed from
f, partial derivatives]kf, and that depends linearly on a set of parametersx freely specifiable as
functions onM!. Note that the set$dfN% of all degeneracy directions is a vector space. Then
nondegeneracy direction, denoted bydfD , is represented as an equivalence class in the ve
space of all field variations$df% quotiented by all symplectic degeneracy directions$dfN%,
namelydfD5df/dfN . This decomposition yields a break up of the Hamiltonian field equat
~A34! into nondynamical constraint equations,

HS8 ~j;f,dfN!50, ~A36!

and dynamical evolution equations,

HS8 ~j;f,dfD!5VS~f,dfD ,Ljf!, ~A37!

through arbitrary variationsdfN , dfD with compact support onS.
Since it assumed that the set$f% of all fields has a linear~vector bundle! structure, the

symplectic degeneracy directionsdfN can be identified with a corresponding set of field comp
nents, denotedfN , which will be called nondynamical with respect toS. Similarly, the nonde-
generacy directionsdfD determine a set of equivalence classes of field components, denotedfD ,
which will be called dynamical with respect toS. ~Note these componentsfD andfN are locally
constructed fromf, partial derivatives]kf, and space–time quantities associated withS.! Then,
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from the Hamiltonian variational identity~A35!, one can view the constraint equations~A36! and
evolution equations~A37! as arising equivalently through the action principle~A1! by variations
with respect tofN andfD .

In summary, the Noether charge formalism presented here gives a covariant Hamil
formulation for Lagrangian field theories in the situation where the underlying time flow is g
by a symmetry of the Lagrangian.
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3C. Crnkovićand E. Witten, inThree Hundred Years of Gravitation, edited by S. W. Hawking and W. Israel~Cambridge
University Press, Cambridge, 1987!, pp. 676–684.

4J. Lee and R. M. Wald, J. Math. Phys.31, 725 ~1990!.
5M. Gotay, J. Isenberg, and J. E. Marsden, ‘‘Momentum maps and classical relativistic fields,’’ Part I~1997!; Part II
~1999!, unpublished notes.

6J. M. Nester, Mod. Phys. Lett. A6, 2655 ~1991!; ‘‘Some progress in canonical gravity,’’ inDirections in General
Relativity, edited by B. L. Hu, M. P. Ryan, and C. V. Vishveshwara~Cambridge University Press, Cambridge, 1993!, Vol.
1, pp. 245–260.

7J. Kijowski, Gen. Relativ. Gravit.29, 307 ~1997!; J. Kijowski and W. M. Tulczyjew,A Symplectic Framework for Field
Theories, Lecture Notes in Physics No. 107~Springer, Berlin, 1979!.

8S. C. Anco and R. S. Tung, J. Math. Phys.43, 3984~2002!.
9V. Iyer and R. M. Wald, Phys. Rev. D50, 846 ~1994!.

10R. M. Wald and A. Zoupas, Phys. Rev. D61, 084027~2000!.
11V. Iyer and R. M. Wald, Phys. Rev. D52, 4430~1995!.
12R. M. Wald,General Relativity~University of Chicago Press, Chicago, 1984!.
13J. D. Jackson,Classical Electrodynamics, 2nd ed.~Wiley, New York, 1975!.
14R. M. Wald, ‘‘The first law of black hole mechanics,’’ inDirections in General Relativity, edited by B. L. Hu, M. Ryan,

and C. V. Vishveshwara~Cambridge University Press, Cambridge, 1993!, Vol. 1.
15J. W. York, Found. Phys.16, 249 ~1986!.
16J. D. Brown and J. W. York, Phys. Rev. D47, 1407~1993!.
17J. D. Brown, S. R. Lau, and J. W. York, Ann. Phys.~New York! 297, 175 ~2002!.
18C. M. Chen, J. M. Nester, and R. S. Tung, Phys. Lett. A203, 5 ~1995!.
19C. M. Chen and J. M. Nester, Class. Quantum Grav.16, 1279~1999!.
20H. Friedrich and G. Nagy, Commun. Math. Phys.201, 619 ~1999!.
21I. M. Anderson, ‘‘Introduction to the variational bicomplex,’’ inMathematical Aspects of Classical Field Theory, edited

by M. Gotay, J. Marsden, and V. Moncrief@Contemp. Math.132, 51 ~1992!#.
22R. M. Wald, J. Math. Phys.31, 2378~1990!.
                                                                                                                



rticu-
ng

and
and

field

for-
s the
imum

rning
s the

re the
n of
which
riting

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 11 NOVEMBER 2002
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We determine the maximum dimension of the Lie algebra of inheriting conformal
Killing vectors in perfect fluid space–times. For the case of conformally flat space–
times the maximum dimension is eight and for the case of nonconformally flat
space–times the maximum dimension is found to be five. We illustrate each case
with examples. ©2002 American Institute of Physics.@DOI: 10.1063/1.1509087#

I. INTRODUCTION

We are interested in space–times which admit conformal Killing vector fields and, in pa
lar, fluid space–times which admit inheriting conformal Killing vector fields. A conformal Killi
vector field is said to be an inheriting conformal Killing vector field if fluid flow linesu are
mapped conformally by the conformal Killing vector field~see Sec. II and Coley and Tupper1!.
The motivation for studying inheriting conformal Killing vector fields was discussed in Ref. 1
inheriting conformal Killing vector fields in perfect fluid space–times were studied in Refs. 2
3. For general space–times, from a kinematical description of matter it has been shown4 that in
order for there to be zero entropy production there must exist a conformal Killing vector
parallel to the fluid four-velocity~which is consequently inheriting!.

In this article we determine the maximum dimension of the Lie algebra of inheriting con
mal Killing vectors in perfect fluid space–times. For the case of conformally flat space–time
maximum dimension is eight and for the case of nonconformally flat space–times the max
dimension is found to be five.

In Sec. II we define conformal Killing vector fields and state a number of theorems conce
the maximum dimension of Lie algebras of conformal Killing vector fields. We also addres
reducibility of a Lie algebra of conformal Killing vector fields~to a Lie algebra of Killing vector
fields! with respect to a conformal scaling of the metric. We consider some cases whe
inheriting condition is automatically satisfied. In Sec. III we consider the maximum dimensio
the inheriting Lie algebra for conformally flat space–times and present the space–times
admit this maximum number. In Sec. IV we determine the maximum dimension of the inhe

a!Electronic mail: aac@mathstat.dal.ca
b!Electronic mail: g.hall@maths.abdn.ac.uk
c!Electronic mail: aidan@astro.gla.ac.uk
d!Electronic mail: brian@math.unb.ca
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Lie algebra for the nonconformally flat space–times. In Sec. V we discuss the results and o
possible future work.

II. CONFORMAL KILLING VECTORS AND INHERITANCE

Let M be a four-dimensional spacetime manifold with metric tensorg of Lorentz signature.
Any vector fieldX which satisfies

Ljg52c~xa!g ~1!

is said to be aconformal Killing vector~CKV! of g. If c is not constant onM , thenj is called a
proper conformal Killing vector; if c is constant onM , thenj is called ahomothetic Killing vector
~HKV !; and if c is constant andcÞ0 on M , thenj is calledproper homothetic. If c ;ab50, then
j is called aspecial conformal Killing vector~SCKV!, and if c50, thenj is said to be a Killing
vector ~KV !.

The set of all CKV~respectively, HKV and KV! form a finite dimensional Lie algebra denote
by C ~respectively,H and G! whose maximum dimension is 15~respectively, 11 and 10!. If
dimC515, M is conformally flat. If the dimension ofG is 10, thenM is of constant curvature. If
M is not of constant curvature, then this algebra has dimension at most 7. The algebra of HK
dimension equal to or at most one greater than that of the KV algebra so that each given
time admits a basis forH containing at most one HKV~i.e., all other HKV can be constructed b
the addition of a KV!. If the algebraH has its maximum dimension of 11, thenM is flat. Any
CKV field in a flat space–time is a SCKV and so the maximum dimension of the SCKV alg
is 15. If this occurs,M is flat, while if M is nonflat, its maximum dimension is 8. For details a
proofs, see Ref. 5 and references therein~see Ref. 6 for a summary!. It will be assumed throughou
this article that the space–times considered admit no local~nonglobalizable! conformal Killing
vector fields.

We would like to know the maximum dimension ofC in the nonconformally flat case. Firs
we need to introduce the following terminology. A pointpPM is called azero ~or a fixed point!
of the CKV j if j(p)50. A zerop of j is called isometric if c(p)50 andhomotheticif c(p)
Þ0.

The Petrov type of the Weyl tensor is a statement about the Weyl tensor at a pointpPM , and
may vary from point to point. If the Petrov type is the same at all points ofM , then one can spea
of the Petrov type ofM .

The following theorem is known,7–10 but is collected together here for convenience.
Theorem 1: Let (M ,g) be a nonconformally flat space–time and letC be the conformal

algebra of M. Then we have the following.

(i) If the Petrov type is N at some pPM , dimC<7.
(ii) If the Petrov type is D at some pPM , dimC<6.
(iii) If the Petrov type is III at some pPM , dimC<5.
(iv) If the Petrov type is I or II at some pPM , dimC<4.

In fact it can be shown~using theorem 2 below! that part~iii ! of theorem 1 may be strength
ened by saying that if the Petrov type is III over some non-empty subset ofM then dimC(M )
<4.

The following theorem is due to Hall and Steele8 ~see also Ref. 11!.
Theorem 2: Let (M ,g) be a space–time that admits an r-dimensional conformal algebraC

and suppose that the Petrov type and the dimension and nature of the orbits associated witC are
the same at each pPM and that M admits no local (nonglobalizable) conformal vector fiel
Then for each pPM there exists an open neighborhood U of p and a functions:U°R such that
C (restricted to U) is a Lie algebra of special conformal vector fields on U with respect to
metric g85e2sg on U. If the Petrov type is not O, the above local scaling functions can always
be chosen such thatC restricts to a Lie algebra of homothetic Killing vector fields with respec
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g8 on U, and, if (M ,g) is not locally conformally related to a generalized plane-wave space–time
about any pPM , the above local scaling can always be chosen such thatC restricts to a Lie
algebra of Killing vector fields with respect to g8 on U.

See Ref. 8 for the definition of ageneralized plane wave. Minkowski space–time admits 15
~special! CKV fields, ~admitting a ten-dimensional subalgebra of KV fields! and it follows that the
Lie algebra of CKVs of a conformally flat space–time can, in principle, be locally reduced
corresponding set of special CKVs with a ten-dimensional subalgebra of KVs. For space–
conformal to the~nonconformally flat! pp-wave space–times, the Lie algebra of CKVs can
locally reduced to a Lie algebra of homotheties,11 that is, if dimC57, thenC can be locally reduced
to a seven-dimensional homothety Lie algebra~e.g., 6 KV and 1 HKV!; if dimC56, thenC can be
locally reduced to a six-dimensional homothety Lie algebra~e.g., 5 KV and 1 HKV!; and if
dimC,6, thenC can be locally reduced to a Lie algebra of KVs.

The energy momentum tensor for a perfect fluid space–time is given by

Tab5~m1p!uaub1pgab , ~2!

whereua is the normalized fluid four-velocity andm and p are, respectively, the energy-densi
and the pressure. A CKV in a perfect fluid space–time is said to be inheriting if fluid flow linu
are mapped conformally by the CKVj, i.e.,

Lju52cu. ~3!

We shall refer to such a CKV as an ICKV. For an HKV or proper CKV which is parallel to
fluid four-velocity vectoru, Eq. ~3! is automatically true.1

We note that the set of ICKVs form a subalgebraI of the Lie algebraC and we refer to this
as the inheriting algebra. This is proved in Sec. 3.7 of Ref. 12. Thus, the conditions requir
a perfect fluid space–time to admitn independent ICKVs are as follows: there must existn
independent vector fieldsj I , I 51, . . . ,n, which satisfy Eqs.~1! and ~3!. Therefore, in order to
determine the maximum dimension of the Lie algebra of ICKV in a space–time, we can
consider the compatibility of these conditions generally or find the answer on a case by case

III. CONFORMALLY FLAT SPACE–TIMES

In the conformally flat~CF! case, in which dimC515, it has been shown that the maximu
dimension of the inheriting algebra in a perfect fluid space–time is eight~see Sec. 6 in Ref. 13!.
Since the maximum dimension of the conformal algebra for any non-CF space–time is seve7,8 it
follows that

MAX ~dimI!58.

In particular, it is known that the Friedmann–Robertson–Walker model with flat spatial geom
admits precisely eight ICKV.1,2

Recently, as part of an investigation into the general CKV admitted by CF perfect
space–times,14 all such space–times admitting the maximum eight ICKV and also all admit
seven ICKV have been discovered. Here we present only the results with a brief indication
calculation that led to the discovery of these space–times.

The CF perfect fluid space–times are all known15 and fall into two classes, namely th
nonexpanding (Q50) generalized Schwarzschild interior solution and the expanding@Q5Q(t)
Þ0# generalized FRW solution. The space–time metric of each of these classes can be wr
the form

ds25V22~2F2dt21dx21dy21dz2!, ~4!

whereF(t,x,y,z) is of the form
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F~ t !5a~ t !r 21b~ t !x1c~ t !y1d~ t !z1e~ t !, ~5!

a, b, c, d, e are arbitrary functions oft andr 25x21y21z2. For the nonexpanding models,V is
given by

V5~11r 2!C/2, ~6!

whereC is a constant andF is of the particular form

F52 1
2 ~C f411!r 21 f 1x1 f 2y1 f 3z1 1

2 ~C f421!, ~7!

with f 1 , f 2 , f 3 , f 4 arbitrary functions oft. For the expanding models,V is given by

V5Hr 222Hx0x22Hy0y22Hz0z1V01Hr 0
2, ~8!

whereH, x0 , y0 , z0 , V0 are arbitrary functions oft, r 0
25x0

21y0
21z0

2 andF is given by

F53Q21
dV

dt
. ~9!

In all cases the fluid four-velocity is comoving, i.e.,ua5VF21]/]t. However, since the condition
~3! is conformally invariant, we may consider the ICKV of the underlying space–time

ds252F2dt21dx21dy21dz2 ~10!

with four-velocity u8a5F21]/]t.
For the space–time~10! the ICKV equations forja imply that j ,a

0 5j ,0
a50 (a51,2,3) and

lead to

j05G~ t !,

j15 1
2 A~x22y22z2!1Bxy1Cxz1Dx2My1Nz1Q,

j25 1
2 B~2x21y22z2!1Ayx1Cyz1Mx1Dy2Pz1R, ~11!

j35 1
2 C~2x22y21z2!1Azx1Bzy2Nx1Py1Dz1S,

c5Ax1By1Cz1D,

whereA, B, C, D, M , N, P, Q, R, S are constants, together with the set of equations

d

dt
~Ga!5

1

2
~bA1cB1dC22aD!,

d

dt
~Gb!5eA1dN2cM22aQ,

d

dt
~Gc!5eB2dP1bM22aR, ~12!

d

dt
~Gd!5eC1cP2bN22aS,

d

dt
~Ge!5eD2bQ2cR2dS.
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A. Space–times admitting eight ICKV

To find those space–times admitting the maximum number of ICKV we must find t
functions a, b, c, d, e, G which result in the maximum number of nonzero constantsA,
B, . . . ,S. This is found to occur only whena5b5c5d50, eÞ0 or whenb5c5d5e50, a
Þ0. However, when the appropriate conformal factorV22 is restored, the second case results o
in space–times which are coordinate transformed (r °1/r ) versions of those occuring in the firs
case, which is thus the only one we need to consider. A transformation of the coordinatet enables
us to pute51, so the underlying space–time~10! is Minkowski space–time withu8a5]/]t.
Using the notation of Maartens and Maharaj16 the eight ICKV are then

Pa5
]

]xa , H5xa
]

]xa , Mab5xa

]

]xb2xb

]

]xa , ~13!

wherea50,1,2,3 anda,b51,2,3. From expressions~8! and~9! the corresponding form ofV for
the expanding case is

V5ar 21bx1gy1dz1 f ~ t !, ~14!

wherea, b, g, d are arbitrary constants andf (t) is an arbitrary function oft. Thus the expanding
perfect fluid space–times admitting the maximum number of eight ICKV are all of the form

ds25@ar 21bx1gy1dz1 f ~ t !#22~2dt21dx21dy21dz2!, ~15!

and the corresponding nonexpanding space–times haveV given by ~6!. There are three cases t
consider:

1. Case (i) aQÅ0

A translation of the origin of the form

x85x1
b

2a
, y85y1

g

2a
, z85z1

d

2a

transforms the metric into

ds25@ f ~ t !1ar 2#22~2dt21dx21dy21dz2!, ~16!

where we have dropped the primes and absorbed the constants intof (t). This is the space–time
S1 of Ref. 2 withk50 which was shown to admit five proper ICKV, namelyPa andH, together
with the three KV of spherical symmetry.

2. Case (ii) aÄ0, QÅ0

A rotation of the spatial axes brings the metric into the form

ds25@ f ~ t !1kx#22~2dt21dx21dy21dz2!, ~17!

wherek is an arbitrary constant. This is the plane symmetric model listed under (a) with k50 in
Table 1 of in Ref. 3. In addition to the three KV of plane symmetry, this model admits five pr
ICKV ~a fact not recognized in Ref. 3—see the Appendix!, namelyP0 , P1 , H, M21, M13. The
corresponding conformal scalarsc are given by

~ f 1kx!c52
d f

dt
, 2k, f 2t

d f

dt
, 2ky, 2kz, ~18!

respectively. The density of the model ism53@(d f /dt)22k2#, so we must have (d f /dt)2.k2.
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3. Case (iii) QÄ0

For the nonexpanding model, Eq.~6! leads to the metric

ds254C22~11r 2!22~2dt21dx21dy21dz2!, ~19!

i.e., Eq. ~7! with f 15 f 25 f 35C f41150. This is a special case of the static Schwarzsch
interior solution which is known2 to admit four proper ICKV together with four KV.

The space–times with metrics~16!, ~17! and ~19! are the only perfect fluid space–time
admitting the maximum number of eight ICKV.

B. Space–times admitting seven ICKV

Perfect fluid models admitting seven ICKV are found to occur if and only if the functiona,
b, c, d, e in Eq. ~5! are constant multiples of each other so that, by a redefinition of the
coordinate, we may write the functionF in the form

F5ar 21bx1gy1dz1e, ~20!

wherea, b, g, d, e are constants. For the expanding models, from Eqs.~8! and~9!, V is of the form

V5K~ t !F1l1r 21l2x1l3y1l4z1l5 , ~21!

where 3dK/dt5Q and l1 , l2 , l3 , l4 , l5 are constants of integration. For the nonexpand
modelsV is given by~6!. There are three cases to consider:

1. Case (i) aQÅ0

A translation to a new origin, a rotation of the spatial axes and a rescaling of the
coordinate results in the spacetime metric

ds25@K~ t !~11ar 2!1vr 21lx#22@2~11ar 2!2dt21dx21dy21dz2#, ~22!

wherev, l are constants. Whenl50 these solutions are the spherical symmetricS1 models of
Ref. 2 withkÞ0. If, in addition,v50, these are thek561 FRW models.

The ICKV of ~22! and the corresponding conformal scalars are

j (1)5
]

]t
, c (1)52~11ar 2!V21

dK

dt
,

j (2)5@a~x22y22z2!11#
]

]x
12axy

]

]y
12azx

]

]z
, c (2)5~2avr 2x1lar 22l!V21,

j (3)52axy
]

]x
1@a~2x21y22z2!11#

]

]y
12azy

]

]z
, c (3)52avr 2yV21,

j (4)52axz
]

]x
12ayz

]

]y
1@a~2x22y21z2!11#

]

]z
, c (4)52avr 2zV21, ~23!

j (5)52y
]

]x
1x

]

]y
, c (5)5lyV21,

j (6)5z
]

]x
2x

]

]z
, c (6)52lzV21,

j (7)52z
]

]y
1y

]

]z
, c (7)50.
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No linear combination ofj (1) to j (6) will result in a vanishing or constant conformal scalar, so t
model admits six proper ICKV and one KV. Puttingl50, we see that theS1 models admit four
proper ICKV and three KV, as shown in Ref. 3, and puttingl5v50, we see that thek561
FRW models admit one proper ICKV and six KV, as shown in Ref. 1.

2. Case (ii) aÄ0, QÅ0

A translation to a new spatial origin, a rotation of the spatial axes and a rescaling of the
coordinate results in the space–time metric

ds25@hr21L~ t !x1m#22@2x2dt21dx21dy21dz2#, ~24!

whereh,m are constants andL(t) is an arbitrary function of time. This space–time admits fo
proper ICKV, namely,

j (1)5
]

]t
, j (2)5

]

]y
, j (3)5

]

]z
, j (4)5x

]

]x
1y

]

]y
1z

]

]z
, ~25!

and three KV, namely,

j (5)52z
]

]y
1y

]

]z
,

j (6)52hxy
]

]x
1@m1h~2x21y22z2!#

]

]y
12hzy

]

]z
, ~26!

j (7)52hxz
]

]x
12hyz

]

]y
1@m1h~2x22y21z2!#

]

]z
.

Whenh50, the space–time is plane symmetric and again admits four proper ICKV and thre

3. Case (iii) QÄ0

For the nonexpanding model, using Eqs.~6! and ~20! together with a rotation of the spatia
axes and a rescaling of the time coordinate, we obtain

ds254C22~11r 2!22@2~ar 21bx11!2dt21dx21dy21dz2#. ~27!

This space–time admits three proper ICKV, namely,

j (1)5@a~x22y22z2!1bx11#
]

]x
1y~2ax1b!

]

]y
1z~2ax1b!

]

]z
,

j (2)52axy
]

]x
1@a~2x21y22z2!11#

]

]y
12ayz

]

]z
, ~28!

j (3)52axz
]

]x
12ayz

]

]y
1@a~2x22y21z2!11#

]

]z
,

and the four KV,

j (4)5
]

]t
, j (5)52z

]

]y
1y

]

]z
,

j (6)52y~12a1bx!
]

]x
1@b~12x21y22z2!12~a21!#

]

]y
12byz

]

]z
, ~29!

j (7)52z~12a1bx!
]

]x
12byz

]

]y
1@b~12x22y21z2!12~a21!#

]

]z
.
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Whenb50, j (4) andj (5) are KV; the resulting metric is that of the general spherically symme
Schwarzschild interior solution which is known2 to admit three proper ICKV and four KV.

The space–times with metrics~22!, ~24! and ~27! are the only CF perfect fluid space–time
admitting precisely seven ICKV. Some, but not all, are known admitting precisely six ICKV; n
of the known models admit six proper ICKV, thus, so far, the solution~22! is unique in this regard.

IV. NON-CONFORMALLY FLAT SPACE–TIMES

For the case of nonconformally flat space–times, Theorem 1 tells us that dimC<7 and so
dimI<7. It is known that the Go¨del space–time admits 5 ICKV: This is a perfect fluid homog
neous Petrov typeD space–time with 5 KVs. Thus, we ask the question: Does there exist a pe
fluid space–time with dimI57 or dimI56? From Theorem 1, we only need to consider Pet
typesN andD.

First, we give some notation. Letj be a CKV. From~1! it follows thatja;b5cgab1Fab . Now
supposejÓ0 but j(p)50 for somepPM . Then9,17 we have the following:

Theorem 3: (i) If c(p)50 (isometric zero), the Petrov type at p is N, D or O. Also, if
Fab(p)50, then the Petrov type at p is O. If the Petrov type at p is D, then Fab(p)Þ0 and is a
linear combination of the bivectors l[anb] and x[ayb] where l,n,x,y is a null tetrad( l ana5xaxa

5yaya51, others zero) at p with l and n repeated principle null directions of the Weyl tenso
p. If the Petrov type at p is N, then Fab(p)} l [axb] where l is the repeated principle null directio
of the Weyl tensor at p and laxa50.

(ii) If c(p)Þ0 (homothetic zero), the Petrov type at p is III, N or O. If the Petrov type is III
or N, Fab(p)Þ0 and timelike.

Corollary: If j is a CKV withjÓ0 and j(p)50 and the Petrov type at p is not O, then
Fab(p)Þ0.

Theorem 4: If j is an ICKV andjÓ0 and j(p)50, then, if u is the fluid flow velocity at p,
Fabu

b50 at p (the fluid flow is assumed nowhere zero).
Proof: UseLju}u at p and putj(p)50.

h

Theorem 5: If a perfect fluid space–time is not conformally flat, the dimension of the ICK
algebra is at most 5. If such a space–time admits a maximal ICKV algebra (of dimension 5),
must be of Petrov type D with Fab}x[ayb] .

Proof: Suppose this dimension is>6. Then by taking linear combinations of members of
ICKV algebra one can arrange to havej, h as two (i.e., 624) independent ICKV such that

ja;b5cgab1Fab , j~p!50, jÞ0, Lju}u, Fabu
b50,

ha;b5fgab1Gab , h~p!50, hÞ0, Lhu}u, Gabu
b50

hold at any pPM . Also, by taking linear combinations ofj andh, we can assume that at least on
of c and f vanishes at p.

Case (a):c(p)5f(p)50 and Fabu
b5Gabu

b50. Then from Theorem 3 (i) the (necessar
spacelike) blades of Fab and Gab at p must coincide. Hence Fab5mGab at p (0ÞmPR). Now
construct Z5j2mh which is not identically zero. Then Z is an ICKV and Za;b5(c2mf)gab

1(Fab2mGab) with (c2mf)(p)50, (Fab2mGab)(p)50 which contradicts nonconforma
flatness by Theorem 3 (i).

Case (b):c50, fÞ0. Fabu
b50, Gabu

b50. Theorem 3 (ii) then shows that Gab(p) is non-
zero and timelike (contradicting Gabu

b50 at p), i.e., timelike bivectors cannot have a timelik
vector annihilating them.

The second assertion of the theorem follows immediately from this proof and Theorem
is due to the fact that the relevant bivectors are necessarily spacelike.

h

Corollary: The maximum dimension of the ICKV algebra for Petrov type N and type
perfect fluid space–times is at most four.
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These results also may be obtained by somewhat tedious direct calculations without re
to the fixed point theorems of Ref. 17.

A. Examples of Petrov type D space–times with five ICKV

~a! The Gödel space–time

ds25a2@2~dt1exdz!21dx21dy21 1
2 e2xdz2#, ~30!

when considered as a perfect fluid space–time with zero cosmological constant, has energy
m and pressurep given bym5p5a22/2. It admits five ICKV, all of which are KV.

~b! The plane symmetric Kasner type model

ds252dt21dx21t~dy21dz2! ~31!

admits four KV and one HKV given by

H5t
]

]t
1x

]

]x
1

y

2

]

]y
1

z

2

]

]z
. ~32!

The four-velocity is comoving,m5p5t22/4.
The space–time with metric

ds25v22ds2, ~33!

whereds2 is the metric~31! and

v5a~x222t2!1b, ~34!

a andb being nonzero constants, is also a perfect fluid space–time. In this case the KV

X5
]

]x

becomes a proper ICKV withcX522ax/v and the HKVH given by~32! also becomes a prope
ICKV with cH52112b/v.

~c! The static spherically symmetric model

ds252r 2mdt21~112m2m2!dr21r 2~du21sin2 udf2! ~35!

hasm5(112m2m2)21m(22m)r 22 and p5m(22m)21m and all energy conditions hold fo
0,m<1. The space–time admits four KV and one HKV given by

H5~12m!t
]

]t
1r

]

]r
. ~36!

The space–time with metric

dS25U22ds2, ~37!

whereds2 is the metric~35! andU5a1br2, a andb being positive constants, is also a perfe
fluid space–time. The four KV of~35! remain as KV but the HKV given by~36! is now a proper
ICKV with c5(a2br2)/(a1br2).

~d! The static spherically symmetric space–time
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ds25sech2S r

&
D ~2dt21dr21du21sin2 udf2! ~38!

satisfies the energy conditions. It admits the four KV associated with static spherical sym
together with the proper ICKV

I5
]

]r
.

V. DISCUSSION

The results of Secs. III and IV may be summarized in the following theorem:
Theorem 6: For conformally flat perfect fluid space–timesdimI is at most eight and all such

space–times are known. The maximum number of independent proper ICKV is six. For no
formally flat perfect fluid space–timesdimI is at most five, in which case the space–time is of
Petrov type D.

The example given by~33! and ~34! is the only known nonconformally flat perfect flui
solution admitting more than one independent proper ICKV.

It is also of interest to determine the maximum dimension ofI for typesN, III , II and I
separately. From the analysis of Sec. IV we see that for each of those Petrov types dimI<4. The
determination of the exact maximum number in each case may require techniques other th
geometrical approach used here.
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APPENDIX A: ERRATA TO COLEY AND CZAPOR 3

The result in Sec. III that the plane symmetric CF model given by Eq.~17! admits eight ICKV
contradicts Theorem 1 of Ref. 3 which states, in effect, thatM21 andM13 cannot be ICKV~it can
be easily checked that they are indeed ICKV!. The proof of Theorem 1 in Ref. 3 is correct up
and including Eq.~2.24!, but Eq.~2.25! is wrong. In fact, using Eqs.~2.23! and ~2.24!, Eq. ~2.9!
becomes~using the notation of Ref. 3!

wx~wtwxt1wxwtt2wttx!50,

and, sincewxÞ0, it follows thatwtwxt1wxwtt2wttx50; i.e.,

~wtwx2wtx!x50.

But Eq. ~2.23! states that

~wtwx2wtx! t50,

so wtwx2wtx5const, which does not contradict the later correct resultwtwx5wtx . @Note Eqs.
~2.33a! and~2.33b! are wrong since they are derived from the incorrect Eq.~2.25!.# Thus there is
no contradiction and solutions do exist for whichLÞ0. Equation~2.37! is correct and substituting
this into Eq. ~2.9! leads towx

2wxx1wxx
2 2wxwxxx50, and puttinge2w5p(t)1s(x) we obtain

sxx
2 5sxsxxx . If sxx50, we obtain the solution~18!, otherwise we obtains5beax which is the first

solution in Table I of Ref. 3; i.e., thekÞ0 case. Thus this also admits the ‘‘exceptional’’ ICK
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~using the terminology of Ref. 2! but admits only seven ICKV~4 proper ICKV and 3 KV!. Thus
the plane symmetric case admits models with the ‘‘exceptional’’ ICKV corresponding to tho
the spherically symmetric case.
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Wavefronts, caustic sheets, and caustic surfing
in gravitational lensing
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Very little attention has been paid to the properties of optical wavefronts and caus-
tic surfaces due to gravitational lensing. Yet the wavefront-based point of view is
natural and provides insights into the nature of the caustic surfaces on a gravita-
tionally lensed lightcone. We derive analytically the basic equations governing the
wavefronts, lightcones, caustics on wavefronts, and caustic surfaces on lightcones
in the context of weak-field, thin-screen gravitational lensing. These equations are
all related to the potential of the lens. In the process, we also show that the standard
single-plane gravitational lensing map extends to a new mapping, which we call a
wavefront lensing map. Unlike the standard lensing map, the Jacobian matrix of a
wavefront lensing map is not symmetric. Our formulas are then applied to caustic
‘‘surfing.’’ By surfing a caustic surface, a space–borne telescope can be fixed on a
gravitationally lensed source to obtain an observation of the source at very high
magnification over an extended time period, revealing structure about the source
that could not otherwise be resolved. Using our analytical expressions for caustic
sheets, we present a scheme for surfing a caustic sheet of a lensed source in
rectilinear motion. Detailed illustrations are also presented of the possible types of
wavefronts and caustic sheets due to nonsingular and singular elliptical potentials,
and singular isothermal spheres, including an example of caustic surfing for a
singular elliptical potential lens. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1511790#

I. INTRODUCTION

Among relativistic concepts of direct application to gravitational lensing, the observer’s
lightcone is perhaps the most fundamental. The lightcone concept unifies the temporal and
properties of lensing events in a geometrical manner that makes the multiplicity, magnific
and time delay of the images arise naturally. In this view, gravitational lensing by dark
luminous matter causes the observer’s past lightcone to curve into a singular three-dime
hypersurface that self-intersects and folds sharply. It is the singular ‘‘folding’’ of the lightcone
is responsible for most features of interest in gravitational lensing, such as image multip
magnification, and time delay. Additionally, in this view, caustics—so relevant to observat
lensing—literally acquire a new dimension, turning into caustic sheets~possibly multiple! con-
tained within the lightcone itself, and carrying a sense of time as well as spatial location
lightcone concept is most naturally built by imagining an optical wavefront emanating from
observer and traveling out and towards the past or future. At the start, the wavefront is conv
almost perfectly spherical. Upon encountering gravitational lenses, the wavefront become
uniformly retarded, acquiring dents. No matter how small and insignificant these dents
wavefront are soon after leaving the neighborhood of the lens, in time the normal propa
enhances them, inevitably developing crossings and sharp ridges. The surface traced out in
time by a wavefront is a~past or future! lightcone. The trace of the wavefront’s sharp ridges a
55780022-2488/2002/43(11)/5578/34/$19.00 © 2002 American Institute of Physics
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‘‘swallowtail’’ points is called a ‘‘comoving caustic surface’’ if thought of as embedded in thr
space, and a ‘‘caustic surface’’ if viewed in space–time. In other words, a caustic surface i
out of caustic sheets with cusp ridges and higher-order singularities~e.g., swallowtails, elliptic
umbilics, and hyperbolic umbilics!. Remarkably, in spite of the naturalness of this concept, v
little attention has been paid to the greater significance of the caustics as sheets or surfac
result, to our knowledge, the properties of optical wavefronts and caustic surfaces in gravita
lensing have not progressed much beyond the generic local classification of caustic singular
the general theory as developed by Thom, Arnold, and others. Our goal is to initiate a progra
investigates optical wavefronts and caustics as they relate to the matter distribution of the
tational lenses in the space–time.

The vast majority of gravitational lenses can be modeled extremely well using a small-
approximation of weak-field perturbations of a Friedmann–Lemaıˆtre universe, and projecting th
deflectors into planes~thin-screen approximation!—see the monographs by Schneider, Ehlers,
Falco1 and Petters, Levine, and Wambsganss2 for a detailed treatment. An enormous advantage
weak-field, thin-screen gravitational lensing is that we can obtain explicit analytical expres
for the associated lightcones, optical wavefronts, and caustics on both the wavefronts and
cones. Indeed, one of the reasons there has been limited progress in the study of quan
properties of the optical caustic surfaces and wavefronts due to gravitating matter is the l
computable physical models with observational relevance. Thin-screen, weak-field gravita
lensing provides us with such a setting.

Gravitational lensing from a wavefront perspective was used by Refsdal3 to relate the Hubble
constant to the time delay between lensed images~see Ref. 3, Kayser and Refsdal4,5 for more!.
Arnold’s singularity theory was used by Petters6 to treat the local qualitative properties of caus
surfaces~big caustics! in gravitational lensing. Friedrich and Stewart,7 Stewart,8 Hasse, Kriele, and
Perlick,9 Low,10 and Ehlers and Newman11 also used Arnold’s theory to treat wavefronts a
caustics in general relativity with varied motivations. In the case of a strong gravitational
Rauch and Blandford12 numerically computed the caustic sheets due to the Kerr metric. W
fronts in the context of liquid droplet lenses have been studied extensively by Berry, Hannay
Upstill, and others—see Berry and Upstill,13 Nye,14 and references therein. Readers may a
benefit from the popular article by Nityananda15 on wavefronts in gravitational lensing.

Our paper calculates explicitly the equations governing the wavefronts and caustic surfa
gravitational lensing with the standard approximations, and analytically relates the wavefron
caustic surfaces to the gravitational potential of the lens. This allows us to give a first quant
treatment ofcaustic surfing, a futuristic notion suggested by Blandford16 in his millennium essay.
The motivation for caustic surfing is to lock a satellite on a gravitationally lensed moving so
so as to observe the source at a high magnification over an extended time period. We de
starting equations for the trajectory to be followed in order to surf the caustic surface. The a
of caustic surfing lies in its potential as a tool to obtain information about a distant moving s
that could not otherwise be resolved.

Our paper is organized as follows. Section II derives an explicit expression for the pr
optical path length in units of time of light signals that reach the observer in the thin-sc
approximation. In Sec. III this expression is used to define a new lensing map in which the s
lie on an instantaneous wavefront, rather than on a lens plane. The caustic surfaces and sh
related to the wavefront lensing map in Sec. IV. Section V develops some fundamentals
concept of caustic surfing. Applications to the case of nonsingular and singular elliptical pot
models, as well as singular isothermal spheres, are given in Sec. VI. The latter section als
full classifications of the singularities of the wavefronts and caustic surfaces of the noted l
and explicitly illustrates the caustic surfing concept. We conclude in Sec. VII with some rem
and an outlook of future applications. The research reported in this paper extends prelim
results on wavefronts in gravitational lensing first reported by Frittelli and Petters17 at the Ninth
Marcel Grossmann Meeting.
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II. THE PRESENT PROPER LENGTH FUNCTION AND LENS EQUATION

We shall calculate the present optical length of gravitationally lensed light rays from a s
to the observer using Fermat’s principle and coordinates in space. This will include a fo
~lensing map! relating the position of a lensed source to the impact positions at the gravitat
lens of lensed light rays from the source to observer. For the convenience of readers who a
to gravitational lensing, Secs. II A and II B 1 give an introduction overviewing those aspec
lensing relevant to our wavefront and caustic surface considerations. Readers already famili
the basics of gravitational lensing can skip to Sec. II B 2, where we cast the lens equat
comoving form.

A. Cosmological model for lensing

We use the usual cosmological setting of gravitational lensing, namely, a weak-field p
bation of a Friedmann–Lemaıˆtre space–time. These models are quite robust and fit extremely
with observations. A detailed treatment of the assumptions and approximations used to mod
gravitational lensing scenarios is given in Chap. 3 of Ref. 2.

The space–time geometry in the vicinity of a weak-field gravitational lens system@i.e., source,
lens~es!, observer, and light rays between source and observer# is approximated by the following
space–time metric:

gGL
K 52S 112

f

c2D c2 dt21a2~t!S 122
f

c2DdSK
25a2~ t!F2S 112

f

c2Ddt21S 122
f

c2DdSK
2G .

~1!

The quantityt is cosmic time,t is conformal time related tot by

dt5
c

a~t!
dt, ~2!

with a(t) a positive function called theexpansion factorand we use the notationa(t)
5a(t(t)). Also f represents the time-independent Newtonian potential of the density perturb
due to the lens~es!, anddSK

2 the metric of space with constant curvatureK521,0,1. The weak-
field limit is assumed~i.e., ufu/c2!1), so we ignore terms of order greater thanf/c2. Note that
the potentialf obeys the cosmological Poisson equation—see Sec. II B 2. The weak-field as
tion near a gravitational lens ensures that the bending anglesâ of light rays deflected by the len
are small, i.e.,â!1. In addition to the latter assumption, we suppose that the lens is ‘‘thin.’’ T
means that along the line of sight, the diameter of the matter distribution of the lens or sou
very small compared to the distances between lens and observer, and between lens and so
shall treat the gravitational lens and the point sources as lying on planes—called thelens planeand
light source plane—approximately orthogonal to an axis defined by the observer and some c
point on the lens—referred to as the optical axis. All these assumptions allow us to consis
restrict lensing to small observation angles as measured from the optical axis.

Now consider the gravitational lensing metricgGL
K in ~1!. There are coordinates (R,u,w) in

space, calledcomoving coordinates, such that the Riemannian metricdSK
2 becomes

dSK
25

dR2

12KR2 1R2~du21sin2 u dw2!. ~3!

We assume that the comoving coordinates are dimensionless, the expansion factora(t) has physi-
cal dimensions of length, and the potentialf has physical dimensions of@ length#2/@ time#2. The
cosmic timet has dimension of time, while the conformal timet is dimensionless. Away from the
neighborhood of the lens, the gravitational lensing metricgGL

K is approximated by the Friedmann
Lemaı̂tre ~FL! metric
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gFL
K 52c2 dt21a2~t!dSK

25a2~ t!@2dt21dSK
2#.

This employs the assumption that the Newtonian potentialf decreases to zero sufficiently fa
away from the lens with the lens-source and observer-lens angular diameter distances suffi
large. In a realistic physical sense, the Newtonian potential of an isolated body decays no
than r 21. Some plausible ways to justify the use of this metric as intended are discussed i
18 and references therein. Still, it is not at all clear how to improve on this assumption rigor
Indeed, there are some unresolved technical mathematical issues with the standard approx
in gravitational lensing, but it is not our intention to address them here.

In this work we will restrict our discussion to a flat cosmological setting.Henceforth, we shall
assume that the gravitational lensing metricgGL

K hasK50. The associated FL metric then reduc
to the Einstein–de Sitter metric

gEd[gFL
0 5a2~ t!dsflat

2 , ~4!

where

dsflat
2 52dt21dS0

2 , dS0
25dR21R2~du21sin2 u dw2! ~5!

with 0<R,`, 0<u,p, 0<w,2p. Note that forK50 the comoving coordinates (R,u,w)
define spherical coordinates in space. The conformal relationship~4! yields that the Minkowski
metricdsflat

2 is very important for our study, becausegEd anddsflat
2 have the same null geodesics u

to an affine parameter. The topology of our space–time with a gravitational lens now tak
form I 3E, whereI is an open interval ofR andE an open subset ofR3. In most applications of
gravitational lensing, we haveE5R32A, where A is a finite set of points corresponding t
singularities~e.g., point masses! in the lens. These singularities would include points where
density perturbation of the lens or the Newtonian potentialf diverge. This yields a lens planeL
that is R2 minus a finite set of points. We callE the comoving spaceand t3E the proper
three-spaceat cosmic timet. Away from the lens, the metrics onE and t3E are the standard
Euclidean metricdS0

2 and metrica2(t)dS0
2, respectively. When we study the caustic surfac

along our past lightcone, we project them intoE.

B. The present proper length function and the comoving lens equation

1. Physical setting for present proper length of light rays

We must discuss the basic physical setting needed to determine the present optical le
light rays via Fermat’s principle~see pp. 65–76 of Ref. 2 for a detailed treatment!. Suppose that
a light signal emanates from a source at cosmic timetS and arrives at the observer at the pres
cosmic timet0 . Assume that the observer is at the origin0 of the spherical coordinate syste
(R,u,w) in the comoving spaceS and the source at comoving positionpS5(RS ,uS ,wS). Assume
that the light ray undergoes deflection by a gravitational lens on some intermediate lens plL.
Since the deflection angle at the lens plane is assumed small, we approximate the ligh
trajectory by an FL piecewise-smooth null geodesic consisting of an FL null geodesic from
source toL and one fromL to the observer. Fix an optical axis through an arbitrary comov
point pL on L ~e.g., center of mass of the lens!; say,pL5(RL ,uL ,wL) with (R,uL ,wL) defining
the optical axis. TakepL to be the origin ofL. We now consider the setN of all piecewise-smooth
null FL geodesics that left the source at cosmic timetS and arrive at the observer at roughly th
present cosmic timet0 after undergoing deflection atL. The travel time differences between the
null rays are assumed to be significantly smaller than the Hubble time (1/H0) and so the scale
factor is assumed to change negligibly during these time differences. In particular, the scale
is taken to be approximatelya(t0) when the different rays arrive. FixingtS and t0 , the set
N tS

t0(r ) of null rays can be parametrized by their comoving impact vectorsr on L ~relative to the

origin of L). The rays inN t
t0(r ) will be denoted byn r .
S
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But not all the rays inN tS

t0(r ) represent actual light rays. By Fermat’s principle~e.g., pp.

66–67, Ref. 2!, the actual physical light rays~within our approximations! are given by the rays in
N tS

t0(r ) whose present proper lengths are stationary with respect to variations of the com

impact vectorr . To characterize the light rays, we first determine a formula for the present p
lengths of the rays inN tS

t0(r ). Our space–time with

gGL[gGL
0 5a2~ t!F2S 112

f

c2Ddt21S 122
f

c2DdS0
2G ~6!

can be viewed as an Einstein–de Sitter universe with a medium having the following
independent refractive index~e.g., p. 54, Ref. 2!:

n512
2

c2 f. ~7!

Along a null rayn r(s)5(t(s),n̂ r(s)) in N tS

t0(r ), wheres is a parameter along the ray andn̂ r(s)

is the spatial path ofn r in E, Eq. ~6! shows that

n~n r~s!!512
2

c2 f~n̂ r~s!!5U dt

d,U, ~8!

where the dimensionless incremental lengthd, along n̂ r(s) is relative to the Euclidean metri
dS0

2 . The rightmost equality in Eq.~8! uses the assumption thatufu/c2!1 and terms of order
higher thanf/c2 are ignored.

The present proper lengthLt0
(n r) of a rayn r in N tS

t0(r ) is then the ray’s optical length relativ

to the refractive medium in the hypersurfacet03E. In other words,

Lt0
~n r !5E

n̂r

n~ n̂ r !d,t0
.

Here the increment of lengthd,t0
is with respect to the spatial metrica0

2 dS0
2 on t03E, where

a0[a~ t~t0!!.

Note thatd,t0
5a0 d,. Using ~7!, the present proper length ofn r in units of time is

T~n r !5
Lt0

~n r !

c
5

a0

c E
n̂r
S 12

2

c2 f~n̂ r ! Dd,. ~9!

Henceforth, we shall refer toT simply as a present proper length function and assume tha
values are in units of time.

By Fermat’s principle, the light rays are characterized by those rays inn r for which T(n r) is
a stationary value ofT. In the next section, we shall obtain an explicit formula that determi
these stationary values.

2. Present proper length function and lens equation via comoving coordinates

We shall now provide a practical expression of the present proper length~in units of time! in
terms of rectangular coordinates in the comoving spaceE of our lensing space–time (I
3E,gGL). First, let’s transform the dimensionless spherical coordinates (R,u,w) to dimensionless
rectangular coordinates (x,y,z) such that the observer is at~0,0,0! and the optical axis (R,uL ,wL)
corresponds to thez axis. The lens planeL is thexy plane located atzl along the positivez axis.
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We shall relabel the rectangular coordinates onL as (r ,zl), wherer5(r 1 ,r 2) andzl.0 is fixed.
The source is assumed to be located at (s,z), wheres5(s1 ,s2). Whenz.zl , the source is behind
the lens~and so is gravitationally lensed!.

The cosmological Poisson equation at the present cosmic timet5t0 is

¹x
2f~x!54pGa0

2r~x!, ~10!

wherex5(x,y,z), ¹x
2 is the Laplace operator relative tox, G is the gravitational constant, andr

is the cosmological volume mass density. Herer has units of@mass#/@ length#3. Set

r̃[a0
3r, f̃[a0f.

Since~10! is solved by

f~x!52a0
2GE

R3
r~x8!

dx8

ux2x8u
,

we have

f̃~x!52GE
R3

r̃~x8!
dx8

ux2x8u
,

which has units of@ length#3/@ time#2. Integrating~10! along the optical axis from the source to th
observer, we obtain the cosmological 2D–Poisson equation:

¹ r
2C~r !5

8pGa0
2

c2 s~r !, ~11!

where

C~r ![
2

c2 E
z

0

f~r ,z8!a0 dz8, s~r ![E
z

0

r~r ,z8!a0 dz8.

Note thatC(r ) has units of length, whiles(r ) has units of@mass#/@ length#2. Let

C̃~r !5
2

c2 E
z

0

f̃~r ,z8!dz8, s̃~r !5E
z

0

r̃~r ,z8!dz8.

It follows thatC̃5C ands̃5a0
2s. Equation~11! then yields the comoving 2D–Poisson equati

¹ r
2C̃~r !5

8pG

c2 s̃~r !, ~12!

whereC̃ and s̃ have units of length and mass, respectively. The functionC̃ can be expressed
formally as a solution of~12! by

C̃~r !5
4G

c2 E
R2

dr 8 s̃~r 8!lnUr 82r

j0
U,

wherej0 is an arbitrary, dimensionless, fixed constant.
Equation~9! yields that the present proper length of a null rayn r in N tS

t0(r ) separates into two

terms
                                                                                                                



all,

th

g
the

gth

gular

5584 J. Math. Phys., Vol. 43, No. 11, November 2002 S. Frittelli and A. O. Petters

                    
T~n r !5
a0

c
@L~ n̂ r !2Ĉ~r !#, ~13!

where

L~ n̂ r ![E
n̂r

d,, Ĉ~r ![
2

c2 E
n̂r

f~n̂ r !d,

with L( n̂ r) the ~dimensionless! Euclidean length ofn̂ r . Since bending angles are assumed sm
we approximate the line integral off over n̂ r by an integral along the optical axis, i.e.,

Ĉ~r !5
2

c2 E
z

0

f~r ,z8!dz85
C̃~r !

a0
.

Note that the scaled comoving potentialĈ(r ) is dimensionless.
The contribution of the terma0L( n̂ r)/c to Eq.~13! is the time due to the present proper leng

of the light’s geometric path relative to the Euclidean metric, while the terma0Ĉ(r )/c contributes
the relativistic time dilation~Shapiro time delay! due to the gravitational potentialf of the lens.
We have

L~ n̂ r !5, l1, ls , ~14!

where, l is the Euclidean length of the segment ofn̂ r consisting of the straight line from comovin
impact vectorr to the observer and, ls the Euclidean length of the straight-line segment from
source tor . Expressing the null rayn r parametrically asn r(s)5(t(s),n̂ r(s)), we obtain

05gEdS dn̂ r

ds
,
dn̂ r

ds D52c2S dt

dsD
2

1a2~t!Udn̂ r

dsU
2

,

where the squared magnitude of the comoving velocitydn̂ r /ds is relative todS0
2. This implies

, l5E
sL

s0
u
dn̂ r

ds
uds5E

tL

t0 c

a~t!

dt

ds
ds5E

tL

t0
dt5t02tL ,

where tL is the cosmic time whenn r arrives at the lens plane,s0 and sL are the respective
parameter values corresponding tot0 andtL , andt05t(t0), tL5t(tL). Similarly,

, ls5tL2tS ,

wheretS5t(tS) with tS the cosmic time whenn r left the source. Hence, the present proper len
function T(n r) can be expressed in terms of conformal time as

T~n r !5
a0

c
@~ t02tS!2Ĉ~r !#. ~15!

We now express the present proper length function in terms of our comoving rectan
coordinates. In the approximation of small angles, we have

, l5Azl
21ur u25zl1

ur u2

2zl
,

~16!

, ls5A~z2zl !
21ur2su25z2zl1

ur2su2

2~z2zl !
.
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By ~14! and ~16!, the present proper length of the null rayn r becomes

T~r ,s,z![T~n r !5
a0

c2 T~r ,s,z!, ~17!

where

T~r ,s,z![z1
ur u2

2zl
1

ur2su2

2~z2zl !
2Ĉ~r !. ~18!

Equation~15! implies that the functiont(r ,s,z) is the conformal time of the null rayn r . Fixing s
andz, Fermat’s principle yields that the light rays from source to observer are determined by
null rays inN tS

t0(r ) with comoving impact vectorsr satisfying

gradr T~r ,s,z!50. ~19!

where gradr is the gradient operator in rectangular coordinatesr . By ~17! and ~18!, Eq. ~19! is
equivalent to

s5
z

zl
r2~z2zl !â~r ![s~r ,z!, ~20!

whereâ(r )[ r Ĉ(r ) is the change in direction through which the light signaln r bends at the lens
plane, and its magnitude is referred to as the~comoving! bending angle. Equation~20! is called the
~comoving! lens equation. It determines the comoving impact vectorsr of the light rays froms to
the observer.

For fixedz, Eq. ~20! defines a map

sz :L→S:sz~r !5s~r ,z!,

called a(comoving) standard lensing mapfrom the lens planeL to the light source plane S~i.e.,
thexy plane at positionz on the optical axis!, and carries no sense of time. This is the comov
version of the cosmological lensing map commonly used in gravitational lensing—see~28!. Note
that the Jacobian matrix ofsz is symmetric:

~Jacsz!~r !5
z

zl
I2~z2zl !@Hessr Ĉ#~r !. ~21!

Here I is the 232 identity matrix and Hessr Ĉ is the Hessian matrix ofĈ relative to r
5(r 1 ,r 2).

The present proper length of each light ray inN tS

t0(r ) depends on the comoving positions of

the source on the source plane. Inserting~20! in ~18!, we obtain an expression for the prese
proper length

T~r ,z![
a0

c
T~r ,z!, ~22!

where

T~r ,z![T~r ,s~r ,z!,z!5z1
1

2 Fz
ur u2

zl
2 1~z2zl !S uâ~r !u222

r•â~r !

zl
D G2Ĉ~r ! ~23!

with s(r ,z) given by ~20!. The functionT(r ,z) has the convenient property that the source co
dinate z appears linearly. We will take advantage of this fact later in this work.
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Notice that though Eqs.~18!, ~20!, and~22! are stated forz.zl , they actually hold for allz if
we assume thatĈ(r )[0 when2`,z<zl . For example, ifz50, thenT(r ,0)50. If a light ray
starts out from a source at position (s,z) in E with zl<z,`, thenr is the light ray’s comoving
impact vector on the lens planeL at positionzl . For 0,z,zl , the vectorr is the comoving
position onL of the light ray’s spatial path when extended backward from (s,z) to L. If 2`
,z,0, thenr is the ray’s impact position onL when the light ray is extended forward from (s,z)
to the observer toL. Since the case that is of interest to us is when the wavefront has pa
through the lens,we shall assume, unless stated to the contrary, that z>zl .

3. Present proper length function via angular diameter distances, redshifts, and
proper vectors

In the majority of the gravitational lensing literature, the comoving coordinates of the pre
ing sections have not been exploited. In order to make a connection with standard gravit
lensing, we now show that the present proper length functionT(r ,s,z) in ~17!, which uses comov-
ing coordinates, can be expressed in terms of the FL angular diameter distances, redshi
proper impact vectors commonly used in gravitational lensing.

Equations~13! and ~14! yield

T~r ,s,z!5
a0

c
@~, l1, ls2,s!2Ĉ~r !#1

a0,s

c
. ~24!

Sincea0[a(t(t0))5a(t0)5(11zS)a(tS) and the FL angular diameter distance from observe
source isdS5a(tS),s for K50, we get

a0,s

c
5

11zS

c
dS . ~25!

The first term on the right-hand side of~24! is the time delay ofn r relative to the FL light ray from
the source to observer in the absence of the lens. Using the formula for the time delay~e.g., p. 74
of Ref. 2 and p. 146, Ref. 1!, we obtain

T~r ,s,z!5
11zL

c

dLdS

dL,S
F1

2 U r

dL
2

s

dS
U2

2
dL,S

dLdS
C~r!G1

11zS

c
dS[ T~r,s,dS!, ~26!

wherezL is the redshift of the lens;dL is the FL angular diameter distance from observer to l
anddL,S the angular diameter distance from lens to source;r5a(tL)r is the proper impact vecto
of the ray at the lens plane at approximately cosmic timetL ands5a(tS)s is the proper vector of

the source relative to the optical axis at cosmic timetS ; and CL(r)[aLĈ(r ) with aL

5a(t(tL)). Note thatCL has units of length and is the two-dimensional cosmological potenti
cosmic timet5tL . Fixing s anddS , Fermat’s principle yields that light rays are determined
gradr T(r,s,dS)50. Equation~26! now shows that the latter is equivalent to the usual~cosmologi-
cal! lens equation:

s5
dS

dL
r2dL,S r C~r!. ~27!

This induces the standardcosmological lensing mapin the gravitational lensing literature~e.g.,
Ref. 2, p. 77!:

h:L→S:h~r!5
dS

dL
r2dL,S gradr C~r!, ~28!
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whereL5$a(tL)r :rPL% andS5$a(tS)s:rPS% are the cosmological lens plane and light sou
planes, respectively.

III. LIGHTCONES, WAVEFRONTS, AND WAVEFRONT LENSING MAPS

Consider a gravitational lensing situation with an observer receiving light from source
yond the lens plane where deflectors are located. Even though each light source emits per
all directions, generating their own lightcones, the observer receives only those rays that be
his past lightcone. Consequently, we shall study the observer’s past lightcone, rather
source’s future lightcone. We are also interested in constant-time sections of the observe
lightcone, which we refer to as wavefronts. In this section, we shall determine parametric
tions for the past lightcone and for the wavefronts generating the lightcone.

A. Lensed lightcones

The observer’s past lightconeL2 in the space–time (I 3E,gGL) is the subset ofI 3E con-
sisting of all past-pointing light rays originating from the observer at (t0 ,0,0,0). Equivalently, the
lightconeL2 is the set of all space–time events in (I 3E,gGL) from which a light ray arrives at the
observer at cosmic timet0 . To obtain a formula for the points inL2, consider a light rayn r
starting out at event (tS ,ss ,zs), wherezs may be positive or negative, and arriving at the obser
at (t0 ,0,0,0). Herer is the light ray’s comoving impact position on the lens planeL at zl ,
resulting possibly from extending the ray backwards or forwards toL—see discussion at end o
Sec. II B 2. Then the~comoving! lens equations~20! and present proper length equation~22!, show
that n r can be expressed as follows withz as parameter:

n r~z!5~t02T~r ,z!,s~r ,z!,z!, ~29!

wherez varies fromzs to 0, T(r ,0)50, ands(r ,zs)5ss . Alternatively, Eq.~29! holds for a light
ray from the observer to (tS ,ss ,zs) by varyingz from 0 tozs . Hence, by allowingz andr to vary,
we obtain the following expression for the observer’s past lightcone:

L25$~t02T~r ,z!, s~r ,z!, z!:zPR,rPL%. ~30!

The setL2 is a three-dimensional hypersurface in the space–time (I 3S,gGL) and typically has
singularities due to distortions caused by the lens. In Sec. IV, we shall give equations tha
acterize these singularities. Notice that in the conformally equivalent space–time (I 3S,gGL),
where

gGL[
gGL

a2~ t!
52S 112

f

c2Ddt21S 122
f

c2DdS0
2 ,

the observer’s past lightcone becomes

L25$~T02T~r ,z!,s~r ,z!, z!: zPR,rPL%, ~31!

whereT05ct0 /a0 . The observer’s future lightconeL1 and conformal future lightconeL1 are
given, respectively, as follows:

L15$~t01T~r ,z!,s~r ,z!, z!: zPR,rPL%,

L15$~T01T~r ,z!, s~r ,z!, z!: zPR,rPL%.
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B. Lensed wavefronts and wavefront lensing maps

With fixed z, we saw that Eq.~20! defines a lensing map from the lens plane to the li
source plane atz. There is an alternative interpretation of the lensing map stemming from
lightcone point of view. We can consider~20! and~22! jointly with the condition of fixed confor-
mal travel time, instead of fixedz.

We define acomoving (optical) wavefrontin E as a surface of constant conformal prese
proper lengthT(r ,z). One should keep in mind that conformal time flows at a rate different fr
that of cosmological time—see Eq.~2!. However, the surfaces of constant conformal timeT are
the same as those of constant present proper lengthT; they are only labeled differently—see~22!.
Since we are not particularly interested in the specific labels of the wavefronts, which ar
observable, we prefer to use the conformal time

T[T~r ,z!

to describe the wavefronts. We shall refer toT as a conformal present proper length function.
Due to the linearity of~23! in the variablez, we obtain a parametric expression in terms

(r ,T) for all the z coordinates of the comoving wavefront by solving forz:

z~r ,T!5

T2r•â~r !1
zl

2
uâ~r !u21Ĉ~r !

11
ur u2

2zl
2 1

uâ~r !u2

2
2

r•â~r !

zl

. ~32!

The values ofz(r ,T) are assumed to obeyz(r ,T)>zl . In other words, we are interested primari
in the lensed portion of the front, i.e., the portion of the front withz values on the optical axis from

the lens plane onward. Note that if we allowz(r ,T),zl , then it is assumed thatĈ(r )[0 in
~32!—see the end of Sec. II B 2.

Equation~32! can now be used in~20! to obtain an expression for the points of the wavefro
that are on thexy plane at positionz(r ,T):

s~r ,T![s~r ,z~r ,T!!5z~r ,T!S r

zl
2â~r ! D1zlâ~r !. ~33!

In other words, the pair (s,z) determined by~33! and ~32! defines a chart~possibly with singu-
larities! on the portion of the wavefront that went through the lens plane. Of course, the pa

also be used as a chart for the portion of the front behind the lens plane@e.g., by settingĈ(r )
[0]. Thecomoving wavefrontat conformal timeT is then given by

W~T![$~s~r ,T!,z~r ,T!!:rPL%#E, ~34!

which is a two-dimensional surface that generically has singularities due to lensing. Notice
we allow 2`,z,` and 0<T<T0 , thenW(T) traces out the conformal light coneL2 in ~31!.

For the cosmological present proper length

t[T~r ,z!,

the wavefront is given in the space–time (I 3E,gGL) at cosmic timet0 by

W0~ t ![$~t02t,s~r ,t !,z~r ,t !!:rPL%#I 3E,

where s(r ,t)[s(r ,T(t)) and z(r ,t)[z(r ,T(t)) with T(t)5ct/a0 . Equation ~30! shows that
W0(t) is a subset of the past lightconeL2. The wavefrontW0(t) is the set of positions of al
sources whose light rays left at the same cosmic timet02t and arrive at the observer at rough
the present cosmic timet0 . Most observed lensed light sources are at distances ranging fro
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order tens of kiloparsecs~e.g., microlensing! to gigaparsecs~e.g., quasar lensing!. The observation
time is typically of order weeks to a few years. Consequently, we expect the wavefrontW0(t) to
change negligibly during the observing time, unless the front happens to pass through a
order singularity during the observation.

The wavefrontW0(t) lies in the proper space$t02t%3E. Projecting the front into the
comoving space, we obtain

W0
E~ t ![$~s~r ,t !,z~r ,t !!:rPL%#E,

which is a constant cosmic time slice ofL2 ~namely,t02t5constant). The wavefrontW0
E(t)

differs from W(T) in E merely by the labelT5ct/a0 . The two wavefronts are isometric a
singular spaces in the comoving space with the Euclidean metric.

Now for fixed T, the lens Eq.~20! determines a mapping

wT :L→W~T!#R3,

called acomoving wavefront lensing map, defined by

wT~r !5~s~r ,T!,z~r ,T!!.

By allowing for z values withz(r ,T),zl , the mapwT can be separated into two single-valu
maps

wT~r !5H wT
1~r ! if z~r ,T!>zl ,

wT
2~r ! if z~r ,T!,zl

,

wherewT
1 :L→W1(T) andwT

2 :L→W2(T) with W1(T) the subset ofW(T) for which z>zl ,
while W2(T) is the subset withz,zl . In other words, the mapwT defines two~possibly singular!
coordinate patches onW(T). SinceW2(T) did not pass through the lens, it has no singularit
and so the mapwT

2 is of little interest for our purposes. Instead, we shall focus primarily onwT .
Unless stated to the contrary, we shall assume thatwT(r )5wT

1(r ).
It is important to emphasize that rather than the usual mapping from a lens plane to th

source plane~such as given by the comoving and cosmological lensing mapssz :L→S and h:L
→S), we now have a new mapping—one from the lens plane to a wavefront. This gives us an
alternative interpretation of gravitational lensing where the light source plane is dispensed
and substituted with a wavefront: the locus of points that can be reached in a given time b
signals emitted simultaneously from the observer in all possible directions, after passing th
the lens plane. It should also be kept in mind that even though the wavefront as a surf
different from a source plane, in typical lensing scenarios the wavefront surface lies very cl
a plane in the region of interest, namely around the optical axis.

IV. CAUSTICS ON WAVEFRONTS AND LIGHTCONES

As a surface in the comoving spaceE#R3, the wavefrontW1(T) typically develops
singularities—calledcaustics—due to the distortions caused by the lens. More precisely, a por
in the lens planeL is a critical point of the wavefront lensing map

wT :L→W1~T!#R3, wT~r !5~s~r ,T!,z~r ,T!!

if rank@(JacwT)(r )#,2, where JacwT is the Jacobian matrix ofwT and z(r ,T)>zl . The set of
critical points ofwT will be denoted by Crit(wT). The set ofcaustic pointsof wT or onW1(T) is
the set

Caustics@W1~T!#[wT@Crit~wT!#
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of all critical values ofwT .
The Jacobian matrix ofwT is the following 332 matrix:

JacwT5F ]s~r ,T!

]r

]z~r ,T!

]r

G , ~35!

wherez5z(r ,T) is given by~32! ands5s(r ,T) by ~33!. Define a functionf :L→R by

f ~r !5zl1
ur u2

2zl
2Ĉ~r !. ~36!

Note thatf (r )5, l2Ĉ(r ) within our approximations@see~16!#, soa0f (r )/c is the present prope
length of a light ray from the pointr on the lens plane to the observer. By~20!, we see that

s~r ,T!5s~r ,z~r ,T!!5z~r ,T!¹r f ~r !1zlâ~r !.

Consequently, the Jacobian matrix ofs(r ,T) relative tor can then be expressed as

]s

]r
5F f 1

]z

]r 1
1z f111zlĈ11 f 1

]z

]r 1
1z f121zlĈ12

f 2

]z

]r 1
1z f211zlĈ21 f 2

]z

]r 2
1z f221zlĈ22

G , ~37!

where f i , f i j , andĈ i j denote the usual partial derivatives relative tor5(r 1 ,r 2). Note that the
Jacobian matrix in~37! is not symmetric, unlike the usual Jacobian matrices]sz /]r and]h/]r of
the comoving and cosmological lensing maps. Ifz is fixed, then~37! reduces to the usual comov
ing symmetric case—see Eq.~21!,

]s~r ,T!

]r
5

]sz~r !

]r
5

z

zl
I2~z2zl !~Hessr Ĉ!~r !.

We have rank@(JacwT)(r )#,2 if and only if every 2-square minor of JacwT vanishes,

det
]s

]r
50, ~38!

detF ]s1

]r

]z

]r

G5
]s1

]r 1

]z

]r 2
2

]s1

]r 2

]z

]r 1
50, ~39!

detF ]s2

]r

]z

]r

G5
]s2

]r 1

]z

]r 2
2

]s2

]r 2

]z

]r 1
50, ~40!

wheres5(s1 ,s2). Since the conformal timeT is fixed when studyingW1(T), we have

T~r ,s~r ,T!,z~r ,T!!5T5constant,
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which yields

]T

]r
1

]T

]s

]s

]r
1

]T

]z

]z

]r
50. ~41!

By ~19!, we get

]T

]r
50, ~42!

while Eq. ~18! yields ]T/]s5(s2r )/(z2zl). The latter vanishes if and only ifâ(r )5r /zl @apply
~42! or ~20!#, which holds if and only ifr is a critical point of the functionf in ~36!. Note that for
r to be a critical point ofj it must solve

r

zl
2â~r !5

] f

]r
~r !50.

Generically, the critical points off are nondegenerate and so are isolated points~e.g., p. 240,
Petterset al.2!. For this reason,we shall assume—unless stated to the contrary—thatrÞs. Con-
sequently,

]T

]s
5

s2r

z2zl
Þ0,

]T

]z
52

ur2su2

2~z2zl !
2 Þ0. ~43!

Equation~41! yields

]z

]r
5F ~]T/]s!

~]T/]z!G ]s

]r
, ~44!

where by~43! the bracketed term is nonzero. Plugging]z/]r 1 and]z/]r 2 from ~44! into ~39! and
~40! implies that

]s1

]r 1

]z

]r 2
2

]s1

]r 2

]z

]r 1
5F ~]T/]s2!

~]T/]z! Gdet
]s

]r
, ~45!

]s2

]r 1

]z

]r 2
2

]s2

]r 2

]z

]r 1
52F ~]T/]s1!

~]T/]z! Gdet
]s

]r
. ~46!

Equations~38!–~40!, ~45!, ~46!, along with our assumption in~43!, then show that the Jacobia
matrix of wT has rank below 2 if and only if the Jacobian determinant ofs vanishes. Thus, at the
conformal timeT the caustics on the wavefront are given by

Caustics@W~T!#5$~s~r ,T!,z~r ,T!!%, ~47!

whererPL, s(r ,T) is given by~33! with T fixed, ands5s(r ,T) is subjected to the constraint

det
]s

]r
~r ,T!50. ~48!

Equation~47! extends to wavefront lensing maps the usual concept of caustics in gravita
lensing, where lensing maps are from a lens plane to a light source plane. Allowing the con
time T to vary in ~47! yields evolving caustics on the wavefront as the front propagates.
caustics on a wavefront trace out acaustic surfaceon the conformal past lightconeL2 is given by

Caustics@L2#5$~T02T~r !,s~r ,T~r !!,z~r ,T~r !!!%, ~49!
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whereT05ct0 /a0 , rPL, ands(r ,T) obeys~48!. SinceT varies in the case of a caustic surfac
the vanishing-determinant condition~48! forcesT to be a function ofr , which we have expresse
by T(r ). Also, note that the caustics lie on the portion ofL2 with z>zl . Projecting Caustics@L2#
into the comoving spaceE, we obtain thecomoving caustic surface

CausticsE@L2#5$~s~r ,T~r !!,z~r ,T~r !!!%, ~50!

whererPL ands(r ,T(r )) satisfies~48!. In the space–time (I 3E,gGL), the caustic is given by

Caustics@L2#5$~t02t~r !,s~r ,T~r !!,z~r ,T~r !!!%, ~51!

wheret0 is the present cosmic time andt(r )[a0T(r )/c, rPL, ands(r ,T(r )) obeys~48!. Pro-
jecting Caustics@L2# into E yields a surface that is isometric to CausticsE@L2# as singular space
relative to the Euclidean metric onE. Analogous to Eqs.~49!–~51!, the caustics of the future
lightcone and their projection into the comoving space are given as follows:

Caustics@L1#5$~t01t~r !,s~r ,T~r !!,z~r ,T~r !!!%, ~52!

Caustics@L1#5$~T01T~r !,s~r ,T~r !!,z~r ,T~r !!!%, ~53!

CausticsE@L1#5$~s~r ,T~r !!,z~r ,T~r !!!%, ~54!

whererPL ands(r ,T) satisfies~48!.
The previous discussion traces out the caustic surfaces of an observer’s past lightcon

constant time slices. The caustic surfaces can also be traced out using constantz slices. Slices of
the caustic sheet by constantz planes are curves on the light source plane, and coincide with w
are commonly referred to in the lensing literature as ‘‘caustics.’’ We shall refer to such caust
z-sliced caustic curves. These caustic curves can also have singularities, such as cusps
important to add that our discussion shows that points on az-sliced caustic curve actually occur a
different cosmic~or conformal! times. Often times, points on caustic curves are treated in
lensing literature as if they occur at the same cosmic time.

In order to calculate the points on the comoving caustic sheet, we impose the conditio
the Jacobian of the lens map be singular—see~50! and ~54!:

det
]s

]r
50.

This condition can be imposed either at constantz or constantT if the intention is to produce the
caustic sheet. For constantT, we have thats is given by the wavefront lensing map~33!, i.e., s
5s(r ,z(r ,T)), while for constantz the functions is given by the standard lensing map~20!, i.e.,
s5sz(r ). In the latter case, we consider the caustics of the mappings5sz from the lens plane to
the light source plane, with the intention of eventually letting the light source plane atz sweep
~along the optical axis! the entire range behind the lens.

By Eq. ~21!—equivalently, Eq.~37! with z fixed—we see that the Jacobian matrix ofsz

depends linearly onz,

]sz

]r
5F11~z2zl ! f 11 2~z2zl !Ĉ12

2~z2zl !Ĉ21 11~z2zl ! f 22
G , ~55!

wheref is given by~36!. Consequently, the determinant of~55! is a quadratic inz. Explicitly, the
vanishing of the Jacobian determinant ofsz is

0511~z2zl !~2zl
212Ĉ112Ĉ22!1~z2zl !

2@~zl
212Ĉ11!~zl

212Ĉ22!2Ĉ12
2 #. ~56!
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There are two solutions forz as a function ofr , representing thez coordinate of points on the
caustic surface,

z6~r ![zl1
Ĉ111Ĉ2222zl

216A~Ĉ112Ĉ22!
214Ĉ12

2

2@~zl
212Ĉ11!~zl

212Ĉ22!2Ĉ12
2 #

. ~57!

Evaluatingsz5s(r ,z) at z6(r ), we obtain the transverse coordinates of points on the cau
surface:

s6~r ![s~r ,z6~r !!5
z6~r !

zl
r2~z6~r !2zl !â~r !. ~58!

By varying r across the lens plane, the pair (s6(r ),z6(r )) traces out the comoving caustic surfa
for either the future or past conformal lightcone:

CausticsE@L1#5$~s6~r !,z6~r !!: rPL%

5CausticsE@L2#. ~59!

V. SURFING A CAUSTIC SHEET

In his Millennium Essay, Blandford16 speculated about some possible novel gravitatio
lensing ways of probing the cosmos. One of these dealt with caustic sheets: ‘‘Our observ
need not be passive. ... For example, suppose that we launch an array of robotic telescopes
three of them to measure the velocity of a caustic sheet~from by a bright source! as it passes
Earth; a fourth telescope could be made to ‘‘surf’’ the wave and observe the source with c
erable magnification for a long time.’’

We now apply the results of the previous section to show how a telescope may surf a sh
a caustic surface. This will be done in two steps.

First, change the point of view by assuming that the telescope is the observer. We sha
consider the past comoving caustic surface of the telescope and the future comoving
surface of the source simultaneously, and determine the analytical form of the equations fo
surfaces. Assume that the telescope lies somewhere on the future comoving caustic surfac
source~i.e., the source is seen at an extremely high magnification corresponding to being
caustic!. For the time being, we shall also suppose that the source is at rest relative to the len
past comoving caustic surface of the telescope is given by an expression of the form

S0~x!50,

where x5(s,z). In principle, one can findS0 by solving for r in terms of s6 using ~58! and
inserting those values ofr into ~57! to obtainz6 in terms ofs6 , say,z65F6(s6). In this case,
the past comoving caustic surface of the telescope is given by

S0~x![z62F6~s6!50. ~60!

Since we are using the small-angle approximation, we can approximate the future com
caustic surface of the source by~60! if s andz are transformed as follows:

s→2s
, tl

,sl
, z→, tl1,sl

where, tl and,sl are the telescope-lens and lens-source Euclidean distances, respectively.
we suppose that there is an expression for the future comoving caustic surface of the sourc
form
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S0~x!50. ~61!

Second, suppose that a source moving relative to the lens with slowly varying 3-velocityV in
comoving coordinates is observed extremely magnified by a telescope at a given instant o
formal time, say,t50. Assuming that the telescope lies somewhere on a caustic sheet of the
away from singularities~e.g., cusp ridges, swallowtails, elliptic umbilics, hyperbolic umbilic!,
what should the subsequent motion of the telescope be in order to track the image of the so
a peak brightness? Suppose that during a time incrementdt the source moves keeping the distan
to the lens plane approximately the same, and assuming its motion to be relatively slo
caustic sheet of the source in motion will not differ from that of the source at rest other than
general translation in the direction of motion, i.e.,

S~x,dt!5S0~x2V dt!50.

If the telescope lies on the caustic sheet at pointx0 at time t50, then

S~x0,0!505S0~x0!.

For the telescope to see a bright image of the source during a length of timedt, the telescope
needs to move with velocityv to another point on the caustic sheet, i.e., to a pointx5x01vdt so
that

S~x,dt!505S0~x01~v2V!dt!.

Taylor expanding to first order indt, this is equivalent to

¹S0•~v2V!50, ~62!

where¹S0 is evaluated at the original position of the telescopex0 and• stands for the Euclidean
scalar product of the two vectors. This means that the telescope’s velocity must differ from t
the source at most by a vector tangent to the caustic sheet. Clearlyv5V would be one way to stay
on the caustic sheet, but it may require more energy than necessary. We want the smalles
needed to stay on the caustic sheet. In order words, we shall minimizeuvu2 for a fixed spatial
position and time subjected to the constraint in~62!. This will be valid for the time incrementdt,
i.e., we are considering only the zeroth iterate of caustic surfing. The vanishing gradient
LagrangianL5v1

21v2
21v3

21l ¹S0•(v2V) with respect tov5(v1 ,v2 ,v3) and the multiplierl
yields l52V•¹S0 /u¹S0u2. Hence, we obtain the minimum velocity

vmin52l¹S05
V•¹S0

u¹S0u2
¹S0 , ~63!

where¹S0 is evaluated atx0 . In other words, the minimum velocity is the projection ofV to the
normal vector¹S0 to the caustic surface atx0 . This is physically the minimum speed since¹S0

points along the shortest direction between the caustic sheet at timet50 and the sheet att5dt.
The speeduvminu might be considerably smaller than the source’s speeduVu depending on the
circumstances. The normal unit vector to the caustic¹S0 /u¹S0u can be calculated either from th
expression~61! if available or from the parametric version of the caustic map given by~57! and
~58!.

In a physically realistic situation the telescope will spend some time to reach this velocity
one will need to adjust the velocity continuously even if the source is moving at constant s
due to the curvature of the caustic sheet.

We shall illustrate the caustic surfing concept with a singular-elliptical-potential examp
Sec. VI B.
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VI. EXAMPLES AND ILLUSTRATIONS

In this section we illustrate explicitly the construction of the wavefronts in some of the m
widely used models for the deflection potential in astrophysics. In all the cases that we dea
the expressions for the deflection potentials stated are assumed to hold only in the vicinity
optical axis. This assumption is maintained in the construction of all the figures.

A. Nonsingular elliptical potential lens

In this section we illustrate the case of an elliptical potential, which has the following fo

Ĉep~r ![A0Ar c
21~12e!r 1

21~11e!r 2
2, ~64!

whereA0 is a dimensionless constant. This potential is often used to model elliptical galaxies
A0 proportional to the velocity dispersion of the lens, whereas the dimensionless paramer c

.0 ande>0 determine the core radius and ellipticity of the lens. A nonvanishing core radiur c

guarantees a nonsingular surface mass density, which in turn ensures that no light rays
structed in their passage through the lens. The bending angle is given by

âep~r !5¹rĈep~r !5
A0~~11e!r 1 ,~12e!r 2!

Ar c
21~12e!r 1

21~11e!r 2
2

.

For fixed parameter values ofA0 , r c , ande, these two explicit expressions for the potential a
bending angle can be used inz(r ,T) ands(r ,T) to produce plots of the constant-time wavefron
embedded in three-dimensional space beyond the lens plane. At early times beyond the len
the wavefront is essentially spherical, but as it progresses away from the lens plane the
section of the wavefront begins to lag behind the rest of the wavefront, eventually folding
developing multiple sheets. The progression of the wavefront in time shows different reg
from smooth to various singular types. In the following, we produce a representative surfa
each regime, effectively classifying the singularities of the wavefronts of an elliptical lens.
extends the brief summary of such wavefronts given in Ref. 17. Note that formally our trea
is along the future lightcone of the observer, which can be interpreted as the past lightcon
time coordinate running towards the past, because the space–time is static.

1. Wavefront singularities

We arbitrarily fix the values of the parameters atA051.01,zl590,e50.0002, andr c

51.001. These values are chosen for purely pedagogical reasons. Notwithstanding, in mak
choice we took care to ensure that the approximation of small angles was met, in order f
plots to be qualitatively representative of lensing problems.

Let Tl be the time at which the ray that passes through the center of the lens~i.e., the origin!
reaches the lens plane. With our choice of parameters, it takes the valueTl590. We find that for
times at least as late asT5Tl18900, the wavefronts are regular on the other side of the
plane, but sometime beforeT5Tl19800 the first singularity occurs in the form of a single po
on the wavefront. The time scales in this particular example are irrelevant; in physically ac
lensing situations the time scale should agree with the distance scale to the lens plane in o
magnitude. The time of the first singular wavefront is aboutT5Tl19699.27, and is calculated i
Sec. VI A 2. After the first singularity, the wavefront successively goes through four more dis
singularity regimes.

The regular regime is illustrated in Fig. 1, which shows a field view of the wavefront.
observer is located to the far right, at~0,0,0! in the plot coordinates. The wavefront is distorte
with respect to a sphere, and develops a dent that points toward the observer along the optic
The scale of the optical axis is greatly magnified~about 104 times! with respect to the transversa
axes in order to better show the retardation effect on the wavefront. The ‘‘spike’’ has a total l
of about 1023 on a sphere of radius about 93103, so the effect is small in the proper scales a
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is well within the approximation of small angles. The tip of the ‘‘spike’’ is perfectly smooth
presents a convex surface to the observer. There are no singularities anywhere in the wave
this time (T5Tl18900).

At a later time, the first singular regime develops, illustrated in Fig. 2. The tip of the s
which earlier was convex toward the observer, develops a self-intersection and a sharp c
ridge in the form of horizontal ‘‘lips.’’ Our use of the term ‘‘lips’’ in this context is entirely fo
descriptive purposes and should not be understood in the technical sense used in Arnold’s
in which the term ‘‘lips’’ refers to theA3(1) planar caustic metamorphosis~e.g., pp. 375–376,
381 of Ref. 2!. The surface of the wavefront that faces the observer is now concave, and li
by the two cuspidal ridges outlining the ‘‘lips.’’ The two cuspidal ridges pinch off the back con

FIG. 1. A portion of the wavefront of an elliptical potential in the regular regime, i.e., early times past the lens pla~in
this case,T5Tl18900). The observer is to the right at~0,0,0!.

FIG. 2. The single lips regime (T5Tl19800). The bottom panel shows a front view of the lips singularity.
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sheet of the wavefront at two symmetrical swallowtail points. The swallowtails are best ap
ated in the top panel, where a side view of the wavefront is shown. The bottom panel sh
front view, where the lip character of the cuspidal ridge can be appreciated. The wavefronts
regime all have this horizontal lip singularity, but the ‘‘lips’’ grow in time continuously af
starting out from a single point at the center. The picture shows the wavefront atT5Tl19800,
which is still quite early in this regime. One notable fact about this wavefront is that, locally,
indistinguishable from the early singular wavefronts in the implosion of a triaxial ellipsoid,18 in
which case, the cuspidal lip-ridge lies ‘‘in the outside.’’ For the gravitational lensing case tha
are illustrating, in a global sense, the cuspidal lip-ridge lies ‘‘inside.’’

The next singular regime is illustrated in Fig. 3. The point at the center of the concave
of the wavefront facing the observer turns momentarily singular at approximatelyT5Tl

FIG. 3. Typical wavefront in the criss-cross lip regime (T5Tl110 200), where two nested perpendicular cuspidal ridg
are present. The middle panel is a vertical slice of the top panel, while the bottom panel is a horizontal slice. Bot
are through the optical axis.
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110 148.84, and grows another lips singularity, this time vertically oriented. These vertical ‘‘
ride on top of the now mixed convex–concave section of the wavefront and present a co
surface to the observer, as can be appreciated from the two slices in the middle and bottom
The middle panel shows a vertical slice of the wavefront through the optical axis. It ma
difficult to appreciate that the foremost sheet pinches off the underlying originally existing
well before touching the originally existing cuspidal ridges at the top and bottom. The bo
panel shows an optical-axis horizontal slice, where the cuspidal character of the newly c
forefront sheet is evident. The two ends of the vertical ‘‘lips’’ are two symmetrical swallowt
All the wavefronts in this regime have two perpendicular lips, yielding a total of four swallowt
The perpendicular lips grow continuously in time, but the inner lip starts at the center and
until it touches the outer lips. This picture shows the wavefront atT510 200, which is quite late
within this regime since the inner lip is about to merge with the outer one.

The next regime consists entirely of a single wavefront at the critical time when the inn
singularity merges with the outer one. This wavefront is represented in Fig. 4. The singular
on the wavefront has the general outline of a football in a vertical position, inscribed in an
astroid or diamond. The ‘‘football’’ outline is the distorted last expression of the inner lip-rid
whereas the astroid is the distorted last expression of the outer~original! horizontal lips. At this
time the two cuspidal ridges merge right before they undergo a permanent change. The wa
at this critical time has two swallowtails symmetrically located along the horizontal direction
two singular points symmetrically located along the vertical direction where the two lips merg
the context of wavefronts, these points have no greater significance than the merger of a cus
and a swallowtail surface. However, their greater significance is that they are indicators
presence of hyperbolic umbilic points in the caustic sheet, which we describe in the next se
The figure represents the timeT510 420, which is close enough to the critical time at the re
lution that we are using.

The last regime comprises all the wavefronts later than the critical time at which the
‘‘lips’’ merge with the outer ‘‘lips.’’ All such late wavefronts have a ‘‘regular’’ cuspidal ridg
delimiting a concave surface that faces the observer, namely, a cuspidal ridge which is sm
a curve in three space. Behind the foremost concave cap, the wavefront self-intersects a
another cuspidal ridge with four singular points in the general shape of an astroid or diamon
such wavefront at timeT5Tl110 900 is shown in Fig. 5. In this front view, the foremost ov
cuspidal ridge is clearly distinguishable, as are the two swallowtails in the back. However,
are two other swallowtails completing the diamond, which lie behind the foremost oval cap
are blocked from view in this picture. The qualitative structure of the wavefront in the diam
ridge neighborhood is shown in the bottom panel of Fig. 6.

A very late wavefront at timeT5Tl155 000 is shown in Fig. 6. It can be seen that as ti
moves on, the oval and diamond cuspidal ridges remain essentially unchanged except that
ridge in the foreground grows at a much faster rate than the diamond-shaped ridge in the ba

FIG. 4. The critical wavefront (T5Tl110 420).
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the wavefront eventually acquires a shape resembling that of a goblet. The figure shows
field view of the ‘‘goblet’’ and a magnification of the goblet’s throat to show the diamond rid
The diamond ridge structure is almost ubiquitous in wavefront evolutions that are not axisym
ric. For another view of one of these local diamond ridges in wavefronts, we refer the reader
bottom panel of Fig. 10. The global ‘‘goblet’’ wavefront is typical of spherically symmetric reg
potentials, with the major difference that the throat of the goblets in the spherically symmetric
degenerates down to a single point, lacking the complicated diamond structure for the c
elliptical symmetry. The diamond ridge represents the nondegenerate version of the throat
goblet. The goblet’s throat has three wavefront sheets, each generically giving rise to an im
the light source.

What we have described in this section are precisely the singularities and metamorph
wavefronts in the observer’s lightcone in the case of an elliptical potential. In this case, we
that the wavefronts have three types of singularities: cuspidal ridges, swallowtail points
points of transversal self-intersections. These three singularity types are shared by generic
fronts in space—see p. 55 of Ref. 19. We also showed that two kinds of metamorphosis oc
the wavefronts due to an elliptical potential. In the first place, we have found two occurrenc
the birth of ‘‘lips’’ on the wavefront. Second, we have found two hyperbolic umbilic metam
phoses, i.e, the two symmetrical occurrences on the wavefront of the exchange of a swal
point from one cuspidal ridge to another. Both metamorphosis are part of Arnold’s list of m
morphoses of fronts in space—see, for instance, the first and fourth perestroikas in Fig. 25
489 of Ref. 20.

2. Caustic sheet

If we think of the family of wavefronts for all timesT as spatial slices of the observer
lightcone, then the collection of all the caustic singularities~i.e., cuspidal ridges, swallowtai

FIG. 5. Typical wavefront early in the late regime (T5Tl110 900). The bottom panel shows a front view.
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points! on the instantaneous wavefronts forms a two-surface in space–time. The projection
two-surface into the comoving spaceE is referred to as a comoving caustic surface.

As a surface in the three-spaceE, the caustic surface is traced in time by the caustics of
traveling wavefront as the front moves away from the observer. The metamorphoses of the
front’s caustics thus build up a picture of the caustic surface’s singularities. The generic sing
ties of a caustic surface in three-space are of five different types: folds, cuspidal ridges, sw
tail points, elliptic umbilic points, and hyperbolic umbilic points.21

We showed that the caustic surface on an observer’s lightcone is given by Eq.~59!. In the
particular case of the elliptical potential, the resulting caustic surface is shown in Fig.
significant feature of our caustic surface in three-space is that it consists of two separate int
ing sheets, one for each nontrivial root~57! of the Jacobian determinant in~56!. The two bottom

FIG. 6. Typical ‘‘goblet’’ wavefront in the very late regime~in this case,T5Tl155 000). The middle-top panels shows
magnification of the throat. The middle-bottom and bottom panels show vertical and horizontal slices, respectivel
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panels in the figure show the two component sheets. One sheet starts closer to the obser
horizontal ‘‘beak’’ and then develops a diamond cross section. The second sheet starts ins
first one as a vertical ‘‘beak’’ and eventually opens up into a smooth surface with an oval
section. The transitions of both sheets take place at the points where they intersect. The p
intersection where the vertical beak disappears from the second component sheet and the
cusp ridge appears on the first component sheet are hyperbolic umbilic points—there are tw
points.

We can also at this point give the exact value of the time of the first singular wavefront.
is the smaller ofT(s1(0),z1(0)) andT(s2(0),z2(0)) since rays passing through the origin ha
the longest delay~as is evidenced from the spike!. For the preceding section, we hav

FIG. 7. Caustic sheet of the elliptical potential. The two component sheets are represented separately in the mi
bottom panels.
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T(s1(0),z1(0))5Tl19699.27 andT(s2(0),z2(0))5Tl110 148.84, i.e., the first singular wave
front is the surface atT5Tl19699.27, as anticipated.

By slicing the caustic sheet with constant-z surfaces we obtain a series of planar caus
representing the metamorphosis of the hyperbolic umbilic. These are shown in Fig. 8 and co
with the well-known caustic curves in the gravitational lensing literature for an ellipt
potential—e.g., p. 386 of Ref. 2. Beautiful photographs of caustic metamorphoses are sh
Ref. 14—see p. 68 for the hyperbolic umbilic metamorphosis.

B. Singular elliptical potential lens

We shall illustrate the wavefront singularities and caustic surface due to a singular elli
potential, namely, the case of vanishing core radius (r c50). In this case, it is simpler to use pola
coordinates (r ,q) on the lens plane. We have for the potential,

Ĉep
sing~r ,q![A0A~12e!r 1

21~11e!r 2
25A0rA11e cos~2q!,

and for the associated bending angle,

âep
sing~r ,q!5

A0

A11e cos~2q!
~~11e!cosq,~12e!sinq!,

which has no dependence onr . The potential vanishes at the originr 50. This case is singula
because the surface mass density associated with the potential blows up at the origin of t

plane ~i.e., ¹ r
2Ĉep

sing(r )→` as r→0). The center of the lens~i.e., the origin! thus acts as an
obstruction to the light rays—see Ref. 22! and p. 544 of Ref. 2 for a detailed treatment
obstruction points. Soon after going through the lens plane, the wavefronts evolve ma
differently from the nonsingular case. For our illustrations, we have used the following valu
the lens parameters:A050.3,e50.02,zl54000. As in the regular case, these values are chose
pedagogical reasons, although taking care to respect the approximations of small angles.

1. Wavefront singularities

Due to the obstruction at the center of the lens~i.e., the origin!, all the wavefronts are singula
and there are only two regimes. The first regime consists entirely of a single wavefron~the
earliest one to make it past the lens plane! with an interior spike pointing towards the observer,
did the wavefronts of the nonsingular elliptical potential. However, in this singular case the
is conical, and touches the lens plane at the origin. The point at the tip of the spike is rem
This wavefront,T5Tl54000, is shown in Fig. 9. The figure shows both a field view of
wavefront, and a side view of the tip of the spike magnified to make the conical char
apparent.

At all times afterwards, the wavefronts resemble a goblet—the second regime. However
goblets are markedly different from those that resulted at late times in the nonsingular ell
potential case. There is a single diamond-shaped cuspidal ridge, which lies at the throat
goblet. The rim of the goblet is removed and acts as a boundary of the wavefront. These g
lack the interior concave surface facing the observer that characterizes the goblets in the
gular case. The throat of the goblet has three sheets, each typically giving rise to an image
source. One such wavefront in this regime (T5Tl11000) is illustrated in Fig. 10, where a fiel
view evidences the resemblance to a goblet. The bottom panel in the figure shows a ma
view of the throat of the ‘‘goblet’’ where the diamond structure is evident.

Two questions relating to this imperfect ‘‘goblet’’ wavefront arise. In the first place, do
wavefronts ever detach from the lens plane, or, on the contrary, do they reach out to the o
tion point? As one can appreciate in Fig. 11, where a given portion of the initial wavefrontT
5Tl is followed up and plotted again atT5Tl11000, the wavefront does not remain attached
the lens plane.
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FIG. 8. The metamorphosis of the planar caustics arising fromz-plane slices of the caustic surface.
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The second question is whether the rim of the goblet is planar, namely, whether it lies
constant-z plane.The answer is no.The rim of the goblet is a space curve, which is plotted in F
12. It must be kept in mind that the rim is the boundary of the wavefront. This rim is rem
because it is the image of the pointr 50 on the lens plane under the wavefront lensing map,
wT,ep

sing(0,q)5(s(0,q,T),z(0,q,T)), which is a space curve for fixedT. Explicitly, Eqs. ~32! and
~33! yield that

s~0,q,T!5
2~T1zl uâep

sing~q!u2/2!âep
sing~q!

11uâep
sing~q!u2/2

1zlâep
sing~q!,

~65!

z~0,q,T!5
T1zl uâep

sing~q!u2/2

11uâep
sing~q!u2/2

.

As is seen from these equations, the ultimate reason why the wavefronts have a whole e
curve’s worth of boundary points instead of only one point is that the bending angle vector
âep

sing does not depend onr .
In rectangular coordinates, the mapâep

sing is ill-defined at the originr50. It has a singularity
of the type 0/0 since

âep
sing~r !5

A0
2~~12e!r 1 ,~11e!r 2!

Ĉep
sing~r !

.

FIG. 9. The unique wavefront in the early regime (T5Tl) in the singular case. The bottom panel shows a side view of
tip of the spike.
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One can approach the singular point from different directions in the lens plane and hope th
limit would be the same in all directions. However, the limiting value of theâep

sing(r ) as r→0 is
direction dependent, as signaled by the direction-dependent bending angleq in ~65!. In this
atypically singular case, obstructing one light ray~the one that passes through the center of
lens! removes an elliptical curve’s worth of points on the wavefront. If a source is outside the
then one lensed image is seen of the source, while two images are seen if the source is in
rim. This phenomenon seems to have been first noted on p. 188 of Ref. 2 for the case of a s
isothermal sphere~i.e., r c5e50), where the rim is a circle, as discussed in Sec. VI C.

FIG. 10. Typical wavefront in the late regime (T5Tl11000) in the singular case. The bottom panel shows a magn
view of the ‘‘throat’’ of the goblet.

FIG. 11. Progression of a portion of the wavefront in the singular case. The observer is on the right.
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2. Caustic sheet

The caustic sheet in this case is obtained by the same method as in the case of a non
elliptical potential. The use of polar coordinates (r ,q) simplifies the calculation. We have

det
]sz

]r
5cos~2q!det

]sz~r !

]~r ,q!
5cos~2f!S ]x

]r

]y

]q
2

]x

]q

]y

]r D ,

wherex andy are the Cartesian components of the lensing mapsz . In this case, the componen
reduce to

x5S z

zl
r 2

~z2zl !A0~11e!

A11e cos~2q!
D cosq,

FIG. 12. The boundary of the wavefront in the critical case. Middle and bottom panels show side and front vie
~66!
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y5S z

zl
r 2

~z2zl !A0~12e!

A11e cos~2q!
D sinq,

and the vanishing of the Jacobian determinant—see Eq.~56!—becomes

05det
]sz

]r
5

z cos~2q!

zl~11e cos~2q!!3/2FzS ~11e cos~2q!!3/2
r

zl
2A0~12e2! D1zlA0~12e2!G .

The unphysical rootz50, which defines the plane of the observer, is responsible for the abs
of a second component caustic sheet, the most notable aspect of the caustic sheet in the
case. The~one component! caustic sheet is obtained from the nontrivial root, i.e.,

z5zc~r ,q![2
zlA0~12e2!

~11e cos~2q!!3/2 r /zl2A0~12e2!
. ~67!

A plot of the caustic sheet is shown in Fig. 13. The surface has four cuspidal ridges w
conical profile, which can clearly be appreciated in the bottom panel of the figure. The tip o
caustic surface lies at the center of the lens~origin! and is removed. Slicing the caustic sheet w
constant-z planes we obtain thez-planar caustic curves. The planar caustics are astroid-sh
curves with four cusps, as can be seen in Fig. 14. A source inside the caustic curve has four
images, while a source outside has two.

FIG. 13. The caustic sheet in the singular case.
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3. Caustic surfing

The singular elliptical potential provides an excellent opportunity to illustrate the ca
surfing scheme. We start by pointing out that the caustic sheet, which is parametrically giv
~66! and ~67!, can equivalently be given by the following expression:

S0~x![~~11e!x2!1/31~~12e!y2!1/32~2eA0~z2zl !!2/350.

This expression assumes that the apex of the lightcone where the caustic lies is at the o
coordinates, and the lens plane is at a distancezl from it.

Suppose now that a source is moving on the light source plane with an approximately co
velocity V5(V1 ,V2,0), carrying its own lightcone with it. Then the caustic on the sourc
lightcone moves as well, and at any given instant of conformal timet, assuming the motion is
sufficiently slow, the caustic surface can be given asS(x,t)5S0(x2Vt). Assume that a space
borne telescope observes at timet50 an image of the source at peak magnification. From
location of the image, by the~comoving! lens map we can determine the locations of the source
on the source plane. But for our purposes we need to switch the point of view and think
lightcone of the source instead: The source lies at the origin and the telescope at a lo
(x0 ,y0 ,z0)5(2s, tl /,sl ,,tl1,sl), where, tl and,sl are the distance between the telescope and
lens plane, and between the lens plane and the source plane, resp. Because (x0 ,y0 ,z0) lies on the
comoving future caustic sheet of the source att50, we have

S0~x0!505~~11e!x0
2!1/31~~12e!y0

2!1/32~2eA0, tl!
2/3, ~68!

where we have made the substitutionzl5, tl . Now, we calculate the speedvmin that the telescope
needs to stay on the caustic sheet during the time incrementdt. From our discussion in Sec. V
specifically Eq.~63!, we have

vmin5
V1@~11e!/x0#1/31V2@~12e!/y0#1/3

@~11e!/x0#2/31@~12e!/y0#2/31@4e2A0
2/, tl#

2/33S S 11e

x0
D 1/3

,S 12e

y0
D 1/3

,2S 4e2A0
2

, tl
D 1/3D .

In this expression, all the symbols are known in principle. The values ofx0 andy0 can be found
via the lens mapping at the observation event, as explained above. Clearly, this may be a
cally complex procedure, considering that it is only a first step in a iterative scheme to pla
telescope on the caustic sheet. Our main purpose is to show that the calculation is feas
principle.

C. Singular isothermal sphere lens

For a singular isothermal sphere lens, we haver c5e50. The potential and bending ang
vector are given respectively as follows:

FIG. 14. Typical planar caustic in the singular case.
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Ĉep
sis~r ,q!5A0r , âep

sis~r ,q!5A0~cosq,sinq!.

The wavefronts are similar to those of the singular elliptical potential, except that the throat
goblet is a point and the singular rim of the goblet is a circle—see Fig. 15. The caustic su
collapses to a line coinciding with the portion of the optical axis beyond the lens plane~i.e., z
.zl). Note the origin on the lens plane, which is a singularity of the lens, is not a part o
caustic line. We have that eachz-planar caustic is a point.

VII. CONCLUDING REMARKS AND OUTLOOK

We have shown how to construct a lensing map that takes points on the lens plane into
on a wavefront surface, as opposed to a source plane. This represents a sort of ‘‘instanta
lens map, carrying a sense of constant time. By contrast, the standard lens map carries no
time at all. Additionally, the wavefront lensing map has an asymmetric Jacobian matrix. N
that, barring multiple sheets, the wavefront surface lies very close to a plane in the wea
case, as illustrated in most of our figures. In the figures the optical axis is magnified severa
in order to appreciate the distance between the different sheets in the folded wavefront. Ou
motivation for explicitly constructing a wavefront-lens mapping was inspired by several w
~e.g., Refs. 6, 13, 15, 18, and 23!. In this respect, it appears that an extension of our construct
in Secs. III and IV beyond the weak field domain is feasible.24,25

We took advantage of the conformally flat nature of the flat FL universe in order to mak
of a comoving lens equation, which in addition to being comoving is also a conformal
equation. A conformally related flat space–time exists, of course, in all three types of FL
verses, so in principle, our wavefront map could be adapted for interpretation in the open or
universes. However, in such universes the conformal factor relating the FL universes
corresponding flat space–time depends on the space point, as well as the time, and the tra
of our conformal present proper length function to a cosmological present proper length is
all as direct as we found it in this work. Some of the subtleties that would be involved in

FIG. 15. Wavefront due to a singular isothermal sphere. The top panel shows a field view, and the bottom panel
slice or profile of the wavefront. Notice that the wavefront is a surface of revolution around the optical axis.
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translation in the open and closed cases are treated in detail by Frittelli, Kling, and Newm26

where the conformally flat lens map and time delay are transformed into the cosmological le
map and time delay. Nonetheless, we do not need to rely on the conformally related flat sp
calculate our present proper length function.

The individual wavefronts for the potentials illustrated proved useful in visualizing the
tionship between the location of the source in reference to the caustic, and the number of
observed. Additionally, the wavefronts of the singular potentials helped explain the anom
counting of images observed by Petters, Levine, and Wambsganss,2 p. 188. The latter showed tha
in the case of the singular potentials there is a simple closed curve, that is not a caustic, b
separates regions in the source plane where the number of images differs by one, rather th
We have here shown that such a curve is the boundary of the wavefront, it is not a caustic, a
number of images differs by one less than in the regular case because one whole shee
wavefront is missing due to an obstruction in the lens plane.

Lastly, we have taken a step towards a preliminary scheme for caustic surfing in a mean
and consistent manner. The form of the subsequent iterations remains an open problem,
the implementation of the procedure, particularly the measurement of the transverse velocity
the moving source that one intends to follow. Clearly the caustic surfing proposal depends o
the caustic surface, and not on the method used to obtain it. But the point is that optimal c
surfing~with the least effort! is achieved only by allowing the telescope to surf the caustic sh
rather than the planar caustics at fixed distance from the source. One could also imagine sc
where a telescope may not ride a caustic sheet, but move so as to stay inside certain cham
the caustic surface~compare with Gaudi and Gould27!, possibly near higher order singularitie
Future studies of the aforementioned issues are clearly warranted.
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Continuum spin foam model for 3d gravity
José A. Zapataa)

Instituto de Matema´ticas UNAM, Morelia Mich. 58090 Me´xico

~Received 9 May 2002; accepted 13 May 2002!

An example illustrating a continuum spin foam framework is presented. This co-
variant framework induces the kinematics of canonical loop quantization, and its
dynamics is generated by arenormalizedsum over colored polyhedra. Physically
the example corresponds to 3d gravity with cosmological constant. Starting from a
kinematical structure that accommodates local degrees of freedom and does not
involve the choice of any background structure~e.g., triangulation!, the dynamics
reduces the field theory to have only global degrees of freedom. The result is
projectivelyequivalent to the Turaev–Viro model. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1509850#

I. INTRODUCTION

Several TQFTs can be written as a sum over assignments of spins to polyhedra: that is,
foam models. A trend in today’s research is to try to find a model of a similar type that is re
to 4d gravity.1 Regarding these models as fundamental amounts to postulating that gravity i
effectively a field theory, but fundamentally it has only finitely many degrees of freedom a
privileged polyhedron~or triangulation!, comes along with space–time. It has been propose
get rid of this extra structure with a sum over triangulations.2 In this article we will explore
another route. We will regard the continuum as fundamental and take the diffeomorphism i
ance of general relativity as the guiding symmetry. We share this principle with canonical
quantization.3

In this article we present an example. It is defined in the continuum, but it turns out
equivalent to the Turaev–Viro model.4 The interest of our example relies on the fact that it is
continuum spin foam model. More precisely, the construction induces the kinematic
q-deformed loop quantization in the spatial slices, and the projector to the space of physica
is constructed as a renormalized sum over colored~by spins! polyhedra.

The construction does not involve the choice of any background structure, and the diffe
phism group acts faithfully at the kinematical level.

The strategy used to generate this family of examples~one for every value of a deformatio
parameter! can be adapted to other spin foam models. A ‘‘renormalizability condition’’ determ
whether the continuum theory exists. The proof that other topological models satisfy the con
proceeds almost in complete parallel to the proof given here. Interestingly, there are reas
believe that there are other examples corresponding to genuine field theories. In the c
compact QED, the first steps in this direction have already been taken.5

In Sec. II we construct the example and prove the equivalence with the Turaev–Viro m
Section III gives an interpretation of the projector as a renormalized sum over quantum g
etries.

II. A CONTINUUM SPIN FOAM MODEL

This is the central section of the article. In the beginning we present the construction
example and show its main properties. With minor modification of the proofs, the constru

a!Electronic mail: zapata@math.unam.mx
56120022-2488/2002/43(11)/5612/12/$19.00 © 2002 American Institute of Physics
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applies to other topological spin foam models and the same strategy could apply to oth
trivial spin foam models as well. In the last subsection, we prove the projective equivalence
the Turaev–Viro model.

A. Embedded graphs and embedded polyhedra

In this work all the spaces and maps are piecewise linear.
Consider a compact surface without boundaryS. By an embedded graphG we mean a finite

one-dimensionalCW-complex all of whose vertices have valence two or bigger, together wit
embedding intoS. The set of all graphs embedded into a given surface will be denoted byG(S).
This set has a natural partial order given by inclusion and it is directed.

Similarly, consider a three-manifold with boundaryM . By an embedded polyhedronX we
mean a finite two-dimensionalCW-complex all of whose internal edges have valence two
bigger, together with an embedding intoM such thatXù]M denoted by]X belongs toG(]M ).
The set of all polyhedra embedded into a given three-manifold will be denoted byP(M ). Again,
this set is partially ordered and directed.

B. Data from lattice gauge theory

Our construction starts with data generated by ‘‘lattice gauge theory’’ on all lattices embe
into given space–times.

For everyGPG(S) we are given a complex vector spaceC(G) and for everyXPP(M ) we
are given a linear functionalVX

n :C(]X)→C. Thus, for each surfaceS we get a collection of
vector spaces labeled by embedded graphs and for each three-manifoldM we get a collection of
linear functionals labeled by embedded polyhedra. Our work is based on the compatibility of
collections of structures with the partial order of the labeling sets.

Now we define these objects in the example presented here. We follow the notation of T
and Viro4 as closely as possible as well as their conventions and normalizations.

Fix an integerr>3 and denote byI the set of spins$0,1/2,...,(r 22)/2%. A triple of spins is
admissible, (i , j ,k)Padm, if i 1 j 1k is an integer and

i< j 1k, j <k1 i , k< i 1 j , i 1 j 1k<r 22.

Given an embedded graphGPG(S) we assign to it an abstract simple graphGs . The vertices
of a simple graph are always trivalent; a graph dual to a triangulation is an example of a s
graph.

Gs is constructed by blowing up the vertices ofG as we explain below. To each edge ofG
corresponds one edge inGs and to each vertex ofG we assign several ‘‘internal vertices’’ an
‘‘internal edges’’ inGs in the manner indicated by Fig. 1.

A coloring a of G is an assignment of spins to its edges and intertwiners to its vertices
intertwiner is a coloring~with spins! of the internal edges assigned to the vertex. Clearly

FIG. 1. The construction uses an arbitrary numbering of the edges coming to a vertex. Internal vertices are shown a
dots and internal edges are dashed lines.
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coloring a of G induces a coloring ofGs , an assignment of spins to its edges. The coloring
admissible,aPadm(G), if at each vertexv of Gs the triple (a(e1(v)),a(e2(v)),a(e3(v)))
Padm.

ThenC(G) is defined by

C~G!5C@adm~G!#,

whereC@adm(G)# is the complex vector space freely generated by the elements ofadm(G); in
addition, the inner product makesadm(G) an orthonormal set. A different choice of intern
structure in the construction ofGs results in ana priori different vector space; however, ‘‘recou
pling moves’’ on the internal edges define an isomorphism between any two spaces gener
different choices. This is reviewed in the Appendix. We identify all these isomorphic vector sp
and call themC(G).

In the non-q-deformed case, when the set of spins is infinite, the space just constructed
space of square integrable functions of~generalized! SU~2!-connections,6 and it is the heart of the
kinematics of canonical loop quantum gravity.3

Xs , a simple abstract polyhedron, is constructed by blowing up the edges and vertic
XPP(M ) as we explain below. We proceed in complete parallel to the case of graphs. Fir
surround every edge by a cylindrical neighborhood and every vertex by a spherical neighbo
in this way we created an internal~empty! bubble for each edge and vertex ofX in analogy with
the middle picture of Fig. 1. Then, we will erase one internal face in each internal bubble,
did in the last picture of Fig. 1, to createXs . There are only two rules to select the face to
erased from each internal bubble. In the case of edge-bubbles, we erase one of the later
~not a face shared with a vertex-bubble!. And in the case of the vertex-bubbles, we erase one of
faces shared with an edge-bubble. Notice that the valence of any edge inXs is three and that a
every vertex ofXs six faces meet.

A coloring w of X is an assignment of spins to its faces and intertwiners to its edges
intertwiner is a coloring~with spins! of the internal faces assigned to the edge. The colorin
admissible,wPadm(X), if at each edgee of Xs the triple (w( f 1(e)),w( f 2(e)),w( f 3(e)))
Padm.

Each colored polyhedra is assigned a weight. This assignment is a simple extension
Turaev and Viro weight to embedded~not necessarily simple! polyhedra. The Turaev–Viro weigh
is constructed as the product of weights assigned to its vertices and faces~with a correction due to
the boundary edges!:4

uXuw5uXsuw
TV5w22x(Xs)1x(]Xs) )

f PF(Xs)
ww( f )

2x( f ) )
ePE(Xs)

w]w(e)
x(e) )

vPV(Xs)
uT̂vuw .

Here x denotes Euler characteristic.ww( f ) and w]w(e) denote the quantum group analog of t
dimension of the spinj representation forj 5w( f ) and j 5]w(e), respectively.uT̂vuw is the
quantum 6j symbol corresponding to the six-tuple of spins of the faces meeting at vertexv.

ThenVX :C(](X))→C is defined byVX(a)5(wuXuw , where the sum runs over the coloring
wPadm(X) that inducea in the boundary. We will work with the linear functional normalize
dividing by the ‘‘vacuum to vacuum amplitude’’VX( j 50),

VX
n~a!5

VX~a!

VX~ j 50!
.

Note thatVX
n(a) can also be defined fromVX8 (a)5(wuXuw8 which is defined from a less refine

Turaev–Viro weightuXuw8 in which the normalizing factorw22x(Xs)1x(]X) is omitted.
The construction ofXs involves a choice of ‘‘internal structure’’ on the edges ofX. However,

the invariance results of Turaev and Viro imply thatVX andVX8 are independent of this choice
This is reviewed in the Appendix.
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The weight assigned to a colored polyhedron is what defines the dynamics of this exa
We extended the Turaev–Viro weight in a simple manner, but it is possible to derive a w
assignment for general polyhedra that reduces to the Turaev–Viro weight in the case of
polyhedra.7

C. From lattices to the continuum

Now we will leave single ‘‘lattices’’ and go to the continuum.
Consider two embedded graphsG1<G2 in G(S). It is easy to see thataPadm(G1) defines

an admissible coloring inG2 by simply extending the coloring with colorj 50 in the additional
edges and extending the intertwiners also coloring withj 50 in the additional internal edges
Thus, we can take this natural inclusion for granted and writeC(G1),C(G2). Due to this prop-
erty we can defineC(S) as the inductive limit or co-limit8 of the nested spaces labeled by grap

C~S!5co- lim
G→S

C~G!.

Similarly, for aPC(]M ) induced byaPadm(G) we define

VM
n ~a!5 lim

X→M
VX

n~a!, ]X>G. ~1!

When the limit exists it definesVM
n :C(]M )→C. In our example we prove its existence in th

next subsection. However, the analogous limit in theories constructed from other lattice
theories may not exist. The existence of the limit should be interpreted as a renormaliz
condition.

Note that the extendibility of colorings from subgraphs implies thatadm(S) and similarly
adm(M ) can be defined. A coloring inaPadm(S) should be thought of as a coloring of a
graphs, bigger than a certain minimal graphG(a), that is compatible with inclusion of graphs. W
then have the equivalent definitionC(S)5C@adm(S)#.

D. Renormalizability and cellular decompositions

A polyhedron XPM induces a cellular decomposition for (M ,G), where GPG(]M ), if
]X5G andM2]M2X is a disjoint union of open balls.

Theorem 1: Given any polyhedron XPP(M ) there is a finer polyhedron X8PP(M ),
X<X8, such that X8 induces a cellular decomposition for(M ,G) for someG>]X.

Proof: First note that for every manifold with boundary one can find embedded polyh
inducing cellular decompositions. Take for example the cellular complex dual to any triangu
of the manifold. Once we have one cellular decomposition, we can generate many by subd
of the induced cells adding faces to the original polyhedron.

Let X9PP(M ) induce a cellular decomposition that is sufficiently fine in the sense tha
each open ball inø r 51

n Br5M2]M2X9 we have thatBr2X is a finite union of open balls,Br

2X5øs51
mr Br ,s8 .

Since we are working with piecewise-linear spaces, such aX9 can be constructed from a
initial cellular decomposition after finitely many refinements.

Let X85X9øX. ThenM2]M2X85ø r 51
n øs51

mr Br ,s8 . h

Theorem 2: Fix XPP(M ) a polyhedron inducing a cellular decomposition of(M ,G). For
any finer polyhedron X8PP(M ), X<X8, we have

VX
n5VX8

n uC(]X) .

The proof of this theorem requires some previous definitions and lemmas presented af
following corollary.
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Corollary 1 (renormalizability): In the definition

VM
n 5 lim

X→M
VX

n

the limit exists. In this sense, the theory defined by the collection of linear functionalsVX8 is
renormalizable.

We should mention that for the linear functionalsVX8 andVX the limit does not exist. Only the
renormalized functional exists in the continuum.

Wedge and corner moves generalize the luneL and MatveevM moves~and their inverses! on
simple polyhedra. Wedge moves describe a face of an embedded polyhedronXPP(M ) sliding
through a wedge, while in corner moves a face slides through a corner. See Fig. 2.

Lemma 1 (Invariance under wedge and corner moves): Let XPP(M ) and aPadm(]X).
ThenVX8 (a) is invariant under wedge and corner moves.

Proof: It is clear that a wedge move inX induces a sequence ofL or L 21 moves inXs .
Similarly, a corner move inX induces a sequence ofM and/orM 21 and/orL and/orL 21 in Xs .
Thus, this lemma is a direct consequence of the similar invariance lemmas of Turaev and V4h

The following lemma is a well-known consequence of the definition a properties ofuXuw8 ; see
Refs. 4 and 9.

Lemma 2 (The color j50 is invisible): Let XPP(M ) and wPadm(X). Construct the poly-
hedron X(w) erasing from X the ‘‘invisible’’ two-strata, the ones colored with j50. Then

uX~w!uw85uXuw8 .

Also, foraPadm(]X) construct X(a) erasing from X the two-strata meeting]X in edges colored
with j50. Then

VX(a)8 ~a!5VX8 ~a!.

Proof of Theorem 2:Consider a collection of nested polyhedra$Xr% such thatX5X1<X2

<¯<Xn5X8 where Xr 112Xr,Bs(r ) for some cell Bs in øs51
n Bs5M2]M2X with

Bs(r )ÞBs(t) if rÞt.
We will show thatVXr 11

n uC(]Xr )
5VXr

n .

Let ]Bs(r )2]M5øu51
m Fu with Fu faces ofX.

The closures of the faces inXr 112Xr may intersect several of the faces of]Bs(r ) , but we can
use wedge and corner moves onXr 11 ~insideBs(r )) until only F1 ~and]M if Bs(r ) is a boundary
cell! is intersected. Call the resulting polyhedronYr 118 . Remove fromYr 118 the two-strata meeting
]Yr 118 2]Xr ; we call this polyhedronYr 11 .

Let B,M be an open ball such thatYr 112Xr,B, andBùXr lies in the interior ofF1 .
Then

FIG. 2. In each picture the paper corresponds to a set of faces of a portion of the polyhedron. The solid lines indica
where one~or more! faces meet the paper from above. The dashed lines correspond to faces that are below the p~a!
Illustrates a top face~s! sliding through a wedge with bottom face~s!. ~b! Illustrates a top face~s! sliding through a corner
with bottom faces.
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VXr 11
8 uC(]Xr )

~a!5VYr 11
8 ~a!5 (

bPadm(Yr 11ù]B)
VYr 11ùBc8 ~aøb!V

Yr 11ùB̄
8 ~b!

5 (
bPadm(Xrù]B)

VXrùBc8 ~aøb!V
Yr 11ùB̄
8 ~b!

5l (
bPadm(Xrù]B)

VXrùBc8 ~aøb!V
XrùB̄
8 ~b!5lVXr

8 ~a!,

whereBc and B̄ denote the complement and the closure ofB, respectively. In the first equality
Lemmas 1 and 2 were used. In the second and fifth equalities the associativity ofV8 was used.
The fourth equality is due to the following lemma.

Lemma 3: The quotientV
Yr 11ùB̄
8 (b)/V

XrùB̄
8 (b) 5l is independent of the coloring.

Proof of the Lemma:Let (b,a,k)Padm. The proof follows picture in Fig. 3.
In the upper left picture the face with a circle and anX inside representsYr 11ùB̄; the rest of

the faces play only an auxiliary role. Using wedge moves theX slides through the edge. The resu
is the picture in the bottom left. There we can again identify the face with a circle and anX with
Yr 11ùB̄. From the pictures in the left to the ones in the right we have only usedV

Yr 11ùB̄
8 (g)

5l(g)V
XrùB̄
8 (g).

The lemma follows from the fact that the set of spins isadm-connected; given any two spin
there is a chain of admissible triples linking them. h

This completes the proof of Theorem 2. h

E. Spaces of physical states and propagators

We will now define adequate spaces of physical states and propagators. To do this clea
need to use the language of cobordism theory. A cobordismW is defined by the triple

Corollary 1 (renormalizability): In the definition W5(M ; i S0
:S0→]M ,i S1

:S1→]M ) where
M is a three-manifold with boundary,S0 and S1 are compact surfaces without boundary,]M
5 i S0

(S0)ø i S1
(S1) andi S0

(S0)ù i S1
(S1)50” . Cobordisms can be composed in an obvious w

Also, there is a special cobordism for eachS compact surface without boundary,idS5(S
3I ; i 0(p)5(p,0),i 1(p)5(p,1)).

To every S we assign a space of physical statesH(S),C(S)* defined by
H(S)5VS3I

n (C(S)). In the jargon of the fieldVS3I
n is referred to as the ‘‘generalized projector

even thoughH(S),C(S)* . It is useful to note thatH(S) is spanned by vectorsā defined by

FIG. 3. The pictures should be thought of asV8 evaluations with the indicated boundary coloring.
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ā@d#5VS3I
n ~ i 0

21* aø i 1
21* d!,

where a,dPC(S) and we have used the pull back mapsi 0
21* :adm(S)→adm(](S3I ) t50),

i 1
21* :adm(S)→adm(](S3I ) t51). The inner product inH(S) is defined by

~ ā,b̄ !5ā~b!.

Now for a general cobordism define the mapFW
n :H(S0)→C(S1)* by

FW
n ~ ā !@d#5VM

n ~ i 0
21* aø i 1

21* d!.

Theorem 3: FW
n (H(S0)),H(S1)

Proof: Consider a regular neighborhoodM 9 of i S1
S1 in M ; it has theS13I topology. Denote

its boundary by]M 95S18øS1 . Also call M 85M2M 9; clearly M 8'M and]M 95S0øS18 .
We are going to computeFW

n (ā)@d# using the following auxiliary structures: First, tw
boundary graphsG0 ,G1 such thatG0>G(a) andG1>G(d); second,XPP(M ) inducing a cellu-
lar decomposition of (M ; i S0

G0ø i S1
G1) such thatXuM9PP(M 9) induces a cellular decompositio

of (M 9; i S0
G0ø i S

18
G18), and XuM8PP(M 8) induces a cellular decomposition o

(M 8; i S
18
G18ø i S1

G1):

FW
n ~ ā !@d#5

VX8 ~aød!

VX8 ~ j 50!

5(
b

VXuM8
8 ~aøb!VXuM9

8 ~bød!

VX8 ~ j 50!

5S VXuM8
8 ~ j 50!VXuM9

8 ~ j 50!

VX8 ~ j 50!
D(

b
VM8

n
~ i S0

21* aø i
S

18
21* b!VM9

n
~ i

S
18

21* bø i S1

21* d!

5l~G18!(
b

VM
n ~ i S0

21* aø i S1

21* b!VS3I
n ~ i 0

21* bø i 1
21* d!. ~2!

The sums are overbPadm(G18). In the last equality we used the invariance under homeom
phisms; this property follows from the definitions and will be described in the next subsectio
could have used another cellular decomposition to perform the calculation or another au
surfaceS18 . The result would have been another expression for the same element ofH(S).

The desired result follows from the above equation. h

Note that the maps assigned to identity cobordisms are identity maps,F idS

n uH(S)5 idH(S) .

Now we show thatFW
n satisfies the projectivized propagator condition.

Theorem 4: For any two composable cobordisms, W15(M1 ; i S0
,i S1

) and

W25(M2 ; i S1
8 ,i S2

), we haveFW2

n +FW1

n 5lFW2+W1

n .

Proof: The definition ofFW
n requires that its argument is written in a canonical form. We

~2!. We follow the strategy of the previous theorem’s proof: withX an auxiliary polyhedron giving
a cellular decomposition forW1 andY for W2 , we will write the expression in terms ofV8 to use
associativity. Then we will rewrite in terms of the renormalized objects ofXøY, which is an
auxiliary polyhedron giving a cellular decomposition forW2+W1 .
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FW2

n +FW1

n ~ ā !~d!5l~G18!(
b

VM1

n ~ i S0

21* aø i S1

21* b!VM2

n ~ i 8S1

21* bø i S2

21* d!

5l~G18!S VXøY8 ~ j 50!

VX8 ~ j 50!VY8 ~ j 50!
DVXøY

n ~aød!

5l~G18!L~G1!FW2+W1

n ~ ā !~d!.

h

Here we proved the last two theorems for the example that we are presenting, but the
extend with very little change to the general case in which the renormalizability conditio~1!
holds.

F. Action of the homeomorphism group

A homeomorphism between two manifolds with boundaryf :M→N induces a map among th
spaces of embedded polyhedra. Colorings are pulled back by this map. Similarly, the restric
the map to the boundaries induces a pull back map among the spaces of colorings which l
U f :C(]M )→C(]N) defined by the actionU f(a)5 f 21* (a). The following identities describe
the action of homeomorphisms

uXuw85u f ~X!u f 21* w
8 , VX8 ~a!5V f (X)8 ~ f 21* a!, VM

n 5V f (M )
n +U f .

Note that the action off is not trivial due to its action in the boundaries. The language of the
subsection already assumes this level of invariance;W is only sensible toM up to a homeomor-
phism preserving the boundary. By dual action ofU f we have a representation of the modu
group~mapping class group! of S on H(S). Indeed, iff andg are two isotopic homeomorphisms
U f andUg induce the same map inH(S). In particular, if f is connected to the identity,

U f uH(S)5 idH(S) .

Thus, for homeomorphisms connected with the identity we haveV f (M )
n 5VM

n .
In relation with canonical loop quantum gravity we have the following question:Is it possible

to find first the space of homeomorphism invariant states and construct H(S) from it? The next
section gives a satisfactory affirmative answer to this question. Here we present a prelim
answer.

Define the space of states invariant under homeomorphisms connected with the id
Hhom(S),C(S)* as in Ref. 3. This space is spanned by elements of the type

ã@b#5s~G~a!!d [G(a)][ G(b)]~a, f 0
21* b!,

where the factors(G(a)) depends on the symmetry of the graph, andf 0 is a homeomorphism
~connected with the identity! on S taking G~b! to G~a!.

Clearly, ã5b̃ only if there is homeomorphism~connected with the identity! f 0 such that
U f 0

(b̃)5ã. Thanks to the invariance properties stated above, we can define

P~ ã !5ā. ~3!

In this way the Reisenberger–Rovelli projector,P(Hhom(S))5H(S),10 reconstructs the space o
physical states from the space of homeomorphism invariant states.
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G. Projective equivalence with the Turaev–Viro model

A particularization of the construction of Turaev and Viro4 can be described as follows.To
each triangulated surface T assign the vector space C(T* ), where T* is the graph dual to the
triangulation. Similarly, to each cobordism between triangulated surfaces W assign the
FW :C(T0* )→C(T1* ) by the formula

FW~a!5(
b

VD* ~ i T0

21* aø i T1

21* b!b,

where a and b are admissible colorings of the graphs dual to the triangulations T0 and T1,
respectively, andD is a triangulation of the interpolating manifold of W.

The structures are then refined to construct a TQFT. The spaces of physical state
Q(T* )5C(T* )/kerF idT

with inner product(@a#,@b#)5VT3I(a,b). The propagators are in-

duced byFW , CW :Q(T0* )→Q(T1* ), CW@a#5(bVD* (a,b)@b#.
The invariance result says that two spaces Q(T) constructed from different triangulations o

the same surface are isomorphic, and that the mapCW :Q(T0* )→Q(T1* ) is independent of the
triangulation up to conjugacy by the mentioned isomorphisms.

Now we compare the Turaev–Viro model with our construction.
Theorem 5: For any triangulation T of a surfaceS, the mapi T* :Q(T* )→H(S) defined by

i T* (@a#)5ā is an isomorphism, and for any cobordism W

i T
1*

21+FW
n + i T

0*
5LCW .

Proof: Since the dual of any triangulation of a three-manifold gives a cellular decompos
it is easy to verify thati T* is a dilatation~a multiple of an isometry! by l5(VD

idS
* ( j 50))21/2

~whereD idS
is a triangulation ofS3I compatible withT in both boundaries!, and that the map

taking ā to l2(bā(b)@b# is its inverse.
i T

1*
21+FW

n + i T
0*
5LCW follows from a simple application of definitions. We obta

L5(VD
idS1

* ( j 50)VD
W*
( j 50))21, whereDW is a triangulation of the interpolating manifold ofW

compatible withT0 andT1 . h

III. INTERPRETATION AS A RENORMALIZED SUM OVER QUANTUM GEOMETRIES

A. Preliminaries

Recall that we gave an alternative definition ofC(S) asC@adm(S)#. Similarly, after having
enunciated the ‘‘colorj 50 is invisible’’ lemma, we can give an equivalent definition of the line
functionalVX8 :

VX8 ~a!5(
w

uX~w!uw8 ,

where the sum runs over coloringswPadm(M ) such that]w5a andX(w)<X. That is,X serves
only to restrict the set of colorings allowed inVX8 .

In this way, we can seeVM
n of formula ~1! as a renormalized sum over colorings in which t

‘‘restricting box’’ X grows infinitely large.
In particular,the ‘‘generalized projector’’VS3I

n is a renormalized sum over quantum geo
etries.

The termquantum geometrymeans a history in the form of a colored polyhedron because
slice of it defines a quantum geometry in canonical loop quantum gravity. In formal path int
quantization of general relativity the central object is an integral over diffeomorphism class
metrics. Our quantum geometries are not analogous to diffeomorphism classes of metrics b
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they are defined for a fixed embedding.Is there an interpretation of the ‘‘generalized projector’’ a
a sum over knot classes of colored polyhedra?Below we give an affirmative answer.

B. Summing over knot classes of colorings

ConsiderXPP(M ), YP@X# if and only if there is a homeomorphismf :M→M such that
f u]M5 id and f (Y)5X. The set of such classes will be denoted byKP(M ).

There is a natural partial ordering inKP(M ) defined by@X#<@Y# if and only if there are
representativesXP@X#, YP@Y# satisfyingX<Y. It is easy to verify that this defines a parti
ordering; in addition,KP(M ) is directed with respect to this partial ordering.

Our goal now will be to use@X# as a restricting box for a sum over classes of colorings. T
we will remove the restriction for the renormalized sum.

Recall that a homeomorphismf :M→M acts on admissible coloringswPadm(M ) by
f 21* wPadm(M ). We will denote by@w# the class of colorings with respect to the group
homeomorphisms that restrict to the identity on]M . Note that@X(w)# is independent of the
representativewP@w#.

SinceuX( f 21* w)u f 21* w
8 5uX(w)uw8 we can defineu@w#u5uX(w)uw8 and foraPadm(]M )

V [X]8 ~a!5(
[w]

u@w#u8s~@X~w!#,@X# !,

where the sum runs over all classes of colorings such that]@w#5a and @X(w)#<@X#. The
symmetry factors(@X(w)#,@X#) counts in how many distinct ways can@X(w)# fit in @X#. Then,
we have the following interpretative result concerning the central object of this work.

Theorem 6: VM
n , as defined in Eq. (1), is a renormalized sum over knot classes of color

That is,

VM
n ~a!5 lim[X]→MV [X]

n ~a!.

The same techniques can be applied using the notion of class resulting from the gro
homeomorphisms that preserves each connected component of]M . The analysis proceeds i
complete parallel to the one described above, but the resulting linear functional acts natur
Hhom. In addition, the space of physical states and the projective propagator are natural
morphic to the ones constructed here. This construction is of interest to loop quantization b
it gives a construction of the Reisenberger–Rovelli projector~3! as a renormalized sum ove
quantum geometries.
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APPENDIX: INDEPENDENCE OF INTERNAL STRUCTURE

A choice of internal structure is needed to construct the simple graphGs from GPG(S). In
the next paragraphs we will see that different choices lead to naturally isomorphic vector s
C(Gs) which in the main body of the article are denoted collectively byC(G).

Consider a portion of a graph adjacent to a vertex with valence higher than three; call itG(v).
Use the prescription of Sec. II B~Fig. 1! to generate a simple graphG(v)s . Fix a coloringa of
G(v)’s edges, and defineC(G(v)s ,a)5C@adm(G(v)s ,a)# as the complex vector space gene
ated by the admissible colorings ofG(v)s that are compatible witha.

ConstructG(v)s
3 from G(v)s simply by sliding ‘‘edge 1’’ counter clockwise past ‘‘edge 3

~see Fig. 1!. Continue sliding ‘‘edge 1’’ in the same direction to generate a sequence of gr
(G(v)s ,G(v)s

3 ,G(v)s
4 ,...,G(v)s

n21). Note thatG(v)s
n21 corresponds to the graphG(v)s obtained

using a different numbering of the edges. With this set of moves we can generate all the
G(v)s obtained with any counter-clockwise~or clockwise! oriented numbering of edges.
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Now we are going to show that the spacesC(G(v)s
i ,a), C(G(v)s

i 11 ,a) are naturally isomor-
phic. After we do so, we will know that any two counter-clockwise~or clockwise! oriented
numberings of edges produce different simple graphsG(v)s

aÞG(v)s
b , but naturally isomorphic

vector spacesC(G(v)s
a ,a)'C(G(v)s

b ,a). Clearly, this implies that different choices ofGs for a
given G lead to naturally isomorphic vector spaces.

Consider the graphG(v)s
i described above. Its internal edges can be labeled

(e3,4,e4,5,...,ei ,1 ,e1,i 11 ,...,en22,n21). Similarly, the internal edges of the graphG(v)s
i 11 can be

labeled as (e3,4,e4,5,...,ei ,i 11 ,ei 11,1,...,en22,n21). Using an abbreviated notation for the intern
edges, we can write the generators ofC(G(v) i s ,a) as (...,j i ,1 , j 1,i 11 , j i 11,i 12 ...)i . There is one
generator for each choice of ‘‘internal spins’’ that is compatible with the coloring of the exte
edgesa5( j 1 , j 2 ,...,j n). In a similar fashion, the generators ofC(G(v)s

i 11 ,a) are denoted by
(...,j i ,i 11 , j i 11,1, j 1,i 12 ,...)i 11 . The isomorphism is given by the recoupling move,9 which sends
the generator(...,j i ,1 , j 1,i 11 , j i 11,i 12 ,...)i to

(
j 3,1

wj 1,i 11
wj i 11,1

U j i ,1 j 1 j 1,i 11

j 1,i 12 j i 11 j i 11,1
U~ ...,j i ,i 11 , j i 11,1, j 1,i 12 ,...! i 11 .

If we slide back ‘‘edge 1’’ to its position inG(v)s
i the recoupling move gives us another 6j

symbol. The resulting sum of products of two 6j symbols is just the orthogonality relation
meaning that sliding back ‘‘edge 1’’ induces just the inverse transformation. This complete
proof; any two choices of internal structure forGPG(S) lead to naturally isomorphic vecto
spaces.

Let us now show thatVX8 is independent of the choice ofXs used to define it. To do it, we will
construct a sequence of lune and Matveev moves that interpolates between any two choiceXs

leavingVX8 unchanged. We will describe a sequence of moves that changes the internal st
of an edge and a sequence that changes the internal structure of a vertex. Composin
sequences of moves we can generate any of the possible choices of internal structure starti
a particular choice.

We will start describing how to change the internal structure of edges. First take the case
edge with at least one end in the boundary. In this case the internal structure of the edge
by the structure of the vertex in the boundary; there is no choice of internal structure.~If the edge
has two vertices in the boundary, they are assumed to have compatible structures.!

Take now the case of an edge that starts and ends at two distinct vertices that lie in the i
of M . We will change the internal structure of the edge sliding ‘‘face 1’’ in the same spirit use
change the internal structure of a vertex in the case of boundary graphs. That is, we wil
‘‘face 1’’ around the lateral faces of the edge-bubble until it is connected to ‘‘facen. ’’ Iterating this
process, we can change the location of the hole in the edge-bubble to be any of the latera
In the next paragraph we describe a sequence of Matveev and lune moves that slides ‘‘fac
we need.

‘‘Face 1’’ meets two vertex bubbles, the bubbles corresponding to the vertices at the ext
of the edge. Then we can use Matveev moves to slide ‘‘face 1’’ past ‘‘face 3’’ on the surfa
both vertex-bubbles. Then we simply pull ‘‘face 1’’ through the surface of the edge-bubble
‘‘face 3’’ using an inverse lune move. We can iterate this process to slide ‘‘face 1’’ until
connected to ‘‘facen. ’’ At this point we have moved the position of the hole in the edge-bub
but we may have not finished our job yet. One of the vertex-bubbles may have had its
connecting it to the edge-bubble. In this case, the sequence of Matveev moves has made ‘‘
surround all the internal vertices of the vertex bubble. To finish we have to slide ‘‘face 1’’ on
surface of the vertex-bubble past all these vertices using Matveev and inverse Matveev m

Finally, consider the case of an edge that closes in itself. ‘‘Face 1’’ can be slid usin
technique explained above for the case in which the edge ended in two internal vertices. W
described how to change the internal structure of an edge with any location inM . In the next
paragraph we explain how to change the internal structure at vertices.
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Each vertex-bubble has a hole connecting it to an edge-bubble. We may want to chan
location of the hole in a way that connects the vertex-bubble to another edge-bubble. To do
can simply move the face that occupies the place where we want the hole to be to the old lo
of the hole. This moving of the face can be achieved by a sequence of Matveev and i
Matveev moves done inside the vertex-bubble. This finishes the construction; any two cho
internal structure forXPP(M ) are connected by a sequence of lune and Matveev moves~and
their inverses!. Thus,VX8 is independent of any choice.
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Generalization of Berry’s geometric phase, equivalence
of the Hamiltonian nature, quantizability and strong
stability of linear oscillatory systems, and
conservation of adiabatic invariants

K. Yu. Bliokha)

Institute of Radio Astronomy, 4 Krasnoznamennaya St., Kharkov, 61002, Ukraine

~Received 27 February 2002; accepted 2 July 2002!

A linear set of ordinary differential equations with a matrix depending on a set of
adiabatically varying parameters is considered. Its asymptotic solutions are con-
structed to an arbitrary accuracy in the adiabaticity parameter«. By extending the
phase space of the system not only with the space of parameters, like in the theory
of Berry’s phase, but also with the space of their derivatives, it proves possible to
represent the phase of the solution as a sum of the dynamic phase and a generalized
geometric phase~determined by a contour integral in the space of parameters and
derivatives!. Hence, it is possible to obtain the asymptotic results to any degree of
accuracy in«, while earlier they were obtainable only in the first-order adiabatic
approximation. Namely, for linear oscillatory adiabatic systems, the quantizability,
parametric stability, and the Hamiltonian nature of the system are equivalent prop-
erties. As a consequence, one can obtain the well-known result regarding conser-
vation with accuracy to any power of« of adiabatic invariants in a Hamiltonian
system on a torus. An important point is that the generalized geometric phase can
appear, in contrast to Berry’s phase, with only one real varying parameter. ©2002
American Institute of Physics.@DOI: 10.1063/1.1506954#

I. INTRODUCTION

This paper develops the ideas of Refs. 1 and 2 that proposed to analyze nonauton
dynamic systems with the help of a functional approach. In this case the phase space of a d
system is extended not only by adding the dimension of time but also a space of para
varying with time. As a result, solutions to the equations, changes of variables, etc., are cons
as functionals~generally speaking, nonlocal! of the parameters and not just as functions of tim
As it occurs, the approach allows one to obtain essential results of considerable intere
example, the theory of Berry’s phases3 provides a prominent example of the functional approa
to nonautonomous dynamic systems.

Note that an essential feature of the functional approach is the possibility to separate c
nate substitutions into local and nonlocal ones. The local substitutions involve only current v
of system parameters and their derivatives, and hence cannot result in qualitative distortions
system’s phase portrait. Whereas nonlocal substitutions are, for the most part, integral func
of parameters containing the system’s prior history. Such substitutions always distort the
qualitative phase portrait.1,2

Reference 1 was an attempt to develop a consistent theory of linear adiabatic systems fr
viewpoint of the functional approach. Special attention was paid to oscillatory systems, i.e
systems with purely imaginary current eigenvalues. For such systems, adiabatic equivalen
proven~i.e., equivalence to the first order in the adiabatic parameter«! of the quantizability, strong
stability, and Hamiltonian property of the system. It was exactly the functional approach that

a!Electronic mail: kostya@bliokh.kharkiv.com
56240022-2488/2002/43(11)/5624/13/$19.00 © 2002 American Institute of Physics
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the proof possible, and the notion of complex geometric phases was used essentially.
In the present paper we will show that a consistent application of the technique pe

extending the formalism up to any order of«. As a result, the notion of thegeneralized geometric
phaseis introduced, and the above-mentioned statements of Ref. 1 are proved in a simila
however to a new accuracy. It is important that the generalized geometric phase, while
described analogously to Berry’s phase and representing similar physical effects, can appea
adiabatic changes of only one real parameter. In this paper, some modifications of the
stability property are introduced for parameter-dependent systems in a more rigorous way
Ref. 1, namely the parametric stability and strong stability in a class. It is noteworthy that fro
formalism introduced and the theorems proved in the paper some well-known results f
immediately. Namely, adiabatic invariants of the Hamiltonian system whose phase trajector
under constant parameters, on ann-dimensional torus, remain unchanged with accuracy to
power of«.4–6

The central idea of this work, allowing an efficient extension of the known results to
degree of accuracy, consists in analyzing the system in a generalized space of paramet
involves not only the dimensions of the parameters but of their derivatives as well.

II. GENERAL FORMALISM

Consider the linear system described by ann-dimensional vector equation inCn,

x85A~m̄ !x. ~1!

@Let us note that all conclusions of this paper can be obtained in a similar way for the i
system inR2n. Besides, the results can be derived in an almost identical way for the initial sy
with the matrix of formA5A(m̄,m̄8,...,m̄ (m)).# Herex5(x1 ,...,xn) is the vector-function to be
found ~its components will be called coordinates!, the prime stands for differentiation with respe
to the independent real variablet ~further referred to as time!, A(m̄) is a linear operator defined b
a square nondegenerate matrix, which is an infinitely differentiable function of the set ofs adia-
batically varying parametersm̄5(m1 ,...,ms), andm̄ is a vector from a compact simply connecte
domain`,Rs.

The eigenvalues of the matrixA(m̄) are assumed to satisfy the following conditions for
values of the parameters:

0,ul j~m̄ !u,`, j 51,...,n; l j~m̄ !Þl l~m̄ ! for j Þ l ~1a!

The latter requirement is necessary to permit the use of independent adiabatic solutions~1!.
@Applicability criteria of the adiabatic approximation for the case when eigenvalues are clos
can be found in Ref. 7.#

The system parameters are subject to an arbitrary adiabatical variation with time:

m̄5m̄~«t !, «!1. ~2!

Here,« is the adiabaticity parameter, and the vector-functionm̄(«t) is assumed to be infinitely
differentiable. From here on, referring to system~1!, we also imply all the above-listed require
ments.

Notice that there is no need to require the nonresonance character of them̄(«t) dependence as
was done in Ref. 1. The point is that even in the presence of parametric resonance in the ad
oscillatory system the growth rate is exponentially small,8,9 being a value of the form
a exp(2b«21). @In the case of parametric resonance with nonadiabatic sections of the fun
m̄(t), the growth rate generally is of order«1, where« is the reciprocal of the period.9# For this
reason, parametric resonances are beyond the scope of this paper treating power-series
mations in«. Furthermore, the statements and theorems discussed here utilize the functionm̄(«t)
only as an auxiliary tool. In fact they deal with the system as a whole, i.e., structure of theA(m̄)
dependence.
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To construct asymptotic solutions to system~1! we will use the following idea proposed b
Neishtadt.10 ~Compare also with the method of successive diagonalizations in Ref. 4.! Let us bring
the parameter-dependent matrixA(m̄) to a diagonal form by applying a linear substitution
coordinates. In terms of new coordinates, the matrix of the transformed system will be
slightly nondiagonal~the off-diagonal terms are proportional to the first-order time derivative
parameters and have the order of«!. Let us further diagonalize the matrix obtained to a first ord
in « through the next linear substitution of coordinates. In these coordinates the off-dia
matrix elements will be small terms of order«2 being proportional to second-order time deriv
tives. This procedure can be similarly reiterated. Thus, the initial system can be reduced, f
finite order in«, to a diagonal form, for which exact solutions can be easily written. The sequ
of recurrence relations to describe the procedure is given in Appendix A.

Equation~1!, uponk successive diagonalizations, takes the form

x[k]8 5 bL[k]1D[k] cx[k] , ~3!

where the variablesx[k] are related to the initial ones through a certain reversible local substitu
without singularities of the formx5B(m̄,m̄8,...,m̄ (k))x[k] ; the subscript in the square bracke
stands for the diagonalization number;L[k] is the diagonal matrix containing terms of order«k and
under, while the components of the matrixD[k] are of order«k11. The matrixL[k] can be written
in the form @see~A5!#

L[k]5L1 (
j 50

k21

dgD[ j ] . ~4!

Here uD[ j ] u;« j 11, the operator dg rejects off-diagonal components of the matrix, andL[L[0]

5diag(l1,...,ln), with the valuesl j5l j (m̄);«0 being current eigenvalues of the matrixA(m̄) of
the initial equation~1!.

Let us determine the form of the matricesD[ j ] . In view of their proportionality to the corre
sponding power of« and with account of Eq.~2!, it can be seen thatD[1] is proportional to the
first-order time derivative ofm̄(«t) and has the general form like

D[0]5F̄[0]~m̄~«t !!m̄8~«t !,

whereF̄[0] (m̄(«t)) is the matrix field over them̄-space of parameters. The nonpotential com
nent of this field gives rise to Berry’s geometric phase, or Hannay’s angle~see Refs. 1 and 3!.
Similarly, D[2] can be written in general form as

D[1]5F̄[1]~m̄~«t !!m̄9~«t !1F[1]~m̄~«t !!~m̄8~«t !!2,

whereF̄[1] (m̄(«t)) also is a matrix field andF[1] (m̄(«t)) is a scalar~with respect to them̄-space!
matrix-function.

Continuing the procedure, we see that the diagonal matrixdg D[ j ] can be represented as a su
of elements that are proportional to different orders of derivatives ofm̄(«t). Besides, in each term
the sum of products of the derivative order by the power it is raised to is equal toj 11.

Now we turn to solving Eq.~3!. Its solutions can be written as follows:

x[k]~ t !'x[k]~0!expH E
0

tFL1 (
j 50

k21

dgD[ j ]1O~«k11!GdtJ . ~5!

From what has been said previously on the form of the matrices in the integrand, it appea
the solution~5! can be written like
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x[k]~ t !'x[k]~0!expH E
0

t

L~m̄~«t!!dt1E
0

t

F¢ ~MW ~«t!!MW 8~«t!dtJ 1O~«k11t !. ~6!

Here we have introduced the spaceMW , which we suggest calling thegeneralized parameter space.
Its dimensions are constituted by dimensions of the set of the values (m̄(«t),m̄8(«t),...,
m̄ (k21)(«t)) ~with regard to the properties of this space see Appendix B!. The valueF¢ (MW ) repre-
sents a field of diagonal matrices over this space. Finally, similarly to the geometric phase t
the second term in the integrand of Eq.~6! can be easily transformed into a contour integral in
MW -space:

x[k]~ t !'x[k]~0!expH E
0

t

L~m̄~«t!!dt1E
L
F¢ ~MW !dMW J 1O~«k11t !, ~7!

whereL is the contour along which the representative point of the system moves in the ge
ized parameter space.

The solution~7! is fully identical in its form to the known adiabatic solution@Eq. ~8! of Ref.
1# that was specified to within«1, however its accuracy is«k. The first term in Eq.~7! is the
standard ‘‘fast’’ dynamic phase. The second term is the ‘‘slow’’ phase, whose nonlocal par
resents thegeneralized geometric phase. It has the form of the standard Berry phase, howe
written in the generalized parameter space.

Equation~7! can be easily separated by the degrees of freedom of the system inCn, because
it contains diagonal matrices alone. From here on, we will separately consider the projecti
the solutions,

x[k] j~ t !'x[k] j~0!expH E
0

t

l j~m̄~«t!!dt1E
L
fW j~MW !dMW J 1O~«k11t !, ~8!

where j 51,...,n and fW j (MW )[F¢ j j (MW ).
Let us isolate the potential component offW j (MW ), representing the field as

fW j~MW !5grad@w j~MW !#1 fW j
(c)~MW !, ~9!

wherew j (MW ) is a scalar function, whilefW j
(c)(MW ) is the nonpotential component offW j (MW ). By

substituting Eq.~9! into Eq. ~8!, we obtain

x[k] j~ t !'x[k] j~0!expH E
0

t

l j~m̄~«t!!dt1w j~MW ~«t !!2w j~MW ~0!!1E
L
fW j

(c)~MW !dMW J 1O~«k11t !.

~10!

The contribution of the potential field componentfW j (MW ) to the solutions~8!, ~10! is local. It is
determined only by boundary values of the parameters and their derivatives, and is indepen
the integration contour in theMW -space. Therefore, it is the component that determines the
nection between the slow amplitude of the solution andcurrent values of parameters and the
derivatives, and is responsible for the construction of adiabatic invariants.

The contribution of the nonpotential component,fW j
(c)(MW ), is, on the contrary,nonlocal. It

depends essentially on the geometry of the contourL ~i.e., on allprior values of the parameters!,
being nonzero even for cyclic variations of the parameters that correspond to closed cont
the MW -space. The last term in the exponent of Eq.~10! is the complex generalized geometr
phase.

For the convenience of further consideration we will separate the real and the imaginar
of the generalized geometric phase. Its imaginary part will be called the generalized geo
phase proper,
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c j~L !5Im E
L
fW j

(c)~MW !dMW , ~11!

while its real part will be spoken of as the generalized geometric amplitude,

g j~L !5ReE
L
fW j

(c)~MW !dMW , ~12!

since it is exactly its changes that bring forth the variations of the solution amplitude. Note th
MW -space is multidimensional even in the case of only one varying real parameter in the s
(s51). For this reason generalized geometric phases and amplitudes may appear eve
Berry’s phase certainly does not exist~the m̄-space is one-dimensional!.

The potential component offW j (MW ) can be easily reduced to zero via the local substitut
x[k] j (t)5exp@wj(MW («t))2wj(MW (0))#zj(t). As a result, from~10! we obtain:

zj~ t !'zj~0!expH E
0

t

l j~m̄~«t!!dt1E
L
fW j

(c)~MW !dMW J 1O~«k11t !. ~13!

We will also write the equation corresponding to projections of Eq.~3! in terms of these variables

zj85~l j1 fW j
(c)MW 8!zj1O~«k11t !. ~14!

These expressions coincide in form with those obtained in Ref. 1@Eqs.~7!–~14! of this work
correspond to Eqs.~8!, ~11!, ~13!–~16!, ~20!, and~19! of paper Ref. 1#. In what follows we will
derive analogous results, therefore in the following discussion we will only write out the fu
mental propositions, referring the reader to Ref. 1 for details of the proofs. All one needs to
to replace the parameter space and geometric terms with their generalized analogs.

III. MAIN RESULTS

A. Global qualitative portrait of the system

Statement I: The generalized geometric terms, together with the current eigenvaluel j ,
determine the qualitative portrait of a linear adiabatic system.

Indeed, to describe the system we can introduce, similar to Ref. 1, the efficient eigen
corresponding to the solutions~13! over a given time interval,

l j
eff~ t !5

ln zj~ t !2 ln zj~0!

t
. ~15!

By substituting the solutions~13! into Eq. ~15!, we obtain:

l j
eff~ t !5^l j& t1

g j1 ic j

t
1O~ t21,«k11!, ~16!

where^l j& t[(1/t)*0
t l j (m̄(«t))dt are average values of the current eigenvalues. The second

in Eq. ~16! contains terms of different orders ranging from« to «k and, generally speaking, do no
tend to zero together witht21, since during continuous circulation of the system’s representa
point in the MW -space the geometric terms increase infinitely. If there is a limitl̃ j

eff

5limt→`l j
eff(t), then the behavior of the solutions for large times~strictly speaking, for times large

enough so thatl j
eff(t) does not leave the small vicinity of its limiting value! can be ‘‘roughly’’~i.e.,

without account of local deviations! described by the formulazj (t)'zj (0)exp(l̃j
efft). For example,

under periodic~of periodT;«21) variations of the parameters the valuel j
eff(t) tends asymptoti-

cally to the limit
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l̃ j
eff5^l j&T1

g j~LT!1 ic j~LT!

T
1O~«k11!,

whereLT is the closed contour corresponding to one period. The above-derived solutions a
as the analysis presented are applicable over timest!«2(k11). It is significant that the system’s
portrait analyzed inz-coordinates is qualitatively equivalent to the portrait of the initial system~1!.
Indeed, we used only local coordinate substitutions that leave the system’s fundamental c
teristics~current eigenvalues and generalized geometric phases, i.e., efficient eigenvalues! invari-
ant ~see Ref. 2 and Appendix B in Ref. 1!.

B. Adiabatic and integral invariants

Statement II: A degree of freedom of the system possesses an adiabatic invariant of
conserved to the order of«k, if and only if

Rel j50,
~17!

g j50.

Indeed, if the conditions~17! are met, then Eq.~13! yields

I j~ t ![uzj~ t !u2'const. ~18!

The valuesI j are known as the adiabatic invariants of action. EachI j corresponds to conservatio
of the phase flux of thej th degree of freedom in thez-space. In terms of the initial coordinates, th
adiabatic invariants determine, under given initial conditions, an unambiguous relation be
the amplitude of the approximate solution and current values of the parameters. Note th
conditions~17! are equivalent to the requirement that the real part of the effective eigenvalul j

eff

specified previously, be equal to zero. In other words, this is the requirement of conservat
oscillatory nature of the system movement over large times with adiabatically varying param

Following Ref. 1, it can be easily shown that the existence of Poincare´’s first integral invariant
is equivalent to the presence in the system of a complete set ofn adiabatic invariants~once again,
this is true up to the order of«k). @It should be noted at this point that we do not consider the c
of Hamiltonian systems with ReljÞ0. Such systems also possess Poincare´’s integral invariants,
however adiabatic invariants are absent. The complex structure suggested here and integra
ants in these systems have different form as compared with Hamiltonian systems on a
(Relj50), which mostly are considered in this paper.# In addition, the condition for conservatio
of the system’s phase volume to the accuracy«k ~Poincare´’s nth integral invariant, or Liouville’s
theorem! are:

(
j 51

n

Rel j50,

~19!

(
j 51

n

g j50.

C. Hamiltonian formalism

We will further consider oscillatory systems, i.e., such systems that

Rel j50, j 51,...,n. ~20!
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Theorem I: The system (1) with purely imaginary current eigenvalues [Eq. (20)] coincide
accuracy«k, with a Hamiltonian system if and only if all of its generalized geometric amplitu
are equal to zero:

g j50, j 51,...,n. ~21!

The Hamiltonian of such a system is represented by the Hamiltonian of a sum of indepe
oscillators:

H~p,q!5(
j 51

n

H j~pj ,qj !5
1

2 (
j 51

n

v j~pj
21qj

2!, ~22!

where iv j5l j1 fW j
(c)MW .

Carrying out the realification ofz-space,pj5Rezj and qj5Im zj , we obtain from Eq.~14!
with account of Eqs.~20! and ~21!,

pj852Im~l j1 fW j
(c)MW 8!qj1O~«k11t !,

~23!
qj85Im~l j1 fW j

(c)MW 8!pj1O~«k11t !.

To within the order«k, this is a Hamiltonian system with the Hamiltonian~22!. Thus, the suffi-
ciency of the condition~21! for the system to be a Hamiltonian one has been proven. The nece
of condition ~21! can be proved following Ref. 1 by replacing the parameter space and
geometric values involved with their generalized analogs~also see Appendix B!.

Note that points of the unperturbed system trajectory~in the proofs of Theorems I and III!
should not belong to the boundary of the considered compact region` in the m̄-space.

D. System quantization

Theorem II: System (1) with purely imaginary current eigenvalues [Eq. (20)] coincides
accuracy«k, with a quantizable system if and only if all of its generalized geometric amplitu
are equal to zero [Eq. (21)].

The proof can be performed following Ref. 1 by replacing the parameter space an
geometric values involved with their generalized analogs.

E. Strong stability properties

Now we turn to stability properties of the systems considered. In Ref. 1 equivalence o
Hamiltonian nature and quantizability of the system to a special version of strong stability
proven. Here we will introduce the property of aparametric stability, which we think is more
adequate when discussing parametric systems. Next, we will formulate a strong stability pro
which could be more properly referred to asstrong stability in a class. It will be shown that the
parametric stability is a primary property for systems with parameters. The strong stability
erty can be introduced only for the class of parametrically stable systems.

Definition I: System (1) with a specific (rather than arbitrary)m̄(«t) dependence is said to b
a realization of system (1).

In essence, the notion of realization emphasizes that in the functional approach we ope
fact with a set of systems characterized by a variety ofm̄(«t) dependencies, whereas in th
temporal approach we consider a single system.

Definition II: Let a realizationm̄5m̄0(« t) of system (1) with the matrixA(m̄) be stable, i.e.,
all of its solutions are bounded, if there exists ad.0, such that any perturbed realizationm̄
5m̄1(«t) of the same system satisfying the inequality

um̄1~«t !2m̄0~«t !u,d, ;t, ~24!
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is also stable, then the initial realization of the system is called parametrically stable.
The system is parametrically stable if all of its realizations are parametrically stable.
As noted at the beginning of Sec. II, parametric resonances in adiabatic systems go bey

accuracy of the approximation considered here. Talking of stability here and in the followin
will not consider parametric resonances again, since we operate in the framework of the ap
mation adopted.

Definition III: Let system (1) with the matrixA5A0(m̄) from a certain class: be parametri-
cally stable. If there exists ad.0, such that any perturbed system (1) with the matrixA
5A1(m̄) from the same class:, satisfying the inequality

iA1~m̄ !2A0~m̄ !i,d, ;m̄,`, ~25!

is also parametrically stable, then the initial system is called strongly stable in the class:.
In essence, the property of parametric stability reflects the stability of a system against

variations of its parameters. The property of strong stability in a class describes stability
small variations in the system matrix, however, demanding that the matrix does not leave the
class, which is to be determined in every particular problem. Like in Ref. 1, we speak he
strong stability in the class of Hamiltonian oscillatory systems with different eigenvalues.~This
kind of stability was proven previously for systems with periodic coefficients.11–13! Apparently,
small variations in the system matrix that take the system out of that class will readily produc
of the system’s stability. This is the reflection of the fact that Hamiltonian oscillatory system
structurally unstable.13 More specifically, when the system loses its oscillatory nature, it m
become simplyunstable~parametrically unstable even more so! even for fixed values of its
parameters~if Relj.0). At the same time, if a system leaves the class of Hamiltonian ones, w
retaining its oscillatory nature, then the system becomes parametrically unstable~a property op-
posite to the one of parametric stability!.

Remark: If we choose a class in which all the systems are parametrically stable, then the
be also strongly stable in the class.

As a consequence of the Remark, it is the parametric stability property that can be na
assumed to be primary: it determines the class of systems in which they possess the prop
strong stability.

Theorem III: System (1) with purely imaginary current eigenvalues [Eq. (20)] is parame
cally stable to the order of«k if and only if its generalized geometric amplitudes are all equal
zero [Eq. (21)].

Once again, the proof is carried out following the pattern of Theorem III in Ref. 1, how
replacing the parameter space and the geometric values involved with their generalized a
~also see Appendix B!.

F. Corollaries

By virtue of Eq.~21! representing the necessary and sufficient condition for all of the ab
given theorems, the following conclusions can be drawn.

Corollary I: The Hamiltonian nature, parametric stability, and quantizability are equival
properties with accuracy to any power of«, for system (1) with purely imaginary current eige
values.

Also, the property of parametric stability~Theorem III! determines the strong stability class
the oscillatory systems~1!:

Corollary II: Systems (1) are strongly stable, with accuracy to any power of«, in the class of
oscillatory Hamiltonian systems. Moreover, the class of Hamiltonian systems is the com
strong stability class among the oscillatory systems (1), i.e., none of the oscillatory system
belonging to this set is strongly stable.
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It is clear that the complete class of strongly stable systems~1! represents a union of the se
of Hamiltonian systems with Relj50, j 51,...,n, and the set of systems with a negative real p
of current eigenvalues (Relj,0, j 51,...,n). The strong stability in the latter set is clear enou
and is not discussed here.

Corollary III: Let the phase curves of a linear Hamiltonian system for fixed values of par
eters represent the winding of an n-dimensional torus with various rotation periods. Then
adiabatic invariants exist in the system that are retained during slow variations of the sy
parameters with accuracy to any power of«.

Indeed, if the system is a Hamiltonian one and the conditions~20! are met, then its generalize
geometric amplitudes are equal to zero~Theorem I! for any k. And hence~Statement II!, the
system possesses a set ofn adiabatic invariants that are conserved to within the accuracy«k with
arbitraryk.

IV. CONCLUSIONS

The paper considered a linear dynamic system of the general kind, described by the co
vector equation~1! with a nondegenerate matrix possessing different nonzero eigenvalues
system matrix is assumed to depend on a set of parameters varying adiabatically in tim
principal results reported in the paper are as follows:

~1! A procedure has been suggested for constructing asymptotic solutions~5! that satisfy the
system~1! to terms of any given order in«.

~2! The notion of the generalized parameter spaceMW 5(m̄(«t),m̄8(«t),...,m̄ (k21)(«t)) has
been introduced that allows representing asymptotic solutions as an exponential function
sum of the dynamic phase and the generalized geometric phase. The latter can be repres
a contour integral of some field on theMW -space. Thus the problem has been formally reduce
the case~already considered in Ref. 1! of adiabatic solutions determined with an accuracy of«.
TheMW -space is multidimensional even in the case of a single real varying parameter in the s
(s51). Hence, generalized geometric phases can appear when Berry’s phase is certainly
The appearance of such phases may produce interesting effects in physical systems that ar
to the appearance of Berry’s phase for higher orders of«. @In the papers now being prepared f
publication the author shows that the generalized geometric phase can appear even in very
systems, such as an oscillator with a varying eigenfrequency or the rotating polarization pl
light in a one-dimensionally inhomogeneous medium.#

~3! Making use of the analogy with the adiabatic problem already analyzed to within«, we
have shown the generalized geometric terms, along with current eigenvalues, to be funda
characteristics of the system. They determine its global qualitative portrait over times up to«2k.
The real part of the complex generalized geometric phase, i.e., the generalized geometric
tude, plays a special role in the system analysis. The geometric amplitudes determine the s
Lyapunov indices.

~4! The necessary and sufficient conditions~17! for constructing the adiabatic invariant fo
one degree of freedom have been formulated~under the assumption that the invariant is conser
to within «k). These are the absence of the generalized geometric amplitude and zero value
real part of the current eigenvalue for the given degree of freedom. Within the same appro
tion, Poincare´’s first integral invariant is equivalent to the complete set ofn adiabatic invariants.
In other words, the conditions for its existence are an oscillatory nature of the system an
values for all geometric amplitudes. The conditions of the Liouville theorem~the nth Poincare´
integral invariant! demand that real parts of the current eigenvalues be zeros, as well as the s
generalized geometric amplitudes.

~5! The central results of the paper are the following equivalence relationships. For the
latory systems~1! equivalence has been proved of the Hamiltonian nature of the system
quantizability, and parametric stability with accuracy to any power of«. These properties are
implemented if and only if the generalized geometric amplitudes of the oscillatory system a
equal to zero.
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~6! Particularly discussed have been the properties of parametric stability and strong st
in a class that are modifications of the strong stability property as applied to parametric sy
As has been shown, it is natural to assume the parametric stability as the primary prop
determines the class of strong stability of parametric systems. In the case under considerat
complete class of strongly stable oscillatory systems~1! is formed by Hamiltonian oscillatory
systems.

~7! It is of interest that a direct consequence of the theorems proven here is the known
concerning adiabatic invariants. Namely, a Hamiltonian system with constant-parameter
trajectories lying on ann-dimensional torus supports a complete set ofn adiabatic invariants tha
are conserved with accuracy to any power of«.4–6

It appears to us that the equivalence relationships proven here and in Ref. 1 do not jus
an abstract, mathematical meaning but also possess a physical if not philosophical signifi
They show the role of the Hamiltonian nature of our world. It is well known that the princi
elemental oscillatory systems are described by Hamiltonian equations equally in quantu
classical mechanics and in the wave theory. One could think that the form of these equat
somewhat accidental and they might well have different form. However, the results presen
this work offer a clear view of the following fact: if the equations for linear physical oscilla
had not been of Hamiltonian nature, then our world would not have been so stable agains
perturbations. Besides, it would not have been of quantum nature either, or at least there
have not existed such a correlation between the micro- and macroworld theories.

In conclusion, we stress once again that the derivation of all of these results has b
possible exclusively due to the functional approach to nonautonomous systems~see Sec. I and
Refs. 1 and 2!.
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APPENDIX A: CONSTRUCTION OF ASYMPTOTIC SOLUTIONS

Consider in more detail Neishtadt’s method of successive diagonalizations proposed in
~Compare also with method in Ref. 4.!. Let upon thekth diagonalization the initial equation~1!
take the form

x[k]8 5 bL[k]1D[k] cx[k] , ~A1!

whereuD[k] u;«k11 andL[k] is a diagonal matrix containing the terms up to the order«k inclusive.
Next let us perform the (k11)th diagonalization. Let us make the substitution

x[k]5D[k]x[k11] , ~A2!

where

D[k] j l 5
D[k] j l

~L[k] j j 2L[k] l l !
, j Þ l ; D[k] j j 51. ~A3!

The substitution~A2! always exists and allows inversion, because it is close to the unit matrix~the
diagonal elements ofL[k] are different according to the initial assumptions!.

After the substitution~A2!, Eq. ~A1! will take the form

x[k11]8 5D[k]
21$@L[k]1D[k] #D[k]2D[k]8 %x[k11] . ~A4!

Then we set in~A4!

L[k11]5L[k]1dgD[k] , ~A5!
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~recall that the operator dg denotes rejection of the off-diagonal matrix terms!

D[k11]5D[k]
21@L[k]1D[k] #D[k]2L[k]2dgD[k]2D[k]

21D[k]8 . ~A6!

By substituting Eq.~A3! into Eq. ~A6! we can easily verify that the components ofD[k11] are
proportional to the derivatives of theD[k] components, i.e., they are terms of order«k12. Finally,
by substituting Eqs.~A5! and ~A6! into Eq. ~A4! we obtain:

x[k11]8 5 bL[k11]1D[k11]cx[k11] . ~A7!

Thus, we have completely described the recurrent step from Eq.~A1! to Eq. ~A7!. It only
remains to derive the initial equation of the form~A1! to apply the induction.

Since the matrixA of the initial equation~1! possesses different nonzero eigenvalues, th
exists a matrixD such thatD21AD5L ~The matrixL was introduced in Sec. II.! By carrying out
the substitutionx5Dx[0] , we obtain from Eq.~1!

x@0#8 5@L2D21D8#x@0# .

By setting L[0][L and D[0][2D21D8, we obtain Eq.~A1! for k50. Equations~A2!–~A7!
allow one to repeat the diagonalization procedure as many times as necessary, reducing th
equation to a diagonal form with accuracy to any power of«.

APPENDIX B: ON PROPERTIES OF THE M¢ -SPACE AND SYSTEM TRAJECTORIES IN IT

It should be noted that the dimensions of the generalized parameter space (MW -space!, strictly
speaking, are not independent. Indeed, consider, for instance, a closed oriented contou
system’s representative point in the plane (m j ,m j8) ~Fig. 1!. It is easy to see that the contour show
by a dashed line cannot be realized. Along the sections of decreasingm j , the valuem j8 should be
negative, and hence this section of the contour should lie in the lower half-plane. The co
depicted in Fig. 1 by a solid line meets the requirement, and thus it can be realized.

By generalizing the example, we can suggest the following requirement, which doe
however, exhaust the relations between the coordinates in theMW -space~certain constraints are als
imposed on the trajectories in the planes of (m j

( l ) ,m j
( l 22)) type and others!. At the same time, only

the relations considered in the following are essential for proving the theorems of this pap
Statement: Let MW 5MW (t) be some parametrization of a trajectory of the system’s represe

tive point in the MW -space. Also, let thet parameter be a smooth, monotonically increasi
function of the real time t(dt/dt.0). Then the following equality should hold at any point of t
trajectory:

FIG. 1. Realizable~solid line! and nonrealizable~dashed line! contours of the system’s representative point in a (m j ,m j8)

plane of theMW -space.
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sign
dm j

( l 21)

dt
5signm j

( l ) ~B1!

for all components j51,...,n and all the derivatives l51,...,k21 used.
Let us analyze how the constraints~B1! imposed on the coordinates of theMW -space affect the

proofs of Theorems I–III. To this end, first note that due to the adiabaticity condition~2! the
system trajectories are located in theMW -space near the hyperplane of them̄-space. For example
the valuesm j8 should be of the order«. Hence, the trajectory of the system’s representative p
in the plane shown in Fig. 1 in fact is attached to the bandm j8P(2«,«) and cannot move far awa
from it. Similarly, the dimensions of the higher-order derivativesm j

( l ) are attached to even na
rower bands of width« l .

Let us turn now to the proof of Theorem I~see Ref. 1!. It is clear that the nonperturbe
realization of the system used there~an arbitrary point in the considered region ofMW -space! is
located in the hyperplane of them̄-space. The perturbed realization of the system is represente
an arbitrary closed contour around the point considered whose projections are tied to banm j

( l )

P(2« l ,« l) in the planes (m j
( l ) ,m j

( l 21)). The admissible closed contour satisfying the conditio
~B1! must intersect with the hyperplanem j

( l )50 ~see Fig. 1!, and hence the height of its projectio
on the plane (m j

( l ) ,m j
( l 21)) is of order« l . In terms ofm j dimensions, no restrictions on the conto

geometry are posed, so it can always be chosen arbitrarily small. Meanwhile, in termsm j8
dimensions its value is generally bounded both fromaboveand frombelowby the order«. This
could prevent us from selecting a sufficiently small arbitrary contour for the perturbed sy
realization. However,all the admissible contours can be made arbitrarily small in the dimens
m j

( l ) , l>1 by choosing a sufficiently small value of«. Thus, it only remains to choose th
necessarily small shape of the contour in them̄-space; its projections onto other dimensions w
always be sufficiently small in order to use the theorem on the strong stability of Hamilto
systems with periodic coefficients. Evidently, the Hamiltonian nature as well as the prese
generalized geometric amplitudes in a system does not depend on the magnitude of«. So the proof
remains valid for any small«.

The proof of Theorem II does not face any additional difficulties as compared with the
given in Ref. 1. As for the proof of Theorem III, it involves, as in the case of Theorem I,
trajectory of the unperturbed realization of the system, as well as the closely lying trajector
perturbed realization, spiraling around the former one. The problem of existence of a suffic
close perturbed trajectory can be resolved if we follow the logic pattern of the previous para
Any admissible trajectory can be made arbitrarily close~in terms of dimensionsm j

( l ) , l>1) to the
initial unperturbed one by choosing a sufficiently small value of«, then utilizing the fact that the
properties in question do not depend on the magnitude of the small«.

In conclusion, let us note one more interesting point. The theory of Berry’s phase is re
able in that the phase growth in the solution is determined only by the shape of the traject
the system’s representative point in them̄-space, rather than by the explicit time dependence of
parameters. A single trajectory may correspond to an infinitely large number of various re
tions of the system. When considering the system trajectories in the generalizedMW -space, the
freedom in recovering the system’s realization~i.e., the m̄(«t) dependence! is substantially re-
stricted. Indeed, not only the sequence of variations inm̄ values is specified, but also the
derivatives up to the (k21)th order. Still, a single contour corresponds as yet to an infinitely la
number of realizations. For example, a closed contour in theMW -space does not necessarily corr
spond to periodic variations of the parameters: it is quite possible that the contour would be
in further dimensions (m̄ (k)th). However, in the infinite-dimensional spaceMW (`)

5(m̄(«t),m̄8(«t),...,m̄ (k)(«t),...), in which all the parameter derivatives are taken into acco
the system realization can be recovered unambiguously~if, say, the functionm̄(«t) is analytical!
from knowledge of a contour in that space. Closed trajectories in that space correspond to p
variations inm̄(«t) values. Moreover, an analytical functionm̄(«t), as well as the correspondin
trajectories, can be unambiguously reconstructed from one point on this trajectory. It is r
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seen that the coordinates of this point determine all the coefficients of the Taylor series
MW (`)-space can be regarded as a certain representation of the space of analytic function
every function corresponds to a certain trajectory, and conversely: each point in theMW (`)-space
corresponds to a unique trajectory containing this point and a function.
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Elliptic Ruijsenaars operators and functional equations
Yasushi Komoria)

Nagoya University, Graduate School of Mathematics,
Chikusa-ku, Nagoya, 464-8602, Japan

~Received 14 February 2002; accepted 2 July 2002!

We study mutually commutative difference operators introduced by Ruijsenaars,
which are regarded as elliptic analogs of Macdonald operators and consist of the
Jacobi theta functions and shift operators. These operators are constructed in terms
of R-operators due to Shibukawa and Ueno or root algebras introduced by Chered-
nik, which give rise to a set of functional equations. We investigate solutions of
these functional equations for generalizations of elliptic Ruijsenaars operators.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1507604#

I. INTRODUCTION

Ruijsenaars introduced a family of mutually commutative operators, whose coefficients
sist of theta functions, as a relativistic quantum many-body system in Ref. 10. These operat
regarded as an elliptic analog of Macdonald operators. Since the Macdonald operators ar
ciated with affine root systems, their elliptic analogs are also expected to have generalizat
arbitrary root systems. From this viewpoint, first an analog for theBC-type root system was
introduced by van Diejen,13 and later for arbitrary root systems in Ref. 6. In the latter,
operators are constructed in terms of an algebra called root algebra due to Cherednik,4 which is a
generalization of the Yang–Baxter equation. In this framework, Shibukawa–Ueno’sR-operator12

is regarded as a representation of the root algebras for simply-laced root systems. For th
root systems, we need to construct corresponding ellipticR-operators, which give rise to a set o
functional equations and is not yet investigated thoroughly. In this article, we study solutio
these functional equations to find out generalizations of elliptic Ruijsenaars operators.

This article is organized as follows: In Sec. II, we give the notation and definitions,
outline the construction of elliptic Ruijsenaars operators following Ref. 6 as a motivation. In
III, we put four types of equations associated with the root systems of typeA13A1 , A2 , B2 and
G2 and set our basic assumption in this article. Since in our setting, theA13A1-type equation
gives no functional equation, we first investigate the functional equations of typeA2 , in Sec. IV.
One of these functional equations coincides with the one of the classical Yang–Baxter equ2

Due to their result, we can exhaust all the solutions. It should be noted that a detailed stu
R-operators of typeA2 was given in Ref. 11 in a little different setting. In Sec. V, we study
B2-type equations. Since in affine root systems other thanC2

(1) , D3
(2) andA4

(2) , they are combined
with A2-type equations, the solutions are obtained due to the results in Sec. IV and in R
Although general solutions purely subject to theB2-type equations are not obtained, we present
exceptional solution corresponding to the solution studied in Refs. 8 and 9. The last sec
devoted to theG2-type equations. In this system, the equations are much more complicated
the others, and are not fully investigated. We give partial results and find 22 solutions und
assumption called extensibility.

In this article, we obtainR-operators by solving functional equations. However, it is stron
hoped that they are obtained in a natural way or from smaller algebra as the representa
double affine Hecke algebras in Macdonald theory.3

a!Electronic mail: komori@math.nagoya-u.ac.jp
56370022-2488/2002/43(11)/5637/17/$19.00 © 2002 American Institute of Physics
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II. AFFINE ROOT SYSTEMS AND ELLIPTIC RUIJSENAARS OPERATORS

We give some well-known facts about affine root systems and affine Weyl groups,1,4,5 and
outline the construction of elliptic Ruijsenaars operators following Ref. 6. In this article we
treat nontwisted root systems for simplicity.

Let V̊ be a real vector space equipped with inner product (•,•). For aPV, define a∨

ª2a/(a,a). Let D̊ be an irreducible reduced root system,I̊ 5$1,...,l %, P̊5$a i u i P I̊ %, the set of
simple roots andP̊∨5$a i

∨u i P I̊ %, the set of simple coroots. LetL̊ª$l i u i P I̊ % be a dual basis of
P̊. Let Q̊∨ and P̊∨ be the coroot lattice and the coweight lattice generated byP̊ and L̊, respec-
tively. Let VªV̊% Rd with (d,V)50. Let DªD̊3Zd be the corresponding nontwisted affine ro
system. LetI 5$0,...,l %, P5$a i u i PI % andP∨5$a i

∨u i PI %. Let D1 andD2 be the set of positive
roots and negative roots, respectively. Then one has the disjoint unionD5D1øD2 . For a
PD, let sa be a reflection defined by

sa~v !ªv2~v,a∨!a, vPV. ~2.1!

The Weyl groupW̊ is generated by the fundamental reflections$siªsa i
u i P I̊ % and the affine Weyl

group W is generated by$si u i PI %. The defining relations are given bysi
25 id and the Coxeter

relations:

~si sj !
mi j 5 id, for iÞ j PI , ~2.2!

wheremi j 52 if a i anda j are disconnected in the Dynkin diagram andmi j 53,4,6 if 1,2,3 lines
respectively connecta i anda j . FormPV̊, we define endomorphismstm of the vector spaceV by

tm~l!ªl2~l,m!d. ~2.3!

The actions ofsa , tm are naturally induced onxPV* by transposition as follows:

sa~x!5x2^x,a&a∨, ~2.4!

tm~x!5x1^x,d&m, ~2.5!

where ^•,•& denotes the pairing ofV* and V, and a∨, m are identified with (a∨,•), (m,•),
respectively. For an arbitrary latticeL, we denote byT(L) the corresponding group of translation
of L.

Proposition 2.1: The affine Weyl group W is the semidirect product W5W̊›T(Q̊∨).
Definition 2.2: The extended affine Weyl groupŴ is the semidirect productŴ

ªW̊›T( P̊∨).
Let V be the subgroup ofŴ which stabilizes the affine Weyl chamber.
Proposition 2.3: The extended affine Weyl group Wˆ is isomorphic to the semidirect produc

W’V.
Definition 2.4:~1! The length,(w) of wPW is the length, of the reduced decomposition

w5si 1
...si ,

, for i kPI , ~2.6!

,~ id !50. ~2.7!

~2! The length,(ŵ) of ŵPŴ is the number of the negative roots made positive byŵ:

,~ŵ!ªuD ŵu, D ŵªD1ùŵD2 , ~2.8!

which is equivalent to the definition,(w) for wPW. The reduced decomposition ofŵPŴ is
ŵ5wv5si 1

¯si ,
v, wherevPV and,5,(ŵ)5,(w).
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The setD ŵ is explicitly described asD ŵ5$a (1)5a i 1
,a (2)5si 1

(a i 2
),...,a (,)5wsi ,

(a i ,
)%. By

definition,D ŵ is independent of reduced expressions.
Definition 2.5:A coweightlP P̊∨ is said to be minuscule ifDt2l

,D̊1 .
We shall define the root algebras after Cherednik.4 Let T be the tensor algebra overC gener-

ated by independent variables$RauaPD%. Then the action ofŵPŴ on D induces an action onT
by ŵ:Ra°Rŵ(a) .

Definition 2.6:Let I be the two-sided ideal inT which is generated by all the elements of t
form for iÞ j PI , andŵPŴ:

~2.9!

The root algebraR̃ is T/I. $RauaPD% are called theR-matrices.
Because of theŴ-invariance ofI, the action ofŴ is induced onR̃. For simplicity, we write

products inR̃ in the usual way for associative algebras.
Theorem 2.7 „Cherednik…: (1) There exists a unique set$RŵuŵPŴ%,R̃ satisfying the

relations

Rvw5Rv
vRw , Rsi

5Ra i
~ i PI !, Rv51, ~2.10!

wherevPV, v,wPŴ and ,(v w)5,(v)1,(w).
(2) We have the R-matrix for ŵPŴ and its arbitrary reduced decomposition wˆ 5wv

5si 1
¯si ,

v as

Rŵ5Ra(1)¯Ra(,),
~2.11!

a (1)5a i 1
, a (2)5si 1

~a i 2
!, ..., a (,)5wsi ,

~a i ,
!PD ŵ .

Instead of the original root algebra, we use the following extension, whereR̃ is combined
with the translation groupT( P̊∨):

Definition 2.8:RªR̃’T( P̊∨),

~Rtl!~R8tm!5R~ tlR8!tl1m , ~2.12!

whereR,R8PR̃ andl,mP P̊∨.
Theorem 2.9: The subalgebraS,R generated by$Yl

ªRtl
tlulP P̊2

∨ % forms a commuta-

tive algebra and is generated by$Y2l iu i P I̊ %.
We consider such a representation thatRa acts on the space of the meromorphic functionsM

on C^ V* and takes the form

~Ra f !~x!ªHa~^a,x&,ma! f ~x!2Ha~^a,x&,~a∨,j!! f ~sa~x!!, ~2.13!

wherejPV̊ is a parameter called spectral parameter,maPC is aŴ-invariant constant,f PM and
Ha(z,m) is a meromorphic function ofz on C. Furthermore, we assume that~2.13! satisfies
unitarity:

R2aRa5ca~~a∨,j!!, ~2.14!
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whereca(z) is a meromorphic function onC andca(2ma)50.

For somelP P̊2
∨ , the explicit forms ofYl on the spaceV5M W̊ are calculated as follows:

Theorem 2.10:Let j52 r̊mª(aPD̊maa and letl be minuscule. Then we have

Y2luV5
1

uW̊lu
(

wPW̊

wS )
aPD̊1

(l,a)51

Ha~ma!t2lD U
V

, ~2.15!

Y2u∨
uV5

1

uW̊u∨u
(

wPW̊

wS S )
aPD̊1

(a,u∨).0

Ha~ma!D ~Hu1d~ma0
!t2u∨2Hu1d~2~u∨,r̊m!!!D U

V

,

~2.16!

where Ha(m) denotes the multiplication operator of Ha(•,m) and W̊n is the stabilizer ofn in W̊.
For an appropriate functionHa , they give actually generalizations of elliptic Ruijsenaa

operators. In the following sections, we investigateR-operators in more general settings.

III. FUNCTIONAL EQUATIONS ASSOCIATED WITH ROOT ALGEBRAS

Motivated by the previous section, we will investigate the representation of the root alge
Following Definition 2.6 in root systems of rank 2, we have the following equations:

Ra Rb5Rb Ra , ~3.1!

Ra Ra1b Rb5Rb Ra1b Ra , ~3.2!

Ra Ra1b Ra12b Rb5Rb Ra12b Ra1b Ra , ~3.3!

Ra Ra1b R2a13b Ra12b Ra13b Rb5Rb Ra13b Ra12b R2a13b Ra1b Ra , ~3.4!

whereuau>ubu. In root systems of higher rank, we see that for any two rootsa andb, Ra andRb

satisfy one of the equations~3.1!–~3.4!. So it is sufficient to consider the above systems.
Let M0 be the set of meromorphic functions defined in a neighborhood of the origin ofC with

a possible pole at the origin. LetH0 be the set of holomorphic functions defined in a simi
manner.

Although we considered the representation of the form~2.13!, we relax the condition in the
following. Namely,Ra acts onM0 and takes the form

~Ra f !~x!ªGa~^a,x&! f ~x!1Ha~^a,x&! f ~sa~x!!, ~3.5!

whereGa ,HaPM0 .
We study solutionsGa andHa of ~3.1!, ~3.2!, ~3.3! or ~3.4! such that eitherGa or Ha is not

identically zero. Since theA13A1-type relation~3.1! does not require any constraint inGa , Ha ,
we first investigate general solutions of theA2-type ~3.2!.

Define forIt.0

sa,b~x,l;t!ªe22p ibl
u18~0;t!u1~x1a1bt2l;t!

u1~x1a1bt;t!u1~2l;t!
, ~3.6!

whereu1(x;t) is the Jacobi theta function.
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IV. A 2 CASE

A. Functional equations

Proposition 4.1: In the root system of type A2 , the operators Rg satisfy~3.2! if and only if Gg

and Hg satisfy, up to an overall factor, the following equations:

Ga~u!5Ga1b~u!5Gb~u!, ~4.1a!

Ha~u!Ha1b~v !1Ha1b~u1v !Hb~2u!2Ha~u1v !Hb~v !50, ~4.1b!

Ga~u!Ga~2u!2Ga~v !Ga~2v !5Ha~u!Ha~2u!2Ha~v !Ha~2v !

5Hb~u!Hb~2u!2Hb~v !Hb~2v !. ~4.1c!

Proof: Substituting~3.5! into ~3.2!, we obtain functional equations as follows:

~Ga1b~v !Gb~u1v !2Ga1b~u1v !Gb~v !!Ha~u!50, ~4.2a!

~Ga~u1v !Ga1b~u!2Ga~u!Ga1b~u1v !!Hb~v !50, ~4.2b!

~Ga~u!Gb~2u!2Ga~2v !Gb~v !!Ha1b~u1v !1Ha~u!Ha1b~v !Hb~u!

2Ha~v !Ha1b~u!Hb~v !50, ~4.2c!

Gb~u!Ha~u!Ha1b~v !1Ga~u!Ha1b~u1v !Hb~2u!

2Ga1b~u!Ha~u1v !Hb~v !50, ~4.2d!

2Gb~v !Ha~2v !Ha1b~u1v !1Ga1b~v !Ha~u!Hb~u1v !

2Ga~v !Ha1b~u!Hb~v !50, ~4.2e!

where we have setuª^x,a& andvª^x,b&. From ~4.2a! and~4.2b!, since eitherHa or Hb is not
identically zero, we deduceGa(u)5Ga1b(u)5Gb(u) without loss of generality and obtai
~4.1a!. Then ~4.2d! and ~4.2e! are identical and implies~4.1b!. The equation~4.1c! is obtained
from ~4.2c! by applying~4.1b!. h

The equation~4.1b! appears in the classical, i.e., differential, case and was solved in Re
Theorem 4.2„2…: Consider the functional equation

f ~u!g~2v !1g~2u2v !h~2u!1h~v ! f ~u1v !50. ~4.3!

(1) The only nontrivial solutions of (4.3) holomorphic around the origin are

f ~u!5
1

l
epu, g~u!52S 1

l1m De2(p1q)u, h~u!5
1

m
equ, ~4.4!

wherel,m,p,qPC are arbitrary such thatl,m,l1mÞ0.
(2) The only nontrivial solutions of (4.3) which have a pole at the origin are

f ~u!5as0,0~bu,l;t!epu,

g~u!5as0,0~bu,2l2m;t!e2(p1q)u, ~4.5!

h~u!5as0,0~bu,m;t!equ,
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where a,b,l,m,p,qPC are arbitrary such that a,bÞ0, l,m,l1m¹Z1Zt. In the above, `
as a period or a certain limit is also permitted.11

Theorem 4.2 can be applied tof (u)5Ha(u), g(u)52Ha1b(2u) andh(u)5Hb(u).

B. Holomorphic solutions

Theorem 4.3: The following functions exhaust all the nontrivial solutions of the equa
(4.1) holomorphic around the origin:

Ha~u!5
1

l
epu, Ha1b~u!5S 1

l1m De(p1q)u, Hb~u!5
1

m
equ, ~4.6a!

Ga~u!5Ga1b~u!5Gb~u!5
1

n
f~u!, ~4.6b!

where l,m,n,p,qPC are arbitrary such that l,m,n,l1mÞ0 and fPM0 satisfies
f(u)f(2u)51.

C. Meromorphic solutions

Theorem 4.4: The following functions exhaust all the nontrivial solutions of the equa
(4.1) which has a pole at the origin:

Ha~u!5as0,0~bu,l;t!epu,

Ha1b~u!5as0,0~bu,l1m;t!e(p1q)u, ~4.7a!

Hb~u!5as0,0~bu,m;t!equ,

Ga~u!5Ga1b~u!5Gb~u!5as0,0~bu,n;t!f~u!, ~4.7b!

where a,b,l,m,n,p,qPC such that a,bÞ0, l,m,n,l1m¹Z1Zt and fPM0 satisfies
f(u)f(2u)51. In the above, ` as a period or a certain limit is also permitted.

Remark 4.5:The solution in Theorem 4.4 has the following principal part at the origin:

Ha~u!5
a

bu
1¯ . ~4.8!

V. B 2 CASE

A. Functional equations

Proposition 5.1: In the root system of type B2 , the operators Rg satisfy (3.3) if and only if Gg
and Hg satisfy, up to an overall factor, the following equations:

Ga~u!5Ga12b~u!, Ga1b~u!5Gb~u!, ~5.1a!

Ha1b~u1v !Ha~2u22v !1Hb~v !Ha12b~u!1Ha1b~2v !Ha12b~u12v !5Hb~u1v !Ha~u!,

~5.1b!

Ga~u!Ga~2u!2Ga~v !Ga~2v !5Ha~u!Ha~2u!2Ha~v !Ha~2v !

5Ha12b~u!Ha12b~2u!2Ha12b~v !Ha12b~2v !,

~5.1c!
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Gb~u!Gb~2u!2Gb~v !Gb~2v !5Hb~u!Hb~2u!2Hb~v !Hb~2v !

5Ha1b~u!Ha1b~2u!2Ha1b~v !Ha1b~2v !. ~5.1d!

Proof: Substituting~3.5! into ~3.3!, we obtain functional equations as follows:

~Ga1b~v !Gb~u1v !2Ga1b~u1v !Gb~v !!Ga12b~u12v !Ha~u!50, ~5.2a!

~Ga~u12v !Ga12b~u!2Ga~u!Ga12b~u12v !!Hb~v !Ga1b~u1v !50, ~5.2b!

~Ga~u!Ga12b~2u!2Ga~2u!Ga12b~u!!Ha1b~u1v !Hb~v !

5~Ga1b~v !Gb~2v !2Ga1b~2v !Gb~v !!Ha~u!Ha12b~u12v !, ~5.2c!

Gb~u1v !Ga12b~u!Ha1b~v !Ha~u!1Ga1b~u1v !Ga~u!Hb~2u2v !Ha12b~u12v !

1Gb~u1v !Ga~u!Ha1b~u1v !Ha12b~2u!

5Ga1b~u1v !Ga12b~u!Hb~v !Ha~u12v !, ~5.2d!

Gb~v !Ga12b~u12v !Ha1b~u1v !Ha~2u22v !1Ga1b~v !Ga~u12v !Hb~v !Ha12b~u!

1Gb~v !Ga~u12v !Ha1b~2v !Ha12b~u12v !

5Ga1b~v !Ga12b~u12v !Hb~u1v !Ha~u!, ~5.2e!

Gb~v !Ga~u!Ga12b~2u!Ha1b~u1v !1Gb~v !Ha1b~v !Ha~u!Ha12b~u!

1Ga1b~v !Hb~2v !Ha~u!Ha12b~u12v !

5Gb~v !Ha1b~2v !Ha~u12v !Ha12b~u12v !1Ga1b~v !Hb~v !Ha~u12v !Ha12b~u!

1Gb~v !Ga~2u22v !Ga12b~u12v !Ha1b~u1v !, ~5.2f!

Ga12b~u!Ha1b~v !Hb~u1v !Ha~u!1Ga~u!Ha1b~u1v !Hb~u1v !Ha12b~2u!

1Ga1b~u1v !Gb~2u2v !Ga~u!Ha12b~u12v !

5Ga12b~u!Ha1b~u1v !Hb~v !Ha~2u!1Ga~u!Ha1b~v !Hb~v !Ha12b~u!

1Ga1b~2v !Gb~v !Ga~u!Ha12b~u12v !, ~5.2g!

where we have setuª^x,a& and vª^x,b&. First we see that from~5.2a! and ~5.2b!, Ga(u)
5Ga12b(u) and Ga1b(u)5Gb(u), which implies~5.1a!. Then ~5.2c! vanishes and~5.2d! and
~5.2e! result in the same equation as~5.1b!. By applying ~5.1b! to ~5.2f! and ~5.2g!, we obtain
~5.1c! and ~5.1d!. h

A solution of these equations possesses the duality:
Lemma 5.2: If G̃g and H̃g are a solution of (5.1), then

Ga~u!5G̃b~u!, Ha~u!5H̃b~u!,

Gb~u!5G̃a~2u!, Hb~u!5H̃a~2u!,
~5.3!

Ga1b~u!5G̃a12b~2u!, Ha1b~u!5H̃a12b~2u!,

Ga12b~u!5G̃a1b~u!, Ha12b~u!5H̃a1b~u!

are also a solution of (5.1).
Proof: This can be checked by a direct calculation. h
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In the root systems of typeC2
(1) , D3

(2) or A4
(2) , we have only the equation~3.3! and we

actually need the general solution for the equations~5.1!. However, it is a very difficult problem
to obtain the general solution and we assume thatHa and Ha12b are given by Theorem 4.3 o
Theorem 4.4, which is not an assumption and is imposed in the other root systems.

B. Solutions associated with holomorphic solutions

We assume thatHa andHa12b are given by Theorem 4.3.
Lemma 5.3: Let

Ha~u!5
1

l
epu, Ha12b~u!5

1

m
equ, ~5.4!

wherel,mÞ0. Then the solution of (5.1b) is

Hb~u!5e(2p1q)u~b1w~u!!, Ha1b~u!5e(p1q)u~a1w~u!!, ~5.5!

wherewPM0 is an arbitrary odd function and a,bPC are arbitrary such that a(l1m)1b(l
2m)50.

Proof: We assume thatlÞm. By substituting ~5.4! and Hb(u)5 f (u)e(2p1q)u and
Ha1b(u)5g(u)e(p1q)u into the equation~5.1b!, we obtain

l f ~v !2m f ~u1v !1lg~2v !1mg~u1v !50, ~5.6!

and thus by settingu50,

f ~v !5
lg~2v !1mg~v !

2l1m
. ~5.7!

Substituting this into~5.6! and settingu50 after the differentiation byu, we arrive at

~g~v !1g~2v !!850. ~5.8!

This differential equation yields

g~v !5a1w~v !, ~5.9!

whereaPC is an arbitrary constant andwPM0 is an arbitrary odd function. Again substitutin
this function into~5.6!, we can check that they are really a solution of~5.1b!. If l5m, then by
exchanging the roles off andg, the statement follows. h

Theorem 5.4:Let

Ha~u!5
1

l
epu, Ha12b~u!5

1

m
equ, ~5.10a!

Ga~u!5Ga12b~u!5
1

n
f~u!, ~5.10b!

wherel,mÞ0 andfPM0 satisfiesf(u)f(2u)51. Then the following functions exhaust all th
nontrivial solutions of the equation (5.1):

Hb~u!5e(2p1q)u~b1w~u!!, Ha1b~u!5e(p1q)u~a1w~u!!, ~5.11a!

Gb~u!5Ga12b~u!5c~u!~c1w~u!!, ~5.11b!
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wherewPM0 is odd and a,b,cPC are such that a(l1m)1b(l2m)50 and cPM0 satisfies
c(u)c(2u)51.

C. Solutions associated with meromorphic solutions

We assume thatHa andHa12b are given by Theorem 4.4 and consider the following eq
tion:

Ha1b~v !Ha~u2v !1Hb~2u!Ha12b~u1v !1Ha1b~u!Ha12b~2u1v !

5Hb~v !Ha~u1v !, ~5.1b8!

which is obtained by replacingu by u1v andv by 2u in ~5.1b!.
Set

Hb~u!5 (
i>2p

Hb
( i )ui , Ha1b~u!5 (

i>2q
Ha1b

( i ) ui . ~5.12!

Lemma 5.5: If either Hb or Ha1b has a pole at the origin, then both Hb and Ha1b have a
simple pole at the origin and Hb

(21)5Ha1b
(21) .

Proof: We assumeHb has a pole at the origin of orderp.0. By substituting~5.12! and the
Taylor expansions ofHa(u1v), Ha(u2v), Ha12b(u1v) andHa12b(2u1v) with respect tou
into the equation~5.1b8!, we see thatHa1b has the same order asHb at the origin. Comparing the
coefficient ofu2p, we have

Ha1b
(2p)5~21!2p11Hb

(2p) . ~5.13!

If p.1, we have the following equation by comparing the coefficient ofu2p11:

~Ha1b
(2p11)1~21!2p11Hb

(2p11)!Ha12b~v !22Ha1b
(2p)Ha12b8 ~v !50, ~5.14!

where we have used~5.13!. SinceHb(v) is not of the formaebv, we haveHa1b
(2p)50, which

contradicts to the assumption and impliesp51. The case thatHa1b has a pole at the origin is
shown similarly. h

By substituting the formHg(u)5( i 521
` Hg

( i )ui and Ha
(21)5Ha12b

(21) and Hb
(21)5Ha1b

(21) , we
obtain for all l ,m>0,

2Ha
(21)~~21!mHa1b

( l 1m11)1Hb
( l 1m11)!1Hb

(21)S ~~21! l 1m111~21!m11!S l 1m11
m DHa

( l 1m11)

1~~21!m1121!S l 1m11
m11 DHa12b

( l 1m11)D1 (
k50

l S m1k
k D ~~21!m1kHa1b

( l 2k)Ha
(m1k)

2~21!mHb
( l 2k)Ha

(m1k)!1 (
k50

m S l 1k
k D ~~21!kHb

(m2k)Ha12b
( l 1k) 1~21!m2kHa1b

(m2k)Ha12b
( l 1k) !

50. ~5.15!

Lemma 5.6: Hb and Ha1b are determined by Hb
(21) , Hb

(0) , Hb
(1) and Ha1b

(0) .
Proof: In ~5.15!, by setting l 5n2m21 we obtain two equations form50,1, which are

written in the form

2Ha
(21)S 1 1

1 21D S Hb
(n)

Ha1b
(n) D 5Fn , ~5.16!
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whereFn consists ofHb
( i ) and Ha1b

( i ) for 21< i ,n and Ha
( i ) and Ha12b

( i ) for 21< i<n. Since
Ha

(21)Þ0, we see by induction thatHb
(n) and Ha1b

(n) for n>2 are determined byHb
(21) , Hb

(0) ,
Hb

(1) , Ha1b
(0) , Ha1b

(1) , andHa
( i ) andHa12b

( i ) for i>21. The l 5m50 case of~5.15! yields

Ha
(0)~Hb

(0)2Ha1b
(0) !1Ha

(21)~Hb
(1)1Ha1b

(1) !12Hb
(21)~Ha

(1)1Ha12b
(1) !5Ha12b

(0) ~Hb
(0)1Ha1b

(0) !

~5.17!

and shows thatHa1b
(1) and thusHb andHa1b are determined byHb

(21) , Hb
(0) , Hb

(1) andHa1b
(0) .h

By Lemma 5.6, we see thatHb
(21) , Hb

(0) , Ha1b
(0) andHb

(1) may be taken arbitrarily as long a
the series converges.

Now we return to the whole system~5.1!.
Theorem 5.7:Let

Ha~u!5as0,0~b u,l;t!epu, Ha12b~u!5as0,0~b u,m;t!equ, ~5.18a!

Ga~u!5Ga12b~u!5as0,0~b u,n;t!f~u!, ~5.18b!

where a,b,l,m,n,p,qPC such that a,bÞ0, l,m,n,2l1m,l1m¹Z1Zt and fPM0 satisfies
f(u)f(2u)51. Then the following functions exhaust all the nontrivial solutions of the equat
(5.1):

Hb~u!5 (
m,n50

1

am,nsm/2,n/2~b u,2l1m;t!e(2p1q)u,

~5.19a!

Ha1b~u!5 (
m,n50

1

am,nsm/2,n/2~b u,l1m;t!e(p1q)u,

Gb~u!5Ga1b~u!5 (
m,n50

1

am,nsm/2,n/2~b u,h;t!c~u!, ~5.19b!

where h,am,nPC for 0<m, n<1 are arbitrary such thath¹Z1Zt and cPM0 satisfies
c(u)c(2u)51.

Proof: We know that the equation~5.1b! has at most four free parameters. It is known that
arbitraryam,nPC, ~5.19a! satisfies the equation~5.1b!.7

By a direct calculation we have

AS a0,0

a1/2,0

a1/2,1/2

a0,1/2

D 5S Hb
(21)

Hb
(0)

Ha1b
(0)

Hb
(1)
D , ~5.20!

whereA is a matrix whose determinant isf (l1m,2l1m) and

f ~x,y!52
u18

3~0!

u0~0!u2~0!u3~0!u1~x!u1~y!2 ~2u3~x!u2~y!u08~y!1u2~x!u3~y!u08~y!

1u3~x!u0~y!u28~y!2u0~x!u3~y!u28~y!2u2~x!u0~y!u38~y!1u0~x!u2~y!u38~y!!

~5.21!

5
u1~~x2y!/2!2u1~~x1y!/2!2

u1~x!
g~y!, ~5.22!
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with g(y) a meromorphic function which has simple poles atZ1Zt and no zeros. By the assump
tion l,m¹Z1Zt, we see that the determinant is always nonzero andA is invertible. h

Remark 5.8:In Theorem 5.7, thel1mPZ1Zt or 2l1mPZ1Zt case is not investigated

D. Exceptional solutions

As mentioned before, the general solution of~5.1! is not known. But we found anothe
solution experimentally.

Theorem 5.9:The following is a solution of the equations (5.1):

Ha~u!5as0,0~c u,l;t!epu1bs0,0~c u,2l;2t!epu,

Ha12b~u!5as0,0~c u,m;t!equ1bs0,0~c u,2m;2t!equ,
~5.23a!

Hb~u!5a8s0,0~c u,2l1m;t!e(2p1q)u1b8s0,0~2c u,2l1m;2t!e(2p1q)u,

Ha1b~u!5a8s0,0~c u,l1m;t!e(p1q)u1b8s0,0~2c u,l1m;2t!e(p1q)u,

Ga~u!5Ga12b~u!5as0,0~c u,n;t!f~u!1bs0,0~c u,2n;2t!f~u!,
~5.23b!

Gb~u!5Ga1b~u!5a8s0,0~c u,h;t!w~u!1b8s0,0~2c u,h;2t!w~u!,

where a,b,c,a8,b8,l,m,n,h,p,q are arbitrary complex numbers, andf,wPM0 satisfy
f(u)f(2u)5w(u)w(2u)51.

Proof: This follows from the linearity of the equation~5.1b!, Lemma 5.2 and the following
identity. h

Lemma 5.10:

S s0,0~2u,m;t!

s0,0~u,m;t/2!

s0,0~2u,2m;2t!

s0,0~u,2m;t!

D 5S 1
2

1
2

1
2

1
2

0 1 0 1

0 0 1
2

1
2

0 0 0 1

D S s1/2,1/2~u,2m;t!

s0,1/2~u,2m;t!

s1/2,0~u,2m;t!

s0,0~u,2m;t!

D . ~5.24!

Remark 5.11:We can choosea,b,a8,b8 so thatHgPH0 . Such a solution indicates that in th
B2 case, holomorphy does not simplify solutions as in theA2 case. See Theorem 4.3. The soluti
in Theorem 5.9 corresponds to the system studied in Refs. 8 and 9.

VI. G2 CASE

In this section, we study the solution related to theG2 system. The functional equations a
much more complicated than theA2 or theB2 case and we have not completed the investigat
of general solutions.

A. Functional equations

In the following, we make an assumption called extensibility:4

Ra R2a13b Ra13b5Ra13b R2a13b Ra . ~6.1!

Then we have the following equivalent condition to~3.4!:
Theorem 6.1:The operators Rg satisfy (3.4) if and only if Gg and Hg satisfy, up to an overall

factor, the following equations:

Ga1b~u!5Ga12b~u!5Gb~u!, ~6.2a!
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Ha~u!Hb~u1v !2Ha~22u23v !Ha1b~u1v !2Hb~v !Ha13b~u!2Ha12b~2v !Ha13b~u13v !

2Ha12b~u12v !H2a13b~2u23v !2Ha1b~2u22v !H2a13b~2u13v !50, ~6.2b!

Gb~u!Gb~2u!2Gb~v !Gb~2v !5Hb~u!Hb~2u!2Hb~v !Hb~2v !, ~6.2c!

Ga~2u!Ga~u!Ha1b~u1v !Ha12b~v !1Ga~22u23v !Ga~2u13v !Hb~2u2v !Ha12b~u12v !

2Ga~22u23v !Ga~2u13v !Hb~v !Ha1b~u12v !1Gb~2u2v !Gb~u1v !

3Ha13b~2u!H2a13b~2u13v !1Gb~2v !Gb~v !Ha~u!H2a13b~u13v !

2Gb~2v !Gb~v !Ha~2u13v !Ha13b~u13v !1Ha~u!Ha1b~v !Ha12b~u1v !Ha13b~2u!

1Ha~u!Ha1b~v !Ha12b~v !H2a13b~u!1Ha~u!Ha1b~v !Hb~2u2v !Ha13b~2u13v !

2Ha~2u13v !Hb~v !Ha1b~2u2v !H2a13b~2u13v !2Ha~2u13v !Hb~v !Ha12b~u1v !

3H2a13b~2u!2Ha~2u13v !Hb~v !Ha12b~v !Ha13b~u!1Ha1b~u1v !Ha12b~u1v !

3Ha13b~2u!H2a13b~2u!1Hb~2u2v !Ha1b~u1v !Ha13b~2u13v !H2a13b~2u!

1Hb~2u2v !Ha12b~2u2v !Ha13b~2u13v !H2a13b~2u13v !50, ~6.2d!

Ga~2u!Ga~u!Hb~u1v !Ha1b~u1v !Ha12b~v !2Ga~2u!Ga~u!Hb~v !Ha1b~v !Ha12b~u1v !

2Ga~2u23v !Ga~u13v !Gb~2v !Gb~v !Ha12b~u12v !1Ga~22u23v !Ga~2u13v !

3Gb~2u2v !Gb~u1v !Ha12b~u12v !1Gb~2u2v !Gb~u1v !

3Ha~u!Ha1b~v !Ha13b~2u13v !2Gb~2u2v !Gb~u1v !Ha~2u!Hb~v !

3H2a13b~2u13v !1Gb~2u2v !Gb~u1v !Ha1b~u1v !Ha13b~2u13v !H2a13b~2u!

1Gb~2u2v !Gb~u1v !Ha12b~2u2v !Ha13b~2u13v !H2a13b~2u13v !1Gb~2u2v !

3Gb~u1v !Hb~u1v !Ha13b~2u!H2a13b~2u13v !1Gb~2v !Gb~v !Ha~u!Hb~u1v !

3H2a13b~u13v !2Gb~2v !Gb~v !Ha~2u!Ha1b~u1v !Ha13b~u13v !2Gb~2v !

3Gb~v !Ha1b~v !Ha13b~u13v !H2a13b~u!2Gb~2v !Gb~v !Ha12b~2v !

3Ha13b~u13v !H2a13b~u13v !2Gb~2v !Gb~v !Hb~v !Ha13b~u!H2a13b~u13v !

1Ha~u!Hb~u1v !Ha1b~v !Ha12b~u1v !Ha13b~2u!1Ha~u!Hb~u1v !

3Ha1b~v !Ha12b~v !H2a13b~u!2Ha~2u!Hb~v !Ha1b~u1v !Ha12b~u1v !H2a13b~2u!

2Ha~2u!Hb~v !Ha1b~u1v !Ha12b~v !Ha13b~u!1Hb~u1v !Ha1b~u1v !Ha12b~u1v !

3Ha13b~2u!H2a13b~2u!2Hb~v !Ha1b~v !Ha12b~v !Ha13b~u!H2a13b~u!50, ~6.2e!

Ga~2u!Ga~u!Gb~2u2v !Gb~u1v !H2a13b~2u13v !1Ga~2u!

3Ga~u!Ha~u!Ha1b~v !Ha12b~u1v !2Ga~2u!Ga~u!Ha~u13v !Hb~v !

3Ha12b~u1v !1Ga~2u!Ga~u!Ha1b~u1v !Ha12b~u1v !H2a13b~2u!

1Ga~2u!Ga~u!Ha1b~u1v !Ha12b~v !Ha13b~u!1Ga~2u!Ga~u!Hb~2v !Ha1b~u1v !

3Ha13b~u13v !2Ga~2u23v !Ga~u13v !Gb~2u22v !Gb~u12v !H2a13b~2u13v !

1Ga~2u23v !Ga~u13v !Ha~u!Hb~2v !Ha12b~u12v !2Ga~2u23v !Ga~u13v !

3Ha~u13v !Ha1b~2v !Ha12b~u12v !2Ga~2u23v !Ga~u13v !Ha1b~u12v !
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3Ha12b~u12v !H2a13b~2u23v !2Ga~2u23v !Ga~u13v !Ha1b~u12v !

3Ha12b~2v !Ha13b~u13v !2Ga~2u23v !Ga~u13v !Hb~v !Ha1b~u12v !Ha13b~u!

1Gb~2v !Gb~v !Ha~u!Ha13b~u!H2a13b~u13v !2Gb~2v !Gb~v !Ha~u13v !

3Ha13b~u13v !H2a13b~u!1Ha~u!Ha1b~v !Ha12b~v !Ha13b~u!H2a13b~u!

2Ha~u13v !Ha1b~2v !Ha12b~2v !Ha13b~u13v !H2a13b~u13v !

1Ha~u!Hb~2v !Ha1b~v !Ha13b~u13v !H2a13b~u!1Ha~u!Hb~2v !Ha12b~2v !

3Ha13b~u13v !H2a13b~u13v !2Ha~u13v !Hb~v !Ha12b~v !Ha13b~u!H2a13b~u!

2Ha~u13v !Hb~v !Ha1b~2v !Ha13b~u!H2a13b~u13v !50. ~6.2f!

We omit the proof, since it is straightforward but lengthy. We remark that the equa
~6.2a!–~6.2c! are comparable to the equation~4.1! or ~5.1!, while the others do not seem to b
simplified.

B. Solutions associated with holomorphic solutions

We assume thatHa , H2a13b andHa13b are given by Theorem 4.3.
Lemma 6.2: Let

Ha~u!5
1

l
epu, H2a13b~u!5S 1

l1m De(p1q)u, Ha13b~u!5
1

m
equ, ~6.3!

wherel,m,l1mÞ0. Then the solution of (6.2b) is

Hb~u!5e(2p1q)u~a1w~u!!,
~6.4!

Ha12b~u!5e(p12q)u~b2w~2u!!,

Ha1b~u!5e(2p1q)u~c1w~u!!,

wherewPM0 and a,b,cPC are such that

a~l1m!~l2m!1bl~l12m!1cm~2l1m!50. ~6.5!

Proof: We assume thatlÞm. By substituting~6.3! and Hb(u)5 f (u)e(2p1q)u, Ha1b(u)
5g(u)e(2p1q)u andHa12b(u)5h(u)e(p12q)u into the equation~6.2b!, we obtain

l~l1m! f ~v !2m~l1m! f ~u1v !1m~l1m!g~u1v !

1l~l1m!h~2v !1lm~g~2u22v !1h~u12v !!50, ~6.6!

and thus by settingu50,

f ~v !5
lmg~22v !1m~l1m!g~v !1l~l1m!h~2v !1lmh~2v !

2l21m2 . ~6.7!

Substituting this andg(v)5c1w(v) andh(v)5a(v)2w(2v) into ~6.6!, we have the following
equations fora(v) by settingu50 after the differentiation byu, andu523v:

~a~2v !1a~2v !!850, ~6.8!

a~24v !22a~2v !1a~2v !50. ~6.9!
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The first equation is solved as

a~2v !1a~2v !52b, ~6.10!

wherebPC is an arbitrary constant, and consequently the second asa(v)5b. Hence by~6.7!, we
see thatf , g andh should be of the form

f ~u!52
cm~2l1m!1bl~l12m!

l22m2 1w~v !, ~6.11!

g~u!5c1w~u!, ~6.12!

h~u!5b2w~2u! ~6.13!

for somewPM0 . Substituting these functions into~6.6!, we can check that they are really
solution of ~6.2b! for any wPM0 . If l5m, then by exchanging the roles off and g, the
statement follows. h

Theorem 6.3:Let

Ha~u!5
1

l
epu, H2a13b~u!5S 1

l1m De(p1q)u, Ha13b~u!5
1

m
equ, ~6.14a!

Ga~u!5G2a13b~u!5Ga13b~u!5
1

n
f~u!, ~6.14b!

wherel,m,n,l1m,2l1m,m12lÞ0 andfPM0 satisfiesf(u)f(2u)51. Then the following
functions exhaust all the nontrivial solutions of the equations (6.2) if aÞ2b:

Hb~u!5e(2p1q)u~a1w~u!!,
~6.15a!

Ha12b~u!5e(p12q)u~b2w~2u!!,

Ha1b~u!5e(2p1q)u~c1w~u!!,
~6.15b!

Gb~u!5Ga12b~u!5Ga1b~u!5c~u!~k1w~u!!,

where a,b,c,kPC and

w~u!5h/u, hPC, ~6.16a!

2a~l2m!5b~l12m!5c~2l1m! or
~6.16b!

2a~2n22lm2m2!5b~2n21lm!, a~2n22l22lm!5c~2n21lm!,

or

w~u!5d coth~du/h!, hPC\$0%, ~6.17a!

a~l1m!~l2m!1bl~l12m!1cm~2l1m!50, ~6.17b!

d25
ab~l21lm22n2!

l~l1m!
2

acl~lm1m222n2!

m~l1m!
1

bc~l1m!~lm12n2!

lm
, ~6.17c!

and cPM0 satisfiesc(u)c(2u)51.
Proof: Substituting~6.4! with ~6.5! into the equation~6.2f!, we have
                                                                                                                



the

s

5651J. Math. Phys., Vol. 43, No. 11, November 2002 Ruijsenaars operators and functional equations

                    
~a1b!~w~2u!1w~u!2w~2u2v !2w~u1v !!50, ~6.18!

where we have usedl,l12m,2l1mÞ0 and the equation~6.2c!. By the proof of Lemma 6.2, we
assume without loss of generality thatw(u) has no constant term in the Laurent expansion at
origin.

Since we assumeaÞ2b, thenw(u) is an odd function. By the equation~6.2d!, we have

w~u!w~v !2w~v !w~u1v !2w~u!w~u1v !5d2, ~6.19!

where

d25
ab~l21lm22n2!

l~l1m!
2

acl~lm1m222n2!

m~l1m!
1

bc~l1m!~lm12n2!

lm
. ~6.20!

If wPH0 , thenw(0)50 and thusw(v)5d50 by ~6.19!. In this case, we have~6.16b! by using
~6.5!. If wPM0 with a pole at the origin, then it should be simple. Replacingw(u) by 1/f (u), we
have

f ~u1v !2 f ~u!2 f ~v !5d2f ~u! f ~v ! f ~u1v !. ~6.21!

Dividing both sides byu and lettingu→0, we obtain

f 8~v !2 f 8~0!5d2f 8~0! f ~v !2. ~6.22!

This Riccati-type ordinary differential equation has a unique solution:

f ~u!5tanh~du/h!/d, if dÞ0,
~6.23!

f ~u!5u/h, if d50,

for an arbitrary constanthÞ0, and it is checked thatw(u)5d coth(du/h) or w(u)5h/u is actually
a solution of~6.19!. h

Remark 6.4:If a52b, then by~6.5! we haveb5c and the following functional equation i
necessary and sufficient forg(u)5w(u)2b:

g~u2v !g~2v !1g~u!g~v !1g~2u!g~2u1v !50, ~6.24!

which is not completely solved yet. However,~6.16a! or ~6.17a! is a solution of~6.24!.

C. Solutions associated with meromorphic solutions

Similarly to theB2-type system, the equation~6.2b! has linearity of the solutions for fixed
Ha , H2a13b and Ha13b . Moreover, we can show the following lemma. SetHg(u)
5( i>pHg

( i )ui .
Lemma 6.5: In the equation (6.2b), if one of Hb , Ha12b or Ha1b has a pole at the origin,

then all have a simple pole at the origin and Hb
(21)5Ha12b

(21) 5Ha1b
(21) . Hb , Ha1b and Ha12b are

determined by Hb
(21) , Hb

(0) , Ha12b
(0) , Ha1b

(0) , Hb
(1) , Ha12b

(1) , Hb
(2) , Hb

(3) and Ha12b
(3) .

Theorem 6.6:Let

Ha~u!5as0,0~bu,l;t!epu,
~6.25!

H2a13b~u!5as0,0~bu,l1m;t!e(p1q)u,

Ha13b~u!5as0,0~bu,m;t!equ,
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where a,b,l,m,p,qPC are arbitrary such that a,bÞ0, l,m,l1m,l2m,l12m,2l1m¹Z
1Zt. Then the following functions are solutions of the equation (6.2b):

Hb~u!5 (
m,n50

2

am,nsm/3,n/3~b u,2l1m;t!e(2p1q)u,

Ha12b~u!52 (
m,n50

2

am,nsm/3,n/3~2b u,2l22m;t!e(p12q)u, ~6.26!

Ha1b~u!5 (
m,n50

2

am,nsm/3,n/3~b u,2l1m;t!e(2p1q)u,

where am,nPC are arbitrary.
Remark 6.7:Although the solution in Theorem 6.6 has nine parameters, it is not kn

whether or not they exhaust all the nontrivial solutions since the same process as in Theor
is too complicated to execute.

Theorem 6.8: Under the same condition as in Theorem 6.6, the following functions
solutions of the equations (6.2):

Hb~u!5 (
m,n50

2

am,nsm/3,n/3~b u,2l1m;t!e(2p1q)u,

~6.27a!

Ha12b~u!52 (
m,n50

2

am,nsm/3,n/3~2b u,2l22m;t!e(p12q)u,

Ha1b~u!5 (
m,n50

2

am,nsm/3,n/3~b u,2l1m;t!e(2p1q)u,

~6.27b!

Gb~u!5Ga12b~u!5Ga1b~u!5 (
m,n50

2

am,nsm/3,n/3~b u,h;t!c~u!,

wherehPC is arbitrary, cPM0 satisfiesc(u)c(2u)51, and$am,nPC% is one of the following:

a0,0 a0,1 a0,2 a1,0 a1,1 a1,2 a2,0 a2,1 a2,2

I 1 0 0 0 0 0 0 0 0 ~6.28!
II 1 1 1 c c c c2 c2 c2

1 c c2 1 c c2 1 c c2

1 c c2 c2 1 c c c2 1
1 c c2 c c2 1 c2 1 c

III 1 c c2 0 0 0 0 0 0
IV 1 0 0 c 0 0 c2 0 0
V 1 0 0 0 c 0 0 0 c2

VI 1 0 0 0 0 c 0 c2 0

where c is one of cubic roots of unity.
This is checked by comparing the poles and periodicity for the equations~6.2c!–~6.2f!.
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Remark 6.9:There are 22 solutions and the function(m,n50
2 am,nsm/3,n/3(u,3m;t) is simplified

up to constant factor as follows except V and VI:

I s0,0(3m,u;t) ~6.29!
II s0,0(m,3u;t) s1/3,0(m,3u;t) s2/3,0(m,3u;t)

s0,1/3(m,3u;t) s1/3,1/3(m,3u;t) s2/3,1/3(m,3u;t)
s0,2/3(m,3u;t) s1/3,2/3(m,3u;t) s2/3,2/3(m,3u;t)

III s0,0(m,u;t/3) s1/3,0(m,u;t/3) s2/3,0(m,u;t/3)
IV s0,0(3m,3u;3t) s0,1/3(3m,3u;3t) s0,2/3(3m,3u;3t)
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Lie algebroid structures on a class of affine bundles
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Department of Mathematical Physics and Astronomy, Ghent University,
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E. Martı́nez
Departamento de Matema´tica Aplicada, Universidad de Zaragoza,
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We introduce the notion of a Lie algebroid structure on an affine bundle whose base
manifold is fibered overR. It is argued that this is the framework which one needs
for coming to a time-dependent generalization of the theory of Lagrangian systems
on Lie algebroids. An extensive discussion is given of a way one can think of forms
acting on sections of the affine bundle. It is further shown that the affine Lie
algebroid structure gives rise to a coboundary operator on such forms. The concept
of admissible curves and dynamical systems whose integral curves are admissible
brings an associated affine bundle into the picture, on which one can define in a
natural way a prolongation of the original affine Lie algebroid structure. ©2002
American Institute of Physics.@DOI: 10.1063/1.1510958#

I. INTRODUCTION

There has been a lot of interest recently in the study of dynamical systems which have
algebroid as carrying space~see, e.g., Refs. 1–6!. A Lie algebroid is a vector bundlep:V→M ,
which comes equipped with two operators. To begin with, there is a bracket operation onSec(p),
the set of sections ofp, which provides it with a real Lie algebra structure. Second, there
linear bundle mapr:V→TM, called the anchor map, which establishes a Lie algebra homo
phism betweenSec(p) and the real Lie algebra of vector fields onM and does this in such a wa
that there is a certain compatibility also with the module structure overC`(M ). To be precise, we
have

@r~s!,r~h!#5r~@s,h#! and n@s, f h#5 f @s,h#1r~s!~ f !h,

for all s,hPSec(p) and f PC`(M ).
Weinstein’s paper on Lagrangian mechanics and groupoids6 roused new interest into the fiel

of algebroids and groupoids. Weinstein introduces ‘‘Lagrangian systems’’ on a Lie algebro
means of a Legendre-type map fromV to V* , associated to a given functionL on V. The local
coordinate expression of such equations reads

ẋi5ra
i ~x!ya,

~1!
d

dt S ]L

]yaD5ra
i ]L

]xi 2Cab
g yb

]L

]yg ,

where thexi are coordinates onM , ya are fiber coordinates onV and theCab
g are structure

functions coming from the Lie algebroid structure. Applications for such model equations c
found, e.g., in the theory of systems with symmetries on principal fiber bundles and in rigid
dynamics. Note that, more generally, equations of the form

a!Electronic mail: willy.sarlet@rug.ac.be
56540022-2488/2002/43(11)/5654/21/$19.00 © 2002 American Institute of Physics
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ẋi5ra
i ~x!ya,

~2!
ẏa5 f a~x,y!,

were called ‘‘second-order equations on a Lie algebroid’’ by Weinstein. They are indeed, to
extent, the analogs of second-order dynamics on a tangent bundle. It is clear, however, tha
equations truly are second-order differential equations only when the base manifold and the
have the same dimension andr is injective. We will therefore rather call them ‘‘pseudo-secon
order ordinary differential equations,’’ pseudo-SODEs for short. Weinstein also raised the questi
whether there would be a geometrical way of defining equations of the form~1!, much in the line
of the geometrical construction of classical Lagrange equations, which makes use of the in
structures living on a tangent bundle.

One of us has recently resolved this issue5 by introducing a kind of lifted Lie algebroid, wher
suitable analogs can be introduced of the dilation vector field and the vertical endomorphism
tangent bundle.

In the present article, we wish to set the stage for an appropriate generalization of this
to nonautonomous systems of differential equations. We believe that, for example, at the le
pseudo-second-order equations, the right generalization is not just a matter of allowing the
tions ra

i and f a to depend on time, but rather should produce equations of the form

ẋi5ra
i ~ t,x!ya1l i~ t,x!,

~3!
ẏa5 f a~ t,x,y!.

The reason for this simply is that we wish the structure of the equations to be invariant
time-dependent coordinate transformations. As for Lagrange-type equations, our only con
the moment is to have an idea of what a time-dependent generalization of~1! should look like.
Now, there is a way of developing a kind of formal calculus of variations approach which lea
equations of the form~1!, and in which the first set of equations are treated as constraints. We
shown in Ref. 7 that if such an approach is adopted when the Lagrangian is allowed to dep
time and the constraints are as in~3!, one obtains equations of the form

ẋi5ra
i ~ t,x!ya1l i~ t,x!,

~4!
d

dt S ]L

]yaD5ra
i ]L

]xi 2~Cab
g yb2Ca

g !
]L

]yg ,

where the functionsra
i , l i , Cab

g , Ca
g satisfy the relations

ra
i

]rb
j

]xi 2rb
i

]ra
j

]xi 5rg
j Cab

g , ~5!

]rb
j

]t
1l i

]rb
j

]xi 2rb
i ]l j

]xi 5ra
j Cb

a . ~6!

Thus, we want to address the question of explaining the nature of the conditions~5! and~6!, which
presumably should again have something to do with a Lie algebroid structure.

Inspired by these analytical considerations, we will introduce the notion of a Lie alge
structure on an affine bundlep:E→M , where the base manifoldM in addition is assumed to b
fibered overR. The assumption about the additional fibration ofM is a very natural one to start th
development of this new theory, because the canonical example of an affine Lie algebroid~when
the anchor map reduces to the identity! should be the model of time-dependent mechanics, wh
traditionally is described on the first-jet bundle of a manifold fibered overR ~see, e.g., Ref. 8!. For
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the present paper, we will limit ourselves to a number of basic features of such a theo
particular, we shall show in Sec. III that our defining relations for an affine Lie algebroid are
consistent with the expectation of being able to develop an exterior differential calculus of se
of the extended dual of this bundle~and its exterior products!. We shall further show in Sec. IV
that vector fields onE, whose integral curves are ‘‘admissible curves’’ and which in fact mo
differential equations of the pseudo-SODE type, can be identified in a natural way with spec
sections of a kind of prolongation of the original affine bundle. This then brings us to a fina
for this article, of the internal coherence of the newly defined structures: we will verify in Se
whether the prolongation of a Lie algebroid, as constructed in Ref. 5 for the vector b
situation, carries over to the present more general situation.

The final section lists a number of other topics of interest, which will be the subjec
forthcoming publications. One of our objectives is to arrive at an intrinsic geometrical constru
of the time-dependent Lagrangian equations of type~4!. For the time being, however, the cond
tions ~5! and~6! merely serve as benchmarks, to be met by our model of an affine Lie algeb

The basic ingredients for our theory are an affine bundlep:E→M , where the base manifold
M is further fibered overR. In Sec. II, we define the concept of a Lie algebroid onp. In Sec. III,
we show that the axioms for such a Lie algebroid structure give rise to a consistent develo
of an exterior calculus on sections of the extended dual ofE. In Sec. IV, we discuss a special cla
of curves onE, which are said to be admissible by the anchor map, and we look into the co
of dynamical systems whose integral curves all belong to this special class. In Sec. V, we
the prolongationp1 :Jl

1E→E of p:E→M and show that it inherits the Lie algebroid structu
from p.

II. AFFINE LIE ALGEBROIDS

Let M be an (n11)-dimensional smooth manifold, which is fibered overR, t:M→R. We
denote the first jet bundle oft by t1

0 :J1M→M . It is an affine bundle modeled on the bundle
tangent vectors toM which are vertical with respect tot; this vector bundle will be denoted b
t̄1

0 :VM→M . To fix notations further, ifp:E→M is an affine bundle andp̄:V→M its associated
vector bundle, sections ofp will be denoted by ordinary Greek characters, whereas bold
Greek type will be used for sections ofp̄.

Definition 1: An affine Lie algebroid over M is an affine bundlep:E→M , with the following
properties:

(1) Sec(p̄), the set of sections of the vector bundlep̄:V→M on which E is modeled, is
equipped with a skew-symmetric and bilinear (overR) bracket@•,•#.

(2) The affine space Sec(p) acts by derivations on the real algebra Sec(p̄), that is to say, if
the same bracket notation@z,s# is used to denote the wayzPSec(p) acts onsPSec(p̄), we
have@z,s#PSec(p̄) and

@z,s11s2#5@z,s1#1@z,s2#, @z1s,h#5@z,h#1@s,h#, ~7!

@z,@s,h##5@@z,s#,h#1@s,@z,h##. ~8!

(3) There exists an affine bundle mapl:E→J1M (over the identity on M), with correspond-
ing vector bundle homomorphismr:V→VM, such that the following compatibility conditio
holds for all fPC`(M ),

@z, f s#5 f @z,s#1l~z!~ f !s. ~9!

Both the affine mapl:E→J1M and its linear partr:V→VM will be called anchor maps.
Note that we make no notational distinction between, on the one hand, the affine and

anchor maps, regarded as maps between total spaces of bundles, and their action on se
bundles on the other hand. Needless to say, for the interpretation of the bracket in the lef
side of ~12!, bothl~z! andr~s! are regarded as vector fields onM .
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Let us derive some further properties which follow from this definition. First of all, if
replacez in ~8! by z1j, for an arbitraryjPSec(p̄), it follows that ;j,s,hPSec(p̄):

@j,@s,h##5@@j,s#,h#1@s,@j,h##. ~10!

This means, in view of the first hypothesis, that the bracket onSec(p̄) actually providesSec(p̄)
with a real Lie algebra structure. Second, making the same substitution forz in ~9!, recalling that
l(z1j)5l(z)1r(j), it follows that

@j, f s#5 f @j,s#1r~j!~ f !s. ~11!

This means that the linear anchor mapr:V→VM defines a Lie algebra homomorphism fro
Sec(p̄) into the real Lie algebra of vertical vector fields onM , and that we have a classical Li
algebroid structure on the vector bundlep̄:V→M ~although its image cannot reach the whole
TM). Third, replacingh by f h in ~8! and making use of~9! and~11!, one obtains the additiona
compatibility property

@l~z!,r~s!#5r~@z,s# !, ~12!

from which it further follows that

@r~j!,r~s!#5r~@j,s# !. ~13!

Remark:For an alternative and equivalent definition of an affine Lie algebroid, we c
impose first the Lie algebra structure~10! of the bracket onSec(p̄), together with the compat
ibility condition ~11! for the anchor mapr, and subsequently require that the properties~7!–~9!
hold true for at least onezPSec(p) and for an affine mapl:E→J1M whose linear part isr. It
then follows that such properties hold for allz.

We can now further extend the bracket operation toSec(p), as follows.
Definition 2: ( i ) For sPSec(p̄) and zPSec(p), we put@s,z#52@z,s#. (i i ) For every

two sectionsz1 ,z2PSec(p) with z125z22z1 , @z1 ,z2#5@z1 ,z12#.
Observe that the extended bracket in (i i ) is a map fromSec(p)3Sec(p) to Sec(p̄). As we

will show below, it has Lie algebra-type properties, which could justify talking about an ‘‘af
Lie algebra structure,’’ were it not that this term is in use already in the literature, with an en
different meaning. The extended bracket also has Lie algebroid type properties with respec
anchor mapsl andr.

Proposition 1: The bracket@•,•#:Sec(p)3Sec(p)→Sec(p̄), has the following properties:

@z1 ,z21s#5@z1 ,z2#1@z1 ,s#, ~14!

@z1 ,z2#52@z2 ,z1#, ~15!

@@z1 ,z2#,z3#1@@z2 ,z3#,z1#1@@z3 ,z1#,z2#50, ~16!

r~@z1 ,z2# !5@l~z1!,l~z2!#. ~17!

Proof: The first property follows immediately from the definition and~7!. Next, we have
@z2 ,z1#5@z2 ,z21#52@z11z12,z12#52@z1 ,z2#. For the Jacobi identity, using a simple summ
tion sign to indicate the cyclic sum over the three sections in each summand, we have

( @@z1 ,z2#,z3#5( @@z1 ,z2#,z21z23#5( @@z1 ,z2#,z23#,

in view of the linearity properties and the skew-symmetry of the bracket. Substituting s
quentlyz11z12 for z2 , we obtain
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( @@z1 ,z2#,z3#5( @@z1 ,z12#,z23#,

which is zero in view of~8!. Finally, the compatibility property~17! easily follows in the same
way from the definition of the extended bracket and~12!. h

To understand what an affine Lie algebroid structure means in coordinates, let us coord
E in the usual way, as follows:t denotes the coordinate onR; (xi)1< i<n are fiber coordinates on
M ; we further choose a local sectione0 of p to play the role of zero section and a local ba
(ea)1<a<k for Sec(p̄). Then, if e is a point in the fiberEm over mPM , it can be written in the
form: e5e0(m)1yaea(m); (t,xi ,ya) are coordinates ofe @(t,xi) being the coordinates ofm].

We have

@ea ,eb#5Cab
g ~ t,x!eg , @e0 ,ea#5Ca

b~ t,x!eb , ~18!

for somestructure functions Cab
g 52Cba

g andCa
b on M . The affine mapl and its linear partr are

fully determined by

l~e0!5
]

]t
1l i~ t,x!

]

]xi , r~ea!5ra
i ~ t,x!

]

]xi . ~19!

The further characterization of the Lie algebroid structure now has the following coord
translation. The derivation property~8! and the resulting Jacobi identity~10! mean that we have

]Cab
m

]t
1l i

]Cab
m

]xi 1Cab
g Cg

m5Cag
m Cb

g2Cbg
m Ca

g1ra
i

]Cb
m

]xi 2rb
i

]Ca
m

]xi , ~20!

(
a,b,g

S ra
i

]Cbg
m

]xi 1Can
m Cbg

n D 50, ~21!

where the summation this time refers to a cyclic sum overa, b, g and also the compatibility
conditions~9! and ~11! have been invoked. Finally, the properties~12! and ~13!, for which it is
sufficient to express that@l(e0),r(ea)#5r(@e0 ,ea#) and @r(ea),r(eb)#5r(@ea ,eb#), require
that

]rb
j

]t
1l i

]rb
j

]xi 2rb
i ]l j

]xi 5Cb
ara

j , ~22!

ra
i

]rb
j

]xi 2rb
i

]ra
j

]xi 5Cab
g rg

j . ~23!

These are precisely the relations~5! and~6! we encountered in the Introduction, in the context
Lagrangian equations of type~4!.

It is of some interest to look at the way the various structure and anchor map func
transform under coordinate transformations. There are two distinct levels in making a cha
coordinates onE, which we will describe separately. First, we could choose a different~local! zero
sectionē0 and a different local basisēb for Sec(p̄): say thatea5Aa

bēb ande05ē01Baēa . This
amounts to making an affine change of coordinates in the fibers of the formȳa5Ab

a(t,x)yb

1Ba(t,x). Putting @ ēa ,ēb#5C̄ab
g ēg , @ ē0 ,ēa#5C̄a

bēb , and alsol(ē0)5 ]/]t 1l̄ i ]/]xi , r(ēa)
5 r̄a

j ]/]xj , one can verify that the following transformation rules apply:

ra
i 5Aa

br̄b
i , l̄ i5l i2Bar̄a

i ,

and further
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Cab
g Ag

m5C̄gn
m Aa

gAb
n 1ra

i
]Ab

m

]xi 2rb
i

]Aa
m

]xi ,

Cb
gAg

a5C̄m
aAb

m1C̄gm
a BgAb

m1
]Ab

a

]t
1l i

]Ab
a

]xi 2rb
i ]Ba

]xi .

At a different level, one can make a change of coordinates onM , of the form: t85t, x8 i

5x8 i(t,x). This has an effect on the anchor map functions of the form

ra8
j5ra

i ]x8 j

]xi , l8 j5
]x8 j

]t
1l i

]x8 j

]xi .

A general change of adapted coordinates is of course a composition of the two steps de
above.

III. EXTERIOR CALCULUS ON AN AFFINE LIE ALGEBROID

We first recall some features of the by now standard theory of Lie algebroids on a v
bundle~see Ref. 9!. Considering sections of exterior powers of the dual bundle, one gets a n
of forms on sections of the vector bundle, on which an exterior derivative can be defined
involves the Lie algebroid bracket and the anchor map. It then turns out that the Jacobi iden
the Lie algebroid bracket and the compatibility with the bracket of vector fields via the ancho
are exactly the conditions for this exterior derivative to have the co-boundary propertyd250 ~see
also Refs. 10, 11, and 5!. In our opinion, such a feature in itself gives a strong indication that
generalization from Lie algebra to Lie algebroid is indeed a meaningful step. We shall the
investigate in this section whether a similar support can be detected for our extension
algebroids on affine bundles.

The extended dual of the affine spaceEm is the space of real valued affine functions onEm

and will be denoted byEm
† . The union of these spaces over all pointsmPM gives us a bundle

p†:E†→M say. Although this is in fact a vector bundle, we are interested in the action o
sections~and sections of its exterior powers! on sections of the affine bundlep. This brings some
subtleties into the picture which need to be investigated in sufficient detail. We will w
p̄* :V* →M for the dual bundle ofp̄ and also use boldface type for its sections~and the sections
of its exterior powers!. Now, to begin with, ifu is a section ofp† and zPSec(p), u~z! is a
function onM defined byu(z)(m)5um(zm). um being an affine function onEm , there exists an
associated elementumPVm* such that;emPEm , smPVm , we haveum(em1sm)5um(em)
1um(sm). Expressed in slightly different terms and now at the level of sections again,u
PSec(p†) is such that there exist au0PSec(p†) and a uPSec(p̄* ), such that for allz
PSec(p),

u~z!5u0~z0!1u~z!, ~24!

wherez0 is any section and thenz5z01z. The two composing elementsu0 ~which, in fact, is
simply u itself here! andu do not depend on the choice ofz0 . With sections ofp† as our notion
of one-forms onSec(p), there is of course no linearity with respect to multiplication by functio
on M . We can now come in a similar way to the following concept ofk-forms onSec(p) @thereby
taking for granted that the meaning of ak-form on a vector bundle such asSec(p̄) is known#.

Definition 3: A k-form on the affine bundle Sec(p) (k>1) is a map v:Sec(p)3¯

3Sec(p)→C`(M ), for which there exists a k-form v on the associated vector bundle Sec(p̄)
and a mapv0 :Sec(p)3Sec(p̄)3¯3Sec(p̄)→C`(M ) with the following properties:

(1) v0 is skew-symmetric and C`(M )-linear in its k21 vector arguments;
(2) ;zPSec(p) and ;s,zjPSec(p̄), we have

v0~z1s,z1 ,...,zk21!5v0~z,z1 ,...,zk21!1v~s,z1 ,...,zk21!; ~25!
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(3) ;z iPSec(p), if we choose an arbitraryz0PSec(p) and putz i5z01zi , we have

v~z1 ,...,zk!5(
i 51

k

~21! i 21v0~z0 ,z1 ,...,ẑi ,...,zk!1v~z1 ,...,zk!. ~26!

There are a number of properties to be checked to make sure that this definition makes sen
of all, one can verify that with two different choices of a reference section,z0 and z08 , for
example, related throughz05z081s, it follows from the second requirement that

(
i 51

k

~21! i 21v0~z0 ,z1 ,...,ẑi ,...,zk!1v~z1 ,...,zk!

5(
i 51

k

~21! i 21v0~z08 ,z18 ,...,ẑi8 ,...,zk8!1v~z18 ,...,zk8!.

Second, the two elementsv0 andv which make upv are unique. Indeed, assuming there wou
be a second couplev08 andv8 making up the samev, it follows by choosingz05z1 ~such that
z150) that v05v08 , after which it is clear that alsov5v8. Note finally that the definition
implies thatv itself is skew-symmetric in all its arguments.

The set of forms onSec(p), which we will denote byL(p†), is a module over the ring
C`(M ), which also constitutes the set of zero-forms. The wedge product of two forms is de
in the usual way. By way of example, ifa andb are one-forms, we have

~a∧b!~z1 ,z2!5a~z1!b~z2!2a~z2!b~z1!,

which for every choice of a reference sectionz0 gives rise to

~a∧b!~z1 ,z2!5a~z0!b~z22z1!2b~z0!a~z22z1!1~a∧b!~z1 ,z2!. ~27!

It follows that a∧b is the two-form onSec(p̄) corresponding toa∧b, and

~a∧b!0~z,s!5a~z!b~s!2b~z!a~s!. ~28!

Similarly, for the wedge product of three one-forms, we have

~a∧b∧g!0~z,z1 ,z2!5~a~z!~b∧g!1b~z!~g∧a!1g~z!~a∧b!!~z1 ,z2!. ~29!

These examples suggest to formalize the representation ofk-forms a bit further. As a preliminary
remark, it may sometimes be of interest to extend the interpretation of the operatorv0 in such a
way that its single affine section argument need not necessarily be the first. This can sim
achieved by declaringv0 to be skew-symmetric in all its arguments@but still C`(M )-linear in its
vector arguments only#. More importantly, we shall take the sum ofv0-terms in ~26! to define
another operator, denoted byv0, as follows:

v0~z1 ,...,zk!5(
i 51

k

~21! i 21v0~z0 ,z1 ,...,ẑi ,...,zk!5(
i 51

k

v0~z1 ,...,ž0
i

,...,zk!, ~30!

where the second expression takes the above remark into account and the symbolž0i
then indicates

that z0 has been inserted in thei th argument. The other important new convention we will ad
is to regardv also as acting on affine sections:

v~z1 ,...,zk!5v~z1 ,...,zk!. ~31!

This way, we can formally write
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v5v01v, ~32!

whereby it is to be understood that the two composing termsv0 andv are notk-forms onSec(p)
by themselves. In fact, to compute their value when acting onk sectionsz i , a reference sectionz0

has to be chosen, but as argued above, the value of the sumv01v in the end does not depend o
that choice.

The rather formal looking decomposition~32! now greatly facilitates the representation
wedge products and will make the general coordinate representation of a form more trans
For example, the result~29! means that

~a∧b∧g!05a0
^ ~b∧g!1b0

^ ~g∧a!1g0
^ ~a∧b!, ~33!

which then implies from~30! that

~a∧b∧g!05a0∧b∧g1a∧b0∧g1a∧b∧g0, ~34!

as expected. More generally, it follows directly from the defining formula for wedge products
for v5v01v andr5r01r,

v∧r5v0∧r01v0∧r1v∧r01v∧r, ~35!

where the sum of the first three terms is (v∧r)0.
Suppose that, for a coordinatization ofE, we have chosen a zero sectione0 and a local basis

of vector sectionsea . Denote by$eb% the dual basis forSec(p̄* ). There exists a global section o
p† which for eachm selects inEm

† the constant function 1. We will call ite0. The local zero
sectione0 of Sec(p) can now play the role of the reference sectionz0 in our general consider
ations. Writing z5e01zaea for an arbitrary sectionz, we have for each one-formu: u(z)
5u(e0)1zau(ea). Puttingu(ea)5ua andu(e0)5u0 , we see thatu has the local representatio

u5u0e01uaea, ~36!

where, in agreement with the general decomposition~32!, ea has to be regarded now as acting
Sec(p) andu05u0e0. To be precise, putting

ea5e01ea , ~37!

the action ofeb on affine sections, which can be given a meaning only after introducin
reference section, is determined by

eb~e0!50, eb~ea!5da
b . ~38!

There is another slight abuse of notation in~36! sinceu0 could have a double meaning: in~36! it
represents a local function onM , whereas it also could refer to the operator introduced in~24! and
more generally in Definition 3. We will, however, seldom use the notationu0 in the latter sense
when dealing with coordinate calculations, so that the meaning will always be clear from
context.

Let us now see how all these notations fit together when we start wedging one-forms. F
one-formsa5a01a andb5b01b we find, for example from~28! and ~30!, that

~a∧b!05a0∧b2b0∧a. ~39!

This is in agreement with the general formula~35! since obviouslya0∧b050. Expressinga and
b with respect to the basis (e0,ea), we find

a∧b5~a0bg2b0ag!e0∧eg1 1
2~agbd2adbg!eg∧ed. ~40!
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Similarly, for the wedge product of three one-forms with local representations of the form~36!, we
obtain

a∧b∧g5 1
2 ~a0~bmgn2bngm!1b0~gman2gnam!1g0~ambn2anbm!!e0∧em∧en1a∧b∧g.

~41!

It should now be clear without going into any further detail that a generalk-form on Sec(p)
locally has the following representation,

v5
1

~k21!!
v0m1¯mk21

e0∧em1∧¯∧emk211
1

k!
vm1¯mk

em1∧¯∧emk, ~42!

where the coefficients are functions onM , which are skew-symmetric in all their indices~includ-
ing the zero for the first term!; we have

v0m1¯mk21
5v~e0 ,em1

,...,emk21
!, ~43!

vm1¯mk
5v~em1

,...,emk
!2(

i 51

k

vm1¯0̌
i
¯mk

, ~44!

where 0̌
i

again means that the indexm i has been replaced by 0.

Before arriving at our main goal, the development of an exterior calculus on forms, we
recall a few generalities about derivations. Derivations onL(p†) are defined in the usual way
Following the standard work of Fro¨licher and Nijenhuis,12 one easily shows that derivations a
local operators and that they are completely determined by their action on functions and
forms. The commutator of two derivationsDi , of degreer i say, is again a derivation, of degre
r 11r 2 , defined by

@D1 ,D2#5D1+D22~21!r 1r 2D2+D1 . ~45!

Perhaps the simplest type of derivation is contraction with a section.
Definition 4: For vPLk(p†) and zPSec(p), i zvPLk21(p†) is defined by

i zv~z1 ,...,zk21!5v~z,z1 ,...,zk21!. ~46!

The proof that this is a derivation of degree21 is standard and does not depend on the pecul
ties of our present theory. But perhaps we have to convince ourselves in the first place thati zv is
indeed a form in the sense of Definition 3.

Proposition 2: izv is a (k21)-form which, in the sense of the general defining relation (2
is determined by an operator( i zv)0 and a k-form izv on Sec(p̄), defined as follows: for allzi

PSec(p̄), z0PSec(p),

~ i zv!0~z0 ,z2 ,...,zk21!52v0~z0 ,z,z2 ,...,zk21!, where z5z2z0 , ~47!

izv~z2 ,...,zk!5v0~z,z2 ,...,zk!. ~48!

We further have the property~with z15z)

i zv~z2 ,...,zk!5(
i 51

k

~21! i 21~ i zv0!~z1 ,...,ẑi ,...,zk!. ~49!

Proof: A direct computation, using~46! and ~26!, gives
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i zv~z2 ,...,zk!5v~z,z2 ,...,zk!

5v0~z0 ,z2 ,...,zk!1 (
j 51

k21

~21! jv0~z0 ,z,z2 ,...,ẑj ,...,zk!1v~z,z2 ,...,zk!

5 (
j 51

k21

~21! jv0~z0 ,z,z2 ,...,ẑj ,...,zk!1v0~z,z2 ,...,zk!,

from which we are led to introduce (i zv)0 and izv as in~47! and~48!. It is then straightforward
to verify that these two operators are linked by a property of type~25!, so the first statemen
follows. Observe that, with an obvious meaning for contraction of the operatorv0 with z, we can
write izv5 i zv0 . The somewhat peculiar feature of the additional property is thati zv can be
completely computed fromi zv0 . To prove this we again start from~26! to write ~with z15z)

i zv~z2 ,...,zk!5(
i 51

k

~21! i 21v0~z0 ,z1 ,...,ẑi ,...,zk!1v~z1 ,...,zk!.

This time, we substitutez12z1 for z0 and observe that the second part of the sum involvingv0 ,
in view of ~25!, then precisely cancels the last term. h

Maintaining the same line of approach requires that also for the exterior derivativedv, we
identify the associated (dv)0 and the formdv on Sec(p̄) in the sense of Definition 3. Before w
can introducedv, we need to give a meaning also to the value of ak-form v, when say its first
argument is taken to be a vector section.

Definition 5: If v is a k-form on Sec(p), then forsPSec(p̄) and z iPSec(p), we put

v~s,z2 ,...,zk!5v~z11s,z2 ,...,zk!2v~z1 ,z2 ,...,zk!, ~50!

wherez1 is chosen arbitrarily.
For this to make sense, of course, we need to be sure that the result does not depend

choice ofz1 . Now, if we evaluate the right-hand side of the defining relation by using~26!, we
obtain

v~s,z2 ,...,zk!5v~s,z2 ,...,zk!1(
i 52

k

~21! i 21v0~z0 ,s,z2 ,...,ẑi ,...,zk!. ~51!

The right-hand side of this explicit expression makes no mentioning ofz1 anymore. It might seem
at first sight that we have shifted the problem, because it does depend on the reference secz0 .
However, we have argued before that~26! does not depend on the choice of such a refere
section, whence our newly defined concept makes sense.

The explicit formula~51! further shows thati sv is well defined as a (k21)-form, in the sense
of Definition 3. The first term on the right identifies its associated form onSec(p̄), whereas the
second term, upon swapping the first two arguments, reveals that (i sv)05 i sv0 . As for local
computations, it follows from the definition~50! thate0(s)50, whereas theea act ons simply as
duals ofSec(p̄).

Definition 6: The exterior derivative ofv, denoted by dv is defined by

dv~z1 ,...,zk11!5 (
i 51

k11

~21! i 21l~z i !~v~z1 ,...,ẑ i ,...,zk11!!

1 (
1< i , j <k11

~21! i 1 jv~@z i ,z j #,z1 ,...,ẑ i ,...,z ĵ ,...,zk11!. ~52!
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Note first that we are making use of Definition 5 in the second term on the right, becaus
bracket of two affine sections is a vector section. It is fairly obvious thatdv is skew-symmetric in
all its arguments. To further justify this definition in the sense of the defining property~26! of
forms, note first that we of course have an exterior derivative at our disposal for thek-form v on
Sec(p̄) which we denote byd also. We know thatdv has a property of type~52! ~or can be
defined that way!, with vector sections replacing affine sections andr as anchor map instead ofl.
It remains to give a meaning todv0 .

Definition 7: For v0 :Sec(p)3Sec(p̄)3¯3Sec(p̄)→C`(M ), we define dv0 , an opera-
tor of the same type, but depending on one more vector section, by

dv0~z,z2 ,...,zk11!5l~z!~v~z2 ,...,zk11!!1 (
i 52

k11

~21! i 21r~zi !~v0~z,z2 ,...,ẑi ,...,zk11!!

1 (
j 52

k11

~21! j 11v~@z,zj #,z2 ,...,ẑj ,...,zk11!

2 (
2< i , j <k11

~21! i 1 jv0~z,@zi ,zj #,z2 ,...,ẑi ,...,ẑj ,...,zk11!. ~53!

This expression may look rather exotic at first, but it is obtained by formally copying the defin
~52! and writing in that process eitherl or r, and eitherv0 or v, in such a way that every term
in the right-hand side has a proper meaning. There are two important observations to be
here. First of all, the required linearity ofdv0 in its vector arguments relies on the properties~9!
and ~11! of our Lie algebroid bracket. Second, replacing the affine sectionz in the definition by
z1s, we find

dv0~z1s,z2 ,...,zk11!5dv0~z,z2 ,...,zk11!1dv~s,z2 ,...,zk11!. ~54!

We now know what to expect for the decomposition~26! of dv and this is confirmed by the
following result.

Proposition 3: We have(dv)05dv0 and dv5dv.
The proof involves a rather technical but straightforward calculation and therefore is om

It is of some interest, however, to work out some simple cases in detail. For a functf
PC`(M ), d f is defined by

d f~z!5l~z!~ f !5l~z0!~ f !1r~z!~ f !, ~55!

from which we learn that (d f )05d f ~as expected! anddf(s)5r(s)( f ). If u is a one-form, the
defining relation~52! for its exterior derivative reads

du~z1 ,z2!5l~z1!~u~z2!!2l~z2!~u~z1!!2u~@z1 ,z2# !. ~56!

Introducing an arbitrary reference sectionz0 , it is easy to verify that this can be rewritten as

du~z1 ,z2!5~du!0~z0 ,z2!2~du!0~z0 ,z1!1du~z1 ,z2!, ~57!

wheredu5du and

~du!0~z,s!5l~z!~u~s!!2r~s!~u~z!!2u~@z,s# !. ~58!

This is in perfect agreement with the results of Proposition 3 and Definition 7.
Concerning derivation properties, it is trivial to verify that for the product of functio

d( f g)5 f dg1gd f. Also, from ~56! applied tof u we get
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d~ f u!~z1 ,z2!5l~z1!~ f u~z2!!2l~z2!~ f u~z1!!2 f u~@z1 ,z2# !

5d f~z1!u~z2!2d f~z2!u~z1!1 f ~l~z1!~u~z2!!2l~z2!~u~z1!!2u~@z1 ,z2# !!,

from which we conclude that

d~ f u!5 f du1d f∧u, ~59!

i.e., d has the right derivation property for the action on functions and one-forms. Recalling
the general statements about derivations we made before, we can conclude that there is a
derivation of degree 1 onL(p†), which coincides with ourd on functions and one-forms. No
surprisingly, this is thed we have introduced by~52!, but we again omit the rather technical pro
of this claim.

We now reach the main question which is about the relationship betweend2 and the compat-
ibility requirements in the definition of an affine Lie algebroid. To appreciate the meaning o
following lemma, we take a step back and assume now that the bracket@z i ,z j # figuring in the
definition ~52! of d satisfies the ‘‘Leibniz-type property’’~9! with respect to the module structur
of Sec(p) @and the resulting property~11!#, but no further compatibility or Lie algebra condition
a priori. Remember that the property~9! of the bracket was necessary to make sure thatdv is a
form in the first place.

Lemma 1: For allvPLk(p†) and z iPSec(p), we have

d2v~z1,...,zk12!5 (
1<i,j<k12

~21!i1j~r~@zi ,zj#!2@l~zi!,l~zj!#!~v~z1,...,ẑi ,...,ẑj,...,zk12!!

1 (
1<i,j,l<k12

~21!i1j1lvS(
i,j,l

@zi ,@zj ,zl##,z1,.,ẑi ,.,ẑj,.,ẑl,.,zk12D ~60!

(where the smaller summation sign of course refers again to a cyclic sum over the three i
involved).

In fact this lemma, with suitable adaptations, also has a rather universal validity, thoug
were unable to find similar statements in the literature. For this reason, we give a sketch
proof here.

If v is a k-form, thend2v is a (k12)-form with

d2v~z1 ,...,zk12!5 (
i 51

k12

~21! i 21l~z i !~dv~z1 ,...,ẑ i ,...,zk12!!

1 (
1< i , j <k12

~21! i 1 jdv~@z i ,z j #,z1 ,...,ẑ i ,...,ẑ j ,...,zk12!. ~61!

If we plug in the definition ofdv, the first term on the right will further decompose into two par
one involving double and the other involving triple sums. After some elementary multiple
manipulations, it can be written in the form

(
1< i , j <k12

~21! i 1 j~l~z j !l~z i !2l~z i !l~z j !!~v~z1 ,...,ẑ i ,...,ẑ j ,...,zk12!!

1 (
1< i , j , l<k12

~21! i 1 j 1 l 21(
i , j ,l

$l~z i !~v~@z j ,z l #%,z1 ,.,ẑ i ,.,ẑ j ,.,ẑ l ,.,zk12!!,

~62!
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where the smaller summation sign stands for a cyclic sum, the range of which is delimited
curly brackets. For the second term on the right in~61!, we have to remember that the fir
argument is a vector section. Using the defining relation~50!, applied todv, we obtain

dv~s,z1 ,...,zk!5r~s!~v~z1 ,...,zk!!1(
i 51

k

~21! il~z i !~v~s,z1 ,...,ẑ i ,...,zk!!

1(
j 51

k

~21! jv~@s,z j #,z1 ,...,ẑ j ,...,zk!

1 (
1< i , j <k

~21! i 1 jv~@z i ,z j #,s,z1 ,...,ẑ i ,...,ẑ j ,...,zk!. ~63!

The last line here has two vector arguments, but this is consistent with the application of D
tion 5 to a form of typei zv. We look at the effect of each of these four terms, when inserted in
second sum of~61!. The first one simply gives

(
1<, i , j <k12

~21! i 1 jr~@z i ,z j # !~v~z1 ,...,ẑ i ,...,ẑ j ,...,zk12!!. ~64!

The second one is easily seen to give rise to terms which cancel exactly the second sum~62!.
The third term of~63! gives rise to expressions involving double brackets, which combine to

(
1< i , j , l<k12

~21! i 1 j 1 lvS (
i , j ,l

@@z i ,z j #,z l #,z1 ,...,ẑ i ,...,ẑ j ,...,ẑ l ,...,zk12D . ~65!

The fourth term of~63! finally creates terms which involve two double sums, and in each of
summands the first two arguments ofv are brackets. One can show by a suitable reshuffling
summations that all terms in this part cancel out. What we are left with in the end is the first
of ~62!, ~64! and ~65!: they precisely combine to the statement in the lemma.

Proposition 4: The exterior derivative has the property d250 if and only if the bracket further
satisfies the Jacobi identity (16) [or equivalently (8)].

Proof: If ~9! and~16! hold true, we also have~8! and know from previous considerations th
~12! then holds as well. The above lemma this way trivially impliesd250. For the converse, we
observe thatd2f 50, for f PC`(M ), implies ~17!, from which it subsequently follows thatd2u
50, with uPL1(p†), implies ~16!. h

It remains now to list coordinate expressions for the basic exterior derivatives. Let (t,xi) as
before be coordinates onM . For their exterior derivatives we obtain the following: for allz
PSec(p),

dt~z!5l~z!~ t !51, dxi~z!5l~z!~xi !,

from which it follows thatdt50 anddxi(s)5r(s)(xi) @and of course (dt)05dt, (dxi)05dxi ].
In terms of the general representation~36! of a one-form, we thus have

dt5e0, ~66!

dxi5l ie01ra
i ea. ~67!

Obviously, we havede050. We further calculate, making use, for example, of~43! and~44!, the
general formula~56! and the coordinate expressions~18!, that

dea52Cb
ae0∧eb2

1

2
Cbg

a eb∧eg. ~68!
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It is instructive to verify that expressing the propertiesd2ea50 andd2xi50 is indeed equivalen
to the requirements~20! and ~21! and ~22! and ~23!, respectively.

To complete the picture of basic derivations onL(p†), we have a closer look at the analog
the classical Lie derivative.

Definition 8: For everyzPSec(p), the derivation dz of degree zero is defined as

dz5@ i z ,d#5 i z+d1d+ i z . ~69!

So, sincedz is defined as a commutator of derivations, we know that it will itself be a deriva
of degree zero:

dz~v∧m!5dzv∧m1v∧dzm. ~70!

Likewise, we can rely on proofs similar to those in the standard theory to conclude tha
following commutator properties will hold true:

@dz ,i h#5 i [ z,h] , @dz ,d#50, @dz ,dh#5d[ z,h] . ~71!

Note, however, that a Lie-type derivation with respect to a vector section turns up in th
property, and this is indeed well defined also asds5@ i s ,d#. It is further natural to extend the
action ofdz to Sec(p) by duality. It then follows, as expected, that forh,zPSec(p),

dzh5@z,h#. ~72!

As a result of such an extension,dz has Leibniz-type properties also with respect to the evalua
of forms on the appropriate number of affine~or vector! sections; the following property, which
could be verified by a direct computation from the definition ofdz , thus becomes self-evident:

dhv~z1 ,...,zk!5l~h!~v~z1 ,...,zk!!1(
j 51

k

~21! jv~@h,z j #,z1 ,...,ẑ j ,...,zk!. ~73!

In the interest of doing computations, we list the Lie-type derivatives of functionsf PC`(M ) and
the local basis of one-forms. Forz5e01zaea ,

dz f 5l~z!~ f !, dze
050, dze

a5Cb
azbe02Cb

aeb1Cbg
a zgeb1dza.

IV. l-ADMISSIBLE CURVES AND DYNAMICS

As we expressed in the Introduction, the model of affine Lie algebroids we are devel
should in the first place offer an environment in which one can accommodate the time-dep
Lagrange-type equations~4!. At present, we wish to look in more detail at the geometric nature
the more general dynamical systems, which we call pseudo-second-order equations, and a
described by differential equations of the form~3!. For this purpose, in fact, we do not need t
full machinery of algebroids: it suffices to assume thatE is an affine bundle overM and l:E
→J1M an affine bundle map over the identity.

Definition 9: A curvec in E, which is a section oft+p, is said to bel-admissible, ifl+c
5 j 1(p+c).

One could say thatc is thel-prolongation of a curve inM . In coordinates, we have

c:t°~ t,xi~ t !,ya~ t !!, with ẋi~ t !5l i~ t,x~ t !!1ra
i ~ t,x~ t !!ya~ t !.

Note in passing that, not unexpectedly, one can characterizel-admissibility via a concept of
contact forms: puttingQ i5l* u i , where theu i are the contact forms onJ1M , we have thatc is
a l-admissible curve inE if and only if c* Q i50.
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Pseudo-second-order equation fields onE are vector fields whose integral curves all a
l-admissible curves. As in the standard theory of SODEs on a tangent bundle or first jet bundl
however, there is a simple direct characterization of such vector fields.

Definition 10:GPX(E) is a pseudo-second-order equation field if

Tp+G5 i +l,

where i is the injection of J1M into TM.
Clearly, in coordinates, a pseudo-SODE is of the form

G5
]

]t
1~l i~ t,x!1ra

i ~ t,x!ya!
]

]xi 1 f a~ t,x,y!
]

]ya , ~74!

for some functionsf a, and it is obvious that all its integral curves will bel-admissible.
The following diagram visualizes the notions ofl-admissible curves and pseudo-SODEs.

An important point now, however, is that there is a natural way of interpreting the vector fieG
as section of a different bundle.

From the above definition, it is clear that a pseudo-SODE is actually a section of (t
+p)1

0 :J1E→E, with the additional property that for allpPE, TpuJ1E(G(p))5l(p). An equiva-
lent way of saying the same thing, by definition of the concept of a pullback bundle, is
(p,G(p)) is a point ofl* J1E, with J1E regarded as fibered overJ1M via TpuJ1E . From now on,
we will write Jl

1E for l* J1E, and denote its two projections as indicated in the followi
diagram:

If we finally put p15(t+p)1
0+l1, there is yet another way of expressing the characterization

pseudo-SODE. Indeed, from the trivial observation that (t+p)1
0(G(p))5p5p2((p,G(p))), it fol-

lows that a pseudo-SODE G can be regarded also as a section of the bundlep1 :Jl
1E→E, with the

property thatp2+G5p1+G.
The various spaces and projections, described in this discussion, are depicted in the d

of the next section. This diagram immediately suggests the following question: if we put
structure into the scheme by assuming now again thatp:E→M carries an affine Lie algebroid
structure, is it possible to prolong this structure to the bundlep1 :Jl

1E→E, in such a way of course
that l1 becomes the anchor map of the induced affine Lie algebroid?
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V. PROLONGATION OF AFFINE LIE ALGEBROIDS

We shall now look in more detail at the bundlep1 :Jl
1E→E. Its total space is the manifold

Jl
1E5l* J1E5$~q,Z!PE3J1Eul~q!5TpuJ1E~Z!%,

but the fibration we want to focus on is not one of the projections which defineJl
1E, but rather the

mapp15(t+p)1
0+l1. As such, we are looking at an affine bundle, modeled on the vector bu

p̄1 :VrE→E, with total space

VrE5$~v,V!PV3VEur~v!5TpuVE~V!%.

The affine bundles involved, and their underlying vector bundles, are illustrated below.

A sectionZ of p1 is completely determined once we know the mapsp2+Z:E→E and l1+Z:E
→J1E. Likewise, vector sectionsZ of p̄1 are determined byp̄2+Z andr1+Z. For example, let
ePE be a point with coordinates (t,xi ,ya), so that (t,xi) are the coordinates ofp(e)PM ande
has the representatione5e01yaea . If then Z is a section ofp1 , we will have

p2+Z: ~ t,x,y!°~ t,x,za~ t,x,y!!,

l1+Z: ~ t,x,y!°S ]

]t
1~l i1ra

i za!
]

]xi 1Za
]

]yaD U
e

,

and determiningZ in coordinates of course amounts to assigning the functions (za,Za) on E.
It is worthwhile looking at the representation of such aZ with respect to suitably selecte

local sections ofp1 and p̄1 , which will exhibit the affine structure ofp1 and are adapted to th
basis which was selected to coordinatizeE. To this end, we introduce two sets of local sectio
Xa andVa of p̄1 which will spanSec(p̄1), and select a zero sectionE0 as follows. TheVa span
‘vertical sections’ and are determined by:p̄2+Va50, while for ePEm we let r1+Va(e) be the
tangent vector to the curves°e1sea(m) in Em . Verticality is an intrinsic property whereas, a
usual, there is no intrinsic notion of horizontality. The determination of theXa and E0 will
therefore rely on pure coordinate arguments. For the projection ontoV we putp̄2+Xa5ea+p and
then, fixingr1+Xa ~as a vector field onE) further requires making a prescription for the vertic
components, which we simply take to be zero. Similarly, for the choice of a zero section, we
take any vector field onE which projects underTp ontol(e0)PX(M ) ~and as such defines als
a section ofp1), but we will fix it also by taking the vertical components to be zero. Thus we h

Xa~e!5S ea~p~e!!,ra
i ~ t,x!

]

]xi U
e
D , Va~e!5S 0~p~e!!,

]

]ya U
e
D , ~75!

and
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E0~e!5S e0~p~e!!,S ]

]t
1l i~ t,x!

]

]xi D U
e
D . ~76!

The general sectionZ of p1 then has the local representation

Z5E01za~ t,x,y!Xa1Za~ t,x,y!Va . ~77!

Note that pseudo-SODEs, as discussed in the previous section, are precisely those sectionsG of p1 ,
for which za(t,x,y)5ya.

Let nowE be equipped with an affine Lie algebroid structure. To be in line with the notat
we used in Definition 1, we will from now on also writel1(Z) instead ofl1+Z, and likewise for
the p2-projection and the corresponding projections of vector sections.

We wish to establish that there is an induced Lie algebroid structure on the affine bundlp1 .
To this end, following the scheme of Definition 1, we have to identify a bracket onp̄1 and an
action of affine sections on vector sections, such that all the necessary requirements are m
idea is to define such brackets by requiring roughly that its two projections are determined
known brackets of the projected sections. But there are some technical complications wh
will address now.

For Z1 ,Z2PSec(p̄1), a preliminary observation is that the Lie bracket of their image un
r1 ~which gives rise to vector fields onE), belongs to the image ofr1. A coordinate calculation
can confirm this. Putting

r1~Z i !5zi
ara

j ]

]xj 1Zi
a ]

]ya ,

we have

@r1~Z1!,r1~Z2!#5~r1~Z1!~z2
a!2r1~Z2!~z1

a!!ra
j ]

]xj 1~z2
ar1~Z1!~ra

j !

2z1
ar1~Z2!~ra

j !!
]

]xj 1¯

]

]ya .

The first term on the right manifestly belongs to the image ofr1, whereas the last term i
irrelevant for that purpose. The middle term can be rewritten as

z2
az1

bS rb
j

]ra
i

]xj 2ra
j

]rb
i

]xj D ]

]xi ,

which is seen to belong to the image ofr1 in view of the property~23!. It is therefore natural to
impose right away that the bracket@•,•#1 under construction, which of course is required to
skew-symmetric andR-bilinear, should satisfy

r1~@Z1 ,Z2#1!5@r1~Z1!,r1~Z2!#. ~78!

This will have for consequence that forFiPC`(E),

r1~@F1Z1 ,F2Z2#1!5F1F2@r1~Z1!,r1~Z2!#1F1r1~Z1!~F2!r1~Z2!2F2r1~Z2!~F1!r1~Z1!.

It remains then to make sure that the projection underp̄2 can be specified in a compatible wa
The above coordinate calculation to some extent illustrates how one should proceed. If we
Tp to the preceding equality, we get~pointwise!
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Tp~r1~@F1Z1 ,F2Z2#1!!5~F1F2!Tp~@r1~Z1!,r1~Z2!# !1F1r1~Z1!~F2!r~p̄2~Z2!!

2F2r1~Z2!~F1!r~p̄2~Z1!!.

In general, ther(p̄2(Z i)) are vector fields alongp for which there is no standard Lie brack
available. If theZ i are projectable, however, meaning that there existziPSec(p̄) such thatp̄2

+Z i5zi+p, the vector fieldsr1(Z i) on E arep-related to the vector fieldsr(zi) on M . Hence, the
corresponding brackets are alsop-related, meaning that for projectableZ i , we can put

p̄2~@Z1 ,Z2#1!5@p̄2~Z1!,p̄2~Z2!#, ~79!

and then the property~13! @which in coordinates gives~23!# ensures that

Tp~r1~@Z1 ,Z2#1!!5r+p̄2~@Z1 ,Z2#1!

as it should. The expression forTp(r1(@F1Z1 ,F2Z2#1)) further shows that thep̄2 and r1 pro-
jections of the bracket under construction will still match up if for projectableZ i and for any
FiPC`(E), we define

p̄2~@F1Z1 ,F2Z2#1!5F1F2@p̄2~Z1!,p̄2~Z2!#1F1r1~Z1!~F2!p̄2~Z2!2F2r1~Z2!~F1!p̄2~Z1!.
~80!

It then follows that

@F1Z1 ,F2Z2#15F1F2@Z1 ,Z2#11F1r1~Z1!~F2!Z22F2r1~Z2!~F1!Z1 , ~81!

since both sides have the samep̄2 andr1 projections.
The final point to observe now is that sections ofp̄1 ~locally! are finitely generated, over th

ring C`(E), by projectable sections. Hence, the defining relations~78! and ~80! are sufficient to
define the bracket@•,•#1 on vector sections. The property~81! will hold by extension for all vector
sections and the bracket will satisfy the Jacobi identity as a result of the Jacobi identity of th
algebroid bracket we start from and the same identity for vector fields onE.

To define the action ofZPSec(p1) on VPSec(p̄1), we proceed in exactly the same mann
First, one easily verifies that the Lie bracket ofl1(Z) andr1(V) belongs to the image ofr1, this
time in view of the properties~22! and ~23!. Hence, it makes sense to put

r1~@Z,V#1!5@l1~Z!,r1~V!#, ~82!

and we of course require the bracket@•,•#1 to have linearity properties of the kind of~7!. For
projectable sections, we can put

p̄2~@Z,V#1!5@p2~Z!,p̄2~V!#, ~83!

and be assured of consistency with the projection~82!. Next, still for projectableZ andV and for
any FPC`(E), we define

p̄2~@Z,FV#1!5F@p2~Z!,p̄2~V!#1l1~Z!~F !p̄2~V!. ~84!

Sections ofp1 can be written as a projectable zero section, plus a linear combination of pro
able vector sections with coefficients inC`(E). In combination with the earlier arguments fo
vector sections, we are again led to the conclusion that the requirements~82! and ~84! are suffi-
cient to define@Z,V#1 for arbitrary ZPSec(p1) and VPSec(p̄1) and that we will have the
property

@Z,FV#15F@Z,V#11l1~Z!~F !V. ~85!
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The final requirement of type~8! then also easily follows, which concludes the construction of
prolonged affine Lie algebroid.

For computational purposes, it remains to list the brackets of the local sections which ar
in the general representation of a section ofp1 as in ~77!. We have

@E0 ,Xa#15Ca
bXb , @E0 ,Va#150,

@Xa ,Xb#15Cab
g Xg , @Xa ,Vb#150, @Va ,Vb#150.

It is perhaps worthwhile to repeat hereby that the two projections have to be looked at to
these statements, although of course they are bound to match up if our new bracket ha
defined consistently. Thus we have, for example:

p̄2~@E0 ,Xa#1!5@p2~E0!,p̄2~Xa!#5@e0 ,ea#5Ca
beb ,

r1~@E0 ,Xa#1!5@l1~E0!,r1~Xa!#5F ]

]t
1l i

]

]xi ,ra
j ]

]xj G5Ca
br1~Xb!,

where~22! has been used again in the last line.

VI. DISCUSSION AND OUTLOOK FOR FUTURE WORK

The form of equations~4!, which we claim to be the appropriate generalization of Lagrang
systems on Lie algebroids to a situation where explicit time dependence is involved, has b
us to the introduction of the new concept of Lie algebroids on affine bundles which are fi
over R. More precisely, the first guidance for developing this concept was provided by the
ditions ~5! and ~6! which the various functions appearing in~4! have to satisfy. Ultimately, of
course, we want to arrive at an intrinsic geometrical construction of such Lagrangian sys
There are many aspects to be explored yet, but we have sufficiently paved the way alread
able to predict what the outcome of subsequent studies will bring.

One of us has shown5 that the prolongation of a Lie algebroid~in the standard situation o
vector bundles! provides a platform where there exist analog of the intrinsic structures living
tangent bundle and these in turn give rise to an intrinsic definition of Lagrangian system
Poincare´–Cartan-type forms. This is the reason why we were keen to verify immediately tha
same notion of prolongation exists in our affine set-up. There is little doubt now that we will
intrinsic objects on such a prolonged affine Lie algebroid, which are analogs of what is kno
give rise to an intrinsic definition of time-dependent Lagrangian systems on the first jet bun
a manifold fibered overR. But there is more to it. Even when there is no Lagrangian for
dynamics under consideration and we are, in other words, talking about pseudo-SODEs on a Lie
algebroid, we expect to be able to develop a machinery of associated nonlinear and linea
nections, which again is analogous to the standard theory of connections associated to SODEs on
a tangent bundle or first jet bundle. A paper on these issues is in preparation.

One of the features we examined in this article as a kind of test for the relevance and in
consistency of the generalized notion of Lie algebroids was the existence of an associa
boundary operatord. But, of course, there are still other interesting properties which standard
algebroids are known to exhibit. Let us briefly highlight another one here and show that i
survives our generalization, namely the existence of an associated Poisson structure. Spe
we want to establish that there exists a canonically defined Poisson structure on the extend
E†.

Sections ofp ~respectivelyp̄) can be identified with linear functions onE† ~respectivelyV* ).
Explicitly, if zPSec(p), we consider the functionẑPC`(E†) defined by: for eachpPE†, p

PEm
† say,ẑ(p)5p(zm). Likewise, if sPSec(p̄), we denote byŝPC`(V* ) the function defined
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by ŝ(p)5p(sm), where pPVm* . In coordinates, ifz5e01zaea and pPE† has coordinates
(t,xi ,p0 ,pa), then ẑ(p)5p01paza(t,x) and similarly for ŝ. Now, for any two sectionsz,h
PSec(p), we define the function$ẑ,ĥ% on E† by

$ẑ,ĥ%~p!5@z,ĥ#~p!, ~86!

whereby we recall that@z,h# is a section ofp̄ and, forpPEm
† , p is the associated element ofVm* .

If further f ,g are functions onM and we make no notational distinction for their pullback toE†,
internal consistency of~86! for the action ofSec(p̄) on Sec(p) requires that we further put

$ẑ, f %52$ f ,ẑ%5l~z!~ f !, $ f ,g%50. ~87!

The construction then uniquely extends to a skew-symmetric,R-bilinear bracket operation onE†

with the required derivation property. This bracket satisfies the Jacobi identity as a result of t
algebroid Jacobi identity~16!.

The brackets for the coordinate functions onE† are found to be

$t,t%50, $t,xi%50, $xi ,xj%50,

$p0 ,t%51, $p0 ,xi%5l i , $p0 ,pb%5Cb
gpg ,

$pa ,t%50, $pa ,xi%5ra
i , $pa ,pb%5Cab

g pg .

There is an interesting observation to be made here. Recall thatE† is actually a vector bundle an
note now that the bracket we have constructed preserves the subset of functions onE† which are
linear in the fiber coordinates. As a result, we know that there is an induced Lie algebroid str
on the bundle (E†)* →M . There are many new insights to be gained from approaching the su
of a Lie algebroid structure on the affine bundleE→M from this angle; that is to say, by regardin
E→M as an affine subbundle of (E†)* →M and taking an appropriate Lie algebroid structure
(E†)* →M as the starting point. Also this is the subject of a forthcoming paper13 and is the point
of view also in the preprint14 which came out during the revision process of the present work.
of the main advantages which such an approach offers is that it enables us to get beyo
assumption about the extra fibration ofM and thus gives rise to a more general concept of af
Lie algebroids. It further leads to considerable simplifications in proving results about the ca
of forms, as discussed here in Sec. III. We believe, nevertheless, that the present approa
serves its merits mainly for two reasons: one is the repeatedly mentioned motivation coming
time-dependent mechanics; the second one is that the theory of differential forms on section
affine bundleE→M , as investigated in Sec. III from a kind of ‘‘internal point of view,’’ i.e
without recourse to the larger vector bundle in whichE can be imbedded, is something which
being developed here~to the best of our knowledge! for the first time.

ACKNOWLEDGMENT

E. Martı́nez acknowledges partial financial support from CICYT Grant No. BFM2000-10
C03-01.
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On generalizations of the Calogero–Moser–Sutherland
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It is proved that if the Schro¨dinger equationLc5lc of Calogero–Moser–
Sutherland type withL52D1(aPA1

@ma(ma11)(a,a)/sin2(a,x)# has a solution
of the product form c05)aPA1

sin2ma(a,x), then the function F(x)
5(aPA1

ma(a,x)2 log(a,x)2 satisfies the generalized WDVV equations. This ex-
plains the relation between these equations and the deformed CMS quantum prob-
lems observed in an earlier work@Phys. Lett. A261, 297 ~1999!#. © 2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1505651#

I. INTRODUCTION

Let A be a finite set of vectorsa in the Euclidean spaceRn which generates the space and
invariant under the symmetryx→2x. We assume that2a is the only vector fromA which is
proportional toa. Let A1 be its half positive with respect to some linear form. Let us prescrib
each vectoraPA a real number~‘‘multiplicity’’ ! ma such thatm2a5ma .

Consider the following Schro¨dinger operator:

L52D1 (
aPA1

ma~ma11!~a,a!

sin2~a,x!
. ~1!

WhenA is a root system with the multiplicities invariant under the corresponding Weyl grouW
this is an integrable generalization of the Calogero–Moser–Sutherland~CMS! operator1,2 sug-
gested by Olshanetsky and Perelomov.3 As it has been shown in Refs. 4 and 5 there are a
nonsymmetric integrable generalizations of this problem. This discovery led to the notion o
locus configurations which play a crucial role in the theory of the Huygens’ principle.6

It turned out7,8 that the locus configurations discovered in Refs. 4–6 can be used al
construct new solutions of the generalized Witten–Dijgraaf–Verlinde–Verlinde~WDVV ! equa-
tions:

FiFk
21F j5F jFk

21Fi , i , j ,k51,...,n. ~2!

HereFm is then3n matrix constructed from the third partial derivatives of the unknown funct
F5F(x1,...,xn):

~Fm!pq5
]3F

]xm]xp]xq . ~3!

In this form these equations have been written by Marshakov, Mironov and Morozov, who sh
that the Seiberg–Witten prepotential inN52 four-dimensional supersymmetric gauge theor

a!Electronic mail: A.P.Veselov@lboro.ac.uk
56750022-2488/2002/43(11)/5675/8/$19.00 © 2002 American Institute of Physics

                                                                                                                



eld
by

locus
what

s the

the

n some
sense.

tions

ar

5676 J. Math. Phys., Vol. 43, No. 11, November 2002 A. P. Veselov

                    
satisfies this system.9 Originally these equations have been introduced first in topological fi
theory as some associativity conditions10,11 and have been later investigated in this context
Dubrovin.12

However, in Ref. 13 we have shown that the relation discovered in Ref. 7 between the
configurations and WDVV equations does not always work, which raised the question
exactly is the property behind this relation.

The aim of this article is to present the answer to this question. The main result i
following:

Theorem: If the Schro¨dinger equation Lc5lc of Calogero–Moser–Sutherland type (1) has
a solution of the product form

c05 )
aPA1

sin2ma~a,x!,

then the function

F~x!5 (
aPA1

ma~a,x!2 log~a,x!2

satisfies the generalized WDVV equations.
We should mention that the eigenfunctions of the product form play a special role in

theory of the original CMS problem giving the ground states of the system.1,2 For the deformed
CMS problem this becomes more complicated because these solutions become singular o
hyperplanes, so we can consider these solutions as the eigenfunctions only in the formal

II. SPECIAL CLASS OF SOLUTIONS TO GENERALIZED WDVV EQUATIONS

In this section we essentially follow the analysis of the special solutions to WDVV equa
from Refs. 7 and 8.

It is known9,14 that WDVV equations~2! and ~3! are equivalent to the equations

FiG
21F j5F jG

21Fi , i , j 51,...,n, ~4!

whereG5(k51
n hkFk is any particular invertible linear combination ofFi with the coefficients,

which may depend onx. Introducing the matricesF̌ i5G21Fi , one can rewrite~4! as the com-
mutativity relations

@ F̌ i ,F̌ j #50, i , j 51,...,n. ~5!

We will consider the following particular class of the solutions to these equations.
Let V be a real vector space of dimensionn, V* be its dual space consisting of the line

functions onV ~covectors!, andA be a finite set of noncollinear covectorsaPV* generatingV* .
Consider the following function onV:

FA5 (
aPA

~a,x!2 log~a,x!2, ~6!

where (a,x)5a(x) is the value of covectoraPV* on a vectorxPV. For any basise1 ,...,en we
have the corresponding coordinatesx1,...,xn in V and the matricesFi defined according to~3!. In
a more invariant form for any vectoraPV one can define the matrix

Fa5(
i 51

n

aiFi .
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One can easily check thatFa is the matrix of the following bilinear form onV,

Fa
A5 (

aPA

~a,a!

~a,x!
a ^ a,

wherea ^ b(u,v)5a(u)b(v) for any u,vPV anda,bPV* . DefineG asFx , i.e.,

G5(
i 51

n

xiFi ,

which is actually the matrix of the bilinear form

GA5 (
aPA

a ^ a, ~7!

which does not depend onx. Since the covectorsaPA generateV* , the formGA is nondegen-
erate. This means that the natural linear mappingwA :V→V* defined by the formula

~wA~u!,v !5GA~u,v !, u,vPV,

is invertible. We will denotewA
21(a),aPV* , asa∨. By definition

(
aPA

a∨
^ a5Id

as an operator inV* or, equivalently,

~a,v !5 (
bPA

~a,b∨!~b,v !, ~8!

for anyaPV* ,vPV. Now according to~5! the WDVV equations~2! and~3! for the function~6!
can be rewritten as

@ F̌a
A ,F̌b

A#50 ~9!

for any a,bPV, where the operatorsF̌a
A are defined as

F̌a
A5 (

aPA

~a,a!

~a,x!
a∨

^ a. ~10!

Let GA be the form onV* induced byGA:

GA~a,b!5GA~a∨,b∨!.

Its matrix in the corresponding basis isG21. A simple calculation shows that~9! can be rewritten
as

(
aÞb,a,bPA

GA~a,b!Ba,b~a,b!

~a,x!~b,x!
a`b[0, ~11!

where

a`b5a ^ b2b ^ a

and
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Ba,b~a,b!5a`b~a,b!5a~a!b~b!2a~b!b~a!.

One can check that the relations~11! are equivalent to

(
bÞa,bPPùA

GA~a,b!Ba,b~a,b!

~b,x!
a`bu(a,x)50[0

for any aPA and any two-dimensional planeP containinga, and therefore to

(
bÞa,bPPùA

GA~a,b!Ba,b~a,b!50 ~12!

for any sucha andP.
Summarizing we have the following result~cf. Refs. 7 and 8!.
Proposition 1: The function (6) satisfies the generalized WDVV equations (2) and (3) i

relations (12) are satisfied for anyaPA and any two-dimensional planeP such thataPP.
Remark: In Refs. 7 and 8 the conditions~12! have been reformulated in geometric term

(∨-conditions!. For the purpose of the present article it is more convenient to use these cond
in the original form.

Any Coxeter root system satisfies these conditions, but there are many more exampl~see
Refs. 7, 8, and 13!.

III. MAIN IDENTITY AND PROOF OF THE THEOREM

Let nowA be a finite set of the vectorsa in the Euclidean spaceRn with multiplicities ma .
We will assume that this set is invariant under the symmetryx→2x and that2a is the only
vector fromA which is proportional toa. By A1 we mean the positive half ofA:

A15$aPA:~a,v !.0%

for somevPRn which is generic in the sense that (a,v)Þ0 for all aPA.
Consider the Schro¨dinger equation

Lc5lc, ~13!

where

L52D1 (
aPA1

ma~ma11!~a,a!

sin2~a,x!
.

Let us look for the solutions of this equation of the form

c05 )
aPA1

sin2ma~a,x!. ~14!

By straightforward calculation one can check the following result~cf. Ref. 15!.
Lemma 1: The function (14) satisfies the equation (13) for somel iff the following main

identity holds:

(
aÞb,a,bPA1

mamb~a,b!~cot~a,x!cot~b,x!11![0. ~15!

The eigenvaluel in that case has a forml5ur(m)u2 wherer(m)5(aPA1
maa.

Actually, first we have the condition that the sum
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S5 (
aÞb,a,bPA1

mamb~a,b!cot~a,x!cot~b,x!

must be a constant inx. Considering thenx5 i tv with a large positivet andv from the definition
of A1 , we see that this constant must be equal to

S52 (
aÞb,a,bPA1

mamb~a,b!.

This leads also to the formula for the eigenvaluel. It is worthy to note that this formula implies
that the vectorr(m) which depends on the choice of the positive partA1 ~i.e., on the choice of
v) has the normur(m)u independent on this choice.

Remark:The gauged operatorL̃5ĉ0
21Lĉ0 , whereĉ0 is the operator of multiplication byc0 ,

in this case has the formL̃52L rad1ur(m)u2,

L rad5D22 (
aPA1

ma cot~a,x!]a .

When A is a root system with special multiplicitiesL rad is the radial part of Laplace–Beltram
operator on some symmetric space.16 Thus, the property ofL we discuss is equivalent to th
existence of the ‘‘radial gauge.’’ We should mention that the relation between the radial pa
the Laplace operators and quantum many-body problems was first observed@in the case of the
symmetric spaces SU(n)/SO(n)] by Berezin, Pokhil, and Finkelberg17 and was investigated in
details by Olshanetsky and Perelomov in Ref. 15.

The main identity is equivalent to the following identities:

(
bPA1 ,bÞa

mamb~a,b!cot~b,x!u(a,x)5kp[0, ~16!

for eachaPA1 andkPZ. In particular,

(
bPA1 ,bÞa

mamb~a,b!cot~b,x!u(a,x)50[0 ~17!

must be satisfied on all the hyperplanes (a,x)50. It is easy to see that the last identities a
equivalent to the set of identities:

(
bPA1ùP,bÞa

mamb~a,b!cot~b,x!u(a,x)50[0 ~18!

hold for any planeP containing vectoraPA1 .
Let us look now at these two-dimensional identities. LetP be the plane generated bya,b

PA1 ,aÞb. We can assume that (a,b)Þ0 since otherwise the identity is trivially satisfied. A
the vectorsgPA1ùP can be split into equivalence classesG1 , . . . ,Gp according to the equiva
lence relation:g;g8 if

g856g1ma ~19!

for somem. I would like to mention that similar equivalence has been considered by M. V. Fe
in the theory of trigonometric locus configurations.18

The restrictions of cot(g,x) and cot(g8,x) on the intersection line ofP with the hyperplane
(a,x)50 are the same up to a sign. To take care of this sign let us introduce a skew-sym
bilinear formB5Ba,b(a,b) related to a pair of vectorsa,bPRn by the formula
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Ba,b~a,b!5~a,a!~b,b!2~a,b!~b,a!.

It is easy to check that the identity~18! for the planeP is equivalent to the set of relations

(
gPGs ,gÞa

mamg~a,g!B~a,g!50 ~20!

for all the equivalence classesG1 , . . . ,Gp . As a corollary we have the same relation on each pl
P:

(
bÞa,bPA1ùP

mamb~a,b!B~a,b!50, ~21!

and thus in the whole space

(
bÞa,bPA1

mamb~a,b!B~a,b!50 ~22!

for any aPA1 .
Let us introduce now the operatorsMa in Rn by the relation

Ma5maa ^ a,

where by definitiona ^ b(x)5(b,x)a. Let M be the sum

M5 (
aPA1

maa ^ a.

Now we need the following natural definition. We will call a configurationA irreducible if it
cannot be split into two nontrivial orthogonal parts.

Lemma 2: The main identity (15) implies that all the operators Ma ,aPA1 commute with M.
For irreducible configurations this means that M is a scalar operator: M5mI for somem.

Indeed, the commutator Ca5@M ,Ma# is Ca5@(bPA1
mbb ^ b,maa ^ a#

52(bÞa,bPA1
mamb(a,b)(a ^ b2b ^ a). It is easy to see that the relations~22! are equivalent

to (Ca(a),b)50 for arbitrarya,bPRn which imply thatCa50. The commutativity of the op-
eratorM with Ma means that anyaPA is an eigenvector of the~self-adjoint! operatorM . If M
has two different eigenvalues, thenA can be split into two orthogonal parts which is impossible
the irreducible case. This proves the lemma.

Now everything is ready for the proof of our main result. For a given configurationA let us
define the setA in the Euclidean spaceV5Rn.V* by taking all the vectors of the form
Amaa,aPA1 .

Lemma 3: IfA is irreducible and satisfies the main identity, thenA satisfies the relations (12
from the previous section.

Indeed, due to Lemma 2 in this caseGA5(aPA1
maa ^ a is proportional to the scalar prod

uct in Rn. The same is obviously true forGA so the relations~12! are reduced to~21!.
Remark:Strictly speaking we should consider only positive multiplicities in order to stay

reals but one can easily check that the resulting function

F~x!5 (
aPA1

ma~a,x!2 log~a,x!2

is real even in the case of negative multiplicities and all the arguments work in the complex
as well.
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Combining these three lemmas with Proposition 1 we have the proof of the theorem
irreducible case. The reducible case then easily follows.

Now using the results of Refs. 7 and 8 we have the following:
Corollary: For any configurationA satisfying the main identity the corresponding setA is a

∨-system in the sense of Ref. 7. In particular the following differential operators of the Knizh–
Zamolodchikov type,

¹a5]a2 (
aPA1

ma

~a,a!

~a,x!
a ^ a, ~23!

commute and therefore define a flat connection inRn.
As the examples one can consider the following ‘‘locus configurations’’An(m) and

Cn11(m,l ) which have been introduced in Refs. 4–6. They consist of the following vecto
Rn11:

An~m!5H ei2ej , 1< i , j <n, with multiplicity m,

ei2Amen11 , i 51,...,n, with multiplicity 1,

and

Cn11~m,l !55
ei6ej , 1< i , j <n, with multiplicity k,

2ei , i 51,...,n, with multiplicity m,

ei6Aken11 , i 51,...,n, with multiplicity 1,

2Aken11 , with multiplicity l ,

wherek5 (2m11)/(2l 11). The fact that they satisfy the main identity~for all values of the
parameters! can be checked by direct calculation. Our theorem thus explains the observation7 that
the corresponding functionsF satisfy the generalized WDVV equation.

IV. CONCLUDING REMARKS

We have seen that the main identity is behind the relation between the locus configur
and WDVV equation. Since there are locus configurations without this property this explain
why this relation does not always work.13 An interesting problem is to classify all locus config
rations which satisfy the main identity. The fact that this is true for the seriesAn(m) and
Cn11(m,l ) seems to be very important. In particular, as it follows from our analysis in
previous section these configurations~with integer parameters! are the ‘‘vector systems’’ in the
Borcherds’ sense.19 Their role in Borcherds’ theory deserves a special investigation.

We have already mentioned the relations with the theory of symmetric spaces and the
parts of the Laplace operators for the usual root systems. It is interesting that the operators
to An(m) andCn11(m,l ) also can be interpreted in a similar way using the Lie superalgebras
symmetric superspaces as it was recently discovered by A. N. Sergeev.20 This relation gives some
new interesting examples of the integrable deformations of Calogero–Sutherland operator
fying the main identity21 ~and therefore new solutions for the WDVV equation!.
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Scattering relations for point sources:
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The problem of scattering of spherical waves by a bounded obstacle is considered.
General scattering theorems are proved. These relate the far-field patterns due to
scattering of waves from a point source put in any two different locations. The
scatterer can have any of the usual properties, penetrable or impenetrable. The
optical theorem is recovered as a corollary. Mixed scattering relations are also
established, relating the scattered fields due to a point source and a plane wave.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1509089#

I. INTRODUCTION

In classical scattering theory, there are some general results that connect the solutions
related problems. The most familiar of these isreciprocity: the scattered field atA due to a source
at B is simply related to the scattered field atB due to a source atA.

There are also internal relations within a single problem. A well-known example is theoptical
theoremfor scattering of plane waves: it relates the far-field pattern in the forward direction
certain integral of the far-field pattern over all directions.

In this article, we derive some general relations for scattering of waves emanating from
sources. Thus, we relate one problem with a point source atA to a similar problem with a point
source atB. By settingA5B and then lettingA recede to infinity, we recover the optical theore
If we keepA fixed and letB recede to infinity, we obtain so-calledmixed scattering theorems,
relating plane-wave incidence to point-source incidence. An example of these is themixed reci-
procity theorem, which has found much use recently in methods for solving inverse scatt
problems.1

As Logan2 points out, Clebsch considered the scattering of elastic waves from a point s
by a rigid sphere 140 years ago, a decade before Lord Rayleigh published his solution
scattering of a plane sound wave by a sphere. Collected results for scattering of point-sourc
by simple shapes are given in Ref. 3. More recently, Dassios and his co-workers have s
incident waves generated by a point source in the vicinity of a scatterer; see, for example
4–6. There is also some recent work on near-field inverse problems: in addition to the pr
papers, we note the work by Coyle7 and Potthast,1 as well as recent work by three of the prese
authors.8,9 The revival of interest in problems related to point-generated wave fields has se
reasons. One is due to the variety of applications coming from the theory of composite ma
and of acoustic emission, from the theoretical analysis of biological studies at the cell level
nondestructive testing and evaluation, from geophysics, from modeling in medicine and

a!Author to whom correspondence should be addressed. Electronic mail: pamartin@mines.edu
56830022-2488/2002/43(11)/5683/15/$19.00 © 2002 American Institute of Physics
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sciences, and from scattering problems connected to environmental data analysis. Another
is due to the fact that a point-source field is more easily realizable in a laboratory.

We give results for both acoustic and electromagnetic waves, and we permit all the
kinds of scattering obstacles, penetrable and impenetrable. Extensions to elastic-wave pr
are expected.

II. FORMULATION: ACOUSTICS

Let V2 be a bounded three-dimensional obstacle with a smooth closed boundaryS ~the
scatterer!. The exteriorR3\V25V of the scatterer is an infinite homogeneous isotropic loss
acoustic medium, that is the compressional viscosityd is zero, and with mass densityr, phase
velocity c, mean compressibilityg and real wave numberk5vAgr, v being the angular fre-
quency. The interior of the scattererV2 is filled with a lossy medium, in general, with corre
sponding physical parametersd2, r2, c2 and g2. We consider an incident spherical acous
wave due to a source located at a point with position vectora. Suppressing the harmonic tim
dependence exp$2ivt%, and following the normalization introduced by Dassios and Kamvyss4

we assume the following form for the incident field:

ua
i ~r !5ae2 ika

eikur2au

ur2au
, rÞa, ~1!

wherea5uau. We note that whena→`, the spherical wave reduces to a plane wave with dir
tion of propagation2â, wherea5aâ.4 The total fieldua

t in the exterior of the scatterer is give
by

ua
t ~r !5ua

i ~r !1ua
s~r !, rPV\$a%, ~2!

whereua
s is the scattered acoustic field, and solves the Helmholtz equation

¹2ua
t ~r !1k2ua

t ~r !50, rPV. ~3!

The scattered as well as the incident fields are solutions of Helmholtz’s equation that s
the Sommerfeld radiation condition

r̂•¹u~r !2 iku~r !5o~r 21!, r→`, ~4!

uniformly in all directionsr̂PS2, whereS2 is the unit sphere. We note thatua
t also satisfies the

Sommerfeld radiation condition.
In our analysis, we can permit impenetrable or penetrable scatterers. In the former ca

could have Dirichlet (ua
t 50), Neumann (]ua

t /]n50) or Robin conditions onS; the Robin~or
impedance! condition is

S ]

]n
1 ikl Dua

t ~r !50, rPS, ~5!

wherel is a dimensionless real parameter. In the penetrable case, the incident wave is tran
into the scatterer; letua

2 be the total acoustic field inV2. Then the followingtransmission
conditionsmust hold on the scatterer’s surface

ua
t ~r !5ua

2~r ! and
]ua

t ~r !

]n
5b

]ua
2~r !

]n
, rPS, ~6!

where the constantb5(r/r2)(12 ikcd2g2) is complex for a lossy scatterer and real for
lossless scatterer. More details on the physical parameters of the above problems can be f
Ref. 6. The fieldua

2 solves the Helmholtz equation inV2,
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¹2ua
2~r !1h2k2ua

2~r !, rPV2, ~7!

whereh5(c/c2)(12 ikcg2d2)21/2 is the ~complex! index of refraction between the two med
in V and V2. The choice of the branch of the square root is such that Im(h)>0 and hence
Im(hk)>0.

In addition, in order to cover various cases that arise in applications, we can easily exte
analysis to include an impenetrable core in the interior of the scatterer.

As it is well known, all the above problems are well posed.
The behavior of the scattered wave in the far field is given by

ua
s~r !5ga~ r̂ !h0~kr !1O~r 22!, r→`, ~8!

whereh0(x)5eix/( ix) is the spherical Hankel function of the first kind and order zero. Moreo

ga~ r̂ !52
ik

4p E
S
F]ua

s~r 8!

]n
1 ik~ r̂ "n̂!ua

s~r 8!Ge2 ikr̂ "r8ds~r 8! ~9!

is the far-field pattern.5

III. GENERAL SCATTERING THEOREM

In what follows, we consider two locations for the point source,a and b, from which the
time-harmonic incident spherical waves emanate. Each source generates a corresponding s
field, ua

s andub
s , respectively. We are interested in relations between these fields.

Let Sr denote a large sphere of radiusr, surrounding the pointsa andb, and let

Sa,«5$rPR3:ua2r u5«%, ~10!

a small sphere of radius«, surrounding the pointa. Then, we introduce the following notation,

@u,v#S5E
S
S ū

]v
]n

2v
]ū

]nDds,

where the overbar denotes complex conjugation; in particular, we write@u,v#[@u,v#S .
Lemma 1: Let ua

i be a point source ata. Let ub
i be a point source atb, with corresponding

scattered field ub
s and far-field pattern gb . Then

lim
r→`

@ua
i ,ub

s#Sr
52aeikaE

S2
gb~ r̂ !eikr̂ "ads~ r̂ ! ~11!

and

lim
«→0

@ua
i ,ub

s#Sa,«
54paeikaub

s~a!, ~12!

where Sr is a large sphere of radius r surroundinga and b, and Sa,« is the small sphere define
by Eq. (10).

Proof: For Eq.~11!, we use the asymptotic relations

ur2au5r 2 r̂ "a1O~r 21! and ur2au215r 211O~r 22!, ~13!

as r→`, and obtain

ua
i ~r !5h0~kr !ga

i ~ r̂ !1O~r 22!, r→`, ~14!
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wherega
i ( r̂ )5 ika exp$2ika(11â"r̂ )% is the far-field pattern of the point-source incident wav

Using Eqs.~8! and ~14! gives Eq.~11!.
For Eq. ~12!, we evaluateua

i and its normal derivative onSa,« . There, we haveua
i

5(a/«)eik(a2«) and (]/]n)ua
i 52(ik1«21)ua

i (r ), where]/]n denotes normal differentiation in
the outward direction. Using the mean value theorem and letting«→0, Eq. ~12! is proved. h

Now, for two point sources, with position vectorsa and b, we define aspherical far-field
pattern generatorfor spherical acoustic waves by

Gb~a!5 ikaeikaFub
s~a!2

1

2p E
S2

gb~ r̂ !eika"r̂ds~ r̂ !G . ~15!

This terminology and definition are appropriate for the following reason@see Eq.~50! later in this
work#. When both the point source and the observation point recede to infinity,Gb(a) reduces to
the far-field pattern for an incident plane wave propagating in the direction2b̂. Using this
notation, the general scattering theorem for spherical waves is formulated as follows.

Theorem 2: For any two point-source locations inV, a and b, we have

Gb~a!1Ga~b!1
1

2p E
S2

gb~ r̂ !ga~ r̂ !ds~ r̂ !5Ea,b , ~16!

where

Ea,b52
ik

4p
@ua

t ,ub
t #. ~17!

The value ofEa,b depends on the scatterer:

Ea,b50 for Dirichlet or Neumann conditions on S; ~18!

Ea,b52
k2l

2p E
S
ub

t ~r !ua
t ~r !ds for the Robin condition (5) on S; ~19!

or

Ea,b52
k

2p
Im~b!E

V2
¹ua

2~r !•¹ub
2~r !dv~r ! for a penetrable scatterer, ~20!

whereb is the constant in the transmission conditions (6).
Proof: Let us first evaluateEa,b directly. For Dirichlet (ut50) or Neumann (]ut/]n50)

conditions, we immediately obtain Eq.~18!. Similarly, the Robin condition~5! gives Eq.~19!. For
a penetrable scatterer, we use the transmission conditions~6!, apply Green’s first theorem and tak
into account that Im(bh2)50 ~see p. 9 of Ref. 6!; this gives Eq.~20!.

Next, we give an alternative evaluation ofEa,b . Thus, by the relationsua
t 5ua

i 1ua
s for a

5a,b we have

@ua
t ,ub

t #5@ua
i ,ub

i #1@ua
s ,ub

i #1@ua
i ,ub

s#1@ua
s ,ub

s#. ~21!

Sinceua
i andub

i are regular solutions of the Helmholtz equation inV2, Green’s second theorem
gives

@ua
i ,ub

i #50. ~22!

For the other terms in Eq.~21!, we consider two small spheres,Sa,«1
andSb,«2

, centered ata and
b with radii «1 and«2 , respectively, withSa,«1

ùSb,«2
5B, as well as a large sphereSR centered
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at the origin surrounding the whole system of the scatterer and the two small spheres. Sincua
i (r )

andub
s(r ) are solutions of the Helmholtz equation, forrÞa,b, Green’s second theorem gives

@ua
i ,ub

s#5@ua
i ,ub

s#SR
2@ua

i ,ub
s#Sa,«1

2@ua
i ,ub

s#Sb,«2
.

The third term is zero becauseua
i andub

s are regular solutions of the Helmholtz equation in t
interior of Sb,«2

. Then, lettingR→` and«1→0, using Lemma 1, we obtain

@ua
i ,ub

s#524paeikaub
s~a!12aeikaE

S2
gb~ r̂ !eikr̂ "ads~ r̂ !. ~23!

As @ua
s ,ub

i #52@ub
i ,ua

s#, we easily deduce that

@ua
s ,ub

i #54pbe2 ikbua
s~b!22be2 ikbE

S2
ga~ r̂ !e2 ikr̂ "bds~ r̂ !. ~24!

Finally, in view of the regularity ofua
s andub

s in the region exterior toS, we have

@ua
s ,ub

s#5@ua
s ,ub

s#SR
.

Then, lettingR→`, we pass to the radiation zone and thus we can use the asymptotic form~8!,
giving

@ua
s ,ub

s#5
2i

k E
S2

ga~ r̂ !gb~ r̂ !ds~ r̂ !. ~25!

Substituting Eqs.~22!–~25! in Eq. ~21!, making use of Eq.~17! and its evaluation, gives Eq.~16!,
and the theorem is proved. h

Let us make two remarks. First, if the scatterer is a lossless penetrable obstacle, that
physical parameterb is real, then we obtainEa,b50 in Eq.~16!, just as for soft or hard scatterer

Second, suppose that we have a penetrable scatterer with a coreS2 on which u250 or
]u2/]n50. Then, the relation~20! still holds, where, now,V2 denotes the part of the scatter
between the surfacesS andS2.

IV. RECIPROCITY RELATIONS

The proof of Theorem 2 uses two evaluations of@ua
t ,ub

t #. If, instead, we start from@ua
t ,ub

t #,
we obtain a reciprocity theorem. This is not surprising, becauseua

t can be regarded as the exa
Green’s function for the scattering problem. The reciprocity theorem can be found on p. 48 o
6, for example. We quote it here, using our normalizations.

Theorem 3: For any two point-source locations inV, a andb, and for any scatterer, we hav

h0~ka!ua
s~b!5h0~kb!ub

s~a!, ~26!

where h0(x)5eix/( ix).
From Eq.~1!, we see that the same reciprocity relation holds for the incident fields, as

h0(ka)ua
i (b)5h0(kb)ub

i (a). Hence, by Eq.~2! we conclude that the total exterior fields satis
h0(ka)ua

t (b)5h0(kb)ub
t (a).

We note that the presence of the multiplicative constant in the above reciprocity relation
to the form of the modified spherical wave, Eq.~1!. If we consider the point sources lying on th
same sphere, that is,a5b, then we obtain the following results:

ua
s~b!5ub

s~a!, ua
i ~b!5ub

i ~a!, ua
t ~b!5ub

t ~a!. ~27!
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These relations express the fact that interchanging the excitation with the observation poi
scattered, incident and total fields remain unchanged. From Eq.~26! we cannot have a reciprocit
relation for the corresponding spherical far-field patterns, because when the point source
infinity the spherical waves reduce to plane waves.

V. THE OPTICAL THEOREM

In Ref. 8, an optical theorem for spherical waves incident upon a soft scatterer has
proved. Now, this theorem as well as optical theorems for scatterers of other types can be d
as corollaries of the general scattering theorem. First we define the scattering cross-section
a point source ata ~Ref. 6! as

sa
s5

1

k2 E
S2

uga~ r̂ !u2ds~ r̂ !, ~28!

the absorption cross-section as

sa
a5

1

k
Im E

S
ua

t
]ua

t

]n
ds, ~29!

and the extinction cross-section as

sa
e5sa

s1sa
a . ~30!

If we put a5b in Theorem 2, we obtain

2 Re$Ga~a!%1
1

2p E
S2

uga~ r̂ !u2ds~ r̂ !5Ea,a .

We can rewrite this equation using Eq.~28! to give

sa
s524pk22 Re$Ga~a!%12pk22Ea,a . ~31!

From the definitions~17! and ~29!, we have

sa
a5 1

2 ik21@ua
t ,ua

t #522pk22Ea,a . ~32!

Hence, adding Eqs.~31! and ~32!, Eq. ~30! gives

sa
e524pk22 Re$Ga~a!%. ~33!

The value ofEa,a is given in Theorem 2. In particular, for a penetrable scatterer, we obt

sa
a52

1

k
Im~b!E

V2
u¹ua

2~r !u2dv~r !, ~34!

whereas for an impedance surface, we have

sa
a5lkE

S
uua

t u2ds.

We remark that the absorption cross-sectionsa
a provides a measure of the total energy tak

from the incident spherical wave and absorbed by the surface of the scatterer in the imp
boundary case, or by the lossy medium occupyingV2 in the penetrable case. It is clear thatsa

a

50 for the soft and hard scatterers andsa
a>0 for the other cases.
                                                                                                                



were

de to
t both
-wave

e
the

5689J. Math. Phys., Vol. 43, No. 11, November 2002 Scattering relations for point sources

                    
VI. MIXED SCATTERING RELATIONS

For inverse problems, one effective reconstruction method is the point-source method.1 One of
the main steps of this method is the derivation of mixed reciprocity relations. These relations
introduced in Ref. 10 for sound-soft scatterers, and in Ref. 1 for sound-hard scatterers.

In this section, we allow one of the two point sources considered previously to rece
infinity, so that we have one spherical incident wave and one plane incident wave. We le
sources recede to infinity at the end of this section, and recover known results for plane
incidence.

An incident plane wave propagating in the direction of the unit vectord̂ is given by

ui~r ;d̂!5exp$ ikd̂"r%. ~35!

We have already noted thatua
i (r )→ui(r ;2â) asa→`.

For an incident plane wave, Eq.~35!, we denote the total field inV, the scattered field and th
far-field pattern byut(r ;d̂), us(r ;d̂) and g( r̂ ;d̂), respectively, indicating the dependence on
incident directiond̂. We have4

ua
s~r !→us~r ;2â!, as a→` ~36a!

and

ga~ r̂ !→g~ r̂ ;2â!, as a→`. ~36b!

Now, consider our previous results, involvinga and b, and letb→`. Lemma 1 gives the
following results.

Lemma 4: Let ua
i (r ) be an incident spherical wave and let ui(r ;2b̂) be an incident plane

wave. Then

lim
r→`

@ua
i ,us~•,2b̂!#Sr

52aeikaE
S2

g~ r̂ ;2b̂!eikr̂ "ads~ r̂ ! ~37!

and

lim
«→0

@ua
i ,us~•,2b̂!#Sa,«

54paeikaus~a;2b̂!. ~38!

Next, we define aplane far-field pattern generatorby

G~a;2b̂!5 lim
b→`

Gb~a! ~39!

5 ikaeikaFus~a;2b̂!2
1

2p E
S2

g~ r̂ ;2b̂!eika"r̂ds~ r̂ !G , ~40!

where the spherical far-field pattern generatorGb(a) is defined by Eq.~15!. We will also require
lima→`Gb(a); this limit is contained in the following theorem.

Theorem 5: For two incident spherical waves, ua
i and ub

i , we have

lim
a→`

Gb~a!5gb~2â! ~41!

and
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lim
a→`

G~a;2b̂!5g~2â;2b̂!. ~42!

Proof: We prove Eq.~41!; a very similar argument gives Eq.~42!.
We choose coordinates so that the point source ata is on thez-axis. Then, take spherical pola

coordinates~u, w! on S2, so thatâ"r̂5cosu. Hence foru50 we haver̂5â, while for u5p we
have r̂52â. If we define

Fb~u!5E
0

2p

gb~ r̂ !dw, ~43!

then we haveFb(0)52pgb(â) andFb(p)52pgb(2â). Hence

E
S2

gb~ r̂ !eikr̂ "ads~ r̂ !5E
0

p

Fb~u!eika cosu sinudu

5
i

ka E0

p

Fb~u!
d

du
~eika cosu!du

5
2p i

ka
@gb~2â!e2 ika2gb~ â!eika#2

i

ka E0

p

eika cosu
dFb~u!

du
du.

From this equation and Eq.~15!, we find that

Gb~a!5 ikaeikaub
s~a!1eika@gb~2â!e2 ika2gb~ â!eika#1

eika

2p E
0

p

eika cosu
dFb~gv !

du
du. ~44!

In view of Eq. ~8! and taking into account that the integral in Eq.~44! tends to zero asa→`, by
the Riemann-Lebesgue lemma, we get Eq.~41!.

We can now letb→` in the general scattering theorem, Theorem 2; this gives the follow
results.

Theorem 6: Let ua
i (r ) be an incident spherical wave and let ui(r ;2b̂) be an incident plane

wave. Then

G~a;b̂!1ga~2b̂!1
1

2p E
S2

g~ r̂ ;2b̂!ga~ r̂ !ds~ r̂ !5Ma~2b̂!, ~45!

whereMa(2b̂)5 limb→` Ea,b :

Ma~2b̂!50 for Dirichlet or Neumann conditions on S; ~46!

Ma~2b̂!52
k2l

2p E
S
ut~r ;2b̂!ua

t ~r !ds~ r̂ ! for the Robin condition (5) on S; ~47!

or

Ma~2b̂!52
k

2p
Im~b!E

V2
¹ua

2~r !•¹u2~r ;2b̂!dv~r ! for a penetrable scatterer.~48!

The mixed reciprocity principle is contained in the next theorem.
Theorem 7: Let ua

i (r ) be an incident spherical wave and let ui(r ;2b̂) be an incident plane
wave. Then, we have the following reciprocity relation:
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ga~ b̂!5 ikae2 ikaus~a;2b̂!. ~49!

Proof: Let b→` in Theorem 3, using Eqs.~8! and ~36a!. h

This result means that the spherical far-field pattern of the point source ata in the directionb̂
is proportional to the scattered field ata due to the incident plane wave with direction of prop
gation2b̂.

Finally, if we combine Eqs.~36b!, ~39!, ~41! and ~42!, we obtain

lim
a→`

lim
b→`

Gb~a!5 lim
b→`

lim
a→`

Gb~a!5g~2â;2b̂!. ~50!

We can then check that letting both point sources recede to infinity,a→` andb→`, yields the
known scattering and optical theorems for plane-wave scattering; see Refs. 11–13, 6, and

VII. FORMULATION: ELECTROMAGNETICS

In the remainder of the article, we consider electromagnetic problems. The exteriorV is an
infinite homogeneous medium with electric permittivity«, magnetic permeabilitym, phase veloc-
ity c and conductivitys50. The scattererV2 is filled with a homogeneous medium with corr
sponding physical parameters«2, m2, c2 ands2Þ0.

We consider an incident spherical electromagnetic wave due to a source located at a po
position vectora, with respect to the originO. This incident wave (Ea

i ,Ha
i ) has the form9

Ea
i ~r ;p̂!5

ae2 ika

ik
¹3S eikur 2au

ur2au
â3p̂D , ~51!

Ha
i ~r ;p̂!5~ ik!21~«/m!1/2¹3Ea

i ~r ;p̂!, ~52!

wherep̂ is a constant unit vector withp̂•â50, k5vA«m.0 is the free-space wave number, a
a5uau. Physically, (Ea

i ,Ha
i ) represents the field generated by a magnetic dipole with dip

momentâ3p̂; see p. 163 of Ref. 14 or p. 23 of Ref. 6. The coefficientae2 ika/( ik) in Eq. ~51!
assures that when the point source tends to infinity the spherical wave reduces to a plane
wave with direction of propagation2â and polarizationp̂. The total electric exterior fieldEa

t is
given by

Ea
t ~r ;p̂!5Ea

i ~r ;p̂!1Ea
s~r ;p̂!, rPV\$a%, ~53!

whereEa
s(r ;p̂) is the scattered electric field, which satisfies the Silver-Mu¨ller radiation condition

lim
r→`

~r3¹3Ea
s1 ikrEa

s!50 ~54!

uniformly in all directionsr̂PS2, whereS2 is the unit sphere.Ea
t solves the equation

¹3¹3Ea
t 5k2Ea

t in V. ~55!

We note that the incident electric field satisfies the radiation condition~54!, and hence the tota
electric field also satisfies Eq.~54!.

The surface of the scatterer may be perfectly conducting, in which case

n̂3Ea
t 50 on S, ~56!

or it may be an impedance surface, in which case

n̂3¹3Ea
t 52~ ik/Zs!n̂3~ n̂3Ea

t ! on S, ~57!
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where the dimensionless parameterZs denotes the surface impedance relative to the characte
impedance of the medium and may vary onS.

If the scatterer is a dielectric, the incident electromagnetic waves are transmitted in
scatterer. LetEa

2 be the total electric field in the interior. ThenEa
2 satisfies

¹3¹3Ea
25h2k2Ea

2 in V2, ~58!

where the complex constanth is the relative index of refraction; on the surface of the scatterer
have the following transmission conditions:

n̂3Ea
t 5n̂3Ea

2 and n̂3¹3Ea
t 5~m/m2!n̂3¹3Ea

2 on S.

The behavior of the scattered electric field in the radiation zone is given by

Ea
s~r !5h0~kr !ga~ r̂ !1O~r 22!, r→`, ~59!

wherega( r̂ ) is the far-field pattern.
More details on the physical parameters of the above problems can be found in Ref. 6

problem has a unique and stable classical solution.14,15

VIII. GENERAL SCATTERING THEOREM: ELECTROMAGNETICS

In the sequel, for an incident time-harmonic spherical waveEa
i (r ;p̂) due to a point source

located ata, we will denote the total field inV, the scattered field and the far-field pattern
writing Ea

t (r ;p̂), Ea
s(r ;p̂) andga( r̂ ;p̂), respectively, indicating the dependence on the positiona of

the point source and the polarizationp̂. Also, the total electric field inV2 will be denoted by
Ea

2(r ;p̂). We consider a point source ata with polarizationp̂1 and another point source atb with
polarizationp̂2 .

For a shorthand notation, we use

$E,E8%S5E
S
@~ n̂3Ē!•~¹3E8!2~ n̂3E8!•~¹3Ē!#ds;

in particular, we write$E,E8%[$E,E8%S .
Lemma 8: LetEa

i (r ;p̂1) be a point source ata. Let Eb
i (r ;p̂2) be a point source atb, with

corresponding scattered fieldEb
s(r ;p̂2) and far-field patterngb( r̂ ;p̂2). Then

lim
r→`

$Ea
i ~•;p̂1!,Eb

s~•;p̂2!%Sr
52aeikaE

S2
gb~ r̂ ;p̂2!•~ r̂3~ â3p̂1!!eikr̂ "ads~ r̂ ! ~60!

and

lim
«→0

$Ea
i ~•;p̂1!,Eb

s~•,p̂2!%Sa,«
54p i~a/k!eika~¹3Eb

s~a;p̂2!!•~ â3p̂1!, ~61!

where Sr is a large sphere of radius r enclosinga and b, and Sa,« is a small sphere surrounding
a, defined by Eq. (10).

Proof: For Eq.~60!, we use the asymptotic forms~13!. These show that the incident electr
wave takes the form

Ea
i ~r ;p̂1!5h0~kr !ga

i ~ r̂ ;p̂1!1O~r 22!, r→`, ~62!

wherega
i ( r̂ ;p̂1)5 ika exp$2ika(11 r̂ "â)% ( r̂3(â3p̂1)) is the far-field pattern of the point sourc

incident wave. Using Eqs.~59! and ~62! we establish Eq.~60!. Note thatr̂ "ga
i ( r̂ ;p̂1)50.

For Eq.~61!, some calculations show that
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$Ea
i ~•,p̂1!,Eb

s~•,p̂2!%Sa,«
5aeikaH E

Sa,«

n̂•¹3@~~ â3p̂1!•¹h0~kur2au!!Eb
s#ds

1E
Sa,«

~ ik1ur2au21!h0~kur2au!~¹3Eb
s!•~ â3p̂1!ds

2k2E
Sa,«

n̂•@Eb
s3~ â3p̂1!#h0~kur2au!dsJ .

The first integral on the right-hand side vanishes by Stokes’s theorem. Applying the mean
theorem on the remaining integrals and letting«→0, we obtain Eq.~61!. h

For two incident spherical electric waves,Ea
i (r ;p̂1) and Eb

i (r ;p̂2), we define aspherical
far-field pattern generator, as follows:

Gb~a;p̂2!5eikaa3F¹3Eb
s~a;p̂2!2

ik

2p E
S2

r̂3gb~ r̂ ;p̂2!eikr̂ "ads~ r̂ !G . ~63!

As we shall see later, when the point sources recede to infinity,Gb(a;p̂2) is reduced to the far-field
pattern for an incident plane electric wave propagating in the direction2â and of polarizationp̂2 .
Using this notation, the general scattering theorem for spherical electric waves is formula
follows.

Theorem 9: For any two point-source locations inV, a andb, and for any polarizations, p̂1

and p̂2 , we have

p̂1•G1~a;p̂2!1p̂2•Ga~b;p̂1!1
1

2p E
S2

gb~ r̂ ;p̂2!•ga~ r̂ ;p̂1!ds~ r̂ !5Ea,b~ p̂1 ;p̂2!, ~64!

where

Ea,b~ p̂1 ;p̂2!52
ik

4p
$Ea

t ~•,p̂1!,Eb
t ~•,p̂2!%. ~65!

The value ofEa,b depends on the scatterer:

Ea,b50 for a perfectly conducting surface; ~66!

Ea,b~ p̂1 ;p̂2!52
k2

2p E
S

Re~ZS!

uZSu2 ~ n̂3Ea
t ~ r̂ ;p̂1!!•~ n̂3Eb

t ~ r̂ ;p̂2!!ds~r ! ~67!

for the impedance boundary condition (57); or

Ea,b~ p̂1 ;p̂2!52
k3m

2pm2 Im~h2!E
V2

Ea
2~ r̂ ;p̂1!•Eb

2~ r̂ ;p̂2!dv ~68!

for a dielectric scatterer.
Proof: We proceed exactly as in the proof of Theorem 2. First, we evaluateEa,b directly, using

the boundary or transmission conditions onS; for the dielectric scatterer, we have to apply t
divergence theorem inV2. This gives the stated expressions forEa,b .

Next, we give an alternative evaluation ofEa,b , using the relationsEa
t 5Ea

i 1Ea
s , for a5a, b.

Formally, the calculations proceed as before, with$•,•% in place of@•,•#. We also use the vecto
version of Green’s second theorem, which gives

$Ea
i ,Eb

i %50, ~69!
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$Ea
i ,Eb

s%524p i~a/k!eika~¹3Eb
s~a;p̂2!!•~ â3p̂1!12aeikaE

S2
gb~ r̂ ;p̂2!•~ r̂3~ â3p̂1!!eikr̂ "ads~ r̂ !

~70!

and

$Ea
s ,Eb

s%5
2i

k E
S2

ga~ r̂ ;p̂1!•gb~ r̂ ;p̂2!ds~ r̂ !. ~71!

The remaining details are omitted. h

There is also a reciprocity theorem, asEa
t is an exact Green’s function. It can be found on

63 of Ref. 6, for example. With our normalizations, it takes the following form.
Theorem 10:For any two point-source locations inV, a andb, for any polarizations, p̂1 and

p̂2 , and for any scatterer, we have

h0~ka!~ b̂3p̂2!•~¹3Ea
s~ b̂;p̂1!!5h0~kb!~ â3p̂1!•~¹3Eb

s~ â;p̂2!!. ~72!

IX. OPTICAL THEOREM: ELECTROMAGNETICS

In Ref. 9, an optical theorem for spherical waves incident upon a perfect conductor has
proved. Here, we generalize this result to other scatterers, using the general scattering the

First we define the scattering cross-section due to a point source ata ~Ref. 6! as

sa
s5

1

k2 E
S2

uga~ r̂ ;p̂!u2ds~ r̂ !, ~73!

the absorption cross-section as

sa
a5

1

k
Im E

S
n̂"~Ea

t 3¹3Ea
t !ds ~74!

and the extinction cross-section,sa
e , by Eq. ~30!.

If we put a5b and p̂15p̂25p̂ in Theorem 9, we obtain

2 Re@ p̂"Ga~a;p̂!#1
1

2p E
S2

uga~ r̂ ;p̂!u2ds~ r̂ !5Ea,a~ p̂;p̂!,

which we can rewrite as

sa
s524pk22 Re@ p̂"Ga~a;p̂!#12pk22Ea,a~ p̂;p̂!. ~75!

From the definitions~65! and ~74!, we have

sa
a5 1

2 ik21$Ea
t ~•,p̂!,Ea

t ~•,p̂!%522pk22Ea,a~ p̂;p̂!. ~76!

Hence, adding Eqs.~75! and ~76!, the definition~30! gives

sa
e524pk22 Re@ p̂•Ga~a;p̂!#. ~77!

The value ofEa,a(p̂;p̂) is given in Theorem 9; it depends on the scatterer’s properties.

X. MIXED SCATTERING RELATIONS

Let

Ei~r ;d̂,p̂!5p̂ exp$ ikd̂"r%. ~78!
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be an incident time-harmonic plane electric wave, where the unit vectord̂ describes the direction
of propagation and the unit vectorp̂ gives the polarization. We will indicate the dependence of
total field in V, the total field inV2, the scattered field and the electric far-field pattern on
incident directiond̂ and the polarizationp̂ by writing Et(r ;d̂,p̂), E2(r ;d̂,p̂), Es(r ;d̂,p̂) and
g( r̂ ;d̂,p̂), respectively.

Here, we consider mixed situations, and relate fields due to one spherical electric
Ea

i (r ;p̂1) and one plane electric waveEi(r ;2b̂,p̂2); we do this by lettingb→` in our previous
results.

Using the asymptotic forms~13!, we can easily show that for the spherical electric wave~51!
we have

lim
b→`

Eb
i ~r ;p̂!5Ei~r ;2b̂,p̂!, ~79!

that is the spherical electric wave, when the point source goes to infinity, reduces to a
electric wave with direction of propagation2b̂ and polarizationp̂. Similarly, we haveEb

t (r ;p̂)
→Et(r ;2b̂,p̂), Eb

s(r ;p̂)→Es(r ;2b̂,p̂) andgb( r̂ ;p̂)→g( r̂ ;2b̂,p̂) asb→`.
Next, letb→` in Lemma 8 to give the following result.
Lemma 11: LetEa

i (r ;p̂1) be an incident spherical electric wave and letEi(r ;2b̂,p̂2) be an
incident plane electric wave. Then

lim
r→`

$Ea
i ~•;p̂1!,Es~•;2b̂,p̂2!%Sr

52aeikaE
S2

g~ r̂ ;2b̂,p̂2!•~ r̂3~ â3p̂1!!eikr̂ "ads~ r̂ !

and

lim
«→0

$Ea
i ~•;p̂1!,Es~•;2b̂,p̂2!%Sa,«

54p i~a/k!eika~¹3Es~a;2b̂,p̂2!!•~ â3p̂1!.

We define aplane far-field pattern generatorby the formula

G~a;2b̂,p̂2!5 lim
b→`

Gb~a;p̂2!5eikaa3F¹3Es~a;2b̂,p̂2!2
ik

2p E
S2

r̂3g~ r̂ ;2b̂ ,p̂2!eikr̂ "ads~ r̂ !G ,
whereGb(a;p̂2) is defined by Eq.~63!. Other limiting values are given in the next theorem.

Theorem 12:For two incident point source electric waves, Ea
i (r ;p̂1) and Eb

i (r ;p̂2), we have

lim
a→`

Gb~a;p̂!5gb~2â;p̂2! ~80!

and

lim
a→`

G~a;2b̂,p̂2!5g~2â;2b̂,p̂2!. ~81!

Proof: For Eq.~80!, we use spherical polar coordinates~u, w! as in the proof of Theorem 5
and define

Fb~u!5E
0

2p

r̂3gb~ r̂ ;p̂2!dw.

In particular, we haveFb(0)52pâ3gb(â;p̂2) andFb(p)522pâ3gb(2â;p̂2). Hence
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E
S2

r̂3ĝb~ r̂ ;p̂2!eikr̂ "ads~ r̂ !5E
0

p

Fb~u!eika cosu sinudu

5
i

ka
@Fb~p!e2 ika2Fb~0!eika#2

i

ka E0

p

eika cosu
dFb~u!

du
du

;2
2p i

ka
â3@gb~2â;p̂2!e2 ika1gb~ â;p̂2!eika#

for large a. From this equation and Eq.~63!, we arrive at Eq.~80!. The proof of Eq.~81! is
similar. h

We can now letb→` in the general scattering theorem, Theorem 9.
Theorem 13:Let Ea

i (r ;p̂1) be an incident spherical electric wave and letEi(r ;2b̂,p̂2) be an
incident plane electric wave. Then

p̂1"G~a;2b̂,p̂2!1p̂2•ga~ b̂;p̂1!1
1

2p E
S2

g~ r̂ ;2b̂,p̂2!•ga~ r̂ ;p̂1!ds~ r̂ !5Ma~2b̂;p̂1 ,p̂2!,

whereMa(2b̂;p̂1 ,p̂2)5 limb→` Ea,b(p̂1 ;p̂2):

Ma~2b̂;p̂1 ,p̂2!50 ~82!

for a perfectly conducting surface;

Ma~2b̂;p̂1 ,p̂2!52
k2

2p E
S

Re~ZS!

uZSu2 ~ n̂3Et~ r̂ ;2b̂,p̂2!!•~ n̂3Ea
t ~ r̂ ;p̂1!!ds~ r̂ ! ~83!

for the impedance boundary condition; or

Ma~2b̂;p̂1 ,p̂2!52
k3m

2pm2 Im~h2!E
V2

Ea
2~ r̂ ;p̂1!"E2~ r̂ ;2b̂,p̂2!dv ~84!

for a dielectric scatterer.
Proof: The proof is similar to that of Theorem 9. The only substantial difference appears i

formula for $Ea
s ,Ei%; cf. Eq. ~70!. Now, using the plane electric wave~78!, we find that~see p. 59

of Ref. 6!

$Ea
s~•;p̂1!,Ei~•;2b̂,p̂2!%5p̂2•E

S
@ n̂3¹3Ea

s~r ;p̂1!1 ikb̂3~ n̂3Ea
s~r ;p̂1!!#e2 ikb̂"rds~r !

54p ik21p̂2•ga~2b̂,p̂1!.

h

The mixed reciprocity relation for perfect conductors is Theorem 2.3.4 in Ref. 1. It is v
more generally, as follows.

Theorem 14:Let Ea
i (r ;p̂1) be an incident spherical electric wave and letEi(r ;2b̂,p̂2) be an

incident plane electric wave. Then

p̂2"ga~ b̂,p̂1!5e2 ikap̂1•@~¹3Es~a;2b̂,p̂2!!3â#. ~85!

Proof: Working as in the proof of Theorem 10 and taking into account that

$Ea
i ~•;p̂1!,Es~•;2b̂,p̂2!%54p i~a/k!e2 ika~¹3Es~a;2b̂,p̂1!!•~ â3p̂1!

and
                                                                                                                



E.

s by a

,

5697J. Math. Phys., Vol. 43, No. 11, November 2002 Scattering relations for point sources

                    
$Ea
s~•;p̂1!,Ei~•;2b̂,p̂2!%524p ik21p̂2•ga~ b̂,p̂1!,

Theorem 14 is proved. h

To conclude, we note that we also have

lim
a→`

lim
b→`

Gb~a;p̂2!5 lim
b→`

lim
a→`

Gb~a;p̂2!5g~2â;2b̂,p̂2!.

This can be used to verify that the known scattering relations for plane-wave incidence14,6 are
recovered whena→` and b→`. Furthermore, Eq.~81! and the reciprocity principle for plane
waves6 gives the following limiting property:

lim
a→`

p̂1•G~a;2b̂,p̂2!5 lim
b→`

p̂2•G~2b;â,p̂1!.
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In this paper we consider the field equations deduced by the second order approxi-
mation of the Born–Infeld Lagrangian density for the electromagnetic field. In
particular we prove the existence of finite energy electrostatic fields, both in the
case of a point charge and in the case ofL1 charge density. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1508433#

I. INTRODUCTION

A. Classical Maxwell’s equations

The classical Maxwell’s equations for an electrostatic fieldE, in the vacuum, with a suitable
choice of physical constants, are

¹3E50, ~1!

1

4p
¹•E5r, ~2!

wherer is the charge density. Standard procedures immediately give the expression of the

H5
1

8p E uEu2dx.

From ~1! we deduce

E52¹f,

then Eq.~2! becomes

2Df54pr. ~3!

This classical theory does not cover some physically interesting cases, namelyr5d and r
PL1(R3).

~i! If r5d ~point charge!, then the solution of~3! is

f5
1

uxu
,

a!Electronic mail: pisani@dm.uniba.it
56980022-2488/2002/43(11)/5698/9/$19.00 © 2002 American Institute of Physics
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but the energy

H5
1

8p E u¹fu2dx,

is infinite;
~ii ! if, as it is natural, we assumerPL1(R3) it is not clear if ~3! admits solutions such that

H5
1

8p E u¹fu2dx,1`.

Remark 1: By the Sobolev inequality

S E ufu6dxD 1/6

<cS E u¹fu2dxD 1/2

,

it is easy to deduce that for anyrPL6/5(R3).(L6(R3))8 there exists a unique solution of (3) wit
finite energy [simply takef as test function in (3) and use Ho¨lder inequality].

If rPL1(R3) we can give a partial counterexample about the nonexistence of finite en
solutions. Infact consider the charge density

r~x!5
1

uxu5/21uxu7/2.

Then it is easy to see thatrPL1(R3)\L6/5(R3) and Eq. (3) has no radial solutions such thatH
,1`.

Remark 2: When we consider a bounded domainV, it is well known that (3), with Dirichlet
boundary conditions, admits a unique solutionf such that

E
V

u¹fuqdx,1` ;q, 3
2,

for any datumrPL1(V) [see Ref. 1].
A way to overcome these difficulties was proposed by Born and Infeld in 1933–34.
The starting point for their theory is the set of Maxwell’s equations

¹3E1
]B

]t
50, ~4!

¹•B50, ~5!

¹•D5r, ~6!

¹3H2
]D

]t
5J, ~7!

whereE andH are, respectively, the electric and the magnetic field,D andB are, respectively, the
electric and the magnetic induction field,r and J are, respectively, the charge and the curr
density.

In the vacuum we have the relations

D5
1

4p
E, ~8!
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H5
1

4p
B, ~9!

so we can write the second pair of Maxwell’s equations as follows:

1

4p
¹•E5r, ~10!

1

4p
¹3B2

1

4p

]E

]t
5J. ~11!

If we describe~E,B! by means of the gauge potential~f,A!

E52~At1¹f!,

B5¹3A,

then the first couple of Maxwell’s equations~4! and ~5! is immediately satisfied.
The other two equations@Eqs.~10! and~11!# are the Euler–Lagrange equations with respec

the Lagrangian density

LM5
1

4p
I1J•A2rf, ~12!

where

I5 1
2 ~ uEu22uBu2!.

B. The Born–Infeld theory

As we pointed out the electrostatic field of a point charge has infinite energy. In ord
overcome this difficulty Born and Infeld2 ~and references therein! proposed to modify equation
~10! and ~11!.

Born and Infeld introduced a parameterb@1 and considered the Lagrangian density

LBI5
b2

4p S 12A12
2

b2 ID 1J•A2rf. ~13!

If we set

DBI5
1

4p

E

A12
2

b2 I
, ~14!

HBI5
1

4p

B

A12
2

b2 I
, ~15!

then the Euler–Lagrange equations relative to~13! can be written as follows:

¹•DBI5r, ~16!
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¹3HBI2
]DBI

]t
5J. ~17!

These equations, which substitute~10! and ~11!, are formally identical with the second pair o
Maxwell’s equations~6! and ~7!.

In the Born–Infeld theory the electrostatic field of a point charge has finite energy.
In fact consider the electrostatic case, i.e.,

B50, ~18!

]E

]t
50, ~19!

J50, ~20!

and assume

r5qd.

Equation~17! is immediately satisfied; an explicit solution of~16! is indeed

E5
q

r 0
2 A11~ uxu/r 0!4

x

uxu
, ~21!

where the constantr 05q/b can be interpreted as the radius of the electron.
The energy for the Lagrangian densityLBI is @see Ref. 3#

HBI5E T00
BI dx,

where

T00
BI5

]LBI

]ut
•ut2LBI ,

andut5(f t ,At). A direct calculation shows that

T00
BI5

1

4p F uEu2

A12
2

b2 I
2b2S 12A12

2

b2 ID G2J•A. ~22!

Substituting~21! into ~22!, and taking into account~18!–~20! we can verify thatHBI is finite.
Remark 3: As far as we know, it is not clear if the Born–Infeld theory could avoid also the

divergence of the energy arising in presence of L1 charge density (see discussion in Sec. I A).

C. Statement of the results

In the following we propose a slight variation of Born–Infeld theory which also permits u
get a finite energy electrostatic field withL1 charge density.

Set

b5
1

2b2 !1,
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then ~13! becomes

LBI5
1

8pb
~12A124bI!1J•A2rf. ~23!

We point out that the first order expansion ofLBI , for b small, isLM ~see 12!. In this paper
we consider the second order expansion, that is

L* 5
1

4p
~I1bI 2!1J•A2rf.

The Euler–Lagrange equations relative toL* , which substitute~10! and ~11!, are

¹•~112bI!E54pr, ~24!

¹3~112bI!B2
]

]t
~112bI!E54pJ. ~25!

Now, if we set

D* 5
1

4p
~112bI!E, ~26!

H* 5
1

4p
~112bI!B, ~27!

then ~24! and ~25! can be written again as in~6! and ~7!, namely

¹•D* 5r,

¹3H* 2
]D*

]t
5J.

A straightforward calculation shows that now the energy is

H* 5E S ]L*

]ut
•ut2L* Ddx5E H 1

8p
@~ uEu21uBu2!1bI~3uEu21uBu2!#2J•AJ dx.

Now consider the electrostatic situation described by~18!–~20!.
Since~5! is obviously satisfied, the first couple of equations~4! and ~5! reduces to

¹3E50. ~28!

Moreover, since~25! is satisfied the second couple reduces to

¹•@~11buEu2!E#54pr, ~29!

with b.0.
In this case the energy of the solutions is

H* 5
1

8p E S uEu21
3

2
buEu4Ddx.

The following theorems hold.
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Theorem 4: If we consider a point charger5qd, there exists a solution of (28) and (29
having finite energy.

We point out that, as well as in case of Born–Infeld equations, we shall give an ex
solution.

Theorem 5: For every charge densityrPL1(R3), there exists a unique solution of (28) an
(29) having finite energy.

In particular, forr50, we have only the trivial solution. Hence the quasi-linear structure d
not give rise to an effective source term, as well as in the Born–Infeld theory@see Ref. 4#.

II. PROOF OF THEOREM 4

A. Estimate of the energy

Using ~28! it easy to see that

¹3@~11buEu2!E#50,

then

~11buEu2!E52¹v, ~30!

and ~29! becomes

2Dv54pqd,

which gives

v5
q

uxu
. ~31!

~30! and ~31! imply

uEu1buEu35
q

uxu2
,

which gives

uEu<
q

uxu2
, ~32!

uEu<A3 q

b

1

uxu2/3. ~33!

From ~32! we deduce thatuEu2 and uEu4 are summable at infinity; from~33! we deduce that
uEu4 and uEu2 are summable at 0. Hence

H* 5
1

8p E
R3

S uEu21
3

2
buEu4Ddx,1`.

B. Existence of a solution

For the sake of simplicity assume

q51.

By ~28!
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E52¹f,

so we have to solve

2Df2bD4f54pd, ~34!

where

Dpf5div@~ u¹fup22!¹f#.

Since

2divS ¹
1

uxu D54pd,

it is sufficient to solve

~11bu¹fu2!¹f5¹
1

uxu
52

x

uxu3
. ~35!

Let w:R→R denote the inverse function of

c~ t !5t1bt3.

Using the asymptotic estimates onw

w~ t !.t for t→0,

w~ t !.A3 t/b for t→1`,

we deduce that the integral

E
0

1`

w~1/r 2!dr,

is convergent; indeed

w~1/r 2!.1/A3 br 2 for r→0,

w~1/r 2!.1/r 2 for r→1`.

So we can define

f~x!5E
uxu

1`

w~1/r 2!dr. ~36!

We claim thatf satisfies~35!. In fact we have

¹f~x!52w~1/uxu2!
x

uxu
,

hence

u¹f~x!u5w~1/uxu2!.

Therefore
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~11bu¹fu2!¹f52~11bw2~1/uxu2!!w~1/uxu2!
x

uxu

52c~w~1/uxu2!!
x

uxu

52
x

uxu3
.

Remark 6: Foruxu large, f(x) is asymptotically equivalent to the Coulomb potential1/uxu.
Remark 7: We recall that ifV is a bounded set inR3, then the solution of2D4f5d, with

Dirichlet boundary data belongs to the Sobolev space W0
1,4(V); so that, in particular

E
V

u¹fu4dx,1`.

Indeed the space of measures onV is embedded in the dual space of W0
1,4(V) and so the existence

of a solution follows from well-known results on monotone operators in duality [see Ref. 5].
is not the case for the solution of2Df5d, which is of infinite energy. So the modification of E
(3) is used only tocontrol the energy of the solution near the origin. Note that the operator2D4

can be substituted (always having finite energy solutions) with2Dp , for any p.3. In this way,
however, the equation is no longer obtained as the Euler–Lagrange equation of the second ord
expansion ofLBI [defined in (23)] forb near 0.

III. PROOF OF THEOREM 5

As in the previous section, by~28!

E52¹f.

So ~29! is reduced to

2Df2bD4f54pr.

The energy of the solutions is

H* 5
1

8p E S u¹fu21
3

2
bu¹fu4Ddx.

Then the natural functional space for finite energy solutions is the closureD of C0
`(R3) with

respect to this norm

ifiD5i¹fiL21i¹fiL4.

Proposition 8: The Banach space D is continuously embedded in L`(R3), that is there exists
M.0 such that, for everyfPD

ifiL`<M ifiD .

Proof: It is well known thatD1,2(R3) is continuously embedded inL6(R3). Consider a family
of cubesQk,R3 such that

uQku51

økQk5R3.
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Fixed fPC0
`(R3), for everyxPR3

uf~x!u<U E
Qk

fdxU1M i¹fiL4(Qk)

<M1ifiL6(Qk)1M i¹fiL4(Qk)

<M1ifiL6(R3)1M i¹fiL4(R3)

<M2i¹fiL2(R3)1M i¹fiL4(R3) .

Then we easily deduce the thesis. j

Theorem 5 is a consequence of the following result.
Proposition 9: For everyrPL1(R3) there exists a uniquefPD such that

2Df2bD4f5r. ~37!

If we call T(r) such a solution, the map T:L1(R3)→D is continuous and bounded, in the sen
that it maps bounded sets in bounded sets.

Proof: The solutions of~37! can be characterized as critical points of the functional

J~f!5
1

2
i¹fiL2

2
1

b

4
i¹fiL4

4
2E

R3
frdx.

By Proposition 8 and Ho¨lder inequality, this functional is bounded from below and coerci
furthermore it is weakly lower semicontinuous onD. Then it has a minimizer, which is a solutio
of ~37!.

The solution is unique. Indeed observe first that the operator

A52D2bD4 ,

is monotone; that is, for everyf1 ,f2PD

c~ i¹f12¹f2iL2
2

1i¹f12¹f2iL4
4

!<^Af12Af2 ,f12f2&, ~38!

beingc a suitable positive constant@see, e.g., Lemma 9 in Ref. 6#.
Now if f1 andf2 are solutions of~37! in D, then

Af12Af250.

Hence, by~38!, f15f2 .
The continuity of the inverse mapT5A 21 can be obtained using again~38! and arguments

similar to those of Theorem 30 in Benciet al.6

In order to show thatT maps bounded sets in bounded sets we multiply~37! by the solution
f. After integration by parts, we obtain, by Proposition 8,

i¹fiL2
2

1bi¹fiL4
4 <iriL1ifiL`<M iriL1~ i¹fiL21i¹fiL4!.

Then we easily deduce that, ifiriL1 is bounded, alsoifiD5i¹fiL21i¹fiL4 is bounded. j

1G. Stampacchia, Ann. Inst. Fourier15, 189 ~1965!.
2M. Born and L. Infeld, Proc. R. Soc. London, Ser. A144, 425 ~1934!.
3I. M. Gelfand and S. V. Fomin,Calculus of Variations~Prentice Hall, Englewood Cliffs, N.J. 1963!.
4Y. Yang, Proc. R. Soc. London, Ser. A456, 615 ~2000!.
5J. Leray and J. L. Lions, Bull. Soc. Math. France93, 97 ~1965!.
6V. Benci, P. D’Avenia, D. Fortunato, and L. Pisani, Arch. Ration. Mech. Anal.154, 297 ~2000!.
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Optimal regularity in a variational problem for current
sheets in ideal magnetohydrodynamics

Peter Laurence
Courant Institute, New York University, 251 Mercer Street, New York, New York 10012

Edward W. Stredulinskya)

Department of Mathematics, University of Wisconsin–Richland, 1200 Highway 14 West,
Richland Center, Wisconsin 53581

~Received 15 May 2002; accepted 12 July 2002!

We characterize local behavior, and establish optimal local regularity, for minimiz-
ers of the functionalE(c)5*Vu¹cu2 over collectionsC that are weakly closed in
H1(V), closed under local smooth domain perturbations, and for whichE(c)
controls*Vc2. Minimizersc satisfy a weak magnetohydrodynamic~MHD! equa-
tion and correspond to fields in low density ideal plasmas under cylindrical sym-
metry where the field component in the direction of the axis of symmetry is zero.
We prove that (]c/]x1 i ]c/]y)2 is complex analytic, and locallyc5 f (f) for
somef, f , with Df50 and f Lipschitz continuous withu f 8u51 almost every-
where, near points where¹cÞ0. An analogous but more elaborate characterization
is established at points where¹c50. This characterization forms the basis for a
general theory of the existence of current sheets due to imposed topological and
boundary constraints. Results carry over to functions that are stationary points of
E(c) with respect to local smooth domain variations. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1508437#

I. INTRODUCTION

The analysis of current sheets in low density ideal plasmas has important applications
study of the sun’s corona, for instance in understanding the extreme heating that occurs
corona. We study the problem in cylindrical symmetry, so our results apply to models of
coronal arcades. Our characterization of local behavior forms the basis for results on existe
current sheets in general boundary value problems with topological constraints that will app
the companion paper.8

Consider az independent magnetic fieldB. This can be expressed as

B5S ]c

]y
,2

]c

]x
,QD , ~1!

wherec,Q are scalar functions ofx,y. We will assume that

Q50. ~2!

In the context of basic coronal arcade models the conditionQ50 corresponds to the case whe
there is no footpoint motion in thez direction ~footpoints being the points where field lines a
anchored in thex,z plane, which models the photospheric boundary of the sun’s corona!. In this
setting we avoid the highly nonlinear constraints usually satisfied byQ but retain the conservation
of field line topology thought to generate current sheets.

The variational problem, of minimizing the energy

a!Electronic mail: estredul@uwc.edu
57070022-2488/2002/43(11)/5707/13/$19.00 © 2002 American Institute of Physics
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E~c!5E
V

u¹cu2, ~3!

over the collectionC of functionsc5c0(d) with c0 a fixed element ofH1(V), andd:V→V any
smooth domain diffeomorphism, models the relaxation of a field to minimum energy constr
by fixed field line topology imposed by ideal MHD. To produce a functionc that is energy
minimizing it is necessary to extract weak limits. Thus it is natural to minimize~3! over the weak
closure ofC.

To put this problem in historical context note that many examples of current sheets are p
in the astrophysics literature. For the most part however these are particular examples ge
by explicit mathematical formulas. Although there is a great deal of analysis of one sort or an
on the subject, what is lacking is a complete, rigorous theory where current sheets arise in g
global energy minimization problems due to prescribed field line topology and boundary
Such a theory, carried out in settings relevant to solar physics, would substantiate on a ri
mathematical level an important scientific theory.

Prior to our current results, work of Aly and Amari,1–3 comes the closest to accomplishing th
goal. In Ref. 1 Aly and Amari analyze QPSEs, that is, quasi-potential singular equilibrium s
which are fieldsB that are solutions of the equations of MHD under the assumption thatc is
harmonic away from a finite union of differentiable~possibly intersecting! curve segments on
which c is constant and across which¹c is discontinuous in accord with standard jump con
tions. This analysis forms the basis for a careful characterization of what is expected in e
minimizing states that are conjectured to have current sheets. In Refs. 2 and 3 various bas
topologies of interest to solar physics are considered. Integral formulas are given as solut
general boundary value problems, usually under the assumption ofy symmetry inc ~c as above!.
Except in one basic example, which can be reduced to a consideration of a boundary
problem for harmonic functions, Aly and Amari do not establish that such solutions are e
minimizers, although the solutions are undoubtedly stationary points in a sense we discuss
addition the methods are limited to fairly simple geometries due to reliance on integral form

In Refs. 6 and 7 we presented a general existence theory for minimizers of variational
lems such as the one described at~3! ~also including theQÞ0 case!. In the present paper we
characterize local behavior of such minimizers and give an optimal local regularity result. I
companion paper8 we will apply our general techniques to a model problem first introduced
Low and Wolfson10 to give the first rigorous proof of the existence of current sheets in en
minimizers of a general boundary value problem with topological constraints, at least for to
gies where the problem is not easily reducible to consideration of global harmonic functions
approach is general in that it easily extends to arbitrarily complex field line topologies.

We now describe more completely the results of the present paper. It is easily seen
minimizer exists for the variational problem of minimizing~3! over a collection of functions tha
is weakly closed inH1, closed under local smooth domain perturbations, and for which~3!
controls theH1 norm, see~9!, the latter occurring for example if boundary values are specifi
For such a minimizerc our first result is thatB25(]c/]x1 i ]c/]y)2 is complex analytic, which
follows from the Euler equations for the functional~3!. Note in Ref. 4 Arnold and Khesin conside
the analog of this in the general setting of Riemannian manifolds, however they assumea priori
that the minimizer is smooth. The analyticity ofB2 also appears for instance in the work of A
and Amari1 under the assumption thatc is harmonic away from a finite union of differentiab
curve segments on whichc is constant and across which¹c is discontinuous in accord with
standard jump conditions. We establish the analyticity here in a much weaker setting where
minimizers and associated free boundaries can be quite irregular. At first the possibility of h
irregular minimizers is surprising since one is minimizing the simple functional* u¹cu2. However
note thatu¹ f (c)u5u f 8(c)¹cu5u¹cu for Lipschitz continuous functionsf satisfyingu f 8u51 so
* u¹cu25* u¹ f (c)u2. Thus ifc is a minimizer of the variational problem described above it can
seen thatf (c) is a minimizer for a related collectionC. Current sheets, i.e., discontinuities in th
gradient of a minimizer, can thus occur in general on a dense subset of the domain. A
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perspective is that when one, roughly speaking, takes a square root ofB25(]c/]x1 i ]c/]y)2 one
gets that¹c(p)5s(p)¹f(p),s(p)561 for somef that is harmonic except possibly on a cu
Intuitively this implies thatc is locally constant on level curves$f5c%, however, when one
moves orthogonally to such a curve the functions(p) possibly introduces wild flips in the direc
tion of ¹c.

A corollary of our analyticity result is that¹c has discontinuities in a subdomainO of V if
and only ifc is not harmonic in all ofO. This verifies in this weak setting the traditional view th
a field must develop currents sheets if it cannot relax to a potential state, due to preserva
field line topology.

A second corollary is that¹c is locally bounded, soc is locally Lipschitz continuous. This is
in fact an optimallocal regularity result due to the observation above relatingc and f (c).

To get a more precise sense of both wherec is regular, but also where current sheets exist, o
must analyze the field line topology, or equivalently the topological structure of levels se$c
5c%. In the setting ofQ50 such topology can only be sustained by prescribed boundary co
tions. However, boundary conditions are not enough to prescribe such topology. In Ref. 8 w
the results of the present paper, in combination with methods for handling weak topology of
sets introduced in Refs. 6 and 7, to carefully examine a model of a solar coronal arcad
introduce by Low and Wolfson10 and studied by a number of authors including Aly and Ama3

This example involves a topological level set structure that is one of the simplest of releva
astrophysics in which one expects current sheets to exist~or not exist, depending on impose
boundary values!, but that is also complex enough so one cannot trivially reduce the analys
consideration of a globally harmonic function. In this context we establish a rigorous proof o
existence of currents sheets. In Fig. 1 one sees sample level curves corresponding to an init
before it relaxes to minimum energy. The level curves correspond to field lines. These a
chored on thex axis, which models the surface of the photosphere. In Fig. 2 we see a typical
curve configuration for the field after it relaxes to minimum energy. In Ref. 10 Low and Wol
give a specific example of such a field where there is a current sheet in the curve segment
emanating from the origin up to the point where the level curve moves away from they axis, the
flux function c being harmonic away from the current sheet. In Ref. 3 Aly and Amari give
integral formula for such fields for general boundary conditions under the assumption ofy sym-
metry, as well a condition on the boundary values that characterizes whether a current shee

FIG. 1.

FIG. 2.
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occurs or not. They do not prove that such fields are energy minimizing but they do verify th
fields satisfy the correct jump condition, which in this case is that the gradient ofc has continuous
magnitude but reverses direction across the current sheet, which as in the Low, Wolfson ex
emanates from the origin and lies on they axis. As before, the flux functionc associated with the
field is harmonic away from the current sheet. In Ref. 8 we use results of the present paper
as those from Refs. 6 and 7 to prove the existence of energy minimizers in this particular
logical class and for general boundary conditions. We show that such minimizers are har
away from a current sheet which is an analytic curve emanating from the origin, and across
the gradient has continuous magnitude but changes sign. No symmetry assumption is mad
boundary data. The method handles much more general topological classes, which are di
more in Sec. III A. The results of Ref. 8 are set in a bounded domain while those of Aly
Amari, and Low and Wolfson are in a half space. In Ref. 9 we will extend our results to
bounded domains.

To properly appreciate these results one must separate them from current sheet examp
arise trivially from field reversal examples created from harmonic functions. Note thatf
PH1(R2) is harmonic in a bounded domainV and f is Lipschitz continuous withu f 8u51 then as
mentioned earlier*Vu¹fu25*Vu¹ f (f)u2 so one can show thatc5 f (f) is a minimizer over the
weak closure of the set of all functionsc(d) whered:V→V is any smooth domain diffeomor
phism.c is thus an energy minimizer of the sort we are discussing which has current sheets
values oft in the range ofc wheref 8 has a discontinuity. Such examples are not of great inte
because the topological classes associated with these are not of a type that is usually stu
astrophysics. Note, however, that the Low–Wolfson geometry is such that reflections of th
introduced byf cannot reducec to a harmonic function. It is the contrast between these
examples that helps put the results of the present paper in context. In the local theory tackle
present paper one must cope with the possibility of arbitrarily bad field reversals. It is only i
context of a global problem where boundary values and topology of fields lines are prescribe
one can control where current sheets occur. However, the basic local regularity and str
results of this paper form a foundation for exploiting the global constraints considered in R

We now elaborate on our local characterization results for minimizers of~3!. Near points
where¹cÞ0 we prove thatc5 f (f) for somef, f with Df50 andf Lipschitz continuous with
u f 8u51 almost everywhere. Near pointsp where¹c50 ~which are isolated! we show for some
integerm>3 that there are analytic curvesg i , i 51,2,. . . ,m which are asymptotic~as the curves
approachp) to m line segments emanating fromp at equally spaced angles~relative top), and a
function f that is harmonic, except ong1 if m is odd, and zero onø ig i , such that for eachi
51,2,. . . ,m we havec5 f i(f) nearp in the region betweeng i , g i 11 , for Lipschitz continuous
functions f i with u f i8u51 almost everywhere.

II. INITIAL TECHNICAL DEFINITIONS

Let B(x,r )5$yPR2:ux2yu,r %. For any open setV,R2 let L1(V) be the set of Lebesgu
integrable functions defined onV, C(V) the set of continuous real valued functions defined onV,
C1(V) the subset ofC(V) whose elements have continuous first derivatives,C`(V) the set of
infinitely differentiable real valued functions defined onV, and C0

`(V) the subset ofC`(V)
whose elements have compact support inV. Given the normiuiV5@*V(uuu21u¹uu2)#1/2 let
H1(V) be the closure of$uPC`(V)uiuiV,`% in i•iV , andH0

1(V) the closure ofC0
`(V) in

i•iV .
For simplicity we follow the convention of treating any two elements ofH1(V) as being

equal if they are equal pointwise almost everywhere~that is everywhere except on a set of ze
Lebesgue measure!. The Lebesgue measure of a setE will be represented byuEu. The closure of
a setE is denoted byĒ.

Given an open setV and functionsun , uPH1(V) we say thatun converges weakly tou in
H1(V) if
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E
V

unv1¹un•¹v→E
V

uv1¹u•¹v, ~4!

for all vPH1(V).
A functional F:H1(V)→R is said to be weakly lower semi-continuous if for any seque

(un),H1(V) converging weakly tou in H1(V) we have

lim inf
n→`

F~un!>F~u!. ~5!

Note that*Vu¹uu2 is weakly lower semicontinuous.

III. GENERAL VARIATIONAL PROBLEM

Definition 1: Given an open bounded setV,R2 let

Ṽ5$x1 iyPCu~x,y!PV% ~6!

and

D~V!5$d:V→Vud is a C` diffeomorphism,

d5I in a neighborhood of]V,detDd.0%, ~7!

where I is the identity map I(p)5p. A collection of functionsC with domainV will be said to be
closed under smooth domain variations if for all fPC and dPD(V) we have f(d)PC.

Recall

E~u!5E
V

u¹uu2. ~8!

Lemma 1: Given an open bounded setV,R2 and a nonempty collection of function
C,H1(V) that is weakly closed in H1(V), closed under smooth domain variations, and satisfi
the property that for any sequence(un),C

$E~un!un51,2, . . .% bounded⇒$iuniVun51,2, . . .% bounded, ~9!

then there exists a functionc1PC such that

E~c1!< inf
cPC

~Ec!. ~10!

For any suchc1 the function(]c1 /]x2 i ]c1 /]y)2 is a complex analytic function onṼ ~after
possible redefinition of¹c on a set of Lebesgue measure zero!.

Remark 1:Property~9! holds for instance if functions inC satisfy a prescribed weak bounda
condition, for example if they are restrictions toV of functions inC8,H1(R2) with u5 f onR2\V
for all uPC8, and some fixedf PH1(R2). See the next section for more details.

Lemma 2: IfcPH1(V) with (]c/]x2 i ]c/]y)2 a complex analytic function onṼ then

u¹cu4 is real analytic soc is locally Lipschitz continuous inV ~11!

and

Dc50 in any subdomain ofV on which ¹c is continuous. ~12!
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Corollary 1: Letc be as in Lemma 2 and O#V be open. If c is not harmonic throughout O
thenc¹C1(O).

Lemmas 1,2 tell us the nature of a minimizerc in regions wherec is C1. The following result
indicates behavior near points where¹c may not be continuous.

Theorem 1: Given a nonconstantc as in Lemma 2, ifu¹c(p)uÞ0 then there exist R.0, a
Lipschitz continuous function f:R→R satisfying

u f 8u51 almost everywhere, ~13!

and a harmonic functionf:B(p,R)→R such that

c5 f ~f! in B~p,R!. ~14!

Points p whereu¹c(p)u50 are isolated. Ifu¹c(p)u50 then for some R.0 and some integer
m>3 there are analytic curvesg i :@0,R#→V,g i(0)5p,i 51,2,. . . ,m which are asymptotic (as
the curves approach p) to m line segments emanating from p at equally spaced angles (rela
p), the set B(p,R)\(ø ig i(@0,R#)) being the union of m open, pairwise disjoint, simply connec
regions Di ,i 51,2,. . . ,m (each bounded by three connected arcs, two being subarcs ofg i , g j for
j 5 i 11 unless i5m when j51, and the third a subarc of]B(p,R)), and a Lipschitz continuous
functionf which is harmonic in B(p,R)\g1 with $f50%ùB(0,R)5ø ig i(@0,R#), such that for
each i51,2,. . . ,m there exists a Lipschitz continuous function fi :R→R satisfying fi(p)
5c(p), u f i8u51 almost everywhere such that

c5 f i~f! in the closure of Di . ~15!

If m is even thenf may be taken to be harmonic in all of B(p,r ), while if m is odd one can take
u¹fu to be continuous with¹f reversing direction acrossg1 . Moreoverf can be chosen so tha
the discontinuity in¹f occurs on any one of theg i .

Remark 2:It is fairly easy to see that Theorem 1 is optimal in describing local regula
Givenc, p, R, f as in the statement of the theorem, one has*B(p,R)u¹cu25*B(p,R)u¹fu2 in both
the ¹c(p)Þ0 and¹c(p)50 cases~if f :R→R is a Lipschitz continuous function withu f 8u51
almost everywhere thenu¹( f (c))u5u¹cu for cPH1(B(p,R))—see discussion at Lemma 1, i
Ref. 6 for technical details beyond the use of the weak chain rule; alsofxDi

PH1(B(p,R)),i
51, . . . ,m for f, Di as above, andxE(p)51 for pPE, xE(p)50 for p¹E). Thus for fixedf
one can redefinef or f i ,i 51, . . . ,m arbitrarily ~of course maintaining theu f 8u51,u f i8u51 condi-
tion, and takingf i(p) independent ofi ), and thus redefinec @as in ~14!, ~15!#, andc is still a
minimizer of *B(p,R)u¹cu2 over the weak closure of$c(d)udPD(B(p,R))%.

Proof of Lemma 1:The lemma can be deduced from Noether’s Theorem~see, for example,
Proposition 2, p.168 of Ref. 5; note in Ref. 5 minimizers are assumed to beC1, but this is used
only to justify use of the chain rule which is true much more generally!. However, due to the
simplicity of the functional we present a self contained elementary proof.

We first verify that there exists a minimizerc of the variational problem~10!. Recall thatC
Þ0” ,C,H1(V) so infcPCE(c),`, and there exists a sequence (cn),C such that E(cn)
→ infcPCE(c) as n→`. Such a sequence is bounded inH1(V) by ~9!, so one can extract a
subsequence that converges weakly inH1(V) to somecPH1(V). The weak closedness ofC
impliescPC, and the weak lower semi-continuity ofE implies thatE(c)< infcPCE(c),`, soc
is a minimizer.

Given wPC0
`(V)3C0

`(V) let dt(p)5p1tw(p) so there existst0.0 such thatdtPD(V)
for utu,t0 . For utu,t0 let c t(q)5c(dt

21(q)) so

¹c t~q!5¹c~dt
21~q!!Ddt

21~q!5¹c~p!@Ddt~p!#21, ~16!

for p5dt
21(q).

Note for any 232 matrix A that
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u~x,y!A21u5UAS y
2xDUY udetAu, ~17!

so

E
V

u¹c t~q!u2dq5E
V

u¹c~p!@Ddt~p!#21u2 detDdt~p!dp, ~18!

5E
V

uDdt~p!S cy~p!

2cx~p! D u2 det21 Ddt~p!dp. ~19!

Also note that

Ddt5I 1tDw, detDdt511t¹•w1t2 detDw, ~20!

so

]Ddt

]t
5Dw,

] detDdt

]t U
t50

5¹•w. ~21!

Consequently we can differentiate~19! with respect tot and evaluate att50 to get

E
V

2~cy ,2cx!DwS cy

2cx
D2u¹cu2¹•w50. ~22!

Takew5(2h,0) to get

E
V

~cx
22cy

2!hx12cycxhy50. ~23!

Similarly usingw5(0,h) we get

E
V

~cx
22cy

2!hy22cycxhx50. ~24!

Note that these are the weak form of the Cauchy–Riemann equations for (cx
22cy

2)22cycxi so
we claim, possibly after redefinition of¹c on a set of measure zero, that

~cx
22cy

2!22cycxi is complex analytic, ~25!

thought of as a function ofz5x1 iy .
To verify the claim letu5cx

22cy
2 andv522cycx so from ~23! and ~24! we get

E
V

uhx2vhy50,E
V

uhy1vhx50. ~26!

Takeh5ax in the first equation andh5ay in the second to get

E
V

uaxx2vaxy50,E
V

uayy1vaxy50. ~27!

Adding the two equation we see that
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E
V

uDa50, ~28!

so u is a distributional solution ofDu50. Standard results then imply thatu is classically har-
monic.

A similar calculation implies thatv is harmonic, and thus smooth, so using integration
parts in~26! confirms that the classical Cauchy–Riemann equations hold foru1 iv. Note that the
redefinition ofu,v on a set of measure zero can be accomplished by redefining¹c because the
equationsu5a22b2, v52ab always have a solution.

Proof of Lemma 2:Let cPH1(V) be such thata(z)5(]c/]x2 i ]c/]y)2 is a complex
analytic function onṼ. Thus ua(z)u25u]c/]x2 i ]c/]yu45u¹cu4 is real analytic, and so is lo
cally bounded inV. Consequentlyc is locally Lipschitz inV.

Now assumecPC1(O), O a connected open subset ofV. Given a pointp such that
¹c(p)Þ0 let B,O be an open ball centered atp such that¹c is close to¹c(0) in B, so for
instance¹cÞ0, but mainly so we can use the complex analytic square root function with
chosen so that the square root is analytic on the image ofB under the map (cx2cy i )2. Thus we
can conclude thatcx2cyi is analytic. Consequentlyc is harmonic in B due to the Cauchy
Riemann equations.

Next note that complex analytic functions are either constant or have isolated zeros.
later case the above argument implies thatc is harmonic inO minus an at most countable set
isolated points. A point is a removable discontinuity forDc50 due tocPH1 so in factc is
harmonic in all ofO.

Proof of Theorem 1:Let c be a nonconstant function inH1(V) such thata5(]c/]x

2 i ]c/]y)2 is a complex analytic function inṼ. Note thata cannot be identically zero otherwis
c would be constant contrary to assumption.

The following paragraph is strictly for purposes of motivation. The functionsq,f will be
defined differently in the actual proof. First consider a pointp05(x0 ,y0)PV such thata(z)Þ0 in
a neighborhood ofz05x01y0i , and assume¹c is continuous in a neighborhood ofp0 . For p
5(x,y), z5x1yi choose a cut for the square root function that avoidsa(z0) and define

q~z!5E
p0

z
Aa~w!dw, f~x,y!5Re~q~z!!, ~29!

so fx2fyi 5 dq/dz56(cx2cyi ), ¹f56¹c, and

c5c~p0!6f with Df50 near p0 , ~30!

and soc is represented locally in a simple manner in terms of the harmonic functionf. We now
drop the assumptions thata(z)Þ0 and¹c is continuous. This makes the analysis more intrica
though we will basically emulate the above construction. Also the sign in~30! will possibly vary
with z forcing the introduction of Lipschitz continuous functionsf , f i .

For simplicity we takez050. Note that (cx2cyi )
25 c̃znj (z) in a neighborhood of 0 for some

complex numberc̃Þ0, integern>0, and analytic functionj (z) satisfying j (0)51.
For somer 0 ,b,0<b,2p, c̃5r 0eib. We will define c̃1/25r 0

1/2 eib/2, but all other fractional
exponents will be calculated with respect to the following cut. Letk0 be the largest integerk such
that uk5((2k11)p2b)/(n12),0. Let ḡk be the half liner>0, u5uk , (r ,u) being the polar
coordinates associated with (x,y) with z5x1 iy . We will use the cutḡk0

to defineza for frac-
tional a, except forc̃1/2. More precisely, representingz5reiu for r>0, uk0

<u,2p1uk0
, define

za5r aeiau. This particular cut insures that Re(c̃1/2 z(n12)/2) is continuous, which will be impor-
tant in definingf as a continuous function. In fact note that Re(c̃1/2 z(n12)/2)50 precisely on the
setsḡk , k an integer, of which there are onlym5n12 distinct sets. In additionz51 is repre-
sented byu50, so small neighborhoods ofz51 will get mapped to small neighborhoods of 1 b
the fractional powers used below.
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Let k(z)5 j 1/2(z), so k is analytic in a small neighborhood of 0 withk(0)51. Thusk(z)
511( j 51

` cjz
j . Note that,(z)511( j 51

` @(n12)cjz
j /(n12 j 12)# has the same radius of con

vergence, soh(z)5,2/(n12)(z) is a well defined analytic function in a small neighborhood of
with values close to 1. Define

q~z!5
2c̃1/2

n12
~zh~z!!n12/2. ~31!

Note for b(z)5zh(z) that db/dz51 at z50, thus ifb(z)5u(x,y)1 i v(x,y), z5x1 iy , and we
defineS(x,y)5(u(x,y), v(x,y)), then the mapS:B(0,R)→T(B(0,R)) is an analytic diffeomor-
phism for smallR.0, andS approaches the identity map asR→0. Also let gk5b21(ḡk) ~with
b21 (z) being the inverse function ofb(z)), soq(z) is analytic inB̃(0,R) ~recall Definition 1! if
n is even, and inB̃(0,R)\gk0

if n is odd.
For small enoughR there is a ballB,B(0,R), so B,b(B) both lie in the positive quadrant

therefore, inB̃

q~z!5
2c̃1/2

n12
zn12/2,~z!,

dq

dz
5 c̃1/2zn/2k~z!, ~32!

due to the explicit power series for,(z), thus

S dq

dzD
2

5~fx2 ify!25~cx2 icy!2, ~33!

for

f~x,y!5Re~q~z!!,z5x1 iy . ~34!

However (dq/dz)2 and (cx2 icy)
2 are both analytic inB̃(0,R)\gk0

~and inB̃(0,R) if n is even!,
so ~33! holds there as well.

We now characterize the behavior ofc near 0. First assumen50 so thatf is harmonic in
B(0,R) and¹f(0)Þ0. From~33! we see thatfx2 ify5s(x,y)(cx2 icy), with s(x,y)561 for
each (x,y), so

¹f5s~x,y!¹c, ~35!

which intuitively indicates thatc is locally constant on level sets off. To make this rigorous we
introduce a change of variables that makesf linear near 0. We can then take advantage of the
thatH1(V) functions are absolutely continuous along almost all lines, which is enough regu
to comparec andf. Choose axes so that¹f(0)/u¹f(0)u5(0,1) and note by the implicit func-
tion theorem that in a neighborhood of 0~recall f(0)50) there exists a functionl (x,t) with
l (0,0)50 such thatf(x,l (x,t))5t. Also note that we can assumeT(x,t)5(x,l (x,t)) is smooth
and 1-1 close to 0 so if we definef̄5f(T),c̄5c(T) then f̄(x,t)5f(x,l (x,t))5t so

~0,1!5¹f̄5¹f~T!DT5s~T!¹c~T!DT5s~T!¹c̄, ~36!

and ¹c̄5(0,s(T)). Thus ]c̄/]x50, which in conjunction with the fact thatc̄ is absolutely
continuous on almost every line~due to c̄PH1), implies thatc̄5 f (t) on almost every lineR
3$t% for some functionf . However,c is continuous so this extends to allt with f continuous. An
immediate consequence is thatc5 f (f) in a neighborhood of 0. Choosing a line$x%3R on which
c̄ is absolutely continuous we see thatf is absolutely continuous and]c̄/]t(x,t)5 f 8(t) so u f 8u
51 almost everywhere due to¹c̄5(0,s(T)).
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If n.0 then¹f(0)50. However, isolation of zeros of analytic functions implies that this
the only zero of¹f in some neighborhood of 0. Thus¹fÞ0 in each of the open regionsDi

5Di(R),B(0,R), bounded byg i ,g i 11 ,]B(0,R).
Fix i , and recall that the basic idea of then50 case is that near a point where¹cÞ0 the

identity ~35! implies thatc is constant on level sets off. This is a local result but it is easily
extended to apply to connected components of level sets off as discussed below. However, th
is the best one can do in general. To see this note that in then.0 casef5c has several
components for manyc, each component in a differentDi , as can be seen from the basic exam
wherek[1 @k as defined above~31!#. In such a case it is easy to construct functionsc satisfying
¹c56¹f (6 consistent within eachDi but changing from oneDi to another! such thatc has
opposite signs on two different components of$f5c%. Thus the identityc5 f (f) is not possible
becausef cannot be defined consistently on all components of$f5c%. Because of this we are
forced to analyze the level set structure off.

Given cPR let

ḡ i~c!5H zPCuReS 2c̃1/2

n12
z(n12)/2D5cJ ùDi , ~37!

which in polar coordinates is described by

r 5S ~n12!c

2r 0
1/2cosS ~n12!u1b

2 D D 2/(n12)

, u i,u,u i 11 , ~38!

whenc and cos(@(n12)u1b#/2) have the same sign, and is empty otherwise.
Thus if $f5c%ùDiÞ0” then for smallR it equalsg i(c)5b21(ḡ i(c)), which is a smooth

connected curve with no self-intersections, and with endpoints in]B(0,R). Let g:@0,1#→R2

parameterize$f5c%ùD̄ i ~where D̄ i is the closure ofDi) with g(0),g(1)P]B(0,R). Let E
5$tP@0,1#uc(g(t))5c(g(0))%. Note thatE is closed due to continuity ofc, g so we can define
t05maxE. Also the n50 case above tells us thatc is constant on$f5c% near g(t0) which
contradicts the definition oft0 unlesst051. Thusc is constant on$f5c%ùDi so the function
f 5 f i from then50 case is consistently defined inDi(R).

Note that one can take any of the curvesḡk to use as the cut in defining fractional powe
simply by choosing thex,y axes differently. Thus iffk is thef arising from using the cutḡk ~after
a change of coordinates so we are using one consistent choice of axes for allk), then the above
analysis, withc replaced byf j , shows on eachDi that f j5 f i , j ,k(fk) with f i , j ,k(0)50,u f i , j ,k8 u
51 almost everywhere. However,f j , fk are harmonic with nonzero gradient inDi so f i , j ,k8
cannot have discontinuities, thusf i , j ,k8 is identically 1 or identically21. Therefore, in eachDi

either f j5fk or f j52fk . The claims about the discontinuity of¹f follow directly from
comparingf5fk0

with a f j corresponding to a different cut, since thenf j is harmonic across
gk0

.

A. Examples of weak classes

Given a functionc0PH1(R2), if c0PC, with C a collection as in Lemma 1, then

W~c0!5$c0~d!udPD~V!%,C, ~39!

sinceD is closed under smooth domain variations~see Definition 1!, and

W̄~c0!5Weak Closure of$c0~d!udPD~V!% in H1~V!,C, ~40!
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sinceC is weakly closed~for simplicity, as in the above definition, we will usec0(d) to denote
both a function inH1(V) and a function inH1(V8) for open setsV8 containingV!. Therefore it
follows from Lemma 3 thatW̄(c0) is the smallest collection of the type described in Lemm
that containsc0 .

Thus our results apply toW̄(c0), however, it is difficult to say much more about the glob
nature of the discontinuities in the gradients of functions inW̄(c0) due to the fact that the
‘‘topological structure’’ of such functions is not explicit. To rectify this deficiency we consider
function classes described after Lemma 3 which very explicitly encode topological structur

Lemma 3: Ifc0PH1(R2) then W(c0),H1(V), and W̄(c0) is weakly closed in H1(V),
satisfies (9), and is closed under smooth domain variations, as defined in Definition 1.

Remark 3: Note that one need only assume thatc0PH1(V8) for some open setV8 containing
the closure ofV.

Proof: Let Br5B(0,r ), wherer is chosen such thatV,Br /3 . By multiplying by a smooth
cutoff function which equals 1 inBr /2 , and 0 inR2\Br , one can assumec0PH0

1(Br).
To confirm the first claim of the lemma takecPW(c0), i.e.,c5c0(d) for somedPD. Note

that ~18!, ~19! hold with d replacingdt , thus there is a constantc(d) dependent ond, such that

E
V

u¹cu2<c~d!E
V

u¹c0u2, ~41!

sinceDd is smooth and equals the identity map in a neighborhood of]V, and thus in addition
detDd is bounded, and uniformly bounded from zero~with bound dependent ond). However,
using the convention above withV85Br , c5c0 in Br \V, so

E
Br

u¹cu2<~c~d!11!E
Br

u¹c0u2, ~42!

so the first claim follows from the inequality:

E
Br

u2<cE
Br

u¹uu2 ~43!

which holds for alluPH0
1(Br) for somec5c(r ).

The second claim of the lemma is clearly true since a weak closure is weakly close
confirm ~9! holds for W̄(c0) first considercPW̄(c0). By definition there exists a sequenc
(cn),W(c0) with cn→c weakly in H1(V). Thus (cn) is bounded inH1(V), howevercn

5c0 in Br \V socn is bounded inH0
1(Br). One can then extract a subsequence which conve

weakly in H0
1(Br). Weak convergence inH1(V), or in H0

1(Br), implies pointwise convergenc
almost everywhere on a subsequence, so the later limit must equalc in V and c0 in Br \V. In
summary, any element ofcPW̄(c0) can be extended to equalc0 in Br so thatcPH0

1(Br).
Now assumecnPW̄(c0) with E(cn)<M . Extendingcn as above we have

E
Br

~cn!2<cE
Br

u¹cnu2<cS E
Br \V

u¹c0u21M D , ~44!

and ~9! is verified.
Finally givencPW̄(c0),dPD we need to show thatc(d)PW̄(c0). By definition there exist

cnPW(c0) with cn→c weakly inH1(V). As above we can takec, cn equal toc0 in Br \V with
cn→c weakly in H0

1(Br) on a subsequence. Butcn5c0(dn) for some dnPD so cn(d)
5c0(dn(d))PW(c0) sincedn(d)PD. Also E(cn(d))<c(d)E(cn) as in ~41! so
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E
Br

~cn~d!!2<cE
Br

u¹~cn~d!!u2<c~c~d!11!E
Br

u¹cnu2, ~45!

sincecn(d)5cn5c0 on Br \V. However as before weak convergence ofcn in H1(V) implies
(cn) is bounded inH0

1(Br) so ~45! implies that (cn(d)) is bounded inH0
1(Br), and so on a

subsequence converges weakly inH0
1(Br), the limit equalingc(d) by pointwise almost every-

where convergence on a subsequence. Thusc(d)PW̄(c0) sincecn(d)PW(c0) and the proof of
the lemma is complete.

Next we consider function classes with explicit topological structure. For simplicity assumV
is a simply connected open set with closure inB(0,R) for someR.0. We have strong evidence t
indicate that anycPH0

1(B(0,R)) can be decomposed as

c5(
i PI

f i~c i !, ~46!

whereI is a finite or countable index set, functionsf i :R→R are Lipschitz continuous withu f 8u
51 almost everywhere andf (0)50, and functionsc iPH0

1(B(0,R))ùC(R2) are ‘‘topologically
simple’’ in the sense thatc i>0, and sets$c i.t% are simply connected for allt, and in additionc i

satisfy ‘support conditions’ defined in terms of a collection of constants$t i , j : i , j PI ,i , j %, namely
c i5t i , j on c j.0 for all i , j .

From methods in Ref. 7, augmented as in Ref. 8, one can prove that the collection of a
functions, with fixed I , f i ,t i , j , and with functionsc i fixed in B(0,R)\V such that maxci

5max]V ci , is weakly closed inH0
1(B(0,R)) ~and thus, as in Lemma 3, the collection restricted

V is weakly closed inH1(V)). Condition ~9! is satisfied due to the inequality*B(0,R)c
2

<c*B(0,R)u¹cu2 which holds due tocPH0
1(B(0,R)). Also it is easy to see that such a collectio

is closed under smooth domain variations ofV as in Definition 1. Thus our present results app
so there is a minimizerc satisfying various regularity properties. Note the appearance of Lipsc
functions f i both in Theorem 1 and in the decomposition above. More importantly the deco
sition in some sense encodes topological information in that the level sets ofc can be recon-
structed from the level sets of the functionsc i , after taking into account the constantst i , j and the
‘‘folding’’ effect of the functions f i . It remains, however, to analyze the set on which¹c is
discontinuous. This is left to Ref. 8 where a fairly simple example is used to illustrate a ge
approach to studying discontinuities.

IV. STATIONARY POINTS

Lemma 1 deals with energy minimizers. However, the proof carries over to stationary p
of the energy defined in the following manner. Thus all our results carry over to this more ge
situation.

Definition 2: A functionc0PH1(V) is a stationary point of

E~c!5E
V

u¹cu2, ~47!

with respect to local smooth domain variations if for any p0PV there exists r,0,r
,dist(p0 ,]V) such that

d

dt
E~c t!U

t50

50, ~48!

for all c t ,c t(p,t)5c0(X(p,t)), X being any smooth map X:V3(2e,e)→V defined for some
e.0 such that X(•,0)5I (I the identity map) and X(•,t) is a diffeomorphism ofV onto V for
each t, such that X(p,t)5p for all pPV\B(p0 ,r ) and tP(2e,e).
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Theorem 2: If c is a stationary point of E then(]c/]x2 i ]c/]y)2 is a complex analytic
function (after possible redefinition of¹c on a set of Lebesgue measure zero), and consequ
Lemma 2, Theorem 1, and Corollary 1 hold forc.

Proof: Given p0PV let r be as in the statement of the theorem. GivenwPC0
`(B(p0 ,r ))

3C0
`(B(p0 ,r )) let dt(p)5p1tw(p). Thus there existse.0 such that for allutu,e the mapdt is

a smooth diffeomorphism fromV ontoV with detDdt>c.1/2. ConsequentlyX(•,t)5dt
21 satis-

fies the conditions in Definition 2 so

d

dt
E~c t!U

t50

50, ~49!

for c t defined byc t(p,t)5c0(X(p,t)) for (p,t)PV3(2e,e). The argument is completed as
the proof of Lemma 1.
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Image system for Stokes-flow singularity between two
parallel planar walls

S. Bhattacharya and J. Bławzdziewicza)

Department of Mechanical Engineering, Yale University,
P.O. Box 20-8286, New Haven, Connecticut 06520-8286

~Received 30 May 2002; accepted 8 July 2002!

Using a recently developed image representation for Stokes flow in a half-space
bounded by a planar wall@Cichocki and Jones, Physica A258, 273 ~1998!#, the
image system is constructed for the flow field produced by a force multipole in the
space bounded by two parallel walls. The image singularities are expressed in terms
of products of double-reflection matrices, and the expansion is simplified using
symmetries of the double-reflection operation. Our analysis yields recurrence rela-
tions for the strengths of the image multipoles. The relations are solved explicitly,
and a complete image system is obtained for an arbitrary source-force multipole.
Applications of our image representation for evaluating the hydrodynamic friction
and mobility matrices of particles interacting with two parallel planar walls are
indicated. © 2002 American Institute of Physics.@DOI: 10.1063/1.1508812#

I. INTRODUCTION

Dynamics of particles suspended in a viscous fluid that occupies the space bounde
planar interface1–8 or two planar walls9–15 has recently attracted much attention. Hydrodynam
interactions of particles in such geometries are affected by the flow field reflected from the
An important tool for investigating particle motion in wall-bounded systems is the image re
sentation of the reflected flow.16

The Stokes flow reflected from a single no-slip wall was originally discussed by Loren17

and the image of a Stokeslet was derived by Blake.18 Recently, a complete image representati
for a force multipole of an arbitrary order was obtained by Cichocki and Jones.4 This image
representation was used to determine single-particle4 and many-particle8 friction and mobility
coefficients for the motion of spherical particles near a rigid wall.

In the present article we derive the image representation for a flow field generated by a
multipole between two parallel rigid walls. In an earlier study,19 the image solution was considere
only for a special case of Stokeslet, but a complete multiple-reflection singularity represen
was not found. The difficulty of the analysis stems from the form of the one-wall solution: u
the reflection of an electrostatic charge multipole from a conducting plane, the image of a
multipole of an orderl involves a combination of multipoles of ordersl 8Þ l . For this reason, the
multiple-reflection series for Stokes flow in a space bounded by two parallel walls invo
complicated combinations of image multipoles of different orders and strengths, placed
positions corresponding to multiple mirror reflections of the source in the bounding planes

A key ingredient of our analysis is the double-reflection identity that results from a symm
between the source and the image flows in a system with a single reflection plane. Both o
flows satisfy Stokes equations, and their sum vanishes on the plane; thus, the reflection op
applied twice, first to the source and then to the image flow, yields the original source flow
double-reflection identities are used to simplify the multiple-reflection sequences in a two
system and to derive simple recurrence relations for the strength of the image force mult
The recurrence relations are solved explicitly.

a!Author to whom correspondence should be addressed. Electronic mail: jerzy.blawzdziewicz@yale.edu
57200022-2488/2002/43(11)/5720/12/$19.00 © 2002 American Institute of Physics
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This article is organized as follows. In Sec. II, basic notation is introduced, and image s
larities are represented in terms of a complete set of Stokes-flow fields. The image represe
for a force multipole in a system with a single wall is discussed in Sec. III, where the do
reflection identities are derived. The identities are used in Sec. IV to obtain the image soluti
a force multipole between two walls. The results are discussed in Sec. V.

II. FORMULATION

We consider Stokes flow produced by a multipolar force distributionF located atr50 in a
region bounded by two infinite parallel planar walls (a) and (b) located at

z52h(a), z5h(b). ~2.1!

At the walls, the flow fieldu satisfies no-slip boundary conditions.
The incident flowv, produced by the force distributionF in infinite space, can be expanded

a complete set of basis solutions of Stokes equations. We choose here the representatio
duced by Cichockiet al.,20

v~r !5(
lms

f lmsvlms
2 ~r !, ~2.2!

wheref lms are the multipole moments of the distributionF, and the basis velocity fields are of th
form

vlms
2 ~r !5V lms~u,f!r 2( l 1s). ~2.3!

Here (r ,u,f) represent vectorr in spherical coordinates, and the indices assume valul
51,2,...; m52 l ,...,l ; and s50,1,2. The functionsV lms(u,f) are combinations of vecto
spherical harmonics with angular and azimuthal quantum numbersl andm. This property and the
r -dependence in Eq.~2.3! define the functionsvlms

2 (r ) up to a normalization constant; we use he
the same normalization as in Ref. 20. Explicit expressions for the functionsV lms(u,f) are listed
in Appendix A.

In the presence of the walls, the reflected flow field

vs5u2v ~2.4!

can be represented in terms of image singularities. In a system with the source singularitr s

5zsez and a single wall atz5zw , the image singularity is atr i5(2zw2zs)ez , and

vs~r !5(
lms

f lms* vlms
2 ~r2r i!, ~2.5!

where f lms* are the multipole moments of the image, andez is the unit vector in thez direction.
For two walls, the image representation can be obtained from~2.5! in a form of a multiple-

reflection sequence. Accordingly,

vs~r !5 (
a5a,b

(
i 51

`

vs
( ia)~r !, ~2.6!

where

vs
( ia)~r !5(

lms
f lms

( ia)vlms
2 ~r2r ( ia)!. ~2.7!

For the geometry~2.1!, the positions of the image singularities arer ( ia)5H ( ia)ez , with
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H (2r a)52rh, H (2r 11 a)522~h(a)1rh !,
~2.8!

H (2r b)522rh, H (2r 11 b)52~h(b)1rh !,

whereh5h(a)1h(b) is the distance between walls,H (0a)5H (0b)50 describes the position of th
source singularity, and the indexr 50,1,2... characterizes the double-reflection order. The fam
of images atr ( ia), i 51,2,..., corresponds to the multiple-reflection sequence with the in
reflection on the plane~a!, as illustrated in Fig. 1. The explicit expressions for the multip
momentsf lms

( ia) are derived in the following sections.

III. SINGLE-REFLECTION MATRIX

A. Multipoles of image force

By linearity of Stokes equations, the multipole moments of the source and image
distributions are linearly related,

f lms* 5 (
l 8m8s8

R~H,lmsu l 8m8s8! f l 8m8s8 , ~3.1!

where R is the reflection matrix, andH5zs2zw describes the relative position of the sour
singularity and the wall. The explicit form of the reflection matrix has recently been derive
Cichocki and Jones,4 and we follow here their notation.

The successive images in the familiesa5a,b are obtained by a sequence of reflections

f lms
( ia)5 (

l 8m8s8
R~Hw

( i 21a) ,lmsu l 8m8s8! f l 8m8s8
( i 21a) , i 51,2,..., ~3.2!

where

Hw
( ia)5 1

2~H ( ia)2H ( i 11a)!. ~3.3!

The reflection is on the planea for i 52r 11 and at the planebÞa for i 52r .

FIG. 1. Positionsr ( ia) and r ( ib) ( i 51,2,....) of imagesingularities in two families (a) and (b).
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B. Structure of reflection matrix

Due to the rotational symmetry with respect to the axisz, the matrixR is diagonal in the
angular quantum numberm,

R~H,lmsu l 8m8s8!5R~H,lmsu l 8ms8!dmm8 . ~3.4!

The dependence ofR(H,lmsu l 8m8s8) on the relative coordinateH and the azimuthal quantum
numbersl , l 8 can be derived from the Lorentz’s reflection formula16,17 for the reflected field,

vs5P̂~R̂01HR̂11H2R̂2!•v, ~3.5!

where

R̂052I z22z̄“ez1 z̄2¹2I , ~3.6!

R̂1522“ez12z̄¹2I , ~3.7!

R̂25¹2I . ~3.8!

In the above relations,z̄5z2zs is the coordinate relative to the source position,I is the identity
tensor,I z5I22ezez , and P̂is the reflection operator with respect to the planez5zw ,

@P̂w#~x,y,z!5I z•w~x,y,2zw2z!. ~3.9!

Since the operators~3.6!–~3.8! can be decomposed into a linear combination of tensor opera
with azimuthal quantum numbersl 9<2, the matrix elements~3.4! vanish foru l 2 l 8u.2, because
of the triangle property of Clebsch–Gordan coefficients.21 Moreover, operatorsR̂i are homoge-
neous of the order2 i in r , according to Eqs.~3.6!–~3.8!. It thus follows from relations~2.3! and
~3.5! that

R~H,n2s m sun82s8 m s8!5Rn n~ss8,m!dn8n1HRn n21~ss8,m!dn8n21

1H2Rn n22~ss8,m!dn8n22 . ~3.10!

The explicit expressions for the matrix elementsRn n8(ss8,m) are listed in Appendix B.

C. Reduced matrix notation

Relations~3.4! and ~3.10! allow us to introduce a compact matrix notation. Accordingly,
define a vector spaceS of infinite column vectorsf with componentsfn (n51,2,...), where each
component itself consists of three componentsfn(s) (s50,1,2). We also define matricesA acting
in S: each elementAn n8 of such a matrix is itself a three-dimensional matrix with the eleme
An n8(ss8). In the spaceS, the productsAf andAB are defined in a natural way,

~Af!n5 (
n851

`

An n8fn8 , ~AB!n n95 (
n851

`

An n8Bn8n9 , ~3.11!

whereAn n8fn8 andAn n8Bn8n9 are the inner products in the corresponding three-dimensional sp
In this notation, the single-reflection matrix~3.10! is represented by the matrixR(H) with a

three-diagonal structure

Rn n2 i~H !5H HiR̄n n2 i , i 50,1,2,

0, otherwise,
~3.12!
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where

R̄n n8~ss8!5Rn n8~ss8,m!. ~3.13!

The arrays of source and image multipoles are represented by the arraysf and f* with ele-
ments

fn~s!5 f n2s m s , fn* ~s!5 f n2s m s* . ~3.14!

Taking into account diagonal form~3.4! of the matrixR, relation~3.1! can be rewritten as

f* 5R~H !f, ~3.15!

where, for simplicity, the dependence on the indexm is not indicated.

D. Double-reflection identities

The reflection of the imagef* with respect to the plane of the original reflection returns
source force distributionf. This symmetry and Eq.~3.15! imply the double-reflection identity

R~2H !R~H !5IS, ~3.16!

whereIS is the unit matrix in the spaceS. For the individual matrix components~3.12!, Eq. ~3.16!
yields

R̄n nR̄n n5I, ~3.17!

R̄n n21R̄n21 n212R̄n nR̄n n2150, ~3.18!

R̄n n22R̄n22 n222R̄n n21R̄n21 n221R̄n nR̄n n2250, ~3.19!

R̄n n22R̄n22 n232R̄n n21R̄n21 n2350, ~3.20!

R̄n n22R̄n22 n2450, ~3.21!

whereI is the identity matrix in three dimensions corresponding to indicess, s8 in the relation
~3.13!.

IV. TWO WALL SOLUTION

A. Double-reflection expansion

The double-reflection identities~3.17!–~3.21! can be used to derive explicit expressions
the multipolar moments of the image singularitiesf lms

( ia) in the two-wall system. The problem i
formulated in terms of multiple-reflection matricesR( ia), which are defined by the linear relatio

f( ia)5R( ia)~h(a),h!f, ~4.1!

where the dependence ofR on the wall position~2.1! and the separation of the walls are indicate
The arrayf( ia) is related to the elementsf lms

( ia) as implied by Eq.~3.14!. By invariance with respec
to the transformationz→2z, the reflection matrices representing two families of images (a) and
(b) are related,

R( ib)~H,h!5R( ia)~2H,2h!. ~4.2!

In what follows, we thus consider only the familya5a, and we setH5h(a).
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The structure of matricesR( ia) is analyzed by factorizing them into a double-reflection
quence. To this end, we introduce abbreviated notation

R(2r a)~H,h!5P(r ) ~4.3!

and

R(2r 11 a)~H,h!5P̃(r ). ~4.4!

Equations~3.2! and~4.1! imply that the odd-reflection matrices can be obtained from the rela

P̃(r )5R~Hr !P
(r ), ~4.5!

and the even-reflection matrices can be factorized

P(r )5)
i 51

r

Q~Hi 21!. ~4.6!

Here

Hr5H12rh ~4.7!

is the distance between the plane (a) and the image at the positionr (2r a), consistent with Eq.
~3.3!. The double-reflection matrix is defined

Q~H !5R~2H2h!R~H !, ~4.8!

and the order of the matrix product is) i 51
k Mi5Mk ...M1 .

B. Simplified form of even-reflection matrices

Definitions ~4.6! and ~4.8! imply that the even-reflection matrix has the following structur

Pn n8
(r )

5(
$nj %

Fa~$nj%!)
k51

2r

R̄nk nk21G , ~4.9!

where the summation is over all sets$nj% of integer elementsnj ( j 50,1,...,2r ) that satisfy
relations

n05n8, n2r5n, nj2nj 2150,1,2. ~4.10!

The matrixPnn8
(r ) depends onH andh only through the coefficients

a~$nj%!5)
i 51

r

@~2h2Hi 21!n2i2n2i 21 Hi 21
n2i 212n2i 22#, ~4.11!

which can be shown using Eq.~3.12!.
Equation~4.9! can be considerably simplified by using the double-reflection identities~3.17!–

~3.21!. Accordingly, the commutation relations~3.18! and~3.20! are used to shift matricesR̄k k21

to the left; in the resulting formula productsR̄k k21R̄k21 k22 are eliminated using~3.19!, and
productsR̄k kR̄k k andR̄k k22R̄k22 k24 are reduced using~3.17! and~3.21!. Following this proce-
dure, the even-reflection matricesPn n8

(r ) can be represented as linear combinations

Pn n22s
(r ) 5a~r ,s!An n22s1b~r ,s!Bn n22s , ~4.12!
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Pn n22s21
(r ) 5c~r ,s!Cn n22s211d~r ,s!Dn n22s21 , ~4.13!

where

An n5Bn n5I, ~4.14!

An n22s5 ) 8
i 5n22s

n22

~R̄i 12 iR̄i i !, s51,2,..., ~4.15!

Bn n22s5 ) 8
i 5n22s

n22

~R̄i 12 i 12R̄i 12 i !, s51,2,..., ~4.16!

Cn n22s215R̄n nR̄n n21An21 n2122s , s50,1,..., ~4.17!

Dn n22s215R̄n n21R̄n21 n23Bn23 n2322(s21) , s51,2,..., ~4.18!

and the remaining elements ofAn n8 , Bn n8 , Cn n8 , Dn n8 are set equal to zero.
Explicit expressions for the matricesA, B are given in Appendix C; the matricesC andD can

be obtained from these results using Eqs.~4.17! and~4.18! and the expressions listed in Append
B. The scalar coefficientsa, b, c, andd are evaluated in the following section.

C. Recurrence relations

To proceed with our analysis, we rewrite Eq.~4.6! in the form

P(r 11)5Q~Hr !P
(r ), ~4.19!

which in the component notation yields

Pn n2q
(r 11)5 (

p50

4

Qn n2p~Hr !Pn2p n2q
(r ) , ~4.20!

according to Eqs.~4.8! and ~3.12!. The elements of the matrixQ are simplified by using the
double-reflection identities~3.17!–~3.21!. It follows that

Qn n~H !5I , ~4.21!

Qn n21~H !52hR̄n nR̄n n21 , ~4.22!

Qn n22~H !5h@~H1h!R̄n n22R̄n22 n222HR̄n nR̄n n22#, ~4.23!

Qn n23~H !5hH~H1h!R̄n n21R̄n21 n23 , ~4.24!

Qn n24~H !50, ~4.25!

and all other elementsQn n8 vanish. Two pairs of coupled recurrence relations for the coefficie
a, b, c, d in Eqs.~4.12! and ~4.13! are derived from relation~4.20! by using the above expres
sions forQ and definitions~4.14!–~4.18!,

a~r 11,s!5a~r ,s!2h c~r ,s21!1h~h1Hr !@ds11~12ds1!a~r ,s21!#

1h~h1Hr ! Hrc~r ,s22!, ~4.26!

c~r 11,s!5c~r ,s!2h@ds01~12ds0!a~r ,s!#2h Hrc~r ,s21!, ~4.27!
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and

b~r 11,s!5b~r ,s!2h@d~r ,s21!2rhds1#2h Hr@ds11~12ds1!b~r ,s21!#, ~4.28!

d~r 11,s!5d~r ,s!2h~12ds0!b~r ,s!1h ~h1Hr !@d~r ,s21!2rhds1#

1h~h1Hr ! Hr@ds11~12ds1!b~r ,s21!#. ~4.29!

The initial conditions for the above relations are obtained from the identity

Pnn8
(1)

5Qn n8~H ! ~4.30!

and Eqs.~4.21!–~4.25!, which imply

a~1,0!51, a~1,1!5h~h1H !,

b~1,0!50, b~1,1!52hH,
~4.31!

c~1,0!52h, c~1,1!50,

d~1,0!50, d~1,1!5h~h1H !H,

and

a~1,s!5b~1,s!5c~1,s!5d~1,s!50, for s.1 or s,0. ~4.32!

We assumed herea(1,0)51; however, because of Eq.~4.14!, only a(1,0)1b(0,1)51 is required.
The recurrence relations~4.26!–~4.29! with initial conditions~4.31! and~4.32! can be explic-

itly solved. It can be verified by induction that the solution is

a~r ,s!5
~21!s11~r 1s21!!

~2s!! ~r 2s!!
h2s21@2sH1~4sr2r 2s!h#, ~4.33!

b~r ,s!5
~21!s~r 1s21!!

~2s!! ~r 2s!!
h2s21@2sH1~r 2s!h#~12ds0!, ~4.34!

c~r ,s!5
~21!s11~r 1s!!

~2s11!! ~r 2s21!!
h2s11, ~4.35!

d~r ,s!5
~21!s11~r 1s21!!

~2s11!! ~r 2s!!
h2s21$2s~2s11!@H21~2r 21!Hh#

1~r 2s!~r 2s14rs!h2%~12ds0!. ~4.36!

Using in the above equations the relationk! 5` for k521,22,..., we find

a~r ,s!5b~r ,s!5c~r ,s!5d~r ,s!50, for s,0, or s.r , ~4.37!

which is equivalent to

Pn n2q
(r ) 50 for q,0 or q.2r 11. ~4.38!

The limit r→0 yields relationsa(0,0)1b(0,0)51 and c(0,0)5d(0,0)50 corresponding to
P(0)5IS.
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D. Odd-reflection matrices

Odd-reflection matricesP̃(r ) can be evaluated from our solution for the even-reflection pr
lem. By inserting relations~4.12! and~4.13! into ~4.5! and using identities~3.17!–~3.21!, we find

P̃n n22s
(r ) 5ã~r ,s!R̄n nAn n22s1b̃~r ,s!R̄n n22Bn22 n22s , ~4.39!

P̃n n22s21
(r ) 5 c̃~r ,s!R̄n n21An21 n22s211d̃~r ,s!R̄n n21Bn21 n22s21 , ~4.40!

where

ã~r ,s!5a~r ,s!1Hrc~r ,s21!, ~4.41!

b̃~r ,s!5b~r ,s!1Hr@d~r ,s21!1c~r ,0!ds1#1Hr
2@b~r ,s21!1ds1#, ~4.42!

c̃~r ,s!5c~r ,s!1Hra~r ,s!1Hr
2c~r ,s21!, ~4.43!

d̃~r ,s!5d~r ,s!1Hrb~r ,s!. ~4.44!

The above expressions, along with the results~4.12!–~4.18! and~4.33!–~4.36! for P(r ), provide a
complete image representation of the flow reflected from the walls.

V. CONCLUSIONS

We have explored the structure of the multiple-reflection series for a Stokes-flow singula
the space bounded by two parallel planar walls. Explicit expressions for the multipole mome
the images were derived using the symmetry properties of the reflection matrices to simpl
problem.

Accordingly, symmetries of the Lorentz’s reflection operator were applied to show tha
single-reflection matrixR has a lower-triangular/tri-diagonal structure in a properly chosen b
The symmetry between the source and image singularities was shown to yield commu
identities for the elements ofR. These identities were used to simplify the matricesP(r ) that
represent even-order reflections of the flow field from the walls. In this form,P(r ) depends on the
position of the source singularity and the reflection orderr only through scalar prefactors, whic
are independent of the multipolar orderl of the source. The prefactors were evaluated us
recurrence formulas associated with subsequent even-order reflections.

Our image representation can be applied in investigations that involve the motion of pa
suspended in a fluid confined between two parallel walls. Such problems include particle dyn
in highly asymmetric colloidal mixtures22 and suspension flows in slit pores.9–15 Single- and
multi-particle mobility matrices for particles between two walls can be evaluated using
induced-force representation of the particles23 and our image solution for the flow reflected fro
the walls. By this approach, the force multipoles induced on the particles are determined
appropriate multipole-expansion algorithms.8,24 Our image representation can also be used
develop boundary-integral algorithms25 for the motion of deformable drops between two walls

Extensions of our work may include derivation of an image solution for a force multipo
a space bounded by two planar surfactant-free1 or surfactant-covered5 fluid-fluid interfaces. Such
solutions would be useful in investigations of the dynamics of colloidal-particle- or mic
stabilized thin liquid films.26,27
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APPENDIX A: FUNDAMENTAL SET OF VELOCITY FIELDS

Following definitions given in Ref. 20, we list expressions for the functionsV lms(u,f) that
characterize angular dependence of the velocity fields~2.3!:

V lm05
1

~2l 11!2 F l 11

l ~2l 21!
Â lm2

1

2
B̂lmG , ~A1!

V lm15
i

l ~ l 11!~2l 11!
Ĉlm , ~A2!

V lm25
l

~ l 11!~2l 11!2~2l 13!
B̂lm . ~A3!

Here

Â lm5r 2 l 11
“~r l Ŷlm!, B̂lm5r l 12

“~r 2 l 21Ŷlm!, Ĉlm5Â lm3er ~A4!

~with r 5ur u ander5r /r ) are the unnormalized vector spherical harmonics, where

Ŷlm5~21!mPl
m~cosu!eimf ~A5!

are the unnormalized scalar spherical harmonics.

APPENDIX B: ELEMENTS OF REFLECTION MATRIX

Here we list expressions for nonzero elements of the reflection matrixR̄n n8(ss8), defined by
Eqs.~3.10! and ~3.13!,

R̄n n~00!5~21!(n1m11)F11
2~n22!~n1m!~n2m!

n~2n21! G , ~B1!

R̄n n~01!5~21!(n1m)
4m~n1m!

n~n21!
, ~B2!

R̄n n~02!5~21!(n1m11)
4~n22!~n1m!~n1m21!

~n21!~2n21!~2n23!
, ~B3!

R̄n n~10!5~21!(n1m11)
2~n22!m~n2m!

n~2n21!
, ~B4!

R̄n n~11!5~21!(n1m11)F12
4m2

~n21!nG , ~B5!

R̄n n~12!5~21!(n1m11)
4~n22!m~n211m!

~n21!~2n23!~2n21!
, ~B6!

R̄n n~20!5~21!(n1m)
~n11!~2n23!~n2m21!~n2m!

n~2n21!
, ~B7!

R̄n n~21!5~21!(n1m11)
2m~n11!~2n23!~n2m21!

~n22!~n21!n
, ~B8!
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R̄n n~22!5~21!(n1m11)F12
2~n11!~n2m21!~n1m21!

~n21!~2n21! G , ~B9!

R̄n n21~00!5~21!(n1m11)2~n1m!, ~B10!

R̄n n21~10!5~21!(n1m11)2m, ~B11!

R̄n n21~20!5~21!(n1m)4n~n2m21!, ~B12!

R̄n n21~21!5~21!(n1m11)
2m~2n23!~2n21!

~n22!2 , ~B13!

R̄n n21~22!5~21!(n1m)
2~n23!~n21!~2n21!~n1m22!

~2n25!~n22!2 , ~B14!

R̄n n22~20!5~21!(n1m)
~n21!~2n23!~2n21!

n22
. ~B15!

In the above expressions we set

R̄n n8~ss8!50 for n82s8,1. ~B16!

Equations~B1!–~B15! are equivalent to Eqs.~A20! in Ref. 4.

APPENDIX C: PRODUCTS OF MATRICES R̄

Here we list expressions for nonzero elements of matricesA andB, defined by Eqs.~4.15! and
~4.16!,

An n22s5 f ~n,s!An n22s8 , ~C1!

Bn n22s5 f ~n,s!Bn n22s8 , ~C2!

wheres>1, and

f ~n,s!5~24!s
~n21!~2n21!~2n23!

n22

~n1m22!!

~n1m22s!!
, ~C3!

An n22s8 ~20!5
1

4 F11
2~n22s22!~n22s2m!~n22s1m!

~2n24s21!~n22s! G , ~C4!

An n22s8 ~21!52
m~m1n22s!

~n22s21!~n22s!
, ~C5!

An n22s8 ~22!5
~m1n22s21!~m1n22s!~n22s22!

~2n24s23!~2n24s21!~n22s21!
, ~C6!

Bn n22s8 ~00!5
~n22!~m1n!~m1n21!

~n21!~2n21!~2n23!
, ~C7!

Bn n22s8 ~10!5
~n22!m~m1n21!

~n21!~2n21!~2n23!
, ~C8!
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Bn n22s8 ~20!5
1

4 F12
2~n11!~n2m21!~n1m21!

~n21!~2n21! G . ~C9!

In the above expressions we set

An n8~ss8!5Bn n8~ss8!50 for n82s8,1. ~C10!

Relations~C1!–~C10! can be verified by induction using definitions~4.15! and ~4.16! and the
expressions in Appendix B.
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Bethe ansatz for the Gaudin model and its relation
with Knizhnik–Zamolodchikov equations
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We recall the construction of the common eigenvectors of Gaudin Hamiltonians
based on the Bethe ansatz. In the case of an arbitrary Lie algebra, this construction
can be done either recursively or explicitly and we prove the equivalence of the two
methods. We also prove that Bethe vectors are singular only if the Bethe equations
are satisfied. In each eigenspace of the spin operator we construct additional com-
mon eigenvectors, having the same eigenvalue as the vacuum vector and which can
not be obtained by the Bethe ansatz. These eigenvectors are not singular. We also
recall the connection between Bethe vectors and integral solutions of the KZ equa-
tion. In an analogous way, the additional vectors lead to solutions of KZ equation
which are not singular vectors and do not have an integral representation. ©2002
American Institute of Physics.@DOI: 10.1063/1.1501168#

I. INTRODUCTION

The Gaudin model is an example of a statistical integrable model associated to a qu
interacting system. The prototype of such a model is the system ofN spin particles with magnetic
interaction. It was formulated as a spin model related to the Lie algebra SL~2!. The set ofN
independent and commuting Hamiltonians which allows us to integrate this model withN degrees
of freedom was proposed by Gaudin.1 For this model two fundamental problems have be
discussed. The first one is the integration of the Hamiltonian system by means of the cla
methods: construction of action-angle variables, integration of equations of motion.2 The second
one is the diagonalization of the family of Hamiltonians. The present article is concerned wit
second problem.

In the simplest case of the Lie algebra SL~2!, the problem of the diagonalization of th
Hamiltonians was first discussed by Gaudin.3 Using the method introduced by Bethe,4 known as
the Bethe ansatz, Gaudin constructed common eigenstates for all Hamiltonians~Bethe sums! and
obtained the corresponding eigenvalues.

Integrable systems can be associated to any semi-simple complex Lie algebra. For
system, generalizations of the set of Gaudin Hamiltonians have been constructed.5 The methods
proposed for diagonalization of these Hamiltonians are based on a remarkable connection b
integrable models and two dimensional conformal field theories.

In Ref. 5, the structure of the Bethe vectors for the Gaudin model is related to the rep
tation theory of affine Lie algebras. The diagonalization of Gaudin Hamiltonians is based
concept of invariant functionals~correlation functions! on the tensor product of representations
an affine Lie algebra at the critical level.

Another approach for the problem of diagonalization6,7 is related to the connection betwee
eigenvectors of the Gaudin Hamiltonians and the solutions8 of the Knizhnik–Zamolodchikov~KZ!
equations.9 In this approach, the common eigenvectors are constructed inductively, and it is s
that each eigenvector leads to an integral solution of the KZ equations. Conversely, it was pr10

that, in the quasi-classical limit, the first term of the asymptotic solutions of the KZ equation

a!Electronic mail: garajeu@cpt.univ-mrs.fr
57320022-2488/2002/43(11)/5732/25/$19.00 © 2002 American Institute of Physics
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to a common eigenvector of Hamiltonians. In this case the Bethe equations for the Gaudin
appear as conditions of critical points.

Another method to construct eigenvectors in statistical models associated to a simp
algebraG is to find a sequence of embeddings of Lie algebras intoG and to solve inductively the
problem of diagonalization of Hamiltonians for each subalgebra.11

In the second section we review some aspects concerning the Gaudin model, origina
mulated for the Lie algebra SL~2!. We recall the expression of theN commuting Hamiltonians,
introduced by Gaudin and their common eigenvectors, constructed with the Bethe metho
spaceV of physical states is defined as a tensor product ofN finite dimensional highest weigh
representations of the Lie algebra SL~2!. It is decomposed as a direct sum of eigenspaces of
spin operator, i.e.,V5 % Vm and we search for common eigenvectors for Hamiltonians in e
eigenspaceVm .

With the Bethe ansatz, the number of common eigenvectors obtained in each subspacVm is
equal to the number of distinct solutions of the Bethe equations. A brief analysis of these equ
shows that this constructive method does not provide all the common eigenvectors of Ha
nians. There is at least one more vector in each subspaceVm , common to all Hamiltonians, which
can not be constructed with this method. The expression of such a vector is given as wel
eigenvalue. This result shows that the fundamental state is degenerate.

The third section is devoted to a discussion of the generalized model associated to an a
simple Lie algebra. We recall the generalization of the Gaudin Hamiltonians and we explain
the Bethe ansatz works to construct common eigenvectors for these Hamiltonians. This co
tion can be done either recursively or explicitly. The main result of this section is the the
which proves the equivalence of these two methods. The constructive method does not ens
completeness of the system of eigenvectors. In each eigenspace of the spin operator we c
additional common eigenvectors, corresponding to the same eigenvalue as the vacuum ve
which can not be obtained by the Bethe ansatz.

The Bethe vectors are eigenvectors of the family of Hamiltonians only if the Bethe equa
are satisfied and, in this case, we prove that they are also singular vectors in the tensor
representation. This is the main result of Sec. IV. The additional eigenvectors proposed he
not singular.

Section V recalls the connection between Bethe vectors and integral solutions of th
equation. In an analogous way, the additional vectors lead to solutions of the KZ equation
do not have an integral representation. Moreover, these solutions are not singular vectors

Conclusions are presented in Sec. VI.

II. GAUDIN MODEL FOR SL „2… LIE ALGEBRA

In this section we recall the Gaudin model and Bethe ansatz procedure. Consider t
algebra SL~2! with generatorsE, F andH and commutation relations:

@E,F#5H; @H,E#52E; @H,F#522F.

For this algebra, consider alsoN finite-dimensional highest weight modules:Vl1
, . . . , VlN

with
highest weightsl1 , . . . , lN and highest weight vectorsvl1

, . . . , vlN
.

The tensor product of theseN modules is the space of physical states for a system of N
particles:

V5Vl1
^ ¯ ^ VlN

.

For each Lie algebra elementA consider the following operator on the spaceV:

A( i )51^ ¯ ^ A^ ¯ ^ 1:V→V, A( i )v1^ ¯ ^ vN5v1^ ¯ ^ Av i ^ ¯ ^ vN , ~1!

which acts asA on thei th module and as the identity operator on all other factors.
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The system could be integrated ifN independent and commuting Hamiltonians are fou
Gaudin proposed a set ofN Hamiltonians, which are operators onV depending onN distinct,
complex parametersz1 , . . . ,zN :

Hi~z1 , . . . ,zN!5 (
j 51,j Þ i

N
1

zi2zj
F1

2
H ( i )H ( j )1E( i )F ( j )1F ( i )E( j )G , ; i 51, . . . ,N.

All these operators commute:

@Hi ,Hj #50, ; i , j 51, . . . ,N,

but they are not independent because( i 51
N Hi50. We can prove that, up to a constant, this is t

only vanishing linear combination of operatorsHi with nonzero coefficients. As a consequenc
this family of Hamiltonians is not enough to integrate a system ofN spin particles. There is
another family of commuting operators$H ( i )% i 51, . . . ,N introduced by the Cartan generator. Ga
din Hamiltonians do not commute with eachH ( i ), but only with their sum, called the total spi
operator:

S5(
i 51

N

H ( i ) and @Hi ,S#50.

Then, there is a system ofN commuting operators onV, which are independent. The proble
discussed in this article is to find common eigenvectors for these operators. This can be don
the following ‘‘general constructive procedure.’’

Let A andB be two commuting operators on a finite dimensional spaceV. Suppose that for
the operatorA all the eigenvalues and the complete system of eigenvectors, which form a ba
V, are known. Denote by$an%n the spectrum ofA, by gn the multiplicity of an and byfnr , r
51, . . . ,gn , the eigenvectors,Afnr5anfnr , which form a basis of the eigenspaceVn of A,
associated to the eigenvaluean . If A and B commute, thenBfnr is also an eigenvector forA,
corresponding to the same eigenvaluean :

A~Bfnr!5anBfnr .

Therefore,Vn is an invariant subspace ofB and the vectorBfnr , as an element of the eigenspa
Vn , has the following expansion:

Bfnr5(
s51

gn

csrfns .

In the eigenspaceVn consider now the vector

Fn5(
r 51

gn

drfnr .

ThenFn is an eigenvector for the operatorB, corresponding to an eigenvaluebn if the coefficients
$dr%r 51,gn

satisfy the following system ofgn homogeneous equations:

(
r 51

gn

drcsr5bnds , s51,gn . ~2!

This system has a nontrivial solution if its determinant is zero:

D5Detucsr2bndsru50. ~3!
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This is an equation of ordergn for the eigenvaluebn of B, which hasgn complex roots~not
necessarily distinct!. For each distinct rootbn

k there is at least one solution$dr
k%r 51,gn

of the system
~2! and

Fn
k5(

r 51

gn

dr
kfnr

is an eigenvector for the operatorB with eigenvaluebn
k and also for the operatorA with eigen-

valuean .
This procedure can be extended to an arbitrary number of commuting operators.
We use this scheme in Sec. II C to prove that the Bethe ansatz does not give all the co

eigenvectors and to find an additional eigenvector. The expression of this eigenvector sugg
us how to look for other additional common eigenvectors.

A. Eigenvectors of the spin operator S

The presence of the spin operatorS in the system of commuting operators is importa
because, for this operator, all the eigenvalues and the complete system of eigenvectors
form a basis inV, are known~see Lemma 1!. Then, we look for common eigenvectors of Gaud
Hamiltonians as linear combinations of eigenvectors ofS, with some unknown coefficients.

The eigenvectors ofS have a particular form which is explained by the theory of high
weight representations of the Lie algebra SL~2!.

The spaceV is a tensor product ofN highest weight representationsVl of SL~2!, with highest
weightl. Such a representation is completely determined by a highest weight vectorvl , on which
the action of the algebra is given by

Hvl5lvl , Evl50, FvlPV.

The representation spaceVl is generated by vectors

$vn5Fn vl%nPN ,

and the action of the Lie algebra on these vectors is

Hvn5~l22n!vn ,

Evn5n~l2n11!vn21 ,

Fvn5vn11 .

If the highest weightl is not a positive integer, the representationVl is infinite dimensional
and irreducible. IflPN, then in $vn5Fn vl%nPN there is an invariant subspace, generated
$vl11 , vl12 , . . . % and the quotient representation is an irreducible, finite dimensional repre
tation, of dimensionl11, generated by vectors$vn5Fn vl%n50, . . . ,l .

We considerV as a tensor product of finite dimensional representations, which is compl
determined by the vectorv05vl1

^ ¯ ^ vlN
, called vacuum vector and is generated by vect

$vn1 . . . nN
5Fn1^ Fn2

¯ ^ FnNv0%ni50,l i ; i 51,N . Remark that a vectorvn1 . . . nN
, with ni operators

F applied on thei th component, can be written as a product ofm5n11n21 ¯ 1nN operators
of type ~1!, denoted

vm
(k1 , . . . ,km)

5F (k1)F (k2)
¯ F (km)v0 ,
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with k1 ,k2 , . . . ,km51, . . . ,N. Such a simplified notation is useful for explicit calculations sin
this model is applied to systems with a very large numberN of particles, greater thanm, which is
related to the Lie algebra representation. Note that for finite dimensional representations,m can
vary between 0 and a maximal valuemmax5(i

Nli .
Knowing the structure of the spaceV, we can determine the eigenvectors and eigenvalue

the spin operatorS on V. Obviously, the vacuum state is an eigenstate for the total spin ope
and also for all Gaudin Hamiltonians:

Sv05S (
k51

N

lkD v0 ,

Hiv05S 1

2 (
j 51,j Þ i

N
l il j

zi2zj
D v0 . ~4!

Moreover, applying a finite numberm of generatorsF on the vacuum state we get an eigenvec
of S:

Lemma 1: For a finite m, the vectorsvm
(k1 , . . . ,km)

5F (k1)F (k2)
¯ F (km)v0 of the basis ofV,

with k1 , . . . ,km51, . . . ,N, are eigenvectors of the total spin operatorS:

SF (k1)F (k2)
¯ F (km)v05S (

i 51

N

l i22mDF (k1)F (k2)
¯ F (km)v0 .

The eigenvalue( i 51
N l i22m is determined by the numberm of operatorsF. Its eigenspaceVm is

generated by vectors$vm
(k1 , . . . ,km)

5F (k1)F (k2)
¯ F (km)v0%ki51, . . . ,N , called states of spin devia

tion m.
Since the spin deviationm can take a finite number of positive integer values,S has a finite

number of eigenvalues and the representation spaceV can be written as the direct sum of eige
spaces of spin deviationm: V5 % m50

mmaxVm .
The construction of common eigenvectors for Gaudin Hamiltonians is based on the fac

the eigenspaces of the operatorS are invariant subspaces forHi . Therefore, in each eigenspaceVm

we can look for common eigenvectors for Hamiltonians as expansions on the basis ofVm :

cm5 (
k151

N

¯ (
km51

N

ck1 . . . km
F (k1)

¯ F (km)v0 .

To determine the coefficientsck1 . . . km
one could use the ‘‘general constructive procedur

presented at the begining of this section, and solve the system~2! with the condition~3!. Another
approach is to consider a particular form for these coefficients, as rational complex functio

ck1 . . . km
5

1

w12zk1

. . .
1

wm2zkm

with some unknown distinct, complex parameters:w1 , . . . ,wm . This approach is essentiall
known as the Bethe ansatz method.

We present hereafter both approaches.

B. Bethe vectors of spin deviation mÄ1

The eigenspaceV1 is generated by vectors$F (k)v0%k51, . . . ,N . A Bethe vector of spin deviation
m51 is defined as an expansion on this basis, with rational coefficients depending on one
plex parameterw:
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c1~w!5 (
k51

N
1

w2zk
F (k)v0 .

DenoteF(w) the operator onV:

F~w!5 (
k51

N
1

w2zk
F (k). ~5!

Straightforward calculations give the commutator:

@Hi ,F~w!#5 (
j 51,j Þ i

N
1

~w2zi !~w2zj !
~H ( i )F ( j )2F ( i )H ( j )!. ~6!

Applying this operator onv0 we obtain

@Hi ,F~w!#v05
l i

w2zi
F~w!v02S (

k51

N
lk

w2zk
D F ( i )

w2zi
v0 . ~7!

Then the action of a Gaudin HamiltonianHi on c1(w) is

Hi c1~w!5S 1

2 (
j 51; j Þ i

N
l il j

zi2zj
1

l i

w2zi
Dc1~w!2S (

k51

N
lk

w2zk
D F ( i )

w2zi
v0

and we have the following lemma.
Lemma 2: Given N distinct complex numbers$zi% i 51, . . . ,N and fixed positive, integer highes

weights$l i% i 51, . . . ,N , the Bethe vectorc1(w) of spin deviation m51 is an eigenvector for all
Gaudin Hamiltonians:

Hi c1~w!5si
1c1~w!, ; i 51, . . . ,N,

if the complex parameter w satisfies the following condition:

(
k51

N
lk

w2zk
50, ~8!

called Bethe equation associated toV1 . The eigenvalue si
1 of Hi depends on the solution w of th

equation:

si
1~w!5

1

2 (
j 51; j Þ i

N
l il j

zi2zj
1

l i

w2zi
.

C. Additional eigenvector in V1

In the eigenspaceV1 of S, which has dimensionN, the Bethe construction gives a number
common eigenvectors equal to the number of distinct solutions of the equation~8!. It is a poly-
nomial equation of degreeN21 and therefore it hasN21 complex solutions~not necessarily
distinct!. The following lemma gives one more eigenvector inV1 , common to all Hamiltonians
which can not be constructed with the Bethe ansatz~and also from linear combinations of vecto
obtained from the Bethe ansatz!.

Lemma 3: The vectorc1
0 in V1 ,
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c1
05 (

k51

N

F (k)v0 ,

is an eigenvector for each HamiltonianHi :

Hi c1
05S 1

2 (
j 51,j Þ i

N
l il j

zi2zj
Dc1

0 . ~9!

This vector has equal coefficients, as expansion on the basis ofV1 . This possibility is not allowed
by the Bethe construction, where these coefficients, chosen in the form 1/(w2zi) with distinctzi ,
are necessarily distinct. Remark also that the eigenvalue of this vector is the same as the
value of the vacuum vector~4!.

Finally, remark that the Bethe equation~8! is nothing else that the condition~3! of the
‘‘general constructive procedure,’’ presented at the begining of this section, which gives th
genvalues of the Hamiltonians. To see this let us write the action of a HamiltonianHi on each
generatorF (k)v0 of V1 :

H iF
( i )v05S (

j 51,j Þ i

N
1

2
l il j2l j

zi2zj

D F ( i )v01 (
j 51,j Þ i

N
l i

zi2zj
F ( j )v0 ,

~10!

H iF
(k)v05S 1

2 (
j 51,j Þ i

N
l il j

zi2zj
2

l i

zi2zk
DF (k)v01

lk

zi2zk
F ( i )v0 , ;kÞ i .

A vector F of V1 , F5( r 51
N drF

(r )v0 , is a common eigenvector for all HamiltoniansHi , corre-
sponding to eigenvaluesbi , HiF5biF, if the set of coefficients$dr%r 51,N is a common solution
of the systems of type~2!:

(
r 51

N

drcsr
i 5bids , s51, . . . ,N ~11!

~one system for each HamiltonianHi!, where the coefficients$csr
i %s,r 51, . . . ,N are given by~10!.

The determinant of thei th system,D i5Det(csr
i 2bidsr), is

D i5*
b̃2

l i

zi2z1
0 . . .

l i

zi2z1
0 . . . 0

0 b̃2
l i

zi2z2
. . .

l i

zi2z2
0 . . . 0

. . . . . . . . . . . . . . . . . .

l1

zi2z1

l2

zi2z2
. . . b̃2(

j Þ i

N
l j

zi2zj

l i 11

zi2zi 11
. . .

lN

zi2zN

0 0 . . .
l i

zi2zi 11
b̃2

l i

zi2zi 11
. . . 0

. . . . . . . . . . . . . . . . . . . . .

0 0 . . .
l i

zi2zN
0 . . . b̃2

l i

zi2zN

* ,

whereb̃5 1
2( j 51,j Þ i

N l il j /(zi2zj ) 2bi . The determinant can be calculated,
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D i5b̃H )
j 51; j Þ i

N S b̃2
l i

zi2zj
D2 (

k51;kÞ i

N
lk

zi2zk
)

j 51; j Þ i ,k

N S b̃2
l i

zi2zj
D J ,

and gives a polynomial equation of degreeN in b̃ with N complex roots.
One of them isb̃50, which gives the eigenvaluebi5

1
2( j 51,j Þ i

N l il j /(zi2zj ). In this case the
nontrivial common solution of the systems~11! is d15d25 ¯ 5dN , which gives, up to a
constant, the particular eigenvectorc1

0 of Lemma 3, common to all Hamiltonians.
It is more difficult to find the other roots ofD i . We can verify thatl i /(zi2zk) is not a root

of D i for any k51, . . . ,N, kÞ i . Then we can chooseb̃ as the rational function,

b̃~w!52
l i

w2zi

depending on the unknown complex variablew, with wÞzk , for all k51, . . . ,N and we have

D i52H (
j 51

N
l j

w2zj
J S l i

w2zi
D N21

)
k51;kÞ i

N S w2zk

zk2zi
D .

The conditions~3!, for eachD i , give the same equation:

(
j 51

N
l j

w2zj
50,

which is the Bethe equation~8! for the eigenspaceV1 . In this case the nontrivial common solutio
of the systems~11! is dk51/(w2zk) , ; k51, . . . ,N, which gives the Bethe eigenvectorc1(w),
with eigenvaluesbi5

1
2( j 51,j Þ i

N l il j /(zi2zj ) 1 l i(w2zi).

D. States of spin deviation m

In the general case of spin deviationm, the eigenspaceVm is generated by vector
$F (k1)

¯ F (km)v0%1<k1< . . . <km<N . A Bethe vector of spin deviationm is defined as an expansio
on the basis, with coefficients depending onm complex parametersw1 , . . . ,wm :

cm~w1 , . . . ,wm!v05 (
i 151

N
F ( i 1)

w12zi 1

¯ (
i m51

N
F ( i m)

wm2zi m

v05F~w1! ¯ F~wm!v0 . ~12!

The order of the operatorsF is not significant because they commute.
The action of a Gaudin HamiltonianHi on this state is calculated by induction onm:

Hicm~w1 , . . . ,wm!v05HiF~wm!cm21~w1 , . . . , wm21!v0

5F~wm!Hicm21~w1 , . . . , wm21!v01cm21~w1 , . . . , wm21!

3@Hi ,F~wm!#v01@@Hi ,F~wm!#,cm21~w1 , . . . , wm21!#v0 .

The first term is computed from the induction hypothesis, the second from~7!, and for the last
term we use the commutator formula:

@@Hi ,F~w1!#,F~w2!#5
2

w12w2
S F ( i )

w12zi
F~w2!2

F ( i )

w22zi
F~w1! D , ~13!

which can be obtained from~6!. Putting all together it follows:
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Hicm~w1 , . . . , wm!v05S 1

2 (
j 51; j Þ i

N
l il j

zi2zj
1 (

k51

m
l i

wk2zi
Dcm~w1 , . . . , wm!v0

2 (
k51

m S (
j 51

N
l j

wk2zj
1 (

l 51;lÞk

m
2

wl2wk
D F ( i )

wk2zi
cm21~ . . . ,wk̂, . . . !v0 ,

~14!

wherecm21( . . . ,wk̂, . . . ) denotescm21(w1 , . . . , wk21 ,wk11 , . . . ,wm). Hence, we obtain the
following theorem:

Theorem 4: The Bethe vectorcm(w1 , . . . , wm)v0 of spin deviation m is a common eige
vector for all Gaudin Hamiltonians:

Hicm~w1 , . . . , wm!v05si
mcm~w1 , . . . , wm!v0 , ; i 51, . . . ,N,

if the complex parameters w1 , . . . ,wm satisfy the Bethe equations associated toVm :

(
j 51

N
l j

wk2zj
1 (

l 51;lÞk

m
2

wl2wk
50, ;k51, . . . ,m. ~15!

The eigenvalues si
m depend on the solution of these equations:

si
m~w1 , . . . , wm!5

1

2 (
j 51; j Þ i

N
l il j

zi2zj
1 (

k51

m
l i

wk2zi
.

E. Additional eigenvector in Vm

As remarked in Ref. 12, the number of distinct solutions of the Bethe equations~15! is at most
CN1m22

m ~the standard binomial coefficient!, which is less than the dimension of the spaceVm :

dimVm5 (
1<k1< . . . <km<N

15 (
1< j 1 . . . , j m<N1m21

15CN1m21
m .

Therefore, the system of Bethe eigenvectorscm is not complete. We can construct one mo
common vector inVm , which has equal coefficients and with the same eigenvalues as the va
vector ~4!.

Theorem 5: The vectorcm
0 PVm ,

cm
0 5 (

k151

N

¯ (
km51

N

F (k1)
¯ F (km)v0 ~16!

is an eigenvector for each HamiltonianHi :

Hi cm
0 5S 1

2 (
j 51,j Þ i

N
l il j

zi2zj
Dcm

0 .

The proof follows from~4! and using the fact that@Hi ,(k51
N F (k)#50.

F. Conclusions

In this section, eigenvalues for Gaudin Hamiltonians are determined and by the Bethe m
common eigenvectors for these operators are constructed in each eigenspace of the spin o
This constructive method does not ensure the completeness of the system of common eig
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tors, but it can be used for large values of spin deviation. On the other hand, the ‘‘ge
constructive procedure,’’ presented at the begining of the section, could give additional co
eigenvectors, but it is difficult to apply it, even form52.

For each value of spin deviation we have constructed one additional common eigen
which can not be obtained by the Bethe ansatz. From Lemma 3 and Theorem 5 it follows th
eigenvalues0

i 5 1
2( j 51,j Þ i

N l il j /(zi2zj ) of the HamiltonianHi is degenerate and its eigenspa
contains not only the vacuum statev0 , but all the statescm

0 .
Unlike the casem51, where the additional vectorc1

0 could complete the system of eigen
vectors, if the Bethe equation~8! has distinct solutions, in the casem.1 the number of ‘‘missing
vectors’’ is greater than one. The additional vectorcm

0 is only one of them. An alternative con
struction, which gives a larger system of eigenvectors, was proposed in Ref. 13.

III. GENERALIZATION OF THE GAUDIN MODEL FOR AN ARBITRARY SIMPLE LIE
ALGEBRA G

Consider a simple Lie algebraG, of dimensiond and rankr . We denoteD the root system of
G, D1 the system of positive roots andD0 the system of simple roots. The Cartan basis ofG is
formed by the Cartan generators$Hi% i 51,r , the generators of positive roots$Ea%aPD1

and the
generators of negative roots$Fa5E2a%aPD1

. The commutation relations are

@Ea ,Fa#5
2

^a,a&
Ha ; @H,Ea#5a~H !Ea ; @H,Fa#52a~H !Fa ;

@Ea ,Eb#5Na,bEa1b , ;a,bPD such thata1bPD.

Recall that the Killing form ofG defines a symmetrical,G-invariant, bilinear form̂ ,& on G.
This scalar product allows us to identify the Cartan subalgebraK of G with its dualK* by the
isomorphism which associates to each elementaPK* one elementHaPK, defined bya(H)
5^Ha ,H&, for all HPK. The scalar product onK induces a scalar product on its dualK* , which
is nondegenerate,

^a,b&5^Ha ,Hb&,

normalized such that̂a l ,a l&52 for a long roota l .
All generators ofG are orthogonal with respect to this scalar product except the p

(Ea ,Fa) and (Hi ,Hi), for which we have14

^Hi ,Hi&5
1

2
x,; i 51, . . . ,r , ^Ea ,Fa&5

2

^a,a&
,;aPD1 ,

wherex5( i 51
r a l

2(Hi) is the square of the length of a long root. Then, for the Cartan basis we
define the dual basis with respect to this scalar product:

H̃ i5
2

x
Hi , Ẽa5

^a,a&
2

Fa , F̃a5
^a,a&

2
Ea ,

such that̂ Hi ,H̃ j&5d i j and ^Ea ,Ẽb&5^Fa ,F̃b&5dab .
For this algebra, considerN finite-dimensional highest weightG-modules:Vl1

, . . . , VlN
,

with dominant integral highest weightsl1 , . . . , lN and highest weight vectorsvl1
, . . . , vlN

.
The tensor product of theseN G-modules is the space of physical states for the system ofN spin
particles:

V5Vl1
^ ¯ ^ VlN

.
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To introduce the Hamiltonian operators onV, we consider$I a%a51, . . . ,d a basis ofG and

$ Ĩ a%a51, . . . ,d its dual with respect to the scalar product. The generalized Gaudin Hamiltonian
defined as

Hi~z1 , . . . ,zN!5 (
j 51,j Þ i

N
1

zi2zj
(
a51

d

I a
( i ) Ĩ a

( j ) , ; i 51, . . . ,N,

wherez1 , . . . ,zN areN distinct, complex numbers. A remarkable property of the sum(a51
d I a

( i ) Ĩ a
( j )

is that it is independent of the choice of the basis.14 In particular, we can consider the Cartan bas
so that the Hamiltonians are given by

Hi5 (
j 51,j Þ i

N
1

zi2zj
H 2

x (
l 51

r

Hl
( i )Hl

( j )1 (
aPD1

^a,a&
2

~Ea
( i )Fa

( j )1Fa
( i )Ea

( j )!J .

All these operators commute:

@Hi ,Hj #50, ; i , j 51, . . . ,N,

but they are not independent, since( i 51
N Hi50. There is another family of commuting operato

on V, introduced by ther Cartan generators:

$Ha
( i )% i 51, . . . ,N; aPD0

.

We can definer spin operatorsSa5( i 51
N Ha

( i ) and Gaudin Hamiltonians commute with each one
them:

@Hi ,Sa#50, ; i 51, . . . ,N; ; aPD0 .

Then, there is a system ofN1r 21 commuting operators onV, which are independent.
Our goal is to find common eigenvectors for these operators.

A. Eigenvectors and eigenvalues for generalized Gaudin Hamiltonians

In this section, we discuss the possibility to generalize the Bethe ansatz to the case
arbitrary simple Lie algebraG.

The spaceV of physical states is a tensor product ofN highest weight representationsVl of
G. Such a representation is completely determined by a highest weight vectorvl , on which the
action of the algebra is given by

Havl5^a,l&vl , Eavl50, FavlPV.

As in the SL~2! case, the representation spaceVl is linearly generated by monomials in generato
of negative roots:

$va1 . . . a l

n1 . . . nl 5Fa1

n1
¯ Fa l

nl vl%a iPD1 , niPN ,

but in this case, the monomials are ordered with respect to the roots. The necessity to cons
ordered system of positive roots comes from the Poincare´-Birkhoff-Witt theorem,15 which gives
the basis of the enveloping algebraU(G) of G.

These vectors are eigenvectors for the Cartan generators:

Hava1 . . . a l

n1 . . . nl 5S ^a,l&2 (
bPD1

nb^a,b& D va1 . . . a l

n1 . . . nl .
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We can also compute the action of a positive root generator on monomialsva
na :

Eava
na5naS 2

^l,a&

^a,a&
2na11D va

na21 .

The dimension of a highest weight representationVl of G, with highest weightl, is related
to the notion of dominant integral weight. The set of dominant integral weights is

H lPK* U2 ^l,a&

^a,a&
PN, ; aPD0J .

If the highest weightl is not a dominant integral weight, then the representationVl is infinite
dimensional and irreducible. Ifl is a dominant integral weight, then, denotingr a

52^l,a&/^a,a& PN, for all aPD0 , there exists an invariant subspace and the quotient re
sentation is an irreducible, finite dimensional representation ofG, generated by ordered monom
als:

$va1 . . . a l

n1 . . . nl 5Fa1

n1 . . . Fa l

nl vl%a j PD1 , nj 50, . . . ,r a j
.

As in the SL~2! case, we are interested in finite dimensional representations. The spaceV of
physical states is then a tensor product of finite dimensional representations, completely

mined by the vacuum vectorv05vl1
^ ¯ ^ vlN

and generated by vectorsv
a

1
1 . . . a

l
1

n1
1 . . . nl

1

^ v
a

1
2 . . . a

l
2

n1
2 . . . nl

2

. . . ^ v
a

1
N . . . a

l
N

n1
N . . . nl

N

. To simplify this hard notation, remark that such a vector, which

on the i th componentn1
i operatorsFa1

, . . . , nl
i operatorsFa l

, can be written as a product o

m5( i 51
N (k51

l nk
i operators of negative roots of type~1!. We denote

va1 . . . am

(k1 . . . km)
5Fa1

(k1)Fa2

(k2) . . . Fam

(km)v0 ,

with k1 ,k2 , . . . ,km51, . . . ,N. Note that for finite dimensional representations,m can vary be-
tween 0 and a maximal valuemmax5(i51

N (aPD1
ra

i .

B. Eigenvectors of the spin operator Sb

As in the case of the Lie algebra SL~2!, the problem of eigenvectors and eigenvalues for
spin operatorsSb on V can be completely solved. The vacuum state is an eigenvector for all
operators and also for all Gaudin Hamiltonians:

Sbv05S (
k51

N

^lk ,b& D v0 ,bPD0 ,

Hiv05S (
j 51,j Þ i

N
^l i ,l j&
zi2zj

D v0 , i 51, . . . ,N. ~17!

Moreover, applying a finite numberm of generators of negative roots on the vacuum state we
an eigenvector ofSb :

Lemma 6: The vectorsva1 . . . am

(k1 . . . km)
5Fa1

(k1)Fa2

(k2)
¯ Fam

(km)v0 in V, for all positive roots

a1 , . . . ,amPD1 and k1 , . . . ,km51, . . . ,N, are eigenvectors of the spin operatorsSb :

Sb Fa1

(k1)
¯ Fam

(km)v05S (
i 51

N

^l i ,b&2(
j 51

m

^a j ,b& DFa1

(k1)
¯ Fam

(km)v0 .
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As in the case of the Lie algebra SL~2!, the eigenvalue( i 51
N l i(b)2( j 51

m a j (b) is degenerate bu
its eigenspace is no more completely determined by the number of operators of negative
applied on the vacuum vector. Each eigenspace is determined by the value of the sum of p
roots( j 51

m a j , which can be written as a sum of simple roots, with positive integer coefficient
a unique way. Then the eigenspaces ofSb will be labeled by a family of simple roots:Vd1 . . . ds

,

with d1 , . . . ,dsPD0 not necessarily distinct and satisfying(k51
s dk5( j 51

m a j . We call Vd1 . . . ds

the subspace of spin deviationd1 , . . . , ds .
In view of the discussion concerning the finite dimension ofV, m can take a finite number o

positive integer values and thenSb has a finite number of eigenvalues. Therefore, the ten
product representation spaceV can be written as the direct sum of eigenspaces ofSb :

V5 %
d1 , . . . ,ds

Vd1 . . . ds
, d1 , . . . , dsPD0 .

As in the previous section, for the model related to the Lie algebra SL~2!, we search common
eigenvectors for all generalized Gaudin Hamiltonians in each eigenspace of the spin opera
expansions on the basis of eigenvectors ofSb . The coefficients of these expansions have
particular form similar to that of the Bethe ansatz.

C. States of spin deviation a

Consider a simple roota. For a spin deviationa, the equation of eigenvectors for a sp
operatorSb is

SbFa
(k)v05S (

i 51

N

l i~b!2a~b!DFa
(k)v0 . ~18!

The eigenspaceVa of spin deviationa corresponding to the eigenvalue( i 51
N l i(b)2a(b) is

generated by vectors$Fa
(k)v0%k51, . . . ,N . A Bethe vector of spin deviationa is defined as an

expansion on the basis, with rational coefficients depending on one complex parameterw:

c1~w,a!5(
i 51

N Fa
( i )

w2zi
v05F~w,a!v0 . ~19!

To give the action of a HamiltonianHi on this vector is useful to calculate the commutator:

@Hi ,F~w,a!#5F~w,a!
Ha

( i )

w2zi
2

Fa
( i )

w2zi
S (

j 51

N Ha
( j )

w2zj
D 1 (

bPD1 ,b.a

^b,b&
2

Nb,2a

3HF~w,b!
Eb2a

( i )

w2zi
2

Fb
( i )

w2zi
(
j 51

N Eb2a
( j )

w2zj
J . ~20!

Applied on the vacuum vector all the terms of the last sum vanish and then.

@Hi ,F~w,a!#v05
^a,l i&
w2zi

F~w,a!v02S (
j 51

N
^a,l j&
w2zj

D Fa
( i )

w2zi
v0 . ~21!

Hence, the action of a Gaudin HamiltonianHi on the vector~19! is

Hic1~w,a!5S (
j 51; j Þ i

N
^l i ,l j&
zi2zj

1
^a,l i&
w2zi

Dc1~w,a!2S (
k51

N
^a,lk&
w2zk

D Fa
( i )

w2zi
v0 ~22!

and we have the following lemma.
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Lemma 7: Given N complex numbers$zi% i 51,N and dominant integral highest weight
$l i% i 51,N , the Bethe vectorc1(w,a) of spin deviationa is an eigenvector for all Gaudin Hamil
tonians:

Hic1~w,a!5si
1~w,a!c1~w,a!, ; i 51, . . . ,N,

if the complex parameter w satisfies the Bethe equation

(
k51

N
^a,lk&
w2zk

50. ~23!

The eigenvalue si
1(w,a) of the HamiltonianHi depends on the solution of this equation:

si
1~w,a!5 (

j 51; j Þ i

N
^l i ,l j&
zi2zj

1
^a,l i&
w2zi

, i 51, . . . ,N.

1. Additional eigenvector in Va

As in the case of the model related to the Lie algebra SL~2!, this constructive method does no
provide all the common eigenvectors inVa . In the eigenspaceVa , which has dimensionN, the
number of common eigenvectors obtained is equal to the number of distinct solutions
equation~23!, which is at mostN21. One more common eigenvector, which is not of the fo
~19!, is given by the following lemma.

Lemma 8: The vectorca
0PVa ,

ca
05 (

k51

N

Fa
(k)v0 ,

is an eigenvector for each HamiltonianHi :

Hi ca
05S (

j 51,j Þ i

N
^l i ,l j&
zi2zj

Dca
0 . ~24!

This vector has equal coefficients as an expansion on the basis ofVa and it has the same eigen
value as the vacuum vector~17!.

2. The case of a nonsimple root a

Lemma 7 is no longer true for a positive roota which is not simple. In this case the actio
~22! of Hi on the statec1(w,a) presents a number of additional terms of type

1

w2zi
Fg

( i )F~w,Fa2g!v0

with some numerical coefficients, wheregPD1 are positive rootsgÞa such thata2gPD1 .
Such terms exist only ifa is not a simple root and they do not vanish for any parameterw.
Therefore,c1(w,a) can not be an eigenvector for the HamiltoniansHi . This fact has the follow-
ing explanation: Ifa is not simple, the expression~19! for c1(w,a) has to be modified, becaus
the eigenspace ‘‘Va’’ is in fact Va1a2 . . . and is generated not only by vectorsFa

( i )v0 , but also by

‘‘higher order’’ vectorsFa1

( i )Fa2

( i )
¯ with a11a21 ¯ 5a and therefore the expansion~19! is not

complete.
In particular, if the nonsimple roota is the sum of two simple rootsa1 anda2 , the action of

a HamiltonianHi on the statec1(w,a) presents two additional terms and we have the follow
formula, which will be useful in the next section, for the case of two spin deviationa1 , a2 :
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Hic1~w,@Fa1
,Fa2

# !5S (
j 51; j Þ i

N
^l i ,l j&
zi2zj

1
a~l i !

w2zi
Dc1~w,@Fa1

,Fa2
# !

2S (
k51

N
a~lk!

w2zk
D @Fa1

,Fa2
# ( i )

w2zi
v02^a1 ,a2&

3HF~w,a1!
Fa2

w2zi
2

Fa1

w2zi
F~w,a2!J v0 . ~25!

D. States of spin deviation a1 , a2

Consider two simple rootsa1 anda2 , which are not necessarily distinct. For spin deviati
a1 , a2 , the equation of eigenvectors for the spin operatorSb is

SbFa1

(k1)Fa2

(k2)v05S (
i 51

N

l i~b!2a1~b!2a2~b!DFa1

(k1)Fa2

(k2)v0 . ~26!

The eigenspaceVa1 ,a2
of spin deviationa1 , a2 , corresponding to the eigenvalue( i 51

N l i(b)

2a1(b)2a2(b) is generated by vectors$Fa1

(k1)Fa2

(k2)v0%k1 ,k251, . . . ,N;k1Þk2
with two generators of

negative roots applied on two distinct components ofv0 , but also by vectors
$(Fa1

Fa2
)(k)v0%k51, . . . ,N and$(Fa2

Fa1
)(k)v0%k51, . . . ,N with two generators of negative roots a

plied on the same component ofv0 . A Bethe vector of spin deviationa1 , a2 is defined as an
expansion on all these vectors, with some particular coefficients depending on two co
parametersw1 ,w2 :

c2~w1 ,a1 ;w2 ,a2!5 (
k151

N

(
k2Þk1

N Fa1

(k1)Fa2

(k2)

~w12zk1
!~w22zk2

!
v01

1

w12w2
(
k51

N Fa1

(k)Fa2

(k)

w22zk
v0

1
1

w22w1
(
k51

N Fa2

(k)Fa1

(k)

w12zk
v0 . ~27!

As an element of the representation spaceVlk
, one of the two last terms is not a good order

monomial and we must write, for instance,Fa2

(k)Fa1

(k)5Fa1

(k)Fa2

(k)1@Fa2

(k) ,Fa1

(k)#. Then this vector

can also be written in the following form, using the operatorsF:

c2~w1 ,a1 ;w2 ,a2!5F~w1 ,a1!F~w2 ,a2!v01
1

w12w2
F~w1 ,@Fa1

,Fa2
# !v0 .

With this construction, the vectorc2 is symmetrical in the pairs (w,a):

c2~w1 ,a1 ;w2 ,a2!5c2~w2 ,a2 ;w1 ,a1!.

To calculate the action of a HamiltonianHi on the vectorc2 ,

Hic2~w1 ,a1 ;w2 ,a2!5@Hi ,F~w1 ,a1!#F~w2 ,a2!v01F~w1 ,a1!HiF~w2 ,a2!v0

1
1

w12w2
HiF~w1 ,@Fa1

,Fa2
# !v0 , ~28!

we use the result~20! for the first term and~22! for the second term, but not for the third term
because it corresponds to a positive roota11a2 which is no longer simple. For this one we app
the formula~25!. Then, the action of a HamiltonianHi on the vectorc2 is
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Hic2~w1 ,a1 ;w2 ,a2!5si
2~w1 ,w2!c2~w1 ,a1 ;w2 ,a2!

2 f 1S Fa1

( i )

w12zi
F~w2 ,a2!1

1

w12w2

@Fa1

( i ) ,Fa2

( i )#

w12zi
D v0

2 f 2S F~w1 ,a1!
Fa2

( i )

w22zi
1

1

w12w2

@Fa1

( i ) ,Fa2

( i )#

w12zi
D v0 ,

where

si
25 (

j 51; j Þ i

N
^l i ,l j&
zi2zj

1
^a1 ,l i&
w12zi

1
^a2 ,l i&
w22zi

,

f 15 (
k51

N
^a1 ,lk&
w12zk

1
^a1 ,a2&
w22w1

,

f 25 (
k51

N
^a2 ,lk&
w22zk

1
^a1 ,a2&
w12w2

.

Lemma 9 follows from these considerations.
Lemma 9: The Bethe vectorc2(w1 ,a1 ;w2 ,a2) of spin deviationa1 ,a2 is an eigenvector for

all Gaudin Hamiltonians

Hic2~w1 ,w2!5si
2c2~w1 ,a1 ;w2 ,a2!

if the parameters w1 ,w2 satisfy the Bethe equations:

f 15 (
k51

N
^a1 ,lk&
w12zk

1
^a1 ,a2&
w22w1

50,

~29!

f 25 (
k51

N
^a2 ,lk&
w22zk

1
^a1 ,a2&
w12w2

50.

Remarks:
~1! As discussed in the previous section, if the rootsa1 anda2 are not simple the result of th

previous lemma is not true and the expression~27! of c2 has to be completed.
~2! The number of distinct solutions of Bethe equations is less than the dimension o

eigenspaceVa1 ,a2
. Therefore, other common eigenvectors could exist. It can be proved tha

ca1 ,a2

0 5S (
k151

N

Fa1

(k1)D S (
k251

N

Fa2

(k2)D v0 and ca11a2

0 5 (
k51

N

@Fa1
,Fa2

# (k)v0

are also common eigenvectors of Hamiltonians, with the same eigenvalue as the vacuum

E. States of spin deviation a1 , . . . ,am

For m simple rootsa1 , . . . ,am , which are not necessarily distinct, the eigenspaceVa1 , . . . ,am

of spin deviationa1 , . . . ,am , corresponding to the eigenvalue( i 51
N l i(b)2( l 51

m a l(b), is gen-
erated by ordered monomialsFg1

(k1)
¯Fgn

(kn)v0 for all k1 , . . . ,kn51, . . . ,N andg1 , . . . ,gn positive

roots with( i 51
n g i5( l 51

m a l . Common eigenvectors of Hamiltonians are defined as expansion
all the monomials, but, in this general case, a particular form of coefficients~depending onm
complex parametersw1 , . . .wm! can hardly be justified.
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It was claimed in Ref. 6 that such a vector can be determined in each subspaceVa1 , . . . ,am

through a recursive procedure in the numberm of simple roots:

cm~w1 ,a1 ; . . . ;wm ,am!v0

5cm21~w1 ,a1 ; . . . ;wm21 ,am21!F~wm ,am!v0

1 (
j 51

m21
1

wj2wm
cm21~w1 ,a1 ; . . . ;wj ,@Fa j

,Fam
#; . . . ;wm21 ,am21!v0 , ~30!

with c1(w,a)5F(w,a)v0 , and that the action of a HamiltonianHi on the vectorcmv0 is

Hicm~w1 ,a1 ; . . . ;wm ,am!v05si
mcm~w1 ,a1 ; . . . ;wm ,am!v02 (

k51

m

f k
mc̄m

k v0 , ~31!

where

si
m5 (

j 51; j Þ i

N
^l i ,l j&
zi2zj

1 (
k51

m
^ak ,l i&
wk2zi

,

~32!

f k
m5(

j 51

N
^ak ,l j&
wk2zj

1(
l 51

m
^ak ,a l&
wl2wk

, ;k51, . . . ,m,

and c̄ m
k v0 are some vectors inVa1 , . . . ,am

.
Such a recursive construction of the common eigenvectors seems to be appropriate for

tive calculations. For example, we can verify by induction that the vectorcm is symmetrical in the
pairs (w,a):

cm~ . . . ;wk ,ak ; . . . ;wl ,a l ; . . . !5cm~ . . . wl ,a l ; . . . ;wk ,ak ; . . . !.

However, an inductive calculation for the action~31! of Hamiltonians on these vectors is ve
difficult. As remarked for the case of spin deviationa1 , a2 , the serious problem comes from th
presence in~30! of roots which are not simple and therefore the induction step can not be ap

For the eigenvectorcm an explicit form is given by the following theorem~for simplicity Fi

denotesFa i
)

Theorem 10: The recursion relation (30) has the following result:

cm~w1 ,a1 ; . . . ;wm ,am!v0

5(Pm
)
j 51

N

(
sPS(I j )

~Fs( i
1
j ) . . . Fs( i

l j

j )!
( j )

~ws( i
1
j )2ws( i

2
j )!~ws( i

2
j )2ws( i

3
j )! . . . ~ws( i

l j

j )2zj !
v0 . ~33!

In this relation the first sum is taken over all N-fold partitions (I 1, . . . ,I N),I 1ø . . . øI N

5$1, . . . ,m% of the set of indices$1, . . . ,m% of the m simple rootsa1 , . . . ,am . The partitions are
considered with N disjoint subsets, which can be empty, as well: Ij5$ i 1

j , . . . ,i l j

j %, with 0< l j

<m. The product is taken over all components Vl j
of the tensor product representationV. The

second sum is taken over the setS(I j ) of all permutations in the subset Ij .
For example, in the case of two simple roots, there are two types of partitions of the set$1,2%:

type I :H I k5$1,2%

I l5f
together with its permutation H I k5$2,1%

I l5f
k,l 51, . . . ,N,lÞk,
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type II :H I k5$1%

I l5$2%
k,l 51, . . . ,N,lÞk, and the others are empty.

Then the sum~33! over these partitions reduces to~27!.
Theorem 10 was announced in Ref. 6, where it was also remarked that~33! is exactly the same

vector function~45!, appearing in the integral solutions of the KZ equation. In Sec. V we
briefly analyze the connection between the problem of common eigenvectors for Gaudin H
tonians and the solutions of the KZ equation.

In the rest of the present section we give a proof of Theorem 10 which is based on
lemmas.

Lemma 11: Let A5$ i 1 ,i 2 , . . . ,i n% be a set of indices, E an expression depending on the
indices andS(A) the set of permutations of A. Then, for any fixed iaPA we have

(
sPS(A)

E~s~ i 1!, . . . ,s~ i n!!

5 (
s8PS(A\$ i a%)

(
q51

n

E~s8~ i 18!, . . . ,s8~ i q218 !,i a ,s8~ i q8!, . . . ,s8~ i n218 !!,

where$ i 18 ,i 28 , . . . ,i n218 %5A\$ i a%.
It means that a sum over the permutations ofn elements can be rearranged as follows: fix o

of these elements, make the sum over the permutations of the restingn21 elements and for eac
such permutation make the sum of the expressionsE in which the fixed element is placed su
cessively on all positions from 1 ton.

The second lemma is a result of straightforward calculations:
Lemma 12: For some distinct complex numbers w1 , . . . ,wn ,wb ,z, let

Qs~w1 , . . . ,wn ,wb!5 (
q51

s
1

~w12w2!¯~wq212wb!~wb2wq!¯~wn212wn!~wn2z!
,

;s51, . . . ,n11,

where the first term (for q51) is 1/@(wb2w1)(w12w2)¯(wn212wn)(wn2z)# and the term for
q5n11 is 1/@(w12w2)¯(wn212wn)(wn2wb)(wb2z)#. Then

Qs~w1 , . . . ,wn ,wb!5
1

~w12w2! . . . ~wn212wn!~wn2z!

1

~wb2ws!
, ;s51, . . . ,n, ~34!

Qn11~w1 , . . . ,wn ,wb!5
1

~w12w2! . . . ~wn212wn!~wn2z!

1

~wb2z!
. ~35!

Proof of the theorem:In the expression~33! of cm , the sum over the partitions
(J1, . . . ,JN)PPm of the indices $1,2,. . . ,m% is rewritten as the sum over the partition
(I 1, . . . ,I N)PPm21 of the indices$1,2,. . . ,m21%, and for each partition inPm21 , the indexm
is successively placed in each subsetI k5$ i 1

k , . . . ,i l k
k %:Jl5I l , ; lÞk andJk5I kø$m%. It follows

cm5 (Pm21
(
k51

N S )
j 51,j Þk

N

(
sPS(I j )

~Fs( i
1
j )¯Fs( i

l j

j )!
( j )

~ws( i
1
j )2ws( i

2
j )!¯~ws( i

l j

j )2zj !
D

3S (
sPS(Jk)

~Fs( i
1
k)¯Fs( i

l k

k )Fs(m)!
(k)

~ws( i
1
k)2ws( i

2
k)!¯~ws( i

l k

k )2ws(m)!~ws(m)2zk!
D . ~36!
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Then we compute the last sum and, to simplify the writing, we leave out the indexk. Using
Lemma 11 we obtain

(
sPS(J\$m%)

(
q51

l 11 Fs( i 1)¯Fs( i q21)FmFs( i q)¯Fs( i l )

~ws( i 1)2ws( i 2)!¯~ws( i q21)2wm!~wm2ws( i q)!¯~ws( i l )
2zk!

. ~37!

At the numerator, we commute successivelyFm , up to the last position:

Fs( i 1)¯Fs( i q21)FmFs( i q)¯Fs( i l )

5Fs( i 1)¯Fs( i l )
Fm1(

s5q

l

Fs( i 1)¯Fs( i s21)@Fm ,Fs( i s)
#¯Fs( i l )

, ;q51, . . . ,l .

In this relation, the first term does not depend onq and can be factorized out of the sum overq in
~37!. It multiplies a sum of fractions which forms the sumQl(ws( i 1) , . . . ,ws( i l )

,wm), given by
the relation~35! of Lemma 12.

For the second term we change in~37! the order of the two sums, overs and overq. Then the
operator productFs( i 1)¯Fs( i s21)@Fm ,Fs( i s)

#¯Fs( i l )
can also be factorized out of the sum overq

and it multiplies the sumQs(ws( i 1) , . . . ,ws( i l )
,wm), which is given by the relation~34! of

Lemma 12, for alls51, . . . ,l . Hence, for~37! we obtain

(
sPS(I )

S Fs( i 1) . . . Fs( i l )

~ws( i 1)2ws( i 2)! . . . ~ws( i l )
2zk!

Fm

wm2zk

1(
s51

l
1

wm2ws( i s)

Fs( i 1) . . . Fs( i s21)@Fm ,Fs( i s)
# . . . Fs( i l )

~ws( i 1)2ws( i 2)! . . . ~ws( i l )
2zk!

D . ~38!

Replacing the first part of~38! in the expression~36! of cm , we obtain

(Pm21
S )

j 51

N

(
sPS(I j )

~Fs( i
1
j )¯Fs( i

l j

j )!
( j )

~ws( i
1
j )2ws( i

2
j )!¯~ws( i

l j

j )2zj !
D (

k51

N Fm
(k)

wm2zk
, ~39!

which is exactly the termcm21(w1 ,a1 ; . . . ;wm21 ,am21)F(wm ,am) of the recursion relation
~30!.

Using lemma 11, the second part of the relation~38! can be rewritten as

(
s51

l
1

wm2wi s
(

sPS(I\$ i s%)
(
q51

l Fs( j 1) . . . Fs( j q21)@Fm ,Fi s
# . . . Fs( j l 21)

~ws( j 1)2ws( j 2)!¯~ws( j q21)2ws( i s)
!~ws( i s)

2ws( j q)!¯~ws( j l 21)2zk!
,

where$ j 1 , . . . ,j l 21% is the subsetI\$ i s% of I . Applying again Lemma 11, it becomes

(
s51

l
1

wm2wi s
H (

sPS(I )

Fs( i 1)¯Fs( i l )

~ws( i 1)2ws( i 2)!¯~ws( i l )
2zk!

J
Fi s

�[Fm ,Fi s
]

,

where $expr%Fi s
�[Fm ,Fi s

] is the expression expr in which the operatorFi s
is replaced by the

commutator@Fm ,Fi s
#. Replacing this term in the expression~36! of cm , we obtain
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(Pm21
(
k51

N

(
s51

l k 1

wm2wi
s
k S )

j 51
j Þk

N

(
sPS(I j )

~Fs( i
1
j )¯Fs( i

l j

j )!
( j )

~ws( i
1
j )2ws( i

2
j )!¯ D

3H (
sPS(I k)

~Fs( i
1
k)¯Fs( i

l k

k )!
(k)

~ws( i
1
k)2ws( i

2
k)!¯~ws( i

l k

k )2zk!J
Fi s

k�[Fm ,Fi s
k]

.

In this expression, for each partition (I 1, . . . ,I N) and for each indexr 51, . . . ,m21, the factor
1/(wm2wr) occurs once only. Therefore, this expression can be rearranged in the following

(
r 51

m21
1

wm2wr
(Pm21

S )
j 51

j Þk,r PI k

N

(
sPS(I j )

~Fs( i
1
j )¯Fs( i

l j

j )!
( j )

~ws( i
1
j )2ws( i

2
j )!¯ D

3H (
sPS(I k)

~Fs( i
1
k)¯Fs( i

l k

k )!
(k)

~ws( i
1
k)2ws( i

2
k)!¯~ws( i

l k

k )2zk!J
Fr�[Fm ,Fr ]

,

which is exactly the term( j 51
m21 1/(wj2wm) cm21(w1 ,a1 ; . . . ;wj ,@Fa j

,Fam
#; . . . ; wm21 ,am21)

of the recursion~30!.

1. Additional eigenvectors

The recursion relation~30! gives only a part of common eigenvectors. As in the cases of
deviationa anda1 , a2 , additional eigenvectors can be found:

Lemma 13: For any ordered set of simple rootsa1 ,a2 , . . . ,am , the vector

ca1 , . . . ,am

0 5S (
k151

N

Fa1

(k1)D¯S (
km51

N

Fam

(km)D v0 ~40!

is an eigenvector of HamiltoniansHi corresponding to the same eigenvalue as the vacuum ve

Hica1 , . . . ,am

0 5S (
j 51,j Þ i

N
^l i ,l j&
zi2zj

Dca1 , . . . ,am

0 .

Remark that these vectors ofV lie in Va1 , . . . ,am
only if the rootsa i are all simple. The lemma is

a consequence of the following property of the operatorsHi :

FHi ,(
k51

N

Fa
(k)G50, ;aPD0 .

IV. SINGULAR AND NONSINGULAR EIGENVECTORS

In the previous sections we have constructed two types of eigenvectors for the Gaudin H
tonians: the Bethe vectorscm(w1 , . . . ,wm)v0 in ~12! andcm(w1 ,a1 , . . . ,wm ,am)v0 in ~33! and
the additional eigenvectorscm

0 in ~16! andca1 , . . . ,am

0 in ~40!. In this section we prove that Beth

vectors are singular only if the Bethe equations are satisfied and that the additional eigen
are not singular.

A vector v of the tensor product representationV is called singular if
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Eav5(
i 51

N

Ea
( i )v50, ;aPD0 .

In the case of the Lie algebra SL~2! the Bethe vectorscm(w1 , . . . ,wm)v0 given by ~12! are
singular only for those values ofw1 , . . . ,wm which are solutions of the Bethe equations~15!,
since

Ecm~w1 , . . . ,wm!v05 (
k51

m S (
j 51

N
l j

wk2zj
1 (

l 51;lÞk

m
2

wl2wk
Dcm21~ . . . ,wk̂, . . . !v0 .

Therefore the Bethe equations~15! appear also as conditions that Bethe vectors be singular ve
of V.

Unlike Bethe vectors, the additional eigenvectorscm
0 are not singular, since

Ecm
0 5mS (

j 51

N

l j2m11Dcm21
0 Þ0, ;m51, . . . ,mmax, mmax5(

j 51

N

l j .

A similar result holds in the case of an arbitrary Lie algebraG:
Theorem 14: For any simple rootb, the action of the operator Eb on the Bethe vector (33

is given by

Ebcm~w1 ,a1 , . . . ,wm ,am!v05(
i 51

m 2dba i

^a i ,a i&
F (

j 51

N
^a i ,l j&
wi2zj

2 (
j 51,j Þ i

m
^b,a j&
wi2wj

Gcm21~ . . . ,wi ,a î , . . . !v0 . ~41!

Therefore, the Bethe vectorscm(w1 ,a1 , . . . ,wmam)v0 are singular only for those values o
w1 , . . . ,wm which are solutions of the Bethe equations fj

m50, ; j 51, . . . ,m in (32).
Proof: Using similar considerations as for Theorem 10, we compute the commu

@Eb ,cm#5@(k51
N Eb

(k) ,cm#, which is

(
k51

N

(Pm
S )

j 51,j Þk

N

(
sPS(I j )

~Fs( i
1
j )¯Fs( i

l j

j )!
( j )

~ws( i
1
j )2ws( i

2
j )!¯~ws( i

l j

j )2zj !
D

3S (
sPS(I k)

@Eb ,Fs( i
1
k)¯Fs( i

l k

k )#
(k)

~ws( i
1
k)2ws( i

2
k)!¯~ws( i

l k

k )2zk!
D . ~42!

Using the relation

@Eb ,Fa1
¯Fa l

#5 (
n51

l

db,an

2

^an ,an&
Fa1

¯Fa n̂
¯Fa lS Han

2 (
s5n11

l

^an ,as& D ,

and applying Lemma 11, the last factor of~42! becomes~for simplicity, we leave out the indexk!

(
n51

l

(
sPSn

(
q51

l 2db,a i n

^a i n
,a i n

&

Fs( i 1)¯Fs( i q21)Fi n̂
Fs( i q)¯Fs( i l 21)(Hb2(s5q

l 21^b,as( i s)
&)

~ws( i 1)2ws( i 2)!¯~ws( i q21)2wi n
!~wi n

2ws( i q)!¯~ws( i l 21)2zk!
,

where, for eachn, Sn are the permutations of the subset$ i 1 , . . . ,i l 21%5I\$ i n% of I . To compute
the sum overq we use Lemma 12 and we obtain
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(
n51

l

(
sPSn

2db,a i n

^a i n
,a i n

&

Fs( i 1)¯Fs( i l 21)

~ws( i 1)2ws( i 2)!¯~ws( i l 21)2zk!
S Hb

wi n
2zk

2(
s51

l 21 ^b,as( i s)
&

wi n
2ws( i s)

D .

In this expression, sinces is a bijection, it holds

(
s51

l 21 ^b,as( i s)
&

wi n
2ws( i s)

5(
s51

l 21 ^b,a i s
&

wi n
2wi s

,

and therefore the last parenthesis can be factorized out of the sum over permutations. Re
this result in~42! we obtain

(Pm
(
k51

N

(
n51

l k 2db,a i n

^a i n
,a i n

& S )
j 51
j Þk

N

(
sPS(I j )

¯ D (
sPSn

~Fs( i
1
k)¯Fs( i

l 21
k )!

(k)

~ws( i
1
k)2ws( i

2
k)!¯~ws( i

l k21
k )2zk!

3S Hb
(k)

wi
n
k2zk

2 (
sPI k\$ i n

k%

^b,as&
wi

n
k2ws

D .

For each partitionI 1, . . . ,I N of Pm and for each indexr 51, . . . ,m, there is only one indexk such
that r PI k. Therefore, in the last expression, there is only one term, containing 2db,ar

/^a r ,a r&.
Hence the last expression is

(
r 51

m 2db,ar

^a r ,a r&
(Pm

S )
j 51,j Þk

N

(
sPS(I j )

¯ D S (
sPS(I k\$r %)

¯ D S Hb
(k)

wr2zk
2 (

sPI k\$r %

^b,as&
wr2ws

D .

For eachr 51, . . . ,m, the sum over the partitionsPm of the indices is rewritten as the sum ov
the partitions (J1, . . . ,JN)PPm21 of the indices$1,2,. . . ,m%\$r % and the indexr is successively
placed in each subsetJq. Hence we obtain

(
r 51

m 2db,ar

^a r ,a r&
(Pm21

(
q51

N S )
j 51,j Þq

N

(
sPS(Jj )

¯ D S (
sPS(Jq)

¯ D S Hb
(q)

wr2zq
2 (

sPJq

^b,as&
wr2ws

D .

We identify in this expression the vectorscm21( . . . ,wr ,a r̂ , . . . ), given by ~33!, and we obtain
~41!.

V. BETHE ANSATZ AND KNIZHNIK–ZAMOLODCHIKOV EQUATION

Knizhnik–Zamolodchikov equations

]F

]zi
~z1 , . . . ,zN!5

1

k
Hi~z1 , . . . ,zN!F~z1 , . . . ,zN!, i 51, . . . ,N, ~43!

were first introduced9 as a system of partial differential equations for correlation functions
primary fields in a WZW model of conformal field theory. The numberk is the sum of the dua
Coxeter number of the Lie algebraG and the central charge of the model.

Such a system is defined byN operators:

Hi~z1 , . . . ,zN!5 (
j 51,j Þ i

N
1

zi2zj
(
a51

d

I a
( i ) Ĩ a

( j ) , ; i 51, . . . ,N,

on a tensor product representationV, which are rational functions of complex variable
z1 , . . . ,zN . The ‘‘coefficients’’Hi(z1 , . . . ,zN) of this system commute and verify
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]Hi

]zj
5

]Hj

]zi
,

which means that the differential form( i 51
N Hi dzi is closed. Hence the conditions of integrabili

of the system are fulfilled.
This system is rather difficult to solve, but there is a simple exception in the case of

variables, when the partial differential equation can be reduced to an ordinary differential eq
of hypergeometric type. In this case, the four-point correlation functions for a model related
SL~2! Lie algebra was determined.16 This has led to the idea that such correlation functions ad
representations as generalized hypergeometric integrals~also known as Feigin–Fuchs integrals!.
For KZ equations associated to arbitrary Lie algebra, Varchenko and Schechtman17,8 gave a set of
solutions in terms of generalized hypergeometric integrals. We present here these solution

Consider the KZ equations in the tensor product representationV, which is also a graduate
space with its weight decompositionV5 % Vm . In each weight subspaceVm , of weight m
5( i 51

N l i2( j 51
m a j , a solution of the KZ equations with values in the subspace of singular ve

SingVm is given by

F~z1 , . . . ,zN!5E
g
x~z1 , . . . ,zN ;w1 , . . . ,wm!c~w1 ,a1 ; . . . ;wm ,am!dw1¯dwm . ~44!

Herex is the multivalued complex function:

xm~z,w!5 )
1< j ,k<N

~zj2zk!
^l j ,lk&/k)

j 51

N

)
l 51

m

~wl2zj !
2 ^a l ,l j &/k )

1< l ,n<m
~wl2wn!^a l ,an&/k

with z5(z1 , . . . ,zN), w5(w1 , . . . ,wm) and g is a m-cycle in the complement inCN1m of all
hyperplanes

zj2zk50; wl2wn50; wl2zj50; ; j ,k51, . . . ,N; l ,n51, . . . ,m,

on whichx(z,w) is a single-valued function ofw. The vector valued functioncPVm is a sum of
ordered monomials with rational complex coefficients:

cm~w1 ,a1 ; . . . ;wm ,am!5(P )
j 51

N ~Fi
1
j ¯Fi

l j

j !( j )

~wi
1
j 2wi

2
j !~wi

2
j 2wi

3
j !¯~wi

l j

j 2zj !
v0 , ~45!

where the product is taken over all componentsVl j
of the tensor product representationV and the

sum is taken over all ordered partitionsI 1ø¯øI N of the set of indices$1, . . . ,m% of the m
simple rootsa1 , . . . ,am . The ordered partitions are considered withN disjoint subsets, which can
be empty, as well:I j5$ i 1

j , . . . ,i l j

j %, with 0< l j<m.

In this form, the solution~44! of KZ equations seems to be rather complicated, but a sim
direct calculation can be performed to obtain

k
]xm

]zi
~z,w!5S (

j 51; j Þ i

N
^l i ,l j&
zi2zj

1 (
k51

m
^ak ,l i&
wk2zi

D xm5si
m~z,w!xm~z,w!,

k
]xm

]wk
~z,w!5S (

l 51;lÞk

m
^ak ,a l&
wk2wl

2(
j 51

N
^ak ,l j&
wk2zj

D xm52 f k
m~z,w!xm~z,w!

for all i 51, . . . ,N andk51, . . . ,m. The particular form of the denominator of~45! allows us to
change the derivative ofcm with respect tozi into a sum of derivatives with respect towk :
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]cm

]zi
~z,w!52 (

k51

m
]

]wk
c̄m

ik~z,w!, ; i 51, . . . ,N,

wherec̄m
ik is also a vector ofVm .

Using the last three relations we can formally compute

S ]

]zi
2

1

k
Hi DF5E

g
xm~z,w!HHi~z!cm~z,w!2si

m~z,w!cm~z,w!1 (
k51

m

f k
m~z,w!c̄m

ik~z,w!J dw.

~46!

To obtain this formula we have supposed that the derivatives]/]zi commute with the integral and
that it is possible to choose a basis of contoursg such that integrals along them of total derivativ
vanish.

It is clear from~46! that the generalized Bethe ansatz and the KZ equations are closely re
If we suppose that we know how to calculate the action of a HamiltonianHi on the vector valued
function cm(z,w) given by ~45! and if

Hi~z!cm~z,w!5si
m~z,w!cm~z,w!2 (

k51

m

f k
m~z,w!c̄m

ik~z,w!,

then the function~44! is a solution of the KZ equation. In particular, this relation holds if all t
coefficients f k

m(z,w) vanish for somew̄(z) and if cm(z,w̄(z)) is an eigenvector ofHi with
eigenvaluesi

m(z,w̄(z)). In the case of the Lie algebra SL~2!, all these suppositions are fulfille
since the vector valued function~45! reduces to the Bethe vector~12! and the action of a Hamil-
tonianHi on it is given by~14!.

Conversely, it was proved17 that~44! is a solution of the KZ equation. It follows from~46! that
the integrand is a total derivative with respect tow, but we can not conclude that it vanishes.

A. Additional solutions of KZ equation

All the integral solutions~44! proposed by Varchenko and Schechtman are singular vecto
the tensor product representationV. Moreover, in the case of the Lie algebra SL~2!, it was
proved17 that, under certain conditions, the family of integral solutions is complete in SingVl .
However, other solutions which are not singular vectors may exist.

In this article we have introduced additional eigenvectorscm
0 andca1 , . . . am

0 . These vectors

are not singular. They lead to solutions of the KZ equations which do not have an integra
and which are not singular vectors.

In the case of the Lie algebra SL~2!, each vectorcm
0 introduces one vector valued function

Fm
0 ~z1 , . . . ,zN!5x0~z1 , . . . ,zN!cm

0 ,

where

x0~z1 , . . . ,zN!5)
1< j

)
,k<N

~zj2zk!
^l j ,lk&/k,

for which we can verify directly that it is a solution of KZ equations, observing that

k
]

]zi
x05S (

j 51,j Þ i

N
^l i ,l j&
zi2zj

D x05si
0x0.

In the case of an arbitrary Lie algebraG, with the same functionx0(z1 , . . . ,zN), for any
vectorca1 , . . . am

0 we can construct in an analogous way solutions of KZ equations:
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Fa1 , . . . am

0 ~z1 , . . . ,zN!5x0~z1 , . . . ,zN!ca1 , . . . am

0 .

VI. CONCLUSIONS

In this article, we recall the construction of the common eigenvectors of generalized G
Hamiltonians based on generalized Bethe ansatz. This constructive method does not ens
completeness of the system of eigenvectors. In each eigenspace of the spin operator w
constructed common eigenvectors, corresponding to the same eigenvalue as the vacuum
and which can not be obtained by the Bethe ansatz.

The Bethe vectors are eigenvectors of the family of Hamiltonians only if the Bethe equa
are satisfied and in this case they are also singular vectors in the tensor product representat
additional eigenvectors proposed here are not singular.

We recall also the connection between Bethe vectors and integral solutions of the KZ
tions. In an analogous way, the additional vectors lead to solutions of KZ equations which d
have integral representations. Moreover, these solutions are not singular vectors.
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It is shown that the notion ofW`-algebra originally carried out over a~compact!
Riemann surface can be extended ton complex dimensional~compact! manifolds
within a symplectic geometrical setup. The relationships with the Kodaira–Spencer
deformation theory of complex structures are discussed. Subsequently, some field
theoretical aspects at the classical level are briefly underlined. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1513653#

I. INTRODUCTION

It is fair to say that the concept of dimensionality plays an important role in Physic
particular, the developments in quantum field theory as well as in statistical mechanics
greatly enlarged its importance. In renormalization theory, string field models, the conce
dimension is found to be not only a characterization of the background space where the p
phenomena are supposed to take place, but also a physical regularizing parameter. Indeed,
with a given dimension very often shows merits and faults not found in some others of diff
dimensions. This led to the search for hyperspaces which could gather together the prais
avoid the imperfections of the theoretical models.

For instance, two-dimensional models show the great relevance of complex structur1 in
quantum field theory. Moreover, this approach produces a dimensional halving, but, in spite
low dimensionality, the conformal models are described by means of an infinite dimens
algebra.2

So, the wide class of these ‘‘new’’ symmetries has been supporting the conjecture that
two dimensions could be easier and more convenient.3 The so-calledW-algebras4 were a byprod-
uct of this feasibility in two-dimensional spaces. For an extensive review on the various pos
ties offered by these kinds of symmetries we refer to Ref. 5. Thus the question of extendin
type of symmetries to higher dimensional spaces comes naturally. The extension required
of the Kodaira–Spencer deformation theory.6 In particular, chiral symmetries have already be
extended from 2D conformal models built on a Riemann surface to models to ann complex
dimensional complex manifold.7–9 Note that Kodaira–Spencer-type deformation theories h
already been used to describeW` in two ~or more! dimensions10–12in order to study holomorphic
properties~chiral splitting! or mirror manifolds of arbitrary complex dimension.7,8,13–16. Their
cohomologies have been investigated both in Lagrangian field theory models9 and in more genera
mathematical aspects in Refs. 17 and 18.

Therefore we shall address in the present paper the extension ton complex dimensions of ou

a!Electronic mail: beppe@genova.infn.it
b!Also at: Universite´ de la Méditerranée, Aix-Marseille II; electronic mail: sel@cpt.univ-mrs.fr
57570022-2488/2002/43(11)/5757/16/$19.00 © 2002 American Institute of Physics
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BRS treatment forW`-algebra grounded on a symplectic approach.19–21 In the latter, the algebra
emerges from a ghost realization geometrically constructed from the symplectic approach
a byproduct the infinite number of chiral ghost fieldsC (n), n51,2,. . . , turn out to be
(2n,0)-conformal fields and their infinitesimal variations have a well-defined geometrical se
To be more specific, let us remind how the chiralW`-algebra is recovered in the bidimension
case over a Riemann surface. For any positive integern, the local variations of the chiral ghost
are

SC (n)~z,z̄!5 (
m51

n

mC (m)~z,z̄!]zC (n2m11)~z,z̄!. ~1.1!

Introducing by duality to each ghost a local operatorT(n)(z,z̄) in order to construct the anticom
muting functional BRS operator,22

d5 (
n>1

E
S
dz̄∧dzS C (n)~z,z̄!T(n)~z,z̄!1SC (n)~z,z̄!

d

dC ~n!~z,z̄!
D , ~1.2!

namely,$d,d%50, leads to the following local commutation relations:

@T(n)~z,z̄!,T(m)~z8,z̄8!#5n]z8d
(2)~z82z!T(n1m21)~z,z̄!

2m]zd
(2)~z2z8!T(n1m21)~z8,z̄8!, ~1.3!

which turn out to be a realization of the so-calledW`-algebra if one goes to the Fourier mode
We stress that the well-defined ghost realization allows one to write down the extension

W`-algebra to higher dimensions. Moreover we want to take advantage of the symplectic de
tion for incompressible flows in order to extend ton dimensions the notion ofW`-algebra, which
in two dimensions is related to area preserving diffeomorphisms, see for instance Ref. 2
references therein.

The algebra will be described in our approach by means of the Kodaira–Spencer deform
theory of complex structures but reformulated in a symplectic framework. The physical motiv
of investigating the subject is connected to the so-calledW-gravity and also on the fact tha
quantizing a conformal gravitational theory would incorporate all the possible configuratio
the gravitational fields. By the way, ‘‘well-defined’’ gravitational conformal models are fu
described by means of the complex structure of the surrounding space. Therefore a co
description just at the classical level of all its possible deformations might be relevant
successful quantum improvement.

The paper is organized as follows. We shall first briefly introduce, in a nontechnical wa
Kodaira–Spencer deformations, referring the reader to the book by Kodaira6 for a more complete
survey, especially Chaps. 2, 4, and 5. Then Sec. III will give a geometrical setting of symp
morphisms in a genericn complex dimensional space in order to introduce the BRS formula
of the ~infinitesimal! diffeomorphisms of a symplectic space. Furthermore in Sec. IV the spe
Kodaira–Spencer deformation of complex structures related toW`-algebra will be presented
through a symplectic approach by using a ghost representation. It is recalled that the sym
treatment of the two-dimensional case forW-algebras19 provides a well-defined geometrical defi
nition of the ghost fields and their BRS variations as well. In the present paper we avail our
of that symplectic approach, in order to address the problem of extending to arbitrary co
dimensions the notion ofW`-algebra and its consequences, in particular, for the study
Lagrangians subject to that type of symmetry to which a very brief section will be devoted

II. A BRIEF ACCOUNT ON THE KODAIRA–SPENCER DEFORMATION

Let M be ann dimensional~compact! complex manifold described in terms of backgrou
local complex coordinates:
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~zk!ª~z1,z2,...,zn!, k51,...,n ~2.1!

and the subordinated differentiable structure (zk,zk) turnsM into a 2n real dimensional manifold.
Its complex structure is determined by the]̄[( i 51

n dz̄i] ī operator. In order to control the
deformation, usually a complex deformation parametert5(t1 , . . . ,tn) is introduced. Basically the
physical implications of this mathematical field of interest, rises from the primitive idea th
complex manifold is composed of a set of coordinate neighborhoods patched together. Ob
the patching procedure sewing should be irrelevant to the manifold description. In this philo
a deformation ofM is considered to be the sewing of the same patches, through a fit o
parameterst via various identifications. For our purpose the dimension of the parameter spac
be exactly equal to that ofM . According to Chap. 5 of Ref. 6 one considers a complex family
compact complex manifolds such as a complex manifoldM and a holomorphic mapÃ:M→B
whereB is a domain inCn such thatÃ21(t)5Mt is a compact complex manifold. ForD,B
sufficiently small,MDªÃ21(D) can be identified as a complex manifold with the comp
structure defined on the smooth manifoldM3D since the subordinated smooth structure is alw
the same and does not depend ont ~Ref. 6 Theorem 2.3!. Accordingly, local complex coordinate
on MD will be given by the system of local complex coordinates (Z a((z,z̄),t),ta), a
51, . . . ,n and for fixedt, Mt is the complex structure of the differentiable manifoldM defined by
the system of local complex coordinates (Z a((z,z̄),t)), a51, . . . ,n considered as a smoot
change of local complex coordinates onM , i.e., the Jacobian does not vanish.

On the other hand, the deformation of complex structure is thus described by the change
]̄-operator,6

]̄→ ]̄2 (
,51

n

m,~~z,z̄!,t !], , ~2.2!

the m,((z,z̄),t) are unique smooth~0,1!-forms on M3D. In this way, one can describe bot
infinitesimal and finite deformations. Indeed, by looking for, at fixedt, the local solutions
Z a((z,z̄),t) of this family of deformed]̄-operators

S ]̄2 (
,51

n

m,~~z,z̄!,t !],DZ a~~z,z̄!,t !50, ~2.3!

then they will patch together holomorphically with respect to the complex structureMt and thus
they will define a new complex structure parametrized by them on M .

To be consistent with the deformation philosophy discussed before, the previous eq
~2.3! must be coupled~Newlander–Nirenberg integrability theorem!6 with the Kodaira–Spence
~integrability! equation,

]̄m~~z,z̄!,t !2 1
2 @m~~z,z̄!,t !,m~~z,z̄!,t !#50, ~2.4!

wherem((z,z̄),t)5m,((z,z̄),t)], , is a smooth~1,0!-vector field valued~0,1!-form on M and the
graded brackets@,# means the commutator of two vector fields and wedging.

To sum up, two solutions of Eq.~2.4! correspond to the same complex structure if they dif
by an holomorphic diffeomorphism. Since fort50 both (zk) and (Z a(z,0)) are local complex
coordinates on the complex manifoldM , thenZ a(z,0) are holomorphic functions of (zk), show-
ing thatm(z,0)50. The construction of the new local complex coordinatesZ a((z,z̄),t) for each
fixed t will correspond to a smooth change of local complex coordinates (zk)°(Z a((z,z̄),t)).
The construction holds in each holomorphic sector int. Embedding in a symplectic framewor
generates an infinite sequence of changes of local complex coordinates. It is the signature
behavior under symplectomorphisms which gives rise to an algebra. The latter extends to
dimensions the usualW`-algebra~1.3!.
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For this reason, if we now wish to settle the Kodaira–Spencer deformation in a symp
framework, we may consider the deformation parameters as the conjugate variables~by symplec-
tic doubling, as it will be better specified later on! to those of the configuration space by iden
fying locally, as differentiable manifolds, the cotangent spaceT* M with MD endowed with local

smooth coordinates (zk,z̄k̄,t, t̄ ). Then all the requirements to perform a Kodaira–Spencer de
mation will be satisfied, so that this mathematical artillery will be at our disposal to investigat
possible extension of our symplectic approach to ann complex dimensional manifold and th
consequences for physical models, in particular higher spin fields and their sources.

III. SYMPLECTOMORPHISMS IN 2n COMPLEX DIMENSIONAL COMPLEX SYMPLECTIC
SPACE

Symplectomorphisms describe diffeomorphisms preserving a given symplectic structu
the cotangent bundleT* M . They can be, respectively, described in terms of local coordina
namely,

U~z,y!5~z1
¯zn,z̄1

¯ z̄n;y1¯yn ,ȳ1¯ ȳn!,
~3.1!

U~Z,Y!5~Z1
¯Zn,Z̄1

¯Z̄n;Y1¯Yn ,Ȳ1¯Ȳn!

and, respectively, endowed with the symplectic fundamental two-form which, in full gener
locally writes according to the system of local coordinates—not necessarily Darboux’s one

VU(z,y)5 (
i , j 51

n

v j
i dzj∧dyi1c.c.5duU(z,y) , ~3.2!

VU(Z,Y)5 (
a,b51

n

vb
a dZb∧dYa1c.c.5duU(Z,Y) ~3.3!

with the following local requirements:

detuv ( i , j )uÞ0, detuv (b,a)uÞ0, dzv j
i 5dyv j

i 5dZvb
a5dYvb

a50. ~3.4!

and the invariance of the fundamental two-form is locally expressed by

VU(z,y)5VU(Z,Y) . ~3.5!

Locally, this implies onU(z,y)ùU(Z,Y)ÞB that

uU(z,y)2uU(Z,Y)5dF. ~3.6!

From now on, we shall work locally in terms of the ‘‘mixed’’ local independent coordina
(z,Y),

U~z,Y!5~z1
¯zn,z̄1

¯ z̄n;Y1¯Yn ,Ȳ1¯Ȳn!, ~3.7!

where we define the differential operators~from now on the Einstein’s convention for summatio
will be used throughout the paper!:

d5dz1dY , dz5dzi
]

]zi
1dz̄ī

]

] z̄ī
5dzi] i1dz̄ī ] ī , dY5dYa

]

]Ya

1dȲā

]

]Ȳa

. ~3.8!

The corresponding generating functionF(z,Y) is obtained through the Legendre transform
tion
                                                                                                                



ct in a

ions.

e

5761J. Math. Phys., Vol. 43, No. 11, November 2002 W`-algebras in n complex dimensions

                    
dF~zY!5d~F1vb
aZbYa1c.c.!5v j

i yidzj1vb
aZbdYa1c.c.. ~3.9!

In the cotangent spaceT* M endowed with this system of local coordinates, the mappings:

yi~z,Y![v i
j y j5

]F~z,Y!

]zi [] iF~z,Y!, ~3.10!

Z a~z,Y![vb
aZb5

]F~z,Y!

]Ya
~3.11!

are canonical and define new canonical variables via thev matrices.
Several ways can settle this canonical procedure: Poisson brackets~or something similar!,

flow analysis of hierarchical structures. We shall be concerned with the study of this aspe
field theoretical language by using the BRS formulation. Moreover we can rewrite:

VU(z,Y)5] iZ a~z,Y!dzi∧dYa1 ]̄ ī Z a~z,Y!dz̄ī ∧dYa1] iZ̄ā~z,Y!dzi∧dȲā1 ]̄ ī Z̄ā~z,Y!dZ̄ā∧dȲā

5
]

]Ya

yi~z,Y!dzi∧dYa1
]

]Ya

ȳ ī ~z,Y!dz̄ī ∧dYa1
]

]Ȳā

yi~z,Y!dzi∧dȲā

1
]

]Ȳā

ȳ ī ~z,Y!dz̄ī ∧dȲā5dzdYF~z,Y! ~3.12!

from which we get the relations of duality~with their complex conjugate expressions as well!:

] iZ a~z,Y!5
]

]Ya
yi~z,Y!, ]̄ ī Z a~z,Y!5

]

]Ya
ȳ ī ~z,Y!. ~3.13!

In order to parametrize our space we define19–21 the Hessian matrix elements by

] i

]

]Ya
F~z,Y![l i

a~z,Y!, ~3.14!

]̄ j̄

]

]Ya
F~z,Y![l i

a~z,Y!m
j̄

i
~z,Y![l̄

j̄

b̄
~z,Y!m̄

b̄

a
~z,Y! ~3.15!

with detuluÞ0 for nonsingularity requirement and also for the complex conjugate express
From Eqs.~3.14! and ~3.15! we get the following identities:

] jl i
a~z,Y!5] il j

a~z,Y!,
]

]Y b
l i

a~z,Y!5
]

]Y a
l i

b~z,Y!, ~3.16!

]̄ j̄l i
a~z,Y!5] i~l r

a~z,Y!m
j̄

r
~z,Y!!,

]

]Ȳb̄

l i
a~z,Y!5

]

]Ya

~ l̄ r̄
b̄~z,Y!m̄ i

r̄~z,Y!!, ~3.17!

]̄ j̄l i
a~z,Y!5] i~ l̄

j̄

ā
~z,Y!m̄ā

a~z,Y!!,
]

]Ȳb̄

l i
a~z,Y!5

]

]Ya

~l i
s~z,Y!ms

b̄~z,Y!!. ~3.18!

So from Eqs.~3.13! to ~3.15! we have the following two main identities which must b
viewed within the Kodaira–Spencer spirit of Eq.~2.3!:
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~ ]̄ j̄ 2m
j̄

r
~z,Y!] r !Z a~z,Y![L j̄ ~z,Y!Z a~z,Y!50, ~3.19!

S ]

]Ȳā

2mb
ā~z,Y!

]

]Yb
D yr~z,Y![L ā~z,Y!yr~z,Y!50, ~3.20!

where the role of the parametert of deformation is presently played by the covariant coordina
(Y,Ȳ) in the former or by the background complex coordinates (z,z̄) in the latter. The first of the
two equations tells us that a local deformation of the complex structure on the base co
manifoldM can be implemented by using the symplectic structure on the cotangent bundleT* M ,
while the second one governs the vertical deformation. This coincidence justifies our point o
of taking the conjugate variables as the deformation parameter. Hence, the complex fam
complex manifoldsMY is locally recasted as the symplectic cotangent bundleTM when the
differentiable structure is considered.

Let us write down the following Pfaff system:

dzZ a~z,Y!5l i
a~z,Y!~dzi1m

j̄

i
~z,Y!dz̄j̄ !5..~dz1dz̄•m~z,Y!!•l~z,Y!,

~3.21!

dYyi~z,Y!5l i
a~z,Y!~dYa1ma

ā~z,Y!dȲā!.

The system serves to define two types of Kodaira–Spencer differentials, namely,m
j̄

i
(z,Y) and

m
b̄

a
(z,Y) which parametrize the complex structures on the base spaceM with background local

complex coordinates (z,z̄) and the fibers with local coordinates (Y,Ȳ), respectively. These com
plex structures are interlinked by the duality relations Eqs.~3.13!–~3.15!

m
j̄

i
~z,Y!5 ]̄ j̄Z b~z,Y!@l~z,Y!21#b

i , ~3.22!

mb
ā~z,Y!5@ l̄~z,Y!21#b

r ] rZ̄ā~z,Y!. ~3.23!

Inverting the previous formulas~3.21! by matrix inversion

] i5l i
a~z,Y!]a1m̄ i

j̄ ~z,Y!l̄
j̄

ā
~z,Y!]ā5l i

a~z,Y!~]a1ma
ā~z,Y!]ā!, ~3.24!

where

]a5
]

]Z a~z,Y!
,

one gets

]

]Ya
5l i

a~z,Y!S ]

]yi
1m

j̄

i
~z,Y!

]

] ȳ j̄
D[l i

a~z,Y!D i~z,Y!. ~3.25!

It is now easy to derive from Eqs.~3.15! to ~3.25! another description of the Kodaira–Spenc
differentials

m
j̄

i
~z,Y!5D i] j̄F~z,Y!, ~3.26!

whereY5Y(z,y) has to be taken into account. The most relevant properties of theD i(z,Y) and
]/]yi operators can be summarized as
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@D i~z,Y!,D j~z,Y!#50, F ]

]yi
,

]

]yj
G50, F ]

]yi
,

]

] ȳ ī
G50. ~3.27!

The third-order derivatives ofF yield the integrability conditions~2.4! for the deformation of
complex structures in the (z,z̄) and (Y,Ȳ) spaces, written respectively, as

L ī ~z,Y!m
j̄

s
~z,Y!5L j̄ ~z,Y!m

ī

s
~z,Y!, ~3.28!

l i
b~z,Y!] jmb

ā~z,Y!5l j
b~z,Y!] imb

ā~z,Y!. ~3.29!

Moreover in the (Y,Ȳ) space, the partner of the Kodaira–Spencer equations can be imm
ately recovered computing] j (]/]Ȳā)(]/]Ȳb̄) F(z,Y),

L ā~z,Y!ml
b̄~z,Y!5L b̄~z,Y!ml

ā~z,Y! ~3.30!

with the consistency conditions:

@L ī ~z,Y!,L j̄ ~z,Y!#50, @L ā~z,Y!,L b̄~z,Y!#50. ~3.31!

BRS setting of symplectomorphisms in2n complex dimensions. As said before the Kodaira–
Spencer deformations reparametrize in a consistent way the space of complex structures.
more, we shall study the action of reparametrizations on symplectic space~symplectomorphisms!.

The BRS setting for symplectomorphisms can be performed along the lines developed
19. Let us define byS the nilpotent BRS operation associated with the infinitesimal symple
morphisms. Locally,S will be represented in (z,Y) coordinates by

SF~z,Y!5L~z,Y!, SL~z,Y!50. ~3.32!

The infinitesimal BRS transformation of the deformed coordinateZ a(z,z̄) can be calculated from
its canonical definition Eqs.~3.10! and ~3.11!,

SZ a~z,Y!5
]

]Ya
L~z,Y!5l i

a~z,Y!D i~z,Y!L~z,Y!5C i~z,Y!] iZ a~z,Y!, ~3.33!

where the chiral ghost fieldsC i(z,Y) naturally emerge and are related to the ordinary diffeom

phism ghostsci(z,Y), c̄ j̄ (z,Y) on T* M within this symplectic framework by

C i~z,Y![D iL~z,Y!5S ]L~z,Y!

]yi
1m

j̄

i
~z,Y!

]L~z,Y!

] ȳ j̄
D5ci~z,Y!1m

j̄

i
~z,Y!c̄ j̄ ~z,Y!,

~3.34!

which explicitly corresponds to a change of generators for symplectomorphisms. Their
variations read

SC i~z,Y!5C j~z,Y!] jC i~z,Y!, ~3.35!

Sci~z,Y!5@cj~z,Y!] j1cj̄ ~z,Y!]̄ j̄ #c
i~z,Y!. ~3.36!

These BRS transformations correspond to an infinitesimal reparametrization ofZ a(z,Y) due to an
infinitesimal shift of the (z,z̄) background, keeping (Y,Ȳ) fixed.

We can easily derive:

Sl i
a~z,Y!5] i~l j

a~z,Y!C j~z,Y!!, ~3.37!
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S~l r
a~z,Y!m

j̄

r
~z,Y!!5 ]̄ j̄ ~l r

a~z,Y!C r~z,Y!!, ~3.38!

so that

Sm
j̄

i
~z,Y!5C l~z,Y!] lm j̄

i
~z,Y!2] lC i~z,Y!m

j̄

l
~z,Y!1 ]̄ j̄C i~z,Y!. ~3.39!

The nonchiral representation of this algebra can be easily given following the lines of R
where we have stressed the relevance of the (z,z̄) counterpart of the Kodaira–Spencer equati
~3.30!.

Moreover the ordinary ghostsci(z,Y) transform as

Sci~z,Y!5~cl~z,Y!] l1 c̄ l̄ ~z,Y!]̄ l̄ !c
i~z,Y!. ~3.40!

Finally, note the important commutators coming from the combination of the commutat

FS,
]

]Ya
G505F] i ,

]

]Ya
G

with ~3.16! and ~3.25!:

@S,D i~z,Y!#52@l~z,Y!21#a
i ] i~l j

a~z,Y!C j~z,Y!!D j~z,Y!

52] rC i~z,Y!D r~z,Y!1C r~z,Y!@] r ,D i~z,Y!#. ~3.41!

Conversely, from Eqs.~3.10! and ~3.11! we can derive the infinitesimal transformation
yi(z,Y) due to an infinitesimal reparametrization on (Y,Ȳ) space, keeping the (z,z̄) background
fixed,

Syi~z,Y!5] iL~z,Y!5l i
a~z,Y!~]a1ma

ā~z,Y!]ā!L~z,Y!

5~va~z,Y!1ma
ā~z,Y!vā~z,Y!!

]

]Ya
yi~z,Y!

5Oa~z,Y!
]

]Ya
yi~z,Y!, ~3.42!

where it has been set

va~z,Y!5]aL~z,Y! ~3.43!

and:

SOa~z,Y!5Ob~z,Y!
]

]Yb
Oa~z,Y!. ~3.44!

Now the generating functionF(z,Y) for such canonical transformations will be so chosen
order to view the holomorphic deformation process in theY direction as being a canonical tran
formation.

For this purpose it will be convenient to use a multi-index notation. LetA,B denote multi-
indices on the fibers related to Greek indices, whileI ,J denote multi-indices onM related to Latin
indices. ForA5(a1 , . . . ,an) with positive integersaa>0, uAu5(a51

n ak will be the order ofA
and one setsA11b5(a1 , . . . ,ab21 ,ab11,ab11 , . . . ,an), A! 5)a51

n aa!. For the sake of nota-
tional completeness, on the baseM one will similarly use I 11k5( i 1 , . . . ,i k21 ,i k

11,i k11 , . . . ,i n). Now, onechoosesa Y-holomorphically split generating function
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F~z,Y!5 (
uAu>1

Z (A)~z,z̄!YA1c.c., ~3.45!

where foruAu>1 andYAª)a51
n (Ya)aa, we have set

Z (A)~z,z̄!ª
1

uAu!
] uAuF~z,Y!

]YA
U
Y50

ª

1

uAu!
] uAuF~z,Y!

~]Y1!a1
¯~]Yn!anU

Y50

~3.46!

for the

~ uAu1n21!!

uAu! ~n21!!

independent derivatives of orderuAu. With such a generating function the symplectic two-fo
~3.12! is locally written as

V5 (
uAu>1

dzZ (A)~z,z̄!∧dYYA1c.c., ~3.47!

while the new coordinates defined in~3.10! and ~3.11! are, respectively, given by

yi~z,Y!5 (
uAu>0

] iZ (A)~z,z̄!YA1 (
uB̄u>0

] iZ̄(B̄)~z,z̄!ȲB̄ , ~3.48!

Z a~z,Y!5 (
uAu>0

(
a51

n

~aa11!Z (A11a)~z,z̄!YA

5Z a~z,z̄!1 (
uAu>1

(
a51

n

~aa11!Z (A11a)~z,z̄!YA . ~3.49!

Note thatZ a(z,Y)uY505Z a(z,z̄) showing that the complex structure given by the local comp
coordinatesZ a is the one which is actually deformed. Recall that the latter are local com
coordinates solutions of~3.19! at Ya5Ȳā50 and have already been treated in the contexn
complex dimensional manifolds in Ref. 9.

As explicitly shown above, the local coefficientsZ (A)(z,z̄), uAu>1 thus describe the respons
to the deformation of theZ a(z,z̄) complex coordinates. Combining the decomposition~3.47! with
the covariance requirement~3.5! leads to an infinite sequence of changes of local complex c
dinates (zk)→(Z (A)(z,z̄)) whose algebra of infinitesimal transformations can be derived
means of BRS techniques.

Furthermore, the role of the complex structures involved in the present approach c
deepened. Indeed, the Kodaira–Spencer differentialsm

j̄

i
(z,Y) reflect the general behavior@see Eq.

~3.26!# of the generating function of the canonical transformations. Their infinitesimal behav
the (z,z̄) and (Y,Ȳ) spaces are constrained by both Eqs.~3.29! and ~3.30!. Now the explicit
complex deformation will be chosen as a particular case of Ref. 6, according to

m
j̄

i
~z,Y!5 (

uAu>0
m

j̄

i (A)
~z,z̄!YA , ~3.50!

with

m
j̄

i (A)
~z,z̄!5

1

uAu!
] uAu11

]YA11b

~ ]̄ j̄F~z,Y!@l~z,Y!21#b
i !U

Y50

.
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This series converges in a Holder norm6 and represents a deformation of the integrable comp
structure defined bym

j̄

i (0)
with the role of deformation parameters played byY as already said

before. Since the use of this space doubling is to introduce a symplectic structure in order t
smooth local changes of complex coordinates (zk)→(Z (A)(z,z̄)) are interpreted as coming from
symplectomorphism symmetry. Recall that the generating function~3.45! for the canonical trans-
formations has been chosen to be compatible with the deformation~3.50!. The holomorphic
character of the deformations will define, in a BRS framework, a series of infinitesimal symm
transformations which will reproduce then complex dimensional extension of theW`-algebra as
will be shown in Sec. IV.

The link of the parametrization in Eq.~3.49! with the one of~3.50! is given through~3.15! for
uAu>0 and for eacha51, . . . ,n-no summation overa-

~aa11!]̄ j̄Z (A11a)~z,z̄!5 (
uBu,uCu>0
B1C5A

~ba11!] iZ (B11a)~z,z̄!m
j̄

i (C)
~z,z̄! ~3.51!

which, in the particular case ofuAu50, reduces to the usual Beltrami equations

]̄ j̄Z a~z,z̄!5] rZ a~z,z̄!m
j̄

r (0)
~z,z̄!, ~3.52!

which were fully treated in Ref. 9 in the two-dimensional case. In this context the integra
condition ~3.28! is transferred on the jet coordinatesm

j̄

i (A)
(z,z̄) with uAu>0, as follows:

]̄ ī m j̄

r (A)
~z,z̄!2 ]̄ j̄m ī

r (A)
~z,z̄!5 (

uBu,uCu>0
B1C5A

~m
ī

s(B)
~z,z̄!]sm j̄

r (C)
~z,z̄!2m

j̄

s(B)
~z,z̄!]sm ī

r (C)
~z,z̄!!.

~3.53!

For uAu>1,

]̄ j̄Z (A)~z,z̄!5
1

A!

] uAu

]YA
]̄ j̄F~z,Y!U

Y50

5 (
1<uI u<uAu

G (I )
(A)~z,z̄!m

j̄

(I )
~z,z̄!, ~3.54!

where we have set foruI u>1,

m
j̄

(I )
~z,z̄!ª

1

I !
D (I )~z,Y!]̄ j̄F~z,Y!U

Y50

ª)
k51

n S 1

i k!
~D k~z,Y!! i kD ]̄ j̄F~z,Y!U

Y50

~3.55!

as representing then-dimensional version for theW-extension of the Beltrami multipliers intro
duced by Bilal, Fock, and Kogan.24 It is worthwhile to say that the coefficientsG (I )

(A)(z,z̄) are very
intricate nonlocal expressions depending on the derivatives up to orderuAu of Z (B), with 1
<uBu<uAu. Writing ~3.54! in more precise terms one has foruAu>1,

]̄ j̄Z (A)~z,z̄!5m
j̄

r
~z,z̄!] rZ (A)~z,z̄!1¯

1 (
a51

n

(
uI au5aa

~ I 11¯1I n!!

I 1!¯I n! S )
b51

n

l I b
b

~z,z̄!Dm
j̄

(I 11¯1I n)
~z,z̄!, ~3.56!

where on the multi-indicesI a5( i 1
a , . . . ,i n

a) the summandI 5(a51
n I a is the linear addition on the

monoid of positive integersNn while l I b
b (z,z̄)5) r 51

n (] rZ b(z,z̄)) i r
b
. Moreover, in the above-

given expansionm
j̄

r
must be identified withm

j̄

r (0)—see~3.51! and ~3.52!.
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Furthermore, the symplectic structure of the space ought to provide by virtue of~3.50! a
recursive construction for the coefficientsm

j̄

i (A) defined in~3.50! for the complex structure in
terms of those of Bilal–Fock–Kogan defined in~3.55!. This certainly allows one to write

m
j̄

i
~z,Y!5 (

uI u>1
F (I )

i ~z,Y! m
j̄

(I )
~z,z̄!, ~3.57!

where the very complicated coefficientsF (I )
i (z,Y) depending onG carry a well-defined geometri

cal meaning.

IV. CLASSICAL W`-ALGEBRA IN n-COMPLEX DIMENSIONS

Due to the holomorphically split expansion~3.45!, the action of the BRS operatorS on the
theory can be parametrized by means of new ghost fields directly obtained from this expa
These will be intimately related to theW`-algebra. Indeed, sinceSYa50, by using~3.46!, for
uAu>1, one gets the same combinatorial expansion as~3.54!,

SZ (A)~z,z̄!5
1

A!

] uAu

]YA
L~z,Y!U

Y50

5 (
1<uI u<uAu

G (I )
(A)~z,z̄!C (I )~z,z̄!, ~4.1!

where we have introduced the independent ghost fields

C (I )~z,z̄!ª
1

I !
D (I )~z,Y!L~z,Y!U

Y50

ª)
k51

n S 1

i k!
~D k~z,Y!! i kDL~z,Y!U

Y50

. ~4.2!

Note that from the very definitions, the dependence on the generalized Bilal, Fock, and K

pararameters can be isolated and turns out to be coupled to the ghostc̄ ī
ª c̄(0,ī ),

C (I )~z,z̄!5m
ī

(I )
~z,z̄!c̄(0,ī )~z,z̄!1¯ , c̄(0,ī )~z,z̄!ª

]L~z,Y!

] ȳī
U
Y50

, ~4.3!

the full detailed expression will be given in the following–see~4.10!.
Notably, after a tedious combinatorial calculation based upon the commutators~3.41!, the

BRS variations of the ghosts defined by~4.2! turn out to be local~in the sense that they do no
depend on thel fields!, namely, foruI u>1,

SC (I )~z,z̄!5 (
k51

n

~12d0i k
! (
J(k)<I (k)21k

~ I 2J(k)21k11r !!

~ I 2J(k)21k!!
3C (I 2J(k)21k11r )~z,z̄!] rC (J(k)11k)~z,z̄!,

~4.4!

where the notationJ(k) meansJ(k)5( j 1 , . . . ,j k,0, . . . ,0) ~and similarly forI (k)), J<I is a short-
hand for j k< i k , k51, . . . ,n and

~ I 2J(k)21k11r !!

~ I 2J(k)21k!!
5H i r2 j r11 if 1<r<k21

i k2 j k if r 5k

i r11 if k11<r<n

. ~4.5!

This formula represents the extended version ton complex dimensions of thechiral W`-algebra.
Indeed, let us considern51 a complex curve which represents a bidimensional theory built o
Riemann surface. In that case, the multi-indexI reduces to a simple index and foruI u5 i 1

5m,J(1)5( j 1)5 j , r 5k51, the formula~4.4! reduces~with ,5m2 j ) to that found in Refs. 19
and 20,
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SC (m)~z,z̄!5 (
,51

m

, C (,)~z,z̄!]C (m2,11)~z,z̄!, ~4.6!

and recalled in Sec. I—see~1.1!. Going back to the general case, at first orderuI u51, we refind the
usual BRS transformations for the chiral ghostsC i under diffeomorphisms ofM ,9

SC i~z,z̄!5C ,~z,z̄!],C i~z,z̄!, ~4.7!

showing that diffeomorphisms are actually captured by theW`-symmetry. In order to exemplify
once more ~4.4!, at the second orderuI u52, for 1< i< j <n, the multi-index I
5(0,...,0,1,0,...,0,1,0,...,0), where 1 at both thei th and j th places will be shorthandly written a
I 5( i j ) in order to recover a tensorial notation. With this notation, one gets

SC ( i j )~z,z̄!5C r~z,z̄!] rC ( i j )~z,z̄!12C ( i i )~z,z̄!] iC j~z,z̄!12C ( j j )~z,z̄!] jC i~z,z̄!

1(
r 51
rÞ i

n

C ( ir )~z,z̄!] rC j~z,z̄!1(
r 51
rÞ j

n

C ( j r )~z,z̄!] rC i~z,z̄!,

~no summation oni and j and recall that the independent ghosts areC ( i j )). In particular, the case
i 5 j is obtained by dividing both sides of the above equation by the symmetry factor 2,

whereI 5( i i ) means 2 at thei th place, a shorthand notation saying that the multi-index entries
i k52dki . Of course, there is the complex conjugate expression to~4.4! as well.

Following the BRS method recalled in Sec. I, the algebra of theW`-generators in then
complex dimensional case will be obtained by duality through the corresponding BRS func
operator~1.2! from the BRS transformations~4.4! of the chiral ghost fields themselves. By pe
forming this construction for the chiral ghosts, one should directly get a generalizationn
dimensions of the chiralW`-algebra~1.3!.

Accordingly, the BRS variations of the generalized Bilal–Fock–Kogan parameters~3.55! can
be directly computed from~4.4! by using a trick related to diffeomorphisms,25 namely,

$S, ]/] c̄ ī %5 ]̄ ī ,, together with~4.3!,

Sm
j̄

(I )
~z,z̄!5 ]̄ j̄C (I )~z,z̄!1 (

k51

n

~12d0i k
! (
J(k)<I (k)21k

~ I 2J(k)21k11r !!

~ I 2J(k)21k!!

3~C (I 2J(k)21k11r )~z,z̄!] rm j̄

(J(k)11k)
~z,z̄!2m

j̄

(I 2J(k)21k11r )~z,z̄!] rC (J(k)11k)~z,z̄!!.

~4.8!

By using once more the previous trick on~4.8! one ends up with the counterpart of the integ
bility condition ~3.30! in terms of the external fields~3.55! for uI u>1, and with the aforementione
notation
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]̄ ī m j̄

(I )
~z,z̄!2 ]̄ j̄m ī

(I )
~z,z̄!5 (

k51

n

~12d0i k
! (
J(k)<I (k)21k

~ I 2J(k)21k11r !!

~ I 2J(k)21k!!

3~m
ī

(I 2J(k)21k11r )~z,z̄!] rm j̄

(J(k)11k)
~z,z̄!

2m
j̄

(I 2J(k)21k11r )~z,z̄!] rm ī

(J(k)11k)
~z,z̄!!. ~4.9!

The chiral ghost fieldsC (I ) admit a local decomposition in terms of the fields~3.55! which
generalizes the well-known conformal one26 in two dimensions. The latter has already been
tended in Ref. 19 for Riemann surfaces. By definition the promised detailed expression for~4.3! is
written as

C (I )~z,z̄!5 (
uPu,uQ̄u50

uI u

Q̄! (
P1a1J11¯1auI uJuI u5I

a11¯1auI u5uQ̄u

3S (
S̄11¯1S̄uI u5Q̄

uS̄ku5ak , k51, . . . ,uI u

)
k51

uI u S 1

S̄k!
~m (Jk)~z,z̄!!S̄kD D c(P,Q̄)~z,z̄!, ~4.10!

where in the second summandak enumerates the number of multi-indices identical toJk , Jk

ÞJ, for kÞ, andk,,51, . . . ,uI u, (0<ak<uI u), the sum goes with no repetition, and, for a giv
multi-index S̄k5( s̄1

(k) , . . . ,s̄n
(k)),

~m (Jk)~z,z̄!!S̄k
ª~m

1̄

(Jk)
~z,z̄!! s̄1

(k)
¯~m

n̄

(Jk)
~z,z̄!! s̄n

(k)
~4.11!

and where new independent ghost fields have been introduced by

c(P,Q̄)~z,z̄!ª
1

P! Q̄!

] uPu

]yP

] uQ̄u

] ȳQ̄

L~z,Y!U
Y50

. ~4.12!

Note that expression~4.10! which expresses a change of generators for theW-symmetry is local.
For instance, the caseuI u51 gives

C i~z,z̄!5c( i ,0)~z,z̄!1m s̄
i ~z,z̄!c(0,s̄)~z,z̄!,

which is the expression of the chiral ghost fields in terms of the true ghost fieldsc( i ,0) andc(0,s̄) for
~infinitesimal! diffeomorphisms ofM ,9 while uI u52 yields, respectively, forI 5( i i ) and I
5( i j ), i , j ,

C ( i i )~z,z̄!5c( i i ,0)~z,z̄!1m s̄
i ~z,z̄!c( i ,s̄)~z,z̄!1~m s̄

i ~z,z̄!!2c(0,s̄s̄)~z,z̄!1m s̄
( i i )~z,z̄!c(0,s̄)~z,z̄!

1(
r̄ , s̄

m r̄
i ~z,z̄!m s̄

i ~z,z̄!c(0,r̄ s̄)~z,z̄!,

C ( i j )~z,z̄!5c( i j ,0)~z,z̄!1m s̄
i ~z,z̄!c( j ,s̄)~z,z̄!1m s̄

j ~z,z̄!c( i ,s̄)~z,z̄!1m s̄
( i j )~z,z̄!c(0,s̄)~z,z̄!

12m s̄
i ~z,z̄!m s̄

j ~z,z̄!c(0,s̄s̄)~z,z̄!1(
r̄ , s̄

~m r̄
i ~z,z̄!m s̄

j ~z,z̄!1m r̄
j ~z,z̄!m s̄

i ~z,z̄!!c(0,r̄ s̄)~z,z̄!.
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The ghostsc(R,S̄)(z,z̄) satisfy rather elaborate BRS transformations, which generalize form
~4.4! to the nonchiral sectors. They can be obtained either from the very definition Eq.~4.12! or
from the combined action of the decomposition Eq.~4.10! and the BRS variations~4.4! and~4.8!.
For uPu1uQ̄u>1 the variations look like

Sc(P,Q̄)~z,z̄!5 (
S̄<Q̄

(
k51

n

~12d0pk
! (
R(k)<P(k)21k

~P2R(k)21k11r !!

~P2R(k)21k!!

3c(P2R(k)21k11r ,Q̄2S̄)~z,z̄!] rc
(R(k)11k ,S̄)~z,z̄!

1~12d0Q̄!
~P11r !!

P!
(

S̄<Q̄,uS̄u>1

c(P11r ,Q̄2S̄)~z,z̄!] rc
(0,S̄)~z,z̄!

1 (
R<P

(
k̄51

n

~12d0q̄k̄
! (
S̄( k̄)<Q̄( k̄)21k̄

~Q̄2S̄( k̄)21k̄11s̄!!

~Q̄2S̄( k̄)21k̄!!

3c(P2R,Q̄2S̄k̄21k̄11s̄)~z,z̄!]̄ s̄c
(R,S̄k̄11k̄)~z,z̄!

1~12d0P!
~Q̄11s̄!!

Q̄!
(

R<P,uRu>1
c(P2R,Q̄11s̄)~z,z̄!]̄ s̄c

(R,0)~z,z̄!, ~4.13!

and, according to the BRS technique briefly recalled in Sec. I, give rise to theW`-structure at a
nonchiral level. These results provide~in the (z,z̄) submanifold characterized byYa5Ȳā50 in
the symplectic space! an infiniteW`-algebra of which the first step describes the reparametriza
invariance (z,z̄)→(Z a(z,z̄),Z a(z,z̄)) studied in Ref. 9.

Here, what is left over is the relic of the deformation process forYa ,ȲāÞ0 given by an
infinite hierarchy of smooth changes of local complex coordinates (z,z̄)
→(Z (A)(z,z̄),Z (A)(z,z̄)) on the base~the (z,z̄)-space! of the symplectic space. The ne
W`-algebra really encodes the behavior under symplectomorphisms of this hierarchy.

V. TOWARD A LAGRANGIAN FORMULATION

If we now wish to construct a Lagrangian field theory whose classical limit is invariant u
this n-dimensional extension of aW`-algebra, it would retain the imprinting of the infinite ex
pansion from which the algebra is extracted, by reproducing a theory which is badly packed
(z,z̄) space and makes an attempt to get away in the full symplectic space. The ‘‘classical’’
whose dynamics serve to probe theYa ,ȲāÞ0 sector are the generalized Bilal–Fock–Kog
parametersm

j̄

(I )
(z,z̄) defined in~3.55!. Indeed they are the only ‘‘true’’ local fields from which th

pure gravitational theory would depend on. They are sources related to higher spin fields as
unidimensional complex case, see, e.g., Ref. 24.

So from the BRS approach an infinite set of Ward operatorsW(I )(z,z̄) can be obtained and
from which a classical actionGCl may be defined in the vacuum sector as follows. ForuI u>1,

W(I )~z,z̄!GCl52 ]̄ j̄

dGCl

m
j̄

(I )
~z,z̄!

1 (
uLu>1

~~ i r1, r !~] rm j̄

(L)
~z,z̄!!1, r m

j̄

(L)
~z,z̄!] r !

dGCl

m
j̄

(I 1L21r )~z,z̄!

50. ~5.1!
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These encapsulate the first-order caseuI u5uLu51 already treated in Ref. 9. Remark also that
order to know the]̄ divergence of the higher spin current, dual tom

j̄

(I )
, the infinite collection of

higher spin fields must be known first.
Using the usual techniques, which in the two-dimensional limit lead from Ward identitie

O.P.E. expansion,24 we can derive a generalization of the ‘‘O.P.E.’’ algebra which would prom
the present symplectic approach, since ann complex dimensional short-distance product cou
generally be a difficult task to manage.

For bothuI u and uJu greater than 0, one obtains

p(
j 51

n E
Cn21S )

,51
,Þ j

n dw̄,̄∧dw,

2i ~w,2z8,!D d2GCl

dm
j̄

(I )
~w1, . . . ,z8 j , . . . ,wn,w̄1, . . . ,z̄8 j , . . . ,w̄n!dm

k̄

(J)
~z,z̄!

U
m50

1(
r 51

n S i r1 j r

~zr2z8r !2 2
i r

zr2z8r D S )
,51
,Þr

n 1

z,2z8,D dGCl

dm
j̄

(I 1J21r )~z,z̄!
U

m50

50. ~5.2!

leading to a convolution algebra, where the directional properties of the~short! distance limit is
taken into account, for the Green functions generated by the generalized Bilal–Fock–K
fields. Its two-dimensional limit gives the usual classical O.P.E. expansion.

Anyhow, due to the anomalous character of the diffeomorphism symmetry at the qua
level, we must foresee whether this defect would be transmitted to the residual part of the a
Hence quantum corrections would be required to give a meaning to the theoretical model a
still under investigation.

VI. CONCLUSIONS

It has been shown how a symplectic approach gives a strong geometrical way of extend
notion of W`-algebra as a symmetry arising in the one complex dimensional case to a genn
complex dimensional~compact! manifold.

This symmetry appears from consistent deformations of integrable complex structures
spirit of Kodaira–Spencer deformation. The decomposition in terms of local quantities such
Bilal–Fock–Kogan coefficients considered as generalized sources for higher spin fields na
emerges from the construction. However, in this symplectic framework, a truncation pr
analogous to the one for Riemann surfaces21 from W`-algebra to a finiteW-algebra is still
lacking. In particular, the latter could be of some interest in both string and brane theories~see,
e.g., Ref. 12! where higher spin fields appear in four real dimensions. In these theories, the
seem to be related to some finiteW-algebra. However theoretical models with explicit higher sp
fields still remain to be constructed.

More generally, even if the topic ought to seem, according to the physical context, r
technical and strongly grounded on mathematics, we would emphasize that the important p
of a metric or a complex structure for a physical theory embedded in a gravitational model
from being understood. So any little step in that direction could be profitable in discoverin
role of Nature and the intricacies of geometrical implications within the formulation of phys
theories.
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Analog of secondary invariants for holomorphic
vector bundles
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Given a pair of holomorphic structures on a complex vector bundle over a complex
manifold, Dolbeault cohomological invariants are constructed. The construction is
based on the construction of Chern–Simons secondary classes. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1510972#

I. INTRODUCTION

Let E be aC` complex vector bundle over a complex manifoldM . Holomorphic structures on
E are defined by giving a Dolbeault operator. We recall that a Dolbeault operator is a first
differential operator

]̄E :E→VM
0,1~E!

satisfying the Leibniz identity and the integrability condition]̄Es ]̄E50. The Leibniz identity says
that ]̄E( f s)5 f ]̄E(s)1s^ ]̄ f , wheref is a locally defined smooth function onM ands is a locally
defined smooth section ofE. The ~locally defined! solutions of the operator are the holomorph
sections of the corresponding holomorphic vector bundle.

Let ]̄0 and]̄1 be two Dolbeault operators onE. We construct a differential formDk( ]̄0 ,]̄1) of
degree 2k11 on M . This formDk( ]̄0 ,]̄1) is of Hodge type (0,2k11) and it is]̄ closed. There-
fore,Dk( ]̄0 ,]̄1) gives a Dolbeault cohomology class inH2k11(M ,OM), whereOM is the coherent
analytic sheaf of holomorphic functions.

The construction ofDk( ]̄0 ,]̄1) relies on the construction of secondary classes, and it has s
of the properties enjoyed by secondary classes.

If ]̄2 is a holomorphic structure onE such that]̄1 and ]̄2 lies in the same path connecte
component in the space of all holomorphic structures onE, then for anyk>1, the Dolbeault
cohomology class represented byDk( ]̄0 ,]̄1) coincides with the one represented byDk( ]̄0 ,]̄2)
~Proposition 3.3!.

If ]̄0 and]̄1 are two holomorphic structures onE related by aC` automorphism ofE, then the
cohomology class represented byDk( ]̄0 ,]̄2) is contained in the image of the homomorphism

H2k11~M ,~2pA21!k11Z!→H2k11~M ,OM !

defined by the obvious inclusion of the constant sheaf (2pA21)k11Z in the sheafOM of holo-
morphic functions~Theorem 4.2!.

II. SECONDARY INVARIANTS

Let M be a smooth manifold. LetE be aC` complex vector bundle overM . The space of
sections of End(E) ^ ∧T* M has an obvious algebra structure which is defined using the~associa-
tive! multiplication of the fibers of End(E) and the exterior algebra structure of∧T* M . The
multiplication operation of End(E)-valued forms will also be denoted∧. There is a natural ho-

a!Electronic mail: indranil@math.tifr.res.in
57730022-2488/2002/43(11)/5773/9/$19.00 © 2002 American Institute of Physics
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momorphism End(E) ^ ∧T* M→∧T* M of vector bundles that sends anys^ v, where s
PEnd(Ex) and vP∧Tx* M are in the fiber over any pointxPM , to trace(s)v. This homomor-
phism will be denoted by trace.

Lemma 2.1: Takeu iPC`(M ,End(E) ^ ∧niT* M ), where iP@1,d#. The identity

trace~u1∧u2∧¯∧ud!5~21!n1(n21n31¯1nd)trace~u2∧u3∧¯∧ud∧u1!

is valid.
Proof: This is an immediate consequence of the fact that trace(AB)5trace(BA), where

A,BPM (n,C).
Let ¹ be a connection onE. The differential operator

C`~E^ ∧ iT* M !→C`~E^ ∧ i 11T* M !,

wherei>1, induced by¹ will also be denoted by¹. The curvature¹+¹ of ¹ will be denoted by
K¹ . SoK¹PC`(End(E) ^ ∧2T* M ). We will often use the notation¹2 to denote the curvature o
¹.

Lemma 2.2: If there is aEnd(E)-valued one formu on M such that

K¹5u∧u,

then the2k-form trace((K¹)k) vanishes identically.
Proof: Since (K¹)k5(u∧u)k5u∧u2k21, by settingd52, u15u, andu25u2k21 in Lemma

2.1 we obtain that trace((K¹)k)52trace((K¹)k), and hence the lemma follows. h

The Hermitian–Yang–Mills connection on a polystable Higgs bundle is an example
connection satisfying the condition in Lemma 2.2.1 Let X be a compact connected Ka¨hler mani-
fold andV a holomorphic vector bundle overX. Let

fPH0~X,End~V! ^ VX
1 !

be a holomorphic section withf∧f50. HereVX
1 is the holomorphic cotangent bundle ofX. For

notational convenience, the vector bundle End(V) ^ VX
1 will be denoted byVX

1(End(V)). If the
pair (V,f), which is called aHiggs bundle, is stable andc1(E)505c2(E), then V admits a
unique Hermitian connection satisfying the Yang–Mills equation.1 If H is a Hermitian metric on
V and ¹H the corresponding Chern connection, then the Yang–Mills equation is the fla
condition

~¹H1f1f* !250 ~2.1!

of the connection¹H1f1f* , wheref* PC`(M ,VX
0,1(End(V))) is the adjoint off defined

usingH. It is easy to see that~2.1! is equivalent to the equation (¹H)252(f1f* )2. Therefore,
a Hermitian–Yang–Mills connection¹H satisfies the condition in Lemma 2.2 withu5A21(f
1f* ).

Take two connections¹0 and¹1 on E. Setvª¹12¹0 , which is a End(E)-valued one-form,
and for anytP@0,1#, let

¹tª¹01tv

be the connection onE. For anyk>0, consider the smooth differential form

Ck~¹0 ,¹1!ªE
0

1

trace~v∧~¹ t
2!k!PC`~M ,∧2k11T* M ! ~2.2!

of degree 2k11 onM . Note that the integration is defined using the vector space structure o
space of forms. The following lemma is essentially a consequence of Lemma 2.2.
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Lemma 2.3: If both¹0 and ¹1 satisfy the condition in Lemma 2.2, then the differential fo
Ck(¹0 ,¹1) defined in (2.2) is closed.

Proof: Let p:M3@0,1#→M be the projection map. The family of connections¹t gives a
connection, which we will denote by¹̄, on p* E. For eachtP@0,1#, the connection induced on
(p* E)uM3$t% by ¹̄ is ¹t , and for anyxPM , the induced connection on (p* E)u$x%3[0,1] coincides
with the natural trivialization of a pullback bundle on a fiber of the projection. These two p
erties evidently determine¹̄. The Bianchi identity, says that for a connection¹8 on a vector
bundle E8, the End(E8)-valued three-form¹8+¹8+¹8 vanishes identically. Using the Bianch
identity for ¹̄ it follows that

dCk~¹0 ,¹1!5
1

k11 E0

1 d

dt
trace~~¹ t

2!k11!5
trace~~¹1

2!k11!

k11
2

trace~~¹0
2!k11!

k11

~see Ref. 2, Appendix for details!. Now Lemma 2.2 completes the proof. h

For two connections¹0 and¹1 as in Lemma 2.3~satisfying the condition in Lemma 2.2!, the
de Rham cohomology class inH2k11(M ,C) represented by the closed formCk(¹0 ,¹1) is an
analog of the Chern–Simons secondary invariant for flat connections.3 See Ref. 4 for construction
of secondary invariants of Hermitian–Yang–Mills connections.

Although in the construction ofCk(¹0 ,¹1) we use the straight-line segment defined byt°¹t

in the affine space of connections onE, the cohomology class represented by the closed f
Ck(¹0 ,¹1) is independent of the choice of path connecting¹1 to ¹0 . To prove this, letg be a
smooth map from@0,1# to Conn(E), the space of connections onE, such thatg(0)5¹0 and
g(1)5¹1 . Let

V tPC`~M ,End~E! ^ ∧2T* M ! ~2.3!

be the curvature ofg(t). Now define

Ck
g~¹0 ,¹1!ªE

0

1

traceS dg~ t !

dt
∧~V t!

kDdt. ~2.4!

Note thatdg(t)/dtPC`(M ,End(E) ^ T* M ).
Proposition 2.4. The form Ck

g(¹0 ,¹1) is closed. The cohomology class in H2k11(M ,C) repre-
sented by it coincides with the one represented by Ck(¹0 ,¹1) defined in (2.2).

Proof: If k50, thenCk
g(¹0 ,¹1) andCk(¹0 ,¹1) coincide with¹12¹0 . So assumek>1. Let

q:M3@0,1#3@0,1#→M

be the natural projection map. Consider the map

ḡ:@0,1#3@0,1#→Conn~E!

that sends any (s,t) to (12s)¹t1sg(t). The mapḡ defines a connection onq* E over M

3@0,1#3@0,1#. The connection onq* E, which we will denote by¹̄, is determined by the
following two conditions. For any (s,t)P@0,1#3@0,1#, the restriction of¹̄ to (q* E)uM3$s%3$t%

coincides with the connectionḡ(s,t), and for any xPM , the restriction of ¹̄ to
(q* E)u$x%3[0,1]3[0,1] coincides with the connection defined by the natural trivialization
(q* E)u$x%3[0,1]3[0,1] .

The curvature of the connectionḡ(s,t) will be denoted byQ(s,t). Let c denote the one-form
on @0,1#3@0,1# with values inC`(M ,∧2k11T* M ) defined by

c~s,t !~v !5traceS ]ḡ

]v
~s,t !∧Q~s,t !kD ,
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where (s,t)P@0,1#3@0,1#, v is a tangent vector to@0,1#3@0,1# at (s,t) and ]/]v is the direc-
tional derivative. So, we have

E
]([0,1]3[0,1])

c5Ck
g~¹0 ,¹1!2Ck~¹0 ,¹1!,

where](@0,1#3@0,1#) denotes the boundary of@0,1#3@0,1# with the anticlockwise orientation
Therefore, Stokes’ theorem gives

Ck
g~¹0 ,¹1!2Ck~¹0 ,¹1!5E

[0,1]3[0,1]
dc.

It suffices to show that the form onM defined by the right-hand side is exact.
Let ¹̄2 be the curvature of the connection¹̄ on q* E. Consider the differential form of degre

2k12 on M3@0,1#3@0,1# defined by trace((¹̄2)k11). It is straightforward to check that th
Künneth component of this form in∧2k11T* M ^ ∧1(@0,1#3@0,1#) coincides with form defined
by c.

Now it follows that dc coincides with the two-form that sends any ordered pair of tang
vectorsv1 , v2PT(s,t)@0,1#3@0,1# at any point (s,t) to

kd traceS ]ḡ

]v1
~s,t !∧

]ḡ

]v2
~s,t !~Q~s,t !!k21D .

Therefore,dc is a two-form on@0,1#3@0,1# with values in exact (2k11)-forms onM . Conse-
quently,* [0,1]3[0,1]dc is an exact (2k11)-form onM . This completes the proof of the propos
tion. h

The Proposition 2.4 has the following consequence. Let¹0 and¹1 be two connections as in
Proposition 2.4 both satisfying the condition in Lemma 2.2. Suppose that¹0 and¹1 are such that
there is a smooth pathg in Conn(E) connecting¹0 with ¹1 and satisfying the condition that eac
g(t) is a flat connection, that is eachV t in ~2.3! vanishes identically. Then the closed for
Ck(¹0 ,¹1) is exact for eachk>1, whereCk(¹0 ,¹1) is defined in~2.2!. Indeed,Ck(¹0 ,¹1) and
Ck

g(¹0 ,¹1) @defined in~2.4!# represent the same cohomology class~Proposition 2.4!, and the form
Ck

g(¹0 ,¹1) is identically zero for such a pathg providedk>1.

III. INVARIANTS FOR HOLOMORPHIC BUNDLES

Let M be a complex manifold, and]̄ i , i 50,1, be two holomorphic structures onE. So
]̄ i :E→VM

0,1(E) is a first order differential operator satisfying the Leibniz identity

]̄ i~ f s!5 f ]̄ is1s^ ]̄ f ,

where f is a C` ~local! function ands is a locally defined smooth section ofE. In order to be a
holomorphic structure, the operator]̄ i must satisfy the integrability condition]̄ i+ ]̄ i50. In other
words, such an operator]̄ i can be thought of as a flat connection of type~0,1!. We denote]̄1

2 ]̄0 by v, which is a section ofVM
0,1(End(E)). So v is a End(E) valued form of Hodge type

~0,1!.
For anytP@0,1#, define

]̄ t5~12t !]̄01t ]̄15 ]̄01tv.
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The Leibniz identity is clearly satisfied by]̄ t , but the integrability condition is not necessari
satisfied. LetQ t denote]̄ t+ ]̄ t , which is a section ofVM

0,2(End(E)). It may be noted that the
Bianchi identity]̄ t(Q t)50 is satisfied by]̄ t .

As in ~2.2!, define

Dk~ ]̄0 ,]̄1!ªE
0

1

trace~v∧~Q t!
k!dt ~3.1!

which is a differential form of Hodge type (0,2k11) on M .
We have the following analog of Lemma 2.3.
Lemma 3.1: The form Dk( ]̄0 ,]̄1) is ]̄-closed.
We recall that the exterior derivatived5]1 ]̄. In other words, a smooth differential formc of

Hodge type (0,k0) is ]̄ closed if and only ifdc is of Hodge type (1,k0). The proof of Lemma 3.1
is identical to that of Lemma 2.3.

So, Dk( ]̄0 ,]̄1) gives an element in the Dolbeault cohomologyH
]̄

2k11
(M ) of M . Recall that

H
]̄

j
(M ) coincides withH j (M ,OM), whereOM is the structure sheaf ofM ~the sheaf of holomor-

phic functions!.
For notational convenience, let Dol(E) denote the space of first order operators

]̄E :E→VM
0,1~E!

on E satisfying the Leibniz identity and Hol(E),Dol(E) the subset consisting of all those o
erators that satisfy the integrability condition]̄E+ ]̄E50. So, Dol(E) is an affine space for the
vector spaceC`(M ,VM

0,1(End(E))) @the space of End(E) valued forms of type~0,1!#.
As in Proposition 2.4, if instead of the line segment in Dol(E) defined byt° ]̄ t we choose a

different path smoothg in Dol(E) connecting]̄1 with ]̄0 , then the corresponding form is also]̄

closed, and furthermore, the cohomology class inH
]̄

2k11
(M ) represented by it coincides with th

one represented byDk( ]̄0 ,]̄1). The proof is exactly identical to Proposition 2.4.
As in Sec. II, we have the following corollary.
Corollary 3.2: If there is a pathg connecting]̄1 with ]̄0 such that eachg(t) is an integrable

holomorphic structure on E, then the cohomology class in H
]̄

2k11
(M ) represented by Dk( ]̄0 ,]̄1)

vanishes if k>1.
Let ]̄2PHol(E) be a third integrable Dolbeault operator. The above corollary has the fol

ing generalization.
Proposition 3.3: If there is a pathg connecting]̄1 with ]̄2 such that eachg(t) is an integrable

holomorphic structure on E, then for any k>1, the cohomology class in H
]̄

2k11
(M ) represented

by Dk( ]̄0 ,]̄2) coincides with the one represented by Dk( ]̄0 ,]̄1).
Proof: Since the cohomology classDk( ]̄0 ,]̄2) does not depend on the choice of the pa

connecting]̄0 to ]̄2 ~see the paragraph before Corollary 3.2! we will computeDk( ]̄0 ,]̄2) by
constructing a path.

Fix a pathd in Dol(E) connecting]̄0 to ]̄2 that passes through]̄1 . The path is assumed t
pass through]̄1 exactly once. Since Dol(E) is an affine space, such a path exists. Letd1 denote
the part ofd from ]̄0 to ]̄1 andd2 the rest, namely the part from]̄1 to ]̄2 . Since the integral@as
in ~3.1!# overd is the sum of integrals overd1 andd2 , and by Corollary 3.2 the cohomology clas
represented by the integral overd2 is zero, the proof is complete. h

Instead of holomorphic structures onE, we can consider a differential operator

]E :E→VM
1,0~E!
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satisfying the Leibniz identity]E( f s)5 f ]Es1s] f and the integrability condition]E+]E50. If ]0

and]1 are two such differential operators, then imitating~3.1! define

Dk8~]0 ,]1!ªE
0

1

trace~~]12]0!∧~] t+] t!
k!, ~3.2!

where] tª(12t)]01t]1 . The (2k11,0)-form Dk8(]0 ,]1) is ] closed, and hence gives a coh
mology class inH]

2k11(M ).
Fix a Hermitian structure on theC` vector bundleE. Given any ]̄EPHol(E), there is a

unique connection onE, known as theChern connection, determined by the following two
conditions: the connection preserves the Hermitian structure and the~0,1! part of the connection
coincides with]̄E .

The ~1,0! part of the Chern connection is a differential operator of the above type. Tak]̄ i

PHol(E), i 50,1, and let] i be the~1,0! part of the corresponding Chern connection. It is easy
check that

Dk~ ]̄0 ,]̄1!52Dk8~]0 ,]1!,

whereDk and Dk8 are defined in~3.1! and ~3.2!, respectively. Indeed, this follows immediate
from the fact that if]21 ]̄2 is a connection onE preserving the Hermitian structure, then th
connection (]22b* )1( ]̄21b) on E also preserves the Hermitian structure, whereb is any
End(E)-valued~0,1!-form.

The construction of the cohomology classDk( ]̄0 ,]̄1) can be generalized as follows.
Let T be a compact oriented smooth manifold of dimensiond11. The manifoldT is assumed

to have a boundary. LetS5]T be the boundary.
Take a smooth map

f :S→Dol~E!. ~3.3!

Since Dol(E) is an affine space,f extends to a smooth map

F:T→Dol~E!.

Indeed, any smooth function onS extends toT as a smooth function. Since Dol(E) is isomorphic
to a vector space, this extension property remains valid for functions with values in Dol(E).

For the Dolbeault operatorF(t), the obstruction to integrability, namelyF(t)+F(t) will be
denoted byF(t)2. So, F(t)2PC`(M ,VM

0,2(End(E))). Using F, we have a (d11)-form on T,
with values inC`(M ,VM

0,2k2 l 12) which is defined as follows. Take anytPT and let

dF~ t !:TtT→C`~M ,VM
0,1~End~E!!!

be the differential of the mapF. @Recall that Dol(E) is an affine space for the vector spa
C`(M ,VM

0,1(End(E))).] Take two integersk,l>0. Associating to tangent vectorsv iPTtT, i
P@1,l #, the form

trace~~dF~ t !~v1!∧dF~ t !~v2!∧¯∧dF~ t !~v l !!∧~F~ t !2!k2 l 11!PC`~M ,VM
0,2k2 l 12!

we get al -form on T with values inC`(M ,VM
0,2k2 l 12). This form onT will be denoted byQ l .

Lemma 3.4: The integral

E
T
Qd11PC`~M ,VM

0,2k112d!
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is ]̄ closed. Furthermore, its Dolbeault cohomology class is independent of the extension
other words, it depends only on f in (3.3).

Proof: It is a straightforward computation to check that the identity

~dQ l !~v1 ,v2 ,...,v l 11!5~k112 l !]̄~Q l 11~v1 ,v2 ,...,v l 11!! ~3.4!

is valid, wherev iPTtT.
For the inclusion map ofS, the pullback ofQd to S vanishes identically. Now using~3.4!,

Stokes’ theorem for the formQd on T says that*TQd11 is a ]̄-closed form.
SupposeF andF1 are two extensions off to T. SetT̄5T3@0,1# and define

F̄:T̄→Dol~E!

by F̄(z,s)5(12s)F(z)1sF1(z), wherezPT andsP@0,1#. Now in ~3.4!, setT5T̄ andF5F̄.
From Stokes’ theorem in~3.4! with l 5d11, it follows immediately that*TQd11 represents the
same cohomology class for bothF andF1 . This completes the proof of the lemma.

The identity~3.4! shows that the cohomology class represented by*TQd11 does not depend
on T. Indeed, letT8 be another oriented manifold with boundary such that]T85S. Denote
TøST8, the gluing ofT with T8 alongS, by T2 . SoT2 is an oriented manifold without boundar
The identity~3.4! says that the formQd11 is exact. Consequently,

E
T2

Qd1150.

In other words,*TQd115*T8Qd11 . Therefore, we have the following theorem.
Theorem 3.5:Given any map

f :S→Dol~E!,

where S is a boundary of some smooth oriented manifold, the integral

E
T
Qd11PC`~M ,VM

0,2k112d!,

where T is a manifold with boundary given by S, gives a cohomology class in H
]̄

2k112d
(M ) which

depends only on f and, in particular, it is independent of the choices of T and the extension
map f to T.

In the next section, some rigidity properties of the cohomology classes defined in Lemm
and Lemma 3.1 are described.

IV. RIGIDITY PROPERTIES

Let ¹ be a connections onE whose curvature coincides withu2, whereu is a End(E) valued
one-form. LetA be a C` automorphism ofE. Set ¹15A* ¹. Therefore, the curvature of th
connection¹1 coincides with (A* u)2.

Proposition 4.1: The cohomology class Ck(¹,¹1)PH2k11(M ,C) defined in Lemma 2.3 is
contained in the image of H2k11(M ,(2pA21)k11Z).

Proof: Consider the pullback ofE to M3@0,1# using the natural projection toM . Construct
the vector bundleĒ over M3S1 identifying this pullback bundle alongM3$0% and M3$1%
using the automorphismA of E. Let ¹̄ be the connection onĒ which is t¹1(12t)¹1 on M
3$t% and coincides with the trivialization in the direction of@0,1#. Consider the Ku¨nneth decom-
position of the Chern character form (k11)!Chk11(Ē) over M3S1 of the connection¹̄ over Ē.
The Künneth component of type (2k11,1) coincides with the formCk(¹,¹1) ^ dt, where
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Ck(¹,¹1) is defined in~2.2! anddt is the natural one-form onS15R/Z. Since the cohomology

class represented by (k11)!Chk11(Ē) is in the image ofH2k12(M3S1,(2pA21)k11Z), each of
its Künneth components are also in the image of the cohomology group with value
(2pA21)k11Z. Therefore, the cohomology class represented byCk(¹,¹1) is in the image of
H2k11(M ,(2pA21)k11Z) and the proposition is proved. h

We will show that if ]̄0 and ]̄1 are two holomorphic structures on aC` vector bundleE

related by an automorphism ofE, then the cohomology class represented by the formDk( ]̄0 ,]̄1)
is integral.

Let M be a complex manifold. For anyn>0, consider the natural projection

t~n!:C`~M ,∧nTC* M !→C`~M ,VM
0,n!

that sends a complexn form to its component of type (0,n). Here TC* MªT* M ^ RC is the
complexified cotangent bundle. The following diagram of homomorphisms

is commutative. Therefore,t(n) induces a homomorphism

t̂~n!:Hn~M ,C!→HDol
n ~M ! ~4.1!

from the complex de Rham cohomology to the Dolbeault cohomology.
Consider the inclusion map of the constant sheafC on M in the structure sheafOM . This map

induces a homomorphism

Hn~M ,C!→Hn~M ,OM !5HDol
n ~M !

which obviously coincides witht̂(n) constructed in~4.1!.
Let E be a holomorphic vector bundle overM defined by a Dolbeault operator]̄0 . Take aC`

automorphismA of E. Set

]̄1ªA21+ ]̄0+A

to be the new holomorphic structure onE defined byA.
Theorem 4.2:The Dolbeault cohomology class Dk( ]̄0 ,]̄1) defined in~3.1! is in the image of

H2k11(M ,(2pA21)k11Z) for the mapt̂(2k11) defined in~4.1!.
Proof: Take a connection¹ on E such that the~0,1! component of¹ coincides with]̄0 . For

example,¹ can be the Chern connection for a Hermitian structure on the holomorphic v
bundleE.

Set¹1ªA* ¹. Consider the vector bundleĒ over M3S1 constructed in the proof of Propo
sition 4.1, and construct the connection¹̄ on Ē exactly as in the proof of Proposition 4.1.

Let

bPH2k11~M ,C! ^ H1~S1,C!

be the Künneth component of the Chern character form (k11)!Chk11(Ē) for the connection¹̄.
Using the natural isomorphismH1(S1,C)>C, the cohomology classb gives an elementb̂
PH2k11(M ,C). It was noted in the proof of Proposition 4.1 thatb̂ is in the image of
Hn(M ,(2pA21)k11Z).
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From the definition of the formDk( ]̄0 ,]̄1) given in ~3.1! it follows immediately that the
differential form t(2k11)(b̂) on M of Hodge type (0,2k11) coincides withDk( ]̄0 ,]̄1). This
completes the proof of the theorem. h

1C. T. Simpson, Publ. Math.~I.H.E.S.! 75, 5–95~1992!.
2S. S. Chern,Complex Manifolds Without Potential Theory~Universitext, Springer-Verlag, Berlin, 1979!.
3S. S. Chern and J. Simons, Ann. Math.99, 48–69~1974!.
4I. Biswas, Int. J. Math.6, 193–204~1995!.
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How to generate spinor representations in any dimension
in terms of projection and nilpotent operators

N. Mankoč Borštnika)

Department of Physics, University of Ljubljana, Jadranska 19, Ljubljana,1111,
and Primorska Institute for Natural Sciences and Technology,
C. Marežganskega upora 2, Koper 6000, Slovenia

H. B. Nielsenb)

Department of Physics, Niels Bohr Institute, Blegdamsvej 17, Copenhagen, DK-2100
and DESY, D-22603 Hamburg, Germany

~Received 28 November 2001; accepted 18 June 2002!

We present a technique to construct a spinor space basis as products of certain
nilpotents and projections formed fromga for which we only need to know that
they obey the Clifford algebra. The technique works for all dimensions and signa-
tures. We use this technique to deliver a concrete choice ofg-matrices and Lorentz
group generators for~fundamental representations of! spinors in a rather systematic
and transparent way. We further develop the formalism by proposing the corre-
sponding graphic presentation of basic states, which offers an easy way to see all
the quantum numbers of states with respect to the generators of the Lorentz group,
as well as transformation properties of the states under any element of the Clifford
algebra. ©2002 American Institute of Physics.@DOI: 10.1063/1.1505125#

I. INTRODUCTION

If one wants to work with the Dirac~or the Weyl! spinor states, onea priori has the problem
that one must choose a certain representation of thega-matrices before writing down in a safe wa
any state of the spinor. It is therefore often attractive to avoid as long as possible writing
explicit spinor states. In this article, we propose the construction of a basis for spinors made
products of the formal Clifford algebra objects, presented later in this article. Looking for how
left multiplication with ga transforms these formal Clifford algebra objects, we construct re
sentations for thega and accordingly for all the products ofga. These technique enables u
accordingly to find solutions of the Weyl or the Dirac equation without making a choice
special representation forga operators.

The technique is built on the property of spinors that eigenstates of a particular member
Cartan subalgebra of the Lorentz group can be expressed as nilpotents and projectors, exp
which are constructed out ofga’s as odd and even objects inga’s, respectively, and accordingl
a spinor basis can be expressed as products of nilpotents and projectors, operating on an~unim-
portant! ‘‘vacuum state.’’

We indeed start by takingga’s as abstract objects, fulfilling the Clifford algebra~Sec. II!. We
then construct a series of the Clifford algebra elements, which can be used as a basis
representation of the Clifford algebra in the following sense: When multiplying from the left t
special Clifford algebra elements, which we call our ‘‘basis,’’ with any of the Clifford alge
elements, we get a linear combination of these ‘‘basic’’ elements back. In other words, our ‘‘b
spans a left ideal.~The reader should see also Chap. 3 of Chevalley’s book.1,2! We can consider the
action of left multiplication by an element of the Clifford algebra on the space spanned b
‘‘basis’’ as a representation of the Clifford algebra. Accordingly we show by this procedure
~well known3! fact that the Clifford algebra has an operator representation, which is known a

a!Electronic mail: norma.s.mankoc@ijs.si
b!Electronic mail: HBECH@nbivms.nbi.dk
57820022-2488/2002/43(11)/5782/22/$19.00 © 2002 American Institute of Physics
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spinor space. So we can consider elements of our special ‘‘basis’’ as a proposal for a ba
spinors.

The proposed technique was initiated and developed by one of the authors of this article
proposing an approach4–6 in which all the internal degrees of freedom of either spinors or vec
can be described in the space ofd-anticommuting~Grassmann! coordinates, if the dimension o
ordinary space is alsod. In this approach~two kinds of! ga operators were defined. One of the tw
kinds ofga’s was used to generate nilpotents and projectors—eigenstates of the Cartan sub
of the Lorentz group—products of which define, when operating on a vacuum state, basic v
These 2d basic vectors are polynomials of anticommuting coordinates and are orthonorma
respect to the inner product defined as an integral over anticommuting coordinates, w
appropriately chosen weight function. They form an orthonormal basis for spinors.

Both authors of this work then used the results of this approach in the space of differ
forms to generalize7 the approach of Ka¨hler,8 who defined in the space of differential forms spi
of spinors.

We recognized that mapping of ideals to spinor representations can lead either to on
irreducible representation or to ‘‘families’’ of representations~Sec. V! ~which we have noticed
before5,6!. We investigate the consequence of seeking to keep all the basis spinors corresp
to our basis in the Clifford algebra linearly independent. That of course means that a red
representation of the Clifford algebra is needed and it is to have ford even 2d/2 replicas and ford
odd 2(d11)/2 replicas of the usual irreducible spinor representation. Usually, of course, we
with only one ‘‘family,’’ that is with only one Dirac spinor.

Using this technique, it is then straightforward, for example, to find solutions of the D
equation, for either massless or massive spinors, for any dimensiond and for any signature~Sec.
IX !, or to apply any operator to a spin state~Secs. III C and VII!, or to find irreducible represen
tations of subgroups of the Lorentz group SO(q,d2q), whereq means the number of timelike
coordinates.

We further propose a very simple graphic representation~Sec. VI!, which makes the techniqu
transparent by enabling us to easily see all the quantum numbers of states with respec
generators of the Lorentz group, as well as how states transform when operated on by the
tors.

We demonstrate~Sec. VIII! the proposed technique as well as the graphic representatio
this technique ford53 andd54 and the Minkowski metric.

In this article, we assume an arbitrary signature of space–time so that our metric tensohab,
with a,bP$0,1,2,3,5,...%, is diagonal with valueshaa561, depending on the chosen signatu
(11 for timelike coordinates and21 for spacelike coordinates!.

II. CLIFFORD AND LORENTZ ALGEBRA

It is well known that there exist for any dimensiond and any signature the operatorsga which
fulfill the Clifford algebra. Following the Dirac procedure~a similar procedure with quadrati
forms can be found in Ref. 1!, one finds the algebra whichga’s have to fulfill by assuming the
equation of motion for a particle, which is called a spinor, to be linear in the momentumpa. A
momentumpa is a vector in ad-dimensional space, in which the metric tensorhab ~assumed for
simplicity diagonal! hasq diagonal elements being 1 andp5d2q being21. For this purpose the
operatorsga, with a vector indexa, have to be introduced, which commute withpa, and operate
on some abstract space which is called the spinor space. So, when consideringga, we understand
that we are making a basis in the vector space marked with the indexa.

In order that an equation of motion linear in the momentumpa and therefore of the form
gapac50 for a wave functionc should lead to the Klein–Gordon equationpahabp

bc50 ~when
multiplied from the left bygapa, say!, it should be required that the operators on the spinor sp
ga should obey the algebra, called the Clifford algebra,

$ga,gb%15I2hab, for a,b P$0,1,2,3,5,...,d%, ~1!
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for any d, even or odd, and withI , which is the unit element in the Cliffird algebra. He
$ga,gb%65gagb6gbga.

In this article, we start by assuming abstract objectsga for which we only need to know tha
they fulfill the Clifford algebra@Eq. ~1!#. We do not assume that they are the operators. We de
that they can be represented by operators operating on a space spanned by a certain bas
we construct out of the Clifford algebra objectsga themselves.

We are therefore considering a Clifford algebraC over a d-dimensional vector space an
denote a set of elements corresponding to an orthonormal basis in the vector space for wh
Clifford algebra@Eq. ~1!# is defined asga (aP$0,1,2,3,5,6, . . .d21,d%). The quadratic form, for
which this Clifford algebra is defined, is taken to be given by the metricQ(x)5pahabp

b, with pa

being vectors in thed-dimensional vector space.
We can impose an antilinear anti-automorphism for elementsA,B,C of the Clifford algebra,

which we denote by (†),

~AB¯C!†5C†
¯B†A†,

~2!
~aA1bC!†5a* A†1b* B†,

with (* ) meaning complex conjugation. We easily see a possible choice for such an operati†)
for elements made out ofga’s by defining the ‘‘Hermiticity’’ property forga’s,

ga†5haaga, ~3!

in order thatga are compatible with~1! and formally unitary, i.e.,ga†ga5I , and I is the unity
operator.

We also define the Clifford algebra objects

Sab5
i

4
@ga,gb#ª

i

4
~gagb2gbga!, ~4!

which close the Lie algebra of the Lorentz group

$Sab,Scd%25 i ~hadSbc1hbcSad2hacSbd2hbdSac! ~5!

and have the following ‘‘Hermiticity’’ property

Sab†5haahbbSab. ~6!

We also see that these objects of the Lorentz algebra being imbedded in the Clifford algebra
the relation

$Sab,Sac%15 1
2 haahbc, ~7!

which is true only for the Dirac~or the Weyl! spinors~known also as the fundamental represe
tation of the Lorentz group!.

We recognize the similarity transformation properties ofga’s with respect to the Lorentz
group

eivcdScd
gae2 ivcdScd

5La
b~v!gb. ~8!

Recognizing from Eq.~5! that two Clifford algebra objectsSab,Scd with all indices different
commute, we readily select the Cartan subalgebra of the algebra of the Lorentz group, wh
a basis of
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m5d/2, for d even,

m5~d21!/2, for d odd, ~9!

commuting objects.
It is useful also to define one of the Casimirs of the Lorentz group~which will later be used

to determine the handedness of an irreducible representation of the Lorentz group!. ~To see the
definition of the operatorG for any spin in even-dimensional spaces, see Refs. 5, 9–12, an!
When once the representation will be built

G: 5~ i !d/2)
a

~Ahaaga!, if d52n,

~10!

G: 5~ i !(d21)/2)
a

~Ahaaga!, if d52n11,

for any integern. We understand the product ofga’s in the ascending order with respect to th
index a: g0g1

¯gd. Since (Ahaaga)†5Ahaaga and (Ahaaga)25I , which is the unit element in
the Clifford algebra, then it follows for any choice of the signaturehaa that G is ‘‘Hermitian’’ in
the sense of the antilinear antiautomorphism of Eqs.~2!, and~3! and its square is equal to the uni
element

G†5G,
~11!

G25I .

One also finds that in even-dimensional spacesG ‘‘anticommutes’’ while in odd-dimensiona
spacesG ‘‘commutes.’’ Two formal Clifford objectsA and B ‘‘commute’’ or ‘‘anticommute,’’ if
they fulfill the relation$A,B%750, with (2) and (1), respectively, under the left multiplication
with ga’s

$G,ga%150, for d even,
~12!

$G,ga%250, for d odd.

Accordingly,G always ‘‘commutes’’ with the generators of the Lorentz algebraSab.

III. BASIS IN SPINOR SPACE S

In this section we are constructing successively a set of 2d Clifford algebra elements, which i
any one of them is multiplied from the left by any of thed/2 membersSab of the chosen basis fo
the Cartan subalgebra of the Lorentz group, Eq.~4! is mapped up to a factor to the same elem
of the set. We shall start by constructing for each memberSab a set of four of the Clifford algebra

elements (12)(g
a1 ikgb), ( 1

2)(11 ikgagb), with k25haahbb andk561 or 6 i , depending on the
signaturehaa and hbb. We shall call two of them ‘‘nilpotents’’ and two of them ‘‘projectors,
since, when squared, nilpotents map into zero while projectors map into themselves.

We shall then construct the basis for spinors out ofd/2 factors of these nilpotents and pro
jectors, each member of the Cartan subalgebra being represented by one out of four poss
The spinor representation for the Lorentz group will be selected by the application of~all! the
elements of the Lorentz algebra on a starting object ofd/2 factors. A representation will be calle
the Weyl representation. All the elements of the Clifford algebra will select what we call a D
spinor representation. This will lead to the basis for the Clifford algebra elements, which we
recognize as spinor representation for the Lorentz group. We shall accordingly show th
Clifford algebra objects can be represented as operators acting on these basic states. The p
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will enable us to construct an explicit matrix representation with concretely constructible ma
representing thega-matrices. These means that we construct the basis in the spinor space
basis in the vector spaceM . We shall tell what specifications we need for the construction.
basis in the vector spaceM used will be taken to be an orthonormal basis so that the different b
vectors are normalized toQ(ea)561 according to whether the basic vector in question is spa
or timelike.

We shall make our construction formulated for general dimension and signature~i.e., for
general index also!.

A. Decisions for choosing a basis in spinor space

It is obvious that by specifying whatever properties of a set of spinors, say basis, belonS
concerning the linear operation of the representatives of the Clifford algebra, say of thega’s, we
can never specify the overall phase for this set, i.e., if we have a basisc i , i 51, . . . ,n, with n
52d/2 for d even andn52(d21)/2 for d odd ~the well-known spinor space dimensions will com
out also of our formalism below! fulfilling a set of specifications, then so doeifc i .

So we only can~and have to! specify therelative phase of the various basis spinors, whi
will also specify phases in the explicit matrix representation of the Clifford algebra. We attem
make an as simple as possible choice of the basis and its relative phases~putting all phases equa
to one! so that the reader can easily remember and reproduce the procedure.

The basis elements for spinors will be chosen as eigenstates under the left multiplica
the chosen basis for the Cartan subalgebra for the Lorentz/orthogonal groupG.

B. Eigenstates of Cartan subalgebra elements

We consider the left multiplication with the elements of the Cartan subalgebra. We callc an
eigenstate of the Cartan subalgebra basis$Sab,Scd,...%, if the left multiplication of c with the
Cartan subalgebra basis mapsc back to itself up to a complex number. We look for a basis ofd

eigenstates of the Cartan subalgebra.
According to the algebra of the Lorentz group@Eq. ~5!#, one can make infinitely many choice

of a set@of d/2 for d even and (d21)/2 for d odd#, commuting elements of the Cartan subalgeb
out of d(d21)/2 elements of the Lorentz algebra. In order to be able at the end to pr
elements of the Clifford algebra as operators—operating on the spinors, which we are const
successively in this article—in terms of numbers, we make an explicit choice of elements
Cartan subalgebra.

We shall select elements belonging to the Cartan subalgebra in a given coordinate sys
follows,

S0d,S12,S35,...,Sd22d21, if d52n,
~13!

S12,S35,...,Sd21d, if d52n11,

with raising indices from the left to the right and within each of a chosen element of the Lo
algebra.

One can easily see that for spinors@Eq. ~7!# the element of the Clifford algebraG, which will
be chosen to determine what we call handedness of eigenstates of the Cartan subalgebra
even-dimensional spaces be written in terms of the elements of the Cartan subalgebra as

G52d/2)
a

Ahaa S0dS12S35
¯Sd22d21, if d52n. ~14!

For odd-dimension we can write

G52(d21)/2)
a

Ahaa g0S12S35
¯Sd21d, if d52n11. ~15!
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We can now present a trivial theorem which helps, however, to find eigenstates of the
chosen Cartan subalgebra of the Lorentz group.

Theorem 1a: Let Sab be the element of the Cartan subalgebra of Eq.~9!, for which haahbb

51. Then elements of the Clifford algebra

~6 !
ab

ª

1

2 S ga6
hbb

i
gbD , @6#

ab

ª

1

2
~16 igagb!, ~16!

are eigenstates for the left multiplication withSab with the eigenvalues6( 1
2) in both cases.

Proof: To prove this theorem we only have to make the left multiplication of (6)
ab

and@6#
ab

by
Sab5( i /2)gagb, aÞb. We easily find the above result.

Theorem 1b: Let Sab be the generator of the Cartan subalgebra of Eq.~9! for which
haahbb521. Then elements of the Clifford algebra

~6 i !
ab

ª

1
2 ~ga6hbbgb!, @6 i #

ab

ª

1
2 ~16gagb!, ~17!

are eigenstates for the left multiplication withSab with the eigenvalues6( i /2) in both cases.
Proof: The proof follows the proof of Theorem 1a.
According to these two theorems, we can construct states which are eigenstates of

Cartan subalgebra elements by making products of expressions from Theorems 1a and 1b

We find that while elements of the Clifford algebra either@6#
ab

or @6 i #
ab

are idempotent,

@6#
ab

25@6#
ab

, @6 i #
ab

25@6 i #
ab

, ~18!

the elements (6)
ab

and (6 i )
ab

are nilpotent

~6 !
ab

250, ~6 i !
ab

250. ~19!

According to the above theorem, it is straightforward to prove the following theorem.
Theorem 2: For an even dimension (d52n) the states

~g06A2h00hddgd!~g16A2h11h22g2!¯~gd226A2hd22d22hd21d21gd21!, ~20!

or any state which follows from one of the states of Eq.~20! by replacing any of the expression
(ga6A2haahbbgb) by the corresponding (16A2haahbbgagb), are the eigenstates of all th
elements of the Cartan subalgebra of Eq.~13! for an even dimension, with the eigenvalue of t
chosenSab determined by Theorems 1a and 1b, while the eigenvalue of the element of the C
algebra defining handedness@Eq. ~10!# can easily be calculated by taking into account Eqs.~14!
and ~15! and the fact thatgagb522iSab.

For an odd dimension (d52n11) the states

~16G!g0~g16A2h11h22g2!~g36A2h33h55g5!¯~gd216A2hd21d21hddgd!, ~21!

or any state which follows from one of the states of Eq.~21! by replacing any of the expression
(ga6A2haahbbgb) by the corresponding (16A2haahbbgagb), are the eigenstates of all th
elements of the Cartan subalgebra of Eq.~13! of odd dimension, with the eigenvalues of th
chosenSab determined in Theorems 1a and 1b and with the eigenvalue ofG which follow if taking
into account Eq.~10!.
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The proof ford even ord odd follows from Theorems 1a and 1b and the fact thatG commutes
with all Sab.

It is simple to count the number of basic states, which is 2d.
C. Irreducible representations of Lorentz group for spinors

In Sec. III B we constructed eigenstates of the basis of the Cartan subalgebra. From Eq~14!
and ~15! one easily sees that they are at the same time also the eigenstates ofG, which defines
handedness of states. We make a choice of one of these states, calling it a ‘‘starting state.’’ I
difficult to prove that one gets an irreducible representation of the Lorentz group by th
multiplication of this state with all the elements of the Lorentz algebraSab, which do not belong
to the Cartan subalgebra@Eq. ~13!# @or by the left multiplication of the ‘‘starting state’’ by a grou
elementO(v)5exp(2(i/2)vabS

ab)]. ~To prove that a set of states, which follows from the ‘‘sta
ing state’’ by the application of all the members of the Lorentz algebra, forms an irredu
representation, one only has to count the number of states in this particular set of states@which is
for d even 2d/221 and since in the Dirac representation left and right handed states are req
one has to multiply this number by 2 and ford odd the number of states is 2(d21)/2 ~Sec. V!# and
then also the number of ‘‘families’’@which is ford even equal to 2d/2 and ford odd 2(d11)/2 ~Sec.
V!# to see that the number of all the states is equal to 2d, as it should be.!

We present theorems, which help to find all the irreducible representations of the Lo
group.

Theorem 3: Let Sab and Scd be the two elements of the Cartan subalgebra. Then the
vectors

~ga1A2haahbbgb!~gc1A2hcchddgd!,
~22!

S 11
1

haa A2haahbbgagbD S 11
1

hcc A2hcchddgcgdD
belong to the same representation of the left action of the Lorentz algebra.

Proof: To prove the theorem we multiply from the left bySac5( i /2)gagc ~or by Sad or Sbc or
Sbd) the first state

i

2
gagc~ga1A2haahbbgb!~gc1A2hcchddgd!

52
i

2
haahccS 11

1

haa A2haahbbgagbD S 11
1

hcc A2hcchddgcgdD . ~23!

The theorem which follows, generalizes Theorem 3.
Theorem 3a: The generators of the Lorentz transformations which do not belong to

Cartan subalgebra transform a pair of nilpotents~or a pair of a nilpotent and a projector, or
projector and a nilpotent, or two projectors! with the positive eigenvalues of the Cartan subalge
to a pair of two projectors~or a pair of a projector and a nilpotent, or a nilpotent and a projec
or two nilpotents! with the negative values of the Cartan subalgebra. In resume, the left mu
cation of the generatorsSab of the Lorentz transformations which do not belong to the Car
subalgebra leaves all but the two elements, which include indicesab, of a state unchanged, whil
the two concerned elements change the type~that is each one changes from nilpotency to ide
potency or opposite! and the eigenvalues of the corresponding Cartan subalgebra.

Theorem 4: In an odd-dimensional space the two states

~16G!g0~g11A2h11h22g2!~g31A2h33h55g5!¯ ,
~24!

~16G!~g11A2h11h22g2!~g31A2h33h55g5!¯

are proportional to each other.
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Proof: We first notice thatG5..G (d)5Ah00g0G (d21). The indices (d) and (d21) were added
to point out thatG (d21) includes all thega’s, except the first one with factors which guarantee t
eitherG (d) or G (d21) fulfills the conditions of Eq.~11!. Then we see that whenG (d) is applied to
the stateg0(g11A2h11h22g2)(g31A2h33h55g5)¯ , it gives Ah00h00 «(g11A2h11h22g2)
3(g31A2h33h55g5)¯ , where«(561) is the eigenvalue ofG (d21) on the chosen state. The
it follows (16G)g0(g11A2h11h22g2)(g31A2h33h55g5)¯56«h00Ah00(16G)(g1

1A2h11h22g2)(g31A2h33h55g5)¯ . This completes the proof.
As a consequence of Theorem 4 the following statement follows:
Statement 1:In odd-dimensional spacesga’s do not transform one irreducible representati

of the Lorentz group into another as they do in even-dimensional spaces.
The proof is self-evident if we take account of Theorem 4 and the fact thatg0ga522iS0a.

~From Theorems 3 and 4 it follows that by applying to a chosen state the elem
S01,S03,...,S0d22,S13,...,S1d22,... for an even d and S01,S05,...,S0d21,S15,...,S1d21,... for an
odd d, we obtain all the members of a particular irreducible representation.!

Statement 2a:We find accordingly ford even 2d/221 and ford odd 2(d21)/2 basis vectors of
an irreducible representation, which is either left~with G eigenvalue equal to21) or right ~with
G eigenvalues equal to11) handed.

We can easily count the number of states in one representation following Theorem 3a j
counting the number of different products, generated by the elements of the Lorentz algeb

Even case: Since the action of the Lorentz generators~from left multiplication! exchanges
both nilpotency-versus-idempotency-character and eigenvalue sign there are in one repres
only two combinations for each Cartan algebra generator and thus there can at least be m
of no more than 2d/2 in the even case, but now it is the even case, so that theScb generators change
two cases at a time and thus say the number of nilpotent factors can only change by a
number as we go along inside the representation. This means that we really only get half a
products needed in the representation. That makes it have 2d/221 dimensions in the even case.

Odd case: In the odd case there is one of thega’s for which there is no place in the Carta
subalgebra generators~we made a choice ofg0). As seen by Theorem 4 the action of th
particularg0 from the left makes no change—except for a sign—on our products~states! and thus
the generators involving this specialg0 such asS0b5 i /2g0gb act as agb effectively and change
just one of the factors, i.e., an odd number of them. This makes there being no rule guaran
an odd number of said nilpotents. Thus the number of products in the representation we ca
to close it is 2(d21)/2, which is thus the dimension of the found representation in the odd ca

We call these representations the Weyl spinor representations. In Sec. VI we present a
way of looking for representations.

Statement 2b:By applying any of thega’s to any of the states belonging to the abov
obtained irreducible representation of the chosen handedness for an evend, the corresponding
Weyl irreducible representation of the opposite handedness follows.

In even-dimensional spaces, left multiplication byga’s change the handedness of states, si
G commutes withSab and anticommutes withga. The representation we can close under thega’s
has double dimension relative to the one we found for the Lorentz generators. Two Weyl s
of the opposite handedness together have 2d/2 states for evend. We call such a representation th
Dirac representation.

In an odd case, multiplication from the left brings according to Theorem 4 no exten
compared to the Lorentz algebra representation.

IV. INNER PRODUCT AND SPINOR SPACE Sr

Until now we considered the Clifford algebra elements as just abstract objects or elemen
found representations of these elements or the special ones among them being Lorentz ge
~or products of Lorentz generators! which form the even partC1 of the Clifford algebraC. Let us
now formally define the~spinor! representation~map! r corresponding to the left multiplication
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already described. That is to say, we define for any elementvPC, i.e., for v being any linear
combination of products ofga’s, an endomorphismr(v), i.e., a linear mapr(v) of the spaceS
spanned by those basis vectors in the basis for the Clifford algebra which we have construc
which correspond to one single representation as we found forga’s. For example, we easily saw
that if we start from a product with factors only being our nilpotent expressions with eigenv
of the Cartan subalgebra generators under left multiplication being1 1

2 or 1 i /2 ~for rotation and
Lorentz boosts respectively!, then we shall get in this representation under left multiplication
ga’s only the following types of expressions~Theorem 1a and 1b!:

~1 !
ab

5
1

2 S ga1
hbb

i
gbD ,

~1 i !
ab

5
1

2
~ga1hbbgb!,

~25!

@2#
ab

5
1

2
~12 igagb!,

@2 i #
ab

5
1

2
~12gagb!.

We denote byS just the space spanned by these products containing just these mentioned f
Then we simply define forĉPS

r~v !ĉ5vĉ, ~26!

where the multiplication on the right hand side of the equation~26! vĉ is just the product of two
Clifford elements. The idea, of course, is to suggest that the spaceS is the space of spinors.

We can consider our construction as a realization with an explicit basis of the same
space identification with an ideal in the Clifford algebra as used in the book by Chevalley1 in Sec.
III, wherein the spinor space is identified with a minimal left idealCf 5C Nf where f is a product
of basis vectors in a certain maximally totally singular subspace of the space ofd-vectors identi-
fied into the Clifford algebra. The subalgebraC N is one generated in the Clifford algebra fro
some other maximally singular subspace of the spaceM of d-vectors. So really it is the subalgebr
C N which gets identified with the space of spinors.

Strictly speaking this is not the case since the Lorentz transformation properties u
assigned to spinors only agree with the ones of the elements ofS provided one uses only the le
but not also the right multiplication by the Lorentz generators. For states to be identified
spinor states, being the part of the Hilbert space, one would like to define also the inner pr
We shall construct an inner product in the next subsection.

A. Inner product and Hilbert space for spinors Sr

After we have found that we can use our ‘‘basis’’ of the Clifford algebra elements as a
on which to represent this algebra, i.e., as the spinor spaceS, we would like to construct an inne
product or Hilbert product on this space, the ideal, spanned by this basis.

It shall turn out that having chosen that the ‘‘Hermitian conjugation’’ operation (†) on the
Clifford algebra elementsga defined in Sec. II is given by the equationga†5haaga ~3! we have
essentially specified the inner product in the sense that it only could change by a normal
overall factor.

It is actually easily seen for any pair of ‘‘spinors’’v, u, ~both being linear combinations of ou
basis vectors for the representation spaceS! that using the Clifford algebra equipped with (†) have
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v†u5c) @2#) @2 i #, ~27!

wherec is a complex number. For the spaceS it was assumed that we only used those product
basis vectors which could be constructed alone from the expressions (1),@2#,(i ),@2 i # ~which is
a possible but not at all a unique choice!. One can easily prove that any expression resulting w
combining various terms inv† and u gives either zero or ac-number times the product of th

expressions@2# and @2 i #. In fact, one can see that (1)
ab

†5haa(2)
ab

, (2)
ab

(1)
ab

haa@2#
ab

with the

same, and that also@2#
ab

@2#
ab

5@2#
ab

and @2#
ab

†5@2#
ab

, @2#
ab

(1)
ab

50 as can be found in Sec. VI in
more detailed form, including same relations with6 i instead of6.

This formula~27! means that we can propose thec-numberc to be identified with the inner
product by defining

^vuu&5c, where v†u5c) @2#•) @2 i #, ~28!

or

v†u5^vuu&) @2#) @2 i #. ~29!

Actually we can see that this definition is extremely suggestive if we assumed that we alrea
a representation, now on a spinor spaceSr , of the Clifford algebra with (†) andr, i.e., we had

r~AB!5r~A!r~B!,

r~aA1bB!5ar~A!1br~B!, ~30!

r~A†!5r~A!†.

So, for example,r(ga) is the usualga when conceived of as a matrix or operator acting on spi
states. It means accordingly that all the Clifford algebra is mapped into operators and so a

(k)
ab

and @k#
ab

. It further means that we have assumed spinor statesPSr on which these prod-
ucts of expressions~operators! work. So indeed we can select now one statec0 , which we
call a ‘‘vacuum state’’ and for which we assume, in order to be able to use Eq.~29!, that
r()@2#)@2 i #)c0 is different from zero. Even having in mind thatr(@2#) or r(@2 i #) are
projectors, we realize that this is indeed a very mild requirement.

After selecting the ‘‘vacuum state’’ one can produce the correspondence between the ‘‘
states’’S equal to the left ideal~as Chevalley did in Chap. III in his book! and spinors inSr . The
relation is of course

u→r~u!c0 . ~31!

If there is an inner product defined on the space of spinorsSr (^c1uc2&r), then the corresponding
inner product onS is suggested to bêvuu&5^r(v)c0ur(u)c0&. Now we have

^r~v !c0ur~u!c0&r5^c0ur~v !†r~u!c0&r5^c0ur~v†u!c0&r

5^vuu&• K c0UrS) @2#) @2 i # Dc0L
r

, ~32!
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where ^vuu& is the expression from Eq.~29!. We would now like to justify this inner prod-
uct on S as a well chosen definition. To do that we have to evaluate the fa
^c0ur()@2#)@2 i #)c0&r from Eq. ~32!, justifying that it is not important. We assumed alrea
above thatr()@2#)@2 i #)c0 is nonzero, which means that the ‘‘vacuum state’’c0 contains
spinor states which have the corresponding quantum numbers so that the projector on such
is nonzero. But since the factor^c0ur()@2#)@2 i #)c0&r does not depend on eitheru or v it can
only be a constant, which goes into normalization. That confirms that the ‘‘vacuum state’’
manifests itself in an overall factor. We conclude that^vuu& was a good choice@Eqs. ~29! and
~27!#.

We have the correspondence between the Clifford algebra objects in the left idealS spanned
by our basis@we made a choice of (1)(1 i ) as a starting state# and the Hilbert space of spinor
Sr . Having a set of products in Theorem 3, used for a basis forS, we can now find the corre
sponding basis in the spinor spaceSr , just as an example ford54:

~ga1A2haahbbgb!~gc1A2hcchddgd!c0 ,
~33!

S 11
1

haa A2haahbbgagbD S 11
1

hcc A2hcchddgcgdDc0 .

These two states belong to one Weyl representation. To get the full basis for the representaSr

for the whole Clifford algebra~two Weyl spinors! one has to add the following two spinor bas
states:

~ga1A2haahbbgb!S 11
1

hcc A2hcchddgcgdDc0 ,

~34!

S 11
1

haa A2haahbbgagbD ~gc1A2hcchddgd!c0 .

One can easily see that these states are orthonormalized provided that the vacuum stac0 is
properly normalized, which means in our example

K c0U 1

2 S 11
1

haa A2haahbbgagbD 1

2 S 11
1

hcc A2hcchddgcgdDc0L 51. ~35!

In the general case the normalization condition is

K c0U) @2#) @2 i #c0L 51. ~36!

We may realize that only one component along the common eigenstates of the Cartan sub
generatorsr(Sab),r(Scd) matters in our normalization condition Eq.~36!.

We conclude the subsection with the statement that each statehc i belonging to a representa
tion of handednessh, is, due to appropriately chosen ‘‘vacuum state,’’ orthonormal to any o
stateuh8c j&, wherec i are basis states of spinors, generated in the way we presented above

^hc i uh8c j&5dhh8d i j . ~37!

V. ‘‘FAMILIES’’

In the construction of our basis for a left ideal, which at the end got identified with the sp
spaceS and mapped intoSr , we made at a point a selection of a ‘‘starting object.’’ We had cho
for the ‘‘starting object’’ the product ofd/2 for evend @respectively (d21)/2 for oddd] nilpotent
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constructions with1 1
2 or 1 i /2 as the eigenvalues of the left multiplication Cartan algebra g

erators: (1)
ab

51/2(ga1haa/ igb), (1 i )
ab

51/2(ga1hbbgb). By acting on the starting basis wit
ga’s we reached other basis elements belonging to our Clifford basis. We ended with a c
involving 2d/2 for evend ~and 2(d21)/2 for odd d) basis constructions.

We noticed already that none of the Clifford algebra object can transform (1)
ab

into @1#
ab

or

opposite~Sec. III C!, and also not (2)
ab

into @2#
ab

. We see that whenever (1)
ab

is replaced by

@1#
ab

a new ‘‘starting state’’ is generated leading to a new representation. We can count the n
of different representations, finding 2d/2 for d even and 2(d11)/2 for d odd, respectively.@In the odd
d case left and right handed objects transform under the Clifford algebra left multiplication
themselves~Theorem 4!, that is, without changing handedness.#

Each of these 2d/2 ~or 2(d11)/2 for d odd! different representations leads to a different left ide
and, thus, if we identify the ideals withS, we would get, strictly speaking, differentS in each case.
If we let there be, as above, a representationr of the Clifford algebra on a spinor spaceSr , each
of these choices of representations, or rather of ideals, would in general lead to a different b
the spaceSr . If r is an irreducible representation, it is well-known that in the even case
dimension ofSr is equal to 2d/2, which falls into two irreducible representations of the Loren
group.

Let us remind that we previously showed that when we construct the states~33! and~34! they
only extract from the ‘‘vacuum state’’c0 the component along the common eigenspace of
representationsr(S03), r(S12), etc. of the Cartan algebra generators, namely the one with2 1

2 or
2 i /2 eigenvalues. If we choose another ideal, belonging to another starting state, the com
extracted fromc0 will be another one. We find the following rule: (i ) If for the Cartan subalgebra

generatorsSab, in the starting state and accordingly the basis use the pair (1)
ab

and @2#
ab

is
contained, say forhaa515hbb, then the extracted component is from a common eigenspac
the Cartan subalgebra generators with the eigenvalue forSab being 2 1

2. If, however, the pair

(2)
ab

and@1#
ab

is used in the starting state, the extracted component of the common eigenspa
be Sab having the eigenvalue12. All these different basis states coming from different ideals
independent of the ‘‘vacuum states’’ except for normalization. Of course, the basis statesSr ,
induced by the choice of one ideal, can not be orthogonal to the basis induced by anothe
when we talk about basis vectors in only one irreducible representation spaceSr . Actually, the
basis vectors inSr , reached by using different representationsS, induced by different ideals, ar
essentially the same. In fact, to get into essentially the same basis vector inSr from one ideal to

another one can use the replacement of (1)
ab

into @1#
ab

and (2)
ab

into @2#
ab

, because eigenvectors i
S are characterized by their eigenvalues of the Cartan subalgebra generators.

But we could have required that all 2d/2 different S, belonging to different ideals, should b
mapped into 2d/2 for d even~and similarly ford odd! orthogonal basis vectors in an enlargedSr ,
which then would be a reducible representation of the Clifford algebra, which would lead to
instance, block-diagonal representations of blocks of the dimension 2d/2 in evend case,4,5

Sr5 (
i

Ngen

Sir ,i , ~38!

whereNgen is equal 2d/2 andSir ,i denotes thei th irreducible representation.
In a generic case, we could have the number of what we call ‘‘families’’ greater than one

smaller than 2d/2 for evend and 2(d11)/2 for d odd.
Taking into account the orthogonality of all the 2d polynomials of thega operators and

assuming that these polynomials act on a ‘‘vacuum state’’ which assures the orthogonality
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the obtained states, we find 2d/2 copies of the two-Weyl spinors~that is, of the Dirac spinor!. We
count the number of all states, which is ford-dimensional space 2d, and compare ford even this
number with twice the number of states in one Weyl spinor irreducible representation~since we
count states of both handedness!, which is 232d/221. For d odd we find accordingly 2(d11)/2

copies of the Weyl spinor. We call these 2d/2 copies ford even and 2(d11)/2 copies ford odd
‘‘families’’ of spinors. Each ‘‘family’’ differs from all the others in the choice of the starting sta
on which the irreducible representation is built, and accordingly on all the states.

To achieve the required orthogonality, we make a choice of phases for states belong
different ‘‘families’’ in such a way that, when choosing the ‘‘vacuum state’’uc0& to be the sum of
not only all the states in one ‘‘family’’ but of all the states of all the ‘‘families,’’ each sta
appearing with the same coefficient, not only the expectation values of the operatorsSab, belong-
ing to the Cartan subalgebra, but also the expectation values ofga are for suchuc0& equal to zero,
that is^c0ugauc0&50, for d even and odd. Given such a choice of the ‘‘vacuum state,’’ all sta
belonging to any ‘‘family’’ are orthonormal:

^ac i ubc j&5dabd i j . ~39!

We use indexa or b to numerate a ‘‘family’’ and indexi or j to numerate states within a ‘‘family.’

VI. GRAPHIC PRESENTATION

We shall present in this section a simple and transparent graphic technique for findin
ducible representations of the Lorentz group for spinors for any dimension—even or odd. W
by introducing the notation~already seen in Theorem 1!

~k!
ab

ª

1

2 S ga1
hbb

i
kgbD5

1

2 S ga1
haa

ik
gbD ,

@k#
ab

ª

1

2
~11 ikhaahbbgagb!5

1

2 S 11
i

k
gagbD ,

~40!

s
1

ª

1
2 ~11G!,

d
2

ª

1
2 ~12G!,

under the assumption that the eigenvaluek of 2Sab ~supposedly one of the Cartan-algebra ge
erators! being of course restricted byk25haahbb, since it is real fora andb corresponding both
to time or both to space index, while it is purely imaginary for opposite signatures. We se
Theorem 1 above tells us

Sab~k!
ab

5 1
2 k~k!

ab

,

~41!

Sab@k#
ab

5 1
2 k@k#

ab

.

We have of course ford different froma andb

gd~k!
ab

52~k!
ab

gd,

gd@k#
ab

5@k#
ab

gd. ~42!
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We can easily find

ga~k!
ab

5haa@2k#
ab

,

gb~k!
ab

52 ik@2k#
ab

,
~43!

ga@k#
ab

5~2k!
ab

,

gb@k#
ab

52 ikhaa~2k!
ab

.

From Eqs.~42! and ~43! it follows that

Sac~k!
ab

~k!
cd

52
i

2
haahcc@2k#

ab

@2k#
cd

,

Sac@k#
ab

@k#
cd

5
i

2
~2k!

ab

~2k!
cd

,

~44!

Sac~k!
ab

@k#
cd

52
i

2
haa@2k#

ab

~2k!
cd

,

Sac@k#
ab

~k!
cd

5
i

2
hcc~2k!

ab

@2k#
cd

.

We also find

~k!
ab

†5haa~2k!
ab

, ~45!

@k#
ab

†5@k#
ab

, ~46!

and

~k!
ab

~k!
ab

50, ~k!
ab

~2k!
ab

5haa@k#
ab

, ~2k!
ab

~k!
ab

5haa@2k#
ab

, ~2k!
ab

~2k!
ab

50,

@k#
ab

@k#
ab

5@k#
ab

, @k#
ab

@2k#
ab

50, @2k#
ab

@k#
ab

50, @2k#
ab

@2k#
ab

5@2k#
ab

,
~47!

~k!
ab

@k#
ab

50, @k#
ab

~k!
ab

5~k!
ab

, ~2k!
ab

@k#
ab

5~2k!
ab

, ~2k!
ab

@2k#
ab

50,

~k!
ab

@2k#
ab

5~k!
ab

, @k#
ab

~2k!
ab

50, @2k#
ab

~k!
ab

50, @2k#
ab

~2k!
ab

5~2k!
ab

.

According to Eqs.~46! and ~47! and discussions in Sec. IV we find

~k!
ab

†~k!
ab

5@2k#
ab

, ^~k!
ab

†~k!
ab

&51, ~48!
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@k#
ab

†@k#
ab

5@k#
ab

, ^@k#
ab

†@k#
ab

&51. ~49!

Let us conclude this section by presenting graphically a Weyl spinor irreducible represen
for d-dimensional space, withd even and with the handedness@Eq. ~14!# G equal to
)a Ahaa )Cartan abkab . The first product runs over all the indicesa, while the second produc
runs over the eigenvectorskab @Eq. ~41!# of the Cartan subalgebra elements@Eq. ~9!#. This
irreducible representation of the chosen handedness is one out of 2d/2 possible ones. All the pairs
Sab,Scd,... aremembers of the Cartan subalgebra of the Lorentz group:

~kab!
ab

~kcd!
cd

~ke f!
e f

¯~kgh!
gh

¯c0

@2kab#
ab

@2kcd#
cd

~ke f!
e f

¯~kgh!
gh

¯c0

@2kab#
ab

~kcd!
cd

@2ke f#
e f

¯~kgh!
gh

¯c0

] ~50!

@2kab#
ab

~kcd!
cd

~ke f!
e f

¯@2kgh#
gh

¯c0

~kab!
ab

@2kcd#
cd

@2ke f#
e f

¯~kgh!
gh

¯c0

]

States, belonging to one multiplet with respect to the group SO(q,d2q), that is to one irreducible
representation, can have any phase. We made a choice of the simplest one, taking all phas
to one.

What we learn from the above graphic representation is that one obtains all the states

irreducible Weyl representation by transforming all possible pairs of (kab)
ab

(kmn)
mn

to

@2kab#
ab

@2kmn#
mn

. The procedure gives 2(d/221) states. We shall use the presented graphical se
to find the Weyl spinors ford53 andd54 in the next section.

VII. MATRIX REPRESENTATION OF ga AND Sab

In this section we present matrix elements for the Clifford algebra elementsga’s and for the
generators of the Lorentz groupSab.

As we learned in Sec. VI~and can be very easily checked!, transformsga the nilpotent (k)
ab

5 1
2(g

a1 (haa/ ik) gb) @Eq. ~43!# into the projectorhaa@2k#
ab

5haa1
2(12 i /k gagb). A basic state

has for a chosen dimensiond, d/2 factors, which are either nilpotents or projectors, but only o
among those nilpotents or projectors has the indexab. We shall therefore first look at the matri

elements between the two states (k)
ab

and @2k#
ab

, for example. The only difference in matri
elements between this case and the case with a generald/2 factors in a basic state is in a pha
factor, which we shall comment on later.

Following the definition of the inner product in Sec. IV and taking into account Eq.~43! in
Sec. VI, one easily finds matrix elements of the Clifford algebra operatorsga between any two
states for anyd of what we called the Dirac representation, if we first recognize the relation
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^c0u@2k#
ab

†ga~k!
ab

c0&5haa^c0u@2k#
ab

†@2k#
ab

c0&5haa,

^c0u@2k#
ab

†gb~k!
ab

c0&52 ikab^c0u@2k#
ab

†@2k#
ab

c0&52 ikab ,
~51!

^c0u~k!
ab

†ga@2k#
ab

c0&5^c0u~k!
ab

†~k!
ab

c0&51,

^c0u~k!
ab

†gb@2k#
ab

c0&5 ikabh
aa^c0u~k!

ab
†~k!

ab

c0&5 ikabh
aa,

where the ‘‘vacuum state’’ has to be understood as explained in Sec. IV andkab meansk, which

belongs to the nilpotent (k)
ab

or to the projector@k#
ab

, with kab
2 5haahbb.

In the space of the two vectors (k)
ab

c0 and@2k#
ab

c0 the matrix representations ofga andgb are

ga5S 0 1

haa 0D , gb5S 0 ikabh
aa

2 ikab 0 D , ~52!

with kab belonging to the nilpotent (k)
ab

and2kab belonging to the projector@2k#
ab

. If gak operates

on a state$k%
a1a2

¯$k%
aiaj

(k)
akal

¯c0 , where$k% stands for either nilpotents (k) or for projectors@k#, one
obtains

gak$k%
a1a2

¯$k%
aiaj

~k!

akal

¯c05~2 !n0hakak$k%
a1a2

¯$k%
aiaj

@2k#

akal

¯c0 , ~53!

wheren0 means the number of nilpotents among all the$k%, which gak has to jump over. Ac-
cordingly the phase (2)n0 of the new state is either1 or 2 factor, for an even or odd number o

nilpotents, respectively. If, in Eq.~53!, the state (k)
akal

is replaced by the state@2k#

akal

, it follows

gak$k%
a1a2

¯$k%
aiaj

@2k#

akal

¯c05~2 !n0$k%
a1a2

¯$k%
aiaj

~k!

akal

¯c0 , ~54!

where againn0 means the number of nilpotents among all the$k%, whichgak has to jump over. By
taking into account Eqs.~52!–~54! and accordingly by counting the number of nilpotents, wh
ga’s have to jump over, one easily finds the matrix representation forga’s for any dimension and
any signature.

When looking for matrix representations ofSab(5 ( i /4) @ga,gb#), which are not elements o
the Cartan subalgebra, the space of at least two factors of nilpotents or projectors has
considered, since each ofga andgb transforms one factor as we know from above. In the sp

of the two vectors (k)
ab

(k)
cd

c0 and @2k#
ab

@2k#
cd

c0 , for example, one finds the following matri
representations for the generators of the Lorentz groupSac, Sbd, Sad andSbc,

Sac5
1

2 S 0 i

2 ihaahcc 0D , Sbd5
1

2
kabkcdS 0 2 ihaahcc

i 0 D ,

~55!

Sad5
1

2
kcdS 0 2hcc

2haa 0 D , Sbc5
1

2
kabS 0 2haa

2hcc 0 D .
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If Sakap operates on a state$k%
a1a2

¯$k%
aiaj

(k)
akal

$k%
aman

¯ (k)
apar

¯c0 , where$k% stands again for eithe
nilpotents (k) or for projectors@k#, one obtains

Sakap$k%
a1a2

¯$k%
aiaj

~k!

akal

$k%
aman

¯ ~k!

apar

¯c0

52~2 !(n0k
1n0p

)
i

2
hakakhapap$k%

a1a2

¯$k%
aiaj

@2k#

akal

$k%
aman

¯@2k#

apar

¯c0 , ~56!

wheren0k
and n0p

counts the number of nilpotents among all the$k% betweenSakap and either

(k)
akal

or (k)
apar

, respectively.
By taking into account Eqs.~55! and ~56! one easily finds matrix elements of all the nond

agonal elements of the Lorentz algebra, while the matrix elements of the Cartan subalgeb
easily follow from Eq.~41!.

Up to now we only have paid attention to even dimensions. For odd dimensions, the
cation of ga on a state, ifaÞ0, is due to Theorem 4 equivalent to the application ofgag0

52iS0a on the state, since Theorem 4 says thatgag0 (16G) $k%
a1a2

¯$k%
aiaj

(k)
akal

¯c05

6Ah00h00«(16G)ga$k%
a1a2

¯$k%
aiaj

(k)
akal

¯c0 , where« is the handedness of the (d21)-dimensional

part $k%
a1a2

¯$k%
aiaj

(k)
akal

¯c0 of the state, that is, of the even part, which does not includeg0. We took
into account that in odd-dimensional spacesga andG commute. The evaluation ofga on the rest
of the state follows from the above derivations.

We are concluding this section with the statement that the simplest choice of the re
phases~by just taking all the phases equal to one! in Eq. ~50! leads for d54 and for the
Minkowski metric to the representation known as the chiral representation for spinors. We p
matrix representations ofga andSab for d53 andd54 in the next section.

VIII. DEMONSTRATION OF IRREDUCIBLE REPRESENTATIONS OF WEYL SPINORS

In this section we demonstrate what we have learned, on two cases: We look for the ir
ible representations of spinors with respect to the Lorentz group for a three-dimensional
four-dimensional case. In both cases we shall assume the Minkowski metric:h0052h i i , with i
51,2 for d53 andi 51,2,3 ford54. The ‘‘vacuum state’’c0 is chosen in such a way that all th
2d linearly independent polynomials ofga are orthonormalized@as explained in Sec. IV#.

A. Weyl spinors for dÄ3

There is only one@(d21)/251# operator of the Cartan subalgebra of the Lorentz alge
According to Eq.~13! we chooseS12 as the member of the Cartan subalgebra of the Lore
algebra which the operatorsS01, S02, S12 close. Following Eq.~10! we find G5 ig0g1g2. There
are 23, that is eight, basic states, which we arange to be eigenstates ofS12, G andg0:

~ 1
2!

2~16G!~g16 ig2!, ~ 1
2!

2g0~16G!~16 ig1g2!. ~57!

We find the eigenvalues of the only member of the Cartan subalgebraS12 according to Theorem 1
@or by using Eq.~41!, sinceS12 commutes withG# for the eight states of Eq.~57! to be6 1

2. Using
Theorem 4 one easily finds that the eigenvalues ofg0 are 11 for those states, in which bot
factors appear with the same sign, otherwise they are21. We arrange these eight orthonorm
states into four ‘‘families’’ as presented in Table I.

Any of the four ‘‘families’’ can be used as the Weyl basis~or the Dirac; for odd dimensions th
Weyl and the Dirac basis coincide! when solving the massless or massive Dirac equation, as it
be demonstrated in next section@Sec. IX#.
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According to Sec. VII we find for the generators of the Lorentz groupS0i(5( i /2) g0g i) for
the first ~and the third ‘‘family’’!, for h005152h1152h22, just by multiplying g0 @which is
diagonal with diagonal elements 1 and21 ~by Theorem 4!# andg i @from Eq. ~52!# the following
matrix presentation,

S015
i

2 S 0 1

1 0D , S025
i

2 S 0 2 i

i 0 D , S125
1

2 S 1 0

0 21D , ~58!

which are, up to a factor, just the Pauli matricesS015( i /2) s1 , S025( i /2) s2 , S125 1
2s3 . The

matrix g0 is equal to 2S125s3 . The matricesg1 and g2 are equal to22ig0S015 is2 and
22ig0S0252 is1, respectively. We could, of course, calculate these matrices directly, using
I. For example, the second element of the first row inS01 is equal to

^c0u~~ 1
2!

2~11G!~12 ig1g2!!†S01~ 1
2!

2~11G!~g11 ig2!c0&

5
i

2
^c0u~~ 1

2!
2~11G!~12 ig1g2!!†g0g1~ 1

2!
2~11G!~g11 ig2!c0&

52
i

2
^c0u~~ 1

2!
2~11G!~12 ig1g2!!†~ 1

2!
2g0~11G!~12 ig1g2!c0&5

i

2
, ~59!

since, due to the Clifford algebra properties,$ga,gb%152hab. @The second and the third ‘‘fami
lies’’ have S0152 ( i /2) s1 , S0252 ( i /2) s2 , S125 1

2s3 andg052s3 .]

B. Weyl spinors for dÄ4

There are two (d/252) operators of the Cartan subalgebra of the Lorentz algebra, whic
closed by the operatorsS01, S02, S03, S12, S13, S23. According to Eq.~13! we chooseS03 andS12

as members of the Cartan subalgebra. Following Eq.~10! we find G5 ig0g1g2g3. There are 24,
that is 16, basic states, all of them being eigenstates ofS12 andS03:

TABLE I. Four ‘‘families’’ of the Lorentz group SO~1,2!. All vectors are eigenvectors ofS12, g0 and G. They are
orthonormalized according to Sec. IV. The graphical presentation follows the procedure described in Sec. VI. We a
a simplified version of the graphical presentation of states.

a i ac i S12 g0 G
Graphic

presentation

1 1 (
1
2)2(11G)(g11 ig2)c0

1
2

1 1
s
1

(1)
12

or s(1)
1 2 (

1
2)2(11G)(12 ig1g2)c0 2

1
2

21 1
s
1

@2#
12

or s@2#

2 1 (
1
2)2(12G)(g11 ig2)c0

1
2

21 21
d
2

(1)
12

or d(1)
2 2 (

1
2)2(12G)(12 ig1g2)c0 2

1
2

1 21
d
2

@2#
12

or d@2#

3 1 (
1
2)2(11G)(11 ig1g2)c0

1
2

1 1
s
1

@1#
12

or s@1#
3 2 (

1
2)2(11G)(g12 ig2)c0 2

1
2

21 1
s
1

(2)
12

or s(2)

4 1 (
1
2)2(12G)(11 ig1g2)c0

1
2

21 21
d
2

@1#
12

or d@1#
4 2 (

1
2)2(12G)(g12 ig2)c0 2

1
2

1 21
d
2

(2)
12

or d(2)
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~ 1
2!

2~g06g3!~g16 ig2!, ~ 1
2!

2~g06g3!~16 ig1g2!,

~60!
~ 1

2!
2~16g0g3!~g16 ig2!, ~ 1

2!
2~16g0g3!~16 ig1g2!.

According to Theorem 1, the eigenvalues of the Cartan operatorS12 for four times four basic state
of Eq. ~60! are 6 1

2 for the 6 sign in the second factor of the states and the eigenvalues o
Cartan operatorS03 for the four times four basic states are7 i /2 for the6 sign in the first factor
of the states. All 16 basic states are orthonormal.

We arrange these 16 states into four ‘‘families’’ as presented in Sec. IV. Each ‘‘fam
includes two Weyl spinors, one left and one right handed. We come from one Weyl spinor, sa
to another, say right, by applyingga’s to the left one. These four ‘‘families’’ are presented
Table II.

TABLE II. Four ‘‘families’’ of the two Weyl spinors of the Lorentz group SO~1,3!. Basic vectors are eigenvectors of th
two operators of the Cartan subalgebraS12 andS03. The eigenvalues of the operator of handednessG522iS03S12 are also
presented. All the basic states are orthonormalized as discussed in Sec. IV. Two types of graphic presentation are
simplified version in addition to the ordinary one. We made the simplest choice of relative phases—assuming all p
be equal to11, as discussed in Sec. IV.

a i ac i S12 S03 G
Graphic

presentation

1 1 (
1
2)2(g02g3)(g11 ig2)c0

1
2

i

2
21 (1 i )

03

(1)
12

or (1 i )(1)

1 2 (
1
2)2(12g0g3)(12 ig1g2)c0 2

1
2 2

i

2
21

@2 i #
03

@2#
12

or @2 i #@2#

2 1 (
1
2)2(12g0g3)(g11 ig2)c0

1
2 2

i

2
1

@2 i #
03

(1)
12

or @2 i #(1)

2 2 (
1
2)2(g02g3)(12 ig1g2)c0 2

1
2

i

2
1 (1 i )

03

@2#
12

or (1 i )@2#

3 1 (
1
2)2(11g0g3)(11 ig1g2)c0

1
2

i

2
21

@1 i #
03

@1#
12

or @1 i #@1#

3 2 (
1
2)2(g01g3)(g12 ig2)c0 2

1
2 2

i

2
21 (2 i )

03

(2)
12

or (2 i )(2)

4 1 (
1
2)2(g01g3)(11 ig1g2)c0

1
2 2

i

2
1 (2 i )

03

@1#
12

or (2 i )@1#

4 2 (
1
2)2(11g0g3)(g12 ig2)c0 2

1
2

i

2
1

@1 i #
03

(2)
12

or @1 i #(2)

5 1 (
1
2)2(11g0g3)(g11 ig2)c0

1
2

i

2
21

@1 i #
03

(1)
12

or @1 i #(1)

5 2 (
1
2)2(g01g3)(12 ig1g2)c0 2

1
2 2

i

2
21 (2 i )

03

@2#
12

or (2 i )@2#

6 1 (
1
2)2(g01g3)(g11 ig2)c0

1
2 2

i

2
1 (2 i )

03

(1)
12

or (2 i )(1)

6 2 (
1
2)2(11g0g3)(12 ig1g2)c0 2

1
2

i

2
1

@1 i #
03

@2#
12

or @1 i #@2#

7 1 (
1
2)2(g02g3)(11 ig1g2)c0

1
2

i

2
21 (1 i )

03

@1#
12

or (1 i )@1#

7 2 (
1
2)2(12g0g3)(g12 ig2)c0 2

1
2 2

i

2
21

@2 i #
03

(2)
12

or @2 i #(2)

8 1 (
1
2)2(12g0g3)(11 ig1g2)c0

1
2 2

i

2
1

@2 i #
03

@1#
12

or @2 i #@1#

8 2 (
1
2)2(g02g3)(g12 ig2)c0 2

1
2

i

2
1 (1 i )

03

(2)
12

or (1 i )(2)
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Using expressions for basis states from Table II and the orthogonality properties of sta
can easily evaluate matrix elements of, say,S01. The second matrix element of the first row fo
S01(5 ( i /2) g0g1), for example, is

K c0US S 1

2D 2

~12g0g3!~12 ig1g2! D †

S01S 1

2D 2

~g02g3!~g11 ig2!c0L ~61!

52
i

2 K c0US S 1

2D 2

~12g0g3!~12 ig1g2! D †S 1

2D 2

g0~g02g3!g1~g11 ig2!c0L 5
i

2
.

~62!

We present below the matrix representations for the generators of the Lorentz algebra and
ga’s for the first family ~and the second family!:

S0i5
i

2 S s i 0

0 2s i
D , Si j 5(

k
« i jk

1

2 S sk 0

0 sk
D , i P$1,2,3%,

~63!

go5S 0 I

I 0D g i5S 0 2s i

s i 0 D , i P$1,2,3%.

The above representation is known as the chiral representation for the Lorentz group.
@The matrix representations for the third and the fourth ‘‘families’’ differ with respect to

~63! in an overall sign forg i , i 51,2,3, and accordingly also forS0i but not forSi j .]
Any of the four ‘‘families’’ can be used to present the solution of the Dirac equation fo

massive spinor, while the massless spinors are either left- or right-handed, so that only half
space of the massive case is needed to find the solution. We shall present solutions of th
equation for a massless or a massive case in the next section.

IX. SOLUTIONS OF WEYL AND DIRAC EQUATIONS FOR THE THREE- AND FOUR-
DIMENSIONAL CASES

We shall demonstrate the usefulness of the presented technique by finding solutions
Dirac equation for massless and massive cases in three- and four-dimensional spaces w
time (h0051) and (d21) space (h i i , i 51,..,d21) dimensions. We shall work, as one usua
does, with only one family, making a choice of the first one in each of the two tables. Lookin
solutions of the Dirac equation one proceeds as usual when solving the eigenvalue proble
makes a superposition of basic states of one ‘‘family’’ with unknown coefficients solving
eigenvalue problem for the Dirac equation of the motion operator with the eigenvalue zero,
by taking into account equations from Sec. VI, or by just operating from the left on this sup
sition by the operator of the Dirac equation and taking into account the Clifford algebra prop
of ga’s.

A. Solution of the Dirac equation for spinors in dÄ3

To find the solution of the Dirac equation~using units in whichc515h̄)

~gapa2m50!c, ~64!

we shall use the basic states presented in Table I as the first ‘‘family’’ of two basic vectors an
whatga does when operating on a linear superposition of basic states. Looking for the solut
a plane wave with a wave vectorpa5(p0,p1,p2) we find that the state

c5e2 ipaxaNS 1

2D 2

~11G!H ~g11 ig2!1
p11 ip2

p01m
~12 ig1g2!J c0 , ~65!
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or graphically

c5e2 ipaxaNH s
1

~1 !
12

1
p11 ip2

p01m
s
1

@2#
12 J c0 , ~66!

solves the Dirac equation for a massive case withN5A(p01m)/(2p0) and (p0)25(p1)2

1(p2)21m2. For the massless case we need only to setm equal to zero. Then the normalizatio
factor N simplifies to 1/&. The first state appears with the weight 1 and the second with
weight (p11 ip2)/p0. It is evident that both solutions—for the massless and the massive case
linear combinations of exactly the same number of basic states.

B. Solution of the Dirac equation for spinors in dÄ4

We shall first look for one of the two solutions of the massless Weyl equation

~gapa50!uc&. ~67!

Using the first irreducible representation of only left handedness from Table II, we find

c5e2 ipaxaNH S 1

2D 2

~g02g3!~g11 ig2!1
p11 ip2

p01p3 S 1

2D 2

~12g0g3!~12 ig1g2!J c0 , ~68!

or graphically

c5e2 ipaxaNH ~1 i !
03

~1 !
12

1
p11 ip2

p01p3 @2 i #
03

@2#
12 J c0 , ~69!

with N5A(p01p3)/(2p0) and (p0)25(p1)21(p2)21(p3)2.
A massive case

~gapa2m50!uc& ~70!

can only be solved within left and right handed irreducible representations. We find

c5e2 ipaxaN$~p01p3!~ 1
2!

2~g02g3!~g11 ig2!1~p11 ip2!~ 1
2!

2~12g0g3!~12 ig1g2!

1m~ 1
2!

2~12g0g3!~g11 ig2!%c0 , ~71!

or graphically

c5e2 ipaxaN$~p01p3!~1 i !
03

~1 !
12

1~p11 ip2!@2 i #
03

@2#
12

1m@2 i #
03

~1 !
12

%c0 , ~72!

with N51/A(p01p3)(2p0) and (p0)25(p1)21(p2)21(p3)21m2.

X. CONCLUSION

In this article we demonstrated a simple technique for finding the representations o
Lorentz group~Weyl spinors! and for Clifford algebra~Dirac spinors! for spinors for any-
dimensional space, even or odd, of any signature, solely started from the abstract objectsga for
which we only needed to know that they fulfill the Clifford algebra:gagb1gbga52hab. We first
constructed the basis for the whole Clifford algebra made out, of course, of formal Cli
objects—Clifford algebra elements, each basis vector being a products of two types of o
nilpotent ones and idempotent ones.

Introducing the ‘‘Hermitian conjugation’’ in the space of the Clifford algebra as a for
antiautomorphism specified by the signaturega†5haaga, we were able to define an inner produc
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Introducing the vacuum state, which turned out to be~almost! generic, we were able to ma
the basis for abstract Clifford objects into the spinor basis forming the Hilbert space and a
ingly the abstract Clifford objects into operators.

We further derived a simple and transparent graphic technique, which enables us to eas
matrix elements of all the Clifford operators in our basis—ga matrices and generators of th
Lorentz transformationsSab in particular.

By formally playing the game, that all 2d linear independent polynomials ofga’s, if applied
to appropriately chosen ‘‘vacuum state,’’ generate 2d orthogonal states, we get 2d/2 ‘‘families’’ of
twice 2d/221 Weyl spinors ford even and 2(d11)/2 families of 2(d21)/2 Weyl spinors ford odd. If
a ‘‘vacuum state’’ contains the space of only one Dirac spinors, all the polynomials, appli
such a state, generate of course only one Dirac spinor, that is only one ‘‘family.’’

Taking advantage of the fact that the generators of the Lorentz group are binomials ofga

operators enables us to find eigenstates of any operator~say the Weyl or the Dirac operator!, as
well as the application of any operator to a given state, without making a choice of the rep
tation of the operatorsga.

Except for the orthonormalization procedure, this technique follows Refs. 4–7, 11, 12.
We also present a transparent graphic representation of basic states, as well as the ap

of operators to these states.
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6N. S. Mankocˇ Borštnik, Int. J. Theor. Phys.40, 315 ~2001!, and references therein.
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The embedding of the space–time in five dimensions:
An extension of the Campbell–Magaard theorem

F. Dahia and C. Romeroa)

Departamento de Fı´sica, Universidade Federal da Paraı´ba,
C. Postal 5008, Joa˜o Pessoa, PB, 58059-970, Brazil
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We extend the Campbell–Magaard embedding theorem by proving that any
n-dimensional semi-Riemannian manifold can be locally embedded in an
(n11)-dimensional Einstein space. We work out some examples of application of
the theorem and discuss its relevance in the context of modern higher-dimensional
spacetime theories. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1507824#

I. INTRODUCTION

The old idea that our universe is fundamentally higher-dimensional withn541d space–time
dimensions seems to be gaining grounds very rapidly in recent years. Mathematical sche
which our ordinary space–time is viewed as a hypersurface embedded in a higher dimen
space have been considered in several different contexts, such as strings,1 D-branes,2

Randall-Sundrum3 models and noncompactified versions of Kaluza–Klein theories.4

On the other hand, local isometric embeddings of Riemannian manifolds have long
studied in differential geometry. Of particular interest is a well known theorem which states t
the embedding space is flat, then the minimum number of extra dimensions needed to anal
embed an-dimensional Riemannian manifold isd, with 0<d<n(n21)/2.5

It turns out, however, that if the embedding space is allowed to be Ricci-flat, then the
mum number of extra dimensions that are necessary for the embedding falls dramaticalld
51. This is the content of a little known but powerful theorem due to Campbell,6 the proof of
which was given by Magaard.7 Campbell–Magaard’s result has acquired fundamental releva
for granting the mathematical consistency of five-dimensional embedding theories and al
been applied to investigate how lower-dimensional theories could be related
(311)-dimensional vacuum Einstein gravity.8

The increasing attention given to the Randall–Sundrum model3 in which the embedding
space, i.e., the bulk, corresponds to an Einstein space, rather than a Ricci-flat one, has le
wonder whether Campbell–Magaard theorem could be generalized and what sort of genera
could be done. Research in this direction, where a scheme for extending Campbell–M
theorem for embedding spaces with a non-null Ricci tensor has been put forward quite rece
Anderson and Lidsey.9

The purpose of the present article is to prove that Campbell–Magaard theorem can, ind
extended to include Einstein spaces. Our proof is entirely inspired by Magaard’s reasonin
though some adaptations to the more general semi-Riemannian character of the spaces h
made.

The article is organized as follows. Section II is devoted to stating and proving an exte
of Campbell–Magaard theorem, in which the embedding manifold is an Einstein space. The
is rather involved and resorts to auxiliary theorems and lemmas. In Sec. III we apply the g
result to some examples and, finally, Sec. 4 contains our conclusion.

a!Author to whom correspondence should be addressed. Electronic mail: cromero@fisica.ufpb.br
58040022-2488/2002/43(11)/5804/11/$19.00 © 2002 American Institute of Physics
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II. ISOMETRIC EMBEDDING IN AN EINSTEIN SPACE

The Campbell–Magaard theorem for local isometric embedding in Ricci-flat space ref
Riemannian manifolds, i.e., those endowed with positive-definite metrics. It turns out that fo
purposes of generalization this restrictive condition is not essential, so in what follows we
consider a semi-Riemannian manifold with metrics of indefinite signature instead. First
introduce some definitions, set the notation and present preliminary theorems and lemmas

An n-dimensional manifoldMn is termed semi-Riemannian if it is endowed with a metric, i.
a symmetric and nondegenerated second-rank tensor field of arbitrary signature.~In this article we
are considering only manifolds and metrics which are analytic.!

Definition 1: Consider a differential mapF: U,Mn→Nn1k, where U is an open subset o
Mn, and Nn1k (k>0) is a manifold of dimension n1k. Then F is called a local isometric
embedding if the following conditions hold:

(i) dFp :TpMn→TF(p)N
n1k is injective for all pPU.

(ii) g p(v,w)5g̃F(p)(dF(v),dF(w)) for all v, wPTpMn, where g̃denotes the metric of Nn1k.
(iii) F is a homeomorphism onto its image in the induced topology.

If F is of classCk ~analytic!, then the embedding is said to be of classCk ~analytic!.
Naturally, a local isometric embedding may be characterized in terms of coordinates. For ins
let x5$x1,...,xn% and y5$y1,...,yn1k% denote coordinate patches forU,Mn and V,Nn1k,
respectively, withF(p)PV. The embeddingF determines a relation between the coordina
denoted by

ya5sa~x1,...,xn!, ~1!

wheres5y+F+x21:x(U),Rn→Rn1k. ~Throughout Latin and Greek indices will run from 1 ton
and 1 ton1k, respectively.!

In this way the isometric condition leads to

gi j 5
]sa

]xi

]sb

]xj g̃ab , ~2!

where the functionsgi j andg̃ab are the components of metric with respect to the coordinate b
$]xi% and$]ya%, respectively. We, therefore, say thatMn can be local and isometrically embedde
in Nn1k if there existn1k differentiable functionsya5sa(x1,...,xn), ~embedding functions!
such that the Jacobian matrix]sa/]xi has rankn and ~2! holds.

Given two arbitrary semi-Riemannian manifoldsMn andNn1k it may happen that there exist
no isometric embedding between them. Thus, it is of interest to find out conditions assuring
the existence of embedding, in particular, if the embedding spaceNn1k is not specified except tha
its belongs to a collection of manifolds,Mp , whose members, say, share a certain geomet
property. For example,p may express a restriction of the following kinds: to be flat, to ha
constant curvature, to be Ricci-flat, to be an Einstein space, and so forth. This way of formu
the problem motivates the definition below.

Definition 2: We say that a semi-Riemannian manifold Mn has an embedding in the setMp ,
if there is at least a member ofMp , say Nn1k, in which Mn is embeddable.

The following is a theorem which establishes necessary and sufficient conditions fo
existence of local isometric embedding of ann-dimensional semi-Riemannian space (Mn,g) in the
setMp

n11 of (n11)-dimensional semi-Riemannian spaces (Nn11,g̃) that satisfy the~nonspeci-
fied! propertyp. The original version of this theorem is due to Magaard7 and is restricted to the
Riemannian case, though the extension to semi-Riemannian manifold is straightforward.

Theorem 1: Let (Mn,g) constitute a semi-Riemannian manifold, Mp
n115$(Nn11,g̃), which

satisfy the propertyp% and x5$x1,...,xn% a coordinate system covering a neighborhood U o
PMn. A necessary and sufficient condition for a local analytical embedding of Mn at p, with line
element
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ds25gikdxidxk, ~3!

in Mp
n11 is the following.

(i) There exist analytic functions,

ḡik5ḡik~x1,...,xn,xn11!, ~4!

f̄5f̄~x1,...,xn,xn11!, ~5!

defined in some open set D,x(U)3R containing the point(xp
1,...,xp

n,0) and satisfying the con-
ditions

ḡik~x1,...,xn,0!5gik~x1,...,xn! ~6!

in an open set A,x(U);

ḡik5ḡki , ~7!

uḡikuÞ0, ~8!

f̄Þ0 ~9!

in D. (uḡiku denotes the determinant of gīk).
(ii) Also,

ds25ḡikdxidxk1«f̄2dxn11dxn11, ~10!

where «2511, be a line element in a certain coordinate neighborhood V of some man
Nn11PMp

n11.
The essential idea of this theorem is that there exists a coordinate system ‘‘adapted’’

embedding in such a manner that the image of the embedding coincide with the hypers
xn1150 of the embedding space and the condition of isometry reduces to~6!.

While the sufficient condition is easily demonstrated, the proof of the necessary condit
this theorem is very long and will be omitted.7,10

We now consider an (n11)-dimensional semi-Riemannian manifold (Nn11,g̃) and

$y1,...,yn11% a coordinate system defined in an open set ofV,Nn11. Let g̃ab andR̃ab denote the
components of the metric and Ricci tensor, respectively. The manifold (Nn11,g̃) is called an
Einstein space if

R̃ab5
2L

12n
g̃ab , ~11!

wheren>2 andL is a constant. Of course~11! is equivalent toG̃ab5Lg̃ab , G̃ab being the
components of the Einstein tensor, and for this reasonL will be occasionally referred to as th
cosmological constant.

As is well known, at each point of an arbitrary semi-Riemannian spaceNn11 there exists a
coordinate neighborhood in which the metric has the form

ds25ḡikdyidyk1«f̄2~dyn11!2. ~12!

Let us now consider the inclusion mapi(y1,...,yn)5(y1,...,yn,0). This map determines a
embedding of the hypersurfaceS0 , defined byyn1150, in Nn11. This hypersurface endowe
with the induced metric by the inclusion map, which is given by
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gik~y1,...,yn!5
]ia

]yi

]ib

]yk g̃ab5ḡik~y1,...,yn,0!, ~13!

constitutes a semi-Riemannian space. The intrinsic curvature ofS0 and the curvature ofNn11

calculated atS0 are related by the Gauss–Codazzi equations. In the coordinates~12!, the Gauss–
Codazzi relations can be written in the form5

Rmki j5R̃mki j1«~V ikV jm2V jkV im!, ~14!

¹jV ik2¹iV jk5
1

f
R̃~n11!ki j , ~15!

whereRmki j andR̃mki j (Rki j
l 5G ik, j

l 2G jk,i
l 1G jm

l G ik
m2G im

l G jk
m) are the components of the curvatu

tensor ofS0 and of Nn11, respectively,¹i denoting the covariant derivative with respect to t
metric gik , andV ik ~the covariant components of the extrinsic curvature tensor ofS0) are given
by

V ik52
1

2f̄

]ḡik

]yn11
, ~16!

in the coordinates~12!. We are now interested in obtaining the components of the Ricci te
Rab5gdgRdagb in the coordinates~12!. With the help of the Gauss–Codazzi equations and fr
the expression

R̃i ~n11!k
~n11! 5S 2

«

f

]V ik

]yn11 1
1

f
¹i¹kf2«gjmV jkV imD ,

which can be obtained by a straightforward calculation, we are left with

R̃ik5Rik1«gjm~V ikV jm22V jkV im!2
«

f

]V ik

]yn11 1
1

f
¹i¹kf, ~17!

R̃i ~n11!5fgjk~¹jV ik2¹iV jk!, ~18!

R̃~n11!~n11!5«f2gikS 2
«

f

]V ik

]yn11 1
1

f
¹i¹kf2«gjmV jkV imD . ~19!

At this stage, it should be clear that the results just obtained may be carried over to any
surfaceSc defined byyn115c5const. Owing to this we shall henceforth introduce a sligh
different notation: the metric induced on anySc , i.e., ḡik(y1,...,yn,c), will be denoted simply by
ḡik ; likewise all quantities associated withḡik will be marked with a bar sign. However, fo
convenience, only the metric induced onS0 may also be denoted bygik ~without the bar!.

Now let us turn our attention to the case when the embedding manifoldNn11 is an Einstein
space. Since we can assume that any pointqPNn11 lies in some hypersurfaceSc , we can use the
equations above for decomposing the Ricci tensor of the embedding manifold in terms
intrinsic and extrinsic parts with respect to any hypersurfaceSc , with c5yq

n11. If Nn11 is an
Einstein space, then it follows from~10! that

R̃ik5R̄ik1«ḡ jm~V̄ ikV̄ jm22V̄ jkV̄ im!2
«

f̄

]V̄ ik

]yn11
1

1

f̄
¹̄i¹̄kf̄5

2L

12n
ḡik , ~20!

R̃i ~n11!5f̄ḡ jk~¹̄jV̄ ik2¹̄iV̄ jk!50, ~21!
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G̃~n11!
~n11!52 1

2ḡ
ikḡ jm~R̄i jkm1«~V̄ ikV̄ jm2V̄ jkV̄ im!!5L, ~22!

where in the last equation, from the definition of the Einstein tensor,G̃(n11)
(n11)5R̃(n11)

(n11)21/2R̃, R̃

being the curvature scalarR̃5g̃abR̃ab .
After writing the equations above let us concentrate on the problem of embedding a

Riemannian manifold in an Einstein space. The equations~20!–~22! may be looked upon as a se
of partial differential equations forḡik and f̄. At this point, our strategy is to show that if th
componentsgik(x1,...,xn) of a metric ofMn with respect to some coordinate system are giv
then there exists an open set ofRn11 where the above-mentioned equations admit a solu
ḡik(y1,...,yn,yn11) and f̄(y1,...,yn,yn11), which satisfies the initial conditionḡik5gik at S0 .
Moreover, it will be shown that the functionsḡik andf̄ possess all properties which are necess
to constitute a line element of an (n11)-dimensional semi-Riemannian manifold. Then, asḡik and
f̄ satisfy Eqs.~20!–~22!, the metric originated by them represents that of an Einstein space. T
by virtue of Theorem 1, the existence of the embedding will be guaranteed. However, b
proceeding to the final demonstration we shall make use of two lemmas. Let us consider th
one.

Lemma 1: Let the functions gīk and f̄ be analytic at(0,...,0)PS0,Rn11 and satisfy the
conditions (7)–(9), and the equation (20) in an open set ofRn11 which contains(0,...,0,0)
PRn11. If, in addition, ḡik and f̄ satisfy (21) and (22) atS0 , then ḡikef̄ also satisfy~21! and
~22! in some open set ofRn11 containing~0,..., 0, 0!.

Proof: By assumptionḡik and f̄ satisfy ~7!–~9!, hence the functionsg̃ab defined byg̃ik

5ḡik , g̃n11n115f̄2 and g̃in1150 for i, k51,...,n, may be considered as the components of
(n11)-dimensional metric tensorg̃. The coefficients of the connection and the components of
curvature tensor associated to the metricg̃ab can be calculated as usual. Let us now define
tensorF̃ab5G̃ab2Lg̃ab , whereG̃ab is the Einstein tensor. Then, as a consequence of Bia
identities for the curvature tensor, it follows thatF̃ab is divergenceless, i.e.,

¹̃aF̃b
a50. ~23!

This equation can be rewritten as

]F̃b
n11

]yn11 52
]F̃b

i

]yi 2G̃ml
m F̃b

l1G̃lb
m F̃m

l . ~24!

We have assumed thatḡik and f̄ satisfy the equations~20!–~22! at S0 , henceF̃b
a50 at S0 .

Moreover,]F̃b
i /]yi uyn11505(]/]yi)(F̃b

i uyn1150)50. Therefore, we conclude from~24! that

]F̃b
n11

]yn11U
yn1150

50. ~25!

Let us look into Eq.~24! separately forb5n11 andb5 i . Taking firstb5n11 gives

]F̃n11
n11

]yn11 52
]F̃n11

i

]yi 2G̃ml
m F̃n11

l 1G̃ln11
n11 F̃n11

l 1G̃n11n11
i F̃ i

n111G̃kn11
i F̃ i

k . ~26!

From the definition of the Einstein tensor we can writeG̃j
i 5R̃j

i 2d j
i (R̃k

k1G̃n11
n11). By assumption,

R̃i j 5@2L/(12n)#ḡi j not only at the hypersurfaceyn1150, but also for some open setV,Rn11,
with 0PU. Thus, the equalityF̃ i

k52d i
kF̃n11

n11 holds inV. This implies that
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]F̃n11
n11

]yn11 52
]F̃n11

i

]yi 2G̃ml
m F̃n11

l 1G̃ln11
n11 F̃n11

l 1G̃n11n11
i F̃ i

n112G̃ in11
i F̃n11

n11. ~27!

In terms of the components ofF̃n11
n11 and F̃ i

n11 the equation above may be written as

]F̃n11
n11

]yn11 52«f̄2ḡi j
]F̃ i

n11

]yj 22G̃ in11
i F̃n11

n111S 2«
]~f̄2ḡi j !

]yj 2«f̄2ḡi j G̃k j
k 1G̃n11n11

i D F̃ i
n11.

~28!

Analogously forb5 i we obtain

]F̃ i
n11

]yn11 5
]F̃n11

n11

]yi 12G̃n11i
n11 F̃n11

n111~ G̃n11i
k 1«f̄2ḡk jG̃ i j

n112G̃n11m
m d i

k!F̃k
n11. ~29!

By taking into account~28! and ~29! it can be easily shown by mathematical induction that

] r F̃b
n11

]~yn11!rU
yn1150

50 ~30!

for any integerr>0. As a consequence we conclude thatF̃b
n1150 in a neighborhood of the origin

Indeed, asḡik and f̄ are analytic at 0PRn11, then there exists such a neighborhood in wh
F̃b

n11 can be expressed as a Taylor series about 0PRn11, with each term of this series being nu
Since the equationF̃b

n1150 is equivalent to the equations~21! and~22!, then the lemma is proved

A. The Cauchy–Kowalewski theorem and the existence of the embedding

Although essential to the main result to be presented later, Lemma 1 says nothing ab
existence of the solutionsḡik and f̄. Thus we have to resort to the following theorem.

Theorem „Cauchy-Kowalewski…: Let us consider the set of partial differential equations

]2uA

]~yn11!2 5FAS ya,uB,
]uB

]ya ,
]2uB

]ya]yi , D , A51,...,m, ~31!

where u1,...,um are m unknown functions of the n11 variables y1,...,yn,yn11, a51,...,n11, i
51,...,n, B51,...,m. Also, letj1,...,jm, h1,...,hm, functions of the variables y1,...,yn, be ana-
lytic at 0PRn. If the functions FA are analytic with respect to each of their arguments around
values evaluated at the point y15¯5yn50, then there exists a unique solution of Eqs. ~31!
which is analytic at0PRn11 and that satisfies the initial condition

uA~y1,...,yn,0!5jA~y1,...,yn!, ~32!

]uA

]yn11 ~y1,...,yn,0!5hA~y1,...,yn!, A51,...,m. ~33!

By using ~16!, we can rewrite~20! as

]2ḡik

]~yn11!2
5«

4L

12n
f̄2ḡik1

1

f̄

]f̄

]yn11

]ḡik

]yn11
2

1

2
ḡ jmS ]ḡik

]yn11

]ḡ jm

]yn11
22

]ḡim

]yn11

]ḡ jk

]yn11D
22«f̄S ]2f̄

]yi]yk
2

]f̄

]yj
Ḡ ik

j D 22«f̄2R̄ik . ~34!
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Owing to the symmetry conditionḡik5ḡki , we can express Eq.~34! in terms of the functionsḡik

with i<k. If f̄ is regarded as a known function, then~34! becomes a set of partial differentia
equations for them5n(n11)/2 unknown functionḡik( i<k). This set of equations has the sam
form as ~31!. We also note that the right-hand side of~34! consists of rational functions of th
coordinatesy, the functionsḡik( i<k) and their derivatives~up to first order with respect toyn11

and up to second order relative to the other coordinates!. Therefore, if we takef̄Þ0 analytic at
0PRn11 and if the initial conditions

ḡik
i<k

~y1,...,yn,0!5gik
i<k

~y1,...,yn!, ~35!

]ḡik

]yn11

i<k

~y1,...,yn,0!522f̄~y1,...,yn,0!V ik
i<k

~y1,...,yn! ~36!

hold in some neighborhood of the point 0PRn, wheregik andV ik are arbitrary analytic functions
with ugikuÞ0 at the origin, then the right-hand side of~34! will also be analytic at

y150...yn1150; ḡik
i<kU

0

;
]ḡik

]y1

i<k
U

0

¯

]ḡik

]yn11

i<k
U

0

;
]2ḡik

]yj]ym

i<k
U

0

. ~37!

We conclude, then, from the Cauchy–Kowalewski theorem, that Eq.~34! admits a unique solution
ḡik(y1,...,yn11) which is analytic at 0PRn11 and also satisfies the given initial conditions.
should be noted that the determinantuḡiku ~which due to the initial conditions is non-null at th
origin! remains non-null in some open set ofRn11 as a consequence of the continuity of t
solution. These results may be summed up in the following lemma.

Lemma 2: Let gik(y1,...,yn) and V ik(y1,...,yn), for i, k51,...,n, and f̄(y1,...,yn,yn11), be
arbitrary functions which are analytic at0PRn and 0PRn11, respectively, with gik5gki , ugiku
Þ0, V ik5Vki in some open set ofRn containing0PRn, and f̄Þ0 in some open set ofRn11

containing0PRn11. Then there exists a unique set of functions gīk(y1,...,yn,yn11), which are
analytic at0PRn11, that satisfy~i! the conditions (7) and (8) and the equation (20) in a neig
borhood of0PRn11; and ~ii ! the initial conditions (6) and (36).

Now if we identify the functionsgik of the initial conditions with the components of
semi-Riemannian manifoldMn, then from Lemmas 1 and 2 and Theorem 1 we can prove
following theorem:

Theorem 2: Let Mn be an n-dimensional semi-Riemannian manifold with metric given b

ds25gikdxidxj ,

in coordinate system$xi% of Mn. Let pPMn have coordinates xp
15¯5xp

n50. Then, Mn has a
local isometric and analytic embedding~at the point p! in an (n11)-dimensional Einstein spac
with cosmological constantL if and only if there exist functionsV ik(x1,...,xn) ( i ,k51,...,n) that
are analytic at0PRn and such that

V ik5Vki , ~38!

gjk~¹jV ik2¹iV jk!50, ~39!

gikgjm~Ri jkm1«~V ikV jm2V jkV im!!522L. ~40!
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Proof: Let ML
n11 be the collection of all (n11)-dimensional Einstein spaces with cosm

logical constantL. If Mn has a local and analytic embedding inML
n11, at the pointp, then in

accordance with Theorem 1, there exist functionsḡik(x1,...,xn11), satisfying ~6!, and
f̄(x1,...,xn11) that are analytic at 0PRn11 such that

ds25ḡikdxidxk1«f̄2dxn11dxn11 ~41!

is the line element of some member ofML
n11 expressed in a conveniently chosen coordin

system. Therefore, this metric satisfies the equations~20!–~22! in a neighborhood of 0PRn11. In
particular, this is true for points lying on the hypersurfacexn1150, whereḡik5gik , from ~6!.
Thus, if we defineV ik(x1,...,xn)5V̄ ik(x1,...,xn,0), then the functionsV ik necessarily satisfy
~38!–~40!.

Let us consider the sufficient condition. First, we choosef̄(x1,...,xn11)Þ0 and analytic at
0PRn11. According to Lemma 2, there exists a unique set of functionsḡik(x1,...,xn11) satisfying
~6!–~8!, ~16!, and~20! and the conditionV̄ ik(x1,...,xn,0)5V ik(x1,...,xn). If V ik andgik satisfy
~39! and ~40!, then, from Lemma 1, the functionsḡik(x1,...,xn11) satisfy ~20!–~22! in a neigh-
borhood of 0PRn11, which in turn implies that the line element formed withḡik andf̄ is that of
an Einstein space with cosmological constantL. Then, Theorem 1 tell us thatMn has a local
isometric and analytical embedding inML

n11. h

We now want to show that once the functionsgik are given, the equations~38!–~40! always
admit a solution forV ik . These equations constitute a set ofn partial differential equations@Eq.
~39!# plus a constraint equation@Eq. ~40!# for n(n11)/2 independent functionsV ik . Except for
n51, the number of unknown functions is greater than@or equal to (n52)] the number of
equations. Out of the set of functionsV ik we pickn functions to be regarded as the unknowns. W
proceed to put~39! in the form required for application of the Cauchy–Kowalewski~first-order
derivative version! theorem to assure the existence of the solution. The detailed proof is
laborious, so we shall omit some of its parts.

For the sake of the argument and with no loss of generality we assume that we are u
coordinate system in whichg11Þ0 andg1k50, k52,...,n. Thus,g1151/g11 andg1k50. Equation
~39! can be written as

grs~Vsk,r2V rs,k1V rtGsk
t 2VktGsr

t !50. ~42!

Recalling thatV ik5Vki , it is not difficult to see that~42! may be put in the form

grsS Vsk,r
s<k

1Vks,r
k,s

22V rs,k
r ,s D2grr V rr ,k1grsS V tr

t<r
Gsk

t 1V rt
r ,t

Gsk
t 2V tk

t<k
Gsr

t 2Vkt
k,t

Gsr
t D50. ~43!

Likewise and taking advantage of the special form of the metric we can write Eq.~40! as

2g11V11 grs

r ,s.1S V rs
r<s

1Vsr
s,r D22g11 grs

r ,s.1
V1rV1s1 grsgtu

r ,s,t,u.1F S V rs
r<s

1V rs
s,r D S V tu

t<u
1Vut

u,t D
2 S V ru

r<u
1Vur

u,r D S Vst
s<t

1V ts
t,s D G1«R522«L. ~44!

Our next step is to identify in Eq.~43! the terms containing derivatives ofV ik with respect to
the coordinatex1. Let us consider first the casek51. Thus, we have

grsS V1s,r
r ,s.1

22 V rs,1
1,r ,sD2grr V rr ,1

r .1
1 grs

r ,s.1S V tr
t<r

Gs1
t 1V rt

r ,t
Gs1

t 2V11Gsr
1 2V1t

t,1
Gsr

t D50. ~45!

In order to write~45! in the form specified by Cauchy–Kowalewski~in its first-derivative version!
we should decide what among the functionsV ik( i<k) are to be chosen as unknowns. We a
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note that sinceugikuÞ0 there exists at least an indexr 8.1 such thatgr 8nÞ0. We chooseV r 8n as
one of the unknown functions and solve~45! for ]V r 8n /]x1. Thus, it is possible to put~45! in the
form

]V r 8n

]x1 5
1

gr 8n~d r 8n22! F2 grs

r ,s.1
V1s,r12grsV rs,1

1,r ,s
r ,sÞr 8,n

1grr V rr ,1
r .1
rÞr 8

1gr 8r 8V r 8r 8,1~12d r 8n!

2 grs

r ,s.1S V tr
t<r

Gs1
t 1V rt

r ,t
Gs1

t 2V11Gsr
1 2V1t

t,1
Gsr

t D G , ~46!

where no sum overr 8 is implied.
For k>2 we have

]V1k

]x1 5g11F2 grs

r ,s.1S Vsk,r
s<k

1Vks,r
k,s

22V rs,k
r ,s D2g11V11,k2grr V rr ,k

r .1

2grsS V tr
t<r

Gsk
t 1V rt

r ,t
Gsk

t 2V tk
t<k

Gsr
t 2Vkt

k,t
Gsr

t D G , k>2. ~47!

From ~44! we can expressV11 in terms of the otherV ik . Thus

V115
1

2g11 grs

r ,s.1S V rs
r<s

1Vsr
s,r D F2g11 grs

r ,s.1
V1rV1s2 grsgtu

r ,s,tu.1F S V rs
r<s

1Vsr
s,r D S V tu

t<u
1Vut

u,t D
2 S V ru

r<u
1Vur

u,r D S Vst
s<t

1V ts
t,s D G2«~R1L!G . ~48!

Finally, substitutingV11 from ~48! into ~46! and ~47! we obtain a set of partial differentia
equations for the functionsV ik , (i ,k)Þ(1,1). If we regard the functionsV ik( i<k) with i .1 and
( i ,k)Þ(r 8,n) as analytic functions already known, then we apply the Cauchy–Kowalewski t
rem ~first derivative version! to this set of differential equations consideringV1k(k.1) andV r 8n

as the unknown functions. We, then, chooseV ik (x1,...,xn) @ i<k,i .1,(i ,k)Þ(r 8,n)# and the
initial conditions V1k (0, x2,...,xn)5 f k(x

2,...,xn) (k.1) and V r 8n(0, x2,...,xn)
5 f 1(x2,...,xn). Of course the chosen functions must be analytic at 0PRn and satisfy the condi-
tion

grs

r ,s.1S V rs
r<s

1Vsr
s,r D U

0

Þ0. ~49!

It should be noted that it is always possible to have functionsV ik that satisfy the condition above
For instance, if we takeV ik50 @ i<k,i .1,(i ,k)Þ(r 8,n)#, this condition reduces togr 8nV r 8nu0

Þ0. Hence we just chooseV r 8nÞ0.
Once we have specified the functionsV ik(x1,...,xn) @ i<k,i .1,(i ,k)Þ(r 8,n)#, the right-

hand sides of~46! and ~47! become a function of the arguments

x1,...,xn; V1k
k.1

,V r 8n ; V1k, j
k, j .1

,V r 8n, j
j .1

, ~50!

which is analytic at

x150,...,xn50; V1k
k.1U

0

,V r 8nu0 ; V1k, j
k, j .1U

0

,V r 8n, j
j .1 U

0

. ~51!
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Therefore, the Cauchy–Kowalewski theorem asserts that there exists a unique set of fu
V1k(x

1,x2,...,xn) (k.1) andV r 8n(x1,x2,...,xn), analytic at 0PRn11 which satisfy the equations
~46! and ~47!. We determineV11 from ~48! by taking the chosen functionsV ik(x1,...,xn) @ i
<k,i .1,(i ,k)Þ(r 8,n)# and the solutions of the system of equations. From~49! and due to the
analyticity ofgik and of the solution we conclude thatV11 is analytic at the origin. Therefore, th
existence of analytic functionsV ik satisfying ~38!–~40! is demonstrated. The above may b
summarized in the following lemma:

Lemma 3: Let gik(x1,...,xn) and V ik(x1,...,xn) @ i<k,i .1,(i ,k)Þ(r 8,n)# be analytic func-
tions at the origin 0PRn, with V ik satisfying the initial conditionsV1k(0,x2,...,xn)
5 f k(x

2,...,xn) (k.1) andV r 8n(0,x2,...,xn)5 f 1(x2,...,xn), where fk are analytic at0PRn. If,
in addition, the condition~49! is fulfilled, then there exists a unique set of functionsV ik(x1,...,xn)
( i ,k51,...,n), analytic at0PRn21, which satisfy the equations (38)–(40).

Therefore, according to the lemma above, if we are given a set of analytic functionsgik , then
the existence of analytic functionsV ik which satisfy the equations~38!–~40! is assured. In this
way Lemma 3 tell us that the sufficient conditions of Theorem 2 are satisfied, so we can sta
final theorem.

Theorem 3: Let Mn (n.1) be a semi-Riemannian space with line element

ds25gikdxidxk,

expressed in a coordinate system which covers a neighborhood of a point pPMn whose coordi-
nates are xp

15¯5xp
n50. If gik are analytic functions at0PRn, then Mn can be embedded at

in some(n11)-dimensional Einstein space Nn11PML .
Two comments are in order. First, if then(n21)/221 specified arbitrary functions

V ik(x1,...,xn) @ i<k,i .1,(i ,k)Þ(r 8,n)# obey the conditions

~i! the functionsV ik @ i<k,i .1,(i ,k)Þ(r 8,n)# are analytic at 0PRn;
~ii ! the n functions V1k(0,x2,...,xn)5 f k(x

2,...,xn) (k.1) and V r 8n(0,x2,...,xn)
5 f 1(x2,...,xn) are analytic at 0PRn21, with gr ,s.1

rs (V
r<s
rs 1V

s,r
sr )u0Þ0;

~iii ! a functionf̄(x1,...,xn11)Þ0, analytic at 0PRn11, is chosen;

then the line element of the embedding space as referred to in Theorem 1 is unique.
Second, if we consider the caseL50, then clearly this theorem reduces to the Campbe

Magaard theorem, which establishes the existence of local analytic embedding of any Riem
manifold in the set of Ricci-flat spaces. In this sense, Theorem 3 is a generalization o
Campbell–Magaard theorem.

III. APPLICATION OF THE EXTENDED CAMPBELL–MAGAARD THEOREM

Let us consider some cases where (Mn,g) is a Lorentzian manifold of dimensionn54. We
know from Theorem 3 that there exists at least one Einstein space of dimensionn55 in which
(M4,g) can be embedded. In this section, we shall discuss and exhibit explicitly the embedd
four-dimensional Einstein spaces into five-dimensional embedding Einstein spaces.

Let us suppose (M4,g) is an Einstein space, that is,

Rik52lgik . ~52!

Our aim is to find a five-dimensional (M5,g̃) with a given arbitrary cosmological constantL in
which (M4,g) can be embedded.

Let us assume the followingansatz,

ḡik5 f ~u!gik ~53!

with f (0)51. Since we now haveR524l, the equation~40! can be satisfied only iff 8(0)
5A22«L/314«l/3.
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Owing to the fact thatḡik andgik are related by a conformal transformation which depends
the extra coordinateu only, it follows thatR̄ik5Rik52lgik . Thus, Eq.~34! is equivalent to

f 91
f 82

f
1

4«L

3
f 22«l50. ~54!

It is not difficult to show that the solution which satisfies the initial conditions imposed onf is
given by9

f ~u!5FcoshSA2
«L

6
uD 1S 122

l

L D sinhSA2
«L

6
uD G2

. ~55!

In this way we conclude that the Einstein space (M4,g) can be embedded in the Einstein spa

ds25 f ~u!gikdxidxj1«du2, ~56!

with f (u) being given by~55!.
Let us briefly note that embeddings of Minkowski and Schwarzschild space–times m

easily obtained as a particular case of the example above if we takel50.

IV. CONCLUSION

The recent appearance of physical models which regard the ordinary space–time as a
surface embedded in a five-dimensional manifold has naturally raised the question of what k
mathematical conditions both the embedded and the spaces are subject to. An answer
question necessarily involves a careful account of the mathematical theory of embedding. P
larly useful and clarifying are the Campbell–Magaard theorem and its extension to the c
which the embedding manifold is an Einstein space. Belonging to the latter kind is the embe
considered in the Randall–Sundrum braneworld. On the other hand, embeddings in Ric
five-dimensional manifolds are crucial for the noncompactified approach to Kaluza–
gravity.4 Of course, if according to some new physical model the five-dimensional surroun
manifolds should obey some field equations, e.g., Einstein field equations, it would be of i
tance to investigate whether further extensions of Campbell–Magaard theorem could be ac
in order to accommodate these models. We are currently doing some research in this dire
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Quaternionic eigenvalue problem
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We discuss the~right! eigenvalue equation forH, C and R linear quaternionic
operators. The possibility to introduce an isomorphism between these operators and
real/complex matrices allows us to translate the quaternionic problem into an
equivalentreal or complex counterpart. Interesting applications are found in solv-
ing differential equations within quaternionic formulations of quantum
mechanics. ©2002 American Institute of Physics.@DOI: 10.1063/1.1511789#

I. INTRODUCTION

The full understanding of the subtleties of the quaternionic eigenvalue problem still repre
an intriguing challenge for mathematicians and physicists. The recent study of the eige
problem for complex linear quaternionic operators1 played a fundamental role in solving quate
nionic differential equations.2 In the last few years, interesting applications of quaternionic an
sis and linear algebra were investigated in quantum mechanics.3 In particular, the solution of the
Schrödinger equation in the presence of quaternionic perturbations was explicitly given for
stant potentials and deviations from standard~complex! quantum mechanics discussed.4 In this
article, we aim to complete the study begun in Ref. 1, where preliminary steps in solvin
eigenvalue problem for complex linear quaternionic operators were traced. In order to ext
the R-linear case the results obtained for theH- andC-linear quaternionic matrices, we have
introduce a system ofcoupledequations which represents theneweigenvalue problem forR linear
quaternionic operators. It is important to observe that no attempt to develop a complete the
the quaternionic eigenvalue problem has been made here; this exceeds the scope of our a
satisfactory discussion of the eigenvalue problem for quaternionic operators is at present fa
being given. We could have directly investigated the eigenvalue equation in the quater
space, but we have preferred a more practical approach and chosen to handle the prob
finding a more familiar real or complex space isomorphic to the quaternionic one. We shall
that the isomorphism betweenH-, C-, andR-linear quaternionic operators and real/complex m
trices immediately allows us to translate the quaternionic~right! eigenvalue problem in a corre
sponding real or complex counterpart. The study of the new translated problem gives imp
information about the quaternionic solution. The results obtained are very useful in solving
nomial and differential equations. This could represent a fundamental step in understand
potentiality of using quaternions in formulating quantum mechanics~by investigatingquaternionic
deviations from the standard theory3,4! and gauge theory~by suggestingnewunification groups5!.

Throughout the article we shall denote byR, C, andH the sets of real, complex, and quate
nionic numbers,R,C,H, and byV@n,X# and M @n,X#, respectively, then-tuples and then
3n matrices overX. Linear quaternionic operators will be distinguished by their linearity from

a!Electronic mail: deleo@ime.unicamp.br
b!Electronic mail: scolarici@le.infn.it
c!Electronic mail: solombrino@le.infn.it
58150022-2488/2002/43(11)/5815/15/$19.00 © 2002 American Institute of Physics
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right. In what follows, the notationOX stands for quaternionic operators linear~from the right!
over the fieldX.

II. QUATERNIONIC ALGEBRA AND LINEAR OPERATORS

We now introduce the quaternionic algebra and some useful properties ofH-, C-, andR-linear
operators. The~real! quaternionic skew-fieldH is an associative~division! algebra of rank 4 over
R,

q5q01 iq11 jq21kq3 , q0,1,2,3PR, ~1!

where

i 25 j 25k25 i jk 521, ~2!

endowed with an involutory anti-automorphism~conjugation!

q→q̄5q02 iq12 jq22kq3 .

Due to the noncommutative nature of quaternions, we must distinguish between the left an
action of the quaternionic imaginary unitsi , j , andk. To do it, we introduce the operators

Lm5~1,Li ,L j ,Lk! and Rm5~1,Ri ,Rj ,Rk!, m50,1,2,3,

which act on quaternionic vectorscPV@n,H# in the following way:

Lmc5hmc and Rmc5chm , hm5~1,i , j ,k!.

These operators satisfy

Li
25L j

25Lk
25LiL jLk5Ri

25Rj
25Rk

25RkRjRi521, ~3!

and

@Lm ,Rn#50, m,n50,1,2,3. ~4!

Note thatH-linear quaternionic operators acting on a finiten-dimensional quaternionic vecto
space,

OH~c1q11c2q2!5~OHc1!q11~OHc2!q2 , q1,2PH, c1,2PV@n,H#,

are in one-to-one correspondence withn3n quaternionic matrices:

OH↔MHPM @n,H#. ~5!

Consequently,R- andC-linear quaternionic operators,6

OR~c1r 11c2r 2!5~ORc1!r 11~ORc2!r 2 , r 1,2PR, c1,2PV@n,H#,

OC~c1c11c2c2!5~OCc1!c11~OCc2!c2 , c1,2PC, c1,2PV@n,H#,

can be represented byn3n quaternionic matricesMH and right acting operatorsRm as follows:

OR↔MR5 (
m50

3

Mm,HRm and OC↔MC5(
s50

1

Ms,HRs . ~6!
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Thus, R-linear quaternionic operators consist of right multiplication by quaternionic num
(m50,1,2,3) whereasC-linear quaternionic operators are restricted to right multiplication
complex numbers (s50,1).

III. THE EIGENVALUE PROBLEM

In this section, we briefly discuss the left and right eigenvalue equation forH-, C-, and
R-linear quaternionic operators. As explicitly shown below, the conceptual difficulties which
acterize the left eigenvalue problem readily disappear by resorting to right eigenvalues. Th
to apply similarity transformations onH-, C-, andR-linear quaternionic matrices introducescom-
plexor real constraints on the right eigenvalues. The choice of complex or real~right! eigenvalues
will be extremely useful in finding a practical method of resolution and manipulating quatern
matrices.

A. Left eigenvalues

The left eigenvalue problem forH-linear quaternionic operators reads

OHc5qc, cPV@n,H#, qPH. ~7!

This problem has been recently studied in the mathematical literature.7,8 Nevertheless, no system
atic way to approach the problem has been given. We point out some difficulties which app
solving the left eigenvalue equation.

1. Similarity transformations

In finding the solution of Eq.~7!, a first difficulty is represented by the impossibility to app
similarity transformations,SHPM @n,H#, without losing the formal structure of the left eigenvalu
equation. In fact, by observing thatSHqÞqSH , the quaternionic matrices

MH and SHMHSH
21 ~8!

do not necessarily satisfy the same eigenvalue equation. Consequently, we can have quate
matrices with the same left eigenvalue spectrum, butno similarity transformation relating them
Explicit examples are found in Ref. 1.

2. Hermitian operators

Let OH be a Hermitian quaternionic operator andc be the eigenvector corresponding to t
eigenvalueq. By using Eq.~7! and denoting bŷwuc& the inner product inV@n,H#, we obtain

05^OHcuc&2^cuOHc&⇒05^qcuc&2^cuqc&Þ~ q̄2q!^cuc&.

Consequently, the left eigenvalue problem for Hermitian operators could admitquaternionic
solutions.9

3. Square operators and eigenvalues

As a last difficulty in the use of left eigenvalues, we observe that ifc is anOH eigenvector
with eigenvalueq, it will not necessarily be anOH

2 eigenvector with eigenvalueq2. In fact,

OH
2 c5OHqcÞqOHc5q2c.

B. Right eigenvalues

The right eigenvalue equation forH-linear transformations reads

OHc5cq, cPV@n,H#, qPH. ~9!
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Such an equation can be reduced to a right complex eigenvalue equation rephasing the
nionic eigenvalues by unitary quaternionsu,

OHcu5cuūqu5cuz, zPC. ~10!

This trick obviously fails for complex and real linear transformations. In fact, due to the pres
of the operatorsRi in OC and R[(Ri ,Rj ,Rk) in OR , we cannot apply unitary transformation
from the right. Observe that

~OR,Cc!uÞOR,C~cu!, uPH. ~11!

The failure of theassociativityin Eq. ~11! suggests that we should considercomplexeigenvalue
equations forC-linear quaternionic operators,

OCc5cz, zPC, ~12!

and real eigenvalues forR-linear quaternionic operators,

ORc5cr , r PR. ~13!

These equations are formally invariant underC- and R-linear similarity transformations. More
over, it can easily be proved that

OH
n c5cqn, OC

nc5czn, OR
nc5cr n.

It is important to note here thatR-linear quaternionic operators admit real eigenvalues only
particular cases. Thus, Eq.~13! has to be generalized. As shown later, a satisfactory discussio
the eigenvalue problem forR-linear quaternionic operators will require the use of a system
coupledequations.

IV. CANONICAL FORMS

In this section, following the procedure introduced in the paper of Ref. 1, we discus
canonical forms forH-, C-, andR-linear quaternionic matrices. The results we will establish fi
an immediate application in the theory of quaternionic differential operators. In fact, by usin
canonical formJX of a given matrixMX we can readily obtain the exponential

exp@MXx#5SX exp@JXx#SX
21

and, consequently, avoiding tedious calculations, solve quaternionic differential equation
constant coefficients.2

A. H-linear matrices

While matrices over commutative rings have gained much attention, the literature on ma
with quaternionic entries is often fragmentary. The main difficulty is that, due to the noncom
tative nature of quaternions, the standard method of resolution breaks down. Consequently,
eigenvalues and canonical forms represents a more delicate problem. The recent renewed
in quaternionic matrix theory1,10 and its applications2 shed new light on this intriguing researc
field. To facilitate access to the individual topics, we recall the main properties ofH-linear quater-
nionic matrices11–14and repeat the relevant theorems from Refs. 1, 10, 15, and 16 without pr
thus making our exposition self-contained.

In approaching the problem of diagonalization we have to consider a right quaternion
genvalue equation. In fact, from

MHck5ckqk , k51, . . . ,n, ckPV@n,H#, ~14!
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in the caseMH is diagonalizable, we immediately get the following matrix equation

MHSH@c1 ,c2 , . . . ,cn#5SH@c1 ,c2 , . . . ,cn#DH ,

where

DH5diag@q1 ,q2 , . . . ,qn#

andSH5SH@c1 ,c2 , . . . ,cn# is defined byColk(SH)5ck .
Consequently, the diagonalization of the matrixMH ,

MH5SHDHSH
21,

is obtained by solving the corresponding right eigenvalue problem. It is important to note her
we haveinfinite ways to diagonalize a quaternionic matrixMH ,

diag@u1 ,u2 , . . . ,un#diag@q1 ,q2 , . . . ,qn#diag@ ū1 ,ū2 , . . . ,ūn#.

Geometrically speaking this means that Im@q# can arbitrarily be fixed on the sphere of rayuIm@q#u.
By a particular choice of the unitary matrix

UH5diag@u1 ,u2 , . . . ,un#

we can set a preferred space direction, for example the positivei axis, and consequently acomplex
~positive! eigenvalue spectrum.

Let us now briefly recall some properties of the eigenvalue spectrum ofH-linear quaternionic
matrices. By using the symplectic decomposition of the matrixMH ,

MH5M11 jM 2 , M1,2PM @n,C#,

and the symplectic decomposition of the vectorc,

c5c11 j c2 , c1,2PV@n,C#,

we can rewrite Eq.~10! in the following ~complex! form:

M̃Hc̃5z c̃, ~15!

where

M̃H5S M1 2M2*

M2 M1*
D PM @2n,C# and c̃5S c1

c2
DPV@2n,C#. ~16!

The mapping

f :MH°M̃H ~17!

is an isomorphism of the ring of quaternionic matricesMH into the ring of the corresponding
complex counterpartsM̃H . It is important to observe that this isomorphism do not preserve
inner product of eigenvectors.9 Nevertheless, the choice of acomplex projectionof quaternionic
inner products17 opens the door to interesting applications in relativistic quantum mechan18

The complexorthogonality of quaternionic eigenvectors~instead of a quaternionic orthogonality!
implies a doubling of solution in the two-dimensional quaternionic Dirac equation.17 The four
~complex! orthogonal quaternionic solutions describe particle/antiparticle with spin up/down
use of complex inner products is also a fundamental ingredient in the formulation of ga
theories by geometric algebras.5
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The next theorem states the main property of the eigenvalue spectrum ofH-linear quaternionic
matrices. For a detailed discussion, see Refs. 14–16.

Theorem 1: Let M̃H be the matrix given in Eq. (16). Then, its eigenvalues appear in com
conjugate pairs.

By using the result of Theorem 1 and the Gram–Schmidt method, we can readily obta
triangular form forH-linear quaternionic matrices.

Theorem 2: Every MH is unitarily similar to an upper triangular matrix.
Moreover, a Jordan form can be given for everyH-linear quaternionic matrix.
Theorem 3: Every n3n matrix with real quaternion elements is similar under a mat

transformation with real quaternion elements to a matrix in (complex) Jordan normal form
diagonal elements in the complex field.

To prove Theorem 3, we can use the isomorphism defined in~17!. To anyM̃H corresponds a
2n32n matrix B in the ~complex! Jordan formB5BH% BH* , such thatM̃HP5PB, where the
~nonsingular! matrix P has the form

P5S P1 2P2*

P2 P1*
D .

This implies that

~P11 jP2!21MH~P11 jP2!5BH5DH1NH , ~18!

whereDH andNH respectively denote the diagonal and the nilpotent parts ofBH .

B. C-linear matrices

Let us now considerC-linear transformations. We can associate to anyn3n C-linear quater-
nionic matrix a 2n-dimensional complex matrix by the following mapping.

MC5MH1MH8 Ri↔M̃C5 f ~MH!1 i f ~MH8 !5S M1 2M2*

M2 M1*
D 1 i S M18 2M28*

M28 M18*
D , ~19!

where f denotes the isomorphism defined in~17!. Then the following proposition holds:
Proposition 1: Let MC be aC-linear quaternionic matrix and M˜ C its complex counterpart [see

Eq. (19)]. The mapping

g:MC°M̃C ~20!

is an isomorphism of the ring of the n-dimensionalC-linear matrices into the ring of 2n-
dimensional complex matrices.

Indeed, if

AC5A0,H1A1,HRi and BC5B0,H1B1,HRi

are twoC-linear matrices, their corresponding complex counterparts are given by

g~AC!5 f ~A0,H!1 i f ~A1,H!, g~BC!5 f ~B0,H!1 i f ~B1,H!.

Then,

ACBC5CC5A0,HB0,H1A1,HRiB0,H1A0,HB1,HRi1A1,HRiB1,HRi

5A0,HB0,H2A1,HB1,H1~A0,HB1,H1A1,HB0,H!Ri

and
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g~AC!g~BC!5 f ~A0,H! f ~B0,H!2 f ~A1,H! f ~B1,H!1 i f ~A1,H! f ~B0,H!1 i f ~A0,H! f ~B1,H!

5 f ~A0,HB0,H2A1,HB1,H!1 i f ~A0,HB1,H1A1,HB0,H!5g~CC!.
h

By using this isomorphism, the right eigenvalue spectrum ofC-linear quaternionic matrices ca
easily be determined.1 The following result,

‘‘ A C-linear matrix is diagonalizable if the corresponding complex counterpart is diagonalizab,’’

was proven in Ref. 1~where a preliminary discussion of the eigenvalue problem forC-linear
quaternionic matrix operators was given!. It is worth pointing out that the converse of the previo
statement is, in general, not true. For instance, let us consider the complex matrix

G̃C5S z1 0 1 0

0 z2 0 1

0 0 z1 0

0 0 0 z2

D . ~21!

This matrix admits a correspondingdiagonalizableC-linear quaternionic matrix given by

GC5DC1NC5S Re~z1!1Im~z1!Ri 0

0 Re~z2!1Im~z2!Ri
D 1

1

2 S 2 j 1kRi 0

0 2 j 1kRi
D , ~22!

whereNC is nilpotent, diagonal, and commutes withDC .
The normal form of aC-linear quaternionic matrix can easily be calculated. Indeed, given

C-linear transformationMC and its corresponding complex counterpartM̃C @see Eq.~19!#, from the
known properties of the Jordan form of complex matrices, we can immediately obtain

S̃C
21M̃CS̃C5 J̃C5D̃C1ÑC ,

whereD̃C is diagonal,ÑC is nilpotent, and@D̃C ,ÑC#50. Then, the quaternionicC-linear matrices
MC ,SC ,DC , andNC are uniquely determined by the isomorphism stated in Proposition 1.

C. R-linear matrices

In the n-dimensional quaternionic vector spaceV@n,H#, the R-linear transformations are
represented by

MR5 (
m50

3

Mm,HRm , ~23!

whereMm,H representH-linear quaternionic matrices andRm are the right acting operators define
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in the second section. AnyMR is then characterized by 16n2 real parameters. We can transla
R-linear n3n matrices into equivalent 4n34n real matrices, and vice versa, by the followin
translation rules:

Ri↔I5S 0 21n 0 0

1n 0 0 0

0 0 0 1n

0 0 21n 0

D ,

Rj↔J5S 0 0 21n 0

0 0 0 21n

1n 0 0 0

0 1n 0 0

D , ~24!

Rk↔K5S 0 0 0 21n

0 0 1n 0

0 21n 0 0

1n 0 0 0

D ,

and

Mm,H5M01 iM 11 jM 21kM3↔M̂m,H5S M0 2M1 2M2 2M3

M1 M0 2M3 M2

M2 M3 M0 2M1

M3 2M2 M1 M0

D , ~25!

whereMm,HPM @n,H#, M0, . . . ,3PM @n,R#, andM̂m,HPM @4n,R#. It is easy to verify thatI ,J,K
commute withM̂m,H :

@ I ,M̂m,H#5@J,M̂m,H#5@K ,M̂m,H#50

and

I25J25K25KJI 521.

The following proposition holds.
Proposition 2: Let MR be aR-linear matrix and M̂R its real counterpart. Then the mapping

h:MR5M0,H1M1,HRi1M2,HRj1M3,HRk°M̂R5M̂0,H1M̂1,HI1M̂2,HJ1M̂3,HK

is an isomorphism of the ring of the n-dimensional R-linear matrices into the ring of

4n-dimensional real matrices Mˆ
R .

Observe thatMHMH8̂ 5M̂HM̂ 8H . Let

AR5A0,H1A1,HRi1A2,HRj1A3,HRk and BR5B0,H1B1,HRi1B2,HRj1B3,HRk

be twoR-linear quaternionic matrices. Their corresponding real counterparts are given by

h~AR!5Â0,H1I Â1,H1JÂ2,H1K Â3,H and h~BR!5B̂0,H1I B̂1,H1JB̂2,H1K B̂3,H .
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Then,

ARBR5CR5~A0,HB0,H2A1,HB1,H2A2,HB2,H2A3,HB3,H!1~A0,HB1,H1A1,HB0,H1A2,HB3,H

2A3,HB2,H!Ri1~A0,HB2,H1A2,HB0,H1A3,HB1,H2A1,HB3,H!Rj1~A0,HB3,H

1A3,HB0,H1A1,HB2,H2A2,HB1,H!Rk

and

h~AR!h~BR!5~Â0,HB̂0,H2Â1,HB̂1,H2Â2,HB̂2,H2Â3,HB̂3,H!1~Â0,HB̂1,H1Â1,HB̂0,H1Â2,HB̂3,H

2Â3,HB̂2,H!I1~Â0,HB̂2,H1Â2,HB̂0,H1Â3,HB̂1,H2Â1,HB̂3,H!J1~Â0,HB̂3,H1Â3,HB̂0,H

1Â1,HB̂2,H2Â2,HB̂1,H!K5h~CR!
h

We now discuss the canonical forms ofR-linear matrices. LetAR be anR-linear transformation,
ÂR its real counterpart,$l11 im1 ,l21 im2 , . . . ,ls1 ims% the complex eigenvalues ofÂR , and

$l2s11 , . . . ,l4n% the real eigenvalues ofÂR . As is well known,19,20 there exists a real orthogona
matrix O such that

ĴR5OÂROT,

where

ĴR5S X1

X2 P

�

Xs

0 l2s11

�

l4n

D
5S X1

X2 0

�

Xs

0 l2s11

�

l4n

D 1S 0

0 P

�

0

0 0

�

0

D
5D̂R1N̂R . ~26!

In the previous equation,Xr represents a 232 real matrix with eigenvaluesl r6 im r . An appro-
priate choice ofO guarantees that

Xr5S l r 2m r

m r l r
D . ~27!

Let us come back to theR-linear transformationAR . By using the translation rules given in Eq
~24! and ~25!, we can immediately give its canonical form

JR5DR1NR .
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In particular, the diagonal elements ofDR corresponding to the quaternionic translation of the r
blocks

D̂1,R5S lm 2mm 0 0

mm lm 0 0

0 0 lm11 2mm11

0 0 mm11 lm11

D ,

D̂2,R5S lm 2mm 0 0

mm lm 0 0

0 0 lm11 0

0 0 0 lm12

D , ~28!

D̂3,R5S lm 0 0 0

0 lm11 0 0

0 0 lm12 0

0 0 0 lm13

D
are respectively given by

D1,R5 1
2 @lm~12LiRi !1mm~Li1Ri !1lm11~11LiRi !1mm11~Li2Ri !#,

D2,R5 1
2 @lm~12LiRi !1mm~Li1Ri !1 1

2lm11~11LiRi2L jRj1LkRk!

1 1
2 lm12~11LiRi1L jRj2LkRk!#, ~29!

D3,R5 1
4 @lm~12LiRi2L jRj2LkRk!1lm11~12LiRi1L jRj1LkRk!

1lm12~11LiRi2L jRj1LkRk!1lm13~11LiRi1L jRj2LkRk!#.

As happens forC-linear quaternionic matrices, anR-linear quaternionic matrix is diagonalizable
the corresponding real counterpart is diagonalizable. The converse is not necessarily true.

V. THE EIGENVALUE PROBLEM FOR R-LINEAR MATRICES

Let us now consider the eigenvalue problem forR-linear quaternionic matrices. Equation~13!
is obviously too restrictive. In fact, such an equation sets the real eigenvalue spectrum ofR-linear
quaternionic operators. No information is given about the remaining eigenvalues. In particu
the real counterpartM̂R of the R-linear quaternionic matrixMR does not have real eigenvalue
Eq. ~13! does not admit solution. This is very embarrassing if we consider, for example,R-linear
anti-Hermitian quaternionic operators. Thus, we need to modify Eq.~13!. The discussion regard
ing the ‘‘pseudo-triangular’’ form of the matricesÂR @see Eq.~26!# suggests as aR-linear eigen-
value problem the following system ofcoupledequations:

MRc5ac1bw,
~30!

MRw5cw1dc,

where

a,b,c,dPR, c5c01 ic11 j c21kc3 , w5w01 iw11 j w21kw3 ,

c0, . . . ,3,w0, . . . ,3PV@n,R#.
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It can be shown that the real coefficientsa,b,c,d are related to the real and imaginary parts of t
M̂R eigenvalues. In fact, by translating the system~30! into its real matrix counterpart, we find

S M̂R 0

0 M̂R
D S ĉ

ŵ D 5S a14n b14n

c14n d14n
D S ĉ

ŵ D , ~31!

where

ĉ5S c0

c1

c2

c3

D , ŵ5S w0

w1

w2

w3

D PV@4n,R#.

The matrix equation~31! admits nontrivial solutions if and only if

detF S M̂R2a14n 2b14n

2c14n M̂R2d14n
D G50. ~32!

By rewriting the matrixM̂R in terms of the similarity matrixŜR and of its Jordan formĴR , i.e.,

M̂R5ŜRĴRŜR
21 ,

and by using the cyclic property of the determinant, we reduce Eq.~32! to

detF S ĴR2a14n 2b14n

2c14n ĴR2d14n
D G50. ~33!

By simple algebraic manipulations,20 we obtain

detF S ĴR2a14n 2b14n

2c14n ĴR2d14n
D G5det@~ ĴR2a14n!~ ĴR2d14n!2bc14n#

5det@ ĴR
22~a1d!ĴR1~ad2bc!14n#

5)
i

@zi
22~a1d!zi1~ad2bc!#50,

wherezi represent the eigenvalues of the real matrixM̂R . The previous equation explicitly show
the relation between the real coefficientsa,b,c,d ~which appear in theR-linear eigenvalue prob-
lem! and the eigenvaluesz of the real counterpart of the quaternionic matrixMR . In the case of
complex eigenvaluesz, we find

D5~a1d!24~ad2bc!5~a2d!21bc,0. ~34!

This condition guarantees that the eigenvalues of the real matrix

Z5S a14n b14n

c14n d14n
D

appear in conjugate pairs. Consequently, we can find a real similarity transformationT such that
                                                                                                                



blem
n this
rential

e
d
of

ex
in

-

ng

5826 J. Math. Phys., Vol. 43, No. 11, November 2002 De Leo, Scolarici, and Solombrino

                    
TZT215S l14n 2m14n

m14n l14n
D .

Finally, without loss of generality, we can consider the following eigenvalue problem forR-linear
transformations

MRc5lc2mw,
~35!

MRw5lw1mc.

VI. FINAL REMARKS

These final remarks aim to give a concluding discussion on the ‘‘coupled’’ eigenvalue pro
and a brief summary of mathematical and physical applications motivating our interest i
research. In particular, we are interested to bring together two areas: quaternionic diffe
operators and quantum mechanics.

A. Coupled eigenvalue equations

In the previous section, we have introduced, forR-linear transformations, the eigenvalu
problem ~35! which represents thenatural generalization of~13!. In particular, as we observe
above, the study of system~35! instead of Eq.~13! allows us to take into account the existence
complex eigenvalues and, consequently, complete the eigenvalue spectrum ofR-linear quater-
nionic operators. Actually, the eigenvalue problem~35! also applies toH- andC-linear transfor-
mations. It can be considered as an equivalent formulation of Eqs.~9! and~12!. To show that, let
us consider the equation

MCc5cz5cl1c im. ~36!

We limit ourselves to discussingC-linear transformations. Obviously, if a preferred compl
direction is chosen for the eigenvalues ofH-linear quaternionic operators, all the arguments
what follows also hold forH-linear transformations. By using theC-linearity, we find

~MCc!i 5MC~c i !5c il2cm.

The pair of eigenvector (c,w5c i ), wherec is solution of Eq.~36!, satisfies the coupled equa
tions

MCc5lc2mw,
~37!

MCw5mc1lw.

Vice versa, letMC and ~37! be respectively aC-linear transformation and the correspondi
eigenvalue problem. We denote by~c, w! a solution of the system~37!. If c satisfies Eq.~36!, too,
then, comparing Eq.~36! and the first equation in~37!, one immediately obtainsw5c i . If, on the
contrary,c is not a solution of Eq.~36!, by using theC-linearity, we obtain

MC~w i !5~MCw!i 5mc i 1w i .

Thus,

MC~c1w i !5~c1w i !z. ~38!

Hence, it is possible to associate to any solution~c, w! of the system~37! a corresponding
eigenvector ofMC .
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It is worth pointing out that the coupled system~35! can be obtained by solving the eigenval
problem~13! for complexifiedquaternionic eigenvectors andcomplexifiedreal eigenvalues. In fact
by imposing that

c→C5c1Iw PH~1,i , j ,k! ^ C~1,I !,

and

r→Z5l1Im PC~1,I !,

from thecomplexifiedeigenvalue problem~13!,

MRC5CZ,

we immediately get the coupled system~35!.

B. Applications

Many physical problems dealing with differential operators are greatly simplified by usin
matrix formalism and solving the corresponding eigenvalue problem.

Let us first consider a very simple case, that is, theH-linear second order homogeneo
ordinary differential equation

c̈~x!2aċ~x!2bc~x!50, a,bPH, xPR. ~39!

In looking for quaternionic exponential solutionc(x)5exp@qx# and observing that the derivativ
of exp@qx# with respect to the real variablex is q exp@qx#, we reduce the previous problem to fin
the solutions of the following quadratic equation

q25aq1b. ~40!

This equation can be rewritten in matrix form as follows:

MHS q
1D5S q2

q D , MH5S a b

1 0D . ~41!

As seen in this article, theH-linear quaternionic matrixMH satisfies a right~complex! eigenvalue
equation

MHS v
wD5S v

wD z, zPC, v,wPH, ww̄51. ~42!

Due to the particular form ofMH , the components of theMH-eigenvectors satisfy the following
condition

v5wz. ~43!

Multiplying ~from the right! Eq. ~42! by w̄ and using the constraint~43!, we obtain

MHS wzw̄
1 D5S wz2w̄

wzw̄ D . ~44!

Comparing Eq.~41! with Eq. ~44!, we immediately get

q5wzw̄. ~45!
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The problem of finding exponential solutions for aH-linear differential with constant coefficient
and, consequently, zeros ofH-linear polynomial equations,21 is thus equivalent to solving the righ
~complex! eigenvalue problem for the associated matrix. Obviously, the previous considera
also hold for then-dimensional case.

The solutions ofX-linear quaternionic differential equations with constant coefficients

c (n)~x!2An21,Xc (n21)~x!2An22,Xc (n22)~x!2¯ 2A0,Xc~x!50, X5R,C,H, ~46!

can be given in terms of the eigenvalues and eigenvectors of the matrix

S An21,X An22,X ... A0,X

1 0 ... 0

. . ... .

. . ... .

. . ... .

0 0 ..1 0

D .

InterestingC-linear differential equations appear in quaternionic quantum mechanics.3 For ex-
ample, by studying quaternionic tunneling effects as a candidate to possible phenomeno
deviations from the standard~complex! theory, we have to solve the followingH-linear Schro¨-
dinger equation,

] tC~x,t !5F i

\ S \2

2m
]xx2 iV D1

j

\
WGC~x,t !, ~47!

where (j /\)W represents thenew quaternionic perturbation. The quaternionic stationary s
wave function

C~x,t !5c~x!expF2
i

\
EtG ~48!

is a solution of Eq.~47! on the condition thatc(x) be a solution of the following time-independe
C-linear ~ordinary! differential equation:

i
\2

2m
c̈~x!2 iVc~x!1 jWc~x!1c~x!iE50. ~49!

Observe that the choice of the imaginary uniti in the Laplacian operator]xx , Eq. ~47!, and in the
time exponential, Eq.~48!, is fundamental to recover the standard results in the complex limi
this formalism, quaternionic potentials are treated as perturbation effects on standard qu
mechanics. We also point out that the right position of the time exponential is fundamen
perform the separation of variables.

The solution of Eq.~49! can be given in terms of the eigenvalues and eigenvectors o
C-linear matrix

S 0 A0,C

1 0 D ,

where

A0,C5
2m

\2 ~V1LkW1LiRiE!.
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A detailed phenomenological discussion of the quaternionic tunneling effect is found in the
of Ref. 4.

C. Outlooks

As seen in this article, the choice of right~complex! eigenvalues forH- andC-linear operators
plays a fundamental role in discussing canonical forms and in finding solutions of polynomia
differential equations. It was shown that the right~complex! eigenvalue problem is equivalent t
a ‘‘coupled’’ system and this was extremely important to study the eigenvalue problem
R-linear quaternionic matrices, where a pair of real eigenvalues must be introduced. This
was intended as an attempt at motivating the study ofR- andC-linear quaternionic operators i
view of possible applications in quantum mechanics and gauge theory. It would be desira
give a complete theory ofX-linear quaternionic matrices and differential operators. More rea
tically, this article touches only a few aspects of the theory and shows how the choice of the
eigenvalue equation seems to be the best to investigate quaternionic formulations of p
theory. It was not our purpose to study here differential operators. The results in this field a
from being conclusive and some questions represent at present intriguing challenges: varia
parameters; order reduction; not invertible higher derivativeR- andC-linear constant coefficients
variable coefficients; and integral transforms. Finally, it would be desirable to extend the d
sion on the eigenvalue problem by matrix translation to the nonassociative case.22–24
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Matrix models for beta ensembles
Ioana Dumitriua) and Alan Edelmanb)

Massachusetts Institute of Technology, Department of Mathematics,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139

~Received 3 December 2001; accepted 3 June 2002!

This paper constructs tridiagonal random matrix models for general (b.0)
b-Hermite ~Gaussian! and b-Laguerre~Wishart! ensembles. These generalize the
well-known Gaussian and Wishart models forb51,2,4. Furthermore, in the cases
of theb-Laguerre ensembles, we eliminate the exponent quantization present in the
previously known models. We further discuss applications for the new matrix mod-
els, and present some open problems. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1507823#

I. INTRODUCTION

A. Overview

Classical random matrix theory focuses on the random matrix models in the following33
table:

Real, b51 Complex, b52 Quaternion, b54

Hermite GOE GUE GSE
Laguerre Real Wishart Complex Wishart ~Quaternion Wishart!
Jacobi Real MANOVA Complex MANOVA ~Quaternion MANOVA!

The two entries in parentheses~in the third column! correspond to less-studied random mat
models; the others are mainstream and have been extensively researched and publicized. T
columns correspond to Dyson’s ‘‘threefold way’’b51,2, and 4; the three rows correspond to t
weight function associated to the random matrix model. Other weight functions have also
considered~for example, the uniform weight on the unit circle corresponds to the circular
sembles!.

Zirnbauer33 and Ivanov12 produced a more general taxonomy of random matrix models. T
characterizations~‘‘tenfold,’’ and ‘‘twelvefold,’’ respectively! are based on symmetric spaces, a
include Hermite, Laguerre, and Jacobi cases, and also the circular ensembles~each of their models
can be associated withb51,2 or 4!.

We propose a random matrix program of study that would generalizeb beyond the above-
mentioned threefold way, thus generalizing the 333 Cartesian product to 33`, making the leap
from discrete characterizations to continuous ones. A step in this direction has been initia
Forrester,2,10 who studied theb-ensembles in connection with multivariate orthogonal polynom
and Calogero–Sutherland-type quantum systems. Furthermore, in the case of the class
guerre and Jacobi models, our program goes beyond the quantized exponents forced
classical models, and proposes continuous ones.

For the benefit of the reader we have expanded the 333 table with detailed information in
Fig. 1.

a!Electronic mail: dumitriu@math.mit.edu
b!Electronic mail: edelman@math.mit.edu; http://math.mit.edu/̃edelman
58300022-2488/2002/43(11)/5830/18/$19.00 © 2002 American Institute of Physics
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B. Background

The Gaussian~or Hermite! ensembles arise in physics, and are identified by Dyson7 by the
group over which they are invariant: Gaussian Orthogonal or for short GOE~with real entries!,
Gaussian Unitary or GUE~with complex entries!, and Gaussian Symplectic or GSE~with quater-
nion entries!. The Wishart ensembles arise in statistics, and the three corresponding models
be named Wishart real, Wishart complex, and Wishart quaternion.

The three Gaussian ensembles have joint eigenvalue probability density function

HERMITE: f b~l!5cH
b)

i , j
ul i2l j ub expS 2(

i 51

n

l i
2/2D , ~1!

with b51 corresponding to the reals,b52 to the complexes,b54 to the quaternions, and with

cH
b 5~2p!2n/2)

j 51

n GS 11
b

2 D
GS 11

b

2
j D . ~2!

FIG. 1. Random matrix ensembles. As a guide toMATLAB notation, randn(m,n) produces anm3n matrix with i.i.d.
standard normal entries, conj(X) produces the complex conjugate of the matrixX, and the apostrophe~8! operator produces
the conjugate transpose of a matrix. Also@X Y; Z W] produces a 232 block matrix.
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The best references are Mehta18 and the original paper by Dyson.7

Similarly, the Wishart~or Laguerre! models have joint eigenvalue p.d.f.

LAGUERRE: f b~l!5cL
b,a)

i , j
ul i2l j ub)

i
l i

a2p expS (
i 51

n

l i /2D , ~3!

with a5 (b/2) n and p511 (b/2) (m21). Again,b51 for the reals,b52 for the complexes,
andb54 for the quaternions. The constant

cL
b,a522ma)

j 51

m GS 11
b

2 D
GS 11

b

2
j DGS a2

b

2
~m2 j ! D . ~4!

Good references are Refs. 21, 8, and 13, and forb54, Ref. 17.
To complete the triad of classical orthogonal polynomials, we will mention theb-MANOVA

ensembles, which are associated with the multivariate analysis of variance~MANOVA ! model.
They are better known in the literature as the Jacobi ensembles, with joint eigenvalue p.d.

JACOBI: f b~l!5cJ
b,a1 ,a2)

i , j
ul i2l j ub)

j 51

n

l i
a12p

~12l i !
a22p, ~5!

with a15(b/2) n1 , a25(b/2) n2 , andp511 (b/2) (m21). As usual,b51 for real andb52
for complex; also

cJ
b,a1 ,a25)

j 51

m GS 11
b

2 DGS a11a22
b

2
~m2 j ! D

GS 11
b

2
j DGS a12

b

2
~m2 j ! DGS a22

b

2
~m2 j ! D . ~6!

The MANOVA real and complex cases (b51 and 2! have been studied by statisticians~see Ref.
21!.

Though ‘‘Gaussian,’’ ‘‘Wishart,’’ and ‘‘MANOVA’’ are the traditional names for the thre
types of b-ensembles, we prefer the sometimes used and technically more informative n
‘‘Hermite,’’ ‘‘Laguerre,’’ and ‘‘Jacobi’’ ensembles. These technical names reflect the fact tha
p.d.f.s for the ensembles correspond to the p.d.f.s etr(2A2/2), det(A)a2petr(2A/2), and
det(A)a12p det(I2A)a22p over their respective spaces of matrices. In turn, these functions c
spond to three sets of orthogonal polynomials~Hermite, Laguerre, Jacobi!. Throughout this paper
we will use the term ‘‘generalb-Hermite, -Laguerre, -Jacobi ensembles’’ for generalb in the
p.d.f.s~1!, ~3!, ~5!.

Though it was believed that no other choice ofb would correspond to a matrix mode
constructed with entries from a classical distribution, there have been studies of generalb-Hermite
ensembles as theoretical eigenvalue distributions. They turn out to have important applicat
lattice gas theory~see Refs. 10 and 2!.

The generalb ensembles appear to be connected to a broad spectrum of mathemati
physics, among which we list lattice gas theory, quantum mechanics, and Selberg-type int
Also, theb ensembles are connected to the theory of Jack polynomials~with the correspondence
a5 2/b wherea is the Jack parameter!, which are currently objects of intensive research~see
Refs. 27, 17, and 23!.
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C. Our results

Dyson’s original threefold way is a byproduct of the invariance assumptions as in the
variance’’ column of Fig. 1. By necessity, any invariant distribution is generically dense. Fu
the invariance approach forces the consideration of the complex and quaternion division alg

In this paper, we drop the invariance requirement. What we gain are ‘‘sparse’’ models~with
only O(n) nonzero parameters! over the reals numbersonly. As an additional bonus, we g
beyond the quantizations of the classical casesb51,2,4 and obtain continuous exponents~see
Sec. IV for further discussion of this point!.

We provide real tridiagonal random matrix models for allb-Gaussian~or Hermite! and
b-Wishart ~or Laguerre! ensembles, and we discuss the possibility of constructing a real m
model for theb-MANOVA ~or Jacobi! ensembles.

We obtain our results by extrapolating the classical cases, thereby providing concrete m
for what have previously been considered purely theoretical distributions.

In Sec. II we establish results for symmetric tridiagonal matrices, and we use them to
struct tridiagonal models for theb-Hermite ensembles. Along the way, we obtain a short pr
based on random matrix theory for the Jacobian of the transformationT→(q,l), whereT is a
symmetric tridiagonal matrix,l is its set of eigenvalues, andq is the first row of its eigenvecto
matrix. In Sec. III we construct tridiagonal models for theb-Laguerre ensembles, by building o
the same set of ideas that we use in Sec. II. In Sec. IV we present some immediate applica
the new classes of ensembles and we discuss theb-Jacobi ensembles and other interesting op
problems.

We display our random matrix constructions in Table I.

II. THE b-HERMITE „GAUSSIAN … ENSEMBLES

A. Motivation: Tridiagonalizing the GOE, GUE, and GSE

The joint distributionf b(l) of the eigenvalues for the GOE, GUE, and GSE is

f b~L!5cH
b uD~l!ub expS 2

1

2 (
i

l i
2D , ~7!

whereb51,2,4.18 Here the Vandermonde determinant notationD~l! stands for) iÞ j (l i2l j ), and
cH

b is given by~2!.

TABLE I. Random matrix constructions.

Hermite matrix
nPN

Hb;
1

& S N~0,2! x (n21)b

x (n21)b N~0,2! x (n22)b

� � �

x2b N~0,2! xb

xb N~0,2!

D
Laguerre matrix Lb5BbBb

T , where
mPN
aPR

a.
b

2
~m21!

Bb;S x2a

xb(m21) x2a2b

� �

xb x2a2b(m21)

D
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We will prove in Sec. II B that the tridiagonalb-Hermite random matrix displayed in Table
has the joint eigenvalue p.d.f. given by generalb in ~7!. For motivation, we will begin with a
quick ‘‘back-door’’ proof forb51 by tridiagonalizing the GOE; then we will extend the result
the GUE and GSE.

To illustrate the proof and help the reader follow it more easily, we have included the dia
of Fig. 2.

Theorem 2.1: If A is an n3n matrix from the GOE, then reduction of A to tridiagonal for
shows that the matrix T from the 1-Hermite ensemble has joint eigenvalue p.d.f. given by (7
b51.

Proof: We write A5(x B
an xT

). Here an is a standard Gaussian,x is a vector of (n21) i.i.d.
Gaussians of mean 0 and variance 1/2, andB is an (n21)3(n21) matrix from the GOE;an , x
andB are all independent from each other.

Let H be any (n21)3(n21) orthogonal matrix~depending only onx) such that

Hx5@ ixi2 0...0#T[ixi2e1 ,

wheree15@1,0,...,0#T. Then clearly

S 1 0

0 H D S an xT

x B D S 1 0

0 HTD 5S an ixi2e1
T

ixi2e1 HBHTD .

SinceA is from the GOE andH depends only onx, we can readily identify the distribution
of an , ixi2 , and HBHT ~these three quantities are clearly independent!. The entryan is un-
changed and thus a standard normal with variance 1. Being the length of a multivariate Ga
of mean 0 and entry variance 1/2,ixi2 has the distribution (1/&) xn21 . It is worth mentioning
that the p.d.f. ofixi2 is given by

2

GS n21

2 D yn22e2y2
.

Finally, by the orthogonal invariance of the GOE,HBHT is an (n21)3(n21) matrix from the
GOE.

Proceeding by induction completes the tridiagonal construction.
Because the only operations we perform onA are orthogonal similarity transformations

which do not affect the eigenvalues, the conclusion of the theorem follows. h

FIG. 2. A dense symmetric matrixA can be tridiagonalized~left-hand side! or diagonalized~right-hand side!. In brackets,
we provide the distributions starting with that ofA ~GOE or Wishart real!.
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We recall that matrices from the GOE have the following properties:
Property 1:The joint eigenvalue density iscH

1 uD(l)uexp(21
2(ili

2).18

Property 2:The first row of the eigenvector matrix is distributed uniformly on the sphere,
it is independent of the eigenvalues.

The second property is an immediate consequence of the fact that the eigenvector mat
GOE matrix is independent from the eigenvalues@Ref. 18,~3.1.3! and ~3.1.16!, pp. 55–58#, and
has the Haar~uniform! distribution because of the orthogonal invariance.

The following corollary is easily established.
Corollary 2.2: If T is a matrix from the 1-Hermite ensemble, with eigendecompositio

5QLQT, then the first row q of the eigenvector matrix Q is independent ofL, and is distributed
uniformly on the sphere.

Proof: If A5Q1LQ1
T andT5HAHT, thenQ5HQ1 . Since each one of the reflectors whic

form H has first rowe1 , multiplication byH does not affect the first row ofQ1 . The conclusion
follows. h

Reduction to tridiagonal form is a familiar algorithm which solves the symmetric eigenv
problem. The special ‘‘reflector’’ matrixH used in practice for a vectorx5@x1 ,...,xn21#T is

H5I 22
uuT

uTu
,

whereu5x6x1 e1 . This special matrixH is known as the ‘‘Householder reflector’’~see Ref. 11,
p. 209!.

The tridiagonal reduction algorithm can be applied to any real symmetric, complex herm
or quaternion self-dual matrix; the resulting matrix is always a real, symmetric tridiagonal. U
the algorithm similarly on a GUE or GSE matrix one gets the following.

Corollary 2.3: Whenb52,4, reduction to tridiagonal form of matrices from the GUE, respe
tively, GSE, shows that the tridiagonal 2-Hermite, respectively, 4-Hermite, random matrix ha
distribution given by (7). Note thatb ‘‘counts’’ the number of independent Gaussians in each en
of the matrix.

Remark 2.4: The observation that numerical linear algebra algorithms may be perfo
statistically is not new; it may be found in the literature (see Trotter—Ref. 31, Silverstein—Re
and Edelman—Ref. 8).

B. Tridiagonal matrix lemmas

In this section we prove lemmas that will be used in our constructions in Secs. II C and
Given a tridiagonal matrixT defined by the diagonala5(an ,...,a1) and subdiagonalb

5(bn21 ,...,b1), with all bi positive, letT5QLQT be the eigendecomposition ofT as in Theo-
rem 2.12. Letq be the first row ofQ andl5diag(L).

Lemma 2.5: Under the above-given assumptions, starting from q andl, one can uniquely
reconstruct Q and T.

Proof: This is a special case of the more general Theorem 7.2.1 in Parlett.24 h

Remark 2.6: It follows that, except for sets of measure0, the map T→(q,l) is a bijection from
the set of tridiagonal matrices of size n with positive subdiagonal, to the set of pairs(q,l), with
q a unit norm n-dimensional vector of positive real entries, andl a strictly increasingly ordered
sequence of n real numbers. Let the bijection’s Jacobian be denoted by J

J5H ]~a,b!

]~q,l! J .

Our next lemma establishes a formula for the Vandermonde determinant of the eigenva
a tridiagonal matrix.

Lemma 2.7: The Vandermonde determinant for the ordered eigenvalues of a symmetri
agonal matrix with positive subdiagonal b5(bn21 ,...,b1) is given by
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D~l!5)
i , j

~l i2l j !5
) i 51

n21bi
i

) i 51
n qi

,

where(q1 ,...,qn) is the first row of the eigenvector matrix.
Proof: Let l i

(k) , i 51...k, be the eigenvalues of thek3k lower right-corner submatrix ofT.
ThenPk(x)5) i 51

k (x2l i
(k)) is the associated characteristic polynomial of that submatrix.

For k51,...,n we have the three-term recurrence

Pk~x!5~x2ak!Pk21~x!2bk21
2 Pk22~x!, ~8!

and the two-term relation

)
1< i<k

1< j <k21

ul i
(k)2l j

(k21)u5)
i 51

k

uPk21~l i
(k)!u5)

j 51

k21

uPk~l j
(k21)!u. ~9!

From ~8! we get

U)
i 51

k21

Pk~l i
(k21)!U5bk21

2(k21)U)
i 51

k21

Pk22~l i
(k21)!U. ~10!

By repeatedly applying~8! and ~2.9! we obtain

)
i 51

n21

uPn~l i
(n21)!u5bn21

2(n21) )
i 51

n22

uPn21~l i
(n22)!u ~11!

5bn21
2(n21) bn22

2(n22) U)
i 51

n22

Pn23~l i
(n22)!U ~12!

5... ~13!

5 )
i 51

n21

bi
2i . ~14!

Finally, we use the following formula due to Paige, found in Ref. 24, as the more ge
Theorem 7.9.2:

qi
25UPn21~l i !

Pn8~l i !
U5UPn21~l i

(n)!

Pn8~l i
(n)!

U . ~15!

It follows that

)
i 51

n

qi
25

) i 51
n uPn21~l i

(n)!u
D~l!2 5

) i 51
n21bi

2i

D~l!2 , ~16!

which proves the result.
Remark 2.8: The Vandermonde determinant formula of Lemma 2.7 can also be obtaine

the Heine formula, as presented in Deift (Ref. 5, p. 44).
The next lemma computes the JacobianJ by relating the tridiagonal and diagonal forms of

GOE matrix, as in Fig. 2.
Lemma 2.9: The Jacobian J can be written as
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J5
) i 51

n21bi

) i 51
n qi

.

Proof: To obtain the Jacobian, we will study the transformation from GOE to 1-Herm
ensemble~see Fig. 2!. Note thatJ doesnot depend onb; hence computing the Jacobian for th
case is sufficient.

Let T be a 1-Hermite matrix. We know from Sec. II A that the eigenvalues ofT are distributed
as the eigenvalues of a symmetric GOE matrixA, from whichT can be obtained via tridiagona
reduction (T5HAHT for some orthogonalH, which is the product of the consecutive reflectio
described in Sec. II A!.

The joint element distribution for the matrixT is

m~a,b!5ca,b expS 2
1

2 (
i 51

n

ai
2D)

i 51

n

bi
i 21 expS 2(

i 51

n

bi
2D ,

where

ca,b5
2n21

~2p!n/2) i 51
n21GS i

2D .

Let

da5∧ i 51
n dai , db5∧ i 51

n21dbi , dl5∧ i 51
n l i ,

and dq be the surface element of then-dimensional sphere. Letm(a(q,l),b(q,l)) be the expres-
sion for m(a,b) in the new variablesq,l. We have that

m~a,b!da db5J m~a~q,l!,b~q,l!!dq dl[n~q,l! dq dl. ~17!

We combine Properties 1 and 2 of Sec. II A to get the joint p.d.f.n(q,l) of the eigenvalues
and first eigenvector row of a GOE matrix, and rewrite it as

n~q,l!dq dl5n!cH
1

2n21GS n

2D
pn/2 D~l!expS 2

1

2 (
i

l i
2D dq dl.

We have introduced then! and removed the absolute value from the Vandermonde, becaus
eigenvalues are ordered. We have also included the distribution ofq ~as mentioned in Property 2
it is uniform, but only on the all-positive 22nth of the sphere because of the conditionqi>0.)

Since orthogonal transformations do not change the Frobenius normiAiF5( i , j 51
n ai j

2 of a
matrix A, from ~17!, it follows that

J5
n~q,l!

m~a,b!
5

n!cH
1

2n21GS n

2D
pn/2

ca,b

D~l!

) i 51
n bi

i 21 .

All constants cancel, and by Lemma 2.7 we obtain

J5
) i 51

n21bi

) i 51
n qi

.
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Note that we have not expressedm(a,b) in terms ofq and l in the above, and have thu
obtained the expression for the Jacobian neither in the variablesq andl, nor a andb, solely; but
rather in a mixture of the two sets of variables. The reason for this is that of simplicity. h

Remark 2.10: Our derivation of the Jacobian is a true random matrix derivation. Alter
derivations of the Jacobian can be obtained either via symplectic maps or through direct c
lation.

The last lemma of this section computes one more Jacobian, which will be needed in
III B.

Let B be a bidiagonal matrix with positive diagonalx5(xm ,...,x1) and positive subdiagona
y5(ym21 ,...,y1). Let T5BBT; denote bya5(am ,...,a1) and b5(bm21 ,...,b1), respectively,
the diagonal and the subdiagonal part ofT. SinceT is a positive definite matrix, the transforma
tion B→T is a bijection from the set of bidiagonal matrices with positive entries to the se
positive definite tridiagonal matrices.

Lemma 2.11: The Jacobian J(B→T) is

J(B→T)5S 2mx1)
i 52

m

xi
2D 21

.

Proof: We computeJ(B→T) from the formula

dx dy5J(B→T)da db,

where dz5∧ idzi for all zP$a,b,x,y%.
We have that

am5xm
2 , ~18!

ai5yi
21xi

2 , ~19!

bi5yixi 11 , ~20!

for all i 5m21,m22,...,1.
Hence by computing differentials we get

dam52xm dxm

dai52~xi dxi1yi dyi !, ; i 5m21,m22,...,1

dbi5xi 11dyi1yi dxi 11 , ; i 5m21,m22,...,1,

from which the formula follows. h

C. The eigendistribution of the b-Hermite ensemble

Let Hb be a random real symmetric, tridiagonal matrix whose distribution we schemati
depict as

Hb;
1

A2 S N~0,2! x (n21)b

x (n21)b N~0,2! x (n22)b

� � �

x2b N~0,2! xb

xb N~0,2!

D .
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By this we mean that then diagonal elements and then21 subdiagonals are mutuall
independent, with standard normals on the diagonal, and 1/A2 xkb on the subdiagonal.

Theorem 2.12:Let Hb5QLQT be the eigendecomposition of Hb ; fix the signs of the first
row of Q to be non-negative and order the eigenvalues in increasing order on the diagon
l5diag(L). Thenl and q, the first row of Q, are independent. Furthermore, the joint density
the eigenvalues is

f b~l!5cH
b)

i , j
ul i2l j ub expS 2

1

2 (
i 51

n

l i
2D 5cH

b uD~l!ub expS 2
1

2 (
i 51

n

l i
2D ,

and q5(q1 ,...,qn) is distributed as(xb ,...,xb), normalized to unit length.
Proof of Theorem 2.12:Just as before, we denote bya5(an ,...,a1) the diagonal ofHb , and

by b5(bn21 ,...,b1) the subdiagonal. The differentials da,db,dq,dl are the same as in Lemm
2.9.

For generalb, we have that

~dHb![m~a,b!da db5ca,b)
k51

n21

bk
kb21 expS 2

1

2
iT1iFDda db

5ca,bJ)
k51

n21

bk
kb21 expS 2

1

2
iT1iFDdq dl,

where

ca,b5
2n21

~2p!n/2)k51
n21GS b

2
kD .

With the help of Lemmas 2.7 and 2.9 this identity becomes

~dHb!5ca,b

)k51
n21bk

)k51
n qk

)
k51

n21

bk
kb21 expS 2

1

2
iT1iFDdq dl ~21!

5ca,b

)k51
n21bk

kb

) i 51
n qi

b )
i 51

n

qi
b21 expS 2

1

2 (
i

l i
2D dq dl. ~22!

Thus

~dHb!5S cq
b)

i 51

n

qi
b21 dqD S n!cH

b D~l!b expS 2
1

2 (
i

l i
2D dl D .

Since the joint density function ofq andl separates,q andl are independent. Moreover, onc
we drop the ordering imposed on the eigenvalues, it follows that the joint eigenvalue dens
Hb is cH

b uD(l)ub exp(21
2(ili

2), and q is distributed as (xb ,...,xb), normalized to unit length.
From ~22!, it also follows that

cq
b5

2n21GS b

2
nD

FGS b

2 D Gn . ~23!
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III. THE b-LAGUERRE „WISHART… ENSEMBLES

A. Motivation: Tridiagonalizing the Wishart ensembles

The preceding section gives tridiagonal random matrix models for allb-Hermite ensembles
In the following we define theb-Laguerre ensembles, and give tridiagonal random matrix mo
for them.

The Wishart ensembles have joint eigenvalue density

f b~l!5cL
b,auD~l!ub)

i 51

m

l i
a2p expS 2(

i 51

m

l i /2D , ~24!

again witha5 (b/2) n, p511 (b/2) (m21), and with, respectively,b51 for real, andb52 for
complex. HerecL

b,a as the same as in~4!.
From now onp will always denote the quantity 11 (b/2) (m21), following the notation of

Muirhead forb51 ~Ref. 21, Chap. 7! and Forrester10 ~Forrester uses 11 (1/a) (m21), where
a52/b is the Jack parameter!. Its presence is implicit in the p.d.f. of allb-Laguerre ensembles
hence we will identify the ensembles byb and bya ~we call the latter the ‘‘Laguerre’’ paramete
generalizing from the univariate caseb51, m51).

As in Sec. II A, we will provide the most basic case for our construction: the caseb51 and
Wishart real exponent (n2m21)/2 ~also referred to as the caseb51 and Laguerre paramete
a5 n/2).

Theorem 3.1: Let G be an m3n matrix of i.i.d. standard Gaussians; then W5GGT is a
Wishart real matrix. By reducing G to bidiagonal form B one obtains that the matrix T5BBT

from the 1-Laguerre ensemble of Laguerre parameter a5 n/2 (defined as in Table I) has the join
eigenvalue p.d.f. given by (24).

Proof: We write

G5S xT

G1
D ,

with xT a row multivariate standard Gaussian of lengthn and G1 a (m21)3n matrix of i.i.d.
standard Gaussians. LetR be a right reflector corresponding to the vectorxT (RTx5ixi2 e1

T)
which is independent ofG1 . HenceG1R is a matrix of i.i.d. standard Gaussians.

Write G1R5@y,G2#, wherey is a column multivariate standard Gaussian of lengthm21 and
G2 is a (m21)3(n21) matrix of i.i.d. standard Gaussians. LetL be a left reflector correspond
ing to y (Ly5iyi2 e1) which is independent ofG2 . Then we have that

S 1 0

0 L DGR5S ixi2 0

iyi2 e1 LG2
D .

As we have seen before,ixi2 is distributed likexn21 , iyi2 is distributed likexm21 , andLG2 is
a matrix of i.i.d. standard Gaussians~sinceL andG2 are independent!.

We proceed inductively to finish the bidiagonal construction ofB.
Because the operations we have performed onG are orthogonal left and right multiplications

which do not affect the singular values, it follows that the singular values ofG andB are the same.
Since the squares of the singular values ofG andB, respectively, are the eigenvalues ofW andT,
respectively, the conclusion of the theorem follows. h

Remark 3.2: The bidiagonalization process presented above is part of a familiar num
linear algebra algorithm for computing the singular values of a matrix.

Corollary 3.3: The same process of bidiagonalization performed on G˜ , a matrix of i.i.d.

standard complex (standard quaternion) Gaussians, shows that the matrix W˜ 5G̃G̃T and the
matrix T from the 2-Laguerre (4-Laguerre) ensemble of parameter a5n (a52n) has the joint
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eigenvalue p.d.f. given by (24). In all three cases (real, complex, quaternion) we say t
represents the tridiagonalization of the Wishart (real, complex, quaternion) ensemble.

In Sec. III B we prove the general form of the theorem.

B. The Eigendistribution of b-Laguerre ensemble

Let

Bb;S x2a

xb(m21) x2a2b

� �

xb x2a2b(m21)

D ,

by this we mean that all of the 2m21 diagonal and subdiagonal elements are mutually indep
dent with the correspondingx distribution.

Let Lb5BbBb
T be the corresponding tridiagonal matrix.

Theorem 3.4:Let Lb5QLQT be the eigendecomposition of Lb ; fix the signs of the first row
of Q to be non-negative and order the eigenvalues increasingly on the diagonal ofL. ThenL and
the first row q of Q are independent. Furthermore, the joint density of the eigenvalues is

f b~l!5cL
b,auD~l!ub)

i 51

n

l i
a2p expS 2(

i 51

n

l i /2D ,

where p511 (b/2) (m21), and q is distributed as(xb ,...,xb) normalized to unit length.
Proof of Theorem 3.4:We will use throughout the results of Lemma 2.7, Lemma 2.9, Lem

2.11, and Remark 2.6, which are true in the context of tridiagonal symmetric matrices
positive subdiagonal entries. By definition,Lb is such a matrix.

We will again use the notations of Lemma 2.9 and 2.11 for the differentials da, db, dq, dl,
dx, and dy.

We define (dBb) to be the joint element distribution onBb

~dBb![m~x,y!dx dy5cx,y )
i 50

m21

xm2 i
a2b i21exp~2xi

2/2! )
i 51

m21

yi
b i21exp~2yi

2/2!dx dy.

By using Lemma 24 we obtain the joint element distribution onLb as

~dLb![JB→T
21 m~x,y!dx dy ~25!

522mcx,yx1
2a2b(m21)22exp~2x1

2/2! )
i 50

m22

xm2 i
a2b i23

3exp~2xi
2/2! )

i 51

m21

yi
b i21exp~2yi

2/2!dx dy, ~26!

where

cx,y5

) i 51
m21GS i

b

2 D ) i 51
m GS a2

b

2
~ i 21! D

22m21 .

We rewrite~26! in terms ofx,y,l, andq:
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~dLb!522mcx,y expS 2(
i 51

m

xi
2/2D expS 2 (

i 51

m21

yi
2/2D ) i 51

m21~xi 11yi !

) i 51
m qi

x1
2a2b(m21)22

3 )
i 50

m22

xm2 i
2a2b(m2 i )23 )

i 51

m21

yi
b i21dq dl

522mcx,y expS 2(
i 51

m

xi
2/2D

3expS 2 (
i 51

m21

yi
2/2D ) i 50

m21xm2 i
2a2b(m2 i )22) i 51

m21yi
b i

) i 51
m qi

dq dl.

Since the Vandermonde with respect tob andq and the ordered eigenvaluesl can be written
as

D~l!5
) i 51

m21bi
i

) i 51
m qi

,

it follows that

D~l!5
) i 51

m21~xi 11yi !
i

) i 51
m qi

.

This means that we can rewrite

~dLb!522mcx,y expS 2 (
i 50

m21

xm2 i
2 /2D expS 2 (

i 51

m21

yi
2/2D ) i 51

m21~xi 11yi !
b i

) i 51
m qi

b

3 )
i 51

m21

qi
b21 )

i 50

m21

xm2 i
2a2b(m21)22dq dl

522mcx,y expS 2 (
i 50

m21

xm2 i
2 /2D expS 2 (

i 51

m21

yi
2/2DD~l!b

3 )
i 51

m21

qi
b21S )

i 50

m21

xm2 i D 2a2b(m21)22

dq dl.

The trace and the determinant are invariant under orthogonal similarity transformatio
tr(Lb)5tr(L), and det(Lb)5det(L). This is equivalent to

(
i 50

m21

xm2 i
2 1 (

i 51

m21

yi
25(

i 51

m

l i ,

)
i 50

m21

xm2 i
2 5)

i 51

m

l i .

Using this, and substitutingp for 11 b/2 (m21), we obtain that

~dLb!5S cq
b )

i 51

m21

qi
b21 dqD S m!cL

b,ae2( i 51
m l i /2D~l!b)

i 51

m

l i
a2p dl D ,

wherecq
b is the same as in~23!.

From the above we see thatq andl are independent, and once we drop the ordering the j
eigenvalue density is given by theb-Laguerre ensemble of parametera, while q is distributed like
a normalized vector ofxb’s.
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This concludes the proof of Theorem 3.4. h

IV. APPLICATIONS AND OPEN PROBLEMS

As we mentioned in Sec. I, we believe that there should be many applications for the
tridiagonal ensembles. Here we illustrate some~in Sec. IV A!, in the hope that researchers w
find many more. Some of the applications we believe are new results~Applications 1, 3, 5, and 6!,
and some are simplifications of known results~Applications 2 and 4!.

We discuss the open problem of constructing a matrix model for theb-Jacobi ensembles in th
beginning of Sec. IV B. To facilitate the finding of new results, we conclude with a few o
‘‘general b-ensemble’’ problems.

A. Applications

1. Interpolating Laguerre exponents

Our b-Laguerre ensembles have ‘‘continuous’’ Laguerre parametersa which, even in the
casesb51,2,4, interpolate the Wishart parameters. Thoughb-Laguerre ensembles with gener
~‘‘continuous’’! parametera have been studied by many researchers~Refs. 2, 14, and 21!, no
nonquantized matrix realizations~i.e., explicit random matrix models! of b-Laguerre ensemble
are found in the literature. By ‘‘quantized’’ we mean that the exponenta is either an even integer
an integer, or a half-integer~depending on the value ofb!. In particular, all models correspondin
to a Laguerre~or Jacobi! weight found in Refs. 33 and 12 are quantized.

Thus, ourb-Laguerre random matrix constructions extend the pre-existing ones in two w
throughb and through the Laguerre parametera.

2. The expected characteristic polynomial

The result in the following might be seen as an extension of the classical Heine theorem~see
Szego¨25 and Deift5! which hasb52. Note that forbÞ2, D(l)b can no longer be written as th
determinant of a Vandermonde matrix times its transpose, and the proof cannot be duplica

The same result is found in a slightly more general form in Ref. 8, and its Jacobi case wa
derived by Aomoto.1

Theorem 4.1: The expected characteristic polynomial Pn(y)5det(yIn2S) over S in the
b-Hermite andb-Laguerre ensembles, respectively, are proportional to

HnS y

A2b
D , Ln

~2a/b! 2nS y

2b D .

Here Hn and Ln
(2a/b) 2n are, respectively, the Hermite and Laguerre polynomials, and the cons

of proportionality accounts for the fact that Pn(y) is monic.
Proof: Both formulas follow immediately from the 3-term recurrence for the character

polynomial of a tridiagonal matrix~see formula~8!! and from the independence of the variabl
involved in the recurrence. h

3. Expected values of symmetric polynomials

Using the three-term recurrence for the characteristic polynomial of a tridiagonal matri
obtain Theorem 4.2.

Theorem 4.2:Let p be any fixed (independent ofb) multivariate symmetric polynomial on n
variables. Then the expected value of p over theb-Hermite orb-Laguerre ensembles is a poly
nomial in b.

We remark that it is difficult to see this from the eigenvalue density.
Proof: The elementary symmetric functions

ei~x1 ,x2 ,...,xn!5 (
1< j 1,¯, j i<n

xj 1
xj 2

...xj i
, i 50,1,...,n,
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can be used to generate any symmetric polynomial of degreen ~in particularp).
The ei evaluated at the eigenvalues of a matrix are the coefficients of its characteristic

nomial, and hence they can be written in terms of the matrix entries. Thusp can be written as a
polynomial of then3n tridiagonal matrix entries~which corresponds, respectively, to the Herm
and Laguerre cases!.

To obtain the expected value ofp over theb-Hermite orb-Laguerre ensemble, one can wri
p in terms of the corresponding matrix entries, use the symmetry to condense the expressio
replace the powers of the matrix entries by their expected values.

The diagonal matrix entries are either normal random variables in the Hermite case or s
x2 random variables in the Laguerre case. The subdiagonal entries appear only raised
powers in theei and hence inp ~this is an immediate consequence of the three-term recurrenc
the characteristic polynomial,~8!!. Since all even moments of the involvedx distributions are
polynomials inb/2, it follows that the expectation ofp will be a polynomial inb. h

As an easy consequence we have the following corollary.
Corollary 4.3: All moments of the determinant of ab-Hermite matrix are integer-coefficien

polynomials inb/2.
Proof: Note that even moments of thexb i distribution are integer-coefficient polynomials

b/2, and that the determinant isen . h

4. A new proof for Hermite and Laguerre forms of the Selberg integral

Here is a quick proof for the Hermite and Laguerre forms of the Selberg integral~Ref. 18!,
using respectively, theb-Hermite, andb-Laguerre ensembles.

The Hermite Selberg integral is

I H~b,n![E
Rn

uD~l!ub expS 2(
i 51

n

l i
2/2D dl.

We have that

I H~b,n!5n! S E
0<l1<¯<ln,`

D~l!b expS 2(
i 51

n

l i
2/2D dl D S cq

bE
S1

n21)i 51

n

qi
b21 dqD ,

where cq
b is as in ~23!. We introduce then! because in the first integral we have ordered

eigenvalues;S1
n21 signifies that allqi are positive.

Note thatcq
b can easily be computed independently of theb-Hermite ensembles.

Using the formula for the Vandermonde given by Lemma 2.7, the formula for the JacobJ
given in Lemma 2.9, and the fact that the Frobenius norm of a matrix in the tridiagonal 1-He
ensemble is the same as the Frobenius norm of its eigenvalue matrix, one obtains

I H~b,n!5n!cq
bE

Rn3(0,̀ )n21

) i 51
n qi

) i 51
n21bi

) i 51
n21bi

b i

) i 51
n qi

b )
i 51

n

qi
b21 expS 2 (

i 51

n21

bi
22(

i 51

n

ai
2/2D da db

5n!cq
b~2p!n/2)

i 51

n21 E
(0,̀ )

bi
b i 21e2bi

2
dbi5n!

2n21GS b

2
nD

S GS b

2 D D n ~2p!n/2)
i 51

n21 GS b

2
i D

2
5

1

cH
b .

The same reasoning yields the Laguerre Selberg integral formula

I L
b,a,n5

1

cL
b,a .
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5. Moments of the discriminant

The discriminant of a polynomial equation of orderm is the square of the Vandermond
determinant of them zeroes of the equation. Thus, the discriminant of the characteristic pol
mial of a b-Hermite orb-Laguerre ensemble matrix is simplyD(l)5D(l)2.

A simple calculation shows that thekth moment ofD(l) is, respectively,

cH
b

cH
b12k 5)

j 51

n S 11
b

2
j D

k j

S 11
b

2 D
k

,

cL
b,a

cL
b12k,a1k(m21) 52km(m21))

j 51

m S 11
b

2
j D

k j
S a2

b

2
~m2 j ! D

k( j 21)

S 11
b

2 D
k

,

wheren and m are, respectively, the matrix sizes for the Hermite and Laguerre cases, an
rising factorial (x)k[G(x1k)/G(x).

Using the Selberg integral, one obtains that the moments of the discriminant for theb-Jacobi
case are

cJ
b,a1 ,a2

cJ
b12k,a11k(m21),a21k(m21) 5)

j 51

m S 11
b

2
j D

k j
S a12

b

2
~m2 j ! D

k( j 21)
S a22

b

2
~m2 j ! D

k( j 21)

S 11
b

2 D
k
S a11a22

b

2
~m2 j ! D

k(m1 j 22)

.

6. Software for application 3: Computing eigenvalue statistics for the b-ensembles

Application 3 suggests that integrals of the form

Eb@p#[cH
b E

Rn
p~l!uD~l!ub expS 2(

i 51

n

l i
2/2D dl

may be evaluated with software.
One example of this would be computing moments of the determinant over theb-Hermite

ensemble. There are explicit formulas for the casesb51,2 and 4, due to Mehta19 and to Delannay
and Le Cae¨r,6 which can be used to evaluate these moments.

In the absence of a closed-form, explicit formula, like the one forb51 provided in Ref. 6, the
computation of these moments cannot be made polynomial; thus it is inherently slow.

For the generalb case, one can compute the moments in terms of a multivariate Her
polynomial evaluated at 0~see Refs. 4 and 2!. Using this technique, the complexity of the com
putation might exceed that of symbolically taking the determinant of a tridiagonal matrix, exp
ing the power, and replacing all powers of the entries by their expected values~which are all
known!. Writing a Mathematica code to implement this algorithm is an easy exercise, and s
code would allow the author to compute these moments in a reasonable amount of time, pr
that the product between the power and the size of the matrix is not very large. A template
special case whenb51 can be found in Ref. 9, Appendix A.
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B. Open problems

1. b-Jacobi (MANOVA) ensembles

Sections II and III of the paper provide tridiagonal matrix models for theb-Hermite and
b-Laguerre ensembles. The natural question is whether such models exist for the last mem
the classical triplet, Jacobi. Theb-Jacobi ensembles have been intensively studied as theore
distributions, especially in connection with Selberg-type integrals and Jack~or Jack–Selberg!
polynomials~see Refs. 1, 15, 16, and 3!. Finding a random matrix model that corresponds to th
would be of much interest.

If the two matrix factorization problems that are associated with the Hermite and Lag
ensembles are the EIG and the SVD, the one associated with the Jacobi should be the Q~the
generalized symmetric eigenvalue problem!. This idea is supported by the fact that the MANOV
real and complex distributions, which correspond to the Jacobib51,2 ensembles, are indee
connected to the QZ algorithm. A good reference for QZ is Ref. 11.

Though we have not studied this problem sufficiently, we believe that a concrete~perhaps
sparse, perhaps tridiagonal! matrix model may be constructed for theb-Jacobi ensembles.

2. Level densities

The level density of an ensemble is the distribution of a random eigenvalue of that ens
~and by the Wigner semicircular law we know that the limiting distribution asn→` of such an
eigenvalue is semicircular!. The three functions found to be the level densities of the Gaus
models depend on the univariate Hermite polynomials.

Recently, Forrester10 has found a formula for the level densities of theb-Hermite ensembles
which works forb an even integer. This formula depends on a multivariate Hermite polynom

Finding a unified formula for the generalb case would be of interest.

3. Level spacings

The level spacings are the distances between the eigenvalues of an ensemble, usually
ized so that the average consecutive spacing is 1. These spacings have been well-studie
case of the Gaussian ensembles (b51,2,4). The limiting probability density of a random spacin
in these cases is known in terms of spheroidal functions~see Ref. 18!.

A surprising connection exists between the limiting probability density of a GUE ran
spacing and the probability density of the zeroes of the Riemann zeta function. Inspired
theoretical work of Montgomery,20 Odlyzko22 has shown experimentally that the two probabil
densities are very close; the subsequent conjecture that the two probability densities coinc
been named the Montgomery–Odlyzko law.

To the best of our knowledge, the level spacing of the generalb-Hermite ensembles has no
been investigated.

4. Bulk and edge scaling limits

Finally, a very important application would be the generalization of the bulk and edge sc
limits for the GOE, GUE, and GSE obtained by Tracy and Widom~the latter are known as th
Tracy–Widom distributionsF1 , F2 , andF4).

The edge scaling limit refers to the distribution of the largest eigenvalue of a matrix in
ensemble; the bulk scaling limit refers to the distribution of an eigenvalue in the ‘‘bulk’’ of
spectrum. See Refs. 29, 30 or 28. The Tracy–Widom distributions are defined in terms of Pa´
functions, which are solutions to certain differential equations, with asymptotics given by
functions. For a good treatment of Painleve´ equations in relationship with Gaussian~Hermite!,
Laguerre, and Jacobi random matrix models, see Pierre van Moerbeke’s notes~Ref. 32, Sec. 4!.
Recently, Johnstone14 has found that the limiting distributionsF1 and F2 apply to real~respec-
tively, complex! Wishart matrices.
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Monopoles and dyons in SO „3… gauged Skyrme models:
Corrigendum
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The axially symmetric solutions of a gauged Skyrme model previously studied in
an earlier work@J. Math. Phys.42, 3270~2001!# are reconsidered. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1509090#

I. INTRODUCTION

A few years ago topologically stable solutions with nonvanishing magnetic flux w
constructed1 in a particular SU~2! gauged SU(2)̂ SU(2) sigma model. This model differs esse
tially from the ~gauged! Skyrme model2 because in place of the usual pion-mass potential of
latter, it is characterized by a potential which results in the breaking of the SU~2! symmetry down
to U~1!, resulting in a monopole charge. The gauging prescription is given by Eq.~6! of Ref. 1 and
we employ the constrained fieldfa, a51,2,3,4 @(a51

4 (fa)251#, instead ofU5fasa U†

5fas̃a .
Recently, we discovered that the boundary conditions used to solve the axially symm

equations of the above model are not strong enough to provide continuously differentiable p
for the fa fields. In Ref. 1, our inability to specify the boundary conditions satisfactorily st
from our use of an axially symmetric ansatz in which the Skyrme field was represented b
functions in a ‘‘polar parametrization.’’ In this corrigendum, to overcome this obstacle, we em
instead a ‘‘vector parametrization’’ ansatz. The new results change some of the qualitativ
clusions of our results in the case of a vanishing Skyrme term, but also confirm those obtain
the ‘‘full’’ system.

The numerical analysis carried out with the new ansatz, however, is unfortunately
limited than that attempted in Ref. 1. We encounter severe difficulties when the coupling co
k2 of the quartic~Skyrme! term in Eq.~8! of Ref. 1 is nonvanishing. Thus our main analysis
carried out in the special case of vanishingk2 . We have, however, presented a heuristic analy
of the k2Þ0 case, at least for smallk2 , using a simple perturbative prescription.

II. AXIALLY SYMMETRIC ANSATZ

In order to construct axially symmetric solution of the above mentioned model, the follo
‘‘polar parametrization’’ ansatz was considered in Ref. 1 for the Skyrme field:

f45cosf , fW 5sin f ~sing sinu1cosg cosu!eW r
n1sin f ~sing cosu2cosg sinu!eW u

n , ~1!

with (er
n ,eu

n) defined in Eq.~34! of Ref. 1 and wheref ,g are functions ofr andu only. Severe

a!Electronic mail: betti.hartmann@durham.ac.uk
58480022-2488/2002/43(11)/5848/4/$19.00 © 2002 American Institute of Physics
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numerical difficulties using this ansatz had forced us to attempt to construct solutions nume
subject to the boundary conditions for the functions parametrizing the Skyrme field at the
(r 50):

f ~r 50,u!5p, ] rgur 50,u50. ~2!

Unfortunately, it turned out that these boundary conditions are too weak to ensure the
nuity of the partial derivatives of the fields at the origin. We therefore reconsider here the
tions by using a ‘‘vector parametrization’’ ansatz:

f45A12g5
22g6

2, fW 5g5 eW r
n1g6 eW u

n , ~3!

whereg5 ,g6 are functions ofr andu.
Now, the boundary conditions necessary to ensure regular and finite energy solutions

g5~r 50,u!50, g5~r 5`,u!51, ~4!

g6~r 50,u!50, g6~r 5`,u!50, ~5!

]gk

]u
~r ,u50!50,

]gk

]u S r ,u5
p

2 D50, k55,6. ~6!

III. NUMERICAL RESULTS

With this set of boundary conditions@completed by those for the gauge fields, see Eqs.~35!,
~37!, ~39!, and ~40! in Ref. 1# we succeeded in solving the classical equations numerically
n51,2,3,4. The energy per winding numberE/n, the maximal value of the energy densityEM

and the value of the coordinatexM @represented by means of the compactified coordinatx
[r /(11r )] at which the energy density attains its maximum are presented in Table I.

Some features are worth noticing. First we observe that the energy per winding nu
increases withn, that is to say, at least classically, the solutions forn.1 are unstable agains
decaying inton separate solitons. This contrasts with the case of BPS magnetic monopole
the self-duality equation ensures that the ratioE(n)/n is independent onn. The excess of energy

TABLE I. The energy per winding numberE/n, the maximal value of the
energyEM , and the radiusxM of the annulus of the maximal value of the
energy density are presented for the gauged skyrmion for winding number
n51,2,3,4.

n 1 2 3 4

E/n 2.95 3.05 3.09 3.10
EM 0.47 0.066 0.031 0.02
xM 0.0 0.68 0.81 0.86

TABLE II. The energy per winding numberE/n, the maximal value of the
energy densityEM , and the radiusxM of the annulus of the maximal value
of the energy density are presented for the BPS monopoles for winding
numbern51,2,3,4.

n 1 2 3 4

E/n 1.0 1.0 1.0 1.0
EM 0.21 0.037 0.019 0.012
xM 0.0 0.68 0.79 0.84
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of the n52 gauged skyrmion solution is about 3% of the classical energy of the spher
symmetric soliton. This conclusion is the opposite of what was claimed in Ref. 1.

As a second feature of the axially symmetric solutions we point out that the radius o
annulus~in the plane orthogonal to the symmetry axis, thex,y-plane in our case! increases withn,
that is to say, the lump occupies a larger volume in space. We observe that the values of the
are very close to their corresponding values in the BPS monopole case; this statement

FIG. 1. The profiles of the energy density« of the gauged skyrmion~solid! and of the BPS monopole~dotted! are shown
for n51.

FIG. 2. The profiles of the energy density« of the gauged skyrmion~solid! and of the BPS monopole~dotted! are shown
for n52 and several values ofu betweenu50 andu5p/2. Note that the curve’s height increases withu.
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checked easily in Table II which is the counterpart of Table I, for BPS monopoles. The e
densities corresponding to the gauged skyrmion and to the monopole, respectively, are pr
in Fig. 1 for the spherically symmetric solutions and in Fig. 2 for the axially symmetric solut
with winding numbern52.

A natural question to raise now is whether the addition of a Skyrme term to the model ca
to qualitatively different properties for axially symmetric solutions. We expect that the rein
ment of the Skyrme term should lead to bound states of higher magnetic charges, as is kn
be the case for the analogous gauged Higgs models.3,4 Unfortunately this question leads to seve
technical problems in the numerical integrations which we do not have under control a
present. However, we have some heuristic results indicating that, when a nonvanishing S
term @i.e., the term ink2

4[k Eqs. ~7! and ~8! of Ref. 1# is considered, the solutions withn.2
become stable for large enough values ofk. The argument is based on the observation that
‘‘Skyrme term energy,’’

Esk5E d3x
1

2
uD [ if

aD j ]f
bu2 ~7!

evaluated with the solutions constructed fork50, gives

Esk'0.368 for n51, Esk/2'0.092 for n52. ~8!

This allows us to approximate the total energy with the first order correction:

Ea~k!5E1kEsk . ~9!

In the spherically symmetric case we checked that this approximation is correct within 1%
values ofk'0.2. Using the values of the energy given in Table I, together with the first o
correction to the energy~9!, we find the ‘‘binding energy’’

D~k![ 1
2 Ea~k!un522Ea~k!un51'0.12k0.278. ~10!

Equation~10! strongly indicates thatD decreases fork.0 and thus that, at least then52, solution
becomes stable for a large enough value ofk. This kind of approximation, whose validity defi
nitely needs to be confirmed by a direct integration of the full equations, can be justified h
tically as follows. In a two-dimensional system where the charge~vorticity! n solution can be
constructed by integrating one-dimensional differential equations, the inclusion of a quartic k
term ~a Skyrme term! does not result in the numerical difficulties encountered here with
dimensional integrations. Thus a perturbative evaluation of the energy like that used above
rigorously tested. The heuristic step we have taken here is that we proceed with this pertu
construction in our three-dimensional model, on the justification that it works for two-dimens
models. This approximation gave very good results when applied in the context of the~higher
order! Born–Infeld correction to various topological solitons.5
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Wigner functions for curved spaces. I. On hyperboloids
Miguel Angel Alonso,a) George S. Pogosyan,b) and Kurt Bernardo Wolf
Centro de Ciencias Fı´sicas, Universidad Nacional Auto´noma de Me´xico,
Apartado Postal 48–3, Cuernavaca, Morelos 62251, Me´xico

~Received 25 June 2002; accepted 27 August 2002!

We propose a Wigner quasiprobability distribution function for Hamiltonian sys-
tems in spaces of constant curvature, in this article on hyperboloids, which returns
the correct marginals and has the covariance of the Shapiro functions under
SO(D,1) transformations. To the free systems obeying the Laplace–Beltrami equa-
tion on the hyperboloid, we add a conic-oscillator potential in the hyperbolic coor-
dinate. As an example, we analyze the one-dimensional case on a hyperbola branch,
where this conic-oscillator is the Po¨schl–Teller potential. We present the analytical
solutions and plot the computed results. The standard theory of quantum oscillators
is regained in the contraction limit to the space of zero curvature. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1518139#

I. INTRODUCTION

In Hamiltonian systems which a have flatRD configuration space, among the phase sp
quasiprobability distribution functions the Wigner function1 is the only one covariant under Eu
clidean translations of phase space.2,3 The present article, and others that will follow it, aim to th
construction of Wigner functions on configuration spaces that are conic surfaces, hyperboloi
spheres, which transform under the Lorentz and rotation groups respectively, and which rep
the traditional Wigner function when the conic contracts to the plane. Quantum motion on s
of constant curvature is of current interest in various fields of theoretical physics, such as qu
gravity and string theory,4 noncommutative geometry,5 and quantum chaos.6 Hamiltonian systems
on conic manifolds have a natural kinetic energy given by the Laplace–Beltrami operator
moreover, on these conics also a natural oscillator ‘‘potential’’ can be proposed. In one dime
this oscillator turns out to be one of the Po¨schl–Teller potentials.7

In this article, subtitled I, we propose a Wigner function on theD-dimensional hyperboloid
H 1

D , which generalizes the ordinary Wigner function on flat phase space. It displays the c
marginals, and returns the traditional form of the Wigner function under Ino¨nü–Wigner contrac-
tion to the zero-curvature limit. The elements and background for this assertion are contai
Sec. II, including the Shapiro solutionsFp

(D)(x) to the Laplace–Beltrami equation.8 In Sec. III we
present our proposed definition of Wigner function on the hyperboloid, and verify the propert
marginality and the contraction limit to flat phase space. Covariance remains an issue beca
Wigner function that we propose here follows from the covariance of the basis of wavefunc
between the argumentx and the indexp, as if they were canonically conjugate variables. In t
context, we reexamine the interpretation of momentum coordinates.

In Sec. IV we exemplify theD-dimensional theory with a one-dimensionalsui generisoscil-
lator on one branch of a hyperbola. This example may appear to be trivial, because the hyp
is in most respects equivalent to a straight line. Nevertheless, the resulting Po¨schl–Teller potential
is of particular interest because the wavefunctions are also the Clebsch–Gordan~Wigner coupling!
coefficients for the three-dimensional Lorentz algebra, so(2,1)5sp(2,R)5su(1,1).9 We display

a!Electronic mail: alonso@ce.fis.unam.mx
b!Permanent address: Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia and

tional Center for Advanced Studies, Yerevan State University, Yerevan, Armenia.
58570022-2488/2002/43(12)/5857/15/$19.00 © 2002 American Institute of Physics
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the Wigner functions of some Po¨schl–Teller wavefunctions; these have not been examined be
Finally, in Sec. V we recapitulate the aim and offer the present outlook of our program.

II. ELEMENTS OF PHASE SPACE AND HYPERBOLOIDS

In his fundamental article,1 Wigner proposed a distribution function to represent on ph
space the wavefunctions of pure and of mixed states in quantum systems. In this section w
the definition and properties that we shall generalize from flat to conic spaces, using the La
Beltrami operator and the Shapiro functions.

A. Wigner function on flat phase space

In D-dimensional flat configuration spacexPRD, the generalized Dirac basis of plane wav
solves the free-space Schro¨dinger equation, which is identical to the Helmholtz equation

2D f~x!5p2 f~x!, fp~x!5exp~ ip"x!, pPRD. ~1!

When we writep51(p"p)1/2, n5p/p, and callp5pn the momentum or wavenumber vector, th
functions fp(x) represent plane waves in the direction of the unit vectornPSD21 in the (D
21)-dimensional sphere manifold. In the quantum model with natural units\51, p has units of
inverse length; in the wave optical model,p is the wavenumber of light.

The basis of plane wave functions~1! plays many roles: it provides the Fourier transfor
kernel which bridges the configuration and momentum realizations, it constitutes a bas
representations of the Euclidean group, and it serves for the construction of theR2D-Wigner
function of wavefieldsf (x), g(x) through the equivalent expressions

WRD~ f ,gux,p!5
1

~2p!D E
RD

dDz f S x2
1

2
zD *

e2 ip"z gS x1
1

2
zD ~2!

5
1

~2p!D E
RD

dDz f S x2
1

2
zD *

3e1 ip•(x2 ~1/2! z) e2 ip•(x1 ~1/2! z) gS x1
1

2
zD

5
1

~2p!D E
RD

dDx8E
RD

dDx9 f ~x8!* g~x9!

3fp~x8! dDS x2
1

2
~x81x9! D fp~x9!* . ~3!

This has the well-known properties of being sesquilinear in the functions, real forf 5g, with the
marginal projections*RDdpW5 f (x)* g(x), *RDdxW5 f̃ (p)* g̃(p) ~the tilde indicates ordinary
Fourier transformation,F: f 5 f̃ ), and covariant under translations in coordinate and momen
spaces

Ta : f ~x!5 f ~x2a!⇒WRD~Ta : f ,Ta :gux,p!5WRD~ f ,gux2a,p!, ~4!

T̃b : f ~x!5eib"xf ~x!⇒WRD~ T̃b : f ,T̃b :gux,p!5WRD~ f ,gux,p2b!, ~5!

F: f ~x!5 f̃ ~x!⇒WRD~F: f ,F:g ux,p!5WRD~ f ,g up,2x!. ~6!

The last intertwining by the Fourier transform was known when Garcı´a–Caldero´n and Moshinsky
noticed that the Wigner function is covariant also under the larger group of Sp(2D,R) linear
canonical transformations of phase space.10 This is exceptional in the sense that the Heisenbe
Weyl algebra@whose generators are the phase space translations~4! and ~5!—and the unit that
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generates a commuting phase factor# has the outer automorphism group Sp(2D,R). This accident
does not occur for Lorentz algebras, so we should not expect similar covariances of the W
function under groups larger than SO(D,1).

B. Laplace–Beltrami operator on the hyperboloid

The purpose of this article is to generalize the expression of the Wigner function~2! and ~3!
with functions on aD-dimensional spacexPRD of constant curvature. This manifold can be se
in an ‘‘ambient’’ space ofD11 dimensions as a hyperboloid, with vectorsx5(x0 ,x)PRD11.

Consider the upper sheet of the two-sheeted hyperboloidH 1
D ,RD11 of hyperbolic radius

R.0,

uxu25x0
22x25R2, x25x1

21x2
21¯1xD

2 . ~7!

In this ambient Minkowski space, the isometry group is the Poincare´ group ISO(D,1)1
↑ , in place

of the Euclidean group ISO(D)1 of flat space. The Lie algebra so(D,1) has then the standar
realization

M j ,k5xj]xk
2xk]xj

, M0,k5x0]xk
1xk]x0

, j ,k51,2,...,D. ~8!

The second-order Casimir operator,C, which is an invariant under the group SO(D,1)1
↑ , is

(2R2 times! the Laplace–Beltrami operator onH 1
D , namely

1

R2C52DLB5
1

R2 S (
1< j ,k<D

M j ,k
2 2 (

1<k<D
M0,k

2 D . ~9!

This operator replaces the Laplacian in the Scho¨dinger equation for hyperbolic curved spac
Thus, the Schro¨dinger equation on this space with a potentialV(x) is

S 21

2m
DLB1R2V~x! D f ~x!5R2E f~x!. ~10!

In quantum mechanicsm5m/\2, wherem is the particle mass. For application in paraxial wa
optics, we recall the interpretation where the extra term characterizes the refractive index an
of the medium,

n+↔m,

n~x!5n+2n~x!, n+5n~0!, ~11!

n~x!↔V~x!.

First we consider the case when the potential is identically zero,V(x)50; a nonzero oscillator
potential will be introduced in Sec. II E.

For the free case, in the unitary irreducible representation spaces of theD-dimensional Lor-
entz group belonging to the most degenerate continuous series indicated byp,11 the operator~9!
has a real lower-bound spectrum, as does~1!. The wavefunctions of the free system on t
hyperboloid are the solutions to the equation

DLB f ~x!52F S D21

2R D 2

1p2G f ~x!52
l~l1D21!

R2 f ~x!,

~12!

pPR0
15[0,`), l52

1

2
~D21!2 ipR.

Any wavefield of a given wavenumberp is a solution of this equation.
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C. Shapiro functions

A privileged basis for the solutions of the Laplace–Beltrami equation~12! was given by
Gel’fand, Graev and Shapiro8 in the form ofD-dimensional plane waves of momentump5pn,
with positive wavenumberp and in the direction of a unit vector on the spherenPS D21,

Fp
(D)~x!5S x02n"x

R D 2 ~1/2!(D21)2 ipR

5~coshx2n"j sinhx!2 ~1/2!(D21)2 ipR, ~13!

where functionsf (x) on the hyperboloidxPH 1
D (x25R2) will be denoted, according to conve

nience, by

x051AR21x25R coshx>R,

f ~x!5 f ~x0 ,x!5 f ~x!, ~14!

x5Rj sinhxPRD, xPR0
1 , jPS D21.

The Shapiro functions ~13! are a Dirac basis for functions on the hyperboloid, which
orthogonal and complete overx- andp-spaces:

R

~2p!D E
xPRD

dDx

x0
Fp

(D)~x!* Fp8
(D)

~x!5N(D)~p!dD~p2p8!, ~15!

1

~2p!DE
pPRD

dDp

N(D)~p!
Fp

(D)~x!* Fp
(D)~x8!5dD~x,x8!, ~16!

with the measure and Diracd under*H
1
D dDx5R*RDdDx/x0 ,

N(D)~p!5U G~ ipR!

GS 1

2
~D21!1 ipRDU

2

~pR!D21, ~17!

dD~x,x8!5
x0

R
dD~x2x8!5A11

x2

R2 dD~x2x8!. ~18!

In particular,N(1)(p)51, N(2)(p)5coth(pR), andN(3)(p)51.
The Inönu–Wigner contraction limit of the Lorentz to the Euclidean group SO(D,1)1

↑

→ISO(D)1 is the limit R→` in our expressions for vectors withx0'R, x2!R2, andp5pn as
before, i.e.,

lim
R→`

Fp
(D)~x!5 lim

R→`
S x02x"n

R D 2 ~1/2!(D21)2 ipR

' lim
R→`

S 12
x"n

R D 2 ipR

5exp~ ix"p!. ~19!

Correspondingly, limR→`N(D)(p)51 anddD(x,x8)→dD(x2x8).

D. Momentum space for the hyperboloid

The Shapiro functions$Fp
(D)(x)%pPRD in ~13! serve as the integral transform kernel betwe

functions ofx on the hyperboloid,f (x), and conjugate functions ofp, that has the interpretation
of momentum or wavenumber space, and is indicatedf̃ (p). Using ~14! for x,pPRD, one writes

f̃ ~p!5
R

~2p!D/2 E
xPRD

dDx

x0
Fp

(D)~x!* f ~x!, ~20!
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f ~x!5
1

~2p!D/2 E
pPRD

dDp

N(D)~p!
Fp

(D)~x! f̃ ~p!. ~21!

This Shapiro transformhas been used as a relativistic analog of the Fourier transform~the physical
context here, though, isnot that of space–time relativity, as we shall clarify below!, and is a vector
form of one of the two branches of the bilateral Mellin transform.12 Here the Shapiro transform
replaces the traditional Fourier transform in the definition of a momentum spacepPRD, canoni-
cally conjugate with respect to this basis, to a configuration space of constant curvatur
corresponding Parseval relation is

RE
xPRD

dDx

x0
f ~x!* g~x!5~ f , g!H

1
D 5E

pPRD

dDp

N(D)~p!
f̃ ~p!* g̃~p!. ~22!

The manifold of momentump5pnPRD (pPR1 and nPS D21) can be placed also in a
(D11)-dimensional ‘‘ambient’’ space, where it occupies the coneÃ5(p,p)P∨1. The momen-
tum thus defined by the Shapiro functions has certain features, however, which do not corre
to those of a standard relativistic momentum vector. Iff (x) is a monochromatic wavefield with
definite value ofp, this wavenumber will not change under SO(D,1) translations of the hyperbo
loid ~‘‘boosts’’!, because it is the invariant value of the Casimir operator~9!–~12!. Only the
direction of momentum,n, can shift over the sphere; it will do so following the well-know

Bargmann deformation of the circle,13 where the colatitude angle ‘‘boosts’’ as tan1
2f°e2ztan1

2f
for rapidity zPR. Quotation marks are used for ‘‘boost’’ because here we mean a translati
the hyperboloid, and not the well-known relativistic acceleration.

E. Oscillators on conics

The Laplace–Beltrami equation~9!–~12! provides the free fields~whose energy is purely
kinetic! on the hyperboloid. In Eq.~10! we allowed a potential energy term as in the Schro¨dinger
equation of quantum mechanics, by adding a function of positionV(x).7,14,15A straightforward
and useful generalization of the SO(D)-isotropic harmonic oscillator potential from flat to con
D-dimensional configuration space is14

V~x!5
1

2
mv2R2

uxu2

x0
2 5

1

2
mv2R2tanh2x5

1

2
mv2R2 ~12sech2x!, ~23!

wherexPR0
1 is the hyperbolic angle coordinate defined in Eqs.~14!. This is the Po¨schl–Teller

‘‘secant-hyperbolic-squared’’ trough.

III. WIGNER FUNCTION ON THE HYPERBOLOID

With the Shapiro basis of wavefunctions of the free system, we construct now our pro
Wigner function following the double-integral form in Eq.~3! for two wavefunctions,f (x) and
g(x), by means of integrals on two hyperboloids,ux8u5R and ux9u5R.

A. Definition

With the measures in Eqs.~15! and the Shapiro functions in~13!, we define the Wigner
function on the hyperboloid by

WH~ f ,gux,p!5
R2

~2p!D E
x8PRD

dDx8

x08
E

x9PRD

dDx9

x09
f ~x8!* g~x9!

3Fp
(D)~x8! DD~x;x8,x9! Fp

(D)~x9!* , ~24!

whereDD(x;x8,x9) takes the place of the Dirac deltadD(x2 1
2(x81x9)) on flat space, Eq.~3!, and

which will be detailed below.
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The crucial property that we must require of this ‘‘binding-D’’ in ~24! is that it should guar-
antee thatx be the midpoint of thegeodesicbetweenx8 andx9, so that all three points lie on th
hyperboloidH 1

D . We achieve this in the following way:16 givenxPRD11 in the upper sheet of a
two-sheeted hyperboloid, we build anyyPRD11 on a one-sheeted hyperboloidH̃D of the same
radiusR, such that it be Minkowski-orthogonal tox,

y5~y0 ,y!, uyu25y0
22y252R2, x0y02x"y50. ~25!

Then, we can expressx8 andx9 as vectors obtained fromx andy as follows:

x85x cosh1
2 t2y sinh 1

2 t, x95x cosh1
2 t1y sinh 1

2 t, ~26!

wherex8,x9PH 1
D for all tPR. Also, it is easy to show that

x08x092x8•x95R2 cosht, x0x082x•x85x0x092x•x95R2 cosh1
2 t, ~27!

i.e., the geodesic distance betweenx8 andx9 is Rt, while x is at 1
2Rt from bothx8 andx9. The

argumentsx8 and x9 in the expression~24! thus emulate the argumentsx6 1
2z in ~2! with the

parameter12t.
Using ~18! and the parametert in ~27!, we propose the binding-D in ~24! to be

DD~x;x8,x9!5
x0

R
dDS x2

x81x9

2 cosh1
2 t D . ~28!

This will yield the correct marginals~to be seen below! due to its properties

DD~x;x8,x8!5
x0

R
dD~x2x8!, RE

xPRD

dDx

x0
DD~x;x8,x9!51. ~29!

B. Integral forms

The 2D-fold integral form of the Wigner function in~24! contains Diracd ’s; it can therefore
be brought to a (D11)-fold integral noting that the definition ofyPH̃D leaves the freedom o
rotating y aroundx on a sphereS D21. When we change variables fromx8 and x9 to x and y
according to~26!, we reduce the integration toy andt while keeping Minkowski-orthogonality.
The proposed Wigner function~24! then becomes

WH~ f ,gux,p!5
R2

~2p!D E
0

`

~sinht!D21 dtE
yPH̃D

dDy d~x0y02x"y!

3 f S x cosh
1

2
t2y sinh

1

2
t D *

gS x cosh
1

2
t1y sinh

1

2
t D

3Fp
(D)S x cosh

1

2
t2y sinh

1

2
t DFp

(D)S x cosh
1

2
t1y sinh

1

2
t D *

. ~30!

The Diracd remaining in~30! can be used to find a third alternative form of the Wign
function. This is obtained with the parametrization of the ambient-space vectors given by

x5~x0 ,x!5R~coshx,j sinhx!, y5~y0 ,y!5R~sinhv,h coshv!, ~31!

wherej andh are unit vectors on the sphereS D21 andx,vPR0
1 . The Diracd in Eq. ~30! is then
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d~x0y02x"y!5
1

R2

coshV

coshx
d~v2V!, with tanhV5j"h tanhx. ~32!

The differentialdDy of the integral inyPH̃1
D becomesRD(coshv)D21dv dD21h, so the Wigner

function ~24! becomes aD-fold integral with the structure of~2!, viz.,

WH~ f ,gux,p!5
1

~2p!D E
0

`

~sinht!D21 dtE
S D21

uyuD

coshx
dD21h

3 f S x cosh
1

2
t2y sinh

1

2
t D *

gS x cosh
1

2
t1y sinh

1

2
t D

3Fp
(D)S x cosh

1

2
t2y sinh

1

2
t DFp

(D)S x cosh
1

2
t1y sinh

1

2
t D *

, ~33!

with

y5R~sinhV, h coshV!5R
~j"h tanhx, h!

A12~j"h tanhx!2
. ~34!

C. Marginal projections

The marginal projections obtained by integrating the proposed Wigner function~24! over
momentum and configuration space should yield, respectively,f (x)* g(x) and f̃ (p)* g̃(p) as de-
fined in ~20! and ~21!. The two marginals follow from the orthogonality and completeness r
tions of the Shapiro functions, Eqs.~15! and ~16!.

The integration of the Wigner function overRD momentum space with the measure 1/N(D)(p)
in ~17! is

MH~ f ,gux!5E
pPRD

dDp

N(D)~p!
WH~ f ,gux,p!

5R2E
x8PRD

dDx8

x08
E

x9PRD

dDx9

x09
f ~x8!* g~x9! DD~x;x8,x9! dD~x8,x9!

5RE
x8PRD

dDx8

x08
f ~x8!* g~x8! DD~x;x8,x8!5 f ~x!* g~x!, ~35!

where we used~16!, ~18!, and the first property of the binding-D in ~29!.
Similarly, the integration overRD configuration space with the measureR/x0 in ~18! is

MH~ f ,gup!5RE
xPRD

dDx

AR21x2
WH~ f ,gux,p!

5
R2

~2p!D E
x8PRD

dDx8

x08
f ~x8!* Fp

(D)~x8! E
x9PRD

dDx9

x09
g~x9! Fp

(D)~x9!* 5 f̃ ~p!* g̃~p!,

~36!

where we used the second property of the binding-D in ~29! and the Shapiro transform~20!.
Finally, integrating over the whole of phase space with the appropriate measures in the

val relation~22!, we have the total probability
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RE
xPRD

dDx

x0
MH~ f ,gux!5~ f , g!H

1
D 5E

pPRD

dDp

N(D)~p!
MH~ f ,gup!. ~37!

D. Covariance under rotations and conic translations

Under rotationsRPSO(D), wavefunctionsf (x0 ,x) transform through

T~R!: f ~x!5 f ~x0 ,R21x!. ~38!

In particular, the basis of Shapiro functions~13! transforms as

T~R!:Fp n
(D)~x0 ,x!5Fp n

(D)~x0 ,R21 x!5Fp Rn
(D) ~x0 ,x!. ~39!

Applying rotationsT(R) to the wavefieldsf andg in the Wigner function~24!, we next change
variables tox85Rx̄8 andx95Rx̄9 ~the ambientx0-components behave as scalars!, then use~39!
for R21, noting that the binding-D in ~28! is invariant, DD( x̄; x̄8,x̄9)5DD(x;x8,x9) for x̄
5R21x, and so are the measuresdDx85dDx̄8. It thus follows that the Wigner function~24! is
covariant under rotations, fulfilling

WH~T~R!: f ,T~R!:gux,p!5WH~ f ,guR21x,R21p!. ~40!

Now consider translations byz ~‘‘boosts’’ of rapidity z! Bm(z)PSO(D,1)1
↑ in the direction of

unit mPS D21, which transform the ambient space vectors preserving the constant-curv
subspacesxPH 1

D for each radiusR.0. We denote byxim andx'm the projections ofx parallel
and perpendicular to the direction ofm, so thatx5xim1x'm . Then, wavefunctions on the hype
boloid transform as

T~Bm~z!!: f S x0

xim

x'm

D 5 f S x0 coshz2m"x sinhz
xim coshz2x0 m sinhz

x'm

D . ~41!

When this transformation is applied to the plane-wave basis of Shapiro functions, their dire
n on the sphere change, and they acquire a multiplier factor:

T~Bm~z!!:Fp n
(D)~x0 ,x!5~coshz1m"n sinhz!2 ~1/2!(D21)2 ipR Fp n8

(D)
~x0 ,x!, ~42!

where the components ofn8PS D21 that are orthogonal and parallel tom are

n'm8 5
n'm

coshz1n"m sinhz
, nim8 5

n"m coshz1sinhz

coshz1n"m sinhz
m , ~43!

within the same SO(D,1)1
↑ irreducible representation characterized by the invariant wavenum

p. If the angle fromm to n is f, it will transform through the well-known Bargmann SO~2,1! map
of the circle.

The expression in the multiplier factor of Eq.~42!,

m~m,z;n!5coshz1m"n sinhz, ~44!

is, not coincidentally,p8/p—if the (D11)-vectorÃ5(p,p)P∨1 were allowed to transform as
‘‘lightlike’’ vector in relativity, i.e., without being constrained to itsp-sphere. Under the inne
product ~16!, the SO(D,1) boost with the multiplier~42! is unitary nonetheless, because t
measure inp-space isdDp5pDdpdN21n, and while p is invariant, from~43! it follows that
dD21n5m(m,z;n)D21dD21n8. This cancels the absolute square of the multiplier~44! in the
                                                                                                                



the

y

re

rre-

et

r

nder

ted
n of
n
nction

5865J. Math. Phys., Vol. 43, No. 12, December 2002 Wigner functions for curved spaces. I.

                    
Shapiro functions~41!. This type of covariance modulo a multiplier function is determined by
Shapiro function basis; we may call Eqs.~41! and ~42! the Shapiro covariancebetween the
conjugate transformations inx andp.

When the wavefields in the Wigner function~24! are translated within the hyperboloid b
~41!, the ambient vectorsx are multiplied by a (D11)3(D11) ~‘boost’! matrix Bm(z), to
x8° x̄85Bm(z)21 x8 and x9° x̄95Bm(z)21 x9. Under this transformation, the measures a
again invariant,dDx8/x085dDx̄8/ x̄08 , etc., and so isDD(x;x8,x9)5DD( x̄; x̄8,x̄9); hence, x̄
5Bm(z)21 x will appear in the first argument of the transformed Wigner function. But the co
sponding transformation ofp in each of the two Shapiro functions, Eqs.~42! and ~44!, yields a
multiplier factor. The imaginary exponents ofm(m,z;n) cancel, and there remains a positive n
multiplier factor:

WH~T@Bm~z!#: f , T@Bm~z!#:gux,p n!5~m~m,z;n!!2D11 WH~ f ,guB~z!21:x, p Bm~z!21:n!,
~45!

wheren85Bm(z)21:n is given by~43!. Note that in theD51-dimensional case, the multiplie
factor is 1.

Covariance of the Wigner function is usually understood in the simple form it has u
rotations, as given by~40!. Under these transformations, the hyperboloid in the ambientx-space
rotates on its axis, and in the momentum plane the circlesn of all radii p rotate in synchrony.
Translations within the hyperboloid~45!, on the other hand, deform the ambient and projec
space vectors,x andx, through~41!; momentum space is concurrently squeezed in the directio
the translation so that its points move on constant-p circles and with a common Bargman
deformation of the angle. Since areas are not conserved in momentum space, a multiplier fu
of p is necessary for the Wigner function to ensure the total conservation of probability~37!.

E. Contraction limit

We now show that, whenf (x) and g(x) are significantly different from zero only within a
small, essentially flat patch of the hyperboloid, the definition of the Wigner function in Eq.~33!
reduces to the standard Wigner function for flat space in Eq.~3!. In ~33!, the integrand forh @recall
Eqs.~31! and ~34!# will be significant only whenRD norms of the vectors fulfill

Ux cosh
1

2
t6y sinh

1

2
tU!R⇒H uxucosh1

2 t!R ⇒ sinhx!1

uyusinh 1
2 t!R ⇒ sinht!1

~46!

⇒x'R~1,x j!, y'R~x j"h,h!. ~47!

Also, using the limit in~19!, and approximating sinht't and cosh1
2t'coshx'coshv'1, the

Wigner function in Eq.~33! reduces to

WH~ f ,gux,p!5
RD

~2p!D E
0

`

tD21 dtE
S D21

dD21h

3 f S x0 ,x2
1

2
RthD *

exp~2 iRt h"p! gS x0 ,x1
1

2
RthD . ~48!

Finally, changing variables toz5Rt h and noticing that

E
RD

dDz¯5RD E
0

`

tD21 dt E
S D21

dD21h¯ , ~49!

we see that~48! reduces to~2!.
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F. Special case of one dimension

In the caseD51, the Wigner function~33! actually coincides in form with the correspondin
one-dimensional standard flat space form~2!, as we now proceed to show.

First, notice that the unit vectorsn andj in Eq. ~13! are now the unit scalarsn,j561, and
that the Shapiro functions become simple exponentials:

Fp
(1)~Rj coshx,Rj sinhx!5@exp~2njx!#2 ipR5exp~ injpRx!. ~50!

We can now letnp°p andjx°x with p,xP(2`,`), and recognize that~50! is a 1:1 function
of only one variable,x1PR,

Fp
(1)~x1!5exp~ ix pR!, x15R sinhx. ~51!

The argumentsx5(x0 ,x1) of the functionsf andg in ~33! then simplify, in components, to

x5S x0

x1
D°x cosh

1

2
t6ysinh

1

2
t5RS cosh~x6 1

2 ht!

sinh~x6 1
2 ht!

D . ~52!

For short, we indicatef (R coshx,Rsinhx)5f(x). The unit vectorh in ~33! and~34! also becomes
a unit scalar,h561, and the integral extends overy5hR(sinhx,coshx), andV5hx @see Eq.
~32!#. Finally, the integral overh reduces to a sum overh561, and fort°htP(2`,`), the
Wigner function~33! becomes

WH~ f ,gux,p!5
R

2p E
2`

`

dt f S x2
1

2
t D *

e2 ipRt gS x1
1

2
t D ~53!

5
1

2p E
2`

`

dy f̃ S p2
1

2
y D *

e1 iRyx g̃S p1
1

2
y D . ~54!

The last expression is the usual flat-space Wigner function in terms of the conjugate wavefun
on momentum space. Finally, note that forD51, the net multiplier which appears under ‘‘boos
transformations in~45! is unity, so standard and Shapiro covariances coincide.

IV. EXAMPLE: OSCILLATOR ON THE HYPERBOLA

We consider the open one-dimensional space which is the upper branch of a hyperb
fixed radiusR.0,

H 1
1 5$~x0 ,x1!PR2ux0

22x1
25R2%, ~55!

parametrized as usual by the hyperbolic anglexPR.

A. Laplace–Beltrami operator and the oscillator

When the potentialV(x) is a constant~corresponding to a homogeneous optical medium!, the
D51 Schrödinger equation~10! is the free wave equation, and its Shapiro solutions are simply
oscillating exponentials~51!, with energyE5p2/2m>0.

Since the Laplace–Beltrami operator on the hyperbola~55! is DLB5R22d2/dx2, the Schro¨-
dinger equation for the conic oscillator~23! is

S 21

2m

d2

dx2 2R2E0 sech2 x D f ~x!5R2 ~E2E0! f ~x!, E05
1

2
mv2R2, ~56!
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V~x!5
1

2
mv2R2

x1
2

x0
2 5As~s11! ~12sech2x!, ~57!

s52 1
2 1A~mvR2!21 1

4. ~58!

The bound solutions are17

cn
s~x!5

22(s2n)

G~s2n11!
A~s2n! G~2s2n11!

n!
sechs2nx 2F1S 2n, 2s2n11

s2n11 U 12tanhx

2 D
5A ~s2n! n!

p G~2s2n11!
GS s2n1

1

2D ~2 sechx!s2n Cn
s2n11/2~ tanhx!, ~59!

wheren is a non-negative integer bounded bys11, andCn
a(j) are the Gegenbauer~or ultras-

pherical! polynomials18 for a.2 1
2. The corresponding quantized values of the energy are

dratic in n, and counted from the lowest level up by

En
s5

mv2R2

2
2

1

2mR2 ~n2s!2, n50,1,2,...,s11. ~60!

As a check on our concepts, we verify that the contraction limitR→` of this system, when
the radius of the hyperbola grows without bound, is the harmonic oscillator on flat space. Sin
coefficients correspondingly grows ass'mvR2, the linear-quadratic spectrum of energies in E
~60! becomes the linear spectrum of the quantum harmonic oscillatorEn5v(n1 1

2). To implement
this limit on the wavefunctions~59!, it is convenient to use the following forms for the Gege
bauer polynomials inj5tanhx:

Cn
a~j!55 ~21!~1/2! n

G~a1 1
2 n!

~ 1
2 n!! G(a)

2F1S 2 1
2 n, 1

2 n1a
1
2

Uj2D , n even,

~21!~1/2!(n21)
G~a1 1

2 (n11)!

~ 1
2 (n21)!! G~a!

2j 2F1S 2 1
2 ~n21!, 1

2 ~n11!1a
3
2

Uj2D , n odd.

~61!

Then, for a5s2n1 1
2→`, the hypergeometric polynomials simplify: forn even, 2F1(2 1

2n,

a; 1
2;j

2)'1F1(2 1
2n; 1

2;aj2)5Hn(Aaj), and similarly forn odd. Replacing this into Eq.~59!,

with j5tanhx'sinhx5x1 /R and cosh2s1nx'exp(2stanh2 1
2x), we obtain the harmonic oscilla

tor wavefunctions on flat space,

1

AR
cn

s~x!'
1

A2nn! Ap/mv
e2mvx1

2/2 Hn~Amv x1!. ~62!

The factorAR restores the proper normalization on thex1 axis.
In addition to the bound states, the sech-trough Po¨schl–Teller potential also has free stat

with energy above the asymptotic value of the potential limx→6`V(x)5 1
2mv2R2. These scatter-

ing solutions contain associated Legendre polynomials of imaginary upper index:
                                                                                                                



p-

d
g for
by the
ere;

to a

5868 J. Math. Phys., Vol. 43, No. 12, December 2002 Alonso, Pogosyan, and Wolf

                    
p5RA2mE2m2v2R2.0,

cp~x!5
uG~12 ip !u

2p
Ps

ip~ tanhx!, ~63!

s5 1
2 6Av2m2R41 1

4.

These wavefunctions are Dirac-orthonormal.

B. Momentum representation of the wavefunctions

The bound wavefunctions of the Po¨schl–Teller sech-trough potential in the momentum re
resentation,c̃n

s(p), are found through the ordinary Fourier transform@Eqs. ~20! and ~21! for D
51 and~51!# of the wavefunctionscn

s(x) found in Eq.~59!. The result is

c̃n
s~p!5A R

2p E
2`

`

dx exp~2 ipRx! cn
s~x!

5
R

2
AG~2s2n11!

p~s2n!n!

uG~ 1
2 ~s2n2 ipR!!u2

G~s2n!2 3F2S 2n, 2s2n11,1
2 ~s2n2 ipR!

s2n11,s2n
U1D

~64!

5
~2 i !n R

2Ap

A~s2n! n! G~2s2n11!

G~s! G~s11!
UGS 1

2
~s2n2 ipR! D U2

3RnS 2
1

2
ipR;

1

2
~s2n!,

1

2
~s2n!,

1

2
~s2n!,

1

2
~s2n!11D , ~65!

whereRn(z;a,b,g,d) are the continuous Hahn polynomials.19 On the other hand, the unboun
solutions~63! are not square-integrable, so their Fourier transform must be performed allowin
the phase difference between asymptotic incoming and outgoing waves, as determined
scattering properties of this Po¨schl–Teller potential. We shall not further detail the free states h
they can be found in Ref. 9 among the coupling coefficients between theD13D2→(D11*C
irreducible representations series of SO~2,1!.

C. Wigner function for the oscillator eigenstates on the hyperbola

On the one-dimensional hyperbolaH 1
1 , the Wigner function~24! collapses to~53! and~54!,

its usual form in Eqs.~2! and ~3! for D51.
We are interested in the single-function formW( f ux,p)[W( f , f ux,p)5W( f̃ , f ũp,2x) for the

Pöschl–Teller wavefunctions, whose explicit form is in Eq.~59! for cn
s(x), and in Eq.~64! for

c̃n
s(p); we find the latter more amenable to analytic solution. We change the integration

contour along the imaginary axis, and find

W~cn
sux,p!5

R2

8p2

s2n

n! G~2s2n11! (
m,l 50

n
~2n!m ~2n! l

G~s2n1m! G~s2n1 l !

3
G~2s2n1m11! G~2s2n1 l 11!

G~s2n1m11! G~s2n1 l 11!

1

l !m!
I n

s~x,p!, ~66!

where
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I n
s~x,p!52

4i

R E
2 i`

i`

dzGS 1

2
~s2n!2

1

2
ipR2zD GS 1

2
~s2n!1

1

2
ipR1z1mD

3e24xz GS 1

2
~s2n!1

1

2
ipR2zD GS 1

2
~s2n!2

1

2
ipR1z1 l D . ~67!

The last integral can be computed in the complex plane straightforwardly, and leads to a p
complex conjugate2F1-functions ofe24x. We thus finally have

W~cn
sux,p!5

2R ~s2n! n! e22x(s2n)

pG~2s2n11! (
m,l 50

n
G~2s2n1m11! G~2s2n1 l 11!

G~s2n1 l 11! G~s2n1m11! G~s2n1 l !

3
~21! l 1m

l !m! ~n2m!! ~n2 l !!
ReHG~ ipR! G~s2n1 l 2 ipR! e2ipRx

32F1S s2n1m,s2n1 l 2 ipR,
12 ipR Ue24x D J . ~68!

We note that this expression is suitable for numerical computation only forx.0 because it
converges fast, but it holds everywhere analytically, with the reflection symmetriesW(cn

sux,p)
5W(cn

su2x,p)5W(cn
sux,2p).

The Wigner functions, together with their marginal projectionsucn
s(x)u2 and uc̃n

s(p)u2, are
shown in Fig. 1, forn50,1,2,3, and for the potential depth parameters54 and 30. It can be
appreciated that the Wigner function of the most tightly bound states resemble the fa
Gaussian-bell form of the harmonic oscillator ground state. According to~60!, for s54 there are
only five bound states (n50,...,4), and as the energy of the state approaches the binding en
the wavefunction stretches in space with ever-smaller momentum in a neighborhood of th
sical turning point. The contraction limit can be appreciated in thes530 column, corresponding to
a large binding energy; the Wigner functions for the eigenstates in Eq.~59! approach the familiar
Laguerre–Gaussian form that corresponds to the Wigner function of the harmonic oscillator
functions on flat space.

V. CONCLUDING REMARKS

We have generalized the Wigner quasiprobability distribution function by replacing the o
lating exponential functions of the standard version, which are Dirac solutions of the free S¨-
dinger equation on flat space, by the Shapiro functions, because they are solutions to the La
Beltrami equation on a simply connected hyperbolic space, while respecting the mid
condition through an appropriate Dirac-likeDD(x;x8,x9). The role of the Fourier transform in th
standard version is transfered by the Shapiro functions to a Mellin-like transform betwee
position and momentum coordinates of phase space. Indeed, the relation between what wer
position and momentum variables is actually defined by the argument and index of the ba
Shapiro functions. Thus built, the proposed Wigner function is covariant under the group SOD,1)
of motions of the hyperbola, with the hyperbolic translations extracting a multiplier factor.
correct marginals are found and the contraction limit to flat space returns the standard W
function.

The transformations of the momentum direction under translations of the hyperbola a
~unique! action of SO(D,1) on the sphereS D.13 There are several models of Hamiltonian syste
where momentum is restricted to a sphere, such as geometric and Helmholtz~monochromatic!
optics.20,21 In the first model, a ‘‘Descartes sphere’’ of momentum vectorsp, which is of radius
upu5n(x) ~the refractive index!, is associated to each pointx in space. This sphere of momentu
vectors has been subject to Bargmann’s ‘‘boost’’ transformation in Ref. 22~which is unique for
Lorentz groups acting on spheres! and here given by~43!, with a canonically conjugate transfo
mation of the ray positions at a plane screen. The resulting phenomenon has been called
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istic coma, because the aberration in the images projected on moving screens in vac
comatic. The Doppler effect is of course absent, so this transformation cannot be called phy
relativistic in the Helmholtz case, which involves a configuration space with a nonlocal m
Indeed, the difference between the various models consists in their space of positions; he
the hyperboloid. A Wigner function on spheres will be examined in part II of this title; i
expected to clarify further the use of function bases to define conjugate variables as a sim
substitute for phase space.

The context of this work has a wider significance as a model for phase space with no

FIG. 1. Wigner functions of the Po¨schl–Teller eigenfunctionscn
s(x) on a quadrant of phase space~axes are positionxAs

and momentumpR/As; the quadrants have reflection symmetry across the axes!. Rows are numbered by the moden
50,1,2,3. Left:s54 ~so only five states,n50,...,4, arebound!; right: s530 ~so states are bound up ton530). White is
the maximum, black is the minimum; the shade at the upper right corner corresponds to zero. From each Wigner

we project up the marginal distribution of positionucn
s(x)u2, and right the marginal of momentumuc̃n

s(p)u2.
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mutative geometry, although here the noncommutativity is restricted to momentum space o
one dimension this argument does not apply, but the example of the one-dimensional W
function of Pöschl–Teller wavefunctions is of interest on its own for the traditional quan
mechanical model, and also for the paraxial propagation of light along shallow nonharm
waveguides whose index of refraction has a sech2 profile, as given by Eq.~11!. One of the
manifestations of higher symmetry is the appearance of ‘‘closed-form’’ wavefunctions expr
in terms of well-known~and some not-so-well-known! special functions. Generally, the Fourie
transforms and Wigner functions of such wavefunctions are again known special function
cause symmetry, when it occurs, is displayed in phase space.
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Quantum operations frequently occur in quantum measurement theory, quantum
probability, quantum computation, and quantum information theory. If an operator
A is invariant under a quantum operationf, we callA a f-fixed point. Physically,
the f-fixed points are the operators that are not disturbed by the action off. Our
main purpose is to answer the following question. IfA is a f-fixed point, isA
compatible with the operation elements off? We shall show in general that the
answer is no and we shall give some sufficient conditions under which the answer
is yes. Our results will follow from some general theorems concerning completely
positive maps and injectivity of operator systems and von Neumann
algebras. ©2002 American Institute of Physics.@DOI: 10.1063/1.1519669#

I. INTRODUCTION

Let H be a Hilbert space and letB~H! be the set of bounded linear operators onH. We use the
notation

B~H!15$APB~H!:A>0%, E~H!5$APB~H!:0<A<I %,

that is,B(H)1 is the positive cone forB~H! andE~H! is the set ofquantum effects.1–4 Quantum
effects correspond to yes–no quantum measurements that may be unsharp. Denoting th
trace class operators onH by T~H!, the set ofstates~or density operators! of a quantum system
is described by

D~H!5$rPT~H!1:tr~r!51%.

The probability that an effectA occurs ~has a yes answer! in the stater is given by Pr(A)
5tr(rA).

Quantum measurements that have more than two values~not just yes–no! are frequently
described by effect-valued measures. In this paper we shall only consider discrete effect-
measures. These are described by a sequenceEiPE(H), i 51,2,..., satisfying(Ei5I , where the
sum converges in the strong operator topology. In this case the probability that outcomei occurs
in the stater is Pr(Ei) and the postmeasurement state given thati occurs isEi

1/2rEi
1/2/tr(rEi).

Moreover, the resulting state after the measurement is executed but no observation is perfo
given by

f~r!5( Ei
1/2rEi

1/2.

More general quantum measurements will be discussed later when we consider quantum
tions. Notice thatf is an affine map fromD~H! into D~H!. Also, f extends to a unital, trace
58720022-2488/2002/43(12)/5872/10/$19.00 © 2002 American Institute of Physics
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preserving, completely positive map onB~H!. ~Detailed definitions will be given subsequently!
An important physical question is whether the measurement disturbs the stater. The fact that the
measurement does not disturbr is given mathematically by the equationf(r)5r. It is shown in
Ref. 5 thatf(r)5r if and only if r commutes with everyEi , i 51,2,... . We then say thatr is
compatible with Ei , i 51,2,..., andthis result is called the generalized Lu¨ders theorem.

In the dual picture, the probability that an effectA occurs in the stater given that the
measurement was performed is

Pf(r)~A!5trFA( Ei
1/2rEi

1/2G5trS ( Ei
1/2AEi

1/2r D .

If A is not disturbed by the measurement in any state we have

( Ei
1/2AEi

1/25A. ~1.1!

Again, definingf(A)5(Ei
1/2AEi

1/2, Eq. ~1.1! reduces tof(A)5A. But, now A may not be in
T(H)1 and the previous proof of the generalized Lu¨ders theorem does not go through. In fact, w
shall show thatf(A)5A does not necessarily imply thatA is compatible withEi , i 51,2,... .
~This solves an open problem posed in Refs. 5 and 3.! Another way that~1.1! comes about is from
the law of total probability, which is given by

tr~rA!5Pr~A!5( Pr~Ei !Pr~AuEi !5( tr~rEi !
tr~Ei

1/2rEi
1/2A!

tr~rEi !
5trS r( Ei

1/2AEi
1/2D .

If this law holds for everyrPD(H), we again obtainf(A)5A.
An application of our result can be found in axiomatic quantum field theory. Suppo

measurement$Ei : i 51,2,...% is performed in a bounded spacetime regionX and APE(H) is a
measurement performed in another space–time regionY that is spacelike separated fromX.
According to Einstein causality, the measurement inX should not disturbA so thatf(A)5A. But,
applying our result,A may not be compatible withEi , i 51,2,... . Thus, the axiom of loca
commutativity does not follow from Einstein causality. We conclude that this axiom may be
strong and it should be replaced by a weaker axiom.

More general measurements are frequently considered in quantum dynamics, quantum
putation, and quantum information theory.1,2,6 Let AiPB(H), i 51,2,..., and letA5$Ai ,Ai* : i
51,2,...%. Assume for now that(Ai* Ai5I ~trace preserving! and that(AiAi* 5I ~unitality!. ~The
unitality condition is sometimes omitted and the trace-preserving condition is sometimes re
to (Ai* Ai<I .) For BPB(H), define fA(B)5(AiBAi* . It can be shown thatfA :B(H)
→B(H) is a normal, completely positive map. Moreover,fA(I )5I ~unital! and tr@fA(B)#
5tr(B) for all BPT(H) ~trace preserving!. In fact, if H is separable, then any map satisfyin
these conditions has the formfA for someA.2 There are various interpretations forfA . For
example,fA can describe a quantum measurement, an interaction of a quantum system w
environment followed by a unitary evolution, a noisy quantum channel, or a quantum erro
rection map. We callfA a quantum operation and we callA the set ofoperation elementsfor
fA . Note that our previous examples are a special type of quantum operations. This can b
by letting Ai5Ei

1/2.
We say thatBPB(H) is afA fixed point if fA(B)5B, and denote the set offA fixed points

by B(H)fA. It is clear that the commutantA8#B(H)fA. The main purpose of this paper is t
study B(H)fA and the question of whetherB(H)fA5A8. We shall show that in genera
B(H)fAÞA8 and shall give sufficient conditions under which equality holds. For example
quantum computation it is assumed that dimH,`. For this case we shall show thatB(H)fA

5A8. Thus, a noisy quantum channel does not disturb a stater if and only if r is compatible with
the operation elementsAi , i 51,2,... . Related results and methods may be found in Ref. 7.
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II. COMPLETELY POSITIVE MAPS

This section studies completely positive maps on von Neumann algebras. Such maps
unifying generalization of quantum operations and many of our results will follow from th
general considerations.

An operator system is a linear subspace ofB~H! that is closed under the involution* and
contains the identity operator. LetMk be theC* algebra ofk3k complex matrices which we
identify with B(Ck). For an operator systemS#B(H) we considerS^ Mk embedded in theC*
algebraB(H) ^ Mk . Then,S^ Mk carries the natural operator norm and the natural oper
order. Given operator systemsV andW and a linear mapf:V→W, for any integerk>1, there is
defined a linear mapfk :V^ Mk→W^ Mk given by

fk~v !5@f~v i j !#, where v5@v i j #PV^ Mk , i , j 51,...,k.

We then have a nondecreasing sequence of operator norms

ifi5if1i<if2i<if3i<¯ .

The mapf is calledcompletely boundedif

ificb5sup
k>1

ifki,`.

It follows that i•icb is a norm on the linear spaceCB~V,W! of completely bounded maps fromV
into W. If ificb<1, thenf is calledcompletely contractive. If fk is positive for allk, thenf is
calledcompletely positive. Any completely positive mapf is completely bounded and

if~ I !i5ifi5ificb.

In particular, iff(I )5I thenf is completely contractive.8

Now, let V#B(H) be an operator system. A mapc:V→V is idempotent if c+c5c. A
completely contractive idempotent mapc from B~H! ontoV is called aprojection ontoV. If there
exists a projection fromB~H! onto V, thenV is injective. A linear mapc from a C* subalgebra
M into itself is a conditional expectation if c is a positive idempotent, its range is aC*
subalgebraN of M and c(CB)5c(C)B and c(BC)5Bc(C) for every BPN and CPM. A
C* algebraM#B(H) is injective if and only if there exists a conditional expectation onB~H!
with rangeM.9 A von Neumann algebraM is injective if and only ifM8 is injective.10,11A state
on aC* algebraM is a positive linear functionalv:M→C with norm ivi51. @If M has a unit
I , the conditionivi51 is equivalent tov(I )51.] We say thatv is faithful if v(A* A)50
implies A50.

In the sequel we shall need the following theorem of Choi.12

Theorem 2.1:Suppose thatf is a completely contractive and completely positive map from
unital C* algebra C into B~H!. Then, f(C)* f(C)<f(C* C) for every CPC. Moreover, if
f(C)* f(C)5f(C* C) for some CPC, then for all BPC we have f(BC)5f(B)f(C),
f(CB)5f(C)f(B).

If f:M→M is a unital completely positive map andv is a state onM, thenv+f is again a
state onM. We say thatv is f-invariant of v+f5v. We say thatAPM is a fixed point of f
if f(A)5A and denote the set of fixed points off by M f.7 Notice thatM f is an operator
system. In general,M f is not an algebra.7 It is easy to check that

I~f!5$APM:f~AB!5Af~B!,f~BA!5f~B!A for every BPM%

is a C* algebra inM andI(f)#M f. Moreover, iff is weakly continuous, thenI~f! is a von
Neumann subalgebra ofM andM f is a weakly closed operator system.

Lemma 2.2: The following statements are equivalent. ~a! M f5I(f). ~b! M f is a C*
algebra. ~c! If APM f, then A* APM f.
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Proof: (a)⇒(b)⇒(c) is clear. To prove that~c! implies ~a! suppose~c! holds andAPM f.
Then,A* APM f so that

f~A!* f~A!5A* A5f~A* A!.

It follows from Theorem 2.1 that for everyBPM we have

f~AB!5f~A!f~B!5Af~B!,

and

f~BA!5f~B!f~A!5f~B!A.

Hence,API(f). h

Theorem 2.3: If f admits a faithful invariant statev, thenM f5I(f).
Proof: Suppose thatAPM f. By Theorem 2.1 we have

A* A5f~A!* f~A!<f~A* A!,

so thatf(A* A)2A* APM 1. Since

v@f~A* A!2A* A#5v+f~A* A!2v~A* A!50,

we conclude thatf(A* A)5A* A. Hence,A* APM f. Applying Lemma 2.2 we have thatM f

5I(f). h

For f:M→M we denote the map obtained by composingf with itself n times byfn. If
c:M→M we denote the compositionc+f by cf.

Theorem 2.4: Let f:M→M be a weakly continuous, unital, completely positive map. ~a!
There exists an idempotent, unital, completely positive mapc:M→M with range ran(c)
5M f. ~b! M f5I(f) if and only if c is a conditional expectation. ~c! If M5B(H) and M f

5I(f), thenI~f! is an injective von Neumann algebra.
Proof: ~a! Let cn :M→M be the sequence of Cesa`ro means

cn5
1

n (
i 51

n

f i .

Then, cn , n51,2,..., areunital completely positive~and hence completely contractive! maps.
SinceM has a predual, it follows from the Alaoglu theorem that the closed unit ball ofM is
compact in the weak* topology. Hence, the closed unit ball ofCB~M! is compact in the point-
weak topology. It follows that there exists a subsequencecnk

and a unital completely positive ma
c:M→M such that

w- lim
k→`

cnk
~A!5c~A! ~2.1!

for everyAPM. For any integern>1 we have

icn2fcni5
1

n
if2fn11i<

2

n
, ~2.2!

and hencecn2fcn converges uniformly to 0. For anyk>1 we have

fc2c5~fc2fcnk
!1~fcnk

2cnk
!1~cnk

2c!.

Note that the point-weak limit of the expression of the right side is 0 asnk→`. Indeed,cnk

2c→0 by the definition ofc,cnk
2fcnk

→0 by ~2.2! and
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fc2fcnk
5f~c2cnk

!→0,

becausef is weakly continuous. In a similar way we havecf5c and thus

fc5cf5c. ~2.3!

By induction we see thatfkc5cfk5c for all k>1, and hence

cnk
~c~A!!5c~A!, ~2.4!

for all APM. Taking the weak limit in~2.4! as k→`, we conclude thatc is idempotent. In
particular, ran(c)5M c. Applying ~2.3!, we have ran(c)#M f. To prove the converse inclusion
let APM f. Then cnk

(A)5A for all k>1 and by ~2.1! we havec(A)5A. Hence, ran(c)
5M f.

~b! If M f5I(f), then ran(c)5M f is a von Neumann subalgebra ofM. For A
Pran(c), we have

c~A!* c~A!5A* A5c~A* A!.

Hence, by Theorem 2.1 we obtain

c~AB!5c~A!c~B!5Ac~B!,

and

c~BA!5c~B!c~A!5c~B!A

for all BPM. Thus,c is a conditional expectation. Conversely, ifc is a conditional expectation
then M f5ran(c) is a C* subalgebra ofM, so applying Lemma 2.2, we conclude thatM f

5I(f).
~c! If M f5I(f), then by~b!, c is a conditional expectation with ran(c)5I(f) so I~f! is

an injective von Neumann algebra. h

Corollary 2.5: Letf:B(H)→B(H) be a weakly continuous, unital, completely positive m
If I~f! is not injective, thenB(H)fÞI(f).

III. QUANTUM OPERATIONS

Let A be a set of operatorsA5$Ai ,Ai* : i 51,2,...%, whereAiPB(H) satisfy (AiAi* <I . A
mapf:B(H)→B(H) of the formfA(B)5(AiBAi* is called aquantum operation. If B>0 then
this series gives an increasing sequence of positive operators that is bounded above byiBi I so it
converges in the strong operator topology. It follows that the series converges in the
operator topology for anyBPB(H). It is easy to see that a quantum operation is comple
positive. If fA(I )5I or equivalently if(AiAi* 5I , thenfA is unital . If (Ai* Ai5I then fA is
trace preserving. If the Ai are self-adjoint thenfA is self-adjoint . An important example of a
self-adjoint quantum operation isLüders operation

LA~B!5( Ai
1/2BAi

1/2,

whereAi>0 and (Ai5I . A quantum operationfA is faithful if fA(B* B)50 implies thatB
50.

Theorem 3.1: Let fA be a quantum operation. ~a! fA is a weakly continuous complete
positive map. ~b! If fA is trace preserving thenfA is faithful and tr(fA(B))5tr(B) for every
BPT(H).
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Proof: ~a! Let ,2 denote the Hilbert space of square summable complex sequences a
,2(H)5,2^ H be the Hilbert space of square summable sequences with elements inH. Let
V:H→,2(H) be the linear operator defined by

Vh5~A1* h,A2* h,...!.

Now, VPB(H,,2(H)) because

iVhi25( ^Ai* h,Ai* h&5( ^AiAi* h,h&5 K( AiAi* h,hL <ihi2.

The adjointV* PB(,2(H),H) is given by

V* ~h1 ,h2 ,...!5( Aihi .

It follows that fA(B)5V* (I ^ B)V for all BPB(H). Since the mapB°I ^ B from B~H! to
B(,2(H)) is weakly continuous13 and completely positive, it follows thatfA is weakly continu-
ous and completely positive.

~b! Suppose thatfA is trace preserving. To showfA is faithful, supposefA(B* B)50. Then,
for everyhPH we have

05^fA~B* B!h,h&5 K( AiB* BAi* h,hL 5( ^BAi* h,BAi* h&.

Hence,BAi* h50 for everyhPH so thatBAi* 50. But, then

B5B( Ai* Ai50.

Finally, let BPT(H)1. Then, the operatorsAiBAi* andAi* AiB are trace class and

trS (
i 51

n

AiBAi* D 5trS (
i 51

n

Ai* AiBD<I(
i 51

n

Ai* Ai I tr~B!<tr~B!.

Since ( i 51
n AiBAi* is a nondecreasing sequence of positive operators converging strong

fA(B), and since the trace is continuous with respect to such sequences, we have

tr~fA~B!!5 lim
n→`

trS (
i 51

n

AiBAi* D<tr~B!.

Hence,fA(B)PT(H)1. Again by the continuity of trace on bounded nondecreasing seque
we have

tr~fA~B!!5 lim
n→`

trS (
i 51

n

Ai* AiBD 5trS (
i 51

`

Ai* AiBD 5tr~B!.

The result for arbitraryBPT(H) now follows. h

Let fA be a unital quantum operation and define the fixed point setB(H)fA as before. We
then have the von Neumann algebrasI(fA) andA8 as well as the weakly closed operator syste
B(H)fA, and it is clear that

A8#I~fA!#B~H!fA.
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We are now interested in when these sets coincide; that is, whenB(H)fA#A8. The next theorem
generalizes a result in Ref. 5 and has essentially the same proof.

Theorem 3.2:Let fA be a self-adjoint quantum operation. If BPB(H)fA is positive and has
pure point spectrum which can be totally ordered in decreasing order, then BPA8.

Proof: Let h be a unit eigenvector ofB corresponding to the largest eigenvaluel15iBi .
Then,fA(B)5B implies that

l15( ^BAih,Aih&<iBi( iAihi25l1( ^Ai
2h,h&<l1 .

Since^BAih,Aih&<l1^Ai
2h,h&, it follows that

^~l1I 2B!Aih,Aih&50.

Hence, (l1I 2B)Aih50 for every eigenvectorh corresponding tol1 . Thus, Ai leaves the
l1-eigenspace invariant. LettingP1 be the corresponding spectral projection ofB, we have
P1Ai P15Ai P1 , which implies thatAi P15P1Ai , i 51,2,... . Now,B5l1P11B1 whereB1 is a
positive operator with a largest eigenvalue. Since

l1P11B15B5fA~B!5l1fA~P1!1fA~B1!5l1P11fA~B1!,

we havefA(B1)5B1 . Proceeding by induction,BPA8. h

We shall show later that Theorem 3.2 cannot be extended to an arbitrary positiB
PB(H)fA. Moreover, it cannot be extended to a non-self-adjointfA even in the case whereB is
positive with finite spectrum andA contains only two operation elements. The next result follo
from Lemmas 3.1 and 3.3 of Ref. 7. However, we present a simpler and more algebraic p

Lemma 3.3: IffA is a unital quantum operation, then the following statements are equiva.
~a! B(H)fA5A8. ~b! B(H)fA is a von Neumann algebra. ~c! B(H)fA5I(fA). ~d! If B
PB(H)fA, then B* BPB(H)fA.

Proof: (a)⇒(b) is clear, (b)⇒(c) follows from Lemma 2.2, and (c)⇒(d) is clear. To show
that ~d! implies ~a! assume that~d! holds andBPB(H)fA. Then,B* BPB(H)fA. Notice that

0<@B,Ai #@B,Ai #* 5~BAi2AiB!~Ai* B* 2B* Ai* !

5BAiAi* B* 1AiBB* Ai* 2AiBAi* B* 2BAiB* Ai* .

Summing overi yields

0<( @B,Ai #@B,Ai #* 5BB* 1fA~BB* !2fA~B!B* 2BfA~B* !5fA~BB* !2BB* 50.

Hence,@B,Ai #50 for all i 51,2,... . In a similar way, we have@B,Ai* #50. Hence,BPA8 so that
B(H)fA5A8. h

Corollary 3.4: LetfA be a unital quantum operation. If BPB(H)fA, then BPA8 if and only
if B* B,BB* PB(H)fA.

An operatorWPT(H) is faithful if for any APB(H), tr(W* A* AW)50 impliesA50.
Theorem 3.5:Let fA be a trace preserving, unital, quantum operation.

~a! If dim(H),`, thenB(H)fA5A8. ~b! If there exists a faithful operator WPT(H)ùA8, then
B(H)fA5A8. ~c! If BPB(H)fA and B5C1D for CPA8, DPT(H), then BPA8. ~d!
B(H)fAùT(H)5A8ùT(H).

Proof: ~a! If dim(H)5n,`, thenv(B)5tr(B)/n is a faithful f-invariant state. The resul
follows from Theorem 2.3 and Lemma 3.3.~b! By the proof of Lemma 3.3, ifBPB(H)fA then

fA~B* B!2B* B>0.
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SinceWPT(H)ùA8, by Theorem 3.1~b! we have

tr @W* ~fA~B* B!2B* B!W#5tr @fA~W* B* BW!#2tr~W* B* BW!50.

Hence,fA(B* B)5B* B so thatB* BPB(H)fA. Applying Lemma 3.3 givesB(H)fA5A8. ~c!
Since

C1D5fA~C1D !5fA~C!1fA~D !5C1fA~D !,

we haveDPB(H)fA. Now, D* DPT(H) and by the proof of Lemma 3.3

fA~D* D !2D* D>0.

SincefA is trace preserving, we have

tr @fA~D* D !2D* D#50.

Hence,fA(D* D)5D* D so thatD* DPB(H)fA. Similarly, DD* PB(H)fA so by Corollary 3.4,
DPA8. Hence,BPA8. ~d! follows from ~c!. h

The next result follows from Theorem 2.4 and Lemma 3.3.
Theorem 3.6:Let fA be a unital quantum operation. ~a! There exists an idempotent, unita

completely positive mapc:B(H)→B(H) with ran(c)5B(H)fA. ~b! B(H)fA5A8 if and only if
c is a conditional expectation. ~c! If B(H)fA5A8 thenA8 is an injective von Neumann algebra.

IV. EXAMPLE

It follows from Theorem 3.6~c! that if A8 is not injective thenB(H)fAÞA8. We can apply
this observation to obtain examples for various conjectures. For instance, the following co
example shows:~a! If fA(B)5(Ai

1/2BAi
1/2, Ai>0, (Ai5I , is a Lüders operation, then

B(H)fAÞA8 in general. ~This answers a question posed in Refs. 5 and 3.! ~b! If fA(B)
5A1BA1* 1A2BA2* is a trace-preserving, unital, quantum operation, thenB(H)fAÞA8 in general.
~It has been shown that ifA1 andA2 are positive, thenB(H)fA5A8.5,3!

Example: Let F2 be the free group on two generatorsg1 ,g2 with identity e. It is clear thatF2

is countable. LetH5,2(F2) be the separable complex Hilbert space

H5,2~F2!5 H f :F2→C:( u f ~x!u2,`J .

For xPF2 definedx :F2→C by

dx~y!5H 1 if y5x

0 if yÞx
.

Then $dx :xPF2% is an orthonormal basis forH. Define the unitary operatorsU1 ,U2 on H by
U1dx5dg1x , U2dx5dg2x . The von Neumann algebra generated byU1 andU2 is denoted byN
5L(F2). It is known thatN and henceN8 are not injective.14,15

Lemma 4.1: Suppose BPB(H) has the form Bdx5lxdx , 0<lx<1. Then, BPE(H) and if
BPN8, then B5leI .

Proof: It is clear thatBPE(H). Now, suppose thatBPN8. Then

lg1
dg1

5Bdg1
5BU1de5U1Bde5leU1de5ledg1

.

Hence,lg1
5le and in a similar way

lg
1
215lg2

5lg
2
215le .
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Now, supposexPF2 has the formx5g1y for someyPF2 . Then

lxdx5Bdx5Bdg1y5BU1dy5U1Bdy5lyU1dy5lydg1y5lydx .

Hence,lg1y5ly for everyyPF2 . Similarly

lg
1
21y5lg2y5lg

2
21y5ly

for everyyPF2 . Continuing by induction, we conclude thatlx5le for everyxPF2 . Hence,B
5leI . h

Let A15221/2U1 andA25221/2U2 and letA5$A1 ,A2%. Then,A85N8 and

A1A1* 1A2A2* 5A1* A11A2* A25I .

Thus,fA is a trace-preserving, unital quantum operation. Now, aB of the form in Lemma 4.1
satisfiesBPB(H)fA if and only if

1
2 lg

1
21x1 1

2 lg
2
21x5lx ~4.1!

for all xPF2 . DefineBPB(H) by Bdx5lxdx wherelx50 if x ends ing2
21, lx51 if x ends in

g1
21, andlx51/2 otherwise. Then, it is easy to check that~4.1! is satisfied. Hence,BPB(H)fA

and by Lemma 4.1B¹A8. Thus,B(H)fAÞA8.
Theorem 4.2: There exists a Lu¨ders operationfA on H5,2(F2) such thatB(H)fAÞA8.

More precisely, there exists a BPE(H) such that BPB(H)fA but B¹A8.
Proof: By taking the real and imaginary parts ofU15V11 iV2 , U25V31 iV4 , we see thatN

is generated by four self-adjoint operatorsV1 ,V2 ,V3 ,V4 . Moreover,N is generated by the fou
positive operatorsCi5iVi i I 2Vi , i 51,2,3,4. Let Ai5Ci /4iCi i , i 51,2,3,4, and letA55I
2( i 51

4 Ai . Then,AiPE(H), i 51,...,5,(Ai5I andA5$Ai : i 51,...,5% generatesN. Now, fA is
a Lüders operation and sinceN85A8 is not injective we haveB(H)fAÞA8. Hence, there exists
a BPB(H) such thatBPB(H)fA\A8. Now, the real part or the imaginary partB1 of B also
satisfiesB1PB(H)fA\A8. Letting B25iB1i I 2B1 we see thatB2>0 and thatB35B2 /iB2i
PE(H). Moreover,B3PB(H)fA\A8. h

Although theB in Theorem 4.2 exists, it appears to be quite difficult to construct a conc
example of such aB.

V. CONCLUDING REMARKS

We have seen that the injectivity of the commutant of the set of operation elementsA8 of a
Lüders operationfA plays a role in deciding whether the set of fixed pointsB(H)fA coincides
with A8 or not. However, the following question remains: ifA8 is injective, does this imply tha
B(H)fA5A8? On the other hand, it has been proved that for a Lu¨ders operation with only two
operation elements, we haveB(H)fA5A8.5,3 In this case,A is commutative and it follows thatA
andA8 are injective. It is then natural to ask whether the result is true for any commutative s
operation elementsA. Finally, we ask the following general question. Is it true thatB(H)fA is an
injective envelope of eitherA8 or I(fA)?8
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Classicality criteria
Nuno Costa Diasa)

Departamento de Matema´tica, Universidade Luso´fona de Humanidades e Tecnologias, Av.
Campo Grande, 376, 1749-024 Lisboa, Portugal

~Received 2 November 2000; accepted 27 August 2002!

We present two possible criteria quantifying the degree of classicality of an arbi-
trary ~finite dimensional! dynamical system. The inputs for these criteria are the
classical dynamical structure of the system together with the quantum and the
classical data providing the two alternative descriptions of its initial time configu-
ration. It is proved that a general quantum system satisfying the criteria up to some
extend displays a time evolution consistent with the classical predictions up to
some degree and thus it is argued that the criteria provide a suitable measure of
classicality. The features of the formalism are illustrated through two simple
examples. ©2002 American Institute of Physics.@DOI: 10.1063/1.1516626#

I. INTRODUCTION

It is generally accepted that quantum mechanics yields the most fundamental descriptio
physical systems. Such status requires the theory to provide a suitable description of eve
classical like phenomena. However, quantum mechanics faces a considerable number of p
to explain the emergence of a classical domain. In a broad sense, this is called the problem
semiclassical limit of quantum mechanics.1–6

This is a difficult topic not least because there are a variety of different ways of rel
classical and quantum mechanics. The standard approach is to take the limit\→0, or equivalently,
the limit of a large number of particlesN→`. Under some general conditions one can derive
classical evolution from the quantum dynamics.7 Alternatively, one may start with a set of qua
tum initial data with minimal spread and show that its quantum time evolution remains
peaked around the classical orbits. Coherent states8 ~and squeezed states9,10! have been extensively
studied in this context.11–17 It has been proved, using several different approaches and for a
class of dynamical systems, that coherent states evolve, up to a prescribed error and d
prescribed lapse of time, peaked around the classical paths.14,16–18Coherent states methods ha
also been used to prove that in the limit\→0 and for times shorter than Eherenfest’s time, t
quantum and the classical predictions coincide exactly.10,18–20Related results have been obtain
using the tools of pseudodifferential calculus21–23and microlocal analysis.24–26These have played
an important part in several attempts to understand the semiclassical behavior of classica
otic systems.24,27

Two other significant approaches are the Wigner~or more generally the quasidistributions!28

and the dechoerent histories3,4,29approaches. The aim is to~either by identifying proper quantum
phase space distributions, or by coupling the quantum system to a suitable environment! recover
the classical statistical predictions from the quantum formulation of the system. All these
are of course not antagonic, but complementary, meaning that the classical behavior can em
a variety of different regimes.

Despite the importance of these results there are still several open problems in the field
semiclassical limit of quantum mechanics. The common view is that classical mechanics
approximate description of quantum mechanics. This approximation is not always valid. In
one expects it to be only valid for some particular set of quantum initial data and even in this
not for all dynamical systems~consider for instance a particle hitting a potential barrier!. An

a!Electronic mail: nuno.dias@ulusofona.pt
58820022-2488/2002/43(12)/5882/20/$19.00 © 2002 American Institute of Physics
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important question is then what is the degree of validity of the classical approximation? C
this question does not have a single answer. It depends on the dynamical structure of the
and on the quantum and also the classical data providing the two alternative descriptions
initial time configuration. Let us assume that we are given this information. Can we compa
classical and the quantum descriptions of the dynamical system and produce a statement a
degree of validity of the classical description? Or, in other words, can we produce a stat
about the degree of classicality of the quantum description? The answer to these questions
be affirmative since we are given all the necessary ingredients. However, and despite the f
the pertinence of these questions have been recognized by several authors,3–5 the problem of
establishing a measure of classicality is still lacking an unique solution.

Closely related to this topic is the problem of establishing a clear relation between the
tum initial state and the classical like behavior. Very few studies elaborate on this subject. In
one typically assumes a particular quantum initial state and works from there to prove the
sicality’’ of the quantum dynamics. A weak point in the procedure is that we are still lacki
precise definition of ‘‘classicality.’’ For instance in Refs. 10, 14, and 16 the aim is to pro
minimal bounds for the spreading of the time evolution of a specific quantum initial data~typically
a coherent or squeezed state!. But the questions that remain are: are these results extendable
wider class of quantum initial states, or more generally, what is the relation between the spr
of the wave function through time and the quantum initial state? And further, how is the spre
of the wave function related to classicality?

In this paper we attempt to provide a partial answer to these questions. In general ter
study the inverse problem of Refs. 10, 14, and 16: we start by imposing the bounds~which will be
related to the error margins of the classical time evolution! and attempt to identify those initia
quantum states which display a time evolution that satisfies these bounds for all times. In do
we identify a~possible! set of general conditions an arbitrary, finite dimensional quantum sys
should satisfy so that it evolves in agreement with the classical predictions. These condition
be of the form of a sequence of restrictions on the initial quantum state~the higher the classicality
the more stringent the conditions! and provide the basic mathematical structure to constru
measure of classicality.

More precisely our approach will be as follows: We work in the context of the stan
Copenhagenformulation of quantum mechanics30–33 and consider a general dynamical syste
with N degrees of freedom. Its initial time configuration might be described by a set of qua
initial data or, alternatively, by a set of classical initial data. The classical description is give
a set of valuesai

0 for a complete set of classical observablesai ( i 51¯ 2N), together with their
associated error marginsd i . The quantum description is given by the initial time wave functi
uc&. Classical mechanics states that the output of a measurement of an observableai will belong to
the interval@ai

02d i ,ai
01d i #. Quantum mechanics, in turn, states that there is some proba

pi<1 that a measurement of the observableâi yields a value inside the former interval. Clear
the two statements are not equivalent. However, there are a number of fairly intuitive wa
which one can measure the consistency~i.e., the agreement! of the two former descriptions of the
initial time configuration. We will propose two suchconsistency criteriain Sec. II.

Unfortunately, the fact that the two descriptions of the initial time configuration are consi
up to some degree does not imply that the classical and the quantum descriptions of a
configuration will also be consistent up to the same degree. Our aim is then to identif
conditions that should be satisfied by the initial time configuration so that the degree of c
tency is preserved through time evolution. These conditions are obtained~they are given by a se
of relations between the classical initial data (ai

0 ,d i) and the spreads of the initial wave functio
uc&! and used to construct two alternative classicality criteria. Given the classical initial data
conditions constitute a sequence of growing restrictions on the functional form of the initial
wave function. Whenuc& satisfies then first former conditions we say thatuc& is n-order classical.
When uc& satisfies the full set of conditions we say thatuc& is a classical limit initial data wave
function.
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The main property of the classicality criteria is that if the classical and the quantum initia
satisfy the classicality criteria up to some degree then the time evolution of the classical initia
~obtained using classical mechanics! and the time evolution of the quantum initial data~obtained
using quantum mechanics! will display a minimum degree of consistency for all times. Hence,
classicality criteria supply a suitable~although clearly not unique! measure of classicality tha
might be computed, for an arbitrary dynamical system, at the kinematical level.

These results are not limited to some specific type of systems displaying a particular dy
cal behavior or having some particular quantum initial data. On the contrary, for an arb
dynamical system the classicality criteria can be used to determine the set of quantum initi
that displays an-order classical time evolution~a quantum time evolutionn-order consistent with
the classical predictions!. This will be done explicitly for the two physical examples presented
Secs. VI and VII.

Further applications of the criteria are given in Refs. 34, 35, and 36.

II. CONSISTENCY CRITERIA

Let us consider a general dynamical system withN degrees of freedom. The phase spaceT* M
has the structure of the cotangent bundle of the configuration spaceM , and henceforth will be also
assumed to have the structure of aflat sympletic manifold. Therefore a global Darboux chart c
be defined inT* M . Let us choose a set of canonical variablesai ,i 51¯2N ~where ai5qi ,i
51¯N and ai5pi 2N ,i 5N11¯2N). They yield the sympletic structure as the 2-formw
5dqi∧dpi .

The classical description of a specific time configuration of the system is given by a s
valuesai

0 for the complete set of observablesai together with the associated error marginsd i . The
classical statement is that a measurement ofai will yield a valueai

1 belonging to the classical erro
interval I i5@ai

02d i ,ai
01d i #.

Alternatively, quantum mechanics describes the same configuration of the system with a
function uc& belonging to the physical Hilbert spaceH and the quantum statement is that there
some probabilityp(ai)5(ku^ai ,kuc&u2 that a measurement of the observableâi yields the value
ai ~where the statesuai ,k& form a complete set of eigenvectors ofâi that spans the Hilbert spac
H, ai are the associated eigenvalues andk is the degeneracy index!. For notational convenience
we will assume thatÂ displays a discrete spectrum, but all results can be easily rewritten fo
continuous case.

A straightforward way of measuring the consistency between the two descriptions is giv
the following criterion.

Definition: First consistency criterion.Let us calculate the probabilitiespi—generated by the
wave functionuc& in the representation of each of the observablesâi , i 51¯2N—that a measure-
ment of âi yields a value belonging to the classical error intervalI i5@ai

02d i ,ai
01d i #, i.e.,

pi5 (
aiPI i ,k

u^ai ,kuc&u2. ~1!

The minimum value of the set$pi : i 51¯2N% provides a suitable measure of the consisten
between the classical and the quantum descriptions of the configuration of the dynamical s
If this minimum value above is for instancep0 we say that the classical and the quantum desc
tions arep0-consistent. Furthermore, ifp051 then the two descriptions are fully consistent a
uc& is named aclassical limit wave function. h

Another, probably less intuitive, consistency criterion is given by the following definition
Definition: Second consistency criterion.Let 0<p,1 be an arbitrary probability and letM

PN. To each classical observableai we associate the set of intervals of the form:
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I i~p,M !5Fai
02

d i

~12p!1/(2M ) ,ai
01

d i

~12p!1/(2M )G . ~2!

In each of the former intervals we can calculate the probabilitypi generated by the wave functio
uc&, in the representation of the corresponding quantum observableâi :

pi~p,M !5 (
aiPI i (p,M ),k

u^ai ,kuc&u2. ~3!

For given values of the classical and quantum dataai
0 , d i , anduc& this probability is an exclusive

function ofp andM . The second consistency criterion is defined as follows: The classical an
quantum data, describing a given configuration of the dynamical system, areM -order consistentif
and only if for all 0<p,1 and for alli 51•••2N the conditionpi(p,M )>p is satisfied, i.e.,

(
aiPI i (p,M ),k

u^ai ,kuc&u2>p, ;pP[0,1[ ,; i 51•••2N , ~4!

where I i(p,M ) is given by ~2!. If M5` the classical and the quantum descriptions are fu
consistent, in which caseuc& is a classical limitwave function. h

The former criterion provides a measure of how peaked is the wave function—in the r
sentation of each of the quantum observables—around the classical error margin of the
sponding classical observable. This will became clear in the sequel~16!.

As a first remark let us point out that the two alternative definitions of a classical limit w
function ~using the first and the second consistency criterion! are, in fact, equivalent, i.e.p
51⇔M51`, which in turn, is equivalent to the statement that

uc&5 (
aiPI i ,k

^ai ,kuc&uai ,k&, ; i 51•••2N , ~5!

where, as beforeI i5@ai
02d i ,ai

01d i #, (ai
0 ,d i) is the classical data anduai ,k& is the general

eigenstate of the operatorâi .
As a second remark let us notice that in some cases it is not possible to construct a

function satisfying Eq.~5! exactly. One should keep in mind that Eq.~5! stands for the limitM
→` or p→1 which may, or may not admit an explicit realization in terms of some wave func
uc&.

Some emphasis will be put in the study of the time evolution of a general classical limit i
data wave function. Although, for some systems, we might be unable to writeuc& @satisfying~5!#
explicitly, its time evolution can be obtained, in the Heisenberg picture, using the standard ru
quantum mechanics. This study will prove to be useful allowing us to develop a set of techn
that will later be used to obtain the classicality criteria and, in the sequel, to study physical sy
with general initial data.

III. ERROR KET FRAMEWORK

Let us introduce dynamics by specifying a general HamiltonianH. The quantum time evolu-
tion of an arbitrary fundamental observableÂ ~with Â5âi for somei 51¯2N) is given by

Â~ t !5 (
n50

`
1

n! S t

i\ D n

@ ¯ @@Â,Ĥ#,Ĥ# ¯ #. ~6!

Alternatively, the standard classical treatment of the same system provides the predictions
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A~ t !5 (
n50

`
tn

n!
$ ¯ $$A,H%,H% ¯ %,

dA~ t !5 (
n51

1`
1

n! (
k1 , . . . ,kn51

2N U ]nA~ t !

]ak1
. . . ]akn

Udk1
¯ dkn

, ~7!

where the error marginsdki
are taken at the initial time. Notice that, in general, it is possible

obtain more accurate predictions than those of~7!, i.e., with smaller error margins. Such estimat
have the disadvantage of requiring a case by case evaluation, while Eq.~7! is valid in general.

To avoid some possible misunderstandings we will, from now on, focus on the case
second consistency criterion. In Sec. V our results will then be rewritten using the language
first consistency criterion. Let us then assume that the classical and the quantum initial d
M -consistent. The question we would like to answer is then: which are the conditions that s
be satisfied so that the quantum description of the system at a timet—given by the initial data
wave functionuc& in the representation of the observablesâi(t) ~6!—is alsoM -consistent with the
classical description given by~7!?

This is not an easy task. We start by presenting a framework that will later be used to
precise answer to this question.

A. Definition and properties of zE‹ and D

Let us start by introducing the relevant definitions. LetÂ be an operator acting on the quantu
Hilbert spaceH. Let ua,k& be a complete set of eigenvectors ofÂ, with associated eigenvaluesa
andk being the degeneracy index. This set forms a complete orthogonal basis ofH. Finally, let uc&
be the wave function describing the system.

Definition: Error Ket.We define thenth-order error ketuEn(Â,c,a0)&, as the quantity

uEn~Â,c,a0!&5~Â2a0!nuc&, ~8!

wherenPN, a0PC andÂ does not need to be self-adjoint. The error bra^En(Â,c,a0)u is defined
accordingly to the definition of the error ket.

Let now Âz , z51,...,n be a set of operators acting onH. For each value ofz let uaz ,kz& be a
complete set of eigenvectors ofÂz , with eigenvaluesaz , and kz being the degeneracy index
Moreover let az

0PC. The nth-order mixed error ketuE(Â1 ,Â2 , . . . ,Ân ,c,a1
0 ,a2

0 , . . . ,an
0)&, is

defined as the quantity

uE~Â1 ,Â2 , . . . ,Ân ,c,a1
0 ,a2

0 , . . . ,an
0!&5~Ân2an

0! ¯ ~Â22a2
0!~Â12a1

0!uc&. ~9!

When there is no risk of confusion we will use the short notationsuEn& or uEA
n& for the nth-order

error ket anduEA1 ,A2 , . . , An
& for the mixed error ket. h

We shall now study some of the properties of this quantity.
~a! Explicit form of the error ket. Let us start with the 1st-order error ket. We hav

uE(Â,c,a0)&5(a,k(a2a0)^a,kuc&ua,k&. This result is easily extended to the case of t
nth-order mixed error ketuEA1 ,A2 , . . ., An

&:

uEA1 ,A2 , . . ., An
&5 (

a1 ,k1
(

a2 ,k2

. . . (
an ,kn

~a12a1
0!~a22a2

0! ¯ ~an2an
0!^a1 ,k1uc&^a2 ,k2ua1 ,k1&

3^a3 ,k3ua2 ,k2& . . . ^an ,knuan21 ,kn21&uan ,kn&, ~10!

and if Â15Â25 ¯ 5Ân5Â we haveuEA1 ,A2 , . . ., An
&5uEA

n& which give us the explicit expres
sion for thenth-order error:
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uEA
n&5~Â2a0!nuc&5(

a,k
~a2a0!n^a,kuc&ua,k&. ~11!

~b! Relation between the nth-order error ket and the mean second-order deviation. Let us
calculate the value of̂EA

n uEA
n&:

^EA
n uA

n&5(
a,k

~~a2a0!* ~a2a0!!nu^a,kuc&u2, ~12!

and if Â is self-adjoint anda05^cuÂuc& then^EA
n uEA

n& is just the mean 2nth-order deviation ofÂ:
(DÂ)2n ~if n51 then^EA

1 uEA
1& is just the mean square deviation!.

~c! Nth-order error ket of a classical limit initial data wave function. Let us consider the cas
in which the initial time configuration of the dynamical system is described by a classical
initial data wave functionuc&. Let A be a fundamental observable of the system and let
classical initial data associated toA be given bya0 with error margindA . From Eqs.~5! and~12!
it is straightforward to obtain the relation:

^EA
n uEA

n&5(
a,k

ua2a0u2nu^a,kuc&u2<dA
2n(

a,k
u^a,kuc&u25dA

2n , ~13!

which is valid for allnPN and for all fundamental observablesA5ai( i 51¯2N).
~d! Probabilistic distribution function from the nth-order error ket. Let Â be self-adjoint, let

uc& be the state of the system and leta0 be a real number. Given̂En(Â,c,a0)uEn(Â,c,a0)&, to
each ‘‘quantity of probability’’ 0<p,1 we can associate an intervalI n around a0, I n5@a0

2Dn ,a01Dn#, such that the probability of obtaining a valueaPI n from a measurement ofÂ is
at leastp. The range of the intervalI n is dependent ofÂ,c and a0 only through the value of
^EA

n uEA
n&. The quantityDn(^EA

n uEA
n&,p) is named thenth-order spreadof the wave function. Let us

show that ifDn5Dn(Â,c,a0,p) is given by

Dn~Â,c,a0,p!5S ^EA
n uEA

n&
12p D 1/2n

~14!

then the probability of obtaining a valueaPI n from a measurement ofÂ is at leastp. From~12!,
~14! we have

~Dn!2n~12p!5(
k,a

ua2a0u2nu^a,kuc&u2,

> (
k,a¹I n

ua2a0u2nu^a,kuc&u2>~Dn!2n (
k,a¹I n

u^a,kuc&u2, ~15!

and this implies:(k,a¹I n
u^a,kuc&u2<12p, which is the result we were looking for. IfÂ is not

self-adjoint the former result can also be obtained, but in this caseI n is a ball of radiusDn in the
complex plane.

~e! Corollary of (d). A straightforward consequence of the previous result is the following
for some positive integerM the condition:

^EM~ âi ,c,ai
0!uEM~ âi ,c,ai

0!&<d i
2M ~16!

holds for all i 51•••2N then the classical and the quantum descriptions@given by (ai
0 ,d i ,i

51¯ 2N) and uc&, respectively# are, accordingly to the second consistency criterion,M -order
consistent.
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B. Time evolution of zE‹ and D

The aim is now to determine thenth-order error ket and thenth-order spread associated to th
operatorÂ(t) given in ~6!, as a function of the error kets and spreads associated with the i
time operators. The calculations might seem, in a first reading, complicated and cumbe
Nevertheless, the final result will be simple and physically appealing.

1. Evolving the error ket

We will start by calculating the 1st-order error ket associated with the sum and with
product of two arbitrary operatorsÂ andB̂ and with the product of an operator by a scalar. Let
state of the system beuc&, let uE(Â,c,a)& anduE(B̂,c,b& be the first-order error kets associated
Â and B̂ and leta,b,cPC.

Theorem: The first-order error kets associated to the operatorsÂ1B̂, cÂ, and ÂB̂ are,
respectively,

uE~Â1B̂,c,a1b!&5uE~Â,c,a!&1uE~B̂,c,b!&, ~17!

uE~cÂ,c,ca!&5cuE~Â,c,a!&, ~18!

uE~ÂB̂,c,ab!&5auE~B̂,c,b!&1buE~Â,c,a!&1uE~B̂,Â,c,b,a!&. ~19!

Proof: For the sum of operators we have

uEA1B&5~Â1B̂2~a1b!!uc&5~Â2a!uc&1~B̂2b!uc&5uEA&1uEB&. ~20!

The proof of the product by a scalar and of the product of two operators follows the same
this time using the relations (cÂ2ca)5c(Â2a) and

~ÂB̂2ab!5a~B̂2b!1b~Â2a!1~Â2a!~B̂2b!, ~21!

that when applied to the stateuc& provide the desired results. h

Let us now extend these results to the case of several products and sums of funda
operators. LetÂ be a general hermitian operator displayed as a sum of multiple produc
fundamental operators and letA0 be the classical function that is functionally identical toÂ:

Â5(
i 51

n

ci B̂i5(
i 51

n

ci)
j 51

m

x̂i j , A05(
i 51

n

ciBi
05(

i 51

n

ci)
j 51

m

xi j , ~22!

where x̂i j is one of the fundamental operators (x̂i j P$ Î ,q̂1 ,. . ., q̂N ,p̂1 , . . ., p̂N% whereN is the
dimension of the classical system!, n andm are arbitrary positive integers,ci are complex num-
bers andB̂i , Bi are multiple products of the fundamental observables and multiple products o
corresponding classical observables, respectively. The map fromÂ to A0 will be namedunquan-

tization. Clearly, the procedure~22! is beset by order problems~i.e., if Â is displayed in different
orders we get differentA0). The consequences of this will be discussed later on.

The aim now is to expand (Â2A0) in terms of (x̂i j 2xi j ). The first step is to set (Â2A0)
5( i 51

n ci(B̂i2Bi
0). Using Eq.~21! we get

B̂i2Bi
05 x̂i1)

j 52

m

x̂i j 2xi1)
j 52

m

xi j

5xi1S )
j 52

m

x̂i j 2)
j 52

m

xi j D 1)
j 52

m

xi j ~ x̂i12xi1!1~ x̂i12xi1!S )
j 52

m

x̂i j 2)
j 52

m

xi j D , ~23!
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and using~21! once again to expand () j 52
m x̂i j 2) j 52

m xi j ) in terms of (x̂i22xi2) and () j 53
m x̂i j

2) j 53
m xi j ) and so on, after using the relation~21! m times we will obtain

B̂i2Bi
05 (

L51

1`

(
j 1, j 2 •••, j L51

m ]LBi
0

]xi j 1
. . . ]xi j L

~ x̂i j 1
2xi j 1

! . . . ~ x̂i j L
2xi j L

! ~24!

where the sum inL can be truncated at themth term. The next step is to multiply each term ini
by ci and after sum ini . We get

Â2A05 (
L51

1`

(
i 51

n

(
j 1, j 2 •••, j L51

m
]LA0

]xi j 1
. . . ]xi j L

~ x̂i j 1
2xi j 1

! . . . ~ x̂i j L
2xi j L

!. ~25!

Notice that this is just a ‘‘Taylor expansion’’ of an operator around the classical observable
the same functional form. The sums in the expansions~24! and ~25! are taken overj 1, j 2 ¯

, j L to preserve the order in which the operatorsx̂i j appear inB̂i since in general (x̂ik2xik)( x̂i j

2xi j )Þ( x̂i j 2xi j )( x̂ik2xik). Because of this the analysis of the expansion~25! is tricky. The order
in which the classical variables appear inA0 is relevant. For instance ifÂ5 p̂q̂2q̂p̂ then A0

5pq2qp and this form, and notA050, should be the one used to calculate the partial derivat
in ~25!.

Let us now consider the operator (Â)15( i 51
n ci(P j 51

m x̂i j )1 obtained from a general hermitia
operatorÂ ~22! by a term by term symmetrization: (Â)15( i 51

n ci(B̂i)1 , where (B̂i)1 is the
completly symmetric operator obtained fromB̂i . In general (Â)1ÞÂ but the classical observable
obtained fromÂ and (Â)1 , given by ~22!, are identical, i.e.,A05(A)1

0 . For this operator the
expansion~25! might be written

~Â!12A05 (
L51

1`
1

L! (i 51

n

(
j 1 , j 2 ,..,j L51

m
]LA0

]xi j 1
. . . ]xi j L

~ x̂i j 1
2xi j 1

! . . . ~ x̂i j L
2xi j L

! ~26!

Our next step is to understand under which conditions, if any, is the expansion~26! a valid
approximation to the expansion~25!. To do this the first step is to define the unquantization m
more precisely.

Definition: Unquantization V0 . Let A(H) be the algebra of linear operators acting on t
physical Hilbert spaceH and letA(T* M ) be the algebra of complex functions over the classi
phase spaceT* M . V0 is the map:

V0 :A~H!→A~T* M !; A05V0~Â!, ~27!

that satisfies the followingrequirements.
~a! The action ofV0 on a fundamental operator provides the corresponding classical fu

mental observable:V0(q̂i)5qi andV0( p̂i)5pi , i 51¯N. MoreoverV0( Î )51.
~b! The action ofV0 on a general operatorÂ, displayed in an arbitrary order, is given b

V0(Â)5V0(ÂR) whereÂR5Â but displayed in an order in which~i! Â is the sum of an hermitian
term with an anti-Hermitian term and~ii ! all the commutators present inÂ have been resolved (ÂR

does not contain antisymmetric terms!.
If Â is displayed in the required order,ÂR then
~c! V0 is linear, i.e., ifÂR5bB̂1cĈ thenV0(ÂR)5bV0(B̂)1cV0(Ĉ); b,cPC.
~d! The product rule is valid: ifÂR5¯1B̂Ĉ1¯ then V0(ÂR)5V0(¯)1V0(B̂)V0(Ĉ)

1V0(¯). h

One should notice that the mapV0 is not equivalent to the procedure~22!. However, for a
general operatorÂ, all the classical observablesV0(Â) can also be obtained using the procedu
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~22! ~by displaying Â in appropriate order!. Therefore all the results that were valid forA0

obtained in~22!, are also valid forA05V0(Â). Further properties of the mapV0 will be discussed
in Sec. IV.

Let us proceed with the analysis of expansions~25! and~26!. We realize that ifÂ is displayed
in the required orderÂR then the difference betweenÂ and (Â)1 is, at the most, proportional to
a factor of\2. SinceA05V0(Â) is identical toV0((Â)1) we conclude that ifA05V0(Â) then the
difference between the right hand sides of equations~25! and~26! is at the most proportional to a
factor of \2 which, in the context of the results of this paper is of negligible magnitude
conclusion, ifA05V0(Â) then the right-hand side of~26! is a valid approximation toÂ2A0.

Let us proceed: sincex̂i j —in the expansion~26!—is one of the 2N fundamental operators th
former expansion can be cast in the form

Â2A05 (
L51

1`
1

L! (
j 1 , . . . ,j L51

2N
]LA0

]aj 1
,. . .,]aj L

~ â j 1
2aj 1

! . . . ~ â j L
2aj L

!. ~28!

Finally, if we apply this expansion to the quantum stateuc&, we get

uE~Â,c,A0!&5 (
L51

1`
1

L! (
j 1 , . . . ,j L51

2N
]LA0

]aj 1
. . . ]aj L

uEaj 1 , . . . ,ajL
&. ~29!

The generalization of the former set of results to the case of themth-order error ket,uEA
m&5(Â

2A0)muc& can be obtained by exponentiating the expansion~28! to the mth power. Up to the
lowest order we get

uEA
m&5~Â2A0!muc&5 (

k1 , . . . ,km51

2N S )
i 51

m
]A0

]aki

D uEak1 , . . . ,akm
&, ~30!

which is our final result concerning the error ket of an operatorÂ functional of the fundamenta
operators. Notice that the former results are valid in general, irrespectively of the specific
tional form of the wave functionuc&.

2. Evolving Dm

We shall now concentrate on the case of a system with a classical limit initial data. Th
is to calculate, in the representation ofÂ ~22!, the value of themth-order spread of a wave
function uc& satisfying~5!. To do this the main point is to calculate the norm of a general error
^Ex1 , . . . ,xn

uEx1 , . . . ,xn
&, wherex1 , . . . ,xn is an arbitrary sequence of fundamental observab

xiP$q1 ,¯ ,qN ,p1 ,¯pN%,i 51¯n,nPN. The following theorem will do this.
Theorem: If uc& is a classical limit initial data wave function then the norm of the error

uE( x̂1 ,..,x̂n ,c,x1
0 ,..,xn

0)& satisfies the following relation:

^Ex1 , . . . ,xn
uEx1 , . . . ,xn

&<d1
2 . . . dn

2 , ~31!

where (xi
0 ,d i),i 51¯n is the classical initial data associated to the observablexi .

Proof: This result will be proved by induction:
~i! For n51 andx1 an arbitrary fundamental observable Eq.~5! immediately implies~result

~3.1c!: ^Ex1
uEx1

&<d1
2.

~ii ! For an arbitraryn we use~10! and write

^Ex1 , . . . ,xn
uEx1 , . . . ,xn

&5(
s,xn

^Ex1 , . . . ,xn21
uxn ,s& ^xn ,suEx1 , . . . ,xn21

&u~xn2xn
0!u2, ~32!
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wherexn are the eigenvalues of the operatorx̂n , with degeneracy indexs. We want to show that
for all eigenvaluesxn¹I n , whereI n5@xn

02dn ,xn
01dn#, we have

^xn ,suEx1 , . . . ,xn21
&5^xn ,su)

i 51

n21

~ x̂i2xi
0!uc&50, ;xn¹I n

. ~33!

To prove this let us expand the wave functionuc& using a second set of eigenstates ofx̂n ,

^xn ,su)
i 51

n21

~ x̂i2xi
0!uc&5 (

xn8PI n ,s8
^xn ,su)

i 51

n21

~ x̂i2xi
0!uxn8 ,s8&^xn8 ,s8uc&, ~34!

wherexn8 are eigenvalues ofx̂n with degeneracy indexs8. Notice that in the representation ofx̂n

the wave function is completely confined to the intervalI n . To prove the result~33! is then
sufficient to show that

^xn ,su)
i 51

j

x̂i uxn8 ,s8&50, ;xn¹I n ,x
n8PI n

,; j ,n . ~35!

Let us then prove the former identity

^xn ,su)
i 51

j

x̂i uxn8 ,s8&5
1

xn8
^xn ,su)

i 51

j

x̂i x̂nuxn8 ,s8&5
1

xn8
^xn ,sux̂n)

i 51

j

x̂i1F)
i 51

j

x̂i ,x̂nG uxn8 ,s8&

~36!

and if ^xn ,su@P i 51
j x̂i ,x̂n#uxn8 ,s8&50 then

^xn ,su)
i 51

j

x̂i uxn8 ,s8&5
1

xn8
^xn ,sux̂n)

i 51

j

x̂i uxn8 ,s8&5
xn

xn8
^xn ,su)

i 51

j

x̂i uxn8 ,s8&. ~37!

SincexnÞxn8 Eq. ~37! immediately implies~35! and thus the result~33! is valid. The problem is
now reduced to prove that̂xn ,su@P i 51

j x̂i ,x̂n#uxn8 ,s8&50, which in turn, and using the sam
procedure, will be reduced to prove that^xn ,su@@P i 51

j x̂i ,x̂n#,x̂n#uxn8 ,s8&50, and so on until we
obtain at the most aj -commutator which will always have the value zero~notice thatx̂i are
fundamental operators!. Inserting the result~33! into ~32! we get

^Ex1 , . . . ,xn
uEx1 , . . . ,xn

&5 (
s,xnPI n

^Ex1 , . . . ,xn21
uxn ,s&^xn ,suEx1 , . . . ,xn21

&u~xn2xn
0!u2

<^Ex1 , . . . ,xn21
uEx1 , . . . ,xn21

&dn
2 , ~38!

which proves the theorem. h

A straightforward corollary of the former result is the one obtained by using the Schw
inequality:

u^Ex1 ,...,xn
uEy1 ,...,ym

&u<dx1
¯dxn

dy1
¯dym

, ~39!

wherex1 ,...,xn andy1 ,...,ym are two arbitrary sequences of fundamental observables.
Let us return to the calculation of them-order spread of the wave functionuc&, satisfying~5!,

in the representation ofÂ. The relevant calculation is that of^EA
muEA

m&. From Eqs.~28! and~39!,
we get
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^EA
muEA

m&5^cu~Â2A0!2muc&<S (
L51

1`
1

L! (
j 1 , . . . ,j L51

2N U ]LA0

]aj 1
. . . ]aj L

Ud j 1
. . . d j LD 2m

5dA0
2m ,

~40!

a result that is valid for allmPN. Them-order spread then reads

Dm~Â,c,A0,p!5S ^EA
muEA

m&
12p D 1/2m

<
dA0

~12p!1/2m , ~41!

which, for all p,1 converges to the classical error margindA0 asm→`.
From the results~3.1d! and~41! we can draw the conclusion that the classical limit initial da

wave functionuc&, in the representation of an arbitrary observableÂ, is completely confined to an
interval aroundA0 with the range of the classical error margin ofA0, the relation betweenÂ and
A0 being the one given by~27!.

IV. UNQUANTIZATION

In the last section we proved that the wave functionuc&—satisfying~5!—in the representation
of a given quantum operatorÂ, which in the end is to be identified withÂ(t) given in ~6!, is
completely confined to an interval centered at the value of the classical observableA0 and with the
range of the classical error interval ofA0. This implies that the output of a measurement ofÂ,
performed with an experimental apparatus of any resolution, will certainly belong to the pre
error interval, which is exactly the classical prediction for the output of a measurement o
classical observableA0.

However these are not our final results, yet. The reason is straightforward: LetÂ5Â(t), what
remains to be proven is simply thatA05V0(Â(t))5A(t), i.e., that the classical observableA0,
obtained from the quantum observableÂ(t) using the mapV0 , coincides with the classica
observableA(t) obtained by evolvingA(0)5V0(Â(0)) using the classical theory.

Hence the relevant questions are: Is the mapV0 well defined? And will it map a quantum
observableÂ(t) to the classical observableA(t) given by ~7!?

Starting with the first question it is easy to see that the mapV0 is not well defined. In genera
Â can be displayed in several different functional forms~all of them satisfying the order require
ment!, each of which will be mapped byV0 to adifferent~however very similar! classical observ-
able. A simple example will elucidate this point: letÂ51/2(x̂ŷẑ1 ẑŷx̂) with x̂5q̂1p̂2 , ŷ5 p̂1 and
ẑ5q̂1q̂2 whereq1 , p1 , q2 , p2 are the canonical variables of a two dimensional system. Alte
tively, Â might be written asÂ51/4(x̂ŷẑ1 ẑŷx̂1 x̂ẑŷ1 ŷẑx̂)11/4@ x̂,@ ŷ,ẑ##. The first form ofÂ is
mapped byV0 to the classical observableA05xyz while the second form is mapped to th
observableA05xyz21/4\2q1 . Moreover for each different classical observable obtained we w
in general, also get a different associated error ket and error margin. This does not mean t
former results~30!, ~41! concerning the error ket and the spread of the wave function are inco
These results have been proved to be valid~up to a correction term proportional to\2) for all
different orders we may choose for the operatorÂ, and consequently for all differentA0 obtained
from Â, providing the order requirement is satisfied.

Notice however that this ambiguity would be problematic if the difference between
different classical observables, obtained from a single quantum one, had meaningful values
ever, one can easily realize that ifA1

0 andA2
0 are two such observables@i.e., A1

05V0(Â) and also
A2

05V0(Â)] then A1
02A2

0 is proportional to a factor of, at the most\2. An imprecision of this
magnitude is not meaningful when compared to the errors associated to the classical obse
That is the predictionsA1

0 and A2
0 are well within the error interval of each otheruA1

02A2
0u
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!dA
1
0orA

2
0. Hence, the two predictions are consistent with each other and we conclude thatA1

0 and

A2
0 are equally valid candidates for a classical description of the quantum observableÂ.

This takes us to the second question, which now can be restated as: will the classical o
ableA(t), given by~7!, be one of the images ofV0(Â(t))?

To answer this question let us start by presenting a second proposal for the unquant
map:

Definition: Unquantization V. Using the notation of the previous definition we define the n
unquantizationV to be the map:

V:A~H!→A~T* M !, A5V~Â!, ~42!

that satisfies the following requirement:V+∧51 where∧ is the Dirac quantization map.32,37That
is V is the inverse of the Dirac quantization map∧. The properties ofV follow immediately from
the properties of∧:

~a! V(q̂i)5qi , V( p̂i)5pi , i 51¯N, andV( Î )51.

~b! V(1/i\@Â,B̂#)5$V0(Â),V0(B̂)% for all Â and B̂.

For a general operatorÂ displayed in the required order~see definition ofV0):

~c! V is linear: if Â5bB̂1Ĉ thenV(Â)5bV(B̂)1V(Ĉ), bPC.

~d! The product rule is valid: ifÂ5¯1B̂Ĉ1¯ thenV(Â)5V(¯)1V(B̂)V(Ĉ)1V(¯). h

We should point out that, since the Dirac quantization map∧ is not injective, the unquanti-
zation mapV is also nonunivocous. The simple example above—Â51/2(x̂ŷẑ1 ẑŷx̂)—can also be
used here to make this point clear. Being beset by the same type of order problems stillV displays
an important advantage overV0 : it is straightforward to recognize that whenV is applied to the
operatorÂ(t)—given by ~6!—yields the classical observableA(t):

V~Â~ t !!5VF (
n50

`
1

n! S t

i\ D n

@¯@Â,Ĥ#,Ĥ#¯G5 (
n50

`
tn

n!
$¯$A,H%,H%¯%. ~43!

Let us now consider a general operatorX̂. We want to prove thatV(X̂) provides a set of classica
observables that is included in the setV0(X̂). Clearly the action of the two maps on an opera
that does not contain antisymmetric components is identical. Moreover the two commu
relations 1/i\@ ,# and$,% have ‘‘compatible’’ algebraic structures, that is we can resolve 1/i\@Â,B̂#
and express the result in such an order that when we perform the substitution of the qu
observables by the corresponding classical ones~i.e., when we unquantize 1/i\@Â,B̂# using the
mapV0) we get exactly the same final result as if we just compute$A,B% ~i.e., as if we use the
map V to unquantize 1/i\@Â,B̂#). Thus, if X̂ contains antisymmetric components the classi
observableV(X̂) might be obtained by displayingX̂ in an adequate order and calculatingV0(X̂).
Hence, it is always possible to obtain the classical observablesV(X̂) using the mapV0 . This is the
result we were looking for. It means that expansion~28! and thus all subsequent results are va
for A05V(Â).

Finally, we are able to state that the quantum mechanical predictions for an arbitrary dy
cal system with a classical limit initial data wave function are that a measurement of an arb
fundamental observableÂ(t) at the timet will yield the value given by~43! with an error margin
given by ~41! ~with m→`). These are exactly the predictions of the classical mechanical t
ment of the same system.
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V. CRITERIA OF CLASSICALITY

In the last section we proved that a dynamical system with a quantum initial data satisfyi~5!
will evolve exactlyaccordingly to the predictions of classical mechanics, that is the syste
`-consistent for all times. The main interest of this result is formal since, in most cases w
unable to provide a wave function satisfying the classical limit criterion~5!.

To proceed we will now study dynamical systems with general physical initial data. The
is to use the formalism developed in the previous sections to derive two criteria provid
measure of the degree of classicality of an arbitrary quantum system with arbitrary initial d

Let then uf& be the initial data wave function of aN dimensional dynamical system wit
canonical variablesak , (k51¯2N). Let Ŝki

5(âk1
,âk2

, . . . ,âkn
), kiP$1¯2N% be a sequence o

fundamental operators associated to then-terms sequenceki ( i 51¯n;nPN). The relevant quan-
tities that we have to calculate will be then-order mixed error kets associated to the sequencesŜki

:

uESki
&5~ âk1

2ak1

0 !~ âk2
2ak2

0 !¯~ âkn
2akn

0 !uf&, ~44!

whereaki

0 is the classical initial value of the canonical variableaki
, i.e., aki

0 5aki
(t50).

A. First criterion

The first step is to obtain the time evolution of the canonical variables using the sta
classical formulation of the system

aj~ t !5 (
m50

`
tm

m!
$ . . . .$aj ,H% . . . .,H%5F j~ak ,t !. ~45!

We then consider the sequencesSki
such that

]F j

]Ski

5
]nF j

]ak1
]ak2

¯]akn

Þ0, ~46!

for at least onej 51¯2N. For each of these sequences we construct the associated error ke~44!.
This way we obtain a set of error kets. The first order classicality criterion is given by
following conditions:

^ESki
uESki

&<~dSki
!25~dk1

dk2
¯dkn

!2, ~47!

where the inequalities should hold for all the sequences determined in~46!. In ~47! dki
is the initial

data classical error margin associated to the classical observableaki
, i 51¯n. If the initial data

wave function satisfies the former conditions we say that the dynamical system isfirst order
classical.

To proceed we construct the sequencesSki

M formed byMPN original sequencesSki
, that is

Ski

M5Ski
,Sk

i8
, . . . ,Sk

i9
, where each of theM former sequencesSki

might be any of the ones

determined in~46!. Once again, we calculate the values of^ES
ki
MuES

ki
M& and compare them with

(dS
ki
M)2. If the initial data satisfies:

^ES
ki
MuES

ki
M&<~dS

ki
M!2, ~48!

for all possible sequencesSki

M we say that the dynamical system isM -order classical.

Let us make two remarks: the first one to say that the classification of a given initial da
M -order classical isdependenton the scales~error marginsdk) that characterize the classic
description. In particular fordk5` all dynamical systems will bè -order classical~and will have
a classical limit initial data! while for scales smaller than the Planck scale none will even
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first-order classical. The second remark is to point out that if a system isM -order classical then
@result~3.1d!# its initial data wave function, in the representation of any of the observablesâk(0),
will have a minimum probabilityp in the intervalI k5@ak(0)2dk /(12p)1/(2M ),ak(0)1dk /(1
2p)1/(2M )#, whereak(0) is the value of the classical observableak at the initial time,t50. That
is the initial data isM -order consistent. This is because in~46! we always determine the 2N single
value sequencesSk1

5ak , (k51¯2N).
Furthermore, if the classical and the quantum initial data satisfy the inequalities~48! then we

can substitutêES
ki
MuES

ki
M& by (dS

ki
M)2 when computing~40! for A05aj (t). The result~41! can then

be easily obtained being valid up to the orderm5M . Hence, using the result~3.1d! we can state
that an arbitraryM -order classical system, as defined above, will evolve in such a way that i
representation ofâ j (t) ~for all j 51•••2N and for all t) the initial data wave function has at lea
a probability p confined to the intervalI j (t)5@aj (t)2d j (t)/(12p)1/(2M ),aj (t)1d j (t)/(1
2p)1/(2M )# with aj (t) andd j (t) being the classical time evolution of the canonical variableaj and
associated error margin. According to the second consistency criterion this means that the c
and the quantum data describing the system at the timet areM -order consistent.

We conclude that ifM is the order of classicality of a given dynamical system then: first
classical and the quantum data describing the initial time configuration of the system areM -order
consistent and, second the degree of consistency is preserved through the time evolution.

Finally, notice that the higher the order of classicalityM of the dynamical system the mor
similar will be the range ofI j (t) and the classical error margin. WhenM goes to infinity we obtain
the classical limit description of the system.

B. Second criterion

A second classicality criterion can be easily devised. Once again the first step is to ca
the time evolution of the canonical variablesaj using the classical formulation of the theory~45!.
Again we use this result to obtain the sequences of fundamental operatorsŜki

~46! and the
associated error kets~44!. Using these error kets we can write the second classicality criterio

^ESki
uESki

&<~dSki
!2~12p0!5~dk1

dk2
. . . ..dkn

!2~12p0!, ;Ski
in ~46!. ~49!

If the classical and the quantum initial data satisfy the former inequalities for a givenp0 (0
<p0,1) and for all sequences determined in~46!, then we say that the dynamical system
p0-order classical. A straightforward use of the result~3.1d! will prove that ap0-order classical
system is described by an initial data wave function that, in the representation of any
fundamental observablesâk(t50), k51¯2N, has at least a probabilityp0 confined to the clas-
sical error interval@ak(0)2dk ,ak(0)1dk#. That is the initial time configuration isp0-order
consistent~according to the first consistency criterion!.

Now, let us concentrate on the dynamical evolution of the former initial data. If the ineq
ties ~49! are satisfied we can perform the substitution of^ESki

uESki
& by (dSki

)2(12p0) when
computing~40! for m51. Notice that there will be an extra factor of (12p0) in the final expres-
sion in ~40!. We can then proceed and obtain the result~41! for D1(â j (t),f,aj (t),p) @which still
contains the extra factor (12p0)1/2]. More precisely we makep5p0 in ~41! and get for all j
51¯2N:

D1~ â j~ t !,f,aj~ t !,p0!5S ^Eaj (t)
uEaj (t)

&

12p0
D 1/2

<
1

~12p!1/2 (
L51

1`
1

L! (
k1 , . . . ,kL51

2N U ]Laj~ t !

]ak1
. . . ]akL

Udk1
¯dkL

~12p0!1/25d j~ t !.

~50!
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The previous result together with~3.1d! implies that in the representation ofâj (t) ~for all j
51¯2N) the initial data wave function has at least a probabilityp0 confined to the classical erro
interval @aj (t)2d j (t),aj (t)1d j (t)#, i.e., the classical and the quantum descriptions of the c
figuration of the system at the timet arep0-order consistent. This result is valid for all times. W
conclude that if a dynamical system isp0-order classical then the classical and the quant
descriptions of the configuration of the system arep0-order consistent for all times. Once agai
whenp0→1 we obtain the classical limit description of the system.

VI. EXAMPLE—HARMONIC OSCILLATOR

To illustrate the use of the first classicality criterion~Sec. V A!, let us obtain the classicality
conditions for the simple example of the harmonic oscillator. The classical Hamiltonian is
by H5 1

2(q
21p2), whereq andp are a pair of canonical variables and, to make it simple we m

w5m51. Solving the equations of motion we obtain the classical time evolution of the cano
variables and the corresponding error margins

q~ t !5q~0!cost1p~0!sint, dq~ t !5ucostudq~0!1usintudp~0!,
~51!

p~ t !5q~0!sint1p~0!cost, dp~ t !5usintudq~0!1ucostudp~0!.

Let uf& be the initial data wave function for the quantum harmonic oscillator. Let us then d
mine the conditions thatuf& should satisfy so that the quantum system allows for a consis
M -order classical description. Following the general prescription of Sec. V A the first step
determine the fundamental sequences~46!. They are the single value sequences

S15q and S25p. ~52!

For aM -order classical system the relevant sequences are arrays ofM fundamental sequences:

SM5~z1 , . . . ,zM !, zi5q~p, i 51¯M , ~53!

and the condition ofM -order classicality~48! reads

^ESMuESM&<dSM
2 , ;SM in ~53!

⇔^fu~ ẑ12z1~0!!. . . ~ ẑM2zM~0!!~ ẑM2zM~0!! . . . ~ ẑ12z1~0!!uf&<dz1

2 ~0! . . . dzM

2 ~0!.

~54!

Given the classical initial data$q(0),p(0),dq(0),dp(0)%, Eq.~54! constitute a system of inequal
ties to be satisfied by initial data wave functionuf&. For a first-order classical system the clas
cality conditions take their simpler form

^fu~ q̂2q~0!!2uf&<dq
2~0! E ~q2q~0!!2uf~q!u2dq<dq

2~0!
⇔

^fu~ p̂2p~0!!2uf&<dp
2~0! E ~p2p~0!!2uf~p!u2dp<dp

2~0!.
~55!

To obtain explicit solutions we may want to consider Gaussian wave packets@notice however that,
in general, there are many solutions of~55! which are not Gaussians#:

fc~q0 ,p0 ,Dq,q!5
1

~2p~Dq!2!1/4expH 2
~q2q0!2

4~Dq!2 1 ip0q/\J , ~56!

whereq0 , p0 andDq are parameters and the wave function was displayed in theq̂ representation.
If we make q05q(0) and p05p(0) and substitutefc(q(0),p(0),Dq,q) in ~55! we get the
equivalent set of inequalities:
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Dq<dq~0! ∧
\

21/2Dq
<dp~0!. ~57!

As expected, ifdp(0)dq(0),\/(21/2) there is no coherent state~and actually no wave function!
that might satisfy the former inequalities, while for larger values of the classical error ma
there are many solutions of~55!, including the coherent states with a parameterDq satisfying~57!.
We see that the classicality criteria provide a comparative notion of classicality but not an ab
one. In fact the degree of classicality is always relative to the classical description supplie

The main result of the formalism is that a wave function satisfying~55!, and in particular a
coherent state satisfying~57! displays a time evolution first order consistent with the class
predictions~51!, which means that for allt:

E
q(t)2 dq(t)/(12P)1/2

q(t)1 dq(t)/(12P)1/2

uf~q,t !u2dq>P, ∧ E
p(t)2 dp(t)/(12P)1/2

p(t)1 dp(t)/(12P)1/2

uf~p,t !u2dp>P, ;0<P,1 ,

~58!

where q(t), p(t), dq(t), dp(t) are given by~51!, uf(t)& is the solution of the Schro¨dinger
equation:

i\]/]tuf~ t !&51/2~ q̂21 p̂2!uf~ t !&, uf~ t50!&5uf&,

and P is an arbitrary probability. Take for instanceP50.99, Eq.~58! states that 99% of the
probability of the wave functionuf(t)&, in both the representations ofq̂ and p̂, is confined to the
classical intervals@q(t)210dq(t),q(t)110dq(t)# and @p(t)210dp(t),p(t)110dp(t)#, respec-
tively. This statement is valid for all times and, for the case of coherent states can be easily v
by numerical computation of the integrals~58!.

To see what happens when the degree of classicality is increased let us consider a 10t
classical system. In this case the initial data wave function should satisfy the conditions~54! for all
M510 sequences~53!. If we consider Gaussian type solutions~56! and substitute~56! in ~54! we
get the following set of inequalities for the parameterDq:

~2M21!!

2M21~~M21!! !
~Dq!2M<dq

2M~0! ∧
~2M21!!

2M21~~M21!! ! S \

21/2DqD 2M

<dp
2M~0!, ~59!

whereM510. Clearly, for the same classical initial data the set of solutions of~59! is just a subset
of the set of solutions of~57!.

The solutions of~54! with M510 and in particular the coherent states satisfying~59!, display
a time evolution 10th-order consistent with the classical predictions~Sec. V A!. In particular for
P50.99 we have (12P)1/2050.79 and thus

E
q(t)21.25dq(t)

q(t)11.25dq(t)

uf~q,t !u2dq>0.99 ∧ E
p(t)21.25dp(t)

p(t)11.25dp(t)

uf~p,t !u2dp>0.99, ~60!

whereuf(t)& is the quantum time evolution of a general initial data wave function satisfying~54!
for M510. The result is valid for all times and can be checked explicitly for an arbitrary cohe
state satisfying~59!.

One of the most interesting properties of coherent states is that its quantum time evolu
~in some sense! ‘‘consistent’’ with the classical predictions. Because of this coherent states m
be seen as ‘‘classical states.’’ We see that the classicality criteria provide a systematic proce
obtain ‘‘classical states’’ for an arbitrary dynamical system: by solving the classicality condi
~54! we obtain a large set of classical states~much larger than the coherent states set! for which the
quantum time evolution is consistent with the classical predictions. Moreover, and most impo
the imprecise notions of ‘‘consistency’’ and of ‘‘classical states’’ are made fully precise in
formalism.
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VII. FURTHER EXAMPLE

To further illustrate the use of the criteria let us consider the two-dimensional system
scribed by the Hamiltonian:

H5
P2

2M
1

p2

2m
1kQp2, ~61!

where (Q,P) are the canonical variables of a particle of massM , (q,p) the ones of the particle o
massm and k is a coupling constant. The classical time evolution is obtained by solving
Hamiltonian equations of motion which yield

Q~ t !5Q~0!1
P~0!

M
t2

k

2M
p~0!2t2,

P~ t !5P~0!2kp~0!2t,
~62!

q~ t !5q~0!1H p~0!

m
12kQ~0!p~0!J t1

k

M
P~0!p~0!t22

k2

3M
p~0!3t3,

p~ t !5p~0!

with error margins~taking into account all orders in the initial time error margins!:

dQ~ t !5dQ~0!1U t

MUdP~0!1Ukp~0!t2

M Udp~0!1U kt2

2MUdp
2~0!,

dP~ t !5dP~0!1u2kp~0!tudp~0!1uktudp
2~0!,

~63!

dq~ t !5dq~0!1US 1

m
12kQ~0! D t1

kP~0!t2

M
2

k2p~0!2t3

M Udp~0!1u2kp~0!tudQ~0!

1Ukp~0!t2

M UdP~0!1uktudQ~0!dp~0!1U kt2

2MUdP~0!dp~0!1Uk2p~0!t3

M Udp
2~0!1Uk2t3

M Udp
3~0!,

dp~ t !5dp~0!.

For this dynamical system the fundamental sequences~46! are~the indexes 1, 2, 3, and 4 refer t
the canonical variablesq, p, Q, andP, respectively!

S15q, S25p, S35Q, S45P,
~64!

S225~p,p!, S235~p,Q!, S245~p,P!, S2225~p,p,p!

and the first order classicality condition reads

^ESki
uESki

&<dSki

2 , ;Ski
in ~64!. ~65!

To make the discussion simpler let us consider solutions of the formuj&5uc&uf&, whereuc& is the
quantum state of the particle of massm, anduf& is that of the particle of massM . In the (q̂,Q̂)
representation we havej(q,Q)5c(q)f(Q). To proceed we notice that if the condition~65! is
satisfied for the sequencesS1 , S2 , S3 andS4 then is also satisfied forS23 andS24. Furthermore,
if it is satisfied forS222 is also forS22 and S2 . Hence, the system of eight inequalities~65! is
reduced to the system of four inequalities:^ESki

uESki
&<dSki

2 , SkiP$S1 ,S3 ,S4 ,S222%. Moreover, the

former system splits into two independent systems:
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^cu~ q̂2q~0!!2uc&<dq
2~0! ^fu~Q̂2Q~0!!2uf&<dQ

2 ~0!
and

^cu~ p̂2p~0!!6uc&<dp
6~0! ^fu~ P̂2P~0!!2uf&<dP

2 ~0!.
~66!

For Gaussian type solutionsjc(Q0 ,P0 ,q0 ,p0 ,DQ,Dq,q,Q)5fc(Q0 ,P0 ,DQ,Q)cc(q0 ,p0 ,
Dq,q) it reduces to the form

Dq<dq~0! DQ<dQ~0!

and

~15!1/6
\

21/2Dq
<dp~0!

\

21/2DQ
<dP~0!,

~67!

where we used Eq.~59! to obtain the second inequality of the first system. Any Gaussian w
function satisfying the former conditions displays a time evolution~solution of the Schro¨dinger
equation:i\]/]tuj(t)&5Ĥuj(t)&, uj(0)&5uj&) first order consistent with the classical predictio
~62! and~63!. This means that for any of the canonical variablesZ5q,p,Q~P and for all times:

E
w
E

Z(t)2dZ(t)/(12P)1/2

Z(t)1dZ(t)/(12P)1/2

u^j~ t !uz,w&u2dzdw>P, ;0<P,1 , ~68!

where uz,w& is the general eigenstate of the observableẐ with associated eigenvaluez and
degeneracy indexw, P is a probability and (Z(t),dZ(t)) are the classical time evolution of th
canonical variableZ and its error margin which are given by Eqs.~62! and ~63!, respectively.

Just like in the example of the harmonic oscillator we can increase the order of classica
the system by requiring the initial data wave function to satisfy higher order classicality c
tions. Likewise, this will increase the degree of consistency between the classical and the qu
predictions.

VIII. CONCLUSIONS

A general procedure leading to the construction of a measure of classicality was pres
The procedure can be summarized in two main steps.

~1! Definition of a consistency criterion. This is a kinematical criterion. It should provid
suitable measure of the degree of agreement between the classical and the quantum descri
a single, specific time configuration of the system. Two intuitive definitions of consistency cr
were presented and certainly other, possible more interesting criteria might be defined.

~2! Using the consistency criterion the problem of studying the overall consistency bet
the classical and the quantum descriptions of a general dynamical system is reduced to a
and more precisely formulated problem: that of identifying the conditions that should be sa
so that the degree of consistency between the classical and the quantum initial data is pr
through time evolution. These conditions were explicitly obtained and used to construct a
cality criterion for each of the consistency criteria proposed at the beginning. We expect th
same general procedure might be used to derive the classicality criterion associated to
proposals of consistency criteria.

Ultimately, the two measures of classicality obtained are arbitrary in nature since they
direct consequence of the definition of a consistency criterion. Therefore, they should be te
physical examples to see if they yield sensible results. The criteria of this paper were app
two simple dynamical systems and yield expected results. Namely, Gaussian wave function
obtained as ‘‘classical-like states’’~solutions of the classicality conditions!.

Further applications of the criteria have been developed in Refs. 34, 35, and 36. Othe
sible future applications which might be of considerable interest are in the field of nonl
dynamical systems, where the connection between classical and quantum mechanics b
more involved.

To finish let us make a few remarks.
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~i! The degree of classicality of a given quantum system is always relative to the cla
description supplied~more precisely, to the classical initial data supplied!. Therefore, the criteria
do not provide an absolute classification of classicality but only a comparative one.

~ii ! The fully classical behavior~i.e., the complete consistency with the classical predictio!
is obtained in the limit case in which the quantum system fully satisfies one of the classi
criteria to all orders or equivalently, if the quantum and the classical initial data are fully co
tent. Notice that consistency and classicality, in this case and in general only in this cas
equivalent notions: the results of Sec. III B 2 imply this statement directly.

~iii ! The classicality conditions vary from one dynamical system to another. More prec
once the classical initial data is given theM -order classicality conditions on the quantum initi
data are more restrictive for some systems~for instance, the second example! than for others~for
instance, the first example!. This is not surprising, as neither is the fact that for some dynam
systems, the classicality conditions are so restrictive that there is no wave function that, for t
values of the classical data, might satisfy even the first order classicality conditions~consider for
instance the system of a particle in a potential step!.

~iv! The classicality criteria provide only a partial answer to the problem of measuring
degree of classicality of a general dynamical system. We were able to prove that a g
dynamical system will evolve in agreement with the classical predictions up to some degre
initial time configuration satisfies the classicality conditions up to some extent. However, the
sufficient but not necessary conditions: the system may very well not satisfy even the first
classicality criterion and still present a fairly classical-like evolution.
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We consider here the coexistence of first- and third-order integrals of motion in
two-dimensional classical and quantum mechanics. We find explicitly all potentials
that admit such integrals, and all their integrals. Quantum superintegrable systems
are found that have no classical analog, i.e., the potentials are proportional to\2, so
their classical limit is free motion. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1514385#

I. INTRODUCTION

In classical mechanics, ann-dimensional Hamiltonian system is called Liouville integrable
it allows n functionally independent integrals of motion in involution~including the Hamiltonian!,
that is,

$H,Xi%50,
~1.1!

$Xi ,Xj%50,; i , j .

The Hamiltonian H5H(x1 , . . . ,xn ,p1 , . . . ,pn) and the integrals of motionXi

5Xi(x1 , . . . ,xn ,p1 , . . . ,pn) must be well defined functions on phase space.2,13 The system is
superintegrable if it allows more thann functionally independent integrals,n of them in involu-
tion. The best known superintegrable systems inn dimensions are the harmonic oscillatorV
5vr 2 and the Coulomb potentialV5 a/r , both of them allowing 2n21 independent integrals o
motion, the maximal number possible for an interacting system. Bertrand’s theorem2,3 tells us that
these are the only rotationally invariant systems for which all finite trajectories are closed,
intimately related to their maximal superintegrability.

In quantum mechanics, a Hamiltonian system is said to be integrable if there exists a s$Xi%
of n well defined, algebraically independent operators~including the Hamiltonian! that commute
pairwise. It is superintegrable if it possesses further independent operators,$Yj% that commute
with the Hamiltonian. TheYj do not necessarily commute with each other, nor with theXi .

The definition of the independence of quantum operators is not unique, and this may giv
to different types of quantum superintegrability.

A good working definition, which may be appropriate for applications in quantum mecha
soliton theory and for instance in the study of the Huygens principle, is that operators are c
ered independent unless one of them can be expressed as a polynomial in the others.4,5,15,18The
fact that commuting operators can be useful even if they are functionally dependent in the cl
limit was clearly demonstrated by Hietarinta.15–18This definition is in itself not quite satisfactor

a!Electronic mail: graves@magellan.umontreal.ca
b!Electronic mail: wintern@crm.umontreal.ca
59020022-2488/2002/43(12)/5902/11/$19.00 © 2002 American Institute of Physics
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since it ignores more general polynomial or functional relations between integrals. This ma
to important differences between classical and quantum integrability. Moreover, it is not a
priate for nonpolynomial integrals. Finding an appropriate and rigorous definition of the inde
dence of quantum operators is not an easy problem, but it is worth investigating as wro
ambiguous definitions may give rise to incorrect results. For a discussion of related problem
e.g., Refs. 17 and 30.

Previous systematic searches for superintegrable systems concentrated on integrals of
of at most second order in momenta.7–9,12,23,31This ‘‘quadratic superintegrability’’ has been show
to be related to multiseparability of the Schro¨dinger or Hamilton–Jacobi equations. More recen
it was related to generalized symmetries27 and exact solvability.28

Quadratic superintegrability has been considered in spaces of nonzero constant curva22,25

and of nonconstant curvature.20 For superintegrable systems inn dimensions see Ref. 26.
Our purpose in this article is to start a systematic search for superintegrable system

higher-order integrals of motion. We consider a two-dimensional real Euclidian space w
one-particle Hamiltonian;

H5
1

2
~px

21py
2!1V~x,y!.

We request the existence of two additional integrals of motion: one of first order in
momenta and the other of third order.

The classical and quantum mechanical cases will be treated separately. When secon
integrals of motion are considered, classical and quantum integrable and superintegrable po
coincide. For third-order integrals this is no longer the case~as was pointed out by Hietarinta i
Ref. 15!. For integrable systems with third- or higher-order integrals in classical mechanics
also Refs. 6, 10, 11, 14, 19, 21, and 24.

II. CONDITIONS FOR THE EXISTENCE OF A THIRD-ORDER INVARIANT IN CLASSICAL
MECHANICS

We are looking for a classical integral of motion that is a polynomial in the momenta
coefficients depending on the spatial coordinates, i.e.,

X5(
j ,k

f jk~x,y!p1
j p2

k ,

that Poisson-commutes with the Hamiltonian;

05$H,X%,
~2.1!

H5
p1

21p2
2

2
1V~x,y!.

We can simplify our search by using the fact that Eq.~2.1! implies thatX is a constant over
any trajectory:

dX

dt
5

]X

]qi
q̇i1

]X

]pi
ṗi50, ~2.2!

with

ṗi52Vqi
~q1 ,q2!,

~2.3!
q̇i5pi .
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If we write explicitly X in ~2.2!, we find

(
j 1k51

n S ] f jk

]x
p1

j 11p2
k1

] f jk

]y
p1

j p2
k112 f jkVxjp1

j 21p2
k2 f jkVykp1

j p2
k21D50. ~2.4!

Since the monomialsp1
ap2

b’s form a basis, the coefficients for each (a,b) must vanish sepa
rately, thus~2.4! gives relations between thef i j with odd and eveni 1 j separately. If we are
looking for an integral of odd~even! degree in the momenta, the even~odd! terms will play no role
and we can without loss of generality consider only integrals that have terms only of odd~even!
parity. Moreover, we may notice, in~2.4!, that the terms of leading order in thepi ’s imply a
relation independent ofV between thef i , j with i 1 j 5n. This allows us to find immediately the
form of the leading-order terms, so the integral of motion in the third-order case takes the

X5 (
i 1 j 1k53

Ai jkLip1
j p2

k1g1~x,y!p11g2~x,y!p2 ,

~2.5!
L5xp22yp1 ,

where theAi jk are arbitrary real constants.
The requirementdX/dt 50 and the Hamilton equations~2.3! yield four equations:

05g1Vx1g2Vy , ~2.6!

~g1!x53 f 1~y!Vx1 f 2~x,y!Vy , ~2.7!

~g2!y5 f 3~x,y!Vx13 f 4~x!Vy , ~2.8!

~g1!y1~g2!x52„f 2~x,y!Vx1 f 3~x,y!Vy…, ~2.9!

where

f 1~y!52A300y
31A210y

22A120y1A030,

f 2~x,y!53A300xy222A210xy1A201y
21A120x2A111y1A021,

f 3~x,y!523A300x
2y1A210x

222A201xy1A111x2A102y1A012,

f 4~x!5A300x
31A201x

21A102x1A003.

Requiring that Eqs.~2.7!, ~2.8!, and ~2.9! be compatible, we obtain a linear compatibili
condition for the potential, namely

052 f 3Vxxx1~2 f 223 f 4!Vxxy1~23 f 112 f 3!Vxyy2 f 2Vyyy12~ f 2y2 f 3x!Vxx

12~23 f 1y1 f 2x1 f 3y23 f 4x!Vxy12~2 f 2y1 f 3x!Vyy1~23 f 1yy12 f 2xy2 f 3xx!Vx

1~2 f 2yy12 f 3xy23 f 4xx!Vy . ~2.10!

Requiring that all four equations~2.6!, ~2.7!, ~2.8!, ~2.9! be compatible, we obtain furthe
third-order equations for the potential, this time nonlinear ones. They are the limit case~for \
→0) of the corresponding quantum compatibility conditions~3.7!–~3.9! given below.

These conditions, together with~2.10!, form an overdetermined system for the potent
V(x,y). The solution space will hence be rather restricted. Indeed, in 1935, Drach6 posed the
problem of finding classical Hamiltonian systems with one third-order integral. In a com
Euclidian spaceE2(C), he found ten such potentials, each one depending on arbitrary cons
not, however, on arbitrary functions. We recall that in the case of second-order integrals
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obtains four families of potentials, each of them depending on two arbitrary functions o
variable.12,31 They are the four most general potentials that allow the separation of variabl
Cartesian, polar, parabolic and elliptic coordinates, respectively.

III. CONDITIONS FOR THE EXISTENCE OF A THIRD-ORDER INVARIANT IN QUANTUM
MECHANICS

Here we are interested in the existence of third-order operators, i.e.,

X5 (
i 1 j 50

3

Pi j ~x,y!p1
i p2

j ,

p152 i\]x , p252 i\]y ,

that commute with the Hamiltonian. An equivalent way of writing this operator is

X5 (
i 1 j 50

3

$Pi j ~x,y!,p1
i p2

j %.

Here the bracket means the anticommutator:

$ f ,p1
j p2

k%5 f p1
j p2

k1p1
j p2

k f .

Each of these anticommutators can be expressed as

$ f ,p1
j p2

k%11 i $ f ,p1
j p2

k%25$Re@ f #,p1
j p2

k%1 i $Im@ f #,p1
j p2

k%.

Hence we can write the operatorX in the form

X5X11 iX2,

whereX1 and X2 are self-adjoint operators. As the Hamiltonian itself is self-adjoint,X†5X1

2 iX2 must also commute, as well asX1 andX2. These two last operators commute under
same conditions, so we may restrict our search without loss of generality to self-adjoint ope
This turns out to be quite useful in view of the following result.

Proposition 3.1: For each self-adjoint integral of motion of order n, there exists one integra
of order n with definite parity, i.e.,

Xn5 (
j 50

[n/2]

(
k50

n22 j

$Pn22 j ,k~x,y!,p1
kp2

n22 j 2k%, ~3.1!

where P is a real function.
Proof: This is simply due to the fact that we have a real Hamiltonian and a purely imag

momentum operator, so terms of even order, which are real, must commute independently
terms of odd order, which are purely imaginary. h

In the casen53 we restrict ourselves to third-order integrals of the form

X35 (
i 1 j 53

$ f i j ~x,y!,p1
j p2

k%1$g1~x,y!,p1%1$g2~x,y!,p2%.

Requesting

05@H,X#,
                                                                                                                



give

to any

ep

o that,

an

ion is
n

5906 J. Math. Phys., Vol. 43, No. 12, December 2002 S. Gravel and P. Winternitz

                    
H5
1

2m
~p1

21p2
2!1V~x,y!,

we find a set of 15 differential equations, of which the first nine can be explicitly solved to

X5 (
i , j ,k

i 1 j 1k53

Ai jk$L3
i ,p1

j p2
k%1$g1~x,y!,p1%1$g2~x,y!,p2%, ~3.2!

where theAi jk are arbitrary real constants. So far this is similar to the classical case.
Remark 1: The argument used in demonstrating Proposition 3.1 can be generalized

expression involving the anticommutators of self-adjoint operators homogeneous in the pi ’ s, for
example, to terms of the form$L3

i ,p1
j p2

k%, as long as the coefficients of the pi ’ s are real.
We could get rid of the\ andm factors by a dilation of the undetermined functions,

V~x,y!5
\2

2m
Ṽ~x,y!,

g1~x,y!5\2g18~x,y!,

g2~x,y!5\2g28~x,y!.

This is equivalent to setting\ andm equal to one, which we could do, but we prefer to ke
track of the dependence on\ ~while settingm51), in order to see the classical limit.

We are left with a set of 6 equations, two of which are consequences of the other four, s
as in the classical case, we have to solve four equations:

05g1Vx1g2Vy2
\2

4
~ f 1Vxxx1 f 2Vxxy1 f 3Vxyy1 f 4Vyyy18A300~xVy2yVx!

12~A210Vx1A201Vy!!, ~3.3!

~g1!x53 f 1~y!Vx1 f 2~x,y!Vy[h1 , ~3.4!

~g2!y5 f 3~x,y!Vx13 f 4~x!Vy[h2 , ~3.5!

~g1!y1~g2!x52„f 2~x,y!Vx1 f 3~x,y!Vy…[h3 . ~3.6!

Equations~3.4! to ~3.6! are the same as in the classical case, however, Eq.~3.3! differs from
Eq. ~2.6! by the terms proportional to\2. Both in the classical and quantum cases we c
eliminateg1 andg2 and obtain compatibility conditions for the potentials.

We shall write these in a unified manner for both cases. One such compatibility condit
the third-order linear equation~2.10!. To write three more conditions we introduce the notatio

f15
Vy

Vx
,

f252\2
„f 1Vxxx1 f 2Vxxy1 f 3Vxyy1 f 4Vyyy18A300~xVy2yVx!12~A210Vx1A201Vy!…

4Vx
,

and useh1 , h2 andh3 introduced in~3.4!, ~3.5! and ~3.6!. In the classical case we havef250.
The three~independent! nonlinear compatibility conditions are
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2f2x1S f1~h3f11h2f1
21f1f2y1f2x1h1!

f1x1f1f1y
D

x

5h1 , ~3.7!

S f1
2h21f1f2y1f1h31f2x1h1

f1x1f1f1y
D

y

52h2 , ~3.8!

h1~f1xy1f1y
2 !1h2~f1

2f1xy2f1x
2 22f1f1xf1y!1h3~f1f1xy2f1xf1y!

2~h1y1f1h2x!~f1x1f1f1y!

52f2x~f1xy1f1y
2 !1f2y~f1xf1y2f1xyf1!1f2xy~f1x1f1f1y!. ~3.9!

In the quantum case these are fifth-order equations for the potential. They can be u
expressf2xy , f2xx andf2yy in terms off2x , f2y andf2 . In the classical case we setf250, but
the equations remain algebraically independent. They can be used to determinef1xy , f1xx and
f1yy in terms off1x , f1y andf1 . The nonlinear equations forV(x,y) are third-order ones in the
classical case.

In deriving these equations we have assumed

f1x1f1f1yÞ0,
~3.10!

f1xyf12f1xf1yÞ0.

The cases when the above conditions do not hold must be considered separately. Th
actually be the case for potentials considered in Sec. IV.

We also mention the interesting fact, already noticed by Hietarinta,16 that a classical integrable
potential is also quantum integrable, if and only if it respects the compatibility condition

f 1Vxxx1 f 2Vxxy1 f 3Vxyy1 f 4Vyyy18A300~xVy2yVx!12~A210Vx1A201Vy!50. ~3.11!

In that case the equations are invariant under a simultaneous dilation of the potential a
gi ’s. Thus any potential that is a solution to both~2.6! to ~2.9! and~3.11! can be multiplied by an
arbitrary factor, which can be used to ‘‘absorb’’ the\2 factor so the solution does not vanish in th
classical limit.

Even if a classical superintegrable potential does not satisfy this relation, there could
corresponding quantum superintegrable systems. In that case, though, the equations are no
ant under a dilation of the potential as in the previous case, so terms that do not satisfy both~3.11!
and ~2.6! to ~2.9! must be proportional to\2 and vanish in the classical limit.

We will show that condition~3.11! cannot be the consequence of Eqs.~3.4!, ~3.5! and~3.6! for
in that case the classical and quantum integrable potentials would be the same.

IV. SUPERINTEGRABLE SYSTEMS WITH ONE THIRD-ORDER AND ONE FIRST-ORDER
INTEGRAL

A. Integral of first order

A potentialV(x,y) allows an integral that is of first order in the momenta if and only if it
invariant under either rotations or translations. Thus the potential must satisfy

aL3V1bp1V1cp2V50.

Without loss of generality, we can take the potential and first-order integral to be one o
following:

• aÞ0: V5V~r !, X5L3 ,
                                                                                                                



grable

ector:

grals

er

of inte-

wing

5908 J. Math. Phys., Vol. 43, No. 12, December 2002 S. Gravel and P. Winternitz

                    
• a50, b21c2Þ0: V5V~x!, X5p2 .

B. Quantum and classical superintegrable potentials invariant under rotations

Compatibility conditions obtained from Eqs.~2.6! to ~2.9! or ~3.3! to ~3.6! leave us with only
two possibilities, namely,

V5
a

r
,

V5v2r 2,

the Coulomb potential and the harmonic oscillator, which are the best-known superinte
potentials in any dimension. In addition to angular momentumL3 , the Coulomb potential inE2

allows two second-order integrals, namely the components of the Laplace–Runge–Lenz v

X1
C5$L3 ,p1%2

2ay

r
;

X2
C5$L3 ,p2%1

2ax

r
.

The harmonic oscillator, in addition to angular momentum, allows two second-order inte
which are the components of a quadrupole tensor;

X1
h52 1

2 p1
21 1

2 p2
21v2x22v2y2;

X2
h52p1p212v2xy.

Commuting~or Poisson commuting! second-order integrals, we in general find third-ord
integrals.

The third-order integrals obtained for these potentials are indeed direct consequences
grals at order one and two.

C. Classical superintegrable potentials invariant under translation

In the classical case, the remaining equations are readily solved. If we setVy50, Eqs.~2.6! to
~2.9! simplify to

05g1 ,

05A3005A2105A1205A030,

~g2!y5 f 3~x,y!Vx ,

~g2!x52 f 2~x,y!Vx .

We can at once setA021 andA003 to 0, for they correspond to trivial constants of motion,p2
3

andHp2 , that can be subtracted from the constant~2.5!.
The compatibility condition between the two last equations forces one of the three follo

conditions to be satisfied~up to a translation inx):

V5ax, ~4.1!
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V5
a

x2 , ~4.2!

A2015A1115A1025A01250. ~4.3!

The first two potentials correspond to superintegrable systems that have one first- and
one second-order integral. Their third-order integrals can be obtained by commutation of
lower-order ones.

The last conditions forbid the existence of a nontrivial third-order commuting operator fo
other potentials than~4.1! and ~4.2!.

D. Quantum superintegrable potentials invariant under translation

Here the situation is more interesting. Equations~3.3! to ~3.6! reduce to

05g1Vx2
\2

4
~ f 1Vxxx28yA300Vx12A210Vx!, ~4.4!

~g1!x53 f 1~y!Vx , ~4.5!

~g2!y5 f 3~x,y!Vx , ~4.6!

~g1!y1~g2!x52„f 2~x,y!Vx…. ~4.7!

The linear compatibility condition leads to two equations~since coefficients ofy0 and ofy1

must vanish separately!, namely,

05~A210x
21A111x1A012!Vxxx14~2A210x1A111!Vxx112A210Vx ;

~4.8!
05~3A300x

212A201x1A102!Vxxx14~6A300x12A201!Vxx136A300Vx .

The two equations are similar and easy to solve, but it turns out their only solutions tha
satisfy ~4.4! to ~4.7! are again the potentialsV5ax and V5a/x2. Their third-order integrals in
general are direct consequences of lower-order commuting operators, that is, they can be o
by commuting their second-order integrals. In theV5 a/x2 case, we find three third-order inte
grals:

X15$L3
2 ,p2%1aH 2

y2

x2 ,p2J ,

X25$L3 ,p1p2%2aH 2
y

x2 ,p2J ,

X352p1
2p21aH 2

x2 ,p2J .

The integralsX2 andX3 can be obtained by commutingX1 with the first-order integralp2 .
In the particular caseV5 \2/x2, we find four more integrals, again related to each other

commutation withp2 :

X452L3
31\2H 3y2

x
1x,p2J 1\2H 23y3

x2 22y,p1J ,
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X55$L3
2 ,p1%2\2H 2y

x
,p2J 1

\2

2 H 6y2

x2 11,p1J ,

X65$L3 ,p1
2%1\2H 1

x
,p2J 1\2H 23y

x2 ,p1J ,

X752p1
31\2H 3

x2 ,p1J .

In this case we find nine third-order integrals, two of which are trivial (Hp2 andp2
3), and four

are purely quantum integrals. In the classical limit they correspond to integrals of the free m
Only the first three can be associated with the corresponding classical integrals ofV5 a/x2.

The most interesting potentials are obtained by setting all theAi jk involved in ~4.8! equal to
0. The expressions forf 1 , f 2 , f 3 , f 4 greatly simplify and Eqs.~4.4! to ~4.7! can be solved directly.
The nonlinear compatibility condition for these four equations reduces to

\2V8~x!254V~x!31aV~x!21bV~x!1g, ~4.9!

where thea, b, g are arbitrary real integration constants. Equation~4.9! is the well-known equa-
tion for elliptic functions which can be rewritten as

\2V8~x!254~V~x!2A1!„V~x!2A2…„V~x!2A3…. ~4.10!

The constantsAi are either all real, or one of them is real and the other two are com
conjugated. If all three constants are real, we obtain either finite or singular potentials of the

V15~\v!2k2sn2~vx,k!,
~4.11!

V25
~\v!2

sn2~vx,k!
,

respectively.
If we have, e.g.,A35A2* and ImA2Þ0, we obtain the singular potential

V35
~\v!2

2„cn~vx,k!11…

~throughout we have 0<k<1, vPR).
The special cases withk50 or k51, which arise when two roots coincide, can be expres

in terms of elementary functions. The most interesting example is the ‘‘soliton’’ potential,

V1a5
~\v!2

cosh2~vx!
,

obtained by settingk51 in V1 . If we set k50, or k51 in V2 , we get a singular periodic, o
nonperiodic potential, respectively, namely

V2a5
~\v!2

sin2~vx!
,

V2b5
~\v!2

sinh2~vx!
.
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For all these potentialsv is an arbitrary constant, hence there exist potentials of arbit
amplitude for all nonzero values of\.

Finally, if all roots coincide, we reobtain the known superintegrable potential,

V45
\2

x2 ,

which explains the extra integrals found previously for that potential.
The other potentialsV1 , V2 , V3 also satisfy

\2

4

Vxxx

Vx
23V52s, s5A11A21A3 ,

a consequence of~4.9!.
The two nontrivial integrals of motion for all these potentials can be written as

X15$L3 ,p1
2%1$„s23V~x!…y,p1%1 H 2sx12xV~x!1E V~x!dx,p2J ,

~4.12!

X25p1
31

1

2
$3V~x!2s,p1%.

The second integral can be trivially obtained by the commutation of the first one withp2 .

V. CONCLUSION

We have found all potentials in two-dimensional Euclidian spaceE2 that allow one first- and
at least one third-order integral of motion. In the classical case the result provides no new
integrable potentials; all the potentials found allow second-order integrals and the third
integrals are consequences of the second-order ones. In the case of quantum mechanics t
is quite different. Any potential satisfying the elliptic function equation~4.9! will be superinte-
grable in the above sense, i.e., it will allow the first-order integralp2 and two nontrivial third-order
integrals. All those ‘‘behave well’’ in the classical limit, that is, they are proportional to\2 and
therefore their classical limit is the~superintegrable! free motion.

No new superintegrable systems are found for rotationally invariant potentialsV(r ), neither in
the classical nor in the quantum case. Thus all potentials found above are of the formV5V(x),
i.e., are actually one-dimensional. The problem, however, remains two-dimensional as the
energy and the integrals of motion also involve they direction.

There is also an interesting link with soliton theory.1 All new superintegrable potentials ob
tained above are also translationally invariant solutions of the Korteweg-de Vries equation
same potentials occur in the rational, trigonometric and elliptic Calogero–Moser–Suthe
models.29

The difference between classical and quantum integrable and superintegrable system
higher-order symmetries makes the systematic search for such systems very interesting.
all, Drach’s study of classical integrable systems should be completed. His systems are
complex ones and most of them do not exist in real Euclidian space. Moreover it is not clea
complete his list is. On the other hand, Ran˜ada24 has shown that 7 out of 10 Drach potentials a
‘‘reducible’’ in the sense that they are superintegrable and allow two second-order integral
third-order integral found by Drach is the Poisson commutator of the second-order ones.

The problem of classifying quantum systems with third-order integrals remains open an
conditions of Sec. III provide the means for finding all such systems.

Work is in progress on superintegrable systems in two-dimensional Euclidian space wi
second- and one third-order invariant, as well as with two third-order ones.
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The semirelativistic HamiltonianH5bAm21p21V(r ), whereV(r ) is a central
potential inR3, is concave inp2 and convex inp[Ap2. This fact enables us to
obtain complementary energy bounds for the discrete spectrum ofH. By extending
the notion of ‘‘kinetic potential’’ we are able to find general energy bounds on the
ground-state energyE corresponding to potentials with the formV5( iai f

( i )(r ). In
the case of sums of powers and the log potential, whereV(r )
5(qÞ0a(q)sgn(q)r q1a(0)ln(r), the bounds can all be expressed in the semiclas-
sical form E'minr$bAm21 (1/r 2)1(qÞ0a(q)sgn(q)(rP(q))q1a(0)ln(rP(0))%.
‘‘Upper’’ and ‘‘lower’’ P numbers are provided forq521,1,2, and for the log
potentialq50. Some specific examples are discussed, to show the quality of the
bounds. ©2002 American Institute of Physics.@DOI: 10.1063/1.1515381#

I. INTRODUCTION

The HamiltonianH5K1V for the problems we study has the feature that either the kin
energyK or the potential energyV is nonlocal. The most important example is the semirelativis
‘‘spinless-Salpeter’’ Hamiltonian1–4 given by

H5K~p!1V~r !5Am21p21V~r !, ~1.1!

wherer[ir i , rPR3, andp[ipi[Ap2. In this form at leastK(p) is nonlocal in configuration
space and is defined as a multiplicative operator in momentum space. That is to say,Kc is defined
to be what we get whenc is transformed to momentum space, the multiplicative operatorK is
applied, and the result is transformed back to coordinate space. Nonlocality is the main so
difficulty for this class of problems. We study the discrete spectra of these Hamiltonians by th
of approaches that make use of convexity and of spectral information already obtained conc
related problems. In an earlier paper4 we studied the relationship betweenH05K1h andH5K
1g+h, whereg(h(r )) is a smooth transformation of a ‘base’ potentialh(r ). For cases in whichg
had definite convexity, one could then employ the so-called kinetic-potential5 formalism and
envelope theory6 to construct upper or lower bounds to the discrete eigenvalues ofH by using the
known spectrum ofH0 .

The present paper has two distinct aspects: we turn our attention firstly to the convexityK,
as a function ofp or p2; and then we look at potentials that are asumof termsV5( iV

( i ). In Sec.

a!Electronic mail: rhall@mathstat.concordia.ca
b!Electronic mail: wolfgang.lucha@oeaw.ac.at
c!Electronic mail: franz.schoeberl@univie.ac.at
59130022-2488/2002/43(12)/5913/13/$19.00 © 2002 American Institute of Physics
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II we extend the kinetic-potential formalism to include more general kinetic-energy operators
the Schro¨dinger formK5p2 studied earlier.5 We have already found7 some implications of the
fact thatK is concavein p2. The spectral implications of theconvexityof K in p demand a new
analysis. By using Jensen’s inequality8 we are able to construct a framework in Sec. III whi
accommodates both cases. Although it may not be immediately apparent, the treatment of p
sumsalso leads to an interesting convexity analysis of a completely different type.9,10 This in turn
yields an optimized general lower bound for the bottom of the spectrum expressed in terms
kinetic potentials generated by ‘component’ problemsK1V( i ). We discuss this in general terms
Sec. IV. In the special case in which the component problems are pure-power potentials or
potential, that is to say

V~r !5 (
qÞ0

a~q!sgn~q!r q1a~0!ln~r !, ~1.2!

the lower bound~Sec. V! and also upper bounds obtained by variational methods~Sec. VI! can all
be expressed in terms of a semiclassical expression of the form

E'min
r

HAm21
1

r 21 (
qÞ0

a~q!sgn~q!~rP~q!!q1a~0!ln~rP~0!!J . ~1.3!

It is the goal of this paper to develop a general theory which leads to such a result a
particular, to determineP numbers which guarantee that the approximation~1.3! is an upper or
lower bound. We shall find the appropriate upper and lowerP(q) for the casesq521,1,2, and for
the log potentialq50. In Sec. VII we apply our general results to some specific examples.

Although we obtain very concrete results in the end, our study begins with a some
abstract viewpoint. We now make a few general remarks that will help motivate these st
considerations. An idea that runs through the work is one well known to those who study non
problems: we try to use transformations to make the most of any soluble problem that is at
or, at least, one for which we have a good approximation. The setting for our ideas is geome
We suppose that we have an exact solution~or good bounds! for a base problem with Hamiltonian
ap21bh(r ), and we are interested in a Hamiltonian of the formH5k(p2)1g(h(r )), wherek
andg are monotone increasing smooth transformations. It follows that the tangent spaces toH are
Schrödinger operators with the general formH (t)5a1bp21ch(r ), where the parameters$a,b,c%
depend on the contact vectort. What we look for is a theory that would allow us to deduce spec
information aboutH from the known spectrum of its tangentsH (t). For example, if the transfor
mation functionsk and g are both concave, we would expect to obtain upper bounds via
spectral inequalityH,H (t). Mutatis mutandis, a complimentary theory is possible with operat
tangent spaces of the formH (t)5a1bp1ch(r ), whereK(p) is convexin p andg(h) is convex
in h: this leads to energylower bounds. Since we have already explored4 the potential transfor-
mationg, the main thrust of the present paper concerns kinetic-energy transformations with
problems, respectively,p21h andp1h and to applications of the results when the potential inH
is a sum of terms. The more general case in which neither transformationk(p) nor g(h) is the
identity follows immediately by combining the present and earlier results; hence we do not
to discuss this natural generalization in detail here. Coulomb components present a speci
culty for a lower bound with kinetic energyp because the operatorp2v/r has no discrete
eigenvalues. However, for our main concern, the Salpeter Hamiltonian, we are able to make
the very good Coulomb lower bound of Martin and Roy11 and so incorporate the Coulom
contribution smoothly into our general formulation.

II. VARIETY OF KINETIC POTENTIALS

The discrete eigenvalues of the self-adjoint operators we study may be characterized
tionally. Thus the bottom of the spectrumE of H5K1V is given byE5 inf(c,Hc), where the
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infimum is taken over all normalized functions in the domainD(H),L2(R3). The idea behind
kinetic potentials is to perform the minimization in two stages: we first find the constra
minimum V̄(K;s) of (c,Vc), keeping the mean kinetic energy (c,Kc)5s constant; then, we
recoverE by minimizing over the kinetic energys.0. Thus we have

V̄~K;s!5 inf
cPD(H)
(c,c)51

(c,Kc)5s

~c,Vc! ⇒ E5min
s.0

$s1V̄~K;s!%. ~2.1!

We call the functionV̄(K;s) the kinetic potential ofV associated with the kinetic-energy operat
K; we shall write simplyV̄(s), if the kinetic-energy operatorK is fixed or is clear from the
context. It follows immediately from the definition that the kinetic potentials absorb a pos
coupling parameter in the sense thatcV(s)5cV̄(s). We note also that the elementary

Comparison theorem:

V̄(1)~s!,V̄(2)~s! ⇒ E(1),E(2)

follows immediately from~2.1!. The arguments we use are not restricted to dimensionN53: this
choice allows us to illustrate the general results with some explicit well-known examples, w
the distraction of the operator dependencies onN.

The reason for using this description of the spectral problem is that it lends itself to
interesting approximations. First, we have shown in the Schro¨dinger5 and Salpeter4 cases that, if
V(r )5g(h(r )) andg is monotone increasing and has definite convexity, then the approxim
V̄(s)'g(h̄(s)) leads to lower bounds ifg is convex and upper bounds ifg is concave. In Sec. IV
of the present paper we shall extend to generalK the result obtained earlier10 for the Schro¨dinger
case that kinetic potentials are subadditive, that is to say

V~r !5h(1)~r !1h(2)~r ! ⇒ V̄~s!>h̄(1)~s!1h̄(2)~s!. ~2.2!

The lower energy bound then immediately follows from the above-mentioned comparison th
for kinetic potentials. There is more to this result than meets the eye: it generates the optim
a family of lower bounds; the details will be given in Sec. IV. Extensions to sums with more
two terms~or, further, to mixtures generated by an integral! are immediate. The principal limita
tion is that each potential term alone, when added to the kinetic energy, must, for large e
coupling, support a discrete eigenvalue. ThusV(r )521/r 1r is allowed butV(r )51/r 1r is not.

The component kinetic potentialh̄(s)5h̄(K;s) can be constructed by use of a Legend
transformation from the eigenvalue functionE5F(v), in which F(v) is the bottom of the spec
trum of H5K1vh(r ), as a function of the couplingv. In the Schro¨dinger caseH5p21vh(r )
we have shown thatF(v) is concave5 and moreover the kinetic potential forK5p2 is given in
terms ofF(v) by the transformation

s5F~v !2vF8~v !, h̄~K;s!5F8~v !. ~2.3!

The concavity of the eigenvalue functionF(v) has been proved for the Schro¨dinger case5 and the
Salpeter case4 by the application of a simple variational argument. By exactly similar reaso
we can show that the eigenvalue function for the operatorp1vh(r ) is also concave inv. More-
over, the Legendre transformation~2.3! is generic: it is valid for all kinetic-energy operatorsK.
This is an immediate consequence of the concavity ofF(v), as the following equations clearl
demonstrate:

F~v !5min
u.0

$F~u!2uF8~u!1vF8~u!%5min
s.0

$s1vh̄~K;s!%.
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Our principal assumption concerningK is that it is at once a convex function ofp and a concave
function of p2. This convexity is clearly true for our most important example, the relativi
kinetic energyK5Am21p2; however, we shall use this specific form only when we need to

We now turn from the general to some very specific results. We shall need to have
disposal some component kinetic potentials for the operatorsK1v sgn(q)r q, whereK5p, or the
Schrödinger caseK5p2. By elementary scaling arguments we can show that the dependen
the energy functions on the couplingv are given by

p1v sgn~q!r q ⇒ E5F (1)~q;v !5F (1)~q;1!v1/~11q! ~2.4a!

and

p21v sgn~q!r q ⇒ E5F (2)~q;v !5F (2)~q;1!v2/~21q!. ~2.4b!

The Legendre transformationF↔h̄ given above in~2.3! now allows us to deduce the precis
forms of the corresponding kinetic potentials. For convenience we choose to write the k
potentials so obtained in a special way. We change variables for the mean kinetic energys in the
two cases, respectively, tos51/r and s51/r 2. It then follows from ~2.3! by straightforward
algebraic computations that the kinetic potentials forh(r )5sgn(q)r q have similar convenien
forms, namely

h̄~p;1/r !5sgn~q!~P(1)~q!r !q ~2.5a!

and

h̄~p2;1/r 2!5sgn~q!~P(2)~q!r !q, ~2.5b!

where theP numbers aredefinedin terms of thev51 eigenvaluesE( i )(q)5F ( i )(q;1), i 51,2,
respectively, by the explicit formulas

K5p ⇒ P(1)~q!ªUE(1)~q!

11q U11 1/q

uqu, q.21, qÞ0 ~2.6a!

and

K5p2 ⇒ P(2)~q!ªUE(2)~q!

11q/2U
1/21 1/qUq2U

1/2

, q.22, qÞ0. ~2.6b!

The energies are related to the kinetic potentials by specific realizations of the general fo
~2.1!: for example, we have in this spectral representation

p1v sgn~q!r q ⇒ E5min
r .0

H 1

r
1v sgn~q!~P(1)~q!r !qJ , q.21, qÞ0. ~2.7!

One of our side goals is purely esthetic, namely we wish to end up with attractive formulas
the changes of variable froms to r , the kinetic potentials look like the original power potentia
themselves, but with theP factors inserted. We turn now to the base potentialh(r )5 ln(r) and find
by scaling arguments that

p1v ln~r ! ⇒ F (1)~v !5vF (1)~1!2v ln~v ! ~2.8a!

and

p21v ln~r ! ⇒ F (2)~v !5vF (2)~1!2 1
2 v ln~v !. ~2.8b!
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Consequently we obtain from the transformation~2.3!,

h̄~p;1/r !5 ln~P(1)~0!r !, h̄~p2;1/r 2!5 ln~P(2)~0!r !, ~2.9!

where

P(1)~0!5exp~E(1)~0!21!, P(2)~0!5
1

&
expS E(2)~0!2

1

2D . ~2.10!

For the discussion of examples we shall need to have some specificP values. For the case
q521,0,1,2 we supply some of these numerical values in Table I. This table has an eige
symmetry because of the operator equivalencep1r 2;p21r ; it also has two omissions corre
sponding toq521, becausep21/r has no discrete eigenvalues. We offer now a solution to
Coulomb difficulty. As we shall make clear in Sec. IV, viable CoulombP numbers are needed fo
lower bounds. For our most important applicationK5Ap21m2, a lower bound to the bottom o
the spectrum ofH5K2v/r is provided by the Martin–Roy bound11

E>eL~v !5mS 11A124v2

2 D 1/2

, v,
1

2
. ~2.11!

The conditionv, 1
2 is a little more restrictive than the fundamental operator restrictionv,2/p: it

was proved by Herbst12 that a Friedrichs extension exists forH only if the Coulomb coupling is
sufficiently small. The Coulomb lower bound has the same scaling law with respect tom as does
the exact energy: althoughm originates in the Hamiltonian inside the square root of the kine
energy term, it appears in the eigenvalue and in its lower approximation simply as an o
factor.4 Now we construct av-dependentP representation for this lower bound. We write@as a
definition of PL(v)]

eL~v !5min
r

HAm21
1

r 22
v

PL~v !r J . ~2.12!

An elementary calculation then shows that~2.11! and~2.12! imply PL(v)5eL(v)/m. This seren-
dipitous discovery fills the gaps in Table I, and will allow us to include the Coulomb compo
in our lower-bound energy formula for sums of potential terms: we must make the substitu

2
v

P(1)~21!r
52

v
PL~v !r

52
mv

eL~v !r
, v,

1

2
. ~2.13!

TABLE I. Eigenvalues forv51 and correspondingP numbers@given by
~2.6! and ~2.10!# for the Coulomb, log, linear, and harmonic-oscillator po-
tentials. The eigenvalues have been computed numerically and are rounded
so that theE(1)(q) are lower bounds and theE(2)(q) are upper bounds~and
similarly for the derivedP numbers!. The Coulomb lower bound is treated
differently becauseH5p21/r has no discrete spectrum.

q E(1)(q) P(1)(q) E(2)(q) P(2)(q)

21 2
1
4 1

0 1.063 65 1.0657 1.044 3325 1.218 669
1 2.232 25 1.2457 2.338 1075 1.376 084
2 2.338 107 1.366 687 3

3
2
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III. COMPLEMENTARY CONVEXITY: p¿V AND p 2¿V

The principal result of this section is best expressed in terms of kinetic potentials b
following.

Theorem 1: If E is the bottom of the spectrum of the Hamiltonian H5K1V, and the
kinetic-energy operator K is at once convex in p and concave in p2, then it follows that

min
s.0

$K~s!1V̄~p;s!%<E<min
s.0

$K~s!1V̄~p2;s2!%. ~3.1!

It makes sense here to speak ofK(p) as thoughp were a real variable since, by definition, th
action of the operatorK is effected via the Fourier transform. We shall now prove this result by
application of Jensen’s inequality8 and kinetic potentials defined in~2.1!. We consider first the
left-hand inequality of the theorem. Ifc is a normalized function in the domainD(H) of H5K
1V, then, sinceK5K(p) is convex inp, by Jensen’s inequality, we have

E5 inf
cPD(H)
(c,c)51

$~c,K~p!c!1~c,Vc!%> inf
cPD(H)
(c,c)51

$K~~c,pc!!1~c,Vc!%.

That is to say,

E>min
s.0

inf
cPD(H)
(c,c)51
(c,pc)5s

$K~~c,pc!!1~c,Vc!%5min
s.0

$K~s!1V̄~p;s!%.

The proof of the upper-bound inequality is very similar: we writeK(p)5k(p2), where k is
concave; then, settingt5s2, we arrive at the inequality

E<min
t.0

$k~ t !1V̄~p2;t !%5min
s.0

$K~s!1V̄~p2;s2!%,

which establishes the theorem. h

This result is an essential ingredient in the proof of the sum approximation in the next se
We now look at an example, namely the Salpeter problem with a linear potential. We have

H5Am21p21V~r !, V~r !5vh~r !5vr , ~3.2!

wherev is a positive coupling parameter. In terms of the convenient variabler .0 the two kinetic
potentials from~2.5! are

h̄~p;1/r !5P(1)~1!r , h̄~p2;1/r 2!5P(2)~1!r , ~3.3!

where theP numbers are provided in Table I. Theorem 1 then immediately yields the boun

min
r .0

$Am21r 221vP(1)~1!r %<E<min
r .0

$Am21r 221vP(2)~1!r %. ~3.4!

In Fig. 1 we plot these bounds as a function ofm for the casev51. If we combine Theorem 1 her
with Theorem 2 of Ref. 4~to the effect thatg+h.g+h̄ wheng is convex! we obtain the following
class of examples. We suppose thatV(r ) is monotone increasing and convex inh(r )5r then the
two theorems together yield the lower bound

E>min
r .0

HAm21
1

r 21vV~P(1)~1!r !J . ~3.5!
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Of course, ifV(r ) is concave, then we get anupperbound by the same expression provided
use P(2)(1). It is perhaps important to note that withP5P(2)(r ) an upper bound would be
obtained for every choice ofr in the expression on the right-hand side; the expression in~3.5! is
however only a lower bounda priori at the minimum point.

IV. THE SUM APPROXIMATION: LOWER BOUNDS

Since further generalization easily follows, we first look at the problem of the sum of
potential terms. We assume that each potentialvh( i )(r ) alone, when added to the kinetic-energ
operatorK, has a discrete eigenvalue at the bottom of the spectrum for sufficiently large cou
v. We express our result in terms of kinetic potentials and prove the following.

Theorem 2: If E is the bottom of the spectrum of the Hamiltonian H5K1V, and the
potential V is the sum V(r )5h(1)(r )1h(2)(r ), then it follows that the sum of the compone

kinetic potentials yields a lower bound to V,̄ that is to say

V̄~K;s!>h̄(1)~K;s!1h̄(2)~K;s!. ~4.1!

We shall now prove this theorem, which is in effect an optimized Weyl lower bound;13–15 this
remark will be clarified below, after the proof of the theorem. From the definition~2.1! of kinetic
potentials we have

V̄~K;s!5 inf
cPD(H)
(c,c)51

(c,Kc)5s

~c,Vc!5 inf
cPD(H)
(c,c)51

(c,Kc)5s

~c,~h(1)1h(2)!c!.

But the latter minimum mean-value is clearly bounded below by the sum of theseparateminima.
Thus we have

FIG. 1. Complementary upper (U) and lower (L) bounds~3.4! on the lowest eigenvalueE(m) of H5Am21p21r plotted
againstm.
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V̄~K;s!> inf
cPD(H)
(c,c)51

(c,Kc)5s

~c,h(1)c!1 inf
cPD(H)
(c,c)51

(c,Kc)5s

~c,h(2)c!5h̄(1)~K;s!1h̄(2)~K;s!,

which inequality establishes the theorem. h

Another approach, which would eventually yield an alternative proof of the theorem, exh
the relationship between Theorem 2 and the classical Weyl lower bound13–15for the eigenvalues of
the sum of two operators. Let us suppose thatC is the exact normalized lowest eigenfunction
H5K1V, so thatHC5EC. If the positive real parameterw is bounded by 1, 0,w,1, then
E5(C,(K1V)C) may be written as follows:

E5wS C,S K1
1

w
h(1)~r ! DC D1~12w!S C,S K1

1

12w
h(2)~r ! DC D

>w inf
cPD(H)
(c,c)51

S c,S K1
1

w
h(1)~r ! Dc D1~12w! inf

cPD(H)
(c,c)51

S c,S K1
1

12w
h(2)~r ! Dc D .

That is to say, in terms of component kinetic potentials, we arrive at Weyl’s inequality fo
lowest eigenvalue of the sumH5wK1h(1)1(12w)K1h(2):

E>wmin
s.0

H s1
1

w
h̄(1)~K;s!J 1~12w!min

s.0
H s1

1

12w
h̄(2)~K;s!J .

Sincew is an essentially free parameter in the last expression, we may optimize the Weyl
bound with respect to the choice ofw and this forces the individual values ofs at the minima,
$s1(w),s2(w)%, to be related. More specifically we find from the individual minimizations oves,

E>E~w!5ws1~w!1~12w!s2~w!1h̄(1)~K;s1~w!!1h̄(2)~K;s2~w!!,

where

w52
]h̄(1)

]s
~K;s1~w!! and 12w52

]h̄(2)

]s
~K;s2~w!!.

The critical conditionE 8(w)50 for the subsequent maximization of the lower bound overw then
yields s1(w)5s2(w). Thus the best lower energy bound is given by

E>min
s.0

$s1h̄(1)~K;s!1h̄(2)~K;s!%.

The kinetic-potential inequality of Theorem 2 leads, of course, to the same energy lower b
the optimization just performed above is therefore seen to be automatically built in by the fo
ism.

It follows immediately from the above kinetic-potential comparison theorem and coup
parameter absorption that a lower bound to the lowest energyE of the HamiltonianH5K
1( icih

( i )(r ), $ci.0%, is provided by the formula

E>min
s.0

H s1(
i

ci h̄
( i )~K;s!J . ~4.2!

Similarly we can extend this result to continuous sums such asV(r )5* t1

t2c(t)h(t)(r )dt.

This general theory becomes practically useful when we have good information conce
the components. More particularly, we must have some exact component kinetic potenti
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lower bounds to them. Outside the well-explored Schro¨dinger caseK5p2, such analytical results
are rather sparse. We look at the interesting class of power-law potentials in the next sect

V. SUMS OF POWERS AND THE LOG POTENTIAL

For power-law potentials and the relativistic kinetic energyK5Am21p2 we have discussed
some lower bounds in Sec. III and we shall now turn these to our advantage. The link be
Theorem 1 and Theorem 2 derives from the observation that the equationK(s)5Am21s2 allows
us to change the minimization variables→r 51/s. In the first stage of minimization, we have use
Jensen’s inequality for the lower bound~see proof of Theorem 1!; this allows us to keep
(c,pc)5s51/r constant at first, and then later minimize overs, or, equivalently, overr . We can
also easily accommodate a further positive kinetic-energy parameterb. Thus we immediately
arrive at the following.

Theorem 3: A lower bound to the lowest eigenvalue of the semirelativistic spinless-Sal
operator

H5bAm21p21 (
qÞ0

a~q!sgn~q!r q1a~0!ln~r !,

whereb.0 and the potential coefficients a(q)>0 are not all zero, is given by

E>min
r .0

H bAm21
1

r 21 (
qÞ0

a~q!sgn~q!~P(1)~q!r !q1a~0!ln~P(1)~0!r !J , ~5.1!

where, for the Coulomb component q521, we make the substitution

2
a~21!

P(1)~21!r
52

b2mv
eL~v !r

52
bv
r S 2

11A124v2D 1/2

, v5
a~21!

b
,

1

2
. ~5.2!

The problem presented for the lower bound by the fact thatp2v/r has no discrete spectrum wa
discussed in Sec. II. We have no simpleP-numberP(21) but we could derive a runningP ~2.13!
from the Martin–Roy energy bound~2.11!; the positive factorb has been inserted in~5.2! by
elementary scaling. We shall look at applications of Theorem 3 in Sec. VII when we also ha
our disposal the upper-boundP numbers derived in Sec. VI.

VI. VARIATIONAL UPPER BOUNDS

The lower bound for sums discussed in the preceding two sections has the attractive
that if the component kinetic potentials are exact and only one term is present, then the re
exact. We are unable to construct a general upper bound with this feature. Instead we use

wave functionf5c exp(2 1
2 arn) with a scale parametera.0 and two other parameters$c,n%,

and we apply this wave function to the entire problem. One degree of freedomc is used to
guarantee normalization, and the scale parametera.0 is expressed in terms of a new variab
t.0 chosen in such a way that the scale minimization is of an expression with the same fo
the lower bound. Initially we use heret rather thanr since, during the discussion, we shall ne
to refer to the potential functionV(r ). The choice of the remaining parametern.0 is left for later
optimization.

If we suppose thatc has already been chosen so thatifi51 and, for computational conve
nience, we use Jensen’s inequality, we then obtain the following upper energy bound:

E,E5bAm21~f,p2f!1S f,H (
qÞ0

a~q!sgn~q!r q1a~0!ln~r !J f D . ~6.1!

Now, for each fixedn.0, we define a new scale variablet.0 by the following:
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~f,p2f!5~f,2Df!5a2/nS n

2D 2 GS 21
1

n D
GS 3

n D [
1

t2 . ~6.2!

Using this definition oft, we can go on to define the upperP numbersP(n,q) by the relations

~f,r qf!5
1

aq/n

GS q13

n D
GS 3

n D [~P~n,q!t !q, qÞ0, ~6.3a!

and

~f, ln~r !f!5 ln~P~n,0!t !. ~6.3b!

If we now rename the scale variablet5r , and minimize the upper boundE with respect to scale
we arrive at

Theorem 4: For each n.0, an upper bound to the lowest eigenvalue E of the Salp
operator

H5bAm21p21 (
qÞ0

a~q!sgn~q!r q1a~0!ln~r !,

whereb.0 and the potential coefficients a(q)>0 are not all zero, is given by

E<min
r .0

H bAm21
1

r 21 (
qÞ0

a~q!sgn~q!~P~n,q!r !q1a~0!ln~P~n,0!r !J , ~6.4!

where the upper P numbers are provided by the formulas

P~n,q!5
n

2S GS 21
1

n D
GS 3

n D D 1/2S GS q13

n D
GS 3

n D D 1/q

, qÞ0, ~6.5a!

P~n,0!5
n

2S GS 21
1

n D
GS 3

n D D 1/2

expS 1

n
cS 3

n D D , ~6.5b!

and c is the digamma functionc(t)5G8(t)/G(t).
Apart from the special Coulomb considerations pertaining to the lower bound~5.1!, that

formula is essentially identical to the upper bound~6.4!: we simply have to use the correctP
numbers in each case.

VII. EXAMPLES

We have now assembled theP numbers for our energy-bound formulas~5.1! and ~6.4!. We
shall use the lowerP numbers in Table I, lower runningP formula for the Coulomb componen
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~2.13!, and the formulas~6.5! for theP(n,q) corresponding to the variational upper bound~6.4!.
The class of problems we are thus immediately able to consider have the following ex
Hamiltonian form:

H5bAm21p22a/r 1b ln~r !1cr1dr2, a,b,c,d>0, ~7.1!

whereb.0, and the potential parameters$a,b,c,d% are not all zero. We look at two examples.
the first, illustrated in Fig. 2, we look at the linear-plus-Coulomb potentialV(r )520.1/r
10.25r and compare the energy bounds$L,U% we find, as functions of the massm, with some
very accurate numerical values~center curve! obtained by minimizing the expectation value of th
Hamiltonian in a 25-dimensional trial space. In the next graph, Fig. 3, we plot the energy b
alone, for the same potential and a wider range of values of the massm. As a second example w
consider the broad linear combinationV(r )520.1/r 10.25 ln(r)10.25r 10.25r 2 and plot in Fig. 4
the energy bounds as functions of the mass. These illustrations give a clear indication
quality of the bounds that the theory yields.

VIII. CONCLUSION

The principal theoretical results of this paper are the complementary bounds of Theor
and the sum-approximation lower bound, Theorem 2. In order to arrive at these results we n
first to extend the notion of kinetic potential to allow for more general kinetic-energy oper
than the Schro¨dinger formK5p2. The complementary bounds are based on the assumption thK
is a convex function ofp and also a concave function ofp2, assumptions clearly satisfied by ou
prime example and principal motivation, the relativistic kinetic energyK5bAm21p2. The in-
equality of Jensen then allows us to learn approximately how special mean values of the pr
the eigenvalues ofH, depend on the operator parameters.

By combining Theorem 1 of this paper with Theorem 2 of our earlier paper4 we obtain a
general theory applicable to operator manifolds of the formH5K(p)1g(h) with, on the one

FIG. 2. Lower bounds (L) by ~5.1! and upper bounds (U) by ~6.4! for the lowest eigenvalueE(m) of H5Am21p2

20.1/r 10.25r plotted againstm. The upper bound (U) used the wave-function parametern51.6. The central curve is a
very accurate upper bound found by a variational exploration in a 25-dimensional trial space.
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hand, tangent spaces spanned by the Schro¨dinger operatorsap21bh(r )1c, and, on the other, by
complementary operators of the formap1bh(r )1c. Given the correct convexities ofK andg,
energy bounds immediately follow. We looked at one example of this type of problem near th
of Sec. III; and the results were exhibited in Fig. 1.

FIG. 3. Lower bounds (L) by ~5.1! and upper bounds (U) by ~6.4! for the lowest eigenvalueE(m) of H5Am21p2

20.1/r 10.25r plotted againstm: this is a continuation of the graph in Fig. 2 to largerm.

FIG. 4. Lower bounds (L) by ~5.1! and upper bounds (U) by ~6.4! for the lowest eigenvalueE(m) of H5Am21p2

20.1/r 10.25ln(r)10.25r 10.25r 2 plotted againstm. The upper bound (U) used the wave-function parametern51.4.
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A completely different lower bound is provided by Theorem 2, which may be thought of
spectral expression of the sum structure of the potential, namely the subadditivity of the
sponding kinetic potential, as a sum of components.

In order to make practical use of these theoretical results we need some definite s
information about component problems. This is provided by the family of pure-power pote
V(r )5sgn(q)r q. For this family we are able to take advantage of known eigenvalues, or boun
them, and of simple upper bounds obtained with the aid of Jensen’s inequality and a
parameter family of trial functions. All of our component results can then be expressed in ter
certainP numbers~or, for the lower Coulomb case,q521, by aP function!, which are required
by the general lower- and upper-bound formulas of Theorems 3 and 4. These formulas illu
the effectiveness of the theoretical results and provide recipes for approximate solutions
interesting class of semirelativistic spectral problems.
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Magnetic translation groups in an n-dimensional torus and
their representations

Shogo Tanimuraa)

Department of Engineering Physics and Mechanics, Kyoto University,
Kyoto 606-8501, Japan

~Received 7 May 2002; accepted 6 August 2002!

A charged particle in a uniform magnetic field in a two-dimensional torus has a
discrete noncommutative translation symmetry instead of a continuous commuta-
tive translation symmetry. We study topology and symmetry of a particle in a
magnetic field in a torus of arbitrary dimensions. The magnetic translation group
~MTG! is defined as a group of translations that leave the gauge field invariant. We
show that the MTG in ann-dimensional torus is isomorphic to a central extension
of a cyclic groupZn1

3¯3Zn2l
3Tm by U(1) with 2l 1m5n. We construct and

classify irreducible unitary representations of the MTG in a three-torus and apply
the representation theory to three examples. We briefly describe a representation
theory for a generaln-torus. The MTG in ann-torus can be regarded as a gener-
alization of the so-called noncommutative torus. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1513208#

I. INTRODUCTION

Many people have been studying dynamics of an electrically charged particle in a ma
field for various interests. Landau found that the energy spectrum of an electron becomes d
when a magnetic field is applied, and explained the diamagnetic property of a metal. The qu
Hall effect looked a peculiar phenomenon when it was first discovered but today it is under
as a universal phenomenon observable in a two-dimensional electron system in a magnet
Dynamics of charged particles in a magnetic field is still an active research area.

Here we examine a group-theoretical aspect of the quantum system in a magnetic fi
particular we compare symmetry in a torus with symmetry in a Euclidean space. We would l
understand how the symmetry structure of the dynamical system is affected by the topo
structure of the underlying space. It is known that the translation symmetry group bec
noncommutative when a uniform magnetic field is introduced into the Euclidean space. Mor
the translation symmetry group becomes discrete when the underlying space is replaced by
In this article we consider a vector potential

A5 (
j ,k51

n

xjv jkdxk1(
j 51

n

a jdxj ~1.1!

over ann-dimensional torusTn5Rn/Zn. Herev jk are arbitrary integers anda j are real numbers
Then the corresponding magnetic field is given by the two-form

B5dA5 (
j ,k51

n
1

2
~v jk2vk j!dxj∧dxk . ~1.2!

We conclude that the magnetic translation group~MTG! in Tn is

a!Electronic mail: tanimura@kues.kyoto-u.ac.jp
59260022-2488/2002/43(12)/5926/23/$19.00 © 2002 American Institute of Physics
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SA5~R3vVn!/~Z3vZn!, ~1.3!

whereVn is a subgroup ofRn defined byVn5$vPRnu(v2 tv)vPZn% and the group operation in
R3vRn is defined by

~x0 ,x1 ,...,xn!•~y0 ,y1 ,...,yn!5S x01y01 (
j ,k51

n

xjv jkyk ,x11y1 ,...,xn1ynD . ~1.4!

This characterization of the magnetic translation symmetry is one of the main results o
article. The MTG is actually a central extension of a cyclic group

Zm1
3¯3Zm l

3Zn1
3¯3Zn l

3Tm ~2l 1m5n! ~1.5!

by S15U(1). Webuild a complete set of irreducible representations of the MTG inT3. We also
describe a method to build irreducible representations of the MTG inTn.

We would like to briefly review studies by other people on a quantum system in a mag
field. Brown1 found that the translation symmetry of an electron in a lattice in a uniform magn
field is noncommutative and that the quantum system obeys a projective representation
translation group. At the almost same time2 and later3 Zak built a representation theory of th
lattice translation group in a magnetic field. Ashby and Miller4 considered a space–time lattice
a finite size in uniform electric and magnetic fields and proposed an electromagnetic tran
group. Avron, Herbst, and Simon have been studying spectral problems of the Schro¨dinger opera-
tors in a magnetic field in a series of papers.5–8 Particularly, in Ref. 6 they examined a system
particles in a uniform magnetic field and characterized a constant of motion analogous to th
momentum. Dubrovin and Novikov9,10 studied the spectrum of the Pauli operator in a tw
dimensional lattice with a periodic magnetic field and intensively analyzed the gap structure
the ground state. Asch, Over, and Seiler11 clarified how the inequivalent Hamiltonians on a tor
in a magnetic field are induced from a Hamiltonian on the universal covering space of the
In a series of studies12–17Lulek, Florek, Lipinski, and Walcerz established a systematic metho
construct central extensions of a finitely generated Abelian group. Their results are equiva
the MTGs in a lattice. Kuwabara18,19 is studying relations between the trajectories of a class
particle and the spectra of its quantized system and has obtained many results. Grube20 also
examined quantization of a particle on a Riemannian manifold in a magnetic field from a
point of geometric quantization.

As reviewed above, a lot of studies on dynamics and symmetry in a magnetic field have
done. Although MTGs in a finite lattice and in an infinite lattice have been much investigate
MTG in a torus of arbitrary dimensions is not yet fully investigated. Motivated by a re
study21,22 on extra dimensions of the space–time, Sakamotoet al.23–25 are developing field theo
retical models in which the translation symmetry of an extra circle is spontaneously broken
nontrivial boundary condition in the extraS1. Moreover, we are developing models26,27 in which
the rotation symmetry of an extra two-sphere is spontaneously broken by a magnetic mono
the extraS2. So we would like to understand how a background gauge field in a compact
influences symmetry structure of a quantum system. Hence we decide to investigate symm
a magnetic field in a torus.

This article is organized as follows. In Sec. II we shall examine how symmetry of a qua
system in a magnetic field is changed when the underlying two-dimensional Euclidean sp
replaced by a two-dimensional torus. In Sec. III we extend our discussion to ann-dimensional
torus. We introduce a noncommutative group structure intoRn11 and use it to construct a mag
netic fiber bundle, which is a bundle overTn with a fiberS1. In Sec. IV we classify topologica
structures of the bundles. In Sec. V we define connections, which are generalizations of a
potential, and classify them. In Sec. VI we define a magnetic translation group as a group o
translations that leave the connection invariant. In Sec. VII we build a representation theory
MTG for T3 and illustrate the theory by a few examples. In Sec. VIII we describe an outline o
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representation theory of the MTG for a generalTn. Section IX is devoted to conclusions an
discussions. To reach the main result quickly the reader may read only Secs. III, V, and V

II. SYMMETRIES IN A MAGNETIC FIELD

This section is devoted to exercises to get ideas about the problem. The reader may s
section and restart from Sec. III without missing the main course of the article.

A. Euclidean space

Let us begin our discussion by examining symmetry of quantum mechanics of a particle
uniform magnetic field inR2. It is a well-known system and becomes a starting point to exp
further nontrivial systems.

A uniform magnetic fieldBdx∧dy5dA is derived from a vector potentialA5Bx dy. The
Schrödinger equation is

Hc5F2
1

2 S ]

]xD 2

2
1

2 S ]

]y
2 iBxD 2Gc~x,y!5Ec. ~2.1!

Then the operators

P̃xª2 i
]

]x
2By, Pyª2 i

]

]y
~2.2!

commute withH. These generate unitary transformations

~Ux~a!c!~x,y!5e2 i P̃xac~x,y!5eiBayc~x2a,y!, ~2.3!

~Uy~b!c!~x,y!5e2 iPybc~x,y!5c~x,y2b!. ~2.4!

It is to be noted thatUx(a) is a combination of a translation in thex-direction by the lengtha and
a gauge transformation. It is also to be noted that the translation in thex-direction and the one in
the y-direction do not commute but satisfy

Ux~a!Uy~b!~Ux~a!!21~Uy~b!!215eiBab. ~2.5!

The momentum generates a continuous symmetry and enables us to separate the varia
example, if we put the eigenvalue ofPy ask, the wave function is factorized as

c~x,y!5eikyf~x!. ~2.6!

Then the Schro¨dinger equation~2.1! is rewritten as

Hc5eikyF2
1

2 S ]

]xD 2

1
1

2
~k2Bx!2Gf~x!5eikyEf~x! ~2.7!

and is reduced to the equation of a harmonic oscillator. Hence the energy eigenvalues are g

E5uBu~n1 1
2! ~n50,1,2,...! ~2.8!

and are called the Landau levels. Each eigenvalue is infinitely degenerated with respect2`
,k,`.

B. Torus

Next we turn to a two-dimensional torus. The two-torusT2 is defined as the quotient spac
R2/Z2. Namely, the points inR2,
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~x,y!;~x11,y!;~x,y11!, ~2.9!

are identified as a single point inT2. If we impose a pseudoperiodic condition

c~x11,y!5eiByc~x,y!, c~x,y11!5c~x,y!, ~2.10!

on the wave function, the Schro¨dinger equation~2.1! is well defined overT2. In other words, on
the space of functions satisfying the pseudoperiodic condition, the operatorH becomes self-
adjoint. To make the two conditions in~2.10! compatible each other we need to have

c~x11,y11!5eiB(y11)c~x,y11!5eiBeiByc~x,y!5c~x11,y!5eiByc~x,y!. ~2.11!

Hence we should haveeiB51. Namely, in the magnetic field strength

B52pn, ~2.12!

n must be an integer. We calln the magnetic flux number of the torus.
The operatorsP̃x andPy in ~2.2! commute withH defined in~2.1!. However, when they ac

on a wave function satisfying the pseudoperiodic condition~2.10!, they do not give back a func
tion satisfying the pseudoperiodic condition but instead give

Pyc~x11,y!5eiBy~Py1B!c~x,y!, ~2.13!

P̃xc~x,y11!5~ P̃x2B!c~x,y!. ~2.14!

Hence, the actions of these operators are not closed in the space of pseudoperiodic function
we get a lesson thatthe generator of infinitesimal translation does not exist in the torus. However,
it is still possible to construct operators for finite translations. We let the finite translation ope
~2.3! and ~2.4! act on a pseudoperiodic function~2.10!, and examine whether the resultant fun
tions satisfy the pseudoperiodic condition. Using the flux quantization~2.12! we get

~Ux~a!c!~x,y11!5eiBa(y11)c~x2a,y11!

5eiBaeiBayc~x2a,y!

5e2p ina~Ux~a!c!~x,y!, ~2.15!

~Uy~b!c!~x11,y!5c~x11,y2b!

5eiB(y2b)c~x,y2b!

5e2 iBbeiByc~x,y2b!

5e22p inbeiBy~Uy~b!c!~x,y!. ~2.16!

Therefore, the transformed wave functions,Ux(a)c andUy(b)c, satisfy the pseudoperiodic con
dition ~2.10! if and only if

na,nbPZ. ~2.17!

Consequently, the lengths of shifts,a andb, are restricted to integral multiples of 1/n. Moreover,
on a pseudoperiodic function the shifts by the unit length act as

~Ux~1!c!~x,y!5eiByc~x21,y!5c~x,y!, ~2.18!

~Uy~1!c!~x,y!5c~x,y21!5c~x,y!. ~2.19!
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HenceUx(1) andUy(1) are identity operators. Thus the operatorsUx(1/n) andUy(1/n) generate
a cyclic groupZn5Z/nZ of the ordern. However, as seen in~2.5! their commutator produces
nontrivial phase factor. Thus we conclude that the symmetry of the quantum system in the
magnetic field is described by a projective representation ofZn3Zn .

The group of translations of the quantum system in the magnetic field is called a ma
translation group~abbreviated as MTG!. A more precise definition of the MTG will be given in
Sec. VI. In the torus the MTG becomes discrete and finite. Its representation is construc
follows. Let $u0&,u1&,...,un21&% be a basis of the representation space. Then we define the a
of the translation operators by

Ux~nx /n!uq&5e2p inxq/nuq&, ~2.20!

Uy~ny /n!uq&5uq1ny~mod n!&, ~2.21!

for nx ,nyPZ. We can easily verify that they satisfy

Ux~nx /n!Uy~ny /n!~Ux~nx /n!!21~Uy~ny /n!!21uq&5ei (2pn)(nx /n)(ny /n)uq&, ~2.22!

which is homomorphic to the commutator~2.5!. This representation is irreducible and its dime
sion isn. Hence each energy eigenvalue~2.8! is degenerated byn folds.

C. Three-torus

Let us examine the case of a three-dimensional torus briefly to motivate further discu
With real constants (b1 ,b2 ,b3) a vector potential

A5b1x2dx31b2x3dx11b3x1dx2 ~2.23!

gives rise to a magnetic field

B5dA5b1dx2∧dx31b2dx3∧dx11b3dx1∧dx2 . ~2.24!

The Hamiltonian is then given by

Hc52
1

2 F S ]

]x1
2 ib2x3D 2

1S ]

]x2
2 ib3x1D 2

1S ]

]x3
2 ib1x2D 2Gc~x1 ,x2 ,x3!. ~2.25!

On the three-torus the wave function must satisfy a set of conditions

c~x111,x2 ,x3!5eib3x2c~x1 ,x2 ,x3!,

c~x1 ,x211,x3!5eib1x3c~x1 ,x2 ,x3!, ~2.26!

c~x1 ,x2 ,x311!5eib2x1c~x1 ,x2 ,x3!,

which is a generalization of the the pseudoperiodic condition~2.10! of the two-torus.
We would like to find a complete set of translation operators that commute withH and are

compatible with the pseudoperiodic condition~2.26!. Of course, if the magnetic field is parallel t
one of the axes, the system is reduced to the two-torus as has been discussed by Za3 For
example, if (b1 ,b2 ,b3)5(0,0,B), the Hamiltonian~2.25! and the condition~2.26! are reduced to
~2.1! and~2.10!, respectively. However, it is a highly nontrivial and not yet fully solved probl
to find a complete symmetry group for an inclined magnetic field (b1 ,b2 ,b3). Thus we decide to
develop a more systematic method to construct the translation symmetry group for a g
magnetic field in then-torus.
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III. MAGNETIC FIBER BUNDLE

We shall extend the previous consideration on the two-dimensional torus to arbitrary d
sions. What we will do in the rest of this article is to constructU(1) principal fiber bundles ove
an n-dimensional torusTn, to classify the bundles, to introduceU(1) connections with constan
curvatures overTn, to define the MTG as the stability group of each connection, and to cons
the representations of the MTGs. Throughout this article we are identifyingS1 with U(1).

Let us begin with construction ofS1 principal fiber bundles overTn. For this purpose we
introduce a noncommutative group structure intoRn11 as follows. Take ann3n matrix v which
consists of integers,v jkPZ ( j ,k51,...,n). The matrixv is not necessarily antisymmetric. Defin
a product of (x0 ,x1 ,...,xn),(y0 ,y1 ,...,yn)PRn11 by

~x0 ,x1 ,...,xn!•~y0 ,y1 ,...,yn!ªS x01y01 (
j ,k51

n

xjv jkyk ,x11y1 ,...,xn1ynD . ~3.1!

In the following we abbreviate the notation of the vectors asx5(x1 ,...,xn)PRn. We write the
inner product of vectors asxy5( j 51

n xj yj and the bilinear form asxvy5( j ,k51
n xjv jkyk . It is

easily verified that the setRn11 becomes a group with this product operation; the associativit
satisfied as

~~x0 ,x!•~y0 ,y!!•~z0 ,z!5~x01y01xvy,x1y!•~z0 ,z!

5~x01y01z01xvy1~x1y!vz,~x1y!1z!

5~x01y01z01xvy1xvz1yvz,x1y1z!

5~x01y01z01xv~y1z!1yvz,x1~y1z!!

5~x0 ,x!•~~y0 ,y!•~z0 ,z!!, ~3.2!

the unit element is given by (0,0)PR3Rn, and the inverse element of (x0 ,x)PR3Rn is given by

~x0 ,x!215~2x01xvx,2x!. ~3.3!

The setRn11 equipped with this group structure is denoted byR3vRn. A commutator is calcu-
lated as

~x0 ,x!•~y0 ,y!•~x0 ,x!21
•~y0 ,y!215~x01y01xvy,x1y!•~2x01xvx,2x!•~2y01yvy,2y!

5~y01xvy1xvx2~x1y!vx,y!•~2y01yvy,2y!

5~xvy1xvx2~x1y!vx1yvy2yvy,0!5~xvy2yvx,0!,

~3.4!

and thereforeR3vRn is Abelian if and only ifv is a symmetric matrix. The natural projectio
map R3vRn→Rn becomes a group homomorphism. As its kernelR3v$0% is contained in the
center ofR3vRn, the groupR3vRn is a central extension ofRn by R.

The subsetZ3vZn5$(m0 ,m1 ,...,mn)um0 ,mjPZ% is also a subgroup ofR3vRn but it is not
isomorphic to the standard Abelian groupZn11. The subgroupZ3vZn acts freely onR3vRn

from the left via the group operation. Hence the space of orbits

Pv
n11

ª~Z3vZn!\~R3vRn! ~3.5!

becomes a smooth manifold.
The group operation also induces action of the groupR3vRn on the spacePv

n11 from the
right. The subgroupsZ3v$0%,R3v$0% are contained in the center ofR3vRn and hence their
actions from the right are equivalent to those from the left. The subgroupsR3v$0% and Z
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3v$0% are isomorphic toR and Z, respectively. ThusR acts onPv
n11 but its subgroupZ acts

trivially on Pv
n11 sinceZ is contained in the dividing groupZ3vZn of the quotient space~3.5!.

Therefore the action ofR is reduced to the effective action ofS15R/Z on Pv
n11 . The space of

orbit Pv
n11/S1 is diffeomorphic to a torusTn. Consequently we obtain a principal fiber bund

with the canonical projection mappv :Pv
n11→Tn with a structure groupS1. We call this fiber

bundle amagnetic fiber bundle twisted by the matrixv. The procedure to construct the magne
fiber bundle is summarized by the following commutative diagram:

Z3v$0% → Z3vZn → Zn

↓ ↓ ↓
R3v$0% → R3vRn → Rn

↓ ↓ ↓
S1 → Pv

n11 →
pv

Tn

. ~3.6!

A function f :Pv
n11→C is identified with a functionf :R3vRn→C that is invariant under

action ofZ3vZn from the left as

f ~m01x01mvx,m1x!5 f ~x0 ,x!, ~m0 ,m!PZ3vZn. ~3.7!

Moreover, when the functionf :Pv
n11→C satisfies

f ~x01t,x!5e22p i t f ~x0 ,x!, tPR, ~3.8!

it is called an equivariant function onPv
n11 . Hence the equivariant functionf has the property

f ~x0 ,x1m!5e2p imvxf ~x0 ,x!, mPZn. ~3.9!

This is a generalization of the pseudoperiodic condition~2.10!,

c~x11,y!5e2p inyc~x,y!, c~x,y11!5c~x,y!. ~3.10!

In fact, if we take the matrix

v5S 0 n

0 0D , ~3.11!

the general condition~3.9! of Tn is reduced to the specific one~3.10! of T2.

IV. EQUIVALENT MAGNETIC BUNDLES

In the above construction each magnetic fiber bundle is specified by an integral matv.
However, it can happen that different matricesv andv8 give rise to equivalent fiber bundles. I
this section we prove thatv andv8 induce equivalent fiber bundles if and only if the differen
v82v is a symmetric integral matrix. Therefore, we may choose a representative matrixv such
that v jk50 for j >k. Namely, the upper triangle matrix

v5S 0 v12 v13 ¯ v1,n21 v1n

0 0 v23 ¯ v2,n21 v2n

0 0 0 ¯ v3,n21 v3n

] ] ] � ] ]

0 0 0 ¯ 0 vn21,n

0 0 0 ¯ 0 0

D ~4.1!
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with integersv jk can be taken as a standard form of the matrixv. The reader will not miss the
main result of the article even if he skips this section and restarts from Sec. V.

Here we introduce three kinds of isomorphisms that convert a bundle specified by a mav
to a bundle specified by another matrixv8.

Let us introduce the first kind of bundle isomorphism. When a symmetric matrixs of integral
elements,s jk5sk jPZ, satisfies

(
j ,k51

n

mjs jkmkP2Z ~4.2!

for any m5(m1 ,...,mn)PZn, we call s an even symmetric matrix. This requirement fors is
equivalent to demanding that the off-diagonal elementss jk are integers and that the diagon
elementss j j are even integers. Here we will show that two magnetic bundlesPv

n11 andPv1s
n11 are

isomorphic each other for any even symmetric matrixs. For this purpose let us define a ma
fs :R3vRn→R3v1sRn by

fs~x0 ,x!ª~x01 1
2 xsx,x!. ~4.3!

Existence of the inverse map is obvious; it is given byfs
21(x0 ,x)5(x02 1

2xsx,x). It is easily
verified that the mapfs is a group isomorphism as

fs~~x0 ,x!•v~y0 ,y!!5fs~x01y01xvy,x1y!

5~x01y01xvy1 1
2 ~x1y!s~x1y!,x1y!

5~x01y01 1
2 xsx1 1

2 ysy1x~v1s!y,x1y!

5~x01 1
2 xsx,x!•v1s~y01 1

2 ysy,y!

5fs~x0 ,x!•v1sfs~y0 ,y!, ~4.4!

where we have distinguished the product operation ofR3v1sRn from that ofR3vRn. The map
fs sends the integer subgroupZ3vZn to Z3v1sZn, sinces is even as required in~4.2!. There-
fore, fs induces a diffeomorphism

~fs!* :~Z3vZn!\~R3vRn!→~Z3v1sZn!\~R3v1sRn!. ~4.5!

Moreover, sincefs is the identity map when it is restricted onR3v$0%,

fs~~ t,0!•v~x0 ,x!!5fs~ t,0!•v1sfs~x0 ,x!5~ t,0!•v1sfs~x0 ,x!, ~4.6!

thus (fs)* is equivariant with respect to the action ofS1. It is also clear thatpv5pv1s

+(fs)* . Thus we conclude that the map (fs)* is an isomorphism between the principal fib
bundlesPv

n11 andPv1s
n11 .

Next we shall introduce the second kind of bundle isomorphism. We identify a diag
matrix D5diag(D1,D2,...,Dn) with a vector D5(D1 ,D2 ,...,Dn)PZn. Then we define a map
fD :R3vRn→R3v1DRn by

fD~x0 ,x!ªS x01
1

2
xDx1

1

2
Dx,xD5S x01

1

2 (
j 51

n

~xjD j xj1D j xj !,xD . ~4.7!

It is also easily verified thatfD is a group isomorphism as
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fD~~x0 ,x!•v~y0 ,y!!5fD~x01y01xvy,x1y!

5~x01y01xvy1 1
2 ~x1y!D~x1y!1 1

2 D~x1y!,x1y!

5~x01y01 1
2 xDx1 1

2 Dx1 1
2 yDy1 1

2 Dy1x~v1D!y,x1y!

5~x01 1
2 xDx1 1

2 Dx,x!•v1D~y01 1
2 yDy1 1

2 Dy,y!

5fD~x0 ,x!•v1DfD~y0 ,y!. ~4.8!

Note that whenxj is an integer,xj
21xj5xj (xj11) is always an even integer and hence1

2D j (xj
2

1xj ) is an integer. Therefore the mapfD sends the integer subgroupZ3vZn to Z3v1DZn.
Moreover,fD sendsR3v$0% to R3v1D$0% identically. Thus the induced map (fD)* becomes an
isomorphism between the principal fiber bundlesPv

n11 andPv1D
n11 .

There is the third kind of bundle isomorphism, which will be used when we classify con
tions later. For each«5(«1 ,«2 ,...,«n)PZn we define a mapf« :R3vRn→R3vRn by

f«~x0 ,x!ª~x01«x,x!5S x01(
j 51

n

« j xj ,xD . ~4.9!

It is also easily verified thatf« is a group isomorphism as

f«~~x0 ,x!•v~y0 ,y!!5f«~x01y01xvy,x1y!

5~x01y01xvy1«~x1y!,x1y!

5~x01«x1y01«y1xvy,x1y!

5~x01«x,x!•v~y01«y,y!5f«~x0 ,x!•vf«~y0 ,y!. ~4.10!

The mapf« sends the integer subgroupZ3vZn to Z3vZn. Moreover,f« sendsR3v$0% to R
3v$0% identically. Thus the group isomorphismf« induces an automorphism (f«)* of the prin-
cipal fiber bundlePv

n11 .
As a summary, we write down a combined isomorphism of the three kinds of maps

~f«+fD+fs!~x0 ,x!ª~x01 1
2 x~s1D!x1 1

2 Dx1«x,x!. ~4.11!

By adding an integral diagonal matrixD to an even symmetric matrixs, we can make any integra
symmetric matrixs85s1D. Therefore, by combining the first and second kinds of isom
phisms,fs andfD , we can establish an isomorphism betweenPv

n11 andPv1s8
n11 for any integral

symmetric matrixs8. In other words, the set of magnetic fiber bundles has a one-to-one c
spondence with Mat(n,Z)/Sym(n,Z), where the quotient is taken in the sense of additive grou

V. CONNECTION

In this section we define the vector potentials that yield uniform magnetic fields in
n-dimensional torus. We use the words, a vector potential, a gauge field, and a connect
describe the same notion. Magnetic field strength and curvature are an identical notion.

Let us define a differential one-formA on R3vRn by

Aª2dx01 (
j ,k51

n

xjv jkdxk1(
j 51

n

a jdxj52dx01xvdx1adx ~5.1!

with a real vectoraPRn. These parametersa5(a1 ,...,an) characterize the Aharonov–Bohm
effect. The action of (m0 ,m)PZ3vZn from the left of R3vRn defines a mapw:(x0 ,x)°(m0

1x01mvx,m1x). Note that the one-formA is invariant under the transformation byw as
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w* A52~dx01mvdx!1~m1x!vdx1adx5A. ~5.2!

ThusA can be regarded as a one-form onPv
n115(Z3vZn)\(R3vRn). It is also obvious thatA

is invariant under a transformation (x0 ,x)°(x01t,x) for any tPR. Moreover,A satisfies

K ]

]x0
,AL 521 ~5.3!

by the definition. In the above equation,^•,•& denotes the pairing of a vector and a one-form. Th
A satisfies the axiom of a connection form of the principal bundlepv :Pv

n11→Tn.
We can classify the connections using isomorphism maps introduced in the last sectio

connectionAv,a defined by~5.1! is parametrized by an integral matrixvPMat(n,Z) and a real
vector aPRn. For any even symmetric matrixsPEvenSym(n,Z) and integral vectorsD,«
PZn, the combined isomorphism~4.11! induces a transformation

~f«+fD+fs!* Av1s1D,a1 1/2D1«

52d~x01 1
2 x~s1D!x1 1

2 Dx1«x!1x~v1s1D!dx1~a1 1
2 D1«!dx

52dx02x~s1D!dx2 1
2 Ddx2«dx1x~v1s1D!dx1~a1 1

2 D1«!dx

52dx01xvdx1adx

5Av,a ~5.4!

via pullback. Thus the connections are classified by the equivalence relation

~v,a!;~v1s1D,a1 1
2 D1«!, sPEvenSym~n,Z!;D,«PZn ~5.5!

among (v,a)PMat(n,Z)3Rn.
Next we define a covariant derivative of the equivariant functionf by

D fªd f22p iA f . ~5.6!

Of course, on the right-hand side,i 5A21. The curvature formF is defined by

FªdA5 (
j ,k51

n

v jkdxj∧dxk5 (
j ,k51

n
1

2
~v jk2vk j!dxj∧dxk , ~5.7!

which gives a constant magnetic field. Hence the first Chern class is uniquely specified
integral antisymmetrized matrix (v2 tv). It is known28 that anS1-fiber bundle has a one-to-on
correspondence with the first Chern class. Therefore, by choosingvPMat(n,Z) appropriately, we
can construct any principal fiber bundles overTn with the fiberS1.

VI. MAGNETIC TRANSLATION GROUP

Now we shall examine translation symmetry of the vector potentialA of the uniform magnetic
field. In this section we shall give a precise definition of the MTG inTn and express the MTG in
a more concrete form. We will prove that the MTG is

SA5~R3vVn!/~Z3vZn!, ~6.1!

whereVn is a subgroup ofRn defined byVn5$vPRnu(v2 tv)vPZn% and the group operation i
taken in the sense of~3.1!. This is one of the main results of this article.

We begin by defining the MTG. A vectorvPRn generates a translation ofTn by
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tv :Tn→Tn, x°x1v. ~6.2!

When a mapt̃v :Pv
n11→Pv

n11 satisfies the commutative diagram

S1

↙ ↘

Pv
n11 →

t̃

Pv
n11

pv↓ ↓pv

Tn →
t

Tn

~6.3!

the mapt̃v is called a lift of the translationtv . The lifted translations that leave the connectionA
invariant form a group

SAª$t̃v :Pv
n11→Pv

n11uvPRn,pv+ t̃v5tv+pv ; t̃v* A5A%. ~6.4!

We call it the stability group ofA, or the magnetic translation group~MTG!.
Let us write down the lifted translation in a more explicit form. We use (x0 ,x)PRn11 as a

coordinate ofPv
n11 . Sincepv+ t̃v5tv+pv , the lift t̃v of ~6.2! must have the form

t̃v :~x0 ,x!°~x01u~x0 ,x,v !,x1v !. ~6.5!

To maket̃v commutative with the action ofe2p iw0PS1 the functionu must satisfy

x01w01u~x01w0 ,x,v !5x01u~x0 ,x,v !1w0 , ~6.6!

namely,u must satisfy

u~x01w0 ,x,v !5u~x0 ,x,v ! ~6.7!

for any w0PR. Therefore, the functionu is independent ofx0 . To become a map ofPv
n11 , the

map t̃v must send an orbit of the left-action ofZ3vZn to an orbit of the same group. In othe
words, for any (m0 ,m)PZ3vZn there must exist an element (m08 ,m8)PZ3vZn that satisfies

t̃v~~m0 ,m!•~x0 ,x!!5~m08 ,m8!• t̃v~x0 ,x!. ~6.8!

The above equation is rewritten as

~m01x01mvx1u~m1x,v !,m1x1v !5~m081x01u~x,v !1m8v~x1v !,m81x1v !,

which is equivalent to a set of equations

m5m8, ~6.9!

m01mvx1u~m1x,v !5m081u~x,v !1m8v~x1v !. ~6.10!

The last equation implies that

u~m1x,v !2u~x,v !2mvv5m082m0PZ ~6.11!

for any mPZn. In reverse order, any functionu(x,v) satisfying the condition~6.11! defines a
lifted translationt̃v by ~6.5!. The lifted translationt̃v is actually a combination of a spatial shift b
v with a gauge transformation byu. Hence, we finish characterizing the lifted translations.

Let the lifted translationt̃v act on the connection formA of ~5.1! via pull-back. Then it gives
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t̃v* A52~dx01du!1~x1v !vd~x1v !1ad~x1v !5A2du1vvdx. ~6.12!

Hence, to leave the connection invariant ast̃v* A5A, the functionu must satisfy a differential
equationdu5vvdx. Thus we have

u~x,v !5vvx1v0 ~6.13!

with a constantv0PR. To maket̃v a map ofPv
n11 , the functionu must satisfy the condition

~6.11!, which requires that

u~m1x,v !2u~x,v !2mvv5vvm2mvv52m~v2 tv!vPZ ~6.14!

for any mPZn. Therefore, the vectorvPRn is required to satisfy

~v2 tv!vPZn. ~6.15!

We call the vectorv satisfying~6.15! a magnetic shift. A set of the magnetic shifts is denoted

Vn
ª$vPRnu~v2 tv!vPZn%. ~6.16!

The setVn becomes an additive subgroup ofRn. When the antisymmetrized matrix (v2 tv) is
nondegenerated,Vn is discrete. The lifted translationt̃v defined by~6.5! with ~6.13! becomes

t̃v :~x0 ,x!°~x01u~x0 ,x,v !,x1v !5~x01vvx1v0 ,x1v !5~v0 ,v !•~x0 ,x!, ~6.17!

and therefore the action oft̃v is identified with the action of (v0 ,v)PR3vVn on Pv
n11 from the

left. However, the subgroupZ3vZn,R3vVn acts onPv
n11 trivially. Thus the stability groupSA

of the connectionA is identified as

SA5~R3vVn!/~Z3vZn!. ~6.18!

This is one of the main results of this article. Note thatSA is a central extension of a compa
Abelian groupVn/Zn by S15R/Z.

Actually, there is another way to characterize the groupSA . The groupR3vVn is a normal-
izer of N5Z3vZn in G5R3vRn. In other words, the subgroupH defined by

Hª$hPGu;nPN,hnh21PN% ~6.19!

coincides withR3vVn. The above statement is easily proved as follows. A straightforw
calculation yields

~x0 ,x!•~m0 ,m!•~x0 ,x!215~m01x~v2 tv!m,m!. ~6.20!

Therefore the necessary and sufficient condition for (x0 ,x)PR3vRn to bring the above elemen
into N5Z3vZn is that (v2 tv)xPZn, or thatxPVn. ThusN5Z3vZn is a normal subgroup o
H5R3vVn, and hence the quotient groupSA5H/N is well defined.

VII. REPRESENTATIONS OF THE MTG IN A THREE-TORUS

A unitary representation theory of the MTG is significant for spectral analyses of the La
operator and the Dirac operator in a background gauge field. In this section we examine a
dimensional torus and construct a complete set of representations. This is another main re
this article. In the next section we will discuss an outline of the representation theory of the
for arbitrary dimensions.
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A. Method

The MTG was identified asSA5(R3vVn)/(Z3vZn) at ~6.18!. We would like to express the
MTG in terms of generators and relations. Here we concentrate on the three-dimensional tor
us take the matrix

v5S 0 b3 2b2

0 0 b1

0 0 0
D ~7.1!

with positive integersb1 , b2 , andb3 . Then antisymmetrization ofv yields

v2 tv5S 0 b3 2b2

2b3 0 b1

b2 2b1 0
D . ~7.2!

The characteristic equation of (v2 tv) is

det~l2~v2 tv!!5l~l21b1
21b2

21b3
2!. ~7.3!

Hence, its eigenvalues are

l50,6 iB ~7.4!

with BªAb1
21b2

21b3
2. We assume thatBÞ0. The eigenspace forl50 is spanned by

b5S b1

b2

b3

D . ~7.5!

The action of (v2 tv) on a vectorvPR3 is equivalent to the vector product (v2 tv)v5v3b.
The magnetic shift group~6.16! now becomes

V35$vPR3u~v2 tv!vPZ3%. ~7.6!

The linear subspaceRb spanned byb of ~7.5! is a subgroup ofV3.Let us define a generatore0 by

D0ªGCD$b1 ,b2 ,b3%, ~7.7!

e0ª
1

D0
S b1

b2

b3

D . ~7.8!

Here the GCD is an abbreviation of the greatest common divisor while the LCM is an abbrev
of the least common multiple. It is obvious thate0 is in Z3 and that (v2 tv)e050. The vectore0

is a minimal integral vector in the sense that there is no real numbers such that 0,s,1 and
se0PZ3. There exist other vectorse1, e2, PQ3 that generateV3 as

V35Re0% Ze1% Ze2. ~7.9!

HereQ is the whole set of rational numbers. From~7.6! these generatorse1 ande2 must satisfy

~v2 tv!e1 ,~v2 tv!e2 PZ3. ~7.10!
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These vectors$e1 ,e2 % are minimal magnetic shifts in the sense that there is no real numbers such
that

0,s,1, s~v2 tv!eiPZ3, ~7.11!

for eachi 51,2. Moreover, there are positive integersn1 andn2 such that

n1e1 ,n2e2PZ3. ~7.12!

We demand that the integers$n1 ,n2 % are the smallest cycles in the sense that there is no int
m such that

0,m,n i , meiPZ3, ~7.13!

for eachi 51,2. Consequently, the decomposition~7.9! yields

and

V3/Z35~R/Z! % ~Z/n1Z! % ~Z/n2Z!. ~7.14!

Thus an arbitrary elementg of SA5(R3vV3)/(Z3vZ3) is parametrized as

g5~s,te01n1e11n2e2!, s,tPR/Z;n1PZ/n1Z;n2PZ/n2Z. ~7.15!

Let us examine the commutator~3.4!. It is clear that the element (s,0) commutes with any
element. Since (v2 tv)e050, the element (0,te0) also commutes with any element. On the oth
hand, (0,e1) and (0,e2) produce a nonvanishing commutator

~0,e1!•~0,e2!•~0,e1!21
•~0,e2!215~g,0! ~7.16!

with

gªe1~v2 tv!e25e1•~e23b!. ~7.17!

From ~7.10! and ~7.12! we can see that

n1g,n2gPZ. ~7.18!

Henceg is a rational number. Letd be the greatest common divisor ofn1 andn2 . If we put n1

5dp1 andn25dp2 , thenp1 andp2 are mutually prime. The above equation~7.18! implies that
dg is an integer. So we have

dªGCD$n1 ,n2%, ,ªdgPZ. ~7.19!

Before constructing the representation of the MTG, we need to know how the gene
generate an arbitrary element of the MTG. From the multiplication rule of the groupR3vRn we
deduce that forx,yPRn

~ 1
2 xvx,x!•~ 1

2 yvy,y!5~ 1
2 xvx1 1

2 yvy1xvy,x1y!

5~ 1
2 xvy2 1

2 yvx1 1
2 ~x1y!v~x1y!,x1y!

5~ 1
2 x~v2 tv!y,0!•~ 1

2 ~x1y!v~x1y!,x1y! ~7.20!

and

~ 1
2 xvx,x!215~ 1

2 xvx,2x!. ~7.21!
                                                                                                                



5940 J. Math. Phys., Vol. 43, No. 12, December 2002 Shogo Tanimura

                    
Iteration of ~7.20! yields

~ 1
2 xvx,x!n5~ 1

2 n2xvx,nx!, nPZ. ~7.22!

Furthermore,~7.20! implies

~ 1
2 s2xvx,sx!•~ 1

2 t2xvx,tx!5~ 1
2 ~s1t !2xvx,~s1t !x!, s,tPR. ~7.23!

By a tedious calculation we can show

~s,x1y1z!5~s2X,0!•~ 1
2 xvx,x!•~ 1

2 yvy,y!•~ 1
2 zvz,z! ~7.24!

with

X5 1
2 ~x1y1z!v~x1y1z!1 1

2 x~v2 tv!y1 1
2 x~v2 tv!z1 1

2 y~v2 tv!z. ~7.25!

Thus an arbitrary element of the MTG is expressed as

g5~s,te01n1e11n2e2!

5~s2 1
2 ~ te01n1e11n2e2!v~ te01n1e11n2e2!2 1

2 gn1n2 ,0!

•~ 1
2 t2e0ve0 ,te0!•~ 1

2 e1ve1 ,e1!n1
•~ 1

2 e2ve2 ,e2!n2

5f~s2X!•g0~ t !•~g1!n1
•~g2!n2, ~7.26!

which is a product of the generators

f~s!ª~s,0!, ~7.27!

g0~ t !ª~ 1
2 t2e0ve0 ,te0!, ~7.28!

g1ª~ 1
2 e1ve1 ,e1!, ~7.29!

g2ª~ 1
2 e2ve2 ,e2!. ~7.30!

These generators satisfy the relations

f~s!•f~ t !5f~s1t !, ~7.31!

f~1!51, ~7.32!

g0~s!•g0~ t !5g0~s1t !, ~7.33!

g0~1!5f~ 1
2 z0!, ~7.34!

~g1!n15f~ 1
2 z1!, ~7.35!

~g2!n25f~ 1
2 z2!, ~7.36!

g1•g2•g1
21

•g2
215f~g! ~7.37!

and other trivial commutators. Here we have defined$z0 ,z1 ,z2% by
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z0ªe0ve05S 1

D0
D 2

b1b2b3 , ~7.38!

z1ªn1
2e1ve1,z2ªn2

2e2ve2. ~7.39!

Becausee0 is an integral vector andv is an integral matrix,z0 is an integer. Furthermore,~7.12!
implies thatz1 andz2 are also integers.

In reverse order, the generators$f(s),g0(t),g1 ,g2% and their relations~7.31!–~7.37! deter-
mine the MTG uniquely. These generators with the relations form the MTG in a constru
manner. Consequently, the MTG inT3 is completely characterized by the set of paramet
(z0 ,z1 ,z2 ,n1 ,n2 ,g), where$z0 ,z1 ,z2 ,n1 ,n2% are integers andg is a rational number constraine
by the condition~7.18!.

Now we discuss the representation theory of the MTG exhaustively. The space of fun
$ f :Rn11→C% provides the regular representation of the groupR3vRn via

U~v0 ,v ! f ~x0 ,x!ª f ~~v0 ,v !21
•~x0 ,x!!

5 f ~~2v01vvv,2v !•~x0 ,x!!

5 f ~x02v01vvv2vvx,x2v !. ~7.40!

We restrict the representationU on the space of equivariant functions, which are constrained
~3.7! and ~3.8!. Then we have

U~v0 ,v ! f ~x0 ,x!5e2p i (v02vvv1vvx) f ~x0 ,x2v !, ~7.41!

which reproduces the unitary transformations~2.3! and ~2.4! when the twisting matrix~3.11! is
taken. Particularly (v0 ,0) is represented by

U~v0 ,0! f ~x0 ,x!5e2p iv0f ~x0 ,x!. ~7.42!

Hence the representationU induces an isomorphism of~7.31! and ~7.32! by

U~f~s!!5e2p is. ~7.43!

Moreover, if we put

U0~ t !ªU~g0~ t !!, U1ªU~g1!, U2ªU~g2!, ~7.44!

they satisfy

U0~s!U0~ t !5U0~s1t !, ~7.45!

U0~1!5ep iz0, ~7.46!

~U1!n15ep iz1, ~7.47!

~U2!n25ep iz2, ~7.48!

U1U2U1
21U2

215e2p ig, ~7.49!

sinceU is a homomorphism of the relations~7.33!–~7.37!.
An irreducible representation ofU0(t) is labeled by an integerq0 and defined by

U0~ t !uq0&5e2p i (q01 ~1/2! z0)tuq0&. ~7.50!
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On the other hand, to construct a representation of the algebra generated byU1 and U2 , we
introduce a set of orthogonal vectors$uq1 ,q2&uq1PZ/n1Z,q2PZ/n2Z%. We assume identification
uq1 ,q2&5uq11k1n1 ,q21k2n2& for any k1 ,k2PZ. Let the operatorsU1 andU2 act on them by

U1uq1 ,q2&5e2p i (q11 ~1/2! z1)/n1uq1 ,q2&, ~7.51!

U2uq1 ,q2&5e2p i (q21 ~1/2! z2)/n2uq11n1g,q2&. ~7.52!

The step ofq1 generated byU2 is

Dq1ªn1g5dp1

,

d
5p1,. ~7.53!

Then the fundamental relations,~7.47!–~7.49!, are satisfied as

~U1!n1uq1 ,q2&5e2p i (q11 ~1/2! z1)uq1 ,q2&5e2p i ~1/2! z1uq1 ,q2&, ~7.54!

~U2!n2uq1 ,q2&5e2p i (q21 ~1/2! z2)uq11n1n2g,q2&

5e2p i ~1/2! z2uq1 ,q2& ~becausen2g is an integer!, ~7.55!

U1U2U1
21U2

21uq1 ,q2&5U1U2U1
21e22p i (q21 ~1/2! z2)/n2uq12n1g,q2&

5U1U2e22p i (q12n1g1 ~1/2! z1)/n1e22p i (q21 ~1/2! z2)/n2uq12n1g,q2&

5U1 e22p i (q12n1g1 ~1/2! z1)/n1uq1 ,q2&5e2p iguq1 ,q2&. ~7.56!

Thus the basis$uq1 ,q2&% spans a representation space of the algebra generated byU1 and U2 .
This representation space is reducible generally. We can see that the action ofU2 is cyclic.
Namely, if we put

cª
LCM$Dq1 ,n1%

Dq1
5

LCM$p1,,p1d%

p1,
5

LCM $,,d%

,
5

d

GCD$,,d%
, ~7.57!

then

cDq15LCM$Dq1 ,n1% ~7.58!

is an integral multiple ofn1 and therefore theU2 action ~7.52! iterated byc times gives

~U2!cuq1 ,q2&5e2p i (q21 ~1/2! z2)c/n2uq11cDq1 ,q2&5e2p i (q21 ~1/2! z2)c/n2uq1 ,q2&. ~7.59!

Moreover,

n1

c
5

n1GCD$,,d%

d
5

dp1GCD$,,d%

d
5p1GCD$,,d%, ~7.60!

n2

c
5

n2GCD$,,d%

d
5

dp2GCD$,,d%

d
5p2GCD$,,d% ~7.61!

are integers. Therefore, each choice ofq1PZ modulo (n1 /c)Z and q2PZ modulo (n2 /c)Z
specifies one of inequivalent irreducible representations. Consequently, the dimension of th
ducible representation is

dimension5c5
d

GCD$d,,%
. ~7.62!
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On the other hand, the number of inequivalent representations for a fixedq0 is

#inequivalent irreducible representations5
n1

c
•

n2

c
5p1p2~GCD$d,,%!2. ~7.63!

These numbers give a number

~dimension!23~#inequivalent irreducible representations!5c23
n1n2

c2 5n1n2 , ~7.64!

which coincides with the dimension of the algebra generated byU1 andU2 , as required by the
Peter–Weyl theory on group representation.29 Thus we have obtained the complete set of irred
ible representations of the algebra.

In summary, an irreducible representation of the MTG in the three-dimensional torus is
fied by

x5~q0 ,@q1#,@q2# !PZ3Z(n1 /c)3Z(n2 /c) . ~7.65!

Using the decomposition~7.26! we have

U~s,te01n1e11n2e2!uq0 ,q1 ,q2&

5e2p i (s2X)U0~ t !~U1!n1~U2!n2uq0 ,q1 ,q2&

5e2p i $(s2X)1(q01 ~1/2! z0)t1(q11gn1n21 ~1/2! z1)n1 /n11(q21 ~1/2! z2)n2 /n2%uq0 ,q11gn1n2 ,q2&

~7.66!

with X evaluated as

X5 1
2 ~ te01n1e11n2e2!v~ te01n1e11n2e2!1 1

2 gn1n2 . ~7.67!

B. Examples in the three-dimensional torus

Here we apply the previous method of representation of the MTG to three exampl
magnetic fields inT3.

The first example is a magnetic field parallel to thex3-axis,

b5S b1

b2

b3

D 5S 0
0
n
D ~7.68!

with a positive integern. The generators~7.9! of the MTG are chosen as

e05S 0
0
1
D , e15

1

n S 1
0
0
D , e25

1

n S 0
1
0
D . ~7.69!

The vectors$e1 ,e2% reproduce the discrete magnetic shifts~2.17! in the plane perpendicular to th
magnetic field. The cycles~7.12! of e1 ande2 are found to be

n15n, n25n, ~7.70!

respectively. Using them we evaluate the parameters of the MTG as
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d5GCD$n1 ,n2%5GCD$n,n%5n, ~7.71!

g5e1~v2 tv!e25e1•~e23b! 5
1

n
, ~7.72!

,5dg5n
1

n
51, ~7.73!

z05z15z250. ~7.74!

The size and the number of irreducible representations are

dimension5c5
d

GCD$,,d%
5

n

GCD$1,n%
5

n

1
5n, ~7.75!

#inequivalent irreducible representations5
n1n2

c2 5
n2

n2 51. ~7.76!

In this case~7.51! and ~7.52! reproduce the representations~2.20! and ~2.21! in T2.
The second example is a magnetic field perpendicular to thex1-axis and lying in the middle

of the x2- andx3-axes,

b5S b1

b2

b3

D 5S 0
n
n
D , ~7.77!

with a positive integern. The generators of the MTG are chosen as

e05S 0
1
1
D , e15

1

n S 0
0
1
D , e25

1

n S 1
0
0
D . ~7.78!

The cycles ofe1 ande2 are

n15n, n25n, ~7.79!

and other parameters of the MTG are also evaluated as

d5n, g5
1

n
, ,51, z05z15z250, ~7.80!

dimension5c5n, ~7.81!

#inequivalent irreducible representations5
n1n2

c2 51. ~7.82!

The third example is a magnetic field in the direction of~1,1,1!,

b5S b1

b2

b3

D 5S n
n
n
D ~7.83!

with a positive integern. A calculation similar to the previous ones gives a series of parame
Here we show only the results
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e05S 1
1
1
D , e15

1

n S 1
0
0
D , e25

1

n S 0
1
0
D , ~7.84!

n15n, n25n, d5n, g5
1

n
, ,51, z05n, z15z250, ~7.85!

dimension5c5 n, ~7.86!

#inequivalent irreducible representations5
n1n2

c2 51. ~7.87!

VIII. REPRESENTATION THEORY OF THE MTG IN AN n-TORUS

Here we describe how to characterize the MTGs in ann-dimensional torus. We can choos
generators$e1 ,e2 ,...,el , f 1 , f 2 ,...,f l ,g1 ,g2 ,...,gm% (2l 1m5n) of the magnetic shift groupVn

such that

ei , f iPQn, ~v2 tv!ei ,~v2 tv! f iPZn, ei~v2 tv! f j5g id i j ~ i , j 51,...,l !, ~8.1!

gkPZn, ~v2 tv!gk50 ~k51,...,m!, ~8.2!

with nonzero rational numbersg iPQ. The vectors$g1 ,...,gm% are demanded to be minima
integral vectors in the sense that there is no real numbers satisfying

0,s,1, sgkPZn, ~8.3!

for eachk51,...,m. Let $m i ,n i%( i 51,...,l ) be smallest positive integers such that

m iei ,n i f iPZn ~8.4!

and that there are no integers$mi ,ni% satisfying

0,mi,m i , mieiPZn, ~8.5!

0,ni,n i , ni f iPZn. ~8.6!

Equations~8.1! and ~8.4! imply that g im i andg in i are integers. Thus, by putting

diªGCD$m i ,n i%, ~8.7!

we can see thatg idi is an integer. Consequently, the group of translations~6.16! is decomposed as

Vn5Ze1%¯% Zel % Z f 1%¯% Z f l % Rg1%¯% Rgm ~8.8!

and the MTG~6.18! is expressed as

SA>S13v~Zm1
3¯3Zm l

3Zn1
3¯3Zn l

3Tm!. ~8.9!

Finally, we describe an outline of the representation theory of the MTG’s in ann-dimensional
torus. Let us define integersxi ,yi ,zj by

xiªm i
2eivei , ~8.10!

yiªn i
2f iv f i ~ i 51,...,l !, ~8.11!
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zkªgkvgk ~k51,...,m!. ~8.12!

Generators of the MTG~8.9! are represented by a set of unitary operators

T~s!ªU~s,0!, sPR, ~8.13!

UiªU~ 1
2 eivei ,ei !, ~8.14!

ViªU~ 1
2 f iv f i , f i !, ~8.15!

Wk~ t !ªU~ 1
2 t2gkvgk ,tgk!, tPR. ~8.16!

They satisfy the equations

T~s!T~ t !5T~s1t !, ~8.17!

T~1!51, ~8.18!

~Ui !
m i5T~xi /2!, ~8.19!

~Vi !
n i5T~yi /2!, ~8.20!

UiViUi
21Vi

215T~g i !, ~8.21!

Wk~s!Wk~ t !5Wk~s1t !, ~8.22!

Wk~1!5T~zk/2!, ~8.23!

and other trivial commutators. These equations for then-torus are generalization of the equatio
~7.31!–~7.37! for the three-torus. A representation space is spanned by the basis vectors

ul,p,q,r &5ul,p1 ,p2 ,...,pl ,q1 ,q2 ,...,ql ,r 1 ,r 2 ,...,r m& ~8.24!

labeled bylPZ, piPZm i
, qiPZn i

, andr kPZ. The generators act on the basis vectors accord
to

T~s!ul,p,q,r &5e2p ilsul,p,q,r &, ~8.25!

Ui ul,p,q,r &5ep il(2pi1xi )/m iul,p,q,r &, ~8.26!

Vi ul,p,q,r &5ep il(2qi1yi )/n iul,p1 ,...,pi1g im i ,...,pl ,q,r &, ~8.27!

Wk~ t !ul,p,q,r &5ep il(2r k1zk)tul,p,q,r &. ~8.28!

These are generalization of~7.43! and ~7.50!–~7.52!. The cycle ofVi is given by

ciª
LCM$g im i ,m i%

g im i
5

LCM$g idi ,di%

g idi
5

di

GCD$g idi ,di%
. ~8.29!

Hence an irreducible representation is labeled by

x5~l,@p1#,...,@pl #,@q1#,..,@ql #,r 1 ,...,r m!PZ3Z(m1 /c1)

3¯3Z(m l /cl )
3Z(n1 /c1)3¯3Z(n l /cl )

3Zm. ~8.30!
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The dimension of the irreducible representation is

dimension5)
i 51

l

ci , ~8.31!

and the number of inequivalent representations is

#inequivalent irreducible representations5)
i 51

l
m in i

ci
2 ~8.32!

for fixed (l,r 1 ,...,r m)PZm11.

IX. CONCLUSION

Let us summarize our discussions. We began this article with a discussion on symmet
charged particle in a uniform magnetic field. We saw that the quantum system inT2 has a discrete
noncommutative translation symmetry. The symmetry is characterized by a central extensio
cyclic group.

In the following part of this article we introduced a noncommutative product intoRn11. Using
the group structure, we defined the magnetic fiber bundlesPv

n11 , which is a fiber bundle overTn

with a fiberS1. Then we showed that the set of magnetic fiber bundles is classified by the qu
space of integral matrices Mat(n,Z)/Sym(n,Z). We introduced connections into the fiber bund
and classified them by Mat(n,Z)3Rn/Sym(n,Z)3Zn as shown in~5.5!. The lifted translations
leaving the connection invariant form the magnetic translation group of~6.4!. We characterized the
MTG by ~6.18! with ~6.16!. This characterization of the MTG is one of main results of this artic
We found that the magnetic shift groupVn is discrete when the characteristic matrix (v2 tv) is
nondegenerated.

In the rest of the article we discussed the representation theory of the MTG forT3 in detail
and applied it to a few examples. The dimensions of an irreducible unitary representation is
by c in ~7.62! and each irreducible representation is labeled byx in ~7.65!. These results may be
useful for application to the electron system in a lattice in an inclined magnetic field. We b
described the representation theory of the MTG forTn and summarized the result in~8.30! and
~8.31!.

Here we would like to mention remaining problems. It is desirable to apply the represen
theory of the MTG to spectral analyses of the Laplace and Dirac operators. Originally the sp
problem of the quantum mechanics in a torus motivated this study. For this applicatio
Peter–Weyl theory on group representation will play an essential role. In the next study we
like to pursue the analysis of the Laplace operator in the torus with a magnetic field. Moreov
equilateral torus admits discrete transformations that exchange vertices of the torus and tha
the metric and the magnetic field invariant. It is also desirable to include such discrete tra
mations into the MTG for the complete spectral analysis.

By developing the theory of the MTG we will find its applications to physics. Inclusion of
supersymmetry into the MTG is an interesting direction for the future development. Saka
Tachibana, and Takenaga30,31 have pointed out that breaking of the translation symmetry cau
breaking of the supersymmetry because the supersymmetry includes the translation sym
Hence the magnetic field may trigger supersymmetry breaking. On the other hand, the MTG
n-torus is regarded as a generalization of the noncommutative torus, which attracted much
tion recently in the string theory.32 The B-field in a compactified space naturally induces a no
commutative structure, which is described by the MTG. Jackiw33 also showed that how the
noncommutative structure emerges in physical situations. If we turn our attention to solid
physics, we find another interesting application of the MTG also in this area. Tranquada34 ob-
served spontaneous formation of a charge density wave at a nonzero wave number in a
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oxide superconductor. This ordered state is called the stripe phase, in which the translatio
metry is broken. A similar stripe phase occurs commonly in a quantum Hall system.35 Application
of the MTG may help understanding of the stripe phases.

Note added in proof. After acceptance for publication of this article we obtained more str
results on the magnetic translation group inn dimensions. As concernsg i in ~8.1! andm i , n i in
~8.4!, we proved thatm i5n i51/g i . Consequently, the definition~8.7! means simply that
di5n i . Eq. ~8.29! is also simplified asci5n i . In ~8.31! the dimension of the irreducible repre
sentation becomes) i 51

l n i . Finally, the number of inequivalent reprenentations~8.32! is reduced to
one. As a corollary, we can show thatn15n25d5c51/g and hence,5dg51 in Sec. VII. More
strongly, we can prove thatn15GCD$b1,b2,b3% for the three-deimensional magnetic field. Proo
of these statements are to be published elsewhere.
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Theory and application of Fermi pseudo-potential
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The theory of interaction at one point is developed for the one-dimensional Schro¨-
dinger equation. In analog with the three-dimensional case, the resulting interaction
is referred to as the Fermi pseudo-potential. The dominant feature of this one-
dimensional problem comes from the fact that the real line becomes disconnected
when one point is removed. The general interaction at one point is found to be the
sum of three terms, the well-known delta-function potential and two Fermi pseudo-
potentials, one odd under space reflection and the other even. The odd one gives the
proper interpretation for thed8(x) potential, while the even one is unexpected and
more interesting. Among the many applications of these Fermi pseudo-potentials,
the simplest one is described. It consists of a superposition of the delta-function
potential and the even pseudo-potential applied to two-channel scattering. This
simplest application leads to a model of the quantum memory, an essential compo-
nent of any quantum computer. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1519940#

I. INTRODUCTION

There are several interrelated motivations for the present investigation. These are discu
the following.

It was realized several years ago that there are significant differences between scatte
one channel and scattering in two or more coupled channels.1 For this reason, it may be useful t
gain some experience in dealing with coupled channels in general.

The first question is: What is the simplest scattering problem in the case of coupled cha
Once this simplest problem is understood, it is reasonable to expect that many of its feature
also for more general situations. Clearly, for this simplest problem, the number of channels
be chosen to be the smallest, namely two, and the number of spatial dimensions should
chosen this way, namely one. Thus the scattering problem under consideration, in the
independent case, deals with the coupled Schro¨dinger equations

2
d2c1~x!

dx2 1V11~x!c1~x!1V12~x!c2~x!5k2c1~x!,

~1.1!

2
d2c2~x!

dx2 1V21~x!c1~x!1V22~x!c2~x!5k2c2~x!,

where the 232 matrix potential

a!Electronic mail: ttwu@deas.harvard.edu
b!Present address: Applied Materials, Inc., 3050 Bowers Ave., Santa Clara, CA 95054.
59490022-2488/2002/43(12)/5949/28/$19.00 © 2002 American Institute of Physics
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V~x!5FV11~x! V12~x!

V21~x! V22~x!
G ~1.2!

is such that it cannot be diagonalized simultaneously for allx.
What is the simplest possible choice for thisV(x)? In the case of one channel, the simple

potential is the one that is proportional to the Dirac delta-functiond(x2x0). This potential is
localized at the one pointx0 , and the corresponding Schro¨dinger equation is easy to solve. For tw
coupled channels, it is equally desirable to have the potential localized at one point, sax
50. However, it is not allowed to takeV(x) to be the product ofd(x) and a constant 232 matrix
because the diagonalization of this constant matrix decouples the channels.

What is needed, therefore, is another one-dimensional potential that is localized at one
With a linear combination ofd(x) and this new potential, the 232 matrix V(x) can be easily
chosen such that it cannot be diagonalized and, hence, the two channels do not decouple

There are many practical applications of the two-channel scattering problem in one d
sion. In this article, let us restrict ourselves to one such application that is of current interes
coupled channels can be used as a model for quantum memory; a natural approach to re
reading, and writing on a quantum memory is to use scattering from such a quantum mem

In trying to find this second potential that is localized at one point, it is not necessary to
the coupled Schro¨dinger equations~1.1!; it is sufficient to return to the simpler case of th
one-channel Schro¨dinger equation

F2
d2

dx2 1V~x!Gc~x!5k2c~x!. ~1.3!

A natural first guess for this second potential is the derivative of the Dirac delta-function
d8(x). However, the presence of thisd8(x) term in Eq.~1.3! implies that the wave function mus
be discontinuous at this pointx50. But the product ofd8(x) and a function discontinuous atx
50 is not well defined. Furthermore, even if thisd8(x) potential is well defined, it is not suitabl
for the first application to quantum memory. The reason for this will be discussed later in
article.

A more powerful method is needed to find this desired potential. It is useful here to reca
concept of the Fermi pseudo-potential in three dimensions, which can be written in the for

d3~r !
]

]r
r , ~1.4!

as given by Blatt and Weisskopf.2 The most far-reaching application of this Fermi pseudo-poten
is to the study of many-body systems, as initiated by Huang and Yang.3 For the ground-state
energy per particle of a Bose system of hard spheres, the low-density expansion is known

4parF11
128

15Ap
~ra3!1/218S 4p

3
2) D ra3 ln~ra3!1O~ra3!G . ~1.5!

In this expansion, the second term was first obtained by Lee and Yang4 using the method of binary
collision, but the derivation by Lee, Huang and Yang5 using the Fermi pseudo-potential is som
what simpler; the third term, which involves the logarithm, was first obtained by using the F
pseudo-potential.6 In the derivation of the third term, it was found inconvenient to use the fo
~1.4!, and thus a limiting process was reintroduced. This point will be of importance in this ar
Thus a great deal is known about the Fermi pseudo-potential in three dimensions.

A further motivation for this article is to develop the Fermi pseudo-potential for o
dimensional scattering. In many cases, once a theory has been developed for three dimen
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is straightforward to repeat the development for one dimension. In the present case of the
pseudo-potential, this is not the case. Furthermore, the result for one dimension seems
tively different from that for three dimensions.

For clarity of presentation, this article is organized into two parts: part A for the theory o
Fermi pseudo-potential in one dimension, and part B for its application to quantum comp
Needless to say, these two parts are closely related to each other. The sections are nu
consecutively throughout the paper.

PART A: THEORY OF ONE-DIMENSIONAL FERMI PSEUDO-POTENTIAL

II. INTERACTION AT ONE POINT

In the absence ofV, the Hamiltonian of Eq.~1.3! is

H052
d2

dx2 ~2.1!

for realx, where the right-hand side is suitably interpreted so that it is self-adjoint. Letk be purely
imaginary; define a real, positivek by

k52 ik. ~2.2!

For such ak, the Green’s function, or resolvent, for thisH0 satisfies the differential equation

S 2
d2

dx2 1k2DRk
(0)~x,x8!5d~x2x8!, ~2.3!

and is given explicitly by

Rk
(0)~x,x8!5~2k!21e2kux2x8u. ~2.4!

Let a potentialV be added to thisH0 to give

H5H01V, ~2.5!

which is also self-adjoint. Again fork positive, the Green’s function, or resolvent, for thisH
satisfies, similar to Eq.~2.3!,

~H1k2!Rk~x,x8!5d~x2x8!. ~2.6!

The interactionV is said to be at the one pointx0 if Eq. ~2.6! implies that Eq.~2.3!, with
Rk

(0)(x,x8) replaced byRk(x,x8), is satisfied for allx exceptx5x0 .
Because of translational symmetry, thisx0 is chosen to be 0 throughout this article. It is

consequence of Eq.~2.4! and the symmetry of the Green’s function that this definition of
interaction at one point implies

Rk~x,x8!5
1

2k
@e2kux2x8u2 f ~k;sgx,sgx8!e2k(uxu1ux8u)#, ~2.7!

where sgx and sgx8 mean the sign ofx and the sign ofx8, respectively.
Since Eq.~2.7! is the starting point for the present paper, this is the appropriate place to

the following comments.
~1! In the present case of one dimension, the real line with the pointx50 removed is not

connected. This is a qualitative difference between one dimension and higher dimensions.
~2! It is because of this property that thef in Eq. ~2.7! can depend on the signs ofx andx8.
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~3! In the three-dimensional case, the Fermi pseudo-potential can be obtained in the foll
way: Take the self-adjoint Hamiltonian2¹2, where¹2 is the three-dimensional Laplacian, an
restrict it to functions that are zero atr50; the self-adjoint extensions7 of this restricted operato
give the Fermi pseudo-potential, i.e., these self-adjoint extensions can be written as the
2¹2 and ~1.4! multiplied by a constant. Such a procedure applied to the case of one dime
does not give Eq.~2.7!.

It is useful to write out explicitly thef of Eq. ~2.7! as

f ~k;sgx,sgx8!55
f 1~k!, for x.0, x8.0,

f 2~k!, for x,0, x8.0,

f 3~k!, for x,0, x8,0,

f 4~k!, for x.0, x8,0,

~2.8!

following the four quadrants in thex2x8 plane. Note that all of thesef ’s are dimensionless.

III. RESOLVENT EQUATION

In view of Eq. ~2.7!, it is most convenient to study the resolvent equation in coordin
representation:

Rk1
~x,x8!2Rk2

~x,x8!1~k1
22k2

2!E
2`

`

dx9Rk1
~x,x9!Rk2

~x9,x8!50, ~3.1!

wherek1 andk2 are two values ofk.
The substitution of Eq.~2.7! into this resolvent equation~3.1! gives, after a lengthy calcula

tion,

1

k12k2
f ~k1 ;sgx,sgx8!1

1

k11k2
f ~k1 ;sgx,2sgx8!2

1

k12k2
f ~k2 ;sgx,sgx8!1

1

k11k2
f ~k2 ;

2sgx,sgx8!2
1

k11k2
@ f ~k1 ;sgx,2 ! f ~k2 ;2,sgx8!1 f ~k1 ;sgx,1 ! f ~k2 ;1,sgx8!#50

~3.2!

for k1Þk2 . This is the resolvent equation for the interaction at the pointx50 as defined in Sec
II.

Equation~3.2! has the following symmetry properties besides space reflection.
~1! Since f (k;sgx,sgx8) is dimensionless, there is no scale fork. Thus, Eq.~3.2! is invariant

under the scale change

k1→lk1 and k2→lk2 . ~3.3!

Note thatl is positive since thek’s are positive.
~2! There is an additional symmetry

f ~k;sgx,sgx8!→2sgxsgx8 f S 1

k
;sgx,sgx8D . ~3.4!

This discrete symmetry is going to play an important role in this article. In terms of thef j (k)
defined in Eq.~2.8!, this symmetry is

k→ 1

k
,
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f 1→2 f 1 , f 3→2 f 3 , ~3.5!

f 2→ f 2 , f 4→ f 4 .

The next task is to solve the resolvent equation~3.2! for f (k;sgx,sgx8). Since differential
equations are easier to deal with than difference equations, it is convenient to take the limk1

→k2 . In this limit, Eq. ~3.2! reduces to

d

dk
f ~k;sgx,sgx8!1

1

2k
@ f ~k;sgx,2sgx8!1 f ~k;2sgx,sgx8!#

2
1

2k
@ f ~k;sgx,2 ! f ~k;2,sgx8!1 f ~k;sgx,1 ! f ~k;1,sgx8!#50.

~3.6!

In terms of thef j (k) of Eq. ~2.8!, this differential equation~3.6! consists of the following four
equations by taking various signs forx andx8:

f 18~k!1
1

2k
@ f 2~k!1 f 4~k!#2

1

2k
@ f 2~k! f 4~k!1 f 1~k!2#50, ~3.7a!

f 28~k!1
1

2k
@ f 1~k!1 f 3~k!#2

1

2k
@ f 2~k! f 3~k!1 f 1~k! f 2~k!#50, ~3.7b!

f 38~k!1
1

2k
@ f 2~k!1 f 4~k!#2

1

2k
@ f 3~k!21 f 2~k! f 4~k!#50, ~3.7c!

f 48~k!1
1

2k
@ f 1~k!1 f 3~k!#2

1

2k
@ f 3~k! f 4~k!1 f 1~k! f 4~k!#50. ~3.7d!

An examination of these four differential equations shows the important role played b
combinationf 1(k)1 f 3(k), which appears twice in Eq.~3.7b! and twice in Eq.~3.7d!. Define
F(k) up to an additive constant by

F8~k!5
1

2k
@ f 1~k!1 f 3~k!#. ~3.8!

In terms of thisF(k), Eqs.~3.7b! and ~3.7d! take the form

f 28~k!1F8~k!2 f 2~k!F8~k!50; f 48~k!1F8~k!2 f 4~k!F8~k!50. ~3.9!

Integration of Eqs.~3.9! gives f 2(k) and f 4(k) in terms ofF(k):

f 2~k!511c2eF(k), f 4~k!511c4eF(k), ~3.10!

wherec2 andc4 are two arbitrary constants of integration. Similarly, subtracting Eq.~3.7c! from
Eq. ~3.7a! gives

d

dk
@ f 1~k!2 f 3~k!#5

1

2k
@ f 1~k!22 f 3~k!2#5F8~k!@ f 1~k!2 f 3~k!#, ~3.11!

or

f 1~k!2 f 3~k!52c3eF(k), ~3.12!
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wherec3 is another arbitrary constant of integration.
It remains to determineF(k), which satisfies the second-order ordinary differential equa

obtained from adding Eqs.~3.7a! and ~3.7c!:

2k
d

dk
k

d

dk
F~k!5Fk d

dk
F~k!G2

211~c3
21c2c4!e2F(k). ~3.13!

The solution of this equation is straightforward but somewhat lengthy and is thus relega
Appendix A.

The results are as follows:

f 1~k!5
2Ac3

21c2c42c1
2 @c0k1~c0k!21#22c3

Ac3
21c2c42c1

2 @c0k2~c0k!21#12c1

, ~3.14a!

f 2~k!512
2c2

Ac3
21c2c42c1

2@c0k2~c0k!21#12c1

, ~3.14b!

f 3~k!5
2Ac3

21c2c42c1
2@c0k1~c0k!21#12c3

Ac3
21c2c42c1

2@c0k2~c0k!21#12c1

, ~3.14c!

f 4~k!512
2c4

Ac3
21c2c42c1

2 @c0k2~c0k!21#12c1

, ~3.14d!

when

c3
21c2c42c1

2.0. ~3.15!

Similarly,

f 1~k!5
2Ac1

22c3
22c2c4@c0k2~c0k!21#22c3

Ac1
22c3

22c2c4@c0k1~c0k!21#12c1

, ~3.16a!

f 2~k!512
2c2

Ac1
22c3

22c2c4@c0k1~c0k!21#12c1

, ~3.16b!

f 3~k!5
2Ac1

22c3
22c2c4@c0k2~c0k!21#12c3

Ac1
22c3

22c2c4@c0k1~c0k!21#12c1

, ~3.16c!

f 4~k!512
2c4

Ac1
22c3

22c2c4@c0k1~c0k!21#12c1

, ~3.16d!

when

c3
21c2c42c1

2,0. ~3.17!

In Eqs. ~3.14! and ~3.16!, c0.0 and all square roots are also positive. Although there are
constantsc0 , c1 , c2 , c3 andc4 , effectively there are four because all the quantities do not cha
under

cj→lcj ~3.18!
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for j 51, 2, 3, 4, andl.0.
It remains to discuss briefly the case

c3
21c2c42c1

250. ~3.19!

This case, which was in fact the first case worked out and also the most important one as dis
in Sec. IV, can be recovered by taking the limitc3

21c2c42c1
2→0 together with eitherc0→0 or

c0→`. These two limiting cases are to be considered separately. For definiteness, they are
to Eqs.~3.16!.

~1! c3
21c2c42c1

2→0 andc0→0, such that

g5c0
21Ac1

22c3
22c2c4 ~3.20!

is fixed; g.0. In this limit,

f 1~k!5
g22c3k

g12c1k
, ~3.21a!

f 2~k!512
2c2k

g12c1k
, ~3.21b!

f 3~k!5
g12c3k

g12c1k
, ~3.21c!

f 4~k!512
2c4k

g12c1k
. ~3.21d!

~2! c3
21c2c42c1

2→0 andc0→`, such that

g5c0Ac1
22c3

22c2c4 ~3.22!

is fixed; g.0. In this limit,

f 1~k!5
2gk22c3

gk12c1
, ~3.23a!

f 2~k!512
2c2

gk12c1
, ~3.23b!

f 3~k!5
2gk12c3

gk12c1
, ~3.23c!

f 4~k!512
2c4

gk12c1
. ~3.23d!

Note that Eqs.~3.21! and~3.23! are related by the discrete symmetry~3.5! provided that the sign
of c3 is reversed. The same results also follow from Eqs.~3.14!.

IV. INTERACTION POTENTIALS

Naively, one would expect it to be straightforward to determine the potential when the Gr
function ~resolvent! is known. It does not turn out to be so straightforward, and this sectio
devoted to solving this problem.

The substitution of Eqs.~2.1! and ~2.5! into Eq. ~2.6! gives
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V~x!Rk~x,x8!5d~x2x8!2S 2
d2

dx2 1k2DRk~x,x8!, ~4.1!

or

V~x!Rk~x,x8!52S 2
d2

dx2 1k2D @Rk~x,x8!2Rk
(0)~x,x8!#, ~4.2!

with the last term defined by Eq.~2.3! or ~2.4!. This should determineV(x); that thisV(x) does
not depend onk is a consequence ofRk(x,x8) satisfying the resolvent equation.

More generally, the left-hand side of Eq.~4.2! may be an integral, and this equation takes
form

E
2`

`

dx9V~x,x9!Rk~x9,x8!52S 2
d2

dx2 1k2D @Rk~x,x8!2Rk
(0)~x,x8!#. ~4.3!

If V(x) exists, then

V~x,x8!5V~x!d~x2x8!. ~4.4!

Since Eq.~4.2! is simpler than Eq.~4.3!, it is useful to study Eq.~4.2! first even though it is
less general. The substitution of Eq.~2.7! into Eq. ~4.2! gives

V~x!Rk~x,x8!5
1

2k S 2
d2

dx2 1k2D f ~k;sgx,sgx8!e2k(uxu1ux8u). ~4.5!

The difficulty is to give a proper interpretation to this equation. The right-hand side conta
term

f ~k;sgx,sgx8!d~x!e2kux8u, ~4.6!

obtained by applying the differential operator to the exponential. As seen from Eqs.~3.14! for
example, this expression~4.6! is in general the product ofd(x) and a function discontinuous a
x50. The only reasonable interpretation of such a product is

a~x!d~x!5
1

2 F S lim
x→01

1 lim
x→02

Da~x!Gd~x!. ~4.7!

As mentioned above, there are effectively four parameters in the solutions as given by
Eqs. ~3.14! or Eqs.~3.16!. Since the symmetry of the Green’s function implies thatc25c4 , the
number of parameters is reduced by 1. Therefore, the potentialV(x,x8) depends onthreeparam-
eters. That there are three parameters instead of two is a major surprise, and this fact is to
central role in part B of this article, where this interaction potential is applied to study ce
aspects of quantum computing.

The three pieces ofV(x,x8) are of different levels of complication. They are studied in t
following three subsections.

A. d„x … potential

The simplest piece is the well-knownd(x) potential, where

V1~x!5g1d~x!, ~4.8!

and

V1~x,x8!5g1d~x!d~x2x8!, ~4.9!
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or equivalently

V1~x,x8!5g1d~x!d~x8!. ~4.10!

For this potential, the differential equation~2.6! is well defined. Its solution is

Rk~x,x8!5
1

2k Fe2kux2x8u2
g1

2k1g1
e2k(uxu1ux8u)G . ~4.11!

Comparison with Eq.~2.7! gives

f ~k;sgx,sgx8!5
g1

2k1g1
, ~4.12!

independent of the signs ofx andx8. By Eq. ~2.8!, this is

f 1~k!5 f 2~k!5 f 3~k!5 f 4~k!5
g1

2k1g1
. ~4.13!

This is a special case of Eqs.~3.21! with

c15c25c45
g

g1
and c350. ~4.14!

It is instructive to recover Eq.~4.8! from Eq. ~4.12! by using Eq.~4.5!. Sincef (k;sgx,sgx8)
does not depend on the signs ofx andx8, Eq. ~4.5! gives

V~x!5F g1

2k1g1
d~x!e2kux8uG Y H 1

2k Fe2kux2x8u2
g1

2k1g1
e2k(uxu1ux8u)G J 5g1d~x!.

~4.15!

This V(x) is even inx.

B. d8„x … potential

As already discussed in Sec. I, the potentiald8(x) is not acceptable because, in the Sch¨-
dinger equation, there is a product ofd8(x) and a function discontinuous atx50. While d(x) is
a potential,d8(x) has to be understood as a Fermi pseudo-potential in much the same way
expression~1.4! in three dimensions.

Sinced8(x) is odd inx, the resolvent must satisfy

f 1~k!52 f 3~k! and f 2~k!5 f 4~k!. ~4.16!

Next, consider theformal Eq. ~2.6! with this d8(x) potential

F2
d2

dx2 1g2d8~x!1k2GRk~x,x8!5d~x2x8!. ~4.17!

Since every term on the left-hand side is of dimensionx22 times that ofRk(x,x8), the resolvent
Rk(x,x8) must be of the form

k21 function of kx and kx8.

A comparison with Eq.~2.7! then shows thatf (k;sgx,sgx8) is independent ofk. This is satisfied
with
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f 1~k!5a, f 3~k!52a, and f 2~k!5 f 4~k!52b, ~4.18!

with

2b1a21b250. ~4.19!

With the resolvent known, it is now possible to define the Fermi pseudo-potential

V2~x!5g2dp8~x!. ~4.20!

Omitting the argumentk in f , Eq. ~4.5! takes the form

g2dp8~x!Rk~x,x8!5
1

2k S 2
d2

dx2 1k2D f ~sgx,sgx8!e2k(uxu1ux8u). ~4.21!

Let x8 be positive. Then

S 2
d2

dx2 1k2D f ~sgx,sgx8!e2kuxu52~ f 12 f 2!d8~x!1k~ f 11 f 2!d~x!. ~4.22!

This expression has not only ad8(x) term, but also ad(x) term. For the left-hand side of Eq
~4.21!, it is necessary to evaluate, using Eq.~4.7!,

Rk~x,x8!ux505@e2k(x82x)2 f ~sgx,1 !e2k(uxu1x8)#x50

5e2kx8@12 1
2 ~ lim

x→01

1 lim
x→02

! f ~sgx,1 !e2kuxu#5e2kx8@12 1
2 ~ f 11 f 2!#

~4.23!

and

d

dx
@e2k(x82x)2 f ~sgx,1 !e2k(uxu1x8)#x505k@e2k(x82x)1~sgx! f ~sgx,1 !e2k(uxu1x8)#x50

5ke2kx8@11 1
2 ~ lim

x→01

1 lim
x→02

!~sgx! f ~sgx,1 !e2kuxu#

5ke2kx8@11 1
2 ~ f 12 f 2!#. ~4.24!

Suppose thedp8(x) on the left-hand side of Eq.~4.21! is replaced byd8(x). Then a comparison
of Eq. ~4.22! with Eqs.~4.23! and ~4.24! gives

g2@12 1
2~ f 11 f 2!#5 f 12 f 2 ; g2@11 1

2~ f 12 f 2!#5 f 11 f 2 , ~4.25!

where the identityxd8(x)52d(x) has been used. These are the conditions forx8.0; similar
conditions forx8,0 are

g2@12 1
2~ f 41 f 3!#5 f 42 f 3 ; g2@211 1

2~ f 42 f 3!#5 f 41 f 3 . ~4.26!

Solving Eqs.~4.25! and ~4.26! gives

f 15
g2

11g2
2/4

; f 35
2g2

11g2
2/4

; f 25 f 45
g2

2/2

11g2
2/4

. ~4.27!
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This is consistent with the previous Eqs.~4.18! and ~4.19!.
Where is the difficulty explained in Sec. I? Another way of asking the same question is:

doesdp8(x) differ from d8(x)?
The answer is to be found in the first step of Eq.~4.24!. In differentiating the quantity on the

left-hand side of Eq.~4.24!, the factorf (sgx,1) is not differentiated. In other words, the term wi
(d/dx) f (sgx,1) has been omitted; if this term were not omitted, there would be ad(x), precisely
the difficulty explained in Sec. I.

The situation is therefore entirely similar to the Fermi pseudo-potential in three dimens
where the operator~1.4! performs the function of removing a term proportional to 1/r . Here, what
dp8(x) does is

dp8~x!g~x!5d8~x!g̃~x!, ~4.28!

where

g̃~x!5H g~x!2 lim
x→01

g~x!, for x.0,

g~x!2 lim
x→02

g~x!, for x,0.
~4.29!

This removes the discontinuity ofg(x) at x50, which is precisely what is needed.

C. Third potential

At the beginning of this investigation it was thought that, in one dimension, there was
potential~Sec. IV A! and one pseudo-potential~Sec. IV B!. But the detailed analysis of the reso
vent equation in Sec. III shows that there are three independent parameters in the resolve
hence there is an independent third potential, or a second pseudo-potential in one dimens

This third potential is most easily understood through the discrete symmetry~3.4!. Let c
52/g1 . Then, from Eq.~4.13!, the resolvent for thed(x) potential is given by

f 1~k!5 f 2~k!5 f 3~k!5 f 4~k!5
1

11ck
. ~4.30!

Application of the discrete symmetry~3.4! to Eq. ~4.30! gives the result that the resolvent for th
third potential is expressed by

f 1~k!5 f 3~k!5
2k

k1c
; f 2~k!5 f 4~k!5

k

k1c
. ~4.31!

In particular, similar to the resolvent of the first pseudo-potential as given by Eq.~4.27!, this
resolvent is also not continuous. The relation between the resolvents as expressed by Eqs~4.30!
and ~4.31! is a special case of that between Eqs.~3.21! and ~3.23!.

It remains to determine the potential, or more precisely the pseudo-potential, from Eq.~4.31!,
which can be written more succinctly as

f ~k;sgx,sgx8!52
k

k1c
sgxsgx8. ~4.32!

Therefore, for the present case of the third potentialV3(x,x8), Eq. ~4.3! takes the form
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E
2`

`

dx9V3~x,x9!Fe2kux92x8u1
k

k1c
sgx9sgx8e2k(ux9u1ux8u)G

5
k

k1c S 2
d2

dx2 1k2D @sgxsgx8e2k(uxu1ux8u)#. ~4.33!

Differentiation of the right-hand side gives

d

dx
@sgxe2kuxu#52d~x!2ke2kuxu,

and hence

S 2
d2

dx2 1k2D @sgxe2kuxu#522d8~x!. ~4.34!

Thus Eq.~4.33! for V3(x,x8) is explicitly

E
2`

`

dx9V3~x,x9!Fe2kux92x8u1
k

k1c
sgx9sgx8e2k(ux9u1ux8u)G52

2k

k1c
d8~x!sgx8e2kux8u.

~4.35!

The task is to make sense of this equation and to determineV3(x,x8).
That the resolvent equation is satisfied means that Eq.~4.35!, properly understood, does lea

to a V3(x,x8). By Eqs.~4.28! and ~4.29!, the d8(x) on the right-hand side of Eq.~4.35! can be
replaced bydp8(x), because it is not multiplied by a discontinuous function ofx. Therefore,
V3(x,x8) is expected to be proportional todp8(x); thatdp8(x) is used instead ofd8(x) is due to the
development in Sec. IV B. With these considerations, an examination of Eq.~4.35! indicates that

V3~x,x8!5g3dp8~x!dp8~x8!. ~4.36!

See also Eq.~4.20!.
It remains to substitute Eq.~4.36! into Eq.~4.35! to find the relation between the two constan

g3 andc:

g3E
2`

`

dx9dp8~x9!Fe2kux92x8u1
k

k1c
sgx9sgx8e2k(ux9u1ux8u)G52

2k

k1c
sgx8e2kux8u. ~4.37!

The evaluation of the first integral is straightforward becausee2kux92x8u is continuous:

E
2`

`

dx9dp8~x9!e2kux92x8u5E
2`

`

dx9d8~x9!e2kux92x8u52ksgx8e2kux8u. ~4.38!

After the removal of the common factor

ksgx8e2kux8u,

Eq. ~4.37! reduces to

g3F211
1

k1c E2`

`

dx9dp8~x9!sgx9e2kux9uG52
2

k1c
. ~4.39!

This integral can be evaluated using Eqs.~4.28! and ~4.29!:
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E
2`

`

dx9dp8~x9!sgx9e2kux9u52E
2`

`

dx9d~x9!sgx9
d

dx9
e2kux9u5k. ~4.40!

Therefore, Eq.~4.39! is simply

g3F211
k

k1cG52
2

k1c
or g35

2

c
. ~4.41!

This is the desired relation.
It is merely a matter of terminology whether this pseudo-potentialV3(x,x8) as given by Eq.

~4.36! is called a local potential or not. It is a local potential if the definition is used that
support is the same before and after operating withV3(x,x8).

In summary, the three potentialsV1 , V2 , andV3 are given by Eqs.~4.8!, ~4.20!, and~4.36!.
Thus the most general Fermi pseudo-potential for the interaction at one point in one dimen

V~x,x8!5V1~x,x8!1V2~x,x8!1V3~x,x8!

5g1d~x!d~x2x8!1g2dp8~x!d~x2x8!1g3dp8~x!dp8~x8!. ~4.42!

From the above experience of working withdp8(x) and the fact that the product ofd8(x) and
a function discontinuous atx50 is not meaningful, from here on the convention will be adop
that d8(x) always meansdp8(x). With this convention, Eq.~4.42! is written as

V~x,x8!5g1d~x!d~x2x8!1g2d8~x!d~x2x8!1g3d8~x!d8~x8!. ~4.43!

Equation~4.43! can be rewritten in a prettier form as follows. Since

d~x!d~x2x8!5d~x!d~x8!

and

d8~x!d~x2x8!5d8~x!d~x82x!5d8~x!@d~x8!2xd8~x8!#5d8~x!d~x8!1d~x!d8~x8!,
~4.44!

where use has been made of the identityd8(x)x52d(x), a general Fermi pseudo-potential~4.43!
can be written as

V~x,x8!5g1d~x!d~x8!1g2@d8~x!d~x8!1d~x!d8~x8!#1g3d8~x!d8~x8!. ~4.45!

As already mentioned, the first and last terms are even while the middle term is odd. That is,
space inversion

x→2x and x8→2x8, ~4.46!

the coupling constants transform as

g1→g1 ; g2→2g2 ; g3→g3 . ~4.47!

V. SOLVING THE SCHRÖDINGER EQUATION

In applying the Fermi pseudo-potential to various problems, such as the one to be trea
part B of this article, the resolvent equation is difficult to use and it is much more convenie
employ the prescription of Sec. IV to the Schro¨dinger equation.

This section is devoted to studying the equation
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S 2
d2

dx2 1k2DRk~x,x8!1E
2`

`

dx9V~x8,x9!Rk~x9,x8!5d~x2x8!, ~5.1!

whereV(x,x8) is the Fermi pseudo-potential as given by Eq.~4.42!. On the one hand, this is a
equation for thisV(x,x8). On the other hand, the procedure of this section is directly applicab
the Schro¨dinger equation, which differs from Eq.~5.1! only in the absence of thed(x2x8) term
on the right-hand side.

This section serves two distinct purposes. First, the parameters in the known resolvent
III, especially Eqs.~3.14! and~3.16!, are to be related to the coupling constantsg1 , g2 , andg3 in
Eq. ~4.42!. This will give an explicit verification of consistency of the prescriptions given in S
IV. Second, the procedure to be followed here serves as a useful introduction to the slightly
complicated problem of the next section, where a two-channel scattering by a Fermi ps
potential is taken to be a model for a quantum memory.

The solutionRk(x,x8) is given, as in the general case, by Eq.~2.7!. The substitution of Eq.
~2.7! into Eq. ~5.1! gives

S 2
d2

dx2 1k2D F2
1

2k
f ~k;sgx,sgx8!e2k(uxu1ux8u)G1E

2`

`

dx9V~x,x9!Rk~x9,x8!50. ~5.2!

Since the first term has been evaluated by Eq.~4.22!, Eq. ~5.2! can be written alternatively as

2kE
2`

`

dx9V~x,x9!Rk~x9,x8!

5e2kux8uH $2@ f 1~k!2 f 2~k!#d8~x!1k@ f 1~k!1 f 2~k!#d~x!%, for x8.0

$2@ f 4~k!2 f 3~k!#d8~x!1k@ f 4~k!1 f 3~k!#d~x!%, for x8,0.
~5.3!

Using the knowledge gained from Sec. IV, a fairly lengthy calculation gives more explicitly

@g1d~x!1g2d8~x!#e2kux8uH $12 1
2 @ f 1~k!1 f 2~k!#%, for x8.0

$12 1
2 @ f 4~k!1 f 3~k!#%, for x8,0

1@g2d~x!1g3d8~x!#ke2kux8uH $211 1
2 @2 f 1~k!1 f 2~k!#%, for x8.0

$11 1
2 @2 f 4~k!1 f 3~k!#%, for x8,0

5e2kux8uH $2@ f 1~k!2 f 2~k!#d8~x!1k@ f 1~k!1 f 2~k!#d~x!%, for x8.0

$2@ f 4~k!2 f 3~k!#d8~x!1k@ f 4~k!1 f 3~k!#d~x!%, for x8,0,

~5.4!

where Eq.~4.45! has been used. In Eq.~5.4!, all dependences onx8 cancel out. It therefore only
remains to identify the coefficients ofd(x) andd8(x). The results are

g1$12 1
2 @ f 1~k!1 f 2~k!#%1kg2$211 1

2 @2 f 1~k!1 f 2~k!#%5k@ f 1~k!1 f 2~k!#, ~5.5a!

g2$12 1
2 @ f 1~k!1 f 2~k!#%1kg3$211 1

2 @2 f 1~k!1 f 2~k!#%52@ f 1~k!2 f 2~k!#, ~5.5b!

g1$12 1
2 @ f 4~k!1 f 3~k!#%1kg2$11 1

2 @2 f 4~k!1 f 3~k!#%5k@ f 4~k!1 f 3~k!#, ~5.5c!

g2$12 1
2 @ f 4~k!1 f 3~k!#%1kg3$11 1

2 @2 f 4~k!1 f 3~k!#%52@ f 4~k!2 f 3~k!#. ~5.5d!

Solving Eqs.~5.5! gives

f 1~k!5D21@2g3k12g22g1k21#, ~5.6a!
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f 3~k!5D21@2g3k22g22g1k21#, ~5.6b!

f 2~k!5 f 4~k!511D21 1
2~41g1g32g2

2!, ~5.6c!

where

D5g3k2 1
2~42g1g31g2

2!2g1k21. ~5.7!

Equations~5.6! are to be compared with Eqs.~3.14! and ~3.16!. First, this gives a deepe
understanding why there are the two distinct cases~3.14! and~3.16!. Equations~3.14! correspond
to the situation whereg1 andg3 have the same sign, while Eqs.~3.16! correspond tog1 andg3

having opposite signs. Second, in both cases, it is seen immediately from Eqs.~5.6! that c2

5c4 , a fact that has been used before. The results of expressing the fivec’s in terms of the three
g’s are the following:

c05Aug3 /g1u, ~5.8!

c15 1
4~42g1g31g2

2!, ~5.9a!

c25c45 1
4~41g1g32g2

2!, ~5.9b!

c35g2 . ~5.9c!

Here use has been made of the scale invariance~3.18!. @Strictly speaking, the right-hand sides o
the three Eqs.~5.9a!–~5.9c! should all be multiplied by the factor sgg3 . This factor has been
omitted because it has no consequences.#

For completeness and also for later use, let the scattering matrix be written down
involves returning to the more familiar variablek through Eq.~2.2! and then lettingx8→6`.
After analytic continuation to positive values ofk, theS-matrix is a 232 matrix,

S5FS11 S12

S21 S22
G , ~5.10!

where1 denotes propagation in the1x direction, and2 in the2x direction. For any interaction
at the pointx50, it follows from Eqs.~2.7! and ~2.8! that

S5F12 f ~2 ik;1,2 ! 2 f ~2 ik;2,2 !

2 f ~2 ik;1,1 ! 12 f ~2 ik;2,1 !
G5F12 f 4~2 ik ! 2 f 3~2 ik !

2 f 1~2 ik ! 12 f 2~2 ik !
G . ~5.11!

Equations~5.6! and ~5.7! then give explicitly

S5@ ig3k1 1
2 ~42g1g31g2

2!1 ig1k21#21F 1
2 ~41g1g32g2

2! ig3k22g22 ig1k21

ig3k12g22 ig1k21 1
2 ~41g1g32g2

2!
G ,

~5.12!

which is unitary.
An interesting special case is that withg250; in this case, the pseudo-potential is even a

there is left–right symmetry. Explicitly, in this caseg250, theS-matrix is

S5@ ig3k1 1
2 ~42g1g3!1 ig1k21#21F 1

2 ~41g1g3! ig3k2 ig1k21

ig3k2 ig1k21 1
2 ~41g1g3!

G . ~5.13!
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This special caseg250, generalized to the case of coupled channels, is going to play a centra
in part B of this article.

This completes the present discussion of the theory of Fermi pseudo-potential in one d
sion. Attention is now turned to the first application of this theory.

PART B: APPLICATION OF ONE-DIMENSIONAL FERMI PSEUDO-POTENTIAL

VI. MODEL FOR QUANTUM MEMORY

There are many possible applications of the Fermi pseudo-potential in one dimension.
example, it is intriguing to ask under what conditions Bethe’s hypothesis8,9 still holds when the
delta-function potential is replaced by theV(x,x8) of Eq. ~4.42!. As a first application, however
it is more desirable to begin with a case where the Fermi pseudo-potential is used in a rel
simple situation of current interest.

For decades, computer components have become smaller and smaller, and this tren
pected to continue.10 When some of the components become sufficiently small, as to be exp
in the not-too-distant future, they need to be described in general by quantum mechani
matter how quantum computing is to develop in the future, one important component is nec
ily the quantum memory, sometimes called the quantum register. The main function of any
tum memory is to store a quantum state.

In order for a quantum memory to be useful, it must be possible to alter the quantum s
the memory in a controlled way. This can only be accomplished by sending a signal from o
of the memory. In other words, the quantum state in the memory is to be controlled by a sca
process.11

It is the purpose of Sec. VI to propose a simple model for quantum memory. First, in ord
have scattering processes, at least one space dimension is necessary. Otherwise there is
bility of interference between the incident wave and the scattered wave. As perhaps to
pected, this interference is of central importance. Since the state in the memory must inc
least two independent quantum states, it is simplest to describe the quantum memory us
coupled Schro¨dinger equations for two channels. This is essentially Eq.~1.1! in the Introduction.

It remains to make the simplest choice for the 232 matrix potentialV(x) of Eq. ~1.2!. This
simplest choice, the Fermi pseudo-potential in one dimension, has been investigated sys
cally in part A of this article, the general result being given by Eq.~4.42!.

The symmetry properties of thisV(x,x8) under space inversion have been discussed at the
of Sec. IV. In particular, it is symmetrical ifg250. In order for the model to be suitable fo
quantum memory, it is essential to concentrate on this special case. The reason is that, only
case, do the even wave coskx and the odd wave sinkx not mix. This is also the basis for th
comment in the Introduction, after Eq.~1.3!, why thed8(x) potential is not suitable for quantum
memory. That this absence of mixing is important is discussed further in Sec. VII for a
general setting.

With this understanding and choice, the present model for the quantum memory is des
by the one-dimensional coupled Schro¨dinger equations

2
d2c1~x!

dx2 1E
2`

`

dx8@V11~x,x8!c1~x8!1V12~x,x8!c2~x8!#5k2c1~x!,

~6.1!

2
d2c2~x!

dx2 1E
2`

`

dx8 @V21~x,x8!c1~x8!1V22~x,x8!c2~x8!#5k2c2~x!,

with the 232 matrix potential

V~x,x8!5FV11~x,x8! V12~x,x8!

V21~x,x8! V22~x,x8!
G5Fg3d8~x!d8~x8! g1d~x!d~x8!

g1d~x!d~x8! 2g3d8~x!d8~x8!
G . ~6.2!
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A more elegant way to write this potential is

V~x,x8!5g1d~x!d~x8!s11g3d8~x!d8~x8!s3 , ~6.3!

where thes’s are the Pauli matrices.
When g250, the potentialg1d(x)d(x8) does not act on the odd wave, and similarly t

potentialg3d8(x)d8(x8) does not act on the even wave. The first part of this claim is eas
obtain, and the second part follows from the definition~4.28! of dp8(x). Alternatively, they can be
seen from Eq.~5.13!, whereS115S22 andS125S21 . For the even wave, the scattering pha
shift is given by

S111S125
2k2 ig1

2k1 ig1
~6.4!

independent ofg3 , while, for the odd wave, it is

S112S125
22 ig3k

21 ig3k
~6.5!

independent ofg1 . Therefore, for the present case of two coupled channels as described b
~6.1! and ~6.2!, the S-matrix for the even and odd cases can be expressed in terms of
quantities as follows. Consider first the case for the odd wave; since theg1 term does not con-
tribute and can be neglected, theV(x,x8) of Eq. ~6.2! effectively reduces to

V~x,x8!5Fg3d8~x!d8~x8! 0

0 2g3d8~x!d8~x8!
G , ~6.6!

which is diagonal, meaning thatc1(x) andc2(x) do not couple. Since the behaviors of the tw
channels differ only in the sign ofg3 , theS-matrix for this odd case is given by Eq.~6.5!, or more
explicitly

S2~k!5F 22 ig3k

21 ig3k
0

0
21 ig3k

22 ig3k

G . ~6.7!

It is instructive to rewrite this expression in terms ofs3 :

S2~k!5
~42g3

2k2!24ig3ks3

41g3
2k2 5expF2 is3S 2 tan21

g3k

2 D G . ~6.8!

For the even wave, it is merely necessary to replace the right-hand side of Eq.~6.5! by that of Eq.
~6.4!, and alsos3 by s1 . Therefore Eq.~6.8! leads to

S1~k!5
~4k22g1

2!24ig1ks1

4k21g1
2 5expF2 is1S 2 tan21

g1

2kD G ~6.9!

or
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S1~k!5F 4k22g1
2

4k21g1
2

24ig1k

4k21g1
2

24ig1k

4k21g1
2

4k22g1
2

4k21g1
2
G . ~6.10!

When neitherg1 nor g3 is zero, any given elementS of SU~2! can be expressed as a finite produ
of S1(k) andS2(k), i.e.,

S5S~k1!S~k2!¯S~km!, ~6.11!

where eachS(ki) is suitably chosen asS1(ki) or S2(ki).
In the language of scattering theory, the meaning ofS1(k) is as follows.@The meaning of

S2(k) is similar.# The in field is

C in5Fa1
in

a2
inGe2 ikuxu, ~6.12!

while the out field is

Cout5Fa1
out

a2
outGeikuxu. ~6.13!

Then

Fa1
out

a2
outG5S1~k!Fa1

in

a2
inG . ~6.14!

In other words, the quantum state in the memory is@
a

2
in

a1
in

# before scattering, and@
a

2
out

a1
out

# after scatter-

ing. These states before and after scattering are related by Eq.~6.14!.
For any memory, classical or quantum, the basic operations arewrite, read, andreset. Of these

three operations, writing is the simplest: Given the initial state@
a

2
in

a1
in

# and the desired final stat

@
a

2
out

a1
out

#, there is a desiredS-matrix S. Express this particularS by Eq.~6.11! as a finite product; then

the writing is accomplished by a sequence of thesem scatterings.

The question may be asked: While the final state@
a

2
out

a1
out

# is the desired state to be stored in t

quantum memory, how can one know what the initial state@
a

2
in

a1
in

# is? This is where the idea of

standard states is needed. ‘‘Resetting’’ means changing the content of the quantum mem
whatever it is, to the standard states. For writing, the initial state is the standard state, i.e.,

Fa1
in

a2
inG5s. ~6.15!

In other words, before writing on a quantum memory, it is first reset so that Eq.~6.15! is satisfied.
The standard state can be chosen to be any quantum state; however, once chosen, the
rarely altered.

Since scattering from a quantum memory leads to a unitary transformation of the qua
state in the memory, resetting cannot be accomplished without first finding out the content
quantum memory. In other words, the first step of ‘‘resetting’’ is ‘‘reading.’’ After the conten
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the quantum memory is known, say@
a

2
in

a1
in

#, ‘‘resetting’’ involves finding a sequence of scatterin

S(kj ), j 51,2,. . . ,m, via Eq. ~6.11! such that the resultingS has the property

SFa1
in

a2
inG5s. ~6.16!

In summary, if ‘‘reading’’ can be accomplished, then so can ‘‘resetting;’’ if ‘‘resetting’’ can
accomplished, so can ‘‘writing.’’

The main task here is therefore to discuss, within the present model, the operation of r
a quantum memory. More precisely, what is involved is the following. When the quantum st

a memory,@
a

2
in

a1
in

#, is not known, find a suitably chosen sequence of incident waves coskix or sinkix

such that the knowledge about the field can be used to determine the values ofa1
in anda2

in . After

this determination, the quantum memory is returned to the initial state@
a

2
in

a1
in

#. ~The last step is

similar to the classical case in which a core memory is read from an initial state and then re
to it.!

Let the quantum state in the memory be@a2

a1#; the problem is to determine the values ofa1 and

a2 by scattering from this state. Suppose an odd wave is used for the first scattering; th
two-component wave function forx.0 is given explicitly by

c~x!5Fc1~x!

c2~x!G5Fa1

a2
Ge2 ikx1F a1eif2

a2e2 if2Geikx, ~6.17!

where, by Eq.~6.8!,

f2522 tan21 1
2g3k. ~6.18!

In particular,

c~x!†c~x!52@11cos 2kx cosf22~ ua1u22ua2u2!sin 2kx sinf2#, ~6.19!

becauseua1u21ua2u251. Therefore, this scattering process gives, through the interference
the quantity

A15ua1u22ua2u2. ~6.20!

Similarly, if the quantum state in the memory is first returned to the original state by a su
scattering, then a second scattering with an even wave gives, again through the interferenc
the second quantity

A25 1
2@ ua11a2u21ua12a2u2#52 Rea1* a2 . ~6.21!

These two quantities,A1 andA2 , are sufficient to determine the values of the complex numbera1

anda2 , except for a common phase. In order to determine this common phase, it is simplest
the known standard states. For example, a further interference with this standard state using,
the odd wave gives a third quantity

A35ua11s1u22ua21s2u2. ~6.22!

Sinces1 ands2 are known, these three quantitiesA1 , A2 andA3 determinea1 anda2 . Returning
once more to the original quantum state presents no problem.

This completes the description of the present model of the quantum memory, includin
operations of writing, reading, and resetting.
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The advantages of this model, based on the Fermi pseudo-potential in one dimension,
simplicity and its being completely explicit. On the one hand, such an explicit model play
essential role in the initial understanding of some aspects of a new problem. On the other ha
usefulness of such a model really lies in the possibility of opening a line of inquiry into t
aspects. This is to be discussed in some detail in the next section. That is, in Sec. VII an a
is to be made to present a general picture concerning the quantum memory, emphasiz
operations of writing, reading, and resetting, all accomplished by repeated scattering.

Some simplifying assumptions introduced in the model of this section are clearly not ne
in the general setting of the next section. An example is the choice of using the Fermi ps
potentialV(x,x8) of Eq. ~6.2!; another one is the use of the Schro¨dinger equation~6.1! in one
dimension. Thus the generalization to the Schro¨dinger equation in three dimensions with a mo
general potential is immediate but the results are less explicit. The further generalizat
renormalized quantum field theory also does not present any obstacle.

What is less clear, and most important, is the role played by the conditiong250, used
throughout this section. This condition is closely related to, and makes it possible to use, th
waves and the odd waves. In order to appreciate this point, take instead the incoming wave
from the direction of the2x axis, i.e.,

C in5Fa1
in

a2
inGe2 ikx. ~6.23!

This is a superposition of an even wave and an odd wave. Since the Schro¨dinger equation is linear
the even part is operated on by theS1(k) of Eq. ~6.10!, and the odd part by theS2(k) of Eq. ~6.7!.
Sinceg1 andg3 are not zero and thus theseS1(k) andS2(k) are not equal, the quantum state
the memory for an outgoing wave in the1x direction is different from that for an outgoing wav
in the 2x direction. In other words, in order to determine the quantum state in the memory
scattering with theC in of Eq. ~6.23!, it is necessary to detect the direction of the outgoing wa

In order for a quantum memory to behave as a memory, i.e., as the storage for a quantum
it is essential that what is in the memory does not depend on the behavior of the scattered
Indeed, from the point of view of scattering theory, this characterizes quantum memories. T
fore, for the present model with the Fermi pseudo-potential, some incident waves, such as th
wave and the odd wave, are acceptable or ‘‘admissible,’’ while many others, such ase2 ikx of Eq.
~6.23!, are not ‘‘admissible.’’

This concept of admissible incident waves is central, not only for the present model bu
in general. This is the first topic to be discussed in the next section.

VII. GENERALIZATION

It is the purpose of this section to give a general description of quantum memories. Thi
be accomplished by extracting the dominant features from the model of Sec. VI on the basis
Fermi pseudo-potential in one dimension.

In order to extract the dominant features, consider first the following two generalization
first one obvious and the second one less so.

First, that the potential is the Fermi pseudo-potential is not necessary. In other word
matrix potentialV(x,x8) of Eq. ~6.2! can take a fairly general form. Thatg2 is zero translates into
the condition that thisV(x,x8) is symmetrical, i.e.,

V~2x,2x8!5V~x,x8!

in general.
Second, that the model is one-dimensional is not essential. For example, the model ca

two-channel scattering in three-dimensional space. In this case, theV(x,x8) is replaced by anothe
232 matrix potentialV(r ,r 8), while the symmetry of theV(x,x8) becomes the condition that thi
V(r ,r 8) is rotationally symmetrical.
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While this rotational symmetry is probably not necessary, this symmetry does play an im
tant role. In the one-dimensional case studied in detail in Sec. VI, the symmetry of theV(x,x8),
coming fromg250, makes it possible to use the even wave and the odd wave. Similarly, in
dimensions, the rotational symmetry ofV(r ,r 8) makes it possible to use partial waves: the vario
partial waves do not couple so that each partial in wave leads to only the corresponding par
wave.

Consider now the more general setting. Let the quantum memory be in a pure state( jaj u j &,
whereu j & is a complete set of linearly independent states for the memory. The standard stas is
a particular linear combination of theseu j &. Let c denote the wave function sent in from th
outside to interact with the quantum memory; then the in field for the scattering process o
memory is

C in5S (
j

aj
inu j & Dc in. ~7.1!

An example ofC in is given by Eq.~6.23!. It should be emphasized thatc in is at our disposal to
accomplish whatever the purpose of this scattering is.

It is the fundamental characteristic of the scattering from a quantum memory that not o
the in fieldC in of the form of Eq.~7.1!, but also the out field is of a similar form,

Cout5S (
j

aj
outu j & Dcout. ~7.2!

For the special model of Sec. VI, this important point has been discussed near the end
section. For the present generalization, it is worked out in detail in Appendix B. As already
in Sec. VI, Eq.~7.2! puts strong conditions onc in. More precisely, ac in is defined to beadmis-
sible if, for all ( jaj

inu j &, the correspondingCout is given by Eq.~7.2!.
It should be added parenthetically that this definition of being admissible can be easily

eralized by restricting the( jaj
inu j & to certain subsets. This generalization is expected to be us

in future investigations, but is not needed for this article.
In order to perform the operations of writing, reading, and resetting a quantum memory

necessary to have a sufficiently large collection of admissiblec in. This has been verified to be th
case for the model of Sec. VI, and will be assumed to be so in this section. Let

c inS (
j

aj
inu j &→(

j
aj

outu j & D ~7.3!

denote ac in with the property that, if Eq.~7.1! holds for thisc in, then Eq.~7.2! holds. It is
assumed that, given anyaj

in andaj
out, there is at least one suchc in. It is possible that there is mor

than one suchc in. It has been seen from the model of Sec. VI that thisc in may actually involve
a sequence ofc in’s; see especially Eq.~6.11!. However, for simplicity of notation, the expressio
~7.3! will be retained.

The operations of writing, reading, and resetting are now to be described in this order. F
purpose of writing after the quantum memory has been reset to the standard states, it is sufficient
to use any one of thec in(s→( jaj u j &), where( jaj u j & is the desired quantum state to be put in t
memory.

Reading from a quantum memory is more complicated. Let a quantum memory be in a
( jaj

inu j &; it is desired to determine the values of theseaj
in by interrogating this memory, i.e., b

sending a suitably chosen sequence of admissiblec in’s,

c in(1), c in(2), c in(3),...,c in(N), ~7.4!

and scattering them successively by this quantum memory. More precisely, consider the suc
scattering processes
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(
j

aj
inu j &c in(1)→(

j
aj

out(1)u j &cout(1)→aj
out(1)5aj

in(2)

→(
j

aj
in(2)u j &c in(2)→(

j
aj

out(2)u j &cout(2)→aj
out(2)5aj

in(3)

→(
j

aj
in(3)u j &c in(3)→(

j
aj

out(3)u j &cout(3)→aj
out(3)5aj

in(4)

→¯

→(
j

aj
in(N)u j &c in(N)→(

j
aj

out(N)u j &cout(N).

~7.5!

Corresponding to the list~7.4!, there is a list ofcout’s,

cout(1), cout(2), cout(3), ..., cout(N). ~7.6!

From the quantities given in~7.4! and~7.6! together with their interference, the values ofaj
in are

obtained. This has been demonstrated explicitly in Sec. VI for the model there, and it is
shown there that a further interference with the standard states may be needed to determine th
overall phase. The importance of interference cannot be overemphasized.

Once theaj
in are known, the values ofaj

out(N) of the process~7.5! can be obtained. An
additional scattering using any one of the admissiblec in(( jaj

out(N)u j &→( jaj
inu j &) returns the quan-

tum memory to its initial state.
With the above process of reading a quantum memory, resetting is now straightfor

Resetting a quantum memory in the initial state( jaj
inu j & to the standard states consists of the

following two steps.

~i! Read the memory to determineaj
in . Note that, after the process of reading is performed,

memory is in the original initial state( jaj
inu j &.

~ii ! Apply an additional scattering using any one of the admissiblec in(( jaj
inu j &→s).

This completes the description of the quantum memory together with writing, reading
resetting, all performed through scattering from the memory.

It may be worthwhile to emphasize that the concept of the quantum memory introduce
described here is quite general. In particular, the scattering process

C in5S (
j

aj
inu j & Dc in→Cout5S (

j
aj

outu j & Dcout ~7.7!

does not have many restrictions, and may or may not be linear. Also, the linearly indepe
statesu j & are allowed to depend on time, and may or may not be the eigenstates of an ope

VIII. COMPARISON WITH AN EARLIER MODEL

The idea of quantum computing was first discussed by Benioff in 1980.12 In this pioneering
paper, spatial dependence was retained, although not in the form of the Schro¨dinger equation.
Since then, quantum computing and quantum information have become popular subjects
vast literature.13 However, in the majority of the theoretical papers on quantum computing, sp
dependence is omitted entirely. Therefore the usual model for quantum memory consists of
system or its generalization, and the operations on the quantum memory consist of ap
unitary matrices. This prevailing model for the quantum memory has led to a number of imp
results.
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In the present article, as a first application of the Fermi pseudo-potential in one dimensi
alternative model for the quantum memory is proposed. This model differs from the previou
mainly in the reintroduction of the spatial variables, much in the spirit of the original wor
Benioff.12 From the point of view of physics, the spatial variables are clearly present, whethe
wants them or not. Instead of saying that a unitary matrix is applied mathematically to the c
of the quantum memory, here the content of the quantum memory is altered in a controlled w
applying suitably chosen scatterings to the memory.

This is much more than a change of language. While the previous model has the advan
simplicity, which is important because quantum computing is a difficult subject, the present m
with the spatial variable or variables may be considered to be desirable from the followin
points of view. First, it offers a closer description of the experimental situation. Since a qua
memory is necessarily small in size, for practical reasons scattering is the simplest me
modifying the content of a quantum memory. Second, the presence of the spatial dime
allows more possibilities of analyzing the quantum memory. It is also worth mentioning tha
theory of scattering has been developed over many decades and is well understood, in the
of both quantum mechanics and quantum field theory. It is often advantageous to be able t
use of existing knowledge to study a new subject.

In both the previous model and the present model, the content of a quantum memory is
as a pure state. This content is altered by applying a unitary transformation, directly i
previous model and indirectly through scattering in the present model. The incident, scattere
total wave functions have no analog in the previous model. In general, the phase shift2 of scatter-
ing is determined from the total wave function, and the analysis of the explicit model in Se
is actually an especially simple application of the usual phase-shift analysis, including the p
nent role played by interference. The point is that, while in the definition of an admissiblec in in
Sec. VII bothC in @Eq. ~7.1!# andCout @Eq. ~7.2!# are unentangled so far as the memory and
interrogating wave are concerned, this is not true of the total wave function, which is for exa

c~x!5Fc1~x!

c2~x!G
for the model of Sec. VI.

There are many interesting open questions for the present model. The analysis of thes
tions is beyond the scope of the present article. Nevertheless, here are two examples of su
questions.

~a! In Sec. VII, it is explicitly assumed that there is a sufficiently large class of admissiblec in of
the form~7.3!. In the model of Sec. VI, such a large class indeed exists in the form of
waves and odd waves. On the other hand, wheng2Þ0, no such large class exists. What
needed is a more general discussion as to the conditions under which such a suffi
large class of admissiblec in is actually available.

Even though examples where such a large class is available are known both i
dimension and in three dimensions, the three-dimensional case seems rather diffi
achieve experimentally. If this observation is true in general, then there may well be si
cant advantages to connecting the various components of a quantum computer, inc
quantum memories, by single-mode optical fibers. In particular, sending signals th
space rather than fibers may lead to unexpected problems.

~b! Another especially challenging and interesting question for the present model of qua
memory concerns the issue of the so-called no-cloning theorem. This has been derived
context of the previous model, but such derivations do not seem to be applicable dire
the present model. This is again related to the fact that here there is not only anS-matrix but
also the incident, scattered, and total wave functions.

Preliminary analysis indicates that whether the no-cloning theorem holds for the pr
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model of quantum memory may depend on subtle aspects of the Schro¨dinger equation. If this is
indeed the case, then the no-cloning theorem may need to be stated properly and precisely
it can be derived within the present model of quantum memory.

IX. DISCUSSIONS

The present investigation began as an attempt to understand thed8(x) potential in the context
of the one-dimensional Schro¨dinger equation. When simple attempts failed, the powerful met
of the resolvent equation was used. The surprise is that, not only can the resolvent equa
solved in general in terms of rational functions, but also the solution yields, in addition to
well-knownd-function potential, not one buttwo linearly independent Fermi pseudo-potentials
one dimension. One of the pseudo-potentials is odd under space reflection and is the
interpretation of thed8(x) potential. The other one is originally unexpected and is even un
space reflection.

It is likely that there are many applications of these pseudo-potentials to one-dimen
problems. A possible use in statistical mechanics connected with the Bethe ansatz8,9 has already
been mentioned in Sec. VI. In this article, only the simplest application is discussed. Th
nothing to do with the proper interpretation of thed8(x) potential, but depends critically on th
unexpected, even pseudo-potential. By combining this even pseudo-potential with thed-function
potential, an elegant special case is found for the scattering in two coupled channels. Even
the two channels cannot be decoupled, it is easy to write down the complete solution fro
known one-channel case.

In spite of the mathematical simplicity of this application of the Fermi pseudo-potential in
dimension, this example gives a model for the quantum memory~sometimes called the quantum
register!. While this model is completely explicit, its more important function is to point out a w
to gain a general picture concerning the quantum memory.

More generally, the time-independent Schro¨dinger equation forn coupled channels with in-
teraction at only the one pointx50 is

2
d2c~x!

dx2 1E
2`

`

dx8V~x,x8!c~x8!5k2c~x! ~9.1!

with

c~x!5F c1~x!

c2~x!

]

cn~x!

G ~9.2!

and

V~x,x8!5C1d~x!d~x8!1C2@dp8~x!d~x8!1d~x!dp8~x8!#1C3dp8~x!dp8~x8!. ~9.3!

HereC1 , C2 andC3 are three numerical Hermitiann3n matrices, whiledp8(x) is similar tod8(x)
and is defined in Sec. IV. For a givenk and a given incident wavec0(x) with n components, the
solution of Eq.~9.1! takes the form, forj 51,2,. . . ,n,

c j~x!5c0 j~x!1H F j 1eikx, for x.0,

F j 2e2 ikx, for x,0,
~9.4!

analogous to Eq.~2.7!, where theF ’s are 2n coefficients that depend onc0 j andk. The substi-
tution of Eq.~9.4! into Eq. ~9.1! shows that these 2n F’s satisfy 2n linear equations. Indeed, it i
the power of the Fermi pseudo-potential that Schro¨dinger equations reduce to linear algebra
equations. It will be interesting to study the structure of these algebraic equations. Even
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generally, the pseudo-potential~9.3! at x50 may be replaced by a linear superposition of a fin
number of such pseudo-potentials atx5x1 ,x2 , . . . . Thenumber of coefficients in the solutio
increases but remains finite, leading to more simultaneous algebraic equations that are stil
The Green’s functions can be treated in a very similar manner.

Needless to say, the range of integration in Eq.~9.1! for x8 can be replaced by a semi-infinit
or finite interval, and theV(x,x8) may contain additional terms such as those from step poten
A more interesting problem is to apply the Fermi pseudo-potentials to first-order differe
equations.

In summary, the theory of the Fermi pseudo-potential in one dimension has been work
here together with the simplest nontrivial application to a problem of current interest.
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APPENDIX A: SOLUTION FOR EQUATION „3.13…

A possible way to solve Eq.~3.13! for F(k) is as follows. Because of the exponential functi
in the last term, let

x5eF(k) ~A1!

and

y5 ln k. ~A2!

@Thisx of Eq. ~A1! of course has nothing to do with the space variable in the Schro¨dinger equation
~1.1!, for example.# In view of Eq.~3.3!, Eq. ~3.13! is translationally invariant iny. It is therefore
desirable to usex as the independent variable andy as the dependent variable, leading to
first-order ordinary differential equation for

z5
dy

dx
. ~A3!

This first-order equation is

2
2

x2z3 Fx
dz

dx
1zG5

1

x2z2 211~c3
21c2c4!x2. ~A4!

Let

u5
1

x3z2 . ~A5!

Then, after some algebra,

du

dx
52

1

x2 1~c3
21c2c4!. ~A6!

Integration yields
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u5
1

x
12c11~c3

21c2c4!x, ~A7!

wherec1 is the fourth arbitrary constant of integration. The expression forz follows from Eqs.
~A5! and ~A7!:

z56x21@112c1x1~c3
21c2c4!x2#21/2, ~A8!

where the6 sign comes from taking the square root ofz2. It is, of course, related to the fact tha
every term in Eq.~A4! is even inz. In the following, there are many6 and7 signs; it is to be
understood that these signs are used as a shorthand for two equations, one with the up
everywhere and a second one with the lower sign everywhere.

From Eqs.~A3! and ~A8!, y is given by

y57E dx8

A~c3
21c2c4!12c1x81x82

, ~A9!

wherex851/x. It is fortunate that this integral is elementary. For definiteness, consider the

c3
21c2c42c1

2.0. ~A10!

In this case, the explicit integration of the right-hand side of Eq.~A9! gives

y57F sinh21
11c1x

Ac3
21c2c42c1

2x
1constG . ~A11!

The rest of the calculation is straightforward although lengthy, and the results are

f 1~k!5
2Ac3

21c2c42c1
2@c0k1~c0k!21#72c3

Ac3
21c2c42c1

2@c0k2~c0k!21#62c1

, ~A12!

f 2~k!517
2c2

Ac3
21c2c42c1

2@c0k2~c0k!21#62c1

, ~A13!

f 3~k!5
2Ac3

21c2c42c1
2@c0k1~c0k!21#62c3

Ac3
21c2c42c1

2@c0k2~c0k!21#62c1

, ~A14!

f 4~k!517
2c4

Ac3
21c2c42c1

2@c0k2~c0k!21#62c1

. ~A15!

Sincec1 , c2 , c3 andc4 are arbitrary constants of integration, their signs can be changed s
taneously. This change then removes all the6 and7 signs, and Eqs.~A12!–~A15! reduce to Eqs.
~3.14!.

The other case, wherec3
21c2c42c1

2,0, can be treated in an entirely similar manner, lead
to Eq. ~3.16!.

APPENDIX B: DERIVATION OF EQUATION „7.2…

In this Appendix B, the reasoning is given that leads to Eq.~7.2!.
Just as theC in of Eq. ~7.1! contains information about the initial state of the quantum mem

and the behavior of the incoming wavec in before scattering, theCout contains information abou
the final state of the quantum memory and the behavior of the outgoing wave after scat
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Later the outgoing wave moves away from the memory and the information about this out
wave is no longer available. This means that the final state of the memory is given byCout

averagedover this outgoing wave. This average can be written schematically as

M5E CoutCout†. ~B1!

This M is the density matrix for the quantum memory. Here the* indicates integration and
summation over all degrees of freedom associated with the outgoing wave or particle, b
those of the quantum memory. The corresponding differential symbol is omitted: It isd3r if the
wave is described by the three-dimensional Schro¨dinger equation; it isd3r together with a sum-
mation over the spin in the case of the Dirac equation; and it is a functional differential su
DAm in the context of quantum field theory.

In order for the quantum memory to function, the final state must be a pure state( jaj
outu j &,

just like the initial state. Therefore, the aboveM must also be given by

M5(
j

aj
outu j &(

i
ai

out* ^ i u. ~B2!

Equating the two formulas forM gives

(
j

aj
outu j &(

i
ai

out* ^ i u5E CoutCout†. ~B3!

It remains to derive Eq.~7.2! from Eq. ~B3!.
Since theu j & form a complete set,Cout can always be written in the form

Cout5(
j

u j &c j
out. ~B4!

The substitution of Eq.~B4! into Eq. ~B3! gives

aj
outai

out* 5E c j
outc i

out† ~B5!

for all i and j . For iÞ j , define the integral

I j i 5E ~ai
outc j

out2aj
outc i

out!~ai
out* c j

out†2aj
out* c i

out†!. ~B6!

This I j i is non-negative, and is zero only if

ai
outc j

out2aj
outc i

out50. ~B7!

But the substitution of Eq.~B5! into Eq. ~B6! gives immediately that

I j i 50. ~B8!

Thus, Eq.~B7! holds for all i and j .
The desired Eq.~7.2! is just Eq.~B4! with Eq. ~B7!.
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Extension of Bethe ansatz to multiple occupancies for
one-dimensional SU „4… fermions with d-function interaction
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Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China

Bin Chen
Department of Physics, Hangzhou Teachers College, Hangzhou 310012, China

~Received 6 May 2002; accepted 9 August 2002!

We consider the problem of consistence between the Bethe ansatz~BA! wave
function and the multiparticle~more than two! scattering in one-dimensional
d-function interacting SU~4! fermions, which the approach of BA does not explic-
itly take into account. We find the scattering conditions of three and four particles
located at the same position and show that the conditions can be fulfilled by the
two-particle connection conditions of the BA wave function. So the definition of
the BA wave function can be exactly extended to those cases with multiple occu-
pancies. The inconsistence between the BA and multiparticle interacting on a same
site in the degenerate Hubbard model, which makes the BA fail for the model, is
shown to vanish in the limit of small site spacing. A correspondence relation of the
BA equation and SU~4! symmetry of the system is also indicated for the fermions.
The degeneracy of state with BA eigenenergy is given. Singlet lies in the case when
there are equal numbers of particles in each inner component. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1515380#

I. INTRODUCTION

Since the Bethe ansatz~BA! approach was proposed to solve exactly the Heisenberg mo1

it has been applied to many integrable systems such as one-dimensionald-function interacting
bosons2,3 and spin-1/2 fermions,4 Hubbard model,5 Kondo model,6 spin ladder,7 etc., and recently
there has been much interest in extending the BA to the study of degenerate electrons syste8–14

As is well known, the coordinate BA wave functions forN-particle systems are defined o
separated regions denoted byxQ1

, ¯ ,xQN
whereQ is a permutation of the particles andxQi

is

the coordinate of theQi th particle, the connection boundaries between two adjacent region
those cases in which two~and no more than two! particles interact at the same position, and t
two-particle scattering matrices solve the boundary conditions. The matrices transferring
tudes in the BA wave function from one region to another factorize into products of two-pa
S matrices. The diagonalization of theN-particle transfer matrices with periodic conditions lea
to the BA equations that determine the whole solutions. So the original BA, as a matter o
does not involve the boundaries with more than two particles scattering at the same posi
take into account the corresponding scattering conditions. If the scattering conditions of m
occupations, which are required by models of the degenerate or multicomponent particle sy
cannot be consistently met by the BA wave function, the BA wave function will not be
solutions of the systems. Such a problem of consistence has been encountered in the de
Hubbard model, the BA fails to solve the model at configurations with more than two particle
one site,10 and the theoretical work in the framework of the BA for degenerate Hubbard mode

a!Electronic mail: zjying@zimp.zju.edu.cn
59770022-2488/2002/43(12)/5977/10/$19.00 © 2002 American Institute of Physics
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been based on the exclusion of such multiply occupied configurations.11–14Therefore, whether the
BA wave functions are exactly valid for the degenerate systems is still unconfirmed if the co
tency between the BA wave function and multiparticle scattering conditions has not been
nitely verified.

In the present paper we shall investigate explicitly the problem of consistence between t
and the multiparticle scattering conditions for one-dimensionald-function interacting SU~4! fer-
mions which is a spatially continuous system instead of a lattice model. We work out explicit
scattering boundary conditions of three and four particles located at the same spatial poi
prove that the multiparticle scattering conditions can be fulfilled by the two-particle conne
conditions of the BA wave function. Therefore we can extend exactly the definition of the
wave function to the configurations with multiple occupancies and, unlike in lattice models
BA is valid for the spatially continuous model without the exclusion of more than two part
interacting at the same position. The inconsistency in the BA for the degenerate Hubbard m
shown to vanish in the limit of small site spacing. An interesting correspondence betwee
SU~4! symmetry and the BA equation is also pointed out for thed-function interacting fermions.
The states relating to a BA eigenenergy are degenerate, and the degeneracy can be calc
terms of the highest weight vector of the corresponding SU~4! multiplet.

II. TWO-PARTICLE SCATTERING AND THE BETHE ANSATZ WAVE FUNCTION

The Schro¨dinger equation of theN-fermion system we shall consider reads

S 2
1

2 (
i

N
]2

]xi
2 1c(

i , j
d~xi2xj !Dc5Ec. ~1!

We define the BA wave function in the form of

ca1 ¯ aN

(Q) ~x1 , ¯ ,xN!5 (
PPSN

Aa1 ¯ aN

(Q) ~kP1
¯ kPN

!ei ( j kPj
xj , ~2!

whereaj labels the four components of thej th fermions. The inner degree of freedom can
spin–orbital double. Other forms of BA wave function are equivalent, our further proof hold
long as the solution is BA wave function. The BA wave function is defined in the region se

RQ :xQ1
, ¯ ,xQN

.

The wave function~2! surely solves the eigenequation

2
1

2 (
i

N
]2

]xi
2 c (Q)5EBAc (Q) ~3!

in RQ with the eigenenergy

EBA5
1

2 (
i

N

ki
2 . ~4!

Let (Q1¯ i j ¯QN) denote a sector withQr5 i andQr 115 j for somer . The two-particle con-
nection condition across the barrierxi5xj is given by

S ]

]xi
2

]

]xj
Dca1 ¯ aN

(Q1¯ j i¯QN)uxj 5xi2
2S ]

]xi
2

]

]xj
Dca1 ¯ aN

(Q1¯ i j ¯QN)uxj 5xi1
52cca1 ¯ aN

(Q1¯ i j ¯QN)uxi5xj
,

~5!
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which can be obtained by integrating of the eigenequation over a Gauss box at the hype
xi5xj . And on the right-hand side of Eq.~5! the c (Q1¯ i j ¯QN)uxj 5xi

can be replaced by
c (Q1¯ j i¯QN)uxj 5xi

because of the continuity of the wave function. Combining the above cond
with the uniqueness of the wave function on the two-particle connection boundary, one ca
the two-particleS-matrix,4

Si j 5
~kPi

2kPj
!I i j 1 icPi j

~kPi
2kPj

!1 ic
, Si j A(kP1

¯ kPi
¯ kPj

¯ kPN
)

(Q1 ¯ i j ¯ QN)
5A(kP1

¯ kPi
¯ kPj

¯ kPN
)

(Q1 ¯ j i ¯ QN) , ~6!

wherePi j exchanges inner componentsai ,aj and

Pi j Aa1 ¯ ai ¯ aj ¯ aN

(Q1 ¯ i j ¯ QN)
~kP1

¯ kPi
¯ kPj

¯ kPN
!

5Aa1 ¯ aj ¯ ai ¯ aN

(Q1 ¯ i j ¯ QN)
~kP1

¯ kPi
¯ kPj

¯ kPN
!

52Aa1 ¯ ai ¯ aj ¯ aN

(Q1 ¯ j i ¯ QN)
~kP1

¯ kPj
¯ kPi

¯ kPN
!,

where the minus sign in the second equation comes from the antisymmetry of fermions.
It should be noted thatc (Q1¯ i j ¯QN)uxj 5xi2

andc (Q1¯ j i¯QN)uxj 5xi1
in ~5! are, respectively, in

two regions (Q1¯ i j ¯QN) and (Q1¯ j i¯QN) which are neighbor sectors. The transfer ma
ces for regions not adjacent are products of the two-particleS-matrices. TheS-matrices satisfy the
Yang–Baxter relations.4 The diagonalization of theN-particle transfer matrices combined wit
periodic conditions

c~ ¯ xj ¯ !5c~ ¯ xj1L ¯ !

results in the BA equations by means of the methods in Refs. 15 and 16

eik jL5 )
a51

M
kj2la1 ic/2

kj2la2 ic/2
,

152)
j 51

N
la2kj2 ic/2

la2kj1 ic/2 )
a851

M
la2la81 ic

la2la82 ic )
b51

M8 la2mb2 ic/2

la2mb1 ic/2
,

~7!

152 )
a51

M
mb2la2 ic/2

mb2la1 ic/2 )
b851

M8 mb2mb81 ic

mb2mb82 ic )
g51

M9 mb2ng2 ic/2

mb2ng1 ic/2
,

152 )
b51

M8 ng2mb2 ic/2

ng2mb1 ic/2 )
g851

M9 ng2ng81 ic

ng2ng82 ic
,

which determine the whole solution in the BA approach. The total particle numbersN1 ,N2 ,N3 ,N4

with inner components 1,2,3,4 are, respectively,

N15N2M , N25M2M 8,
~8!

N35M 82M 9, N45M 9.

Here we do not intend to discuss the corresponding ground states, excitations or thermodyn
In the following we shall consider the relation of the BA wave function and the system symm
as well as the state’s degeneracy.
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As one can see from the above procedure, the BA treatment is built up on the basis of s
the separate noninteracting regionsRQ and the two-particle boundaries which are connections
two neighbor regions. The BA indeed does not take into account the multiple-occupancy~more
than two! boundaries which are joint boundary ofthree or four regions, and the correspondin
multiparticle scattering conditions become additional ones; what these conditions are is n
plicit and whether they are solved by BA remains to be answered. In fact, it is just by exam
this kind of multiparticle scattering that Choy and Haldane found the failure of the BA in
degenerate Hubbard model.10 In the following we shall explicitly investigate the consisten
between the BA and those multiparticle scattering out of the consideration of the BA fo
four-component fermions~1!.

III. THREE-PARTICLE SCATTERING

With the help of the continuity of the wave function at two-particle scattering boundary, w
has been used in the Bethe ansatz, it is easy to prove the single valueness of the wave func
three and four particles at the same point. Without guarantee of the wave function single
ness, further discussion on the problem of consistence would be unnecessary since it ha
inconsistent here.

To investigate the consistence between the BA and the three-particle scattering we h
obtain the corresponding scattering boundary condition which is not obvious or explicit to
out. Let us consider three particlesi , j , and k at the boundaryxi5xj5xk . We integrate the
eigenequation~1! over an arbitrarily shaped volume through which the intersecting linexi5xj

5xk is located in the three-dimensional subspace ofxi , xj , andxk . The arbitrarily shaped volume
can be cut into ane-sized hexagonal prism of which a cross section is shown in Fig. 1.
integration of the eigenequation over the cutoff part cancels automatically, which is a natural
of ~3! and~5!, respectively, in the sectors and on the two-particle connecting hyperplanes. T
fore, it’s sufficient to consider only the prism left.

Sete to be infinitesimal, carry out the expansion of the Gaussian integral in orders ofe and
keep the lowest order, we find the three-particle condition to be

S ]

]x1
2

]

]x2
D ~c (Q1¯231̄ QN)2c (Q1¯132̄ QN)!ux15x25x3

1S ]

]x2
2

]

]x3
D ~c (Q1¯312̄ QN)

2c (Q1¯213̄ QN)!ux15x25x3
1S ]

]x3
2

]

]x1
D ~c (Q1¯123•••QN)2c (Q1¯321̄ QN)!ux15x25x3

512cc (Q1¯123̄ QN)ux15x25x3
, ~9!

FIG. 1. A cross section of the hexagonal prism in the three-dimensional subspace ofx1 , x2 , andx3 . The center axis of the
prism is along the intersecting linex15x25x3 , and labels of the three interacting particlesi jk have been set to be 123
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where we have set the three particles to be 123 for the sake of clarity, and the infinite
notations as inc (Q1¯231̄ QN)ux15x

3
1 ,x25x

3
2 have been dropped since it has been indicated in

corresponding labelQ of region sector. Also on the right-hand side of the above relatio
c (Q1¯123̄ QN)ux15x25x3

can be replaced by wave function with other permutation of the parti
123, while the positions of other particles remain unchanged. On the left-hand side of~9!, it should
be noted that the pairs of wave functions in a bracket are not in neighbor sectors as those
~5!.

We find the condition~9! can be satisfied in terms of the two-particle connection condition~5!.
As one knows in the BA, the two-particleS-matrices provide to cancel the amplitudes of a sa
exponential exp(i(jkPj

xj), the amplitudesAkP1
¯ kPN

(Q) are independent of the particles coordinat

so it does not affect the cancellation of the amplitudes in~5! when we set the position of a thir
adjacent particle to be the same as the two particles on the connection boundary and keep
permutation notationQ’s in the amplitudes unchanged. Hence, Eq.~5! still holds atxQ1

, ¯

,xi5xj5xk, ¯ ,xQN
,

S ]

]xi
2

]

]xj
D ~c (Q1¯ j ik¯QN)2c (Q1¯ i jk¯QN)!uxi5xj 5xk

52cc (Q1¯ i jk¯QN)uxi5xj 5xk
,

~10!

S ]

]xi
2

]

]xj
D ~c (Q1¯k j i¯QN)2c (Q1¯ki j¯QN)!xi5xj 5xk

52cc (Q1¯ki j¯QN)uxi5xj 5xk
.

Also note that the wave functions on the left-hand sides are defined on neighbor regions as~5!.
We split the differential operation]/]x12]/]x2 to be (]/]x12]/]x3)1(]/]x32]/]x2) and simi-
larly for others, thus the left-hand side of~9! becomes

S S ]

]x1
2

]

]x3
D1S ]

]x3
2

]

]x2
D D ~c (Q1¯231̄ QN)2c (Q1¯132̄ QN)!ux15x25x3

1S S ]

]x2
2

]

]x1
D1S ]

]x1
2

]

]x3
D D ~c (Q1¯312̄ QN)2c (Q1¯213̄ QN)!ux15x25x3

1S S ]

]x3
2

]

]x2
D1S ]

]x2
2

]

]x1
D D ~c (Q1¯123̄ QN)2c (Q1¯321̄ QN)!ux15x25x3

which, as a result of~10!, equals to 12cc (Q)ux15x25x3
, exactly the right-hand side of~9!. Therefore

we have proved that the scattering condition of three particles at a same position can be f
by the two-particle connection conditions in the BA solution.

IV. FOUR-PARTICLE SCATTERING

Now let us consider the case of four particles interacting at the same point. For simplici
omit the notations of other particles. Similar to the three-particle scattering, it is also sufficie
calculate the integral of the eigenequation over ane-sized Gaussian box at the axisx15x25x3

5x4 . A vector in the sector of~1234! can be built on another set of orthonormal basis

r1234[x1e11x2e21x3e31x4e45va12341hg1yb12341y8b12348 , ~11!

where the basis vectors are
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a123452
3e11e22e323e4

A20
, g5

e11e21e31e4

2
,

~12!

b12345
e12e22e31e4

2
, b12348 5

e123e213e32e4

A20
.

g is the direction vector along the center axisx15x25x35x4 . The connecting boundaryxi5xj

can be expressed in terms ofa1234, g, b1234, andb12348 according to the above relations. In th
~1234! sector the inwards normals of the intersecting hyperplanesx15x2 , x25x3 andx35x4 are,
respectively,n215e22e1 , n325e32e2 , andn435e42e3 . It is easy to seea1234•n215a1234•n32

5a1234•n43. Settingv5e, we have a hyperplane which can be the side surface of the Gau
box in the~1234! region,a1234 is the outwards normal direction vector. Other sectors are sim
with the subscripts permuted correspondingly. We also set the size parametere to be infinitesimal,
carry out the expansion in the orders ofe and keep the lowest order in the integration of t
eigenequation. After a careful calculation we find the scattering condition of four particles a
point to be

2
1

2 (
QPS4

S 3
]

]xQ1

1
]

]xQ2

2
]

]xQ3

23
]

]xQ4
Dc (Q)~x,x,x,x!5120cc~x,x,x,x!. ~13!

As we show below, the above four-particle scattering condition is also fulfilled by the two-pa
conditions.

Relations in~10! are similarly extended to

S ]

]xi
2

]

]xj
D ~c (Q1¯ j ikl¯QN)2c (Q1¯ i jkl¯QN)!uxi5xj 5xk5xl

52cc (Q1¯ i jkl¯QN)uxi5xj 5xk5xl
,

S ]

]xj
2

]

]xk
D ~c (Q1¯ ik j l¯QN)2c (Q1¯ i jkl¯QN)!uxi5xj 5xk5xl

52cc (Q1¯ i jkl¯QN)uxi5xj 5xk5xl
,

~14!

S ]

]xk
2

]

]xl
D ~c (Q1¯ i j lk¯QN)2c (Q1¯ i jkl¯QN)!uxi5xj 5xk5xl

52cc (Q1¯ i jkl¯QN)uxi5xj 5xk5xl
.

And by means of the following trick:

S 3
]

]xQ1

1
]

]xQ2

2
]

]xQ3

23
]

]xQ4
D 5S 3S ]

]xQ1

2
]

]xQ2
D 14S ]

]xQ2

2
]

]xQ3
D 13S ]

]xQ3

2
]

]xQ4
D D ,

~15!

the differential operations are changed to be of neighbor particles pairs on the left-hand s
~13!. To use~14! we note the relation

(
QPS4

S ]

]xQ1

2
]

]xQ2
Dc (Q)~x,x,x,x!5

1

2 (
QPS4

S ]

]xQ1

2
]

]xQ2
D ~c (Q)~x,x,x,x!2c (Q8)~x,x,x,x!!,

~16!

where Q85(Q2Q1Q3Q4), and the similar relations for the cases of (]/]xQ2
2]/]xQ3

) and
(]/]xQ3

2]/]xQ4
) with Q8 replaced, respectively, by (Q1Q3Q2Q4) and (Q1Q2Q4Q3). Applying

~14!–~16!, we find the four-particle condition~13! is also satisfied. The general case for any fo
scattering particles among the totalN particles can be directly generalized from the results
have obtained.
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The configurations with more than four particles at one point are excluded by the
principle ~extended to four components!, the antisymmetric wave function vanishes in such cas
Thus we have covered all kinds of occupancies and explicitly proven the consistence betwe
BA and the multiparticle scattering boundary conditions.

V. NARROW-SITES LIMITING IN THE DEGENERATE HUBBARD MODEL

In the above sections we have proven explicitly the consistence between the multip
scattering and the BA solution in spatially continuous case. Now let us turn to the lattice cas
investigate the limiting process of small site spacing in the Hubbard model. As one know
Hubbard model, in the limit of small site distanced, approaches to the model of electrons w
d-function interaction which is spatially continuous. The single-band Hubbard model was s
by the SU~2! BA.5 But the direct generalization of SU~2! BA solution of the single-band Hubbar
model to the degenerate SU(N) case for the degenerate Hubbard model fails due to the multi
ticle same-site interacting case. In Ref. 10 it is found that there appears to be an unhermitio
interacting term for three bosons occupying the same site in the BA wave function which
proposed with an attempt to solve the boson Hubbard model. This unhermition term extra
Hubbard on-site interaction 3U, with the form of

U2/t

cos~k11k2!cos~k21k3!cos~k31k1!
, ~17!

whereU is the Hubbard on-site interaction andt is the hopping constant andk1 , k2 , andk3 are
momenta of the interacting bosons, breaks the validity of the BA for boson Hubbard mode
similar thing will happen for degenerate electrons or fermions and the inconsistent extra ter
the same form as~17! except a sign difference. According to our explicit proof of consiste
between the BA and the multiparticle interacting ford-function interacting fermions, the incon
sistent term should come to vanish in the limit process of site distance going to zero, sin
Hubbard model approaches to the model of electrons withd-function interaction. Let us pick up
the site distanced which is usually taken to be unit, and theS-matrix for the Hubbard model is

Si j 5
~sinksd2sinktd!I i j 1 iU /2tPi j

~sinksd2sinktd!1 iU /2t
~18!

where the notations ofPs , Pt , andPi j are the same as in~6! and sinksd is originated from the
discreteness in space coordinate for lattice sites. The aboveS-matrix becomes

~ksd2ktd!I i j 1 iU /2tPi j

~ksd2ktd!1 iU /2t
5

~ks2kt!I
i j 1 iU /2tdPi j

~ks2kt!1 iU /2td
~19!

for small d.
One may mention the large momentum case in whichkjd may not be small. This is true

indeed if we have definite total site number. But the problem is naturally solved when we tak
account the increasing site number in the limiting process. In fact, the one-dimensional sp
the fermions should have a finite lengthL. So the total site numberNs5L/d should increase with
the decreasingd in the limiting process. The momenta are inversely proportional to the
number and site spacing

kj}
2p

Nsd

and
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kjd}
2p

Ns
5

2pd

L
→0, ~20!

where the space lengthL is definite constant. Thus we still have the limiting result~19!.
BesidesL, another important parameter

c5U/2td

should remain to be constant asd→0 and theS-matrix ~19! becomes the same as theS-matrix ~6!
of d-function interacting fermions. So we have

U

t
52cd, ~21!

which means thatU/t is proportional to the decreasing site distanced. Therefore the extra term
~17! will vanish with thed and inconsistency arising in the lattice case diminishes and disapp
in the limiting process to spatially continuous case.

VI. SU„4… SYMMETRY OF THE SYSTEM

Since we have proven that the BA is exactly valid for all occupancies in the four-compo
fermions withd-function interactions, we would like to mention an interesting corresponde
between the BA equations and system symmetry and then consider the degeneracy of the
states. The system of the four-component fermions, with the second-quantized Hamiltonia

H52
1

2 E dx(
a

ca* ~x!
]2

]x2 ca~x!1
c

2 E dx (
aÞa8

na~x!na8~x!,

where ca* (x) creates a fermion with internal componenta at position x and na(x)
5ca* (x)ca(x) is the particle number operator, possesses the SU~4! symmetry

SU~4!:$Dm , Eaa8um51,2,3; a,a851,2,3,4, aÞa8%, ~22!

where the generators are

Eaa85E dx ca* ~x!ca8~x!,

Dm5Nm2Nm11 , Nm5E dxcm* ~x!cm8~x!,

anda,m label the inner components. The commutation relations are

@Ess8 ,Ett8#5ds8,tEst82ds,t8Ets8 ,
~23!

@Dm ,Ess8#5~dm,s2dm,s82dm11,s1dm11,s8!Ess8

and$Dm% forms the commuting Cardan subalgebra of rank 3. As the system is spatially conti
instead of lattice, the symmetry involving pairing creation and annihilation operators as i
simple Hubbard model17 and spin–orbital case18,19 does not exist.

The BA equations~7! rewritten as

eik jL5 )
a51

M

J1/2~kj2la!,
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152)
j 51

N

J21/2~la2kj ! )
a851

M

J1~la2la8! )
b51

M8

J21/2~la2mb!,

~24!

152 )
a51

M

J21/2~mb2la! )
b851

M8

J1~mb2mb8! )
g51

M9

J21/2~mb2ng!,

152 )
b51

M8

J21/2~ng2mb! )
g851

M9

J21/2~ng2ng8!,

whereJn(x)5(x1 inc)/(x2 inc) is easy to remember by means of the Dynkin diagram ofA3

Lie algebra

where the dark dot is added to represent the charge rapiditykj which takes an angle of 120
relative to the first simple rootr 1 . The subscripts ofJn(x) in the above form of BA equations
correspond, respectively, to the covariant components of the simple roots which are cho
nonorthogonal basis,r 15(21/2, 1,21/2, 0), r 25(0, 21/2, 1,21/2), r 35(0, 0, 21/2, 1).
This connection exists because the system has the above SU~4! symmetry, the generators of whic
constitute anA3 Lie algebra. Such a connection was noticed for correlated electrons with tw
orbital degeneracy in SU~4! lattice case14 and the electrons with spin–exchange interactions
SU(2)3SU(2) case.20

The BA eigenstates are the SU~4! highest weight state. Let us assume the highest weigh
wh5(w1

h ,w3
h ,w3

h) which labels an irreducible representation of the SU~4! group. We obtain the
expression

w1
h5N12N25N22M1M 8,

w2
h5N22N35M22M 81M 9, ~25!

w3
h5N32N45M 822M 9,

from the Cartan operators and the relations~8! of Nm andM ,M 8,M 9. The lower weight states in
the SU~4! representation can be obtained by the lowering operatorsE2a acting on the highes
weight stateuwh&5ucBA&,

uwh2a&5E2auwh&, ~26!

where the lowering operatorE2a is a product of the SU~4! generatorsEss8 which commute with
the Hamiltonian. The obtained lower-weight states are also the eigenstates of the system

Huwh2a&5E2aHuwh&5E2aEBAuwh&5EBAuwh2a& ~27!

with the same eigenenergyEBA as the BA solution. Therefore the state with energyEBA is
degenerate with degeneracy

nwh5 1
12~w1

h11!~w2
h11!~w3

h11!~w1
h1w2

h12!~w2
h1w3

h12!~w1
h1w2

h1w3
h13! ~28!

which corresponds to the total weight number and dimension of the SU~4! representation. The
only possible nondegenerate case is

w1
h5w2

h5w3
h50 ~29!
                                                                                                                



er of
e

inter-
y
have

tions
odel,

ed to
hat the
acing.

ists in
consis-

hina
ring

he

5986 J. Math. Phys., Vol. 43, No. 12, December 2002 Ying et al.

                    
which requires

M5
3N

4
, M 85

N

2
, M 95

N

4
,

N15N25N35N45
N

4
, ~30!

and the total particle numberN should be the integer times 4, i.e., there are an equal numb
particles in each statea51,2,3,4. If the condition~30! is not satisfied, all the states will b
degenerate including the BA ground state.

VII. BRIEF SUMMERY

In this paper, we have worked out the boundary conditions of three and four particles
acting at the same spatial point for thed-function interacting SU~4! fermions and shown that the
can be solved by the two-particle connection boundary conditions in the BA. Therefore we
explicitly proven the consistence of the BA with the multiparticle scattering boundary condi
and that the BA is valid for all multiple occupancies. Unlike the lattice degenerate Hubbard m
the definition of the BA wave function for the spatially continuous system can be extend
those cases with more than two particles occupying the same positions. We also show t
inconsistence of BA in the degenerate Hubbard model vanishes in the limit of small-site sp
An interesting correspondence between the BA equations and the system SU~4! symmetry is
indicated. The degeneracy is generally given for the state with BA eigenenergy. Singlet ex
the case that there are equal number of particles in each inner component. Our proof for
tence of the BA and the multiparticle scattering is also valid for thed-function interacting
bosons.2,3 In that case one needs to show the consistency for all the multiple occupancies.
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Results on the Wess–Zumino consistency condition
for arbitrary Lie algebras

A. Barkallil, G. Barnich,a) and C. Schomblond
Physique The´orique et Mathe´matique, Universite´ Libre de Bruxelles,
Campus Plaine C.P. 231, B-1050 Bruxelles, Belgium

~Received 30 May 2002; accepted 8 August 2002!

The so-called covariant Poincare´ lemma on the induced cohomology of the space–
time exterior derivative in the cohomology of the gauge part of the BRST differ-
ential is extended to cover the case of arbitrary, nonreductive Lie algebras. As a
consequence, the general solution of the Wess–Zumino consistency condition with
a nontrivial descent can, for arbitrary~super! Lie algebras, be computed in the
small algebra of the one-form potentials, the ghosts and their exterior derivatives.
For particular Lie algebras that are the semidirect sum of a semisimple Lie subal-
gebra with an ideal, a theorem by Hochschild and Serre is used to characterize
more precisely the cohomology of the gauge part of the BRST differential in the
small algebra. In the case of an Abelian ideal, this leads to a complete solution of
the Wess–Zumino consistency condition in this space. As an application, the con-
sistent deformations of 211 dimensional Chern–Simons theory based oniso(2,1)
are rediscussed. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1513209#

I. INTRODUCTION

The algebraic problem that is central for the renormalization of Yang–Mills theory is
computation ofH0,n(sud) and H1,n(sud), the cohomology of the BRST differential modulo th
exterior space–time differentiald in ghost number 0 and 1 in the space of fields, external sou
~called antifields below! and their derivatives1 ~see also, e.g., Refs. 2–4 for reviews!.

So far, local BRST cohomology groups for Yang–Mills and Chern–Simons theories
been investigated exclusively in the context of reductive Lie algebras, i.e., Lie algebras that
direct sum of a semisimple and Abelian factors. In this case, the invariant metric used
construction of the actions is necessarily the Killing metric for the semisimple factor~up to an
overall constant!, complemented by an arbitrary metric for the Abelian factors. Recently, there
been a lot of interest in nonreductive Lie algebras that nevertheless possess an invariant me5 as
it is then still possible to construct Wess–Zumino–Witten models and Chern–Simons and Y
Mills theories~see Ref. 6 and references therein!. In particular, the associated Yang–Mills theori
have remarkable renormalization properties. This motivates the study of the local BRST coh
ogy groups for such theories.

An important intermediate step in this study is the computation of the local BRST coho
ogy H(gud) of the gauge partg of the BRST differential in the algebraA generated by the
space–time forms, the gauge potentials, ghosts and a finite number of their derivatives
computation in turn relies crucially on the so-called covariant Poincare´ lemma.7–9 In the reductive
case, the covariant Poincare´ lemma states that the cohomologyH(d,H(g,A)) is generated by the
invariant polynomials in the curvature two-formsFa and invariant polynomials in the ghostsCa.
The proof of this lemma uses the fact that for reductive Lie algebras, the~Chevalley–Eilenberg!
Lie algebra cohomology10 with coefficients in a finite dimensional moduleV is isomorphic to the

a!Author to whom correspondence should be addressed. Research Associate of the National Fund for Scientific R
~Belgium!. Electronic mail: gbarnich@ulb.ac.be
59870022-2488/2002/43(12)/5987/29/$19.00 © 2002 American Institute of Physics
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tensor product of the invariant subspace of the module~Whitehead’s theorem! and the Lie algebra
cohomology with coefficients inR, which is itself generated by the primitive elements~see, e.g.,
Ref. 11 and 12 and also Ref. 13!. The consequence for the computation ofH(gud) is that all the
solutions of the Wess–Zumino consistency condition14 with a nontrivial descent can be compute
in the small algebraB generated by the one-form potentials, the ghosts and their exterior de
tives, thus providing an a posteriori justification of the assumptions of Refs. 15–18~see also Refs.
19–22 for related considerations!.

The central result of the present article is the generalization of the covariant Poincare´ lemma
to arbitrary Lie algebras for which the Lie algebra cohomology is not necessarily expl
known. In order to do so, we will use a standard decomposition according to the homogen
the fields. From the proof, it will also be obvious that the result extends to the case of super/g
Lie algebras.

For particular Lie algebrasG that admit an idealJ such that the quotientG/J is semisimple,
we use a theorem by Hochschild and Serre23 that states that the Lie algebra cohomology ofG with
coefficients inV reduces to the tensor product of the Lie algebra cohomology of the semisi
factorG/J with coefficientsR and the invariant cohomology of the idealJ with coefficients inV.
As this result is not as widely known as the standard results on reductive Lie algebra cohom
we will rederive it using ‘‘ghost’’ language, i.e., by writing the cochains with coefficients inV as
polynomials in the Grassmann odd generatorsCa with coefficients inV and by writing the
Chevalley–Eilenberg differential as a first order differential operator acting in this space.
direct application, we explicitly computeH(g,B) for the three dimensional Euclidian and Poi
caréalgebrasiso(3) andiso(2,1).

In the case where the idealJ is abelian, this leads to a complete characterization
H(gud,B), allowing us in particular to give exhaustive results foriso(3) and iso(2,1). The
covariant Poincare´ lemma allows us to extend these results toH(gud,A).

Finally, we explicitly rediscuss the local BRST cohomology, and more particularly the
sistent deformations, ofiso(2,1) Chern–Simons theory, whose physical relevance is due t
relation with 211 dimensional gravity.24,25

II. GENERALITIES AND CONVENTIONS

We take space–time to ben-dimensional Minkowski space withn>3 andA to be either the
algebra of form valued polynomials or the algebra of form valued formal power series i
potentialsAm

a , the ghostsCa ~collectively denoted byf i) and their derivatives. The algebraA can
be decomposed into subspaces of definite ghost numberg, by assigning ghost number 1 to th
ghosts and their derivatives and ghost number zero toxm, dxm, the gauge potentials and the
derivatives. LetB be either the algebra of polynomials or of formal power series generate
Aa,Ca,dAa,dCa, with d5dxm]m and ]m denoting the total derivative. Letf ab

c be the structure
constants of a Lie algebraG. The action of the gauge partg of the BRST differential is defined by

gAm
a 5]mCa1 f bc

a Am
b Cc,gCa52 1

2 f bc
a CbCc, ~2.1!

gxm5gdxm50,@g,]m#5$g,d%50. ~2.2!

Let Fmn
a 5]mAn

a2]nAm
a 1 f bc

a Am
b An

c so thatgFmn
a 5 f bc

a Fmn
b Cc. In B, the action ofg reads

gAa52DCa, ~2.3!

gCa52 1
2 @C,C#a. ~2.4!

The field strength two-formFa5dAa1 1
2@A,A#a satisfies
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gFa5@F,C#a, DFa50, ~2.5!

with D5d1@A,•#.
In the following, the algebraE stands for eitherA or B. Under the above assumptions, th

cohomology ofd is known to be trivial inE.7,26–35More precisely, in form degree 0, the coh
mology of d is exhausted by the constants, and in particular it is trivial in strictly positive g
numbers. It is also trivial in form degrees 0,p,n.

A standard technique for computingH(gud,E) is to use so-called descent equations. As
consequence of the acyclicity of the exterior differentiald, the cocyle conditiongvp1dvp21

50 implies thatgvp211dvp2250. Iterating the descent, there necessarily exists an equa
which readsgvp2 l50 because the form degree cannot be lower than zero. One then tr
computeH(gud,E) by starting from the last equation. The systematics of this strategy ca
captured by the exact couple

C5^H~gud,E!,H~g,E!,D,l #,i #&, ~2.6!

H~gud,E!→
D

H~gud,E!

i #↖ ↙ l # ~2.7!

H~g,E!

and the associated spectral sequence16 ~see also Refs. 36 and 37 for reviews!. The various maps
are defined as follows:i # is the map which consists in regarding an element ofH(g,E) as an
element ofH(gud,E), i #:H(g,E)→H(gud,E), with i #@v#5@v#. It is well defined because ever
g cocycle is ag cocycle modulod and everyg coboundary is ag coboundary modulod. The
descent homomorphismD:Hk,l(gud,E)→Hk11,l 21(gud,E) with D@v#5@v8#, if gv1dv850 is
well defined because of the triviality of the cohomology ofd in form degreep<n21 ~and ghost
number>1). Finally, the mapl #:Hk11,l 21(gud,E)→Hk11,l(g,E) is defined byl #@v#5@dv#. It is
well defined because the relation$g,d%50 implies that it maps cocycles to cocycles and cobou
aries to coboundaries. The differential associated to the exact triangle isd#5 l # + i #.

The exactness of the couple~2.7! implies that

H~g,E!.H~d#,H~g,E!! % d#NE% NE , ~2.8!

H~gud,E!)5 i #H~g,E! % D 21DH~gud,E!, ~2.9!

whereNE is the subspace ofH(g,E)) which cannot be lifted, i.e.,@c#PNE if gc50 with dc
1gv50⇒c5gv8.

In the following,v,a,APA andÃ,b,BPB.

III. THE FIRST LIFT IN THE SMALL ALGEBRA

In B, the change of generators fromAa,dAa,Ca,dCa to Aa,Fa,Ca,2DCa allows us to isolate
the contractible pairsAa,2DCa and the cohomology ofg can be computed in the polynomia
algebra generated byFa,Ca. In other words,gb50⇔b5P(F,C)1gb8 with gP(F,C)50, while
P(F,C)5gb8⇒P(F,C)5gP8(F,C). Let us first prove the following lemma:

Lemma 1: Every element of H(g,B) can be lifted at least once and, furthermore, no elem
of H(g,B) is an obstruction to a lift of an element of H(g,B):

Hp~d#,H~g,B!!.Hp~g,B!, for 0<p<n, ~3.1!

i.e.,
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gbp50⇒dbp1gÃ50, ~3.2!

together with

bp5db̄1gb8,

gb̄50 J ⇒bp5gÃ8. ~3.3!

Proof: In terms of the new generators, we have

g52DCa
]

]Aa 1@F,C#a
]

]Fa 2
1

2
@C,C#a

]

]Ca , ~3.4!

d5S F2
1

2
@A,A# D a ]

]Aa 2@A,F#a
]

]Fa 1~DC2@A,C# !a
]

]Ca 1~@F,C#2@A,DC# !a
]

]DCa .

~3.5!

Let us introduce the operator7,38

l5Aa
]

]Ca 2S Fa2
1

2
@A,A#aD ]

]DCa . ~3.6!

We get

d5@l,g#. ~3.7!

It follows that

db1glb50, ~3.8!

if gb50. Furthermore, ifb5db̄1gÃ with gb̄50, we getb5g(Ã2lb̄).
If gb50, we also get

dlb1g 1
2 l2b5tb, ~3.9!

with

t5
1

2
@d,l#5Fa

]

]Ca , ~3.10!

t250, $t,g%50. ~3.11!

It follows that the potential obstructions to lifts of elements ofH(g,B) are controlled by the
differential t.

IV. COVARIANT POINCARÉ LEMMA FOR GENERIC „SUPER…-LIE ALGEBRAS

A. Formulation

Theorem 1 „Covariant Poincaré lemma…: The following isomorphism holds:

Hp~d#,H~g,A!!.Hp~g,B!, 0<p,n. ~4.1!

Explicitly, this means that

gap50,
dap1gv50, 0<p,nJ ⇔ Hap5bp1da8p1gv8,

gbp505ga8p, ~4.2!
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together with

bp1da8p1gv850,
gbp505ga8p, 0<p,nJ ⇒bp5gÃ. ~4.3!

In fact, we will prove that~4.3! also holds in form degreep5n.

B. Associated structure of DH„gzd ,A…

As a direct consequence of the covariant Poincare´ lemma, the descent homomorphism inA
reduces to that inB.

Corollary 1: The isomorphism~4.1! implies

~DH !p~gud,A!.~DH !p~gud,B!, 0<p,n. ~4.4!

More precisely, ~4.1! for 0<p<m(,n) implies ~4.4! for 0<p<m(,n).
This last isomorphism is equivalent to

gAp1dA8p2150,
dAp1gv50, 0<p,n,J ⇔H Ap5Bp1gv81dv9,

gBp1dB8p2150,
dBp1gB950,

~4.5!

together with

Bp1gv81dv950,
dBp1gB950, 0<p,n,J ⇒Bp5gÃ1dÃ8. ~4.6!

Proof: That the condition~4.5! is necessary (⇐) follows directly from the properties ofg
cocycles in the small algebra proved in Sec. III and the fact thatd andg anticommute.

The proof that the condition~4.5! is also sufficient, and the proof of~4.6! proceeds by
induction on the form degree. In form degree 0,~4.5! and~4.6! hold, because~4.5! coincides with
~4.2!, while ~4.6! coincides with~4.3!. Suppose~4.5! and ~4.6! hold in form degree 0<p<m
21.

For ~4.5!, it follows by induction thatA8m215B8m211gv91d( ). This implies g(Am

2dv9)1dB8m2150. This givesdB8m211gB̄m50 and thenAm5Bm1ām1dv9 with gām50.
The assumption onAm implies thatdB̄m1dām1gv50. From ~4.3!, we then deduce thatdB̄m

1gB̄950, and also thatdām1g(v2B̄9)50. Using ~4.2!, we getām5bm1da81g( ). Hence,
because of~3.2!, the right hand side~4.5! holds withBm5B̄m1bm.

For ~4.6!, we note that the assumptions imply thatgBm1dB8m2150. Furthermore,
d(B8m211gv9)50, so that B8m211gv91d( )50. By induction, this means thatB8m21

5gÃ81dÃ9. This implies thatg(Bm2dÃ8)50 so thatBm5dÃ81bm. The assumption tha
Bm can be lifted in the small algebra then givesdbm52gB9. Using ~3.3!, this implies thatbm

5gÃ so that the r.h.s. of~4.6! holds in form degreem.

C. Associated structure of H„g,A… and H„gzd ,A…

Taking ~4.1! into account, the decomposition~2.8! for E5A becomes

Hp~g,A!.Hp~g,B! % d#N A
p21

% N A
p , 0<p,n, ~4.7!

Hn~g,A!.F n
% d#N A

n21 , ~4.8!

with F n.Hn(g,A)/d#N A
n21 . This is equivalent to
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gap50, 0<p,n⇔ Hap5bp1dãp211ã8p1gv,
gbp505gãp215gã8p, ~4.9!

together with

bp1dãp211ã8p1gv50, 0<p,n,
gbp505gãp215gã8p J ⇒H bp5gÃ,

ãp215gv8,
ã8p5gv9,

~4.10!

in form degrees 0<p,n and to

gan50⇔ Han5ân1dãn211gv,
gân505gãn21, ~4.11!

together with

ân1dãn211gv50,
gân505gãn21 J ⇒ H ân5gv,

ãn215gv8,
~4.12!

in form degreen.
Finally, using~4.7! and ~4.4!, the decomposition~2.9! for E5A becomes

Hp~gud,A!. i #Hp~g,B! % N A
p

% D 21~DH !p21~gud,B!,0<p,n. ~4.13!

Hn~gud,A!.F n
% D 21~DH !n21~gud,B!, ~4.14!

which is equivalent to

gAp1dA8p50, 0<p,n⇔H Ap5ãp1bp1Bp1gv1dv8,
gãp505gbp5gBp1dB8p21,

dãp1gv950⇒ãp5gv-,
B8p215gÃ1dÃ8⇒Bp5gÃ91dÃ,

~4.15!

together with

ãp1bp1Bp1gv1dv850, 0<p,n
gãp505gbp5gBp1dB8p21,

dãp1gv950⇒ãp5gv-,
B8p215gÃ1dÃ8⇒Bp5gÃ91dÃ

J ⇒H ãp5gv4,
bp5dB9p211gÃ-,

Bp5gÃ-1dÃ4,
~4.16!

in form degrees 0<p,n, and

gAn1dA8n2150⇔5
An5ân1Bn1gv1dv8,
gân505gBn1dB8n21,

ân1dãn211gv950,
gãn2150, J ⇒ H ân5gv-,

ãn215gv4,
B8n215gÃ1dÃ8⇒Bn5gÃ91dÃ,

~4.17!

together with

ân1Bn1gv1dv850,
gân505gBn1dB8n21,

B8n215gÃ1dÃ8⇒Bn5gÃ91dÃ
J ⇒H ân5dB9n211gv-,

gB9n211dB-p2250,
Bn5gÃ-1dÃ4,

~4.18!

in form degreen.
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D. Proof of theorem 1

That the condition~4.2! is necessary (⇐) is again direct.

1. Decomposition according to homogeneity and change of variables

If one decomposes the space of polynomials or formal power series into monomials of d
homogeneity, the differentialg splits accordingly into a piece that does not change the hom
neity and a piece that increases the homogeneity by one,g5g01g1 . Consider the change o
variables fromAm ,Ca and their derivatives to

ya[] (mk
¯]m2

Am1)
a , ~4.19!

za[]mk
¯]m1

Ca, ~4.20!

Ca,FD
0a[] (mk21

¯]m3
Fm2)m1

0a , ~4.21!

with Fmn
0a 5]mAn

a2]nAm
a . In the new variables,

g05za
]

]ya . ~4.22!

This implies that

a~ya,za,FD
0a ,Ca!5a~0,0,FD

0a ,Ca!1$g0 ,r%a, ~4.23!

r•5E
0

1 dt

t Fya
]

]za •G~ tya,tza,FD
0a ,Ca!. ~4.24!

Suppose thatg0a50. It follows that

g0a50⇔a5I 1g0v, ~4.25!

for some form valued polynomialsI (xm,dxm,FD
0a ,Ca). Furthermore,

I 1g0v50⇒I 50. ~4.26!

2. Properties of g1 and g0

Let I 0 be the algebra of form valued polynomials or formal power series that do not de
on ya,za, but only onCa,FD

0a , with elements denoted below byI ,J and P 0 be the algebra of
polynomials or formal power series that depend only onF0a,Ca, with elements denoted byP,Q.
Polynomials which depend only on the ghosts are denoted byR.

Let us introduce the operator

s5g12Cada , ~4.27!

whereda denotes the representation under which the object transforms. We have

sAm
a 50, sCa5 1

2 @C,C#a, s250, @s,]m#5@]mC,•#, $s,g0%50. ~4.28!

The point abouts is that when it acts on any expression that depends only onAm
a and its

derivatives, the result does not involve undifferentiated ghosts. More precisely, (s f @Am
a #)uz50

50. We haveg0s]nk
¯]n2

Fn1m
0a 50. It follows that

s]nk
¯]n2

Fn1m
0a 5g0rs]nk

¯]n2
Fn1m

0a . ~4.29!
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Symmetrizing over then indices, one gets

sFD
0a5g0~rs!FD

0a . ~4.30!

3. The differential gR

For later use, let us also establish that if

gRJ52@C,FD
0 #a

]J

]FD
0a 2

1

2
@C,C#a

]J

]Ca , ~4.31!

and

v5~rsFD
0a!

]

]FD
0a , ~4.32!

then

g1J5g0~vJ!1gRJ. ~4.33!

Lemma 2:

H~g1 ,H~g0!!.H~gR,I 0!. ~4.34!

Proof: The lemma means that

g0a50,
g1a1g0b50,J ⇔ Ha5J1g0~ !,

gRJ50, ~4.35!

and

J5g1a81g0~ !,
g0a850, J ⇒J5gRJ8. ~4.36!

Indeed, the result follows directly from~4.33!.
Suppose now that the decomposition of the space of polynomials or of formal power

into monomials of homogeneityM has been made~see the Appendix for notations and mo
details!. Then one has the following:

Lemma 3:

H~g,A!. % M>0HM~gR,I 0!, ~4.37!

H~g,B!. % M>0HM~gR,P 0!. ~4.38!

Proof: Let us first show that every element@ I M#PH(gR,I 0) can be completed to ag cocycle.
Indeed, let us denote byI M the expression obtained by replacing inI M the variablesFD

0a by their
non-Abelian counterparts,

FD
a [D (mk21

¯Dm3
Fm2)m1

a , ~4.39!

whereFmn
a 5]mAn

a2]nAm
a 1 f bc

a Am
b An

c , andDm5]m1Am
b db and the covariant derivatives ofFmn

a

transform in the coadjoint representation. Hence,I M5I Mu where the vertical bar denotes th
operation of substitution. BecausegFD

a 52@C,FD#a, it follows that

gI M5~gRI M !u50. ~4.40!
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Similarily,

~gRJM !u5gJM. ~4.41!

Note that if I M ,JMPP 0, thenI M[bMPB andJM[ÃMPB.
SupposegaM50. The equations in homogeneityM andM11 imply thataM is a cocycle of

H(g1 ,H(g0)). According to the previous lemma,aM5I M1g0hM where I M is a cocycle of
H(gR,I 0).

Suppose thataM5gvM2B. In particular, to orders<M , we have

aM5g0vM 1 g1vM21 ,

g0vM21 1 g1vM2250,

]

g0vM2B11 1 g1vM2B50,

g0vM2B50.

~4.42!

If B.1, the equations forvM2B imply that vM2B5JM2B1g0hM2B with gRJM2B50. The
redefinitionvM2B→vM2B2ghM2B , which does not affectaM allows to absorbhM2B . One can
then replacevM2B by vM2B115vM2B2JM2B, without affectingaM. This can be done unti
B51, where one findsI M5gRJM21 . This proves that the map@aM#PH(g)°@ I M#PH(gR,I 0)
is well defined. The map is surjective because as shown above, everygR cocycle I M can be
extended to ag cocycle I M. It is also injective, because as also shown above, ifI M5gRJM21 ,
then I M5gJM21, so thataM2g(JM212hM)5aM11 starts at homogeneityM11.

4. H„g… and split of variables adapted to the non-Abelian differential g

If one is not interested in proving the covariant Poincare´ lemma, one can avoid the detour o
using the split of variables adapted to the Abelian differentialg0 given in ~4.19!–~4.21! for the
characterization ofH(g). One can use instead directly the variables

Ya[] (mk
¯]m2

Am1)
a , ~4.43!

Za[] (mk
¯]m2

Dm1)C
a, ~4.44!

Ca,FD
a [D (mk21

¯Dm3
Fm2)m1

a , ~4.45!

with Fmn
a 5]mAn

a2]nAm
a 1 f bc

a Am
b An

c adapted to the non-Abelian differentialg, which reads

g5Za
]

]Ya 1gS, ~4.46!

gS5Cada2
1

2
@C,C#a

]

]Ca , ~4.47!

da52 f ab
c FD

b ]

]FD
c . ~4.48!

The usual argument then shows thatH(g,A) and H(g,B) are isomorphic toH(gS,I), respec-
tively H(gS,P), whereI is the algebra of form valued polynomials or formal power series tha
not depend onYa,Za, but only onCa, FD

a , andP is the algebra of polynomials or formal powe
series that depend only onFa,Ca.
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5. Exterior derivative and contracting homotopy for the gauge potentials

Let us introduce the total derivative that does not act on the ghosts,

]̄m5]m2] (n)mCa
]

]] (n)C
a , ~4.49!

and also the associated exterior derivative and contracting homotopy,39

d̄5dxm]̄m , ~4.50!

r̄vp5E
0

1

dt
ulu11

n2p1ulu11
]̄ (l)S Am

a F d̄

d] (l)nAm
a

]vp

]dxnG @x,dx,C,tA# D , ~4.51!

vp@x,dx,C,A#5vp@x,dx,C,0#1$r̄,d̄%vp,0<p,n, ~4.52!

whered̄/d] (l)nAm
a are the higher order Euler operators with respect to the dependence onAm

a only
~see Ref. 40, Appendix A for conventions!. In the old variablesAm

a ,Ca and their derivatives,
consider the split

g15gR1g]C,gR5@] (n)Am ,C#a
]

]] (n)Am
a 2

1

2
@C,C#a

]

]Ca . ~4.53!

This is consistent with~4.31! when acting on functions that depend only onFD
0a ,Ca. We have

$gR,d̄%505$gR,r̄%50. ~4.54!

The first relation is obvious, while the second follows from the fact thatgR just rotates all theAm
a

and their derivatives in the internal space without changing the derivatives, whiler̄ only involves
the various derivatives and does not act in the internal space. It can be proved directly us
explicit expression~4.51! for r̄.

6. Core of the proof

Lemma 4:

gaM50,
daM1gvM2B50,J ⇒H gRI M50,

d̄I M1gRJM2150.
~4.55!

Proof: In ~4.55!, one can assume without loss of generality thatB51. This can be shown in
the same way as in the corresponding part of the proof of Lemma 3. We then haveaM5I M

1g0hM with gRI M50, andvM215JM21 , with gRJM2150. To orderM , the l.h.s. of~4.55! then
gives the r.h.s. of~4.55!.

Lemma 5: In form degree,n,

gRI M50,

d̄I M1gRJM2150,J ⇔H I M5PM1d̄I M8 1gRJM218 ,

gRPM505gRI M8 .
~4.56!

Proof: That the condition is necessary~⇐! is direct. In order to show that it is sufficient, w
are first going to show that

d̄I Na1 . . . ak
1gk

RJN21a1 . . . ak
50⇒I Na1 . . . ak

5PNa1 . . . ak
1d̄I Na1 . . . ak

8 1gk
RJN21a1 . . . ak

8 ,

~4.57!

wheregk
RJa1 . . . ak

52( l 51
k Cbf bal

c Ja1 . . . al 21cal 11 . . . ak
1gRJa1 . . . ak

.

                                                                                                                



ear

the

5997J. Math. Phys., Vol. 43, No. 12, December 2002 Results on the Wess–Zumino consistency

                    
Indeed, in form degree 0, the algebraic Poincare´ lemma for d̄ implies that I Na1 . . . ak

5RNa1 . . . ak
1 r̄d̄I Na1 . . . ak

. Using the l.h.s. of~4.57! and the factgk
R anticommutes withr̄, one

gets the desired result by putting theya to zero.
Suppose now that the result is true in form degrees,p and thatI Na1 . . . ak

has form degreep.

The algebraic Poincare´ lemma for d̄ implies thatI Na1 . . . ak
5 r̄d̄I Na1 . . . ak

1d̄r̄I Na1 . . . ak
. Using

the l.h.s. of ~4.57!, we get I Na1 . . . ak
5gk

Rr̄JN21a1 . . . ak
1d̄r̄I Na1 . . . ak

. We have r̄I Na1 . . . ak

5yaI N21aa1 . . . ak
1I Na1 . . . ak

8 and r̄JN21a1 . . . ak
5ybJN22ba1 . . . ak

1JN21a1 . . . ak
8 so that

I Na1 . . . ak
2d̄I Na1 . . . ak

8 2gk
RJN21a1 . . . ak

8 5d̄~yaI N21aa1 . . . ak
!1gk

R~ybJN22ba1 . . . ak
!.

~4.58!

The action ofgR only rotates theyb in the internal space; its action on an expression that is lin
and homogeneous in theyb reproduces an expression that is linear and homogeneous inyb.
Supposing that the term inyaI N21aa1 . . . ak

with the highest number of derivatives onya is

A(m,n1 . . . nm)
a I N21aa1 . . . ak

(mn1 . . . nm) ,

we get, for the term linear inya with the highest number of derivatives onya, that
dxsA(m,n1 . . . nms)

a I N21aa1 . . . ak

(mn1 . . . nm)
1gk

R(A(m,n1 . . . nms)
a JN22aa1 . . . ak

(mn1 . . . nms) )50. This implies that

JN22aa1 . . . ak

(mn1 . . . nms)
5dx(sJN22aa1 . . . ak

mn1 . . . nm) and that

I N21aa1 . . . ak

(mn1 . . . nm)
5dx(nmI N21aa1 . . . ak

(mn1 . . . nm21))
2gk11

R JN22aa1 . . . ak

(mn1 . . . nm) .

The redefinition,

yaI N21aa1 . . . ak
→yaI N21aa1 . . . ak

2d̄~A(m,n1 . . . nm21)
a I N21aa1 . . . ak

(mn1 . . . nm21)
!

1gk
R~A(m,n1 . . . nm)

a JN22aa1 . . . ak

(mn1 . . . nm)
!, ~4.59!

ybJN22ba1 . . . ak
→ybJN22ba1 . . . ak

1d̄~A(m,n1 . . . nm)
a JN22aa1 . . . ak

(mn1 . . . nm)
!, ~4.60!

does not change the equation~4.58! and allows it to absorb the term linear inya with the highest
number of derivatives onya. These redefinitions can be done until there are no derivatives on
ya left, so thatyaI N21aa1 . . . ak

5AaI N21aa1 . . . ak
, ybJN22ba1 . . . ak

5AaJN22aa1 . . . ak
. The vanish-

ing of the term proportional to Aa in ~4.58! then implies that d̄I N21aa1 . . . ak

1gk11
R JN22aa1 . . . ak

50. Because this is the l.h.s. of~4.57! in form degree,p, we have by

induction that I N21aa1 . . . ak
5PN21aa1 . . . ak

1d̄I N21aa1 . . . ak
8 1gk11

R JN22aa1 . . . ak
8 . Injecting into

~4.58! gives the desired result:

I Na1 . . . ak
2d̄I Na1 . . . ak

8 2gk
RJN21a1 . . . ak

8

5FaPN21aa1 . . . ak
1d̄~FaI N21aa1 . . . ak

8 !1gk
R~FaJN22aa1 . . . ak

8 !. ~4.61!

The first line on the right hand side of~4.56! then follows as a particular case of~4.57!.
Applying now gR, one getsgRPM2d̄gRI M8 50. Restriction to the small algebraB then implies
that gRPM505d̄gRI M8 becaused̄(gRI M8 )uB50. We haveI M8 5RM8 1d̄r̄I M8 1 r̄d̄I M8 . One can then
set the variablesya to zero on the r.h.s. without changing the l.h.s.,I M8 5RM8 1(d̄r̄I M8 )uy50
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1( r̄d̄I M8 )y50 . Appling the same reasoning as above then gives (d̄r̄I M8 )uya505PM-1d̄JM9 , so that
I M8 5PM9 1d̄JM9 1( r̄d̄I M8 )uy50 . Because the first two terms do not contribute tod̄I M8 , we can
assume without loss of generality thatI M8 5( r̄d̄I M8 )uy50 . For such anI M8 , the relationd̄gRI M8
50 impliesgRI M8 50 by using~4.54!.

Completing the proof of (4.2):According to~4.40!, we can completePM5PMu, I 8M5(I M8 )u
such thatgPM505gI 8M, and according to~4.41! gRJM218 5gJ8M211O(M11). Hence,

aM2PM2dI8M2gS hM1Aa
]I M8

]Ca 1J8M21D 5aM11. ~4.62!

Because all the individual terms on the left hand side satisfy the l.h.s. of~4.2!, so doesaM11.
Lemma 6:

bM1da8M2B1gv8M2C50,
gbM505ga8M2B, J ⇒H PM1d̄I M8 1gRJM218 50,

gRPM505gRI M8 .
~4.63!

Proof: Proceeding again as in the proof of Lemma 3, one can assume without loss of g
ality that C5B11>1 by suitably modifyingv8M2C. If B>1, we have by assumption at th
lowest orders

daM2B8 1g1vM2B218 1g0vM2B8 50,
~4.64!

g0vM2B218 505g0aM2B8 5g1aM2B8 1g0aM2B118 .

We thus havevM2B218 5JM2B218 1g0( ). The g0 exact term can be assumed to be absent b
further modification ofv8M2B21 by a g exact term that does not affect the equations. Beca
aM2B8 5I M2B8 1g0hM2B , we get

H d̄I M2B8 1gRJM2B218 50,

gRI M2B8 50.
~4.65!

According to~4.56!, this implies

I M2B8 5PM2B8 1d̄I M2B9 1gRJM2B219 ,
~4.66!

gRPM2B8 505gRI M2B9 .

As in the reasoning leading to~4.62!, we get

a8M2B2P8M2B2dI9M2B2gS hM2B1Aa
]I M2B8

]Ca 1J9M2B21D 5a8M2B11, ~4.67!

with gP8M2B505gI 9M2B. BecausedP8M2B1g( )50, we can replace on the l.h.s. of~4.63!
a8M2B by a8M2B11 by suitably modifyingv8M2C. This can be done untilB50 by the same
reasoning as in the beginning of this proof. ForB50, we get the r.h.s. of~4.63!, with bM5PM

1g0ÃM .
Lemma 7: In form degree<n,

PM1d̄I M8 1gRJM218 50,

gRPM505gRI M8 , J ⇒PM5gRQM21 . ~4.68!

Proof: By restricting to the small algebraB, we get PM1d̄(I M8 uB)1gR(JM218 uB)50. This
gives directly the result becaused̄(I M8 uB)50.
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Note that because of the first relation of~4.54!, the map

d̄#:H~gR,I 0!→H~gR,I 0!,
~4.69!

@ I #°@ d̄I #,

is well defined. Lemmas 5 and 7~for p,n) can then be summarized by the following corolla
Corollary 2:

Hp~ d̄#,H~gR ,I 0!!.Hp~gR,P 0!, p,n. ~4.70!

Completing the proof of (4.3):According to ~4.41!, the expressionQM215QM21u satisfies
gRQM215gQM211O(M11) so that bM2g(ÃM1QM21)5bM11. This implies thatbM11

obeys again the l.h.s. of~4.3!.

7. Convergence in the space of polynomials

As they stand, the proofs are valid in the space of formal power series. In order that they
to the case of polynomials, one needs to be sure that if the l.h.s. of~4.2! and~4.3! are polynomials,
i.e., if the degrees of homogeneity of all the elements are bounded from above, then the
holds for the elements that have been constructed on the r.h.s. of these equations. This can
by controlling the number of derivatives on theAm

a and theCa’s. Let

K5~ unu21!] (n)C
a

]

]] (n)C
a 1unu] (n)Am

a ]

]] (n)Am
a . ~4.71!

Suppose thataM is a polynomialaM5aM1 . . . 1aM1L . It follows that theK degree ofaM is
bounded from above by somek. We will say thataM is of orderk. Note thatg0 does not modify
the order, whileg1 decreases the order by 1. It follows that theg0 exact term andJ in ~4.35! can
be assumed to be of orderk as well, whileJ8 in ~4.36! can be assumed to be of orderk11. The
important point is thatI M2I M andgJM2gRJM are of orderk21 if I M , respectivelygRJM , are
of orderk.

Since d̄ increases the order by 1,I M and JM21 in ~4.55! can be assumed to be of orderk,
respectivelyk12, while I M8 can be assumed to be of orderk21. It follows thatJM218 in ~4.56! can
be assumed to be of orderk11. This implies that in the recursive construction~4.62! of aM, after
M1L11 steps, i.e., after all of the originalaM1 . . . 1aM1L have been absorbed, the ord
strictly decreases at each step. Since the order is bounded from below, the construction nec
finishes after a finite number of steps, so that one stays inside the space of polynomials.

Similarily, if bM on the l.h.s.~4.63! is of orderk, PM , I M8 andJM218 on the right hand side o
~4.63! can be assumed to be of orderk, k21 andk11, respectively. It follows that on the r.h.s
of ~4.68!, QM21 can be assumed to be of orderk11. In the recursive construction ofbM, once the
original bM has been completely absorbed, the order strictly decreases at each step, so
construction again finishes after a finite number of steps.

8. The case of super or graded Lie algebras

In the case of super or graded Lie algebras, some of the gauge potentials become fer
while some of the ghosts become bosonic. By taking due care of sign factors and using
commutators everywhere, the same proof as above of the covariant Poincare´ lemma goes through

V. H„g… FOR GÕJ SEMISIMPLE

A. Formulation of a theorem by Hochschild and Serre

As shown in the digression in Sec. IV D 4,H(g,A).H(gS,I), respectively H(g,B)
.H(gS,P). By identifying the ghostsCa as generators of∧(G* ), the spacesI and P can be
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identified withC(G,VI), respectivelyC(G,VP), the spaces of cochains with values in the mod
VI, respectivelyVP. Here,VI is the module of form valued polynomials or formal power series
theFD

a , while VP is the module of polynomials or formal power series in theFa. The differential
gS defined in~4.48! can then be identified with the Chevalley–Eilenberg Lie algebra differen
with coeffcients in the moduleVI, respectivelyVP. The moduleVP decomposes into the direc
sum of finite dimensional modulesVM

P of monomials of homogeneityM in theFa. The moduleVI
decomposes into the direct sum of modulesV(M ) ^ VM

I of form valued monomials of homoge
neity M in the FD

a . The space–time forms can be factorized because the representation do
act on them, and the moduleVM

I is finite dimensional.
As mentioned in the Introduction, it is at this stage that, for reductive Lie algebras, on

use standard results on Lie algebra cohomology with coefficients in a finite dimensional m
~see, e.g., Ref. 12!. But even for non reductive Lie algebras, there exist some general result
will now review one of these results due to Hochschild and Serre.23 In order to be self-contained
a simple proof of their theorem in ‘‘ghost’’ language is given.

Theorem 2: Let G be a real Lie algebra andJ an ideal ofG such thatG/J is semi-simple. Let
V be a finite dimensionalG-module. Then the following isomorphism holds,

H~G,V!.H~G/J,R! ^ HG~J,V!, ~5.1!

where HG means theG-invariant cohomology space.

B. Proof

The above hypothesis implies that there is a semi-simple subalgebraK of G isomorphic toG/J
such that

G5K›J. ~5.2!

Let $eA ,ha%,(A51, . . . ,p),(a51, . . . ,q) denote a basis ofG, among which theeA’s form a basis
of K and theha’s a basis ofJ: the fundamental brackets are given by

@eA ,eB#5 f AB
CeC , @ha ,hb#5 f ab

g hg , @eA ,hb#5 f Ab
g hg . ~5.3!

If Ca[(hA,Ca), the coboundary operatorgT can be cast into the form

gT5hAr~eA!1hArC~eA!2
1

2
hAhBf AB

C ]

]hC 1Car~ha!2
1

2
CaCb f ab

g ]

]Cg . ~5.4!

Here,rC(eA) is the extension to∧(C) of the coadjoint representation of the semi-simpleK,

rC~eA!52 f Ab
g Cb

]

]Cg , ~5.5!

while r denotes the representation ofG in V. Let

Nh5hA
]

]hA , NC5Ca
]

]Ca , ~5.6!

be the counting operators for theh’s and C’s and the associated gradingsghh and ghC on V
^ ∧(C,h). According to theghC–grading,gT is the sum

gT5g0
T1g1

T , ~gT!25~g0
T!25~g1

T!250, $g0
T ,g1

T%50, ~5.7!

with g1
T explicitly given by
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g1
T5Car~ha!2

1

2
CaCb f ab

g ]

]Cg ~5.8!

and which obey

@NC ,g0
T#50, @NC ,g1

T#5g1
T , ~5.9!

which means thatg0
T conserves the number ofC’s while g1

T increases this number by one. At th
stage,g0

T can already be identified with the coboundary operator of the Lie algebra cohomolo
the semi-simple subalgebraK with coefficients in theK-module V^ ∧(C), the corresponding
representation being defined asrT(eA)5r(eA) ^ IC1IV^ rC(eA). An elementaPV^ ∧(C,h) of
total ghost numberg can be decomposed according to itsghC components,

a5a01a11 ¯ 1ag , ghCak5k. ~5.10!

The cocycle conditiongTa50 generates the following tower of equations,

g0
T a050, ~5.11!

g1
T a01g0

T a150, ~5.12!

g1
T a11g0

T a250, ~5.13!

A

g1
T ag50, ~5.14!

and the coboundary condition reads

a05g0
T v0 , ~5.15!

a15g1
T v01g0

T v1 , ~5.16!

A

ag5g1
T vg21 . ~5.17!

The above mentioned results on reductive Lie algebra cohomology imply that the general so
of Eq. ~5.11! can be written as

a05v0
j Q j1g0

T v0 , ~5.18!

rT~eA!v0
j 50, ~5.19!

where theQ j (h)’s form a basis of the cohomologyH(K,R), which is generated by the primitive
elements. Furthermore, allK-invariant polynomialsv j , obeyingv j Q j1g0

T v50 for somev, have
to vanish,v j50.

The termg0
T v0 can be absorbed by subtractinggTv0 from a and modifyinga1 appropriately.

Injecting then~5.18! in ~5.12!, one gets, sinceg1
T does not act on theh’s,

~g1
T v0

j !Q j1g0
T a150. ~5.20!

Now, from @rT(eA),g1
T#50, one sees thatg1

Tv0
j PV^ ∧(C) is still invariant underrT(eA). Ac-

cordingly, one must have
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g1
T v0

j 50 and g0
T a150. ~5.21!

Again, the general solution of the last equation~5.21! is

a15v1
j Q j1g0

T v1 ~5.22!

with rT(eA)v1
j 50; subtraction ofgTv1 and injection in Eq.~5.13! gives

~g1
T a1

j !Q j1g0
T a250, ~5.23!

implying

g1
T v1

j 50 and g0
T a250. ~5.24!

The same procedure can be repeated until~5.14!.
Every gT-cocycle is thus of the form

a5 (
k50

g

vk
j Q j1gT v, ~5.25!

with

rT~eA!vk
j 50⇒vk

j P@V^ ∧~C!#K, ~5.26!

g1
Tvk

j 50. ~5.27!

Let us now analyze the coboundary condition. To order 0, we find

v0
j 50 and g0

Tv050. ~5.28!

The last equation impliesv05w0
j Q j1g0

T( ). The g0
T exact term can be absorbed by subtract

the correspondinggT exact term fromv. To order 1, we then find

v1
j 5g1

Tw0
j and g0

Tv150. ~5.29!

Going on in the same way gives

vk
j 5g1

Twk21
j , k51, . . . ,g. ~5.30!

In other words,

H~G,V!.H~G/J,R! ^ H~g1
T ,~V^ ∧~C!!K!. ~5.31!

From $g1
T , ]/]Ca %5rT(ha), it follows that the elements@vk

j # of the second space are invaria
under the action ofJ,

rT~ha!vk
j 5g1

T ]

]Ca vk
j ⇒~rT~ha!!#@vk

j #50, ~5.32!

whererT(ha)5r(ha) ^ IC1IV^ rC(ha). Hence,

H~g1
T ,~V^ ∧~C!!K!5HG~J,V!, ~5.33!

as required.
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C. Explicit computation of H„g,B… for GÄ iso „3… or iso „2,1…

1. Applicability of the theorem

As a concrete application, we consider the case whereG5 iso(3), the three dimensional
Euclidian algebra, orG5 iso(2,1), the three dimensional Poincare´ algebra. Both of these Lie
algebras fulfill the hypothesis of the Hochschild–Serre theorem withJ being the Abelian trans-
lation algebra.

Denoting by$ha5Pa ,ea5Ja% a basis ofG wherePa represent the translation generators a
Ja represent the rotation~resp. Lorentz! generators, their brackets can be written as

@Pa ,Pb#50, @Ja ,Jb#5eabcJ
c, @Ja ,Pb#5eabcP

c. ~5.34!

The indices are lowered or raised with the Killing metricgab of the semi-simple subalgebraK
5so(3) or so(2,1).

In the so-called universal algebra,~see Refs. 16 and 37 for more details! the space of poly-
nomials in theFa, the Abelian curvature two-form associated to the translations, and theGa, the
non-Abelian curvature two-form associated to the rotations/boosts, can be identified wi
moduleV5S(G* ) transforming under the extension of the coadjoint representation, so that

H~g,B!).H~gR,P![H~G,S~G* !!. ~5.35!

The coboundary operatorgR acts onV^ ∧(C,h) through

gR5haeabcFFc
]

]Fb
1Gc

]

]Gb
2

1

2
hb

]

]hc
2Cb

]

]Cc
G1CaeabcG

c
]

]Fb
. ~5.36!

As mentioned above, the Lie algebra cohomologyH(K,R) is generated by particular ghos
polynomialsQ i(h) representing the primitive elements which are in one-to-one correspond
with the independent Casimir operators. In the particular cases considered here, there is
primitive element given by

u15
1

3!
eabch

ahbhc5~2 !sĥ3, ~5.37!

wheres50,1 for the Euclidean respectively Minkowskian case. The elements of the set$1,u1%
provide a basis of this cohomology.

2. Invariants, cocycles, coboundaries

a. Order zero.In ghC50, the invariant spaceVK is generated by the following quadrat
invariants:

f 15gabG
aGb, f 25gabF

aFb, f 35gabF
aGb. ~5.38!

An elementa0PVK is a polynomial in the three variables

a05Q~ f 1 , f 2 , f 3!. ~5.39!

To fulfill the cocycle conditiong1
Ra050, Q has to obey

eabcG
c

]

]Fb
Q505eabcG

cF2Fb
]

] f 2
1Gb

]

] f 3
GQ, ~5.40!

which implies
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]

] f 2
Q50. ~5.41!

The g1
R-cocycles ofghC50 are thus of the form

a05Q~ f 1 , f 3!. ~5.42!

Using the following decomposition,

Q~ f 1 , f 2 , f 3!5Q~ f 1,0,f 3!1 f 2Q̃~ f 1 , f 2 , f 3!, ~5.43!

the coboundaries ofghC51 are given by

t15g1
R@ f 2Q̃~ f 1 , f 2 , f 3!#52CaeabcG

cFb
]

] f 2
@ f 2Q̃~ f 1 , f 2 , f 3!#. ~5.44!

b. Order one.In ghC51, the elements of@V^ ∧(C)#K can be written as

v15Cbvb , ~5.45!

where thevbPS(G* ) transform underK as the components of a vector. They are of the form

Cbvb5Cb@GbQ~ f k!1FbR~ f k!1ebcdG
cFdS~ f k!#. ~5.46!

According to~5.44!, the last term isg1
R-exact. For the other terms, the cocycle conditiong1

Ra1

50 implies

CaCbeamnG
nF2GbFm

]Q

] f 2
1db

mR12FbFm
]R

] f 2
G50, ~5.47!

and imposes

R50 and
]Q

] f 2
50. ~5.48!

Hence, the nontrivialghC51 cocycles are given by

a15CbGbQ~ f 1 , f 3!. ~5.49!

The ghC52 coboundaries are given by

t25g1
RCb@Gbf 2Q̃~ f k!1FbR~ f k!#, ~5.50!

or equivalently by

t25@~GC2! f 32~FC2! f 1#
] f 2Q̃

] f 2
1~GC2!R1@~GC2! f 22~FC2! f 3#

]R

] f 2
~5.51!

due to the identities

2~CaGa!~CbebcdG
cFd!5~GC2! f 32~FC2! f 1 , ~5.52!

2~CaFa!~CbebcdG
cFd!5~GC2! f 22~FC2! f 3 , ~5.53!

in which (FC2)5CaCbeabcF
c and (GC2)5CaCbeabcG

c.
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One deduces from~5.51! that, for all integersL,M ,N, the following equalities betweeng1
R

equivalences classes hold:

@~GC2! f 1
L f 2

M f 3
N11#5@~FC2! f 1

L11f 2
M f 3

N#, ~5.54!

@~GC2! f 1
L f 2

M f 3
N#5F M

M11
~FC2! f 1

L f 2
M21f 3

N11G , ~5.55!

from which one infers that the elements of the form (GC2)U( f k) are equivalent to elements of th
form (FC2)V( f k) and, furthermore, that all monomials of the form (FC2) f 1

L f 2
M f 3

N with L.M are
coboundaries, while those which haveL<M can be replaced by monomials not containingf 1

according to

@~FC2! f 1
L f 2

M f 3
N#5F ~FC2!

~M2L11!

M11
f 2

M2L f 3
N12LG . ~5.56!

c. Order two.The ghC52 elements of@V^ ∧(C)#K can be written as

v25CaCbvab . ~5.57!

The most general element is of the type

v25CaCbeabc@GcU~ f k!1FcV~ f k!1ecmnGmFnW~ f k!#, ~5.58!

but, according to our preceding results, through the addition of an appropriate coboundary,
remove theU-part and supposeV not depending onf 1 . The cocycle conditiong1

Ra250 then reads

CdCaCbede fG
feabc

]

]Fe
@FcV~ f 2 , f 3!1ecmnGmFnW~ f k!#50. ~5.59!

It does not further restrictV but requiresW50. The nontrivialghC52 cocycles are thus given b

a25~FC2!V~ f 2 , f 3!. ~5.60!

In order to characterize theghC53 coboundaries, we use the following identity,

g1
R~F3G!C2f 1

L f 2
M f 3

N5C1C2C3~4~M11! f 1
L11f 2

M f 3
N24M f 1

L f 2
M21f 3

N12!, ~5.61!

from which we infer that all monomials of the formC1C2C3f 1
L f 2

M f 3
N for L.M are coboundaries

while those withL<M are equivalent to monomials involving powers off 2 and f 3 only.
d. Order three.The ghC53 invariants are of the form

v35C1C2C3Q~ f 1 , f 2 , f 3!. ~5.62!

All of them are cocycles sinceJ is of dimension 3, but only those of the form

a35C1C2C3Q~ f 2 , f 3! ~5.63!

are nontrivial.
e. Summary.The nontrivial cocycles ofH(g1

R,@V^ ∧(C)#K) are summarized in Table I
whereĈ35C1C2C3, CG5CaGa . They provide a basis ofH(g1

R,@V^ ∧(C)#K) as a vector space
The associated basis ofH(g,B).H(g1

R,P) is given by

$Q0~ f 1 , f 3!,CGR0~ f 1 , f 3!,FC2S0~ f 2 , f 3!,Ĉ3T0~ f 2 , f 3!,

ĥ3Q1~ f 1 , f 3!,ĥ3CGR1~ f 1 , f 3!, ĥ3 FC2 S1~ f 2 , f 3!, ĥ3 Ĉ3 T1~ f 2 , f 3!%. ~5.64!
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VI. H„gzd … FOR G ÕJ SEMISIMPLE AND J ABELIAN

Let K be a semi-simple Lie algebra andG5K›J with J an Abelian ideal. This means tha
with respect to Sec. V, the additional assumption@ha ,hb#50 holds. In other words, the only
possibly nonvanishing structure constants are given byf AB

C and f Ab
g .

A. H„gzd ,B…

1. General results

Let BA andhA the gauge field one-forms and ghosts associated toK andAa andCa the gauge
fields one-forms and ghosts associated toJ. The curvature two-form decomposes asGA5dBA

1 1
2@B,B#A andFa5dAa1@B,A#a. Let us consider the algebraB using the variablesCa, DCa

5dCa1@B,C#a, Aa, Fa, BA, GA, hA, DhA5dhA1@B,h#A. Applying the results of Sec. III, we
have

d5@l,g#. ~6.1!

As in Sec. III, if gb50, one has

db1glb50, ~6.2!

and

dlb1g 1
2 l2b5tb, ~6.3!

with

t5
1

2
@d,l#5Fa

]

]Ca 1GA
]

]hA , ~6.4!

t250, $t,g%50. ~6.5!

Furthermore, if

s5Ca
]

]Fa , ~6.6!

s250, $t,s%5NC,F , ~6.7!

$s,g%50. ~6.8!

It is in order for this last relation to hold that one needs the assumption thatJ is Abelian. Indeed,
in this case, because

TABLE I. Cohomology ofg1
R in the total invariant representation space.

ghC H(g1
R ,@V^ `(C)#K)

0 Q( f 1 , f 3)
1 CGR( f 1 , f 3)
2 FC2S( f 2 , f 3)
3 Ĉ3S( f 2 , f 3)
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g52DCa
]

]Aa 2DhA
]

]BA 1~@F,h#1@G,C# !a
]

]Fa

1@G,h#A
]

]GA2@h,C#a
]

]Ca 2
1

2
@h,h#A

]

]hA , ~6.9!

the absence of the term@F,C#a]/]Fa guarantess that~6.8! holds.
According to~5.25!, we can assumeb5v jQ j , wherev j5v j (F,G,C) with

rT~eA!v j505gv j , ~6.10!

rT~eA!52 f Ab
g Fb

]

]Fg 2 f AB
C GB

]

]GC 2 f Ab
g Cb

]

]Cg , ~6.11!

gv j52@C,G#a
]

]Fa v j . ~6.12!

Applying ~6.2! and ~6.3!, we get

dv j1glv j50, ~6.13!

dlv j1g 1
2 l2v j5tv j . ~6.14!

Furthermore, becauseK is semi-simple, there existQ̂ j andQ9 j such that

dQ j1gQ̂ j50, ~6.15!

dQ̂ j1gQ9 j50. ~6.16!

It follows that

g~v jQ j !50, ~6.17!

d~v jQ j !1g~~lv j !Q j1v jQ̂ j !50, ~6.18!

d~~lv j !Q j1v jQ̂ j !1g~~ 1
2 l2v j !Q j1~lv j !Q̂ j1v jQ9 j !5~tv j !Q j . ~6.19!

The necessary and sufficient condition thatv jQ j ‘‘can be lifted twice,’’ i.e., that @v jQ j #
PKer d1 , with

d1 :H~d,H~g,B!!→H~d,H~g,B!!,

@v jQ j #°d1@v jQ j #5@d~~lv j !Q j1v jQ̂ j !#,

is

d~~lv j !Q j1v jQ̂ j !5db81g~ !, ~6.20!

with gb850. Becausedb81g( )50, it follows by using~6.19! that this necessary and sufficie
condition is

~tv j !Q j1g~ !50. ~6.21!
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Becauset commutes withrT(ea) and anticommutes withg, it follows from ~5.30! that the
condition reduces to

~tv j !1gwj50, rT~eA!wj50, ~6.22!

for some wj . Let us decomposev j as a sum of terms of definiteNF,C degreek, v j5v0
j

1(k51vk
j . Using ~6.7!, this can be rewritten as

v j5v0
j 1 (

k51
~stk

j 1tsk
j !, ~6.23!

where tk
j 51/k tvk

j and sk
j 51/k svk

j . This decomposition is direct and induces a well defin
decomposition in cohomology becauseg andt, respectivelys, anticommute. Furthermore,

tv0
j 50, t~tsk

j !50, ~6.24!

tstk
j 1gwk

j 50⇒tvk
j 1gwk

j 50⇒stk
j 5g

1

k
swk

j 50. ~6.25!

This implies for the decompositionH(g,B)5E2% d1F1% F1 , with Ker d15E2% d1F1 , that

Ker d15H v0
j Q j1 (

k51
@tsk

j # Q j J , ~6.26!

d1F15H (
k51

@tsk
j # Q j J , ~6.27!

F15H (
k51

@stk
j # Q j J , ~6.28!

E25$v0
j Q j%. ~6.29!

Here,@tsk
j # and@stk

j # denote equivalence classes ofrT(eA) invariant cocycles that aret, respec-
tively s, exact, up to coboundaries ofrT(ea) invariant elements that are alsot, respectivelys,
exact.

Let

l#:F1→H~gud,B!,

@stk
j #Q j°@~lstk

j !Q j1stk
j Q̂ j #. ~6.30!

That the map is well defined follows from~6.18! and lg(swk
j )Q j1g(swk

j )Q̂ j5d(swk
j Q j

1g(lswk
j Q j1swk

j Q̂ j ) due to~6.1!.
Let BK be the restriction ofB to the generators associated toK. BecauseE2.H(g,BK), we

have

H~g,BG!.H~g,BK! % d1F1% F1 . ~6.31!

Furthermore, the general analysis of the exact triangle associated to the descent equation16 ~see
also, e.g., Ref. 36! implies that

H~gud,BG!.H~gud,BK! % l#F1% F1 . ~6.32!
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This solves the problem because the classification ofH(gud,BK) and the associated decompositio
of H(g,BK) for semi-simpleK has been completely solved16 ~see, e.g., Ref. 37 for a review!.

2. Application to GÄ iso „3… or iso „2,1…

By applying the analysis of the previous subsubsection to the particular case ofiso(3),
respectivelyiso(2,1), with H(g,B) given by ~5.64!, it follows that

F15$GC R0~ f 1 , f 3!, Ĉ3 T0~ f 2 , f 3!, ĥ3 GC R1~ f 1 , f 3!, Ĉ3ĥ3 T1~ f 2 , f 3!%, ~6.33!

d1F15$ f 3 Q̃0~ f 1 , f 3!, FC2 S0~ f 2 , f 3!, ĥ3 f 3 Q̃1~ f 2 , f 3!, ĥ3 S1~ f 2 , f 3!%, ~6.34!

E25$Q0~ f 1!,ĥ3 Q1~ f 1!%. ~6.35!

Furthermore, the general analysis of the semi-simple case applied toso(3), respectivelyso(2,1),
gives

E251% d3F3% F3 , ~6.36!

with

F35$ĥ3 Q1~ f 1!%, ~6.37!

d3F35$ f 1 Q̃0~ f 1!%. ~6.38!

The associated elements ofH(gud,B) are listed in Table II, which involves the following new
shorthand notations

ĥ252 1
2eabchahbBc, ~6.39!

ĥ15ha ~Ga2 1
2 eabcB

bBc!, ~6.40!

ĥ05BbGb2
1

3!
eabcB

aBbBc5gabB
adBb1

1

3
eabcB

aBbBc. ~6.41!

TABLE II. Nontrivial solutions of the consistency condition in the small algebra.

gh H(gud,B)

0 1 GAR0( f 1 , f 3) 0 ĥ0Q1( f 1)

1 GCR0( f 1 , f 3) 0 ĥ1Q1( f 1) 0

2 0 ĥ2Q1( f 1)1
1
2AC2T1( f 2 , f 3) 0 0

3 ĥ3Q1( f 1)1Ĉ3T0( f 2 , f 3) (ĥ2GC1ĥ3GA)R1( f 1 , f 3) 0 0

4 ĥ3GCR1( f 1 , f 3) 0 0 0

5 0 (ĥ2Ĉ31
1
2ĥ3AC2)T1( f 2 , f 3) 0 0

6 ĥ3Ĉ3T1( f 2 , f 3) 0 0 0
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B. H„gzd ,A…

Using ~4.13!, respectively~4.14!, we have, for 0<p,n,

Hp~gud,A!. i 0Hp~g,BK! % F1% N A
p

% D 21~DH !p21~gud,BK! % l#F1
n . ~6.42!

and in form degreen,

Hn~gud,A!.F n
% D 21~DH !n21~gud,BK! % l#F1

n , ~6.43!

with F n.Hn(g,A)/d0N A
n21 .

VII. APPLICATION TO THE CONSISTENT DEFORMATIONS OF 2 ¿1 DIMENSIONAL
GRAVITY

A. Generalities

211 dimensional gravity with vanishing cosmological constantl is equivalent to a Chern–
Simons theory based on the gauge groupISO(2,1).24,25

The Lie algebraiso(2,1) is not reductive and its Killing metricGAB5 f AC
D f BD

C is degenerate,

GAB5S gab 0

0 0D , ~7.1!

wheregab is the Killing metric of the semi-simpleso(2,1) subalgebra. However, in this cas
another invariant, symmetric and nondegenerate metricVAB

(0) exists which allows for the construc
tion of the CS Lagrangian. The invariant quadratic form of interest is

VAB
(0)5S ^Ja ,Jb& ^Ja ,Pb&

^Pa ,Jb& ^Pa ,Pb&
D 5S 0 gab

gab 0 D . ~7.2!

Locally, the relation between 211 dimensional gravity and the Chern–Simons theory is ba
on theiso(2,1) Lie algebra valued one-form

Am5Am
A TA5em

a Pa1vm
a Ja ~7.3!

built from the dreibein fieldsem
a and the spin connectionvm

a 5 1
2ebc

a vm
bc of three dimensional

Minkowski space–timeM with metric that we choose of signature (2,1,1). In terms of these
variables, the Chern–Simons action takes the form of the 211 dimensional Einstein–Hilber
action in vielbein formulation:

SCS
(0)5E

M
VAB

(0) F1

2
AA dAB1

1

6
AA f CD

B AC ADG
5E

M

1

2
~ea dva1va dea1eabcea vb vc!, ~7.4!

5E
M

ea Ga1
1

2
d~ea va!. ~7.5!

The gauge transformations are parametrized by two zero-formsea andta,

«5«ATA5ea Pa1ta Ja . ~7.6!

Explicitly,
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de ea52dea2e bc
a ~vb ec1eb tc!, ~7.7!

de va52dta2e bc
a vb tc, ~7.8!

and are equivalent, on shell, to local diffeomorphisms and local Lorentz rotations. The cla
equations of motion express the vanishing of the field strenghts two-forms

Fa5 1
2 Fmnadxmdxn5dea1eabcvb ec, ~7.9!

Ga5 1
2 Gmnadxmdxn5dva1 1

2 eabcvb vc, ~7.10!

where

Fmn5F mn
A TA5Fmn

a Pa1Gmn
a Ja . ~7.11!

For invertible dreibeins, the equationFa50 can be algebraically solved forva as a function of the
ea’s; when substituted into the remaining equation it tells that the space–time Riemann cur
vanishes, which in three dimensions implies that space–time is locally flat.

Our aim is to study systematically all consistent deformations of 211 dimensional gravity. By
consistent, we mean deformations of the action by local functionals and simultaneous de
tions of the gauge transformations such that the deformed action is invariant under the de
gauge transformations.

The problem of such consistent deformations can be reformulated41 ~for a review, see Ref. 42!
as the problem of deformations of the solution of the master equation and is controlled t
order by the cohomologyH0,3(sud).

B. Results on local BRST cohomology

The analysis ofH(sud) for the Chern–Simons case~see, e.g., Ref. 37, Sec. 14! implies that

the cohomologyH(sud) is essentially given by the bottoms@ 1
2ĥ

3#, @Ĉ3#, @ 1
2ĥ

3Ĉ3# of H(g,B) and
by their lifts, which are all nontrivial and unobstructed.~The only additional classes correspond
the above bottoms multiplied by nonexact space–time forms.!

It follows that H0,3(sud) is obtained from the lift~associated tos) of the elements@ 1
2ĥ

3# and

@Ĉ3# of H3,0(s). The former element can be lifted to12ĥ
0 with ĥ0 given in ~6.41!. It corresponds

to the Chern–Simons action built onso(2,1). The results onH(gud,B) ~see Table II! imply that
the lift of Ĉ3 in H(sud) cannot been done without a nontrivial dependence on the antifields
hence without a nontrivial deformation of the gauge transformations. Following again, Re
this lift is given by

eabc @ 1
6e

a eb ec1ea !v* b Cc1 1
2 !h* a Cb Cc#, ~7.12!

where !v* a5 1
2dxmdxnemnr v* ar and !ha* 5d3x ha* . The antifield independent part gives th

deformation of the original action.
Note also thatH1,3(sud) is trivial, which implies that there can be no anomalies in a per

bative quantization of 211 dimensional gravity. Furthermore, the starting point Lagrangian th
form eG is trivial, @eG#5@0#PH0,3(sud), which is the reason why we do not introduce a sepa
coupling constant for this term.

C. Maximally deformed 2 ¿1 dimensional gravity

Introducing coupling constantsm and l ~the cosmological constant! for the two first order
deformations, they can be easily shown to extend to all orders by introducing alm dependent term
in the action. The associated completely deformed theory can be written as a Chern–S
theory in terms of the deformed invariant metric
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VAB
l,m5VAB

(0)1GAB
m,l , ~7.13!

GAB
m,l5mS gab 0

0 l gab
D , ~7.14!

and the deformed structure constantsf BC
A(l) given by

@Ja ,Jb#5eabcJc,@Ja ,Pb#5eabc Pc,@Pa ,Pb#5l eabcJc. ~7.15!

For l.0, these structure constants are those of the semi-simple Lie algebraso(2,1)% so(2,1).
The deformed Chern–Simons action reads explicitly

Sl,m5E
M

VAB
l,mF1

2
AA dAB1

1

6
AA f CD

B(l) ACADG ~7.16!

5E
M

FeaGa1mF1

2
va dva1

1

6
eabcva vb vcG

1l
1

3!
eabcea eb ec1lmF1

2
ea dea1

1

2
eabcea eb vcG G , ~7.17!

while the deformed gauge transformations read

de ea52dea2e bc
a ~vb ec1eb tc!, ~7.18!

de va52dta2e bc
a ~vb tc1l eb ec!. ~7.19!

Thus, our analysis shows that there are no other consistent deformations of 211 dimensional
gravity than those already discussed in Ref. 25.

Note added in proof:Two remarks concerning the proof of lemma 5 are in order.~1! The homo-
topy formula~4.52! has been used in the form$ p̄,d̄%51. This supposes that the forms on whic
it applies vanish when the variablesAm

a and their derivatives are put to zero. In order to compl
the reasoning, one should separate each form in such a part and a part that does not de
those variables, but only onCa, xm and dxm. This last part can be treated easily by using t
homotopy of the standard Poincare´ lemma. The final result, Eq.~4.61! is unchanged.~2! The proof
on the top of page 12 thatgRI M8 50 is incorrect. The correct proof proceeds again by inducti
More precisely, one shows that ifI Na1 . . . ak

in the l.h.s. of~4.57! is gk
R closed, then theI Na1 . . . ak

8

that has been constructed in the r.h.s of~4.57! can be chosen to begk
R closed as well.
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APPENDIX: DESCENTS AND DECOMPOSITION ACCORDING TO HOMOGENEITY

The spaceE can be decomposed into monomials of definite homogeneityM in the fields and
their derivatives,E5 % M50EM , and one can define the spaces of polynomials of homogen
greater or equal toM , E M5 % N>MEN .
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If

C M5^H~gud,E M !,H~g,E M !,D M,l #M
,i #M

&, ~A1!

CM5^H~g0ud,EM !,H~g0 ,EM !,DM ,l M
# ,i M

# &, ~A2!

are the exact couples that describe the descents ofg in E M, respectively ofg0 in EM , one can
define mappings between exact couples~see, e.g., Ref. 43! through

I M115~ j M11 ,kM11!:C M11→C M, ~A3!

PM5~pM ,cM !:C M→CM , ~A4!

GM5~mM ,nM !:CM→C M11. ~A5!

The mapj M11 consists in the natural injection of elements ofH(gud,E M11) in H(gud,E M) and
similarily kM11 consists in the injection of elements ofH(g,E M11) as elements ofH(g,E M),
with

D M+ j M115 j M11+D M11, ~A6!

l #M
+ j M115kM11+ l #M11

, ~A7!

i #M
+kM115 j M11+ i #M11

. ~A8!

The mappM :H(gud,E M)→H(g0ud,EM) is defined bypM@AM#5@AM#, while cM :H(g,E M)
→H(g0 ,EM) is defined bycM@aM#5@aM#. Again, the various maps commute,

DM+pM5pM+D M, ~A9!

l M
# +pM5cM+ l #M

, ~A10!

i M
# +cM5pM+ i #M

. ~A11!

Both the mapsmM :H(g0ud,EM)→H(gud,E M11) and nM :H(g0 ,EM)→H(g,E M11) are defined
by the induced action ofg1 :mM@aM#5@g1aM# andnM@aM#5@g1aM#, with

D M11+mM5mM+DM , ~A12!

l #M11
+mM5nM+ l M

# , ~A13!

i #M11
+nM5mM+ i M

# . ~A14!

Finally, the triangles

H~gud,E M11! →
j M11

H~gud,E M !

mM↖ ↙pM ~A15!

H~g0ud,EM !,
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H~g,E M11! →
kM11

H~g,E M !

nM↖ ↙cM ~A16!

H~g0 ,EM !,

are exact at all corners, implying, ifj 0515k0 , that

H~gud,E!5 % M50
` j 0 . . . j MpM

21Ker mM , ~A17!

H~g,E!5 % M50
` k0 . . . kMcM

21Ker nM . ~A18!

All this can be summarized by the commutative diagram of Fig. 1. The corners of th
triangle are itself given by exact triangles and the large triangles obtained by taking a group
same position of each small triangle are also exact.
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Black-brane solution for C2 algebra
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Black p-brane solutions for a wide class of intersection rules and Ricci-flat ‘‘inter-
nal’’ spaces are considered. They are defined up to moduli functionsHs obeying
nonlinear differential equations with certain boundary conditions imposed. A new
solution with intersections corresponding to the Lie algebraC2 is obtained. The
functionsH1 andH2 for this solution are polynomials of degree 3 and 4. ©2002
American Institute of Physics.@DOI: 10.1063/1.1513654#

I. INTRODUCTION

The discovery of various extended objects (D-branes,p-branes, etc.!1 in superstring theories
leads to a new stage in the development of superstring paradigm, e.g., to a notion ofM -theory.2

These extended objects~branes! play a very important role in the description of superstrings in
strong coupling limit and the explanation of dual relations between different superstring the

The brane objects may be described as classical solutions in supergravitational mode~see,
for example, Ref. 3 and references therein!. They have BPS properties~i.e., they preserve partia
supersymmetry! and are protected from quantum corrections. These solutions lead to ext
black hole solutions after a suitable compactifications of extra dimensions.

Other important objects are non-extremal black brane solutions.4–6 In the extremal limit they
~usually! lead to BPS brane configurations. Nonextremal black branes give also a rema
microscopical explanation of black hole entropy,7,8 being a nice polygon for application of differ
ent quantum methods~for toy quantum analogues of black branes see Ref. 9!.

This paper is devoted to intersecting black-brane solutions with~next to! arbitrary intersec-
tions ~see Sec. II!.10–13 These black-brane solutions are governed by moduli functionsHs

5Hs(R) obeying a set of second order nonlinear differential equations with some boun
relations imposed.

Some general features of the black-brane solutions were investigated earlier~see Ref. 14!.
More general spherically symmetric~and cosmological solutions! were obtained in Ref. 15 using
the sigma-model approach and the Lagrange representation from Refs. 16–18.

In Ref. 10 the following conjecture was suggested~see Sec. III!: the moduli functionsHs are
polynomials when intersection rules correspond to semisimple Lie algebras. This conjectu
confirmed by special black-brane ‘‘block-orthogonal’’ solutions considered earlier in Refs
19–22~Sec. III A!. It was verified also forAm andCm series of Lie algebras in Refs. 11 and 1
An analogue of this conjecture for extremal black holes was considered earlier in Ref. 23.

An example of black brane solution corresponding to Lie algebraA25sl(3) was considered
earlier in Refs. 10 and 11, where some dyonic configurations~e.g., in 11-dimensional supergrav

a!Electronic mail: mag@gravi.phys.msu.su
b!Electronic mail: ivas@rgs.phys.msu.su
c!Electronic mail: sungwon@mm.ewha.ac.kr
60160022-2488/2002/43(12)/6016/8/$19.00 © 2002 American Institute of Physics
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ity! were considered. TheA2 solution is governed by two polynomialsH1 andH2 of degree 2. The
coefficients of polynomials and charges are functions of some parametersP1 andP2 and have a
rather simple form~Sec. III A!. It seems thatA2 solution is the only one that may be obtained ‘‘b
hands:’’ the search of solutions for other Lie algebras needs computer calculations.

Here we present a first nontrivial result of such calculations, i.e., a new solution correspo
to the Lie algebraC2 governed by polynomials of degree 3 and 4~Sec. III C!. The coefficients of
polynomials exhibit a nontrivial dependence upon parametersP1 and P2 , namely: a nontrivial
term D, that is a square root of a polynomial of degree 4, appears.

II. p -BRANE BLACK HOLE SOLUTIONS

Consider a model governed by the action

S5E dDxAugu H R@g#2habgMN]Mwa]Nwb2 (
aPn

ua

na!
exp@2la~w!#~Fa!2J , ~1!

where g5gMN(x)dxM
^ dxN is a metric,w5(wa)PRl is a vector of scalar fields, (hab) is a

constant symmetric nondegeneratel 3 l matrix (l PN), ua561,

Fa5dAa5
1

na!
FM1¯Mna

a dzM1∧¯∧dzMna ~2!

is ana-form (na>1), la is a 1-form onRl : la(w)5laawa, aPn, a51, . . . ,l . In ~1! we denote
ugu5udet(gMN)u, (Fa)g

25FM1¯Mna

a FN1¯Nna

a gM1N1
¯gMna

Nna, aPn. Heren is some finite set. In

the models with one time allua51 when the signature of the metric is (21,11,...,11).
Let us consider~black-brane! solutions to field equations corresponding to the action~1! from

Refs. 10–12. These solutions are defined on the manifold

M5~R0 ,1`!3~M15Sd1!3~M25R!3¯3Mn , ~3!

and have the following form:

g5S )
sPS

Hs
2hsd(I s)/(D22)D H f 21 dR^ dR1R2 dVd1

2 2S )
sPS

Hs
22hsD f dt^ dt

1(
i 53

n S )
sPS

H
s

22hsd i I sDgiJ , ~4!

exp~wa!5)
sPS

H
s

hsxslas

a

, ~5!

Fa5(
sPS

das

a F s, ~6!

where f 5122m/Rd̄,

F s52
Qs

Rd1 S )
s8PS

H
s8

2Ass8D dR∧t~ I s!, sPSe , ~7!

F s5Qst~ Ī s!, sPSm . ~8!
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HereQsÞ0 (sPS) are charges,R0.0, R0
d̄52m.0, d̄5d121. In ~4! gi5gmini

i (yi)dyi
mi ^ dyi

ni is

a Ricci-flat metric onMi , i 53,...,n and d i I 5( j PId i j is the indicator ofi belonging toI : d i I

51 for i PI andd i I 50 otherwise. Hereg252dt^ dt, andg15dVd1
be a canonical metric on

unit sphereM15Sd1,
The p-brane setS is by definition

S5SeøSm , Sv5øaPn$a%3$v%3Va,v , ~9!

v5e,m andVa,e ,Va,m,V, whereV5V(n) is the set of all nonempty subsets of$2,...,n%, i.e.,
all p-branes do not ‘‘live’’ inM1 .

Any p-brane indexsPS has the forms5(as ,vs ,I s), where asPn, vs5e,m and I s

PVas ,vs
. The setsSe and Sm define electric and magneticp-branes, correspondingly. In~5! xs

511,21 for sPSe ,Sm , respectively. Allp-branes contain the time manifoldM25R, i.e.,

2PI s , ;sPS. ~10!

All manifolds Mi , i .2, are oriented and connected and

t i[Augi~yi !udyi
1∧¯∧dyi

di , ~11!

are volume di forms, where di5dim Mi , i 51,...,n, with d1.1 and d251. For any I
5$ i 1 ,...,i k%PV, i 1,¯, i k , we denote

t~ I ![t i 1
∧¯∧t i k

, d~ I !5(
i PI

di . ~12!

The formsF s correspond to electric and magneticp-branes forsPSe ,Sm , respectively. In~8! we
use the notationĪ 5$1,...,n% \ I .

The parametershs appearing in the solution satisfy the relations:hs5(Bss)
21, where

Bss85d~ I sùI s8!1
d~ I s!d~ I s8!

22D
1xsxs8laas

lbas8
hab, ~13!

s,s8PS, with (hab)5(hab)21 andD511( i 51
n di . Here we assume that~i! BssÞ0, sPS and~ii !

det(Bss8)Þ0, i.e., the matrix (Bss8) is a nondegenerate one.
Let us consider the matrix

~Ass8!5~2Bss8 /Bs8s8!. ~14!

Here some ordering inS is assumed.

The functionsHs5Hs(z).0, z52m/Rd̄P(0,1), obey the equations

d

dzS ~12z!

Hs

dHs

dz D5Bs )
s8PS

H
s8

2Ass8 , ~15!

equipped with the boundary conditions

Hs~120!5Hs0P~0,1`!, ~16!

Hs~10!51, ~17!

sPS. HereBs5BssesQs
2/(2d̄m)2 and

es5~2e@g# !(12xs)/2e~ I s!uas
, ~18!
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sPS, e@g#[sign det(gMN). More explicitly Eq. ~18! reads es5e(I s)uas
for vs5e and es5

2e@g#e(I s)uas
, for vs5m.

Equations~16! are equivalent to Toda-type equations. The first boundary condition guara

the existence of a regular horizon atRd̄52m. The second condition~17! ensures an asymptotica
flatness~for R→1`) of the (21d1)-dimensional section of the metric.

Due to Eqs.~7! and~8!, the dimension ofp-brane world volumed(I s) is defined by relations
d(I s)5nas

21, d(I s)5D2nas
21, for sPSe ,Sm , respectively. For ap-brane we use a standar

notationp5ps5d(I s)21.
The solutions are valid if the following restriction on the setsVa,v is imposed. This restriction

guarantees the block-diagonal structure of the stress-energy tensor. We denotew1[$ i u i
P$2, . . . ,n%, di51% andn15uw1u ~i.e., n1 is the number of one-dimensional spaces amongMi ,
i 52, . . . ,n). It is clear, that 2Pw1 .

Restriction. Let(1a) n1<1 or (1b) n1>2 and for any aPD, vP$e,m%, i , j Pw1 , iÞ j , there
are no I,JPVa,v such that iPI , j PJ and I\$ i %5J\$ j %.

This restriction is satisfied in the noncomposite case:uVa,eu1uVa,mu51 ~i.e., when there are
no two p-branes with the same color indexa, aPD). The restriction forbids certain intersection
of two p-branes with the same color index forn1>2.

The solution under consideration describes a set of charged~by forms! overlapping black
p-branes ‘‘living’’ on submanifolds ofM23¯3Mn .

III. EXAMPLES OF SOLUTIONS

A. ‘‘Block-orthogonal’’ solutions

The simplest polynomial solutions occur in orthogonal case,18,24–27when

Bss850, ~19!

for sÞs8, s,s8PS. In this case (Ass8)5diag(2,...,2) is a Cartan matrix for semisimple Lie algeb
A1%¯% A1 and

Hs~z!511Psz, ~20!

with PsÞ0, satisfying

Ps~Ps11!52Bs , ~21!

sPS. For positive parametersPs.0 we get negativeBs,0.
In Refs. 19, 20, and 22 this solution was generalized to the ‘‘block-orthogonal’’ case,

S5S1ø¯øSk , SiùSj5B, iÞ j , ~22!

SiÞB, i.e., the setS is a union ofk nonintersecting~nonempty! subsetsS1 , . . . ,Sk , and relation
~19! is satisfied for allsPSi , s8PSj , iÞ j ; i , j 51, . . . ,k. In this case Eq.~20! is modified as
follows:

Hs~z!5~11Psz!bs
, ~23!

where

bs52 (
s8PS

Ass8, ~24!
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(Ass8)5(Ass8)
21 and parametersPs are coinciding inside blocks, i.e.,Ps5Ps8 for s,s8PSi , i

51, . . . ,k. ParametersPsÞ0 satisfy the relations~21! and parametersBs are also coinciding
inside blocks, i.e.,Bs5Bs8 for s,s8PSi , i 51, . . . ,k.

Let (Ass8) be a Cartan matrix for a finite-dimensional semisimple Lie algebraG. In this case
all powers in~24! are natural numbers coinciding with the components of twice the dual W
vector in the basis of simple roots,28 and hence, all functionsHs are polynomials,sPS.

Conjecture (Ref. 10). Let(Ass8) be a Cartan matrix for a semisimple finite-dimensional L
algebraG. Then the solution to Eqs. (15)–(17) (if exists) is a polynomial

Hs~z!511 (
k51

ns

Ps
(k)zk, ~25!

where Ps
(k) are constants, k51,...,ns , the integers ns5bs are defined in (24) and Ps

(ns)Þ0, s
PS.

This conjecture was verified forAn and Cn series of Lie algebras.11,12 In the extremal case
m510 an a analogue of this conjecture was suggested previously in Ref. 23.

B. Solution for A 2 algebra

Here we present the polynomial solution from Refs. 10 and 11 corresponding to th
algebraA25sl(3) with the Cartan matrix

~Ass8!5S 2 21

21 2 D . ~26!

The moduli polynomials read in this case as follows:

Hs511Psz1Ps
(2)z2, ~27!

wherePs5Ps
(1) andPs

(2)Þ0 are constants and

Ps
(2)5

PsPs11~Ps11!

2~P11P212!
, ~28!

Bs52
Ps~Ps11!~Ps12!

P11P212
, ~29!

s51,2. HereP11P212Þ0.
In theA2-case the solution is described by relations~4!–~8! with S5$s1 ,s2% and intersection

rules following from~13!, ~14!, and~26!:

d~ I s1
ùI s2

!5
d~ I s1

!d~ I s2
!

D22
2xs1

xs2
las1

•las2
2

1

2
K, ~30!

d~ I si
!2

~d~ I si
!!2

D22
1lasi

•lasi
5K, ~31!

whereKÞ0 and functionsHsi
5Hi are defined by relations~27!–~29! with z52mR2d̄, i 51,2.

Here and in what followsl•l85lalb8hab.
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C. Solutions for C2 algebra

Now we present the solution related to the Lie algebraC25so(5) with the Cartan matrix

~Ass8!5S 2 21

22 2 D . ~32!

According to ‘‘Conjecture’’ we seek the solution to Eqs.~15!–~17! in the following form:

H1~z!511P1z1P1
(2)z21P1

(3)z3, ~33!

H2~z!511P2z1P2
(2)z21P2

(3)z31P2
(4)z4, ~34!

wherePs5Ps
(1) andPs

(k) are constants,s51,2.
Here we outline the result. ForBs parameters we get the following relations:

2B152D1~2P113!~21P2!, ~35!

B25D2222P1~P113!2~21P2!2, ~36!

and for parametersPs
(k) we obtain

4P1
(2)5613P22D12P1~31P11P2!, ~37!

12P1
(3)52D~21P11P2!112118P112P1

313P2~41P2!

12P1
2~51P2!1P1P2~1112P2!, ~38!

2P2
(2)52622P1~31P1!23P21D, ~39!

6P2
(3)5D~212P11P2!212224P124P1

323P2~41P2!

22P1P2~71P2!22P1
2~81P2!, ~40!

24P2
(4)5D@2P1

21~31P2!~212P11P2!#24P1
423~21P2!2~31P2!

22P1~31P2!2~41P2!24P1
3~61P2!2P1

2~60130P214P2
2!, ~41!

where

D5A4~31P1~31P1!!21~312P1!2P2~41P2!. ~42!

It may be verified thatB1,0 andB2,0 for P1.0, P2.0.
TheC2 black-brane solution is described by relations~4!–~8!, with S5$s1 ,s2%, and intersec-

tion rules following from~13!, ~14!, and~32!:

d~ I s1
ùI s2

!5
d~ I s1

!d~ I s2
!

D22
2xs1

xs2
las1

•las2
2K, ~43!

d~ I s1
!2

~d~ I s1
!!2

D22
1las1

•las1
5K, ~44!

d~ I s2
!2

~d~ I s2
!!2

D22
1las2

•las2
52K, ~45!
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where KÞ0 and functionsHsi
5Hi are defined by relations~33! and ~34! with z52mR2d̄, i

51,2.
A simple test for verification of the relations forHs-functions is to setP153P and P2

54P with P.0. In this case we a get a special ‘‘block-orthogonal’’ solution

H1~z!5~11Pz!3, H2~z!5~11Pz!4, ~46!

in agreement with the relations~23! and ~24!.

IV. CONCLUSIONS

In this paper we presented a new black-brane solution with two branes and intersectio
corresponding to the Lie algebraC2 . The solutions is governed by polynomials of degree 3 an
and the coefficients of polynomials exhibit a nontrivial dependence upon the parametersP1 and
P2 , due to appearance of the nontrivial termD @see~42!#. TheC2 solution differs drastically from
theA2 one, that has a rather simple analytical structure. This means that the polynomial so
for otherAn algebras (n.2) should be also nontrivial. Indeed, theC2 solution may be extended
to a specialA3 one, if we impose a restriction on the moduli polynomialsH1 , H2 , H3 of the
following form: H15H3 . ~Thus, here we obtained by product a specialA3 black-brane solution.!
It should be noted thatA,D,E ~or simply laced! Lie algebras are of much interest, since th
appear forp-brane intersection rules in supergravitational models.18 Other topics of interest are
related to black-brane thermodynamics~e.g., relations for the entropy, the Hawking temperatu
etc.! and analysis of post-Newtonian effects. On this way one may expect to clarify the appea
of the functionD in the solution. But the main~mathematical! problem here is to find the poly
nomial solutions for all Lie algebras. This problem seems to be a very difficult one and may
interest for mathematicians dealing with polynomials~e.g., appearing in nonlinear ordinary an
partial differential equations!, Lie algebras, number theory, etc.
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Cluster properties in relativistic quantum mechanics
of N-particle systems

W. N. Polyzoua)

Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242

~Received 21 May 2002; accepted 25 August 2002!

A general technique is presented for constructing a quantum theory of a finite
number of interacting particles satisfying Poincare´ invariance, cluster separability,
and the spectral condition. Irreducible representations and Clebsch–Gordan coeffi-
cients of the Poincare´ group are the central elements of the construction. A different
realization of the dynamics is obtained for each basis of an irreducible representa-
tion of the Poincare´ group. Unitary operators that relate the different realizations of
the dynamis are constructed. This technique is distinguished from other solutions
@S. N. Sokolov, Dokl. Akad. Nauk USSR233, 575 ~1977!; F. Coester and W. N.
Polyzou, Phys. Rev. D26, 1348~1982!# of this problem because it does not depend
on the kinematic subgroups of Dirac’s forms@P. A. M. Dirac, Rev. Mod. Phys.21,
392 ~1949!# of dynamics. Special basis choices lead to kinematic
subgroups. ©2002 American Institute of Physics.@DOI: 10.1063/1.1516627#

I. INTRODUCTION

This article illustrates a general method for constructing a relativistic quantum theo
N-interacting particles. The theory has a dynamical unitary representation of the Poincare´ group,
satisfies cluster separability, and has a four-momentum operator with spectrum in the
pointing cone. These are the minimal elements of any physically motivated axioms of relat
quantum theory.

Relativistic quantum theory of particles falls between nonrelativistic quantum theory and
relativistic quantum field theory. It is interesting because it provides a mathematically well-de
framework for realizing the symmetry of special relativity in quantum theories. This mak
useful for applications to systems of a few strongly interacting particles.

The relativistic quantum theory constructed in this article has many properties of local
tivistic quantum field theory.1 Both are quantum theories satisfying Poincare´ invariance, cluster
separability, and the spectral condition. The most significant distinction between the two th
is that local relativistic quantum field theory satisfies a microscopic locality constraint, w
requires an infinite number of degrees of freedom.

The absence of theories that are simultaneously consistent with the axioms of local qu
field theory and applicable to realistic systems suggests that mathematically well-behaved
natives might be well-suited to applications involving strongly interacting particles.

The essential features of quantum theory of particles are as follows:

~1! The model Hilbert space is the finite tensor product of single-particle Hilbert spaces.
defines the degrees of freedom of the model.

~2! There is a unitary representation of the Poincare´ groupÛ(L,Y) on the model Hilbert space
This ensures that the quantum probabilities are independent of inertial frame. This rep
tation necessarily contains the dynamics.

a!Electronic mail: polyzou@uiowa.edu
60240022-2488/2002/43(12)/6024/40/$19.00 © 2002 American Institute of Physics
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~3! The four-momentum operators, which are the infinitesimal generators of the space–time

lation subgroup ofÛ(L,Y), have a spectrum in the future-pointing light cone. This ensu
the stability of the theory.

~4! The operatorÛ(L,y) can be approximated by a tensor product ofÛ i(L,y)’s on vectors
describing subsets of particles in asymptotically separated regions. This justifies exper
on isolated subsystems and provides the relation between few- and many-body system

~5! The scattering operator is unitary and Poincare´ invariant.

While relativistic quantum theory of particles is useful, independent of a relation to
quantum field theory, any local field theory should be well approximated by a quantum theo
particles when it is applied to reactions involving a finite number of particles. Because the de
requirements of relativistic quantum theory of particles are a subset of the axioms of loca
tivistic quantum field theory, the consequences of these requirements on the structure
models of interacting particles are the same in both theories.

The Poincare´ symmetry makes the problem of constructing a dynamical theory diffic
Poincare´ covariance of the dynamics involves nonlinear constraints. The requirement that
constraints are preserved when the system is separated into isolated subsystems introduc
tional nonlinear constraints. These difficulties were recognized by Dirac2 and have been pointe
out in a recent text by Weinberg.3

The essential role of unitary representations of the Poincare´ group in relativistic quantum
theory was first emphasized by Wigner4 in 1939. Most applications to finite systems of interacti
particles cite Dirac’s2 1949 paper, which identified the essential difficulty and introduced k
matic subgroups associated with different ‘‘forms of dynamics.’’ These subgroups, which re
the number of constraints on the interactions, have played a role in all subsequent theo
development.

The problem of constructing interacting unitary representations of the Poincare´ group was first
solved for the two-particle system by Bakamjian and Thomas5 in 1953. A three-particle solution
satisfyingS-matrix clustering was given by Coester in 1965.6 The first complete solution of the
problem forN particles was given by Sokolov in 1977.7 A general solution in all of Dirac’s forms
of dynamics appears in Refs. 8 and 9.

Relativistic quantum theory of particles is a practical framework for applications
few-hadron10–17 and few-quark systems.18–22 All of these application are formulated in one o
Dirac’s forms of dynamics; they are limited to systems where cluster properties can be tri
realized.

The construction in this article is directly motivated by Wigner’s 1939 paper and m
essential use of irreducible representations of the Poincare´ group. It generalizes the two-bod
construction of Ref. 23 and leads to a relativistic N-body dynamics satisfying cluster prop
and the spectral condition. Groups of unitary transformations that preserve theS-matrix and
cluster properties are constructed. In the general construction all of the Poincare´ generators may be
interaction dependent. The kinematic subgroup symmetries can be implemented by im
additional constraints on the general construction.

The resulting dynamics has interactions in between three and ten of the Poincare´ generators.
Unitary operators that preserve theS-matrix and cluster properties redistribute the interactions
ways that may be advantageous for different applications. These unitary operators are elem
a C* algebra of asymptotic constants, which is relevant for identifying physically equiva
theories.

This article is organized as follows. Section II contains a brief account of Wigner’s form
tion of relativistic quantum mechanics, which is central to the construction in this paper. Se
III–VI summarize the group theory that is needed to construct the required representations.
sections discuss inhomogeneousSL(2,C)(ISL(2,C)), which is the covering group of the Poinca´
group, irreducible representations ofISL(2,C), and Clebsch–Gordan coefficients ofISL(2,C).
Section VII provides an introduction to relativistic scattering theory, which is used in the ge
construction. This formulation of scattering theory does not assume the existence of a kin
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subgroup. Section VIII introduces the cluster separability condition. Section IX introduces thC*
algebra of asymptotic constants and its unitary elements, which are called scattering equiva
This algebra provides a functional calculus of noncommuting operators that is used to es
cluster properties. Section X introduces the Mo¨bius and Zeta function of the lattice of partition
These combinatoric tools, which generalize standard Ursell cumulant expansions, are used
sively in the construction of theN-body dynamics. Section XI contains the general solution of
two-body problem, which is the starting point of the recursive construction, and Sec. XII con
the recursiveN-body construction. Section XIII constructs scattering and cluster equivalence
relate dynamical models that utilize different bases. Section XIV has conclusions. Technic
pects of the construction are included in the four appendices.

II. RELATIVITY IN QUANTUM MECHANICS

In 1939 Wigner4 showed that the relativistic invariance of all quantum probabilities

Pcfªu^cuf&u2 ~1!

is equivalent to the existence of a unitary representation of the Poincare´ group. This was refined by
Bargmann in 1954,24 who observed that the dynamics could be realized by a single valued un
representation of the covering group,ISL(2,C), of the Poincare´ group. The central problem o
relativistic quantum mechanics is to construct a unitary representationÛ@L,Y# of ISL(2,C)
which implements the dynamics.

III. INHOMOGENEOUS SL „2,C…

In this sectionISL(2,C) is defined and related to the Poincare´ group. Elements ofISL(2,C)
consist of ordered pairs of complex 232 matrices (L,Y), whereL has determinant 1 andY is
Hermitian. The group product is

~L2 ,Y2!~L1 ,Y1!5~L2L1 ,L2Y1L2
†1Y2!. ~2!

The relation to four-dimensional Poincare´ transformations follows by representing four ve
tors xm by 232 Hermitian matricesX:

Xªxmsm , xm5 1
2Tr~Xsm! ~3!

wheres0 is the identity ands i are the Pauli matrices. In this matrix representationISL(2,C)
transformations are affine transformations of the form

X85LXL†1Y. ~4!

Any Poincare´ transformation continuously connected to the identity can be represented in the
~4!.

Elements ofISL(2,C) can be parametrized by three components of a rotation vectoruW , three
components of a rapidity vectorrW , and a space–time translation four vectorym:

L~uW ,rW !5e2 ~ i /2!(uW 1 irW )•sW , Y~y!ªymsm . ~5!

Thus, the relativistic quantum dynamics,Û@L,Y#, satisfies

Û†@L,Y#5Û21@L,Y#5Û@L21,2L21Y~L21!†# ~6!

and

Û@L2 ,Y2#Û@L1 ,Y1#5Û@L2L1 ,L2Y1L2
†1Y2#. ~7!
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IV. ISL „2,C… GENERATORS

The infinitesimal generators ofÛ@L,Y# are defined. These operators are used to identi
maximal set of commuting self-adjoint operators. For structureless particles the eigenval
these commuting operators label the state of the particle. The spectrum of these opera
determined by the eigenvalues of the invariant mass and spin operators, which define an i
ible subspace, and group theoretic considerations. The single-particle Hilbert space is the s
square integrable functions of these eigenvalues.

The ten parametersym,uW ,rW have the property that if any nine of them are set to zero, the gr
becomes a one-parameter unitary group with respect to the remaining parameter. These

one-parameter groups necessarily have the formÛ(l)5e2 ilĜ for a self-adjoint operatorĜ.25

Thus a unitary representationÛ@L,Y# of ISL(2,C) can be parametrized as

Û@L~uW ,rW !,I #5e2 i (uW •JŴ1rW •KŴ ), ~8!

Û@ I ,Y~y!#5ei (yW•PŴ 2y0Ĥ), ~9!

with self-adjoint generatorsĤ,PŴ ,JŴ andKŴ .
The commutation relations of the generators follow from the group representation prope~7!

and the definition~8! and ~9! of the generators.26 The commutation relations are consistent w

P̂m
ª(Ĥ,PŴ ) transforming as a four-vector operator

Û@L,0# P̂mÛ†@L,0#5 P̂nLn
m , ~10!

and

Ĵmn
ªS 0 K̂1 K̂2 K̂3

2K̂1 0 Ĵ3 2 Ĵ2

2K̂2 2 Ĵ3 0 Ĵ1

2K̂3 Ĵ2 2 Ĵ1 0

D ~11!

transforming as a rank-two antisymmetric tensor operator:

Û@L,0# ĴmnÛ†@L,0#5 ĴabLa
mLb

n . ~12!

The Pauli–Lubanski vectorŴm is a four-vector valued function ofP̂m and Ĵmn:

Ŵm
ª

1
2e

mabgP̂aĴbg ~13!

satisfying

@ Ĵ j ,Ŵk#25 i e jklŴl , @ Ĵ j ,Ŵ0#250, ~14!

@K̂ j ,Ŵk#252 id jkŴ0, @K̂ j ,Ŵ0#252 iŴj , ~15!

@ P̂m,Ŵn#250, ~16!

@Ŵm,Ŵn#25 i emnrhŴrP̂h , ŴmP̂m50. ~17!

The scalar operators
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M̂252 P̂mP̂m ~18!

and

Ŵ25ŴmŴm ~19!

are the two independent invariant polynomial functions of the generators27 of ISL(2,C).
When the spectrum of the mass operator is positive, the spin-squared operator is defin

ĵ 2
ª

Ŵ2

M̂2
. ~20!

V. IRREDUCIBLE REPRESENTATIONS OF ISL „2,C…

The Hilbert space for anN-particle system is the tensor product of single particle Hilb
spaces. Single particle Hilbert spaces are irreducible representation spaces ofISL(2,C). The
irreducible representations are labeled by the mass and spin of a particle. Eigenvalues of ad
commuting self-adjoint functions of theISL(2,C) generators are needed to specify the state of
particle. Simultaneous eigenstates of the commuting self-adjoint operators define a basis
irreducible representation space. The single particle Hilbert space is the space of square int
functions of the eigenvalues.

The irreducible representations of theISL(2,C) were classified by Wigner.6,28,29,5The dis-
placementxa

m2xb
m between eventsa andb can be classified into six invariant classes depend

on whether this displacement is zero, lightlike positive time, lightlike negative time, space
timelike positive time, or timelike negative time.

The irreducible representations corresponding to massive particles are the timelike po
time representations. These irreducible representations ofISL(2,C) are labeled by the invarian
eigenvalues of the mass~18! and spin operators~20!. For a particle the mass eigenvaluem is
discrete and the spin operator has the eigenvaluej ( j 11) wherej is the spin of the particle.

The state of a structureless particle of massm and spin j is determined by specifying the
eigenvalues of a maximal set of commuting self-adjoint operators. These operators are the
ant massM̂ , the spin ĵ 2 and four independent functions,F̂ i5Fi( P̂m,Ĵmn), of the ISL(2,C)
generators. The operatorsF̂ j cannot be invariant. They are arbitrary independent functions of
ISL(2,C) generators subject to the constraints:

F̂ i5~ F̂ i !†, @ F̂ i ,F̂ j #50, ~21!

@ F̂ i ,M̂ #5@ F̂ i , ĵ 2#50. ~22!

For particles with structure, additional invariant degeneracy operators are needed to get a m
set of commuting operators.

The traditional choice for the operatorsF̂ i are the three components of the linear moment

PŴ and thez-component of the canonical26 spin ẑ• jŴc . In some applications it is advantageous
use the four velocity, the light-front components of the four momentum, or their conjugate
ables. The helicity or light-front spin is sometimes used instead of the canonical spin. Any
spin observables could be replaced by a component of the Pauli–Lubanski operator. These
cases are treated in Appendix A. Each choice ofF̂ i corresponds to a single particle basis. In th
article the operatorsF̂ i are assumed to have a spectrum independent of the mass eigenvalu
condition is not very restrictive and holds for all conventional choices.

The Hilbert space for a particle of massm and spinj can be represented as the space of squ
integrable functions of the eigenvalues of the operatorsF̂ i :
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Hm j5 H ^ f uc&U E dm~ f !u^ f uc&u2J ,`, ~23!

wheref 5$ f 1
¯ f 4% and*dm( f ) indicates a sum over the discrete eigenvalues and an integral

the continuous eigenvalues ofF̂ i .
Basis vectors have the form

u f &ªu f ;m, j &ªu f 1, f 2, f 3, f 4;m, j &. ~24!

The normalization convention is

^ f u f 8&5d@ f , f 8#, ~25!

whered@ f , f 8# is the product of Dirac or Kronecker delta functions in the variablesf i .
Irreducibility requires the transformation property:

Û@L,Y#u f ;m, j &5E u f 8;m, j &dm~ f 8!D f 8, f
m, j

@L,Y#, ~26!

where

D f 8, f
m, j

@L,Y#dm8md j 8 jª^ f 8;m8, j 8uÛ@L,Y#u f ;m, j & ~27!

is the massm, spin j irreducible representation ofISL(2,C) in the basisF̂ j . The D-function
includesd-functions that eliminate the integrals over the continuous spectrum in~26!. Unitarity of
the group representation property requires

D f 8, f
m, j

@L,Y#5~D f , f 8
m, j

@L21,2LYL†# !* ~28!

and

E D f 8, f 9
m, j

@L2 ,Y2#dm~ f 9!D f 9, f
m, j

@L1 ,Y1#5D f 8, f
m, j

@L2L1 ,L2Y1L2
†1Y2#. ~29!

The restriction on the spectrum ofF̂ i implies that range of values off in D f 8, f
m, j

@L,Y# is indepen-
dent ofm.

Explicit representations for theISL(2,C) Wigner D-functions corresponding to differentF̂ i

are given in Appendix A. The form of theD-functions is basis dependent.
Irreducible representations in a basis of simultaneous eigenstates of a different set o

muting self-adjoint functions,Ĝi , of the generators are related to the representations in the
F̂ i by

D g,g8
m, j

@L,Y#5E ^gu f &dm~ f !D f , f 8
m, j

@L,Y#dm~ f 8!^ f 8ug8&, ~30!

where

^ f ug&dmm8d j j 8ª^ f ;m, j ug;m8, j 8&. ~31!

The coefficient functionŝ f ug& can depend parametrically on the mass or spin. This param
dependence on the mass is responsible for the dynamical differences that arise with differen
choices.
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VI. CLEBSCH–GORDAN COEFFICIENTS

In this section Clebsch–Gordan coefficients8,26,28,29and Racah coefficients ofISL(2,C) are
defined. These are used to expand tensor products of irreducible representation as linear s
sitions of irreducible representations and to transform between irreducible bases with di
degeneracy quantum numbers.

The tensor product of irreducible representations ofISL(2,C) is reducible. TheISL(2,C)
generators for a tensor product of two irreducible representations are

P̂m5 P̂1
m

^ Î 21 Î 1^ P̂2
m , ~32!

Ĵmn5 Ĵ1
mn

^ Î 21 Î 1^ Ĵ2
mn . ~33!

These operators act on the space

H5Hm1 j 1
^ Hm2 j 2

. ~34!

The operatorsF̂ i5Fi( P̂m,Ĵmn), M̂5M ( P̂m,Ĵmn), and ĵ 25 j 2( P̂m,Ĵmn) are commuting self-
adjoint operators onH. Because the tensor product is reducible, these operators do not de
maximal set of commuting self-adjoint operators. There are additionalISL(2,C) invariant degen-
eracy operatorsD̂ j that distinguish multiple copies of the same irreducible representation.
degeneracy operatorsD̂ i normally include the invariant operatorsM̂1 , ĵ 1 , M̂2 , ĵ 2 of the factors of
the tensor product and additional operators,R̂12, that distinguish multiple copies of them, j
representation in the tensor product of them1 , j 1 andm2 , j 2 representations.

The operatorsD̂ j are invariant, self-adjoint functions of the single particle generators.
operatorsM̂ , ĵ 2, F̂1,...,F̂4, D̂1,...,D̂6 form a maximal set of commuting self-adjoint operators
H. Examples are given in the Appendix B.

The (f ,d) basis is theISL(2,C)-irreducible basis for the tensor product space defined in te
of simultaneous eigenstates,u f ,d;m, j & of

$F̂ i ,D̂k;M̂ , ĵ 2%. ~35!

It follows that

Û1@L,Y# ^ Û2@L,Y#u f ,d;m, j &5E u f 8,d;m, j &dm~ f 8!D f 8, f
m, j

@L,Y#, ~36!

whereD f 8, f
m, j

@L,Y# is the irreducible representation matrix for a single particle of massm and spin
j . TheD-function is independent of the invariant degeneracy parameters,d.

The coefficients

^ f 1 ;m1 , j 1 : f 2 ;m2 , j 2u f ,d;m, j & ~37!

are Clebsch–Gordan coefficients of the Poincare´ group in the (f ,d) basis. They are the kernel o
the unitary transformation that relates tensor products ofISL(2,C) irreducible representations t
direct integrals of irreducible representations. TheISL(2,C) Clebsch–Gordan coefficients hav
similar properties toSU(2) Clebsch–Gordan coefficients:

E D
f 1 , f

18

m1 , j 1@L,Y#D
f 2 , f

28

m2 , j 2@L,Y#dm~ f 18!dm~ f 28!^ f 18 ;m1 , j 1 : f 28 ;m2 , j 2u f ,d;m, j &

5E ^ f 1 ;m1 , j 1 : f 2 ;m2 , j 2u f 8,d;m, j &dm~ f 8!D f 8, f
m, j

@L,Y#. ~38!
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The new feature is that the irreducible representations are labeled by two Casimir operato
the mass operator has a continuous spectrum.

It is sometimes useful to replace the mass operatorM̂ of the tensor product of two irreducibl
representations by the invariant relative momentumq̂2, which has absolutely continuous spe
trum, @0,̀ !:

q̂25q2~M̂2,M̂1
2 ,M̂2

2!ª
M̂41M̂1

41M̂2
422M̂1

2M̂2
222M̂2M̂1

222M̂2M̂2
2

4M̂2
. ~39!

The Clebsch–Gordan coefficients have different forms in different bases. If (f ,d)→(g,k),
then the Clebsch–Gordan coefficients in the (f ,d) basis are related to the Clebsch–Gordan co
ficients in the (g,k) basis by

^g1 ;m1 , j 1 :g2 ;m2 , j 2ug,k;m, j &

5E ^g1u f 18&^g2u f 28&dm~ f 18!dm~ f 28!^ f 18 ;m1 , j 1 : f 28 ;m2 , j 2u f 8,d8;m, j &dm~ f 8,d8!

3^ f 8,d8ug,k&, ~40!

where

^gi u f i8&d j i j i8
dmimi8

ª^gi ;mi , j i u f i8 ;mi8 , j i8& ~41!

and

d j j 8d~m2m8!^ f ,dug8,k8&ª^ f ,d;m, j ug8,k8;m8, j 8&. ~42!

The Hilbert space for a system ofN-particles is theN-fold tensor product of single particle
Hilbert spaces:

H5Hm1 j 1
^¯^ HmNj N

. ~43!

The noninteracting representation ofISL(2,C) on H is defined by

Û0@L,Y#ªÛ1@L,Y# ^¯^ ÛN@L,Y#, ~44!

where the 0 subscript is used to denote the noninteracting system. It follows that

Û0@L,Y#u f 1 ;m1 , j 1¯ f N ;mN , j N&5E u f 18 ;m1 , j 1 :¯ f N8 ;mN , j N&dm~ f 18¯ f N8 !)
i 51

N

D
f
i8 , f i

mi , j i@L,Y#.

~45!

As in the case ofSU(2), the tensor product ofN irreducible representation spaces can
decomposed into a direct integral of irreducible representation spaces using successive p
coupling. The invariant degeneracy operators depend on the order of the coupling. It i
possible to use a simultaneous coupling scheme based on Mackey’s30 theory of induced
representations9 which leads to a symmetric coupling.

Successive pairwise coupling is illustrated for the three-particle system:
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u f ,d((12)3) ;m, j &5E u f 1 ;m1 , j 1 : f 2 ;m2 , j 2 : f 3 ;m3 , j 3&dm~ f 1!dm~ f 2!

3^ f 1 ;m1 , j 1 : f 2 ;m2 , j 2u f 12,d12;m12, j 12&dm~ f 12!dm~ f 3!dm~m12, j 12!

3^ f 12;m12, j 12: f 3 ;m3 , j 3u f ,d12,3;m, j &, ~46!

where the invariant degeneracy parameters are

d12,35$d12,m12, j 12,m3 , j 3 ,r 12,3% ~47!

with

d125$m1 , j 1 ,m2 , j 2 ,r 12%. ~48!

Changing the ordering of the coupling from~~12!3! to ~~23!1! changes the degeneracy para
eters from$r 12, j 12,m12,r 12,3% to $r 23, j 23,m23,r 23,1%, leaving the operatorsM̂ , ĵ 2 and F̂ i un-
changed. The overlap coefficients have the general form

^ f ,dab,c~m, j !u f 8,de f,g8 ~m8, j 8!&5d@ f , f 8#d j j 8d~m2m8!Rda,bc ,d
e, f g8

m, j
. ~49!

The invariant quantitiesRda,bc ,d
e, f g8

m, j
are Racah coefficients forISL(2,C). They are the kernel of the

unitary transformation that changes the choice of degeneracy labels in subspaces corres
the same mass, spin, and vector labelsf . They are independent off .

The Racah coefficients are important for performing computations because, as in the c
rotations, some operators have a simple form when the couplings are done in a specific
Since many of the operators are defined in specific representations, the Racah coefficie
needed for the evaluation of the abstract operator expressions.

The term Racah coefficient is used to indicate any change of irreducible basis with m
elements of the form~49!. Examples of Racah coefficients in representative bases are giv
Appendix B.

VII. RELATIVISTIC SCATTERING THEORY

Relativistic scattering theory is formulated in this section. A kinematic subgroup is no
sumed. The two-Hilbert space formulation6,8,31is used to treat multichannel scattering theory. T
notation of this section follows Ref. 8. Conditions on the interactions that are sufficient
sensible relativistic scattering theory are discussed. Relativistic two-Hilbert-space wave op
are essential elements of the general construction.

In this section the dynamical representationÛ@L,Y# of ISL(2,C) is assumed to be given. Th
construction ofÛ@L,Y# is the main topic of the remainder of this article.

The first step in formulating relativistic scattering theory is to determine the bound stat
Û@L,Y#; subsystem bound states are needed to formulate the asymptotic conditions in
channel scattering.

Bound states are associated with point eigenvalues of the mass and spin. For each bou
channelab there is an irreducible subspace ofH. Vectors in the bound state subspace can
expressed as linear superpositions of simultaneous eigenstates ofM̂ , ĵ 2,F̂ i :

ufab
&5E u f ;ma , j a&dm~ f !^ f ux&, ~50!

where in this expressionF̂ i5Fi( P̂m,Ĵmn) are functions of the generators ofÛ@L,Y#.

The channel eigenstateu f ;mab
, j ab

& can be considered as a mapping,F̂ab
, from the channel

Hilbert spaceHab
,
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Hab
5 H ^ f uxa&U E ^ f uxa&u2dm~ f !,`J , ~51!

to the invariant bound-state subspace of the Hilbert spaceH,

F̂ab
uxa&ªufab

&5E u f ;ma , j a&dm~ f !^ f uxa&. ~52!

For each bound channelab there is a channel injection operatorF̂ab
and a channel Hilbert spac

Hab
. Since the bound channel spaces are irreducible representation spaces with res

Û@L,Y#, the channel eigenstates transform irreducibly

Û@L,Y#u f ;mab
, j ab

&5E u f 8;mab
, j ab

&dm~ f 8!D
f 8, f

mab
, j ab@L,Y#. ~53!

Equation~53! can be expressed in terms of the channel injection operator as

Û@L,Y#F̂ab
5F̂ab

Ûab
@L,Y#. ~54!

Scattering states are solutions of the time-dependent Schro¨dinger equation that look like
mutually noninteracting bound or elementary subsystems in the asymptotic past or futu
formulate the asymptotic condition leta denote a partition ofN particles intona disjoint non-
empty clusters. Denote thei th cluster byai and the number of particles in thei -th cluster bynai

.
For any partitiona, the N-particle Hilbert space can be factored into a tensor produc

subsystem Hilbert spacesHai
:

H5 ^ i 51
na Hai

, ~55!

Hai
5 ^ l Pai

Hml j l
. ~56!

A partition a has a scattering channela if the subsystem dynamics

Ûai
@L,Y#:Hai

→Hai
~57!

associated with each cluster ofa is either a one particle cluster or has a bound state.
For each bound subsystem channel,a i , there is an injection operator, an asymptotic Hilb

space,

F̂a i
:Ha i

→Hai
, ~58!

and an irreducible asymptotic representationÛa i
@L,Y# of ISL(2,C) on Ha i

satisfying

Ûai
@L,Y#F̂a i

5F̂a i
Ûa i

@L,Y#. ~59!

These relations hold trivially for the one particle clusters. The asymptotic Hilbert space fo
scattering channela is defined as the tensor product of the bound channel subspaces fo
subsystems:

Ha5 ^ i 51
na Ha i

. ~60!

The channel injection operator
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F̂a :Ha→H ~61!

is defined by

F̂aª^ i 51
na F̂a i

. ~62!

It follows from ~59! that F̂a satisfies the intertwining relation

Ûa@L,Y#F̂a5F̂aÛa@L,Y#, ~63!

where

Ûa@L,Y#ª^ i 51
na Ûai

@L,Y# ~64!

and

Ûa@L,Y#ª^ i 51
na Ûa i

@L,Y#. ~65!

In this notation a scattering state is a solution

uca
6~ t !&5Û@ I ,T#uca

6&, Tªts0 ~66!

of the time-dependent Schro¨dinger equation satisfying the asymptotic condition

lim
t→6`

iuca
6~ t !&2Ûa@ I ,T#F̂auxa&i ~67!

for uxa&PHa .
Equation~63! can be used to express the asymptotic condition as

lim
t→6`

iuca
6&2Û@ I ,2T#F̂aÛa@ I ,T#uxa&i50, ~68!

which is identically satisfied by the bound-state channels.
Equation~68! can be expressed as

uca
6&ªV̂a6uxa&, ~69!

where the channel wave operators

V̂a6 :Ha→H ~70!

are defined by the strong limits

V̂a6ª lim
t→6`

Û~ I ,2T!F̂aÛa~ I ,T!. ~71!

A sufficient condition for the existence of the channel wave operators is the Cook conditio32

E
tc

`

iV̂aÛa~ I ,6T!ux&idt,`, ~72!

wheretc is any constant and
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V̂aªĤF̂a2F̂aĤa . ~73!

The scattering operator for scattering from channela to channelb is the mapping from
Ha→Hb defined by

ŜbaªV̂b1
† V̂a2 . ~74!

This can be expressed compactly in a two-Hilbert-space notation, where the asymptot
bert space,HA , is the orthogonal direct sum of all of the channel spaces, including the bound
channel spaces:

HA5 % aHa . ~75!

A two-Hilbert-space injection operatorF̂A ,

F̂A :HA→H, ~76!

is defined as the sum of the channel injection operators

F̂A5(
a

F̂a , ~77!

where it is understood that eachF̂a acts on the channel subspaceHa of HA .
There is a natural unitary representation ofISL(2,C) on HA which transforms the particles o

bound states as tensor products of irreducible representations:

ÛA@L,Y#5(
a

Ûa@L,Y#, ~78!

whereÛa@L,Y#:Ha→Ha .
The bound state solutions and the scattering asymptotic conditions can be replaced

two-Hilbert-space equation:

V6~Ĥ,F̂A ,ĤA!5 lim
t→6`

Û@ I ,2T#F̂AÛA@ I ,T#, ~79!

where the limit is a strong limit. The wave operatorsV6(Ĥ,F̂A ,ĤA) are mappings fromHA
→H.

The scattering operatorŜ is a mapping fromHA→HA defined by

ŜªV1
† ~Ĥ,F̂A ,ĤA!V2~Ĥ,F̂A ,ĤA!. ~80!

The dynamics is asymptotically complete if the two-Hilbert space wave opera
V6(Ĥ,F̂A ,ĤA), which include all bound state channels, are unitary mappings fromHA to H. In
all that follows the two-Hilbert-space wave operators are assumed exist and to be unitary.
properties can be proved using the same methods used in nonrelativistic scattering theory

Fong and Sucher8,33–35showed that relativistic invariance of the scattering operator does
follow from the existence ofÛ@L,Y#. This is because theISL(2,C) transformations must com
mute with the limiting operations that are used to construct the scattering operator.

Invariance ofŜ is equivalent to the condition

@ÛA@L,Y#,Ŝ#250. ~81!
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The following theorem provides a sufficient condition onÛ@L,Y# for the ISL(2,C) invari-
ance of theS-matrix:

Theorem 1: Let V6(Ĥ,F̂A ,ĤA) be asymptotically complete two-Hilbert-space wave ope
tors. A sufficient condition forŜ to be ISL(2,C) invariant is that for allL andY

lim
t→6`

~F̂A2Û†@L,Y#F̂AÛA@L,Y# !ÛA@ I ,T#50, ~82!

and for anyY of the formY5yW•sW

lim
t→6`

~F̂A2Û†@ I ,Yt#F̂AÛA@ I ,Yt# !ÛA@ I ,T#50. ~83!

The limits above are strong limits. They must hold for both time directions.
Theorem 1 provides sufficient conditions on the interactions in the generators for a se

relativistic scattering theory. The proof of this theorem is given in Appendix C.
The proof of Theorem 1 has a number of useful corollaries:
Corollary 1: If the conditions of Theorem 1 are satisfied, then

Û@L,Y#V6~Ĥ,F̂A ,ĤA!5V6~Ĥ,F̂A ,ĤA!ÛA@L,Y#. ~84!

This intertwining property ensures theISL(2,C) invariance ofS.
Corollary 2: If the conditions of Theorem 1 are satisfied, then

V6~Ĥ,F̂A ,ĤA!5V6~ P̂•y,F̂A ,P̂A•y!, ~85!

wherey is any future-pointing timelike four-vector.
This means that all future pointing timelike directions are equivalent for the purpos

formulating the asymptotic condition.
Corollary 3: If the conditions of Theorem 1 are satisfied, then

V6~Ĥ,F̂A ,ĤA!5V6~M̂ ,F̂A ,M̂A!. ~86!

This shows that in applications the Hamiltonian can be replaced by the mass operator
wave operators. Both representations of the two-Hilbert-space wave operators are used
remainder of this article.

Theorem 1 and its corollaries define conditions on the interactions that ensure that th
namics is consistent with naive expectations for a relativistic scattering theory. In all that fo
it is assumed that the two-Hilbert-space wave operators exist, are complete, and the dyn
operators satisfy~82! and ~83!.

VIII. CLUSTER PROPERTIES

Cluster properties provide the essential connection between the few- and many-body pr
The cluster property requires that few-body interactions in the few-body problem are identi
the few-body interactions in the many-body problem. This establishes the justification fo
forming experiments on few-body systems.

The difficulty in satisfying cluster properties is that the interactions that appear in
ISL(2,C) generators are uniquely determined by cluster properties up to anN-body interaction.
Unfortunately, theISL(2,C) commutation relations put nonlinear constraints on theN-body in-
teractions which cannot be satisfied by setting these interactions to zero.

To formulate cluster properties leta be a partition of theN-particle systems intona disjoint
clusters. LetÛai

@L,Y# be the subsystem representation ofISL(2,C) for the particles in thei th

cluster ofa. Define the cluster translation operatorT̂a(Y1 ,...,Yna
) on H by
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T̂a@Y1 ,...,Yna
#ª^ Ûai

@ I ,Yi #. ~87!

The dynamical representation of the Poincare´ group satisfies strong cluster properties if for
partitionsa and all ux&PH

lim
min(yi2yj )

2→1`

i~Û@L,Y#2 ^ i 51
na Ûai

@L,Y# !T̂a@Y1 ,...,Yna
#ux&i50. ~88!

Cluster properties will hold if~a!

Û@L,Y#→Ua@L,Y#5 ^ i 51
na Ûai

@L,Y#, ~89!

when the interactions involving particles in different clusters ofa are set to zero and~b! all of the
interactions in each generatorĜ satisfy

lim
min(yi2yj )

2→1`

i~Ĝ2Ĝa!T̂a@Y1 ,...,Yna
#ux&i50, ~90!

where Ĝ and Ĝa are theISL(2,C) generators associated withÛ@L,Y# and Ua@L,Y#, respec-
tively.

Condition~a! is called the algebraic cluster property.8 It puts the nonlinear constraints on th
interactions of a relativistic quantum theory. It ensures that once the interactions between p
in different clusters are turned off, the remainder is a tensor product. This condition is non
because it must hold for every possible clustering.

The condition~b! is related to the range of the interaction. If the operators satisfy algeb
cluster properties, the proof of the short range condition is similar to the nonrelativistic proo36 of
cluster properties. In all that follows the interaction terms are assumed to satisfy condition~b!.

When Û@L,Y# does not satisfy algebraic cluster properties the limit~88! may not exist. A
typical consequence is that the cluster limit eliminates interactions between particles in thesame
cluster.26

The cluster condition~88! is a strong form of the cluster condition. It is also possible
formulate a weaker form of the cluster condition that applies only to the scattering matrix.8 The
stronger form is needed for the recursive construction in Secs. XII and XIII.

IX. SCATTERING EQUIVALENCES

There is a large class of dynamical models with the sameS-matrix. These models are calle
scattering equivalent models.37 The freedom to transform between scattering equivalent mo
with different properties is an important tool for realizing cluster properties. What sepa
scattering equivalent models from unitary equivalent models is that scattering equivalent m
do not change the description of free particles. They provide a parametrization of the freedo
is created by restricting the class of physical observables to asymptotic quantities (t→6`).

While scattering equivalences necessarily preserve cluster properties of theS-matrix, they do
not preserve cluster properties of the representationÛ@L,Y#. Because of this property, scatterin
equivalences can be used to restore cluster properties of the dynamics.

The key to understanding scattering equivalences is to understand the algebra of operat
are asymptotically zero. A bounded operatorẐ on theN-particle Hilbert space is asymptoticall
zero if the following strong limits vanish:

lim
t→6`

ẐÛ0@ I ,T#uc&50, ~91!
                                                                                                                



,
y

tem

ive the

6038 J. Math. Phys., Vol. 43, No. 12, December 2002 W. N. Polyzou

                    
lim
t→6`

Ẑ†Û0@ I ,T#uc&50, ~92!

for both time limits, where

T5ts0 . ~93!

The subset of bounded operators that are asymptotically zero are denoted byZ. It is straight-
forward to show that forẐnPZ anda complex that

aẐ11Ẑ2PZ, ~94!

Ẑ1Ẑ2PZ, ~95!

Ẑ1
†PZ, ~96!

iẐn2Ẑi→0⇒ẐPZ. ~97!

Including the identity makes aC* algebra, which we call the algebra of asymptotic constantsC.
A scattering equivalenceÂ is a unitary member ofC that is asymptotically equal to the identit

Î :

lim
t→6`

~Â2 Î !Û0@ I ,T#uc&50; ~98!

lim
t→6`

~Â†2 Î !Û0@ I ,T#uc&50. ~99!

The relation of these operators to scattering is through the following theorems:

Theorem 2: Let Â be a scattering equivalence. LetV6(Ĥ,F̂A ,ĤA) be asymptotically com-

plete two-Hilbert-space wave operators. LetĤ85ÂĤÂ† andF̂A8 5ÂF̂A . ThenV6(Ĥ8,F̂A8 ,ĤA)

exist, are asymptotically complete, and give the sameS matrix asV6(Ĥ,F̂A ,ĤA).
The proof follows from the identity

ÂV6~Ĥ,F̂A ,ĤA!5V6~Ĥ8,F̂A8 ,ĤA!. ~100!

While the structure of the injection operatorF̂A depends on the representation of the subsys
bound states, it must become the identity in the scattering channel, (a5a0), corresponding toN

free particles. Note thatF̂a0
8 5ÂÎ 5 Î 1ẐÞ Î whereẐ is asymptotically zero. This ensures thatF̂A8

can be replaced by another injection operator,F̂A9 , with F̂a0
9 5 Î :

F̂A9 5F̂A8 2daa0
Ẑ. ~101!

It follows that

V6~Ĥ8,F̂A8 ,Ĥa0
!5V6~Ĥ8,F̂A9 ,Ĥa0

!, ~102!

whereF̂a0
9 5 Î .

Scattering equivalences are naturally constructed from pairs of wave operators that g
sameS-matrix.
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Theorem 3: Let V̂6ªV6(Ĥ,F̂A ,ĤA) and V̂68 ªV6(Ĥ8,F̂A8 ,ĤA) be asymptotically com-
plete wave operators that give the same scattering matrix. Then there is a scattering equivaÂ

satisfyingĤ85ÂĤÂ†.
To prove Theorem 3 note that the assumptions imply

S5V̂1
† V̂25V̂18

†V̂28 . ~103!

Asymptotic completeness implies

ÂªV̂18 V̂1
† 5V̂28 V̂2

† . ~104!

This definition and the intertwining relations36 for the Hamiltonian give

ÂĤÂ†5V̂18 ĤAV̂1
† Â†5Ĥ8V̂18 V̂1

† Â†5Ĥ8. ~105!

Equations~104! and ~105! imply

V6~Ĥ8,F̂A8 ,ĤA!5ÂV6~Ĥ,F̂A ,ĤA!5V6~Ĥ8,ÂF̂A ,ĤA!. ~106!

The equality of the first and last terms gives the strong limit

lim
t→6`

~F̂A8 2ÂF̂A!ÛA@ I ,T#50. ~107!

Unitarity of Â gives

lim
t→6`

~Â†F̂A8 2F̂A!ÛA@ I ,T#50; ~108!

restricting to thea0 channel, usingF̂a0
5F̂a0

8 5 Î and Ûa0
@ I ,T#5Û0@ I ,T# gives

lim
t→6`

~Â2 Î !Û0@ I ,T#50 ~109!

and

lim
t→6`

~Â†2 Î !Û0@ I ,T#50, ~110!

which establishes thatÂ is a scattering equivalence.
This shows that if two asymptotically complete wave operators give the same scat

matrix, then the Hamiltonians are related by a scattering equivalence. SinceÂ is unitary it follows
that

Û8@L,Y#ªÂÛ@L,Y#Â† ~111!

is a scattering equivalent representation ofISL(2,C).
The important property of the scattering equivalences is that they are the unitary eleme

theC* algebra of asymptotic constants. TheC* algebra can be used to construct functions of
noncommuting scattering equivalences. When these functions are unitary and can be expre
uniform limits of elements of this algebra, they are scattering equivalences. This provide
mechanism for constructing scattering equivalences with specialized properties.
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X. BIRKHOFF LATTICES:

The construction of operators satisfying cluster properties requires a significant amo
algebra involving cluster expansions of operators. The theory of Birkhoff lattices8,38–41facilitates
the required algebra. It provides closed-form expressions relating different standard cluster
sions of operators.

Let P denote the set of all possible partitions ofN-particles into disjoint nonempty clusters
There is a natural partial ordering onP given by

a$b ~112!

if and only if every pair of particles in the same cluster ofb is in the same cluster ofa. This means
that b can be obtained froma by breaking up clusters.

The Zeta and Mo¨bius functions38,41 for this partial ordering are integer valued functions
P3P defined by

z~a$b!5H 1, a$b,

0, otherwise,
~113!

and

m~a$b!5z21~a$b!5H ~2 !na)
i 51

na

~2 !nbi~nbi
21!!, a$b,

0, otherwise,

~114!

wherenbi
are the number of clusters ofb in the i th cluster ofa. Note that bothz(a$b) and

m(a$b) vanish unlessa$b.
Intersections and unions,aùb andaøb, of two partitionsa andb are defined as the greate

lower bound and least upper bound with respect to this partial ordering.
It follows from the definitions that

z~~aùb!$c!5z~a$c!z~b$c!, ~115!

z~a$~bøc!!5z~a$b!z~a$c!. ~116!

The set of partitions with the operationsø and ù form a semimodular lattice,38 called a
partition or Birkhoff lattice. It provides a convenient means for keeping track of interactions
O be an operator that is a function of the physicalISL(2,C) infinitesimal generators. Imagin
putting a parameterl i in front of each interaction that appears in the physicalISL(2,C) genera-
tors. The operatorOa is defined to be the result of turning off the interactions between particle
different clusters ofa. In general the operatorOa will include the contributions of operators inOb

for all a.b. These can be recursively subtracted to construct truncated contributions@O#b to Oa .
The truncated operators@O#a vanish whenever interactions involving particles inanycluster ofa
are turned off. Then the Mo¨bius function can be used to generate closed form expressions fo
truncated operators in terms of the untruncatedOa’s:

@O#aª(
b

m~a$b!Ob . ~117!

This can be inverted using the Zeta function to get

Oaª(
b

z~a$b!@O#b . ~118!
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If this is applied to the case wherea is the one-cluster partition, this becomes

O5(
b

@O#b . ~119!

While this generates the standard relations between ordinary multipoint functions and
cated multipoint functions based on cluster expansion methods, use of the lattice structu
specifically the underlying partial ordering, has advantages that are useful in the recursiv
struction described in Secs. XII and XIII.

XI. TWO-BODY PROBLEM

The construction of two-body models follows.23 The two-body Hilbert space is the tens
product of single particle spaces

H5Hm1 j 1
^ Hm2 j 2

. ~120!

Choose a basis (f ,d) and use the Clebsch–Gordan coefficient,

^ f 1 ;m1 , j 1 : f 2 ;m2 , j 2u f ,d;m, j &, ~121!

to construct an irreducible free-particle basis. The states

u f ,d;m, j & ~122!

transform as massm, spin j irreducible representations ofISL(2,C) with respect to the noninter
acting representation

Û0@L,Y#ªÛ1@L,Y# ^ Û2@L,Y#. ~123!

Using theISL(2,C) transformation properties it is possible to construct operatorsDF̂0
i that

change the value off i , holding the values off j ( j Þ i ) constant. IfF̂0
i has a continuous spectrum

these operators are proportional to partial derivatives

DF̂0
j 5 i

]

] f j ~124!

holding f k;kÞ j constant. IfF0
j has discrete eigenvalues, a suitableDF̂0

j can typically be expresse
in terms of a raising or lowering operators.

The operatorsM̂0 , ĵ 0
2, F̂0

i , DF̂0
i are functions of the free particle generators. Expression

the generators in terms of these operator can be constructed using theISL(2,C) D-functions:

^ f ,d;m, j uKW 0u f 8,d8;m,s&ª i
]

]rW
D f , f 8

m, j
@L~u50,r!,0#d@d,d8#d~m2m8!d j j 8 , ~125!

^ f ,d;m, j uJW0u f 8,d8;m, j &ª i
]

]uW
D f , f 8

m, j
@L~u,r50!,0#d@d,d8#d~m2m8!d j j 8 , ~126!

^ f ,d;m, j uP0
mu f 8,d8;m, j &ª2 i

]

]ym
D f , f 8

m, j
@ I ,Y~y!#d@d,d8#d~m2m8!d j j 8 , ~127!

where all derivatives are computed at 0.
The chain rule gives explicit expressions for theISL(2,C) generators in terms of the operato

M̂0 , ĵ 0
2 ,F̂0

i ,DF̂ i0 :
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P̂0
m5 P̂m~M̂0 , ĵ 0 ,F̂0

i ,DF̂0
i !, ~128!

Ĵ0
mn5 Ĵmn~M̂0 , ĵ 0 ,F̂0

i ,DF̂0
i !. ~129!

These expressions can be inverted to expressM̂0 , ĵ 0
2 ,F̂0

i ,DF̂ i0 in terms of theISL(2,C) genera-
tors:

M̂05M ~ P̂0
m ,Ĵ0

mn!, ~130!

ĵ 0
25 j 0~ P̂0

m ,Ĵ0
mn!, ~131!

F̂0
i 5F j~ P̂0

m ,Ĵ0
mn!, ~132!

DF̂ i05DF j~ P̂0
m ,Ĵ0

mn!. ~133!

Examples of these operators for specific basis choices are computed in Appendix A to illustr
general procedure.

SinceM̂0
2 is a Casimir operator forISL(2,C), it necessarily commutes withĵ 0

2 , F̂0
i , andDF̂0

i .
The ISL(2,C) commutation relations follow as consequences of the commutation relations ofM̂0 ,
ĵ 0
2 , F̂0

i , andDF̂0
i .

It follows that in order to construct a dynamical representation ofISL(2,C) it is enough to
replaceM̂0 by an operatorM̂5M̂01V̂ which also commutes withĵ 0

2 , F̂ i0 , andDF̂ i0 . With this
choice of interaction it follows that the operators

P̂0
m→ P̂m5 P̂m~M̂ , ĵ 0

2 ,F̂0
i ,DF̂0

i !, ~134!

Ĵ0
mn→ Ĵmn5 Ĵmn~M̂ , ĵ 0

2 ,F̂0
i ,DF̂0

i ! ~135!

automatically satisfy theISL(2,C) Lie algebra.
Cluster properties are satisfied for sufficiently short-range interactions. For the interact

be nontrivial it should also satisfy

@M̂ ,M̂0#Þ0 ~136!

and the spectral condition,M̂0.V̂. In general the interaction can be treated as a perturbatio
different functions ofM̂0 , such asM̂0

2. In all cases the interactions can be put in the formM̂

5M̂01V̂ by definingV̂ªM̂2M̂0 , independent of howM̂ is constructed. The spectral conditio
constrains the interaction.

In the free particle irreducible basis an interactionV̂ commuting withĵ 0
2 , F̂0

i , andDF̂0
i has a

kernel with the structure

^ f ,d;m, j uV̂u f 8,d8;m8, j 8&5d@ f , f 8#d j j 8^d,miV̂j id8,m8&. ~137!

The dynamical generators are given by~134! and~135! with M̂5M̂01V̂. If the expression for
a generator in~134! or ~135! has an explicit mass dependence, the corresponding operator w
interaction dependent. Depending on the choice of basis (f ,d) between three and ten generato
will have an explicit interaction dependence. Dirac’s forms of dynamics result from specific
choices. A generic choice will not have a kinematic subgroup.

While it is straightforward to derive explicit expressions for the generators in terms o
F̂ i ’s, ~see Appendix A! it is easier to directly solve for the dynamics in the free particle ba
u f ,d;m, j &.
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In this basisM̂ , F̂0
i , ĵ 0 can be simultaneously diagonalized:

^ f 8,d8;m8, j 8u f ;m, j &5d@ f , f 8#d j j 8fm
j ~d8,m8!, ~138!

wherefm
j (d8,m8) is the solution of the mass eigenvalue equation

~m2m8!fm
j ~d8,m8!5( E dm9dd9^d8,m8iV̂j id9m9&fm

j ~d9,m9!. ~139!

For suitable interactionsM̂ will be self-adjoint and the eigenstatesu f ,d;m, j & will define a com-
plete set of simultaneous eigenstates ofM̂ , F̂0

i , ĵ 0
2. Solving equation~139! is of comparable

difficulty to solving the time-independent nonrelativistic Schro¨dinger equation. It is assumed th
the eigenstates include two-body bound states and scattering states satisfying incoming a
going wave asymptotic conditions.

Since the expressions~125!–~127! for theISL(2,C) generators were derived by evaluating t
infinitesimal transformations in an irreducible basis, and$M̂0 ,F̂0

i ,DF̂0
i , ĵ 0% and $M̂ ,F̂0

i ,DF̂0
i , ĵ 0%

have the same commutation relations, the action of the dynamical representation ofISL(2,C) on
the eigenstatesu f ;m, j & has the same form as the free dynamics onu f ,d;m0 , j &, with the eigen-
value ofM̂0 replaced by the eigenvalue ofM̂ . It follows that

Û@L,Y#u f ;m, j &5u f 8;m, j &dm~ f 8!Df 8, f
m, j

@L,Y#. ~140!

Since the statesu f ; j ,m& are complete, this definesÛ@L,Y# on H. Sincem is the eigenvalue of a
dynamical operator, all of the mass dependent parts ofDf 8 f

m j
@L,Y# are interaction dependent.

This construction gives~1! an explicit expressions for the interaction dependentISL(2,C) Lie
algebra,~2! a solution of the two-body dynamics expressed as a direct integral of irredu
representations ofISL(2,C), and~3! and an explicit unitary representation ofISL(2,C) on H.

This construction can be done in any irreducible basis. Consider the same construction
bases (f ,d) and (g,d) where, for simplicity, the degeneracy operators in both bases are ass
to have the same spectrum. In one model the interaction commutes withF̂ i , while in the other the
interaction commutes withĜi . BecauseM̂ does not commute withM̂0 , if the relation between the
( f ,d) and (g,d) bases involves the mass, these two interactions cannot be the same.

Nevertheless, the form of the dynamical equation~139! is identical in both cases. Both wil
give the same bound state masses and scattering matrix elements. It follows, using Theorem
the dynamical models constructed using the free particle bases

~ F̂,d̂,M̂1! and ~Ĝ,d̂,M̂2! ~141!

are scattering equivalent and are related by

Â5V6~M̂1 ,F̂1 ,M̂A!V6
† ~M̂2 ,F̂2 ,M̂A!. ~142!

The transformationÂ is not simply a change of basis; it is interaction dependent and change
nature of the interactions. This illustrates the relation of the basis choice to the structure
dynamics.

To understand the nature of the interaction dependence ofÂ note that both wave operators i
~142! need to be computed in the same basis. This leads to an expression of the form

^ f uÂu f 8&5E ^ f uV6~M̂ f ,F̂ f ,M̂A!u f 9&dm~ f 9!^ f 9ug9&Adm~g9!

3^g9uV6
† ~M̂g ,F̂g ,M̂A!ug8&dm~g8!^g8u f 8&. ~143!
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If the change of basisf↔g involves the mass parametrically, then^ f ug&A will involve the physical
mass eigenvalues whilêgu f & involves the noninteracting masses. The interaction dependen
due to having the interacting mass in one of these expressions and the free mass in the
expression. In the limit that the interactions are turned off, this becomes the identity.

This completes the construction of the two-body dynamics. The construction provides a
tivistic two-body model for any choice of basis andISL(2,C) Clebsch–Gordan coefficient.

To illustrate the structure of the dynamical equation in a familiar basis consider the cas~see

Appendix B! that F̂5$P̂W , ĵ cz%, corresponding to the linear momentum andz-component of the
canonical spin, andD̂ i5$ j 1 ,m1 , j 2 ,m2 , l̂ ,ŝ% where l̂ ,ŝ are two-body orbital and spin angula
momenta. The matrix elements ofV̂5M̂2M̂0 have the form

^p,m,l ,s;m, j uV̂up8,m8,l 8,s8;m8, j 8&5d~pW 2pW 8!dmm8d j j 8^ l ,s,miV̂j i l 8,s8,m&. ~144!

If m is replaced by the kinematic momentumq defined by

m5Aq21m1
21Aq21m2

2, ~145!

the matrix element~144! has the same structure as the corresponding nonrelativistic intera
The eigenvalue equation~139! becomes:

~m2Aq21m1
21Aq21m2

2!fm
j ~ l ,s,q!

5 (
l 850

`

(
s85u j 2 l u

u j 1 l u E
0

`

q82dq8^ l ,s,qiV̂j i l 8,s8,q8&fm
j ~ l 8,s8,q8!. ~146!

XII. THE N-BODY PROBLEM

The formulation of theN-body problem is by induction. The construction follows.7–9 What is
different is that the notion of ‘‘form of the dynamics’’ is replaced by a choice (f ,d) of basis for
ISL(2,C) irreducible representation spaces and associated Clebsch–Gordan coefficients.

The construction of theN-body dynamics exploits the scattering equivalence of two rep
sentations ofISL(2,C). One representation satisfies algebraic cluster properties and the oth
a kinematic spin, which is useful for theISL(2,C) invariant addition of interactions.

The construction begins with the decomposition of the system into interacting subsys
which are obtained by turning off the interactions between particles in different clusters
partition a. The tensor product of the subsystem representations define unitary representa
ISL(2,C) on theN-body Hilbert space. These representations are reducible and have intera
in both theN-body mass and spin operators. Asa runs over all partitions these representatio
contain all interactions except theN-body interactions. Because the mass and spin operator
different decompositions into subsystems do not all commute, these tensor product represe
are not suited toISL(2,C) invariant addition of interactions.

In order to facilitate the invariant addition of interactions, scattering equivalences are
duced that transform each of the tensor product representations into scattering equivalen
sentations ofISL(2,C) where ĵ 2, F̂ j , andDF̂ j are free of interaction. In these representations
of the interactions are in the mass operators. Linear combinations of the mass operat
different decompositions into subsystems can be used to construct an overall N-body mass
tor M̄ that still commutes with the noninteracting operatorsj 0

2, F̂0
j , andDF̂0

j .
The existence of the required scattering equivalences follows by induction from propert

the two-body solution. This is different than the solution presented in Ref. 8 where the kine
subgroup and thepW 50 condition played a central role in establishing the required scatte
equivalences.

The properties ofM̄ guarantee thatISL(2,C) generators expressed as functions ofM̄ , j 0
2, F̂0

j ,
and DF̂0

j satisfy theISL(2,C) commutation relations. The associated unitary representatio
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ISL(2,C), which is constructed using the same method used in the two-body construction
not satisfy algebraic cluster properties forN.2. Cluster properties are restored by constructin
suitable scattering equivalence, which introduces additional many-body interactions and
duces a non-trivial interaction dependence in the spin.

The induction begins with the two-body dynamics formulated in the previous section.
dynamical two-body representation,Û@L,Y#, of ISL(2,C) satisfies the following:

~i! It becomes the tensor product of two one-body representations when the interaction
to zero:

Û (12)@L,Y#→Û1@L,Y# ^ Û2@L,Y#. ~147!

~ii ! The two-body mass operator commutes with the noninteractingF̂ j , DF̂ j , and ĵ 2:

@M̂ (12) ,F̂0
j #5@M̂ (12) ,DF̂0

j #5@M̂ (12) , ĵ 0
2#50. ~148!

These conditions cannot be simultaneously satisfied for systems of more than two pa
They are replaced by the following induction assumption, which reduces to the above con
whenN52:

~i! For each proper subsystems of the N-body system, there is a dynamical representat
Ûs@L,Y#:Hs→Hs with short-range interactions satisfying algebraic cluster properties. This m
that if the interactions between particles in different clusters of the subsystems are set to zero,
then

Ûs@L,Y#→ ^ i Ûai
@L,Y#. ~149!

~ii ! For each proper subsystem there is a scattering equivalenceĈs satisfying

ĈsÛs@L,Y#Ĉs
†5Ūs@L,Y# ~150!

with the property that the mass operatorM̄s of the Ūs@L,Y# representation commutes withF̂s
i ,

ĵ s
2 , DF̂s

i of the noninteracting subsystem,s.
These conditions are trivially satisfied by the two-body construction of the previous se

for Ĉs5 Î on each single particle Hilbert space.
First we show that if these conditions hold for all proper subsystems, then they hold fo

nontrivial partitioning of theN-body system.
The theorem below ensures the scattering equivalence of tensor products of subsystem

sentations that satisfy~150! to representations with a non-interactingĵ 2, F̂ i , andDF̂ i .
Theorem 4: Let a be a partition of theN-particle system intona disjoint mutually non-

interacting subsystems,ai . Assume that each subsystem has a dynamical representationÛai
@L,Y#

of ISL(2,C) with an asymptotically complete scattering theory. Assume that each of the r
sentationsÛai

@L,Y# is scattering equivalent to a representation that hasF̂ai

j 5F̂0ai

j , DF̂ai

j

5DF̂0ai

j , ĵ ai

2 5 ĵ 0ai

2 . Let

Ûa@L,Y#ª^ i 51
na Ûai

@L,Y# ~151!

be the tensor product of subsystem representations ofISL(2,C). Then Ûa@L,Y# is scattering
equivalent to a representationŪa@L,Y# that hasF̂a

j 5F̂0
j , DF̂a

j 5DF̂0
j , ĵ a5 ĵ 0 .

This states that if the subsystem mass operators are scattering equivalent to the sub
mass operator with kinematicF̂ai

j , DF̂ai

j , ĵ ai
then the tensor product of the subsystems has a m

operator that is scattering equivalent to a mass operator with kinematicF̂ j , DF̂ j , and ĵ .
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The induction assumptions~150! and ~149! and the application of Theorem 4 imply that fo
every partitiona with at least two nonempty clusters there are representationsÛa@L,Y#, and
Ūa@L,Y#, related by a scattering equivalenceB̂a . The proof of Theorem 4 as well as the co
struction ofB̂a is given in Appendix D.

To establish algebraic cluster properties letX̂ be an operator valued function of the intera
tions. Assume that a coupling constantlb is put in front of all interactions involving particles in
different clusters of a partitionb. Let (X̂)b denote the operator obtained fromX̂ by settinglb to
0.

Theorem 4 implies the following relation:

Ūa@L,Y#5B̂aÛa@L,Y#B̂a
† . ~152!

Turning off interactions between particles in different clusters ofb in ~152! gives, using~149! and
~151!,

~Ūa@L,Y# !b5~B̂a!bÛaùb@L,Y#~B̂a
†!b , ~153!

whenbùa is a refinement ofa.
Applying Theorem 4 directly to the partitionc5bùa gives

Ūaùb@L,A#5B̂aùbÛaùb@L,Y#B̂aùb
† . ~154!

This gives distinct scattering equivalencesB̂aùb and (B̂a)b relating Ûaùb@L,Y# to different rep-
resentations that commute withF̂0

j , DF̂0
j , and ĵ 0

2. An illustration of this ambiguity in the four-
body system occurs fora5(123)(4), b5(12)(34) andc5(12)(3)(4).

It is desirable that the scattering equivalence obtained by turning off interactions agree
the scattering equivalence constructed directly by applying Theorem 4 to the tensor product
can be achieved by recursively replacing the operatorsB̂a of Theorem 4 with operatorsÂa that
satisfy (Âa)b5Âaùb . This replacement involves a redefinition of theM̄a’s.

For N21 cluster partitions define

ÂaªB̂a . ~155!

BecauseN21 cluster interactions only have two-body interactions, bothÂa and B̂a become the
identity when the interaction is turned off:

~Âa!b5Âaùb5 Î . ~156!

In this case any nontrivial refinement ofa givesN free particles.
Next consider a partitiona with k clusters. By induction assume that scattering equivalen

Âc have have been defined for all partitionsc with more thank clusters and that these operato
satisfy (Âc)d5Âcùd for nc.k.

Let b be a partition such thataùb has more thank clusters. Note that

Âaùb~B̂a
†!b ~157!

is defined and commutes withF̂0
j , DF̂0

j , and ĵ 0 .
Define

ÂaªS Î 2 i âa

Î 1 i âa

D B̂a , ~158!
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where

âaª2 (
bÞa

m~a.b!âa,b ~159!

and

âa,bª i
Î 2Âb~B̂a

†!b

Î 1Âb~B̂a
†!b

. ~160!

Note thataùb5b was used in~160!. These expressions utilize Cayley transforms to const
unitary functions of scattering equivalences. The resulting unitary operators will be scat
equivalences provided their Cayley transforms are in the algebra of asymptotic constants.
not entirely trivial, because the algebraC is uniformly closed, but not strongly closed.Âa will be
a scattering equivalence if the Cayley transformsâa,b are bounded. This will be assumed in a
that follows.

The restrictionbÞa means that theb’s appearing in the sum are proper refinements ofa and
necessarily have more thank clusters. By induction theÂb’s satisfy (Âb)c5Âbùc . It follows for
cùaÞa that

~ âa,b!cª i
Î 2Âbùc~B̂a

†!bùc

Î 1Âbùc~B̂a
†!bùc

5âa,bùc , ~161!

which gives

~ âa!c52 (
bÞa

m~a.b!âa,bùc52 (
bÞa

m~a.b!z~~bùc!.d!m~d.e!âa,e . ~162!

Using ~115! gives

2 (
bÞa

m~a.b!z~b.d!z~c.d!m~d.e!âa,e . ~163!

The b sum givesm(a.a)z(a.d)2dad5z(a.d)2dad . Using this in the above sum and ob
serving thatz(c.a)50 gives

(
d,e

z~a.d!z~c.d!m~d.e!âa,e5(
d,e

z~aùc.d!m~d.e!âa,e5âa,aùc . ~164!

It follows that

~Âa!c5S Î 2 i âa,c

Î 1 i âa,c

D ~B̂a!c5Âaùc~B̂a
†!c~B̂a!c5Âaùc . ~165!

This shows that if the result holds for more thank clusters, it holds fork clusters.
This process can be continued recursively untilna52. The result is a set of scattering equiv

lences,Âa , and representations

Ûa@L,Y#,Ūa@L,Y# ~166!

with the properties
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Ūa@L,Y#5ÂaÛa@L,Y#Âa
† , ~167!

Ûa@L,Y#5 ^ i 51
na Ûai

@L,Y#, ~168!

Âa→Âaùb , ~169!

and

F̄a
i 5F̂0

i , DF̄a
i 5DF̂0

i , j̄ a
25 ĵ 0

2 . ~170!

The final step is to complete the construction of the dynamics. For each partitiona of the
N-particle system with at least two clusters letM̂a be the mass operator for the tensor prod
representationÛa@L,Y#. Note that

M̄a5ÂaM̂aÂa
† ~171!

is scattering equivalent toM̂a and commutes withF̂0
j , DF̂0

j , and ĵ 0
2.

Define

M̄ª2 (
aÞ1

m~1$a!M̄a1@M̄ #N52 (
aÞ1

m~1$a!ÂaM̂aÂa
†1@M̄ #N , ~172!

where @M̄ #N is a possible additionalN-body interaction that commutesF̂0
j , DF̂0

j , and ĵ 0
2. By

constructionM̄ commutes withF̂0
j , DF̂0

j , and ĵ 0
2. This expansion is equivalent to the clust

expansion ofM̄ . By the induction assumption, turning off the interactions between particle
different clusters of partitionb gives

~M̄ !bª2 (
aÞ1

m~1$a!~M̄a!b52 (
aÞ1

m~1$a!ÂaùbM̂aùbÂaùb
†

52 (
aÞ1

m~1$a!z~~aùb!$d!m~d$e!ÂeM̂eÂe
†

52 (
aÞ1

m~1$a!z~a$d!z~b$d!m~d$e!ÂeM̂eÂe
† . ~173!

The a sum gives (12d1d) Î . Inserting this into~173! gives

~M̄ !b5ÂbM̂bÂb
† ~174!

or

~M̄ !b5M̄b . ~175!

This is not the mass operatorM̂b corresponding to the tensor product of the subsyste
associated with the clusters ofb. To correct this define the scattering equivalence

Âª
I 1 i â

I 2 i â
~176!

with
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â52 (
aÞ1

m~1$a!âa , ~177!

âaª i
Î 2Âa

Î 1Âa

. ~178!

Using the same algebra used to show that (M̄ )b5M̄b , it follows that

~Â!b5Âb . ~179!

SinceÂ is a scattering equivalence define

M̂ªÂ†M̄ Â. ~180!

SinceM̄ commutes with the kinematic operatorsF̂0
j , DF̂0

j , and ĵ 0
2, simultaneous eigenstate

of M̄ , F̂0
j , and ĵ 0

2 define a complete set of states that transform irreducibly. This can be us
construct a representationŪ@L,Y# of the ISL(2,C). The scattering equivalenceÂ defines a
scattering equivalent representation

Û@L,Y#ªÂ†Ū@L,Y#Â ~181!

with the property that

~Û@L,Y# !bªÂb
†Ūb@L,Y#Âb5Ûb@L,Y#5 ^ i 51

nb Ûbi
@L,Y#. ~182!

The generators have the form

P̂m5Â†Pm~M̄ , ĵ 0
2 ,F̂0

i ,DF̂0
i !Â ~183!

and

Ĵmn5Â†Jmn~M̄ , ĵ 0
2 ,F̂0

i ,DF̂0
i !Â. ~184!

This completes the proof of the induction.
The operatorÛ@L,Y# defined in~181! is the desiredN-body representation ofISL(2,C) that

is consistent with the dynamics and satisfies algebraic cluster separability. The effect
transformationÂ is to cancel theÂa’s from the subsystems. It generates new many-body inte
tions that are necessary for the algebraic cluster properties ofÛ@L,Y#.

To summarize this construction, tensor products of subsystem dynamics are transform
scattering equivalent representations where the operatorsF̂ j , DF̂ j , and ĵ are free of interactions
The transformed mass operators are combined to construct a mass operator for a unitary
sentation ofISL(2,C) with kinematic F̂ j ,DF̂ j , and ĵ . This representation is transformed to
scattering equivalent representation satisfying cluster properties.

The construction, while complex, leads to a simple structure. All of theISL(2,C) generators
can be expressed as sums of one, two, three, ...,N-body interactions. For anyISL(2,C) generator,
the k-body interaction in thek-body problem is identical to thek-body interaction in the many
body problem. At each stage of the construction the subsystem interactions remain unch
What is new is that cluster properties generate new many-body interactions. These do not
when they are imbedded in systems with more thanN particles. The spin, which is a nonlinea
function of these generators, is an interaction dependent quantity given by
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ĵ 25Â† ĵ 0
2Â. ~185!

The scattering equivalenceÂ is an interaction dependent operator that becomes the identity w
the interactions are switched off. While there is freedom to include many-body interactions,
is a class of many-body interactions that cannot be removed without violating cluster prop

XIII. CLUSTER EQUIVALENCE

The dynamical unitary representation ofISL(2,C) constructed in the previous section satisfi
algebraic cluster properties. With suitable short-ranged interactions it will satisfy cluster prop
~88! and the spectral condition. The choice of basis (f ,d) was an important element of thi
construction. In this section, this representation is shown to be scattering equivalent to a
sentation based on a different choice of basis, (g,h). This representation also satisfies algebr
cluster properties.

This illustrates the existence of a subgroup of the group of scattering equivalences that
the constructions based on different irreducible representation basis choices and preserv
braic cluster properties. This subgroup will be called the group of cluster equivalences.

It follows that the choice of irreducible basis used in the construction has no fundam
physical significance. This generalizes the equivalence of choices of kinematic subgroups
ways. First, it extends the result to the general setting of this article where the form of dyn
is replaced by the basis choice (f ,d). Second, it shows that this equivalence respects clu
properties.

To illustrate the nature of the required scattering equivalence, first letÛ f@L,Y# denote the
representation constructed in the previous section using the (f ,d) basis. Turning off interactions
between particles in different clusters of the partitiona gives

Û f@L,Y#→Ûa
f @L,Y#5Âa

f †Ūa
f @L,Y#Âa

f , ~186!

where Âa
f are the scattering equivalences constructed in the previous section. The supersf

indicates that the (f ,d) basis was used in the construction.
Algebraic cluster properties give the relations

Û f@L,Y#→Ûa
f @L,Y#5 ^ i 51

na Ûai

f @L,Y#5 ^ i 51
na ~Âai

f †Ūai

f @L,Y#Âai

f !

5~ ^ i 51
na Âai

f †!~ ^ j 51
na Ūaj

f @L,Y# !~ ^ k51
na Âak

f !, ~187!

where theÂai

f are theÂf operators for the subsystem consisting of the particles in thei th cluster

of a.
It is useful to introduce the operators

Ũa
f @L,Y#ª^ i 51

na Ūai

f @L,Y#, ~188!

which are related toÛa
f @L,Y# by the scattering equivalence

B̂a
f
ª^ i 51

na Âai

f . ~189!

The construction of the previous section definedÛa
f @L,Y#ªŨa

f @L,Y# for na5N21. All of the
Ûa

f @L,Y# ’s were recursively constructed from thena5N21 cluster representations.
Any of the representationsŪa

f @L,Y# are scattering equivalent to aŪa
g@L,Y# representation.

This scattering equivalence is realized by making the following replacements in the kernel
barred mass operators:
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^ f ,d~m0 , j 0!uM̄ f u f 8,d8~m08 , j 08!&5d@ f ; f 8#d j 0 , j
08
^m0 ,duuM̄ j 0uum08 ,d8& ~190!

by

^g,h~m0 , j 0!uM̄gug8,h8~m08 , j 08!&5d@g;g8#d j 0 , j
08
^m0 ,huuM̄ j 0uum08 ,h8&, ~191!

where the reduced kernel̂m0 ,huuM̄ j 0uum08 ,h8& is defined in terms of the reduced kern

^m0 ,duuM̄ j 0uum08 ,d8& by a variable changed→h implemented by kinematicISL(2,C) –Racah
coefficients. This means abstract reduced mass operators are identical. The operatorsM̄g andM̄ f

differ because of the delta functions inf or g, but both operators manifestly give the sameS

matrix elements and bound-state observables. The operatorsM̄ f andM̄g define scattering equiva
lent representations ofISL(2,C) with the noninteractingF̂ i ,DF̂ i or Ĝi ,DĜi , respectively. The
scattering equivalence is denoted byĈg f:

Ĉg fŪ f@L,Y#C̄g f†5Ūg@L,Y#. ~192!

Since this equivalence is valid for systems or subsystems, for each partitiona the following
representations are scattering equivalent:

Ûa
f @L,Y#, Ūa

f @L,Y#, Ũa
f @L,Y#, Ūa

g@L,Y#, Ũa
g@L,Y#. ~193!

These representations have the property thatÛa
f @L,Y#5Ũa

f @L,Y# for N21 cluster partitions
and Ûa

f @L,Y# is scattering equivalent toŪa
f @L,Y# for the one-cluster partition.

The goal is to find aÛg@L,a# that is scattering equivalent toŪg@L,Y# andŪ f@L,Y# and also
satisfies algebraic cluster properties, withÛa

g@L,Y#5Ũa
g@L,Y# for na5N21.

The first step is to define

Ûa
g@L,Y#5Ũa

g@L,Y# ~194!

for na5N21. Following the construction of the previous section, this gives scattering eq
lencesÂa

g relatingÛa
g@L,Y# to Ūa

g@L,Y# for na5N21.
Next, assume by induction thatÛa

g@L,Y# has been defined for partitions with more thanK

clusters satisfying algebraic cluster properties and is scattering equivalent toŪa
g@L,Y#. The

Ūa
g@L,Y# for K-cluster partitions is defined by~192!. Its mass operator,M̄a

g , is related toM̄a
f by

replacing delta functions inf by delta functions ing. Since (M̄a
f )b5M̄aùb

f it follows that
(M̄a

g)b5M̄aùb
g because the kernel of the two operators only differ by delta functions in the ov

kinematic operatorsf or g.
This means thatM̄a

g differs from the cluster expansion

M̄a
g052 (

bÞa
m~a$b!M̄b

g ~195!

by at most ana-connected interaction term,@M̄ #a
g . In order to construct the desired representat

it is enough to define

Ûa
g@L,Y#ªÂa

g†Ūa
g@L,Y#Âa

g , ~196!

where
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Âa
g5

I 1 i âa
g

I 2 i âa
g , ~197!

âa
g
ª2 (

bÞa
m~a,b!âb

g , ~198!

âb
g5 i

I 1Âb
g

I 2Âb
g

. ~199!

Following the algebra used in~173! âa
g has the property that

~ âa
g!b5âb

g , b,a, ~200!

and

~Ûa
g!b@L,Y#ªÂaùb

g† Ūaùp
g @L,Y#Âaùb

g 5Ûaùb
g @L,Y#. ~201!

This differs from the result of a direct construction in the (g,h) basis because of the differenc

@M̄ #a
g betweenM̄a

g andM̄a
g0 . This introduces additional many-body interactions that are neede

maintain the scattering equivalence at each stage of the recursion. Note that in this construc
factor m(a$b) ensures that only theb satisfyingb,a appear in the sum. These partitions ha
more thanK-clusters. This construction can be continued untilK51, where

Ûg@L,Y#5Û1
g@L,Y#5ÂgŪ1

gÂg† ~202!

is the desired representation based on the (g,h) representation. The relevant scattering equivale
is

Ûg@L,Y#5Âg†Ĉg fÂf Û f@L,Y#Âf †Ĉg f†Âg. ~203!

It follows that Âg†Ĉg fÂf is the desired scattering equivalence connecting the constructio
Û@L,Y# using the (f ,d) representation to a dynamics satisfying cluster properties based o
(g,h) representation.

It is important to emphasize that theÂg constructed in this manner are not identical to t
corresponding operators that would have been constructed if one began with the (g,h) basis. This
is due to the presence of additional many-body interactions that are determined by the diff
between the operatorsM̄a

g0 and M̄a
g for eacha. These differences account for the dynamic

differences that occur when the many-body dynamics is formulated with different basis choic
using different forms of dynamics.

The cluster equivalences transformISL(2,C) generators in one representation to physica
equivalent generators in another representation. In each representation the interactions are
uted differently among the generators. Specific representation have computational advanta

XIV. SUMMARY AND CONCLUSION

This article provides a general construction of a unitary representationÛ@L,Y# of ISL(2,C)
for a system ofN-interacting particles based on the representation theory ofISL(2,C). For
suitable interactions the representation satisfies cluster properties and the spectral conditi
representation defines a nontrivial relativistic quantum theory of interacting particles. Un
operators that preserve theS-matrix and cluster properties, called cluster equivalences, relate
different constructions.
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Relativistic quantum theory ofN-particles can be applied to model systems of strongly in
acting particles. This framework has many features of nonrelativistic quantum mechanic
local relativistic quantum field theory. Like nonrelativistic quantum mechanics, it is a mathe
cally well behaved theory where exact numerical calculations are possible. Like quantum
theory, it is a quantum theory with an exactISL(2,C) symmetry that satisfies cluster properti
and the spectral condition.

The generality of the construction suggests that any quantum theory dominated by a
number of particle degrees of freedom which is consistent with Poincare´ invariance, cluster prop-
erties, and the spectral condition will be related to a theory of the type discussed in this arti
a cluster equivalence.

The cluster equivalences introduced in Sec. XIII relate physically equivalent represent
of the same model. Cluster equivalent models have the same bound state observables andS-matrix
elements. In each representation free particles are represented as tensor products of irr
representations. The unitary representation ofISL(2,C) that defines the dynamics clusters in
tensor products of subsystems representations with the same properties. Cluster equivale
stronger condition than unitary equivalence or scattering equivalence. Scattering equiva
were shown to be unitary elements of theC* algebra of asymptotic constants. Cluster equiv
lences were shown to be a subgroup of the scattering equivalences.

The practical need to understand the relationship between different formulations of relat
quantum theory suggests that it would be useful to have an abstract definition of a relat
quantum theory of particles. The situation is different than the quantum field theory case,
there are several sets of axioms1 that are designed to define a suitable local field theory, with
absence of examples of realistic theories consistent with these axioms. In relativistic qu
theory there are many applications that claim to be relativistic quantum theories, with no u
sally accepted criteria of what it means to be a relativistic quantum theory of particles
absence of an acceptable definition of what constitutes a relativistic quantum theory of pa
makes comparison difficult. The construction of this article, which focuses on mathematica
mulation of observable physical properties, and how they can be realized in models, s
minimal elements that need to be included in a set of axioms:

~A1! The Hilbert spaceH is the tensor product of irreducible representation spaces
ISL(2,C) associated with the mass and spins of the constituent particles.

~A2! There is a unitary representationÛ@L,Y# of ISL(2,C) on H with a positive mass and
energy spectrum.

~A3! The Hilbert space can be factored into a tensor product of subsystem spaces, wit
one supporting a subsystem unitary representationÛ i@L,Y# of ISL(2,C). For each partitiona
into subsystemsai the operatorÛ@L,Y# satisfies cluster property~88!.

~A4! The dynamicsÛ@L,Y# has an asymptotically complete,ISL(2,C) invariantS-matrix.

These requirements can be used to formulate a precise relationship between different
lations of relativistic quantum theory when they are applied to systems with finite energy
number of degrees of freedom.

The construction in Sec. XII points to some of the general features of relativistic qua
theory of particles. In the physical representations ofISL(2,C) the scattering equivalenceÂ,
which is an interaction dependent operator, normally generates interaction dependent term
of the operators using the relations

F̂ i5Â†F̂0
i Â, ~204!

DF̂ i5Â†DF̂0
i Â, ~205!

j 25Â† j 0
2Â, ~206!
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Pm5Pm~M , j 2,F̂ i ,DF̂ i !5Â†Pm~M̄ , j 0
2 ,F̂0

i ,DF̂0
i !Â, ~207!

Jmn5Jmn~M , j 2,F̂ i ,DF̂ i !5Â†Jmn~M̄ , j 0
2 ,F̂0

i ,DF̂0
i !Â. ~208!

While the construction begins with representations having kinematicj 2, F̂ i , andDF̂ i , all of these
operators acquire an interaction dependence in the physical representation.

Tensor and spinor operator densities also play an important role in relativistic quantum
chanics. For example, the hadronic electroweak current operators provide the coupling
hadronic dynamics to electroweak probes. In one-boson exchange approximations these
operators must transform as four-vector densities with respect toISL(2,C):

Û@L,Y#I m@X#Û†@L,Y#5I n@LXL†1Y#Ln
m . ~209!

BecauseÛ@L,Y# is an interaction dependent operator, the covariance condition~209! requires the
existence of many-body contributions to the current.

This is understood by considering covariance condition

^ f ;m, j uI m@X#u f 8;m8, j 8&5E dm~ f 9!dm~ f-!^ f 9;m, j uI n@LXL†1Y#u f-;m8, j 8&

3D f 9, f
* m, j

@L,Y#D f-, f 8
m8, j 8@L,Y#Ln

m . ~210!

In this expression them andm8 in theD-functions are physical mass eigenvalues. This expres
fixes a general matrix elements in terms of a set of independent current matrix elemen
interaction (m) dependent coefficients. This is essentially the Wigner–Eckart theorem
ISL(2,C). In this interpretation the interaction dependence arises because the Clebsch–G
coefficients depend on the physical mass eigenvalues. This means that the operatorsÎ m(X) nec-
essarily have interaction dependent terms that depend on the specific representation.

The result is that the representation of tensor and spinor densities is related to the rep
tation of the dynamics. Changing the representation of the dynamics by a cluster equiv
changes the representation of the interaction dependent parts of the tensor and spinor d
This has important implications for modeling electromagnetic probes of hadronic systems.

Dirac’s forms of dynamics are obtained for special basis choices. Specifically, if theISL(2,C)
Wigner D functions,D f , f 8

m, j
@L,Y#, do not depend explicitly onm for a subgroupG of ISL(2,C),

there are no interactions in the generators of the subgroup. This depends on the choice o
muting operatorsF̂ i that are used to label vectors inISL(2,C) irreducible subspaces. Cluste
equivalences can be used to relate a general model to an equivalent models in any of Dirac’
of dynamics.
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APPENDIX A: ISL „2,C… IRREDUCIBLE REPRESENTATIONS: EXAMPLES

Examples of positive mass positive energy irreducible representations ofISL(2,C) are con-
structed. The construction presented below is not as general as the abstract construction
Sec. V, but it is general enough to include all of the representations that are commonly used
literature.

Let f i(pW ,m), i 51,2,3, be three independent real valued functions of the three momentum

the mass. Since theM̂ and PŴ commute, these three functions become commuting self-ad
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operators whenm andpW are replaced by operators. Independence means that these functio
be uniquely inverted to expresspW 5PW ( f ,m) wheref denotes the three functionsf i . By the implicit
function theorem this will be true provided the Jacobian matrix

] f i

]pj ~A1!

is invertible for anypW and anym in the spectrum ofM̂ .
Define the operators

F̂ i5 f i~PŴ ,M̂ ! ~A2!

for i 51 to 3. LetL(p) be an arbitrary but fixedSL(2,C) valued function ofp5(Am21pW 2,pW )
with properties

L~p!L†~p!5
1

m
smpm, ~A3!

L~p0!L†~p0!5s0 , p0ª~m,0,0,0!. ~A4!

These equations mean thatL(p) is anSL(2,C) representation of a Lorentz boost. In general it c
differ from the canonical~rotationless boost! by a p-dependent rotation,R(p)PSU(2):

L~p!5Lc~p!R~p!, R~p0!5I . ~A5!

Given the functionL(p) it is possible to define theSL(2,C) valued matrix of operatorsL( P̂)

which is obtained by replacingp by the commuting operators (PŴ ,M̂ ).
For a givenL(p) define thel -spin by

jŴ lª
1

2M̂
Tr@sW L~ P̂!ŴmsmL†~ P̂!#, ~A6!

where Ŵm is the Pauli Lubanski vector. SinceŴm commutes withP̂n, all components ofjŴ l

commute withF̂1,F̂2,F̂3. In addition, for any choice ofL(p) the components ofĵW l satisfySU(2)

commutation relations withĵ l
25 ĵ 25Ŵ2/M̂2. Let F̂45 ẑ• jŴ l . The operatorsF̂1,...,F̂4,M̂ , ĵ 2 define

a complete set of commuting self-adjoint operators.
Let f 0

15 f 1(p0), f 0
25 f 2(p0), and f 0

35 f 3(p0). By constructionf 0
1 , f 0

2 , f 0
3 is invariant under

rotations, althoughf does not transform like anSO(3) vector. LetfW denote the eigenvalues ofF̂1,
F̂2, and F̂3 and m denote the eigenvalue ofF̂4. Define f Lª f (pW L ,m), wherepL

m5Ln
mpn. For

fixed L, f L is a function off andm.
Let u f 0 ,m; j ,m& denote a rest eigenstate ofF̂ i ,M̂ , ĵ 2 and letR be anSU(2) rotation. Define

rotations and translations on the rest states by

Û@R,0#u f 0 ,m; j ,m&ª (
n52 j

j

u f 0 ,n; j ,m&Dnm
j ~R!, ~A7!

Û@ I ,Y#u f 0 ,m; j ,m&ªe2 imy0
u f 0 ,m; j ,m&. ~A8!

Define states of arbitraryF̂ by
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u f ,m; j ,m&ªÛ@L~ f !,0#u f 0 ,m; j ,m&AU] f 0

] f U. ~A9!

The expressions forÛ@R,0# andÛ@ I ,Y# are manifestly unitary. The factorAu ] f 0 /] f u assures
Û@L( f ),0# unitarity for states with a delta-function normalization. These elementary rela
determine a unitary representationÛ@L,Y# on any state by using the decomposition

Û@L,Y#5Û@ I ,Y#Û@L~ f L!,0#Û@Rwl~L, f !,0#Û@L21~ f !,0#, ~A10!

where

Rwl~L, f !ªL21~ f L!LL~ f ! ~A11!

is the l -spin Wigner rotation andL( f ) is obtained fromL(p) by replacingp by p( f ,m).
The irreducible representation in this basis follows as a consequence of the above rela

Û@L,Y#u f ,m; j ,m&5 (
n52 j

j

u f L ,n; j ,m&eip( fWL ,m)•yU] f L

] f U
1/2

Dnm
j @Rwl~L, f !#. ~A12!

Taking matrix elements give theISL(2,C) D-function

D f 8 f
m j

@L,Y#5eip( fW8,m)•yDm8m
j

@Rwl~L, f !#U] f L

] f U
1/2

d3~ f 82 f L!. ~A13!

The infinitesimal generators ofISL(2,C) in this representation can be computed using~125!–
~127!. The results are

P̂m5pm~ fW ,m!, ~A14!

Ĵ j5 i e jkl
] f m

]pk

]

] f m p̂l1~ ĉ1
jk~p!1 i e j lmĉ2

lk~p! p̂m! ĵ k, ~A15!

K̂ j52
1

2

] f m

] p̂k @D f m,Ĥ#11 i ~ ĉ1
jk~p!2Hĉ2

jk~p!! ĵ k, ~A16!

where

ĉ1
jk~p!5 1

2Tr~L21~ p̂!s jL~ p̂!sk!, ~A17!

ĉ2
jk~p!5TrS L21~ p̂!

]

]pj L~ p̂!skD . ~A18!

These equations can be inverted to obtain explicit expressions~133! for D f̂ k in terms of the
generators

D f̂ k52
i

2Ĥ

]Ĥ

] f k
2

1

Ĥ
F ]pj

] f k
~K̂ j2 i ~ ĉ1

jm~p!2Ĥĉ2
jm~p!! ĵ m!G ~A19!

for k51, 2, or 3. This expression reduces23 to the Newton–Wigner position operator whenf i

5pi and thel -spin is the canonical spin. Thel -spin is given as a function of the infinitesima
generators by~A6!. The partial derivatives in this expression are computed with functions w
are replaced by the appropriate operators after the differentiation is performed.
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The D f 4 for the spins are the raising and lowering operators

ĵ l 6ª ĵ lx6 i ĵ ly . ~A20!

This shows explicitly the equivalence between

$Ĥ,P̂W ,ĴW ,K̂W % and $M̂ , ĵ 2,F̂W ,DF̂W %. ~A21!

The basis choices illustrated above, while restrictive, include all of the basis choices that l
Dirac’s forms of dynamics. The general construction yields a Dirac instant form of dynamicsf i

are taken as the three components of the linear momentum andLl(p) is a canonical~rotationless!
boost. Dirac’s point-form dynamics is obtained iff i is taken as the three components of the fo
velocity andLl(p) is the canonical boost. A front form dynamics is obtained iff i is taken as the
three generators of translations tangent to a light front andLl is taken as corresponding the ligh
front boost. Infinitely many other choices off i andLl(p) are possible.

APPENDIX B: ISL „2,C… CLEBSCH-GORDAN AND RACAH COEFFICIENTS

The Clebsch–Gordan coefficients for the representations in Appendix A can be com
from the tensor product representation using the same methods that were used to const
single irreducible representations. The first step is to decompose the tensor product repres
of the ‘‘rest state’’ into irreducible representation ofSU(2). This requires generalized Melos
rotations to ensure that all of the spins undergo the same rotations. The irreducible represe
are then boosted with the appropriatel -boost. This generally leads to Wigner rotations. T
general result is derived in Ref. 26. The resulting Clebsch–Gordan coefficients for this bas

^ fW1 ,m1 , fW2 ,m2u fW ,m;m, j ,l ,s&5d~ fW2 fW~ fW1 , fW2!!d~m2m~ fW1 , fW2 ,m1 ,m2!!U ]~ f ,k!

]~ f 1 , f 2!
U1/21

k

]k

]m

3D
m1m

18

j 1 @Rwl~p,k1!Rml~k1!#D
m2m

28

j 2 @Rwl~p,k2!Rml~k2!#

3Yl~ k̂1~ f 1 , f 2!!^ j 1 ,m1 , j 2 ,m2us,ms&^s,ms ,l ,m l u j ,m&,

whereLc(p) is the canonical boost andLl(p) is a l -boost,

ki5
1
2Tr~Ll

21~p!pi
m
•sm~Ll

21~p!!†! ~B1!

and

Rwl~p,ki !ªLl
21~pi !Ll~p!Ll~ki !, ~B2!

Rmlc~ki !ªLl
21~ki !Lc~ki !. ~B3!

These are the Wigner and Melosh rotations associated with thel -boost.
The Racah coefficient for this choice of basis can be computed in terms of four Cleb

Gordan coefficients. It is simplest to compute the invariant part of this coefficient by cho
p5(m,0,0,0) and integrating the result overSU(2). The Racah coefficients for the coupling
((12)(3))→((23)(1)) become
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^ fW8,m8;m8, j 8,~12,3!u fW ,m;m, j ,~23,1!&

5d j 8 jdm8md~ fW82 fW !d~m2m8!
1

2 j 11

3(
m f

F 8p2m12m23v2~q381q1!

k18k2q38q1v1~k18!v2~k18!v2~k2!v3~k2!v12~q3!v23~q1!G
3FU]~ f 128 , f 38!

]~ f 8,q38!
UU]~ f 128 ,k18!

]~ f 18 , f 28!
UU]~ f 23,k2!

]~ f 2 , f 3!
UU]~ f 23, f 1!

]~ f ,q1!
UG1/2

3^ j ,m f uL8,mL8 ,S8,mS8&^S8,mS8u j 128 ,m128 , j 38 ,m38&

3D
m

128 m12

j 12 @Rmcl~2q38!#Ym
L8

L8* ~ q̂38!^ j 128 ,m12u l 8,m l8 ,s8,ms8&^s8,ms8u j 18 ,m18 , j 28 ,m28&Ym
l8

l 8* ~ k̂18!

3D
m

38m3

j 3 @Rmcl~q38!Rwl~2q1 ,k3!Rmlc~k3!#D
m1m

18

j 1 @Rmcl~k18!Rwl
21~2q38 ,q18!Rml~q1!#

3D
m2m

28

j 2 @Rmcl~k28!Rwl
21~2q38 ,q28!Rwl~2q1 ,k2!Rmlc~k2!#Ym

l8
l* ~ k̂2!^ j 2m2 j 3m3usms&

3^ l ,m l ,s,msu j 23m23&YmL

L ~ q̂1!

3D
m23m238

j 23 @Rml~2q1!#^ j 23m23j 1m1uSmS&^L,mL ,S,mSu j m f&,

where m is the three-body invariant mass,mi j are the invariant masses of thei j and jk sub-
systems,w(k) are energies, andqi are the operators

q̂iªLl
21~ p̂! p̂i . ~B4!

APPENDIX C: PROOF OF THEOREM 1

To prove Theorem 1 first note that condition~82! implies

lim
t→6`

iÛ@ I ,2T#~F̂A2Û†@L,Y#F̂AÛA@L,Y# !ÛA@ I ,T#uc&i50, ~C1!

which is equivalent to

V6~Ĥ,F̂A ,ĤA!5V6~Ĥ,Û†@L,Y#F̂AÛA@L,Y#,ĤA!. ~C2!

Since the Hamiltonian commutes with the linear and angular momentum operators, it follow
if ( L,A) is a rotation or translation, this becomes

V6~Ĥ,F̂A ,ĤA!5Û†@R,0#V6~Ĥ,F̂A ,ĤA!ÛA@R,0# ~C3!

and

V6~Ĥ,F̂A ,ĤA!5Û†@ I ,Y#V6~Ĥ,F̂A ,ĤA!ÛA@ I ,Y#. ~C4!

For the case of a rotationless Lorentz transformation condition~C2! implies

V6~Ĥ,F̂A ,ĤA!5V6~Ĥ,Û†@L,0#F̂AÛA@L,0#,ĤA!. ~C5!

The commutation relations imply
                                                                                                                



6059J. Math. Phys., Vol. 43, No. 12, December 2002 Cluster properties in quantum mechanics

                    
Û†@L,0#ĤÛ@L,0#5Lm
0 P̂m, ~C6!

ÛA
† @L,0#ĤAÛA@L,0#5Lm

0 P̂A
m . ~C7!

It follows that

Û†@L,0#V6~Ĥ,F̂A ,ĤA!ÛA@L,0#5Û†@L,0#V6~Ĥ,Û@L,0#F̂AÛA
† @L,0#,ĤA!ÛA@L,0#

5V6~Lm
0 P̂m,F̂,Lm

0 P̂A
m!, ~C8!

which can be expressed as

V6~Lm
0 P̂m,F̂A ,Lm

0 P̂A
m!5 lim

t→6`

eiĤL0
0t1 iL i

0P̂i tF̂Ae2 iĤAL0
0t1 iL i

0P̂Ai t. ~C9!

SinceL0
0.0 it is possible to redefinet→t85L0

0t so the limitt→6` is equivalent to the limit the
t8→6`. This gives

lim
t8→6`

eiĤ t8Û@ I ,At8#F̂AÛA@ I ,At8#e2 iĤAt8, ~C10!

where

A5
L i

0

L0
0 s i . ~C11!

Condition ~83! then gives

lim
t8→6`

eiĤ t8Û@ I ,At#F̂AÛA@ I ,At8#e2 iĤAt85V6~Ĥ,F̂,ĤA!. ~C12!

Combining~C8! and ~C12! gives

V6~Ĥ,F̂A ,ĤA!5Û†@L,0#V6~Ĥ,F̂A ,ĤA!ÛA@L,0#. ~C13!

To complete the proof of Theorem 1 note that~C3! and ~C13! imply

Û@L,Y#V6~Ĥ,F̂A ,ĤA!5V6~Ĥ,F̂A ,ĤA!ÛA@L,Y#, ~C14!

which is the intertwining relation of Corollary 1. Corollary 2 follows by identifying~C9! and
~C12!.

It follows that

ÛA
† @L,Y#ŜÛA@L,Y#5ÛA

† @L,Y#V1
† ~Ĥ,F̂A ,ĤA!V2~Ĥ,F̂A ,ĤA!ÛA@L,Y#

5V1
† ~Ĥ,F̂A ,ĤA!Û†@L,Y#Û@L,Y#V2~Ĥ,F̂A ,ĤA!5Ŝ. ~C15!

This completes the proof of Theorem 1.
To prove Corollary 3 note that Eq.~86! is equivalent to

s2 lim
s→6`

@e2 iM̂ sV6~Ĥ,F̂,ĤA!2F̂e2 iM̂ As#50. ~C16!

The intertwining properties that follow from Theorem 1 give the strong limit:
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s2 lim
s→6`

@~V6~Ĥ,F̂,ĤA!2F̂!#e2 iM̂ As50. ~C17!

The proof that this holds on the dense set of asymptotic states with bounded momentum f
the proof of theorem IX.23 of Ref. 36~see also Refs. 42 and 43!. The extension to the strong limi
follows the argument in Ref. 8.

APPENDIX D: PROOF OF THEOREM 4

To prove Theorem 4 letĈai
be the scattering equivalence that mapsÛai

@L,Y# to the repre-

sentationŨai
@L,Y# with kinematicF̂aj

i , DF̂aj

i , ĵ aj
. Define

Ĉaª^ i 51
na Ĉai

~D1!

and

Ũa@L,Y#ªĈaÛa@L,Y#Ĉa
†5 ^ i 51

na ~Ĉai
Ûai

@L,Y#Ĉai

† !. ~D2!

By assumption, the representationsÛa@L,A# and Ũa@L,A# have the same scattering matr
elements, which are products of the single cluster scattering matrix elements. In addition, b

~ Î 2Ĉa!Û0@ I ,T#5 ^ i 51
na ~ I ai

2Ĉai
!Û0ai

@ I ,T#, ~D3!

it follows that

lim
t→6`

~ Î 2Ĉa!Û0@ I ,T#50, ~D4!

which shows thatĈa is a scattering equivalence on theN-body Hilbert space.
The representationŨa@L,Y# does not have kinematicF̂ i , DF̂ i , or ĵ , even though each facto

of the tensor product has this property. The advantage of the representationŨa@L,Y# is that it is
scattering equivalent to a representationŪa@L,Y# that has a kinematicF̂ i , DF̂ i and ĵ .

To show this consider the structure of the single clusterH̃ai
andM̃ai

. The HamiltonianH̃a of

the representationŨa@L,Y# is

H̃aª(
i 51

na

H̃ai
^ Î i , ~D5!

whereÎ i is the identity on the remaining factors in the tensor product. The mass operatorM̃a is a

function of the commuting operatorsM̃ai
^ Î i and PW̃ ai

^ Î i . Corollary 3 of Theorem 1 give mild

conditions on the interactions forH̃a andM̃a to lead to the sameS-matrix.
The matrix elements ofM̃ai

^ Î i in the tensor product ofna free particle irreducible represen
tations have the form

^ ^ j~ f j ,dj ;mj , j j !uM̃ai
^ Î i u ^ k~ f k8 ,dk8 ;mk8 , j k8!&

5d@ f i , f i8#d j i j i8
^di ,mi iM̃ai

j i idi8 ,mi8&)
kÞ i

d@ f k , f k8#d@dk ,dk8#d j kj
k8
d~mk2mk8!. ~D6!

An irreducible free particle basis for theN-body system can be constructed by successive
of the ISL(2,C) Clebsch–Gordan coefficients to decompose the basisu ^ j ( f j ,dj ;mj , j j )& into a
                                                                                                                



s that

ssively
g

ingle

to the

6061J. Math. Phys., Vol. 43, No. 12, December 2002 Cluster properties in quantum mechanics

                    
direct integral of irreducible representations. What is relevant for the proof of this theorem i
the variablesmi , di , and j i that appear in the kernel^di ,mi iM̃ai

j i idi8 ,mi8& of M̃aj
are degeneracy

parameters in this representation.
In order to be precise assume that the irreducible free particle basis is obtained by succe

coupling clusters in the order (̄ (((12)3)4)̄ na). In addition, at each stage in the couplin
defineq̂i as the solution to

M̂0(¯(12))3)̄ i 11)5Aq̂i
21M̂0(i 11)

2 1Aq̂i
21M̂0(¯(12))3)̄ i )

2 . ~D7!

The operatorsq̂i are alternate labels for the kinematic invariant massesM̂0(¯(12))3)̄ i ) .
Define the single cluster mass operatorsM̄ai

in this irreducible representation,

^ f ,d;m, j uM̄ai
u f 8,d8;m8, j 8&5d@ f , f 8#d@ j , j 8#d j i j i8

^di ,mi iM̃ai

j i idi8 ,mi8&

3JJ8)
kÞ i

d j kj
k8
d~mk2mk8!)

l 51

na

~ql2ql8!d r l r l8
, ~D8!

where theql ’s are considered functions of the kinematic invariant masses, ther l are degeneracy
parameters that result when particlel is coupled to the irreducible (1̄ l 21) system, andJ andJ8
are Jacobians

J5U ]~q1¯qna21!

]~m(12)¯m0(¯((12)¯(na)))!
U1/2

. ~D9!

The three important observations about this definition are the following.

~i! The nontrivial part of this kernel is identical to the nontrivial part of the kernel ofM̃ai
in the

tensor product representation~D6!.
~ii ! EachM̄aj

commutes withF̂0
i , DF̂0

i , ĵ 0 .

~iii ! @M̄ai
,M̄aj

#50.

The relations~D7! can be inverted to express the free mass as a function of the free s
cluster mass operators and theqi ’s:

M̂05M ~M̂01,...,M̂0na
,q̂1 ,...,q̂na21!. ~D10!

The commutation relations allow the definition

M̄aªM ~M̃a1
,...,M̃ana

,q̂1 ,...,q̂na21!, ~D11!

where theq̂i ’s in ~D11! are identical to the non-interactingq̂i ’s in ~D10!. By constructionM̄a

commutes withF̂0
i , DF̂0

i , ĵ 0 . Simultaneous eigenstates ofM̄a , F̂0
i , and j 0 transform as massM̄a

spin j 0 irreducible representations ofISL(2,). This defines the representationŪa@L,Y#.
In order to construct a scattering theory we need to define a suitable injection operator

asymptotic Hilbert space forM̂a . The channel injection operator for the representationŨa@L,Y#
is the tensor product of irreducible eigenstates

F̃a5u f 1 ,a1 ,...,f na
,a1&. ~D12!
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The corresponding channel injection operator for the representationŪa@L,A# is defined as the
simultaneous eigenstates ofM̄a , ĵ 0

2, F̂0
j , q̂i0 , r̂ i , andM̃ai

corresponding the same bound states

the M̃ai
:

F̄a5u f , j 0 ,q1 ,...,qna21 ,r 1 ,...,r na21 ,a1 ...ana
&. ~D13!

These differ by the delta functions that multiply the cluster eigenfunctions.
With this definition it follows that

V̄a6ªV6~M̄a ,F̄Aa ,HAa! ~D14!

exist and are complete. The scattering operator

S̄a5V̄a1
† V̄a25d j 0 j

08
d@ f , f 8# )

i 51

na21

d~qi2qi8!d@r i ,r i8#)
i

d j i j i8
Ŝai

~D15!

is identical toS̃a if the Clebsch–Gordan coefficients are used to replace the irreducible spe
variables by the single clusterf i , j i ’s. The equivalence follows because theS-matrix elements are
determined by the single cluster mass operators, which have identical reduced kernels in
sentations~D6! and ~D8!.

This establishes that the representationsŨa@L,Y# and Ūa@L,Y# give the same scatterin
matrix elements. By Theorem 3 they are scattering equivalent. LetD̂a be the scattering equiva
lence that relates these two representations:

Ūa@L,Y#5D̂aŨa@L,Y#D̂a
† . ~D16!

It follows from ~D2! and ~D16! that

Ūa@L,Y#5B̂aÛa@L,Y#B̂a
† , ~D17!

where

B̂aªD̂aĈa . ~D18!

The operatorB̂a is a scattering equivalence since it is a product of scattering equivalences
completes the proof of Theorem 4.
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We discuss the quantum HamiltonianHG= describing ad-sphere interaction intro-
duced in @J. Math. Phys30, 2275 ~1989!# and formally given byHG= 5HD

1G= d(uxu2R), whereHD is the Dirac Hamiltonian andG= is a real 434 matrix
defined byG= 5(0

A
B
0). We obtain a series of new results for this model, in particular

the resolvent equation, the spectral properties, the nonrelativistic limit and the
various quantities related to the scattering theory. These results are generalized to
the case of an asymmetricd-sphere interaction and ad-sphere plus Coulomb inter-
action, respectively. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1518785#

I. INTRODUCTION

In the last two decades, a lot of research has been carried out on point and sphere inte
in quantum mechanics, both from the mathematical point of view and for their applicatio
physics.1–15

For a long time, this research focused on nonrelativistic interactions. The first paper pro
a rigorous mathematical analysis of relativisticd-sphere interactions was published in 1989
Dittrich et al.7 Using the theory of self-adjoint extensions of symmetric closed operators in Hi
spaces, Ref. 7 defines the quantum Hamiltonian corresponding to the formal expression:

HG= 5HD1G= d~ uxu2R!, xPR3, RPR, ~1!

whereG= is a real 434 matrix of the formG= 5(0
A

B
0), HD is the Dirac Hamiltonian andR is the

radius of a sphere inR3 centered at the origin. Ref. 7 also provides a detailed discussion o
spectral properties ofHG= .

In Ref. 12, the above results were extended to the case of ad sphere plus a Coulomb
interaction. In Ref. 12, the authors also provide a numerical analysis of the point spectru
compare the definition ofHG= used in Refs. 7 and 12 with an alternative definition proposed
Dominguez-Adame.8

More recently, Hounkonnou and Avossevou published a series of papers in which they
to provide rigorous mathematical definitions and to perform a systematic study of thed, d8 and
finitely manyd-sphere interactions in the particular cases whenAÞ0, B50 andA50, BÞ0.16–19

Unfortunately, a comparison with Refs. 7 and 12 shows that the boundary conditions used in
17 and 19 do not correspond to any of the above-mentionedd-sphere interactions. Actually thes
boundary conditions do not define any self-adjoint operator. Therefore, the conditions requir

a!On leave of absence from University of Burundi, Faculty of Science, BP 2700 Bujumbura, Burundi. Electronic
j.shabani@unesco.org

b!Electronic mail: vyabandi@hotmail.com
60640022-2488/2002/43(12)/6064/21/$19.00 © 2002 American Institute of Physics
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the application of the Krein formula and the Weyl theorem for the computation of the reso
equation and the analysis of spectral properties ofHG= are not fulfilled which means that all th
results presented in Refs. 17–19 are not correct.

The aim of this paper is to provide new results on the relativisticd-sphere interaction in the
general caseAÞ0 andBÞ0.

The paper covers several areas which were not considered in Refs. 7 and 12 and th
provides new insights in the understanding of relativisticd-sphere interactions. As an example, t
nonrelativistic limit leads to a new two-parameters family of nonrelativisticd-sphere interactions
As in the case of point and nonrelativisticd-sphere interactions, these results were obtained
applying rigorous concepts and techniques of functional analysis and differential operators

The applications of point and sphere interactions in physics are greatly facilitated by th
these interactions are exactly solvable. Point and nonrelativisticd-sphere interactions are exten
sively used since the 1930s in order to develop mathematical models in nuclear, solid sta
molecular physics@~see Refs. 2 and 3! and references therein#. More recently, nonrelativistic
d-sphere interactions were used to define a mathematical model of heavy quarkonia m
decays.13 Since relativisticd-sphere interactions are also exactly solvable, it is anticipated th
better understanding of these interactions will stimulate research on their applications in v
areas of physics.

In Sec. II, we define the quantum Hamiltonian describing the interaction, compute the
vent equation, derive the spectral properties and obtain the nonrelativistic limit of the Hamilto
We also discuss the stationary scattering theory for the pair (hjl ,Gjl

;hD) wherehjl ,Gjl
andhD are

defined by Eqs.~38! and~42!, respectively. In Sec. III, we discuss the generalization ofHG= to the
so-called asymmetricd-sphere interactions while in Sec. IV we provide a generalization of
results obtained in Sec. II to the case of ad-sphere plus a Coulomb interaction.

The special casesAÞ0, B50 andA50, BÞ0 yield the relativisticd-sphere interactions o
the first and second type, respectively. Indeed, as indicated in Sec. II D, the nonrelativistic
of the Hamiltonians corresponding to these interactions converge in the norm resolvent top
to the Hamiltonians describing the nonrelativisticd-sphere interactions of the first and seco
type, respectively.2,4,5

In a series of forthcoming papers,20 we extend the results presented in this publication to
case of ad8 and finitely many sphere interactions and discuss the approximation ofHG= by local
scaled short range and momentum cutoff Hamiltonians.

II. THE d-SPHERE INTERACTION

A. Definition of the Hamiltonian

In this section, using the theory of self-adjoint extensions of symmetric closed operat
Hilbert spaces, we provide the mathematical definition of a quantum Hamiltonian describ
relativistic d-sphere interaction formally given by

HG= 5HD1G= d~ uxu2R!; xPR3, RPR, ~2!

whereG= is a real 434 matrix of the form

G= 5S A 0

0 BD . ~3!

1. The radial operators

Consider in the state Hilbert spaceH5L2(R3) ^ C4 the Dirac HamiltonianHD defined by

HD52 ia= ¹1b=
c2

2
,

~4!
D~HD!5H1,2~R3! ^ C4,
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where we have used the following definitions and notations:

~i! c is the velocity of the light,
~ii ! Hm,n(V) is the Sobolev space of indices (m,n),
~iii ! a= andb= are 434 Dirac matrices given by

a=5S0 s

s 0D, b=5S 1 0

0 21D . ~5!

Heres are Pauli‘s spin matrices defined by

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D . ~6!

Consider inL2(R3) ^ C4 the symmetric closed operatorH̄D defined by

H̄D5HD ,

D~H̄D!5$cPH1,2~R3! ^ C4/c~SR!50%, ~7!

whereSR5$xPR3:uxu5R% is the sphere of radiusR in R3 centered at the origin.
As indicated in Ref. 7, the operatorH̄D admits a large number of self-adjoint extensions.

this paper, we consider those extensions ofH̄D which correspond toHG= .
For this purpose, we restrict ourselves to those extensions ofH̄D which are rotationally and

space-reflection symmetric. With these assumptions, one may decompose the spaceH in the
following way:

H5 %
j 5 1/2

`

%
l 5 j 2 1/2

j 1 1/2

%
m52 j

j

Hj l m , ~8!

where we have used the following definitions and notations:

~i! Hj l m5 HcPHUc~r ,n!5S f ~r !V j l m~n!

g~r !V j l 8m(n) D ; f ,gPL2~~0,̀ !,r 2dr !J , ~9!

~ii ! V j l m are spherical spinors defined by21

V j l m~u,w!5SA j 1m

2l 11
Yl ,m2 1/2(u,w)

A j 2m

2l 11
Yl ,m1 1/2(u,w)

D for l 5 j 2
1

2
, ~10!

V j l m~u,w!5S 2Aj 2m11

2l 11
Yl ,m2 1/2~u,w!

Aj 1m11

2l 11
Yl ,m1 1/2~u,w!

D for l 5 j 1
1

2
, ~11!

~iii ! l 85 j 7 1
2 for l 5 j 6 1

2 .

Next we introduce the isomorphismsU jl defined by
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U jl :L2~~0,̀ !;r 2dr ! ^ C2→H̃[L2~~0,̀ !;dr ! ^ C2, ~12!

~U jl c!~r !5S r f ~r !

~21! j 2 l 2 1/2rg(r ) D ~13!

which enable us to representH in the form

H5 %
j 5 1/2

`

%
l 5 j 21/2

j 1 1/2

%
m52 j

j

@U jl
21H̃# ^ @V j l m~u,w!#, ~14!

where@V j l m(n)# stands for the vector space generated by the spherical spinors.
With respect to the decomposition~14!, H̄D reads

H̄D5 %
j 5 1/2

`

%
l 5 j 2 1/2

j 1 1/2

@U jl
21hjl U jl # ^ 1. ~15!

The operatorshjl in L2((0,̀ )) ^ C2 are given by

hjl 5S c2

2
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2

D [t, ~16!

k j l 5~21! j 2 l 1 1/2~ j 1 1
2!, ~17!

D~hjl !5$cPL2~~0,̀ !! ^ C2ucPACloc~~0,̀ !!; c~R6 !50;
~18!

tcPL2~~0,̀ !! ^ C2%,

where ACloc(V) denotes the set of locally absolutely continuous functions onV and

c~x6 !5 lim
e→01

c~x6e!.

The adjointhjl* of hjl reads

hjl* 5t,

D~hjl* !5$cPL2~~0,̀ !! ^ C2ucPACloc~~0,̀ !\$R%!, ~19!

tcPL2~~0,̀ !! ^ C2%.

2. The self-adjoint extensions of h jl

Consider the equation

~hjl* 2z!c50, cPD~hjl* !, zPC2H S 2`,2
c2

2 GøFc2

2
,` D J ~20!

which may be written in the form
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c191Fk~z!22
k j l ~k j l 11!

r 2 Gc150,

~21!

c291Fk~z!22
k j l ~k j l 21!

r 2 Gc250,

where

k~z!5
1

c
Az22

c4

4
[k. ~22!

A straightforward computation shows that Eq.~20! has two linearly independent solutions

c j l ,z
(1) ~r !5H S F jl ~z,r !

F̃ j l ~z,r !
D , r ,R,

S 0
0D , r .R,

~23!

c j l ,z
(2) ~r !5H S 0

0D , r ,R,

S Gjl ~z,r !

G̃jl ~z,r !
D , r ,R,

~24!

where

F jl ~z,r !5S k~z!

2 D 2k j l 2 1/2

GS k j l 1
3

2D r 1/2Jk j l 1 1/2~k~z!r !, ~25!

F̃ j l ~z,r !5
1

c S 1

2D 2k j l 21/2

k~z!2k j l 11/2GS k j l 1
3

2D r 1/2Jk j l 2 1/2~k~z!r !, ~26!

Gjl ~z,r !5 i
p

2 S k~z!

2 D k j l 11/2

GS k j l 1
3

2D 21

r 1/2Hk j l 1 1/2
(1) ~k~z!r !, ~27!

G̃jl ~z,r !5 i
p

2c S 1

2D k j l 11/2

k~z!k j l 1 3/2GS k j l 1
3

2D 21

r 1/2Hk j l 2 1/2
(1) ~k~z!r !, Im k~z!.0. ~28!

Jn(.) is the Bessel function andHn
(1)(.) the Hankel function of the first type of ordern.

The solutions~23! and ~24! have been normalized in such a way that

detFGjl ~z,r ! F jl ~z,r !

G̃jl ~z,r ! F̃ j l ~z,r !
G5

1

c
. ~29!

Therefore,hjl has deficiency indices~2,2! and consequently, all self-adjoint~sa! extensions ofhjl

are given by a four-parameter family of self-adjoint operators.22 Since the matrixG in Eq. ~34!
depends on two parameters, it follows that the sa extensionhjl ,G of hjl corresponding to the
interactionV(r )5Gd(r 2R) is a special two-parameters family of sa extensions ofhjl .

The relation hjl ,G,hjl* implies that the domainD(hjl ,G) contains those functionsc
PD(hjl* ) which satisfy suitable boundary conditions atr 5R.

Theorem 2.1„Ref. 7…: Any self-adjoint extensionĥ j l of hjl reads
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ĥ j l 5S c2

2
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2

D ,

~30!
D~ ĥ j l !5$cPD~hjl* !/c satisfies cond1 or cond2%,

cond1 :c~R2 !5eiuÂc~R1!, uP@0,p!, ~31!

and Â is a 232 matrix with detÂ51;

cond2 :S c1 c2

0 0 Dc~R2 !1S 0 0

d1 d2
Dc~R1 !50, ~32!

wherec1 , c2 , d1 , andd2 are real and both matrices are nonzero. Conversely, any operator o
form is self-adjoint extension ofhjl .

Theorem 2.2„Ref. 7…: The general form of boundary conditions~31! and ~32! reads

Cc~R2 !1Dc~R1 !50, ~33!

whereC andD are 232 matrices such that the 234 matrix (C,D) has rank 2.
Let us now construct the self-adjoint extension corresponding to the radial Dirac operato

the potential

V~r !5Gjl d~r 2R!,

Gjl 5S Ajl 0

0 Bjl
D , Ajl ,Bjl PR.

Suppose thatc satisfies the equation

@t1Gjl d~r 2R!#c5zc, ~34!

t5S c2

2
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2

D ,

~35!

Gjl 5S Ajl 0

0 Bjl
D , Ajl , Bjl PR,

and the limitsf (R6) exist. Integrating Eq.~34! over (R2e,R1e), and taking the limite→0 we
get7

S 12t0

Gjl

2c Dc~R1 !2S 11t0

Gjl

2c Dc~R2 !50, ~36!

where

t05S 0 21

1 0 D . ~37!
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We will accept only those matricesG for which Eq.~36! is compatible with Eqs.~31! and~32!. As
indicated in Ref. 7 the boundary condition~36! defines a self-adjoint extension ofhjl iff G
5G1.

Consider inL2((0,̀ )) ^ C2 the operatorhjl ,Gjl
defined by

hjl ,Gjl
5S c2

2
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2

D [t,

D~hjl ,Gjl
!5H cPD~hjl* !US 12t0

Gjl

2c Dc~R1 !2S 11t0

Gjl

2c Dc~R2 !50J ,

~38!

l P@ j 2 1
2 , j 1 1

2#, j P@ 1
2 ,`!.

The boundary condition~38! may be written in the form

Cc~R2 !1Dc~R1 !50 ~39!

with

C52S 1 2
Bjl

2c

Ajl

2c
1
D , D5S 1

Bjl

2c

2
Ajl

2c
1
D . ~40!

Therefore, according to theorem 2.2, the operatorhjl ,Gjl
is a self-adjoint extension ofhjl .

By construction, the operatorhjl ,Gjl
provides the mathematical definition of the formal e

pression

hGjl
5hD1Gjl d~r 2R!, ~41!

wherehD is the radial Dirac Hamiltonian defined by

hD5S c2

2
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2

D ,

D~hD!5$cPD~hjl* !uc~R1 !5c~R2 !% l P@ j 2 1
2 , j 1 1

2#, j P@ 1
2 ,`!. ~42!

The caseGjl 50 in Eq. ~38! yields the radial Dirac Hamiltonianhjl ,0[hD . The caseAjl Þ0,
Bjl 50 in Eq. ~38! gives thed-sphere interaction of the first type defined by23

hjl ,Ajl
5t,

~43!

D~hjl ,Ajl
!5H c5S f

gDPD~hjl* !U f ~R2 !5 f ~R1 ![ f ~R!, g~R1 !2g~R2 !5
Ajl

c
f ~R!J .

The caseAjl 50, Bjl Þ0 leads to ad-sphere interaction of the second type defined by23
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hjl ,Bjl
5t,

~44!

D~hjl ,Bjl
!5H c5S f

gDPD~hjl* !Ug~R2 !5g~R1 ![g~R!, f ~R1 !2 f ~R2 !52
Bjl

c
g~R!J .

Let G= 5$Gjl %; j 2 1
2< j 1 1

2;
1
2< j ,`. The decomposition~15!, implies that the operatorHG= in

L2(R3) ^ C4 defined by

HG= 5 %
j 5 1/2

`

%
l 5 j 2 1/2

j 1 1/2

U jl
21hjl ,Gjl

U jl ^ I ~45!

provides the mathematical formulation of the formal expression~2!. Actually, HG= in Eq. ~45!
provides a slight generalization of Eq.~2! sinceG= may depend onj and l .

The caseG= 50, i.e.,Gjl 50 for all j andl yields the Dirac HamiltonianHD defined by Eq.~4!.

B. The resolvent equation

Theorem 2.3:The resolvent ofhjl ,Gjl
is given by

~hjl ,Gjl
2z!215~hD2z!211q j l ~z,Ajl ,Bjl !H ~M̂ jl ,z

(2) ~ .!,.!FAjl M̂ j l ,z
(2) ~ .!1

Ajl Bjl

2c
M̃ jl ,z

(1) ~ .!G
1~M̃ jl ,z

(2) ~ .!,.!FBjl M̃ j l ,z
(2) ~ .!2

Ajl Bjl

2c
M̂ jl ,z

(1) ~ .!G J ,

zPr~hjl ,Gjl
!, Im k~z!.0, l PF j 2

1

2
, j 1

1

2G , j PF1

2
,` D ~46!

@r(.) is the resolvent set#,
where (hD2z)21, Im k(z).0 is the radial Dirac resolvent with kernel

G( j l )~z,r ,r 8!5S G11
( j l )~z,r ,r 8! G12

( j l )~z,r ,r 8!

G21
( j l )~z,r ,r 8! G22

( j l )~z,r ,r 8!
D , ~47!

where

G11
( j l )~z,r ,r 8!5H Gjl ~z,r 8!F jl ~z,r !, r ,r 8,

F jl ~z,r 8!Gjl ~z,r !, r .r 8,
~48!

G12
( j l )~z,r ,r 8!5H G̃jl ~z,r 8!F jl ~z,r !, r ,r 8

F̃ j l ~z,r 8!Gjl ~z,r !, r .r 8,
~49!

G21
( j l )~z,r ,r 8!5H Gjl ~z,r 8!F̃ j l ~z,r !, r ,r 8

F jl ~z,r 8!G̃jl ~z,r !, r .r 8,
~50!

G22
( j l )~z,r ,r 8!5H G̃jl ~z,r 8!F̃ j l ~z,r !, r ,r 8

F̃ j l ~z,r 8!G̃jl ~z,r !, r .r 8,
~51!

and
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q j l ~z,Ajl ,Bjl !52F12
Ajl Bjl

4c2 1Bjl F̃ j l ~z,R!G̃jl ~z,R!1Ajl F jl ~z,R!Gjl ~z,R!G21

, ~52!

M̂ jl ,z
(m)~r !5H G( j l )~z,r ,R!S 1

0D , r ,R,

~21!mG( j l )~z,r ,R!S 1
0D , r .R,m51,2,

~53!

M̃ jl ,z
(m)~r !5H G( j l )~z,r ,R!S 0

1D , r ,R,

~21!mG( j l )~z,r ,R!S 0
1D , r .R,m51,2

~54!

with F jl (z,r ), F̃ j l (z,r ), Gjl (z,r ), G̃jl (z,r ), andk(z) defined by~25!–~28! and~22!, respectively.
Proof: According to Krein’s resolvent formula,22 we have

~hjl ,Gjl
2z!215~hD2z!211 (

n,m51

2

lmn~z!~c j l ,z
(n) ~ .!,.!c j l ,z

(m)~ .!, zPr~hjl ,Gjl
!, Im k~z!.0,

~55!

wherec j l ,z
(m)(r ), m51,2 are given by~23! and ~24!, respectively.

Let f5(f2

f1)PL2((0,̀ )) ^ C2 and define the functionx j l (z,r ) by

x j l ~z,r !5~~hjl ,Gjl
2z!21f!~r !. ~56!

Sincex j l 5(x j l ,2

x j l ,1)PD(hjl ,Gjl
), it follows thatx j l satisfies the boundary conditions in~38!.

The implementation of these boundary conditions provides the constantslmn(z). Inserting the
lmn @z into ~55! we obtain Eq.~46!#.

Remarks:
~i! The resolvent ofHG= may be obtained from Eq.~46! and the decomposition~45!.
~ii ! In the casesAjl Þ0, Bjl 50 andAjl 50, Bjl Þ0, the resolvent Eq.~46! simplifies, respec-

tively, to

~hjl ,Ajl
2z!215~hD2z!211Ajl q j l ~z,Ajl ,0!~M̂ jl ,z

(2) ~ .!,.!M̂ jl ,z
(2) ~ .!,

zPr~hjl ,Ajl
!, Im k~z!.0, l P@ ; j 2 1

2 , j 1 1
2#, j P@ 1

2 ,`# ~57!

and

~hjl ,Bjl
2z!215~hD2z!211Bjl q j l ~z,0,Bjl !~M̃ jl ,z

(2) ~ .!,.!M̃ jl ,z
(2) ~ .!,

zPr~hjl ,Bjl
!, Im k~z!.0, l P@ j 2 1

2 , j 1 1
2#, j P@ 1

2 ,`#. ~58!

C. Spectral properties

Theorem 2.4: For Ajl ,Bjl P(2`,`), l P@ j 2 1
2, j 1

1
2#, j P@ 1

2,`), the essential spectrum o
hjl ,Gjl

is purely absolutely continuous and coincides with (2`,2 c2/2#ø@c2/2 ,`). Its singularly
continuous and residual spectra are empty. Furthermore,hjl ,Gjl

has at most two eigenvalues~with
account of multiplicity in@2 c2/2 , c2/2#.
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Proof:
See, e.g., Ref. 7, Proposition 6.1 and theorem 6.2.
The resonances ofhjl ,Gjl

are defined as poles of the resolvent equation~46! in the unphysical
sheet Imk(z),0.

D. The nonrelativistic limit

Following the strategy of Gesztesyet al.1,24 in the case of point interactions, one can discu
the nonrelativistic limit ofhjl ,Gjl

asc→`.
Theorem 2.5:For spin-12 particules, the operatorhjl ,Gjl

2 (c2/2) converges in norm resolven

sense to the Schro¨dinger operatorhl ,â l
times the projector ontoH̃15L2((0,̀ )):

n. lim
c→`

S hjl ,Gjl
2

c2

2
2zD 21

5~hl ,â l
2z!21

^ S 1 0

0 0D , zPC\R, ~59!

wherehl ,â l
is defined by

hl ,â l
52

d2

dr2 1
l ~ l 11!

r 2 ,

D~hl ,â l
!5$ f PL2~~0,̀ !!u f , f 8PACloc~~0,̀ !\$R%!, f ~01 !50 if l 50,

f ~R1 !2 f ~R2 !5
b l

2
@ f 8~R1 !1 f 8~R2 !#,

f 8~R1 !2 f 8~R2 !5
a l

2
@ f ~R1 !1 f ~R2 !#, 2 f 91 l ~ l 11!r 22f PL2~~0,̀ !!%,

~60!
â5$b l ,a l%;2`,b l ,a l<`; l PN0 .

One can prove that ifa lb l2450,a l ,b lPR, then the boundary conditions in~60! define a self-
adjoint extension of the radial Schro¨dinger operatorḣl defined by

ḣl52
d2

dr2 1
l ~ l 11!

r 2 ,

D~ ḣl !5$ f PL2~~0,̀ !!u f , f 8PACloc~~0,̀ !!; f ~01 !50 if l 50; f ~R6 !5 f 8~R6 !502 f 91 l ~ l

11!r 22f PL2~~0,̀ !!% l PN0 . ~61!

Proof:
One may follow step by step1,24 where a similar result was obtained in the case of the p

interactions.
To the best of our knowledge, the Hamiltonianhl ,â l

defines a new exactly solvable model
nonrelativisticd-sphere interactions. The casesa lÞ0, b l50 anda l50, b lÞ0 in Eq.~60! lead to
nonrelativisticd-sphere interactions of the first and second type, respectively. These intera
have been extensively discussed in Refs. 2, 4, 5, and 15.

E. Scattering theory for the pair „h jl ,Gjl
; h D…

Let us define fork(z).0, the function
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S FGjl ,1
~z,r !

FGjl ,2
(z,r ) D 5S F jl ~z,r !

F̃ j l ~z,r !
D 1q j l ~z,Ajl ,Bjl !H G( j l )(z,r ,R)FAjl S F jl (z,R)

0 D1Bjl S 0

F̃ j l (z,R) D G
1

Ajl Bjl

2c
Ĝ( j l )~z,r ,R!F S 0

F jl ~z,R! D2S F̃ j l ~z,R!

0 D G J , ~62!

where

Ĝ( j l )~z,r ,R!5H G( j l )~z,r ,R! r ,R,

2G( j l )~z,r ,R!, r .R,
~63!

G( j l )(z,r ,R) is the Green matrix of the radial Dirac Hamiltonian defined by the Eq.~47! and the
functionsF jl (z,r ), F̃ j l (z,r ), andq j l (z,Ajl ,Bjl ) are defined by~25!, ~26!, and~52!, respectively.

A straightforward calculation shows that (
FGjl ,2

(z,r )

FGjl ,1
(z,r )

) are the scattering wave functions ofhjl ,Gjl
. In

the particular casesAjl Þ0 andBjl 50 andAjl 50, Bjl Þ0 Eq. ~62! simplies, respectively, to

S FAjl ,1
~z,r !

FAjl ,2
(z,r ) D 5S F jl ~z,r !

F̃ j l ~z,r !
D 1Ajl q j l ~z,Ajl ,0!G( j l )~z,r ,R!S F jl ~z,R!

0 D ~64!

and

S FBjl ,1
~z,r !

FBjl ,2
(z,r ) D 5S F jl ~z,r !

F̃ j l ~z,r !
D 1Bjl q j l ~z,0,Bjl !G

( j l )~z,r ,R!S 0

F̃ j l ~z,R!
D . ~65!

Equations~64! and ~65! define the scattering wave functions corresponding to the Hamilton
hjl ,Ajl

andhjl ,Bjl
describing relativisticd-sphere interactions of the first and second type, resp

tively.

The asymptotic behavior of (
FGjl ,2

(z,r )

FGjl ,1
(z,r )

) as r→` yields25,26

S FGjl ,1
~z,r !

FGjl ,2
(z,r ) D ——→

r→`

k~z!.0 S Âj l ~z!sinFkr2k j l

p

2 G
B̂j l ~z!sinFkr2~k j l 21!

p

2 G D 1q j l ~z,Ajl ,Bjl !$Ajl F jl
2 ~z,R!

1Bjl F̃ j l
2 ~z,R!%S Ĉj l ~z!exp2 i Fkr2k j l

p

2 G
Ôjl ~z!exp2 i Fkr2~k j l 21!

p

2 G D
5S @A1

2~z!1A2
2~z!#1/2sinFkr2k j l

p

2
1dGjl

~z!G10~1!

@A3
2~z!1A4

2~z!#1/2sinFkr2~k j l 21!
p

2
1dGjl

~z!G10~1!
D , ~66!

whereÂj l (z), Ĉj l (z), B̂j l (z), Ôjl (z) are given by

Âj l ~z!522k j l k~z!2k j l 21G~2k j l 12!G~k j l 11!21, ~67!

Ĉj l ~z!52k j l k~z!k j l G~2k j l 12!21G~k j l 11!, ~68!
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B̂j l ~z!5
1

c
22k j l k~z!2k j l G~2k j l 12!G~k j l 11!21, ~69!

Ôjl ~z!5
1

c
2k j l k~z!k j l 11G~2k j l 12!21G~k j l 11!. ~70!

The phase shifts corresponding tohjl ,Gjl
are defined as

dGjl
~z!52arctan

A2~z!

A1~z!
52arctan

A4~z!

A3~z!
52arctan

Ĉj l ~z!q j l8 ~z!

Âj l ~z!2 iĈj l ~z!q j l8 ~z,Ajl ,Bjl !
, ~71!

where

q j l8 ~z!5q j l ~z,Ajl ,Bjl !@Ajl F jl ~z,R!F jl ~z,R!1Bjl F̃ j l ~z,R!F̃ j l ~z,R!#. ~72!

The elements of the on-shell scattering matrix are given by

SGjl
~z!5exp@2idGjl

~z!#. ~73!

The partial wave scattering amplitude is given by

f Gjl
~z!5

exp@2idGjl
~z!#21

2ik
. ~74!

III. THE ASYMMETRIC d-SPHERE INTERACTION

Consider in dimensionn53, the quantum Hamiltonian describing the so-called asymme
d-sphere interaction formally given by:7

HG= (a)5HD1G= da~ uxu2R!, aPC, ~75!

whereG= is a 434 matrix given byG= 5(0
A

B
0) andda is defined by

E
R2e

R1e

da~r 2R!c~r !dr5ac~R1 !1~12a!c~R2 !. ~76!

Following the strategy used for the construction ofhjl ,Gjl
in Eq. ~38!, one can show that the

self-adjoint extension corresponding to the radial Dirac operator with the potential

Va~r !5Gjl da~r 2R!;aPC, Gjl 5S Ajl 0

0 Bjl
D , Ajl ,Bjl PR ~77!

is given by

hjl ,G
jl
(a)5S c2

2
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2

D [t,

D~hjl ,G
jl
(a)!5$gPD~hjl* !u~12aB̃!g~R1 !2~11bB̃!g~R2 !50%,

l P@ j 2 1
2 , j 1 1

2#, j P@ 1
2 ,`!, ~78!
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where we have used the following definitions and notations:

B̃5t0c21Gjl , b512a, aPC ~79!

andGjl 2Gjl
15(122 Rea)c21Gjl

1t0Gjl .
The casea5 1

2 giveshjl ,Gjl
defined by Eq.~38!. Obviously, all the results obtained in Sec.

may be extended to the case of asymmetricd-sphere interactions.

IV. THE d-SPHERE PLUS COULOMB INTERACTION

A. Definition of the Hamiltonian

Now the Hamiltonian of the system is formally given by12

Hg,G= 5HD1
g

uxu
1G= d~ uxu2R!, xPR3, R.0, ~80!

whereG= is a real 434 matrix of the form

G= 5S A 0

0 BD . ~81!

Consider the decomposition (15) and introduce inL2((0,̀ )) ^ C2 the operator

H̄g,G= 5 %
j 51/2

`

%
l 5 j 2 1/2

j 1 1/2

@U jl
21hjl ,gU jl # ^ 1, ~82!

wherehjl ,g is given by

hjl ,g5S c2

2
1

g

r
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2
1

g

r

D [tg , ~83!

D~hjl ,g!5$cPL2~~0,̀ !! ^ C2ucPACloc~~0,̀ !!, c~R6 !50;

tgcPL2~~0,̀ !! ^ C2%. ~84!

k j l is defined by Eq.~17!.
The adjointH̄g,G=* of H̄g,G= is defined by

H̄g,G=* 5 %
j 51/2

`

%
l 5 j 2 1/2

j 1 1/2

@U jl
21hjl ,g* U jl # ^ 1, ~85!

hjl ,g* 5S c2

2
1

g

r
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2
1

g

r

D [tg , ~86!

D~hjl ,g* !5$cPL2~~0,̀ !! ^ C2ucPACloc~~0,̀ !\$R%!;

tgcPL2~~0,̀ !! ^ C2%. ~87!
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The self-adjoint extension ofhjl ,g : Consider the equation

~hjl ,g* 2z!c50,c5S f
gDPD~hjl ,g* !,zPC2H S 2`,2

c2

2 GFc2

2
,` D J ~88!

and introduce the following notations

k~z!5
1

c
Az22

c4

4
[k, ~89!

j5~k j l
2 c22g2!1/2, ~90!

j̃5
1

c
j, ~91!

g̃5
2zg

c2 . ~92!

A straightforward computation shows that the equation~88! has two linearly independen
solutions25

cg,z
(1)~r !5H S f g,1~z,r !

f g,2~z,r ! D , r ,R,

S 0
0D , r .R,

~93!

cg,z
(2)~r !5H S 0

0D , r ,R,

S gg,1~z,r !

gg,2~z,r ! D , r .R,

~94!

where

f g,1~z,r !5S 12
g2

~k j l c1j!2D 2 1/2F cosS arctan
g̃

2kj̃
D G2 1/2FF jl ,g~z,r !2

g

k j l c1j
F̃ j l ,g~z,r !G ,

~95!

f g,2~z,r !5S 12
g2

~k j l c1j!2D 2 1/2F cosS arctan
g̃

2kj̃
D G2 1/2F F̃ j l ,g~z,r !2

g

k j l c1j
F jl ,g~z,r !G ,

~96!

gg,1~z,r !5S 12
g2

~k j l c1j!2D 2 1/2F cosS arctan
g̃

2kj̃
D G2 1/2FGjl ,g~z,r !2

g

k j l c1j
G̃jl ,g~z,r !G ,

~97!

gg,2~z,r !5S 12
g2

~k j l c1j!2D 2 1/2F cosS arctan
g̃

2kj̃
D G2 1/2F G̃jl ,g~z,r !2

g

k j l c1j
Gjl ,g~z,r !G ,

~98!

with
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F jl ,g~z,r !5r j̃11e2 ik(z)r
1F1S j̃112 i

g̃

2k~z!
,2j̃12,2ik~z!r D , ~99!

Gjl ,g~z,r !5G~2j̃12!21GS j̃112
ig̃

2k~z! D ~2ik~z!!2j̃11r j̃11e2 ik(z)r

3US j̃112 i
g̃

2k~z!
,2j̃12,2ik~z!r D , ~100!

F̃ j l ,g~z,r !5
j̃

c
~2j̃11!UGS j̃1

ig̃

2k~z! D UUGS j̃111
ig̃

2k~z! D U
21

r j̃e2 ik(z)r

31F1S j̃2 i
g̃

2k~z!
,2j̃,2ik~z!r D , ~101!

G̃jl ,g~z,r !5
j̃21

c
~2j̃11!21G~2j̃ !21GS j̃1

ig̃

2k~z! D UGS j̃1
ig̃

2k~z! D U
21

3UGS j̃111
ig̃

2k~z! D Uk~z!2~2ik~z!!2j̃21r j̃e2 ik(z)rUS j̃2 i
g̃

2k~z!
,2j̃,2ik~z!r D ,

~102!

1F1(a,b,r ) (U(a,b,r )) denotes the regular~respectively, irregular! confluent hypergeometric
functions.27 The functionsf g,n(z,r ),gg,n(z,r ),n51,2 are normalized in such a way that

detFgg,1~z,r ! f g,1~z,r !

gg,2~z,r ! f g,2~z,r !
G5

1

c
. ~103!

We note that the limitg→01, yields26

S f g,1~z,r !

f g,2~z,r ! D ——→
g→01

S F jl ~z,r !

F̃ j l ~z,r !
D , ~104!

S gg,1~z,r !

gg,2~z,r ! D ——→
g→01

S Gjl ~z,r !

G̃jl ~z,r !
D , ~105!

whereF jl (z,r ), F̃ j l (z,r ), Gjl (z,r ), andG̃jl (z,r ) are defined by~25!–~27! and ~28!.
The operatorhjl ,g has deficiency indices~2,2! and consequently all its self-adjoint extensio

may be parametrised by a four-parameter family of self-adjoint operators. As in Sec. II A
consider the following two-parameters family of self-adjoint extensions ofhjl ,g

hjl ,g,Gjl
5S c2

2
1

g

r
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2
1

g

r

D [tg ,

D~hjl ,g,Gjl
!5H c5S f

gDPD~hjl ,g* !US 12t0

Gjl

2c Dc~R1 !2S 11t0

Gjl

2c Dc~R2 !50J ,

Ajl ,Bjl PR; l P@ j 2 1
2 , j 1 1

2#; j P@ 1
2 ,`!. ~106!
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Following Sec. II A, one can show that the operatorhjl ,g,Gjl
gives the mathematical definition o

the formal expression

hg,Gjl
5hD1

g

r
1Gjl d~r 2R!. ~107!

The caseGjl 50 in Eq. ~106! gives the radial Dirac–Coulomb Hamiltonianhjl ,g,0[hg,D ,

hg,D5hD1
g

r
[tg ,

D~hg,D!5$cPD~hjl ,g* !uc~R1 !5c~R2 !%; l P@ j 2 1
2 , j 1 1

2#, j P@ 1
2 ,`!. ~108!

The casesAjl Þ0, Bjl 50 and Ajl 50, Bjl Þ0 in Eq. ~106! yields thed-sphere plus Coulomb
interaction of the first and second types, respectively.

The model~80! is defined inL2(R3) ^ C4 by

Hg,G= 5 %
j 5 1/2

`

%
l 5 j 2 1/2

j 1 1/2

U jl
21hjl ,g,Gjl

U jl ^ 1. ~109!

The caseG= 50 for all j and l leads to the Dirac–Coulomb HamiltonianHg,D ,

Hg,D5HD1
g

uxu
, D~Hg,D!5H1,2~R3! ^ C4. ~110!

B. The resolvent equation

Theorem 4.1:The resolvent ofhjl ,g,Gjl
is given by

~hjl ,g,Gjl
2z!215~hg,D2z!211q j l ,g~z,Ajl ,Bjl !H ~M̂ jl ,z,g

(2) ~ .!,.!FAjl M̂ j l ,z,g
(2) ~ .!1

Ajl Bjl

2c
M̃ jl ,z,g

(1) ~ .!G
1~M̃ jl ,z,g

(2) ~ .!,.!FBjl M̃ j l ,z,g
(2) ~ .!2

Ajl Bjl

2c
M̂ jl ,z,g

(1) ~ .!G J ,

zPr~hjl ,g,Gjl
!, Im k~z!.0, l P@ j 2 1

2 , j 1 1
2#, j P@ 1

2 ,`! ~111!

@r(.) is the resolvent set# where (hg,D2z)21, Im k(z).0 is the radial Dirac–Coulomb resolven
with kernel

G( j l ,g)~z,r ,r 8!5S G11
( j l ,g)~z,r ,r 8! G12

( j l ,g)~z,r ,r 8!

G21
( j l ,g)~z,r ,r 8! G22

( j l ,g)~z,r ,r 8!
D , ~112!

where

G11
( j l ,g)~z,r ,r 8!5H gg,1~z,r 8! f g,1~z,r !, r ,r 8,

f g,1~z,r 8!gg,1~z,r !, r .r 8,
~113!

G12
( j l ,g)~z,r ,r 8!5H gg,2~z,r 8! f g,1~z,r !, r ,r 8,

f g,2~z,r 8!gg,1~z,r !, r .r 8,
~114!

G21
( j l ,g)~z,r ,r 8!5H gg,1~z,r 8! f g,2~z,r !, r ,r 8,

f g,1~z,r 8!gg,2~z,r !, r .r 8,
~115!
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G22
( j l ,g)~z,r ,r 8!5H gg,2~z,r 8! f g,2~z,r !, r ,r 8,

f g,2~z,r 8!gg,2~z,r !, r .r 8,
~116!

and

q j l ,g~z,Ajl ,Bjl !52F12
Bjl Ajl

4c2 1Ajl f g,1~z,R!gg,1~z,R!1Bjl f g,2~z,R!gg,2~z,R!G21

,

~117!

M̂ jl ,z,g
(m) ~r !5H G( j l ,g)~z,r ,R!S 1

0D , r ,R,

~21!mG( j l ,g)~z,r ,R!S 1
0D , r .R,m51,2,

~118!

M̃ jl ,z,g
(m) ~r !5H G( j l ,g)~z,r ,R!S 0

1D , r ,R,

~21!mG( j l ,g)~z,r ,R!S 0
1D , r .R,m51,2,

~119!

where Green matrix for the radial Dirac-Coulomb operator defined by the equation~111!.
Proof:
One may follow step by step the proof of theorem 2.3.
Remark 1:As in the case of Sec. II B, the resolvent ofHg,G= may be obtained from Eq.~111!

and the decomposition~82!.

C. Spectral properties

Theorem 4.2: For Ajl ,Bjl P(2`,`), l P@ j 2 1
2, j 1

1
2#, j P@ 1

2,`) and gPR, the essential
spectrum ofhjl ,g,Gjl

is purely absolutely continuous and coincide with (`,2 c2/2#ø@c2/2 ,`). Its
singular continuous and residual spectra are empty.12 The bound states ofhjl ,g,Gjl

in the gap
(2 c2/2 ,c2/2) coincide with the poles of the resolvent equation~111! in Im k.0.

D. The nonrelativistic limit

Theorem 4.3:For spin-12 particles, i.e.,l 5 j 1 1
2, one obtain

n. lim
c→`

S hjl ,g,Gjl
2

c2

2
2zD 21

5~hl ,g,b̂ l
2z!21

^ S 1 0

0 0D , zPC\R, ~120!

wherehl ,g,b̂ l
is defined by

hl ,g,b̂ l
52

d2

dr2 1
l ~ l 11!

r 2 1
g

r
,

D~hl ,g,b̂ l
!5H f PL2~~0,̀ !!U f , f 8PACloc~~0,̀ !\$R%!; f ~01 !50 if l 50;

f 8~R1 !2 f 8~R2 !5
a l

2
@ f ~R1 !1 f ~R2 !#;

f ~R1 !2 f ~R2 !5
b l

2
@ f 8~R1 !1 f 8~R2 !#2 f 91 l ~ l 11!r 22f 1gr 21f PL2~~0,̀ !!J ,

2`,a l ,b l<`; l PN0 , gPR. ~121!
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If a lb l2450,a l ,b lPR, then one can show that the boundary conditions in~121! define a
self-adjoint extension ofḣl ,g defined by

ḣl ,g52
d2

dr2 1
l ~ l 11!

r 2 1
g

r

D~ ḣl ,g!5$ f PL2~~0,̀ !!u f , f 8PAC~~0,̀ !!; f ~01 !50 if l 50; f ~R6 !5 f 8~R6 !50;

2 f 91 l ~ l 11!r 22f 1gr 21f PL2~~0,̀ !!%, gPR,l 50. ~122!

The Hamiltonianhl ,g,b̂ l
provides a generalization of the nonrelativisticd-sphere interaction of the

first and second kind plus a Coulomb interaction discussed in Ref. 2.

E. Scattering theory for the pair „h jl ,g,Gjl
; h g,D…

For k(z).0, we define the function

S Fg,Gjl ,1
~z,r !

Fg,Gjl ,2
(z,r ) D 5S f g,1~z,r !

f g,2~z,r ! D1q j l ,g~z,Ajl ,Bjl !H G( j l ,g)~z,r ,R!FAjl S f g,1~z,R!

0 l D
1Bjl S 0

f g,2~z,R! D G1 Ajl Bjl

2c
Ĝ( j l ,g)~z,r ,R!F S 0

f g,1~z,R! D2S f g,2~z,R!

0 D G J ,

~123!

where

Ĝ( j l ,g)~z,r ,R!5H G( j l ,g)~z,r ,R!, r ,R,

2G( j l ,g)~z,r ,R!, r .R,
~124!

G( j l ,g)(z,r ,R) is the Green matrix of the radial Dirac–Coulomb operator defined by the equ
~112! and the functionsf g,1(z,r ), f g,2(z,r ), andq j l ,g(z,Ajl ,Bjl ) are defined by~95!, ~96!, and
~117!, respectively.

A straightforward computation shows that (
Fg,Gjl ,2

(z,r )

Fg,Gjl ,1
(z,r )

) is the wave scattering function o

hjl ,g,Gjl
.

The particular casesAjl Þ0,Bjl 50 andAjl 50; Bjl Þ0 in Eq. ~123! yield

S Fg,Ajl ,1
~z,r !

Fg,Ajl ,2
(z,r ) D 5S f g,1~z,r !

f g,2~z,r ! D1Ajl q j l ,g~z,Ajl ,0!G( j l ,g)~z,r ,R!S f g,1~z,R!

0 D ~125!

and

S Fg,Bjl ,1
~z,r !

Fg,Bjl ,2
(z,r ) D 5S f g,1~z,r !

f g,2~z,r ! D1Bjl q j l ,g~z,0,Bjl !G
( j l ,g)~z,r ,R!S 0

f g,2~z,R! D . ~126!

Equations~125! and~126! define the wave functions corresponding to thed-sphere plus Coulomb
interactions of the first and second type, respectively.

The asymptotic behavior of (
FGjl ,2

(z,r )

FGjl ,1
(z,r )

) as r→` is given by26

S FGjl ,1
~z,r !

FGjl ,2
(z,r ) D ——→

r→`

k~z!.0 S V1~z!sin@x11d
j̃

0
~z!#1V2~z!cos@x11d

j̃

0
~z!#

V3~z!sin@x21d
j̃21

0
~z!#1V4~z!cos@x21d

j̃21

0
~z!#

D
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5S @V1
2~z!1V2

2~z!#1/2sin@x11d
j̃

0
~z!1dg,Gjl ,1

C ~z!#

@V3
2~z!1V4

2~z!#1/2sin@x21d
j̃21

0
~z!1dg,Gjl ,2

C ~z!#D , ~127!

where

x15k2
g̃

2k
ln~2kr !2 j̃

p

2
, ~128!

x25k2
g̃

2k
ln~2kr !2~ j̃21!

p

2
, ~129!

and

d
j̃

0
~z!5d

j̃21

0
~z!1arctanS g̃

2kj̃
D , ~130!

d
j̃

0
~z!5argGS j̃111 i

g̃

2kD . ~131!

The Coulomb modified phase shiftdg,Gjl

C (z) corresponding tohjl ,g,Gjl
is given by

dg,Gjl

C ~z!5S dg,Gjl ,1
C ~z!

dg,Gjl ,2
C (z) D , ~132!

where

dg,Gjl ,1
C ~z!52arctan

V2~z!

V1~z!
, ~133!

dg,Gjl ,2
C ~z!52arctan

V4~z!

V3~z!
. ~134!

The constantsVi( i 51, . . . ,4) are defined by

V1~z!5d1~z!1@d2~z!2 iq j l ,g8 ~z!d4~z!#sinFarctanS g̃

2kj̃
D G2 iq j l ,g8 ~z!d3~z!

2q j l ,g8 ~z!d4~z!cosFarctanS g̃

2kj̃
D G , ~135!

V2~z!5@d2~z!2 iq j l ,g8 ~z!d4~z!#cosFarctanS g̃

2kj̃
D G1q j l ,g8 ~z!d3~z!

1q j l ,g8 ~z!d4~z!sinFarctanS g̃

2kj̃
D G , ~136!
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V3~z!5F2
g

k j l c1j
d1~z!1 iq j l ,g8 ~z!

g

k j l c1j
d3~z!GsinFarctanS g̃

2kj̃
D G2S g

k j l c1j
D 21

d2~z!

2q j l ,g8 ~z!
g

k j l c1j
d3~z!cosFarctanS g̃

2kj̃
D G1 iq j l ,g8 ~z!S g

k j l c1j
D 21

d4~z!, ~137!

V4~z!5F2
g

k j l c1j
d1~z!1 iq j l ,g8 ~z!

g

k j l c1j
d3~z!GcosFarctanS g̃

2kj̃
D G

2q j l ,g8 ~z!
g

k j l c1j
d3~z!sinFarctanS g̃

2kj̃
D G2q j l ,g8 ~z!S g

k j l c1j
D 21

d4~z! ~138!

with q j l8 (z,Ajl ,Bjl ) defined by

q j l8 ~z!5q j l ~z,Ajl ,Bjl !@Ajl f g,1~z,R! f g,1~z,R!1Bjl f g,2~z,R! f g,2~z,R!#. ~139!

The constantsdi(z)( i 51, . . . ,4) are given by

d1~z!5S 12
g2

~k j l c1j!2D 2 1/2F cosS arctan
g̃

2kj̃
D G2 1/2

22 j̃~k!2 j̃21G~2j̃12!

3UGS j̃111 i
g̃

2k
D U21

ep ~g̃/4k!, ~140!

d2~z!52
g

c~k j l c1j!
S 12

g2

~k j l c1j!2D 2 1/2F cosS arctan
g̃

2kj̃
D G2 1/2

22 j̃~k!2 j̃

3G~2j̃12!UGS j̃111 i
g̃

2k
D U21

ep ~g̃/4k!, ~141!

d3~z!5S 12
g2

~k j l c1j!2D 2 1/2F cosS arctan
g̃

2kj̃
D G2 1/2

2j̃~k!j̃

3G~2j̃12!21UGS j̃111 i
g̃

2k
D Ue2p ~g̃/4k!, ~142!

d4~z!52
g

c~k j l c1j! S 12
g2

~k j l c1j!2D 2 1/2FcosS arctan
g̃

2kj̃
D G2 1/2

2j̃~k!j̃11

3G~2j̃12!21UGS j̃111 i
g̃

2kD Ue2p ~g̃/4k!. ~143!

The limit g→01, in ~133! and ~134! yields

lim
g→01

dg,Gjl ,1
C ~z!5 lim

g→01

dg,Gjl ,2
C ~z!5dGjl

~z!, ~144!

wheredGjl
(z) is defined by~71!.

The Coulomb modified on-shell scattering matrix is given by
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Sg,Gjl ,n
C ~z!5e2idg,Gjl ,n

C (z), n51,2. ~145!
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Boundary states, extended symmetry algebra, and module
structure for certain rational torus models
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The massless bosonic field compactified on the circle of rationalR2 is reexamined
in the presense of boundaries. A particular class of models corresponding toR2

51/2k is distinguished by demanding the existence of a consistent set of Neumann
boundary states. The boundary states are constructed explicitly for these models
and the fusion rules are derived from them. These are the ones prescribed by the
Verlinde formula from theS-matrix of the theory. In addition, the extended sym-
metry algebra of these theories is constructed, which is responsible for the ratio-
nality of these theories. Finally, the chiral space of these models is shown to split
into a direct sum of irreducible modules of the extended symmetry
algebra. ©2002 American Institute of Physics.@DOI: 10.1063/1.1517168#

I. INTRODUCTION

The massless bosonic field compactified on the circle has been particularly useful for stu
the moduli space ofc51 theories.1,2 In this case, there are two continuous families of theor
corresponding to the torus and theZ2 orbifold models. Theories in each family are connected
marginal operator deformations. In both cases there is a duality that identifies the mode
radiusR with the model with radius 1/2R. Also the theory corresponding toR5& for the torus
models is identified with theR51/& theory for the orbifold models. For the self-dual radiusR
51/& the theory possesses an extendedSU(2)3SU(2) symmetry. By dividing this symmetry by
the three special discrete subgroups ofSU(2), the tetrahedral, octahedral, and icosahedral,1 we
constructed three more theories that are not connected to the others by marginal operato
mations. This list ofc51 theories has been shown to be complete in the case where the pa
function is a linear combination of toroidal partition functions by Ref. 2. However the part
functions of these theories contain an infinite sum of products of holomorphic times antiholo
phic Virasoro characters, as predicted by a theorem of Ref. 3. In the particular case whereR2 is
rational, these products group into a finite sum of holomorphic times antiholomorphic bl
Furthermore this is the complete list ofc51 theories possessing this property as proven in Re

Next we consider conformal field theory on surfaces with boundaries.5 On the finite cylinder
it is possible to construct a partition function in two ways: either through a closed string p
gating between two boundary states or through an open string satisfying corresponding bo
conditions propagating around a loop. Compatibility between these two points of view give
conditions on the boundary states. One is the Ishibashi condition6 arising from the restriction of
the conformal field theory to the upper half plane~necessary in the open string picture! and the
other is the Cardy condition,7,8 which arises from the representational compatibility of the t
constructions. Cardy, in particular, showed that given the Verlinde formula and a complete
Ishibashi states it is possible to construct a consistent set of boundary states for diagonal th
In the particular case where the representation space of the theory splits into a direct s
irreducible representations of an extendedsû(2) chiral algebra, the Ishibashi states have be
constructed in Ref. 6. The case of theZ2 orbifold model at radius 1 has been considered in Ref

a!Electronic mail: smyrnaki@tem.uoc.gr
60850022-2488/2002/43(12)/6085/11/$19.00 © 2002 American Institute of Physics
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In this case boundary states have been derived that do not correspond to bulk operators.
In this work we study the rational torus models from the boundary CFT point of view.

distinguish a particular class of models (R5 1/A2k) which posesses a consistent set of Neuma
boundary states~or dually Dirichlet boundary states! in the sense of Ref. 7. These boundary sta
have been constructed explicitly. Next the extended symmetry algebra of these theories ha
written down. Finally the infinite direct sum of Fock modules, which constitutes the chiral re
sentation space of this particular set of torus models, is shown to decompose into a finite
irreducible extended algebra modules.

II. TORUS MODELS REVISITED

These models correspond to a free massless real bosonic field compactified on a c
radiusR. The action in this case is

S5
1

2p E ]X]̄X. ~1!

The partition function for these models turns out to be

Z~b!5(
m,n

q(1/2)(m/2R 1nR)2

h~q!

q̄(1/2)(m/2R 2nR)2

h~ q̄!
. ~2!

Here q5e2p i t5e22pb, b52 i t, andh(q) is the Jacobi eta function. The representation sp
for these models can be read of from the partition function to be

H5 %
n,meZ

Fam,n
^F ām,n

, ~3!

where the possible charges aream,n5m/2R2nR and ām,n5m/2R2nR.
In the particular caseR25p/p8 the partition function becomes a finite sum of holomorph

times antiholomorphic parts:

Z~q!5 (
r 50

2p21

(
s50

2p821

f r ,s~q! f r ,2s~ q̄!, ~4!

where

f r ,s~q!5(
neZ

q2pp8(n1 (r /4p) 1 ~s/2p8!)2

h~q!
. ~5!

Now consider the free field more closely. We can view our field as describing an open
propagating along a strip periodic in the horizontal direction but with boundary conditions a
the end point lines of the string. What we really have in this way is an open string propag
along the sides of a cylinder, while it obeys boundary conditions on the end point circles
length of the circumference will be taken to beb, while the height of the cylinder will be 1/2. Thi
one loop open string diagram is equivalent to a closed string propagating along the cylinde
one boundary to the other. The boundaries of the closed string are to be interpreted as
Following the closed string picture we will take time to be the vertical direction. The free
admits now the following expansion into oscillator modes:

f~s,t !5 x̂1
2p

b
Rŵs1

p

b
p̂t1

1

2
i (
nÞ0

S an

n
expS 2

2p i

b
n~ t1s! D1

ãn

n
expS 2

2p i

b
n~ t2s! D D .

~6!
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This splits into left and right modes according to

f~s,t !5fL~x1!1fR~x2!, ~7!

wherex15t1s andx25t2s. Here

fL~x1!5
x̂

2
1

p

b
a0x11

1

2
i (
nÞ0

an

n
expS 2

2p i

b
nx1D ,

~8!

fR~x2!5
x̂

2
1

p

b
ã0x21

1

2
i (
nÞ0

ãn

n
expS 2

2p i

b
nx2D ,

wherea05 p̂/21Rŵ andã05 p̂/22Rŵ. The Hamiltonian in the closed string picture turns out
be

Hb5
2p

b F ~Rŵ!21~ p̂/2!21 (
n51

`

a2nan1 (
n51

`

ã2nãn21/12G . ~9!

Using the oscillator mode representation of the Virasoro generators

Lm5
1

2 (
2`

`

:am2nan :,

~10!

L̄m5
1

2 (
2`

`

:ãm2nãn :,

we have that

Hb5
2p

b
~L01L̄021/12!. ~11!

The boundary states of the closed string have to satisfy the Ishibashi condition6:

~Ln2L̄2n!uB&50. ~12!

This is certainly satisfied if

~am6ã2m!uB&50. ~13!

The plus sign corresponds to Neumann boundary conditions in the open string picture wh
minus sign corresponds to Dirichlet boundary conditions.9 Solving the conditions~13! we get the
following Ishibashi states:

uinR
N &5expS 2 (

n51

`
a2nã2n

n D up50, w5nR&,

~14!

uim/2R
D &5expS (

n51

`
a2nã2n

n D Up2 5
m

2R
, w50L .

Note that in the Neumann case the zero mode condition demands that there is no momentu
in the Dirichlet case it demands that there is no winding. Now we have the following lemm

Lemma 1: The Ishibashi states (14) give rise to the following inner products:
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^inR
N ue2Hb/2uimR

N &5
q̃R2n2/2

h~ q̃!
dn,m ,

^in/2R
D ue2Hb/2uim/2R

D &5
q̃n2/8R2

h~ q̃!
dn,m , ~15!

^inR
N ue2Hb/2uim/2R

D &5q̃21/24)
n51

`
1

11q̃n dn,0dm,05
(neZ~21!nq̃n2

h~ q̃!
dn,0dm,0 ,

where q̃5e2 2p/b.
The proof of this lemma is a simple free field calculation. Note that it is possible to in

change the Neumann and Dirichlet Ishibashi states by interchanging the directions oft ands.
There is however another condition that must be satisfied by the boundary states.7 This states

that if uXA& are the boundary states, then

ZAB~b!5^XAue2Hb/2uXB&5(
i

nAB
i x i~q! ~16!

for some integersnAB
i where q5e22p ib. In particular there is a special vacuus stateuX0& for

which n0 j
i 5d i , j . This condition arises from the possibility to seeZAB(b) as an one loop amplitude

of an open string satisfying the boundary conditionsA,B on the boundary circles.
Now let us restrict ourselves to the Neumann sector. Consider the caseR2 is rational, and let

us demand that there is a Neumann vacuum boundary state

uX0
N&5(

neZ
CnuinR

N &. ~17!

Of course demanding a Dirichlet vacuum boundary state is completely equivalent because
t, s interchange duality. Consider the partition function on the cylinder with two vacuum bo
ary states at the boundary circles:

Z00~b!5^X0
Nue2Hb/2uX0

N&5(
neZ

uCnu2
q̃R2n2/2

h~ q̃!
. ~18!

According to the Cardy condition,7 Z00(b) must be equal to the vacuum character. To cha
the variable fromq̃ to q, we need to use the Poisson resummation formula, which in this
takes the form:

(
neZ

q̃A(n1b)2

h~ q̃!
5

1

A2A
(
neZ

q(n2/4A)e2p inb

h~q!
. ~19!

In the case of the rational theories and in order to be able to get the identity character after
formula ~19! there must exist a minimum integerm such that the constantsCn in the classesn
5r modm are equal. This gives rise to the following partition function:

Z00~b!5 (
r 50

m21

uCr u2(
neZ

q̃~m2R2/2!(n1 ~r /m!)2

h~ q̃!
5 (

r 50

m21 uCr u2

mR (
neZ

q~n2/2m2R2!&e2p in ~r /m!

h~q!
. ~20!

Now letting n5mn81s we get
                                                                                                                



e

closed

ary

is

6089J. Math. Phys., Vol. 43, No. 12, December 2002 Boundary states, extended symmetry algebra

                    
Z00~b!5 (
r ,s50

m21 uCr u2

mR
e2p irs/m (

n8eZ

q@(n81s/m)2/2R2#

h~q!
. ~21!

Since s/m,1, the powerq1/2R2
appears only whens50, and taking into account that in th

vacuum character only integer powers ofq appear and that

(
r 50

m21 uCr u2

mR
Þ0

we have that

R25
1

2k
. ~22!

These are the values of the radius that we are going to analyze further. For these values the
string partition function regroups to

Z~b!5 (
s50

2k21

xs~q!x2s~ q̄!, ~23!

where

xs~q!5(
neZ

qk(n1 s/2k)2

h~q!
. ~24!

The vacuum character must be a partial sum ofx0(q). Comparing this withZ00(b) we get that
s50, which in turn means thatx0(q) itself is the vacuum character. Furthermore it is necess
that all uCr u are equal, so that the values50 is the only one that survives the sum overr . So,
without loss of generality we can assume thatm51. In this case we have

Z00~b!5
uCu2

R (
neZ

qkn2

h~q!
. ~25!

Equality with x0(q) demands thatuCu5AR5 1/A4 2k. So the corresponding vacuum state

uX0
N&5

1

A4 2k
(
neZ

uin/A2k
N &5

1

A4 2k
(
l 50

2k21

(
neZ

uiA2k(n1 l /2k)
N &. ~26!

Now it is necessary~because of the Cardy condition! that

Z0m~b!5xm~q!5
1

A2k
(
l 50

2k21

expS 2p i lm

2k Dx l~ q̃!. ~27!

This demands that the other boundary states are

uXm
N&5

1

A4 2k
(
l 50

2k21

expS 2p i lm

2k D(
neZ

uiA2k(n1 l /2k)
N &. ~28!

It is not too difficult to check that
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Zm1m2
5

1

2k (
l ,m50

2k21

expS 2p i l
(m22m11m)

2k Dxm~q!5xm12m2
~q!. ~29!

This is certainly an integer sum of characters so the Cardy condition is satisfied. It is
mentioning that since the construction of the boundary states is based on the modular prope
the characters the Verlinde formula gives integer fusion rules as was necessary. In particu
can read from~27! that

Sl
j5

1

A2k
expS 2p i j l

2k D
and from the Verlinde formula

(
i 50

2k21

Si
jNk8 l

i
5Sk8

jSl
j /S0

j ~30!

we can read the fusion rules

Nk8 l
i

5d ( i ,k81 l )mod 2k . ~31!

III. EXTENDED SYMMETRY ALGEBRA

We will now try to find which extended symmetry gives rise to the charactersxm(q) for each
k. Consider first the identity character

x0~q!5
(neZqkn2

h~q!
5q21/24

112qk12q4k1¯12qn2k1¯

~12q!~12q2!¯~12qk!~12qk11!¯
. ~32!

Expanding inq we get

x0~q!5q21/24~@11P~1!q1P~2!q21¯1P~k21!qk21#1qk@@P~k!12#1@P~k11!

12P~1!#q1¯1@P~4k21!12P~3k21!#q3k21#1¯1qn2k@@P~n2k!1¯12#

1¯1@P~~n11!2k21!1¯12P~~2n11!k21!#q(2n11)r 21#1¯ !. ~33!

Here P(n) is the number of partitions ofn. Now the Fock module built on the zero charg
vacuum,F0 , hasP(n) linearly independent states at leveln. From the above-given expansion w
see that at levelk we have two extra linearly independent states that are orthogonal toF0 , and
since they are the first such states they have to be killed by allan for n positive. So they can be
taken to be the highest weight Fock states of chargeanm56A2k because theL0 eigenvalue
hnm5k. They are generated by the spink currents

J6~z!5e6 iA2kf(z). ~34!

Here we have takenf(z)52fL(x1) andz5e2p ix1/b. Clearly,J6 adds charge6A2k on the
states it acts on. There is of course another current, of spin 1, theU(1) current, which we take to
be

J0~z!5
1

A2k
i ]f~z!. ~35!

Now we have the following lemma:
Lemma 2: The modes of the above currents generate the space% neZFnA2k .
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Proof: To prove this consider the mode expansion of theJ1(z) current acting on the zero
charge vacuum:

(
neZ

Jn
1z2n2ku0&5expSA2k(

n.0

a2n

n
znD uA2k&, ~36!

where byuA2k& we denote the vacuum state of chargeA2k. From this relation we see that

J0
1u0&50, J21

1 u0&50,̄ , J2k11
1 u0&50, J2k

1 u0&5uA2k&. ~37!

Similarly we get thatJ2k
2 u0&5u2A2k&. These are the extra states at levelk. Of course since the

modes ofJ0(z) can act on those states all the Fock descendents of the statesu6A2k& are gener-
ated by the current modes. If we move to levelk1r then the number of them is 2P(r ). Together
with the descendents ofu0& we have overallP(k1r )12P(r ) states. This takes account of th
second bracket in~33!. But at level 4k there are again two more states. To take account of th
consider the product

J1~z!J2k
1 u0&5J1~z!uA2k&5z2k expSA2k(

n.0

a2n

n
znD u2A2k&. ~38!

This means that we have

J0
1J2k

1 u0&50, J21
1 J2k

1 u0&50,̄ , J23k11
1 J2k

1 u0&50, J23k
1 J2k

1 u0&5u2A2k&. ~39!

Considering alsoJ23k
2 J2k

2 u0& we get the extra two states at level 4k. Again at level 4k1r we have
all the Fock descendents ofu0&, J2k

6 u0&5u6A2k&, andJ23k
6 J2k

6 u0&5u62A2k&. The number of
these states isP(4k1r )12P(3k1r )12P(r ). Continuing in this fashion we get two extra stat
appearing at every level of the formn2k, as indicated by~32!. They are of the form

J2(2n21)k
6

¯J23k
6 J2k

6 u0&5u6nA2k&. ~40!

Of course all the Fock descendents of these states are created by theJ0 modes so we have that th
current modes generate completely the direct sum% neZFnA2k . This ends the proof of the lemma

The next question is what are the OPEs satisfied by these high spin currents. This is n
difficult to obtain. These are the following:

J0~z!J6~w!56
1

z2w
J6~w!1reg,

~41!

J1~z!J2~w!5
1

~z2w!2k expnO(2k21)e
iA2k(f(z)2f(w))1reg.

The second operator product has to be expressed in terms of the currents. This is poss
expandingf(z) nearw:

J1~z!J2~w!5
1

~z2w!2k expnO(2k21) expS 2kF (z2w)J0(w)1¯

1
(z2w)2k21

(2k21)!
]2k22J0(w) G D1reg. ~42!

Here by expnO(2k21) we mean expansion up to and including terms of order (z2w)2k21. At this
point it is worth mentioning that our productJ1(z)J2(w) is a bilocal field in the sense of Ref. 10
There it was remarked that fork51/2 ~unaccepted value for us! this product is the generatin
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function for theW11` algebra. Here however we will restrict our attention to integer values ok.
Now, the product~42! can be expanded in terms of Schur polynomials. In general the S
polynomials are defined by

expS (
k51

`

tkz
kD 5 (

N50

`

zNSN~ t1 ,t2 ,...,tk ,...! ~43!

and they turn out to be

SN~ t1 ,t2 ,...,tk ,...!5 (
n1 ,...,nk ,...

Sk51
` knk5N t1

n1
¯tk

nk
¯

n1!¯nk!¯
. ~44!

Let us now define, following Ref. 10, the associated polynomials:

f l~] iJ0~z!!5~ l !!:Sl S J0~z!,
]J0~z!

2!
,¯ ,

] l 21J0~z!

l ! D :. ~45!

They satisfy the following recurrence relation:

f l 11~] iJ0~z!!5~J0~z!1]! f l~] iJ0~z!!5¯5~J0~z!1]! lJ0~z!. ~46!

Now using these new definitions we have

J1~z!J2~w!5
1

~z2w!2k S (
N50

2k21

SN~2kJ0~w!,...,2k]2k22J0~w!/~2k21!! !~z2w!ND 1reg

5 (
N50

2k21
f N~2k] iJ0~w!!

N!
~z2w!N22k1reg. ~47!

The next question is what is the algebra satisfied by the modes of the currentsJ1(z), J2(z).
This can be read from the OPEs:

@Jn
1 ,Jm

2#5 R
0

dw

2p i R
w

dz

2p i
zn1k21wm1k21J1~z!J2~w!, ~48!

where the left integral is around the origin and the right is aroundw. Expanding the product o
currents as above we get

@Jn
1 ,Jm

2#5 (
N50

2k21
G~n1k!

G~2k2N!G~N1n2k11!
R

0

dw

2p i
wn1m1N21

f N~2k] iJ0~w!!

N!
. ~49!

This suggests the following definition:

Vm1n,N
k 5 R

0

dw

2p i
wn1m1N21f N~2k] iJ0~w!!5 R

0

dw

2p i
wn1m1N21~2kJ0~w!1]!N212kJ0~w!,

~50!

where we have made use of the recurrence relation~46!. In this notation~49! becomes

@Jn
1 ,Jm

2#5 (
N50

2k21
G~n1k!

G~2k2N!G~N1n2k11!G~N11!
Vn1m,N

k . ~51!

Following the same procedure for the remaining commutators we get
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@Jn
0 ,Jm

0 #5
n

2k
dn1m , @Jn

0 ,Jm
6#56Jm1n

6 , ~52!

while the other commutators are 0.
Note that in particular ifk51 thenVm1n,0

1 5dm1n and Vm1n,1
1 52Jm1n

0 , so in this case the
commutator~51! becomes

@Jn
1 ,Jm

2#5ndm1n12Jm1n
0 ~53!

giving rise to thesû(2) current algebra. Nevertheless it is only fork51 that this algebra closes s
nicely. In general the operatorsVm1n

k belong to the universal enveloping algebra of the U~1!
current.

IV. PRIMARY FIELDS

Now that we have the extended symmetry algebra, the next question is what are the p
fields with respect to this algebra. To answer this we need to consider the charactersxm(q). Under
q→e2p iq we pick a phase exp(2pi((m2/4k )2(1/24))). So theconformal dimension of the cor
responding field ishm5m2/4k , 0<m<2k21. There are two Virasoro primary fields with th
conformal dimension, the fields

Vm
6~z!5expS 6 i

m

A2k
f(z) D . ~54!

Observe that form52k we get the two currents.
These primary fields satisfy the following operator product expansions:

J0~z!Vm
6~w!56

m

2k

Vm
6~w!

z2w
1reg,

J1~z!Vm
2~w!5

1

~z2w!m :V2k2m
1 ~w!expS 2k(z2w)J0(w)12k

(z2w)2

2!
]J0(w)1¯

12k
(z2w)m21

(m21)!
]m22J0(w) D :1reg, ~55!

J2~z!Vm
1~w!5

1

~z2w!m :V2k2m
2 ~w!expS 22k(z2w)J0(w)22k

(z2w)2

2!
]J0(w)2¯

22k
(z2w)m21

(m21)!
]m22J0(w) D :1reg,

where the remaining OPEs are trivial. Note that we can take the fieldsVm
1(z)5ei (m/A2k) f(z), 0

<m<2k21 as a complete set of primary fields, since they are related to theVm
2(z) through the

last of the relations~55!.

V. MODULE STRUCTURE

The primary fieldsVm
1(z) add chargem/A2k to the vacuum so we have

Vm
1~0!u0&5U m

A2k
L . ~56!
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Recall now that the chiral Fock space associated with the partition function waH
5 % n,meZFanm

, where anm5nA2k1 m/A2k. The currents now can only add charges that

multiples ofA2k. So it is natural to decompose the spaceH into the sum

H5 %
m50

2k21

Hm , ~57!

where

Hm5 %
neZ

Fm/A2k 1nA2k ~58!

is the space that is generated by the currents fromVm
1(0)u0&5u m/A2k&.

Let us examine now more closely what is the action of the currents onHm . Again by
expanding the characterxm(q) as a power series inq we see that there is one extra state appea
at the levelsn2k2nm1m2/4k andn2k1nm1m2/4k for all positive integersn. Considering the
productJ1(z)um/A2k& we get

(
neZ

J2n
1 zn2kum/A2k&5zm expSA2k(

n.0

a2n

n
znD uA2k1m/A2k&. ~59!

This implies that

J2(k1m)
1 um/A2k&5uA2k1m/A2k& ~60!

and J2r
1 um/A2k&50 for all r ,k1m. Applying J1(z) on this new state a number of times w

eventually get that

J2((2n21)k1m)
1

¯J2(3k1m)
1 J2(k1m)

1 um/A2k&5unA2k1m/A2k&. ~61!

These states account for the extra states at the levelsn2k1nm1m2/4k. Applying J2(z) similarly
a number of times on the statem/A2k we get

J2((2n21)k2m)
2

¯J2(3k2m)
2 J2(k2m)

2 um/A2k&5u2nA2k1m/A2k& ~62!

and these states account for the extra states at levelsn2k2nm1m2/4k.
Suppose now that the spaceHm is reducible, as a module of our current algebra. Then th

must be a stateuvm& other thanu m/A2k& such that

Jn
6uvm&50, n.0 ~63!

and

Jn
0uvm&50, n.0. ~64!

Equation~64! forces us to consider the highest weight Fock states. Such states in the moduHm

are the statesum/A2k1nA2k& for n integer. Suppose now thatn.0. Applying J2(z) we get

(
l eZ

Jl
2z2 l 2kum/A2k1nA2k&5z2(m12nk) expS 2A2k(

l .0

a2 l

l
zl D um/A2k1~n21!A2k&

~65!

and this in turn implies that

Jm1(2n21)k
2 um/A2k1nA2k&Þ0. ~66!
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Sincem1(2n21)k is positive for positiven, Jr
2um/A2k1nA2k& cannot be 0 for all positiver .

If now n52n8,0 then we need to applyJ1(z). In this case we get

J2m1(2n821)k
1 um/A2k2n8A2k&5um/A2k2~n821!A2k&Þ0. ~67!

Since2m1(2n821)k is positive for positiven8 ~negativen), Jr
1um/A2k1nA2k& cannot be 0

for all positive r . SoHm cannot be reducible. Hence we have the following theorem:
Theorem 1: The space H5 % n,meZFanm

whereanm5nA2k1 m/A2k admits the decomposi

tion H5 % m50
2k21Hm into irreducible modules of the algebra generated by the modes of the s

currents J6(z) and the spin 1 current J0(z). In terms of Fock modules we haveHm

5 % neZFm/A2k 1nA2k .

VI. CONCLUSIONS

What we have achieved in this work is to single out a family of rational torus model
demanding the existence of a consistent set of Newmann~dually Dirichlet! boundary states. Fo
these models we have written down the extended symmetry algebra which restricts the num
blocks to a finite number. Furthermore it is shown that the space of these torus models, w
an infinite sum of Fock modules, splits into a direct sum of a finite number of irreducible exte
algebra modules.

The extended symmetry algebra that has appeared is a W-type algebra since it contai
spin currents. It should be thought of as a generalization of the SU~2! current algebra at level one
a theory which corresponds tok51 in our list of theories. It is of interest to identify the algebr
corresponding to the general level, in this way getting theories that may not possess fre
representations. Some work in this direction has been done in the context of W-algebras in R
A study of the representation theory of such algebras may give new examples of rational c
mal field theories.
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Scalar-tensor gravity and conformal continuations
K. A. Bronnikova)

Centre for Gravitation and Fundamental. Metrology, VNIIMS, 3-1 M. Ulyanovoy St.,
Moscow 117313, Russia and Institute of Gravitation and Cosmology, PFUR,
6 Miklukho-Maklaya St., Moscow 117198, Russia

~Received 29 March 2002; accepted 6 September 2002!

Global properties of vacuum static, spherically symmetric configurations are stud-
ied in a general class of scalar-tensor theories~STTs! of gravity in various dimen-
sions. The conformal mapping between the Jordan and Einstein frames is used as a
tool. Necessary and sufficient conditions are found for the existence of solutions
admitting a conformal continuation~CC!. The latter means that a singularity in the
Einstein-frame manifold maps to a regular surfaceStrans in the Jordan frame, and
the solution is then continued beyond this surface.Stranscan be an ordinary regular
sphere or a horizon. In the second case,Strans connect two epochs of a Kantowski-
Sachs type cosmology. It is shown that the list of possible types of global causal
structure of vacuum space–times in any STT, with any potential functionU(f), is
the same as in general relativity with a cosmological constant. This is even true for
conformally continued solutions. A traversable wormhole is shown to be one of the
generic structures created as a result of CC. Two explicit examples are presented:
the known solution for a conformal field in general relativity, illustrating the emer-
gence of singularities and wormholes due to CC, and a nonsingular three-
dimensional model with an infinite sequence of CCs. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1519667#

I. INTRODUCTION

Scalar fields with various potentials are of great significance in various branches of theo
physics and cosmology: it is sufficient to mention, e.g., the Higgs field in particle theory
numerous quintessence models in modern cosmology. It is thus highly desirable to know
kinds of gravitationally self-bound configurations can be formed by such fields.

This article continues the study of global properties of static, spherically symmetric sc
vacuum configurations of arbitrary dimension in various theories of gravity begun in Refs.
We will here consider scalar-tensor theories~STTs! belonging to the Bergmann–Wagoner
Nordtvedt family, where the Lagrangian depends on two essential arbitrary functions of the
field. It can be mentioned that STTs are among the viable alternatives to general relativity~GR!,
and their different versions emerge in the field limits of the candidate ‘‘theories of everythin

The field equations of an arbitrary STT are reduced by a conformal mapping to the equ
of GR with a scalar field possessing a certain potential~the so-called Einstein frame!. This article
will pay special attention to the properties of such mappings. The point is that, when a ma

M@g# is conformally mapped to another manifoldM̄@ ḡ# ~relating the metrics bygmn

5F(x)ḡmn), the global properties of both manifolds are the same as long as the conformal

F is everywhere smooth and finite. It can happen, however, that a singular surface inM̄ maps to
a regular surfaceStrans in M due to a singularity in the conformal factorF. Then M can be
continued in a regular manner through this surface, and the global properties ofM can be consid-

erably richer than those ofM̄: in the new region one can possibly find, e.g., new horizons
another spatial infinity. A known example of this phenomenon, to be calledconformal continua-

a!Electronic mail: kb@rgs.mccme.ru
60960022-2488/2002/43(12)/6096/20/$19.00 © 2002 American Institute of Physics
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tion, is provided by the properties of the static, spherically symmetric solution for a conform
coupled scalar field in GR4,5 as compared with the corresponding solution for a minimally coup
scalar field—see Sec. VI.

The Einstein-frame action for vacuum configurations in STT reads

SE5E dDxAḡ@RE1~]c!222V~c!#, ~1!

i.e., coincides with the action of GR with a minimally coupled real scalar fieldc possessing a
potentialV(c).

The field equations due to~1! with nontrivial potentials can be integrated explicitly in ve
few cases, even for highly symmetric configurations such as cosmological or static, sphe
symmetric ones. Nevertheless, rather much can be said about the nature of the solutions. E
of such general statements for non-negative potentialsV are the no-hair theorems6 discarding
nontrivial scalar field for asymptotically flat black holes and the generalized Rosen theo7

claiming that an asymptotically flat solution with a positive mass cannot have a regular ce
It is also of interest what can happen if the asymptotic flatness and/orV>0 assumptions are

abandoned. Both assumptions are frequently violated in modern studies. Negative potential
densities, in particular, the cosmological constantV5L,0 giving rise to the anti-de Sitter~AdS!
solution or AdS asymptotic, do not lead to catastrophes~if bound below!, are often treated in
various aspects and quite readily appear from quantum effects like vacuum polarization.

Our previous papers1,2 have provided some essential restrictions on the possible behavi
solutions of the theory~1! with arbitraryV(c) in D dimensions. It has been shown, in particul
that, whatever is the potential and irrespective of the asymptotic conditions, the variable
field adds nothing to the list of causal structures known forc5const. In the latter caseV becomes
a cosmological constant, and the corresponding exact solutions are well known~Schwarzschild,
Schwarzschild–de Sitter, Schwarzschild–anti-de Sitter and their multidimensional analogs! along
with their causal structures.

The possibility of regular configurations without a center~wormholes and horns! was also
ruled out.

As was shown in Refs. 1 and 2, the above results can be extended to (i ) generalized scala
field Lagrangians in GR, with an arbitrary dependence on thec field and its gradient squared, an
( i i ) to multiscalar field theories of sigma-model type in GR. To scalar-tensor theories, as is
from the aforesaid, the same results can be extended only partly and only in the abse
conformal continuation~CC!. This phenomenon is of particular interest since it widens the se
possible configurations. A study of possible CCs in the Jordan frames of STT was begun i
3 and is continued here more systematically and in more detail. Moreover, we will discus
global properties of conformally continued space–times.

We will here avoid a detailed discussion of which conformal frame~Jordan or Einstein! in
STT should be regarded as the physical one, refering to Ref. 8 and references therein. O
comment is in order: when an STT emerges in a weak-field or low-energy limit of some
fundamental theory, its Lagrangian generally contains the scalar curvature with af-dependent
factor, thus leading to one of numerous possible Jordan frames~e.g., the string metric in models o
string origin!. So, by origin, it is this formulation of the theory that should be used for study
such fundamental issues as topology, singularities, causal properties, etc., although a com
with observations may require a different formulation.

The paper is organized as follows. Section II presents the field equations. In Sec. III we r
the known results on scalar vacuum structures in GR and configurations described by gene
solutions. We begin with a brief description of purely vacuum structures inD-dimensional GR
with a cosmological constant and then reproduce the no-go theorems of Refs. 1 and 2
properties of scalar vacuum in GR and mention some other known theorems and example
theorems, providing the necessary and sufficient conditions under which a given STT con
CC, are formulated and proved in Sec. IV. In Sec. V we discuss the global properties of Jo
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frame space–times in the presence of CCs. It turns out, in particular, that even the presence
does not enlarge the number of possible horizons and hence the above list of global
structures. It is shown that one of the generic structures created by CCs is a traversable wo
The whole space–time is then globally regular and static. Some particular kinds of singul
can also be created beyond a CC surface. Section VI contains two explicit examples o
solutions with CCs. One of them represents the well-known solution for a conformally cou
scalar field in GR, which, in addition to singular cases, contains a family of traversable worm
solutions.5,9 The other is a nonsingular model containing an infinite sequence of CCs in t
dimensional gravity with a conformally coupled scalar field having a certain non-negative p
tial.

To sum up, with all theorems and examples at hand, we now have, even without solvin
field equations, rather a clear picture of what can and what cannot be expected from
scalar-vacuum configurations in a general class of STT of gravity with various scalar field p
tials.

Throughout the article all relevant functions are assumed to be sufficiently smooth, u
otherwise indicated. The symbol;, as usual, connects quantities of the same order of magnit
The ends of theorem proofs are marked withh.

II. FIELD EQUATIONS

The general STT action in aD-dimensional pseudo-Riemannian manifoldMJ@g# is

SSTT5E dDxAg@ f ~f!R1h~f!~]f!222U~f!1Lm#, ~2!

wheregmn is the metric,R5R@g# is the scalar curvature,g5udetgmnu, f , h andU are functions
of the real scalar fieldf, (]f)25gmn]mf]nf, andLm is the matter Lagrangian. The manifol
MJ@g# with the metricgmn comprises the so-called Jordan conformal frame. The vacuumLm

50) field equations due to~2! read

¹a~h¹a!f2 1
2 Rf f52dU/df, ~3!

f ~f!~R m
n 2 1

2 dm
n R!5h~f!~2f ,mf ,n1 1

2 dm
n f ,af ,a!2dm

n U~f!2~¹m¹n2dm
n h ! f 2Tm(m)

n ,
~4!

whereh5¹a¹a is the d’Alembert operator,R m
n is the Ricci tensor, and the last term in~4! is the

energy-momentum tensor of matter.~The usual constant factor 8pG, whereG is the gravitational
constant, can be restored by proper redefinition of the variables.!

The standard transition to the Einstein frame, which generalizes Wagoner’s10 four-dimensional
transformation,

gmn5F~c!ḡmn , F5u f u22/(D22), ~5!

dc

df
56

Au l ~f!u
f ~f!

, l ~f!5
def

f h1
D21

D22 S d f

df D 2

, ~6!

removes the nonminimal scalar-tensor coupling expressed in thef-dependent coefficient befor
R. PuttingLm50 ~vacuum!, one can write the action~2! in the new manifoldME@ ḡ# with the new
metric ḡmn and the new scalar fieldc as follows~up to a boundary term!:

SE5E dDxAḡ$signf @R̄1~signl !~]c!2#22V~c!%, ~7!

where the determinantḡ, the scalar curvatureR̄ and (]c)2 are calculated usingḡmn and
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V~c!5u f u2D/(D22)~c! U~f!. ~8!

Note that signl 521 corresponds to the so-called anomalous STT, with a wrong sign of s
field kinetic energy, while signf 521 means that the effective gravitational constant in the Jor
frame ~which can be defined as 1/f up to a constant factor! is negative. So the normal choice o
signs is signl 5signf 51, when the scalar-vacuum action takes the form~1!. We will adhere to
theories withl .0 in the whole paper, but we shall see that the continuations to be discuss
Secs. IV–VI lead tof ,0 in some regions ofMJ.

Among the three functions off entering into~2! only two are independent since there is
freedom of transformationsf5f(fnew). We assumeh>0 and use this freedom, choosing
what follows h(f)[1. $Another standard parametrization is to putf (f)5f and h(f)
5v(f)/f @the Brans–Dicke parametrization of the general theory~2!#.%

From the viewpoint of the field equations, the transformation~5! and ~6! is merely a simpli-
fying substitution. Instead of Eqs.~3! and ~4! ~assumingf .0), we deal inME with simpler
equations due to~1!:

h̄c1dV/dc50, ~9!

R̄m
n 2 1

2 dm
n R̄52c ,mc ,n1 1

2 dm
n ~]c!22dm

n V~c!, ~10!

with the Ricci tensorR̄m
n and the d’Alembert operatorh̄ corresponding toḡmn .

Consider static, spherically symmetric configurations, so that the metric inME is written as

dsE
25A~r!dt22

dr2

A~r!
2r 2~r!dV d̄

2, ~11!

where dV
d̄

2
is the linear element on the sphereSd̄ of unit radius, and the scalar field isc

5c(r).
Then Eq.~9! and some combinations of the Einstein equations~10! have the form

~Ard̄c8!85r d̄Vc ; ~12!

~A8r d̄!852~4/d̄!r d̄V; ~13!

d̄r 9/r 52c82; ~14!

A~r 2!92r 2A91~ d̄22!r 8~2Ar82A8r !52~ d̄21!; ~15!

d̄~ d̄21!~12Ar82!2d̄A8rr 852Ar2c8212r 2V, ~16!

where the prime denotesd/dr. Only three of these five equations are independent: the sc
equation~12! follows from the Einstein equations, while Eq.~16! is a first integral of the others
Given a potentialV(c), this is a determined set of equations for the unknownsr , A, c.

This choice of the radial coordinate according to the conditionḡttḡrr521 is preferable for
considering Killing horizons, which correspond to zeros of the functionA(r), since such zeros ar
regular points of Eqs.~12!–~16!, and therefore one can jointly consider regions at both sides
horizon; moreover, in a close neighborhood of a horizon, the coordinater defined in this way
varies ~up to a positive constant factor! like manifestly well-behaved Kruskal-like coordinate
used for an analytic continuation of the metric.11 Therefore this coordinate frame can be call
quasiglobal.

The corresponding metric inMJ reads
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dsJ
25F~c!FA~r!dt22

dr2

A~r!
2r 2dV d̄

2G5A~q!dt22
dq2

A~q!
2R2dV d̄

2, ~17!

where we have introduced the quasiglobal coordinateq in MJ, similar to r in ~11!, such that
gttgrr521. The quantities in~17! and ~11! are related by

6dq5Fdr, A~q!5FA~r!, R~q!5AFr ~r!. ~18!

With our conventionh(f)[1, three independent field equations inMJ can be written as
follows:

f S Aqq1d̄Aq

Rq

R
D 1

D

d̄
Aqf q12A Rq

R
f q1

2

d̄
Af qq1

4

d̄
U50, ~19!

d̄ f
Rqq

R
1fq

21 f qq50, ~20!

f

R2 F2~ d̄21!1ARRqq1ARq
22

1

2
R2Aqq1

1

2
~ d̄22!Rq~2ARq2RAq!G1S ARq

R
2

Aq

2 D f q50,

~21!

where the subscriptq denotesd/dq.

III. PROPERTIES OF GENERIC STT SOLUTIONS

A. Some known results for the Einstein frame

Let us enumerate some consequences of Eqs.~12!–~16! valid in ME.
The first important restriction is the nonexistence of regular configurations having no c

(r 50), namely, wormholes, horns and flux tubes.1,2

For the metric~11!, a ~traversable, Lorentzian! wormhole is, by definition, a configuration
with two asymptotics at whichr (r)→`, hence withr (r) having at least one regular minimum.
horn is a region where, asr tends to some finite value,ḡtt5A remains finite whereas the lengt
integral l 5*dr/AA diverges. In other words, a horn is a configuration ending with a regu
infinitely long (d̄11)-dimensional ‘‘tube’’ of finite radius. Such ‘‘horned particles’’ were di
cussed as possible remnants of black hole evaporation.12 Lastly, aflux tubeis a configuration with
r 5const, a ‘‘cylindrical’’ space.

Theorem 1: The field equations due to (1) for D>4 do not admit (i) solutions where th
function r(r) has a regular minimum, (ii) solutions describing a horn, and (iii) flux-tube soluti
with cÞconst.

The formulation of the theorem and its proof,1,2 which essentially rests on Eq.~14!, do not
refer to any kind of asymptotic, therefore wormhole throats or horns are absent in solutions h
any larger behavior—flat, de Sitter or any other, or having no larger asymptotic at all.

For D53 items~i! and~iii ! of Theorem 1 hold, but solutions with a horn can exist; though
horn can only appear at a maximum ofr (r), so that horned configurations have no spa
asymptotic.

The global causal structure of space–time is unambiguously determined~up to identification
of isometric surfaces, if any! by the disposition of static (A.0) and nonstatic, homogeneou
(A,0) regions, separated by horizons.13–16 The following two theorems severely restrict su
possible dispositions.

Theorem 2: Consider solutions of the theory (1), D>4, with the metric (11) andc5c(r).
Let there be a static region a,r,b<`. Then:
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(i) all horizons are simple;
(ii) no horizons exist atr,a and atr.b.

Theorem 2a: A static, circularly symmetric configuration in the theory (1), D53, has either
no horizon or one simple horizon.

The proof of these theorems1,2 employs the properties of Eq.~15!, which can be rewritten in
the form

r 4B91~ d̄12!r 3r 8B8522~ d̄21!, ~22!

whereB(r)5A/r 2. This equation shows thatB cannot have a regular minimum, therefore, havi
once become negative while moving to the left or to the right along ther axis,B(r) @and hence
A(r)] cannot return to zero or positive values.

Theorems 2 and 2a show that the possible disposition of zeros of the functionA(r) is the
same as in the case of vacuum with a cosmological constant. Therefore the list of possible
causal structures is also the same.

Let us, for reference purposes, enumerate these structures. The metric satisfying Eqs~13!–
~16! with c850, V5L5const is

ds25A~r !dt22
dr2

A~r !
2r 2dV d̄

2 ~23!

@it is ~11! with r[r ] where

A~r !512
2m

r d̄21
2

2Lr 2

d̄~ d̄11!
. ~24!

This is the multidimensional Schwarzschild–de Sitter solution. Its special cases correspond
Schwarzschild (d̄52, L50) and Tangherlini~any d̄, L50) solutions and the de Sitter solution
arbitrary dimension whenm50, called anti-de Sitter~AdS! in the caseL,0.

Different qualitative behaviors ofA(r ) for different values ofL and m correspond to the
following structures:17

~1! L50, m<0: curves 1a and 1b in Fig. 1, diagram 1 in Fig. 2~Minkowski andm,0 Schwarzs-
child, respectively!.

~2! L,0, m<0: curves 2a and 2b in Fig. 1, diagram 2 in Fig. 2~AdS andm,0 Schwarzschild–
AdS!.

~3! L,0, m.0: curve 3 in Fig. 1, diagram 3 in Fig. 2~Schwarzschild–AdS!.
~4! L50, m.0: curve 4 in Fig. 1, diagram 4 in Fig. 2~Schwarzschild!.
~5! L.0, m<0: curves 5a and 5b in Fig. 1, diagram 5 in Fig. 2~de Sitter andm,0

Schwarzschild–de Sitter!.
~6! L.0, m.0: curves 6a, 6b and 6c in Fig. 1, and the corresponding diagrams in F

~Schwarzschild–de Sitter in case 6a and Kantowski–Sachs homogeneous cosmolo
cases 6b and 6c!.

The centerr 50 is regular form50 and singular formÞ0.
In case 6, given a particular value ofL.0, the solution behavior depends on the ma

parameterm. Whenm is smaller than the critical value

mcr5
1

d̄11
F d̄~ d̄21!

2L
G (d̄21)/2

, ~25!
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there are two horizons, the smaller one being interpreted as a black hole horizon and the
one as a cosmological horizon. Ifm5mcr , the two horizons merge, and one has two homogene
T regions separated by a double horizon. Lastly, the solution withm.mcr is purely cosmological
and has no Killing horizon.

In (211)-dimensional gravity (d̄51), according to Theorem 2a, the list is even shorter:
structures corresponding to the curves 6a and 6b are absent.

Let us also mention, for completeness, some results known forD54 and most probably
admitting a generalization to other dimensions.

No-hair theorems state that~1! if V>0, an asymptotically flat black hole cannot have
nontrivial scalar field;6,18,19and~2! if V>0 andd2V/dc2>0 ~a convex potential!, an asymptoti-
cally anti-de Sitter black hole cannot have a nontrivial scalar field.20

FIG. 1. The behavior ofA(r ), Eq. ~24!, for different values ofm andL.

FIG. 2. Carter–Penrose diagrams for different cases of the metric~23! and~24!, labeled according to Fig. 1. The R and
letters correspond to R and T space–time regions; T1 and T2 denote expanding and contracting T region~i.e., with r
increasing and decreasing with time, respectively!. Single lines on the border of the diagrams denoter 50, double lines—
r 5`. Diagrams 6b and 6c are drawn for the case of expanding Kantowski–Sachs cosmologies; to obtain diagr
contracting models, one should merely interchanger 50 andr 5` and replace T1 with T2 . Diagrams 6a and 6b admi
identification of isometric timelike sections.
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The generalized Rosen theoremstates that, providedV>0, a particlelike solution with a
regular center, a flat asymptotic and positive mass does not exist.7

These theorems cannot be directly extended to STT in the Jordan frame and will n
discussed any more, though an attempt to formulate additional conditions able to provide
extensions may be of interest.

Explicit examples have been obtained, confirming the existence of some kinds of solu
admitted by the above theorems. Thus, there exist~1! black holes possessing nontrivial scal
fields ~scalar hair!, with V>0, but with nonflat and non-de Sitter asymptotics;21 ~2! black holes
with scalar hair and flat asymptotics, but partly negative potentials;2 and~3! configurations with a
regular center, a flat asymptotic and positive mass, but also with partly negative potentials2

Thus black holes with scalar hair are not excluded in general, but such objects as regula
holes,22 possessing a regular center and a global structure coinciding with that of Reis
Nordstrom or Reissner–Nordstrom–de Sitter space–time, are ruled out.

B. Generic solutions in the Jordan frame

It should be, above all, noted that when a space–time manifoldME@ ḡ# ~the Einstein frame!
with the metric ~11! is conformally mapped into another manifoldMJ@g# ~the Jordan frame!,
equipped with the same coordinates, according to the law

gmn5F~r!ḡmn , ~26!

it is easily verified that a horizonr5h in MJ passes into a horizon of the same order inME, a
center (r 50) and an asymptotic (r→`) in MJ pass into a center and an asymptotic, respectiv
in ME if the conformal factorF(r) is regular~i.e., finite, at least C2-smooth and positive! at the
corresponding values ofr. A regular center passes to a regular center and a flat asymptotic to
asymptotic under evident additional requirements.

The validity of Theorems 1, 2 and 2a in the Jordan frame depends on the nature
conformal mapping~5! that connectsMJ@g# with ME@ ḡ#). There are four variants:

I. MJ↔ME,

II. MJ↔~ME8,ME!,

III. ~MJ8,MJ!↔ME,

IV. ~MJ8,MJ!↔~ME8,ME!,

where↔ is a diffeomorphism preserving the metric signature. The last three variants are po
if the conformal factorF vanishes or blows up at some values ofr, which then mark the boundar
of MJ8 or ME8 .

A situation of the kind III or IV can be called aconformal continuation~CC! from ME into MJ.
One can notice that such continuations can only occur for special solutions: to admit a C

singularity in ME should be removable by a conformal factor, i.e., be, in a sense, isotr
Moreover, the factorF should have precisely the behavior needed to remove it.

Thus generic situations are I and II, the latter meaning that the factorF ‘‘spoils’’ the geometry
and creates a singularity. In these cases Theorem 2~or 2a for D53) on horizon dispositions is
obviously valid inMJ.

The manifoldsMJ then cannot have other causal structures than those depicted in Fig. 2
is manifestly true for STT withf (f).0.

Theorem 1 cannot be directly transferred toMJ in any case except the trivial one,F5const. In
particular, minima ofguu ~wormhole throats! can appear. It is only possible to assert witho
specifyingF(c) that wormholes as global entities are impossible inMJ in case I if the conformal
factorF is finite in the whole range ofr, including the boundary values. Indeed, if we suppose
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there is such a wormhole, it will immediately follow that there are two larger asymptotics and a
minimum of r (r) between them even inME, in contrast to Theorem 1 which is valid ther
Wormholes are also absent in case II since we then have a singularity instead of at least on
asymptotics.

The above-mentioned examples of black holes with scalar hair when the potential
positive-definite or the asymptotic is nonflat are also directly transferred toMJ providedF(c) is
regular at least outside the horizon. Given a particlelike solution inME, with a regular center and
positive mass, the condition that a solution with similar properties occurs inMJ can also be easily
formulated, but we will not concentrate on this question here.

Conformal continuations, if any, can in principle lead to other, maybe more complex s
tures. In what follows we will try to answer two questions:~1! under which conditions the
mapping~26! creates a conformal continuation in STT and~2! what can be the nature of confo
mally continued solutions in the Jordan frame.

IV. CONFORMAL CONTINUATION CONDITIONS

A. Preliminaries

A CC from ME into MJ can occur at such values of the scalar fieldf that the conformal factor
F in the mapping~5! is singular while the functionsf , h andU in the action~2! are regular. This
means that atf5f0 , corresponding to a possible transition surfaceStrans, the functionf (f) has
a zero of a certain ordern. We then have in the transformation~6! nearf5f0 in the leading order
of magnitude

f ~f!;Dfn, n51,2,..., Df[f2f0 . ~27!

One can notice, however, thatn.1 leads tol (f0)50 @recall that by our conventionh(f)
[1]. This generically leads to a curvature singularity inMJ, as can be seen from the trace of Eq
~4!:

l ~f!R52S 112
D21

D22
f ffDfafa1

2

D22
@DU1~D21! f fUf# ~28!

~the subscriptf denotesd/df). If the right-hand side of~28! is nonzero atf5f0 at which l
50, the scalar curvatureR is infinite. There can be special choices off and U such that this
singularity is avoided, but we will ignore this possibility and simply assumel .0 at Strans.

Thus, according to~6!, we have nearStrans(f5f0),

f ~f!;Df;e2cAd̄/(d̄11), ~29!

where without loss of generality we choose the sign ofc so thatc→` asDf→0.
In the CC case, the metricḡmn specified by~11! is singular onStrans while gmn5F(c)ḡmn is

regular. There are two opportunities. The first one, to be called CC-I for short, is thatStrans is an
ordinary regular surfacein MJ, where bothgtt5A5FA and2guu5R25Fr 2 ~squared radius of

Strans) are finite.~Hereu is one of the angles that parametrize the sphereSd̄.) The second variant
to be called CC-II, is thatStrans is a horizon in MJ. In the latter case onlyguu is finite, while gtt

50. We will consider these two kinds of CC separately.
In both cases some necessary conditions for CC are easily obtained using the field eq

in ME, but these equations describe the system only on one side ofStrans. Another Einstein frame
may be built for the region beyondStrans, but in this case there arises the problem of matching
solutions obtained in two nonintersecting regions. Therefore to prove sufficient conditions f
existence of solutions inMJ, which are regular on and nearStrans, we have to deal with the field
equations inMJ.
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B. Continuation through an ordinary sphere „CC-I…

Given a metricḡmn of the form ~11! in ME, a CC-I can occur if

F~c!5u f u22/d̄;1/r 2;1/A ~30!

as c→`, while the behavior off is specified by~29!. The surfaceStrans, being regular in the
Jordan frame, is singular inME (r 2;A→0): it is either a singular center if the continuation occu
in an R-region, or a cosmological singularity in the case of a T-region.

The following theorem is valid:
Theorem 3: Consider scalar-vacuum configurations with the metric (17) andf5f(q) in the

theory (2) with h(f)[1 and l(f).0. Suppose that f(f) has a simple zero at somef5f0 , and
uU(f0)u,`. Then

(i) there exists a solution inMJ, smooth in a neighborhood of the surfaceStrans(f5f0), which
is an ordinary regular surface inMJ; and

(ii) in this solution the ranges off are different on different sides ofStrans.

Proof: Let us begin with item (i i ): given a CC-I, we will show thatdf/dqÞ0 atf5f0 , so
that f0 is not a maximum or minimum off(q).

Indeed, it can be deduced from the conditions~29! and ~30! and Eq.~14! that nearStrans

r ~r!;~r2r0!1/D, ~31!

wherer5r0 is the location ofStrans. It then follows thatq05q(r0) is finite onStransand bothDf

andq2q0 behave asr d̄ in its neighborhood, hencedf/dq is finite.
With this necessary condition, we can prove item (i ), seeking a solution to Eqs.~19!–~21! in

an appropriate form. Here, the unknowns areA(q), R(q), f(q), while f (f) and U(f) are
prescribed by the choice of the theory. However, sincef (f0)50 andd f /dfÞ0 at f5f0 , we
can treatf( f ) as a known function in a certain neighborhood off 50 and considerf (q) as an
unknown instead off(q).

Let Stransbe located~without loss of generality! at q50. It is sufficient to find a solution in the
form of a power series inq nearq50. SinceR andA should be finite atStrans, while f 50 and
d f /dqÞ0, we seek a solution in the form

A~q!5 (
n50

`

Anqn/n! 5A01A1q1
1

2
A2q21...,

R~q!5 (
n50

`

Rnqn/n! 5R01R1q1
1

2
R2q21..., ~32!

f ~q!5 (
n51

`

f nqn/n! 5 f 1q1
1

2
f 2q21...,

with nonzeroA0 , R0 , f 1 .
Substituting~32! into the equations, we see that in the senior order of magnitude,O(1), the

coefficientsA1 , R1 , f 2 are expressed in terms ofA0 , R0 , f 1 and U(f0). Next powers ofq
express the further expansion factors in terms of the previous ones. Namely, in every or
magnitudeO(qn), n.0, Eq. ~20! gives

~n21!d̄Rn /R01 f n11 / f 15¯ , ~33!
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where the dots on the right mean various combinations of coefficients of the previous ord
well as power expansion factors of the known functionsU(f) andf( f ). Then, excludingf n11

from the other two equations in the orderO(qn), we obtain a set of two linear algebraic equatio
for An /A0 andRn /R0 :

An /A022Rn /R05¯ ,
~34!

~nd̄12!An /A022d̄~n22!Rn /R05¯ ,

whose determinant is equal to 4(d̄11) for anyn. We conclude that all the expansion factors
~32! are uniquely expressed in terms ofA0 , R0 , f 1 and the expansion factors of the know
functions. This proves the existence of the solution inMJ nearStrans. h

The order of smoothness of the solution obtained depends on the smoothness of the o
functions f , h, U. If they areC`, as is natural for a field theory, then the metric functions anf
are alsoC`.

The existence of such a solution automatically implies the existence of the correspo
solutions on different sides ofStrans in two different Einstein frames. These solutions are spec
being restricted by Eq.~30!. As follows from the proof, the solution inMJ, and hence its coun
terparts in bothME, contain two essential integration constants (R0 and f 1 , whereasA0 deter-
mines the time scale onStrans and can be chosen arbitrarily!.

It is of interest that, under the CC-I conditions, the potentialV(c) in ME ~although it may even
blow up! is inessential: the solution is close to Fisher’s scalar-vacuum solution23 for D54 or its
modification in other dimensions.

In caseD53, as follows from Eq.~15!, a necessary condition for CC isA/r 25const.
One can also notice that no restriction other than regularity is imposed on the potentialU, in

particular,U may vanish in some region or in the whole space.@The conclusion thatU(f)50 on
Strans, obtained in Ref. 3, appeared there due to an additional assumption on the form
expansion ofA(r) in powers ofr. An inspection shows that this assumption is unnecessary.# The
latter case will be used as an explicit example of CC in Sec. VI A.

C. Continuation through a horizon in MJ „CC-II…

Let us suppose that in the metric~17! a certain value ofq ~without loss of generality,q
50) corresponds to a horizon of orderk>1. This means thatq50 is a zero of orderk of the
function A(q).

Suppose now that this horizon isStrans, a transition sphere in a CC. In other words, in t
vicinity of q50, f (f);Df. One can directly verify that the corresponding valuer0 of the
coordinater in the Einstein-frame metric~11! is finite, and we can choose for conveniencer0

50. We thus have nearq50

A~q!5AF;qk, R2~q!5Fr 25O~1!. ~35!

Now, the question is: under which requirements to the original theory a horizon inMJ,
described by~35!, can be a transition sphereStrans. An answer is given by the following theorem

Theorem 4: Consider scalar-vacuum configurations with the metric (17) andf5f(q) in the
theory (2) with h(f)[1 and l(f).0. Suppose that f(f) has a simple zero at somef5f0 .
There exists a solution inMJ, smooth in a neighborhood of the surfaceStrans(f5f0), which is a
Killing horizon in MJ, if and only if

~a! D>4,
~b! f0 is a simple zero of U(f), and
~c! dU/d f.0 at f5f0 .
Then, in addition,
~d! Strans is a second-order horizon, connecting two T-regions inMJ; and
~e! the ranges off are different on the two sides ofStrans.
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Proof: Necessity:Given a CC-II, we will prove items~a!–~e!.
Let us use Eqs.~13!–~15! in ME. In particular, Eq.~15!, which contains onlyA(r) andr (r),

can be rewritten in the form

@r D~A/r 2!8#812~ d̄21!r d̄2250. ~36!

Suppose CC-II atr50 (q50), which is a horizon of orderk in MJ. Let us putd̄.1 and
assume for certainty, without generality loss, thatq.0 asr→10. We havedq/dr;F;1/r 2 and
A/r 2;qk. Therefore the first term in~36! at smallr behaves as

~sign A! @r d̄qk21#8.

Since bothr (r) and q are growing functions ofr, this derivative is non-negative, whereas t
second term in~36! is manifestly positive. The only way to satisfy~36! is to putA,0. In other
words, the horizon is approached from a T-region, where we deal with a Kantowski-Sach
cosmological model.

Such a reasoning applies to approaching the surfaceq50 from either side, therefore th
horizonStrans connects two T-regions and is thus of even order.

We must also ascertain that the orders of magnitude of the two terms in~36! are the same.
This is only true ifk52, as can be easily verified using~31!, which now readsr;r1/D. So item
~d! is proved.

Equations~29! and ~31! can be used to show that the derivativedf/dq is finite at q50,
leading to item~e!.

The behavior ofU(f) can be determined using Eq.~13!, taking into account the relation~8!
betweenU andV and the conditions~35! with k52. We find in this way thatU(f);Df ~i.e., the
potential has a first-order zero! and thatdU/d f.0 at f5f0 , so items~b! and ~c! hold.

It remains to rule outd̄51 ~three-dimensional gravity!. In this case~36! leads to (A/r 2)
5c1 /r 3, c15const. The valuec150 is excluded since we must haveA/r 2;qk. For c1Þ0 we
obtain (qk)85kqk21dq/dr, where due to~35! qk21;1/r→`, whereasq→0 and k>1. This
contradiction proves item~a!.

Sufficiency:As in Theorem 3, the existence of a solution inME, smoothly continued acros
Strans, is proved using Eqs.~19!–~21! and a power expansion for a sought-for solution. It is ag
convenient to treatf( f ) as a known function andf (q) as an unknown, so again the unknowns a
A(q), R(q) and f (q).

Seeking solutions to Eqs.~19!–~21! as series inq, we use again the expansions~32!, but,
under the present necessary conditions, we put thereA05A150 and suppose nonzeroA2 , R0 , f 1 .
With these expansions substituted, the equations again lead to a chain of recurrent relations
coefficients, slightly more involved than in Theorem 3.

In the ordersO(1) andO(q), Eq. ~19! leads to

U~f0!50, ~ d̄1D !A214U f 050

~whereU f 05dU/d f u f 50), henceU f 0.0, in agreement with the necessary conditions. Equa
~20! @O(1)# expressesf 2 in terms of f 1 and df/d f( f 50). Equation~21! @O(1)# gives A2

52(d̄21)/R0
2. Furthermore, Eqs.~19! @O(q2)# and ~21! @O(q)# yield two equations determin

ing R1 andA3 :

~3d̄12!A3 /A212d̄~ d̄11!R1 /R05¯ ,
~37!

3A3 /A212~ d̄21!R1 /R05¯ ,
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where the dots on the right replace combinations of previously known constants. The deter
of this set of linear equations with respect toA3 /A2 andR1 /R0 is 24(2d̄11),0 for d̄.0. We
thus know the coefficients up toR1 , f 2 , A3 . Further coefficients are determined recursively fro
further orders of magnitude in all three equations:

~n1D/d̄!an1n~n21!~ d̄11!bn1~n21!~n1D !cn /D5¯ ,

~n12!d̄bn1cn5¯ , ~38!

~n11!an1n~2n21d̄n2d̄19!bn1~n21!cn5¯ ,

wheren>3 and

an5An11 /A2 , bn5Rn21 /R0 , cn5 f n / f 1 .

The determinant of Eqs.~38! with respect toan , bn , cn is a multiple~with a nonzero coefficient!
of

n@ d̄~n222n27!1n229#. ~39!

This quantity is nonzero for all values ofd̄ andn of interest: it is negative forn53 and positive
for n.3. Therefore Eqs.~38! can be consecutively solved for alln, leading to aC` solution to the
field equations~19!–~21!. The proof is completed. h

Thus the only kind of STT configurations admitting CC-II is aD>4 Kantowski–Sachs
cosmology consisting of two T-regions~in fact, epochs, sincer is a temporal coordinate!, sepa-
rated by a second-order horizon. The qualitative behavior of the metric functionA(q) is shown by
the curve 6b in Fig. 1, and the Carter–Penrose diagram is 6b in Fig. 2. We shall see in th
section that this conclusion does not change even if the same solution undergoes one mo

Unlike CC-I, the present case requires specific properties of the potentialU. It cannot vanish
everywhere, but must behave as const•(f2f0) nearf0 .

Moreover, when these requirements are satisfied, the solution that realizes a CC-II is
more special than in CC-I. Indeed, in the above series expansion, only the constantf 1 is arbitrary,
whereasA2 and R0 are expressed viaU f 0 , a constant depending on the potential in the the
chosen.

V. GLOBAL PROPERTIES OF CONFORMALLY CONTINUED SOLUTIONS

A. Horizon dispositions

A solution to the STT equations maya priori undergo a number of CCs, so that each reg
of MJ between adjacent surfacesStrans is conformally equivalent to someME. However, the global
properties ofMJ with CCs turn out to be not so diverse as one might expect. The main restri
is that Theorems 2 and 2a on horizon dispositions, which have been proved forME, actually hold
in MJ.

A key point for proving this is the observation that the quantityB5A/r 25A/R2 is insensitive
to conformal mappings and is thus common toMJ andME equivalent to a given part ofMJ. We
have here presentedB in terms of the metrics~11! and~17!, respectively, so that it may be treate
as a function of the quasiglobal coordinatesr in ME or q in MJ.

A horizon of orderk in MJ is evidently a zero of the same order of the functionB(q), and
between zeros~if more than one! there must be maxima and minima. Theorem 2 rests on the
that B(r) cannot have a regular minimum inME due to Eq.~22!. Hence it follows thatB(q)
cannot have a regular minimum in any region ofMJ equivalent to a particularME. A minimum can
thus take place only on a transition surfaceStrans between two such regions. Consider Eq.~21!
rewritten in terms ofB(q) @an analogue of~22! in MJ]:
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f @R4Bqq1~ d̄12!R3RqBq12~ d̄21!#1R4f qBq50. ~40!

Assuming thatq50 is Strans and simultaneously an extremum ofB(q) and taking into accoun
Theorems 3 and 4, we can suppose that the Taylor expansions ofB, f , R nearq50 begin with the
terms

B5B01 1
2 B2q21¯ ,

f 5 f 1q1¯ , ~41!

R5R01R1q1¯ ,

with nonzerof 1 and R0 . Substituting~41! into ~40!, we find in the senior order of magnitud
O(q):

B252~ d̄21!/R0
4 . ~42!

Thusq50 is a maximum ofB(q)—in particular, ifB050, we are dealing with CC-II, andStrans

separates two T-regions.
The lack of minima ofB(q) means that there can be at most two simple zeros, withB.0

between them, or one double zero outside whichB,0.
We thus obtain the following theorem, extending Theorem 2 to Jordan frames of arb

STT:
Theorem 5: In the theory (2), D>4, under the conditions l(f).0 and h(f).0, configura-

tions with the metric (17) and the fieldf5f(q) can have at most two simple horizons (and the
is then anR-region between them), or one double horizon separating twoT-regions.

There certainly can be a single simple horizon, as in the Schwarzschild or de Sitter s
times, or no horizons at all. Theorem 5 means that, precisely as in GR, the list of possible
structures of scalar-vacuum configurations in STT is exhausted by the list presented in Sec
systems with a cosmological constant inD-dimensional GR.

The situation is still simpler forD53: in this case a CC~more precisely, CC-I! is only
possible under the conditionB5constÞ0, which excludes horizons. A single horizon can exist, b
there is then no CC.

B. Multiple CCs, singularities and wormholes

A full classification of STT solution behaviors is beyond the scope of this article; we
instead outline some new features appearing in STT formulated inMJ as compared with GR o
with the Einstein-frame formulation of STT, in particular, in connection with conformal cont
ations. For simplicity, we will use the STT parametrization such thath[1.

A singularity in MJ can emerge due to the behavior of the conformal factorF5u f u22/d̄ at
points whereME is regular. The most evident case is thatf→` at some value off, thenF→0, and
we obtain bothA5gtt→0 andR25guu→0.

Two kinds of singularities can appear in an ‘‘anti-gravitational’’ region wheref ,0, that is,
beyond a CC surface. The first one occurs iff blows up whilec is finite. Using the relation~6!
betweenf andc, one easily finds that this is only possible when, at largeufu,

f ~f!'2
D22

4~D21!
f2, ~43!

i.e., when thef field is asymptotically conformally coupled to the curvature. The singularit
then again connected withF→0 that leads to zeroA(q) andR(q).

Another kind of singularity is more generic and occurs where
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l ~f!5 f 1
D21

D22 S d f

df D 2

→0. ~44!

Recall that we adhere to the assumptionl .0 in the whole article. In the case~44!, the conformal
factor F is finite providedf Þ0 but its derivatives generically blow up:

dF

du
52

2

d̄Al ~f!

d f

df

dc

du

(u is any admissible coordinate inME), which can only be finite ifdc/du→0 at the sameu. So,
a value off where l→0 is generically a singular sphere of finite radius. Recall also Eq.~28!
showing that, again generically, the scalar curvatureR is infinite wherel 50. Special solutions
where such a sphere is regular are not completely excluded but are not considered here.

Under the assumptionl .0, there cannot be more than two values off where CCs are
possible, i.e., those wheref 50 andd f /dfÞ0; if they do exist, one hasf .0 between them.
Indeed, if the functionf (f),0 between two zeros, it has to pass a minimum whered f /df50,
hencel ,0, contrary to our assumption.

This does not mean, however, that a STT solution cannot contain more than two CC
point is thatf as a function of the radial coordinate is not necessarily monotonic, so there c
two or more CCs corresponding to the same value off; see the second example in Sec. VI. B
there can be no more than one CC-II due to Theorem 5: other CCs in the same solution,
belong to type CC-I and occur in a T-region.

Though, multiple CCs can appear in rather special~if not artificial! situations since the very
existence of a CC imposes restrictions on the solution parameters, such as~30! for CC-I. A
transition surfaceStransPMJ corresponds to a singularityr 50 in ME, therefore an Einstein-frame
manifold ME, describing a region between two transitions, should contain ‘‘two centers,’’ m
precisely, two values of the radial coordinate~say,r! at whichr (r)50. This property, resembling
that of a closed cosmological model, is quite generic due tor 9<0 in Eq.~14!, but a special feature
is that the conditions~30! should hold at both centers.

Another generic~and more usual! behavior ofME is that r varies from zero to infinity. Let
there be a family of such static solutions and an STT withf (f) having a simple zero. Then, b
Theorem 3, there is a subfamily of solutions admitting CC-I. A particular solution from
subfamily can come beyondStrans either to one of the above-mentioned types of singularities,
if ‘‘everything is quiet,’’ to another spatial asymptotic and will then describe a static, travers
wormhole. Each of the asymptotics can be either flat@if U(f)→0], or anti-de Sitter@if U(f)
→const,0]. Thus wormholes are among generic structures that emerge due to conforma
tinuations.

VI. EXAMPLES

We will present two explicit examples of configurations with CC-I. The first example is
known and is given here to illustrate the generic character of wormholes appearing due to C
second one is a three-dimensional periodic structure with an infinite sequence of CCs.

A. Conformal scalar field in GR

Conformal scalar field in GR can be viewed as a special case of STT, such that, in E~2!,
D54 and

f ~f!512f2/6, h~f!51, U~f!50. ~45!

After the transformation~5! gmn5F(c)ḡmn with
                                                                                                                



lar
the

the

h

at
ularity

d

f

6111J. Math. Phys., Vol. 43, No. 12, December 2002 Scalar-tensor gravity and conformal continuations

                    
f5A6 tanh~c1c0!/A6), c05const,
~46!

F~c!5cosh2@~c1c0!/A6#,

we obtain the action~1! with D54 andV[0, describing a minimally coupled massless sca
field in GR. The corresponding static, spherically symmetric solution is well known: it is
Fisher solution.23 In terms of the harmonic radial coordinateuPR1 , specified by the condition
guu52gtt(guu)2, the solution is5

dsE
25e22mudt22

k2e2mu

sinh2~ku! F k2du2

sinh2~ku!
1dV2G ,

~47!

c5Cu,

wheredV25du21sin2 udw2, m ~the mass!, C ~the scalar charge!, k.0 andu0 are integration
constants, andk is expressed in terms ofm andC:

k25m21C2/2. ~48!

In the caseC50, k5m we recover the Schwarzschild solution, as is easily verified using
coordinater52k/(12e22ku). The metric~47! takes the form~11! with A(r)5(122k/r)m/k and
r 2(r)5r2(122k/r)12m/k.

Another convenient form of the solution is obtained in isotropic coordinates: wity
5tanh(ku/2), Eqs.~47! are converted to

dsE
25A~y!dt22

k2~12y2!2

y4A~y!
~dy21y2dV2!,

~49!

A~y!5U12y

11yU
2m/k

, c5
C

k
lnU11y

12yU.
The solution is asymptotically flat atu→0 (y→0), has no horizon whenCÞ0 ~as should be

the case according to the no-hair theorem! and is singular at the center (u→`, y→120, c
→`).

A feature of importance is the invariance of~49! under the inversiony°1/y, noticed probably
for the first time by Mitskevich.24 Due to this invariance, the solution~49! considered in the range
y.1 describes quite a similar configuration, but nowy→` is a flat asymptotic andy→110 is a
singular center. An attempt to unify the two ranges ofy is meaningless due to the singularity
y51. We shall see that such a unification, leading to a wormhole, is achieved when the sing
is smoothed out inMJ in caseC5A6m due to the conformal factor.

The Jordan-frame solution for~45! is described by the metricds25F(c)dsE
2 and thef field

according to~46!. It is the conformal scalar field solution,4,25 its properties are more diverse an
can be described as follows~putting, for definiteness,m.0 andC.0):

~1! C,A6m. The metric behaves qualitatively as in the Fisher solution: it is flat aty→0
(u→0), and bothgtt and r 25uguuu vanish aty→1 (u→`)—a singular attracting center. A
difference is that here the scalar field is finite:f→A6.

~2! C.A6m. Instead of a singular center, aty→1 (u→`) one has a repulsive singularity o
infinite radius:gtt→` and r 2→`. Again f→A6.

~3! C5A6m, k52m. Now the metric andf are regular aty51; this is Strans, and the
coordinatey provides a continuation. The solution acquires the form
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ds25
~11yy0!2

12y0
2 F dt2

~11y!2 2
m2~11y!2

y4 ~dy21y2dV2!G ,
~50!

f5A6
y1y0

11yy0
,

where y05tanh(c0 /A6). The rangeuPR1 , describing the whole manifoldME in the Fisher
solution, corresponds to the range 0,y,1, describing only a regionMJ8 of the manifoldMJ of the
solution~50!. The properties of the latter depend on the sign ofy0 .5 In all cases,y50 corresponds
to a flat asymptotic, wheref→A6y0 , uy0u,1.

~3a! y0,0. The solution is defined in the range 0,y,1/uy0u. At y51/uy0u, there is a naked
attracting central singularity:gtt→0, r 2→0, f→`. Such singularities have been mentioned
Sec. V B as a characteristic feature of solutions for conformally and asymptotically confor
coupled scalar fields, see Eq.~43!.

~3b! y0.0. The solution is defined in the rangeyPR1 . At y→`, we find another flat spatia
infinity, where f→A6/y0 , r 2→` and gtt tends to a finite limit. This is awormhole solution,
found for the first time in Ref. 5 and recently discussed by Barcelo and Visser.9

~3c! y050, f5A6y, yPR1 . In this case it is helpful to pass to the conventional coordin
r , substitutingy5m/(r 2m). The solution

ds25~12m/r !2dt22
dr2

~12m/r !2 2r 2dV2,

~51!
f5A6m/~r 2m!

is the well-known BH with a conformal scalar field.4,25 The infinite value off at the horizonr
5m does not make the metric singular since, as is easily verified, the energy-momentum
remains finite there. This solution turns out to be unstable under radial perturbations.26

Case 3 belongs to variant III in the classification of Sec. III B, and the whole manifoldMJ can
be represented as the union

MJ5MJ8øStransøMJ9 , ~52!

whereMJ8 is the regiony,1, which is, according to~46!, in one-to-one correspondence with th
manifold ME of the Fisher solution~47!. The ‘‘antigravitational’’@ f (f),0# regionMJ9 (y.1) is
in similar correspondence with another ‘‘copy’’ of the Fisher solution, where, instead of~46!,

f5A6 coth~c/A6!, F~c!5sinh2~c/A6!. ~53!

Static wormhole solutions have also been found9 for more general nonminimally couple
massless scalar fields in GR, represented as STT where

f ~f!512jf2, h~f!51, U~f!50 ~54!

with j5const.0. In full agreement with the observations of Sec. V B, there appear wormh
similar to ~50!, but, in the casej, 1

6, some of the conformally continued solutions possess sin
larities connected withl (f)512j(126j)f3→0. In the casej. 1

6 all continued solutions de
scribe wormholes.

All the wormhole solutions mentioned in this section prove to be unstable under r
perturbations,27 which seems to be a common feature of transitions to regions withf ,0, where
the effective gravitational constant becomes negative. This problem deserves further st
similar instability was pointed out by Starobinsky28 for cosmological models with conformally
coupled scalar fields.
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B. A solution with multiple CCs

Trying to obtain a simple analytical solution, we chooseD53 and the functionsf (f) and
h(f) in the action~2! corresponding to conformal coupling:

f ~f!512f2/8, h~f![1. ~55!

The f2c connection according to~6! ~with a proper choice of the integration constant! and the
conformal factorF(c) in ~5! may be written as

f5A8 tanh~c/A8!,
~56!

F~c!5cosh2~c/A8! for f2,8,

f5A8 coth~c/A8!,
~57!

F~c!5sinh2~c/A8! for f2.8.

A solution inMJ, including regions withufu larger and smaller thanA8, is built from solutions in
different ME with CC through the surfacesStrans on whichf258.

Let us first construct a solution in the Einstein frame, to be put into correspondence to a
the regions~56! and ~57! in MJ, in such a way as to avoidc50, since otherwise we sha
encounter a singularity due toF(c)50 in the region~57!. We will use the metric in the form~11!

and Eqs.~13!–~15! with d̄51.
As follows from the aforesaid, to provide a CC we must choose a solution to~15! in the form

A~r!5cAr 2~r!, cA5const, ~58!

wherecA.0 andcA,0 correspond to static and cosmological solutions, respectively.
By ~31!, nearStrans (r5rc) the function r (r) behaves as (r2rc)

1/D. Accordingly, let us
choose this function as follows:

r ~r!5r 0~12x4!1/3, x5r/r0 ,
~59!

r05const.0.

Thus a CC-I can occur atx561.
Now, Eq. ~14! makes it possible to findc~r!, or equivalentlyc(x):

63
dc

dx
5

2xA92x4

12x4 . ~60!

Choosing the plus sign and integrating, we find

c~x!52
&

3
ln~12x2!1c1~x!1c0 , ~61!

wherec0 is an integration constant while the functionc1 is analytic and finite for alluxu<1:

c1~x!5arcsin~x2/3!1& ln
~11x2!@92x21A8~92x4!#

91x21A8~92x4!
. ~62!

The potentialV(c) as a function ofx is found from~13!:
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V~c!52
cAr 0

2

r0
2

x2

~12x4!1/3. ~63!

This completes the solution inME, specified in the range21,x,1. All the constituent functions
are even. The potentialV(c) is well-defined due to monotonicity ofc(x) in each half-range 0
,uxu,1. At possible CCs,x561, c→`, and the minimum value ofc is c(0)5c0 ; assuming
c0.0, we make sure thatc.0 everywhere.

The corresponding solutions in the Jordan frame are different forf,A8 andf.A8, accord-
ing to ~56! and ~57! where we put for certaintyf.0.

The solution inMJ for f,A8, obtained fromME using~56!, occupies inMJ a certain region
M0 parametrized byxP(21.11). The solution can be continued through the surface, say,x51 to
f.A8; to do that one can, i.e., consider the metric coefficients as functions off and analytically
continue them beyond the valuef5A8. However, one cannot do that explicitly since the tra
scendental equation~61! cannot be resolved with respect tox.

In the new regionM1 , which can again be parametrized byxP(21,11), another ‘‘copy’’ of
the Einstein-frame solution~58!–~63! is valid. To make sure that this is the same solution as
one used inM0 , let us consider the transition between them and recall the proof of Theor
~sufficiency!. Namely, there is a unique solution inMJ nearStrans ~in the form of a power series in
q) if the functionsf (f) andU(f) and the constantsA0 , R0 and f 1 are specified. In our casef (f)
is given, andU(f) is not known explicitly but its existence follows from the existence of
analytic continuation in terms off. So it is sufficient to show that the constantsA0 , R0 and f 1 ,
calculated as the limiting values ofA5AF, R5rAF and d f /dq, respectively, from the two
solutions, are finite and coincide with each other. A direct inspection shows that this is inde
case if all the parameters of the solutions are the same, includingc0 .

In M1 the fieldf reaches its maximum atx50,

fmax5A8 coth~c0 /A8!, ~64!

and returns to the valueA8 on the other end of the region. One more CC leads to one more re
M2 with f,A8 and so on. The same happens starting fromx521 of the initial regionM0 . We
obtainan infinite sequence of regions Mi , i PZ, where adjacent regions are connected by CCs

FIG. 3. The behavior off(q), R(q), U(f(q)) in the model of Sec. VI B with multiple CCs, in the casec05A8, on a
segment of the infinite sequence of regionsMi . The latter are separated by vertical linesq5qi corresponding to the
surfacesStrans. The potentialU(f) is shown in an arbitrary scale.
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regions with even and odd numbersi , one hasf,A8 and f.A8, respectively. Each region
MiPMJ corresponds to its own Einstein-frame manifoldMEi , described by the solution~58!–~63!
with singularities atx→61.

The whole manifoldMJ can be parametrized by a unique ‘‘radial’’ coordinate: it can be, e
the quasiglobal coordinateq used in Theorem 3, or the proper lengthl 5*dq/AA; both quantities
take finite values on the transition surfaces fromMi to Mi 11 and change monotonically insideMi .

The manifoldMJ is thus nonsingular and has the topologyR3R3S1: an infinitely long static
tube with a periodically changing diameter. This is true ifcA.0, when we deal with a static
model. One can identify any twoMi with the numbersi of equal parity, and this leads to th
topologyR3S13S1, in other words, two-torus times the time axis. IfcA,0, thenq is a temporal
coordinate,l becomes proper time, and the solution describes a (211)-dimensional cosmology
with a periodically and isotropically~sinceA}R2) changing scale factor. The spatial section
R3S1, but any two points on thet axis (t is now spacelike! may be identified, and we obtain
periodically ‘‘breathing’’ two-torus.

The properties of the model are illustrated in Fig. 3.
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A large class of nonlocal equations and nonlocal charges for the Harry Dym hier-
archy is exhibited. They are obtained from nonlocal Casimirs associated with its
bi-Hamiltonian structure. The Lax representation for some of these equations is
also given. ©2002 American Institute of Physics.@DOI: 10.1063/1.1512974#

I. INTRODUCTION

The following nonlinear partial differential equation,

wt5~w21/2!xxx , ~1!

is known as the Harry Dym equation~see Ref. 1 for a review!. It can also be written in the
following equivalent forms:

v t5
1
4v

3vxxx ,

ut5~uxx
21/2!x ,

for v5221/3w21/2 and uxx5w, respectively. This equation was obtained by Harry Dym a
Martin Kruskal as an evolution equation solvable by a spectral problem based on the
equation instead of the Schro¨dinger equation. This result was reported in Ref. 2 and rediscov
independently in Refs. 3 and 4. The Harry Dym equation shares many of the properties typ
the soliton equations. It is a completely integrable equation which can be solved by the in
scattering transform.5–7 It has a bi-Hamiltonian structure and an infinite number of conserva
laws and infinitely many symmetries.8,9

The nonlinear hyperbolic equation, which we call the Hunter–Zheng equation,

~ut1uux!xx5
1
2~ux

2!x ,

or the nonlocal version

wt52~]22w!wx22~]21w!w ~2!

for uxx5w, has the same bi-Hamiltonian structure as the Harry Dym equation. The com
integrability of ~2! was established in Ref. 10 as well its connection with the Camassa–H
equation;11 the former is the high-frequency limit of the latter. Due to the presence of the
tiderivative]21 the Hunter–Zheng equation~2! is nonlocal.

a!Electronic mail: brunelli@fsc.ufsc.br
b!Electronic mail: gatcosta@mtm.ufsc.br
61160022-2488/2002/43(12)/6116/13/$19.00 © 2002 American Institute of Physics
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As we will describe the Harry Dym equation~1! and the Hunter–Zheng equation~2! belong
to the same hierarchy of flows, which we will call the Harry Dym hierarchy. The Hunter–Zh
equation is a member of the positive order equations in this hierarchy while the Harry
belongs to the negative order equations. Hierarchies of negative order equations were con
previously through the use of the negative powers of the recursion operator.12–14Usually, while the
positive order equations are local the negative order ones are nonlocal. For the Harry
hierarchy we have the opposite situation, all the positive order equations are nonlocal.

We will show the existence of two new hierarchies of integrable nonlocal equations asso
with the Harry Dym hierarchy besides the Hunter–Zheng one. In fact the existence of two
local Casimirs operators implies some sort of degeneracy for the positive order equations.

The paper is organized as follows. In Sec. II we review the bi-Hamiltonian formulatio
integrable evolution equations emphasizing the role played by the Casimirs or distinguished
tionals of the Hamiltonian operators. We find one more nonlocal Casimir for the mod
Kortweg–de Vries equation. In Sec. III we obtain new nonlocal equations as well nonlocal ch
for the Harry Dym hierarchy. In Sec. IV we discuss the Lax representation of these equation
conclusions are given in Sec. V.

II. Bi-HAMILTONIAN SYSTEMS AND CASIMIRS

Central to our discussion is the concept of the bi-Hamiltonian formulation of an integ
evolution equation8,9

ut5K1@u#5D1

dH2

du
5D2

dH1

du
.

WheneverD1 andD2 are compatible this implies the existence of an infinite hierarchy of hig
order commuting bi-Hamiltonian systems,

ut
~n!5Kn@u#5D1

dHn11

du
5D2

dHn

du
with nPZ, ~3!

where the higher order conservation lawsHn@u# are shared by all members of the hierarchy. T
hierarchy of equations can be generated by the recursion operator

R5D2D1
21,

since

Kn115RKn .

Also, using

dHn11

du
5R†

dHn

du
, ~4!

whereR†5D1
21D2 is the adjoint ofR, as a recursion scheme we can obtain the higher Ham

niansHn .
We call any functionalHC@u# a Casimir ~or distinguished functional! of the Hamiltonian

operatorD if

D dHC

du
50.

As a consequence any Hamiltonian system havingD as a Hamiltonian operator,
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ut5D dH

du
,

hasHC as a conserved charge. In fact

ḢC5$HC ,H%5E dxE dy
dHC

du~x,t !
$u~x,t !,u~y,t !%

dH

du~y,t !
52E dxS D dHC

du D dH

du
50.

When one of the conservation laws in~3! is a Casimir, let us say ofD1 , the hierarchy of equations
stops except if the Hamiltonian operatorD2 has at least one Casimir.

The Kortweg–de Vries~KdV! equation

ut5uxxx13uux

has the following series of conservation laws:

H05E dx u,

H15E dx
1

2
u2,

H25E dx
1

2
~u32ux

2!,

],

and the two compatible Hamiltonian operators

D15],
~5!

D25]31u]1]u.

From ~3! we get

ut
~0!5D1

dH1

du
5D2

dH0

du
5ux ,

ut
~1!5D1

dH2

du
5D2

dH1

du
5uxxx13uux ,

ut
~2!5D1

dH3

du
5D2

dH2

du
5uxxxxx15uuxxx110uxuxx1

15

2
u2ux ,

]

and apparently we cannot extend this recursion procedure for negatives values ofn in ~3! sinceH0

is a Casimir ofD1 andD2 appears to have only trivial local distinguished functionals@see Eq.~9!#.
Now, the modified KdV equation~mKdV!

ut5uxxx1
3
2u

2ux

has the following bi-Hamiltonian form:
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ut5D1

dH2

du
5D2

dH1

du
,

where

D15],
~6!

D25]31]u]21u],

and

H15E dx
1

2
u2,

H25E dxS 1

8
u42

1

2
ux

2D .

Of course,H05* dx u is the Casimir ofD1 , howeverD2 in ~6! admits a nontrivial nonloca
Casimir,15

HC5E dx cos~]x
21u!.

Here we will define the skew-adjoint antiderivative]21 acting on functionsu, which satisfyu
→0 asuxu→`, by

~]x
21u![~]21u!~x!5E

2`

1`

dy e~x2y!u~y!, ~7!

where

e~x2y!5H 1/2 for x.y,

21/2 for x,y.

From now on we will omit thex subscript in~7!. It is easy to verify that for functionsA and
B of u we have the property

E dx A~]21B!52E dx~]21A!B.

Now

dHC

du
5]21~sin~]21u!!

and it is easy to show thatD2(dHC /du)50. From~3! we get, forn521,22,..., a hierarchy of
negative order equations
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ut
~0!5D1

dH1

du
5D2

dH0

du
5ux ,

ut
~21!5D1

dH0

du
5D2

dH21

du
50,

~8!

ut
~22!5D1

dH21

du
5D2

dH22

du
5sin~]21u!,

]

whereH21[HC . Introducing the potential functioncx5u the last equation in~8! is the sine-
Gordon equation

cxt5sinc.

BesidesH0 and HC we have found that the Hamiltonian operatorD2 also has the following
nonlocal Casimir:

HC8 5E dx sin~]21u!~]21 cos~]21u!!,

which will generate another negative order hierarchy of equations.
Returning to the KdV equation, if we set

u522c21cxx ,

the second Hamiltonian structure in~5! can be written as

D25c22]c2]c2]c22,

and it follows that

c2, c2~]21c22!, c2]21~c22~]21c22!! ~9!

are non trivial kernels ofD2 . We will not discuss this system here but the Casimirs associated
~9! will give rise to nonlocal KdV hierarchies of equations~see Refs. 12–14, and referenc
therein! and nonlocal charges. Instead, we will perform this analysis in a systematic way fo
Harry Dym hierarchy in Sec. III.

III. THE HARRY DYM HIERARCHY

The Harry Dym equation~1! is a completely integrable bi-Hamiltonian system8,9

wt5D1

dH21

dw
5D2

dH22

dw
,

where

D15]3,
~10!

D25w]1]w,

and
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H215E dx~2w1/2!,

H225E dxS 1

8
w25/2wx

2D .

It is well known thatH21 is a Casimir ofD2 and that

H052E dx w ~11!

is a Casimir ofD1 . So, we can consider equations going ‘‘up’’ and ‘‘down’’ in Eq.~3!. However,
we also have the following nonlocal Casimirs forD1 :

H0
~1!5E dx~]21w!,

~12!

H0
~2!5E dx~]22w!.

In this way ~3! gets degenerated forn.0,

]

wt
~2,a!5D1

dH2
~a!

dw
5D2

dH1
~a!

dw
,

wt
~1,a!5D1

dH1
~a!

dw
5D2

dH0
~a!

dw
,

~13!

wt
~0!5D1

dH0
~a!

dw
5D2

dH21

dw
50,

wt
~21!5D1

dH21

dw
5D2

dH22

dw
5~w21/2!xxx ,

],

wherea50, 1, 2 andH0
(0)5H0 .

Using ~4! and ~13! as a recursion scheme we can obtain, after a straightforward but te
calculation, the first few Hamiltonian functionals and flows for the Harry Dym hierarchy e
tions. Forn<0 the first conserved charges, some of them already calculated in Ref. 10, ar
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H05H0
~0!5E dx~2w!,

H215E dx 2w1/2,

H225E dx
1

8
w25/2wx

2,

~14!

H235E dx
1

16S 35

16
w211/2wx

42w27/2wxx
2 D ,

H245E dx
1

32S 5005

128
w217/2wx

62
231

8
w213/2wx

2wxx
2 15w211/2wxx

3 1w29/2wxxx
2 D ,

]

and the first flows are

wt
~0!50,

wt
~21!5~w21/2!xxx ,

wt
~22!5 1

4~
5
4w

27/2wx
22w25/2wxx!xxx , ~15!

wt
~23!5 1

16~
1155

32 w213/2wx
42 231

4 w211/2wx
2wxx1

21
2 w29/2wxx

2 114w29/2wxxxwx22w27/2wxxxx!xxx ,

].

For n.0 we have to consider the three casesa50, 1, 2 separately. So, fora50 we get the
nonlocal conserved charges

H1
~0!5E dx

1

2
~]21w!2,

H2
~0!5E dx

1

2
~]22w!~]21w!2,

H3
~0!5E dxF1

4
~]22w!2~]21w!21

1

8
~]21~]21w!2!2G ,

~16!

H4
~0!5E dxF 1

12
~]22w!3~]21w!22

1

4
~]21w!2]22~~]22w!~]21w!2!

2
1

8
~]22w!~]21~]21w!2!2G ,
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H5
~0!5E dxF 1

48
~]22w!4~]21w!22

1

8
~]22w!2~]21w!2~]22~]21w!2!

2
1

16
~]22w!2~]21~]21w!2!21

1

16
~]22~]21w!2!2~]21w!2

1
1

16
~]21w!2~]22~]21~]21w!2!2!1

1

8
~]21~~]21w!]21~]21w!2!!2G ,

],

and the first flows are

wt
~1,0!52wx ,

wt
~2,0!52~]22w!wx22~]21w!w,

~17!
wt

~3,0!52 1
2~]22w!2wx22~]22w!~]21w!w1 1

2~]22~]21w!2!wx1w~]21~]21w!2!,

].

Note that the flowwt
(2,0) is the Hunter–Zheng equation~2!.

From ~10! we can construct the recursion operator

R5D2D1
2152w]221wx]

23, ~18!

and since

~]w1w]!215 1
2w

21/2]21w21/2

we have

R215 1
2]

3w21/2]21w21/2.

The flows~15! and ~17! can now be expressed as the action of powers ofR acting on the seed
equationwt

(1,0)5D2 (dH0
(0)/dw)52wx ,

wt
~n!5Rn21~2wx!, n50,21,22,..., ~19!

wt
~n,0!5Rn21~2wx!, n51,2,3,... . ~20!

To be able to perform the steps in the iteration given in~19! and ~20! we must point out that for
any functionf (x,t) we can use instead of~7! the representation16,12,13,14

~]21f !~x,t !5E
2`

1`

dy e~x2y! f ~y,t !1c~ t !,

wherec(t) is a function oft. Here we setc50 for anyf, exceptf 50 where we usec52. In this
way,

wt
~0!5R21~2wx!50

and

wt
~21!5R22~2wx!5 1

2]
3w21/2]2105~w21/2!xxx ,
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resulting in the Harry Dym equation.
For n.0 anda51, 2 we have the seed equations

wt
~1,1!5D2

dH0
~1!

dw
522w2xwx ,

~21!

wt
~1,2!5D2

dH0
~2!

dw
52xw1

x2

2
wx ,

where we have used (]2n1)5xn/n, for n.0. The respective flows follow from the analog of~20!
and they read fora51,

wt
~1,1!522w2xwx ,

wt
~2,1!522wx~]21w!2wx~]21~x~]21w!!!,

~22!

wt
~3,1!5~2w1wx]

21!S x

2
]21~]21w!22~]21w!]21~x~]21w!! D ,

]

and fora52,

wt
~1,2!52xw1

x2

2
wx ,

wt
~2,2!52w~ 1

2x
2~]21w!2~]23w!!1wx]

21~ 1
2x

2~]21w!2~]23v!!,

~23!

wt
~3,2!5~2w1wx]

21!S 1

2
]21~]22w!21

1

2
]23~]22w!22~]24w!~]21w!2

x2

4
]21~]21w!2

1
1

2
~]21w!]21~x2~]21w!! D ,

].

Again using~4! and ~13! recursively we obtain the nonlocal conserved charges

H1
~1!52

1

2 E dx ]21~]21w!2,

H2
~1!5

1

2 E dx ]21~~]21w!]21~]21w!2!,

~24!

H3
~1!52

1

2 E dx ]21F1

4
~]21~]21w!2!21~]21w!]21~~]21w!]21~]21w!2!G ,

]

and
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H1
~2!52

1

2 E dx@~]22w!21~]22~]21w!2!#,

H2
~2!5

1

2 E dxF1

3
~]22w!31]22~~]21w!~]21~]21w!2!!1~]24w!~]21w!2G ,

~25!

H3
~2!52

1

2 E dxF 1

12
~]21w!41

1

4
~]22~]21w!2!21

1

4
]22~]21~]21w!2!2

1
1

2
~]21w!2]22~]22w!22~]21w!2]21~~]24w!~]21w!!

1]22~~]21w!]21~~]21w!~]21~]21w!2!!!G ,
].

These hierarchies of integrable equations become extremely nonlocal as we proceed furthe
recursion.wt

(2,1) andwt
(2,2) are equations of the Hunter–Zheng type. It is interesting to note

Eqs.~17!, ~22!, and~23! are in the positive direction~positive flows! of recursion while the Harry
Dym equations~15! are in the negative direction~negative flows!. Of course this is due to the fac
that the recursion operator~18! is completely nonlocal. That is to be compared with the us
situation we have for the KdV recursion operatorR5]212u1ux]

21.
After obtaining Eqs.~22! and~23! we became aware of Refs. 17 and 18 where these equa

are given implicitly in a recursion form. However, we have shown here their origin from
Casimirs~11! and ~12!.

IV. LAX PAIRS

The equations in the Harry Dym hierarchy are integrable since they are bi-Hamilto
Therefore we hope to find a Lax representation for all of them. In fact, the Lax pair for the H
Dym equation~1! is given by1,19,20

L5
1

w
]2, ~26!

B522w23/2]31 3
2w

25/2wx]
2,

]L

]t
5@B,L#. ~27!

Calculating the square-root ofL ~aided by a computer algebra program! we obtain

L1/25b]1a01a1]211a2]221a3]231a4]241a5]251O~]26!,

where

b5w21/2,

a052 1
2bx ,

a15
1

22 bxx2
1

23 bx
2b21,
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a252
1

23 bxxx2
3

24 bx
3b221

3

23 bxbxxb
21,

a35
1

24 bxxxx2
3

23 bxbxxb
211

37

25 bx
2bxxb

222
61

27 bx
4b232

13

25 bxx
2 b21,

a452
1

25 b~5!1
5•7

25 bxxbxxxb
211

5

24 bxbxxxxb
212

3•5•7

26 bx
2bxxxb

222
3•5•13

26 bxbxx
2 b22

1
32
•5•7

26 bx
3bxxb232

3•5•29

28 bx
5b24,

a55
1

26 b~6!2
7•17

27 bxxx
2 b212

19

24 bxxbxxxxb
211

43

22 bxxbxxxbxb
222

3•5

26 bxb~5!b
21

1
241

27 bx
2bxxxxb

222
569

26 bx
3bxxxb

231
413

27 bxx
3 b222

3•1973

28 bx
2bxx

2 b23

1
3•4493

29 bx
4bxxb

242
7•17•67

210 bx
6b25,

whereb (n)5dnb/dxn. Now it can be easily recognized that

B522~L3/2!>2 ,

and ( )>2 stands for the differential part of the pseudodifferential operator with terms]n, n>2. In
this way ~27! assumes the nonstandard Lax representation

]L

]t
522@~L3/2!>2 ,L#. ~28!

Similarly the whole negative hierarchy of Eq.~15! can be obtained from

]L

]t
522n@~L ~2n11!/2!>2 ,L#, n50,1,2,... . ~29!

The charges~14! ~except by multiplicative constant factors! follow from

H2~n11!5TrL ~2n21!/2, n51,2,3,..., ~30!

where ‘‘Tr’’ is the usual Adler trace.21 We have used~29! and~30! to perform a check of Eq.~15!
and charges~14!, respectively.

Through ‘‘gauge transformations’’22 the Lax representation for the Harry Dym hierarchy~27!
and~28! can be brought in other forms. For instance, the Harry Dym equation also follows

L85]L]21,

with the nonstandard Lax representation

]L8

]t
522@~L83/2!>1 ,L8#, ~31!

or even from a standard Lax representation
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]L9

]t
522@~L93/2!>0 ,L9#,

with

L95w1/2Lw21/2.

So, for the negative flows of the Harry Dym hierarchy we have a complete Lax represent
However, for the positive flows the Lax representation picture is not so complete. It is ea
check that the Lax operator~26! with

]L

]t
522@B~ i ,a!,L#, i 51,2,3, . . . , a50,1,2, ~32!

yields the first equationsw(1,a), for the positive flows~17!, ~22!, and~23!, if we choose

B~1,0!5 1
2],

B~1,1!52 1
41 1

2x],

B~1,2!5 1
4x2 1

4x
2],

respectively. For the equationsw(2,a) in ~17!, ~22!, and~23! we have obtained, fori 52 in ~32!, the
operators

B~2,0!5 1
4~]22w!]1 1

4]
21~]22w!]2,

B~2,1!5 1
4~]21~x]21w!!]1 1

4]
21~]21~x]21w!!]22 1

4]
21~]21w!,

B~2,2!5 1
4~]21~ 1

2x
2]21w2]23w!!]1 1

4]
21~]21~ 1

2x
2]21w2]23w!!]22 1

4]
21x~]21w!

1 1
4]

21~]22w!1 1
8]

22xw.

In fact B(2,0) was first obtained in Ref. 10 but in the nonstandard Lax representation~31!. An
interesting question is how, if possible at all,B( i ,a) in ~32! and the nonlocal chargesHn

(a) in ~16!,
~24!, and~25! can be obtained from the same Lax operator~26!, i.e., what are the analogs of Eq
~29! and~30! for the positive Harry Dym flows? In the literature we can find Lax representat
for equations obtained by the inverse recursion operator,23,24 such as of the Harry Dym type
However, these Lax representations are not given only in terms ofL and use some sort of ansat
Also, the authors do not try to obtain the relation between the nonlocal charges and th
operator. These intriguing points are under investigation and will appear elsewhere.

V. CONCLUSION

We have given a unified picture of the Harry Dym hierarchy of equations which includes
as well a series of three nonlocal hierarchies of equations. We have shown, using t
Hamiltonian formulation of integrable models, how the nonlocal Casimirs lead to these non
equations and also to three series of nonlocal charges. Some of the nonlocal equations a
local charges obtained in this way are new. This procedure can also be applied for the Kd
mKdV equations since both equations, in accordance with the discussion in Sec. II, also hav
Casimirs associated with the third-order Hamiltonian operatorD2 . We believe that the treatmen
given here for the Harry Dym hierarchy unifies, within the bi-Hamiltonian formulation of
integrable models, some of the results scattered in the literature. We have also tried to und
these nonlocal equations and charges from a Lax representation. Even though we have
explicitly Lax pairs for some of the positive flows a unique Lax representation is still missin
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Infinite symmetries and conservation laws
V. Rosenhausa)

Department of Mathematics and Statistics, California State University,
Chico, California 95929

~Received 13 December 2001; accepted 2 September 2002!

We will consider partial differential equations of a variational problem whose sym-
metry group generators contain arbitrary function~s! of one or more independent
variables. Unlike the Second Noether Theorem we will be interested in the case of
arbitrary functions of not all base variables. We will study the relations between
infinite symmetries and local conservation laws. We will demonstrate that infinite
symmetries may lead to a finite number of conservation laws through appropriate
boundary conditions, or to a set of additional constraints for the function and its
derivatives. ©2002 American Institute of Physics.@DOI: 10.1063/1.1517394#

I. INTRODUCTION

The problem of the relationship between symmetries and conservation laws has a long
starting from the famous work by Emmy Noether.1 A thorough study of the Noether theory wit
many references can be found in Ref. 2; see also Refs. 3, 4 and references therein, and th
by Lanczos.5 Numerous applications of the Noether Theorem are presented in Ref. 6.

In this paper we will discuss a problem somewhat intermediate between the First an
Second Noether Theorems:1 the correspondence between infinite-dimensional symmetries
conservation laws. We consider differential equations inRn that admit infinite symmetry algebra
with operators depending on an arbitrary function of independent variables, as well as its d
tives. We will be interested in systems corresponding to a well defined variational~action! func-
tional, where symmetries of the functional~variational or Noether symmetries! are at the same
time symmetries of our differential system~see, e.g., Ref. 2!. Our goal is to generate conservatio
laws associated with infinite symmetries through the Noether mechanism. By a conservatio
we will mean such a continuity equation, which leads to nonvanishing conserved~in time! quan-
tity. We will consider a general situation of an arbitrary function ofk,n independent variables, o
their combinations, for a differential equation with a Lagrangian of any order, and will follow
ideology of Ref. 7 where the case of an arbitrary function of one variable:x or t was studied for
first order Lagrangians. We will demonstrate that considered infinite symmetries do not lead
infinite number of conservation laws. We will also show that boundary conditions determin
existence of a finite number of conservation laws.

The paper is organized as follows.
In Sec. II we review the First and Second Noether Theorems. We point out the ess

difference between the case of arbitrary functions of all independent variables of the base
and arbitrary functions of some of the base variables.

In Sec. III we consider the case of an arbitrary function of one independent variable
introduce a ‘‘strict’’ boundary condition as a necessary condition for the existence of conserv
laws.

In Sec. IV we analyze the correspondence between infinite symmetries and conservatio
for Lagrangian differential equations of the second order associated with one-dimensional i
symmetries.

In Sec. V a special situation of an arbitrary function of time is considered and the ro
boundary conditions for the generation of conservation laws is discussed.

a!Electronic mail: vrosenhaus@csuchico.edu
61290022-2488/2002/43(12)/6129/22/$19.00 © 2002 American Institute of Physics
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In Sec. VI we deal withthe correspondence between infinite symmetries and conservatio
for higher order differential equations.

In Sec. VII the generalizations for arbitrary functions of several variables are discussed

II. FIRST AND SECOND NOETHER THEOREMS

Let

S5E L~xi ,u,ui ,...!dnx, ~1!

be the action functional, whereL is the Lagrangian density,xi5(x,y,...,t), i 51,...,n are inde-
pendent variables andu is a dependent variable,ui[]u/]xi , ui j []2u/]xi ]xj . Then

E~L ![v~x,u,ui ,ui j ,...!50 ~2!

is the equation of motion, whereE is the Euler–Lagrange operator,

E5
]

]u
2Di

]

]ui
1(

i< j
DiD j

]

]ui j
1¯ . ~3!

Consider an infinitesimal transformation of the form~see, e.g., Ref. 2!

x8 i5xi1«j i~x,u,uj ,...!1O~«2!,
~4!

u85u1«h~x,u,uj ,...!1O~«2!,

where« is a small parameter. The operator corresponding to this transformation is

X5j i
]

]xi 1h
]

]u
1z i

]

]ui
1¯ . ~5!

Instead ofX, we consider a canonical operatorXa with a5h2j iui :

Xa5a
]

]u
1(

i
~Dia!

]

]ui
1(

i< j
~DiD ja!

]

]ui j
1¯ ,

i , j 51,...,m11. ~6!

In the future we will make use of the Noether identity~see Ref. 8 or Ref. 4, or Ref. 9 for a versio
used here!:

Xa5aE1(
i 51

DiRa i , ~7!

where

Ra i5a
]

]ui
1H(

k> i
~Dka!2a(

k< i
DkJ ]

]uik

1H (
k> j > i

~D jDka!2 (
k< i< j

~D ja!Dk1a (
j <k< i

DJDkJ ]

]ui jk
1¯ . ~8!

Variation of the functionalS under a transformation~4! with the symmetry vectora and operator
Xa is
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dS5E @XaL1Di~j iL !#dnx. ~9!

Let the canonical transformationXa be a variational~Noether! symmetry,

XaL5DiMi . ~10!

The application of Noether identity~7! to L gives

XaL5av1Di~Ra iL !. ~11!

Combining~11! with ~10! we will obtain

Di~Mi2Ra iL !5av, ~12!

meaning that on the solution manifold (v50, Div50,...) we get acontinuity equation

Di~Mi2Ra iL !80. ~13!

Thus, any variational symmetrya ~in case of a finite Lie group! leads to a corresponding conse
vation law ~continuity equation! ~13!; which is a statement of the First Noether Theorem.1

Consider now a case of an infinite group where the symmetry vectora is of the form

a5ap~x!1biDip~x!1ci j DiD j p~x!1¯ , ~14!

with an arbitrary function p(x). Applying the Noether identity~7! to L,

XaL5abEb~L !1Di~Ra iL !, ~15!

and transforming the rhs of~15! we obtain

abEb~L !5~abp1bi
bDip1ci j

b DiD j p1¯ !vb

5pabvb1Di~bi
bvbp!2pDi~bi

bvb!1¯

5p~x!$abvb2Di~bi
bvb!1DiD j~ci j

b vb!1¯%1Di~bi
bvbp1¯ !. ~16!

Thus,

abEb~L !5p~x!ã~v,Div,...!1DiKi , ~17!

whereKi;p(x),Dkp(x),..., and

ã5abvb2Di~bi
bvb!1DiD j~ci j

b vb!1¯ . ~18!

Sincea is a variational symmetry using~10!, ~15! and ~17! we obtain

DiMi5p~x!ã1DiKi1Di~Ra iL !, ~19!

or

DiTi5p~x!ã, ~20!

whereTi5Mi2Ki2Ra iL;p(x),Dkp(x),... . Equation~20! has the form of a continuity equa
tion, but in general for arbitraryp(x) it does not imply a conservation law. Let us integrate~20!
over the whole space inRn and apply the Gauss theorem:
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E
D

DiTi dV5E
]D

Tini ds5E
D

p~x!ãdV. ~21!

Consider the following cases.
~I! p5p(x1,x2,...,xn), where p(x) is an arbitrary function of all variables in Rn.
In this case it is possible to choose the functionp(x) such that it vanishes on the bounda

together with its derivatives,

p~x!u]D5Dkp~x!u]D5¯50. ~22!

ThenTi u]D50. From Eq.~21! using arbitrariness ofV we can write

DiTi50, ~23!

and from~20! we conclude that

ã~v,Div,...!50. ~24!

Therefore,

abvb2Di~bi
bvb!1DiD j~ci j

b vb!1¯50, ~25!

whereab,bi
b ,ci j

b ,..., arecomponents of the symmetrya ~14!. Equation~25! expresses the Secon
Noether Theorem, which states that in case of an infinite variational symmetry group n
equations of the original differential system are independent.1

As an interesting example of the Second Noether Theorem in action, let us consider a
quence of local gauge invariance for the Yang–Mills functional,

S5
1

4 E Gmn
a Gamnd4x, ~26!

where

Gmn
a 5An,m

a 2Am,n
a 1ggabcAm

b An
c , Am

a 5Am
a ~xn!, m,n51,...,4, a,b,c51,...,N;

g is a coupling constant,gabc are structure constants of the~simple! gauge groupH of dimension
N @for H5SU(2): gabc5«abc ; we are using the adjoint representation ofH]. The Yang–Mills
equationsvam[Eam(L)50 take the form

drGamr1ggabcAr
bGcmr50, ~27!

or

DrGamr50, ~28!

where

Dr5dr1g@Ar , #5dr1ggabcAr
b ~29!

is the covariant derivative operator, anddr[d/dxr. The Yang–Mills equations~27! are invariant
under a local gauge transformation,

Am
a →Am

a 2
1

g
]mwa~x!1gabcwbAm

c ~30!
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~in infinitesimal form! with arbitrary functionswa5wa(x). As was shown in Ref. 10 the gaug
transformations~30! can be extended to potentialsAm

a and their derivatives to give rise to gene
alized symmetries~Lie–Bäcklund tangent transformation group! with the following operator:

Xw5am
a ]

]Am
a 1~dram

a !
]

]Am,r
a 1¯ , ~31!

where

am
a 52

1

g
dmwa1gabcwbAm

c ~32!

andwa5wa(x,Am
a ,Am,a

a ,Am,ab
a ,...) arearbitrary functions of all variables. For the coefficients

the symmetry vectora ~14! we can write

am
a 5amb

a wb1bmb
an dn~wb!, amb

a 5gbc
a Am

c , bmb
an 52

1

g
db

adm
n . ~33!

Thus, the Second Noether theorem~25! takes the form

amb
a vam2dn~bmb

an vam!50, ~34!

which together with Eq.~33! gives rise to the equation

DmDrGbmr50. ~35!

The expression~35! is a known identity, which was noted to be related to the Second Noe
Theorem.11 Here we aimed to show how the direct application of the Second Noether Theor
a gauge invariant functional leads to the condition showing that the set of Yang–Mills equati
under-determined; quite important for the quantization of the gauge fields fact.11

~II ! p5p(u1 ,u2 ,...,uk), where u i5u i(x), i 51,...,k, xPRn, k,n are some independen
combinations ofx1,x2,...,xn, andp(u) is arbitrary.

In this case we generally cannot choosep(x) such that it would vanish on the bounda
together with its derivatives. Therefore,Ti;p(x)→” 0 asxi→]D and we can no longer conclud
that ã50. We will start consideration of this situation with a casek51 ~Ref. 7! when generators
of a variational symmetry group contain an arbitrary function of one of independent variab
their combination.

III. INFINITE SYMMETRY ALGEBRA WITH ARBITRARY FUNCTION „S… OF ONE
VARIABLE. NOETHER AND ‘‘STRICT’’ BOUNDARY CONDITIONS

Let us consider functionsu5u(x) defined on a regionD of (m11)-dimensional space–tim
D,Rm11, x5(x1,x2,...,xm,t). Consider a Noether symmetrya of the form

a5ag~u!1bg8~u!1cg9~u!1¯1hg ( l )~u!,
~36!

u5u~x!.

We have

dS5E E
D

dLdm11x5E E
D

~XaL !dm11x5E E
D

(
i 51

m11

~DiMi !d
m11x50. ~37!

Therefore,
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E E (
i 51

m11

MiU
xi→]D

dmx50, ~38!

and it follows from~37! that the following conditions forMi should be satisfied:

Mi~x,u,...!uxi→]D50, ; i 51,...,m11. ~39!

We will call Eqs.~39! theNoether boundary conditions. Equations~39! are usually satisfied for a
‘‘regular’’ asymptotic behavior,u,ui→0 asx→6`, or for periodic solutions.

Let us consider now another type of boundary condition related to the existence of
conserved quantities. Integrating Eq.~12! over the space (x1,x2,...,xm), and restricting ourselves
to the solution manifold, we get

E E dx1 dx2...dxm (
j 51

m11

D j~M j2Ra jL !80, ~40!

or

E E dx1 dx2...dxm Dt~Mt2RatL !8E E dx1 dx2
¯dxi 21 dxi 11

¯dxm(
i 51

m

Di~Ra iL2Mi !.

~41!

Sincea is a Noether symmetry, we can apply the Noether boundary condition~39!. Requiring also
that the lhs of~41! vanishes on the solution manifold7 we obtain

Ra1Lux1→]D5Ra2Lux2→]D5¯RamLuxm→]D50. ~42!

We will call Eqs. ~42! ‘‘ strict’’ boundary conditions.6 Thus, in order for the system to posse
~Noether! local conserved quantities, conditions~39! and ~42! have to be satisfied. Note that i
caseL5L(x,u,uj ) ~second order PDE’s! strict boundary conditions~32! take a simple form,

a
]L

]ui
U

xi→]D

50, ; i 51,...,m. ~43!

If both Noether~39! and strict boundary conditions~42! are satisfied the Noether conservati
laws will take a form

E E dx1 dx2
¯dxm Dt~Mt2RatL !80. ~44!

Let us look at the structure of possible Noether conservation laws~44! corresponding to an infinite
Lie group on the example of the caseL5L(xi ,u,ui).

IV. CONSERVATION LAWS FOR EQUATIONS WITH FIRST ORDER LAGRANGIANS.
NONSINGULAR SPATIAL TRANSFORMATION

Writing Mt as

Mt5Ag~u!1Bg8~u!1Cg9~u!1¯1Hg ( l )~u!,
~45!

u5u~x1,...,xm,t !,

and using Eqs.~44! and ~36! we obtain
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DtE E dx1 dx2
¯dxmFgS A2a

]L

]ut
D1g8S B2b

]L

]ut
D1¯1g ( l )S H2h

]L

]ut
D G80. ~46!

Let us rewrite Eq.~46! in the form

DtE E dx1 dx2
¯dxm@a0g~u!1a1g8~u!1a2g9~u!1¯1alg

( l )~u!#80, ~47!

where

a05A2a
]L

]ut
, a15B2b

]L

]ut
,¯ ,al5H2h

]L

]ut
. ~48!

Let us go over to new integration variables (x1,x2,...,xm)→
c

(x1,x2,...,xp21,u,xp11,...,xm),
corresponding to the transformationc̃ of the whole space Rm11, (x1,x2,...,xm,t)

→
c̃

(x1,x2,...,xp21,u,xp11,...,xm,t). In case of a nonsingular one-to-one transformat
c, we can invert the functional relation u5u(x1,x2,...,xp,...,xm,t):
xp5wp(x1,x2,...,xp21,u,xp11,...,xm,t) and obtain the Jacobian of the transformationc,
J5 ]wp/]u . From ~47! we get

DtE E du dx1 dx2
¯dxp21 dxp11

¯dxm@ ā0g~u!1ā1g8~u!1ā2g9~u!1¯1ālg
( l )~u!#80,

~49!

where

āi5ai

]wp

]u
, for i 50,...,l , p51,...,m. ~50!

For the integral~49! we use integration by parts and either choose an arbitrary functiong~u! to
vanish on the boundary along with all its derivatives up to the orderl 21,

g~u!uu→]D5g8~u!uu→]D5g9~u!uu→]D5¯5g ( l 21)~u!uu→]D50, ~51a!

or impose anadditional boundary condition,

]u
i ākuu→]D50, ; i 50,...,k21, k51,...,l , ~51b!

where]u[]/]u. Then we get

DtE E du dx1 dx2
¯dxp21 dxp11

¯dxm g~u!@ ā02]uā11]u
2ā21¯1~21! l]u

l āl #80.

~52!

Sinceg~u! is arbitrary we can use a known theorem of analysis~see, e.g., Ref. 12!: if a(x),p(x)
are continuous functions on@a,b# and *a

ba(x)p(x)dx50 for arbitrary p(x) such thatp(a)
5p(b)50 thena(x)50 for all x in @a,b#.

Therefore,

DtE E dx1 dx2
¯dxp21 dxp11

¯dxm@ ā02]uā11]u
2ā21...1~21! l ]u

l āl #80. ~53!

Equation~53! gives an expression of a conserved quantity corresponding to an infinite sym
a of the form ~36! whereāi , i 50,...,l are determined by coefficients of the symmetry vectoa
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and Eqs.~48!, ~50!, and all Noether~39!, strict ~43! and additional boundary conditions~51a! or
~51b! are satisfied. In case additional boundary conditions~51b! are not satisfied, symmetries wit
arbitrary functionsg~u! whose derivatives do not vanish on the boundary may lead accordin
~49! only to the following ‘‘conservation statements’’~which in fact may impose additional con
straints on the system instead of producing any conserved quantities!:

DtE E dx1 dx2
¯dxp21 dxp11

¯dxm āi80, i 50,...,l . ~54!

Thus, an infinite symmetry group with an arbitrary function of independent variables~36! in case

of a nonsingular transformation (x1,x2,...,xm)→
c

(x1,x2,...,xp21,u,xp11,...,xm), leads to just one
conservation law~53! provided that additional boundary conditions~51a! or ~51b! are satisfied.

Let us consider a special case whenu5xp anda is a Noether symmetry of the form6

a5aq~xp!1bq8~xp!1cq9~xp!1¯1hq( l )~xp!, ~55!

and

Mt5Aq~xp!1Bq8~xp!1Cq9~xp!1¯1Hq( l )~xp!. ~56!

In accordance with Eqs.~53! if either conditions~51a! or ~51b! are satisfied we will obtain the
following conservation law:

DtE E dx1
¯dxp21 dxp11

¯dxmH S A2a
]L

]ut
D

2DxpS B2b
]L

]ut
D1¯1~21! lDxp

l S H2h
]L

]ut
D J 80. ~57!

In the case for which additional conditions~51b! are satisfied,

S B2b
]L

]ut
D U

xp→6`

5S C2c
]L

]ut
D U

xp→6`

5DxpS C2c
]L

]ut
D U

xp→6`

5¯5S H2h
]L

]ut
D U

xp→6`

5DxpS H2h
]L

]ut
D U

xp→6`

5¯5Dxp
l 21S H2h

]L

]ut
D U

xp→6`

50, ~58!

the conservation law~53! takes a simple form,

DtE E dx1
¯dxp21 dxp11

¯dxmS A2a
]L

]ut
D80. ~59!

According to~54! if conditions~51b! @or ~58!# are not satisfied then the symmetry~55! with q(x p)
such that its derivatives do not vanish on the boundary (xp→6`) may lead only to the relations

DtE dyS A2a
]L

]ut
D8DtE dyS B2b

]L

]ut
D8¯8DtE dyS H2h

]L

]ut
D80 ~60!

(dy[dx1
¯dxp21dx p11

¯dxm). Obviously some relations in~60! imply additional constraints
on the function and its derivatives rather than conservation laws.

As an example let us consider the following differential equation:

v52uxt1ututt2uyy50, ~61!
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with the Lagrangian

L52uxut2
1

6
ut

31
1

2
uy

2 . ~62!

A symmetry transformation for the equation~61! is

X5b~x!
]

]t
1@2b8~x!t12b9~x!y2#

]

]u
. ~63!

We will consider a canonical form of this transformation,

Xa5a
]

]u
1~Dia!

]

]ui
1(

i< j
~DiD ja!

]

]ui j
1¯ ,

~64!
a52b8~x!t12b9~x!y22b~x!ut ,

whereb(x) is an arbitrary function. CalculatingXaL we can see that transformation~64! is a
divergence symmetry,

XaL5DiMi , ~65!

Mx522b8~x!u, M y54b9~x!yu, Mt52b~x!L22b-~x!y2u22tb9~x!u.

Transformation~64! is a Noether symmetry (dS50) if the following ~Noether! boundary condi-
tions are satisfied@see~39!#:

b8~x!u~x,y,t !Ux→`

x→2`
50, yu~x,y,t !Uy→`

y→2`
50, uiU t→`

t→2`
5tuU t→`

t→2`
50, ~66!

or

u~x,y,t !Ux→`

x→2`
5yu~x,y,t !Uy→`

y→2`
5ui~x,y,t !U t→`

t→2`
5tu~x,y,t !U t→`

t→2`
50. ~67!

‘‘Strict’’ boundary conditions~43! take the form

@2b8~x!t12b9~x!y22b~x!ut#utUx→`

x→2`
5@2b8~x!t12b9~x!y22b~x!ut#uyUy→`

y→2`
50,

~68!

and for a functionb(x) vanishing on the boundary along with its first and second derivatives
get

utUx→`

x→2`
5y2uyUy→`

y→2`
50. ~69!

Thus, for the equation~61! with symmetry transformation~64! we have@see~65!, ~55!, ~56!#

a52ut , b52t, c52y2, d50, ~70!

A5uxut1ut
3/62uy

2/2, B50, C522tu, D522y2u.

The conservation law~53! corresponding to the symmetry~64! will have the form

DtE dyH 2S ut
3

3
1

uy
2

2 D 2~2tux1tut
2!x1~22tu12y2ux1y2ut

2!xx22y2uxxxJ 80. ~71!

In case the additional boundary conditions~58! are satisfied,
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t~2ux1ut
2!ux→6`5~22tu12y2ux1y2ut

2!ux→6`5~22tu12y2ux1y2ut
2!xux→6`

5~22y2u!ux→6`5~22y2ux!ux→6`5~22y2uxx!ux→6`50,

or

u,ux ,ut ,uxx ,uxtUx→6`
50, ~72!

the conservation law~71! will take the form

DtE E dx dyS ut
3

3
1

uy
2

2 D 80. ~73!

Note that~73! is the energy conservation law for Eq.~61!. This observation is the reflection of
more general rule for Noether symmetriesX of the form ~55! with an arbitrary function ofxp.
When additional boundary conditions~58! are satisfied the conservation law~59! associated with
this symmetry will be the energy conservation law, if it belongs in the equivalence class with
translation:X;]/]t; or momentum conservation law, ifX;]/]x. Obviously, these two specia
cases do not cover the whole variety of different situations. In case the additional bou
conditions ~71! are not satisfied, and derivatives of the functionb(x) do not vanish on the
boundary the symmetry~55! may lead only to the relations~60!

DtE dyFut
3

3
1

uy
2

2 G8DtE dy@2tux1tut
2#8DtE dy@22tu12y2ux1y2ut

2#8DtE dy@2y2u#80.

~74!

It is easy to see that Eqs.~74! imply additional constraints on the functionu and its derivatives
instead of determining a system of conservation laws, and in this case infinite symmetries
lead to any local conserved quantities.

Consider a situation when transformationc is singular. If ]u/]xp50, but 'kP(1,...,m):
]u/]xkÞ0, we can changexp↔xk, and generate a corresponding conservation law~57! or ~59!. If
]u/]xp50 ;pP(1,...,m) thenu5t; this is a case of an arbitrary function of time in the gene
tors of the symmetry group. This case is considered in the next section.

V. INFINITE SYMMETRY ALGEBRA WITH ARBITRARY FUNCTION OF TIME.
LAGRANGIAN OF THE FIRST ORDER

Let xi5(x1,x2,...,xm,t). Consider a Noether symmetrya of the form

a5ag~ t !1bg8~ t !1cg9~ t !1¯1hg ( l )~ t ! ~79!

for a differential equation with the Lagrangian functionL5L(xi ,u,ui). As earlier,@see~37!# we
have

dS5E E dLdm11x5E E XaL dm11x5E E DiMi dm11x50. ~80!

Assuming that the Noether and strict boundary conditions~39! and ~43! are satisfied we will
obtain the corresponding Noether conservation law in the form

E E dx1 dx2
¯dxm Dt~Mt2RatL !80. ~81!
                                                                                                                



con-

ed on

ints

s
with

m

6139J. Math. Phys., Vol. 43, No. 12, December 2002 Infinite symmetries and conservation laws

                    
Let us demonstrate that for the symmetry~79! the equation~81! does not lead to an infinite
number of conservation laws.7 In fact, we will show that symmetry with anarbitrary function of
time does not correspond to any conservation law. As earlier, writingMt as

Mt5Ag~ t !1Bg8~ t !1Cg9~ t !1¯1Hg ( l )~ t !, ~82!

and using Eq.~79!, we obtain from Eq.~81!

DtE E dx1 dx2
¯dxmFg~ t !S A2a

]L

]ut
D1g8~ t !S B2b

]L

]ut
D1¯1g ( l )~ t !S H2h

]L

]ut
D G80.

~83!

Sinceg(t) is an arbitrary function we get

g~ t !: E E dx1 dx2
¯dxmDtS A2a

]L

]ut
D80,

g8~ t !: E E dx1 dx2
¯dxmH A2a

]L

]ut
1DtS B2b

]L

]ut
D J 80,

g9~ t !: E E dx1 dx2
¯dxmH B2b

]L

]ut
1DtS C2c

]L

]ut
D J 80, ~84!

......

g ( l 11)~ t !: E E dx1 dx2
¯dxmH H2h

]L

]ut
J 80.

The system~84! can be written in the form

E E dx1 dx2
¯dxmH A2a

]L

]ut
J 8E E dx1 dx2

¯dxmH B2b
]L

]ut
J

8...8E E dx1 dx2
¯dxmH H2h

]L

]ut
J 80. ~85!

Obviously, Eqs.~85! in general determine not a system of conservation laws but additional
straints. Thus, Noether symmetries~empowered by strict boundary conditions! with arbitrary
functions of time instead of conservation laws lead to a set of additional constraints impos
the functionu and its derivatives. Therefore the satisfaction of the strict boundary conditions~43!
@or more general conditions~42!# becomes critical in the sense of avoiding additional constra
~85!. Correspondingly, we have three possible situations.

~1! Strict boundary conditions~43! ~or ~42! can be satisfied for an arbitrary functiong(t). Then
the system~85! as a consequence of an infinite symmetry~79! provides additional constraint
that the functionu and its derivatives must satisfy. No conservation laws are associated
the symmetry. This situation can obviously be materialized for the cases when the syste~85!
is not overly restrictive.

~2! Strict boundary conditions~43! can be satisfied for some particular functionsg(t). In this case
the ~finite! symmetry~79! will lead to the Noether conservation law~83! in agreement with
the First Noether Theorem. Additional constraints~85! will not appear in this picture.
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~3! Strict boundary conditions cannot be satisfied for any functionsg(t). In this case a conse
quence of an infinite symmetry will be the fact that the solutions of the original differe
equation with the strict boundary conditions~43! do not exist.

As an example of the system with one-dimensional infinite symmetry algebra, let us co
the equation of nonstationary transonic gas flows,13

2uxt1uxuxx2uyy50, ~86!

with Lagrangian

L52uxut2
ux

3

6
1

uy
2

2
. ~87!

The Lie point symmetry group for the equation~86! was studied in Ref. 14. An infinite set o
conservation laws for this equation is presented in Ref. 6. The symmetry group of the eq
~86! includes a number of infinite subgroups:

~1! X5n~ t !
]

]u
, ~88!

wheren(t) is arbitrary. We have

a5n~ t !, XaL5n8~ t !
]L

]ut
5Dx„2n8~ t !u…, Mx52n8~ t !u, M y5Mz50,

~89!
a51, b5c50, A5B5C50.

The Noether boundary condition~39! here reads as

u~x,y,t !Ux→`

x→2`
50. ~90!

The strict boundary conditions~43! have the form

n~ t !~ut1ux
2/2!Ux→`

x→2`
50, n~ t !uyUy→`

y→2`
50. ~91!

Conditions~91! are easy to satisfy for alln(t). Therefore we are dealing with case~1! and no
conservations laws are associated with this symmetry. Equation~85! takes the form

E E dx dy ux80. ~92!

Obviously, Eq.~92! does not imply any ‘‘additional’’ constraint on the functionu and is automati-
cally satisfied for all Noether symmetries~88! @see the Noether boundary condition~90!#:

~2! X5m~ t !y
]

]u
, ~93!

wherem(t) is arbitrary. We have

a5ym~ t !, XaL5ym8~ t !
]L

]ut
1m~ t !

]L

]uy
5Dx„2m8~ t !yu…1Dy„m~ t !u…,

Mx52m8~ t !u, M y5m~ t !u, Mz50, ~94!

a5y, b5c50, A5B5C50.
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The Noether boundary conditions are

u~x,y,t !Ux→`

x→2`
5u~x,y,t !Uy→`

y→2`
50. ~95!

The strict boundary conditions are

ym~ t !~ut1ux
2/2!Ux→`

x→2`
50, ym~ t !uyUy→`

y→2`
50. ~96!

Conditions~96! can be satisfied for anym(t). No conservation laws are associated with giv
symmetry transformation. The additional constraint,

E E dx dyyux80, ~97!

is fulfilled for any Noether symmetry@see~95!#:

~3! X5g~ t !
]

]x
1„2g8~ t !x12g9~ t !y2

…

]

]u
, ~98!

g(t) is arbitrary. We have

a52g8x12g9y22gux , Mx52gL22xug922y2ug-, M y54yug9,
~99!

Mt522ug8, a52ux , b52x, c52y2, A5C50, B522u.

In this case the form of Noether and strict boundary conditions depends on the functiong(t).

~a! g(t) is arbitrary:

Noether conditions are

ui ——→
x→6`

0, xu ——→
x→6`

0, yu ——→
y→6`

0, u ——→
t→6`

0. ~100!

Strict conditions are

xut ,xux
2 ——→

x→6`

0, y2uy ——→
y→6`

0. ~101!

No local conservation laws are associated with the Noether transformation~98!. The additional
constraints~85! take the form

E E ux
2 dx dy5E E ~2xux22u!dx dy5E E 2y2uxdx dy80. ~102!

Conditions~102! lead only to a trivial solution (u5ay). Situation~1! does not materialize.

Let us consider now some specific forms ofg(t) @situation ~2!# for which we can weaken ou
‘‘strict’’ boundary conditions~96! in order to avoid restrictions~102!.

~b! g8(t)50, g(t)5c5const.:

Noether conditions are

ui ——→
xi→6`

0. ~103!

For ‘‘strict’’ boundary conditions in addition to~103! we have
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uxuy ——→
y→6`

0. ~104!

According to~83! we will get the following conservation law~conservation of momentum!:

DtE E ux
2dx dy80, ~105!

or

E E ux
2dx dy8const. ~106!

As could be expected, the conservation of momentum corresponds to standard boundary
tions ~103!–~104!.

~c! g9(t)50, g(t)5at, a5const.:

Noether conditions are

ui ——→
xi→6`

0, u ——→
t→6`

0. ~107!

For ‘‘strict’’ boundary conditions in addition to~107! we have

xut ,xux
2 ——→

x→6`

0, uy ——→
y→6`

0. ~108!

The conservation law~83! corresponding to the boundary conditions~107!–~108! has the form

DtE E @2~xux2u!2tux
2#dx dy80. ~109!

As we can see strict boundary conditions~108! determined a nontrivial conservation law.

~d! g9(t)Þ0: In this case we will get the same boundary conditions~100!–~101! as in~a! and the
same additional constraints~102! which do not leave any nontrivial solutions.

Let us note that the transonic gas equation~86! can be obtained from the equation~61! with
the interchangex↔t. The analysis above illustrates the difference in conservation laws bet
these two systems. The strict boundary conditions~42!, critical for the derivation of conservation
laws, clearly distinguish betweenx and t. However, in the situation when boundary conditio
take a ‘‘standard’’ form:~72! or ~103!–~104!, the conservation laws for both systems may cor
spond to similar continuity equations. For example, it can be shown that the conserved de
~73! and ~106! are dual in the sense that their corresponding continuity equations transform
each other by the interchangex↔t. A full analysis of other infinite subgroups of the symmet
group of the nonstationary transonic gas equation~86!, along with corresponding conservatio
laws, will be given elsewhere. Another interesting application of the above approach for fi
conservation laws and asymptotic behavior for systems that admit invariance transformation
arbitrary functions of time, would be the equation of ‘‘short waves.’’4

VI. CONSERVATION LAWS FOR EQUATIONS WITH HIGHER ORDER LAGRANGIANS

Let us now consider the more general case of equation of the order (N11),

L5L~xi ,u,uj ,uj 1 j 2
,...,uj 1 j 2 ...j N

!, ~110!

in Rm11:u5u(x1,x2,...,xm,xm11[t) with the Noether symmetry vector,

a5b0g~u!1b1g8~u!1b2g9~u!1¯1blg
( l )~u!,
                                                                                                                



g

6143J. Math. Phys., Vol. 43, No. 12, December 2002 Infinite symmetries and conservation laws

                    
u5u~xj !, j 51,...,m11. ~111!

As earlier,

XaL5DiMi , ~112!

and sinceL5L(...,uj 1 j 2 ...j N
), then according to formula~6!,

Mt5A0g~u!1A1g8~u!1A2g9~u!1¯1AN1 lg
(N1 l )~u!. ~113!

As in Sec. III, if both Noether~39! and strict boundary conditions~42! are satisfied, correspondin
Noether conservation laws~if any! will take the form~44!

E E dx1 dx2...dxm Dt~Mt2RatL !80. ~114!

Let us derive the expression forRatL. We start with the definition~6!,

XaL5a
]L

]u
1 (

i 51

m11

~Dia!
]L

]ui
1 (

i 1< i 2
~Di 1

Di 2
a!

]L

]ui 1i 2

1 (
i 1< i 2< i 3

~Di 1
Di 2

Di 3
a!

3
]L

]ui 1i 2i 3

1¯1 (
i 1< i 2<...< i N

~Di 1
Di 2

¯Di N
a!

]L

]ui 1i 2 ...i N

, ~115!

and use integration by parts,

(
i 51

m11

~Dia!
]L

]ui
5 (

i 51

m11

Di S a
]L

]ui
D2 (

i 51

m11

aS Di

]L

]ui
D ,

(
i 1< i 2

~Di 1
Di 2

a!
]L

]ui 1i 2

5 (
i 1< i 2

Di 1S ~Di 2
a!

]L

]ui 1i 2
D 2 (

i 1< i 2
~Di 2

a!S Di 1

]L

]ui 1i 2
D

5 (
i 1< i 2

Di 1S ~Di 2
a!

]L

]ui 1i 2
D 2 (

i 1< i 2
Di 2S aDi 1

]L

]ui 1i 2
D

1 (
i 1< i 2

aS Di 2
Di 1

]L

]ui 1i 2
D

5 (
i 1< i 2

Di 1S ~Di 2
a!

]L

]ui 1i 2
D 2 (

i 1> i 2
Di 1S aDi 2

]L

]ui 21i 1
D

1 (
i 1< i 2

aS Di 2
Di 1

]L

]ui 1i 2
D , ~116!

(
i 1< i 2< i 3

~Di 1
Di 2

Di 3
a!

]L

]ui 1i 2i 3

5 (
i 1< i 2< i 3

Di 1S ~Di 2
Di 3

a!
]L

]ui 1i 2i 3
D 1 (

i 1< i 2< i 3
Di 3S aDi 2

Di 1

]L

]ui 1i 2i 3
D

2 (
i 2< i 1< i 3

Di 1S ~Di 3
a!Di 2

]L

]ui 2i 1i 3
D 2 (

i 1< i 2< i 3
a~Di 3

Di 2
Di 1

!
]L

]ui 1i 2i 3

.

......
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The sum of the last terms in each expression gives rise toaE(L), in agreement with~7!,

XaL5aE~L !1Di~Ra iL !. ~117!

Terms withDt have the form (t[xm11):

DtS a
]L

]ut
D1DtS ~Dta!

]L

]utt
2(

j <t
aS D j

]L

]ujt
D D

1DtS ~Dt
2a!

]L

]uttt
2~Dta!(

j <t
D j

]L

]ujtt
2(

i< j
aS D jDi

]L

]ui jt
D D 1¯

5DtH aF ]L

]ut
2 (

j 51

m11

D j

]L

]ujt
1 (

j 1< j 2

D j 2
D j 1

]L

]uj 1 j 2t

2 (
j 1< j 2< j 3

D j 3
D j 2

D j 1

]L

]uj 1 j 2t
2¯G1~Dta!F ]L

]utt
2 (

j 51

m11

D j

]L

]ujtt

1 (
j 1< j 2

D j 2
D j 1

]L

]uj 1 j 2tt
2 (

j 1< j 2< j 3

D j 3
D j 2

D j 1

]L

]uj 1 j 2tt
2¯G

1~Dt
2a!F ]L

]uttt
2 (

j 51

m11

D j

]L

]ujttt
1 (

j 1< j 2

D j 2
D j 1

]L

]uj 1 j 2ttt

2 (
j 1< j 2< j 3

D j 3
D j 2

D j 1

]L

]uj 1 j 2ttt
2¯G1¯J . ~118!

Thus, using~115! and ~117! we get

~119!

where

j 1 , j 2 ,...,j n51,...,m11,

and, obviously,

nmax5N2k21.

Let us analyze the structure of the ‘‘conservation law’’~114!. Following the logic of Sec. IV, we
can rewrite the equation~114! in the form

DtE E dx1 dx2...dxm@a0g~u!1a1g8~u!1a2g9~u!1¯1aN1 lg
(N1 l )~u!#80, ~120!

with corresponding coefficientsaj , determined by coefficientsbj ,Aj from ~111!, ~113! andL. As
in Sec. IV, we can introduce new integration variablesu and make use of the transformationc:

(x1,x2,...,xm)→
c

(x1,x2,...,xp21,u,xp11,...,xm). Conservation law~120! can be given the form
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DtE E du dx1 dx2
¯dxp21 dxp11

¯dxm@ ā0g~u!1ā1g8~u!1¯1āN1 lg
(N1 l )~u!#80,

~121!

where

āi5ai

]wp

]u
,for i 50,...,N1 l . ~122!

Like in the case of Eq.~49! for the integral~121!, we use integration by parts and either choose
arbitrary functiong~u! to vanish on the boundary along with all its derivatives up to the orde
N1 l 21 or impose additional boundary conditions~51!. We will get

DtE E du dx1 dx2
¯dxp21 dxp11

¯dxm g~u!@ ā02]uā11]u
2ā21...1~21!N1 l ]u

N1 l āN1 l #80.

~123!

Using arbitrariness of the functiong~u! as in the derivation of~53! we obtain

DtE E dx1 dx2
¯dxp21 dxp11

¯dxm@ ā02]uā11]u
2ā21¯1~21!N1 l ]u

N1 l āN1 l #80.

~124!

Equation~124! is an expression for a conserved quantity corresponding to an infinite symmea
of the form~111!, andāi , i 50,...,N1 l are determined by coefficients of symmetry vectora and
Mt . Thus, an infinite symmetry group with an arbitrary function of independent variables in
of a nonsingular one-to-one transformationc @if additional boundary conditions~51! are satisfied#
leads to just one conservation law~124!.

In case additional boundary conditions are not satisfied, symmetries with arbitrary fun
g~u! whose derivatives do not vanish on the boundary may lead according to~121! only to the
following ‘‘conservation statements’’~which in fact may impose additional constraints on t
system instead of producing any conserved quantities; in this case infinite symmetries do n
to any local conserved quantities!:

DtE E dx1 dx2
¯dxp21 dxp11

¯dxm ā80, i 50,...,N1 l . ~125!

Let us analyze the structure of the conservation law~114! for the case of infinite symmetry~111!
with u5t,

E E dx1 dx2
¯dxm Dt~Mt2RatL !80. ~126!

Using ~119! we can write

RatL5 (
k50

N21

~Dt
ka!$Sk%, ~127!

whereSk is determined byL; see~119!. From ~111! we have

Dt
ka5Dt

k (
m50

l

bmg (m)~ t !5 (
m50

l

(
q50

k

Ck
q~Dt

k2qbm!g (m1q)~ t !, ~128!

whereCp
q is the number of combinations ofq from p. Using ~127!, ~128! and~113! the ‘‘conser-

vation law’’ ~114! can be given for
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DtE E dx1 dx2...dxmF (
m50

l

(
k50

N21

(
q50

k

Ck
q~Dt

k2qbm!$Sk%g
(m1q)~ t !2 (

m̄50

N1 l

Am̄g (m̄)~ t !G80.

~129!

Let us rewrite the equation~129! in the form

DtE E dx1 dx2...dxmF (
k50

N21

(
q50

k

(
r 5q

q1 l

Ck
q~Dt

k2qbr 2q!$Sk%g
(r )~ t !2 (

n50

N1 l

Ang (n)~ t !G80,

~130!

or

DtE E dx1 dx2...dxm(
n50

N1 l

Bng (n)~ t !80, ~131!

where coefficientsBn are determined from the equation~130!. Since the functiong(t) is arbitrary,
similar to ~84! we obtain the following system:

g~ t !: E E dx1 dx2
¯dxmDtB080,

g8~ t !: E E dx1 dx2
¯dxm$B01DtB1%80,

g9~ t !: E E dx1 dx2...dxm$B11DtB2%80,

~132!
¯

g (N1 l )~ t !: E E dx1 dx2...dxm$BN1 l 211DtBN1 l%80,

g (N1 l 11)~ t !: E E dx1 dx2...dxmBN1 l80,

which is equivalent to the system

E E dx1 dx2...dxmBj80, ; j 51,...,N1 l . ~133!

Equations~133! determine, in general, additional constraints imposed on the functionu and its
derivatives rather than conservation laws. Similar to the situation with the first order Lagra
functions, the fact of whether or not the strict boundary conditions~42! can be satisfied is critica
in order to avoid additional constraints~133!. Again, we have three possible situations.

~1! Strict boundary conditions~42! can be satisfied for the arbitrary functiong(t). The system
~133! provides the additional constraints the functionu and its derivatives must satisfy. No con
servation laws are associated with the symmetry. This situation can be materialized for the
when the system~133! is not overly restrictive.

~2! Strict boundary conditions can be satisfied for some particular functionsg(t). In this case
the ‘‘finite’’ symmetry ~111! will lead to the Noether conservation law~130! in agreement with the
First Noether Theorem. Additional constraints~133! will not appear.

~3! Strict boundary conditions cannot be satisfied for any functionsg(t). Solutions of the
original differential equation with the strict boundary conditions~42! do not exist.
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An interesting example of the equation with infinite symmetry algebra and a higher~third!
order Lagrangian is the potential Kadomtsev–Petviashvili equation; see, e.g., Ref. 15.

VII. ARBITRARY FUNCTION OF TWO OR MORE VARIABLES

Let us consider now a case when the Noether symmetry vector of the equation with
grangian~110! has an arbitrary function of two or more variables:

a5b0g~u1 ,u2 ,...,uk!1 (
q51

k

bq
1 ]qg~u1 ,u2 ,...,uk!1 (

q1 ,q251

k

bq1q2

2 ]q1q2
g~u1 ,u2 ,...,uk!

1¯1 (
qi51

k

bq1q2 ...ql

l ]q1q2 ...ql
g~u1 ,u2 ,...,uk!, ~134!

where

u5u~xj !, j 51,...,m11, l 51,...,k, k,m11,

and

]q5
]

]uq
, ]q1q2

5
]2

]uq1
]uq2

,..., ]q1q2 ...ql
5

] l

]uq1
]uq2

...]uql

. ~135!

As earlier,

XaL5DiMi , ~136!

and sinceL5L(...,uj 1 j 2 ...j N
), then similarly to the formula~113! we get

Mt5A0g~u1 ,u2 ,...,uk!1 (
q51

k

Aq
1]qg~u1 ,u2 ,...,uk!1 (

q1 ,q251

k

Aq1q2

2 ]q1q2
g~u1 ,u2 ,...,uk!

1¯1 (
qi51

k

Aq1q2 ...qN1 l

N1 l ]q1q2 ...qN1 l
g~u1 ,u2 ,...,uk!. ~137!

If the Noether and strict boundary conditions,~39! and ~42!, are satisfied the correspondin
Noether conservation laws~if any! take the form of~114!,

E E dx1 dx2...dxm Dt~Mt2RatL !80. ~138!

We can rewrite the equation~138! in the form

DtE E dx1 dx2
¯dxmFa0g~u1 ,u2 ,...,uk!1 (

q51

k

aq
1 ]qg1 (

qi ,q251

k

aq1q2

2 ]q1q2
g~u1 ,u2 ,...,uk!

1¯1 (
qi51

k

aq1q2¯qN1 l

N1 l ]q1q2¯qN1 l
g~u1 ,u2 ,...,uk!G80, ~139!

with corresponding coefficientsaj , determined by coefficientsbi ,Aj from ~134!, ~137! andL.
Introduce new integration variablesu i , i 51,...,k and consider a transformationc,

(x1,x2,...,xm)→
c

(x1,x2,...,xpi21,u i ,xpi11,...,xm) with k insertsxpi→u i ; i 51,...,k, correspond-
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ing to the transformation c̃ of the whole space Rm11, (x1,x2,...,xm,t)

→
c̃

(x1,x2,...,xpi21,u i ,xpi11,...,xm,t). In case of a nonsingular one-to-one transformationc we
get

DtE E du1 du2¯duk dx1 dx2
¯dxp121 dxp111

¯dxpk21 dxpk11
¯dxm

3F ā0g~u1 ,u2 ,...,uk!1 (
q51

k

āq
1 ]qg1 (

qi ,q251

k

āq1q2

2 ]q1q2
g~u1 ,u2 ,...,uk!1¯

1 (
qi51

k

āq1q2¯qN1 l

N1 l ]q1q2¯qN1 l
g~u1 ,u2 ,...,uk!G80, ~140!

where coefficientsā j are determined byaj and the Jacobian of the transformationc̄. As earlier for
the integral ~140! we will use integration by parts and either choose an arbitrary func
g(u1 ,u2 ,...,uk) to vanish on the boundary along with all its derivatives up to the orde
N1 l 21 or imposeadditional boundary conditions:

āq
j uuq→]D50, j 51,...,N1 l . ~141!

We get

DtE E du1 du2¯duk dx1 dx2
¯dxp121 dxp111

¯dxpk21 dxpk11
¯dxmg~u1 ,u2 ,...,uk!

3F ā02 (
q51

k

]qāq
11 (

qi ,q251

k

]q1q2
~ āq1q2

2 !1¯1~21!N1 l (
qi51

k

]q1q2¯qN1 l
~ āq1q2¯qN1 l

N1 l !G80.

~142!

Using arbitrariness of the functiong(u1 ,u2 ,...,uk) as in derivation of~53! we obtain

DtE E dx1 dx2
¯dxp121 dxp111

¯dxpk21 dxpk11
¯dxmF ā02 (

q51

k

]qāq
11 (

qi ,q251

k

]q1q2
~ āq1q2

2 !

1¯1~21!N1 l (
qi51

k

]q1q2¯qN1 l
~ āq1q2¯qN1 l

N1 l !G80. ~143!

Equation~143! gives an expression of a conserved quantity corresponding to an infinite sym
a of the form~111! whereā j , j 50,...,N1 l are determined by coefficients of symmetry vectora
andMt , with the aid of Eqs.~134!, ~137!, knowing the specific form of transformationC. Noether
strict and additional boundary conditions are assumed satisfied.

Thus, again an infinite symmetry group with an arbitrary function of several indepen
variables in the case of a nonsingular one-to-one transformationc ~if additional boundary condi-
tions are satisfied! leads to just one conservation law~143!. In case additional boundary condition
~141! are not satisfied, symmetries with arbitrary functionsg(u1 ,u2 ,...,uk) whose derivatives do
not vanish on the boundary may lead according to~140! only to the following ‘‘conservation
statements’’~which in fact may impose additional constraints on the system instead of produ
any conserved quantities; in this case infinite symmetries do not lead to any local cons
quantities!:

DtE E du1 du2¯duk dx1 dx2
¯dxp21 dxp11

¯dxm āj80, j 50,...,N1 l . ~144!
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Let us discuss now the situation when transformationc is singular. Since we naturally assume a
u i to be independent, the interesting case to consider isu r5t, 1<r<k. Let uk5t. Then g
5g(u1 ,u2 ,...,uk21 ,t) and analogously to~140!, we get

DtE E du1 du2 ...duk21 dx1 dx2
¯dxp121 dxp111

¯dxpk21

3dxpk11...dxmF ā0g~u1 ,u2 ,...,uk21 ,t !

1 (
q51

k

āq
1 ]qg1 (

qi ,q251

k

āq1q2

2 ]q1q2
g~u1 ,u2 ,...,uk21 ,t !1¯

1 (
qi51

k

āq1q2¯qN1 l

N1 l ]q1q2¯qN1 l
g~u1 ,u2 ,...,uk21 ,t !G80. ~145!

As with the integral~140! we can use integration by parts and either choose an arbitrary fun
g(u1 ,u2 ,...,uk21 ,t) to vanish on the boundary along with all its spatial derivatives up to the o
of N1 l 21 or impose additional boundary conditions~141! with q51,...,k21 to get

DtE E dx1 dx2
¯dxp121 du1 dxp111

¯dxp221 du2 dxp211
¯dxpk2121

3duk21 dxpk2111
¯dxm(

n50

N1 l

Bn~xj !] t
ng~u1 ,u2 ,...,uk21 ,t !80, ~146!

with some coefficientsBn determined from~140!. As in the case with the equation~121! arbitrari-
ness of the functiong ~and its time derivatives! leads us to the system

DtE E dx1 dx2
¯dxp121 du1 dxp111

¯dxpk2121 duk21 dxpk2111
¯dxmBn~xj !80. ~147!

As earlier, the system~147! is a system of additional constraints rather than conservation law
the strict boundary conditions~42! are satisfied for arbitraryg, no conservation law is associate
with the given symmetry. However, the case when conditions~42! can be satisfied only for som
functions g may lead to local conserved quantities. Every such situation when a functig
satisfying~42! still preserves arbitrariness with respect to other variablesu1 ,u2 ,...,uk21 ~but not
t), according to the analysis above, may lead to one conservation law.

Note 1. Conclusions made in Secs. III–VI cover two- and higher-dimensional equat
One-dimensional theories, like mechanics or quantum mechanics fall under the Second N
Theorem~see, e.g., Sec. II!.

Note 2. Arbitrary functions of dependent variables and their derivatives were not consider
the paper.

VIII. CONCLUSIONS

We have shown that infinite symmetries with arbitrary functions of not all independent
ables lead to a finite number of conservation laws. The set of Noether, ‘‘strict’’ and addit
boundary conditions determines the existence of associated nontrivial conservation laws.
bitrary function of spatial variables, or any combination of independent variables with a no
spatial part, may lead to one~nontrivial! conservation law. Arbitrary functions of time in gener
do not correspond to conservation laws; instead they generate a system of additional con
imposed on the function and its derivatives. However, the system of boundary conditions
determine specific form~s! of arbitrary functions that may lead to a finite number of local cons
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vation laws. The difference in roles of arbitrary functions of spatial variables and time is,
ously related to our understanding of~local! conservation laws as those continuity equations t
result in conserved in time quantitiesDt**dx1 dx2...dxm Pt80. The observation that a differen
tial system possesses infinite symmetries corresponding to~at most! a finite number of conserva
tion laws could be an indication of the fact that our description of such a system is ‘‘richer’’
the very system.
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Soliton-like solutions of higher order wave equations
of the Korteweg–de Vries type

E. Tzirtzilakis, V. Marinakis, C. Apokis, and T. Bountis
Department of Mathematics and Center for Research and Application of Nonlinear
Systems, University of Patras, 26500 Patras, Greece

~Received 20 June 2002; accepted 20 July 2002!

In this work we study second and third order approximations of water wave equa-
tions of the Korteweg–de Vries~KdV! type. First we derive analytical expressions
for solitary wave solutions for some special sets of parameters of the equations.
Remarkably enough, in all these approximations, the form of the solitary wave and
its amplitude-velocity dependence are identical to the sech2 formula of the one-
soliton solution of the KdV. Next we carry out a detailed numerical study of these
solutions using a Fourier pseudospectral method combined with a finite-difference
scheme, in parameter regions where soliton-like behavior is observed. In these
regions, we find solitary waves which are stable and behave like solitons in the
sense that they remain virtually unchanged under time evolution and mutual inter-
action. In general, these solutions sustain small oscillations in the form of radiation
waves~trailing the solitary wave! and may still be regarded as stable, provided
these radiation waves do not exceed a numerical stability threshold. Instability
occurs at high enough wave speeds, when these oscillations exceed the stability
threshold already at the outset, and manifests itself as a sudden increase of these
oscillations followed by a blowup of the wave after relatively short time intervals.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1514387#

I. INTRODUCTION

As is well known, the Korteweg–de Vries~KdV! equation represents a first order approxim
tion in the study of long wavelength, small amplitude waves of inviscid and incompressible fl
Furthermore, if one allows the appearance of higher order terms, more complicated wave
tions can be obtained. Such an equation, including second and third order corrections, w
posed in Ref. 1 and was examined, in its second order form, analytically and numerically in
2, 3, and 4. It was found that, although it is nonintegrable in general, it still possesses s
wave solutions, which, for small values of parameters, behave like pure solitons.

One problem mentioned in Ref. 4 was that the solitary waves of this second order eq
generally possess a nonzero background and thus might be unphysical.

In this work, we study in more detail this second order equation, as well as its third
counterpart proposed in Ref. 1, as approximations for water wave propagation. We first app
Pickering algorithm5,6 and introduce an additional arbitrary constant, which allows us to cons
zero background solitary waves for both of these equations. Thus we demonstrate the rem
fact that all these solutions have the same sech2 form and the same amplitude dependence on
velocity as the one-soliton solution of the KdV.

We then proceed to conduct a numerical study and show that a range of parameters ex
which these solitary waves possess soliton-like behavior, in the sense that they interact
elastically with each other and are stable under small perturbations. We also demonstrate
these results continue to hold in the case of the third order approximation of water wave p
gation, for an even larger set of parameters.

Let us consider the famous KdV equation
61510022-2488/2002/43(12)/6151/15/$19.00 © 2002 American Institute of Physics
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]u

]t
1

]u

]x
1au

]u

]x
1b

]3u

]x3 50 ~1!

which constitutes a first approximation of unidirectional wave motion on the surface of a thin
of an inviscid and incompressible fluid. The functionu(x,t) represents the amplitude of the flu
surface with respect to its level at rest, whilea andb characterize, respectively, the long wav
length and short amplitude of the waves, compared with the depth of the layer.

In order to obtain a more physically realistic form of~1! one may include second order term
in a andb as suggested in Ref. 1

]u

]t
1

]u

]x
1au

]u

]x
1b

]3u

]x3 1a2r1u2
]u

]x
1abS r2u

]3u

]x3 1r3

]u

]x

]2u

]x2D50, ~2!

wherer1 ,r2 ,r3 are considered, for the time being, as free parameters. This equation hol
a,b!1, obeyingO(b),O(a), as, e.g.,b'a2.1 In Ref. 1 it was also observed that~2! can be
transformed—up to terms of second order ina, b—to a completely integrable partial differentia
equation~pde!, through a nonlinear local change of the dependent variable.

As mentioned in Refs. 2 and 3, Eq.~2! is, in general, nonintegrable in the sense that som
its ordinary differential equation~ode! reductions do not possess the Painleve´ property and a Lax
pair does not seem to exist. However, it was still found to possess the traveling wave solu3,4

u~x,t !5K1
3bk~A222k!~2r21r3!sech2@Ak~x2Ct2x0!/&#

ar1~A2A2k tanh@Ak~x2Ct2x0!/&# !2
, ~3!

where

K5
2r122r22r3

2ar1~r21r3!
2

b~2r21r3!k

ar1
, ~4!

C5
4r121

4r1
1

~r222r1!2

4r1~r21r3!2 1
b2r3~2r21r3!k2

r1
, ~5!

andA,k,x0 are arbitrary constants.
These waves were studied numerically in Ref. 4 and were found to possess, for small

of b andk, properties of true solitons: i.e., they are stable under small perturbations and in
elastically with each other. However, they also possess a generally nonzero ‘‘background,’’
by ~4!, which means that they may be thought of as unphysical, since they have infinite e
~when integrated over the full real line!.

As we show in this paper, however, this need not be true, since there are particular cho
the r i parameters which makeK50 and thus restore to the solitary wave~3! its proper physical
meaning. To establish this we use a method due to Pickering5,6 and introduce an extra fre
parameter which helps us choose ther i so that~3! finally becomes identical to the sech2-profile of
the KdV one-soliton solution.

Entirely analogous results are obtained if we allow third order terms in~2! and study solitary
wave solutions of the pde

]u

]t
1

]u

]x
1au

]u

]x
1b

]3u

]x3 1a2r1u2
]u

]x
1abS r2u

]3u

]x3 1r3

]u

]x

]2u

]x2D
1a3r4u3

]u

]x
1a2bS r5u2

]3u

]x3 1r6u
]u

]x

]2u

]x2 1r7S ]u

]xD 3D50, ~6!
                                                                                                                



lid for

t
r other

ity of
finite

or
ves,

small
ations
tually
aves
oliton-
ns for

ing’s

istent
zero

r

6153J. Math. Phys., Vol. 43, No. 12, December 2002 Soliton-like solutions of KdV type equations

                    
wherer1 ,...,r7 are again considered free parameters. This equation is also found to be va
O(b),O(a),1 as e.g.,b'a2, with 0,a<1.

In fact, as we show in Sec. II,~6! possesses a solitary wave that has exactly the sech2-form of
the KdV soliton, for certain choices of the values of the parametersr1 ,...,r7 . These solitary wave
solutions are obtained atr i values which are different than the ones needed to derive~6! from the
pair of pdes of bidirectional wave propagation given by first principles.1 However, this does no
mean that solitary waves cannot be found by other analytical or numerical methods and fo
parameter values than those identified in this paper.

We then proceed, in Sec. III, to carry out a detailed numerical investigation of the stabil
our solutions, using a combination of a Fourier pseudospectral method in space and a
difference scheme in time with various step sizesDt. Establishing first as maximum tolerance f
numerical stability,E5(Dt)2, we regard a solitary wave as stable if the small radiation wa
occurring due to numerical errors, do not exceed in amplitude this threshold.

Thus, we find regions of parameters for which such stable solutions exist, exhibiting
oscillations that remain bounded for all times. However, when the amplitude of these oscill
exceedsE they are seen to exhibit a sharp increase after relatively short times, leading even
to blowup of the wave. In Sec. III we also study the interaction of three such stable solitary w
and show that they remain unchanged before and after collision, demonstrating thus their s
like character. Finally in Sec. IV we summarize our conclusions and list some open questio
future investigation.

II. ANALYTICAL EXPRESSIONS OF SOLITARY WAVE SOLUTIONS

In order to obtain explicit expressions for solitary wave solutions we shall employ Picker
algorithm,5,6 which was also used in Ref. 3 for the derivation of the solution~3!–~5!. As can be
seen in~4!, however, for specific values ofr ia andb, K becomes zero only for one value ofk.
This means that such solutions would exist only for one particular velocity, which is incons
with what one finds for the soliton solutions of the KdV. It is possible, however, to obtain a
background for a wider set ofk values by introducing an additional arbitrary constant in~4!, as
follows:

If we consider a truncated expansion of the solution of~2! of the form

u~x,t !5
u0

z2 1
u1

z
1u21u3z1u4z2, ~7!

where theui ’s are constants andz5z(x,t) satisfies the equations

zx512Az2Bz2,

zt52C1ACz1BCz2 ~8!

with A, B, andC also free constants, we can allow one of theui to be arbitrary. This happens, fo
example, if

r150 and r3522r2 , ~9!

in which caseu0 is arbitrary and

u152Au0 , u25
1

12
~A228B!u02

au0112b

12abr2
, u35u450.

Substituting relation~7! in ~2! and using~8! we finally obtain
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u~x,t !5K2
B1~A224B1!u0 sech2@AB1~x2Ct2x0!#

~A22AB1 tanh@AB1~x2Ct2x0!# !2

~where we have setB15B1 1
4A

2) with

K52
1

ar2
1

1

12S 4B12
1

br2
Du0 ,

C5
r221

r2
2

au0

12br2
1

4

3
abB1

2r2u0 ,

x0 being the arbitrary location of the ‘‘center’’ of the wave. We can now force the backgroun
be zero (K50) by choosing

u05
12b

a~4br2B121!
~10!

~henceu0 is no longer arbitrary! and conclude with the solution

R3U0 : u~x,t !52
B1~A224B1!u0 sech2@AB1~x2Ct2x0!#

~A22AB1 tanh@AB1~x2Ct2x0!# !2
, ~11!

where

C5114bB1

is the velocity of the traveling wave.
Observe that~11! can in fact be written in the form of the well-known sech2-soliton solution

of the KdV ~1! by a simple transformation: Writing

coshu5
A

AA224B1

and sinhu5
2AB1

AA224B1

for A2.4B1

and shiftingx0 appropriately,~11! is easily seen to take the form

u~x,t !52
3~C21!

a~211~C21!r2!
sech2F1

2
AC21

b
~x2Ct2x0!G

which is exactly the one-soliton solution of the KdV ifr250 in which case~2! reduces exactly
to ~1!.

In the expansion~7! of the Pickering algorithm we may alternatively consideru2 as an
arbitrary constant, by setting

r252r1 and r3522r1 ~12!

and thus obtain explicit solutions of~3! even in the caser1Þ0. Conditions~12! then lead to the
solution

u~x,t !5K1
12bB1~A224B1!sech2@AB1~x2Ct2x0!#

a~A22AB1 tanh@AB1~x2Ct2x0!# !2
,

where
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K5
3b~A224B1!

a
1u2 ,

C5113A2b28bB11au21r1~3A2b212bB11au2!~3A2b24bB11au2!,

andA,B1 ,x0 are again arbitrary constants. Zero background is obtained by setting

u252
3b~A224B1!

a
, ~13!

whence we arrive at the expression

R3U2: u~x,t !5
12bB1~A224B1!sech2@AB1~x2Ct2x0!#

a~A22AB1 tanh@AB1~x2Ct2x0!# !2 , ~14!

where the velocity of the wave is againC5114bB1 .
It is worth remarking here that if, instead of applying Pickering’s approach, we wer

consider the traveling wave reductions of~2!, u(x,t)5 f (x2Ct), for the choice of parameter
~12!, we can integrate the resulting ode and discover, by a simple phase plane analysis,
possesses a separatrix along which the solution is

u~x,t !5
3~C21!

a
sech2F1

2
AC21

b
~x2Ct2x0!G . ~15!

This is exactly the same as the sech2-soliton solution of KdV~1! for all r1 and also coincides with
~14!, for C5114bB1 if we shift x0 appropriately, as explained below~11!.

Finally, let us turn to the third order equation~6!. Here it is important to point out that a
traveling wave reduction and a derivation of the solitary wave form as done above appear
quite difficult, as the associated odes are too cumbersome to integrate exactly. Thus we
turn to the application of Pickering’s algorithm and show, as before, thatu0 , A, and B remain
arbitrary iff r i satisfy the following relations:

r352~r12r2!, r450, r552r1~r222r1!,

r656r1~2r12r2!, r753r1~r222r1!, ~16!

whence the corresponding solution takes the form

u~x,t !5K2
B1~A224B1!u0 sech2@AB1~x2Ct2x0!#

~A22AB1 tanh@AB1~x2Ct2x0!# !2
,

whereK andC depend on the parameters of the equation and the arbitrary constantsu0 , A, and
B1 . The zero background solution (K50) arises if we set

u05
12b

a~4bB1r228bB1r121!
, ~17!

whence we finally obtain

R7U0: u~x,t !52
B1~A224B1!u0 sech2@AB1~x2Ct2x0!#

~A22AB1 tanh@AB1~x2Ct2x0!# !2
~18!

with C5114bB1 again the velocity of the wave. Note that, withr150, solution~18! with ~17!
coincides exactly with~11! and ~10!.
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In the same way, as with the second order equations, we may also consideru2 arbitrary and
derive the followingr i relations:

r252r1 , r3522r1 , r553r4 ,
~19!

r6526r4 , r753r4 ,

whence the corresponding solution is

u~x,t !5K1
12bB1~A224B1!sech2@AB1~x2Ct2x0!#

a~A22AB1 tanh@AB1~x2Ct2x0!# !2
,

whereK andC depend again on the parameters of the equation and the arbitrary constantsu2 , A
andB1 . The zero background solution (K50) now requires

u252
3b~A224B1!

a
~20!

and we finally obtain

R7U2: u~x,t !5
12bB1~A224B1!sech2@AB1~x2Ct2x0!#

a~A22AB1 tanh@AB1~x2Ct2x0!# !2
, ~21!

where the velocity isC5114bB1 , as in all the cases above. Again here~21! also becomes
identical to the KdV soliton~15!, with the appropriate shift of the constantx0 , even though it is
the solution of a much more complicated pde.

It is important, however, to remark that ther i parameter values,~16! or ~19!, determined by
our approach, are quite different from the ones found in Ref. 1, by the reduction to unidirec
flow from a pair of pdes describing bidirectional wave propagation. The reasons for this diffe
remains an open question, which clearly requires further investigation.

III. NUMERICAL STABILITY ANALYSIS

The numerical scheme used in the current study is the same as the one employed in Re
is based on a combination of finite differences and a Fourier pseudospectral method. In o
demonstrate the application of our algorithm we first describe it on the KdV equation

ut1ux1auux1buxxx50 ~22!

with the initial conditionu(x,0)5 f (x). The time derivative in~22! is discretized using a finite
difference approximation, in terms of central differences

un115un2122Dt~ux
n1aunux

n1buxxx
n !50. ~23!

According to the pseudospectral method, we introduce the approximate solution

u~x,t !5 (
k50

N

ak~ t !Fk~x!, ~24!

whereFk(x)5eikx are the Fourier exponentials, andak(t) are coefficients to be determined, fo
k50,1,...,N.

The steps used to advance the solution from time stepn to n11 are7

~i! Given uj
n5u(xj ,tn) evaluateak

n5ak(tn) from ~24!.
~ii ! Given ak

n evaluate the derivatives, e.g.,@]2u/]x2# j
n from ~24!.
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~iii ! Evaluate the nonlinear terms, e.g.,uj
n@]u/]x# j

n .
~iv! Evaluateuj

n11 from ~23!, at x5xj , t5tn11 .

Step ~i! is the transformation from physical space to spectral space. This transformat
achieved by the use of a fast Fourier transform~FFT! described in Refs. 7 and 8 with a number
operations (5/2)N log2 N ~N being the number of polynomials!, in contrast to the 2N2 operations
required for a matrix-vector multiplication.9 Step~ii ! occurs in spectral space and the evaluation
the nonlinear term in step~iii ! is in physical space, thus avoiding the expensive multiplication
all coefficients in the expansions of the form~24!. Step~iv! occurs again in physical space.

The accuracy of our numerical scheme for the time variablet is O((Dt)2), due to central
differences and for the space variablex, where we use the pseudospectral method,O(e2qN),
whereq is a constant.8 Numerical calculations were carried out for various numbers of poly
mialsN5128, 256, 512, and 1024 and time stepsDt50.0001 to 0.002, while the spatial step w
chosen to beDx51.

We should mention here that, for the time propagation of such types of problems, whe
spatial discretization is extremely accurate, the most commonly used method is the fourth
Runke–Kutta integration scheme. Even though this method provides satisfactory results,
fail because of sensitivity to the initial conditions and inherent instabilities. Thus, since the
bility of the waves propagating in time is of more interest than the accuracy, a more stable, c
differencing is used for the discretization in time.

In Ref. 4 we carried out several calculations to verify the efficiency of our numerical code
the KdV equation~1! at t50 with a51, b50.1, x0520 andc51.1, we took as initial condition
the well-known exact solitary wave solution

u~x,t !5
3~c21!

a
sech2F1

2
Ac21

b
~x2ct2x0!G , ~25!

wherec is the propagation speed andx0 is an arbitrary constant.10,11 We observed that our wav
moves along the spatial direction retaining its initial profile for a very long time period of at
t52.53106 time units with time stepDt50.01. A three-soliton interaction was also studied a
the results were as expected from the soliton solutions of the KdV, i.e., the waves interact
cally and remain unchanged before and after their interaction. These results were obtain
various time steps and numbers of polynomialsN mentioned above, which demonstrates that
code reproduces accurately the fundamental properties of the KdV.

The plethora of free parameters entering into Eqs.~2! and ~6! makes the study of the wav
solutions, obtained in Sec. II, not a very easy task. However, if we impose the zero backgrou
our solutions, much of the redundancy is removed and ourr i ’s begin to have a more specifi
meaning. Thus, we investigate the wave solution~11! for Eq. ~2!, with u0 given by ~10! and for
r i , i 51,2,3 satisfying~9!. This solution is referred to asR3U0. For the same equation we als
study the solution~14! for u2 given by~13! andr i , i 51,2,3 satisfying~12!, which is referred to
asR3U2. Similarly we nameR7U0 the solution~18! of Eq. ~6! with u0 given by~17! and forr i ,
i 51,...,7 satisfying~16! andR7U2 the solution~21! of the same equation withu2 given by~20!
and forr i , i 51,...,7 satisfying~19!.

The free parameters now present in the solutionsR3U0 andR3U2 are onlya, b, B1 , andr2

for R3U0 or r1 for R3U2. Therefore, we will first study how they affect the stability of th
above-mentioned wave solutions, and then proceed to study theR7U0 andR7U2 waves, using
similar a andb, plusr1 for R7U0 andr4 for R7U2.

A. A stability criterion

Our ultimate goal, of course, is to examine the values of the parameters in our higher
KdV equations~2! and~6!, for which the solitary wave solutions mentioned above preserve t
shape and are stable under evolution. By the term ‘‘stable’’ we mean that a wave solution,
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substituted in an equation, retains its initial profile for long times, albeit with some sm
oscillations present as radiation waves, due to unavoidable numerical errors produced und
evolution.

Thus, in order to check stability, one way is to track the residual of the solution in time
the case of KdV, for example, ifū is an exact solution of~1! it will satisfy

ūt1ūx1aūūx1būxxx50. ~26!

If the approximate solution~24!, computed numerically, is substituted into~26! it will not, of
course, give zero. Thus we write for it

ut1ux1auux1buxxx5R,

whereR is called the residual of the equation. It is expected thatR is a continuous function ofx
and t and if N is sufficiently large then, in principle, the coefficientsak(t) can be chosen so tha
R is as small as we wish over the computational domain. In our case we evaluateR5Ri at each
xi , i 51,...,N grid point at specific time momentstn .

Due to the fact that the wave solutions are computed for sufficiently large values ofN ~128 to
1024!, the spatial error of the pseudospectral method is in agreement with theO(e2qN) estimate
mentioned above, and is practically zero. The maximum absolute residual, which we refer to
error,E5maxiuRiu, will increase due to the central differencing in time, but cannot be greater
O((Dt)2). Several tests have been made for the wave solution~25! of the KdV verifying that for
various values ofN ~128 to 1024! and time stepDt50.0001 to 0.02,E,(Dt)2 at least for a time
period of 106 time units.

Therefore, a practical way to verify that a wave solution is stable is to check if the
remains, for long times, less thanO((Dt)2). If E increases above this value already from t
outset, oscillations will soon grow and become unbounded after relatively short times, no
because of the numerical scheme, but also due to the nonlinear nature of the equations, su
that the initial wave solution has become unstable.This is also supported by the fact that blowu
occurs nearly at the same times, irrespective of the values of theDx andDt step sizes used in th
numerical scheme.

B. Solutions R3U0 and R3U2

Let us now proceed to the study ofR3 solutions. In all that followsB1 satisfies the relations
B1.0 andA.A2B1 which are vital in order to have a bounded wave solution. The parameA
does not affect the stability of the wave and in all cases is takenA53.

One way to examine the stability of solutions under investigation is to seta, b fixed and start
to increaseB1 , the velocity of the wave, by a quantityDB1 . Each time we increaseB1 , we track
the errorE for a period of time: If it remains below (Dt)2, we consider that the wave is stable f
this period, and proceed to increaseB1 by anotherDB1 until E becomes greater than (Dt)2. Once
this happens, we setDB15DB1/2, decreaseB1 by DB1 and track the error again. In that way, w
determine, up to an accuracye (DB1,«), the maximum value ofB1 ~speed!, B1

max, for which the
solitary wave is stable.

The period of time used in the current study is 500 time units, with time stepDt50.001 and
accuracy«50.001. Several tests have been made, e.g., with the KdV, using cases where th
solution is known to be stable, and as expected, the value ofB1

max, estimated in the above way
depends neither on the time stepDt, nor on the number of pointsN we use.

Figure 1 shows the variation ofB1
max with a for various values ofb. The parameterr2 is fixed

equal to 1. It is observed that asa increasesB1
max is increasing for small values ofb. The variation

of B1
max with a is smaller asb increases and finally no significant changes are observed whb

.0.2. Thus, it can be concluded thata has a stabilizing effect on the solutions, especially for l
                                                                                                                



es

t
l
r

f

f the

6159J. Math. Phys., Vol. 43, No. 12, December 2002 Soliton-like solutions of KdV type equations

                    
values ofb, since its increase makes the range of velocities larger for stable soliton-like wav~in
the range of 0,b<0.1). The region below each curve~plotted by interpolation! is the region of
stability of the wave solution for the corresponding values of parameters.

The variation of theB1
max with b for various values ofa is shown in Fig. 2. Unlike what was

observed fora in Fig. 1, we find thatB1
max decays exponentially with the increase ofb, and the

region where the wave solution is stable is larger for greater values ofa. Thus we conclude tha
increasingb has a destabilizing effect on the solitary waves. The parameterr2 is again kept equa
to 1. The variation ofB1

max for the solutionR3U2 with a or b is qualitatively the same as that fo
R3U0, and any quantitative differences with Figs. 1 and 2 are insignificant.

Similar results were also observed for theR7U0 andR7U2 solutions. However, because o
the additionalr i parameters present in these cases, a direct comparison with theR3 solutions is
not easy to demonstrate pictorially.

It is important to note that these findings are in good agreement with the conditions o
validity of ~2! and ~6!, i.e., thatO(b),O(a).1 In fact, usingb'a2 is seen to yield optimal
results in terms of the size of stability regions of our solitary wave solutions.

FIG. 1. Variation ofB1
max of solutionR3U0 with a.

FIG. 2. Variation ofB1
max of solutionR3U0 with b.
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In order to examine the effect ofr2 on R3U0 or r1 on R3U2 we can seta51, b50.1 and
find B1

max while varying the correspondingr i . Figure 3 shows this variation ofB1
max with r2 for

R3U0 andr1 for R3U2 solitary wave solutions. It is found that for an increase of the co
spondingr i up to 0.4 there are no significant changes. When ther i increase beyond 0.4 a rapi
decrease ofB1

max takes place. This decrease stops atr1'1.2 for theR3U2 solution, while, in the
case ofR3U0 it continues untilr2 reaches the value of approximately 1.7.

It is worth mentioning that the results plotted in Figs. 1–3 usingDt50.001 andN5128, are
also obtained for time steps 0.0001, 0.002, and number of points 256 and 512.

C. Error behavior during wave propagation

Before proceeding to theR7 solutions, let us discuss some results concerning the error c
rion of Sec. III A, in order to understand how wave solutions propagate in time and which of
are considered as stable. The results described below were obtained for theR7U0 solution, but are
similar to what is observed forR7U2.

FIG. 4. Error variation with time for three different values ofB1 . The caseB150.5 lies just above the boundary of th
stability regionE<(Dt)2.

FIG. 3. Variation ofB1
max with r2 for R3U0 andr1 for R3U2.
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We seta50.5, b50.05,r151, r250.2 and track the error ofR7U0 for a period of time of
100 time units, with time stepDt50.001, and three different values ofB1 , namely 0.3, 0.5, and
0.7. The variation of the errors for these cases are shown in Fig. 4. Note that the errorB1

50.3 is less than (Dt)25131026.
Figure 5 shows theR7U0 solution propagating in time forB1 equal to 0.3, 0.5 and 1.5

respectively, for the same values of the other parameters as above. It is observed thatB1

50.3 the wave remains virtually unchanged in time and is therefore considered stable, w
radiation waves remaining smaller than (Dt)2 for very long times. On the other hand, in the ca
B150.5, bounded oscillations appear where the error slightly exceeds (Dt)2. We call this solution
unstable, because its radiation waves grow as time increases and become unbounded
relatively short time. Similarly, forB151.5, where these oscillations are even larger at the be
ning, blowup occurs after a much shorter time interval. We remark once more that anal
results are obtained for different time steps, and also for the same time step and greater
of N.

It is important to mention that for smallb(b,0.1) and largea(a'1) oscillations appear
even when the errorE does not exceed (Dt)2. These oscillations remain almost the same fo
time period comparable to the one used to test the stability of the solutions of KdV. More

FIG. 5. Evolution ofR7U0 in time for B150.3, 0.5, and 1.5, respectively.
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even whenE'(Dt)2 ~andb small enough! oscillations can persist over long time intervals as se
in Fig. 5, with b50.05, where the oscillations occurring forB151.5 remain unchanged an
bounded well beyond value oft575 shown in the figure.

However, if the error grows sharply at some point in time, this implies that the oscillation
become unbounded soon thereafter leading to a blowup of the solution. Figure 6 show
propagation ofR7U0 for a50.5, b50.4, r151 and r250.2. In this case,B1

max'0.156, as
estimated by the method described above. Consequently, if we setB150.19 error oscillations
suddenly explode att'50 causing the wave amplitude to increase while att'80 the solution
blows up. The same behavior is observed forDt varying from 0.0001 to 0.002 andN from 128 to
512 indicating that this is not a numerical blowup.

As in the case ofR7U0 shown in Fig. 6, we have also observed from numerous tests, th
the wave is to blow up, the error will suddenly increase by 2–3 orders of magnitude withi
first 200 time units. In some examples, blowup occurs after thousands of time units,
predicted by our error analysis already within the first 200 time units. Thus, for the calculati
stability results, we adopt the time period of 500 time units of numerical integration.

In order to investigate the stability of theR7 solutions we keep the values ofa andb fixed at
a51, b50.1. Moreover, we considerr150.2 andr250.2 for R7U2 andR7U0, respectively.
Consequently, the independent parameters arer1 for R7U0 andr4 for R7U2. The variation of
B1

max with r1 for R7U0 andr4 with R7U2 is shown in Fig. 7. It is found that the growth ofr1

in R7U0 results in an increase ofB1
max, whereas increasingr4 in R7U2 solution results in a

decrease ofB1
max. For relatively large values of the correspondingr i the stability regions differ

considerably and for values greater than unity the correspondingB1
max can be 4 times greater fo

R7U0 than that ofR7U2.

D. Elastic three wave interactions

In Ref. 4 a three-wave interaction was performed with Eq.~2!, using its solution~3! as initial
condition for the three solitary waves. It was reported that due to the different backgrounds

FIG. 6. Evolution ofR7U0 in time for B150.19.
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waves a slight displacement of each solution by a constant had to be applied. This can n
avoided using the zero background wave solutions we have obtained here. Thus, we study h
interactions of solitary waves of the form~15!, using the third order KdV equation~6!.

A preliminary investigation of theR7 solutions suggests using theR7U0 solitary wave, since
its stability region increases with increasingr1 , provided we keep the difference betweenr1 and
r2 small. The reason is that the additional nonlinear terms inR7U0 are multiplied byr4 ,...,r7

values which are smaller than those ofR7U2, and thus lead to a larger area of stability.
The next step is to specify values for thea andb parameters. As was shown in Sec. II, th

wave speed of propagation isC5114bB1 . Thus, the relative speed between two waves
4b(B12B18), whereC85114bB18 is the velocity of the second wave. Consequently, we hav
use relatively large values ofb to see an interaction within a reasonable time. Furthermore,
have to avoid using largea so as to reduce the bounded oscillations described in the prece
section. Therefore, taking into account all these considerations we choosea50.4, b50.1, r1

50.25, andr250.1.
For the values of the remaining parameters we setx1510, x2528, x3555 andB1150.30,

B1250.20, B1350.06, wherexi and B1i correspond, fori 51,2,3, to the first~fastest!, second
~middle!, and third~slowest! wave. The interaction of these solitary waves, as shown in Fig.
seen to occur in exactly the same way as for the KdV equation. No radiation is observed a
differences are found in the shape of the solitary waves~before and after collision! as far as we
could determine numerically~with Dt50.01 andN51024). These results strongly indicate th
existence of wave solutions which ‘‘behave’’ as true solitons in water wave equations w
represent higher order approximations to the KdV equation.

IV. CONCLUDING REMARKS

In this paper, we have studied the existence and stability of solitary wave solutions of
representing second and third order approximations of unidirectional water wave propagat
the short amplitude, 0,a5a/h!1, and long wavelength limit, 0,b5(h/ l )2!1 ~h is the depth
of the fluid layer!. To first order ina andb, these pdes reduce to the famous KdV equation, wh
is completely integrable and possesses solitary waves that interact perfectly elastically wit
other and are called solitons.

Our original motivation was the fact that these higher order KdV equations have been s
to be equivalent to completely integrable pdes, by a local nonlinear transformation, at the
order of approximation ina andb.1 The question therefore naturally arises if these higher or
KdV approximations also possess solitary waves exhibiting soliton-like dynamics.

FIG. 7. Variation of theB1
max with r1 , for R7U0 andr4 for R7U2.
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Adopting the assumptionO(a),O(b) ~e.g., b'a2), which eliminates some dispersiv
terms with higher order derivatives,1,12 we derive exact, closed form expressions for the solit
waves valid to second and third order ina andb using Pickering’s algorithm.5,6 Choosing then
specific values for the free parameters, we force these solutions to have zero backgrou
demonstrate the remarkable fact that they all have the same sech2 form and velocity dependenc
as the simple, one-soliton solution of the KdV.

Proceeding to a numerical study of their stability, we use a Fourier pseudospectral m
combined with finite difference in time~with step sizeDt) and establish a threshold of numeric
error toleranceE5(Dt)2. Thus we call a solitary wave stable if the small oscillations trailing
wave have amplitude smaller thanE and remain bounded for very long times~<500 units!.

However, as the speed of the wave increases, these ‘‘radiation’’ oscillations also increa
when their amplitude exceedsE, already at the beginning of their evolution, turn out to exhibi
dramatic growth over relatively short times~<200 units! leading eventually to blowup of the wav
and characterizing the solution as unstable. Our results are entirely consistent with what
served for the KdV equation and also agree with the assumption thatO(b),O(a) in these pdes.

A number of open questions remain for future investigation: What is the ‘‘physical’’ mea
of the values of the free parameters, which we have chosen so that the solitary waves of the
have zero background? Why are these values different from those obtained by the reduction
original water wave equations to unidirectional motion?1 In fact, we have recently observed th
the ode that gives traveling wave solutions for the second order approximation~2! can be easily
integrated once and then numerically studied by phase plane analysis to give homoclinic
which correspond to solitary waves for many otherr i parameters than the ones identified here

Can such integrations be carried out also for the third order equation~6! to yield solitary
waves, exhibiting similar behavior and reducing to the KdV soliton, asa and b go to zero?
Finally, among all these choices, whichr i fit best the physical realization of a solitary water wav

Another question concerns the mathematical form of the solitary waves we have obtai
this paper: Could their simple sech2 expressions~identical for the second and third order cas!
imply that they also hold in higher order approximations? Finally, is their presence related
fact that the corresponding approximation can be transformed to a pde which is comp
integrable to the same order ina, b?

In conclusion, we believe that water wave motion still remains an open and fascinating
of great mathematical and physical interest and hope to be able to answer some of the
questions in a future publication.

FIG. 8. Elastic interaction of threeR7U0 solitary waves of Eq.~6!.
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We present a class of time-dependent potentials inRn that can be integrated by
separation of variables: by embedding them into so-called cofactor pair systems of
higher dimension, we are led to a time-dependent change of coordinates that allows
the time variable to be separated off, leaving the remaining part in separable
Stäckel form. © 2002 American Institute of Physics.@DOI: 10.1063/1.1514833#

I. INTRODUCTION

Newton’s law of force in mechanics leads to second order ordinary differential equatioq̈
5M(q,q̇,t), whereq5(q1,...,qn) are coordinates on some manifoldQ, the configuration space o
the system. Often the forceM is derived from a potentialV(q,t) and the equations can be writte
in Lagrangian form

]L

]qi 2
d

dt

]L

]q̇i 50, L~q,q̇,t !5
1

2
gi j q̇

i q̇ j2V~q,t !,

or, via the Legendre transformation, in Hamiltonian form

q̇i5
]H

]pi
, ṗi52

]H

]qi , H~q,p,t !5
1

2
gi j pipj1V~q,t !.

Heregi j is the metric tensor onQ, with inversegi j , and (qi ,pj ) are~adapted! coordinates on the
cotangent bundleT* Q.

Powerful techniques have been developed for solving such equations; in particular the
known Hamilton–Jacobi method, where one tries to find new coordinatesu5u(q) on Q, in terms
of which the Hamilton–Jacobi equation corresponding toH can be solved by separation of var
ables. If this succeeds, the mechanical system can be integrated by quadratures.

We will restrict ourselves to Euclideann-space, i.e.,Q5Rn and gi j 5d i j . The coordinates
will be written with lower indices in this case, and regarded as a column vectoq
5(q1 ,...,qn)T, theT denoting matrix transposition.

Consider a Newton system which does not contain timet or velocity q̇ explicitly,

q̈5M ~q!.

If there is a potential, the system takes the form

q̈52¹V~q!, ¹5
]

]q
5S ]

]q1
,...,

]

]qn
D T

,

a!Electronic mail: lundmark@math.usask.ca
b!Electronic mail: strau@mai.liu.se
61660022-2488/2002/43(12)/6166/29/$19.00 © 2002 American Institute of Physics
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and then the energyE5 1
2q̇

Tq̇1V(q) is conserved (Ė50). The separability theory for such time
independent potentials in Euclidean space is highly developed. It is known that separation
corresponding Hamilton–Jacobi equation can only take place in so-called generalized e
coordinates or some degeneration thereof.4 There even exists an effective algorithm for determ
ing whether or not a given potentialV(q), expressed in Cartesian coordinates, is separable, a
so, in which coordinate system.10

Less is known in the time-dependent case. One of the aims of this paper is to show
certain Newton systems inRn with time-dependent potential can be integrated by viewing them
driven systems inRN, with N.n, as the following example illustrates.

Example 1:Consider the time-dependent potential

V~x1 ,x2 ,t !5
1

x1x22t
~1!

and the corresponding Newton system inR2:

ẍ152
]V

]x1
5

x2

~x1x22t !2 ,

~2!

ẍ252
]V

]x2
5

x1

~x1x22t !2 .

In order to integrate this system, we introduce the following auxiliary Newton system inR3,
where the first equation drives the other two:

q̈150,

q̈25
q3

~q2q32q1!2 , ~3!

q̈35
q2

~q2q32q1!2 .

We think of theq coordinates as partitioned intodriving coordinatesy anddriven coordinatesx:

S q1

q2

q3

D [S y
x1

x2

D .

The particular solutiony(t)[q1(t)5t clearly gives rise to the system~2! under the identification
x15q2 , x25q3 . The Newton system~3! in R3 is what we call acofactor system~see Sec. II!,
which means that it has the form

q̈52A~q!21¹W~q!52
1

detG~q!
G~q!¹W~q!,

whereA5cofG5(detG)G21 is the cofactor matrix of a symmetric matrixG(q) of the form

Gi j ~q!5aqiqj1b iqj1b jqi1g i j .

Equivalently, 1
2q̇

TA(q)q̇1W(q) is an integral of motion~of cofactor type! for the system.
In this specific case, as is easily verified, the system~3! can be written asq̈

52G¹W/(detG) with
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G~q!5S 2q1 q2 q3

q2 0 1

q3 1 0
D , W~q!52

q2
21q3

2

q2q32q1
.

According to the general theory to be developed in this paper, such a driven cofactor syste
be integrated using a time-dependent change of coordinates

u15l1~ t,x1 ,x2!,

u25l2~ t,x1 ,x2!,

wherel1(q) andl2(q) are the roots of the equation det(G(q)2lG̃)50, with G̃5diag(0,1,1).
It turns out that by defining corresponding momentas1 ands2 appropriately, the equations o

motion for (u1 ,u2) can be put in Hamiltonian form with a time-dependentseparableHamiltonian.
Consequently,u1(t) and u2(t) can be found using a variant of the Hamilton–Jacobi meth
Changing back to old coordinates, we findx1(t) andx2(t), and the problem is solved.

We will fill in the details of this example in Sec. V, after explaining the method in gene

II. QUASIPOTENTIAL NEWTON SYSTEMS OF COFACTOR TYPE

The general framework in which we are working was developed in Refs. 9, 6, and 7.
been extended2 to cover also the case of Riemannian manifolds, but here we will restrict ours
to Euclidean space. We will now quote the definitions and results needed here, some of
have already been hinted at above.

We use the shorthand] i5]/]qi . The notation cofX means the cofactor matrix of a squa
matrix X. If X is nonsingular, then cofX5(detX)X21.

Proposition 2: The‘‘ energy-like’’ function

E~q,q̇!5
1

2 (
i , j 51

n

Ai j ~q!q̇i q̇ j1W~q!5
1

2
q̇TA~q!q̇1W~q!, ~4!

with A(q) a symmetric n3n matrix, is an integral of motion of the Newton system q¨ 5M (q) in Rn

if and only if

(1) The matrix entries Ai j (q) satisfy the cyclic conditions

] iAjk1] jAki1]kAi j 50, i , j ,k51,...,n. ~5!

@The general solution of these equations is a subspace, of dimension1
12n(n11)2(n12), of

the vector space of symmetric matrices whose entries are polynomials of degree at mo
in q1 ,...,qn .]

(2) The force M(q) satisfies A(q)M (q)1¹W(q)50.

Definition 3 (quasipotential system):A Newton system of the form

q̈52A~q!21¹W~q!,

where the matrixA satisfies the cyclic conditions~5!, is called aquasipotentialsystem. By the
proposition above,E5 1

2q̇
TAq̇1W is an integral of motion for the system, and it is said to gene

the system, since the system is completely determined byA(q) and W(q), and hence byE.
~Special case: ifA5I is the identity matrix, thenW is a potential for the system andE is the usual
energy.!

Definition 4 (elliptic coordinates matrix G):A symmetric matrix of the form
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Gi j ~q!5aqiqj1b iqj1b jqi1g i j , i , j 51,...,n, ~6!

is called anelliptic coordinates matrix. Using matrix multiplication,G(q) can be written

G~q!5aqqT1bqT1qbT1g, ~7!

with a a scalar,q andb column vectors, andg a symmetric matrix.
Set briefly, the eigenvaluesu1(q),...,un(q) of G(q) give the change of coordinates from

Cartesian coordinatesq to elliptic coordinatesu5u(q). See Ref. 6 for a more detailed explan
tion.

Definition 5 (associated vector N):To a given elliptic coordinate matrixG we associate the
column vectorN5aq1b5 1

2¹ tr G.
Proposition 6: If G is an elliptic coordinates matrix, N the associated vector, and

5cofG, then

¹ detG52AN. ~8!

The preceding proposition is frequently useful. It implies, for example, thatA5cofG satisfies

~detG!]kAi j 52@AN#kAi j 2@AN# iAk j2@AN# jAik , ~9!

from which the following remarkable property of elliptic coordinates matrices follows.
Proposition 7: If G(q) is an elliptic coordinates matrix, then A(q)5cofG(q) satisfies the

cyclic conditions (5).

Corollary 8: If G(q) and G̃(q) are elliptic coordinates matrices, then the matric
A(0)(q),...,A(n21)(q) defined by the generating function

cof~G1mG̃!5 (
k50

n21

A(k)m i ~10!

all satisfy the cyclic conditions (5).

Remark 9:Note thatA(0)5cofG andA(n21)5cof G̃.
We will also need a proposition that does not occur in Ref. 6.
Proposition 10: With G, N, and A5cofG as above,

¹~NTAN!52aAN. ~11!

Proof: Equation~9! implies that( i , j (]kAi j )NiNj50, from which the statement follows eas
ily. h

Definition 11 (cofactor system):A cofactor systemis a quasipotential Newton system of th
special form

q̈52A~q!21¹W~q!52
1

detG~q!
G~q!21¹W~q!,

whereA5cofG, and G is a nonsingular elliptic coordinates matrix. The integral of motionE
5 1

2q̇
TAq̇1W5 1

2q̇
T(cofG)q̇1W is said to be of cofactor type.

Definition 12 (cofactor pair system):A cofactor pair systemis a Newton system which ha
two independent integrals of motion of cofactor type,

E5 1
2q̇

T~cofG!q̇1W and Ẽ5 1
2q̇

T~cof G̃!q̇1W̃.

Equivalently, it is a system which can be written as

q̈52A21¹W52Ã21¹W̃, ~12!
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whereA5cofG and Ã5cof G̃.
Theorem 13 „two implies n…: A cofactor pair system q¨ 5M (q) in Rn has n integrals of

motion

E(k)5 1
2q̇

TA(k)q̇1W(k), k50,...,n21, ~13!

where the matrices A(k) are given by (10) and the quasipotentials W(k) are determined (up to
irrelevant additive constants) by¹W(k)52A(k)M .

Remark 14:Note that the original integrals of motionE5E(0) andẼ5E(n21) of cofactor type
sit at either end of this ‘‘cofactor chain’’ of integrals.

Remark 15:It is sometimes convenient to handle the integrals of motion using a gener
function

Em5 (
k50

n21

E(k)mk5
1

2
q̇T cof~G1mG̃!q̇1Wm , ~14!

whereWm5(k50
n21W(k)mk.

Remark 16: For W to be well defined by¹W52AM, the compatibility conditions
] i@AM# j5] j@AM# i have to be satisfied for alli and j . This, of course, is the reason that not eve
Newton systemq̈5M (q) has a potentialV, and also that not every Newton system has a qu
potentialW, even though by allowingA(q)ÞI we enlarge the class of systems under consid
ation.

Now, for q̈5M (q) to be a cofactor pair system, two sets of compatibility conditions nee
be satisfied simultaneously;] i@AM# j5] j@AM# i and ] i@ÃM # j5] j@ÃM # i . For givenG and G̃,
this is a rather strong restriction onM . In fact, according to the theorem, it is so strong tha
] i@A(k)M # j5] j@A(k)M # i holds forA(0)5A5cofG andA(n21)5Ã5cof G̃, then it must hold for
all the matricesA(k).

Definition 17 (fundamental equations):The fundamental equationsassociated to a pair (G,G̃)
of elliptic coordinates matrices is the following set of (2

n) second order linear PDEs:

05 (
r ,s51

n

~Gir G̃js2Gjr G̃is!] rsK13(
r 51

n

~Gir Ñj1G̃jr Ni2Gjr Ñi2G̃ir Nj !] rK

16~NiÑj2NjÑi !K, i , j 51,...,n. ~15!

Here N5aq1b is the vector associated toG, with the same parametersa and b as in G

5aqqT1bqT1qbT1g, and similarly forÑ.
Theorem 18: Let

q̈52~cofG!21¹W52~cof G̃!21¹W̃ ~16!

be a cofactor pair system. Then the functions K15W/detG and K25W̃/detG̃, while in general

different, both satisfy the fundamental equations (15) associated to the pair(G,G̃).
Conversely, if K satisfies (15) and we set W5K detG, then there is a function W˜ such that

(16) holds. And if we set W˜ 5K detG̃, then there is a function W such that (16) holds (but these

and W̃are in general not the same as those in the previous sentence!.
Remark 19:Once again, this is all about compatibility conditions. IfG, G̃, andW are given,

thenW̃ is well defined by~16! if and only if

] i@~cof G̃!~cofG!21¹W# j5] j@~cof G̃!~cofG!21¹W# i
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for all i and j . This is a system of (2
n) second order linear PDEs forW, with coefficients depending

in a complicated way onG andG̃. SubstitutingK5W/detG and forming suitable linear combi
nations of the equations simplifies this system to precisely the fundamental equations~15!. These
being completely antisymmetric with respect to coefficients with and without the tilde, the r
is the same if we go the other way around, interchanging the roles ofW andW̃.

Remark 20:This theorem leads to a recursive procedure for explicitly constructing infi
families of cofactor pair systems. See Ref. 6 for details.

In Ref. 6 it was shown, using the theory of bi-Hamiltonian systems, that cofactor pair sys
generically are completely integrable, but it was not clear if they admit some kind of separat
variables. The special caseG̃5I corresponds to conservative systems with an extra integra
motion of cofactor type. Such systems are precisely those with potentials separable in the
~or parabolic! coordinates given by the eigenvalues ofG(q), so in that case we have a concre
method of integration. Reference 8, which appeared recently, deals with separation of variab
generic cofactor pair systems, with bothG andG̃ nonsingular~and nonconstant, in general!. Here,
we study the very degenerate case of cofactor pair systems withG̃5diag(0,...,0,1,...,1). As we
will see in the next section, these systems admit a somewhat nonstandard integration by se
of variables, and there is a surprising connection with time-dependent potentials.

III. DRIVEN SYSTEMS

From now on we fix positive integersm andn, and letN5m1n. Hopefully there is no risk
of confusing this integerN with the vectorN(q) associated to an elliptic coordinates matrixG(q).
Let us begin by defining some notation.

Definition 21 (block notation):If X is an N3N matrix, with N5m1n, then we use arrow
subscripts to denote blocks inX, as follows:

X5S X↖ X↗
X↙ X↘

D with sizes Fm3m m3n

n3m n3n G . ~17!

Similarly, if Y is a column vector inRN, then

Y5S Y↑
Y↓

D with sizes Fmn G . ~18!

So, for instance,@X↗# i j 5Xi ,m1 j .
We will considerdriven Newton systems inRN, whereN5m1n. By this we mean that the

first m equations depend only on the firstm variables, so that they form a Newton system inRm

on their own:

q̈15M1~q1 ,...,qm!,

A

q̈m5Mm~q1 ,...,qm!,
~19!

q̈m115Mm11~q1 ,...,qm ;qm11 ,...,qm1n!,

A

q̈m1n5Mm1n~q1 ,...,qm ;qm11 ,...,qm1n!.
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This notion is not new; for example Kossowski and Thompson5 use tangent bundle geometry
study submersivesystems, which are second order ODEs on manifolds, containing a subs
depending on fewer variables~possibly after a change of coordinates!.

Here, however, our purpose is to investigate what happens when a system is at the sam
a driven system and a cofactor system. In this initial stage of investigation we have res
ourselves to Euclidean space and assume that the systems splits as above in Cartesian coo
We hope that further research will clarify the relation between our present results and the
metric picture of Refs. 5 and 2.

Definition 22 (vectors x and y): Since we will consider the time evolution of q↑ and q↓
separately, we write y5q↑ and x5q↓ to simplify the notation.

With this definition, the system~19! can be written as

ÿ5M ↑~y!,
~20!

ẍ5M ↓~y,x!.

As in example 1, (y1 ,...,ym) are calleddriving variables and (x1 ,...,xn) are calleddriven vari-
ables. The systemÿ5M ↑(y) is called thedriving system, since its solutiony5y(t), when fed into
ẍ5M ↓(y(t),x), drives the evolution of thex variables.

An important observation is that if

G5aqqT1bqT1qbT1g

is anN3N elliptic coordinates matrix, then

G↖5ayyT1b↑yT1y~b↑!T1g↖ ,

so thatG↖(y) is anm3m elliptic coordinates matrix in they variables.@Similarly for G↘(x), but
we will not use that here.#

The major part of this paper is devoted to proving the following theorem.
Theorem 23„driven cofactor systems…: Suppose that a driven Newton system in Rm1n is of

cofactor type

q̈5S M ↑~y!

M ↓~y,x! D52~cofG~q!!21
]W

]q
~q!. ~21a!

Suppose also that G is not constant (i.e., thata andb are not both zero), thatdetG↖Þ0, and that
there is a potential V(y,x), with y occuring parametrically, such that

M ↓~y,x!52
]V

]x
~y,x!. ~21b!

Then the driving system is a cofactor system in Rm. Namely, there is a function w(y) such that

ÿ52~cofG↖~y!!21
]w

]y
~y!. ~22!

Moreover, for any given solution y5y(t) of the driving system y¨ 5M ↑(y), the system

ẍ5M ↓~y~ t !,x!52
]V

]x
~y~ t !,x!, ~23!

given by the time-dependent potential V(y(t),x), has n (time-dependent) integrals of motio
Under some technical assumptions, stated in definition 28, its solution x(t) can be found by
quadratures.
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The proof is quite lengthy, so we have divided it into subsections labeled A through F. Fir
show that a driven cofactor system can be viewed as a degenerate form of cofactor pair s
with G̃5diag(0,...,0,1,...,1). The integrals of motion are given by a cofactor chain that termin
prematurely. We introduce a new system of coordinates, which is given by them driving Cartesian
coordinates together with then roots of the equation det(G(q)2uG̃)50. This is similar to defining
elliptic coordinates implicitly as the eigenvalues ofG. When the integrals of motion are tran
formed into these new coordinates, which is the most technical part of this paper, it turns o
they take a form similar to that known from classical separability theory~Stäckel systems!. This
suggests that the system should be solvable by separation of variables. We show that this is
the case, since the equations of motion are Hamiltonian and the variables can be separate
time-dependent Hamilton–Jacobi equation. Perhaps surprisingly, the Hamiltonian does not i
the potentialV(y,x) in any direct way, but is instead given by one of the integrals of motion in
cofactor chain, divided by the determinant detG, all expressed in new coordinates.

A. Driven cofactor systems as cofactor pair systems

Definition 24 (matrix J): Let J denote the N3N diagonal matrix

J5diag~0,...,0,1,...,1!, ~24!

with m zeros andn ones along the diagonal (N5m1n).
Proposition 25: A system of the form (21) is a cofactor pair system with

G̃~q!5lG~q!1J5..G̃l~q!, ~25!

for any l such thatdetG̃lÞ0. Conversely, any such cofactor pair system has the form (21).
We note that sinceG is assumed nonsingular by the definition of cofactor syst

det(lG(q)1J) cannot vanish identically, so there arel such that detG̃lÞ0. The reason for taking
G̃5G̃l instead of justG̃5J is that the theorems we use about cofactor pair systems require
G and G̃ to be nonsingular. However, many of the results will be the same as if applying
theorems formally withG̃5J directly, so we will regard such systems as cofactor pair syst
associated with the pair (G,J).

The proof of proposition 25 uses the following lemma, which follows from the algeb
properties of an elliptic coordinates matrixG.

Lemma 26: If M52(detG)21G¹W, then

2] jM i5(
r 51

N

Gir ] r j K13Ni] jK ~ iÞ j !,

where K(q)5W(q)/detG(q).
Proof: Proposition 6 implies that2M5G¹(K detG)/detG52KN1G¹K. Differentiating

2Mi52KNi1( r 51
N Gir ] rK we obtain the result immediately, since forj Þ i we have] jGir

5d j r Ni and] jNi50. h

Proof of proposition 25:By construction, the given cofactor system

q̈5M ~q!52~cofG!21¹W52~detG!21G¹W,

has an integral of motion of cofactor typeE5 1
2q̇

T(cofG)q̇1W. Now fix some constantl such
that detG̃lÞ0. Theorem 18 says that the system is a cofactorpair system withG̃5G̃l , i.e., admits
an additional integral of motion of cofactor type

Ẽl5 1
2q̇

T~cof G̃l!q̇1W̃l ,
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if and only if K5W/detG satisfies the fundamental equations~15! associated to the pair (G,G̃l).
The antisymmetry of the fundamental equations shows that any pair (G,lG1J) gives rise to

the same fundamental equations as the pair (G,J), so we simply plugG̃5J into the fundamental
equations~15! ~with n replaced bym1n). To begin with, sinceJ is diagonal and constant~so that
Ñ50), we obtain

05 (
r 51

m1n

Gir Jj j ] r j K2 (
r 51

m1n

Gjr Jii ] ri K13~Jj j Ni] jK2Jii Nj] iK !, i , j 51,...,m1n. ~26!

Now Jii 50 or 1 asi<m andi .m, respectively. From this it is immediate that~26! is identically
satisfied if i , j <m. Using lemma 26 to express the remaining equations~26! for K in terms of
M52(detG)21G¹(K detG) gives 05] jM i for i<m, j , and 05] iM j2] jM i for m, i , j .
Clearly, these equations are equivalent toM having the block structure

M ~q!5S M ↑~y!

M ↓~y,x! D
and ~at least locally! a ‘‘partial potential’’ V such thatM ↓52]V/]x. h

B. Integrals of motion

Proposition 27: The system (21) has n11 integrals of motion E(0),...,E(n) given by the
generating function

Em5 (
k50

n

E(k)mk5 (
k50

n S 1

2
q̇TA(k)q̇1W(k)Dmk5

1

2
q̇T cof~G1mJ!q̇1Wm ~27!

for some functions W(k). The integral E(n) has the form

E(n)~y,ẏ!5 1
2ẏ

T cofG↖~y!ẏ1w~y!, ~28!

and is an integral of motion of the driving system y¨ 5M ↑(y), of cofactor type in the y variables.
Proof: According to theorem 13, our cofactor pair system should have a chain ofN5m1n

integrals of motion. Here, however, that number is reduced since some of them will be lin
dependent. More specifically, for arbitraryl such that detG̃lÞ0, theorem 13 gives us integra
El

(0) ,...,El
(N21) which we write using a generating function

El,m5 (
k50

m1n21

El
(k)mk5

1

2
q̇T cof~G1mG̃l!q̇1Wl,m ~29!

as in ~14!. By construction,Ėl,m50 for all values ofm and alll such that detG̃lÞ0. But El,m

depends polynomially onl and m, since cof(G1mG̃l)5cof(G1m(lG1J))5cof((11ml)G
1mJ)) does. Hence,Ėl,m50 identically. In particular, if we setl50 we extract the constant term
with respect tol, which is just theEm of ~27!, a polynomial inm whose coefficients are integra
of motion.

The reason whyEm is only of degreen ~instead ofm1n21) is that the matrixJ has so few
nonzero elements that the expansion of cof(G1mJ) in powers ofm terminates ‘‘prematurely’’~the
details in this expansion are explained below, after the proof!:
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cof~G1mJ!5cofG

1¯1S A↖
(n21) 2~cofG↖!G↗

2~~cofG↖!G↗!T ~detG↖!I n3n
Dmn211S cofG↖ 0m3n

0n3m 0n3n
Dmn

5..(
k50

n

A(k)mk. ~30!

All the coefficients in the generating functionEl,m in ~29! are linear combinations of thesen
11 basic integralsE(0),...,E(n), so even though one can obtain a seemingly longer chain~with
N5m1n integrals! by takinglÞ0, it would not contain any essentially new integrals of motio
~Note also that the polynomialEm is what we would have obtained by applying theorem
formally with the singular matrixG̃5J instead ofG̃l .)

The integralE(n) has the form

E(n)5
1

2
~ ẏT ẋT!S cofG↖~y! 0m3n

0n3m 0n3n
D S ẏ

ẋD1W(n)~y,x!5
1

2
ẏT cofG↖~y!ẏ1w~y!, ~31!

where clearlyW(n)5w(y) cannot depend onx if E(n) is to be an integral of motion. Consequent
E(n)(y,ẏ) must be an integral of motion of the driving systemÿ5M ↑(y), and it is of cofactor type
in the y variables. h

In ~30! we have written out some blocks in the matricesA(n21) andA(n) for future reference
~in the proof of proposition 36!. These can be found either by analyzing the cofactor expan
directly or by writing the identity

~G1mJ!cof~G1mJ!5det~G1mJ!I N3N

as

JA(n)mn111~JA(n21)1GA(n)!mn1¯5~0mn111~detG↖!mn1...!I N3N

and identifying coefficients block-wise atmn11 andmn, using that the matricesA( i ) are symmet-
ric. The blockA↖

(n21) does not enter into this identity until at the powermn21, and depends onG
in a more complicated way. Fortunately, the only information aboutA↖

(n21) that we will need is
thatA(n21) satisfies the cyclic conditions~5! which connect derivatives ofA↖

(n21) to derivatives of
the other blocks, which are known explicitly.

We have now completed the proof of the first statement of theorem 23, namely, tha
driving system is a cofactor system in they variables.

Moreover, for any given solutiony5y(t) of the driving system, we can conside
E(0),...,E(n21) as functions of (x,ẋ,t), and these constituten time-dependent integrals of motio
of the driven system~23! given by the time-dependent potentialV(y(t),x). These are the integral
referred to at the end of theorem 23.

C. Separation coordinates

Our remaining task~which is much more complicated! is to show how to integrate the drive
systemẍ52 (]V/]x) (y(t),x), given a solutiony(t) of the driving systemÿ5M ↑(y). This will
be accomplished using a change of variables (y,x)°(v,u) on Rm1n defined as follows:

Definition 28 (variables u and v, rootsl): Let v i5yi for i 51,...,m. Let uj5l j (y,x) for j
51,...,n, wherel1 ,...,ln are the roots of the nth degree polynomial equation

det~G~y,x!2l J!50. ~32!
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~We assume that this really defines a coordinate system. This requires, to begin with, that
roots l j are nonconstant as functions ofq. Moreover, the gradients of thev i and uj must be
linearly independent. Because of lemma 31 below, this holds at least in a neighborhood
point where alll j (q) are distinct.!

Definition 29 [polynomial U(m)]. Let

U~m!5~u12m!~u22m!¯~un2m!. ~33!

It follows from the definition of theuk as roots of the polynomial det(G2mJ), which has the
leading term (2m)n detG↖ , that

det~G2mJ!5U~m!detG↖ . ~34!

Our aim is to express the integrals of motionE(0),...,E(n) in terms of the new coordinatesv
andu, and likewise for the equations of motion for the system@although for that purpose we view
x°u5l(y(t),x), where y(t) is a given solution of the driving system, as a time-depend
change of variables inRn; more about that later#. The remainder of this subsection contai
technical preparations for these tasks.

Definition 30 (matrixC): Let C denote theN3N matrix of partial derivatives ofv andu with
respect toy andx, arranged so that the columns ofC are the gradients ofv andu with respect to
q5(x

y):

C5~¹v1¯¹vm ¹u1¯¹un!5~e1¯em ¹l1¯¹ln!, ~35!

whereei is the column vector with 1 in positioni and 0 elsewhere.@In the block notation of~17!,
C↖5I m3m andC↙50n3m .]

With this definition we have

S v̇
u̇D5CTq̇, q̇5

1

detC
~cofCT!S v̇

u̇D , ~36!

and also

¹5S ]/]y
]/]xD5CS ]/]v

]/]uD . ~37!

~Note that]/]yÞ]/]v even thoughy5v, hence the need for the different names.!
The following lemma will give us information about the lastn columns in the matrixC ~or,

equivalently, about the blocksC↗ andC↘).
Lemma 31 (eigenvalues and eigenvectors): Let G(q) and G̃(q) be elliptic coordinates matri-

ces. Ifl5l(q) is a simple root ofdet(G2lG̃)50, then¹l(q) is the corresponding ‘‘eigenvec
tor:’’

~G~q!2l~q!G̃~q!!¹l~q!50. ~38!

If l1 and l2 are two different such roots, then

~¹l1!TG̃¹l250. ~39!

Proof: Let Gr5G2rG̃ and p(r )5detGr . For eachr , Gr is an elliptic coordinates matrix
with associated vectorNr5N2rÑ, whereN5aq1b andÑ5ãq1b̃. If we apply proposition 6
to Gr we get¹p(r )52(cofGr) Nr . Now compute the gradient ofp(l(q))[0:

05~¹p! ~l~q!!1p8~l~q!! ¹l~q!52 cof~G2l~q! G̃! ~N2l~q! Ñ!1p8~l~q!! ¹l~q!.
~40!
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Multiplying this by G2l(q)G̃ yields, since det(G2l(q)G̃)50 by definition ofl,

05p8~l~q!! ~G2l~q!G̃!¹l~q!.

But p8(l(q))Þ0 sincel(q) is assumed to be a simple root ofp. The first statement follows.
The second statement comes from the simple observation that ifGX15l1G̃X1 and GX2

5l2G̃X2 , then, sinceG andG̃ are symmetric,

05~GX1!TX22X1
T~GX2!5~l12l2!X1

TG̃X2 .

h

Lemma 31, withG̃5J, says that

G¹uk5ukJ¹uk , ~41!

and that¹u1 ,...,¹un ~which are the lastn columns ofC! are ‘‘J-orthogonal,’’

~¹uj !
TJ ~¹uk!50, if j Þk. ~42!

Thus, the columns (¹uj )↓ of the lower rightn3n block C↘ in C are orthogonal inRn in the
ordinary Euclidean sense, with squared lengthsD1 ,...,Dn , where

Dk5~~¹uk!↓!T~¹uk!↓5(
i 51

n

~Cn1 i ,n1k!
2. ~43!

Consequently, since the firstm columns inC are juste1 ,...,em , the interpretation of ann3n
determinant as a volume inRn shows that

~detC!25D1D2¯Dn . ~44!

It also follows that, withD5diag(D1,...,Dn) andU5diag(u1,...,un),

CTJ C5S 0m3m 0m3n

0n3m D
D ~45!

and

CTG C5S G↖ 0m3n

0n3m UD
D . ~46!

D. Integrals of motion in separation coordinates

Now we will transform the integrals of motionE(0),...,E(n) given by ~27! to the new coor-
dinates (v,u).

Kinetic part: We begin with the ‘‘kinetic’’ part q̇T cof(G1mJ)q̇. Write Gm5G1mJ for
simplicity. Equation~36! gives

q̇T~cofGm!q̇5
1

~detC!2 ~ v̇T u̇T!cof~CTGmC!S v̇
u̇D .

Equations~45! and ~46! show that

CTGmC5S G↖ 0m3n

0n3m UmD
D ,
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where

Um5U1mI n3n5diag~u11m,...,un1m!. ~47!

This, together with~44!, gives

1

~detC!2 cof~CTGmC!5S detUm cofG↖ 0m3n

0n3m ~detG↖!D21 cofUm
D .

Sandwiching this between (v̇T u̇T) and (u̇
v̇), we finally obtain

q̇T~cofGm!q̇5~detUm!v̇T~cofG↖!v̇1~detG↖!u̇T~D21cofUm! u̇. ~48!

Note that detUm5)1
n(ui1m) is the generating function for the elementary symmetric polynom

in the n variables$u1 ,...,un%, while the kth entry in the diagonal matrix cofUm generates the
elementary symmetric polynomials in then21 variables$u1 ,...,un%\$uk%.

Structure of Dk : Next we prove a statement about howDk , defined by~43!, depends onu
andv. This result is important for showing separability later.

Proposition 32: The quantitiesD1 ,...,Dn satisfy

Dk~u,v ! U8~uk!detG↖~v !5 f k~uk!, k51,...,n, ~49!

where each of the functions f1 ,...,f n depends on one variable only, as indicated. [But U8(uk),
which is just the derivative of U(m)5)(ui2m) evaluated atm5uk , depends on all the variable
ui .]

Proof: Recall thatD5diag(D1,...,Dn)5(C↘)TC↘ , by ~45!. Since the columns¹uk make up
the blocksC↗ andC↘ , the ‘‘upper part’’ of ~41! shows that

G↖C↗1G↗C↘50m3n . ~50!

Recall from~34! that

det~G2mJ!5U~m!detG↖5detG↖S ~2m!n1~2m!n21S ( ui D1¯ D .

By proposition 6,

¹ det~G2mJ!52 cof~G2mJ! N52~~2m!nA(n)1~2m!n21A(n21)1¯ ! N.

~Note thatN is the vector associated toG2mJ as well as toG, sinceJ is constant.! Hence, in
particular,

2 A(n21)N5¹S ~detG↖!( ui D .

Now, (¹ detG↖)↓50 sinceG↖ depends only on they variables, and consequently

2 ~A(n21)N!↓5~detG↖!( ~¹ui !↓5~detG↖!C↘1n ,

where 1nPRn is the column vector with all ones. If we use what we know from~30! about the
block structure ofA(n21) and divide by detG↖ , this takes the form

2 S 2G↖
21G↗

I n3n
D T

N5C↘1n . ~51!
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Combining~50! and ~the transpose of! ~51!, we find

2 NTS C↗
C↘

D52 NTS 2G↖
21G↗C↘
C↘

D5~C↘1n!TC↘51n
TD5~D1 D2 ...Dn!.

In other words,

Dk52 NT¹uk , k51,...,n. ~52!

As a special case of~40!, with G̃5J, Ñ50, p(m)5det(G2mJ)5U(m)detG↖ , and l5uk , we
have

U8~uk! ~detG↖!¹uk522 cof~G2ukJ! N, ~53!

which, because of~52!, when multiplied from the left by 2NT yields

U8~uk! ~detG↖! Dk524 NT cof~G2ukJ! N, ~54!

The left-hand side here is what we claim depends onuk only, and we will prove this by showing
that the gradient of the right hand side is proportional to¹uk . @Clearly, a functionf (v,u) depends
on uk alone iff (] f /]uk) ¹uk is the only contribution when computing¹ f with the chain rule.#

Proposition 10, applied toG2mJ ~which has the samea andN asG), shows that

¹~NTcof~G2mJ! N!52 acof~G2mJ! N.

Hence, by the chain rule,

¹~NT cof~G2ukJ! N!52 a cof~G2ukJ! N1
d

dm
@NTcof~G2mJ! N#m5uk

¹uk .

It is manifest that the second term is proportional to¹uk , and so is in fact also the first term
because of~53!. This finishes the proof of proposition 32. h

Remark 33:In all the examples we have computed, it turns out thatf i(qi)5 f (qi) for a single
function f , but we have no proof that this is always true. In any case, it is not needed for pro
separability here.

Solution of the fundamental equations:We previously~in the proof of proposition 25!
investigated the fundamental equations associated to the pair (G,J):

05
]Mi

]qj
for i<m, j , ~55!

05
]Mi

]qj
2

]M j

]qi
for m, i , j , ~56!

where

M52
G ¹~K detG!

detG

is the right-hand side in the cofactor pair systemq̈5M (q) generated byE(0)5 1
2q̇

T(cofG)q̇
1K detG.

Proposition 34: In terms of the separations coordinates(v,u), the general solution of the
fundamental equations(55) and (56) is
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K~v,u!5
1

detG↖~v ! S w~v !1 (
k51

n
gk~uk!/uk

U8~uk!
D , ~57!

where g1(u1),...,gn(un) are arbitrary functions of one variable, and U8(uk) is as in proposition
32.

Proof: Recall from~37! that

¹[S ]y

]x
D5CS ]v

]u
D ,

while ~34! shows that detG5u1...un detG↖(v). Hence,

2M5GCS ]v~K detG!

]u~K detG! D /detG5

S G↖ 0

G↙ C↘UD S u1¯un ]v~K detG↖!

~detG↖!]u~u1¯unK ! D
u1 ...un detG↖

5S G↖]v~K detG↖!

detG↖

G↙]v~K detG↖!

detG↖
1C↘S ]u1

~u1K !

A
]un

~unK !
D D ,

whereGC was computed using~41!. Equation~55! says that the upper part

M ↑52
G↖]v~K detG↖!

detG↖

depends only on they ~or v) variables, which happens if and only if

K detG↖5w~v !1F~u!.

The functionw(y) here is the same as in theorem 23, since the driving systemÿ5M ↑ is generated
by E(n)5 1

2ẏ
T(cofG↖) ẏ1w(y).

The functionF(u) is then determined by~56!, which obviously is only interesting ifiÞ j . In
this case, if we seti 5m1k and j 5m1 l , the first term in

Mi5Mm1k52
@G↙# row k ]v~K detG↖!

detG↖
2@C↘# row kS ]u1

~u1K !

A
]un

~unK !
D

does not depend onqj5xl , since rowk of G↙ depends onxk and y only. Then, since by the
definition of C

@C↘# row k5S ]u1

]xk

]u2

]xk
¯

]un

]xk
D ,

we find

]Mi

]qj
52

]

]xl
(
s51

n
]us

]xk
]us

~usK !52(
s51

n
]2us

]xl]xk
]us

~usK !2@C↘# row k

]

]xl
S ]u1

~u1K !

]

]un
~unK !

D .
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In the second term we substituteK5(w(v)1F(u))/detG↖(v) and plug what we have into~56!.
The first term cancels out in the subtraction, leaving

05
]Mi

]qj
2

]M j

]qi
52

1

detG↖ S @C↘# row k

]

]xl
S ]u1

~u1F !

]

]un
~unF !

D 2@C↘# row l

]

]xk
S ]u1

~u1F !

]

]un
~unF !

D D .

Now, since]x5C↘]u , this shows that

05@C↘# row l V @C↘
T #column k2@C↘# row k V @C↘

T #column l ,

whereV ~temporarily! denotes then3n matrix with entriesVab5]ua
]ub

(ubF). In other words,

05C↘(V2VT)C↘
T , or, finally,

]2

]ua]ub
~~ua2ub!F~u!!50, a,b51,...,n. ~58!

This equation occurs in classical separability theory in connection with separation in ellipti
parabolic coordinates. It is known to have the general solution

F~u!5 (
k51

n
Fk~uk!

)
j 51
j Þk

n

~uk2uj !

,

with arbitrary functionsF1(u1),...,Fn(un) depending on one variable each~see Lemma 1 and
Lemma 2 in Ref. 3!. Hence, we have the general solution

K~v,u!5
1

detG↖~v ! S w~v !1(
k

Fk~uk!

) j Þk~uk2uj !
D . ~59!

For our purposes, it turns out to be most convenient to write this in the form~57!. h

Potential part: It remains to investigate the form of the ‘‘potential’’ partsW(0),...,W(n) in the
(v,u) coordinates.

Proposition 35: The functions W(0),...,W(n21) take the following form when expressed in t
(v,u) coordinates:

W(a)~v,u!5sn2a~u! w~v !1 (
k51

n
sn2a21~ ǔk! gk~uk!

U8~uk!
, ~60!

where sb(u) denotes the elementary symmetric polynomial of degree b in the n varia
$u1 ,...,un%, and sb(ǔk) denotes the elementary symmetric polynomial of degree b in the n21
variables $u1 ,...,un%\$uk%. As above, g1(u1),...,gn(un) are functions of one variable, and
U8(uk) is as in proposition 32.

In particular, the function W(n) depends on thev coordinates only:

W(n)5w~v !. ~61!

Proof: We have seen thatW(n)5w(y) depends only ony in the original coordinates, henc
alsoW(n)5w(v). We also know thatK5W(0)/detG is a solution of the fundamental equations,
according to~57!
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W(0)~v,u!5
detG~v,u!

detG↖~v ! S w~v !1 (
k51

n
gk~uk!/uk

U8~uk!
D 5u1¯un w~v !1 (

k51

n
sn21~ ǔk! gk~uk!

U8~uk!
.

~62!

With M determined byW(0), the remainingW(a) are determined~up to irrelevant additive
constants! by the relation¹W(a)52A(a)M , or

¹Wm5 (
a50

n

¹W(a)ma52S (
a50

n

A(a)maD M5cof~G1mJ!
G

detG
¹W(0).

We multiply by (detG)CT(G1mJ) from the left and use~37!, ~45!, and~46! to obtain the equiva-
lent condition

~detG!S G↖ 0

0 ~U1mI !D
D S ]vWm

]uWm
D5det~G1mJ!S G↖ 0

0 UD
D S ]vW(0)

]uW(0)D .

It is a tedious but fairly straightforward calculation, which we omit, to verify that this is satis
by

Wm5S )
i 51

n

~ui1m!D w~v !1 (
k51

n S )
j 51
j Þk

n

~uj1m!D gk~uk!

U8~uk!
,

from which W(a) can be read off as the coefficient ofma. h

Summary: We have now determined the form of the integrals of motion in separation c
dinates (v,u). We have seen that

E(n)5 1
2v̇

T~cofG↖~v !!v̇1w~v ! ~63!

depends only onv, while the form ofE(0),...,E(n21) is obtained from~48! and ~60!:

E(a)5sn2a~u! E(n)1 (
k51

n

sn2a21~ ǔk!S 1

2
~detG↖!

u̇k
2

Dk
1

gk~uk!

U8~uk!
D . ~64!

If we let sk5u̇k /Dk and use proposition 32, we can write this as

E(a)5sn2a~u! E(n)1 (
k51

n
sn2a21~ ǔk!

U8~uk!
S 1

2
f k~uk! sk

21gk~uk! D . ~65!

Note in particular that

E(n21)5S (
k51

n

ukDE(n)1 (
k51

n S f k~uk! sk
21gk~uk!

U8~uk!
D . ~66!

E. The equations of motion are Hamiltonian

Given some solutiony5y(t) @or v5v(t)] of the driving system, we now consideru
5u(y(t),x) as a time-dependent change of variables inRn. We want to express the driven syste
ẍ52 (]V/]x) (y(t),x) in terms of theu variables. Note that sinceE(n) is an integral of motion
for the driving system, it can from now on be treated as simply a constant, the value of wh
determined by which solutiony(t) is taken.

Proposition 36: The equations of motion for the u variables can be put into canonical Ha
tonian form
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u̇5
]h

]s
~u,s,t !,

ṡ52
]h

]u
~u,s,t !,

with momenta s1 ,...,sn defined by

sk5
u̇k

Dk
~67!

(D i as in proposition 32!, and with the time-dependent Hamiltonian

h~u,s,t !5
1

detG↖~y~ t !! S S (
k51

n

ukDE(n)1 (
k51

n S f k~uk! sk
21gk~uk!

U8~uk!
D D . ~68!

Proof: First we see from~66! thath is simplyE(n21)/detG↖ , expressed in terms ofu, s, and
t. Now, with p5 ẋ the systemẍ52 (]V/]x) (y(t),x) has a canonical Hamiltonian formulation

ẋ5
]H

]p
~x,p,t !,

ṗ52
]H

]x
~x,p,t !,

whereH(x,p,t)5 1
2p

Tp1V(y(t),x). Consider the extended phase spaceR2n11 with coordinates
(x,p,t). With T5t, the variables (u,s,T) constitute a different coordinate system on this spa
The vector field in extended phase space that corresponds to the canonical phase flow is e
in the 1-formpT dx2H dt ~by spanning the kernel of its exterior derivative!. It follows that the
equations of motion are canonical in the new coordinates, with Hamiltonianh, if the two 1-forms,

pT dx2H dt and sT du2h dT,

have the same exterior derivative~see Sec. 45 in Ref. 1!. Here we viewdx and du as column
vectors of 1-formsdxi anddui , in order to be consistent with our previous matrix notation. Sin
here we havedT5dt, the proof amounts to showing that

d~pT dx2sT du1~h2H ! dt!50. ~69!

The computations will be performed in the (x,p,t) coordinates, and whenever we writey we
mean the given functiony(t). Note also that sinceG↖ depends only on they variables, it too will
be a function oft only. In particular, detG↖ is a function oft only.

We need to expresssT du and h in terms of the (x,p,t) coordinates. Recall that by th
definition 30 of the matrixC we have

~¹u1 ,...,¹un!5S C↗
C↘

D .

Since

dui5 (
k51

m
]u

]yk
ẏk dt1 (

k51

n
]u

]xk
dxk

we obtain
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du5~C↗!Tẏ dt1~C↘!T dx,

that is,

u̇5~C↗!Tẏ1~C↘!Tẋ.

If we transpose and multiply from the right byD215diag(Dk
21), we get

sT5 ẏTC↗D211pTC↘D21.

Now we define anm3n matrix J by

J5C↗~C↘!21. ~70!

SinceD5(C↘)TC↘ , it follows that

C↘D21~C↗!T5JT,

C↗D21~C↗!T5J JT.

Consequently,

sT du5pT dx1~ ẏTJ JTẏ1 ẏTJp!dt1 ẏTJ dx. ~71!

Furthermore,~50! shows thatG↗52G↖J, so that the expression for the blockA↗
(n21) from

~30! can be written as

A↗
(n21)52~cofG↖!G↗5~detG↖!J. ~72!

Hence, since from~30! we also haveA↘
(n21)5(detG↖)I, we find the following expression forh:

h5
E(n21)

detG↖
5

1

detG↖
S 1

2
~ ẏT pT!A(n21)S ẏ

pD1W(n21)D5
1

2
pTp1 ẏTJp1

1
2ẏ

TA↖
(n21)ẏ1W(n21)

detG↖
.

~73!

So far we have

pT dx2sT du1~h2H ! dt5S 1
2ẏ

TA↖
(n21)ẏ1W(n21)

detG↖
2V2 ẏTJ JTẏD dt2 ẏTJ dx,

and the exterior derivative of this is zero iff

]

]x
S 1

2ẏ
TA↖

(n21)ẏ1W(n21)

detG↖
2V2 ẏTJ JTẏD 1

]

]t
~JTẏ!50.

Now (]/]t) (JTẏ)5 (]JT/]t) ẏ1JTÿ, and fromq̈52@A(n21)#21¹W(n21) it follows that

]W(n21)

]x
52@A(n21)q̈#↓52~A↗

(n21)!Tÿ1A↘
(n21) ]V

]x
5~detG↖!S 2JTÿ1

]V

]x D ,

so it remains to show that

]

]x
S 1

2ẏ
TA↖

(n21)ẏ

detG↖
2 ẏTJ JTẏD 1

]JT

]t
ẏ50.
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To simplify the notation for this final computation, write

detG↖5D, A↖
(n21)5~ai j !, and A↗

(n21)5~bi j !.

Then (bi j )52(cofG↖)G↗5DJ, by ~72!. In this notation, what we must show is

1

2D (
i , j 51

m
]ai j

]xk
ẏi ẏ j2

1

D2 (
i , j 51

m

(
l 51

n
]~bil bjl !

]xk
ẏi ẏ j1(

i 51

m
]

]t S bik

D D ẏi50. ~74!

To begin with, sinceG↖ is independent ofx andG↗ is linear inx, we see thatbi j is linear inx.
More precisely, since

]@G↗# r j

]xk
5

]Gr ,m1 j

]qm1k
5d jkNr ,

applying proposition 6 withy instead ofq gives

]bi j

]xk
52(

r 51

m

@cofG↖# ir ~d jkNr !52d jk@~cofG↖!N↑# i52
d jk

2

]D

]yi
.

Furthermore,

(
i 51

m
]

]t S bik

D D ẏi5 (
i , j 51

m
]

]yj
S bik

D D ẏi ẏ j .

Finally, sinceA(n21) satisfies the cyclic conditions,

]ai j

]xk
5

]Ai j
(n21)

]qm1k
52

]Aj ,m1k
(n21)

]qi
2

]Am1k,i
(n21)

]qj
52

]bjk

]yi
2

]bik

]yj
.

Plugging all this into~74!, it is easy to verify that everything cancels out, which completes
proof. h

F. Separation of the time-dependent Hamilton–Jacobi equation

The time-dependent Hamilton–Jacobi equation corresponding to the Hamiltonianh(u,s,t) of
proposition 36 is

hS u,
]F

]u
,t D1

]F

]t
50. ~75!

A complete solutionF(u,a,t) can be obtained by separation of variables, as we will now sh
We number the parametersa0 ,...,an21 since they will in fact be just the values of the integrals
motion E(0),...,E(n21), as will be clear by comparing~78! below with ~65!.

To begin with, since the time variablet appears inK only in the overall multiplicative factor
1/(detG↖), it can be separated off by assuming a solution forF of the form

F~u,a,t !5S~u,a!2an21E 1

detG↖~y~ t !!
dt. ~76!

With the explicit expression forh from proposition 36 we get the following equation forS(u,a):

S (
k51

n

ukDE(n)1 (
k51

n S 1
2 f k~uk!~]S/]uk!

21gk~uk!

U8~uk!
D 5an21 . ~77!
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In order to find a complete solution, depending on all the parametersa i , we will use Sta¨ckel’s
method. Consider then equations

(
k51

n
sn2a21~ ǔk!

U8~uk!
S 1

2
f k~uk!S ]S

]uk
D 2

1gk~uk! D5aa2sn2a~u!E(n), ~78!

wherea50,...,n21. If we can find a solution of this system, it will be a complete solution
~77!, since it will depend on alla i . @Of course it will solve~77! which is just the last equation o
the system, corresponding toa5n21.]

Now ~78! is a linear system of equations for the expression in parentheses, and the ma
coefficients is the inverse of a Sta¨ckel matrix ~similar to the one occuring when separating
elliptic or parabolic coordinates!. In fact, the matrix can be inverted using known properties
symmetric polynomials, resulting in

1

2
f k~uk!S ]S

]uk
D 2

1gk~uk!52P~2uk!, k51,...,n, ~79!

where the polynomialP is given by

P~z!5a01a1z1¯1an21zn211E(n)zn. ~80!

It is now clear that the additive Ansatz

S~u,a!5S1~u1 ,a!1...1Sn~un ,a!

yields a separated solution, provided that each functionSk satisfies the separation ODE

1

2 S dSk

duk
D 2

5
2gk~uk!2P~2uk!

f k~uk!
. ~81!

Consequently,

F~u,a,t !5 (
k51

n EA22
gk~uk!1P~2uk!

f k~uk!
duk2an21E 1

detG↖~y~ t !!
dt ~82!

is a complete solution, and in the usual way it generates a canonical transformation to va
~b,a!, whereb i5]F/]a i . These new variables will be constant during the motion, with val
determined by the initial condition. One can then~at least in principle! solve foru5u(b,a,t), and
hencex5x(b,a,t). This finishes the proof of theorem 23.

IV. THE CASE OF ONE DRIVEN EQUATION

The case when only the last equation is driven by the other ones is easier to handle, s
does not require the Hamilton–Jacobi method, as we shall soon see. Specializing our p
results to this case by settingn51, we find the following. If a system of the form

ÿ15M1~y1 ,...,ym!,

A
~83!

ÿm5Mm~y1 ,...,ym!,

ẍ52
]V

]x
~y1 ,...,ym ;x!
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has an integral of motionE(0) of cofactor type, then it must have an extra integral of mot
E(1)5 1

2ẏ
T cofG↖(y) ẏ1w(y) depending only on the variablesy. We change to new coordinate

(v1 ,...,vm ,u), wherev5y andu is the zero of the first degree polynomial det(G2lJ). HereJ
5diag(0,...,0,1), so det(G2lJ)5detG2l detG↖ , hence

u5
detG~y,x!

detG↖~y!
.

In the new variables,E(1) remains unchanged~with v instead ofy), while E(0) takes the form
given by ~64!,

E(0)5uE(1)1
1

2

detG↖~v !

D
u̇21g~u!,

where, according to~43! and proposition 32,

D5S ]u

]xD 2

5
f ~u!

detG↖~v !

for some functionf (u). Hence,

E(0)5uE(1)1
1

2

~detG↖~v !!2

f ~u!
u̇21g~u!. ~84!

Now, for a given solutionv(t)5y(t) of the driving system, we write this as

S detG↖~v~ t !!
du

dt D
2

52 f ~u!~E(0)2uE(1)2g~u!!,

or

du

A2 f ~u!~E(0)2uE(1)2g~u!!
5

dt

detG↖~v~ t !!
,

which can be integrated by quadrature, sinceu and t are separated.
This procedure can be applied recursively to ‘‘triangular’’ systems, as in the following pr

sition. Note that for an arbitrary triangular system all we can do in general is to solve the
equation forq1(t). It is quite surprising that the existence of an integral of motion of cofactor t
is enough to allow us to solve the system completely.

Proposition 37 (triangular cofactor systems): Suppose that the ‘‘triangular’’ Newton syst

q̈15M1~q1!,

q̈25M2~q1 ,q2!,

q̈35M3~q1 ,q2 ,q3!, ~85!

A

q̈N5MN~q1 ,q2 ,q3 ,...,qN!,

is of cofactor type. Suppose also that no upper left k3k block in G is constant or singular(k
51,...,N21). Then the system can be integrated by quadratures.
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Proof: The whole system is of the type considered above~driven, with n51), so it can be
integrated provided that the driving system, consisting of theN21 first equations, can be inte
grated. By what we said above, the driving system must have an integral of motion of co
type, so it is itself a triangular cofactor system, of one dimension less. Since the first equati
be integrated~being one dimensional!, the statement follows by induction. h

In each step of the integration procedure one new variableu5uk is introduced. Denoting the
determinant of the upper leftk3k block in G by Dk(q1 ,...,qk), we can write the separatio
variables (u1 ,...,uN) as

u15q1 and ui5
Di

Di 21
, i 52,...,N.

V. EXAMPLES

Example 38 (example 1 continued):We can now fill in the missing details in our first exampl
We had

M ~q!5
1

~q2q32q1!2 S 0
q3

q2

D .

With

G~q!5S 2q1 q2 q3

q2 0 1

q3 1 0
D , J5S 0 0 0

0 1 0

0 0 1
D ,

we find fromAm5cof(G1mJ) that

A(0)5cofG5S 21 q3 q2

q3 2q3
2 q2q322q1

q2 q2q322q1 2q2
2

D ,

A(1)5S 0 2q2 2q3

2q2 2q1 0

2q3 0 2q1

D , A(2)5S 1 0 0

0 0 0

0 0 0
D .

The relation¹W(k)52A(k)M then yields

W(0)52
q2

21q3
2

q2q32q1
, W(1)5

2q1

q2q32q1
, W(2)50.

We introduce new variables (v,u1 ,u2), wherev5q1 andu1,2 are the roots of

05det~G2uJ!52~q2q32q1!1~q2
21q3

2!u1~2q1!u2.

With (y,x1 ,x2) instead of (q1 ,q2 ,q3), we see thatu11u252(x1
21x2

2)/2y and u1u252(x1x2

2y)/2y, so that
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S x11x2

&
D 2

5v~12u1!~12u2!,

~86!

S x12x2

&
D 2

52v~11u1!~11u2!.

Except for the factorv, the new variables (u1 ,u2) are elliptic coordinates aligned along axes th
are rotatedp/4 relative to the Cartesian coordinates (x1 ,x2). With u1,21,u2,1, the coordi-
nate curves are ellipses~for u1) and hyperbolas~for u2). The example~2! is obtained by taking the
particular solutiony(t)5v(t)5q1(t)5t of the driving equationq̈150, and in this case we get
factor t with the effect of expanding the entire coordinate web as time increases, so these
dinates might be called ‘‘expanding elliptic coordinates.’’

We can express (u1 ,u2) in terms of (y,x1 ,x2) as

u1,25
21

4y
~x1

21x2
26A~x1

21x2
2!2216y~x1x22y!!,

and then a straightforward computation gives the quantities

D1,25S ]u1,2

]x1
D 2

1S ]u1,2

]x2
D 2

5
1

2y2 S x1
21x2

26
~x1

21x2
2!228yx1x2

A~x1
21x2

2!2216y~x1x22y!
D .

With U(m)5(u12m)(u22m) we find that (detG↖)U8(u1)D152y(u12u2)D154(12u1
2) and

(detG↖)U8(u2)D252y(u22u1)D154(12u2
2) depend only on one variable, as predicted by Prop

tion 32. So in this case we havef 15 f 25 f , where f (u)54(12u2).
The functionsW(k), expressed in the new variables, take the form

W(0)52
u11u2

u1u2
5u2

22/u1

U8~u1!
1u1

22/u2

U8~u2!
,

W(1)5
2

u1u2
5

22/u1

U8~u1!
1

22/u2

U8~u2!
,

W(2)50,

in accordance with proposition 35.
We can now write down the integrals of motionE(k)5 1

2q̇
TA(k)q̇1W(k) in terms of the vari-

ables (v,u1 ,u2). With si5u̇i /D i , we find

E(2)5
v̇2

2
,

E(1)5~u11u2!E(2)1

4~12u1
2!

s1
2

2
2

2

u1

U8~u1!
1

4~12u2
2!

s2
2

2
2

2

u2

U8~u2!
,

E(0)5u1u2E(2)1u2

4~12u1
2!

s1
2

2
2

2

u1

U8~u1!
1u1

4~12u2
2!

s2
2

2
2

2

u2

U8~u2!
.

The new Hamiltonian ish5E(1)/detG↖(v(t)), or, with v(t)5t,
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h~u,s,t !5
1

2t
S u11u2

2
1

4~12u1
2!

s1
2

2
2

2

u1

U8~u1!
1

4~12u2
2!

s2
2

2
2

2

u2

U8~u2!
D .

The time-dependent Hamilton–Jacobi equationh(u,]F/]u,t)1]F/]t50 admits a separate
complete solution of the form

F~u1 ,u2 ,a1 ,a2 ,t !5S1~u1 ,a0 ,a1!1S2~u2 ,a0 ,a1!2
a1

2
lnutu,

whereS1 andS2 satisfy the separation equations

1

2 S dS1

du1
D 2

5

2

u1
2a01a1u12

u1
2

2

4~12u1
2!

,

1

2 S dS2

du2
D 2

5

2

u2
2a01a1u22

u2
2

2

4~12u2
2!

.

From bk5]F/]ak we finally obtain

b1~u1 ,u2 ,t,a0 ,a1!5Eu1 x

2R
dx1Eu2 x

2R
dx2

1

2
lnutu,

b0~u1 ,u2 ,t,a0 ,a1!5Eu1 21

2R
dx1Eu2 21

2R
dx,

where

R~x,a1 ,a2!5A2~12x2!S 2

x
2a01a1x2

x2

2 D .

This gives the solutionu(b,a,t) in implicit form.
Example 39 (a triangular system):An interesting example of a triangular cofactor syste

appears when applying the recursive method for constructing cofactor pair systems given
6 to the matrices

G5S 0 21 q1

21 0 q2

q1 q2 2q3

D , G̃5S 0 0 1

0 1 0

1 0 0
D .

Starting withW(0)5W(1)50 andW(2)521, one obtains after four steps the system

q̈1524q1 ,

q̈256q1
224q2 , ~87!

q̈35210q1
3112q1q224q3 ,
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which is a cofactor pair system with respect to the given matricesG and G̃. Since the third
equation is driven by the first two, the system is also a cofactor pair system with respect toG and
J5diag(0,0,1). In fact, the most general matrixG for which the system has an integral of motio
of the form 1

2q̇
T(cofG)q̇1W(q) is

c1S 0 21 q1

21 0 q2

q1 q2 2q3

D 1c2S 0 0 1

0 1 0

1 0 0
D 1c3S 0 0 0

0 0 1

0 1 0
D 1c4S 0 0 0

0 0 0

0 0 1
D ,

so it might be called a ‘‘cofactor quadruple system.’’@The third matrix comes from the fact tha
there is a functionU(q) such thatM25]3U andM35]2U.] Anyway, we know from Sec. IV that
the driving system is a cofactor system with respect to

G↖5S 0 21

21 0 D .

Since this matrix is constant, we cannot use it for integrating the driving system, but it so ha
that the driving system is a cofactor system with respect to any matrix of the form

c1S 21 q1

q1 2q2
D 1c2S 0 1

1 0D 1c3S 0 0

0 1D .

So, forgetting about~87! for the moment, we consider the two-dimensional driving system

q̈5S 24q1

6q1
224q2

D52
g¹w

detg
, ~88!

where now

g5S 21 q1

q1 2q2
D , w5 3

2 q1
412q1

2q222q2
2 .

@In this example, we use lowercase letters for quantities referring to the two-dimensional s
~88!.# In the new variablesv5q1 andu5detg/detg↖5q1

212q2, we have the integrals of motion

e(1)5 1
2q̇1

212q1
25 1

2v̇
212v2

from the first equation, and~after a short calculation!

e(0)5
1

2
q̇T~cofg!q̇1w~q!5ue(1)2

u̇2

8
2

u2

2
.

The functionv(t)5q1(t) is just a harmonic oscillation, whose amplitude determines the num
cal value ofe(1) ~or the other way around!:

q1~ t !5Ae(1)

2
sin 2~ t2t1!. ~89!

The value ofe(0) is determined by the initial conditions forq1 and q2 . Then u(t), and hence
q2(t)5(u(t)2v(t)2)/2, can be found from the separable ODE

du

dt
5A8S ue(1)2

u2

2
2e(0)D .
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This gives

u~ t !5A~e(1)!222e(0) sin 2~ t2t2!1e(1),

so that

q2~ t !5 1
2 ~A~e(1)!222e(0) sin 2~ t2t2!1e(1)~12 1

2sin2 2~ t2t1!!!. ~90!

Having foundq1(t) andq2(t), we return to the three-dimensional system~87!:

q̈5S 24q1

6q1
224q2

210q1
3112q1q224q3

D 52
G¹W

detG
,

where

G5S 0 21 q1

21 0 q2

q1 q2 2q3

D , W56q1
2q2

224q1
4q214q1q2q322q3

224q1
3q3 .

Here we take new variablesv15q1 , v25q2 , andu5detG/detG↖52(q1q21q3). The integrals of
motion turn out to be

E(1)5
1

2
v̇T cofS 0 21

21 0 D v̇14v1v222v1
3

and

E(0)5
1

2
q̇T~cofG!q̇1W~q!5uE(1)2

u̇2

8
2

u2

2
,

so the equation foru(t) can again be separated~in exactly the same way as above!. After finding
u(t), we finally obtainq3(t)5u(t)/22q1(t)q2(t), that is

q3~ t !5 1
2 ~AE(1)22E(0) sin 2~ t2t3!1E(1)!2q1~ t !q2~ t !. ~91!

By inserting the expressions forq1(t) and q2(t) into the expression forE(1) we find that it
depends on the previous integration constantse(0), e(1), t1 , t2 through the equation

E(1)5A2e(1)Ae(1)22e(0) cos 2~ t22t1!.

On the other hand,E(0) and t3 are independent of the previous integration constants.
Example 40 (construction of driven systems):Given a cofactor system

ÿ5M ↑~y!52~cofg~y!!21
]w

]y
~y!,

how can it be extended to a driven system

q̈5S M ↑~y!

M ↓~y,x! D52~cofG~q!!21
]W

]q
~q!

of the type considered in this paper? First of all, the restriction that the elliptic coordinates m
G(q) must haveg(y)5G↖(y) as its upper left block fixesa, b↑ andg↖ . The remaining entries
of b and g can be chosen at will~as long asG is nonsingular!. Then we want to find some
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extensionM ↓ of the right-hand side which is compatible with the chosen matrixG @i.e., so that
W(q) exists#. In separation coordinates, this amounts to specifying the functionsgk(uk) in the
corresponding solution of the fundamental equations~proposition 34!, the functionw(v)5w(y)
already being determined by the driving system. One can find a family of possibleM ↓ in Cartesian
coordinates directly by using the recursion formula from Ref. 6. As it stands, this formula req
G̃ to be nonsingular, but takingG̃5J can be justified like in the proof of proposition 27~however,
it only makes sense in the ‘‘downwards’’ recursion formula!. We then find that if a driven system
has integrals of motion given by the generating functionEm5 1

2q̇
TAmq̇1Wm as in ~27!, then we

obtain another driven system with integrals of motion1
2q̇

TAmq̇1Um by setting

Um5
1

m S det~G1mJ!

detG
W(0)2WmD . ~92!

It is clear thatUm is a polynomial inm of degreen21, notn, which means that the new syste
~and any system obtained by iterating this process! is driven in the trivial way (ÿ50). They
correspond to solutions~57! of the fundamental equations withw(y)50. Adding

det~G1mJ!

detG↖
w~y!

to Um gives a system with anyw(y) desired.
As an example, consider the two-dimensional Garnier potentialV5(q1

21q2
2)22(l1q1

2

1l2q2
2). We will demonstrate how to findG andM3 such that the system

q̈152]1V~q1 ,q2!,

q̈252]2V~q1 ,q2!, ~93!

q̈35M3~q1 ,q2 ,q3!

is of cofactor typeq̈52 (G/detG) ¹W. With G↖5(0 1
1 0), corresponding tow5V, we havea

5b15b250, so we choose, for example,b351 and extendg with zeros to get

G5S 1 0 q1

0 1 q2

q1 q2 2q3

D .

Applying ~92! with Wm5110m and J5diag(0,0,1) givesUm5(detG)21, corresponding to the
trivially driven system

q̈52
G

detG
¹S 1

detGD5
2

~2q32q1
22q2

2!2 S 0
0
1
D .

To keep things simple we stop the recursion after this first step, and let

Em5
1

2
q̇T cof~G1mJ!q̇1~detG!211

det~G1mJ!

detG↖
V~q1 ,q2!,

which then generates an extended system of the desired form

q̈52
G

detG
¹~~detG!211~detG!V!5S 2]1V

2]2V
2~2q32q1

22q2
2!2222V

D . ~94!
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Since the Garnier potential is separable in elliptic coordinates it admits an extra integ
motion of cofactor type. This gives us the possibility to instead take

G↖5S l12q1
2 2q1q2

2q1q2 l22q2
2D ,

corresponding to

w5l2q1
41l1q2

41~l11l2!q1
2q2

22l1l2~q1
21q2

2!.

Herea521 andb↑50, and we can for example extendG↖ to

G5S l12q1
2 2q1q2 2q1q3

2q1q2 l22q2
2 2q2q3

2q1q3 2q2q3 l32q3
2
D .

In a similar way as above we get in this case~after some computation! the extended system

q̈52
G

detG
¹S detG↖

detG
1

detG

detG↖
wD

5S 2]1V

2]2V

l1l2q3S 2w~q1 ,q2!

~detG↖!2 2
2

~detG!2 1
q1~]1V!/l11q2~]2V!/l2

detG↖
D D , ~95!

where detG5l1l2l3(12q1
2/l12q2

2/l22q3
2/l3) and detG↖5l1l2(12q1

2/l12q2
2/l2).
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Uniqueness in MHD in divergence form: Right nullvectors
and well-posedness

Maurice H. P. M. van Puttena)

Massachusetts Institute of Technology, Room 2-388, Cambridge, Massachusetts 02139

~Received 30 August 2001; accepted 21 July 2002!

Magnetohydrodynamics in divergence form describes a hyperbolic system of co-
variant and constraint-free equations. It comprises a linear combination of an alge-
braic constraint and Faraday’s equations. Here, we study the problem of well-
posedness, and identify a preferred linear combination in this divergence
formulation. The limit of weak magnetic fields shows the slow magnetosonic and
Alfvén waves to bifurcate from the contact discontinuity~entropy waves!, while the
fast magnetosonic wave is a regular perturbation of the hydrodynamical sound
speed. These results are further reported as a starting point for characteristic based
shock capturing schemes for simulations with ultra-relativistic shocks in magne-
tized relativistic fluids. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1510174#

I. INTRODUCTION

Highly relativistic astrophysical fluids have been observed as highly energetic outflows
jets in active galactic nuclei, including a few optical radio-jets such as 3C273~Pearsonet al.,
1981; Thomsonet al., 1993; Bahcallet al., 1995!, 3C346 ~Dey and van Breugel, 1994!, M87
~Birettaet al., 1995! and PKS 1229-21~Le Brunet al., 1997!, microquasars in our galaxy~Hjell-
ming and Rupen, 1995; Mirabel and Rodriguez, 1995; Levinson and Blandford, 1996!, pulsar
winds ~Kennel and Coroniti, 1984!, and fireballs in recent models ofg-ray bursts~Rees and
Meszaros, 1994!. These flows are generally time-dependent, or have been produced in a st
time-variable episode, and hence are relativistically shocked fluid flows. In most cases, sho
responsible for brightest emission features at the highest energies.

The evolution of strongly magnetized flows can be markedly different from unmagne
flows. This is already apparent from small amplitude wave-motion in ideal magnetohydrody
ics compared with hydrodynamics, and their distinct shock structures. The nonlinear develo
of large scale morphology of strongly magnetized jets can result in features such as the for
of a nose cone~Clarkeet al., 1986!, which is absent in hydrodynamical evolution. Of particu
interest is the role of magnetic fields in the large scale, three-dimensional stability of jets an
knotted structures.

Time-dependent simulations may provide the link between the observed emission featur
the internal structure such as magnetized field distribution, and boundary conditions at the s
It is hoped that simulations ultimately provide constraints on the flow parameters, perhap
derived from stability criteria. Higher dimensional simulations of jets are performed by a nu
of groups in the approximation of relativistic hydrodynamics~van Putten, 1993b; Duncan an
Hughes 1994; Martı´ et al., 1995; Martı´ et al., 1997! and relativistic magnetohydrodynamics~van
Putten 1994a, b, 1996; Nishikawaet al., 1997; Koideet al., 1996, 1998!.

The earliest approach for time-dependent simulations on shocked relativistic magneto
dynamic flows with dynamically significant magnetic fields uses the equations of magnetoh
dynamics~MHD! in divergence form~van Putten 1991, 1993a!. The divergence technique obtain
hyperbolic systems from partial differential-algebraic systems of equations, and applies

a!Electronic mail: mvp@schauder.mit.edu
61950022-2488/2002/43(12)/6195/14/$19.00 © 2002 American Institute of Physics
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generally to the case of Yang-Mills magnetohydrodynamics in SU~N! ~van Putten 1994c, d
Choquet-Bruhat 1994a, b!, and general relativity~van Putten and Eardley, 1996!. A linear smooth-
ing method has been used as a shock capturing scheme for this formulation~van Putten 1993a
1994a b, 1995!. Both one- and two-dimensional simulations on astrophysical jets are perfo
~van Putten, 1993b, 1996; Levinson and van Putten, 1997!. This method is accurate and stable, a
generally performs well for relativistic shocked fluid flow with up to moderately strong sh
strengths~van Putten, 1993a!, and preserves divergence free magnetic fields to within mac
round-off error~van Putten, 1995!. A smoothing method, therefore, is appropriate for simulatio
on the large scale morphology of astrophysical jets.

Advanced shock capturing schemes are commonly based on characteristics, however,
Roe’s method~1981! and its extensions. These methods are generally more stable than smo
methods for flows with ultra-relativistic shocks, such as in calculations of fire-balls forg-ray
bursts~Rees and Meszaros 1994; Wenet al., 1997!. It is therefore of interest to explore applica
tions of these shock capturing schemes to relativistic MHD. Here, we describe a first step
direction given by studying the computational stability of normalized right nullvectors~i.e., the
right eigenvectors! of the characteristic matrix.

The divergence technique incorporates a constraintc50 into a divergence equation of
two-form, ¹avab50, as in Faraday’s equation, through the linear combination

¹a~vab1lgabc!50, lÞ0. ~1!

In the context of a Cauchy problem,~1! conservesc50 in the future domain of dependence of th
initial hypersurface with physical Cauchy data~van Putten 1991!.

In this article, we identify a preferred linear combination in~1!, i.e., a choice ofl and overall
sign of ~1! in its application to the equations of ideal MHD. This follows from two separ
analyses: a derivation of the right nullvectors of the characteristic matrix and well-posed
Somewhat remarkably, both analyses agree in their preferred linear combinations. This sugg
consider this preferred linear combination in future applications in characteristic based meth
MHD in divergence form.

The problem of linearized perturbations in relativistic MHD has been considered previ
by Anile ~1989! and that of Alfvén waves by Komissarov~1997!. The well-posedness proof use
an extension to the Friedrichs–Lax symmetrization procedure from earlier work on Yang–
magnetohydrodynamics~van Putten, 1994c, d!.

In Sec. II we describe nonuniqueness in the original version of the divergence techniq
Sec. III, a new derivation of the right nullvectors is given. Section IV briefly summarizes w
posedness obtained by embedding of physical solutions in a symmetric hyperbolic syst
equations.

II. MHD IN DIVERGENCE FORM

Ideal MHD describes an inviscid, perfectly conductive plasma in a single fluid descri
with velocity four-vector, ub (ucuc521). It is given by energy-momentum conservatio
¹aTab50, whereTab is the stress-energy tensor of both the fluid and the electromagnetic
Faraday’s equations,¹a(u[ahb] )50 subject to the algebraic constraintuchc50, and conservation
¹a(rua)50, of baryon number,r . For a polytropic equation of state with polytropic indexg, we
haveTab5(r 1 @g/(g21)#(P/r )1h2)uaub1(P1h2/2)gab2hahb, P is the hydrostatic pressur
andgab is the metric tensor. The theory of relativistic magnetohydrodynamics is contained i
conservation laws of energy-momentum,¹aTab50, and baryon number,¹a(rua)50, together
with Faraday’s equations and a constraint,

¹a~h[aub] !50, uchc50. ~2!

The divergence technique considers a constraint-free formulation by taking a linear combi

¹a~h[aub]1luchc!50. ~3!
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ProvidedlÞ0, ~3! preservesuchc50 during dynamical evolution in response to physical init
data~van Putten, 1991!, and no constraint violating wave-motion occurs.

Algebraically, the linear combination~3! establishes a rank-one update to its Jacobian,
hence of that of the full equations of MHD. Clearly, symmetry conditions of the Jacobian
enter a particular choice ofl. Below, we consider the choice

l51, ~4!

so that

¹aTab50,

2¹a~h[aub]1gabuchc!50,
~5!

¹a~rua!50,

¹a~ja~u211!!50,

wherej is any timelike vector field andU5(ub,hb,r ,P). The minus sign in front of the presen
linear combination is chosen also in regards to the structure of the Jacobian of~5!. This will be
made explicit below.

Upon expansion,~5! obtains the system

Aa]aU1¯50, ~6!

where the matricesAB
aA5AB

aA(U)5 ]FaA/]UB are 10 by 10, and the dots refer coupling terms
the Christoffel symbols. The infinitesimal wave-structure is given by characteristic wave-fro
given U ~since theAa are coordinate independent!. The simple wave ansatzU5U(f) obtains

Aa]afU81¯50. ~7!

The wave-fronts are characteristic surfaces, whenever the matrixAa]af is singular. The directions
na5]af then are the normals to these surfaces. The small amplitude perturbations in these
waves are given by the right nullvectors ofAana . Stated differently, the small amplitude pertu
bations are right eigenvectors,R, of (At)21Axnx , when the wave moves along thex direction,
following

~~At!21Ax2v !R50, ~8!

wherev is the velocity of propagation.
The divergence technique provides an embedding of the theory of ideal MHD in a syst

ten equations. Physical initial data are properly propagated by it, without exiting nonphy
wave-modes. The physical waves~entropy waves, Alfve´n and magnetohydrodynamic waves! are
all contained within the light cone. Here, addinggabuchc ~or a multiple thereof! to Faraday’s
equations provides a rank-one update to the characteristic matrixAcnc . On the light cone, how-
ever,n250, and this linear combination no longer regularizes the characteristic determinant.~This
results from insisting on covariance in the divergence formulation.! Kommissarov~1997! attempts
to discuss MHD in divergence form outside the context of the initial value problem with phy
initial data, and hence erroneously concludes the presence of nonphysical wave-modes.

III. THE CHARACTERISTIC MATRIX

We have

AaA~U !5
]FaA

]UB na5
]FaAna

]UB ; ~9!
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with r5r 1 @g/(g21)# P1h25r f 1h2, we have

FcAnc5H r~ucnc!u
a1~P1h2/2!na2~hcnc!h

a,
2$~hcnc!u

a2~ucnc!h
a1nauchc%,

r ~ucnc!,
~jcnc!~u211!.

~10!

The system of 10310 equations forUB5(ub,hb,r ,P) can be reduced to 838 in the variables
VB5(vs,hb,r ) by expressingub in terms of the spatial three-velocityub5G(1,vs), G
51/A12v2(1,vs), s51,2,3, noting that linearized wave-motion conserves entropy, so thaP
5g (P/r )dr . In VB, the equation of energy conservation,¹aTat50 and the last equation of~5! are
automatically satisfied, whence they can be ignored. In what follows,Aa shall denote the resulting
838 matrix, obtained from the original 10310 matrix by deletion of the first and last row
addition of the last column~multiplied by gP/r ) to the one-but last column~associated withr ),
followed by deletion of the first and last columns.

The linearized wave-structure is given by the characteristic problem

Acncz50 ~11!

for the right null-vectorsz5U8. Without loss of generality,~11! can be studied in a co-movin
frame, in whichub5(1,0,0,0). In this event,G51 and]G/]vs 50. Furthermore, thex-axis of the
local coordinate system can be aligned with the magnetic field, so thathb5(0,H,0,0). Given the
two orientationsus and hb, the wave-structure is rotationally symmetric about thex axis, and
henceny andnz act symmetrically asAny

21nz
2; we will put nz50. ForAcnc , we have

3
rn1 0 0 2n1H 2Hn2 2Hn3 0

gPn2

r

0 rn1 0 0 Hn3 2Hn2 0
gPn3

r

0 0 rn1 0 0 0 2Hn2 0

n1H 0 0 2n1 2n2 2n3 0 0

2Hn2 Hn3 0 n2 n1 0 0 0

2Hn3 2Hn2 0 n3 0 n1 0 0

0 0 2Hn2 0 0 0 n1 0

rn2 rn3 0 0 0 0 0 n1

4 . ~12!

Note that the lower diagonal block isn1 times the 434 indentity matrix.This results from the sign
choice in the given combination of Faraday’s equations and the constraint in (5) and.
Furthermore, notice that the third and seventh rows and columns act independently to give
the Alfvén waves. The remaining waves are described by the reduced problem

~Acnc!8z850, ~13!

where (Acnc)8 is obtained fromAcnc by deleting the third and seventh rows and columns, ther
obtaining a problem in the six-dimensional variablez8. Introducing

z85S x
yD , ~14!

~11! takes the form of a coupled system of 333 equations

n1Zx1Xy50, Yx1n1y50, ~15!
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in which

Z5F r 0 2H

0 r 0

H 0 21
G ,

X5F 2Hn2 2Hn3
g Pn2

r

Hn3 2Hn2
g Pn3

r

2n2 2n3 0

G , ~16!

Y5F 2Hn2 Hn3 n2

2Hn3 2Hn2 n3

rn2 rn3 0
G .

This obtains asingle333 eigenvalue problem inx, given by

XYx5n1
2Zx⇔Z21XYx5n1

2x. ~17!

Here,Z21XY2n1
2 is given by the matrix

F W1,1 W1,2 0

W2,1 W2,2 0

H~gPn2
22r f n2

22r f n3
2!

r f

Hg Pn2n3

r f
n2

21n3
22n1

2G , ~18!

where the upper diagonal 232 matrix W is given by

W5F gPn2
2

r f
2n1

2
gPn2n3

r f

gPn2n3

r f 1H2

H2n3
21H2n2

21gPn3
2

r f 1H2 2n1
2G . ~19!

The two zeros in the third column of (18) result froml51. Upon substitutionn3
25n21n1

22n2
2, the

determinant assumes the covariant expression

r detW5~r f 2gP!~ucnc!
42~h21gP!n2~ucnc!

21
gP

r f
~hcnc!

2n2. ~20!

Alfvén waves. The eigenvalues for the Alfve´n waves are given by

n156
uhcncu

Ar
~21!

with null-vector

z5~0,0,Hn2,0,0,0,rn1,0!T, ~22!

associated with Alfve´n waves; covariantly,

UA5~va,6Arva,0,0!T, ~23!

whereva may be taken to be
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H~0,0,n4 ,2n3!5eabcdu
bhcnd[va . ~24!

Thus, the Alfvén wave is transversal in whichh2 is conserved (dhb is orthogonal tohb).
Magnetohydrodynamic waves. The eigenvalues for the magnetohydrodynamic waves

given by the roots of the characteristic determinant~20!. Writing

nb5nb1~ucnc!u
c, ~25!

we haven252t21n2, t5ucnc , n25ncnc . Let a5 r f /gP andb5 h2/gP. Then

~hcnc!
2

r f n2 5
b

a

~hcnc!
2

h2n2 [
b

a
cos2 f. ~26!

Consequently,~20! becomes

~a21!v42~11b!v2~12v2!1ba21 cos2 f~12v2!50, ~27!

wherev25t2/n2. Equation~27! has real solutionsv for any givennb, whenever

~a1b!v42~11b1ba21!v21ba2150 ~28!

has real solutionsv. But ~28! has discriminant

D5~a1b2ab!2>0. ~29!

Weak magnetic fields are described by smallb expansions as follows.
Proposition 3.1: Fast magnetosonic waves are a regular perturbation of sound waves in

hydrodynamics, while the Alfve´n and slow magnetosonic waves bifurcate from entropy wa
(contact discontinuities), whose propagation velocities satisfy

v f
2/vh

2;11b
a21

a
sin2 f1O~b2!,

vA
2/vh

2;b cos2 f@12ba211O~b2!#, ~30!

vs
2/vh

2;b cos2 fF12bS 12
a21

a
cos2 f D1O~b2!G ,

wherevh
25a21 is the square of the hydrodynamical velocity, and which obey the inequalitie

vs
2<vA

2<v f
2 . ~31!

Inequalities~31! remain valid for generalb ~e.g., Bazer and Ericson, 1959; Lichnerowicz, 196
Anile, 1989!.
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IV. RIGHT NULLVECTORS

Inspection of~19!, together with~15!, shows the null-vector

z5S n1n2n3
2

2n1n3~n2
22an1

2!

0
Hn1n2n3

2

Hn3
2~n2

22an1
2!

2Hn2n3~n2
22an1

2!

0
2arn3

2n1
2

D . ~32!

Of course,~32! can be stated covariantly by noting thatH25h2, Hn25hcnc , n15ucnc ,

H2~n2
22an1

2!5~hcnc!
22ah2~ucnc!

2[h2k1 , ~33!

and introducing

H~0,n4
21n3

2 ,2n2n3 ,2n2n4!T5eabcdu
bncvd[wa . ~34!

Since2arn3
2n1

2 is a scalar,n3 is to be treated as

H2~n3
21n4

2!5h2n22~hcnc!
2[h2k2 , ~35!

wherena5na1(ucnc)ua . Note that

k15n2~cos2 f2av2!, k25n2 sin2 f, ~36!

wherev5vs , v f . Clearly,z is formed from

dub52t~k1nb2~k21k1!~ ĥcnc!ĥ
b!,

dhb5k1wb1k2t~hcnc!u
b,

~37!
dr 52ark2t2,

dP52r f k2t2,

whereĥb5hb/uhu, and

va5eabcdu
bhcnd, wa5eabcdu

bncvd. ~38!

We thus have the following.
Proposition 3.2: Given a unit vector nb orthogonal to ub, and a root nb5nb1vub, v

5ucnc of (28), the right nullvectors for the hydrodynamical waves of (11),A

5(dub,dhb,dr ,dP), are

dub5v@sin2 fnb2~12av2!~nb2cosf ĥb!#,

dhb5uhu@~cos2 f2av2!w̃b1v sin2 fcosfub#,
~39!

dr 52v2ar sin2 f,

dP52v2r f sin2 f.
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where w̃b5wb/uhu.
Anile ~1989! gives a different form of these right nullvectors. By Proposition 3.1, our w

magnetic field limits show that

cos2 f2av f
2,0 ~40!

for fast magnetosonic waves, while

cos2 f2avs
2.0 ~41!

for slow magnetosonic waves. Inspection of~34! shows that therefore the tangential componen
the magnetic field is strengthened in fast magnetosonic waves, while it is weakened in
magnetosonic waves. This distinguishing aspect of fast and slow magnetosonic waves w
noted by Bazer and Ericson~1959! in their analysis of shocks in nonrelativistic MHD.

The limit of smallb is of particular interest to computation. For example, in various sett
a magnetized fluid streams into a nearly unmagnetized environment. A characteristics
scheme must therefore reliably treat a large dynamic range inb. Clearly, a full set of nullvectors
~including those of contact discontinuities! obtains for nonzerob. However, the behavior of thes
nullvectors is somewhat nontrivial asb becomes small. In what follows, we consider the smalb

limit, in the sense of smalluhu/AgP, while keeping the directionĥb constant. In this limit,

12av2;2b
a21

a
sin2 f1O~b2!,

~42!
12av2;11O~b!

for the fast and slow magnetosonic speeds, respectively.
Corollary 4.1: In the limit of low magnetic field strength, the fast magnetosonic waves

described by the right nullvectors

dub5v fn
b1b

a21

a
~nb2cosfĥb!v f1O~b2!,

dhb5uhu~2w̃b1v f cosfub!1b
a21

a
wb1O~b2!,

~43!
dr 52v f

2ar ,

dP52v f
2r f ,

and the slow magnetosonic waves by

dub5cosf~ ĥb2cosfnb!1O~b!,

dhb5AgP~cosfw̃b1vs sin2 fub!1O~b!,
~44!

dr 52vsar sin2 f,

dP52vsar f sin2 f.

The smallb limit of the nullvectors can now be normalized.
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A. Bifurcations from entropy waves

The behavior of the nullvectors in the limit of weak magnetic fields can be derived from~23!
and Corollary 4.1. To this end, note that

va5uhuṽa5sinfuhuv̂a, ~45!

wherev̂cv̂c51, andf denotes the angle betweennc andhc,

nb5cosfĥb1sinfyb, ~46!

ycuc5hcyc50, ycyc51 (nb is normalized to be unit, as in the assumptions of Proposition 3.2!. It
follows that the Alfvén nullvectors may be normalized to

dÛA5~ v̂a,6Ar v̂a,0,0!. ~47!

In the limit of vanishingly smallb, the pair of slow magnetosonic waves collapse to the sin
normalized nullvector

dÛA5~yb,AgPyb,0,0!. ~48!

Note that ycv̂c50, so that~47! and ~48! are independent. Division by sinf thus provides a
normalization of the original expressions~23! and ~44!.

The nullvector associated with entropy waves (ucnc50) is

dUA5~0,0,dr ,0! ~49!

if hcncÞ0, and

~0,dhc,dr ,dP!, ~duc,0,0,0! ~50!

if hcnc50, subject to

dP1hcdhc50, ncdhc50, ncduc50. ~51!

The second case refers to transverse MHD for which continuity must hold of total pressure
orthogonal magnetic field and transverse velocity. Note that transverse MHD has two nullve
and corresponds to the case of pure hydrodynamics. With the exception of transverse
therefore, the contact discontinuity provides one nullvector.

Transverse MHD or pure hydrodynamics allows for shear along contact discontinuities,
is responsible for the two independent nullvectors. Whenever magnetic field lines cross a c
discontinuity, however, the persistent coupling to the magnetic field lines in ideal MHD proh
shear. In ideal MHD, the response to the original two-dimensional degree of freedom in sh
two new wave-modes. These wave-modes are the Alfve´n wave and the slow magnetosonic wav
These two wave-modes are indeed different, as~47! and~48! show. The Alfvén and slow magne-
tosonic wave may be regarded as one pair, bifurcating from the contact discontinuity. Th
been illustrated in Fig. 6 of van Putten~1993a!. Indeed,the limit of vanishingb recovers the two
shear modes from the independent Alfve´n and slow magnetosonic waves. Of course, the Alfve´n
wave is purely rotational, while the slow magnetosonic wave is slightly helical, includin
longitudinal variation of6vs sin2 f56b sin2 f cosf. The fast magnetosonic wave remains
regular perturbation of the ordinary sound wave.

The weak magnetic field limit thus obtains two nullvectors from the fast magnetosonic w
two from the Alfvén waves, one from the slow magnetosonic waves and generally one from
contact discontinuity, a total of six. This leaves an apparent degeneracy of one.

The degeneracy stems from the neighboring to ordervs of the two nullvectors of the slow
magnetosonic waves. This would suggest ill-posedness to this order in projections. Ho
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characteristic based methods consider the product of the projections on the nullvectorsand the
associated eigenvectors. In the present case, therefore, the order of the degeneracy is p
cancelled by multiplication with the eigenvaluevs , which is computationally stable. The limit o
arbitrarily small b in the application of characteristic based methodsis computationally well-
posed.

V. WELL-POSEDNESS

The theory of ideal relativistic MHD was first shown to be well-posed by Friedrichs~1974!,
using the Friedrichs–Lax symmetrization procedure. The problem of constraints was ci
vented by a reduction of variables. The symmetrization procedure of Fredrichs and Friedric
Lax ~1971! applies to hyperbolic systems of equations of the form

¹aFaB5 f B, ~52!

which satisfy a certain convexity condition. The presence of conserved constraints, howev
be treated also by an extension of the Friedrichs–Lax symmetrization procedure, with no ne
an additional reduction of variables, developed in earlier work on Yang–Mills magnetohyd
namics in SU~N! ~van Putten, 1994c, d!. Once in symmetric hyperbolic form, well-posedne
results from standard energy arguments~e.g., Fisher and Marsden, 1972!. The main arguments o
symmetrization in the presence of constraints are briefly recalled here, to highlight the same
combination of~5!, now from the point of view of well-posedness.

A. Symmetrization with constraints

VariationsdVA of (ub,hb,r ,P) can be unconstraint~with respect to all ten degrees of free
dom!, and constraint, i.e., those obeying the constraints. For example,dcÞ0 results from a total
variation, whiledc50 is a constraint variation. Symmetrization in the presence of constr
follows if there exists a vector fieldWA which produces a total derivative in the modified ma
dependency relation

YI: WAdFaA[dza, ~53!

and which obtains constraint positive definiteness in

YII: dWAdFaAja.0 ~54!

for some timelike vectorja. Of course, the source termsf B must satisfy the consistency conditio

WAf A50 ~55!

whenever the constraints are satisfied. Allowing a possible nonzero total derivative in YI d
an extension~van Putten, 1994c, d! to the Friedrichs–Lax~1971! symmetrization procedure.

Differentiation byVC of the unconstraint identity YI obtains

]WA

]VC

]FaA

]VD ¹aVD1
WA]2FaA

]VC]VD ¹aVD5
]2z

]VC]VD ¹aVD. ~56!

This establishes symmetry of the matrices

ACD
a 5

]WA

]VC

]FaA

]VD . ~57!

Also,

dVCACD
a jadVD5S dVC

]WA

]VC D S ]FaAja

]VD dVDD5dWAdFaAja.0 ~58!
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for all constraint variationsdVA. Of course, givenVA, the constraint variationsdVA define a linear
subspaceV of dimensionN2m, wherem is the number of constraintsc50, each giving rise to

05dc5
]c

]VA dVA. ~59!

We have the following construction~van Putten, 1994c, d!.
Lemma 5.1: Given a real-symmetric AeL(Rn,Rn) which is positive definite on a linear sub

spaceV,Rn, there exists a real-symmetric, positive definite A* eL(Rn,Rn) such that

A* y5Ay ~yeV!. ~60!

This may be seen as follows. ConsiderA* 5A1mxTx, wherex is a unit element fromV'. Then
A* is symmetric positive definite onV85$z5y1lxuyeV,leR%: zTATz>c8izi25c8(iyi2

1l2ixi2) with c8.0 upon choosingm.M , whereM5iAi denotes the norm ofA. This con-
struction may be repeated untilV' is exhausted, leavingA* symmetric positive definite on Rn as
an embedding ofA on V.

The real-symmetric matrixACD
a ja is positive definite on the subspace of constraint variati

V; let (ACD
a ja)* be the positive definite, symmetric matrix obtained from the lemma. It follo

that solutions to~52! ~and its constraints! satisfy thesymmetric positive definitesystem of equa-
tions

2~AaAB!* ja~jc¹c!VA1AaAB~¹S!aVA5 f B, ~61!

where

¹a52ja~jc¹c!1~¹S!a . ~62!

It remains to show that ideal MHD satisfies properties YI and YII.

B. Symmetrization of hydrodynamics

Relativistic hydrodynamics has been shown to be symmetrizable by Friedrichs~1974!, Rug-
geri and Strumia~1981!, and Anile~1989!. This uses the equations in the form

¹aF f
aA5H ¹a~r f uaub1Pgab!50,

¹a~rua!50,
¹a~rSua!50

~63!

away from entropy generating shocks. ThenWA
f 5(ua , f 2TS,T) and VC

f 5(va ,T, f ) with a re-
duction of variables on the velocity four-vector byub5G(1,va), whereG is the Lorentz factor.
With F f

aA denoting the fluid dynamical equations¹aTf
ab50, Tf

ab5r f uaub1Pgab with f the spe-
cific enthalpy, and¹a(rua)50, it has been shown that~Ruggeri and Strumia, 1981; Anile, 1989!

WA
f dF f

aA[0, Qf5dWAdF f
aAja.0, ~64!

provided that the free enthalpyG(T,P)5 f 2TS21 is concave, and the sound velocity is less th
the speed of light. Under these conditions, the hydrodynamical equations alone, therefore,
YI and YII, and in fact the original Friedrichs–Lax conditions CI and CII of Friedrichs and
~1971!, so that they satisfy a symmetric hyperbolic system of equations.
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C. Symmetrization of ideal MHD

In what follows, we set

vab5haub2uahb1gabuchc ,
~65!

Tm
ab5h2uaub1 1

2 h2gab2hahb.

We then have the expansions

ubdTm
ab5ub~h2uadub1h2ubdua12uaubhcdhc1gabhcdhc2hadhb2hbdha!

52h2dua2ua~hcdhc!2ha~ucdhc!2cdha,
~66!

hbdvab5hb~hadub1ubdha2hbdua2uadhb1gabdc!

5ha~hcduc!1cdha2h2dua2ua~hcdhc!1hadc.

We hereby arrive at the identity

ubdTm
ab2hbdvab[dza, ~67!

where za522hac. The total derivative in (67) follows by the unique linear combinationvab

5haub2hbua1gabc, as in (5). With WA5(ua ,ha , f 2TS,S) and FaA given by ~5! @rewritten
according to~63!#, it follows that

WAd~F f
aA1Fm

aA![dza. ~68!

A similar calculation~van Putten, 1994c, d! shows that quadratic of constraint variationsQm given
by

dubdTm
abja2dhbdvabja5~ucjc!@h2~du!21~dh!2#12@~jcduc!~hcdhc!2~hcjc!~ducdhc!#

~69!

is positive definite~for dhaÞ0). Therefore, the sum

Q5dWAdFaAja5Qf1Qm ~70!

is constraint positive definite, wheneverQf is such~with respect to the fluid dynamical variables!.
It follows that both YI and YII are satisfied@with WA5(ua ,ha , f 2TS,S) and VA

5(va ,ha ,T, f )], and hence physical solutions to~5! satisfy the symmetric hyperbolic system~61!
with f B50.
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Four-particle decay of the Bethe–Salpeter kernel
in the high-temperature Ising model

F. Auila)

Instituto de Fı´sica, Universidade de Sa˜o Paulo,
Caixa Postal 66318, Sa˜o Paulo–CEP 05315 970-SP, Brazil

~Received 8 May 2002; accepted 25 June 2002!

In this article we study the four-particle decay of the Bethe–Salpeter~B-S! kernel
for the high-temperature Ising model. We use the hyperplane decoupling method
@T. Spencer, Commun. Math. Phys.44, 143~1975!; R. S. Schor, Nucl. Phys. B222,
71 ~1983!# to prove exponential decay in a set of variables particularly adapted to
the methods of Spencer and Zirilli@Commun. Math. Phys.49, 1 ~1976!# for the
analysis of scattering and bound states in QFT, transcribed to lattice theories by
Auil and Barata@Ann. Henri Poincare2, 1065~2001!#. We study arbitrary deriva-
tives of the generaln-point correlation functions with respect to the interpolating
variables, and we are able to obtain, in some cases, information about the third
derivatives of the B-S kernel. As a later consequence, we have two-body
asymptotic completeness for the~massive! Euclidean lattice field theory imple-
mented by this model. This allows us to analyze the Ornstein–Zernike behavior of
four-point functions, related to the specific heat of the model. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1510176#

I. INTRODUCTION AND MAIN RESULT

The exponential decay properties of the Bethe–Salpeter~B-S! kernel are used in the analys
of the energy-momentum~e-m! spectrum in the low energy range for weakly coupled models.
methods employed to prove these decay properties are basically lattice analogous of th
niques originally introduced in Euclidean QFT. The work of Spencer1 introduced new procedures
namely, the decoupling of hyperplane method, then used, in the sequel, in a program ab
investigation of the e-m spectrum ofP(f)2 models.2–7 The hyperplane decoupling method w
introduced in lattice theories in Ref. 8. Several results have been developed recently alo
same ideas to analyze e-m spectrum for a wide class of lattice models. Those results f
basically the existence~or not! of bound states9–14 and two-body asymptotic completeness~a.c.!15

in Euclidean lattice theories.
In the present article we verify the four-particle exponential decay, in the sense of Spenc1 of

the B-S kernel for the ferromagnetic Ising model~IM ! at high-temperatures (b!1). Our analysis
is mainly based in polymer expansion and the ‘‘hyperplane decoupling’’ method, following clo
Ref. 1. Using the results of Ref. 15, this decay property actually proves the two-particle a.c.
model, because Gaussian domination inequalities hold in this case and exclude bound stat
the spectrum, as remarked in Ref. 12. One relevant fact for the standpoint of statistical mec
is that two-particle a.c. allows us to study the Ornstein–Zernike behavior of four-point func
related to the specific heat of the model. In fact, the exponent in the polynomial correction
exponential decay is twice that in the presence of bound states, as we remark below in more

We give a more precise description of the method and the model. In the lattice of integ
d11 dimensionsZd11, with d>1, the sites will be denoted byx5(x0 ,x1 , . . . ,xd) or (x0 ,x) for
short. Finite subsets of sites will be denoted generically byL. The decoupling method is appli
cable to hyperplanes perpendicular to any fixed direction parallel to the coordinate axis.

a!Electronic mail: auil@fma.if.usp.br
62090022-2488/2002/43(12)/6209/15/$19.00 © 2002 American Institute of Physics
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ideas, and for sake of brevity, here we consider only thex0 direction, but it is important to have in
mind that the method and all results below are equally applicable to the other directions ind
dently. For this aim, we introduce the IM with an anisotropy in thex0 direction; the boundary
conditions are free. Explicitly, the local states are given by

mL~ f !ª
(sPSL f ~s!exp~b(^ i j &Ji j s~ i !s~ j !!

(sPSL exp~b(^ i j &Ji j s~ i !s~ j !!
, ~1.1!

for functions f on the configurationsSL5$s/s:L→$21,11%%, where the sum in the exponen
is over all the nearest-neighbor, or bounds, and

Ji jªH J if $ i , j %5$~n,x!,~n,y!%,

Jm if $ i , j %5$~m,x!,~m11,x!%;

beingJ andJm strictly positive numbers. The first of them gives the coupling between nea
neighbor lying in the same hyperplane defined byx05const5n, while theJm’s give the coupling
between nearest-neighbor lying in two different of such hyperplanes. The isotropic ferroma
IM is obtained takingJm5J, ;mPZ. In our study we consider theJi j ’s as being complex
variables and, for convenience, it is useful to introduce a new variablegi j given by gi j

ªtanh(bJij). Just for reference, thegi j ’s will be called theinterpolating variables. The correla-
tions, or~local! n-point Euclidean, functions are given by

S n
L~x1 , . . . ,xn!ª

(sPSLs~x1!¯s~xn!)^ i j &e
bJi j s( i )s( j )

(sPSL)^ i j &e
bJi j s( i )s( j ) . ~1.2!

The limit Sn(x1 , . . . ,xn)ª limL↑Zd11S n
L(x1 , . . . ,xn) exists and is translation invariant. As we de

with a model without bound states, we could expect to be compelled to the analysis of deriv
of higher order than in the case of models exhibiting bound states. In our approach, we co
arbitrary derivatives of then-point correlation functions with respect to the interpolating variab
gi j , providing general results and considering lately its particularization for two- and four-p
functions. Joining our different particular results, we are able to obtain, in some cases, inform
about the third~and lower! derivatives of the B-S kernel; see Lemma 4.10 later in this wo
Higher derivatives of the two-point function were also considered in Refs. 16 and 17.

We define the connected part of the truncated four-point function as

D~x1 ,x2 ,x3 ,x4!ªS4~x1 ,x2 ,x3 ,x4!2S2~x1 ,x2!S2~x3 ,x4!, ~1.3!

and the unconnected part as

D0~x1 ,x2 ,x3 ,x4!ªS2~x1 ,x3!S2~x2 ,x4!1S2~x1 ,x4!S2~x2 ,x3!. ~1.4!

We introduce the Bethe–Salpeter~B-S! equation on the lattice

D~x1 ,x2 ,x3 ,x4!5D0~x1 ,x2 ,x3 ,x4!

2 (
y1 ,y2 ,y3 ,y4PZd11

D0~x1 ,x2 ,y1 ,y2!N~y1 ,y2 ,y3 ,y4!D~y3 ,y4 ,x3 ,x4!,

~1.5!

or symbolicallyD5D02D0ND for short. Here, the B-S kernelN is self-defined by this equation
The B-S equation has the formal solutionD5D0(11ND0)21, provided this inverse exists. Takin
formally inverses in this last relation we getN5D 212D 0

21, a convenient expression for the B-
kernel. In fact, this expression allows us to define rigorously the B-S kernel as an operator
space,s

2
ª$$ai j % i , j PZd11P,2(Zd113Zd11):ai j 5aji % of symmetrical quadratically summable s
                                                                                                                



ma

lt

e

rk
er mass
e

ondi-

of the

ark

he
g by
l

he

19, a
s, but

fic
on the

6211J. Math. Phys., Vol. 43, No. 12, December 2002 Four-particle decay of Bethe–Salpeter kernel

                    
quences indexed by pairs of sites. In this space, the inverseD 0
21 is explicitly given by expression

~4.1!; see Lemma 4.5~c!. The inverseD 21 exists and is well-defined as consequence of Lem
4.7~a! and Lemma 4.8~b!; see also expression~4.3!.

For sitesi 5( i 0 ,i 1 , . . . ,i d)PZd11 we denotei i i5(k50
d u i ku. We can now state our main resu

as follows.
Theorem 1.1:For the IM with b sufficiently small there exist m5m(b) and C5C(b) such

that

uN~ i , j ,k,l !u<Ce2m(i i 2 j i1ik2 l i12i i 1 j 2k2 l i), ~1.6!

for all i , j ,k,l PZd11. h

Note the particular combination of the sites at the exponent in the relation~1.6!, becoming
analogous to the property proved in Ref. 1 for someP(f)2 models in QFT. Theorem 1.1 has th
following consequence: the B-S kernel in momentum spaceK(k,p,q) is analytic in the region

uIm k0u,2m, uIm pi u,m, uIm qi u,m ~ i 50,1,...,d!;

whereK is defined byǨ( i 1 j 2k2 l ,i 2 j ,k2 l )5N( i , j ,k,l ); see Refs. 15 and 18. As we rema
above, these analyticity properties plus the absence of bound states and the upper and low
gap imply the two-particle a.c. for the model; see Ref. 15 for details.~See the last remark at th
end of Sec. III.!

To state the Ornstein–Zernike behavior of the four-point functions implied by the a.c. c
tion we introduce before a few definitions. In terms of the new variables

jªx12x2 , hªx32x4 , tªx11x22~x31x4!, ~1.7!

and expressing, by the translation invariance, the two- and four-point functions in terms
difference variablesSn(x1 ,...,xn)5Sn(x12xn ,...,xn212xn), we get

D~x1 ,x2 ,x3 ,x4!5S4S t1j1h

2
,
t2j1h

2
,h D2S2~j!S2~h!5..D~t,j,h!. ~1.8!

The change of variables given by~1.7! requires certain care in the lattice context. Here, we rem
that for each of the new variablest, j andh are allowed to vary freely in the whole latticeZd11

if we redefineD, introduced in~1.8!, by D times the characteristic function of the image of t
transformation~1.7!. The details were extensively discussed in Ref. 15, Appendix A. Denotin
ˆ the Fourier transform, defineR(k,p,q)ªD̂(k,p,q), and consider it as a family of integra
operators indexed byk, acting as@R(k) f #(p)5*Td11R(k,p,q) f (q)dq. For fixedf belonging to a
suitable set, denote the mapk0°^ f ,R(k) f & by R, for abuse of notation, andD5Ř. From the a.c.
condition and under suitable hypothesis on the dispersion curve, it is possible to establish~see Ref.
19! the following Ornstein–Zernike behavior foruD(t)u:

uD~t!u<k1e2mut0uF 1

ut0ud
1O* ~ ut0u2 ~d11!/2!G1k2e2m9ut0u, ~1.9!

for t0→`, wherek1 , k2 are positive constants andm9.m. Here,O* (K2p) meansO(K2p1d)
for all d.0. Note that thet coordinate in~1.7! is twice the center of mass coordinate, so t
exponential decay in~1.9! is the expected for a four-point function. The relation~1.9! is valid
under reasonably general hypothesis, and not exclusively for the IM. As remarked in Ref.
relation analogous to~1.9! can be derived assuming the existence of two-particle bound state
in this case with the exponential decay corrected byut0u2d/2 instead ofut0u2d. This last situation
is like the case of the two-point function.20 As the four-point functions are related to the speci
heat of the model, we could expect that a.c. condition may have, apparently, some influence
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statistical properties of the models. The opposite question could be raised, i.e., to go
Ornstein–Zernike behavior to e-m spectral properties, but this is not our subject here.

This article is organized as follows. In Sec. II we introduce the polymer expansions and
a general result for arbitrary derivatives of the 2n-point functions with respect to the interpolatin
variablesgi j , giving a particularization for the case of the first and second derivatives. In Se
we perform a detailed study of the two-point function and its convolution inverse. Some of
later results~and main consequences! are known in the literature, but our approach is rath
general. In Sec. IV we perform a detailed study of the connected and unconnected parts
truncated four-point function and its respective inverses, concluding with the proof of Theore
in Sec. IV C.

II. HIGH-TEMPERATURE POLYMER EXPANSION

The polymer expansion provides an alternative way to write the the general 2n-point function
~1.2! for the IM. Specifically,

S 2n
L ~ i 1 , . . . ,i 2n!5 (

MPconn(i 1 , . . . ,i 2n)
S )

LPM
gLDexp (

GPG8(L)
G;” M

cGmG. ~2.1!

An elementM of conn(i 1 , . . . ,i 2n) is by definition a set ofn paths joining different pairs of site
taken from the set$ i 1 , . . . ,i 2n% ~a pathP is a connected set of bounds, such that an even num
of bounds meets at every site except for the initial and final sites, see Fig. 1!. The indexL denote
bounds. The sum in the exponent is basically over the family of set of polymers~i.e., connected
sets of bounds, see Fig. 1! with at least one polymer in the set being incompatible withM . Here,
cG is a numerical constant andmG is of the form)gpolymer()LPggL)ng, wherengPNø$0%. It can
be proved that the series in the exponent in~2.1! is absolutely convergent ifumu
ªsupgpolymeru)LPggLu1/ugu is sufficiently small; see Refs. 21–23. Note thatumu5ugu for the iso-
tropic IM. Polymer expansion allows us to prove thatS2n( i 1 , . . . ,i 2n) is the limit of a convergent
net of analytic functions of eachg, gm in a neighborhood of 0PC. For our present aims, th
relevant feature about expression~2.1! rests on the fact that it is a sum of a product of two fact
AeB, beingA andB products of powers ofgL’s.

Denoting Lmª$(x0 ,x1 , . . . ,xd)PZd11:x05m%, see Fig. 1, polymer expansions allow
prove the following general result for the 2n-point functions

FIG. 1. ThePi ’s are examples of paths. TheG i ’s are examples of polymers, whereG1 is incompatible with the pathP1 .
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Lemma 2.1: Assume that the hyperplane Lm divides the set of sites$ i 1 , . . . ,i 2n% in two
subsets, let’s say$ i k1

, . . . ,i kr
% and$ i kr 11

, . . . ,i k2n
% ~one of them might be eventually empty!, in the

sense that $ i k1
, . . . ,i kr

%,$(x0 ,x1 , . . . ,xd)PZd11:x0<m% and $ i kr 11
, . . . ,i k2n

%
,$(x0 ,x1 , . . . ,xd)PZd11:x0>m11%. Then, we have the following

(a) If r is even, let’s say r52l , thenS2n( i 1 , . . . ,i 2n)ugm50 factorizes as

S2n~ i 1 , . . . ,i 2n!ugm505S2l~ i k1
, . . . ,i k2l

!ugm50S2n22l~ i k2l 11
, . . . ,i 2n!ugm50 .

For nPNø$0%, we have the following.
(b) If r is odd, then]gm

2nS2n( i 1 , . . . ,i 2n)ugm5050.

(c) If r is even, then]gm

2n11S2n( i 1 , . . . ,i 2n)ugm5050. h

Proof: For part~a!, note that, evaluatingS2n( i 1 , . . . ,i 2n) at gm50, in the sum in~2.1!, only
the pathsMPconn(i 1 , . . . ,i 2n) contribute which are independent ofgm . If there exists an even
number of sites lying on both sides ofLm , such paths are the paths joining pairs of sites lying
the same side of the hyperplane and not crossingLm , asP1 andP2 in Fig. 1 ~otherwise, the path
could lie acrossLm and thengm appears at least one time as a factor, given zero contributio
gm50). In this case the 2n-point function factorizes, because the polymers appearing in
exponent in~2.1! are incompatible with at least one of the paths not crossingLm . @There exists
also the case of polymers lying across the hyperplane, asG2 in Fig. 1, but their activities depend
on gm ~actually, ongm

2 or higher even powers, because the connectedness ofG) and then evalu-
ating atgm50 their contribution in the exponent is zero, i.e., contribute with a factor 1.# For parts
~b! and~c!, by ~2.1! we have to derivate a sum of a product of two factors. Even derivatives
the form

]gm

2nS2n~ i 1 , . . . ,i 2n!5 (
MPconn(i 1 , . . . ,i 2n)

A11A2 .

Here,A1 is a sum of terms of the form

const]gm

(even)S )
LPM

gLD ]gm

(even)exp (
GPG8(L)

G;” M

cGmG. ~2.2!

If there exists an odd number of sites lying on both sides ofLm , then there exists at least one pa
joining sites lying on different sides of the hyperplane, asP3 in Fig. 1. Furthermore, such path
would crossLm an odd number of times and there would exist an odd number of such paths.
in this case, the factor in parentheses in~2.2! depends on odd powers ofgm , and then its
derivative vanishes atgm50, therefore implyingA150. On the other hand,A2 is a sum of terms
of the form

const]gm

(odd)S )
LPM

gLD ]gm

(odd)exp (
GPG8(L)

G;” M

cGmG

that vanish also, because the exponent depends on even powers ofgm since the polymers are
connected. Analogously, for part~c! we have

]gm

2n11S2n~ i 1 , . . . ,i 2n!5 (
MPconn(i 1 , . . . ,i 2n)

B11B2 .

Here,B1 is a sum of terms of the form
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const]gm

(odd)S )
LPM

gLD ]gm

(even)exp (
GPG8(L)

G;” M

cGmG. ~2.3!

The paths not crossing the hyperplane are independent ofgm , with a vanishing derivative. The
paths that crossLm joining sites lying on the same side of the hyperplane would crossLm an even
number of times, asP4 in Fig. 1. The paths that crossLm joining sites lying on different sides o
the hyperplane would crossLm an odd number of times, asP3 in Fig. 1, but if r is even, there
exists an even number of such paths. So, in both cases, the factor in parentheses in~2.3! depends
on even powers ofgm and then its derivative vanishes atgm50, therefore implyingB150. On the
other hand,B2 is a sum of terms of the form

const]gm

(even)S )
LPM

gLD ]gm

(odd)exp (
GPG8(L)

G;” M

cGmG,

which vanish also, by the same argument used to prove the vanishing ofA2 above. j

Lemma 2.2:

]gm
Sn~ i 1 , . . . ,i n!ugm505 (

xPZd
Sn12~ i 1 , . . . ,i n ,~m,x!,~m11,x!!ugm50 , ~2.4!

]gm

2 Sn~ i 1 , . . . ,i n!ugm505 (
x,yPZd

Sn14~ i 1 , . . . ,i n ,~m,x!,~m11,x!,~m,y!,~m11,y!!ugm50

2Sn~ i 1 , . . . ,i n!ugm50 (
x,yPZd

S2~~m,x!,~m,y!!ugm50

S2~~m11,x!,~m11,y!!ugm50 . ~2.5!

h

Proof: Recalling thatgm5tanh(bJm), note thatJm5(1/b)arctanhgm and therefore]gm
Sn

5(dJm /dgm)]Jm
Sn5@b21/(12gm

2 )#]Jm
Sn . Using this observation, differentiate~1.2!, evaluate at

gm50, and then use Lemma 2.1 to get~2.4!. The proof of~2.5! is analogous, differentiating twice
~1.2! and using~2.4! to simplify some expressions. j

III. THE TWO-POINT FUNCTION AND ITS INVERSE

Particularizing the general results of the last section for the case of the two-point functio
have the following lemma.

Lemma 3.3: Consider i, j PZd11 such that i0, j 0 and nPNø$0%.
(a) If i 0<m, j 0 , then]gm

2nS2( i , j )ugm5050.

(b) If m, i 0 , then

]gm

2 S2~ i , j !ugm505 (
x,yPZd

S2~~m,x!,~m,y!!ugm50S4~~m11,x!,~m11,y!,i , j !ugm50

2S2~ i , j !ugm50 (
x,yPZd

S2~~m,x!,~m,y!!ugm50S2~~m11,x!,~m11,y!!ugm50 .

(c) If j 0<m, then
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]gm

2 S2~ i , j !ugm505 (
x,yPZd

S4~ i , j ,~m,x!,~m,y!!ugm50S2~~m11,x!,~m11,y!!ugm50

2S2~ i , j !ugm50 (
x,yPZd

S2~~m,x!,~m,y!!ugm50S2~~m11,x!,~m11,y!!ugm50 .

(d) If m, i 0 or j 0<m, then]gm

2n11S2( i , j )ugm5050.

(e) If i0<m, j 0 , then

]gm
S2~ i , j !ugm505 (

xPZd
S2~ i ,~m,x!!ugm50S2~~m11,x!, j !ugm50 . ~3.1!

On other hand, when i05 j 0 , we have
(f) ]gm

2n11S2( i , j )ugm5050, ;m. h

Lemma 3.3~a! has the following well known consequence: for the high-temperature IM
two-point function decays exponentially with the separation of its arguments, i.e., ifb is suffi-
ciently small, there existm5m(b) andC5C(b) such thatuS2( i , j )u<Ce2mu i 02 j 0u ~see, e.g., Refs
24–27!. This fact has relevant corollaries, among them the uniqueness of ground state, th
tence of a lower mass gap and the analyticity of the Fourier transform of the two-point funct
momentum space~see, e.g., Refs. 28, 18, and 24, and cf. Refs. 29 and 30!.

The two-point function considered as a linear operator in,2(Zd11), via

@S2~$aj% j PZd11!# iª (
j PZd11

S2~ i , j !aj ,

is well defined and existsS 2
215..G ~see Ref. 25, p. 606 and Lemma A2, pp. 605–606!. Moreover,

as a consequence of Lemma 3.3~a!, for a given mPZ, S2ugm50 leaves invariant each of th
subspaces

,<m
2

ª$$aj% j PZd11P,2~Zd11!:aj50 if j 0.m%;

,.m
2

ª$$aj% j PZd11P,2~Zd11!:aj50 if j 0<m%.

Therefore,S2ugm50 is a direct sum of two operators acting separately in each of these subs
and the same follows forG. Note also thatG is symmetrical, i.e.,G( i , j )5G( j ,i ).

Lemma 3.4: Consider i, j PZd11 such that i0, j 0 .
(a) If i 0<m, j 0 , thenG( i , j )ugm5050.
(b)

]gm
G~ i , j !ugm505H 0 if j 0<m,

0 if i 0<m, j 0 when u i 02 j 0u>2,

0 if m, i 0 .

On the other hand, when i05 j 0 we have
(c) ]gm

G( i , j )ugm5050, ;m.
Consider now i, j PZd11 arbitrary. If nPNø$0%, then

(d) n even⇒]gm

n G( i , j )ugm5050; i 0<m, j 0 if i 0, j 0 ;

n odd⇒]gm

n G~ i , j !ugm5050 if m, i 0 or j 0<m when i0, j 0 or ;m when i05 j 0 .

h

Proof: Note first that for everynPN we have the following simple identity
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]gm

n G52G~]gm

n ~S2G!2S2]gm

n G!. ~3.2!

Although formally trivial ~sinceG5S 2
21), this expression is useful for theiterative computation

of the nth derivative ofG, because the right side of~3.2! contains only derivatives ofG of order
n21 at most. Now, part~a! is a consequence of the invariance of,.m

2 and,<m
2 underG, using

reductio ad absurdum. For part~b! in the case ofi 0<m, j 0 , using~3.2! with n51 and Lemma
3.3~d–f! we have

]gm
G~ i , j !ugm5052 (

a,bPZd11
G~ i ,a!ugm50]gm

S2~a,b!ugm50G~b, j !ugm50

52 (
a,bPZd11

(
xPZd

G~ i ,a!ugm50S2~a,~m,x!!ugm50

S2~~m11,x!,b!ugm50G~b, j !ugm50

52 (
xPZd

d i (m,x)d (m11,x) j , ~3.3!

where the last expression is equal to zero ifu i 02 j 0u>2. The other cases of parts~b! and~c! follow
using~3.2! analogously, adding the part~a! already proved and Lemma 3.3~b! and~c!. The proof
of part ~d! is done by induction inn. The casen50 is given in part~a! and the casen51 is given
in parts~b! and~c!, already proved. Assume that statement of part~d! is valid for everyi such that
i<n21. From~3.2! we have

]gm

n G~ i , j !ugm5052 (
a,bPZd11

(
k50

n21 S n
kDG~ i ,a!ugm50]gm

n2kS2~a,b!ugm50]gm

k G~b, j !ugm50 . ~3.4!

If n is even with i 0, j 0 and i 0<m, j 0 , then, by part~a!, the factorG( i ,a)ugm50 in ~3.4!
vanishes unlessa lays into or belowLm .

~i! Now, when the indexk of the second sum in~3.4! is even, the inductive hypothesis implie
that the factor]gm

k G(b, j )ugm50 in ~3.4! vanishes unlessb lays aboveLm . But in this case

n2k is even also and, therefore, by Lemma 3.3~a!, the factor]gm

n2kS2(a,b)ugm50 vanishes

if a0<m,b0 .
~ii ! On the other hand, when the indexk is odd, the inductive hypothesis implies that the fac

]gm

k G(b, j )ugm50 in ~3.4! vanishes unlessb lays into or belowLm . But in this casen2k is

odd also and, therefore, by Lemma 3.3~b! and~c!, the factor]gm

n2kS2(a,b)ugm50 vanishes if

a0 , b0<m.

If n is odd with i 0, j 0 andm, i 0 ~resp. j 0<m), the proof is analogous, using part~a! and
relation~3.4!. The case ofn odd with i 05 j 0 is also proved analogously, considering the subca
m, i 05 j 0 and i 05 j 0<m separately. j

Parts~a! and ~b! and ~d! ~with n52) of Lemma 3.4 have the following well known cons
quence: for the high-temperature IM, ifu i 02 j 0u>2, then uG( i , j )u<const e23mu i 02 j 0u ~see, e.g.,
Refs. 24–27!. @Cf. Remark~1! following Lemma 2.2 in Ref. 25, p. 600.# This fact has as a
corollary the analyticity property in momentum space forG and allows us to prove for the
high-temperature IM the existence of lower and upper mass gaps~or existence of ‘‘one-particle
states’’!, i.e., the analogy of Theorem 2.5 in Ref. 24 relative to the Fourier transform of
two-point function.
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IV. THE FOUR-POINT FUNCTIONS

Given four sitesi , j ,k,l PZd11 such thati 0, j 0,k0, l 0 , the four-tuple (i 0 , j 0 ,k0 ,l 0)PZ4 will
be called theconfigurationdetermined by these sites. To simplify the statement and proof
some results, we introduce the following definitions. The sets

$mPZ:k0<m, l 0%, $mPZ: j 0<m,k0%, and $mPZ: i 0<m, j 0%

will be called respectively thetop, the middleand thebottomof the configuration. The comple
ment of the union of these sets will be called theoutside, and the union of the top and the botto
will be called theborder. We say that a configuration is of type 1 if the sitesi and j are both in
the top or in the bottom; see Fig. 2. Analogously, we say that a configuration is of type 2
sitesi and l are both in the top or in the bottom. Finally, we say that a configuration is of typ
if the sitesi andk are both in the top or in the bottom. See Fig. 2. The configurations of types
will be relevant for some results, because any statement relative to one of them in the mid
automatically valid for all the others of the same type. In,2

ª,2(Zd113Zd11) we define the
symmetrical and antisymmetrical subspaces respectively by

,s
2
ª$$ai j % i , j PZd11P,2:ai j 5aji %, ,a

2
ª$$ai j % i , j PZd11P,2:ai j 52aji %.

A. The unconnected part of truncated four-point function D0

As a simple consequence of the definition~1.4!, we have the following.
Lemma 4.5: (a)D0 is invariant under the operations A1ªexchange i↔ j ,

A2ªexchange k↔ l , Bªsimultaneous exchange i↔k and j↔ l .

(b) As an operator in,2, D0 vanishes in the antisymmetric space,a
2 .

(c) ConsideringD0 as an operator in the symmetric space,s
2 , we have

D 0
21~ i , j ,k,l !5 1

2G~ i ,k!G~ j ,l !. ~4.1!

(d) D 0
21 has the same symmetry properties of part(a) plus the additional symmetry

A3ªexchange j↔ l .

h

FIG. 2. Left: The top, middle, bottom, border and outside parts are shown in this example of type 1 configuration.Right:
In the column at left an example of each configuration type. In the columns at right are the configurations obtaine
the first at left of the respective row by the application of the operations shown in the top line.
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Note that the set of type 1 configurations is invariant for any of the operationsA1 , A2 , A1A2 ,
B, A1B, A2B andA1A2B. In this sense, we say that such configurations areequivalent. The union
of type 2 and 3 configurations is a set of equivalent configurations also; see Fig. 2. Equivale
configurations reflects the symmetry properties ofD0 in the following sense: If the valueVi , j ,k,l of
D0( i , j ,k,l ) is known when the sitesi , j ,k,l determine a given configuration, the value
D0( i , j ,k,l ) when the sites determine another configuration obtained from the original by
application of some of the symmetry operationsC5Ar , B (r 51,2,3) is given byVC( i , j ,k,l ) . The
same considerations apply to derivatives ofD0 with respect togm , the inverseD 0

21, and the
derivatives of the inverse. Note also that a configuration is of type 2 if and only if it is equiv
to one of type 1 by the application ofA3 . Thus, by Lemma 4.5~d!, for the study ofD 0

21 configu-
rations of types 1 and 2 will be equivalent.

Lemma 4.6: For any configuration we have the following.
(a) ]gm

2nD 0
21( i , j ,k,l )ugm5050 in the border. Furthermore, in the cases n50,1 the correspond-

ing derivative also vanishes in the middle of configuration 1.
(b) ]gm

2n21D 0
21( i , j ,k,l )ugm5050 in the middle. Furthermore, in the case n51 the derivative

also vanishes in the border of any configuration. h

Proof: For part~a!, by ~4.1! we have]gm

2nD 0
21( i , j ,k,l )ugm505A11A2 , whereA1 andA2 are

sums of terms proportional to

]gm

(even)G~ i ,k!ugm50]gm

(even)G~ j ,l !ugm50 and ]gm

(odd)G~ i ,k!ugm50]gm

(odd)G~ j ,l !ugm50 ,

respectively. Using Lemma 3.4~d! such terms have the values

A1 1 and 2 3 A2 1 and 2 3

top 0 0 top 0 0
middle 0 A1 and middle A2 0
bottom 0 0 bottom 0 0

respectively~here, numbers in the first line indicate the configuration type!. Note thatA250 in the
casen50 ~i.e., without derivative! and that in the casen51 ~i.e., the second derivative! the odd
derivatives inA2 are at most of first order, and all are equal to zero from Lemma 3.4~b!. For part
~b! we have]gm

2n21D 0
21( i , j ,k,l )ugm505B11B2 , whereB1 andB2 are sums of terms proportiona

to

]gm

(odd)G~ i ,k!ugm50]gm

(even)G~ j ,l !ugm50 and ]gm

(even)G~ i ,k!ugm50]gm

(odd)G~ j ,l !ugm50 ,

respectively, both equal to zero in the middle by Lemma 3.4~d!. j

B. The connected part of the truncated four-point function D
It is easy to verify that Lemma 4.5~a! and ~b! is also valid forD. The next result is a direc

consequence of Definition~1.3! and the general the results of Sec. II plus Lemma 3.3. For par~c!
in the following lemma, we assume that the subindexed sitesi km

pertain to the set$ i , j ,k,l % and
also we use the following convention:i km̂

indicates that sitei km
has to be omitted.

Lemma 4.7: (a)D( i , j ,k,l )ugm50 takes the following values

1 2 3

top 0 0 0

middle 0 S2( i ,l )ugm50S2(k, j )ugm50 S2( i ,k)ugm50S2( j ,l )ugm50

bottom 0 0 0
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(b) ]gm
D( i , j ,k,l )ugm50 takes the value

(
xPZd

S4~ i k1
, . . . ,i kr̂

, . . . ,i k4
,~m,x!!ugm50S2~~m11,x!,i kr

!ugm50

2S2~ i k1
,i k2

!ugm50]gm
S2~ i k3

,i k4
!ugm50

in the top of any configuration such that ikr
P$ i k3

,i k4
% and ( i kr

)05max$i0,j0,k0,l0%, and the

value

(
xPZd

S2~ i kr
,~m,x!!ugm50S4~~m11,x!,i k1

, . . . ,i kr̂
, . . . ,i k4

!ugm50

2]gm
S2~ i k1

,i k2
!ugm50S2~ i k3

,i k4
!ugm50

in the bottom of any configuration such that ikr
P$ i k1

,i k2
% and ( i kr

)05min$i0,j0,k0,l0%.

(c) In the middle of configuration 1, ]gm

2 D( i , j ,k,l )ugm50 is equal to

(
x,yPZd

D~ i , j ,~m,x!,~m,y!!ugm50D~~m11,x!,~m11,y!,k,l !ugm50 . ~4.2!

(d) Even derivatives vanish in the border of any configuration.
(e) Odd derivatives vanish in the middle and in the outside of any configuration. h

For a givenmPZ, we define the subspaces

,.m
2

ª$$ai j % i , j PZd11P,2:ai j 50 if i 0 or j 0<m%,

,<m
2

ª$$ai j % i , j PZd11P,2:ai j 50 if i 0 or j 0.m%,

,4m
2

ª$$ai j % i , j PZd11P,2:ai j 50 if i 0 , j 0<m or i 0 , j 0.m%.

Lemma 4.8:~a! Each of the subspaces above is invariant byD, and therefore also underD 21.
(b) In ,4m

2 ù,s
2 we have

D 21~ i , j ,k,l !ugm505 1
4@G~ i ,k!ugm50G~ j ,l !ugm501G~ i ,l !ugm50G~ j ,k!ugm50#. ~4.3!

(c) In the middle of configuration 1 we have

@~]gm
D!D 21]gm

D#~ i , j ,k,l !ugm505]gm

2 D~ i , j ,k,l !ugm50 .

h

Proof: Part ~a! follows from Lemma 4.7~a!, using reductio ad absurdum. Part ~b! can be
proved by direct substitution. For part~c!, (]gm

D)D 21]gm
Dugm50 evaluated at (i , j ,k,l ) is equal to

(
a,b,c,dPZd11

]gm
D~ i , j ,a,b!ugm50D 21~a,b,c,d!ugm50]gm

D~c,d,k,l !ugm50 . ~4.4!

From Lemma 4.7~e!, the third factor in~4.4! considered as a function of indexc andd only is in
,4m

2 . Therefore, each term of the summatory in~4.4! vanishes unless the hyperplaneLm separates
the pair$c,d%. Also from Lemma 4.7~e!, in the middle of configuration 1 the first factor in~4.4!
vanishes unlessLm separates the pair$a,b%. Thus, we have four cases, depending on the posit
of both pairs$c,d% and$a,b% with respect to the hyperplaneLm . Assume, to fix ideas, thatb and
d are aboveLm and thata and c lie into or below Lm . In any case, sitesi , j ,a,b determine
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configurations witha or b in the top, and the sitesc,d,k,l determine configurations withc or d in
the bottom. Using Lemma 4.7~b! and~4.3! @note that in this case the second term at right in~4.3!
vanishes from Lemma 3.4~a!#, expression~4.4! is given by

1

4 (
a,b,c,dPZd11

(
x,yPZd

S4~ i , j ,a,~m,x!!ugm50S2~~m11,x!,b!ugm50G~a,c!ugm50

3G~b,d!ugm50S2~c,~m,y!!ugm50S4~~m11,y!,d,k,l !ugm50

2
1

4 (
a,b,c,dPZd11

(
x,yPZd

S4~ i , j ,a,~m,x!!ugm50S2~~m11,x!,b!ugm50G~a,c!ugm50

3G~b,d!ugm50]gm
S2~c,d!ugm50S2~k,l !ugm50

2
1

4 (
a,b,c,dPZd11

(
yPZd

S2~ i , j !ugm50]gm
S2~a,b!ugm50G~a,c!ugm50G~b,d!ugm50

3S2~c,~m,y!!ugm50S4~~m11,y!,d,k,l !ugm50

1
1

4 (
a,b,c,dPZd11

(
yPZd

S2~ i , j !ugm50]gm
S2~a,b!ugm50G~a,c!ugm50G~b,d!ugm50

3]gm
S2~c,d!ugm50S2~k,l !ugm50 .

Using ~3.1! to replace the derivatives of the two-point functions in the last three terms abov
get 1

4 times expression~4.2!. The remaining three cases are analogous and give the same rej

Lemma 4.9: (a)D 21( i , j ,k,l )ugm5050 in the border of any configuration and in the middle

the configuration 1. Furthermore, D 21( i , j ,k,l )ugm505D 0
21( i , j ,k,l )ugm50 in the middle of con-

figurations 2 and 3.
(b) If u i 02 j 0u>2 and uk02 l 0u>2, then ]gm

D 21( i , j ,k,l )ugm5050 in the bottom (with i0
,m), middle, top (with m, l 021) and outside of any configuration.

(c) ]gm

2 D 21( i , j ,k,l )ugm505]gm

2 D 0
21( i , j ,k,l )ugm50 in the middle of configuration 1.

If nPNø$0%, then
(d) n even⇒]gm

n D 21( i , j ,k,l )ugm5050 in the border of any configuration.

n odd⇒]gm

n D 21~ i , j ,k,l !ugm50

50 in the middle and the outside of any configuration.

h

Proof: Part~a! follows from Lemma 4.7~a! in analogy with the proof Lemma 3.4~a! @note that
the second claim of part~a! in ,4m

2 ù,s
2 follows also from ~4.1! and ~4.3!#. Once part~b! is

proved, the proof of part~d! can be done by induction onn in analogy with the proof of Lemma
3.4~d!. To prove~b!, using a formula analogous to~3.2! we have that]gm

D 21( i , j ,k,l )ugm50 is
equal to

2 (
a,b,c,dPZd11

D 21~ i , j ,a,b!ugm50]gm
D~a,b,c,d!ugm50D 21~c,d,k,l !ugm50 . ~4.5!

Consider first the case of a configuration withi 05min$i0,j0,k0,l0%. In the bottom, the first factor in
~4.5! vanishes, by part~a!, unless the hyperplaneLm separates the pair$a,b%, and by the same
argument the third factor vanishes unless the pair$c,d% lies aboveLm . Thus, with regards to the
second factor in~4.5!, we are in the bottom of some configuration havinga or b in the bottom.
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Note that there exist two cases, depending on the positions ofa and b with respect to the
hyperplaneLm . Assume thatb is above anda lies into or belowLm ~the argument for the opposit
case will be analogous!. Note also that by the same argument above, the product of the las
factors in~4.5! considered as a function ofa and b only is in ,4m

2 . Using Lemmas 4.8~b! and
4.7~b! to replace the first and second factors in~4.5!, respectively, we have that~4.5! can be
written as the sum of

2
1

4 (
a,b,c,dPZd11

(
xPZd

G~ i ,a!ugm50G~ j ,b!ugm50S2~a,~m,x!!ugm50

S4~~m11,x!,b,c,d!ugm50D 21~c,d,k,l !ugm50

52
1

4 (
b,c,dPZd11

(
xPZd

d i (m,x)G~ j ,b!ugm50

S4~~m11,x!,b,c,d!ugm50D 21~c,d,k,l !ugm50 ,

which vanishes ifi 0,m, plus

1

4 (
a,b,c,dPZd11

(
xPZd

G~ i ,a!ugm50G~ j ,b!ugm50S2~a,~m,x!!ugm50

S2~~m11,x!,b!ugm50S2~c,d!ugm50D 21~c,d,k,l !ugm50

5
1

4 (
c,dPZd11

(
xPZd

d i (m,x)d j (m11,x)S2~c,d!ugm50D 21~c,d,k,l !ugm50 ,

which vanishes ifu i 02 j 0u>2. In the middle we consider two cases separately.

~1! j lie into or belowLm .
From part~a!, the first factor in~4.5! vanishes unless the pair$a,b% is belowLm , and by the
same argument the third factor vanishes unless the pair$c,d% is aboveLm . But then the
second factor vanishes from Lemma 4.7~e!.

~2! j lie aboveLm .
From part~a!, the first factor in~4.5! vanishes unlessLm separates the pair$a,b%, and by the
same argument the third factor vanishes unlessLm separates the pair$c,d%. But then the
second factor vanishes by Lemma 4.7~e!.

In the top the analysis is analogous to the bottom part. In the lower~resp. upper! outside part,
from part ~a! the first and third factors vanish unless the pairs$a,b% and $c,d% are above~resp.
below! Lm . But then the second factor vanishes by Lemma 4.7~e!. The proofs for the remainde
configurations are analogous.

For part~c!, using a formula analogous to~3.2! with n51,2, we have

]gm
D 2152D 21@~]gm

D!D 21#, ~4.6!

]gm

2 D 2152D 21@~]gm

2 D!D 2112~]gm
D!~]gm

D 21!#, ~4.7!

respectively. Replacing]gm
D 21 in ~4.7! by the expression in~4.6!, we get

]gm

2 D 2152D 21@]gm

2 D22~]gm
D!D 21]gm

D#D 21.
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As in the proof of part~b!, from part~a! each term vanishes unless the sitesa,b,c,d determine a
type 1 configuration witha andb in the bottom. Evaluating atgm50 and using Lemma 4.8~c! and
~4.2! we have

]gm

2 D 21~ i , j ,k,l !ugm505 (
a,b,c,dPZd11

D 21~ i , j ,a,b!ugm50]gm

2 D~a,b,c,d!ugm50D 21~c,d,k,l !ugm50

5 (
a,b,c,dPZd11

(
x,yPZd

D 21~ i , j ,a,b!ugm50D~a,b,~m,x!,~m,y!!ugm50

3D~~m11,x!,~m11,y!,c,d!ugm50D 21~c,d,k,l !ugm50

5 (
x,yPZd

d i (m,x)d j (m,y)d (m11,x)kd (m11,y) l

5S 2 (
xPZd

d i (m,x)d (m11,x)kD S 2 (
yPZd

d j (m,y)d (m11,y) l D
5]gm

G~ i ,k!ugm50]gm
G~ j ,l !ugm505]gm

2 D 0
21~ i , j ,k,l !ugm50 .

In the last line above, we have used~3.3! for the first equality and~4.1! and Lemma 3.4~a! for the
second. j

C. The Bethe–Salpeter kernel

As N5D 212D 0
21, from Lemmas 4.6 and 4.9 we have the following.

Lemma 4.10: (a) If k50,1,2,3,then]gm

k N( i , j ,k,l )ugm5050 in the middle of configuration 1.

(b) If u i 02 j 0u>2, uk02 l 0u>2 and k50,1,2,then]gm

k N( i , j ,k,l )ugm5050 in the border~with

i 0,m and m, l 021) of all configurations.
(c) If k50,1, then]gm

k N( i , j ,k,l )ugm5050 in the middle of configurations 2 and 3. h

Proof of Theorem 1.1:Consider first the case of configuration 1. From Lemma 4.10 we h

N~ i , j ,k,l !5~gi 011gi 012¯gj 021!3~gj 0
gj 011¯gk021!4~gk0

gk011¯gl 022!3F~g,gm!,

whereF is an analytic function. In particular, for the isotropic IM model we have

N~ i , j ,k,l !5g3u j 02 i 021ug4u j 02k0ug3u l 02k021uF~g!5e2m(3u j 02 i 021u14u j 02k0u13u l 02k021u)F~g!,

wheremª2 ln g.0 if 0,g,1. Therefore,

uN~ i , j ,k,l !u<C1e2m(3u j 02 i 021u14u j 02k0u13u l 02k021u). ~4.8!

Note that fora,bPR we haveua2bu<ua2b21u11, or ua2b21u>ua2bu21. Therefore,

3u j 02 i 021u14u j 02k0u13u l 02k021u>3u i 02 j 0u14u j 02k0u13uk02 l 0u26. ~4.9!

Note also thatu i 01 j 02k02 l 0u<u i 02 j 0u12u j 02k0u1uk02 l 0u, and, therefore,

3u i 02 j 0u14u j 02k0u13uk02 l 0u>u i 02 j 0u1uk02 l 0u12u i 01 j 02k02 l 0u. ~4.10!

Combining~4.8!–~4.10! we have

uN~ i , j ,k,l !u<C2e2m(u i 02 j 0u1uk02 l 0u12u i 01 j 02k02 l 0u). ~4.11!

For configuration 2, from Lemma 4.10 we have analogously
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uN~ i , j ,k,l !u<C1e2m(3u l 02 i 021u12u l 02 j 0u13uk02 j 021u), ~4.12!

and ~4.11! follows in this case combining the inequalities

3u l 02 i 021u12u l 02 j 0u13uk02 j 021u>3u l 02 i 0u12u l 02 j 0u13uk02 j 0u26,

u i 02 l 0u1u j 02k0u>u i 01 j 02k02 l 0u,

u i 02 l 0u1u l 02 j 0u>u i 02 j 0u,

u l 02 j 0u1u j 02k0u>u l 02k0u.

The case of configuration 3 is analogous to this latter case. Finally, Theorem 1.1 follows b
observation that the hyperplane decoupling method is equally applicable in each direction
pendently. j
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Central limit theorem for fluctuations in the high
temperature region of the Sherrington–Kirkpatrick
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In a region above the Almeida–Thouless line, where we are able to control the
thermodynamic limit of the Sherrington–Kirkpatrick model and to prove replica
symmetry, we show that the fluctuations of the overlaps and of the free energy are
Gaussian, on the scale 1/AN, for largeN. The method we employ is based on the
idea we recently developed of introducing quadratic coupling between two replicas.
The proof makes use of the cavity equations and of concentration of measure
inequalities for the free energy. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1515109#

I. INTRODUCTION

We consider the mean-field spin glass model, introduced by Sherrington and Kirkpatr
Refs. 1 and 2, in the regime of high temperature or, equivalently, of large magnetic field
physical grounds, it is known that in this region the replica symmetric solution holds, as show
example in Ref. 3, and references quoted therein. However, due to the very large fluctu
present in the model, it is difficult to give a mathematically rigorous description of this reg
Rigorous works on this subject include Refs. 4–8. For other rigorous results concernin
model, we refer to Refs. 9–13.

The method developed in Ref. 8 by Talagrand is particularly interesting. The starting po
the very deep physical idea that the phenomenon of replica symmetry breaking can be und
by studying the properties of the model under the application of auxiliary interactions, w
explicitly break replica symmetry. In Ref. 8, this idea is employed to prove that the re
symmetric solution holds in a region, which~probably! coincides with that found in the theoretica
physics literature,3 i.e., up to the Almeida–Thouless critical line.

Recently,14 we proposed a different strategy, which consists of coupling two replicas o
system by means of a term proportional to the square of the deviation of the overlap fro
replica symmetric value. In this way, we proved that replica symmetry holds in a region abov
Almeida–Thouless line. In the same region, we obtained a control of the two-replica sy
provided that the coupling parameter is small enough, and we showed that the fluctuations
overlap are at most of order 1/AN. In the present paper we prove that, in the same region
parameters, the fluctuations of overlaps and free energy, when suitably rescaled, have a G
distribution whenN→`. The main ingredients of the proof are the control of the thermodyna
limit obtained in Ref. 14 and concentration of measure techniques inspired by Talagrand’s w
Then, by means of the cavity method, one can write self-consistent linear equations f
characteristic functions of the fluctuation variables, which can be easily solved.

a!Electronic mail: francesco.guerra@roma1.infn.it
b!Electronic mail: f.toninelli@sns.it
62240022-2488/2002/43(12)/6224/14/$19.00 © 2002 American Institute of Physics
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Previous results concerning limit theorems for fluctuations in the high temperature reg
mean-field spin glass models include Refs. 4, 6, 15, 9, and 16.

This work is organized as follows: In Sec. II, we recall the main definitions of the model
introduce the overlap distribution structure. In Sec. III, we state the main results. Two useful
i.e., exponential inequalities and the cavity method, are briefly outlined in Secs. IV and V. In
VI and VII, we prove the central limit theorem for overlap and free energy fluctuations, res
tively. Finally, Sec. VIII is dedicated to a short outlook about open problems and further d
opments.

II. THE MODEL

The generic configuration of the Sherrington–Kirkpatrick~SK! model is determined by theN
Ising variabless i561, i 51,2,...,N, and the Hamiltonian is

HN~s,h;J!52
1

AN
(
( i , j )

Ji j s is j2h(
i

s i , ~1!

where the sum( ( i , j ) runs over all theN(N21)/2 distinct couples of sites. TheJi j ’s ~quenched
noise! are independent centered unit Gaussian variablesN(0,1). The first term in~1! is a long-
range random two-body interaction, while the second represents the interaction with a
external magnetic fieldh. For a given temperature 1/b we can introduce the disorder depende
partition function

ZN~b,h;J!5(
$s%

exp~2bHN~s,h;J!!, ~2!

and the auxiliary function

aN~b,h!5
1

N
E ln ZN~b,h;J!, ~3!

where E denotes the average with respect to the external noiseJ. Note thataN(b,h) is the
quenched average of the free energy per spin, apart from the multiplicative factor21/b.

For later convenience, it is useful to generalize the model~1! by introducing a quenched
random external magnetic field, which at every site is an independent Gaussian varia
strengthx.0. In other words, the Boltzmann factor of the system becomes

expSA t

N(
( i , j )

Ji j s is j1(
i

~bh1AxJi !s i D , ~4!

whereJi are i.i.d.N(0,1) random variables, independent of theJi j ’s. We let t5b2 in the two-
body term. In the following, we always regard the system as depending on the parameterst,x,bh.
In analogy with Eqs.~2! and~3!, we define the disorder-dependent partition functionZN(t,x,h;J)
and the auxiliary function

aN~ t,x,h!5
1

N
E ln ZN~ t,x,h;J!.

Here,E denotes averaging with respect toJi j andJi . For simplicity of notations, here and in th
following we write the argumenth instead ofbh.

Let us consider a countably infinite number of independent copies~replicas! of the system,
whose spin variabless i

a are distributed, for fixedJ, according to the product state

VJ5VJ
1VJ

2...,
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whereVJ[VJ
N,t,x,h denotes the Gibbs state associated with the Boltzmann factor~4!. Each replica

is subject to the same quenched noise. The ‘‘real replica’’ approach has already been explo
a number of papers.17–20

The overlap between two replicasa,b is defined as

qab~sa,sb!5
1

N (
i

s i
as i

b ,

with the obvious bounds

21<qab<1.

For a generic smooth functionF of the overlaps, we define the^.& average as

^F~q12,q13,...!&5EVJ~F~q12,q13,...!!.

Note that the average over disorder introduces correlations between different groups of re
which would be independent under the Boltzmann averageVJ . For example,

VJ~q12q34!5VJ~q12!VJ~q34!,

but

^q12q34&Þ^q12&^q34&.

III. THE HIGH TEMPERATURE REGION AND THE MAIN RESULTS

In this section, we recall the results of Ref. 14 and state limit theorems for fluctuations,
region where we prove that replica symmetry holds, i.e.,

lim
N→`

aN~ t,x,h!5ā~ t,x,h!.

ā(t,x,h) is the replica-symmetric free energy1,2

ā~ t,x,h!5 ln 21E ln cosh~bh1zAtq̄1x!dm~z!1
t

4
~12q̄!2,

whereq̄ is the Sherrington–Kirkpatrick order parameter, defined as the unique17 solution of

q̄5q̄~ t,x,h!5E tanh2~bh1zAtq̄1x!dm~z!,

anddm(z) is the centered unit Gaussian measure.
In Ref. 14 we proved the following: Consider the auxiliary functionãN , dependent on the

parameterl>0

ãN~ t,x,h;l!5aN~ t,x,h!1
1

2N
E ln V t,x,h~eN~l/2!(q122q̄)2

!

and the trajectory in the (t,x) plane

G5~ t8,xt8![~ t8,x1q̄~ t2t8!![~ t8,x02q̄t8!, 0<t8<t ~5!

wherex05x1q̄t andq̄5q̄(t,x,h)5q̄(t8,xt8 ,h). Notice thatãN equalsaN for l50. Givenx0 ,h
there exists a valuetc(x0 ,h), such that
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uā~ t8,xt8 ,h!2ãN~ t8,xt8 ,h;l!u<
k

N
~6!

for some constantk, uniformly in the triangular region

0<t81l< t̄ ,tc~x0 ,h!. ~7!

In the same region, the overlaps self-average around the valueq̄

^~qab2q̄!2&<
k

N
. ~8!

The critical valuetc(x0 ,h) is determined in the following way:14 Let

D~x0 ,h,l0![
1

2
max
rPR

S E ln~coshr1tanh2~bh1zAx0!sinhr!dm~z!2rq̄2 ~r2/2l0! D ,

wherel0>0. Then, we definetc(x0 ,h) such that, for anyl0<tc(x0 ,h), one has

D~x0 ,h,l0!50.

In the case of vanishing external fieldx5h50, then alsox05q̄50 andtc51, the correct critical
value. As discussed in Ref. 14, the region defined by~7! falls short of the Almeida–Thouless line
which is the expected critical line.

In this paper, we investigate more precisely the behavior of fluctuations of physical qua
around the replica symmetric value. First of all, we give a central limit-type theorem for
rescaled overlaps

jab
N 5AN~qab2q̄!,

showing that they behave as centered Gaussian variables characterized by a nondiagonal
tion matrix. Notice that, thanks to~8!, one has the following bound for the second moment of
rescaled overlap fluctuations:

^~jab
N !2&<k. ~9!

Theorem 1: If t ,tc(x0 ,h), the rescaled overlapsjab
N tend in distribution, for N→`, to

jointly Gaussian variablesjab , with covariances

^jab
2 &5A~ t,x,h!,

^jabjac&5B~ t,x,h!,

^jabjcd&5C~ t,x,h!,

where a, b, c, d are all different. A, B, and C are explicitly given by

A~ t,x,h!5~112R14R2!Y1c0R2, ~10!

B~ t,x,h!5~114R!RY1c0R2, ~11!

C~ t,x,h!54R2Y1c0R2, ~12!

where
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Y~ t,x,h!5
1

Y0
212t

,

R~ t,x,h!5
d0

Y0
2112d02t

,

and Y0(x0 ,h),c0(x0 ,h), and d0(x0 ,h) are chosen in such a way that A,B,C satisfy the initial
conditions

A~0,x0 ,h!512q̄2,

B~0,x0 ,h!5q̄2q̄2,

C~0,x0 ,h!5E tanh4~zAx01bh!dm~z!2q̄2.

In particular, one has

Y05E cosh24~zAtq̄1x1bh!dm~z!. ~13!

Recently, an analogous result was proved independently by Talagrand,16 who computed the
N→` limit for all moments of thej variables.

The expressions forA,B, andC were first given by Guerra in Ref. 17. Forh5x50, the limit
Gaussian variables are not correlated and have variance 1/(12t), which is a well-known result.4,6

Let us consider now free-energy fluctuations. Aizenman, Lebowitz, and Ruelle4 proved that in
the case of zero external field andt,1, the variable

ln ZN2 ln EZN

tends to a shifted Gaussian random variable whose variance diverges att51. In the general case
the situation is quite different and the following theorem holds:

Theorema 2: Let

f̂ N~ t,x,h;J![ANS ln ZN~ t,x,h;J!

N
2ā~ t,x,h! D .

If t ,tc(x0 ,h) then

f̂ N~ t,x,h;J!→
d

N~0,s2~ t,x,h!!,

where

s2~ t,x,h!5Var~ ln cosh~zAtq̄1x1bh!!2
q̄2t

2
.

Here, Var(.) denotes the variance of a random variable and z5N(0,1).
Notice that fluctuations of the extensive free energy lnZN are of order 1 at zero external fiel

and of orderAN otherwise.
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IV. EXPONENTIAL SUPPRESSION OF OVERLAP FLUCTUATIONS

General arguments based on concentration of measure9,21,22show that the fluctuations of th
free energy 1/N ln ZN around its mean valueaN are exponentially suppressed asN grows. Indeed,
one has the following:9

Theorem 3: For any u.0,

PS U1

N
ln ZN~ t,x,h;J!2aN~ t,x,h!U>uD<exp~2NKu2!, ~14!

where

K5
1

t12x
.

This, in connection with the results of Ref. 14, allows us to obtain a strong control on
fluctuations of the overlaps~we learned this nice argument in Ref. 8!: First of all, the same
argument leading to Theorem 3 shows that

PS U 1

2N
ln V t,x,h~eN~l/2!(q122q̄)2

!2ãN~ t,x,h,l!1aN~ t,x,h!U>2uD<exp~2NKu2!.

Therefore, thanks to Eq.~6!, with probability at least 12exp(2NKu2) one has

V t,x,h~e~l/2! N(q122q̄)2
!<e4Nu12C

for l<l̄,tc(x0 ,h)2t. Then, by Tchebysheff’s inequality

V t,x,h~x$uq122q̄u>v%)<e2 ~ l̄/2! Nv2
V t,x,h~e~ l̄/2! N(q122q̄)2

!<eN(4u2 ~ l̄/2! v2)12C

and, choosingu5l̄v2/16, one has

V t,x,h~x$uq122q̄u>v%)<e2N ~v2l̄/4! 12C.

The estimate we are looking for easily follows

EV t,x,h~x$uq122q̄u>v%)<e2N ~v2l̄/4! 12C1e2NK ~ l̄2v4/256!. ~15!

Of course, this is much more than just self-averaging of the overlaps.

V. THE CAVITY METHOD

The cavity method allows expression of thermal averages of quantities defined on theN-spin
system as functions of averages on the system withN21 spins, at a slightly different temperatur
This method has been widely applied both in the theoretical physics literature3 and in the math-
ematical physics one~see, for instance, Refs. 5, 16, 10, and 18!.

Introduce the following definitions:

t85t~12N21!

sa5~ha,ea!, haP$21,1%N21, ea5sN
a 561

J5JN

gi5JN i , i 51,...,N21
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V8~ .!5VN21
t8 ~ .!.

The cavity equations consist of the identity

VN
t,x,h~ f ~s1,...,sk!!5

V8~Av f ~h1,e1,...,hk,ek!C (k)!

V8~Av C (k)!
, ~16!

whereAv denotes the average over the spin variablesea and

C (k)[exp(
a51

k

ea~At/Ngha1AxJ1bh!. ~17!

gha denotes the scalar product( i 51
N21gih i

a .

VI. LIMIT THEOREM FOR OVERLAP FLUCTUATIONS

To prove Theorem 1, it suffices23 to show that for any integers, the characteristic function

fN
t ~u!5^expi ujN&[K expi (

(a,b)
uabjab

N L , 1<a,b<s

converges forN→` to

f t~u!5exp$2 1
2 ~ L̂u,u!%, ~18!

where (...) denotes scalar product andL̂ is the s(s21)/23s(s21)/2 dimensional matrix of
elements

L (ab),(ab)5A~ t,x,h!,

L (ab),(ac)5B~ t,x,h!,

L (ab),(cd)5C~ t,x,h!.

The idea of the proof is to obtain a set of closed linear differential equations forfN
t (u), which

determines uniquely the solution as~18!, for N→`. Some of the calculations involved in th
proof are quite long, although straightforward, and are therefore just sketched.

First of all, we explain how the cavity equations~16! and~17! can be simplified in the region
where ~15! holds. Following Ref. 10, we introduce some notations, lettingV(.)[VN

t,x,h(.) and

V8(.)[VN21
t8,x,h(.). Moreover, we define

b5V8~h!PRN21,

ḣa5ha2b,

X5At/Ngb1AxJ1bh,

C0
(k)5expS X(

a51

k

eaD ,

f ~s1,...,sk!5 f ~h1,e1,...,hk,ek!.

Then, the following holds:10
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Theorem 4:

EV~ f ~s1,...,sk!!5E
1

coshk X
V8~Av f C0

(k)! ~19!

1tE
1

coshk X
V8S Av f C0

(k) (
1<a,c<k

eaec
ḣaḣc

N D ~20!

1tE
1

coshk X
V8S Av f C0

(k) (
1<aÞc<k

eaec
ḣcb

N D ~21!

2ktE
tanhX

coshk X
V8S Av f C0

(k) (
a51

k

ea
ḣab

N D 1S, ~22!

and the ‘‘error term’’ S can be estimated as

uSu<wk~ t,x,h!EV8S Avu f uS (
a51

k11 S ḣab

N D 2

1 (
1<a,c<k12

S ḣaḣc

N D 2D D ,

where w is a smooth function of its arguments, independent of N.
Note that, with respect to Theorem 3.2 in Ref. 10, the last sum on the right-hand s

performed ona,c instead ofa<c. However, the proof of Theorem 4 proceeds exactly as in R
10.

Theorem 4 is a sort of Taylor expansion of the cavity equations aroundha5b. This turns out
to be particularly useful in the region where Eq.~15! holds, since in this caseḣa is small with
large probability, andS vanishes forN→`, as we explain in the following.

In order to prove Theorem 1, we first exploit symmetry between sites to write

]urr 8
fN

t ~u!5 i ^j rr 8
N eiujN

&5 iAN^~sN
r sN

r 82q̄!eiujN
&, ~23!

wN
(a)t~u![ i ^ja,s11

N eiujN
&5 iAN^~sN

a sN
s112q̄!eiujN

&, ~24!

cN
t ~u![ i ^js11,s12

N eiujN
&5 iAN^~sN

s11sN
s122q̄!eiujN

&, ~25!

and then employ the cavity equations to express these quantities as functions off,w,c themselves.
For instance, apply Theorem 4 to the right-hand side of Eq.~23! and consider the term arisin
from ~19!. After averaging on the dichotomic variablese, one is left with

i SAN2 i (
(a,b)

uabq̄DE$~ tanh2 X2q̄!V8 exp~ iu8jN21!%

2urr 8E$~12q̄ tanh2 X!V8 exp~ iu8jN21!%

2~12q̄! (
aÞr ,r 8

~uar1uar8!E$tanh2 XV8 exp~ iu8jN21!%

2 (
(c,d)c,dÞr ,r 8

ucdE$tanh2 X~ tanh2 X2q̄!V8 exp~ iu8jN21!%1o~1!, ~26!

whereu85uA121/N. The termo(1) arises when exp (iu/AN) is expanded aroundu50 and the
terms of orderu2 or higher are neglected. Indeed, one has
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UANK ~sN
r sN

r 82q̄!eiu8jN21S ei ((a,b)~uab /AN!(sN
a sN

b
2q̄)212 i (

(a,b)

uab

AN
~sN

a sN
b 2q̄!D L U

<2ANUei ((a,b)~uab /AN!(sN
a sN

b
2q̄)212 i (

(a,b)

uab

AN
~sN

a sN
b 2q̄!U5O~N21/2!.

Now, rewriteE asE Eg , whereEg denotes the average only with respect to the random varia
J andgi ,i 51,...,N21, and notice thatJ,gi do not appear in the thermal averageV8. Computa-
tion of Eg(...) would be simpler if, instead ofX, there were

X̄[At/Ngb̄1AxJ1bh,

where

b̄[
b

uubuu
ANq̄.

Of course, one has

X̄5
d

zAtq̄1x1bh,

wherez is a standard unit Gaussian variable and equality holds in distribution so that, for ins

Eg tanh2 X̄5q̄.

The idea is, therefore, to expand aroundX5X̄. As a preliminary fact, notice that the secon
moment of the random variable (b2b̄) is bounded uniformly inN. Indeed,

Euub2b̄uu25E~ uubuu2ANq̄!2<
1

q̄N
E~ uubuu22Nq̄!2 ~27!

5
1

q̄
EV8~j12

N21j34
N21!1O~1/N!5O~1!, ~28!

thanks to Eq.~9!. As an example, let us examine in detail the first term in~26!, that is,

iANEEg~ tanh2 X!V8 exp~ iu8jN21!2 i q̄ANEV8 exp~ iu8jN21!. ~29!

By a simple second-order Taylor expansion and an integration by parts on the Gaussian ng,
one finds

Eg tanh2 X5Eg tanh2 X̄1
t

N
~b2b̄!b̄Eg]x

2 tanh2 xux5X̄ ~30!

1
t

2N
Eg ]x

2 tanh2 xux5X̄1u(X2X̄)~g~b2b̄!!2 ~31!

5q̄1
t

2N
~b2b̄!~b1b̄!Eg]x

2 tanh2 X̄ ~32!

1
t

2N
uub2b̄uu2Eg~]x

2 tanh2 xux5X̄1u(X2X̄)2]x
2 tanh2 X̄! ~33!
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1
t2

2N2 Eg ]x
4 tanh2 xux5X̄1u(X2X̄)@~b2b̄!~ b̄1u~b2b̄!!#2, ~34!

where 0<u<1. Analyze each term separately. Recalling the definitions ofb and b̄, the second
term in ~32! equals

t

2N
V8~hs11hs122Nq̄!E dm~z!]x

2 tanh2~bh1zAtq̄1x! ~35!

5
t

AN
V8~js11,s12

N21 !~3Y012q̄22!1O~1/N!, ~36!

whereY0 was defined in~13!. Another application of Taylor’s expansion and integration by pa
together with Cauchy–Schwarz inequality and the fact that the derivatives of the function ta2(x)
are bounded, shows that the terms~33! and ~34! can be bounded by

k

N
uub2b̄uu2.

Therefore, using the estimate~28!, the expression~29! reduces to

i t ~3Y012q̄22!EV8@js11,s12 exp~ iu8jN21!#1O~N21/2!,

and

iANE$~ tanh2 X2q̄!V8 exp~ iu8jN21!%5t~2q̄2213Y0!c81o~1!,

where

c8[cN21
t8 ~u8!.

The other terms in~26! are much simpler than~29!, and can be dealt with in the same way. Final
the whole expression~26! can be rewritten as

t~2q̄2213Y0!c82urr 8~12q̄2!f82~ q̄2q̄2! (
aÞr ,r 8

~uar1uar8!f8

2~Y02~12q̄!2! (
(c,d)c,dÞr ,r 8

ucdf81o~1!. ~37!

The steps leading to expression~37! can be repeated with minor changes for the remaining te
~20! to ~22!. These terms, although they look more complicated than~19! at first sight, are actually
simpler to treat, since a first-~instead of second! order Taylor expansion aroundX5X̄ is sufficient.
This is due to the presence of terms likeḣaḣb /N or ḣab/N, which are with large probability
small, thanks to~9!. Also in this case, one finds that terms~20! to ~22! give quantities linear in
f8,]f8,w8,c8, apart from terms of ordero(1). As for the ‘‘error term’’ S which appears in
Theorem 4, one can easily check that it vanishes in the thermodynamic limit. This is a c
quence of the exponential decay of overlap fluctuations, as expressed by~15!.

Next, we show that terms likefN21
t8 (u8) or cN21

t8 (u8) can be substituted by the same fun
tions calculated atN,t,u, apart from negligible error terms. Indeed, for instance

fN
t ~u!5^exp~ iu8jN211 iu~sN

1 sN
2 2q̄!/AN!& t5^expiu8jN21& t~11o~1!!5f81o~1!.
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In the last step, we used Theorem 4 in order to substitutet with t8. Therefore, Eq.~23! reduces to
a linear relation betweenf,w, and c, apart from a remainder which becomes irrelevant in
thermodynamic limit. In the same way, one sees also that Eqs.~24!, ~25! yield linear equations for
f,w,c. Putting everything together, in the thermodynamic limit one has a set of coupled l
differential equations of the form

Ft~u!5f t~u!v~u!1tM̂Ft~u!, ~38!

whereFt(u) is the vector

Ft~u!5~]u12
f t~u!,...,]us21,s

f t~u!,w (1) t~u!,...,w (s) t~u!,c t~u!!.

v(u) is a vector whose components are homogeneous linear functions of the variablesu, while M̂
is a real square matrix with elements depending onq̄,Y0 alone. We do not report here the explic
expressions ofv(u) andM̂ , which are quite complicated. However, it is instructive to check th
for instance, the term~37! is in agreement with this structure. In fact, the coefficient off8 is a
homogeneous linear function of theu variables, while the coefficient ofc8 is linear in t and
depends only onY0 and q̄. As will be clear in the following, only the structure~38!, and not the
specific form ofv andM̂ , are needed to conclude the proof of the theorem.

Assume at first that the matrix (12t M̂ ) is invertible, which in principle can fail only for a
finite number of values oft, sinceM̂ is finite dimensional. In this case, Eq.~38! can be reduced
to a first-order differential system in normal form

Ft~u!5f t~u!~12t M̂ !21v~u!, ~39!

which can be easily integrated. The most general solution forf t(u), compatible with the initial
condition

f t~0!51,

is of the form

f t~u!5exp$2 1
2 ~K̂u,u!1~p,u!%, ~40!

wherep is somes(s21)/2 dimensionalu-independent vector, andK̂ is a s(s21)/23s(s21)/2
real symmetric positive definite matrix. The symmetry and non-negativity ofK̂ derive from the
obvious property of symmetry among replicas, and from the bound

uf t~u!u<1,

which holds for any characteristic function. The quadratic dependence onu of the exponent of
f t(u) stems from the linear dependence of the components ofv(u). Clearly, Eq.~40! means that
the random variables$jab

N % converge to some Gaussian process$jab%. Moreover, it turns out that
the identification

p50

and

K̂5L̂

are straightforward. Indeed, it was shown by Guerra in Ref. 17 that, if the limit proce
Gaussian, then it is centered and its covariance function is exactlyL̂.
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In order to conclude the proof, it remains to show convergence of the characteristic fun
for those possible valuest̃ where (12t M̂ ) is singular. For anyd.0 one can write

fN
t̃ ~u!5fN

t̃ 2d~u!1d] tfN
t u t5 t̃ 2uNd ,

where 0,uN,1. After a straightforward computation, one finds that

] tfN
t 5

1

2 K eiujNS (
(a,b)

~jab
N !22s(

a51

s

~ja,s11
N !21

s~s11!

2
~js11,s12

N !2D L .

By exploiting the uniform bound~9! and the arbitrariness ofd, one finds therefore that the theore
holds also fort5 t̃ . h

VII. FLUCTUATIONS OF THE FREE ENERGY

In order to prove Theorem 2, we show that the characteristic function off̂ N converges to that
of N(0,s2(t,x,h)), i.e.,

lim
N→`

Eeiu f̂ N(t,x,h)5e2 ~u2/2! s2(t,x,h).

Define

ā~ t8!5ā~ t8,xt8 ,h!

zN~ t8!5
ln ZN~ t8,xt8 ,h;J!

N
,

wherext8 is defined in Eq.~5!. The characteristic function off̂ N can be written as

Eeiu f̂ N(t,x,h)5Eeiu f̂ N(0,x0 ,h)1 iuEE
0

t

eiu f̂ N(t8,xt8 ,h)
d

dt8
f̂ N~ t8,xt8 ,h!dt8. ~41!

Since

d

dt8
ā~ t8!5

1

4
~12q̄!2,

d

dt8
zN~ t8!5

1

2At8N3/2 (( i , j ) Ji j V t8~s is j !2
q̄

2NAxt8
(

i
JiV t8~s i !,

one finds through integration by parts that

EH eiuzN(t8)
d

dt8
zN~ t8!J 5

1

4
E$eiuzN(t8)@12V t8~q12

2 !22q̄ ~12V t8~q12!!#%

1
iu

4N
E$eiuzN(t8)@V t8~q12

2 !22q̄V t8~q12!2N21#%. ~42!

By using ~42! in Eq. ~41!, one finds
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Eeiu f̂ N(t,x,h)5Eeiu f̂ N(0,x0 ,h)1
u2q̄2

4
EE

0

t

eiu f̂ N(t8)dt82
u2

4N E
0

t

Eeiu f̂ N(t8)~V t8~j12
2 !21!dt8

2
iu

4AN
E

0

t

Eeiu f̂ N(t8)V t8~j12
2 !dt8. ~43!

At t50, all sites are decoupled and the central limit theorem for i.i.d. random variables im
that

f̂ N~0,x,h!→
d

N~0,s2~0,x,h!!. ~44!

The last two terms in Eq.~43! clearly vanish forN→`. For instance,

N2 1/2uEeiu f̂ N(t8)V t8~j12
2 !u<N2 1/2EV t8~j12

2 !5O~N2 1/2!,

since

EV t8~j12
2 !5O~1!

for t8,tc . Therefore, Eq.~43! yields the following linear integral equation for the characteris
function:

Eeiu f̂ N(t,x,h)5Eeiu f̂ N(0,x0 ,h)1
u2q̄2

4
EE

0

t

eiu f̂ N(t8,xt8 ,h)dt81o~1!,

whose solution is, keeping into account the initial condition~44!

Eeiu f̂ N(t,x,h)5e2 ~u2/2! s2(t,x,h)1o~1!.
h

Before concluding this section, we wish to note that from Eq.~43! one can also obtain in a
very simple way a well-known result for free-energy fluctuations at zero external field andt,1,4,6

i.e.,

hN
t [ ln ZN~ t !2NS ln 21

t

4D→d

Ŷt2
1

4
ln

1

12t
, ~45!

whereYt is a centered Gaussian random variable of variance

1

2 S ln
1

12t
2t D .

Indeed, settingu5ANs andx5h50 in Eq. ~43!, one obtains the equation

EeishN
t
512

u2

4 E
0

t

EeishN
t8
~V t8~j12

2 !21!dt82
iu

4 E
0

t

EeishN
t8
V t8~j12

2 !dt8. ~46!

Since Theorem 1 implies, for vanishing external field andt,1,

E~V t~j12
2 !2^j12

2 &!25^j12
2 j34

2 &2^j12
2 &25o~1!,

Eq. ~46! yields
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EeishN
t
512

u2

4 E
0

t

EeishN
t8S 1

12t8
21Ddt82

iu

4 E
0

t

EeishN
t8 1

12t8
dt81o~1!,

from which the result~45! easily follows.

VIII. CONCLUSIONS AND OUTLOOK

We have employed the cavity method to prove a central limit theorem for the fluctuatio
overlaps and free energy, in a region above the Almeida–Thouless line. The key ingredie
provided by the control of the coupled two replica system. The open question remains to
stand whether and how our method can be extended to the entire physically expected hig
perature region.

In the case of vanishing external field, our method can be employed to obtain very de
information on the system in proximity of the critical point. In particular, one can obtain lower
upper bounds on the overlap fluctuations, atb51. We plan to report on this soon.24
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We find the exotic matrix bialgebras which correspond to the two nontriangular
nonsingular 434 R-matrices in the classification of Hietarinta, namely,RS0,3 and
RS1,4. We find two new exotic bialgebrasS03 andS14 which are not deformations
of the classical algebras of functions on GL~2! or GL~1u1!. With this we finalize the
classification of the matrix bialgebras which unital associative algebras generated
by four elements. We also find the corresponding dual bialgebras of these new
exotic bialgebras and study their representation theory in detail. We also discuss in
detail a special case ofRS1,4 in which the corresponding algebra turns out to be a
special case of the two-parameter quantum group deformation GLp,q(2). © 2002
American Institute of Physics.@DOI: 10.1063/1.1516845#

I. INTRODUCTION

Until now there was no complete list of the matrix bialgebras which are unital associ
algebras generated by four elements. Naturally, since the co-product relations are the c
ones we first mention the two related to GL~2!, namely, the standard GLpq(2) ~Ref. 1! and
nonstandard~Jordanian! GLgh(2) ~Ref. 2! two-parameter deformations. For the supergro
GL~1u1! there are also two: the standard GLpq(1u1) ~Refs. 3–5! and the hybrid~standard–
nonstandard! GLqh(1u1) ~Ref. 6! two-parameter deformations. Recently, in Ref. 7 it was sho
that there are no more deformations of GL~2! or GL~1u1!. In particular, it was shown that thes
four deformations match the distinct triangular 434 R-matrices from the classification of Ref.
which are deformations of the trivialR-matrix @corresponding to undeformed GL~2!#.

Naturally, there are matrix bialgebras generated by four elements, which are not deform
of the classical algebra of functions over the group GL~2! or the supergroup GL~1u1!. Those
should correspond to 434 R-matrices which are not deformations of the trivialR-matrix. Study-
ing the classification of Ref. 8 we noticed altogether five nonsingular suchR-matrices. The
triangular ones were introduced in Ref. 7 and their duals were found and studied in detail i
9. In the latter paper we called these bialgebras exotic.
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In the present article we finalize the explicit classification of the matrix bialgebras gene
by four elements, by studying those that correspond to the two nontriangular nonsingular34
R-matrices of Ref. 8, namely,RS0,3 and RS1,4 which also are not deformations of the trivia
R-matrix.

The article is organized as follows. Section II just introduces general notation. In Sec. I
study the matrix bialgebraS03 which corresponds toRS0,3. We find the dual bialgebras03 and
study the representation theory ofs03 in detail. In Secs. IV and V we study the matrix bialgebr
S14 andS14o which correspond toRS1,4 for two distinctive regions of the deformation parame
q: q2Þ1 andq251, respectively. In both cases we find the corresponding dual bialgebras
their representation theory. In Sec. VI we present our conclusions and outlook.

II. GENERALITIES

In this article we consider matrix bialgebras which are unital associative algebras genera
four elementsa,b,c,d. The co-product and co-unit relations are the classical ones:

dS a b

c dD 5S a^ a1b^ c a^ b1b^ d

c^ a1d^ c c^ b1d^ dD , ~2.1a!

«S a b

c dD 5S 1 0

0 1D . ~2.1b!

However, the bialgebras under consideration are not Hopf algebras, except one. This s
discussed separately in each case.

It shall be convenient to make the following change of generators:

ã5 1
2~a1d!, d̃5 1

2~a2d!, b̃5 1
2~b1c!, c̃5 1

2~b2c!. ~2.2!

With the new generators we have

dS ã b̃

c̃ d̃
D 5S ã^ ã1b̃^ b̃2 c̃^ c̃1d̃^ d̃ ã^ b̃1b̃^ ã2 c̃^ d̃1d̃^ c̃

ã^ c̃1 c̃^ ã2b̃^ d̃1d̃^ b̃ ã^ d̃1d̃^ ã2b̃^ c̃1 c̃^ b̃
D ,

~2.3!

«S ã b̃

c̃ d̃
D 5S 1 0

0 0D .

III. ALGEBRA S03

A. Bialgebra relations

In this section we consider the matrix bialgebraS03. We obtain it by applying the RTT
relations of Ref. 10:

RT1T25T2T1R, ~3.1!

whereT15T^ 12 , T2512^ T, for the case whenR5RS0,3, where

RS0,3[S 1 0 0 1

0 1 1 0

0 1 21 0

21 0 0 1
D . ~3.2!

This R-matrix is given in Ref. 8.
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The relations which follow from~3.1! and ~3.2! are

b21c250, a22d250,

cd5ba, dc52ab,
~3.3!

bd5ca, db52ac,

da5ad, cb52bc.

In terms of the generatorsã,b̃,c̃,d̃ we have

b̃25 c̃250, ãd̃5d̃ã50,
~3.4!

ãb̃50, b̃d̃50,

d̃c̃50, c̃ã50.

In view of the above relations we conclude that this bialgebra has no PBW basis. Indee
ordering following from~3.4! is cyclic:

ã. c̃.d̃.b̃.ã. ~3.5!

Thus, the basis consists of building blocks likeãkc̃d̃,b̃ and cyclic. Explicitly the basis can b
described by the following monomials:

ãk1c̃d̃,1b̃¯ãknc̃d̃,nb̃ãkn11, n,ki ,, iPZ1 , ~3.6a!

d̃,1b̃ãk1c̃¯d̃,nb̃ãkn, n,ki ,, iPZ1 , ~3.6b!

ãk1c̃d̃,1b̃¯ãknc̃d̃,n, n,ki ,, iPZ1 , ~3.6c!

d̃,1b̃ãk1c̃¯d̃,nb̃ãknc̃d̃,n11, n,ki ,, iPZ1 . ~3.6d!

We shall call the elements of the basis ‘‘words.’’ The one-letter words are the gene
ã,b̃,c̃,d̃; they are obtained from~3.6a!, ~3.6b!, ~3.6c!, ~3.6d!, respectively, forn50,k151, n
51,k15,150, n51,k15,150, n50,,151, respectively The unit element 1A is obtained from
~3.6b! or ~3.6c! for n50.

B. Dual algebra

Two bialgebrasU, A are said to bein duality11 if there exists a doubly nondegenerate biline
form

^,&:U3A→C,^,&:~u,a!°^u,a&,uPU,aPA, ~3.7!

such that, foru,vPU,a,bPA,

^u,ab&5^dU~u!,a^ b&,^uv,a&5^u^ v,dA~a!&, ~3.8a!

^1U ,a&5«A~a!,^u,1A&5«U~u!. ~3.8b!

Two Hopf algebrasU, A are said to bein duality11 if they are in duality as bialgebras and if

^gU~u!,a&5^u,gA~a!&. ~3.9!
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It is enough to define the pairing~3.7! between the generating elements of the two algeb
The pairing between any other elements ofU, A follows then from relations~3.8! and the standard
bilinear form inherited by the tensor product.

The duality between two bialgebras or Hopf algebras may be used also to obtain the un
dual of a known algebra. For that it is enough to give the pairing between the generating ele
of the unknown algebra with arbitrary elements of the basis of the known algebra. Using
initial pairings and the duality properties one may find the unknown algebra. One such poss
is given in Ref. 10. However, their approach is not universal. In particular, it is not enough fo
algebras considered here~as will become clear!, and will be used only as a consistency check

Another approach was initiated by Sudbery.12 He obtained Uq(sl(2))^ U(u(1)) as thealgebra
of tangent vectors at the identity of GLq(2). Theinitial pairings were defined through the tange
vectors at the identity. However, such calculations become very difficult for more complic
algebras. Thus, in Ref. 13 a generalization was proposed in which the initial pairings are
lated to be equal to the classical undeformed results. This generalized method was applied
13 to the standard two-parameter deformation GLp,q(2), ~where also Sudbery’s method was use!,
then in Ref. 14 to the multiparameter deformation of GL(n), in Ref. 15 to the matrix quantum
Lorentz group of Ref. 16, in Ref. 17 to the Jordanian two-parameter deformation GLg,h(2), in
Ref. 6 to the hybrid two-parameter deformation of the superalgebra GLq,h(1u1), in Ref. 18 to the
multiparameter deformation of the superalgebra GL(mun), and in Ref. 9 to the first discusse
three exotic bialgebras.@We note that the dual of GLp,q(2) was obtained also in Ref. 19 b
methods ofq-differential calculus.#

Let us denote bys03 the unknown yet dual algebra ofS03, and byÃ,B̃,C̃,D̃ the four
generators ofs03. Like in Ref. 13 we define the pairinĝZ, f &, Z5Ã,B̃,C̃,D̃, f is from ~3.6!, as
the classical tangent vector at the identity:

^Z, f &[«S ] f

]yD , ~3.10!

where (Z,y)5(Ã,ã), (B̃,b̃), (C̃,c̃), (D̃,d̃). Explicitly, we get

^Ã, f &5«S ] f

]ãD5H k for f 5ãk,

0 otherwise,
~3.11a!

^B̃, f &5«S ] f

]b̃
D 5H 1 for f 5b̃ãk,

0 otherwise,
~3.11b!

^C̃, f &5«S ] f

] c̃
D 5H 1 for f 5ãkc̃,

0 otherwise,
~3.11c!

^D̃, f &5«S ] f

]d̃
D 5H 1 for f 5d̃,

0 otherwise.
~3.11d!

Using the above we obtain the following proposition.
Proposition 1:The generatorsÃ,B̃,C̃,D̃ introduced above obey the following relations:

@Ã,Z#50, Z5B̃,C̃, ~3.12a!

ÃD̃5D̃Ã5D̃35B̃2D̃5D̃B̃25D̃, ~3.12b!

@B̃,C̃#522D̃, ~3.12c!
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D̃B̃52B̃D̃5C̃D̃25D̃2C̃, ~3.12d!

$C̃,D̃%50, ~3.12e!

B̃21C̃250, ~3.12f!

B̃35B̃, ~3.12g!

C̃352C̃, ~3.12h!

B̃2Ã5Ã; ~3.12i!

dU~Ã!5Ã^ 1U11U^ Ã, ~3.13a!

dU~B̃!5B̃^ 1U1~1U2B̃2! ^ B̃, ~3.13b!

dU~C̃!5C̃^ ~1U2B̃2!11U^ C̃, ~3.13c!

dU~D̃ !5D̃ ^ ~1U2B̃2!1~1U2B̃2! ^ D̃, ~3.13d!

«U~Z!50, Z5Ã,B̃,C̃,D̃. ~3.13e!

Ã, B̃252C̃2 and D̃2 are Casimir operators. The bialgebras03 is not a Hopf algebra.
Proof: Using the assumed duality the algebraic relations~3.12! are shown by calculating thei

pairings with the basis monomialsf from ~3.6!. In particular, we have~giving only the nonzero
pairings!

^ÃB̃, f &5^B̃Ã, f &5k11, for f 5b̃ãk, ~3.14a!

^ÃC̃, f &5^C̃Ã, f &5k11, for f 5ãkc̃, ~3.14b!

^ÃD̃, f &5^D̃Ã, f &5^D̃3, f &5^B̃2D̃, f &5^D̃B̃2, f &52^B̃C̃, f &5^C̃B̃, f &5^D̃, f &51, for f 5d̃
~3.14c!

^B̃C̃, f &5^C̃B̃, f &51, for f 5b̃ãkc̃, ~3.14d!

^D̃B̃, f &52^B̃D̃, f &5^C̃D̃2, f &5^D̃2C̃, f &51, for f 5 c̃, ~3.14e!

^D̃C̃, f &52^C̃D̃, f &51, for f 5b̃, ~3.14f!

^B̃2, f &52^C̃2, f &51, for f 5ãk, ~3.14g!

^B̃3, f &5^B̃, f &51, for f 5b̃ãk, ~3.14h!

^2C̃3, f &5^C̃, f &51, for f 5ãkc̃, ~3.14i!

^B̃2Ã, f &5^Ã, f &5k, for f 5ãk. ~3.14j!
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For the proof of~3.14h! and ~3.14j!, ~3.14g! is used. The facts thatÃ, B̃252C̃2 and D̃2 are
Casimir operators follow easily from~3.12! having in mind also~3.14g! and ~3.14j! and that

^D̃2,ã&51 is the only nonzero pairing ofD̃2. For the proof of~3.13a!–~3.13d! we use the duality
property~3.8a!:

^Z, f 1f 2&5^dU~Z!, f 1^ f 2&

for every generatorZ of s03 and for everyf 1 , f 2PS03, then we calculate separately the lhs a
rhs and compare the results. We also use that

B̃2Z5Z , for Z5Ã,B̃,C̃,D̃. ~3.15!

This is contained in~3.12! except forZ5C̃ for which we use that̂ B̃2C̃,ãkc̃&51 is the only
nonzero pairing ofB̃2C̃. Formulas~3.13e! follow from «U(Z)5^Z,1A&, cf. ~3.8b!, and the defin-
ing relations~3.11!. To show thats03 is not a Hopf algebra we suppose that it is, i.e., there sho
exist an antipodeg. Then we use one of the Hopf algebra axioms:

m+~ id^ g!+d5 i +« ~3.16!

as mapss03→s03, wherem maps to the usual product in the algebra:m(Y^ Z)5YZ, Y,Z
Ps03 andi is the natural embedding of the number fieldC into s03: i (m)5m1U ,mPC. Applying
this to the generatorB̃ we would get

B̃1~1U2B̃2!g~B̃!50,

which is a contradiction, since 1U2B̃2 is zero when multiplied by anything except by 1U , and in
the latter case the product is not equal to2B̃. From this we see thatg can not be defined onC̃ and
D̃ since their coproducts involveB̃. The antipode may be introduced only if we restrict to t
subalgebra generated byÃ, but the bialgebras03 as a whole is not a Hopf algebra. j

Corollary 1: The algebra generated by the generatorÃ is a sub-bialgebra ofs03. The algebra
s038 generated by the generatorsB̃,C̃,D̃ is a nine-dimensional sub-bialgebra ofs03 with PBW
basis:

1U ,B̃,C̃,D̃,B̃C̃,B̃D̃,D̃C̃,B̃2,D̃2. ~3.17!

Proof: The statement follows immediately from relations~3.12! and ~3.13!. We comment on
only the PBW basis of the subalgebras038. Indeed, a priori it has a PBW basis:

B̃kD̃,C̃m , k,,<2, m<1, ~3.18!

the restrictions following from~3.12b!, ~3.12f!, and ~3.12g!. Furthermore, it is easy to see th
there are no cubic~and consequently higher order! elements of the basis. For some of the cub
elements this is clear from~3.12!. For the rest we have

B̃D̃C̃52D̃2C̃25D̃2B̃25D̃2, ~3.19a!

B̃2C̃52C̃35C̃, ~3.19b!

B̃D̃252C̃D̃35D̃C̃, ~3.19c!

also using~3.12!. Thus, the basis is given by~3.17!; the algebra is indeed nine-dimensional.j

Remark 1:The algebras03 is not the direct sum of the two subalgebras described in
preceding Corollary since both subalgebras have nontrivial action on each other, e.g.,B̃2Ã5Ã,
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ÃD̃5D̃. The algebras03 is a nine-dimensional associative algebra over the central algebra
erated byÃ. j

C. Regular representation

We start with the study of the left regular representation~LRR! of the subalgebras038. For
this we need the left multiplication table:

The LRR hence contains the subrepresentation generated as a vector spa

$D̃,D̃2,B̃D̃,D̃C̃%, which decomposes into two two-dimensional irreps:

v0
15D̃1D̃2, v1

15B̃D̃1D̃C̃, ~3.20!

B̃S v0
1

v1
1D 5S v1

1

v0
1D , C̃S v0

1

v1
1D 5S 2v1

1

v0
1 D , D̃S v0

1

v1
1D 5S v0

1

2v1
1D , ~3.21!

and

v0
25B̃D̃2D̃C̃, v1

25D̃2D̃2, ~3.22!

B̃S v0
2

v1
2D 5S v1

2

v0
2D , C̃S v0

2

v1
2D 5S 2v1

2

v0
2 D , D̃S v0

2

v1
2D 5S v0

2

2v1
2D . ~3.23!

These two irreps are isomorphic by the map (v0
1 ,v1

1)→(v0
2 ,v1

2). On both of them the CasimirsB̃2,
D̃2 take the value 1.~Also the CasimirÃ of s03 has the value 1.!

The LRR contains also the trivial one-dimensional representation generated by the vev
5B̃221U . On this vector all Casimirs and, moreover, all generators ofs03 take the value 0.
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The quotient of the LRR by the above three submodules has the following multiplic
table:

Thus the quotient decomposes into a direct sum of four one-dimensional representations,
ated as vector spaces by

ve,e85B̃1e1U2 i ee8C̃2 i e8B̃C̃, e,e856. ~3.24!

On the latter vectors we have the following action:

B̃ve,e85eve,e8 , C̃ve,e85 i e8ve,e8 , D̃ve,e850. ~3.25!

Obviously, on all of them the CasimirsB̃2, D̃2 take the values 1,0, respectively. However, the
four representations are not isomorphic to each other.

To summarize, there are seven irreps ofs038 which are obtained from the LRR:

~i! one-dimensional trivial~all generators act by zero!,
~ii ! two-dimensional with both CasimirsB̃2, D̃2 having value 1, and
~iii ! four one-dimensional with Casimir values 1,0 forB̃2, D̃2, respectively.

Turning to the algebras03 we note that it inherits the representation structure of its subalg
s038. On the representations~3.20! and~3.22! the CasimirÃ has the value 1, while on the trivia
irrep generated byv5B̃221U the CasimirÃ has the value 0. However, on the one-dimensio
irreps generated by~3.24! the CasimirÃ has no fixed value. Thus, the list of the irreps ofs03
arising from the LRR is

~i! one-dimensional trivial,
~ii ! two-dimensional with all CasimirsÃ, B̃2, D̃2 having value 1, and
~iii ! four one-dimensional with Casimir valuesm,1,0 for Ã, B̃2, D̃2, respectively,mPC.

Finally, we note that we could have studied also the right regular representation ofs03. The
list of irreps would be the same as the one obtained above.

D. Weight representations

Here we considerweight representations. These are representations which are built from
action of the algebra on aweight vectorwith respect to one of the generators. We start with
weight vectorv0 such that

D̃ v05l v0 , ~3.26!

wherelPC is the weight. As we shall see, the caseslÞ0 andl50 are very different.
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We start withlÞ0. In that case fromD̃35D̃ follows thatl251, while fromB̃2D̃5D̃ follows
that B̃2v05v0 . Thus, acting with the elements ofs03 onv0 we obtain a two-dimensional repre
sentation:

v0 , B̃ v0 , C̃ v0 , B̃C̃ v0 . ~3.27!

This representation isirreducible. The action is given as follows:

Both CasimirsB̃2, D̃2 take the value 1.
Let nowl50. In this case acting with the elements ofs03 onv0 we obtain a five-dimensiona

representation:

v0 , B̃ v0 , C̃ v0 , B̃C̃ v0 , B̃2 v0 . ~3.28!

This representation isreducible. It has a one-dimensional subrepresentation spanned by the v
w5v v05(B̃221U)v0 . This is the trivial representation since all generators act by zero o
After we factor out this representation the factor representation splits into four one-dimen
representations spanned by the following vectors,we,e85ve,e8 v0 , whereve,e8 are from~3.24! and
the action of the generators is as given in~3.25!. Thus, these irreps are as those obtained from
LRR.

To summarize, there are six irreps ofs038 which are obtained as weight irreps of the genera
D̃:

~i! one-dimensional trivial,
~ii ! one two-dimensional with both CasimirsB̃2, D̃2 having value 1, and
~iii ! four one-dimensional with Casimir values 1,0 forB̃2, D̃2, respectively.

Turning to the algebras03 we note that it inherits the representation structure of its subalg
s038; however, the value of the CasimirÃ is not fixed except on the trivial irrep. Thus, the list
the irreps ofs03 which are obtained as weight irreps of the generatorD̃ is

~i! one-dimensional trivial,
~ii ! one two-dimensional with Casimir valuesm,1,1 for Ã, B̃2, D̃2, respectively,mPC, and
~iii ! four one-dimensional with Casimir valuesm,1,0 for Ã, B̃2, D̃2, respectively,mPC.

Finally, we note that it is not possible to construct weight representations w.r.t. generatorB̃ ~or
C̃).

E. Representations of s03 on S03

Here we shall study the representations ofs03 obtained by the use of its right regular actio
~RRA! on the dual bialgebraS03. The RRA is defined as follows:

pR~Z! f [ f (1)^Z, f (2)&, ZPs03, ZÞ1U , f PS03, ~3.29a!
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pR~1U! f [ f , f PS03, ~3.29b!

where we use Sweedler’s notation for the co-product:d( f )5 f (1)^ f (2) . @Note that we can not use
the left regular action since that would be given by the formulapL(Z) f 5^gU(Z), f (1)& f (2) , and
we do not have an antipode.# More explicitly, for the generators ofs03 we have

pR~Ã!S ã b̃

c̃ d̃
D 5S ã b̃

c̃ d̃
D , ~3.30a!

pR~B̃!S ã b̃

c̃ d̃
D 5S b̃ ã

d̃ c̃
D , ~3.30b!

pR~C̃!S ã b̃

c̃ d̃
D 5S 2 c̃ d̃

ã 2b̃
D , ~3.30c!

pR~D̃ !S ã b̃

c̃ d̃
D 5S d̃ 2 c̃

2b̃ ã
D , ~3.30d!

pR~Z! 1A51A ^Z,1A&51A «U~Z!50, Z5Ã,B̃,C̃,D̃. ~3.30e!

For the action on the elements~words! of S03 we use a corollary of~3.29!:

pR~Z! f g5pR~dU~Z!!~ f ^ g!, ~3.31!

where f ,g are arbitrary words from~3.6!. Further, we shall need the notion of the ‘‘length’’,( f )
of the word f . It is defined naturally as the number of the letters off ; in addition we set,(1A)
50. Now we obtain from~3.31!

pR~Ã! f 5,~ f ! f , ~3.32a!

pR~B̃! f •g5~pR~B̃! f !•g, ~3.32b!

pR~C̃! f •g5 f •~pR~C̃!g!, ~3.32c!

pR~D̃ ! f 50, if ,~ f !.1. ~3.32d!

From ~3.32b! and ~3.32c! it is obvious that the only nonzero action ofB̃, C̃ actually is

pR~B̃!S ã b̃

c̃ d̃
D • f 5S b̃ ã

d̃ c̃
D • f , ~3.33a!

pR~C̃! f •S ã b̃

c̃ d̃
D 5 f •S 2 c̃ d̃

ã 2b̃
D . ~3.33b!

From ~3.32a! it is obvious that we can classify the irreps by the valuemA of the CasimirÃ
which runs over the non-negative integers. For fixedmA the basis of the corresponding represe
tations is spanned by the wordsf such that,( f )5mA . Thus, we have the following.

~i! mA50: This is the one-dimensional trivial representation spanned by the unit elemeA
on which all generators ofs03 have zero action.
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~ii ! mA51: This representation is four-dimensional spanned by the four generatorsã, b̃, c̃, d̃
of S03. It is reducible and decomposes in two two-dimensional irreps with basis vectors:

v0
15ã1d̃5a, v1

15b̃1 c̃5b, ~3.34a!

and

v0
25b̃2 c̃5c, v1

25ã2d̃5d. ~3.34b!

The RRA of B̃, C̃, D̃ on these vectors is as~3.21! and ~3.23!:

pR~B̃!S v0
k

v1
kD 5S v1

k

v0
kD , pR~C̃!S v0

k

v1
kD 5S 2v1

k

v0
k D , pR~D̃ !S v0

k

v1
kD 5S v0

k

2v1
kD . ~3.35!

These two irreps are isomorphic by the map (v0
1 ,v1

1)→(v0
2 ,v1

2). On both of them the CasimirsB̃2,
D̃2 take the value 1.

~iii ! mA52: This representation is eight-dimensional spanned byã2, ãc̃, b̃ã, b̃c̃, c̃b̃, c̃d̃, d̃2,
d̃b̃. It is reducible and decomposes in eight one-dimensional irreps with basis vectors:

ve,e8
1

5~ ã1eb̃!~ ã1 i e8c̃!, ~3.36a!

ve,e8
2

5~ d̃1e c̃!~ d̃1 i e8b̃!, ~3.36b!

e,e856.

The RRA of B̃, C̃, D̃ on these vectors is as~3.25!:

pR~B̃!ve,e8
k

5eve,e8
k , pR~C̃!ve,e8

k
5 i e8ve,e8

k , pR~D̃ !ve,e8
k

50. ~3.37!

The irrep with vectorve,e8
1 is isomorphic to the irrep with vectorve,e8

2 . Thus, there are only fou

distinct irreps parametrized bye,e8. On all of them the CasimirsB̃2, D̃2 take the values 1,0
respectively.

~iv! mA5N.2: These representations are reducible and decompose in one-dimensiona
with basis vectors:

ve,e8
1

5~ ã1eb̃!• f 1•~ ã1 i e8c̃!, ~3.38a!

ve,e8
2

5~ d̃1e c̃!• f 2•~ d̃1 i e8b̃!, ~3.38b!

ve,e8
3

5~ ã1eb̃!• f 3•~ d̃1 i e8b̃!, ~3.38c!

ve,e8
4

5~ d̃1e c̃!• f 4•~ ã1 i e8c̃!, ~3.38d!

e,e856, ,~ f k!5N22.

The RRA of B̃, C̃, D̃ on these vectors is as exactly as~3.25!. The irrep with vectorve,e8
k is

isomorphic to the irrep with vectorve,e8
n . Thus, there are only four distinct irreps as in the ca

above. On all of them the CasimirsB̃2, D̃2 take the values 1,0, respectively.
To summarize the list of irreps ofs038 is the same as given in Sec. III C. The list of irreps

s03 here is smaller since the CasimirÃ can take only non-negative integer values. Thus, the lis
the irreps ofs03 using the dual bialgebraS03 as carrier space is
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~i! one-dimensional trivial,
~ii ! two-dimensional with all CasimirsÃ, B̃2, D̃2 having value 1, and
~iii ! four one-dimensional with Casimir valuesm,1,0 for Ã, B̃2, D̃2, respectively,mPN11.

The difference in the two lists is natural since here more structure~the co-product! is involved.
Speaking more loosely, the irreps here may be looked upon as ‘‘integrals’’ of the irreps ob
in Sec. III C.

IV. ALGEBRA S14

A. Bialgebra relations

In this section we consider the matrix bialgebraS14. We obtain it by applying the RTT
relations~3.1! for the caseR5RS1,4, whenq2Þ1 where

RS1,4[S 0 0 0 q

0 0 1 0

0 1 0 0

q 0 0 0

D . ~4.1!

This R-matrix is given in Ref. 8.
The relations which follow from~3.1! and ~4.1! whenq2Þ1 are

b22c250, a22d250,

ab5ba50, ac5ca50, ~4.2!

bd5db50, cd5dc50.

In terms of the generatorsã, b̃, c̃, d̃,

b̃c̃1 c̃b̃50, ãd̃1d̃ã50, ~4.3!

ãb̃5b̃ã50, ãc̃5 c̃ã50,

b̃d̃5d̃b̃50, c̃d̃5d̃c̃50.

From the above relations it is clear that the PBW basis ofS14 is

ãkd̃,, b̃kc̃,. ~4.4!

B. Dual algebra

Let us denote bys14 the unknown yet dual algebra ofS14, and byÃ, B̃, C̃, D̃ the four
generators ofs14. We define the pairinĝZ, f &, Z5Ã, B̃, C̃, D̃, f is from ~4.4!, as ~3.10!.
Explicitly, we obtain

^Ã, f &5«S ] f

]ãD5H kd,0 , f 5ãkd̃,,

0, f 5b̃kc̃,,
~4.5a!

^B̃, f &5«S ] f

]b̃
D 5H 0, f 5ãkd̃,,

dk1d,0 , f 5b̃kc̃,,
~4.5b!
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^C̃, f &5«S ] f

] c̃D5H 0, f 5ãkd̃,,

dk0d,1 , f 5b̃kc̃,,
~4.5c!

^D̃, f &5«S ] f

]d̃
D 5H d,1 , f 5ãkd̃,,

0, f 5b̃kc̃,.
~4.5d!

We shall need~as in Ref. 9! the auxilliary operatorE such that

^E, f &5H 1 for f 51A ,

0 otherwise.
~4.6!

Using the above we obtain the following.
Proposition 2:The generatorsÃ, B̃, C̃, D̃ introduced above obey the following relations:

C̃5D̃B̃52B̃D̃, ~4.7a!

@Ã,D̃#50, ~4.7b!

ÃB̃5B̃Ã5D̃2B̃5B̃35B̃, ~4.7c!

EZ5ZE50, Z5Ã,B̃,D̃; ~4.7d!

dU~Ã!5Ã^ 1U11U^ Ã, ~4.8a!

dU~B̃!5B̃^ E1E^ B̃, ~4.8b!

dU~D̃ !5D̃ ^ K11U^ D̃, K[~21!Ã, ~4.8c!

d~E!5E^ E; ~4.8d!

«U~Z!50, Z5Ã,B̃,D̃, ~4.9a!

«U~E!51. ~4.9b!

Ã, B̃2 and D̃2 are Casimir operators. The bialgebras14 is not a Hopf algebra.
Proof: Using the assumed duality the algebraic relations~4.7! are shown by calculating thei

pairings with the basis monomialsf from ~4.4!. In particular, we have~giving only the nonzero
pairings!

^D̃B̃, f &52^B̃D̃, f &5^C̃, f &51, for f 5 c̃, ~4.10a!

^ÃD̃, f &5^D̃Ã, f &5k11, for f 5ãkd̃, ~4.10b!

^ÃB̃, f &5^B̃Ã, f &5^D̃2B̃, f &5^B̃3, f &5^B̃, f &51, for f 5b̃. ~4.10c!

The facts thatÃ, B̃2 andD̃2 are Casimir operators follow easily from~4.7!. The proof of~4.8!
is done as the proof of~3.13!. We also use that

^Ãn, ãkd̃,&5knd,0 , ~4.11!

and hence
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^K, ãkd̃,&5~21!kd,0 . ~4.12!

There is no antipode for the bialgebras14. Indeed, suppose that there was such. Then, by appl
the Hopf algebra axiom~3.16! to the operatorE, we would get

E g~E!51U ,

which would lead to contradiction after multiplication from the left withZ5Ã, B̃, D̃ ~we would
get 05Z). From this follows also that the generatorB̃ does not have an antipode, since fro
~3.16! to the B̃ we would get

B̃ g~E!1E g~B̃!50.

Thus, the bialgebras14 is not a Hopf algebra. j

Corollary 2: The algebra generated by the generatorÃ is a sub-bialgebra ofs14. The algebra
s148 generated byB̃,D̃ is a subalgebra ofs14, but is not a sub-bialgebra@cf. ~4.8b! and ~4.8c!#.
It has the following PBW basis:

B̃, B̃2, D̃B̃, D̃B̃2, D̃,, ,50,1,2,. . . , ~4.13!

where we use the conventionD̃051U . j

C. Regular representation

We start with the study of the right regular representation of the subalgebras148. For this we
use the right multiplication table:

From the above table follows that there is a four-dimensional subspace spanne
B̃,B̃2,D̃B̃,D̃B̃2. It is reducible and decomposes into four one-dimensional representations sp
by

ve,e85B̃1eB̃22e8D̃B̃1ee8D̃B̃2. ~4.14!

The action ofB̃,D̃ on these vectors is

B̃ve,e85eve,e8 , D̃ve,e85e8ve,e8 . ~4.15!

The value of the CasimirsB̃2,D̃2 on these vectors is 1.
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The quotient of the RRR by the above submodules has the following multiplication tab

This representation is reducible. It contains an infinite set of nested submodulesVn.Vn11, n

50,1,. . . , whereVn is spanned byD̃n1,, ,50,1,. . . . Correspondingly there is an infinite set o
one-dimensional irreducible factor-modulesFn[Vn/Vn11, ~generated byD̃n) which are all iso-
morphic to the trivial representation since the generatorsB̃,D̃ act as zero on them. Thus there a
five irreps arising from the RRR ofs148:

~i! one-dimensional trivial and
~ii ! four one-dimensional with both CasimirsB̃2,D̃2 having value 1.

Turning to the algebras14 we note that it inherits the representation structure of its subalg
s148. On the representations~4.14! the Casimir Ã has the value 1. However, on the on
dimensional irrepsFn the CasimirÃ has no fixed value. Thus, the list of the irreps arising from
RRR of s14 is

~i! one-dimensional with Casimir valuesm,0,0 for Ã,B̃2,D̃2, respectively,mPC, and
~ii ! four one-dimensional with all CasimirsÃ,B̃2,D̃2 having value 1.

D. Weight representations

Here we study weight representations, first w.r.t.D̃, as in~3.26!. The resulting representatio
of s148 is three-dimensional:

v0 , B̃v0 ,B̃2v0 . ~4.16!

It is reducible and contains one one-dimensional and one two-dimensional irrep:
(i) One-dimensional:

w05~B̃221U!v0 , ~4.17!

B̃w050, D̃w05lw0 , ~4.18!

lPC.
( ii) Two-dimensional:

$v0 ,v15B̃v0%, ~4.19!

B̃S v0

v1
D5S v1

v0
D , D̃S v0

v1
D5lS v0

2v1
D , ~4.20!

with l561.
Turning to the algebras14 we note that it inherits the representation structure of its subalg

s148. On the one-dimensional irrep~4.17! the CasimirÃ has no fixed value sinceB̃ is trivial, and

@Ã,D̃#50. On the two-dimensional irrep~4.19! the CasimirÃ has the value 1 sinceÃB̃5B̃.
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Thus, there are the following irreps ofs14 which are obtained as weight irreps of the gene
tor D̃:

~i! one-dimensional with Casimir valuesm,0,l2 for Ã,B̃2,D̃2, respectively,m,lPC, and
~ii ! two two-dimensional with all CasimirsÃ,B̃2,D̃2 having the value 1.

Next we consider weight representations w.r.t.B̃:

B̃ v05n v0, ~4.21!

with nPC. FromB̃35B̃ follows thatn50,61. Acting with the generators we obtain the followin
representation vectors:v,5D̃,v0 . We have thatD̃v,5v,11 .

Further, we consider first the casen251. Then we apply the relationD̃2B̃5B̃ to v, and we
get

D̃2B̃v,5~21!,nv,125B̃v,5~21!,nv,

from which follows that we have to identifyv,12 with v, . Thus the representation is given a
follows:

$v0 ,v15D̃v0%, ~4.22!

B̃S v0

v1
D5nS v0

2v1
D , D̃S v0

v1
D5S v1

v0
D . ~4.23!

On this irrep both CasimirsB̃2,D̃2 have value 1 (n251).
Further, we consider the casen50. This representation is reducible. It contains an infinite

of nested submodulesVn.Vn11, n50,1,. . . , where Vn is spanned byD̃n1,v0 , ,50,1,. . . .
Correspondingly, there is an infinite set of one-dimensional irreducible factor-moduleFn

[Vn/Vn11 ~generated byD̃nv0), which are all isomorphic to the trivial representation since
generatorsB̃,D̃ act as zero on them.

Turning to the algebras14 we note that it inherits the representation structure of its subalg
s148, with the value of the CasimirÃ being not fixed ifB̃ acts trivially, and being 1, ifB̃ acts
nontrivially.

Thus, there are the following irreps ofs14 which are obtained as weight irreps of the gene
tor B̃:

~i! one-dimensional with Casimir valuesm,0,0 for Ã,B̃2,D̃2, respectively,mPC, and
~ii ! two two-dimensional with all CasimirsÃ,B̃2,D̃2 having the value 1.

E. Representations of s14 on S14

Here we shall study the representations ofs14 obtained by the use of its right regular actio
~RRA! on the dual bialgebraS14. The RRA is defined as in~3.29!. For the generators ofs14 we
have

pR~Ã!S ã b̃

c̃ d̃
D 5S ã b̃

c̃ d̃
D , ~4.24a!

pR~B̃!S ã b̃

c̃ d̃
D 5S b̃ ã

d̃ c̃
D , ~4.24b!
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pR~D̃ !S ã b̃

c̃ d̃
D 5S d̃ 2 c̃

2b̃ ã
D , ~4.24c!

pR~E!S ã b̃

c̃ d̃
D 5S 0 0

0 0D , ~4.24d!

pR~Z!1A51A^Z,1A&51A«U~Z!5H 0, Z5Ã,B̃,D̃,

1, Z5E.
~4.24e!

For the action on the basis ofS14 we use formula~3.31!. We obtain

pR~A!ãnd̃k5~n1k!ãnd̃k, pR~A!b̃nc̃k5~n1k!b̃nc̃k, ~4.25a!

pR~B!ãnd̃k5dk0dn1b̃1dn0dk1c̃, pR~B!b̃nc̃k5dk0dn1ã1dn0dk1d̃, ~4.25b!

pR~D !ãkd̃,5~21!,11,ãk11d̃,211~21!,kãk21d̃,11, ~4.25c!

pR~D !b̃kc̃,5~21!,,b̃k11c̃,211~21!,11kb̃k21c̃,11. ~4.25d!

We see that similarly to Sec. III E, the CasimirÃ acts as the length of the elements ofS14,
i.e., ~3.30! holds. Thus, also here we classify the irreps by the valuemA of the CasimirÃ which
runs over the non-negative integers. For fixedmA the basis of the corresponding representation
spanned by the elementsf such that,( f )5mA . The dimension of each such representation i

dim~mA!5H 2~mA11! for mA>1,

1 for mA50.
~4.26!

The classification goes as follows:

~i! mA50: This is the one-dimensional trivial representation spanned by 1A .
~ii ! mA51: This representation is four-dimensional spanned by the four generatorsã,b̃,c̃,d̃ of

S14. It decomposes in two two-dimensional, isomorphic to each other irrep with b
vectors as in~3.34!—this is due to the fact that the action~4.24b! and~4.24c! is the same
as the action~3.30!. The value of the CasimirsB̃2,D̃2 is 1.

~iii ! Each representation for fixedmA>2 is reducible and decomposes in two isomorphic r
resentations: one built on the basisãkd̃,, and the other built on the basisb̃kc̃,, each of
dimensionmA11. Thus, formA>2 we shall consider only the representations built on
basis ãkd̃,. These representations are also reducible and they all decompose in
dimensional irreps. Further, the action ofB̃ is zero, thus, we speak only about the action
D̃.

~iv! mA52n, n51,2,. . . : For fixed n the representation decomposes into 2n11 one-
dimensional irreps. On one of these, which is spanned by the element

w05(
k50

n SnkDã2n22kd̃2k, ~4.27!

the generatorD̃ acts by zero. The rest of the irreps are enumerated by the parameters6, t,
wheret52,4,. . . ,2n5mA , and are spanned by the vectors

ut
65u06tu1,

u05(
k50

n

akã
2n22kd̃2k, a051, ~4.28!
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u15(
k50

n21

bkã
2n22k21d̃2k11, b051,

on whichD̃ acts by

pR~D̃!ut
656tut

6 , ~4.29!
which follows from

pR~D̃!Su0

u1
D5St2u1

u0
D. ~4.30!

Note that the value of the CasimirD̃2 is equal tot2. The coefficientsak ,bk depend ont
and are fixed from the two recursive equations which follow from~4.30!:

t2bk52~n2k!ak22~k11!ak11 , k50, . . . ,n21, ~4.31a!

ak5~2k11!bk2~2n22k11!bk21, k50, . . . ,n, ~4.31b!
where we setb21[0, bn[0.

~v! mA52n11, n51,2,. . . : For fixed n the representation is (2n12)-dimensional and de
composes into 2n12 irreps which are enumerated by two parameters:6, t, where t
51,3,5,. . . ,2n115mA , and are spanned by the vectors

wt
65w06tw1 ,

w05 (
k50

n

ak8ã
2n22k11d̃2k, a0851, ~4.32!

w15 (
k50

n

bk8ã
2n22kd̃2k11, b0851,

on which D̃ acts by~4.29!. Note that the value of the CasimirD̃2 is equal tot2. The
coefficientsak8 ,bk8 are fixed from the two recursive equations which follow from~4.29!:

t2bk85~2n22k11!ak822~k11!ak118 , k50, . . . ,n, ~4.33!

ak85~2k11!bk822~n2k11!bk218 , k50, . . . ,n, ~4.34!

where we setan118 [0, b218 [0.
To summarize the list of irreps ofs14 onS14 is

~i! one-dimensional trivial;
~ii ! two two-dimensional with all CasimirsÃ,B̃2,D̃2 having the value 1;
~iii ! one-dimensional enumerated byn51,2,. . . , which for fixedn have Casimir values 2n,0,0

for Ã,B̃2,D̃2, respectively;
~iv! pairs of one-dimensional irreps enumerated byn51,2,. . . , t52,4,. . . ,2n, which have

Casimir values 2n,0,t2 for Ã,B̃2,D̃2, respectively; and
~v! pairs of one-dimensional irreps enumerated byn51,2,. . . , t51,3,. . . ,(2n11), which

have Casimir values 2n11,0,t2 for Ã,B̃2,D̃2, respectively.

Finally, we note in the irreps ofs14 onS14 all Casimirs can take only non-negative integ
values.
                                                                                                                



s. For

6256 J. Math. Phys., Vol. 43, No. 12, December 2002 Arnaudon et al.

                    
V. ALGEBRA S14o

A. Bialgebra relations

In this section we consider the matrix bialgebraS14o. We obtain it by applying the RTT
relations~3.1! for the caseR5RS1,4, cf. ~4.1!, whenq251. We shall consider the caseq51 ~the
caseq521 is equivalent, cf. below!. For q51 the relations following from~3.1! and ~4.1! are

a25d2, b25c250, ab5ba5ac5ca5bd5db5cd5dc50, ~5.1!

or, in terms of the generatorsã,b̃,c̃,d̃,

b̃ã5ãb̃, c̃ã52ãc̃, d̃ã52ãd̃, c̃b̃52b̃c̃, d̃b̃52b̃d̃, d̃c̃5 c̃d̃. ~5.2!

~The caseq521 is obtained from the above through the exchangeb̃↔ c̃.)
From the above relations it is clear that we can choose any ordering of the PBW basi

definiteness we choose for the PBW basis ofS14o

ãkb̃,c̃md̃n. ~5.3!

B. Dual algebra

Let us denote bys14o the unknown yet dual algebra ofS14o, and by Ã,B̃,C̃,D̃ the four
generators ofs14o. We define the pairinĝZ, f &, Z5Ã,B̃,C̃,D̃, f is from ~5.3!, as~3.10!. Explic-
itly, we obtain

^Ã, f &5«S ] f

]ãD5H k for f 5ãk,

0 otherwise,
~5.4a!

^B̃, f &5«S ] f

]b̃
D 5H 1 for f 5ãkb̃,

0 otherwise,
~5.4b!

^C̃, f &5«S ] f

] c̃D5H 1 for f 5ãkc̃,

0 otherwise,
~5.4c!

^D̃, f &5«S ] f

]d̃
D 5H 1 for f 5ãkd̃,

0 otherwise.
~5.4d!

Using the above we obtain the following proposition.
Proposition 3:The generatorsÃ,B̃,C̃,D̃ introduced above obey the following relations:

@Ã,Z#50, Z5B̃,C̃,D̃, ~5.5a!

@B̃,C̃#522D̃, @B̃,D̃#522C̃, @C̃,D̃#522B̃, ~5.5b!

dU~Ã!5Ã^ 1U11U^ Ã, ~5.6a!

dU~B̃!5B̃^ 1U11U^ B̃, ~5.6b!

dU~C̃!5C̃^ K11U^ C̃, K5~21!Ã, ~5.6c!

dU~D̃ !5D̃ ^ K11U^ D̃, ~5.6d!
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«U~Z!50, Z5Ã,B̃,C̃,D̃, ~5.7!

gU~Ã!52Ã,gU~B̃!52B̃, gU~C̃!52C̃K, gU~D̃ !52D̃K. ~5.8!

Proof: The proof of ~5.5! goes as the standard duality between the classical U~gl~2!! and
GL~2!, cf. e.g., Ref. 13. The proof of~5.6!–~5.8! is also standard, except the factorK which
appears while calculating:

^C̃,c̃ãk&5~21!k^C̃,ãkc̃&5~21!k,

which on the other hand is equal to~supposing an unknown yetK)

^dU~C̃!,c̃^ ãk&5^C̃^ K11U^ C̃,c̃^ ãk&5^K,ãk&.

Comparing the two rhs’s we conclude thatK5(21)Ã. The same follows from calculating

^D̃,d̃ãk&. j

Corollary 3: The auxiliary generatorK5(21)Ã is central andK215K. Its co-algebra rela-
tions are

dU~K !5K ^ K, «U~K !51, gU~K !5K. ~5.9!
j

Corollary 4: The algebra generated by the generatorÃ is a Hopf subalgebra ofs14o. The
algebras14o8 generated byB̃,C̃,D̃ is a subalgebra ofs14o, but is not a Hopf subalgebra becau
of the operatorK in the co-algebra structure. The algebrass14o,s14o8 are isomorphic to
U~gl~2!!,U~sl~2!!, respectively. The latter is seen from the following:

X6[ 1
2~D̃7C̃!, ~5.10a!

@B̃,X6#562X6, @X1,X2#5B̃. ~5.10b!

Indeed the last line presents the standard sl~2! commutation relations. However, the generato
X6 inherit theK dependence in the coalgebra operations:

dU~X6!5X6
^ K11U^ X6, ~5.11a!

«U~X6!50, ~5.11b!

gU~X6!52X6K. ~5.11c!

The algebras14o is graded:

deg X6561, deg Ã5deg B̃50, ~⇒deg K50!. ~5.12!
j

Based on the above corollary we are able to make the following important observation
algebras14o may be identified with a special case of the Hopf algebraUp,q which was found in
Ref. 13 as the dual of GLp,q(2). To make direct contact with Ref. 13 we need to replace th
(p1/2,q1/2)→(p,q), then setq5p21, and at the end setp521. @The necessity to set values i
such order is clear from, e.g., the formula for the co-product in~5.21! of Ref. 13#. The generators
from Ref. 13K,pK,H,X6 correspond toÃ,K,B̃,X6 in our notation.
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More than this, it turns out that the corresponding algebras in duality, namely,S14o and
GLp,q(2), may beidentified settingq,p as above. To make this evident we make the followi
change of generators:

â5ã1b̃, b̂5d̃2 c̃, ĉ5 c̃1d̃, d̂5ã2b̃. ~5.13!

For these generators the commutation relations are

b̂â52âb̂, ĉâ52âĉ, d̂â5âd̂, ĉb̂5b̂ĉ, b̂d̂52d̂b̂, ĉd̂52d̂ĉ, ~5.14!

i.e., exactly those of GLp,q(2) ~cf. Ref. 1! for p5q521. Furthermore, the co-product and co-un
are as for GLp,q(2) or GL(2), i.e., as in~2.1!. For the antipode we have to suppose that
determinantad2p21bc from Ref. 1, which here becomes~cf. p521)

v5âd̂1b̂ĉ, ~5.15!

is invertible, or thatvÞ0, and we extend the algebra by an elementv21 so that

vv215v21v51A , dU~v61!5v61
^ v61, «U~v61!51, gU~v61!5v71. ~5.16!

Then the antipode is given by

gUS â b̂

ĉ d̂
D 5v21S d̂ b̂

ĉ â
D , ~5.17!

or in a more compact notation

gU~M !5M 21. ~5.18!

Indeed, we have

S â b̂

ĉ d̂
D S d̂ b̂

ĉ â
D 5S d̂ b̂

ĉ â
D S â b̂

ĉ d̂
D 5vS 1 0

0 1D . ~5.19!

This relation betweens14o, S14o and Up,q , GLp,q(2) was not anticipated since the corr
spondingR-matricesRS1,4 andRS2,1 are listed in Ref. 8 as different and, furthermore, nonequi
lent. It turns out that this is indeed the case, except in the case we have stumbled upon. T
this we first recall

RS2,15S 1 0 0 0

0 p 12pq 0

0 0 q 0

0 0 0 1

D , ~5.20!

which for q5p21521 becomes

R0[~RS2,1!q5p215215S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D . ~5.21!

Further, we need
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R6[~RS1,4!q5615S 0 0 0 61

0 0 1 0

0 1 0 0

61 0 0 0

D . ~5.22!

Now we can show thatR6 can be transformed by ‘‘gauge transformations’’ toR0 . Namely,
we have

R05~U6 ^ U6!R6~U6 ^ U6!21, ~5.23a!

U15
1

&
S 1 1

1 21D , U25
1

&
S 1 i

i 1D . ~5.23b!

In accord with this we have

T̂[S â b̂

ĉ d̂
D , T[S a b

c dD , T̂5U1T~U1!21 ~5.24!

⇒
â5 1

2~a1b1c1d!, b̂5 1
2~a2b1c2d!,

ĉ5 1
2~a1b2c2d!, d̂5 1

2~a2b2c1d!,
~5.25!

which is equivalent to substituting~2.2! in ~5.13!.
The use ofU2 would lead to different relations between hatted and unhatted genera

which, however, would not affect the algebra relations. Indeed,

T̂8[S â8 b̂8

ĉ8 d̂8
D , T8[S a8 b8

c8 d8
D , T̂85U2T8~U2!21 ~5.26!

⇒
â85 1

2~a82 ib81 ic81d8!, b̂85 1
2~2 ia81b81c81 id8!,

ĉ85 1
2~ ia81b81c82 id8!, d̂85 1

2~a81 ib82 ic81d8!.
~5.27!

But this becomes equivalent to~5.25! with the changes

~ â8,i b̂8,2 i ĉ8,d̂8!°~ â,b̂,ĉ,d̂!, ~a8,2 ib8,ic8,d8!°~a,b,c,d!, ~5.28!

while the ~inverse! changes~5.28! do not affect~5.14! and ~5.1!.

C. Representations of s14o on S14o

The regular representation ofs14o (s14o8) on itself and its weight representations are t
same as those ofU(gl(2)) (U(sl(2))) due to~5.10!. The situation is different for the represen
tations ofs14o on S14o since these involve the coalgebra structure. However, the deviation
the trivial coalgebra structure is only via the sign operatorK, and as we shall see in som
representations there remains no trace of this.

In treating the representations ofs14o on S14o we shall use the known construction for th
induced representations ofUp,q on GLp,q(2) from Ref. 20 and the relation betweens14o,S14o
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andUp,q , GLp,q(2) that we established in the previous subsection. For the comparison with
20 we should note the parametrization used there:p5ts1/2, q5ts21/2. Thus, usingq5p21, p
521 we need to substitutet→1, As°21. Further, one should substitute the operatorh from

Ref. 20 with t B̃/2, and expand in order to get the action ofB̃. Finally, one should substitute th

operatorr from Ref. 20 withAsÃ5(21)Ã5K. In fact, it is easier to derive the necessary formu
directly, which we shall proceed to do in a compact way.

Here we shall employ both the left action and the right action. We start by calculating th
action using

pL~Z! f [^gU~Z!, f (1)& f (2) , ZPs14, ZÞ1U , f PS14, ~5.29a!

pL~1U! f [ f , f PS14, ~5.29b!

using for the PBW basis

â j d̂kb̂,ĉn. ~5.30!

For the left action on the elements ofS14o we use a corollary of~5.29!:

pL~Z! f g5pL~dU8~Z!!~ f ^ g!, ~5.31!

where is used theopposite comultiplicationdU8[s+dU , wheres is the permutation inU^ U. We
find

pL~A!S âk b̂k

ĉk d̂kD 52kS âk b̂k

ĉk d̂kD , ~5.32a!

pL~K !S âk b̂k

ĉk d̂kD 5~21!kS âk b̂k

ĉk d̂kD , ~5.32b!

pL~B!S âk b̂k

ĉk d̂kD 5kS 2âk
2b̂k

ĉk d̂k D , ~5.32c!

pL~X1!S âk b̂k

ĉk d̂kD 5kS ~21!k21âk21ĉ d̂b̂k21

0 0
D , ~5.32d!

pL~X2!S âk b̂k

ĉk d̂kD 5kS 0 0

âĉk21
~21!k21d̂k21b̂

D , ~5.32e!

pL~K !1A51, pL~Z!1A50, Z5Ã,B̃,C̃,D̃. ~5.32f!

~We give also the action ofK though it follows from that ofÃ.)
Next we calculate the right action as in~3.29! to find

pR~A!S âk b̂k

ĉk d̂kD 5kS âk b̂k

ĉk d̂kD , ~5.33a!

pR~K !S âk b̂k

ĉk d̂kD 5~21!kS âk b̂k

ĉk d̂kD , ~5.33b!
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pR~B!S âk b̂k

ĉk d̂kD 5kS âk
2b̂k

ĉk
2d̂kD , ~5.33c!

pR~X1!S âk b̂k

ĉk d̂kD 5kS 0 ~21!k21âb̂k21

0 d̂k21ĉ
D , ~5.33d!

pR~X2!S âk b̂k

ĉk d̂kD 5kS âk21b̂ 0

~21!k21d̂ĉk21 0
D , ~5.33e!

pR~K !1A51, pR~Z!1A50, Z5Ã,B̃,C̃,D̃. ~5.33f!

By ~5.29! and ~5.33! we have defined left and right actions ofs14o on S14o. As in the
classical case the left and right actions commute, and we shall use the right action to redu
left regular representation. Following Ref. 21 we would like the right action to mimic s
properties of a lowest weight module, i.e., annihilation by the lowering~negative grade! generator
X2 and scalar action by the~exponent of the! Cartan~zero grade! generatorsÃ ~or K) andB̃. Such
action is the reason we call these representations induced. We start with functions whi
formal power series in the PBW basis:

f 5 (
j ,k,,,mPZ1

m j ,k,,,mâj d̂kb̂,ĉm. ~5.34!

The right-action conditions we mentioned are

pR~X2! f 50, ~5.35a!

pR~Ã! f 5r f , pR~B̃! f 52n f . ~5.35b!

From ~5.35a! follows that our functions would not depend onâ and ĉ, except through the
determinantv, sincepR(X2)v50. We also have

pR~Ã!vn52nvn, pR~K !vn5vn, pR~B!vn50, pR~X6!vn50. ~5.36!

Thus, we continue with

f 5 (
k,,,nPZ1

nPZ

mk,,d̂kb̂,vn, ~5.37!

on which conditions~5.35b! lead tok1,12n5rPZ, k1,5nPZ1 , r2nP2Z, and the sum-
mation becomes single:

f 5 (
,PZ1

m,u, , u,[b̂,d̂n2,v (r2n)/2, ~5.38!

~where we changed the ordering since this would give simpler formulas for the action!. Now if
neither b̂ nor d̂ has an inverse the representations will be finite-dimensional, in contrast t
classical case. However, these finite-dimensional representations we shall obtain also if w
pose that eitherb̂ or d̂ has an inverse~see below!, and at the same time we shall have infinit
dimensional representations. Thus, further, we shall suppose thatd̂ has an inverse. This means th
we can allowk in ~5.38! to take any integer values, and then the same is true forn.
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Now we shall work out the representation~left! action for the basisu, for which we need first
the left action onv:

pL~A!vn522nvn, pL~K !vn5vn, pL~B!vn50, pL~X6!vn50. ~5.39!

We also remark that the action ond̂k, vn for negativek, n is given again by~5.32! and ~5.39!.
@This can be checked, e.g., by calculatingpL(Z)d̂2kd̂k5pL(Z)1A in two different ways:~5.31!
for the lhs, and~5.32! for the rhs.# Then the rules are

pn,r~Ã!u,52ru, , ~5.40a!

pn,r~B̃!u,5~n22, !u, , ~5.40b!

pn,r~X1!u,5~21!,21,u,21 , ~5.40c!

pn,r~X2!u,5~21!,11~,2n!u,11 , ~5.40d!

wherepn,r denotespL with the parameter dependence made explicit.
Thus, we have obtained infinite-dimensional representations ofs14o parametrized by two

integersn, r. We shall denote byCn,r the corresponding representation space. Note that t
representations are highest weight representations since we havepL(X1)u050. If the parametern
is non-negative,nPZ1 , then the corresponding representation is reducible, due to the fac
pL(X2)un50. Thus, the vectorsu0 , . . . ,un form an invariant subspace, of dimensionn11,
which shall denote byEn,r , nPZ1 . Thus, ifnPZ1 we have two irreducible representations wi
representation spaces isomorphic toEn,r and toCn,r /En,r ~the latter is infinite-dimensional!. If
n¹Z1 the representationCn,r is irreducible.

From the above we are prompted to use the variableh[b̂d̂21. This is also related to the
following Gauss decomposition ofS14o:

S â b̂

ĉ d̂
D 5S 1 b̂d̂21

0 1
D S vd̂21 0

0 d̂
D S 1 0

d̂21ĉ 1D , ~5.41!

i.e., from here the natural variables areh, d̂, v. Thus, we use also the functions

w5 (
,PZ1

a,v, , v,[h,d̂nv (r2n)/2. ~5.42!

The action of the generators on the variableh is

S Ã K

B̃ X6D h,5S 0 h,

22,h, 6,h,71D , ~5.43!

and the action on the basis is as foru, except forX6:

pn,r~X1!v,5,v,21 , ~5.44a!

pn,r~X2!v,5~n2, !v,11 . ~5.44b!

Thus, in this basis there is no trace of the nontriviality of the co-product ofX6. More than this
we can reduce the representations directly to the classical U~gl~2!! if we introduce the restricted
functionsŵ(h) by the operators
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Ân,r :Cn,r→Ĉn,r , ŵ~h!5~Ân,rw!~h![w~h,1A ,1A!,
~5.45!

Ân,r
21:Ĉn,r→Cn,r , w~h,d̂,v!5~Ân,r

21ŵ !~h,d̂,v![ŵ~h!d̂nv (r2n)/2.

We denote the representation space ofŵ(h) by Ĉn,r and the representation acting inĈn,r by p̂n,r .
The properties ofĈn,r follow from the intertwining requirements:21

p̂n,r+Ân,r5Ân,r+pn,r , pn,r+Ân,r
215Ân,r

21+p̂n,r . ~5.46!

In particular, the representation action ofp̂n,r on h, is given by the same formulas as the acti
of pn,r on v, .

At this moment, we should note that since we have functions of one variableh we can treat
it as complex variablez. In these terms we recover from the action ofp̂n,r the classical vector-
field representation of gl(2)~with ]z[d/dz):

Ãŵ52rŵ, B̃ŵ5~n22z]z!ŵ, X1ŵ5]zŵ, X2ŵ5~nz2z2]z!ŵ. ~5.47!

Of course, the importance of the nontrivial co-product forX6 will be felt in the construction
of the tensor products of the representations.

VI. CONCLUSIONS AND OUTLOOK

In this article we have found the exotic matrix bialgebras which correspond to the
nontriangular nonsingular 434 R-matrices of Ref. 8, namely,RS0,3 and RS1,4, which are not
deformations of the trivialR-matrix. We study three bialgebras denoted byS03, S14, S14o, the
latter two cases corresponding toRS1,4 for deformation parameterq2Þ1 andq251, respectively.
We have found the corresponding dual bialgebrass03, s14, s14o, and studied their representatio
theory.

For the bialgebrass03 ands14 we have studied the regular representation~the algebra acting
on itself!, the weight representations, and the representations in which the algebra acts on t
matrix bialgebra. The representation theory is degenerate: the irreps are finite-dimensio
maximal dimension 4 and 2 fors03 ands14, respectively. For future use we shall say that
bialgebrass03, S03 ands14, S14 areexotic ~adding to the list of exotic bialgebras termed so
Ref. 9!.

The algebrass14o, S14o turned out to be Hopf algebras and to be special cases of
two-parameter deformationsUp,q , GLp,q(2), namely, they would be obtained from the latter
setting q5p21 and thenp521. This was not anticipated since the correspondingR-matrices
were different and seemingly nonequivalent cases of the classification of Ref. 8. Thus, this b
a case study important methodologically, and so we have made the exposition according
way we proceeded. In fact, the algebras14o is equivalent even to U~gl~2!!, and the only nontrivi-
ality is in the Hopf algebra structure. Thus, the regular and weight representations are as th
U~gl~2!!. The induced representations ofs14o on S14o could also be extracted from the equiv
lence with the two-parameterp, q deformations, but their consideration is also important me
odologically.

To conclude, we should stress that with this article we finalize the explicit classification o
matrix bialgebras generated by four elements. There are altogethernine such bialgebras, four o
which are quantum groups and are deformations of the classical algebras of functions on~2!
and GL~1u1! ~two in each case!, and the other five bialgebras, which we call exotic, are not s
deformations.

Further, we would like to study the spectral decomposition and Baxterization of these e
algebras and associated noncommutative geometries, cf. Ref. 22.

Note added in proof:Note that the four-dimensional representation of Sec. III D, form
~3.27!, actually reduces to a two-dimensional one, sinceC̃v052lB̃v0.
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We consider the Laplacian in a stripR3(0,d) with the boundary condition which is
Dirichlet except at the segment of a length 2a of one of the boundaries where it is
switched to Neumann. This operator is known to have a non-empty and simple
discrete spectrum for anya.0. There is a sequence 0,a1,a2,¯ of critical
values at which new eigenvalues emerge from the continuum when the Neumann
window expands. We find the asymptotic behavior of these eigenvalues around the
thresholds showing that the gap is in the leading order proportional to (a2an)2

with an explicit coefficient expressed in terms of the corresponding threshold-
energy resonance eigenfunction. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1519941#

I. INTRODUCTION

Spectra of Dirichlet Laplacians in infinitely stretched regions such as planar strips or l
with local perturbations were studied recently in numerous papers. The motivation for this
came from applications in condensed matter physics, and also from the fact that it was its
interesting mathematical problem.

One of the simplest systems of this type is a free quantum particle confined to a p
straight parallel strips with Dirichlet boundary conditions coupled laterally by a window in
common boundary. If they are of the same widthd, one can employ the mirror symmetry an
concentrate on the nontrivial part which is equivalent to the analysis of the Laplacian in a
strip with the Dirichlet boundary condition switched to Neumann at a finite segment of one o
boundaries.

Such a system has at least one bound state for any ‘‘window’’ length 2a.0 as it was found
in Ref. 1 and independently in Ref. 2. The discrete spectrum is simple, the eigenvaluesln ,n
50,1,. . . , arecontinuously decreasing as functions ofa and their number is linear ina up to an
error term as the window is widening.1 These properties follow from a simple bracketing argum
which allows to squeeze the eigenvalues between those of a box covering the ‘‘coupled’’ pa
Dirichlet and Neumann conditions atx156a. It shows, in particular, that there are critical valu
an , n50,1,. . . , at which new eigenvalues emerge from the continuum. By Refs. 1 and 2
havea050 while generally we know only that

anPS nd

)
,
~n11!d

)
D , n51,2, ... . ~1.1!

a!Electronic mail: borisovdi@ic.bash.edu.ru
b!Electronic mail: exner@ujf.cas.cz
c!Electronic mail: gadylshin@bspu.ru
62650022-2488/2002/43(12)/6265/14/$19.00 © 2002 American Institute of Physics
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This tells us nothing about the behavior of the eigenvalues around the critical points.
The weak coupling asymptotics was studied for the ground state. A variational method o

3 yields for smalla a two-sided estimate ofl0(a) between two multiples ofa4. This is indeed the
leading term: using the matching method of Refs. 4 and 5 Popov derived in Ref. 6 the exp

l0~a!5S p

d D 2

2S p3

2d3D 2

a41O~a5!. ~1.2!

While his argument is not fully rigorous because an estimate of the error term is missin
formula itself raises no doubts, in particular, because of its excellent agreement with the num
result of Ref. 1. The result is subtle: recall that~1.2! differs substantially from the asymptotic
corresponding to a local change inmixed boundary conditions, where the Birman–Schwing
technique is applicable and the leading term is a multiple of the window widthsquared.7

In the present paper we address the question about the behavior of the higher eigen
ln , n51,2,. . . , in thevicinity of the critical pointsan . It is a natural counterpart of the couplin
constant threshold problem of Ref. 8. Our main result is that the gap between an eigenvaln

and the continuum is proportional to (a2an)2 with a coefficient given explicitly in terms of the
corresponding threshold-energy resonance eigenfunction. This fits well into the analogy be
our problem and spectral properties of one-dimensional Schro¨dinger operators. The latter extend
to higher dimensions, but the argument becomes more complicated and we leave that to
paper.

To finish the introduction, let us say something about the method. We deal with a pertur
problem with respect to the parameter« defined as the excess of the window halfwidtha over the
critical valuean . Since the latter is positive forn>1, the problem in question is a regular on
This fact makes it possible to map the problem into an equivalent one with a small and
perturbation of the equation and the boundary condition fixed, i.e., independent of«. This is what
we are going to do. We employ the technique introduced in Ref. 9 for calculations of the e
functions for one-dimensional perturbed Schro¨dinger operator; its advantage is that we arrive
the sought asymptotic formula in a straightforward and reasonably simple way.

II. THE MAIN RESULT

To formulate the result we need first to introduce some notation and recall a few simple
about the problem in question. We employ Cartesian coordinates,x5(x1 ,x2), in which S
5$x:0,x2,d%. The upper strip boundary isG5$x:x25d%, while the lower decomposes into th
union of ga5$x:ux1u,a,x250% and Ga5$x:ux1u.a,x250%. The operatorHa we are going to
consider is the Laplacian,Hac52Dc, in L2(S) with the Dirichlet boundary condition onGaøG
and Neumann onga; it is a well-defined self-adjoint operator, cf. Ref. 10, Chap. 7.11

Proposition 2.1: The discrete part ofs(Ha) is simple and the eigenvaluesln(a):(p/2d)2

,l0(a),l1(a),¯,(p/d)2 are continuous and monotonously decreasing with respect to.
There are numbers05a0,a1,a2,¯ satisfying (1.1) such that (a) for aP(an21 ,an# the op-
erator Ha has exactly n eigenvalues, (b) for a.an we denote«ªa2an , then the eigenfunction
cn

(«) associated withln(a) has a definite parity with respect to x1 , namely

cn
(«)~2x1 ,x2!5~21!ncn

(«)~x1 ,x2!,

(c) for a5an the equation2Dc5(p/d)2c with given boundary conditions has a solutioncn
(0)

PH loc
1 (S), unique up to a multiplicative constant, which behaves like

cn
(0)~x!5c1~61!n sinS px2

d D1O~e2dux1u! ~2.1!

as x1→6`, wheredªp)/d (in what follows we set c1ªA2/p for the sake of definiteness).
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Proof: Most part was demonstrated in Ref. 1, it remains to check the claim~c!. Any solution
can be expanded in terms of the transverse eigenfunction bases

x j~x2!ªA2

d
sinS p jx2

d D ,

f j~x2!ªA2

d
sinS p~2 j 21!~d2x2!

d D
with j 51,2, . . . . Since the problem has a mirror symmetry with respect tox150, it is sufficient
to discuss the halfstrip part,x1>0, with the appropriate boundary condition atx150. Let us
consider the even case. A solution of energye(p/d)2 expresses as

c~x!5(
j 51

`

cje
qj (a2x1)x j~x2!,

~2.2!

c~x!5(
j 51

`

bj

cosh~pjx1!

cosh~pja!
f j~x2!

for ux1u>a andux1u<a, respectively, whereqjª(p/d)Aj 22e andpjª(p/d)A( j 2 1
2)

22e. The
coefficients in the above relation are determined by the requirement of smoothness ofc at the
segmentx15a; we have

cj5 (
k51

`

bk~x j ,fk!,

~2.3!

~x j ,fk!5
~21! j 2k

p

2 j

j 22~k2 1
2!

2
,

andb5$bj% is given as solution of an infinite system of equations which can be written conc
in the operator form

Cb50 ~2.4!

with

Cjkª@qj1pk tanh~pka!#~x j ,fk!.

The odd case is similar, just cosh and tanh are replaced by sinh and coth, respectively. The
values ofe are those for which a solution to the system~2.4! exists.

We know from Ref. 1 that the sequence corresponding to an isolated eigenvalue ofHa , i.e.,
eP(1/4 ,1), belongs to,2( j 2r) for any r>1, and thatC5C(a,e) is Hilbert–Schmidt on,2( j 2r)
with r large enough independently ofa ande. Choosing such anr it is straightforward to check
that (a,e)°C(a,e) is jointly continuous in the corresponding Hilbert–Schmidt norm. Takea
.an and en(a)ª(d/p)2ln(a), clearly en(a)→1 asa→an1. The said continuity implies tha
the equation~2.4! has for C(an,1) a unique solution in,2( j 2r), and by ~2.3! it determines a
sequencebP,2( j 2r). Together they yield the sought threshold resonance solution fora5an with
the asymptotics~2.1! following from the first one of the relations~2.2!. j

Remark 2.2:The functioncn
(0) described in Proposition 2.1 has the following smoothn

properties. It is infinitely differentiable everywhere inS̄ except the endpoints of the segmentgan.
At these points the asymptotic formula
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cn
(0)~x!5~61!nanr 6

1/2sin
u6

2
1O~r 6!, r 6→0, ~2.5!

is valid, where (r 6 ,u6) are polar coordinates associated with the variables (6x12an ,x2) andan

is a some number~a unique one provided we fixc1). These asymptotics formulas can be verifi
in two easy steps. First, one should extend the functioncn

(0) to the mirrored strip$x:2d,x2

,0% in the even way. This leads to solution of the equation2Dcn
(0)5(p/d)2cn

(0) in the double
strip $x:ux2u,d%\$x:ux1u.a,x250% with the Dirichlet boundary condition at the outer bounda
and at the cut$x:ux1u.a,x2560%, and it is sufficient to employ the results established in Ref.
for such elliptic problems.

Now we can state our main result:
Theorem 2.3:The eigenvalueln(a) of Ha with n>1 has the following asymptotic behavio,

ln~a!5S p

d D 2

2mn
2~a2an!21O~~a2an!3! ~2.6!

as a→an1, where the coefficient is given by

mnª
1

an
E

S
U]cn

(0)

]x1
U2

dx1 dx2 , ~2.7!

or alternatively by

mnª
pan

2

4
, ~2.8!

wherean is the number appearing in (2.5). The associated eigenfunctioncn
(«) can be normalized

in such a way that it satisfies the relation

cn
(«)5cn

(0)1O~«!, ~2.9!

in H1((2R,R)3(0,d)) for any R.0 behaving asymptotically as

cn
(«)~x!5c1~61!ne2«mnux1u sinS px2

d D1O~e2dux1u! ~2.10!

when x1→6`, with d defined in Proposition 2.1.
Remark 2.4:The functioncn

(«) belongs, of course, toL2(S), but it does not have a limit in this
space as«→01 since the normicn

(«)iL2(S) explodes in the limit. Furthermore,an is nonzero for
any n>1. This fact can be easily deduced from the assertion~2.7!. Indeed, the assumptionan

50 implies immediately thatcn
(0) is independent onx1 . However, this contradicts to the bounda

value problems thatcn
(0) satisfies to. The coefficientan being nonzero, the formula~2.8! shows

that the asymptotics of eachln is nontrivial in the leading order.

III. PROOF OF THEOREM 2.2

The rest of the paper is devoted to the proof of Theorem 2.3. With the scaling behavior
spectrum in mind we can putd5p without loss of generality in the following. Furthermore, th
mirror symmetry with respect tox150 makes it possible to consider the half-strip problem w
the Dirichlet or Neumann condition at the cut.

We need to introduce some notations. LetR1
2 5$x:x1.0% be the open right half-plane. A

indicated above, we will work in the half-stripPªSùR1
2 , similarly we introduceg«
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ªgan1«ùR1
2 , G1ªGùR1

2 , andG«ªGan1«ùR1
2 . Moreover, we need a symbol for the cut at t

symmetry axis,gª$x:x150, 0,x2,p%. Since we consider a fixed eigenvalue, we shall o
the indexn when there is no danger of misunderstanding.

Let us outline the strategy of the proof. In the first step we are going to analyze the pro

~D11!u5m2u1 f , xPP,

l xu50, xPg,
~3.1!

u50, xPG0øG1 ,

]u

]x2
50, xPg0 ,

with a fixed functionf at the right-hand side of the equation. The trace operatorl x in the boundary
conditions is defined as (l xu)(x1 ,x2)5u(0,x2) if n is odd and (l xu)(x1 ,x2)5 (]u/]x1) (0,x2) if
n is even. The parameterm is assumed to be complex and to lie in a~sufficiently small! neigh-
borhood of zero~we indicate this neighborhood byD!. We also suppose thatf is an arbitrary
function fromL2(P) with a compact support. We will construct a solution of the problem~3.1!,
meromorphic with respect tom, with the following asymptotic behavior far from the cut of th
half-strip:

u~x,m!5c~m!e2mx1 sinx21O~e2A31m2x1!, x1→1`, ~3.2!

wherec(m) is a constant determined by the functionf . In the second step we will transform th
original boundary value problem for the eigenfunctionc («) to another one with an equation th
coefficients of which depend smoothly on« and the boundary condition is independent of«. What
is important is that the reformulated problem will be of the form~3.1! with a particular right-hand
side f 5 f « for which we deduce a sufficient explicit representation. Combining the latter
properties of the solution to~3.1! will finally obtain the announced results concerningl« andc («).
Since the proof of Theorem 2.3 divides in this way naturally into two steps, we shall discuss
separately in the following two sections.

A. Solution of the problem „3.1…

As we have indicated our aim is to construct a solution of~3.1! which is meromorphic in
mPD. Let us say more explicitly what we mean by that. It is easy to see that there is a u
solution formPDù$m:Rem.0% which decays asx1→`. We shall check that as a function ofm
it is analytic inDù$m:Rem.0% and extend it to the remaining part ofD. The extension will be
for Rem,0 again a solution to~3.1! with the asymptotics~3.2!, and in addition, it will be
meromorphic inmPD with just one simple pole atm50. Of course, the extension will b
bounded at large distances if Rem50 and will be increasing for Rem,0. Speaking about solu
tions everywhere in the following we mean always such analytic continuations.

Recall that a functionF with values in some Banach spaceX is said to be holomorphic inD
if it is differentiable ~in the sense of the norm ofX) at each pointmPD. If this function is
holomorphic inD everywhere except a discrete set of points which are poles ofF, i.e., Laurent’s
series ofF at such a point has at most a finite number of negative terms, thenF is said to be
meromorphic.

We introduce some notations. LetL(X,Y) be the Banach space of bounded linear opera
from a Banach spaceX into a Banach spaceY. We will use the symbolH(X) for the class of
functions with values inX which are holomorphic with respect tomPD, andM(X) for the class
of meromorphic onmPD functions with values inX. For the sake of brevity we also introduc
the notationsH(X,Y)ªH(L(X,Y)), M(X,Y)ªM(L(X,Y)).
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We will treat the problem~3.1! by the technique introduced in Ref. 13, Sec. XVI.4. LetR be
a fixed number larger thanan , PRªPù$x:x1,R%, andg a function fromL2(PR) which can be
also regarded as an element ofL2(P) if we set it equal to zero forx1.R. The problem

~D11!v5m2v1g, xPP, v50, xP]P, ~3.3!

can be easily solved by separation of variables, the solution being

v~x,m!52 (
k51

`
1

pMk
E

P
Gk~x,t,m!g~ t !d2t,

~3.4!
Gk~x,t,m!5~e2Mkux12t1u2e2Mk(x11t1)!sinkt2 sinkx2 ,

whereM15m and Mk5Ak2211m2 for k>2. For the sake of brevity we use the notationd2t
5dt1 dt2 . Obviously, the formula~3.4! is valid for all mPD, not only for Rem.0. The function
v can be represented asv5T1(m)g, whereT1(m):L2(PR)→H2(P R̃) is a bounded linear opera
tor for any positive R̃. It is straightforward to check thatvPH(H2(P R̃)) and T1(•)
PH(L2(PR),H2(P R̃)) in D for any positiveR̃.

In the next step we consider another boundary value problem for an unknown functiow,
namely

Dw5Dv, xPPR ,

w50, xP~G1øG0!ù]PR ,

w5v, x15R, ~3.5!

]w

]x2
50, xPg0 ,

l xw50, xPg.

SincevPH2(PR) we haveDvPL2(PR), and thus the problem~3.5! has a unique solutionw
PH1(PR), see, e.g., Ref. 14, Sec. 2.5, Rem. 5.1. Using the standard theorem on smooth
solutions of elliptic boundary value problems we can conclude thatwPH2(PR,s) holds for each
s.0, wherePR,sªPR\Ds with Dsª$x:x2.0,(x12an)21x2

2,s2%. Hence we can define th
linear operatorT2 by w5:T2v which is a linear bounded map fromH2(PR) into H1(PR), and
from H2(PR) into H2(PR,s) for each fixeds.

Let xR(x1) be an infinitely differentiable mollifier function equal to one forx1<R21 and
vanishing forx1>R. We take the two functions considered above and constructu as a smooth
interpolation between them,

u~x,m!ªxR~x1!w~x,m!1~12xR~x1!!v~x,m!. ~3.6!

Sincew(x,m)5T2T1(m)g, we havewPH(H1(PR))ùH(H2(PR,s)) as a function ofm for each
s.0. Thus we can introduce the operatorT3(m) which maps a functiongPL2(PR) to the
function u determined by~3.6!, wherev andw are the solutions of~3.3! and ~3.5!, respectively,
for this g. It easy to see thatT3(•)PH(L2(PR),H1(P R̃)) andT3(•)PH(L2(PR),H2(P R̃,s)) in
D for any pair of positiveR̃, s.

According to the definition ofv andw, the functionu satisfies all the boundary condition o
~3.1!. Applying the operator (D112m2) to this function, we obtain

~D112m2!u5g1~w2v !~D112m2!xR12~¹xxR ,¹x~w2v !!R2,
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where we have used in the calculation the equations whichv andw satisfy. This result shows tha
the functionu solves the problem~3.1! if and only if g satisfies the following equation:

g1T4~m!g5 f , ~3.7!

where

T4~m!gª~w2v !~D112m2!xR12~¹xxR ,¹x~w2v !!R2;

recall that bothw andv are obtained fromg by actions of the operators specified above.
Proposition 3.1: The operator T4(m) is compact for any R.0 as an element of

L(L2(PR),L2(PR)) and the function m°T4(m) belongs toH(L2(PR),L2(PR)) in D.
Proof: We denote

T41~m!gª~w2v !~D112m2!xR ,

T42~m!gª2~¹xxR ,¹x~w2v !!R21~w2v !DxR .

Using the described properties ofT1(m) andT2 it is easy to see thatT41(m) is a bounded linear
map from L2(PR) into H1(PR). The operator-valued functionT41(•) belongs to
H(L2(PR),H1(PR)). The functionxR8 is smooth and its support lies inPR\P̄R21 . Using this
together with the fact that the functionw2v belongs toH2(PR\P̄R21), we conclude that
T42(m):L2(PR)→H1(PR) is a linear bounded operator belonging toH(L2(PR),H1(PR)) as a
function of m. Hence T4(•)5T41(•)1T42(•)PH(L2(PR),H1(PR)), and thereforeT4(m) is
compact when considered as an operator fromL2(PR) to L2(PR), belonging to
H(L2(PR),L2(PR)) with respect tom. j

Proposition 3.1 shows that Eq.~3.7! can be studied using Fredholm theorems. This will h
us to solve our original problem: to construct the solution of~3.1! we have to solve the equatio
~3.7!, then by the procedure described above its solution gives rise to the solutionu of the
boundary value problem~3.1!: u5T3(m)g.

Proposition 3.2: The problems (3.7) and (3.1) are equivalent: to each solution g of (3.7)
is a unique solution u5T3(m)g of (3.1), and vice versa, for each solution of (3.1) there exis
unique g solving (3.7) such that u5T3(m)g. The equivalence holds for any mPD.

Proof: The first part has been proved above, it remains to check invertibility of the ope
T3 . Let u be a solution of the problem~3.1!. Notice that the functionu is infinitely differentiable
outside the support off since there it is a solution of a homogeneous equation. We hav
construct the solutiong of ~3.7! such thatu5T3g. Let us first determine the functionsv andw.
By U we denote a solution of the following problem:

DU50, xPPR ,

U50, xP]PR\g0øg, ~3.8!

U5u, xPg0øg,

which is unique inH1(PR), and moreover, it belongs toC`(PR) by a standard result on th
smoothness of solutions of elliptic equations. We set

v~x,m!ªu~x,m!2xR~x1!U~x,m!,

w~x,m!ªu~x,m!1~12xR~x1!!U~x,m!.

One checks easily that the functionsu5xRw1(12xR)v, w andv satisfy all the required bound
ary conditions and thatDw5Dv holds inPR . Now it suffices to use the equation of the proble
~3.3! to determine the functiong by
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g~x,m!ª~D112m2!v~x,m!5~D112m2!~u~x,m!2xR~x1!U~x,m!!

5 f ~x!2~D112m2!~xR~x1!U~x,m!!.

Let us check that thisg solves~3.7!. Using the definition ofU, v, andw, we compute directly the
action ofT4(m) on g obtaining

T4~m!g5U~D112m2!xR12~¹xxR ,¹xU !

5U~D112m2!xR12~¹xxR ,¹xU !1xRDU5~D112m2!~xRU !.

The last two relations show thatg is a solution of Eq.~3.7!. Let us check the uniqueness: suppo
that there are two solutionsg1 and g2 of ~3.7! leading to the same functionu(1)5u(2). Theng
ªg12g2Þ0 gives rise touªu(1)2u(2)50. Let v and w be the solutions of~3.3! and ~3.5!,
respectively, associated withu, and setUªw2v. Then it easy to see that thisU solves~3.8!,
where the boundary condition ong0øg is homogeneous. Such a solution of~3.8! is unique,U
50. Thus w5v5u50 holds in PR , and thereforeg5(D112m2)v50 in PR , which is a
contradiction. j

The solution of Eq.~3.7! depends onm, i.e., g5g(x,m). Our next aim is to clarify a nature
of this dependence and to look what this implies for the solution of the problem~3.1!. We employ
the following result borrowed from Ref. 13, Sec. XV.7:

Theorem 3.3:LetD be an open connected domain of the complex plane of the variable m
$T(m):mPD% be a bounded holomorphic family of compact operators from the Banach spa
into itself. Moreover, assume that there exists a point m* PD such that (I 1T(m* ))21

PL(X,X). Then m°(I 1T(m))21 is a meromorphic function inD with values inL(X,X).
In our case the Banach space mentioned in Theorem 3.3 isL2(PR) andT(m)5T4(m). The

existence ofm* is easy to establish: since the equation~3.7! is equivalent to the boundary-valu
problem ~3.1! by Proposition 3.2, it is sufficient to prove the existence ofm* for which the
problem~3.1! has no nontrivial solution forf 50 andm5m* with the asymptotics~3.2!. This is
true for m* .0 which is sufficiently small, because assuming the contrary would lead us t
conclusion thatHan

has the eigenvalue (12m
*
2 ), and this in turn would contradict to the claim

~a! and~c! of Proposition 2.1. The compactness ofT4(m) and its holomorphic dependence onm
follow from Proposition 3.1.

Thus we may apply Theorem 3.3 to the equation~3.7!. We imply that (I 1T4(m))21 exists
and it is meromorphic as an operator-valued function inD, (I 1T4(•))21

PM(L2(PR),L2(PR)). Poles of this function are the values ofm for which the equation~3.7!
with the vanishing right-hand side has a nontrivial solution. The valuem0ª0 has this property as
it follows from the claim~c! of Proposition 2.1. Letf0 be a solution of the equation~3.7! for f
50 andm5m0 . The functionf0 is unique up to a multiplicative constant, the uniqueness be
implied by Proposition 2.1~c! and Proposition 3.1. The remaining ambiguity is removed if we
c (0)5T3(0)f0 . Making the domainD smaller if necessary we can achieve that zero is the o
pole of the function (I 1T4(•))21 contained in D. In such a case the solutiong5(I
1T4(m))21 of the equation~3.7! can be for any nonzeromPD represented as

g5g~m!5
g2k

mk 1g̃~m!, ~3.9!

where the integerk>1 is the order of the pole, the functionsg2k ,g̃(m) belong toL2(PR) for
nonzeromPD, andg̃(•)PM(L2(PR)) may have a pole at zero of order not exceedingk21.

Let us stress that Theorem 3.3 says nothing about the order of this pole. Next we are g
prove that the pole in~3.9! is simple, i.e.,k51. Substituting~3.9! into ~3.7! and comparing the
leading terms inm we see thatg2k5K0@ f #f0 , whereK0@ f # is a constant depending onf . The
representation~3.9! in turn yields the following expression foru:
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u5T3~m!g5
K0@ f #c (0)

mk 1ũ~m!. ~3.10!

Here ũ(•) is a function belonging toM(H1(P R̃))ùM(H2(P R̃,s)) for any positiveR̃, s which
again may have pole at zero of order not exceedingk21. Multiplying the equation in the problem
~3.1! by c (0) and integrating by parts we see that

E
PR̃

f c (0) d2x52m2E
PR̃

c (0)u d2x1E
0

pS c (0)
]u

]x1
2u

]c (0)

]x1
D U

x15R̃

dx2 . ~3.11!

For d sufficiently large we have

uux15R̃5(
j 51

`

Cj~m!sin jx2 , c (0)ux15R̃5(
j 51

`

cj sin jx2 ,

]u

]x1
U

x15R̃

52(
j 51

`

Aj 2211m2Cj~m!sin jx2 ,

]c (0)

]x1
U

x15R̃

52(
j 52

`

cjAj 221 sin jx2 ,

where the functionsCj in view of ~3.10! behave as

Cj~m!5
K0@ f #cj

mk 1O~m2k11!.

Combining the above relations and using the normalization conditionc15A2/p we deduce that

E
0

pS c (0)
]u

]x1
2u

]c (0)

]x1
DU

x15R̃

dx252
K0@ f #

mk21 1O~m2k12!.

The first integral on the right-hand side of~3.11! behaves as

2m2E
PR̃

c (0)u d2x52
K0@ f #

mk22 E
PR̃

uc (0)u2d2x1O~m2k13!

in the limit m→0. Substituting the expressions obtained above into~3.11! and comparing the
coefficients at the powers ofm, we conclude thatk51, and furthermore, that

K0@ f #52E
PR̃

f c (0) d2x52E
P

f c (0) d2x. ~3.12!

To get the last relation we have used the fact thatf has a compact support by assumption wh
therefore lies inP R̃ for R̃ sufficient large.

Next we denoteA(m)5T3(m)(I 1T4(m))21. It follows from the relations~3.10! and~3.12!
that

u5A~m! f 5..A0~m! f 1A1~m! f 5K0@ f #
c (0)

m
1A1~m! f ,

~3.13!
A1~• !PH~L2~PR!,H~H1~P R̃!!ùH~L2~PR!,H2~P R̃,s!!,
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whereR̃ ands are arbitrary positive.
It is convenient to summarize all the conclusions made above in a single theorem

represents the main result of this subsection.
Theorem 3.4: Let fPL2(PR), and assume that R˜ , s are arbitrary positive numbers, m

PD. Then for mPD\$0% there exists a unique solution of the boundary value problem (3.1) g
by u5A(m) f . As a function on m this solution belongs toM(H1(P R̃))ùM(H2(P R̃,s)). The
neighborhood D can be chosen in such a way that the function A(•)
PM(L2(PR),H1(P R̃))ùM(L2(PR),H2(P R̃,s)) has just one pole m050 which is simple. The
operator A(m) can be decomposed into the sum A(m)5A0(m)1A1(m), where the operators
Ai(m) are defined by (3.13). Finally, the relation (3.12) holds true.

B. The asymptotic analysis

To find the behavior of the quantityln(a) around the threshold we will analyzem« defined as
m«

2
ª12ln(an1«), which satisfiesm«→0 as«→0. Let y5(y1 ,y2) be the Cartesian coordinate

of a point in the strip. The boundary value problem for the eigenfunctionc («) can be then written
as

~Dy11!c («)5m«
2c («), yPP,

l yc
(«)50, yPg,

~3.14!
c («)50, yPG«øG1 ,

]c («)

]y2
50, yPg« .

As we have announced, we want to get rid of the«-dependent boundary condition passing to o
independent on«, while the corresponding equation will have coefficients which depend smoo
on «. To construct the appropriate transformation we use an infinitely differentiable mol
functionx of the variabley1 which is equal to one fory1P@b2 ,b3# and vanishes fory1<b1 and
y1>b4 . Here b i , i 51, . . . ,4, are positive constants,b1,b2,b3,b4 , such thatb2,an1«
,b3 holds for all « from a fixed neighborhood of zero. We consider the functionx1 :R1→R1

defined as

x1 :x1~y1 ,«!5y12« x~y1!.

It is easy to see, in particular, thatx15an asy15an1«. Taking the first two derivatives we ge

dx1

dy1
512«x8~y1!,

d2x1

dy1
2 52«x9~y1!

from where it follows that for all sufficiently small« the first derivative ofx1 , with respect toy1 ,
is nonzero everywhere inR1 . Thus the mapx1 is bijective and can be used to define a change
the variable,y1°x1(y1 ,«). The problem~3.14! expressed in the variablesx5(x1 ,x2), x2ªy2 ,
becomes

~Dx1«L«11!c («)5m«
2c («), xPP,

l xc
(«)50, xPg,

~3.15!
c («)50, xPG0øG1 ,
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]c («)

]x2
50, xPg0 .

The operatorL« appearing in the transformed equation is defined by

L«ªb11~x1 ,«!
]2

]x1
2 1b1~x1 ,«!

]

]x1
,

b11~x1 ,«!ª22x8~y1~x1 ,«!!1«~x8~y1~x1 ,«!!!2, ~3.16!

b1~x1 ,«!ª2x9~y1~x1 ,«!!.

The functions b11 and b1 are obviously infinitely differentiable, they vanish fo
y1¹@b1 ,b2#ø@b3 ,b4# and satisfy in the limit«→0 the asymptotic formulas

b11~x1 ,«!522x8~x1!1O~«!, b1~x1 ,«!52x9~x1!1O~«!

uniformly in the variablex1 .
Now we can proceed to the calculation ofm« and c («). Proposition 2.1 ensures that th

eigenfunction and eigenvalue exist. The functionc («) decays asux1u→` andln(an1«) is real.
These two facts imply thatm« is real and positive. It is obvious thatc («) solves the problem~3.1!
for m5m« and f 52«L«c («). This allows us to seek for the solution of~3.15! in the form

c («)5A~m«! f « , ~3.17!

where the functionf « is assumed to an unknown element ofL2(PR) with R.b4 . This may
appear strange at a glance, because we know thatf «52«L«c («), however, we want to obtain
another formula forf « not involving c («). The functionc («) defined by~3.17! satisfies all the
boundary condition of the problem~3.15!. In order to be a solution of~3.15!, it is necessary and
sufficient forc («) to be a solution of the corresponding equation. Substituting into the latte
formula for c («), we arrive at the equation forf « which reads

~ I 1«L«A~m«!! f «50. ~3.18!

In view of ~3.13! we have

A~m«! f «5K0@ f «#
c (0)

m«
1A1~m«! f « . ~3.19!

We substitute this representation forA(m«) f « into ~3.18! obtaining

f «1
«

m«
K0@ f «#L«c (0)1«L«A1~m«! f «50. ~3.20!

It is clear thatL«A1(•)PH(L2(PR),L2(PR)) and as a function of (m,«) the operatorL«A1(m) is
jointly continuous. Thus for sufficiently small« the inverse operatorB(m,«)5(I
1«L«A1(m))21:L2(PR)→L2(PR) exists and converges to the identity map as«→0 uniformly
in m. It is also obvious thatB(•,«)PH(L2(PR),L2(PR)). Applying nowB(m« ,«) to the equa-
tion ~3.20! we find

f «1
«

m«
K0@ f «#B~m« ,«!L«c (0)50. ~3.21!

Applying furtherK0 to ~3.21!, we get one more equation,
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K0@ f «#1
«

m«
K0@ f «#K0@B~m« ,«!L«c (0)#50.

Notice thatK0@ f «# cannot be zero, because otherwise~3.21! would imply f «50 which yields
c («)50. The last equation induces the relation

m«52«K0@B~m« ,«!L«c (0)#, ~3.22!

which can be regarded as an equation form« . It is easy to see thatB(•,«)L«c (0)PH(L2(PR))
and the function (m,«)°B(m,«)L«c (0) is jointly continuous. This immediately implies tha
K0@B(m,«)L«c (0)# is a holomorphic with respect tom and jointly continuous as a function o
(m,«). Consequently, for all« small enough the estimate

«u@K0@B~m,«!L«c (0)#u,u mu, mP]D,

holds true. Using this inequality in combination with the Rouche´ theorem we conclude that th
functionsh1 :h1(m)5m andh2 :h2(m)5m1@K0@B(m,«)L«c (0)# have the same numbers of z
roes insideD. This means that the equation~3.22! has a unique solution inD for all sufficient
small«. On the other hand, due to Proposition 2.1 we know that there is a root of equation~3.22!
that converges to zero, namely

m«5Aln~an1«!21.0.

Consequently, it is the only root of~3.22!. Thus the function

f «52«B~m« ,«!L«c (0), ~3.23!

wherem« is the solution of~3.22!, solves the equation~3.18!. It means that the functionf « defined
by ~3.23! gives rise to the eigenfunctionc («)5A(m«) f « corresponding to the eigenvalueln(an

1«)512m«
2 . In fact, we have also proved that there is just one value ofm5m« tending to zero

as «→0, for which the boundary value problem~3.14! has a nontrivial solution. This solution
decays asux1u→`, i.e., there are no nondecaying or even increasing solutions.

The equation~3.22! allows us to calculate the asymptotic expansion form« . Since
B(m,«)L«c (0) is holomorphic with respect tom and jointly continuous in (m,«), and sincem«

tends to zero as«→0, then by the equation~3.22! we have

m«5«m1O~«m«!, «→0,

m52K0@L0c (0)#,

L0522x8~x1!
]2

]x1
2 2x9~x1!

]

]x1
.

Combining these relations, we can rewrite the error term as follows:

m«5«m1O~«2!, «→0. ~3.24!

Next we want to express the coefficientm,

m52E
P

c (0)S 2x8~x1!
]2

]x1
2 1x9~x1!

]

]x1
Dc (0) d2x. ~3.25!

Using the equation which the functionc (0) satisfies we find
                                                                                                                



elation

was
1. The
ts Nos.
-

6277J. Math. Phys., Vol. 43, No. 12, December 2002 Geometric coupling thresholds

                    
S 2x8~x1!
]2

]x1
2 1x9~y1!

]

]x1
Dc (0)5~D11!S x~x1!

]c (0)

]x1
D .

Integrating then by parts and taking into account properties ofc (0) together with the definition of
the mollifier x we have

m52 lim
s→0

E
P\Ds

c (0)~D11!S x~x1!
]c (0)

]x1
Dd2x5 lim

s→0
E

]Ds

S c (0)
]2c (0)

]r ]x1
2

]c (0)

]x1

]c (0)

]r Dds.

In order to evaluate the last integral along]Ds we replacec (0) by its asymptotics~2.5! and pass
to limit s→0 obtaining

m5
1

2
a2E

0

p

sin2
u1

2
du15

pa2

4
,

which proves~2.8! with m5mn . In the same way we get

05E
P

x1

]cn
(0)

]x1
~D11!cn

(0)d2x5an

pa2

4
12E

P
cn

(0)
]2cn

(0)

]x1
2 d2x5anmn22E

P
U]cn

(0)

]x1
U2

d2x,

which yields the representation~2.7! for m,

mn5
2

an
E

P
U]cn

(0)

]x1
U2

d2x5
1

an
E

S
U]cn

(0)

]x1
U2

d2x.

In the last relation we employed the fact thatcn
(0) has a definite parity.

Let us finally pass to discussion of the eigenfunction. In view of~3.19!, ~3.23! we find that
c («) is equal to

A~m«! f «52
«K0@B~m« ,«!L«c (0)#

m«
c (0)2«A1~m«!B~m« ,«!L«c (0).

Using now the equation~3.22! together with the fact that the functionA1(m)B(m,«)L«c (0) is
holomorphic and continuous as a function of the respective variables, we conclude that the r

c («)5c (0)2«A1~m«!B~m« ,«!L«c (0)

is valid in H1(PR) for eachR. This yields the relation~2.9! and the asymptotic behavior~2.10!
concluding thus the proof of Theorem 2.3.

ACKNOWLEDGMENTS

D.B. is grateful for the hospitality extended to him at NPI AS where a part of this work
done. The research has been partially supported by GA AS under the Contract No. 104810
first and the third authors were partially supported by Russian Fund of Basic Research Gran
00-15-96038, 02-01-00693~D.B.!, and 02-01-00768~R.G.! as well as by the Ministry of Educa
tion of the Russian Federation Grant No. E00-1.0-53.

1P. Exner, P. Sˇeba, M. Tater, and D. Vaneˇk, J. Math. Phys.37, 4867~1996!.
2W. Bulla, F. Gesztesy, W. Renger, and B. Simon, Proc. Am. Math. Soc.127, 1487~1997!.
3P. Exner and S. A. Vugalter, Ann. Inst. Henri Poincare, Sect. A65, 109 ~1996!.
4A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems~Nauka, Moscow, 1989!;
English transl., Am. Mat. Soc., Providence, RI, 1992.

5R. R. Gadyl’shin, Alg. Anal.4, 88 ~1992!; English transl. St. Peterburg Math. J.4, 273 ~1993!.
6I. Yu. Popov, Rep. Math. Phys.43, 427 ~1999!.
                                                                                                                



6278 J. Math. Phys., Vol. 43, No. 12, December 2002 Borisov, Exner, and Gadyl’shin
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Continuous spin representations of the Poincare ´ and
super-Poincare´ groups
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We construct Wigner’s continuous spin representations of the Poincare´ algebra for
massless particles in higher dimensions. The states are labeled both by the length of
a spacelike translation vector and the Dynkin indices of theshort little group
SO(d23), whered is the space–time dimension. Continuous spin representations
are in one-to-one correspondence with representations of the short little group. We
also demonstrate how combinations of the bosonic and fermionic representations
form supermultiplets of the super-Poincare´ algebra. If the light-cone translations
are nilpotent, these representations become finite dimensional, but contain zero or
negative norm states, and their supersymmetry algebra contains a central charge in
four and ten dimensions. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1518138#

I. INTRODUCTION

The Poincare´ group is an essential ingredient of relativistic quantum field theories. Its re
sentations in four space–time dimensions were first studied by E. Wigner.1 Some of its represen
tations describe quantum states found in local field theory: massless particles of fixed helic
massive particles with or without spin. In string theory, the ‘‘front form’’ construction of
Poincare´ group generators2,3 has been particularly useful in describing the 26-dimensional bos
string.4

Other representations do not seem to be realized by nature. One is the tachyon repres
with negative mass-squared which appears in theories as indicator of instabilities, for insta
spontaneous symmetry breaking. The others are the ‘‘continuous spin representations’’~CSRs!,
which describe a massless object with an infinity number of helicities. Wigner himself has ar5

against their use in physics since they lead to infinite heat capacity of the vacuum. All attem
associate these representations with physical systems have failed. Several authors6,7 have shown
their naive quantization implies either nonlocality or a breakdown of causality. More rece
Zoller8 showed how they could arise from a higher-derivative Lagrangian such as the length
acceleration. In addition, massless theories with helicities greater than two have s
problems,9,10 unless perhaps for theories with an infinite number of degrees of freedom.
surprisingly, these representations have been forgotten.

Yet, the idea of an infinite number of massless spins has some attractions. Indeed, Va11

among others has argued for the existence of such theories. A particular lure is the zero
~infinite slope! limit of string theories which suggests~classically! an infinite number of massles
states with unbounded helicities.

The object of this article is to study these representations in higher dimensions, and sho
they can be assembled in representations of supersymmetry.

a!Electronic mail: tfelb@fy.chalmers.se
b!Author to whom correspondence should be addressed. Electronic mail: amas@phys.ufl.edu
c!Electronic mail: ramond@phys.ufl.edu
d!Electronic mail: xiaozhen@phys.ufl.edu
62790022-2488/2002/43(12)/6279/17/$19.00 © 2002 American Institute of Physics
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II. THE POINCARÉ ALGEBRA

The Poincare´ generators satisfy the commutation relations,

@Pm,Pn#50,

@Mmn,Ps#5 i ~hmsPn2hnsPm!,

@Mmn,Mab#5 i ~hmaM nb1hanMbm1hnbMma1hbmMan!,

wherehmn5(21,1,...,1). Its representations are characterized by the values of the Casim
erators which are the squared massPmPm, and the squares of the Pauli–Lubanski forms built o
of the Levi-Civitásymbols. Ind space–time dimensions, the Pauli–Lubanskin-forms are,

Wm1¯mn
5

em1¯mnmn11¯md
PmdMmn11mn12

¯Mmd22md21

An!2 ~d2n11!/2~~d2n21!/2!~~d2n21!/2!!
, ~1!

wheren51,3,...,(d23) for d even andn50,2,...,(d23) for d odd.
It is convenient to express the Poincare´ generators in Dirac’s2 front form, derived long ago for

spin in four dimensions by Bacry and Chang.3 For a particle of massm, the Poincare´ generators
are expressed in terms of transverse positions and momenta

@xi ,pj #5 id i j , i , j 51,2,. . . ,d22; @x2,p1#52 i , ~2!

and

x65
1

&
~x06xd21!, p65

1

&
~p06pd21!. ~3!

The translations are given by

P25
pipi1m2

2p1 , P15p1, Pi5pi , ~4!

where P2 is the light-cone Hamiltonian. The Lorentz generators break up into those w
transform the transverse plane into itself, and those which transform out of that plane~called
‘‘kinematic’’ and ‘‘Hamiltonian,’’ respectively by Dirac!. The kinematic generators are given b

M 1 i52xip1, M 1252x2p1, Mi j 5xipj2xj pi1Si j , ~5!

whereSi j obey the SO(d22) Lie algebra of the transverse little group

@Si j ,Skl#5 i ~d ikSjl 1d j l Sik2d i l Sjk2d jkSil !. ~6!

The Hamiltonian-like boosts are

M 2 i5x2pi2
1

2
$xi ,P2%1

1

p1 ~Ti2pjSi j !, ~7!

where theTi transform as SO(d22) vectors

@Si j ,Tk#5 id ikTj2 id jkTi , ~8!

and satisfy

@Ti ,Tj #5 im2Si j . ~9!
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WhenmÞ0, Ti /m are the generators of SO(d21)/SO(d22), which, together withSi j , complete
the massive little group SO(d21).

When m50, the Ti commute with one another, acting as light-cone translations, and
algebra can be satisfied in two ways:

( i ) Ti50. This corresponds to the familiar massless representations which describe pa
with a finite number of degrees of freedom, realized on states that satisfy

Ti up1,pi ;~a1 , . . . ,ar !&50, ~10!

where (a1 , . . . ,ar) are the Dynkin labels of SO(d22) representations andr is the rank of the
little group. These label the different helicity states of the massless particle. In four dimen
the Pauli–Lubanski vector is lightlike.

( i i ) TiÞ0. In this case,Ti are thec-number components of a transverse vector. The state
which the Poincare´ algebra is realized are

Ti up1,pi ;j i ,~a1 , . . . ,ar !&5j i up1,pi ;j i ,~a1 , . . . ,ar !&, ~11!

which have additional labels, in the form of a little group vectorj i . There is an important
difference from the previous case, since (a1 , . . . ,ar) now labels the SO(d23) subgroup of the
transverse little group SO(d22). In four dimensions, there is no such group and the states
simply labeled by an additional spacelike vector of constant magnitude. These span two d
representations, called ‘‘continuous spin representations’’ by Wigner in his original work.1 They
are characterized by a spacelike Pauli–Lubanski vector, and describe a massless state
infinite number of integer-spaced helicities.

In the following, we construct these representations in higher dimensions, as well as
supersymmetric generalizations.

A. Continuous spin representations

These representations are characterized by the fact that the light-cone translationsTi do not
vanish, even thoughm50. It follows that a finite boost creates an infinite number of integ
spaced helicities. To see this, consider a ket that represents a state with lightlike mom
aligned along thez direction. In (311)-dimensions, a rotation in the transverse plane yields

eifM12
up1,pi50;J,a&5up1,pi50;J,a1f&, ~12!

whereJ is the length of the transverse light-cone translation vector with components

j15J cosa, j25J sina,

which enables us to set

S1252 i
]

]a
.

Since@S12,j i #Þ0 for i 51,2, S12 ~helicity! is no longer a good quantum number; instead it acts
periodic or antiperiodic functions of the anglea

ua&5(
l

e2p ilau f l&,

wherel are either integer-spaced integers or half-odd integers. Another way to see the i
number of helicities is to apply the infinitesimal boostM 2 i on any state

M 2 i up1,pi50;J,a&5
Ti

p1 up1,pi50;J,a&, ~13!
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which produces a state which has picked up plus or minus one unit of helicity. In a finite b
this action is repeated an infinite amount, resulting in states with possible helicities ranging
minus to plus infinity in integer steps. There are~in four dimensions only! two types of represen
tations, those with all integer~single-valued! and those with all half-odd integer~double-valued!
helicities. The square of the Pauli–Lubanski vector~Casimir! is the squared length of the tran
lation vector

WmWm5TW •TW 5J2. ~14!

As we have stated in the Introduction, the CSRs have no obvious physical applications, exp
in local field theories, but the appearance of an infinite number of states may indicate a conn
with nonlocal theories of extended objects. This motivates their study in more general con
We explicitly construct these representations in higher dimensions, then proceed to show th
sustain supersymmetry and build continuous spin representations of supersymmetry. Fina
show that if the light-cone translations are nilpotent, the CSRs become finite-dimensional,
the expense of negative or zero-norm state, and the supersymmetric generalizations yield
charges for these massless representations.

1. Higher dimensions

The front-form of the Poincare´ generators shows that CSRs in any dimensions correspon
representations of the Galilean little group

@Ti ,Tj #50, @Si j ,Tk#5 id ikTj2 id jkTi , ~15!

where theTi do not vanishand theSi j generate the light-cone little group SO(d22). Consider
(411)-dimensions, where the light-cone little group is SO~3!. In the framep25pW 50, the Pauli–
Lubanski two-form is

Wi j 5
1

&
e i jkTk,

so that one Casimir is

Wi j Wi j 5J2, ~16!

as in the four-dimensional case. The other Casimir is the Pauli–Lubanski zero-form

W5
1

&
e i jkTiSjk,

which is the projection of the generatorSjk alongTi . The vectorTi then acts as a ‘‘quantization
axis,’’ along whichW assumes the values

W

&J
50,6

1

2
,61,6

3

2
,¯ . ~17!

It follows that there are two types of representations corresponding to integer and half-odd i
values ofW/&J. For each value ofW/&J, there corresponds one infinite-dimensional rep
sentation. Unlike (311)-dimensions, there are infinite numbers of CSRs in higher dimens
The states are no longer characterized by the light-cone little group but by its subgroup orth
to Ti , which we call the short little group, SO~2! in this case. Each CSR is labeled by a value
SO~2! ~integer or half-odd integer! as well as by the length ofTi .
                                                                                                                



f

f
l little

g an
an
is an

ki

the

6283J. Math. Phys., Vol. 43, No. 12, December 2002 Continuous spin representations

                    
It is straightforward to find the CSR representations in terms ofu j ,m&, the eigenstates o
SO~3!, the full little group. Its states are required to be eigenstates ofTW , the SO~2! rotations about
it, and of the Casimire i jkTiSjk. As the action ofTi on eachu j ,m& yields a linear combination o
j 5 j , j 61 states, its eigenstates are infinite linear combinations of eigenstates of the ful
group SO~3!. To see this in detail, take the light-cone vector in thez direction, so thatTW is like the
tensor operatorT0

1[Y0
1,

T0
1u j ,m&5a1

( jm)u j 11,m&1a0
( jm)u j ,m&1a2

( jm)u j 21,m&,

where thea’s are proportional to Clebsch–Gordan~C-G! coefficients

a0
( jm)5JA~ j 1m!~ j 2m11!, 2 j ,m, j ,

a6
( jm)5JA~ j 81m!~ j 82m11!, j 85 j 61, 2 j 8,m, j 8.

The state of the form

uF&5 (
j 5uM u

`

f j
(M )u j ,M &

is an eigenstate of the Casimir

1
2e i jkTiSjkuF&5JM uF&, M50,6 1

2 ,61, . . . ,

and ofT3, as long as the coefficients satisfy the recursion relations

a2
(uM u1p,M ) f uM u1p

(M ) 1a1
(uM u1p22,M ) f uM u1p22

(M ) 1~a0
(uM u1p21,M )2J! f uM u1p21

(M ) 50,

with p52,3, . . . and

a2
(uM u11,M ) f uM u11

(M ) 1~a0
(uM u,M )2J! f uM u

(M )50,

since f uM u21
(M ) 50. The other states of the CSR are determined by acting the SO~3! raising and

lowering operators onuF&. Unlike the usual case, their action does not terminate, producin
infinite number of SO~3! representations. This is similar to Wigner’s CSR which contains
infinite number of integer spaced helicities. The difference in higher dimensions is that there
infinite number of CSRs, each labeled byM .

In (511)-dimensions the light-cone little group is SO~4!, and there are two Pauli–Lubans
forms,

one-form: Wi5
1

&
e i jkl T

jSkl,

three-form: Wi jk5
1

A6
e i jkl T

l .

The square of the highest form isJ2, a general feature in any dimensions. The square of
one-form is the other Casimir,

WiWi52J2S'
2 ,

where S'
i j are the generators of the SO~3! subgroup of SO~4! perpendicular toTi , and S'

2

[S'
klS'

lk(k,l 51,2,3) is its Casimir operator. Thus
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WiWi5J2 j ~ j 11!, j 50,1
2,1, 3

2,¯ . ~18!

There are an infinite number of distinct CSRs, one for each value ofj . The states of the CSR ca
be labeled by finite rotations of SO~3! and vectorTW characterized by length,J, and three angles

up1,pi50;J,V3 ; j ,m&,

wherem ranges from2 j to 1 j in integer steps.
In (611)-dimensions the little group is SO~5! and the Pauli–Lubanski forms are

zero-form: W5
1

2&
e i jklmTiSjkSlm,

two-form: Wi j 5
1

2
e i jklmTkSlm,

four-form: Wi jkl 5
1

2A6
e i jklmTm.

The two Casimirs of the short little group SO(4)'SU(2)3SU(2) are given by

W(two-form)
2 52J2S'

2 , ~19!

where hereS'
i j are the generators of the SO~4! subgroup of SO~5! which leaveTW invariant, and the

zero-form which gives the projection of the vectore i jklmSjkSlm alongTW . The CSR states, charac
terized by four anglesV4 , and the (j 1 , j 2) representations of SU(2)3SU(2), are of theform

up1,pi ;J,V4 ; j 1 ,m1 ; j 2 ,m2&,

where2 j 1(2)<m1(2)< j 1(2) . There are an infinite number of CSRs, each labeled byj 1 and j 2 .
The pattern is now clear: the CSRs are labeled by the length of a vector and by the irr

the short little group SO(d23) which leaves it invariant. Its Casimirs are directly related to
squares of the Pauli–Lubanskin-forms and the zero-form. There are infinitely many such rep
sentations, fermionic and bosonic.

The case of 11 space–time dimensions is particularly interesting because of M-theo
supergravity. Its CSRs are labeled by SO~8!, with its magic triality property which acts on it
vector representation,8v , and two inequivalent spinor representations,8s and8s8 .

We conclude this section by writing the general expressions for the Casimir operators
Poincare´ algebra in terms of those of the short little group. The Pauli–Lubanskin-form for the
light-cone little group SO(d22) is given by Eq.~1!,

Wi 1¯ i n
5

e i 1¯ i ni n11¯ i d22
Ti d22Si n11i n12

¯Si d24i d23

An!2 ~d2n23!/2~~d2n23!/2!!
.

The Casimir operators are simplest to calculate in a frame where onlyTi d22Þ0, and the square o
the highest form is the squared length of the vectorTW . The Casimir operators forn>1 are given
by the following.

( i ) For little group SO~6! and SO~7!,

Wi 1¯ i n
2 5J2$~S'

2 !(d2n23)/222~S'
(d2n23)!%; 5>d2n22.1.

( i i ) For little group SO~8! and SO~9!,
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Wi 1¯ i n
2 5J2H ~S'

2 !(d2n23)/222~S'
(d2n23)!; 1,d2n22,7,

2~S'
2 !312S'

2 S'
4 22S'

6 ; d2n59.

( i i i ) In general for the little group SO(d),

Wi 1¯ i n
2 5J2(

p50

k

~A2pS'
2pS'

2(k2p)1B2p~S'
2 !k1C2p~S'

2 !pS'
2(k2p)!,

wherek5 1
2(d2n23), andA2p , B2p andC2p’s are numerical constants. In the above,S'

i j are the
generators of SO(d23) subgroup of SO(d22) perpendicular toTi d22 and

S'
m[S

'

i 1i 2S
'

i 2i 3
¯S

'

i m21i mS
'

i mi 1.

In odd dimensions, the extra Casimir operator is provided by the Pauli–Lubanski zero-form

W5
1

A2~d23!/2~~d23!/2!!
e i jk¯mnT

iS'
i j
¯S'

mn .

In higher dimensions, the CSR states are labeled byJ and the solid angle in (d23)-dimensions,
Vd23 , which give the length and direction ofTW , respectively, as well as by (a1 ,...,ar), the
Dynkin labels of SO(d23),

up1,pi ;J,Vd23 ;~a1 ,...,ar !&.

These differ from the usual massless representations in that they are characterized by a s
vector, and contain an infinite number of states.

III. SUPER-POINCARÉ ALGEBRA

A. Super-charges in light-cone form

The continuous spin representations can be generalized to include supersymmetry.
Wigner originally found two CSRs, one single-valued with integer helicities, the other dou
valued with half-odd integer helicities. As we shall see, they are related by supersymmetry

The super-Poincare´ algebra includes the spinor generators which satisfy

@QA ,pm#50, ~20!

@Mmn,QA#52 1
2 ~SmnQ!A , ~21!

$QA ,QB
†%5~gmpmg0!AB , ~22!

whereA,B are spinor indices. In the above,

Smn52
i

2
@gm,gn#,

where theg matrices satisfy the anticommutation relation,

$gm,gn%52hmn; m,n50,...,d.

We first consider these relations in four space–time dimensions. The supercharges do no
mute with the Pauli–Lubanski vector, as
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@Wm ,QA#5
i

2
pn~Smng5Q!A ,

using

1
2 emnrsSrs52 iSmng5 ,

and g552 ig0g1g2g3 is the chirality matrix. The supercharges can be realized linearly u
Grassmann variables and their derivatives as12

QA5]A1 1
2 ~gmpmg0!ABūB, ~23!

and its conjugate as

QC
† 5 ]̄C1 1

2 ~gmpmg0!DCuD, ~24!

where we used

g0gm†g05gm,

and]A5]/]uA , ]̄A5]/]ūA, andūA is the complex conjugate ofuA with A,...,D running over the
spinor indices.u, ū, ] and ]̄ are anticommuting Grassmann parameters. We use the light-
projectors to split the supercharge into two-component spinors,

Q5Q11Q2 , where Q6[P6Q,

with P65 1
2g

7g6. In the Weyl representation, from Eqs.~22!–~24!, we can now read off the
various anticommutation relations, namely,

$Q1a ,Q1b
† %5&p1dab ,

$Q2a ,Q2b
† %5&p2dab[&

pp̄

p1 dab ,

$Q21 ,Q11
† %52& p̄, $Q11 ,Q21

† %52&p,

$Q12 ,Q22
† %5& p̄, $Q22 ,Q12

† %5&p,

wherep( p̄)5 (1/&) (p16 ip2) anda,b51,2, all other anticommutators being zero. This sho
that the supercharge splits up into two disconnected sets of anticommutators, correspondin
left and right projections@PL,R5 1

2(16g5)#

Q 6
R [PRQ6 , Q 6

L [PLQ6 . ~25!

One could also think of these as representingN52 supersymmetry.
There is further reducibility, indicated by the fact that the supercharge anticommutes wi

covariant derivative

DA5]A2 1
2 ~gmpmg0!ABūB, ~26!

and their Hermitian conjugates, which give the following relations,

Q 2
L 52

p̄

p1 Q 1
L , Q 2

R 5
p

p1 Q 1
R , ~27!
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together with their conjugates

Q 2
L†52

p

p1 Q 1
L† , Q 2

R†5
p̄

p1 Q 1
R† , ~28!

without affecting the anticommutation relations. From now on we concentrate on the right-h
projections of the algebra. On~right-handed! superfields, the constraint becomes

PRDF50, ~29!

and after using mass-shell condition, we are left with only one supercharge,Q1 ~henceforth we
drop the superscriptR). It is expressed in terms of one Grassmann variableu3[u and its conju-
gate, as we can drop theu4 variable altogether since its derivative is now expressed in terms o
derivative with respect tou3 . Hence

Q15
]

]u
1

1

&
p1ū, Q 1

† 5
]

]ū
1

1

&
p1u. ~30!

Since

@M 12,Q6#56
i

2
Q6 , ~31!

we must extend the Bacry–Chang representation ofM 12 to

M 1252x2p12
i

2 S u
]

]u
1 ū

]

]ū
D . ~32!

In order to satisfy the other commutation relations,

@M 1 i ,M 2 j #5 id i j M 122 iM i j , @M12,Q6#57 1
2Q6 , ~33!

the generatorsM12 andM 2 i now include theu-dependent terms,

M125x1p22x2p11Ŝ12, ~34!

as well as

M 2 i5x2pi2
1

2
$xi ,P2%1

1

p1
~Ti2pjŜi j !1 i

pi

2p1 S u
]

]u
1 ū

]

]ū
D , ~35!

where now

Ŝ125S121
1

2 S u
]

]u
2 ū

]

]ū
D . ~36!

The generatorM 1 i remains unchanged. The other relevant commutators in light-cone form

@M 6 i ,Q6#50. ~37!

In the frame wherepi50, we have

Q250, M 2 i5Ti /p1, ~38!
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so that the commutators

@M 21,Q1#52
i

&
Q2 , @M 22,Q1#52

1

&
Q2 , ~39!

@M 11,Q2#52
i

&
Q1 , @M 12,Q2#5

1

&
Q1 , ~40!

imply that

@Ti ,Q1#50. ~41!

Since the vector that characterizes the CSRs commutes with the supercharge, we can im
supersymmetry on the continuous spin representations without having to change the superc

Thus in (311)-dimension, we obtain theunique representation of supersymmetry whic
contains all integer and half-odd integer helicities. This of course does not alleviate the pro
associated with the CSRs.

B. Higher dimensions

In higher dimensions, Eqs.~20!–~24! still hold, but the number and nature of independe
Grassmann parameters, i.e., whether these are Dirac, Weyl or Majorana type, depend
number of space-time dimensions.13 In d-dimensions, there are 2d/2(2(d21)/2) complex spinor
components ford even~odd!. Using the anticommutativity between supercharge and cova
derivative, these numbers can be further reduced by a factor of 2. Leta, b run over the indepen-
dent spinor indices, i.e.,a,b51,2,...,2d/22m(2(d21)/22m), for d even~odd!, respectively, wherem
is the number of independent constraints. Using all reducibility conditions, we can always ex
the super-Poincare´ algebra in the light-cone form,

Mi j 5xipj2xj pi1Ŝi j , ~42!

M 1252x2p11S12, ~43!

M 2 i5x2pi2
1

2
$xi ,P2%1

1

p1 ~Ti2pjŜi j !2
pi

p1 S12, ~44!

where

Ŝi j 5Si j 1~ 1
2 ua~g i j !ab]

b1c.c.!, ~45!

S125~ 1
2 ua~g12!ab]

b1c.c.!, ~46!

andg i j andg12 are the reduced Dirac submatrices consistent with the constraints.M 1 i remain
the same as before. The indicesi , j run over transverse space. The supercharges can be irredu
expressed as

Q 1
a 5

]

]ua
1

1

&
p1ūa, Q 1

†a5
]

]ūa
1

1

&
p1ua, ~47!

and Q2
a can be expressed in terms ofQ1

a . To illustrate this construction, we now show ho
supersymmetric CSRs arise in 5 and 11 dimensions.
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1. „4¿1…-dimensions

In five dimensions, the spinors have four complex components which can be reduced
using the covariant derivative constraint. Using the light-cone projectors,P652 1

2g
7g6 in the

representation,

g05 is1
^ I , g i5s3

^ s i , i 51,2,3; andg45s2
^ I , ~48!

and Eq.~22!, we find

$Q1a ,Q1b
† %5&p1dab , ~49!

$Q2a ,Q2b
† %5&p2dab5

pW •pW

&p1
dab , ~50!

$Q1a ,Q2b
† %5 i ~sW •pW !ab , ~51!

$Q2a ,Q1b
† %52 i ~sW •pW !ab , ~52!

wherea,b51,2 and also we used the on-shell conditionp25pipi /2p1. From Eq.~26! andDF
50, we find

]

]u21a 52 i S sW •pW

&p1D
ab

]

]ub ,

and similarly for their complex conjugates, allowing us to set (u3,u4)50. The supercharges, Eq
~23! and ~24!, reduce to the irreducible form as in Eq.~47! with a,b51,2, and

Q2a52 i S sW •pW

&p1
Q1D

a

and henceQ2a
† 5 i S Q1

† sW •pW

&p1D
a

. ~53!

The Lorentz generators remain the same as in Eqs.~42!–~44! with the following irreducible
representations ofSi j andS12 @in Eqs.~45! and ~46!#,

S1252
i

2 S u
]

]u
1 ū

]

]ū
D , ~54!

Ŝi j 5Si j 1
1

2
e i jk S usk

]

]u
1c.c.D , ~55!

whereu5(u1,u2) and]/]u 5(]/]u1 , ]/]u2). The supercharges transform as SO~3! spinors,

@Mi j ,Q1a#52 1
2 e i jk~skQ1!a . ~56!

These charges can be made to act on the CSRs, for which the relevant group is that of th
little group SO~2! which leaves the light-cone translation vector invariant. AligningTW along the
z-axis, the supercharges split into two components,Q11 andQ 12

† , that lower the value ofM12 by
half a unit, and two components,Q12 andQ 11

† that raise it.
In terms ofM , the eigenvalue ofŜ12, the supermultiplet consists of

uM &CSR;uM &CSR,

Q11uM &CSR, Q 12
† uM &CSR;uM2 1

2&CSR,
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Q11Q12
† uM &CSR;uM21&CSR.

It contains two bosonic and two fermionic CSRs, with the same structure as the ordinaTW

50) masslessN52 supermultiplet in four dimensions. The important difference is that it cont
not only the ordinary states but their copies under the boosts proportional toTW . This yields as
usual an infinite number of SO~3! polarization states. The action of supersymmetry is the sam
in the normal case, but the CSR supermultiplets contain an infinite number of ordinary ma
supermultiplets of ever-increasing spin.

2. „10¿1…-dimensions

The case of 11 dimensions is particularly interesting because it is shrouded in mystery
contains not only local supergravity but also the elusive M-theory. What we know of M-theo
that its compactifications to lower dimensions yields supersymmetric theories and that its
distance limit is the supergravity theory.

In 11 dimensions, the spinors have 32 complex components, which, upon using the Ma
condition and the covariant derivative constraint, reduce to 16 real components. The supe
splits as

Q5S QA

Q161AD[S Q1
A

Q2
A D , A51,...,16.

The Majorana condition implies,

Q1
A 5Q1

†A and Q2
A 52Q2

†A .

In the representation

g05 is1
^ I , g i5s3

^ g̃ i , g105s2
^ I , ~57!

where i 51,...,9 andg̃ i ’s are 16316 and real, symmetric matrices which satisfy the followi
algebra

$g̃ i ,g̃ j%52d i j ,

the super-Poincare´ algebra becomes

$Q1
A ,Q1

B %5&p1dAB,

$Q2
A ,Q2

B %52&p2dAB52
pW •pW

&p1
dAB,

$Q1
A ,Q2

B %52 i g̃ i
ABpi ,

@Mi j ,Q6
A #5

i

2
~ g̃ i j Q6!A,

@M 12,Q6
A #56

i

2
Q6

A ,

@M 6 i ,Q6
A #50, @M 6 i ,Q7

A #56
i

&
~ g̃ iQ6!A.

Using DF50 and Eq.~26!, we find
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]

]u161A 52 i S g̃ i pi

&p1

]

]u D
A

,

allowing us to setu161A50 for A51,...,16. Theremaining realQ1
A ’s can be expressed in term

of 16 real Grassmann parameters,

Q1
A 5

]

]uA 1
1

&
p1uA and Q2

A 52 i S g̃ i pi

&p1
Q1D A

.

Similarly, in this representation, Eqs.~45! and ~46! reduce to

S1252
i

2
uA

]

]uA ,

Ŝi j 5Si j 2
i

2
uAg̃AB

i j ]

]uB ,

which together with Eqs.~42!–~44! give the Lorentz generators, whereg̃ i j 5g̃ i g̃ j for iÞ j and zero
otherwise.

We can let these charges act onto CSRs, remembering that they are labeled by the sh
group SO~8! that leaves the light-cone translation vectorTW invariant. We decompose the supe
charges into two eight-component supercharges,Q 1

a andQ 1
ȧ , by the SO~8! chirality matrix,

Q1
A 5S Q 1

a

Q 1
ȧ D , a51,...,8,

where

Q 1
a 5 1

2 ~11g̃ (9)! and Q 1
ȧ 5 1

2 ~12g̃ (9)!,

and the chirality matrix of SO~8! subgroup is

g̃ (9)[g̃1g̃2g̃3g̃4g̃5g̃6g̃7g̃8.

These two eight-component supercharges furnish two inequivalent spinor representati
SO~8!, 8s and8s8 , characterized by opposite SO~8! chirality andQ 1

a ;8s , Q 1
ȧ ;8s8 .

The (16316) g̃ i matrices can be written in terms of 838 block form

g̃ i5S 0 g̃aȧ
i

g̃
ḃb

i
0 D ,

whereg̃aȧ
i is the transpose ofg̃ ȧa

i . The Clifford algebra forg̃ i is satisfied if

g̃aȧ
i g̃ ȧb

j
1g̃aȧ

j g̃ ȧb
i

52d i j dab , for i , j ,a,b51,...,8,

and similarly with undotted and dotted indices interchanged. We also define

g̃ab
i j 5 1

2 ~ g̃aȧ
i g̃ ȧb

j
2g̃aȧ

j g̃ ȧb
i !,

and similarly forg̃
ȧḃ

i j
. The (838) g̃aȧ

i matrices couple the vector and spinor representations

this chiral subspace, the supercharges,Ŝi j andS12 take the following irreducible forms
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Q 1
a 5

]

]ua 1
1

&
p1ua, ~58!

Q 1
ȧ 5

]

]u ȧ 1
1

&
p1u ȧ,

~59!

Q 2
a 52

ipi

&p1
g̃aȧ

i Q 1
ȧ ,

Q 2
ȧ 52

ipi

&p1
g̃ ȧa

i Q 1
a ,

as well as

S1252
i

2
ua

]

]ua , Ŝi j 5Si j 2
i

2
uag̃ab

i j ]

]ub . ~60!

We have two supersymmetries, each transforming as a different SO~8! spinor, and the basic
supermultiplet is of the form (8v18s)CSR3(8v18s8)CSR, with 128 bosonic and 128 fermioni
states,

~8v18s!CSR3~8v18s8!CSR5~112813518156!v,CSR1~88156818156!s,CSR. ~61!

This supermultiplet~without CSR! is of course that of the massless states of IIA string the
obtained by dimensional reduction from 11-dimensional supergravity.

As we found in the five-dimensional case, there is a one-to-one correspondence betwe
labels of the ordinary massless representation forN52 supersymmetry in ten dimensions an
those of the massless CSR forN51 supersymmetry in 11 dimensions. However, the CSR su
multiplet contains the states ofN51 supergravity as well as an infinite number of massl
supermultiplets obtained by boosting alongTW .

C. Dimensional reduction

The characteristic feature of the CSRs is the transverse space vectorTi . A nonzero value
implies an infinite number of polarization states while a zero value requires a finite numb
polarizations. In covariant terms, this vector is written in terms of the Pauli–Luba
(d23)-form, its magnitude unchanged by Poincare´ transformations.

This suggests several ways in which CSRs might play a role in physics. One is to enlar
invariance group to include transformations capable of changing the length. The other is to
the CSR in the context of dimensional reduction by limiting transformations to rotations pe
dicular toTW .

The former approach requires a study of the representations of the larger groups. Of
interest are the conformal group~since we are dealing with massless representations! and perhaps
the de Sitter groups. In particular we need to identify how CSRs and normal massless rep
tations reside in unitary irreducible representations of these groups.

In physical terms we may view the length as an order parameter~as in the Higgs mechanism
with a vector representation!. For this we need to give it a dynamical meaning and couple it to
external field; it is amusing to note that in 11 dimensions it naturally couples to an eight-
which is dual to a three-form.

As we let the length tend to zero, we cannota priori determine which normal representatio
will be singled out in the transition. This is reminiscent of Dashen’s theorem in chiral the
where an external additional tag is required; otherwise it points to a first-order phase trans
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In the context of dimensional reduction, the translation vectorTW naturally singles out a sub
space perpendicular to its direction. It follows that group operations restricted to that sub
span normal representations of the Poincare´ and super-Poincare´ algebras. Thus it might be pos
sible to start with a problematic theory and dimensionally reduce it to a well-defined one.

D. Nilpotent light-cone translations

We have seen that CSRs necessarily contain massless states of unbounded spins re
finite boosts, raising many objections for their use in the description of pointlike objects. O
other hand, the extension of Poincare´ invariance to supersymmetry introduces nilpotent Gra
mann variables, which suggests the construction of the light-cone translations out of these
mann parameters. The translations would be nilpotent, and therefore generate a finite num
helicities with finite boosts.

In (311)-dimensions, we need two complex Grassmann variables,u1 , u2 , in order to build
an SO~2! vector. We set

T11 iT25& z̄p1u1u2 , T12 iT25&zp1ū1ū2 , ~62!

wherez is a complex variable, and we have added the appropriate power ofp1 to ensure proper
commutation withM 12. S12 now becomes

Ŝ12[S121 1
2 ~ua]a2 ūa]̄a!, ~63!

and the Poincare´ Casimir operator is now a nilpotent Grassmann number,

W25WmWm522uzu2~p1!2u1u2ū1ū2 . ~64!

With two Grassmann variables, we can construct two supercharges, corresponding toN52 super-
symmetry. The kinematic supersymmetries are unaltered

Q1
a 5

]

]ua

1
1

&
p1ūa ; Q1

a†5
]

]ūa

1
1

&
p1ua , ~65!

wherea51,2. However, the light-cone translations no longer commute with these superch
To restore the super-Poincare´ algebra, the dynamic supersymmetries must be altered to the
form

Q 2
a 5

p

p1 Q 1
a 2 i z̄eabub , Q 2

a†5
p̄

p1 Q 1
a†1 izeabūb , ~66!

which ensures the commutation relations ofQ1
a with the boostsM 2 i . The resulting supersymme

try algebra,

$Q1
a ,Q2

b %5 i eabz̄, $Q1
a† ,Q2

b†%52 i eabz, ~67!

acquires central charges, even though we are in a massless representation.
This leads to zero or negative norm states. The positive norm states are of the formu¯&, and

Q 1
a†u¯&, andQ 1

1†Q 1
2†u¯&, whereu¯& is annihilated byQ1

a . However, with central charges, i
the frame where onlyp1Þ0,

^¯uQ1
1 Q2

2 u¯&5 iz^¯u¯&, ~68!

and a similar argument with 1,2 interchanged, which shows that the statesQ2
a u0& do not vanish.

Yet from
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$Q2
a ,Q2

b†%50, ~69!

their norms must satisfy

uQ2
a u¯&u21uQ2

a†u¯&u250, ~70!

for a51,2, implying that one is negative, or both are zero. This reproduces general argum13

based on the absence of negative or zero norm states, which show that central charges are
to massive representations. In the frame where onlyp1Þ0, the dynamic generators of massle
supersymmetry anticommute with one another. If they do not, negative or zero-norm stat
generated.

This construction does not seem to generalize to odd dimensions. We have shown this
itly in 11 dimensions by starting withTW quadratic in the Grassmann numbers. There a quad
product of a Grassmann spinor transforms as two- and three-forms, so that to make a vec
need somec-number tensors, either a one- or two-form, but the commutation with the superc
does not have the right form.

On the other hand, the construction in (911)-dimensions is straighforward. We consider tw
supercharges

Q1
(1)5

]

]u
1

1

&
p1u; Q1

(2)5
]

]h
1

1

&
p1h,

whereu;8s , h;8s8 . We take the light-cone translation vector to be

Ti5 ip1zug̃ ih;8v , z real,

so that this corresponds to type IIA supersymmetry. The dynamic boosts are

S2 i5 izug̃ ih2
pj

p1 Ŝi j 2
pi

p1 S12,

with

Ŝi j 5Si j 2
i

2 S ug̃ i j
]

]u
1hg̃ i j

]

]h D , and S1252
i

2 S u
]

]u
1h

]

]h D .

The dynamic supercharges are now

Q 2
(2)52

ipi

&p1
g̃ iQ 1

(2)1 i&zu,

Q 2
(1)52

ipi

&p1
g̃ iQ 1

(1)2 i&zh.

The resulting supersymmetry algebra now includes central charge

$Q 1
(1) ,Q 2

(2)%52$Q1
(2) ,Q2

(1)%5 i&z.

We have seen that our construction leads to supersymmetry but the representations nec
contain negative and zero-norm states. Although it is interesting to note that central charge
naturally whenever the light-cone translations are built out of the Grassmann variables, th
resentations contain negative and zero-norm states; at best they could be used as ghost
sators of some unknown theory.
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IV. CONCLUSION

In this article, we considered nonzero light-cone translations to construct the continuou
representations of both Poincare´ and super-Poincare´ algebra. We started with the Poincare´ algebra
in four space–time dimensions and generalized it to higher dimensions. The light-cone tran
vector, TW , is represented by spherical harmonics in (d22)-dimensions for the light-cone little
group SO(d22). We find that the states can be represented byp1, the lengthJ and (d23)
number of angles of the SO(d22) spherical harmonics, and the Dynkin labels (a1 ,...,ar) of
SO(d23) the short little group, withr being the rank. There is one CSR for each representa
(a1 ,...,ar).

If TW is nilpotent, a finite number of states are generated by the light-cone boost, inste
infinite number of states, but the resulting CSR contains zero or negative norm states,
supersymmetric extension~in four and ten dimensions! has a central charge. The nilpotent co
struction ofTi in higher dimensions is not so evident. These CSRs may be useful in conjun
with theories where the invariances force overcounting, as in ghost states in gauge theorie
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An algebraic routine for the evaluation of analytical expressions for isoscalar fac-
tors ~ISFs! of Sf.Sf 21 is formulated based on the linear equation method~LEM!
and the analytical continuation of the rankf . As examples, ISFs ofSf.Sf 21 for
the coupling @ f 21,1#•@ f 21,1#, @ f 21,1#•@ f 22,2#, @ f 22,1,1#•@ f 22,1,1# are
tabulated. The results demonstrate that the number of ISF tables can be greatly
reduced compared with corresponding numerical results produced using other
methods. ©2002 American Institute of Physics.@DOI: 10.1063/1.1517169#

I. INTRODUCTION

Clebsch–Gordan Coefficients~CGCs! of the symmetric groupsSf are very important. First of
all, by definition, they are transformation coefficients between uncoupled basis vectors o
irreducible representations~irreps! and a coupled inner product irrep of those two irreps.1 Next, it
has been shown2–5 that the CGCs ofSf can be used to evaluate coupling coefficients for
U(mn).U(m)3U(n), SU(mn).SU(m)3SU(n) coefficients of fractional parentage~CFP!,
and so on, due to the Schur–Weyl duality relation between the symmetric groupSf and the unitary
groupU(n).

There are many different ways to evaluate the CGCs ofSf .6–11 Vanagas studied an extensio
of the tensor algebraic approach to the symmetric groups.6 In this approach, one- and two-bod
operators are expressed in terms of irreducible tensor operators of symmetric groups. Hen
Wigner–Racah tensor operator technique can be applied for evaluating matrix elements
operators with CGCs and Racah coefficients ofSf . Analytical expressions of the isoscalar facto
~ISFs! for the inner product@ f 21#•@ f 21# were derived based on this method. However, t
approach is not practical for deriving analytical expressions of other ISFs due to the fact th
order of the symmetric groupSf increases dramatically withf and more complex Young shape
As a consequence, numerical algorithms have been developed based on various routinef
<6. The Schindler and Mirman method for computing the CGCs ofSf is based on the fact that th
CG vectors ofSf are the simultaneous eigenvectors of the two-cycle class operators
subgroups.10,11 Chen et al. proposed the eigenfunction method,7,8 and pointed out that the CG
vectors ofSf can be much more easily obtained by diagonalizing a single matrix rather tha
diagonalizing simultaneously thef 21 representation matrices of thef 21 two-cycle class opera
tors used by Schindler and Mirman. Based on these considerations, two sets of tables of C
Sf for f <6 have been published; one was generated using the Schindler and Mirman algor11

while another was produced by Chenet al. based on the eigenfunction method.7,8 Very recently,
ISFs ofSf.Sf 21 for f <6 have been calculated12 based on Hamermesh’s recursion relation.1
62960022-2488/2002/43(12)/6296/11/$19.00 © 2002 American Institute of Physics
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CGCs or ISFs of the symmetric groups calculated by any of these methods quickly be
intractable with increasing rankf . Furthermore, these methods only yield CGCs and ISFs fo
specific f , implying the need for a large number of tables. But, upon close examination o
results one finds that many of the tables have common structures, suggesting that an an
continuation in the rankf may be possible.

In this paper, the linear equation method~LEM! is used to evaluate ISFs ofSf.Sf 21 . The
LEM has proven to be an effective method for dealing with coupling and recoupling coeffic
of Hecke, Brauer, and Birman–Wenzl algebras in analytical form.13–17 In Ref. 17, tensor produc
reduction coefficients of Hecke algebrasH f(q) are also discussed within the LEM framewor
The tensor product reduction coefficients reduce to CGCs ofSf whenq→1. In Sec. II, the LEM
for evaluating ISFs ofSf.Sf 21 will be outlined. Analytical expressions of ISFs ofSf.Sf 21 for
the coupling@ f 21,1#•@ f 21,1#, @ f 21,1#•@ f 22,2#, @ f 22,1,1#•@ f 22,1,1# are tabulated in Sec
III.

II. THE LINEAR EQUATION METHOD

The symmetric groupSf can be defined byf 21 generators$gi ; i 51,2,...,f 21%, which are
nothing but adjacent permutations that satisfy the following relations:

gigi 11gi5gi 11gigi 11 ,

gigj5gjgi for u i 2 j u>2, ~1!

and the constraint

gi
251. ~2!

Consider two symmetric groups of the same rankSf
(k) , k51,2. The inner productSf

(1)
•Sf

(2) can be
defined in terms of the generators ofgi

(k)PSf
(k) with

Gi5gi
(1)gi

(2) PSf
(1)
•Sf

(2) , ~3!

where i 51,2,...,f 21. It can be verified easily that the new generatorsGi with i 51,2,...,f 21
satisfy ~1! and ~2!. Therefore, the$Gi% generate the symmetric groupSf .

The reduction, or CG series of the symmetric group, is designated

@n1#•@n2#5(
n

$n1n2n%@n#, ~4!

where@n1# and @n2# are irreps ofSf
(1) andSf

(2) , respectively,@n# is an irrep ofSf , and$n1n2n%
is multiplicity of @n# in the reduction.

Let uYmk

[nk]
& with k51, 2 be basis vectors of the symmetric groupsSf

k . Then, uncoupled basi

vectors ofSf
1
•Sf

2 can be denoted as

uYm1

[n1]
&uYm2

[n2]
&, ~5!

whereYm
[n] denotes a standard Young tableau and theuYm

[n]& orthogonal basis vectors, that is, th
uYm

[n]& satisfy ^Ym
[n] uYm8

[n]&5dmm8 , @n#[@n1n2¯n f # with n1>n2>¯>n f and ( in i5 f . Here, f
denotes an irrep ofSf , and the Yamanouchi basis@n#m operates on the indices of the basis vect
in the so-called decreasing page order of the Yamanouchi symbol.13 There exist unitary transfor
mations between the uncoupled basis vectors~5! and basis vectors for an irrep@n# of Sf , namely

uYm
[n] ;t&5 (

m1m2

C[n1]m1 ;[n2]m2

[n]m;t uYm1

[n1]
&uYm2

[n2]
&, ~6!
                                                                                                                



-

e

is
oup

r

6298 J. Math. Phys., Vol. 43, No. 12, December 2002 Dai, Pan, and Draayer

                    
where t is a multiplicity label needed in the decompositionSf
(1)
•Sf

(2)↓Sf . The coefficients
C[n1]m1 ;[n2]m2

[n]m;t appearing in~6! are the CGCs ofSf
(1)
•Sf

(2)↓Sf . The CGCs satisfy unitary condi

tions

(
m1m2

C[n1]m1 ;[n2]m2

[n]m;t C[n1]m1 ;[n2]m2

[n8]m8;t8 5dnn8dmm8dtt8 , ~7a!

(
mt

C[n1]m1 ;[n2]m2

[n]m;t C[n1]m
18 ;[n2]m

28
[n]m;t

5dm1m
18
dm2m

28
, ~7b!

and the following symmetry property:

C[n1]m1 ;[n2]m2

[n]m;t 5e~n1n2n!C[n2]m2 ;[n1]m1

[n]m;t , ~8!

wheree(n1n2n) is a phase factor that will be determined later.
We can use the linear equation method~LEM!,17 i.e., the intertwining relations among th

CGCs derived from generators ofSf , to evaluate the CGCs ofSf•Sf↓Sf . Let giYm
[n] be the Young

tableau obtained by interchanging the numbersi and i 11 in Ym
[n] . It is understood that if the

resultant tableau is not a standard one, the corresponding basis vectorugiYm
[n]& is set to zero. First

of all, the results of generators$gi
(k) , i 51,2,...,f 21; k51,2% acting on the uncoupled bas

vectorsuYm1

[n1]
&uYm2

[n2]
& can be known directly from the standard results of the symmetric gr

given by

gi uYm
[n]&5

1

di
uYm

[n]&1S ~di11!~di21!

di
2 D 1/2

u~giYm
[n] !&, ~9!

wheredi is the axial distance from the boxi to the box i 11 in the Young tableauYm
[l] with

movement upward and to the right being counted as positive.
Applying Gi5gi

(1)gi
(2) with i 51,2,...,f 21 to ~6!, the left-hand side of~6! becomes

(
m8;m18m28

~Gi !m8m
[n] C[n1]m

18 ;[n2]m
28

[n]m8;t uY
m

18

[n1]
&uY

m
28

[n2]
&, ~10!

where (Gi)m8m is a matrix element ofGi in the standard basis given by~9!. On the other hand, the
right-hand side of~6! becomes

(
m1m2m18m28

C[n1]m1 ;[n2]m2

[n]m;t ~gi
(1)!m

18m1
~gi

(2)!m
28m2

uY
m

18

[n1]
&uY

m
28

[n2]
&, ~11!

where (gi
(k))m

i8mi
with k51,2 are matrix elements ofgi

(k) in the standard basis vectors ofSf
(k) ,

which can also be obtained by using Eq.~9!. Combining~10! and ~11!, we can establish linea
relations among the CGCsC[n1]m1 ;[n2]m2

[n]m;t

(
m8

~Gi !m8m
[n] C[n1]m

18 ;[n2]m
28

[n]m8;t
5 (

m1m2

C[n1]m1 ;[n2]m2

[n]m;t ~gi
(1)!m

18m1
~gi

(2)!m
28m2

. ~12!

These relations, together with unitary conditions~7!, are sufficient to determine theC[n1]m1 ;[n2]m2

[n]m;t

up to an overall phase factor, which can be fixed by requiring that the CGCs with smallestm and
m1 be positive

~C[n1]m1 ;[n2]m2

[n]m;t !u(m,m1)5min&0, ~13!
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where (m,m1)5min means taking the indexm as small as possible followed by takingm1 as
small as possible for which the CGCC[n1]m1 ;[n2]m2

[n]m;t is nonzero. Then, it can easily be seen tha

e~n1n2n!5Sign~~C[n1]m1 ;[n2]m2

[n]m;t !u(m2 ,m1)5min!. ~14!

Using this method, one can easily deduce the following simple results.

~1! If both @n1# and @n2# are symmetric,@n1#5@n2#5@n#,

C[n][ n]
[n] 51, ~15a!

~2! If @n1# is symmetric, while@n2# is neither symmetric nor antisymmetric

C[n1][ n2]m2

[n]m 5dnn2
dmm2

, ~15b!

~3! If @n1# is antisymmetric, while@n2# is symmetric

C[n1][ n2]
[n] 5dnn1

. ~15c!

The LEM stated above, however, can only be used to evaluate CGCs ofSf for specific f .
According to the Racah factorization lemma,18,19 the CGCs ofSf can be written as

C[n1]m1 ;[n2]m2

[n] tm 5(
t8

K @n1# @n2#

@n18# @n28#
U t@n#
t8@n8#L C[n

18]m
18 ;[n

28]m
28

t8[n8]m8 , ~16!

where@n18#, @n28#, and@n8#, are possible irreps occurring in the reductions@n1#↓@n18#, @n2#↓@n28#,
and @n#↓@n8# of Sf.Sf 21 , respectively,

K @n1# @n2#

@n18# @n28#
U t@n#
t8@n8#L

is the ISF ofSf.Sf 21 andC[n
18]m

18 ;[n
28]m

28
t8[n8]m8 is the CGCs ofSf 21 , similar toSf , @n18#m18 , @n28#m28 ,

@n8#m8 denote Yamanouchi basis ofSf 21 , andt8 is the multiplicity label for the inner produc
@n18#•@n28#↓@n8#. In the multiplicity-free case, the multiplicity labelst andt8 are redundant; one
simply gets

C[n1]m1 ;[n2]m2

[n]m 5K @n1# @n2#

@n18# @n28#
U @n#

@n8#L C[n
18]m

18 ;[n
28]m

28
[n8]m8 . ~17!

The ISFs ofSf.Sf 21 satisfy the unitary conditions

(
n18n28t8

K @n1# @n2#

@n18# @n28#
U t@n#
t8@n8#L K @n1# @n2#

@n18# @n28#
U t̄@ n̄ #
t8@n8#L 5dnn̄dtt̄ , ~18a!

(
tn

K @n1# @n2#

@n18# @n28#
U t@n#
t8@n8#L K @n1# @n2#

@ n̄18# @ n̄28#
U t@n#
t̄8@n8#L 5dn̄

18n
18
dn̄

28n
28
dt8 t̄8 . ~18b!

Our method for evaluating analytical expressions of the ISFs ofSf.Sf 21 can be summarized
as follows. First, we use linear relations among the CGCs ofSf provided by~12! for inner product
@n1#•@n2#↓@n# with smallestf , as long as the irreps@n1#, @n2#, and@n# exist. For example, irreps
@ f #, @ f 21,1# exist whenf >2, while irrep@ f 22,1,1# only exists whenf >3, and@ f 22,2# only
exists whenf >4. Then, in the multiplicity-free cases, we use~17! together with~12! to get linear
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relations of the corresponding ISFs ofSf.Sf 21 . The ISFs ofSf.Sf 21 are f -dependent. One can
replace the ISFs ofSf.Sf 21 for the specificf by those with generalf . Actually, it can be shown
that the relations among the ISFs of the same coupling are the same for anyf value. Therefore,
one can get analytical expressions for ISFs ofSf.Sf 21 from those for specificf . To do this, one
has to use analytical expressions of the axial distancedf 21 in ~12!. Values ofdf 21 for some irreps
with different reductions ofSf.Sf 21 are shown in Fig. 1. Finally, one can use the linear relati
obtained together with the unitary condition

(
n18n28

K @n1# @n2#

@n18# @n28#
U @n#

@n8#L 2

51, ~19!

to derive all ISFs involved in these linear relations up to an overall phase. The phase conv
used here is consistent with that chosen for the CGCs ofSf shown in Ref. 20. We will use the
symbol@n#p to denote@n#@n8# for the reduction@n#↓@n8# of Sf.Sf 21 , wherep denotes the las
number f in the pth row of the Young diagram@n#. For example,@ f 21,1#@ f 21#[@ f 21,1#2 ,
@ f 21,1#@ f 22,1#[@ f 21,1#1 , etc. This labeling scheme greatly simplifies the final results. In
following, we give an example to show how the method works.

A. Example 1. Deriving ISFs of Sf¤SfÀ1 for the inner product †fÀ1,1‡"†fÀ1,1‡`†f ‡1

In this case, we need to work withf 53 because there are two reductions inSf.Sf 21 for irrep
@ f 21,1#, namely @ f 21,1#↓@ f 22,1# and @ f 21#, and the smallestf allowed for @ f 22,1# is f
>3. Hence, we need to consider the following expansion:

u@3#1&5 (
m1m2

Cm1m2

[3] 1 uYm1

[21]Ym2

[21]&. ~20a!

Step 1. Acting with G15g1
(1)g1

(2) on ~20a!, one gets

u@3#1&5c1uY1
[21]Y1

[21]&1c2uY2
[21]Y2

[21]&. ~20b!

Other CGCs are obviously zero in this case according to the linear relations obtained fro
results of theG1 action.

Step 2. We need first to extend@3#→@ f #, and@21#→@ f 21,1#. Hence,~20b! becomes

u@ f #1&5c1u@ f 21,1#1@ f 21,1#1&1c2u@ f 21,1#2@ f 21,1#2&. ~20c!

Step 3. By acting withG2→Gf 21 on ~20c!, the left-hand side of~20c! is

FIG. 1. Axial distancedf 21 for @ f 21,1# and@ f 22,2# with different possible locations of the final two numbersf 21 and
f in the corresponding Young tableau.
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c1u@ f 21,1#1@ f 21,1#1&1c2u@ f 21,1#2@ f 21,1#2&, ~20d!

while the right-hand side of~20c! becomes

c1S 1

~ f 21!2 u@ f 21,1#1@ f 21,1#1&1
f ~ f 22!

~ f 21!2 u@ f 21,1#2@ f 21,1#2&

1
Af ~ f 22!

~ f 21!2 ~ u@ f 21,1#1@ f 21,1#2&1u@ f 21,1#2@ f 21,1#1& D
1c2S 1

~ f 21!2 u@ f 21,1#2@ f 21,1#2&1
f ~ f 22!

~ f 21!2 u@ f 21,1#1@ f 21,1#1&

2
Af ~ f 22!

~ f 21!2 ~ u@ f 21,1#1@ f 21,1#2&1u@ f 21,1#2@ f 21,1#1& D . ~20e!

Combining~20d! and ~20e!, we obtain

c15c2 . ~20f!

Because of analyticity,~20f! should hold forf >3. Hence, for generalf , ~20c! should be written as

u@ f #1&5Cf u@ f 21,1#2@ f 21,1#2&1Cf (
m1m2

uYm1

[ f 21,1]1Ym2

[ f 21,1]1&

5Cf u@ f 21,1#2@ f 21,1#2&1
Cf

Cf 21
~ u@ f 21,1#1@ f 21,1#1&)

[ f ] 1, ~20g!

where

Cf5c15^@ f 21,1#2@ f 21,1#2u@ f #1&, c25
Cf

Cf 21
5^@ f 21,1#1@ f 21,1#1u@ f #1& ~21!

are the ISFs involved in the coupling.
Step 4. Finally, using the unitary condition~19!, we obtain the recursion relation forCf

2 with

Cf
25

Cf 21
2

Cf 21
2 11

. ~22!

Starting withC2
251, we finally get

^@ f 21,1#2@ f 21,1#2u@ f #1&51A 1

f 21
, ^@ f 21,1#1@ f 21,1#1u@ f #1&51Af 22

f 21
, ~23!

where the overall phase is fixed withCf.0 which is consistent with the phase convention for t
CGCs ofSf set in Ref. 20. ISFs of@ f 21,1#•@ f 21,1#↓@ f 21,1#2 can be obtained by the unitar
condition

(
[n] p

^@n1#p1
@n2#p2

u@n#p&
251 ~24!

or by the similar procedure. The results are shown in Table III.
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B. Example 2. Deriving ISFs of Sf¤SfÀ1 for the inner product †fÀ1,1‡"†fÀ1,1‡`†f
À1,1‡1

In this example, we choose to work withf 54. After acting withG15g1
(1)g1

(2) on an expansion
similar to ~20a!, we get

U124
3 L 5a1U124

3 L U123
4 L 1a2U123

4 L U124
3 L 1a3S 2A 1

f 22
U134

2 L U134
2 L 1Af 23

f 22
U124

3 L U124
3 L D ,

~25!

whereC[21]1[21]1

[21]1 and C[21]2[21]2

[21]1 have been replaced byC[ f 21,1]1[ f 21,1]1

[ f 21,1]1 and C[ f 21,1]2[ f 21,1]2

[ f 21,1]1 , re-

spectively, of which the analytical expressions derived in the example 1 are used, and

a15^@ f 21,1#1@ f 21,1#2u@ f 21,1#1&, a25^@ f 21,1#2@ f 21,1#1u@ f 21,1#1&,

a35^@ f 21,1#1@ f 21,1#1u@ f 21,1#1& ~26!

are the corresponding ISFs. Similarly, we have

U123
4 L 5Af 22

f 21
U123

4 L U123
4 L 2A 1

~ f 21!~ f 22!
U124

3 L U124
3 L 2A f 23

~ f 21!~ f 22!
U134

2 L U134
2 L .

~27!

By acting withG3→Gf 215gf 21
(1) gf 21

(2) on ~25!, the left-hand side of~25! becomes

TABLE I. Some inner product reduction rules ofSf .

@ f 21,1#•@ f 21,1#5@ f #1@ f 21,1#1@ f 22,1,1#1@ f 22,2#
@ f 21,1#•@ f 22,2#5@ f 21,1#1@ f 22,2#1@ f 22,1,1#

1@ f 23,3#1@ f 23,2,1#
@ f 22,1,1#•@ f 21,1#5@ f 21,1#1@ f 22,2#1@ f 22,1,1#

1@ f 23,2,1#1@ f 23,13#
@ f 22,2#•@ f 22,2#5@ f #1@ f 21,1#12@ f 22,2#1@ f 22,1,1#

1@ f 23,3#12@ f 23,2,1#1@ f 23,13#
1@ f 24,4#1@ f 24,3,1#1@ f 24,2,2#

@ f 22,1,1#•@ f 22,2#5@ f 21,1#1@ f 22,2#12@ f 22,1,1#
1@ f 23,3#12@ f 23,2,1#1@ f 23,13#
1@ f 24,3,1#1@ f 24,2,12#

@ f 22,1,1#•@ f 22,1,1#5@ f #1@ f 21,1#12@ f 22,2#1@ f 22,1,1#
1@ f 23,3#12@ f 23,2,1#1@ f 23,13#
1@ f 24,2,2#1@ f 24,2,12#1@ f 24,14#

TABLE II. Dimensions of some irreps ofSf .

dim(@ f #)51
dim(@ f 21,1#)5 f 21
dim(@ f 22,2#)5 f ( f 23)/2
dim(@ f 22,12#)5( f 21)(f 22)/2
dim(@ f 23,2,1#)5 f ( f 22)(f 24)/3
dim(@ f 23,13#)5( f 21)(f 22)(f 23)/6
dim(@ f 23,3#)5 f ( f 21)(f 25)/6
dim(@ f 24,4#)5 f ( f 21)(f 22)(f 27)/24
dim(@ f 24,2,12#)5 f ( f 22)(f 23)(f 25)/8
dim(@ f 24,22#)5 f ( f 21)(f 24)(f 25)/12
dim(@ f 24,3,1#)5 f ( f 21)(f 23)(f 26)/8
dim(@ f 24,14#)5( f 21)(f 22)(f 23)(f 24)/24
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Gf 21U124
3 L 5

1

f 21
U124

3 L 1Af ~ f 22!

~ f 21!2 U123
4 L , ~28!

while the right-hand side of~25! becomes

S 2
a1

~ f 21!2 1a2

f ~ f 22!

~ f 21!2 1a3Af ~ f 23!

~ f 21!4D U124
3 L U123

4 L
1S a1

f ~ f 22!

~ f 21!2 2
a2

~ f 21!2 1a3Af ~ f 23!

~ f 21!4D U123
4 L U124

3 L
1S 2a1Af ~ f 22!

~ f 21!42a2Af ~ f 22!

~ f 21!41a3

Af ~ f 22!~ f 23!

~ f 21!2 D U123
4 L U123

4 L
1S a1Af ~ f 22!

~ f 21!41a2Af ~ f 22!

~ f 21!41
a3

~ f 21!2Af 23

f 22D U124
3 L U124

3 L 2a3A 1

f 22
U134

2 L U134
2 L .

~29!

Combining~25! and ~27!–~29!, we get

a15a252A 1

~ f 21!~ f 22!
, a35A f ~ f 23!

~ f 21!~ f 22!
. ~30!

Using this procedure, one can obtain all the ISFs ofSf.Sf 21 with smallest f as long as the
couplings and the reductions exist with the specificf value. In the evaluation, the unitary cond
tion for the ISFs given in~24! and

(
p1p2

^@n1#p1
@n2#p2

u@n#p&
251 ~31!

are always helpful. Some examples will be given in the next section.

TABLE III. ISFs of @ f 21,1#•@ f 21,1#↓@ f #1@ f 21,1#.

@ f#1 @ f21,1#2

@ f 21,1#2@ f 21,1#2 A 1

f 21
Af 22

f 21

@ f 21,1#1@ f 21,1#1
Af 22

f 21
2A 1

f 21

TABLE IV. ISFs of @ f 21,1#•@ f 21,1#↓@ f 21,1#1@ f 22,2#1@ f 22,1,1#.

@ f21,1#1 @ f22,2#2 @ f22,1,1#3

@ f 21,1#2@ f 21,1#1 2A 1

~ f 21!~ f 22!
A f ~ f 23!

2~ f 21!~ f 22!
A1

2

@ f 21,1#1@ f 21,1#2 2A 1

~ f 21!~ f 22!
A f ~ f 23!

2~ f 21!~ f 22!
2A1

2

@ f 21,1#1@ f 21,1#1 A f ~ f 23!

~ f 21!~ f 22!
A 2

~ f 21!~ f 22!
0
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TABLE V. ISFs of @ f 21,1#•@ f 22,1,1#↓@ f 21,1#1@ f 22,2#1@ f 22,1,1#.

@ f 21,1#2 @ f 22,2#2 @ f 22,1,1#3

@ f 21,1#2@ f 22,1,1#3 A 1

f 22
A f ~ f 23!

2~ f 21!~ f 22!
A f 23

2~ f 21!

@ f 21,1#1@ f 22,1,1#3 0 2A f 22

2~ f 21!
A f

2~ f 21!

@ f 21,1#1@ f 22,1,1#1 2Af 23

f 22
A f

2~ f 21!~ f 22!
A 1

2~ f 21!

TABLE VI. ISFs of @ f 21,1#•@ f 22,1,1#↓@ f 22,2#1@ f 23,2,1#.

@ f 22,2#1 @ f 23,2,1#3

@ f 21,1#1@ f 22,1,1#3 2A 1

~ f 21!2 Af ~ f 22!

~ f 21!2

@ f 21,1#1@ f 22,1,1#1
2Af ~ f 22!

~ f 21!2 2A 1

~ f 21!2

TABLE VII. ISFs of @ f 21,1#•@ f 22,1,1#↓@ f 22,1,1#1@ f 23,2,1#1@ f
23,13#.

@ f 22,1,1#1 @ f 23,2,1#2 @ f 23,13#3

@ f 21,1#2@ f 22,1,1#1 2A f 23

2~ f 21!
A f ~ f 23!

2~ f 21!~ f 22!
A 1

f 22

@ f 21,1#1@ f 22,1,1#3 2A 1

2~ f 21!
A f

2~ f 21!~ f 22!
2Af 23

f 22

@ f 21,1#1@ f 22,1,1#1 2A f

2~ f 21!
2A f 22

2~ f 21!
0

TABLE VIII. ISFs of @ f 21,1#•@ f 22,2#↓@ f 21,1#1@ f 22,2#1@ f 22,1,1#.

@ f 21,1#1 @ f 22,2#2 @ f 22,1,1#3

@ f 21,1#2@ f 22,2#2 A 1

f 22
A f 24

2~ f 22!
A1

2

@ f 21,1#1@ f 22,2#2 A 4

f ~ f 22!~ f 23!
A f ~ f 24!

2~ f 22!~ f 23!
2A ~ f 22!2

2 f ~ f 23!

@ f 21,1#1@ f 22,2#1 A~ f 21!2~ f 24!

f ~ f 22!~ f 23!
2A f

2~ f 22!~ f 23!
2A f 24

2 f ~ f 23!
                                                                                                                



e

inner
he
oted

to

tion

scalar

-
other

6305J. Math. Phys., Vol. 43, No. 12, December 2002 Analytical expressions for isoscalar factors

                    
III. SOME MULTIPLICITY-FREE ISFS OF Sf¤SfÀ1

In this section, ISFs ofSf.Sf 21 for the inner products@ f 21,1#•@ f 21,1#, @ f 21,1#•@ f
22,2#, and @ f 22,1,1#•@ f 21,1#, all of which are multiplicity-free, will be tabulated using th
procedure outlined in Sec. II. Actually, we do not need the inner product reduction rule of~4! in
the calculation because the LEM will automatically generate the product irreps. Some
product reduction rules ofSf are listed in Table I. One can check their validity by using t
dimension formulas shown in Table II. The ISFs are tabulated in Tables III–IX. It should be n
that Table III should be evaluated withf 53 and thef -continuation by the LEM; Tables IV and V
should be evaluated withf 54; Tables VI–IX with f 55; and Table X withf 56. The phase is
chosen to be consistent with that of the CGCs ofSf given in Ref. 20. It is clear that one needs
work with higher rank cases for most other irreps. For example, one needs to work withf 57 for
the inner product reduction@ f 22,2#•@ f 22,2#↓@ f 24,3,1#, and with f 58 for @ f 22,2#•@ f
22,2#↓@ f 24,4#. For any f >3, one can always derive some ISFs ofSf.Sf 21 analytically by
using the LEM outlined in Sec. II. Some trivial ISFs involved in the inner product reduc
considered are

^@ f 21,1#1@ f 21,1#1u@ f 22,2#1&51, ^@ f 21,1#1@ f 21,1#1u@ f 22,1,1#1&51,

^@ f 21,1#1@ f 22,2#2u@ f 21,1#2&51, ^@ f 21,1#1@ f 22,2#1u@ f 23,3#1&51,

^@ f 21,1#1@ f 22,2#1u@ f 23,2,1#1&51, ^@ f 22,1,1#3@ f 21,1#1u@ f 21,1#2&521,

^@ f 22,1,1#1@ f 21,1#1u@ f 23,2,1#1&51, ^@ f 22,1,1#1@ f 21,1#1u@ f 23,1,1#1&51.

IV. CONCLUSIONS

In this paper, an algebraic routine for the evaluation of analytical expressions for iso
factors ~ISFs! of Sf.Sf 21 is formulated based on the linear equation method~LEM! and the
analytical continuation of the rankf . As examples, ISFs ofSf.Sf 21 for the coupling@ f 21,1#
•@ f 21,1#, @ f 21,1#•@ f 22,2# and@ f 22,1,1#•@ f 22,1,1# are tabulated. It is obvious that the num
ber of ISF tables is greatly reduced in comparison with numerical results calculated using

TABLE IX. ISFs of @ f 21,1#•@ f 22,2#↓@ f 22,1,1#1@ f 23,2,1#.

@ f 22,1,1#1 @ f 22,2#2

@ f 21,1#1@ f 22,2#2 2A 1

~ f 23!2 A~ f 22!~ f 24!

~ f 23!2

@ f 21,1#1@ f 22,2#1 A~ f 22!~ f 24!

~ f 23!2 A 1

~ f 23!2

TABLE X. @ f 21,1#•@ f 22,2#↓@ f 22,2#1@ f 23,3#1@ f 23,2,1#.

@ f 22,2#1 @ f 23,3#2 @ f 23,2,1#3

@ f 21,1#2@ f 22,2#1 2A 2~ f 22!

~ f 21!2( f 24)
A f ~ f 25!

3~ f 21!~ f 24!
A2 f ~ f 22!

3~ f 21!2

@ f 21,1#1@ f 22,2#2 2A f

~ f 21!~ f 23!~ f 24!
A 2~ f 25!

3~ f 23!~ f 24!
2A ~ f 22!2

3~ f 21!~ f 23!

@ f 21,1#1@ f 22,2#1 A f ~ f 25!~ f 22!2

~ f 21!2~ f 23!~ f 24!
A 8~ f 22!

3~ f 21!~ f 23!~ f 24!
A f 25

3~ f 21!2( f 23)
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methods. Though the method is only illustrated for multiplicity-free cases, the method can a
applied to cases with multiplicity. Similar to the LEM applied to the Hecke algebra case,13 the
same linear relation given by~12! hold for ISFs with different multiplicity labels in the case wit
multiplicity. The ISFs ofSf.Sf 21 with different multiplicity labels should be chosen to b
orthogonal to each other. Therefore, the solution to the ISFs ofSf.Sf 21 will not be unique and
depends on the phase convention and symmetry properties imposed on the ISFs.13,20However, one
can use the procedure with smallestf and f -continuation outlined in this paper to derive the IS
with multiplicity. It can be seen from Table I that the multiplicity case occurs forf >6. Hence, one
needs to work at least withf >6 for ISFs with multiplicity, which will be studied in our nex
paper.
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Using the frame formalism we determine some possible metrics and metric-
compatible connections on the noncommutative differential geometry of the real
quantum plane. By definition, a metric maps the tensor product of two 1-forms into
a ‘‘function’’ on the quantum plane. It is symmetric in a modified sense, namely in
the definition of symmetry one has to replace the permutator map with a deformed
map s fulfilling some suitable conditions. Correspondingly, also the definition of
the Hermitian conjugate of the tensor product of two 1-forms is modified~but
reduces to the standard one ifs coincides with the permutator!. The metric is real
with respect to such modified* -structure. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1517393#

I. INTRODUCTION AND NOTATION

It is an old idea1,2 that a noncommutative modification of the algebraic structure of spa
time could provide a regularization of the divergences of quantum field theory, because th
resentations of noncommutative ‘‘spaces’’ have a lattice-like structure. The main aim of non
mutative geometry3 is to endow such an algebra with additional structures~starting from a
differential calculus!, so as to build a bridge between the algebra and its ‘‘geometrical’’ inter
tation. Since there is no unique prescription how to do this, it is useful to test possible pre
tions first on simpler models.

In this paper we choose as a noncommutative space~time! algebra model the so-called re
quantum or Manin plane,4 and as a differential calculus upon it the so-called Wess–Zum
calculus.5,6 The latter is charaterized by the property that the relations defining the modu
1-forms are covariant under the action of the quantum groupSLq(2) and homogeneous in th
generators. We adopt the noncommutative geometry formalism of Refs. 7–11.

We start with a brief description of the latter. LetA be an algebra with differential calculu
$V* (A),d%3 @here,V* (A) denotes the algebra of differential forms onA and d the exterior
derivative acting on the latter# and suppose that the calculus has aframe,7,10 i.e., a basis of 1-forms
u i ( i 51,2,. . . ,n) which commutes with the elements of the algebra

u i f 5 f u i . ~1.1!

The relation

d f5u iei f ~1.2!
63070022-2488/2002/43(12)/6307/18/$19.00 © 2002 American Institute of Physics
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~with f PA) defines a set of derivationsei dual to u i , from which it follows that the module
structure ofV1(A) is given by

f dg5u i f eig, dg f5u i~eig! f .

We see that theA-bimoduleV1(A) is free of rankn as a left or right module. It can therefore b
identified with the direct sum

V1~A!5 %
1

n

A, ~1.3!

of n copies ofA. In this representationu i is given by the element of the direct sum with the u
in the i th position and zero elsewhere. We shall refer to the integern as the dimension of the
geometry.

The wedge productp in V* (A) fulfills relations of the form

u iu j[p~u i
^ Au j !5Pkl

i j uku l ~1.4!

~we omit the symbol∧ of the wedge product!, whereP is a projector

Pmn
i j Pkl

mn5Pkl
i j , ~1.5!

with entriesPkl
i j PZ(A). If in particular the wedge product is such that theu i anticommute, then

P is the antisymmetric projector

Pkl
i j 5 1

2 ~dk
i d l

j2dk
j d l

i !.

From ~1.3! it follows immediately that the algebra and its differential calculus are related
simple manner. Let∧P* be the exterior algebra overCn with the wedge product defined by~1.4!.
Then, with the identification~1.3! it follows that one can write

V* ~A!5A^ ∧P* . ~1.6!

Since the exterior derivative ofu i is a 2-form, it can necessarily be written as

du i52 1
2 Cjk

i u juk,

where, because of~1.4!, the structure elements can be chosen to satisfy the constraints

Cjk
i Plm

jk 5Clm
i .

It will also be convenient to introduce the quantities

Ckl
i j 5dk

i d l
j22Pkl

i j . ~1.7!

Then, from~1.5! we find that

Ckl
i j Cmn

kl 5dm
i dn

j . ~1.8!

For simplicity, we shall further assume that theei are inner derivations:ei f 5@l i , f #, l i

PA. From theu i we can construct a 1-form

u52l iu
i ~1.9!

in V1(A) which plays the role of a Dirac operator3
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d f52@u, f #. ~1.10!

One can show that from the general consistency of the differential calculus it follows that

2Pkl
i j l il j2Fkl

i l i2Kkl50, ~1.11!

for some array of elementsF jk
i ,KklPZ(A). In the cases which interest us here, the latter van

In order to consistently define a covariant derivative, we need to introduce8 a flip s, i.e., a
A-bilinear map

V1~A! ^ AV1~A!→
s

V1~A! ^ AV1~A!. ~1.12!

In the case of the De-Rham calculus on the commutative algebra of functions on an or
manifold, it reduces tos(v ^ Av8)5v8^ Av. In terms of the frame it is given bySkl

i j PZ(A),
defined by

s~u i
^ Au j !5Skl

i j uk
^ Au l .

A covariant derivative on the moduleV1(A) is a map

V1~A!→
D

V1~A! ^ AV1~A!, ~1.13!

satisfying both a left and a right Leibniz rule. We use the ordinary left Leibniz rule and defin
right Leibniz rule as

D~j f !5s~j ^ Ad f !1~Dj! f , ~1.14!

for arbitrary f PA andjPV1(A). The connection 1-formvk
i [v jk

i u j is defined by

Du i5vk
i

^ Auk. ~1.15!

We shall impose the condition

p+~s11!50, ~1.16!

so that the antisymmetric part of a symmetric tensor vanishes. This can be considere
condition on the product or on the flip. In ordinary geometry it is the definition ofp; a 2-form can
be considered as an antisymmetric tensor. Because of this condition the torsion is a bilinear11

The most general solution can be written in the form

11s5~12p!+t, ~1.17!

where t is an an arbitraryA-bilinear map. Suppose thatt is invertible. Then, because of th
identity

15p1~11s!+t21,

one can identify the second term on the right-hand side as the projection onto the symmet
of the tensor product. The choicet52 yields the values5122p. If t is not invertible there
arises the possibility that part of the tensor product is neither symmetric nor antisymm
Condition ~1.16! applied to the tensor productu i

^ Au j becomes

Plm
i j 1Shk

i j Plm
hk50. ~1.18!

If the flip is such that in~1.11! F jk
i 5Kkl50, one possible linear connection is
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v jk
i 5l l~Sjk

il 2d j
l dk

i !. ~1.19!

The corresponding connection 1-form is given by

vk
i 5l lSjk

il u j1dk
i u. ~1.20!

The curvature of the covariant derivativeD defined in~1.19! can be readily calculated. One find
the expression

1
2 Rjkl

i 5Srn
imSs j

npPkl
rslmlp . ~1.21!

This can also be written in the form

1
2 Rjkl

i 52Srn
imSs j

npSuv
rs Pkl

uvlmlp .

In complete analogy with the commutative case, a metricg can be defined as anA-bilinear,
nondegenerate map11

V1~A! ^ AV1~A!→
g

A, ~1.22!

and as such it can12 be used to define a ‘‘distance’’ between ‘‘points.’’ It is important to notice h
that the bilinearity is an alternative way of expressing locality. In ordinary differential geomet
j andh are 1-forms then the value ofg(j ^ h) at a given point depends only on the values ofj and
h at that point. Bilinearity

g~ f j ^ Ahh!5 f g~j ^ Ah! h ; f ,hPA,

is an exact expression of this fact. In general the algebra introduces a certain amount of
cality via its nontrivial commutation relations, and it is important to assure that all geom
quantities be just that nonlocal and not more. Without the bilinearity condition it is not possib
distinguish, for example, in ordinary space–time a metric which assigns a function to a vecto
in such a way that the value at a given point depends only on the vector at that point from
which is some sort of convolution over the entire manifold.

We define frame components of the metric by

gi j 5g~u i
^ Au j !.

They lie necessarily in the centerZ(A) of the algebra. The condition that~1.19! be metric-
compatible can be written as10

Sln
imgnpSmp

jk 5gi j d l
k . ~1.23!

As a way to remember this seemingly odd condition, introduce a ‘‘covariant derivative’’DiX
j of

a ‘‘vector’’ Xj . The covariant derivativeDi(X
jY) of the product ofXj by a ‘‘field’’ Y must then be

defined as

Di~XjY!5DiX
jY1Sim

jl XmDlY,

since there is a ‘‘flip’’ as the index on the derivation crosses the index on the first ‘‘vector.’’ If
apply this rule again toY5YkZ, with Yk also a vector andZ another field, we find

Di~XjYkZ!5Di~XjYk!Z1Sim
jl XmYpSlp

knDnZ.

Sincegjk is a ‘‘tensor,’’ the ‘‘crossing rule’’ is the same as forXjYk
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Di~gjkZ!5~Dig
jk!Z1Sim

jl gmpSlp
knDnZ.

Therefore,~1.23! is equivalent to the usual condition

Dig
jk50,

that the connection be compatible with the metric.
We shall require that the metric be symmetric in the sense

g+p50, ~1.24!

that it annihilates the 2-forms. This condition applied to the tensor productu i
^ Au j becomes

Plm
i j glm50. ~1.25!

Let us now briefly summarize the additional conditions which arise from the requireme
existence of* -structures. AssumeA is a * -algebra. If13,14 the * -structure ofA[V0(A) can be
extended to a* -structure ofV* (A), and

~d f !* 5d f* , ~1.26!

the differential calculus is said to be real. A sufficient condition for~1.26! to hold15 is that thel i

are anti-Hermitian~with respect to the* of A! and theu i are Hermitian@with respect to the
extension of* to V* (A)], so that the ‘‘Dirac operator’’u is anti-Hermitian.

To obtain a real covariant derivative it is necessary first of all that the flips satisfies a reality
constraint~see Ref. 15!, which takes the simple form

~Skl
j i !* Smn

lk 5dm
i dn

j , ~1.27!

if ( u i)* 5u i . Moreover, the connection 1-formvk
i and the flip s must satisfy a condition15

involving both, which we do not report here because it is automatically satisfied in the case
connection~1.19!. In order to define a real metric, one has to uses to impose the reality condition
of Ref. 15, which takes the simple form

Skl
i j gkl5~gji !* , ~1.28!

in the case of a real frame. This is a combination of a ‘‘twisted’’ symmetry condition and
ordinary condition of reality on a complex matrix. It can also be written as an ordinary cond
of symmetry and a twisted definition of reality. The maps is also involved15 in the reality
condition for the curvature or for the covariant derivative acting on tensor powers ofV1(A). The
latter implies the former, and takes the form of the braid equation

S12S23S125S23S12S23, ~1.29!

where

~S12!de f
abc

ªSde
abd f

c , ~S23!de f
abc

ªdd
aSe f

bc .

The ‘‘infinitesimal distance’’ds corresponding to the metricg is introduced through the
relation

ds25gi j u
i
^ Au j , ~1.30!

wheregi j PA are the matrix elements of the inverse matrix ofigi j i . Every representation ofA
yields a distance between ‘‘points’’ because of~1.6!. Let dt5j iu

iPV1(A) be an exact form,
which we can think of as an infinitesimal displacement along an axist, and suppose thatup& is a
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common eigenvector of all thej i : j i up&5 j̃ i up&. This would be the case, for example, if only on
of them is not equal to zero. We define the element of distanceds along the ‘‘coordinate’’t at the
stateup& by the equation

~ds!25^puds2up&5gi j j̃ i j̃ j .

Let k– be the length scale at which points become fuzzy andK21 the scale at which the curvatur
effects become important. The definition ofg which we have given is unambiguous but th
interpretation of the normudsu2 of an infinitesimal displacement as a distance can be only m
within the range

k–!udsu2!K21.

If the displacement is too small then the points are not defined; if it is too large then an in
must be taken. The second problem was solved by Leibniz/Newton; the first is a feature, not
of noncommutative geometry. We are especially interested in the regionudsu2. k– where the
noncommutative effects become of interest.

There exist other definitions of distance. One proposal16–18 uses the Dirac operator to defin
distance on the space of pure states. Several authors19,20 do not consider the bilinearity conditio
we have imposed as important and several21–27 consider the invariance under the coaction o
quantum group as essential.

It is sometimes convenient to write the metric as a sum

gi j 5gS
i j 1gA

i j ,

of a symmetric and an antisymmetric part~in the usual sense of the word!. The inverse matrix we
write as a sum

gi j 5h i j 1Bi j ,

of a symmetric and an antisymmetric term. We shall choose as normalization when possib
condition thath i j be the standard Minkowski or Euclidean form.

II. THE WESS–ZUMINO CALCULUS

The extended real quantum plane is the* -algebraA generated by Hermitian elements (xi)
5(x,y)

x* 5x y* 5y, ~2.1!

together with their inverses, fulfilling the relation

xy5q̃yx, ~2.2!

with uq̃u51 and qÞ61, as well as the usual relations between inverses. We call itextended
because in the original version4 the inversesx21,y21 were not included; the wordreal refers to
the * -structure~2.1!. The center ofA is trivial, Z(A)5C. We now show how the Wess–Zumin
calculus5 fits in the scheme described in the previous section. We define, forq̃4Þ1

l152e1

q̃4

q̃421
x22y2, l25e2

q̃2

q̃421
x22.
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There is an ambiguity in this definition due to the fact that the defining relations~2.2! are homo-
geneous and which we reduce to a sign:ea561. The extra minus is a ‘‘historical convenience
The important fact is that thela are singular in the limitq̃→1 and that they are anti-Hermitian
q̃ is of unit modulus, as we are assuming. We find forq̃2Þ21

e1x5e1

q̃2

~ q̃211!
x21y2, e1y5e1

q̃4

q̃211
x22y3,

~2.3!

e2x50, e2y52e2

q̃2

q̃211
x22y.

These derivations are again extended to arbitrary polynomials in the generators by the L
rule. Using them and~1.9!, ~1.10!, we find

dx5
q̃2

~ q̃211!
x21y2e1u1, dy5

q̃2

q̃211
x22y~ q̃2y2e1u12e2u2!, ~2.4!

and solving for theu i we obtain

e1u15~ q̃211!xy22dx, e2u252~ q̃211!x~xy21dy2dx!.

The module structure which follows from the condition~1.1! that the u i commute with the
elements of the algebra is equivalent to the Wess–Zumino relations5

xdx5q̃2 dx x, x dy5q̃ dy x1~ q̃221!dx y,
~2.5!

ydx5q̃ dx y, y dy5q̃2 dy y.

One can show that they are invariant under the coaction of the quantum groupSLq(2,C). This
invariance was encoded in the choice ofla .

Consider the elements

uªe2q̃22x2, vªe1x2y22. ~2.6!

We shall see that each of the four possible choices of sign pairs corresponds to an identifica
x andy as the coordinates of one of the four regions onR2 defined by the light cone of a metri
with Minkowski signature. Theu, v fulfill the quadratic commutation relation

uv5qvu, ~2.7!

whereqªq̃24. They and their inverses generate a slightly smaller algebra thanA. One also finds
that ~2.5! becomes

udu5q21duu, udv5qdvu,
~2.8!

vdu5q21duv, vdv5qdvv.

In terms of the new generators, theu i become

u15q21vu21du, u25uv21dv. ~2.9!

What we have done in fact is use thela
21 as generators of the algebra and the differential calcu

otherwise, nothing has been changed. The formu is most conveniently expressed in terms of t
la . Since
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l15
1

12q21 v21, l252
1

12q21 u21, ~2.10!

we find that

u5
1

12q
~u21du2qv21dv !.

It is an anti-Hermitian closed form with vanishing square

du50, ~u!250. ~2.11!

The volume element is a product of two exact forms

u1u25du dv.

The structure of the exterior algebra is given by the relations

~u1!250, ~u2!250, u1u21qu2u150. ~2.12!

This can be written in the form~1.4! with

P5 1
2 S 0 0 0 0

0 1 2q 0

0 2q21 1 0

0 0 0 0

D . ~2.13!

If we reorder the indices (11,12,21,22)5(1,2,3,4), then theCkl
i j introduced in~1.7! is given by the

expression

C5S 1 0 0 0

0 0 q 0

0 q21 0 0

0 0 0 1

D .

That is,C21
125q andC12

215q21.
The reality of the differential implies that the structure elements must satisfy the condit

~~Cjk
i !* 1Cjk

i !Plm
jk 50,

from which it follows that

~C21
i !* 52C12

i 5q21C21
i , ~C12

i !* 52C21
i 5qC12

i .

More precisely, the independent coefficients are given by

C12
1 5~q2121!l2 , C12

2 5~q2121!l1 . ~2.14!

The Cjk
i do not depend on the sign ambiguities. With the generators

t5
1

&
~u1v !, r 5

1

&
~u2v !, ~2.15!

the four possible sign combinations can be written as
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e15e2 : sgn~ t !5e1 , e152e2 : sgn~r !5e2 .

We shall later in Sec. V introduce a light-cone and interpret these relations in terms of spac
and time-like.

Introduce the notation

X5S t
r D , J5S dt

dr D , Q5S cos~pg! i sin~pg!

i sin~pg! cos~pg!
D q5e2p ig.

Then,Q is unitary. The commutation relations inV* (A) can be written in the form

Xt~Qs2!X50, XJ t5J~Q2X! t, J tQJ50. ~2.16!

The s2 is the second Pauli matrix.
There are alternative* -structures which require a realq. One can impose the conditionsu*

5v, v* 5u. In terms of the original variablesx andy, this implies that

x* 56q̃1/2xy21, y* 5y.

It follows that the frame satisfies

~u1!* 5u2, ~u1!* 5u2,

and so one can introduce a real frame by taking the real and imaginary parts or consid
resulting structure as aq-deformed complex line. This is better with the change of generator

t5
1

&
~u1v !, r 5

i

&
~u2v !. ~2.17!

It is equivalent to a replacementg° ig in the formula~2.16!.

III. REPRESENTATIONS

An extensive discussion of the* -representations of the algebraA for uq̃u51 andqÞ61 has
been given.28 We recall parts of it to illustrate our interpretation of the geometry. It is easy to
that there can be no normed basis withu or v diagonal. Suppose in fact that there is a basis w
vu j &5v j u j &. Sincev is Hermitian the eigenvaluev jPR. Using the commutation relations one se
that v(uu j &)5q21v j (uu j &), and souu j & is also an eigenvector with eigenvalueq21v j¹R. One
concludes, therefore, thatuu j &¹H. More specifically, one can considerH5L2(R) with the plane-
wave basisuk&5eikx. The operatoru52 i ]x is Hermitian on a dense subspace ofH and diagonal:
uuk&5kuk&. We can formally set

vuk&5uqk&5e2 iqkx

in order to have the correct commutation relations, butu is not properly defined on the plane-wav
basis.

As solution to this problem we restrict our representation space to the positive real linR1

with free boundary condition atx50. The Laplace transform replaces the Fourier transform an
we choose as basisuk&5e2kx for kPC with Rk.0. We need in fact represent only one~at a time!
of the four regions defined by the light ‘‘cone’’ and we choose the one defined bye15e251. Our
sign conventions were partly dictated by the desire that this be the forward light cone. We ch28

then two positive real numbersa andb with ab5g, and we define on the Hilbert spaceL2(R1)

~u f !~x!5 f ~x1 ib!, ~v f !~x!5e22paxf ~x!.
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Both u andv are formally Hermitian and bounded. It is more convenient to express them in t
of the Laplace transform, which we recall is given by

F~k!5~L f !~k!5E
0

`

f ~x!e2kxdx, f ~x!5~L21F !~x!5
1

2p i Ea1 i`

a2 i`

F~k!ekxdk,

wherea depends on the growth rate of the function. We have then

~uF!~k![~L~u f !!~k!5eibkF~k!, ~vF !~k![~L~v f !!~k!5F~k12pa!.

In particular, these transformation formulas are valid on the basisuk&5e2kx. The operatorsu and
v are well-defined and positive forRk.0.

IV. THE METRICS AND THEIR CONNECTIONS

We now determine some possible metrics and metric-compatible connections on th
quantum plane. We require them to fulfill all or at least part of the conditions listed in Se
namely~1.18!, ~1.29!, ~1.25!, ~1.23!, ~1.27!, ~1.28!.

To shorten the notation, we shall often perform the following change of index nota
(11,12,21,22)→(1,2,3,4). Then, the condition~1.23! can be written in the matrix form

S S1
1 S2

1 S3
1 S4

1

S1
2 S2

2 S3
2 S4

2

S1
3 S2

3 S3
3 S4

3

S1
4 S2

4 S3
4 S4

4

D 3~S(g)!5S g1 0 g3 0

0 g1 0 g3

g2 0 g4 0

0 g2 0 g4

D , ~4.1!

where we have introduced the matrixS(g) defined by

S(g)5S S1
1g11S2

1g3 S3
1g11S4

1g3 S1
3g11S2

3g3 S3
3g11S4

3g3

S1
1g21S2

1g4 S3
1g21S4

1g4 S1
3g21S2

3g4 S3
3g21S4

3g4

S1
2g11S2

2g3 S3
2g11S4

2g3 S1
4g11S2

4g3 S3
4g11S4

4g3

S1
2g21S2

2g4 S3
2g21S4

2g4 S1
4g21S2

4g4 S3
4g21S4

4g4

D . ~4.2!

Using the expression~2.13! for P, the condition~1.25! becomes

g25qg3. ~4.3!

The consistency condition~1.16! is equivalent to the conditions

S3
15qS2

1 , S3
25q~S2

211!, S3
35qS2

321, S3
45qS2

4 . ~4.4!

The equations to be solved then are Eqs.~4.1!, ~4.3!, and~4.4!. We are especially interested i
real solutions, which satisfy therefore also~1.27! and~1.28!. We have found that there are seve
types of solutions, four of which we shall describe in the following subsections. One can sho
there are no solutions witht52. A complete classification has been given29 of the solutions to the
braid equation as well30,31 as of those which satisfy a weaker modified equation.

If one considers locality as of importance only in the commutative limit, then there i
restriction on the coefficients of the metric, except that they be local functions in this limit. If
considers locality as of importance even before the limit but is willing to accept a metric whi
real and symmetric only in the commutative limit, then the most general line element on
write is of the form

ds25gi j u
i
^ u j .
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The gi j is a real symmetric matrix~in the sense we have defined it! and the moving frameu i is
defined by

u15vu21du, u25uv21dv.

The line element~1.30! then becomes

ds25g1v2u22 du212g2du dv1g4u2v22 dv2. ~4.5!

The product here is the symmetrized tensor product; not the exterior product.
The associated metric connection is given by the structure functions

C12
1 5u21, C12

2 52v21.

If we interpret the matrixgi j as the components of the Killing metric onSO(2) or SO(1,1)
then we can use it to calculate the connection form. The result will be of the form

v j
i 5Ajk

i u21uk1Bjk
i v21uk,

with gikv j
k antisymmetric in the two indices. The Gaussian curvatureK is a second-order homo

geneous polynomial in the variablesu21 andv21

K5k11u
2212k12u

21v211k22v
22.

A. Solution I

A one-parameter family of solutions of conditions~1.18!, ~1.25!, ~1.23!, can be found with a
Minkowski-signature metric. For the particular valuez50 of the parameter also the braid relatio
~1.29! and the reality conditions~1.27!, ~1.28! are fulfilled. These are the most interesting so
tions.

With the convenient normalization of the metric so thatg35q21/2 the flip is given by the
matrix

S5S q 2q21/2z 2q1/2z q21~q221!21z2~q211!

0 0 q 2q21/2z

0 q21 0 q23/2z

0 0 0 q21

D ,

wherezPC. It tends to the ordinary flip asq→1 if z50; only for z50 it is a solution to the braid
equation~1.29!. The corresponding metric is given by

gi j 5S ~q21!21z q1/2

q21/2 0 D . ~4.6!

From ~4.3! one sees that it iss-symmetric for allg1 and real ifg150 ~i.e., z50). In this caseS
is given by

S5S q 0 0 0

0 0 q 0

0 q21 0 0

0 0 0 q21

D . ~4.7!

The s andp are related as in~1.17! with Ti j
ªt(u i

^ Au j )
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T5S 11q 0 0 0

0 2 0 0

0 0 2 0

0 0 0 11q21

D . ~4.8!

The fact thatT is not proportional to the identity is due to the fact that the map (11s)/2 is not a
projector and that we would like it to act as such and be the complement top. The metric matrix
is of indefinite signature and in ‘‘light-cone’’ coordinates. If we use the expressionq5e2p ih, we
find that

gS
i j 5cos~ph!S 0 1

1 0D , gA
i j 5 i sin~ph!S 0 1

21 0D . ~4.9!

The inverse metric components are defined by the equation

gi j g
jk5d i

k .

This matrix also can be split. If we rescale so that the symmetric part is of the standard for
find

~h i j !5S 0 1

1 0D , ~Bi j !5 i tan~pz!S 0 1

21 0D .

For the choice~4.7! of the flip ~i.e., for z50) the metric connection~1.20! is given by

~v j
i !5~12q!S 1 0

0 2q21D u,

and has vanishing curvature, because of the identities~2.11! and~1.29!. This can be shown by an
argument already used in Refs. 32 and 33. In other words, in this case the quantum plane
In the commutative limit the line element is given by

ds25gi j u
i
^ u j52u1

^ u252du^ dv5dt22dr2.

The frame is singular along the light cone through the origin@see~2.9!#. Supposee15e251. If in
a representation one forcesx andy to be Hermitian, then theu andv must be positive operators
One concludes then thatt.ur u; the geometry describes only the forward light cone through
origin. The other three regions are given by the other three possible combinations of signs

B. Solution II

A family of solutions defined by flips which are solutions to~1.18!, ~1.27!, but not to the braid
equation~1.29! is given by

S5S 2q2 0 0 0

0 0 q 0

0 2q22 212q21 0

0 0 0 q21

D . ~4.10!

The metric is given again by~4.6! with z50, and fulfills~1.23!, ~1.25!, but not~1.28!. The metric
connection~1.20! is
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~v j
i !5~11q2!S 1 0

0 q22D u1~11q21!S 0 0

21 0D l1u21~q11!S q 0

0 q22D l2u2.

The curvature is equal to

V j
i 52~q221!q23~11q1q2!S 0 0

1 0D ~l1!2u1u2.

It diverges as (q21)21 whenq→1. This is then the case of a regular metric which has a sing
metric connection.

C. Solution III

A third family

S5
1

q211 S 2q 0 0 12q2

0 12q2 2q 0

0 2q q221 0

q221 0 0 2q

D , ~4.11!

gi j 5S 1 0

0 1D ,

fulfills ~1.18!, ~1.25!, ~1.23!, the reality condition~1.27! but not the one~1.28! nor the braid
relation ~1.29!. The latter are fulfilled forq561. Forq521 this means the connection form
imaginary in the usual sense of the word~since so are thel i).

The compatible connection~1.20! form is

~v j
i !5

~q21!2

q211
d j

i u1
q221

q211 S 0 21

1 0 D ~l2u11l1u2!.

The curvature 2-form is

~V j
i !5

~q221!

~q211!2 H 2q21~q221!2d j
i l1l212~q21!S 0 21

1 0 D ~~l1!21~l2!2!J u1u2.

In the limit q→1 this becomes

~V j
i !5S 0 21

1 0 D ~u221v22!u1u2.

D. The R̂-matrix ‘‘solution’’

Finally, one might ask whether one can find a solution (S,g) using the formalism of Faddee
et al.,34 as has been done32,33 for the q-Euclidean spacesRq

n with n.2. This would imply anS

proportional to the braid matrixR̂ of SLq(2) or to its inverse. One can show that there is a solut
only if one admits nonsymmetry metrics.

We recall that the braid matrix which defines the Hopf algebraSLq(2)
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R̂q5S q 0 0 0

0 q2q21 1 0

0 1 0 0

0 0 0 q

D ,

fulfills the braid relation, admits the projector decomposition

R̂q5qPs,q2q21Pa,q ,

and fulfills the~1.29! relations

R̂q
61

hk
i j «q

klR̂q
61

j l
rs5q71«q

ir dh
s , R̂q

61
hk
i j «q

hk52q71«q
i j , ~4.12!

where«q
i j is theq-deformed epsilon tensor

«q
i j 5S 0 2q21/2

q1/2 0 D .

So, one finds

Pa,q
i j

hk5~« lm« lm!21~« i j «hk!5
1

q1q21 S 0 0 0 0

0 q21 21 0

0 21 q 0

0 0 0 0

D .

By a straightforward computation, one can check that~2.12! can be given the form~1.4! by
setting

P5Pa,q21.

The first relation in~4.12! suggests that we make the ansatzS}R̂q21
61 , gi j }«q21

i j , so that we can
fulfill ~1.23! at least up to a conformal factor. Equation~1.16! fixes the first proportionality
constant to be either

S5q21R̂q21 or S5q~R̂q21!21,

which respectively implies that

Sln
imgnpSmp

jk 5q21gi j d l
k , Sln

imgnpSmp
jk 5qgi j d l

k , ~4.13!

i.e., we indeed fulfill~1.23! only up to a conformal factorq61, and

Shk
i j ghk52gi j . ~4.14!

This ‘‘antisymmetry’’ relation is to be contrasted with Eq.~1.24!, which, with the above choice o
S, amounts to replacing at the right-hand side of~4.14! 21, respectively, byq22 or q2, as can be
seen writingP as a combination ofS and of the identity matrix. Using the fact thatuqu51 and
R̂q21

i j
hk5R̂q

21
kh
j i ,34 one can easily see that the reality conditions~1.27! and~1.28! are satisfied. The

curvature~1.21! can easily be calculated to be zero using the conditionsKi j 50 andFi j
h 50 as well

as the fact thatPq is a polynomial inS, which it turn fulfills the braid equation.
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E. Other ‘‘solutions’’

There are a certain number of partial solutions which are unsatisfactory for some rea
other. As an example, to underline the possibility of exotic metrics which are both symmetri
antisymmetric according to our definitions, we considers defined by the matrix

S5S 0 0 0 z

0 21 0 0

0 0 21 0

z21 0 0 0

D ,

wherezPR is a parameter. This value ofS is a solution to the braid equation. Thes andp are
related as in~1.17! with ~using the same conventions!

11S5T5S 1 0 0 z

0 0 0 0

0 0 0 0

z21 0 0 1

D . ~4.15!

This means thatt is not invertible and the case is degenerate. The unpleasant thing here
(11s)/2 andp do not add up to the identity map. The metric is given by

gi j 5 i S 1 0

0 2z21D . ~4.16!

One hast511s and the flip is degenerate. Instead of interchangingg2 and g3, as does the
ordinary flip, it interchangesg1 andg4. It also changes the sign, which accounts for thei in the
metric components. Also,gs(11s)50 so in a certain sense the metric has vanishing symme
as well as antisymmetric parts. We refer tos nonetheless as a flip because it satisfies~1.16!.

The linear connection~1.19! is given by

v j
i 5d j

i u1S 0 1

2z21 0D ~zl1u22l2u1!.

The curvature is given by

V j
i 5q21~q221!d j

i l1l2u1u2.

The connection is singular in the commutative limit as is the curvature. Because of~1.24! it cannot
be satisfied for any curvature which is proportional to the metric.

V. JORDANIAN DEFORMATION

It has been shown recently~See, for example, Anevaet al.31! that the Jordanian deformatio
is a singular limit of a family ofq deformations. The transformation from the set of generator
one algebra to the other has also been studied in some detail.35 We can now discuss to what exte
the limit can be understood in a geometric manner. We recall that the Jordanian deforma
defined using a parameterh and that the generators (x8,y8) satisfy the commutation relation
@x8,y8#5hy82. The differential calculus is given by two elementsla8 similar to thela which
satisfy theSL(2,R) relation @l18 ,l28#5l18 , a relation which is not quadratic. This must be co
pared with the quadratic relationl1l25q21l2l1 satisfied by the elements~2.10!. We must find a
smooth map from one algebra into the other, that is, one which respects the commutation re
between the elements which define the derivations dual to the frame. Consider35 the map
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l185h0
21l1 , l285h0

21l22
1

2
h21h0 , h05

2h

12q
. ~5.1!

This change defines a deformation of the differential calculus. From the commutation relatio
the l i , we deduce that

@l18 ,l28#5h0
22@l1 ,l2#5h0

22~12q!l1l25l181~12q!l18l28 .

In the ~singular! limit when q→1 the differential calculus tends to that of the Jordanian defor
tion.

The relations between the two calculi can be written in terms of a diagram

~x, y! → ~u, v !5~e2q1/2x2, e1x2y22!.

↓ ↓
~x8, y8! → ~u8, v8!5~x8y8211 1

2 h, y822!.

~5.2!

The two horizontal arrows are changes of generators. The two vertical ones define a map b
the two deformations. In terms of the generatorsu and v and their analogs36 u8 and v8 for the
Jordanian deformation, the map~5.1! can be written as

u85qu212h0 , v852qv21

with h0→`. It has been shown36 that the local metric on the Jordanian deformation is that
Lobachevsky. This must be a limit of one of the family of metrics~4.5!. The Lobachevsky metric
can be described with the line elementds825v822(du821dv82). To compare, we write~4.5! in
the primed variables

ds25~u81h0!22v822@q2 g1 du8222g2du8 dv81q22g4 dv82#.

We see then that we must chooseg250 and letg1 ,g4→` with the constraint

g1h0
225g4h0

2251.

The quantum-plane metric belongs to the family III. Another interesting metric obtained in
same limit is withg15g450 andg2→` so thatg2h0

2251

ds2522v822du8 dv8522du8 dv.

This solution belongs to the family I.

VI. PATCHING

Let us consider now the solutionsI found in Sec. IV A. To each of the four regions defined
the light cone through the origin in two dimensions we have associated an algebra, a diffe
calculus, and a metric, but none is complete as ‘‘manifold.’’ From the form of the metric we
that this can be done using the generators (t,r ) or (u,v), but that the generators (x,y) are singular
on the cone.

The patching is done28 by extending the domain of definition ofu for example to negative
eigenvalues. The frameu i is also singular on the cone, but the equivalent framedui is quite
regular. We can writeu i5L j

i duj , where

L j
i 5AqS vu21 0

0 uv21D
is a local Lorentz transformation in the commutative limit.
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VII. DISCUSSION

We have given a partial classification of the solutions to the three conditions of metric
patibility ~1.23!, symmetry~1.24!, and the consistency condition~1.16!, as well as the reality
conditions~1.27!, ~1.28!, and the braid relation~1.29!, without due regard to quantum covarianc
In fact, we could show that there was no solution which respected a coaction of the qu
group. A similar problem was found by Cotta-Ramusino and Rinaldi in trying to construct
lonomy groups.37 Written in terms of the components in the frame basis, one sees thatSkl

i j has 16
unknowns andgi j has 4 unknowns. The condition~1.16! gives 4 equations and metric compa
ibility gives 16 equations. So, a naive computation would say that the solution is unique u
rescaling ofgi j , which is not fixed by the equation. We have indeed found a finite set of solut

Another conclusion concerns the uniqueness of the vacuum. It has been claimed38 that within
the context of the present formalism there is essentially a unique differential calculus whic
associated with it a given metric, unique that is up to a choice of norm on the frame.
statement needs qualification since we have shown here that the quantum plane is n
endowed with the Lorentz-signature flat metric and it is known that the same is true o
Heisenberg algebra with its natural differential calculus.
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N coupled nonlinear Schro ¨ dinger equations: Special set
and applications to NÄ3

F. T. Hioea)
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Analytic solutions for a special set ofN coupled nonlinear Schro¨dinger equations
characterized by 2N interaction types are presented forN51 – 3. They provide an
overview of the important role played by nonlinear couplings. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1521238#

I. INTRODUCTION

There are many physical processes that are described by the nonlinear Schro¨dinger equations.
Because of problems of mathematical interest and a growing interest in nonlinear phenom
optical fibers,1 systems of coupled nonlinear Schro¨dinger ~CNLS! equations involving two and
generally N components have attracted a great deal of attention. The complex wavefun
fm(z,t) of the mth component as a function of positionz and timet is assumed to satisfy th
following N CNLS equations:

ifmz1«mfmtt1kmfm1S (
j 51

N

lm juf j u2Dfm50, m51, . . . ,N, ~1!

where«m , km andlm j are real parameters characteristic of the medium and interaction, and w
the subscripts inz and t denote derivatives with respect toz and t, and the subscriptm is for
different components. Although the termkmfm can be eliminated by a substitutionfm

→fmeikmz, we shall keep the term for the purpose of ordering theN equations that will become
clear later.

Soliton1–4 and solitary-wave solutions4–6 have been presented for special sets of parame
«m , km andlm j . In particular, Lakshmanan and his collaborators7 have studied a special set o
‘‘mixed’’ interaction cases using the Painleve´ analysis.

In a recent paper, Hioe and Salter8 showed that there is a special set that can be characte
by 2N specific arrays of interaction parameters for which theN CNLS equations possess spec
analytic solutions. For this special set, theN components of the CNLS equations can be expres
in terms ofN Lamé functions,9 and every Lame´ function of ordern<N is a solution for one or
more components for one or more interaction types of this special set. In particular, they pre
simple rules that~a! identify a given combination of Lame´ functions to be a solution to one o
more specific interaction types, and~b! give all the possible combinations of Lame´ functions as
solutions of a specific interaction type. These CNLS equations that have these Lame´ functions as
solutions were called the L-set. It was pointed out that the L-set coincides with the set of C
equations that pass the Painleve´ test identified by Radhakrishnanet al.7 In a separate developmen
Hioe and Carroll10 showed thatN coupled Gross–Pitaevskii~CGP! equations inD-dimensions
with a square-well and Coulomb potential can be transformed intoN CNLS equations, and solu
tions in terms of same or different Lame´ functions can be used to suggest possible ways of ma
multiple Bose–Einstein condensates overlap each other or separate.

In this article, we first review briefly the L-set and the subsets of it that consist of wha
called the weakly and strongly mixed interaction types. We then present and consider a

a!Electronic mail: hioe@sjfc.edu
63250022-2488/2002/43(12)/6325/14/$19.00 © 2002 American Institute of Physics

                                                                                                                



tant
ot be

es that
can be
lutions
of their
merge

y
n

ame

6326 J. Math. Phys., Vol. 43, No. 12, December 2002 F. T. Hioe

                    
solutions particularly forN53. The use of two or three coupled waves can play a very impor
role in optical communication with unexpected results. For example, a wave that cann
solitary by itself when it propagates through an anomalous group-velocity dispersion~GVD!
region1 can be made to do so when it is coupled to a second appropriate wave, and two wav
cannot be solitary by themselves when they propagate through an anomalous GVD region
made to do so when they are coupled to a third appropriate wave. For the many analytic so
presented in this article, besides their theoretical and mathematical interest, the true test
practical usefulness could be realized if and when a general recognizable pattern would e
that would strongly suggest the robustness of certain combinations of waveforms.

II. THE L-SET FOR N CNLS EQUATIONS

We first review the L-set for a general value ofN. The L-set ofN CNLS equations~1! is
defined to be a special subset of Eq.~1! given by the following,8

ifmz6bmfmtt1kmfm6S (
j 51

N

bmb j uf j u2Dfm50, m51, . . . ,N, ~2!

whereb j511 or 21, for j 51, . . . ,N. That is, the L-set ofN CNLS equations~1! has those
coefficients«m andlm j which are expressible as in Eq.~2!.

Consider the stationary-wave solution of the form

fm~z,t !5cm~ t !exp~ ivz!, ~3!

wherev is a real constant andcm(t)’s are real functions oft only. Substitution of Eq.~3! into Eq.
~2! gives the followingN equations forcm(t):

cmtt1cmcm1S (
j 51

N

b jc j
2Dcm50, m51, . . . ,N, ~4!

where

cm56bm~km2v!. ~5!

To eliminate the permutation symmetry, Eq.~4! is arranged such that

c1>c2>¯>cN , ~6!

so that only one of the two choices~the upper or lower sign! in Eq. ~2! gives Eq.~4!. The traveling
waves, if required, can be constructed by substituting the solutionscm from Eq. ~4! into Eq. ~2!,
and replacingfm(z,t) by fm(z,t2z/v)exp$i@t2z/(2v)#/(2v)%, wherev is the common velocity of
the waves.

The interaction parameters of Eq.~2! @and Eq. ~4!# are now characterized by the arra
(b1 ,b2 , . . . ,bN), whereb j511 or 21, and each of the 2N arrays is referred to as an interactio
type. The two special cases are the normal GVD region characterized by (22 . . . 2) and the
anomalous GVD region characterized by (11 . . . 1). Note that the 2N interaction types consti-
tute only a subset of the symmetriclmn that can take on values11 or 21, because thelmn’s are
constrained to be only those given bylmn51bmbn or 2bmbn . This special set of CNLS
equations that consists of the 2N interaction types is the L-set.

A Lamé equation of ordern can be written in the form9

d2f /dt21@h2n~n11!k2sn2~t,k!# f 50. ~7!

Only the polynomial solutions of the Lame´ equation are used here and are referred to as L´
functions, and the 2n11 Laméfunctions of ordern, f 1

(n) , f 2
(n) , . . . ,f 2n11

(n) , are numbered in the
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order of numbering their corresponding eigenvalueshm
(n) arranged in descending orderh1

(n)

.h2
(n).¯.h2n11

(n) . These Lame´ functions and their corresponding eigenvalues, which will
needed later for our analytic solutions, are given in Appendix A forn51 – 3. An N-combination
( f p1

(n) , f p2

(n) , . . . ,f pN

(n)) that gives an analytic solution for theN components (c1 ,c2 , . . . ,cN) will be

represented simply by (p1 ,p2 , . . . ,pN)n , where Eq.~6! implies p1<p2<¯<pN . The 2n11
eigenvalues of the Lame´ equation h1

(n) ,h2
(n) , . . . ,h2n11

(n) are renumbered a
h1

(n) ,h2
(n) ,h28

(n) , . . . ,hn11
(n) ,h(n11)8

(n) , and the corresponding Lame´ functionsf 1
(n) , f 2

(n) , . . . , f 2n11
(n) as

f 1
(n) , f 2

(n) , f 28
(n) , . . . ,f n11

(n) , f (n11)8
(n) , i.e., they are grouped in pairs except the first one. The us

Laméfunction ansatz described in Ref. 4 gives the required specific values for thecm of Eq. ~4!
and the amplitudeCm for themth component, thus giving, for combination (p1 ,p2 , . . . ,pN)n , the
solution

cm~ t !5Cmf pm

(n)~ t !, m51, . . . ,N. ~8!

Two separate cases of representing the solutions in terms of Lame´ functions may be distin-
guished: case~I! is in terms of Lame´ functions of ordern5N, and case~II ! in terms of Lame´
functions of ordern,N.

~I! For n5N, theN Laméfunctions for theN components must necessarily be different La´
functions. The number ofN combinations that can be chosen from 2n11 distinct Lame´ functions
of ordern5N, with no repetition allowed, isM5(N

2n11).
Every one of theM combinations is a solution of one and only one particular interaction t

and every interaction type has one or more combinations as solutions. More specifically,

~a! Combination (p1 ,p211,p312, . . . ,pN1N21)n is a solution of interaction type
((21)p1,(21)p2,(21)p3, . . . ,(21)pN), and

~b! an interaction type ((21)p1,(21)p2,(21)p3, . . . ,(21)pN) has solutions given by all pos
sible combinations (m1 ,m2 ,m3 , . . . ,mN)n , that can be obtained by settingm15p1 , m2

5p211, m35p312, . . . , mN5pN1N21, and by increasing or decreasingmj by any mul-
tiple of 2 subject to the condition thatm1,m2,m3,¯,mN , wheremj can take on values
1,2,28,3,38, . . . ,n11,(n11)8 with the understanding thatr ,r 8.

~II ! For n,N, two or more of the Lame´ functions for theN components may be the sam
function. The number ofN combinations that can be chosen from 2n11 distinct Lame´ functions
of ordern,N each of which may appear from 0 toN times isM 85( N

2n1N).
A total of M 8 combinations (m1 ,m2 , . . . ,mN)n are possible wherem1<m2<m3< . . .

<mN can be chosen, with repetition allowed, from 1, 2, 28, 3, 38, . . . ,n11, (n11)8, and in

general, these combinations are possible solutions for each of the 2N interaction types, but with a
number of exceptions, some specific and some general. The following restrictions apply gen

~a! A combination (m1 ,m2 , . . . ,mN)n must have at leastn distinct m’s for it to be a solution;
and

~b! combination (m1 ,m2 , . . . ,mN)n is disallowed for interaction type ((21)m11n,
(21)m21n, . . . ,(21)mN1n).

III. COMBINATIONS AND INTERACTION TYPES

For the case ofN.n for which combinations with repetitions are allowed, a combination
which two or more of them’s in the combination (m1 ,m2 , . . . ,mN)n are equal is referred to as
degenerate combination, and one in which all them’s are distinct as a nondegenerate combinati

For the case ofn5N, all combinations must be nondegenerate~for 0,k2,1) to be solutions
of N CNLS equations~4!. It is useful to divide theM5( N

2n11) combinations of Lame´ functions
that can be obtained from 2n11 Laméfunctions of ordern ~with no repetition allowed! into two
kinds: the degenerative combination is one in which at least two of them’s in the combination
(m1 ,m2 , . . . ,mN)n involve a pairp andp8, wherep is one of the numbers from 2 ton11; the
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nondegenerative combination is one that is not degenerative. Of theM combinations, the numbe
of degenerative combinations isMd5n(2n21)!/$(N22)!(2n2N11)!% and the number of
nondegenerative combinations isMnd5M2Md .

The 2N interaction types are divided into two subsets:~1! the interaction types in which all the
2 ’s precede the1 ’s belong to the ‘‘weakly’’ mixed type or subset that includes the ‘‘pure’’ ty
in which the signs are all2 ’s or all 1 ’s, as two special cases; and~2! the interaction types in
which the2 ’s that appear beforeandafter the1 ’s belong to the ‘‘strongly’’ mixed type or subse
The weakly mixed subset consists ofN11 interaction types, and the strongly mixed sub
consists of the remaining 2N2N21 interaction types.

The nondegenerative combinations are found to be solutions of only the weakly mixed
action type. The degenerative combinations can be solutions of the strongly mixed as well
weakly mixed interaction types excepting the pure type. Division into degenerative and n
generative combinations aside, every one of theM possible combinations~for n5N) of Lamé
functions is a solution to one and only one of the 2N interaction types.

In Appendix B, we present, forN51 – 3, the combinations of Lame´ functions that give
analytic solutions for each of the 2N interaction types, the Lame´ functions being those given in
Appendix A. The grouping can be verified to be in agreement with the rules given abov
complete the analytic solutions, we need the explicit expressions for the amplitudesC’s for Eq.
~8! and the requiredc’s for Eq. ~4!. Some solutions given previously6,11–13were for the pure type
only. ForN51 and 2, the solutions for the entire set were given in Ref. 14. ForN53, the number
of possible combinations forn53 alone is 35, and there are many combinations that are solu
for n51 and 2. We present, in Appendix C, the complete analytic solutions for five spe
combinations, pure and mixed, with examples fromn51, 2 and 3, for which the Lame´ functions
given in Appendix A are used and Eq.~8! applies.

The complete analytic solutions forN53 for the case ofk251, for which the 2n11 Lamé
functions of ordern coalesce inton11 associated Legendre functions of ordern, will be pre-
sented later. Indeed, for the casek251, two special cases allow very compact expressions fo
generalN which we shall discuss in the next section.

The division of combinations into degenerative and nondegenerative is consistent with
sideration of Lame´ functions ask2 becomes equal to 1. In that case, the 2n11 eigenvalues, excep
for the first one, become pairwise degenerate, i.e.,h2

(n)5h28
(n) ,h3

(n)5h38
(n) , . . . ,hn11

(n) 5h(n11)8
(n) , and

the corresponding Lame´ functions of ordern becomen11 associated Legendre functions of ord
n, Pn

m(x), m50,1,2,. . . ,n, where x5tanh(at). These~unnormalized! Legendre functions are
presented in Appendix D.

IV. ANALYTIC SOLUTIONS FOR k 2Ä1

We shall present in this section all analytic solutions forN51 – 3 for k251 for all 2N

interaction types. For the weakly mixed interaction type, we have compact closed-form e
sions of analytic solutions for a general value ofN for two special cases that are derived fro
studying the equations obtained with the use of the ansatz.5

We first define our normalized associated Legendre functionsPn
m(x) as follows:

Pn
m~x!5~12x2!m/2dmPn~x!/dxm,

wherePn(x)5(22n/n!)dn(x221)n/dxn.
Consider the following (N11) CNLS equations involvingc j , j 51,2,. . . ,N11:

cmtt1cmcm1S (
j 51

s

2c j
21 (

j 5s11

N11

c j
2Dcm50, m51, . . . ,N11, ~9!

wheres can take the value from 0 toN11. It can be verified that the following analytic solutio
for c j satisfies Eq.~9!:
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c j5Cj PN
j 21~ tanhat !, j 51, . . . ,N11, ~10!

C156c1 , 1for s>1, 2for s50,

Cj56$@~N2 j 11!! #@c122~ j 21!2a2#/~N1 j 21!! %1/2,

where1 for j 52,...,s, s>2, 2 for j 5s11, . . . ,N11, N>s,

cj5c12~ j 21!2a2, j 51, . . . ,N11,

c1,0 for s50,

2s2a2.c1.2~s21!2a2 for N11.s>1,

c1.2N2a2 for s5N11.

We now consider the above (N11) CNLS equations involvingc j , j 51,2,. . . ,N11 with
j 5r missing~or c r50), wherer can be any one of theN11 components. Written explicitly, we
have the following equations:

cmtt1cmcm1S (
j 51

r 21

2c j
21 (

j 5r 11

N11

c j
2Dcm50, m51, . . . ,N11. ~11!

We find the following analytic solutionsc j with amplitudesCj and the requiredcj given by

c j5Cj PN
j 21~ tanhat !, j 51, . . . ,N11, j Þr , ~12!

C15@2~r 21!2#1/2a,

Cj5$4@~N2 j 11!! #u~r 21!22~ j 21!2u/~N1 j 21!! %1/2a, for j .1,

cj5@2~r 21!22~ j 21!2#a2, j 51, . . . ,N11, j Þr ,

where the specificationj Þr is not really necessary since settingj 5r would giveCj andcj equal
to zero anyway. However, the specificationj Þr is a reminder that there areN and not N11
coupled components of CNLS equations considered.

Equation~12! gives a compact expression for the analytic solution for the L-set ofN CNLS
equations for the weakly mixed interaction type in terms of a combination of~different! associated
Legendre functions of ordern5N. It can be checked that forr 51, i.e., when the nonlinea
coupling parameters in Eq.~11! are all equal to11, the above results coincide with those giv
previously in Refs. 4–6, and forr 5N11, i.e., when the nonlinear coupling parameters are
equal to21, the above results coincide with those given previously in Ref. 12. Thus our a
results given by Eq.~12! generalize the previous results to the weakly mixed type where the
r 21 of theb’s in Eqs.~11! are equal to21, and the remainingb’s are equal to11. It may be
noted that the ‘‘generalized’’ dark solitary wave isPn

0(tanhat) and the ‘‘generalized’’ bright
solitary wave isPn

n(tanhat); they become the familiar dark solitary wave tanhat and the familiar
bright solitary wave sechat, respectively, for n51. The generalized dark solitary wave
Pn

0(tanhat), unlike the rest of the setPn
m(tanhat), m51, . . . ,n, do not become zero whent→

6`.
By replacingN by N21, Eq.~10! can be seen to provide a compact expression for a partic

analytic solution for the L-set ofN CNLS equations for the weakly mixed interaction type in ter
of N different associated Legendre functions of ordern5N21. Unlike the analytic solution given
by Eq. ~12! for Eq. ~11! which is the only analytic solution in terms of associated Legen
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functions of ordern5N, there is generally more than one analytic solution in terms of Lege
functions of ordern5N21 for n,N generally: the other possibilities include combinations
which the same Legendre functions represent different components.

For the strongly mixed interaction type, the ansatz and procedure given in Ref. 5 are u
obtain the analytic solutions. The complete analytic solutions forN5123 in terms of associated
Legendre functions of ordern<N are presented in Appendix E for all 2N interaction types. To use
these results, the solution of Eq.~4! for N CNLS equations characterized by the interaction ty
(b1 , . . . ,bN) for combination (p1 , . . . ,pN) is expressed in the form

cm~ t !5Cmf pm

(n)~x!, m51, . . . ,N, ~13!

where the associated Legendre functionsf ’s used are those given in Appendix D, theC’s for Eq.
~13! and the requiredc’s for Eq. ~4! are given in Appendix E, and wherex[tanh(at), a being a
scaling parameter. Note that thef q

(n)(x) used for Eq.~13! differs from the normalized associate
Legendre functionPn

(q21)(x) used for Eqs.~10! and ~12! by a normalization constant. The solu
tions for cm(t) obtained from Eqs.~13! must of course be the same as those obtained from
~10! or ~12! for the corresponding cases. Notice that combinations of associated Legendre
tions of ordern5N are absent for the strongly mixed interaction type fork251, which can be
understood from the rules described in Secs. II and III~see also Appendix B for 0,k2,1).

The important role played by coupling a wave to another wave or to two other waves can
be seen in full view in Appendix E. For example, the wavef 1

(1) that can by itself be a solitary wav
only in the normal GVD region@(1)1 in (2)] can be a solitary wave in the anomalous GV
region if it is coupled with another wavef 2

(1) @(1,2)1 in (11)]; and the coupled wavesf 1
(2) and

f 2
(2) that can be a solitary-wave pair only in the normal GVD region@(1,2)2 in (22)] can be

made into solitary waves in the anomalous GVD region if the pair is coupled to a third wavef 3
(2)

@(1,2,3)2 in (111)].

V. SUMMARY

We have reviewed the L-set forN CNLS equations that possess analytic solutions in term
N combinations of Lame´ functions of ordern<N for 2N interaction types. That every combinatio
of Laméfunctions of ordern5N is a solution forone and only oneinteraction type, and that ever
interaction type hasat least onecombination of Lame´ functions of ordern5N as solution, as were
first presented in Ref. 8, clearly tie the Lame´ functions of ordern5N very intimately with the
L-set for N CNLS equations, and may indicate a relationship of a deeper significance
uncovered. The relationship between the weakly mixed interaction type and the nondegen
combinations of Lame´ functions ordern5N is another curiously interesting result.

For k251, the weakly mixed interaction type allows the analytic solution in a combinatio
associated Legendre functions of ordern5N to be expressed in a compact closed-form express
for a generalN, and likewise for a combination of associated Legendre functions of ordn
5N21. Generally for 0,k2<1 and every possible interaction type, however, the analytic s
tions must be obtained individually, for which the ansatz and procedure prescribed in Ref. 5
used efficiently.

The complete analytic solutions presented forN5123 in Appendix E fork251, for combi-
nations of associated Legendre functions of ordern<N, and for all 2N interaction types, provide
an excellent overview of the important role played by nonlinear couplings. For example, it en
one to easily see that coupling another wave or two other waves to a given wave can m
partners propagate as solitary waves in certain GVD regions when the individual waves c
propagate as solitary waves by themselves. The robustness of the combinations must aw
perimental testing which hopefully will be used also to discover the required general patte
certain combinations to be robust and practically useful. There is another useful application
results. As presented in a recent communication,10 they provide the analytic forms of stationar
distributions of coupled Bose–Einstein condensates that can be used to suggest possible
making condensates overlap each other~i.e., same functions appearing in the combination! or
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separated~i.e. different functions in the combination!. The mixed interaction types, which mak
the L-set complete in terms of its relationship to Lame´ functions of ordern5N, are clearly
important mathematically, but their physical applications still await experimental exploration
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APPENDIX A: LAMÉ FUNCTIONS FOR nÄ1 – 3

The 2n11 Laméfunctions f m
(n)(t) and their eigenvalueshm

(n) satisfy the Lame´ equations~7!,
and we list them forn51 – 3 according to the subscriptm51,2,28,3,38, . . . ,n11,(n11)8 in the
following.

1. nÄ1

h1
(1)511k2, h2

(1)51, h28
(1)

5k2,

f 1
(1)5sn~t!, f 2

(1)5cn~t!, f 28
(1)

5dn~t!.

2. nÄ2

h1,38
(2)

52~11k2!62A12k21k4,

h2
(2)541k2, h28

(2)
5114k2, h3

(2)511k2,

f 1,38
(2)

5
1

3
~11k27A12k21k4!2k2sn2~t!,

f 2
(2)5sn~t!cn~t!, f 28

(2)
5sn~t!dn~t!, f 3

(2)5cn~t!dn~t!.

3. nÄ3

h1,38
(3)

55~11k2!62A427k214k4,

h2,4
(3)5512k262A42k21k4,

h28,48
(3)

5215k262A12k214k4,

h3
(3)54~11k2!,

f 1,38
(3)

5sn~t!$12a1,38sn2~t!%,

f 2,4
(3)5cn~t!$12a2,4sn2~t!%,

f 28,48
(3)

5dn~t!$12a28,48sn2~t!%,

f 3
(3)5sn~t!cn~t!dn~t!,

where
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a1,385
1

3
@212k26A427k214k4#,

a2,4521k26A42k21k4,

a28,485112k26A12k214k4.

APPENDIX B: COMBINATIONS AND INTERACTION TYPES FOR NÄ1 – 3

A collection of N Lamé functions (f m1

(n) , f m2

(n) , . . . ,f mN

(n)) or (m1 ,m2 , . . . ,mN)n chosen from

2n11 Laméfunctionsf m
(n) of ordern that can serve as an analytic solution for theN components

cm , m51, . . . ,N, of Eqs.~4! is referred to as a combination. In this Appendix, we list, for ev
one of the 2N possible interaction types (b1 ,b2 , . . . ,bN), whereb j can be11 or 21, for Eq.~4!,
all the possible combinations for Lame´ functions of ordern5N, for N51 – 3 @the subscriptn in
the combination (m1 ,m2 , . . . ,mN)n is dropped as it is understood thatn5N]. The total number
M of possible combinations forN51,2,3 are 3, 10, and 35, respectively.

We list only the ‘‘principal’’ combinations with the number of total possible combinations
can be obtained from them by changing, say, 2 to 28, 3 to 38, etc., given in the square bracke
that follow, remembering the restriction that for any combination (m1 ,m2 , . . . ,mN)n for the case
n5N, m1,m2, . . . ,mN . For example,~2!@2# represents two combinations (2)1 and (28)1 , and
~1,2,3!@4# represents four combinations (1,2,3)3 , (1,2,38)3 , (1,28,3)3 and (1,28,38)3 .

Interaction type Combination

N51
(2) ~1!@1#
(1) ~2!@2#

N52
(22) ~1,2!@2#
(21) (1,3)@2#,(3,38)@1#
(12) (2,28)@1#
(11) ~2,3!@4#

N53
(222) ~1,2,3!@4#
(221) (1,2,28)@1#,(1,2,4)@4#,(1,4,48)@1#,

(3,4,48)@2#
(212) (1,3,38)@1#
(211) (1,3,4)@4#,(3,38,4)@2#
(122) (2,28,3)@2#
(121) (2,28,4)@2#,(2,4,48)@2#
(112) (2,3,38)@2#
(111) ~2,3,4!@8#

APPENDIX C: SOLUTIONS FOR FIVE COMBINATIONS FOR NÄ3

In this Appendix, we give some representative examples of analytic solutions forN53 of Eq.
~4! for various interaction types: three combinations consist of Lame´ functions of order 3, and one
combination each consists of Lame´ functions of orders 1 and 2. For combination (p1 ,p2 ,p3)n , the
analytic solution iscm5Cmf pm

(n) , m51,2,3, wheref ’s are given in Appendix A, andC’s and the

requiredc’s for Eq. ~4! are given in this Appendix.
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1. NÄ3

( i ) Combination (1,2,3)3 for interaction type (222).

Cj5~D j /D!1/2,

where

D15108k2a2~82k214A42k21k4!,

D2512k2a2$823k223k418k612~21k212k4!A427k214k4%,

D3512k4a2$280157k2118k4116k61~250126k2116k4!A42k21k41~50116k2

18k4!A427k214k41~2018k2!A~427k214k4!~42k21k4!%,

D532290k2178k4216k614~5211k218k4!A42k21k412~210116k2

24k4!A427k214k418~2112k2!A~427k214k4!~42k21k4!,

cj5D j /D1hj
(3)a2.

( i i ) Combination (1,3,38)3 for interaction type (212).

C1,35)k822kaS 21k212k47
~11k2!~8211k218k4!

2A427k214k4 D 1/2

,

C25A30k822ka,

c1,35$5~11k2!62A427k214k4%a2, c254~11k2!a2.

( i i i ) Combination (2,3,4)3 for interaction type (111).

C1,35)kaS 27
82k2

2A42k21k4D 1/2

, C25A30k2a,

c1,35$5~122k2!62A42k21k4%a2, c254~122k2!a2.

( iv) Combination (1,2,3)2 for interaction type (b1 ,b2 ,b3), excluding (212) and (12
1).

C15~D1 /D !1/2, C25~D2 /D !1/216k4a2, C35~D3 /D !1/216k2a2,

where

D159b1$2c11@2~122k2!12A12k21k4#a2%,

D253b2k4~11k212A12k21k4!$2c11@2~122k2!12A12k21k4#a2%,

D353b3k2~221k212A12k21k4!$2c11@2~122k2!12A12k21k4#a2%,

D5225k215k422~122k2!A12k21k4,

c12c25221k212A12k21k4, c12c3511k212A12k21k4.
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(v) Combination (1,2,2)1 for interaction type (b1 ,b2 ,b3), excluding (122).

C15b1$2c11~12k2!a2%,

b2C2
21b3C3

252c11~11k2!a2,

c12c25k2a2, c25c3 ,

and for b1511, c1,~12k2!a2,

and for b1521, c1.~12k2!a2.

APPENDIX D: ASSOCIATED LEGENDRE FUNCTIONS FOR nÄ1 – 3

In this Appendix, we list then11 associated Legendre functions of ordern51 – 3 that are to
be used for Eq.~13! in conjunction with Appendix E.

1. nÄ1

f 1
(1)5tanh~at ![x, f 2

(1)5sech~at !5~12x2!1/2.

2. nÄ2

f 1
(2)5sech2~at !2

2

3
5

1

3
2x2,

f 2
(2)5tanh~at !sech~at !5x~12x2!1/2,

f 3
(2)5sech2~at !512x2.

3. nÄ3

f 1
(3)5tanh~at !H sech2~at !2

2

5J 5xS 3

5
2x2D ,

f 2
(3)5sech~at !H sech2~at !2

4

5J 5~12x2!1/2S 1

5
2x2D ,

f 3
(3)5tanh~at !sech2~at !5x~12x2!,

f 4
(3)5sech3~at !5~12x2!3/2.

APPENDIX E: SPECIAL SOLUTIONS FOR NÄ1 – 3

In this Appendix, we give all analytic solutions of Eq.~4! for 2N interaction types in terms o
combinations of associated Legendre functions given in Appendix D, forN51 – 3. See Eq.~13!
for applications of the parameters given here.

1. NÄ1

~2 ! ~1!1 C15&a, c152a2.

~1 ! ~2!1 C15&a, c152a2.
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2. NÄ2

(22)

~1,2!2 C15C253&a, c158a2, c257a2.

~1,1!1 C1
21C2

252a2, c15c252a2.

~1,2!1 C1
25c1 , C2

25c122a2, c12c25a2, c1.2a2.

(21)

~1,3!2 C15C253&a/2, c152a2, c2522a2.

~1,1!1 C1
22C2

252a2, c15c252a2.

~1,2!1 C1
25c1 , C2

252c112a2, c12c25a2, 2a2.c1.0.

~2,2!1 2C1
21C2

252a2, c15c252a2.

(12)

~1,1!1 2C1
21C2

252a2, c15c252a2.

~2,2!1 C1
22C2

252a2, c15c252a2.

(11)

~2,3!2 C15C25A6a, c152a2, c2524a2.

~1,2!1 C1
252c1 , C2

252c112a2, c12c25a2, c1,0.

3. NÄ3

(222)

~1,2,3!3 C1515&a/2, C255A6a, C355A6a/2, c1518a2, c2517a2, c3514a2.

~1,1,2!2 C1
21C2

25C3
2518a2, c15c258a2, c357a2.

~1,2,2!2 C1
25C2

21C3
2518a2, c158a2, c25c357a2.

~1,2,3!2 C1
259c1/4, C2

253~c122a2!, C3
253~c128a2!/4, c1.4a2,

c25c12a2, c35c124a2.

~1,1,1!1 C1
21C2

21C3
252a2, c15c25c352a2.

~1,1,2!1 C1
21C2

25c1 , C3
25c122a2, c1.2a2, c15c2 , c12c35a2.

~1,2,2!1 C1
25c1 , C2

21C3
25c122a2, c1.2a2.
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(221)

~1,2,4!3 C155&a, C2515a/2, C355a/2, c158a2, c257a2, c352a2.

~1,1,3!2 C1
21C2

25C3
259a2/2, c15c252a2, c3522a2.

~1,2,2!2 C1
25C2

22C3
2518a2, c158a2, c25c357a2.

~1,2,3!2 C1
259c1/4, C2

253~c122a2!, C3
253~2c118a2!/4, 8a2.c1.2a2,

c25c12a2, c35c124a2.

~1,3,3!2 C1
252C2

21C3
259a2/2, c152a2, c25c3522a2.

~1,1,1!1 C1
21C2

22C3
252a2, c15c25c352a2.

~1,1,2!1 C1
21C2

25c1 , C3
252c112a2, 0,c1,2a2, c15c2 , c12c35a2.

~1,2,2!1 C1
25c1 , 2C2

21C3
252c112a2, c1.0, c25c3 , c12c25a2.

~2,2,2!1 C1
21C2

22C3
2522a2, c15c25c352a2.

(212)

~1,1,2!2 C1
22C2

25C3
2518a2, c15c258a2, c357a2.

~1,2,2!2 C1
252C2

21C3
2518a2, c158a2, c25c357a2.

~1,3,3!2 C1
25C2

22C3
259a2/2, c152a2, c25c3522a2.

~1,1,1!1 C1
22C2

21C3
252a2, c15c25c352a2.

~1,1,2!1 2C1
21C2

25c1 , C3
25c122a2, c1.2a2, c15c2 , c12c35a2.

~1,2,2!1 C1
25c1 , C2

22C3
252c112a2, c1.0, c25c3 , c12c25a2.

~2,2,2!1 C1
22C2

21C3
2522a2, c15c25c352a2.

(211)

~1,3,4!3 C155&a/2, C253A10a/2, C35A10a, c152a2, c2522a2, c3527a2.

~1,1,3!2 C1
22C2

25C3
259a2/2, c15c252a2, c3522a2.

~1,2,3!2 C1
259c1/4, C2

253~2c112a2!, C3
253~2c118a2!/4, 2a2.c1.0,

c25c12a2, c35c124a2.

~1,3,3!2 C1
25C2

21C3
259a2/2, c152a2, c25c3522a2.

~2,2,3!2 2C1
21C2

25C3
256a2, c15c252a2, c3524a2.

~1,1,1!1 C1
22C2

22C3
252a2, c15c25c352a2.
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~1,1,2!1 C1
22C2

25c1 , C3
252c112a2, c1,2a2, c15c2 , c12c35a2.

~1,2,2!1 C1
25c1 , C2

21C3
252c112a2, 2a2.c1.0, c25c3 , c12c25a2.

~2,2,2!1 C1
22C2

22C3
2522a2, c15c25c352a2.

(122)

~1,1,2!2 2C1
21C2

25C3
2518a2, c15c258a2, c357a2.

~1,1,1!1 2C1
21C2

21C3
252a2, c15c25c352a2.

~1,1,2!1 C1
22C2

252c1 , C3
25c122a2, c1.2a2, c15c2 , c12c35a2.

~2,2,2!1 2C1
21C2

21C3
2522a2, c15c25c352a2.

(121)

~1,1,3!2 2C1
21C2

25C3
259a2/2, c15c252a2, c3522a2.

~2,2,3!2 C1
22C2

25C3
256a2, c15c252a2, c3524a2.

~2,3,3!2 C1
252C2

21C3
256a2, c152a2, c25c3524a2.

~1,1,1!1 2C1
21C2

22C3
252a2, c15c25c352a2.

~1,1,2!1 C1
22C2

252c1 , C3
252c112a2, c1,2a2, c15c2 , c12c35a2.

~1,2,2!1 C1
252c1 , 2C2

21C3
252c112a2, c1,0, c25c3 , c12c25a2.

~2,2,2!1 2C1
21C2

22C3
2522a2, c15c25c352a2.

(112)

~2,2,3!2 C1
25C2

22C3
256a2, c152a2, c25c3524a2.

~1,1,1!1 2C1
22C2

21C3
252a2, c15c25c352a2.

~1,2,2!1 C1
252c1 , C2

22C3
252c112a2, c1,0, c12c25a2, c15c3 .

~2,2,2!1 2C1
22C2

21C3
2522a2, c15c25c352a2.

(111)

~2,3,4!3 C155)a/2, C25A30a, C353A5a/2, c152a2, c2524a2, c3529a2.

~1,2,3!2 C1
2529c1/4, C2

253~2c112a2!, C3
253~2c118a2!/4,

c1,0, c25c12a2, c35c124a2.

~2,2,3!2 C1
21C2

25C3
256a2, c15c252a2, c3524a2.

~2,3,3!2 C1
25C2

21C3
256a2, c152a2, c25c3524a2.
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~1,1,2!1 C1
21C2

252c1 , C3
252c112a2, c1,0, c15c2 , c12c35a2.

~1,2,2!1 C1
252c1 , C2

21C3
252c112a2, c1,0, c25c3 , c12c25a2.

~2,2,2!1 C1
21C2

21C3
252a2, c15c25c352a2.

1See, e.g., G. P. Agrawal,Nonlinear Fiber Optics, 3rd ed.~Academic, New York, 2001!, Chap. 7; N. Akhmediev and A.
Ankiewicz, Solitons: Nonlinear Pulses and Beams~Chapman and Hall, London, 1997!.

2T. Kanna and M. Lakshmanan, Phys. Rev. Lett.86, 5043~2001!; R. Radhakrishnan, M. Lakshmanan, and J. Hietarin
Phys. Rev. E56, 2213~1997!; R. Radhakrishnan and M. Lakshmanan, J. Phys. A28, 2683~1995!.

3Q.-H. Park and H. J. Shin, Phys. Rev. E61, 3093~2000!.
4N. Akhmediev and A. Ankiewicz, Phys. Rev. Lett.82, 2661~1999!; A. Ankiewicz, W. Królikowski, and N. N. Akhme-
diev, Phys. Rev. E59, 6079~1999!; A. A. Sukhorukov and N. N. Akhmediev,ibid. 61, 5893~2000!.

5F. T. Hioe, Phys. Rev. Lett.82, 1152~1999!; J. Phys. A32, 1217, 2415~1999!.
6V. Kutuzov, V. M. Petnikova, V. V. Shuvalov, and V. A. Vysloukh, Phys. Rev. E57, 6056~1998!; V. M. Petnikova, V. V.
Shuvalov, and V. A. Vysloukh,ibid. 60, 1009~1999!.

7R. Radhakrishnan, R. Sahadevan, and M. Lakshmanan, Chaos, Solitons Fractals5, 2315~1995!; R. Sahadevan, K. M.
Tamizhmani, and M. Lakshmanan, J. Phys. A19, 1783~1986!.

8F. T. Hioe and T. S. Salter, J. Phys. A35, 8913~2002!.
9See, e.g.,Higher Transcendental Functions, edited by A. Erde´lyi et al. ~McGraw–Hill, New York, 1955!, Vol. 3, Chap.
XV.

10F. T. Hioe and C. E. Carroll, Phys. Lett. A299, 189 ~2002!.
11M. Florjanczyk and R. Tremblay, Phys. Lett. A141, 34 ~1989!; N. A. Kostov and I. M. Uzunov, Opt. Commun.89, 389

~1992!.
12F. T. Hioe, Phys. Rev. E56, 7253~1997!; 58, 1174, 6700~1998!; C2

2 for Solution ~II ! should be5A2
21a2k2.

13K. W. Chow, Phys. Lett. A285, 319 ~2001!.
14F. T. Hioe, ‘‘Periodical optical solitary waves induced by cross-phase modulation,’’ submitted to Physica D.
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De Rham–Wu decomposition of holomorphic Riemannian
manifolds

Peter R. Lawa)

1 Mack Place, Monroe, New York 10950

~Received 22 July 2002; accepted 13 August 2002!

It is shown that a de Rham–Wu decomposition for holomorphic Riemannian mani-
folds is obtained easily from the underlying real geometry of holomorphic Rie-
mannian manifolds by appealing to H. Wu’s extension to pseudo-Riemannian mani-
folds of de Rham’s decomposition theorem. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1515110#

I. INTRODUCTION

A holomorphic Riemannian manifold is a complex manifoldM , of complex dimensionn say,
together with a holomorphic tensor fieldh that is a complex scalar product~i.e., nondegenerate
symmetric,C-bilinear form! on each holomorphic tangent spaceTp8M , pPM .

Holomorphic Riemannian geometry has many formal analogies with pseudo-Riemannia
ometry and so has not required special study to elaborate its basic features. Nevertheles
attracted considerable interest in the context of general relativity, arising initially from the fac
the Hodge star operator provides a complex structureJ on L2(R1,3) so that the notion of self-
duality in Lorentzian geometry involves complex-valued objects. In fact,L2(R1,3)>R3,3 and the
Hodge star operator is ananti-orthogonal complex structureJ with respect to the neutral scala
productg on L2(R1,3). Definingm( , )ªg(J , ), theng2 im defines a complex scalar product o
(L2(R1,3),J). This linear algebra plays a role in the well-known Petrov classification and un
lies the associated proof thatSO1(1,3)>SO(3,C), ~cf., Ref. 10!. Complex geometry also occur
in general relativity in the form of complex space–times, i.e., four-~complex-!dimensional holo-
morphic Riemannian manifolds, of special interest in Penrose’s twistor theory and New
theory ofH-space, cf., e.g., Ref. 7. Specifically, half-flat complex space–times provide a non
analog of~anti-!self-dual objects in the linear theory. These applications inspired further wor
complex Riemannian geometry itself, e.g., Ref. 6.

Typically, holomorphic Riemannian geometry is regarded as arising most naturally via
plexification of real analytic Riemannian geometry. But, as in the linear theory, holomo
Riemannian geometry possesses an underlying real geometry consisting of a pseudo-Riem
metric of neutral signature for which the~integrable! almost complex structure tensor is an
orthogonal. The latter approach is more natural in a geometrical setting, can include the w
case of almost complex manifolds, and also indicates the significance of neutral signature a
the various indefinite signatures. Ro´zga9 and Woodhouse11 appear to be have been the first
employ the real geometry of complex space–times, in applications to real slices of co
space–time. Recently, Robinson8 has employed the real geometry to study half-flat comp
space–times. The real geometry of holomorphic Riemannian manifolds has also been con
for its own sake, e.g., Ref. 2.

Much differential geometry of a holomorphic Riemannian manifold (M ,h) may be developed
simply by analogy with pseudo-Riemannian geometry. The notion of holonomy, however, w
appear to be an exception. One approach is to utilize the underlying real geometry of (M ,h). In
this paper, I employ this approach to formulate for (M ,h) an analog of Wu’s12–14generalization to
pseudo-Riemannian geometry of the de Rham decomposition theorem of Riemannian ge

a!Electronic mail: prldb@member.ams.org
63390022-2488/2002/43(12)/6339/4/$19.00 © 2002 American Institute of Physics
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see, e.g., Ref. 4. This result further demonstrates the utility of the real geometric appro
holomorphic Riemannian manifolds, not only for elucidating the holomorphic Riemannian g
etry but also for suggesting how to adapt concepts~such as holonomy! from the real to the
complex context.

II. HOLOMORPHIC RIEMANNIAN GEOMETRY

Briefly, consider a real, orientable, 2n-dimensional manifoldM , equipped with a neutra
metric g, i.e., a pseudo-Riemannian metric of signature type (n,n), and an almost complex
structureJ which is compatible withg in the sense thatJ acts as an anti-orthogonal transformati
of each tangent spaceTpM :

g~J~v !,J~w!!52g~v,w!,

v, wPTpM . Extendg C-bilinearly andJ C-linearly to the complexified tangent spaceCTpM .
As usual, let Tp

1,0M and Tp
0,1M be, respectively, the eigenspaces of the eigenvaluesi and

2 i of J acting onCTpM . The compatability ofJ with g entails thatCTpM5Tp
1,0M % Tp

0,1M
is an orthogonal decomposition with respect tog. Moreover, the restriction,h, of g to Tp

1,0M
is a complex scalar product. If the Levi-Civita connection¹g of g is almost complex,¹gJ50,
then it turns out thatJ is integrable andh is holomorphic, i.e., (M ,h) is a holomorphic Riemann
ian manifold. Conversely, every holomorphic Riemannian manifold can be seen to
in this manner. Thus, one may refer to such (M ,g,J) as a holomorphic Riemannian manifold
Note that one definesm( , )ªg(J , ) ~by analogy with the Ka¨hler form in Hermitian geometry!,
which is another neutral metric onM . Then¹g is almost complex iff¹g5¹m , where the latter is
the Levi-Civita connection ofm. These results appear in Woodhouse11 and Robinson8 and are easy
analogs of familiar results in Hermitian/Ka¨hler geometry. Indeed, one may now develop holom
phic differential geometry in purely real terms by analogy with the development of Hermitian
Kähler geometry in, for example, Ref. 5, Chap. IX.

Let U be a holomorphic chart domain for a holomorphic Riemannian manifold (M ,h)
5(M ,g,J) equipped with holomorphic coordinates$z1 ,...,zn% and write Zi

ª]/]zi so that
$Z1 ,...,Zn% is a basis forTp

1,0, pPU. Adopting the notation of Ref. 5, Chap. IX, Sec. 5,$ZA :A
51,...,n,1̄,...,n̄%5$Za ,Zā :a51, . . . ,n% denotes the associated basis of the complexified tan
spaceCTpM . Introduce Christoffel symbols as follows:

¹ZB
ZC5GBC

A ZA ,

where¹ is theC-linear extension of¹g to CTM. As ¹g is almost complex and torsion free, the
~cf., Ref. 5, p. 156!

Gbg
a 5Ggb

a , G
b̄ḡ

ā
5Gbg

a all other GBC
A vanish.

Hence,¹Zb
Zg5Gbg

a Za . Adaptation of a standard argument shows that

GBC
A 5 1

2 gDA~]B gDC1]C gDB2]D gBC!,

where gABªg(ZA ,ZB), and gAB are the entries of the matrix inverse to (gAB). With hab

ªh(Za ,Zb), andhab the entries of the matrix inverse to the matrix (hab), one finds

Gbg
a 5 1

2 hda~]b hdg1]g hdb2]d hbg!,

i.e., the Christoffel symbols ofh with respect to the coordinates$za% are justGbg
a . In a similar

fashion, one may, for example, obtain the holomorphic Riemann curvature tensor ofh from the
~complexification! of the Riemann curvature tensor ofg.
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Turning to the matter of holonomy, it turns out that¹g is almost complex iff the Levi-Civita
connection, as a connection on the frame bundle, reduces to the bundle of complex frames~analog
of Ref. 5, ~4.8!, p. 152!. Thus, taking the holonomy for (M ,h) to be that of the connection¹g

yields holonomy in

O~n;C!5GL ~n;C!ùO~n,n!,

as is appropriate. The holonomy of neutral metrics is the subject of Refs. 1 and 3 though w
emphasis upon the four~real!-dimensional case.

III. THE DE RHAM–WU DECOMPOSITION

The possibility of obtaining a de Rham-like decomposition theorem for (M ,h), whenM is
simply connected, is now accessible through Wu’s12–14extension to pseudo-Riemannian geome
of de Rham’s result by applying Wu’s result directly to (M ,g).

Let C(p) be the linear holonomy group of¹g at pPM acting onTpM , andT0 the subspace
of tangent vectors fixed under this action. SupposeT0 is nondegenerate, which I shall refer to
Wu’s condition. Then, there is a decompositionTpM5 % i 50

k Ti into mutually g-orthogonal,
C(p)-invariant, weakly irreducible~i.e., no nontrivial, nondegenerate,C(p)-invariant subspaces!
subspacesTi . The decomposition is unique up to order andC(p) is a direct productC03¯

3Ck of normal subgroups, withC i acting trivially onTj , j Þ i , and weakly irreducibly onTi ,
andC05^1&. The subspacesTi may be parallely propagated to yield involutive distributions.

If M is complete, one obtains a global decomposition:M is isometric to a productM03¯

3Mk , where each factorMi is a simply connected, complete pseudo-Riemannian manifold
weakly irreducible holonomyC i , and is totally geodesic as a submanifold ofM . Furthermore,M0

is flat ~in fact pseudo-Euclidean since it is a simply connected space form!. Call such a decom-
position ade Rham–Wu decomposition.

Given a de Rham–Wu decomposition of a manifold with neutral metric, then presumab
factors need not, in general, be neutral. Nevertheless, one still has:

Theorem: Let (M ,g,J) be a simply connected, complete, holomorphic Riemannian man
of real dimension 2n satisfying Wu’s condition. ThenM has a de Rham–Wu decompositio
M03¯3Mk , where each factor is holomorphic Riemannian in a natural manner and the
etry M.M03¯3Mk is biholomorphic.M0.Rm,m, somem<n.

Proof: The essentials of the argument of Ref. 5, Theorem 8.1, p. 172, carry over to the p
circumstances. In particular, the argument there establishes thatJ restricts to eachTi as an anti-
orthogonal complex structure, whence each factoris neutral. The remainder of the argument
Ref. 5, Theorem 8.1 confirms the assertions in the theorem.
Completenessin the Theorem refers to the geodesics ofg, but it is clear from the discussion o
complex geodesics in Ref. 6 that the obvious notion ofcompletenessfor the complex geodesics o
h is equivalent to completeness of the geodesics ofg.

Note that the notion of nondegeneracy introduced on p. 173 of Ref. 5 is not releva
holomorphic Riemannian manifolds asJ, being anti-orthogonal, cannot belong toC(x).

1Bérard Bergery, L. and Ikemakhen, A., ‘‘Sur l’holonomie des varie´tés pseudo-riemanniennes de signature (n,n), ’’ Bull.
Soc. Math. France125, 93–114~1997!.

2Ganchev, G. and Ivanov, S., ‘‘Characteristic curvatures on complex Riemannian manifolds,’’ Riv. Mat. Univ. Par1,
155–162~1992!.

3Ghanam, R. and Thompson, G., ‘‘The holonomy Lie algebras of neutral metrics in dimension four,’’ J. Math. Phy42,
2266–2284~2001!.

4Kobayashi, S. and Nomizu, K.,Foundations of Differential Geometry~Wiley-Interscience, New York, 1969!, Vol. I.
5Kobayashi, S. and Nomizu, K.,Foundations of Differential Geometry~Wiley-Interscience, New York, 1969!, Vol. II.
6LeBrun, C. R., ‘‘Spaces of complex null geodesics in complex-Riemannian geometry,’’ Trans. Am. Math. Soc278,
209–231~1983!.

7Newman, E. T. and Tod, K. P., ‘‘A note on left-flat space-times,’’ J. Math. Phys.21, 874–877~1980!.
8Robinson, D. C., ‘‘The real geometry of holomorphic four-metrics,’’ J. Math. Phys.43, 2015–2028~2002!.
9Rózga, K., ‘‘Real slices of complex space-time in general relativity,’’ Rep. Math. Phys.11, 197–210~1977!.

10Thorpe, J. A., ‘‘Curvature and the Petrov canonical forms,’’ J. Math. Phys.10, 1–7 ~1969!.
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Pseudo-Hermiticity for a class of nondiagonalizable
Hamiltonians

Ali Mostafazadeha)

Department of Mathematics, Koc¸ University,
Rumelifeneri Yolu, 80910 Sariyer, Istanbul, Turkey

~Received 8 July 2002; accepted 12 August 2002!

We give two characterization theorems for pseudo-Hermitian~possibly nondiago-
nalizable! Hamiltonians with a discrete spectrum that admit a block-diagonalization
with finite-dimensional diagonal blocks. In particular, we prove that for such an
operatorH the following statements are equivalent:~1! H is pseudo-Hermitian;~2!
the spectrum ofH consists of real and/or complex-conjugate pairs of eigenvalues
and the geometric multiplicity and the dimension of the diagonal blocks for the
complex-conjugate eigenvalues are identical;~3! H is Hermitian with respect to a
positive-semidefinite inner product. We further discuss the relevance of our findings
for the merging of a complex-conjugate pair of eigenvalues of diagonalizable
pseudo-Hermitian Hamiltonians in general, and the PT-symmetric Hamiltonians
and the effective Hamiltonian for a certain closed FRW minisuperspace quantum
cosmological model in particular. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1514834#

I. INTRODUCTION

In Refs. 1–5 we developed the notion of a pseudo-Hermitian operator and investiga
various consequences in particular in connection with PT-symmetric quantum systems6 and two-
component formulation of the FRW minisuperspace quantum cosmology.7 Since the announce
ment of the results of Ref. 1 several authors have explored the implications
pseudo-Hermiticity.8 The main results reported in Refs. 1–5 were, however, based on the as
tion that the Hamiltonian of the system is diagonalizable and has a discrete spectrum. As d
strated in Ref. 5, the latter condition can be easily relaxed. Moreover, in Ref. 9 we sho
without making any assumption about the diagonalizability of the Hamiltonian or discretene
its spectrum, that the results of Refs. 1 and 3 generalized to the class of all PT-symmetric st
Hamiltonians havingR as their configuration space. This suggests that these results may be
under more general conditions. Our purpose in the present article is to generalize the res
Ref. 1 to the class of possibly nondiagonalizable Hamiltonians that admit a block-diagonali
with finite-dimensional diagonal blocks. This, in particular, includes all the matrix Hamiltoni
It is also relevant to the accidental loss of diagonalizability due to the pseudo-Hermit
preserving variations of diagonalizable pseudo-Hermitian Hamiltonians that lead to the merg
complex-conjugate pairs of eigenvalues.

The organization of the article is as follows. In Sec. II, we discuss the basic properties
class of the Hamiltonians admitting a block-diagonalization with finite-dimensional diag
blocks. In Sec. III, we present two characterization theorems for pseudo-Hermitian Hamilto
belonging to this class. In Sec. IV, we study general 232 matrix Hamiltonians. In Sec. V, we
discuss an application of our results in quantum cosmology. Finally, in Sec. VI, we prese
concluding remarks.

a!Electronic mail: amostafazadeh@ku.edu.tr
63430022-2488/2002/43(12)/6343/10/$19.00 © 2002 American Institute of Physics
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II. BLOCK-DIAGONALIZABLE HAMILTONIANS WITH FINITE-DIMENSIONAL DIAGONAL
BLOCKS

Consider a linear operatorH:H→H acting in a~separable! Hilbert spaceH and having a
discrete spectrum. Suppose that for every eigenvalueEn , there are positive integersgn ,pnPZ1

such that for alll PZ1,

dn,lªdim@ker~H2En1! l #5gn , if and only if l>pn . ~1!

This in particular means that

dn,1<dn,2<¯<dn,pn21<dn,pn
5gn . ~2!

The integerdn,1 is just the degree of degeneracy or the geometric multiplicity ofEn . In what
follows, we shall use the abbreviated notationdn for dn,1 and denote the degeneracy labe
1,2,...,dn by the letters from the beginning of the Latin alphabet.

The integergn is called the algebraic multiplicity ofEn . The condition~1! means that all the
eigenvalues ofH have finite algebraic multiplicity. Throughout this paper we shall assume
this condition is satisfied and that there is a basis of the Hilbert space in whichH is block-diagonal
with diagonal blocks being finite-dimensional. In this case, we can always find a basis in whi
diagonal blocks have the canonical Jordan form,10 i.e., there is an invertible operatorA:H→H and
an orthonormal basis$un,a,i &% with n being the spectral label,aP$1,2,...,dn%, i
P$1,2,...,pn,a%, andpn,aPZ1, such that

A21HA5Hbª(
n

(
a51

dn S En(
i 51

pn,a

un,a,i &^n,a,i u1 (
i 51

pn,a21

un,a,i &^n,a,i 11u D . ~3!

Alternatively, letting

ucn ,a,i &ªAun,a,i &, ufn ,a,i &ªA21†un,a,i &, ~4!

we have

^cn ,a,i ufm ,b, j &5dmndabd i j , (
i

(
a51

dn

(
i 51

pn,a

ucn ,a,i &^fn ,a,i u51, ~5!

H5AHbA215(
n

(
a51

dn S En(
i 51

pn,a

ucn ,a,i &^fn ,a,i u1 (
i 51

pn,a21

ucn ,a,i &^fn ,a,i 11u D . ~6!

Note that according to Eqs.~5! and~6!, $ucn ,a,i &,ufn ,a,i &% is a complete biorthonormal system
for the Hilbert space and

Hucn ,a,1&5Enucn ,a,1&, ~7!

H†ufn ,a,pn,a&5En* ufn ,a,pn,a&. ~8!

Henceucn ,a,1& are the eigenvectors ofH and ufn ,a,pn,a& are the eigenvectors ofH†.
The numberspn,a represent the dimension of the Jordan block associated with the sp

label n and the degeneracy labela. We shall refer to them as the Jordan dimensions. For a g
eigenvalueEn , the number of the corresponding Jordan blocks~which is equal to the geometri
multiplicity of En) and the Jordan dimensions are uniquely determined by the integersdn,l of ~1!
up to the permutations of the degeneracy labels.10 Note also that the algebraic multiplicity is th
sum of the Jordan dimensions,gnª(a51

dn pn,a .
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III. CONSEQUENCES OF PSEUDO-HERMITICITY

Theorem 1: Let H:H→H be a linear operator acting in a~separable! Hilbert spaceH.
Suppose that the spectrum ofH is discrete, its eigenvalues have finite algebraic multiplicity, a
that ~6! holds. Then,H is pseudo-Hermitian if and only if the eigenvalues ofH are either real or
come in complex-conjugate pairs and the geometric multiplicity and the Jordan dimensions
complex-conjugate eigenvalues coincide.

Proof: Suppose thatH is pseudo-Hermitian. Then, by definition,1 there is a Hermitian auto
morphism~linear bijection mappingH ontoH! h:H→H such thatH†5hHh21. Now let En be
an arbitrary element of the spectrum ofH. Then, by virtue of Eqs.~7! and ~8!, for eacha
P$1,2,...,dn%, ucn ,a,1& is an eigenvector ofH with eigenvalueEn and ufn ,a,pn,a& is an eigen-
vector of H† with eigenvalueEn* . This in turn impliesHh21ufn ,a,pn,a&5h21H†ufn ,a,pn,a&
5En* h21ufn ,a,pn,a&. As h21 is an invertible operator,h21ufn ,a,pn,a&Þ0. HenceEn* also
belongs to the spectrum ofH. Next, note that because the eigenvalues ofH and consequentlyH†

have finite algebraic multiplicity, for everyl PZ1, kernel(H2En) l , kernel(H2En* ) l , and
kernel(H†2En* ) l are finite-dimensional subspaces ofH. Clearly, as a result of~6!, H andH† have
essentially the same Jordan block-diagonalization. In particular, the geometric multiplicity an
Jordan dimensions ofEn* as an eigenvalue ofH† is the same as the geometric multiplicity and t
Jordan dimensions ofEn as an eigenvalue ofH. This implies that kernel(H†2En* ) l and
kernel(H2En) l have the same dimension. Thus they are isomorphic. Furthermore, using th
that h is an automorphism, kernel(H†2En* ) l is also isomorphic to

kernel@h21~H†2En* ! lh#5kernel~h21H†h2En* ! l5kernel~H2En* ! l .

Therefore, for everyl PZ1, kernel(H2En) l and kernel(H2En* ) l are isomorphic and conse
quently have the same dimension. This in turns implies that the number of the Jordan
associated withE and their dimensions are identical with those ofEn* , i.e., En andEn* have the
same geometric multiplicity, and up to permutations of the degeneracy labels they have id
Jordan dimensions as well. Conversely, suppose that the eigenvalues ofH are either real or come
in complex-conjugate pairs and the geometric multiplicitydn and the Jordan dimensionspn,a of
the complex conjugate pairs of eigenvalues are identical. We shall setn5n0 ,n,n2 depending on
whether imaginary part ofEn is zero, positive, or negative. ThenEn25En* , dn25dn , for all a
P$1,2,...,dn%, pn2,a5pn,a , and Eq.~6! takes the form

H5(
n0

(
a51

dn0 S En0 (i 51

pn0 ,a

ucn0
,a,i &^fn0

,a,i u1 (
i 51

pn0 ,a21

ucn0
,a,i &^fn0

,a,i 11u D
1(

n
(
a51

dn F(
i 51

pn,a

~Enucn ,a,i &^fn ,a,i u1En* ucn2 ,a,i &^fn2 ,a,i u!

1 (
i 51

pn,a21

~ ucn ,a,i &^fn ,a,i 11u1ucn2 ,a,i &^fn2 ,a,i 11u!G . ~9!

Next, let

h~x,j!ª(
n0

(
a51

dn0

(
i 51

pn0 ,a

(
j 5pn0 ,a112 i

pn0 ,a

xn0 ,a,i 1 j ufn0
,a,i &^fn0

,a, j u

1(
n

(
a51

dn

(
i 51

pn,a

(
j 5pn,a112 i

pn,a

~jn,a,i 1 j ufn ,a,i &^fn2 ,a, j u1jn,a,i 1 j* ufn2 ,a, j &^fn ,a,i u!,

~10!

wherexn0 ,a,kPR, jn,a,kPC,
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xn0 ,a,pn0 ,a11Þ0Þjn,a,pn,a11 , ~11!

andx andj, respectively, stand for the sequences$xn0 ,a,k% and$jn,a,k%. It is not difficult to check
that, for all n5n0 ,n,n2, m5m0 ,m,m2, and the corresponding degeneracy labelsa,b and
Jordan block labelsi , j ,

^cn0
,a,i uh~x,j!ucm0

,b, j &5H dn0 ,m0
dabxn0 ,a,i 1 j , for i 1 j .pn0 ,a

0, otherwise;

^cn ,a,i uh~x,j!ucm2 ,b, j &5^cm2 ,a,i uh~x,j!ucn ,b, j &*

5H dn,mdabjn,a,i 1 j , for i 1 j .pn,a

0, otherwise;
~13!

and that the other matrix elements ofhªh(x,j), in the basis$ucn ,a, j &%, vanish. In view of Eqs.
~12!, ~13!, and~11!, h is a Hermitian automorphism. Furthermore, using Eqs.~5! and~9!–~11!, one
can check that it satisfieshH5H†h. Hence,H]

ªh21H†h5H, andH is h-pseudo-Hermitian.h

An immediate consequence of this theorem is the following
Corollary 1: Let H be as in Theorem 1. Then the pseudo-Hermiticity ofH is a necessary

condition for the reality of its spectrum.
Note that ~10! is not the most general expression for anh with respect to whichH is

h-pseudo-Hermitian. One can obtain more general expressions by performing appropriat
transformations.~These are the transformations that mix the basis vectors with different de
eracy labelsa but identical spectral labeln and the Jordan dimensionpn,a ). Similarly to the
diagonalizable case,4 one can also perform a change of basis to setxn0 ,a,k561 andjn,a,k51.
This is, however not the simplest choice forh. It is not difficult to check that the following simple
choice works as well:

xn0 ,a,k5H 61, for k5pn0 ,a11,

0, otherwise,
jn,a,k5H 1, for k5pn,a11,

0, otherwise.
~14!

In this way one obtains the following set of simple canonical automorphisms with respect to w
H is h-pseudo-Hermitian:

h~s!ª(
n0

(
a51

dn0

sn0 ,aS (
i 51

pn0 ,a

ufn0
,a,i &^fn0

,a,pn0 ,a112 i u D
1(

n
(
a51

dn

(
i 51

pn,a

~ ufn ,a,i &^fn2 ,a,pn,a112 i u1ufn2 ,a,pn,a112 i &^fn ,a,i u!, ~15!

with sª$sn0 ,a% being a sequence of signs. A straightforward calculation shows that

h~s!21
ª(

n0
(
a51

dn0

sn0 ,aS (
i 51

pn0 ,a

ucn0
,a,i &^cn0

,a,pn0 ,a112 i u D
1(

n
(
a51

dn

(
i 51

pn,a

~ ucn ,a,i &^cn2 ,a,pn,a112 i u1ucn2 ,a,pn,a112 i &^cn ,a,i u!.

~16!
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If H is diagonalizable,pn,a51 and ~15! yields the expression for the canonical autom
phisms given in Ref. 4. Again choosing all the signssn0 ,a to be positive yields a positive
semidefinite~non-negative! h and a positive-semidefinite inner product,

^̂ c,f&&hª^cuhuf&. ~17!

However, even if the complex eigenvalues are absent this choice does not lead to a po
definite inner product on the Hilbert space unlessH is diagonalizable. This is because in gene
there are defective~real! eigenvaluesEn0

; at least one of the Jordan dimensionspn0 ,a is greater
than 1; and according to~12! and~13!, ^̂ cn0

,a,1ucn0
,a,1&&h5^cn0

,a,1uhucnu0
,a,1&50. Hence the

corresponding eigenvectorucn0
,a,1& is null, and the inner product~17! is not positive-definite.

Theorem 2: Let H be as in Theorem 1. ThenH is pseudo- Hermitian if and only if it is
Hermitian with respect to a positive-semidefinite inner product^̂ , &&:H 2→C, i.e., for all f,c
PH, ^̂ f,Hc&&5 ^̂ Hf,c&&.

Proof: SupposeH is pseudo-Hermitian, then according to Theorem 1 it has real an
complex-conjugate pairs of eigenvalues with identical geometric multiplicity and Jordan di
sions. According to the proof of this theorem, this implies thatH is pseudo-Hermitian with respec
to the automorphism~15! with sn0 ,a51 for all n0 and aP$1,2,...,dn0

%. The latter yields the
positive-semidefinite inner product~17! which satisfies, for allc,fPH,

^̂ f,Hc&&h5^fuhHuc&5^fuH†huc&5^Hfuhuc&5 ^̂ Hf,c&&h .

HenceH is Hermitian with respect to the inner product~17!. Conversely, letH be Hermitian with
respect to a positive-semidefinite inner product^̂ , &&. Let h:H→H be defined in terms of its
matrix elements according to, for allc,fPH,

^cuhuf&ª ^̂ c,f&&.

Then, becausê̂ , && is a sesquilinear, Hermitian, nondegenerate quadratic form,11 h is a linear,
Hermitian, automorphism. Furthermore, becauseH is Hermitian with respect tô̂ , && we have, for
all c,fPH,

^fuhHc&5 ^̂ f,Hc&&5 ^̂ Hf,c&&5^Hfuhuc&5^fuH†hc&.

Therefore,hH5H†h or H]
ªh21H†h5H, i.e., H is pseudo-Hermitian. h

IV. 2Ã2 MATRIX HAMILTONIANS

In Ref. 3, we showed that the pseudo-Hermiticity of a diagonalizable Hamiltonian is eq
lent to the presence of antilinear symmetries. The PT-symmetry studied in the literature6 is a
primary example. In general, such a Hamiltonian depends on certain continuous parameters
variation does not destroy the symmetry but changes the spectrum. In particular, it is possib
under such variations complex-conjugate pairs of eigenvalues merge and produce real eige
or a real eigenvalue splits into a complex-conjugate pair of eigenvalues. This is a generic be
observed in the numerical studies of PT-symmetric Hamiltonians6 and naturally applies in the cas
of general pseudo-Hermitian Hamiltonians. Now consider a diagonalizable pseudo-Her
Hamiltonian with a discrete spectrum that undergoes a continuous pseudo-Hermiticity-pres
perturbation. In general, such a perturbation may not preserve the diagonalizability o
Hamiltonian.12 In particular, at the critical values of the perturbation parameter when two no
generate complex-conjugate eigenvalues merge to produce a real eigenvalue, there is no g
that the resulting eigenvalue is doubly degenerate. This observation underlies the importa
the results of Sec. III in the study of the behavior of diagonalizable pseudo-Hermitian ope
undergoing arbitrary pseudo-Hermiticity-preserving perturbations.
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Consider the case that under such a perturbation a pair of complex-conjugate nondeg
eigenvalues cross while no other level-crossing occurs. In the vicinity of this level-crossing
can approximate the behavior of the Hamiltonian by a traceless 232 matrix Hamiltonian. In Ref.
4, we have studied the properties of general complex, traceless, diagonalizable, pseudo-He
232 matrix Hamiltonians. A traceless 232 matrix H with two nondegenerate eigenvalues
pseudo-Hermitian if its determinant is a nonzero real number.4 As we explain below the convers
of this statement is also true. In particular, det(H),0 or det(H).0 depending on whether th
eigenvalues are real or imaginary. This means that the moduli spaceM of traceless pseudo
Hermitian 232 matrices with two nondegenerate eigenvalues is a 5-dimensional subspace
8-dimensional spaceM (2,C) of all complex 232 matrices. The latter has the manifold structu
of C45R8. If we, respectively, denote the subsets of complex traceless 232 matrices, complex
traceless pseudo-Hermitian 232 matrices, and traceless Hermitian 232 matrices byM0 , M8,
andM0 , we have

M0 , M , M8 , M0 , M ~2,C!

uu uu uu

R3 R6 R8.

We can identifyM with the inverse image ofR2$0%,R25C under the continuous function
det:M(2,C)→C5R2. Noting thatR1 andR2 are disjoint, open, connected subsets ofC and det is
continuous, we infer thatM consists of two open connected components, namely

M 6
ª$HPMudetHPR6%.

This in turn implies that at a critical point of the parameters ofH where a level-crossing happen
H fails to stay inM. This is also easily seen by realizing that becauseH is traceless, a level-
crossing can occur only if detH vanishes. Therefore, at the level-crossing eitherH50 or it is
nondiagonalizable.

In fact, it is not difficult to see that an elementX6 of M 6 has the general form

X65A61Eg21s3g, ~18!

whereE is a nonzero real number,g is an element of the special linear groupSL(2,C), ands3 is
the diagonal Pauli matrix diag(1,21). The form~18! indicates that the moduli spacesM 1 and
M 2 have the manifold structure ofF3(R2$0%) whereF is the 4-dimensional homogeneou
space:

FªSL~2,C!/UC~1!,

and

UC~1!ª$ezs3uzPC%5H S w 0

0 w21D UwPC2$0%J .

Furthermore, according to~18! the group elementsg that are uniquely parametrized by the poin
of F play the same role for bothX1 andX2 . It is the factorA61 E in ~18! that differentiatesX1

andX2 . This suggests that we can identifyM 6 by F3L6, where

L1
ª$zPC2$0%uRe~z!50%5 imaginary axis in the complex plane with 0 removed,

L2
ª$zPC2$0%uIm~z!50%5real axis in the complex plane with 0 removed,

and ‘‘Re’’ and ‘‘Im’’ stand for the ‘‘real’’ and the ‘‘imaginary’’ part of the corresponding comple
variable, respectively.
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The above picture ofM confirms our earlier remark that at a level-crossing a trace
pseudo-Hermitian 232 matrix,

H5S a b

c 2aD , ~19!

either vanishes identically:

a5b5c50, ~20!

or becomes nondiagonalizable:

a56 iAbc, uau21ubu21ucu2Þ0, ~21!

where iªA21. In the latter case, according to~6!, H has the formH5uc1&^f2u where
$uca&,ufa&% with a5$1,2% is a complete biorthonormal system inC2. In particular, we have the
following.

Proposition 1:Every traceless nondiagonalizable 232 matrix H is pseudo-Hermitian.
Proof: BecauseH is both traceless and nondiagonalizable, zero is the only eigenvalue oH.

Hence according to Theorem 1, it must be pseudo-Hermitian. h

Theorem 3: A traceless 232 matrix H is pseudo-Hermitian if and only if it has a rea
determinant, i.e.,

M85$HPM0udetHPR%.

Proof: If H is not diagonalizable, then according to Proposition 1 it is pseudo-Hermitian
the statement of Theorem 3 is trivially satisfied. IfH is diagonalizable, it is either identically zero
in which case it is pseudo-Hermitian and has a real~zero! determinant, or it has two nondegenera
eigenvalues. In the latter case, in view of a proposition proven in Ref. 4, the reality o
determinant ofH implies its pseudo-Hermiticity. The converse is also true. For ifH is pseudo-
Hermitian, then its eigenvalues are either both real or they are complex-conjugate of one a
BecauseH has a vanishing trace, in the latter case the eigenvalues must be imaginary. This
implies that in both cases the determinant ofH is real. h

In light of Theorem 3, the possibility~20! that at a level-crossing a traceless pseudo-Hermi
232 matrix Hamiltonian remains diagonalizable corresponds to a single point in the uncoun
infinite set of traceless nondiagonalizable pseudo-Hermitian 232 matricesM82M. To make
this observation more transparent, consider the pseudo-Hermitian matrix Hamiltonians~19! cor-
responding to the choicec50. Then detH52a2, aPL6, andHPM 6. Now suppose thata and
b are analytic functions of a real perturbation parameterl and that a level-crossing occurs atl
50. Then at the vicinity of the level-crossing, i.e., forulu,e for some sufficiently smalle
PR1,

a~l!'H arl, for 2e,l<0

ia il, for 0<l,e
, b~l!'b01b1l,

wherear and ai are nonzero real constants, andb0 and b1 are complex constants. Atl50, H
vanishes identically provided thatb05b(0)50. This is the only way in whichH can maintain its
diagonalizability. Clearly, forb0Þ0, H becomes nondiagonalizable atl50. In both casesa(0)
50PR is the only eigenvalue~alternatively detH50). Hence, according to Corollary 1~respec-
tively, Theorem 3!, H remains pseudo-Hermitian atl50. This example clearly shows that the lo
of diagonalizability at the crossing of the complex-conjugate eigenvalues is a generic beha
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V. APPLICATION

Consider the Wheeler–DeWitt equation for the closed FRW minisuperspace model with
massive scalar field,

F2
]2

]a2 1
]2

]w2 1e4a2m2e6aw2G c~a,w!50, ~22!

whereaª ln a, ‘‘ a’’ is the scale factor,w is a real scalar field of massm, and we have chosen
particularly simple factor ordering and the natural units.13,14 The Wheeler–DeWitt equation~22!

can be written in the Schro¨dinger formi Ċ5HC whereC is the two-component wave function7

Cª

1

&
S c1 i ċ

c2 i ċ
D ,

H is the effective Hamiltonian,

Hª

1

2 S 11D 211D

12D 212D D , ~23!

a dot means a derivative with respect toa, and

Dª2
]2

]w2 1m2e6aw22e4a. ~24!

The eigenvalue problem for the Hamiltonian~23! may be easily solved.7 The eigenvectors
Cn6 and the corresponding eigenvaluesEn6 have the form

Cn65
1

&
S 11En6

12En6
Dfn , En656Ame3a~2n11!2e4a56aAa@m~2n11!2a#, ~25!

where n50,1,2,..., fnªNnHn(m1/2e3a/2w)e2me3aw2/2, Hn are Hermite polynomials, andNn

ª@me3a/(p22nn! 2)#1/4 are normalization constants.
As seen from~25!, for a<m the spectrum ofH is real, and for a.m it consists of real and

complex-conjugate pairs of eigenvalues. In generalH is pseudo-Hermitian, becauseH†

5s3Hs3 . For aÞ(2n11)m, it is also diagonalizable. But at the critical valuesa5(2n11)m
where a real~namely the zero! eigenvalue splits into a complex-conjugate pair of eigenvalue
the converse happens,H fails to be diagonalizable. The situation is precisely like the one
cussed in Sec. IV. Here the perturbation parameter has the formlªa2(2n11)m. At the vicinity
of a level-crossing wherel→0, the operatorD and its eigenvectors do not undergo any disco
tinuous changes. Therefore, one can approximate the span of the eigenvectorsCn2 andCn1 for
lÞ0 with the span of the vectors,

u1&5S fn

0 D , u2&5S 0
fn

D ,

where fn is evaluated ata5 ln a5ln@(2n11)m#, i.e., l50. Clearly, we can study the
level-crossing by confining our attention to this subspace. The above approximation be
exact in the limitl→0. In the subspace spanned byu1& andu2& the operatorD is identically zero.
Therefore, we can approximateD by a constant that tends to zero asl→0. Therefore, the
Hamiltonian ~23! takes the form of the matrix Hamiltonian~19! with a5(11D)/2,b5(21
1D)/2, andc5(12D)/2. In the limit l→0, D approaches zero, and the conditions~21! hold.
Hence, as expected,H becomes nondiagonalizable at the level-crossing.
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The above argument implies that in generalH is diagonalizable for all values of the sca
factor except the critical valuesa5(2n11)m. At these valuesH becomes nondiagonalizable a
one of its eigenvalues, namely the zero eigenvalue, becomes defective. The algebraic mul
of this eigenvalue is two. In fact, the effective Hamiltonian~23! belongs to the class of block
diagonalizable Hamiltonians discussed in Secs. II and III. Its canonical Jordan form consis
232 Jordan block corresponding to the zero eigenvalue and an infinite number of trivi
31) blocks corresponding to nonzero eigenvalues. The fact that this Hamiltonian is ps
Hermitian for all values of the scale factor, its spectrum consists of real and complex- con
eigenvalues, and its complex eigenvalues are not defective is consistent with the general re
Sec. III.

VI. SUMMARY AND CONCLUSION

In this article we generalized our earlier results on diagonalizable pseudo-Hermitian H
tonians to a broad class of nondiagonalizable Hamiltonians. We showed that if a pseudo-He
Hamiltonian may be mapped to a block-diagonal operator with finite-dimensional blocks
similarity transformation, then the characterization theorems of Ref. 1 apply provided tha
number and size of the Jordan blocks for the complex-conjugate pairs of eigenvalues are id

We also discussed the implications of our findings for the phenomenon of the loss of d
nalizability at the crossing of the complex-conjugate pairs of eigenvalues of diagonali
pseudo-Hermitian Hamiltonians. For the latter, pseudo-Hermiticity is known to be equiv
to the presence of an antilinear symmetry.3 This in particular means that our results are relev
in the description of the PT-symmetric systems that are diagonalizable except in the c
level-crossings of the complex-conjugate eigenvalues due to perturbations of the Hamilton
at the critical values of the perturbation parameter each level-crossing involves a finite num
levels, then our results apply generally. This seems to be the case for various PT-sym
models studied in the literature. Specifically, at the critical values of the parameters of th
symmetric systems that undergo a spontaneous PT-symmetry breaking, a pair of real eige
merge and a loss of diagonalizability similar to the one discussed in Sec. V occurs.

As a final note, we wish to emphasize that the results of this paper rely on the basic as
tion that the quantum system has a genuine separable Hilbert space in which the Hamiltonia
For many PT-symmetric Hamiltonians the~inner product! structure of the function space in whic
one solves for the eigenfunctions is not clear. In this context, the assumption of consid
non-Hermitian Hamiltonians acting in a separable Hilbert space may seem too restrictive. N
theless, we believe that this assumption provides a framework for exploring some of the intr
properties of a class of non-Hermitian Hamiltonians. This class includes many PT-symm
Hamiltonians as well as all the matrix Hamiltonians and the non-Hermitian Hamiltonians ap
ing in the two-component formulation of the Klein–Gordon and Wheeler–DeWitt equations
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The eight fine gradings of sl „4, C… and o „6, C…
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Edita Pelantováb) and Milena Svobodovác)

Department of Mathematics, Faculty of Nuclear Science and Physical Engineering,
Czech Technical University, Trojanova 13, Praha 2, 120 00, Czech Republic

~Received 22 April 2002; accepted 25 June 2002!

A grading of a Lie algebra is called fine if it cannot be further refined. Fine gradings
provide basic information about the structure of the algebra. There are eight fine
gradings of the simple Lie algebra of typeA3 over the complex number field. One
of them ~root decomposition! is the main tool of the theory and applications in
working with A3 and with its representations; one other has also been used in the
literature, and the rest have apparently not been recognized so far. An explicit
description of all the fine gradings ofA3 is given in terms of the four-dimensional
@sl~4, C!# and six-dimensional orthogonal@o~6, C!# representations of the algebra.
These results should be useful generally for choosing bases which reflect structural
properties of the Lie algebra, for defining various sets of additive quantum numbers
for systems with such symmetries, and for systematic study of grading preserving
contractions of this Lie algebra. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1508434#

I. INTRODUCTION

Decomposition of a Lie algebra, considered as a linear space, into the direct sum of sub
of lower dimension is a simple problem which obviously has many solutions. However,
addition one requires that such a decomposition is a grading, severe limitations are imposed
possible decompositions so that the problem of classification of all the gradings becomes
cult task. Its solution has not been published for any simple Lie algebra of rank.1. Indeed,
grading is a requirement involving the multiplication~i.e., commutation! in the algebra. It is
natural to consider two decompositions~grading or not! equivalent if one can be transformed in
the other by an automorphism of the Lie algebra.

A finite dimensional Lie algebra can be decomposed into a finite number of nonempty
spaces.~We disregard the decompositions which would introduce additional subspaces of d
sion 0.! A coarse grading decomposes the Lie algebra into a small number of grading subs
The coarsest trivial one leaves the Lie algebra in one subspace. The coarsest nontrivial g
decompose the algebra into two subspaces. Every simple Lie algebra overC admits several
gradings of this kind. It is well known that the real forms of the algebra are in one-to
correspondence with such gradings.

Thefine gradingwas introduced in Ref. 1 as a grading which decomposes the Lie algebra
a maximal number of subspaces. By definition such a decomposition cannot be further r
while remaining a grading. The best known example of a fine grading of simple Lie algebra
C is the root~also called Cartan! decomposition. There a Lie algebra of rankr and dimensionrk
is decomposed into ther -dimensional Cartan subalgebra andr (k21) one-dimensional roo
spaces. There is no grading which would further split the Catran subalgebra.

a!Electronic mail: patera@crm.umontreal.ca
b!Author to whom correspondence should be addressed. Electronic mail: pelantova@km1.fjfi.cvut.cz
c!Electronic mail: svobodov@km1.fjfi.cvut.cz
63530022-2488/2002/43(12)/6353/26/$19.00 © 2002 American Institute of Physics
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The present article is very similar to Ref. 2, where an explicit description of fine grading
a rank two Lie algebra of typeB2 @equivalently sp~4, C! and o~5, C!# is given. There are eigh
nonequivalent fine gradings of the simple Lie algebraA3 .3 Their description is provided in this
article for the first time. More precisely, we consider the lowest representations ofA3 of dimension
4 and 6, calling them respectively sl~4, C! and o~6, C!, and present the eight gradings in bo
representations. Only one of them is well known~root decomposition! and one other for each
representation can also be found in the literature. We refer to Ref. 2 also for general motivat
studying fine gradings of semisimple Lie algebras. Let us point out here only the following: A
grading goes a long way in defining a basis of the Lie algebra~up to a normalization!. A graded
basis exploits structural properties of the Lie algebra such as the simplicity of commu
relations of the generators. The most difficult step in describing all the gradings of an algebr
find its fine gradings. Many important properties of simple Lie algebras and computing too
related to their root systems. Therefore it is natural to ask whether the grading labels of oth
gradings could possibly play an analogous role. In particular, an important class of subalgeb
the regular ones. They are all displayed by the root decomposition. Other fine gradings d
other subalgebras.

Consider a simple Lie algebraL with complex parameters. In Ref. 3 maximal subgroups
the automorphism group AutL with Abelian diagonalizable action onL were classified~so called
MAD-groups!. Decomposition ofL into eigenspaces of a given MAD-group is a fine grading. T
eigenspaces~grading subspaces! of such a decomposition are naturally labeled by the eigenva
of the elements of the MAD-group. Practically a small number of elements of the MAD-g
provides enough eigenvalues to label the subspaces. Choice of the labeling elements is f
unique but the grading subspaces of a fine grading do not depend on that choice. In phys
eigenvalues labeling the grading subspaces are interpreted as maximal sets of simulta
admissible quantum numbers describing a system with the symmetry of the Lie algebraL. Dif-
ferent choices of the labeling elements reflect the fact that there are several possible cho
quantum numbers describing the systems with the same symmetry algebraL.

Once the explicit fine gradings are written down, it is easy to verify that among them the
no equivalent pairs. Indeed, one can proceed, for example, as follows: (i ) Compare the dimen-
sions of grading subspaces. If they do not coincide, gradings are not equivalent. It the
coincidences, then (i i ) compare the number of one-dimensional grading subspaces which co
of semisimple and nilpotent elements. Again, if those numbers do not coincide, the two gra
are not equivalent. Finally, if previous tests failed to provide a definite answer, (i i i ) compare the
number of commuting pairs of one-dimensional grading subspaces. The three simple c
above may not be sufficient for all the simple Lie algebras, but they suffice to verify the
equivalence of the eight gradings of sl~4, C!. It is taken from Ref. 3 that there are precisely eig
such gradings. One of the motivations for the present article is the fact that the way fro
MAD-groups to actual gradings is rather laborious and that the properties of the fine gradin
not easily detectable from its MAD-group.

In this article we say that a subalgebraL8 of a Lie algebraL is displayedby a grading ofL,
if L8 consists of several grading subspaces of the grading decomposition. There are four m
reductive subalgebras in sl~4, C!, namely the following ones:

sp~4, C!, o~4, C!.sl~2, C!3sl~2, C!, gl~3, C!.sl~3, C!3u~1!,
~1!

sl~2, C!3sl~2, C!3u~1!.

Here we have noted the well known isomorphisms; u~1! stands for a one-dimensional ideal of th
subalgebra. The presence of a displayed maximal reductive subalgebra for each of the fin
ings is pointed out in the article. There is an inherent ambiguity in the traditional notation
subalgebras~1!. Thus, for example, the two subalgebras denoted sl(2,C)3sl(2, C) are very dif-
ferent @see~6! in Sec. II#.
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In Sec. II preliminary useful information is recalled and some notations are fixed. Sectio
contains a description of the fine gradings of sl~4, C! in terms of 434 matrices. Maximal reductive
subalgebras ofA3 are described in Sec. IV. The fine gradings of o~6, C! are presented in Sec. V in
terms of 636 matrices. The last section contains comments and conclusions.

II. PRELIMINARIES

Since the task we have set forth in this article is to describe eight rather complicated ca
two versions each, it makes sense to collect in this section common notations, facts, and a
as possible of the repetitive pertinent properties, besides the introductory mathematics th
typically expects here. The economy of space one gains in this way does not come without a
the section becomes a collection of little connected and/or motivated facts which need
frequently consulted later on.

~1! The defining or natural representation of the simple Lie algebra sl~4, C! has 15 complex
valued parameters which are denoted bya,b, . . . ,p. Thus the~complex! dimension of the algebra
is 15:

sl~4, C!5$XP C434utrX50%55 X5S a b c d

e f g h

j k l m

n o p 2a2 f 2 l

DUa,...,pP C6 . ~2!

In a number of applications one needs to consider only the Lie algebras of orthogonal
formations. It is one of the coincidences which happen among small rank simple Lie algebra
sl~4, C! of ~2! is isomorphic to the Lie algebra o~6, C!:

o~6, C!5$XP C636uXK1KXT50%, K5KT, detK51. ~3!

Different choices of the matrixK define equivalent representations of the algebra. The
following representations are widely used:

K5S 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

D :

o~6, C!55 S 0 a b c d e

2a 0 f g h j

2b 2 f 0 k l m

2c 2g 2k 0 n o

2d 2h 2 l 2n 0 p

2e 2 j 2m 2o 2p 0

D Ua,...,pPC6 , ~4!
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K5S 0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

D :

o~6,C!55 S a b c d e 0

f g h j 0 2e

k l m 0 2 j 2d

n o 0 2m 2h 2c

p 0 2o 2 l 2g 2b

0 2p 2n 2k 2 f 2a

D Ua,...,pPC6 . ~5!

One simple way how to choose a basis, also called the generators, of the Lie algebra, i
one parameter equal to 1 and all others equal to 0. The bases chosen in this way from~2! and~4!
or ~5! are in no particular correspondence. In our study of gradings, the normalization o
generators is of no importance, therefore we are often being guided by the simplicity o
corresponding matrices.

In general, the equality of the normalizations in~2! and ~4!, ~5! can be fixed by using the
Killing form with the second indices of the representations involved. More precisely, sup
f(x) and c(x) represent the elementxPA3 in two different representations, sayf and c. De-
noting the second indices of the representations respectively byl f and l c , one has the Killing
form (x,y) given ~up to a suitable constant! by

~x,y!5 l ftr~f~x!f~y!!5 l ctr~c~x!c~y!!,

which fixes the relative normalization in the representationsf and c. In particular, letf and c
stand for the representations~2! and ~3!, respectively. Then we have

tr~f~x!f~y!!52tr~c~x!c~y!!.

The values of the indices can be found, for example, in Ref. 4 for many representations.
~2! Grading of a Lie algebraL implies that, as a linear space, the algebra can be decomp

into the direct sum of several nontrivial subspaces,L5 % kPILk in such a way that for every choic
of xPLk andyPL j we have@x,y#PLk1 j . Symbolically we note this property as

0Þ@Lk ,L j ##Lk1 j . ~6!

If j 1k¹I for somej ,kPI, then necessarily the subspacesL j , Lk commute.
The grading labelsk, j , . . . are farfrom uniquely defined. However, the decomposition in

the direct sum of subspaces is determined up to an automorphism ofL. Natural requirements o
simplicity reduce the wide choice of grading labels to a very few. In general the grading labe
multi-component.

A grading is determined if a basis for each subspaceLk is given. Practically a grading i
obtained as an eigenspace decomposition of suitably chosen elements of the automorphis
Aut L of L. It follows that the grading subspaces are orthogonal with respect to the Killing f

The result that we present in this article is the list of all nonequivalentfinegradings of the Lie
algebra sl(4,C). A gradingL5 % kPILk of a Lie algebra is called fine when none of its subspa
Lk can be further split into several nontrivial subspaces in such a way that the new decomp
would still be a grading ofL.
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It is useful to introduce two operations on gradings of a Lie algebraL, namelyrefinementand
coarseningof a grading. A given gradingL5 % kPILk is refined when some of its subspacesLk are
split and the resulting decomposition is a grading. Thus a fine grading is an end of the proc
successive refinements of a grading. In the opposite direction, the ultimate end of coarse
grading is the whole Lie algebra forming just one grading subspace.

~3! For a simple Lie algebraL/ C there is a one-to-one correspondence between fine grad
of L and maximal Abelian groups of diagonalizable automorphisms on L~so-called MAD-groups!.
The list of MAD-groups used in this article was obtained from Ref. 3.

In order to obtain all the nonequivalent fine gradings of sl(4,C) we first rewrite the pertinen
MAD-groups of Ref. 3 as subgroups of the group of automorphismsAut sl(4, C). Subsequently,
we have to use also the MAD-groups ofAut o(6, C). They are described in Sec. V. The corr
spondence between the two sets of MAD-groups is not entirely obvious.

We use the Lie group SL(4,C)5$AP C434udetA51% to describe the setAut sl(4, C) of all
automorphisms on sl~4, C!. In general,Aut sl(4, C) contains both inner and outer automorphism
These act on an elementX of the Lie algebra sl~4, C! in the following way:

inner automorphism AdA : AdAX5A21XA, ~7!

outer automorphism OutC : OutCX52~C21XC!T. ~8!

Notice that for anyaÞ0 the description forAdaA andAdA coincide. Therefore the condition
detA51 can be released to detAÞ0. A compact description of the setAut sl(4, C) is then

Aut sl~4, C!5$AdAudetAÞ0%ø$OutCudetCÞ0%.

~4! Two of the MAD-groups ofAut sl(4, C) consist of inner automorphisms only, the rema
ing six involve also outer automorphisms. In our list of the MAD-groups we always charact
a MAD-groupG by the setGAd of matricesA of the inner automorphismsAdA and by the setGOut

of matricesC for outer automorphismsOutC . Actually whenGOut is nonempty, we mention only
one of its elements denotedC, because all other elementsF of GOut can be written asF5AC,
whereAPGAd . The outer automorphismOutF5OutAC is just a composition ofOutC andAdA ,
respectively:OutAC5OutC+AdA .

The list of MAD-groupsG1 , . . . ,G8 in Aut sl(4, C) is found in Table I. The symbolssk , k
50,1,2,3, stand for 232 Pauli matrices:

s05S 1 0

0 1D , s15S 0 1

1 0D , s25S 0 1

21 0D , s35S 1 0

0 21D .

Our convention as to how the tensor product^ is understood is explained by the followin
example, whereA is an arbitrary matrix:

s1^ A5S 0 1

1 0D ^ A5S 0 A

A 0 D .

~5! It is convenient to introduce the constantn3n matricesEjk , M jk , andNjk , and to recall
their commutation rules:

~Ejk! lm5d j l dkm , M jk5Ejk2Ek j , Njk5Ejk2E(n112k)(n112 j ) , ~9!

@Ejk ,Elm#5dklEjm2d jmElk , ~10!

@M jk ,Mlm#5dklM jm2d jmM lk2d j l Mkm1dkmMl j , ~11!

@Njk ,Nlm#5dklNjm2d jmNlk2d j (n112 l )N(n112k)m1dk(n112m)Nl (n112 j ) . ~12!
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~6! A simple way to avoid the ambiguity of traditional notations for maximal reductive s
algebras~1! is to provide the branching rule for one of the representations, usually of very
dimension. In this article we encounter three irreducible representations ofA3 . Therefore it is
useful to provide the corresponding branching rules. For that we use the notations of Ref
representations of the semisimple algebras~by their highest weight relative to the basis of fund
mental weights!. Irreducible representations of u~1! are all one-dimensional. The nonequivale
ones are labeled by an integer~positive and negative!. In order to distinguish the representatio
of u~1!, we write them as@k#.

Branching rules for the four-dimensional representation~1,0,0! of A3 :

~1!~1! for o~4, C!.sl~2, C!3sl~2, C!, ~13!

~1,0! for sp~4, C!, ~14!

~1,0!@1#1~0,0!@23# for gl~3, C!.sl~3, C!3u~1!, ~15!

~1!~0!@1#1~0!~1!@21# for sl~2, C!3sl~2, C!3u~1!. ~16!

Branching rules for the six-dimensional representation~0,1,0! of A3 :

TABLE I. The full list of nonconjugate maximal Abelian groups of diagonalizable automorphisms~MAD-groups! on
sl~4, C!.

GAd GOut

G1 $A5diag(d1,d2,d3,1), djPC,djÞ0% 0”

G2 5A5PjQk,j,k50,1,2,3,P5S0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

D , Q5diag~1,i,21,2i!6 0”

G3 $A5diag(«1,«2,«3,1), « i561% C5I 4

G4 $A5diag(1,«,a,a21), «561,aPC,aÞ0%

C5S1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D
G5 $A5diag(a,a21,b,b21), a,bPC,a,bÞ0%

C5S0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D
G6 $A5s j ^ diag(a,a21), aPC,aÞ0,j 50,1,2,3%

C5S0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D
G7 $A5s j ^ sk , j ,k50,1,2,3% C5I 4

G8 HAP~G0^I2!ø~RG0^s3!ø~G0^s1!ø~RG0^s2! ,

G05HS1 0

0 1
D,S1 0

0 21
DJ, R5S1 0

0 i
DJ C5S1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D
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~2!~0!1~0!~2! for o~4, C!.sl~2, C!3sl~2, C!, ~17!

~1,0!1~0,0! for sp~4, C!, ~18!

~1,0!@22#1~0,1!@2# for gl~3, C!.sl~3, C!3u~1!, ~19!

~1!~1!@0#1~0!~0!@2#1~0!~0!@22# for sl~2, C!3sl~2, C!3u~1!. ~20!

Branching rules for the 15-dimensional representation~1,0,1! of A3 :

~2!~2!1~2!~0!1~0!~2! for o~4, C!.sl~2, C!3sl~2, C!, ~21!

~2,0!1~0,1! for sp~4, C!, ~22!

~1,1!@0#1~0,1!@24#1~1,0!@4# for gl~3, C!.sl~3, C!3u~1!, ~23!

~1!~1!@2#1~1!~1!@22#1~2!~0!@0#1~0!~2!@0#1~1~0!~0!@0# for sl~2, C!3sl~2, C!3u~1!.
~24!

~7! Example. Consider an example of the automorphismg(X)5F21XF of a general 434
matrix X @an element of gl~4, C!#. Let the automorphism be realized by the diagonal matrixF
5diag(v3,v,v21,v23), wherev5exp 2pi/8. Corresponding eigenspace decomposition of gl~4, C!
is a grading by the cyclic group of order four generated byg5AdF . The adjoint action of this
group is of order 4 whileF is of order eight. Indeed, the equationF21XF5lX has four eigen-
values61,6 i and four eigenspaces,

L05S a 0 0 0

0 f 0 0

0 0 l 0

0 0 0 q

D , L15S 0 b 0 0

0 0 g 0

0 0 0 m

n 0 0 0

D , L25S 0 0 c 0

0 0 0 h

j 0 0 0

0 o 0 0

D ,

L35S 0 0 0 d

e 0 0 0

0 k 0 0

0 0 p 0

D , ~25!

which we are labeling additively~subscripts read mod 4!, rather than multiplicatively by the
eigenvalues. Clearly the grading property~6! is satisfied. The grading decomposition gl(4,C)
5L01L11L21L3 displays two subalgebras:L0 of dimension 4 andL01L2 of dimension 8. The
latter subalgebra consists of four ideals, thus it can be written as a direct sum of four comm
subspaces. The ideals can be given by the generic 434 matrices which represent them:

S a 0 c 0

0 0 0 0

j 0 2a 0

0 0 0 0

D , S 0 0 0 0

0 f 0 h

0 0 0 0

0 o 0 2 f

D , S b 0 0 0

0 2b 0 0

0 0 b 0

0 0 0 2b

D , S l 0 0 0

0 l 0 0

0 0 l 0

0 0 0 l

D .

~26!

Note that the ideals are not displayed by the grading~25! Indeed, the subspaceL0 is split between
all four ideals. Consequently, the four ideals could not be displayed in any refinement o
grading~25!.
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Putting q52a2 f 2 l , one restricts gl~4, C! in this example to sl~4, C! considered in this
article. With that additional restriction,L0 becomes three-dimensional, the last of the ideals~26! is
eliminated, so that the remaining three ideals then form the subalgebra sl(2,C)3sl(2, C)
3u(1). In thebranching rule~24! the subalgebra is shown as its adjoint representation, nam
(2)(0)@0#1(0)(2)@0#1(0)(0)@0#, corresponding to the first three ideals in~26!. The remaining
two terms of~24! are two irreducible representations of dimension 4 each which differ just by
representation of u~1!. Again one could investigate whether the representations are displaye
the grading. The answer is negative in this example. The two representations are found
L11L3 but not withinL1 or L3 separately. Using the three diagonal generators of the subalg
~one from each ideal! and remembering that their spectrum is either61,61,2 or61,61,22 on
the two representations, respectively, one finds directly the generic matrices of the two rep
tations:

~1!~1!@2#⇔S 0 b 0 d

0 0 0 0

0 k 0 m

0 0 0 0

D , ~1!~1!@22#⇔S 0 0 0 0

e 0 g 0

0 0 0 0

n 0 p 0

D .

III. FINE GRADINGS OF THE COMPLEX LIE ALGEBRA sl „4, C…

In this section we list all nonequivalent fine gradings of the Lie algebra sl~4, C!. Correspond-
ing results for o~6, C! are found in Sec. V.

A fine grading is a decomposition of the Lie algebra into eigenspaces~grading subspaces! of
a MAD-group. It suffices to characterize a fine grading using a small subset of the MAD-g
whose elements provide enough eigenvalues so that one can distinguish the eigens
subspaces of the grading. There is a table shown for each fine grading. In this table one fi
eigenspaces~grading subspaces! labeled additively, the eigenvalues, and a basis for each
spaces. If the eigenvalues turn out to be functions of continuous parameters, we show as w
fixed values used for the grading.

A. Fine grading of sl „4, C… corresponding to G1

In order to produce the grading, we just take a generic element ofG1 , namely the automor-
phism AdA with A5diag(d1,d2,d3,1). It decomposes sl~4, C! into 13 subspaces: one thre
dimensional~Cartan subalgebra! and 12 one-dimensional~root! subspaces. Results of this case a
summarized in Table II.

The eigenvectorsX1 , . . . ,X15 of AdA are given in terms of matricesEjk of ~9!:

X15E112E22, X25E222E33, X35E332E44,

X45E23, X55E12, X65E13,

X75E34, X85E24, X95E41, ~27!

X105E14, X115E42, X125E43,

X135E31, X145E21, X155E32.

In Table II we identify the grading subspacesL j by their basis vectorsXk and by the corre-
sponding eigenvalues. Two sets of eigenvalues are shown. The first one involves cont
parametersd1 ,d2 ,d3 . In the second set the values of the parameters are fixed to take
convenient values. Clearly there are many ways this could be done.

This grading is the well known root or Cartan decomposition of sl~4, C!. The grading groupG1

is a fixed maximal torus of the Lie group SL~4, C!. The three-dimensional grading spaceL0 ,
spanned byX1 ,X2 ,X3 , is the Cartan subalgebra, the remaining 12 one-dimensional grading s
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are the root spaces of that decomposition. Leta1 ,a2 ,a3 denote the three simple roots. Matrice
representing the root spaces can be chosen, for example, as follows:Ea1

5E12, Ea2
5E23, Ea3

5E34, Ea11a2
5E13, Ea21a3

5E24, Ea11a21a3
5E14. Then for the negative roots one ha

E2a1
5E21, E2a2

5E32, E2a3
5E43, E2a12a2

5E31, E2a22a3
5E42, E2a12a22a3

5E41.
Any further decomposition of sl~4, C!, which can split the Cartan subalgebra into low

dimensional subspaces while preserving the root spaces, is not a grading.

B. The fine grading of sl „4, C… corresponding to G2

Inner automorphismsAdA1
andAdA2

, where

A15Q5S 1 0 0 0

0 i 0 0

0 0 21 0

0 0 0 2 i

D , A25P5S 0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

D ,

decompose the Lie algebra sl~4, C! into 15 one-dimensional subspaces. Results of this case
summarized in Table III. The eigenvectorsX1 , . . . ,X15 can be given as powers ofP andQ:

X15P0Q3, X25P0Q2, X35P0Q1,

TABLE II. G1 : The correspondence between eigenvectorsXk from ~27! and
the eigenvaluel of AdA . Fixing the values ofd15v6, d25v8, and d3

5v9, wherev5exp (2pi/13), the maximal torus is restricted to its cyclic
subgroupZ13 .

Eigenvector l5l(d1 ,d2 ,d3) l5l(v6,v8,v9)

L0 X1 1
X2 1 v0

X3 1
L1 X4 d3

d2

v1

L2 X5 d2

d1

v2

L3 X6 d3

d1

v3

L4 X7 1

d3

v4

L5 X8 1

d2

v5

L6 X9 d1 v6

L7 X10 1

d1

v7

L8 X11 d2 v8

L9 X12 d3 v9

L10 X13 d1

d3

v10

L11 X14 d1

d2

v11

L12 X15 d2

d3

v12
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X45P1Q0, X55P1Q3, X65P1Q2, X75P1Q1,
~28!

X85P2Q0, X95P2Q3, X105P2Q2, X115P2Q1,

X125P3Q0, X135P3Q3, X145P3Q2, X155P3Q1.

In terms of subspacesL ( j ,k) denoted by indices from the additive groupZ43Z4 this can be
briefly written asL ( j ,k)5C(PjQ2k), and the pair (l1 ,l2) of eigenvalues of elements fromL ( j ,k)

is equal to (l1 ,l2)5( i j ,i k).
Properties of the associative algebra generated byn3n matrices analogous toP andQ have

been noted a long time ago.5 The corresponding grading of sl(n, C) was studied in Ref. 6.

C. The fine grading of sl „4, C… corresponding to G3

Results of this case are summarized in Table IV. UsingA15diag(21,1,1,1),
A25diag(21,21,1,1), A35diag(21,21,21,1) for AdA and C5I 4 for OutC the Lie algebra

TABLE III. G2 : The correspondence between eigenvectorsXk from ~28!
and the eigenvaluesl1 ,l2 of AdA1

5AdQ , AdA2
5AdP .

Eigenvector l1 l2

L (0,1) X1 1 i
L (0,2) X2 1 21
L (0,3) X3 1 2 i
L (1,0) X4 i 1
L (1,1) X5 i i
L (1,2) X6 i 21
L (1,3) X7 i 2 i
L (2,0) X8 21 1
L (2,1) X9 21 i
L (2,2) X10 21 21
L (2,3) X11 21 2 i
L (3,0) X12 2 i 1
L (3,1) X13 2 i i
L (3,2) X14 2 i 21
L (3,3) X15 2 i 2 i

TABLE IV. G3 : The correspondence between eigenvectorsXk from ~29!
and the eigenvaluesl0 ,l1 ,l2 ,l3 of OutC ,AdA1

,AdA2
,AdA3

. Indices of
the subspacesL ( j ,k,l ,m) are elements of the additive groupZ23Z23Z2

3Z2 .

Eigenvector l0 l1 l2 l3

L (1,1,1,1) X1 21 21 21 21
L (0,1,1,1) X2 1 21 21 21
L (1,0,1,1) X3 21 1 21 21
L (0,0,1,1) X4 1 1 21 21
L (1,0,0,1) X5 21 1 1 21
L (0,0,0,1) X6 1 1 1 21
L (1,1,1,0) X7 21 21 21 1
L (0,1,1,0) X8 1 21 21 1
L (1,0,1,0) X9 21 1 21 1
L (0,0,1,0) X10 1 1 21 1
L (1,1,0,0) X11 21 21 1 1
L (0,1,0,0) X12 1 21 1 1
L (1,0,0,0) X13 21 1 1 1

X14 21 1 1 1
X15 21 1 1 1
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sl~4, C! is decomposed into one three-dimensional and 12 one-dimensional subspaces wh
described by simultaneous eigenvectorsX1 , . . . ,X15:

X15E141E41, X25E142E41, X35E241E42, X45E242E42,

X55E341E43, X65E342E43, X75E131E31, X85E132E31,
~29!

X95E231E32, X105E232E32, X115E121E21, X125E122E21,

X135E112E22, X145E222E33, X155E332E44.

One can see that the present grading is not conjugate to the root decomposition, e.g., b
all grading subspaces are spanned by semisimple elements of the Lie algebra, as oppose
root decomposition, where only the Cartan subalgebra consists of such elements.

Clearly the six skew-symmetric matrices in this grading display the subalgebra o~4, C!. The
simplest way to examine the grading is the following: Consider the four subalgebras which c
of the subspaces of the formL (0,* ,* ,* ) , L (* ,0,* ,* ) , L (* ,* ,0,* ) , L (* ,* ,* ,0) . Here* stands for any
admissible value of the corresponding label. Then identify each subalgebra. In this way on
here respectively o~4, C!, gl~3, C!, sl(2, C)3sl(2, C)3u(1), and gl~3, C!.

D. The fine grading of sl „4, C… corresponding to G4

Results of this case are summarized in Table V. To obtain a fine grading byG4 one only needs
to use the inner automorphismAdA with matrix A5diag(1,21,a,a21) and the outer automor
phismOutC with

C5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D .

TABLE V. G4 : The correspondence between eigenvectorsXk from ~30! and
the eigenvaluesl0 ,l1 of OutC ,AdA . Denoting h5exp(2pi/8) and ap-
pointing the valuea5h to the parametera, the indices of subspaces be-
come elements ofZ23Z8 .

Eigenvector l0 l15l1(a) l15l1(h)

L (0,0) X1 1 1 h0

L (1,0) X2 21 1 h0

X3 21 1
L (0,1) X4 1 a h1

L (1,1) X5 21 a h1

L (1,2) X6 21 a2 h2

L (0,3) X7 1 2a21 h3

L (1,3) X8 21 2a21 h3

L (0,4) X9 1 21 h4

L (1,4) X10 21 21 h4

L (0,5) X11 1 2a h5

L (1,5) X12 21 2a h5

L (1,6) X13 21 a22 h6

L (0,7) X14 1 a21 h7

L (1,7) X15 21 a21 h7
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There are one two-dimensional and 13 one-dimensional subspaces, and we list them in te
eigenvectorsX1 , . . . ,X15:

X15E332E44, X25E111E222E332E44, X35E112E22,

X45E132E41, X55E131E41, X65E43,

X75E242E32, X85E241E32, X95E122E21, ~30!

X105E121E21, X115E232E42, X125E231E42,

X135E34, X145E142E31, X155E141E31.

The presence of the parametera indicates that a one-parametric subgroup of the torus rem
a part of the grading group. It can be identified with the subgroup SL(2,C),SL(4, C) corre-
sponding to one of the simple roots of sl~4, C!. This decomposition of sl~4, C! displays sl~2, C!
spanned by$X1 ,X6 ,X13%. Equivalently one may identify it as one of the sl~2, C! ideals in
sl(2, C)3sl(2, C)3u(1). Indeed, the exponents ofa in Table V are the weights of the sl~2,
C!-representation. Thus one obtains the direct sum of one three-dimensional, four
dimensional, and four one-dimensional representations. That is what one finds from~24! when it
is reduced further to the subalgebra sl(2,C),sl(2, C)3sl(2, C)3u(1).

E. The fine grading of sl „4, C… corresponding to G5

Results of this case are summarized in Table VI. Here, again, we only need one~general! inner
automorphismAdAPG5 with A5diag(a,a21,b,b21) and the outer automorphismOutC ,

C5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D .

TABLE VI. G5 : The correspondence between eigenvectorsXk from ~31!
and the eigenvaluesl0 ,l1 of OutC ,AdA . In order to embed the index set
into the additive groupZ23Z9 we put a5n2 and b5n8, where n
5exp(2pi/9).

Eigenvector l0 l15l1(a,b) l15l1(n2,n8)

L (0,0) X1 1 1 n0

X2 1 1
L (1,0) X3 21 1 n0

L (0,1) X4 1 ab n1

L (1,1) X5 21 ab n1

L (1,2) X6 21 b22 n2

L (0,3) X7 1 ab21 n3

L (1,3) X8 21 ab21 n3

L (1,4) X9 21 a2 n4

L (1,5) X10 21 a22 n5

L (0,6) X11 1 a21b n6

L (1,6) X12 21 a21b n6

L (1,7) X13 21 b2 n7

L (0,8) X14 1 a21b21 n8

L (1,8) X15 21 a21b21 n8
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The Lie algebra sl~4, C! is decomposed into one two-dimensional and 13 one-dimensional
spaces, whose bases are given in terms of vectorsEjk :

X15E112E22, X65E34, X115E132E42,

X25E332E44, X75E242E31, X125E131E42,

X35E111E222E332E44, X85E241E31, X135E43, ~31!

X45E232E41, X95E21, X145E142E32,

X55E231E41, X105E12, X155E141E32.

The parametersa andb indicate that a two-parametric subgroup of the maximal torus belo
to the grading group. The parameters can be identified with two orthogonal simple roots o~4,
C!. Hence the grading displays two commuting sl~2, C! subalgebras spanned by$X1 ,X9 ,X10% and
$X2 ,X6 ,X13%.

F. The fine grading of sl „4, C… corresponding to G6

Results of this case are summarized in Table VII. This time it is necessary to use two
automorphismsAdA , e.g., those with matricesA15s1^ diag(1,1), A25s3^ diag(a,a21), and
also the outer automorphismOutC ,

C5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D .

We obtain a decomposition into 15 one-dimensional subspaces—linear hulls of eigenv
X1 , . . . ,X15:

TABLE VII. G6 : The correspondence between eigenvectorsXk from ~32!
and the eigenvaluesl0 ,l1 ,l2 of OutC ,AdA1

,AdA2
. With the choice ofa

5j1/2, wherej5exp(2pi/6), the additive group for subspace indices isZ2

3Z23Z6 .

Eigenvector l0 l1 l25l2(a) l25l2(j1/2)

L (0,0,0) X1 1 1 1 j0

L (0,1,0) X2 1 21 1 j0

L (1,1,0) X3 21 21 1 j0

L (1,0,1) X4 21 1 a2 j1

L (1,1,1) X5 21 21 a2 j1

L (0,1,2) X6 1 21 2a22 j2

L (1,0,2) X7 21 1 2a22 j2

L (0,0,3) X8 1 1 21 j3

L (0,1,3) X9 1 21 21 j3

L (1,0,3) X10 21 1 21 j3

L (1,1,3) X11 21 21 21 j3

L (0,1,4) X12 1 21 2a2 j4

L (1,0,4) X13 21 1 2a2 j4

L (1,0,5) X14 21 1 a22 j5

L (1,1,5) X15 21 21 a22 j5
                                                                                                                



.

two

ion of
r-
o the

6366 J. Math. Phys., Vol. 43, No. 12, December 2002 Patera, Pelantová, and Svobodová

                    
X15E112E221E332E44, X25E112E222E331E44,

X35E111E222E332E44, X45E211E43,

X55E212E43, X65E142E32,

X75E141E32, X85E132E241E312E42,
~32!

X95E131E242E312E42, X105E131E241E311E42,

X115E132E242E311E42, X125E232E41,

X135E231E41, X145E121E34,

X155E122E34.

The single parameter here cannot be identified with a root of sl~2, C! as in the previous cases
Nevertheless, its presence identifies a one-parametric subgroup of the sl~2, C!-torus and hence an
sl~2, C! subalgebra of sl~4, C!. The simple root of the subalgebra divides the angle between the
orthogonal roots of sl~4, C! and it is& shorter than the roots of sl~4, C!. Practically it amounts to
putting a5b in the previous grading.

G. The fine grading of sl „4, C… corresponding to G7

Results of this case are summarized in Table VIII. To reach the complete decomposit
sl~4, C! by the MAD-groupG7 , four inner automorphismsAdA must be used. The outer automo
phism does not supply any of them, so we do not use it this time although it belongs t
MAD-group.

The matrices A for the inner automorphisms are the following:A15s3^ s3 , A25s0^ s3 ,
A35s2^ s2 , andA45s2^ s3 . Those 15 one-dimensional subspacesL ( j ,k,l ,m) are linear hulls of
eigenvectorsX1 , . . . ,X15; the set of indices is equal to the additive groupZ23Z23Z23Z2 ; the
subspaceL (0,0,0,0) is empty:

TABLE VIII. G7 : The correspondence between eigenvectorsXk from ~33!
and the eigenvaluesl1 ,l2 ,l3 ,l4 of AdA1

,AdA2
,AdA3

,AdA4
. The additive

group isZ23Z23Z23Z2 .

Eigenvector l1 l2 l3 l4

L (0,0,0,1) X1 1 1 1 21
L (0,0,1,0) X2 1 1 21 1
L (0,0,1,1) X3 1 1 21 21
L (0,1,0,0) X4 1 21 1 1
L (0,1,0,1) X5 1 21 1 21
L (0,1,1,0) X6 1 21 21 1
L (0,1,1,1) X7 1 21 21 21
L (1,0,0,0) X8 21 1 1 1
L (1,0,0,1) X9 21 1 1 21
L (1,0,1,0) X10 21 1 21 1
L (1,0,1,1) X11 21 1 21 21
L (1,1,0,0) X12 21 21 1 1
L (1,1,0,1) X13 21 21 1 21
L (1,1,1,0) X14 21 21 21 1
L (1,1,1,1) X15 21 21 21 21
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X15E112E222E331E44, X25E112E221E332E44,

X35E111E222E332E44, X45E141E231E321E41,

X55E142E232E321E41, X65E142E231E322E41,

X75E141E232E322E41, X85E131E242E312E42,
~33!

X95E132E241E312E42, X105E132E242E311E42,

X115E131E241E311E42, X125E121E212E342E43,

X135E122E211E342E43, X145E122E212E341E43,

X155E121E211E341E43.

The eigenvectorsXj , j 51,...,15, can be written assk^ s l , wherek,l P$0,1,2,3%, except for
k5 l 50.

H. The fine grading of sl „4, C… corresponding to G8

Results of this case are summarized in Table IX. To obtain a fine grading byG8 , one outer and
two inner automorphisms are used, namely those withA15I 2^ s1 , A25R^ s3 for AdA , and

C5S 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

D
for OutC . The fine grading of sl~4, C! consists of one two-dimensional and 13 one-dimensio
subspaces, which are described by the following set of eigenvectors:

TABLE IX. G8 : The correspondence between eigenvectorsXk from ~34!
and the eigenvaluesl0 ,l1 ,l2 of OutC ,AdA1

,AdA2
. The additive group in

this case isZ23Z23Z4.

Eigenvector l0 l1 l2

L (0,1,0) X1 1 21 1
L (1,0,0) X2 21 1 1
L (1,1,0) X3 21 21 1
L (0,0,1) X4 1 1 i
L (0,1,1) X5 1 21 i
L (1,0,1) X6 21 1 i
L (1,1,1) X7 21 21 i
L (0,1,2) X8 1 21 21
L (1,0,2) X9 21 1 21

X10 21 1 21
L (1,1,2) X11 21 21 21
L (0,0,3) X12 1 21 2 i
L (0,1,3) X13 1 21 2 i
L (1,0,3) X14 21 1 2 i
L (1,1,3) X15 21 1 2 i
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X15E332E44, X25E111E222E332E44,

X35E112E22, X45E131E242E322E41,

X55E132E241E322E41, X65E131E241E321E41,

X75E132E242E321E41, X85E122E21,
~34!

X95E121E21, X105E341E43,

X115E342E43, X125E141E232E312E42,

X135E142E232E311E42, X145E141E231E311E42,

X155E142E231E312E42.

IV. MAXIMAL SUBALGEBRAS OF sl „4, C… DISPLAYED BY THE FINE GRADINGS OF
sl „4, C…

Recall that a subalgebra is said to be displayed by a grading if it is a sum of several g
subspaces of the grading~cf. example in Sec. II!. Having described the fine gradings, it is curio
to know which of the maximal subalgebras ofA3 are preferred by each grading. The root grad
displays so called regular subalgebras.~A subalgebra ofL is regular if its roots can be chosen a
a subset of roots ofL.)

We are interested here in the four maximal reductive subalgebras~1! of sl~4, C!. There are
ways how to characterize the subalgebras in a representation independent way, but our aim
as specific as possible. Hence we describe the subalgebras by explicit 434 matrices.

A. gl „3, C… as a subalgebra of sl „4, C…

The subalgebra gl(3,C),sl(4, C) spans a nine-dimensional subspace in~2!. It can be realized
as the set of matrices

gl~3, C!5S a b c 0

e f g 0

j k l 0

0 0 0 2a2 f 2 l

D . ~35!

There are just three MAD-groups inAut sl(4, C) providing fine gradings of sl~4, C! which
display the subalgebra gl~3, C!. These are the MAD-groupsG1 , G3 , andG4 . In each of these case
the subalgebra gl~3, C! can be picked out as an eigensubspace ofAdAPGj corresponding to the
eigenvalue11. @A5diag(21,21,21,1) forG1 andG3 , A5diag(1,21,21,21) for G4 .] Table X
depicts the subspacesLk of fine gradings byG1 ,G3 ,G4 that make up the subalgebra gl~3, C!.

TABLE X. Subalgebra gl~3, C! displayed by fine gradings of sl~4, C!.

MAD-group
of sl~4, C! Displayed gl~3, C! in terms ofLk,sl(4, C)

G1 L (0)% L (1)% L (2)% L (3)% L (10)% L (11)% L (12)

G3 L (1,0,1,1)% L (0,0,1,1)% L (1,0,0,1)% L (0,0,0,1)% L (1,0,1,0)% L (0,0,1,0)

% L (1,0,0,0)

G4 L (0,0)% L (1,0)% L (1,2)% L (0,3)% L (1,3)% L (0,5)% L (1,5)% L (1,6)
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B. o „4, C… subalgebra of sl „4, C…

This is the six-dimensional subalgebra which is most simply realized in sl~4, C! as the subse
of all matrices antisymmetric with respect to transposition~skew-symmetric!. A general definition
is the following:

o~n, C!5$XP Cn3nuXK1KXT50%, KP Cn3n,detK51,K5KT. ~36!

@With K5I , o(n, C) is the set of all skew-symmetric matrices.#
A simple rule to decide whether a particular fine grading of sl(n, C) displays o(n, C) is found

in Ref. 3.
Theorem 4.1:(I ) Let G5$AdAuAPGAd%ø$OutCuCPGOut% be a MAD-group onsl(n, C). A

fine grading ofsl(n, C) produced by the MAD-groupG (i.e., consisting of simultaneous eigensu
spaces of automorphisms fromG) displays the subalgebrao(n, C) iff there exists a matrix A
PGAd such that AC is symmetric.

If such APGAd exists, then$AdAuAPGAd% is a MAD-group on the displayed subalgeb
o(n, C).

(II ) A MAD-groupH on sl(n, C) which does not contain any outer automorphism OutC does
not display the subalgebrao(n, C).

Once we have found the matrixAPGAd such thatAC is symmetric, we putK5AC, and then
pick out all the subspacesLk that are eigensubspaces corresponding to eigenvalue11 for OutAC .
These subspaces build up the subalgebra o(n, C). Indeed, for an elementX fulfilling OutACX
5X one can write

X5OutACX52~~AC!21X~AC!!T52~K21XK!T,

2XT5K21XK,

2KXT5XK,

05XK1KXT.

The matrix K5AC is symmetric~i.e., K5KT), and detK5det (AC)5detA•detC51•151
@sinceA,CPSL(4, C)], so matrices from the extracted subspaces correspond to the definition~36!
of o(n, C).

According to part II of Theorem 4.1, the MAD-groupsG1 andG2 do not come into consider
ation any more. But all the remaining MAD-groupsG3 ,...,G8 contain an outer automorphism
OutC , even withC symmetric~i.e., AC is symmetric forA5I ). So, each of the fine gradings o
sl~4, C! produced by MAD-groupsG3 ,...,G8 displays the subalgebra o~4, C! in the following way
~see Table XI!:

o~4, C!5$XPC434uXC1CXT5O% ~37!

TABLE XI. Gradings of o~4, C! displayed by fine gradings of sl~4, C!. These
gradings are all fine, with the only exception of the one byG5 .

MAD-group
on sl~4, C! Grading of o~4, C! in terms ofLk,sl(4, C)

G3 L (0,1,1,1)% L (0,0,1,1)% L (0,0,0,1)% L (0,1,1,0)% L (0,0,1,0)% L (0,1,0,0)

G4 L (0,0)% L (0,1)% L (0,3)% L (0,4)% L (0,5)% L (0,7)

G5 L (0,0)% L (0,1)% L (0,3)% L (0,6)% L (0,8)

G6 L (0,0,0)% L (0,1,0)% L (0,1,2)% L (0,0,3)% L (0,1,3)% L (0,1,4)

G7 L (0,1,1,0)% L (0,1,1,1)% L (1,0,0,0)% L (1,0,1,0)% L (1,1,0,1)% L (1,1,1,0)

G8 L (0,1,0)% L (0,0,1)% L (0,1,1)% L (0,1,2)% L (0,0,3)% L (0,1,3)
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o~4, C!5 % kPSLk , ~38!

whereS5$ j u(;XPL j )(OutCX5X)%, with OutCPGj , j 53,...,8.
But not only it holds that the fine gradings byG3 ,...,G8 display the subalgebra o~4, C!. The

sum~38! is a fine grading of o~4, C! for all j 53,4,6,7,8. Forj 55 the subspaceL (0,0) can be split
into two to get a fine grading. In this way each fine grading of o~4, C! is displayed by exactly one
fine grading of sl~4, C! by Gj , j 53,...,8. @Indeed, the algebra o~4, C! has six fine gradings.#

Note the zero value in the first index of all the subspacesLk ~with the exception of the grading
by G7). It stands for the eigenvalue11 of OutC . In theG7-grading we did not use the eigenvalu
of OutC in the indices.

The Lie algebra o~4, C! is isomorphic to sl(2,C)3sl(2, C). Suppose one hasC5I . Then,
according to~37! o~4, C! is formed by 434 skew-symmetric matrices. In that case the tw
commuting sl~2, C!-subalgebras can be written in the form

S 0 a b c

2a 0 c 2b

2b 2c 0 a

2c b 2a 0

D , S 0 f e d

2 f 0 2d e

2e d 0 2 f

2d 2e f 0

D . ~39!

Again, this is just one of the basis dependent forms of the subalgebra o(4,C).sl(2, C)
3sl(2, C). Therefore, even if the subalgebra is displayed by a grading, it may not be display
the form of ~39!

In order to get the subalgebra o~4, C! in terms of skew-symmetric matrices one only needs
introduce a change of coordinates:X̃5S21XS, with S5(0

1
1
0) % (1

1/2
i

2 i /2) for the cases ofG4 , G8 ,
andS5(1

1/2
i

2 i /2) % (1
1/2

i
2 i /2) for the casesG5 , G6 . The fine gradings byG3 andG7 already display

o~4, C! as skew-symmetric matrices~because hereC5I ).

C. sp „4, C… subalgebra of sl „4, C…

The ten-dimensional Lie algebra sp~4, C! can be realized as the complex vector space
matrices

sp~4, C!55 XUXS 0 1 0 0

21 0 0 0

0 0 0 1

0 0 21 0

D 1S 0 1 0 0

21 0 0 0

0 0 0 1

0 0 21 0

D XT506
5S a b c d

e 2a g h

2h d l m

g c p 2 l

D .
~40!

But also here it is useful to write down the general definition:

sp~n, C!5$XP Cn3nuXK1KXT50%, KP Cn3n,detK51,K52KT. ~41!

In particular, withn54,

K5S 0 1 0 0

21 0 0 0

0 0 0 1

0 0 21 0

D ,

one arrives at~40!.
As well as in the case of o~4, C!, theory from Ref. 3 provides us with a tool to decide wheth

a fine grading of sl~4, C! displays sp~4, C! or not. Actually one just replaces o(n, C) with sp(n, C),
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and AC symmetric withAC skew-symmetric in Theorem 4.1. Fine gradings byG1 and G2 are
again out of discussion, and so we restrict ourselves toG3 ,...,G8 , more precisely to matricesAC,
APGAd . And again, once we find such a matrixAPGAd that AC is skew-symmetric,OutC
PGj , the same reasoning as for o~4, C! leads to the conclusion that the subalgebra sp~4, C!
displayed by the fine grading of sl~4, C! is the eigensubspace ofOutAC corresponding to the
eigenvalue11. ~Dimension of such an eigensubspace is 10.! Since the Lie algebra sp~4, C! is
simple, it is guaranteed by the sp(n, C)-modification of Theorem 4.1 that this subalgebra d
played by a fine grading of sl~4, C! is already in the form of its fine grading. All fine gradings
sp~4, C! have been described in Ref. 2 and they are all displayed by exactly one fine grad
sl~4, C!—see Table XII.@Indeed, the Lie algebra sp~4, C! has three fine gradings.# All the fine
gradings byGj , j 55,6,7 display sp~4, C! in the form described in~40!.

D. sl „2, C…Ãsl „2, C…Ãu„1… subalgebra of sl „4, C…

There is another maximal reductive subalgebra in sl~4, C!. It has dimension 7 and can b
realized as follows:

sl~2, C!3sl~2, C!3u~1!5S a1g b 0 0

c 2a1g 0 0

0 0 d2g e

0 0 f 2d2g

D . ~42!

Here u~1! denotes a one-dimensional subalgebra, its parameter is denoted byg. The semisimple
part sl(2,C)3sl(2, C) of the subalgebra is not maximal among semisimple subalgebras of~4,
C!. Indeed, one has sl(2,C)3sl(2, C),sp(4,C),sl(4, C).

The algebra sl(2,C)3sl(2, C)3u(1) is displayed by five fine gradings of sl~4, C!, namely by
those corresponding to MAD-groupsGj , j 51,3,4,5,8. Fine gradings produced by MAD-grou
G2 , G6 , andG7 do not display sl(2,C)3sl(2, C)3u(1). Table XIII gives the list of subspaces tha
form the subalgebra sl(2,C)3sl(2, C)3u(1) in terms of subspaces of the fine gradings of sl~4, C!.

TABLE XII. Fine gradings of sp~4, C! displayed by fine gradings of sl~4, C!.

MAD-group
on sl~4, C! Fine grading of sp~4, C! in terms ofLk,sl(4, C)

G5 L (0,0)% L (1,1)% L (1,2)% L (0,3)% L (1,4)% L (1,5)% L (0,6)

% L (1,7)% L (1,8)

G6 L (0,0,0)% L (0,1,0)% L (1,0,1)% L (1,1,1)% L (1,0,2)% L (0,0,3)

% L (0,1,3)% L (1,0,4)% L (1,0,5)% L (1,1,5)

G7 L (0,0,0,1)% L (0,0,1,0)% L (0,1,0,0)% L (0,1,1,0)% L (1,0,0,0)

% L (1,0,0,1)% L (1,1,0,0)% L (1,1,0,1)% L (1,1,1,0)% L (1,1,1,1)

TABLE XIII. Subalgebra sl(2,C)3sl(2, C)3u(1) displayed by fine grad-
ings of sl~4, C!.

MAD-group
on sl~4, C!

Subalgebra sl(2,C)3sl(2, C)3u(1) in terms
of Lk,sl(4, C)

G1 L (0)% L (2)% L (4)% L (9)% L (11)

G3 L (1,0,0,1)% L (0,0,0,1)% L (1,1,0,0)% L (0,1,0,0)% L (1,0,0,0)

G4 L (0,0)% L (1,0)% L (1,2)% L (0,4)% L (1,4)% L (1,6)

G5 L (0,0)% L (1,0)% L (1,2)% L (1,4)% L (1,5)% L (1,7)

G8 L (0,1,0)% L (1,0,0)% L (1,1,0)% L (0,1,2)% L (1,0,2)% L (1,1,2)
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V. FINE GRADINGS OF THE LIE ALGEBRA o „6, C…

In this section we consider the analogous objects, MAD-groups, gradings, eigenvalue
eigenvectors, as in Sec. III. The difference here is that the Lie algebraA3 is represented by 6
36 matrices and called traditionally o~6, C!. It is useful because in a number of applications o
works only with the Lie algebra of the orthogonal group O~6, C!, and because the corresponden
between the two representations is not always straightforward. Indeed, take for example the
of SL~4, C! which is of order 4. In the six-dimensional representation, half of it coalesces, so
the center of O~6, C! is of order 2.

The list of MAD-groupsH1 , . . . ,H8 in Aut o(6, C) follows in Table XIV @they are ordered
in such a way thatHj produces a fine grading of o~6, C! which is isomorphic to the fine gradin
of sl~4, C! by Gj in Sec. III#. Note, however, that the generators are generally not normalized t
same values. Within grading subspaces of dimension greater than 1, the basis is chosen
venience, no particular correspondence between the four- and six-dimensional representa
maintained.

A. The fine grading of o „6, C… corresponding to H1

In this case the MAD-group is the maximal torus of the Lie group represented by36
matrices. Its generic element isA,

A5S cosw1 sinw1

2sinw1 cosw1
D % S cosw2 sinw2

2sinw2 cosw2
D % S cosw3 sinw3

2sinw3 cosw3
D .

Using A and ~4! in ~7! the Lie algebra o~6, C! is decomposed into 13 subspaces: one thr
dimensional~Cartan subalgebra! and 10 one-dimensional~root! subspaces.

The eigenvectorsZ1 , . . . ,Z15 are given in terms of matricesM jk of ~9!:

TABLE XIV. The full list of nonconjugate MAD-groups on o~6, C!.

HAd

H1 HA5S cosw1 sinw1

2sinw1 cosw1
D%S cosw2 sinw2

2sinw2 cosw2
D%S cosw3 sinw3

2sinw3 cosw3
D, wiPCJ

H2 $APD21$(H0^ I 2)ø(TH0^ s3)ø(UH0^ s1)ø(TUH0^ s2)%D.

D5diag~1,1,1,i ! %
1

&
S 1 i

1 2 i
D ,

H05$diag(1,«1 ,«2)u« i561%,
T5diag(1,1,i ), U5diag(1,i ,1)%

H3 $A5sk^ diag(1,«1 ,«2),t« i561,k50,1,2,3%

H4 HA5sk^S1 0 0

0 cosw sinw

0 2sinw cosw
D, wPC, k50,1,2,3J

H5 HA5diag~1,«! % S cosw1 sinw1

2sinw1 cosw1
D%S cosw2 sinw2

2sinw2 cosw2
D, «561,w jPCJ

H6 HA5diag~1,«1 ,«2 ,«3! % S cosw sinw

2sinw cosw
D, «i561,wPCJ

H7 $A5diag(1,«1 ,«2 ,«3 ,«4 ,«5), « i561%
H8 $APE21$(H0^ I 2)ø(H0^ s3)ø(VH0^ s1)ø(VH0^ s2)%E,

E5diag(1,1,1,1,1,i ), H05$diag(1,«1 ,«2)u« i561%,
V5diag(1,1,i )%
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Z15M342M56, Z25M122M34,

Z35M341M56, Z45~M131M24!1 i ~M142M23!,

Z55~M351M46!1 i ~M362M45!, Z65~M151M26!1 i ~M162M25!,

Z75~M352M46!1 i ~2M362M45!, Z85~M152M26!1 i ~2M162M25!,
~43!

Z95~M132M24!1 i ~M141M23!, Z105~M132M24!1 i ~2M142M23!,

Z115~M152M26!1 i ~M161M25!, Z125~M352M46!1 i ~M361M45!,

Z135~M151M26!1 i ~2M161M25!, Z145~M351M46!1 i ~2M361M45!,

Z155~M131M24!1 i ~2M141M23!.

The eigenvalues ofZj coincide with those ofXj of G1 ~Table II!, after the valuesd1 ,d2 ,d3 are
replaced by exp(2i(w11w2)), exp(2i(w11w3)), and exp(2i(w21w3)). Clearly the additive group is
againZ13. The Cartan subalgebra is spanned by the generatorsZ1 , Z2 , andZ3 .

Rather complicated expressions for the nilpotent generators of the root spacesZ4 , . . . ,Z13 are
the result of our choice of$M jk% of ~9! as the basis of o~6, C!, in which we write the basis$Zm%.
Had we started with the representation~5! of o~6, C!, the expressions for$Zm% would have been
simpler in terms ofNjk ~see Table XVI!.

B. The fine grading of o „6, C… corresponding to H2

With A15D21(TU^ s2)D,A25D21(T^ s3)D the Lie algebra o~6, C! is decomposed into
15 one-dimensional subspaces—linear hulls of the eigenvectorsZj :

Z15~M352M46!1 i ~M362M45!, Z25M12,

Z35~M352M46!1 i ~2M361M45!, Z45M131 iM 24,

Z55~M151M25!1 i ~M162M26!, Z65M141 iM 23,

Z75~M152M25!1 i ~2M162M26!, Z85M56,
~44!

Z95~M351M46!1 i ~M361M45!, Z105M34,

Z115~M351M46!1 i ~2M362M45!, Z125M132 iM 24,

Z135~M152M25!1 i ~M161M26!, Z145M142 iM 23,

Z155~M151M25!1 i ~2M161M26!.

The additive group (Z43Z4) and the table of eigenvalues are the same as forG2 ~Table III!.

C. The fine grading of o „6, C… corresponding to H3

With A15s0^ diag(1,1,21), A25s3^ diag(1,1,1), A35s2^ diag(1,1,21), and A45s1

^ diag(1,21,1) the Lie algebra o~6, C! is decomposed into one three-dimensional and 12 o
dimensional subspaces whose bases consist of the eigenvectorsZj :
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Z15M121M45, Z25M122M45, Z35M151M24, Z45M36,

Z55M25, Z65M14, Z75M152M24, Z85M232M56,
~45!

Z95M132M46, Z105M131M46, Z115M231M56, Z125M162M34,

Z135M262M35, Z145M261M35, Z155M161M34.

The table of eigenvalues follows~Table XV!; and the indices of eigensubspaces are elem
of Z23Z23Z23Z2 .

D. The fine grading of o „6, C… corresponding to H4

With

A15s1^ S 1 0 0

0 1 0

0 0 1
D , A25s2^ S 1 0 0

0 cosw sinw

0 2sinw cosw
D

the Lie algebra o~6, C! is decomposed into one two-dimensional and 13 one-dimensional
spaces. The eigenvectorsZ1 , . . . ,Z15 describing the subspaces are

Z15M231M56, Z25M14,

Z35M251M36, Z45~M121M45!1 i ~2M132M46!,

Z55~M151M24!1 i ~2M162M34!, Z65~M252M36!1 i ~2M262M35!,

Z75~M152M24!1 i ~M162M34!, Z85~M122M45!1 i ~M132M46!

~46!
Z95M262M35, Z105M232M56

Z115~M152M24!1 i ~2M161M34!, Z125~M122M45!1 i ~2M131M46!,

Z135~M252M36!1 i ~M261M35!, Z145~M121M45!1 i ~M131M46!,

Z155~M151M24!1 i ~M161M34!.

TABLE XV. H3 : The correspondence between eigenvectorsZk from ~45!
and the eigenvaluesl1 ,l2 ,l3 ,l4 of AdA1

,AdA2
,AdA3

,AdA4
.

Eigenvector l1 l2 l3 l4

L (0,0,0,1) Z1 1 1 1 21
L (0,0,1,0) Z2 1 1 21 1
L (0,1,0,0) Z3 1 21 1 1
L (0,1,0,1) Z4 1 21 1 21

Z5 1 21 1 21
Z6 1 21 1 21

L (0,1,1,1) Z7 1 21 21 21
L (1,0,0,0) Z8 21 1 1 1
L (1,0,0,1) Z9 21 1 1 21
L (1,0,1,0) Z10 21 1 21 1
L (1,0,1,1) Z11 21 1 21 21
L (1,1,0,0) Z12 21 21 1 1
L (1,1,0,1) Z13 21 21 1 21
L (1,1,1,0) Z14 21 21 21 1
L (1,1,1,1) Z15 21 21 21 21
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As in the case ofG4 , the set of indices is a subset ofZ23Z8 . The eigenvalues are the same
in Table V with a5exp(iw).

E. The fine grading of o „6, C… corresponding to H5

Using the two matrices

A15diag~1,21! % S 21 0

0 21D % S 1 0

0 1D ,

A25diag~1,1! % S cosw1 sinw1

2sinw1 cosw1
D % S cosw2 sinw2

2sinw2 cosw2
D

for AdA , the Lie algebra o~6, C! is decomposed into 13 one-dimensional and one two-dimensi
subspaces with bases consisting of eigenvectorsZ1 , . . . ,Z15:

Z15M34, Z25M56,

Z35M12, Z45M152 iM 16,

Z55M252 iM 26, Z65~M351M46!1 i ~M362M45!,

Z75M232 iM 24, Z85M132 iM 14,
~47!

Z95~M352M46!1 i ~2M362M45!, Z105~M352M46!1 i ~M361M45!,

Z115M231 iM 24, Z125M131 iM 14,

Z135~M351M46!1 i ~2M361M45!, Z145M151 iM 16,

Z155M251 iM 26.

Replacinga with exp((i/2) (w11w2)) andb with exp((i/2) (2w11w2)) in Table VI we get
the pairs of eigenvalues ofAdA1

andAdA2
; these are then embedded into the additive groupZ2

3Z9 .

F. The fine grading of o „6, C… corresponding to H6

Three inner automorphismsAdA , A15diag(1,1,21,1,21,21), A25diag(1,21,21,1,1,1),

and

A35diag~1,1,21,21! % S cosw sinw

2sinw cosw
D ,

split the Lie algebra o~6, C! into 15 one-dimensional subspaces—linear hull of matricesZj :

Z15M56, Z25M12, Z35M34, Z5M152 iM 16,

Z55M252 iM 26, Z65M351 iM 36, Z75M451 iM 46, Z85M14,
~48!

Z95M24, Z105M23, Z115M13, Z125M352 iM 36,

Z135M452 iM 46, Z145M151 iM 16, Z155M251 iM 26.
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The table of eigenvalues~elements ofZ23Z23Z6) can be obtained from Table VII, just with
the value exp(iw/2) in the place ofa.

G. The fine grading of o „6, C… corresponding to H7

With four specimen ofA5diag(1,«1 ,«2 ,«3 ,«4 ,«5), namelyA15diag(1,1,21,21,21,21),
A25diag(1,21,1,21,21,21), A35diag(1,21,21,1,21,21), and A45diag(1,21,21,21,1,
21), the Lie algebra o~6, C! is decomposed into 15 one-dimensional subspaces, whose bas
the eigenvectorsZj :

Z15M56, Z25M46, Z35M45, Z45M36,

Z55M35, Z65M34, Z75M12, Z85M26,
~49!

Z95M25, Z105M24, Z115M13, Z125M23,

Z135M14, Z145M15, Z155M16.

See Table VIII for the eigenvalues (j ,k,l ,m)PZ23Z23Z23Z2 .

H. The fine grading of o „6, C… corresponding to H8

UsingA15E21(I 3^ s3)E, A25E21(diag(1,21,1)^ s0)E, andA35E21(I 3^ s1)E in AdA ,
the Lie algebra o~6, C! is decomposed into fourteen subspaces, one being two-dimensional a
rest one-dimensional. The eigenvectorsZ1 , . . . ,Z15 are again given in terms ofMi j :

Z15M131M24, Z25M56, Z35M141M23, Z45M151 iM 26,

Z55M351 iM 46, Z65M162 iM 25, Z75M362 iM 45, Z85M132M24,
~50!

Z95M12, Z105M34, Z115M142M23, Z125M152 iM 26,

Z135M352 iM 46, Z145M161 iM 25, Z155M361 iM 45.

The grading subspaces generated byZ1 , . . . ,Z12 are labeled by the eigenvalues ofZ23Z23Z4

given in Table IX.

VI. CONCLUDING REMARKS

Having seen the eight fine gradings ofA3 in this article, the four fine gradings ofA2 in Ref.
3, the two such gradings ofA1 ~the root decomposition and the grading spanned by the P
matrices!, as well as the four fine gradings of the simple Lie algebraC2.B2 in Ref. 2, it appears
unlikely that it will ever be practical to describe all fine gradings of sl(n, C) or other simple Lie
algebras for much higher ranks in an explicit way similarly as it is done in this article. There
however, other interesting questions one may want to address, once particular fine gradi
known or can be found. Let us mention some of them.

~i! There are many intermediate gradings of a Lie algebra between the two grading ext
the finest gradings~which we call fine! and the coarsest one. It would be useful to kno
them. Indeed, our original motivation for studying fine gradings came from the nee
know the intermediate ones in order to use them for contractions of Lie algebras w
preserve a chosen grading~cf. Ref. 7 and references therein!. Typically in physics applica-
tions one requires that a subalgebraL8 of L should be left intact, while contractions of th
rest ofL are admitted. An appropriate grading for such a problem would haveL8 displayed.

The most difficult part in finding all the nonequivalent gradings is to determine the
ones. One can visualize information about all gradings of a given algebra, for examp
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a graph with nodes, representing different gradings, ordered by levels which are giv
the number of grading subspaces in each grading, and with edges linking nodes/gr
related by a minimal refinement/coarsening. A complete list of gradings is simple to
for A1 , but it is considerably more difficult for all higher rank algebras. In fact, a desc
tion of all nonequivalent gradings is not available even for rank two algebras.

~ii ! In this article we have introduced the notion of a subalgebraL8,L which is displayed by
a grading ofL. In general, such a grading may not be a fine one. It is unlikely that for
L8,L one can find a grading ofL which would displayL8. An interesting problem is to
recognize the subalgebras which are displayed by some grading ofL. We have seen in this
article that all maximal reductive subalgebras are displayed by some grading, usually
than one. That includes the subalgebras o~4, C! and sp~4, C! which are of rank 2 and which
are not displayed by the root grading.

~iii ! Besides the fine gradings by the maximal torus, well known for all simple Lie algeb
there is also another family of fine gradings of all sl(n, C). The corresponding MAD-group
Pn is finite, is of ordern3, and is generated by then3n Pauli matrices.6 In this article such
a grading is produced by the MAD-groupG2 in four dimensions and byH2 in six dimen-
sions.

Furthermore, for each sl(n, C) with n5n13n2 , where the factorsn1 and n2 have a
nontrivial common divisor, there is another MAD-groupPn1

3Pn2
containing the tensor

products of Pauli matricesn13n1 and n23n2 . It is the case of MAD-groupsG7 for n1

5n252 in this article. The groupH7 is a six-dimensional representation ofG7 . If n1 and
n2 have no common divisor,Pn1

3Pn2
is isomorphic toPn .

~iv! The fine gradings of the real forms ofA3 and the maximal reductive subalgebras th
display are considered in our subsequent paper. Given the classification of the corre
ing MAD-groups,8 it is a natural continuation of this work.

~v! The Lie algebraA3 has two independent Casimir operators, of degree 2 and 3. The d
2 operator and its eigenvalues on irreducible representations are well known for simp
algebras of all types. The operator of degree 3 was written for all sl(n, C) by I. M. Gelfand
some 50 years ago. Its eigenvalues apparently were never given in a closed form
irreducible representations.

It would be interesting to write the operators in terms of other bases than that give
the root decomposition. It is conceivable that an easier description of their eigenv
would then be possible.

~vi! Ubiquity of the weight decomposition of the representations of simple Lie algebras, w
is the decomposition of the representation spaces into eigenspaces of the maximal t
well known as the workhorse of the applications of the standard representation the
these Lie algebras.

Eigenspace decomposition of representation spaces ofA3 by other MAD-groups is a well
defined problem which would be interesting to consider even before a fine grading tur
to be particularly useful: Such a decomposition may suggest useful applications o
grading. There is a technical complication arising in all but the root decomposition.
related to the fact that the MAD-groups involve automorphisms of finite order. Such
morphisms, in general, behave differently in representations belonging to different co
ence classes.9 Their order may be different in representations belonging to different c
gruence classes.

~vii ! Finally, let us point out an interesting new application of the fine gradings outside th
theory proper. The well known Drinfeld–Jimbo quantum algebra is aq-deformation of the
universal enveloping algebra U(so(n)) in the basis given by the root decomposition.
Refs. 10 and 11 a new deformation of U(so(n)) is based on another fine grading of so(n),
namely on the grading generated by the MAD-groupG5$AdAuA5diag(«1,«2, . . . ,«n),«i5
61%. This new deformation is nonisomorphic to the Drifeld–Jimbo deformation. It is q
natural to ask the question aboutq-deformations for every fine grading of so(n), not only
for the two mentioned in Ref. 10.
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~viii ! Occasionally one needs bases/generators of the Lie algebra chosen in different repr
tions in such a way that the corresponding structure constants coincide. In Table XV
finds such a choice of the matrices representing the root vectors of the three simple
ea1

, ea2
, andea3

in the four- and six-dimensional representations ofA3 . For the latter we
show them in both realizations~4! and ~5!. The root vectors of the negative simple roo
roots, e2a j

, j 51,2,3, are obtained from the positive ones by matrix transposition in

cases~2! and~5!: e2a j
5ea j

T , whereas for o~6, C!, represented by skew-symmetric matric

~4!, one uses Hermitian conjugation~transposition and complex conjugation!: e2a j
5ea j

T

52ea j
. From the six root vectorse6a j

, j 51,2,3, the rest of the basis is generated
repeated commutations. In all three cases the structure constants are the same.
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6J. Patera and H. Zassenhaus, J. Math. Phys.29, 665 ~1988!.
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10A. U. Klimyk, Czech. J. Phys.51, 331 ~2001!.
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TABLE XVI. Matrices representing the root spacesea1
, ea2

, ea3
of A3 in

terms of matricesEjk , Njk , andM jk defined in~9!, and normalized so that
corresponding structure constants coincide.

sl~4, C! o~6, C!

ea1
E12 N23

1
2@(M351M46)1 i (M362M45)#

ea2
E23 N12

1
2@(M131M24)1 i (M142M23)#

ea3
E34 N24

1
2@(M352M46)2 i (M361M45)#
                                                                                                                



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 12 DECEMBER 2002

                    
Comment on: ‘‘ ‘Massive’ vector field in de Sitter space’’
†J. Math. Phys. 41, 5920 „2000…‡

T. Garidia)

Laboratoire de Physique The´orique de la Matie`re Condense´e, Universite´ Paris
7 Denis-Diderot, 75251 Paris Cedex 05, France

J.-P. Gazeaub)

Laboratoire de Physique The´orique de la Matie`re Condense´e, Universite´ Paris
7 Denis-Diderot, 75251 Paris Cedex 05, France and Institute of Theoretical Physics,
University of Bialystok, Lipowa 41, 15-424 Bialystok, Poland

M. V. Takookc)

Department of Physics, Razi University, Kermanshah, Iran and Plasma Physics Research
Centre, Islamic Azad University, P.O. Box 14835-157, Tehran, Iran

~Received 24 July 2002; accepted 24 July 2002!

@DOI: 10.1063/1.1515111#

Equation~3.26! and the sentence below it should be replaced by

K2a~z!5E a*
(l)~z* ,j!~Hz•j!23/22 in, ~3.26!

in which z,z* PXH
(c) andjPC 1.

Equations~4.8! and ~4.9! should be replaced by

K2
j,l~z!5~Hz•j!23/22 inE * l~z* ,j!, ~4.8!

Waa8
n

~z,z8!5cnE
T
~z.j!23/22 in~z8.j!23/21 in (

l51

3

E a
l~z,j!E a8

* l
~z8* ,j!dmT~j!. ~4.9!

Equations~4.14! and ~4.16! should be replaced by

]̄8W 2
n~x,x8!5

1

n21 1
4

@u8• ]̄W 1
n~x,x8!12H2u8•xW 1

n~x,x8!#. ~4.14!

Daa85ua•ua8
8 1

1

H2~n21 1
4!

]̄a@ua8
8 • ]̄12H2ua8

8 •x#. ~4.16!

a!Electronic mail: garidi@ccr.jussieu.fr
b!Electronic mail: gazeau@ccr.jussieu.fr
c!Electronic mail: takook@ccr.jussieu.fr
63790022-2488/2002/43(12)/6379/1/$19.00 © 2002 American Institute of Physics
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In this note, we show that the definitions proposed in J. Math. Phys.41, 24 ~2000!;
41, 1718~2000!; 41, 1735~2000! for the description of relativisticd-sphere inter-
actions and its various generalizations are not correct. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1518786#

I. INTRODUCTION

In the last two decades, several researchers were attracted by the study ofd-sphere interactions
in quantum mechanics both from the mathematical point of view and for their applicatio
modelling various physical phenomena.

For a long time, most of the studies were focusing on nonrelativistic interactions. The
rigorous mathematical definition and analysis of relativisticd-sphere interactions were provided
Refs. 1 and 2.

More recently, Hounkonnou and Avossevou3–5 published a series of papers on relativisticd,
d8 and finitely manyd-sphere interactions in quantum mechanics. Although they refer to Re
and 2, the definitions proposed in Refs. 3–5 for the description of relativisticd-sphere interactions
are not correct. Furthermore, the papers contain several other mistakes related to a misund
ing of some basic concepts of the theory of self-adjoint extensions of symmetric operat
Hilbert spaces.

The purpose of this note is to show that the definitions proposed in Refs. 3–5 do not
spond to any relativisticd-sphere interaction.

In Secs. II and III we review the definitions proposed in Refs. 1 and 2 and 3–5, respec
and in Sec. IV we carry out a comprehensive critical analysis of the boundary conditions
models introduced in Refs. 3–5.

II. THE DEFINITION OF DITTRICH, EXNER, AND SEBA „Ref. 1…

Using the theory of self-adjoint extensions of symmetric operators in Hilbert spaces, Di
et al.1 introduced the Dirac Hamiltonian with ad-sphere interaction, formally given in thre
dimensions by

HG= 5HD1G= d~ uxu2R!; xPR3, RP~0,̀ !, ~1!

whereHD is the free Dirac Hamiltonian andG= is a real 434 matrix of the formG= 5(0
AI

BI
0).
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For the construction of the self-adjoint operator corresponding toHG= the authors proceed a
follows. First, they consider the operator

H5HD ,
~2!

D~H !5C0
`~R3\$SR%! ^ C4,

whereSR is the closed ball of radiusR centered at the origin inR3 and look for those self-adjoin
extensions ofH which are rotationally and space reflection symmetric.

Next they decompose the state Hilbert spaceL2(R3) ^ C4 with respect to radial and angula
variables and introduce a unitary operator in order to remove the weight factorr 2 from the
integration measure.

With these transformations, the analysis ofHG= in Eq. ~1! is reduced to that of the radial Dira
HamiltonianhD with a d-interaction formally given by

hG5hD1Gd~r 2R!, ~3!

whereG is a real 232 matrix of the formG5(0
A

B
0) and

hD5S c2

2
2c

d

dr
1c

k j l

r

c
d

dr
1c

k j l

r
2

c2

2

D [t, D~hD!5H1,2~~0,̀ !! ^ C2. ~4!

In Eq. ~4!, c denotes the velocity of the light,H1,2((0,̀ )), the Sobolev space of indices~1,2! and

k j l 5(21) j 2 l 1
1
2( j 1 1

2).
The construction of the self-adjoint operator corresponding tohG is performed as follows.

Fisrt, one considers the closure of the radial part of the operatorH which is defined by

hjl 5t,

D~hjl !5$cPL2~~0,̀ !! ^ C2ucPACloc~~0,̀ !!,c~R6 !50;

tcPL2~~0,̀ !! ^ C2%, ~5!

where ACloc(V) denotes the set of locally absolutely continuous functions onV and

c~x6 !5 lim
e→01

c~x6e!.

The adjointhjl* of hjl reads

hjl* 5t,

D~hjl* !5$cPL2~~0,̀ !! ^ C2ucPACloc~~0,̀ !\$R%!,

tcPL2~~0,̀ !! ^ C2%. ~6!

The following theorem was proved in Ref. 1
Theorem 1:
Any self-adjoint extensionĥ j l of hjl reads

ĥ j l 5t,
~7!

D~ ĥ j l !5$cPD~hjl* !uCc~R2 !1Dc~R1 !50%,
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whereC andD are 232 matrices such that the 234 matrix (C,D) has rank 2.
Conversely any operator of this form is a self-adjoint extension ofhjl .
Definition:
According to Ref. 1, Eqs.~4.3! and ~4.6!, the operatorhG in Eq. ~3! is defined in

L2((0,̀ )) ^ C2 by

hG5t,

D~hG!5H cPD~hjl* !US 1
B

2c

2
A

2c
1
D c~R1 !2S 1 2

B

2c

A

2c
1
D c~R2 !50J . ~8!

The particular casesAÞ0, B50 andA50, BÞ0 yield the relativisticd-sphere interactions o
the first and second type, respectively, with the domains

D~hA!5H c5S f
gDPD~hjl* !U f ~R2 !5 f ~R1 ![ f ~R!,g~R1 !2g~R2 !5

A

c
f ~R!J , ~9!

D~hB!5H c5S f
gDPD~hjl* !Ug~R2 !5g~R1 ![g~R!, f ~R1 !2 f ~R2 !52

B

c
g~R!J . ~10!

III. THE DEFINITIONS OF HOUNKONNOU AND AVOSSEVOU „Refs. 3–5 …

Recently, Hounkonnou and Avossevou published a series of papers on relat
d-interactions of the type

ha5hD1ad~r 2R!, ~11!

ha,$R%5hD1 (
m51

N

amd~r 2Rm!, ~12!

h̃a,$R%5hD1 (
m51

N

ãmd8~r 2Rm!, ~13!

wherehD is the radial Dirac Hamiltonian defined by Eq.~4!.
The authors define these interactions in Ref. 3, Eqs.~2.21!–~2.25!, Ref. 5, Eqs.~2.21!–~2.24!,

and Ref. 4, Eqs.~2.18!–~2.21!, respectively.
In this note we focus our analysis on the model given by Eq.~11!. Our argumentation applie

as well to the models defined by Eqs.~12! and ~13!.
The following two definitions were proposed in Ref. 3, Eqs.~2.21!–~2.25! for the formal

expression~11!,

~i! ha,15t,

D~ha,1!5H c5S f
gDPL2~~0,̀ !! ^ C2U f 8~R1 !5 f 8~R2 !,

g8PACloc~~0,̀ !\$R%!,g8~R1 !2g8~R2 !

5
a

c
f 8~R!1Ã, tcPL2~~0,̀ !! ^ C2, ÃÞ0,2`,a<1`J ; ~14!
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~ii ! ha,25t,

D~ha,2!5H c5S f
gDPL2~~0,̀ !! ^ C2Ug8~R1 !5g8~R2 !,

f 8PACloc~~0,̀ !\$R%!, f 8~R1 !2 f 8~R2 !

52
a

c
g8~R!1B̃,tcPL2~~0,̀ !! ^ C2,B̃Þ0,2`,a<1`J . ~15!

IV. DISCUSSION

In this section we carry out a comprehensive critical analysis of the model introduced in
3. As indicated in Sec. III, our argumentation applies as well to the models discussed in R
and 5.

~1! Obviously the operators defined by Eqs.~14! and~15! are different from the operatorshA

andhB given by Eqs.~9! and~10!. Therefore~14! and~15! do not define any relativisticd-sphere
interaction.

Moreover, sinceHb andHg in Ref. 3, Eqs.~2.22! and~2.25! are defined through Eqs.~14! and
~15!, it follows that they do not correspond to the relativisticd-sphere interaction given by Ref. 3
Eq. ~2.1!. Furthermore, since the operatorha,$R% in Eq. ~12! is defined throughha , it follows that
ha,$R% does not correspond to any radial Dirac Hamiltonian with finitely manyd-sphere interac-
tions supported by concentric spheres.

~2! The boundary conditions given in Eqs.~14! and ~15! cannot be written in the form

Cc~R2 !1Dc~R1 !50. ~16!

Therefore, according to theorem 1, the corresponding operators are not self-adjoint and
quently the conditions required for the application of Krein’s formula and Weyl’s theorem fo
computation of the resolvent equation and the analysis of spectral properties of the Hamilt
are not fulfilled.

Furthemore, the domainD(ha,1) is not a linear manifold unless the quantityÃ entering the
boundary conditions in~14! is a linear functional onD(hjl* ). Since this assumption was no
explicitely stated, it follows thatha,1 is not a linear operator.

~3! The paper contains several other mistakes related to a misunderstanding of som
concepts of the theory of self-adjoint extensions of symmetric operators in Hilbert spaces.
note we just point out the following mistakes.

~i! The domainD(ḣ j l ) in Ref. 3, Eq.~2.13! should read

D~ ḣ j l !5$cPL2~~0,̀ !! ^ C2ucPACloc~~0,̀ !!,c~R6 !50;

tcPL2~~0,̀ !! ^ C2%. ~17!

Moreover, contrary to the statement following Ref. 3, Eq.~2.11!, ḣ j l is not a self-adjoint operator
~ii ! The operatorḣ j l* in Ref. 3, Eq.~2.14! has not been introduced. Since the definition ofḣj l

in Ref. 3, Eq.~2.13! is wrong, we assume that the definition ofḣ j l* in Ref. 3, Eq.~2.14! is also
wrong.

~iii ! In Ref. 3, Eq. ~2.21!, the case b j l 50 leads to the boundary conditionsf j l8

PACloc((0,̀ )) and gjl8 (k,R1)2gjl8 (k,R2)5Ã. These boundary conditions do not define t
radial Dirac Hamiltonian given by~4!.

~iv! In Ref. 3, Eq.~2.11! the boundary conditions are defined on~0,̀ !. Therefore the case
b j l 5` can not lead to any boundary condition on the sphereSR in R3. Furthemore, the cas
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b j l 5` leads to the boundary conditiongjl8 (R)50 and notgjl8 (k,R1)2gjl8 (k,R2)50. Therefore,
b j l 5` does not coincide with the radial Dirac Hamiltonian with a Neumann boundary cond
at R.

~v! The definition ofHg0
in Ref. 3, Eq.~3.2! is wrong.Hg0

should read

Hg0
5HD1

g0

uxu
; xPR3. ~18!

Moreover, as in the caseg050, one can show that Ref. 3, Eq.~3.5! is wrong and that Ref. 3
Eqs.~3.11!–~3.13! do not define any relativisticd-sphere plus a Coulomb interaction.
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4M.N. Hounkonnou and G.Y.H. Avossevou, J. Math. Phys.41, 1718~2000!.
5M.N. Hounkonnou and G.Y.H. Avossevou, J. Math. Phys.41, 1735~2000!
                                                                                                                



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 12 DECEMBER 2002

                    
Erratum: ‘‘Symmetric tensor spherical harmonics on the
N-sphere and their application to the de Sitter group
SO„N,1… ’’ †J. Math. Phys. 28, 1553 „1987…‡

Atsushi Higuchi
Department of Mathematics, University of York,
Heslington, York, YO10 5DD, United Kingdom

@DOI: 10.1063/1.1515382#

The second line of Eq.~7.22a! should read ‘‘3( l 2q)( l 1q1N23)’’ and the second line of
Eq. ~7.22b! should read ‘‘3( l 2q11)(l 1q1N22).’’

The first line of the right-hand side of Eq.~7.24a! should read

~ l 2r !~ l 11!

~ l 2m!~ l 2m11!

and that of Eq.~7.24b! should read

2
~ l 1N1r 22!~ l 1N23!

~ l 1N1m22!~L1N1m23!
.

In the line between Eqs.~8.12! and~8.13! ‘‘replacing r , L, l , andN by m, l , q, andN21’’
should read ‘‘replacingm, l , q, andN21 by r , L, l , andN. ’’

In Eqs.~9.12! and ~9.17!, the factor ofp should be replaced by 2.
63850022-2488/2002/43(12)/6385/1/$19.00 © 2002 American Institute of Physics
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